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ABSTRACT

Of greatest interest in the field of linear motion electrical
machines are, the flat linear induction motor and liquid metal pump. The
former has feasibility in high speed transportation while the latter is
becoming of increasing importance in metallurgical processes.

This thesis examines and extends the traditional representation
for the usual sheet secondary classification and then presents a common
theory which also allows composite secondary machines to be analysed. An
idealized model is developed consisting of a number of regions represent-
ing air gaps, iron segments, and secondary conductors. A general solution
for the field quantities is obtained. The concept of wave impedance and
a transfer matrix approach allow a wide variety of configurations to be
analysed. Unlike previous work the approach developed here allows for
simultaneous investigation of lateral variation and skin effect. In the
limiting cases where in turn skin effect and lateral variation are

neglected the solutions are in agreement with known results.
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(M.K.S. system of units)
magnetic vector potential

magnetic flux density
magnetic flux

electric field intensity
magnetic field intensity
induced current density
applied current density
linear sheet current density
wavelength

wave number

angular supply frequency
mid width of secondary

mid thickness of secondary
mid thickness of effective air gap
conductivity

permeability

velocity of secondary
synchronous velocity

slip

Magnetic Reynolds' number
Laithwaite '"Goodness factor"
force density.

surface force density
Poynting vector

magnetic stress tensor
BT+ 3R

=B/1 +3 SR

current stream function
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[T] transfer matrix
Z0 Characteristic Wave impedance
Yo Characteristic Wave admittance r
lx,ly,lz unit vectors in X,y,z direction
subscript
1,2,3 vector components in Xx,y,z directions respectively
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avg average values
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CHAPTER I

INTRODUCTION

1.1 The Linear Induction Machine:

The simplest way of introducing linear indﬁction machines to
the engineer is to consider their development from the conventional
squirrel cage machine. A typical squirrel cage induction machine is
shown in Fig. 1.1

As is well known, the effect of the polyphase currents dis-
tributed over the stator in the rotating machine is to produce a
rotating magnetic field. Induced voltages are set up in the rotor
conductors. The interaction of the resulting rotor currents in the
mégmetic field results in the torque.

The first stage.in the development is to consider the machine
being unrolled as shown in Fig..1.2. In’this case we expect a linearly
travelling field to be set up. Let us neglect, for the present time,
any modification in the magnetic field caused by the unrolling process.
By applying the same principles a force and output power should be
available.

It should be understood that the principles involved would
not be changed if the squirrel cage secondary were replaced by a con-
tinuous sheet conductor. In fact it may even be a conducting liquid -
such is the arrangement used in liquid metal pumps.

In the squirrel cage the induced currents flow in the definite
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paths described by the secondary conductors. In the case of the

sheet secondary the induced current paths are not so well defined.

The induced currents in this case flow in roughly elliptical paths

as shown in Fig. 1.3. Due to the non-uniform current density dis-
tribution over the width we also get non-uniform flux and force density
distributions. This is referred to as the '"lateral edge effect".

If the secondary is asymmetrically positioned as shown in
Fig. 1.4, a force tending to increase the eccentricity results. This
lateral instability results from shaded pole action inthe z direction.
Because of the different resistances at the end sections the induced
current tends to be displaced-towards the larger extending end. This
results in an uneven flux distribution and shaded pole action.

It is obvious from Fig. 1.2 that for continuous motion, either
the unrolled stator or rotor must be elongated. These shall hence
forth be called primary and secondary respectively. Consequently we
~get two broad classifications of linear induction machines as shown
in Fig. 1.5, These are the short primary and the short secondary
machine. Generally the short primary arrangement is less expensive
to build and has higher efficiency. If the primary is the moving part
some means of power pick-up must Be incorporated. The alternative is
to use a sectionalised primary in which different sections can be
switched in.

Probably the simplest linear induction machine is that shown
in Fig. 1.6. It is classified as an '"open sided machine". Skin ef-
fect in a relatively thick secondary plays an important bart in de-

termining the performance of the machine. The study of the skin effect
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in the secondary and attenuation in the large air gap with regard

to the oﬁtput characteristic of the machine is referred to as 'the

flux penetration effect'. Recently  forces normal to the direction
of motion have been considered. 1In the machine in Fig. 1.6 this force
is a levitation force. The force can be interpreted in terms of
shaded pole action in the normal direction. The induced currents at

- different heights can be shown to have different phase angles. The

net effect is that there is a travelling field upwards. The levitation
force can thus be considered to result from induction motor action in
the y direction.

Because the flux must return through the air, the magnetic
circuit of Fig. 1.6 is poor. It can be improved by placing a slab of
iron at the back of the sheet as shown in Fig. 1.7. This is referred
to as a doublz sided machine. Further improvement can be effected by
having a doubly excited machine. (Fig. 1.8). This is the most common
flat linear induction machine. Referring to Fig. 1.7, it is obvious
that as regards the electromagnetic action the backing iron can be
integral with the conducting secondary. Such an arrangement is called
a composite secondary. Other forms would be the developed cage machine
or having a conducting plate with an array of iron slugs as depicted
in Fig. 1.9,

The question of forces in the normal direction is now complicated
by magnetic pull besides the levitation force in the opposite direction.
This magnetic pull also helps lateral stability since the magnetic pull

force would oppose the decentrallizing force due to shaded pole action.
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With reference to the doubly excited machine there are two
‘possible arrangements. The flat linear machine generally has cor-
responding top and bottom windings carrying in phase currents. The
alternative is to connect corresponding top and bottom coils in anti-
phase. In the former the currents in top and bottom combine additively
to produce normal flux or through:flux. The latter arrangement results
in cancellation as regards normal flux but reinforcement as regards
transverse flux production. This very logically leads into the other
main classification of linear machine which can again be developed
by considering topological changes to the squirrel cage machine of
Fig. 1.1.

Upon rerolling in the transverse direction the unrolled stator
of Fig. 1.2 we obtain the tubular machine (Fig. 1.11). It has an
end turn advantage. In the flat form all the conductors of a
particular phase winding have to travel through approximately a pole
pitch until they again become active (Fig. 1.10). Due to the over-
lxap in the tubular case only one end connection is required. Due to
the large effective air gap - the flux passes through the tube axially -
it is desirable that the secbndary contain ferromagnetic material.

The above is by no means an exhaustive list of the different
kinds of linear machines. It is merely intended to serve as a
~general introduction to the concepts and terminology used. Fig. 1.12
shows the classification of flat linear induction machines. For
further information on linear induction machines in general, the reader

is referred to review papers on the subject. (1),(4),(15),(16)
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So far we have assumed that the unrolling process gives us a
linearly travelling field. In addition we must consider the unwanted

parasitic components of flux and flux density that are set up. These

result from the inherent imbalance of the primary circuit and the

transients occurring at the edges. Even in the absence of the secon-

dary the unrolled stator presents different impedances to the different

phases due to the asymmetry caused by the ends. Consequently un-
balanced current will flow producing in the general case forward and
backward travelling fields and a sténding field. Even in the case of
a balanced current set a pulsating component of flux exists. The
flux cannot only contain a travelling wave component. There must
also be a standing wave component since the total flux must be zero
at both ends. Study of the above is referred to as "finite length
effect", 'end effects', "entry and exit edge effect" or "longitudinal
end effect."

Generally some modification must be made to the arrangement
to cancel the effects of the unwanted field components. Such
modifications include compensating windings, grading of end section
windings etc. Generally in multi-waveleﬁgth machines the end effects
can be neglected.

. Alsc whether or not the machine is series or parallel con-
nected can make a marked difference to the operation. In conventional
rotating machines the difference is only to change the impedance of
the machine. In this case the distribution of flux and mmf does not

change only the magnitude is changed. This is not the case in linear

10
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induction machines due to the above mentioned asymmetry. Series

connection is generally preferred in short primarymachines and parallel

connection in short secondary machines for convenience in pdwer supply,

1.2 Review:

The rotating field machine was developed in 1885. The first
known reference to linear induction machines appeared in 1890 iﬁ
a patent relating to induction machines. This was followed in 1895 by a
patent specifically propesing linear induction machines for use in
weaving looms. In 1905 came two proposals for railway use - one
proposing the sectionalised stationary primary arrangement and the
second suggesting the short moving primary arrangement. The latter
idea is the ancestor.of systems being currently examined (1).

The first use in liquid metal pumping was due to L. Chabb (2)
who in 1915 proposed an induction pump for mercury. It had no practical
application at the time and was soon forgotten. Albert Einstein and
Leo Szillard had a patent.in 1928 for an induction pump used for
circulating liquid sodium in a refrigeration plant (2).

From the beginning of the century until about 1940 interest
seems to have declined. In 1946 came the first large scale machine.
This was the Westinghouse "Electropult' - a linear motor arrangement
for launching aircraft. (3) The machine was of the short moving
primary type. However unlike most other machines the secondary
consisted of wound conductors. A constant thrust was accomplished by
varying the secondary resistance. The project was abandoned due to

the high cost.



In the early fifties came the need for the pumping of sodium
and potasium in nuclear reactors. Due to radioactive contamination,
mechanical pumps are undesirable. Both of these liquid metals are good
conductors so consequently liquid metal pumps were proposed.

Flat linear induction pumps were most popular in this ap-
plication. (1),(4) Feasibility and design studies have also been
carried out on M.H.D. induction generators. These can be viewed as
pumps operating above the synchronous velocity. (5),(6)

At the same time much work was being carried out in the U.S.S.R.
on liquid metal pumps for use in metallurgical processes.

The main reason why induction machines are preferred to con-
duction is that the latter involve contactbwith the liquid metal.
Contact has associated with it, chemical reaction and heat transfer
problems. (2)

In 1947 Laithwaite began research on linear motors with regard
‘to their application for shuttle propulsion in weaving looms. Over

 the past twenty years or so he has contributed enormously in this

12

area. Besides linear induction machines he has contributed significantly

to knowledge of all induction machines. 1),(7)-Q149)

Other pioneering work has been done by Poloujadoff at the
University of Grenoble. (15), (16), (17), (18). This work has been
mainly concerned with the transportation application of flat linear
induction machines. Much research is currently being carried out on
experimental transportation machines: - Urba motor, Aerotrain, Gorton

machine (7) etc.
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The main reason for the present research in linear machines
is the blatant need for revolutionary development in inter-city and
urban transportation.

Some of the advantages of a drive using linear induction motors
are (7),(15),(19): -
(1) Conventional systems use a drive that depends on adhesion be-
tween wheels and track. The adhesion force decreases with speed. The
méximum speed is limited to about 250 m.p.h.. No such limit exists
in the linear drive cageo Also much.steeper inclines can be negotiated.
(2) There are no centrifugal forces in linear machines since there
are no rotating parts. Consequently there is no limit on speed due
to centrifugal forces.
(3) There is no mechanical contact required between the vehicle and
track. An air suspension system has been proposed in (15). The
normal forces in a composite secondary machine, though usually attractive,
have recently been shown to be repulsive under certain conditions,
(21). The use of this repulsive or levitation force to give a
frictionless drive has been considered. In Fig. 1.13 some typical
track layouts are shown.

Apart from the high initial cost of track other factors must
be considered. The efficiency may be lower than that of an alternative
system and,except in the case where the electric power’'is generated on
board,speed control is a problem. With solid state frequency conversion
there is a possibility that power could be picked up at any frequency -

even d.c. and converted to give any desired frequency. A limited speed
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control is also possible by changing.fhe pole pitch by switching in
different primary coil arrangements. (7) Another possibility is to
have collection at variable frequency. (7)

As in many other engineering examples the use of linear in-
duction machines had preceedd the development of accurate analytic
solutions of the problems involved. Generally speaking the general
trend in the analysis is to divide the problem into the following
three classes:

(1) Flux penetratinn and lateral edge effects are neglected. The
end edge effect (entry/exit effect) is considered.

(2) Lateral and end edge effects are neglected. Flux penetration
effect is analysed.

(3) Flux penetration and end edge effects are neglected. Lateral
edge effect is considered.

Pump problems are divided into two classes. One examines
electromagnetic phenomena under the assumption of a giveﬁ velocity
profile. The velocity profile is usually considered flat. The
second class is the study of hydrodynamic phenomena. Considering
the first classification there is no difference between a liquid
metal pump and a sheet secondary induction motor.

One of the early works on flat linear induction pumps is
due to Blake (4). The ideal machine was considered. Laithwaite
(10) introduced the concept of "Goodness".

The first classification has been considered by Okhremenko

(22), (23), (24), Wang (25), Wang and Dudzinsky (26), and Veski (27).

15
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The second classification has been considered by Okhremenko
(22), (23), (24), Verte (27), Poloujadoff (16), Vléuev (28), and
Bolton (29), (30).

The third classification, the end effect has been considered‘
by Laithwaite (7), (9), (11), (1), Raschepkin (31), (32), Nasar (33)
and Cerini and Elliott (34).

Besides the above main classifications overall design con-
siderations have been considered by Laithwaite (7), (9), (36), Watt
(35) and Verte (2).

The above list is by no means complete but is a representative

section of the published work and shows the current state of the art.

1.3 Object of the thesis:

The object of this work is to lay down a common basis for the
study of multi-wavelength linear induction machines. Flux penetration
and lateral edge_effects are to be considered but, owing to the large
number of wavelengths, end effects may be neglected. A model is to
be developed which is applicable to both linear motors and liquid
metal pumps (under the assumption of a flat velocity profile). Both

composite and sheet secondary machines are to be considered.

1.4 Governing Equations

Maxwells' equations under certain approximations regarding the
velocity, frequency and material properties give the equations. Further

the Lorentz force law, Poynting vector and Maxwell stresses are in-
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troduced for force calculation.

The approximations are (44): -

(1) Non-relativistic case i.e. V2 << C2 is assumed. (V is a
characteristic velocity and C the velocity of light).

(2) Negligible displacement current compared with conduction current.

(3) Neglect of space charge effects.

Field equations:

In the laboratory reference frame Maxwells' equations are:

VXE=- %%
VxH=1J
VJ=20
V.B=0

The Lorentz transformation under these approximations take the form: -

E =E+VXxB
]

B =B
?

H = H
t

J =J

The above shows the relationship between the quantities in the rest
frame of the secondary (or any reference frame in fact) and the
quantities in the laboratory rest frame. Only the électric field
intensity is affected by the transformation.

The comstitutive equation and Ohms' law are: -



The above must be applied in the rest frame of the medium.
The following are the boundary conditions to be satisfied at an

interface.

The primes in above refer to any reference frame which does not move
normal to the interface. a and b refer to the two media separated
by the interface. n is the normal vector to the surface. hv is the
current sheet density at the interface.

The above equations in vector point form can be changed to
integral form. In this form they are more closely associated
with their discoveries. Using the divergence and Stokes' law we

obtain:

f E.dt =~ J %%-. ds (Faraday)
s

e =
b
&

1]

J J . ds {Ampere)
s

18
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The magnetic transport equation:

By combining Maxwells' equations we get the equation des-
cribing the distribution of field quantities.

From Maxwells' equations we have:

1]
[

vV xH

VXB=yuJ

from Ohms' law:

J=o(E + VxB)
(the velocity is assumed constant with time)
Substituting:

VxVxB=u(VXE+ V7xVxB)

2

Now V X V X B=- V"B + V(V.B) and V.B = 0. Consequently upon sub-

stituting - %%-= V x E.

v23=ua(%%-VxVxB)

lE-VZB + V x V x B.

L

9B _
t
In the absence of velocity the above represents a pure diffusion pro-
cess. In this case the field lines diffuse or slip through the material
at rate determined by 1/op (the magnetic diffusity). If the second
term dominates the field lines do not slip through the material but

are transported along with it.

and VO are characteristic

If we write x = L0 x*, V = VOV* etc. where L0



values - asterisked quantities are normalised we obtain:

v .
Bl ¢"2p5.,. 08 v xv xB}
ot L
uooLo 0
3B 1 %2 * *
at"'—’“i'{v B + ugo VoLov xV B}
Mook

Upon examination, it is seen that the ratio of magnetic convection to
diffusion contribution is uooVOLo. By analogy with the fluid
mechanics case where the Reynolds number is the ratio of inertial tor
viscous forces, this quantity is called the Magnetic Reynolds number.
The Magnetic Reynolds number will also be seen to represent the ratio
" of the induced maghetic field to the net field.

Typical values are shown in table 1.1,

Power and force equations:

The instantaneous rate of energy flow through a volume is
_given:

I p.ds= I (ExH) . ds
s s '

p is called the Poynting vector. The above equation is only valid in
its entire integral form - there is no assurance that p represents
the local power density as pointed out in (43). However in much

of our work the concept will prove very useful as the p vector

will be found constant over certain surfaces.

20



Magnetic Reynold% number,

metal frequency wavelength,

{hexrtz) L m 2m 41 1.0m
liquid diron '

25 .024 096 « 334 2.39

60 .058 «230 922 5.76

400 384 1.54 6.14 38.4
Mercury

25 .050 200 . 800 5.00

60 .120 .43 1.92 12.0

400 . 800 3.20 12.8 80,0
sodium

25 520 2.08 8.32 52,0

60 1.25 4.99 19.9 125.

400 8.32 33.3 133, 832,
aluninium

25 1.77 7.08 28.3 177.

60 4,25 16,9 67.9 425,

400 28.3 113, 453, 2330,
copper

25 2,89 11.6 46.4 290,

60 6.96 27.8 111, 686.

400 40.4 186, 742. 4640 .

TABLE 1.1

12
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In most of the published work onm linear inductipn machines
the assumption of a non-magnetic secondary was made.

All iiquid metals are also non-magnetic (the Curie point is
below the melting point in all cases).

Consequently the force density is given by the Lorentz force law:

f=JxB
f is the force density. In the case of a magnetic secondary,
magnetic as well as electromagnetic farces have to be accuunted for.
Maxwells' magnetic stress(T) is the most useful principle in this
case (41}, (44).

Under the approximations listed we obtain:

Ty -
F(B)H - BoHy - Bgiy) | B)H, BHg
BoH) 3By, - ByH) - Bgiiy) BHg

B3Hy BsH, 3By - ByH) - BH))

(first subscript indicates the surface, the second indicates the

direction of the stress - see fig. 1.14)



surface 3 ZT

T33

T13
T21

T12

///’ | surface 2

surface 1

FIG 1.14 : Reference direction for stress tensors.
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The total force on a control volume can be expressed as the

integral of the stresses over the surface.

In cases where the stress tensor does not vary over a surface we shall

find it convenient to talk about surface force density.

24



CHAPTER I1

ANALYSIS OF THE THIN FINITE WIDTH SHEET MACIHINE

2.1 Introduction

The most common linear induction machine is the double~sided
sheet secondary machine in which corresponding top and bottom primary
coils carry in-phase currents., In cases where the secondary and air
gaps are thin relative to the wavelength, the normal component of flux
density can be considered constant in the y direction (depth). Under
this assumption the lateral edge (finite width) effect can be analysed
using a two-dimensional approach. .

The only component of induced current density contributing
to output power is that in the direction of the primary conductors
{the z direction). The return paths in the x direction result in a non
uniform flux rediétribution and lateral forces. Consequently the shape

of the induced current paths are of fundamental importance in

determining the performance and therefore it is desirable that these
paths and the non-uniform flux distribution be found so that the
machines behaviour in the presence of the lateral edge effect can be

predicted.

2,2 Model and Assumptions

The model is as shown in Fig.2.l. For generality the sheet
secondary is assumed to be laterally assymetric.

The following are the main assumptions:

25
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FIG. 2.1 :

General model for two dimensional analysis
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1. The normal component of flux density (Bz) is not a function of y.
As shall be seen later, this assumption is valid for double-sided
machines where the ratio of gap thickness to wavelenth is small.

2. The permeability and resistance of the stator is infinite. The
assumption of infinite resistance is not strictly accurate {as
pointed out by Bolton (29)}. This is becasuse the return currents
(currents in the x direction) produce a flux in the z direction. This
direction is normal to the laminations and consequently there will be
induced currents in the stator blocks. The assumption will be kept
however for tractability of the results.

3. The effect of slotting is neglected. The eéxcitation is replaced
by linear current sheets backing smooth iron surfaces. Only the
fundamental component of the current sheets is considefed.

4. The machine is many wavelengths long so the longitudinal edge ef-
fect can be neglected.

5. The field exists only in the '"active portion" i.e. over the stator
width. Fringing of the field beyond these limits is ignored.

2.3 Governing Equations:

For convenience we separately consider the centre zone or ac-
tive region and the end zones where the field is assumed zero. The
reference frame for all quantities is that of the laboratory. A list
of the symbois appears on page X. Vector-phasor quantities are used
throughout the development. Their properties are discussed in Appendix 2.
(a} Active Region:

Applying Amperes circuital rule to the elementary pathsshown in Fig. 2.2-a
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FIG. 2.2~a : Elementary loops for Ampere's law
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FIG, 2.2-b : General end sectiom



we obtain:

] = 2¢ Az i S |

2g[ﬂz: - §2z+Az 1

]=248xh,-248xcJ
N

'\,3 .00202

2g['}\,{Zx - EZx+Ax 3

where 23 is the phasor representing the fundamental component of the
primary current sheets.
The mmf component in the stator blocks is consilered negligible dﬁe to
their infinite permeability.

Using thefirst term of the Taylor series expansion and simp-

lifying yields:

aEZ c
"_:_J 0002-
oy g Al 3,
oH h
- 2=2§"£J 0..204
ax g g3
: g_aQZ
and - glz'c_“z _ eed2.5
oH h
=& 22,3
53 T ees2.6
From Maxwell's relationship VxE = - %%-we obtain:
9B oE oE
a2 | nl a3 e.2.7

T et 9z T X

The Lorentz transformation for electric field is:
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1 — —

E =E+VxB

where the prime indicates the value in the moving secondary reference
frame.

Consequently we obtain:

E., = E vee2.8

al Al
" .
E,=E,+ VB ceel.9

4\,3 '\,,3 '\,2

Consequently we get the expression for the induced current dénsity:

il = U El *as 2- 10
J, =0(E, ¢+ VB 0re2.11
'\;3 ('\'3 ’\:2)

Substituting in (2.7) for E, and E_, we obtain:
' A

1 R
3B aJ,  8J 2B
2 _1 3 2
- e L L VL e
5t "oz " ax )tV ax nee2.12

Substituting for J, and J, results in:

1
2 2
oB o°H o"H dh 3B
e N2 . & a2 a2y 1 A3 Y
5t * %H L 2 2 c ax v ox 02,13
oz )
Using the properties %;*= - jB, %z'a jw and the constitutive equation

B = u H we obtain upon rearranging:

0
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2 2 ‘
OB 8 B Bu
) ,& ’\,2 2 = 3 - VB N 0 ]
c{;;§f-+ ;;ﬁ“% j wuoo(l ;rﬂ 22 + 3 _?7'23 veoe2.15

This can be written:

"B
2 2 - 2 .
a 2 - YO 52 B 220 --.2.16
; z .
2 _ .2 .
where YO-B(I#-JSG)
S is the slip = 1 - 2&
c Bgow
G = E-R, where R is the magnetic Reynold's number = 5 -
: B8

G is called the Laithwaite Goodness Factor.
BZO is the flux density corresponding to the same primary current with
N

the secondary removed (or slip = 0). Referring to expression 2.4 we

obtain:
jeH,=%n vee2.17
7 n2 g a3
Consequentiy :
u.h.
5 O ...2.18

(b) Secondary End Regions
Consider the general end section. -(Fig. 2.2-b) where the normél_component
of flux denéity is aésumed zero. In this region Maxwedi's équétion

V xH = J, reduces to



331 BJS
gh&_°—3_ ceebey
0 52 5% ’ 2.19

Differentiating the above with respect to x yields:

223, 323
0 = __&l.a __ﬁg
X902 axz

From the continuity equation V.J = 0 we obtain:

oJ 8J
al A3 _
ax * az = 0 00.2020
we get, upon substitution:
32J3 -32J3
——%-+=~€§== 0 002,21
9x oz

which is Laplace's equation in two dimensions,

Similarily it can be shown:

3231 ale
; ¢ "2’ = 0 00.2022
9x 0Z

The following are the boundary conditions to be satisfied at the in-

terfaces at both end sections:

(i) continuity of normal (z) component of current density.

(ii) continuity of tangential component of electric field intensity.
(iii) J

350 at extreme boundaries.

32



2.4 General Solution:

The general solutuon of (2.16) is:

+ Y2 = Yal
By=B +Be 0 B e % .e.2.23

where Eé = Ef B2 and substituting for B from 2.18
Y

. g% Yol

=:=-J 2
Yo fe

B and B, are arbitrary constants.
N n*

The corresponding expressions for J J (given by 2.5 and 2.6 and

1’

substituting for h, from above): are:

Dy

Jlg‘g‘ 2(B_ e Tb -5 et b7 ...2.24
_g_B : rA + Y.z :

J3= - S G B+ 3B, D e n TN ...2.25

The solution in the inactive zones is:
J3 = A Cosh Bz + B Sinh Bz eee2.26
a L a :

and from the continuity equation we obtain:

Jy = - j{A Sinh Bz + B Cosh Bz} eee2.27
") N 147)

1) "
=0 at z =A. and z =A, we obtain:

Upon substituting the conditions Jg 1 2

for z > a



Sinh 8(a, - z')
‘\’3 = Sinh BAR :Isa 0002028

Cosh B{A, - z')
Jo = : J
Sinh BAl a3a

’\’1 .I.zozg

for z < - a

1"
- Sinh Bz

A3 ~ Sirh g4, t3-a -++2.30

1
Cosh Bz ...2,31

J1 © Sinh 8h, 3-a

where £3a
E
vl

It shall be found convenient to determine the quantity Z = T
a3

and gs-a are the current densities at z=:a respectively.

at the interfaces separating the active from the end zomes.

Consequently we obtain:

E, o
za¢ = T =2 Jp COth BAl 'tuZQSZ
3|z=a
El .
z i = = j p Coth BA 0002.33
a-  Jg zm 2

2
where p is the resistivity of the -end sections. In the general
’ s . 1
sheet secondary casep =p. By putting Al = AZ andp #p we can
represent a linear induction pump with short circuiting side con-

ductors at z = ¢ a.

34
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Calculating the same quantities for the centre portion we obtain:

o{B e 0% B 0%
r\'+ n-~

s - — - ve.2.34 .
av ~ B {SG B, * j(B, e % ¢§-e'b)}
Y 2 -y.a
p {B,e0" -B e 07}
; .9 > T — . ..2.35
a- B {SG Boo* J(§+ e 0 *_E° e 07y} :

Equating the above we obtain the following matrix relationship:

by+iBz,)e®® - py-jB8z, )e %"

E"' =oa-
. - Y.a . a e
Pt iBZ) e 0 ey -jBz )ed? |[B] Z,,
Substituting for Za+ and Za= yields:
] ’ ]
r P a . oD = Y37 Fp 1 [ 1
(y*B & Coth g4,) eb® -(y-85 Coth ga,)e™ 0%) (B, Coth 84,
j t
=g sGB 2.37
t ' p AC
P = Y2 [ ]
L"(Yo B3 Coth,BAl)e 0 (YO+B 5 Coth BAl)e 0" ] LE_,_ | Coth B4, |

2.5 The Ideal Machine:

It follows from 2.36 that if Z _ and Z are zero the B. and B
as a- e Py

terms are also zero. This case corresponds to having large end sections
in the case of a sheet secondary machine or to the case of infinitely

conducting side bus bars in the case of an induction pump.



In this case the solution reduces to:

- 1
=135 b0 ~+-2,38

where 220 is the no load flux density i.e. the flux density exist-

ing when the slip is zero (the primary current being constant).

The primary voltage can be expressed in terms of 52 and the current

in terms of QS‘ {Actually it is the difference between the applied

voltage and the voltage drop across primary impedance that determines

52! |

Consequently we can write:

V=K

1 B

I

K2 B3
Kl, Kz are constants determined by the number of phases, slots per
phase, number of conductors slot, etc. etc, It is not nécessary

to determine their value at this point.

The impedance of the equivalent circuit is therefore:

LA N
T—FI"J-SG 00-2.39
K
where K = EE-Kl
- ¥ %2

The equivalent circuit is as shown in Fig. 2.3.
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This circuit represents the basic induction principle having
the properties
1. (1 - S) of the input power appears as mechanical output., This
also represents the efficiency.

2. The force developed is the input power divided by the syncﬁronous
velocity.

The force-speed characteristic is shown in Fig. 2.4. The Laithwaite
Goodness factor (7), (9), (10) ete. is a measure of the machine's
ability to convert volt-amperes to mechanical power. The better the
machine the greater the proportion of the current flowing in the
"load" circuit to that in the magnetising branch.

The difference between the Laithwaite Goodness factor and
the Magnetic Reynolds number is that the latter is a parameter re-
sulting from carrying out an inspectional analysis on the magentic
transport equation. Different materials within a magnetic field
would have different Magnetic Reynolds numbers.

The Goodness factor on the other hand expresses an overall
effect. Individual Reynolds numbers, dimensions and simplifying
assumptions must be used in determining the Goodness factor. It is
interesting to note that the Goodness factor as defined by Laithwaite
is the inverse of the Quality of the circuit (as defined in traditional
circuit theory).

The Goodness factor is of fundamental importance in determining
the characteristics of induction machines. For example, following
the development in (9) we get the relationship between'maximum efficiency

and primary/secondary resistance ratio for different values of G.
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The slip at the maximin efficiency is given by the quadratic:

sfar+Es-5=0
G G
The efficiency is:
l1-S8
n = T
1+ (S + 2)t
S G

where S is the slip
t is ratio of primary to referred secondary resistance
G is the Goodness factor.
Typic#l curves are shown in Fig.2.5.
Another parameter relating to the effectiveness of induction
machines is the "demagnetising coefficient' or "coefficient of secondary
current reaction”.

This was introduced by Okhremenko (22 ).

B, z
k = -2 "avg 6
T By

=kr eJ .on.ooocc-ll-2040

h3 constant

In the case of the ideal machine this is:

1 :
T‘:—j’"g_G" oo.n.o.-oto-oc.o-vo-oo.o-c02-41

Actually OKwemenko did not use Laithwaite's Goodness number - but the
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dimensionless parameter used was identical.

From the definition, the term "demagnetising coefficient" or
"coefficient of secondary current reaction" is unfortunate. Actually
the demagnetising field increases with decrease in demagnetising co-
efficient. The poor choice of nomenclature probably occurred in tran-
slation from the original Russian version.

A good appreciation for both the Goodness nuzber and the de-

magnetising coefficient can be obtained by studying Fig. 2.6-a.

Now:
Ea=220+£21 ..'.'...'...'.«.‘...'.'..2.42
where B,. is the induced field.
WA S

From (2.38) we have:

B,, =-3j SGB
n,

21 2

The locus of the phasors ?2 and ?21 are seen to lie on the circle shown,

The demagnetising coefficient is AC/AB with an angle & shown.

The Goodness factor is the ratio BC/AC with § = 1,

The power factor of the m#chine is BC/AB.

The circle diagram shown (Fig. 2.6-a) implies a constant current fed machine.
For a constant "air gap" voltage machine, the locus of the phasors is as

shown in Fig.(2.6-b).



(a)

Gonstant current.

(b)

Constant voltage

" FIG. 2.6 ¢ Phasor relationships in ideal machine
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2.6 Finite Width Machine:

With reference to 2.37 there are 3 general conditions of interest

(a) A, = A, =0

In this case the solution reduces to

%20 Cosh vz
2 Tvjsel IS Somr nee2.43

This is in agreement with Okhremenko (22). Plots showing the lateral
variation of 82 as a function of a/A and G appear in Fig. 2.7 and
Fig. 2.8 respectively. The non-uniform flux distribution results
from the non-uniformity of the induced current. At the secondary
centre (z=0) the induced current is z dirécted. At z=ta the induced
current density in the z direction is zero.

The expressions for the induced current densitites can be

obtained from 2.43 by applying equations 2.5 and 2.6

The resulting expressions are:

Sinh vz .
_ .. SG L) j (wt-8x)
J1° -39 1T+55¢ 220 Cosh oo cre2.44-a
' Cosh v,z .
_ S G % j (wt-8x) -
J3= B Tv 753G 0 [m - l]e -e-2.44-D

The appropriate stream function describing the flow is:
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v(x,2z,t) = Re{i(x,z,t)}

where ‘
Cosh %% _ | iCut-8x)
Cosh ya
1 ] eee2.45
Cosh ya

y(x,z,t) =
nN

The current stream lines are shown in Fig. 2.9-a,-b and -c. Fig. 2.9-a

is for a low Laithwaite Goodness number, ( S.G = ,1 ). The induced current
paths are roughly elliptical as described in (1). The contours in

Fig. 2.9-b are for a higher value of Laithwaite Goodness number. In

this case there is a distortion in the paths as shown. This results

from the larger phase shift in the z direction due to the increase

in the imaginary component of"b. Finally,;Fig. 2.9-c which corresponds
to a/A=1 shows the justifiability of the infinite width assumption.

In this case over most of the width the induced current is z directed.

The '"demagnetising coefficient" (expression 2.40) in this case is:

tanh yoa
}

K_ = il + j S G ...2.46

r 1+3S6 '_y(‘)Z""'
The demagnetising coefficient is plotted in Fig. 2.10.Again the justi-
fication of using the 'infinite width.approximation is shown for
values of a/i>1. |
A convenient parameter in the evaluation of the finite width
effect is the ratio of output power of the finite width machine to

the output power available from the same width of an infinitely wide
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( 5.6 = 1.92, a / A= 1.0 )
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méchine. In the latter case the induced currents will be z directed
over the entire width.

The force density is given:-

-1

f = 5

*
Re{J3 Bz}

Substituting from 2.43 and 2.44-b we obtain:

Cosh v,z
_ 1 BSG )
£f=-3R{TT559 Bolem W 1))
B, " Cosh
osh y.z
520 . 0%, *
ey (1435 6 ‘ba)} ..2.47

This can be re-arranged as

2 Cosh o?

1 S G
=8 —22— |B, |° Re{(—m—nr - 1)
2 1+ SZGZ 20 Cosh b2
Cosh B2+
(1 + J S G 'C—O?}T_'%‘a‘.') } 0102048

The expression for the force density in the infinitely wide machine.
can be obtained from 2.47 by setting ya >> pz- In this case

Cosh H2 >> Cosh Y2 and the expression for the force density reduces
to:-

1 S G 2
5 B 5 Ezol cee2.49

1+SZG
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The ratio of the average force densities is then

z=a Cosh yz Cosh Y2
- Re J {(=———-1)(1 +j S G z——) dz ...2.50
220 Cosh b2 Cosh o2

Typical values of the finite width force attenuation factor appear in
Fig. 2.11.

() 8, =12,

Under the above general catagory is the sheet secondary machine with
a wider secondary than primary and the liquid metal pump with short
circuiting side conductors at z = * a. Referring to 2.37 it is seen
that the flux distribution is determined by the dimensionless para-
meters a/A, S.G,;)/b. and A/A. Sample curves are shown in Fig. 2.12.
In this case the variation of flux density over the width for different
side conductor resistances is shown. As the realtive conductivity

of the side conductors increases the machine becomes "ideal''.

(c) Al # AZ'

This case describes a laterally asymmetric secondary. This was

(30)

first investigated by Bolton. It can be shown that when

1

in the +z direction. By normal induction motor action in the z

Ay > 8y, [B| > |B | in which case there is a net travelling field
N =

direction a force exists which increases the eccentricity.

A plot of the flux density under this condition is shown in
Fig. 2.13. Observe the presence of the basic requirement for
“shaded pole action', that is the decentralised phase lag.

The stability of such systems has been considered by Laithwaite.

9).
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CHAPTER YII

ANALYSIS UNDER THE INFINITE WIDTE ASSUMPTION

3.1 Introduction

From the last chapter it follows that if the width of the
secondary is comparable with the wavelength the infinite width
approximation is valid. Using this assumption we now consider flux
penetration effects.

In this chapter the solution of the field equatioms is found
for the case where lateral variation is neglected. Due to penetration
effects the field quantities in this case will be non-uniform ovér the
depth. It is desirable that the actual distributions and their effect
on performance be determined. We also wish to find the criteria under
which the ideal machine's performance is obtained.

As mentioned in Chapter I , a normal or levitatioﬁ force may
be present in linear induction machines. It is important that this

force be evaluated so that the phenomenon be more fully understood.

3.2 Skin Effect in the Travelling Wave Case.

The usual "yardstick" employed in analysing peﬁetration effects
is the "skin depth". This is defined as the depth penetrated when a
certain velue of attenuation is reached. It is usually defined in terms
of the infinite plane geometry shown in Figz.3.l.
From Maxwell's equations we have:

VxE= - 9B

ot

57



Vo, P

FIG. 3.1 : Co-ordinate system for analysis of

gkin effect.
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taking the curl we obtain:

9 9
VXVXE=-UO—3—£(VXH)=-]JO‘5?J

3
= - M9 3¢ E -

Since Vx VX E = - Vz E + V(V.E) and V.E = 0 we obtain

2 - i—
VC E = Ho3E E S |

Let us consider the penetration of an electric field whose surface

value is represented by the complex number

= E ej (mt-Bx)lz

Ey=0 30

Since we are assuming infinite width in the z direction we get:

a2 a2
(—s +—=)E, = j wu,o E vee3.2
%2 8y2 3 0" A3
32 2 ' -j (wt-8x)
Replacing ——E-by - B and multiplying by e J we obtain:
9x
e,
a 2 = E ?3 ...3‘3
b4
where 152 = 8%(1 + j R)
NLIOO
R is the Magnetic Reynolds number = 2
B
The solution to 3.3 is:
E,=E, e ¥
.3 U330 . .3.4
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where x= g +jK&
here . tiN

KI‘,i = B """“T"‘“""‘ 0-0305
Consequently:
- -ky J(wt - Bx - ky)
ES = ?30 e ¥ e i cee3.6

Thus for any x value there is a phase shift in the y direction. The
maximum electric field intensity is fixed by the e envelope but

the phase shift is such that we get a travelling field in the y direction.’
Following an analogous definition for skin depth as in the standing wave

case we obtain:

s ool 1 /2 5.7
s Kr B Y1¢R2+1

Typical values appear in table 3.1,
The frequency dependence is shown in Fig. 3.2,

In the travelling wave case besides decreasing with increasing conductivity,
UL OW .
frequency (R = ~=§—ﬂ, we also have decrease with increasing B. This means
8
a decrease with decreasing wavelength.

If 8 + 0, i.e. the wavelength becomes infinite and the travelling

wave skin depth becomes:

u o'w ...3.8
0

which is the standing wave value.
Even at zero frequency or in a non-conductor there is a penetration
depth of a travelling wave. This is obviously due to the non-uniformity

of the excitation in the x direction.



skin denth in ems.

metal frequency vaveaelensth

(hexrtz) .1m 2m Lhm ; 1,0m
liquid drony * ‘

25 1.59 3.19 | 6.26 - 11.9 .

60 1.59 3.16 : 5.85 8.60

400 1,56 2.67 3.35 3.52
mercury .

25 1.59 3.17 5.94 2.11

GO 1.59 ‘ 3.10 ' 5.06 6.23

400 1.49 2,16 2.42 2.50
sodium

25 1.54 2.47 ' 2.9 3.02

60 1.39 1,82 1,97 2.00

400 .735 768 777 . 780
aluiiinium

25 1.29 1.57 1,66 1.62

60 .972 1.06 1.08 1.09

400 416 421 423 423
copper

25° 1,12 | 1,27 1.31 1.32

60 794 . 630 .5851 .852

125 0327 $ 329 . 330 330

( the corresponding maghetic Reynold's numbers appear in Table 1.1)

TADLE 3.1 : Travelling wave skin depth
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FIG. 3.2 : Frequency dependence of travelling wave skin depth.
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The penetration in this case is 3
9, = 1/8

The effect of the conducting medium is t¢ reduce. the skin depth

///;ﬁ % R2 + 1
“ 2

A good appreciation can be gained by considering the plots in Figs.

by the factor .

3.3 and 3.4 These represent the magnetic vector potential (A) over

a2 single sided machine which has an excitation current sheet
h.=Re h. e) (Wt-BX). The vector potential is defined:
. IS

L

B=VxA

and V. A =20,
The solution for A over a single sided machine has the same form as
that shown for E in expression 3.6 The physical significance ofkthe
vesults in Fig. 3.3 and 3.4 is as follows:- the value of A represents
the fraction of the total flux {¢t} which is cut by a plane whose edges
are the z axis and a parallel line through X,Y. Thé plane has unit
length in the z direction. ¢t is the flux between x=0 and x=1/2 at
y=0. This property of the vector potential follows from Stokes theorem
(Ch. 1. section 4.1).

In Fig. 3.3 the magnetic Reynolds number is zero. 63% of the
total flux, ¢t, is contained below a height t/v which is the skin depth.
In Fig. 3.4, SR = 1.92 and 63% of the total flux only reaches..81/x.
Besides more severe attenuation there is also distortion of the field in

the x direction. This inherent distortion is a consequence of the phase
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with conducting medium ( S.R = 1.92 )



shift in the y direction. As shown in Fig. 3.4, for any y value the

vector potential is an even function of x about the origin x=(-y:/B)y

3.3 Normal Forces Due to Skin Effect:

From section 3.2 we have the solution for ES:

_ - K jlut = Bx - kYy)
Ey = Egp e e i

66

We see from the above that besides the travelling field in the x direction,

there is also a travelling field in the y direction. Even in the absense

of the travelling field in the x direction (B + 0, i.e. A + ®) there is a

travelling field away from the stator surface.
We now consider the normal force due to the interaction of the

induced current with the field.

Since VX E s - %%-9 we obtain:
. oE :
o2 .ad
El may . ...3.9
E"l-KE ...3010
w A3

. _ L ¥ . - oo
Since J, = o ES and £, = f’Re{JSBl} (f, is the average force demsity in

the y direction and the asterisk denotes 'Complex congugate'") we obtain:

M
t

S Re { j « E, E.}
2 - 2&) e J E 53 '\’3 K] oS.ll

1 2 -2 '
—2—% & |E50| e %Y . «ee3.12



The total normal force per unit-area in the xz plane is given:

fsy = Io f2 dy .C03l13
Thus
%
lo 1 2
sy "Tm'E; 1530| ...3.14

Consequently:

I ] .003015

Substituting for K. and R in 3.19 we obtain:

1

2
w Mo

1
)

2 2 :
fsy‘ & |I:220| ...3.16

substituting from 3.5 for K we obtain:

2
£ =28 L g 12A+R%- 1) .. .37
4 2 u, '.720
w0
The above expression is in agreement with the results in (9).

It is interesting to compare the above surface force density

with the power density.
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From (3.14) we have:

}’\{1 s - J .H—JJES .o .3.18
The power density is:
1 *} 1
"2" Re{Es !‘\Ill 0003- 9
* ¥
= l Re{j.—K-—'- E E3} ® 9 ¢ &% 2% 05 0% 30 s e b 0 '.3‘20
l\’

2 How 3

Consequently, the power density at the stator surface is:

K.

1 1 2
p2 - 7;’5“.—" “,530' 0003-21
It follows from above that:
P2 Lu 3.22
K. * 9 .
sy i

Upon examining 3.6 it is seen that w/uﬁ is the phase velocity of the
travelling field. The mechanisms involved in setting up the travelling
fields in the directi;n of motion and in the normal direction are
different. However, in both cases, the force is given by the power

divided by the wave velocity.

3.4 Model and Assumptions:

The model being considered is shown in Fig. 3.4. The following
are the main assumptions:

1. The lateral edge effect is neglected - consequently the induced current



2g |2¢ Ii
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7
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secondary

primary
iron

FIG, 3.5 : Model for analysis under infinite width approximation

linear current sheets
representing primary
currents
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is z directed.

2. The machine being analysed is infinitely long so the “finife length"
effect is neglected.

3. The primary winding can be replaced by a continuous current sheet
backing a smooth iron surface. The permeability of the core is infinite.
Only the fundamental of the primary current sheet is considered in the
analysis.

4, 1In the case of a liquid metal pump a flat velocity profile is assumed.

3.5 Equations and General Solution:

The magnetic transport equation ( Section 1,3 ) describes the
field distribution in both the air gap and secondary region.

In general:

vs=uoo{%%-\7x7x'§} “ee3.23 .

In the air gap, where o = 0, the above reduces to Laplaces' equation:

v = 0 .ee3.24

Since V x B = (V lx) X (B1 1x + B2 ly)
=YV 82 1z
o 3B, 3B,
therefore Vx VxBz=zVe—1 - Vo1
y x ax 'y

Using the property V.B = 0, this reduces to give:
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- aBl 332
VXVXBs=s-Ve—e—1 =Vl ees3.25
ax X X 'y

Consequently, we get two scalar equations:

2 9B alZ-1
VBy = ugolyrm V)
.003.26
3B 3B
2. 2 2
VB, = uOO{Bt * V5 }
52
Since we are neglecting lateral variation — = 0.
3y
Consequently, using phasor notation we obtain:
: 2
2 .9 X
- 4 =} B, = B
{-8 ayz}"’l _‘;Suocm'\‘1
LR K} .27
‘ 2R IR B A ¥
3y
where S is the slip:
=] - -Y—
Us
ug is the synchronous speed = w/B.

Consequently we obtain, upon rearranging and multiplying by e ) (wt - 8x)

3281
——— 2B
ay2 s
...3.28
2
2 _ 2,
wZ b ®2
y

where ﬁ = 62(1 + j SR



R being the Magnetic Reynolds number as defined previously.

In the air gap, Laplaces' equation reduces to:

2
2%B
—5 8
ay ’
s e .3«29
2
° %2 _ .2
2 $2
oy

The general solution for the secondary region is:

1}2 = C Cosh w* D Sinh oY
| .ee3.30
R . b
Bl--J-énEZ81nh yoy-J-B—l?Cosh 4

(The solution for B, is obtained by applying the divergence theorem)

In the air gap region the solution takes the form:

B2 = E Cosh By + F Sinh By
* * .e.3.31
B,=-3JE Sinh By - j F Cosh By
C, D, E, and F are arbitrary constants.
The boundary conditions to be satisfied are:

(2) At the secondary - air gap interface.

1. Continuity of B2

2. Continuity of Hl'
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(b) At the stator surface

1. By=GV
2. Hy=¢C 1

where V and I are the phase voltage and current respectively. C1 and C2

are complex constants depending on the co-ordinate system origin relative to
the machine poles and the wiading arrangement. (appendixl )

Generally, corresponding top and bottom windings will carry in-
phase currents. In this case the x component of flux density is zero at
the channel centre.
In this case we get the solution:

In the secondary:

Cosh 4
B, = === B
.2 Cosh yOC 2%
eee3.32
B - .1Q‘Sinh yoyB
21 7 B Tosh yC -2¢
Bzc is thé phasor representing the induction at y = c.
In the air gap:
« B, {Cosh By + - tamh i "}
B2 = ?Zc osh gy + T tan YOC Sinh By
...3.33
Cp : v % '
B, = - j By {Sinh gy =+ E—-tanh %€ Cosh By }

In the case of the transverseflux machine the normal component of induction
is zero at y = 0.

Consequently we obtain:



74

In the secondary:

Cosh 134
lEJ;. = Cosh 'bC ?l'c
.l.3.34

8 Sinh 14

By =] Y Cosh ¢ Bie

Bic

In the air gap:

is the tangential component of induction at y =

By = By, {Cosh gy + % Sinh 8y '}
...3'35

B

s R 1 E_ '
B, = j B, (Sinh By + % tanh yyc Cosh By }

3.6 Magnetic Field and Current Density Distribution:

From VX E = - -g%gsinoa the only electric field in the infinite

width analysis is z directed we obtain:

....S’.E_s; :-3.2_2., 3.26
ox ot ‘ v

. 3 R ) . S s .
Since Er R jB and 3¢ = Ju we obtain in phasor notgtmn

'1\’:3 = USBZ : eee3.37

where Y = w/B the synchronous speed.



Ohm's law then gives:

[
t

= o(ugB, + VB

- SuSoE2

where S is the slip as previously define

2)

d.

Thus the current density distribution is identical with that of the

normal component of flux density.

The normal flux density in the through flux machine has the

same distribution as the tangential flux density in the transverse

flux machine. Consequently, it follows that the distributiors are

determined by the following functions:

Sinh Bz

-
—

~ Sinh e

Cosh Z
P 0%
.2 Cosh %<

* e .3'38

Upon examination of the above it follows that the arguments can be

75

conveniently expressed in terms of the dimensionless quantities S.R, ¢ / A

and z/c:
vz = (/B)(Be)(2/c)
Since
/8 = /1+3SR
and

B = 2u/A .

In Figs. 3.5 and 3.6 the magnitude and phase of the above functions

are given.
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3.7 Performance of the Throuzh Flux Machine:

. We now compare the performance of the through flux machine with
the ideal induction machine discussed in (Sect. 2.5).It is apparent from
Fig. 3.5 that except when c/A << 1 the flux density decays significantly
over the secondary depth.

We had in 3.6:

Jz = = 5 uyoB,

The Lorentz force is given:

1 L
f = iRe{- J B } 0003'39

1 3.2

It follows from the above that the ratio of average force density in the

actual machine to that in the ideal machine is given:

c
2
%J 18,17 dy
0
= 2 .-c3-40
'?ch -

a

ka is defined as a force or pressure attenuation factor. Plots of this
factor appear in rig, 3.7 Again the justification of using the "ideal
machine equations" is shown at low values of c/A.

To determine the power factor we must compute the ''demagnetisation
coefficient" or Goodness factor. This information allowSus to determine
an equivalent circuit of the form shown in Fig. 2.3.

Following the definition in ( Section 2.5 ) the demagnetisation

coefficient is obtained:

=

=+ .. 3.4

k
-r ?20 FS constant



.1

0.0

81

_..¢/A= .2

1
i

FIG. 3.8 : Force attenuation factor due to
flux penetration effect,

14



82

If the linear current sheet is kept constant as we go from no load

to full load then B, is constant. [Blc = uhS]. Consequently by

lc

expressing 32 and B,, in terms of B, the demagnetising coefficient

20 1c

can be determined.

Constant B, is equivalent to constant h3' Hence from 2.40,

1c

.B ?lc

vy Sinh y.c
kr = B ‘b
° . lc

J Sinh B¢

- %gi“h Be v..3.42

inh ~mc

For the case of pe << 1 we can replace the hyperbolic functions by
the first term of their Taylor series expansions:

In this case:

1

k" T75%

0.'3043

which is the result obtained in (2.41).

The "demagnetising coefficient" is plotted in Fig. 3.10. Note
that for all cases the 'demagnetisation coefficient" is greater than
that in the ideal machine. The values in Fig. 3.10 permit the modified
phasor diagrams in Fig. 3.11Ato be drawn. The overall result is that
the output power is less than that of the "ideal machine",

In the above, the analysis has been based on the assumption
that the air gap region is absent.

The effect of the air gap is to introduce a leakage and add-
itional magnetising reactance into the circuit.

The effect of air gap can best be appreciated by writing

Eqn. 3.31 in the following matrix form:
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FIG, 3.9, eontd.
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Cosh B(g-c) j Sinh B(g-c)

N
o =

e 03044

- j Sinh B(g-c) Cosh B(g-c)

. 2

®1lg

The subscripts g and ¢ refer to the evaluation at the boundaries y=g

and y=c respectively,

The leakage and magnetising reactances cannot be separated into two lumped
parameter values. In general a T or = circuit is necessary to represent
leakage and magnetising reactance of a large air gap. This will be

investigated further in Chapter 4.



CHAPTER 1V

GENERALISED ANALYSIS OF THE FLAT LINEAR INDUCTION MACHINE

USING AN ANALOGUE CIRCUIT

4.1 Introduction:

To date there has been no common theory on linear travelling
field induction machines. The various problems pertaining to double-
sided, single-sided, composite secondary etc, etc, have been treated
quite independently.

Two very striking observations emerge from a study of the
literature. The first is the virtual intractibility of the algebra
involved in solving the field equations even in highly idealized
configurations. The second is the great deal of duplication - since
really the only equation used is that of maghetic transport. The
problem-is not confined to linear machines - due to the formidability
of the mathematics, even under very simplifying assumptions, nearly
all electrical machines are analysed from a circuit theory view-
point rather than by direct solution of Maxwells' equationms.

The most note-worthy attempt to use the latter approach was
made by Mishkin (39). In this work the stator and rotor of a squirrel
cage induction machine were replaced by anisotropic magnetic media.
Though the assumptions render the model approximate, the results are
exceedingly complicated and not easily physically interpretable. A
transmission line analogy was suggested by Cullen and Barton (40) for

the same problem. The first paper generalizing the procedure in-
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volved in the calculation of travelling fields in machines represented
by homogeneous isotropic laminar regions is by Greig and Freeman (37).
The application of these ideas in the area of linear machines was
suggested. Anisotropy was taken into account by Freeman (38).

In this chapter is given a more complete treatment of the
subject of travelling fields with reference to flat linear induction
machines. The transmission line analogy is investigated and equiva-
lent circuits obtained. A clear physical appreciation follows -
induced current reaction, magnetising and leakage effects are.isolated.
Unlike previous work, a solution for the field quantities in the
region of the stator teeth is found. This means that the usual as-
sumption of replacing the slotted stator by a linear current sheet

can be waived.

4.2 Model and Assumptions:

The machine is considered as consisting of a number of planar
regions stacked together as shown in Fig. 4.1. These regionsigeneral-
1y fepresent stator(s), aig gaps, conducting secondaries and iron
segments. In general at least one of these regions will have velocity.
Due to slotting, slitting of secondaries, inclusion of ferromagnetic
slugs etc, these regions will generally be inhomogeneous. The regions
will generally be considered to be stratified in the direction of
motion ( x direction) as shown in Fig. 4.2. The permeability and
conductivity will then be periodic functions in x. To avoid having

to solve differential equations with periodically varying coefficients
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we make the simplifying assumption eﬁbloyed previously in (38), (39),
(40). This is that the solution for the fundamental component of
the field quantities can be obtained by considering only the average
values of permeability and conductivity. The stratified structure is
then replaced by a homogeneous anisotropic structure.

The above representation of anisotropy becomes invalid when
the wavelengths of the space harmonics are comparable with the slot
pitch. The postulate of Mishkin and Ollendorf (39) regarding the
homogeneous anisotropic medium shall be used. It states that the
equivalence is such that the resistance and reluctance of a circuit
made of the original structure and the anisotropic medium are the
same. Consequently it is possible to draw up the table shown in
Fig. 4.2 which gives the appropriate conductivity and permeability
for different configurations.

Lateral edge effects are neglected and consequently there
is no variation in the z direction and all induced currents flow
in this direction. As was seen in chapter II this approximation is

very often appropriate.

4.3 Field Equations and Analogue Circuit:

Consider the infinitisimal section shown in Fig. 4.3. From

Maxwells' equations we have:



SoA

- Fig 4.4 : Analogue

o)
y + by

circuit for infinitisimal section.
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: . e . . . 9 .
Since there is no variation in the z direction and = = - ju

we obtain:

oE

"‘"\A“"g - j 73] B . oou401
ox J a2
(the laboratory rest frame is chosen for all quantities). Using Ohm's

law we obtain:

iS = 02{53 + V 22} ee.d.2
353
i -l o= -
Since % jB ES we have from 4.1
= .2
ES- B‘Ez . 110403
Consequently:
£3 =85 o, 53 ceod. 4

where S is the slip as previously définedo Applying Maxwell's

equation, V x H = J we obtain:

e R R .5
ax ay ‘\‘3 ' se o

Substituting for JS from 4.4 and using the property %§-= - j B we
) \

obtain:
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3H1
=""A‘_'= ] s e e ©
3y 23 S o, * ] B Ez 4.6

From 4.3 and the constitutive relationship 52 = EZluy » 4.6 becomes

oH 2

LY -5 B -
5y = ES{S o, -] wuy} «eed.7-a

From V.B = 0 and substituting for 51 and B, from 4.3 and the constitutive
’ A

relationship we obtain:

"‘""==jmllx !31 '..407-b

-j (wt-8x)

By multiplying both 4.6 and 4.7 by e we can eliminate the x,

. os . X . . ~
t variation and obtain phasor relationships. Since ESY*AY = E3y <
3E

Ay 3§§'y (Taylor series) it follows that the difference in electric
field intensity between y and y+dy is j @ My Ay Ely'

- . ~ . 2 -
Similarily from 4.7-a, Hly - H1y+Ay = ES{S og-j8B /muy}
The above very logically leads to the analogue circuit shown in

Fig. 4.4. Cullen ané Barton (40) first obtained this circuit by con-
sidéring a transmission line analogy.

It is instructive to consider the origin of each element. The
SoAy represents the 'referred" load of an induction motor. Magnetising

2
the leakage reactances are respectively represented by - j-%i- and

y
jmuyAy. An open L circuit (i.e. having the leakage reactance on the

other side of the admittance) would have been equally valid. Neither



circuit is exact for a finite thickness (y direction) region.

To

represent a finite thickness region 4.7-a and b must be combined

to give a differential equation. It immediately follows that S

per unit input energy represents joule heating, leaving 1-S per

unit as the mechanical output and efficiency. Also the force, in

the x direction, is the input power divided by the synchronous velocity.

This is the basic induction process. Since there is no power loss

across the leakage branch the above remarks apply to any number of

such circuits in tandem and consequently to any thickness region.

The phasor form of Equations 4.6 and 4.7 can be combined to

give the differential equations:

where:

2 _ .2 .
Y, = 82(1 + JSRZ)

H
y
HOow
R = X2
2 BZ

!'zis the propagation constant in the y direction.

e .408-a

. oo4-8‘b

oo .4.9-3

oo¢4.9-b

o .4.9-0

yzin general has

real and imaginary components - signifying attenuation of magnitude

and phase retardation. In general:
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?22 ?2? J Yzi 0004010”a

where

.-o4w10’b

Consider the solution to equations 4.8 in semi-infinite space.

The solution to 4.8-a is

E.=Ae Y2 ve.d.1ll-a
Py I

where ﬁ is an arbitrary constant.

It is interesting to compare the above solution with that obtained
in Section 3.2. In that case a homogeneous medium was assumed. The
solutions have the same general form except the rate at which the
field decays in thé y direction is different. Generally u, >> uy in
the case of the stratified structure so 82 << B. This results in a
less severe attenuation of the field in the y direction.

By applying 4.7 we obtain:
H =-j—2-A e %Y ...4.11-b

The ratio of ES to H1 is defined as the characteristic wave impedance
LY 4V

in accordance with the transmission line analogy:

ES
2
H ?0 eeaf 12
al
where ‘
Wy 4
= j —= ceed.13-2
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correspondingly

e 2
= - j =,
0 W

Y .oo.4‘n13-b

where Y0 is the characteristic admittance.

4.4 General Solution:

Consider the general region M. The solution for 4.8 under

the constraint set by 4.7 is

2]
b

E; = (.:M Cosh You Yu * [.)M Sinh HM M osed.ld4-2
H = - You {QM Sinh vy, v, + Dy Cosh .YZMYM} ve-4.14-b

where C,, and D,, are arbitrary constants.
Upon substituting the boundary conditions we obtain the solution in

the following matrix notation:

Eg]  [Cosh vy vy = Zoy Sinh Yoy Vi) (B3
- ...4.15
H) y = You Sinh vy yy Cosh vy Yy H
[M-1] .

(The square bracketed subscript denotes evaluation at the boundary)
The overall effect of the region M can now be expressed in terms of

a transfer matrix (after Freeman and Greig 37)
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B3 Eq
= .M '] -4. 16-3
H H
01 'l
[M]
[M-1]
where
Cosh vy By - Zoy Sinh vy, Ay
[TM] = ooo4u16°b
- Yoy Sinh vy 8y Cosh v, 8

where A, is the thickness of region M.
Note as defined here the matrix relates quantities at boundary [M] to
those at [M-1]. Energy flow is from boundary M-1 to boundary M.

The T and 7 equivalent circuits for the general region M are
shown in Fig. 4.5,

The boundary conditions to be satisfied at the interface
between any two such regions are the continuity of the tangential
components of magnetic and electric field intensities. Note that
the latter also satisfies the continﬁity of normal component of flux
density.

It follows from the above that any number of such regions
can be accounted for by matrix multiplication. In terms of the
équivalent circuit this implies tandem cénnection.

| All least one of the extreme boundaries will have to contain

source of excitation. The relation between the electric field in-

tensity and the voltage as well as between the tangential magentic
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FIG 4,5: =& and T analogue circuits.
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field intensity and the stator currents is considered later. It

is instructive to consider the circuit analogues of some configurations.
An ideal ferromagnetic part, i.e. the backing iron in an electrically
single-sided machine is represented by an open circuit. This results
since it cannot accommodate any H field. A superconducting region
would demand zero electric field intensity so a short circuit results.
A semi-infinite half space, i.e. the air gap in a one sided machine

has the characteristic wave impedance as its circuit element.

4.5 Traction and Levitation Forces

The x direction force may be obtained by direct integration
of the J x B contributions in this direction over the volume. Be-
cause of the assumption of constant permeability in the x direction
there is no x direction magnetic force.

The force in the y direction is more complicated. 1In this
- case the contributions of the interaction between both iﬁduced
current and magnetic dipoles in the magnetic field has to be con-
sidered. Application of the principle of Maxwells' magnetic stresses
is the most useful épproach in this case (41), (44). The stress
tensor is given in Section 1.4.

Consider the system depicted in Fig. 4.6-a. The total force
on the control volume shown can be expressed as the surface integral
of the stresses. Of the six sides of the control volume there is
only a net contribution from the surfaces in the xz planes. This

apparently results from the constancy of the time averaged field
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FIG 4.6~a : Control volume for force calculation.

Eg?%nite r
half spacje '

By0 {
linear
L/// current sheet

.y

B o=

FIG. 4.6=b : Model used in investigating sense of

- -aormal .force ( attraction or repulsion )
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quantities in the x and z directions. The time averaged surface

force densities are

fsx = > Re {H2H1 } eeosd.17-a
- ! 2 _ 2, _
fg = - 2'{|§2| |§1| } oo of.17=b

As indicated in Fig. 4.6-a the field values are evaluated immediately
outside the':egion,
The expression for the x direction forge should be consistant
with that given in 4.3 since it is due entirely to conduction current.
Using 4.3 and the constitutive equation 8=uH we find that
4.17-a becomes

£ = Bre (e
SX-w ¢ '\..3'\.1

which is the surface force density as found in section 4.3.

The y or normal force is more complicated in its interpretation.
Very little general conclusion can be drawn since the calculation
demands evaluation of two field quantities at two surfaces.

A feeling for the mechanism involved can be gained by con-
sideration of a semi-infinite half space of ferromagnetic conductor.
Due to one surface being at infinity the field decays exponentially
in that direction and consequently there is no force contribution at
the surface. Furthermore the field intensities at the surface are
related by the characteristic impedance. The.configuration is as

shown in Fig. 4.6-b. From 4.17-b we have:
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1Y 2 2
I TRl IR i

Applying the constitutive equation B=uH and 4.3 we obtain

2
2 H, |
f ="_1".B——'-1"'_‘E 121“‘—__“2’1‘_-_ --.4.18
sy 4 mZ ¥y 3 B2 1 2
—i—z'lgsl
0" Uy

Recognising EI/ES as the characteristic wave admittance and substituting

from 4.13-b we obtain

B =
Yo
=.,.1_£.i2}5 | {BE._ 2}
4 2 " 2's 2 2
] L B

- .}%-—%E | {li -Vl + SZRZ} ...4.19
m

The above expression is similar to that derived in (38).

The net force is negative for values of ur> vl + SZRZ. This
would be the usual case. If L is small then it is possible to have
cancellation of normal force at a particular slip. The force would
change from levitation to attraction as the speed increased through

the critical slip. If the secondary is non-magnetic then the force

|E I {1-A+ %% ...4.20
3

is given by

e .1 B
fsy | m2
Yo



This is in agreement with the result in Section 3.3.

4.6 Representation of Slotted Stator

The object of this section is to relate the fundamental
vcomponent of the tangential electric and magnetic field intensities
to the stator voltage and current.

The medel is as shown in Fig. 4.7-a. The stator yoke is
considered to be infinitely permeable but the reluctance of the
‘stator tooth and crown regions is considered. The appropriate values
of permeability are calculated from the results of Fig. 4.2

Consider the stator tooth region which is represented by the
equivalent anisotropic medium shown in Fig. 4.7-b.

From Maxwells' equations we have:

VxH=J.
In this case the current density is due to the impressed primary
current.

From the above we obtain

ax ay = {a 0.04.21

where Ja is the fundamental component of the primary current density
v
(see Appendix 2).

From Maxwell's equation V x E = - %%- we obtain:

- jop H, = —— e dd.22-a

X1 ay

103



tator crown region

=
I’_
In
!3__,_
—
—

AERE

O

O O (¢]
8 8 8 lot region

O @) o

@) O O

o /. No /) N o).

H > | stator yoke

7

-

FIG. 4.7-a : Representation of stator region
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FIG. 4.7-b : Thin slice of tooth region
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X

Combining the above with 4,21 we obtain the following differential

equation: 2 2
. 9o°E . ©oE
_ a3 _ vy ...4.23
wuy axz Wi ayZ A8
2 -3 -
Substituting -6253 for g—é, and multiplying by e jlut - Bx) we obtain:
9x
9,E ‘
2.3 _ 2 .
-'-"‘—2'-' 82 ?3 - Jmux'?a '-.4024
ay
2 _ P 2
where Bz = E~=B (as defined in 4.9-b).
y
The general solution to above is:
. Juby
?3 = 9 Cosh Bzy + P Sinh Bzy +—5 {a eeed.25
B2
Using relationship 4.22-a we obtain:
B2
H, = j —— {C Sinh 8,y + D Cosh B,y} ceed.26
. wyy, e 2 . 2

Due to the infinite permeability of the stator yoke H, must be zero

1
at y = 0. Consequently D = 0.
The important quantity for the evaluation of stator voltage

is the average value of E, over the:slot depth.

Consequently we have:
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" - c Sinh Bzds s Wl ;5
Savg . Bzds 3§ .a
which gives:
B.d wu
¢= Sinﬁ Z d (ESavg -3 *iéaJa
. 29 - 82 .

Substituting the above value of C in 4.25 and 4.26 we obtain:

Cosh Bzy Wy Bzds

E, = B,d ——=—F - j (= Cosh 8.y - 1) J_ ...4.27-2
3 2's Sinh g.d .3avg 82 Sinh Bzds 2 .a
2's 2
2 . .
Bzds Sinh Bzy Sinh 82y
H, = j - E +d g J eeo4.27-b
1 muy Sinh Bst . davg s Sinh Bzds .a

If we make the assumption that the slot depth is such that Bzds << 1

we get the following relationship upon using Taylor series approxi-

mations for the hyperbolic functionms.

2
E ' 1 - s E
3 I T3 | %3avg
Bzds
H1 y=ds J muy ds qa

The crown tip region can be represented by the circuit in Fig. 4.4

with o = 0.
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[

Eg 1 - Juud |Eg

H

c —
1 H y—ds

1
Iy hdc f wy 41

Furthermore the circuit can be simplifiedto a single series reactance
since the y branch is generally so large that it is virtually an open

circuit.

4.7 Discussion:

The development in the previous sections allows the flat linear
machine (under the infinite width approximation) to be represented as
a tandem connection of analogue circuits. At least one of the extreme
boundaries will be a primary. The transformation from primary voltage
and current to the field quantities has been shown. Consequently the
overall circuit represents an equivalent circuit. The traction and
levitation forces andjpower quantities were derived in terms of circuit

quantities.



CHAPTER V

SIMULTANEOUS TREATMENT OF FLUX PENETRATION AND

LATERAL EDGE EFFECT USING A WAVE IMPEDANCE APPROACH

5.1 Introduction:

Due to their homogenity and isotropy, sheet secondary induction
motors are more directly amenable to solution than composite secondary
devices. However, the analysis has been for the most part, limited to
the cases where flux penetration and lateral edge effect are separately
neglected. There has been limited work on simultaneous consideration
of these effects (22), (27), (45).

Due to the formidability of the expressions found, very ilittle
_general conclusion is drawn.

In this chapter the concept of wave impedance is applied to give

a general solution for this problem.

5.2 Assuggtions:

As in Chapter 4, the machine is considered as consisting of a
number of planar regions stacked together. Each region is homogeneous and
isotropic. All regions have the same width as the primary (stator). Fringing
beyond this width {fig. 5.1-a} is neglected. The primary excitation scheme
can be replaced by a linear current sheet backing a smosth iron surface
of infinite permeability. The appropriate gap depth is given by Carter's

coefficient.

108



109

4
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(a) General stack of planar regions.
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=
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(b) Co-ordinate system for regeion (1)

Fig 5.1 : Multiregion representation of finite width machine.
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5.3 General Development:

Consider the general region M shown in Fig. 5.1-b. The field

quantities are described by the magnetic transport eguation fef.Ch. 3}:
{ =vax-§} oooSul

Writing all field quantities in vector phasor form {Appendix2 } and
2“

using the property - Bzﬁ-we obtain:
v

X
{az az}_ 2 - '
—= 4+ =} B = {B” ¢+ juwp,o,} B-VxV, xB e o2
ay2 aZZ ~ MM « M™ A

Since V, = V., T. and 7.5 = 0 we obtain, upon multiplying by 3 (¥€-BX),

M M x
2 2
Egedpn =y 3
] 2z : *0
2 . .2
{%'% "a—"’z-} B = Yz B2 .ouSQs
oy 9z~ ° 0’
2 2
{.?.,-.,2_-#-.9_?} 83 = 'Yz B3
oy 9z ° 0 °

where 12 = 82(1 +3j S.R)
°0
R is the magnetic Reynolds number for region M, and is defined:

oMy

82

R =

Bl is an even function of z since the linear current sheet is assumed sym-



metrically disposed about z = 0. The condition V.B = 0 then requires
the components B2 and B3 to be even and odd functions of z. Con-
sequently, using the method of separation of variables we obtain

the general solution:

o«
r {C, Sinh yy + D,,, Cosh EY} Cos o z

21 % 5
B, = ngl{c?“ Cosh ‘.‘y + D‘?n Sinh 1;:‘)'}‘ Cos a_z .e.5.4
1'33 = nzl{c-:in Sinh x:‘y + D§n Cosh -‘}y} Sin .z

where o = 2n2; ! and 7121 = ai + 7(2)

Since J2 = 0 we have from Maxwell's curl relationship:

oB oB
Al a3
. aZ‘ ax - 0 LR ) '5. s
. 3_ . X . -j (wt-8x) i
Using the property % =" )8 and multiplying by e we cbtain:
| 2B,
7ot 8By =0

Applying this to 5.4 we obtain:

l
o

"0 Cp I B, s

L] ..5-6

0
(=]

-cr.nD + jBD

in 3n

The divergence theorem demands:
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oB oB oB
r\,1+ '\;2+ q,3_

x 5y Tl 0 «ee5.7

Again using the property %; = - j 8 and mltiplying by e’ (wt-Bx)

we obtain:

aB oB
22 003
IR e

which gives the following equations:

i
o

I BC Gt oy Gyt

--.5.8

]
o

-38?1n+ % Do * @, Dgp =

It follows from above that all field quantities can be found if one

of the C and D series of complex coefficients are known. JI,J:,),E1

and E, can now be obtained from Maxwells' equations. Writing all

3

quantities in terms of Cln and D o ve obtain:

1

Din Cosh %y} Cos o _z

B, = nzl {(.:ln Sinh yy +
. an2\+ 82 ,
B, = n-E-l i _-ET—- {(.:ln Cosh yy + D, Sinh Yy} Cos o z
. o .59
n .
B, = nil -ig {(.:ln Sinh yy + D, Cosh wﬁy} Sin o z
. anB SR
Jl = nil - T {(.:ln Cosh W o+ Dy, Sinh 'By} Sin o 2
= .g’sw
Iy = nﬁl j o {(.:ln Cosh yy + Din Sinh “y} Cos o 2

cont...
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eqn. 5.9 continued

{(.:ln Cosh yy + D;  Sinh Yy} Sin oz

{(.:ln Cosh yy + D, Sinh %y} Cos a_z

W
3 nal % n

5.4 Penetration Effect in The Infinite Depth Case

The usual definition for skin depth is made for the case of
semi-infinite plane geometry whére the medium is postulated to
extend indefinitely in two directions. In chapter 3 the skin depth
was determined for a travelling wave. Even at zero frequency or
zerc conductivity there is a finite skin depth of 1/8.

Let us now'consider the case where the thickness of the
region M tends towards infinity. We wish now to investigate the
penetration of a finite width travelling field.

Under this circumstance 5.4 becomes:

. .
= i A 4
B_,l n-E-l ?ln e” 1 Cos (zny
B, = IDy e” % Cos oy ...5.10
L]
= XY a3
BS = nﬁl ]?u:,’n e” 0 sin oy

5.5 and 5.7 still apply so consequently we obtain:

"% Dip ¥ BD3p =0
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and

=3 BDy, - YWl * mnDQSIZ =0

All quantities can consequently be expressed in terms of the Hln
series which is the cosine series representing the x component of

magnetic field intensity at the surxface.

- =%y
Bl“nﬁl {u Hlne %} Cos G,z
2
a + B
s 3 o 3.0 -y
B, “ngl i3 Y {u Hy e B} Cos oz
B=§—°S£ {uH, e %) sin oz
3% o1 9B ¥ Hin n
o anBSR
= - =Y
J1 nz:-‘l THES {u Hln e” 1} Cos o 2 cee5.11
Jsg"BzSR {u H,_ e %'} Sin oz
3 nglj oy LS T Tt
pet w on =Yy
Elgn§1¢§? {u Hlne %W} Cos a2
- S s “Y Y1 cin o -
E3°n£1=J Y {u Hlne %/} Sin o2

Proceeding in an analogous manner as in section 4 of chapter 4 we

‘define the nth harmonic wave characteristic impedance and admittance:
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FSn = 7 - j wy
ﬁln -0n %
0!05012
¥0n = 1/%On

Upon examination of the above it is seen that the harmonic components
composing a particular surface distribution of each field quantity
are independently attenuated in the y direction. By analogy with

the standing wave case we define the skin depth as that depth re-
presenting an attenuation to 36.8% [e°1 x 100%] of the surface value.

Consequently, the skin depth for the nth harmonic is:

8 S —— o--SolS

where Yir is the real component of Y and is defined:

- 2
hr 2 2 3 2.2 2 2
o + B ¢ Vian + B°)° + BT(SR)

In the case of a + =, o, 0 for all n. In this case the skin depth

reduces to the expression found in Section 3.2

9: - l-/ 2

B/1 + /A +(s R)2

As the harmonic number increases the iteraction of the induced currents
and the wavelength become of diminishing importance. In this case

we have



1im 5 + -
pre SB O

Variation of skin depth with Reynolds number, wavelength and sec-

ondary width are shown in Fig. 5.2-a,-b,-c respectively. These

- graphs arve for liquid metal pump which explains the large skin

depth.

5.5 Transfer matrix and General Sojution:

The most convenient boundary conditions are the continuity
of Hl and 55 at the interfaces. The above two conditions satisfy
the continuity of all tangential field intensity quantities as well
as satisfying the continuity of the normal component of flux
density.

Consider the conditiomns at boundary [0] of region M. Upon sub-

stituting y = 0 we obtain:

< (-] 1

z = —D g oo e 014-
oy H,, Cos oz ngl i PIn Cos o2 5 a
I E, Cosoz= I j%C. Cosaa ...5.14<b
n=l +on n ne1 ’ Y, -1n n

where Hln and ESn are the nth coefficients of the Fourier series

representing H; and E; at boundary [M-1].

It follows immediately from above that
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...5»15

All quantities may now be written in terms of ESn and Hy, at
boundary M-1. Furthermore the relationwhip between the values at

the two boundaries is given:

wy

. M.
Ean|  [COSh g Oy T3 R S ¥ ful | Bam
= ...5.16
+ j‘YMIISinh Y 8 |
.1n W M Cosh Yin 2u Hln
[M] | [M-1]
_ /2 2 .
vhere Ym = “én + B7(1 + j Sy RM)
Sy = slip of region M
Ry = Magnetic Reynolds number
4y = thickness of region
The above matrix can be written:
Cosh Yin AM - ZMn Sinh Y AM
TMn = |y Sinh A Cosh A eee5.17
¥ M S Wn S OSR Y O

Let us define the above as the nth harmonic transfer matrix,
It follows that for any number of such layers the values of

ESn and H1n are related at the extreme boundaries:
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E

.3n .3n
gln = | Tpy gln ...5.18
[Mg] [0]
vwhere
T = 1 [Ty
M,M-1---

|TRN| is called the resultant matrix of order n. [0] and [Mf] are
the two extreme boundaries.
In an open sided configuration one of the air regions is

at infinity. In this case it is convenient to write:

EZM 1 0 EZn
- ’/ai & 82 . 005019
H) 3 of| o
n (0]-10
[Mg-1] [M,]

The 2,1 terms of the above matrix is the nth harmonic characteristic

wave admittance for the air space.

5.6 Boundary Conditions at Stator Surface:

The primary currents are assumed to flow within an infinitisimally
thin sheet of width 2a. The sheet is backed by a smooth iron surface
of infinite permeability. Carter's coefficient is used in determining

the effective air gap.
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The divergence theorem must be satisfied for the primary

linear current sheets:

oh oh
ye § A3
ax + 'a_z'-- 0 -005020

The 21 component represents the end currents i.e. the currents in .
the winding overhang.

A particular distribution c&nsidered was to assume 23
- having a rectangular distribution over the width. The corresponding
21 consists of delta dirac functions at y = + a see Fig. (5.3-a).
This distribution was also considered by Okhremenko (22) and by Preston
and Reece (45) the latter also considered the distributioﬂ shown in
Fig. (5.3-b). A consequence of our particular choice of distribution
is that at the . inductor surface there are corresponding delta dirac
functions in flux density distributions. These do not occur in
practice since the above hypothesised smooth stator surface containing
infinitisimally thin end conductors does not exist. However, at all
points y > 0 the expressions are convergent.

In appendix 1 the relationship between Q the fundamental

30°
of linear current sheet and phase "a" current is computed.
The Fourier series representing the distribution shown in Fig. 5.3-a

is:

h, =C h «eed.21
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Fig 5.3-a : Primary current sheet distribution
i

Transverse (z) current sheet.
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Fig 5.3=L : Primary current sheet distribution
suzgested in (45) to account for frineing,
no. of terms: 1 3 7 @ 15 25 40
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Fig 5.4 & Truncation error in current sheest representation,
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where

1
2n-1

. n-1 4
=TT

The value of hln can now be found by applying the divergence theorem:

-3 Bhy nil =% Gy Mg Sinoy = 0
1'e.
oo n-1 2 .
@1 = I j(-1) 3-@30 Sin oy eee5.22

A feeling for the magnitude of the truncation error involved in
taking a finite number of terms in the solution can be obtained
by finding the error at the boundary.
Using the error criferion suggested in (43, Section 6.8) we
obtain:
ey=1-3

C 0ee5.23

neag

2
n=l R

Typical values of the above error number are shown in table 5.4,

5.7 Reduction of General Solution in limiting cases:

The results in 5.5 are for the general case where both skin
and the lateral edge effect are present. We now individually consider
the limiting cases where the results obtained indicate their diminishing
importance.

(2) Infinitely wide case

Say a, the mid width, »> =

then a_ = 2n-1
n 2a

m + 0, all n.



Consequently:

¥14~-% all n.

It follows that all harmonic components of the field quantities
are attenuated to the same extent.

In this case the nth harmonic Transfer Matrix (5.17) is
identical with that defined in 4.16 where the lateral edge effect
is neglected. It follows that for a surface current sheet which
is constant over the width the solution takes the form outlined
in 4.4.

(b) Finite width "thin" model:

Consider the transfer matrix T,, as defined 5.17. For values of

Mn
'*Mn Byl << 1 we can use the first term of the Taylor series
expansion to replace the hyperbolic functions. Consequently we

obtain:

— 1

Wiy

[TMD} ) E 5 Yin b jmpMAM} ve.5.24

The above should give the same results as were obtained in Chapter 2.

Consider the application of the above to the model in section 2.2,

For simplicity we shall assume that c=g,i.e. the secondary completely

fills the air gap.

From the definition of harmonic transfer matrix we have:
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(Due to symmetry, the transverse magnetic field (Hl) at the secondary

centre = 0)

Consequently we have at the inductor surface:

ﬁmo
§3n =J 2 gln
c
From 5.9 we have:
az + Bz
?Zn A Ezn

Substituting in 5.26 we obtain:
n, o + g
B =='.—-Q.—E____.H
<2n J B 2 .1n
%

Upon substituting for H, ~(5.21) we obtain:

2 2
. Volzp n-1 1 % *é#

=.C

Bop = - 35— -1 7 5 7
LY

Using the relationship:

Cosh %? s
- 2 n-1 n
Cosh o o = nil r (-1) ;2- Cos a_z

over -a < z < a,

..' .5.25

eee5.26

...5.27

eee5.28

eee5.29

0035030
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1.5 b= .plosed fornm solution
° series solution ——
(15 terms)

| B2| 1.0

series solution—
with Lanczos
smoothing

=15
©
=20 series solution
(15 terms)
/§2 -37° =
"'4"’,)‘7 —
F—)G
=5t . .
B series solution with
Lanczos smeoothing
et 1

FIG. 5.5 ¢ Equivalence of closed form and series solution.

* ( Lateral variation of By, a / A= .3, 8R=1.92, A= ,5cm)



(which can be derived by taking the Fourier Series for Cosh yz/

Cosh p2 over the range) we obtain:

uLh Cosh v,z
L Yo3 1 . s 0
By=-Jg 7T+ysRLI*ISR

ma-} ves5.31
This is exactly the result of (2.6-a) when G is replaced by R

since the air gap is completely filled with secondary.

The equivalence of the two results is shown in fig. 5.5 with S,.R = 1.92
and a/A = .3. Improvement in convergence and smoothing results when
the Lanczos sigma factors (47) are applied to the 15 term series

solution.

5.8 Discussion:

A compact solution to the multi-region travelling wave
problem has been derived. Skin and lateral edge effect in the linear
induction machine can be simultaneously studied using the solution
obtained.

In the general case the stator and secondary will not have
the same width. If skin effect is to be included the assumption
of zero permeability outside the limits of the stators cannot be
used. The fringing field at the stator edges and the field due to
the stator end coils must be considered. One way of circumventing

the problem is to artificially extend the stator to the limits of
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the secondary. The fringing field can then be accounted for in a
crude manner by allowing a variation in current in the end region.
Such an approximation was made in (45).

A more accurate representation can be made if a solution is
found for the fringing region. In this case the problem reduces
to matching up thg boundary conditions over the secondary width.

Further work is being done in this area.
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CHAPTER VI
CONCLUSIONS

6.1 Summary of the Thesis:

The usual two models of the flat linear induction machine are
the "infinite width'" model and the "finite width thin'" model. Each
model has been analysed using traditional approaches.

The "ideal machine" has been described. The Laithwaite
Goodness number has been introduced in temms of the equivalent circuit
for the "ideal machine". The lateral edge effect has been discussed
in detail. The distribution of the field quantities over the width
has been shown to depend on the dimensionless parameters:-slip.Goodness
number and mid-width/wavelength. In the case of the flat linear ‘in-
duction pump two extra parameters must be considered: the ratio of
the side conductor resisfance to the liquid metals resistance and the
ratio of side conductor thickness to wavelength. The induced current
density streamlines have been drawn. The main conclusion is that for
values of mid-width/wavelength > 1 the lateral edge effect can be
neglected. The uneven flux density distribution resulting in shaded
pole action has been determined for the case of a secondary asym-
metrically positioned relative to the primary iron.

In the case of the infinite width machine flux penetration
effects were studied.

Skin depth in the case of a travelling field was considered.

The flux distribution over a single sided machine with and without



secondary conductor was plotted. The results show the dependence of
the distribution on the dimensionless parameter slip. Reynold's number
and on the wavelength. A travelling field has been shown to exist

in the normal direction (upwards from the primary surface). The
levitation force due to the resulting induction motor action in the
normal direction has been calculated. For a finite thickness machine
the distribution of the field quantities and output characteristics
has been shown to depend on the dimensionless parameters: slip,
magnetic Reynold;s number and mid-thickness/ wavelength. It has

been shown that a through flux machine with small mid-thickness/
wavelength (< .05) is 'ideal',

An analogue circuit representation has been used previously
in describing electromagnetic fields in machines. This thesis develops
and extends this idea to give a generalised representation of all
flat linear machines under the infinite width assumption. Anisotropy
has been considered which allows composite secondary machines to be an-
alysed. Maxwells' magnetic stresses have been used in force calculation.
The field in the stator teeth region has been determined. It is shown
how the equivalent circuit is obtained from the analogue circuit.

The concept forms a very useful bridge between the electromagnetic
and circuit theory viewpoint of electrical machines.

The above method has been extended to include the case of
simultaneous treatment of lateral edge and skin effect in the
case of a homogeneous secondary. Skin effect is investigated in the
case of a finite width travelling wave. Each harmonic component of

the travelling wave is shown to have different skin depths. the skin



depth decreases with increasing harmonic number. Even in the case of
infinite wavelength and zero conductivity a finite penetration depth
results. Subject to the constraint that the secondary and stator(s)
have the same width a general solution is obtained for the field
quantities. It is indicated how this solution can be used to predict
the performance of machines where neither of the two limiting approx-

imations are appropriate. In the separate cases where the width
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becomes large and the thickness small (both compared with the wavelength)

the results obtained are shown to be identical with those obtained

using existing techniques.

6.2 Specific Contributions of This Work:

Some important steps in furthering the knowledge and general-

ising the theory of linear induction machines have been taken.

6.2-a

The induced current paths have been plotted in the case of
the finite width machine. A clear insight is given to the lateral
edge effect. In Fig 2.9-a the contours for S.R = .1 and a/x = .3
are approximately elliptical in shape. With S.R = 1.92 and a/Ax = .3
the ellipses are slightly distorted. This distortion is a consequence
of the non-uniform phase shift in the z direction. The increase in
non-uniformity with S.G is shown in Fig. 2.8,

Finally from Fig. 2.7, the phase and magnitude of the flux

density is uniform over the centre portion of the channel. The
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uniformity of the magnitude of the flux density is indicative of
currents being z directed. The induced current contours for this
case appear in Fig. 2.9-c. The steep change in phase angle gives
rise to the acute distortion in induced current paths near the edges
of the sheet. The validity of the infinite width assumption is
apparent from the diagram.

A good appreciation for skin effect in the travelling wave
case can be obtained from figures 3.3 and 3.4. Fig. 3.3 shows the
usual flux distribution for an open sided machine. Fig. 3.4 shows
very clearly the effect of the conducting medium on the penetration
depth. The distortion of the contours in the direction of motion
results from the phase shift in the y direction and indicates the

presense of the travelling field in the y direction.

6.2-b

The case of an induction pump with short circuiting side con-
ductors has been taken into account. The case considered is that in
which the side conductors are positioned just outside the limits of
the primary (z = + a in Fig. 2.1). Fig. 2.12 shows the variation
of over the width normal component of flux density as a function
the ratio of the resistivity of side-conductors to the fluids resistivity.
The justification of the ideal machine assumption for low values of
p '/p is shown.

In the practical case the contact resistance between the fluid
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may not be negligible and the $ide conductors may not be positioned
at (z = * a, Fig. 2.1). In this case modified values of impedance
at the interfaces separating the active from the inactive zones will

have to be considered.

6.2-c

The Goodness number of Laithewaite has been placed in proper
perspective by comparing it with the magnetic Reynold's number. The
magnetic Reynﬁld's number is the more fundamental of the two. The
Reynold's number is a dimensionless>parameter occurring in the magnetic
(transport equation. The Laithwaite Goodness number on the other hand

results from an inspection of the equivalent circuit.

6.2-d

A major step in the representation of induction machines
(under the infinite width assumption) as a tandem connection of analogue
circuits has been taken. This is in the representation of the stator
tooth region as a two port network,

In previous work the linear current sheet idealization had
to be used and the primary slot leakage reactance calculated by con-
ventional techniques.

In this thesis the slotted stator region is accounted for
just as all other regions as a two port network.

The field quantities E3 and Hl (Fig. 4.2) are expressed in
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terms of the average electric field intensity in the slot region and
the applied current density. The latter two quantities are related
to the applied voltage and current respectively. Consequently the
driving function has been established.

This extension to the theory allows a complete representation
of induction machines as anélpgue circuits in tandem. From 4.27 we

can write:

_E I ] Bst - j My Bst _ 1}. rE ]
3 tanh B.d ! 3avg
2's Bzds tanthdS
854,
Hufds o ! 12
y
where Ha = ds 53'

From the above the obvious choice for the driving function is
E3 or H_ depending on whether we have a voltage or current drive.
a3avg nd

The relationship between E and the applied voltage and between

3avg

ia{sa = ds.‘l o} and the primary current were derived and appear in
Appendix 2.
The above transfer matrix was derived by solving the field
equations for the stator tooth region. This region was represented
by an anisotropic medium with a distributed current density distribution.
The resulting slot leakage reactance given by the analogue

circuit can be shown to be consistant with the value calculated conventional

machine analysis. The modified procedure for obtaining a solution to
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the field equations and the equivalent circuit for any induction
machine under the infinite width assumption is:

(1) The machine is divided into a number of planar regions. The
regions may be stratified in the x direction (direction of motion) but
each must be homogeneous over its thickness (y direction). The
appropriate value of conductivity and permeability is calculated in
accordance with the table in Fig. 4.2. -

(2) The transfer matrix (as defined Fig. 4.16-b) for each fegion is
'obtained. The Tor m equivalent circuits may be derived.

(3) The overall analogue circuit is the tandem connection of the in-
dividual circuit representing each region.

{(4) Solution for the field quantities in any region reduces to solving
an electric circuit. One of the two quantities E3avg and Ea will be
-determined (depending on whether we are considering the external

voltage or current to be constant).

6.2-e

One of the main advantages of the Transfer Matrix (Analogue
circuit) representation of induction machines is the systematic way
in which the boundary conditions are applied. This ensures complete
tractability of the results and minimises the danger of using incorrect
reference directions etc. The same algorithm can be used to give the
. results to a wide variety of problems. Another advantage is that

the influence of different elements can be appreciated quite simply
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in an equivalent circuit or Transfer Matrix form.

The solution of the field equations in a three dimensional
case is generally in the form of an infinite series sclution. Due to the
formidability of the resultant expressions attempts to analyse the
solutions are usually abandoned.

There was very obviously a requirement for an extension of
the Transfer Matrix approach to cover this case. )

That goal has been achieved in this thesis for the case
wvhere all the regions representing the machine have the same width.

Following the development in the infinitely wide case the
solution for a genefal region is obtained. It has been shown that if
the boundary conditions are expressed as Fourier series then each
harmonic component of the field quantities at one boundary is
related only to the same harmonic component at the other boundary.

It follows that the analysis for the complete stack of regions can
be determined by solving independently for each lateral harmonic.
Consequently an overall harmonic transfer matrix is determined, It
expresses the relationship for each harmonic between the electric and
magentic field intensities at one extreme boundary to those at the
other. |

If the primary current is known then the harmonic components
of magnetic field intensity can be obtained from the lateral harmonic
components of the linear current sheet representing the primary. If
the voltage'is fixed it is necessary to assume some current, find the

corresponding voltage and then multiply the current by the appropriate
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factor. It should be noted that a specific voltage does not uniquely
determine the individual lateral space harmonics of electric field
intensity. The approach developed permits simultaneous investigation
of flux penetration effects (leakage and skin efféctj and lateral
edge effects. The method is directly amenable to solution by digital
computer, .

In cases where the width becomes comparable with the wave-
length the results have been shown to be consistant wiiﬁ those given
by the Transfer Matrix approach (under the infinite width
approximation). In cases where the thickness is small relative to
the wavelength the results given by the Harmonic Transfer Matrix
have also been shown to be consistant with those given by an independent

two dimensional approach.

6.3 Suggestions for future work in this arvea:

The inclusion of the phrase '"in this area" is intended to differentiate
between the general field of linear induction machines and the work
presented in this thesis. The latter could be classified as solution
of certain electromagnetic boundary value problems which have as one
of their applications linear induction machines.

The method outlined in Ch. 5 is subject to the constraint that
the secondary has the same width as the stator. For accurate analysis
the field in the fringing region and the stator return path outside
the iron must be accounted for. Work has already begun on this problem.

When completed more accurate predictions will be possible. The assumption
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of lateral symmetry may be then discarded and a general analysis of
lateral stability in the presence of skin effect and fringing field
may be performed.

As developed here the analogue circuit concept applies to
all induction machines. It would be most useful to apply this to
the case of cylindrical elements. Very compact results would then
be available for a wide range of machinessuch as the solid rotor
induction machine.,

It would be extremely interesting to investigate deeply the
full consequence of the replacementhof the stratified structures in
Section 4.1 by an anisotropic medium. This would involve the solution of
equations with periodically varying coefficients. The solution would

indicate space harmonics and clearly define the conditions under

which the space harmonics can be neglected.



APPENDIX 1

CURRENT DENSITY DISTRIBNTIO DUE TO A THREE PHASE

DISTRIRUTED WINDING,

Refer to Fig. 2.1, for co-ordinate system. It can be

shown that for a balanced 3¢ system we get:

innd o

st
Js(x,t) = —?a;——[ngl kdn Cos(wt-an)] I,
ng = number of slots per phase belt.
n, = number of turns in series/slot,

T = pole pitch.
ds = active slot depth.

Ia - phase current.origin for x is at centre of phase-belt'a')

Kdn = is the winding distribution factor.
. NT
_ Sin g
=
n_ Sin 2t n
S 6 s
T 3n Sw
Bn‘+1,'1,+r etc‘

If we neglect the coils distribution in the y direction then we get the

usual linear current sheet distribution.

hax,t) ™ 9s T30x,0)°
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The fundamental component is only considered in this work. The
neglect of harmonics is in fact generally more acceptable in linear
machines. This is because, due to the relatively large air gap
higher harmonic fields are attenuated more severely than the
fundamental.

The voltage induced is given by integrating the electric field
intensity in the z direction, and adding the contributiond due to
different coils.

. The wresult is:

Va = 2ngng Ky ESavg. Cos (wt) volts/metre length



APPENDIX 1

‘VECTOR PHASORS

Due to alternating currents in a distributed winding, it has
been stated in appendix 1, a current distribution exists whose
fundamental component is of form:~

J Cos(ut = Bx).
3in
The above represents the boundary conditions distribution and it can
be shown (since we are dealing with a linear system) all field
quantities take the same x distribution.
It is much easier to work in complex numbers so consequently

we write:

jlut = Bx)
J =Re{J } =Re{J e }

3 %3 03
A vector phasor can be obtainmed from the above by deleting the
time=x variation. The time averaged values of quantities involving
the product of two phasor quantities G and H is given:

1/2 Re { G.H *}

where Re stands for the ‘real part of' and the asterisk

denotes the complex conjugate.
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