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netic sub --l evel s of an atomi c ground state h yperfine mult i p l et hG.s 

been i nvest i gated both e:x:perimenta1ly and t heo r etically. SpcciaJ 

emphasi s ha s b een pai d to th e b ehaviour of t hese t ransitions as th e 
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l evel s pa cing. 
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tiplicity. 
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CHAPTE..'B I 

I NTRODUCTION 

A multiple quantum t ransition (11 T ) i s a t ransition in which t wo 

o r more quant a f rom an applied electro-magnetic field supply energy and 

angu l ar momentum to effect th e t ransfer of some system from an initial 

state to a final state. Such a t ransition satisfies a generalized Bohr 

fr equ ency condition 

Ef - Ei = ± 'iTCill ± i'ltu2 • • • • ± -ilt~k ( 1-1 ) 

\':here E. and Ef Are the _energi es of the i nit i a l and final stat es and O!k 
:L 

th 
i s th e angul ar fr equency of the k quantum in the 1•n.diation field. There 

are many i nstances i n phys ics of such processes -- especially when both 

absorption and emission a re . i nvo l ved. Thus, for exa.mpl e9 Rama.n scattering 

corresponds to the absorption of one photon and the emission of another . 

I t i s a common i ngredient of field th eory to think of i nteraction processes 

going through int ermediate states by th e a bsorption and emi ssion of fielc1 

quanta and the structure of second and h i gher o rder perturbation th eory 

suggests this physica l picture . 

I n this work , the tern HQT will refer specifically to the case of 

succ essive absorption or successive emiss ions o f r eal photons, and not to 

mixtures of these processes . Furthermore , consideration will b e limited 

t o a monochromatic r a diation fi eld so that equat i on ( 1 ) becomes 

' Ef - t\1 = J.ilie;> ( 1-2) 

and such a t ransition will b e termed an n- quantum t ransition . Now n = 1 
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co rresponds to a single quantum t ransition ( SQT ) but9 . for the sake of 

brevi t 9 th e term NQT will b e used in t he inclusive sense of n ~ 1 • and 

not solely n > 1. Within these restrictions~ one can further distingui sh 

t wo limiting cases. 'rhose processes~ such a s two photon absorption., in 

which the t ransition proceeds via a virtual i nt ermediate s tate occur with 

only loti p robability unless the r adiation field is very intense. The 

other case i s tha t where r eal states ex-ist at the appropriate spacing 

b etween i nitial and fi nal l evel s . ~ne presence of such l evels has a pr o

found effect on the n- quant um trans ition p r obability9 the more so the more 

neaJ.~ly they are located at equal spacing. 

Because it is unlikely than '"' ny syst em will have nearly qually 

spaced optical level sQ HQT of the type specified are not observed in 

optical spectra. Furthermore~ spontaneous decay l eads to short l ife-·t:imes . 

and collision processes •. etc •• depopu l ate tates v1hich would otherviise 

have longer existence. Thus9 only for very i ntense illumination would 

there be any signi ficant probabil·' ty than an i ntermediate state, once 

fo rmed, would i nteract with a second quantum of the externa l field before 

" spon.taneously" r elaxing back to the grounc state. In contrast, t he weak 

fi eld Zeeman effect in ground state atomic hyperfine structure l eads 

characteristically to l evels that are equa lly spaced. The small energies 

i nvolved9 and the parity imposed Hl (or E2, etc. ) sel ection rule. essen

tia l ly eliminate spontaneous emission as a de-excitation pr ocess. I n a 

b eam type e"-'IJ eriment. collisions are a l so eliminated so that absorpt ion 

and stimul ated emission become th e only means of t ransi tion. :Furthermore , 

the applica~.,ion of stronger magnetic fields causes the en ergy l evels to 
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become unequally spaced in a gradual and known way. Thus9 th e method of 

atomic b eam mar;n.etic resonance (ABHR) i.s admirably suited for th e i nvesti= 

gation of NQT. 

Indeed~ it i s because the multiple quantum process i s relatively 

common in ABHR that this study was u ndertaken. I n the determination of the 

nuclear and electronic parameters v1hich charact erize a given atomic species 9 

it i s f requent ly useful9 or even essentio.l9 to observe and measure the 

resonance f requencies of l·1QT. Two exampl es of this t echnique have recently 

lh3 
b een encountered i :n this l abor-atory -- the investigation of Sm ::> (Eastwood9 

1964) and Agl09m ( StinsonQ 1966) . In these e~rperiments, t ransitions were 

observed that were obviously multiple quantum in nature but the use of their 

f requ encies :i.n elucidating the atomic hyper fi ne Hamiltonian required knowi ng 

or i nferring the number of quanta involved& The l ac . of a definitive means 

for doing this enforc ed on t hese experiment s an ext ensive, investigation of 

the hyperfine structure at a variety of fields and l engthy trial and error 

calculations b efo r e their identity was established with c ertainty& It would 

be a great convenience if a simple and direct means could be found for 

determining the multiplicity of any observed transition. Of cours e9 t o be 

us eful in the study of unknown hyperfine structures , it is essential t hat 

th e method be independent of the degree of departure from equal spacing of 

th e i nterm edia te levels i nvolved. 

Atomic beam investigations of the properties of MQT, both theoretical 

and e>..'IJerimenta.l, have b een ca rried out by a number of workers ( Salwen, 1955 ; 

Salwen, 1956; Hack9 1956 ; Kusch, 1956 ; Franzen and Ala:n, 1964) . 

Ha j orana ( Hajorana~ 1932) calculated HQT transition probabiliti es for 

t he case of exactly equa lly spaced l evels. I n t his situat i on, all }:QT occur 
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at the same frequency. For cases of practical int crest in ABHR o this can 

only occur when the nuclea r spin I is zero. (Of courseQ it is possibl e to 

have I / 0 and J :: o~ but th en the AB!ffi technique do e<.m ' t apply. ) Mo o·~ 

observations of MQT in A HR involve non-zel~o nuclear sp:i.nsi so se of th e 

t1ajo r ana formula i n ABMH i s of l:i.mit ed value. 

Salwen ( .Salwen, 1955) and Ha ck (Hack, 1956) used perturbation theory 

to calculate HQT ·~ransition probnbilities o Such approaches via perturbD.tion 

t h eo l'Y are limited to the case of both small values of r. f. field and to 

quite unequal spacinG of the syr:;tem ' s levels, the latter requirement in-

suring tha t only a single order of MQ'.l' nill tak e place at a given frequency. 

Th ese requirements ~ how~vero constitute conflicting demands; as th e levels 

depart from equ::\ 1 spacing, vastly grea ter r.f. field amplitudes are required 

to induce anything but n egligibly .small HQT probabilities. 

Polycarp Kusch ( Kusch~ 1956 ) made a detailed comparison between 

39 Salwen ' s theory and experiments he conducted using a b eum of K and a 

specially designed appara tus which provided ex(.;remely homogeneous static 

magnetic fields. 'These experiments were performed at one val ue of magnetic 

field and, thus, for a singl e degree of l evel-splitting. While good agree~ 

ment resulted for small val ues of r.f. field amplitudes. disc repancies 

occurred for large amplitudes. The b ehaviour of HQT upon the degree of 

equality of l evel spacing had y et not been i nvestigated. 

In ABHR, a transition ' s resonance width i s severely and non-reproduc-

tively widened by inhomoger,e.it ies in th e magnetic fi e l d which produc es th e 

Zeeman splitting of t he atomic hyperfine mult ipl et : Kusch ' s observati on. i n 

a greement with the theories of Salwen and Hack, that a MQT resonance line 
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shape is pr ferentially narro\'Jed as .ultiplicity inc reases. is not a reliable 

means of identifying the t ransition muhiplicity in the sho rt b eam path 

apparatus used i n ABHR experiments on rad:Loacti ve samples. The trouble is 

tha t the over-all shortness of the apparatus requires a short Zeeman magnet 

and fringing from its end limits field homogeneity" I n a.dditionQ th e over 

all appara.tus shortness also and.¥1iches thi s weak field. • in between t wo 

strorig deflecting maenets ' ich have fields fringing into the Zeeman field 

region to f urther worry fi eld homogeneity. 

Franzen and Alam (li'ranzen and Alam~ 1961+) solved exactly the problem 

for single and double quantum t ransi tions in a system having three l evels. 

Th e vast rna j orit of cases in ABHR i nvestigations, ho verer9 involve systems 

having more than three levels and the exact resuit s of Fr~~zen and Alam can 

not be readily utilized. 

The body of experiment a l and theoretica l ·ork on MQT9 extant at the 

inception of this investi~<'ation. indicated a possibl e method of finding 

t ransition multiplicity in an unknown hyperfine structure. It was known 

i n th e limit of exactly equa lly spaced l evels~ where the Ha jorana fo rmul a 

applies , that different order HQT did have markedly and characteristically 

different dependences upon r.f. field amplitude. The theories o f Salwen, 

Hack and Franzen and Alarn also i ndicated that the power dependence of HQT 

was great ly altered as transition multiplicity changed. Acco rdingly. 

experiments were perfo rmed to see if th e power dependence of MQT i n a beam 

of Na23 could b e used to identify the quant icity of th e t ransition i nvolved. 

I n addition to power dependence experi ments , a n ew fo rrnul ation of 

t he th eory of Jv!QT was develop ed. A computer programme was writt en i ncor-
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porating expressions developed in the new theory. Use of an elect ronic 

computc-:r per-mitted HQ'r probabilities to be exactly ca lculated for any 

value of r. f. amplitude and any degree of non-equality of l evel spac i ng. 
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CHAPTER II 

GROUND-STATE ATOHIC HYPERFINE STRUCTURE 

1. Hyperfine Struc wure o:f a Free Atom 

In the absence of externa l fields 9 the atomic Ham ltonian may be 

writt en as: 

G';,~; = 1-1 ~i_ q,) 
Atomic Nuclear + Electronic + / l'Hyperfine • 

<'11 Th e interna l energy of t he atomic nucleus i s given by /1 
Nuclear · 

The 

t erm J"/ 
1 

t . i s the Hamiltonian representing the energy of th e atom 1 s 
e ec r01n.c . 

electrons and their interactions . both electric a nd magnetic, with the 

atom ' s nucleus . on the assumption that this nuc l eus is a point charge of 

charge Ze. Thus 9 i t includes terms which tal-c e account of th e attra.ctive 

Coulomb fo rce between the atomic el ectrons and the point charge nucleus, 

th e kinetic energy of the Z electrons, the mutually repu l sive Coulomb f orces 

b etween the Z electrons themsel ves, and the spin-orbit magnetic interaction. 

Th e eigenenergies o f ;V 
1 

t . give rise to gross atomic spectra and 
e ec ronlc 

atomic fine structure . Th e Hamiltonian which gives rise to hyperfine struc-

C; I 
t ure, /'/ r epresents el ectro-magnetic hyp er fine i nteractions other 

Hyperfine • 

than the mono-pole t erm b etween the f inite nucl eus and the atomic el ectrons 

(i. I 

condensed in /7 l t . . Physically, t he hyperfine interaction couples 
e ec ronJ. c 

th e nuclear and el ectronic angular momenta. 

Due t o t he r elative sizes of the energy differences involved, the 

atom can b e considered to be :in an eigenstate of the tota.l nuc l ear angu l ar 

' momentum l1 I. Exc ept in cases of s mall fine-structure splitting, i t is a l s o 
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appropria e to consider the atom to be in an igenstate of th e total elec-
-" 

tronic angular momentwn 11 J. In the absence of the hyperfine intera.ction, 

an atom possess es a ( 2 I + 1) (2 J + 1 ) -fo1cl degeneracy. Th e effect of 
01~ \ 
( Y . is to reduce this degeneracy by splitt ing each of the eigen-

hyperf:tne 

states of '()I 
1 

. . i nto 2 X + 1 l evels , X being the smaller of I or J. 
' e ec~ron1.c 

These 2 X + 1 l evels are characterized by th e quantum number F, where 

F = I + J ( 2~2 ) 

.. . \ 
a nd the tot a. l atomic angular momentum i s ·fi F . The 2 X + 1 "F levels'' are 

t h emselves ( 2 F + 1 ) - fold degenerate. Because ?Y t . has eigenstat es a om1.c 

charact erized by I and J which are h ere considered constants , only 

Q)y 
1 

~· need b e con.siderecl in evaluatin0" 1:.!- . • thus: 
I 1yperr1.ne u, 1 atom1 c 

C'rd = r:~.; 
/latomic 1 'hyperfine 

( 2- 3) 

Schwartz. (Schwartz , 1955 ) has shown t hat t he hyperfine i nteract ion 

energy may b e writ t en as a product of reduc ed nuclear and el ect ronic mul -

tipole operators of o rder A., and a Wigner 6 - j symbol appropriate to 

coupling of nuclear and electronic angu l ar momenta through th e multipole 

operators ~ The h~~erfine energy EF is given by : 

E = ]:_.' E ( X ) 
F X F 

( X= 1,2,3 ••• ) 

= ( - )I+J - F [~ i ~~ (r/) 

' Qnuc . d Qelect . 1 d 1 . 1 . 1 t ,.. wu ere 1\. an _ h are nuc ear a n e ectron1.c mu t1.po e opera o rs o.i. 

o rder I.. The 6 - j symbol has the property that it vanishes unless t he 

t riads ( I, I, t-~ ), ( J, J, i\ ) and ( I, J, F) each add vectoriall y' to form a t riangle. 

Fo r Na
23 

J = 1/ 2 and th e only non-vanishing t erm i n equat ion ( 2-4 ) i s for 

A. = 1. Thus, in thi s case, only dipo l e int eract ions need be considered i n 
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evaluating the hyperfine energy. This i s a purel y quantum mecha r..ical 

r esult ; classical electro~magnet ic theo1·y would predict th e presence of 

all orders of multipole te:cms. Pa:t"ity considerat i ons show that elect r ic 

dipol e term vani sh es and. therefore9 only the magnetic dipole moment n eed 

be cons idered in evalua ting ~. I t i s convenient . for the case J or I = l / 2. 

to write the hyperfine energy as: 

( 2- 5) 

where a i s th e ma gnet ic dipole i nteraction constant which i s defined by: 

h a = -
)li 
I 

__,. ....;. 

H/ 0 ) D J 

J~ 

where ~I i s the nuc l ear _dipole magnetic moment and HJ(O) i s th e magnetic 

fi eld produced by the a t om 1 s el ectrons a.t th e nuc l eus. I n equat ion ( 2~6 ) . 

it has b een assumed that. th e nuc l eus is a point charge. This is not r eally 

correct and. in f act . th e fini te size of the nuc l eus gives rise to the 

hyperfine anom·a 1.~" 

2. Atomi c H:te~rfine Structure in t he Presence of an ExterJ].a l Hagnetic Field 

I n thi s section, th e hyperfi ne st:r.~ucture of an atom in the presence 

o f external magnet ic fie1ds will b e considered. 

I f an atom i s sub j ect to a weak, unifo rm , static magnetic field, th en 

t he degeneracies r emaining in}/ h r· a re completely r emoved ( Zeeman yper·:t.ne 

e ffect ) . In this case , the atomic' Hamiltonian is: 

= 1i hyperfine + ?-1 . magnet:t.c 

Traditionally, i n ABMR parl ance, the magnet which 

f ield i s called th e 11 C magnet 11 and it s field will 

( 2-·7) 

pr oduc es this weak, 

~ 
be denoted a s H • 

c 

stat ic 

The 
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direction of H is t ak en to define the Z axis. ·Ol.J. is g. iven bv: 
c ) 1 magnetic " 

rl = ( -gJ J.!OmJ· - gl J..'omi) H magnetic c 
(2-8) 

where the Bohr magne>t;on, both ll J and }lr 

- - .!> 

are in Bohr magnetons. Since H destroys spherical symmetry, F is not a 
c 

good quantu.m number.. In weak fields~ horJcver, it is nearly so and, in any 

case9 it is useful to keep track from which F level a particular magnetic 

substate adia.batica lly develope. Thus, these levels are denoted as 

\(F),ml<,/ w:Lth the under standing that l:i.m \CF),mF') = IF,mF /• The 
. H -~~ 0 

c 

(1) f.' I I ' terms r·.l ..._. and ( / . are diagonal in the I,J,m1 .mJr/ and 
tmagne~1c hyperf1ne 

( I,J,F,mFj representations respectively. Depending on their relative 

sizes, it is convenient to utilize the representation for which the off-

diagonal elements are smallest. For the ca::;es I or J = 1/2, thus limiting 

the nuiilbcr of F values to tr10, the secular determinant can be solved 

exactly. Such a solution is due to Breit and Rabi (Breit and Rabi, 1931). 

For u1 ~0 and F = I ± 1/2, the result is 

-hA )) .UI H +(!f.li 'J 1 4mF x . 2) 1/2 
= 2(2f+lY - I c mF - 2 + 21+1 + x (2-9) 

where x = The plus sign denotes the upper F state 

and minus sign denoteG the lower F state. The term M 1) is the energy dif-

ference betv1een the two F states at zero magnetic field and is called the 

"hyperfine splitting". Figure 1 is a plot of EF as a function of x 
,mF . 

for Na23 • It can be seen that as x incref'.ses, the levels of ee.ch multi-

plet deviate increasingly from equal spacing. The HQT discussed in this 
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wo rk takes place between the magnetic sub-l evels o f a given multiplet , 

i.e . th ey obey t he sel ection rule, ~F == 0, .&nF - ± n e Thus9 f or x >O• 

th e different o rder of HQ'f occurs at di stinct resonance f requenci es i n 

accordance with equation ( 1~2 ) , l Ef - Ei I = n'!i ~ • Thi s makes it 

experimentally possible to isolate tpe differen.t MQT s o t hat t he b ehavi our 

o f one can b e studied wi thout signi ficant contri bution t o it s t ransit i on 

pr obability f rom t he other lvlQT . 

Figure 2 i s a plot of t he nomi nal f requency diff erencies betr;een 

t h e 1-quantum t ransit i on and th e HQT. The plot is pr esented as a function 

o f the static f iel d paramet er x . 

sition i s 

v = n 

The f requency·J of a n n~quantum t ran
n 
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Figure 2 

Nominal Resonance Frequ encies 

The 1- quantum res onance fr equency. ~) lQ. is given by 

th e clashed line. The n~·quantum resonance frequencies are found 

by subtractin[S the appropriate fr equ::mcy difference from )) lQ. 



( ~:.H3 I ~1f~ ) 

A'J 3fl03~~ ~ ;y rv ~OS r ~ v"' !1. ~ 0 .,. I 

0 
0 0 0 

\ 
\ 

\ 
\ 

0 

0 
0 

1.0 
~ 

9 

0 
lO 
9 

lO 
N 
0 

0 
0 

0 0 

13 

X 



CHAPTER I II 

I NDUCED TRANSITIOI~S 

1. Development of the Interaction Ha t r ix 

In this chapter, expressions for the tra.nsition probability of HQT 

b etv1een the magnetic substates of an atomic hyperfinc multipl et are 

developed. 'l'he transitions are assumed to have b een induced by an oscillating 

magnetic fi eld. The direction of t he oscillation field i s taken as b eing 

perpendicular to the Z axis9 along an axis which can b e defined as the X axis. 

Tra.nsitions i nduced by such a field are k nown as 1111: transit ions". The osci l 

-' l ating fi eld, Hrf , is gi yen by 

A 

(H cos ( r.llt )) X 
0 

(3-1) 

A 

where H :i.s the oscillating field's amplitude and X is a unit vector i n \:he 
0 

....!> 

x direction. This definition of Hrf assumes that atoms travel through a 

region of uniform field a mplitude . 
_.... 

I n t he presence o f the oscillating field Hr f and the static f ield 

H , t he atomi c Hamiltonian is 
c 

~;;'P/ + V( t ) 
0 

(3-2 ) 

where ?V = fJ-1 + ~ and V( t ) is a t i me-dependent p ertur-
o hyperfine magnetic 

~ 

bation due to the applied oscillat ing f i eld H • I t i s now necessary to 
r . j . 

find the matrix el ements of V( t ) • For an atom possessing a magnetic dipole 
~ ...1 _ .. ~ 

J.l = )..1
0 

(gJ J + g1I), the intera ction energy due t o the presence of Hrf is 

C){ r f = .:.-pl...o~f =- l / 4;.toHo t( gJ -gi)( J + + J_) + gi ( F+ + F_ D ( eiwt+e-iwt ) .. <3- 3) 



-J. - · 
The x components of I and J have b een expressed in the standard represen-

t ation of t he angul ar momentum raisin' and l owering operators J± and F± 

(e . g. r1 essi ah, 1962) . Chi 
'ftms h . f only connect s s t a tes that differ by one 

r 

unit o f angular momentum . 

In th e limit of vanishing s t at ic fields 9 H - ·'-' o. F is a good quan-
c 

tum numb er and the matrix elements ·(F:m~/1t rf { F,m;,> ca n be expressed as 

functions of I,J, F~ :F\mF and m~ th rough th e use of equation (3-3) . Fol~ 

l owi ng Salwen ( Sa lwen , 1956) , a parameter b i s defined as 

11 b = 

Thus 

+ 

JlOHO ( gi - gJ. ) 

4( 21 + 1) CCH 
0 

( 3-4 ) 

(3- 5) 

Using expressions for (J + + J_)/ 1<\m;.; and ~ :F'+ + F ) J F, m1, see Condon 

and Short ley, 1936, the ma.tdx elements of ~i rf can be f ound . Equat ion 

( ) /V( ' ' 3-5 i s written i n t erms o f a matrix element o: F~mF; F,mF) a s 

~: m~j/::frrf F, m~ =-1f b ( eiwt + e- i uJt ) ~ (F! m~ ; F, mF.) ( 3-6) 

so t hat the angular momentum dependence of rt r f i s i n t h e terms 

For t he case J = 1/ 2, F = I + 1/2 , /:;.}., = 0 , i.e . t ran-

....., ' ' s it i ons between the magnetic sublevel s o f a given state, t h e a. ( F, mF ; F,mF) 

are given by 

[l + 
( 21 + 1) gi } 

gJ - gi .-
• 
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( 3-7 ) 



Neglecting the small term in g
1

,Equation (3-7) yields 

;-.! 
(2,2;2,1) ex. = 2 

r./ ( 2, 1; 2~ 0) 6 (1. ::: (3-8) 

,.J (2,0;2,-1) 6 ex.. = 

~ (2,~1;2, ~2) -· 2 . 
When the sta tic field H is non-zero, F is no longer a good quan

c 

tum number. Because the terms -;;,(F',mF; F,mF) hold only for states of 

specified values of F (i.e. only when F is a good quantum number), the 

states \ (F), m;y appropriate to non-zero 

in terDJS of states of specified 1~, !F,m~ 

values of II must be expressed 
c 

; i.e. I (F),m}) is e:<'_t)anded 

using the stat_es \ F,mF) as basis vectors. Thus: 

(~9) 

where F' is ta.ken ovei~ all poss ible F' s resulting from the coupling of I 

16 

and J. 
N 

The convention is now adopted that o:.(F', mF ; F, mF) is written with 

the tilda only fo:c the case H = 0 , and the tilde. will be removed from 
c 

rJ 
«(F' ~mF; li', mF) when He I 0. For t:;F = 0 transitions, the l abel F may be 

dropped from cx.(F,m:f; F, mF) as may the subscripts F on the mF' thus 

o.(F, mF' ; F, mF) -> a, , m,m 
(3-10) 

Then, for ~F = 0 transitions , :).' \ f can be ·written as ~!- L 
r. • r. J• 

0 . -fl b CX. ( eiMt + ei1.1t) 0 . . . 
-F,-F+l 

.It! b ( it.1t -}t.,t) 
·n cr. '= + e 

-F+l,-F 
0 -

z: b ( it>t -i!llt) ·n ex. e +e 
-F+ 1, -F+2 

. . . 
0 . . . 

• • {3-11) 
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The eigenenergries ofCl ; = ~~ + Gh.J . . satisfy n 0 hyperfine I v magnet l.C 

( 3-12) 

where th e co nvention adapted i s that t·' (m) <- (O (m+l). corresponding to t he 

a ssumpt i on of a positive nuclear magnetic moment . 

. th .th 
Th e matrix el ement of the i row and J column of the mat r ix 

equation ( 3- 11) , i s denoted as r;N f 
r • • 

(i9 j) • Th e off- diagonal 

matrix elem ents ~"'Yr. f. ( jd + 1 ) r epresent t ransitions to states of lower 

energy . These matrix clem ent::; are written with the n egative exponent onl:y9 

th e positive exponent having b een dropped. Similarly~ the off~diagonal 

matrix elements ~y f ( j + 1~ j) which repreE>ent an increase in the syst ern 1 S 
r. . 

en ergy are written with only th e positive exponent retained. # The counte1· 

r otating components have b een dropped b ecause otherwise it i s i mpo.s::;ible 

to obtain c ertain ana1ytic exprcssiono requi red in the fo rmulat ion of MQT 

p robabilities . 

Applying these arguments. V( t ) 1-j-' i s given by 
m 

L!/ -i{f)t v, +i(l'lt 
V(t ) l{-' =hb a 1 1 e +o; 

1
r 

1
e 

m rn. m + m + 1 m, m -· m -
( 3- 13) 

. (f) I 
Equation ( 3-13 ) can be insert ed into equation ( 3-3) yielding Fv (t ) = 

~I 0 + V( t ) • This expression, in conjunction with equation ( 3-13) , is 

now used to solve th e probl em of induced transition probabilities bet ween 

the Zeeman l evel s of an atomic hyperfine multiplet, subject to the conditions 

* Bloch and Si egert (Bloch and Siegert. 1940) have sho wn for the t wo-level 

system tha t th e counter rotating component contribut es a t erm to the probabi

l i ty expression (Y cg } t.J • 

0 

where M 
0 

so-ca lled resonance denominator term 

Ef- Ei 
h which i s small compared to t he 

1 
(Jj - w 

0 

for (jj ;:- Ct; 
0 



that a ll atoms experience~ th e perturbation V( t ) for a time t, and tha t the 

r.f. fi eld i s of unifo'rrn amplitude H over its extent. 
0 

2. Two wL.evel Case 

Although th e case of t wo- l evels can be derived in more direct ways, 

( Ramsey, 1956 ) , it i s convenient h ere to use the ~developed above 

and set J = -h I = 0 • Thus9 F = ~- and m = ± -a- • For this case 
F 

0',.1 , -· u., , = 1. Hence~ i s 
·~-. -·z- ~-~- ' 2 

( w ' 
i 1 b e 

-it;)t 

) /-~ = -}1 -:· eiwt 
( 3-11+) 

w 1 
~'-c.-

The states I (J), + t/ and ( (f ) ~--}) will b e denoted as I+? and I-> 
r espectively. Note that since there i s only one F state for I = 0 , J = t. 

In terms of { +) and { - /, the wave equation 

at a time t after th e 1 erturbation V( t ) has b een " switch ed on11 is g:i.ven by 

S
. . t-t· ';:\ y; 
1nc e J..'r" 'St" 

~ ( t ) = A( t )l - ) + B(t) I +) 

= ~~ v) . it follo ws that 

A(t) i w_1 A( t ) . - il!!t ) 
= --li +1ibe · B(t 

B(t) i W , B( t ) + "abe +iwt A(t) = --11 +-'2 

( 3- 15) 

(3-16) 

18 

If it i s assumed tha t at t = o, the syst ern i s in \ -) then A(O) ::; 1, B(O) = o. 

These initial condit ions permit solutions to equa tion (3-16) which are 

A( t ) -- (i co s 9 sin t a t+ cosf at ) e i(-}!il- ( W~- + \f_J)/ 21f ) t 

Bet) 
.. 

8
. , t i(-1- uJ- ( W.J.-+W_.J.. )/2-h ) t = 1 Slrl S1ll ~- W e £ £ 

( 3-17 ) 



where 

co s 0 = ( t,, - M) / a 
0 

sin 0 = ·· 2b/ a 

M - (W 1 - VJ , ) /1'i 
0 ~ -;[ 

Thus the p robability that a t ransition from state 1-) to a state 1 + / 

i n the time t =I i s ( Rabi, 1931): 

p 1 1 = 
-2·~ 

( 2b ) 2 

2 2 
( (<) - m) + ( 2b ) 

0 

( 3- 18) 

where <£1 is the angular fr equency of th'eoscillating fi eld. 

Figure 3 i s a plot of P 1 1 as a functio n of , 
--:!- , -:r 

choic es of b. That value of b for which P 1 1 eque.l s 
-~9~ 

ca lled 11optimum b 11 and will be denoted as 11b 11 

opt 

3. l1ore Than Two-Levels, Equal~ Spaced in Energ:c 

I 'I 1l-il - (.!\ fo r t wo 
' I 0 . 

-z_Jr 
unity at t;J = 0 

0 
is 

Ha j orana (Ha j orana? 1932) was th e fi rst to obtain t ransi tion p ro·-

babilitie s fo r systems having more than t wo l evel s. His fo rmul a may be 

derived by synthes i zing a general spin 1iF and wave function \ F,mF/ f rom 

a sum of 2 F Pauli spin matric es and the product of the wave function.t.for 

t he ' 

Thus 

- angu l ar momentum of spi n -~ pa ralle l to th e Z axis r espectivel y . 

-
2F 

""" 1 rr-F ::: C... -2 \/ 
k k=l 

I t'hk 
k=l 't 

( 3-19) 
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Figure 3 

Two ··Level Resona nce Line Shap e 

The so l id curve cor-responds t o b = b :: 0 .06 lk / sec. 
opt 

The das hed curve i s f or b :.: 0 . 09 !·ic/ sec. The subs idiary maxima 

a re a ttributed to U1 e ca l cu l ated t ransit ion proba bi l ity no t 

ha ving b een vel ocity averaged. For t his calcu l ation, 1: i s ~ 

mi c roseconds . 
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where Cl k and \jkare th e kth spinor and rmve functions of the aneular 

momentum respectively. Hajorana's derivation assumes that all the mag-

netic subl evel s are equall;'f spaced and that H f acts in th e s ame way 
r. • 

-\ 

upon each l evel. Aft er H f has b een appli ed for a time t, th e wave 
r. . 

function is 

~ ( t ) = l. 
m' 

C Ct ) I F, mF) mm • 
( 3- 20) 

wh ere C (t) .:: G ( J.i', m~m ') ·<"'rnl V(t)j m'~ 
m9m' \ / 

and G( F,m, m') is a factor due t o normali zat ion cons tants appearing in 

th e angular momentum raising and lowering operators . Now (m I V ( t ) I m ' / = 
+' t I~ b ( __ lJI) ' ) 

·1 e x a , 
mtm ' but. since it is assumed that V( t ) acts th e sam e way 

on all m l evel s . a , 
m,m 

i s chosen to b e equa l to unity. Thus , 

(m \ V( t ) \ m) i s identical to the perturba tion V(t) for t he t wo- l evel 

case describ ed above. 

The probability of the tra ns ition rn ..-~. m' is C / 
2 

Thi s yi elds 
m,m 1 • 

P = (F-m)! ( F+m ) ( F-m ')! ( F+m ') ( sin -t e)
4

F 
m,m ' 

J l~ 
r ., ( - )r (cot -2- e)m + m' + 2r }2 

x l0:-m-r ---)~!:--;(-=F~--m--:,-_-r-.)..-:-! - C'm_+_n_I-:-1 +-r'")~!~r-:! ( 3-21) 

wh ere r = 0, 1, 2, •• • r max, r max b eing th e l a r g est va lue of r for which 

no ne of the arguments of the f actorials is negative. Also. sin
2 + 8 --

P 1 _1_ as i n equation ( 3- 18) , L e . it is th e t ransit i on p robabi lity appro
-'"2"•T 

priate to th e t wo- level case . 

Figures 4a cllld 4b are plots of P ( rn == -1. 0, 1, 2) at the nomina l 
m,-2 

resonance f requency w = 6'1 • 
0 

as a funct ion of b. Below their intensity 
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Figures '+a and '-fb 

Power Dependence of l·'JQr.r at Resonance 

Frequency Uf:;ing t he Hajorana. Formula 

The tirne, [ ~ i s '+ n·,icroseconds. 



22 

20 

3 

2 -
"----L..--..J_ I. 

. 02 · 006 ·0 1 ·0 2 ·0 4 ·06 ·10 

b/2 n ( MC I SEC) 



1oo~

~o 

40 =· 

23 

4 

0 ·01 ·0 2 ·04 ·06 0·10 

12 n ( rv~c 1 E c ) 



p eaks, these curves eY.hibit cle-ar l y straight portions, the slopes of 

which appea r to b e determined by transition multiplicity. This obser-

vat ion motivated the "power d c~pendence" experiments performed in thi s 

work. The valu e of b corresponding to th e maxima · of P 
2 

are the values m,-

of b appropriate to th e transit ion involved. 
opt 

4. Ho re Than Two-Levels~Quite Unequally Spa ced 

Pertur1)ation methods have b een used by several authors to obtain 

multiple quantum transition pY'obabilities when the l evels are unequa lly 

s paced. Discussion i n this work will b e limited to th e theories of 

Salwen (Sa l wen9 1955) and Ha ck (Hack, 1956 ) . 

H. Sa l wen utilizes a t ransfonnat io n to a rotating co-o rdinate sys-

t ern ( see Rabi et al., 1954) t o obtain the i nteraction matrix. The co-

ol.·dinate system rotat es at a n a ngul ar frequency M about th e Z axis , so 

~ H 1\ • t . .._ 
tha t one compon ent of th e oscillating field H f = 

2
° x ( el<O + e -Hlt.- ) 

r . • 

appears static to an observer i n the rotating f r ame. The other component 

can be negl ected for r eas ons given abov e. Such a picture l eads to th e 

time independent Hamiltonian 

(3- 22) 

where ( Vb ) i s t he x comnonent of the b th valu e of V. X ~ 

_, 
The symbol V stands 

---' ..-> _.. 

f o r any a ngul ar moment um vector, here, the t wo va l ues of V are I and J. 

Becaus e t he l1QT ob ey t he sel ection rul es fl"P = o. A-nF + -- n, t he states 

I (F),mF) v:ill b e deno t ed as \ m / • In t h i s represent a tion , t he rotating 

fi eld will connec t t wo l evel s I m / and I m 1 j if th ey are degenerat e in t he 

rotat i ng frame , or, equivalent ly, if~ 1 I m/ = ()J:i·' l rn ') . For non-zero 
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va l ues of H • 
c 

the level s \ m)' md \ m' / are not degenerate in the space 
I 

f ixed frame , or ~N 
0

) m/ flJ-/ /m '/ • Beca.usc of the a ssumption approprii:J.te 

t o this subsection, namel y tha t t h e levels are quite unequally spaced, i t 

fo llow~:. that the di ffer ent HQT resonance frequenci es are isol ated from one 

another, as VIas demonstra t ed in Chapter II. For frequencies in the n ei gh-

/:Ef - E~ 
bourhoo d of w = 

n -71 
' has onl y t wo , a nd no more, degenerat e eigen-

sta tes. Thus, i f the ini tial state i s \ m/ and the f ina l state is I m' / • 
\ E ..;, E , I 

th en f or f requencies in the region CJJ = 1 m r~ l f only t he stat es I m/ a nd 
m- m 1 

{ m ' '7 will b e strongl y mixed - - all the ot h er 2 F + 1 substat es of F will 

r emain unmixed. 'rhen 0 may b e approximated by a t wo-dimensional matrix 

contai ni ng t erms app1~opriat e t o th e t wo states \ m/ a nd \m' '? • 

Sal wen devel ops the matrix el ements o f 1'-l " by consi dering t he expansion 

o f th e k et I 7 as a linear combinat i on o f t he (nearl y ) degener ate s tates 

1m/ and \ m'): 

\ 7 = \ m) \ \ ) + / m') ( m'l ) + L I n) 
n f-m,m ' >. ( 3- 23 ) 

Thi s enables Sa l wen to solve the ma.t r i x equation 

( 

(ml ) ) 

~~~' <m'l / 
= 

The degen erat e eigenval ues of o;./- " a r e used ( with the p r op er root 

oelect ed ) to ca l cula t e t h e eigenvector ( ~ml ) ) By r einserting deri ved 
\m' \ ) 

va l u es i nto equa tion ( 3- 24 ) , th e eigenvecto re ma y b e f ound, i n principle, t o 

any desired degree of accur a cy . 

Us i ng t erms to th e lowest order in r . f . amplitude t hat give non-

vani shing pr obabilit i es for a given t r ansition , Sa l wen obt a i ns 
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p 
m,m' 

( 3-25) 

wh ere <.ti* 
rn,m ' 

is the n- quant um resonance frequency, e.n d is given by 

b2 t 

[,~- 1 ltt:i.9 m I 
2 

' '\,m j
2 

·L (~l* = (.' I 1\n-1 + ·m,m . -(l) 
m~ m ' i =m+ l 

(l) -IJJ 
m.:t m, m1 m~ i 

( 3- 26) 
i =m 1 -1 i = m1 +1 

wh ere Ut 1 == m,m 

E - E m m' 
nh 

i s th e nomi nal n-quar.u .. um resonance fr equency and 

t he states i a re the states i ntermediate to m and rn 1 
• 

is given by 

Th e t erm b 1 m,m 

m = rn 1 ±1 

L 
i=m±l ( vm~ ' I) 1 • )( v 1 •• v 1 - . 1 ) .. • ( v 1 - v • ( n~ 1)) m , l m, m . m ., 1 m • m n, 1 

i 1 =m±2 

• (n-1·) 
1 = m± (n - 1 ) 

for n 2 • 
(I; I 

=~ 
2 n 

(3-27 ) 

Along the way to equat ion ( 3-25), Salwen has assumed that i n th e vicinity 

o f t•) * 1 changes, with r espect to (~), of the off- diagonal matrix elements m,m 

and part s of the diagonal matri x elements of ~11 can b e ignored . Thi s ap-

proximation, together with the assumption tha t only t wo of the eigenstates 

of 6}4• are degenerate fo r tl)--:'::" M* , limit t he solution to the ca.s e of 
m,m 

quite u nequally spa c ed level s . Two normali zat ion f actors, app earing as a 
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product~ have been ta.-cen so tha t the product equals ti.nity. Use was also 

made of expressions which related l·'iQT probabilities to the general eigen-

states I f.) in the rotating co-ordinate system for the case that th e 

rotating field i s applied for a timel:. 

Equation ( 3-25) is of th e form of the single quantum transition 

probability ( equation (3-18 )) except that fin equation ( 3-18) ha s been 
b'»' 

r eplaced11 n /for the n-quantum transition. In an ABI.ffi exper-iment, there 

i s a resonance b roadening in accord with the uncertainty principle 

( 3- 28 ) 

where ""'r is the l ength of tim e the atom is subject to the transition in-

ducing oscillating field. Since1 by equation ( 3-25), for an n-quantum 

t ransition l ( single quantum ) appears to be a factor of n greater, it i s 

to be expected that the full width at half maximum ( FiliHH ) of an n-quantum 

resonance will be n times more ne.rrow tha n a one-quantum l ine shape9 all 

other factors being equal. At resonance frequency and small r. f . ampli-

tude P , "'--- sin ( n 1tHn t::') o:. H
211• m,m -~ o o Thus, greater r .f. amplittdes are 

required to give equal transition probabilities as multiplicity increases . 

From equation ( 3- 26 ) , tt1* ~to 1 ± if(b
2
), thus resonances are expected rn,m 

to shift as the square of r. f. amplitude away f rom the nominal n-quantum 

\E - E I\ 
resonance f requency fJ1 = r m m . 

m,m ' m- m'l h 

Th ese r esult s qualitat:i vely des cribe the known behaviour of NQT . 

Th ey do ex..."libit progressively more no..c-row F\'JHH as n i ncreases ; th ey do 

exhibit increased intensity sensitivity to changes in r. f. fi eld ampli-

t ude e.s multiplicity i ncreases and do require greater amplitudes for com-

parable intensities as mul tiplicity increases. 
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Fo r t he special case tha t t he l evels are exact ly equally spaced 

Cno11nal Zeeman effect ) 9 Sa l wen obtai ns an exact solut i on which i s i den-

ti cal t o t hat o.f' Ha. j orana . 

N. Ha ck (Hack? 1956 ) uses th e methods of time-dependent pertur

ba t i on theor·y to obtain HQT probability express i ons . Terms are Clbtained 

to t he l owest o rder fo r whi ch a non-vanishing t ransit ion p robabi lity 

occurs f or the t ransition under consideration. Of course9 t he use of 

lov1est o rde r pertu r bat ion theory limit s t h e r esu l ts to t he case o f small 

ampli t ucles of oscillating fi el d. It i s also assumed t hat th e various MQT 

r esonance f requenci es a r e we11 separated. 

The eigenstat es of 0)1 = 1~f -· fH . . a r e evolved a c-
o hyperfine magnet l c 

cording to th e well known time-dependent r e l a t i on va l id to a ny o r der n 

'-\' .( t ) 
J 

"'-- -ti1co. t/!i = ,c.. a . . ( t) e l W~ 
J_J T ... 

:i. 
(3- 29 ) 

wh ere h ul , a r e the ei g enenergies s atis fying ~~ lr. "' 11 ul . tv,. • The co e f -
l o l l r~ 

fici ents a .. ( t ) a re given by 
lJ 

( n ) . iJ::t -i(;li ,.et ' ( n - 1) 
a . . ( t ) :: - :;;. '['_ e . ..e e a £J' ( t ) 
lJ !l 0 ..e l . 

dt ' ( 3-30) 

where ei£ is a time indep endent ma trix corres ponding to the time- dependent 

perturba tion V( t ), the time- dependence having been r emoved by transformation 

to a rotating co-o rdinat e sys tem, and 4)i£ = CJ.ji - t;;,e. 

Using diagram s to a ssist in picking out the appr opria te terms and 

t h · · H k f ' 1 th th d ff ' · t ( n ) ( ) elr Slgns, " a c 1nc s e n or er co e ·1.cl en a . . t to be 
. lJ 
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( - ) 

{ e i ( (J'i j + ( n l.il ) t - 1 

(3-31) 
l, m, .•. r 



Following his prescription. the n ext contribut i on i s 

£ , m, . • • q 

I i (!l.lij (n- 1)<., ) t l 
A . 0 A o. • •• A 1 e - 1 
1~ ~n rq·~-l~--~--~~--~-----

( M . + Z n -U I;) )( oo 0 +- ( n - 2) tJ) ) • • • ( IJJ : + tr1 
1r ~r qJ 

Wh er e t h e i nitial stat·e i s denoted i. t h e fi na l sta te j , and all the 

st a tes int ermedia te t o l. and j are denot ed by £, m. n q, t he 

matrix el em ents A s ati s f y A = 1'i e m n m n m,n 

Fo r t he well separated f requ ency cas e, onl y the l ea ding term o f 

equat ion ( 3- 31 ) exhibit s a resonanc e :fo r the n~quantum t ransi tion a t 
t}j . • E. - E . 

M ::: -2:.J.: l l 
n nh 

Thus th e other t erms of 

applied f requenc i es tJJ i n the n eighbourhood of 

h - 2 
w ere ''\ n " ~L. 

,e, m, ••• r. c • 

(ll • • 

and, a s abov e, co - -2.1 o - n • 

s i n 2 ( -~ n ( ll,- t;l ) 1" ) 
0 

( n )( ' a . . t; may b e dr opped f or 
lJ 

{(j . • 

"-' .....:!:..J W - n 'l'his l eads to 

( 3- 32) 

When the o s ci llat i ng fi eld b ecom es l arge. t he off- diagonal mat rix 

el ement s can b ecome as l arge as t he .di agonal matrix elements and pertu r -

bation th eor y is no longer reliable. Ha ck solves t he Schrodinger equa tion , 

subject to the well-separat ed f requ ency condition. for the simples t case of 

t wo coupl ed a ngul a r moment a I = J ::: t. After int egration by pa rts, the 

t erms in the equations for t he a mplitudes of the states. which hav e l arge 

resona nce denomi nators othe r than t he i nitia l or fi nal ones for the tran-

sition i n question, are dropped. Another t erm , a constant , is dro pped 
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because, upon insertion into t he equa tion for the amplitude of the final 

and initia l l evels, i t is multiplied by a rapidly os cillating 

expot ential thu.s tending to zero. A furth er approximat ion involves 

equating terms which are only equal fo r the case of exactly equally spaced 

l evels. Hack then generalizes that solution to the case of two genera lly 

coupled angula r momenta I and J • He obtains 

p .. ::: 
l.J 

2 
(fl l 

C3-33) 

where w1 i s as above in equation (3- 32) but now c"o (_£._!. m" of equation 

(3- 26) is defined by 

2 A2 A2 

± 1 
( ttl • • 'L A l.,i L £r L l., ·i 

(L) = + + -
0 n l.J 1 ~ . ~.,- ( >) 

m ,e = mi + 1 
coil.,+ tJJ m1 ::::mj - l 

(ll. ~., ·· (i) 
m1 - J. v l. v 

(3-34) 

The l ast four terms of the definition of w i ndicate that , at increas ed 
0 

r.f. amplitudes , th e r esonance f requency will not coincide exa ctly with 

the actual energy difference between the initial and final levels. It is 

clear that Hack and Sal wen have obtained essentially t he same expressions, 

and thus both theori es predict the same behaviour of MQT as was discussed 

above. 

5. Exact Solution 

I n order to solve the problem of MQT probabilities not sub ject to 

t he limitat ions i mposed by the theori es di scussed above, namely, t hat t he 
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l evels be either exactly equally spaced Ct1ajo rana and Sa l wen ) o r tha t the 

l evels b e quite unequally spaced ( Salwen and Hack ) , R. G. Sum.rners-Gill of 

t h e HcMaster atomic b eam group has proposed a n early exa ct th eory. Ext.en-

sive use will b e made of the interact i on matrix and other relations deve-

l oped i n the fi rst section of thi.'3 chapter . 

Starting with t he int eraction equation (3-13) 

V( t) UJ = -h'b (a. V"' e~i(rlt + a (J....- e +ic.l t ) 
( m m, m + 1 m + 1 ·m , m - 1 I m - 1 (3- 13) 

and t he t otal Hamiltonian,~<>} , given by 

t he wave function Lr• ( t ) at a time t during which th e per turbation V( t) 

has b een applied can b e written as 

F 

'+' ( t ) = z:. 
- F 

c ( t ) ~ m m (3-35) 

Writing (t) i n this manner means tha t states of different F are neglected. 

Typically r '"< ) - (j'< + \I -.,-...., I (!j( ) . - (I) ( + . ) I and such a simplifi-
F F_J; // l . m rn _m b.F = O 

ca tion would a ppear to b e entirel y j ustified • 

.. 
Th e Schrodinger equa tion fo r the sys tem i s 

This condition leads to , using equation (3-35): 

F 
0 

c (t) ~) =11' c (I} \J) + L c (t) V(t)lf/ 
m m 1- m (nl l I m m m 

m m 
(3-36) 

where the "?m; and '-Y m were defined i n equat i on (3- 12) • Using th e defini

tion of V(t), equat ion (3-36) b ecomes 
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+ C ( t ) a, e:Uil .., . ~ ) 
m+l m,m+ l , 

I n order to remove th e time dependence, n ew coefficients a ( t ) are 
m 

defi ned by 

C ( t ) = e-im~t a ( t) 
m m 

" th en -ia (t ) + ( <JL- mrn ) a ( t ) + b ( 0', 
1 

a 
1

Ct ) 
m uu) rn m - ' m m -

+ ex. a ( t )) = 0 
. mtm+ l m+l 

( 3-37 ) 

( 3-38) 

( 3-39 ) 

irt 
Equation <3- 3CJ) has solutions of th e form a ( t ) c£ e provided that 

m 

( y + (1 - m~<J ) a ( t ) + b ( ex. a 
1
C t ) + a.. 

1 
a 

1
C t ) ) = 0 

(m) m rn - 1. m m -. m, m + m + 
( 3~~0) 

fo r a ll m in the r-ange -F;::; m: F . Fo r a non~t ri vial solution to 

t he set of 2F + 1 coupled linear equa tions in a ( t ) , i t is necessary 
m 

that the d eterminant of equa tion ( 3-40 ) vanishes. Thus9 

y + ~if-F) + F<.; b cY.. 
-F. - F + 1 

0 0 

b " -F, - F + 1 y + <>(-F +l)+ ( F- l)<t1 b " -F+l,-F + 2 ° 
0 b " -F+l, - F+2 Y +'t-F+2)+ ( F-2

)(J.) b cx_F+2,-F+3 

= 0 
(3-41) 
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Th e 2F+ 1 r oot s of ( 3-~1 ) are denoted by Y ,e, wh ere 1 ~ 1 ~ 2F + 1 . 

Th e a ( t ) can th en b e constructed o..s 
m 

a ( t ) = 
m 

2F + 1 

?: 
£ =1 

A m,£ 
iYot e .-{, 

Subs t ituting equa tion ( 3-42) i nto equation ( 3- 38) gi v es 

C ( t ) _ 2.:.: A ei( i£-m(Jl ) t 
m ,e m,£ 

( 3-42) 

. Th e time independent coeffici ent s 9 A /) • must s a tisfy th e r ecursion 
m,~ 

r el ation 

( Y + (;.l - m<•' ) A + b ( o, A + (;(, A ) = 0 
1., (m) m, ,e m -1, m m -1.1 m. m + 1 m + 1, ,e Q 

Equation ( 3- 1+4 ) ·p ermit s t he calcul a tion of trans ition proba.bilitics in 

t erms of co efficients Am,£ , which in t ur n depend upon th e roots Y,e • 

Now, a more conveni ent fo rm of j C , ( t ) j 2 = P 1 will b e given in terms 
rn m ~m 

of th e A I)• From equa tion ( 3-43) I C ( t )\ 2 = 1 2:"~ A2 /J e-iY,et ) ~ x 
m, .-{, m \ ,e m, 1{, 

* But since A = A m,£ m,£ 
as the A 0 are real, th en m,l{, 

There are 2F+ 1 magnetic subs tates "\, m
2

, ••• m2F+ 1 • For de

finitness, ass ume tha t at t = 0 the system of 2F+ 1 m levels is i n th e 

state m
1

, th en the probability, after the perturbation V(t) ha s been 

applied for a. time t = 1', t ha t the syst eri: will hav e ma de a t ransition 

33 



to a state m
2 

.\ ~ l Cm
0 

(\; ) 1 
2 

• Because it was a ssumed t hat, at t = 09 
t:. 

t he system was i n the state m = m
1

, then 

The probability of a transition havi ng b e~:n. made from rn
1 

to m
2 

at t he time t - '\,. - (.... th erefo re 

To evaluate the requi red co efficients A /) ~ use i s made of the 
m,r.:.. 

r ecursion rel ation they satisfy ( equation {3- I+L~ )) . For this purpose, a 

set of parameters flq 
m 

i s defined as 

(3- 47) 

D.q 
m . (3-·48) 

Thus, . fo r t he i nitial l evel b eing m
1

, it follows 

= ( m~j - w ) .6 q-l 
(m) m 

+ a. 
m -l,m

1 
m,m + 1 

b( o. f) q- 1 +a. ~ q-1 ) 
m -1, m m -l m, m + l m+ 1 

(3- 49) 

The relat ion (3-49 ) is expressed as 2: (y /)) q A = D.q which is a system ,e ,{, m, ,e . m 

34 



of 2F+ 1 equations which can be sol ved for t he coefficients A 0 • m, /(, 

One method of effecting a solution in given by Kramer ' s Rul e which 

yields 

wh ere 

J = 

and 

l 

A = m,£ 

Jl 1 

yl y2 

y2 
1 

y2 
2 

y3 
1 

y3 
2 

y2F y2F 
1 2 

. . . 

• . . 

l 

2F 2F 
y ,e -1 ~m 

Thus, in t erms of the quantiti es 

,e,,e' 
,e £' 

1 

1 

y 2F + 1 ' 
2 

y 2F + 1 

3 
y 2F+ 1

1 

y2F 
2F + 1 

1 

y 2F+ 1 

2F 
y 2F + 1 
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The transition probability from m
1 

l evel s other than m
2 

fol

l ows i mmedi ately from equation ( 3~51 ) ~ the terms D ,e Cm
2

,m
1

) b eing re-

All this means is t hat, i nstead of using the v ee-

to r Ll~ in forming D,e Cm
2 
~m1 ) , a. different 6~ is selected, the one 

2 

selected being appropriate to th e final level m . Of course, different 

i nitial condit ions a l so change the vectors ~q. 
m 

This derivation is an exact treatment of the HQ'r probability 

problem exc ept for the neglect of the following: 

( 1) counter rotating components of the oscillating fi eld 

( 2) contributions to HQT probabilities from states of different F 

( 3) spatial variations of the oscillating field amplitude. 

36 



CHAPTER IV 

APPARATUS, EXPERH'!ENTAL TECHNIQUE AND CO!v!PUTE,.T.( PROGRA!.'Jl-1ES 

The Met-laster atomic beam apparatus used in these experiments i s 

of conventional 11 flop-in" design. It has b een described in detail else

where (King, 1960; Cameron et al., 1962). The di scussion of: the appara

tus will here be limited to those aspects particularly pertinent to the 

experiments reported. Descriptions of computer programmes based on the 

expressions developed in Section (III-4 ) will also be given below. 

1. Operation of the Apparatus 

Figure 5 is a schematic representation of th e apparatus. Source 

material is evaporated in an oven, 0. It emerges through slits in the 

fac e of the oven in th e form of an atomic b eam . Various beam collimating 

slit s are shown. Atoms i n the beam pass in succession through the three 

magnetic fields of the magnets denoted A, C and B. The A and B magnets 

are strong , deflecting magnets with fields and gradients perpendicular to 

the c entre line of the apparatus. The C magnet produces a weak , static, 

uniform, variable intensity field whose direction defines the Z axis. The 

C field causes a Zeeman splitting of the atomic hyper fine multipl ets . 

Transitions are induced between these magnetic substates by a small mag

netic dipole antenna ( not shown) situat ed in the gap of the C magnet . Atoms 

a re detect ed by a conventional surface ionizat ion detector ca lled a "hot 

wire''. This is denoted HW in Figure 5. An obstacle wi re, ca lled a '' stop 

wire", S, prevents ato:ns which are undefl ect ed by the A and B magnets from 
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Schemati c Diagram of Apparatus 

Atoms which have not made transitions invol\'ing mJ (in 

A field) = - rnJ (in B field) suffer two successive dofled:ions 

in the same direction and are not focussed. 
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reaching th e hot wire . The apparatus i s evacuated by f ractionating ' oil 

-6 diffus ion pumps to a pressure of about 10 mm Hg. This effectively 

eliminates b eam scattering from residua l gas in the apparatus. The b eam 

path from the oven to th e hot wi re is about 1 m which, for th e width of 

collimating slits used (0.25 mm ) . gives an overall transmi ssion efficiency 

-4 of about 10 • 

2. Beam Pro duction 

The source mat erial used was metallic sodium . An illustrat ion of 

the tantalum source ov en is giv en in Figure 6. The slit j aws form an exit 

channel about 0.25 mm wide, 0.75 em high and 0.25 em deep . The depth of 

th e slit provides a modicum of beam collimation. The oven was indirect ly 

hea ted by passing current through tungsten filaments situated near the oven. 

Once the filament current was s et and the oven permitted to come to thermal 

equilibrium, the long term beam intensity usua lly va ried no more than ± 5%. 

3. Magnet System and Hagnetic Focusing 

The C magnet is energized by a current regulated power supply. The 

stability of th e supply current is approximately 1 part in 10 
4 

• The in-

tensity of C field is continually variable in r ange from 0 to about 500 gauss. 

No large drifts in C field intensity are attributable to variations in the 

output cur r ent of C magnet supply. However, variations of C field intensity 

did occasionally occur and these were attributed to variations in the in-

tensity of the fringing field from the A and B magnets. The current regu-

lated power supply fe eding the high impedance A and B magnets was capable of 

supplying 2 amperes at 2000 volts. For these experiments, a current of 



~:re 6 

Oven 
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1 c:u!lpere was used. The stability of the A and B magnet supply was about 

1 part in 1000. 1'his current produced A and B fields of 5 and 10 kilogauss 

respectively. 

In the A and B fields, pm·amagnetic atoms are subjected to the 

Paschen-Bach effect. Because those magnets produce large field gradients, 

atoms experience a transverse force 

~ 

F = -'VV 

(4-1) 

where mJ is the Z component of the total electronic angular momentum and 
,.. 
Z is a unit vector along the Z ay~s. The A and B field gradients are 

parallel, thus, atoms which have the same sign of mJ in both these fields 

experience tv:o deflections in the same direction. These atoms miss the 

exit aperture and are not ionized by the hot wire. However, atoms which 

have changed their sign of mJ because they were induced to make appropriate 

Zeeman transitions in the C field region are focussed upon the exit . aper-

ture in front of the hot vlire. For a suitable choice of geometry, it is 

possible, for a wid~ range of velocities, to focus onto the exit aperture 

all atoms which have made transitions of the type mJ (in A field) = 

- mJ (in B field). In Na
23 

(E_.f. Figure (1)), it is seen that allfocusable 

f:.F = 0 transitions involve the I (2),- 2) state as either final or initial 

state. 
. 23 

Thus, only four HQT are observable in Na with the apparatus at 

this laboratory. 

4. Rot Wire Detection System 

The hot wire surface ionization system works on the principle that 

a fraction of the atoms evaporated from a hot surface are emitted as ions if 
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the· ionization potential of the atom is lower, or not much larger, than 

the work function of the hot surface. The hot surface was provided by a 

0.2 mm diameter tungsten wire resistance heated to about 1600°C. The hot 

wire is mounted vertically to intercept atoms leaving the B magnet exit 

slit. Ions created at the hot wire surface are collected on a nichrome 

strip and the resulting ion current is measured on a Victoreen-Tullamore 

electrometer (Model VTE-2). In order to have maximum utilization of the 

ions created at the hot wire surface, an electrostatic potential is main

tained between the hot wire and the collector. 

The hot wire mount is capable of being moved in an arc. This per

mits the hot wire to be positioned within a band extending left and right 

of the geometrical centre line of the apparatus. This flexibility is 

required to accommodate the small changes of apparatus alignment which 

occur over a period of time. It also proved to be useful in monitoring 

the Na beam intensity. 

The hot wire detection system has a small inherent background cur

rent. In addition, there was usually a larger background current due to 

atoms scattered from the beam landing on the hot wire producing a current. 

The latter background is extremely dependent upon the pressure of the 

apparatus. In the experiments performed, it was required to subtract off 

the background, hence several determinations of the background level were 

required during the course of the experiment. This determination of the 

background is known as an "r.f. off" measurement. 
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The response of the hot wire detection system was checked by raising 

the beam intensity so that the electrometer reading was a factor of ten over 



a previous value. The variation of intensity of resonance as a function 

· of applied r.f. signal amplitude was compared for both beam intensities. 

The relative changes of resonance intensity with respect to r.f. amplitude · 

were the same in both cases indicating that the hot wire electrometer 

system's response was linear. 

It is necessary in ABHR experiments to monitor changes in the beam 

size. Normally, this is done by removing the obstacle wire so that the 

intensity of the undeflected portion of the beam can be recorded. Such a 

procedure is known as the "half-beam" method. However, because of the large 

deflections which Na atoms experience in the A and B fields, the "half-beam" 

intensity is of the order of the background ·noise of the hot wire detection 

- system. Recourse was then made to the large "thrown-out" beam produced by 

the deflecting magnets. Figure 7 shows the profile of paramagnetic atoms 

comprising the beam. The bear.1 size was monitored by setting the hot wire to 

the thrown-out portion of the beam profile (labelled "Honitor" in Figure ?) 

and recording any changes in intensity. No large scale variations (i.e. 

greater than 10%) were noted in beam intensity. 

5. Radio-Frequency Equipment and Use 

The experiments performed were measurements of the intensity of a 

MQT at resonance frequency as a function of the r.f. field amplitude, H • 
0 

This required a means of precisely varying the r. f. amplitude. For this 

purpose, precision attenuators were used. The use of attenuators further 

required that a means of matching the load to line be used,otherwise the 

attenuators would not function properly. Figure 8 is a block diagram of 

the r. f. equipment layout used in these experiments. ·~~'" · 



Figure 7 

Thrown-out Beam 

Th e da t a i G fo r Cs133 . 
27. 

However. fo r Na ./ , the shape 

of the b eam p r ofile i s lit t l e changed. 
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Bloc { Diagram of Hadio-Fr equency Equipment 

'ril e components are i ndica ted by the f oll owing abred.a t ions : 

Oscilla t or -

Amplifier -

Att enuator -

Directional Coupler -

Cr ys t a l Det ector -

Os cilloscope -

Doubler Stub Tuner -

Fr equency Converter -

Fr equency Count er -

Os c 

Amp 

Att n 

DC 

X t a l 

Scope 

DST 

Count er . 
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The dipole antenna used to induce the HQT, commonly ca lled a "hairpin", 

i s a U- shaped l ength of 20-gauge copper wire terminating a section of co-axial 

cable. The loop i s oriented within the C magnet gap so that i ts magnetic 

fi el d is parallel to the beam axis and perpendicular to the direction of the 

C field. A typical VS\VR fo r the loop alone was :::::: 15 : 1. A double stub 

tuner was used to match the "hairpin" to the line so that the a.ttenuator 

would be working into its characteristic i mpedance. The t uner used was a 

Weinschel Engi neering Company DS- 109H which is specifically designed to per

mit easy matching in the frequ ency range of 40 to 400 He/ sec . Co-axial 

cable connecting the r. f. components was typ e RG - 8 / U which has constant 

i mpedanc e from D. C. to ,..... 1 kl1c/ sec. The connectors used offered the same 

wide range response. Table 1 i s a list of th e radio-frequency equipment 

used. 

The principle of operation of the r.f . system is as follo ws . The 

r.f. signal is (if required ) amplified and a very small fraction of i t is 

drawn off to obtain its frequency, using the fr equency counting system. The 

attenuator is matched to the load by adjusting the stub l ength of the doubl e 

stub tuner. This is accomplished using the directional coupler which is 

a rranged in the line so that it only detects energy r eflected from t he load. 

Th e reflect ed signal is detected, using a crystal diode, and viewed on a 

sensit ive oscilloscope . During the matching procedure only, the r. f. signal 

i s square wave modulated at 1 kc/sec. The stubs are adjusted until the 

square wave pattern on the oscilloscope flattens into a hori zonta l l ine, in

dicating that no energy is being reflected i nto the attenuator. Prior to 

matching,the loa d presented a bad mis-matching. hence the matching usually 



Item 

VHF Oscilla.tor 

VHF Amplifier 

Tee (Ad justabl e 
Attenuator ) 

Di rectiona l 
Coupler 

Crystal Detector 

Frequency Conver
ters 

TABLE I 

Radio- Frequency Equipment . '· 

Hanufacturer 

Wandel and Golt ermann 

Boonton Radio Cor
poration 

General Radio 
Company 

1':. - C. Jones Company 
(Hic ro-Hatch ) 

Teloni c Company 

Beckman~ Company 

Hodel 

LHS- 68 

230-A 

874-AG 

XD-23E 

7570-Am
plifier 
7571,7572, 
7573 Con
verter 
units 

Frequency Counter BecvJllann Company 7170 

Comments 

Using plug in uru~;s , 

th e oscillator covers 
th e fr equency range 4 
t o 1000 He/ s ec. De
pending on rlug i n 
unit used9 the output 
is 1 or 0.5 wat t s 
into 60 ohms 

The amplifier covers 
the frequency range 
f rom 10 to 500 He/ sec . 
It s output i s nomina lly 
rat ed ai 4 wat ts into 
50 ohms . 

The "drawn-off" por-
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tion 1 s amplitude is -:::::: 
-20 db tha t of "straight
th rough" portion. 

Used to sample the am
plitude of waves re
fl ected from load. 

Used to detect reflec
ted waves sa:npl ed by 
directional coupler. 

The frequenCj' counting 
sys t em has an ov era ll 
stability of 1 part in 
10~ 

Double Stub Tuner Weinschel En
gineering Company 

DS-109H The double stub tuner 
is specially designed 
to cov er t he f requency 
range of 40 to 400 l-Ie/ sec . 



slightly changed the operating frequency of the r.f. system. For this 

reason. the oscillator wa s again reset to th e des ired frequency and, if 

r equired9 th e stubs readjusted. This proces s was repeated until satis

factory matching was obta ined. A VSWR of 1.1 was usually easily obtained 

using thi s procedure. Through the use of various lengths of co-axial 

cable inserted into th e line between the tuner and load. the feasible 

matching was extended down to ,.,...... 20 Me/sec. 

The calibration of the va riable attenuator was checked using a 

Genera l Radio Company 1223 narrow ba.nd amplifier in logarithmic mode. 

6. · General Experirnent ~l Procedure 

These experiments consisted in determining the power dependenc e 

of HQT at MQT resonance frequency. Before an experiment was begun, the 

desired C field intensity was chosen. Then the nominal resonance fre

quencies for that field were determined. For this purpose, it was convenient 

to use a graph which gave the nominal frequ encies as a function of C field 

i ntensity, such as the one in Figure 2. The C fie l d setting was adjusted 

until a 1-quanturn resonance was observed at t he frequency corresponding to 

desired field. The 2, 3 and 4-quantum transitions general ly required use 

of the VHF amplifier . Then t he peak resonance f requency was found for a 

desi red MQT . The r . f . system was t hen matched t o the load at t he peak f re

quency using the double stub tuner. Finally, the r esonance intensity at 

t he peak f requency was recorded for di f ferent val ues of attenuator setting. 

Du ring t he course of the run, t he f requency of t he 1-quantum transition 

was checked t o assure tha t t he resonance had not shifted due to drift of 

either the C field or the f ringing A and B fields . If a shift was noted, 
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that . set of da t a was discarded. All points were repeated a t l east t wi ce 

and most were rep eat ed three times. At the beginning and end of each run, 

th e beam intensity was checked by positioning th e hot wire so as to 

i ntercept th e t hrown-out position of the beam. Because it was requi red 

t o subtract off the bacl<ground l evel , several "r. f. -off" measurements were 

made during the course of a run. Any va riations in beam int ensity or 

background were linearl y i nterpo l ated and th e appropriate correct ions v:ere 

made . To eliminate, as far as possible, t he effects of systemat ic drift, 

values of at t enuation were cho sen at r andom . 

In a ll, 31 det erminations of t he r.f. amplitude dependence of MQT 

t ransition intensity at NQT r esonanc e fr equency were made. These runs were 

conducted over a wide r ange of static field values and, t hus, fo r a wide 

variety of degrees of departure of the l evel s from equa l spacing. The 

i mpedance matchi ng system was, thus, operated at several different fre

quencies, l argely removing any systematic disto rt ion in the da ta caused 

by the tuners . Fo r the lowest valu e of C field int ensit y used (corresponding 

to X = o. 05), th e various HQT were s eparated by-"'-' 0. 25 tk/sec. Typica lly, 

th e F\VHH of t he 1- quantum t ransit ion, the "widest" of the MQT, is ""'150 kc/sec. 

Thus, all observed resonances were well defined. 

The typical signal to noise ratio, for the r esonance at peak intensity, 

was~ 15 : 1. 

The error associated with the electrometer reading was estimated to be 

± 1/2 scale divi sion. This error combines both scale r eadi ng error and the 

r andom fluctuations app earing in the electrometer's output . Of course , thi s 

error is compounded when the background is subtract ed off. For n readings of 



th e same point, th e error was divided by 'fn and the values averag ed. 

7. Computer Pro.grammes 

The expression f or HQT probabilities, developed in Section (III-4), 

was programmed for the Mc!1ast er I BH ?Ol!{) computer using "FORTRAN IV" 

l anguage . I n a ll, t hree vers ions of t he same basic programme were writ-

t en. Th ese programmes are denoted as MQTSLV , HUNl' and SHIFT. 

Th e p r ogramme HQTSLV ca lculated all five orders of MQT probabilities 

from th e probability for no transition (2, -2> ~ \2. -2/ , to the 4~ 

quantum transition involvine; t he st a tes j2, - 2> -'> (z. z> . 'l'h ese f ive 

transit io n probabilities were calcul a t ed for predetermined choic es of th e 

r. f. amplitude parD.meter b and the appli ed fr equency of th e oscillating 

f i el d f.o . Th e i nput variab l es fo r MQTSLV wer e 

(1 ) the energies of the magnetic substates ~ (m ) ( in units of Me/ sec ) 

( 2 ) the mat rix el ements o:. • ( dimensionless ) 
m,m 

(3) t he applied f requency Cll (He/sec ) 

(4) th e r.f. amplitude pa r ameter b (He/sec ) which was i ncremented 

i n st eps of ~b (Me/ sec ) 

(5) the l ength of time tha t the system is perturb ed by th e oscil

l ating field t' ( l0-6 sec ) • 

Valu es of w( ) and o:. 1 were obtained for the desired va lue o f sta tic m m,m 

fi eld from a programme written by G. H. Stinson. This programme, denoted 

a s ALPHA, u ses both the Breit-Rabi equat ion to find the ene r gies cn (m) 

( equation (2-9)) and formulae given by Sa l wen (Sal wen, 1956) to find the 

matrix elements ex. 1 • 
m,m 
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The fi rst four of th e i nput variables, namely 6.1 ( ) • et , , m • m m,m 

and b, are r equired to evaluate th e roots Y
1

. Use was made of a 

library subroutine of the Mcl,laster installation which finds th e eigen-

va lu es of symmetri c matrices. The negatives of th e eigenvalues so ob-

tained were the roots Y£. 

(3-48). 

Next, th e matrices b. q and '>; Yq were calcula ted from equat ion m ,{.. ,e 

Having stored in t wo t wo- dimens io nal arrays the matrices ~ q 
m 

and f Y_i, the co efficients Am,£ are fou nd by solving th e five linear 

equations }"; A 0 Y~ = D. q for th e A 0 • To do this use was ma de of 
..t m,A-- A-- m m,A--

anoth er libra ry subroutine which permits the solution of a l arge number 

of simultaneous linear equa tions . 

Having found the coefficients A 0 , the tra nsition probability 
m,~ 

(equation (3-47) ) P 11 = ~ , - 4 0 'L:; , A 0 A 01 sin
2 Ct (Y -Y .

11
, )'"b) 

m,m m,m A--~ m,~ m , ~ .R A 

,e > £' 

is found. The indicated summation is performed in the usual manner . It 

is in this l ast step that u se is ma de of the final input datwn~ . 

The five MQT probabilities P 
2 

(m = -2. -1 •.. 2 ) are th en 
m,-

printed. Then the calculation is repeated for the incremented value of 

b • This process of incrementing b cont inues for a predetermined number 

o f times . Then a new value of lJ1 is read in and the b- looping resumes at 

the n ew valu e of (J). This continues for the desired number of frequencies 

and then the programm e is terminated. 

Criteria exist which enable checking the va lidity of th e calculation . 

In the limit of s mall x, MQT probabilities calculated by this method must 

converge to the transition probabilities given by the Najorana formula. 
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Also, fo r all x, the sum o f all transition probabilities - including 

th e 11 no-transition11 probability /C2), -2 ) H J ( 2), -2)- must be 

unity. Finally, for finite x and small values of r.f. amplitude, the 

calculat ed resonanc e frequency must be very close to nominal n-quantum 

r esonance frequ ency , Ct! 
n = 

IEr - Eil 
n1f 

Thi s is b ecause the pertur-

ba tion theory areuments of Salwen and Ha ck must hold for the case of 

well separated res onances. Thus, u s ing Salwen ' s result, equa tion (3-26) 

<.11* = fd • 
1 

+ <Y (b
2

) -~ cQ • 
1 

for sma ll b. For the cas e of 
nomlna / nomlna 

exa ctly equal spacing of the l evels, the Majorana formula p redicts no 

resona nce shifts no matter how l arge :b. becomes . 

After it had been established that HQT SLV was giving r esults in 

conformity with the criter ia established above, HUNT and SHIFT were 

written. 

The p r ogramme HUNT automatically obtains a rough value of 11opti-

mum b" for a desired HQT and then plots the transition's line shape at 

that value of b. Using the i nfo rmation obtained f rom HUNT so that one 

k nows what sort of values of b are required to give r easonably l arge 

transition probabilities, SHIFT i s next used. 

The programm e SHIFT ca lculates and plots th e resonance line shape 

for any des ired values of b and any range of applied f requencies . Usually 

the computer would take approximately 0.5 s econds to ,find the MQT pro-

babi lity for a given b and r11 . Occasionally. for values o£: x-;::: 0. 02, the 

eigenvalue subroutines b ecame trapped i n a loop. \Then this happened, no 

output was obtained and th en , after 10 minutes, the programme was t ermi-

nat ed. 
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8. Velocit y Avcraeing 

In ABVlR, atoms f ormi ng the beam possess a v elocity distribut ion 

I ( v ) = 
21 3 2; 2 o -v cx 
-- v e dv cx4 (4-2) 

wh ere I ( v) is th e b eam i ntensity fo r atoms in the velocity range 

v to v + dv, I is the full b eam intensity, and a is d efi ned by 

. f2kT. o 
ex = v-- ' wh ere k is Boltzmann I s constant, T is th e t emp er ature of 

m 

t he source in °K, and m i s the mass of atoms fo rming th e b eam . Equa-

t ion ( 4- 2) means that atoms in the beam are subjected to the pertur 

bation V( t ) for various lengths of time, t = g where ,e i s the extent 
v 

o f the o s cillating r.f. f ield, 

Thus, it is common practice in ABI''!R transition p r obability cal-

cu l ations to average the transition probability with respect to time 

over all the velocities o f t he atoms comprising the b eam . This is 

i ndicated by 

If) 

P = r r' Ct ) P cq dt 
m, m' I m,m 

( 4-3) 

where I 1 ( t ) is t he vel ocity distribution I( v ) writ ten in t erms o f the 

time t and P ( q is t h e transition probabi lit y appropriate t o the tran
m, m 

s ition invol ved . Tabul ated expressions exist fo r P 1 u sing, as m, m 

pm ~ ~ ~, t he Rabi t ransi t i on probability . 

p = 
·h -i 

(2b ) 2 

( (I) - w) 2 + ( 2b ) 2 
0 

(3- 18 ) 

For cases i n which P Ct ; i s no t an anal ytic expression , as i s m, m 

t he case for the expressio ns devel oped in Section ( I I I-5), numerical 
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methods are required to p erform the velocity averaging. 

One way of doing this i s to ca lculate the velocity averaged 

t ransit i on probability P u s ing 
m9m ' 

N 
= 2.- P ,(t.) I(v.) 

j ;-l m.m J J 
(4- 4) 

where N i s th e number of points t aken to obta in th e velocity distri-

b t . t · th t• d . to th e J.th 1 f 1 •t u 1on, . 1s · e 1me correspon 1ng va ue o · ve oc1 y v .• 
J ·J 

a nd P 1 ( t.) is th e HQT probabi lity for the time t .• 
m,m J J 

A part icula r effect velocity averaeing has on r esonance line 

shapes is t o reduce th e intensity of subsidiary maxima o ccurring at 

frequ encies \) I )} . 
0 

Such subsidiary maxima are evid ent in Figure 3. 

For va lues of b not too much larger tha n b t • the velocity averaged 
op 

t ransition p robability possesses only a single maximum. Anoth er ef-

feet of velocity averaging is to reduce the d epth of the dr op in t ran-

sition probability that l1QT eY.hibit for certain va lues of b 

This is evident in Figu r e 4 u s i ng th e Ma j orana expression. 

b t . op 

In the early stages of this work , a programme incorporating a 

5-point velocity o.verage was u sed to calculate HQT p r obabi lities. The 

p r ogramme was denoted as MQT 5. It was found that when the mean time of 

MQT 5 equalled the single value of time used in MQTSLV and for valu es of 

b < b , the transition probabilities of the t wo programmes where es-......, opt 

sentially unchanged. 

For this reas on and in order to reduce the length of computer 

runs, velocity averaging was not employed any furth er in this work . All 

computed data present ed are for a single valu e of time , t = 4 microseconds . 



CHAPTER V 

EXPERH1ENTAL AND THEORETICAL RESULTS 

In thi s cha1)ter, t he result s of the power dependence experi

ments on Na 23 are presented. Comparison will be made between the theory 

developed i n Section (III- 5) and th e results of the power dependence 

experiments . Finally, theoretical result s pertinent to th e behaviour 

of MQT for various degr ees of departure of thei r level s from equal 

. spa cing will be given. 

1. Power Dependence E?gleriments and Calcul at ions 

27. 
Typica l HQT resonance l ine shapes for Na :; are present ed in 

Figure 9. The relatively l arge width of th e 3 and 4-quantum t ransition 

resonance l ine shapes is a lmost c ertainly due to i nhomogeneiti es of the 

C fi eld. It is seen that t here are apparent ly no l arge sca le alterations 

of the resonance line shapes for the variou.s values of x shown in Figure 9. 

The power dependence experiments were perfo rmed at frequ enci es 

appropriate to the frequency peaks of th e resonance line shapes. Typica l 

result s of these experiments are shown in Figur es 10. Havi ng mentally 

drawn in lines connecting th e points of Figures 10, one would note th e 

fol lowing effects concerning the (thus fo rmed) experimental power dep en-

dence curves . · For a particular t ransition multiplicit y, there are no 

l a r ge varia tions in the shapes of the experiment al power dependence curves 

for different va l ues of x. Ho wever, as transition multiplicity changes , 

th e shapes of th e experimenta l power dependence curves are quit e different 
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Figure 9 

Resonance Line Shapes 

Th e numbers indicn.t c t ranf.;i'cion multiplicity. The 

dashed horiz,ontal line i ndicates the backgr ound noise. The 

The volues of x are given to t he nearest hundredth. No valu e 

of x is indicated for the 1 and 2~ quantuw r esonances at 32.. 
1\ IYH-/ S'-c , 

and 31.5 b ecause. t o the nearest hundredth , it i s 0.07. Thus. 

t he 4--quantum trans ition of the l ower l eft graph and th ese 1 

and 2--quantum trans itions are at p ractically1 but not exact ly , 

th e same fields . 
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Figures 10-a~ b , c and d 

Experimental Power Dependence Data 
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f rom one another. The shape of th e power dep endenc e curves appears to 

be determi ned solely by transition multiplici ty. 

Wh en plott ed in the manner of Figur es 10, the exper iment a l points 

can be f airly well fitt ed by a st rai ght line for trans ition intensities 

bet ween about 5 and 75 % of the ma ximum t ransition intens ity. The im-

plication of this obs erva tion is tha t for b ( b t , the HQT tran~ op 

sition intensity I is approxi mately given by I C::" b c. For those experi-

ments, c was found to be about 1. 7, 3. 5, Lt. 3 and 5. 5 fo r the 1~ 2, 3 and 

4-quantum transitions respectively. 

Figures 11 show the power dependence results of the MQT theory 

developed i n Section (III- 5). Thes e results are presented as curves which 

are fitted to the e~) erimental points. 

The curves were f itted to the experimental points by eye,using the 

following method. The computed power dependence curve and the experimenta l 

points were plotted on separate sheets of full loga rithmic graph paper 

having the same scale. The graph of experimental points was t aped down on 

a "light-box" and the graph of the calcul ated power dependence was a djusted 

hori zontally and vert ically until the best fit was obtained. An absolute 

requisite of this procedure was to keep the abscissas and ordinates of the 

t wo graphs parallel. 

It was found to b e i mpossible, or at least quit e artificial, to fit, 

for example, a 4-quantum transition with the power dependence calculated 

for a 3- quantum transition. And it was definitely i mpossible, for exMaple, 

to fit the 1 or 3-quan:tum experimental points with the 2 o r 4-quantum cal-

culated power dependence cur ves. 

61 



Figures 11a and llb 

Calculated Power Dependence Curves Fitted to Experimental Points 

The 1 and 4-~quantum experimental da t a are composite. 

The values of x a1•e: 

1-qu.antum X -- 0.18 

2-quantum X = 0.07 

3- quantum X -- Oe07 

4~quantum X ·- 0.10 
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Both the ca lcul at ed and experi menta l power dependenc e curves 

showed no apparent dependenc e upon x. Henc e, the experimenta l point s 

were fitted by curves ca lculated near, but not necessarily at, the va lue 

of x at which the experi ment was perfo rm ed. In f act, for thes e values 

of X 9 the shapes of the Ma jorana curves (Figures 4) were indistinguishable 

f rom the shap es of the power dependence curves comput ed using the results 

of Section (III-5). Thus, an equally good fit would have resulted had 

t he exp erimental points been fitted t o the cur ves obtained from the 

Majorana fo rmula. 

Supplementary calculations , using t he expressions developed in 

Section (III-5 ) , were also perfomed for the three-level problem. F = l. 

Th e spacing of the l evel s was ma de appropriate to atomic hydr ogen at a 

field corresponding to x = 0.05 . Th e shape of the power dep endence 

curves for the 1 and 2-quantum transitions in t he F = 1 system Ci. e. in 

atomi c hydrogen). were, practically speaking, identical to th e shapes of 

the 1 and 2- quantum power dependence curves fo r the M Q T of Na23 • 

2. Addit ional Calculated Results 

Figures 12 show the calculated HQT resonance line shapes at x = 0.15. 

The small subsidiary maxima evident are attributed to the transition pro-

bability calculation not b ei ng velocity averaged . Shifts in the r esonance 

frequ ency away from nominal MQT resonance frequency can be clearly seen. 

Figure 13 is a plot of amplitude required to effect optimum HQT 

probability at various values of x. The dramatic dependence of b upon opt 

x is clea rly demonstrated. 
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Calculated Resonance Line Shapes o.t b t op 

The dashed verticle line indicates the nominal 

resonance fr equenci es . The small subsidiary maxima a.re 

attributed to not having velocity averatjed th e calculation. 

Here, x = 0.15. 
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Figure 13 

Plot of b t vs. x op· 

The da shed lines are to gu.icle th e eye. 
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Figures 14 are plots of the calculated shifts in resonance fre-

quency for various values of b • It is seen that th e shifts are approxi-

mately proportional to the square of t he r.f. field amplitude. 

Figure 15 gives the dependence of th e ~NHH upon x fo r optimum b • 

The value of t used is 4 microseconds. Using equation (3-28), 

1 1 6}) ~ t = __;;:"""'7""__ = 250 kc/ sec. It is seen that this is the FWHM 
4 x 106 sec 

for the 1-quantum transition :i.n the equally spaced limit of x = 0. For 

x ') 0, a ll of the FWHH decrease at different rates until, for larger values 

1 
of x, they obey the- law shown in Section ( III-4). 

n 
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Figures ll+a and 14b 

Calculated Frequency Shifts 

Fo r x = 0.025. no shift was observed in the 4-quo.ntum 

transition for the valu es of b used. 
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Figure 15 

Ca l culated FWHiJI 

The l ines dra.wn are t o guide the eye. 
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CHAPTER VI 

CONCLUSIONS 

The results of the experiments and calculations performed in

dicate that the shape of the HQT power dependence curves is determined 

by transition multiplicity. One dividend of this result is the estab

lishment of an ex-perimental technique p ermitting the determination of 

transition multiplicity. The use of this. technique may have broad ap

plication in ABMR. 

The excellent agreement between the calculated and experimental 

power dependence curves establishes an important facet of the theory. 

For the well seprn ·at cd frequency case, agreement was obtained with 

aspects of the perturbation theory results of Salwen and Hack. These 

aspects were the 1/n behaviour of the FWHH of an n-quantum resonance 

line shape and the shift in resonance frequency which was shown to be 

quadratic in r.f. amplitude. In the zero field limit of exact equal 

Epacing of the levels, the results of the theory developed in this v:ork 

were identical to the results of the Najorana expression. Thus, there 

has been presented both experimental and theoretical verification of 

the theory. These results are felt to establish the validity of the 

calculations. 

Ideally, the experiments reported here would have included 

measurements of the frequency shifts and the F.'nll·1. Unfortunately, such 

measurements, using the Hd!aster apparatus, were practically impossible 
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due to inhomogeneities of the C fi eld. There are, however, t wo addi-

tiona l experiments which should be f easible using the present apparatus . 

The first of these would be to ascertain the relative r.f. amplitudes 

required to optimize the t ransition i ntensity. This would form a test 

of the results presented in Figure 13. Naturally, the result s of this 

exp eriment would hav e to be i nter preted in the light of the assumption 

that the r.f. field is of uniform amplitude over its ext ent . Kus ch at

tribut es the unpredicted behaviour of HQT that h e observed in K39 at 

large va lues of r.f. amplitude to this assumption. The second experi ment 

would involYe studying the MQT power dependence cur ves fo r hyper fi ne 

structures which have several hyperfine multiplets. Thi s experiment 

would test the severity of neglecting hyperfine multiplet s other than 

those in which the HQT were effected. An example of such MQT is the 

2-quantum transition in Sm
153 J = 2, I ~, -if ~-? j ~. ~ ) . This 

2-quantum trans ition was observed at this laboratory by Eastwood. 

In summary, a technique which aids the ident ification of tran-

sition multiplicity ha s been developed. Also, th e results of a new theory 

of MQT have been presented. 
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