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The material presented in this thesis is an attempt to
obtain an increased understanding of the electronic structure
and chemical binding in molecular systems. The one-electron
charge distribution in methane, which is derived by considering
only one-electron dependent properties of the system, is used to
analyze the chemical binding in this molecule. A theoretical
method, which allows one to determine the effect of the Pauli
exclusion principle on the one-eiectron density distribution, is
used to test the concepts undérlying the electron pair repulsion
theory as applied to Hy0 and NH3. Kinetic energy distributions
are defined in order to examine the relationship between the
topographical features of the molecular one-electron charge

distribution and the kinetic energy of the system.



PREFACE

The electronic structure and chemical binding in molecular
systems are of major concern to many experimentalists and theore-
ticians. A basic understanding of these properties is essential to
a fundamental interpretation of the stability and chemical behaviour
exhibited by molecules. The work presented in this thesis, which is
couched in termé of a density approach, is an attempt to obtain a
more complete knowledge of molecular binding.

A one-electron charge distribution is obtained for the methane
molecule using only one-electron properties of the system. This charge
distribution is used to analyze the chemical binding in methane. The
effect of the Pauli éxclusion principle on the one-electron charge
distribution in three dimensional space is discussed. The topography
of the one-electron charge distribution in molecules is related to the
kinetic energy of the system by considering a number of kinetic energy
distributions.
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GENERAL INTRODUCTION

All but the smallest atohs and molecules are dynamic systems
of great complexity. At present, exact calculation of the properties
of such many-particle systems are not possible since Schrddinger's
wave equation has not been solved exactly for the many-body problem.
Tgus, certain assumptions and approximations must first be made in
order to carry out any theoretical calculations. It is important,
however, to be guided by physical considerations, for the purpose of
analysis is not just to account for the properties of a particular
molecule as closely as possible but also to discern features that are
shared by other molecular systems. '

It was with the intention of better understanding the electronic
structure and chemical binding in polyatomic systems that the work
presented in this thesis was undertaken. Since many molecular properties‘
are directly determined by the three-dimensional charge distribution in /
the molecule, much can be gained by analyzing the characteristics of this
distribution. In this thesis a "Density Approach' is used as a means of
aquiring this knowledge.

In Chapter | a ground state one-electron density distribution for
the methane molecule is determined by requiring this distribution to give
zero forces on the nuclei and the correct expectation value for the dia-
magnetic proton magnetic shielding. This electrostatic approach, which
utilizes only one-electron prpperties, was used rather than the generally

accepted method of energy minimization which necessarily involves difficult

1



~ two-electron integral calculations. This derived density distribution

is used to calculate a set of experimentally observable physical properties
in order to assess the merits of this apbroach. The chemical binding in
‘methane is analyzed in terms of the derived gharge distribution. An
.answer is given to the question, ''Does the method of energy minimization
necessarily give the best one-electron charge density for polyatomic mole-
cﬁles using a limited basis set?"

Chapter || deals with a theoretical method which is used to test
the concepts underlying the electrbn pair repulsion theory of molecular
geometry.2 This theoretical method allows one to determine the effect of
the Pauli exclusion principle on the one-electron density distribution. |
It is shown that‘pictures of overlapping orbitals, which are so commonly
used in discussfons of molecular geomefry, do not in general correspond
to the actual effect which the Pauli principle has on the three-dimensional
charge density. An alternative electrostatic approach, involving the
concept of a binding region for é polyatomic molecule, is proposed to
account for the observed molecular geometries.

The material in Chapter |1l is concerned with a new dynamic approach
to the binding in molecules. This approach is a complement to the electro-

L,5.6

static approa§h3’ which interprets chemical binding in terms of the
spatial characteristics of the molecular charge distribution and the forces
which it exerts on the nuclei. This new approach examines the relationship
between the topographical features of a molecular charge distribution and the
kinetic energy of the system. Specifically, the spatial contributions to

the kinetic energy are related to the Laplacian of the total charge density

and to the gradients of the natural orbital densities. It is shown that the



charge density accumulated in the internuclear region of a stable molecule
is distributed in such a way as to keep the accompanying increase in the
kinetic energy to a minimum. A comparison of the contribution to the
kinetic energy from the atomic and molecular charge distributions indicates
that in the formation of a stable molecule‘the contribution to the kinetic
energy from the molecular charge density in the binding region is decreased
to that of the atoms.

Concluding remarks concerning the binding in molecules from a
"Density Approach' are given.

Some of the results presented in this thesis have been accepted
for publication7; others have been published in the Canadian Journal of

Chemistrys.



I. A DENSITY APPROACH TO CHEMICAL BINDING IN METHANE-

1.1 Introduction

—a) Historical Survey

The high symmetry possessed by the methane molecule has resulted
in many theoretical investigations of its electronic structure. The
literature on‘the determination of the electronic wavefunction of methane
is rathér extensiVeg-30 and includes various approaches and different
degrees of éccuracy. In the past, accurate wavefunctions for polyatomic
molecules such as CH, were not attempted because it was impossible to
evaluate the many-centered two-electron integrals which were required by
the self-consistent-field (SCF) procedqre. Only recently have some poly-
atomic wavefunctions become available which for their ac:curacyZI’Zl*’%"29
can be compared to those derived for diatomic molecules by the SCF LCAO
31,32

MO method
The tetrahedral symmetry of the methane molecule, which can almost
be considered spherical to a good approximation, makes it an ideal mole-

9-14,17-20,22,30 (0¢E) techniques.

cule for testing one-center expansion
This one-center method, which requires the evaluation of only one-center
integrals, was used by early workers to circumvent the calculation of the
difficult multicenter integrals. The failure of this method to produce a
good charge distribution around the hydrogen atoms and in the outer regions
of the molecule has often led to criticismzu of this approach.

The attempts to use Gaussian-type orbitals,§’2]’28

(GTO's) in
multi-center expansions have met with some success even though such orbitals

do not fulfill the cusp conditions as well as the exponentials. The use of

L



Gaussian instead of Slatef-type functions for the radial part decreases
the computational difficulties, but it is clear]6 that the Gaussians form
an inferior basis set, and probably about 40% more such functions are
-needed33 to achieve comparable results. Using an extremely large Gaussian
~basfs»set Ritchie and Kin928 have determined a wavefunction for methane
that gives one of the better energies, -40.198 a.u., for this molecule.
Similar results for other molecules indicate the great success of the
Gaussian approach.
Only recently have extensive polycenter analytic SCF cal_cu]ations2 K

26,27,29 been attempted using Slater-type orbitals (STO's) in minimal or
rather 1imited basis sets. These results for polyétomic systems are very
promising even though the calculated energies do not approach the Ha;tree—
Fock 1imit as closely as do the results for diatomic molecules. Because
of the computational difficulties with multi-center integrals, fully
optimized polycenter wavefunct}ons using large extended basis sets of
Slater-type orbitals have not been attempted for molecules such as CH,.
The best wavefunction to date for methane, from a minimum energy criterion,
has been obtained by Arrighini et'al29 using a multi-center basis set of
thirty-nine Slater-type orbitals. They obtain an energy of -40.20542 a.u.,
which is approaching the Hartree-Fock limit, and determine good expectation
values for a number of physical properties. Even though theoretical
calculations such as these are in good agreement with experiment, accurate
Hartree-Fock wavefunctions for polyatomic molecules await advances in
numerical computationg.

Since obtaining molecular wavefunctions using the minimization of

T L S
energy crlterlon3 requires so much computation time, particularly for



polyatomic systems, other methods of determining wavefunctions have been

35 36

suggested. Bader and Jones””, and Keaveny~ have shown that certain one-
electron properties, which are much simpler than energies to calculate,
can be used to determine a set of unknownqparameters in a very generalized
set of basis orbitals. This method, which‘depends solely on the one-
electron density, was adopted in the present work to determine a one-
electron density distribution.fOr methane, which could then be used to
analyze the chemical binding in this molecule.

Many models have been proposed to account for the known facts of
the chemical behaviour of molecules. The idea that a chemical bond consists
of a pair of electrons, in close association with each other, shared between
two atoms was first conceived by Lewis37. This idea of the electron pair
bond was further considered in the theoretical treatment of molecules by

38 39

Heitler”  and London Sidgwick and Powel‘ll*0 were the first to point out
that molecules with four pairs of electrons in the valency shell were
either tetrahedral in shape (CH,) or were related to the baéic tetrahedral
geometry, e.g., the nearly tetrahedral bond angles found in NH3 and H,0.
Lennard-Jonesh] demonstrated that the antisymmetrization requiréments of

the Pauli principle forces the electrons of an inert gas, such as neon, to
dispose themselves So that those of the same spin subtend tetrahedral angles
at the nucleus. He also showed that there was no correlation between the
-two tetrahedra resulting from the electrons with o and B spin. PoplélI2
postulated that as one considered the withdrawal of successive protons
‘from the Ne nucleus to form HF, H,0, NH3 and CH, respectively, the motion

of the two tetrahedra would become correlated so as to concentrate a pair

of electrons with opposite spin along each bond to a hydrogen atom. In



this way the electron density in these molecules were directly related to
the tetrahedra] hybridization (sp3) of Ne. The sp3 hybridization is in
fact altered by polarization-type h\/bridizationh3 due to the protons.

The methane molecule, which has four pairs of valence electrons,
can thus be expected to have its electron density concentrated along the
molecular bond axee‘ in almost sp3 hybridization. The actual positioning
of the density along these bonds determines how polar the bonds are. In |
order to analyze these characteristics of the charge distribution, contour
maps of the derived molecularAdensity p(;l)and the difference density
Ap(;lx which is obtained by subtracting the superimposed densities of the
" component undistorted atoms placed at the equilibrium bond lengghs from
the molecular density also evaluaped at the equilibrium bond distance, are
considered. |

The one-electron density distribution of the ground state accounts
for many of the physical properties of a molecule. In order to determine
how closely the derived density distribution for methane resembles the real
physical density a number of these physical properties are calculated, using
the deriQed density, and compared with their experimental counterparts. The
agreement of these results will be used as a measure of the quality of the
derived one-electron density distribution.

b) Theoretical Background

Within the confines of Quantum Mechanics a complete knowledge of
the time-independent properties of a system consisting of nuclei and electrons

can be obtained by finding solutions to Schrtdinger's wave equation

Hy = Ey , (1.1)



where H is the quantum mechanical Hamiltonian operator for the system,
Y is the energy eigenfunction and E is the corresponding energy eigen
value. In Equation (1.1) the Hamiltonian is a function of the coordinates
and momenta of both the electrons and the nuclei, and ¢ is a fhnction of
the space and spin coordinates of all the barticles. To find solutions
to Equation (1.1) is not an easy task since this equation can not be
solved exactly for many particle systems and approximate methods must be
used.

Within the Born-Oppenheimerhh approximation, which allows one to
separate the electronic and nuclear motions, the basic problem of finding
solutions to Equation (1.1) is reduced to finding solutions to the

electronic wave equation
Hy = E (1.2)

for various fixed nuclear configurations. In Equation (1.2) the electronic

Hamiltonian, He’ is given by

N

o
1 o=l "ia i>j=1 "ij '

(4]
N} —
a3

<
-

1
M3
W=

1 i

where n and N are the number of electrons and nuclei respectively, v% is
the Laplacian operator for the ith electron, rij is the distance between
the ith and jth electrons, Za is the charge on the ath nucleus and iy is
‘the distance between the ith electron and the ath nucleus. Atomic units
(a.u.) are employed throughout. The electronic wavefunction, Vs Will
thus depend on the spin and space ﬁoordinates of the electrons and on the

fixed nuclear geometry through the terms (Za/ria) in He' Exact solutions

to Equation (1.2) are al;o not possible except for very simple cases and



thus further approximations are required.
The next step, the Hartree-Fock approximation, is to assume the
total electronic wavefunction we to be given by an antisymmetrized
"product of orthonormal one electron spin functions, designated as spin
.orbftals. Thus, for a system of n electrons the wavefunction is

represented by

Ve = /AT A () (2) ...t An(n)ll , (1.4)

where the Ai's are the spin orbitals, each being a product of a space
function ¢i, called an atomic or molecular orbital, and an o or .8 spin
function. The double bars in Equation (!.4) denote a determinant. In
1930, Fockhs, using the determinantal wavefunction represented by Equation
(1.4) which satisfies the Pauli principle, devised a self-consistent-field
(scF) procedure; proposed earlier by Hartreehs, for finding approximate
solutions to Equation (1.2). This SCF methodh7, which has the variational
VVVV ';ffﬁgféfé built Tntoﬁit;ﬁinvolves‘an iterative procedure of first guessing
a set of spin orbitals Ai, determining the '"Fock'' matrix, solving for a new
set of Xi and comparing them with those guessed; the steps are repeated until
~self-consistency is reached.
The SCF procedure is ideal for atoms, but when dealing with molecules
the SCF method is replaced by the LCAO SCF method first proposed by |
,uwRoothaan3é._ He assumed that the molecular orbitals, ¢i, are represented

to a good approximation by a linear combination of basis functions, Xj’

centered on each of the constituent atoms. Thus

c (1.5)

b, =

i ii%j »

Cms [

where the Cij's are the variable atomic coefficients. The criterion of
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energy minimization is used to qptihize the variable parameters,'inc]uding
the atomic coefficients, Cij’ in the molecular wavefunction. lf.enough
atomic functions Xj are included in the expansion'for the molecular
orbitals then no error will be introduced by this LCAOQ appfoximation.

The single-determinantal wavefunctfon represented by Equation (1.4)
does not represent an exact solution of the electronic Schrddinger wave
equation, Equation (1.2). Such a wavefunction, although it satisfies the
Pauli principle by keeping electrons with parallel spin apart, does not
prevent electrons with opposite spin from being in the éame space orbital
and this is energetically unfavourable because of the coulombic repulsions
of the electrons. The error introduced by the single-determinantal
Hartree-Fock wavefunction is called the correlation error and it arises
because of the électrostatic interactions of electrons with opposite spin.
L6wdinh8 has shown that a linear combination of several single-determinantal
wavefunctions, each formed from different spin orbitals, can give a
significant improvement in the total wavefunction and if the expansion is
carried far enough such a wavefuncticn can lead to a true solution of
Equation (1.2). This is the method cf configuration interaction which is
often applied to open-shell configurations.

In the present work, which is concerned with deriving a ground state
one-electron density distribution for the methane molecule, all the molecular
orbitals are doubly occupied and thus the molecular wavefunction is assumed
to be given to a good approximation by a single-determinantal wavefunction.

Because of computational difficulties with iﬁtegrals in the SCF pro-
cedure the basis sets used to represent the molecular orbitals in polyatomic

systems are not complete. The more accurate calculations generally result
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in numerical solutions which have no simple physical interpretation. Using
limited basis sets, which are less accurate than numerical solutions, one

can often correlate properties of the molecular wavefunction with certain

physical properties of the molecule and thus achieve some chemical insight

“into binding. In the present work a large but limited basis set, rather

than just a minimal set, is used to determine a groundstate density
distribution for methane. The limited basis set consists of large SCF
atomic orbital set centered on carbon and a single ls orbital on each
hydrogen. The derived density distribution is used to consider the binding
in the methane molecule.

Many molecular properties are related directly to the one-electron
density distribution. These properties, which are one-electron properties,
can be calculated simply from a knowledge of the first order density matrixh
given by

Y(lll')* '; =th*(],2.....n)¢(],2.....n)dT2d52 ..... dTndSn , (1.6)
xj=x)

where n is the number of e]ectrons,'dri and dsi are the space and spin

elements respectively of electron i. This expression is n times the

probability of finding electron one at the position ;1 with spin s;

irrespective of the spin and space coordinates of the other (n-1) electrons.

The one-electron density is then given by

D(Il) = IY(]]‘I)+ N ds; = nfw*wdsldrzdsz ..... d‘rndsn , (1.7)
X]=Xq

where now p(x;) is independent of spin and is a function only of position
in three-dimensional space. It is this one-electron density which is

responsible for the scattering of X-rays and electrons and which determines
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the electrical properties of the molecule.
One-electron properties, which depend only on the coordinates of

one electron at a time, are_evaluated in quantum mechanics by averaging

;the_moleculér wavefunction over the approgriate one-electron operators.

"A one-electron operator can be represented by
n
Q= 1z Op(i) f (1.8)

where i refers to the ith electron. The average value of this operator

is given by

n
<Q> = J¢*(1,2,....n) T Op(i)w(l,2,....n)dTldsl....dtndsn
i=1
= [Op(])y(]l]')+ +dT151 . (1.9)
x'=x

If the operator is spin independent then

<« = jop(np&l.)drl . (1.10)

Within the molecular orbital approximation to the wavefunction, Equations

(1.7) and (1.10) have particularly simple forms. These are respectively

p(x1) = 2 n.¢% ()¢, (1) | (1.11)
i
@ -z n.<e¥ (1) ]op (1) ]e, (1)> (1.12)

where the ¢i's are the orthogonal set of.molecular orbitals and the ni's
are the orbital occupation numbers equal to one or two.

As already indicated, the génefai procedure for determining the
approximate molecular wavefunction Qatisfying Equation (1.2) is the Hartree-

Fock-Roothaan method. This approach utilizes the minimization of energy
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constraint to optimize the variable parameters in the wavefunction. But
does the resulting appfoximate wavefunction, which yields the best energy,
predict the best one-electron charge distribution or other one-electron
properties? This doe; not necessarily ne;d to be the case since the
energy operator, which depends simultaneously on the coordinates of two
electrons, weighs more heavily different regions of space than do most
one-electron operators.

Mukherji and Karp]us49 have shown that, within a limited basis
set, a better one-electron distribution for hydrogen fluoride is obtained
when additional constraints, besides the minimization of energy criterion,
are used. They indicate that by requiring the wavefunction to predict the
correct experimental dipole moment and quadrupole coupling constant the
other molecular properties are given more accurately with only a slight
increase in the energy. Thus one would conclude that certain one-electron
propérties are useful in determfning the form of the wavefunction.

This was the approach used in the present work to determine a
charge distribution for methane. The one-electron properties used as
constraints on the wavefunction are the electric field (i.e., the forces)
and the diamagnetic part of the magnetic shielding, both occurring at a
proton. Since these are one-electron properties they can both be determined
from the fifst-order density matrix or more precisely from the one-electron
density distribﬁtion.

- The forces acting on the nuclei can be calculated most readily by

50

applying the electrostatic Hellmann-Feynman theorem”™ . This theorem was
stated by Feynman as follows:

"“The force on any nucleus (considered fixed) in a



system of nuclei and electrons is just the classical
electrostatic attraction exerted on the nucleus in
question by the other nuclei and by the electron
density distribution for all the électrons.”

A simple proof of this theorem is given here.

14

If ¢ is the molecular wavefunction satisfying Equation (I.1) then

the energy of the system is
E = <w|H]w> R

where ¢ is normalized to unity.

(1.13)

-
The force, Faq’ acting on nucleus a in the direction aa is given

by —aE/aaa, where 33@ is the displacement coordinate of nucleus o with

all other nuclei held fixed. Thus the force is

- oFE oH 9 9
RS RERTE SIS WU
qa qa qo qo
9H )
= - <1p|5-_: |¢> - E 5 (<1p]1p>)
qo qa
H
= - <l |y,

qo

which follows since H is Hermitian and

52*'(<¢|¢>) = 5:7'(]) =0
qa qa

Within the Born-Oppenheimerhh approximation the Hamiltonian

(1.14)

(1.15)

(1.16)

(1.17)

operator, H, for a system of N nuclei and n electrons and including the

nuclear repulsion terms, is given by
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p n 5 n N Za n ! N Z ZB
He-5 £ V- I I — + I —+ 3 —— _  (1.18)
i=1 " i=1 e=1 Tie isj=1 Tij o asp=1 Tas

where the symbols have been defined previously except for Fog which is the
separation between the nuclei a and B, and the terms in the expression are
respectively the kinetic energy of the electrons, the electron-nuclear
attractions, the electron-electron repulsions and the nuclear-nuclear
repulsions. Since the kinetic energy of the electrons and the electron-

electron repulsion terms are independent of the nuclear coordinates, it

follows that

3H s N N Za 5 N Z ZB
R D - . S (1.19)
o> e r. o> r
go qo i=1 o=l ia ga a>p=1 aB
n
3 2
= I 'é'_;—' Vi +-3-:;_ VN s (|.20)
i=1 “qo qo.
N
where Vi = - I Za/riu is the potential experienced by electron i in the
a=1
field of all N nuclei and VN is the potential energy of nuclear repulsions.

The operator given by Equation (1.20) is a one-electron operator as defined
by Equation (1.8) and thus, with the use of Equation (1.10), the force on

nucleus o can be written as

N Uy vy
Faq = -5 Jssf-p(xl)drl . (1.21)
qa qo.

Within a molecular orbital approximation to the wavefunction it is
easily shown, with the use of Equation (1.12), that the magnitude of the

. . F] + .
force on nucleus a in the direction of qo is

N cosf 8
= 3 Z12 s
aq 1 9B 2
R=1 ruB
B#a
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. s6
-z, 1) < (1) = — o, () | (1.22)

J rla

(nuclear) + F (electronic) ,

where 9 is the angle between ¥  and Za,-e is the angle between T

of af

—>
and qa, and the sign convention is that Faq is positive for a repulsive

ol la

force and negative for an attractive force. This force, via the Hellmann-
Feynmann theérem, is a one-electron property that can be calculated if the
wavefunction is known. Or, alternatively, the equilibrium density distribu-
tion can be partially determined from a number of constraints imposed by
the zero force requirements that a proposed equilibrium density distrfbution
must satisfy. THese force constraints together with the constraint that the
equilibrium density distribution must predict the experimental diamagnetic
part of the proton magnetic shielding, referred to later in this thesis, were
used to determine a density distribution for the methane molecule.

Since the equilibrium framework of methane is tetrahedral, it is
often convenient to work with orbitals that transform in the same manner
as the irreducible representation of the tetrahedral group. These type of
orbitals, referred to as molecular orbitals, are used in the Hartree-Fock
SCF treatment as already discussed and are useful in determining certain
molecular properties such as ionization potentials. But from a chemical
point of view where the properties of a particular bond are of interest
molecular orbitals are not the most convenient orbitals to use.

In order to understand the binding in molecules one often wishes
to think in terms of localized bonds and directed charge distributions.

It is therefore convenient to transform the molecular orbitals into another
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set of orbitals that are not necessarily a basis for the irreducible
representations of the molecular point group. This is particularly of
interest when a molecule possesses two or more chemical bonds that can
be termed "equivalent'.

51 have shown that the fully

Lennard-Jones énd co-workers
delocalized ﬁolecufar orbitals can be converted into a new set of
orbitals called "Equivalent Molecular Orbitals' (EMO's) by a unitary
transformation which leaves the wavefunction and the total molecular
- properties calculated from this wavefunction unchanged. This new set
of orbitals have the property of being localized in certain regions of
space, particularly along the bond directions which have been termed
Ylequivalent'. Within the equivalent orbital representation one retains
the concepts of bonds and bonding electrons and for this reason this
approach was used in the present work. ;

It should be noted that the Hellmann-Feynman theorem gives the
correct forces on the nuclei only if the electron charge distribution
has been determined from the exact electronic wavefunction or from a
wavefunction in which all the parameters have been fully optimized with
respect to the nuclear coordinatessz. In order to insure that the wave-
function used in the present work fulfills these requirements as closely
as possible the additional constraints imposed by the proton magnetié
shielding is applied and an accurate set of Hartree-Fock self-consistent-
field atomic functions is used to describe the 1s, 2s and 2p orbitals on
53

the carbon nucleus. These SCF functions have been determined by Clementi

et al for the 3P configuration of the carbon atom using a linear

combination of six Slater functions to describe the ls and 2s atomic
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orbitals and a linear conbination of four Slater functions to describe
the 2p atomic orbitals. The use of this large but limited basis set,
rather than a minimal basis set, will greatly increase the mathemafiqal
computations but a better density distribﬁtion will be obtained.

The general procedure followed in fhe present work in determining
a one-electron density distribution for methane is very similar to the

35 36

approach used by Bader and Jones and Keaveny in determining a one-
electron density distribution for the water molecule. The differences
are that the methane molecule contains more atoms, possesses greater
symmetry and does not contain lone-pairs. The essential features of the
chemical binding in methane are expected to be similar to those for the
water molecule and can be conveniently discussed in terms of the ground-
state one-electron density distribution.

Having derived a one-electron density distribution for methane
the next step is to determine how accurate a density distribution has
been obtained using this electrostatic approach. By far the simplest
way to assess this accuracy is to calculate the expectation value of a
number of one-electron operators and compare these properties with their
experimental counterparts. The properties used as testing devices in the
present work are the diamagnetic susceptibility, the bond dipole, the
octupole moment, and the electric field gradients arising from a force
constant analysis. How well these properties are predicted will indicate
how accurately the density distribution is given near the protons, near
the carbon nucleus and in the outer regions of the molecule.

Since the wavefunction has been determined solely on the basis of

one-electron properties a crucial test of the derived density distribution
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would be to calculate the total energy for the molecule. This energy is

given by Equation (1.13) and within the molecular orbital approximation

can be represented byh7
2 Za
E=25 <o, (0] -%vyle, (N> + 2 2 24, (D ]- 2 o, (1)>
i a i ! la

1
I Jz (2<9; (¢, (2) |7 [¢; (1o (2)>

Z2Z
py -8
a<B raB

- <o (Do, (@) = oy (Do, (2)>)

+

(1.23)

H

where the indicies i and j run over the doubly-occupied orthonormal equi-
valent space orbitals ¢i and the indicies o and B run over the number of
atoms in the molecule. For polyatomic systems like methane such an energy
calculation involves the evaluation of many integrals, particularly two-
electron integrals, which is very time-consuming. This was the major
reason why the electrostatic approach, rather than the method of energy
minimization, was used to determine a groundstate one-electron density
distribution for the methane molecule.

From the derived density distribution the total energy for the
methane molecule was determined. The calculated result is compared with
the experimental and other theoretical values in order to assess the
merits of the electrostatic approach.

In summary, the derived groundstate one-electron density distribu-
tion, obtained solely from one-electron considerations, is tested by
calculating a number of physical properties, including the total energy.

This distribution is used to explain the nature of the bonding in the



20

methane molecule and the final conclusions that have been reached.

1.2 Determination of the Density Distribution

-a) The Equivalent Orbital Representation for CH,

The equilibrium tetrahedral configurétion of methane is represented
by the coordinate system shown in Figure l.1. The molecule is inscribed
in a cube of side 2a, where a = R/¥3 and R is the C-H equilibrium bond
distance in atomic units (a.u.). The atomic coordinates of the five atoms
C, Hi, Ho, H3 and Hy are (o0,0,0), (a,a,a), (a,a,a), (a,a,a) and (a,a,a)

respectively.

Zz
A Py
Fu A Fy
Hy Hy N
(R — g

, H2
FIGURE 1.1. Coordinate system for methane

The total groundstate electronic wavefunction was assumed to be
represented, to a good approximation, by a single Slater determinant as
indicated by Equatioh (1.4). The ten electrons in the methane molecule
were placed in five doubly-occupied space orbitals which were constructed

from a limited basis set cohsisting of 1s, 2s, 2px’ 2py and 2pz type
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functions centered on carbon and a single Is function centered on each of
the hydrogens. The ls, 2s and 2p functions used on carbon were the SCF
atomic orbitals for the 3P configuration of the carbon atom as determined

>3 et al (see Appendix 1). The SCF ls and 2s atomic orbitals

by Clementi
were each constructed of a linear combinatfon of six Slater functions and
each 2p orbital wés constructed of four Slater functions. The 1s function
used on each of the hydrogen centers was just a simple Slater ls orbital
in which the orbital exponent was allowed to vary.

Similar to the method of Bader and JonesBS, the orbital wave-
functions were written in their most general form in terms of 'equivalent

51 (see page 17 of this thesis). The first orbital,

molecular orbitals"
¢, Is Just the 1s core orbital on carbon (i.e., ¢y = ]sc). The remaining

four orbitals are equivalent to each other and are labeled bonding orbitals.

These bonding orbitals are defined as

dp1 = A(cos(eb)-Zsc + sin(eb) +Py) + u(hy - &(hythzthy) - Co°lsc)
op, = A(cos(eb)-Zsc + sin(eb) +Py) + ulhy = &(hy+hy+hy) - Co-lsc)
bps = k(cos(eb)-?.sc + sin(eb) «P3) + nu(hy - &(hy+hy+hy,) - Co-lsc)
dpy = )\(cos(eb)'ZSC + sin(eb);PQ) + u(hy = 8(hy+hp+hz) - Co~lsc)

where the following definitions are used.

1) lsC is the 1s function on carbon;

2) 25c is the 2s function on carbon;

3) Py, Py, P3 and P, are localized p-type functions on carbon which point
at Hy, Hp, H3 and H, respectivgly. In terms of 2px, 2py and 2pz, the
localized P orbitals are defined as:

Py

1t

l//§(2px + 2py + 2pz)

P, 1//3'(2px - Zpy = 2p,)
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Py = 1/V3(-20, + 20 - 2p)

Py I/Vgx-pr - 2py +‘2pz)

4) hy, hy, h3 and hy, are 1s Slater atomic orbitals on the hydrogen centers
Hy, Ho, H3 and Hy respgctively. |

5) Co = <h1]lsc>(l - 368) + Au coseb<lsc!25c>*. This coeffiéient is
required to make ¢o (the core orbital) orthogonal to ¢bi (the bonding
orbitals).

6) X, u, eb and 8 are variable parameters that are obtained by putting
constraints on the wavefunction. These parameters have the following
definitions:

eb is the hybridization parameter;

A/u is the polarity factor;

8§ is a parameter which determines the extent of delocalization in

the equivalent orbitals. '

Within the single determinantal representation given by Equation (!1.4)
the total molecular wavefunction for methane can be written in terms of the
equivalent molecular orbitals as follows.

b = 1/VTOT] [0 G 0y By 0y, 80,058,048, 1] - (1.24)
Further, requiring the equivalent molecular orbitals to be normalized and
mutually orthogonal (i.ej, <¢bi‘¢bi> = 1.0 and <¢bi]¢bj> =0, i #]; ¢o
is already normalized and orthogonal tovthe bonding orbitals) permits the
total one-electron density to be written in the simble form (see Equation

(r.11))

> ) = 2 o 42 2 2 2 '
plx1) = 2062 + of + ol + o5 +o7) . (1.25)

*
" The symbol <X1|X2> represents the overlap integral between the orbitals
X1 and x».
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The normalization and orthogonality conditions provide two equations
which can be used to determine two of the four unknown parameters A, u, €b
and § which appear fn the generalized set of equivalent orbitals. The two
remaining parameters are obtained by requ}ring the total density distribu-
tion to give a zero resultant force on the proton along the C-H bond axis
and also to give the correct (experimental) value for the diamagnetic part
of the proton magnetic shielding. The reason for choosing these two
properties will be made clear later in this thesis. The conditions imposed
on the density distribution will now be considered in more detail.

b) Orthogonality and Normalization Conditjions

The normalization of the bonding orbital ¢b1 gives

1.0 = 22(1.0 - cosz(eb)-<lsc|2$c>2)
+ ZAu(cos(sb)-(]-Sé)-(<h1|25c> - <h1|lsc>-<lsC|25c>)
+ sin(eb) (148) «<hy[P1>)
+ u2(1.0 - <h1|]sc>2 - 66(<h1|h2> - <h1|lsc>2)

+ 62(3.0 + 6<h;|hy> - 9<hlllsc>2)) . (1.26)
Similarly the orthogonality condition between ¢b1 and ¢b4 gives

0.0 = 22(1.0 - cosz(eb)-<lsC|25C>2 - Lsin?(eb)/3)

+

2y (cos(eb)-(I-36)-(<hl!25c> - <hlllsc>-<lsC]25c>)

- sin(eb) - (148) -<h | Py>/3)

+

p2 (<hy|hy> - <h1llsc>2 - 28(1.0 + 2<hy|hy> - 3<h1|15C>2)
+ §2(2.0 + 7<hy]hy> - 9<h1|]sc>2)) . (1.27)
Equations (1.26) and (1.27) which contain the four unknown para-
meters A, u, €b, and § can be used to solve for eb and A. The solving of
these two equations is best carried out by constructing two new equations.

Subtracting Equation (1.27) from Equation (1.26) gives
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1.0 = 4x2sin?(eb) /3 + 8usin(eb) - (1+8) «<h;|P1>/3
+ p2e(146)2+(1.0 ~ <hy|hy>) . (1.28)

Adding Equation (1.26) and three times Equation (1.27) gives

1.0 = 4x2cos?(eb) + (1.0 - <lsc|25c>?)
+ 8xpcos(eb)-(1—35)-(<hllZsc> - <h1IIsc>-<lsc|25c>)
+ u2+(1-36)2.(1.0 + 3<hy|hy> - 4<h1|15c>2) . (1.29)

Equations (1.28) and (1.29) can be solved as quadratic equations for

sin(eb) and cos(eb) to give

sin{eb) = %—(1+5)(-bi¢57“772§) - (1.30)
and

cos(eb) = = (1-38) (-by+/BZ -3 ) , (1.31)
where

b = <hy|Py>

a = 3(1.0 - <h;|h,) = 1/u2(1+8)2) /4

(<h1l25c> - <h1llsc><lsC]25c>)

- 2
(1.0 <lsc]2sc> )

(1.0 + 3<hy|h,> - 4<h1]lsc>2 - 1/u2(1-36)2)

aj >
L(1.0 - <lsc|25c> )

Using the trignometric relation sin?(eb) + cos?(eb) = 1.0, Equations (1.30)
and (1.31) can be used to solve for A in terms of u, § and the appropriate
overlap integrals. Thus
A2 = u2((1+8)2. (2b2 - a72bvb2 - a )
+ (1-36)2- (2b7 - 2¥2b1/b7 - a)) , (1.32)
where both a and a; are functions of 1 and §.

Using the calculated values for the overlap integrals in Equations
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(1.30) and (1.31) one finds that sin(eb) and cos(eb) have imaginary values
unless ¢ and § satisfy the following condition

0.0<|u(1-38)] = |u(1+8)| = v2.0 .
Also since the present work is concerned Qith deriving a ground state
wavefucntion for methane the only orbital Wavefunctions of interest are
those which give the lowest energy. This criterfon is satisfied if the
sign of X and u are the same, assumed positive without any loss in
generality, and sin(eb) and cos(eb) are both positive (i.e., 0° < eb < 90°).
These conditions éssure that the orbitals obtained are ''bonding orbitals"
and not "antibonding orbitals'' of higher energy. These are some of the
restrictions that can be placed on the unknown parameters if a real physical
solution exists.

The values of sin(eb), cos(eb) and A are given by Equations (I.30),
(1.31) and (1.32) respectively if the values of p and § are known. The
correct sign to use for the square root in these equations can be determined
from the restrictions indicated above. The final values of p and § are
fixed by the force and proton magnetic shielding constraints.

¢) Force Constraint .

In the methane molecule the only force that is not zero by symmetry
is the force on the hydrogen nucleus parallel to the C-H bond axis. Since
the force on each hydrogen is identical, all calculations are carried out
considering the force on H; only. This force is labeled F,, as indicated
in Figure 1.1,

There must be no net forces acting on the nuclei in the equilibrium
configuratfon. Thus, the nuclear forces of repulsion at H; must be balanced

by the electrostatic forces of attraction. The nuclear force of repulsion



26

along the C-H bond axis, Fﬂ, can be easily calculated using Equation (1.22)

(see Figure [.1).
F,N, = (6.0 + 3/(kcos(a)))/R% = 1.62763214 au (1.33)

The g]ectrdstatic force of attraction, Fﬁ, which must equal FH, can

most readily be obtained using the Hellmann-Feynman theorem50 (see page 13
of this thesis). Since the equivalent orbitals are orthonormal the force

exerted on H; by the electron density distribution is simply the sum of the
 forces exerted by density obtained from each of the orbitals as indicated

by the second term of Equation (1.22). Thus, at electrostatic equilibrium

Fro= Fu(82) + Fulop2) + Fu(6,2) + Ful9,2) + Ful(e,2)

= FN = (6.0 + 3/(hcosa))/R2 , (1.34)

3

_where F“(¢?) E,2<¢i(])|Fop|¢i(])> is the force exerted on H; by the electron
density contained in the ith equivalent orbital and F__ = cos® /e .
op Hy" Hp
Expressions for these orbital forces are given in Appendix 2.

d) Proton Magnetic Shielding Constraint

Raméey55 has shown that the proton magnetic shielding consists of
a diamagnetic term, depending on the groundstate wavefunction, and a para-

magnetic term, involving excited state functions. This can be represented

o= o(d) + c(p) . | | (1.35)

" The C-H bond length, R, for the calculations in this thesis is 2.06172 a.u.

-This is.obtained using the experimental bond length of 1.0910 3.54
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The paramagnetic term can be calculated from the proton spin-

rotation constant C (obtained from molecular beam studie556) and the general

57,58

expression

(p)
o'P = —(e2/3mc2)8(§A)(ZB/RAB)

3
)it c (1.36)

+ (ZweMpsA/6mcuN e

MA

where the first summation is over all nuclei of charge ZB at a distance RAB

- from nucleus A, SA is the nuclear spin on A, Mp is the proton mass, and Ha

is the magnetic moment in units of the nuclear magneton My Using the

56

experimental value” C = 10.40£0.10 kc/sec the paramagnetic part of the

proton magnetic shielding can be determined to be Oép) = -56.45 x IO_6e.m.u.57

at the equilibrium bond length. The total proton magnetic shielding has also

been determined experimentally. It can be obtained by adding the value for

3

the proton shieldin959 in Hy (26.43x0.60 x 10-6) to the observed60 proton

shift (4.20 x ]0_6) between methane and H,. This gives the result

o = 30.63:0.60 x 1078 e.m.u.

From these two experimental values the diamagnetic term can be calculated

c(d) =0 - c(p)

(1.37)

6 6

30.63 x 10 ° + 56.45 x 10 ° = 87.09 x 10'6 e.m.u.

4 90588209 a.u.
(d)

The diamagnetic term, o , is a measure of the first-order shielding of
the proton by the electron density when placed in a magnetic field. This
effect is a measure of the potential energy of the proton in the electric

field of the charge density. It can be evaluated from the groundstate
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55

iy and Equation (1.12).

wavefunction using the one-electron operator 1/r

" Thus at equilibrium

2
ol o E(o(42) + 0l02)) + o(82) + 0le2) + 0(82,)
3mc :
- 87.09 x 10 e.m.u. | | (1.38)

where o(¢?) = 2<¢i(0|l/rH1|¢i(l)> is the magnetic shielaing for the
density in the ith‘mo]ecular orbital. The operator l/rHl weighs very
heavily the density near the proton. Expressions for the orbital shielding
terms are given in Appendix 2.

Equations (1.34) and (1.38) can not be readily solved for the
parameters p and 8§ because of their complicated mathematical form, see
Appendix 2. For this reason a general method of proceeding towards a
solution was adopted. The parameters were obtained essentially by trial
and error. The following steps were followed.

First 8§ is assigned an arbitrary value. Then u is set equal to
an initial value and ), sineb and coseb are calculated from Equations
(1.32), (1.30) and (1.31) respectively. These results are then used to

calculate the force Fﬁ. u is varied at random until Equation (1.34) is

- satisfied. When the force is finally balanced the proton magnetic

(d)

shielding, o , Is calculated. |If the result does not satisfy Equation
(1.38) a new value of § is assigned and the steps above are repeated.
Following this simple procedure both § and u were varied until Equatfons
(1.34) and (1.38) were both satisfied.

Using the above technique a number of trial wavefunctions for

methane were tested. Two cases will be considered here.
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e) Case I: A Hydrogen Orbital Exponent of 1.245

In all the calculations in this thesis the‘atomic orbitals on
carbon were represented by the SCF atomic orbitals obtained by Clementi53
;et al (see Appendix 1). The next step was to determine a screening
‘coefficient for the 1s Slater orbitals on the hydrogens.

From variational and SCF calculations it is a well-known fact
that there is a substantial increase in the hydrogen 1s orbital exponent
over the free atom value when hydrogen is involved in bond formation.
Taking this into consideration, the first attempt to find a wavefunction
for methane used a screening coefficient of 1.245 for the 1s orbital on
the hydrogens. This figure was obtained by using an empirical rule
discussed by Bader61 which relates the_screening coefficient in the
separated atom (1.0) to that in the united atom. By this rule
o = Zg - sze R, where Az = Z_- 7 and R is the bond length. The Z_
and Zu refer to the effective nuclear charges calculated by Slater's rules

(including the factor 1/n where n is the principle quantum number) for the
e]gctron in the separated and united atom respectively.

In Table 1.1 are listed the variable parameters at different values
of 8 where the electronic force has been balanced to the experimental value
of 1.62763214 a.u. The screeniﬁg coefficient on the hydrogens is 1.245.

For values of & much below -0.7 and above 1.4 the values of sin(eb)
and cos(eb) from Equations (1.30) and (1.31) become imaginary for any

reasonable choice of u. As can be seen from Table 1.1 the electronic force
can be balanced for any given choice of § in the range indicated. Increasing

8§ requires the polarity factor, A/u, to increase and the hybridization eb,

to decrease in order to obtain the experimental electronic force. With this



TABLE 1.1

Variable Parameters that Balance the Force with a Hydrogen Orbital Exponent of 1.245

a . . . .
Force given in atomic units (a.u.).

S u

.7 0.24267
A 0.28578
.0 0.33192
4 0.33545
.3 0.32809
.8 0.26074
A 0.18703

A
0.82857
0.47202
0.73427
0.74674
0.77526
0.88268
0.96219

eb
86.657°
80.116°
6k .541°
59.869°
51.437°
33.995°
33.288°

La\a
Force (electronic)

]

]

]

.62763213
.62763213
.62763213
.62763213
.62763213
62763214
62763214

(@)

N = A ~ s - B~

a.u.

7070950

.7201877
. 7485827

. 7566407
.7709287
.7807176
7876415

(113
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required change in variables the magnetic shielding varies very slowly as
§ is increased with the result that.it was impossible to get the magnetic
shielding as high as the experimental value of 4.9058821 a.u. using a
;hydrogen screening coefficient of 1.245. ‘InAorder to-obtain the experi-
‘mental shielding and retain real solutions further considerations were
necessary.

f) Case 2: A Hydrogen Orbital Exponent of 1.5

Since fhe proton magnetic shielding-is largely determined by the
density around the proton it would appear that tHe screening coefficient
in the 1s orbital on the hydrogens should be increased. To justify such
a move consider WOznick'524 wavefunction for methane. In his rather
elaborate set of orbitals two 1s orbitals on each of the hydrogens were
used, one with an orbital exponent of 1.0 and another with an orbital
exponent of 1.5. An analysis of his wavefunction shows that the
coefficients for the 1s orbital with exponent 1.5 are relatively larger
than those for the orbital‘with exponent 1.0. This would suggest that
the orbital with exponent 1.5 is the dominant one on the hydrogens.

With these ideas in mind the 1s screening coefficient used in the
orbital on thevhydrogens was increased in steps from 1.245 to 1.5 and
beyond. The best result was found to occur when the hydrogen ls exponent
was set equal to 1.5. |In Table 1.2 is a list of values, similar to Table
i.1, for a, = 1.5. This table indicates that a balance can be obtained
for both the electronic force and the proton magnetic shielding. This

balance occurs when the parameters have the values § = 0.12139750,

p = 0.36865974, A = 0.72735440 and eb = 57.56h934°.*

* More significant figures are given then are really warranted by the
experimental data used; but these figures are recorded to permit future

checking of the results.



TABLE 1.2

Variable Parameters that Balance the Force with a, = 1.5

(d)

) u , A eb Force (electronic)? o'’ a.u.
0.000 0.36867 0.72082 63.572° 1.62763213 L ,8963473
0.06 0.36990“ 0.72241 60.554° 1.62763213 4 .90139L4
0.12 0.36872 0.72721 - 57.631° 1.62763213 L,90578842

+0.]2’39750 0.36865974 0.72735440 57.564934° 1.62763213 4,90588209
‘ 0.13 0.36829 . 0.72830 57.160° 1.62763213 L ,90644957
0.20 0.36349 0.73806 54,035° ’ 1.62763213 4,9104684
0.33 0.34747 0.76339 L9.234° 1.62763213 4.9150885
4

Final balance point,

a ., .
Force given in atomic units (a.u.).

A3
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The atomic integral <hlll/rHl|h1> makes a major contribution to
the magnetic shielding. By increasing fhe orbital exponent on the
hydrogens from 1.245 to 1.5 this integral is increased from 1.245 a.u. to
1.5 a.u. It is the increase in this integral which gives a balance for
the magnetic shielding as well as the electronic force'when a, = 1.5 even

H

though no balance was obtained for a, = 1.245. All remaining calculations

H

for methane in this thesis use the wavefunction determined at this balance

point. The final orbital representations are:

¢ = 1s

(o] [+

¢pq = 0.39011176(2s ) + 0.35442782(P;) - 0.012828560(lsc)
+ 0.36865974(h;) - 0.044754370(h, + hy + hy)

bpy = O.390lll76(25c) + 0.35442782(P,) - 0.012828560(Isc)

+ 0.3686597L(h,) - 0.044754370(h; + hg + hy)
py = 0.390]]]76(25c) + 0.354h2782(93) - 0.012828560(lsc)
+ 0.36865974(h3) - 0.044754370(h; + hy + hy)
b, = 0.3901]]76(25C)~+ 0.35442782(pP,) - 0.012828560(Isc)
+ 0.36865974(hy) - 0.044754370(hy + hy, + hj) .

Table 1.3 gives the orbital contributions to the electronic force
and proton magnetic shielding using the orbital representations above. The
results are recorded to only six decimal places, which is the liﬁit of the
experimental results used in the calculations.

The wavefunction that has been derived gives both the correct
experimental electronic force and diamagnetic part of the proton shielding.
The results indicate that the hybridizaﬁion, eb, is close to sp3. The

actual value of eb is 57.565°. sp3 hybridization occurs when eb = 60°.

This result is to be expected since the tetrahedral symmetry of methane
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TABLE 1.3

34

Orbital Contributions to the Force and Magnetic Shielding

orbital’ Electronic Force on H; (a.u.) o(d)

¢o 0.470511 0.
¢b1 0.520551 -1
¢b2 0.212190 0.
¢b3 0.212190 0.
¢bq 0.212190 0.

TOTAL 1.627632 L,

EXPERIMENTAL 1.627632 4

NOTE: Each orbital contribution is for two electrons

at the Proton

at H; (a.u.)

970064

.817005

706271
706271
706271
905882

.905882

in that orbital.
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suggest approximate sp3 hybridization in order give an energy minimum
The polarity factor, A/u, which has the value 1.9730, is somewhat higher
36

than the result obtained for this ratio by Keaveny” for the water mole-
Acule. The delocalization &6, which has th; value 0.1214, is small as was
“expected since the methane equivalent orbitals are strongly localized as
anticipated for this tetrahedral symmetry. All further discussion con-
cerning the derived wavefunctioh and the cohparison of this wavefunction

with those derived for other hydride molecules will be left for the final

summary.

1.3 One-Electron Property Determinations

In the derivation of the molecular charge distribution for methane
the only one-electron properties used to determine the unknown parameters
in the wavefunction were (1) the force and (2) the proton magnetic
shielding both occurring at the hydrogen atom H;. If this derived density
distribution is to have ény physical significance it must be able to
predict good expectation values for other physical properties that depend
on the one-electron density. There are a number of these properties that
can be calculated such as the diamaghetic susceptibility, the bond dipole,
the octupole moment énd the electric field gradient at a hydrogen nucleus.
These one-electron properties were evaluated for the methane molecule
usingvthe derived density distribution. The agreement of these calculated
values with the appropriate experimental quantities is used as the basis
of determining how closely the derived density distribution approximates

the true physical density.

a) Diamagnetic Susceptibility

As is the case for the proton magnetic shielding, Van Vleck62 has
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shown that the total magnetic susceptibility of a molecule with no resultant
spin can be broken down into two parts: (1) the diamagnetic or Larmor term
depending only on the ground state wavefunction, and (2) the paramagnetic
or '"high frequency" term, often referred to as the "Van Vleck paramagnetism'',
which is a temperature independent term depending én excited states. The

‘total diamagnetic susceptibility, y, can thus be expressed as

(d) (p)

X = X + X (1.39)

{p)

The paramagnetic term, ¥ , can be obtained from the components of the

rotational-magnetic-moment tensor ggg measured in molecular beam or Zeeman

. X . . 6
effect microwave experiments. The mathematical expression 3 used to

(p)

calculate ¥ is

(p) Ner 3

P/l =——2 3 I (1.40)

g >
12mcZMp g=1 99 ¢

i1
where ggg’ the electronic part of ggg’ is obtained by subtracting the nuclear

contribution
] 2 2
84q = (Mp/elg) E z,(r - 9.), (1.41)

_ 2
Ik

principal rotational axis g, lg is the moment of inertia about this axis,

1
where Zk is the charge on the kth nucleus at a distance (ri )/2 from the

and Mp is the proton mass. Using the value 0.3133£0.002 n.m. for ggg’

. . 6 .
obtained from molecular beam experlments5 , the molar paramagnetic suscept-

ibility of methane, x(p), calculated at the center of mass57 has the value

9.29 x 10-6 e.m.u. The total magnetic susceptibility for methane has been

measured by Barter et aleh. They find that y = -17.4£0.8 x 10_6 e.m.u.
(d)

From this most recent result, the diamagnetic term, ¥ , can be calculated

to be
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d
X( ) . - X(p)
= -17.4 x 10'6 - 9.29 x 1076
= -26.69 x 10'6 e.m.u. (1.42)

This diamagnetic term can also bevobtained by averaging the ground
state wavefunction over the operator ri, where e is the distance measured
from the center of mass. Within the orbital approximation this diamagnetic
term is given by
-N e2

- 69—§{x(¢g) +x(2 ) + x(2) + x(o2,) + x(og )15 (1.43)
mc

x(d)

where X(¢?) 2 2<¢i]ril¢i> is the magnetic susceptibility for the ith

mofecu!ar orbita]. These orbital contributions have been evaluated (see
Appendix 5), and the total diamagnetic susceptibility calculated for the

methane molecule using the previously determined wavefunction.

(d)

The value obtained for y in the present work and its orbital

contributions are listed in Table |.4 along with the results recorded by

57

Hegstrom and Lipscomb”™’ for the magnetic susceptibility calculated from

other methane wavefunctions.

(d)

In general, the calculated ¥ values are somewhat larger than the

6

experimental value of -26.69 x 10~ e.m.u. This is also true for most of

(d)

“the values for x determined by Banyard66 from earlier methane wave-

functions. This is probably because of the fact that the operator ri
weighs heavily the density in the outer regions of the molecule and these

““earlier wavefunctions over estimate the density in these regions. The

result obtained using Coulson's wavefunction is in good agreement with the

experimental value but Hegstrom and Lipscomb57 suggest that this may be

fortuitous because of the unusually large choice of 2.98 for the orbital



TABLE 1.4

Results for Diamagnetic Susceptibility for Methane

Wavefunction

a
Coulson

Palke-Lipscombb

Pitzerc
WOznickd

Present Work

Experimental

oo

" NOTE:
a
Reference 65
Reference 26
¢ Reference 27

Reference 24

X(d)

X 106 e.m.u.

-26.4
-28.1
-27.9
-28.7
-27.17

-26.69

*
Orbital

X(d) (a.u.)

0.19440
8.52480
8.52480
8.52480
8.52480

TOTAL 34.29360

38

Each orbital contribution is for two electrons in that orbital.
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exponent of the carbon 2s atomic orbital (the Slater exponent is 1.625).

(d)

The value obtained for x in the present work is in excellent
agreement with the experimental result, the calcu]ated value being only
about 2% larger. This agreement is due to the fact that the density
around carbon is better represented by the‘SCF atomic orbitals that are
usedvﬁn carbon instead of single Slater orbitals. Also, the use of the
>large orbital exponent (1.5) on the hydrogens contracts the density around
the hydrogen nuclei making the density less diffuse in the outer regions
of the molecule and thus lowering the value of the susceptibility. The
rather high polarity factor (A/u = 1.9730) found for the bonding orbitals
contracts the density around the carbon nucleus and contributes to a
lowering in the suséeptibi]ity, thusvgiving rise to a better result than
obtained from earlier wavefunctions.

The excellent agreement between the calculated diamagnetic suscept-
ibility and the actual experimental value indicates that the density
distribution obtained by the present method has many of the features of the
true density. As a matter of fact, it would have been possible to use the
e diamagnetic susceptibility as a constraint in place of the proton magnetic
shielding to obtain the variable parameters in the wavefunction without
changing the final results significantly. Thus, the derived charge
distribution can adequately predict either of these two properties.

b) Bond Dipole Moment

For a system of nuclei and electrons possessing tetrahedral symmetry
the total charge distribution can be expanded in terms of tetrahedral
harmonics. In such an expansion the individual terms can be related to

the multipole moments of the total charge distribution. It is easy to show
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the first non-zero multipole moment for a tetrahedral system is the octupole
moment, which will be considered in the next section. Even though the total
dipole moment is zero for methane, it is still useful to consider the moments
for paréicular parts of the total charge distribution. |In this section
we are interested in determining the dipole moment of the C-H bond.

Using an orthonormal set of molecular orbitals, ¢i’ the total dipole

moment of a molecule is given by

T=ezn.<]|Fle.>-ezz.F. , (1.44)
A R i .
i J
- where ¢ is the electronic charge, T is the vector r cosé from an arbitrary

origion, Zj is the nuclear charge on atom j, énd the ni's are the orbital
occupation numbers. The first sum is over all occupied orbitals and the
second sum is over all the nuclei in the molecule. The total moment given
by Equation (I.44) is zero for methane. However, quantum mechanical

calculations of the charge distribution for this molecule indicate
that the electronic charge is strongly localized along the C-H bond directions;

-
this will also be found to be true when we consider p(x;) contour maps. For

. er . . .6 . . .
7_tb(s‘reason it is convenient 7 to consider this localized charge as

characteristic of a single bond and to specify a bond moment for this rather

specialized part of the molecule. The vector sum of the bond moments gives.

_the total dipole moment.

Experimentally, a C-H bond moment can be determined from infrared
intéhé?fy'détasg and the usually accepted value is about 0.5 D.v From this
data the direction of the moment can not be directly obtained and Hornig and
McKean69 have given a good review on the difficulties attending sﬁch a

procedure both in derivation and interpretation of the moments obtained from



“7bond moment from the orbital

4

experimental data. [t is not at all clear that the bond moments deduced
from vibrational data should be the same as the static moments deduced
from dipole moment studies.

There is no unique procedure for obtaining theoretical bond
moments for molecules. The usual procedure is to transform the SCF
molecular orbitals into "equivalent orbitals' as specified by Lennard-

51

Jones This decomposition into equivalent orbitals has the advantage
that these new orbitals are strongly localized and can be considered as
the result of a particular bond. In the equivalent orbital representation
one then just considers the dipole moment of each orbital and associates
this moment with a particular bond in the molecule,

For the methane molecule the bond dipole moment resulting from
the bonding orbital ¢b1’ which is already in the equivalent orbital
representation, was determined at the carbon nucleus (i.e., the operator

Tis equal to re cosec). This bond moment is given by

w, = ed(sp ) = R), (1.45)

2y - . . . .
where D(q;b1 = <¢b1|rC cosec|¢bl> is the electronic contribution to the
¢b1”and the remaining term is the nuclear
contribution from the hydrogen nucleus H;, R being the C-H; bond length.
A negative value for MR means that the direction of the dipole is
Coyv~ H/ -

(+)" (=) ,
The calculated electronic contribution (see Appendix 6) is -2.533

a.u. Thfs gives a total bond dipole moment of -0.4713 a.u. or ~-1.198 D

using the derived density distribution for methane. This is in better

_agreement with the experimental value of +0.5 D than the other theoretical

results which are listed in Table 1.5
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TABLE 1.5

Bond Dipole Moment for Different Wavefunctions
*

Wavefunction HeH
Nesbet? . | -1.58 D
Mocciab -1.52 D
K]essingerc -1.88 b
Sinaid -1.93 D
Arrighini® -1.792 D
Present Work -1.198 D

The negative sign indicates that the bond moment is C(+) - H(_).

8 Reference 16

Reference 22
Reference 25

Reference 23

€ Reference 29

L2
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c) Octupole Moment

As already indicated the first non-vanishing multipole moment
in the multipole expansion of the total charge distribution for methane
is the octupole moment. The only non—vénishing component of the electric
octupole moment is given by averaging the‘wavefunction over the operator

V15 XcYch (see Appendix 7). Thus the total octupole moment is given by70

[N

5
]<¢i(1)|xcvczc]¢i(1)> + /Tfjil zJ.xJ.YJ.zJ. (1.46)

5
|3 -/—1?22
i=

I

l: (electronic) + Ig (nuclear) ,

where the first summation is over the occupied orbitals and the second
summation is over the number of atoms with charge Zj and coordinates Xj’
Y., Zj' In Table 1.6 are listed the electronic and nuclear contributions

J
to the total octupole moment for methane obtained from the wavefunction

derived in the present work and from some other recent wavefunction529’7].
~ In Table 1.6 there is no sign given for the experimental values

of the total octupole moment since it is not known. The plus sign on the

other values have been determined theoretically. The actual value, +9.628

~a.u., for the total octupole moment determined in the present work is in

71 of +9.796 a.u. This

excellent agreement with the recommended value
recommended value has been obtained as an average result of a one-center
~calculation, a value from second virial coefficient data and a value from
static dielectric constant data. The agreement of the present result
‘with other theoretical values is satisfactory with the exception of the
theoretical results given by Sinai70, which are lower than the value

determined in the present work.

d)} Electric Field Gradient.




TABLE 1.6

Contributions to the Octupole Moment for Methane

Ly

Wavefunction Electronic - Nuclear Total (a.u.)
Contribution (a.u.) Contribution (a.u.)
Albasinya : + 9.71
Turnerb ‘ -11.00 23.85 +12.85
Sinai® -17.87 23.85 +5.98
Woznick®  -23.099 26.311 +3.212
Krauss® -22.464 26.311 + 3.847
Kingd _ ‘ +12.299
Arrighini® -21.805 26.346 + 4.54]
Present Work -16.500 26.128 + 9.628
Experimental results by:
Second virial data' 10.884
Second virial data for mixture with Argonf 17.414
Static dielectric constant9 8.707
Phase transition data for solid Cth 3.396
Recommended value!' +9.796
@ Reference 72 f Reference 75
Reference 73 9 Reference 76
© Reference 70 h Reference 77
Reference 74 i Reference 71

€ Reference 29
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Another important experimentally-observable one-electron property
is the electric field gradient at the proton Hy. This quantity is

obtained theoretically by averaging the total charge density over the

operator Ga = (3c0526H1 - l)/ral, where Py is the distance from the
’ 1

hydrogen center H; and eHl is the angle between the C-H; bond axis and

the vector r, . The electric field gradient is related to the experi-

Hy

mental quadrupole coupling constant via the equation
quadrupole coupling constant = eqQ/h , ' (1.47)

where Q is the deuteron quadrupole ﬁoment and q is the calculafed total
-electric field gradient at the proton Hj.
The electric field gradient has a ﬁuc]ear and electronic contri-

bution. Thus

a=a*a, | (1.48)
where ay is the nuclear field gradient at H; produced by the carbon nucleus
and the other protons, and e is the electronic field gradient at H;
produced by the electronic charge density p(il). The nuclear contribution
fs given by

-1z, ——213;-= 1.44789 a.u. (1.49)

q
N©R3 16/
Within the equivalent orbital representation the electronic contribution

is given by

a, = -e(6(s2) + 62 ) + Gs2) + 6(s2) + 6(62)), (1.50)

3
where G(¢?) = 2<¢i|(3cosze - 1)/rH1|¢i> is the contribution to the

Hy

electronic field gradient at Hy; resulting from the electron density

contained in the ith equivalent orbital. Expressions for these orbital
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contributions are given in Appendix 8. Using the derived density
distribution for methane all the réquired integrals were evaluated and
the numerical value for e is -1.14934 a.u., where the orbital contri-
butions have the values G(¢§) =0.45643, G(qsgl) = 0.37453, and

G(¢§2) = G(¢§3) = G(¢§4) = 0.10613; all values being in atomic units.
Thus the total e]ectric field gradient is

q-= 9y + G = 0.29847 a.u. (1.51)

From the computed electric field gradient q and the value

+2.796 x 10_27 cm? for the deuteron quadrupole moment Q78, the deuteron
quadrupole coupling constant in CH3D is calculated to be

eqQ/h = 196.1 kc/sec. ‘ (1.52)
This value is in excellent agreement with the results of Caves and Karplus79,
who estimate this quantity to be 210+30 kc/sec, and Pitzer27, who derived
a value of 224 kc/sec. Arrighini et a]29 calculate a value for the
deuteron quadrupole codpling constant of 207.7 kc/sec and indicate that
their result should be a very reliable estimate of such a quantity. At

present, only a very uncertain experimental value of 100+50 kc/sec for

the quadrupole coupling of the deuteron in methane80 is available.

1.4 Energy Determination for Methane

The present wavefunction for methane was determined by varying
the parameters to satisfy one-electron dependant properties, rather than
- by minimizing the energy, a property determined by the two-electron
probability distribution. Therefore, it is of interest to evaluate the
expectation value of the energy operator for the wavefunction presently

derived, to determine whether or not the emphasis which has been placed
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on the one-electron nature of the wavefunction has had an adverse effect
on the value of the energy calculated for the system.

The total energy can be obtained by evaluating all the terms in
Equation (1.23) for the methane molecule. All the required one-, two-,
three-, and four-center integrals were evaluated using programs obtained
from Quantum Chemistry Program ExchangeS' (see Appendix 3). In order to
be certain that the programs were operating correctly the energy for the
Palke and Lipscomb25 wavefunction was duplicated to six figure accuracy.
Using the same programs, the energy was evaluated for the one-electron
density distribution that has been derived in the present work. The
numerical results obtained for the orbital contributions to the energy
and the final energy results are given in Table I|.7.

From this table we see that the virial theorem is not satisfied
since V/T is -1.9886 and the correct value should be -2.000. This agree-
ment is acceptable since the virial was not used as a constraint on the
charge distribution. Also, since we have derived the ''best'' one-electron
density distribution from one-electron property considerations and not from
the energy minimization criterion it is expected that the kinetic energy,
which is a one-electron property, will be given more accurately than the
total energy which is a two-electron property. This fact alone would
suggest that the virial theorem will not be completely satisfied.

Summarized in Table 1.8 are the results obtained for the enérgy
of the methane molecule from a number of molecular wavefunctions. This
table is a revised table of the one given by Moccia22

The calculated value of the total energy is in very satisfactory

agreement with the experimental and other theoretical results. The derived
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TABLE 1.7

Orbital Contributions to the Energy for Methane®

Orbital orbital Energy (a.u.)
% -11.0531
8 1 - 0.5993
by, - - 0.5993
» - 0.5993
by, - 0.5993

Electronic energy -53.5792 Kinetic energy 40.6212

Nuclear repulsion 13.4229

e e s

Total energy -40.1563

Viriam theorem V/T = -1.,9886

@ Al energies are in atomic units (a.u.).



Reference

Bucklngham9

Bernal‘l

Kaidela

Mills'/

SaturnoBO’c

Saturno30’C
Albasiny‘8

Albaslny]8

Sinal?3

Krau552]

TABLE 1.8

Summary of Energy Calculations for CH4a

Method of calculation Number and type b C-H distance (a.u.) ~ Molecular
of basis functions energy (a.u.)

one;centeF,SCF,single Slater-11ke functions 2.000 -39.47

detor & up to | with variable exponents

one-center, single detor : 1.975 -39.33

with angular terms

one-centeF, single detor 2.000 -39.80
with 2 up to 3 '

one-center, SCF - 2.000 -39.62
single detor with f terms

V.B. one-center _ 2.052 -39.503
single detor 2 up to 1

V.B. one-center 2.000 . -39.844
6 detor £ up to 5

: one-centef, numerical 2.000 -39.53

SCF, 2 up to 1

one-center, numerical 2.000 -39.90
SCF, % up to 3

single detor 9 sTO (S) 2.000 , -39.86
SCF LCAO MO -

single detor 33 6TO (PO) 2.0665 -40.167
SCF LCAO MO

64



TABLE 1.8--Cont'd.

Reference Method of calculation Number and type b C-H distance (a.u.) Molecular
' ' of basis functions ‘ energy (a.u.)

Moccia22 single detor 26 GTO (PO) 2.080 -39.866
SCF OCE MO, 2 up to 3

Woznck? single detor 27 sT0 (S) 2.0665 -40.181
SCF LCAO MO

Lipscomb26 single detor 9 STO (S) 2.0665 -40.114
SCF LCAO MO -

Pitzers’ single detor 9 sTO (PO) 2.050 -40.128
SCF LCAO MO

thchle28 single detor - 52 GTO (PO) 2.12 -40.198
SCF LCAO MO

Arrighini®? single detor 39 $T0 (PO) 2.065 u -40.205
SCF LCAO MO

Present Work single detor LCAD MO 22 sTO (S) 2.06172 -40.156
Hellmann-Feynman :
approach

Experlméntald 2.067 ' -40.525

a

(PO) = Partial optimizaélon of the exponents.

Linear combinations of n functions are counted as n basis functlions, and Pyr Py and p, are
counted separately. : 4

© The values are those revised by Bishop.

Reference 28.

0S
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value of -40.156 a.u. is only slightly higher by 0.049 a.u. than the best
energy obtained for this molecule by Arrighini et a]29 using a very large
basis set of thirty-nine STO's. In our calculation there are an equivaleht

of 22 STO0's used with no optimization of exponents beyond the SCF atomic

53

orbital functions obtained by Clementi et al. Our calculated result is

in excellent agreement with the values determined with multi-centered

limited basis sets by Kraus52] and WoznickZA, and considerably better than

22,30

the results obtained with one-center expansions or minimal basis

representation523’26’27. The only energies that are significantly better
than the result obtained in the present work were obtained using extremely
large basis sets; in one case fifty-two GTO's28 and in the other thirty-

nine STO‘s29

are used. Thus, we see that the one-electron charge distri-
bution determined by the present electrostatic approach gives a very
reasonable energy, one that is approaching the estimated Hartree-Fock
limit of -40.22 a.u.%2!

The experimental value of the total energy28 is -40.525 a.u. which

differs from the calculated value by 0.369 a.u. or 0.91%. Using the atomic

- -energy-of -37.689 a-U~S3

for carbon and a zero-point vibrational energy of
-0.044 a.u.83 the calculated binding energy for methane, using the derived
density distribution, is 0.443 a.u. This differs from the experimental
“binding energy of 0.625 a.u.83 by 29%. This is much better than might be
expected from the preéent approach since it does not use the minimization
of energy criterion.
Although the virial theoreﬁ does not hold exactly for the derived

charge distribution it does hold for the real charge distribution and thus

the kinetic energy, which is minus the total energy, has an experimental
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value of -40.525 a.u. The calculated value is -40.621 a.u., which is
larger than the experimental result by only 0.2%. This accuracy might
be expected since the kinetic energy operator is a one-electron operator
and it has already been suggested that fhe derived one-electron density
distribution should yield excellent one-electron properties.

Not only has the derived one-electron charge density for methane
given excellent one-electron properties, but it has just been shown that
this distribution also yields a respectable energy, a two-electron pro-
perty, for this molecule. Since the calculated total energy is in very
good égreement with the other results, the present electrostatic approach
has been justified as a satisfactory method of determining a one-electron
charge distribution for methane. Such an approach might well bé considered
an acceptable method for determining one-electron density distributions

for other polyatomic molecules.

1.5 Discussion of the Electrostatic Method

Because of the computational difficulties with the SCF method for
polyatomic molecules other methods, such as the electrostatic method used
in the present work, have been used to determine molecular charge distri-
butions. The electrostatic method has been used frequent]y35’36’8q’85 to
deternine one-electron charge distributions for a number of hydride mole-
cules and has been further applied here to the methane molecule.

_ 1t has been sgown.(see Section 1.3) that tBe one-electron properties
calculated from the derived charge distribution for methane are in excellent

agreement with the corresponding experimental quantities. In almost every

case it is found that these properties as determined from the one-electron
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density distribution obtained in the present electrostatic approach are in
better agreement with experiment than the results calculated from density
distributions obtained by the energy minimization method. Thus, one may
conclude thaéAwithin a limited basis set the energy minimization criterion
does not‘necessari1y give the 'best'' one-electron density; that is to say,
a one-electron density that yields the ''best' one-electron properties. It
is only in the 1imit of large extended basis sets that exact one-electron
density distributions are expected to be given by either method.
The calculation of the energy for the methane molecule (see

Section !.4) shows that the derived one-electron density distribution

also yields a very satisfactory total molecular energy. The total energy
calculated from the wavefunction determined by the present electrostatic
approach is only slightly higher than the best results obtained to date29
by the SCF procedure. The electrostatic approéch utilizes only one-
électron properties and thus is easier to apply than the energy minimiza-
tion procedure which necessarily.invo]ves difficult two-electron integrai
calculations. Because of the simplicity in the calculations and the
- ——excellent agreement~of the calculated physical properties with-experiment
the e!éctrostatic method has proven to be a very useful way of determining
a good one-e]eﬁtron distribution for methane. From this work one can
~conclude that when using a limited basis set, not necessarily a minimal
basis set, the better method of determining the "best' one-electron charge
deﬁgity.and thus the "best" one-electron properties for a polyatomic mole-
cule is the present electrostatic approach.

As a further note of interest it is known that the SCF method,

which utilizes the energy minimization procedure, does not yield as good
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a wavefunction for molecules obtained from the second and third-row
atoms as it does for molecules obtained from the first-row atoms. This
fact can be observed in the work of Matghag6 for NaCg for example or by
comparing the density distributions and force analyses of the firsth
and second§ row hydrides. The decrease in accuracy of the SCF results
for molecules obtained from the second and third-row atoms is partially
" owing to the fact that when one determines a molecular wavefunction by
the energy minimization criterion the cofe orbitals pf the larger mole-
éules, because of their very large contributions to the total energy,
are more stringently weighted by the minimization procedure than are
the valence orbitals. The result is that as the molecular size increases
the core density is more accurately determined than the va]énce density
by the SCF method.

In the present electrostatic approach the primary role of the
core &ensity is {o éimply shield anvequivalent émount of nuc]éar charge.
The forces, however, are very sensitive to the exact form of the valence
density. Thus in an electrostatic determination of the charge density
p(xX;), the valence density, the density responsible for binding the
nuclei, dominates the calculation and is more accurately determined than
in an energy calculation which is dominated by that part of the wave-
function near the nuclei. Since the very important valence density is
heavily weighted by the electrostatic approach this method would be ideal
for deiermining charge distributions for molecules obtained from the
second and third-row atoms. This will be particularly true for molecules
that have almost spherical symmetry such as SiH, and GeH,, for then the

first possible core polarization (which is omitted in this method) is an
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octupolar one.

1.6 Analysis and Interpretation of the Cne-Electron Density

The derived one-electron density distribution for the methane
molecule has been shown to yield expectation values for both one- and
two-electron properties that are in excellent agreement with experiment.
Some of the cne-electron properties that have been considered are the
octupole moment, the diamagnetic susceptibility, the proton magnetic
shielding, the force, and the electric field gradient. These properties
depend on the average values of rz, ri, l/rHl, l/rﬁ1 and 1/ra1 respectively.
Since each of these properties separately measure the accuracy of the
charge density in different regions of space, the agreement of their
calculated expectation values with experiment clearly indicates that the
derived charge distribution has the correct physical behavior in all

-regions of space. It is of interest to use this charge distribution,
since it must closely resemble the‘actua] physical density, to analyze
the chemical binding in the methane molecule. By comparing this charge
distribution with those for other molecules the stability of the methane
molecule will be better understood.

Considering first the molecular wavefunction we note that in the
present work equivalent orbitals have been used. For the purpose of
comparison of these results with others, the molecular orbitals of Palke

.and Lipscomb‘s26 wavefunction for methane have been transformed, by the
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unitary transformation given by Lennard-Jones” , into equivalent orbitals.
The parameters A, p, eb and §, which appear in our wavefunction, were

“determined from the transformed equivalent orbitals. These results
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together with the present results are listed in Tasle 1.9.

From this table we gee fhat the parameters eb and § are almost
identical. The ratio A/p is somewhat higher for our wavefunction. This
is mainly due to the.SCF atomic orbitalﬁbagis set which is used on
carbon in yhe present calculation, where Palke and Lipscomb use a
minimal basis set of Slater orbitals. Also, Palke and Lipscomb use an
orbital exponent of 1.2 on the hydrogens instead of value of 1.5 which
is used in the present work. Because of these orbital changes one might
well expect the A/u ratio to be higher for the present calculation. For
these same reasons the wavefunction derived in the present work yields
better one-electron properties (see Section [.3) and even a better energy
(see Section .4) than Palke and Lipscomb's wavefunction.

Using the electrostatic method, one-electron distributions have

35,36

been obtained for the water molecule and’ the ammonia molecule

' The differences between the equiValént orbitals derived in the present
work for methane and the equivalent orbitals obtained for water and
--ammonia are quite marked. As already indicated for methane the hybrid-
jzation in the bonding orbitals is almost sb3. In particular, the
hybridization eb is 57.565° which is very close to the sp3 hybridization
angle of 60°. Using bent bonds (i.e., the bonding orbitals do not point

35,36

along the bond axies) in both the water and the ammonia84 molecules
allows electrostatic equilibrium to be obtained but this increases the p
character and decreases the s character of the bonding orbitals beyond
that of sp3 hybridization. In the case of the methane molecule the tetra-

hedral symmetry can not be maintained unless the bonding orbitals are at

the tetrahedral angle with the result that they must point along the C-H
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TABLE 1.9

Comparison of Parameters in Wavefunctions for CHy

Parameter  From Palke and Lipscomb'sa From present

transformed wavefunction wavefunction
A 0.6127 0.7274
" 0.5070 0.3687
eb 57.167° 57.565°
6 0.1243 0.1214

@ Reference 26. , '
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bond axies. Thus, in order to form the most stable distribution the
hybridization should be close to the sp3 hybridization of the Ne atom
as was suggested by Poplehz. The stability is achieved since the sp3
hybridization places the maximum amount of charge density along the
bond axies. The fact that the hybridization is not exactly sp3 is

43

because of the polarization-type hybridization = contributed by the

hydrogen orbitals.
Keaveny36 found that, when using an SCF atomic orbital basis set
to describe the density on the oxygen center in the water molecule, the

polarity factor A/u was larger than that found by Bader and Jones35

using
just simple Slater orbitals on the oxygen. Similarly, the use of an SCF
atomic basis set on carbon in the present work has resulted in é large
A/u ratio of 1.973 for methane, which is even higher than the value of
1.735 obtained for the water molecule by Keaveny. This would suggest
that the bonding orbitals in methane are more polar than in water, but
this ratio is strongly deﬁendent on the basis sets used in the bonding
orbitals. For example, different orbital exponents on the hydrogens place
different amounts of density on these centers and the A/u ratio will
fluctuate in order to partially compensate for this change in the
exponents. In the case of methane, the use of a high orbital exponent

of 1.5 in the 1s orbitals on the hydrogens places a lot of density at

the hydrogens, but this increase is offset by the high ratio of \/u

which weighs more heavily the density on the carbon center than on the
hydrogen centers. This is the main reason for the low value of -1.,198 D
for the bond dipole moment of methane determined from the present wave-

function. This value is in better agreement with the commonly quoted
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value of 20.5 D than other calculated results which are generally higher
than our result.
One should also note the differences in the orbital exponents

36

used on the hydrogens in these hydride molecules. Keaveny” wused an
orbital exponent of 1.32 on the hydrogens in water and Bader and JonessLl
used an orbital exponent of 1.29 on the hydrogens in ammonia. This would
suggest that one should use an orbital eprnent less than 1.29 (for example,
1.245) on the hydrogens in methane. But it was found in the present work
that the best results were obtained with an orbital exponent of 1.5 on the
hydrogens in methane. It Is felt that when using an SCF atomic orbital
set on the heavy atom one should use a large orbital exponent on the
hydrogens. This exponent should be larger than the value used when just
simple Slater orbitals are placed on the heavy atom. |If Keaveny36 had
used a larger exponent than 1.32 on the hydrogens in the water molecule
perhaps better ba!ance'points could have been obtained for the forces and
dipole moment.

The delocalization parameter § for methane is small (i.e.,
¢ =-0.1214) compared to the value 0.388 for water36 and 0.280 for ammonia84
This result is expected since the high symmetry and the large tetrahedral
bond angles in methane tend to localize the bonding orbitals along the bond
“directions to a greater extent than found in the water and ammonia mole-
cules. Any further connections between the orbital description of these
hydride molecules will be ;een in Chapter !l where the water and ammonia
molecules are considered in more détail.

- Relating the chemical binding in molecules to the properties of

the molecular orbitals is by no means an unique method of understanding
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the processes of bond formation. An infinite number of sets of orbitals,
all related by unitary transformations, cén be constructed that give
identical results for the expectation values of.the total molecular
properties, but dffferent results for the orbital contributions. Thus,
any analysis of chemical binding based upon the orbital description is
dependant upon the type of orbital set used. It is desirous to consider
chemical binding in terms of a more stationary framework.

Instead of considering the molecular orbital functions let us
consider the one-electron density function p(;l) (seequuation(l.]])).
This function, which is independent of the orbital description, is a
function in three-dimensional space and can be easily pictured in
coordinate space. Contour plotslcan be made of the total one-electron
density by evaluating p(X;) at a large number of points in space and
then joining up points of equal density thus forming the density contour
lines. Considerable uée wi]i be made of contour plotting in this and
the remaining sections of this thesis. Many of the contour plots given
in this thesis are obtained by pfogramming an |BM 7040 computer to

-produce a magnetic output tape which contained the necessary information
for a Benson-lehner plotter to produce the required contour diagrams.

Béfore considering contour diagrams of p(;l) for methane let us

“first consider another density function, the difference density Ap(;l).
Following the work of Berlin87 for diatomic molecules, a polyatomic
molecule can be divided into binding and antibinding region588. Electron
density placed in the binding regién of a molecule creates attractive
forces that tend to pull all the nuclei together. Placing density in the

antibinding regions creates larger forces on some nuclei than others in
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such a way that it tends to pull the molecule apart into its separated
atoms or a mixture of simpler molecular species. Thus, the'binding region
is that region in which electron density must be concentrated in order
to achieve electrostatic equilibrium. Once the boundary curves between
the binding and antibinding regions have been determined for a polyatomic
molecule how much charge must be placed in the binding region in order
to attain a state of electrostatic equilibrium? This question is best
answered by choosing a standard density distribution which is known to
be electrostatically unstable because it places an insufficient amount
of charge in the binding region. By comparing the molecular density
with the standard density the electrostatic stability of the molecular
density can be better understood. For example, if the molecular density
concentrates more charge in the binding region than the standard density
then the molecular density is e]éctrostatical]y more stable than the
standard density. The'purpoée of constructing the difference density
distribution Ap(;l) is to determine the rearrangement that the charge
density represented by the standard charge distribution must undergo
-in order to attain a state of eléctrostatic equilibrium in the molecule.
The difference density distribution Ap(;l) is obtained by sub-
tracting the superimposed densities of the component undistorted atoms
placed at the equilibrium bond length from the molecular density, also

evaluated at the equilibrium distance. Thus

Ap(;l) = p(;l) (molecular) - p

A(;l) (atomic) , (1.53)

where pA(;l) is the standard atomic density distribution which can be
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shown to be electrostatically unstable.* If contour plots of the density
difference distribution Ap(;l) are constructed one can determine the
~regions in which the molecular distribution p(zl) has more charge concent-
rated than the standard atomic distribution~pA(§1). In regions where
Ap(;l) is positive the molecular charge density exceeds the atomic density,
while in regions where Ao(x;) is negative the atomic density exceeds the
molecular one. |If Ap(;l) is positive in the binding region, the molecular
charge distribution is electrostatically more stable than the atomic
charge distribution. Thus for a stable molecular species, Ap(;l) must
be negative in the antibinding region since the integral of Ap(;l) over
the coordinates-of ;1 yields zero. By analyzing the difference density
contour diagrams one can consider the molecular stability with respect
to the separated atoms.

Contour diagrams of the éne—electron density p(Il) and the

3,14,5 )6

difference density sp (X;) have been used extensively as interpretive
devices in understanding the chemical binding and the forces operative in
diatomic molecules. These diagrams dramatically show the areas of density
concentration, and the regions of density increase and decrease accompany-
ing molecular bond formation. |In Figure 1.2 are given plots of p(;l)

and Ap(zl) in the plane of the carbon and two hydrogen nuclei for the

methane molecule as determined from the derived wavefunction.

From the plot of p(il) we see that the one-electron charge density

In the standard atomic charge distribution the nucleus of each atom
will penetrate the spherical atomic charge density of the other atoms.
By applying Gauss' theorem it can be shown that there will always be
a net force of repulsion between all the nuclei resulting in a state
of non-equilibrium.



“Figure 1.2. The total density p(;l) and difference density
Ap(?l) contour maps obtained from the derived one-electron
charge distribution for methane. The plots are in a plane
containing the carbon and two hydrogen nuclei. The dotted.
lines on the Ap(x;) map are the boundary curves between the
binding region (above and between the two dotted lines) and

the antibinding regions. The C-H bond length in this and
subsequent diagrams for methane is 2.06172 atomic units (a.u.).
All contour values used in this thesis are given in atomic

units.
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for methane has the required tetrahedral symmetry and that the density
is well localized along the C-H molecular bond axies as was suggested
when the bond dipole moment was determined. This large concentration
of charge density along the bond di}ections justifies the use of the
equivalent orbital description and the break-down of density into its
bond components. Note that the charge distribution is almost sphefical
except for the regions right along the bond axies. It s because of
this almost spherical symmetry that one-center expansions have been
moderately successful in the past when used to determine a wavefunction
for methéne. The fact that the density at the protons is very highly
peaked, a condition that can not be well taken care of in one-center
expansions, is the main reason that the one-center method has been
replaced by the more accurate multi-center technique.

From the Ap(zl) contour plot* in Figu}e 1.2 one notes that the
charge density right at the carbon nucleus has decreased on the formation
of the methane molecule from the sphericalized constituent atoms. Thus,
the density is not as highly peaked at the carbon nucleus in the molecule
as in the carbon atom itself. Also, the density at the hydrogen nuclei
has increased over the atomic value, the contours around the hydrogens
in the Ap(zl) plot being positive. This peaking of the density on the
hydrogens is a well-known facth’6 that always occurs when the hydrogen
atom undergoes bond formafion. In the case of methane this density
increase is accomplished By the use of the large ls orbital exponent of |

1.5 on the hydrogens.

*
In the ap(x;) contour plots the atomic density used for the carbon atom

is obtained from the 3P atomic orbital set determined by Clementi®3 et
al and the atomic density for hydrogen is obtained using a simple Slater
Is orbital with an exponent of 1.0.
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The electrostatic stability of the methane molecule is easily
understood from the Ap(X;) contour map. On the 4p(X;) contour map is
shown the boundary curve, the dotted line, between the binding and anti-
binding regions. This boundary curve is derived on the basis that the
charge distribution for methane must reflect‘the tetrahedral symmetry
of the nuclear framework. Thus one must consider the forces exerted on
the nuclei by a symmetrically equivalent set of point charges in deriving
the binding region. Symmetrically equivalent charge points placed above
and between the two béundary curves will exert forces on the nuclei such
as to decrease all the nuclear separations. Charge density placed out-
side of this boundary curve will tend to separate the molecule. The
positions of these boundary curves clearly indicate where charge density
must be concentrated in order to achieve a state of electrostatic
equilibrium upon molecular formation. )

From the Ap(;l) map we see that as the atoms combine to form the
methane molecule there is a large transfer of charge density from the
outer regions of the atomic system, particularly behind the protons, into
the region between the carbon and hydrogen atoms, which is the all-
important binding region. This build-up of charge, which is dominant
along the C-H bond axes , strongly binds the carbon and hydrogen nuclei
together. Although there is a slight increase in charge density along
‘the H-H bond axes', this increase is not as large as the increase in

36

charge density between the hydrogens found in the water” and ammonia
(see page 108 of this thesis) molecules. The increase in charge density
in the water and ammonia molecules occurs predominantly in the regions

above and below the heavy nucleus and between hydrogen'nuclei, where as
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in methane the largest density increases occur along the C-H bond axies.
Methane, for this reason and also because of fhe fact that its total
density is almost spherical and as such is not easily polarized, is
much less reactive than the water and ammonia molecules, wEich both
haye large local and over-all dipolar moments in their charge distribu-
tions.

In ofder to obtain a more detailed picture of how the density
distribution in the methane mo]ecule has rearranged from that of the
original atomic densities, contour plots of p(x;) and ap(x;) are given
in Figure 1.3 for a number of planes perpendicular to one of the three-
fold symmetry axes . The plots in Part (a) are through a single proton.
Note the spherical shape of the total charge density p(zl) and the
large increase in density at the proton with the corresponding decrease
in density further from the proton accompanying bond formation as
indicated in the Ap(zl) map. The plots in Part (b) are half way along
the C-H bond axis and they clearly indicate the large increase in density
that occurs along the C-H bond axis as the methane molecule is formed
from its constituent atoms. The plots in Part (c) are in the plane
through the carbon nucleus and perpendicular to a three-fold symmetry
axis. These diagrams again show the decrease of the density at the
carbon nucleus, the strong build-up of charge along the C-H bond axies
and the decrease in charge behind the proton brought about by the
formation of an electrostatically stable molecular species. The final
plots in Part (d) are through the plane of three protons. Clear}y there
is a build-up of charge density at each of the protons and a decrease in

charge density behind each of the protons as the atomic densities rearrange



Figure 1.3. Contour plots of the total density p(x;)

(to the left of the diagram) and the difference density
Ap(§1) (to the right of the diagram) for a number of
planes perpendicular to one of the three-fold symmetry
axies in methane. (a) a plot through the single hydrogen
nucleus. (b) a plot half-way along the single C-H bond
axis. (c) a plét through the carbon nucleus. (d) a
plot through the plane containing three protons. The

crosses indicate the vertical projections of the positions

" ~of the other nuclei not, in the plane.
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(c)

()



68

to form the molecule. The increase in charge density in the middle of

the plane of the three protons is not as pronounced as in the case of

the ammonia mo]eculegh. Thus, the portiqn of the charge density that

is mainly responsible for the binding in the methane molecule is that

density which is concentrated along thé C-H bond axies. This is different

from the case of the water36 or the ammonia84 molecule. In these two

molecules the binding charge density is concentrated in a region where

it attracts all nuclei simultaneously (i.e., immediately below and on the

hydrogen side of the oxygen or nitrogen nucleus and symmetrically placed

wi th respeét to the hydrogen nuclei) and not directly along the heavy

nucleus-hydrogen .bond axies. Also, note the almost spherical shape of

the total charge density p(x;) that occurs in all four planes. It is

this spherical shape of the methane charge distribution, since it has no

large local moments, that makes it so unreactive towards other molecules.
The interpretation qf chemicél binding in terms of the equilibrium

charge distribution is a sfatic one and perhaps more could be understood

about the binding in the methane molecule if one considered distortions

in the equilibrium configuration. An interesting property of the mole-

cular charge distribution is to determine how it changes as the nuclei

are displaced from their eqﬁilibrium positions during a normal mode of

vibration. Considering only the A} or symmetric stretch mode, the change

“in the charge distribution is dealt with in the fo]ldwing manner.
One-electron charge distributions are determined for a contraction

(bond distance = 2.03672 a.u.) and extension (bond distance = 2.08672 a.u.)

~of the C-H bond from its equilibrium value of 2.06172 a.u. The charge

distributions for these changed bond lengths are obtained by balancing the
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sum of the nuclear and electronic forces not to zero, as was done for the
equilibrium case, but to the net force acting on the proton H; in the new
positions as determined from the experimental force constant. Thus, the

electronic force of attraction is balanced to the new force
FR" (at new bond length) = (6.0 + 3V3//2)/RZ = Reky ,  (1.54)

where R, is the new bond length, AR = R, - R, and k; is the force constant

N N
for the A; mode (see Equation (1.83)). The first term in Equation (1.54) is
the nuclear force of repulsion on the protonbfor the new geometry and the
second term is the net force, with the proper sign, acting on tge proton
because of the distorted configuration. In the equilibrium configuration
Fﬂew is equal to.the nuclear force alone.

Using the same basis orbitals as for the equilibrium distribution,
the parameters A, p and eb were determined for the different one-electron
---charge distributions of the distorted methane molecule by satisfying the

orthogonality and normalization conditions, and the appropriate force
constraint. The delocalization § is assumed to be equal to the equilibrium
value of 0.12140, a condition which should be nearly satisfied, and thus,
an additional constraint such as the proton magnetic shielding is not
required to obtain this parameter. The results obtained for the variable
parameters and the expectation values of a few properties for the one-
electron charge distributions determined at each different bond distance
~are listed in Table I.10.
From Table 1.10 we‘see that the electronic force of attraction is

balanced to the force Fﬁew and that the variable parameters vary smoothly

as the C-H bond is increased; the polarity factor A/u decreasing from



TABLE 1.10

List of Parameters and Expectation Values
for the Determined Density Distributions
at Three C-H Bond Lengths for Methane

C-H Bond Length @.u.)
Parameter or

Physical Property 2.03672 2.06172° 2.08672
A 0.73137 0.72735 0.72426
y 0.3620k 0.36866 0.37424
eb 57.702° 57.565° 57.439°
8 : 0.12140 0.12140 0.12140
FNeY (2. u.) 1.6584] 1.62763 1.59829
Fr (a.u.) 1.65841 1.62763 1.59829
o' (a.u.) L9436k 4.905B8 4.86791
9 (a.u.) 33.94108  34.29360 34.63963

® Results obtained for the equilibrium configuration.
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2.0201 to 1.9352, the hybridization angle eb decreasing from 57.702° to
57.439° and the delocalization § being held constant as the C-H bond
length is changed from 2.03672 a.u. to 2.08672 a.u. The two physical

@) g (@)

properties o decrease and increase respectively as the bond
length is increased in agreement with whatvmight have been expected from
purely physical consideration.

The purpose of deriving the one-electron charge distributions for
the distorted configurations of the methane molecule was to determine how
the molecular charge density rearranges as the molecule moves from its
equilibrium configuration. |In order to best facilitate this analysis,

density contour diagrams are again considered. The desired diagrams are

obtained by plotting the function ApD(;l), where
ApD(zl) = pD(;l) - D(—;l) . (I.SS)

-dn this expression pD(il) is the one-electron charge density evaluated for
the distorted configuration (i.e., either an extension or contraction of the
molecular bonds) and p(;l) is the one-electron charge density determined
for the equilibrium configuration of the molecule. Contour plots of
Apb(?l) for the methane molecule are given in Figure |.4 for an extension
(Part (a)) and a contraction (Part (b)) of the C-H bonds leaving the carbon
atom fixed.

Inasmuch as bond stretching is the undoing of molecu]ar-bondV-
,vformation, the change in the charge density for bond extension should be
characterized by a reversal of the charge transfer that occurred as the
molecule is formed from its constituenf separated atoms. Thus, it is

~expected that a density plot of ApD(;l) (extended minus equilibrium density)



Figure 1.4, Contour plots of the density shift ApD(zl)
for an extension (a) and a contraction (b) of the C-H

bond in methane.‘
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for an extension of the C-H bond will indicate a relaxation of the charge
density which is just.the reverse of the Ap(;l) plot. Comparing. the
ApD(;l) map for a band extension (Figure 1.4, Part (a)) with the Ap(zl)
map (Figure 1.2) we see that our prediction is correct. Instead of a
decrease in density at the carbon nucleus there is a charge build-up in
éhe ApD(;l) map. The charge decrease behind the protons in the Ap(;l)

is replaced by a charge increase behind the protons in the ApD(zl) map
for a bond extention. In a similar manner it is expected that the ApD(zl)
map for a bond cogtraction should show almost identical regions of charge
increase and decrease as indicated in the Ap(zl) map. This prediction is
also found to be .true as can be seen in the ApD(;l) map for a bond con-
traction (Figure I.4, Part (b)).

Since all the major density changes in the ApD(;l) contour maps
occur along the C-H bond axies we may conclude that it is this density
between the hydrogen and carbon nuclei that is mainly responsible for the
chemical binding in the metHane molecule. This fact was shown in the
Ap(zl) map where there is a large density increase along the C-H bonds as
the methane molecule is formed from its constituent atoms. The density
accumulated along the C-H bond, since this is the major part of the all-
important binding region, produces a stafe of electrostatic equilibrium
in the methane molecule which is more stable than the separated atoms.

Further knowledge can be obtained from the ApD(§1) maps. If the
density followed rigidly the motion of the protons then we would expect
symmetrical positive and negative contours near the protons. This is not
found to be the case in the ADD(;l) map for bond extension since there is

a larger increase in density-behind the protons than there is in front of
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them. This suggests that more density has been transferred to the

region behind the protons upon bond extension than would normally have
occurred if the density moved rigidly with the protons. Thus, fhe
transfer of charge density following bond'extension aids in the motion
of the protons by placing density ahead of the moving nuclei. This same
effect is apparent in the ApD(;l) map for a bond contraction (Figure 1.4,
Part (b)).

Bader and Bandrauk89 have shown that the relaxation of the
charge density in.such a way és to aid the motion of the nuclei is
directly reflected in an overall decrease in the force constant for the
normal mode of v?bration under consideration. In an effort to obtain a
better understanding of how the relaxation of the charge density,
accompanying the displacement of the nuclei from their equilibrium
positions, affects the molecular force constant we will consider a
theoretical analysis of the force constants for the normal vibrations,
particularly the symmetric<§tretch vibration, for the methane molecule.
It is possible to give a theoretical expression for the force constant
which relates its magnitude to certain static properties of the equili-
brium density and to the manner in which this charge density relaxes
during a normal vibration. The contributions from the static density and
from the change in the density to the force constant will be discussed
‘and interpreted.

Methane, having tetrahedral symmetry, has nine normal modes; one
with A; symmetry, a doubly degenerate set of E symmetry and two triply
degenerate sets of T, symmetry. In a normal coordinate analysis,.the

potential energy of a system of nuclei relative to the equilibrium con-
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figuration can be expanded as

2

V==1:k,Q o, ~ (1.56)
i

-

i

where the ki are the appropriate harmonic force constants for the different
nérmal modes which are represented by the normal coordinates Qi' These
harmonic force constants can be evaluated theoretically from a knowledge

of the one-electron density distribution. A theoretical analysis of these
normal mode force constants for the methane molecule is considered following

90 91

closely the work of Salem” , and Gerratt and Mills® for diatomic molécules
using the Hellmann-Feynman theorem.

If we consider a system of electrons and nuclei, within the Born-
Oppenheimer appréximation, having a Hamiltonian operator H given by
Equation (1.18) and an energy eigenfunction of this operator given by ¥, then

the energy of the system is given by the expectation value
E = <p|Hy> , | (1.57)

where ¢ is normalized to unity. Theoretically, the separate force constants,
ki’ can be evaluated by taking the second partial derivative of the energy

£ with respect to the appropriate normal coordinate. This gives
k, = (32e/0Q%) , (1.58)

where the partial derivative is taken at equilibrium.
The first derivative of E can be easily obtained with the aid of

- -Hellmann~-Feynman theorem?? . From Equations (1.16) and (1.21) we have

av v
9E  _ _ 1oH _ 0N ' > |
—a——Q—i = <11)|—-8—Q—i !7\[)> = —an—i + J —B—Q—;— p(Xl)dTl s ('.59)

where VN and V) are one-electron potential operators defined by Equation
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(.20). The equalities in these equations hold only if ¥ is an exact eigen-
function of the Hamiltonian operator or the variable parameters in y have
been fully optimized with respect to the normal coordinate. The force

constant ki is then given by

’ 2y 2y
2 3 ChS!

k, = (8 ;5) - 2N + f — p(X;)dr
BQ{ 0 aQi 0 3Q; 0

, (1.60)
0

8V1 Bp (;1)
N Jsa'; g 4o

where p(X;) is the one-electron density distribution defined by Equation (I.7).

90

A similar expression to Equation (1.60) was obtained by Salem”” for a diatomic
molecule. |

In order to evaluate the first term in Equation (1.60) for the methane
molecule it is advantageous to work with symmetry coordinates instead of normal

coordinates. The normal coordinates are related to these symmetry coordinates

. . . . 2 .
by a linear unitary transformation. The symmetry coordmates9 are defined

[

below, where the internal coordinates ri C-Hi distance and uij = <HiCHj
are used and the numbering of the atoms in relation to the cartesian axies

is shown in Figure I.1.

$1 = %'(rl +rp +r3 +ory) . (1.61)
R
ba = —= (2012 + 2034 - w13 - agy - azy - o) -
2v3
(1.62)
S =B—(oc - a + o - ay1)
ob = 7 013 32 24 41/ -
\ ,
S3a = E'(rl +ry - rp - org) . ' ' (1.63)
o .
s = R - . .64
La /5_(u23 a1y) ( )

The other components of the three-fold degenerate coordinates S3 and S, are
obtianed by permuting the subscripts 2,3 and 4 on the internal coordinates

in Equations (1.63)and (1.64) respectively. From these symmetry coordinates
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the theoretical contributions to the force constants for the different
normal modes can be obtained.

The actual theoretical contributions to the force constant for
the symmetric stretch mode of Ay éymmetry, which involves the normal

N ,
coordinate Q;, can be easily worked out. From Equation (1.60) we have

- 2 2 \ —
2 acvVv 9 Vl 3V1 -
‘ kl = (8 5) = 2N +f 2 p(_)zl)d'fl + f———gp"(—)‘(’l')—d'fl . (l.65)
BQi 0 an 0 3Q1 0 3Q; dQ 0

The normal coordinate Q; is equivalent to the symmetry coordinate $;. Thus

Q=g (r +rp%rgtr) . (1.66)

Since Q;  is a function of the internal coordinate ry it is easily shown

that
82VN Loy ar, ar, 82VN
7 L z 3Q 55%'3r ar ) (1.67)
9Q] i=1 j=1 %<1 9% 973975

and a similar expression is obtained for (BZVI/BQ%). If all displacements
r. are assumed to be equivalent then it is easily shown that

ary arp arg ary |

= = = = 1.68
9Q; 3Q;  9Q; 8Q 2’ ( )
and that
2 2 2
9 VN _ 9 Vy ] VN
aQ% . ar% arjary
(1.69)
2Vy 3%V 32V,
2 - 2 +3 aryr
an al"l 172

*

Only the symmetric stretch mode is considered in detail in this thesis.
The mathematical expressions required to analyze the force constant for
an infra-red active T, mode have been worked out and are given in
Appendix 8.
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For the methane molecule the potentials VN and V; are given by

(see Equation (I.20))

Yo B
Vy= 2 —+ I —— ‘ (1.70)
o=1 "co o>B=l "aB
and
4
=- oz - (1.71)
a=1 "lo lc

where the summation over o and B are over the number of hydrogen atoms,

r. is the distance between hydrogen atom o« and electron one, e is the

fa

distance between the carbon atom and electron one, F e is the C—Ha bond

is the Ha-H bond distance. Thus, the terms in Equation

af B8

(1.69) are given by

distance and r

2
7V 4 32 | 32 6
7 - = 2 G+ 2 (r )
ar;  a=2 3r al ar cl
, ;
"y -3 ]
8r18r2 3[‘13[‘2 rio2
) (1.72)
34V, . 52 ( 1 )
ari Br% rll
3% vy
drior,

Substituting these expressions into the first two terms in Equation (I.65)

one obtains

2 2 2
3 VN | ) P VN l P VN l
2 2 aryor
3Q] |0 ory F1or2
4 32 ( ] 5 32 6 32 ( 1 (
= 5 . * ()| + 3 FI3ET ;EZJ : ; 1.73)

a=2 dr ol

1- arl cl
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and

32V, 92V, R
= I 5 p(xy)dry| + 3 f RIS p(x1)dt;

0 ary 0 0

_32V1 5
fsa;—‘p(fl)dTl

(1.74)

1

[ 2 (e G

2 r
3r1 11 0

All the terms required in Equations (1.73)and (1.74) have been
evaluated for the equilibrium configuration for the methane molecule
using the derived density distribution. These terms are given by the

following expressions.

b 32 1
I — (—)| = 9/3/16vV2 R3 . (1.75)
o=2 8r§ _rul 0
2
- (-9—-)| = 12/R3 . (1.76)
r rCl 0
3 22 (= = 15/3/16vZ R3 | (1.77)
- ’3!’13!‘2 r12 ‘ )

In these expressions R is the equilibrium C-H bond distance.
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[——3-(;l~90(;1)d11

[ (3c0526H -1) b

L o(x1)dt; - j;'oo(H1), (1.78)

3
Hy

where po(Hl) is the density evaluated right at the hydrogen nucleus Hj.
Thus, the force constant k; for the symmetric stretch normal mode

‘of vibration is given by

-ky = (24vV2 + 3V3)/2/2 R3 - 3 3

Hy

(3cos2p, -1)
I Hl p(Xl)dTl +L'—Trpo(H1)
r

3V1 Bp(;l) (
+[3-QT—§Q-1—*—dT1 . |.79)

The first term in this equation is a nuclear field gradient term GN, which
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depends only on the nuclear configuration. This term is easy to evaluate

and has the value
N - (24v7 + 3V3)/2V/2 R3 = '1.57891 a.u. (1.80)

The second term is an electronic field gradient term which arises from
the static charge distribution p(;l) as the nuclei are allowed to move.
This term has already been evaluated in determining the electric field

gradient at the proton (see Section 1.4, Part (d)) and it has the value

given by ,
(3cos?s, -1)
¢S = -q, = j ut p(zl)drl = 1.14934 (1.81)
r 3
Hy
The third term is an electronic field gradient term arising from the
89. The numerical value

density situated right at the hydrogen nucleus H;
of this term is |

hnpo(Hl)/B = 2.10387 a.u. (1.82)
These three terms are determined by the equilibrium properties of the
charge distribution. The final term in Equation (1.79)is often referred

89,91

to as a '‘relaxation" term It represents the field gradient generated
by the electronic charge following the motions of the nuclei as they are
allowed to move, thereby leading to a lowering of the otherwise large
energy increase obtained for the displacement of the nuclei in a rigid
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charge distribution This term is not easy to evaluate directly by eny
theoretical means for a pofyatomic molecule since it requires one to-know
how the density changes upon molecular vibration. The value of this term
has been evaluated in the present work by using the experimental force

constant for the symmetric stretch normal vibration.

The experimental force constants for methane have been obtained
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by Jones and McDowel]9h. Using their notation and the values they give

for the methane force constants, the force constant for the A; mode is

ky=F_ +3F = 5.867 milli dynes/A
= 0.37688 a.u. (1.83)
Using this experimental result the "relaxation term' can be evaluated as
. _ .
3V1 Bp(xl) :
_ e _ N _ by o
[ 'é—Q—l—'*a—Q—i——- dT]_ = kl + G G —3—- po(Hl) = 2.]5656 a.u. (1.811)

Thus, the '“'relaxation term'' contributes a‘negative quantity to the over-
all force constant, as can be shown to always be the case for diagonal
force constants. This follows from the fact that there is a one to one
correspondence between the ''relaxation term' obtained in the present

Hellmann-Feynman approach and the term

n 2
<wk| £ 32v,/3Q]|y>2
i= !

2 X

k E - Ek’

obtained by Byers Brown95 using perturbation theory, where the wk represent
the complete set of excited electronic states for the equilibrium nuclear
configuration and Vi is given by Equation (1.20). This term, which is for a
diagonal forée constant, is always negative. |

The '"relaxation term'' almost cancels completely the hnpo(Hl)/3

90

term, a result which has been noted by Salém and Schwendeman96 for force
constants expressed in the form of Equation (1.79). Since we are dealing
here only with the force constant at a proton the cancellation is not as
obvious as in the case of determining the force constant at a heavy nucleus

such as that of nitrogen. where the third and fourth terms for the force

constant are much larger. As a matter of fact, Bader and Bandrauk89 have
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shown that for a simple diatomic molecule AB there is a complete cancella-

tion of terms of the form

. BV]_ ap (?1) L (3C0526A"]) . .
) JWX X 911 = 3 g (A) - J—"———;—*o(xl)dn (1.85)

when the density o(x;) follows rigidly the displacement of nucleus A with
nucleus B held fixed. In Equation (I.85)XA is the displacement coordinate
of nucleus A. In our polyatomic system if the density around the protons
in methan¢ rigidly followed the nuclear displacements of the hydrogens
accompanying the normal A; vibration then one would expect a complete
cancellation of the terms -G° and 4npo(H1)/3 with the "relaxation term'.

The actual result is

3V, 3p(Xq)
e e  hnr 1 PR _
G = -G + —j—po(Hl)/B + Jm;——aTdTI = -1.20203 a.u. (1.86)

The quantity expressed by G? is the total electronic contribution

to the force constant, the<nuclear contribution being GN. Since G$ is
negative and not zero the charge density does not rigidly follow the motion
of protons but relaxes in such a manner that the electronic contribution
decreases the overall force constant kj.

It has been shown in the AQD(;I) contour plots (Figure |.4) that
the charge density does not rigidly follow the motion of the protons during
a normal vibration but relaxes in such a manner that it aids in the motion
of the nuclei. Electronic charge is built up ahead of the moving nuclei
thus leading to a decrease>in the overall force constant for the vibration.
It is this relaxation of the charge density that is mainly responsible for
the large negative value of the '"relaxation term'" and thus for its corres-

ponding reduction in the force constant k;. This force constant analysis
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clearly indicates the crucial role played by the change in the one-
electron charge djstribution in lowering the otherwise large increase
in energy of the system when the nuclei are displaced from their
equilibrium positions.

In conclusion, the ”best”‘one-electron density distribution
for the equilibrium configuration of methane has been determined by
requiring this distribution to give zero forces on the nuclei and the
correct expectation value for the diamagnetic proton magnetic shielding.
This charge distribution was shown to give excellent one-electron
properties and a very acceptable energy (a two-electron property). The
distribution was_used to show that the chemical binding in methane is
mainly the result of a large accumu]atjon of charge along the C-H bond
axies which makes the molecule electrostatically more stable than the
separated atoms. It is the almost spherical shape of the total charge
density p(x;) which accounts for the methane molecule being very
unreactive. The theoreticéi analysis of the force constant for the Aj
mode indicates that the relaxation of the charge density accompanying
a normal vibration aids in the motion of the nuclei and thus leads to

a decrease in the overall force constant.



1. PAULI REPULSIONS AND MOLECULAR GEOMETRY

2.1. Introduction

In Chapter'l a one-electron density distribution for methane was
" obtained using only one-electron properties of the system. Using this
method it is not necessary to calculate the energy in order to derive
the required wavefunction. It is the long arduous task of calculating
the energy integrals (namely, the two-electron integrals) that makes the
SCF procedure for polyatomic molecules very cumbersome. This difficulty
is bypassed by using the present electrostatic method since only one-
electron integrals need be calculated. This electrostatic approach not
only produced a one-electron density distribution for methane that
predicted good one-electron properties but also gave a charge distribu-
tion with a very acceptable total molecular energy (a two-electron
property). '

It is hoped that other similar electrostatic methods can be
developed for polyatomic systems which can be used to determine the
relative stability of model mo]ecﬁ1ar charge distributions. In this
section a theoretical method, which allows one to determine the effect
of the Pauli exclusion principle on the one-electron density distribution,
is considered and an electrostatic approach, involving the concept of a
binding region, is proposed to account for the observed molecular
geometries in polyatomic molecules.

Gillespie and Nyhoim2 have édvanced a theory of molecular geometry
"'on the idea that the arrangement of all electron pairs (bonding pairs and

lone pairs) in the valency shell of the central atom is determined by the

84
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operation of the Pauli exclusion prfnciple“. The molecular geometry,
which is'direct]y dependent on the three-dimensional charge distribution,
is thus related to '"Pauli repulsions'' between pairs of electrons in

either bond or lone pair orbitals. Since lone péirs of electrons are
assumed to be associated only with one nucleus they are considered to
occupy a more diffuse orbital than bonding electron pairs, which encompass
at least two.nuclei. For this reason lone pair-lone pair repulsions are
assumed larger than lone pair-bond repulsions which in turn are more
important than bond-bond repulsions. !'Pauli repufsions”, when applied in
this manner, will be given a theoretical basis in this chapter.

The Pauli principle in its most general form demands that a wave-
function be antisymmetric with respect to permuting the space and spin
coordinates of all the electrons present in the system. Or alternatively,
within the orbital approximation, the Pauli principle is satisfied if no
more than two electrons with opposite spin are placed in any one space
orbital taken from an orthogonal basis set. The important feature for the
present discussion is that the Pauli principle demands that the set of

orbitals, atomic or molecular, used to describe the system be orthogonal,

<¢i|¢j> = dij . _ (2.1)

Thus for a system of n electrons requiring a minimal set of n/2 space
orbitals (or (n+1)/2 if n is odd), the Pauli principle is in reality. an
ortHogona]ity restraint imposed in an (n/2)- or {((n+1)/2)-dimensional
mathematical space. This is the source of confusion regarding "Pauli
repulsions' which are treated as occurring in the three-dimensional |

physical space of the molecular system. To state that the Pauli principle
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gives rise to repulsions between filled orbitals in three-dimensional
space isVQQE_the same as requiring these orbitals to be orthogonal in
the many-dimensional space required to define the orbitals. The only
fﬁnction of the electronic coordinates which can be pictured in three-
dimensional space is the one-electron density distribution, not the
orbitals. Thus to determine what effect the Pauli principle has on

the molecular shape or the electronic arrangement in physical space,

one must ask the question, '"what effect does the requiremgnt of ortho-
gonality of the orbitals in the many-dimensional orbital space have on
the one-electron density distribution in three-dimensional space?" The
answer to this problem is not obvious and does not in general follow
from pictures of '"colliding' orbitals in physical space. It is possible
to formulate a technique which does show the effect of the orthogonality
rgquirements of the Pauli principle on the thrée—dimensional one-electron
density distribution.‘This method will be illustrated with a number of

examples.

2.2 Pauli Repulsions Present in the Approach of Two Helium Atoms

The one-electron dénsity distribution, which is the probability
-of finding electronic charge at some point in real three-dimensional space,
is given by Equation (1.7). For a molecule in a stationary state, this
one-electron density distribution can be interpreted as a static distri-
- bution of negative charge, rather than as a probability function. Within
an orbital approximation to a wavefunction, the one-electron density has

the very simple form (see Equation (1.11))
p(;l) = ? nl¢i¢i ’ (2-2)
i

where the ¢i's are an orthogonal set of orbitals and the ni's are the
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orbital occupation numbers,

For a system described by an orthogonal set of orbitals there
are no Pauli repulsion effects since the Pauli principle is satisfied.
The effect of the Pauli principle on a wavefunction or density can be
determined by first considering a system described by a set of orbitals
which are orthogonal because of some restraint. This restraint may be
artificial or be the result of a large separation between the orbitals.
Then the effects of the nonorthogonality (i.e., "Pauli repulsions') are
determined when the restraint is removed. Consider, for example, the
effects of the Pauli exclusion principle on the electron density distri-
 bution obtained when two helium atoms approach one another. Let,¢a and
¢b be doubly occupied atomic orbitals on the two atoms a and b respectively.
At a large separation of the atoms the overlap between the orbitals is

zero and the one-electron density is then simpﬁy
>y 2 2
oo tx1) = 2097 + ¢) . (2.3)

At small values of the internuclear separation this same expression would
hold for the density if the orbitals did not overlap. But in reality this
is not the case since the orbitals do overlap and thus, the Pauli exclusion

principle demands the corrected form of the density
> -> >
p(x1) =p_(x1) + Aop(X1) . (2.4)

The quantity App(;1) is the change in the one-electron density which arises

from the orthogonality requirements of the Pauli exclusion principle.

*,97

0 + .
Longuet-Higgins and Salem have shown that when p(x1) is expressed in

L
¥

x > .
The general theorem for Aop(xl) was contributed by H.C. Longuet-Higgins.
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the form of Equation (2.4), App(;l) has the form
Ty o 2042 2 )
Aop(xl) - -hsp ¢, + 252(92 + op) (2.5)

where S is the overlap between ¢_ and ¢b{ Expression (2.5) for App(zl)
is correct to the order $% and goes to zero as S goes to zero. From
this expression it is seen that there exist regions where App(;l) is
negative, giving a total density p(X;) that is less than that of the
original atoﬁic densities, and regions where App(zl) is positive, giving
a total density which is greafer than the original atomic densities.
Since, by definition, the integration of p(Il) over all space must yield
the total number of electrons, four in this case, and this is’given by
the integration éf po(;l) itself it follows that the integration over

App(zl) must yield zero,
JAOP(;l)dTI =0 . (2.6)

The positive and negative regions of App(?l) exactly balance so that the
decrease in density in certain regions from the value given by po(;l)

must be equal to the increase over the po(;l) values in other regions.

The quantity App(;l) thus gives a three-dimensional picture of the charge
density which is transferred relative to the original set of orbitals because
of the operation of the Pauli exclusion principle. In this simple example
where ¢a’ o and S are all positive, the expression for App(zl) shows that
‘charge of the total amount hs¢a¢b must be removed from regions wherelthe
orbitals overlap and transferred to regions where ¢§ and ¢§ are large. A
contour plot of App(;l) in the molecular plane for two He atoms at an inter-
nuclear separation of 2.5 a.u. is given Th Figure 2.1. This plot shows

dramatically the operation of the Pauli exclusion principle on two over-



Figure 2.1. A contour plot of App(zl) for two He atoms
at an internuclear separation of 2.5 atomic units (a.u.).
The solid and dashed contours represent positive and
negative App(;l)_values respectively. ‘The dotted lines
through the nuclei are the boundary curves which separate

the binding and antibinding regions.
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lapping, doubly filled orbitals, or if one wishes, the effect of Pauli
'repulsions. In the internuclear region, where the overlap of thé
original atomic orbitals is large, App(;l) is negative showing that
electron density has been forced to migrate away from this region. The
density is transferred fo regions behind each nucleus, where App(zl) is
positive. The region between the nuclei is one of low potential energy,
and is the region where charge dénsity must be concentrated to achieve
a stable chemical bond and electrostatic equilibrium. This is the
origin of the Pauli repulsions. The operation of the Pauli exclusion
principle requires that density be removed from the region of low
potential energy-and be placed in less favoured regions. The electronic
"energy is thus raised above that of the separated atoms and a repulsive
force results. Thus while there are no Pauli repulsive forces as such,
the Pauli exclusion principle does place restraints on the distribution
of the electronic charge and this in turn determines the electronic energy
of the system.

The energy, since it is determined by the second-order or two-

98

electron probability distribution” , is not simply related to the one-
electron density distribution. However, the forces acting on the nuclei
are explicable in terms of classical electrostatics and are determined from
the one-electron density distribution by the application of the Hellmann-
“Feynman theorem’® (see page 13 of this thesis). Therefore, the chanée in
stability brought about by the charge which is tra&sferred as a result of
the Pauli principle is best discussed in terms of the forces acting on the

nuclei. Consider, for example, the case of the two He atoms. By applying

Gauss' theorem it is easily shown that for any finite value of internuclear
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separation the density distribution obtained from the overlap of the
original spherical atomic densities, po(;l), results in a net force of

£
~repulsion on both nuclei (see footnote on pageLEZ of this thesis).
According to Ber]in87 one can define a region, called the binding region,
in which charge must be concentrated to overcome the nuclear forces of
repulsion and achieve electrostatic equilibrium in a diatomic molecule.
The boundary curves separating the binding region from the antibinding
regions are indicated by the dotted lines on Figure 2.1 for the hbmo—
nuclear diatomic molecule. Any charge density placed between the two
boundary curves exerts an attractive force on both nuclei pulling them
together. Any charge placed’outside these two curves exerts a greater
force on one nucleus than on the other and leads to a separation of the
moleculg into atoms. Charge density on the boundary curve exerts equal
forces on both nuclei along the bond axis. From Figure 1.2 it is evident
that App(;l) is primarify negative in the binding region between the
nuclei and positive in the antibinding regions behind the nuclei. Since
the sum of the original atomic densities,.po(zl), does not bind the nuclei?
the density transferred because of the operation of the Pauli exclusion
principle, App(;l), will clearly result in an even larger force of repul-
sion on both nuclei. This follows from the fact that the change in density
App(;i) leads to a decrease in electronic charge in the binding region over
that present in the original atomic distribution po(;l)- The atomic
distribution itself has insufficient chafge in the binding region to
balance the forces of nuclear repulsion and as such-is unstable. The
result is the final density p(x;) is less stable than the original atomic

density, po(;l)'
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In this simple example of two He atoms, the form of App(zl) fits
in well with the concept of '"Pauli repulsions'' as they are qually appliedz.
_.In a sense the orbitals do appear to ''collide'. However, it should be
remembered that the resulting instability is an electrostatic one, resulting
from the forced migration of cHarge from the binding region and the conse-
quent increase in the nuclear forces of repulsion. The analogy of App(zl)
with that of colliding orbitals in real three-dimensional space breaks
down when one considers more complicated examples with more orbitals.

The theoretical expression for App(;1)97 and the concept of a
binding region88 can be extended to a polyatomic system. For any molecular
system we can first determine App(?l), the charge which is transferred
because of the Pauli principle, and secondly, determine what effect this
transfer has on the stability of 'the system by noting whether or not it

corresponds to an accumulation in the binding region. The general expression

for App(zl) for doubly occupied orbitals i597
+
A = % (-b4S,.4.4, + 252 (42 + ¢2 2.
o, (x1) i<j( P59 (67 + 09)) (2.7)
and the total density is given by
p(;l) =21 ¢i¢i + Apb(;l) . (208)

i
Theré is a contribution to App(;l) from every pair of overlapping orbitals
which is identical in form to that obtained for the two He atoms. The form
of App(zl) is determined by the initia] Ehoice for the set of orbitals ¢i.
If they are chosen as an orthogonal set, then App(il)is zero at every point
in space. However, in discussions of chemical bonding, comparisons between

different systems are often employed, either between the separated atoms
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and th¢ molecule or between different members of an iscelectronic series.
For example, we may consider the classic ten-electron Ne atom and what
effect the Pauli principle has on the re]ationship between its one-electron
density distribution and that of the isoélectronic hydride molecules H,0,

NH3 and CHq .

2.3 An Analysis of the Assumed Pauli Repulsions in H,0 and NH3

In Cﬁapter | (see page 6 of this thesis) it has been indicated
that the electron density in molecules such as H,0 and NHs, which have
four pairs of electrons in their valency shell, was previouslyL}2 thought
to be directly related to the tetrahedral hybridization (sp3) of Ne and
thus one could aecount for the nearly tetrahedral bond angles in H,0 and
NH3. Gillespie and Nyholmz, in their original paper, also considered the
orbital descriptions of H,0 and MH3 to be sp3 and related to that of Ne.

By postulating that the repulsions between the lone pair and bond orbitals
is greater than those between the bond orbitals themselves they accounted
for the fact that the bond angle in’NH3 is slightly less than the tetra-
hedral angle. Similarly in the case of Hy0, the larger lone pair-lone
pair ''repulsion'' causes aﬁ even greater decrease in the basic tetrahedral
angle between the bonding pairs. |In both these examples the important
aséumptions are the essentially tetrahedral arrangement of the electron
pairs and the effect of the Pauli repulsions on these pairs as the original
equality of the orbitals in the basic Ne structure is perturbed by the
change in the number of bonded protons. The physical basis of the ''repul-
sion theory' can be investigated by fifst determiﬁing App(zl) aﬁd'comparing

this with the assumed repulsions between the orbitals, and secondly, by
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determining the stability of the tetrahedral density arrangement by means
of the concept of a binding region. It will be shown that the polar-
izationé made necessary by the presence of the protons are indeed of
crucial importance. ‘

The one-e]ectron‘density (ignoring the inner 1s electrons) in
Ne is given by

p(x1) = 2
]

6181 » (2.9)
1

where each ¢, may be considered as an sp3 hybrid orbital. These form an

o~ -

orthogonal set and App(;l) is zero. The density p(;l) is of colrse
spherical. The effects of perturbing this density distribution by
extracting three protons from the Ne nucleus, one into each of three of
the sp3 hybrids, to form a tetrahedral NH3; molecule will be considered.
The presence of protons destroys the orthogonality between the original
Ne orbitals and the resulting change in density App(zl) will be directly
determined by the effecés of the Pauli exclusion principle arising from
this nonorthogonality. The final molecular density distribution for

tetrahedral NH3 expressed in terms of equivalent orbitals is
2.y = 2 2 2 2 > >
p(x1) = 2007 + of; + o, + 0p) *+ B0, (1) + 8, (1), (2.10)

where ¢y is an original unperturbed Ne orbital (the lone pair) and the

¢bi are bonding orbitals of the form

e

=2[(1/2)2s + (@/2)Pi] + uho (2.11)

The atomic orbitals employed in the calculations gf the density distri-
butions are Slater functions. It has been shownB® that the use of
Slater functions rather than the Hartree-Fock expressions does not alter
the appearance or the general characteristics of the calculated one-
electron density plots.
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A/u being a polarity factor and Pi a nitrogen 2p orbital directed at the
hydrogen orbital hi' The term in square brackets defines an sp3 orbital.

The M u ratio must be close to unity to obtain the correct order of
magnitude fér the molecular dipole moment8h and was taken as one in the

. present calculations for NH3. In any event, tﬁe variation of this ratio
over a wide range of reasonable values does not alter the conclusions
discussed below. Since the total changé in density App(;l)required by
the Pauli exclusion principle is constructed of terms from pairs of over-
lapping orbitals, it can be divided into separate contributions, one
resulting from the lone pair orbital overlapping Qith the bonding orbitals
and one resulting from the bond orbitals overlapping with each other. By
this procedure the lone pair-bond ''repulsions' and the bond-bond '"repul-
sions' can be determined individually. Thus, the two change in density
terms in Equation (2.10) arising from these separate ''repulsions'' have

the forms

%) = - 2 2 2

App%(xl) = hslb(§¢2¢bi) + 2s%(§(¢2 +92.)) (2.12)
-> _ . 5 2

Appbb(xl) B hsbb(iijqbbid)bj) + zsbb(z Zi: ¢bl) s (2.]3)

where Slb and S, are the overlap integrals between the lone pair orbital

bb
and bond orbital aﬁd between two bond orbitals respectively.
In Figure 2.2 is shown a contour plot of Appzb(;l) for the tetra-
——hedral NH3; molecules. Clearly the charge migration which results from the
finite overlaﬁ of the lone pair and bonding orbitals corresponds to a
depletion in the density above the N nucleus and to its accumulation below,

between the three hydrogen nuclei. The direction of charge migration is

easy to understand in terms of the nonorthogonalities. Since the nitrogen



Figure 2.2. A cdntour plot of the density Shift, Applb(zl),
resulting from the interaction of the lone pair orbital with
the bonding orbitals in tetrahedral NH3. This and the sub-
sequent diagrams for ammonia are plotted in the plane parallel
to the three—fola symmetry axis and along an N-H bond. The
vertical line is the three-fold symmetry axis and the line
joining the two points (the positions of the nuclei) is the

N-H bond.
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sp3 orbital contributions to the ¢bi are still orthogonal to the sp3

orbital which comprises ¢2, the whole of SQ arises from the overlap of

b
¢i with only the hydrogen orbitals in the ¢bi' Thus

Sip = wl(172)s, - (1/72/3)s51 , - (2.14)

where S, and S3 are respectively the overlap integrals of a 2s and a 2p

~orbital on nitrogen with a hydrogen orbital. for the tetrahedral

Szb
NH3 molecu]elequals +0.06381. Since S,p 1S positive, the first set of
terms in Equation (2.12) will decrease the density where the product
¢2¢bi is positive and increase it where this product is negative. The
orbital ¢2, since it has a 2p orbital contribution, is positive above

the nitrogen and.negative below it. The second term in Appr is positive

in all regions.

A contour plot of Appbb(;i), the density which is transferred

~-because of ~the -nonorthogonality between the bonding orbitals, is given

in Figure 2.3. The migration of charge in this plot is close to the
reverse of that found in the_Appzb(;l) plot, as it shows a decrease in
density in the region below the N nucleus and its concentration above.
The bond-bond interaction is greéter than the bond-lone pair interaction,
_however, since the value of Sbb (0.1284) is greater than that of Slb.

The nonorthogonality between/the bonding orbitals is again entirely

because of the hydrogens,

Spp = H2S1 + aul(1/2)s, - (1/2/3) s3] . (2.15)

The first term in this expression arises from the overlap of two hydrogen
orbitals and the second from the overlap of the hydrogen in one bonding

orbital with the sp3 hybrid from another. The bonding orbitals will over-



Figure 2.3. A contour plot of the density shift, Appbb(;l)’

resulting from the bond-bond interactions in tetrahedral NH3.
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lap one another most strongly in the region between all four nuclei and
thus Appbb(;l) is negative in this region. The net result of the lone
pair-bond and bond-bond overlaps is shown in Figure 2.4 which is a contour
plot of the total charge migration App(;l) as determined by the ortho-
gonality réquirements of the Pauli ptrinciple. .Charge density is removed
from above and below thé N nucleus aloﬁg the three~fold symmetry axis
and is concentrated in the region of each hydrogen nucleus. Figure 2.4
thus shows the effect of the Pauli exclusion principle on the three-
dimensional one-electron density distribution for the NH3 molecule when
this distribution is related to an idealized tetrahedral one. The question
now to be asked is whether the form of App(zl) is such that it will lead
to a decrease in the tetrahedral bond angle. In order that the bond angle
decrease, electron density must be concentrated in the region below the
nitrogen nucleus, between the three hydrogen nuclei. Such a charge migra-
tion would exert attractive‘forces on the three protons, drawing them
together. The form of App(;l) does not meet this requirement. There is
a greater amount of charge placed above the proton a]ohg the N-H bond axis
than below it and the charge is depleted in the region between all four
nuclei. Thus, one firds that the basic assumptions of the electron pair
repulsion theory are not met. The interactions between the bonding orbitals
are larger than those involving the lone pair orbitals, and the overall
migration of the charge density resulting from the "Pauli repulsions'' is
such as to lead to an increase rather than the predicted decrease in the
tetrahedral bond angle.

The application of this type of theoretical analysis to the water

molecule leads to similar conclusions. Consider, for example, the one-



Figure 2.4. A contour plot of the total charge migration,
App(;l), required by the Pauli exclusion principle for

tetrahedral NH; with sp3 hybridization.
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electron density distribution of water to be tetrahedral in character and
derived from that of neon by the removal of two protons from the neon
nucleus. Since the two lone pair orbitals in the resulting water molecule

(x;), the density transferred because of the

would remain orthogonal, Appzz

overlap of the two lone pair orbitals, would be zero. Thus, there are no
Pauli repulsions at all between the lone pairs in the water molecule when
its electron density is related to that of neon. The same result would be
obtained by re]atfng the density distribution to that of the tetrahedral
methane molecule. The fact that the two lone pair orbitals in the water
molecule overlap one another when pictured in three-dimensional space does

not preclude the.possibility that their total overlap is still zero, i.e.,

fqucbmdr =0. (2.16)

Thus, a pair of electrons can coexist in both lone pair orbitals with no
--shift in electron density as the Pauli exclusion principle is satisfied.

The electron density distribution in certafn regions of real space will
contain confributions from both of the lone pair orbitals. This is
permissible.as long as the orbitals are orthogonal! in orbital Space.* The
forms of Appzb(;l) and Appbb(zi) are similar to those calculated for ammonia,
resulting in a total charge migration which would tend to increase rather
than decrease the tetrahedral bond angle. In addition, there is no charge

migration due to the interaction of the lone pairs, i.e., Ap (;1) is zero.

P2
Thus, the concept that the bond angle in the water molecule is less than
the tetrahedral value because of Pauli repulsioné between the lone pair

orbitals is incorrect.

oL
Lone pair~lone pair Pauli repulsions will never exist between equivalent
lone pair orbitals centered on the same nucleus. They will be orthogonal
by definition.
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The identification of '"Pauli repulsions'' between filled orbitals

with shifts in the three-dimensional one-electron charge density has
demonstrated that their interpretation in terms of overlapping orbitals
in real space can be misleading. In the simple case of two He atoms,
" where the overlapping orbitals are s orbitals centered on different atoms,
the form of App(;l) fits in with the simple interpretation of '‘colliding"
orbitals. However, when a number of orbitals, including p orbitals, are
centered on one nucleus, such as in Hy0 or NH3, this is no longer true.
The order of itude of the shifts, Ao, (x1) > dp_, (x1) > 8o, (X1)

e order of magnitude o e shifts, ppbb X1 P ogb X1 ppM x1),
is in contradiction with the proposals of the electron pair repulsion

theory and, more- important, (x1) is actually zero. The latter point

009,
is especially important in emphasizing that the overlap of orbitals when
pictured in real space does not preclude the possibility that they are
orthogonal and hence satisfy the Pauli principle. Furthermore, the density
shift arising from the Fequiréments of the Pauli principle as calculated
for the tetrahedral distribution does not predict a decrease in the tetra-
hedral bond angle. Thus, the second basic assumption of the repulsion
theory, that the one-electron denéity distribution in these molecules can
be related to a tetrahedrally oriented set of orbitals, is incorrect.

This conclusion is necessary not only because App(;l) does not lead to a

decrease in the bond angle but for an even more fundamental electrostatic

reason which will be considered in the next section.

2.4 Analysis of the Charge Distributions for H,0 and NHs; in Terms of

Their Binding Regions

The concept of a binding region in polyatomic molecule588 was
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discussed in Chapter | (see page 60 of this thesis). By placing electron
density in this region one can overcome the nuclear forces of repulsion
~and thus attain a étate of electrostatic equilibrium. Using this approach
it can be shown that the tetrahedral one-electron density distributions
for water and ammonia do not concentrate sufficient density in the binding
region to bind the nuclei, and for this reason are unacceptable as stable
distributions.

The boundary curve between the binding and antibinding regions is
indicated by the dotted line in Figure 2.5. The binding region is derived
by considering the forces exerted on the nuclei by a symmetrically equi-
valent set of charge points following the same procedure used for methane
(see page 65‘of this thesis). This set of symmetrically equivalent points
reduces to a single one for charge along the three-fold axis, to a set of
three for charge in the symmetry planes, and to a set of six for charge
placed in any other reg{ons. Any such set of symmetrically equivalent
charge points placed below the boundary curve will exert forces on the
nuclei such as to decrease all the internuclear separations. Charge density
outside of this boundary curve will tend to separate the molecule into l
either a diatomic molecule and two atoms or into four atoms.* Charge
density must be concenfrated in this binding region if the molecule is to

achieve equilibrium. The existence and shape of the binding region and

the necessity of concentrating charge in this region illustrate the

" One can also construct a binding region by considering the forces exerted
on the nuclei by only a single point charge at a time.  The binding region
thus obtained is equivalent to the superposition of all the possible
diatomic boundary curves. Such a region has been given previously for the
water molecule88 and corresponds to the region between all three nuclei
defined by an angular boundary curve subtended at the oxygen nucleus with
an angle less than the bond angle. A similar less extended binding region
for the ammonia molecule would be pyramidal in shape, enclosed within the
region of all four nuclei with its apex at the nitrogen nucleus.
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importance of the requirements imposed on the density distribution by the
the presence of the protons. The sﬁape of the binding region wij] in
fact determine the polarization-type hybridization induced by the protons
which was referred to by Sinanogluh3.

The question as to how much charge must be placed in the binding

region was discussed in Chapter | (see page 61 of this thesis). By

plotting the difference density function (see Equation (1.53))

2o (x;) = p(x;) (molecule) (x;) (atomic) , ' (2.17)

"o
where pA(il) is a standard atomic density distribution* which dées not
place sufficient charge in the binding region to bind the nuclei, one can
determine the acéeptabi]ity of a proposed molecular density distribution
p(;l). A distribution which gives a positive Ap(;l) in the binding region
is acceptable, while one which gives a negative Ap(;l) in the binding region
-is unacceptable since it places less charge density in the crucial‘binding
region than does the standard atomic distribution which is known to be
insufficient in this regard.

A contour plot of Ap(x;) for the tetrahedrally based NH3 density
“distribution is shown in Figure 2.5. There is less charge density between
eQery pair of nuclei than in that obtained from the simple overlap of the
atomic densities. Thus, there will be larger forces of repulsion acting
on all the nuclei. In particular, the large accumulation of charge density
above the nitrogen and its depletion below will result in large forces

tending to increase the bond angle. Thus not only does the form of App(;l),

*
The standard atomic density distribution is the one obtained by placing
~ the constituent atoms at the same internuclear separations present in
the molecule, each with its original atomic density.



Figure 2.5. A contour plot of the difference density
Ap(zl) (molecular density - atomic density) for tetra-
hedral NH3; with sp3 hybridization. The dotted line
divides the bind%ng region (below the line) from the

antibinding region.
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the density shift required by Pauli repulsions, predict an increase in
bond angle for a tetrahedral distribution, but the form of the djstri-
“bution itself predicts even larger forces of repulsion on the nuclei
than the atomic density pA(zl).

A contour plot of Ap(?l) for a tetrahedral density distribution
for the water molecule has been given previous]y88 and illustrates the
same general features as those noted for the ammonia molecule. The value
of Ap(;l) is negative in the binding region and in regions between all
three nuclei, and is large and positive in the antibinding region above
the oxygen nucleus. The large decrease in the electron density in the
binding region found for the tetrahedral distributions is because of the
Sp3 hybridization assumed for the lone pair electrons. When an sp3 hybrid
orbital is squared, there is a contribution to the electron density of
(V/3/2) sp per electron. This term is positive above the nodal plane of
the p orbital (where it|leads to an increase in the electron density) and
negative below it (where it leads to a decrease in the electron dens?ty).
In Ne the four cross terms for ea;h orbital are all equally weighted and
a spherical density distribution is obtained. In ammonia, the lone pair
orbital contributes a term /§-5P2, which increases the density in the
antibinding region above the nitrogen nucleus at the expense of the density
in the binding region. However, the density in a bonding orbital is shared
between the nitrogen (a fraction equal to A2 = 0.5) and a hydrogen (a
fraction equal to p?). Thus, the bonding orbitals in ammonia contribute
3%2/§-SP5 rather than the 3/3 sPi necessary to jusf balance the charge
migration due to the lone pair. It is clear that the hybridization of the

lone pair must be reduced and must approach pure s character in order to
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concentrate charge density in the binding region of the water and ammonia
molecules. At the same time, the demands of the Pauli principle require
the bondihg orbitals to acqqire more p character from the nitrogen or the
onygen as the lone pair becomes more s-like.. Figure 2.6 is a contour
' piot of Ap(x;) for the ammonia molecule in which the molecular one-electron
density possesses a lone pair in a pure 2s orbital and the bonding orbitals
are close to pure 2p in character from the nitrogen. The bonding orbitals
contain a small amount of 2s character but it is of negative sign. This
distribution does accumulate charge density in the binding region and does
balance all the forces exerted on the nuc]eisn, In addition, the values
calculated for fhe other physical properties which depend upon the one-
electron density are in excellent agreement with experiment. Density

35,36

distributions for the water molecule which do concentrate density in
the binding region and which do balance the forces on all the nuclei are
similar in character to'that found for the ammonia molecule. The oxygen
contributions to the bond érbitals are almost pure 2p character and the
lone‘pair orbitals are sp hybrids. (The lone pair may also be viewed as
one orbital of pure 2s character énd another of pure 2p, perpendicular to
the molecular plane.) Contour plots of Ap(;l) for these type of distribu-
tions for the water molecule appear in the literature36’88.

One can envisage a whole spectrum of possible hybridization for
the nitrogen and oxygen in the ammonia and water molecule, extending from
the one extreme of sp3 hybrids to.the other in which the lone pair is pure
2s (and in water, a second of pure 2p, perpendicular to the molecular plane)

and the bonds pure 2p. The analysis of the resulting charge distributions

in terms of the amount of charge shifted to the binding region has shown



Figure 2.6. A contour plot of the difference density
Ap(?l) for NH3 with the experimental bond angle of 107.3°
and for a density distribution which balances all the

forces on the nuclei and has the correct dipole momentgh.
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that only the latter of the extremes of hybridization is satisfactory
in this respect. Thus, a theory which assumes that the charge distribu-
tion in these molecules arises from a perturbed neon-like distribution
will be unsatisfactory as the unperturbed densitybis chosen from the
wrong end of the hybridization spectrum. Rather, the charge distribution
should be considered as arising from a perturbation of the original
ground state electronic densities for the nitrogen and oxygen atoms.
This is, of course, more realistic on energetic grounds as well. In both
the water and ammonia molecules an orbital angle less than the bond angle
is necessary to concentrate density in the binding region and along the
bondé in three-dimensional space. In a sense one must have ‘''bent orbitals"
in these molecules in order to obtain chemical bonds in terms of the
density distribution in real space.

In the preceeding discussion.of the wa%er and ammonia molecules
it has been shown that charge density must be concentrated in the binding
region tetween all nuclei in order to attain a state of electrostatic
equilibrium. The appropriate one-electron charge distribution for either
of these two molecules can not be obtained by considering a tetréhedral
geometry and sp3 hybridization of the central atom. In contrast, the
methane molecule, which by necessity has tetrahedral symmetry and close
to sp3 hybridization fo the bonding orbitals, has its one-electron density
primarily concentrated along the C-H bond axies (see Figure 1.2). It is
this charge build-up, whicﬁ does in fact occur in the all-important binding
region, that is responsible for the attainment of a state of electrostatic
equilibrium and for the binding between the hydrogens and the central

carbon nuclei in methane. The Ap(X;) contour map for methane (Figure 1.2)
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clearly indicates the necessity of charge accumulation in the binding
region to balance the nuclear forces of repulsion and thus, produce a

stable molecular one-electron charge distribution.

. 2.5 Concluding Remarks

The acceptable one-electron density distributions for the H,0

and NH3 molecules (with the 2s lone pairs) are interesting in that they
concentrate density above and below the heavy nucleus to almost identical
extents as do the distributions with sp3 lone pairs. However, in the
distributions with the 2s lone pair this increase is not because of the
lone pair. The lone pair density, in fact, cancels out in the determina-
tion of Ap(;l) as the 2s orbital is unchanged from the atomic distribution.
Instead, the increase in Ap(zl) above fhe nitrogen or oxygen nucleus arises
‘from the density contéined in the bonding orbitals. A 2p orbital concent-
rates density 06 both sides of the nucleus it is centered on. Thus bonds
fbrmed from 2p orbitalsAwilI necessarily place density above'and below the
nitrogen nucleus. In additioﬁ, the negative 2s character found in the
béndihg orbitals also contributes to this build-up of charge above the
heaVy nucleus. However, the fact that there is an increase in the electron
density above the nitrogen and oxygen nuclei over that found in the atomic
cases indicates that the ammonia and water molecules do possess directed
lone pairs. Perhaps an excellent definition of a lone or unshared pair
would be the concentration of electron density in an antibinding region.
The fact that the positive Ap(;l) values in the antibinding regions arises
. from the density in the bonding orbitals is irrelevant. An infinite number
of choices as to the forms of the orbitals is possible and to express the

density (which is invariant to an unitary transformation of the molecular
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orbitals) in terms of equivalent orbitals as done here is but one of

many possibilities. Only the total density distribution is of significance
and the concentration of charge density in the antibinding region, where

by definition it plays no role in binding the nuclei together, must
correspond to the existance of a lone pair‘or at least unshared electrons.
The results of self-consistent field (SCF) calculations, when expressed

84,85

in terms of equivalent orbitals , exhibit the séme characteristics as
determined by the present consideratiohs of concentrating density in the
binding region. Thus one finds for these variationally determined functions
that the bonding orbitals are primarily of 2p character with negative 2s
contributions, that the orbital angle is less than the bond angle, and that
the lone pairs approéch the limiting 2s form. This has been pointed out by

99 100

Peters”” for the diatomic hydride functions of Ransil Ruedenberg and
EdmistonIOI have shown that when the molecular orbitals describing these
wavefunctions are transformed into a‘new set, one which minimizes the
overall interorbital cou]oﬁbic and exchange interactions, bonding orbitals
are obtained which now contain 2p and 2s character of the same sign and
the lone pair orbitals are directed behind the heavy nucleus. However,
the definition of a lone pair orbital is now changed, for the orbitals
labelled as lone pairs by Ruedenberg no longer consist of atomic orbitals
centered only on the heavy atom. Rather, they contain contributions from
the hydrogen orbitals as well, with negative coefficients. In fact,'
Ruedenberg ascribes the origin of nonbonded interactions to the antibonding
nature of these lone pair orbitals. A definition of a lone pair based on

the final density distribution avoids the ambiguities associated with an

orbital definition. There is but one density distribution but many possible
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orbital descriptions of it.

One can give an electrostatic interpretation as to why the ammonia
and water molecules are pyramidal and bent, respectively. |In a planar
émmonia molecule the unshared pair of electrons would necessarily be placed
in a 2p orbital perpendicular to the plane of the molecule. A P orbital
is very inefficient at screening a nucleus, since density is placed above
and below the bond axis or the molecular plane. By bending the bonds out
of the plane the lone pair takes on an increasing amount of s character.
The electrons in a 2s orbital are much more efficient at screening a nucleus
since the density is distributed spherically about it. |In addition, the 2s
orbital is easily polarized (by the admixture of 2p) to place density in
the binding region below the nitrogen nucleus in a pyramidal molecule.
Thus, the total density between the nuclei obtained from s-p hybrid bonds
and ap. lpne pair in the planar mo]gcule is l;ss than that obtained from
bonds composed of p orbita}s and a 2s lone pair for the pyramidal geometry.
In the case of the water molecule one‘lone pair remains in a Py orbital
(perpendicular to the molecular plang) whether the molecule is linear or

~—~bent. ~-The second lone pair, however, changes from a P orbital in the

linear case through a range of s-p hybridizations to the limiting form of

an s orbital when the bonding orbitals are pure p and the molecule fs bent.
Again one finds that to achieve maximum screening of the heavy nucleus and

to achieve the maxfmum electron density along the bonds, the bonding orbitals
must be-approximately pure>p orbitals and one lone pair must be placed in

an s.orbital. This corresponds to the bent geometry. The fp(X;) plots for
the tetrahedral density distributions again illustrate the importance of |

considering the total density distribution. The sp3 bonding orbitals in a
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tetrahedral density distribution for NH3 or H,0 do concentrate a maximum
amount of density along the bonds. However, the orthogonality restraints
of the Pauli exclﬁsion principle demand that the lone>pair must be strongly
s-p hybridized when the bonds are s-p hybrids. The result of the forced
hybridization of the lone pair is the removal of more density from the
binding region and from between the nuclei than was concentrated by the
sp3 bonding orbitals. The net éffect is a distribufion which places less
charge density between the nuclei than that obtained from the simple overlap
of the atomic densities. Thus, the presence or absence of lone pairs does
affect the geometry of a molecule, but not in the sense of exerting Pauli
repulsions. Rather, the geometry can be interpreted as being determined by
the molecule attaining a density distribution which provides a maximum
sﬁreening of the nuclei, and places a maximum amount of electron density
along the bonds and in the binding region.

It has been shown that the effects of the Pauli exclusion principle
on the one-electron density distribution of simple molecules is not what
is commonly pictured. However, one is still faced with the fact that the
electron pair repulsion theory is remarkably successful. In recent papers
Gillespie (see for example, Reference 102) has purposely avoided any
reference to the degree of hybridization. Instead, the distortions from
the most probable arrangement of a given number of initially equivalent
‘pairs of electrons is determined by the arguments based on the relat}ve
size of the orbitals. Thus orbitals which are lone pairs in the molecule
become more diffuse and less directional and occupy a larger volume of
space. In terms of the arguménts put forward in the present work this would

correspond to an increase in the s character of the lone pair orbitals.
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Similarly the bonding orbitals are stated to be contracted and polarized
by the presence of the ligands. This description coincides with the
_predicted increase in the p character of the bonding orbitals found in
the present work. However, the present appraoch arrives at these con-
clusions by a determination of which one-electron density distribution
places the maximum charge in the binding region, and not by arguments
based on orbitai "repulsions''. 1t will be interesting to determine
whether or not the parallelism between the two approaches noted above
will continue to hold the non-hydride polyatomic molecules as well.

The fact that charge must be accumulated in the binding region of
a stable molecular species is made clear by previous work3’l*’5’6 for
diatomic molecules using SCF wavefunctions. Consider, for example, the
case of the homonuclear diatomic molecules Li,, By, Cy, No, 0, and F2.3
The Ap(;l) contour maps for these stable molecules* clearly indicate a
charge accumulation in éhe binding region between the nuclei at the
expense of a decrease in charge in the antibinding regions. For most of
these molecules there is also a large build~up of charge in the antibinding
region behind each of thé nuclei which reveals the existence of lone pairs
or unshared electrons as defined inthe present work. As a note of caution,
one might further consider the Ap(X;) contour map for the unstable molecule
Be 3 (see Figure 3.11). For this molecule, the Ap(;l) map also shows an
increase in charge density in the internuclear or binding regfon. However,

this increase is very small when compared to the large accumulation of

charge in the antibinding regions behind the nucle{ which creates large

o
v

" The Ap(zl) contour diagram for N, is given in Figure 3.10 of this thesis.
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electrostatic forces that tend to separate the molecule. Thus, when one
is determining the stability or instability of a molecular charge distri-
_bution by considering the Ap(X;) contour diagrams and the accumulation of
charge in the binding region it may be necessary to calculate the forces
exerted on the nuclei. Whether one is considering a force analysis or
the Ap(;l) contour maps the main feature that is always necessary for the
production of a stable molecular species is the build-up of charge in the

crucial binding region.



P, THE KINETIC ENERGY OF MOLECULAR CHARGE DISTRIBUTIONS

AND MOLECULAR STABILITY

3.1 Introduction

The electrostatic approach as exemplified in the preceeding two
chapters permfts a classification and interpretation of chemical bind-
ing3’l*’5’6 based on the spacial characteristics of the molecular one-
e]ectroﬁ charge distribution and the forces which it exerts on the nuclei.
This approach provides an essentially static view of chemical binding.

The net reorganization of the one-electron charge density of the separated
atoms accompanying the formation of a molecule is obtained by subtracting
the superimposed densities of the component (undistorted) atoms separated
at R, from the molecular one-electron density, also evaluated at R = Re‘
The discussion of the stability of the molecular system relative to the
separated atoms which results from tHe charge reorganization depicted in
the density difference, Ap(?l),contour maps is couched in the language of

50

classical electrostatics via the Hellmann-Feynman theorem Thus in

3,k,5,6

certain diatomic molecules the charge distribution is found to be
characterfzed by the transfer of charge from the region of one nucleus to
the neighbourhood of the other and the bond is described as "ionic'". In
ionic binding3 the charge density which exerts the net binding force on
both nuclei is found to be localized in the region of a single nucleus.

3

In ""covalent' binding”, the formation of the molecule results in a charge
increase localized in the region between the nuclei and it is the force
exerted by this shared density increase which binds the nuclei.

Many systems, of course, fall between the ionic and covalent extremes

116
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which represent two limiting ménners in which the one~electron charge
density may be distributed to achieve electrostatic equilibrium. Given
the one-electron charge distribution, the binding in a molecule méy be
classified and the bindiﬁg mechanism under;tood in terms of classical
electrostatics. Of equal or perhaps greater interest, howe?er, is the
question as to how the one-electron charge density must be distributed
in order to obtain the necessary balance between the kinetic energy
increase and the potential energy decrease required for the formation

of a stable molecular species. In this chapter we wish to complement
the electrostatic approach with a dynamic one, one whi;h relates the
kinetic energy and potential energies of the system to the topographical
features of the one-electron charge distribution. The charge density in
a molecular system is not, for example, a functional of the potential as
it is predicted to be in Thomas-Fermi statistical theory. Thus, equi-
density surfaces of a molecular charge distribution are not equipotential

03

surfaces. In fact, Ba]ézsl has shown that a stable molecule can not
exist (stable with respect to separated atoms or ions) if the charge
density is ; simple functional of the potential alone. The departure of
the charge density from being a functional of the potential is a result
of the form and requirements of the kinetic energy operator in quantum

04

mechanics] Perhaps the most striking difference between the classical

“and quantum predfctions regarding the behaviour of a bound charged dfstri—
bution is th;t the former predicts a distribution of zero extent while the
lafer predicts one of infinite extent. There are two causes for the non-

collapse of a fermion system, the antisymmetry condition imposed by the

Pauli exclusion principle and the Heisenberg uncertainty principle. The
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effect of this latter principle is made manifest through the kinetic

energy of the charge distribution. Through a study of the kinetic energy
of the charge distribution, ''the kinetic»energy density', an explanation

can be obtained for the manner in which the one-electron charge density is

“distributed in a molecule. In this chapter we will restrict the discussion

to homonuclear diatomic molecules.

3.2 Kinetic Energy Density

The first requirement is to obtain an expression for the kinetic
energy as a function of the one-electron charge distribution. This can

be done by first expanding the one-electron charge distribution p(x;) in

105

terms of its natural orbitals , which are taken to be real,

o (31) = 20, (a)e, (y) = 2o, (x1) (3.1)
1 I

The gradient and the Laplacian of p(X;) are respectively

T k) = 220, G)Ve, () (3.2)
, .

V2o (%)) = 2x; (20, ()92, () + 20g, () <V, (o)1 (3.3)
: |

Writing the kinetic energy operator in the form usual for the Schrodinger
representation and allowing it to operate on the first-order density
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matrix
! 1 > 2 '
Topo(?<1|3><1 =“'2*§>\i¢i(><1)‘72¢i(x ) (3.4)

one obtains from Equation (3.3)

| .
Topp(;1!;i);i=;l = - E'Vzp(;1) + g‘? . (3.5)
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Let

TP (§1|§i);i=§ = K(x;) - (3.6)

Also let L(X;) denote the contribution to K(x;) from the Laplacian of
D(;l) |

LG) = - 1 7% () | (3.7a)
and let G(x;) denote the gradient contribution

> > > >
Vpi (x1) 'Vpi (Xl)

6(Xy) = 1 . = > oo ()P, () (3.7b)
i pi(xl) i
Then
K(x1) = L(xq) + 6(x;) . (3.8)

Equation (3.8), or Equation (3.5), then represents one possible relationship
between the variation in the kinetic energy of the system and the properties
of the one-electron charge density. Specially)K(;l) at each point in space

is determined by the Laplacian of the total density distribution and by the
‘values and gradients of its component natural orbital densities. The value

of K(x;)dt; is the contribution to the total kinetic energy from the chafge

deﬁsity in the volume dty, and the integration of K(;l)drl over all space

yields the total average kinetic energy of the system.
IK(;l)dTl = T— . (39)

The probability density in coordinate space describes the one-

electron charge distribution in real space, and the associated distribution
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in momentum space, as investigated by Coulson and more recently by

108

Henneker and Cade , Yields the momentum density of the system. The

—)
function K(x;), however, contains information pertaining to both the distri-
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bution of charge and the magnitude of momentum throughout coordinate
space.

Equation (3.8) shows an immediate consequence of Heisenberg's
,uncertainty relationship. The Laplacian of a function is negative in
those regions where the function is a maximum. Thus, a local concen-
tration of charge density, such as occurs in regions of low botential,
will result in a negative curvature for p(;l), in a positive value for
L(x;) and from Equation (3.8), in a positive contribution to the kinetic
energy. A compression of the charge density leads to a large local
contribution to the kinetic energy. Thus, any lowering in energy obtained
by concentrating.charge density in a region of low potential is gained
only at the expense of a corresponding increase in the kinetic energy of
the system for the same region of space. This observation regarding the
contribution to the kinetic energy from a giveﬁ region of space is
independent of the virial theorem which states that for a coulomb potential,
the average kinetic energy must be equal to minus one-half the average
potential energy when no external forces are acting on the system.

When Equation (3.5) is written for a single electron
[o (x;) = pi(il)] and divided by p(x;), the resulting R.H.S. of the equation

103 ""quantum potential'. The quantum potential

is identical with Bohm's
~plays a central role in Bohm's attempt to replace the probabilistic inter-
pretation of quantum mechanics by a precise and objective description of a
physical process. Bohm ascribes the stability of a stationary state in a
quantum system to the balancing of the classical force exerted on the

particle, —VVOP, by the quantum mechanical force which is given by the

gradient of the ''quantum potential''. In the hydrogen atom V[G(;l)/p(;l)] = 0.
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Thus, the force balaﬁcing the electrostatic force of attraction and
preventing the collapse of the atom is given by the gradient of the
Laplacian contribution v[L(?l)/p(zl)], the same term through which
the Heisenberg's uncertainty princip]e is made manifest. ng$rgensen”0
has considered an equation similar to Equétion (3.5) (but not expressed
in terms of the charge density) for the one-electron case and has
attempted to relate the terms corresponding to G(?l) and L(?l) to
separate contributions to thg energy in Dirac's bubble~surface model
of an electron.

Making use of the fact that the functions pi(;l) and ¢i(§1)

are analytic and must vanish at infinity, Green's theorem shows that

CO| =

> > > >
Vpi(X1)'VDi(X1) 1 > > =

) [ — dry = - o I, ( q>i(x1)\7?—453(xl)dT1 =T . (3.10)

i pi(xl) i

Thus it follows from Equation (3.5) or (3.8) that
Jvzp(;l)dTl = fL(;l)dTl =0 . (3.11)

The total kinetic energy of the system is given by the contributions
-} . 3 . - + . .
from G(x;) alone. The positive contributions of L(x;) in regions where
-
p(x1) is a maximum, exactly balancing the negative contributions of
v + [3 3 + - 3 - 3
_L(x;) obtained from regions where p(x;) is a minimum. While the
integrated contribution of L(zl) to the total kinetic energy is zero,
it is the presence of this term in the expression for K(x;) which imposes
“quantum mechanical restrictions on the form of the density distribution.

. o
The term G(x;) exhibits a behaviour more characteristic of a classical
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kinetic energy density. Its value is everywhere positive and finite
and the sum of its local contributions yields the total kinetic

* . > . . >
energy of the system. It is the term L(x;) which imparts to K(x;)

its classically impossible negative values.

Consider the following Expression (3.13) obtained from

VR + U e = B R (3.12)

for a one electron system.

L(x1) = Ep(x)) - 6(x;) - vopp(?q) . (3.13)

In a classical system, the R.H.S. of Equation (3.13) should equal zero
not only when integrated over all space, but for every point in space
--as well, since it is simply the difference between the total energy
density Ep(x;) and the sum of the potential and kinetic energy
densities at every point in space. In a quantum mechanical system,
however, this difference is in generai not zero and is instead equal
to L(;l) which is proportional to the curvature of the one-electron
density distribution. The fact that L(x;) is in general different
from zero imposes restrictions on the form of p(il). For example, the
'singu]arities at the positions of the nuclei which occur in Vop when

it represents a coulomb potential, require that the curvature of the

* ’ ‘ :
The function G(zl), because of the cusp conditions, may exhibit a
finite discontinuity at the positions of the nuclei in the case
of a molecular charge distribution.
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density at the positions of these singularities be infinitely negative.
This requirement on p(zi) together with the further requirement that

it be finite demands that p(§1) behave as e % at the singular points,
i.e., that w(il) and p<§1) have cusps at the positions of the nuclei.
It is always true that Ep(;l) < 0 and G(;l) > 0. Thus it follows from
Equation (3.13) that the curvature of p(X;) will be negative and L(X;)
positive in ‘those regions where the potential energy density exceeds

in absolute value the difference between the energy density Ep(X;) and
the kinetic contribution G(X;). L(x;) will be negative in regions where
the absolute value of the potential energy density is less than'this
difference. Thus, L(X;) is a measure of the departure of the behaviour

of the system from that of a classical model. The value of L(;l) where

the curvature is negative is a measure of the extent to which the charge

density may be concentrated in regions of low potential beyond that

anticipated on classical grounds. An equation similar in form to

Equation (3.13) holds for the individual orbitals in the Hartree-Fock
approximation to the one-electron density; the curvature of a Hartree-
~Fock one-electron density distribution being related to the orbital

energy densities by

L) = 3 723 = 16,0, (1) - (-2 /r Jp(Rp) - 6(%)
| a

T (%%, | %1%p)
; [ d,. (3.14)

Fiz

The integral involving the second-order density matrix in Equation (3.14)
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represents the total electronic repulsion experienced by the one-
electron. charge density at the position §1 from all possible pairs
of electrons, the interaction being averaged over the whole space

of the second electron. Equation (3.14) again integrates to zero
L0=E-T-V (3.15)

as the double counting of the electronic repulsions in the sum of
the orbital energies is accounted for by the doubling of the same
terms in the final integral over the second-order density matrix.
According to Equations (3.13) and (3.14), the regions of space
in which L(zl) > 0, denote regions in which the potential energy density
attains its maximum stability. While the integration of L(;l) over all
space must yield zero, thus signifying the existence of regions in which
L(x1) < 0 and in which the potential energy density is relatively less
stable, it will be demonstrated that the relagive positioning, in the
nuclear potential field, of the regions in which L(;l) 2 0 is critical
in determining the stability of the system. Thus in certain cases,
whether the overall curvature at the saddle point of a charge distribution
(the mid point of the bond in a homonuclear diatomic species) is greater
than or less than zero determines whether the resulting molecule is
unstable or stable respectively with respect to the separated atoms.
The presence of a kinetic energy, since it is always positive
in value, is to destabilize a system. The virial fheorem as applied
to a system at equilibrium with coulomb interactions demands that a
potential decrease may be obtained only at the expense of an increase

in the kinetic energy. Thus, chemical binding has been ascribed to a
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lowering of the potential energy of the system in spite of an increase\
in the kinetic energy. éuedenberg]]] has presented arguments to prove
his contention that in spite of the validity of the virial theorem,

the formation of a chemical bond should Ee interpreted as the result

of a lowering of the kinetic energy. Ruedenberg considers it essential
that the kinetic and potential energies of the molecule be compared not
with the same quantities for the separated atoms, but with the kinetic
and potential energies of atoms in special ""sromotion states''. The
promotion state corresponds to one in which the valence electrons
contract towards the nucleus. Such a 'contractive promotion'' has two
obvious effects on the energy of the system; the potential energy is
decreased and the kinetic energy increased above their final equilibrium
values. The formation of the molecule from atoms in promoted states
thus results in an increase in potential enerdy and a decrease in the
kinetic energy. The '"promotion staté” is, however, not a real one

and difficult to define preéisely. It seems an arbitrary decision to
insist that chemical bonding must be discussed with reference to such
an unreal and imprecisely defined state of the system. If one wishes

to retain as a reference state the states of the separated atoms from
which the particular molecular state is formed or into which it
dissociates, then indeed the virial theorem applies, and the kinetic
ehergy must increase if a stable molecule is formed. However, the

real question to be answered is how the system can realize a distri-
bution of charge density which possesses a kinetic energy which does

not exceed (1/2)V in absolute value. The virial theorem in its most
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general form applies whether the system is at equilibrium or notllz,

2T = - V - (RdE/dR) . (3.16)

Any value of 2T which is less than or equal to |V1 implies either the
existence of an attractive force (dE/dR > 0) drawing the nuclei

together or a situation of electrostatic equilibrium (dE/dR = 0).

Either situation implies the existence of a stable molecular state.

Only when the average value of the kinetic energy exceeds (1/2)]|V]

in value over the complete range of internuclear distances'(dis}egarding
the Van der Waal's minimum) is the existence of a repulsive force

and hence an unstable molecular state indicated. Thus, one must
determine how the charge density which is accumulated in the inter-
nuclear region of a stable molecule is distributed so as to attain

~a decrease in the potential energy with the least possible increase

in its kinetic energy, one which does not exceed (1/2)[V1 over some
range of R values. In addition one must inquire as to why the
removal of charge density from the internuclear region, such as
occurs in Hes, results in a molecular cne-electfon charge distribution
which possesses a kinetic energy in excess of (1/2)|V].

Since the integration of the gradient contribution G(;l) yields
T, arknow]edge of this distribution enables one to relate the final
value of tEe kinetic energy to the spacial properties of the one-
electron charge distritution. The Laplacian distribution in turn,
whether it is greater or less than zero indicates éhe regions of space

in which the charge density attains its maximum stability. The
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functions G(x;) and L(x;) taken together thus provides a detailed
explanation of the stability or instability of the system in terms
of the spatial distribution of the one-e]ectron charge density. In
this chapter we investigate the stability or instability (with
respect to the separated atoms) of a molecular one-electron charge
distribution as evidenced by the properties of K(;l) and its
components G(X;) and L(x;).

Previous studies5 have shown that the deformations which the
atomic densities undergo on Bond formation are characterized by either
dipolar or quadrupolar polarizations. The density difference distri-
bution, Ap(;i), for a molecule formed from atoms which employ principally
s orbitals is found to differ significantly from that for a molecule
formed from atoms which employ orbitals with non-zero angular momentum
(primarily p orbitals). The principal polarizétion of the charge density
of a hydrogen, helium, lithium or sodium atom density on bond formation,
whether the bond is ionic,‘polar or covalent, is dipolar in character.
For example, the Ap(;l) maps for H, and Li, indicate that the charge
increase is confined almost entirely to the nuclei and the binding
region between the nuclei, while the charge decrease occurs in the anti-
binding regions behind the nuclei. The redistribution of charge found
in the Ap(;l) distributions for the Be -~ F or Mg -+ Cg atoms is character-
ized by an increase 6f the charge density along the bond axis in both the
binding and antibinding regions of the nucleus and its removal from a
region perpendicular to the bond axis at the position of the nucleus.
Such a quadrupolar polarization results in a gross accumulation of charge

density in the antibinding as well as in the binding region.
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We will first consider the consequences which the si%p]er, dipolar
type charge reorganization has on tﬁe kinetic energy of a system, as
exemplified by Hy and He,. Then the effect which the more complex, quad-
7rupolar type charge reorganization has oﬁ the kinetic energy of a system,

~such as presented by N, and Be,, will be considered.

3.3 The Kinetic Energy Distributions of the H2 and Hezx Molecules

Contour maps of the total one-electron charge density p(zl), the
distribution K(x;) and its contributions G(x;) and L(x;) for the hydrogen
molecule at the equilibrium internuclear separation of 1.4 a.u. are shown
in Figure 3.l.h The maps were determined using the Das and Wahl”3
extended wavefunction for Hy,, a function which yields over 90% of the
correlation energy.

3 + + . - 3 - .

A comparison of the p(xj) and K(x;) distributions indicates that
K(x;) is greatest in those regions where the charge density is most con-
centrated; at the nuclei and in the internuclear region. This is the
expected consequence of Equation (3.8) which dictates that K(x;) be large
in regions where the concentration of charge leads to large gradients in

+ - » - - 3 —-)
the pi(xl) and to negative curvatures for p(x;). The distributions G(x;)
and L(zl) will indicate the origin of the kinetic energy contributions

depicted in the K(;l) distributions; whether they arise from a direct

' >
increase in the classical-like contributions to the kinetic energy G(x;)

" The distributions K(x;) = - %z Ai¢i(§1)v2¢i(§1) and
i
6(x;) = %—Z li$¢i(;1)-g¢i(;1) were evaluated using the expressions given

i
for v2¢, (x;) and Ve, (x;) in Appendix 9. L(X;) was determined by sub-
(g ; (X1 1

tracting G(x;) from K(x;).



Figure 3.1. Contour maps and profiles of the total one-
electron charge distribution p(;l), the kinetic energy

3 . - + . + +
distribution K(x;) and its components G(x;) and L(x;) for
Ho at its equilibrium separation of 1.4 a.u. These and
the subsequent distributions are all given in atomic units
(a.u.). The scale on the internuclear axis of the profile
diagrams is in divisions of 0.5 a.u. Note that the ordinate

scales differ between the profile diagrams.
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or whether they are the result of an extreme non—c!assicél reduction in
the potential energy of the system és denoted by regions in which L(;l) > 0.
A molecular one-electron charge distribution possesses a saddle
pofnt in the internuclear region. The s{gn of the Laplacian contribution
' L(;l)vin the region of this saddle point is determined by the relative
magnitudes of the two competing curvatures. The curvature of p(il) in a
direction parallel to the bond axis is positive and hence makes negative
contributions to L(x;) and K(X;) whereas the curvature perpendicular to
the bond axis is negative and gives positive contributions to L(;l) and
K(zl). In a stable molecule such as hydrogen, the accumulation of charge
density in the region between the nuclei decreases the positive curvature
of o(X1) along the bond axis. This minimizes the negative contributions
to L(x;) and hence to K(X;). A concomitant peéking of the accumulated
charge density along the bond axis leads to a large negative curvature in
p(;l) perpendicular to the axis. Thfs negative curvature is dominant in
H, and overall L(x;) > 0 ih‘the internuclear or binding region. It is the
contraction of the charge density in directions perpendicular to the bond
axis which is responsible for thevpositive sign of L(x;) and K(X;) in the
binding region and therefore, for the excess stability of the potential
energy density in this critical region of space. The values of K(x;) and
L(;l) right at the bond mid-point are 0.323 a.u. and 0.306 a.u. respectively.
Thus,‘the increase in K(?l) at the center of the binding region is primarily
the result of an extreme stability in the potential energy rather than from
a large contribution to the kinetic energy from G(?l).
The gradient contribution G(?l) is a less rapidly vérying function

-5
than K(xj). In fact, aside from the internuclear region, the contours of



131

G(;l) are similar to those for p(;l) itself. G(;l), like p(;l), increases
regularly from the outer regions to maximum values at the nuclei and to
;ridge—like increases on either side of the internuclear axis in the binding
region. Unlike p(x;) however, G(;l) exhibits a steep minimum in the region
" of the bond mid-point. The loé configuration accounts for 98% of the
charge density in the H, molecule, and thus the properties of G(x;) are
determined almost entirely by the gradient of the density resulting from
this configuration. Since the gradients of the log orbital distribution
(or any Gg distribution) both parallel and perpendicular to the internuclear
axies at the bond mid-point are zero, the central minimum in the G(x;)
contour map is understandable. The value of G(;l) at the bond mid-point
(0.0165 a.u.) is the result of the small contribution from the lou orbital.
It is clear from the second expression for G(zl) given in Equation (3.7b)
that an orbital of '"u' symmetry will contribute to G(X;) at the bond mid-
point as a result of the presence of a node which introduces a non-zero
slope for ¢i in the direction of the bond axis at the nodal plane. Thus,
the bonding (''g" symmetry) or the antibonding (”u”‘symmetry) character of
an orbital (or, in general, the presence or absence of a node in oi(zl)
between the nuclei) has a very pronounced effect on the value of G(X) in
the binding region and hence in the contributions to the total kinetic
energy from the density in the binding region. The density distribution

of a bonding orbital results in a smaller value for G(;l) in the binding
region and hence in smaller contributions to T than does the density of

an antibinding orbital. From the shape of the contours of p(x;) it is
clear that because of the accumulation of charge between the nuclei, the

gradient of p(X;) at a point in the internuclear region and in a direction
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parallel to the bond axis is less than that perpendicular to the bond axis.
This is a reflection of the dominance of the perpendicular curvature over
the parallel one in determining the sign of L(Il) in the same regfon of
space. The decrease in the parallel gradfent of p(;l) in the binding region
" is further reflected in the nature of the discontinuity illustrated in the
profile of the G(x;) distribution. The discontinuous decrease in G(X;) on
the binding side of each nucleus dramatizes the great reduction in the
magnitude of the paralleI gra;ients in the internuclear region. These
characteristics of the charge build-up parallel and perpendicular to the
internuclear axis have opposing effects in determining the resultant value
of G(?l) at each point in this region. The low value of the gradient in
directions parallel to the bond axis leads to small contributions to G(;l)
and hence to T while the contraction of p(x;) perpendicular to the bond
axis gives large contributions. The one-electron charge density in the
binding region of a stable mofecule is therefore, distributed in such a
way as to keep the accompanying increase in the kinetic energy to a minimun.
The otherwise large increase in G(X;) resulting from the contraction of
p(;l) perpendicular to the bond, fhe effect responsible for the reduction
in the potential energy, is partially offset by the smaller contributions
to G(X;) and hence to T as a result of the softening of p(;l) along the
bond direction.

The differing behaviour of the gradients of p(x;) parallel and
perpendicular to the bond axis in the internuclear region are so very pro-
nounced in H, that it is reflected in the average values of the parallel
and perpendicular contribution to the total kinetic energy of the system.

The form of the kinetic energy operator
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1 (92 92 32
= -1 + + (3.17)
op 2 axz 5 2 g 2’
Cy z
allows one to evaluate separately the parallel
— 1 32
T, = - 7 <\Ul ZH)> ) (3-‘8)
Bz .
~and perpendicular
— 1 52 2
T, = -2 <lim+ Sy (3.19)
2 ] )
X Y

contributions to the total, average kinetic energy. The integra]s required
to evaluate Th and T;, where ‘the z coordinate is along the bond axis, are
given in Appendix 9. In the separated hydrogen atoms the spherical nature
of the charge distribution demands that T, = (1/2)T, or that (T,-T,)/T = 1/3.
The change in the value of (T,-T,)/T from its atomic value of 1/3 provides

a measure of the extent to wﬁich the formation of the molecule effects a
differentiation in the distribution of 9(21) parallel and perpendicular to
the bond axis. In the stable hydrogen molecule cne finds (see Table 3.1)
that T,, has decreased in value from that for two hydrogen atoms, while Tl
has increased. The value of (T,-T.)/T is increased in value from 1/3 to
0.4740. Thus, the formation of the molecule results in a considerable
differentiation between the distribution of the charge density parallel

and perpendicular to the bond axis. The reduction in the gradient of p(zl)
and its contributions to G(zl) fn directions parallel to the bond axis leads
to a considerable decrease in T,,. Tl on the other hand is greatly increased
over the original atomic contributions as a result of the contraction of

the charge density in directions perpendicular to the bond axis.* The

samé conclusionsregarding the relative behaviour of T,, and T, are to be

107

found in the results obtained by Coulson in his study of the momentum

* The average values of the parallel and perpendicular contributions to T
have previously been calculated from a less accurate wavefunction for H,
by Hoare and Linett!T#. A discussion of the binding in the H, molecule
was given with reference to the properties of '"a particle in a box'.
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TABLE 3.1

Values of T,, and Tl for H, as a Function of r®

R T T T, T, - T,)/T
1.0 1.4332 0.4032 1.0299 0.4373
1.2 1.2775 0.3465 0.9310 ~0.4574
1.3 1.2135 0.3238 0.8897 0.4663
1.4 1.1569 0.3043 0.8527 : 0.4740
1.6 1.0617 0.2728 0.7888 0.4860
2.0 0.9293 0.2343 0.6949 0.4956
4.0 0.9289 0.2885  0.6404 0.3789
8.0 0.9868 0.3288 0.6580 0.3336

o 1.0000 0.3333% 0.6666" 0.3333"

@ All values are given in atomic units (a.u.).
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~distribution in the hydrogen molecule. He observed that the mean component
of the velocity in the direction of the bond is decreased while the mean
component of velocity perpendicular to the bond is increased.

In summary the charge density acéumu]ated in the internuclear
. region, an accumulation which is necessary for the attainment of electro-
static equilibrium and the formation of a stable chemical bond, is distri-
buted in such a way as to keep the increase in the kinetic energy to a
minimum. The kinetic energy increase necessary for the decrease in the
potential energy is restricted mainly to the perpendicular contributions of
G(;l). The relaxation of the curvature and gradient of p(il) in the parallel
directions results in greatly reduced contributions to G(?l) and hence to T
 wHile at the same time leading to an increase in the stability of the system

(a more negative potential energy density) by decrea;}ng the negative
~contributions to L(?l) ahd K(;l). Thus, both the relaxation of p(?l)
parallel to the bond axis and the contraction of p(;l) perpendicular to
this axis lead to a decrgaéé in potential energy of the system but only
the contractive effect results in large contributions to the kinetic energy.
These properties of a one-electron charge distribution characteristic of a
stable molecule will now be contrasted with those for the unstable He
molecule, for which T > %10] for all values-of R.

Contour maps of the total one-electron charge density p(;l), the
distribution K(?l) and its components L(zl) and G(;l) for He, at R=2.0 a.u.
are given in Figure 3.2.* The charge density in He, is very peaked at the
nuclei, but the value at the bond mid-point (0.164 a.u.) is considerably

less than for H, (0.268 a.u.). A comparison of the difference density,

b0 (x;), contour maps for H, and He, (see Figures 3.3 and 3.4 respectively)

7* The distributions for He, were calculated from the Hartree-Fock wave-
functions by Kestner!15,



Figure 3.2. Contour maps and profiles of p(;l), K(;l), G(;l)

o ' . .
<and L(x;) for He, at an internuclear separation of 2.0 a.u.
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indicates that aside from an increase,in p(X;) in the regions of the
nuclei. in both cases, the one;electron charge distributions exhibit
opposite behaviour with respect to where the charge is removed and
where it is accumulated. The large deficit in the binding region of
the Ao (X;) map for He, is a direct result of the anti-symmetry require-
ment of the Pauli exclusion principle which is discussed in Chapter I1I.
The electrostatic analysis shows that a charge redistribution such as
that pictured iﬁ the 2p(X;) map for He, is inherently incapable of

8,116

balancing the forces of nuclear repulsion The resulting
instability of the system is now to be examined in terms of the energy
distribution K(x;) and its components.

The kinetic energy distribution K(zl) is large and positive in
the regions of the nucléi, as anticipated on the basis of the large
charge accumulation in these regions. |Its va]he in the region of the bond
mid-point is however, very‘smal], differing from that for hydrogen by
roughly a factor of ten. Thus, the potential energy density cannot attain
large negative values in this critical region of the potential energy
surface.

The unfavourable distribution of the potential energy density may
be traced directly to the topography of the charge distribution via the
distribution function L(?l). In He, the function L(;l) is positive only
in tHe immediate vicinity of the nuclei and thus only in these regions
does the potential energy éttain the extreme stabilities allowed in a
quantum mechanical system. Because of the removal of charge density from

the internuclear region, the curvature of p(;l) in directions parallel to

the bond axis is larger than the magnitude of the negative curvature per-
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pendicular to the axis. As a result, L(;l) attains its maximum negative
‘values in the binding region and the stability of thé potential energy
density in the same region is reduced to a minimum. Thus, the Laplacian
distributions for H, and He, exhibit opposite behaviour in their respective
binding regions. The opposing effects which the accumulation or depletion
of charge density in the binding region have on the potential energy of a
system may therefore, be directly related to the sign of the dominant
curvature of the one-electron charge distribution in this same region of
space.

The differing topography of the charge distributions of H, and He,
is further reflected in their kinetic energy contributions as determined
by G(;l), particularly in the binding region. The contoursof G(zl) for
He, are similar in shape to those for p(il), indicating that the contours
of equidensity represent lineé of almost constant value for the classical-
like contribution to the kinetic energy. In spite of a greatly reduced
value for p(;l) in the internuclear region of He, compared to Hy, the
value of G(?l) in this region of space is much greater than that for H,,
the values at the bond mid-point being 0.3344 and 0.0165 a.u. respectively.
' Because of the presence of the S, density component in He,, G(?l) does not
exhibit a minimum at the bond mid-point as it does in the case of H,.
Instead, both the parallel and perpendicular contributions to G(x;) and
hence to T are large in He, as a consequence of the depletion of chafge
density in the binding region. The large value of the parallel gradient
in the binding region of Hey is reflected in fhe fact that at the discon-
tinuity in G(x;), which is too small to be shown in the profile of 6 (xy)

in Figure 3.2, the magnitude of the parallel gradient on the bonded side
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of the nucleus exceeds that on the nonbonded side. Just the opposite
behaviour is found in the profile of G(x;) for H,.
From this contrast in the behaviour of the L(x;) and G(x;)

distributions for H, and He, it is concluded that a necessary (But not
necessarily sufficient) criterion for molecular stability is the existence
of a net negative curvature forp(x;) in the binding region. A negative
curvature for p(x;) implies that L(X;) is maximized in both parallel and
perpendicular directions thus resulting in the maximum stability in the
potential energy density. A negative curvature for o(x;) insures at the
same time that the increased stability is gained with the minimum increase
in the kinetic energy, for while the perpendicular contributions to G(x;)
and T are increased, the parallel contributions are decreased wfth respect
to the separated atoms. On the other hand, an overall positive curvature
for p(il) in the binding region implies not only the absence of an excess
stability in the potent{al energy density in the same region, but also a
large total kinetic energy increase, since G(;l) is increased both parallel
and perpendicular to the bond axis. Table 3.2 indicates that this property
of the G(;l) distribution is again reflected in the average quantities T,
and T,. In He, the values of T, and T, are both increased above their
atomic values, with T, increasing more than T,. Thus, the ratio (T,-T,)/T
rathef than increasing from its limiting value of 1/3 as in H,, decreases
to 0.290. The decrease in this ratio for He, indicates a greater overall

tightening of the one-electron charge density parallel to the bond axis

rather than perpendicular to it as in the case of Hy.

3.4 A Comparison of the Molecular and Atomic Kinetic Energy Distributions

for Hyo and Hep




TABLE 3.2

Values of T,, and Tl for He, as a Function of R®

R T
1.0  6.6190
2.0 6.0803
3.0 .7985

5

4.o 5.7381
>
5

4.7 .7265
5.2 7237
5.5 5.7239
6.0 5.7249
® 5.7233

a . . . .
All values are given in atomic units (a.u.).
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The discussion in Section 3.3 related the stability of a molecular
system to the topographical features of p(il) itself through a comparison
of the spatial distribution of the one-electron charge densities in the
hydrogen and helium molecules. This section considers the question of
molecular stability from the point of view of the changes which the forma-
tion of a molecule brings about in the kinetic and potential energies of
the atoms. The difference distributions for p(;l), K(;l), G(;l) and L(;l)
are shown in Figure 3.3 and 3.4 for H, and He, respectively. They are
determined from the density difference distribution (defined here for a

diatomic molecule AB)
do(x1) = p(x1) - o (1) + 0g(x1)] ~ (3.20)

where p(X;) is the molecular one-electron charge distribution and pA(il)
and pB(;l) are the undistorted atomic densities separated by a distance R,.
The compression of the charge density accompanying the formation of the H,
molecule, which is evident in the Ap(;l) map, has an obvious parallel in

the increase in K(x;) evident in the AK(X1) map. The integral of AK(x;)

over all space is a positive quantity, equal to the difference between the
average kinetic energies of the molecule and the separated atoms, a difference
which in turn is equal to the absolute value of the binding energy of the
system. The 4o (x;) and K(;l) distributions are very similar in appearance;
the increase or decrease in the chargé density resulting in a corresponding
increase or decrease in K(xp) fof the system. Transferring G(x;) to the
L.H.S. of Equation (3.14) gives an expression for K(x;) in terms of the

difference between the sum of the orbital energy densities and the potential

. - + 3 3 - . .
energy density. Since Zsipi(xl) is everywhere negative, positive regions
P .



‘Figure 3.3. Contour maps and profiles of the difference
distributions dp(x1), aK(X1), AG(Xy) and AL(X;) for H, at

R=1.4 a.u,
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Figure 3.4. Contour maps and profiles of the difference

distributions for He, at R = 2.0 a.u.
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of K(?l) denote‘regions in which the potential energy density exceeds
the energy density in absolute value. Similarly, an equation'for MK (%1)
in the Hartree-Fock approximation shows that for those regions of space
in which both Ap(;l) and AK(;l) are positive, the potential energy
density of the molecule is more negative tﬁan that for the separated
atoms. Not unexpectedly, the AK(?I) map demonstrates that the decrease
in the potential energy occurs in the vicinity of the nuclei and in the
internuclear regions. Since the region in which AK(;I) > 0 is remarkably
similar to that for which ap(X;) > 0, almost the whole of the charge
redistribution for the formation of Hy results in a decrease in the
potential energy.density of the system.

A more direct view of the changes in the kinetic and potential
energies of the atoms resulting from the charge redistribution depicted
in the Ap(X1) map is given in the difference maps for G(x1) and L(x1).
The diagram of AG(x;) for Hy, (see Fiéure 3.3) indicates that, relative to
the charge distribution obfained by the overlap of two undistorted atomic
densities, the contributions to.G(;l) and hence to T for the molecular
one-electron charge distribution have increased in the antibinding regions
and have decreased in the binding regfon, a behaviour just opposite to
that of charge density itself. Thus relative to the separated atom charge
densities, the softening of the gradients of p(;l) parallel to the bond
‘axis (as is very evidént in the prof}le of the Ap(;l) map) dominate the
change in G(;l) in the internuclear region; the concentration of charge
density in this region resulting in a decrease in G(x;) and hence in
decreased contributions to T. The removal of charge density from the

antibinding regions on the other hand, results in increased gradients for
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the molecular distribution compared to the atomic ones and hence G(;l)
and T are increased. The integration of G(zl) over all space yields AT,
the difference in the kinetic energies of the molecule and the separated
atoms. This is a positive quantity and the A6 (x;) distribution indicates
that relative to the separated atoms the increase in the kinetic energy
is confined to the antibinding regions. It is important in the inter-
pretati&n of - the AG(;l) map to recall that the atomic contributions are
determined for each atomic distribution separately and then added, as
demanded by the expression for 4o(X;) or if the integral of 4G(X;) over
all space is to equal Af. The G(;l) distribution for the sum of the
atomic distributions is not zero in the internuclear regions as profiles
of p(;l) for such a combined distribution would at first suggest. Thus,
the negative values of AG(zl) in the binding region may be interpreted
as arising from the ability of an electron in the molecule to move in the
region of either nucleus rather than being confined to the region of a
single nucleus as in the separated atoms. Or, alternatively, the decrease
in the contributions to the kinetic energy from the binding region results
from the charge density in the molecule being continuous over the whole of
the binding region with a high probability density, rather than over half
of it separately with a rapidly decreasing probability density as is the
case for the atomic charge distributions. In the samevway, the loss of
‘charge density from the antibinding region decreases the effective vélume
available to the electrons and increases their kinetic energy contributions.
Ruedenberg]]] has previously stressed that the kinetic energy of
the molecule is decreased as a result of the increased freedom of the

electrons in the molecule ovér that present in the ''‘promotion states' of
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the atoms, in analogy with the behaviour of an electron in a box. However,
we wish to point out that such an effect is evident in the binding region
of the H, molecule with respect to the separated atoms themselves, and

that it is not necessary to introduce a contractive promotion of the atomic
charge densities to demonstrate the decreaée in ginetic energy which arises
from the increased "freedom'' of the electrons, or better stated, from the
change in the density distribution from a discontinuous one to one which is
continuous over the whole of the bindihg region.

The AL(;l) distribution illustrates that the decrease in the
potential energy which accompanies the formation of the hydrogen molecule
occurs in the binding region and in the region of the nuclei. Thus, the
decreases and increases in the charge density shown in the Ap(;l) map corres-
pond closely to regions of decrease and'increase respectively in the absolute
magnitude of the potential energy of the molecular one-electron charge
distribution relative to that of therverlapping atomic distribution.

The AG(x;) map for Hez is striking in that it illustrates that
relative to the separated atom distributions the contribution to the kinetic
energy from the molecular one-electron charge distribution are everywhere
greater. Furthermore, the contributions from the internuclear region are
greater than those from the antibinding regions in spite of greatly
decreased values for p(;l) in the binding region. The opposing behaviour
of the parallel contributions to T in H, and He, (see Table 3.1 and 3.2
respectively) are made very evident by éontrasting the properties of their
AG(x,) distributions. The softening of the gradient and Laplacian of o (x;)
in directions parallel to the axis in the binding region of H, results in

N + 3 3 3 o - * . . . - .
a AG(xl) distribution which is negative in this same region and attains its
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minimum value along the internuclear axis. In He, the AG(X;) distribution
exhibits a maximum along the bond axis. The Ap(?l) map indicates that the
charge density joining the two helium nuclei is smaller in value than that
obtained from the overlapping atomic distributions. Unlike H,, the forma-
tion of He, does not result in a greater freedom for the electrons since
the originally isolated atoms are bridged by a probability density which
is lower in value than that of the original atomic distributions. In
effect, the parallel motions pf the electrons in He,, as gauged by the
kinetic energy contributions from the binding region, are more restricted
in the molecule than in the separated atoms.

As iﬁ the case of H,, the features of the AL(?I) map for He, parallel
closely those of the ap(X;) map. The AL(X;) map for He, illustrates that
relative to the separated atoms, the pofential energy density attains its
maximum values in the antibinding regions and undergoes a decrease in
stability in the critical binding reéion. The profile of AL(X;) and its
implications about the chanées in the potential energy density are of course
a direct consequence of the curvatures exhibited by the po (1) profile.

The changes in the kinetic energy distributions necessary for the
attainment of a stable molecular sbecies can be examined by considering the
Hy, molecule at a number of different bond lengths. Contour plots, without
the corresponding profiles, of the total distributions p(Zl), K(x1), G(;l),
L(?l) and their difference distributions are shown in Figures 3.5, 3.6 and
3.7 for the H, molecule at internuclear separations of 1.2, 2.0 and 4.0
a.u. respectively. These distributions were obtained using the Das and

13

Wahl' extended wavefunctions for H,. The contour plots in Figure 3.5,

which are for H, at a bond length of 1.2 a.u., are very similar to the



Figure 3.5. Contour maps of the total distributions p(;l) y
K(x1), 6(x;), L(x;) and the difference distributions for H,

at R=1.2 a.u.
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Figure 3.6. Contour maps of the total distributions p(;l) ,
K(x1), G(x1), L(x;) and the difference distributions for H,

at R= 2.0 a.u.
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Figure 3.7. Contour maps of the total distributions p(il),
K(;l), G(;l), L(;l) and the difference distributions for H,

at R=6.0 a.u.
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corresponding plots for H, at the equilibrium bond length of 1.4 a.u.
(see Figures 3.1 and 3.3). As the bond length is decreased the increase
in k?netic energy, which tends to destabilize the system, can be seen to
be the result of a large increase in K(;i) or G(x;), and thus an increase
"in T, in the regions around the nuclei; the energy distributions in the
internuclear or binding region are almost identical for the two different
bond lengths. As the internuclear separation in H, is increased beyond
the equilibrium value (see Figures 3.6 and 3.7) the total distributions

o (x;), K(;l), 6(x;) and L(?l) begin the resemble the corresponding distri-
butions for He, (see Figures 3.2 and 3.4). At the largest internuclear
separation considered for H,, Figure 3.7, L(;l) is negativé in the inter-
nuclear region as in He, and the energy distributions clearly show the
appearance of almost completely separated atoms.

The difference distributions at the different internuclear
separationslindicate the regions in Which the contributions to the kinetic
energy in the molecule havé'increased or decreased with respect to the
separated atom values. For examplg, at a large separation of the hydrogen
nuclei (see Figure 3.7) the diffefeﬁce distributions show that the
rearrangement of the atomic charge densities does not produce large changes
in the contributions to the kinetic energy from the binding region. Instead,
the predominant changes in the contributions to the kinetic energy occur
at the positions of nuclei and not in the binding region as found for He,
and H, at shorter bond lengths.

The variation in the parallel, T,, and perpendicular, T,, contribu-
tions to the total average kinetic energy for various bond Iengtﬁs are

shown in Tables 3.1 and 3.2 for H, and He, respectively. Reference to
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Table 3.1 indicates that the total kinetic energy in the H, molecule is
less than that of the separated atohs for values of R 2 2.0 a.u. The

a0 (x1) maps for H, indicate that for R > 2.0 a.u. the charge decrease
occurs in near spherical regions cénterea on_each of the nuclei (see
“Figure 3.7). (Additional Ap(X;) maps for H, at various other values of

R are given in Reference 116.) The AG(zl) contour maps indicate that

the decrease in T observed for large values of R arises from this decrease
in the peaking of the charge density at the positions of the nuclei, an
effect which decreases both the parallel and perpendicular Eontributions
to G(x;) and T. For values of R < 2.0 a.u. charge density is accumulated

in the vicinity of each nucleus-and T increases above the atomic values.

3.5 The Kinetic Energy Distributions of the No and Bes Molecules

The analysis of the kinetic energy distributions for H, and He,
clearly indicates how molecular stability is related to the topographical
features of the one-electron charge density p(;l) in simple molecules
formed from atoms which emﬁloy principally s-type orbitals. Because
molecules formed from atoms which employ p-type orbitals differ from
these simple molecules in that their Ap(x;) plots show quadrupolar rather
than dipolar polarizations of thé atomic densities, it is of interest to
further consider the kinetic eﬁergy distributions for more complex mole-
cules such as N, and Bey. In this section the stable molecule N, will be
contrasted with the unstable molecule Bes.

Contour maps for the total one-electron charge density p(;l), the
distribution K(zl) and its contributions G(;l) and L(;l) for Ny at the

ot

equilibrium internuclear separation of 2.068 a.u. and for Be, at a bond

* The distributions for N, were ca]cu]?ted from the Hartree-Fock wavefunction
determined by Cade, Sales and Vah! for the Xlz; state.
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length of 3.0 a.u.* are shown in Figures 3.8 and 3.9 respectively. A com-
parison of the p(;l) and K(X;) distributions for N, indicates that except
for a deep negative ring around each nuc]eus K(?l) is largest in those
regions where the charge density is most concentrated, at the nuclei and
in the internuclear or binding region. This feafure is identical to that
found for the stable H, molecule. The negative ring which appearé around
each nuclei in the K(?l) and also the L(zi) distribution for larger mole-
cules such as N, arises from the large curvatures in the orbitals and the
density near the nuclei as a result of the ls core. This negative rihg
also appears in the component atomic distributions. As in the H, molecule,
the accumulation.of charge density between the nuclei in N, decreases the
positive curvature in p(;l) along the bond axis and increases the negative
curvature perpendicular to the bond axis resulting in L(:l) >0 in the
internuclear or binding region. The values of’K(zl) and L(Ql) right at
the bond mid point are 1.392 and'0.7é6 a.u. respectively. The large con-
tribution of L(X;) to K(X;) in the binding region clearly indicates the
excess stability achfeved by the potential energy density in this critical
region of space in the stable N, molecule. The shape of the contours of
the gradient contribution G(;l) are very similar to those for the p(;l)
distribution indicating that contours of equidensity represent lines of
almost constant value for the classical-like contribution to the kinetic
energy. The G(Q&) distribution for N, does not show a deép minimum at the

bond mid point as found in the case of H,. Orbitalsof o, Symmetry contribute

" The distributions for Be, were ca]culftgd from the Hartree-Fock wave-
function determined by Cade and Sales!18 for 13t state. The Be, molecule
being unstable has no equilibrium bond length. “The stable neighbouring
molecule B, has an equilibrium bond length of 3.005 a.u. and hence, a
bond length of 3.0 a.u. is used to examine the properties of the charge
density in Be,.



Figure 3.8. Contour maps and profiles of p(;l), K(;l),
G(:l) and L(zl) for N, at an internuclear separation of

2.068 a.u.
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Figure 3.9. Contour maps and profiles of p(xy), K(x1),

¢(x;) and L(;i) for Be, at R = 3.0 a.u.
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heavily to the total one-electron density in Ny. It is the gradients
of these orbitals which give large positive contributions to G(;l) in
the internuclear region, resulting in a value of 0.626 a.u. at the
bond mid point. This value is much larger than the near zero value
observed at the bond mid point in Hy,. There are large peaks in the
G(zi) distribution at tHe nuclei clearly indicating the large contri-
butions to the kinetic energy T from the ls cores.

In contrast to the stable N, molecule, the kinetic energy
distributions for the unstable Be, molecule exhibits many of the same
characteristics as those found for Hey. The p(xy) distribution for
Be, (see Figure 3.9) indicates that the density in the internuclear
region is very small (the value at the bond mid point is 0.091 a.u.
compared to 0.724 a.u. at the bond mid point in Ny). This low value
of the density in the binding region is a direct result of the anti-
-symmetry requiremegts'of thg Pauli Erinciple and a large internuclear
separation. If a charge distribution with a smaller bond length were
available for Be, the determined kinetic energy distributions would
more strongly résemble the results found for He, rather than give the
almost zero contributions to K(x;), G(X;) and L(x;) at the bond mid
point as found in the present example. The K(;l) distribution shows
large positive contributions near the nuclei, the regions of maximum
charge accumulation and negative rings around the nuclei resultfng from
the 1s cores. The low value of K(X;) at the bond mid point of Be,
(0.073 a.u.), which is very small compared to the value for N, (1.392
a.u.), clearly indicates the low concentration of electron density in

the internuclear region and thus the small contributions to the kineitc
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energy from this critical binding region. Also, the very small values
of L(X;) in the binding region of Be, (0.064 a.u. at the bond mid point),
~although not negative as in the case of He,, strongly reflects the very
low stability of the potential energy density in this region of space.
This feature contributes to the instability of the Be, molecule. The .
very small gradients of\£he orbitals in the internuclear region results
in very small cdﬁtributions to G(x;) (0.009 a.u. at the bond mid point)
in the binding region. The large peaks in G(;l) at the nuclei show the
large contributions to the kinetic energy from the 1s cores. Because
of the large internuclear separation the energy distributions for Be
are very characteristic of the component separated atoms.

The general features of the total kinetic energy distributions
~for N, and Be, are very similar to those for H, and He, respectively.
It is not until we consider the difference distributions Ap(§1), AK(;l),
AAG(zl) and AL(%;) for the Nz‘and Be, molecules that the quadrupolar
nature of the polarization of the atomic density distributions found in
these more complex molecules resu]ts in marked differences in the inter-
pretation. given the simple molecules H, and Hezl

The difference distributions 2p(x;), aK(Xy), AG(X;) and AL(X;)
for the N, and Be, molecules are shown in Figures 3.10 and 3.11 respect-
ively. These distributions clearly show the typical quadrupolar polar-
izations found in molecules formed from atoms which employ p-type orbitals.
The Ap(;l) plots for both N, and Be, show a large build-up of charge in
the antibinding regions behind the nuclei as well as in the internuclear
or binding region. The density decreases occur in the antibinding regions

perpendicular to the bond axis. The unstable molecule Be, does not’



Figure 3.10. Contour maps and profiles of the difference
distributions Ap(zl), AK(;<>1), AG(;<>1), and AL(;l) for N,

at R = 2,068 a.u.
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Figure 3.11. Contour maps and profiles of the difference

distributions for Be, at R = 3.0 a.u.
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concentrate sufficient density in the binding region to bind the nuclei3.
The AK(;l) distribution for both molecules are very similar to their

p(;l) distributions; the.increase or decrease in the charge density
fesulting in a corresponding increase éf decrease in K(zl) for the system.
The regions of positive‘AK(zl) and thus, the regions in which the potential
energy density of the molecule is more negative than that for the separated
atoms, occur in the internuclear or binding regions and in the antibinding
regions behind the nuclei. The AL(;l) distributions for both molecules
also show the same regions of positive and negative contributions as found
in the Ap(;l) distributions. Thus, the potential energy density in mole-
cules with quadrupolar polarizations of the atomic densities achieves its
~maximum stability in the binding region and in the antibinding regions
behind the nuclei. This feature is in sharp contrast to that found for

- the simpler dipolar type molecules such as H, in which the potential energy
density achieves its maximum stability only in the binding region between
the nuclei.

The AG(X;) distribution for each molecule is of particular interest
since this distribution clearly shows the instability of the density
distribution for Be, as compared to that for N,. Also, the 4G(x;) distri-
bution explains why the accumulation of charge density in the antibinding
regions of a stable molecule is favourable on energetic grounds. The
AG(X;) contour plot for N, shows that the contributions to G(x1), and
thus to T, from the internuclear or binding region are larger in the mole-
cule than in the separated atoms. It is the necessary inclusion of orbitals

of o, symmetry in the molecular one-electron density distribution for N,

which results in large orbital gradients and thus, in large contributions
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to G(zl) and T from the internuclear region. Thus unlike the situation
in Hy, the accumulation of charge in the binding region of N, increases
the kinetic energy of the molecular system with respect to the separated
atoms. The accumulation of charge density in the antibinding regions

" behind the nuclei, however, does not lead to an increase in the contri-
butions to G(;l) and T upon the formétion of a stable molecule from its
component separated atoms. The AG(X) contoﬁr map for N, clearly shows
that the build-up of charge density behind the nuclei, as depicted in

the Ap(zl) map, results in a softening of the orbital gradients immediately
behind the nuclei thus leading to a decrease in the contributions to G(zl)
and T for the molecule when compared to the separated atoms. The
accumulation of charge density in the antibinding regions, since it
results in a decrease in the contributions to the kinetic energy in the
~molecule, leads to a stabilization of a molecular system which is formed
from atoms employing orbitals of non-zero angular momentum. Thus, the

N» molecule achieves its siébility from a reduction in the contributions
to the kinetic energy from the antibinding regions behind the nuclei.

By allowing the charge density in the molecule to have a high probability
distribution in the antibinding regions, the resultant accumulation of
charge in these regions softens the gradient of the density, decreases
the contributions to G(X;) and T, and increases the effective volume
available to the electrons. This was not the case in the simple H,
molecule where it is the accumula;ion of charge in fhe binding region
between the nuclei fhat decreases the contributions to T and gives the
electrons greater freedom.

The AG(X;) contour map for Be, (Figure 3.11) is very different
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from the AG(X;) map for N,. The build-up of charge in both the binding
and antibinding regions of the Be, molecule leads to an increase in the
~contributions to G(xy) aﬁd T. Since.AG(zl) for Be, is positive nearly
everywhere, clearly there.is a large increase in the total kinetic energy
of the molecule over that of the éeparated atoms. This increase in the
kinetic energy is partially responsible for the instability found in the
Be, molecule.

Stable diafomic molecules formed from atoms which employ p-type
orbitals all show a quadrupolar polarization of the component separated

3’4,536

atom densities in their Ap(;l) contour diagrams These molecules
accumulate large amounts of charge density in the antibinding regions

. behind the nuclei as well as in the binding region between the nuclei.

In the example exemplified by N, the build-up of charge in the binding

- region leads to an unavoidable iﬁcrease in the contributions to the
kinetic energy. The inErease in charge in the binding region is necessary
for the attainment of electrostatic equilibrium but since this density
increase is partially achieved by placing electrons in the 20, orbital,
which has a large parallel gradient in the internuclear regions, it

leads to an increase in the kinetic energy. However, the accumulation

of charge in the antibinding regions clearly results in a decrease in the
contributions to the kinetic energy. Thus in molecules which show
quadrupolar type polarizations, it is anticipated that it is energetically
favourable, from a kinetic energy point of view, to accumulate charge
density in the anfibinding regions. This charge build-up in the non-
binding regions leads to a decrease in the contributions to the kinetic

energy and to the formation of a more stable molecular species with
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respect to the separated atoms.

Since there is an increase in the contributions to the kinetic
energy from the binding region and a decrease from the antibinding
regions, there will be an obvious balance between the contributions
from these two regions. The actual partitioning of the charge density
between these separate regions will determine whether the parallel, T,,,
and perpendicular, T;, contributions to the total average kinetic energy
will separately increase or decrease with respect to the separated
atom values. |If the charge increase were confined to the binding region
aloné it is ﬁossib]e that both the parallel and perpendicular gradients
of the density will increase as they do near the nuclei, thus resulting
_in an overall increase in both T,, and T;. By allowing the charge density
to accumulate in the antibinding regions behind the nuclei there is a
reduction in the otherwise largeborbital grad{ents in the internuclear
region as well as a resultant decrease in the parallel gradients
imﬁediately behind the nuclei. Thus, the variation of T,, and T; in a
stable molecule, when compared to the values for the separated atoms
will be determined by the resulting balance between the increase in the
binding region and the decrease in the antibinding regions of the contri-
butions to G(;l) and T.

The contributions T,, and T; to the total average kinetic energy
are given in Table 3.3 for a number of homonuclear diatomic molecules.

It should be noted that tHese contributions are determined for each mole-
cule using previously determined Hartree-Fock wavefunctions.* These
* The wavefunction for Li, (X'z *) is from Cade, Sales and Wahl‘l9, for
B> (X3Z ) and EZ(X Z+ from Greenshlelds]20 for 02 (X?52) from Cade

and IMallil ; and? for Fo (X1z¥) from Wah1122, The references
to the wavefunctions for N, and B&, were given earlier.




TABLE 3.3

Values of T,, and T, for the First Row Homonuclear Diatomic Molecules®

Molecular Values Atomic Values at R = P

Molecule R T To T, (T1~TL)/T-' T Th T, (Tl'TL)/T
Li, 5.0510 14,8907  4.9575 L9332 0.3334 14,8655 4.9552 9.9103 0.3333

Lo

Bes, 3.5000°  29.4116 9.9137 19.4979 0.3259 29.1460 9.7153 19.4306 0.3333

o

B,  3.0050  49.1447 15.9979  33.1469 3489 | 49.0587 16.1539  32.9049  0.3414
C,  2.3481  75.3938 24.437h 50.9564  0.3517 | 75.377) 24.4568  50.9203  0.3511
Ny 2.0680 108.7911 36.2774 72.5137 | 0.3331 108.8031 '36.2674 72.5358 0.3333

05 2.2820 149.4219 49,0238 100.398i 0.3438 149.6196  49.1954 100.4242

o

.3h2k

Fo 2.6800 198.5856 61.3945 137.1905 .3817 198.8171 64.4909  134.3262 | 0.3513

@]

A1l values are given in atomic units (a.u.)
The atomic values are for the proper valence states of the atoms.

The bond length for Be, used here differs from the value 3.0 a.u. used in the contour diagrams.

791
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wavefunctions do not satisfy the virial theorem accurately and give only

a fraction of the total binding energy for each molecule (the F, molecule
is prédicted to have a negative binding energy). In general, the total
kinetic energy as determined from the Hartree-Fock wavefunctions is low
and, as can be seen from Table 3.3, in a number of cases there is a
predicted decrease in the kinetic energy in going from the separated

atoms to the stable molecule in strict violation of the virial theorem.
The results considered here are not assumed to be as accurate as the
results obtained for H, and He, where much more accurate wavefunctions

are used. H6Wever, these calculated parallel and perpendicular contribu-
tions to the kinetic energy show trends that fit in well with the examples
~which have been considered.

From the values given in Table 3.3 we see that T,, for the stable

. molecules is nearly equal to or less than fhe’same value for the separated
atoms. Thus, the accumulation of cHarge in the antibinding regions of
these molecules reduces thé orbital gradients parallel to the bond axis .
resulting in a decrease in T,,. However, the value of T; for these mole-
cules, except for some cases where there is a decrease in the total kinetic
energy in going ffom the atoms to the stable molecule, increases considerably
with respect to the atomic value indicating the crucial role played by the
accumulation of chérge in the antibinding regions. The build-up of charge
in these regions increases the perpendicular gradients by contracting the
density around the internuclear axis. Unlike the stable molecules, in

Be, the parallel contribution to the kinetic energy, as we]l as the
perpendicular contribution, has greatly increased above the atomic value.

This fact reflects the instability found in Bep. In a stable molecule
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it is the perpendicular contribution, T,, which accounts for the overall
increase in the average kinetic energy necessary to satisfy the virial

theorem.

3.6 Summary

The study of the kinetic energy distributions for tHe molecules
Hyo, Heo, N, and Be, clearly indicate the importance of the charge
distributioﬁ in determining the overall stability of a molecular system.
Instead of just being able to discuss the forces operative in a molecular

3:h5536

system as done earlier , we can now relate the energy of the system
to the topographical features of the mo]ecu]ar‘one—electron charge
distribution. |

The analysis carried out in thfs chapter has shown that in simple
molecules formed from atoms which employ s-type orbitals such as H, and
He, the stability or instability of the system is determined by the charge
density situated in the internuclear or binding region. The accumulation
of charge in the binding region of H,, as depicted in the 4p(X;) distribu-
tion, leads to a lowering of the orbital gradients parallel to the bond
axis resulting in a reduction in the contributions to G(;l) and T when
compared to the separated atoms. Thus, the build-up of charge in the
binding region of a simple stable molecule is distributed in such a way
as to keep the accompanying increase in kinetic energy to a minimum. In
the unstable system typified by He, the depletion of charge density from
the binding region leads to increased orbital gradients along the bond
axis with a corresponding increase in the contributions to G(x;) and T.

It is this large increase in the kinetic energy from the binding region,
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compared to that for.the separated atoms, which is responsible for the
instability found in Hej,.

The kinetic energy distributions for more complex molecules such
as N, and Be,, which are formed from atoms which employ p-type orbitals,
show markedly different behaviours than those for the simple molecules H,
and He,. The accumulation of charge in the binding regions of these
more complex molecules, as depicted in their Ap(zl) distributions, leads
to an increase and not a decrease in the contributions to G(x;) and T
when compared to the separated atom values. |In stable molecules which
show quadrupdlar polarizations of their atomic densities it is the charge
build-up behind the nuclei in the antibinding regions which is responsible
‘for a decrease in the orbital gradients and a resultant reduction in the
contributions to G(x;) and T for the molecule. Thus, the stability in
these more complex molecules is gained by a reduction in the kinetic energy
owing to a charge increase in the anfibinding regions. This is not the
case in the unstable Be, méiecule since the charge increase behind the
nuclei, shown in the Ap(zl) map, leads to an increase in the contributions
to G(zi) and T which results in Be, being non-bound.

In stable~molecules the accumulation of charge in the binding
and/or the antibinding regions decreases the orbital gradients parallel
to the bond axis leading to a decrease in the contributions to T, and a
- greater axial freedom for the electrons when compared to the separated
atoms. The samé build-up of charge, since it contracts the density around
the internuclear axis, creates larger orbital gradients perpendicular to
the axis leading to an increase in the contributions to T,, an increase

which is necessary to satisfy the virial theorem.
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The discussion in this chapter has been based on a very few
molecules, particularly in the case of the quadrupolar type molecules
only N, and Be, have been considered. A large number of molecular
systems should be investigated by this approach. Of particular interest.
will be a contrast of the results obtained from the homonuclear diatomic
molecules with those obtained for heteronuclear molecules, which may
exhibit either covalent or ionic binding. In this way a more complete
understanding of the relationship between the topographical features of
a molecular one-electron charée distribution and the kinetic energy of

the system méy be obtained.



IV. DISCUSSION OF THE DENSITY APPROACH
This thesis has been concerned with the analysis and inter-
pretation of chemical binding based on the knowledge obtained from
various density distributions. The distributions that have been
considered are the total one-electron charge density p(;l), the
difference density Ap(X;), the density shift which arises from a

molecular vibration Ap (Zl), the density shift which arises from

D
the orthogonality requirements of the Pauli exclusion principle
App(zl), the kinetic energy distributions K(x;), 6(x;) and L(x;),
and the kinetic energy difference distributions AK(x;), 4G(x;) and
AL(?I). The parficular features present in each of these individual
distributions contribute to a more complete understanding of the
electronic.structure and chemical binding in molecular systems. The
analyses carried out in this thésis clearly show the relationship
between the stability of a molecular'sygtem and the topograpﬁical
features of its one-electron charge distribution.

The one-electron charge distribution p(il) gives a three-
dimensional picture of the arrangement of the static electron density
in a mlecule. It is this distribution which is responsible for all
the electrical properties of the system (e.g., the electronic forces
and multipole moments). In fact, the properties of the p(x;) distri-
‘bution are used to determine the 'best' one-electron density distribution
for the methane molecule. The near spherical shape of the p(Xp) distri-
bution for CHy is partia]ly responsible for its low reactivity. The

5
properties of the p(x;) distribution and the quantum mechanical conditions
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imposed on it are important in determining the equilibrium geometry
of a molecule.

The difference density distribution 8o (X1) dramatically shows
the rearrangement which the undistorted-atomic densities undergo upon
" molecular formation. Thé stability of a molecular system with réspect
to the separated atoms is clearly understood in terms of the Ap(zl)

3’h’5’6. In order

distribution and the forces operative in the system
that a molecule be stable, stable with respect to the component
separated atoms, there must be a build-up of charge (i.e., Ap(;l) is
positive) in the critical binding region. Molecules formed from atoms
which employ p-type orbitals, such as N,, also show an increase in
charge in the antibinding regions behind the nuclei in their Ap(;l)
distribution. THe analysis of the kinetic energy distributions has
shown that this is an energetically favourable way of charge rearrange-
ment. In Chapter | the'Ap(?l) distrkbution for methane shows that the
binding in this molecule ig the result cf a large accumulation of charge
density along the C-H bond axies. This build-up of charge strongly binds
the carbon on hydrogen nuclei.

The Apo(zl) distributions (see Chapter I) show that the change
in the charge density accompanying a vibration in CHy aids in the motion
of the nuclei as they vibrate from their equilibrium positions. The
density shifts in such a way that charge is accumulated shead of the
moving nuclei thus résulting in a corresponding reduction in the force
constant for the A} vibration. Since the major density shifts in the
' Apo(zl) distributions occur along the C-H bond axies it is the charge

situated in these regions which bind the nuclei together in the methane
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molecule. The ApD(;l) distributions for CHy, together with the force
constant analysis, indicate the crucial role played by the change in
the one-electron charge distributfon in lowering the otherwise large
increase in energy of the system when the nuclei are displaced from
their equilibrium positions.

The App(zl) distributions (see Chapter |l) are diagramtic models
which demonstrate how the one-electron density p(;l) in three-dimensional
space must shift in order to satisfy the orthogonality requirements of
the Pauli exclusion principle in the many-dimensional orbital space.

The restraints imposed on the one-electron charge distribution by the

Paulil principle will not permit the Hy0 or the NH3 molecule to have a tetra-
hedral geometry with a hybridization approaching sp3. The App(;l)
distributions clearly show that such an arrangement of the one-electron
charge distribution does not plaée sufficient charge in the molecular
binding region to bind the nuclei aﬁd produce a state of electrostatic
equilibrium. Using the Aptzl) distributions it is shown that one-

electron charge distributions for H,0 and MH3 which employ bonding orbitals
of almost pure p character and oné lone pair orbital of pure s character

do place sufficient charge in the binding region to bind the nuclei. Such
stable one-electrons charge distributions require ''bent orbitals'.

The kinetic energy distribution K(X;) and its components G(x;)
and L(;l) together with the corresponding difference distributions (see
Chapter 111) provide a new dynamic approach to the understanding of
chemical binding in molecules. This approach is a complement to the

L,5,6

electrostatic approach3’ which utilizes the 2p(x;) distributions

and force analyses to interpret the chemical binding in molecular systems.
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The kinetic energy distributions are used in this thesis to examine the
relationship between the topographical features of the mb]ecular charge
distribution and the kinetic energy of the system. The gradient distri-
bution G(x;), since it is a classical-like distribution which when
integrated over all space yields T, enables one to relate the final
values of the kinetic energy to the spacial properties of the one-
electron charge distribution. The Laplacian distribution L(x;) in turn,
whether it is greater than or less than zero, indicates the regions of
space in which the charge density attains its maximum stability. Consid-
ering the G(?i) and L(x;) distributions together (i.e., K(x;)) provides
a detailed explanation of the stability or instability of a molecular
system in terms of the spatial distributions of the one-electron charge
density.

The analysis of the kinetic energy distributions show that,
with reference to the separated atom distributions, the accumulation of
charge density in the binding region of a stable molecule formed from
atoms which employ s~type orbitals, such as H,, leads to a decrease in
kinetic energy and to an increase in the magnitude of the potential
energy. Just the opposite behaviour is obtained for the kinetic and
potential energy in the binding region of a simple unstable molecule as
typified by Hep,. In contrast, in the more complex molecules such as
"N, and Be,, which are formed from atoms employing p-type orbitals, fhe
accumulation of charge in the binding region leads to an increase in
- kinetic energy. It is the charge build-up in the antibinding regions
of thegé larger stable molecules which results in a decrease in kinetic

energy and an overall stabilization of the molecular system. The
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connections between the topographical features of the molecular charge
distribution and the kinetic energy of the system, together with the
other topic considered in this thesis, provide an increased under-

standing of the electronic structure and chemical binding in molecules.



APPENDIX

174



. APPENDIX |

Atomic Orbitals Used for Methane
The accurate self-consistent field atomic orbital functions for
the 3P configuration of the carbon atom as determined by Clementi et al>3
were used to represent the ]SC’ Zsc and 2p atomic orbitals on carbon.
These have the form

Cilsy + C2lsz2 + C3253 + Cu2sy + Cs2s5 + Cg2sp

Is =

c
25C = C{1s1 + Célsz + CéZsa + Cﬁqu + CéZss + Céng
2p = C72p7 + Cg2pg + Cg2pg + C102p10

where the lsi, 25i and 2pi are Slater atomic orbitals given by

3/2 5/2
o’ : o’
s, = — e dif 25, = — re “if
i Y i /3
i =1,2 i = 3,4,5,6
z a$/2 cosB
i . -a,r
2p. 4 X} = r 4sinbcosdre i
: Y Vo sinfsind
i =17,8,9,10
and
i 1 2 3 L 5 6
o, 5.41250 9.28630 1.03110 1.50200 2.58975 4.25950
Ci 0.92695 0.07665 0.00073 -0.00167 0.00539 0.00210
C; -0.20786 -0.01175 0.06494 0.74109 0.34626 -0.13208
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i 7 8 9 10
a 0.95540 1.42090 2.58730 6.34380
ci 0.24756 0.57774 0.23563 0.01090

NOTE: The coefficients and exponents that appear in the above tables
are the corrected values which appear in '""Tables of Atomic Functions'',
published as a supplement to the paper by Enrico Clementi, "Ab Initio
Computations in Atoms and Molecules', which appears in IBM Journal of
Research and Development 9, 2 (1965).

The 1s atomic orbitals used on the hydrogens, designated as
hi (i = 1,2,3,4), are just simple Slater ls atomic functions where the

screening coefficient, o is larger than the separated atom value of

H’

unity. The actual value used for oy is given in the thesis.



APPENDIX 2
Equations for Wavefunction Determination

(a) Force Equations

For the convenience of notation the following identities will

be used in this and the following appendicies.

Sin (eb) = SE
Cos (eb) = CE
Co = <hp|lsc>+ (1 - 368) + A-CE-<Is |25 >/¥

Fa = COS(@HI)/rﬁl

<Xb!Fa|XC> = beFaXCdT
Here Fa is the force operator for the force on H; parallel to the C—H;
bond axis. Since the force on each Eydrogen is the same only the force
on H; is considered. Also‘if b=c¢c=a in the integral <xb|Fa!xc> then
the integral is referred to as an atomic integral; if b = c # a, the
integral is a screening integral; and if b = a # ¢, then the integral
is an overlap integral. Finally, if b # ¢ # a, the integral is a three
center integral and this is denoted by a double prime on Fa. Using the
above notation the orbital forces on H; parallel to the C~—H; bond axis

are

F“(¢02)

Fu(d)b?)

2<1s lFalls >
C c

z[AZ(CE2-<25ClFa|25C> + 2-CE-SE-<2sClFalP1>+ SEZ2+<py|FalpPy>)

+

22u(CE(<hy [Fal2s > - 3§-<hy|Fa"[2s > - Co-<Is_[Fa|2s >)
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+ SE{<hj|Fa|P;> - 368-<hy|Fa"|P> - Co-<lIs_|FalPy>))
+ u2(362(/§7§3<h2|Fa'|h2>* + 2<hy|Fa'|h3>)

+ 66(Co-<hlea”[lsC> - vV2/3<hy|Fa' |hy>)

- 2Co-<h1|Fallsc> + Coz-<lst|Fa[lsC>)]-

- By symmetry F,(6,2) = F,(6,2) = F.(8,2). F,(8,2) is given by
Fulop2) = 2[32 (CE2<2s |Fal2s > - 2.CE-SE-<2s_|Fa|P)>/3

.I..
+ SE2(<P;|Fa|Py> + 8<Pﬂ1lFa]Pﬂl> )/9)

-+

ZAU(CE({1—26}°<h2[Fa“|25C> - 6-<h1|Fa|25C> - Co-<lsC|Fa[25C>)

+

SE({ZG-]}-<h2|Fa”IP1> + 2/§:(l+6)-<h2[Fa“[P"i>

+

§-<hy|[Fa|P)> + Co-<Is_[Fa|P;>)/3)

+4-

u2(v273 (14262) «<h, [Fa' [hy> = 25.(1-28) -v2/3+<h; |Fa' [hy>

26-(2~6)-<h2|Fa”|h3> - ZCo-<h2]Fa”[lsc>
+ 26-Co(<h1]Fallsc> + 2<hlea”|]sC>) + C02-<ISC|Fa[15C>)].
The total electronic force on Hy; parallel to C—H; bond axis is
e :
Fio = 2[82(CE?-<2s _|Fal2s > + SE2-(<Py|Fa|Py> + 2<P"1]Fa[Pnl>)/3)
+ ZxU(CE({l—BG}-(<h1[FalZsC> + 3<hy|Fa|2s >)

- bCo-<1s_|Fa|2s >)
c c

+

SE({1+8}+(<h;|Fa|Py> - <h,|Fa"|P;> + 2/7¥<h2|F”[Pﬁl>)n

+

p2(3(14362) V273 .<h, |Fa'|h,> - 128-(1-8)-V/2/3-<h;|Fa'|h,>

126+ (1-8)<h,|Fa''|h3>

2(]-36)‘C0-(<h1lFa|]sC> + 3<h2|Fa”|]sC>)

+

hC02-<]sC|Fa[lsc>) + <lsC]Fa|]sC>].

The prime on Fa indicates that the integral gives the force along the bond
‘axis between the two centers involved in the integral and that the component
along C—H; axis has to be taken. This is done by multiplying by v2/3 in
most cases.

P = /273.(px - (py + pz)/2). This is a p type orbital perpendicular to
the C—H; bond axis and in the H;CH, plane.
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(b) Magnetic Shielding Equations

The diamagnetic term of the proton magnetic shielding is obtained
. by averaging the wavefunction over the operator l/rHl. This gives the
shielding at the hydrogen H;. The following-identities are added to
those given above.
ca = l/rH1
<xploalx> = beoaxcdr
The orbital contributions to the magnetic shielding at H; are
o(¢g) =2<1sc|oallsc>
o(¢b%) = 2[232(CE?+<2s _|oal2s > + 2CE-SE-<25C[oa|P1> + SE2.<Py|oalPy>)
’ - . t - .
+ 2Au(CE(<h1|aa]25c> 35-<h, |oca |25C> Co <1sC[ca[25C>)
+ SE(<h;|oa|Py> - 38+<h,|ca"|P;> - Co-<]sclca|P1>))
+ 12 (<h;|oalhy> + 362« (<h,|oalhy> + 2<hj,|oa'|hs>)
+ 6G(Co-<h2]oa”[lsc>— <hyloalhy>)
- 2Co-<h;|oalls > + Co?<ls |oal|ls >)].
c c c
By symmetry o(¢b§) = G(¢b§) = 0(¢bﬁ)- o(¢b§) is given by
2
o(pp2) = 2[3*(CE%<2s |oal2s > - 2CE-SE-<2s _|oalPy>/3
+ SE2(<Py|oalPy> + 8<Pﬂ1|oa|Pﬂ1>)/9)
+ ZXU(CE({I-26}-<h2|oa“[25C> - 6-<h1|oa]25C> - Co-<]sclca|25C>)
+ SE({28-1}+<hy|oa"|Py> + 2/51(1+5)-<h2|oa”lpn1>
+ §-<hy|oa|Py> + Co-<lscloa]P1>)/3)
+ p2 ({14282} «<hy|oalhy> - 26-(1-28) -<hy|oalhy>
+ 82-<hyfoalhy> - 26-(2-8) -<hy|oa"|hy> - 2Co-<hy|oa"[1s >
+ 26-Co(<h1l0allsc> + 2<h2|0a”llsc>)

+ Co?<Is_[oalls >)].
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The total diamagnetic magnetic shielding at H; is

(d) . 2[1? (ce?-<2s _|oal2s > + SE2(<P1foalPy> + 2<P  [oalp >)/3)
+ 2MJ(CE({1-36}°(<h1[0a|25c> + 3<h2|0a”|25C>)
- LCo*<ls |0a|2s >)
C C
+ SE({1+6}+ (<h1]oalP1> - <hzloa'|P1> + 2/2-<hz|ca’p_;>)))
+ p? ({14362} (<hyloalh1> + 3<hz|oalhy>)
- 128+ (1-8) * (<h1 |oalha> + <hy|oa'|hy>)
- 2(]—35)'C0'(<h1IOallsc> + 3<h2|0a“llsc>)
+ hC02'<1s |0a|ls >) + <ls lGa!ls >].
C C [ C



APPENDIX 3
Methods Used to Evaluate Integrals
A large number of integrals are required for the evaluation of
all the theoretical properties recorded in this thesis. A list of the
actual integrals is given in the following appendicies. This section
is concerned with how these integrals were evaluated.
Consider a system of N electrons where the total wavefunction,

Y, is given by a' single Slater determinant of the form

p(1,2,...N) = VIZNT | [, (Na(1)eg(2)8(2)..... b2 MBI (A3.7)
where the ¢i's are a set of orthonormal molecular space orbitals given
by

and Xj are simple Slater-type functions centered on each of the different
nuclei in the system. In order to evaluate the expectation value
<wlOop!¢>, where 0Op is the quantum mechanical operator for the property
of interest, for a polyatomic system (i.e., CHy) one must calculate a
large number of different types of integrals. For a two-electron operator
(i.e., 0= 1/ry1,) one can have one-, two-, three-, and four-center two-
electron integrals of the general form <xaxb|l/rlzlxcxd>*. If 0 is a

one-electron operator (i.e., 0op = Oa) then one can. have only one-, two-,

and three-center one-electron integrals. The actual method used to evaluate

i Xg0 Xpo» Xe and X4 refer to Slater atomic orbitals centered on nuclei

a,b,c and d respectively.
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each integral depends on the particular type of integral one is
calculating.

(a) Two-Electron Integrals

All two-electron integrals used in this thesis were evaluated
using a number of programs obtained from ''Quantum Chemistry Program
Exchange'' (referred to as QCPE)8]. These programs were all rewritten
to operate on the IBM-70L40 system at McMaster University. The one-
and two-center 1/r;, integrals were evaluated using QCPE program
#29-"'"DIAT''. QCPE programs #22, #23, #2L and #25 were used to calculate
the three- and four-center 1/rj, integrals. The iﬁput and output for

these programs are the same as specified by QCPE.

(b) One-Electron Integrals

The atomic or one-center integrals, defined as <Xaloalxé> are
easily calculated using integral calculus. The two-center integrals are
more difficult to evaluate.. They are of two types, (a) overlap type,
<xaIOa|xb> and (b) screening type,'<xb|0alxb>. A number of methods were
used to evaluate these two-center integrals depending on the form of the
operator Oa' These methods are listed below. The three-center integrals,
<beOa|xC>, were evaluated in nearly every case using modified versions of
QCPE program #22. Here again the procedure is the same as specified by
QCPE.

(c) Two-Center Integrals

Consider a two-center system as shown in Figure A3.1 with nuclei
at A and B separated by a bond distance R. P is a variable point (usually

the position of the electron), over all positions of which the integration
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is performed.

Figure A3.1

The spherical coordinates of P are (r ) relative to origin A,

A a0t
and (rB, eB,¢) relative to origin B.

i) Kotani “F'' method

In this method the integrals are evaluated by a transformation
to spheroidal coordinates A, u, ¢. These coordinates are defined by
A= (rA + rB)/R, p o= (rA + rB)/R and ¢ is the ?zimath around AB. The
ranges of these coordinates are

I <A <o, -l <<, 0 <¢ < 2m.

It is easily shown that

ry = (0 + u)R/2 (A3.
rg = (A - WR/2 (A3
Fpcost, = (1 + xu)R/2 (A3
Fpcosty = (1 - ap)R/2 (A3
rasing, = rpsingy = (»2 - 1)]/2(1 - 12)2g/2 (A3.
dv = (A2 - p2)R3/8 diaduds . (A3.

In this new coordinate system a large number of integrals can be

expressed as products and/or sums of the following types of integrals.

AN(a) = J ANe_axdx (A3.
1

)
.5)
.6)

8)

9)
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1
B, (8) = J e Fay (A3.10)
o (@8) = J f 51~—i%4] AN e e "Bl gy ay (A3.11)
Vel (o)
~where
o= (Z] + Zy)R/2 ' (A3.12)
B = (2, - Z,)R/2 (for overlap-type integrals) (A3.13)
B = -(Z; + Z,)R/2 (for screening-type integrals). (A3.1h)

Thg symbols Z; and Z, refer to the two screening coefficients of the
Slater-type functions x; and ¥, respectively which are used in the integral
<X1|OAIX2>- X» is always on center B, but x; is on center A if calculating
an overlap-type integral and on center B is calculating a screening-type
integral.

Kotani et a]]23give general expressions and recursion relations to
evaluate the Integrals (A3.9), (A3.10) and (A3.11). Dr. J. Goodisman at
the University of I11inois used these relations as the basis of a program
to calculate tWO—center|integrals. This program was modified and rewritten
as a subroutine, called FBRINT, in double precision for the IBM-7040. The
subroutine has o and B as input parameters and it evaluates and provides
as output the values for AN(a), BN(B), FOMN(Q,B), F]MN(a,B) and FMN(Q,B)

where

Fu (s8) = Fo gy n(enB) = Fyopy y(os8) (A3.15)

Whenever an integral is calculated, a call to FERINT is made using
the correct input parameters o and B, then the integral is evaluated using
an appropriate expression in terms of the output values AN’ BN’ FOMN’

F In the subroutine FPRINT these output parameters are

1MN and FMN'

designated as subscripted variables where the following notation is used.
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AN + 1) = AN(oc)
B(N + 1) = BN(B)
FO(N + 1,M + 1) = FOMN(a,B)
FICN + 1,M + 1) = FMN(a,B)

FMN(N + 1,M + 1) = FMN(a,S)

The Kotani "F" method was used to evaluate most screening
integrals of the type <Xb]0a|xb> and most overlap integrals of the form
<xa|0a|xb>. This computational method can not be used to ﬁa]cu]ate
overlap integrals where Z; equals Z,. In this case B equals ze}o and
the Kotani "F'' method blows up. To calculate integrals where Z; equals
Z, and also field gradient integrals of the overlap-type the following
method was used.

ii) The Barnett-Coulson zeta-function method

The overlap~type integrals with which we are concerned can often
be reduced, by the use of the relations rASIneA = Tgsindg and rAcoseA = R

—choseB (see Figure A3.1), to sums of integrals of the general form

J(k,2,m) = Je—zer e_ZZrB COSkeArAQ—]er—]dT . (A3.16)

124
In the Barnett-Coulson zeta-function technique, the remaining terms on
center B in Equation (A3.16) are expanded in terms of a coordinate system

centered on A. The expansion is

m-1 -Z,rg _ = (2n+1) .
I"B e = 7 —7=-—-R:— P (COS@A)gmn(Zz,r‘A,R) (A3]7)

= 7 mH ; i%ﬂ:il-Pn(coseA)imn(l,t;T) (A3.18)

n=0 t1
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where t and T are the dimensionless variables

i

t Zor

A
T = 22R

and Pn is the Legendre polynomial of order n. The gmn(zz’ R) functions

M
are products of Bessel functions of purely imaginary argument. The

J(k,%2,m) integrals can then be expressed as

J(k,2,m) = *—731%277-*'J euKttR;I-l/2 f(m,k;t)dt (A3.19)
Z, Vi /0
where
k 254 1) [ K
f(m,k;t) = 7 Ay x 1 P.(x)x dx& .(1,t;1) (A3.20)
and
K = 21/22‘.

Making use of the definition that

0]

(k,T) = [ e'KtEm n(l,t;r)t’&Jrli dt (A3.21)
0 H

“m,n, 14
it is easily scen that the J(k,%,m) integrals can be expressed as sums of
Z . (k,1) integrals. The recursion relations and the methods for

m,n, L+ )
. . 124
evaluating these expressions are given by Barnett and Coulson . General

use will be made of the foliowing definitions.

Gn,2+% (k,1) = Zo,n,2+% (k,1) (A3.22)
Pn,2+% (k,7) = Zl,n,£+% (k,1) (A3.23)

All integrals evaluated by this method can be expressed as sums of these

G and Pn , functions. A general subroutine called PVLINT, which

n,i+:s » 2435

has ¥ and 1 as input parameters, was designed to calculate these

Gn sy and Pn functions. The program calculates and gives as

1
s s 4+75
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output the subscripted variables G(1,J), CP(I,J) where
GIN + 2, L +2) = GN’L+% («,1)
(c,1) .

A third method was used to calculate the screening-type field

CP(N + 2, L +2) = PN’L+%

gradient integrals.

iii) Method of Pitzer, Kern and Lipscomb

The integrals of concern here are the screening-type field

gradient integrals which have the form

o
(cos m ¢}P2(coseA)

Blsin m ¢ (Za,nasp,m) L59% ™ P1dr | (a3.28)

J(Zl’nlﬁl’m) B'sinm ¢

A

This type of integral has been discussed by Pitzer, Kern and Lipscomb]25

The method used in solving integrals of this type makes general use of

the Spherical Harmonic expansion given by Hobsbnlzé

m
P (coso,) r.%
n A 1T = o4n B m \
— T, 2 (n m) o PQ(COSGB) if rg < R (A3.25)
Fa R &= R
n-m ) _ L
- LD PO R M (coss ) if rp >R (A3.26)
n n-m’ r 2 B B
R 2=n A

It is easily shown that the integrals given by Equation (A3.24) can be

reduced to sums of functions of the form
NE ®
6(2,0,n,2,p) = (2; )Jot”+2 et gt + (g)j DT Pt e (a3.27)
1

where p = (Z; + Z,)R, n =ny + ny and |2 + 2, > 2 > [2; - 2,].

It must be noted that a singularity exists at g = R forn-m>2,
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which is the case for the field gradient operator [Pz(cosea)/ra3], and

an additional term —E-WS(r -R) must be added to either Equation (A3.25)

3 B
or (A3.26) to give the correct result in this type of expansion.

A function subprogram called PNINT was designed to compute the
functions G(2,0,n,2,p0). The input parameters for the program are p, n
and &, The functional output has the defining relation

PNINT (p ,N,L) = G(2,0,N,L,p).

General equations for all the two-center one-electron integrals
used in this thesis are given in the following appendicies. These
integrals are expressed as products and/or sums of the parameters AN(a),
(x,7), P

(a,8), G (x,t) and

n, o+l

G(2,0,n,%,0) which have already been discussed in this section.

n, L+



APPENDIX &
Integrals Required for Wavefunction Determination
A1l the expressions for the integrals in this and the following
appendicies are for the single Slater ls, 2s and 2p orbitals and not
for the SCF atomic orbitals ]sc, ZSC and 2pC which are linear combinations
of the Slater orbitals as givén in Appendix 1.

(a) Overlap Integrals

Defining an overlap integral as <XilXj> where X; has a screening

coefficient Z; and x, has a screening coefficient Z, then we can write

372 372 3
22, R
<h1|]S> = [A?_Bo - AoBz]
L
372 5,2 4
Zl/ 22/ R ’
<h1|2$> = [ASBO + AOB3 - A182 - A281]
8/3
372 5,2 4
2,/ 2, r
<h1|2p0> = e e [AZBO + AlB3 - A3Bl - AoBz]
8

where R is the C—H; bond distance. When Zy equals Z, the overlap has a
different form
3,3
Z7R3
<hy [hy> = [3A2 - Apl
6

‘where now Ry is the H;—H, bond distance.

(b) Force Integrals

These integrals involve the average over the force operator

= 2
Fa = cos(eHl)/r

Hy where the force is on H) and directed along the C—H;

189
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bond axis. The non-zero elements are given by the following expressions.

The screening-type integrals are
372 3
21/ 2/ R[F1o - Fo1l

L

<1s|Falls>

5,2 3,2 2
/2 R
<2$|Falls> = —— [Fyp + Fgo - 2F11]
2/3
5/2 572 3
<2s|Fal2s> = ————— [3(F1, - Fa3) + F3g - Fo3l
12
5 2 3,2 2
/ 22/
<2po|Fa[ls> = —— [FIO - FOl + F12 - F21]
2
5,2 572 3
2.2, R
<2po|Fal2s> = [2(Fz, = F11) + Fao + Fo2 - F13 - F31l
' W3
5/2 5/2 3
Z," R
<2po|Fal|2po> = - [2(Fy5 - Fp1) + Fyg + F3p = Fo1 - Fp3]
L
5/2 5/2 3
<2pn|Fal2pr> = » — [Fy10 + Fio1 + Figs + Friy - Fio1

-F1p3 = 2F115]

" 3,2 3,2
<hy|Falhy>" = 21/ 22/ Ry [Fio - Foil .

The overlap-type integrals are

372 3,2
<h;|Falls> = zl/ 22/ R [Fio- Fo1l
1
Z3/2 5/2 5
1
<hy|Fa|2s> = ———— [Fgp + Fzq - 2F1)]
2/3
3/2 5/2
z2," 7,” R?
<h; |Fa]2po> = [F1o + F12 - Fo1

and when Z; equals Z, we have

ot

" See the first footnote on page 178
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372 1,2
o) Zl/ 22/
<hj [Fajhy> = ———— 4P .
7, R, 1,147
The three-center integrals were evaluated using QCPE program #22

where the operator is Fa = Za/rg.

(c) Proton Magnetic Shielding Integrals

To determine the magnetic shielding at the proton Hj the operator
is oa = l/rHl. The non-zero integrals have the following expressions.
The only atomic-type integral is

<hp|oalhy> = 7;

where Z; equals Z,. The screening-type integrals are
3,2 372 2
21/ 22/ R
<Is|oalls> = ————— [Fpy0 - Fpo2]
2
5,2 3,2 3
2,72, "R
<2s|oal|ls> = ————— [Fp30 + Fgo3 - Fo12 - Fo21]
L3 ,
5,2 5,2 4
21/ 22/ R
<2s|oal2s> = ———— [Fgup + 2(Fg13 = Fg31) - Fooul
24
5,2 372 3
2,/725%R
—— [Fo20 + Fo13 = Foo2 - Fos31l

]

<2po]|oalls>

5/2 5,2 4
2,/%2,"R
<2poloal2s> = [Foso + Foos + Fosz + Foas = Foul
8v3
5/2_542 4~ Foiu = Fgo1 = Foi2l
277 72,7 R
<2pooal2po> = "'—“g“—“— [Fo2o + Fouz + 2(Fg13 = Fg31) - Fooz - Fooul
5/2 5,2 4
2,/ r
<2pm|oal2pm> = *-*72;—"-“ [Fouo + Foo2 + Foou = Fooo = Fouz - Fgoul
3/2_3/2 2
27" 72,7 R}

<hy[oalhy> = ———— [Fg20 - Fgo2l .
2



The overlap-type integrals are
372 342 2
Zl/ 22/ R
- [Fo20 - Foo2l

<h; |oall1s>

2
3,2 5,2 3
21/ Zz/ R
<h; |oal2s> = [Foso + Fgos = Fo21 = Foizl
43
3,2 5,2 3
2R
<hy |oal2po> = -——“7:—*““ [Foo0 + Fo13 = Fooz = Fo3il

and when Z; equals Z, we have
<h1]08|h2> = Zl(] + 21R1>e-le1 .

A1l the three-center integrals were evaluated using QCPESI

where the operator is ga = l/ra.

192
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APPENDIX 5
Diamagnetic Susceptibility
The diamagnetic susceptibility is obtained by averaging the
wavefunction over the operator ya = ri where e is the distance from

the center of mass. Using the additional definition that
1 1 = 1 1
<xplxalxl> = I xpxax!dt
then the orbital contributions to the diamagnetic susceptibility are
2y -
X(¢O) —2<1%Jxallsc>
x(4,2) = 2[x2(CE2-<2sC[Xalzsc> + SE2.<P;|xalPy>)
+ 2 (CE({1 - 36}+<hy|xal2s > - Co-<Is_|xal2s_>)
+ SE+ (1 + 8)-<hy|xalPy>) ’
+ 2 ({1 + 35?}-<hllxalh1> - 68+ (1 - 8)+<hy[xalhy>
- 2Co- (1 - 36)°<hllxallsc> + C02-<]sclxa|]sc>)]
2y . 2y - 2y - 2 . ;
By symmetry x(¢b2) X(¢b3) X<¢bu) x(¢bl). The total diamagnetic

susceptibility is

X(d) - 8[AZ(CEZ'<25CIX3125C> + SE2-<P1|X8|P1>)

+

2xu{CE+ ({1 - 36}-<h1|Xa|25c> - Co-<lsC|xal25c>)
+ SE- (1 + (5)‘<hllxa’P1>)

+ p2 ({1 + 382}.<h;|xalhy> - 68 (1 - 6);<hllxg|h2>

2 Co- (1 - 36)-<h1[xa|lsc> + C02-<]sc[xa|lsc>)]

+

2<]sclxallsc> .
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The non-zero integrals required for the evaluation of the

susceptibility have the following expressions. The atomic-type integrals

are 3/2 3/2
S
<1s|xalls> = 96 ————
(Zl'*‘zz)s
572 32
2,2
<2s|xalls> = 480—-—
\/—3—(Zl+22)6
572 52
2%
<2s|xal2s> = 960 ———
(Zl+22)7
572 572
21/ 22/
<2po|xal2po> = <2pn|xal2pr> = 960 ——m .
(Zl+22)7
The only screening-type integral is
372 372 5
2,72, x
<h1|xa|h1> = -—*—2;**— [AQBO + 2(A381 - AlBg) - AQBH]
] H
The overlap-type integrals are
372 3,72 5
2,2, R
<ls[xa|h1> = [AqBO + Z(AgBl - A183) - Aqu]
16 '
572 3,2 6
21/ 22/ R
<2s|xalhy> = [AsBy - AgBs + 2(A3B, - A,B3)
32v3
5/2 3,2 6 + 3(A4B; - A;By)]
27" Z7° R
<2p0[xa|h1> e [AqBo + AgBy - AgBy - ApBs
32

+ 2(A3B; + AyB, - A1B3z - ApBy)l

The only three-center integral has the form

3,3 3.5
1 RZZIRI Z1R;
~<hy|xalhy> = (30, - Agl + (A, - Ag/5)
ZiR]
- 2RV273 [3A, - Agl

12
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where Z; equals Z, and the integral has been transformed into a two-center

overlap-type integrals between the centers H; and Hj.



APPENDIX 6
Bond Dipolé
The dipole operator is Da = rccoseC where OC is the angle measured
from the C—H; bond axis and e is the distance from the carbon nucleus.
The expectation value of this operator gives the electronic dipole at
carbon in the direction along the C—H; bond axis. Since the dipole due
to ¢o is zero we are interested only in the bond dipole resulting from the

bonding orbital ¢b1' This orbital contribution is

D(6,2) = 2[2)2-CE-SE-<2s _[Da|Py> + 20 (CE- (1 + 8)-<2s_|Dalhy>
+ SE(<Py|Dalhy> - 36<P1lDa|h2>* _ co‘<lscha|P1>))
+u2({1 - §2}e<hy|Dalh> - 68: (1 + 8)-<h; [Da]hy>

2Co- (1 + 6)-<15C[Da|hl>)]
where

<Xb|Da|XC> = J XbDaXCdT .

The non-zero integrals required for the calculation of the bond

dipole have the following expressions. The atomic~type integrals are

372 572
3221/ Zz/
<1s|Dal2po> = ——-—
(Zl + 22)5
572 5,2
]6021/ 22/
<25|Da|2p0> = —

V3(z2,+ 2,)° ‘

- Note that <P1|Dalh2> = (<P1lDalh1> + 8<Pﬂ1|DWa|h1>)/9 where PTrl is given

in the second footnote on page 178 and Dma = rcsineccosé.
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The only screening-type integral is

Z3R"
<hy|Da|hy>

[AsBg + A3By - AgB, - AjBg] =R

1t

where Z; equals Z,. The overlap-type integrals are

3,2 3,2 &4
2772, r
<Is|Dalh1> = [A280 + A3B; - AgB, - AlBg]
8
5/2 3,2 5
Zl/ Zz/ R
<2s|Dalh;> = [A3(Bg + By) + (A, + A,)By
16/3 .
5/2_3/2 5 - Ai(By + By) - (Ag + Ay)B3l
71" 2, R . ‘
<2p0!Da[h1> = -———-—é—-—— [A,(Bg + By) - (Ag + Ay)By
1
5,2 3/2 5 + 2(A3B; - A1B3)]
Z1" Zo" R
<zpr|Dmalhy> = ———— [A,(Bg - By) + (Ay - Ag)By
32

+ AgBy - A2Bg]
where Dma = rcsineccos¢. The resulting three center integral has the
form 3 3
(3} ZlRl
<hy|Dalhy> = —— (R - V2/3-Ry/2)" (Ay - Ag/3)
2

where Z3 equals Zp and the integral has been transformed into a two-center

overlap-type integral between centers H; and Hs.



APPENDIX 7
Octupole Moment
The expectation value for the octupole moment is obtained by
averaging the wayefunction over the operator ¢a = /Tf'xcyczc. The origin
of the operator is at the center of mass and the coordinate axies have
the directions indicated in Figure 1.1. Using the previous notation

together with the identity
<xb|®a|xc> = be@axcdr
the orbital contributions to the octupole moment are

®(¢g> =0

]

¢(6p2) = 2[220m(CE- (1 - 38)-<2s_[ealhy> + SE- (1 + 6)-<2Py|0alh;>)

+

W2 (01 + 382} e<hy [oalhy> - 66+ (1 - 6)-<hy |08 hp>

2Co- (1 - 36)-<lsc|®a|h1>)] X

By symmetry ®(¢b§) = ®(¢b§) = ®(¢5i) = ®(¢b%). Thus the total electronic

octupole moment, Ig, is
€ _ 2
I3 - l‘q)((bbl)
A1l the atomic octupole moment integrals are zero. In order to
carry out the evaluation of the two-center integrals the operator, %a,
was written in terms of a new coordinate system x', y', z', where z' points

at ' H;, x' is perpendicular to the C—H; bond and in the H;CH, plane and y'

is perpendicular to both the C—H; bond and the H;CH, plane forming a right-
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handed system. The operator thus can be expressed as

3 2 : 2 2 3
da Y15[z' /3 - y' z'/2 - x' z2'/2 - y! x'/V2 + x' /V21/V3

3 cos30 sin%e cos® sin30 sin?¢cosé sin3e cos3¢
/T§ r [ C _ C C _ C + C ]
- ° 33 2/3 ' g 378

where ec is the angle measured from the C-—H; bond axis. Using this new
form of the operator the non-zero integrals required to evaluate the
octupole moment have the following expressions. The single screening-type

integral is

V1523R®
192/3

<hy|ealh;> = [3(AgBy + AyBg - AyBy - AsBy)
+ 5(A2Bg + AsBs - AgBy - A3Bs)
+ 9(A3By + AyBy - AyBz - AyBy)]

where the orbital exponents are equal (i.e., Z; equals Zy,). The overlap-

type integrals are

3 2 372 6
52, 2,/
<]s|®alh1> = [3(A08q + A185 - AqBO - AsBl)
19273
+ 5(AyBg + AsBy - ApBy - A3Bs)
+ 9(A3B, + AyB, - A;Bs - A;B,)]
2 372 7
«"’21/ /
<25|®a|h1> = [3(A085 - AIB6 - A5BO - A6Bl)
1152
+ 5(A3BO + AgBg + AyBy + AgBy, - AgB3 - A3Bg - AiB, - AqB5)
+ 6(A By + AgBy, - AyBy - AyBs)

+ 9(A3B, + AuB3 - AyB3 - A3By,)]
572 342 7
/7521/ /
<2po|dalh;> = [3(AgBy + AyBg --ALBy - AgBy)
384/3
+ 5(ABg + AgBy - AgBy = AuBg) + 6(A;Bg - AsBy)

+ 14(A3B; + AsBy - A;B3 - A3Bs) + 18(A,B, - AyBL)].
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One three-center integral is required for the octupole moment calculation.
This integral was obtained by transforming the operator to center Hj. The
integral was then evaluated as a two-center integral of the overlap-type

between the two centers H; and Ho. The fntegra] has the expression
R:
<hy|ea|hy> = /15 z?aa?[rf—_— (3A; = Ag) + R(R/V3 - R1/V2) (Ay - Ag/3)/6]
0v3

where Z; equals Z,.



APPENDIX 8
Field Gradients and Force Constants
In this appendix we are interested in finding the expectation

value of the field gradient operator Ga = (3cos?6,, - 1)/r3 | where r

H1’ Hy

is the angle measured from

Hi

is the distance measured from H; and 9H1

the C—H; bond axis. This operator gives the field gradient at the

proton H;. Using the identity
<Xb|Ga|XC> = beGaXCdT

the orbital contributions to the field gradient are

G(¢b§) = 2<lschaIlsC>
2 N
Gpp ) = 2[2?(CE2-<25_|Gal2s > + 2-CE-SE-<2s_|GalP>
+ SE2.<Py|Ga|Py>)
+ 2Ap(CE(<h1|Ga|25C> - 36-<h2[Gg{2sc> - Co-<]sC|Ga|25C>)
+ SE(<h;|GalP;> - 38-<h,|Ga|P> - Co-<lsC|GalP1>))
+ pZ(35?—(o.5-<hzleé|h?_>"< + 2<hzng|h3>)
+ 68(Cor<hy|calls > - 0.5-<hy |Galhy>)

ZCo‘<h1|Ga|lsc> + C02-<lsC|Gallsc>)]

The prime on Ga indicates that the integral gives the tensor component
along the Hy-H, bond axis. In order to get the correct tensor component
along the C-H; bond axis the integral is multiplied by the factor
(cos2a-1/2 sin?q) = 0.5, where o is the angle between the H;-H, bond and

the C-H; bond.
- 201
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By symmetry G(¢b§) = G(¢b§) = G(¢bi)' G(¢bﬁ) is given by

G(¢bi) = Z[AZ(CE2.<25ClGa|25C> - Z‘CE'SE'<25C|Ga!P1>/3
+ SE2(<P1|GaIP1> + 8<Pﬂ1‘GalPﬂ1>*)/9)

+ 2 (CE((1 - 26}+<h,|6a|25 > - §-<h;|6al2s >
- Co-<ls_|Gal|2s >)
C C

+ SE({28 - 1}e<h,|Ga|Py> + 2/2-(1 + 5)-<hzng|Pﬂ1>

+ §+<hy|GalP> + Co~<lsC!Ga|P1>)/3)

+ 12(0.5- (1 + 262)+<hy|Ga|hy> - 28+ (1 - 26)+0.5+<hy|Ga|hy>
- 264(2 - 6)+<hy|Galhs> - 2Co+<h, | Fal1s >

+ 26-Co(<h1]Ga|lsc> + 2<h2[Gg[lsc>) + C02~<15C|Ga|lsc>)]

3

The total electronic field gradient at the proton H; is given by
e _ 2y .. 2 2
6% = 6(6,2) + 6(4,2) + 3(4,2) .
The non-zero integrals required to evaluate the field gradient at

the proton are given by the following expressions. The screening-type

integrals are

372 372
<1s|Ga|ls> = 8 zl/ 22/ [- %—exp(-p) + G6(2,0,2,0,0)]
572 372
82,2,/ | |
<25!Ga[ls> F e [" g‘ eXP(‘Q) + G(2901310)p)]
3
572 572 2
8 2,72,/ R
<2s|Gaf2s> = ———— [~ §'€XP(‘D) + 6(2,0,4,0,0)]
3

ot
w

See second footnote on page 178.
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5/2 3/2
8 2,/ 2,/ R
<2polGalls> = ——————— [-exp(-p) + G(2,0,3,1,0)]
3
572 572 2
8 2, 2,/ R
<2po|Gal2s> = [~exp(-p) + 6(2,0,4,1,0)]
3/3 ,
572 572 2
8 2,2, » )
<2pG|Ga|2pG> = [—exp(“p) + G(Zao’l’;O,p) + ’5‘ G(Z,O,I-},Z,p)]
3
592 5,2 2
8 2," 2, r |
<2pr|Ga|2pn> = [6(2,0,4,0,0) - & G(2,0,4,2,0)]
3
where p = (Z; + Zy)R. Also, when Z; equals Z, we have
3
<h2|Gé|h2> = 8 21[' -]3—exp(—221R1) + 6(2,0,2,0,2Z1R1)]
The overlap-type integrals are
372
8 2,2,
<h;[Galls> = SR [ZZR(G],-1+% ) G3,—1+%)]
3/2 :
82,/ 1, ) Z,R
<h|Gal2s> = ——— 1[G, ., + Z'R°G, _, , - — (46, ., + 66, . )]
/_B_Rlz 2’O+2 2 2; 2+3% 5 ]; ]+2 3’ ]+7
372
8 2. 2,
<hy |Gal2po> = ———— [22R% (G - 6 ) -2p - 3P ]
1 o 2 1,-14% 73, - 14y 1,-14% 3,-1+%
and when Z; equals Z, we have
572
, 8 7,/
<h1|Ga|h2> = —-5 1/2 [le‘l (G]’_]_*_% - GB,']+1/2)]

The three-centre field gradient integrals were evaluated using a
modified version of QCPE program #22. The required revisions were to set
TJ(7,1) = 96.0 and TJ(8,1) = -16.0 in the subroutine LITLJT. Makfng these

changes the QCPE program was used to calculate the correct tensor components
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for the field gradient operator, which were then used to evaluate the
appropriate three-center integrals.

In this appendix consideration is given to how one might determine
the theoretical contribution to the force constant for one of the infra-red
~activ¢ T, modes of the methane molecule. The actual numerical calculations
were not carried out but the ﬁathematica] expressions that are required
have been worked out and are given here.

Considering one of the infra-red active normal coordinates, Qua’
referred to hereafter as Q,, the force constant associated with this normal

mode can be determined theroetically from Equation (1.60). Thus

2 2
’ 52V 32V,
ky = A E )o = “’*"g' + J o (X1)dt
3Q,2 3Qu“ Yo BQuZ 0
[ 3V, Bp(;l) (A8.1)
+ | dr; A8. 1
9Qu 3Qy 0

The normal coordinate Q, is a linear function of the symmetry coordinates

S3a and 54692’ hereafter referred to as S3 and Sy (see Equations (1.63) and

(1.64)and thus it is easily shown that
32V b koS, 3s, 32V

N i i N
= 3§ I , (A8.2)
20,2 i=3 j=3 9Q, 9Qy asiasj

l

and
32V, L4 3s. 3s, 32V

i 7
Tz . (A8.3)
5,2 i=3 j=3 °& Qs 35,85,

1

Using Equations (8.2) and (A8.3) in Equation (A8.1) one obtains

32V,

N

‘ + [ mp(zl)dTl ]
3532 1o 3532 0
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855 8S, 82V 32V,
N >

+ 2 (BQq) th)[as3asq ’ Jm p(xl)d"(l 0]

85y o 32V 32V,
+ (_-BQ) [—N ' + {mp(;l)dTl ]

“oas g ) asy2 ',
aVl ap(;l) ( : l*)
d Ad.
J 39Qy  9Qy T1 .

Mil1s02

has shown that the matrix transformation relating the
normal coordinates Q3 and Q4 to the symmetry coordinates S3 and S, is

given by

Q3y _ ( 0.9559  -0.0211y S3 '
() = Cologah  olehzn) (sy) - (A8.5)

The inverse transformation is

S3y _ (1.04970 0.03421, Q4

From matrix Equation (A8.6) it can be easily shown that the constants
(955/5Q,) and (3S,/3Qy), required in Equation(A8.4), are given by

3S 4 35,

T 0.16117 , FTon 1.54990 . (A8.7)

The remaining derivatives in Equation (A8.4), (BZVN/BS32), (32v4/35352),
(azvN/as3asq), (82v1/3533Sy), (aZVN/aSQZ) and (32V,/35,2), can be simplified.
Since S3 is a linear function of the internal coordinates r (see

Equation (.63)), it follows that

azvN L L 3r, or, 82VN
= z X B—S—I——a——‘l- 3 3 . (A8.8)
8S32 =1 j=1 973 °®3 9Mehy

Similar expressions can be obtained for all the other derivative in terms
of the internal coordinates r and aij' If all displacements are assumed

to be equivalent it is easily shown that
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LA §
383  08S3 23Sy 3S3 2 (A8.9)
and thus Equation(A8.8)becomes
a2y 32V 32V _
LIPS S —" (A8.10)

3532 8r12 arlarz

Similar expressions can be obtained for the other derivatives. These

expressions are

32V, heohoar, o 32V, 92V, 22V,

= I = - . (A8.11)
3532 =1 j=] 3S3 353 Briarj 3r12 orjary
2 2
3 vN i ; ; ar Baj 3 vN
853354 i=1 =1 353 BSH Briaaj
/7 P VN /7 a°V, (A8.12)
TR dr19073 R d3rydanpsy AS.
32 v, b2 ar, Ly 32V
= %
353854 |=] =1 353 334 ariaaj
32V = 82V
S22 (A8.13)
R 3r13a23 R arzaazg : :
2 2
32V i ; 2 da, aaj 32V,
3542 i=1 j=1 oSy 95y aotiaot.
22y a2y
- l"""EE" LI (A8.14)
R2 3&23 R2 3@233&14
a2v, 2 2 o Ba; 32V,
= 3§ I
35,2 i=1 j=1 35, 9Sy aaiaaj
TR a2v, -
B e e —— (A8.15)

Using the potential energy functions VN and V;, defined by Equations
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(.70)and (.71) respectively for the methane molecule, all the derivatives
required in the above expressions have been worked out in detaillzz The

final expressions evaluated at the equilibrium configuration, for the

different terms appearing in Equation(A8.m are then given by

22y
N l - (48/7 + /3) /4T R3. (A8.
3532 'y
32V, (3cos?s,, -1)
[ o Gy)dry| = .- J M Gyery + 2o ). (8.
3532 0 l‘H
azvN )
gggggz"o = - /§78/§.R . (A8.
92V, [ (3cos6, sing, cosé)
. 1 H H
[ m p(;l)dl’l = *—[ 1 3 1 p(;l)d”fl
0 2 I'H
1
sind,, cos¢
- ] I Hl p(;l)dTl . (A8.
V2R r2
, Hy
azvN
= 5/3/16v2 R3. (A8
85,2 1o
22vy 1 (35in26H cos?¢-1)
J p(Xl)dTl = - i‘(( 31 p(xl)d’fl
3542 0 I"H
. 1
cost ’
- [ o Gdany + 2o (ny) (n8.
r
Hi

Substituting the expressions given in Equations (A8.16) to (A8.21) into
vKuation(AS.h)the theoretical contributions to the force constant ky can
be determined. However, the field gradient integrals appearing in
Equations(A8.19)and (#8.21) have not been evaluated and thus no numerical

values have been tabulated -in this thesis. The theoretical expressions,

16)

17)

18)

19)

.20)

21)



208

having been worked out, are given in this appendix for future reference.
If all these expressions from (A8.16)to (A8.21) were evaluated for the
derived one-electron density distribution for methane and if the
experimental force constant for this T, mode was obtained then the
theoretical contributions to the force constant for this infra-red
active mode could be determined in the same manner as was done in this

thesis (see page 77 ) for the breathing mode force constant.



APPENDIX 9
Equations and Integrals Used in Kinetic Energy Determinations
The orbitals of interest in this section are Slater-type orbitals
defined as

x(n,2,m) = (2)™ 20 n) 117 VAM s (o) (A9.1)

2
where S, m(e,¢) are the normalized real spherical harmonics given by

1/2
PZ (coso) (A9.2)

[ 2em ] (Q—lm!)!']/z

Sy |m|(9,¢) ; (a ) Piml (cos8) cos|m|¢ (A9.3)
: 4 L+im])! ]
1/2
S!L-|m|(6,¢) = zi” . Ez';”‘i;i P,!v'"| (cost) sin|m|o (A9.4)
’ 7 g+im| )t

and the Piml(cosO) are the associated Legendre polynomials. In this appendix
expressions are given for the operation of the operators V2 and Vi on the

Slater orbitals Xi where

1 32 32 2
V2 = - 5_( + + 9 ) (A9.5)
ox_ 2 a3y 2 3z 2 :
a
and
1 982
Vi = - -i_ (A9'6)
3282

Also expressions for the expectation values <Xi|V§[XJ>, which were used to

209
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calculate the parallel component to the kinetic energy in a diatomic
system, are listed. Using this component and the total T, the perpendic-
ular component is obtained.

It is easily shown]28 that

n-2
v2x (n,o,m), = - Ef.léﬁlff]/z n-1 _ anQ_
s Xy a
2 (2n1)1/2 @ -
(n+2) (n-2+1) n-3 —ar
+ 5 ra ] e a S,Q,,m(ea’d)) . (A9.7)

o

Using this equation the operation of V2 on the Slater orbitals gives

7/2 _
V2 1s> = - & [1 - 2/(ar )] e %"a (A9.8)
2/ @
9/2
v2|2s> = - [r - b/a + 2/(a?r )] e %'a (A9.9)
2/;; d a
9/2
v2|2po> = - [r - bk/o] cose_e-ara (A9.10)
2/r @ N
9/2
V212pﬂ> = -2 [r - L/oa] sind cosd e %, (A9.11)
2f7r— a a
11/2
v2|3s> = - o "2 [r2 - 6r /o + 6/06%] e %2 (A9.12)
6‘/—5F a d
11,2 ;
/
V213p0> = - 9____£Z [r? - 6r /o + 4/02] cosb e %4 (A9.13)
2/TEr a a a
11 /2
v / ) .
vZ|3pm> = - g~—-£z [r? - 6r /o + b4/a?] sin® cosd e arg (A9.14)
2/TEm a a a
11/2
v2|3do> = - ¢ [r2 - 6r /a)(3cos?6 - 1) e *'a (A9.15)
2V 18n a a a
11/2
v2|3dr> = - E— ‘/E-[rz - 6ra/a] sinSacoseacos¢ e %a (A9.16) -

2v31
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13/2
o

-[r: - 8r§/a](5cos36a - 3cosd ) e "'a (A9.17)

2V1807

13/2
S 3 - 8r§/a] sin%AScoszea - 1)cosd e

2/ 1207

Vzlhfo>

o

It

V2| bfr> Fa.(r9.18)

The Expressions (A9.8) - (A9.18) were used to evaluate the
contributions Xi(;)vzxj(;) to the function L(?;)given in the thesis.
These expressions could also be used to calculate the kinetic energy
integrals <Xi|vzlxj> but in the present work QCPE8] program #29 was
used to evaluate these one- and two-center integrals.

Considering the operator Vi it can be shown that

5 o1 92
VZX(ns*Q’,m)a = ’2" R 2 (n,l,m)a
) z
a
n+1/2 -
= - %_(2&) 1/2 [{n-1301 + {n-3} coszea)rz 3
(2nt)
_ » a1 2 n-2 2 2 n-1, -ar
all + {2n-3}cos ea) r, ~ +acos o.r, Je asl’m(ea,¢)
n-2 n-1 ~or 3
+ 2cosea({n-]} ry - ar ) —— sz’m(ea,¢)
oz
a
sl e, 22 o (g 4)) (A9.19)
a 5z 2 %M a’ ) )
a

Using this equation the following expressions are obtained for the operation

of Vi on the Slater orbitals.

3/2
v2|1s> = - = [e2cos26_ - a1l - cos26 )/r le *'a (A9.20)
a a’’a
2V
5/2
V§|25> = -2 [azcoszear - a1l + cos?s_)
2/3'77 a a

+ (1 - coszea)/ra]e—ara (A9.21)



V§|2p0>

V§|2pﬂ>

v§|35> =

V§I3p0>

vZ|3pm>

V§|3do>

V§I3dﬂ>

v2|bfo>

Vilhfﬂ>

]

]

i
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ar

2 _ - 2 “Ta
afcos®e r_ a3 - cos Sa)]coseae (A9.22)

(o4 2 2 2
- - o 5} - - ¢l
[accos a s o (1 cos a)]

sineacos¢e—ara (A9.23)

2x’lf57r-2 [azcosZGari - a(l + 3 cos?® Al 2]e™ " (h9. 24)

Ze 2 _ 2
23 a(3 + cos ea)ra

[02cos

+ (3 - coszea)]coseae_mra (A9.25)

[02cos26 r2 - a(l + cos20 )r
a a a’'a
2 . -ar
+ (1 - cos ea)]s¢n9acos¢e a (A9.26)
72 o(-3cos"®  + 12co0s26 - 1)r + 4
a a a

[a2c0526 re - ]
6/21 aa (3c0529a - 1)

"ara

(3c0526a - De (A9.27)

o /2— 2

2 2 2
a ¢l -0 - 0
[a“cos 2 s (3 - cos a)ra]

sineacosﬁacos¢e—ara (A9.28)

[62cos20 3
a a

‘2V]80ﬂ

tcosb (SCOShe - 26cos?e  + 9)r2 + 12cosf r
a a a a a a

3 ]

(5cos ea - 3cosea)

(5c0539a - 3c059a)enara (A9.29)
9 42
o/

- [0?cos?0 3
a a

2V120m

a(5cos*8 - 22cos29  + 1)r% + 8r
a a a

a]

(560526a -1
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—ara

(A9.30)

. 2 _
ssnea(Scos o, 1)cosge

The Expressions (A9.20) - (A9.30) were used to evaluate the

integrals <Xilv§|xj>’

screening coefficient

" following expressions.

as <xa|V§|xé>1, are

]

<Is[V§|ls>1

'

<2$!V§|]S>1

<2s|v2|2s>;
<2P0‘V§|2P0>1

<2pﬁ|V§l2pﬁ>1

<35|V§i]s>1

]

<35[V§{25>1

<3SIV§|3S>1

<3do|V§|ls>1

I f X; has a screening coefficient Z; and Xj has a
Z, then the non-zero elements can be given by the

The one-center or atomic integrals, represented

5/225/2

(Zl+22)3

3V3(21+2,)"

9(z,+2,)°

82 7,
3V5 (Z;+2,)°

15(2,+2,)7

i

<3dclvil25>1 =

5/225/2
(227 - Z,)

5/2 5/2
2, z, R )
(-27 + bzy2, - Z5)

48 7/2 7/2
5(2;+2,)°
162,720
5(Z1+Z,)°
7/2 5/2

(z, - 25)

8/_ Z7/2 5/2
3f"‘(zl+zz)6

742 742
647 1/ 2/

(-2% + 62,2, - 372)

2 2
(-2 + 3272, - Z3)

772 52
162, 2,/

(21 + 522)
152 (Z,+2,)°
792 52
162,

(zy + 62,2, - 1573)
1578 (2,+2,)6 1 ?
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772 972
64z, 2,”
3d0|v2]355) = ————— (2} - 2,)
/Eg (Zl+22)7

92 92

701z, 2,/

<3do|V§|3do>1 =
21(2,+2,)7

9 /2

: ]9221/ 22/2
<3dn|v2|3dm; = ————
. 7(2,+2,)7
9,2 742

322,72,/
<hfo|vZ|2po>) = - ————— (Z; + 7Z,)
z 7/5'(21+22)7

1172 1142
5888 21/ 2, /

<bfg|v2|Lfo>y =
z Li5(21+22)9

9,2 72
64z, z,”

<4fﬂlV§lZpﬂ>1 = (Zy + 7Z5)

71/3_0— (21+22)7

11,2 112
17922, 2,7/

<4fﬂ[V§lhfﬂ>1 =
15(Z,+2,)°

In the above list the integrals involving the 3po and 3pm orbitals
have been omitted since they were not required for the calculations carried
out in this thesis. Because of the hermitian properties of the operator Vi
it must be noted, for example, that the integral <3dG|V§|]S>1 is equal to the
integral <]51V§I3d5>1~ This property was used to verify the expressions
listed above and can be used to obtain the integrals of this form that are
not listed.

Since the operator Vi defined on center A in a diatomic system as
shown in Figure A3.1 can be equally well~represented by the operator Vi
defined on center B the screening-type two-center integrals are easily
reduced to the atomic integrals already listed above. The overlap-type

integrals, defined as <Xb[V§]Xa>2 where Xp has a screening coefficient Z;



215

and X has a screening coefficient Z,, have the following expressions

where again integrals involving 3po and 3pwm orbitals have been omitted.
372 572 2
Zl/ 22/ R

1
1

<1s|v2|1s>, [Fi12 + Fio1 = Fi10 - Fios

L
Z,R
+ —— (Fg10 + Fg32 + 2(Fpa1 = Fo12) = Fpo1 - Fo23)]
2

<2s|VZ|1s>; = = ————— [F155 + F1oy - Fia0 = Froo + 2(F111 = F113)
8/3
Z,R
+ —;”'(Fozo + Fooo *+ Fouz + Foou

+ 2(Fo31 + Fo13 = Fgu1 - Fos3) - 4Fgop)]

5/2 572 3
AT
<2S|V§|25>2 =" T [Fiz0 *+ Fro2 - Fi2z2 - Frou + 2(F113 - Fi1y)
2
Z,R

(Foyo + Fooo + Fouz * Foou + Fgop + Fooy
2 + 2(Fgs1 + Fo1s - Fo11 - Foss) - 6Fg2o)
2
22k :
+ —— (A;Bg + AyBy + ApBy + A,B,
L

+ 2(A3By + AjBy - A;By; - A3B3) - LA,B,)]

5,2 5,2 3
2,772, x
<2po|V2|1s>; = = ~————— [F15) + Fi1y + Fio1 = Fiio - Fios = Fiz3
Z,R
+ —— (Fgio + Fop1 + Fgoas + Fo3u = Foo1 - Fo12 = Fozz - Fous)]
2
5/2 542 3
. 2,2, R
<2POIV§|25>2 = = —————— [Fy10 + F1o3 * F123 = F101 = F121 = F11y4
/3
Z,R

- —E“'(F030+ Foio + Foiu + Fosy = Fgos = Foo1 - Fou1 - Fous

5 + 2(Fg21 + Fg23 - Fo12 - Fo32))
Z5R
+ —— (A;Bg + ApBy + AyB3 + A3By - AgBy - A1By - A3B, - AyB3)]
4

5/2 7,2 4
21/ 22/ R
<2po|vZ|2po>; = - —-—‘Fg~"—'[F112 + Fro1 + Fi3o + Fios
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= Fr10 - Fro3 - Fi23 - Fi3y

- 2(/\180 + A283 - A081 - A3BZ)
Z,R
+ —— (Fg10 + Fous - Foo1 - Fosu + 2(Foz1 + Fozu - Fo12 - Fou3))l
2

5/2 772 &
Zl/ 22/ R
<2pn|v2|2pr>y = - ————— [F131 + Fips + Fiyg + Fi1y - Fi3o
32
- Fisy = F101 - Fios

+ 2(Fy32% F103 - Fip3 - Fi12)
Z,R

+ ——— (Fg30 + Fosz + Fous + Foo1 = Fgos - Foas - Fosuy = Foig
2

+ 2(Fou1 - Foin) + 3(Fgay + Fo12- Foyz - Fgop)
+ 4(Fpp3 - Fp3z))]

772 572 4
/i'zl/ 22/ R

<3s|vZ[1s>, [Fi32 + Fi03 - F130 - Fios

L 81/-5_
+ 3(Fypy + Fy1y = Fro3 = Fri12)
Z,R
~—— (Fg3¢ *+ Fosy = Foos - Foas + 2{(Fgy1 - Fpiy)
2

+ 3(Fg1p + Fo3u - Fgo1 - Fous) + 6(Fgos - Fg3a))]

772 572 4
/2 zl/ 22/ R

<3s[v2|2s>, [Fi30 + Fios - Fi32 - Fio3

48/15
+ 3(F1p3 + F132 = F1p1 - Fr1y )
Z,R
- — (Fosg + Fou1 + Foag + Fgso = Fgos = Foiu = Foos - Fozs
2
+ 3(F812 + Fosy - Foo1 = Fous) + 8(Fpas - Fps2))
22R

+ —%— (A3Bg + AsBy - AgBz - AyBs + 2(A,B; - A1By)
I
+ 3(AyBy + A3By - AyBy - AyB3) + 6(A;B3 - A3By))]

742 72 5
V2 zl/ 22/ R
<3s|v2]2po>, = - [Fiys + Fios - Fizo - Fiu1 = Fios = Fi1e
9675

+ 3(F1p1 + Fios = Fri1o = Fi3y)
+ b(Fryy + Fr3p) - 6F1p3

- 2{A3By + AyB; - AgBs - A1B, + 3(A1By, + ApyBy - AyB; - A3B,))
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<3S|V§|3§>2

<3do[V§|2po>2
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Z-R
1 .
—;"'(Foso + Fogs = Foos = Fosze + 3(Fouy + Fpso + Fopo

+ Fous = Foiy = Foos = Foo1 - Fosy)

9(Foa3 + Fosy - Foaz = Fous))]
72 72 5
2,72, R
- —— [2(A By + 2A1By - AyB, - 2A3B;)
720
Z,R

“;*‘(Foso = Fooe + 3(Fouo + Foga = Foou - Foze)
6(Fgs1 + Fo1s + Fozs = Fois = Foap = Foss)

+ IS(FOZH - Foqz))

22R?
— (AyBy + AgBy - AgBy - A,Bg
L .
2(A5By + A1By + A3Bg - A;Bs - A3By - AgBg) + L(A,B, - A,B,))]
772 572 4
zl/ 22/ R
== ————— P50 + Fygs + 3(Frg; + Frpp + Frpy + F
- 3 01 121 114 034
L8/2

= Fi10 = Fip5) - 4(Fyg3+ Fi3,)
Z,R :
*;"(Foo3 + Foos = Fozo = Foso + 2(Fgyy = Foup)

3(Fo10 *+ Foa1 + Fous * Fosy = Foo1 = Foi12 = Fosy = Fous))]
7,2 572 &
2,72, x
= [ -Fi30 = Fios + 3(Fy10 + Fias = Fipn
L8/6

- Fia1 - Fyyy = Frgy) + B(Fyg3 + Frgp )
Z,R
';"‘(Foos -~ Fosg + 2(Fg39 + Foso = Foos — Fos)

3(Fp10 *+ Fosy - Foo1 = Fous) + B(Fpos - Fpgp)

6(Foo1 + Fous - Foyo = Fosy) + 7(Fgyy = Foua))

72R2 _

""2"" (A083 + AZBS - ASBO - AsBz + Z(AIBL{_ - Aqu)
4

772 742 5
1/ Zz/ R
= = ————— [F30 + Fyy; + Figs + F1g = Frap = Fipy
96/2
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+ 3(Fpyp + Figy + Fiys + Fygy - Fr1g = Fisg)
- b(Fyo3 + Fiy3) = 2(AgBy + A;By - A3By - A4B
+ 3(AyBy + AyB3 - AgBy - A3B,))
Z,R
+ ‘;“‘(Foos + Fose - Foso - Foes + 3(Fg10 + Fogs + Fosz
+ Fous + Foiy + Fgos = Foo1 ~ Fose
- Foas = Fosy = Foy1 = Fosz)

+ 6(Fgp1 + Fgsy - Foio = Fous))]

7/2.772 5
;" z," R
<3do|v2|3s>, = = ————— [2(AyB, - A,By + 3(A,By + A,B, - AyB, - A,B,)
z 288/5
+ Li(/—\lss - A3Bl))
Z,R

'.—;—'(Fooe - Foeo *+ 9(Foo0 + Fogu - Fooz = Foug)
+ 12(Fg3, + Fos3 + Foi1s - Fo13 - Foss - Fgsp)
+ 15(Fgou = Foup))
72R? :
+ —%—-(Aosq + ApBg = AyBy - AgBy + 2(A3B; + AyBy + AsBy
+ A1Bs - AjB; - A,B, - A3Bg - AgB;)

+ 3(ABy + AgBy - AgB, - ALBg))]

772 72 5
2,772, R Z,R
<3do|v2]3do>, = - [— (Fi16 + F1y1 = Froy = Fisg
576 2

+ 6(Fy30 + F1o7 - F1a1 = Frag) + 7(Fysp + Figs = Fryy -
+ 9(Fro1 + Fise - Fi1o = Fiuy) + 10(Fip3 + Fiay - Frap -
+ 15(F11, + Fiys = Figz - Fisy))

+ ZEE?(F072 + Foso = Foo7 = Foos + 2(Fggy - Foyg)

+ 6(Foo3 + Fouz = Foso - Fozu) + 9(Fg10 + Fooe - Foou
+ 13(Fg1y + Fozg = Fou1 - Fogs) + 14(Fgps - Fyso)

+ 20(Fou3 - Fosu) + 2h(Fopy + Fogs - Fo1o - Fose)

Fiys)

Fi25)

- Fog7)
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+ 25(Fg32 + Fosy - Foz3 = Fous))

L7,R(AgB3 + AyBs - A3By - AsBy + 2(A1By - AyBy)

+ 3(A1Bg + ApBy + AyB3 + AgBy - AgBy - A;By - A3By - AyBs))
+ h(AgBy - AyBy + 3(A,By + AyB, - AgBy - AyBy)
+ A(AlBg - A3Bl))]
772 772 5
21/ zz/ R

—— [F135 + Fi10 + Fiy1 + Fisy + Fius + Frig

<3dﬂlV2|2pﬂ>2 = - —
2 32/6

- Fi30 =~ Fi12 = Fig91 - Figs - Fi136 = F11y

+ 2(Fyp3 = Frys3)
Z,R
+ —— (Fo30 + Fou1 + Foo1 + Fpas + Fous + Foes + Fgas + Fose
2
- Foos - Foiu - Foio - Fosz2 - Fosu - Fose - Fosz - Foes
+ 2(Fgyo + Fosy = Fgo1 - Fous))]
7,2 9,2 6
2:77°2,7°R
<3dun|vZ[3dn>y = - ————— [Fi1g + F114 + Frap + Fio1 + Fray + Fisg
192
+ Fip7 + Fi59 - Fi9s = F130 - F123 = Fi1p1
- Fios = Fi3e - Fiy7 - Fiys
+ 2(Fyo3 + Fiys = Fi1p - Fisy)
- 2(A3BO + A1By + AgBy + AyBjy + AsBy + ApBs - ApBg - AyB,
- A1By - A3B, - A,Bs - AsB,)
Z,R
+ —— (Fo30 + Fgo1 + Fyve + Fouz = Foos = Foro - Foe7 = Fo7u
2
+ 2(Fou1 + Fo3g = Foiy - Foes)
+ 3(Fg12 + Foo3 + Fosy + Fges - Foz1 = Fosz - Foys = Fosg))]
9,2 572 5
2,2, r
<hfo|v2|1s>, = - — — [F13y - Fr1p + 3(Fy30 + Fros - Fiu1 - Fige)
192/5

+ 5(F136+ F101 - F110 - Fius)

+ 6(F11 - Fizs) + 8(Fiys = Frp3) + 9(F11y - Fi32)
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<hfo|V§[3s>2

220

Z,R
—;* (Fous * Foa3 =~ Fosu = Fg3a + 3(Fgsp + Fogs + Foos

+ Foiy - Foos - Fosg = Foso = Foul)

L(Fous + Fgp1 - Fosy = Fgi2) + 5(Fg10 + Fose = Foo1 = Foes))]
9,2 5,2 5
2, 2,"®
= = ————— [Fy12- Frsy+ 3(F1y1 + F116 - F130 - Figs)
192 ‘15

+ 5(F119 + Fius = Fio1 - Fise)

6(F125 = F1p1) + 8(F1g3 - Fiy3) + 9(F132 - Fiyy)
Z,R
“;—'(2(F030 + Fose - Foos = Foss)

3(Fog1 + Foos - Fo1g = Foso) + 5(Fg10 + Foss - Foo1 - Foes)

9(Fgo1 + Fous = Foiz = Fosy) + 10(Fgu3 + Fop3 - Foszy = Fo3z)

-15(Fgsp + Fo1y = Fou1 - Foas))

252
EEE.(Azsg + AyBs - A3By - A3By + 3(AsB, + AgB3 + ApBj

+ A1By, - AyBgs - A3zBg - A3Bg - AyB;)

L(A,Bs + AyBy - AsBy - A;By) + 5(A;By + AsBg - AgBy - AgBs))]

9,2 742 6
272, x

= = ————— [Fy3y + F1p1 + F1y4 = Fy23 - Fiys - Fisg
384/5
+ 3(F1p5 + Fy30 *+ Fios = Fi32 - Fisp = Fip7)
L(Fi1, =~ Fiys) + 5(Fip1 + Fiy7 = Fii0 - Fiseg)
8(Fisy - Figs) - 2(A B3 + A;By - A3By - A,B,
3(AsBy, + AgBs - AyBs - A3By) + 5(A;By + AyBs - AgBy - AsBy)
Z-R
-%-(3(Fo32 + Fpos *+ Fo7y + Fous - Foz3 - Foszo - Fouy = Fosy)
5(Fg10 + Fos7 = Foo1 - Foye) + 6(Fp1u + Fogs - Fou1 - Fose)
9(Fo21 + Fosg - Foi2 - Foes))]
9/2 7,2 6
/E'zl/ 22/ R
= - [2(3(AsB; + AgBy, - AyBs - AyBg)
5760




11 (Fgps + Fogsz = Foso = Foszg) + 13(Fous
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5(AyBg + A3Bs - AgBy - AsBz) + 9(AyBy + AjB3 - ApBy - A3Bp))
Z,R
— (3(Fg71 + Fgos - Fo17 - Foeo)
2
+ b(Foou + Fo73 - Fouo - Fo37)

13(Fos1 + Foug = Fo13 = Foes) + 15(Fga0 + Fos7 - Fooz - Fo7s)
2L(Fggp + Fo1s = Foae = Fos1) + 33(Foss + Foou - Fg3s - Fouza))

2 2
EgE-(A3Bl + AqBG - A183 - A6Bq + 3(A682 + A7B3 + Aqu + AlBS

AyBg - A3By - AyBg - AsBy) + 4(AgBs + ApBy - A3Bs - AuBy)

S(AZBO + A587 - AoBz - A7B5))]
9,2 7,2 6
2.7°2,7°R 2,
= - [ (3(F127 + Fi1s + F1g1 = F150 = Fiu1 = Fig7)
1152/10 2

+ L(Fisy - Fi1u) + 6(F1s2 - F116)
7(Fiy7 - F121) + 9(Fiy3 - Fips) + 13(F123 - Frys)
14(F130 - Fi3g) + 15(F101 + F1s8 = Fi10 - Fig7)
17(F1os - Fies) + 20(F136 - F132) + 22(F115 - Fise)
29(F1gs = Fio3))

2.2
Z5R
—%—4(3(F050 + Fog1 + Fgp7 + Fo3s - Foos - Fo1g - Fo7z - Foss)

+

Fous = Fosy — Fosy)

-+

14(Fgo3 + Foss - Fosp = Fgsg) + 15(Fo10 + Foze - Foo1 - Fos7)

Fose - Fo23 - Foss)

+

25(Fo1y + Fozy = Fou1 - Fou7) + 35(Fgaz
37(Fg21 + Fog7 = Fo12 - Foye))
Lz,R (AyB3 + AyBg = A3By - A3B, + 3(AsB, + AgBy + AgBj

+ A1By - AyBs - A3Bg - A3By - AyB)
4(AB; + AyBs - A1By - AsBy,) + 5(A;Bg + AsBg - AgBp - AgBs))
L(3(AsB; + AgBy - A;Bs - A4Bg)

5(AyBg + A3Bs - AgBy - AsBs) + 9(AyBy + AyB3 - ApBy - A3By))]



<4folv§|4fo>2
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9,2 9,2 7
Zl/ 22/ R

[12(3(AgBy + AgBs - ALBgy - AsBg)
23040

4(A1B3 + AsBg - A3By - A3Bs) + 5(ApBp + AuBg - AgBy - AgBy))

Z,R(9(AsBg + AyBy = AgBg - A7B3)

33(A1By + AgB3 - AyBy - A3Bg) + 39(A3Bp + AyBs - ApB3 - AsBy)
42(AgBs + A7By - A3Bg - AyBy) + 45(A1By + AgBy - ApBy - A7Bg)
66 (A2B; + AsBg - A1By - AgBs))

Z,R
—— (9(F136 + Fr1g + Fru1 + Fisp + Fi7p + Fiog - Fius - Fisg

5 _

Fio07 = Fies - Fio7 - Fi3g) + 25(F101 + Fig9 =~ F110 = F17g)

27(Fy3y + Fisy = Fips = Fiys) + 30(F130 + Fisg - Fi21 - Figg) -

39(Fios + Fies - Fiiu - Fizu) + 55(F112 + Fi76 - F1o3 - Fig7)
57(F123 + Fiy7 - Fraz - Fisg))

Z3R?

227 (9(Fgso + Fous - Foos = Fogy )

+

18(Fos1 + Fozs = Foie - Foss) '+ 25(Fp10 + Foss - Foo1 - Foos)

-+

30(Fgo3 + Fpgg - Foso = Foeg) + 48(Fgos + Fo7y = Fosz - Foy7)

-+

69(Fo14 + Fggs - Fou1 = Fgsg) + 80(Fgay + Fo7s = Fo12 - Fog7)

84(Fous + Fose - Fosu - Fogs)
112(Fg32 + Foe7 - Fo23 - Fove))]
9,2 7,2 6
Zl/ 22/ R

= - ————— [F197 + F150 - 2(Fy23 + Fi3y + Fi3¢ + F121)
256v30

3(F112 + Fiys) + 5(F110 + Fiu7 = F1g1 - Fise)

6(F130 + F127) + 7(F1y1 + F116 - F1os - F1s2)

9(Fiuz + Friy) + 10(Fy3p + Fias) + 11(Fyg3 + Fisy)

Z,R

~‘5'"(*7005 + Foo7 = Fosg = Fo7o + 2(Fgas5 + Fg1g = Foso = Foe1)

L(Fosu - Fous) + 5(Fou1 + Fous + Foo1 + Foo3 + Foga + Fog7

Foiu - Fosu - Foio - Fosz = Fose - Fove)



<4fn|V§|3dw>2

<4fﬂlvilhfﬂ>2
+

-+
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6(Fg30 + Foyy - Foos = Fouz) + 8(Fo1p + Fose = Fo21 = Fogs))]
Z?/222/2R7
= = e [Fyp5 + Fyu3 + F127 + Fy1 + Fisg + Fig1 + Fyo7
1536v5

+ Frig+ 2(Fyiu+ Fisy) + 3(F1a1 + Fiu7)
bFy3y + 5(F110 + Fisg - Fius = Fio3 = Fip1 - Fig7)
6(Fi30 + Fiszg) - 7(Figst Frga) + 8(Fizg + Fi3z = Fr12 - Fisg)
11(F103 *+ Fig5) .
2(A1By + ApBg + AgBy + A1Bg - AyB - AgB, - AgBg = AgBy
2(A,Bs + A3By - AsBy - AyB3) + 3(A1B, + A Bs - AyB; - AgBy)

5(AgBy + AsBg - AjBg - AgBs) + 6(A3By + AgBs - AgBs - AgBg))
Z,R

.— (Foos + Foszs = Foso - Foss + 3(Fosa + Foes + Fois + Foo7

2
- Fozs - Fose = Foe1 = Fo72)

5(Fgo1 + Fg7g = Foio = Fps7) + 6(Fg30 + Fogs - Fooz - Fossg)
9(Fosy + Fous - Fous - Fosy) + 11(Fouy + Fozu = Fory = Fouy)
13(Fgo3 + Fg1o + Fgsg + Foe7 = Fosz = Foz1 = Foes = Fove))]
9,2 9,2 7
2.7°2,"R" 2R
= - [ (Flg1 *+ Fi1s - Fiyg = Fioo
30720 2

11 (F1s50 + Fip9 = Fiy1 - Frsg) + 12(F1g7 + F172 = Fiig = Frgs)
20(Fyy3 + Fy3g = Fisp = Fia7) + 25(F110 + Figg - Fig1 - Fivs)

35(F121 + Fisg = Fi3o = Fiug) + 42(Fysy + Fios - Fius - Frsy)

+

46 (Fy1y + Frgs = Frzy - Figs) + 60(F1gs + Fi7g = Fi1p = Figv)

68(F132 + Fiy7 = Fia3 - Fisg))

Z2R? :

—%—‘(F070 + Fpgz = Foo7 = Foog + 2(Fgg1 - Fpis)

11(Fogs + Foug = Fgso - Fooy) + 23(Fg16 + Fo3g = Fos1 - Fos3)
2hk(Fgp7 - Foz2) + 25(Fgg1 + Fpge - Fo1o - Foos)

35(Fgs0 + Foos - Fgos - Fogo) + 40(Fgg3 - Fpae)
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66(Fos2 + Foyy = Foas - Fou7) + 81(Fou1 + Fogs - Foiy - Fosg)
8L (Fous - Fosy) + 85(Fg1o + Foyg = Foo1 - Fogy)
110(Fo3y + Fgsg - Fous - Foes)
128(Fgp3 + Fggz = Foszz - Fove))
8(AgBg - AgBg + 5(AgBy + AyBg - AgBg - AgBy)
6 (A By + AgBy - ApBy - A,Bg) + 8(AsBs + A3By + AjBs - A3Bjg
- AjB3 - AgBy) + 11(A;B, - AyBy))

822R(A085 + A287 - ASBO - A782 + Z(AZBS + AIBG - A582 - AGBI)

+

k(A3By - AyB3) + 5(AgB3 + AgBy + AyBy + AyBs + AgBy + AgB;
- A3By - A1Bg - AyBy - AsBy - A3Bg - AyBg)

6(A380 + AyBy - AgBg - A487) + 8(A182 + AgBg - ApBy - A685))]

The expressions given above for these two-center integrals can be

checked by considering the hermitian property of the operator Vi. For

example consider the integral <3S|V§|2p6>2. If the 3s orbital has a

screening coefficient 5.37670, the 2po orbital has a screening coefficient

3.11196, and the bond length is 2.132 a.u. then the appropriate expression

given above yields a value of -0.18763329 for this integral. But because

of the hermitian property of the operator this integral could equally well

be evaluated by
the integral in

integral in the

<2PGIV§|35>2

considering the integral <2po[V§(35>2. The expression for
this form is different from that listed above for the

reverse form and is given by
572 772 4
/E‘zl/ zz/ R
= - [2(A,By + A;B3 - AgBy, - A3Bj)

48/5
ZoR
~;—-(Foqo + Fo15 - Foou - Fosy + 3(Fo20 + Fo3s - Fog2 - Foss)
- + 5(Fo31 + Foou - Fo13 - Fouz))
Z7R

—— (ABy.+ AgBy + ApB, + A3Bs - AyB, - A;B3 - AyBy - AsB3)]
L
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If the orbitals have the same screening coefficients as before
then this new expression yields a value of -0.18763329 for the specified
integral. Thus these two expressions, which give identical results for
the integral, are consistent and correct. All the expressions listed
previously were checked in this manner. The remaining expressions for
the integrals in the reverse order are not listed here but are given in
a research notebook for future reference.

A1l the expressions that have been listed for the two-center
overlap-type integrals are valid only if Z1 is not equal to Z2. |If Z1
equals Z, which is the case for homonuclear diatomic molecules, new
expressions must be obtained for certain integrals. These new expressions
use the Barnett-Coulson zeta method instead of the Kotani "F" method.

The required expressions are

5/‘2
) 277 Z,
As|v2l1e>p = - —— 020, 0 = Py o)+ — Py 10 + 2P 1))
3Z1R Z,
572
, zzz/ » -
<25]v2]2s>, = - - 2(6g g4, = Sy ga, * Z1R (G0,0+% - G2’0+%)
- 6Z1R(6) 4 - 63 ,)/5)
Z;
- — 2n2 -
- (l;((;o’w/2 + Z2R GO’] X ZZlRG]’2+1)
1
2n2 -
+ 2(::,2’3+12 + ZZR G2,1+1 zle(zel,erl/2 + 3 2+1)/5))
Z
— 2
+ = (Go,h+% + ZIR%Gy 5 221RG1’3+1
1
2n2 - X
+ 2(Gz,h+g * IR, o 221R(2C1,3+% 365 3+l)/5))]
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7/2
27, Zy
2 = e e J—
<2po|v2|2po>, = R1/2 [R(2P3’]+12 IZPI,HJ/2 + 7 (3 124 3’2+1/2))/)
1
(-28p 24 T 50P2’2+1/2 + 8Pl*’2+1/2
Zy
+ ;—-(7 0,38 T 20Py 5+ 8Py 55 ))/(3521)]
1
Z7/2
2
<2pu|v2|2pr>, = - — [- & p LI §

zzﬁ[ 15 70,245 * 21 P2,205 7 35 Pu,2my
1

2 2 8
¥ ;:‘(15 Po,30: T 27 P23 T 35 Py 3]

772

hz,’ -
2 = e e -
FslVl390 = = s (2P s, IRy, - 21RY) )
1
22 2p2
"= (2(p, by * Py ¥ Z]R—(f>0’2+J/2 + P2,2+14)
1
- 221R(7P],3+% + 3P3,3+%)/5))
22
2p2 -
+22 (05+1 + Z%R P0,3+«1/2 ZZIRP],LH%
2p2 -

+ 20y o + ZIR Py 3y = 20R(2P) 4y 4 3P3 ) /5))/3]

2" 7

2 2 88 56 336
2 = = e [ - ==
<3do]v2| 3do>, = o T3 Po b T T Pahey T TS Py
1}8 2
*77 %6 l++1/)/z

+ 2RZ (- hh P 2

5 Po 25 T 7 T2, T35 Py ga)
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LR 172 52 24

7o U Py s T TE P 3 T 63 Ps 3!

z; LY 141

32 552 1 2

72 (705 Po,se 2T Po,ses 385 Puses T 73T PeLs) /A
2 _ |
2, b 22 24

2R (7E Py 3 * 5T Py 3 * 38 Puy 3ey)

4R (24 L2 24 1)

] 5 )
8(;§‘P2,3+> *RPo kT T Py o) ]
9/2
= - EEE~][R - 355 + 22 p - p
3727 35 1,3#5 0 RS T3.345 0 63 5,34
lA
Z
2 _ 8
Pl AW R AR s AR
1 12 28 232 16
77 55 Po bk * 757 Poiuks T 385 P hek * 73T D6, b
Zy
2 2 32 16
7 35 To,5e T 2T T2,5ey T 385 Thoses T 23T 6 5]
9/2
o 24 16R )
= ——B-[?/Z[R(Zz P3,1H‘1/2 7T (P0,3+1/2 + 2P2’3+])§) + 2L4R P],2+1
E 1
Ef.(_L_(_ 736 _ 2296 10880
7, 72 105 "1,5¢5 195 3,545 819 5,5+
1
+ 400»P )
529 7,545
br , 52 _ 136 1688 80
.Z”I- ( '3“5" P09l“+1/2 -.2_1-- P2,’-¥+~]§ - 385 Pl*,l.H_l/z + .2'?]— P6,L'r+1/2)
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2R2 ( .l.gé- P 368 L}O ¥1 ))

35 P1,3% 15 P33 Y63 P53

ZZ

2 1 144 360 Loo

” s (755 P16 * TE5 P36 * 375 P 60 * 199 T76)
1

bR 2 18 80

7, 55 P05 T 3 Pa 5wy TR Puos Y BT Pe 5y

yara L6 4o
2R (35 Puogey Y IE P gy t E?‘Ps,h+%)))

1,72 96 ) 3 2
T Payses T T Pused T B P ne Y5 Py )
1 1
8R?
7 Po,s05 + 2P 30)
Zy
—_— (_J_( 736 p 1*6],_@, p - 5].8_,3_6,8.p
7, 73 315 70,64% " TESF "2,6+%5 - 55055 Th,6+%
2 .
. k720 640
%53 "6,645 * 1957 T8, 644
bR b28 | _ 2888 _ 1864 P 80 )
2 105 P1,5es T hgs P3,5e T BI9 Ps,ses 19 P75
1
2R? (_ 52 4 136 _ 1688 80
70 U35 Po,uey T 2T P2,k T 385 Puhes t 23T Te, b))
22
( 192 , 66k 4 60k56 | , 800
zf 315 Po 7+ T 693 P27+ T 3055 Pu 745 Y 593 Pe , 745
640
* 1287 Pg,74%)
[ , 26 176 )

2T P16 ¥ 33 3,60 * 273 Po ea 7?”0 P 6k



2RZ , 4 2 L8
7 G5 Posm Y TPy 50 Y 55 Pa s
Z9/2
2 5 128 4096
r 02 4o = ey [ | - 2096
z 1207, R? zl 72 775 0,6+~ 3065
128 128
* 55 P u " T287 P8 6ty
2, 208 16 1776
+ WR* (- 358 Po b, 7 Po by 385 Pyl
_8R (. 304 112 656
7o 05 P1 50 Y165 P35 Y33 P s
Z2
+2(5(]6P 656 L 16
72 72 775 To,7+4 T 365 T2 ,7+5 = 25025
- _£§_ )
1287 745
2 ‘ 8 - 17
+ bR (105 0,545 T 7] P2,5+1/2 385 P#,5+%
_ SR 32 8 _ 2k
21(105' 1,645 ¢ EB"P3,6+% §T'P5,6+%
8 /4 } 8 2
+ 8(—“;([‘.)2,5_*% Pl;,5+1/2) + :5 R (PO,3+J/
723 .
16R
T 57, (Pl,h+1/z B P3,l*+1/2))] .

These final expressions,
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13952
* 75055 Tl 64

80

& " 73T Do by

80-
% 129 7 5+1))

16

Pu,745 7 99 P6, 744

which are valid if Zy equals Z, or not,

were checked by computing the integrals where Zy # Z, and comparing them

with the results for the same integrals from the previous method.

The
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results agreed to seven or eight significant figures thus verifying the
above expressions.

A1l the integral expressions that have been listed were used to
calculate the Z-component for the total average kinetic energy, T
(i.e., <w|v§[¢>) for a number of homonuciear molecules. The results
are given in the thesis.

Finally, in the kinetic energy determinations the function
6 (%) = %—?ki3¢i(;)~$¢i(;) was evaluated at different points of space. In
order to éarry out these calculations the following expressions were used.

3 | 5 9

Letting VX = 5;;-, Vy = 3y and Vz = 52;— then

v x(n,0,m) = (za)””/z(znx)’”z[((n-l)rg‘z = ar™h

\ n-1 3 -or
5|neacos¢52,m(8a,¢) +or, 5;; Si,m(ea‘¢)}e a (A9.31)
v ox(ne,m = (20)™ V200 2 ((0-1) 272 - 0T
Y a a
sineasin¢52,m(ea,¢) + r2~] %§-S£’m(ea,¢)]e—ara (A9.32)

V(e = )™ 2@ (1 7 - ol

coseaS2 (ea,¢) + rg—] a (A9.33)

S, (6, ,0)]e

,Mm

ol
N
o]
=
3

Using Equation (A9.33) one obtains

o372
VZ[ls> = —i;'[ﬂl]COSea e

-ara
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a5/2 -ar
VZ|25> = - ara]cosea e @
V31
5/2 _
VZ|2p0> = 2 [ - aracoszea]e “Ta
m
5/2
=d, - . —ara
VZ]Zan> = [ ura]coseasnneacos¢ e
5/2
_ o _ . . -arg
VZIvay> - [ ura]cosea5|n8851n¢ e
7/2 _
VZ|3s> = Y2o'7 [Zra - arg]cosea e “fa
351
7/2 _
VZ[3pc> = !2;2———-[(ra - arg)coszea + ra]e “Ta
V15w
7/2 _
Vz|3pwx> = £ZJ1——- [ra - urg]coseasineacos¢ e oTa
V15n
J7 o 172 _
Vzl3pny> =222 [r - ar?]cose sing_ sing e “Ta
/—]——5—1}— a a a
7/2 _
V213d0> = gm——-[(~arg)cose (3c0528a - 1) + br cos@a]e “Ta
V18n @ a
7/2 _
VZIBdﬂX> = /2o [(—urz)coszeasineacos¢ +r sineacos¢]e “la
o ;
7/2 .
Vzl3dﬂy> = Zz;g—~—-[(—arg)coszeasineasin¢ + rasinaasin¢]e “"a
/3
9/2
= & 3 3 - 2 2n - Targ
Vz|4f0> ~—— [(~ar3)coss_(5cos’0_ - 3coss ) + 3rZ(3cos?s -1)le
V180
9/2
Vzlhfﬂx> = 2 [(~arg)coseasinea(5coszea-l)cos¢
V1207 r
a

+ 8r? cosB_sing_coséle ©
a a a
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a9/2
Vzlhfwy> = —
Y120

- 3 . - 2 _ . .
[ (~ar )cosea5|nea(5cos 8a 1}sing

. . -ar
+ 8r2 cosd _sind_single @ .
a a a

Similar exPressibns can be obtained for the operators V and Vy
using Equations (A9.31) and (AS.32) respectively. These expressions

>
were then used to evaluate the function G(xy).
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