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CHAPTER 1 

INTRODUCTION 

1.1 High-rise Buildings and the Use 
of Shear Walls 

High-rise buildings have become a common t ype of 

structure all over the world. The trend of construction 

of high-rise buildings f or both office and residential 

purposes is rapidly increasing. The increase in population 

densities due to urbanization, the growth of population and 

high cost of land in urban areas are the main reasons for the 

need of high-rise buildings. 

Although the construction of hi gh-rise buildings 

has solved the problem of usable space in urban areas, it 

has caused many environmental, psychological and social 

problems. In addition to these problems, there remain many 

engineering and technical problems associated with tall 

building construction; To provide efficient elevating 

devices for the users, the operation of heating and cooling 

systems, the supply of water and electricity, to provide 

telephone and other means of communication through the 

building, to provide safety against fire hazards, to provide 
/ 

structural safety to withstand wind and ~arthquake effects 

to devise new construction materials and improve construction 

techniques, are some of these problems. This thesis deals 

with one aspect of these problems associated with tall buildings , 

1 
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namely, the study of the behaviour of shear wall buildings 

coupled by flat slabs to res ist lateral loading due to 

wind or earthquakes . 

Structural components such as walls, beams , 

columns and floor slabs form an integrated structura l system 

of a building. The structur e and its components support the 

v ert ica 1 and latera 1 1 oads appl ied to the building. Th e 

vertical loads arise due to the self weight of the components, 

the occupants and other objects broadly classified as live 

loads. The l a teral loads ari s e d ue to the action of wind, 

earthquakes or b1ast effect . To d e si gn a structurally safe 

building, it is necessary to find the load taken by each 

component, so that eac h component can be desi gned accordingly. 

In high-ris e buildings, the consideration of deflection due 

to l at era l loads becom e s particularly import a n t. For that 

r eason it is necessary to provide adequate l a teral stiffness 

to the structure. Th i s l a te r al st i ffness can be provided by 

using various specially designed structural syst ems. Among 

these systems, the use of reinforced concrete shear wall s 

coupled by f loor slabs have become very common. In su c h a 

syst em the high in-plane stiffness of the shear walls is 

employed to resist the lateral loads. The floor slabs act 

as horizon t a l diaphrams to distribute the lateral loads 

among the walls and also coupl ed t he wa lls. The complex 

interaction of th e floor slabs with the walls incre a ses the 

latera l stiffness of the structure . Besides acting as load 

bearing walls, these shear walls can act as internal pa rtitions , 

acoustic barrie r s and provide fire divisions within the 
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building. 

The arrangement of she ar wal l s inc typical 

apartm ent bui l ding is s l1own in Figure (1·1). The shea r 

walls are mainly located on bo th sides of the corridor. The 

elevator sha ft a nd st a irwell a re also enc losed by shear 

wa lls. The prese n t thesis i s a study of t he coupling ef f ect 

of the flat sl a bs on the stiffness of the shear wall 

structure. 

1.2 Review of the Pr eviou s Work 

One common method of an a lysing shear wall structure s 

1s known as the continuous approach. In this approach the 

connecting b eams or s labs be twe en the walls are replaced by 

a continuous distributing lam i nae of e quivalent sti f fness. 

Wh en the shear walls n r e arrange d in a symme t ric 

manner in the plan of the building, wind a nd seismic load s 

wi ll cause t r anslat i onal d i sp lacemen t s 011ly. The Je f orma t ion 

of the building is confined t o a plane . The loa <l d i spl ac e 

ment behav i our of the structure c ~n then be cons ide1·e d by a 

two-dimensiona l analysis. Common e xamples of symmetric 

buildings are ap a rtm en t buildings witl1 t wo-parallel sets of 

regul arly sp aced shear walls. In such cases the behaviour 

of tl1e whole building c a n be studied fr om the t wo-dimensional 

behaviou r of a typical pair of she a r walls. The shea r wall 

ma y be coupl ed either throu gh the floor slabs or floor beams 

or both. This cla s s of probl ems is generally known as the 

planar coupled she a r walls pr obl ems. The analysis of uniform 
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plane coupled shear walls under lateral loadings has been 

presented by many researchers. A representative list of 

publications on the subject is given below . 

Beck [1] and Rosman [20] developed the basic 

differential equation for the analysis of coupled shear 

walls using the continuous technique. Co~ll and Chaudhury 

[4, 5] presented sets of design curves to enable the deflection 

as well as the stresses in the walls and connecting beams 

to be calculated under different lateral loading conditions. 

Coull [7], Tso and Chan [27] presented the analysis of coupled 

shear walls resting on a n elastic foundation. Tso [26] 

obtained the stresses induced in coupled shear walls due to 

foundation movements. Also, Tso and Chan [25] studied the 

dynamic properties of coupled shear walls . Coull and 

Subedi [8] gave a solution for unsymme t rical walls with two 

bands of openings and symmetrical walls with three bands of 

openings. Hussein [14J presented a method of solving the 

governing simultaneous second order coupled differential 

equations for multi-bay coupled shear walls resting on rigid 

foundations. Elkholy and Robinson ll2] presented the analysis 

of coupled shea r walls with one or more bands of opening 

resting on rigid or elastic foundations using the finite 

difference technique. Schwaighofer and Microys [21] analysed 

the coupled shear walls as equivalent frames using a standard 

. 1 1 . h . / matr1x structura ana ys1s tee n1que. 

When symmetry does not exist in the plan of the 

building, the lateral loads will cause twisting of the 
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building in addition to translation. Out of plane dis-

placement exists in this case and a three-dimensional 

analysis will be necessary. 

Tso and Biswas [28, 29] presented a method to 

analyse nonplanar coupled shea r walls subjected to arbitrary 

lateral loading and torque . Biswas and Tso [2] presented an 

approach to study the flexural and torsional deformation of 

multi-storey shear wall buildings subjected to lateral 

loadings. 

Treating the structure as a collection of rectangular 

space frames with floor slabs idealized as infinitely rigid 

diaphrams one can obtain the stiffness matrix of the 

structure by determining the stiffness of the individual 

elements and the rigid in-plane diaphram action of the floor 

slabs. Heidebrecht and Swift [13], using the stif f ness matrix 

approach, presented a method where the coupling action of the 

floor slab was considered by assuming equivalent beams 

connecting the shear walls . Taranath [23] used a similar 

approach with a finite element idealization to ob tain the 

transverse stiffness of the~ floor slab. 
\ 

If the coupling action of floor slabs is replaced 

by equivalent coupling be ams, then the flat slab-shear wall 

problem can be solved by one of the methods mentioned before . 

However, the problem remains as to how one should replace the 

slab by equivalent beams. To study the coupling effect of 

flat slabs, Qadeer and Smith [17] presented the bending 

stiffness of the slabs for pairs of planar shear walls . A 

set of charts were given for the equivalent stiffness of slabs 
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coupling planar walls. Coull ~1 El-hag [9] presented some 

experime ntal results for the e ff ective stiffness of floor 

slabs connecting p lane walls , T-section walls and rectangular 

box core walls. The results of Qa deer and Smith , Coull and 

El-hag will be discussed in later chapters. 

1.3 Purpose of Resea rch 

The purpose of the research described in this 

thesis is to develop a method for the analysis of the slab 

coupled shear walls. The main object is to determine the 

slab stiffness in the coupled wall configuration and to deter-

mine the effective width of an equivalent beam between the 

walls. This equivalent beam can then replace the slab in the 

overall analysis of the shear wall building. The finite 

element technique i s used to obtain the stiffness of the slab . 

A computer program is developed to obtain the stiffness of 

the slab and its equivalent beam dimensions. 

Sets of design curves are obtained to represent 

the relation between the rotational stiffness of the slab, 

and the equivalent b eam width a~ function of the width of 

the opening between the walls . 

An experimental model is designed to simulate the 

behaviour of a planar shear wall coupled by a floor slab. 

Experimental tests were carried out and the results were 

compared with the theoretical results. 

Three main parts are included in this thesis. 

Developing the method and converting it into a computer program 

is the first part. Comparison between the results obtained 
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from the computer program and the experimental results is 

the second part. Finally, a set of design curves is presented 

based on the theoretical finite element analysis. It is 

hoped that the results developed in this thesis will be 

useful to designers and researchers studying the behaviour 

of shear wall multi-storey buildings with coupling floor 

slabs. 



CHAPTER 2 

FINITE ELEMENT FORMULATION 

2.1 General 

In this chapter, we will illustrate the use of 

the Finite El ement Method based on the displacement appro ach 

as applied to the study of a plate under bending. The method 

will then be used to compute the rotationa l stiffness of the 

slab conne c ting two shear walls. 

2.2 Basic Assumptions 

The analysis of a flat slab coupling two shear 

walls is based on the following a s suQptions: 

i) The slab is consid ered homo geneous, isotropic 

and linearly elastic with Poisson's ratio equal 

to 0.15. 

ii) The slab is considered infinitely stiff in its 

plane. Hence, the in plane deformation is neglected. 

iii) The slab is thin and the deflection is small so 

iv) 

that the classical plate theory applies. 
/ 

The plane sections of the wa:'ll remain plane 
I 

during bending . 

2.3 Bending Stiffne ss Ma trix for a Plate Element 

The derivation of the bending stiffne ss matrix 

for a pl a te, using the displacement finite e lement method, 

9 
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necessitates an assumed expression for deflection w' 

normal to the plane of each element. Various conforming and 

nonconforming functions can be used. A conforming function 

satisfies both the displacement and slope continuity along 

the common edges between the adjacent elements. If a complete 

slope continuity is required on the interface between various 

elements, the mathematical and computational difficulties 

oft en rise disproportionately fast . It is, how ever, r e latively 

simple to obtain a shape function which ensures continuity of 

displacements between the adjacent elements and violates the 

transverse slope continuity. Such a function is called a non

conforming function . An alternate way is to satisfy the 

transverse slope continuity along one of the sides of the 

element, resulting in a displacement function to be partially 

conforming. This is satisfied by using triangular elements 

and displacement functions suggested hy Rawtani and Dokainish 

[ 19] . In the present analysis , a bending stiffness matrix 

for a partially conforming triangular element is developed and 

used. 

2.3.1 System of Axes and the Noda l Coordinates 

The middle surface of the plate is subdivided into 

triangular elements as shown in Figure (Z.l(a)). Let 

the nodes of a typ ical element be i, j, k. The nodes will be 

defined by their coordinates. Two sets of right handed ax es 

are used to describe each element . One set is the set of 

global axes denoted by X, Y, Z. Assuming the plate lies in 
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the X-Y plane, the coordinates of the nodes in the global 

axes are denoted by (X., Y. , 0), (X., Y. , O) and (X k , Yk, 0), 
l l J J 

respectively . The second set of axes is the loc a l ax e s 

denoted by X', Y', Z'. In the local axes the element 1 ies in 

the X'-Y ' plane . The two axes X' , Y' will be chosen such 

that the displacement function will be partially confo r ming. 

This will be sa t isf ied if the origin i s taken to be the 

vertex i and Y'-axis is along th e line ij. The direction of 

X' -axis is such that Xk is always positive, as shown in 

Figures (2.l(a)) and (2.l(b)) . By this arrangement the local 

coordinates of the nodes, 1, J, k will be 

From Figure (2 . l(c)) the coordinates Y~, X~ andY~ will be 

given by 

Y' = (al + a3 - a2) / 2/a{. k 

and 
X' = la3 - y' 2 

k k 

where a1 , a 2 and a 3 are the square of the lengths of the 

sides lJ, jk and ki, respectively . 

. 2.3.2 Displacem ent Formulation of the Plate Problem 

( 2. 1) 

( 2 . 2) 

(2.3) 

(2 . 4) 

Three displacem ent components are considered as 

nodal pa r am e ters. The first is the displacement w' in the z' 
direction, the second is the rotation about X' -axis (e~) and 
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y 

l 

z a-Subdivision of a Plate and the Global Axes 

x' 

c-Dimensions of the Sides 
of an Element 

i 

b- Local Coordinate Axes for 
an Element 

Figure (2.1) Systems cl Axes and Node Numbers. 



the third is the rotation about the Y'-axis (8~) where 

and 

aw' e' = X aT,-

e' y = aw' 
- ax' 

13 

(2.S(a)) 

(2.S(b)) 

The partially conforming displacement function as sug gested 

in reference [19] with respect to the local axes is a cubic 

polynomial in X' andY', namely, 

(2.6) 

Where ai' 1 = 1,9 are arbitrary constants. 

Along the line X' equals zero, the transverse slope 

aw' will be + Y'. Since the value of the slope is ax' a2 as 

specified at the two ends of this line, the expression for the 

transverse slope is unique along the line X' = 0. This makes 

the displacement function w' partially conforming. 

Equation (2.6) can be written in matrix form as 

w' = [C] { a } (2.7) 

wh ere 

[C] = [ 1 X' y' X' 2 X' y' y' 2 X I 3 X' 2y' y' 3] ' ' ' ' ' , ... ' ' ( 2. 8) 

and {a} is the column vector of coefficients a 1 t o a9 . 

The nodal displacement vector referred to the loca l a xes can 

be defined as, 

{ 0 ! } = 
1 

w! 
1 

( 2. 9) 
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From Equations (2.5), (2.6) and (2.9) the nodal displacement 

vector becomes 

1 X! Y! X!2 X! Y! Y!2 X!3 X! 2 Y! Y!3 Ctl l l l l l l l l l l 

{o!} 0 0 1 0 X! 2Y1
• 0 X!2 3Y!

2 a2 
l l l l l 

Ct3 

0 -1 0 -2X! -Y! 0 - 3X ! 2 - 2X'Y1
• 0 a4 l l l ll 

as 

a6 

Ct7 

a8 

Ctg (2.10) 

The element displacement vector referred to the local 

axes will be given by the listing of the nodal displacements, 

now totalling thre e , 

0 ! 
l 

{ 0 I } = 0 ! (2.11) e J 
0 I 

k 

From Equations (2.10) and (2.11) the element displacement 

vector referred to the local axes becomes 



1S 

1 X! Y! X!2 X!Y! Y!2 X!3 X! 2Y! Y!3 a1 l l l l 1 l l l l l 

0 0 1 0 X! 2Y! 0 X!2 3Y! 2 
a2 l l l l 

0 -1 0 -2X! -Y! 0 -3X! 2 -2X!Y! 0 a3 l l l ] . l 

1 X! Y! X! 2 X!Y! Y'? X !3 X! 2Y! Y!3 a4 J J J J J J J J J J 

0 0 1 0 X! 2Y! 0 X!2 '"'Y'2 
{ 0' }= 

.) . as (2.12 J J J J e 
-3X! 2 

0 -1 0 - 2X! -Y! 0 -2Y!X! 0 a6 J J J J J 

1 X' Y' k k 
X'2 

k X'Y' k k 
Y'2 

k 
X'3 
k X' 2Y' k k 

Y'3 
k a7 

0 0 1 0 X' k 2Y' k 0 X'2 
k 3Y' 2 

k as 

0 -1 0 -2Xk -Y' k 0 -3X' 2 
k -2X'Y' k k 0 ag 

Substituting for (X!, Y!, Z!), (X!, Y!, Z!) and (Xk', Yk', Zk') 
l l l J J J 

from Equation (2.1), Equation (2.12 .a) becomes 

1 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 0 

1 0 Y! 0 0 
J 

Y! 2 
J 

0 0 Y!3 
J 

{o'}= 
0 0 1 0 0 2Y! 0 0 3Y! 2 e 

J J 

0 -1 0 0 -Y! 
J 

0 0 0 0 

1 X' k Y' k 
X' 2 

k X'Y' k k 
Y' 2 

k 
X'3 

k X' 2Y' k k 
Y'3 

k 

0 0 1 0 X' k 2Y' k 0 X' 2 
k 3Y '2 

k 

0 -1 0 -2X' -Y' 
. k k 0 -3X' 2 

k "X' -" " k yk 0 

Equation (2.12b) can be written in matrix form as 

{o'} =[A] { a } e 

a1 

a2 

a3 

a4 

as 

a6 

a? 

as 

ag 

From Equations (2.7) and (2.13) the displacement function 

( 2. 12 

(2;13) 



becomes 

W' = [C][/\]-l {o'} 
e 

16 

(2 . 14) 

The elemen t stiffness matrix will be obtained by applying the 

principle of virtual work. If the external and internal 

forces are statically equivalent, then the external a nd 

inter nal work done will be equal. Let the external nodal 

force vector referred to the l ocal axes be 

{ F! } 
1 

F ' Zi 

F~Xi (2 . 15) 

Where Fii ' F~X i ' and F~Yi are the ex ternal force and moments 

in the Z' , X' , Y' directions respectively. The element nodal 

for c es {F'} referred to the local ~ xes will b e e 

F! 
1 

{ F'} F ! 
e J 

F' k 

[F ' F ' F' F ' F ' F ' F' F' F ' ] T Zi' 8Xi' eYi' Zj' eXj ' eYj ' Zk ' eXk' eYk 

(2 . 16) 

The corr es ponding interna l moments for each element wil l be 

(2 . 17) 

The curvature {~} at any point in the directions of local 



axes will be 

a2w' 
aY' 2 
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From Equations (2.6) and (2.18) the curvature vector becomes 

[: 
0 0 2 0 0 6X' 2Y' :y] a1 

{ r'} = 0 0 0 0 2 0 0 a2 

0 0 0 2 0 0 4X' 0 a3 

a4 

as 

a6 

a7 

as 

a9 

Substituting for {a} from Equation (2.13), Equation (2.19) 

becomes 

where 

[ c ] = 1 

- 1 = [C ][A --]{o'} 
1 e 

0 0 0 2 0 0 6X' 2Y' 0 

0 0 0 0 0 2 

0 0 0 0 2 0 

0 0 

0 4X' 

6Y' 

0 

Let ~{o'} be the virtual displacement, and ~{t} the corres
e 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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ponding virtual curvature at the nodes. The work done by 

the external nodal. forces 1s equal to the sum of the products 

of the individual force components and corresponding displace-

ments, 

Work Done= [fl.{o'}]T. {F'} e e (2.22a) 

Similarly, the internal work per unit volume done by the 

internal forces is 

[fl. { r'}] T. { M' } ( 2. 2 2b) 
e 

Equating the external work with the total internal work, we 

have 

J [fl. { r 1
} ] T • { M ~} • d ( v o 1) 

" 
(2.22) 

For an isotropic lj.nearly elastic plate, the relation between 

the curvature and moments is given by 

Mx'. 
J 1 

= E.t 3 
--___..,

2
- • [ D ] • { r'} 

12(1-v ) 
(2.23) 

where E is the modulus of elasticity, t 1s the thickness and 

v is Poisson's ratio of the plate; and 

\) 

01 1 0 

0 l;v J 
(2.24) [D] = [~ 
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Substituting Equations (2.17), (2.20) and (2.23) into Equation 

(2.22), it becomes 

= [ldo 1 }]T. {F 1 } 
e e 

Since ~{6 1 } is an arbitrary, the elements of matrix [A- 1 ] e 

(2.25) 

are constant and assuming uniform plate thickness, Equation 

(2.25) becomes, 

3 
{ F I } = E t [A- 1 ] T [ J J [ C 1 ] T [ D] [ C 1] dx I d y I ] [A] - 1 { 6 I } 

e 12(1-v 2 ) e 

(2.26) 

Comparing the definition of the stiffness matrix 

{F 1
} = [k 1

] {6 1
} e e e (2. 27) 

The bending stiffness matrix for the element referred to the 

local axes is given by 

[k I ] = 
e (2.28) 

Integrating over the area of the element as will be given in 

Appendix (a), the element stiffness matrix [k~] becomes 

r k I J • e 

where 

2 12(1-v ) 
(2. 29) 
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-
0 

0 0 

0 0 0 

0 0 0 4£11 Symmetric 

0 0 0 0 2(1-v)£11 

[B] :::: 0 0 0 4vt 11 0 4£11 

0 0 0 12£21 0 12vt21 36£31 

0 0 0 4£12 4(1-v)t21 4vt12 12£22 4£13+8(1-v)£31 

0 0 0 12v t
12 

0 12£12 36vt22 12vt13 36£13 

(2.30) 

and 

tzl 

£31 
=__! X'3 Y! 12 k J 

£12 :::: _!_X' Y! (Y! + Yk) 6 k J J 
(2.31) 

1 X' Y! (Y! 2 Y! y' + y k 2) -1.3 TI + 
k J J J k 

1 X'2 y! 2 (Y! + 2Y') £z2 24 k J J k 

2.4 Total Stiffness Matrix for the Plate 

2.4.1 Transformation to the Common Global Axes 

To assemble the element stiffness matrices into a 

single total stiffness matrix, all the matrices must be referred 

to the set of global axes. Each element stiffness matrix must 
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be transformed from the local axes to the global axes. 

The element nodal displacements in local axes {8'} e 

are related to the element nodal displacements in the global 

axes by the relation 

(2.32) 

where 

{8e} is the nodal displacement of an element referred to the 

global axes. [T] is the transformation square matrix of order 

equal to the number of the element nodal displacements. 

Similarly the element nodal forces in the local axes {F~} are 

related to the element nodal forces in the global axes {Fe} 

by the relation 

(2.33) 

Using Equations (2.32), and (2.33), Equation (2.27) becomes 

[T] {F} = [k'][T]{8} e e e (2.34) 

Each of the two sets of axes are orthogonal, therefore, the 

trans formation matrix [T] is orthogonal, i.e., 

[T]-l = [T]T (2.35) 

Equation (2.34) becomes 

(2.36) 

Comparing the definition of the stiffness matrix 

{F } = [k ]{8 } e e e 
. (2.37) 



The bending stiffness matrix [k ] referred to the global e 

axes will be 

[k] = [T]T [k'][T] e e 

The transformation matrix [T] is given by 

0 

[T] = 

0 

[A] is a sub-matrix of direction cosines and defined as 

follows: 

[A] = 

where 

1 x' m x' n are the 
X 

1 y' m y' ny are the 

1 z' m z' n are the z 

n z 

n 
X 

n y 

1 z 

direction 

direction 

direction 

m 
X 

m y 

cosines 

cosines 

cosines 

of X' with X, Y, 

of y' with X, Y., 

to z I with X, Y, 

22 

(2.38) 

(2.39) 

(2.40) 

z axes 

z axes 

z axes 

These direction cosines can be evaluated from the following 

relations 

c = X .. yki - xk. J 1 l 

F / x?-. 2 = + Y .. 
Jl Jl 

G = - I c I 

1 0, z 

1 X .. /F y Jl 

lx = m y·nz 

y .. \vhcrc J 1 

m z = 0 

m = y .. /F y Jl 

mx = -nz . ly 

y .. = y. 
Jl J 

n = z 

11 v 

nx 

c 
G 

0 

0 

Y. 
1 

etc. 

(2.41) 
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2.4.2 Assembly of the Element Stiffness Matrix 

Having calculated the stiffness matrices [K ] for e 

the individual elements , the next step is to combine all these 

matrices, according to the sequence of node numbering employed 

on the structure to obtain the complete stiffness matrix for 

that structure. The method of obtaining the assembled 

matrix [K] for the structure from the element stiffness 

matrices [Ke] is best illustrated by an example. 

Figure (2.2(a)) shows a plate subdivided into 

twelve triangles. There are three degrees of freedom at each 

node. Therefore, the 9x9 stiffness matrix for each element 

can be subdivided into 3x3 submatrices, as shown in Figure 

(2.2(b)). With the total number of nodes equal to 12 for 

this structure, the total stiffness matrix [K] will be of 

size 36 x 36 and it can be subdivided into 3x3 submatrices. 

As shown in Figure (2.2(c)) the element stiffness submatrices 

are inserted in their appropriate locations in the total 

stiffness matrix. Consider, for example, element (e). While 

deriving the stiffness matrix for this element, the numbers, 

i, j, k were assigned to the nodes as shown. Thus, 1, j, k 

correspond to node numbers 4 , 8, 5 respectively on the plate. 

Thus the submatrix [K 1 J] of the element will be inserted at e 

the submatrix loca t i on (4, 8) in matrix [K], as shown in 

Figure (2.2(c)). Similarly, all the submatrices of all the 

other elements can be inserted in the proper location. If more 

than one submatrix is to be inserted in the same location of 

[K], all these submatrices are to be added to each other. 
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Figure (2.2) Generation of Tot a l Stiffness Matrix . 
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If the boundary conditions require certain nodal 

displacements to be zero, the rows and the columns of (K] 

corresponding to these displacements are deleted to get the 

final stiffness matrix for t h e structure. In the problem 

considered in Figure (2 . 2(a)) , let us assume that the edge 

containing the nodes 1, 2 and 3 is fixed. Then the dis -

placements of these nodes (i.e . , first nine components of 

{o} ) are zero. Thus the first 9 rows and columns of (K] are 

deleted to get the final stiffness matrix (K] as shown by 

the solid lines in Figure (2 . 2(c)) . The nodal forces of 

such an el ement {F } will also be assembled to obtain the e 

total force vector {F} . The t otal displacement vector {o} 

will be obtained from the equilibrium equation 

{F} - (K]{o} (2 . 42) 

2 . 5 Application of the Bending Stiffness Matrix 

The nodal displacements can be obtained by solving 

Equation (2.42) . A finite element computer program was 

developed to solve the plate bending problem that has been 

previously described. The first check for the accuracy of 

the computer program and the displacement function used is 

obtained by solving a square plate and a rectangular plate 

with all edges fixed as shown in Figures (2.3(a)) and (2.3(b)). 

The finite element results for the nodal displacements will be 

compared by the finite difference results. The square plate 

is of dimension 8 ' by 8 ' while the rectangular plate is 4' by 

8' . Both the plates are subjected to a central lateral load 
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No. of Nodes = 9 No. of Nodes= 49 
No. of Elements= 8 No. of Elements= 72 

No. of Nodes =9 
No. of Elements= 8 

(a) Square Plate 
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(b) Rectangular Plate 

No. of Nodes= 49 
No. of Elements=72 

Figure (2.3) Dimensions of Plates and Finite Element Meshes. 
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of 1000 kip. The thickness of each plate is 0.667 ft., the 

modulus of elasticity is 4.32 x 10 5 kip/ft 2 and the Poisson's 

ratio equals to 0.15. Four finite element meshes of 8, 16, 32 

and 72 elements are chosen for the study of both the plates. 

Plotted in Figure (2.4) is the relation between the number 

of elements and the central deflection. It is clear from 

that figure that there is a rapid convergence to the exact 

solution, an indication that the chosen function is fairly 

efficient. Table (2.1) shows the computer results for the 

deflection and the two slopes of the central node. Szilard 

[22] solved the plate by the finite difference method, the 

resul t s of which are tabulated for different aspect ratios 

for the plate. The central deflection is given by the 

equation 

where 

w max 
(2.43) 

q is the central load, Wmax' a, IT, are the maximum central 

deflection, the short length, the flexural rigidity of the 

plates. cl is a factor tabulated based on the finite difference 

calculations. The value of c 1 for the square plate is 

0.0056, and for the rectangular plate is 0.0072. Using 

Equation (2.43), the value of the central deflection for the 

square plate is 0.033 feet and for the rectangular plate is 

.0106 feet. Good agreement can be observed between 

these results and those given in Table (2.1). The two slopes 

at the central point are approximately equal to zero. The 

computed results agree with the physical behaviour of the plate. 
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This serves as a check for the efficiency and accuracy of the 

proposed finite element scheme. 

Square Plate Rectangular Plate 

w ex By w ex By max max 

.03355 . 4472xl0 -l 5 .8809xlo-16 .01085 . 107lxl0-- 15 . 974xl0 

Table (2.1) Computer Results for the Slope and 
Deflection of Central Point . 

----

-17 

J 
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3.1 General 

CHAPTER 3 

METHOD OF ANALYSIS 

Theoretical and experimental methods have been 

used to obtain the rotational stiffness and the effective 

width of the slabs coupling shear walls . The theoretical 

analysis for the slab stiffness was based on the solution 

of the plate equation by the finite difference method ll7j. 

The analysis was carried out for the slab coupled planar 

walls only. The experimental work was carried out with 

different wall configurations [9]. The experimental results 

presented covers thre e ratios of wall openings relative to 

the full width of the coupled shear walls . For any other 

ratio of openings, extrapolation of the results becomes 

necessary. Therefore, it is useful to formulate the coupling 

slab problem in general terms, so that the stiffness of the 

coupling slab can be computed for a variety of geometric 

configurations for design purposes. 

In this chapter, a finite element analysis for 

the slab is employed for findin g the bending sti f fness of the 

slab. To facilitate the overall analysis of shear wall 

buildings, it is convenient to imagine that the slab acts as 

a connecting beam between the walls. The effective width of 

this beam will be estimated , and the slab rotational stiffness 

30 
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at the c entroidal axes of the wall is obtained in the 

present analysis. At the end of this chapter, an evaluation 

for the method of analysis and the computer program will 

be carried out, by comparing the results obtained using the 

finite element method with the previous results obtained in 

references [9], [17]. 

3 . 2 Solution of the Finite Element Equation 
Appli ed to the Coupled Slab Prob lem 

To consider the fo r m of interaction between the 

slab and the walls, an idealized structure is chosen. This 

idealized structure consists of two sh ea r walls with a slab 

connecting them, as shown in Figure (3•1) . The slab is free 

at all edges and rigidly connected to the walls . 

Consider a high-rise building consisting of shear 

walls supporting flat slab floors as shown in Figure (3·2) . 

Under lateral loads, these shear walls will rotate causing 

a relative displacement , 6, between the ends of the slab . 

Figure (3•3) shows the rotation of the walls and the corres-

pending relative displacement . In view of the large in-plane 

stiffness of the slab, it is generally assumed that both walls 

deflect equally, so that the rotations of the cross-sections 

are taken to be the same . In this case, the effective stiff-

ness of the floor slab will be defined by the relationship 

between the relative displ acement 6, (Figure (3·3)) and the 

forces producing it. If the relative displacement, 6, is 

unity, the corresponding force to this displacement will 

represent the bending stiffness of the slab . It is convenient 



32 

r 
y 

c--w £ _~_-_-._:-__k_ -~--_-__ w_._-_----~~:~j 
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Figure (3 .1). 
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Figure (3.2) Deformation of Cross Wall Structure Under 
Lateral Loading. 

M 

p 

Figure (3 .3) Slab Deformation Resulting from Rotation of Walls. 
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to consider the slab as a lintel beam between the wolls. If 

this be am is assumed to have a depth equal to the thick11ess 

of the slab, its effective width, Y wil l be determin ed such e 

that its bending stiffness becomes the same as that of the 

slab. Also, the rotational stiffness of that beam calculated 

at the centroid of the cross-section of the wall is taken 

as the rotational stiffness of the slab. This rotational 

stiffness represents the slab effective stiffness on the 

shear wall. 

To calculate the bending stiffness of the slab, 

the overall stiffness matrix [k] can be obtained as described 

in th e previous chap ter. A unit relative vertical di splace-

ment with ze ro slop es will be spec if ied at the nodes on the 

boundaries between the slab and the walls. The corresponding 

vertica l noda l forces are comput ed and the summation of 

these vertical nodal forces on one wall repres ents the b ending 

stiffness of the sl ab. 

Equation l2.42) represen ts t he force-displac ement 

relationship for the mathematica l model shown in Figure (3-4). 

The displacements at th e nod e s a t the boundarie s between 

the walls and the slab are known while the forces are unknown. 

On the other ha nd, the remaining nodes hav e known zero 

appli ed forces but the displac ements are unknown. Thus the 

force and di spl a cement vectors in Equation (2.42) are 

partially known in the sens e that in each vector some elements 

are known and some are unknown. For example, as s hown in 

Figure (3.4), the nodes numbered from 1 to 69 hav e zero forces 



, 

Figure (3.4) Typical Problem with Sequence of Numbering the Nodes . 
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and unknown displacements . The nodes numbered from 70 to 

77 have known displacements and unknown forces and moments. 

To obtain the solution , Equation (2 . 42) can be written as 

where 

{Fa}represents the known zero forces 

{Fb}represents the unknown forces 

{oa}represents the unknown displacements 

{ob}represents the known displacements 

Expanding Equation (3.1), we obtain 

Solving Equations (3.2) and (3 . 3) and noting that {Fa} 1s 

a zero vector, the solution becomes 

or 

The vector {ob} represents the known displacements of the 

nodes at the boundaries between the slab and the walls. 

Solving Equation (3 . 5) for unit relative dis-

(3 . 1) 

( 3. 2) 

(3.3) 

(3.4) 

(3 . 5) 

placement and zero slope, the nodal forces and moments will 



be obtained. The summation of the vertical forces at the 

boundary between the wall and the slab th en represent the 

bendjng stiffness of the slab. 

3.3 Considerations for Symmetry and Anti
Symmetry of Some Slab Configurations 
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For the purpo s e of saving computer time and co re 

storage, conditions of symmetry and anti-symmet ry are given 

careful consideration. When circumstances permit, one 

quarter or one half of the slab is solved to obtain the 

solution instead of using the complete slab. 

3.3.1 Boundary Conditions for One 
Quarter . of the Slab 

Figure (3.5(a)) shows a slab configuration in 

which only one quarter of the slab needs to be considere d. 

Due to the conditions of loading, the X-X axis is an axis 

o~ symmetry and the Y-Y axis 1s an axis of anti-sy~metry. 

Figure (3.S(b)) shows a quarter of the slab with boundary 

conditions along the two axes X-X and Y-Y. From this figure 

the boundary conditions along the Y-Y axis are such that at 

each node, both wi, and eX i are equal to zero and eY i is 

unknown. The corresponding forces F . and F~x· are unknown 
Z1 u 1 

and FeYi equals to zero. Nodes along the X-X axis have eXi 

equals to zero and both w. and 8y· are unknown. Correspondingly 
1 1 

both Fzi and FeYi are equal to zero and FeXi is unknown. 
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, 
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Fzi =o 
F -? ex - · 
Fe Y =0 

W· 1 =0 
e x i= o 
9 y- -? 1 - -
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X 

Fzi =? 
Fe x i=? 
Fe yi=O 

Figure (3.5) Typi cal Pr oblem and the Boundary Condi t ions for 
Quarter of the Slab . 
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3.3.2 Boundary Conditions for One 
Hal f of the Slab ----------------

If one axis of symmetry exists, then only one 

half of the plate needs to be considered. Figure (3.6(a)) 

shows an example of the c a se where the first wall is a 

planar wall, while the other wall is a T-section. The 

boundary condit i ons along the axis X- X are shown in Figure 

(3.6(b)). Along bound a r y X-X the force FZi' the moment FeYi 

and the rota tion BX i are equal to ze r o , while the deflect i on 

wi' the rotation BYi and t~moment FBX i are unknown. 

3.3.3 Method of Solution 

The plate is divided into t wo regions. The first 

region includes the nodes not on the X-X and Y-Y axes. These 

nodes have z e ro a pplied forces on them. These forces are 

excluded from the analysi s as explaine d in Section 3.1. The 

second region includes the nod e s along the X-X and Y-Y a x e s . 

The nodes on the bound a r y between t he wall and the slab are 

giv e n unit disp l acem e nt s , while the corresponding forces are 

to be determined. For other nodes on the axes, the bound a ry 

conditions are a pplied as wa s e xplained b e f ore. The fo r ce 

vector {Fb} a nd consequently the stif f ness ma t rix [K] are so 

arranged tha t t h e nodes wi t h zero forc e s a pp e ar fir s t in the 

force and di s p l acement vector a s shown below . 

' I ' {Fbl} [Kll] I [ Kl z] {ob l } 
I 

= --- _,_- -- (3. 6) 
I 

' I I 

{Fh 2} [K z l ·J I [ Kz z] {o b z} I 



Wi =? 
exi =o 
9yi =? 

(b) 

Fzi =o 
Fexi =? 
Feyi = o 

Figure (3.6) T)~ical Problem and the Boundary for Half 
of the Slab. 
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where 

are the zero forces resulting from the arrangement 

of the force vector. 

are the unknown forces at the nodes along the axes. 

are the unknown displacements at the nodes along 

the axes. 

are the known displacements at the nodes along the ) 

axes. 

Equation (3.6) can be treated in the same way as described 

in connection with Equation (3.1), and the final solution will 

be 
( 3. 7) 

where 

(3.8) 

The displacement vector {ob 2} is given as a known input and 

Equation (3.7) can be solved to obta i n the force vector {Fb 2} 

which includes the nodal forces at the boundary betwe en the 

wall and the slab. 

3.4 Equivalent Effective Width of the Slab 

If the slab is considered as a beam of the same 

thickness connecting the two walls, the bending stiffness of 

that beam at its connection to the wall will necessarily be 

equal to the stiffness of the slab. Let Kb represent the 

bending stiffness of the slab, then 



Kb sum of all vertical forces at the nodes 

on the boundary between the wall and the 

slab due to a relative unit displacement 

between the walls . 

The stiffness of the equivalent beam equals to Kb , thus 
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12 E.I 
Q,3 

(3 . 9) 

in which E is the modulus of elasticity, I is the moment 

of inertia of the equivalent beam and Q, is the width of 

the opening between the two walls (connecting beam length) . 

Let Y be the effective width of the equivalent beam. Since e 

the equivalent beam has the same thickness and modulus of 

elasticity as the slab, Equation (3 . 9) becomes 

) 

12 (3 .10) 

The effective width Y can be normalized to the total width e 

of . the slab Y, thus 

(3 . 11) 

The width of the slab Y will be the distance centreline to 

centreline between two consecutive shear walls. The relation 

between Y /Y and the distance Q, is represented in the form e 

of a set of curves as will be described in Chapter 5. The 

length Q, will also be normalized to the total width L as 

shown in Figure (3 . 1(a)). 
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3.5 Rotat iona l Stiffness of the Sl ab 

The rotationa l stiffness of the slab or its 

effective st iffness to the s hear wa lls is obtai ned at the 

centroid of the wall cross -s ect i ons . Three types of wall 

cross -s ections will be studied. Th e first t ype consists 

of the situation where two T-section walls are connect ed by 

th e slab . The second type c on s i st s of two pl anar walls 

coupled by the slab and the third type consists of one 

planar wall a nd one T- s ection wal l ~oupled by the slab . 

3.5 .1 The Rotational Stif f ne ss f or the Conf iguration 
of a Sl a b Coup l ed T-Sect i on Wal ls or Planar Wa lls 

A general formula for the rotational stiffness 

will be obtained for the c on f igura t ion of t wo T-section 

walls coupl ed by a beam . The t wo planar walls confi gu r at ion 

can be t aken a s a special case of t he T- section wa lls. 

Figure (3 . 7) shows two T- section walls connected by the 

equiv a lent beam . Let P be the force whic h causes ~ relative 

displacement, 6, betwee n the two wa l ls c oupled by the slab . 

The same force P will cause a relative displacement, 6 , 

between the two ends o f the equival ent beam . The fixed end 

moment will th en be 

(3. 1 2) 

Let ex b e the distance from the inner edge of the wall to 

its centroid . The rotational mom ent a t the c en triod of the 

cross-section of the wall wi l l be M, where 

( 3 . 13) 
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Let ¢ be the a ngle of rotation of the wall due to the 

moment M, from Figure (3.7(h)) we have 

<P = Q, + 

The rotationa l stiffness of the slab is th en defined as 

p (9.+2 e ) 2 
X 

I X 2 

Since the v a lu e of P/~ rep resents th e bending stiffnes s 

Kb , thus Equation (3.15) bec omes 

To normali ze this rot at iona l stiffness, it will be divide d 

by the flexur a l ri g i d ity of the slab D wher e 

D 
3 E·t 

2 
12(1 - v ) 

(3.14) 

( 3 .15) 

(3.1 7) 

Thu s the nondimen s ional rot a tional stiffne ss of the slab at 

the centroid of th e cross-s ection of the wall become s 

R = 

Usi ng Equations ( 3. 16), (3.17) and (3.11), Equation (3. 18) 

becomes 

R 
6(Ye/Y).(Y/ 9.}(1-v

2
) 

[ 9. /( 9. + 2 e ) ] 2 
X 

Equation (3 . 19) relates the rotational s tiffness R to the 

( 3 .1 8) 

(3.19) 



eq11ivalent wi dth Y for a T-section ·wall. e 
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Figure (3.8) shoHs the configuration of a coupled 

Pl nnar walls. The centroid of the cross -s ection of the 

Pl Hnar wall is at the middle of the wall, thus 

w 
2 (3.20) 

Su),stituting Equation (3.20) into Equation (3.19), the non

di,uensi onal rotational stiffness of t he slab coupled planar 

walls, become s 

R 

2 
6(Ye/Y)o(Y/t}(l-v ) 

[t/(t+w)] 2 

3. S.2 Rotationa l Stif fn ess for the Configuration of a 
Slab Cou p led Pl anar Wall with T-S ection Wall 

The rotational s tiffness of the slab coupled 

(3.21) 

PLanar \vall with T- s ect ion wall is obtained considering the 

a~ t ual position of the point of contraflexure, which is no 

l c' '.1ger at t he midpoint of the connecting beam. This analysis 

I s done to evaluate the assump t ion of considering the point 

o f contraflexure to be at the middle of the connecting beam. 

The actual analysis is derived in this section while the 

d iscussion is delayed till ChapterS where a general discussion 

o f various effects is presented. 

The e x ternal moment applied to the couoled walls 

1 ~ resisted by the moment carried by each wall and the axial 

f 01· c es in the two walls . Each wall will resist a moment 

a ~·~ ording to i ts stiffness. Since the two walls have diff e r ent 
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(R) 

L--ex f-- -- ex ~ 
- w t w 

Figure (3 .7) Typical Plan and the Rota tion ofT-Sect i on Walls. 

(a) 

Lk-~-w- t 
~i--w_j 

p p 

Figur e (3 .8) Typical Pl an and t he Rotat ion of Pl anar Walls . 
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stiffnesses, then the mom ent carried by each wall IS 

different . Thus t he point of contraflexure is no longer at 

the mid-span between the two walls . Le t 11 a nd 1 2 represent 

the inertia s of the plana r and T-section walls about axes 

passing through their respect i ve centroids, then from 

Figure (3. 9) 

(3 . 2 2 ) 

where t 1 and 1 2 are the dist a nces between the point of 

contrafl exure and t he inner edges of the planar wall and the 

T-section wall, resp ect ively . In terms of wall opening 1 

we have 

and 

Since the angle of r otat ion of the two walls will be the 

same, then 

or 

1 1 + w/2 
-------
1 2 + ex 

1z + ex 
w 

1 + -2 + ex 

Substituting Equation (3.24) into (3.26) 

+ e 
x.t, 

(3 . 23) 

(3.24) 

(3.25) 

(3. 26) 

(3. 27) 



I, r-T-
~----~ ex-- w_j 

Figure (3.9) Typical Plan and Rotations of Planar Wall 
with T-Section Wall . 
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The angle of rotation of th e wall cp 1s given by 

1::.2 

From Equations (3.24) and (3. 27), Equation (3 . 28) becomes 

cp = 

Let M be the rotational moment acting at the cen troid of p 

the planar wall section, then 
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(3 . 28) 

(3 . 29) 

( 3 . 30) 

Using Equations (3 .1 7), (3.23) and (3.29), the nondimensional 

rotationa l stiffness of the slab a t t he centroid of the 

planar wall sect ion R , becom e s 
p 

R p 

(3 . 31) 

In a similar way, the rotational moment Mf calcula t ed at the 

centroid of the T- section wall will be 

The nondimensional rotational stiffness of the slab at the 

centroid of the cross-section of the T-section walL _Rf, 

becomes 

(3 . 32) 

(3. 33) 



so 

We have discussed the various formulae used to 

obtain the equivalent width of the slab and the rotational 

stiffness of the slab for a variety of coup l ed wall configura-

tions. In the remaining sections, we shall outline the 

flow chart of a computer program developed and calibrate 

the computer program by comparing some computed results 

against results that have appeared in the literature . 

3 . 6 Computer Program 

A computer program 1s developed to carry out the 

computation using the method of analysis described above . 

Figure (3.10) shows a flow chart for that program . It 

consists of three parts: 

The first part is a group of subroutines to 

formulate the total stiffness matrix of the slab. These 

subroutines are: 

a) Subroutine LAMDA to obtain the direction cosines 

of the local axes . 

b) Subroutine AINVRS to obtain the inversion of 

maxtrix [A] . 

c) Subroutine BENDK to formulate the element 

stiffness matrix in the local axes. 

d) Subroutine TRANS to transform the element stiffness 

matrix from the local to the global axes. 

e) Subroutine ASSEMB to formulate the total stiffness 

matrix . 



NO 

READ:NN.NE.EMU.EMD.T 

Zero Tot a l Sti f fness M a t rix 

Read Noda l Di s Pl. 

Calc u l a te Noda l F orces 

Print Ou t t h e E ffecti
ve Widt h a nd t he R o
t a tiona l Stiffne s s 

R ead Nodal 
Coor dina t e s 
in Glob al Ax
es 

Read Nodes 
Nu mber 

Nod a l Coordi-
nates in Lo ca l 
Axes 

Store Element 
Stiffnss M atrix 

II 

P a rtitio n of S t iffnes 
M a tri x 

R earrange m e nt of 
t he St i ffness Matrix 

Partit ion of Sti f fness 
Matrix 

Figure (3.10) Flow Chart for the Computer Progr am . 
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The second part is the partition of the stiff-

ness matrix to obtain th e ma t rix [K] represented in 

Equation (3.5). This partition is used to omit the unknown 

displacements along the nodes not located on the boundary 

between the wall and the slab, nor on the axis of symmetry 

and antisymmetry. 

The third part includes the boundary conditions 

for the cases where only a quarter and a half of the slab 

are solved. This part, together with the firs t two parts 

is represented in two programs. One program is for solving 

the quarter of the slab problem, and the other is for solving 

the half of the slab problem. A complete listing of the 

program is given in Appendix B. 

3.7 Verification of the Computer Program 
and the Met hod of Ana l y sis 

In order to check the method of analysis suggested 

in this thesis and to test the computer program, dif f erent 

slabs are analysed and the results are compared with the 

previously obtained results given in the literature [ 9 , 17J. 

In addition, a problem with a known solution is solved by 

the comput e r program to verify its accuracy. 

3.7.1 Analytical Verification 

Consider a slab connecting two shear walls as 

shown in Figure (3.ll(a)). The configuration consists of 

two planar walls of thickness one foot each with an opening 

3.5 feet in between. The slab width is taken to be the same 



53 

as the thickness of the walls. Figure (3.ll(b)) shows a 

quarter of the slab to be solved and the method of number-

ing of the nodes. The computer results are shown in Table 

(3.1). This slab is solved analytically as a beam of a 

width of one foot and depth 0.667 foot fixed at both ends . 

Table (3.2) shows the analytical results. 

Since the slab is of the same width as the wall 

thickness, it is expected that its effective width will be 

the full width. As given in Tab le (3.1 ) the ratio of the 

equivalent width to the total width is 1.005. This means 

that the equivalent beam width equals the width of the slab 

with an error of 0.5%. Comparin g the stiffness and the 

fixed end moments, we can conclude that the computer results 

agree with the ana l ytical values within an acceptable 
J 

accuracy. 

3.7.2 Comparison with Results Given 
in the Literature -------

A set of curves has been presented by Qadeer and 

Smith [17] on the slab coupled planar wall problem . These 

curves were obtained by using the finite difference method 

to solve the plate equation. These curves show the relations 

between the normalized wall openings and both the normalized 

effective width Ye/Y and the nondimensional rotational 

stiffness R. It should be pointed out that in this investiga-

tion the continuity between the slabs are consider e d and the 

wall thicknesses are taken to be infinitesimal . In additi on, 

Qadeer and Smith [17] carried out two sets of experiments, 
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Figure (3.11) Numerical Example - Full Dimensions and 
the Finite Element Mesh. 
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Table (3.1) Computer Results 

Stiffness My X 102 Zl::My 
y ft. £ ft. y /Y (reaction) 36 37 38 39 40 X 102 e 

1 3.5 1. 00577 3.006xl0 3 3.237 6.769 6. 85 6.066 3.385 52.614 

Table (3 . 2) Analytical Results 

y ft . £ ft . Stiffness 
M (reaction) 

3 7 
1 3.5 2.99xl0 52.2xl0 '"' 



in which the slabs are considered free along the edges. 

Figure (3 . 12) shows the plan dimensions of the 

problem studied in reference ll7] with d as the length of 
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the overhanging part of the slab beyond the walls. Table 

(3 . 3) shows the dimensions of the slabs and the wall 

configuration t hat were studied experimentally, while Table 

(3.4) shows the dimensions of the slabs which were solved 

by the finite difference scheme . The same slabs with all 

edges free are analysed by the finite element me thod as 

presented in t h is thesis . The results based on the finite 

difference scheme and the finite element technique are 

plotted in Figure (3.14) . In the same figure, the percentage 

of difference in the effective width of the slab between 

the two methods is also plot ted . The results based on the 

finite element technique are also plotted in Figure (3.13) 

wi th the experimental results of reference [17]. 

From Figure (3.13) , the finite element results 

give higher values for the stiffnes s of the slab . At the 

same time, the finite element analysis also gives high er 

values than the finite difference analysis for the stiffness 

of the slab. However, it should be noted tha t the computed 

results based on f inite element technique follow similar trend 

results given by Qadeer and Smith. 

Coull and El-hag [9] published sets of curves 

obtained experimentally for s l abs coupled shear walls. These 

curves show the relation between the ratio ~/L and both the 

nondimensional rotational stiffness and the equivalent beam 
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Table (3.3) Dimensions of Coupl ed Wall Configuration to 
Compare with Experimental Results given in 
Ref. [17]. 

9., ft. w ft. y f t. L ft. £/L w/L Y/L 

I 

L ft. 

y ft. 

9., f t. 

6 3 6 12 . 5 .25 . 5 

6 3 12 12 . 5 .25 1 

6 3 16.1 ' 12 . 5 . 25 1.34 

Table (3.4) Dimens i ons of Coupled Wall Configur at ion to 
Compare with the Fini t e Difference Resul ts 
given in Ref . [17]. 

32 32 32 32 32 32 32 32 

8 8 8 8 8 8 8 8 

1. 6 3 . 2 6.4 9.6 12.8 16 19.2 22 . 4 
I _l 

w f t. 15.2 I 14. <-1 12.8 11. 2 9. 6 8 6.4 4.8 

9., /L .05 0.1 . 2 .3 .4 . 5 .6 . 7 
----

Y/L .25 . 25 . 25 .25 .25 .25 .25 .25 
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width of the slab. No theoretical investigation was present ed 

in this paper. In the experiment the model consists of two 

steel walls coupled by a perspex sheet to act as a slab. 

We shall use these experimental values to provide a check 

on the proposed finite element scheme of computation. 

For the planar wall configuration, four sets of 

slab sizes are considered. In the first t wo sets of the 

slabs, the ratio Y/L is taken as 0.3 and 0.5. The resulting 

finite element values together with the experimental values 

given in reference [ 9], are plotted in Figures (3.15), (3 .1 7) 

and (3.18), for different values of ~/L . In the third set 

of slabs, the ratio w/Y is chosen as constant, while the 

ratios Y/L and ~/L are taken as va r iables. Table (3.5) 

shows the dimensions of these slabs. The~ lower graph in 

Figure (3.15) shows the finite element results and the 

experimental results given in reference [9] for the third 

set of slabs. Table (3.6) shows the dimensions for tl1e 

fourth set of slabs in which w/Y is also taken as constant . 

Plotted in Figure (3 .1 6) is the relationship between Y/L and 

Y /Y, for both the finite element results and the experimental e 

results given in reference (9]. 

These figures show reasonable agreement between 

the experimental and the theoretical results, with an 

exception when the ratio of ~ /L equals 0.2. This deviation 

may be due to the difficulty of a ccurate measurement when 

the opening between the walls becomes small. 

A second comparison is made between the finite 

element results and the experiment a l work given in reference [9], 
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for the sl a b s coupl ed box core walls . Tabl e (3 . 7) shows 

th e dimen s io ns of t he s l a b s unde r study . Pl ot ted in 
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Fi gur e (3 . 1 9 ) is tl1e r e l a t ions b e tween i / L and Y /Y fo r Z/ Y e 

equa l s 0 . 3 a nd 0 . 5. This figure show s s ome deviati on 

between the f init e e lement r e sults and the exper im en t al 

re sult s . Th is devi a tio11 may be due to po s si b l e loc a l de£orma -

tion of the core walls in the experimenta l set - up. 

By compa ring the r e sult s obt a ined by t he finit e 

elemen t s c heme with t he exp e r i mental results given in 

r efe r enc e [ 9], it i s concluded tha t the computer program is 

op e rational. At the s ame time th e method of analysis is 

suf f icie n t ly ac curat e to r epresent th e coupl i ng slab stif f ne ss. 

It should be no t ed t ha t th e theoretic a l and 

experime ntal c tr v e s, obtain ed by Qadeer and Sm i th [17] and 

Coull and El-hag [ 9] , res pec t ively , represent the r e lations 

between t he wal l op en i ngs a nd t l1e s lab sti ffne ss, for 

mod e r a t e to l a r ge wa ll openings only. No data were given f or 

small value s of wall op en ing (i / L = 0.1 s a y ) . In p r actic e , 

the ar rang ement o f shea r wa lls in high-rise buildings i s such 

tha t u su a lly , t he practical r a nge of i /L is between 0.1 to 

0 . 2 . I n add it i on, the curves represented in the pr evious t wo 

ref erence s a re computed a ssuming i n f initesima l wall thi c kness. 

As will be shown lat er, such an assumption und e r e s timates 

the stiffne s s of th e slab . 

For values of £ /L equals 0 . 2 , t he experimental 

resul t s giv en in r efer e nc e [9) do not ag r e e we l l wi th the 

theoretical re sults g iven by t he f i nite element scheme. 



Table (3.5) Dimensions of Coupled Wall Configuration to Compare 
with Exper imental Results Gi ven in Ref. [9] . 

t w L y -~/L Y/L w/Y 

20 10 40 33 . 4 . 5 . 835 .3 

16 12 40 40 . 4 1 .3 

10 15 40 50 .25 1. 25 . 3 

Table (3.6) Dimensions of Coupl ed Wall t,onfiguration to Compare 
with Experiment al Results Given in Ref. [9]. 

t w L y £/L Y/L w/Y 

6.55 16. 75 40 33.5 .1635 . 836 . 5 

ll.S 14.25 40 28.5 . 2865 . 713 . 5 

15 12.5 40 25 . 375 . 625 . 5 

' 

Table (3. 7) Dimensions of Coupled Wall r:onfiguration to Compar e 
with Experimental Results Given in Ref. [19]. 

W/Y Z/Y w z £/L L Q, 

.3 .3 3.6 3.6 . 25 9. 6 2.4 

.4 12 4.8 

. 5 14.4 7. 2 

. 5 . 5 6 6 .25 16 4 

.4 20 8 

. 5 24 12 
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Since we are interested particul a rly i n small wall openings, 

it was decided that an experiment would be carr i ed out to 

obtain data for small ·wall opening coup l ed wall conf igura

tions. Such experimental work will b e described in the 

next chapter. 



CHAPTER 4 

EXPERIMENTAL WORK 

4.1 General 

As discussed in Chapter 3, the cri~ical range 

of wall opening is where 1/L less than 0.2. However, 

there appears relatively little information on the stiffness 

of the coupled wall system in this range. Some experimental 

work has been carried out by Coull and El-hag [9]. Comparison 

between their experimenta l results with the finite element 

computation results shows good agreement for values of ~ /L 

greater than 0.25. For sma ller values of 1/L, some difference 

exists between the theoretical and experimental values . 

Therefore, an experiment is carr ied ou t to study the stiffness 

of the slab coupled planar walls . Such experimental investi-

gation will complement the theoretical studies presented, 

particularly in the range of small wall openings. 

4.2 Mathematical Representation for the 
Experimenta l Model 

When a coupled shear wall is subjected to lateral 

forces, its deflected shape will be as shown in Figure (3.2). 

The effective stiffness of floor slab will be defined by 

the rel a tionship between the relative vertical displacement ~ 

~igure l3.3)) and the forces producing it. If the two walls 

are similar, each wall will move ~/2, and the line of contra-
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flexure of the slab will be at the mid-span between the 

walls. Therefore, one can study the behaviour of coupled 

shear walls by making use of this anti-symmetrical property. 

In other words, one can use one shear wall connected to a 

slab and use a roller suppor t to simulate the line of 

contraflexure condition at the mid-line of the connecting 

slab. 

Figure (4.1) shows the suggested structural 

system that simulates the behaviour of the coupled shear walls 

as described by Qadeer and Smith [17), while Figur e (4.2) 

shows the actual model that has been used in the present 

study. From Figure (4 .1), the relative displacement ~ 

and the rotation ~ can be expressed as 

~ M 
3 

Q, 

2 = IT r-z-c Q,+w) (4.1) 

~ 
~ 

= Q, +w (4.2) 

Therefore, 

f\1 6 El( Q, +w) 2 

~ Q,2 
l4. 3) 

The nondimensional rotational stiffness R is 

R (4.4) 

and the moment of inertia of the equivalent beam 1s 

y • t3 
e I = 12 ( 4. 5) 

From Equations (4.3), (4.4) and (4.5), we get 



t--- w --+--- e --+--- w ~ 

M 
EI 

Figure (4.1) SbmJ. lation of the Behaviour of the Slab 
Under Lateral Loading. 

Figure (4.2) Half of the Slab with Roller Support at 
the Line of ContrafleALlre. 
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The ratio Y /Y, becomes e 

y 
e 

y = R 
2 6(1-v ) 

1 
2 

(Y/ 9. ) (l+w/ 9. ) 

In the experimental investigation shown in 

Figure ( 4 . 2) , 

-
a 

M = p -
a 

where 

P represents the lateral load applied to the wall at 

distance i from the supporting point. 

70 

~ represents the horizontal displacement of the wall due 

to the load P. 

~ is the angle of rotation of the wall. 

Substituting Equations (4.8) and (4.9) into Equation l4.4) 

yields 

-2 2 
R = 12 a (1-v ) 

E t
3 

Equation (4.7), becomes 

y 
e 1 

y . - 2 
(Y/n (l+w/ e- ) 

( 4. 6) 

( 4. 7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 



The values of ~/X will be obtained experimentally f or 

different slab lengths, from which the values of Y /Y and e 

R can be obtained . 

4.3 Description of the Model 

71 

Figure (4.3) shows the experimental set -up used 

in the tests. The model consists of: 

i One planar steel wall of dimensions 20" x 6" x 3/8 " . 

11 A steel slab of dimensions 36" x 12" x 1/4". 

The stress-strain relationship for the steel of the 

slab is shown in Figure (4.4). 

iii A heavy steel frame with a 3/4 inch diameter shaft 

at the top is used as a roller support, as shown 

in Figur e (4.5). 

iv A heavy steel block fixed to the fl oor to act as 

a ri gid foundation for the shear wall, as shown 

in Figure (4.5). 

v Four dial gauges with accuracy of a n inch 

for measuring the deflections of the wall, the 

ste e l frame and the foundation b lock. Their 

locations are shown in Figure (4.5). 

The behaviour of the coupled shear wa lls can be 

simulated by allowing the wall to rotate in its plane. The 

wall is pivoted freely on ball bearings carried on a 3/4 inch 

diameter steel rod. The steel rod is supported on another 

two bearings fixed in the side of a heavy steel ang l e , as 
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Figure (4 .3) 
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Figure (4.4) Stress-Strain Relationship of the Steel of the Slab . 
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shown in Figure (4.6). The slab is welded to the wall, and 

the excess weld is machined off . The distance £be tween the 

two walls can be adjusted by moving the roll e r support. The 

roller support is lubricated to allow the free movement of 

the slab with a minimum of friction. The shear wa ll is 

loaded hor izontally through a wire c able conn ec ted at the 

top o f the wall and passes horizontally through a smooth pulley 

system. At the end of the cable, there is a hanger where 

the loads can be added. Two dial gauges are used to measure 

the deflections at the top and the mid-height of the wall 

respectively. The other two dial gauges are used to measure 

the movement of the foundation block and the roller support 

steel frame to ensure their movements are negligible. 

4.4 Test Procedure 

Since the stiffne ss of the steel wall 1s very 

much larger than the stiffness of the thin slab, it may be 

assumed that the deformation of the former is ne g lig ible 

compared to the latter. Therefore, the measured deflection 

of the wall can be considered due to the deformation of the 

slab only. Seven valu e s of wall openings are co nsidered . 

The different values of the wall opening £ and the total 

spacing L are shown in Table (4.1). For each wall opening , 

the load is increased from zero to a maximum and the lateral 

deflections of the wall are recorded two minutes after each 

application of t he load. At the same time, the movements of 

the roller support steel frame and the foundation block are 
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Slab 
Configuration 

1 

2 

3 

4 

5 

6 

7 

Table (4 . 1) Wall Spacing for the 
Different Slabs . 

t in. L in. t /L 

58 70 . 83 

I 44 . 5 56.5 .79 

35 47 . 745 

20 32 .625 

8 20 .4 

3. 75 15.75 . 24 

2 14 .143 
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Y/L 

.172 

. 212 

. 255 

.375 

. 6 

. 765 

.855 
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also recorded. For each wall opening, the experiment is 

carried out five times and the recorded values are the 
. 

avera ge over five readings. The load increments, the total 

loads, the corresponding average incremental lateral deflections 

and the total deflections are tabulated in Appendix C. 

4.5 Results and Discussion 

The recorded values for the movement of the roller 

support steel frame show negligible movement fo r this 

support. Als~ the foundation steel block registers no move-

ment. Figures ( 4 . 7) through (4 . 13) show the relationship 

between ~ and K for the seven wall spacings tested as 

measured by both dial gauges on the wall . The values of 

P /~ are obtained and the nondimensional rotational stiffness 

R and the normalized effective width of the slab Ye/Y are 

calculated . The value s of a, E , v, t, Y, w,used are as 

follows: 

-a = 16 . 75" 

t = 0 . 25 " 

w = 6" 

\) = 0.3 

E 3 10 7 Ib/in 2 
X 

Substituting into Equations (4 . 10) and (4 . 11) yields 

or 

R= 0 . 65 

top 

-2 p 
R= 0.325 X 10 C:;) 

'-' mid 

(4 . 12) 

(4 . 13) 
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and 

y 
-2 1 p e ( 4. 14) y = 0.12 X 10 X 

w/£)2 
X Cr-)top 

(Y/'l) (1+ 

or 
y 

- 2 1 p e (4.15) y 0.06 X 10 X 2 Cr)mid 
(Y/'l) (l+w/'l) 

Table (4.2) shows both the nondimensional rotational stiff-

ness and the effective width of the slab for different wall 

openings, calculated for P /X measured at the top and a t the 

mid-height of the wall. 

A theoretical computation is carried out for the 

seve n cases to obtain the effective width of the slab and its 

rotational stiffness. The theoretical results and the average 

of the two calculated experimental results are p lotted 

in Figures (4.14) and (4. 1 5) for the effective wid ths and the 

rotational stiffnesses, respectively. 

The P -X curves provide a check on the linearity 

of the experimental set up. As shown in Figures (4.14) and 

(4.15), acceptable agreement is found between the experimenta l 

and the theoretical results. For 'l/L equals 0.14, there 

is some difference in the value of the stiffness of the slab 

between the experimental and the theoretical results. At 

such small openings, the system becomes very stiff, resulting 

in a very small displacement for the loads applied . The 

inherent inaccuracy in displacement measurements will then 

have its biggest impact to cause the disagreement between the 

experimental and the theoretical results. 



Table (4.2) Values of Rand Ye/Y for Different Wall Openings 

Slab 
(1 +w/ £) 2 (p . p y y 

Config- Y/£ w/£ e 
(R)top 

e 
r)top (~) "d Cy-)top C-y)mid 

uration 1'1 ffil 

I 
1 0.21 0.105 1. 23 220 430 1. 02 1.43 0.995 

2 0.27 0.135 1. 285 282 582 0.96 1.83 0.99 

3 0.344 0.172 1.375 387 770 0.965 2.52 0.96 

4 0.6 0.3 1.69 730 1370 0.86 4.75 0.81 

5 1.5 0.75 3.05 1470 2880 0.387 9.55 0.38 

6 3.2 1.6 6.75 3800 7100 0.21 24.7 0.2 

7 6 3.0 16 6650 12700 0.0835 43.4 0.08 

(R)mid 

1.4 

1.9 

2.5 

4.45 

9.35 

23 

41.5 

00 
0\ 
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CHAPTER 5 

DESIGN CURVES AND 
DISCUSSION OF RESULTS 

5.1 General 

In this chapter, the effect of taking the shear 

wall thickness into account on the slab st iffness 1s evaluated. 

In addition, the overhanging part of the slab beyond t he 

walls, as defined i n Figure (3.12) by the symbol d, is studied 

to evaluate its effect on the stiffness of the system. For 

each wall conf iguration shown in Figure (5.1), the coupling 

slab is analysed by using the computer program developed to 

obtain its stiffness. The effective width and the rotati onal 

stiffness of the equivalent beam are r e presented in sets of 

design curv e s. In order to use these curves it is necessary 

to ~now the geometry of the cross-sections of th e walls, the 

width of the slab , Y, the opening between th e walls, 1, t he 

total length of the slab, L, and the thickness of the planar 

wall, h. Different examples a r e worked out to explain the use 

of these curves. The relations between the value "aH" in 

coupled shear wall analysis and the wall op e nings are also 

presented. 

5.2 Effect of Shear Wa ll Thickness 
on the Slab Stiffness 

Consid e r the configura tion of two planar wal ls 

coupled by a slab. Three thicknesse s o f the wa l ls are considered. 
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These thicknesses are 12, 9 and 0 inches . The ratio Y/L is 

kept at a constant v alue of 0 . 25. For each wall thic kness 

the value of Y /Y for different values of ~/L is obtained. e 

Figure (5 . 2) shows the calculated equivalent beam width for 

the three thicknesses considered . In the same figure, the 

percentage error resulting from neglecting the wall thickness 

is plotted. The comparison of these curves shows that if the 

wall thickness is neglected , the analysis gives an effective 

width l ess than the actual width by a value ranging between 

7% and 33%, calculated based on the value of a one foot thick 

wall. Within the practical range of ~ /L (0.1-0.2) it is 

obvious that the thickness of the planar wall should be taken 

into consideration in estimating the slab stiffness. 

It should be noted that the design curves pr e sented 

by Qadeer and Smith [17] were obtained neglecting the s h ear 

wall thickness . Therefore their results will underestimate 

the slab stiffness. 

5 . 3 Effect of the Overhanging Part of 
the Slab Beyond t he Walls 

Figure (3.12) shows a coupled shear wall with an 

overhanging part of the slab beyond the walls. To ensure that 

such overhanging has negli g ible effect on the stiffness of 

the system, within the ranQe of the configurations s t udied, 

some preliminary analysis are carried out with different values of d 

Consider the configuration of two planar walls 

coupled by a slab of Y/L equals 0 . 25 and ~/L equals 0.1. The 

overhanging part, normalized to the total length L , is varied 
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betwe en zero and 0 . 187 . Fo r each value of d/L the problem 

is solved and the effective width is obtained. The results 

are represented in Ta b l e (5.1). These results show tha t the 

stiffness of the system is insensit i ve to the overhang ing 

part of the slab beyond the walls . Ther efore, this effect wi ll 

be neglected in a ll desi gn curve ca lculations. All desi gn 

curves will be obtained with no ov erhanging sl a b. 

5 . 4 Presentat ion of the Des ign Curves 

The design curves presented in this chap ter will 

show the relations betwe en the wall op enings a nd both the 

effective width and the rotational st i f f ness of the different 

slab coupled shear wall confi gurations. Ea ch curve is generated 

by five points, each point represents a specif i c wa ll opening 

value. For each wall opening , the slab is analysed by the 

finite - element method to obtain its stjffness. The tot a l 

l ength thickness, Po is son' s r a tio, and the modulus of 

elasticity of the slabs are taken as 40 feet, 0.6 67 f oot , 

0.15 and 4 . 32 x 10 5 kip/ft 2 , respectively . Three value s of the 

slab's widths Y a re c onsidered, name ly, 12 feet, 20 feet and 

28 f eet. The wall op ening s are changed as shown in Table (5 . 2). 

The shea r wall t h ickne ss is taken a s one foot. 

5 . 4.1 Cu_:rv es for Coup l ed Pl a na r Wa lls 

The first set of curves represen t the stiffness 

of t h e slab coupl ed planar wall s . The relations be tween the 

nor mali zed v a lues of 9-/L a nd Ye/Y for dif fe rent value s of Y/L 

are shown in Figu r e (5.3) . The relations b e twe en the 



Table (5.1) 

d ft. 

d/L 

Y/Y 

Table (5. 2) 

y f t. 

£. ft. 2 4 

w ft . 19 18 

0.00 

. 00 

The Effective Width of the Slab for 
Different Values of Djmension d 

1 1.5 3 

.031 .047 .094 

6 

.187 

0.311032 0. 311032 0. 311 033 0.311054 0.311054 

Full Djmensions of Slabs and Walls 

12 20 28 

8 12 20 2 4 8 12 20 2 4 8 12 20 
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non-dimensional rotational stiffness R and the normalized 

wall openings t/1 for different values of Y/1 are plotted 

in Figure (5.4). Figure (5.5) shows the relations betwe en 

Ye/Y and Y/1 for different values of t/1. This plot 
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simplifies the interpolation between the curves in Figure (5.3). 

For wall thicknesses less than one foot a reduction 

for the effective stiffness of the slab can be made. Curves 

representing the necessary correction are drawn in Figures 

(5.3) and (5.4). These correction curves are base d on the 

results represented in Figure (5.2), using linear interpola tion 

for the different wall thicknesses. 

5.4.1.1 Example 

The use of this set of design curves 1s illustrated 

by the following example . Let us choos e a 40' x 20' slab 

connecting two planar walls of thickness 0.75 foot. The 

opening between the two walls is 8 feet. It is required to 

deterntine the equivalent width of the slab Ye and its non

dimensional rotational stiffness. 

The values of the relevant non-dimensional para-

meters are: 

t /1 = 0.2 

Y/1 = 0.5 

Using these par ameters, the normalized eff e ctive width Y /Y e 

can be obtained from Figure (5 . 3), 
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The reduction factor for the wall thickness = 0 . 96 . 

The equivalent width of the slab is therefore 

Ye = 0 . 36 X 0 . 96 X 20 

6.9 feet 

Similarly, using Figure (5.4) , the non-dimensional rotational 

stiffness is 

R = 49 

After correction, the non - dimensional rotational stiffness is, 

R = 49 X 0.96 

= 47 

5.4.2 Curv e s for Coupled T - Section 
Wall Configurations 

The second set of curves are those representing 

t he stiffness of the slab coupl i ng two T-section wall s . The 

dimensions of the slabs and walls are those described in 

Section 5 . 4. The flange width z, are taken to be 10% and 

20% of the total length, L. For z/L equals 0 . 1, the relations 

between 1/L and both the effective width Ye/Y and the 

rotational stiffness are presented in Figures (5.6) and (5 . 7), 

respectively. The relation between Y/L and Y /Y is also e 

represented in Figure (5.8). The corresponding relations are 

plotted in Figures (5 . 9), (5.10) and (5 . 11), respectively, 

for the case z/L equals 0.2 . It should be noted that the 

thickness of the wall has no effect on the stif f ness of the 

slab b ecau se it is essentially taken into account using finite 
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flange widths. 

5.4.3 Curves for Coupled Planar and T-Section 
Wall Conf igurations 

The configuration of the slab coupled planar 

wall with the T-section wall under lateral loading has one 

axis of symmetry (the X-X axis) only, as shown in Figure 

'106 

(3.6). The Y-Y axis is not the axis of antisymmetry in thi s 

case. Therefore, it is necessary to consider half of the slab 

instead of o~e quarter of the slab as in the previous two wall 

configurations. Due to the limitation of the computer storage, 

a coarser mesh has to be used. To obtain an idea for the 

error produced from the coarse mesh u s ed, a slab coupled 

planar wall system is solved by two different ways. First , 

one quarter of the slab is solved and secondly, it is solved 

considering half of the slab using a coarser mesh. A compari-

son between the comput a tional results of the two calcul a tions 

will then provide an indication of the errors involv~d using 

a coarser mesh. Fi gure (5.12) shows the computed results. The 

error involved in using a coarser mesh as a function of 1/L 

is plotted in the same figure. The error ranges between 4% 

and 20% depending on the values of 1 /L. Since the design 

curves for the slab coupled planar wall with the T-section wall 

are computed using a coarser mesh, the results may be modified 

according to the error curve as shown in Figure (5.12). 

The flange width of the T-sect i on wall is taken 

as 10% and 20% of the total length of the slab . The thickness 

of the planar wall is taken as one foot . Figure (5 .1 3) shows 
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the relations between 1/L andY / Y, while Figure (5 .1 4) e 
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shows the relations between Y/L and Y /Y for z/L equals 0.1. e 

The same relations are shown in Figures (5.15) and (5.16) for 

z/L equals 0.2. 

5.5 Stiffness of the Slabs Coupled Box Core Walls or 
T-Section Walls with Flanges at the Outside Edges 

The previous sets of curves represent the effective 

stiffness of the common slabs coupled shear wall configurations 

used in high-rise buildings. In addition to the se configura-

tions , the box core walls and the T-section wal ls with th e 

flanges at the outside ed ges are used in high-rise buildings. 

The last two configurations are shown in Figures (5.18) and 

(5.17), respectively. Preliminary analysis for tlte slabs 

coupled box core walls or T-section walls with flanges at the 

outside edges was carried out . For simplicity we shall 

denote a T-section wall configuration with flange at the 

inner ed ge as a T-wall configuration and a T-section wall 

configuration with flange at the outside edge as an inverted 

T-wall configuration . Although the bending stiffness and 

correspondingly, the effective width of the slab coupled planar 

walls and the slab coupled inverted T-walls is the same, the 

rotational stiffness for th e se conf igurations is not the 

same. This is because the rotational stiffnesses are obtained 

at different points in the two cases. The same is true for the 

slab coupled box core walls and the slab coupled T-walls. 
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5.5.1 The Effective Width of the Slabs Coupled Inverted 
T-Wall and Box Core Wall Confi gurations 

Two groups of slabs are analysed by the computer 

program developed . The first group repr esents the slabs 

coupled inverted T-walls wi th dif fe rent openings , while the 

second group represents the sl a bs coupled planar walls with 

similar openings. Table (5.3) shows the effective width of 

each configuration for the different wall openings. The 

same procedure of analysis is carried out for the slab coupled 

b ox cor e walls and the sl ab coupled T-walls . Table (5.4) 

shows the effect i v e width for each wall configuration . 

Fr om Tables (5.3) a nd (5 . 4) it is shown that the 

effective width of the slabs coup l ed inverted T-wal ls is the 

same as the effective width of the slabs coupled planar 

walls . Also, the effectiv e width of the slab coupled box core 

walls is the same as the slab coupled T-walls. Therefore , 

the curves representing the effective width of the slabs 

coupled planar walls or T-walls c a n be used for the slabs 

c oupled inverted T-walls or ~ore wa lls , re s pectively . 

5.5.2 The Rotat i onal Stiffness of the Slab Coupled Inverted 
T-Wa l l and Box Core Wa ll Configurations 

As mentioned in Chapter 3 , the rotational stiff-

ness of the slab coupled shear wall is calculated at the 

centroid of the cross-section of the wall. Since the centr i od 

o f a planar wall is at the mid-width point, while the centriod 

of an i nverted T-wall will be further away from the mid-width 

of t h e wall , the rotational stiffness calculated for the p lanar 



Table (5.3) The Effective Width of Slabs Coupled 
Planar Walls and Inverted T-Walls 

£/L 0.05 0.1 . 2 . 3 

Planar 
Y/Y .22 .356 . 535 .65 Wall 

Inverted y /Y .23 . 363 . 542 . 659 T-Wall e 

Table (5.4) The Effective Width of Slabs Coupled 
Core Walls and T-Walls 

y /Y 
z £ 

e 
lJ 
y y 1 Box 1Vall T-Wall 

0.25 0.467 0.461 

0.3 0.3 0. 4 0. 601 0. 583 

0. 5 0. 699 0. 671 

0. 25 0 . 731 0. 739 

0.5 0.5 0.4 0. 858 0.849 

0. 5 0.915 0.894 
' 
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wall will be different from that of the inverted T-wall 

although the effective width for the coupled planar walls 

and the inverted T-walls is the same. 

In order to use the curves representing the 

rotational stiffness of the slab coupled planar walls to 

represent the rotational stiffness of the slabs coupled 

inverted T-walls, a relation between the rotational stiffnesses 

for both kinds of walls will be obtained . 

Let R and RT be the rotational non-dime nsional 

stiffness of the slabs coupled planar walls and inverted T-

walls respectively . From Equations (3.19) and (3 . 21) , we 

have 

R = 

and 

6(Y /Y) (Y / £) (l - v
2

) e 

6(Y /Y)(Y/£)(1-v
2 ) 

e 

[ £/(£ + 2 e )]
2 

X 

Dividing Equation (5.2) by Equation (5 . 1) yields 

2 + 2 e 2 
=[ Q, +'~X] 

where Br Is the correction factor for the effective stiff

ness for the inverted T - section wall. The value of ex can 

be represented as a function of w, gives 

e = yw 
X 

where y is a constant depending on the flange width of the 

(5 . 1) 

( 5 . 2) 

( 5 . 3) 

( 5.4) 



T-section wall. Fr om Figure (5.1), we have 

L = t + 2 w 

Thus, Equation (5.3) becomes 

(1-y). t /L+y 2 
1 ] 
z-Cl+t/L) 

Table (5.5) shows the relationship b~ tween aT and t/L for 

different values of y. 

The same procedure can be used to obtain the 
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( 5. 5) 

( 5. 6) 

relation between the rotational stiffness of the slab coupled 

T-walls and that of the slab coupled box core walls. Let 

R and Rc be the non-dimensional rotat i onal stiffness of the 

slab coupled T-wall and box core wall respectively . Re f erring 

to Equat i ons (3.19) a nd (3 . 21), we have 

R 

6(Ye/Y) (Y/ t ) (l~v 2 ) 

[t/(t+w)] 

? 
6 (Y e/Y) (Y I t ) (1- v ~) 

[t/(£, + 2 ex)] 2 

The correction factor for the rotational stiffness of the 

slab coupling box core walls is 

= [ t+w ]2 
£+ 2 e 

X 

From Equation (5.5), we have 

( 5. 8) 

( 5. 9) 

(5.10) 



w 1 1 = 2 (1-£./L) 

Substitut i ng into Equation (5.10) yields 

Using 

e 
X 

1+£/L ]2 
2£. 4 ~ 
L + L 

where h is the thickness of the wall. 

be written as 
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(5.11) 

(5 . 12) 

(5.13) 

Equation (5.13) can 

For a coupled wall of practical dimensions, the value of h/L 

is approximately 2 . 5%, and the maximum value of z/L used is 

0.2. Hence, the product of z/L and h/L is about 0.5%. Thus 

one· can neglect both h/L and (z/L x h/L) to simpliff t he 

expression to 

2 = _
4
1 [ (1-£/L) ] 
~- ~ + 1 L L 

(5 . 15) 

Substituting into Equation (5.12) yields 

= . (l+ £/L)(2 z/L- £/L+l) 2 
1\ J(2 £. /L)(2z/L- £. /L+l) + (1- £. /1) 2] (5 . 16) 

The values of Sc are calculated in Table (5.6) for di ff erent 

values of £/L and z/L . 



Table (5.5) 

i/L 

y = .6 

0.05 1.4 

0.1 1.36 

0.2 l. 28 

0.3 l. 23 

0.5 1.14 

Table (5.6) 

Z/L = 

t/L 

0.05 

0.1 

0.2 

0.3 

0.4 

0.5 

Values of Br for Different 

Values of y and i /L. 

BT 

y = 0.7 y = 0.8 

1.86 2.4 

l. 76 2.22 

l. 62 l. 96 

1.48 1. 75 

l. 29 1.44 

y = 0.9 

3.0 

2.75 

2.34 

2.04 

l. 61 

Values of B for Different Values e 
of t/L and Z/L · 

0.1 Z/L = 0.2 

Be i/L Be 

1.42 0. 05 1. 88 

1.38 0.1 l. 79 

1.33 0.2 1. 65 

1. 29 0.3 1. 55 

1. 26 0.4 1.46 

1. 21 0.5 1.38 

-
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5.5 . 3 Example 

This example il l ustrates how to obtain the 

rotational non-dimensional stiffness of the slab coupled 

inverted T-section wa lls using the curves calculated for 

c oupled planar walls. Let the slab dimensions be the same 

as that given in example (5.3 . 1), with a wall thickness of 

one foot. Then, 

t / L = 0 . 2 

Y/ L 0.5 

y = 0 . 8 

Using Figure ( 5. 4) the rotational stiffness R, with a wall 

thickness of one foot is 

R = 49 

From Table (5 . 5), the correction factor s
1 

is given by 

BT = 1 . 96 

Therefore, the non-dimensional rotational stiffness of the 

slab for coupled inverted T-section walls becomes 

RT 1 . 96 X 49 

= 96 . 2 

5.6 Equivalent Beam Width of a Slab 
Connecting Two End Walls 

Figure (5 . 19) shows the plan of a building in 

which both the intermediate and the end bays are shown . The 

tributary areas of the end bays h ave one half of the area of 
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a typical interior bay, therefore the coupling effect of the 

slab will be different for an end shear wall. A relation 

between the stiffn ess of the end bay slab and the stiffness 

of the interior bay slab is obtained in this section. This 

relationship is obtained as a function of the end bay wa l l 

thickness and the slab width. 

Two thicknesses of the end wall will be considered, 

namely, one foot and half a foot thick. As a c omparison, 

an interior bay of Y/L equals 0.3 is analysed taking the wall 

thickness as one foot. Figure (5.20) shows the relations 

between £/L and Y /Y for the interior and the end bays. In e 

this figure, the two lower curves represent the equivalent 

beam width of the end bay slab n o r malized to the interior bay 

slab width. The cases of interior bays with Y/L equals 0.5 

and 0.7 are also studied. The end bay and the interior bay 

comparison are shown in Figures (5.21) and (5.22). 

To simpli fy the calculations of th e end bay s l ab 

stiffness, the previous computed results are replotted in 

Figure (5.23). In this figure, the dotted lines repres e nt 

the end bay slab stiffness as a percentage of the interior 

bay. These lines are obtained by dividing the effective width 

of the end bay slab by the corresponding effective width of 

the interior bay slab. The solid lines represent the reduction 

in the end bay slab stiffness, if the end wall thickness is 

taken to be different than one foot. Linear interpolation can 

be carried out for values of wall thickness between the two 

estimated values. 
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It should be noted that the end hay slab stiff

ness as a percentage of the interior bay increases as the 

wall opening decreas es. The continuitv between the slab 

along the line of the walls is the main reason for t h is 

trend. If the end bay wall opening is small, most of the 

slab length 1s fixed in the walls and only a small part 

between the wall will be free. Therefore the effect for the 

discontinuity of the slab along the line of the walls is 

smaller. The eff ec t of the wall thickness on the stiffness 

of the slab will be discussed at the end of this chapter . 

Qadeer and Smith [17] have sug gested a values of 42 percent 

of the typical interior bay stiffness can be taken as a 

reasonably accurate approxima ti on f or the stiffness of end 

shear walls. Again, such underestimation of sti ffness 1s due 

to the actual thickness of the wall is neglected in their 

analysis . 

An example will he solved to show how these curves 

can be used to obtain the equivalent beam width and the 

rotational stiffness of the end bay slab. 

5.6.1 Example 

Consider a cross wall structure of plan shown 

in Figure (5.19). The total width of the structure is taken 

as 40 feet, with the wall opening being 8 feet and the wall 

spacing 20 feet apart. The intermediate and end bay wall 

thicknesses are t aken as one foot and 0.75 foot, respectively. 

It is required to obtain the equivalent beam width coupling 



the end walls and its rota ti onal stiffness. 

From Figures (5.3) and (5.4) the effective 

width and the rotational stiffness of the interior slab are 

Y /Y 0.36 e 

R = 49 

From Figure (5.23), we have the reduction for the wall 

thickness = 0.906. 

The reduction for the end bay= 0.5 45 . 

Therefore, the total reduction 0 .5 45 X 0.906 

= 0.494 

Thus, the rotational stiffness of the end bay slab is 

= 0.494 X 49 

= 24.2 

The equivalent beam width of the end slab is 

= 0.494 X 0.36 X 20 

= 3.56 feet 

5.7 Relation Between Coupled Shear Wall Openings and 
Overall Behaviour of Shear Wall Buildings 

For coupled shear wall structures, the walls do 
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not act ffi indep e ndent cantilevers due to the coupling action 

of the slabs or the connecting beams. The method of analysis 

of such shear wall structures are given in a large number of 

papers [1, 20] . In such an analysis, a factor denoted by 

"aH" is commonly used to denote th . degree of coupling and is 

an important parameter to describe the behaviour of coupled 

shear wall structures. The relation between the wall opening 
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and the factor "al-l" will be obtaine d in this s ec t ion. 

Consider the coupled shear wall structure shown 

in Figure (5.24). The individual connecting beams of stiff-

ness EI are replaced by an equivalent continuous connecting 

laminae of stiffness EI /hs per unit hei ght, where hs i s 

the storey height. If it is assumed that th e connecting beams 

do not deform axially under the action of the l a t e ral loading, 

bo th walls will deflect equally with a point of contraflexure 

located at the mid-point of eac h connecting beam. The 

behaviour of the coupled wall is described by the equation 

[1, 20] 

where 

T 

2 
- a • T (x) = 

xl 

J - q Cx) .d x 

0 

- 11 H 
0 

For two similar walls, 

a 

wher e 

2 

11 = 

11~U+2e) 
X 

12 I (£ + 2 e ) 
X 

~ = 1 + 
4 1 

A(£ + 2 e ) 2 
X 

Cx) 

H 1s the tot a l height of the structure 

£ is the wall opening 

e is the dist a nce between the centriod of the cross-x 

section of the wall and its i nne r ed ge 

(5 . 17) 

(5 . 18) 

(5.19) 

(5. 20) 

(5. 21) 



y -

t-- I +2 ex ---j 
t+-ex~ f -+-ex--~ 
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H 

Figure (5 . 24) Coupled Shear Wall under Lateral Loading . 
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f lS the moment of inertia of each wall 

A is the cross-section area of each wall 

H
0

(x) the external level -
lS momen t at X 

T is the integrated shear force in the connecting medium 

Substituting Equations (5 . 20) and (5.21) into Equation 

(5.19) yields 

2 ex = 
6I (£+2 e ) 2 

X 

h £ f s 

[1 + 
41 

2 ] 

For the flat slab shear wall structure, the inertia of the 

connecting beams are 

I = 

y .t3 
e 
12 

2 It can be seen therefore that the factor a is related to 

the wall opening and also the slab effective stiffness. 

Substituting Equation (5.23) into Equation (3.19), the non-

dimensional rotational stiffness becomes, 

72 I 
R 

e 1 
x-' 

2 From Equations (5.22) and (5.24) we can also express ex as 

a function of the rotational stiffness as 

2 ex = 2 12(1-v ) 

1 41 
~ [1 + 2] 

s A(£+2 e ) 
X 

5.7.1 The Parameter "aH" for Coupled Planar Walls 

For coupled plana r walls, we get 

(5. 22) 

(5.23) 

(5. 24) 

(5.25) 
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w e = 2 X 

h 3 
I w 

= 12 

A w.h 

Substituting these values into Equation (5.25) yields 

2 
a = 3 2 h .h w (1-v ) s 

1 
[l + 3(l+Q./w) 2] 

If the values of t, h, hs and v are taken to be 0.667 foot, 

one foot, 10 feet and 0.15, respectively, Equation 

(5.29) can be writt en as 

2 
a = V. R 

(5. 26) 

(5. 27) 

(5 . 28) 

(5. 29) 

(5.30) 

where V 1s a variable which de pends on the dimensions of the 

cou pled walls and the storey hei ght. Table (5.7) show~ th e 

relation between 1/L and a for dif f erent values of Y/L, 

while Table (5.8) shows the relations between Q./L and aH f o r 

different values of H. It should be noted that for the same 

value of H, the value o f aH i s ins ensi tive to the c hange of 

t he slab width Y. Hence, the r elation between aH and 

1/L will be repre sented by one curve f or different slab 

widths. Figure (5 . 25) shows this relation for Y/L equal s 0 . 3. 

5.7.2 The Par ameter "aH" for Coupled 
T-S ection Wall Config~rations 

For the walls with equal web and flange th icknes ses 

we have 



9-/L 

.05 

.1 

. 2 

.3 

. 5 

Table (5.7) Relationship between 9-/L and a for Coupled Planar Walls 

Vxl0- 6 R a 

Y/L = .5 I Y/L = .7 Y/L = .3 Y/L = .3 Y/L = .5 Y/L = .7 

I 
5.5 860 900 1050 .069 .071 .076 

6.3 190 225 250 .0346 . 0377 .0397 

8.3 43 49 52 .0189 .0202 .0208 

11.8 20 23 25 . 0154 .0165 .0172 

30.6 5 9 11.2 .0124 .0166 . 0185 

..... 
VI 
VI 



Table (5.8) Relationship between t/L and aH for Planar Walls 

aH 

Y/L = .3 Y/L = .5 
t/L 

H=lOO H=l50 H=200 H=250 H=300 H=lOO H=l50 H=2 00 H=2 50 H=300 H=lOO 

.05 6. 9 10.3 13.8 17.2 20.7 7.1 10.6 14.2 17.7 21.3 7.6 

.1 3 . 46 5.2 6. 9 8 .7 10.4 3. 77 5.5 7. 5 9.45 11.3 3. 97 

. 2 1.89 2.85 3.7 4.7 5.7 2 3 4 5 6 2.1 

.3 1. 54 2.3 3.1 3.85 4.7 1.65 2.45 3.3 4.1 4. 9 1.7 

. 5 1. 24 1. 86 2.5 3.1 3.7 1. 66 2.5 3.3 4.15 5 1.8 

I 

Y/L = .7 

H=lSO H=200 

11.4 15.2 

5.9 7.9 

3.15 4.2 

2.55 3.4 

2.7 3. 6 

H=250 

19 

9.9 

5.25 

4.25 

4.5 

I 

I 
H=300 I 

22~ 
11.9 

6. 3 

5.1 

5.4 
I 
j 

~ 

(.N ..,. 



and 

For the same values of h, t, hs and v mentioned before, and 

using Equation (5.31), Equation (5.25) can be written as 

2 
Ct 

where v
1 

is a variable which depends on the wall and the 

slab dimensions. 
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(5.31) 

(5.32) 

(5.33) 

Table (5.9) shows the different values of a for each 

1/1 and Y/1. Table (5.10) shows the relationship between 1/1 

and aH for dif f erent values of z/1 and H. It is also noticed 

that the parameter "aH" is insensitive to the change of the 

slab width. Figures (5. 26) and (5.27) show the relations 

between "aH" a nd 1/1 for a value of Y/1 equals 0.3 and the 

flange width ratio z/1 equals 0.1 and 0.2 respectively. 

5.7.3 Corrections for h, t, and hs 

The previous curves of "aH" are obtained for the 

specific value s of slab thickness, wall thickness and floor 

height. If oth e r valu e s for the slab thickness, wall thick-

ness and floor height are us e d, the value of "aH" can be 

modified. The parameter a 2 is directly proportional to 

t 3 and inversely proportional to th e storey hei ght h . It 1s s 

approxima t e ly inversel y proportional to the wall thickness h. 

The parameter a c a n thus be wr itten as 



Table (5 .9) Relations between ~/L and a for 
T-section Wall Configuration 

R 
~/L f vl 

Y/L = .3 Y/L = .5 Y/ L = . 7 Y/L = . 3 

. OS 779.53 1. 404 1300 1370 1400 . 077 

.1 668 . 3 1. 336 260 300 330 . 036 

. 2 481. 6 1. 216 46 54 60 . 0175 

. 3 340.7 1. 08 18 22.6 25 . 0114 

. 5 128.4 1. 0254 6 8.2 9. 6 .Oll7 

I .OS 985.17 1. 58 1550 1640 1720 . 079 I 
.1 851.67 1. 46 280 301 320 . 0348 

. 2 616.17 1. 28 49 58.1 62 .016 

. 3 426.37 1.17 18.5 23.6 26 .0112 

. 5 1 166.97 1. 057 5.8 8 .5 10 . 0096 

a 

Y/L = .5 

. 079 

. 0386 

.0184 

.0134 

. 0127 

.081 

.036 

.01 74 

.0127 

.0116 

Y/L = .7 

. 08 

.0405 

. 0194 

. 0141 

. 0127 

.083 

.0371 

. 018 

. 0133 

.0126 

z 
r 

.1 

. 2 

I-' 
'J~ 
(]\ 



£. /1 Z/1 

I H~lOO 

'-' 5 
.01 .1 7.7 
~~ 

.1 3.6 

. 2 1. 75 

.3 1.14 

. 5 1.17 

.05 . 2 7.9 

.1 3.48 

.2 1.6 

.3 1.12 

. 5 .96 

Table (5 .10) Relations between £./1 and a.H forT -section Wall Configurations 

a.H 

Y/1 = . 3 Y/1 = .5 Y/1 = .7 

H=lSO H=200 H=250 H=300 H=l OO H=lSO H=200 H=250 H=300 H=lOO H=lSO H=200 H=250 

11.6 15.4 19.2 23.1 7. 9 ll.8 15.8 19.7 23. 7 8 12 16 20 

5.4 7.2 9 10.8 3 . 86 5.8 7. 72 9.6 11 . 58 4.05 6.1 8.1 10.1 

2.62 3.5 4. 86 5.25 1.84 2. 76 3.68 4.6 5.52 1. 94 2.9 3.88 4.85 

1.71 2. 28 2.85 3.42 1.34 2. 2.68 3.35 4.02 1.41 2.1 2.82 3.52 

1. 76 2.34 2.92 3.51 1. 27 1.9 2.54 3.17 3. 81 1. 27 1.9 2.54 3.17 

11.8 15.8 19. 7 23.7 8.1 12.2 16.2 20 . 2 24.3 8.3 12.4 16.6 20.7 

5. 2 6. 96 8.7 10.44 3.6 5.4 7.2 9 10.8 3 . 71 5.55 7.42 9.3 

2.4 3.2 4 4.8 1. 74 2.6 3. 48 4.35 5.22 1.8 2. 7 3.6 4 .5 

1.68 2.24 2.8 3.36 1. 27 1.9 2.54 3.16 3.81 1.33 2 2. 66 3.3 

1.47 1. 92 2.4 2. 88 1.16 1. 74 2.32 2.9 3. 48 1. 26 1.89 2.52 3.15 

- -- ---- - -- ----------- -- -~ 

H=300 

24 

12.15 

5.82 

4.23 

3.88 

24 . 9 

11.13 

5.4 

3.99 

3. 78 

...... 
(.N 
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a = 

where $ is defined from Equation (5.25). If the values 

of t, h and hs are changed to t 1 , h1 and h 51 , respect ively, 

the value of a will be changed to a 1 , where 

and 

= 
a t 

Substituting for t, h and hs with the previous values used, 

we have 

Equation (5.37) gives the correction necessary if diff e rent 
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(5.34) 

(5.35) 

(5. 36) 

(5.3 7) 

values of wall thickness, s l ab thickness, or floor height are 

used. 

5.8 Discussion of the Results 

The aim of this study is to obtain a set of design 

curves to represent the effective width and the stiffness 

of the different slabs coupled shear walls. The finite 

element technique was used to obtain the design curves. It 

is useful to discuss the following points to gain further insight 

into the probleQ. 

1. The effect of point of contraflexure location on 

the slab stiffness. 
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2. The slab reactions at shear wall support due 

to wall rotation. 

3. The effect of wall thickness on the coupling 

slab stiffness . 

4. The effect of the flange of the T-section wall on 

the slab stiffness, and the effect of loc a l 

bending on the flange deformation. 

5 . The effect of the slab width on the sl a b stiffness . 

6 . The effec t of the wall openings on the overall 

behaviour of the structure. 

5.8.1 The Effect of Point of Contraflexure 
Location on the Slab Stiffness 

If the t wo shear walls are of the same cross-

section, the point of contraflexure will be located at the 

middle of the coupling beam. If the two walls have different 

momen ts of inertia, the point of contraflexure is no longer 

at the mid-point of the connecting beam. In section 3.4 . 2 

the slab stiffness is obtained considering the point of 

contraflexure to be at its actual position. In this section 

the point of contraflexure location will be assumed at the mid-

length of the connecting beam to calculate the slab stiffness . 

A comparison of the two cas es will show the effect of 

shifting the position of the point of contraflexure on the 

slab stiffness . 

As shown in Figure (5.28(a)), the point of contra-

flexure is assumed to be at the middle of the connecting beam 

in the case o f the planar wall coupled with the T-section wall 



Mp-1-Mr 
2 

Figure (5.28) Exact and Approxj~ate Positions 
of Point of Contraflexure . 
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( a ) 

( b) 
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configu ration . The force P which causes relative displace-

ment A between the t wo walls will appear if a cut is made at 

the assumed point of contraflexure . Th e rotational moment 

at the centroid of the cross-s ection of the pl anar wall M' 
J p' 

becomes 

M' 
p 

P ( 9, ~) 2 + 2 (5.38) 

The moment acting at the c entroid of the cross - s ec tion of the 

T- section wall M~ , becomes 

M ' = P (~ + e ) 
f 2 X 

(5 . 39) 

From Figure (5 . 28) 

Al = 9, + w 
il £ + 2 ex 

and 

(5 . 40) 

or 

(5 . 41) 

Therefor e , the non-dimensional approximate rotational 

stiffness of the slab at the centroid of the planar wall R' p 

will b e 

R' p 
p 

2D . A 
(9,+w) ( £+~ + e ) 

2 X 
(5 . 42) 

From Equations (3 . 31) and (5 . 42), the ratio between the exact 

and the approxima te rotationa l stiffness a t the centroid of the 



planar wall becomes 

R 
___E_ 
R' p 

[2.Q./(l+I 2/I 1 )]+w 

.Q.+w 
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(5.4 3) 

In a similar way the ratio between the exact and the approxi -

mate non-dim e ns ional rotat i ona l stiffness at the centr o id 

of the T-section wall become s 

(5.44) 

Using Equat i ons (5.4) and (5.1 1 ) , Equations (5.43) and (5.4 4 ) 

c an be writt en as 

R 
_ _E_ = 
R' p 

(1+3.Q./L)+( l - .Q./L)( I 2/I 1 ) 

(l+.Q./L) (l+I 2/I 1 ) 

( 2.Q. /L) +y(l-.Q. /L )(l+I 1 /I 2) 

[ .Q. /L+y(l- .Q. /L)] (l+I 1/I 2) 

Plotted in Figure (5.29) are the values of R / R' for the p p 

inertia ratio ranging betwe en 1 .0 and 2.0 and .Q./L changing 

(5.45) 

( 5 .4 6) 

from 0.05 to 0.5. Also p lo tted in Figures (5.30(a)) thr ough 

(5. 30(d)), t he relations be tween Rf/R~ for the s ame range 

of r
2
;r 1 and .Q. /L, and for the parame ter y changing from 

0.2 to 0.8. 

As shown in Figure (5.29), all the values of 

R /R ' are less than unity . This indicates an overp p 

estimation for the approximate stiffness of the slab at the 

centriod of the cross-section of the planar wal l. However, 
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for 1/L less than 0.2, the difference in the slab stiffness 

less than 9%. From the designer's point of view, such a 

difference 1s negligible . 
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From the previous discussion it is expected that 

the stiffness at the centroid of the T-section wall will be 

underestimated. Such an und e restimation is shown in Figures 

(5 . 30(a)) through (5. 3 0(d)). Again, for small wall openings, 

the error is sufficiently small to be neglected. 

It is interes t ing to note that the effect of the 

relative inertias of the wall on the point of contraflexure 

location was discussed by MacLeod (15]. The variation of th e 

stiffness of the connect i ng beam was not included in his 

analysis. It is concluded from the previous discussion that 

both the connecting beam stiffness and the relative in e rtias 

of the walls will affect the point o f contraflexure location . 

For the smal l wall openings (1/L ~ 0 . 2) the variation of the 

point of contraf lexure location can be neglected, and the 

assumption that it is located at mid-length of the connecting 

beam is sufficiently accurate . 

5 .8.2 The Slab Reaction at the Shear Wall Support 

Figure (5 . 31) shows the distribution of the slab 

reaction along the walls du e to an applied rotation of the 

walls . It is observed that the l oad s developed in the plane 

of the wall are concentrated at the inner edge . The concent r a

tion of the lo ads at the inner edge of the wall is rapidly 

decreased by increasing the wa ll opening . Local deformation 



Rr 
R£ 

1.28 

1.20 ·-

1.16 

1.121-

1 . 08 ~-

~
f 
f , r 

' 11 

i::S=0·20 

\ --l. v; r-- . .f __..,.., ex r-
< L 

.B = o.4o 

1.0 t.o 1.vu.--

- I I I d I I . ~ 
fl.5 fjL Q.1 0:2 3 ().4 Q.5f/L' 

(b) (a) 

Figure (5 . 30) Variation of Rf /R ' f with Wall Opening and the Inertia Ratio. 



~~ lkl 
!I 

Rr 
I r 

y L__ I, 

tj= Q.6 I l 
1.2 1- / 1 ;2 1-- I< 

~ ~ t--e 
L 

8=0.8 

1.0 

0•1 0 ·2 (c) l).3 0·1 

Figure (5.30) Variation of Rf/R'f with Wall Opening and the Inertia Ratio. 

12 

::ol~ ex~ .r 
0 

'?J' 

'\.'2/~ 
/v, 



- ,_ _____ _ 
=~~= 

N 

0 
II 

~~~ 

1.{) 

0 
0 
II 

. ~ ·IH 

.... 
6 
II 

~IH 

149 

+-1 

a3 
S-< 
Q) 

4-' 
4-• 
· rl 
Q 

S-< c '· 
lL. 



150 

can be expected at the inner edges of the wall. Some more 

t heoretica l and experimental studies are needed to properly ta ke 

into account such a force distribut i on in the wal ls. 

5 . 8.3 The Effect of Planar Wall Thickness 
on the Slab Stiffness 

Figure (5 . 32 ) shows the actual distribution of 

the moments along the slab in both directions due to an 

a ppl ied wal l rotation [18] . Figure (5 . 33) shows a d i agrammatic 

sketch for the stress distribution across the slab width f or 

different wall openings . It is obvious that, for small wall 

openings (1/L ~ 0. 2 ) the central width of the slab, which 

equals the wall thic kness , is highly stressed while the 

stresses d e crease rapidly away from the walls, as shown in 

Figure (5.33(a)). For larger wall openings, the stresses 

are appro x imately uniformly distr i buted across the slab width . 

If the wa ll thickness is negle c ted , the stress distribution 

will hav e the shapes as shown in Figures (5.33(eD arid (5 . 33( f)) . 

The effective width of the beam Ye can be considered a measure 

of the highly stressed area described in Figure (5 . 33) . 

Comparing Figures (5.33(a)) and (5. 33 (e)), it is obvious that 

the area of the slab bounded by the walls is highly stressed 

and hence lends considerable stiffness to the system. Therefore, 

for small wall openings , the effect of the finite wall thick-

ness is import an t and c a nnot be neglected . For larger wall 

openings, the stress is more uniformly distributed and hence, 

the effect o f neglecting the wall thickness is less significant. 
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5.8.4 Flange Width of the T-Section Wall and Effect 
of Local Bending Defo r mation of Wa l ls 

A comparison between Figures (5.3), (5.6) and 

(5.9) indicates that the slab e f fective width is increased 

by using a T-section wall configuration instead of a planar 

wall configur a tion. At the same time, the effective slab 

width is increased by increasing the flange width for the 

same wall opening. However, it should be realized that if 

the flange width becomes too large, the end moments in the 

slab will induce local bending deformation at the flanges. 

Since the design curves are computed based on the a s sumptio~ 

of negligible local deformation of the walls, the computed 

stiffness value will lead to an overestimated value and the 

effective width obtained should be reduced to reflect the 
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possibility of local deformation of flanges. For small flange 

widths, the local bending deformation will be sufficiently 

small to be neglected. Therefore , the design curves obtained 

can be directly used. As the width of the flange is increased, 

the reduction in the st i ffness due to local bending of the 

flange can be accounted for by using a reduced flange width 

for the T-section in computing the true stiffness of the 

system. 

One way of obtaining this reduced section is to 

compare the available experimental results with the correspond-

ing theoretical values . Coull and El-hag [9] carried out some 

tests for coupled T-section wall configurations. Table (5.11) 

shows the dimensions of the slab and the walls used in the 

test. The same wall and slab configurations are solved by the 



Table (5.11) Dimens ions of the Slabs and Walls Used 
by Coull and El -hag [9]. 

w/Y Z/Y £/L w z Q, y 

.3 . 5 .25 3.6 6 2.4 12 

.4 4.8 12 

. 5 7.2 12 

. 5 . 5 .1625 6 6 2.4 12 

.2875 4.84 12 

.375 7.2 12 

. 5 .3 .1625 6 3. 6 2.4 12 

. 2875 4.84 . 12 

.375 7.2 12 

.3 .3 . 25 3 . 6 3 . 6 2.4 12 

.4 4.8 12 

. 5 7.2 12 
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finite element method. Two computations are carried out . 

In the first calculation, the full width of the flange is 

used, while only half the flange width is used in the second 

calculation. The results of the calculations together with 

the experimental results are plotted in Figures (5 . 34) 

through (5.37) for the two T-section wall configurations. 

Similar plots are presented in Figures (5 . 38) through (5.41) 

for the configuration consisting of a planar wall and a T-

section wall. 

From these figures it is clear that if the flange 

width is halved, good agreement between the theoretical and 

the experimental results can be obtained . Therefore, it 1s 

suggested that to allow for local bending of the flanges , a 

reduction of the flange width to half of its value may be 

used in conjunction with the design curves presented for the 

coupled T-section wall configurations and the coupled planar 

wall T-section wall configurations. 

5 . 8 . 5 The Effect of the Slab Width on the 
Slab Stiffness 

I n order to study the effect of the slab width 

Y on the stiffness of the system, the equivalent beam width 

will be normalized to the total length instead of the width of 

the slab, i.e., we 

Y /Y as a variable . e 

shall use the parameter Y /L instead of e 

Y /L = (Y / Y)(Y/L) e e (5 . 47) 

The values of Ye/L are obtained for each value of Y/L and 1/L 



.. 

o,s; -;-----r-----+----1---~::::_+----1 

0.7 

~ 
~ 

I 

0. 6 - ~· 

0. 5 ~---

0,4~ - - ----

0.3~ - - . . ---+ 

0.2 ~- ----- - --~-- ----
1 

I 
I 
I 

0·1t- · -----··· ··t 
I 

0 .1 

I 
---j 

I 

I 

0.2 

0 

0.3 

Figure ( 5. 34) 

0 .4- 0.5~ i /L 0.1 0.. 2 

0 

I 

0..3 

Experimenta l 
(c ou ll&El-hag) 

_l _L 

OA o.s I / L 

Figure (5 . 35) 

..... 
(Jl 
(Jl 



.· 

o.sl- ____ T ---- I __ r ____ _ :::: I -r~- --t--- _I ',.s> I I ;---··---'-
: 1

1 

I 
0.7 . -- I i 

I i i 
I 0 I II I . 

I 

0.61- t-i y/ ·---+-! -- I 0 --- I I 

I I i I 

0-5~ I ~/// i i 
I ); I i 

: I / ! I ! 

~·I I I ~ 
I I 

0.31 1 : _l __ _J__I ------L----1 

I 0 ! 
! - ~=0.5 y 

z -y=o.5 

0.2 Theoretical , Full 
i Flange Vlidth 
! l 
! ___ Theoretical, Half of I_ 

the Flange I 
0.1 0 Experimental I 

J (Coull&El-hag} I 
· I I 

. I I J 
::u 0.2 o.3 (\.4 " ~ V w!;i f /L 

"C i 0: I YP ( t; 7; h -\ 

o ... al_ I I 1 I 
ip... I 1----r----f---
) I ! i I : I I · 

0.7 I I I I . i _ ____)____ ! . 
I I ; 

! I I 

o.si- . 0 I I 
- I I • 

I I 

0.5 / ] / I 

I j 

/o l I 

o.4 I I 
/ /1 I I 

0.3 I I 
I . I I ·-

o I . I 

·o.2 L· ----1-----1 

I 

Y.=0-5 Y.=0.3 
---Theoretical. Full 

Fl ang~ Width 
_ __ Theoretical, H alf of 

the Flan g e 

0.11 I I 0 Experimen ta l . I (Coull&El-hagl ~ 

Ll I I t, 
0.1 0·2 0·3 OA 0.5 f / L 

Fio-nrP. (r:;, _ ";T\ 



I 
I 

.· 

0.7 1>< ' --r 
' I ' ........_ , I , 

~ - -1 I I 
I I 

Q.6 
I 

I . 

! 

o.5 

I I I ! I 

I I 
I _ i ; =0.5 

0.41--- -- i L{:0-3 
I 

o.3 i -

I 
I 

o.2 t--- ' . -;-I --

----Theoretical,Fu 11 
Flange Width 

-- ___ Theoretical,Half 

0·1 

i 
. 0 I 
I -~ ' -- -- - -- - I 

0 

of the flange 

Experimental 
(Coull&El-hagj 

I I ! 
0-1 0·2 0.3 0.4 o.s f/ 

Figure (5.38) 

:;:.... I 
T--

-... I 
~ 

i I 
I 

r 

0·7 
I 

! 
I 

!_J_ 
i 

I I 
I 

I 
I I 
I I ! 

I 
i 
I I i 

i I 

o.s 

0.5 

0.4 

I 

I 

0·3 I 
I 

1__11 I 

I 
i 
I 

I 
I 

I 
0 Theoretical, Full _j_ Flange Width 

-- -·- ----r- __ Theoret ical, Half 

I 
i of the Flange 

i 0 Experimental 

; _____ -J (Coull&E l-hag) 

1 I I 

0·2 

0·1 

0.1 0.2 0·3 0.4 t/L 

Figure (5.39) 

,_. 
(J1 
-.....) 



, I i 
.,_ I I : : l I >- I I I ' I .. : - I 

C] , • • I 
..... I ' : I I ! . 

0·71 I I -t---r----r 0·7 ~ ' i I I 
. I I ."- I I 

I I i I ~ I I I ! I ! I i I 
0.61 ' I ! 0-6 I - I I ! ,-. 

I ' . I I I I I 

I I I 

I o.sL--+---i---1 --+ --1-771 
I 

0.5 

I I I j 

I 0 . 4 

0-41 I ;r =0-3 ! 

I ~=0-3 I I 
0.31 ! 

I 

I ~ L , w Tl I I I 
I ~ =0·3 ' I 

0·2>- I y =0·5 I 
I . I I 

~~- I 
0 

+-Theoretical, Full 

0.1 

. Flange Width 
_ I __ Theoretical.Half 

o f the Flange 

0 Experimental 
(couH&E 1-h a g·) I I 

I .__ __ _... ___ _._ ___ ~--- - . ...1.-~.-~ _J 
.. 1 .2 •3 .4 .. 5 t/L 

0.3 I 

- I I / 

I i I I' Theoretical, Full 
0.2 1 Flange Width 

I 0 
-,--Theoretical.Half 

I 1 of the Flange 

I 1

1 
I 0 Experimental o.\ / (Coull&El -hag) 

I I : ' ' 
0.1 0.2 0.3 0.4 o.s 1'/L 

"[; ;,.,..,, .,..,._ r c 111 1 

)-' 

'Jl 
00 



159 

given by the curves represented in Section 5.4. Table (5.12) 

shows the results of these calculations for the coupled 

planar walls, while Tables (5.13) through (5.16) show 

similar results for both the T-section wall configura tions and 

the planar wall-T-section wall configurations. The results 

show that the equivalent beam width lS increased by about 

10%, when the normalized slab width Y/L is increased from 

0.3 to 0.7 and the normalized wall openings ar e less than 0. 2. 

In other words, the s t iffness lS insensitive to the s l ab width 

for small wall openings. However, the equivalent beam width 

is increased by values ranging between 50% and 70% for 

larger wall openings (1/L of 0.5). Also, the T-section wall 

configurations are more sensitive to the change of th e slab 

width than the planar walls. 

To sum up, for small wall openings (1/L ~ 0.2) 

the equivalent beam width is insensitive to the change of the 

slab width, while it is greatly _affected by the slab width 

for large wall openings (1/L > 0.4, s ay) . 

5.8.6 The Effect of Wall Op enings on the 
Behaviour of the Structure 

The deflection, the bending moments in the walls, 

and the shear in the connecting beams are functions of the 

parameter "aH" as defined before. They can be expressed in 

the form [4, 5, 6] 

(5.48) 



Tabl e (5.12) 

~/L Y/L Y/Y 

0.05 0.3 0.22 

0.4 0. 175 

0.5 0.135 

0. 6 0.115 

0.7 0.1 

0.1 0.3 0. 36 

0. 4 0. 275 

0. 5 0.225 

0. 6 0. 19 

0.7 0.17 

0. 2 0. 3 0.54 

0.4 0. 44 

0.5 0. 36 

0.6 0.3 

0. 7 0.27 

Relations between ~/L and Y /L e 
for Planar Walls. 

--
y /L 

e ~/L Y/L y /Y 
e 

. 066 0.3 0. 3 0. 649 

.07 0.4 0. 55 

. 067 5 0.5 0.47 

. 069 0. 6 0.4 

. 07 0. 7 0.36 

. 108 0.4 0. 3 0. 715 

.11 0.4 0. 635 

.1125 0. 5 0.56S 

.114 0. 6 0.5 

.119 0. 7 0.445 

.162 0.5 0.3 0. 77 

.176 0. 4 0.69 

.18 0. 5 0. 62 

. 18 0. 6 0. 56 

. 189 0. 7 0.51 

-
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Y/L 

0.1 947 

0.22 

0. 235 

0. 24 

0. 252 

0. 2145 

0. 254 

0. 2825 

0. 3 

0. 3115 

0.231 

0. 276 

0.31 

0.336 

0. 357 



Tal>le (5.13) 

£/ L Y/L y /Y 
e 

. 05 .3 . 445 

. 4 . 34 

. 5 . 27 5 

. 6 . 23 

. 7 . 21 

. 1 . 3 . 58 

.4 . 45 

. 5 . 365 

. 6 . 305 

. 7 . 275 

. 2 . 3 . 75 

.4 . 61 

.5 . 5 

. 6 . 42 

. 7 . 375 

Relations between £/L and Y / L f or e 
T-section Walls Z/L == . 1 

£/L Y/L y / Y 
e 

. 1335 . 3 . 3 . 82 

.136 .4 .7 

.1375 . 5 . 6 

. 138 . 6 . 52 

. 147 . 7 . 465 

.1 74 . 4 . 3 . 865 

. 18 . 4 . 77 

.1825 . 5 .685 

. 183 . 6 . 61 

.1 925 . 7 . 545 

. 225 . 5 . 3 . . 895 

. 244 . 4 . 805 

. 25 . 5 . 72 5 

. 252 .6 . 66 

. 2625 . 7 . 605 

161 

Y/L 

. 246 

. 28 

. 3 

. 31 2 

. 325 

. 2595 

. 308 

. 3425 

.366 

. 3815 

-----
. 2685 

. 32 2 

. 3625 

. 396 

. 4236 



Table (5.14) 

Q./L Y/L Y/Y 

.OS .3 . 69 

. 4 . 55 

. 5 .45 

. 6 . 375 

. 7 .331 

.1 .3 . 84 

.4 . 675 

. 5 .55 

.6 .46 

. 7 .41 

. 2 .3 . 93 

.4 .79 

. 5 . 675 

. 6 . 575 

. 7 . 51 

Relations bet1veen Q. /L and Y /L for e 
T-section Walls Z/L = .2 

Y/L Q. /L Y/L y /Y 
e 

.207 .3 . 3 . 96 

. 22 . 4 .85 

. 225 . 5 .75 

.225 . 6 . 66 

.231 . 7 . 585 

.252 . 4 . 3 . 98 

. 27 .4 .89 

.275 . 5 .81 

.276 .6 .73 

. 287 . 7 . 651 

. 279 . 5 . 3 . 985 

.316 .4 . 915 

. 3375 . 5 . 845 

. 345 . 6 . 78 

.357 . 7 .72 

162 

Y/L 

.288 

.34 

. 375 

.396 

.4095 

. 294 

. 356 

. 405 

. 438 

.4557 

.295 

. 366 

.422 

. 468 

.504 



Table (5 .15) 

£/L Y/L Y/Y 

.05 . 3 . 32 

. 4 . 205 

. 5 .16 

. 6 . 135 

. 7 . 125 

.1 . 3 .455 

. 4 . 33 

. 5 . 27 

. 6 . 225 

. 7 .195 

. 2 .3 .675 

.4 . 5 

. 5 . 425 

. 6 . 356 

. 7 .315 

Relations between £/L and Y / L e 
for Planar Wall with T-section 
Wall Z/L = .1. 

y / L 
e £/L Y/L y /Y 

e 

. 096 .3 . 3 . 765 

. 082 . 4 . 63 

. 080 . 5 . 55 

. 081 . 6 . 48 

. 0875 . 7 .42 

. 1365 . 4 . 3 . 82 

.132 .4 . 715 

. 135 . 5 . 63 

. 1350 . 6 . 56 

.1365 . 7 . 5 

. 2025 . 5 . 3 . 85 

. 2 .4 . 75 

. 2125 . 5 .675 

. 2136 . 6 . 56 

. 2205 . 7 . 55 
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Y/L 

.229 5 

. 252 

.275 

. 288 

. 294 

. 246 

. 28 6 

. 315 

. 336 

. 35 

. 255 

. 3 

. 3375 

.336 

. 385 



Table (5.16) 

Q,/L Y/L y /Y 
e 

. OS .3 . 33 

.4 .23 

. 5 .18 

. 6 .1 5 

. 7 . 13 

.1 . 3 .475 

.4 . 35 

. 5 . 28 

. 6 . 24 

. 7 . 21 

• 2 . 3 . 675 

. 4 . 515 

. 5 . 44 

. 6 . 38 

. 7 . 33 

Relations between Q,/L and Y /L for e 
Planar Wall with T-section Wall 
Z/L = 0.2 . 

y /L 
e Q,/L Y/L Y/Y 

.099 . 3 . 3 . 8 

.092 .4 . 65 

.090 . 5 .56 

. 090 . 6 . 5 

. 091 . 7 . 44 

.1425 .4 . 3 . 875 

.140 .4 . 735 

.140 . 5 . 65 

. 144 . 6 . 58 

.147 . 7 . 525 

. 2025 . 5 .3 . 9 

. 2060 . 4 . 785 

. 22 . 5 . 7 

. 228 . 6 . 63 

. 231 . 7 . 57 

,164 

Y/L 

. 24 

. 26 

. 28 

. 3 

. 308 

. 26251 

. 294 

.325 

. ~.48 

. 367 

. 27 

. 314 

. 35 

. 378 

. 399 
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w H 1 k q - (Q.+2 ex) . 
. 

j..l 2 (5 . 49) 

11 w H4 
k3 Ymax = 740 EI . (5 . 50) 

where 

M lS the moment carried by each wall 

M is the external overturning moment 
0 

q is t he shear intensity in the laminas 

Ymax is the maximum top deflection 

w is the maximum intensity of the triangular lo ad given 

in Figure (5 . 24) 

The variables k1 , k 2 , a nd k3 are functions of the parameter " aH" 

and the external loading. Figure (5 . 42) shows the relation-

ship between " aH " and each of k1 , k 2 and k3 . The sha ded 

area in this figure with "aH" ran ges between 3 and 8 repr e sen t s 

the range where coupled shear walls of ordinary proportions 

usually falls in . The values of Q./L corresponding to these 

values of "aH" range between 0.1 and 0 . 2 as indicated in 

Figures (5.25) through (5.2 7) . Therefore, if any significant 

coupling action is obtained i n a coupled shear wall of 

ordinary proportion, the range of wall openings Q. /L will be 

less than 0.2. 

To eva luate the effect of the equiva lent beam 

width on the behaviour of the structure, an example will be 

given . Let us consider a cross wall structure of height 150 

fe e t, total width 40 feet, and wall spacing 20 feet. Let us 
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further assume that the equivalent b e am width is over 

estimated by 100 % of the ex act value . Referring to Equations 

( 3.19) and (5.25), the corresponding value of "aH" will be 

increased by 40%. If the wall opening is 16 feet, which 

corresponds to £/1 equals 0.4, the actual value of "aH" is 2 , 

and the overestimated value is 2 . 8 . However , if the wall 

opening is 4 feet , the actu a l value of aH is 5. 2 and the over 

estimated value is 7.3. The behaviour of the coupled shear wa ll 

wi t h "aH" is equal to 2 or 2 . 8 _ is comparable . However, the 

behaviour of a couple shear wall with " aH" valu es of 5. 2 1s 

different from one with a aH value of 7. 3. 

I t is concluded that for large wall openings, 

(£/L ~ 0 . 4) the structure behaviour is relatively insensitive 

t o the coupling effect with the floor slabs, while for sma l l 

wall openings , (£/L .::_ 0. 2), the b ehaviour of the structure 1s 

greatly affec ted by the coupling action. Therefore , an 

accurate de te rmina tion of the equivalent width for small 

wall openings is necessary . 



CHAPTER 6 

SUMMARY AND CONCLUSIONS 

6.1 Summary 

One of the methods to include the effect of the 

slabs in coupling the shear walls is to replace the slabs 

by beams having the same bending s tiffn e ss as the slabs. 

It is therefore necessary to evaluate the equivalent width 

of the slabs which represent the width of the beams for a 

vareity of shear wall configurations. 

A method for the analysis of the slab coupled 

shear walls of different configuration has been developed in 

this thesis. The basic assumptions on which the analysis is 

based are that the slab is linearly elastic, homogeneous 

and its in-plan e stiffness is infinite. 

By using the f in ite element technique a computer 

program is developed to obtain the slab stiffness. The 

equivalent width and the rotational stiffness of the slab are 

also obtained. 

To verify the method of analysis and the c omputer 

program, various examples are solved. The computed results 

are compared with existing analytical results. In addition, 

comparison is made between some expe rimental and the 

theoretical results for di ffe rent wa ll configurations. Some 

of the experimental results were done by Coull and El-hag (9], 
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while the o ther 1s done by the author. The results obtained 

by the computer program agreed well with the experimental 

results for the slabs co upl e d planar walls . There is some 

deviation b e t ween the theoretical and the exper i mental 

results for the slabs coupled core walls. This deviation 

is mainly du e to the local deformation effect betwe en the 

slab and the walls in the experimental model. Comparison 

between t h e theoretical and the experimental results for the 

slabs coup led T-section wall co n figurations is made to 

give an idea about the effect of local bend ing on the 

flanges of the walls. 

A set o f design curves is obtained to represent 

the relation between the wal l opening and both the effective 

width and the rotational stiffness of the slab. Th e se curves 

are provided for the following wall configur a tion s : two 

planar walls, two T-section walls configuration with the 

flange at the inner edge. The relationsh i p between the 

bending stiffness of the slab coupled box core walls and the 

slab coupled T-section wall configuration with the flanges 

at the inner edges is obtained. Such a relationship is also 

obtained between the slab coupled T-section walls configura

tion with flan g es at the outside edge s and the slab coupled 

planar walls . 

Finally, a set of curves representing the relation

ship between th e factor "aH" and t h e wall openings, for the 

three wall configurations studied , is presented . 
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6.2 Conclusions 

As a conclusion from using the finite element 

method to the bending analysis of a slab coupled shear walls , 

we can state that: 

1. The bending stiffness and the effective width of 

the slab are affected by , the planar wall thickness, the wal l 

opening, the wall con f iguration, and the slab width . 

2 . It is shown that, for a given wall opening , the 

presence of a flange at the inner edge of the wall can 

increase considerably the effective coupling st i ffness of a 

floor slab, and thus should be taken into account in the 

design of such systems. If the flange width becomes very 

l a rge, the local bending and the hi ghly concentrated forces 

at the inner edge of the wall will tend to reduce the bending 

stiffness of the slab . In such a case, reduced flange width 

should be used to correct for the effect of loc a l bending 

deformations. 

3. Due to the wall rotation, the slab re a ction along 

the wall is highly concentrated at the inner edge and rapidl y 

decreased across the wall length. 

4 . The slab coupled T-section wall configurations with 

flanges at the outside edg e s has the same equivalent beam 

width as the sl a b coupled planar walls . The same holds true 

for the slab coupled box core walls and the slab coupled T-

section walls confi guration with the flanges at the inner 

edges. 

5. For small wall open i ngs (1/L < 0.2) the equivalent 

beam width is insensitive to the change of the slab width . 
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For large wall open i ngs (1/L ~ 0.4) the equivalent beam width 

is greatly affected by the slab width. At the same time 

the slab coupled T-section wall configurations with flanges 

at the inner edges is ntore sensitive to the change of the 

slab width tha n the slab coupled planar walls. 

6. The stiffness of the end bay slab, which 1s one 

half the interior bay s l ab width, is not one h a l f of th e 

interior bay stiffness. Both the wall opening a nd the planar 

wall thicknes s affecting the coupled end wa ll stiffness . 

7. The overhanging part of the slab beyond the walls 

has negligible effect on the slab effective width . 

8. Once the effective width or stiffness of the slabs 

are known, t he analysis of t he complete coupled wall system 

may be carried out u s ing the established techniques. 

9. For large wall openings, the behaviour of the 

struc t ure is insensitive t o the coupling effect of the slab. 

Therefore, the accuracy to which the equ iv a len t beam width 

should be known is relatively uncritical. For small wall 

openings, a small change in the value of equivalent beam width 

will have a strong eff ect on the coupling of the walls. 

Hence, it is in this range that the engineer should obtain 

as accurate an estimate of slab stiffness as possible . 
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The expression used in defining the triangular 

element st iffness is 9-term polynomial in X' and Y' due 

to Rawtani and Dokainish [19]. The vertical displacement 

w' is given by 

The element stiffness matrix in the local coordinates 

becomes 

[k I] E t3 [A -1] T [B][A-l] (A .1) = 2 e 12(1-v ) 

where 

(A. 2) 

r: 
0 0 2 0 0 6X' 2Y' 

:YJ [Clj = 0 0 0 0 2 0 0 (A. 3) 

0 0 o· 2 0 0 4X' 

and 

1 · \) 0 

[D) = \) 1 0 (A. 4) 

0 0 
1-v 
-2-
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Premultiply [ D] by T multiply by [Cl] [C 1 ] and post we 

have 

-
0 0 0 0 0 0 0 0 

d 2 [B] 0 0 0 0 0 0 0 0 
dX'dY' 

0 0 0 0 0 0 0 0 

0 0 0 4 0 4v 12X' 4Y' 

0 0 0 0 2(1-v) 0 0 4(1-v)X' 

0 0 0 4v 0 4 12vX' 4vY' 

0 0 0 12X' 0 12vX' 36X' 2 12X'Y' 

0 0 0 4Y' 4(1-v)X' 4vY' 12X'Y' 4Y' 2+8(1-v)X' 2 

0 0 0 12vY' 0 12Y' 36vX'Y' 12vY' 2 

(A. 5) 

Integrating each element of (A.S) over the area of the 

triangle 1, j, k, as shown in the figure, we have 

Y' 

j 

i 

k 

Y' 
Y' = ~•X' X' k 

+ Y! 
J 

X' 

0 

0 

0 

12vY' 

0 

12Y' 

36vY'X' 

12vY' 2 

.... 
36Y I L. 



,11,11 

X' k Y' 2 

= J J dX' dY' 

0 Y' 1 
·. 

X' k 

I Y' -Y! Y' 
,11,11 = [( ~. J) X' + Y! k X I] dX I - X' k J k 

0 

Y' y I -Y! x•2 
[- k + k J] k + Y! X' = X' -2-X' J 

. k 
k k 

Q,11 = 1 Y' 
2 j xk 

X' k Yz 

,11,21 I J X' dY' dX' 

0 Y' 1 

X' k 

J 
y I -Y! Y' 

[ k J X' + Y! k X I] X' .dX' = -X' J X' k k 
0 

Y'-Y!-Y' Y! 1 X'3 X'2 = 3 [ k X I J k] + -+ . 
k k k 

X' Y' k 2 

,11,12 = J I Y' dY' dX' 

0 

XI( 

= J 
0 

Y-' 1 
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(continued) 



Q,12 = _!_X' Y! [Y' + Y!) 6 k J k . J 

X' k Y' 2 

Q.31 = If X'2 dY' dX' 

0 Y' 1 

X' 
k Y! 

= I [ ( -~-) X' + y!] X I 2 dX' 

= 

0 

1 Y! 

4 ( -x+) 
k 

X' Y' k 2 

k 

X I 4 
k 

J 

1 X'3 + 
3 Y! 

J k 

Q.13 = s s Y'2 dY' dX' 

0 

+ 3 

1 
3 

Y' 
1 

y I- y! ~ 

[( kX'J)(Y!).::] 
k J 

X' + 

X! Y' 2-2Y!Y'+Y! 2 
( k J k J [ _ _1_ 

xk X I 2 
k 

Y!3} dX' 
J 

yk
2

-YkYj 
+ 

X'z-
k 
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I 

y I 2 X'4 
+ _L) 

X'2 
-4-

k 

(continued) 



+ Y! 
J 

"'2-2Y'Y'+Y'2 1 k ~k . >. 

( ') J J ) 
X'~.-

k 

= 1 X I y! [Y I 2 + y I y I + y! 2] 
t13 I2 k J k k >j J 

X' Y' k 2 

t 2 2 = j" I X I y I d y I dX I 

0 

1 = 2 

1 
= 24 

Y' 1 

X' k 

J 
0 

Y! 2Yk_-Y! 
[(-x+)( X' J) 

k k 
X' 2 + 
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Y' -Y! 
( kX'J)X' Y!

2
]X' 2Y! + dX' 

J k J 



APPENDIX B 

COMPUTER PROGRAM FOR SOLVING 
QUARTER OF THE SLAB IN ORDER TO 

OBTAIN ITS STIFFNESS 

178 



Q') 

r--
r-1 

c c 
c 
(; 
"' .... 
(; 
c c 
c 
c 
I~ 
c 
(; 
c 
L c 
c 
c 
c 
(' 
' J 

c 
c 
c 
·~ c· 
c 
l... 
c 
c 
(; 
c 
c 
c 
c 
c 
ll 
c 
c 
c c 
c 
L 
c 
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NODES AL UNG THE 4XES YMME fRlC EDC E·CO ME S fH~ SECOND . 
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YY<2) Y - COORDiNA TE OF NOOt: J !t-.\ LOCAL Af.. 

t <J> X - COORDINA TE OF NODE K IN LOCAL A xE~ 
YYl 3> Y - COORDINATE OF NODE K I N LO CAL AXES 
S: TOfAL SffFf N!:SS ~A f RIX 

. _ _ _ oN r 1 ru: t 1 s ) 
! M t N SI 0 N X X ( 3) , Y Y l J ) , A Lr·1 0 l 3' , 3 ) , A ( 9, 9) 
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OIM~N S ION S<6 6 1 6 6> 
L.J.i r: E 1; S I G N E ( 16 0 ) 
C C rH I 0 :~ i~ I , N J , N I< , X , Y , l , X X t '( Y , AL h P , A , S H , F.: t\ B , E K T , S r1 ~1 
~EW Ir~O 1 
N 1~N =61 
MI1M = 3 
KKK=9 
READ <5 1 0 2> TITLE 
WRI TE </-, ,73) 
t4 ~ li£ · <6, 1 03) TITLE 

READ NU r-ldER OF NOOES , NO. OF Ei..ErtENTS 

READ ( ::i , 7 1 J N i I , r ~ E 

READ FIUSSChS RAf f O , MODULUS OF ELASTICITY , SLAB THICKNESS 
READ <S,?c) t:J it.J,[MD,T 

REAO NO. JF OIFFE~E~T TYP ES UF NODES 
READ . <5 1 5 5 ) NF1,NF2,NF3,NF 

K.t:Au WALL GtO i 1t~fP.Y 

REAL <5,9 9 > SY,SL 
1-< EAL <5 ,1C-.) \~,1L 
~ E.AO <5 1 08 ) E X 
w f.<. .i T E ( G, 7 4 l iHI , i' E 
'tJF I TE < ~ 1 7 5l t:HU, EMtJ,T 
ri r\ I Ti <6 ,10 0 ) ~Y,~L 
~'~KlT l:: (b , lO S > w,·i·L 
W ~- IT E l 5 t 1 0 9 ) E X 
NT=N F1+ rJt· 2+ NF3 thF 
IF UH .N f: . rm> rlRfTE <G, 8 C) 
1 F < N T • t-1 E • t·l N > S T 0 P 
iT L -= Sl + W+ w 
I F < A 8 S < r T L - T L ) • G T • 1 • E ... B ) W R l T E (6 t 1 0 7 ) 
IF <A 13 S {TTL- T L ) • G T • 1. E- 8 ) S T UP 
NlJ= 3' • NN 
WRl TE <6 , 9S l N F:..,t'lF2, t~;FS,riF.'.r 
rF i r E <o,?o) NU 
! ~ 0 F = 3 .. I l r 1 
M J.~G=t~ u-uoF 

CHECK PROBLEM OIHE~S ION S ANIT DATA 

I F ( N 0 F • G T .1 6 0 ) rl f.C l T t::: ( 6 , 
IF <NOF.GT.: 60 ) STOf-i 
! F ( t·l A G • G T • G 8 ) 1Hd T E: ( c , 9 

"' ~1 

"' 
;)2 

A S3 
M :?:.. 
A 5S 
A :,..6 
A 57 
~ So 
A 59 
A 60 
A 61 
~ b2 
!\ b3 
i.. 64 
A o:, 
A o6 
~ 67 . 

'"' 
ob 

A 6~ 
~ I 0 
A 71 
A 72 
A 73 
~ f"+ 
A 7'J 
A 76 , 
A I I 

'"' 76 
A i':i 
A oG 
A a1 
A 82 
A 6 ,) 

'"' 84 
A a:J 
A ci6 
~ 67 
A d8 
~ 6i;j 
~ gc, 

" 91 

"' -:!2 
A 93 
~ ':l"t 
A gs 
A Yb 
~ 97 
k ~0 
A -;~ 
A 10G 



...-l 
00 
...-l 

~ 

IF ( I"IA G,GT.66) ~TCP 
r1 U U ::: N u + ( I l U +.!. ) I 2 
IF l MGU. G f.1 630 J) HrUTE (6, e8> 
I F l 11 U U • G T • 1 6 3 u () > S T 0 P 
1 L: = ~~A G ... 1 JO F 
lF <lZ.GT.71:J ·~) HK.~.TE ( 6 , 82) 
lF u.:.GT.7 8 J 'J} STGiJ 
L H L = !1 .4 LJ ,, I 1M G 
11 .4 H = •J J F.,.. ( i W F + 1 ) I 2 
Lhl = t1 f\ d 
If ( L H L • G T • Lt~ ... > ~~ i< H E < 6 , 83 ) 
lf (LHL.GT.LML. l STOt-1 
r F < L rl L • G r • 7 o 'J .; > h'R. r r E t G, 
If lLrlL.Gf.7b OG> S TOP 
WRll E <6 ,73) 
W ~I T E < E, S 1) 

G ~EA~ COOkulHATi~ OF N0UES c 
DO 1 K I = 1 , 1'4 N 
8 E~O <~,lb> X<KI>,Y<K~> 
Z<KI>=J.a 

1 Cu~l1 I !\U E 
c 
C R.tAU NOGES t,·U,1tJER 
c 

c c 
c 

Du 2 N=1,r,E 
F\ E A 0 ( ~· , i" 7> N I (i~) , tlJ < :0 , I~ K ( 1'1) 
I;; til < ~0 
J= l'; J( N ) 
i(= N t--:< N > 
~~ R I H: < 6 , 7 9) N , I , J, r\ , X (! ) , Y li > , Z < l> , X< J ) , V' < J > , l < J > , X (tO , Y< K > , Z ( K> 

GhLGUL ATt: NOLI~L COGR Glt~ A TlS IN LOCAL AXE S 

A1=< X <J>-X<I>>~•2+(Y(J)-Yt!))++2+<Z<J>-Z<I>>••2 
{, 2 = l :< ( I< ) - X ( J) } + ..... 2 + ( '( { t< ) - y l J) ) ... +- 2 + ( l ( K ) - z ( J) ) + + 2 
A 3= <X ( I> -X < K > > ... <r 2 t ( t l f > - Y l K > ) + + 2 + < L \ I ) -z < K) ) + + 2 
Y'( < 2) =:> QRT (A1J 
YYt3)=( AJ+Al-A2)/(2.•YY(2J) 
X,< (~)= SOR T (...lt:l S t A 3-YY l 3' ) +-..~ l > 

~ F OR rW LAilCN OF ELEM~~:T STlFH1C: SS MAT R.I X IN 1..uCA~.,. ~XES c 
c 
c 

Gt.Ll.. i::61'i 0A lX,Yt ~ P..t d H~ tM i· J' ·! ~l!..JtK,AU10) 
INVE~~.1.0 I ~ OF i1AII'IJ.X J.~ UUII-< ... CH:.O 
C;.,Ll Ali\V,.;.:;, (XX, YV' pU 
T rl C E 1..:: f"4 E tn S T ..1. F F f\ t. ~ ~ M k h. l X ~~ 0 rl F 0 K M ED 
~:o~LL b ~Nui< <E.IU,E~G,A ,E~ u , XX 7 YV,T> 
l,; .- L L T t-'. A N ~ ( A L i·lU , E K:; , E t< 1 , 1\ 1\ I\ J 

A .101 
A 102 
A luJ 
A 1 0 '~ . ' 
A 10~ 
A 106 
4 HI 
A 10 0 
~ 1QS 
A 110 
A 111 
A 112 
f.\ 113 
A 11~ 
A 115 . >:_. 

A 116 
A 117 
H 11b 
A 11Y 
~ 120 
A .:21 
A 122 
A 1 ) -· ._.) 

A 121; 
A 12:-
A 1 2 t. 
A 127 
A l~o : · 

A 12~ 
A 130 
A 131 
A 132 
A 133 
A 134 

:··r 

A 13!:1 
k 1.)b 
A 137 
k 13o 
~ 13Y 
A 10:.,0 
A 1 ... 1 
A 142 
A 143 
A 1-t4 
A l'T~ 
A 1'tu 
;:... 14 7 
A 1J;.o 
~ l't9 
1.\ 15 0 .:·,, ~ 
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00 
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0 
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l.. 
(, 
c 
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WRllE <1> <<t: KT\I ,J>,J=l, 'J l,I=l,CJ) 
CO NTI ~'Ut 

FORMULATION OF TOTAL STIFFNESS MATRlX , HALF OF IT ~lLL SiORED IN 
A COLUMN VECTOR RUW BY ROW UP TO THE DIAGONA L ELEMENT 

Oo 3 N=l,n uu 
St:t <N>= ·) .J 
CuN TI NUt 
RE IHND 1 
00 7 L8= 1, t1E 
READ (lJ (( Ek Tli'-:Jo\,ii,l} , MM= l, ~ ),r\ K =l,9) 
!1= <NICL B J-1)'"'" 3+ 1 
Jl=l N JlL B)-l)+ :)i-1 
K1= l NK l L l3l -1) +3' -t-1 
I 2 = ~JI ( !.. 13 > + 3 
j 2 .::. N j ( l B ) I · 3 
k 2 = t~ K l L. i3 ) "'"3 
N-=-Q 

g~L~ l~~~~A 1 ii1,I2,Jl,J2,Kl,K2,1I,M,EKT;sMJ 
C GtJT I t~ UE 
JO S 1I=J:1 J2 
CALL ASSEM~ l:1,:2,J!,J2,K1,K2,1~, M ,EKT,3NJ 
CON II NU[ 
Uu e li=K1 K2 
C 14 L l A 3 S E ~~ ~ < I 1 , I 2 , J 1 , J 2 , K 1 , r< 2 , I I , t·l , E K T , S M > 
CONTI I~ Jc 
COilllNUt: 

PAinTON OF THE fOTJ\L STifFNESS MATRIX 

FlRST PA RT uF MAT~IX SK JS I r>il/t:RTED ~iW THE lNVERSl <H4 CA LLED kCC 

CALL INVS Y:~ ( ~M ,NCF IERR> 
~ F (J E ~ R • t-1 E • G > \~ R T H~. l 6 , 11 G > I E: R ;.{ 
.1. F ( I £ ~R • NE • 0 ) s T I) p 
LMM=O 

MUL TIP ,LIC.4TION GF KC C 0¥' KAt> AhD STURt:O AGMlN IN f.l'li·.' Ru~ BY R.OI~ 

DO 1& IA=l,Nur 
lF <IA.NE.lJ 60 rug 
DO 8 J ;J. =:,Ni)F 
E < J A> = 5 1.< J At { J A -1 >12 + fA > 
CONTI NUE 
GO TO ~3 
CON f1 NUE 
i<A=lA-1 

A 1 5 1 
A 1:.:2 
A 1~3 
" 1::).., 
I~ 1:,.;; 
K 1 ~ t:l 
~ 1 ~ 7 
~ 1::i6 
K 1~ S 
A 1 6C 
i-1 1o 1 
/.l. 1u 2 
A 1 6 .) 
~ 1t:. ... 
A 1u:;. 
~ 1u v 
A 1b/ 
~ lc:.o 
A 10 .:, 
A 17 ·~ 
/... 1l1 
'-\ 172 
A :1..? 3 
~ 1 ? ... 
;... 1 i':;. 
A 17c.. 
~J. 1 / I 
~ 17!., 
A 17..;, 
k 16 u 
~ ltd 
A 1-:.2 
k lui 
A 1~ ... 
K 1o S 
A let. 
A l o 7 
A 1.:-c 
;.;.. 1;;.;, 
~ 19 0 
A 1':?1 
!>'. 1'::12 
~ 1':1.5 
A 1 S-. 
i:l 19:.. 
~ 10o 
K ~>;,7 
~ l'::lo 
A 1 ~ -j 
A 2~J 

' I 



r.t') 

00 
.....; 10 

11 

12 
13 

... ..,. 

1:... 
1 c, 
c 
v 
c 
c 

li 

lo 

1-:1 
c c 
L.. 
c 

KB= o 
D U 1 0 N A r1 = 1 , K 4 
k& =KS +MAN 
CONTI NUt 
NAI\1 = k S+:.. 
DO :2 JJJ-=1 Nuf 
lF <JJJ.Gf.fA> GO 1 8 J.1 
E<JJJ>=SM<NAN+JJJ-1) 
!NiA N N = NJ/.. N + J ,.; J -1 
GG TO 12 
I;ONTI NUE 
E <JJJl= SM <NANJ +JJJ-1) 
NANN =NAN'N +JjJ-1 
CONTINUE 
CONTI NUt 
LKK=O 
00 1!:1 LLL=l,HAG 
S MM l L ~ L + U1M J = 0 , 0 
iJO 1._. LI<L= 1, I~U t= • 
MON = ~A 11 + U~ L + L KK + (L L. L - 1).,. ~Ur 
S i'\1': ( L.. L L + L M 11) = 5 M M ( L L L t L Mit> + E' ( l K U + S M l ~\0 N ) 
::o NT rt-JuE 
LKK=l\<K+L-L 
CG I'\T!NUE 
LMM-=L ~MI+f·l AG 
00NTII'-:UE 

MuL TfPL1CAT10N OF K&A t<CC t<AB STORED lN FlRS T PART OF SM C OLU ~'1 N 
~y co LUM ii 

NS.S = O 
DO 19 LLL::1, I1AG 
UJ{.::,j 
LO :6 NAH =:, MA\, 
Sill < NA h'+N S 5 ) = J. 0 
L K1 =0 . 
DO 17 LKL=ldHJr 
MON=HAM +L K~ + LKK +< NA~ -i> ~WUF 
SM < NAH+ NSS J= SM l NA H+ NSS ltSM l HON >~ SMM <LLL+LK1> 
LK1=Lf(1+MAG 
CONTINUE 
Lt<K=LI<\<+NAI-1 
CONTtNCJt 
NS S=NS s H1A G 
GOtH INUE 

SuBTRACTION QF KijA i<CC I< Ae fROM kA-A AN~ H4E R\:SLJ LTANl MATRIX £ T0R
EIJ CO LU MN \3> '1' COL UMN TN fHE F !\\S7 PAR"! Of SMM 

KOP=MA t1 ~ NCt= +l 

A 201 
A 2~i::: 
A 20 3 
1-\ 20~ 
1-. 2 r.. :. 
A 20o 
A 2C7 
,. 2uo 
A 2C~ 
J;l. 21 0 
A 211 
A 212 
~ 2l.:S 
A 21~ 
~ 21:) 
A 21o 
[., 217" 
A 21c 
i\ i:::l 'j 

k 22 u 
K 221 
A 222 
1-. 22 3 
A 22"+ 
k 22 s. 
A 22:; 
A 22 7 
1-\ 2 26 
~ 22::, 
A 2..) u 
14, 231 
A 23 2 
~ 2 .s j 
J.\ 23'-r 
A 23~ 
A 2.3 b 
;.. 23 7 
A 2.:S6 
A 2-JS 
A 2 '-1 u 
A 2-,1 
~ 2-.2 
~ 2 ... 3 
K 2, .,. 
;.., 2 -.;., 
A 2~ v 
~ 2-ti 
~ 2 .. :
,.\ 2:..~ 
A z:;; G .. 



-::T 
00 
.--1 

20 

21 

22 

23 

24 
2:.. 

2u 

27 
c 
c c 
c c 
c 

2c.. 

2'J 

3~ 

t·lSS=.O 
lJG 27 I/\ = l , MAG 
l F <I A .111E . 1> G 0 TO 2 1 
DO 20 J A=l, MA G 
E <J A l= SM CJ A - CJ A -1J/~+ k OP + HO F•(J· -1JJ 
CON TI NUE: 
GG TO 2S 
C ()Nil NU~ 
t<A= JA -.:. 
t< 6= 0 
U () 2 2 1'1 A H = 1, KA 
k B= K('31+ f'1 AM 
CD NT I NUE 
DO 24 JJJ =1 2 Ml\G 
Jf lJJJ.G T . rtU GO TO 23 
E <JJJ J =SM (JJJ-1 t K6 +KOP +NUF" (TA-U) 

. NANN=JJJ-l+KH + KO P ~ NUF• t iA -1> 
G 0 T u 2tt 
CON T rwue 
E lJJJl = S M < NA NN ~JJJ+NOF-1) 
NA-Nf\1= NANN + ,JJ J - i ~ Nu F 
CO NTIN UE 
CONTI NUE 
Ju 2 6 MER =1 NAG 
S MM t MER + M SS ~=£ ! NER J- S M l M ER t MSS J 
CO NTI NUt 
MSS =MS S+t1A G 
CONTI NUE: 

ARRA NG eMEN T OF ST i fF NE SS MA TRI X ACCJRDING TO THE BOU NDA RY CON Dr5I
I)N.S FOR SOL VI NG QU AR TER OF THE SL.AI3 

RE PLAC EMENT OF R O~S 

MSS=IJ 
0 0 2 g I S= 1 , MAG 
0 0 28 JB= 1 , MAG 
S (J Bf IS>= 5!'d·: £J B+ MS ~ > 
CO NT NU£ 
MS. S=M SS+H ~ G 
CON TI NI.JE 
1-M GG= NA G+ l'f AG 
L1 0 3 0 1 B= .1 , MA G G 
S ~ < I ~> =0 . 0 
CON TI NU€ 
NH 1 = 3 4

• ~ F 2 + .i "~" ~ F 3 
MSS= O 
DO ~2 r~= 3 , NH 1, ~ 
D 0 31 J 5= 1 , MA(, 
SM£JB+ M SS >~ S (l B ,J8 > 

A 2? 1 
k 2:.-2 
A 1:: :.:> 3 
A 2 ~ 4 
A 2:;.:;. 
A 2:; c. 
A 2-j/' 
;.., 236 
f.. 2:::. '3 
A 26u 
~ 2~.-1 
~ ze: 2 
.\ 2c 3 
A 2tl "' 
A 2L~:;.. 

A Zvt:.. 
~ 26 7 
A Zoo 
1-1 20 lj 
A 27C 
A c 7 1 
A 2/2 
A 273 
i.\ 27~ 
A 2/;.; 
f.. 2i'o 
A 211' 
K 21 6 
A 27 ·~ 
A 2 u Q 
A 261 
A 23 2 
H 2L 3 
~ 2v '+ 
~ 2d ~ 

"' 2c.;) 
A 26 7 
A 2c.lo 
A 26 s 
A 2-3 0 
A 291 
A 2., 2 
A 2-j 3 
1-1 2'?.,. 
1-\ 2'1 :;1 

k 2~o 
~ 2~ 7 
/.1. z.;,;, 
A 2~~ 
A 3.:c 



lf'l - · J1 CONTINUE A 301 00 ~IS S = M s S + M ~ 13 A 3:C:: ~ 32 C CJNT l Nu [ A .3 8 .) lF < NF 3. E\.\ . 0) GO TO 3 9 ~ 3G"" Ntl2 = 3 ... NF 3 A 32S PO 34 I6=1,~~H2,3 A .:iJo 1IB = 3.,.NF~ +JB \ 3J7 1-'t. Ou .33 JB=l , MAG 
M j J;) 

SN <J B + MSS ;=S< IIB ,J ~ J A 3 C ~ 33 C0 N l I NUE ~ 31G ~iSS =M SS +MAG ~ 311 ,-;~ CONiiNU[ 
A ..51~ 3:.; CONTlN(JE 1.. .H3 NH3 =3'"" NF 2 ... 31 '1' co 37 1B=l,N\1J , :r A ;) 1 ;I 00 36 J B= 1 , MAG k 3H,~ SN lJS+MS S>=S<rB,JBl A • .H7 36 CON fl NUE 
J... Slo MSS=HIS:S·d~AG 
k 31 Si 37 CONTINUE A 32 u 00 3 9 I B= 2 1 Nt-11 1 J ~ ~)21 0 0 3 8 J B= 1 , MAG ~ ..:i C.: 2 SM t J f3 + ~£S ; =S tlt3, J i? J 
~ ..32..5 .36 CONTi t~UE 1-1 32!; M S 'S = NSS + NAG A 32~~ 3'; CONii ~WE f... 32t 1-1'\SS=O A 321 o o Ll l 1 8 = 1 , N 111 
M 326 DO 4G J i)='l, MAG A 329 S <1 Bl JB> = S~ (J \l+ MSS ) A .53 J t,.Q C m-tr NU E A ..S31 MS'S = M$5 HIAG . A 332 

~,o1 CONT T tJuE A 333 
iJO 41~ 1B=1 , MAGG ~ 33!; S M< I l = 0 . J ~ 33:-i ,'-r2 curnr Nut:: ~ 33u c ;... 337 c REP LACtMEN T OF COLUM~S r\ 33u c A 33~ HSS=O A 3~ 0 00 ~~ IS=3,~Hl , J A 3~ 1. ou 4 JB=1,nAG _ 

H 3...,2 SM <J B+MSSJ =S tJB , lS> A 3Li 3 ..;3 CO NTI NUE A J;_~.y 
~1 3 9=MSS +MAG ... 3 ... !:; 

"''"' 
C NTI NUE ;... "7 . • ... ~ c IF l NF3 . t;G . O> GO TU 47 1-1 34l 
~0 lfb r~=1 , NH2 , 3 ~ ~ ... 6 IS=3•Nr- 2 +- JB ... 3"'t':1 DO -45 J 5=- 1 1 MAC, ~·- - ~ A 3:; 0 



\,Q SMlJS t MSS >=S<J B, !!B> 
" .. S? 1 co "'" CON TINUE J..\ 3?2 ~ .... 

..--t ~~ S S = M S S + M A G A 3 ? J 
.,.t, C Or•J1i I NUt A 3:)~ 
-tl CO NT!N UE M 3:;;;;.. 

D 0 1.\9 t B.:: 1 , N H 3 , J A Jj 0 
DO ~8 JB= :1., t1AG A 3?7 
$M (Jr + ~SS} = S <J B , IB ) A 3;-..,o 

' 
..,...; CONT NUE ,.. 3:;.~ r1S S =M<sS +MAG A 3b 0 
'-t~ COI'I"TTN UE ~ .>c 1 DO 51 TB = 2 , Nrlt ,.3 . A .;)6 2 uO 50 JB=l, MAG A 3 o .3 SN<J B+MSS )= S lJB ,I B> A 3o4 !)J CONTINUE ,.. 3c..S MSS ==MS S+MA G A 3ob 
::..i1 CON TI NU£ A .3 a 1 MSS =O . ~ 3oc 

DO 5 3 !B= 1, NH1 ~ 3c.-'3 
00 5 2 J B= 1 , MAg A 37 a 
S < JB , I B i:: SN < J +N$$) A .3/ 1 

52 CO NTINUE f.. j72 
MSS = MSS H IAG A 373 

:)3 CON TINUE A 3 i l t 
L A 3 i :? ;.,; AGAI N P ~RT I ON OF THE ST I FF ~ ESS MATRfX ACOOROrNG TO THE BOUN DAR Y C- A 37o c OND ITI ON S A 3/ l c 

I N V E R S I 0 N 0 F F IR S T P A R' T 0 r· S \i li I C 11 IS C A l l E 0 It 11 
,.. 3lo c 
~ 31 9 t,; ~ 3cC 

\..ti1= N F2+2-~ NF3 A 3~ 1 MSS =O ~ 3c 2 
00 54 1~= 1 ,L H1 

' A .3.:. 3 
~o 54 J =l, lB ~ 3d..,. 

SS= MSS +l A 3o ::.> SMM CMSS >=S <I B, .J8 ) M 31) 0 
CONTIN uE A -... ' -· :;;.,. ,:,.;.,t 
LAM .::L n t+< LH 1+1J/ Z 1-\ 3u 6 
CALl !NVS YM <S MM , UH , IERRl !J. 38 .., 
1F < IE RR . NE . Ol ~RITE <6 , 11 0' > r c: RR M 3-jC 
If' ( !ERR . Nf , Q) STOP k 3':j 1 MSS=O A ;; gz 
iJO 55 IB=l , LHl k 30 3 DO 55 J B=1 , TB ,.., ~:; '+ -M$S =.: M5S +1 A 3~:) 
S ( ~B fJ 8l= SMM <M5S > A 3-:Jo 

:;~ CONT NlJ~ A 3":3/ 
I)O S6 l =1 , U i1 A 3-,v 
DO 5 G .J = 1 , L rll A 3~ ~ IF <f B. GE.J Bl GO TO 56 ;., .... ~o 



["-.. 

S L IBfJ S >~ S lJ S , !B J A .. ul 00 -r-i :Jo CON T NUE A "i C2 c A '-ru3 (, MU LT IPlfCA T!ON OF K21 AN~ K 11 , THE R£$UL T S TOR£0 f N SM RO W &Y ROW A ... J ... c ~ '-r O;, LH2= MAG - NF 2-2. NF3 1-i .., ou MSS =O A .. J? DOS S IB= 1 , LH2 r\ -.J6 
II~~LHl+IB · ' . -

1-\ ..... I.J ., 0 0 5 7 J B= 1 , L H 1 {... -.l C SM<JB+MSS >= 'J . O ' A -,.11 Oo S7 K8=1 , thJ.. i.;, ... li 
SM LJ ~ + MSS J= SM LJ 6 +MSSJ+ S < IrB ,KB J 1 SlKB ,J B J A .,1.) 57 CON ffNUE ~ ... 1 .... MSS = M S$ +Uil A ., 1 t:, 

~~ CONTINUE J.. ~ :a .. c ~ .. 17 c MUl TIPll CATI ONK21 ~1 1 AND Kl2 AND TM£ ReSUL T STORED IN SM H RO~ BY "' -.1.o c A :,1.;, LH3 =LH2 ... LH1 A -.z J NSS =O ~ :,21 MSS=O A Lr22 Bo 61 IS= 1, Lli2 j... .. 23 0 6 0 J B= 1 , L H 2 A .. 2 .. S MM l J 'B+ N S S) = 0 • 0 1.\ ..... ? .... .... ., J JB=JB +LHl P. -,2u 00 59 KB=1 , LH.:. A L,2? SMM <J~ + N SS J=S~M <J8 +M5S J+SM < kB+ HSS J+ S < KS,JJSJ k ..., ~c. 
:)~ CONTl NlJE 1-i ~2~ G '~ CO N TJ rJLJ E A <t3u ... 

t~JSS = NSS + LQ-1 2 P. 431 
~tSS.=MSS+ L H 1 ~ L,32 t:.l CON TINUE A ~33 c A ., .3•t c SUBTRACT TON OF' K21 K11 K12 FROM K22 S TORED !N ~R T ~ CO RN ER OF S A l.d:;;~ c ~ L,36 t1SS =O ~ ... ;) 7 
DO 63 T~1 ,L H2 ;.\ L.Jo II 81 =LH\1 q B ~ tyj.;, 
DO 62 J8=l,!.. H2 ~ l.y 'T 0 
J J6=1,.H1 +J ~ 

1-i .l.,~.y 1 
S t ii&~JJ & J= S < fi8 ,JJ B >- S MMLJ ~ +M SS J H ..... z o2 CONTI UE · j.l, .,. ... .3 
MSS =MSS+LH 2 1.\ ... 44 -G3 CONTINUE j.l, ..... :1 
LH 3 =3 -NH; A 

"" u DO &q I6=1,NF2 A ..,. .. 7 
Z < 1 S> = 0 . 0 A 4-.b ,,. CO.N TINU\: 

" ... -1 " KK B=M F2 +NF3 k ... ::~ ~ 



00 uO 65 IB =l, K\0 A "t S 1 
00 1IB=IB+NF2 · ~ ~ ::-2 r--1 Zl1IB >=Q . Q A ~::)3 

o:.~ COM TI NUE A .. 5 " 00 66 IS= l , LHS A .. s? 1 LB =18+1I B A 't:;;Q 
(.. A -.:}7 c READ NODAL DISPLACEMEN TS OF THE NODES BETWEEN T~ E WALL AND THE SLA 1\ '1.:>C c 1-. .,.:-::, 

REA P <St 91) Z l!L 5 > A L,oG 
oc CON Tl NU ~ i,.C.::1 WRITE ( 6 , 7 ) ) A L,u2 WRITE: ( 6 ' 88 ) ~ L.roJ WR1TE: { & , 87 ) A ~0'+ WRITE <5, 89 > ( Z l IB>, 18=1 1 NF2) ~ ~ t ;, 

WRI TE <&, 9 8 ) i... 4ou 0 0 6 7 !8 :: 1 , K KS ~ "\'{) i 
T! 8=1 B+NF 2 

~ .. oo 
\~RITE l6 , 89 ) Z LIIB ) A "tO';j G7 CONTl!Wt: ~ ~?C \>IR! r:: <B, 93 > ~ L,/1 
0 0 G 8 TB = 1 I UH ~ 472 I LB=IB +riB A ., 7 3 
i'11 RI TE <6 , 69 > "Z<llB > A ; 74 bt CO ~ TI t4UE ,, 

0. 7'3 1-. 
l.o 

MUL TI PLICAT I O\J Or STif F NESS MATRI X 8'r' THE OISPLAC E11EN T 
~ 4/o G VE CTOR A 4/7 c :. L, / ~ 

DO 69 !8 =1, LHc k ... i ·~ 
IlB=LI-H+I S k 4 6 ~ S M< IB l =0 . 0 A "\-91 
00 69 JS=1 , Lfic A '-t t' 2 
J.JI~= L H 1+J I3 ~ 463 

Ml 18>:SM <IB J+ S (llB ,JJ \3 ) •z. <JB> A L, J ... 
G'::! CONTINU E A '-t 6!;: 

WRIT E l 6 , 92> 
/ k ., a c.. 

'rHU T E (6 ) ~8 ) <SM <I B >, Ifi =l, Lli2) k 4 t:: I c ~ ... 66 c SLAB STI FFNES S A .,6-, 
C· k L,90 

S 1= D. 0 ' L, ':11 .; 
DO TO lB = l LH3 3 " .,<;;2 11B= IB+2+ N ~2+ N ~3 I'"' 4S3 Sl=Sl +SN<!IB > A Lo 9 .. 7C COtHI NUt A -.~;,;. 
~RITE < & , ~ 7) ~ L,C,t,.. 
~ Rf Tt: { 6 ' 9 ) S 1 {., 4 •3 i . 

A "+'~b ~ 
c EQUlVA LtNT B€AM W1 0TH 

' 
~ .,-;,-, c ~ :- Jc 



O"l 
00 
~ 

c 
c 
c 

c 
71 
72 
73 
7-; ';) 

/u 
i i' 
7o 
TS 

b'.: 
bl 

. ' ) o .... 
..) .) 
u :.; 
d; 
t. t, 
o7 

(), 

C-=' 
':I G 

'j l 
Sl 2 .,3 
':j o.; 

';j :,. 

':H .. 
'j / 

S12 = 2 · S 1 • s L~ sL~S L 
S22=ENO ... T ~·1 • r- s Y 
Sl.3=S 1 2 / S22 
WRlTE <6 , 10 U S13 

NONCIME~SI C HAL ROTAT I ON STI FFNESS OF THE SLAB 
~ 1 4 = 6 . ~S1 3•< S Y/Sl ) +(1 .- EMU+EMU l 
S 1 6 = < SL /C SL + 2 . • E X> > ~~2 
S15 =S1 4/ S16 
WRIT E l b , lG& > Sl 
STOP 

FORMA T (!5 , 15 > 
F OR M A T ( F 5 • 2 ' E 1 0 I 2 ' F 1 0 I 5 ) 
F OR MA T < 1 F 1 l 
F OR MAT ( 5X , ... NO. OF I'WO ES =+-, I5 ,1, Sx.t.vNO . OF ELEI"iEN TS ;;; "" , I5 11) 
FORMAf t S x , .. PI OSSONS RATIO ="' , F:> . 21 X SX "'~ I OO ULUS OF EL A~T 

1 IT Y = .... , E1. 1. ... , 2x , +r~ JP ; F r. ... ~· 2~ ,,, 5 x , ""n1 ICkNc.SS OF THE SLAB =•,F 'c3. '5 ,2 
2X ~ F r . ~ I I> 

FORMAT 15:le , ... t-W . OF TO TAL DI SPLAC ENE NTS ="', b ) 
fO RMAT <I~ 1 IS 1 15 > 
FO RMAT l2F e, . 3J 
F OR t-t ;~ T ( 6 X ' 11.\ , 6 X ' 3 ( I 4 , 2 X ) ' 2 X ' 3 ( F 5 • 2 ' 2 X ) ) :; :< , 3 l F s I 2 , 3 X) ' 2 X ' 3 ( FS' • 2 ' 3 X 1)) 

ORi·IAT O( , S X +~R R CR IN OATA OF NO . OF NOO C: S ~ · J 
FORM AT < sx , ~~ RO P E R TIES OF ELEMENT S~ , XX , 5X ,• EL E MENT N0¥ ,3X,• NI •,3X, 

1• NJ ... ~ 4 x , +Nk+ L6 x , ·x r• , &x•YI~ , 6x + ZI~ , ~ x , •x J•, e x,•YJ•, 6x,• z J ~ , 6x ,• xK • 
2 , 6X , TYK ~ 6X~tK~ ; 

FORMAf < &x , ~ F lRS T SIZE GREATER THAN S TORAGE OF SMM•> 
FORMAT l 5x , ~-s~C0Nl) SIZE GREATER Th'AN SlORAGE OF St1 -~"> 
FOR MA T t 5X 1 .... THI R0 S!ZE GREAf E.R TtllAN STORA GE OF S~l"') 
FORMAT t ~l~ > 
FORMAT <Y~ 1 5 0X 4NDOAL DISPLACEMf~T S• X) 
FO RM Af <Sx ,-· VERT!CAL DfSPLACEMENT oF' NODES Or AXIS YMMETRIC ELJ GE OF 

1 SLAB -· > , 
FO f.<t~AT (5 X,·' PR0 6 LEt>l GREATER THAN THE STORA GE+> 
FOR MA 1. \!:lX.z_E10 • . , > 
FO.RM A1 li, ~X,z. ···SI-IJ P E. A BOUT X AXIS FOR 13GT tl NODES OF AXr SY MHE TRfC AN 

19 SYMMETR~-c tOGE OF SLA6•i 
r- GRM.~I <F . • 3 ) 
FORMAT (1 1 48X • NODAL FORCES• > 
FOR MAT (/ , 5 X , ~OtSPLACEM£N rS OF NODES ON W4LL +) 
FORMAT C5x , •VECTOR E IS SMALl• ) 
FOR I-lAf (~X "'N O. OF NODES OF ZERO FORCES =•,I S /, SX.t 

t •No. OF NObES ON ~X!S Y MMETRIC EDGE OF SL A6 =•, IG , I , 5Xl• NO. of NODt 
2S ON SYMMEiRtC EDG E OF SLA8 =="' , I5 ,1s 5X , '-·J140 . OF NOu.ES 0~ S YMH.E T 
3RC EDGE OF WALL =· t i 5 //) 

FORMAi ( 5X .t "' I1ATRIX S rS SMAL L" ,II> 
FO RMAT l/ , =>X , '~-SLAB ST I FF NESS-+- ,/) 

~ :, Ll 
A ~u 2 
~ ~03 
A ::. lJ ... 
A 50:;, 
;.~ :.- co 
~ 5 Gi' 
A ~G .,) 
1-1 ::;. .jS 
1:.. ~1 0 
~ Sll 
A :)12 
A S1 3 
,.\ ~1 .. 
~ :;~1 :, 
A :-1o 
ri ~ 1 7 
,\ ~ 1 0 
A :;> l ', 
~-;, ;;. ZC 
A :.- 2 1 
A :.22 
:.... S23 
;:.. ~ 2 -. 
'-' S-2S 
A :; 2c;, 
A :;, 2 , 
A S. : ~ ~ 
.. ~ :2'J 
;.~ ::;~3G 

· A S31 
A ~.32 
A !).) 3 
~ = 3~ 
A ::;.) :,., 
A ? 3u 
.4 !:i31 
.- S3 b 
;.~ S .S 'J 
A !.> ... 0 
A S-.1 
A ~ ... 2 
A ;., o,3 
:.. !; .,. ... 
A :,., ... :;. 
/-<, ::; ... 0 
A '.; ... / 
M ·~.., 0 .. ~ .. ~ 
~ ~!:1 c 



0 
0\ 

< 50X , ~10 . 4 ) ~ '?.) F 8RMA T A ::,;:; 1 
'J ':J F RMAT <ZF6 . ) A :.:.;.2 
1 G •J FORMAT <SX , ... WIDTii OF THE SLAB -="· ,F 8 . 4 ,t,SX ,""\..EtiGTH OF C O t·H~ E .1 S? 3 

l iiNG BEAM = ~ , F8 . 4 J ~ 5~~-r 
1G 1 FORMAT U, 5 X, ... RATIO OF E FFEC Tf\JE WIDTH OF SLA 6 iO 10 f Al WIDnt =+, F A ~?:; 

19 . &,1> ~ :;.so 
1 ' ' ? F ORI"\AT l13 116 > A ~s, i ... _ 
1 '~ ·:; FORMAT ( ~X b 1 3A 6 , /Ill ) ~ ::1 ~ 0 
1C ~ FORM.Af ( ' f , 3 ) /-1. :-:;; ;;; 
1 .~ s FORMA <5x ,d LENGTH OF ~AL L =·,F 8. 4 ,;, 5X,•ToT AL LENGTH OF .4 SoO 

1 SLAB =..:. 1 F8 . 4> A ~v 1 
l Co FO RMA i < 6X , ~ROTATICNftL NONDIMENSIONA L StiFF NESS OF THE SLAB =•, E10 i-1 ?o 2 

1 • 1.,) A ~o 3 
1 07 FORMAT < 1 1 SX ,• E~ROR IN 0 rM£NSI ON OF THE PROBLEMT > ~ ~0-y :. c :) F 0 R MA T l F b • 3 > A S,oS 
H:J F ORMA f < S>~ , .. biSTANCf: EX , .:: "" 1 F 9 . ~ ,//) A ~00 
11 J F O~MA T CSX , 5HIERR =, J3 Y /J. ~c7 

ENC ~ :;;~;.c-



,...., 
(j) ,...., c 

c 
~ 
c 

,• 

c 
c 
c 
c 

1 

SlJBROl!TlN£ LAMDA <X,v,z; NNN , i'\MM ,-J:,J,\<,-tlt.:Mif> 
SUBROUTINE LAMDA <X Y Z ~ NNN MMM J J K AL,MO) 
lHtS SUI3ROUTlNE FrNbs ' me: D£-Recft6N '·CQSINES Of: THE LOCA L 
t;ESCRfPffOtq OF P.ARAMEfERS 
X, Y',z •••••••• GL013AL COORDINAIES OF NODES 
ALMD •••••••••• M.ATR!X OF Dfl~eCT!ON COStNE:S 
OtMENS.tON XCNNN )·, - Y l NNN> , 1.UvNN), A~MD<MMM,MMM> 
YJ!=Y<JJ-Y<n 
'r' NI = Y < K J - Y ( I J 
XJl=X(Jl - X(J ) 
Xf11=-X (KJ-X(!) 
ZJl=llJJ - Z <IJ 
Z tl'IJ .= l c K l - 1 < l > 
A=YJI+lM1 -Y MI+2 JT 
B= ~ XJ !.,.Zr·L. +XMI ' · 2 JI 
C=XJI+YMI - XMl~Y J I 
F= S~RT < XJI ~ ·2+YJI••2+ZJ14+2) 
G = - Q RT < A ... + 2 + J ... ~ 2 t C -~ ~- I! J 
ALM <2,1>=XJ1/F 
ALM0 ( 2 , ZJ =YJ1tF 
.!4 L MD ( 2 , 3 ) = Z Jl/ F 
ALNI)( 3, 1) =ft.;G 
A L HD < 3, 2 l = 13; G 
ALMDC3,3J=C;G . 
A L M D l 1 , 1 ) = A L MD ( 2 1 2 J ... A L MD ( 3 , 3 > - A L MD l 3 , 2 J - A LI1 D l Z , 3) 
ALMD <1,2J =ALMD<3,1J'- ALMD <2 , .} J- Al.MD <3, 3)+ALMI)(Z,1 J 
A L f'\0 ( 1 , 3) = ALM\) ( 2 , 1)" AL MD <3, l J- A LMD ( 3 , 1 1 ~·A~ MD ( 2 , 2} 
RET URN 
fND 

SUBRO UTINE ATN VRS CX ,~,Al 

SUBROUTINE AINVRS (X Y A l 
TI-J!S SUI.liZOUT!NE. FINDS t HE fN V ER~E OF t·IA TR! X 
DESC~IPTIJN OF PARA METERS 
X,Y ••••• LOCAL COO~DtNATES OF THE NODES 
A ••••••• INVERSION QF MATRIX A · 
D f M£ N S! 0 N 'l l 3) , Y l 3 ) , A ( tJ , 9 l , I'H ~ ) 
DO 1 I A= 1, g . 
DO 1 JA=1 1 9 
A<IA ,JAl= O. O 
CONTtNUE 
I=1 
J-=;2 
1<=3 

- >4 <t,P=t. 
A<4,1 l=l. 

A 

COORO I NAT 
B 1 
B 2 
0 3 
8 4 
t3 ;.. 
;j t; 

~ 7 
t.S c 
d "j 
a 1J 
a 1.1 
0 1' 8 13 
j 14 
d lS. 
d lt. a li' 
~ lo 
,j 1-j 
d 20 
Li 21 
0 22 
d 2.) 
d 24 
:I z:;. 
::l 2b 
:3 27 
u 2o-

~ 1 
~ 2 
1.1 3 c ~ 
c, ;;. 
c t; 
1.1 7 
~ 0 
~ 'j 

\.1 1:J 

" 11 
.~ 12 " c 13 
j' 

1~ "" 
" ~:) 



N 
Cj) 

,....j 

(; 

li 

Al'7,1l=l. 
A <3 , 2 >=- 1. 
A <6 , 2 J=- l . 
A0,2l=X< I< > 
A <9 ,2l=-1, 
A <2,3 l=1. 
A <4)3l=Y<J J 
A <5 , 3 J=t. 
A<7 ,3l= Y<KJ 
.A <o , 3> =1. 
A ti 7 4l =- X<K >•· .. 2 
A <9 , 4. > =- z .... X<KJ 
A<6, 2 >=- Y<J> 
A < 7, 5 J =X < K J .... Y < k J 
AU1,S>=Xt Kl 
A<9 , 5>= - Y<K > 
A l i.! ,6> =:t <JJ +~ 2 
At 5 , tbl=, , -+Y t J J 
A<7,6J=YlKJ-+-+ 2 
A <8 , 6 >=2 , --t Y( i< J 
A ( 7 ' 7 ) = X ( K ). '++ 3 
A < ~ , 71l =- '5 . 4 X <K l ~ •· '2 
A< 7, 8 > = \' ( .~ J tX l KJ .,...,. 2 
IA < ~ , 8 >= X < K > +-t2 
A t 9 , '0 ) = - 2 • 'f)((K J ~· Y t IO 
A t 4 , <;l l= Y<J >+-+3 
A ( 5 , 9 J = J . +y t J J + y 2 
A(7, 9 >=Yd0 ..... '3 
A ( ~ 't. 13 ) = 3 • f Y ( I( J i--t 2 
MAfi~I.X A-!$ NOU IN V E~T E OJ ,n= THE INVERSION FAILS i HE PROGRAN SlOPS. 
CAll- 1NVMAT t A, 9 , 'iJ,i . E- S , !f , NJ 
IF < I ! • N E • 0 > VI R rrE < & , 2 l 1 I 
IF < I I , NE , 0 > S T 0 P 
RETURN 

2 FORMAT t ~X , ~HtERA =, f3 > END 

c 
c 
t,; 
(; 
c 
' lJ 

c 

SUBROuTlNE MUir!:> t A, B, C, I , .J, K, lT , NA , NB , NC J 

SuB RO 1..1 T 1 N E. MU liP < A S C I J , K bITt NA N ~ NG J 
TI-J!S 'S UBROlJTINE Giv~s' T ~E ' PRO ClUt.f bF two MA f RrCES 
DESCRIPTION OF i2ARAME'\E~S 
A,a, ......... ~t1A f RECE S TO 13E MULT]~L rE01 MA T RIX A IS OF SIZE <I,K)fF 

rF D :rs NON2£:~ D,A IS UF ::>fZE t k , t) , MATRfX 8 rs JF SI 
A..- B •• , •• , •••• fF li =0 . 
A l fKAN'SP0S€lt'S l rF If IS NDN ZEf<O > 
NA,Nt',NC ••••• PI RS T DrM~NSION OF MAT~fCES A,I:?>,C fN THE OINENS.IOr~ ST 

r-

I 

c lt:;~ 

c 17 
c lo c llj 
r cO "' v 21 
~ 22 >J 

G 2.) 
c 24 
c 2;;; 
c 26 
c -,-

c.. I 

v 21; 

"' 2S 
l2 3C 
>J 31 ., 

32 ~ 
v 33 
~ 3t.. 
v 3:.. 
c Ju c 3? 
l; < ~ 

~ .... 
1,., 3':1 
c 40 
.~ L,l "' " .... z \.1 

c ... .:s 
~ 

>J "+'+ c -..s 
C ~G c 47 
G ... b 
c '+':l 
~ - - :J w! 

~ 
; . 
~:: z 1.1 ,; -

0 1 
J 2 
J s 
o · ~ 
0 :. 
J b 
u 7 
u 0 



I"') 

0) 

M · 

1 

~ 
I,.. 

c ,; 
c. 
c 

' ... 

,• 

D1M~N~10 N A(NA ,t>, B ~ NB ,l ) , OtNC , 1> 
DO ..... '1=1,! 
DO 1 'N = 1, J 
CtM,N>=O.O 
DO 1 !. =1,. K 
IF (lT. EQ , Q) C ( N,N )=C( M, NHA< M, L J"' B lL, N > 
IF CIT . NE . O> C ( N , r.J>=-Cl M , N >+ A lL,NJ~Ba. , N I 
CONTINUE 
RET URN 
END 

SUBROUTINE BENDK t EM U,E MD ,A, EKS ,x,Y,TJ 

SUBROUTINE BEN OK <EMu,EMD A EK B X,Y TJ 
THIS SUBROUTINE FIND~ lHE ' BtNDI~G StiFFNESS .M ATRIX OF AN ELEMENT 
OESCRIPT!ON OF P~RAMETERS 
EMU • ••••••••• ?IO~ S ONS RAflO 
A ... . . ....... lN vE R.TSeJN OF f.lATR!X A ' 
X!. , Y Y • • • • • • • • L 0 C A l C 0 0~ D IN A T E S 
EkB •••••••••• \3ENOiiiG S Tf FFNESS MAfRIX 
CJ1MENSION Al9,9>, EKB{9,9J , Bl 9,9>, Dll9,9J, Xl3>, Y(3} 
00 1 I = l , 9 
DO 1 J = J., 9 
B<I, .J>= O. o 
CONTINUE: 
C11= . S +Xl3)~Y<2 J 
C21=Y \ 2 )• lX ( 3)"" ... 2>/6. 
C 31=Y ( 2) .. (X ( l J ·- ·~3) /12·. 
Cl?= Y <Zi +X l 3J+ (Y (2J +Y <.3) >If> . 
C 1 3 = Y ( 2 l "" X ( 3 ) ? ( 'f ·( 2 ) ·· ... 2 + Y ( 3 ) - ~. 2 + Y ( 2 ) ~ Y { 3 ) ) /1 2 • 
C 22 = Y C c l + (X ( 3 J , . ... c) .. l Y ( 2) + 2 ... Y ( :S J ) 12 4 • 
8 <4 , 4 J= lj . ... C1.. 1 
B < E1 , 'I l ='i • '·' E /1 U"'· C 11 
B< li ,6>=B <&, tO 
BC7 , 4 J=1 2 . .. C21 
B l 4 , 7l =!H7 , 4 J 
S < £ , 4 l = Lf • t-C 12 
6lL! ,8>= S <e , 4 > 
ij <9, 4J =12 .+EMU •C 12 
8 <Lj , 9 ) = 8( 9 , !j ) 
6 l 5 , 5 >=2 . +t1 .- EMU J+C11 
B<6 , 5 l= 4 . ~ (1.- EM U)~ C 21 
6(5 , & l= S < & J. ~) · 
~ < 6 , o >= ~ . t~ 11 . 
B<7, b l= 1.2 .+ 1;MU,..C21 
5 l 6 , 7J=(3{7 ~ ) 
e < S , 6> = q . +~Mu~cl2 
6 l ti , S l= S < ~ , 6 J . 
B<9,~>=12,+C12 
6 ( o , ~ >= i3> ( 2 , 6 ) 
(3 l 7 ' 7 ) = 3 b • 1' c 31 

t) y 
0 10 
iJ 11 
L) 12 
L) 13 
0 1-. 
u 1~ 
0 lo 
D 11 
G 1b-

c. 1 
c. 2 
E J 
t. ~ 
t. !.;) 

E 0 
E 7 
c. c 
c. '-j 
t. l G 
E 11 
E 12 
c. 13 
c. 1-t 
E. 1~ 
r 1c. c. 
E 11 
t. 10 
c. 1 ' j 

20 
c. 21 
E 22 
E 23 
E 2"t 
E 2;;;; 
c: 2t 
c: ' 2? 
E 2.:. -· 29 
;:, 3i:J 

• 1 c. ->-
!;:" 32 .... 
::- 33 

s~ 
E .):;. 
c. 36 
~ :d 
-: 3o 



-::t 
CJ) 

...... 

2 

c · 
(; 
c 
•' v 

c 
c 
c 

1 

2 

3 

8 l 7 , Q>= 12 . +C22 
6to,7>=6<7,s; 
T3 ( 9, 7 ) <~6 • Tc MlJ + G 2 2 
11J t7,9J= 8(et,.t7) . 
a< e , a > ='I • 'tv 13 T s • + l 1 • - EMLJ > ... c 31 
B l 9 , 8 > = 12 • .,. EMU"' C 1 3 
8 l S , 9 >= S <9 , BJ . 
~ \ '3 , 9 >= 36 . -t-Cl,3 
CALL MULTP < ~ , A , 01 , 9 1 9 , Q , O , q , g , q) 
CAlL MU l T P l A , D 1 1 E K B , 9 , 9 1• 9 , i, 9 1 9 , 9 ) 
C = ( E t·1 D .. T "' T • T > 1 < 1 c: • ~ < 1 • - E I'! U + E MlJ J > 
DO 2 I =!., q 
Do 2 ..l=t, 9 
EKBlirJ>= EKS <I ,J>T C 
CONTI NUE 
REI URN 
END 

5UBRDUTtNE TRANS <AA, B6 , CC ,KKK > 

SUBROUTINE TRA~ S <AA B5 CC KKK) 
THIS S UBROUTINE TRA N§FoAM t HE ELEMENT ST IF FNESS MA T ~IX FROM ATES 
OESCRf~IoN OF PARAME TERS 
~.4 ••••••••••• THE MATRIX OF CIREC TI ON CO SfNES uF AN ELEMENT 
66 ••••••••••• f LO\ENT 'ST1FFNESS MATRIX lN LOCAL CDO RDHtATES 
CC ••••••••••• ELEMENT STIFFNESS MATRI X lN GLOBAL COOROit~ATES 
O •••••••••••• TRANSFORMATION MATl'?lX 
DlME.NS:ION AAl3,3>, ~B<Kl<K,U, CC<kKK,U, 0<9,'3), DT< <3 ,9J DO 1 1=1 , <3 
DO t J=l, -9 
DlJ t J>= O. o 
CON I M.JE 
0t l ,t U=At.d3, 3 > 
Do c.. 1 =2}3 
DO 2 J= 2 , '5 
D c J ,J)=AA l i - ~ , J - 1 > 
OONri rwE 
D03I=1,3 
DO 3 J= 1 5 
0 { 1+3 , J~3 >= P C 1 ,JJ 
DCI+6 1 J+ 6 ;=D<I ,JJ 
Cl'J NTI NUE 
CALL MUlTP <BB 1 D, DT , 9 , 9,9 , 0,9 , q , 9 ) 
CALL MlJ LfP <J,oi,CC,I:),'J, ':l ,l, 9 , 9 , 9) RE TU RN . 
END 

LOCAL 

t. jJ - .. J 
Ltl 

r: "+2 
E :...) 
.... ..... 
E I+, 
t. l.;t.;, 
E .,, 
~ o.ro 
~ 4 ::i 
t. :;.u 

f. :-1 
?2 

r: 53 
c. 5;., 
E ;·. c -

"''"" 

F 1 
F 2 
F 3 
F :.., 
F :; 
F 6 
F 7 
F 0 
F ':; 
F < I 

~ .. 
F 11 
F 12 
F 13 
F 1-, 
r 1~ 
F 1o 
F 17 
F 1o 
F 1'.;1 
F 2 .:. 
F ~1 ' 

F 22 
F 2J 
F 2 ... 
F 2:-
F 2c 
F 27-



L.l) 

O'l 
...-i 

1 

2 

3 

SUBROU TINE ASSEMB l1t , f 2,J1 ,..J2 , Kt, K2 ,I! , M, fK T,SM.) 

SU~~ O U T INE ASSEMB <I 1AI 2 1 J1,J 2 , k1,k2,II, M,EKT, SM > 
DI MENS I ON ~M <l > , EKT ('j, g ; · 
N=M+1 
N=D 
DO 1 JJ=! 1 , 12 
N= N +1 
1F <I:I . GE .JJ> L=II+- l1 I - 1 >/2+JJ 
I F Cli . LT . J J) GO i O 1 
S M< U = SH C Ll + EK1 < M, N > 
CONTINUE 
DO 2 J J =J 1 ,J 2 
N=N +1 
1 F <1 I • G E • J J J L = l H l 1 I - 1 > I 2 + J.J 
IF l ti .Lf.J j} GO TO 2 
S N < l> = S M < l> + I:K T < M, N i 
CO NTI NUE 
Do 3 JJ= K1 , k 2 
N= N + 1 
IF U I. GE .JJ) L= !I-t l! I -U/2+JJ 
IF <II.L T .J J ) GO TO 3 
SM ll>= SM l l )+ £KT (M, N> 
CONTI NUE: 
RETURN 
END 

:, 
l> 
(.; 
.., 
G 
G 
(, 
G 
G 
(., 

l" 
1.,) 

.., 
, . 

" l> 

G 
G 
G 
l> 

G 
G 
G 
l> 

;_, 

1 
2 
3 .., 
k 
"' c 
7 
0 
g 

1 0 
11 
12 
1.3 
.:.~ 
1:J 
16 
17 
16 
1 9 
2C 
21 
22 
23 ; 
z .. '· 
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Load I b. 

L:,.P p 

0 

44.8 

4 4.8 

89.6 

44.8 

109.6 

20 

Table (C.l) Results for Slab Configuration (1) 

Dial Gauge (1) Dial Gauge (2) 

Reading 7:, Top Reading [:,. Middle 

.83 .611 

.219 .106 

.611 .505 

.404 .210 

.426 .401 
I 

.502 .262 

.328 .3 4 9 

Dial Gauge Dial Gauge 
(3) (4) 

.589 . 54 6 

.589 .546 

. 58 8 .546 

.585 .546 
I 

I 

I 
-- ----- --- -- _j 

I-' 
1.0 
-....) 



Table (C.2) Results for Slab Configuration (2) 

Load lb. Dial Gauge (1) Dial Gauge (2) 

L'IP p Reading X Top Reading -;; Middle 

0 .942 .617 

44.8 .159 .074 

44.8 .783 .543 

89.6 . 31 .152 

44.8 .632 .465 

119.6 .386 .204 

30 .556 . 413 

139.6 .452 .231 

20 . 49 .386 

----

Dial Gauge 
(3) 

.651 

.651 

. 65 

.648 

.648 

Dial Gauge 
(4) 

' .546 

.546 

. 54 6 

.546 

.546 

i 

I-' 
1.0 
00 



Table (C.3) Results for Slab Configuration (3) 

Load lb. Dial Gauge (1) Dial Gauge (2) 

t~P p Reading 7. Top Reading t; Middle 

0 .84 .623 

44.8 .117 .057 

44.8 . 7 23 .566 

89.6 .224 .11 

44.8 .625 .513 

119.6 . 29 .15 

30 .55 .473 

139.6 .352 .170 

20 .488 I ,453 
I 

I 
-

Dial Gauge 
(3) 

.423 

.421 

.421 

. 4 2 

.42 

Dial Gauge 
(4) 

.763 

.763 

.763 

.763 

.763 

I 

~ 

1.0 
1.0 



Table (C.4) Results for Slab Configuration (4) 

Load Ib. Dial Gauge (1) Dial Gauge (2) 

liP p Reading ""E Top Reading """& Middle 

0 .525 . 2 39 

62. 5 .087 .044 

62.5 .438 .195 

125 .169 .086 

62.5 .356 .153 

162 .211 .107 

37 .314 .132 

---- - -- -- - -- - - _____ ___! - ------- - - --------

Dial Gauge 
(3) 

. 5 

.498 

.497 

.497 

•· 

Dial Gauge 
(4) 

.763 

.763 

.763 

.763 

N 
0 
0 



Load I b. 

liP p 

0 

72 

72 

144 

72 

' 216 

32 

-

I 

Table (C.5) Results for Slab Configuration (5) 

Dial Gauge (1) I Dial Gaug e (2) 

Reading t; Top Reading I X · Middle 

.566 .234 

.048 . 025 

.518 .209 

.101 .050 

.465 .184 

.167 .072 

.399 .16 2 

- -- - - - ----- - - - ----

Dial Gauge 
(3) 

. 6 5 

.647 

.645 

.644 

Dial Gauge 
(4) 

. 6 

. 6 

. 6 

. 6 

N 
0 
1-' 



Table (C-6) Results for Slab Configuration (6) 

Load Ib. Dial Gauge (1) Dial Gauge (2) 

llP p Reading X Top Reading X Middle 

0 .293 . 4 84 

27 .007 .004 

27 . 3 .488 

54 .016 .008 

27 .309 .492 

81 .022 .011 

27 .315 .495 

--
..1 

Dial Gauge 
(3) 

.179 

.156 

.156 

.155 

Dial Gauge 
(4) 

.65 

. 6 5 

. 65 

. 65 

N 
0 
N 



Load Ib. 

t~P p 

0 

38 

38 

65 

27 

92 

27 

.. 

Table (C.7) Results for Slab Configuration (7) 

Dial Gauge (1) Dial Gauge (2) 
Dial Gauge 

Reading y; Top Reading 7S. Middle (3) 

. 27 .45 .341 

.006 .003 

.276 .453 .334 

.011 .005 

.281 I .455 . 33 

. 022 .011 

.292 . 4 61 .328 

Dial Gauge 
(4) 

. 65 

. 65 

. 65 

. 65 

N 
0 
w 



BIBLIOGRAPHY 

1. Beck, H., "Contribution to the Analysis of Coupled 
Shear Walls", Journal of Am. Cone. Inst., August, 
1962. 

2. Biswas, J. K. and Tso, W. K., "Three Dimensional 
Analysis of Shear Wall Buildings to Lateral Load", 
Journal of the Structural Division, May 19 74. 

204 

3. Biswas, J. K., "Three Dimensional Analysis of Shear 
Wall Multi Storey Buildings", Ph.D Thesis, McMaster 
University, September 1974. 

4. Coull, A. and Chaudhury, J. R., "Stress and Deforma
tion in Coupled Shear Walls", Journal of Am. Cone. 
Inst., Febru a ry 1967, pp. 65-72. 

5. Coull, A. and Chaudhury, J. R., "Analysis of Coupled 
Shear ll/alls", Journal of Am. Cone. Inst., September 
1967, pp. 553-593. 

6. Coull, A. and Irwin, A. W., "Design of Connecting 
Beams in Coupled Shear Wall Structures", Journal of 
Am. Cone. Inst., March 1969. 

7. Coull, A., "Interaction of Coupled Shear Walls with 
Elastic Foundations", Journal of Am. Cone. Inst., 
June 1971, pp. 456-461. 

8. Coull, A. and Subedi, N. K., "Coupled Shear Nalls 'w i t h 
Two and Three Bands of Openings", Build. Scj. , Vol. 7, 
19 7 2' pp. 81- 8 6. 

9. Coull, A. and El-hag., A., "Effective Coupling of Shear 
Walls by Floor Slabs", Journal of Am. Cone. Inst., 
August 1975, V. 72, No. 8. 

10. Davis, J. D., "Analysis of Corner Supported Rectangular 
Slabs", The Structural Engineer, February 1970, No. 2, 
Vol. 48. 

11. Desai, C. and Abel, J., "Introduction to the Finite 
Element Method", Van Nostrand Reinhold Company. 

12. El Kholy, I. A. S. and Robinson, H., "Analysis of Multi
Bay Coupled Shear Walls", Build. Sci., Vol. 8, pp. 153-
157' 1973. 

13. Heidebrecht, A. C. and Swift, R. D., "Analysis of 
Asymmetrical Coupled Shear Walls'', Journal of Structural 
Division, May 1971, pp. 1407-1422. 



14. Hussein, W., "Analysis of Multi -B ay Shear Wall 
Structures by the Shear Connection ~1et hod" , Buil d 
Sci., Vol. 7, 1972. 

205 

15. MacL eod, I. A., "Connected Shear Walls of Unequal 
Width", Journal of Am. Cone. Inst., May 1970, pp. 408-
412. 

16. Melosh, R. J., "Basis f or Derivation of Matric e s fo r 
the Direct St iffness Me t hod", AIAA Journal, Vol. 1, 
No. 7, July 1963. 

17. Qadeer, A. and Smith, S., "The Bending Stiffness of 
Slabs Connecting Shear Walls", Journal of Am. Cone. 
Inst., June 1969, pp. 464- 47 2. 

18. Qadeer, A. and Smith, S., "Actions in Slabs Connecting 
Shear Walls'', Proceedings of the Symposium on Tall 
Buildings, November 19 74 . 

19. Rawtani, S., "Vibration Analysis of Rotating Low Aspect 
Ratio Blades'', Ph.D Thesis, McMaster University, May 
1970. 

20. Rosman, R., "Approximate Analysis of Shear Walls 
Subjected to Lateral Loads", Journal of Am. Cone. 
Inst., June 1964, pp. 717-733. 

21. Schwaighofer , J. and Microys, H. T., "Analysis of Shear 
Walls Using Standard Computer Programs", Journal of 
Am. Cone. Inst., December 1969, pp. 1005-1007. 

2 2 . S z i 1 a r d , R . "Theory and An a 1 y s i s of P 1 ate s , C l .a s s i c a 1 
and Numberical Methods", Prentice-Hall, Inc., 
Englwood Cliff, New Jersey. 

23. Taranath, B. S., "The Torsional Behaviour of Open 
Section Shear Wall Structures'', Ph.D Thesis, University 
of Southampton, 1968. 

24. Timoshenko, S. and Woinowsky-Krieger, S., "Theory of 
Plates and Shells'', McGraw Hill Book Company, New 
York. 

25. Tso, W. K. and Chan, H. S., "Dynamic Analysis of Plane 
Coupled · Shear Walls'', Journal of Engineering Mechanics 
Division, February 1971. 

26. Tso, W. K., "Stress in Coupled Shear Walls Induced by 
Foundation Deformation", Build. Sci., Vol. 7, pp. 197-
2-3, 1972. 

27. Tso, W. K. and Chan, P. C. K. "Flexible Foundation 
Effect on Coupled Shear Walls, Journal of Am. Cone. Inst. 
November 1972. 



28. Tso , W. K. and Biswas, J. K., " General Analysis of 
Non-Planar Shear \Valls" , Journal of the Structural 
Division, March 1 973 . 

206 

29 . Tso, W. K. and Bi swas , J . K., "Ana l ysis of Co r e Wal l 
Stru cture Subjected to Applied Torque", Bui ld . Sci ., 
Vol. 8 , pp . 2S l-25 7 , 1973. 

30. Zienkiewicz, 0. , "The Finite Element Method in En g ineer
i n g Science", ~1cGraw Hill Book Company, NeH York. 


	Mahmoud_Adel_A_1976_01_master0001
	Mahmoud_Adel_A_1976_01_master0002
	Mahmoud_Adel_A_1976_01_master0003
	Mahmoud_Adel_A_1976_01_master0004
	Mahmoud_Adel_A_1976_01_master0005
	Mahmoud_Adel_A_1976_01_master0006
	Mahmoud_Adel_A_1976_01_master0007
	Mahmoud_Adel_A_1976_01_master0008
	Mahmoud_Adel_A_1976_01_master0009
	Mahmoud_Adel_A_1976_01_master0010
	Mahmoud_Adel_A_1976_01_master0011
	Mahmoud_Adel_A_1976_01_master0012
	Mahmoud_Adel_A_1976_01_master0013
	Mahmoud_Adel_A_1976_01_master0014
	Mahmoud_Adel_A_1976_01_master0015
	Mahmoud_Adel_A_1976_01_master0016
	Mahmoud_Adel_A_1976_01_master0017
	Mahmoud_Adel_A_1976_01_master0018
	Mahmoud_Adel_A_1976_01_master0019
	Mahmoud_Adel_A_1976_01_master0020
	Mahmoud_Adel_A_1976_01_master0021
	Mahmoud_Adel_A_1976_01_master0022
	Mahmoud_Adel_A_1976_01_master0023
	Mahmoud_Adel_A_1976_01_master0024
	Mahmoud_Adel_A_1976_01_master0025
	Mahmoud_Adel_A_1976_01_master0026
	Mahmoud_Adel_A_1976_01_master0027
	Mahmoud_Adel_A_1976_01_master0028
	Mahmoud_Adel_A_1976_01_master0029
	Mahmoud_Adel_A_1976_01_master0030
	Mahmoud_Adel_A_1976_01_master0031
	Mahmoud_Adel_A_1976_01_master0032
	Mahmoud_Adel_A_1976_01_master0033
	Mahmoud_Adel_A_1976_01_master0034
	Mahmoud_Adel_A_1976_01_master0035
	Mahmoud_Adel_A_1976_01_master0036
	Mahmoud_Adel_A_1976_01_master0037
	Mahmoud_Adel_A_1976_01_master0038
	Mahmoud_Adel_A_1976_01_master0039
	Mahmoud_Adel_A_1976_01_master0040
	Mahmoud_Adel_A_1976_01_master0041
	Mahmoud_Adel_A_1976_01_master0042
	Mahmoud_Adel_A_1976_01_master0043
	Mahmoud_Adel_A_1976_01_master0044
	Mahmoud_Adel_A_1976_01_master0045
	Mahmoud_Adel_A_1976_01_master0046
	Mahmoud_Adel_A_1976_01_master0047
	Mahmoud_Adel_A_1976_01_master0048
	Mahmoud_Adel_A_1976_01_master0049
	Mahmoud_Adel_A_1976_01_master0050
	Mahmoud_Adel_A_1976_01_master0051
	Mahmoud_Adel_A_1976_01_master0052
	Mahmoud_Adel_A_1976_01_master0053
	Mahmoud_Adel_A_1976_01_master0054
	Mahmoud_Adel_A_1976_01_master0055
	Mahmoud_Adel_A_1976_01_master0056
	Mahmoud_Adel_A_1976_01_master0057
	Mahmoud_Adel_A_1976_01_master0058
	Mahmoud_Adel_A_1976_01_master0059
	Mahmoud_Adel_A_1976_01_master0060
	Mahmoud_Adel_A_1976_01_master0061
	Mahmoud_Adel_A_1976_01_master0062
	Mahmoud_Adel_A_1976_01_master0063
	Mahmoud_Adel_A_1976_01_master0064
	Mahmoud_Adel_A_1976_01_master0065
	Mahmoud_Adel_A_1976_01_master0066
	Mahmoud_Adel_A_1976_01_master0067
	Mahmoud_Adel_A_1976_01_master0068
	Mahmoud_Adel_A_1976_01_master0069
	Mahmoud_Adel_A_1976_01_master0070
	Mahmoud_Adel_A_1976_01_master0071
	Mahmoud_Adel_A_1976_01_master0072
	Mahmoud_Adel_A_1976_01_master0073
	Mahmoud_Adel_A_1976_01_master0074
	Mahmoud_Adel_A_1976_01_master0075
	Mahmoud_Adel_A_1976_01_master0076
	Mahmoud_Adel_A_1976_01_master0077
	Mahmoud_Adel_A_1976_01_master0078
	Mahmoud_Adel_A_1976_01_master0079
	Mahmoud_Adel_A_1976_01_master0080
	Mahmoud_Adel_A_1976_01_master0081
	Mahmoud_Adel_A_1976_01_master0082
	Mahmoud_Adel_A_1976_01_master0083
	Mahmoud_Adel_A_1976_01_master0084
	Mahmoud_Adel_A_1976_01_master0085
	Mahmoud_Adel_A_1976_01_master0086
	Mahmoud_Adel_A_1976_01_master0087
	Mahmoud_Adel_A_1976_01_master0088
	Mahmoud_Adel_A_1976_01_master0089
	Mahmoud_Adel_A_1976_01_master0090
	Mahmoud_Adel_A_1976_01_master0091
	Mahmoud_Adel_A_1976_01_master0092
	Mahmoud_Adel_A_1976_01_master0093
	Mahmoud_Adel_A_1976_01_master0094
	Mahmoud_Adel_A_1976_01_master0095
	Mahmoud_Adel_A_1976_01_master0096
	Mahmoud_Adel_A_1976_01_master0097
	Mahmoud_Adel_A_1976_01_master0098
	Mahmoud_Adel_A_1976_01_master0099
	Mahmoud_Adel_A_1976_01_master0100
	Mahmoud_Adel_A_1976_01_master0101
	Mahmoud_Adel_A_1976_01_master0102
	Mahmoud_Adel_A_1976_01_master0103
	Mahmoud_Adel_A_1976_01_master0104
	Mahmoud_Adel_A_1976_01_master0105
	Mahmoud_Adel_A_1976_01_master0106
	Mahmoud_Adel_A_1976_01_master0107
	Mahmoud_Adel_A_1976_01_master0108
	Mahmoud_Adel_A_1976_01_master0109
	Mahmoud_Adel_A_1976_01_master0110
	Mahmoud_Adel_A_1976_01_master0111
	Mahmoud_Adel_A_1976_01_master0112
	Mahmoud_Adel_A_1976_01_master0113
	Mahmoud_Adel_A_1976_01_master0114
	Mahmoud_Adel_A_1976_01_master0115
	Mahmoud_Adel_A_1976_01_master0116
	Mahmoud_Adel_A_1976_01_master0117
	Mahmoud_Adel_A_1976_01_master0118
	Mahmoud_Adel_A_1976_01_master0119
	Mahmoud_Adel_A_1976_01_master0120
	Mahmoud_Adel_A_1976_01_master0121
	Mahmoud_Adel_A_1976_01_master0122
	Mahmoud_Adel_A_1976_01_master0123
	Mahmoud_Adel_A_1976_01_master0124
	Mahmoud_Adel_A_1976_01_master0125
	Mahmoud_Adel_A_1976_01_master0126
	Mahmoud_Adel_A_1976_01_master0127
	Mahmoud_Adel_A_1976_01_master0128
	Mahmoud_Adel_A_1976_01_master0129
	Mahmoud_Adel_A_1976_01_master0130
	Mahmoud_Adel_A_1976_01_master0131
	Mahmoud_Adel_A_1976_01_master0132
	Mahmoud_Adel_A_1976_01_master0133
	Mahmoud_Adel_A_1976_01_master0134
	Mahmoud_Adel_A_1976_01_master0135
	Mahmoud_Adel_A_1976_01_master0136
	Mahmoud_Adel_A_1976_01_master0137
	Mahmoud_Adel_A_1976_01_master0138
	Mahmoud_Adel_A_1976_01_master0139
	Mahmoud_Adel_A_1976_01_master0140
	Mahmoud_Adel_A_1976_01_master0141
	Mahmoud_Adel_A_1976_01_master0142
	Mahmoud_Adel_A_1976_01_master0143
	Mahmoud_Adel_A_1976_01_master0144
	Mahmoud_Adel_A_1976_01_master0145
	Mahmoud_Adel_A_1976_01_master0146
	Mahmoud_Adel_A_1976_01_master0147
	Mahmoud_Adel_A_1976_01_master0148
	Mahmoud_Adel_A_1976_01_master0149
	Mahmoud_Adel_A_1976_01_master0150
	Mahmoud_Adel_A_1976_01_master0151
	Mahmoud_Adel_A_1976_01_master0152
	Mahmoud_Adel_A_1976_01_master0153
	Mahmoud_Adel_A_1976_01_master0154
	Mahmoud_Adel_A_1976_01_master0155
	Mahmoud_Adel_A_1976_01_master0156
	Mahmoud_Adel_A_1976_01_master0157
	Mahmoud_Adel_A_1976_01_master0158
	Mahmoud_Adel_A_1976_01_master0159
	Mahmoud_Adel_A_1976_01_master0160
	Mahmoud_Adel_A_1976_01_master0161
	Mahmoud_Adel_A_1976_01_master0162
	Mahmoud_Adel_A_1976_01_master0163
	Mahmoud_Adel_A_1976_01_master0164
	Mahmoud_Adel_A_1976_01_master0165
	Mahmoud_Adel_A_1976_01_master0166
	Mahmoud_Adel_A_1976_01_master0167
	Mahmoud_Adel_A_1976_01_master0168
	Mahmoud_Adel_A_1976_01_master0169
	Mahmoud_Adel_A_1976_01_master0170
	Mahmoud_Adel_A_1976_01_master0171
	Mahmoud_Adel_A_1976_01_master0172
	Mahmoud_Adel_A_1976_01_master0173
	Mahmoud_Adel_A_1976_01_master0174
	Mahmoud_Adel_A_1976_01_master0175
	Mahmoud_Adel_A_1976_01_master0176
	Mahmoud_Adel_A_1976_01_master0177
	Mahmoud_Adel_A_1976_01_master0178
	Mahmoud_Adel_A_1976_01_master0179
	Mahmoud_Adel_A_1976_01_master0180
	Mahmoud_Adel_A_1976_01_master0181
	Mahmoud_Adel_A_1976_01_master0182
	Mahmoud_Adel_A_1976_01_master0183
	Mahmoud_Adel_A_1976_01_master0184
	Mahmoud_Adel_A_1976_01_master0185
	Mahmoud_Adel_A_1976_01_master0186
	Mahmoud_Adel_A_1976_01_master0187
	Mahmoud_Adel_A_1976_01_master0188
	Mahmoud_Adel_A_1976_01_master0189
	Mahmoud_Adel_A_1976_01_master0190
	Mahmoud_Adel_A_1976_01_master0191
	Mahmoud_Adel_A_1976_01_master0192
	Mahmoud_Adel_A_1976_01_master0193
	Mahmoud_Adel_A_1976_01_master0194
	Mahmoud_Adel_A_1976_01_master0195
	Mahmoud_Adel_A_1976_01_master0196
	Mahmoud_Adel_A_1976_01_master0197
	Mahmoud_Adel_A_1976_01_master0198
	Mahmoud_Adel_A_1976_01_master0199
	Mahmoud_Adel_A_1976_01_master0200
	Mahmoud_Adel_A_1976_01_master0201
	Mahmoud_Adel_A_1976_01_master0202
	Mahmoud_Adel_A_1976_01_master0203
	Mahmoud_Adel_A_1976_01_master0204
	Mahmoud_Adel_A_1976_01_master0205
	Mahmoud_Adel_A_1976_01_master0206
	Mahmoud_Adel_A_1976_01_master0207
	Mahmoud_Adel_A_1976_01_master0208
	Mahmoud_Adel_A_1976_01_master0209
	Mahmoud_Adel_A_1976_01_master0210
	Mahmoud_Adel_A_1976_01_master0211
	Mahmoud_Adel_A_1976_01_master0212
	Mahmoud_Adel_A_1976_01_master0213
	Mahmoud_Adel_A_1976_01_master0214
	Mahmoud_Adel_A_1976_01_master0215
	Mahmoud_Adel_A_1976_01_master0216
	Mahmoud_Adel_A_1976_01_master0217
	Mahmoud_Adel_A_1976_01_master0218
	Mahmoud_Adel_A_1976_01_master0219
	Mahmoud_Adel_A_1976_01_master0220
	Mahmoud_Adel_A_1976_01_master0221
	Mahmoud_Adel_A_1976_01_master0222
	Mahmoud_Adel_A_1976_01_master0223



