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SCOPE AID CONTEHTS} Although it has been customary in beta-decay
theory to assume that the field in which the decay electron moves
is sphericaily symmetrical, there is often a strong quadrupole
interaction, comparable in &agnitude at thg nuclear surface to the
central interaction. This will couple together different angular
momentum states of both the electron.énd the daughter nucleus.

In this work the wave functions of these coupled states have been
obtained by an essentially exnel solution of the Dirac equation
for an electron in a non-central potential, It was found that
the coupling between different daughter nuclear states was 1% at
the very mést, which is insufficient to account for some observed

anomalies in branched decays of strongly deformed nuclei.
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CHAPTER I - INTRODUCTION
PART I — GENERAL THEORY OF BETA-DECAY

/ég -decay is that form of radidactivity in which certain atomic
nuclei emit either a positive or negative electron, transforming at the
sam; time into the nucléus of adjacent atomic number, Zy apprdpfiate to
" charge conservation. Closely allied to this process ié fhat of orbital
'eigctron capture, in which, as an alternative to positon emission, the
nucleus decreases its atonic ﬂumber by unit amount through capture of
one of the extra-nuclear atomic electrons.

In the early days ope of the most puzzling features of /B ~decay
was the fact that thé decay electron was eﬁitted with a continuous range
of energies up to & certain maximum, despite there being a definite
energy difference between the perent and daughter muclei. In ordar to
save energy conservation Pauli in 1933 introduced the hypothésis‘of
the- neutrino: the total decay energy is shared between the electron
" and e very light neutral particle, the neutrino, which must be emitted
simultaneously with the electron. At the same time angular momentum
will be conserved in the process'if an odd half-integral spin is
~attributed to the neutrino. To anticipate later dgvelopmeﬁts, it may
be said that all the evidence is consistent with a neutrino of zero
mass and spin 3.

By the time of Pauli's suggestion the neutron-proton structure

(1)
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of the nucleus had become accepted and it was realized that there were
compelling reasons against the existence of electrons within a nucleus.
Henceforth,/3-decay had to be conceived as a process in which one fype
of mucleon (i.e. neutron or proton, as the cage may be) transformed

into the other with the simultaneous emission éf an electron and a neutrino.
. It was in the light of this situation that Fermi (1934) developed
higs theory of iz ~decay. Perceiving an analogy with the emission of
photons during atomic~transitions, which procesé is described ih terms

of the,interactioﬁ of the electron and eléctromagnetic fields, Fermi'
postulated that l; fdeéay could be similarly attributed to an inter-
action between the fields of the fbur particles direcﬁly involved: the
neutron (n), the proton (p), the electron (e) and the neutrino (v ).

The subsequent history of the theory has been'somewhat spectacular,
there hafing occurred both drastic changes of empirical content and many
refinements of formalism., quthermore,xthere have been coméletely
different theories proposed but despite all this the basic approach of
Fermi has yet to be shown to be inconsistent with experiment and is the
one generally accepted today.

The following two sections are intended 1o provide a background
to the problem w;th which this thesis is concerned. They make no pretence
to constituting a compleie deseription of the theory of ﬁ? -decay. Tor
| this one should refer to the varioué re?iew articles in the literature,
the most'recént ones of which are to be found in the  book of Siegbahn
(1955). However, for a comprehensive account of the extensive develop-
ments that have occurred since early 1957 one\must awﬁit the review

article by Konopinski (1959).



1. THE FERMI THEORY.

In this section'we outline the essential features of the Fermi
- theory as it stands in its present form. 'The Fermi theory can be
correctly comprehended only in the language of second quantization,
whiéh we now discuss.

A guantum mechanioal'desoriptibn of a single partiéie is given
in_termsvof wave functions. Since these are functions in the cpnfigur—'
ation space of the particle a deseription of this kind will be formally
incapable of handling situatidns in which particles ;re created or
destroyed. A way out of this physical inadequacy qf a single particle
quantuﬁ theory is indicated by the fact that, éa single particle theories,
they are f&rmally inconsistent. That is, both the Klein-Gordon equation
and the Dirac equation require, in their different ways, a many-particle
interprotatidn (see e.g. Dyson (1951)). The procedure is to regard the
single particle wave functions; obtained as a first attempt at a quantun
theory‘of particles, as classical fields which have to be quantized in
somé way or other. The entire content of such a theory will be determ-
ined by the choice‘of the field ﬁagrangian (orlHamiltonian) and the
quanfizétion rules. Since particles interact their fields wili interact,
so in considering the properties of any particular field it is necessary
to include all the other fields that interact with it. jThe interaction
between the fields is represented by.additional terms in the lLagrangian

(or Hamiltonian) of the entire system of fields. This is the progranm
: that one shohld follow.' It is, of course, too ambitious aﬁd realistic
approximations have to‘be-mﬁde. Let us first, howevef, consider'some

features of the second quantization process (see Chapter XIII of Schiff
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(1955) for some of the details).
(o
The equation of motion of the field quantity ’4’ is obtained
~ Q 3
from the Lagrangian (or Hamiltonian) in the usual way. 4 has to be
N\
4 j
formally identified with the wave function "} .of a single particle & ,
S0 in quantum field theory it is really the field Lagrangian that
determines the single particle equation. - Hevertheless, single particle
quantum theory has been quite successful, especially in the case of the
Dirac theory of the electron. It does not work too well for the other
Dirac (spin %) particles but it may be conjectured that failure is always
due to interactions with other particles: in the camse of nucleons with
/\ mesons. Thus for free Dirac fields the Lagrangian is always chosen
to give the Dirac single particle equation for the field equation.
%
Let the field ’4/‘Cbt) be expanded in terms of a complete set

(™Y
o
of orthonormal functions,‘j{ 0%%) thus
o hHE

el Zj‘dw ffa((w' Dp, (W) (1)
(4 TS = & 5w @

o

where

" (the dagger here means Hermitian adjoint). The field quantities, ¥

-

are to be regarded as operators and in.the expansion (1) the operator
’ .
propertics are carried by the & 5 rather than by the functions
2 | 2
A*i (\% 1) , which are essentially single particle wave functions of
* ™ .
energy V.
X t A
The quantum conditions that Y (T, ) has to satisfy take the
~ ;
form of commtation or anti-commutation relations according as to

" whether we are dealing with Bose particles or Dirac particles. In

both cases it is easy to show that the operators
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L(\,JL):L a%(\,\/t) (3)

all commte with one another and also with the free field Hamiltonian.

€ &
How the wave func‘tion’\{f can be expanded exactly as in (1), ')0 and "'l’

o

(W 6)[ is the probability of

~ being formally identical, whence
flndlng the particle in the state of wave function “%’v( f) us
PJ (VJ £) is 1nternreted as a field operator whose eigenvalues. ?1 (ij
are the number of particles in this state. The complete set of normal-
ized eigenvectors of N :‘(W, f) form the basis of {vha/t mé.y be termed

the occupation number represen‘tation:'
(\/\/ t) l «\.“(W> -'-—frx:(\/\//) Sy > . %
- 4).
N EEEN ) BN RS

For Dirac particles the n's can take only the values O and 1,

I

because of the exclusion prineiple. It is then easy to show that

A C IR S 3

N, (W) s B g . o '
I ) R R A/

11}

a \A/t)T‘-___ m;(y/)—-'— er:(W’)““ >

i (W) |—'n, (W)} - .l—-n. )=~ . \\/\/')-_->

\
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- where the V{(\J> is a guantity that depends on the ordering of states
. A .
but whose actual value need not concern us. This immediately leads to

¢ ) ]
the interpretation of the &S and & S as destruction and creation

o ~
operators, respectively, for particles in the appropriate states. Thus
for partiocles & to be created there will have to be an interaction |

3 » \ . . . : - s s
with another field [5 ; the interaction Hamiltonian containing a term

: o f ¥ i
with ¥ but not “p « This same term, representing the coupling

~~

¢

between the <X and F fields, must also have ’jp 1 or ’\,‘/P appearing
in it, depending Qn whether perticles of typé /3 are crea;;d or destroyed
simultaneously with the creation of a particle & , Then in order fof
the interaction Hamiltonian to be Hermitien the complex conjugate of

the first term must also be included. This will describe'the inverse
process of destruction of a particle % , etc.

e can now consider the field interaction Iamiltonian appropriate
to;/5 ~decay. All four particles involved are treated aeriiac particles
ie.ee their free field equations are

e ‘ |
Z‘/A ‘——2% 8w D) I
"9 X Koui

S s ¢ | |
~ Here ’4/ is a four component spinor and \fk a particular 4 x 4 matrix

~ - :
(see, eeg. Dyson (1951)). m is the particle mass in units of electron
mass. *& and ¢ have also been put equal to unity (we adhere to these
units throughout the thesis). It is convenient to regard negaton decay
as being associated with the deétruction of a neu£rino in a negativé
energy stafe ¥ather than with the emission of a positive energy neutrino.

Hence the interaction Hamiltonian describing negaton decay must contain
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r\}f n,_ ’\{r\(} ’ll/' Pj: "‘{xe T + Since spinors change sign

~ ~v o~

under a 2 M rotation the Hamiltonmian must be linear in the four field
quantities or in their derivatives., Secondly, the llamiltonian must be
invariant under proper Lorentz transi’orma;cions. Originally, it was

agssumed that the‘interactioxi would be invariant under space reilections
as well, but this additlional restriction was dropped at‘ the suggestion

of Lee and Yang (iSJSKC‘). ~ The Fermi Ansatz for the intersction is now. "
e L s e ¢ R R

: P )( [c,* \_qu)fc.c.

- Here the QK are various combinations of the maltrice.s Yl. - \/1, Y?, \/ ‘9

g

suc;h that the quantities_ (':FT OK (j‘rp) are Lorentz covariant. 'The
scalar pro&uct of the two such covariant quantities is then invé.riant
under all Lorentz tfansformations. However, the extre terms containing
75=\/. Yz\/s Yl’ will change gign under space reflections. The complex |
conjugete term meles the Hamiltonian Hez"rni‘hian and describes positon
decay. The CK' C.é neasure the strength of the .éssociated interaction .
term and ére referred to as the\ coupling constants.

'e now consider the form of the Lorentz covariant quantities 2
("fNT,OK "fp) . Since f‘r“and ’j’Peach have four componenfs there
are s-'ix‘teen linearly independent bilinear terms of this kind. They can
be grouped together into five different sets, each of which transforms
. a8 & Rensor of differént rank (see, e.z. Pauli (1958)). The five co-
variant forms are referred to as: (i) the scalar (S)., (ii) the vector
(V), (iii) the temsor (T) - actually an antisymgﬂ'etz‘ic tensor of second -
rank - (iv) the axial vector (A) — an z_ar'xtisymmetric tensor of third

rank - and (v) the pseudo-scalar (P). Ve shall then have just five

A
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linearly independent P —~decay interaction forms. Replacing the y
matrices by the Dirac matrices /3, f and i{: ‘we can now write the usual
form ol the operators OK:
Wlg /3 ; Mmoo

et s v s SRS Oy - P
: There are no compelling a priori criteria determining eit‘her ,‘
the absolute or the relative values of‘ the different coupling constantsj
thé matter has to be settled phenomenologically. It is suificient to
say that there is a large amount of evidence in favor of the currently
accey‘bed.view that the interaction consisis solely of a nixiure of V
and A forms with CA -~ Cv, CV) = Cv ) C,,j = CA .
Also, the coupling counstants are real, corresponding to invariance of
the interaction Hamiltonian under time reversal (see, e.g. Burgy et él.
(1958)).

In writing down (7, there is an ambiguit& in the position of
the ~$’5 matrix in the terms tha.f change sign under space reflections.
This is q_uite' arbitrary and implies no physical restriction Isin.ce a
form of HK in which \/5 appears elsewhere.'can be written as linear
combinations of the HK defined in (7). Similar remarks apply to an
interchange of ’r\l’n and ’\P'Y o (7) is merely the COnventibnal form
of the Fermi theory.

It should be noted thgt the Fermi theory is not the only
possible theory in which /3 ~decay can be described in terms of a
direct interaction between the n, p, e and ¥ fields. Konopinski and

Y g
Uhlenbeck (1935) replaced "V by its derivatives. There are no,
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& priori reasons against this, but a conflict with experiment wes later
discovered and this so-called X-U modification was abandoned. !NMore
drastic alternatives to the Fermi theory replace the direct interaction
between the four fields by an indirect interaction taking place through
some meson. lone of these modifications have become compellingly
necessary and we shall iénore.them.

Suppose we have a neuiron in the state f#rh (V/)cmm.a neutrino
in the state ﬂ+— (MA) The problem is to calculate the probability
of transition to a proton in the state ”f‘ (\V;) and an electron in the
gtate szn (\J;) o The appropriate initial and finhl occupation number

states ore then
n Y

[0, =2 0, np (W)= 1, ) (W)-1, 0= ) = i)
e )

P-4, mE()-3,0-- ) < [f)

Now the f3 -decay interaction is known to be extremely weak so that it

and

"

can well be treated by the standard time dependent'pefturbation theory
(s6c; efe PPe 195=9 of Sehiff (1955)). The relevant matrix elemenf
<{ ] Hp 'h> will be that of the field interaction Hamiltonian

(7) between the above occupa%ion number states, these being orthonormal.

Expending (7) according to (1) and us1ng (5) gives

RULYDAED § ECACTEN ALY

(¥ 070, e co] ¥ ()

(8)
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This result is formally equivalent to the statement that

HP : 20: D, 5e fCK’ Yo] (M +ec) §(men) o

where the labels Il and L refer to nucleons and leptons, respectively.
= t .

r;w‘is-an operator transforming a neutron into « proton and E; one
transforning a neutrino into an electron. Iotrix elements Then have
S AR ACHD

h \Wn 7 ¥) / and
’\i/ P(W )'\I’e (Wg) While this formalism

2 I m g | -

obscures the essential field theoretic content of the /3 —decay process

to be taken between the initial state

the final state

. it is nevertheless convenient for calculating transition probabilities
and we shall in fact ﬁse it. ‘

| Since at least the lepton states form a continuum there will
be a well defined transition probability per unit time. If we write
the initial energy as \f\/ h=\l'{\*wv and the final energy as w F: WP "'We
there will be a transition rate from the initial states to unit energy

interval of +the final siates given by

RN A COIRE TADY S

This is the usual form of the so-called Golden Rule ((29.12) of Schiff
(1955))s The quantity‘(?(\v%f) which appears here is referred to as
the'energy denéity of the final states; its use requires some careful
consideration. Its occurrence is due to the fact that for convenience
the continuum spectrum of states is often broken up into a discrete
spectrum by confinement to a large but finite enclosure, within which
the stétes are normalized. A definite number of states within a finite'

energy interval is then obtained by applying periodic boundary conditions
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on the surface of tlhe enclosure. However, it is easy to see that if we
normalize our continuwa functions over the whole of space, according

toA(2), then the state density just does not enter the problem and we

ws (Wg)= An IA<_F’HI”'*> ’w~__wp

Thus the state density is merely a weighting factor that has to be

have L

(11)

introduced to take care of the different normalizalions. ~Clearly, for
continuum gtates it has no direct physical meanings Since it is not at
allhobvious that the imposition”of periodic boundary conditions on the
surface of the finite enclosure will always give the correct weighting
factor we prefer to use the delta funciion normalization (2), whence
the Golden Rule is'(il)._'

There remains tﬁe question ofrthe single particlé wave functions
appearing in (8). As already pointed out these shoqld reélly be obtained
from the field equations., In the case of the neubtrino the oniy known
interaction which it experiences is the /g —-decay oney so i?éAwave

function will be well described.by the single particle Dirac equation
Lb : 9’4‘
E R g (12)
Ox) :

the mass being assumed to be zero.

For the electron it is necessary, of course, to take account of
the interaction with the electiromagnetic field. The correct treatment
of this, which consfitutes *the subject of quantum electrodynamics,
iﬁvolves the quantization of the electfomagnetio field as well., IHowever,
what is known as the external field approximation is of'ten quite success—

ful. This treats the electromagnetic field as 2 classical Maxweil field
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and assumes that its only sources are extraneous to the electron gystem
e.g« a protons, It therefore ignores 2ll interactions between electrons,
both real and virtual. It will therefore breal down for systems of more
than one real eiectron and also for strong electric fields, since these
will have an appreciable effect on the state of the vacuum (the so-called
vacuum polarization process becomes important,. However, since the

* condition for this to be serious is that 0(Z>I ,\Z being the charge
of the source (seey eog. Feshbéch‘and Villars (1958)) it is customary
to adépt this external field apéroxi;ntion in ig ~decay; that is, we
ignore the radiativé cprreétions. Then the sin@le particle wave equation

is simply the Dirac equation for external fieldss
b :
J e
> (& ¢ -
‘YR(’ka e > /f-' O
A= :

/N A ig the electromagnetic four-vector potential: /& 23 e :? and
Al£: 2\ » where V is the electrostatic potential.
It is the mucleon wave funcfions that present the major problemn.
For nucleons.bound in a nucleus.one has to fall back on the various
nuclear models, which give wave functions of dubious reliability. This .
represents the greatest source of ambiguity in the understanding of

fa —-decay transitions.

2, CALCULATION OF THE TRANSITION PROBABILITY.

In this section we outline the method of oalculqting {3 —decay
transition probabilities, using the Golden Rule (11) and the matrix
elements (8). What vie afe interested in is the probability of a

nucleus with angular momentum :[' and parity [~‘- decaying to one with
~ P
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angular momentum IP and parity nF , the electron (we shall confine

ourselves %o a negaton in order to be gpecific) being emitted with

energy W .

€

The matrix elements that appear in (11) have the form (8).
Since more than one nucleon in the nucleus can decay there should
strictly be 2 summation over all nucleons. "We shall represent this in
the usual way by writing in place of the single nucleon functions the
: T M
complete wave functions of the parent and daughter miclei, ".\tf :

M .
€
and. ’{’ 1 respectively. . i i

Le'g the energy of the erﬁit‘ted neutrino be q. Then
\A/e RS Ct = \A/o
where \'\/o is the observed energy end-point of the ’B -spectrum. (q is
also the momentum of the neutrino, since it is assumed to be massless).
The wave function -of the emitted neutrino can be written as ’*/: (‘b)
where h denotes all the quantum numbers other than g. But in (8) it

is the wave function of the destroyed negative energy neutrino that
. a V’
appears. The required wave function is then A "f’k (%) where
A = A o, f‘ 2 (14)
(see, e.g. Dyson (1951)).

The wave equation (13) of the electron can be writtem in
Hamiltonian form as :
by = (~;«-V-ﬁ+V)’f (15)

e R L
Here V is the electrostatic potential due %o the daughter nucleus and
A has been put equal to zero since magnetic interactions are negligible.
It is customary to assume that the electrostatic potential of the

nucleus is spherically symmetrical, whence we must be a constant of



(14)

motion and we have :
{; . X + B+ (k@-VQ)Q’? = 0 (16)
~ e : -
In addition to \VE we have as constants of motion the total
angular momentum, j, its z—comnonent‘/i s and the Dirac operator

X = /3(<r +1> | i (17

where l_ ig the orbltal anzular momentum operator. A{ has the eigen—

values ‘ ; o

K e (J*;’_) _ (18)

It ¥s convenient to introduce the quantltj ;
Rp'a ixl o+ 4 ") i (19)

where SX is the sign of K i.e. k/\zq - A, may be regarded as the

value of the orbital angular momentum in the non-relativistic limit. .
An exact separation of the radial and angular parts of (16)

is now possible. Simultaneous eigensﬁates of F*e, j /4 and X

then take the form

p By I_/,:_
e L Y|

2

<
- where the :[:+ are just the two-component Pauli spinors

_', 3 . ‘.
I ZC ﬁ/*tY)Yﬂ(G{)) e
Tarl

(the C'quantities here are Clebsch-Gordan coefficients — see Appendix

A). The f and g are real radial functions satisfying the pair of

coupled first order equations
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O

11

(\n/e-'vci-\)p = _3‘:_%'_ b (}(+t) —?

(e ~idiliane s = e 0

There are two linearly independent solutions to this system,

(22)

one regular at the origin and the other irregular. The solutions will

%
depend on the potential vc s but for the Coulomb case, \/c i ZQ ‘/f

i.e. a2 point nucleus, “the calculatlonlls straightforward. Rose (193'”,
gives the regular solutions to these relativistic Coulomb functions,
normalized thus
Y{ F (We') F, (w) - (w EPD) } § (We'-We)
(23)
so that Y (We) is normalized agcording to (2). Asymptotically the

radial solutlons talke the form

X (W,a) ~S

where p is the asymptotic momentum corresponding to \/\/g .

P iy /l wel' 1

c
% is the Coulomb phase shif't
c o ? \IJe

W, =
Wi HZP“”B"(Y“« g2t

where

Y = '(K}- «1Z’)
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«Z

P e

o epdin) m - — L
oy

Y

An irregular solution is formed by introducing any constant phase into
the asymptotic form (24). Inside a nucleus of finite extent the solutions
will not be Coulomb functions, but.ogtside they will be lineary comfin—
ations'cf regularAand irregular.Coulomb functions, although the normaliz-
ation w;il have changed.

The Z2 = O solution for the regular electron functions is of
some interest. It can easity be obtained from the general solution and

is -

"

Pﬁg(}YQ) op
| (25)
MCA R, )

where the j functions are spherical Bessel functions.

SKC We-I P “j‘-xg ( P r)

]

The neutrino wave equation can be treated in the same way.

The solution may be obtained directly from (25) by replacing both \d&i‘

SKVJ——RL—- 1 jﬁ-k (Zr)

= 1, ()

and P by q, whence

PXV' (7')

' ﬂ't; (1’)

"

(26)

It
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Since we are not going to concern ourselves with the direction
of emission of either the neutrino or the electron this angular
momentum representation is the natural one to use. Using (8) and (11)
and summing over the lepton quantum numbers Xe, Xv, /‘1 and /kv we have

for the probability of emission.of an electron in a unit energy interval

\\J(\«(e) a 2 r Z— 2 dr ('{’IW-\.OK’\?M‘
: - £k 1 f S
/“b”v

‘ : (A# (w [c »ckyf]Ay (3)

r P : (27)

from the usual angular
We -

‘momentum representation expression for the transition probability (see

This apparently differs by a factor of 7V

(9.19) of Rose (1957)). This is simply‘because the latter normalizes
within a finite sphere of unit radius, the appropriaté solutions having
been given by Rose (1937). It will be noticed that the implicit
weighting factors, 7%’for the neutrinos and i E@' for the electrons
are just the state densities that would be obtained by imposition of
© periodic boundary conditions at the surface of the enclosure, the
functions having assumed their asymptotic form (24). Howéver,‘one
cannot be sure how genérél such an identity is.

: low we consider the ys.jerm ocourring in (27). It is easy

to show that

A% " *
A/){/KV (7;> L oihn SKV A_')‘/_x (Z} (28)
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Since there is an incoherent summation over all 8; it follows that
these terms can be ignored if we replace CK C‘Q by
/ .
o IR TN igsas WP P, Cyg C; (29)

Henceforth we shall write in place of (27)

N(We) = 2 KZ}( ‘<“1’ : : ”f’:g(“’e)’“pl Aﬁ? 0 *YIM;> (

He Ay | . " (30)

ng o\:_ 0; o S S
4 |

(31)

where

e \-\(3

Now let us consider the qﬁantity

0. (w) O, A“k o) T

Then the matrix elenents in (30) are essentlally metrix elements of

1

this guantity between the nuclear states, Recalling the explicit form
’(20) of the lepton functions, the lepton part of (32) can be expanded
into a series of spherical harmonics with the aid of (A.23), it being
noted that both lepton functions are to be evaluated at the same point
in nucleon space.

If the OK dpeiator is a scalar (i.e. /3, Vs FYg)then the

matrix elements appearing in (30) can be expressed as
Me He Av * s
<E TR AR gl >
IF XQ ’ Hb o P il

2<H, | derana) o @)

(33),
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in which the functions § depend primarily on the lepton radial functions,
4T 1s the unit positi tor. 1£0_ i tor (i.e. &, &, 3

and T is the unit position vector. K is a vector .e.“,,\//,\
/3 x ) it can be written in spherical form according to (A.27) and

(A.28), whence from the inverse of (A.31) the scalar product between

the two vector quantities of (32) can be expanded as a sum of spherical

tensors. Then (33) is replaced by

- ™ HMe z/ki’* T r‘l‘
<Ar I:A”x* (WQ) I Hl} A A)bxv C‘U (YI; > %

S <o |t OGO
B0 Y |

e

(34)
where L = /\, Xt l s and is the tensor rank.

In both (33) and (34) what we have done essentially is to perform
a multipole expansion on the nuclear operator (32), so that by reference
to Appendix A it is possible to write down immediately thé condition

for non-vanishing of the matrix elements. For ( 33) we have the o
angular momentum selection rule .
O el e ool ey

and the parity selection rule ; :

vl R S e R R

In (34) the tensor rank is L and not ,\ so that (35) has to be re—

(35)

placed by o
| B ( ooy LT ¥ S '
l ot = F S~ L e = F (37)
We now note that for the energies encountered in ﬁ —decay

‘; (N‘ A “') >> _{ ("‘ 4 b ) for r less than the nuclear

radius. From (36) it is seen that non-vanishing matrix elements will
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only occur for A‘ values differing by even amounts., This me#ns that
only the smallest value of A. that gives a non-vanishing contribution
is of any significance. The error involved in ignoring the higher
order terms is seldom greater than 2%.

In performing the integration over nuclear space in (33) and
(34) ¢ F » is presumed to be slowly varying over the nucleus (at the
origin ; varies exactly as X ) and is therefore taken outside of the
integral and evaluated at C’ sy & quantity comménsgrate with the nuclear

radius., Our matrix elements then have the form
~A M " £ Me | 2
pe <{/I€F[OK43 :\ (<) {%IA > iPC <\}5pfllu(:'o‘)1fi;>

1

The lepton dependence of the transition probability resides
wholly in the Fi—)(o‘x factor, while the dependence on the nuclear wave
functions is confined to the new matrix elements that appear here.

It is these latter that are known in the terminology as the nuclear
matrix elements; they represent the greatest source of ambiguity in
}3 ~decay theory. Nevertheless, it is possible to give an estimate
of their order of magnitude. We have already seen that consecutive
values of )\ are associated with a marked decrease in the transition

probability. At the same time we must note the effect of the operator
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OK on the nuclear wave functions. If this has even parity

(p' o {50' ) it couples together the large components of the nucleon
four-spinors. On the other hand the operators %, (9% 5— and /5)(5
couple together the large and small components. Since the nucleons

are moving slowly the matrix elements will depend considerably on
whether the OK is odd or even. In fact, changing OK from an even -

to an odd parity operator has roughly the same e'ffect as incrreasing‘

>\ by unity. This givée rise to the well known degree of forbiddenness

clagsification of transition probabilities., A transition will be n'th

forbidden ‘ii‘

n A ‘ for OK ‘even

n = )\ #-1 i.'or OK-odd

where) for a given OK " XWill be the smallest value'co_mpa't'ible with
(36) and (35) or (37). Secondly, in any tramsition theé only O, of
significal;xce is the one associated with the lowest degree of forbid-
denness: the contributions from the higher degrees are negligible.

It is instructive to be explicit and consider a particular

—

transition: A I= 1 /\ R I The vector interaction gives rise

to the nuclear matrix elements (i) <'\j (~)> and (ii) <T (h, o >

while the axial vector interaction has associated with it (iii)
m :
. and (iv o For matrix elements
e 2 (~)> & < TLx ~'~)>
(i) and (iii) we have from (35) that

Now the perity condition (36) requires that A be odd for (1) but

even for (iii). Thus the former can contribute in the first degree

of forbiddenness with - >\ i 1 while the latter camnot contribute below
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the third degree and is therefore ignored. For (ii) and (iv) the

angular momentum selection rule (37) becomes

l ol < I;_ 3 I;
where L = )\, At|l . For (ii) )\ must be even and so it too will
contribute in the first degree with A= O) L=1 . Pinally, A has
to be odd for (iv) whence we shall have A= i,'LF icontributing and if
IL‘"I{’* 1 tnere will also be a contribution from A=l L2 . Thus
the lowest degree of forbiddenness in which the transition can occur is

the first and Wwe shall have the following matrix elements to consider:
™ ~ '
) ) T il )
< «1‘ (~ T Vo ::' -
N e s o
n 2 ) 21 ~ ) ~

The last of these, which corresponds %o an anguler momentunm
of 2 being carried off by the leptons, will vanish if Ii‘+ If =1
i.es if either Ii or I, is zero. UEven when it does not wvanish it turns

» i

out that its contribution is considerably smaller than those of the
other matrix elements and it is often ignored altogether (it is related
té the Bij of Xonopinski and Uhlenbesk (1941)). On the other hand it
is easy to see that for a transition AI = 2, with a parity change,
this matrix element will still be non-vanishing although all the others
will be identically zero. Thus this transition will be first forbidden,
but signifioantly. slower than the other first forbidden transitions.
Since the transition probability depends on only one matrix element

in this case the dependence on the lepton functions will be uxiique a;nd

the spectrum shape will be the same for all such transitions. They

are referred to as unique transitions.
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This example is sufficient to illustrate the general principle
that the degree of forbiddenness, n, is odd if there is a parity change

and even if there is not. The precise value of n is then given by

n = AT _or n = AT = 1
the latter being the unigue transitions, which occur in all degrees<of
forbiddenness. (Speoial attention has td be given to the case of O - 0
transitions, with a pafity changej

In the fofegoing we have merely indicated the general approach
to the problem of calculatihg transition probabilities. Ve have not
discussed at all the details of the calculation of the lepton dependept
functions, q5 s which multiply each matrix element and on_which the
spectrum shape and the total transition probability will depend. This
calculatiqn is straightforward but very tedious. The fesulfs for the
various cases have been given by Konopinski and Uhlenbeek (1941),
Greuling (1942) and Pursey (1951). ‘

The angular momentum representation for the lepton states is
clearly the most convenient one to use in establishing the selection
rules for the different degrees of {orbiddenness. On the‘other hand,
the most elementary accounts of Fb ~decay theory ignore the nucleaf.
charge and represent the lepton stafes by plane waves. The alléwed
spectrum shape is then determined solely by the density of constant
momentum sta#es :*)Vé(tl o It is of intérest to note that if we take
Z = 0 approximation (25) for the electron functions then our expression

(30) reduces for allowed transitions to the plane wave result.



PART II - THE ELECTRIC QUADRUPOLE INTERACTION

- IN BETA-DECAY

In this part we consider the problem with which this thesis

is concerned.
3. STATEMENT OF THE PROBLEILL

| As we have already pointed out in the pfevious section it is
customary in calculating the wave function of the decay electron to
assume that the electrostatic field of the daughter ngcleus in which .
the electron mo&esAis gspherically symmetrical. Now possession of
quadrupole moments by nuclei shows that in general this éannot exactly
be the case. The Hamiltonian of the interaction of a negaton wifh the

quadrupole moment is

2 ‘
HQ = - 52— Qo F((‘) P?~ (c,os 9)) . (38)
where 9, is the polar angle of the electron position vector wj.th
respect to the nuclear symmetry axis and Cl, is the intrinsic quadrupole
moment of the nucleus (see, e.g. the article by Bohr and Hotteléon in
Siegbahn (1955)). [E(T‘) is a radial function given by F(“)= ‘/-‘»5 outside
of the nucleus. Inside the mucleus it depends very much on the charge
distributioﬁ but.for a uniform charge distribution of averége radius CD
P(v) = Tq/e s (see, e.ge. Wheeler (1953)).

Because the electrostatic interaction between the decay electron

(24)
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and the daughter nucleus is non-central, their angular momenta, \je and
]“F » respectively, will no longer be constants of motion. Only
asyuptotically, when the electron is remote from the nucleus, will they
become good guantum numbers.

One would expect the quédrupole ooﬁpling eiffect to be largest
in the regions remote from cloaed.shells i.e. 150 < A < 190 and A > 225,
for such muclei are strongly deformed and have large quadrupole moments.
Furthermore, their low lying states are'very close together, the first
excited state having an énergy_of lesé'than 100 kev. ©Since adjacent
states differ in angular momentum by two units and have the same parity>_
an appreciaﬁle gquadrupole coupling between the two states may be
anticipated. The situat%on, in fact, is not unlike that obtaining in
Coulomb excitation (see, e.g. Alder et al. (1956)).

. In view of the considerable ambiguity that arises in the ;
interpretation af'ﬁs —decay transitions, due mainly to the uncertainty
in the nuclear wave functions, one may well ask how quadrupole effects
of the kind just mentioned could be ﬁnequivocally identified as such,
even if they were ap?reciable. - In brdef-to see that fhis is-possible
we must first examine more closely the structure of the stréngly
deformed nuclei. | ‘

These nuclei are characterized by a comﬁafatiye stability of
the nﬁclear deformation so that its changes have only adiabatic
inf'luence on the motion of the’iﬁdividual nucleons. That is to say,
there is a decoupling of thb individual particle motion from the
collective modes af motion thaf the nuclear shape can execute. These

collective modes of motion are of two types: a vibrational one
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involving changes of shape, generally with preservation of axial
symmetry and the other a rotational one in which the nuclear shape
merely changes its orientation with respect to a space fixed system of
axes. The latter modes correspond simply to the motion of a symmetrical
‘top, which has been well studied. It has energy eigenvalues of 5 I(I*l)
3 being the effective moment of inertia about the symmetry axis and I
the total angular momentum. The associated normalized eigenfunctions

g o I - 1
are ‘t 21+1 | (@) s where the | (@)
8n* MK P’IK

function, defiped in Section A.3, of the Iuler angles of the nucleus

in a space fixed system of coordinates. II is the component of ‘bhe
angular momentum & on the z-axis of the space fixed system and K that
on the nuclear symmetry axis.

Strongly deformed nuclei may now be described in terms of their
rotational and intrinsic Istates. Only *lfhe latter depends on the pethicle
configuration: it will involve béth tlie individual particle and the T
vibrational modes. Let us write the intrinsic wave function as X_Q o
This is a function of all the particle coordinates in the nuclear fixed
system; L1 is the component of .the total particle angular momentum

alonz the nuclear symmetry axis. Then the muclear wave function in

the space fixed system may be written as

_ [713 1 I
lzéI'r P’\K (@) ) X-Q DM-K (@)

(39)

The second term here is 1ntroduoed to preserve the necessary symmetry,

the factor( ) refers to the expansion of x_ﬂ_ into eigenfunctions
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of particle angular momentum j (see Moszkowski (1957)). In the event

of K = 0 (39) reduces to

q{[: 24/—2?«:—2 Ay DMIo (9‘) v

and I is always even.

The first few excited states of a stronély deformed nucleus
consist of pure rotational excitations, so that they all have the same
intrinsic structure. Different rotational states based on the same
'intrinéicAstructure are said to form a rotational band.. Theif wave
functions differ only in that they have different Badbiaat ine ulideh
are, however, lmewn. This imnediately suggests that it should be
possible to calculate the relative probability of transitions from a
given parent state to the groundfgtate and to the first' excited state,
i.e. the branching ratio of the two tfansitions.

This general problem has been considered by Aiaga et al. (1955),
who calculate the branching ratios of transitions.(ls or 7’) of definite
multipolarity to different members of the same rotational band.
Referring to Appendix D, it will be seen that, since each matrix

element has the same lepton coefficient in both branches, the ratio is

o e L]

%

w(l)(). o
LY A RTINS
| | Me A ‘.

1
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C < Ferm L b
e R

E CIZ I;L)

LK.
K- K

(41)

In obtaining this last result use has been made of various properties
of the Clebsch-Gordan coefficients listed in Appendix A. Thus, as was
S e AR AR It g A S B At S et e
thé nuclear structure and depenasAon what is essentially'a geometricél
factor,

It will be scen that the muitipolarity‘has to ‘be the same for
bo.th transitionsj in the case of [5 -de‘cay this means that they must
both have the same degree of forbid@enneéa. Thus the applicability
of (41) is restricted to the case of the parent mueleus being in the
states 1+ or 1~ so that the transitions to the O+ and 2+ déughter states

will both be allowed (unique) in the first case or first forbidden in .

the second. In both cases L= 1, K =1 and K, = 0 whence (40) vecomes

"*)<IF‘O> : / ’ (42)
e e ‘
This just gives the branching ratio for a particular‘elgctron
energy. I1f the total energies of the two trensitions differ appreciably
~ then allowance must be made for this before the branching ratio we have
defined can be compared with the ratio of the total decay ratés. This
may be difficult if the spectrum shape is not that of an allowed

transition. It should also be noted that we have taoiﬁly ignored the
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contribution of tbe second rank tensor, Bij’ to the transition to the
ot state. té contribution is lkmowm to be amall, generally,bbut its
possiblebsignificance must not be overlooked. |
Now let us return to the case of guadrupole coupling between
the 0" and 2+.state of the daughter nucleus. Then a mucleus which is
in a definite state, say O+, when the decay electron is remote from the
nucleus,;will actually have been in a mixture of the two states‘when

the electron was close to it. Hence the relation (41) no longer holds

and both the numerator and denominator there must'be_replaced by linear
combinations of the ilorm

o <I [TIOIL) + b TIW L)

where the a and b coelfficients depend on the amount of coupling.

—

Thus it is in the departure of the branching ratios from Alaga's
velue (42) that gquhadrupole coupling effects of the lkind considered will

unequivocally reveal themselves, if they exist.

4. < THE CASES. : ;

The data presented by Alaga et al. (1955) indicates that the
relation (41) holds well for electromagnetic transitions and also for
several branched.[a ~decays. ﬁowever, they present two canes of a

Lu176 160

breakdovn of the relation: and Ta s which both have

branching ratios::'l. A possible, but unlikely, explanation of this

is that the Bi matrix element is enhancing'the 2+ transition.

J :
e now consider the branched decay of Np236 (Gray (1956)).

The transitions to both the 0" and 2" states have rates consistent
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with first forbidden transitions; furthermore the spectrum is reported
as haviné & strong distortion from the allowed shape. Hence we may
assume thai we are dealing with a branched decay of the kind that we

are interested in. But the branching ratio of the two transitions is
/’“"(Iﬁ:O) n
o~

o (D)

This value has not been corrected for the difference in energies of

the two transitions (the correction would be difficult to make in this
case because the spectrum shape is not allowed) but this can be of
little conaeqﬁence since the energy difference is only about 8%.

Since here it is the ground state.transition fhat is excessive
’she'Bij matrix element cannot be invoked. lNow because rotational
structure.is particularly well developed in this mass number region
(see, €oge ﬁyde and Seaborg (1957)) there is here a prima facie case
for a quadruﬁole coupling effect occurring in the[3 -décay of atrongly

deformed nueclei.

5. THE SCOPE OF THIS THESIS.

T Al Saaads o Sinei S A coupling together of different
angular momentﬁm states of the decay electron and the daughter nucleus
in the belief that this may‘ba able to account for the above mentioned
anomalies in the branching ratios. i .

A general expression for transition probabilities to states
which have only asymptotic conservation of angular momenta is obtained
in Chapter II., One of the major probleﬁs encountered there is .that

these states are non-orthogonal. In the next chapter we specialize
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this expression to give the required branching ratio.

With QO:: 10 barns it is readily seenrthat at the nuclear surface
the quadrupole interaction is nearly as large as the‘central interactioﬁ.
One is ﬁherefore reluctanf to use perturbation caleulation of the
electron functions ;nd preferé an exact treatment. This is done in
Chapter IV, where we set up systems of coupled differential gquatioﬁs
which the eléotfon radial functions satisfy exactly, the dnéular parts
of the wave functions having been separated out. Some formal properties
and the method of solution of these equations are considered in Chapter V.

'The nunerical work is described in Chaptgr VI, this béing
concerned mainly with the solution of the differential equations, which
wag performed on an elecﬁronic conputer. Ve oonsidered'jusf the single

case of Np236

and repeated the calculation for both a pesitive and a
negative value of the quadrupole moment, since the sign does not appear
to have been conclusively established fqr the transuranic elements

(the fact that thevanomalies in this region are in the opposite
direction to those in the rare earth region suggesté.that Qo may
possibly be negative for the former). Because of the extreme,lepgthiness
of the computation only 6ne energy value was taken. IHowever, we are

" concerned not so muéh witﬁ reproducing the measured branching ratio

as with seeing whether or not the coupling of the kind we have described
is at all signifiicant. Our conclusions on this éoint are stated in

the laét chapter.

The angular momentum theory of which extensive use is made in

this thesis is summarized in Appendix A.



CHAPTER II

THE TRANSITIOII PROBABILITY TO STATES OF COUPLED ANGULAR LIOMENTA

1.  THE BASIC STATES.
ok
In the initial state the total energy, W , of the absorbed
neutrino-parent nucleus system, the angular momenta of the parent

nucleus, Ii s and of the neutrino, j s and the neutrino energy, —q,

¥
are all congerved. We express the initial state in terms of a represent-
ation in which the z—component of these two angular momentea, Mi and /LL‘,

respectively, are diagonal and so write for the wave function of the

basic statey ‘Ia. MA . K‘Yu"" ?/ \,\/J' > )

o (X"/“Y' ?) : “P; A "kk/y%(?) (15

etk 3T '-i . i o
where the parameters Ii s 1y and W~ have been omitted from the left

hand side because we shall only be considering one state of the parent

nucleus /\? M
?
I."' A ’\fr X (1,) is the wave function
v

of the absorbed, negative energy neutrino (see Section 1.2 ).

In the” final state the angular momenta of the nucleus, If ’

and of the electron, je s, and the energy of the electron, We y are none

\

of them constants of . motion when a quadrupole coupling is present. How--

ever, the complete final state system, electron plué daughter nucleus,

(32)
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-

has its total angular momentum, J, the z—component thereof, lI, and the
total energy, W, conserved. Ve can therefore work in a representation

in which J, M and W arc diagonal and write

H[IM\A/> (H,Mf He*Ha)'TMW>
W TMW> (22)

in which He is the Dirac Hamiltonian of the electron in a central

"

field and HQ is the Hamiltonian of the quadrupole interaction between
the nucleus and the electron.

The description of the final states is not yet complete for,
as will be seen later, there remains a degeneracy which-muét correspond
to the existence of other operators that commute with J, I and H. Iow—
ever, as we wish to reuove thig degeneracy by requiring that the electron
wayve function obeys certain asymptotic boundary conditions we shall not
choose our representgtion to be oné in which these extra operators,
whatever they may bo;‘are diagonal. Accordingly, we write our final
state as lTM\«/) £> where L is simply a label distinguishing between
the degenerate states belonging to J, i and W that satisfy different

agymptotic boundary conditions. (2a) then becomes
H| MW, 1> o Rl TP, L> (20)

e expand these complete final states in terms of the discrete

‘basic set consisting of the nuclear states that are coupled together,
M i
’1%> F , and the angular momentum eigenfunctions of the electron.
Ig :
The angular part of these latter must be identical to the central

ficld case whence from (1.26 ) they take the form
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/“e e F(Y) X—fe

i

(3)

1]

; e S
: Ke

in a system of space fixed axes.

The final states can then have their wave functions written as

—

| ok M [-iF (3w, ¢ X’“:
2 B i F P S e
fT‘(J’mw,z)-:ZC(m QNF>WI/ O
o ey s & qx@-(IWif’ Y x)(e
> (4) g

This represents a mixture of the nuclear states, each one of

which is associated with all possible angular moméntum states of the
electron, (3). The angular dependence of these glectron states is
determined solely by angular momentum considerations but the complete.
states (4) still have to satisfy (2a). It will be seen in Chapter IV
how the angular part can be removed from (2a), which then reduces to a
systen of first order coupled differential equatiéns in the redial
functions, F%e(TVJIF)Q) ’<;XL<I»JI§’X> ; The role of the param;ters
in these functjons is self-evident; as this notation is somewhat,cumber—l
some it will be condensed when no confusion oén arise, but such changes
will be announced. It should be noted that we have tacitly assumed

that there is no radial dependence on IIj this will be shown to be the

case in Chapter IV,
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In the limit of vanishing quadrupole these functions will pass
over into the familiar relativistic Coulomb functions, Fgé 3)<e ’
(section 1. 2 ). However, in general the electron states (3) will not
be states of constant electron energy, because of the quadrupole‘
coupling, An expansion in terms of central field solutions is possible
but it would involve an integ ratlon over the continuum of electron
energy. The present method is the more suitablé.

+ will be seen in Chapter V that the degeneracy in the
states is equal to the number of central field states, léﬁelled by
(Ke, F) ’ that are coupled together by the quadrupole interaction.
Purthermore, it is noted that because the quadrupole potentlal falls
off as fast as /‘- then these (Xe, F) states uncouple asymptotically
and it is, in fact, possible to remove the degeneracy py requiring

that each :TP1V% g:> state belonging to a given (JII) set of values

asyrptotically assumes the form of a different central field state
(XQ,I§> « That is, we impose boundary conditions such that in any
final state all but one of the pairs of I and G functions féll off
faster than !Ar and fhis particular pair is different in each of the
different states labelled uyil. e may say that the dégeneracy is
removed by requiring that the states have "asymptotic eigenvalues',’
)(ézl I:éa . Héwever, because these are not true eigenvalues the
states so chosen will not necessariiy be orthogonal, alth9ugh they are
certainly linegrly independent.

The central field electron functions which our F!and G

functions approach in the region of vanishing quadrupole interaction

are, of course, just particular linear combinations of regular and
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irregular F <\"/e>)(j (\A/€> . We recall, then, from (1.24) that
Xe Xe

they have the asymptotic form:

Xe <\’\/€> i = -

:r*/c[;‘ %Ln (P*(‘+ §C+e>
(5)
3,& <\’\/e > ot | é_ TP— cos (P*c‘+§+e>

where € is a constant phase angle depending on the particular combin-

t

ation of regular and irregular solutions, and A is a constant factor

that is unity for normalized central field functions.,

Then, if we choose our states IJNW, 2,> of the complete daughter

system in the manner described, (4) will asymptotically become

T(I‘Y‘"“i) "ZZ‘U C(m/»m)ﬁLF

- C /u'e

A ‘;T’Dﬂ SLn (P T'+g£+i)%p)(£

. L e

x s

N [
Yl BN

- cos (P‘fi—gC&E)X/ue

Wl g L T ”

Xe

2

(6)%

Here \,\/ \,\/ EIZ 5 EI'Z being the excitation energy of the

L
nuclear state of angular momentum I sy and Fl and 8 are the

values. appropriate to the particular \A/ and . g W )is just
o * L Xe J l(&) .

a numerical constant.



2, TIME DEPENDENT PCRTURBATION THEORY.

The application of time dependent perturbation theory to this
problem is complicated by the fact that not all the final states are
orthogonal to each other. IHowever, the necessary modifications to the
usual form of the theory are worked out in Appendix B, from which it
is seen that the only essential changes are in the form of the
perturbation matrix element. It will be noticed there that we have
allowed the states to fill the whole of space. If we had confined them
to a finite enclosure then it will be recalled from Section 1.1 that a
weighting factor, the state density, would have t0 be introduqed. It
ig difficult to show that the appropriate density will be the one -
determined by periodic boundary conditions on the surface of the enclosure.
We prefer to avoid the problem by treating our states as the trﬁe continu-
um states that they réally are.

Because tile P ~decay Hamiltonian does not commute with the
Hamiltonian of the free nucleon-lepton system there will as usual be
a violation of energy éonservation'in the decay process. However, the
interaction will not degtroy any of the angular momentum constants of
motion so we can write for the packet of final states obtained from the .
initial state lI‘.’ Mis Kopo, (W\A/b> after the perturbation has been
switched on for time t '

IWEE A, -
% (IM\/\/;; 1> e“ G &WQ,(IMW,')L)’T\(IMW,L)Q
L4
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Here the left hand side has been writiten in a way that anticipates

the time independence of the ? faetor (aside from a step-function -

see (14)) and ,
i (W-wit

o(TMw,L) = - {TMW R | IM., X, g W2 & =4
(3m2) = - I 2] | LM, Ko g Wiy
(8)

(8) has exactly the same time dependence as in the usual form of the
theory for orthogonal states but the matrix element is no longer the
straightforward matrix element of the perturbation, HP s between the
initial and final states. Rather is it a linear combination of these

t

latter, thust

(Tmwe| B LM X, g W2 ) -
[ 47 - ( | . ;
E\UT Sk He | Lot K g W)

where the matrix {U} is given by
{U} cg(\/\/,—\/\/)= ~.< J—F’IW;ml I MW, n>
4 Mman (10)

Use has been made here of the fact that all final states are orthogonal
to initial states and final states belonging to different values of J

“or M are also orthogonal Yo each other. '
low, because the final states ‘ I'™MW, L> are not all orthogonal

i
. to each other, (L(J' MW, LH is no longer the probability of finding

the system in such a staté. Hence we cannot follow the usual procedure
of using the Golden Rule (see Section 1.1 ) for obtaining transition

probabilities. Instead, we adopt the method of Greuling and leeks
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(1951) and Lee-\Thiting (1353} and deformine first the asymptotic form

of the wave packet, (E(T MW)?,) o woince the asymptotic form of the final
states are similar to those of the central field case there will be no
essential difference here and we shall find that the wave packet consists
only of outgoing waves, the incoming waves removing themselves by

destructive interference.

Then substituting into (7) the asymptotic form of ’T‘(T M\A{,Z) i

(6), we have : ; ' ST &
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where we have made use of the relations
L

W B I 9

\A/ E - + . \/\/

I¢ L

and have written for the total encrgy available to the leptons in a

(¥

]

p 4
decay to the state I :

£
1
\W/ ; EI;, I EIF)L

o <
; by
The integrand in (i1) has a sharp maximum in the vieinity of \/\4 = \/\/o -‘1/
x
i.e.\ﬁ/?\«/ and therefore we tale outside of the integral all the
* factors that are slowly varying in \A(2 . \le are then left with the

following integrals, which are evaluated in Appendix Cs

i(Wh-g-Wp )t gibie o
[ - (W™~ W ip, ¥ Fae 2 M 1K<
d.\v«/ 2 e PX‘ = 2 3 WL

AN b .
W 0 | i«
« . E

(W W)t
Jcl-\,«/ s (0 : } i ’
: e i inolc

L | J] ; ~
\"4"\/\/0 *’Cv : ; (12)

S )} - ;
in which\,\/l'z \/\/o- C‘/ and P 1 is the corresponding momentum. Thus we
see that the wave packet behaves asymptotically as a train of outgoing
spherical waves of energy corresponding to'energy conservation and
moving with a vanlocity egual to that of the electron. In subsequent

'work the bars on E- and W, will be dropped, it being understood that



these are the values appropriate to energy conservation.

The complete asymptotic expression for the packet of final

states becomes

¢

_’ﬂ}ﬁ

<TM\/\/, 2) - ‘ AI,E (\,\/Z> <IM\A/.)£ \3{ II;M"’K"/’”%‘[IW“&>

r(\/\/z‘l\%

(Fbr + S X ) j /lfh,
Bty i ZC J'mf)YIF W+ 1 \E

yi
= O
for { e e E&. t
Wy e S

This result is s1m11ar to the expression obtained by Greullng

and lMéeks (1951). However, as pointed out by Lee~thiting (1958), an

incorrect sign of the exponent occurring in equation (9) of the former

leads to an apparent cancellation of the outgoing rather than the in-

coming wave.

3e

FORMULATION OF THE TRANSITIOH PROBALILITY.

&
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£

Let us take the system at a certain instant to be in the initial .
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sSLa

A.)

(b\'\/ > uppose that at time 1t lc"i':“F ~decay

to one of the states belonging to the packet %(J MW°L> a3 occurred,

i.e. to one of the states ¢haracierized by quantum numbers J, M and by

)
. IF " . Tuen the probability of finding
e A ) ! ! )
sin O d0 d% d™ at the

asymptotic guantum numbers )(e

the electron in a-'volume clement il =+
)
point < is
~ ¥

% ; | £ N

QL\’“

' g@(:rmw ,2/ |

o
~ o~

[
J

so that the probability of the electron being at a distance between ¥

) ;
and ~+ + drv is

'
¥ dt

P(aMWE & < &) dr = smeouad?é 'q§ TMWE L

: , I
If we require that ~ be large then by substitution from (13)

this reduces to
P TMw* 2 ';'f’}{> =
Wy

S ) A:g; (\,J\
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v/“‘fc&.
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% in determining transition rates we are interested in the probability

of finding an electron at any point in space, not ai one particular
distaﬁce. Now (15) shows that YJ( IMW‘; /?,,Y,'l" ) is- independent of

r, as long as this is large but smaller than {—7“ t . outside of

oV
the sphere of radius EZ t  there are no electrons. Thus as time
1

elapses there will be an increasing volume in which electrons are to
be found, i.e. transitions will continue to occur. It is now readily
seen that the transition rate from the particular initial state to the

states belonging to the packet é(]' M\J‘; L) is

/«r(IMwﬂ_l) ? _E/{Z_ X P(JMW’EE; <« %)
AR A

I s .(Wx) L I s | ® | LM, K«/“e,‘z\/\/}>

(16)

2



(44)

This result is equivalent {o the statement that the asymptotic current
is equal to the product of the particle density and the particle
velocity. ilowever, the use of such a standard result required special
justification here because of the non-orthogonality of the states.

The summation over the initial states proceeds exactly as in
the standard theory (see Section 1. 2 ). Ve a.lsq have to sum over the
various uninteresting final state quantum numbers, J, M and Ket y whence
the rate of transitions that leave the daughter nucleus in a state T

" when the decay electron is far away is

Wo (I S:\/

’/LO (If_>=27\* dw& A,L(\"/e\ X

o

L
1

| | | K s _<JMW)Y,‘['3{1?_L;M;,X%W

(17)
Here we have written e for \/\/ and\r\/ (T ) for wo since we
are only summing over states for which I FL If’
We now show that in the limit of vanishing ciuadrﬁpo'le moment
(17) reduces to the standard central field expression. In the central
field case the final states , M W‘" X,> ax;e orthogonal and the matrix
U given by (10) will be diagonal: |
2
L e a _(wx)

Furthermore,the electron functions will no longer depend on J so the '

(!

perturbation matrix (9) becomes



(45)
{mwie| R l IiM;,Kv/w,q,W»

e ‘i k] ’ e/ | M. ;
v 2ol E ) )

and (17) reduces to

W‘,(Ip)

(1) QWJ&Wz-Z -ZAht(M) ;

) IXe
TMK )
/‘L

v/“w

GRS <“f )

(18)

Now we recall that for normalj.zed electron functions A T Ke(\z\/c;f is
unity so that in (18) we can cancel it with a similar factor in

{u bt ( We.) which @st thereafter be regarded as normalized.
Fina)ffy, using orthogonality conditions (see Appendix A) for the

Clebsch~Gordan coefficients we have the familiar expression



W, (1;)

L5y - 2w st X<

e 2
S/

whiech is just (1.30) integrated over the electron energy, Wé.

/’v

99

Thus not only is (17) checked {or this special case but it can also

be seen how the matiter of normalization is handled automaticall: in

(\A/e ) factor.

the general case by the U matrix and the A-—

J,?_



CHAPTER III

BRANCHING RATIOS IN ROTATIONAL BANDS

~

In the last chapter we obtained the.general expression (2.17)
for [& —decayitransition probabilities to mixtures of the daughter
nuclear states, the different states being coupled together by their
quadrupole interaction with the decay electron and only separating when
the decay electron is far away. In this chapter we specialize this
result to the case of particular interests that of first forbidden
transitions of strongly deformed nuclei in which the coupled daughter
states belong to the same rotational band.

It is convenient to rewrite the generalized matrix element

(2.9) as

<smw, 2| R M, & ,,3w‘> .

EC 3;Z;f)<“1f G (m anpl (z) >

(1)

(47)
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where we have used (2.4) and written

Z CAR -1, (30 X1 -
K- ‘l"‘ } C\x.. (TWIF’ K) X f
e - g
" FK’ (FTLJ]:E, Q’)'XTi:: S -
A i ﬂh (JW’IF' ﬂ)
;2 ('Sw1F,/z)JCk »
4 i

= - (2)
The P, q end 'f functions appearing here are distinguished from the
similar functions appearing in the central field case by means of the

extra parameters; however, in the central field limit they become

identical to the latter.

(2.17) now becomes

W, (%)
aw(Ip) =2z | dW, Z SIF"IF Aya (i)~
; I ML . .

! k.,,/‘v

ZC(j ie Mc)<fq, F/\;_ (JLII q) [le? A ’:U/%')‘*>ll
keI, ‘ | |
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The‘f; ~decay matrix element in (3) has exactly the same form
as that appearing in (1.30 ) for the standard form of the theory, the
only difference being in the radial part of the electron fpnctions.
Thus a multipole expansion in terms of matrix elemeﬁts of the various
spherical tensor operators between the initial and final nuciear‘stgtesw
is possible, as before. Furthermore, it is now asserted that the
degree of forbiddenness approximation deseribed in Section 1.2 holds
good here., That is, although lepton states that in the central field
limit would give a dominant contribution to the transition probability
are here coupled in with electron states corresponding to higher degrees
' of forbiddenness, these latter states are not sufficiently different
from their central field value to give a contribution of any significance.
Because of the great difference in magnitude of the contributions
associated with the different orders of forbiddenness the necessary
distortion of the electron states would reguire an extremely large
quadrupole coupling. However, the final justification for our assertion
must come from & knowledge of the numerieal value of the ;lectron'
functions (see Chapter VI.) A &
Thus in the present case we shall have the same is ~decay

,matrix elem@nts of the form

-

<m};‘: r\[rie(xwlp,ﬂ)ll-!(; }"'P: A “#:”?z) >

(4)
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as appear in'the central field case. Secondly, the multipole expansion
of each of these matrix elements will also be essentially the same as
there, with the difference that the central field funéfions 4LL(\Ve) y
jk,_(w‘) are he.re replraced by the F’rc(jkllé,,ﬂ) 5 3kt(:rw1p,2) of (2).
Let us now consider the cases of special interest: the first
forbidden 1-—)0+ and 1"— 2+transitions, whiech have alpeédy-been
considered to some extent for the central field limit in Section 1.2.
It will be recalled from Section 1.4 that i§ wés decided to ignore
the contribution of the second rank tensor, 'F:T (ﬁ; ﬁr) that occurs
in the second transition. Thus the only terms in.the miltipole expansion
of matrix elemenis (4) that we talke are those containing the nuclear
matrix elements of \,‘n(}'\ ) T\:ﬂ(: 5 f) ) T‘: (1" :() .
The lepton states that give rise to these operators are
| ST SR R Ko =t KX,
Ke =2 Kyi' m =ty X. =2 K, =1
kc' A | Pl e o x,

]
o 3
[y
-

n
n
.

- Then the coefficient of each of the three muclear matrix elements

N S T e e T

£ S | TRAY TN ) \"Q(I,?\‘3>
occurring in thé multipole expansion of every matrix element (4)
corresponding to each of the above lepton states with é.llﬂ possible

magpetic quantum numbers /‘e. P,

MF has to be calculated in the manner
outlined in Section 1, 2 . DBecause there are thirty-two such matrix
element expansions to be performed we do not list the results obtained.

However, they were checked by showing that they yielded the correct
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central field first forbidden trensition probability (Konopinski and
URlenbeck (1941), Pursey (1951)).

Ve now take cognizance of the fact that our nuclear states have
their collective rotational motion and intrinsic particle structure
completely separated. Thus the nuclear mairix elements, which we write
in general as ] ‘

M.
e N UL S
£ ¥ I
can be factored into a product of two matrix elements, one involving
"only the rotational motion and the other only the intrinsic structure.
Since the former can be evaluated we are left essentially with intrinsic

= M
matrix elements, NL( w) of TL (‘*’) . In Appendix D it is shown that

<@§¢ﬂ@u%;> :

Lt s el |
<“i by m_)c(oF kK -L:«,;) ()

In our problem the two daughtai gtates both belong to the same.

(5)

rotational band so the intrinsic matrix elements ML ( W) will be 'the.
same for both transitions.

Let us now write (3) as

)

(tI J\ ¢1\A/ :EE: /\I’n' qut JZ~
| : i

48)



(52)

where Q Q can be expressed in terms of the intrinsic matrix elements

M‘ (:$ ; M“ (MA) Mh v, A) . Now because angular momentum

is conserved during P —-decay
: + =
IA \)Y E
~ ~ 1 :
; » . \
and since Ii = 1 and the significant values of Jv are '7'. ) l it follows
y

that the J wvalues involved will be
3 §

- l S— —
T - o z
If we write the electron functions as er (3 IG Q) ; 3,( (3 IF D.) s
e
the W being superfluous, we have '
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The electron functions are to be evaluated at the nuclear radius .

To expand the squares that appear here would be extremely tedious and

the resultant oxpression very lengthy i 'ue more illuminating. (7) is
quite adequate for é.ny numerical calculation of the transition probability.

In the central field limit

.Pke(jwlp,z) o IxI? e By (wa)

and likewise for the g functions. With A-: _Q(WQ being unity it is -
?

easy to check that (7) substituted into (6) yields

;M’(Igro) Q,

which is the result of Alaga et al. (1955), quoted in Section 1. 3 .

It will be seen that it is only in this limit that the branching

ratio will be independent of the intrinsic matrix elements.



CIAPTER IV

THE COUPLED EQUATIONS OF THE ELECTRON WAVE FUMNCTIONS

" In this chaptef we reduce the energy eigenvaluevequqtion,
(2.2a), of the electron-daughter muclear states to a system of coupled
differential equations in the electron radial functions.

PMirstly, we recognize the separation of the collective
rotational motion and the intrinsic structure of the nuclear states,
according to (1.40 )« As we are dealing with just one rotational band
only one iﬁtrinsic gtate, :X: , is involved, so (2.2a) can be rewritten

as

(oo * He = HQ) | S @) X5 =W [ B(Mw) X

(1)

wherc, from (2.4) and (1.40 )

d(TMw) = 5
’ : Sl E(g(jWI' )J/_ . ¥
5— / e C (‘J’\/J‘:; E’IFJ xe(TWIFF}X}Le ' ((QJ)‘

o (@)

Lt will be seen that we have dropped the label ,e,, since this

refers simply to the degeneracy. However, a possible dependence of the

electron radial function on i is allowed for.

Separating the muclear Hamiltonian, thuss

355
kl
% M
+
I

Nuc RoY INT
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Cf(”"W X>= ot qlg(jhw)36>‘+ E,19C MW)T)C>

since the rotational band in question is the lowest i.e. the one based

gives

NUC

" on I =0 . Then if we write ,
/ 3 4 * 8 :
Wan g (3)
o -
and premultiply both sides of (1) with the conjugate of the intrinsiec

state vector,<x\ , we have

P Her H) [ £ G0 =W [ § (30

{
This is-the equation that we now have to concern ourselves '

hY
4

with. In what follows just two daughter states are considered, ] F =0
and 2 . Ve shall have to draw heavily on standard results of the
gquantum theory of angular momentum, a summary of which is included in
Apjpend;i.x A, Iowever, we shall only refer specifically to this when
ambiguity might otherwise occur.
Since the angular part of %(.T M\Abis known, being determined
' by angular momentum considerations, we attempt to remove it from (1).

Let us introduce the quantities

Gk 2| DF ()

and form from (1)

& F"e bl
\tQ oot He
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Using the orthogonality conditions for the Clebsch~Gordan coefficients

; Me
and the orthonormality oi the Pauli spinors, .x , and of the
.f .
I Xe
rotational wave  functions,

P B vk, (@ )
8q : MF o
(6) vecoues

. e
<1-.Q &
'™

where

zﬁi,(:r ’F1’w;rp’>

(mw > | xc<7MWIs:> qx (IMW1F>

Je now consider each of the three terus on the leflt hand sule

17

of (7) in turn.
(1) Hpgn
%(J mw}) E ZEC (,ilr/jz >'¥f (mwz (@,;)

where E?f = EZ & E 5

The various orthogonality and normalization conditions then give

<QIFK€. (IMW)> : grfm' gnv' 'gI'FZ E: ﬁ: (I:M'wz).

(i1) (9)

ROT

RoT

H
0L KT,
As He is the Dirac Hamiltonian in a central fieid, v; y and the

A
»\’/ (J’ MWT@) are eigenstates of angular momentun, H e"ll/ e(.T MW];) may

bc evaluated exactly as in the central field problem (sea, €eey DPDo



334~5 of Schiflf (1;955),).
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Xe

—

(me)> S 5;},‘ 30 <I MWIF>

(10)
G A ;
e e 3R 2 g
‘ (11)
(iii) H

Q

The IHamiltonian of the quadrupole interaction with a negaton
is given by (1.38 ) as :
‘ H__EQF(T)P(COSG>
Q

. where e is the polar anble of the eleotron position vector with respect

to the symmetry axis of the nucleus. Let (6, ‘#) and (6) ¢)be the angular

coordinates of the electron position vector and the symunetry axis of
© the nucleus, respectively, in a space fixed system. Then with the

spherical harmonics addition theorem (A.18) we have
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It can casily be shown with the aid of (A.18) and (A.19) that
\

D ( o Y (9" ¢ )

Then we can rewrite (2) and (5) to give

B SRR EHY. e(mwz)} '

[ M’

0 G D

'™’ ?T"* ;
t?C)Z,
Lo
G %
.TM 2“ Z M/““e (695) .
g K el

The following integralss over the space of the Euler angles of the

e
nucleus (the volume of this space being g7 ) then appear.
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These may all be evalualed by means of various relations in Section A.3.

The electron part of the matrix element of H. reduces essentially to
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this last step following from (A.37).
Af'ter some manipulation, involving extensive use of the

results of Seotions A.l1 and A.2, we have
e : qB i
07 || Bma) -
i bes e It WD M)

, ‘xw»«z><u,<;»>*c<%%'“ PPl i)
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e are now in a position to form the coupled equations for the
radial functions. It will be seen that the functions are independent
of M, as was tecitly assumed in Chapter II. They will depend on J and

W but different values of these are not coupled together, since they
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are constants of motion, of course. Hence the labels J and W will be
dropped in what follows, since no confusion can arise. It is convenient
to make +the substitution T F = 3’} *rq = «O) whence the functions we
shall have are 3}2_ (IF), %k (IF)) .IF having the values O and 2,
v e . . - E
Taking * _D_ G :Q 5 (7) will now give us the following four
" IM

equations for a given KN

‘(\,\/*—Vc*fl) }X,_ (o) + Lt Q‘F(V)EQJE 3}&, (l)
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The number of different k‘_ values coupled together depends

on the value of J. Vle recall from Chapter III that the J values of

interest to us are J = 'l,‘_ ,%, —f—_ « V¥e then have the following coupling

scheme:

If =0 je = 1/2

Jd = 1/2
If = 2 j.e - 3/2’ 5/2
Iy =0 3, = 3je

J = 3/2
If = 2 j‘e = 1/2, 3/2' 5/2’ 7/2
I.=0 I 5/2

J = 5/2
If = 2 je = 1/2, 3/2, 5/2s T/2, 9/2

The calculation of the coefficients in the coupled equations

(18) is rather laboriousj however, a simplification is introduced by

noting that
; t t
a ( = b ‘ = Q ¢ = 43 = & , etc.
XC. ’ x4. 5 XC. ke_ kQ
and
\) S e I . )('_' K
g = . e
. P__ ‘ P - tc.
5 k& kL 7’ ké y RS
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The coupled equations that we then obtain from (18) for the
above J values are given in Appendik Ee It will there be noticed that
the equations for eacil J value separate into two sets that correspond
to the fact that for non-vanishing values of the quadrupole coupling

matrix element we must have

4+ ﬂ k ! = even integer

2
_ke_ “- [—Kc,

= even integer

The one iinplie's the other, of course.

-



CHAPTER V

THE SOLUTION OF THE COUPLED EQUATIONS

In this chapter we consider more fully the agsertion made in
Chapter II that the degeneracy in the nuclear-electron states 'belopging
to a given set of eigenvalues, J, M, W, is equal to the number of |
central field states, which are labelled by the set ()(e, I ), that
are coupled together by the quadrupole interaction and that this
degeneracy can be completely removed by requiring that each such state
asymptotically assumes a differ?nt set (Xe 3 I P) as constants of .mo.tion.
Secondly, we outline the method by which we obitain solutions to the
coupled electron wave functions that satisfy such boundary conc}itions,

but leave the computational details to the next chapter.

1. GENERAL PROPERTIES OF THE COUPLED EQUATIONS. 415
Referring to the coupled equations (4418) we abbreviate the

notation for the electron functions still further: '3“ (IP> and %’K (If)
are written as '3' and % respectively, both Ke and IP values being
implicit in the subseript i. WVhen we wish to distinguish between
different linearly independent solutions of a pa.rticular funetion we do
so by means of a superscript, thus: '.3“ l} s etec. We recall that
it is Fi and Gi that are the electron radial wave functions and not

'3';“ and Q} » which are respectively equal to rF, and rG, i

(68)
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In equations (4.18), then, we have the 2n functions 3’;, 23; ’
i = 1 to n, coupled together in 2n first order differential equations;
n is clearly equul to the number of LK;, F) sets that are coupled

together., Let us write a partlcular set of solutlons to the 2n functions

as a 2n component vector:

S
3
4!

) ot
e

S h (1)

which will be known as & solution vector. There will be, in all, 2n

o iinearly independent \}ectors of this form that are solutions tg the
coupied equa‘tiohs. They will form a 2n x 2n matrix of solutions, {'\j} 9
known as a fundamental matrix. A necessary and sufficient condition ’
that a solution matrix is a fundamen‘tal matrix i.e. that the columns

constitute linearly independent solution vectors, is that

a

det {fj '#_ 0 | ‘@f
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at any point r (see e.gs ps 69 of Coddington and Levinson (1955)).
Any solution vector may be expressed in terms of the fundamental

matrix, thuss

8 B A )
i i (3)
Py ’I‘E DEGREE OF. DEGENERACY OF THE COUPLED STATES. ;

\ e now prove that half of the columns of a fundamental matrlx
to the equations (4.10 ) consist entirely of solutions that are regular
at the origin and the remaining n solution vectors are all irregular at
'the origine. That is, any function, '3"1-” IA‘.’ s has n linearly independent
regular solutions, and n linearly independent irregglar solu‘tions;
further, regular solutions of oue function are coupled only to regular

solutions of other functions, and similarly for the irregular solutions.

Pirst, we write the equations (4.18 ) in the general form

f—Lj—é’ - Xe;j % = - f Zﬁ% <\"/«'-_}‘<T>; '1> %;

ad <+ 7ol

d

Qa e F@}-/S &y (w h +1)'3~
P (4)

Here use has been made of the fact that in (4.18)

Ke e Ke X,
o e Ke X
o, = LD : 3 e e ad. Lk P = CL i
Ke Ke Ke Ke )(e' Ké
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f(r) and h(r) involve the radial dependence of the gquadrupole and
central electrostatic interactions respectively and so must both be

non-singular everywhere, since we are considering an extended nucleus.

Also

Ry . WL \/\/" Elé : (5)

I.f we write o0 ;
| it ¥ L t
e ¥ Ty
e s
: 4 SR § Cb = (6)
; : : :

v

where the p and q are not the ones of 4 18 ), the indicial equation

is obtained by equating td zero the lowest power of r, which

for 6}
e

is %
(7« x&) ¢l i
S O

(5 = %)y -

9

"

This is a set of 2n homogeneous equations in the 2n variables Fo

2 i 1 to ny so that the determinant, Z& s of their coefficients

1 =
T

has to wvanish:

HE
q
e
( ’
7

b'
’9

\\
o



whence . X

@ .. = * Ke. (8)
< 3
llow because these roots of the indicial equation all differ
v from one another by an- integer the solutions will not in general have
the form (6)s logarithmic.terms will have %o be added. Nevertheless,'
we lmow (see, e.g. Ince (1956)) that each positive root of 03 defines
regular soiutions and each negati;e roaf irregular solutions. Also to
each root 0‘J e )(e.there will belong 1ndependent solutloné corres—

ponding to each value of I Thus to each set of values ( )(e, IF );

¢ °
there will correspond one regular solution and one irregular solution;
furthermore, since a particular solution '}}J) Q&g y involves the same

Gij for all t};) ﬁa‘ it is clear that only regular solutions are
coupled to regular solutions. As the irregular solutions are not
phjsically admnissable it follows that the n-fold degeneracy has been
established.

it wiil be seen that this result is very general and the form
of the proof given above requifes only tha% the potential functions,
£(z) end-h(r), are non-singular everywhere, which is the case for an
extanéive nucleus. Actually, the pgoof may be extended to include the
case of these fuﬂctions possessihg regularvsingularities at the'origin.
Sinoe singularities in the potentials must be regular if physically
Aadmlssable solutions are to exnst it may be Sald that the foregoing
result is as general as possible, i.es it holds as long as there exist
any physically admissable solutions at all.
That the degeneracy must be n-fold ma& be made physically

plausible by noting that for an extended charge distribution the
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quadrupole potential must always vanish at the origin. Thus at the
origin the 2n coupled equatiops will‘partially uncouple into n central
field péirs of coup}cd quations and we may expect that at the origin

" the behavior of the fungtiohs will correspond to the solution of n
separate central field equation pairs, each one of which is known to
have just one regular solutions Out of the single physically admissasle
solution that exists for each of the n pairs,qib, 2}5) n liﬁearly

independent solution vectors for the 2n functions can be formed.

3. ASYMPTOTIC FORM OF THE SOLUTIONS.

Outgide of the nucleus the quadrupole interaction falls off as
f;b , whereas all other terms in the coupled equétions (4018 ) fall
off as 4;, at theAmosf. Thus the 2n coupled equations rapidly uncouple
into n central field pairs of goupled equations and the solutions will
agsume the Torm of central field functions long before these latter

tend to their asympfotic form. Ve can therefore write

oo R e e R T S e

.(9)

; .
th T < (: ! —_ U T Cﬁ &
o i < “

and recall from Section 1. 2 that [, and q, satisfy the equations

-

% : | -_ aﬁb ;. . L+ . 8
(W~ Ve P —= _Q«e l>:_ L 48

G e 3
: .y

At
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where W, is given by (5)¢ Fach L ,¥: pair will have two linearly
independent solutions, one regular at the origin and the other

irregular. -

In the region of vanishing quadrupole interaction, then, a 2n

solution vector of the coupled equations will have the form

o et o
i : N

s ai
\

3 Pt -
~ ” o (11)
~ e

»
i
Hgoi

where Ak, and UL are particular linear combinations of regular and
& A 5

irregular solutions.

" Let us now consider a solution matrix that in the central field

region has the Sorm
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: | | ;
s -0 O MEeas O - O
Ay O O w5, o 'C\)
e S I
; O " A O ki
| 0 g O 7
: 0 i O :
e i aN :
: e ' Mo . (13)
" R : 2
) ’U‘-l : : ,‘5;' .
) Oh : ) ‘ (@) 1
T ~
: : i : .
O O MF\O O M(\.
SR 0 RO >
e ==
1 o S

t %A
where A, VL M 'U“.‘ are particular linearly independent solutions.
e

\ |
That this matrix is a solution for some particular set (‘ oMy W

p_" ,u.q‘__ RS s G e e e s > is self-evident, For it to be a .
e ) 5 :
fundamental matrix requir&s that at any value of r det {‘j’}:lio, by the

theorem quoted in Section 1 of this chapter. By inspection
n

| l { A 1«)’ % /u, * nJ . ‘
{. = -—‘.— . A : - ;
d'e '\} : & & . L A . (13) .
L=31 ; i
“ ‘ ! l ‘
the sign depending on n in a rather complicated way. Now if AA. AL
L ~

'S 2% g .

and . AJ, eare linearly independent for all i, as stipulated, then
g > L
L
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by the same theorem each factor in ihe above produc@ mist be non-zero.
Therefore there exists -z fundamental matrix of the form of (12).

This fundamcntal matrix is such that each basic solution
asymptotlcally assumes good quantum numbers ()(e ).I ) thers being
two solutions belonging to each of the n such sets. Since any regular
solution of (4.18 ) can oﬂly be formed as a linear 6ombinétion of
regular solutions it follows that just half of the columns of (13)
correspond to regular solutions. The question arises as to which are
these n colummns of the matrix. It was proposed in Chapter:II that a
complete set of states of the electron-nuclear system could be obtained
by requiring that each state asymptotically assumed a diffe-rent (Ke, IF)
set as good guantum numbers. This would indeed be the case if the
first n columns of (12) (or the second n; it clearly does not matter)
did correspond to regular solutions. But suppose this is not so. Then
some of the (XQ.IF> sets coupled together by the quadrupole inter-
action would be completely absent from all possible states in the.
cegtral field region. While we have not been able to prove the math-
ematicél impossibility of this asymptotic inﬁibition of some of the
coupled central field states it ig seen to be physically absurd by
noting that such inhibition rmst be fndependent of quaérupole strength
and hence must pérsist even with vanishing quadrupole moment. DBut in
the absence of coupling t?e inhibitiqn(can cleaély not occur énd hence
we conclude that it never occurs. - -

In this and the preceding séction we have succeeded in showing
that the method of removal of the degeneracy adopted in Chapter II is

indeed correct.
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4., THE TREATIENT OF THE TWO-POINT BOUNDARY CONDITIONS.

. Having shown.that such a basic set of states exists we now
have to consider the method of obtaining it. Since the coupled
equations have to bﬁ solved numerically, i.e. by a step-by-step
integration from some particular/éet of starting values, we are faced
egsentially with a fwo;point boundary co;dition problem, theisolutions’-'
having to be regular at the origin and in the central Tield region have
the.form‘ :
¥ A
: oy B, S0
/QBJ ‘ Ge T o - {u4e)
“ . 5 :
where.Lk; and QIL are particular, but undetermined, linear combinations
of regular and irregular central field solutions.

Suppose, however, that we compute any complete set of regular
solutions. This is a relatively simple matter, since the integration
is started at the origin (actuallj, ‘a small distance away because of
the singularity; this point is disoussed in the next chapter) with
suitable valﬁes for the functions, but no aﬁtention need be paid to the
aéymptotib boundary conditions. Now since we know that there exists
a bas‘ié set that gétisfies (14a) it follows that any solution whatsoe_{rér

mist in the central field region be of the form

; hE-LJ _____{>> (:? ‘g "

%? .
o L

(15a)
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v

The essential content of this statement is that in the central field
region the ratio '}; / 2(1 : should be the same for all solutionms j.
If our computed functioné’dq not satisfy this at some particular value
of r then this must be due simply to the fact that'the quadrupole inter-
action is still not negligible’(to within %he limits of computational
accuracy) and we are not yet in what we have chosen to eall the central
fieid region. Values for.ALL and 1{2 s containing én arbitrary mlt-
iplicative constant, may be obtained by putting (;: = '1 for any single
convenient j, whereupon all other C wvalues may be obtained from fhel
computed functions. . .
Let us for convenience write the ir of functi E}:l 13 4
pair of functions Y, ) .
that satisfy the required boundary‘conditions (14a) as(#;S and let the
computed functions '3‘:, ng be written as 5*‘\ « Then as the central

field region is approached we have

My wRias s e ) O .
Ay O O
O G :
. . O O « :
f—ag @
' : . ’\IL' |
R oL :
' O :
: : \ O
: : O
5 ) X
} 200 O Y

(141v)
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and
C\ Ul SR C:)Ml 5 C“Ml
e Y oar £ o
\ ! '
b {
f t
Sy oo ' . |
g ; cd M ‘ " (15Db)
| { l
s { :
| : :
; M
t }J(\. 4 Mr\ n n
| S n n ~ > Lo W

These are gssentially (14a) and 15a) rewritten.
Then by virtue of (3) it follows that we can obtain our required

basic‘sét from the computed basic set by means of the linear trans-

(¢} {€ B

where the matrix C is such that (: « We can now write down

formation

43
the expression for jhe radial functions (JVJIC) (1)< (A\J‘F’ )

satlsijlng the requlred boundury conditions in terms of the computed

functions T} 13

FK: (Wi 1l g Z{C } 3“

and similarly for the G function.

(17)



CHAPTER VI

THE COMPUTATION AN'D RESULTS

'It;wés geen in Seotioﬁ 1.4 that the'most likely case of a
ig ~decay in which a.quadrupole coupling between the different

daughter nuclear states could be significant is that of Np236. Because
of the great amount of numerical work involved we decided to restrict.
ourselves to this single case. For the same reason we took only a
single value of the energy, W= 1.3 (in units of electron rest emnergy).
This means that we shall not be able to obtain accurate values‘pf the
branching ratio, since it is only in the central field limit that this
is independent of the lepton fugctions. However, we recall from the
end of Chapter III that it is only in this limit that the branching
ratio is independent of the intrinsic nuclear matrixxelemenxs. Hence,
'if there is a éuadrupole coupling it will'be impossible to calculate
thé branching ratio exactiy, ;nyway, no matter hoﬁ many energy values
¢ are‘taken. All that we can-really hope for is an order of éagnitude
estimate of the branching ratio, but this will at least pérmit us to
say whether or not the qﬁadrupole coupling of the kind considered will
'supply a plausible explanation of the observed anomalies.

236

The intrinsic quadrupole moment of Np has not been measured.

The highest measured value in this mass number region is IQO{S 14 bvarns,

(80)
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: ‘ \ .
for U233 (sce, e.g. Alder ot al. (1956)). Ve deoided to take }QOI -

15 tarne fer Np3%, reslising shat this value may be rather high. Foe
reagons stated at the end of Section 1.5 both signg of %he intrinsic
quadrupole moment were considered.

The major computational problem is that of the solution of éhe
coupled equations, listed in Appendix E, in the region close to the
nucleus where the quadrupole interaction is éppreciable. The general

method followed has been outlined in the previous section: we first
have to obtain any complete set of solutions that are regular at the
origin., Ve obtained such a set by noting that at the origin the
quadrupole coupling vanishes, so that the wave equations uncouple into
central field equations, as at large distances from the nucleus. Then
there will exist a complete set of solutions sucﬁ that each solution
assumes a different (Jf;,:IF ),set as constants of motion at the origin.
That is, there is‘a complete set which behaves at thé origin in exactly
the same way as the régﬁired set dées aéymptotically. Our method of
c;mputing any such solution, then, was to put all‘but one of the pairs
gk,is;equa} to zero at.thq origiﬁ, the remaining paif taking just its
central field value. VWith these starting values the solutigns to thev
equations were then computed by a step~by—step integration outwards
from thesorigin., Different solutions were obtained by taking different
pairs of functions,tiz,lag, to be non-vanishing at the origin. In the
event of there being no quadrupole coupling this would be the only
pair of functions that did not vanish everywhere. We refer to this

pair as the principal function pair for the particular solution.

The solutions of the coupled equations depend on the radial
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variation of both the central and quadrupole potentials. Outside the
nucleus, radius C’ , the cenmtral potential is
Inside the nucleus the central potential depends on the charge dis-

tribution, but for a constant density of charge it is
| o S
TRt (*’3(’> “FoRy
c 2_(:
The radial dependence of the quadrupole potential has already been

discussed in Seection 1,3, /e have

Rg = e e &
b ol e e

Since we are dealing with deformed nuclei.f: must be regarded as an
averaged value; we took it to belgiven by o
e = A wde cm -

Althéugh our solutions are chosen to be regular at the éfigin,
this is still a singular point and hence cannot be containea within
the domain of computation. Thus the integration must begin at a finit?
distance from the origin, whereupon there arises. the guestion of
starting values. The problem may be avoided by a slight modification
of the charge disiribution within the nucleus. Ve iﬁagine there to
be a small spherical hollow around the nuclear ‘center, within which
the quadrupole interaction vanishes and the central potential is

constant, chosen to be equal to the walue it would have at the center

for a true uniform charge distribution:
« 2

Veioharrg 5

Within this hollow it is possible to write down the solutions. From
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t \")'-))

(1,25) we have for the principal functions

}Q(IF) m Sxe %Ll;l’ -1 (“Pl’")

|

%ke (IQ) | :I;:l : j‘x (e'r) (1)

We_l? \/\/"' S.IFQ\‘ Ez— \/c(o)

The other functions vanish throuéhout the hollow, of course. The

where

numerical integration of the‘equations is then begun on the surface
of the hollow with thé'known value of these functions. Provided that
the hollow is not too big (in our case its radius was one-fif‘th that
of the'nucleus) there can be little departure from the solutions for
a true uniform chafge distribution, which is an idealization, anyway.
The numerical solution of the equgtions was performed on the.
Bendix G15D coﬁputer at lclMaster University, using interpretive pro-
gramning. The method of solution followed was the variant of the
fourth order Runge-Kutta method due to Gill (1951). Ve r;n.through'
trial computations with progressively smaller values of the integration
interval, h, until further rgduction made no significant differénce to
the computed solutions. The value of h finally chosen was h = (?/Sr.
The integration of the equations has to be continued outwards
until the quadrupole interaction is negligible. At r = 5(? the

quadrupole interaction has fallen to 1% of the central interaction,
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in our case, so that it may be expected that at this distance the
functions ﬁave reacdhed their central field form and the matching of '
- the computed solutions jo solutions heving the required asymptotic
form can be effected. Accordingly, the integration was halted at
LR s Q 3 where 1t was found that the ecomputed functions could be
expressed in the form ;

% :.; ; J (\J‘\

58 A

1

(2)

to within 1% usually (see (5.15a)). Hence we can be sure that we have
indeed reached the oen;tral field region (to within the necessary degree
of computational accuracy.)

e now have to consider the matrices of the gomputed Cij
coefficienté for the different sets of equations. There are two sets
of equations for each of the three J values and since we considered
Eoth signs of Q’o there are in all twelve sets of equations to be solved.
It is clear from (2) that the rows of these matrices will refer %o ‘the
different solutions of a single pair of functions, 3:'.)‘5 .+ 9 characterized
by angular momentum quantum number‘s ( K:, 'I: ), while the columns
refer to a single soluv'bion charactei‘ized by the quantum nuinberé
(xé, 1(2_; ) being pure at the origin., Thus the diagonal elements
correspond to the priﬁcipél functions. Ve display the C matrices in
Table I below, the elements being correct to within 1%, The values

(X;, IF ) are showm alonéside each row and at the head of each column,

It will be clear from the foregoing what they refer to in the two cases.
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TABLE I

THE C MATRICES

s |

Q

-

+ 15 barns

k'_ = 3 &' = 1 KC Pog— | xt = 3 ke = _4 kl =
Y a0 Iy wa Tomel Bpiag Ip~30 Tp e
;) -.09 0] 0 0 O'
0 4 0 0 0 0
¢] 0 b 3 0 0 0
0 «10 (0] 2 0 0
0 0 +43 0 1 0
%,
i L 0 0 0 1
(1) InBla ~ sEri
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A

ed Kpwt Kgus. Kg»d Mo wt K
Toono E i wn ko oe IF°2:IF=2 I

1 .09 0 0 0

0 - 1 0 ‘0 0

0 0 1 0 0

0 ~.10 0 1 0

0 0 w3 0 1

34 0 0 0 0

(2) J =5/2 SET I °
‘°= -~ 15 barmns
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Ke = =3 Ke=-1 Xe=2 ke =-3 Kc. 4 Ke = =5
I*“O I}_=2 IF—Q fe oy T Ml K w2
1 -9 0 0 o)

0 1 0 0 0
0 0 1 0 0
0} «10 0 i 5 0
0 £ s o, S 0 0
i35 0 0 0 1
(3) J =5/2 SET II

Q, =+ 15 barns
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L=0 L=2 I.-2 I =2

0 1 0 0

0 0 1 0

0 =410 .0 1

L 8

0 0 JanCHT 0

¢34 0 - 0

. (4) J =5/2 SET II

Qo = = 15 barns
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Ke =2
I;. =0
Ke = -1
Ig =2
K =2
1 -

Ke = -3
1‘;7-.=2
k._ -

IF=2
xe s 2
IF = 0O
kc = wed
IF = 2
kg:

I -

x&=—3
Tg =2
B ol
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X¢=2 K¢=‘1 Kew2 Kg==3 Ke= 4
_If=o I€_=2 '1F=_2 I.=2 IF=2

F
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 .19 0 1 0
~e25 0 0 0 1
(5) J = 3/f2 SET I

Ke=2 K, =-1 Kke=2 XK. =-3 Xk =4
IT=O I?a-g IF=2 I;=2 If=2
1 0 0 0 0
0 1 0 0 0
0 0 ] 0 0
0 -e19 0 i 0
.24 0 0 . 0 1
(6) - & =w3f2 SET I

Q°=-15barns
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n

0

-2

Ke==2 Ne=1 Ke=-2Xx=3  x =-4
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 .19 0 i 0
-7 | Ph 0 0 -1
(7) SR Y SET IT
Q‘o = + 15 barns
Kowa Mpwoi Ke = =2 X.=3 X, = -4
IF = O IF = 2 IF = 2 Q = 2 i IF = 2
1 0 0 0 0
0 ] 0 0 0
0 0 1 0 0
0 -.19 0 . 1 0
24 0 0 0 1
(8) J = 3/2 SET II

QO

= - 15 barns
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Ke= 1 Re= -2 Ke=13
LE—O 1F=2 IF=2
i O 0 0
= 0
=2 o 1 0
=2
=3 28 o 1
=2
(9) §=1/2  SEPI
Qo = +°15 barns
xg,= -1 ke= 2 ‘Xe'.-: -3
= 0 E G
If_ If
et o 0 0
= 0
e 1 0
=2
iy R TSt S X
=2‘
(11} J = 2/2 SET II

; Qo = + 15 barns

L
(o]

- 15 barns

xe_=1 x&"‘Q ke=3
Bg Pl ~2 Jpol
C K 4 * . “
S X =0
e 1 0
'I{=2
Kew' 5 1% 58 ) 1
I;=2
(10) T =1/2 SET I
2 QD = - 15 barns
K, <=t X, =2 X =-3
Ik g Ié D ]% - s
Ke = -2 1 0 0
I;=O
Ke=2 |g 1 0
1‘=2
Bt & WY 0 1
- 2
:F.
(12) J = 1/2 SET II
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Since ihe off-diagonal eleménts are a measure of the guadrupole
coupling it will be seen from the form of the above lnatrices that there
is not a very large amount of coupling. However, the functions
represented in the ¢ matrices have (Kg» I‘:.‘ ) becéming constants of motion
~as ‘the origin is aéproached,‘ whereas we Aw'an‘l; (X‘AIG ) to be ‘asymptotic
con;stan'ts ;>i' motion. The necessary trahsformation (5.17) requires the
inverses of the C matrices. They were obtaingd. on thé computer but we
do not display themA.because there turned dut to be a very simple numerical
relation between the C matrices and their inverses. The latter may be.
represented to within a high degree of a;ccuracy by a revers;a,l ;)f sign P
of the off-diagonal elements, all the diagonal elements remeiining unity. p
We can now immediately write down the expression for the radiel
functions having the required boundary conditions in terms of the

computed functions | ; >
: J
' g S e, 3
A ~
. = < B = . . x
: <
and likewise for the G functions. :

We mow recall how the F and G functions are involved in the
el‘pression for the transition probability, (3.7) and (3.8). There the
; i R e . i [T A

- Q's involve the quantltl..es FX: (JWI £ 1) ’ 3&; (J wl. . 1}
defined by (3.2) as :

IS i ~ N ’
P; = U F,;(J‘WI K) (4)
\ R - ke. f' ') i ‘
: K. i Sl RN '

etc.y where we have made an obvious abbreviation of notation.



(93)

The matrix U is given by (2.10) and is

U Srw)= Y A G f Guaen)
4 L5 ]
BRI A

The delta-function that is involéed in this definition poses a problem

(5)

in the caloculation of Umn since the integrand of (5) is only known
numerically. vHoweve:, the delta—function may be removed from (5) by
intégrating both sides of (5) over-a smell interva;_of'VV'around We
Then.the;double inteératién of the right hand side of (5) can be -
performed numerically- now, if we integrate first over the f'inite
interval mEVV: since the subsequent integral over r must be counvergent.
laving seen how it is possible in principle to remove the .
delta-function from the definition of U 'wo,can now say all we want
to about the latter. If the functions were orthogonal then {U% would,
of course, be diagonal. INow our functions have been chosen'to abproach
orthogonal functions asymptotically and we have seeﬁ,‘in fact, that
it is only for r< 5 e at the most that there is any sié'nificant
departure of our functions from the orthogonal functions. This depart-
ure from orthogonality arises from fhe coupling in of angular momentum
values that disappear as the central field region is reached, at or
‘Before ¥ = 50 - Prde b Dol e UEE 1. 137 ehens Cae Al functions E
-associated with these anéular momentum values give rise to the off-

diagonal elements, which accordingly must be very smali compared to

the diagonal elemenis. Then to a good approximation we can write



x e Z( G, &
471 | _. & / (6)
g - | S

and likewise for a o /4 7 1 is the constant introduced in Section 2.1.

Now the oondltlon that coupling is aupreciable 1s that there

A
be functions P y with different values of r but be-

5.
longing to the same asymptotic wvalue If s that have comparable orders

of magnitude at the nuclear radius, <> « That is, we require that

i _
Rl it

and

l—‘ﬂ (e) u ((>)

be sa.gnl;zcantly dif'ferent from zero for some J, and l values.

It happens that in general the solution of any particular
function, having the la.(rgest value at the nuclear radius, is that
solution for which the function is +the principal function. That is,

for given i

3:00)] " »> |3 e |
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A
and likewise for J%. « IMurthermore, in any particular solution,
~ :
by far the largest functions at the nuclear surface are the principal

functions for that solution i.e. for given .jL

5! (¢) >> 3 (e)
l s A#L ,e'tc.
It should be noted of course, that these remarks do not necessarily
apply to the transformed functions satisfying the required boundary
conditions.

(6) now gives -~

Py (G) ue 31 (¢) i
Also if F (e) is to be comparable to Fl ((") then the

approximation

!

L gl
") - @,
A -
~¥R AE[JT'fD A
is good. Thus we at last see the manner in which the off-diagonal
elements of the C matrices describe the effective coupling. With the

* C matrices given above in Table I it is now possible to write dowvm the

possible couplings. These are displayed in Table II below.

..
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J Asymptotic Quantum Angular liomentum States
: ' g :
Value Humbers - that are Coupled in
Close to the lucleus
Ke [ %
3 0
1 2 iF
; 3 2
w3 0
o, | 2
o , 2
5/2
3 0 5 2
oy 0 -5 2
2 2 4 2
-2 2 -4 2
2 0 4 2
ke -2 0 -4 2
3/2 . '
1 2 3 2
-1 2 -3 2
1 0 3 2
1j2 .
: -1 0 =3 2
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Now in every case the only states that a;'ce coupled in have
X e > 2, which correspond to higher degrees of forbiddenhess. From
the computed values of these functions at the nuclear radius it turns
6u1: that, as iﬁ the central field case, higher degréeé of forbiddenness
can be ignored. The largest amountrof coupling is about 15%: +this is
for the admixture of (Kg = 1 3, IY = 0) astates. into states that
-asymptotically have &‘ = 1 IF = 2.

" In this chapter we have merely presented the essentials of the
computatibnﬁl procedures and the numerical results. For more detail

reference should be made to the author, c/o lcllaster University, who is

in possession of the complete computed electron wave functions.



CHAPTER VII
CONCLUSION

It has been seen in the previous chapter that the only coupling :
between different nuclear states is that which occurs through eleciron
states belonging to higher degrees of forbiddenness. At the muclear
surface these are eoﬁsidembly smaller thah the electron states
corresponding to the first degree of forbiddenness, as 1n the central
field case, so that the actual amount of coupling is very small: 3.%
is the largest mt of admixture in any state characterized by
asymptotic constancy of eleciron and nuclear angular momenta.

Thus, although there is a certain amount of mixing of electron
states associated with different nuclear states, the states that are
mixed are such as to be of little consequence for /g ~decay. This
is rather surprising, since a rather naive perturbation theory approach
would indicate the largest coupling to occur between states of low and
comparable electron angular momenta e.g. between the stat’es
( KQ =2, I,

only very weakly coupled.

= 0) and ()(e_ =2, = 2). Instead these states are

I
It will be noted that in this thesis we have adopted the model

of ﬁ ~decay taking place in the nuclear surface, since we have

evaluated the electron functions at the radius of the ohérge dis—~

tribution . Now as the effective radial distance of a decaying nucleon

(98)
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from the center of the nucleus must be less than the surféce radius
it follows that the relative contribution of the electron states of
higher degrees of forbiddenness must be even smaller than we have
estimeted. Hence a correct treatment of the effective nuclear ggdius
would rqduce fhe coupling still further.

It is seen from (3.7) that the effect of the coupling on the
branching ratio will depend on the intrinsic nuclear matrix elements.
However, a large anomaly in the branching ratio could only arise from-
a small coupliﬁg if there were a large cancellation between the V
different terms of the Q's in (3.7). But such a cancellation would
mean an abnormally low transition probability, whereas Gray (1956)

reports a quite normel value for Np236.

; e therefore conclude that the quadrupole interaction of the
kind we havelconsidered in this thesis is not of importance in fg-decay,
since its effect on the transition probability is unlikely to be'more
than 1%, at the very most.

There are now two possible ways of accounting for the observed

176 80

anomaly in Np236 (in the case of ILu and Ta1 we can never be sure

that the Bij'matrix element is not responmsible, however‘unlikely this is).
(i) The anomaly may be spurious. That is to say, either the

parent or daughter states may not possess pure intrinsic states. This

would mean that Alaga's formula (our 1.41) is no longer applicable.

23§ ner its daughter, Pu236, appear to have had their level

Neither Np
structure carefully examined. On the other hand it is well known that
the transuranic nuclei generally have well developed rotational

structure. In particular the spectra of Np237 and Pu238 (see e.g.
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Strominger et al. (1958)) indicate that mixing of intrinsic states
mist be very small., Thus it seems possible that

(ii) -the anomaly is real, in which case another explanation
has to be sought. Vithout developing the idea at all it is now
suggested that there is a possibility of the Dirac single electron
theory breaking down and radiative corrections becoming necessary.
That this is possible can be seen by remembering that at the nuclear
surface the quadrupole interaction is comparable to the central
potential. Ilence on some regions of the nuclear surface the electric.
potential will correspond to an atomic number of the order of 180, so
that contributions from the‘negative energy states may become im—
portant. In that case there would certainly be a departure of the
electron wave functions from the Dirac form. liow there appears to be
some evidence for this happening in Np236= since qz/e >> ’(wo'-'l)
the spectrum shape should be statistical (see the article of Konopinski
in the book of Siegbahn (1955)) whereas in actual point of fact the
spectrum has ; forbidden shape, according to Gray (1956). On the other
hand it is rather difficult, to see how a differential effect on the
transitions to the two nuclear states could arise.

llevertheless, the general problem of the polarization of the
vacuum by qﬁadrupola distributions of charge is a matter worthy of
further investigation, since it may be of general importance for both
i; —-decay and internal conversion in sirongly deformed nuclei of

high Z.



APPENDIX A i

IMISCELLANEQUS NOTES ON THE QUANTUM THEORY

OF ANGULAR MOLENTULI

The following is an explanation of notation and statement of
results occurring in the quantum theory of angular momentum, relevant

to this thesis.

1. CLEBSCIH-GORDAN COEFFICIENTS.

Consider .the combination of two angular momenta, denoted by
the usual quantum numbers (y,, ™M1) and (51; m, ), respectively, to fornm
the angular momentum (J, 1M):

‘T = J\ * \J s
—~e ~ ~
S0

| Jinda e e B (1)
and !

: AL o mg M _ (2)
Then there exists a unitary transformation connecting a representation

in which (J,, ™ ) and (J,, ™) are diagonal with one in which (J, )

and Jl y and .S'z are diagonal, thus

,\f; : Z 8(?1 : f"%fﬁm “f/: ¢

: (101)
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L A :

where the C (M “"l“ )2 factors are the Clebsch-Gordan coefficients,
I WMy

demoted | J'| jl ", m ‘J. ik 3‘[\’\) by Condon and Shortley (1935). They

are zero unless (1) and (2) are satisfied.

There exists an inverse to (3)

m, ™
/\_// C ‘) J‘ J 2 ) _
i E M M (4)
.)| ’\L// [ 2 D,
Tables of values of Clebsch~Gordan coefficients, sufficient
for our purpose, are given on pp. 76-77 of Condon and Shortley (1935).
In this comnection it is convenient to note that
C(oOo)'o_, i
unless J1*J.‘J1 ¢ Z
where /e‘ is an integer.

The following orthogonality conditions hold

TCEREA)ELY) & @

U
o\

'3' i (_) 0 )
M m, Mz Mo uf ™ W (1)
% | ,
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There are the following permutation relations:

ci) - @TCGEN - T A

m

JZ‘MZ Zj+| '; j\ __J_ :)1 J"‘M' 1_]+| . J J"‘j
" (—) (Zt—*—_\- C('MI’M W‘>>: (_) (QJ}H) C(‘"‘t M:-M)

(This is not a complete list but all other permutation relations ean

i

be generated from these.)

2. RACAH COEFFICIENTS.
These arise in the combination of three angular momenta. They

may be defined by

{(2@9(2;”)}5 W(agci e f) -

Feba S il es i oca
i . 2

" (9)

Reviews of their properties are given by Biedenharn, Blatt and

Rose (1952)_ and by Rose (1957,; however, the former contains more

extensive tables.
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Two relations of importance are

g{(Zeu)(z gh){ @bcd ef> (ﬁ < p\o :)C G“(;S : Fi’)

: C(Mep - g)Cé;s 0:{5 .d) (10)

o

{(ZQ"')(,}”)}—;W(“"Cf*)'efjC(mpc*g : Pfs) P

ZCQ‘*;: ;)CQ‘*P‘“Q i S)C(P* 2) (11)
i |

W(abedsef) vanishes unless the following triangle conditions
hold: ;
Alabell oo n ot e A balls | Aade)
where A(a @) means 5 q
[ sl HGEe kg
There are twenty-four possible permutations of the six arguments

which preserve the triangle relations. The result of any permutation

may be generated from the following basic relations:

W(a@cd.-eg): (éa_dc;eg—’) = Wédaé;ef)
eif —a-d eef-6-C
- \,\/(LLC&A Jj( ) =(~) \A/(G@Cf"a_o(_) - (-) | W(aqgotz écJ

(12)
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3. SPHERICAL HARMONICS AND THE ROTATION MATRICES.
The spherical harmonic functions, \( 9 ('é, 4>> , may be defined

to satisfy the following relations

.g Yf [, 405 =Rl YZ‘ (6.¢) L
]_5 Yz\ (e)cf) S5 T YZ(Q” | '(13)“ |
O AN CURS (CESTEY P

i

If the normalization condition

; x M
S Y. e d’)Y (e,¢) 4L - 1 (14)
v 3 ;s A
Q:Hn : ’
is imposedy we obtain the following unique expressions

YZ(Q’ e [ 2041 ([:m).l}ic—)mpm(e]{ Aw f

23S (@m«),’ (15)

where

™ ; Lt w |
ACR TR 9[&\@9}} ot - 1" o

This is the definition customarily adopted in quantum mechanics; it is -
the one used by Condon and Shortley (1935). Characteristic of this

definition is the relation

Ra(R S o8

2 : (17)_
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which comes from the identity

> W (Z-m) g m
P <6>:(-—) W lJl (9)
Suppose there are two unit vectors, ( 6 Sb ( § ) ’

such that the angle between them is e Then

Pe) - A YN (06

where ’}3& is simply the PX of (16). This is the well-known spherical
harmonics addition theorem.

| Let us now consider the transformation properties of the
spherical harmonics under rotations of the coordinate system., Such a
rotation is specified by the three Euler angles, which we shall denote
by ®; 3 it is not necessary to offer any definition of them here. Then ,
1f(9, 45) are the coordinates of a point on the unit sphere in the
original frame ‘and<9‘) C{Dl> those of the same point in the new frame Qe
can write . : ; . ;

m . D/Q(@)Ym(el cFl) :
YX (Gﬁw ‘ o % S B (19)

' g

2
| (GL) is known as a rotation

The '.bransforma'l:ion matrix, Dm
matrix, and, in fact, it constitutes a (21 + 1) dimensional urequcible
representation of the rotation group (see, e.g. Wigner (1931)).

A great deal of confusion arises from the use of different

definitions of the D-matrix, (19) is essentially the definition of

Edmonds (1957) (note, however, that (9, 4)) and(ef qS‘) are used there in a



(107)

different sense) but differs from that of Rose (1957), who apparently
takes the complex congugete of the Idmonds definition. The latter has
the distinct advantage of leading to the conventional form of the
eigenfunctions of the symmetric top (see, e.g. Bohr (1952)), wheress
Rose's def'inition does not. Thus it is important to realize that when
the rotation‘matrices are used in this context the definition (19) is
implied. However, the relations listed belbw are valid for both
definit;ons.

Since the spherical harmonics are orthonormai the rotation

matrices must be unitary:

Z Dmi *( ®‘> Dmi (@U éﬂ\:m" 2 (20)

The orthogonality relations for the irreducible representations

)

of a contimuous group (see 10.11 of Wigner (1931)) lead to the following
integral on the unit sphere, taken over all three FEuler angles:
. 2|* Xl \
S8 D T
mlm(‘ mm'

Q- %%t R

: 871 (21)

P T

21*1 22 o S

Lty 2

By considering the transformation induced in both sides of

(4) by a rotation we arrive at the so-called Clebsch-Gordan series:
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D* (8) D" (8)
> Clti m m)Clo 2D (6)

\ P ™M™

(22)
From (18) and (22) can be deduced
45 (MW Wy -
F
2.0.+)( \) ' <L2. J&.,L) (L}Z 2)
6 o) C Y(e )
ZA/ ZmT(lL"l) C O 0 Mm m qg
e
4 SPHERICAL TENSOR OPERATORS AND THEIR REDUCED MATRIX ELFMENTS. %

i“Ge
™M

A spherical tensor of rank L’.T-L, sy is a set of (2L‘+ 1)

functions that transform under rotations like spherical harmonics of
i

order L i.e.

(o)« 2 P (W)T]C)

L

where W represents all the arguments of the function. If we have two

spherical tensors,-T— -T- s the quantity

e 2 »
§C w1, T o

%

is a spherical tensor also, since it can be easily shown with the aid
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of (6) and (22) that it trensforms according to (24). Thus we have a
prescription for forming tensors of arbitrary rank from two given
tensors.

-A special instance of this procedure can be obtained by noting
that the spherical harmonics themselves must be spherical tensors.

Now (23) can be inverted by using (7) to yield i

el L RN CR
(22,+1)(2L,+) C((L) Ji Jiz. Y:q(@.‘?’)- w

b (2L+1)

which is just (25), aside from a constant numerical factor.

u

But thus fer all we have obtained are spherical tensors on the
unit sphere. We now note that any vector ﬁ mugt be a spherical tensor.

of rank t., This may be shown most explicitly by writing the components

R ;)\}—%’(A‘tLA‘}S)" A":_Ab(z?)
*\/Tj—— A“Ylm(e'd)) - (28)

m
whence A transforms as Y ( 3 45) Vie can then form spherical tensors

as

Then

from the wvector A by means of (26)s It is convenient to introduce

the so-called solid harmonic:

§ () =AY ),

e .

-
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whence from (26)

(Qﬁ,-!-l)(iéﬁ-’) Ll 2+0-L =
Ll-n(ﬁlL*l) C(oo O)A ’ljl_ ﬁ)

YL N WY@

"‘hls again is Jjust (25) with extra numerical factars.

rhy

The matter of greatest interest is the possﬂnllty of forming
spherical tensors of more than one vector argument: there is nothing
to require that the two lensors on the right hand side of (25) ve

formed from the same vector A e In the theory of p -decay there is

just one particular kind of tensor of this form that ocours:

m m
e | ' a
T, (5 8)= _S_C(m oY @Y (4)
A ! ,
(31)
Here A may be any vector other than T « It is always involved in

(31) as a vector; the rank of the other solid harmonic is denoted by
the subscript >\ on the TL) .
In forming (31) attention must be paid to a possible non-

commu'bution of A and T' The parlty ofT is clearly

el

no= @' (e (a8

L <
We usually encounter spherical tensors as operators and we
require their matrix element between two angular momentum eigenstates,

.(j”m')' and (ja_‘ml). By remembering that the matrix element must be
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invariant under rotations it is easy to show that (see Dpe 263=4 of

Wigner (1931)). -
i e C e = W] Tl >

where<j. H TL “Ja.> is known as the reduced matrix element. The

essential content of this result, the Wigner-lckart theorem, is that
the dependence of the matrix element on the magnetic quan"bum numbers
resides wholly in the Clebsch~Gordan coefficient,

Ve now evaluate the reduced matrix element

T e || Vo f] Xk >

where x is the Pauli spinor

fe TG Y G(r)

(34)

By (33) and (6)

<Xl Yo = ZCQ <IN S

Now from (23) and (14) (35)'

QX s - B (55 2 ek 4 4)

where the integration goes over the solid angle 47C. Then

(36)
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£y +1) 4? 1? 2
<x,u ,Y ,I/‘> ,[45?1!«-1) " X0 OKO)X

lC()‘ 20 ’:) (j‘ )f-K" E) C(/u"' /ﬁ' i)

Then ~1tn (35, and various of the listed relations for the Clebsch- -

Gordan and Racah coefficients we obtain

' Lowy-4 ) (%+1) )3
<%y =07 | T } x

C(Zoxl lg %) W('Qx J ‘éx.]);,_l)

(37)



APPENDIX B

P'IRST ORDER TIME-DEPENDENT PERTURBATION THEORY

FOR NNON-ORTHOGONAL STATES

We refer here to pp. 195-7 of Schiff (1955). In our case !.u.n>
are to be a set of linearly independent but non—orthogonal elgenstates
of H ,

o

Putting ‘h = 1 we have, with Schiff,

L% dW a (w (/4 (w)> -iwt _Z JWZ(W)HI{AE(W> e::‘/f
2
Then ‘wé

L) (W <r ()4 (D> @, (We =

g
Wt <

%fotwaz(\o/)<ﬂk(w7l}-{'l/fe(w)> e (2)

where we can no longer make use of orthonormality on the left hand side.
However, we can still follow Schiff's first order proéeéure of

assuming thet at + = O there is only one state occupied i.e.
: ‘ & t
a (W) S
£ Qe ;

(113)
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and that changes in all a:e have a negligible effect on the right i'xa.nd

side of (2). We then have the essentially first order result

3 [l 4o0s
ot

LA OO A ) N

/"2 (W)> belong to the

continuum their scalar product will have a delta~function dependence :

Ve now note that because the states

on enexrgy. This can be seen most easily by expressing the non—orthogonal

states !,U-a(W)> as linear combinations of orthonormal states,
: l ’Lfm (\\!)> s thus ] , ;
> = D> G (W [N > W
m ;

where

<V (W) |, (W) = Sm § (w-W) ®

g [ (> = S Upe @

_where

Um = EC': (w) . (w) (1)

L
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Then, with a re-arrangement of primes (3) becomes

-

i alf (W-W’){:
,% LM e s WA S
4 (®)
ile then have .
—(,(W ‘v\/'

o (s ;{U} < (4 A (9,

(273

This has essentially the same form as Schiff's equation (29.5),
the only difference being that the simple perturbation matrix

: %i:}“2_<“0 ; Fjlg /AJ(VJ{):::> is replaced by the more complicated

(0

(10)

gne

(’u,e\“‘/) E <W)> L{U < /u fu,,\,’

For the case of particular interest here, that of the constant

perturbétion switched on for a finite time interval, we simply have to

rewrite (29.9) of Schiff, thus

<f<bVLbJ‘>'ﬁ

a (W) =- (w}@ ()\e "_]‘
g PR (11)

/e mow recall from'Section 1.1 that in the correct formulation
of fg ~decay the perturbation Hamiltonian is the field interaction

Hamiltonian (1.6) and that the states between which transitions must



(116)

be pfesumed to be occurring are occupation number states. It is nbw
- 7

shown that, as f‘or orthogonal states, we can formally identify the H
above with the Hﬁ of (1.8) and *the states

,un> with the
TN\A/ n > states.

The non-orthogonal states iTMW) n.> can always be expressed

as linear combinations of orthonormal states as in (4). The cor-

responding occupation number states are then

s ki B

< {1208
wé shall then have
N, (W) N(W) N = <TMW,) m ,j’MW >

% (W)> and that of the states
0--- O)nm (W) 1) 0-- '> are srthonorssls >t mow follows in.

(13)

since both the set of states

the same way as for the orthogonal states in Section 1.1 that we can

make the required formal identification.



APPENDIX C

THE IVALUATION OF THE INTEGRALS (2.13)

/e offer here a derivation of the integrals (2.13), which are
implicit in the papers of Greuling (1951) and Lee-Whiting (1958).

Let us write -

s B Y, o

whence i
& R 3
Fﬁ’{@ +J2\/’»/eco + W

If we now put

W = } wt =ay

the integrals become i 2 L
e W, &
‘__;"“3 1) (H"-ﬁ.—z"")‘z'*"-'-%—a =
I = Ol‘é e - PI v (1)
ol E, ‘ 3

Next we note that the integrand has a fairly strong maximum
at ‘é: 0 » .whence an approximate value of the integrals may be
obtained by confining attention to the neighborhood of the origin.
Thus we expand the surd occurring in the second exponential “terr:q ;

aroundv’} = 0 to obtain

e . Al S -
R N L R X W T
(2 g T "‘

(117)

(2)
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Discarding all but the first power of 3)(1) becomes

v i3S ® iy £ W
e i . f S L= 3
fﬂ 43 e : ﬁe

€  3

— %0
which immediately leads to the required result by means of the identity
L L A= . Bx AT i if : A +ve and B - ve’
d s ot ol
. it ‘X- :
S O if A—ve and B—VQ
(3)

This method of* evaluation can clearly be only approximate.

[}
Inspection of (2) shows, however, that the approximation will improve

as r increases. In fact, (2.13) may be regarded as an asymptotic

value of the integrals for large r.

This point may be illustrated by considering the case r = 0,
which can be evaluated exactly:
o0 —).a.b
g 5 .
} = Jr¢ for a + ve -
, "b :
- 00

which is quite different from (2.13).



APPTNDIX D : .

HATRIX ELEMENTS Il ROTATIONAL STATES

Wle are concerned with the evaluation of matrix elements of the

i P s T pely

where the nuclear stdtes have their rotatlonal motlon and in'trlnsic

form

structure comple‘tely separated and the TL. are spherical tensor
operators of rank L_ in the space of any single nﬁcleon. ;
A transformation to the usual system of coordinates fixed in
the nucleus can be effected by use of (A.24), thus:
m : ' L e : / R & :
T (w) = Dhm' (Q) { ¥ (C«.)) ; {13
¢ e

The Inuclear states can be written

M, /_1I.+l xi DIL(@ i *If‘}.xi D ‘(@)

?‘I :,. 16‘7&1 N M"k‘: C) <) .."Q' M.-K, ‘
M 40 I

A - D (8

§n*

(2)

(119)
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(
+the daughter state having the simpler form since it is in the lowest

rotational band of an even-even nucleus and hence KF: o) (see Section
143 e

The matrix element then factors thus:

- @t (11 + £ m y |
L[ ,,)Q”z@c TS <"

v s <o | o  } D+
| ™ M-k

In the first term here onlyM '-'-"kz contributes and in the second term

) /
onlym = K‘: « By means of (A.21) and (A.22) we then have

[D {DIL>
MM—KLI M, Ke

1]

£
817:1 C< If IE \\ /‘ / T I(; [ \)
ALt s ”f i\ o kg :
et I e ! F
( D F { D ?,;l 3 \\. y
Mg o i ) &
f i A o PR L / _ )

(4) -
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Noting that ;
Ta 4o Jes ¢ G5 S 1_‘
T ¢ S ¢
C<o K _Kc>_<) C<Of'Kg"K¢:)

L

. we then have

<“1* IT <)/%§;> -



APPENDIX E

THE COUPLLD EQUATIONS

Jd = 1/2

mr %0 40 % )8, 0, 50, 4@

W v R - 5O 4o
: d\

i

. 7‘5-e1‘?oF(*>{ﬁftz(l)+B%(l)%' =

t

av 'S

(w*—vc-j)a)‘(o)ﬁ» Aok )
ik e R {ﬁ%-l (2) +J§53(7~)§ ol

(WeE-v R s ety B
Av

(o

:
FI e {JTSECO)+3§,L(2>+E3;(1)§= O

(122)



(123)

WEE Vg @) ARG g 4
A r '

L

| ,
Fb e .QZQ b
o @ S FOFE RO e s 3 0= o

. (i E;vc—‘)%_l (25 4551@* 2 3@

v &z

e S RPO(g (31 o) s fwf=o

o E-voih o). 456 o 50

A '
Yu

r -+ Ql Qo i © 2 ‘
o © R P58, JE 3, ) L= 0




(124)

A (), &, (o), 3 o), QA* @), .3 @), 2.,

iy TS W (4
' av

Y

b Tt; .g"- Qo FCf> {H 3'1 (1) % E 3:_3 (l)% * O

A b

(w *~Vc~ \>£\)~( (D) 5 4 3:\ (0) o 3:' (o}

35 -l—:-D i % P(T) {H%z (l) + E%% (1)? &

(\A/*'— E_‘_;Vc-b l)?‘,_@-) - A%l(l) i ’%,_ (1) -

ek

T-

¥ et o) {J‘a@)q @) \f: %

| O



(125)

(\/\/ e V+1)3(1)’d_lif—)+3% )
dy

f

. Qr(vgrfr.(o) F“sz £3,04( = ©

d 3 (2) )

A

+ “'; et Q, £ () {ﬁ %-v 9 81 e l_‘% 6‘3 <2>%

<\,\/ % .E; VC— -l) %1(1) A+ 2

Il

e

(VB Ve aiey « i Sy e

dr i B

P

) ;:mij‘g (0)+ r6(1+‘+% mf i



’(126)

.J=32

BRE RO, Gy, 3 (de@. Ry 4 )

L, @3.5,50), %@, 4, @)

QA/ Ver1) % (0)- 45 (@ _1’%(”

dc

A UO (1O 30T 1,0

+$§}4(’-)§ " O’

(W=Ve1)g (o) 4 270)

d v

23

-

+ (_,6 é’lQO F(‘.) {_ %_{ (2)-.%,162)_‘_55%-3(1)' ',
WEhal - o



‘ . (121)
(W“— Ez—vc+|>}~‘ ) - d%., (2) i ,ﬁ—’ (2) .
d

T
-4_L1

o % fO -3 () + 3,0 ~j§13<1>5

(\a/{ E~V.- l){?)_‘ () + 0(34 (») sl W)

d+ Ve

+—;e QFY){ %(o)-{-ﬁ (1)-.'\1\3;,‘0} (1)%:

0
—
-
s

(W"-E~Vea)3, () - -k ’j;(}z }
-t

<;>$<~r){ 3(e)+ 3, 0) v 2 )
“rlitwl = o

(W*-E - Ve-1) 4, (2) 126 gi 22

e

\ ~

C LG R {sﬂ%z(ow%“@)u;g%_gu
g ?"4/%'—134(2) Zg 7



(128)

gl ¢ F(x) {E 4,00 “J%—T%_, (2) + i;_}% 2 ()
i -42._; Ha@ + %E%L,(Z)i =0
| (w"-g,_—vc+ 1) z (z)._ 5@ L 4.0
- dr h B

Pl

7 % i_g. 4 2 L . :
1o 9B (x) {J_; hioa- 7[Z36)+ 223 )

e 34(1)} e

| (W"—E;V; })&(1>+ OL?(Z) ~ 1 3'4(1)

4 it - IR
R R R NGRS NORY S

Loe
g ,,(l)i = O



(129)

; SELII 3 (o), %—z(é) , 3, ) 13« (2}, &L(l)) '03-1(1)
By, A, @), 9_&(2)J 2.

(W**Vc* ) F,(0) - .____d%""@) ). £1i(0)

Ay ¥

v A QL Rl {—3, -T, DT H@

(W= v-1)4 . (> « L e
‘ 4y

T

N CR R ORIV NE

s E%w.ﬂ)gz O

7



(130)

(w 4‘__ E—,_— Vc_* \) 3.1 (2) 3 A% (l) % (l)

df X

NG EENCIENCERERTCV

43, (2] 3,(2)

I

B \)93,@ +

dx A

SR8, 048.0- F 5= 0

RC T ICT S NCEE RO A LN

Rl - o




(131)

W™E -V <)%y - 44,60 4 %@
d+

—r-_L"’-Q ?(*’){F?‘ (o)ri(z)-# [31(1)

- 20 2 -
4 33(1)+4§ 2 1"0)% o

s (W E~V l>%3()_)+ ‘li(l) 3_9'(23.

Lerg o {F% (o) f%(z)+’°J:%-1[1§ ,

_.10 (2)+—F,% (2){“0
(w CErver) 3, () - ‘“3( 4%_&) ;

< ®$<v>@7‘_} <°>~—F e Ty e
% @3 = o
(w E-V-1)h, () &9-413 et |

e’ @, t(v) {F’%-@(DJ'-—‘F%_I(Z)* E%B(ﬂ

% lbo%-#() { e O

3~" (7-)




(132)

[ %}
=
-

35<°))’0}5<°)) [ @’%.(2)3 -}z@); %_,(z)
330), %5@-), BZL, (1),%_‘4(2)) '}5(1)‘ %ge)

<w*' e * i 300) - “33(0 g (o)

eQF{*){Hw!\Mz)J\S’zn)J\} ol
+,{§°’ 35(1)§ 2 e

TN o 43, (o) 3 (o)
< L B%B&) —-———i—;——’) 3{

Fu'f \-'o .QIQO f(d {%.&U-«E %‘1 (3‘}'“/;%2]5(2) +‘/—g§"*(z)
‘E ’%50)% L




(133)

| (w *-El- () o) - &g-l(n, o il eJ-l(l)

e i
» e g i) {-Jﬂ () -2 30 -% 3, )
- Elite| o

oy ol;_z_(l) 5-7_(1)
Uv S v(——')g-z 4 — +

R e J:(*) {’ﬁ; %5(")‘5 9. —_;s G2 @) |
""f:i; 3 ) ;8qosE€‘”(1)} b




(134)

T e @ -
(W S \) s aL5 QJ

+L ere, }(r){- 2 R FHIM—- 3,@)

- 22 3 (a) ¢ o E-H(z)—%ESS(I)S 5.
Yq 147

R PRENE - AL

v

o €% See) [f%m IER SIS
,.'%-; 5(1)4%\_(7\_1~ f—g()}:o

(W E —V +|)3 (@) = OL%;@) il é-q (2)
=

‘ * [Bo /e '
4‘ g o g(r) EE 35(0) e 5 j:: ?-:.-(3') I'Tr—j Js(.z)

5o } S50 j g,
g —_— () + {x] . =g
gy ? ) s 75 V) }







(136)

2R S L SR GV T 14,0, Lo, G0,

by () 600 il By R

(W*‘Vc,"') d.5(0) - dejs@ s I8 L3()

d
e {; @ - fa,o)-@g-g,m E
+E 3q(z)+\/_.§’ g (2) } =0




(137)

L §

(\N-—E V+\)}(})_0L‘% (2) * %_(O-)
Y v

' !
4__')_

o %(Oé- °)«[—3(1)J\3(1)S :o

QW S ,)% A ¥ () B

+
V‘ Y‘

5
4—'QO

o < ta\i, () &%-5@)'@51(1)’@?.5@)} = ‘O |

(\A/ —E~\/ +1)";7(1)— d@ (2) 4 2@ (2)

= ' v

o FM{ S EEND EES (1)=% i)

LO Igo /\/\
b 11) o g (3_) - 5

(W*~51\Vc~,)§l(l) ¥ djzﬁl).‘z M)

i

+tQIQD ’*){\rgb(fﬂ f—ej () -—91(1) | ,
+—'9_ 'ﬁfi \/—‘%u@)} =»o



(138)

(w_.Ef Whin s A0E b8

dm

| B e’“@o ftr) [(ﬁ; NE ﬁ; G..03) +

J¢ : 20 | ' :
2 Fogigr o3 «
qu 1\-) 4q §r3 (Z) :

"'lq /JZ: S .'
i % [1) L{Q\[% {i’*:.r@.)% =0

v

3 C{M&"E{vc_*o glf@) = 'iiz : ‘ 4 %“ i

147

. o). 8o v
C {\/—\5 () - 2us 30“ Ll '325@)

5o 50 e
b R :
294U 4 (l,\ : /u7\/?_ 9‘5 (l) % =%






BIBLIOGRAPHY

[xlaga’ G., Alder, 1:., Boh.r, A., and Ijottelson’ Bs . Re (1955). Dan.
Lht.;*j’s.ziedd.&,nO.Q.

Alder, I:., Bohr, i&., Iqus, T., I-bttelson’ Bo and _'.-"in'l‘.her, A. (1956:}. :
ROV.I\IOdQPhySQ_Q_a_, 432. -

Biedenharn, L. C., Blatt, J. M. and Rose, ie .- (1952)s Revelipd.Phys.
_2&_’ 2‘19. *

Bohr, 4. (1952). Dan.Mat.Fys.Medd.26, no.14.
Bohr, A. and lMottelson, B. Re (1953). DanJMat.Fys.ledd.27, no.16. .

lhlrgy, :I. T., I:rOh.n, Vo Eo’ IIovey, T. Bo’ Ringo, Go Ro and TElegdi, V. L.
(1958,). Phys.Reve.Lettsl, 324. :

Coddington, Ee Ae. and Levinson, N. (1955). "Theory of Ordinary
Differential Equations.". McGraw-Hill Book Company, Inc., lew York.

Condon, . U. and Shortley, Ge. He (1935). "Theory of Atomic Spectra."”
Cambridge University Press.

Dyson, e Jo (1951). Unpublished notes of lectures given at Cornell
University. .

Edmonds, Ae Re (1957)« "Angular Momentum in Quantum llechanies.”
Princeton University Press.

Fermi, E. (1934). Zeit.f.Phys.88, 161.
feshbach, H. and Villars, F. (1958). Rev.lod.Phys.30, 24.

Gill, S. (1951). Proc.Camb.Phil.Soc.4], 96.

. Gray, Pe Re, (1956). Phys.Rev.101, 1306.

Greuling, E. (1942). Phys.Rev.61, 568.

Greuling, E. and lieeks, Me L. (1951). Phys.Rev.82; 531.

(140)



(14%)
Hyde, E. K. and Seaborg, G. Te (1957). Handbuch der Physik, Bd. XLII.
Springer-Verlag, Berlin, Fod

Ince, Eo L. (1956)., "Ordinary Differential Equations." Dover
Publications, Inc., llew York.

Konopinski, E. J. (1959).  Annual Reviews of Iuclear Science. Vol.J. .
(4o be published.)

Konopinski, L. J. and Uhlembeek, G. B. (1935). Phys.Rev.48, 7.
Konopinski, Fe J. ond Uhlenbeck, G. E. (1941), -Phys.Rev.60, 308,
Lee, T.’D. and Yang, C. N. (1956). Phys.Rev.104, 254.
Lee~-Whiting, G. E. (1958). Can.Journ.Phys.36, 1199.

Moszkowski, Se Ae (1957). Handbuch der Physik; Bd. XXXIX. Springer-
Verlag, Berlin,

" Pauli, W. (1958). Handbuch der Physik, Bd. V. Teil 1. Springer-
Verlag, Berlin, 3

Pursey, D. L. (1951). Phil.Mag.42, 1193.
Rose,'ﬁ. E. (1937). Phys.Rev.51, 484.

Rosg, . E. (1957). "Elementary Theory of Anguler lMomentum." John
Wiley and Sons, Inc., New York.

Schiff, L. I, (1955). "Quantum Mecheanics." loGraw-Ilill Book Company,
Inc., New Yorke. ;

Siegbahn, K. (1955). "Beta~and Gamma-Ray Spectroscopy." Interscience
Publishers, Inc., llew Yorke. 2T T

Strominger, D., Hollander, J. M. and Seaborg, Ge T. (1958,. Rev.liod.
Phys.}_{{, 585.

heeler, J. A. (1953). Phys.Rev.92, 812.

Vigner, B. (1931). "Gruppentheorie." Vieweg und Sohn, Braunschﬁeig.



	Pearson_John_M_1959_05_phd0001
	Pearson_John_M_1959_05_phd0002
	Pearson_John_M_1959_05_phd0003
	Pearson_John_M_1959_05_phd0004
	Pearson_John_M_1959_05_phd0005
	Pearson_John_M_1959_05_phd0006
	Pearson_John_M_1959_05_phd0007
	Pearson_John_M_1959_05_phd0008
	Pearson_John_M_1959_05_phd0009
	Pearson_John_M_1959_05_phd0010
	Pearson_John_M_1959_05_phd0011
	Pearson_John_M_1959_05_phd0012
	Pearson_John_M_1959_05_phd0013
	Pearson_John_M_1959_05_phd0014
	Pearson_John_M_1959_05_phd0015
	Pearson_John_M_1959_05_phd0016
	Pearson_John_M_1959_05_phd0017
	Pearson_John_M_1959_05_phd0018
	Pearson_John_M_1959_05_phd0019
	Pearson_John_M_1959_05_phd0020
	Pearson_John_M_1959_05_phd0021
	Pearson_John_M_1959_05_phd0022
	Pearson_John_M_1959_05_phd0023
	Pearson_John_M_1959_05_phd0024
	Pearson_John_M_1959_05_phd0025
	Pearson_John_M_1959_05_phd0026
	Pearson_John_M_1959_05_phd0027
	Pearson_John_M_1959_05_phd0028
	Pearson_John_M_1959_05_phd0029
	Pearson_John_M_1959_05_phd0030
	Pearson_John_M_1959_05_phd0031
	Pearson_John_M_1959_05_phd0032
	Pearson_John_M_1959_05_phd0033
	Pearson_John_M_1959_05_phd0034
	Pearson_John_M_1959_05_phd0035
	Pearson_John_M_1959_05_phd0036
	Pearson_John_M_1959_05_phd0037
	Pearson_John_M_1959_05_phd0038
	Pearson_John_M_1959_05_phd0039
	Pearson_John_M_1959_05_phd0040
	Pearson_John_M_1959_05_phd0041
	Pearson_John_M_1959_05_phd0042
	Pearson_John_M_1959_05_phd0043
	Pearson_John_M_1959_05_phd0044
	Pearson_John_M_1959_05_phd0045
	Pearson_John_M_1959_05_phd0046
	Pearson_John_M_1959_05_phd0047
	Pearson_John_M_1959_05_phd0048
	Pearson_John_M_1959_05_phd0049
	Pearson_John_M_1959_05_phd0050
	Pearson_John_M_1959_05_phd0051
	Pearson_John_M_1959_05_phd0052
	Pearson_John_M_1959_05_phd0053
	Pearson_John_M_1959_05_phd0054
	Pearson_John_M_1959_05_phd0055
	Pearson_John_M_1959_05_phd0056
	Pearson_John_M_1959_05_phd0057
	Pearson_John_M_1959_05_phd0058
	Pearson_John_M_1959_05_phd0059
	Pearson_John_M_1959_05_phd0060
	Pearson_John_M_1959_05_phd0061
	Pearson_John_M_1959_05_phd0062
	Pearson_John_M_1959_05_phd0063
	Pearson_John_M_1959_05_phd0064
	Pearson_John_M_1959_05_phd0065
	Pearson_John_M_1959_05_phd0066
	Pearson_John_M_1959_05_phd0067
	Pearson_John_M_1959_05_phd0068
	Pearson_John_M_1959_05_phd0069
	Pearson_John_M_1959_05_phd0070
	Pearson_John_M_1959_05_phd0071
	Pearson_John_M_1959_05_phd0072
	Pearson_John_M_1959_05_phd0073
	Pearson_John_M_1959_05_phd0074
	Pearson_John_M_1959_05_phd0075
	Pearson_John_M_1959_05_phd0076
	Pearson_John_M_1959_05_phd0077
	Pearson_John_M_1959_05_phd0078
	Pearson_John_M_1959_05_phd0079
	Pearson_John_M_1959_05_phd0080
	Pearson_John_M_1959_05_phd0081
	Pearson_John_M_1959_05_phd0082
	Pearson_John_M_1959_05_phd0083
	Pearson_John_M_1959_05_phd0084
	Pearson_John_M_1959_05_phd0085
	Pearson_John_M_1959_05_phd0086
	Pearson_John_M_1959_05_phd0087
	Pearson_John_M_1959_05_phd0088
	Pearson_John_M_1959_05_phd0089
	Pearson_John_M_1959_05_phd0090
	Pearson_John_M_1959_05_phd0091
	Pearson_John_M_1959_05_phd0092
	Pearson_John_M_1959_05_phd0093
	Pearson_John_M_1959_05_phd0094
	Pearson_John_M_1959_05_phd0095
	Pearson_John_M_1959_05_phd0096
	Pearson_John_M_1959_05_phd0097
	Pearson_John_M_1959_05_phd0098
	Pearson_John_M_1959_05_phd0099
	Pearson_John_M_1959_05_phd0100
	Pearson_John_M_1959_05_phd0101
	Pearson_John_M_1959_05_phd0102
	Pearson_John_M_1959_05_phd0103
	Pearson_John_M_1959_05_phd0104
	Pearson_John_M_1959_05_phd0105
	Pearson_John_M_1959_05_phd0106
	Pearson_John_M_1959_05_phd0107
	Pearson_John_M_1959_05_phd0108
	Pearson_John_M_1959_05_phd0109
	Pearson_John_M_1959_05_phd0110
	Pearson_John_M_1959_05_phd0111
	Pearson_John_M_1959_05_phd0112
	Pearson_John_M_1959_05_phd0113
	Pearson_John_M_1959_05_phd0114
	Pearson_John_M_1959_05_phd0115
	Pearson_John_M_1959_05_phd0116
	Pearson_John_M_1959_05_phd0117
	Pearson_John_M_1959_05_phd0118
	Pearson_John_M_1959_05_phd0119
	Pearson_John_M_1959_05_phd0120
	Pearson_John_M_1959_05_phd0121
	Pearson_John_M_1959_05_phd0122
	Pearson_John_M_1959_05_phd0123
	Pearson_John_M_1959_05_phd0124
	Pearson_John_M_1959_05_phd0125
	Pearson_John_M_1959_05_phd0126
	Pearson_John_M_1959_05_phd0127
	Pearson_John_M_1959_05_phd0128
	Pearson_John_M_1959_05_phd0129
	Pearson_John_M_1959_05_phd0130
	Pearson_John_M_1959_05_phd0131
	Pearson_John_M_1959_05_phd0132
	Pearson_John_M_1959_05_phd0133
	Pearson_John_M_1959_05_phd0134
	Pearson_John_M_1959_05_phd0135
	Pearson_John_M_1959_05_phd0136
	Pearson_John_M_1959_05_phd0137
	Pearson_John_M_1959_05_phd0138
	Pearson_John_M_1959_05_phd0139
	Pearson_John_M_1959_05_phd0140
	Pearson_John_M_1959_05_phd0141
	Pearson_John_M_1959_05_phd0142
	Pearson_John_M_1959_05_phd0143
	Pearson_John_M_1959_05_phd0144
	Pearson_John_M_1959_05_phd0145
	Pearson_John_M_1959_05_phd0146
	Pearson_John_M_1959_05_phd0147

