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ABSTRACT 

Of greate-st interest in the field of linear motion electrical 

machines are, the flat linear induction motor and liquid metal pump. The 

former has feasibility in high speed transportation while the latter is 

becoming of increasing importance in metallurgical processes. 

This thesis examines and extends the traditional representation 

for the usual sheet secondary classification and then presents a common 

theory which also allows composite secondary machines to be analysed. An 

idealized model is developed consisting of a nUmber of regions represent­

ing_ air gaps, iron segments, and secondary conductors. A general solution 

for the field quantities is obtained. The concept of wave impedance and 

a transfer matrix approach allow a wide variety of configurations to be 

analysed. Unlike previous work the approach developed here allows for 

simultaneous investigation of lateral variation and skin effect. In the 

limiting cases where in tum skin effect and lateral variation are 

neglected the solutions are in agreement with known results. 
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A 
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NOMENCLATURE .. 

(M.K.S. system.of units) 

magnetic vector potential 

magnetic flux density 
magnetic flux 

electric field intensity 

magnetic field intensity 

induced current density 

applied current density 

linear sheet current density 

wavelength 

wave number 

angular supply frequency 

mid width of secondary 

mid thickness of secondary 

mid thickness of effective air gap 

conductivity 

pemeability 

velocity of secondary 

synchronous velocity 

slip 

Magnetic Reynolds' number 

Laithwaite 01Goodness factor" 

force density. 

surface force density 

Poynting vector 

magnetic stress tensor 

ar'1 + j R 
:.: Bv'l + j S R 

current stream function 



2n-l --n 2a 

transfer matrix 

Characteristic Wave impedance 

Characteristic Wave admittance 

1 ,1 ,1 unit vectors in x,y,z direction 
X y Z 

subscript 
1,2,3 vector components in x,y,z directions respectively 

~ phasor quantity 

avg average values 

superscripts 

complex conjugate 



CHAPTER I 

INTRODUCTION 

1.1 The Linear Induction Machine: 

The simplest way of introduci~g linear induction machines to 

the engineer is to consider their development from the conventional 

squirrel cage machineo A typical squirrel ~age induction machine is 

shown in Fig. 1.1 

As is well known, the effect of the polyphase currents dis­

tributed over the stator in the rotating machine is to produce a 

rotating magnetic fieldo Induced voltages are set up in the rotor 

conductors. The interaction of the resulting rotor currents in the 

~agnetic field results in the torque. 

The first stage.in.the development is to consider the machine 

being unrolled as shown in Fig •. l.2~ In this case we expect a linearly 

travelling field to be set upo Let us neglect, for the present time, 

any modification in the ~agnetic field caused by the unrolling process. 

By applyi?g the same principles a force and output power should be 

availableG 

It should be understood that the principles involved would 

not be changed if the squirrel cage secondary were replaced by a con= 

tinuous sheet conductor. In fact it may even be a conducting liquid -

such is the arrangement used in liquid metal pumpsc 

In the squirrel cage the induced currents flow in the definite 

1 
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FIG 1.1 Conventional squirrel cage induction nachine 
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FIG 1.2 : unro~led squirrel cage machine 

FIG 1.3 Induced current paths in sheet secondary 
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paths described by the secondary conductors. In the case of the 

sheet secondary the induced current paths are not so well defined. 

The induced currents in this case flow in roughly elliptical paths 

as shown in Fig. 1.3. Due to the non-uniform current density dis­

tribution over the width we also getnon-uniform flux and force density 

distributions. This is referred to as the "lateral edge effect". 

If the secondary is asymmetrically positioned as shown in 

~ig. 1.4, a force tend~ng to increase the eccentricity results. This 

lateral instability results from shaded pole action in1he z direction. 

Because of the different resistances at the end sections the induced 

current tends to be displaced··.towards the larger extending end. This 

results in an uneven flux distribution and shaded pole action. 

It is obvious from Fig. 1.2 that for continuous motion, either 

the unrolled stator or rotor must be el~ngated. These shall hence 

forth be called primary and secondary respectively. Consequently we 

get two broad classifications of linear induction machines as shown 

in Fig. l. 5. These are the short primary and the short secondary 

machine. Generally the short primary arr~ngement is less expensive 

to build and has higher efficiency. If the primary is the moving part 

some means of power pick-up must be incorporated. The alternative is 

to use a sectionalised primary in which different sections can be 

switched in. 

Probably the simplest linear induction machine is that shown 

in Fig. 1.6. It is classified as an "open sided machine". Skin ef­

fect in a relatively thick secondary plays an important part in de­

termining the performance of the machine. The study of the skin effect 

3 
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in the secondary and attenuation in the large air gap with r_egard 

to the output characteristic of the machine is referred to as "the 

flux penetration effect". Recently forces normal to the direction 

of motion have been considered. In the machine in Fig. 1.6 this force 

is a levitation force. The force can be interpreted in terms of 

shaded pole action in the normal direction. The induced currents at 

·different heights can'be shown to have different phase angles. The 

net effect is that there is a travelli~g field upwards. The levitation 

force can thus be considered to result from induction motor action in 

the y direction. 

Because the flux must return thr~ugh the air, the ~agnetic 

circuit of Fig. 1.6 is poor. It can be improved by placing a slab of 

iron at the back of the sheet as shown in Fig. 1.7. This is referred 

to as a doubl~ sided machine. Further improvement can be effected by 

having a doubly excited machine. (Fig. 1.8). This is the most common 

flat linear induction mach;ne. Referring to Fig. 1.7, it is obvious 

that as regards the electromagnetic action the backing iron can be 

integral with _the conducting secondary. Such an arrangement is called 

a composite secondary. Other forms would be the developed cage machine 

or having a conducti~g plate with an array of iron sl~gs as depicted 

in Fig. 1.9. 

The question of forces in the normal direction is now complicated 

by magnetic pull besides the levitation force in the opposite direction. 

This magnetic pull also helps lateral stability since the magnetic pull 

force would oppose the decentrallizing force due to shaded pole action. 

6 
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With reference to the doubly excited machine there are two 

possible arr~ngements. The flat linear machine generally has cor­

responding top and bottom windings carryi_ng in phase currents. The 

alternative is to connect corresponding top and bottom coils in anti­

phase. In the former the currents in top and bottom combine additively 

to produce normal flux. or througb;flux. The latter arra~gement results 

in cancellation as regards normal flux but reinforcement as regards 

transverse flux production. This very logically leads into the other 

main classification of linear machine which can ~gain be developed 

by considering topological changes to the squirrel cage machine of 

Fig. 1.1. 

Upon rerolling in the transverse direction the unrolled stator 

of ~ig. 1.2 we obtain the tubular machine (Fig. 1.11). It has an 

end turn advantage. In the flat form all the conductors of a 

particular phase windi~g have to travel thro~gh approximately a pole 

pitch until they again bec~me active (Fig. 1.10). Due to the over­

lap in~e tubular case only one end connection is required. Due to 

the l~rge effective ai~ gap - the flux passes thro~gh the tube axially -

it is desirable that the secondary contain ferro~agnetic material. 

The above is by no means an exhaustive list of the different 

kinds of linear machines. It is merely intended to serve as a 

general introduction to the concepts and terminology used. Fig. 1.12 

shows the classification of flat linear induction machines. For 

further information on linear induction machines in general, the reader 

is referred to review papers on the subject. (1),(4),(15),(16) 

8 
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So far we have assumed that the unroiling process gives us a 

linearly travelling fielde In addition we must consider the unwanted 

parasitic components of flux and flux density that are set up. Th~~e 

result from ~he inherent imbalance of the primary circuit and the 

transients occurring at the e~ges. Even in the absence of the secon­

dary the unrolled stator presents different impedances to the different 

phases due to the asymmetry caused by the ends. Consequently un­

balanced current will flow producing in the general case forward and 

backward travelling fields and a standing fielde Even in the case of 

a balanced current set a pulsati~g component of flux exists. The 

flux cannot only contain a travelling wave component. There must 

also be a standing wave component since the total flux must be zero 

at both ends. Study of the above is referred to as "finite le_ngth 

effect", 'end effects tv!) 
91e_n~ry and exit edge effect" or "lo_ngitudinal 

end effect." 

Generally some modification must be made to the arrangement 

to cancel the effects of the unwanted field components. Such 

modifications include compensating windi_ngs, gradi_ng of end section 

windi~gs etco Generally in multi-wavele~gth machines the end effects 

can be neglectedo 

Also whether or not the machine is series or parallel con­

nected can make a marked difference to the operatione In conventional 

rotating machines the difference is only to ch3:nge the impedance of 

the machineo In this case the distribution of flux and mmf does not 

ch~nge only the magnitude is cha~ged. This is not the case in linear 

10 



induction machines due to the above mentioned asymmetryo Series 

connection is. generally preferred in short primarymachines and parallel 

connection in short secondary machines for convenience in power suppl~ 

1 .. 2 Review: 

The rotating field machine was developed in 1885~ The first 

known reference to linear induction machines appeared in 1890 in 

a patent relating to induction machines. This was followed in 1895 by a 

patent specifically proposing linear induction machines for use in 

weaving loomsa In 1905 came two proposals for railway use - one 

proposing the sectionalised stationary primary arrangement and the 

second s.uggesting the short moving primary arr3:ngement. The latter 

idea is the ancestor of systems bei~g currently examined (1). 

11 

The first use in liquid metal pumping was due to L. Chabb (2) 

who in 1915 proposed an induction pump for mercurye It had no practical 

application at the time.and was soon forgotten. Albert Einstein and 

Leo Szillard had a patent in 1928 for an induction pump used for 

circulati~g liquid sodium in a refrigeration plant (2). 

From the b.eginning of the century until about 1940 interest 

seems to have declined. In 1946 came the first large scale machine. 

This was the Westinghouse "Electropult11 
- a linear motor arr~ngement 

for launching aircraft. (3) The machine was of the short movi~g 

primary type. However unlike most other machines the secondary 

consisted of wound conductors. A constant thrust was accomplished by 

varying the secondary resistance. The project was abandoned due to 

the h,igh coste 



In the early fifties came the need for the pmping of sodium 

and potasium in nuclear reactors. Due to radioactive contamination, 

mechanical pumps are undesirable. Both of these liquid metals are good 

conductors so consequently liquid metal pumps were proposed. 

Flat linear induction pumps were most popular in this ap­

pli~t:ation. (1), (4) Feasibility and des_ign studies have also been 

carried out on M.H.D. induction generators. These can be viewed as 

pumps operati~g above the synchronous velocity. (5).(6) 

At the same time much work was being carried out in the U.SeS.R. 

on liquid metal pumps for use in metallurgical processes. 

The main reason why induction machines are preferred to con­

duction is that the latter involve contact with the liquid metale 

Contact has associated with it, chemical reaction and heat transfer 

problems.. (2) 

In 1947 Laithwaite began research on linear motors with regard 

to their application for shuttle propulsion in weavi_ng looms D Over 

the past twenty years or so he has contributed enormously in this 

12 

areao Besides linear induction machines he has contributed significantly 

to knowle_dge of all induction machines. (1), (7)-(14) 

Other pioneeri~g work has been done by Poloujadoff at the 

University of Grenoble. (15), (16), (17), (18). This work has been 

mainly concerned with the transportation application of flat linear 

induction machines. Much research is currently bei~g carried out on 

experimental transportation machines: ~ Urba motor, Aerotrain, Gorton 

machine (7) etco 



The main reason for the present research in linear machines 

is the blatant need for revolutionary development in inter-city and 

urban transportation. 

Some of the advant.ages of a drive usi.ng linear induction motors 

are (7)»(15),(19): = 

(1) Conventional systems use a drive that depends on adhesion be= 

tween wheels and tracko The adhesion force decreases with speedo The 

maximum speed is limited to about 250 m.p.h •• No such limit exists 

in the linear drive caseo Also much steeper inclines can be negotiatedo 

(2) There are no centrif~gal forces in linear machines since there 

are no rotati~g parts. Consequently there is no limit on speed due 

to centrifugal forces. 

(3) There is no mechanical contact required between the vehicle and 

track. An air suspension system has been proposed in (15). The 

13 

normal forces in a composite secondary machine, though usually attractive~ 

have recently been shown to be repulsive under certain conditionso 

(21). The use of this repulsive or levitation force t~ give a 

frictionless drive has been considered. In Fig. 1.13 some typical 

track layouts are showns 

Apart from the high initial cost of track other factors must 

be considered. The efficiency may be lower than that of an alternative 

system and,except in the case where the electric poweT~is generated on 

board,speed control is a problem. With solid state frequency conversion 

there is a possibility that power could be picked up at any frequency -

even d.co and converted to give any desired f~equency. A limited speed 
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control is also possible by changing the pole pitch by switching in 

different primary coil arrangements. (7) Another possibility is to 

have collection at variable frequency. (7) 

As in many other enginee.rlng examples the use of linear in­

duction machines had preceaed the development of accurate analytic 

solutions of the problems involved. Generally speaking the general 

trend in the analysis is to divide the problem into the following 

three classes: 

(1) Flux penetration and lateral ~dge effects are neglected. The 

end e.dge effect (entry/exit effect) is considered. 

(2) Lateral and end e.dge effects are neglected. Flux penetration 

effect is analysed. 

(3) Flux penetration and end edge effects are neglected. Lateral 

e.dge effect is considered. 

Pump problems are divided into two classes. One examines 

electromagnetic phenomena under the assumption of ~ given velocity 

profile. The velocity profile is usually considered flat. The 

second class is the study of hydrodynamic phenomena. Considering 

the first classification there is no difference between a liquid 

metal pump and a sheet secondary induction motor. 

One of the early works on flat linear induction pumps is 

due to Blake (4). The ideal machine was considered. Laithwaite 

(10) introduced the concept of "Goodness". 

The first classification has been considered by Okhremenko 

(22), (23), (24), \~ang (25), Wang and Dudzinsky (26) ,· and Veski (27). 
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The second classification has been considered by Okhremenko 

(22)~ (23), (24) 9 Verte (27), Poloujadoff (16), Vlauev (28), and 

Bolton (29), (30)G 

The third classification, the end effect has been considered 

by Laithwaite (7) 9 (9), (11), (1), Raschepkin (31), (32), Nasar (33) 

and Cerini and Elliott (34). 

Besides the above main classifications overall des.ign con­

siderations have been considered by Laithwaite (7), (9), (36), Watt 

(35) and Verte (2). 

The above list is by no means complete but is a representative 

section of the published work and shows the current state of the art. 

1.3 Object of the thesis: 

The object of this work is to lay down a common basis for the 

study of multi-wavele.ngth linear induction machines. Flux penetration 

and lateral e.dge effects are to be considered but, owing to the large 

number of wavelengths, end effects may be neglected. A model is to 

be developed which is applicable to both linear motors and liquid 

metal pumps (under the assumption of a flat velocity profile). Both 

composite and sheet secondary machines are to be considered& 

1.4 Governing Equations 

16 

Maxwells' equations under certain approximations regardi~g the 

velocity, frequency and material properties give the equations. Further 

the Lorentz force law, Poynti.ng vector and Maxwell stresses are in., 



troduced for force calculation. 

The approximations are (44):-

(1) Non-relativistic case i.e. v2 
<< c2 is assumed. (V is a 

characteristic velocity and C the velociey of l_ight) .. 

(2) Negligible displacement current compared with conduction current. 

(3) N_eglect of space cha_rge effects. 

Field equations: 

In the laboratory reference frame Maxwells' equations are: 

V X E = -

V X H = J 

V.J = 0 

V.B = 0 

as 
at 

The Lorentz transformation under these approximations take the form: -

I 

E = E + V x B 
I 

B = B 
I 

H = H 
I 

J = J 

The above shows the relationship between the quantities in the rest 

frame of the secondary (or any reference frame in fact) and the 

quantities in the laboratory rest frame. Only the electric field 

intensity is affected by the transformation. 

The constitutive equation and Ohms' law are: -

17 



W I 
B as JJH 

9 I 

J as oE 

The above must be applied in the rest frame of the medium. 

The followi~g are the boundary conditions to be satisfied at an 

interface a 

' ' E a x n = , x n 

' • B . n = Bb 0 n a 

' ' ' Ha xn = lb x n + h 

The primes in above refer to any reference framewhich does not move 

normal to the interface. a and b refer to the two media separated 
D 

by the interface. n is the normal vector to the surfaceo h is the 

current sheet density at the interfaceo 

The above equations in vector point form can be ch~nged to 

int.egra.l form. In this form they ar~ more closely associated 

wi tlh their discoveries. Using the di ve_rgence and Stokes' law we 

obtain: 

L B. ds = 0 

J 
as 

- . it . ds 
s 

(Faraday) 

f H o dt = Js J • ds (Ampere) 

18 



The magnetic transport equation: 

By combini.ng Maxwells' equations we get the equation des-

cribi~g the distribution of field quantities. 

From Maxwells' equations we have: 

V X H = J 

V X 8 = J,&J 

from Ohms' law: 

J = a(E + V x B) 

(the velocity is assumed constant with time) 

Substituting: 

V X V X 8 = JJO(V X E + V X V X B) 

Now V x V x B = - v2B + V(V.B) and V.B = 0. Consequently upon sub­

as stituting - at = V x E. 

In the absence of velocity the above represents a pure diffUsion pro-

cess. In this case the field lines diffuse or slip through the material 

at rate determined by 1/a~ (the magnetic diffusity). If the second 

term dominates the field lines do not slip through.the material but 

are transp~rted along with it. 

If we write x = L0 x*, V = v0v• etc. where L0 and v0 are characteristic 

19 



values = asterisked quantities are normalised we obtain: 

*2 vo * * 
V B + ~ {V x V X B} 

Lo 

Upon examination, it is seen that the ratio of magnetic convection to 

diffusion contribution is ~0av0L0 • By analogy with the fluid 

mechanics case where the Reynolds number is the ratio of inertial to 

viscous forces, this quantity is called the Magnetic Reynolds number. 

The Magnetic Reynolds number will also be seen to represent the ratio 

of the induced ~agnetic field to the net fieldo 

Typical values are shown in table l.lo 

Power and force equations: 

The instantaneous rate of ene!gy flow through a volume is 

given: 

J p •. ds = J (Ex H) • ds 
s s 

p is called the Poynti_ng vector. The above equation is only valid in 

its entire integral form - there is no assurance that p represents 

the local power density as pointed out in (43). However in much 

of our work the concept will prove very useful as the p vector 

will be found constant over certain surfaces. 
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metal frequency 
(hertz) lm 

liguid iron 
25 .024 

60 .058 

400 .384 
mercury 

25 .050 

60 .120 

400 .800 
sodium 

25 .520 

60 1.25 

400 8.32 
aluminium 

25 1.77 

60 4.25 

400 ?R 3 
con per 

25 2.89 

60 6.96 

400 46.4 

TAHLE 1.1 

wavelenr-th. 
2m km 

.096 .334 

.230 .922 

1.54 6.14 

.200 .800 

.430 1.92 

3.20 12.8 

2.08 8.32 

4.99 19.9 

33.3 133. 

7.08 28.3 

16.9 67.9 

113. 453 .. 
L" 

11.6 46.4 

27.8 111. 

186. 742. 

• Hagnetic Reynolds number. 

1 Clm 

2.39 

5.76 

38.4 

5.00 

12.0 

80.0 

52.0 

125. 

832. 

177. 

425. 

2830 .. 

290. 

696. 

4640 ' 

J 
J 

N ..... 



In most of the published work on linear induction machines 

the assumption of a non.,.m.agnetic secondary was madeo 

All liquid metals are also non-magnetic (the Curie point is 

below the melting point in all cases)o 

Consequently the force density i~ given by the Lorentz force law: 

f is the force densityo In the case of a ~agnetic secondary, 

~agnetic as well as electromagnetic fm-ces have to be accounted for. 

Maxwellsv ~agnetic stress(T) is the most useful principle in this 

case (41), (44) .. 

Under the approximations listed we obtain: 

T. . = 
1J 

(first subscript indicates the surface, the second indicates the 

direction of the stress = see fig. 1.14) 
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surface 3 

T31 

T23 

~T13 

~L22 
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Tll 

surface 1 

FIG 1.14 Reference direction for stress tensors. 



The total force on a control volume can be expressed as the 

integral of the stresses over the surface. 

T .• dA .• 
J1 J 

In cases where the stress tensor does not vary over a surface we shall 

find it convenient to talk about surface force density. 
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CHAPTER II 

ANALYSIS OF THE THIN FINITE ~1IDTH SHEET !'~LACHINE 

2.1 Introduction 

The most common linear induction machine is the double-sided 

sheet secondary machine in which corresponding top and bottom primary 

coils carry in-phase currents. In cases where the secondary and air 

gaps are thin relative to the wavelength, the normal component of flux 

density can be considered constant in the y direction ·(depth). Under 

this assumption the lateral edge (finite width) effect can be analysed 

using a two-dimensional approach. 

The only component of induced current density contributing 

to output po'>ver is that in the direction of the primary conductors 

.(the z direction). The return paths in the x direction result in a non 

uniform flux redistribution and lateral forces. Consequently the shape 

of the induced current paths are of fundamental importance in 

determining the performance and therefore it is desirable that these 

paths and the non-uniform flux distribution be found so that the 

machinis behaviour in the presence of the lateral edge effect can be 

predicted. 

2.2 Hodel and Assumptions 

The model is as shown in Fig.2.1. For generality the sheet 

secondary is assumed to be laterally assymetric. 

The following are the main assumptions: 

25 



laminations 

top and bottom 
current sheets 

2a 

equivalent current sheet 
representing primary currents 

y 1' 
I 

z ~-~L_, ______ ;c== __ =_. 3. 

X 

FIG. 2.1 

/ 

{?/ 

General model for two dimensional analysis 
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1. The normal component of flux density (B2) is not a fUnction of y. 

As shall be seen later, this assumption is valid for double-sided 

machines where the ratio of_ gap thickness to wavelenth is small. 

2. The permeability and resistance of the stator is infinite. The 

assumption of infinite resistance is not strictly accurate {as 

pointed out by Bolton (29)}. This is becasuse the return currents 

(currents in the x direction) produce a flux in the z direction. This 

direction is normal to the laminations and consequently there will be 

induced currents in the stator blocks. The assumption will be kept 

however for tractability of the results. 

3. The effect of slotting is neglected. The excitation is replaced 

by linear current sheets backing smooth iron surfacese Only the 

fundamental component of the current sheets is considered. 

4. The machine is many wavele_ngths lo_ng so the lo~gi tudinal e.dge ef­

fect can be neglected. 

5. The field exists only in the "active portion11 i.e. over the stator 

width. Fri.ngi~g of the field beyond these limits is ignored. 

2.3 Governing Equations: 

For convenience we separately consider the centre zone or ac­

tive r~gion and the end zones where the field is assumed zero. The 

reference frame for all quantities is that of the laboratory. A list 

27 

of the symbols appears on p_age x. Vector-phasor quanti ties are used 

throughout the development. Their properties are discussed in Appendix 2. 

(a) Active Region: 

Applying Amperes circuital rule to the elementary pathsshown in ~ig. 2.2-a 
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FIG. 2.2-a : Elementary loops for Ampere's law 

FIG. 2.2-b General end section 



we obtain: 

2g[~2z - ~2z+6z] = 2c ~z ~1 •••2ol 

2g(~2x - ~2x+6xl = 2 6x ~3 - 2 Ax c ~3 

where ~3 is the phasor representing the fundamental component of the 

primary current sheets. 

The DDllf component in the stator blocks is consilered n.egligible due to 

their infinite permeability. 

Usi~g thefirst term of the Taylor series expansion and simp-

lifying yields: 

and 

aH2 ~3 c 
-~=---J ax g g "'3 

aH2 -.J =-.[~ 
•• '\il c az 

aH h 
J =· £ "'2 + ~ 
'\,3 c ax c 

From Maxwell's relationship VxE aB = - at we obtain: 

The Lorentz transformation for electric field is: 

••• 2.,3 

••• 2.4 

••• 2.5 

••• 2.6 

••• 2.7 
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_, -
E':.=E+VxB 

where the prime indicates the value in the movi~g secondary reference 

frame .. 

Consequently we obtain~ 

' ~1 = ~1 ••• 2.8 

i 

~3 = ~3 + v ~2 ••• 2.9 

Consequently we get the expression for the induced current density: 

~1 = C1 ~1 ••• 2.10 

., •• 2.11 

Substituting in (2.7) for~~ and ~3 we obtain: 

••• 2.12 

Substituting for J 1 and J 3 results in~ 

••• 2.13 

Using the properties ~x ~ - jB, :t ~ jw and the constitutive equation 

B = JJ0H we obtain upon rearrangi_ng: 
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va 6J.Jo 
j wu a(l - -p) B + j - h 

0 w ~2 c ~3 

This can be written: 

where fo = s2
(I + j s G) 

s is the slip ~ 1 - va 
(A) 

..... 2.15 

••• 2.16 

c poaw 
G! =. g R, where R is the ~agnetic Reynold's number = 7 . 

G is called the Laithwaite Goodness Factor. 

~20 is the flux density corresponding to the same primary current with 

the secondary removed (or slip= 0). Referring to expression 2.4 we 

obtain: 

0 •• 2.17 

Consequently : 

••• 2.18 

(b) Secondary End Regions 

31 

Consider the general end section. -(Fig. 2.2-b) where the normal component 
t -

of flux density is assumed zero. In this region Haxwe:4i.~s equation 

v x · H = :i ~ reduces to : 
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0 •• 2.19 

Differentiati~g the above with respect ~o x yields: 

From the continuity equation V.J = 0 we obtain: 

••• 2 .. 20 

we_ get, upon substitution: 

0 ... 2 .. 21 

which is Laplace's equation in two dimensionso 

Similarily it can be shown~ 

a2J a2J 
~<-~= 0 
ax2 az2 oe•2.22 

The followi~g are the boundary conditions to be satisfied at the in-

terfaces at both end sections: 

(i) continuity of normal (z) component of current densityo 

(ii) continuity of tangential component of electric field intensity. 

(iii) J 3=0 at extreme boundarieso 



33 

2.4 General Solution: 

The general solutuon of (2.16) is: 

•e•2.23 

82 
where 8 ~ :2 820 and substituting for ~20 from 2.18 

""c Y "" -.... 

= = 

B and 8 are arbitrary constants. 
""- '\,+ 

The correspondi~g expressions for ~l' ~3 (given by 2.5 and 2.6 and 

substituti~g for ~3 from above); are: 

••• 2.24 

aD .2 00 25 

The solution in the inactive zones is: 

J 3 = A Cosh az ~ B Sinh Bz 
'\, '\, '\, 

••• 2.26 

and from the continuity equation we obtain: 

J 1 = - j{A Sinh Bz + B Cosh Bz} 
'\, "' "' 

••• 2.27 

. " !Upon substituting the conditions J3=o at z g.61 and z =a2 we obtain: 

for z > a 
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' Sinh 13(6
1 

= z ) 

~3 = Sinh 861 
J 
""3a 

' 
~~ j 

Cosh 8(111 - z ) 

~a 
:g 

Sinh 8A1 
••• 2.,29 

for z < - a 

" 
~3 

Sinh az J = Sinh 8112 ""3-a 
.... ;2.,30 

II 

{I 
Cosh 8Z J = Sinh Bll2 ""3-a 

wher~ J 3 and J 3 are the current densities at z=±a respectivelyo ""a ""-a El 
It shall be found convenient to determine the quantity Z g ~ 

~3 
at the interfaces separati~g the active from the end zones. 

Consequently we obtain: 

E 
' . 1. 

za+ =:r- = j p Coth 8A1 
3 z=a 

•• "2. 32 

z El 
j p Coth 862 =- ~ "" 

a- J3 z::.a. 
••• 2.33 

where p is the resistivity of the ··end sections. In the general 

sheet secondary case p = p o By putti_ng ll1 = tJ.2 and p (: p we can 

represent a linear induction pump with short circuiting side con-

ductors at z = ± ao 



Calculating the same quantities for the centre portion we obtain: 

z a= 

••• 2.34 

" ... 2.35 

Equating the above we obtain the following matrix relationship: 

fP Yo + j 8 za_)e na C> «P Yo = j S Z )e~ Yoa ~+ =Z a- .a-

35 

= S S G ~c- 2.36 . 
-ua a za-})e Qa - (p Yo 4> j 8 Z a+) e (p Yo ~ j B z 

""- .a+ 

Substituting for Za+ and Z
2

= yields: 

{ y0+B ~ Coth B~2) e U8 -(l;-8~ 
0 ·p 

Coth Bll
2
)e-y0a ~. Coth 862 

j I 

=B !?_ S G B 
I p '\IC 

p . Bll
1
)e =Yo a ('y0o}B f Coth 86

1 
)e yo a B Coth 8.61 co ( r0-a P Coth 

"'-

2oS The Ideal Machine: 

It follows from 2.36 that if Z and Z are zero the B and B 
a~ a- ""+ ""-

terms are also zero 0 This case corresponds to havi_ng large end sections 

in ~he case of a sheet secondary machine or to the case of infinitely 

conducting side bus bars in the case of an induction pump. 
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In this case the solution reduces to: 

B = l 8 
~2 1 + j S G ~20 ••• 2,.38 

where ~20 is the no load flux density i.e. the flux density exist­

ing when the slip is zero (the primary current being constant). 

The primary voltage can be expressed in terms of ~2 and the current 

in terms of ~3 • {Actually it is the difference between the applied 

voltage and the voltage drop across primary impedance that determines 

~2} 
Consequently we can write: 

~l' ~2 are constants determined by the number of phases, slots per 

phase, number of conductors slot, etc. etc. It is not necessary 

to determine their value at this point. 

The impedance of the equivalent circuit is therefore: 

a KI 
where K = ~­

J.io K2 

V = K ____ ..... J'-. ~~ 
I .l+jSG 

The equivalent circuit is as shown in ~ig. 2.3. 

••• 2.39 
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FIG.- 2, 3 Equivalent circuit .for 'ideal _machine' 

---7 
speed (p.u.) 

FIG, 2.4 'Ideal machine's' force-speed characteristic 
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This circuit represents the basic induction principle having 

the properties 

1. (1 - S) of the input power appears as mechanical output. This 

also represents the efficiency. 

2. The force developed is the input power divided by the synchronous 

velocity. 

The force-speed characteristic is shot~ in Fig. 2.4. The Laithwaite 

Goodness factor (7), (9), (10) etc. is a measure of the machine's 

ability to convert volt-amperes to mechanical power. The better the 

machine the greater the proportion of the current flowing in the 

"load" circuit to that in the magnetising branch. 

The difference between the Laithwaite Goodness factor and 

the ~agnetic Reynolds number is that the latter is a parameter re­

sulting from carrying out an inspectional analysis on the magentic 

transport equation. Different materials within a magnetic field 

would have different Magnetic Reynolds numbers. 

The Goodness factor on the other hand expresses an overall 

effect. Individual Reynolds numbers, dimensions and simplifyi~g 

assumptions must be used in determining the Goodness factor. It is 

interesting to note that the Goodness factor as defined by Laithwaite 

is the inverse of the Quality of the circuit (as defined in traditional 

circuit theory). 

The Goodness factor is of fundamental importance in determining 

the characteristics of induction machines. For example, following 

38 

the development in (9) w~ get the relationship between· maximum efficiency 

and primary/secondary resistance ratio for different values of G. 



The slip at the maximum effi~iency is given by the quadratic: 

The efficiency is: 

where S is the slip 

1 - s 
n = -------------

1 + (S + ~)t 
S G 

t is ratio of primary to referred secondary resistance 

G is the Goodness factor. 

Typical curves are shown in Fig.2.5. 

Another parameter relati.ng to the effectiveness of induction 

machines is the "demagnetising coefficient 11 or "coefficient of secondary 

current reaction". 

This was introduced by Okhremenko(22 ) • 

B z · .
8 k -- • 2 B avg h t t = k eJ ••••••••••••• 2 • 40 r · . 20 3 cons an r 

In the case of the ideal machine this is: 

1 
••••••••••••••• · •••••••••••• 2. 41 1 + j S G 

Actually Oldtremenko did not use Laithwaite's Goodness number - but the 
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FIG. 2·. 5 : Maximum effieiency' s dependence on Goodness 



dimensionless parameter used was identical. 

From the definition, the term "de~agnetisi.ng coefficient" or 

"coefficient of secondary current reaction" is unfortunate. Actually 

the de~agnetising field increases with decrease in demagnetising co­

efficient. The poor choice of nomenclature probably occurred in tran-

slation from the original Russian version. 

A good appreciation for both the Goodness number and the de-

magnetisi.ng coefficient can be obtained by studying Fig. 2.6-a. 

Now: 

B = 820 + B2. • • • • ••••••••• • • • • • •• • • • • 2 • 4 2 
""a "" "' l. 

where B
2

• is the induced field. 
"' 1 

From (2.38) we have: 

B2. 
"" 1 

= - j S G ~2 

The locus of the phasors B
2 

and B2. are seen to lie on the circle shown. 
• • 1 

The de~gnetising coefficient is AC/ AB with an. angle e. shown. 

The Goodness factor is the ratio BC/AC with S = 1. 

The power factor of the machine is BC/AB. 

41 

The circle di.agram shown (Fig. 2.6-a) implies a constant current fed machine. 

For a constant "air gap11 voltage machine, the locus of the phasors is as 

shown in Fig.(2.6-b). 
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FIG. 2~6 Phasor relationships in ideal machine 



2.6 Finite Width Machine: 

With reference to 2.37 there are 3 general conditions of interest 

(a) 

In this case the solution reduces to 

~20 Cosh ijZ 
!2 = 1 + j S G { 1 + j 5 G Cosh 0 a} ••• 2.43 

This is in ~greement with Okhremenko (22). Plots showi~g the lateral 

variation of B
2 

as a flmction of a/ 'A and G appear in F.ig. 2. 7 and 

Fig. 2.8 respectively. The non-uniform flux distribution results 

from the non-uniformity of the induced current. At the secondary 

centre (z=O) the induced current is z directed. At z=±a the induced 

current density in the z direction is zero. 

The expressions-for the induced current densitites can be 

obtained from 2.43 by applying equations 2.5 and 2.6 

The resulti~g expressions are: 

S G Sinh ijZ j (wt-Bx) 
j ·u 1 + j S G ~20 Cosh Yoa e ••• 2.44-a 

J = . B - 1 el w X 
S G [Cosh Uz ] . ( t-6 ) . 

,.,3 a 1 + J S G rv20 Cosh 'Qa ••• 2.44-b 

The appropriate stream function describi_ng the flow is: 
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where 

~(x,z,t) = Re{~(x,z,t)} 
"' 

Cosh y
0

z j(wt-Bx) 
Cosh - 1 e 

oa 
tP(x,z»t) = 
"\, 1 

- 1 Cosh .Oa 

• • • 2o 45 

The current stream lines are shown in Fig. 2.9-a,-b and -c. Fig. 2.9-a 
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is for a low LaithwaiteGoodness ·number .. ( s.G = .1 ) •. The induced current 

paths are ro~ghly elliptical as described in (1). The contours in 

Fig. 2.9-b are for a higher value of Laithwaite Goodness number. In 

this case there is a distortion in the paths as shown. This results 

from the larger phase shift in the z direction due to the increase 

in the imaginary component of 0 . Finally, Fig. 2.9-c which corresponds 

to a/A=l shows the justifiability of the infinite width a~sumption. 

In this case over most of the width the induced current is z directed. 

The "demagnetising coefficient" (expression 2.40) in this case is: 

1 tanh roa 
~r = 1 + j S G{ l + j S G Ua } ••• 2.46 

The demagnetising coefficient is plotted in Fig. 2.10.Again the justi-

' ' fication of usi~g the infinite width approximation is shown for 

values of a/l>l. 

A convenient parameter in the evaluation of the finite width 

effect is the ratio of output power of the finite width machine to 

the output power available .from the same width of an infinitely wide 
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machine. In the latter case the induced currents will be z directed 

over the entire width. 

The force density is given:-

Substituting from 2.43 and 2.44-b we obtain: 

* ~20 Cosh y0z * ] 
{ (1 - j S G) ( l + j S G Cosh Ua) } ••• 2.47 

This can be re-arranged as 

!a S G 2 
Cosh roz 

1~201 Re{(Cosh - 1) 2 1 + S2G2 oa 

Cosh oz * 
(l + j 5 G Cosh Yoa) } ••• 2.48 

The expression for the force density in the infinitely wide machine. 

can be obtained from 2.47 by setti_ng y
0

a >> 0z. In this case 

Cosh 0a >> Cosh Uz and the expression for the force density reduces 

to:-

••• 2.49 
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The ratio of the average force densities is then 

J
z=a Cosh 0z Cosh r0z * 

- Re {(Cosh "t..a - l) (l + j 5 G Cosh r,
0

a) dz 
z=O u 

••• 2.50 

Typical values of the finite width force attenuation factor appear in 

F.ig. 2.11. 

(b) A
1 

= A2 

Under the above general catagory is the sheet secondary machine with 

a wider secondary than primary and the liquid metal pump with short 

circuiting side conductors at z = ± a. Referri~g to 2.37 it is seen 

that the flux distribution is determined by the dimensionless para-

meters a/A, S.G, p/p and A/A. Sample curves are shown in Fig. 2.12. 

In this case the variation of flux density over the width for different 

side conductor resistances is shown. As the realtive conductivity 

of the side conductors increases the machine becomes "ideal". 

This case describes a laterally asymmetric secondary. This was 

first investigated by Bolton.(30) It can be shown that when 

A1 > A2, 1~+1 > 1~_1 in which case there is a net travelling field 

in the +z direction. By normal induction motor action in the z 

direction a force exists which increases the eccentricity. 

A plot of the flux density under this condition is shown in 

Fig. 2.13. Observe the presence of the basic req~irement for 

"shaded pole action''. that is the decentralised phase lag. 
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The stability of such systems has been considered by Laithwaite. 

(9). 
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CHAPTER III 

ANALYSIS Ul\JDER THE INFIUITE '{..7IDTH ASSll1·fPTION 

3.1 Introduction 

From the last chapter it follows that if the width of the 

secondary is comparable with the wavelength the infinite width 

approximation is valid. Using this assumption we now consider flux 

penetration effects. 

In this chapter the solution of the field equations is found 

for the case where lateral variation is neglected. Due to penetration 

effects the field quantities in this case will be non-uniform over the 

depth. It is desirable that the actual distributions and their effect 

on performance be determined. l..Je also l-Tish to find the criteria under 

\~hich the ideal machine's performance is obtained. 

As mentioned in -Chapter I , a normal or levitation force may 

be present in linear induction machines. It is important· that this 

force be evaluated so that the phenomenon be more fully understood. 

3.2 Skin Effect in the Travelling Wave Case. 

The usual 11yardstick11 employed in analysing penetration effects 

is the "skin depth". This is defined as the depth penetrated lvhen a 

certain velue of attenuation is reached. It is usually defined in terms 

of the infinite plane geometry sho~m in Fig.3.1. 

From Haxwell 's equations w·e have: 

aB VxE=- at 
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taking the curl we obtain: 

a a 
V X V X E = - lJO at (V X H) = - lJO at J 

Since V x V x E = - v2 E + V(V.E) and V.E = 0 we obtain 

.•• 3.1 

Let us consider the penetration of an electric field whose surface 

value is represented by the complex number 

E _ E j(wt-Bx) 1 ~y=O - .30 e z 

Since we are assuming infinite width in the z direction w~ get: 

••• 3.2 

Replacing 
32

2 
by- a2 and multiplying by e-j(wt-Bx) we obtain: 

ax 

2 
= ~ ~3 

wuoa 
R is the Magnetic Reynolds number = -:z-

B 

The solution to 3.3 is: 

~3 = ~30 e- ~ 

E e- KrY e- j K.1Y = .30 

••• 3.3 

.•• 3.4 
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where K = K:r + j '1 

Consequently: 

Kr • ,1 
= JA .. ~2 t 1 

- K y j ( wt - Bx - K. y) 
~ 3 = ~ 30 e r e J. 

••• 3. 5 

••• 3.6 

Thus for any x value there is a phase shift in the y direction. The 

maximum electric field intensity is fixed by the e-Krr envelope but 

60 

the phase shift is such that we get a travelling field in the y direction. · 

Followi.ng an anal.ogous definition for skin depth as in the standing wave 

case we obtain: 

as "' ~r "' ~ ~ .. 2 R2 + l 
••• 3. 7 

Typical values appear in table 3.1. 

The fr~quency dependence is shown.in Fig. 3.2. · 

In the travelling wave case besides decreasi~g wi~h increasing conductivity, 
lJQOW 

frequency (R = ---2-), we also have decrease with increasing So This means 
B 

a decrease with decreasing wavelength. 

If S ~ 0, i.e: the wavelength becomes~ infinite and the travelling 

wave skin depth becomes: 

••• 3. 8 

which is the standing wave valueo 

Even at zero frequency or in a non-conductor there is a penetration 

depth of a travelling wave. This is obviously due to the non-uniformity 

of the excitation in the x directione 



metal frequency 
(h~rtz) 

lir!.uid iron 
25 

60 

l1-00 
!:Lcrcury 

25 '> 

GO 

400 
souiuw 

25 

60 

400 
alm:anJ.um 

25 

60 

400 
copper 

25 

60 

125 

I 

skin de~th in ems. 
. ~ 

lravclen.~~;th ~ 
.lrn • 2m. .. 4n 1. • 0_!"1 

: 
i 

1.59 ' 3.19 6.26 11.9 . 

1.59 3.16 5.85 ' F>.60 
I 

I 

1 1,56 2.67 3e35 3.59 

1.59 3.17 5.9!1 9.11 

1.59 3.10 5.06 6.23 

1.49 2.1G 2.42 2.50 

1.54 2.47 ' 2.94 3.09 

1.39 1.82 1.97 2.00 

..• 735 .768 .777 .780 

1,29 1.57 1.66 1.69 
-

.972 1.06 l.D8 1.09 

.416 .421 ·'~23 .423 

1.12 1.27 1.31 1.32 

.794 .339 .851 .852 

.327 .329 .330 .330 

( the correspond ins Bagtlti!tic Reynold's nunhers appear in Table 1.1) 

TA.ELE 3.1 : Travelling '(·lave skin depth 0\ 
~ 
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The penetration in this case is 

The effect of the conducting medium is tc reduce-the skin depth 

by the factor : 

~ good appreciation can be gained by considering the plots in ~igs. 

3.3 and 3.4 These represent the ~gnetic vector potential (A) over 

a si~gle sided machine which has an excitation current sheet 

h ~Re h ej(wt~ax). The vector potential is defined: 
"'3 .3 

8 = V x A 

and 

The solution for A over a single sided machine has the same form as 

that shown for E in expression 3. 6 The physical significance of the 

results in ~igo 3.3 and .3.~ is as follows:- the value of A represents 

the fraction of the total flux {~t} which is cut by a plane whose edges 

are the z axis and a. parallel line thro.ugh x,y. The plane has unit 

length in the z direction. ~t is the flux between x=O and x=T/2 at 

ygO~ This property of the vector potential follows from Stokes theorem 

(Cho 1. section 4ul)o 

In Fige 3e3 the magnetic Reynolds number is zero. 63% of the 

total flux~ ~t, is contained below a height T/w \~hich is the skin depth., 

In Fige 3o4, SR ~ 1.92 and 63% of the total flux only reaches.e8T/Wo 

Besides more severe attenuation there is also distortion of the field in 

the x direction~ This inherent distortion is a consequence of the phase 
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1 pole pitch. 7. 

.FIG. 3.3 Flux distribution in open sided machine 
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2. pole ~itch/fT 

FIG. 3.4 : Flux distribution in open sided machine 

with conducting medium ( S.R = 1.92 ) 



shift in the y direction. As shown in Fig. 3.4, for any y value the 

vector potential is an even function of x about the origin x=(- r./f3)y 

3.3 Normal Forces Due to Skin Effect: 

From section 3.2 we have the solution for E3: 

= = I( v j (wt = ax - tc.ly) 
~3 ~30 e r e 
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We see from the above that besides the travelling field in the x direction, 

there is also a travelling field in the y direction. Even in the absense 

of the travelli~g field in the x direction (a ~ 0, i.e. l ~ ~) there is a 

travelling field away from the stator surface. 

We now consider the normal force due to the interaction of the 

induced current with the field. 

Since V x E ~ = ;: » we obtain: 

= .. ~E 
w "'3 

••• 3.9 

••• 3.10 

Since ~3 ~ a ~3 and f 2 = ~ Re{J3B~} (f2 is the average force density in 

they direction and the asterisk denotes'tomplex con~ate") we obtain: 

••• 3.11 

•• ·3 .12 



The total normal force per unit·area in the xz plane is given: 

Thus 

f = JO') f2 dy 
sy 0 

••• 3.13 

••• 3.14 

This can be more easily interpreted if we recall the definition of K : 

Consequently: 

~ = ( K +j K. ) 
2 = B 

2 
( 1 + j R) r l. 

Substituting for Kr and R in 3.19 we obtain: 

fsy .= ~-}- ~ l~2ol 2 

w JJ0 

substituting from 3.5 for K. we obtain: 
1 

1 a 2 
1 

1 1
2 ' + R2 _ 1 l fsy = 4 w2 1.10 ~20 { ' 1 

The above expression is in agreement with the results in (9) • 

••• 3.15 

••• 3.16 

••• 3.17 

It is interesting to compare the above surface force density 

with the power density. 
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From (3el4) we have: 

••• 3.}8 

The power density is: 

1 . * 2 Re{~3 ~1 } ••• 3.19 

* } • K * = 2 Re{J-- E3 E3 } .•••••••••••••••••••.•. 3.20 
lJoW "' "' 

Consequently. the power density at the stator surface is: 

••• 3.21 

It follows from above that: 

••• 3.22 

Upon examining 3.6 it is seen that w/~ is the phase velocity of the 
1 

travelling field. The mechanisms involved in setting up the travelling 

fields in the direction of motion and in the normal direction are 

different. However. in both cases. the force is given by the power 

divided by the wave velocity. 

3.4 Model and Assumptions: 

The model being considered is shown in Fig. 3.4. The following 

are the main assumptions: 
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1. The lateral edge effect .is neglected - consequently the induced current 
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FIG. 3.5 Model for analysis under infinite width approximation 
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is z directed. 

2. The machine bei_ng analysed is infinitely long so the "finite length" 

effect is neglected. 

3. The primarywfuding can be replaced by a continuous current sheet 

backing a smooth iron surface. The permeability of the core is infinite. 

Only the fundamental of the primary current sheet is considered in the 

analysis. 

4. In the case of a liquid metal pump a flat velocity profile is assumed. 

3.5 Equations and General Solution: 

The ~agnetic transport equation ( Section 1;3 ) describes the 

field distribution in both the air gap and secondary region. 

In general: 

••• 3.23 

In the ai~ gap, where a = 0, the above reduces to Laplaces' equation: 

= V B 1 2 z 

as
2 therefore v·x V x B = V--- 1 

ay x 

as
2 

V-1 ax y 

Usi_ng the property V. B = 0, this reduces to give: 

••• 3.24 



as
1 

as 
vxVxB=-V-1 ·· v21 

ax x ax y 

Consequently, we. get two scalar equations: 

2 
Since we are n~glecting lateral variation ~ = 0. 

ay 
Consequently, usi~g phasor notation we obtain: 

{.;. B2 
a2 

~1 j s 110a w ~1 +-} = 
a 2 .Y 

a2 2 
~2 j {- ·S +-} = s p0a w ~2 ay2 

where S is the slip: 

1 
v = us 

u
8 

is the synchronous speed = w/B. 

••• 3 .25 

••• 3.26 

••• 3.27 

Consequently we obtain, upon rearr8:Jlglng and multiplying by e-j(wt - Bx) 

••• 3. 28 

where 2 
ll = 6

2
(1 + j S R) 
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R bei~g the ~agnetic Reynolds number as defined previously. 

In the air. gap, Laplaces' equation reduces to: 

••• 3.29 

The general solution for the secondary region is: 

~2 = ~ Cosh '\'oY + ~ Sinh nY 

••• 3.30 

B1 = - j : ~ Sinh "foY - j a'{) ? Cosh "foY 

(The solution for B1 is obtained by applying the div~rgence theorem) 

In the air gap r_egion the solution takes the form: 

B2 = ~ Cosh By + ~ Sinh By 

B1_, = - j ~ Sinh Sy - j F Cosh By 

C, D, E, and F are arbitrary constants. . . . . 
The boundary conditions to be satisfied are: 

(a) At the secondary - air gap interface. 

1. Continuity of B2 

2. Continuity of H1• 

••• 3.31 
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(b) At the stator surface 

2. 

where V and I are the phase voltage and current respectively. ~l and ~2 

are complex constants_ depending on the co-~rdinate system origin relative to 

the machine poles and the wiading arrangement .. (appendix 1 ) 

Generally, corresponding top and bottom windings will carry in-

phase currents.. In this case the x component of flux density is zero at 

the channel centre. 

In this case w~ get the solution: 

In the secondary: 
Cosh r0y 

~2 = Cosh y
0
c ~2·c 

. r0 Sinh r0y 

J B Cosh 0c ~2c 

~ZC is the phasor representing the induction at y = c. 

In the air gap: 

t Yo ' 
B2 = ~2c {Cosh By + a tanh y0C Sinh By } 

, r0 u 
j ~2c {Sinh By + S tanh 'YoC Cosh By } 

••• 3.32 

••• 3.33 

In the case of the transverseflux machine the normal component of induction 

is zero at y = 0. 

Consequently we obtain: 



In the secondary: 

Cosh y
0

y 
B = B .. 1 Cosh 0c .l·c 

Sinh 
:;;: J. L YaY B 

~2 U Cosh YcJC .lc 

~lC is the t~ngential component of induction at y = 
In the air g_!E.: 

~l ~ ~lc. {Cosh Sy u + .L Sinh By' } u 

1 B r 
~2 = j ~lc {Sinh By + - tanh "toe Cosh Sy } Yo 

3.6 Magnetic Field and Current Density Distribution: 

••• 3.34 

••• 3. 35 

From v x E = - ~~ sinre the only electric field in the infinite 

width analysis is z directed we obtain: 

••• 3.36 

S . a . d a . . 
~nee ax = - J8 an at = JW we obtain in phasor notation 

.... 3.,37 

where tS = w/B the synchronous speed .. 
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Ohm's law then gives: 

= -

where S is the slip as previously defined. 

Thus the current density distribution is identical with that of the 

normal component of flux density. 

The normal flux density in the through flux machine has the 

same distribution as the t~gential flux density in the transverse 

flux machine. Consequently, it follows that the distributions are 

determdned by the followi~g functions: 

Sinh Uz 
! 1 = Sinh 0c 

Cosh 0z 

!' 2 = Cosh y
0
c 

••• 3.38 

Upon examination of ~he above it follows that the arguments can be 

75 

conveniently expressed in terms of the dimensionless quantities s.R
9 

c 1 A 

and z/c: 

0z = ( r0/a) (Be) (z/c) 

Since 

01 a = 11 + j s a 

and 

e = 21r/A • 

In Figs. 3.5 and 3.6 the magnitude and phase of the above functions 

are given. 



1.0 

.90 

"80 

.60 -· 

e50 

.40 

.30 

.20 
, .. 

.10 

.. oo 
.o ol 

----~ v; ---~ 
\ 

I v; 
~ 

\ VI v 
~ / 

'\ 
/ 
v I " '\ ~ 

'/ v 
~ ----;: I - \ 

""\ v 1\. 
\ 
~ ~ ~JA. = ... O'l 

v v \ 

'\ ~ ·C/A = ol 

v ~'-. c/A. f'= .2 

~ ----L----
tSfR ·=10) . ' -

.2 .3 .4 .5 .6 .7 ,8 .9 1.0 
y I c 

FIG. 3,6 : Distribution of r
1 

. 
for different c/A· values 

(a) Modulus 

76 



77 

0 

=10 

0 

.,20 

0 

-30 

f1 

..,40 

0 

/' ~ 
v v v; ( 

·~ 

~ 
~ v I -- ... ,"" 
'"'~ ~ v I 

0_. 
-.so /~ ~1 I 

0 

=60 

0 
..... ]Q 

0 -so 

" -90 

v ., 
'}; "c/A. = .05 

/ 

/ /~ '- C/A ;: e.L 
~ 

/ I ~-cj>,., = .2 

~ 
,., v ~ ( s.R = 10. ) . 

--

I v 
() 

-loa i I 
.3 .5 .7 .8 1.0 .9 

y I c 

FIG. 3.6-. contdl) · · (b). ·~rgument · 



7& 

l.oo 

.90 

.80 

.50 

.40 

.30 

.oo 
.o .1 .2 .3 .4 .5 .6 .7 .B .9 

y I c 

FIG. 3.7 Distribution of r2 
for different c /). values 

(a) Modulus 



79 

0 

0 
calQ 

~ ~ ~ -\. 

\ / 
v 7 

\ / I 

0 

=30 

0 

-40 

& 
-5.00 

0 

-60 

K v I ~ \ 

~ 
~ 

\\"' \ I ----
l~~ ~- ''h - (1 c;, 

;( \_ _, -.- 7 

C/ Jl. ~ .l 

v 
""- Cl A. :li: .~ 

/ 
I 

-80°. I ( S.R = 19e. 

v 
>. 

) 

v 
~OO .10 .20 .30 .40 .50 .60 • 70 .80 .90 1.00 

y I c 

FIG. 3.7.contdo (b) argument 



3.7 Performance of the Through Flux Machine: 

. We now compare the performance of the through flux machine with 

the ideal induction machine discussed in (Sect. 2.S).It is apparent from 

¥ige 3.5 that except when c/'A << 1 the flux density decays significantly 

over the secondary depth. 

We had in 3.6: 

The Lorentz force is given: 

••• 3.39 

It follows from the above that the ratio of average force density in the 

actual machine to that in the ideal machine is given: 

ka = IB 12 
.2c 

••• 3.40 

ka is defined as a force or pressure attenuation factor. Plots of this 

factor appear in Fig. 3.7 Again the justification of using the "ideal 

machine equations" is shown at low values of c/>... 

80 

To determine the power factor we must compute the "demagnetisation 

coefficient11 or Goodness factor. This information allowsus to determine 

an equivalent circuit of the form shown in Fig. 2.3. 

Following the definition in ( Section 2.5 ) the demagnetisation 

coefficient -is obtained: 

~2 
~r = ~20 ~3 constant 

••• 3.41 
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If the linear current sheet is kept constant as we go from no load 

to full load then ~lc is constant. [~lc = ~~3 ]. Consequently by 

expressi!lg ~2 and ~20 in terms of ~lc the demagnetising coefficient 

can be determined. 

Constant ~lc is equivalent to constant ~3 • Hence from 2.40, 

k = or 

B . a .lc 
ly Sinh 0c 

B . .lc 
J Sinh ac 

s Sinh ac 
= y Sinh y

0
c ••• 3.42 

For the case of 0c << 1 we can replace the hyperbolic functions by 

the first term of their Taylor series expansions: 

In this case: 

1 k + ..,...__._..,._ 
r 1 "" S R 

which is the result obtained in (2.41). 

The "de~agnetisi~g·coefficient" is plotted in Fig. 3.10. Note 

that for all cases the "de~agnetisation coefficient11 is_ greater than 

that in the ideal machine. The values in Fig. 3.10 permit the modified 

phasor di_agraw.s in Fig. 3.11 to be drawne The overall result is that 

the output power is less than that of the "ideal Duu:hine" o 

In the above, the analysis has been based on the assumption 

that the ai~ gap ~egion is absent. 

The effect of the air_ gap is to introduce a leakage and add­

itional magnetising reactance into the circuit. 

The effect of air gap can best be appreciated by writ~ng 

Eqn. 3.31 in the following matrix form: 
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Cosh ~(g-c) j Sinh ~(g-c) ~2 
••• 3.44 = 

~~ g - j Sinh 6_ (g-c) Cosh. S(g-c) B .1 c 

The sUbscripts g and c refer. to the evaluation at the boundaries y~g 

and y=c respectively. 

The leak~ge and ~agnetising reactances cannot.be separated into two lumped 

parameter values. In general aT or ~ circuit is necessary to represent 

leakage and ~gnetising reactance of a l~rge air gap. This will be 

invest_igated further in Chapter 4. 



CHAPTER IV 

GENERALISED ANALYSIS OF THE FLAT LINEAR INDUCTION ~iACHINE 

USING AN ANALOGUE CIRCUIT 

4.1 Introduction: 

To date there has been no common theory on linear travelling 

field induction machines. The various problems pertaining to double­

sided, single-sided, composite secondary etc, etc, have been treated 

quite independently. 

Two very striking observations emerge from a study of the 

literature. The first is the virtual intractibility of the algebra 

involved in solvi~g the field equations even in h_ighly idealized 

configurations. The second is th~ great deal of duplication - since 

really the only equation used is that of magnetic transport. The 

problem·is not confined to linear machines - due to the formidability 

of the mathematics, even under very simplifYing assumptions, nearly 

all electrical machines are analysed from a circuit theory view­

point rather than by direct solution of Maxwells' equations. 

The most note-worthy attempt to use the latter approach was 

made by Mishkin (39). In this work the stator and rotor of a squirrel 

~ge induction machine were replaced by anisotropic magnetic media. 

Though the assumptions render the model approximate, the results are 

exceedingly complicated and not easily physically interpretable. A 

transmission line analogy was suggested by Cullen and Barton. (40) for 

the same problem. The first paper generalizing the procedure in-
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volved in the calculation of travelling fields in machines represented 

by ho~ogeneous isotropic laminar regions is by Gr~ig and Freeman (37). 

The application of these ideas in the area of linear machines was 

suggested. Anisotropy was taken into account by Freeman (38). 

In this chapter is_ given a more complete treatment of the 

subject of travelli~g fields with reference to flat linear induction 

machines. The transmission line anal~gy is investigated and equiva­

lent circuits obtained. A clear physical appreciation follows -

induced current reaction, ~agnetisi~g and leakage effects are isolated. 

Unlike previous work, a solution for the field quantities in the 

~egion of the stator teeth is found. This means that the usual as­

sumption of replaci?g the slotted stator by a linear current sheet 

can be waived. 

4.2 Model and Assumptions: 

The machine is considered as consisti_ng of a number of planar 

regions stacked together as shown in Fig. 4.1. These regions general­

ly represent stator{s), ai~ gaps, conduct~ng secondaries and iron 

s_egments. In general at least one of these regions will have velocity. 

Due to slotting, slitting of secondaries, inclusion of ferro~agnetic 

sl~gs etc, these regions will generally be inhomogeneous. The regions 

will_ generally be considered to be stratified in the direction of 

motion ( x direction) as shown in Fig. 4.2. The permeability and 

conductivity will then be periodic functions in x. To avoid having 

to solve differential equations with periodically varying coefficients 

88 



y 

[~~----~------~ 
~--~----------------~ 
~ ~~~---

~1-~------------------· 
~}-~------------------

Fig 4.~General multiregion representation of linear machine 
under the infinite width assumption 

z 

material 1 

material 2 

--k J i I" 
l\1 l\2 

r t 
l\ 

0 
l\1 !!2 

=. 0'1--- + a-z l\ 2 A_ 

.ill 62 
l.l. = 11- l1-

y ll\ + 2 A 

llx = l11l126ll\ 2 

(v.l61+11262)~ 

Fig 4.2 Equivalent anisotropic medium properties. 
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we make the simplifyi.ng assumption employed previously in (38), (39), 

(40). This is that the solution for the fundamental component of 

the field quantities can be obtained by considering only the average 

values of permeability and conductivity. The stratified structure is 

then replaced by a homogeneous anisotropic structure. 

The above representation of anisotropy becomes invalid when 

the wavelengths of the space harmonics are comparable with the slot 

pitch. The postulate of Mishkin and Ollendorf (39) ~egarding the 

ho~ogeneous anisotropic medium shall be used. It states that the 

equivalence is such that the resistance and reluctance of a circuit 

made of the original structure and the anisotropic medium are the 

same. Consequently it is possible to draw up the table shown in 

Fig. 4.2 which gives the appropriate conductivity and permeability 

for different configurations. 

Lateral ~dge effects are neglected and consequently there 

is no variation in the z direction and all induced currents flow 

in this direction. As was seen in chapter II this approximation is 

very often appropriate. 

4.3 Field Equations and Analogue Circuit: 

Consider the infinitisimal section shown in Fig. 4.3. From 

Maxwells' equations we have: 

v X E 
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a Since there is no variation in the z direction and at = - jw 

we obtain: 

(the laboratory rest frame is chosen for all quantities). Using Ohm's 

law we obtain: 

aE
3 Since a~ = = j B ~3 we have from 4.1 

Consequently: 

S a E
3 z "' 

••• 4,. 2 

••• 4.3 

••• 4.4 

where Sis the slip as previously definedo Applying Maxwell's 

equation, V x H = J we obtain: 

••• 4.5 

a Substituting for ~3 from 4.4 and using the property ax ~ - j B we 

obtain~ 
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••• 4.,6 

From 4 .. 3 and the constitutive relationship ~2 = ~2/Py f) 4.6 becomes 

••• 4. 7-a 

From VoB = 0 and substituti~g for~~ and ~2 from 4.3 and the constitutive 

relationship we obtain: 

••• 4.7-b 

-J· (wt--Bx) By multiplying both 4.6 and 4. 7 by e \'le can eliminate the x, 

t va~iation and obtain phasor relationships .. "' Since E3 A ~ E3 ~ '\, y+uy '\, Y 
aE

3 by ~~ ) {Taylor series) it follows that the difference in electric 
oy Y 

field intensity between y and y+6y is j N p b H1 • 
X y "' y 

Simdlarily from 4.7=a 3 Hly- Hly+lly ~ ~3{S a- j a
2
/oopy}-

The above very l~gically leads to the anal_ogue circuit shown in 

Fig. 4.4. Cullen and Barton (40) first obtained this circuit by con-

sideri_ng a transmission line analogy .. 

It is instructive to consider the origin of each element. the 

Sail represents the 99referred" load of an induction motoro Magnetising 
y 2 

the leakage reactances are respectively represented by = j L and 
WlJY 

jrolJY6Y.. An open L circuit (ioe .. having the leak_age reactance on the 

other side of the admittance) would have been ~qually valid& Neither 



circuit is exact for a finite thickness (y direction) region. To 

represent a finite thickness region 4.7-a and b must be combined 

t~ give a differential equation. It immediately follows that S 

per unit input energy represents joule heati~g, leaving 1-S per 

unit as the mechanical output and efficiency. Also the force~ in 

the x direction, is the input power divided by the synchronous velocity. 

This is~e basic induction process. Since there is no power loss 

across the leakage branch the above remarks apply to any number of 

such circuits in tandem and consequently to any thickness region. 

The phasor form of Equations 4.6 and 4.7 can be combined to 

give the differential equations: 

a2E 
2 .3 

~= 2 ~3 ay 
••• 4 .. 8-a 

a2
H 2 .1 

--2 = y2 ~1 .ay 
••• 4. 8-b 

where: 

••• 4.9-a 

2 llx 2 a = - a ••. 4.9-b 
2 lly 

"! 2is the prop_agation constant in the y direction. ! 2 in general has 

real and imaginary components - signifying attenuation of magnitude 

and phase retardation. In general: 
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., .... 4.,10-a 

where 

I I 1 + sil±l 
= 62 2 ••• 4.10-b 

Consider the solution to equations 4.8 in semi-infinite space. 

The solution to 4.8-a is 

where A is an arbitrary constant. 

"' 

••• 4 .. ll""'a 

It is interesting to compare the above solution with that obtained 

in Section 3.2. In that case a homogeneous medium was assumed. The 

solutions have the same general form except the rate at which the 

field decays in the y direction is different. Generally px >> py in 

the case of the stratified_structure so e2 << B., This results in a 

less severe attenuation of the field in the y direction. 

By applying 4.7 we obtain: 

The ratio of ~3 to ~~ is defined as the characteristic wave impedance 

in accordance with the transmission line analogy: 

••• 4.12 

where 
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correspondingly 

••• 4 .. 13-b 

where !o is the characteristic admittance. 

4.4 General Solution: 

Consider the general ~egion M. The solution for 4.8 under 

the constraint set by 4.7 is 

0 •• 4.14-a 

••• 4.14-b 

where :M and ~M are arbitrary constants. 

Upon substituting the boundary conditions we obtain the solution in 

the followi~g matrix notation: 

••• 4.15 

(M-1] . 

. (The square bracketed subscript denotes evaluation at the boundary) 

The overall effect of the ~egion M can now be expressed in terms of 

a transfer matrix (after Freeman and Greig 37) 
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••• 4.16-a 

where 

[

Cosh !zM llM - ~OM Sinh !~ l\tj 
(T ) = 
• M - :OM Sinh Y2M AM Cosh !zM AM 

where AM is the thickness of ~egion M. 

Note as defined here the matrix relates quantities at boundary [M] to 

those at [M-1]. Energy flow is from boundary M ... 1 to boundary Mo 

The T and n equivalent circuits for the general region M are 

shown in F.ig. 4.5o 

The boundary conditions to be satisfied at the interface 

between any two such regions are the continuity of the tangential 

components of ~gnetic and electric field int~nsitiesc Note that 

the latter also satisfies the continuity of normal component of flux 

density. 

It follows from the above that any number of such regions 

can be accounted for by matrix multiplication. In terms of the 

equivalent circuit this implies tandem connection. 

All least one of the extreme boundaries will have to contain 

source of excitatione The relation between the electric field in~ 

tensity and the voltage as well as between the tangential magentic 
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field intensity and the stator currents is considered later. It 

is instructive to consider the circuit analogues of some con~igurations~ 

An ideal ferromagnetic part 9 i.e. the backing iron in an electrically 

si~gle-sided machine is represented by an open circuit. This results 

since it cannot accommodate any H field. A superconducting region 

would demand zero electric field intensity so a short circuit results. 

A semi~infinite half space, i.e. the air gap in a one sided machine 

has the characteristic wave impedance as its circuit element. 

4.5 Traction and Levitation Forces 

The x direction force may be obtained by direct integration 

of the J x B contributions in this direction over the volumee Be= 

cause of the assumption of constant permeability in the x direction 

there is no x direction magnetic forcee 

The force in the y direction is more complicatedo In this 

· case the contributions of the interaction between both induced 

current and ~agnetic dipoles in the ~agnetic field has to be con­

sidered. Application of the principle of f-.iaxwells' magnetic stresses 

is the most useful approach in this case (41), (44). The stress 

tensor is given in Section 1.4. 

Consider the system depicted in Fig. 4.6-a. The total force 

on the control volum® shown can be expressed as the surface integral 

of the stresses. Of the six sides of the control volume there is 

only a net contribution from the surfaces in the xz planes. This 

apparently results from the constancy of the time averaged field 
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quantities in the x and z directions. The time averaged surface 

force densities are 

••• 4.17-a 

As indicated in Fig. 4.6-a the field values are evaluated immediately 

outside the ~egiono 

The expression for the x direction for~e should be consistant 

with that given in 4~3 since it is due entirely to conduction current~ 

Usi~g 4.3 and the constitutive equation S=pH we find that 

4 .. 17-a becomes 

which is the surface force density as found in section 4.3o 

The y or normal force is more complicated in its interpretation • 

. Very littl~ general conclusion can be drawn since the calculation 

demands evaluation of two field quantities at two surfaces. 

A feeli~g for the mechanism involved can be gained by con-

sideration of a semi-infinite half space of ferrom~gnetic conductoro 

Due to one surface being at infinity the field decays exponentially 

in that direction and consequently there is no force contribution at 

the surface. Furthermore the field intensities at the surface are 

related by the characteristic impedance. The configuration is as 

shown in Fige 4.6-b. From 4.17-b we have~. 



Applyi~g the constitutive equation e=vH and 4.3 we obtain 

f sy 

2 IH 1
2 

1 a 1 2 1 
=- ---1¥31 1- ~2-"'---1 

4 oo2 llo ·v .L !_IE 12 
2 2 "'3 

w J.Jo 
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••• 4.18 

Recognising H1tE3 as the characteristic wave admittance and substituting 
- "' "' 

from 4.13-b we obtain 

f 
sy 

1 e2 llo 2 2 ~ 
=-4221~31 {~2- Q2} 

w JJ JJO tJ 

2 lJ ,.----

= - ! ~ ~(E3 1 2{v;- IJ. + s2
R

2
} 

lJ lJ "' 

The above expression is similar to that derived in (38). 

••• 4.19 

The net force is negative for values of v > A.~+-S-2R-2-. This 
r 

would be the usual case. If u is small then it is possible to have r 

cancellation of normal force at a particular slip. The force would 

ch~ge from levitation to attraction as the speed increased through 

the critical slip. If the secondary is non-~agnetic then the force 

is given by 

••• 4.20 



This is in .agreement with the result in Section 3.3. 

4.6 Representation of Slotted Stator 

The object of this section is to relate the fundamental 

component of the ta~gential electric and m~gnetic field intensities 

to the stator vol t.age and current., 

The model is as shown in ~ig. 4.7-ao The stator yoke is 

considered to be infinitely permeable but the reluctance of the 

stator tooth and crown regions is considered.. The appropriate values 

of permeability are calculated from the results of Fig. 4 .. 2 

Consider the stator tooth region which is represented by the 

equivalent anisotropic medium shown in Fige 4.7-b. 

From Maxwells' equations we have: 

V X H = J., 

In this case the current density is due to the impressed primary 

current. 

From the above we obtain 

••• 4.21 

where J is the fundamental component of the primary current density 
"'a 

(see Appendix 2). 

From Maxwell's equation v x E = - :: we obtain: 

aE3 
- jwJA H = ~ x,.,l ay ••• 4.22-a 
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- jwp H2 Y'll = 
a~3 

--a- ••• 4.,22-b 
x 

Combining the above with 4.21 we obtain the following differential 

equation: 
2 a2E 

- ...L a ~3 - ...L "'~ = - J 
wpy ax2 w~x ay ~a 

SUbstituting -a2~3 for ::2• and multiplying by e-j(wt - ax) we obtain: 

32~3 2 
--2 = B2 E.3 - jwp J ay x.a 

•••4o24 

2 llx 2 
where a2 =--a (as defined in 4.9-b). 

lly 
The_ general solution ,to above is: 

jwp 
~3 = C Cosh a2y + D Sinh a2y + ·

82
x ~a 

2 

••• 4 .. 25 

Using relationship 4.22-a we obtain: 

•••4o26 

Due to the infinite permeability of the stator yoke ~l must be zero 

at y • 0. Consequently D = 0 • . 
The important quantity for the evaluation of stator voltage 

is the average value of ~3 over the:·slot depth. 

Consequently we have: 
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which gives: 

Substituting the above value of C in 4.25 and 4.26 we obtain: .. 

• •• 4. 27-a 

••• 4.27-b 

If we make the assumption that the slot depth is such that B d << 1 
2 s 

we get the following relationship upon usi~g Taylor series approxi-

mations for the hyperbolic functions. 

2 

[::t=ds = 

(&)lJ d 
1 - j 

X S E 
3 .3avg 

B2d 
j 
__ s 

d J 
WlJy s .a 

The crown tip region can be represented by the circuit in Fig. 4o4 

with a = 0. 
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r3 
1 . 1d 

E3 JWU X C 

= 
·a2d 

Hl 1 J c 
1 H y=d y =d + c w~ 1 s 

Furthermore the circuit can be simplified to a single series reactance 

since the y branch is generally so large that it is virtually an open 

circuit. 

4.7 Discussion: 

The development in the previous sections all~6the flat linear 

machine (under the infinite width approximation) to be represented as 

a tandem connection of analogue circuits. At least one of the extreme 

boundaries will be a primary. The transformation from primary voltage 

and current to the field quantities has been shown. Consequently the 

overall circuit represents ~n equivalent circuit. The traction and 

levitation forces and power quantities were derived in terms of circuit 

quantities. 



CHAPTER V 

SIMULTANEOUS TREATMENT OF FLUX PENETRATION AND 

LATERAL EDGE EFFECT USING A WAVE IMPEDANCE APPROACH 

Sol Introduction: 

Due to their homogenity and isotropy~ sheet secondary induction 

motors are more directly amenable to solution than composite secondary 

deviceso However~ the analysis has been for the most part» limited to 

the cases where flux penetration and lateral edge effect are separately 

neglected. There has been limited work on simultaneous consideration 

of these effects (22) » (27), (45). 

Due to the formidability of the ~xpressions found,very little 

general conclusion is drawn. 

In this chapter the concept of wave impedance is applied to give 

a general solution for this 'problem. 

5.2 Assumptions: 

As in Chapter 4, the machine is considered as consisting of a 

number of planar regions stacked togethere Each region is homogeneous and 

isotropic. All regions have the same width as the primary (stator)~ Fringing 

beyond this width {fig. S.l~a} is neglected. The primary excitation scheme 

can be replaced by a linear current sheet backing a sm~ iron surface 

of infinite perm~abilitye The appropriate gap depth is given by Carter~s 

coefficient. 
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FiR 5.1 Multiregion representation of finite width machine. 
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5.3 General Development: 

Consider the. general ~egion M shown in Fig o S .1-b o The field 

quantities are described by the magnetic transport equation ~f.Ch~ 3}: 

Writing all field quantities in vector phasor form {Appendix 2 } and 
. 2~ 

• h a B 2 
us lng t e property ~ = ""' B 8 we obtain: 

ax2 
"' 

••• 5. 2 

- ~ - ~ =j (wt-Bx) 
Since V M g V M 1 x and v .. B = 0 we obtain, upon multiplying by e : 

2 2 
{~a-+ ..L_} 

ay2 az2 

2 2 
{.!._'+ .L....} 
ay2 az 2 

2 2 
{'-a_+ _a-} 

ay2 az 2 

where y
2 = a 2 

( 1 + j So R) 
• 0 

~1 

~2 

~3 

= 2 B 
! 0 .1 

2 . 
= y B2 ••• 5.3 

• 0 • 

2 = y 83 
• 0 .. 

R is the magnetic Reynolds number for region M, and is defined: 
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B1 is an even function of z since the linear current sheet is assumed sym-



metrically disposed about z = 0. The condition V.B = 0 then requires 

the components B2 and B3 to be even and odd functions of z. Con­

sequently, using the method of separation of variables we obtain 

the general solution: 

00 

~1 = I {C
1 

Sinh \Y + n1n Cosh 1tY} Cos a z 
n=l • n n 

co 

~2 = E {C
2 

Cosh 'hY + 02n Sinh hy} Cos a z 
n=l .n n 

CIO 

~3 = E {C
3 

Sinh hy + 03n Cosh hy} Sin anz 
n=l • n 

where 2n - 1 
1r and 2 2 2 a = Yn = a + Yo n 2a n 

Since J 2 = 0 we have from Maxwe 11 's curl relationship: 

a~l as3 
aT-;ff-=0 

••• 5 .4 

••• 5. 5 

Using the property ~x = - j a, and multiplying by e-j(wt-ax) we obtain: 

aa
1 

a~ ·+ j a ~3 = 0 

Applying this to 5.4 we obtain: 

••• 5.6 

The divergence theorem demands: 
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a~l a~2 a~3 
-+-+-=0 ax ay az ••• 5. 7 

Again_using the property ;X=- j a and multiply~ng by e-j(wt-Bx) 

we obtain: 

as as 
- j a s.1 + 2 + 2 = o ay az 

which gives the following equations: 

.. j e cl + Y. c2 + a c'Z = 0 . n n . n n .~n 

- j e D
1 

+ v o
2 

+ a 0
3 

= 0 • n n • n n • n 

••• 5.8 

It follows from above that all field quantities can be found if one 

of the C and D series of complex coefficients are known. J 1,J3 ,E1 

and E3 can now be obtained from Maxwells' equations. Writing all 

quantities in terms of ~In and ~ln we obtain: 

co a 
8 'f' • n 
3= t, -J-

n=l e 

co a 6 S R 
n 

Jl = I: - ---
n=d ll\ 

CICI e2 s R 
J3 = n~l j l!"ft {~ln Cosh \Y + ~ln Sinh ~y} Cos anz 

cont ..... 

••• 5. 9 
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eqn. 5.9 continued 

{~ln Cosh ~y + ~ln Sinh "hy} Cos anz 

5.4 Penetration Effect in The Infinite Depth Case 

The usual definition for skin depth is made for the case of 

semi-infinite plane geometry where the medium is postulated to 

extend indefinitely in two directions. In chapter 3 the skin depth 

was determined for a travelli~g wave. Even at zero frequency or 

zero conductivity there is a finite skin depth of 1/S. 

Let us now consider the case where the thickness of the 

region M tends towards infinity. We wish now to investigate the 

penetration of a finite.width travelling field. 

Under this circumstance 5.4 becomes: 

B_
1 

~ t D e- 'bY Cos a y 
. n=l o ln n 

co 
e- \.Y Cos 82 = I: D any n=l .2n 

83 
o.o ... \Y . = E n

3 
e S1n a y 

n=l • n n 

5oS and 5.7 still apply so consequently we obtain: 



and 

= j 6D .., Y D -:-a D :;;: 0 .ln n .2n n o3n 

All quantities can consequently be expressed in terms of the Hln 

series which is the cosine series representing the x component of 

magnetic field intensity at the surfacee 

C!'O 

{JJ Hln e~ hy} Cos anz Bl ~ E 
n=l 

co 
a2 + 62 

{Jl Hln e- 'hY} Cos B2 I: = j 
n = e a z 

n=l 'it n 

co . an 
{ lJ H

1 
e.,. 1-tY} Sin a z B3 ~ t J ~ 

n=l 13 n n 

co ana S R 
{ 1J H

1 
e ~ nY} Cos a z Jl = E 0 •• 5.,11 

n=l 1J h n n 

Q) s2 S R e~ \tY} Sin J3 = t j {p Hln anz 
n=l )J· h 

co a 

El ~ E +~_E. {p Hln e~~y} Cos anz 
n=l 6 h 

C!'O w {p Hln e- ~y} Sin E3 = I = j anz 
n=l "Il 

Proceeding in an analogous manner as in section 4 of chapter 4 we 

define the nth harmonic wave characteristic impedance and admittance: 
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E 
.. 3n z . roJJ H :g .. On~ J-
eln \t 

y ::;; 
.On l/~on 

Upon examination of the above it is seen that the harmonic components 

composi.ng a particular surface distribution of each field quantity 

are independently attenuated in the y direction. By anal.ogy with 

the standi~g wave case we define the skin depth as that depth re­

presenting an attenuation to 36o8% [e=l x 100%] of the surface value. 

Consequently, the skin depth for the nth harmonic is: 

a sn 
1 = --
~r 

where b:r is the real component of "n and is defined: 

... s .13 

In the case of a + co., an -> 0 for all n. In this case the skin depth 

reduces to the expression found in Section 3.2 

. a: 1 I 2 
- eji v /1 +(S R) 2 

As the harmonic number increases the iteraction of the induced currents 

and the wavelength become of diminishing importance. In this case 

we have 
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Variation of skin depth with Reynolds number, wavele.ngth and sec~ 

ondary width are shown in ~ig. 5.2-a,-b,~c respectively~ These 

. graphs are for liquid metal pump which explains the large skin 

depth. 

5.5 Transfer matrix and General Solution: 

The most convenient boundary conditions are the continuity 

of H1 and E3 at the interfacesQ The above two conditions satisfy 

the continuity of all tangential field intensity quantities as well 

as satisfying the continuity of the normal component of flux 

density. 

Consider the conditions at boundary [0] of region M. Upon sub~ 

stituti~g y = 0 we obtain: 

CIO 

I H1 Cos anz 
n=l 0 n 

CIO GO 

t E3 Cos anz ~ t j ~ c1 Cos ana 
n=l • n n==l 1t " n 

oe .5.14-a 

oee5.14.,b 

whe~e ~ln and ~3n a~e the nth coefficients of the Fourier series 

representing ~l and ~3 at boundary [M~l]. 

It follows immediately from above that 
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C =-j]!E .In w • 3n 

D = u H .ln .. n .ln 

All quantities may now be written in terms of ~3n and ~ln at 

boundary M-1. Furthermore the relationwhip between the values at 

the two boundaries is_ given: 

E .3n 

H .ln 

[M] 

Cosh "Mn llM 

= 

where 'Mn = Ia~ + 1!
2

(1 + j SM RM) 

SM = slip of ~egion M 

~ = ~agnetic Reynolds number 

AM = thickness of ~egion 

The above matrix can be written: 

[

Cosh Vm llM 

'!'Mn = '!Mn Sinh )om l\M 

- ZMn Sinh \m 

Cosh 'Mn AM 

Hln 

[M-JL] 

Let us define the above as the nth harmonic transfer matrix. 

••• s .16 

••• 5.17 

It follows that for any number of such layers the values of 

E and H.ln are related at the extreme boundaries: .31) 
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E .3n E .3n 

H = !RN H ••• 5.18 
.In .ln 

(Mf] [0] 

where 

ITRNI = n ITMnl 
M,M-1---

ITRNj is called the resultant matrix of order n. [0] and [Mf] are 

the tl'IO extreme boundaries .. 

In an open sided configuration one of the air regions is 

at infinity. In this case it is convenient to write: 

1 0 E2n 

= 
Ja,.....2_+_a2-

J
. n 0 ----

WJ.lo 

••• 5.19 
0 

The 2,1 terms of the above matrix is the nth harmonic characteristic 

wave admittance for the air space. 

5.6 Boundary Conditions at Stator Surface: 
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The primary currents are assumed to flow l\'ithin an infinitisimally 

thin sheet of width 2a. The sheet is backed by a smooth iron surface 

of infinite permeability. Carter's coefficient is used in determining 

the effective ai~ gap. 



The dive!gence theorem must be satisfied for the primary 

linear current sheets: 

••• 5.20 

The ~~ component represents the end currents i.e. the currents in 

the windi.ng overh3:11g. 

A particular distribution considered was to assume ~3 
having a recta~gular distribution over the ~dth. The corresponding 

h1 consists of delta dirac functions at y =±a see Fig. (5.3-a). 
~ . 

This distribution was also considered by Okhremenko (22) and by Preston 

and Reece (45) the latter also considered the distribution shown in 

~ig. (5.3-b). A consequence of our particular choice of distribution 

is that at the. inductor surface there are correspondi_ng delta dirac 

functions in flux density distributions. These do not occur in 

practice since the above hypothesised smooth stator surface containing 

infinitisimally thin end conductors does not exist. However, at all 

points y > 0 the expressions are convergent. 

In appendix 1 the relationship between ~30 , the fundamental 

of linear current sheet and phase "a" current is computed. 

The Fourier series representing the distribution shown in Fig. 5.3-a 

is: 

••• 5.21 

L. 
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no. of terms: 
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2a 

Distribut:ton of ~~J~ over ~•idth 
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1

1\l over ldrlth 

Fig 5.,1-a Primary current sheet distribution 

! 
Transverse (z) current sheets 

l 

Longitudinal ~x) current sheet, 

'· 

Fig 5.3-h Prirnary· current sheet distrihutj_on 
suggested in (45) to accm1nt for frin~inge 

1 3 7 9 15 25 40 

18. 0t~;~ 6. (,~~! 2. 39;~ 2. 25;{ 1.35? • 8J.i: .51? 

Fie 5.4 Truncation error in current sheet representation. 
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where 

C = (-l)n-1 ± _1_ 
n w 2n-l 

The value of h1 can now be found by applying the div~rgence theorem: . n 

co 

- j B h1 + r - a C h30 Sin a y = 0 
• n=l n n • n 

i.e. 

CIC) 

h ~ ·c l)n-1 2 h s· 
• 1 = ~ J - - 30 l.n a y n=l a • n 

••• 5.22 

A feeli~g for the magnitude of the truncation error involved in 

taking a finite number of terms in the solution can be obtained 

by findi~g the error at the boundary. 

Using the error criterion suggested in (43, Section 6.8) we 

obtain: 
1 CIC) 2 

e.N = 1 - - 1: en 2 n=l 
••• 5.23 

Typical values of the above error number are shown in table 5.4. 

5.7 Reduction of General Solution in limiting cases: 

The results in 5.5 are for the general case where both skin 

and the lateral edge effect are present. We now individually consider 

the limiting cases where the results obtained indicate their diminishi~g 

importance. 

(a) Infinitely wide case 

Say a, the mid width, + CIC) 

2n-l then an =-za-n + 0, all n. 
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Consequently: 

h -+ y0 all n. 

It follows that all harmonic components of the field quanti ties 

are attenuated to the same extent. 

In this case the nth harmonic Transfer Matrix (5.17) is 

identical with that defined in 4.16 where the lateral edge effect 

is neglected. It follows that for a surface current·sheet which 

is constant over the width the solution takes the form outlined 

in 4.4. 

(b) Finite width "thin" model: 

Consider the transfer matrix !~m as defined 5.17. For values of 

I \tn flMI << 1 \'ll'e can use the first term of the Taylor series 

expansion to replace the hyperbolic functions. C~nsequently we 

obtain: 

••• 5.24 

The above :£hould give the same results as were obtained in Chapter 2. 

Consider the application of the above to the model in section 2.2. 

For simplicity we shall assume that c.=g, i.e. the secondary completely 

fills the air. gap. 

From the definition of harmonic transfer matrix we have: 
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E3n 1 jw].IOC [E3n 
= 2 ••• 5.25 

0 y=O - j 
~c 

1 Hln y=-c 
Wllo 

(Due to symmetry, the transverse ~agnetic field (H1) at the secondary 

centre =.0) 

Consequently we have at the inductor surface: 

From 5.9 we have: 

wuo 
E = j -H .3n 2c .In 

b 

a2 + a2 
n 

82 = - -~-.,o.....-- E3 • n ....,p • n 

SUbstituting in 5.26 we obtain: 

a2 + 0 2 uo p 

B = - j n H 
• 2n Be 2 .In 

h 
Upon substitut.ing for ~ln (5.21) we obtain: 

B = -.2n 
uoh3o 1 1 

j (-l)n- ----
Be 2n-l 

Usi~g the relationship: 

2 
h 

Cosh ijZ co 2 n- 1 an 
Cosh = 1: - (-1) -2 Cos a z Oa n=l a h n 

over -a < z < a. 

••• 5.26 

••. 5.27 

••• 5.28 

••• 5.29 

••• 5.30 
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' (Lateral-variation of B3 • alA= .3, S.R = 1.92, A= .5 em) 



(which can be derived by taki~g the Fourier Series for Cosh 0z/ 

Cosh oa over the range) we obtain: 

110h3 l Cosh y0z 
j B'C 1 + j S R { 1 + j 5 R Cosh "ba} ••• 5.31 

This is exactly the result of (2.6-a) when G is replaced by R 

since the ai~ gap is completely filled with secondary. 

The equivalence of the two results is shown in fig. 5.5 with S.R = 1.92 

and a/'A = .3. Improvement in conve.rgence and smoothing results when 

the Lanczos s_igma factors (47) are applied to· the 15 term series 

solution·. 

5.8 Discussion: 

A compact solution to the mul ti-r_egion travelling wave 

problem has been derived. Skin and lateral edge effect in the linear 

induction machine can be simultaneously studied usi~g the solution 

obtained. 

In the_ general case the stator and secondary will not have 

the same width. If skin effect is to be included the assumption 

of zero permeability outside the limits of the stators cannot be 

used. The fringing field at the stator e_dges and the field due to 

the stator end coils must be considered. One way _of circumventing 

the problem is to artificially extend the stator to the limits of 
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the secondary. The fringing field can then be accounted for in a 

crude manner by allowing a variation in current in the en~ region. 

Such an approximation was made in (45)~ 

A more accurate representation can be _made if a solution is 

found for the fringing region. In this case the problem reduces 

to matchi~g up the boundary conditions over the secondary width. 

Further work is bei~g done in this area. 
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6.1 Summary of the Thesis: 

CHAPTER. VI 

CONCLUSIONS 

The usual t\oJO models of the flat linear induction machine are 

the ninfinite width" model and the "finite width thin" modele Each 

model has been analysed using traditional approaches~ 

The "ideal machine" has been described.. The La.i th\\Tai te 

Goodness number has been introduced in terms of the equivalent circuit 

for the "ideal machine''. The lateral edge effect has been discussed 

in detail o The distribution of the field quantities over the \otidth 

has been shown to depend on the dimensionless parameters:-slip.Goodness 

number and mid-width/wavelength. In the case of the flat linear·in= 

duction pump two extra parameters must be considered: the ·ratio of 

the side conductor resistance to the liquid metals resistance and the 

ratio of side conductor thickness to wavelength. The induced current 

density streamlines have been drawne The main conclusion is that for 

values of mid~width/wavelength > 1 the lateral e~ge effect can be 

neglected. The uneven flux density distribution resulting in shaded 

pole action has been determined for the case of a secondary asym­

metrically positioned relative to the primary irono 

In the case of the infinite width machine flux penetration 

effects were studied. 

Skin depth in the case of a travelling field was considered. 

The flux distribution over a si~gle sided machine with and without 
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secondary conductor was plotted. The results show the dependence of 

the distribution on the dimensionless parameter slip. Reynold's number 

and on the wavelength. A travelling field has been sho\1n to exist 

in the normal direction (upwards from the primary surface). The 

levitation force due to the resulting indu~tion motor action in the 

normal direction has been calculated. For a finite thickness machine 

the distribution of the field quantities and output characteristics 

has been shown to depend on the dimensionless parameters: slip. 

magnetic Reynold's number and mid-thickness/ wavelength. It has 

been shown that a through flux machine with small mid-thickness/ 

wavelength(< .OS) is 'ideal'. 

An analogue circuit representation has been used previously 

in describi?g electromagnetic fields in machines. This thesis develops 

and extends this idea to give a generalised representation of all 

flat linear machines under the infinite width assumption. Anisotropy 

has been considered which allows composite secondary machines to be an~ 

. 13! 

alysed. M~~ells' ~gnetic stresses have been used in force calculation. 
. . 

The field in the stator teeth region has been determined. It is shown 

how the equivalent circuit is obtained from the analogue circuit. 

The concept forms a very useful bridge between the electromagnetic 

and circuit theory viewpoint of electrical machines. 

The above method has been extended to include the case of 

.simultaneous treatment of lateral edge and skin effect in the 

case of a ho~ogeneous secondary. Skin effect is investigated in the 

case of a finite width travelling wave. Each harmonic component of 

the travelling wave is shown to have different skin depths. the skin 



depth decreases with increasing harmonic number. Even in the case of 

infinite wavele~gth and zero conductivity a finite penetration depth 

results. Subject to the constraint that the secondary and stator(s) 

have the same width a. general solution is obtained for the field 

quantities. It is indicated how this solution can be used to predict 

the performance of machines lihere neither of the two limiting approx­

imations are appropriate. In the separate cases where the width 

132 

becomes large and the thickness small (both compared with the wavelength) 

the results obtained are shown to be identical with those obtained 

using existi~g techniques. 

6.2 Specific Contributions of This Work: 

Some important steps in furthering the knowledge and general­

ising the theory of linear induction machines have been takenG 

6.2-a 

The induced current paths have been plotted in the case of 

the finite width machine. A clear insight is given to the lateral 

edge effect. In Fig 2.9-a the contours for S.R = .1 and a/'A = .3 

are approximately elliptical in shape. With S.R = 1.92 and a/'A = .3 

the ellipses are slightly distorted~ This distortion is a consequence 

of the non-uniform phase shift in the z direction. The increase in 

non-uniformity \'lith S.G is shown in Fig. 2.8. 

F~nally from Fig. 2~7, the phase and magnitude of the flux 

density is uniform over the centre portion of the channel. The 
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uniformity of the magnitude of the flux density is indicative of 

currents being z directed. The induced current contours for this 

case appear in Fig. 2.9~c. The steep change in phase angle gives 

rise to the acute distortion in induced current paths near the edges 

of the sheet. The validity of the infinite width assumption is 

apparent from the diagram. 

A good appreciation for skin effect in the travelling wave 

case can be obtained from figures 3.3 and 3.4. Fig. 3.3 shows the 

usual flux distribution for an open-sided machine. Fig. 3.4 shows 

very clearly the effect of the conducting medium on the penetration 

depth. The distortion of the contours in the direction of motion 

results from the phase shift in the y direction and indicates the 

presense of the travelling field in the y direction. 

6.2-b 

The case of an induction pump with short circuiting side con-

ductors has been taken into account. The case considered is that in 

which the side conductors are positioned just outside the limits of 

the primary (z = ± a in Fig. 2.1). Fig. 2.12 shows the variation 

of over the width normal component of flux density as a function 

the ratio of the resistivity of side-conductors to the fluids resistivity. 

The justification of the ideal machine assumption for low values of 
I 

p /p is shown. 

In the practical case the contact resistance between the fluid 



may not be negl.igible and the side conductors may not be positioned 

at (z =±a, Fig. 2.l)o In this case modified vaiues of impedance 

at the interfaces separati~g the active from the inactive zones will 

have to be considered. 

6.2-c 

The Goodness number of Laithewaite has been placed in proper 

perspective by comparing it with the magnetic Reynold's number. The 

magnetic Reynold's nurrber is the more fundamental of the two. The 

Reynold's number is a dimensionless parameter occurring in the magnetic 

transport equation. TI1e Laithwaite Goodness number on the other hand 

results from an inspection of the equivalent circuit. 

6.2-d 

A major step in the representation of induction machines 
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(under the infinite width assumption) as a tandem connection of analogue 

circuits has been taken. This is in the representation of the stator 

tooth region as a two port network. 

In previous work the linear current sheet idealization had 

to be used and the primary slot leak.age reactance calculated by con­

ventional techniques. 

In this thesis the slotted stator region is accounted for 

just as all other regions as a two port network. 

The field quantities E3 and H1 (Fig. 4.2) are expressed in 
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terms of the average electric field intensity in the slot region and 

the applied current density. The latter two quantities are related 

to the applied voltage and current respectively. Consequently the 

driving function has been established. 

This extension to the theory allows a complete representation 

of induct~on machines as anal.ogue circuits in tandem. From 4.27 we 

can write: 

I 

82ds lJ a d 
E3 . +<· 2 s - 1} E 

tanh a2ds - J I 

s2d
5 

tanha2d
5 

3avg 

= 
a2d 

Hl d j 
2 s 1 H s Wll a y 

where ~ = d J 3 • 
. a s "' 

From the above the obvious choice for the driving function is 

E or H depending on whether we have a voltage or current drive. 
"'3avg "'a 
The relationship between E

3 
and the applied voltage and between 

"' avg 
J {H = d J } and the primary current were derived and appear in 
"'a "'a s"'a 
Appendix 2. 

The above transfer matrix was derived by solvi~g the field 

equations for the stator tooth region. This region was represented 

by an anisotropic medium t~Tith a distributed current density distribution. 

The resulting slot leakage reactance given by the analogue 

circuit can be shown to be consistant with the value calculated conventional 

machine analysis. The modified procedure for obtaining a solution to 
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the field equations and the equivalent circuit for any induction 

machine under the infinite width assumption is: 

(1) The machine is divided into a number of planar regions. The 

regions may be stratified in the x direction (direction of motion) but 

each must be homogeneous over fts thickness (y direction). The 

appropriat~ value of conductivity and permeability is calculated in 

accordance with the table in Fig. 4.2. 

(2) The transfer matrix (as defined Fig. 4.16-b) for each region is 

obtained. The T·or 1r equivalent circuits may be derived. 

(3) The overall analogue circuit is the tan~em connection of the in-

dividual circuit representing each region. 

(4) Solution for the field quantities in any region reduces to solving 

an electric circuit. One of the two quantities E3 and H will be 
"' avg "'a 

·determined (depending on whether we are considering the external 

voltage or current to be constant). 

6.2-e 

One of the main advantages of the Transfer Matrix (Analogue 

circuit) representation of induction machines is the systematic way 

in which the boundary conditions are applied. This ensures complete 

tractability of the results and minimises the 'danger of using incorrect 

reference directions etc. The same algorithm can be used to give the 

. results to a wide variety of problems. Another advantage is that 

the influence of different elements can be appreciated quite simply 



in an equivalent circuit or Transfer Matrix form. 

The solution of the field equations in a three dimensional 

case is generally in the form of an -infinite series solution. Due to the 

formidability of the resultant expressions attempts to· analyse the 

solutions are usually abandoned. 

There was very obviously a requirement for an extension of 

the Transfer Matrix approach to cover this case. 

That goal has been achieved in this thesis for the case 

Where all the regions representing the machine have the same width. 

Following the development in the infinitely wide case the 

solution for a general region is obtained. It has been shown that if 

the boundary conditions are expressed as Fourier series then each 

harmonic component of the field quantities at one boundary is 

related only to the same harmonic component at the other boundary. 

It follows that the analysis for the complete stack of ~egions can 

be determined by solving independently for each lateral harmonic. 

Consequently an overall harmonic transfer matrix is determined. It 

expresses the relationship for each harmonic between the electric and 

~agentic field intensities at one extreme boundary to those at the 

other. 

If the primary current is known then the harmonic components 

of magnetic field intensity can be obtained from the lateral harmonic 

components of~e linear current sheet representing the primary. If 

the voltage· is fixed it is necessary to assume some ~rrent, find the 

corresponding voltage and then multiply the current by the appropriate 



factor~ It should be noted that a specific voltage does not uniquely 

determine the individual lateral space harmonics of electric field 

intensity. The approach developed permits simultaneous investigation 

of flux penetration effects (leakage and skin effect) and lateral 

edge effects. The method is directly amenable to solution by ~igital 

computer .. 

In cases where the width becomes comparable with the wave­

length the results have been shown to be consistant with those given 

by the Transfer Matrix approach (under ~he infinite l~Iidth 

approximation). In cases where the thickness is small relative to 

the wavelength the results given by the Harmonic Transfer Matrix 
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have also been shown to be consistant with those given by an independent 

two dimensional approach. 

6.3 Suggestions for future work in this area: 

The inclusion of the phrase "in this area' 1 is intended to differentiate 

between the general field of linear induction machines and the work 

presented in this thesise The latter could be classified as solution 

of certain electromagnetic boundary value problems which have as one 

of their applications linear induction machines. 

The method outlined in Ch. 5 is subject to the constraint that 

the secondary has the same width as the stator. For accurate analysis 

the field in the fringing region and the stator return path outside 

the iron mUst be accounted for. Work has already begun on this problem. 

When completed more accurate predictions will be possible. The assumption 



of lateral symmetry may be then discarded and a general analysis of 

lateral stability in the presence of skin effect and fringi~g field 

may be performed. 

As developed here the anal.ogue circuit concept applies to 

all induction machines. It would be most useful to apply this to 

the case ·of cylindrical elements. Very compact results would then 

be available for a wide ra~ge of machinessuch as the solid rotor 

induction machine. 
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It would be extremely interesting to inves~igate deeply the 

full consequence of the replacement of the stratified structures in 

Section4el by an anisotropic medium. This would involve the solution of 

equations with periodically varying coefficientse The solution would 

indicate space harmonics and clearly define the conditions under 

which the space harmonics can be neglected. 



APPENDIX 1 

CURRENT DENSITY DISTJl!BUTIO;: Dl:E TO A THREE PIL'\SE 

DISTRIBUTED ~-rr:wn~G. 

Refer to Fig. 2.1e for co-ordinate system. It can be 

shown that for a balanced 3$ system we get: 

n = number of slots per phase belt. s 

nt = number of turns in series/slot. 

T = pole pitch .. 

d = active slot depth. 
s 

I a - phase current .(origin for x is at centre of phase-belt 1 a') 

K = dn is the winding distribution factor. 

a = n 

S
• n'iT l.n-

·=-·-6 __ _ 

S. nn 
n

5 
1n 6 n5 

1T +-, 
T 

3n 
T 

Sn +-
T 

etc. 

If we neglect the coils distribution in the y direction then we get the 

usual linear current sheet distribution. 

140 



The fundamental component is only considered in this work. The 

neglect of harmonics is in fact generally more acceptable in linear 

machines e This is because~ due to the relatively large ai.r gap 

higher harmonic fields are attenuated more seveTely than the 

fundamental. 

The voltage induced is given by integrating the electric field 

intensity in the z direction, and adding the contributiond due to 

different coils. 

The result is: 
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Kdl E3 Cos (wt) avg. volts/metre length 



APPENDIX II 

VECTOR PHASORS 

Due to alternating currents in a distributed winding, it has 

been stated in appendix 1, a current distribution exists whose 

fundamental component is of form:-

J. Cos(wt - Sx). 
3in 

The above represents the boundary conditions distribution and it can 

be shown (since we are dealing with a linear system) all field 

quantities take the same x distributione 

It is much easier to work i~ complex numbers so consequently 

we write~ 

j(oot £;> Sx) 
J g Re{J } :e: Re{J e } 

3 1\,3 eJ 

A vector phasor can be obt.ained from the above by deleting the 

tirne~x variationo The time averaged values of quantities involving 

the p~oduct of two phasor quantities G and H is given: 

1/2 Re { GaH *} 

where Re stands for the wreal part of' and the asterisk 

denotes the complex conjugatee 
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