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LIST OF SYMBOLS

Any symbol used is generally defined when

introduced. The standard symbols are listed below:

a Height of the shear wall model above its point
of rotation

ay Square of length 1ij

a, Square of length jk

dg Square of length ki

d Length of overhanging part of the slab beyond the
walls

D Flexural rigidity of the slab

Ry Distapce from the inner edge of the wall to the
centriod of its cross-section

E Modulus of elasticity

F% External nodal force in Z' direction

PéX External nodal moment about X' axis

FéY External nodal moment about Y' axis

h Wall thickness

hS Storey height

H Total height of the structure

I Moment of inertia of the equivalent beam

I1 Moment of inertia of the planar wall

IZ Moment of inertia of the T-section wall

Ky, Bending stiffness of the slab

[} Wall openings

%q Distgnce between point of contraflexure and
the inner edge of the planar wall

% Distance between point of contraflexure and

the inner edge of the T-section wall
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CHAPTER 1

INTRODUCTION

1.1 High-rise Buildings and the Use
of Shear Walls

High-rise buildings have become a common type of
structure all over the world. The trend of construction
of high-rise buildings for both office and residential
purposes is rapidly increasing. The inérease in population
densities due to urbanization, the growth of population and
high cost of land in urban areas are the main reasons for the
need of high-rise buildings.

Although the construction of high-rise buildings
has solved the problem of usable space in urban areas, it
has caused many environmental, psychological and social
problems. In addition to these problems, there remain many
engineering and technical problems associated with tall
building construction. To provide efficient elevating
devices for the users, the operation of heating and cooling
systems, the supply of water and electricity, to provide
telephone and other means of communication through the
building, to provide safety against fire hazards, to provide

/
structural safety to withstand wind and earthquake effects,

to devise new construction materials and improve construction
techniques, are some of these problems. This thesis deals

with one aspect of these problems associated with tall buildings,



namely, the study of the behaviour of shear wall buildings
coupled by flat slabs to resist lateral loading due to
wind or earthquakes.

Structural components such as walls, beams,
columns and floor slabs form an integrated structural system
of a building. The structure and its components support the
vertical and lateral loads applied to the building. The
vertical loads arise due to the self weight of the components,
the occupants and other objects broadly classified as live
loads. The lateral loads arise due to the action of wind,
earthquakes or blast effect. To design a structurally safe
building, it is necessary to find the load taken by each
component, so that each component can be designed accordingly.
In high-rise buildings, the consideration of deflection due
to lateral loads becomes particularly important. For that
reason it is necessary to provide adequate lateral stiffness
to the structure. This lateral stiffness can be provided by
using various specially designed structural systems. Among
these systems, the use of reinforced concrete shear walls
coupled by floor slabs have become very common. In such a
system the high in-plane stiffness of the shear walls 1is
employed to resist the lateral loads. The floor slabs act
as horizontal diaphrams to distribute the lateral loads
among the walls and also coupled the walls. The complex
interaction of the floor slabs with the walls increases the
lateral stiffness of the structure. Besides acting as load
bearing walls, these shear walls can act as internal partitions,

acoustic barriers and provide fire divisions within the



building.

The arrangement of shear walls in a typical
apartment building is shown in Figure (1+1). The shear
walls are mainly located on both sides of the corridor. The
elevator shaft and stairwell are also enclosed by shear
walls. The present thesis is a study of the coupling effect
of the flat slabs on the stiffness of the shear wall

structure.

1.2 Review of the Previous Work

One common method of analysing shear wall structures
is known as the continuous approach. In this approach the
connecting beams or slabs between the walls are replaced by
a continuous distributing laminae of equivalent stiffness.

When the shear walls nre arranged in a symmetric
manner in the plan of the building, wind and seismic loads
will cause translational displacements only. The deformation
of the building is confined to a plane. The load displace-
ment behaviour of the structure can then be considered by a
two-dimensional analysis. Common examples of symmetric
buildings are apartment buildings with two-parallel sets of
regularly spaced shear walls. In such cases the behaviour
of the whole building can be studied from the two-dimensional
behaviour of a typical pair of shear walls. The shear wall
may be coupled either through the floor slabs or floor beams
or both. This class of problems is generally known as the

planar coupled shear walls preblems. The analysis of uniform
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plane coupled shear walls under lateral loadings has been
presented by many researchers. A representative list of
publications on the subject is given below.

Beck [1] and Rosman [20] developed the basic
differential equation for the analysis of coupled shear
walls using the continuous technique. Coull and Chaudhury
[4, 5] presented sets of design curves to enable the deflection
as well as the stresses in the walls and connecting beams
to be calculated under different lateral loading conditions.
Coull [7], Tso and Chan [27] presented the analysis of coupled
shear walls resting on an elastic foundation. Tso [26]
obtained the stresses induced in coupled shear walls due to
foundation movements. Also, Tso and Chan [25] studied the
dynamic properties of coupled shear walls. Coull and
Subedi [8] gave a solution for unsymmetrical walls with two
bands of openings and symmetrical walls with three bands of
openings. Hussein [14] presented a method of solving the
governing simultaneous second order coupled differential
equations for multi-bay coupled shear walls resting on rigid
foundations. Elkholy and Robinson [12] presented the analysis
of coupled shear walls with one or more bands of opening
resting on rigid or elastic foundations using the finite
difference technique. Schwaighofer and Microys [21] analysed
the coupled shear walls as equivalent/frames using a standard
matrix structural analysis techniquéf

When symmetry does not exist in the plan of the

building, the lateral loads will cause twisting of the



building in addition to translation. Out of plane dis-
placement exists in this case and a three-dimensional
analysis will be necessary.

Tso and Biswas [28, 29] presented a method to
analyse nonplanar coupled shear walls subjected to arbitrary
lateral loading and torque. Biswas and Tso [2] presented an
approach to study the flexural and torsional deformation of
multi-storey shear wall buildings subjected to lateral
loadings.

Treating the structure as a collection of rectangular
space frames with floor slabs idealized as infinitely rigid
diaphrams one can obtain the stiffness matrix of the
structure by determining the stiffness of the individual
elements and the rigid in-plane diaphram action of the floor
slabs. Heidebrecht and Swift [13], using the stiffness matrix
approach, presented a method where the coupling action of the
floor slab was considered by assuming equivalent beams
connecting the shear walls. Taranath [23] used a similar
approach with a finite element idealization to obtain the
transverse stiffness of the floor slab.

If the coupling action of floor slabs is replaced
by equivalent coupling beams, then the flat slab-shear wall
problem can be solved by one of the methods mentioned before.
However, the problem remains as to how one should replace the
slab by equivalent beams. To study the coupling effect of
flat slabs, Qadeer and Smith [17] presented the bending
stiffness of the slabs for pairs of planar shear walls. A

set of charts were given for the equivalent stiffness of slabs



coupling planar walls. Coull "l El-hag [9] presented some
experimental results for the effective stiffness of floor
slabs connecting plane walls, T-section walls and rectangular
box core walls. The results of Qadeer and Smith, Coull and

El-hag will be discussed in later chapters.

1.3 Purpose of Research

The purpose of the research described in this
thesis is to develop a method for the analysis of the slab
coupled shear walls. The main object is to determine the
slab stiffness in the coupled wall configuration and to deter-
mine the effective width of an equivalent beam between the
walls. This equivalent beam can then replace the slab in the
overall analysis of the shear wall building. The finite
element technique is used to obtain the stiffness of the slab.
A computer program is developed to obtain the stiffness of
the slab and its equivalent beam dimensions.

Sets of design curves are obtained to represent
the relation between the rotational stiffness of the slab,
and the equivalent beam width agxé function of the width of
the opening between the walls.

An experimental model is designed to simulate the
behaviour of a planar shear wall coupled by a floor slab.
Experimental tests were carried out and the results were
compared with the theoretical results.

Three main parts are included in this thesis.
Developing the method and converting it into a computer program

is the first part. Comparison between the results obtained



from the computer program and the experimental results is

the second part. Finally, a set of design curves is presented
based on the theoretical finite element analysis. It is

hoped that the results developed in this thesis will be

useful to designers and researchers studying the behaviour

of shear wall multi-storey buildings with coupling floor

slabs.



CHAPTER 2

FINITE ELEMENT FORMULATION

% General

In this chapter, we will illustrate the use of
the Finite Element Method based on the displacement approach
as applied to the study of a plate under bending. The method
will then be used to compute the rotational stiffness of the

slab connecting two shear walls.

2w 2 Basic Assumptions

The analysis of a flat slab coupling two shear
walls is based on the following assumptions:
i) The slab is considered homogeneous, isotropic
and linearly elastic with Poisson's ratio equal
to D15
ii) The slab is considered infinitely stiff in its
plane. Hence, the in plane deformation is neglected.
iii) The slab is thin and the deflection is small so
that the classical plate theory applies.
iv) The plane sections of the wall remain plane

during bending.

2 Bending Stiffness Matrix for a Plate Element

The derivation of the bending stiffness matrix

for a plate, using the displacement finite element method,



10

necessitates aﬁ assumed expression for deflection w'

normal to the plane of each element. Various conforming and
nonconforming functions can be used. A conforming function
satisfies both the displacement and slope continuity along

the common edges between the adjacent elements. If a complete
slope continuity is required on the interface between various
elements, the mathematical and computational difficulties
often rise disproportionately fast. It is, however, relatively
simple to obtain a shape function which ensures continuity of
displacements between the adjacent elements and violates the
transverse slope continuity. Such a function is called a non-
conforming function. An alternate way is to satisfy the
transverse slope continuity along one of the sides of the
element, resulting in a displacement function to be partially
conforming. This is satisfied by using triangular elements
and displacement functions suggested by Rawtani and Dokainish
[19]. In the present analysis, a bending stiffness matrix

for a partially conforming triangular element is developed and

used.

2.3.1 System of Axes and the Nodal Coordinates

The middle surface of the plate is subdivided into
triangular elements as shown in Figure (2.1(a)). Let
the nodes of a E?pical element be i, j, k. The nodes will be
defined by their coordinates. Two sets of right handed axes
are used to describe each element. One set is the set of

global axes denoted by X, Y, Z. Assuming the plate lies in
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the X-Y plane, the coordinates of the nodes in the global
axes are denoted by (Xi, Yi’ 0), (Xj, Yj, 0) and (Xk’ Yk’ 0),
respectively. The second set of axes is the local axes
denoted by X', Y', Z'. In the local axes the element lies in
the X'-Y' plane. The two axes X', Y' will be chosen such
that the displacement function will be partially conforming.
This will be satisfied if the origin is taken to be the
vertex i1 and Y'-axis is along the line ij. The direction of
X'-axis 1is such that Xk is always positive, as shown in
Figures (2.1(a)) and (2.1(b)). By this arrangement the local

coordinates of the nodes, i, j, k will be

(0,0,0), (O,YJ'-, 0) and (Xy,Yy,0) (z.
From Figure (2.1(c)) the coordinates Yj, Xk and Yk will be
given by

Y! = Ya, (2.

Yi = (al tag - az)/Z a; (2
and i

Xp = fa; - Y't (2.
where a;, @, and ag are the square of the lengths of the

sides 1j, jk and ki, respectively.

.2.3.2 Displacement Formulation of the Plate Problem

Three displacement components are considered as
nodal parameters. The first is the displacement w' in the Z'

direction, the second is the rotation about X'-axis (ei) and
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of an Element an Element

Figure (2.1) Systems of Axes and Node Numbers.
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the third is the rotation about the Y'-axis (OQ) where

ow'

oy = 2L (2.5(a))
and

v 3w’

®y = - T (2.5(b))

The partially conforming displacement function as suggested
in reference [19] with respect to the local axes is a cubic

polynomial in X' and Y', namely,

2 5

w' = a,+a X'+a3Y'+a4X'2+a5X'Y'+a6Y'

k4
1192 +a X'“+a8X'2Y'+a9Y'

7 (2.6)

Where o i =1,9 are arbitrary constants.

Along the line X' equals zero, the transverse slope
ow'
ax " 2 7 %s

specified at the two ends of this line, the expression for the

+

will be Xs Since the value of the slope is
transverse slope is unique along the line X' = 0. This makes
the displacement function w' partially conforming.

Equation (2.6) can be written in matrix form as

w' = [C]{a} (2:7)
where

2 2 3 2 ﬁ

[C] = [1,X',Y',X"7,X'Y, Y'7, X" , X7y, Y! (2.8)

and {a} is the column vector of coefficients @y to ag.
The nodal displacement vector referred to the local axes can

be defined as,

{81} = d0y; | (2.9)
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From Equations (2.5), (2.6) and (2.9) the nodal displacement
vector becomes

1 ox v oxwlxiyr vl oxedxZyi yiS
Y XXy YU XiTXiUYDo Y

(o

s2y=100 1 o x a0 it oay?
i i i i p g | 1

0-1 0 -2X! -Y! 0 -3loxy. o
1 i 1 1 1

o | (2.10)

The element displacement vector referred to the local
axes will be given by the listing of the nodal displacements,

now totalling three,

O
[T

{Gé}= S {2.11)

[og]
-

From Equations (2.10) and (2.11) the element displacement

vector referred to the local axes becomes



{e 1=

Substituting for

from Equation (2.

1é.)=

Equation (2.12b)

{8}

15

-
2 oxryr oy oxid X1 2y y:3 "
i 171 1 1 i1 1 1
2 2
1 1
0 Xi ZYi 0 Xi SYi oy
2
- N - ' 2
ZXi Yi 0 3Xi ZXiYi 0 ax
2 2 3 2 3
X! Xiyr y':. X1 p 4 Y!
] S T B . i %4
0 Xy oavp oo X T L agh (2.12
2
ZX! -Y! 0 -3X! -2Y X! 0
J2 ! 2 % 2J ¢ 3 E
1 1 1 i 1 1 1
o N Yo X XYoo Yg By
0 Xk ZYi 0 Xiz 3Y§2 ag
2
—ZXk —Yi 0 -SXi -ZXL & 0 ] Laga
(Xi, Yi, Zi), (X%, Yj, Zj) and (X{, Yi, Zi)
1), Equation (2.12.a) becomes
0 0 0 0 0 0 0 ] ’al'
1 0 0 0 0 0 0 o,
0 0 0 0 0 0 0 az
2 3
| 1
Yj 0 0 Yj 0 0 Yj ’ oy 1o
" .
1 0 0 ZYj 0 0 3Yj Log p
0 0 -Y! 0 0 0 0 o
] 6
.. 2 3 2 .3
Yk Ki XﬁYi Yk Xi Xﬁ i £ Yk an
, 2 2
Al 0 Xk ZYk 0 Xi SYL ag
2
0 -Qxi —Yi 0 -3X4 -2Y£Yi 0 § | dg |
can be written in matrix form as
= [A] {a} (2:13)

From Equations (2.7) and (2.13) the displacement function
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becomes

=1

W' = [C][A] {Gé} (2.14)

The element stiffness matrix will be obtained by applying the
principle of virtual work. If the external and internal
forces are statically equivalent, then the external and
internal work done will be equal. Let the external nodal

force vector referred to the local axes be

1
FZ1

(F1} = JFly, (2.15)

T
Fovi

ot vy 1 ey = ™ ~ = G
Where FZi’ Fex1’ and TeY are the external force and moments
in the Z', X', Y' directions respectively. The element nodal

forces {Fé} referred to the local 2xes will be

F!]
1

{F.} o FJ! .

|k

1 1 F! o] 1 ol 1 T
zioFoxi Fovis Tz Foxi Fovi Fzxe Foxxe Fovk!

(2.16)

The corresponding internal moments for each element will be

T

M! - 1 1 1 ' 17
(Mg} = IMys My g o Myy g oMy 5o My 55Ny 5o My Myse My (2.17)

The curvature {r'} at any point in the directions of local



axes will be

(' =

the curvature vector becomes

(2.18)

o0 0 2 0 0 6X' 2y 0 “al"
(™ =10 o 0 0 0 2 0 O 6Y' o, (2.19)
0 0 0 0 2 0 0  4X! 0 ax
Oy
40(5}'
%6
%y
o8
L %9 |
Substituting for {a} from Equation (2.13), Equation (2.19)
becomes
: =
{r't = [CyI1[A "]1{s]) (2.20)
where
0 0 0 2 0 0 6X'2Y!' 0
[C;] = 0 ¢ 0 0 0 2 0 0 6Y" (2.21)

Let A{Gé} be the virtual displacement, and A{r'} the corres-
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ponding virtual curvature at the nodes. The work done by
the external nodal forces is equal to the sum of the products
of the individual force components and corresponding displace-

ments,

Work Done = [A{Gé}]T 5 {Fé} (2.22a)

Similarly, the internal work per unit volume done by the

internal forces 1is
\ T 1
[A{T"}] °{Me} (2:22Bh)

Equating the external work with the total internal work, we

have

~[[A{r@]T-{Mé}od(vol) . [A{éé}]T.{Fé} (2.22)
v

For an isotropic linearly elastic plate, the relation between

the curvature and moments is given by

i 1
Myi

{M:} = M

Yi

A

1
 Myys ]

3
- _E-t ~—+[D]. {r} (2.23)
12(1-v7)

where E is the modulus of elasticity, t is the thickness and

v is Poisson's ratio of the plate; and

i v 0
[D] = v ;| 0 : (2.24)
1-v
o 05 |
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Substituting Equations (2.17), (2.20) and (2.23) into Eauation

(2.22), it becomes
E _gf[A{a'}]T[A-1]T[C1]T_t3[D][Cl][A—l]{aé}dx,dy,

= [A{dé}]T. (FL} (2.25)

Since A{sé} is an arbitrary, the elements of matrix [A'l]
are constant and assuming uniform plate thickness, Equation

(2.25) becomes,

3
E & -1,T T -1
{(Fl} = —L—— (A1 [ JJ[cy1 (DI MCy] dx' dy'1[A]" (68)}
12(1-v7)
(2.26)
Comparing the definition of the stiffness matrix
i) = [k} 18} , (2.27)

The bending stiffness matrix for the element referred to the

local axes is given by
E t3 -14T T -1
(k] = —F—— (A1 [[f [cy1  [DI[C ldx"dy ] [AT"]  (2.28)
@ 2 1 1
12(1-v7)
Integrating over the area of the element as will be given in

Appendix (a), the element stiffness matrix [ké] becomes

3
(k1] = —=t— [a~117B1[A71] (2.29)

. 12{1-9)

where
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0
0 0
0 0 0
0 0 0 4211 Symmetric
0 0 0 0 2(1-v)211
[B] = |0 0 0 d4veyq; O 42,4
0 0 0 12554 0 12v221 3625,
0 0 0 424, 4(1—\))221 4v212 1295, 4213+8(1-v)231
_0 0 0 12v212 0 12&12 36v£22 12\)213 36%13_
(2.30)

and

I | 2 oy
21 =6 *x Y
-_— 1 '3 1
29 T17 Xk Y3
9, = _1_ X! y! (Y' + Yl) (2 31)
12 = 6 Xk Y5 (Y5 k :

L i 2 2
y3 = 1z Xk Y O)T ¢ Y3 Yp e )

L

_ 12 vl '
b2 = 7x X Yy (Y5 o+ 2

K

2.4 Total Stiffness Matrix for the Plate

2.4.1 Transformation to the Common Global Axes

To assemble the element stiffness matrices into a
single total stiffness matrix, all the matrices must be referred

to the set of global axes. Each element stiffness matrix must
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be transformed from the local axes to the global axes.
The element nodal displacements in local axes {Gé}
are related to the element nodal displacements in the global

axes by the relation

' =
{Ge} [T]{Ge} (2.
where
{Ge} is the nodal displacement of an element referred to the
global axes. [T] is the transformation square matrix of order

equal to the number of the element nodal displacements.
Similarly the element nodal forces in the local axes {Fé} are
related to the element nodal forces in the global axes {Fe}

by the relation

{Fé} = [T] {Fe} (2,
Using Equations (2.32), and (2.33), Equation (2.27) becomes
[T] {Fe} = [ké][T]{se} (2.

Each of the two sets of axes are orthogonal, therefore, the

transformation matrix [T] is orthogonal, i.e.,

Equation (2.34) becomes

(F_3 = [T]7 [K1I[T](s,} (2.

Comparing the definition of the stiffness matrix

1Bt = [k Ti8.} (2.

32)

33)

34)

.35)

36)

37)



The bending stiffness matrix [

axes will be

T '
[k 1 = [T17 [k}][T]

The transformation matrix [T]

A 0
[T] = 0 A
0 0

is a sub-matrix of direct

[A]

follows:
n 1
2 z
[x] = n 1X
n 1
¥ y
where
x* M, n are the direction
1., m , n are the direction
y y ¥
1, m, n are the direction
zZ z %

These direction cosines can be

relations

C = X55 Vs ™ Xpq Y51 o
F=yJx% +v.2

J1 Jj1
G = - |c|
1Z = 0, ’ mZ =
1. = X../F m._ =
y Jl/ 2 Yy
1){ = my.nz 5 mx =

22

ke] referred to the global

(2.38)
1s given by
0
0 (2.39)
A
ion cosines and defined as
n,
m (2.40)
m
y
cosines of X' with X, Y, Z axes
cosines of y' with x, v, 7 axes
cosines to Z' with X, Y, Z axes
evaluated from the following
where , Y.. =Y., - Y. etc.
Ji J 1
. C
s ’ B ° &
in/F ) ny = (2.41)
-n,. ly 5 i, = 0
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2.4.2 Assembly of the Element Stiffness Matrix

Having calculated the stiffness matrices [Ke] for
the individual elements, the next step is to combine all these
matrices, according to the sequence of node numbering employed
on the structure to obtain the complete stiffness matrix for
that structure. The method of obtaining the assembled
matrix [K] for the structure from the element stiffness
matrices [Ke] is best illustrated by an example.

Figure (2.2(a)) shows a plate subdivided into
twelve triangles. There are three degrees of freedom at each
nodec. Therefore, the 9x9 stiffness matrix for each element
can be subdivided into 3x3 submatrices, as shown in Figure
(2.2(b)). With the total number of nodes equal to 12 for
this structure, the total stiffness matrix [K] will be of
size 36 x 36 and it can be subdivided into 3x3 submatrices.

As shown in Figure (2.2(c)) the element stiffness submatrices
are inserted in their appropriate locations in the total
stiffness matrix. Consider, for example, element (e). While
deriving the stiffness matrix for this element, the numbers,
i, j, k were assigned to the nodes as shown. Thus, i, j, k
correspond to node numbers 4, 8, 5 respectively on the plate.
Thus the submatrix [Kij] of the element will be inserted at
the submatrix location (4, 8) in matrix [K], as shown in
Figure (2.2(c)). Similarly, all the submatrices of all the
other elements can be inserted in the proper location. If more
than one submatrix is to be inserted in the same location of

[K], all these submatrices are to be added to each other.
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If the boundary conditions require certain nodal
displacements to be zero, the rows and the columns of [K]
corresponding to these displacements afe deleted to get the
final stiffness matrix for the structure. In the problem
considered in Figure (2.2(a)), let us assume that the edge
containing the nodes 1, 2 and 3 is fixed. Then the dis-
placements of these nodes (i.e., first nine components of
{6} ) are zero. Thus the first 9 rows and columns of [K] are
deleted to get the final stiffness matrix [K] as shown by
the solid lines in Figure (2.2(c)). The nodal forces of
such an element {Fe} will also be assembled to obtain the
total force vector {F}. The total displacement vector {§}

will be obtained from the equilibrium equation

{F} = [K]{s} (2.42)

L5 Application of the Bending Stiffness Matrix

The nodal displacements can be obtained by solving
Equation (2.42). A finite element computer program was
developed to solve the plate bending problem that has been
previously described. The first check for the accuracy of
the computer program and the displacement function used is
obtained by solving a square plate and a rectangular plate
with all edges fixed as shown in Figures (2.3(a)) and (2.3(b)).
The finite element results for the nodal displacements will be
compared by the finite difference results. The square plate
is of dimension 8' by 8' while the rectangular plate is 4' by

8'. Both the plates are subjected to a central lateral load
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of 1000 kip. The thickness of each plate is 0.667 ft., the

5 kip/ft2 and the Poisson's

modulus of elasticity is 4.32 x 10
ratio equals to 0.15. Four finite element meshes of 8, 16, 32
and 72 elements are chosen for the study of both the plates.
Plotted in Figure (2.4) is the relation between the number

of elements and the central deflection. It is clear from

that figure that there is a rapid convergence to the exact
solution, an indication that the chosen function is fairly
efficient. Table (2.1) shows the computer results for the
deflection and the two slopes of the central node. Szilard
[22] solved the plate by the finite difference method, the

results of which are tabulated for different aspect ratios

for the plate. The central deflection is given by the

equation
q 32
Wmax = Cl . T (2.43)
D
where
q is the central 1load, Wmax’ a, D, are the maximum central

deflection, the short length, the flexural rigidity of the
plates. Cy is a factor tabulated based on the finite difference
calculations. The value of Cq for the square plate 1is

0.0056, and for the rectangular plate is 0.0072. Using

Equation (2.43), the value of the central deflection for the
square plate is 0.033 feet and for the rectangular plate is
.0106 feet. Good agreement can be observed between

these results and those given in Table (2.1). The two slopes

at the central point are approximately equal to zero. The

computed results agree with the physical behaviour of the plate.
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This serves as a check for the efficiency and accuracy of the

proposed finite element scheme.

Square Plate Rectangular Plate
wﬁax eX eY wﬁax eX eY
03355 |.4472x10 1% | .8809x10710 | .01085 | .1071x10" | .974x10717

Table (2.1) Computer Results for the Slope and
Deflection of Central Point.



CHAPTER 3

METHOD OF ANALYSIS

w
i

General

Theoretical and experimental methods have been
used to obtain the fotational stiffness and the effective
width of the slabs coupling shear walls. The theoretical
analysis for the slab stiffness was based on the solution
of the plate equation by the finite difference method [17].
The analysis was carried out for the slab coupled planar
walls only. The experimental work was carried out with
different wall configurations [9]. The experimental results
presented covers three ratios of wall openings relative to
the full width of the coupled shear walls. For any other
ratio of openings, extrapolation of the results becomes
necessary. Therefore, it is useful to formulate the coupling
slab problem in general terms, so that the stiffness of the
coupling slab can be computed for a variety of geometric
configurations for design purposes.

In this chapter, a finite element analysis for
the slab is employed for finding the bending stiffness of the
slab. To facilitate the overall analysis of shear wall
buildings, it is convenient to imagine that the slab acts as
a connecting beam between the walls. The effective width of

this beam will be estimated, and the slab rotational stiffness

30



at the centroidal axes of the wall is obtained in the
present analysis. At the end of this chapter, an evaluation
for the method of analysis and the computer program will

be carried out, by comparing the results obtained using the
finite element method with the previous results obtained in

references [9], [17].

el Solution of the Finite Element Equation
Applied to the Coupled Slab Problem

To consider the form of interaction between the
slab and the walls, an idealized structure is chosen. This
idealized structure consists of two shear walls with a slab
connecting them, as shown in Figure (3:1). The slab is free
at all edges and rigidly connected to the walls.

Consider a high-rise building consisting of shgar
walls supporting flat slab floors as shown in Figure (3-2).
Under lateral loads, these shear walls will rotate causing
a relative displacement, A, between the ends of the slab.
Figure (3+3) shows the rotation of the walls and the corres-
ponding relative displacement. In view of the large in-plane
stiffness of the slab, it is generally assumed that both walls
deflect equally, so that the rotations of the cross-sections
are taken to be the same. In this case, the effective stiff-
- ness of the floor slab will be defined by the relationship
between the relative displacement A, (Figure (3-3)) and the
forces producing it. If the relative displacement, A, 1is
unity, the corresponding force to this displacement will

represent the bending stiffness of the slab. It is convenient



L

(&) Comple

an Dimension and Notations.

Ym:%h b7 7777

oy

7R

7

//é %4

\

o,

w
asi

N

T
AN

_

\
A

; 7
g /
o //C;EE
S
ion

(b) Elevat

3
g

\\\\\\
\

/
' 7
7

N
Showing Flat Slab Type

o
A ~
(]
Ki?




33

AN NSO NN N SN NN NN

Figure (3.2) Deformation of Cross Wall Structure Under
Lateral Loading.
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Figure (3.3) Slab Deformation Resulting from Rotation of Walls.
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to consider the slab as a lintel beam between the walls. If
this beam is assumed to have a depth equal to the thickness
of the slab, its effective width, Ye will be determined such
that its bending stiffness becomes the same as that of the
slab. Also, the rotational stiffness of that beam calculated
at the centroid of the cross-section of the wall is taken

as the rotational stiffness of the slab. This rotational
stiffness represents the slab effective stiffness on the
shear wall.

To calculate the bending stiffness of the slab,
the overall stiffness matrix [k] can be obtained as described
in the previous chapter. A unit relative vertical displace-
ment with zero slopes will be specifjed at the nodes on the
boundaries between the slab and the walls. The corresponding
vertical nodal forces are computed and the summation of
these vertical nodal forces on one wall represents the bending
stiffness of the slab.

Equation (2.42) represents the force-displacement
relationship for the mathematical model shown in Figure (3-4).
The displacements at the nodes at the boundaries between
the walls and the slab are known while the forces are unknown.
On the other hand, the remaining nodes have known zero
applied forces but the displacements are unknown. Thus the
force and displacement vectors in Equation (2.42) are
partially known in the sense that in each vector some elements
are known and some are unknown. For example, as shown in

Figure (3.4), the nodes numbered from 1 to 69 have zero forces



59 60 61 63__64 65 66 67 8 69
48 a9 50 51 /52 /153 /54 /55 56 57 B8
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Figure (3.4) Typical Problem with Sequence of Numbering the Nodes.
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and unknown displacements. The nodes numbered from 70 to
77 have known displacements and unknown forces and moments.

To obtain the solution, Equation (2.42) can be written as

S S ST T i (3.1)

where
{Fa}represents the known zero forces
{Fb}represents the unknown forces
{éa}represents the unknown displacements

{éb}represents the known displacements

Expanding Equation (3.1), we obtain

(F 3 = [K 1o 06,3 + [K, 1+08,) (3.2)

{Fb} = [Kba]'{éa} ¥ [Kbb]-{éb} , =%
Solving Equations (3.2) and (3.3) and noting that {Fa} is
a zero vector, the solution becomes

(F 1

[[Kbb] - [Kba] [Kaa]- [Kab]]'{db} (3-4)

40

or

{F [K}{sb} (3.5)

b}

The vector {éb} represents the known displacements of the
nodes at the boundaries between the slab and the walls.
Solving Equation (3.5) for unit relative dis-

placement and zero slope, the nodal forces and moments will
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be obtained. The summation of the vertical forces at the
boundary between the wall and the slab then represent the

bending stiffness of the slab.

3.3 Considerations for Symmetry and Anti-
Symmetry of Some Slab Configurations

For the purpose of saving computer time and core
storage, conditions of symmetry and anti-symmetry are given
careful consideration. When circumstances permit, one
quarter or one half of the slab is solved to obtain the

solution instead of using the complete slab.

3.3.1 Boundary Conditions for One
Quarter of the Slab

Figure (3.5(a)) shows a slab configuration in
which only one quarter of the slab needs to be considered.
Due to the conditions of loading, the X-X axis is an axis
of symmetry and the Y-Y axis is an axis of anti-symmetry.
Figure (3.5(b)) shows a quarter of the slab with boundary
conditions along the two axes X-X and Y-Y. From this figure
the boundary conditions along the Y-Y axis are such that at

each node, both W and 8 are equal to zero and 6 is

X1 Yi

unknown. The corresponding forces F_4 and FeXi are unknown

and FeYi equals to zero. Nodes along the X-X axis have By 3

equals to zero and both W and 8y; are unknown. Correspondingly

both F and Fe are equal to zero and Fe is unknown.

Zi Yi X1
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3.3.2 Boundary Conditions for One
Half of the Slab

If one axis of symmetry exists, then only one
half of the plate needs to be considered. Figure (3.6(a))
shows an example of the case where the first wall is a
planar wall, while the other wall is a T-section. The
boundary conditions along the axis X-X are shown in Figure

(3.6(b)). Along boundary X-X the force FZ , the moment FGY'

i 1
and the rotation 6y; are equal to zero, while the deflection
w., the rotation 6,. and the moment F_,. are unknown.

1 Yi 6X1

3.3.3 Method of Solution

The plate is divided into two regions. The first
region includes the nodes not on the X-X and Y-Y axes. These
nodes have zero applied forces on them. These forces are
excluded from the analysis as explained in Section 3.1. The
second region includes the nodes along the X-X and Y-Y axes.
The nodes on the boundary between the wall and the slab are
given unit displacements, while the corresponding forces are
to be determined. For other nodes on the axes, the boundary
conditions are applied as was explained before. The force
vector {Fb} and consequently the stiffness matrix [K] are so
arranged that the nodes with zero forces appear first in the

force and displacement vector as shown below.

{Fbl} :! 12] Bpa!

il | i ST o (3.6)
|
i

{Fy o} Kopd | (K] By
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where

{Fy 1} are the zero forces resulting from the arrangement
of the force vector.

{sz} are the unknown forces at the nodes along the axes.

{abl} are the unknown displacements at the nodes along

the axes.
{dbz} are the known displacements at the nodes along the

axes.

Equation (3.6) can be treated in the same way as described
in connection with Equation (3.1), and the final solution will

be
{sz} = [Ké]'{dbz} (3.7)

where

- ' : v 1=1
[Kz] = [[Kzz] - [K21][K11]

[ ,]1] (3.8)

The displacement vector {§,,} is given as a known input and

b2
Equation (3.7) can be solved to obtain the force vector {sz}
which includes the nodal forces at the boundary between the

wall and the slab.

3.4 Equivalent Effective Width of the Slab

If the slab is considered as a beam of the same
thickness connecting the two walls, the bending stiffness of
that beam at its connection to the wall will necessarily be
equal to the stiffness of the slab. Let Kb represent the

bending stiffness of the slab, then
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Kb = sum of all vertical forces at the nodes
on the boundary between the wall and the
slab due to a relative unit displacement
between the walls.

The stiffness of the equivalent beam equals to Kb , thus

12 Esl

K, = 22 Bl (3.

b 03

in which E is the modulus of elasticity, I is the moment

of inertia of the equivalent beam and £ 1is the width of

the opening between the two walls (connecting beam length).
Let Ye be the effective width of the equivalent beam. Since
the equivalent beam has the same thickness and modulus of

elasticity as the slab, Equation (3.9) becomes

= P

12 12 B

The effective width Ye can be normalized to the total width

of the slab Y, thus

<
~
=

.
Y

The width of the slab Y will be the distance centreline to

centreline between two consecutive shear walls. The relation

between Ye/Y and the distance & is represented in the form
of a set of curves as will be described in Chapter 5. The
length £ will also be normalized to the total width L as

shown in Figure (3.1(a)).

= P (3.

9)

10)

11)



3.5 Rotational Stiffness of the Slab

The rotational stiffness of the slab or its
effective stiffness to the shear walls is obtained at the
centroid of the wall cross-sections. Three types of wall
cross-sections will be studied. The first type consists
of the situation where two T-section walls are connected by
the slab. The second type consists of two planar walls
coupled by the slab and the third type consists of one

planar wall and one T-section wall coupled by the slab.

3.5.1 The Rotational Stiffnecss for the Configuration
of a Slab Coupled T-Section Walls or Planar Walls

A general formula for the rotational stiffness
will be obtained for the configuration of two T-section
walls coupled by a beam. The two planar walls configuration
can be taken as a special case of the T-section walls.
Figure (3.7) shows two T-section walls connected by the
equivalent beam. Let P be the force which causes a relative
displacement, A, between the two walls coupled by the slab.
The same force P will cause a relative displacement, A4,
between the two ends of the equivalent beam. The fixed end

moment will then be

1

Let ey be the distance from the inner edge of the wall to
its centroid. The rotational moment at the centriod of the
cross-section of the wall will be M, where

Py,

M. = PTR (3.12)

M=2ap e (3.13)

Z
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Let ¢ be the angle of rotation of the wall due to the

moment M, from Figure (3.7(b)) we have

A
¢ ='§//(2/2 * ex)
- A :
¢ = T+ 72 e (3.
, X
The rotational stiffness of the slab is then defined as
2
M:Exm)__ (3
¢ A 2 )
Since the value of P/A represents the bending stiffness
Kb , thus Equation (3.15) becomes
K
M b 2
75"“—2—-(2"'26) (3.
To normalize this rotational stiffness, it will be divided
by the flexural rigidity of the slab D where
. s a
D = E-t2 (3.
12(1-v7)

Thus the nondimensional rotational stiffness of the slab at

the centroid of the cross-section of the wall becomes

Using Eguations (3.16), (3.17) and (3.11), Equation (3.18)

becomes
6(Ye/Y).(Y/R)‘(1—\)2)

R = £S5

[¢/(2+2 e )]

Equation (3.19) relates the rotational stiffness R to the

14)

15)

16)

17)

.18)

19)
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€qitivalent width Ye for a T-section wall.
Figure (3.8) shows the configuration of a coupled
Planar walls. The centroid of the cross-section of the

Planar wall is at the middle of the wall, thus

o, X
e = 3 (3.20)

Suhstituting Equation (3.20) into Equation (3.19), the non-
dimensional rotational stiffness of the slab coupled planar
wWalls, becomes

6 (Y /Y)(Y/2)(1-v?)

R = ’ " (3.21)
[/ (2+w)]?

3.5.2 Rotational Stiffness for the Configuration of a
Slab Coupled Planar Wall with T-Section Wall

The rotational stiffness of the slab coupled
Planar wall with T-section wall is obtained considering the
a¢ {ual position of the point of contraflexure, which is no
1énger at the midpoint of the connecting beam. This analysis
is done to evaluate the assumption of considering the point
ol contraflexure to be at the middle of the connecting beam.
The actual analysis is derived in this section while the
discussion is delayed till Chapter 5 where a general discussion
oL various effects is presented.

The external moment applied to the coupled walls
1s resisted by the moment carried by each wall and the axial
foyces in the two walls. FEach wall will resist a moment

ac-cording to its stiffness. Since the two walls have different



(a)

(2)

Figure (3.8) Typical Plan and the Rotation of Planar Walls.
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stiffnesses, then the moment carried by each wall is
different. Thus the point of contraflexure is no longer at
the mid-span between the two walls. Let Il and 12 represent
the inertias of the planar and T-section walls about axes

passing through their respective centroids, then from

Figure (3.9)

21/22 = 11/12 (3.

where g, and L, are the distances between the point of

1

contraflexure and the inner edges of the planar wall and the

T-section wall, respectively. In terms of wall opening *?
we have
2
Bg B spemSepec (5
1 1+IE711
and
g = sertar— (3
2 1+ 1712 ’

Since the angle of rotation of the two walls will be the

same, then

i e R 3
AZ 22 + e
or
Ly + ®
by, = —S— X A (3
L+ > + eX
Substituting Equation (3.24) into (3.26)
ey ey -
2 7 W v '

L+
7 7 Cx

22)

23)

24)

25)

.26)

27)
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B e B o

Figure (3.9) Typical Plan and Rotations of Planar Wall
with T-Section Wall.
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The angle of rotation of the wall ¢ is given by

R (3.28)

6 = A (3.29)

Let Mp be the rotational moment acting at the centroid of

the planar wall section, then

M =P 2 +p§ (3.30)

Using Equations (3.17), (3.23) and (3.29), the nondimensional
rotational stiffness of the slab at the centroid of the

planar wall section Rp, becomes

M

. _D
R = =b
P D¢

2 2 w w  x : ‘
6(Ye/Y)e(Y/SL )e(1-v ]o[w + szl_]-[1+zl_+_I L3~'._31)

In a similar way, the rotational moment Mg calculated at the

centroid of the T-section wall will be

_ P
I\qf = 7 [FI_171—2 + 2 ex] ' (3.32)

The nondimensional rotational stiffness of the slab at the

centroid of the cross-section of the T-section wall Rg,

becomes

2 2 8 S w Sx .
Re = 60Y /Y12y Hprr s Lo (3.33)
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We have discussed the various formulae used to
obtain the equivalent width of the slab and the rotational
stiffness of the slab for a variety of coupled wall configura-
tions. In the remaining sections, we shall outline the
flow chart of a computer program developed and calibrate
the computer program by comparing some computed results

against results that have appeared in the literature.

3.6 Computer Program

A computer program is developed to carry out the
computation using the method of analysis described above.
Figure (3.10) shows a flow chart for that program. It
consists of three parts:

The first part is a group of subroutines to
formulate the total stiffness matrix of the slab. These
subroutines are:

a) Subroutine LAMDA to obtain the direction cosines
of the local axes.

b) Subroutine AINVRS to obtain the inversion of
maxtrix [A].

c) Subroutine BENDK to formulate the element

stiffness matrix in the local axes.

d) Subroutine TRANS to transform the element stiffness
matrix from the local to the global axes.
e) Subroutine ASSEMB to formulate the total stiffness

matrix.
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(3.10) Flow Chart for the Computer Program.



52

The second part is the partition of the stiff-
ness matrix to obtain the matrix [K] represented in
Equation (3.5). This partition is used to omit the unknown
displacements along the nodes not located on the boundary
between the wall and the slab, nor on the axis of symmetry
and antisymmetry.

The third part includes the boundary conditions
for the cases where only a quarter and a half of the slab
are solved. This part, together with the first two parts
is represented in two programs. One program is for solving
the quarter of the slab problem, and the other is for solving
the half of the slab problem. A complete listing of the

program is given in Appendix B.

3.7 Verification of the Computer Program
and the Method of Analysis

In order to check the method of analysis suggested
in this thesis and to test the computer program, different
slabs are analysed and the results are compared with the
previously obtained results given in the literature [9, 17].
In addition, a problem with a known solution is solved by

the computer program to verify its accuracy.

3.7.1 Analytical Verification

Consider a slab connecting two shear walls as
shown in Figure (3.11(a)). The configuration consists of
two planar walls of thickness one foot each with an opening

3.5 feet in between. The slab width is taken to be the same
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as the thickness of the walls. Figure (3.11(b)) shows a
quarter of the slab to be solved and the method of number-
ing of the nodes. The computer results are shown in Table
(3.1). This slab is solved analytically as a beam of a
width of one foot and depth 0.667 foot fixed at both ends.
Table (3.2) shows the analytical results.

Since the slab is of the same width as the wall
thickness, it is expected that its effective width will be
the full width. As given in Table (3.1) the ratio of the
equivalent width to the total width is 1.005. This means
that the equivalent beam width equals the width of the slab
with an error of 0.5%. Comparing the stiffness and the
fixed end moments, we can conclude that the computer results
agree with the analytical values within an acceptable

accuracy.

3.7.2 Comparison with Results Given
: in the Literature

A set of curves has been presented by Qadeer and
Smith [17] on the slab coupled planar wall problem. These
curves were obtained by using the finite difference method
to solve the plate equation. These curves show the relations
between the normalized wall openings and both the normalized
effective width Ye/Y and the nondimensional rotational
stiffness R. It should be pointed out that in this investiga-
tion the continuity between the slabs are considered and the
wall thicknesses are taken to be infinitesimal. In addition,

Qadeer and Smith [17] carried out two sets of experiments,
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Figure (3.11) Numerical Example - Full Dimensions and

the Finite Element Mesh.
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Table (3.1) Computer Results
Stiffness My x 102 2tMy
Y ft.| 2 ft. Ye/Y (reaction) 36 37 33 39 20 % 102
1 3:5 | 1.00577 3.006x103 3.237 | 6.769 | 6.85 | 6.066 | 3.385| 52.614
Table (3.2) Analytical Results
Y ft, . ft, Stiffngss M
(reaction)
3 2
1 3.5 2.99x10 52.2x10
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in which the slabs are considered free along the edges.

Figure (3.12) shows the plan dimensions of the
problem studied in reference [17] with d as the length of
the overhanging part of the slab beyond the walls. Table
(3.3) shows the dimensions of the slabs and the wall
configuration that were studied experimentally, while Table
(3.4) shows the dimensions of the slabs which were solved
by the finite difference scheme. The same slabs with all
edges free are analysed by the finite element method as
presented in this thesis. The results based on the finite
difference scheme and the finite element technique are
plotted in Figure (3.14). In the same figure, the percentage
of difference in the effective width of the slab between
the two methods is also plotted. The results based on the
finite element technique are also plotted in Figure (3.13)
with the experimental results of reference [17].

From Figure (3.13), the finite element results
gi&e higher values for the stiffness of the slab. At the
same time, the finite element analysis also gives higher
values than the finite difference analysis for the stiffness
of the slab. However, it should be noted that the computed
results based on finite element technique follow similar trend
results given by Qadeer and Smith.

Coull and El-hag [9] published sets of curves
obtained experimentally for slabs coupled shear walls. These
curves show the relation between the ratio i/L and both the

nondimensional rotational stiffness and the equivalent beam
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Table (3.3) Dimensions of Coupled Wall Configuration to
Compare with Experimental Results given in
Ref. [17].

L ft. w ft.| Y ft. L ft. /L | w/L Y/L

6 6 12 3 <45 .5

6 12 12 5 « 25 1

6 16.1 12 5 i 25 1.34

Table (3.4) Dimensions of Coupled Wall Configuration to
Compare with the Finite Difference Results
given in Ref. [17].

L ft. LY. 52 52 52 32 32 32 32
Y £t 8 8 8 8 8 8 8 8
% T, 1.6y 3.2 6.4 9.6|12.8] 16 19.2 | 22.4
w ft 15.2} 14.4}112.8 {11.2} 9.6] 8 6.4 4.8
2/L 25 | 0.1 o2 ot A5 .6 ¥
Y/1i 25 | 25 Loy «2h| «25] «25 sbd | «&5

'58



/%

Yo

0.9

0.8

0.6

0.4

0.3

0.2

59

' 3

r<——— W —t— & ——-Jr:—— W e <

‘ e

» %

] . X

G

St
-y-d—

. A
Y e e T v man SRS o6 “E?':

e

 ——

— i . P ]

/ ‘ '.,
/ e Finite Element __

- __ _Finite Difference Ref. 7]

e

_ \ ) _—
\{ng- Elff—urence
1 ! | | ! |
OlJ 02 0.3 04 3.5 0.6 o.7_g7/L

Figure (3.14) Comparison Between the Finite Element and Finite
igur . _ ¢
Difference Results (/L vs. \ e/Y) ‘

S0

80

70

60

40

30

20

10



60

width of the slab. No theoretical investigation was presented
in this paper. In the experiment the model consists of two
steel walls coupled by a perspex sheet to act as a slab.

We shall use these experimental values to provide a check

on the proposed finite element scheme of computation.

For the planar wall configuration, four sets of
slab sizes are considered. In the first two sets of the
slabs, the ratio Y/L is taken as 0.3 and 0.5. The resulting
finite element values together with the experimental values
given in reference [9], are plotted in Figures (3.15), (3.17)
and (3.18), for different values of ¢/L. In the third set
of slabs, the ratio w/Y is chosen as constant, while the
ratios Y/L and &/L are taken as variables. Table (3.5)
shows the dimensions of these slabs. The lower graph in
- Figure (3.15) shows the finite element results and the
experimental results given in reference [9] for the third
set of slabs. Table (3.6) shows the dimensions for the
fourth set of slabs in which w/Y 1is also taken as constant.
Plotted in Figure (3.16) is the relationship between Y/L and
Ye/Y’ for both the finite element results and the experimental
results given in reference [9].

These figures show reasonable agreement between
the experimental and the theoretical results, with an
exception when the ratio of ¢/L equals 0.2. This deviation
may be due to the difficulty of accurate measurement when
the opening between the walls becomes small.

A second comparison is made between the finite

element results and the experimental work given in reference [9],



61

‘td
P
0.6 —
0.4 }—
0.2 § ___ Theoretical
o - ExPerimontal °
: : (Coull&Ei-hag)
| l | |

01 0.2 0.3 0.4 0.5 /L

Figure (3.15) Comparison Between the Ixperimental and the Finite
Element Results (g/1 VS- Ye/Y) .

L -
e—W I 4 r‘J! w
" ;
0.8 i—
Y e et e
0.6 [— i
0 .
0.4 — Theorctical
© ExPerimental
= (Coull&El-hag)
02 ==
0}
l 1 J l | -
05 0.6 0.7 0.8 0.9 Y/ L

Figure (3.16) Comparison Between the Experimental and the Finite
Element Results (Y/L vs. Y /Y).
e



62

R g —
45 t—
Y |eorscnrmrees 5o e T e
40 |—
35— :
30— < L >
©
25—
20 }— Theoretical
15— [0) ExPerimental
(Coull&E1-hag)
10}— Y _ '
L =0.5
58—
! | | N
0.1 0.2 0.3 0.4 0.5 /L

30

25

20

i5

10

Figure (3.17) Comparison Between the Experimental and the Finite
Element Results. (&/L ws. R).

Theoretical

s e

[0} ExPerimental
(Coull &E1-nag)

| l ! L i

04 0.2 0.3 0.4 0.5 é/L

Figure (3.18) Compariscn Between the Experimental and the Finite
Element Results (&/L  yg, R).



63

for the slabs coupled box core walls. Table (3.7) shows

the dimensions of the slabs under study. Plotted in

Figure (3.19) is the relations between i/L and Ye/Y for ZJY
equals 0.3 and 0.5. This figure shows some deviation

between the finite element results and the experimental
results. This deviation may be due to possible local deforma-
tion of the core walils in the experimental set-up.

By comparing the results obtained by the finite
element scheme with the experimental results given in
reference [9], it is concluded that the computer program is
operational. At the same time thec method of analysis is
sufficiently accurate to represent the coupling slab stiffness.

It should be noted that the theoretical and
experimental curves, obtained by Qadeer and Smith [17] and
Coull and El-hag [9], respectively, represent the relations
between the wall openings and the slab stiffness, for
moderate to large wall openings only. No data were given for
small values of wall opening (2/L = 0.1 say). In practice,
the arrangement of shear walls in high-rise buildings is such
that usually, the practical range of ¢/L is between 0.1 to
0.2. 1In addition, the curves represented in the previous two
references are computed assuming infinitesimal wall thickness.
As will be shown later, such an assumption under estimates
the stiffness of the slab.

For values of g/L equals 0.2 , the experimental
results given in reference [9] do not agree well with the

theoretical results given by the finite element scheme.
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Table (3.5) Dimensions of Coupled Wall Configuration to Compare
with Experimental Results Given in Ref. [9].
[ W I Y /L Y/L w/Y
20 10 40 33.4 5 .835 ..
16 12 40 40 .4 1 oD
10 15 40 50 .25 1.25 .3

Table (3.6) Dimensions of Coupled Wall Configuration to Compare

with Experimental Results Given in Ref. [9].

% w L Y 2/L Y/L w/Y
6.55 | 16.75 40 33.5 .1635 .836 &
11.5 14.25 40 28.5 .2865 u Lt -
15 12.5 40 25 .375 .625 5
Table (3.7) Dimensions of Coupled Wall Configuration to Compare
with Experimental Results Given in Ref. [19].
W/Y ZLY W Z 2/L L L
D % 3.6 3.6 «25 9.6 2.4
4 12 4.8
5 14.4 74
. 5 6 6 < 25 16 4
A4 20 8
s 24 12
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Since we are interested particularly in small wall openings,
it was decided that an experiment would be carried out to
obtain data for small ‘wall opening coupled wall configura-
tions. Such experimental work will be described in the

next chapter,



CHAPTER 4

EXPERIMENTAL WORK

4.1 General

As discussed in Chapter 3, the critical range
of wall opening is where &/L less than 0.2. However,
there appears relatively little information on the stiffness
of the coupled wall system in this range. Some experimental
work has been carried out by Coull and El-hag [9]. Comparison
between their experimental results with the finite element
computation results shows good agreement for values of 2/L
greater than 0.25. For smaller values of &/L, some difference
exists between the theoretical and experimental values.
Therefore, an experiment is carried out to study the stiffness
of the slab coupled planar walls. Such experimental investi-
gation will complement the theoretical studies presented,

particularly in the range of small wall openings.

4.2 Mathematical Representation for the
Experimental Model

When a coupled shear wall is subjected to lateral
forces, its deflected shape will be as shown in Figure (3.2).
The effective stiffness of floor slab will be defined by
the relationship between the relative vertical displacement A
Figure (3.3)) and the forces producing it. If the two walls

are similar, each wall will move A/2, and the line of contra-
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flexure of the slab will be at the mid-span between the
walls. Therefore, one can study the behaviour of coupled
shear walls by making use of this anti-symmetrical property.
In other words, one can use one shear wall connected to a
slab and use a roller support to simulate the line of
contraflexure condition at the mid-line of the connecting
slab.

Figure (4.1) shows the suggested structural
system that simulates the behaviour of the coupled shear walls
as described by Qadeer and Smith [17], while Figure (4.2)
shows the actual model that has been used in the present
study. From Figure (4.1), the relative displacement A

and the rotation ¢ can be expressed as

3 ,
% - l% ) Tf%g+w) . 1]
j = Yéﬁ (4.2)
Therefore,
% _ 6 EI§§+w)2 (4.3)

The nondimensional rotational stiffness R is

_ M
R =gy (4.4)

and the moment of inertia of the equivalent beam is

Ye-t3
[ = =5, (4.5)

From Equations (4.3), (4.4) and (4.5), we get



M
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Figure (4.1) Simulation of the Behaviour of the Slab
Under Lateral Loading.

T

Figure (4.2) Half of the Slab with Roller Support at
the Line of Contraflexure. ;
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23
Y =R. - (4.6)
. 6 (2+w) “ (1-v2)
The ratio Ye/Y, becomes
Y
e R 1
"“Y“= 2 . 2 (4.7)
6(1-v7) (Y/ ) (1+w/y)
In the experimental investigation shown in
Figure (4.2),
A
¢ () - (4.8)
a
M=P.a (4.9)

where

P represents the lateral load applied to the wall at

distance a from the supporting point.

g

represents the horizontal displacement of the wall due
" to the load P.

¢ 1s the angle of rotation of the wall.

Substituting Equations (4.8) and (4.9) into Equation (4.4)

yields
D 2 -
gmae8llowy  E (4.10)
E t A
Equation (4.7), becomes
Ye 23° 1 P
- = 7 - i (4.11)
E t (Y/2) (1+w/2) A



The values of P/A
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will be obtained experimentally for

different slab lengths, from which the values of Ye/Y and

R can be obtained.

4,3 Description of the Model

in the tests.

Figure (4.3) shows the experimental set-up used

The model consists of:

1 One planar steel wall of dimensions 20" x 6" x 3/8".

ii A steel slab of dimensions 36" x 12" x 1/4".
The stress-strain relationship for the steel of the
slab is shown in Figure (4.4).

iii A heavy steel frame with a 3/4 inch diameter shaft

at the top is used as a roller support, as shown
in Figure (4.5).

iv A heavy steel block fixed to the floor to act as
a rigid foundation for the shear wall, as shown
in Figure (4.5).

% Four dial gauges with accuracy Tﬁ%ﬁ of an inch

simulated by allowing the wall

for measuring the deflections of the wall, the
steel frame and the foundation block. Their

locations are shown in Figure (4.5).

The behaviour of the coupled shear walls can be

to rotate in its plane. The

wall is pivoted freely on ball
diameter steel rod. The steel

two bearings fixed in the side

bearings carried on a 3/4 inch
rod is supported on another

of a heavy steel angle, as



=

Figure (4.3)
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shown in Figure (4.6). The slab is welded to the wall, and
the excess weld is machined off. The distance & between the
two walls can be adjusted by moving the roller support. The
roller support is lubricated to allow the free movement of
the slab with a minimum of friction. The shear wall is
loaded horizontally through a wire cable connected at the
top of the wall and passes horizontally through a smooth pulley
system. At the end of the cable, there is a hanger where
the loads can be added. Two dial gauges are used to measure
the deflections at the top and the mid-height of the wall
respectively. The other two dial gauges are used to measure
the movement of the foundation block and the roller support

steel frame to ensure their movements are negligible.

4.4 Test Procedure

Since the stiffness of the steel wall is very
much larger than the stiffness of the thin slab, it may be
assumed that the deformation of the former is negligible
compared to the latter. Therefore, the measured deflection
of the wall can be considered due to the deformation of the
slab only. Seven values of wall openings are considered.
The different values of the wall opening ¢ and the total
spacing L are shown in Table (4.1). For each wall opening,
the load is increased from zero to a maximum and the lateral
deflections of the wall are recorded two minutes after each
application of the load. At the same time, the movements of

the roller support steel frame and the foundation block are
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Table (4.1) Wall Spacing for the
Different Slabs.
Conf?éigation $ 1n b i, ¢/L Y/L
1 58 70 .83 «37 %
2 44.5 56.5 .79 - 212
3 35 47 <45 <255
4 20 32 .625 375
5 8 20 4 .6
6 3,75 15.75 .24 .765
7 2 14 .143 .855
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also recorded. For each wall opening, the experiment is

carried out five times and the recorded values are the

average over five readings. The load increments, the total
loads, the corresponding average incremental lateral deflections

and the total deflections are tabulated in Appendix C.

4.5 Results and Discussion

The recorded values for the movement of the roller
support steel frame show negligible movement for this
support. Also, the foundation steel block registers no move-
ment. Figures (4.7) through (4.13) show the relationship
between P and A for the seven wall spacings tested as
measured by both dial gauges on the wall. The values of
P /A are obtained and the nondimensional rotational stiffness
R and the normalized effective width of the slab Ye/Y are

calculated. The values of a, E,v, t, Y, w,used are as

follows:
a = 16.75"
t = 0.25"
w = 6"
v = 0.3
E = 3 x 107 Ib/in2

Substituting into Equations (4.10) and (4.11) yields

2 7
R= 0.65 x 10°° (&) (4.12)
A

top
or

R= 0.325 x 1072 (&) (4.13)
A mid
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and
—Ye = 0.12 x 1072 x L (5 ) (4.14)
. (¥/2) (1+ w/ey? © R EOP
(0}
Y -
e _ -2 1 P
¥ = 0.06 x 10 X ) (r)mid (4.15)

(Y/2) (1+w/2)

Table (4.2) shows both the nondimensional rotational stiff-
ness and the effective width of the slab for different wall
openings, calculated for P /A measured at the top and at the
mid-height of the wall.

A theoretical computation is carried out for the
seven cases to obtain the effective width of the slab and its
rotational stiffness. The theoretical results and the average
of the two calculated experimental results are plotted
in Figures (4.14) and (4.15) for the effective widths and the
rotational stiffnesses, respectively.

The P -F curves provide a check on the linearity
of the experimental set up. As shown in Figures (4.14) and
(4.15), acceptable agreement is found between the experimental
and the theoretical results. For 2/L equals 0.14, there
is some difference in the value of the stiffness of the slab
between the experimental and the theoretical results. At
such small openings, the system becomes very stiff, resulting
in a very small displacement for the loads applied. The
inherent inaccuracy in displacement measurements will then
have its biggest impact to cause the disagreement between the

experimental and the theoretical results.



Table (4.2) Valueé of R and Ye/Y for Different Wall Openings

Slab 2 |P. P Te e

Sggﬁgg Y/% w/L (1#w/2) 7 top (T)mid () top (R) top (_Y')mid (R)mid
1 0.21 | 0.105 1.25 220 430 107 1.43 | 0.995 1.4
pA 0.27 | 0.135 1.285 282 582 0.96 1.83 | 0.99 1.9
K 0.344) 0.172 1.375 387 770 0.965 2.52 | 0.96 2 8
4 0.6 | 0.3 1.69 730 1370 0.86 4.75 | 0.81 A 15
5 1.5 | 0.75 3.05 1470 2880 0.387 | 9.55 | 0.38 9.35
6 3.2 1.6 6.75 3800 7100 0,21 24.7 0.2 23
7 6 3.0 16 6650 | 12700 0.0835| 43.4 | 0.08 1.5
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CHAPTER 5
DESIGN CURVES AND
DISCUSSION OF RESULTS

P | General

In this chapter, the effect of taking the shear
wall thickness into account on the slab stiffness is evaluated.
In addition, the overhanging part of the slab beyond the
walls, as defined in Figure (3.12) by the symbol d, is studied
to evaluate its effect on the stiffness of the system. For
each wall configuration shown in Figure (5.1), the coupling
slab is analysed by using the computer program developed to
obtain its stiffness. The effective width and the rotational
stiffness of the equivalent beam are represented in sets of
design curves. In order to use these curves it is necessary
to know the geometry of the cross-sections of the walils, the
width of the slab, Y, the opening between the walls, &, the
total length of the slab, L, and the thickness of the planar
wall, h. Different examples are worked out to explain the use
of these curves. The relations between the value "oH" in
coupled shear wall analysis and the wall openings are also

presented.

5.2 Effect of Shear Wall Thickness
on the Slab Stiffness

Consider the configuration of two planar walls

coupled by a slab. Three thicknesses of the walls are considered.
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These thicknesses are 12, 9 and 0 inches. The ratio Y/L is
kept at a constant value of 0.25. For each wall thickness
the value of Ye/Y for different values of ¢/L is obtained.
Figure (5.2) shows the calculated equivalent beam width for
the three thicknesses considered. In the same figure, the
percentage error resulting from neglecting the wall thickness
is plotted. The comparison of these curves shows that 1if the
wall thickness is neglected, the analysis gives an effective
width less than the actual width by a value ranging between
7% and 33%, calculated based on the value of a one foot thick
wall. Within the practical range of /1 (0.1-0.2) it is
obvious that the thickness of the planar wall should be taken
into consideration in estimating the slab stiffness.

It should be noted that the design curves presented
by Qadeer and Smith [17] were obtained neglecting the shear
wall thickness. Therefore their results will underestimate

the slab stiffness.

5.3 Effect of the Overhanging Part of
the Slab Beyond the Walls

Figure (3.12) shows a coupled shear wall with an
overhanging part of the slab beyond the walls. To ensure that
such overhanging has negligible effect on the stiffness of
the system, within the rance of the configurations studied,
some preliminary analysis are carried out with different values of «
Consider the configuration of two planar walls
coupled by a slab of Y/L equals 0.25 and &/L equals 0.1. The

overhanging part, normalized to the total length L, is varied
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between zero and 0.187. For each value of d/L the problem

is solved and the effective width is obtained. The results

are represented in Table (5.1). These results show that the
stiffness of the system is insensitive to the overhanging

part of the slab beyond the walls. Therefore, this effect will
be neglected in all design curve calculations. All design

curves will be obtained with no overhanging slab.

5.4 Presentation of the Design Curves

The design curves presented in this chapter will
show the relations between the wall openings and both the
effective width and the rotational stiffness of the different
slab coupled shear wall configurations. Each curve is generated
by five points, each pcint represents a specific wall opening
value. For each wall opening, the slab is analysed by the
finite-element method to obtain its stiffness. The total
length thickness, Poisson's ratio, and the modulus of
elasticity of the slabs are taken as 40 feet, 0.667 foot,

s kip/ftz, respectively. Three values of the

0.15 and 4.32 x 10
slab's widths Y are considered, namely, 12 feet, 20 feet and
28 feet. The wall openings are changed as shown in Table (5.2).

The shear wall thickness is taken as one foot.

5.4.1 Curves for Coupled Planar Walls

The first set of curves represent the stiffness
of the slab coupled planar walls. The relations between the
normalized values of ¢/L and Ye/Y for different values of Y/L

are shown in Figure (5.3). The relations between the
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Table (5.1) The Effective Width of the Slab for
Different Values of Dimension d
d ft. 0.00 1 1.5 3 6
d/L .00 .031 .047 .094 .187
Ye/Y 0.311032 0.311032 | 0.311033} 0.311054 | 0.311054
Table (5.2) Full Dimensions of Slabs and Walls
Y ft. 12 20 28
2 £E, 2 4 8 12 20 2 4 8§ 12 20 2 4 8 12 20
wft. |19 18 16 14 10|19 18 16 14 10 |19 18 16 14 10
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non-dimensional rotational stiffness R and the normalized

wall openings ¢/L for different values of Y/L are plotted

in Figure (5.4). Figure (5.5) shows the relaticns between

Ye/Y and Y/L for different values of &/L. This plot

simplifies the interpolation between the curves in Figure (5.3).
For wall thicknesses less than one foot a reduction

for the effective stiffness of the slab can be made. Curves

representing the necessary correction are drawn in Figures

(5.3) and (5.4). These correction curves are based on the

results represented in Figure (5.2), using linear interpolation

for the different wall thicknesses.

5.4.1.1 Example

The use of this set of design curves is illustrated
by the following example. Let us choose a 40' x 20' slab
connecting two planar walls of thickness 0.75 foot. The
opening between the two walls is 8 feet. It is required to
determine the equivalent width of the slab Ye and its non-
dimensional rotational stiffness.

The values of the relevant non-dimensional para-

meters are:

/L

i}
[ew)}
Do

Y/L

I
o

.

Using these parameters, the normalized effective width Ye/Y

can be obtained from Figure (5.3),

Ye/Y = 0.36
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The reduction factor for the wall thickness = 0.96.

The equivalent width of the slab is therefore

0.36 x 0.96 x 20

o
1

6.9 feet
Similarly, using Figure (5.4), the non-dimensional rotational
stiffness is
R = 49
After correction, the non-dimensional rotational stiffness is,

R

49 x 0.96
47

5.4.2 Curves for Coupled T-Section
Wall Configurations

The second set of curves are those representing
the stiffness of the slab coupling two T-section walls. The
dimensions of the slabs and walls are those described in
Section 5.4. The flange width z, are taken to be 10% and
20% of the total length, L. For z/L equals 0.1, the relations
between 2/L and both the effective width Ye/Y and the
rotational stiffness are presented in Figures (5.6) and (5.7),
respectively. The relation between Y/L and Ye/Y is also
represented in Figure (5.8). The corresponding relations are
plotted in Figures (5.9), (5.10) and (5.11), respectively,
for the case z/L equals 0.2. It should be noted that the
thickness of the wall has no effect on the stiffness of the

slab because it is essentially taken into account using finite
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flange widths.

W Curves for Coupled Planar and T-Section
Wall Configurations

The configuration of the slab coupled planar
wall with the T-section wall under lateral loading has one
axis of symmetry (the X-X axis) only, as shown in Figure
(3.6). The Y-Y axis is not the axis of antisymmetry in this
case. Therefore, it is necessary to consider half of the slab
instead of one quarter of the slab as in the previous two wall
configurations. Due to the limitation of the computer storage,
a coarser mesh has to be used. To obtain an idea for the
error produced from the coarse mesh used, a slab coupled
planar wall system is solved by two different ways. First,
one quarter of the slab is solved and secondly, it is solved
considering half of the slab using a coarser mesh. A compari-
son between the computational results of the two calculations
will then provide an indication of the errors involved using
a coarser mesh. Figure (5.12) shows the computed results. The
error involved in using a coarser mesh as a function of &/L
is plotted in the same figure. The error ranges between 4%
and 20% depending on the values of 2/L. Since the design
curves for the slab coupled planar wall with the T-section wall
are computed using a coarser mesh, the results may be modified
according to the error curve as shown in Figure (5.12).

The flange width of the T-section wall is taken
as 10% and 20% of the total length of the slab. The thickness

of the planar wall is taken as one foot. Figure (5.13) shows
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the relations between &/L and Ye/Y’ while Figure (5.14)
shows the relations between Y/L and Ye/Y for z/L equals 0.1.
The same relations are shown in Figures (5.15) and (5.16) for

z/L equals 0.2.

5:5 Stiffness of the Slabs Coupled Box Core Walls or
T-Section Walls with Flanges at the Outside Edges

The previous sets of curves represent the effective
stiffness of the common slabs coupled shear wall configurations
used in high-rise buildings. In addition to these configura-
tions, the box core walls and the T-section walls with the
flanges at the outside edges are used in high-rise buildings.
The last two configurations are shown in Figures (5.18) and
(5.17), respectively. Preliminary analysis for the slabs
coupled box core walls or T-section walls with flanges at the
outside edges was carried out. For simplicity we shall
denote a T-section wall configuration with flange at the
inner edge as a T-wall configuration and a T—sectionlwall
configuration with flange at the outside edge as an inverted
T-wall configuration. Although the bending stiffness and
correspondingly, the effective width of the slab coupled planar
walls and the slab coupled inverted T-walls is the same, the
rotational stiffness for these configurations is not the
same. This is because the rotational stiffnesses are obtained
at different points in the two cases. The same is true for the

slab coupled box core walls and the slab coupled T-walls.
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5.5.1 The Effective Width of the Slabs Coupled Inverted
T-Wall and Box Core Wall Configurations

Two groups of slabs are analysed by the computer
program developed. The first group represents the slabs
coupled inverted T-walls with different openings, while the
second group represents the slabs coupled planar walls with
g&milar openings. Table (5.3) shows the effective width of
each configuration for the different wall openings. The
same procedure of analysis is carried out for the slab coupled
box core walls and the slab coupled T-walls. Table (5.4)
shows the effective width for each wall configuration.

From Tables (5.3) and (5.4) it is shown that the
effective width of the slabs coupled inverted T-walls is the
same as the effective width of the slabs coupled planar
walls. Also, the effective width of the slab coupled box core
walls is the same as the slab coupled T-walls. Therefore,
the curves representing the effective width of the slabs

coupled planar walls or T-walls can be used for the slabs

coupled inverted T-walls or core walls, respectively.

5.5.2 The Rotational Stiffness of the Slab Coupled Inverted
T-Wall and Box Core Wall Configurations

As mentioned in Chapter 3, the rotational stiff-
ness of the slab coupled shear wall is calculated at the
centroid of the cross-section of the wall. Since the centriod
of a planar wall is at the mid-width point, while the centriod
of an inverted T-wall will be further away from the mid-width

of the wall, the rotational stiffness calculated for the planar



Table (5.3) The Effective Width of Slabs Coupled

Planar Walls and Inverted T-Walls

115

o/L 0.05 | 0.1 .2 3 5
Planar
,
e ¥ .22 356 535 BB .77
Inverted| y y 23 165 542 659 78
T-Wall o : : L : ‘

Table (5.4) The Effective Width of Slabs Coupled

Core Walls and T-Walls

Y /Y
W Z L ©
Y Y L Box Wall T-Wall
0.25 0.467 0.461
3 0.3 0.4 0.601 0.583
0.5 0.699 0.671
0.25 0.731 0.739
5 0.5 0.4 0.858 0.849
0.5 0.915 0.894
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wall will be different from that of the inverted T-wall
although the effective width for the coupled planar walls
and the inverted T-walls is the same.

In order to use the curves representing the
rotational stiffness of the slab coupled planar walls to
represent the rotational stiffness of the slabs coupled
inverted T-walls, a relation between the rotational stiffnesses
for both kinds of walls will be obtained.

Let R and R be the rotational non-dimensional

5

stiffness of the slabs coupled planar walls and inverted T-
walls respectively. From Equations (3.19) and (3.21), we

have ?
6 (Y /Y) (Y/2) (1-v°)
B o= - (5.1)
[2/(8 + w)]

and 2
6 (Y /Y) (Y/2) (1-v°)
RT = 5 (5.2)
[2/(2 + 2 e)]

Dividing Equation (5.2) by Equation (5.1) yields

B:EI
T R
L+ 2 e,
o A—— ]
=[] (5.3)
where BT is the correction factor for the effective stiff-
ness for the inverted T-section wall. The value of e, can
be represented as a function of w, gives
e. = yw ' (5.4)

X

where y is a constant depending on the flange width of the
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T-section wall. From Figure (5.1), we have
L =28+ 2w (5.5)

Thus, Equation (5.3) becomes

(1-v).2/L+y 9
= [ ] (5.6)
7(1+2/L)

By

Table (5.5) shows the relationship between BT and 2/L for
different values of ¥y.

The same procedure can be used to obtain the
relation between the rotational stiffness of the slab coupled
T—walls and that of the slab coupled box core walls. Let
R and RC be the non-dimensional rotational stiffness of the
slab coupled T-wall and box core wall respectively. Referring
to Equations (3.19) and (3.21), we have

6 (Y /Y) (Y/2) (1-v7)

R = (5.8)
. [2/ (2+w)]°

6(Y_/Y) (Y/2) (1-v%)
R = > (5.9)
[2/(2+2 e )]

The correction factor for the rotational stiffness of the

slab coupling box core walls is

R
— \
R

L+wW 2

= [@:7—52] (5.10)

From Equation (5.5), we have
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Xo- 3 (1-a/1) (5.11)

Substituting into Equation (5.10) yields

e =l 23 1+Z/fxlz (5.12)
T T T
Using
2 02
_ w ' -h"+z.h
°x T Z@+w-h) (5.15)
where h is the thickness of the wall. Equation (5.13) can
be written as
e
1 2 h, 2
2 =302 - D« B EEY (5.14)

For a coupled wall of practical dimensions, the value of h/L
is approximately 2.5%, and the maximum value of z/L used is
0.2. Hence, the product of z/L and h/L is about (.5%. Thus
one' can neglect both h/L and (z/L x h/L) to simplify the

expression to

e 1 . (1-2/L)2
E=1 [ZZ_ffgjff] (5.15)
T "I

Substituting into Equation (5.12) yields

(1+2/L)(2z/L-2/L+1)

B 2
Be = Mooy oz & a2

(5.16)

The values of B. are calculated in Table (5.6) for different

values of &/L and z/L.



Table (5.5) Values of B for Different
Values of y and ¢/L.

Br
/L -
Yy = Y 0.7 vy = 0.8 = 0.9
0.05 1.4 .86 2.4 3.0
0.1 1.36 .76 2.22 2.75
0.2 1.28 .62 1.96 2.34
0.3 1.23 .48 1.75 2.04
0.5 1.14 .29 1.44 1.61

Table (5.6) Values of B for Different Values

of /L and Z/L

Z/L = 0.1 Z/L = 0.2

2/L B 2/L B
0.05 1.42 0.05 1.88
0.1 1.38 0.1 1.79
0.2 1.:33 0.2 1.65
0.3 1.29 0.3 1.55
0.4 1.26 0.4 1.46
0.5 1.21 B B 1.38
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5.5.3 Example

This example illustrates how to obtain the
rotational non-dimensional stiffness of the slab coupled
inverted T-section walls using the curves calculated for
coupled planar walls. Let the slab dimensions be the same
as that given in example (5.3.1), with a wall thickness of

one foot. Then,

L/L = 0.2
Y/L = 0.5
y = 0.8

Using Figure (5.4) the rotational stiffness R, with a wall

thickness of one foot is
R = 49
From Table (5.5), the correction factor By is given by

Br = 1.96

Therefore, the non-dimensional rotational stiffness of the

slab for coupled inverted T-section walls becomes

=
il

1.96 x 49

= 96.2

5.6 Equivalent Beam Width of a Slab
Connecting Two End Walls

Figure (5.19) shows the plan of a building in
which both the intermediate and the end bays are shown. The

tributary areas of the end bays have one half of the area of



121

Figure (5.19) Plan Shkowing Interior and ind Bays
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a typical interior bay, therefore the coupling effect of the
slab will be different for an end shear wall. A relation
between the stiffness of the end bay slab and the stiffness
of the interior bay slab is obtained in this section. This
relationship is obtained as a function of the end bay wall
thickness and the slab width.

Two thicknesses of the end wall will be considered,
namely, one foot and half a foot thick. As a comparison,
an interior bay of Y/L equals 0.3 is analysed taking the wall
thickness as one foot. Figure (5.20) shows the relations
between £/L and Ye/Y for the interior and the end bavs. In
this figure, the two lower curves represent the equivalent
beam width of the end bay slab normalized to the interior bay
slab width. The cases of interior bays with Y/L equals 0.5
and 0.7 are also studied. The end bay and the interior bay
comparison are shown in Figures (5.21) and (5.22).

To simplify the calculations of the end bay slab
stiffness, the previous computed results are replotted in
Figure (5.23). In this figure, the dotted lines represent
the end bay slab stiffness as a percentage of the interior
bay. These lines are obtained by dividing the effective width
of the end bay slab by the corresponding effective width of
the interior bay slab. The solid lines represent the reduction
in the end bay slab stiffness, if the end wall thickness is
taken to be different than one foot. Linear interpolation can
be carried out for values of wall thickness between the two

estimated values.
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It should be noted that the end bay slab stiff-
ness as a percentage of the interior bay increases as the
wall opening decreases. The continuity between the slab
along the line of the walls is the main reason for this
trend. If the end bay wall opening is small, most of the
slab length is fixed in the walls and only a small part
between the wall will be free. Therefore the effect for the
discontinuity of the slab along the line of the walls is
smaller. The effect of the wall thickness on the stiffness
of the slab will be discussed at the end of this chapter.
Qadeer and Smith [17] have suggested a values of 42 percent
of the typical interior bay stiffness can be taken as a
reasonably accurate approximation for the stiffness of end
shear walls. Again, such underestimation of stiffness is due
to the actual thickness of the wall is neglected in their
analysis.

An example will be solved to show how these curves
can be used to obtain the equivalent beam width and the

rotational stiffness of the end bay slab.

5.6.1 Example

Consider a cross wall structure of plan shown
in Figure (5.19). The total width of the structure is taken
as 40 feet, with the wall opening being 8 feet and the wall
spacing 20 feet apart. The intermediate and end bay wall
thicknesses are taken as one foot and 0.75 foot, respectively.

It is required to obtain the equivalent beam width coupling
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the end walls and its rotational stiffness.
From Figures (5.3) and (5.4) the effective

width and the rotational stiffness of the interior slab are

Ye/Y

0.36

R

49

From Figure (5.23), we have the reduction for the wall

thickness = 0.906.
The reduction for the end bay = 0.545.

Therefore, the total reduction 0.545 x 0.906

= 0.494

Thus, the rotational stiffness of the end bay slab is

0.494 x 49

24.2

The equivalent beam width of the end slab is

0.494 x 0.36 x 20

3.56 feet

5.7 Relation Between Coupled Shear Wall Openings and
Overall Behaviour of Shear Wall Buildings

For coupled shear wall structures, the walls do
not act as independent cantilevers due to the coupling action
of the slabs or the connecting beams. The method of analysis
of such shear wall structures are given in a large number of
papers [1, 20]. In such an analysis, a factor denoted by
"oH" is commonly used to denote the degree of coupling and 1is
an important parameter to describe the behaviour of coupled

shear wall structures. The relation between the wall opening
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and the factor "oH'" will be obtained in this section.

Consider the coupled shear wall structure shown
in Figure (5.24). The individual connecting beams of stiff-
ness EI are replaced by an equivalent continuous connecting
laminae of stiffness EI /hS per unit height, where hS is
the storey height. If it is assumed that the connecting beams
do not deform axially under the action of the lateral loading,
both walls will deflect equally with a point of contraflexure
located at the mid-point of each connecting beam. The

behaviour of the coupled wall is described by the equation

[1, 20]
TR 2 = =
——’—T - o T(X) = = Mn NIO (X) (5'17)
where Xq
- [ -q@®.ax (5.18)
0

For two similar walls,

a” = qu (2 + 2 ex) (5.19)
12 I (& + 2 ex)
n = 3 (5.20)
2 h_ 271
S
y=1 e = (5.21)
A(L + 2 ex)
where
H is the total height of the structure
2 is the wall opening
ey is the distance between the centriod of the cross-

section of the wall and its inner edge
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i is the moment of inertia of each wall
A is the cross-section area of each wall
Mo(x) is the external moment at level X

T is the integrated shear force in the connecting medium

v

Substituting Equations (5.20) and (5.21) into Equation
(5.19) yields

2
61 (e+2 ex)

al = - [1 + L - (5.22)
hS [ A(2+2 ex)
For the flat slab shear wall structure, the inertia of the
connecting beams are
T .t
= 2
I T (5.23)
It can be seen therefore that the factor az is related to
the wall opening and also the slab effective stiffness.
Substituting Equation (5.23) into Equation (3.19), the non-
dimensional rotational stiffness becomes,
2
72 1 (1-v7)(a+ 2 ex)
R = (5.24)
t3.23
From Equations (5.22) and (5.24) we can also express uz as
a function of the rotational stiffness as
2 R t3 1 41
a = . 7= BT [1 + 2] (5.25)
12(1-v7) s’ A(e+2 ex)

5.7.1 The Parameter "aH" for Coupled Planar Walls

For coupled planar walls, we get
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W
g =% (5.26)
3 ,
+ _ hw
T = 2% (5.27)
A = w.h (5.28)

Substituting these values into Equation (5.25) yields

3
2 R.t 1
a” = : [1 + 5] (5.29)
hg.h w’(1-v%) SULEF)
If the values of t, h, hs and v are taken to be 0.667 foot,
one foot, 10 feet and 0.15, respectively, Equation
(5.29) can be written as
2 5
a” = V.R (5.30)

where V is a variable which depends on the dimensions of the
coupled walls and the storey height. Table (5.7) shows the
relation between &/L and o for different values of Y/L,
while Table (5.8) shows the relations between &/L and aoH for
different values of H. It should be noted that for the same
value of H, the value of oH is insensitive to the change of
the slab width Y. Hence, the relation between oH and

2/L will be represented by one curve for different slab

widths. Figure (5.25) shows this relation for Y/L equals 0.3.

5.7.2 The Parameter "aH" for Coupled
T-Section Wall Configurations

For the walls with equal web and flange thicknesses

we have



Table (5.7) Relationship between /L and o for Coupled Planar Walls

-6 R o

2/L Vx10

YL=.3 |YL=.5{YL=.71Y/L=.3 |YL=.5|YL-=.7
.05 5.5 860 900 1050 .069 071 .076
e 6.3 190 225 250 .0346 L0377 0397
o 8.3 43 49 52 .0189 .0202 .0208
.3 11.8 20 23 25 .0154 .0165 L0172
oD 30.6 5 9 Bl (% .0124 .0166 .0185

R



Table (5.8) Relationship between 2/L and oH for Planar Walls

oH
Y/L = .3 Y/L = .5 Y/L = .7

/L

H=100 H=150 H=200 H=250 H=300{ H=100 H=150 H=200 H=250 H=300 [ H=100 H=150 H=200 H=250 H=300
.05 6.9 10.3 158 17.2 20.7 | 7.1 10.6 14.2 17.7 21.3 | 7.6 11.4 152 19 22.8
"} 3.46 5.2 6.9 8.7 10.4 | 3.77 5.5 7.5 9.45 11.3 | 3.97 5.9 7.9 9.9 11.9
v 1.89 2:88 4.7 4.7 5.7 | 2 3 4 5 6 2ud 3.15 4.2 5.25 6.3
o 1.54 2.3 3.1 3.85 4.7 | 1.65 2.45 3.3 4.1 4.9 | 1.7 2.55 3.4 4.25 5.1
.5 1.24 1.86 2.5 3.1 3.7 | 1.66 2.5 3.3 4,15 ‘5 1.8 2.7 3.6 4.5 5.4




2 7
= =k "z h

eX = —2-(—Z—+FH)— (5.31)

and

3 2
I = [{% (w-h)® + hew-n) (R - e )% 2D rzh(e -0 (5.32)

For the same values of h, t, hS and v mentioned before, and

using Equation (5.31), Equation (5.25) can be written as

\4
2 . "X ”
@” = 4 .R ({5.33)
where Vl is a variable which depends on the wall and the

slab dimensions.

Table (5.9) shows the different values of o for each
2/L and Y/L. Table (5.10) shows the relationship between 2/L
and oH for different values of z/L and H. It is also noticed
that the parameter "oH" is insensitive to the change of the
slab width. Figures (5.26) and (5.27) show the relatiocns
between "oH'" and &/L for a value of Y/L equals 0.3 and the

flange width ratio z/L equals 0.1 and 0.2 respectively.

5.7.3 Corrections for h, t, and hS

The previous curves of '"aH'" are obtained for the
specific values of slab thickness, wall thickness and floor
height. If other values for the slab thickness, wall thick-
ness and floor height are used, the value of "oH'" can be
modified. The parameter uz is directly proportional to
t3 and inversely proportional to the storey height hs‘ It is

approximately inversely proportional to the wall thickness h.

The parameter o can thus be written as



Table (5.9)

Relations between 2/L

and o for

T-section Wall Configuration

R o
2/L 5 vy %
¥L=.3 YL=.5 Y/L=.7|Y/L=.3 Y/L=.5 Y/L=.7
+05 | 779.53 404 1300 1370 1400 T .079 .08 ol
.1 668.3 .336 260 300 330 .036 .0386 .0405
. 2 481.6 .216 46 54 60 L0175 .0184 .0194
" 340.7 .08 18 22.6 25 0114 .0134 .0141
.5 128.4 .0254 6 8.2 9.6 .0117 L0127 .0127
.05 | 985.17 .58 1550 1640 1720 .079 .081 .083 o2
sl 851.67 .46 280 301 320 .0348 .036 L0371
wd 616.17 .28 49 58.1 62 .016 .0174 .018
5 426.37 i Y 18.5 25.6 26 .0112 .0127 .0133
D 166.97 .057 5.8 8.5 10 .0096 .0116 .0126

9¢T



Table (5.10) Relations between £/L and oH for T-section Wall Configurations

aH

o/L | Z/L Y/L = .3 Y/L = .5 Y/L = .7

H=100 H=150 H=200 H=250 H=300| H=100 H=150 H=200 H=250 H=300 | H=100 H=150 H=200 H=250 H=300
.Bi) 1 747 11.6 15.4 19.Z2 23,1 |7.9 11.& 15.8 18.7 25.7 |8 12 16 20 24
:i 3.6 5.4 . 9 10.8 | 3.86 5.8 7.72 9.6 11.58]4.05 6.1 8.1 10,1 12,15
sl 1.%5 262 3.5 4.86 5.25]1.84 2.76  3.68 4.6 3.5211.94 2.9 3.88 4.85 5.82
D 1.14 1.71  2.28 2.85 3.42|1.34 Zs 2.68 3.35 4.02]1.41 2.1 2.82 3.52 4.23
B 1.17 l.76 2.54 2,92 3.5l 1.247 1.9 2.54 3.17 3.81|1.27 1.9 2.54 3.17 3.88
051 .2 748 11.8 15.8 19.7 23.7 | 8.1 12.2  16.2 20.2 24.3 | 8.3 12.4 16.6 20.7 24.9
5 3.48 5.2 6.96 8.7 10.44] 3.6 5.4 Tad 9 10.8 | 3.71 5.55 7.42 9.3 11.13
W 1.6 2.4 5, T4 4 4.8 | 1.74 2.6 3.48 4.35 5.22| 1.8 2.7 3.6 4.5 5.4
. 112 1.68 2.24 2.8 3.36| 1.27 1.9 2.54 3.16 3.81| 1.33 2 2.66 3.3 3.89
D .96 1.47 1.92 2.4 2.881 1.16 1.74  2.32 2.9 3.481 1.26 1.89 2.52 3.15 3.78

LET
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5 = w.t/h—t (5.34)

+h
s
where ¢ is defined from Equation (5.25). If the values
of t, h and hS are changed to tys h1 and hsl’ respectively,
the value of a will be changed to oy, where
/ t1>
a, = Y. t e (5.35)
d: 1 hsl-h1
and
o t t
. 1 1"7s”
— = ==, P (5.36)
a t t.hsl.h1

Substituting for t, h and hS with the previous values used,

we have

t
A U (5.37)

a :
1 1 hl'hsl

Equation (5.37) gives the correction necessary if different
values of wall thickness, slab thickness, or floor height are

used.

5.8 Discussion of the Results

The aim of this study is to obtain a set of design
curves to represent the effective width and the stiffness
of the different slabs coupled shear walls. The finite
element technique was used to obtain the design curves. It
is useful to discuss the following points to gain further insight
into the problen.
1. The effect of point of contraflexure location on

the slab stiffness.



141

25 The slab reactions at shear wall support due
to wall rotation.

e The effect of wall thickness on the coupling
slab stiffness.

4. The effect of the flange of the T-section wall on
the slab stiffness, and the effect of local
bending on the flange deformation.

5. The effect of the slab width on the slab stiffness.

b. The effect of the wall openings on the overall

behaviour of the structure.

5.8.1 The Effect of Point of Contraflexure
Location on the Slab Stiffness

If the two shear walls are of the same cross-
section, the point of contraflexure will be located at the
middle of the coupling beam. If the two walls have different
moments of inertia, the point of contraflexure is no longer
at the mid-point of the connecting beam. In section 3.4.2
the slab stiffness is obtained considering the point of
contraflexure to be at its actual position. In this section
the point of contraflexure location will be assumed at the mid-
length of the connecting beam to calculate the slab stiffness.
A comparison of the two cases will show the effect of
shifting the position of the point of contraflexure on the
slab stiffness.

As shown in Figure (5.28(a)), the point of contra-
flexure is assumed to be at the middle of the connecting beam

in the case of the planar wall coupled with the T-section wall
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Figure (5.28) Exact and Approximate Positions
of Point of Contraflexure.
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The force P which causes relative displace-

ment A between the two walls will appear if a cut is made at

the assumed point of contraflexure.

at the centroid

becomes

-

M!

5 .

Tﬂc rotational moment

of the cross-section of the planar wall M'

(5.38)

The moment acting at the centroid of the cross-section of the

T-section wall M% , becomes

2 5
M'f P (-?T + e_) (5.39)
From Figure (5.28)
él Lt w
A2 L+ 2 e
%
and
_ A2 "
¢ . 72 + e (5.40)
or
o = 3 (5.41)
L+ 5+ e
2 X

Therefore,

the non-dimensional approximate rotational

stiffness of the slab at the centroid of the planar wall R'p

will be

From Equations

(3.31) and (5.42),

¥

20 .4

(2+w)(z+% + e ) (5.42)

the ratio between the exact

and the approximate rotational stiffness at the centroid of the
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planar wall becomes

R [22/(l+12/11)]+w

o = e (5.43)

In a similar way the ratio between the exact and the approxi-

mate non-dimensional rotational stiffness at the centroid

of the T-section wall becomes

Rf [22/(1+Il/12)]+2 e,

. (5.44)
R'f L + 2 ey

Using Equations (5.4) and (5.11), Equations (5.43) and (5.44)
can be written as

Rp (1+3£/L)+(1—Q/L)(12/Il)

Ri- ° (T+270) (1+1,71]) (5.45)

Re  (28/L)+y(1-2/L) (1+1/1,)
£ 1772 (5.46)
P UV R S VR RCEORVAPY -

Plotted in Figure (5.29) are the values of Rp/R'p for the
inertia ratio ranging between 1.0 and 2.0 and 2/L changing
from 0.05 to 0.5. Also plotted in Figures (5.30(a)) through
(5.30(d)), the relations between Rf/R% for the same range
of 12/1l and &/L, and for the parameter +y changing from
0.2 to 0.8.

As shown in Figure (5.29), all the values of
RP/R'p are less than unity. This indicates an over-

estimation for the approximate stiffness of the slab at the

centriod of the cross-section of the planar wall. However,



145
Rp

I - 1.0
I4

0.98}—
0.96 {—-
0.94 | —
1.25
0.92}—
0.90 | —
088 |—
, 1.5

086 |

100 §—

0.84 | —

0.82 |— 1.75
0.80} —

0.78f— 2.0

0.76 |—
0.74 —
ol |
070}— |
0-68 L~

0-66 }—

0.64f—

0.62}—

0.1 0.2 0.3 0.4 0.5 Z/L

Figure (5.29) Variation of RP/R'p with the wall Opening

and the Inertia Ratio.



for /L less than 0.2, the difference in the slab stiffness
less than 9%. From the designer's point of view, such a
difference is negligible.

From the previous discussion it is expected that
the stiffness at the centroid of the T-section wall will be
underestimated. Such an underestimation is shown in Figures
(5.30(a)) through (5.30(d)). Again, for small wall openings,
the error is sufficiently small to be neglected.

It is interesting to note that the effect of the
relative inertias of the wall on the point of contraflexure
location was discussed by MacLeod [15]. The variation of the
stiffness of the connecting beam was not included in his
analysis. It is concluded from the previous discussion that
both the connecting beam stiffness and the relative inertias
of the walls will affect the point of contraflexure location.
For the small wall openings (&/L < 0.2) the variation of the
point of contraflexure location can be neglected, and the
assumption that it is located at mid-length of the connecting

beam is sufficiently accurate.

5.8.2 The Slab Reaction at the Shear Wall Support

Figure (5.31) shows the distribution of the slab
reaction along the walls due to an applied rotation of the
walls. It is observed that the loads developed in the plane
of the wall ar<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>