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SCOPE AND CONTENTS: 

A research programme is presented for assessing the capability of 

Hollow Structural Sections for design in flexure. This investigation is the 

continuation of earlier work on the topic which provided guidelines primarily 

for rectangular sections with relatively low flange slenderness. The present 

work attempts to relate the tube slenderness and yield strength to the rotation 

capacity and moment resistance of round sections subjected to bending moment . 

Also an attempt is made to establish similar guidelines for rectangular sections 

with relatively high flange slenderness. 

An experimental programme on 16 different sections was performed to 

evaluate the moment-curvature relationship which is of fundamental importance 

in flexural design. The occurrence of local buckling in compression flange and 

the consequent reduction in moment resistance i s the critical factor which 

separates the sections into the categories governed by al lowable stress or 

plastic method of design. 

An attempt is made to develop an analytica l method to determine the 

critical buckling stress for round sections subjected to pure moment in the 

inelastic range. 

The experimental results are compared with the analytical predictions. 

Finally a design criterion to separate the sections into the design categories 

is established. 
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1.1 Preliminary Remarks 

CHAPTER 1 

INTRODUCTION 

The present day construction in steel mainly consists of the 

use of conventional rolled shapes such as wide flange or !-sections. The 

introduction of hollow structural sections in this segment of the industry 

has some definite advantages over the conventional shapes; a few of the 

pluses relate to fireproofing, corrosion-resistance and aesthetic appear­

ance. In Canada, they are manufactured by the Steel Company of Canada, 

Limited and are available in rectangular, square and round shapes. 

At present the costs 30 of steel office buildings and reinforced 

concrete buildings - both in the 25-storey range - are so close that a 5% 

difference in cost would definitely favour the less expensive type. In 

estimating the cost of steel construction, two general items of cost are of 

major importance: the steel members used including detailing, fabrication, 

erection and painting; and the cost of protecting steel from fire. A con­

siderable advantage of reinforced concrete construction over steel is the 

adequacy of meeting fireproofing requirements. In a number of structures 

such as columns the extra thickness of concrete necessary to protect the 

reinforcing steel contributes to the strength of the structure, whereas in 

the case of steel, the fireproof coating is, in fact, a penalty due to its 

dead weight. Replacing the conventional shapes by hollow structural sections 

will eventually result in a reduced amount of fireproofing due to their 

comparatively small area of exposure. An example illustrating the use of 

1 
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HSS to reduce cost of fireproofing is the U.S. Steel Building in Pittsburg. 

The design makes use of the inside space of the hollow structural sections 

for circulating water. This provision considerably reduces the initial cost 

of the heating system of the building and of course, the very important 

factor of fireproofing. 

As stated above, since the area of exposure of hollow structural 

sections is comparatively less than that of the conventional shapes, the 

provision of corrosion resistance will result in comparatively lower cost. 

The use of this new shape has introduced a new phase of aesthetic 

appearance in steel construction as observed in a number of completed 

structures such as Ontario Place and Sheridan College (which makes use of 

the untampered surface). 

The design of a member in most structures is governed, either by 

direct stresses, bending stresses, or a combination of both which are 

induced by the specified load of occupancy. As a column, the rectangular 

or round hollow structural sections are definitely superior to the con­

ventional shapes due to their substantial torsional rigidities. This 

torsional rigidity also plays its role in the beam behaviour since lateral 

buckling is rarely significant. For the design of compression or tension 

members the present day methods are considered to be adequate. The beam 

behaviour of hollow structural sections definitely needs to be investigated 

and the current work is confined to this area. 

1.2 Design Methods and Limitations 

The elastic method of design is based on the concept of a specified 

safety factor against nominal yielding of the most highly stressed fibres. 

For the detailed design employing HSS this method is adequate if the yield 

stress is reached without premature local buckling. Allowable stress design 



which is based solely on a yield point criterion does not give a consistent 

margin of safety against failure, however. Present day codes1 ' 2 attempt 

in part to take into account properties of the cross-section and continuity 

of the structure but still fall short of complete consistency. 

Plastic design proposes to base the design on the actual load 

carrying capacity of the structure which usually renders the elastic method 

to be conservative. In building design working load is specified according 

to occupancy criteria. In general, it is a consistent percentage of the 
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ultimate load. The ultimate load is realised only if the members undergo 

plastic deformation at a number of sections without significant local 

buckling. Such a condition could produce a significant reduction in bending 

moment resistance. This process is generally referred to as the redistribu­

tion of moments and formation of "plastic hinges". 

Thus two necessary conditions must be satisified in plastic design: 

(a) Redistribution of moments in an indeterminate structure when the 

plastic moment Mp is reached at the section of the first and 

subsequent hinges before collapse. 

(b) Maintenance of the resisting moment MP at a critical section until 

sufficient additional sections have yielded to form a mechanism. 

When the plastic moment Mp is reached at the first hinge of an 

indeterminate structure, it is assumed that the relative rotations of the 

segments meeting the hinge can occur until sufficient additional sections 

have yielded to form a mechanism. This rotation for which the plastic moment 

needs to be maintained is called the "rotation capacity". 

On the basis of the requirement of rotation capacity and yielding 

the cross-sections can be classified as follows: 

(a) Plastic Design Sections - Sections which are capable of satisfying 

the minimum rotation requirement and the development and maintenance 



of the fully pastic moment. 

(b) Allowable Stress Design Sections 

(i) Compact Sections -Sections which are capable of attaining 

the computed plastic moment without necessarily satisfying 

the minimum rotation requirement. 

4 

(ii) Non-compact Sections- Sections wh i ch are capable of attaining 

the computed yield moment M
0 

defined as that moment in which 

yielding of the outermost fibre is initiated. 

(c) Reduced Stress Sections - Sections which buckle locally before 

they reach the computed yield moment. 

The actual stress-strain curve* for cold-formed steel is shown 

in Figure 1.1. This curve may be idealised in two ways: 

(a) Using bilinear segments with elastic modulus E and strain-hardening 

modulus E t s . 

(b) Fitting a modified** Ramberg-Osgood26 type of stress-strain relationship tc 

the experimental curve. 

For practical purposes the bilinear segment idealisation is often 

convenient whereas for theoretical determination of local buckling either 

idealisation may be used depending upon convenience of a mathematical 

formulation. 

The simple plastic theory assumes the bilinear segments of the 

stress-strain curve with strain-hardening modulus Est = 0, and the moment 

at the section remains constant after attaining a stress of ! cr
0 

in all 

elements of the section for all further increases in curvature. This assumed 

behaviour neglects the additional moment capacity due to the effect of 

strain-hardening but it is normally on the safe side and is often quite 

convenient for design purposes. 

*In this investigation stress at yielding is generally based on a 0.5%total 
strain value. 

**Even digit exponents will be permitted within the limitations necessary for 
·the correctness of detailed computations. · 
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Figure 1.2 shows a nondimensional plot of moment M/MP vs curvature 

K/KP. Curves (1), (2), (3) and (4) are based upon the simple plastic theory, 

the bilinear idealisation of the stress-strain curve, the Ramberg-Osgood 

stress-strain relationship and the experimentally observed moment-curvature 

relationship respectively for a compact section. 

1.3 Literature Review 

The ASCE "Conmentary of Plastic Design in Steel"2 assumes, for 

A36 steel beams designed by the plastic design method, that unloading does 

not occur until the plastic rotation (the total rotation minus the rotation 

at MP) is at least three times the hypothetical rotation ~H calculated by 

an elastic analysis with M = Mp. This is equivalent to the requirement 

that the minimum plastic rotation has to be at least three times the hypo­

thetical rotation ~H. The work done by Hudoba3 on HSS recommends the minimum 

plastic rotation to be at least four times the hypothetical rotation ~H and 

it is concluded that this value of minimum rotation requirement is satis­

factory in plastic design of HSS beams. 

A rational attempt has been made by Hudoba3 for the determination 

of flange slenderness ratio b/t of rectangular HSS for the requirements of 

plastic design. 

No successful attempts appear to have been made in the past to 

relate theoretically the local buckling of round tubular beams in the in­

elastic range, in pure bending. 

In the elastic range the bending of circular tubes was first 

attempted by Brazier4. According to his theory the elastic curvature pro-

duced in the initially straight cylinder produces the well known phenomenon 

of the flattening of cross-sections of curved tubes under bending. The 

cross-section becomes more and more oval in shape until a point is reached 

at which the resistance to bending starts to decrease. Subsequently collapse 



takes place. The critical buckling stress computed by Brazier is given by: 

2 1 l/2 
cr = - ( 2) E cb 9 1 _ l.1 

where 11 is Poisson's ratio and E is the modulus of elasticity. 

Donne11 5 in his investigation of compression and bending of 

cylindrical shells realised that, in the small deflection theory adopted 

by Brazier, the second order terms neglected,increase considerably with 
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large deflections. The type of failure assumed by Brazier does take place 

in comparatively thick tubes especially those stressed beyond the yield 

point. It was concluded by Donnell that either the oval type (Brazier) or 

the small wave type (Donnell) is more or less an independent type of failure. 

In actual tubes failure is produced by whichever shape requires the least 

load. For design purposes Donnell recommends an empirical value of critical 

buck 1 i ng stress in compression g.i ven by: · 

cr = c 

and the buckling stress in bending may rise to 1.4 times the value given 

above. 

Donnell's classical work on the topic evolves two d·istinguished 

theories: 

(a) Theory on assumption of perfect initial shape and infinitesimal 

displacements known as Small Deflection Theory. 

(b) Theory considering initial displacement and finite deflections 

known as large Deflection Theory. 

These theories were quite difficult to work out and further simpli­

fications and modifications were taken by Batdorf8' 9. 



F1Ugge6 investigated the problem under combined bending and com­

pression in the elastic range and calculated an i nteraction curve for a 

particular radius thickness ratio given by: 

7 

for a particular longitudinal buckle half wave-length parameter (m~R = 1) . 

For this case the ratio between the maximum critical stress for bending alone 

was 1.3 times the critical stress for pure compression. The ratio of 1.3 

was cited by Timoshenko7 without a qualifying statement as to the assumed 

buckle half wave-length and has been a general rule ever since. 

The paper of Suer ,Harris, Skene and Benjamin10 deals with 

pressurized and unpressurized cylinders subjected to bending. A statistical 

analysis was made to fit the experimental results of Donne11 5, Imperial 11 , 

Lundquist12 , Mossman and Robinson13 , and Peterson14 and it was concluded 

that there is not a uniform ratio between the buckling coefficients over the 

complete range of D/t ratio. For low values of D/t the critical buckling 

stress in bending was about 60% greater than that for pure compression and 

this difference decreased with · increasing D/t ratio to a value of about 25% 

for large D/t. 

Seide and Weingarten15 used the small deflection theory of 

Donnell modified by Batdorf. In their investigation it was clear that the 

critical buckling stress varied with longitudinal buckle half wave-length 

parameter ~R for elastic buckling of a thin cylinder under bending. Also, 

it had a unique minima at a certain value of m~R . It was also pointed out 

that for thinner cylinders (D/t > 200) there was no significant difference 

between critical buckling stress either in bending or in compression (the 

critical buckling stress value in compression is for a moderately long cylinder). 
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~R For --L-- = 1 the computations of Siede and Weingarten were fairly close to 

that of FlUgge. 

Yao16 investigated the problem on the basis of oval type failure 

using Donnell's large deflection theory modified by Batdorf. He deri ved t he 

(elastic) stability criterion on the principle of minimum potential energy. 

An elaborate comparison of existing theories (Brazier, Seide and Weingarten, 

and Yao) was made in this paper and for 0/t ratio < 80, the large deflection 

theory gave slightly smaller values of critical buckling stress as compared 

to the small deflection theory. 

Gerard17 • 18 formulated the stability theory for thin shells in 

the inelastic range, using the fundamental hypothesis of mechanics of 

plasticity. Employing small deflection theory with the modification of 

Batdorf he adopted the deformation theory of plasticity which utilized total 

stress-strain relations. Critical buckling stress coefficients for compression, 

radial pressure and torsion were derived. The theory took into account the 

total stress-strain history at the point considered which is basically a 

function of tangent modulus ET and secant modulus Es. 

The bending experiments performed by Khaliq and Schilling19 involved 

behaviour in the inelastic range and a limiting value of 0/t ratio was 

recommended to attain the fully plastic moment. Premature local buckling 

as related to geometrical parameters was also described by Schilling20 . 

1.4 Current Work 

The present investigation is a study of the behaviour of HSS sub­

jected to moment gradients and constant moment regimes. As mentioned earl i er, 

the work done by Hudoba3 provides a reasonable guideline for the design of 

rectangular HSS in the range of compact sections in allowable stress and 

plastic design. However, needs for further investigations were noted to 
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correlate the behaviour of rectangular HSS with flats of higher slenderness 

ratio than the compact section range. A number of such rectangular HSS 

were, therefore, included in the study. The present guidelines for design 

in the plastic range employing round sections still fall short of complete 

consistency and, therefore, a rational attempt is made to relate the tube 

slenderness ratio D/t to the rotation capacity of round HSS beams. Finally 

the analytical predictions are compared with the results of a series of 

experiments. 
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CHAPTER 2 

ANALYTICAL FORMULATION OF TUBE-TYPE BEAMS 

2.1 Introduction 

The theoretical work associated with HSS specially applied to 

tubes is divided in the following sections: 

(a) prediction of moment curvature relations and associated load­

deflection relationships, 

(b) determination of tube slenderness ratios D/t to separate round 

11 

sections according to the design categories stated earlier which 

control yielding and rotational requirements. 

The reader is referred to Hudoba3 for the theoretical treatment 

of rectangular and square HSS. 

2.2 Prediction of the Moment-curvature and Load-deflection Relationships 

In the experimental program two types of beams were investigated: 

(a) a simply supported beam with simulated two point loading so that 

the central portion of the beam is subjected to constant moment. 

(b) a two span beam symmetrical about the central support in whi ch 

each span is loaded at two points and such that the first plastic 

hinge forms at the middle support. The stresses at the load 

points were computed to be in the elastic range during the forma­

tion of this hinge . The exterior support conditions were simple. 

An attempt will be made to analyse these two cases. 

2.2.1 Elastic Analysis 

The elastic moments were calculated for a designed loading condition 

for a simply supported beam shown in Figure 2.1 and two span beam shown in 
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Figure 2.2. The total load on the beam was P(KlPS) to simulate two point 

loading. For the two span beam the loading conditions were designed such 

that the negative moment at the middle support was approximately 2.43 times 

the maximum positive moment in the span. The maximum positive moment was 

developed at one of the loading points in each span which is hereafter 

called the Major Load Point. 

2.2.2 Plastic Analysis 

' 

(a) Moment Curvature Relationship 

The moment curvature relationship was calculated using bilinear 

segments of the str~-strain curve and for this purpose the 

computer program compiled by Hudoba3 was used. A comparison is 

made between the values obtained by the two idealisations of 

stress-strain curve (the bilinear one and the Ramberg-Osgood type) 

in Figure 1.2. It is obvious that there is no significant differ­

ence and either idealisation may be used for this purpose. 

(b) Load Deflection Relationship 

Simple Span Beam 

The deflection o of a simply supported beam (at centre) with 

simulated two point loading can be related to the corresponding 

curvature K as follows: 

This expression is based on the assumption that the plastic hinge 

occurs at midspan and the conventional slope deflection equations 

are used28 . 
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Two Span Beam 

The same method can be applied to the two-span beam to find the 

deflection at collapse. Since the spans and loading conditions are symme­

trical about the middle support as shown in Figure 2.2{a), the process 

can be simplified to that of evaluating deflection of a propped cantilever 

as given in Figure 2.3(a). The point loads P1 and P2 can be related to 

the total load Pas follows: 

P1 = P(a + b - d)/(2b) 

P2 = P(d - a)/(2b) 

For simplification simple plastic theory will be used. Figure 

2.3(b) shows the mechanism to be formed at collapse under the total collapse 

load Pu which is evaluated by statics as: 

p = 2(2L - ~~ u a(L Mp 

To make use of the slope deflection equations, the following 

convention is adopted. 

(a) Actual moments are to be considered and clockwise end moments are 

positive. 

(b) Deflection is positive downwards. 

(c) Clockwise rotations at the ends are positive. 

(d) Hinge rotations at the ends are positive. 

The slope deflection equations using these conventions can be 

written for a member AB as follows: 
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where o is the deflection of B relative to A, ~AB and ~BA are the rotations 

at the ends A and B of the member AB respectively, and M~B and M~A are the 

fixed-end bending moments which would be produced at the ends of the member 

if it were subjected to the same loading but both ends were held clamped 

in position and direction. 

Figure 2.3(c) shows the freebody diagram of the mechanism and it 

can be observed that: 

F b2c +Pu {d- a)bc 
M32 = +P2 (b + c)2 - 2 (L - a)2 

Figure 2.3(d) shows the deformation pattern. 

Let o2e = the elastic deflection of point 2, 

and o2u = deflection of point 2 at collapse. Then, 
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The hinge rotations can be related to the end rotations as 

follows: 

On the assumption that hinge 2 is formed later than hinge 1, 

that is, 1/12 = 0 

M 
~ __E_ [(2L 3a)(L _ a) + c(d - a)f2c + b)(2L - a)] 
u2u = 6EIL - a L - d) 

It can be shown that 

p = 170 (M /L) 
u 9 p 

for a = 0.3L, b = O.SL, c = 0.2L and d = 0.4L 

To find the load-deflection curve, it can be assumed that the 

deflection is purely governed by elastic theory initially and is given by: 

where Pe is the elastic limit load in the sense of a unit shape factor for 

the section. 



It can also be assumed that in the plastic range the slope of 

the load deflection curve is the same as that of a similar simple 

span beam. The plastic deflection for point 2 in the interval of 

P e < P < P u is given by: 

where 

Thus 

0.00675(P-Pe)L3 

EI 

The limiting plastic deflection o2P is therefore given by : 

o = [0.00675PPL3/(EI)] 2p 

p + p = p 
e p u 

After simplification, 
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The yield load obtained by elastic analysis, P
0

, on the basis of 

{MP/M0 ) = 1.30, can be related to the ultimate load Pu as: 
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The considerable difference between Pe and P
0 

makes it obvious 

that this load deflection relationship gives a rough picture of the actual 

deflection. The fonm of the exact relationship reflects a gradual transi­

tion from P
0 

to Pu as shown in Figure 2.4. An idealised elastic-plastic 

material response is implied by this curve. 

It is of interest to see whether the method given here will 

predict the actual 1oad deflection relationship with a sufficient degree of 

accuracy. Although the agreement between the thenry based on the idealised 

behaviour and the experimental results is considered adequate, the effect 

of residual stresses, stress concentrations and the gradual plastification 

of the cross-section have been neglected in the theory. 

2.3 Inelastic Instability of Tubular Beams in Pur.e Bending 

For theoretical purposes the round HSS can be approximated by 

thin-walled cylindrical shells. In addition the stability criterion can be 

determined by one of the two basic approaches. These involve: 

(a) a small deflection theory with a wave type of deformation at 

failure (Donnell •s theory modified by Batdorf8), or 

(b) a large deflection theory incorporating an oval type of failure 

(Donnell •s revised theory modified by Batdorf9 and Yao16 ). 

A further modification can be included to account for the inelastic 

range. 

Seide and Weingarten15 made use of small deflection theory in the 

elastic range in which the stability criterion ultimately resulted in the 

solution of an eighth-order differential equation. A typical small wave 

type of deflection function was assumed and solved by the approximate method 



of Galerkin satisfying the stability criterion. 

It is decided, therefore, to adopt a method similar to that of 

Seide and Weingarten taking into account the inelastic behaviour of the 
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material for a thin circular cylinder with simply supported ends and sub­

jected to constant bending moments at the ends. Stress concentrations and 

residual stresses inherent to HSS are to be neglected. 

2.3.1 The Co-ordinate System and Basic Assumptions 

Figure 2.5(a) and (b) show the co-ordinate system adopted for a 

point on the cylindrical shell where x, y, and z are the distanced measured 

along longitudinal, circumferential and radial directions respectively. The 

origin of x-axis is taken to be one of the ends of the cylindrical segment 

under consideration. The y-eo-ordinate is measured clockwise along the 

centroidal circumference beginning at the intersection of the vertical with 

the centroidal circumference. The centroidal radius of the cylinder, R, 

and the inclination e of the point with respect to the vertical .can be 

related to the co-ordinate y as y = Re. The y co-ordinate is the distance 

measured from the median surface to the point considered in the radial 

direction, positive outwards. 

Figure 2.5(c) shows the freebody diagram of an element of the shell 

* * under a state of plane stress. Nx and NY are the forces acting per unit 

length along the x andy directions respectively; Nxy' Nyx are shear forces 

per unit length. Mx and My are corresponding bending moments. Before 

proceeding further, the following assumptions are made to simplify the 

problem: 

(a) all points lying on a normal to the middle surface before loading 

do so after loading. 

(b) the distance z of a point from the middle surface may be considered 

as unaffected by the deformation of the shell and the stresses. 

* Nx and Nv are positive in compression. 



(c) The plane cross-sections of the cylinder remain plane after 

bending. 

Consequently, 
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(1) 

where £c is the maximum compressive strain in the x-direction at a section 

and Ex is the strain at that section and angle e from the vertical. Figures 

2.5(b) and 2.5(d) reflect this assumption geometically. 

Furthermore, the condition of plane stress provides 

Nxz = Nzx = N - N - 0 yz - zy -

M - M - M = Mzy = 0 xz - zx - yz 

This assumption evidently simplifies the problem to that of plane 

stress and plane strain. 

The displacement of the midsurface of a shell element is defined 

by u, v and w which are related to x, y and z directions respectively. These 

quantities are shown in Figure 2.6. 

2.3.2 Plasticity Considerations 

When a body is stressed beyond its elastic limit the strain at a 

point of the body may be considered to consist of two parts viz. elastic 
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and plastic strains. This may be expressed in tensor notation as: 

e: .. 
1J 

= e P e: .. + e: .. 
1J 1J 

The elastic strain tensor e:~j and stress tensor o~j have a unique 

relationship prescribed by the generalised Hooke•s Law. There are mainly 

two theories which provide a relationship between the plastic strain tensor 

e:~j and the stress tensor oij' 

(a) Incremental Theory21 ' 22 

The derivation of the stress-strain relationship by this theory 

is based on the following assumptions: 

(i) the total work done on the plastic strains must be positive, 

(ii) the increment of the stress tensor and the increment of strain 

tensor have a linear relationship (such as Prandtl-Reuss equation), 

(iii) the yield surface is convex and changes continuously during the 

plastic deformation process, and 

(iv) the loading surface at the loading point has only one normal . 

The stress-strain relationship may be expressed as: 

de:~.= 0 
1J 

for d<I> > 0 

for d<I> < 0 

where <I> is the loading function and F is a scalar function. 

(b) Deformation Theory23 

(2a) 

(2b) 

The plastic stress-strain relationship based on this theory has 

the general form of: 
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p 1 s .. £,. = (2 Gp) lJ lJ 
for d4> > 0 (3a) 

de:~. 
lJ = 0 for d4> < 0 (3b) 

where G is a scalar function and can be interpreted as the plastic shea r 

modulus. Equation (3a) also applies to the case: 

(L2 
octP) = (1~" ) 

'>' ~P Toct 

where yoctP is the plastic part of the octahedral shearing strain introduced 

by Nadai 23 . 

Lee 24 , in his investigation of cylindrical shells subjected to 

compression, reported that the results which the two types of theories 

yield differ greatly for many of the problems of inelastic buckling of 

plates and shells. The available results agree best with predictions 

obtained by using the deformation theory. 

Therefore, the deformation theory will be used for the problem 

under investigation. To attain the fully plastic moment a major portion of 

the tube section undergoes substantial plastic deformation and hence 

Poisson's ratio~ for the material will be assumed to be 0.5. This value 

is derived from the principle of incompressibility. 

For the octahedral shear law the stress and strain intensities 

can be defined as follows: 

(o2 + a2 
2 l/2 

a . = a a + 3T ) 
1 X y X y (4a) 

2 ( 2 2 + y2/4) 
l/2 

£. = e:x + £ + £ e: 
1 3 y X y 

(4b) 
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where x andy subscripts have been dropped from T and y. 

With the assumption that the principal axes of stress and strain 

coincide, .the sec ant modulus Es can be defined as: 

E =cr./£. s 1 1 
(4c) 

Thus the following simplified two-dimensional stress strain relations 

are obtained 

£ = 
X 

£ = y 

When buckling occurs the displacements vary slightly from their 

values before buckling, the resulting strain variations arise partly from 

variations of the middle surface strains and partly due to bending strains. 

These resulting variations have been considered by Stowe11 25 . Using the 

assumption that no part of the shell is unloaded, Stowell has derived the 

variations of the moments during the buckling process. The variations of 
17 

middle surface forces are derived from this work by Gerard and are as 

follows: 

(Sa) 

(Sb) 
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N' = 
I 1 I 1 I (Sc) (Bp/2)[A2 y - ~31Ex - ~32E ] xy y 

M' I 1 1 I ] (Sd) = -Dp[A2 XX + ~12 Xy - ~13 X X xy 

M' 
I 1 I 1 I 

(Se) = -Dp[A2 ), + ~21 XX - ~23x.J y 

M' = I 1 I 1 I (Sf) -(Dp/2)[A3 Xxy- ~32 XX - ~32 X ] xy y 

where BP and Dp are axial and bending rigidities respectively for a fully . 

plastic plate element. ··Their values are as follows: BP = 4Est/3 and 

DP = Est3/9. Ex', E; are midsurface normal strain variations with respect to 
I 

x andy directions respectively andy· is the midsurface shear strain varia-

tion. x~, x;, are changes in curvature with respect to x andy directions 

while x~y is the change in twist. 

Furthermore, the plasticity coefficients A1 , A2 , etc. are defined 

by Gerard17 as follows: 

2 A2 = 1 - acry /4 

2 A3 = 1 - aT 

(6a) 

(6b) 

(6c) 

(6d) 

(6e) 
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(6f) 

and cri is given by equation (4a). 

In the elastic region a = 0 and, therefore, A1 = A2 = A3 = A12 
= A21 = A21 = 1, and A13 = A23 = A32 = 0. By replacing the axial and bend­

ing rigidities of the fully plastic plate by 

and 

respectively, the equations (Sa) to (Sf) reduce to the familiar relations 

for the elastic plate. 

2.3.3 Equilibrium Considerations 

Donnell's small deflection theory as modified by Batdorf8 consists 

of three equilibrium equations: 

(7a) 

(7b) 

(7c) 
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Gerard introduced a new term (N~/Rx) in equation (7c) which may 

be neglected for cylindrical shells since Rx will tend to infinity. 

For a cylinder in pure; bending cry= 0, T = 0, RY =Randy= Ra. 

Hence from equation (4a) 

cr. = cr 
·1 X 

Now from equations (4c) and (1) 

(8a) 

and Nxy = 0 

Making use of equations {6a) to {6f), 

(8b) 

(Be) 

(8d) 

The middle surface strain variations and changes in curvature that 

occur during buckling of a cylindrical shell are related to the displacements 

as follows: 



y· '=l~-.J!+~] 
2 ay ax 

• a2 
X - w 

xy- a '/i3 y 
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(9a) 

(9b) 

(9c) 

(9d) 

(9e) 

(9f) 

Using equations (Sa) to (Sf) and (9a) to (9f) the equilibrium 

equations (7a) to (7c) can be simplified as follows: 

(1 Oa) 

(1 Ob) 

( 1 Oc) 

where Y = v1 + v2 and 
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Equations (lOa) to (lOc) constitute a basic set of equilibrium 

equations for the inelastic instability of thin cylindrical shells in pure 

bending. Making use of these equations the stability criterion can be 

reduced to a function of the radial displacement w, and after solving for w 

the longitudinal displacements u and v can be computed to trace out the exact 

profile of deformations. 

The detailed steps are traced out in Appendix 1 to arrive at the 

following basic equation for the evaluation of buckling load. 

as a 8w a6 3 7w a7 a 7w + aa a 7w +- -+- +-
R8 a8a R a x6a a R3 ax\ 83 R5 a xZa 85 

~ '2/w a 6w a, a 6w 
+ 7 

ae 7 + alO --6 + -2-
a x4a 82 R ax R 

(11) 

al2 a 6w + al3 a 6w + al4 a 5w 
+:;r-

axza84 R6 a 86 R ~ R 

al5 5 a 4w + al7 a 4w +- a w + 
R3 a xZa 83 al6 ax4 R2 a xZa82 

alB 3 2 
+- aw +a U=o R a xla 8 19 a x2 



where a1, a2, ... , a 18 , a19 are variable coefficients involving the 

geometrical parameters and material properties of the cylinder, and are 

obtained as follows: 

a = 4A2 
2 1 

"' = loA1 - 4 "'3 

a = 1 5 

= l a6 R 
a A1 ae- [4(2A1 - 1) + Al/ (Al 

1 aA1 (2A1 + 1) 
a7 = R ae- (A1 - l/4) 

= 3 a A1 
a a R(A1 - 1 /4) ae-

a9 - - 2 
R(A1 - 1 I 4) 

(12a) 

( 12b) 

( 12c) 

( 12d) 

( 1 2e) 

- l/4)] ( 12f) 

( 12g) 

(12h) 

( 12i) 

( 12j) 



- 4(2A1 - l)sine] 

9e:c . a A 1 
a15 = - - 2 [4slne + 2 ai- (Al _ 114 ) cose] 

Rt 

9 ( 4A1 - 2) e: c l a 
4 
A1 l 

al6 = - 2 2 cos e + 4 -4- + --=---=----
R t R ae R2(A - l/4) 1 
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( 12~) 

(12m) 

( 12n) 

(12o) 

a 2A 2 2 
[ 
__ 1 - 2 a A, 9e: c 1 a A, ( 12p) 

---- (-) ][:-:2 cose -- --] 
a e2 (A

1 
- l/4) ae 2t R3 ae 2 

3 
2 a A1 l [-l a A1 9e: c . 12 ( A1 - 1 I 4) 

- R2 ae (A
1 

- 1/4) R2 -3- + -2 Slne] + 2 2 
a e 2t R t 



54E cose 1 9E 
a17 = - R~t2 + (Al - l/4) R2:2 cose [2 

_ a 
2 

Al l' + 54E c 1 a A1 • 
a a2 R2t2 (A1 - 1 /4) fa sl ne 

9E a2A ,... _ c cos e [ (A 114) + __ 1 
"'19 - N (A1 - 1/4) 1 - a 

8
2 

2 aA 2 
- (A

1 
- l/4) {ae

1
) 

a A1 - 2- tane] ae 
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2 aA1 1 
(ra> (A1 - 1/4) 

(12q} 

(12r) 

(12s) 

For the elastic case, Donnell's stability criterion as modified by 

Batdorf can be written as: 

( 13) 

If Poisson's ratio ~e in equation (13) is replaced by 0.5 and a cb by 

EEc, equation (13) reduces to the form 

4 2 
op v4w + ERt2 v-4 a w4 + tEE cos e U = o 

ax c a x2 ( 14) 

It is verified that equation (11) reduces to equation (14) when 

the coefficients a1, a2, ... · ... , a18 , a19 etc. in equations (12a) to 
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(12s) are modified to apply to the elastic case by substituting 

and 

A suitable solution for the deflection function •w• to satisfy 

the stability criterion which fulfills the conditions appropriate to simple 

support of the cylinder ends by bulkheads rigid in their own plane but free 

to warp out of their plane can be assumed as follows: 

w = sin ITl'ITX E 
L an cosne ( 15) 

n = 0 

To fit this solution to the stability criterion which eventually 

means to find the coefficients a0 ~ a1 ~ a2, . . . . , an . . . etc. , 

Ga l erkin•s approximate method27 can be used. A direct solution does not 

appear to be tractable. 

In practice, the number of terms used in the deflection function 

are limited. Based on five significant figure accuracy of the buckling 

coefficient, Seide and Weingarten15 have established in their solution of 

elastic buckling that the number of terms used varies from 12 to 51 for D/t 

ratios of 200 to 2000. Therefore~ it is assumed that only •p• terms need 

to be considered, that is, 

(t> - 1) 
• ITl'ITX 

w = Sln T l: an cosne ( 16) 

n = 0 



Then the equations for coefficients a0, a1, .... , ap _ 2, 

ap _ 1 , etc. are given by 

( 2

0

rr ( L

0 

) ) Q1
(w)sin ~x cosqe dxde = 0 

q = 0, 1' 2, ' {p - 1) 
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(17) 

where Q1(w) represents the stability criterion, equation (11), after sub­

stituting the assumed deflection function w t.e. expression (15). 

It is interesting to note that the various terms of equation (11) 

involve only even derivatives with respect to x, that is, 

etc., and the integration of equation {17) in x will simply yield a constant 

coefficient 

since 
)

Lo si n2 mrrx dx = 1. · 
L 2 

Therefore, equation (17) reduces to the form: 

~ :n Q 1 1 
( w) cosqe de = 0 ( 18) 

q = 0, 1' 2, ... ' {p- 1) 

where Q''(w) = t (w) = n 
sinmrrx/L) 
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where n is purely a function of e. 

It can be observed that the coefficients a1, a2, ... a18 , a19 , 

etc. in equations (12a) to (12s) are generally functions of e and are 

dependent upon the stress-strain relationship . Since simple plastic theory 

or an idealised bilinear stress-strain cul\'ve does not satisfy stress 

continuity requirements over the full range of strain, a continuous stress­

strain relationship such as that of Ramberg-Osgood26 can be used. 

On further simplification, equation (18), after substituting 

appropriate expressions for Q1 1(w), reduces to the form: 

where the 

19 
a.q. cosqe de= 0 

J J 
E 

j = 1 q = 0, 1, 2' ... , (p - 1) 

coefficients qj in equation (19) are given by 

8 
ql = (~) E an cosne 

6 2 
q2 = (rmr) (i) E an cosne l 

4 4 
q3 = (rmr) (~) E an cosne l 

(m'IT) 
2 6 

q4 = (~) E an cosne l 

n 8 
q5 = (R) r an cosne 

6 
q6 = (~'IT) (~) E an sinne 

( 19) 

(20a) 

(20b) 

(20c) 

(20d) 

(20e) 

(20f) 
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4 3 
q7 = {mTI) (.!!.) r l R an sinne { 20g) 

{m1T)2 {n 5 q8 = l R) r an sinne (20h) 

{20i) 

m 6 
q10 = - {l1T) r an cosne ( 20j) 

r an cosne (20k) 

(20t) 

(20m) 

(20n) 

{20o) 

(20p) 

(20q) 

2 
{mTI) (.!!.) i q18 = l R r an s nne (20r) 

(20s) 

where the summation sign refers to summation for 'p' terms, that is, 



(p - 1) 

I: 

n = 0 
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Equation (19) cannot be directly integrated (using Ramberg-Osgood 

stress-strain relationship) since the derivatives of the plasticity coeffici­

ent, A1, with respect to e, are verycrumbersome to be worked out mathematically. 

The only practical way to integrate equation (24) is by the technique of 

finite elements. 

The system of equations obtained by integration of equation (19) 

is a homogeneous system of 'p' equation in 'p' unknowns, a0, a1, ... , 

ap _ 2, ap _ 1, etc. as follows: 

+ a a - 0 p - 1 1->(p - l)p -

(21) 

Such a system of homogeneous linear equations has a non-trivial 

solution27 in the case when the determinant formed by the coefficients of 



a0, a1, .... , ap _ 2, ap _ 1 vanishes, that is, 

!::. = = 0 

Equation (22) is of pth degree of certain function of stress­

strain relationship and generally speaking, it would give p values of 
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(22) 

the critical buckling strain Ec for a particular cylinder with a particular 

longitudinal buckle wave-length if the cylinder behaved el astically. Si nce the 

Ramberg-Osgood stress-strain relationship is non- l inear the S's incorporate 

Ec in a non-linear way through the parameter A1. Reference is made to the 

a ' s which are incorporated in the all' 612' . . . ' spp· The value of Ec 

associated with the minimum buckling load is to be determined as described 

below. 

If a unique solution of equation (21) does exist, the radial 

deflection function w can be determined and it will be of interest to observe 

the theoretical deformations. These can be obtained in equations (A-6)* and 

(A-10)* and solving for u and v respectively. 

*These equations are worked out in Appendix 1. 
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2.3.4 Computational Procedure and Results 

To obtain the condition of equati on (22) one can solve the problem 

in one of two ways. 

(~) Start with the assumed value of R and t and iterate the va lue of 

£c for a certain longitudinal buckle half wave-l ength . 

(ii} With an assumed value of £c' t and longitudinal hal f buckl e wave­

length iterate for R. 

The latier procedure was adopted in the act ual comput ations s ince 

it was more convenient. 

The strength characteristics of Round HSS , tested, were broadly 

of two types: 

{a) Guaranteed 0.5% Strain Yield Strength = 42 KSI 

{b) Guaranteed 0.5% Strain Yield Strength = 52 KSI 

A short stub column for each of these two types was tested in 

compression in which yielding was followed by an axisymmetric mode of 

buckling. Figures 2.7{a} and 2.7{b) show the defo rma ti ons in these stub 

columns after test . The following Ramberg -Osgood26 type of stress-strain 

relationships were obtained by curves fi t t i ng to the experimental results. 

These are shown in Figures 2.8{a) and 2.8{b} respectively. 

{a} For a Guaranteed Yield Strength of 42 KSI* 

E£ o 3 o 17 
37.75 = 37.75 + 7 (37.75) 

E = 29500 KSI 

o0 = 42.15 KSI 

Est = 250 KSI 

*Specimen taken from HSS 4.5:0.0. X 0.156 

(23) 



(b) For a Guaranteed Yield Strength of 52 KSI** 

E£ cr 3 ( cr )
20 

49.10 = 49.10 + 7 49.10 

E = 29500 KSI 

cr0 = 52.93 KSI 

Est = 260 KSI 
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(24) 

A special computer programme was developed using this type of 

stress-strain relationship which solves for the condition of equation (22) 

at specific rotation or yield requirements and is discussed in Appendix 2. 

The purpose of the programme is to integrate numerically the various elements 

of equation {22) and to compute the resulting determinant. This method is 

applied to various values of buckle half wave-length parameters m~R for 

temporarily fixed value of tube slenderness ratio 0/t. The actual value of 

the D/t ratio for which buckling occurs at the preassigned rotation is then 

determined. 

To illustrate the application of this procedure the evaluation of 

limiting D/t ratio for a plastic design section will be discussed. 

For a given maximum strain £max of a section the curvature K 

associated with that section is given by: 

K = 2 £ /D max 

**Specimen taken from HSS 6.625 0. D. X 0.188 

(25) 
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Hence if the critical strain at buckling is known, then some 

measure of the maximum curvature can be found from equation (25) when Ec 

replaces £max· As will be evident from the test results, some reserve 

ductility is available without a significant reduction in bending moment 

capacity. Therefore, the theoretical 0/t value associated with a given 

critical strain will be a conservative value unless other factors such as 

residual stresses and local bearing stresses are significant. Further dis­

cussion of these points is presented in Chapter 4. 

If the rotation capacity of a section is based on the theoretical 

buckling curvature Kb then 

where KP is the calculated elastic limit curvature based on an idealised 

elastic-plastic material and is given by 

-~ Kp - EI 

(26) 

Figure 1.2 illustrates the quantities defined above relative to 

a typical moment-curvature plot. The actual rotation capacity is e. 

Hence 

where f is the shape factor. 

From earlier work3 a hinge capacity, 0 = 4 was proposed. Con­

sequently, from equations (26) and (27), 

·' 

(27) 



that is, 

For the stress-strain relationship given by equation (23), the 

determinants for various values of D/t ratio along with varying m~R are 

tabulated for the aforesaid value of Ec in Table 2.1, taking the first 8 

terms of equation (19). The values of these determinants indicate two 

possibilities of solution; 
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(28) 

(a) For rrrR: 0.5 to 1.5 a tube even with low D/t ratio of 20 buckles. 

(b) A unique solution located in the range of 40 < D/t <50 and 

6 < m~R < 10, which to the right side of the table (increasing 

D/t ratio) gives an increasing set of negative arrays. 

Because of non-linearity of the problem a unique solution does not 

appear to be possible. The range of solution given by (a) is rejected, 

however, on both physical grounds (half wave-lengths too high) and 

mathematical results. The values of the determinant in the range considered 

are non-regular. On the other hand in the category (b) the set of deter­

minants is well-behaved and in the physically plausible range. 

Therefore solution (b) will be taken as the region to predict the 

extent of buckling. 

The problem then is to select the smallest value of D/t for a given 

buckling strain (or stress). This approach corresponds to finding the lowest 

eigenvalue of the determinant of coefficients for a conventional linear 

problem. 

Table 2.2 shows the set of determinants under a closed array 

(D/t : 40 - 50 and mrR : 6 - 10) and concludes that the solution is located 
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at D/t : 46 - 48 and mrR : 7 - 9.0. A finer grid with 8 terms pin-points 

the values for which the determinant is zero more closely as in Table 2.3. 

As a check a few more terms of equation (19) are taken, which in this case, 

considered totals to 12 and Table 2.4 shows the set of determinants for 

this array . A minimum D/t of 47 with mrR : 8 is evident. Consequently, 

for a plastic design section having stress characteristics given by equa­

tion (23) the limiting D/t ratio is 47. It is possible to locate even more 

accurate value of D/t ratio but for practical purposes the accuracy obtained 
I 

is sufficient. 

This procedure was repeated to classify the sections for various 

yielding and rotational requirements having stress-characteristics given by 

equations (23) and (24). The conclusion of these computations using 12 

terms of equation (19) is presented in Table 2.5. 

These results show that there is considerable difference for plastic 

design sections having different stress characteristics due to the consider­

able difference in the values of strain to be attained before buckling. For 

compact and non-compact sections in allowable stress design the difference 

is small since the strains to be attained before buckling are very near. In 

fact the limiting D/t ratio for a non-compact section is a lower bound since 

the computed yield moment M0 is normally attained before the strain of 5000 

~n/in occurs. For the stress characteristics given by equation {23) M0 is 

attained at a strain of 2000 lin/in and this gives a predicted D/t ratio 

of 280. This value does not warrant much significance in the design of HSS, 

since the method does not take into account the stress concentrations on 

the loaded surface nor the geometrical imperfection which would be of impor-

tance. 

Figure 2.9 is a plot of 9b vs D/t for the strength characteristics 

given by equations (23) and (24). As evident from the plot, the variation 



42 

in yield strength generates a set of contours. Such contours can be used 

in design with modifications taking into account the experimental behaviour. 

A comparison of these results with test data and the limitations 

implicit in the theory will be discussed in Chapter 4. 
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TABLE 2.1 Stability Criterion- Coarse Gri d (8 terms) 

50 60 

2.0 X 1023 8.3 X 1016 

2.8 X 109 1.4 X 103 

3.4 X 10-3 2.0 X 10-9 

7.0 X 10-6 8.7 x .o-11 

1.4 X 10-2 2.3 X 10-7 

7.3 X 10° 1.5Xl0-4 

1 . 2 X 105 1 . 1 X 10° 

rt. 7 X 109 -1.2 X 105 

1.7 X 1012 1 . 7 X 109 

9.0 X 1017 r-6.1 X 1012 

3.0 X 1023 1.1 Xl018 

~. 5 X 1030 5.3 X 1025 

70 

4.6 X 1011 

9.1 X 10-3 

2.2 X 10-14 

7.4 X l0-15 

2. 2 x 1 o- 11 

1. 7 X 10-8 

2.5 X 10-6 

1.9 X 101 

1. 8 X 105 

8.3 X 108 
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1. 4 X 1021 

80 
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-4.6 X 10-8 
! 

-8 .8 X 10-3 

-2.4 X 101 

-1.2 X 104 

-1 .3 X 1010 

5.7 X 1016 
~ 
1.0 



0/t 
40 42 44 mrrR 

-l-

6 1.s x 1o11 
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4.7 X 109 
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4.1 Xl09 

·7.0 2.4 X 1013 
9.2 X 1011 

3.9 X 1010 

7.5 3.2 X 1014 
1.1 X 1013 

4.3 X 1011 

8.0 4.5 X 1015 
1. 6 X 1014 

5.7 X 1012 

8.5 7.3 X 1016 
2.5 X 1015 

8.8 X 1013 

9.0 1.1 X 1018 
3.9 X 1016 

1.4Xl015 

10.0 2.1 X 1020 
8.0 X 1018 

3.2 X 1017 

TABLE 2.2 Stability Criterion -Medium Grid (8 terms) 

46 48 

2. 5 X 108 
1.5 X 107 

2.2 X 108 
1.3 X 107 

1.6 X 109 
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1.2 X 1010 
-1.5 X 108 

1.4Xl011 
-6.4 X 109 

2.3 X 1012 
6.5 X 1010 · 

4.5 X 1013 
1.1 Xl011 • 

1.3 X 1016 
4.6 X 1014 

50 

1. 2 X 105 
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1. 3 X 106 
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~1. 7 X 109 
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TABLE 2.3 Stability Criterion - Fine Grid (8 terms) 

D/t 
46.0 46.5 47.0 47.5 48.0 

nmR 
-L-

7.5 1.2 X 1010 6.8 X 109 . 2.1 X 10 9 3.9 X 108 -1.5 X 108 

8.0 1.4X1011 4.2 X 1010 6.8 X 109 -4.4 X 109 -6.4 X 109 

8.5 2.3 X 1012 7.7 X 1011 1.8 X 1011 -1.5 X 1010 -6.5 X 1010 

9.0 4.5 X 1013 1.7 X 1013 6.1X1012 1.7Xlo12 1.1Xl011 

TABLE 2.4 Stability Criterion - Fine Grid (12 terms) 

D/t 
46.0 46.5 47.0 47.5 48.0 

mTIR 
-L-

7.5 1 . 1 X 1 o20 1.9 X 1019 6.2 X 1018 6.6 X 1017 -2.5 X 1017 

8.0 1. 3 X 1021 2. 7 X 1020 3.0 X 1019 -1.5 X 1019 -1.5 X 1019 

8.5 2.9 X 1022 6.9 X 1021 1 . 1 X 1 o21 -7.7 X 1019 -2.1 X 1020 

9.0 6.9 X 1023 2.4 X 1023 5.9 X 1022 1. 2 X 1 o22 4. 4 X 1 o22 
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(a) Stress-characteristics given by equation (23) 

Category Allowable Stress DesiJLn 
Plastic 

Buckling 
Parameters Design Compact Non-Compact 

£c 0.009310 0.007300 0.005000 

ocb(ksi} 44.14 43.38 42.15 

\ 4.0 2.93 1. 71 

Limiting D/t Ratio 47 60 88 

(b) Stress-characteristics given by equation (24} 

Category Allowable Stress Design 
Plastic 

Buckling 
Parameters Design Compact Non-Compact 

£c 0.011707 0.007500 0.005000 

0 cb 55.98 54.46 52.93 

<1, 4.0 2.23 1.16 

Limiting D/t Ratio 36 56 85 
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HSS are manufactured by the Steel Co. of Canada Ltd., suppliers 

of the test sections in two ways: 

(a) Hot-forming if the periphery of the section does not exceed 16 

inches, and 

(b) Cold-forming if the periphery of the section exceeds 16 inches . 

Most of the sections investigated were cold-formed. The round 

HSS for the test series were selected to provide a range of tube slenderness 

ratios, 0/t, for plastic design, compact and non-compact categories. The 

rectangular sections selected were in the intermediate flanoe slenderness ratio . ' 

b/t, range. 

The test sections are listed in Table 3.1 designated as HSS DXBXt 

if rectangular or HSS DXt if round as shown in Figure 3.1. 

3.2 Material Properties 

A typical stress-strain curve obtained from a tension test is 

shown in Figure 3.2. The yield stress cr0 is the stress corresponding to a 

total strain of 0.5% which is easily obtained in routine spot checks in 

the steel industry. This stress usually corresponds closely to the constant 

stress at yielding and is close to the stress obtained by the conventional 

0.2% offset strain method. The idealised bilinear stress-strain curve is 

given by the yield strength cr0, the modulus of elasticity E and the strain­

hardening modulus Est obtained from the tension test. This data is used 

to predict the moment curvature and load-deflection relationships. 
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HSS material properties as concluded by Hudoba3 do not vary 

significantly along the periphery of the cross-section and the material 

taken at right angles to the seam of the section represents a reasonable 

sample to assess the material properties. Therefore, the tensile coupons 

were cut accordingly (Figure 3. 1) confirming to ASTM specification29 A 370-

65 (14). Strain gauges were mounted on both sides of the coupons to 

separate the bending effect. 

Table 3.1 sumarizes the material ~roperties of the coupons cut from 

each of the sections. Figure 3.3 shows the stress-strain curves for the 

material of each section. 

The stub columns ( 2.3.4) tested to determine the material prop-

erties in compression were carefully machined with their lengths being about 

twice their corresponding outside diameters. Each cross-section was machined 

to an accuracy of : 0.001 inch. Three strain gauges were mounted on each 

specimen 120° apart to check the uniformity of loading during the test. 

These tests were performed on the hydraulic testing machine "Tinius 

Olsen" at a common constant slow strain rate of 100 micro-in/in/sec. 

3.3 Preparation for Testing of Beam 

(a) Mounting Strain-gauges 

During the test series two types of electric strain gauges were 

used: 

(i) EP-08-500BH-120 made by Micro-Measurment Co., Romulus, Michigan 

in which the specifications for the gauges were as follows: 

Resistance in ohms 120 + 0.15% 

Gage factor at 75°F - 2.055 + 0.5% 

Strain Limits - approximately 15% 
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(ii) HE-181B Budd Fineline TM Strain-gauges made by The Budd Co. 

Instruments Div., Phonexville, Pa., where the specifications for 

gauges were as follows: 

Resistance in ohms - 120 + 0.15% 

Gage factor at 75°F - 2.04 + 0.5% 

Strain Limits - approximately 15% 

For the gauge installation M-Bond AE- 10 adhesive was used. The 

surface preparation, the gauge preparation and installation were made as 

recommended in the Instruction Bulletin B-137 provided by Micro-Measurements 

Co., Michigan. 

(b) Preparation of Test-apparatus 

The load cells were calibrated in the 120 KIPS Tinius Olsen testing 

machine before each test. The calibration curves were linear and the drift 

was negligible. The load cells together with the electric strain gauges were 

connected to a switch and balance box unit which was connected to a strain 

indicator. 

(c) Consideration of Bearing Surface of HSS on Load Points 

For the rectangular HSS load was distributed on the surface 

through a 3" wide bearing plate with a roller as shown in Figure 3.4(a). 

This was considered satisfactory since the resulting stress concentration 

would not be too high. It was observed that application of load on the 

surface of the round HSS through the V-shaped blocks as shown in Figure 3.4(b) 

results in a considerable stress concentration. The effect is noticeable 

particularly with high 0/t ratio and the subsequent punching of the surface 

produces a significant drop in the moment carrying capacity. The first four 

tests on round sections (as described in Chapter 4) were done using only 
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V-shaped block at each loading point. In the following six tests 311 to 

611 wide circular plates taken from the test section itself were used to 

distribute the load onto the surface as shown in Figure 3.4(c). This 

device was considered satisfactory to provide a clearer representation of 

the actual moment carrying capacity of the round HSS. 

3.4 Testing Arrangement 

(a) Simple Span Beam 

The test set up was designed to confirm computed shape factors 

of HSS as well as to assess the potential problem of local buckling in a 

pure moment domain. Figure 3.5 shows the overall experimental set up. This 

experiment was designed to simulate two-point loading on a simple span 

beam. Two equal vertical loads were applied with a hydraulic jack midway 

between load points onto the test section through a spreader beam. The 

load at midspan was measured by a load cell which was located between the 

jack and a ball and socket support seated on the spreader beam. The central 

part of the beam between the two load points was therefore subject to 
I 

uniform moment. Electric resiste.nce strain gauges were placed at midspan, 

having been mounted on the top and bottom flanges of the test HSS. At the 

load points the strain gauges were located only on the bottom. One of the 

strain gauges at midspan was placed at right angles to the direction of 

bending. 

The moment curvature relationship was determined by monitoring 

the loads with the load cell and the strains by strain gauges. 

The vertical deflection at midspan was measured by means of a dial 

gauge with an accuracy of+ 0.001 inches. Because the displacements were 

very large (usually to 10 inches), measurement of deflection was certainly 

accurate. 
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(b) Two Span Beam 

The test set up was designed to study the effect of moment 

gradient or shear force on the moment carrying capacity and to assess the 

moment transfer principle inherent in plastic design. Such a statically 

indeterminate structure is shown in Figure 3. 6. The spans and loading 

conditions were simulated about the middle support and were designed such 

that the negative moment at the middle support exceeds the positive moment 

in the span (Figure 2.2). As the load is increased the negative moment 

-M is initiated over the middle support which must be maintained until +M p p 

occurs at the major load points at which a mechanism is formed. 

Electric strain gauges were mounted on the top flange of HSS at 

the middle support and on the bottom flanges of major load points. The 

base of the middle support was reinforced to prevent the settlement. 

Movement was checked with a precision dial ~auge. Negligible displacement 

was recorded during testing with the conclusion being that the support was 

rigid. A load cell was placed at the middle support to determine the re-

action, thereby making the force system experimentally determinate. 

The details associated with this type of test are shown in 

Figure 3. 7. 

3.5 Testing Procedure 

In the elastic range of the test, the hydraulic pressure was 

increased in increments to give predetermined elastic behaviour of HSS. The 

load was maintained at each of these values until all readings had been taken . 

After yielding had occurred the midspan deflection was increased 

in increments to permit sufficient values for plotting a moment curvature 

relationship. The flow of hydraulic fluid to the ram was then terminated 

for a short stabilization period before readings were taken. The readings 
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of the electric strain gauges and dial gauge at midspan for the deflection 

were recorded for each increment of the load. 

The section was deformed well into the yield zone to ensure a 

rotation from 4 to 8 times the rotation of the elastic limit. For most of 

the tests flange buckling predominated and the visual observations and 

measurements of the progression of yielding and local buckling were recorded. 

This monitoring extended into the unloading range using the above procedure 

as well. 

The redistribution of moments for the two span beam was checked 

by the load cell at the middle support. The fairly constant readings of 

this load cell indicated the maintenance of the resisting negative plastic 

moment -MP at the interior support until +MP occurred in the spans. When 

considerable local buckling was observed at the middle support, the readings 

of the load cell decreased due to the reduced moment resistance at the 

section. 

The deformations in the sections after completion of tests are 

shown in Figures 3.8 to 3.10. 

* The jack used had a maximum travel of 611 only. After every 611 of 

deflection the jack was released and steel blocks were inserted between 

the jack and the spreader beam. Meanwhile the test beam was clamped 

to avoid any unloading. 

·' 
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TABLE 3.1 

Material Properties Obtained From Tensile Coupons 

S. N. HSS Designation 

1 12.0 X 8.0 X 0.375 

2 12.0 X 8.0 X 0.312 

3 8.0 X 8.0 X 0.250 

4 6.0 X 6.0 X 0.188 

5 10.0 X 10 . 0 X 0.312** 

6 8.0 X 6.0 X 0.188** 

7 7.0 X 7.0 X 0.188 

8 1 10.0 X 10.0 X 0.250 

9 I 4.5 0 D X 0.156* 

10 I 4.5 0 D X 0.156 

11 J 6. 625 0 D X 0.1 56 
l,l 

12 6.625 0 D X 0.188* 

13 20 . 0 0 D X 0.250 

14 10.75 0 D X 0.219 

15 10 . 75 0 D X 0.219 

16 12.75 0 D X 0.250 

1 7 14. 0 0 D X 0. 2 50 

18 16. 0 0 D X 0. 250 

I 
I 
i 

I 
I 
I 

I 
I 
I 
l 

0.750 

0.625 

0.500 

0.375 

0.624 

0.375 

0.375 

0.500 

Modulus of Elasticity = 29500 ksi 

I 

I
I 
I 
I 

I 

ao 
(ksi) 

62.5 

52.6 

58.0 

55.5 

56.0 

54.0 

57.0 

61.0 

44.8 

44.8 

44.2 

53.5 

54.4 

44.4 

44.4 

54.5 

43.2 

E . 
st 

(ksi) 

360 

400 

420 

420 

280 

310 

380 

410 

310 

310 

280 

370 

290 

490 

! 490 
I 
I 

I 
I 
I 

650 

400 

44.8 l 255 

Width of 
Type of bear ing plate 

Span if used (i n) 

Single 

Single 

Single 

Single 

Single 

Single 

Single 

Single 

Single I 
Two I 
Single 

Single 

Single 

Single 

Two 

Single 

Single 1 

I Single , 

3 

3 

3 

3 

3 

3 

3 

3 

3 

6 

6 

6 

6 

6 

*These two sections were also tested as stub columns and their behav iour in 
compression is shown in Figure 2.8. 

**The actual thickness of these sections was found to be 0.302 (No. 5) and 
0.180 (No. 6) inch. 
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(a) Overall View 

(b) Middle Support 

Figure 3.7 Detail s of Tes t Arrangement - Two Span Beam 



\.0 
L{) 

0 

>< 

Cl 

0 

L{) 

N 
\.0 

\.0 

V) 
V) 

:::r: 

+-> 
Vl 
OJ 
I-

t: 
ro 
c... 

V) 

OJ 
r--
0. 
E 

•r-
V) 



73 

(b) Minor Buckle 

(c) Major Buckle 

fl~URE 3.8 Simple Span Test- HSS 6.625 O.D. X 0.156 



(a) Ove ra ll View.of D~formations 

FIGURE 3.9 Simple Span Test - HSS 10.75 0. D. X 0.219 

74 



75 

(c) Minor Buckle 

FI GURE 3. 9 Si mpl e Span Test - HSS 10 .75 0. D. X 0. 219 
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(a) Buck li ng at Middl e Support 

(b) Major Buckle in the Span 

(c) Minor Bu ck le in the Span 

fi~ure 3.1 0 Two Span Test- HSS 4.50 Q. D. X 0.1 56 
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CHAPTER 4 

EXPERIMENTAL RESULTS AND DISCUSSION 

4.1 Preliminaries 

An attempt is made in this chapter to compare the experimental 

results of HSS with those predicted by analysis. On this basis, a design 

criterion to categorise the sections, according to plastic and allowable 

stress methods of design, is established and compared with available design 

standards. This work is dealt with in two separate parts: 

(a} Performance of rectangular HSS, and 

(b) Performance of round HSS. 

given by: 

On the basis of simple plastic theory, the rotation capacity eis 

0 = K /K - 1 L p 

where KL is the curvature at the intersection of the experimental curve at 

the level of M as shown in Figure 1.2. If the experimental curve does not p 

reach the level of MP, the section cannot be employed in plastic design at 

the designated yield strength. Nevertheless, such sections can be used in 

plastic design at a lower yield strength than the guaranteed value. 

4.2 Performance of Rectangular Sections 

The moment- curvature and load- deflection curves, on the basis 

of the actual strength of the sections are shown in Figure 4.1 to 4.8. These 

tests were performed on simple span beams with simulated two-point loading, 

in the order of increasing flange slenderness ratio and are numbered accordingly. 
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The behaviour predicted by analysis {on the assumption that local buckling 

does not take place), is shown as the full ine while the experimental 

behaviour is given by the full line with starts. Each star represents a 

stage at which data was recorded. 

The following observations are noted: 

(a) There is good correlation between the test results and analytical 

predictions for those sections in which local buckling did not 

occur until well into the plastic range (Figures 4.1 and 4.2). 

(b) The rate of unloading, after local buckling has occurred, increases 

with increasing flange slenderness ratio. This result is due in 

part to the increased effect of bearing stresses applied at the 

load and support points {Figure 4.3 to 4.8). 

(c) Sections (4a) and (7a) were also tested by Hudoba3. The present 

results indicate more load carrying capacity due to reduced shear 

stress intensity at the load points and supports, since the spans 

of the beams in the current work are longer than those in Hudoba's 

programme. 

Before establishing design criteria for the bending of rectangular 

HSS some discussion concerning the results from this study and that of 

Hudoba in relation to practice is in order. The basic difference between 

the two test programmes of single span beams was in the span lengths. 

Hudoba's beams were considerably shorter than those reported herein (12 ft. 

vs. 24 ft. approximately) and hence the shear forces and bearing stresses 

were reduced in the current work. Consequently moment and rotation capacities 

were higher in the latter programme. 

In relation to design, some mention will be made of test versus 

field conditions. For example, it is unlikely that major load points in the 

field would result in concentrating the load over a 3" length (along the beam). 



Auxiliary framing and the physical dimensions of gravity loads are such 

that a more distributed load application would occur. Consequently, it 
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is thought to be sufficiently conservative to recommend sections for design 

based on the aggregate data of the two programmes. 

4.2 . 1 Design Criteria 

Table 4.1 lists the rotation capacities e, and the ratio of 

ultimate moments to corresponding computed yield and plastic moments, Mu/M0 
and Mu/MP respectively . These moment ratios are important in allowable 

stress design in order to establish whether a section is compact or non-

compact. This data can be plotted against an effective flange slenderness 

ratio such as 

This operation is performed in Figure 4.9. The value of 55 KSI was used to 

normalize the effective slenderness ratio because of the inherent differences 

in yield stresses of various sections tested. In addition, this value 

simplifies comparison with the earlier work of Hudoba. The points represented 

by squares are· obtained from the present test data whereas those represented 

by circles are reproduced from earlier work3. On the basis of these points 

a curve was drawn to approximately represent the overall test data. Although 

the present work tends to bias the data towards greater load carrying capacity 

than for Hudoba, the overall impact is not significantly different. The 

boundaries used to categorise the sections are obtained in Figure 4.9 . Plastic 

design sections are obtained from Figure 4.9(a) by using a rotation capacity 

of 4. The associated effective flange slenderness ratio designates limiting 

value for plastic design. Figure 4.9(b) is used to delineate compact and 
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non-compact sections in allowable stress design (assuming f = 1.17). Further 

comment will be made prior to establishing recommendations for design. 

4.2.2 Design Supplement on the basis of Minimum Guaranteed Strength 

The experimental moment-curvature relationships, (Figures 4.1 to 

4.8) which are based on the actual yield strength of the sections can be 

translated to a common level of yield strength such as 55, 50, and 42 KSI 

by scaling down these curves in accordance with appropriate ratios 55/a0, 

50/a0, etc. 3 This process is only valid for sufficiently stocky sections 

that possible buckling can occur only in the plastic range. Consequently, 

by using simple plastic theory, sections with a relatively large flange 

slenderness ratio can also be employed in plastic design at a lower design 

yield stress than the guaranteed value a06 . This operation is performed 

in Figure 4.10 and the corresponding increased rotation capacities are 

designated as ei(i = l, 2, ••. , 5). In a similar way, the corresponding 

value of Mu/MP are listed in Table 4.2. The data is incorporated to plot 

the design curves with a06 = 55 and 50 KSI respectively as shown in Figures 

4.11 and 4.12, represented by dark squares, triangles, circles, etc. The 

light symbols are reproduced from Hudoba's work, on the same plot. Finally 

design curves are plotted on the basis of both sets of data and the 

boundaries to categorise the sections are marked. 

4.3 Performance of Round Sections 

The moment curvature and load~deflection curves for round sections 

on the basis of observed strengths are shown in Figures 4.14 to 4.23, and 

are numbered according to the chronological order of testing. The behaviour 

predicted by analysis (as if there were no buckling), is shown by a full 

line while the experimental behaviour is given by the full line with stars 

(or with triangles and rectangles where applicable). Each of these symbo 1 s 

represents a stage during the test at which data was recorded. The sections 
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numbered (lb) to (8b) were tested as simple span beams with simulated two­

point loading whereas sections numbered (lc) and (2c) were tested as two 

span beams with symmetrical loading about the middle support. 

Sections numbered (lb) to (4b) were tested using just V-shaped 

blocks for bearing load distribution to help to reduce local buckling . 

During the first test it was observed that the use of the V-shaped blocks 

alone did not avoid imposing a high stress concentration relative to bending 

stresses. This was due to the section's large tube slenderness ratio 

(d/t = 80). The loading was followed by a substantial deterioration of the 

bearing surface at the supports and the loading points. The result was a 

subsequent drop-off in bending moment resistance well below the yield moment. 

The other three sections showed less serious deterioration because of this 

effect. The reason for the difference in behaviour is due to smaller tube 

slenderness ratios. In the next 6 tests 3" to 6" wide saddle plates were cut 

from the sections themselves and were used between the V-shaped blocks and the 

section profile to distribute bearing load. It is obvious from the tests 

numbered (5b) to (8b) that the use of these plates contributed to improving 

the moment resistance of the sections. The two-span test section numbered 

(lc) was subjected to loading using 3" wide saddle plates. The experimental 

moment-curvature relationship at the support as well as at the loading point 

indicates higher strength than that observed in the simple span test without 

saddle plates numbered (5b), for the same section. 

Since the carrying capacity of the 4.5" 0.0. section was influenced 

by the bearing plates, the test numbered (lb) will not be taken as a represen­

tative measure of moment resistance. The conclusions will be based on the 

other 9 tests. 

The following observations are to be noted: 
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data. 

(a) There is good correlation between test results and analytical 

predictions for those sections in which local buckling did not 

occur until well into the plastic range. 
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(b) The rate of unloading, after local buckling had occurred, increases 

considerably with an increase in tube slenderness ratio. Th is 

effect is very obvious in tests numbered (5b) to (8b). 

(c) The two span tests (lc) and (2c) show the development of fully 

plastic moment in a statically indeterminate structure. Sections 

with intermediate and lower tube slenderness ratios for the normal 

yield strength described earlier are capable of undergoing plastic 

deformation and formation of mechanisms. 

Table 4.4 lists various parameters in relation to the experimental 

4.3 .1 Comparison Between Theoretical and Experimental Buckling 

The actual yield strengths of the test sections vary broadly in 

two ranges: 

(a) a0G : 42 ksi (tests no. 2b, 4b, 5b, 7b and 8b) 

(b) a0G : 52 ksi (tests no. 3b and 6b) 

An effective slenderness ratio can be applied to each section to 

account for the difference in yield strengths. A factor of ~a0ja0G 
multiplied by the actual slenderness ratio is used to define the effective 

slenderness to allow a compilation of sections into appropriate ranges. On 

this basis an effort to compare the test results with analytical predictions 

can be made as follows: 

(a) cr0G = 42 ksi 

Figure 4.23(a) shows a plot of rotation capacities 0 vs (D/t)}cr0/42. 
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For those sections which were loaded with saddle plates there is a 

reasonable parity between the theoretical curve and the experimental data. 

Figure 4.23(b) is a similar plot of Mu/MP vs (D/t}}cr0j42. 

(b) a0G = 52 ksi 

Only two tests were conducted in the higher strength range. 

Figure 4.24 shows the corresponding analytical and experimental data for 

these tests. It is observed that there is good agreement for the test in 

which load was distributed through accessory plates on the bearing surface 

of the HSS*. 

Figures 3.8 and 3.9 show the deformation pattern of sections 

(4b) (D/t = 42.5) and (5b) {D/t =51) respectively after test. The former 

was loaded through V-shaped blocks only while saddle plates were used on the 

latter. Due to the loading device a combination of oval and multi-wave type 

deformation is apparent and is more likely in the D/t range of these sec-

tions if saddle plates are used. However, an oval shape of deformation in 

test no. {lb) was observed on nearly the entire length of the section. On the whole 

it can be assessed that small deflection theory represents (if not compl ete) 

some parity with the experimental behaviour in view of deformations, for 

plastic design and compact sections. 

4.3.2 Limitations of the Theory 

(a) The theoretical solution is based on an approximate method of 

analysis. Though, as mentioned above, the analytical results are fairly 

compatible with the experimental behaviour, it cannot be stated that 

* The experimental rotation capacity takes into account the post-buckling 
strength until such time as the moment drops below M . On the other hand 
the analysis predicts only the criti-cal buckling curijature. Hence the com­
parison neglects a post-buckling reserve curvature range in the analysis but 
includes it in the experimental results. 
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deformation patterns are predictable. Indeed one does not anticipate a 

close comparison in deflection patterns in general. There is justification 

to compare moment capacities and associated curvature limits, however, 

since these values are not overly sensitive to variations to the deformed 

configuration. 

(b) The theory does not take into account the stress concentrations 

caused by loading on the bearing surface of HSS. Since this factor is of 

considerable importance for tubes of large slenderness ratio, it can be 

pointed out that the theory would predict markedly high values of critical 

buckling stresses for such sections. 

4.3.3 Design Criteria 

The analytical and test data is incorporated into the form presently 

being used in CSA-Sl6 (1969) for limitations on 0/t ratios as follows: 

(a) plastic design sections 

(i) cr06 = 42 ksi 

D /OQ D 
t J 7/i ~ 46; t ~ 

ii) cr06 = 52 ksi 

D fOo D 
t J 52 ~ 37 ; t ~ 

300 

ra; 

267 

FO 

(b) compact sections in allowable stress design 

(i) cr06 = 42 ksi 

D 
t 

0 0 D 
42 ~ 56 ; t ~ 
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(ii) a0G = 52 ksi 

0 ao 0 
/ 52·, -t .(: f. 52 ~ ~ 

Since the results for the two yiet'.d stress values do not provide 

a consistent constant in each category {i.e. 300 vs 267 and 2350 vs 2704), 

it is clear that the form of expression is not satisfactory. A suitable 

design criterion which may reasonably take into account these variations 

{due to difference in the yield strengths) needs to be established. 

The above set of data indicates that for a plastic design section 

the limiting 0/t ratio is approximately inversely proportional to the yield 

strength. This is also supported from the viewpoint that to reach a plastic 

rotation which is four times the hypothetical elastic rotation, the critical 

buckling strains may differ widely for materials with different yield 

strengths {with the same modulus of el.asticity). Therefore, for plastic 

design sections the limiting 0/t ratio may be determined as follows: 

a 
a = 42 ks1· Q. • _Q, < 46· Q. < 1932 

OG ' t 42 ~ ' t ~ a 
0 

. 0 ao 0 1924 
aOG = 52 ks1, f · 52 ~ 37; f ~-a-

0 

Thus a limiting 0/t ratio of 1924/a0 can be safety adopted. 

For compact sections in allowable stress design, there is a com­

paratively small difference in the values of limiting 0/t ratio to attain 

fully plastic moment MP, although the yield strength may vary widely. This 

is supported, analytically, by the fact that the sections under investigation 

reach Mp at a total strain of 7000 - 7500 ~n/in. In this case the limiting 
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0/t ratio can be assumed to vary inversely with the square-root of the yield 

strength, and can be determined as follows: 

. D fOO - D 365 
cro = 42 ksl, rJ42 ~56; t ~ -

Fa 
_ . D fcJO . D 375 

cro- 52 ksl' rJ52 ~52, t ~ -
Fa 

Thus a limiting D/t ratio of 365/~ can be safely adopted . 

For a non-compact section the theoretical predictions are made in 

Chapter 2. Further investigations of the experimental behaviour are needed 

to recommend a design criterion for such sections. As a matter of fact, 

CSA-=Sl6 recommends a limiting value of 3300/cr0 for D/t. This value trans­

lates sections of 79 for cr0 = 42 ksi and 66 for cr0 =52 ksi. Clearly, test 

no. (lb} (D/t = 80} fails to satisfy· the non-compact requirement both by 

test and by the current specification. 

4.3.4 Comparison with CSA Specifications 

(a Plastic Design Sections 

Canad.ian Standards ·Ass.ociation speci f ies a limiting D/t ratio of 

200/foQ for such sections. This is highly conservative as compared to the 

results of the present work which in that fonnat specifies a range of 

values from 267/~ to 300/foQ for approximate yield strengths of 52 to 

42 ksi respectively. It has also been establ i shed that the above form 

of design criterion is not very rational and, in fact, a suitable expression 

appears to be of the fonn of s9me .constant number divided by the yield 

strength. The constant 1924 would appear to be suitable. 
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(b) Compact Sections in Allowable Stress Design 

The recommended limiting D/t ratio of 3300!a0 seems to be excessively 

liberal. The present work specifies these values to be 2340!a0 and 2704/o0 
for approximate yield strengths of 42 and 52 ksi respectively. It is, 

therefore, clear that the form of design criterion is not consistent with the 

current study. In fact, the form of the limiting D/t ratio appears to be 

a constant number divided by the square-root of the yield strength. The 

value consistent with this revised form is 360. 

(c) Non-Compact Sections in Allowable Stress Design 

Further research is needed to comment on such sections. However, 

the value of 3300!a0 as the limiting 0/t ratio specified by CSA seems 

reasonable based on our limited experience with high slenderness ratios. 

4.3.5 Comparison with Other Relevant Work 

Premature local buckling is related to geometrical parameters as 

described by Schilling20 on the basis of experiments on yield point steel 

tubes performed by Khalig and Schilling19. Accordingly he proposes a 

limiting 0/t ratio to attain the fully plastic moment to be g.iven by: 

D t ~ o.l2E/a0 

Substituting for E = 29500 ksi 

D 
t ~ 

Thus if 

a0 = 42 ksi, 0/t ~ 84 
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ao =52 ksi, 0/t ~ 67 

These values are considerably higher than those observed in the 

current work. One reason for the difference is due to the type of loading 

applied during a test. Pure moment applied to a section (implicit in 

Schilling•s recommendation) is not realistic for design without experi­

mental support. The effect ofshear and particularly bearing stresses is 

not negligible. 

Although the form recommended from the current study is also in 

conflict with Schilling•s expression, sound scientific evidence for equation 

(1) is lacking. In addition there appears to be a difference between the 

behaviour of a tube with a gradual change in tangent modulus as compared to 

one with a sharp yield point. The linear form is certainly valid for 

elastic material. However, this form has not been substantiated for a 

material exhibiting a non-linear stress-strain response to the author•s 

knowledge. 
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TABLE 4.1 Test Data- Rectangular ~ections 

I 
Mu Mu 

No. b/t 
I ~JJ cro t 55 Mo Mp e 

1a 17.3 62.5 18.4 1.290 1. 060 6.8 

2a 21.6 52.5 21.1 1.270 1. 054 5.2 

3a 27.9 54.0 27.6 1.180 0.995 2.35 

4a 27.9 53.5 28.0 1.160 0.990 2.25 

Sa 28.0 58.0 28.7 1 .150 0.988 2.01 

6a 29.1 56.0 29.4 1.120 0. 962 1. 70 

7a 33.3 57.0 33.9 1.060 0.910 1. 30 

8a 36.0 61.0 37.8 0.940 0.810 0.82 
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TABLE 4.2 Moment Ratios 

Ratio (Mu/Mp) 

No. aOG = 55 KSI 0 0G = 50 KSI 

a = 55 0 a = 50 0 a = 42 0 
a = 50 0 on = 42 

1a I 1.060 1 .166 1. 388 1.060 l. 262 

l 
2a ! 1. 054 1 .159 l. 380 1. 054 1. 255 I 

i 
' 

3a I 0.995 1 .094 1. 303 0.995 1.185 I I 

I 
I 

4a I 0.990 1. 090 

I 
1. 300 0.990 1.180 

5a 0.988 1.087 1. 294 0.988 1 . 176 

I 
6a 

I 
0.962 I 1. 058 1 .260 0.962 1 .145 

I 
I 

I I 

7a 0.910 
I 

1.000 1.192 0.910 1. 082 
1 

i ! 
I 

I ' 
8a I 0.810 0.893 1. 067 0.810 0.968 ' 

' 
i I I 
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TABLE 4.3 Test Data - Round Sections 

(a) Simple Span Tests 

(i) without bearing plates 

No. D/t 00 MufMo MufMp 8 

(2b) 28.9 44.8 1.380 1.044 5.29 

(3b) 35.2 53.5 1. 352 1.032 3.54 

(4b) 42.5 44.2 1.332 1. 025 3.83 
I 

(ii) with bearing plates 

No. D/t 00 MufMo MufMp 8 

(5b) 49.1 44.4 1. 351 1 .040 4.45 

(6b) 51.0 54.5 1.338 1 .030 2.84 

(?b) 56.0 43.2 1.295 1. 000 3.10 

(8b) 64.0 44.8 

I 
1. 213 0.947 2.35 

(b) Two Span Tests 

I 

~ 

__ Mi ~~k -~~~ort Major Load Point --, No. D/t 0 Mu/M0 Mu/Mp 8 MufMo MufMp 8 
! 0 

( 1 c) 28.9 44.8 1.405 1.078 6.02 1. 357 1.046 6.58 
i I I ( 2c) I 49. 1 ! 44.4 1. 316 1 . 011 3.82 1. 310 1.005 4.56 
I i l I 
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CHAPTER 5 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

5.1 Rectangular Sections 

The present series of experiments was meant to more firmly establish 

design criteriavfor rectangular HSS. The design recommendations were in­

corporated on the basis of the present test data as well as from the results 

of Hudoba3. Table 5.1 lists the limiting b/t ratios for design obtained 

from the overall data together with those specified by Hudoba and CSA-516. 

The following remarks are made based on the two research programmes: 

(a) For plastic design sections, the value . of limiting flange slender­

ness ratio, b/t, specified by CSA-S1'6 is too liberal. The limiting 

value of b/t recommended is 159l/OQ as compared to 200/Ja0 as is 

currently prescribed by CSA. This value is based upon a need 

for sufficient ductility of the sections to maintain the fully 

plastic moment at the first hinge to form before developing a 

mechanism in statically indeterminate structure. A plastic rota­

tion capacity of 4 is decided to be adequate. 

(b) In structures designed by the allowable stress method, the values 

of limiting b/t ratio recommended on the basis of aggregate data 

compare very well with the design specifications prescribed by CSA. 

For compact sections the specified value of 200/JGQ is supported 

by the current work. 

For non-compact sections the value recommended is 255/~0 which is 

slightly more than the value of 250/~ as specified by CSA. 

5.2 Round Sections 

The design critertn for Round HSS has been established and discussed 

in the preceeding chapter. The 11mi ting Oft ratios for round sections 
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in the preceding Chapter. On the basis of the theoretical study and test 

data the following remarks are made: 

(a) For plastic design sections the maximum tube slenderness ratio D/t 

is limited to 200/~ as specified by CSA. From the viewpoint of 

present work this value seems to be highly conservative. The 

limiting value recommended here varies from 300/JOQ to 267/J'oQ 

for round HSS with yield strengths varying from 42 to 52 respect­

ively. Also it was pointed out earlier that the form A/~ is 

not very rational and should be replaced by the form A/o0, where 

A is a constant. On this basis the limiting value of slenderness 

of rounds recommended in plastic design is 1924/o0. 

(b) For sections to be designed by the allowable stress method CSA 

recommends a limiting D/t ratio of 3300/o0 and does not provide a 

distinction between compact and non-compact .categories. 

For compact sections this value is too liberal and is indicated to 

vary from 2350/o0 to 2704/o0 for o0 varying from 42 to 52 KSI respectively. 

A similar observation as indicated for the plastic design sections is 

apparent. Consequently it is proposed to alter the expression to a more 

consistent form with the results. The recommended limitation for D/t is, 

therefore, 365/~ 

For non-compact sectJons. experimental data is not available. 

However, the value of limiting D/t retio for such sections, 3300/o0, as 

prescribed b.Y CSA seems to be rea so nab 1 e and tends to be supported 

by our limited experience with tubes of large slenderness. 

The beams tested in this programme were provided with saddle plates, 

approximately 3" to 6" wide at the load points and supports. In practice, 
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loads will normally be distributed to a much greater extent than was the 

case in the tests reported herein. Also bearing support surfaces will either 

be of at least an equivalent length and contact area as compared with the 

test series. Consequently the limiting 0/t ratios as recommended above 

will be adequate except possibly in exceptional circumstances. 

5.3 Suggestions for Further Research 

The theoretical work dealt in Chapter 2 is believed to be adequate 

for predicting the buckling or ultimate moment with its associated curvature. 

To improve predictions of limiting 0/t ratio in plastic design, however, 

large deflection theory incorporating non-linear material behaviour would 

have to be used since post-buckling response is required. Considerable 

complexity would be anticipated, however, due to the non-linear nature of 

the basic differential equation. 

It has been observed that stress concentrations have severe effects 

on the bending moment resistance of the HSS generally and for tubes with 

large 0/t ratio in particular. A better provision to avoid stress concentra­

tion on load points and supports is strongly recommended for such sections. 

Increased moment resistance can be attained by properly stiffening the 

section at the critical points. In addition, applying the load to the tension 

fibres or distributing it around the circumference by flexible straps would 

improve the carrying capacity. 

cannot be avoided completely. 

sound design principles. 

However, in practice, stress concentrations 

They can only be reduced in accordance with 

Further research is necessary to establish the limiting 0/t ratio 

for non-compact sections designed by the allowable stress method. 
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APPENDIX 1 

DISPLACEMENT EQUATIONS 

122 

This Appendix is intended to solve the expression for longi tudina l , 

circumferential and radial displacements in terms of critical buckling strain, 

material properties and geometrical parameters of the thin cylindrical shell . 

For convenience equations (lOa), (lOb), and (lOc) of Chapter 2 can be re-

written as follows: 

(1 Oa) 

( 1 Ob) 

v+l au +l <L'{ + w =0 
2 ax R ae R ( 1 Oc) 

where Y = v1 + v2 and 

Differential Equation in x, y, u and w 

., 3 1 3 3 " 3 1 ., 2w A o_U+- j u+- (} v+- a 0 
1 a x3 4R2 a e2a x 4R a x2a e 2R a/ = 

(A-1) 



Differentiating equation (lOb) w.r.t. a and multiplying by 3/R, 

3 
Eliminating a~ between equations {A-1) and (A-2), 

ax a 

Differentiating equation (A-3) w.r.t. x, 

Differentiating equation {lOa) w.r.t. a twice, 

4 
Eliminating a v3 between equations {A-4) and (A-5), 

a>eae 
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(A-2) 

(A-3) 

(A-4) 

(A-5) 



Differential Equation in x, y, v and w 

Eliminating 

between equations (A-1) and (A-2), 

Differentiating equation (A-7} w.r.t e, 

Differentiating equation (lOb) w.r.t. x twice, 

a 4 
Eliminating ~between equations (A-8) and (A-9), 
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(A-6) 

(A-7) 

(A-8) 

(A-9) 



A1 
a 4v + _1 a 4v + 

(4A1 - 2) a 4v 
a x4 R4 a 84 R2 a xla 82 

+ _1 3 ( 4A1 - 3/2) a 3w ~+ = 0 
R4 a e3 R2 a xla e 

where 

from equation (A-3), and 

from equation (A-2). 

Differential Equation between x,y and w 

Differentiating equation (10c) w.r.t. x, 

3 
- R 

2 
Eliminating a a~~ between equations (lOa) and (A-11), 

2 2 a Y + (l _ i A ) ~ __ 1_ ~ + _1 aw = 0 
() X 2 3 1 a X 2 JR2 a 82 3R a X 

Differentiating equation (lOc) w.r.t. e, 
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a A1 a 3u 
ere a x3 

(A-10) 

{A-ll) 

{A-12) 

(A-13) 



2 
Eliminating a~~ between equations (lOb) and (A-13), 

Differentiating equation (A-14) w.r.t. 8, 

Eliminating a 3v 
~ between equations (A-1) and (A-15), 

ax 8 

Differentiating equation (A-12) w.r.t. x, 

"' 2v 1 4 "' 3u 1 3 1 2 
o_ + (- __ A ) o_ _ _ a u + _ U _ o 
ai 2 3 1 ax3 3R2 a>ee 2 3R ax2 -

Eliminating 

Eliminating 

a3 
~-=u=-2 between equations (A-16) and (A-17), 
axa8 

') 3 
~~between equations (A-16) and (A-18), 
dX 
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(A-14) 

(A-15) 

(A-16) 

(A-17) 

(A-18) 



(A1 - 1 I 4) a 2w = 
0 + 2R 2 ax 

Differentiating equations (A-18) w.r.t.e twice, 

1 a 4y 1 a 4y (A1 - 114) a 5u 
R4 a 84 - 2R2 a xla 82 + 2 

R a x3a e2 

+L 
a A1 4 a 2A 3 

d u + _1 1 LJ!= o 
R2 ae- a x3a 8 R2 ~ ax3 

Differentiating equation (A-19) w.r.t. x twice, 

(2A1 - 314) a 4y Al 
+-

a 4y (A1 - 114) a 5u 
R2 a ala x2 2 ::-4-

ax 2R2 a x3a e2 

{A1 - 1 I 4) a 4w 
+ 2R -= 0 

a x4 

Eliminating 
d 5 
~ 2 between equations {A-20) and (A-21), 

ax 8 

(4A1 - 2) a 4y a 4y + _1 a 4y (A1 - 1 I 4) 

R2 2a 2 + Al ax4 -+ R ax e R4 a 84 

a A1 4 2 3 + 2 a u + _1 a ·A1 u= o 
R2 ae a x3a 8 R2 ae2 ax3 
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(A-19) 

(A-20) 

(A-21) 

a4w 
a x4 

(A-22) 
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and 1 a 4u [ - 1 a A1 1 a 2y 1 a 2y 
R a xla 8 

= (Al - l/4)R ae- 2 a 82 - R2 a 82 

1 a 3y 1 a 3y 1 
+ 2R a x2a 8 - R3 -] (Al - 1/4) a 83 

from equation (A-18). 

Thus equation (A-22) forms an eighth-order partial differential 

equation in w when derivativesof Y are substituted. The result is given 

as equation (11) in Chapter 2. 
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APPENDI-X 2 

DESCRIPTION OF COMPUTER PROGRAM FOR EVALUATION OF LIMITING D/t RATIOS 

A.2.1 Introduction 

A special computer program to evaluate the value of limiting D/t 

ratio for a preassigned value of critical buckling strain was developed 

using the technique of finite elements. Reference is made to equations (16) 

to (22) of Chapter 2. 

The input data consists of the following: 

(i) the material properties of the tube (Ramberg-Osgood stress­

strain relationshiP), 

(ii) the number of terms considered in equation (16), i.e., 'p', 

(iii) the preassigned value of critical buckling strain, i.e., Ec' 

(iv) the number of elements into which the circumference of the tube 

is divided, i.e., N, and, 

(v) the trial values of 0/t and mrR. 

For each trial value of 0/t and (mwR/l) the resulting determinant 

given by equation (22) is calculated. The resulting grid of determinants 

i s used to estimate the limiting 0/t ratio for the preassigned value of 

critical buckling strain as discussed in Chapter 2. 

Each of the coefficients qj given by equations (19a) to (19s) 

consists of 'p' terms and can be expressed as follows: 
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where qj 1, qj 2 etc. are functions of m, R, Land e. The expressions for the 

elements of the determinant given by equation {22), then, can be simplified 

as follows: 

19 

[ ~ aj qjn] cos (q - l)ede 
j = 1 

This formulation was utilized to simplify the program. 

The Fortran program consists of the following: 

(a) A Main Program which computes the coefficients aj' qjn etc. for 

each elements of the circumference of the tube and finally evaluates the 

elements (s11 , s21 etc.) of the determinant by numerical integration over the 

circumference. Finally the determinant is calculated by using subroutine 

MINV from McMaster Library of Subroutines. 

{b) A Subroutine DELTA which iterates the value of stress for the 

given strain on an element {since direct computation of stress distribution 

is not possible) to the given degree of accuracy. The tangent and secant 

modulii are then calculated at the level of each element to find the plasticity 

coefficient A1 and its higher derivatives w.r.t.e. 

A.2.2 Designations 

The meaning of the variables used in the Fortran program are as 

given below. The details of operations are shown in the program by comment 

cards and in the flow-charts drawn in section A.2.3. 

E = E 

SO= a0•7 

YS = a0 
K = k 



T = t 

NEL = N 

STNC = e:c 

KLK = p 

JR = number of trial values of 0/t ratio 

JX = number of trial values of (mmR/L) 

RAT = 0/t 

XL = (mmR/L) 

OELANG = de = 2n/N 

ANGLE = e 

ET = E 
T 

ES = E s 
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KJ = the accuracy of stress-strain distribution iterations i n 

decimal places 

SR = cr' 
X 

SN = e: 
X 

DELSR = ocr' 
X 

DELE = ocr~/ET 
SNO = e:' 

X 

Al' 81 = Al 

A2' 
. aA1 82 = a e. 

a 2A 
A3' 8 - 1 3 - ::-:2" ae 

a3A 
A4' 8 - 1 

4 -a e3 



ALP (J) = the value of aj 

ALPHA (I, JJ) =the value of aj 

PQ (J) =the value of qj(n + 1) 

BBB (NN, NQ) = B{q + l){n + 1) 

o, om= tJ. 

Other are works variables only. 
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at an angle e specified by 

Fortran variable ANGLE (I) 



A.2.3 Flow-Charts 

{a) Main Program 

(START) 

READ E, cr0•7, cr0 , k, t, N, Ec' p, JR, JX, [{D/t) 1 ; 

i = 1, JR; (mrrR/L) 1; i = 1, JX] 

I 
'I = 1, N 

..___ ..... LCALCULATE e I 

2 3 4 a A1 , a A1 a A1 a A1 
CALL DELTA [e, A1, ae - 2 , :-::y-' - 4-] ae ae ae 

133 

(J = 1, JR )~------------, 

~ CALCULATE aj;j = 1, 191 

( KJK = 1 , JX ">+-----------~ 

SNN, NQ = 0; NN = 1, p; NQ = 1 t PI 

( NQ = 1 , p /,..__ ____ ____, 

+ 
In = NQ - 11 

~ 
I = 1 , N )>+--------i 

~ 1 
2 



CALCULATE qj(n + 1); j = 1, 19 

.,-~, ' 

88 = L aj qj (n + 1) 
j = 1 

q = NN - 1 

oSNN, NQ = 88 cosq ede 

CD 

6NN, NQ = 6NN, NQ + 06NN, NQ ~----' 

~R N WRITE 0/t, -L-, 6, p, E, a0. 7, k, 

134 ® 
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(b) Subroutine DELTA 

r--------..4CALCULATE E~', ET, ~ E~' ......., _____ ___, 

0 . 6 ocr~· 1----1 

a~'= a~'+ 0.6 ocr~.._ _ _. 

YES 

0. 1 ocr~· • KK = KK + 1 
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! ~ (cALCULATE ET, E
5

, A
1

1.,_ _____ _ 

! 
(I = 1, N/4 ~ 

! 
a A 

CALCULATE ae1 etc. 

! 
(I = (N/4 + 1), N/2) 

! 
. a A1 CALCULATE A1 , aa etc. 

l 
I = (N/2 + 1), N) 

! 
a A1 CALCULATE A1 , aa etc. 

! 
(RETURN) 
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A.2.4 COMPUTER PROGRAM 

~PKf,,(M~OOOO,T4 00. P R A SA ~ . 
RUN(Sl 
SF. TINDF. 
Pf='DUCF. 
LGO. 

6400 END OF RECORD 
PROGRAY TST (JNPUT,OUTPUTtTAPF~=TNPUTtTAPF6:0UTPUTl 

I THF VARIARLES ARF DFFJNED IN SECTION A.2.2. 
n T M c:: "' S T '"'"' t. "1 r. L F ( ~A 0 l 'P 1 C ~ f, 0 l 'P? C ~ f, 0 1 'P "l C ., f..~ 1 , P 4 C ., "n J 'n r; ( "-f.. 0 l ' 

1 P f\ T ( 1 0 l 'P Z ( 1 0 ) , L C 1 ;:> ) , M ( 1 ? ) , ALP ( 1 o ) , 0 ( 1 o ) , P ( , o ) , XL ( 1 r; l , n c:: T T ( P ' 1 r; l ' 

? Pn ( 1 o l 'C ( 1 r. ) '/1. L PH A ( 1 f, 0' 1 o l 'P P. R ( 1 ? ' 1 ? l 'P ( 1 l~ 4 l 'D F T T ( q ' 1 r; 1 ' XL ( 1 c:, l 
COM~ON NFLtKtSO,STNC 
RFAL LX 
RFADC~t40lFtSOtYStKtTtNEL 
RFAD(~,~llSTNCtKLK,JR,JX 
RFAD(I:),c:,?) (RAT(J) tJ=ltJRl 
PC::An(c:,,c:,1){XLCKJKltKJK=ltJXl 
PJ=4.*AT!INCl.l 
DFLANfJ=2.*PI/FLOAT<NELl 

r r,YVTDF THF CTRCUMFFPENC~=' OF THF TURF TNTO T~tF SPFCl~='TFn Nl J ~APFO r'F 

*ELEMENTS 
DO 100 I=hNEL 
ANGLE<Jl=(FLOAT(J)-0.5l*DELANG 

1 00 CONT T "-llJt' 
r CALL SURPnUTTNF DFLTA Tn OATAIN THF VALUFS nF PLASTTCTT Y C0EF~='ICic~ · r 

*AND JTS HTGHFP DFRIVATyVc::S ALON~ THF C!R~UMFFPC::NCF FOR FA(H cL=vc~T 
CALL DEL TA<ANGLFtR1tB2tB3tB4tBC:,) 

C FIX THF TRIAL VALUF OF D/T RATTO 
DO 42 J=ltJR 
RZ(Jl=T*(RATCJ)-1.)/2. 
R=PZ(J) 
CALCULATF THF VALlJFS or COFFFJCTI='NTS ALP(1lt ALP(?)'•••••••'Al P(l'l) 

*FTC. FnR FACH FLFMFNT 
on oe; T=1t1A O 
Al=R1Cil 
A2=R?CTl 
A3=83(J) 
A4=84(J) 
A~=R~(Il 

X=COS (ANGLE ( T l l 
Y:::SJN(ANCiLE( I) l 
AO=Al-0.21i 
ALPC1l=A1**2 
ALPC2l=4e*Al**? 
ALP(3)=10 .*Al-4. 
ALP(4)=4e*A1 
ALP(';)=l. 
1\L.PA=A?*A 1 //1.0/R 
ALPCAl=?.*C4.*Al-?.l*A?/R+ALPA 
ALP(7)=A//R/A0*(?.*"1+1el 
ALPCRl=-3.*/1.7/AO/P 



ALPI9l=-?.•*A?./AO/R 
~LP~=4.*A1-?.+A1/I?.*AOl 

ALPR=0.?.5*A2**?/A0**2 
ALPC=Al*O•*STNC/T**?*X 
ALPI10l=IA3*ALPA-ALPRl/R**2+ALPC 
ALPA=<4.*A1-2.l*O•*STNC/T**?*X 
ALPR=A3*(6.+(1.-All/AOl/R**2 
ALPC=A?**2/AO*I6.+?.*(1.-Al l/A0)/R**2 
ALP(Jl l=ALPA+ALPR-ALPC 
ALPA=G•*STNC/T**2*X 
ALPR=l.IR**?/AO 
ALPC=3.*A?**?/A0-1.~*A1 

ALP(1?l=ALPA+ALOR*ALPC 
ALP(l~l=-l.IR**?/AO*(A3-2./AO*A?**2l 
ALPA=4.*A4 
ALPR=?.*A?/An 
ALPC=2./Ar*A?**2-4•*A3 
ALP~=A2/AO*X-4.*12.*A1-l•)*Y 
ALPI14l=IALPA+ALPR*ALPC)/R**3+9.*STNC/T**?IR*ALPD 
ALPA=4•*Y+?•*A?/An*X 
ALPI1~l=-o.*STNC/R/T**?*ALPA 
ALPA=-<4.*Al-?.)*O•*STNC/(R*Tl**?*X 
ALPR=Ac;/R**4 
ALPC=J.IR**2/AO 
ALPD=A3-2./AO*A2**2 
ALPE=4.5*STNC/T**?*X-A3/R**2 
ALPF=?.IR**2*A?/AO 
ALPG=-4.5*STNC/T**2*Y-A4/R**2 
ALPH=AO*l?.IIR*Tl**2 
A L 0(16l=ALOA+ALPR+ALPC*ALPD*ALPF+ALPF*ALn~+~LDH 

ALPA=54.*STNC/IR*Tl**2*X 
ALPB=1.16.*ALPA/AO 
ALPC=2.*A2**2/AO-A3 
ALPD =~4.*A2/AO*STNC/(R*Tl**2*Y 
ALP(17l=-ALPA+ALPR*ALPC+ALPD 
ALPA=?.*Y*(A3-2.*A2**2/A0)+6.*A2*X 
ALPIJR)=o.*STNC/(R**3*T**2l*I4.*Y+J.IAO*ALP~) 
ALPA=X*IA3-2.*A2**2/AOl-2•*A2*Y 
ALPI19l=o.*STNC/IR**4*T**2l*(X+ALPA/AOl 
DO 95 JJ=l•l9 
ALPHA(J,JJl=ALP(JJl 

or:; CONTINUF 
r FIX THF TRIAL VALlJF OF RUCKLF HALF-WAVF-LFN~TH PARAMFTFR 

nn 4? KJK=l•JX 
WRJTF<A•71 lXLIKJKl ,RAT(Jl 
LX=XLIKJKl/R 
Olll=LX**R 
Ol2l=LX**6 
Q(3l=LX**4 
Ol4l=LX**2 
0(5)=1. 
n(n)=LX**A 
Q(7l=LX**4 
Ql8l=LX**? 
()(9)=1. 
Qll0l=-LX**6 
0 111 l=-LX**4 
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O(l?l=-LX**2 
QC13l=-l . 
0(14l=-LX**4 
0(1C::,)=-LX**2 
0(16l=LX**4 
OC17l=LX**2 
OC18l=LX**2 
0(1Q)=-LX**2 

r SJ:"T THJ:" FLFMFr-.ITS o~ THF nFTFRMT"JI\NT TOR~ Zr-RO TNTTTI'ILY 

DO 777 NN=J,KLK 
DO ?22 NO=l,KLK 
RRBCNN,NOl=O. 

272 CONTINUE 
( FIX THF VALUF OF NO 

[)() 41 NO= 1 , KLK 
RR=FLOATCN0-1 l 
RN=RR/Q 
D(])=O(l) 
P(2)=0(2l*RN**? 
P(3l=0(3)*RN**4 
PCL~)=Q(4)*RN**6 

D(5)=0(5)*RN**A 
P(6)=0(6l*RN 
D(7i=0(7)*RN**1 
P ( R l =0 ( R l *Rf\1**1) 
P(Q)=0(Q)*RN**7 
p ( 1 0 ) =0 ( 1 () ) 
P ( 11 l =0 ( 11 l *RN**2 
PC12l=O(l2l*RN**4 
P(J3l=Q(J1l*RN**6 
PC14l=Q(l4l*RN 
PCJC::,l=O(lr::,l*RN**1 
p ( 1 6) =0 ( 1 f,) 
PC17l=0(17l*RN**? 
PC18l=OC1Rl*RN 
p ( 1 q ) =Q ( l 9) 
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CALCULA TE THF VALUES OF (0EFFICIFNTS QCll' QC2l••••••••'Q( lq) FTC. 
*FOR FACH ELEMENT 

no 41 I=l,360 
ANGR=RP*A"-JGL F C I) 
XX=(OSCANGRl 
YY=~TNCANGRl 

POCll=PCll*XX 
PQ(21=P(?l*XX 
PQC'3l=P(3)*XX 
POC4l=P(4l*XX 
PQ{'5l=P(5l*XX 
P0(6l=PC6l*YY 
D(){7)=P(7)*YY 
D0(Al=P(Al*YY 
Pn(9)=P(Q)*YY 
P0(10)=PC10l*XX 
PO(Jl )=P(lll*XX 
PO(l2l=P(l?l*XX 
P0(1'3l=PC1'3l*XX 
P0(14l=PC14l*YY 
PO(lC::,):P(lC::,)*YY 



PO(l6l=P(l6l*XX 
PQ(l7l=P<17l*XX 
PQ(l8l=PC1Al*YY 
PQ(J9l=PC19l*XX 

( CALCULATE T~E VALUES OF PARAMETER RB FOR FA(H FLFMENT 
RR=O. 
DO 97 JK=l,l9 
CCJKl=ALPHA(J,JKl*POCJKl 
BB=BB+C(JKl 

97 CONTINUE 
C FIX THE VALUE OF NN 

DO 41 NN=I,KLK 
r COMPUTE THE VALUFS OF THF FLFMENTS OF THF DFTFR~INANT 

nn=FL0AT(I\IN-1 l 
AI\!GO=OO*ANGLF( l l 
XYX=(OS<ANGOl*nFLANG 
CB=RR*XYX 
RBB<NN•NOl=RRB<NN•NOl+CB 

41 CONTINUE 
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C SToRF THE ELEMENTS OF THF DETERMINANT IN THF FORM SPFCJFirD RY TH F 
*SURROUTINF MINV WHICI-I TS AVAILARLE IN MCMASTFR LIPRARY OF SURRnUTIN r: S 

no ~9 NN=l •KLK 
DO ~o NO=l •KLK 
IJK=NN+<N0-1 l*KLK 
R<IJKl=BRR<NN,NOl 

':39 CONTINUE 
WRITF<6•69l 
WRITF(6,77l((RRA(NNtNOl•N0=1tKLKltNN=l•KLKl 

r CALL SURROUTJNF MTNV TO COMPUTF THF V.ALUF OF THF nFTFRMTNANT 
(ALL ~TNV (B,KLK•D•L•Ml 
WRITF(6,73lD 
DFTTCJtKJKl=D 

4? CONTINUE 
WRITE<At7C,J 
WRTTF(6t77l F•SOtKtKLK 
WRtTf(6,76l STNCtYS 
WRTTF(f.,,t;Ol l (R.AT(Jl tJ=1 tJRl 
WRTTF(~-,,,-,01 l ( (Xl (KJK l, (I"''FTT(J,KJK l •J=l •JP.l l ti<'JI(=1 •JXl 
STOP 

49 FORMAT(~FlO.O,J~l 
,-,q FORMATC~OX,*FLEMFNTS 

c,~ FORMATCl?FS.Ol 
C,? FORMATCAF10.0) 
C,l FORMAT(Fl0.0,1T~l 

OF nFTFRMTNANT*//l 

71 F0RMAl(1Hlt?OX,*HALF W~VF-LFNGTH=*•F6e?t]0X,*r/T =*•Fl0.4//l 
~~ FORMATC~OX,*DFTFRMTNANT=*tF?c,.R//) 

77 FORMATCRF1C,.c,//l 
1,-, FORMAT<?OX,*MAXTMUM STRAIN =*•Ft0.6• J~x,.vs =*•FA.?//l 
75 FORMAT(lHlt~GX,*(OMPARJStON*/1///l 
77 FORMAT(}OX,*F=*•FJO.ltC,Xt*STRFSSC0.7l=*tF10.3tt;Xt*T~rFX ~=*•I~, 

1c:;X,*DETER~INANT SJZE=*•I2//l 
c:;01 FORMAT(J6Xt7F]c:;.1//) 
,-,01 F()RMATCF?0.2t7FJC,.l//) 

nm 
SUqRnUTINF DFLTACANGLFtR1tR?tR~tR4tRc:;l 
DIMFNSTON A~GLF<l ),q1(1 ltR?(1 l•R~(]ltR4(1 )tP~(l),AA?(Ol ),AA4(n, l 
COMMON NFL•K,So,STNC 



NELl=NFL/4 
NFL11=1\JFL1+1 
1\1 ~="L 2 =NFL I? 
I\1FL22=NFL?+l 
RFA!)(I).l4l KJ 

14 FOR~AT(?Tl 
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C ITERATE THE VALUE OF STRESS TO THE SPECIFIED DFGREE OF ACC URACY 
*FOR THE PREASSIGNED STRAIN ON EACH ELEMENT TN THE FIRST QUADRANT 
*OF THE CIRCUMFFRFNCF 

SR=O• 
nn 101 I=l tNFLl 
SN=STNC*STN(ANGLF(J)) 
DFLSR=O.l 
K'K=l 

11) CONTINUE 
SND=(l.+3.17.*(SR/SOl**(K-1ll/F*SR 
FT=E/(l•+~.I7.*FLOAT(Kl*(SR/SOl**(K-l.l l 
DELF=DELSR/FT 
!F((SN-SN~l.LF.(-1.F-9llGO TO 16 
TF((SN-SNDl.LF.DFLFlGO TO 17 
SR=SR+0.6*DFLSR 
r,l') rn l'i 

1A C0NTTNUF 
SR=SR-0.6*DELSR 
GO TO lc; 

17 cnNTTNUF 
DFLSR=Oe1*DFLSR 
KK=KK'+l 
JF(KK.LF.KJlGO TO 15 
PK=FLOAT(K) 
PKP=3.17.*(SR/SOl**(K-ll*PK 
ET=E/(PKP+J.l 
ES=F/(PKP/PK+l..l 

C CALCULATE THE VALUE OF PLASTICITY COEFFICIENT 
Rl (1\lFL 1-T l=0.?C:.+0.7&;*ET/FS 

1 n 1 (" I'V·H T 1\H J ~=" 
C CALCULATE THF VALUFS OF THE HIGHFR DERTVATIVFS 

AA2(ll=O. 
AA?(NELll l=O. 
DO 91 I=?•NFLl 
AA?(Il=(Rl(f)-Rl(T-1))/DFLANG 

91 CONTTNLJF 
DO q? l=ltNFLl 
R/( T l=(AA?( T+l l+AA?(! l )/?. 
R1(ll=fAA2fl+ll-AA?(Ill/DELANG 

O? CONTTNUF 
AA4(1)=0• 
AA4(NELlll=O. 
DO 9'3 J=2tNELl 
AA4 (I l = (A~ ( T l -R1 (I -1 l l /OF LANG 

9~ CONTJNLJF 
DO 94 l=l tNFL 1 
R4(Jl=IAA4(T+ll+AA4(J))/2e 
R'i(J)=IAA41I+ll-AA41Ill/f)fLANG 

94 CONTINUE 
C COMPUTE THF SFT OF SIMILIAR f)ATA FOR THE RFST THRFF QUADRANTS 0F 

•THE CTRClJMFFRFNCF USING THE PRTNCTPLE OF SYMMETRY 



DO 103 I=NELll,NFL2 
Rl(Il=Rl(NFL22-Il 
R?(Jl=-R?(NFL22-t> 
R3!tl=B3!NFL22-Il 
R4!Il=-R4!NEL22-tl 
R5!Il=R5!NFL22-ll 

103 CONTINUF 
no J04 T=NFL2?•NFL 
ql(J)=Rl(T-NFL?l 
R?!Il=R?!T-NFL?l 
R':3(Tl=R':3(T-NFL2) 
R4( I l=R4( I-NFL?> 
R5!Tl=R5!J-Nfl?l 

104 CONTINUE 
RFTllRN 
FND 

A400 Fl\lf") OF RFCORf') 
79500. ?,7.7fJ 42.15 

0 .011000 R 7 /~ 

48. c;o. 
7.5 R.O R.c:; 9. 

R 

F~ID OF FILE 
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17 

CD TOT 0?,0? 
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