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SCOPE AlTD CONTE1fl'S l Although it has been customary in beta-decay 

theory to assuine t hat t he f ield in which the decay elec t ron moves 

is s pherically symmetrica l , t here is o~ten a strong quadrupole 

i ntera ction, compar able in magnitude at the nuclear surface to t he 
I 

central i nter action. This will couple together different angular 

momentum states of both the electron and t he dauehter nucleus. 

In t his work tho wave functions of t hese coupled s t ates have been 

obtained by an essentially exac t s olution of the Dirac equation 

~or an electron in a non-central potential. It was f ound t hat 

t he c oupling bet-'11een different dauehter 11uclear states was 17o a t 

t he very most, >rhich is i 1wufficient to account for some observed 

anomal ies ·in branched decays of strongly deformed nuclei. 

(ii) 
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CHAPTER I - I NTRODUCTIOn 

PART I - GENF.RAL THEORY OF BETA-DECAY 

~ - decay is that form of radioactivity i n which certain atomic 

nuclei emit either a positive or negative electron, tr~nsform~ng at t he 
\ . . . 

sa e time into the nuc leus of adj~cent a tomic number, ~· appropriate to 

charge conservation. Closely allied t o this process is t hat o~ orbital 

elec.tron capture, in which , as an a~ternative to positon emi ssion , the 

n~cleue decreases its ato~ic number by unit amoun: t hrough capture of 

one of the extra- nuclear atomi~ electrons . 

In t he early days one of the most puzzling features o~f3 - decay 

was t he fact t hat the decay electron was emitted with a c ontinuous range 

of energies up ~o a certain maximum, despite t here being a definite 

energy difference. between the parent and daughter nuclei. In order to 

save ener gy conservation Pauli in 1933 introduc~d the hypothesis of 

the, neutrino: the total decay energy is shared between the electron 

and a very l i ght neutral particle, the neutrino, which must be emitted 

simult~neously with the electron. At t he same time angular momentum 

will be conserved in the process if an odd half-integral spin. is 

attribu-ted to t he neutrino. To anticipate later developr:J?ents , it may 

be said t at all the evidence is consistent with a neutrino of zero 

mass and s pin ! · 
By the time of Pauli's suggestion the neutron-proton structure 

(1) 
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of t he nucleus had become accepted and it was realized t hat t here were 

compelling reasons against the existence of electrons within a nucleus. 
/ 

Hence:forth, /3 -decay had to be conceived a s a process in which one type 

of nucleon (i.e. neutron or proton, a,s the ca~e may be) transformed 

' into t he other with the simultaneous emission o:f an electron and a neutrino. 

I t was i~ t he light of t his situation ~hat Fermi (1934) developed 

his t heory of J5 -decay. Perceiving an analogy with t he emiss ion of 

photons during atomic ·transitions, which process is described in terms 

' of t he , interaction of the electron and electromagnetic :fields, Ferro~ 

pos tulat ed t hat /J - _decay could be similarly attributed to an inter-

action betwee n t he fields of the four part icles directly involved' the 

neutron (n ) , t he proton (p), t he electron (e ) and the neutrino (y ). 

The subsequent history of the theory has been· some~hat spectacular, 

there having occurred both drastic changes of empirical content and many 

refinements of formalism. Furthermore, there have been completely 
I 

different t heories proposed but despite all this the basic approach of 

Fermi has yet to be shovm to be inconsistent with experiment and ·is t he 

one generally accepted ·today. 

The foll owi ng two sections ·are intended ~o · provide a background 

to t he prob~em with which this thesis is concerned. They make no pr~tence 

to c onstitut i ng a complete description of t he t heory of j3 -decay. For 

t his one should refer to t~e various review articles in the literature, 

t he mos t · recent ones of which are to be f ound in t he · book of Siegbahn 

(1955 ) . However, f or a comprehensive -account of t he extens ive develop-. 

menta t hat have occurred since early 1957 one must await t he review 

article by Konopinski (1959). 
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1. THE FERMI TllEORl. 

In this aection·we outline the essential features of the Fermi 

t heory us it stands in its present 1~orm. The Fermi theory can be 

correctly comprehended only in the language of second quantization, 

which we now discuss . 

A qu.a.ntum mechanical descripti·on _pf a single particle is given 
r 

in tert a of w~ve functions . Since these are functions in the c9nfigur-

ation spa·ce of the particle ' a description o:f t his kind will be formally 
I 

incapable of handling situatio~s in whi.ch particles are created or 

destroyed. A way out of this physical inadequacy of a single particle1 

quantum theory is indicated by the fact t ha-t, as single particle theories , 

they are f ormally inconsistent . That is, both -the Klein-Gordon equation 

and t he Dirac _equ,ation require, in their different ways, a many-particle 

i nter rotation (see .e . g . Dyson. (1951)) . The procedure is to regard the 

single particle wave. functions,- obtained as a first attez~pt at a quantum 

theory of particles, as classical fields which have to be quantized in 

some way or other. The entire content of such a the.ory will be determ-

ined by ·!;he choice of the field Lagrangian (or Hamiltonian) and the 

quantization rules. Since part'i.cles interact their fields will interact, 

so in considering tlie proper-ties of' any . particular field it is necessary 

to include all the other fields t hat interact with it. · The interaction 

between the fields is represented by additional terms in the Lagrangian 

(or Hamiltonian) of the entire a·yatem of fields. This -is the program 

that one should follow. It ~a, of course, too ambitious and realistic 

approximations have to be · made. Let us first, however, consider some 

f'ea tures of' the sec ond quantization process (see Chapter XIII of Schiff 
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(1955) for some of the details) . 
ct . 

The equation of motion of t he field quantity ~ is obta ine d 
/'.,. <{ ' 

from the Lagrangian (or Hamiltonian) ·in the usual way. 1r has to be · 
. ~ ~ . 

formally i dentified with the wave function ry .of a single particle · t:( • 

So in quantum field theory it is really t he field Lag-rangian t hat 

determines t he single particle equation. · J;feverthele~s, single particle 

quantum theory has been c;tuite successful, espec ially i n the case of t he 

Dirac t heor y of t he electron . It does not work too well for the other 

Dirac (spin -lf) particle.s but it may be conj ectured t hat failure is always 

due to interact i ons with other particles: in t he case of nucleons with 

7\ mesons. Thus for free Dirac fields t he Lagrangian is always chosen 

to g ive the Dira c single particle equat ion · ~or t he fiel d equatio~ 
C( 

Let the field tf- (:-· t) be expanded i n t er ms of a complete set 

""- oc r) 
of orthonormal functtons , Y;_ (~0 thus 

't" c~. t) . = .?Jcnv :~0( (w, t) t-~"'(w, f) _Q_ - ~ \Vt (1 ) 

where ~ · 

f d.:::: ,,f" ( '·<);.) t i-J~ (w, r) 
(the daguer here means Hermitian adjoint ) . The fie ld quantities, -
are to be regarded as operators and in.the expansion {1) . t he operator 

I 

properties are carried by the ~ ~ ra~her than by the functions 

1'\.L-t{ (W "f"\ 1 whic h are essentially single particle wave functions of . T;. I ,,) 

energy w. 

The quantum conditions that 'f 0{(/J t) has to satisfy take the 
. A . 

form of commutation or anti-commutation relations a ccording a~ to 

· whether we are deal i ng with Bose particles or Dirac part icles. In 

both oases it is easy to show t hat the operators 
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(3 ) 

all co~nute with one another and also with the free field Hamiltonian . 
~ ~ ~ 

Now t _he wave function 't can be expanded exactly as in (1), ~ andy 

being :formally identical ' whence I a~ (I,/, L) I ~ is the pr~a bili ty of 

find:i,ng the p~rticle i n the state of wave. function 1; ' -(~ ~) . Thus 

N ~ ('vJ, L) i~ interpreted as a field .. operator whose . eigenvalues .. 11, ~ {wj 
,....,, - /-

are the number· of particles i n this state . The c omplete ' set of normal-

ized eigenvectors of N ~ {VJ, f) form the basis o:f whB;t may be terme'd 
'"""AJ 

the occupation nuober representation: 

. (4) . 

d. 

~ ~ (w) -·--· ~ . (W') 
~ <l >. :::: 

ot 

~ · ~ (w) _( ~ ~ ~ (w~--- ) 
J 

For Dirac particle~ the n ' s can take only t .he values 0 and 1, 

because of the exc l uaion-.pri ncipl e . It is then easy to show that 
> • I • 

>· 
<X. . . 

n · (vJ') -- -) .J 

a-7 (W: L) t l ~ 

rn . {w') ·_ --
J > = 

,-..._ 

v;_ (w) . . ci. 

1- ~. (w) ---
4J (-) 
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wh~re the ~(VJJ is a ~uantity t hat depends on the ordering of states 

but whose actua l value need not concern us . This immediately leads to 
) t ) 

the inter pretat ion of the U.S and a. S as destruction and creation 

operators, resyoqtivel~r , for particles i n the approp!'iate s tates . Thus 

for par·bi?loo o( to be cr eated t here will have to be an interaction ' , 

~with another fiel d f.> , t he interacti-on Hamiltonian containing a terJll 
~t I ~ . . . 

with .rr but not~- • This same term, representing the co pling 

betwe:,; the a( 'and r fields' must also have -:!: p t or ! f' appe=ing 

in i t , de ending on whether po.rticles of' t ype ~ arc created o~ destroyed 

simu.l taneously \'lith the creation of a particl_e d..- • Then · in order for 

t he i nteraction IIaoil tonian to be Herini tian the complex ~onjueate of 

the first t er m must a lso be i ncluded. 'l'his vrill describe the inverse 

process of destruction of a particle oG , etc. 

';l e can now consider the field interact ion Hamiltonian appropriate 

t~ J3 - decay . All four particles involved are treated as -Dirac particles 

i. e . t heir £ree fi~ld oqu~t ions are 

rn... 0 (6) 

Here '"o/ i s a four component spinor and '(A a particular 4 X 4 matrix 
,..._ 

(see, e . g . Dyson (1951 ) ). m is the particle mass in units of electron 

mass . 11 and c have ~lso been put equal to unity (we adhere to t hese 

units throughout the thesis). It is. convenient to regard negaton decay 

as being associated wit h the .destruction of a neutrino in a negative 

energy state rather than with the emission of a p ositive energy neutrino. 

lienee the interaction Hamiltonian describing negaton decay must contain 
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+ '\ . irpt 
"- I 

• Since spinors change sign 

under a 2 11 rotation the Ha niltonian must be linear in the four field 

quantities or in their derivatives . 's econdly , the Uami ltoilian must be 

i nvariant under proper Lorentz transformations. Originally '· it was 

assumed that the i nteraction would be i nvariant under space r eZlections 

as well, but this add_itional restriction was dropped at t he suc;eestion 

of Lee and Y::.,DC (1950·) . The l•'ermi Ansatz fo:..~ the intcre.ctiou is nov1 . · 

Here t he Ov- are various combin:.ltj.ons of the matrices 'V '/ Y '/ ' " f jJ :tJ A I --t' 

( ---~-~t OK ~ P) such that the quanti ties · .'!:"- . ~ are Lorentz covariant. The 

scalar product of the two s uch covariant quantities is then invariant 

under all Lorentz transformations. However, the extra terms containi ng 

y s= y
1 
Y?.. Y3 Y11 

will change sign ·under space · reflections. The complex 

conjugate term ma!:os the Hami l toni an Hermitian and describe a pos i ton 
I .. 

decay . The CK, CK neo.sure the strength of the associated i~teraction 

term and are referred to as t he coupling constants. 

·.:e novt consider the' form of the Lorentz covariant quanti ties .· 

(

1'\ , __ 0( t .0 '"' /,. (l,) • . "'' ~ o<. r.L p . . ' 
· ~ 1 ~ Since 1 and r each have four components there 
"' K "' . . - · r-

are sixteen linearly independent bilinear terms of this kind . They can 

be grouped together into five different sets, each of which transforms 

as a tensor of diff erent rank (see, e. g . Pauli (1958) ). The f ive co-

variant forms are referred to ·as: (i ) t he scalar (S) , (ii ) t he vector 

(V) , (iii ) t he ~ensor (T)- actually an antisy~etric tensor of second 

rank - (iv; the axial vector (A ) -an antisy~etric tensor of t h ird 

ra~ - and (v ) the pseudo-scalar (P ) . We shall then have just five 

\ 
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linearly independent f3 - decay interaction for ms . Replacing the )I 
cw.trices by the Dirac matrices p, f' and ~ we can nO\'! v~rite the uounl 

form o:.. the operators OK : 

• Os- - (3 .Ov \ ) o(_ - - .rv ) -

= f3 ~) (3;!: oA. - () '/3 0-p ~ I~ Y5 . 
"' J 

There are no c ompelling a priori criteria deternlining either 

the absolute or the relative values of the diff erent c-oupling constants; 

the matter l~s to be settled phenomenologically . I t is sufficient to 

say that ther e is a large amount of . evidence in favor of the curren·tly 

accepted view t ha't -~'1e interaction c-onsis·~s solely of a mi xture oi' V 

and A forms with CA ~- 1·2 Cv ) c; ~ Cv ) c; ·= c,.. • 

Also, the c oupling constants are real , corres ponding to invariance of . 

the interaction llamiltonian under time reversal (see , e . g . Burgy et al . 

(1958 ) ). 

In writing down (7) there is an ambiguity i n the position of 

the ;f
5 

matrix in the ter ms that change sign under space reflections. 

This is quite arbitrary and i r.1plies no physic.al restriction since a 

form of H in whi ch 'J S appear s elsewhere can be wr:i,. tten as linear 
K I . 

c ombinations of the ~K defined i n (7). Si milar remarks a _pply t.o an 
n 

interchange of r"'}-

of the Fermi theory. 

,...., ,. '( 
and l' • (7 ) is merely the conventional form 

It should be noted that the Fermi theory is not the only 

possible theory in which [3 - decay can be described in terms of a 

direct interaction between the n , p , e and ¥ fields . Konopinski and 
y 

Uhlenbeck (1935) replaced ~ by its derivatives . There are no, 
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a priori reasons against this , but a conflict with experiment was later 

discovered and this so-called K- U· modification was abandoned . :t!ore 

drastic alternatives to the Fermi theory replace t he direct int erac.tion 

between the four fields by an indirect interaction tal~ne place through 

some meson. Hone of these modifications hnve become compcllinsly 

necessary and we ?hall i gnore, them. 
n 

Suppose we have a neutron in the state ~ h (\Yn) nnd a neutrino 

in the state rf7 (W'".) 
of tranoition to a proton 

The problem ie to calculate the probability 
. p 

in the state ~ (\Jp) and an electron in the 
1.. . 

state Y e (\./e ) . The a~ .t··ropriate initial and fint:..l oc cupat ion nunl)er 
IY) 

staten n·o t hen 
n 

(wn) ~ 
t' 

> 1~) 0 ) "- ·0 n h 1 (l· \Jv ) ::: 1 > 0 :_ - - : 
) J 

and 

I o)- --
p 

n; (We) = 1
1 

0 - - - > ~ ]f) 0 h i (W'p) :: i ) 
) 

Now t he r - decay interaction is known to be extremely weak s o that it 

~an well be treated by the standard time dependent . perturbation theory 

( ;:; Gv, O. •G• pp. 195-9 of Schiff (1955)) . The relevant matrix element 

. < { l H /-> j i-> will be that o:f the field interaction Hamiltonian 

(7) between t he above occupation number states , these being orthonormal. 

Expanding (7) according to (1 ) and using (5 ) c ives 

( --( ("'-'.,) t 01< [ck + C~ Ys] '( {lv'i)) 
(8) 
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This result i s for..!l4llly equivalent to the statement that 

where the l a'uels lT and L re:fer to nucleons and leptons , respectively. 

r fiJI - ~s. an operator transformi ng a 'neutron int ci :::.. proton and ~ . one 

transforllline' a neutrino i nto ali el ec tron. =-~~- t:c.i..x ele,Joht:J -£hen ~vc 

n ~ \ > 
to be taken betneen th~ _initial state l ~ h (\Jn J T.i (VJv) and 

- \ r e - )~ 
t he final state ~ .t cw,) Ym (We. / . iJhile thi~ for r:Jalism 

obscures the ess ential field th~oret ic content of the (3. - decay pr~cess 

it is neverthe l ess c onveni ent £or calculating transition pr obabilit ies 

and \Je shall in f act ttSe it. 

Since at least the lepton s t a tes form a continuum there will 

be a well defi ned t r ansition probability per unit time. If we write 

t he initial energy as \J ;.. :. \J + \J'I and t he 1inal enerey aa 'vJ f= 'v.Jp -t- \.Je 
n . 

there will be a transition r a te from the i nitiul states t o unit energy 

interval o:f 'tDe fina l st:::..tes c iven by 

(10 ) 

This is the usual form of the so-called Golden Rule ((29.12) o:f Schiff 

(19.55)) . The quantity e(\Jf ) which appears here is referred to as 

the energy density of the final states; its ' use requires some careful 

consideration. Ita occurrence is due to the fact that for convenience 

th~ cont_inuum spectrum of s_tates is often broken up i nto a P,iscrete 

spe9trum by confinement to a large but finite enclosure, within which 

the states are normalized. A definite number of states within a finite 

energy interval is then obtained by applying periodic boundary conditions 
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on t he surface of t he enclosure. However , it is easy to see t hat if we 

normalize our continuu1n f unctions over t he whole of space , a ccording 

t o ' (2 ) , t hen t he s t a te density just does not enter t he problem_ and we 

have 

(11) · 

Thus t he sto.te density i s merely a weighting f'nctor t hat has to be 

\introduced t o t ake care of the di f erent normaliza"'~ ions . - C.lcarly , f or 

continuum a·tates it has no direct phys i ca l meaninlp Si nce it is not at 

all obvious t hat the i mposition of periodic boundary condit ions on t he 

surfnce of the finite cnc~osure ' nill a h ;ays g ive t he corr e ct weighting 

i'actor we prefer to tise t he delta function normal ization ( 2) , whence 
I 

t he Golden Rul e is ( 11 ) • . · 

Ther e r emai ns t he question of t he sinc;le partic l e nave funct ions 

appear inc i n ( 8 ) . As alrea dy pointed out t hese should reall;y be obtained 

fr om t he f ie ld equat i ons . I n t he case of t he neu·tr i no t:De only known 

i nter action ~·, hich it experiences is the ~~ - decay one , so i ts wave 

f unction will be well described by the single particle Dir ac equation 

0 (12) 

t l1e. mass being assumed to be zer o. 

For t he ·electron i t is necessary , of course~ ~o t ake account of 

t he i nt er action with the electron~gnetic field . The correct treatment 

of t hi s , which consti tutes 'the subject of' quantum e l ec t rodynamics , 

involves t he quantization of t he electromagnetic field as well . lio~ever, 

wha. t is knovm as the external field appr oxirnati<;m is of~ en qu-ite success­

ful~ This trea ts t he electromagnetic field as .a classica l Maxwell field 
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and assumes t hat its onl y sources are extraneous to the electron system 

e. 0 • a proton. It t herefore i gnores all interactions bet~een electrons , 

both real and virtual. It will therefore breal: down for systems of more 

t han one real electron and also for strong electric :fiel ds , s ince these 

will h~1ve an appreciable ef:fect on the state of t he vacuum (the so-called 

va cuum polarization pr ocess becomes important ~ . However , since the 

condit ion f or t his to be serious i s t hat OC Z > I , Z being t he char e e 
\ 

of the source (see , e . c; . Feshbach. and Villars (1958) ) it is customary 

to ad-op t this external f ield a:,:>proxir.t:ltion in j3 -:-de cay ; that is, we 

i gnore t he r adiative corrections . Then t he "til.'lCl e Jlar tic le vmve equation 

i s simpl y the Dirac equation for external fields: 

+ 0 + .<.c A>-) 1 
( 13) 

is the electromagnetic four-vector potential: and 

A 4.::; ·j_V , where V is t.he electrostatic potential. 

It is the nucleon wave functions that present the major probler • 

For nucleons bound in a nucleus one has to fall back on the various 

nuclear models, which give wave functions of dubious reliability . This 

represents t he e reatest source of ambiguity -in t he understanding o:f 

f3 - decay transitions. 

2. CALCULATION OF THE TRAJJ'-.3ITION PROBABILITY. 

In this section we outline the method of calculating r -decay 

transition probabilities ,. using the Golden Rule .(11) and t he matrix 

eleme~nts (8). i'ihat we are interested in is t he probability of a 

nucleus with angular momentum I. and parity 
~ 

n . decaying to one with 
~ 
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angular molilentum 1 ~ and parity n t ' the electron ( \'Fe shall con:fi ne 

our se lves to a neG:1ton i n order to be s_!)ecific ) being emitted with 

encr[_;y we. . 
The matrix clements t hat appear in ( 11) have the form (8). 

Since uore t han one nucleon in the, nucleus can decay there should 

strict l y be a summation over all nucleons. " .le shall represc_nt this i n 

the usual way by \lriting i n 11l a ce of t he sin..,le nucleon f'unct i r.:-.:.s the 

Air M,;. conplete Yrave functions · of the })arent and dauc;hter nuclei , . .I 
_.J_ M f 1 ;_ 

and r r espectively . 
- Ir 

Let the enerc;y of t .. e emitted neutrino be q . Then 

\iJe. + 9. 
energy end-point of the f3 -spectrum. (q is where W 0 is the observed 

also the momentum of the neutrino, since it is assumed to be massless) . 

The wave function -of the emitted neutrino can be written as ~; (u) 
where h denotes all the quantum numbers other than q. But· in (8) it 

is the vmve function of t he destroyed negative energy neutrino that 

a ppears. The required wave function is then A "(': * ( ~) 'Nhere 

A ::. (14 ) 

(S'ee, e.g. Dyson (1951 ) ). 

The wave equation (~3) of t he electron can be viTitten in 

Hamiltonian form as 

(15) 

Here Vis the electrostatic potential due to the daughter .nucleus and 

A ,_ has been put equal to zero since magnetic interactions are negligible. 

It is customary ·to assume that the electrostatic potential of the 

nucleus' is spherically symmetrical, whence \Je must be a constant of 
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motion and •e have 

In addition to 

~ ( '.Je - V <) ~ 't 
~e we have as constants or motion the total 

0 (16) 

angular nomentum, j, its z-component,~ , and the Dirac operator 

.f3 (~ · !: ~ 1) (17} 

where L ' v ha~ i s t he orbital an~Gular momentum operator. ~ ~ the eigen-

values 
(18 ) 

It zs convenient to introduce the qua.nti t y · 

. 1?. k :; I k l . -1- { ( 51( - I ) ( 19) 

$ )( is the sign of I) i. ~. 1( /' J.( 1 · jl J( may . be regarded as. the wh.ere 

value of the orbital angular m·omentum in the non-:;-ela tivistic limit •. 

An exact separation of the radial and angular parts of (16 ) · 

is noYI pos sible. Si multaneous eigenstates of' HeJ . 
J and X 

then take t he form 

/'- A. FK (We) X:;; 
(we) rt~ - (20 ) -

~ )( ( INe ) X :: 
· where the _xr~ are just the t.vo-component Pauli s pinors 

±k 

(21) 

(the C quantities here are Clebsch- Gordan coefficients ' - see Appendix 

A). The f' and g are real ra'dial functions satisfying the p~ir of 

coupled f irst order equations 
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0 
(22) 

( )( -0 
;'(' 

f 0 

There are two linearly independent soiutions . to this system,. 

one regular · at t he origin and the ot her irregular . The solu.tions will 

·depend on the potential V c. , but f or the Coulomb case , V r:. ":!. Z ~ "l..f-r 

i.e. a point nucleus, ·the calculation is straightfo~vard . Rose (1937 ) 

g ives t he reGUlar solutions to these relativistic Coulomb f\mctions, 

normali zed thus 

)--rl.J.,.[ f)( (w.') FK (w._) + Jk (w~') l~' (\J·)~:: ~(\J.'-W',) 
p~ ' . (~) 

so that ~ (\J~ is normalized apcording to (2). Asjmptotically the 
X , 

radial solutions take 

t ~(~e) """ 
~X (W~) 1\...1 

the form 

-"1" ~ ,p 

;- f¥ . xr 

~ ( r~ ~ ~ ~) 

_..,_..._ { f 'I ~ ~ c) 
where p is the asymptotic momentum corresponding to 

c r 
~ is the Coulomb phase shift 

) 'vlq_z__ 1 

where 

( 24) 
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K- A. 

f (1;_~) and e.xr -::::: 

ocZW y.,. .-<. p 

An irregula~ solution is formed by introducing any .constant phase into 

the asymptotic form (24 ) . Inside a nucleus of finite extent the solutions 

wil l not be Coulomb functions, but outside they w~ll be lineaT com~in-

at ions crf' regul ·ar and irregular Coulomb functions , although t he normaliz-

ation ~~11 have changed . 

The Z = 0 s olution f or t he regular electron functions · is of 

some interest . It can easity be obtained from t he general solution and 

is • 

rx (~e) : S J w.-r p ~J . ( f> ~) 
K "P J._~ e e. Q. 

(25) 

~ 1·)f c~~Y 
. 

== p j.l (p~) 
e. ;tC"\? 

ke. 

where the j functions are spheri.cal Bessel functions. 

The neutrino wave equa.tion can ,be trea t ed in the same way. 

The so~ution may be obtained directly from (25 ) by replacing both ~e±( 

and p by q, whence 

::. sK .. J -} 
. 

t J~ ( ~ ~') 
- "'" ( 26) 

JT ~ J.-2 (~~) \ 

)(" 

~I(~ ( ~) --
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Since we are not going to c oncern ourselves with the direction 

of emission of either t he neutrino or the electron this a1~lar 

momentum representation is t~e natural one to use. Using (8) and (11 ) 

and summing over the lepton quantum numbers ~. xy) ~e.. and~v we have 

for t he probability of emission. of an electron in a unit energy interval 

2" r j2_ JJr (tl~f10K ti~') 
'< 

( 
/'<il.{, ) t . ~ I · ] p.v L ).,. 

X ~~ ~ \-1~ ok L CKt ck Ys-J At~~ (~ 
\ 

l. f ( 27) 
This apparently diff ers by a factor of 7t ---- from the usual angular 

I \.-le, 
·mome.ntum· representation expression for the transit..ion probability (see 

I 

(9.19 ) of Rose (1951)) . This i s simply because the. latter normalizes 
' 

within a finite sphere of unit radius , the appropriate s olutions having 

been g iven by Rose (1937). It will be noticed that t he implicit 

weighting factors , _L f or t he neutr inos .and 1 A ~ 

w~ 
f or the electrons r 

are just the state densities that would ba obtained by i mposition of 

periodic boundary conditions at t he surface of t he encl osure , . t he 

:functions having assumed their asympt otic form (24) . However, one 

cannot be sure how general such an identity is . 

Now we consider the y ~ .term occurring in ( 27 ) . It is easy 
I 

to show that 

= ( 28) 

1.. 



Since t here is an incoherent summation over all ~v it f ollows that 

thes e terms can be i gnored i£ we 

c c 
~ ...2... 

replace C K C ~ 
C ( c I 

+ K ..o.. 

by 

llenoeforth we shall write i n pl a ce of (27 ) 

~~ P ., 

wher~ 
N · l 

Hf3 L_ · ~ '< 
() 0 r ::::. \<; · K N 

K 
Now l et us c ons i der t he quantity 

oN. 
K 

r: ~ (: N -
k 

(18 ) 

( 29 ) 

( 3.0 ) 

;: L) 
(31 ) 

(32) 

Then t he rna t r ix elements in ( 30 ), are essentially matrix elements of 

this quant ity between t he nuclear states . Recalling the explicit form 

(20 ) of t he lepton f unctions, · t he lepton part of (32 ) can be expanded 
I . 

into a s eries of s pherical har monics with t he a id of (A.23) , it being 

noted t hat both lepton func t ions are to be eva luat ed at t he same point 

in nucleon space. 

I£ t he OK o'perator is a scalar (.i . e . fJ '/s , .fYs- ) ~hen t he 

matrix e l ements appearing in (30) can. be expressed as 

<-t ~r 't;· cw~) I H~ I A 1 :-(~rf !M~ > -
.... 

M . 
~ 

I 
f 
I ip (K. ,k~, A, p, ~' r) 0 t ":): {£ ) \ 'f;'> 

...... 

(33) 
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in which the functions jf dep~nd primarily on the lepton ·radial functions, 

and r is the unit position vector. If OK is a vector (i . e. [",~ I /~!: 
~ ~ ) it can be written in spherical form according to (A.27) and 

(A.28), whence from the inverse of (A.31) tAe -~alar product between 

the two vect·or quantities of (32) can be eXpanded as a sum c;>f spherical 

tensors. Then (33) is replaced by 

<'f Mpt/'-4 (w41.) l H) I A ~ ·~i ~I~) cf ~~ > 
l" x.._ J I X l - J . 

r ~ ~ 

= 

(34) 

where L -= )\ ). -k l , and is the tensor rank. 
I 

In both (33) and (34) what we have done essentially is to perform 

a multipole expansion on the nuclear operator (32), so that by reference 
I 

to Appendix A it is possible to write down immediately the condition 

for non-vanishing of the matrix elements. For (33) we have the 

angular momentum selection rule 

l 
" (35) 

and the parity selection rule 

7\ ( C\c) (:J ~ (36) 

In (34) ~he tensor rank is L and not )\ so that (35) has to be re-

placed by 

(37) 

We now note that for the energies encountered in ~ -decay 

~ ( ~-- ~ ---) >> ~ (-- ~-rl -- ) for r less t~n the nuclear _ -
radius. From (36) it is seen that non-vanishing matrix el~ments will 



( 20) 

Qnly occur for A values differing by even amounts. This means that 

only t he smallest value of A that gives a non-vanishing contribution 

' is of any significance. The error involved in ignoring the higher 

order term~s is seldom greater than 2,%. 

In performing the integration over nuclear space in (33) and 

(34) f ~ - ~ is presumed to be slowly varying over the nucleus (at the 

~ 
orig in J varies exactly as i'" ) and is therefore taken outside of the 

integral and evaluated at e , a quantity commensurate with the nuclear 

radius. Our matrix elements then have the form 

The lepton dependence of the transition probability resides 
- >.. 

wholly in the ~ e- factor' while the dependence on the nuclear wave 

functions is confined to the new matrix elements that appear here. 

It is these latter t lmt are known in the terminology as the nuclear 

matrix elements; they represent the greatest source of ambiguity in 

J3 - decay theory. Nevertheless, it ia possible to give an estimate 

of their order of magnitude. We have already seen that consecutive 

values of 1\ are associated with a marked decrease in the transition 

probability. At the same time we must note the1 effect of the operator 
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()K on the nuclear wave functio1~. If t his has even parity 

( p, ~~ ~~ ) it couples together t he l arge components of the nucleon 

four-spinors . On t he other hand the operators ~, f ': 1 y 5" and f Y s 

couple toget her the large and s mall components. Since the nucleons 

are moving slowly the matrix elements will depend considerably on 

whet her the 0" is odd or even. In fact, changing Qk.. from an even 

to an odd parity operator has roughly the · same effect as increasing, 

A by unity. This g ives rise to 'the well kn'own degree of forbiddenness 

c lassification of transition probabilities. A transition will be n'th 

forbidden if 

n = A. 
A +·1 

for 01( reven 

·for · 01< ·odd 

where.) ~·or a given OK ; A vlill be the smallest value compatible with 

(36 ) and (35) or (37 ). Secondly , in any transition the only ()~ of 

significance is t he one assoc iated with the lowest degree of forbid­

denness: the contributions from the higher de-g~ees are negligible. 

It is instructive to be explicit and consider a part i cular· 

transition: ~ I = 1 , IT i.. :: -Tif . The vector interaction gives rise . 

to t he nuclear matrix elements ( i ) < d ~ (.!)> c.nd ( ii )_ ( TL: (:!, ~)) 
while the axial vector interaction. has assoc i a ted with it (iii) 

< y5 ~ ~ ( ~)) and (iv) < T:'~ (~.!)) • For matrix elements 

(i ) and (iii) we have from (35) that 

. \ ~ A - ~ I~ .. - I~ 
Now the parity condition (36) requires that ;.\ be odd for ( i ) but 

even -for (iii ) . Thus t he former can contribute in the first degree 

of forbiddenness w~ th . .:\ -=- 1 ;,hile t he latter cannot contribute below 



( 22) 

the t hird degree and iu t herefore i gnored. For (ii) and . (iv ) the 

angular momentum selection rule (37) becomeo 

~ L ~ I~ + If 
where L = A ).± \ For (ii) A must be oven end s o it too 1ill 

' 
contribute in t he . first degree with X.= 0 L : 1 . Finally , A hB.s 

) 

to be odd for ( iv) ·whence we shall have A r j , l = :icontributing and if 

IA. +If 'fa 1 there will also be a contribution f r qm :A:::: l, l.~2. . Thus 

the l.o~vest degree of forbiddenness in which the transition can occur is 

t he first 2-nd \ve shall h ve the following matr-ix elements to consider: 

<- ~~(:!) > 
< r· rv\ ( ~ . ~ )> 

II 

( T: (~ , ~ ) ) 

<:T~ ( ! , ~)) 
The l o.st of t hosc1, whi ch corres .L)Ol:l(lo to a.n angular r.1ooentum· 

' of 2 being carried off by the leptons , .will vanish if_ Ii. + If = 1 

i . e. i f either I i or If is zero . Even when it does not vanish it turns 

out that its contribution is cons iderably smaller than t hose of the 

other matrix elements and it is often i enored altogether (it is related 

to t he E .. 
~J 

of Konopinski. and Uhlenbeck (1941) ). On the othe~ hand. it 

is easy to sec that for a transition fl i = 2, v:ith a parity change, 

this matrix element will still be non-vanishing although all the others . 

will be i dent ica lly zero . Thus this transition will be first forbidden, 

but significantly s lower t han the other first forbidden transitions. 

Since the tra1~ition probability depends on only one matrix element 

in this case the dependence on the ~epton functions will be unique and 

the spectrum shape will be the same for all such transitions. They · 

are referred t o as unique transit i ons . 
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This example is sufficient to i llustra te t he general principle 

that the degree of forbiddeP~ess, n, is odd if t here is a parity change 

and even if t here is not. The precise value of n is t Len ive~ by 

n = ~I or n = ~I -1 
the latter be i ng t he unique transitions, which pccur in all degrees of 

:forbiddenness. (Special attention has to be g iven to ·the case of .O-? 0 

trans itions , with a parity change~ 

In the foregoing w& have · merely indicated t he general approach 

to the problem of calculating transition probabilities. We ha.ve not 

discussed at all the details of the calculation of the lepton d~pendent 

functions, p., which multipl y each matrix element .and on which the 

spect~m shape and t he total transition probability will depend. This 

calculation is straight:fo~vard but very tedious. The ~esults :for the 

various cases have been g iven by Konopinski and Uhlenbeck (1941), 

Greuling (1942) and Pursey (1951). 

The angular momentum representation for t he lepton states is 

clearl y the most convenient one to use in establishing t he selec ·~ion 

rules for the dif' erent degrees of i'orbiddenness . On t he other hand , 

t he most elementa~y a ccounts of {?> -decay theory i gnore t l e nuclear 

char ge and represent the lepton sta tes by plane waves . The allowed 

spectrum shape is t hen determined solely by the density o:f constant 
'l 

momentum states.: f> \{ V It i ·s of interest to note · tluj!.t if we take 

Z = 0 appro~mation (25) for t he electron f~tions then our expression 

(30) reduces for allowed tra.ns.itions to the plane wave result.· 



P.A.RT II - THE ELECTRIC QUADRUPOLE rnTERACTIOU 

llT BETA-DECAY 

In this part we consider t he problem with which this thesis 

is concerned. 

3. STA;TEHENT OF THE PROBLE1i. 

As we have already pointed out in the previous section it is 

customary in ca lculating t he wave function of t he decay electron to 

assume t hat t he electrostatic field of the .daUghter nucleus in which 

t he elec tron moves is spherically synunetrical. Now possession of 

g_uadrupo_!e moments by nuclei shows that in general .this cannot exactly 

be the case . The Hamiltonian of the interaction of a negaton with the. 

quadrupole moment is 

H~ 
e'l.. 

Qo p ( ~) p ( c,OS e)) (38) = 2. ~ 

where e' is the polar angle of the electron position vector with 

respect t o the nuclear synunetry axis and Qo is the intrinsic quadrupole 

moment of' the nucleus (see, e.g. the article by Bohr and liottelson in 

Siegbahn (1955 ) ). F ("-t·) is a radial function given by F(1'):: '/'T"'!> outside 
. 

of t he nucleus . Inside the 'nucleus it depends very much on ~he charge 

distribution but f'or a uniform charge distribution of average radius \ 

.P('<') = 'fe s (see, e . g . \Vheeler (1953)) . 

Because t he electrostatic interaction between the decay electron 

(24) 
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and the daughter nucleus i s non-central, t heir angular momenta, Je and 

l f , respectively , will no longer be const ants of motion. Only 

asymptotica lly , when t he electron is remote from t he nucleus , ·1ill t hey 

become good quantum numbers. 

One .would expect t he quadrupole coupling effect to be largest 

in t he reg ions remote from closed shells i.e. 150 <. A <190 and A) 225, 

for such nuclei are strongly deformed and have large quadrupole moments. 

Furthermor~ , their low lying s~ates are very close together, t he first 

excited s -tate having an energy of less than 100 kev. Since adjacent 

sta tes diff'er in anaular momentum by two units and have the same parity 
.. 

an apprecia,ble quadrupole coup::),ine between the t wo states may. be · 

anticipa ted. The situation, in :fact, is not unlike that obtaining in 
' . 

C,oulomb excitation (see, e. g . Alder et al. (1956 ) )_. 

I n view of t he considerable ambiguity t hat arises i n the 

i nt erpr e-tat ion of · ~ - decay transitions, d1,1e mainly to the uncertaint y 

i n the nuclear wave functions, one may well ask how quadrupole eff_ects 

of the ki nd jus t . mentione d could be unequivocally identified as such , 

even i f t hey were appr,eciable. · In order· to s e.e t hat this is ·possible 
. 

we must first examine more closely the structure of the strongly 

def'or med nuclei. 

Thes e nuclei are characterized by a compara tive stability of 

t he nuclear deformation so t hat its .changes have only adiabatic 

influence on t he motion of the i ndividual nucleons. That is to say, 

t here ~a a decoupline of the individual particle motion from t ·he 

collective modes of motion that the nuclear shape can execute. These 

collective modes of inotion are of two types: a vibrational one 
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involving changes o£ shape, generally with pr eservation of axial 

symmetr y and t he other a rotational one in which the nuclear shape 

merely changes its orientation with respect to a s pace fixed system of 

axes . The latter modes correspond simply to t he motion o£ a symmetrical 

top , which has been well studied. It has energy eigenvalues of d;) I (I .-1) , 
d being the effective moment of inertia about the 'symmetry axis and I 

the total aneular momentum. 

are ~· D MIK ( 8;) 
The associated normalized eigen£unctions 

' where the DMIK ( e;) : is a 
. . 

function, def~ed in Section A.3, of the Euler angles o£ the nucleus 

in a space fixed system of · coordinates. M is t he component of the 

angular momentum I on the z-axis o£ t he space fixed system and K that 

on the nuclear symmetry axis. 

Strongl y deformed nuclei may now be described in terms ·of their 

rotational and intrinsic states. Only t l~ latter deperids on the particle 

C?n£igu.rat ion: it will i nvolve both the i ndividual particle and the 

vibrational modes. Let us write t he intrinsic wave function as JC£t 
This ia a function of all ~he particle coordinates i n t he nuclear fixed 

system; n is the component of the total particle angular momentum 

· alon.g the nuclear symmetry axis. Then the nuclear wave funct.ion i1i 

the space fixed system may be v~itten as 

( 39) 

The second term here is introduced to preserve t he necessary symmetr y; 

the facto_r .(-) J refers to t he expansion of x..Q.. into eigenfunctions 
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of part i cle angular momentum j (see Moszkowski (1957 )) . I n t he event 

of K = 0 (39 ) reduces to 

x_Q_ 
I 

D 
M o 

(40) 

and I is a l ways even. 

The first few excited states of a s trongly deformed nucleus 

consist of p~e rotational excitations, so t hat t hey all have the same 

intrinsic structure. Diff erent rotational states based on t he s ame 

· intrin~ ic s tructure are said to form a rota tiona l band •. Their wave 

functions di ffer · onl y in t hat t liey have 4ifferent D-functions~ which 
. . 

are, however, knewn. T!iia i mm.edia tely suggests t hat it should be 

p_oss ible to calcul a te t he relative p~obabili t y of trans i tiona from a 

given parent s t a te to t he ~round :s tate an~ to t he f i r s t'exoit ed s t ate, 

i . e . the branching ratio of t he t wo transitions. 

This gener~l problem has been consider~d 'by Alaga et al. (1955) , 

who ca lcula t e t he branchi ng ratios of trans itions . (j3 or y ) of definite 

multipolarity to dif ferent members of the same rota tional band. 

Ref erring to Appendix D, it will pe seen t hat, s ince each matrix 

element has t he s ame lepton ooe~ficient in both branches, the ratio i s 

L I< +TMf I (Mo) 11 1~;) 1. 
' M 

T 
( r f ) l. 

Mf - f · . N 

--<.v 
--

(I~ ) 2__. ·<1-M.f -M (w) TI~')/7. ~ t L r?. 
Mf f 
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c ( I~ I. 
K~,\~) N 

I 

I<~ I<~ --
::: T..._ 

c( f. 

1('-\.) 
-f -~ 

K?.. K. (41) 
f ,., F N 

In obtaining this last result use has . been made of various properties 

of t he Clebsch-Gordan coefficients listed in Appendix A. Thus, as was 

to be expected, the branching ratio is independent of the details of 

the nuclear structure and d~pends on vvhat is essentially a geometrical 

factor. 

It will be seen that the multipolarity has to ·be the same for 

both transitions; iu the case of P -d;cay this means that they must 

both have the same deeree of forbiddenness. Thus the applicability 

of (41) is res·tricted to the case of the parent nucleus being in the 

+ - + + states 1 or 1 so that the transitions to the 0 and 2 daughter states 

will both be allowed (unique) in the first ease or first forbidden in . 

the second. In both cases L ··= 1, K1 = 1 and Kf = 0 whence (40) becomes 

A-V(IF: o) 
.---w (If :o2) 

= 2 (42) 

This just g ives the branching ratio for a particular electron 

energy . If the total energies of the two transitions differ appreciably 

then allowance must be made for this before the branching ratio we have 

defined can be compared with the ratio of the total decay rates. This 

may be difficult if the spectrum shape. is not that of an allowed 

transition. It should a lso be noted that we have i;aci t_ly ignored the 



( 29 ) 

contribut ion of the second r ank tensor, B .. , to the trans ition to the 
l.J 

+ 2 state. Its con-~ribution i s knovm to be small, generally , but its 

poosible sienificance must not be overlooked. 

Now let us return to the case of quadrupole coupline between 

+ -;-· 
the 0 nnd 2 state of the dau~htor nucleus . Then a nucleus which is 

+ i n a definite stat e , say 0 , nhen the decay electron is remote from the 
t 

nucleus , '\'Jill actua ;Ll y have been in a mixture of t he t wo states when 

the electron was clos e to it. Hence the relation (41) no loneer holds 

and both the numer a tor and denominator there must be .repl a ced by linear 

combi nations of t he .!:'orm 

·where the a and b coe-~.'f'icientn depend oi1 the amount . of oouplinc. 

Thus i t i~ i n the departure of t he branchine r a tios from Al aga ' s 

value ( 42 ) t hat quadrupole coupline ei':fects of' the kind c ons i dered will 

unequivoca lly revea l themselves, if t hey exist~ 

The data presented by Alaga et a.l. (1955) indicates that t he 

relation (41 ) ho1ds viell i'or .electrbmagne t =i:c transi tiona and a"lso for 

severa l br anched ~ - decayso However, t hey pres ent t no ca ::Jes o:f a 

breakdovm of t he r e l ation: Lu176 and Ta.180 , which both have 

br anching rat ios ~ 1 . A possible, but unlikely , expl anation of -~his 

i s t hat t he Bij matrix element is enhancine . the 2+ transition. 

\/e now conside~ the branc ed decay of Np236 (Gray (1956)) . 

The transit ions to both t he 0+ and 2+ states .have r a tes consistent 
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with first forbidden transitions; furthermore t he s pectrum is reported 
I 

as having a s t rong distortion from the allowed shape. Hence we may 

a s sume that we are dealing with a branched decay of the kind that we 

are interested in. But the branching ratio of the two transitions is 

__,<..u (If = o) 

~ . (IF=2) 
This value has not been corrected for the differenc.e in energies of 

t he ~vo transitions (the correction would be difficult to make in this 
• 

case because the spEtctrum shape is not allowed) but this can be of 

li t tle consequence since the energy difference is only about 8%. 

Since here it is the ground state transition that is excessive 

t he ·Bij matrix element cannot be invoked. Now because rotational 

structure .is particularly well developed in this mass number region 

(see, e.e. Hyde and Seaborg '(1957)) there is here a prima facie case 

for a quadrupole coupling ef~ect occurring in the ~ -d~cay of strongly 

deformed nuclei. 

5. THE SCOPE OF THIS THESIS. 

In t4is · thesis we consider the coupling together of different 

angular momentum states of the decay electron and the daughter nucleus 

in the belief that this may be able to account for the above mentioned 

anomalies in the branching ratioso 

A general expression for tran~ition probabilities to states 

which have only asymptotic conservation of angular momenta is obtained 

in Chapter II. One of the major problems encountered there is .that 

these states are non-orthogonal. In the next chapter we specialize 
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this expression to give the required branching ratio. 

With Q. ~ 10 barns it is readily seen that at the nuclear surface 
0 

the quadrupole interaction is ne~rly as large as ~he central interaction. 

One is therefore reluctant to use perturbation calculation of the 

electron functions. and prefers an exact . t~eatment. This is done in 

qhapter IV, r>1here we set up systems of coupled differential equations 

which the electron radial functions satisfy e::l.(:a.ctly, the a.~~lar po.~s 
. ~ 

of the wave functions ~avi.ng been separated out. Some formal properties 

and the method of solution of these equations are considered in 9hapter V. 

The numerical work is described in Chapter VI, this b~ing 

concerned mainly with the solution of the. differential equations, which 

wa~ performed on an electronic computer. We considered' just the single 

236 case of Np . and repeated the calculation for both a positive and a 

negative value of the quadrupole moment, since the sign does not appear 

to have been conclusively established for the transuranic elements 

(the fact that the anomalies in this region are in the opposite 

direction to those in the rare earth region suggests that Q. may 
0 

possibly be negative for the former). Because of the extreme .lengthiness 
' 

of the computation only one energy value was taken. Hov/ever, we are 

concerned not so much with reproducing thp measured branching ratio 

as with seeing whether or not the coupling of the kind we have described 

is at all significant. Our conclusions on this point are stated. in 

the last chapter. 

The angular momentum theory of whic~ extensive use is ma~e in 

this thesis is summarized in Appendix A. 



CHAPTER II 

THE Tlli\.J.rt.iiTIOlT PROBABILITY TO STATES OF COUPLED ANGULAR UO.OOJTA 

1. · TilE BASIC STATES. 

In the initial state the total energy, '1
1 

, of t he absorbed 

neutrino-parent nucleus system, the a n...,r-u lar momenta of' the. parent 

nucleus, I
1 

, and of the neutrino, j ~ , and t he neutrino energy, -q, 

?-re all con::t erved. We express the initial state in tE)rms of a represent-

ation in which the z-co nponent of' the~e t wo angular momenta , u i . and r'( 
respectively , arc diagonal and s o write for the wave f'unction of t he 

basic state; ( IA. M...: > J(~v ,· 1f ~_;. > ) 
(1 ) 

- 1here t he parameters r1 and Wi have been ami tted f rom the le;ft 

hand side because we shall only be considering one state of' the parent 

nucleus, fLy * 
A, T X. ( V) is the wave ~unction 

of t he absorbed, negative energy neutrino (see Section 1. 2 ). 

In therf'inal state the angular moQenta of' the nucleus, If . , 

and of the .electron, j , and the energy of' the electron, \'1 , are none 
e e 

of' them constants of'.motion when a quadrupole coupling is present • . How- · 

ever., the complete final state system, electron plus daughter nucleus, 

(32) 
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has its total angul ar momentum , J, the z-component thereof', M, and the 

total ener(51J , ¥! , conserved. rle can therefore work in a representation 

in which J, M and \7 arc diagonal and write 

= (H Nuc + He 1- H Q ) I J M \-1) 
'w'! TMW) 

in which H is the Dirac Hamiltonian of' t he electron in a central e 

(2a) 

~ield and HQ. is the Hamiltonian of' t he quadrupole i nteraction between 

the nucleus and t he electron. 

-
The description of the f'inal s t ates is not yet complete for, 

as will be seen l ater, there remains a degeneracy which ·must correspond 

to the existence of other operato~s that con1mute with J , M and H • . How­

ever, as we · wish to' remove t his degeneracy by requiring . t hat t he ~lectron 

waye function obeys certain asymptotic boundary conditions ne shall not 

choose our representation to be one in VThich t hese extra operators, 

whatever they may be, a re diagonal. Accordinely , we write our final 

st~te as I T M~ .f) \/here ,tis simply a label dis tinguishing between 

the degenerate st--ates belonging to J, IJ and W t hat satisfy different 

asymptotic boundary conditions. (2a) then becomes 

= ( 2b ) 

·.re e:x;pand t hese complete final states in t erms of the discrete 

·basic set consistine of tho nuclear states tha t are coupled together , 

...,t,. · M~ 1 , and the angular momentum e igenfunctions of the electron. 
I~ 

The angular part of t hese latter must be identical to tho central 

fiold case whence from ( 1. 26 ) they take t he :form 
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:. (3 ) 

in a system of s pace fixed axes. 

The final states can then have their wave functions written as 

This represents a mixture o~ the nuclear states, each one of 

which is associated with all possible angular momentum states of the 

electron, (3). The angular dependence of' these electron states is 

( 4) 

det er 111inod s ole l y by aneular momentum considerations but the complete. 

sta t es (4 ) still have to satisfy ( 2a). It w~ll be seen in Chapter IV 

how t he anu'J"U.lar part can be removed from ( 2a) , which then reduces to a 

system of first order cou.pl od dif'f'eront ial equations in t he r a dial 

• The role of' the parameters 

in t he s e funct:j..ons is self-evident; as this notation is somewhat .cumber-

some it will be condensed when no confusion can aris e, but· such chances 

~ill be announced. It should be noted that we have tacitly assumed 

t hat t here is no radial dependence on U; this will be shown to be the 

case in Chapter N. 
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In the limit of vanishi ng quadrupole these ~unctions will pass 

over into the familiar relativistic Coulomb functions, r Q r Xe J J Ke 

( Section 1. 2 ). However, in general t he e l ectron states (3) will not 

be s t a tes of constant electron energy, because of t he qua drupole 

couplinc . An expansion in terms of central fiel d sol~tions is possible 

but it would i nvolve an intec,rat ion over th'e cont i nuum of electron -

energy . The present met hod is the more suitable. 

It Vlill be seen in Chapter· v that the debeneracy in the 

states is equal to t he number of central :fiel d states , labelled by 

(><e., . I r: J , that are coupl ed together by t he quadrupole interaction. 

Furthermore, it is noted 
If?> 

off as fast as /~ t hen 

that because t he quadrupole potentia l falls 
• r 

t hese ( X'e.
1 
I F) states uncouple asymptotically 

and it is , in fac t , possible to remove t he degener acy by requiring 

t h.a.t c.~ch I T M~ l) s tate belonging to a g iven (JMI'I ) ·s.et of' vaiues 

asytwtotica lly assumes the form of a dif'ferent central field state 

(Xe) I~) . That is' we i mpose boundary condit-ions such t hat i n any 

f'innl s t a t e all but one of t he pairs of F and G functions fall off' 

faster t han )j( and t his particular pair is different in each of the 

different states labelled by i. ·;;e may say t hat the d~gerieracy is 

r er,1ovc d by requiring t hat the s.tate.s have "asymptotic 'eigenvalues", ·· 

.l T l 
Ke - ~ • However, because these are not true eigenvalues ·the 

' states so chosen will not necessarily be orthogonal, alt hough they are 

certainly linearly i ndependent. 

The central :field .electron :functions which our F and G 

functions approach in t he region of' vanishing quadrupole interact;i.on 

arc, of course, just particular linear combinations of· ~egula~ and 
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irregul a r F X€ (we) 1 ~'KJWe) . We recall, t hen, from ( 1 . 24) tha t 

t hey hav e t he a sympt otic :form: 

A § (r• + £'~e) S Ln 
( r 

(5) 

A @ ( £<) 
'\ 

co s I'('"' + + E. 

"f 

where E · i s a constant phane angl o de pen d i ng on the particula r combi_n-

ation of regular a nd i r regula r solutions , a nd A is a c onstant f actor 

t hat is unity f or norma l ized centr al field -functions . 

The n , i f' we c hoose o~r s t a tes J :J" M-w: t) of the complete dauGht er 

syst em in the manner do~cribed , (4 ) will asympto·tic a lly become 

l 

' 

( 
. . \ <: ) ,.; JLe f ' +a +E A t 

t 1. Jl -)( 
e 

) 
~ ( c ) )-i-e 
cos p~ ·r • ~.t • ~ . X x/ 

(6) 
be i ng t he ex c ita tion energy of the Hero W ;: W- E1.e ·, f I .1. 

1 F f 
nuc lear s t ate. o±· ane;ul a r tnomentum 

valu es. a ppr opr iate t o the 

IF .i , a nd f .t and 

particula r Y/ and kl . 
.! e 

jus t 

a nUmerica l constant . 
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2. TTI!E DEPENDENT P:CRTURJJ.ATIOH THEORY. 

The application of time dependent perturbation theory to this 

problem i s complicated by the fact that not all the final states are 

orthogonal to each other . However, the necessary modifications to the 

usual form of the theory are worked out in Appendix B, from which it 

is seen that the only essential changes are i n the form of the 

perturbation matrix element. It will be noticed t here that we have 

allow·ed t he states to fill t he ·whole of space . If we had confined them 

to a finite enclosure then it will be recalled from Section 1~1 that a 

weighting factor, t he state density, would have to be introduced. It 

is diff icult to show that the appropriate density will be the one . 

determined by periodic boundary conditions on the surface of the enclos ure. 

We prefer to avoid the problem by treating our states as the true continu-

um states that they really are. 

Decaus~ the f -decay Hamiltonian does not commute with the 

Hamiltonian of the free nucleon- lepton system there will as usual be 

a violation of energy conservation 'in t~e decay process. However, the 

interaction will not destroy any of the angular momentum constants of 

motion so we can \yrit~ for the packet of final states obtained from the . 

initial state j !1. M~:> Xvjv ') V \J~,) after t he perturb~tion has beeri 

switched on for time t 

::: JJ.\J a.( J M\J, 1) 1' (1!1~ 1 )e-,: Wi 

( 7 ) . 
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Hero the left b.c.nd sicle has been vrritten in a way that anticipates 

the time independence of the <£ factor 1asicle from a s tep-function -

see (14)) and 
;. (W-Wi-) t 

e i 
'vJ-W:. 

( 8) 
(8) has exactly the same time dependence as in the usual form of the 

theol~y for orthogonal states but the matrix element is no longer the 

straightforward matrix element of t he perturbat ion, H ~ , betvveen the 

initial and fina l states . P~ther is it a liUDar combination of these 

latter, thus: 

(:rMw,!j ?t IU"~'-~V·''Vv•) = 

L_ t u :· 1< JM\Jl K \Hro I u1~, ky,, v vi) 
Kthe fu} where matrix L is g iven by 

(9) 

t u] ~ cw~w) = -< J M\./,'rn I I M"0 "/ 
. """ (10) 

Use ·has boen made here of t he f act that all final s t ates are orthogonal 

to initial states and final states belonging to different values of J 

or M are also orthogonal to each other. 

· Now, be.cause th~ final states \ TM'W; l) are not all orthogonal 

. to each other, I a.. (I M ~ .£,) \?.. is no longer th~. probabi.li ty of finding 

the syste1n in' such a state. Hence we cannot ~ollow the usual procedure 

,of using the Golden Rule (see Section 1. 1 ) for obtainine transition 

probabilities. Instead, we adopt t he method of Greuling and Meel~ 
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(1951) and Lee- \Tniti!l£; (1958 e nd deter mine first the asymptotic form 

of' t lle nave packet, p(J M~.t) . :J inc e the asymptotic fore of tb,e f'ina.l 

states are si uilar t o those of the central f'ield case t '1ere will be no 

e ssential dif'f'erence here and we s~ll find that the wave packet consists 

onl y of' out aoip.g vmves, t he i ncoming waves removing t hemselves by 

des t ructive interference. 

Then .substitutinG into (7) the asymptot i c form of I(TM~.£), 

(6) , we have 

1-
\ I w ,t 
w! + t- o 

\ I,Mk,;~,, 1w;) )! (~;:
1 

+ e. 

. ?t 

. -~( P~.. ~- + SLC. + t.L) 
e. 

-}- (rx + b c. + E.e.) 
. 1-- t. 

(11) 



' 
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where we have mo.dc use of t he relations 

w~ = E I. · v 
"" v = Er~ + .wl 

and have \.'r itten f or t ho total cr.r..r[Sy available to t he leptons in a 

de cay t o t he stat e rf 
wl E E t 

0 . I;. I~ : 
The inte~rn_nd i n ( 11) has a sharp maxir:lUm i n t he vicin~ty of ~ =·W

0

2·-1; 
i. e . 'W.= 'W"" a nd therefore we take outs i de of' t he i nteeral all the 

f a ctors t hat a.r~ slowl y varying in ~ • We ar e t hen l eft wi th the 

f ollovving inte r a ls , which ·are eva lua t ed 

J d\.J)_ 

I - e ~ ( \Jf ~ l -'w'!) t ..a:r"" 
'vj - \J~ 

e. .t 

+ v ..t · o . 

'\- . 
-J.-

i n Appendix C: 

?...11;, e 
).. r.i"" 

-

0 

0 

i .L.' 

i f 

l<(r<, fi t 
'yJL 

(12) 

- £ 
i n which W --:; W - q_ and P1 i s t he corresponding momentum. Thus we 

t 0 v ' . 
s e e t hat the wave p{:l.-cket behaves asymptoticall y ·as· a. t r ain of out going 

spherical waves of energy correspondi ng to · e~ergy c onservation and 

moving wi th a velocity equal to t hat of t he electron . In subaequent 

work the bars on r L and W!· will b~ dropped , i t . being underst ood t hat 
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these are t he values appropriate t o ener gy conservation. 

The complete asymptotic eXIJress i on for t ho packe t oi' :final 

stat es becomes 

sc. Tl) 
+ ~ ~ ~-t- ?: ~ c ( J j} r1 ) r t1 f 

L . n lL · M; 1 t 
u. . r-e F 
/-~ . 

i'or << )" 

0 

for << ' > 
(13) 

This resul t is similar to the expression obtained by Greuling 

and lle·eks (1951). However, as pointed out by Lee-Whiting (1958), an 

incorrect sign of' the exponent occurring in equation (9) of' the f'orrner 

leads to an apparent cancellation of' the ou'tgoing rather than the i n-

comi ng wave . 

3. FORillJLATIOU OF THE TRANSITION PROBABILITY. 

Let us take the s ystem at a certain instant to be in the initial . 



( . ') ) 
' ..... 

s ta tc , I I L M ;_ , !)#i, ~ vJ;.) . upJose that at ·C LJs . t lc.tcr ? -decay 

to m:o o t he.; sto.tcs beloncins to tlH3 rJaclcet p (J MVJ ~ L) '.1CG occurre d , 

i. e . to one of' t he states c har ' cterizeu. by c v.u.ntu,T! nunbors J, M and by 

1-· ! 
asymptotic qilantum numbers -~ , IF · . Tilen the .J(robabili ty of i'inding 

1?.. ) I ), I - I 

the electr on in a· volume c lement d. r = 1 ~i:-n 8 c:L6 d T cl'f" at the 
I 

point -\ is ,... 

\ 

so tha·t· the probability of' t he electron being at a distance bet\·teen '"f"' 

d I d . an ~ + r- ~s 

(14 ) 
I 

If we require that -r be larg e then 'Qy substitution from .( 13) 

this reduces to 

. . ~ ( JMW\ '.t ) -c',-L) = 

Wt 

f_t 

if' , < 



( .... \ 
'1· ..1 ) 

- 0 

if > t 

( 15 ) 

But in de t ermining transition r ates we are interested in t he probability 

of ±-:indint; an electron at ~ point in spa ce , not at one particular 

distance. Now· .( 15) shows t~t . f ( J t1 W ~· .t) ~ t ) is · independent o:f 

r, a s long as thi~ is 

the sphere of r adius 

large 

Pt t 
w~ 

but so..'iller than 1>-t. t · . Out side o:f 
w~ 

t here are no e~ectrons. Thus as time 

elapses there will be an increasing volume in which ele.ctrons are to 

be :found., i.e. transitions .will continue to occur. It is now readily 

seen tl~t the transition r ate :from t he partic~ar initia l state to the 

states belongi nc to the packet j (T M\J~ L) is 

= 

. 
(16; 



\ 

( l,.t1 ) 

This result i s equivalent to the stat ement that the asymptot ic current 

is equal to t he pr oduct o:f t he particle dens ity and t he particle 

vel oc ity . :ilov1ever, the use of such a s tandard r esult required special 

just ii'J.ca tion hero becaus e of' t he non-orthogonality o:f t he states. 

\Jo(IfJ 

dl)l 2 . ~t I Ap (Vie) J( 

. J.Ml ~ ~ 
) ) 2. 

Xy.f-i < J M \J, t l4{ \ ! J1 ~, ><pui, ~ I.J~ 
(17) 

Here we have written \v'~ :for \Jt and \,jo (Jf) f'or \J
0
£ s ince we 

are only summing over sta tes for which If t -::: I r. · 
ie now show that in :the limit ~:f vanishi-ng quadrupole moment 

(17) reduces to the standa.rd .central field e~~ress ion. I n t he central 

field case t he :final states I J M w~ .l > are orthogonal and t he matriX 

~ g iven by (10) will .be diagonal: 

u 
.tK 

Furthermore,the electron functions will no loneer depend on J so the 

perturba tion matrix (9) becomes 
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and (17) reduces to 

::: 

(18) 

Now we recall that for nor~lized electron functions 

unity so that in (18) we can· cancel it with a similar factor in 

~e ( W. \ which must thereafter be regarded as normalized. 
r '>(e. e.. J 

Finally , using orthogonality conditions (see Appendix A) for the 

Clebsch-Gorda.n coeff icients we . have the familiar expression 



whiCl1 i s jus t (1 . 30) intee;r a ted ove r the e l e c tron energy, We. 

Thus no:t only is (17) c hecked for this spec ial case but it can 'also 

be seen hov1 th~ hmttcr of normalization is handled autol.ln.ticnll,": in 

the g eneral case by the U matr ix nd the A I t (We ) fo.ctor . 
I 
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CHAPTER III 

BRANCHDIG RATIOS I N ROTATIONAL BANI~ 

In the las t chapter we obtained the general expression (2.17) 

for [S -decay .transition probabilities to mixtures of the daughter 

nuclear states, the different states being coupled together by their 

quadrupole interaction with the decay electron and only separating when 

the decay electron is far away. In this chapter we specialize t his 

result to the case of part i cular interests that of first forbidden 

transitions ~ strongly deformed nuclei in which the coupled daughter 

states belong to the same rotational band. 

It is convenient to rewrite the generalized matrix element 

· (2.9) as 

(47) 

-..... 

(1) 
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where we have used (2 . 4) and written 

' . 

;. FJ(IL (:rwr F, t) X:; 
. "1- --. ' . ~"-

~ ~~ ("JW1fJ1) X k 
..c. 

(2) 

The p _, ~ and t functions appearing here are distinguished f'rom the 

similar functions appearing in the central f'ield case by meanri of' the, 

extra parameters; however, in the central field limit tpey become 

identical to the ~atter . 

(2.17) now becomes 



The. f - decay matrix element in ( 3) has exactly the same form 

as that appearing in (1.30 ) for the standard form of the theory, the 

only difference being in the radial part of t he electron functions. 

Thus a· multipole expansion in terms of matrix elements of the various 

spherical . tensor op~rators between the initial and final nuclear states 

is possible, as before. Furthermore, it is now asserted that the 

degree of forbiddenness approximation described in Section 1.2 holds 

· good here. That is, although lepton states that in t he central field 

limit would give a dominant contribution to the transition probability 

are here coupled in with electron states corresponding to higher degrees 

of forbiddenness, these latter states are not sufficiently different 

from their central field value to give a co.ntribution of any significance. 

Because of the great difference in magnitude of the contributions 

associated with the different orders of forbiddenness the necessary 

distortion of the electron states would require an extremely large 

quadrupole coupling. However, the :final justification :for our assert ion 

must come from a knowledge of the numerical value of the electron 

functions (see Chapter VI. ) 

Thus in the present case we s4all have the same ~ 
matrix elements of the form 

-decay 

< 'fi~~ 't~e (:iwr.,R )/ H~) ~ :~ ~ 1 ~-{~) > 
(4 ) 
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as a ppear in·the central field case . Secondly , the multipole expansion 

of each of these matrix elements will also be essentially the same a s 

there; with the difference t hat ' the central field f unbtions ~e.. cw~) ' 
jk (w .. ) a~e here replaced by the Plc"e. (JwlF..l) > ·J \<ct. ('Jwlr.~ ) of (2 ) . 

~ . 
Let us now consider the cases of s pec iai interest : the first 

·- + - . + . .. 
forbi dden 1 ~0 and 1 --;. 2 transi tiona , which have alfready . peen 

considered to some extent for the central ·field limit in Section 1 .2. 

It wil+ be recalled from Section 1. 4 that it wa,s decided to ignore 

the contribution of t he second rank tensor, TM ( o) 
t \ ;.) " that occurs 

i n the second transition. Thus t he only terms in the multipole expansion 

of matrix elements (4) t hat we take are those containing the nuclear 

X"(~) -r, ~ (: ) _f ) ) M ( ) matrix elements of ) \ v 0( . • 
{0 A J "-

The l epton states that g ive rise to these operators are 

k~ 1 x., 1 ' xll. = -1 kv = -1 

X e. = 2 kv = -1 ·ke. = -2 · kv 1 ' 
Xc. . = 1 Xv = -2 ' ·, k~ ::;: .:.1 k-.~ 2 • 

Then t he coefficient of each of the three nuclear ma~rix elements 

< Y~(~J> > <~".7 (;r,__r)>, < T;~(r, ~)). 
occurring in the multipole eXpa~ion of every matrix element (4) . -
corresponding to ea~h of t he above lepton states with all possible 

magnetic quantum numbers/e. 1j" 11 1 
Mf' has t .o be calculated in the manner 

outlined in Section 1. 2 • Because there are th~:rty-two such matrix 

element expansions to be performed we do not list the results obtained. 

However, they were checked by showing that they yielded the correct 
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central field first forbidden transition probability (Konopinski and 

U~enbeck (1941), Pursey (1951)). 

We now take cognizance of the fact that our nuclear states have 

their collective rotational motion and intrinsic particle structure 

completely separated. Thus th~ nuclear matrix elements, which we write 

in general as 

\ ~ I AF M;.'> 
. 1 L ( w) - I,~ 

can be factored into ' a prod~ct of' tNo matrix elements, 'one invo_;J..ving 

only the rotational motion and t he other only the intrinsic structture. 

Since the former can be evaluated we are left essentially with intrinsic 

ma tri.x elements, M L ( GoJ) of' T:: ( tu) . In Appendix D it is shown that 

I. 
"" > 

I . .. L) C ( ~F I~ l ) M 
~- 1(. - )('. L 

A. ,. (5) 
M. ... 

In our problem the ~vo daughter states both belong to the same. 

rotational band so the intrinsic matrix elements M ( w) will be the 
L ' 

same for both transitions. 

Let us now write (3) as 

{6) 
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where qj ~ can be expre$sed i n t erms of t he intrinsic matrix elements 

~ ( y ( · M 1-r 6' ) M I,.,. a{ ) • Now because angular momentum 
\ "' } I \\ l ", "" J I o l",.. > " 

is conserved during (3 -decay 

and since ' Ii == 1 a:nd the significant values of jv are 'i, ) ~ it follows 

t hat the J values invol ved will be 

..i ~ -:r ': 1. ~ . 1: ' -2... 

If we ''lri te the elec tron functions as F )(e. ( J If Ji) ) . J )(._ ( ::r If Jl ) 
the W being superfluous , we have 

-.Q J. J .Q. 
2. 

1.~{ F,' (i o~) ~~-:(to .t) 1l~ / J£.. M, (x)-Jl M,. (!. ~} /2 
+ 

\H·~_$ u ~'-f.(ioR ) +~l j ,(~oR)JM, ( x) 

~ Jfu f', (i oR) M,o (!. ~)-d [ ~ 1' f, c~o t l- ~ n . No »lj "~ .. 6.~:)] 
: . '2.. 

+? rlf~ -d~H)[jt M.-(xJ4Jf M~ ({, ~)] t 

+\i[-;Jt: f h'-a"' o o 11 )- fr ~ r-. ({ o .Q) ~ M, <~) 
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. 
+IT ~ j., (~ O_Q) M,o ~· ~)- ~ t [; fd-· a~g) +~ b f'-, (~ofl)) M,. (::.! ) 1 

'l. 

. "'"itJ l p(..t~.t)[·r::cM(-r) f.I ·M ifr )J / 
. ~3,13 L "> Jit-rr. I"+"'' "LA,,! •, . . ·. ·· 

\ ' ' Q . . ii ' =-
·. ~ . 

. f:r [ f'.1ati ) .. J.~ ~v )} ~ + / Ji~ M,(:: J -/[ M,, (~!~a-_) /2. . 
I . . 

. Is~· [-:.Jt ftz'"f,{~~ ·1J+foJ.av;] M, (~) · 

4 if t p, n u) M,o (::.~)-A ~ [t z' p, (f2P)-d p 3. (fH Jj 1'1,.(r •. nJ 
+- ~fy {sK ll(io£)+3~ J-2 0J<.e)) [JE.M, (I)•fiN" (:.~g r . 
h-h [- .:fl [t'b 1:J~ (i H)-# 6 f-, e l.e) J M, (;:) 

. . 

1- If 'b ~ ., ~1l) M,o (:,%)-;. ~ U t 'J., (~ H)Tj J f., (i2J)~ M,. (J.~) 1 

Q f 0 · ::: . . 

-).A 
1. 

. 1. 

, !s- [ P,\ { ~ .2 )+ ~-~ ( { ~.k)h +-lJl M, (x)- J[ M .. (:r, ~) / 
(7) 
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T-he electron £unctions are to be evaluated at the nuclear radius ~ 

To expand the squares that appear here would be extremely tedious and 

the resultant expression very lengthy and no more illuminating. (7) is 
. 

quite adequate for any numerical calculation of the transition probability. 

In the central £ield limit 

and likewise for the g functions. With A·-s .R(V~)being unity it is · 
I 

easy ~o check that (7) substituted into (6) yields 

~(I~ -::-o) 

. ~ (!f ~ 1) 
-..... 

which is the result o£ Alaea at al. (1955), quoted· in Section 1. 3 • · 

It will be seen that it is only in this limit that the branching 

ratio will be independent of the intrinsic matrix elements. 



CHAPTER N 

THE COUPLRD EQUAT I OLJS OF TIIE ELEX;TROH WAVE FlJ JCT I ONS 

In this chapter we reduce the energy eigenvalue . equa.tion, 

( 2. 2a); of t he electron-daughter nuclear sta tea to a system of couple_d 

dii'i~erential equations in t he electron radial functions. 

Firstly, we recognize the separation of the collective 

rotational motion and t he i ntrinsic structure of the nuclear states, 

·according to (1. 40 ). As \fe o.re dealing with just one rotational band 

onl y one intrinsic sta te, X , is involved, so (2.2a) can be rewritten 

as 

(Hwu< +H .. + H")\ {>(JMV)X) ~W/P(JMW)X) 
(1) 

wher0 , f'rom ( 2. 4 ) and (1 . t~O ) 

I 

D F(eJ 
1'1 0 

F ( i )' 
this will be s een t hat we have dropped the label JL , ::~ince 

refers s i mpl y to t he degeneracy. However, a pos~ible dependence of the 

electron r adial function on M is allowed :for. 

eparating t he nuclear Hamiltonian , t hus: 

H· 
f\luc 

+ 1-i IN T 
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gives 

t 

Ht<u( fcmw) X)" HROT IPC;MVJ)X)+Eo f(JMVJ)X) 
since the rotational band in question is the lowest i.e. the one based 

Then if we write 

W- E 0 
CJ) 

and· premultiply both sides of (1) with the conjugate of the intrinsic 

state vector,<X~ , we have 

This is · the equation t hat we now 

:: \.J* l p (JM\..1) > 
f , ' 
"~ J have to concerll ouroelves 

with. In what follows just two daughter states are considered, J f ~o 

and . ~ • 'le shall have to draw heavily on s t andard r esults of the 

qua11tum ~heory of a11o"Ular momentum_, . a summary of which i s included in 

Appendix A. However , v1e shall only refer specifical ly to this when 

ambiguity might otherwise occur. 

Since the angular part of i (JM~is known, being dete~mined 
by angular momentum considerations, we attempt to remove it from (1). 

Let us introduce the quantities 

I t 
I I 

x?-e. - I _Q If J<e I 2T'.-I((' 'J ') .. "::. -F ~,Je F -k'e' D ~ 
..._ f I 

~~ ?- M'r~ MF . TM x~~ Ml 0 
f 

(e.) 
/~ Ke (5) 

and form from (1) 

< = D_ :~:~ l HROT +H.,+ HQ ~ (JM\J~ =' w * (t a ::~~~l p (rMW~ 
(6 ) 
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Usine t he orthogqna.lity conditions f'or t he Clebs ch- Gordan coeff icients 

X P..e ' and the orthonormality of the Pauli spinors , and of the 
! )(e . 

rotational wave · fuJIFlfncti ono , , : 

8 ' err (6 ) becomes · 

where 

HRot + He+ ti~ :KJM\J?) =~~t1 ' ~n·\j'*6{~(J~;'WJf) 
+ . .· 

R x~ ( JM'w'Jr\ =- .<. ~ {JM'w'J~' :!: ~x (r M'w' IF) 
. e J ~ . ') e ( U) 

,Je now consider each o the three ·ter r.JG on the le.tt hand side 

of (7) i n turn. 

( i ) II 
P.OT . 

HftOT 

where 

The various orthogonality and normalization cond~tions then give 

( ii) li 
~ 

As lle is the Dir ac Hamiltonian. in a central fieid,~ , and. the 

~(JM\JJ~) are eigenstates of angul ar momentw., , He -t~•(JMW%) may 

be eval uated exactl y as in t he central field problem (see,, e . g ., pp . 
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334-5 oi' Schif'i' ( 1955)). 

Then 

(10) 

where 

± ' 

f >-J J M\·JI~) = + [(v~+ 1)~- ~ + ~._-1) f]- ~ [(v.-1) F + ~ + k+l) ~] 
. (11) 

(iii) 3i_ 

The IIa!n.j.l t onian of the quadrupole interaction with .a negaton 

is given ·by (1. 38 ) as ?., · . 
1

) 

H q = - ' ~ Q 0 F("") P,_ ( Cos e . 
is the p olar angle· of t he electron position vector with respect 

to the sy etry axis of the nucleus. Let (~fJ &'1d (6j¢) be the angular 

coordinates of the electron position vector ·and the symmetry axis of 

the nucleus, respectively, in a s pace fixed system. Then with the 

spherical harmonics addition theorem (A.18)_we have 
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. 
It can easily be shmm Vlith the a .id of (A.18) and (A.19.7· t hat 

Di (e.) ~ . ~, Ym (e" A,'·~ 
rt\ 0 ~ . ;J fi:l ). J i ) 

'rhen we can rewrite (2 ) and (5) to g ive 

~ (r MV) = L [Jif:- ~J ie b,;?e i-~e (YM'Wo) 
Xe_te . . 

+ Jfi C ( ~j: ; ) Y: (e; f')1:e( JMW2)} 

I 

oX e.. 
± n J L I I rM 

. 

M 

X-X~ 
M' 

....,.~ 
-.1\.. x:' 

. e. 

· f* J5(~j? 5)'(~(e,"f) 
I 

~e·. 

xJt~ 
-X'e 

;t X~~ 
' J(~ 

The f ollowing i ntegrals• over the. apace of the Euler angles of the 
: ~ 

nucleus (the volume of this space being g<JT ) then appear·. 

\ 

(13 ) 

I 
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j y ; ( e :· f) d r = 0 

j y ~ ' * ( e ;· ~ ·') Y ?-M ( e ',' f') d r = - 2 '~~ £ "' "', 

I Y trt'~(e';f) yrn"(e" f)c:Lr = 2'ir(-)m :im'-m 
J 1 ~ I 

(14 ) 

) y IY\ I ~ ( e ;• ~ ~) y In U if ( e 1

: +") y m ( e ', f ) d. r = 
. ~ ~ ~ 

- ~ c (2. 21 z) 
~T rn m m'' 

These may al l be evaluated by means of various relations i n Section A.3. 

The electron part of t~e matrix element of' HQ reduces essentially to 

< X'e 
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~) w (JKe' je' JK~ j~ 1 ~ 2) ~ 
(15 ) 

this last step following from (A.37). 

Af'ter some manipulation , i nvolvi ng extensive use of t he 

results of ~eotions A.l and A. 2 , we have 

I < 0 Ke \ <f(rMw)) -±: n 1 I H~ --
J"M 

~ 

, • 1 -i I 

~ Mt1 1 ) ~1 0' e?. Qo F c '{") J + x'+'i 
~ I 

)( ) e. ~ (-
.T:r 

-
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and 

= 

± (2. .£ + r\ i C ( 1 ~~ JK c. 2. ) ·W (1 , · ' 1 · 
K~ ) 0 0 0 ke J e K e j e > 

' 

{ (:-(i $ r i. c;)(e (JMI.J o)+ {-) j~' +'{V ( 2.1. • ~] ~ W 0'· 7. r 2, j ~ 2.) ~K._C r M\.h)] 

(17 ) 

Yie are now in a position .to :Corm the coupl ed equations f'or . the 

radial funct~ons . It will be .seen that the functions are independent 

of M, as was tacitly assumed in Chapter II . They will depend on J and 

VI but difi'erent values of these are not coupled together, since they 



are constants of motion, of course . Hence the labels J and W will be 

dropned in what follows , since no confusion can arise . It is c onvenient 

to make the subst~ tution ..,- F =- 3-, ...,.. 4 = ~ whence the fu~ction~ we 

shall have are ~Kct. (IF )1 ~ 1(,_ (If )1 l~ having the values 0 and 2 • . 
"ox~ . _Qt...k 

Taking ;t j L , -± \ ( 7) wil l now give· us the following four 
. :f' f"\ -:1 M 

equati~ns for a ff iven )(~ 

+ Jl. '- Q. F H I 0.~ ~X~' (1.) 
I 

~i<-V c: _: ~ ~ KJ a) ~ JL ,_ 9. F{ Y) 2.\<:~ --s x~; ( 7_) 
k:_ 

+ 

-- 0 
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.: . 0 

\ 

. . 

· ~\N ~- t_ *- V - \) 12 (2.) ~ . .st l.Q p(v-} \[J..~ 2.'<,(o) +'! K~ f. '{1) ~ 
"l... c. J ke.. 0 .'L ( kQ.., d e. Px~ ·,dl(e 

. ' , , J(lr 

where 

. '3-k {:1_) X~ _e..._ 
..... 

-- 0 
(18 ) -
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p ~._ " (-) Q -1(.,_ ~ .i "~i [ ~ ('Lj._ •I} (?. j;+ ~ (H-k;_ +I) r X .. ·· 

c_ c~~-- .R ~~:_ ~)\J(~lc) .. ~x~· j •• >i 2.) w (J~'- n, j._ 1) 
. ' 

. .1 

- (- /k._ .j._ ·~ [ ~ ('-_i .. + ') (2j.'.: 1) (~ gk: ~ i) 11 
)< 
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The number of different X~ values coupled together depends 

on t he value of J. 1.'/e recall from Chapter III that the J values of 

.L l 0 interest to us are J = 'L ; -:;:, -
'1.. 

s cll.eme: 

J = 1/2 

J = 3/2 

If' = 0 

J = 5/2 

If = 2 

• We then have the f'ollowing coupling 

J. = 1/2 
e 

. = 3/2 Je 

je = 5/2 

je = 1/2, 3/2, 5/2, 7/2, 9/2 

The calculation of the coefficients in the coupled equations 

(18) is rather laborious; however, a simplification is introduced by 

noting that 

a. Ke. b xlt. - ke.. k' Jc' e. rl. e. = a. -= c. :. etc. 
){~ )(:. - )( I Ke... J(4L ' e. 

and 

~ 
X e.. - Xe. ' )( ' Ke. - e.. 

I p- K I 
-::::. p o )(e. • 

::: etc. I 
, 

. e.. lc~ I< e. 



The coupl ed equations that we then obtain from (18) for the 
··. 

above J va lues are 6 iven i n Appendix E. It will there 'be noticed that 

the equations for each J yalue separate into ~vo sets that oorre~pond 

to the fact t hat for nou-vanish i ne values of t he quadrupole coupline 

matrix element we must have 

..e )( 1!. ~ J.' I = even integer 
l<.e. 

i. + ~ I = even integer 
-)( - ke. e. 

The one i mplie-s the other, of course. 



CHAPTER V 

TilE SOLUTION OF THE COUPLED EQUATIONS 

In this chapter we consider more :fully the aesertion made in 

C~apter II that the degeneracy in the nuclear-elect~on states belonging 

to a given set o:f eigenvalues, J, ! , 1, is equal to t he number o:f 

central :field states, which are labelled ~y the set (X.e 'l I f), that 

are coupled together by t uadrupole inter action and that this 

degeneracy can be completely removed by requir~ that each such state 

asymptotically assumes a dif':fer?nt set (Xe) lp) as constants o:f ma.tion. 

Secondl;;r, we outline the method by which we obtain solutions to the 

coupled electron wave :functions that satisfy such boundary conditions, 

but leave the computational details to the next chapter. 

1. GENERAL PROPERTIE3 OF THE COUPLED EQ.UATI01'!S . . . 
Referring to the coupled equations (4.18) we abbreviate the 

notation for the electron functions still further: \e(Ip) and 1J(tt.(Ip) 
are vvritten as J.-.A. and);. respectively, both J<e and I p values being 

implicit in the subscript i. When we wish to distinguish between 

different linearly independent solutions of a particular :function we do 
. j ~ 

so by means of a superscript, thus& ~. , }. , etc. We recall that 
.Jo- .. 

I 

it is F1 and Gi that are t he electron radial wave functions and not 

'j-;., and\:... , which are respectively equal to rF i and rGi • 

(68) 
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In equations ( 4 . 18) , then, we have the 2n functions Y4 1 ~;_ , 
i = 1 to n, coupled together in 2n f'irst order di~f'erential equations ; 

n i s clearly equal to the ~u~ber of' ( ~e 1 I~ ) seta t hat are coupled 

toeether·. Let us write a particular set of solutions to the 2n funct ions 

as a. 2n component vector: 

(1) 

which will be known as a solution vector. Ther e will be , in all , 2n 

linearly independent vectors of' this form t hat aro solutions to the 

coupled equa-tions . They will form a 2n x 2n matrix of' s olut io~ , { ~ 1 
kn~:mn as a f'undamentnJ, matrix. A necessary and auf'f'icient coudi tion 

th~t a solut ion matrix is a fundamental matrix i . e. that t he columns 

constitute linearly independent s~lution vec tors, is that 

0 . ( 2 ) 
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a·t; ~point r (see e.g. p . 69 of' Coddington and Levinson (1955)). 

Any solution vector may be expressed in terms of' the fundamental 

matrix, thus: 

'1 ::: L A .. ~J 
J r-v (3) ('J 

j 

2 • THE DEGREE OF. DEGElmnACY OF TIII: COUPLED ST.ATE3. 

\ ·Je now prove that half' of' the -columns of' a fundamental matrix 

to the equations (4. 13 ) consist entirely of solutions t hat are regular 

at the origin and the 

I the orit;in. That is, 

remaining n solution vectors are all i:rregular at 

aey :function, 1-. 2. . , has n linearly independent A,) -dN • 
regular solutions, and n linearly independent irregular solutions; 

further , regular solutions o:f ope function are coupled only to rQgular 

solutions of' other unctions, and similarly fo'r the irregular solutions. 

Firat, we write the equations (4. 18 ) in the general :form 

d.-%;_ 
;. 

cl'l'"' 

Here use 

'(\ 

= pc, L_~~t - (v~-hH<i) --);. 
.i =I. 

'{\ 

J<~~ ~ ~ F ("<"I Y/: 1-j --
"'f" --

has been made o 

) 

j oc l 

the f'nct 

)<e 
c 

K' e 
= 

that 

+ (w~- h (-c) + 1) 1-.: 
. 

in (4 . 18 ) 

_ Ke 
., F I 

><e 

(4) 



(71) 

f(r) and h(r) involve the radial dependence of the quadrupole and 

central electrostatic interactions respectively and so must both be 

non-singular everywhere, since we are considering an extended nucleus. 

Also 

If vre write 
a-, 

J 

t,-:::0 

(5) 

t 

t 
(6 ) 

where the p and. q ar e not the ones of' .(4 .18 ), t he indicial equation 

for (). is obtai ned by equat·ing to zero the lov;eat power of' r, which 
J cr. -1 

is "f"' J 

. 
(cJJ xf) ~ 0 ;- Fo = . 

(<rj - x;.) ). :: 0 ~ 10 (7 ) 

"' This is a set of' 2n homogeneous equations in t he 2n variables Fo ' . 
. ~: , i = 1 t o :p, so that the determinant, f1 , of their coef'f' icients 

has to vanish: 

x: . . '), ) 
0 
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whence 

( 8) 

How becaus e these roots of' the indicin.l equation all dif'fer 

:from one another by' an~ integer ·the solutions will not in general have . 

the f'orm (6)~ logarithmic . terrns will have t9 be added. Nevertheless, 

we know (see, e.g . Ince (1956)) that · each positive root of (j'. 
J 

defines 

regular solutions and each negative root irregular solutions . Also to 

each root cr . ::. ± }\ "' there will belong independent s-olutions co~res-
J e . 

ponding to each value of' J ~ . Thus to each set of' values . ( K;. J ·If } 
there will correspond one regular solution and one irregular solution; . 

. "1J ~~· f'urther more, since a particular solution J. , _ ... , involves the same 

()j f'or all 1..:.
1 
~.;. it is clear that only r egul ar solutions are 

ooupled to regular solutions . As the irregular solutions are not · 

physica lly admi ssable it f'ollows that the n-f'old degeneracy has been 

established. 

It will be seen t ho.t this result is ver-.t general and the f'crm 

of the proof given above requires only that the potential :functions, 

f (r ) and· h(r), are non-sinc;ula.r everywh<;~re, which is t he case f'or an 

extensive nucleus . Actually, the proof may be extended. to include the 

case of' t hese functions possess-ing regular singularities at the· orig in. 

Since si.ngu~arities in the p'otentia-ls must be regular if' physically 

admissab~e solutions are to exist it may .be said that the :foregoing 

result is as general as · possible , i.e. it holds as long as there exist 

any phys ical l y a dmissable solu·tions at all. 

That the degeneracy rnust be n-fold may be made physically 

plausible by noting that for an extended charge distribution the 
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quadrupole potential must always vanish at the origin. Thus at the 

origin the 2n coupled equatio:J?-S will partially uncouple into n central 

f'ield pairs of o.ouplcd equations and \ve may expect that at the origin. 

r the behavior of th~ functions will correspond to the solution of n 

~eparate central field equati0n p~irs, each one of which is known to 

have just one regular solution: Out ' of the sinele physically admissable 

solution that exists for . each of the n pairs,"&...)~ \...:.) n linearly 

independent solution vectors for the 2n functions can be formed. 

3. ASYtJPTO'l'IC FORM OF 'TF..E SOLUTIONS . 

Outside of the nucleus the quadrupole interaction falls off as 

, whereas all other terms in the coupled equations (4 . 18) fal'l 
I 

off as ~ at the most . Thus the 2n coupled equations rapidly uncoupl e, 

into n central field pairs of aoupled equations and the solutions will 

assume the ~orm of central field functions long before these latter 

tend to their asymptotic forin. We can therefore write 

~. "i"' r. -;> .).J... = '""' F.: ..... .L> " 
. (9) 

(. 

~~ ~.: . -> '\' ~ - . ~j:.:_ ... 

and recall fr.om Section 1 • . 2 tha~ f;.. and~~ satisfy the equations 

(v, vc ~ 1) F ~ d.~~ Q<eL 1 ) ~ 0 + = 
cL-\ """ 

(wi I) ~A- cL rl (}(:- r) t.c: 
(10) 

- v - + 0 = c -
cl{'" -\ 
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where VI . is g iven by (5). F.aoh J.t. > v-:. pair will have two linearly 
~ ~ -

i ndependent solutions , one regular at the oriffin and the other 

irregular. 

In the ret;ion of vanishing quadrupole intera c tion, then , a 2n 

solution vector of' the c oupled equat ions will have the i'orm 

c ~ ,u.\ 

c.~ 

\'1]' 
I 

where .)J..,. and 'U. are particu l ar _linear c ombinations of regular and 
./J Lo 

irregular solutions • 

(11) 

. Let. us non consider a solution matri x t hat in the central field 

reg ion ha s the «rorm 
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'l.. 
)Jv - 0 0 )J.. -- 0 - 0 

\ I 

0 
1.. 0 ·0 

I 0 'l.f, v 
I 

0 
I 

0 

0 0 

0 0 

t~1 
0 IQ; 

<)... 
I )..J..J< (12 ) . )J.. #-' 
~ ., 

'2. 
I '\5 . '\f . "' J.; 

0 0 
0 0 

0 
10 

0 
I 

0 
<)., 

0 _.,u.n. 0 }J._(\, 

0 0 '\51 0-- 0 
t'\)').. 

n f), 

I I 'l. ~ 

where ...,u.. '\J' • )..J.. :. J '\J:. 
~) ,i.) - -

a re particular linearly ind.ependent solutions . 

That thi s rna tri x i s ( 

I I 

a solution f or some particular set - - -- ).J.. "'T. • 
. . .;.. ) ... ) 

p..~ '\7 ')..- _________ . _ ) is. self-evident . For it to be a . 
... l .v . 

.fundamental matrix requires that a t any va lue of r det t~ lt 0 , by the 
(. 

theorem quoted in ~ection 1 of this chapter. By i ns_pection 

(13) ( 

1. 2. . 1.. 1.) 
A . rJ_ . - .)..t , '\.f. 

A. .,u • A. ,t.- • 

I I 
the sicn dependi ng on n in a rather c omplicated way . Now if .)J..,. '1\T. 

p J "" 
~ ~ . 

and .,.LL. '\J': are linearly inde pendent :for all i, as stipulated, the n . ) -
/J 
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by the same theorem each :factor in the above product must be non-zero. 

Therefore there exists·a :fundamental matrix of the form of (12). 

This fundamental matrix is such that each basic solution 

asymptotically ~ssumes good quantum numbe_rs ( 'K: J Jf.;.), ther e beine 

two solutions belonging to each of' the n such sets. Since any regular 
. 

solution of' (4.l8 ) can only be :formed as a linear combination o:f 

regular s olutions it follows that just hal£ or'. the columns of (1::?,) 

correspond to regular solutions. The quest'ion arises as to which are 

t hese n columns o:f the matrix. It was proposed in Chapter ,II that a 

\ 

complete set of states of the electron-nuclear system could be obtained 

by requiring t hat each state asymptotically assumed a diffe~ent ( x~ I If) 
set as good quantum numbers. This would indeed be the case i:f the 

first n colunms of (12) (or the second n; it clearly does not matter) 

did correspond to r~gular solutions. But suppose this is not so. Then 

some o:f the (X e., IF) sets coupled together by the quadrupole inter­

action would be completely absent from all possible states in the 

centra l field region. While we have not been able to :prove the math-

ematical i mpossibility of this asymptotic inhibition of some o:f the 

coupled central field states ~t is seen to be pl~sically absurd by 

noting t hat ' such inhibition must be mdependent 0~ quadrupole strength 

and hence must persist even with vanishing quadrupole moment. But in 

the abs ence of coupling the inhibition _ ca~ clearly not occur and hence 

we conclude t hat it never occurs. 

In this and the preceding section we have succeeded in showing 

that t he method of remov~l of the degeneracy adopted in Chapter II is 

indeed correct. 
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4• THE TREAT1lE:t1T OF TRE T\'/0-POTIJT BOUHDARY CONDITIONS . 

Having shovin that such a basic set of states exists we now 

have to consider t he method of obtaining it. Since the coupled 

equations have to be solved numerically , i.e. by a step-by-step 

inteerat.ion from some particular, ·set of startine values, we are faced 
\ 

essentially with a two-:point boundary condition prob~em, the solutions 

having to be regular at th~ origin and in the central field region have 

the :form 

~ . 
J 

6 ft .· .A. 

--:---7 ' I. 

--'1 ~j . 
). J '\.). ·(14a ) · 

,... 

where .JJ... and '15. are particular, but undetermined, :)..inear c.ombinations 
,.. A. 

of regular and irregular central :field solutions. 

SupJ>Ose, however, that we compute ~ complete set of regular 

solutions. This is a relatively _simple matter, since the integration 

is s t a rted o.t t he orig in (actually , ·a small distance away because of 

t he sineularity ; t h is point is discussed in the next chapter) with 

s uitabl e values for t he functions, but no attention need be paid to the 

asymptotic boundary conditions. Nmv since v1e know that there exists · 

a bas~c s et t hat ~atisfies (14a.) it follows t hat ~ s _olution whatsoeyer 

must i n the centra l field region be of the f .orm 

~.J c J _,u.., .. 
J.J > ~ 

. 

~~ ,I.; t'\.) . 
JJ 

(15a) 
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The essential content of this s~atement i s that in t he central i'ield 
~ j; . 

region the r atio ;.. ~ ~ should be the same f'or all solutions j. 

If' our c omputed· :functions do not satisf'y t his at sqme particular value 

of' r t hen this must be due simply to the :fact ·t hat t he quadrupole inter~ 
• r 

action is s till not negligible ( to within the limits of computational 

accura:cy) and we are not yet in what we have· chosen to call the central 

:field region. Values for ~. and ~. , containing an arbitrary mult-
L AI . 

i plicat ive constant , may be obtained by putting C ~ = 1 f'or any si-ngle 

convenient j, whereupon all other C values may be obtained :from the 

c omputed :functions . 

Let us for c onvenience write the pair of functions J.: J ) -1 i 
t hat satisfy the required boundary conditions (14a) as A.. . • and let the 'f ... j 
compute d functions 1-~ ~ ~} .be •vri tten as S...;. ~ • Then as t he central 

field region is approached we hnve 

..Lll , ~ - - - - - 0 0 
'\]' o . 0 

I 

0 

l~l 
0 0 ~ 

> 0 
' ).A, ~ 

N• . 
IJ 

.o . 
0 

c 
0 

0 0 l.l() 

0 0 (lJ 
(\ 

(14b) 



and 

I . 

{s] -> 

Th!3 s e a r e ~saent ia lly (14a ) and 15a ) r ewritten • 

n.,.u.. c \ '\JI 

1 . 
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(15b ) 

. 'rhen by virtue of ( 3) it follows t hat we can obtain ·our required 

bas ic set f rom the computed basic set by means of the linear trans-

formation 

{S} - \ 

= ( (16) 

. J 
where t he matrix C is such that C .. = , C We can now write down · 

"-.l ~ 

t he expression for t .he radi~l functions F.l<e (J'WI~> .2.) 1 y Xe (Jwif) £.) 
satisfyi ng t he required boundar y conditions in terms of the computed . 
f y.nctions 1-; 1 ~: 

(17) 

and s i milarly f or the G function. 



CHAPTER VI 

TilE COMPUTATION Al~D RESULTS 

o£ t he grea t a mount o~ numerical work involved we decided to restrict · 

ourselves to t hfs si~le case. ~or the same reason we took only a 

single value of th~ ene~gy, W~= 1o3 (in units of electron rest energy). 

This means t hat we shall not be able to obtain a qcurate values of the 

branc hi ng r a tio, since it is only in the central ~ield limit t hat t hi s 

is independent . of the lepton functions. However, we r eca l l ~rom the 

end of Chapter .I II that it is -only in this limit t hat ~he branchi ng 

r a tio is i ndependent of t he intrinsic nuclear matrix .elemen.ts. Hence,. 

-
if t here is a quadrupole coupling it will be impossi-ble to calcula te 

t he branching ra~io exactly , an~~ay , no matter how many energy va lues 

· ·are taken . All t hat we can really hope for is an order of magnitude 

estimate of t he branching ra~io, but this will a t least permit us to 

say whether or not t he quadrupole coupling of the kind considered will 

suppl y a plausible explanation of the observed anomalies. 

The intrinsic qua drupole moment of .Np 236 has not been measured. 

The highest measured val ue in t his mass number region is ' _Q0 ~ = 14 barns, 

( 80) 
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£or u233 (see, e.g. 
r 

\ 

Alder et al. (i956 n . ·~le ·decided to take J Q
0 

/ =. 

. 236 15 barns :fo·r Np , realizing that this vallte may be rather hl.gh. For 

·reasons stated at t he end of Section 1.5 both sign~ of the intrinsic 

quadrupole moment were considered. 
I 

The major computational problem is that of the solution of the 

coupled equations, listed in Appendix E, in the reg ion close to the 

nucleus where the quadrupole interaction is appreciable. The general 

method f ollowed bas been outlined in the previous section: we first 

have to obtain ~ complete set of solutions that are regular at the 

oric.i n . \7e obtained such a set by noting that at t he origin the 

quadrupole coupling vanishes, so that the wave eq~ations ,uncouple into 

central field equations, as at large distances from the nucleus. Then 

t here , will exiat a complete set of solu_tions such that each solution 

assumes a diff"erent ( k«. J I~ ) ' set as constants of motion at t he orig in. 

That is, there. is a complete set which behaves at the origin in exactly 

t he same way as the r~uired set d?es asymptotically. Our method of 

computing a ny such solution, then, was to put all but one of .the pairs 

~~~~~equaf to zero a~ .th~ or.igi~ , the remaining pair taking just its 

central field value. Vi tho these starting values th~ solutiQns . to the 

equations were then computed by a step-by- step integration ou~vards 

from the.origin. Different solutions were obtained by taki1~ d~fferent 

pairs of functi'Ons, 'J::_, 1-'- , to be non- vanishing at the origin. In the 

event of there beine no quadrupole coupling this would be the only 

pair of functions that did not vanish everywhere . We refer to this 

pair as t he principal fUnction pair for the particular solution. 

The solutions of the coupled equations depend on the radial 
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variation o1' both the central and quadrupole potentials . Outside the 

rmoleus , radius f the central potential is 

Inside t he nucleus t he central potential depends on the charge dis­

tribution, but fo.r a constant density of char ge it is 

v :::. 
c.. 

. r 

The radial dependence of the quadrupole potential has a lrea dy been 

discussed in Section 1<13. \'l e have 

P-C~) '/ '("3 

·t(-r) - ..,.l.le s-

Since we are deali:ag with deformed nuclei f must be regarded as an . 

averaged value; we took it to be given by 
· I 13 e - '· ~ A ~ )( I a c.W\ · 

Although our solutions are chosen to be regular at the origin, 
~ 

this is still a sincula.r point and hence cannot be contained within 

the domain of computation. Thus the. integration must begin at a finite 

distance i'rom the orie;in, whereupon there arises.the question of' 

starting values. The problem may be. avoided by a slight modification 

of the charge distribution within the nucleus. We imagine there to 

be a small spherical hollow around the nuclear 'center, within which 

the qua..drupole interact ion vanishes and . the central potential is 

constant, chosen to be equal to t he value it would have at the center 

f'or a true uniform charge distribution: 
~ -c z 

Vc_ (D) -= - 2. ~ 
Within this hollow it is possible to write down the solutions. From 



( 1 . 25) 

where 

we have for t he 

'}-K,. (If') 

~X~(\) 

\- I - I 
vv .e.. ~ --

principal i't~nctiona 

- ·\._ J ~;,'; ~ j, ' (p'~) 
. -J(\ . 

J ;;'. ,. jt (e',) 
)(._ 

v(:_ { o) 
. 

The other functions vanish throughout the hollow, of course. The 

( 8J ) 

(1 ) 

numerical integration of th~ ~quations is then begun on .t he surface 

of the hollow with the ·known value of these functions . ProvideCj. that 

t he hollow is not too big (in our case its radius was one-fifth that 

of' the nucleus) there can be lit tle departure :from the solutions for 

a true uniform charge dis-tribution, ·which is an idealiza tion , arryw·ay . 

The numerical solution of t he equations was performed on the , 

Bendix G15D computer at llrcMaster University , using interpretive pro-

gramming. The met hod of solution followed was t he variant of the 

fourth order Runge- Kutta method due to Gil l ( 1951). V/e ran. through -

trial computat ions with progressively smaller values of t he integration 

interval, h, until :further reduction made no significant difference to 
' 

the computed solutions . The value of' h :finally chosen was h = (> / !:'. 

The integration of the equations has t o be continued outwards 

until the quadrupole interaction is negligible . At the 

quadrupole interaction has :fallen to 1% of the central interaction, 



i n our case ,. so t hat it may be . expected that at t his distance · the 

f~unct ions . have read'hed t heir central :field f or m and t he matching of' 

t he c_omputed solutions to solut.ions hevi_ng' the required asymptotic 

f or m can be e:Cf~ote.d. Accordin,zly , the integration .. wa-s halted at 

' it was r = 5 ~ ' 
where found that the computed funct i ons could be 

expressed i n the form . 
. . .)-!- ~ '3-.J rC ,.. . ;. j 

~/ i'\J· 
"" 

( 2) 

to wi thin 1% usually (see (5.15a)). Hence we can be sure that we have 

i ndeed reached t he centra l field reg ion (to within the necessary degree 

of computa tional accuracy . ) 

:re now have to consider t he matrices of t he computed C .. 
~J 

coef ficients. for t he different sets of equations. There are t wo sets 

of equat ioha for each of t he three J values and since Yt e considered 

both siena of Q. there are in all t welve sets of equations to be solved. 
0 

It is clear .from (2) that t he rows of t hese matrices will refer to the 

diff erent solu~ions of a sinele pa?-r of functioJ?.S, J-.,._ ) ~ ;.., characte~ized 
~ . J. 

by · aneular momentum quantum numbers ( X; , ·If ") , while the columns 

refer to a single solution characterized by the q~antum numbers 

) being pure at the origin. Thus the diagonal elements 
. . 

correspond to the principal functions. We display the C matrices in 

Table I below, the elements being correct to within 1~ . The values 

( ka , lf ) are shown alo~aide each row and at the head of each column. 

It will be clear from the foregoing what they refer to in the two cases. 
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TABLE I 
. 

THE C MATRICES 

J = 5/2 SET I 

Q -= + 15 barns 
0 

( 85) 

\ 



·. 

Ke.. = 3 x~ = 1 

lr = 0 ~ = 2 

l<e. = 3 1 . 09 
I~ = 0 

X e. = 1 0 1 

It = 2 

~ = -2 0 0 

rf = 2 

ke = 3 0 -.10 

~ = 2 

)(e. = -4 0 0 

.!~ = 2 . 

k.t- = 5 . 34 0 

Ii ~ 2 

(2) 

Ke =- - 2 x~ = 3 K~ 

~ = 2 rf = 2 If 

0 0 

0 0 

1 0 

0 1 

-.-13 0 

0 0 

J = 5/2 SET I ' 

Q = - 15 barns 
0 

( 86 ) 

= - 4 ke. = 5 

= 2 sf = 2 

0 0 

0 0 

0 0 

0 0 

1 0 

0 1 
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\ 

Ke. = - 3 J<~ = - 1 J:~ = 2 kt! = - 3 )( ~ 4 e. - k .. = -5 

If = 0 ! = 2 rf = 2 If = 2 11 = 2 :t = 2 
f ~ 

K .. = -3 1 -. 09 0 0 0 0 
4 = 0 

' 
}(._ = -1 0 1 0 0 0 0 

rf 2 . 

x~ = 2 0 0 1 0 0 0 

If = 2 

x~ = -3 0 ' . 10 0 1 0 0 

If = 2 

x, = 4 0 0 . 14 - 0 1 0 

Ir = 2 

k~ = -5 -·35 0 0 0 0 1 
r = 2 f-

(3) J = 5/ 2 SET II 

Q ,.. + 15 barns 
0 



K .. = -3 ka = - 1 

1 = 0 
f . 

I = 2 f 

XL = -3 1 . 09 
:t~ = 0 

k~ = -1 0 1 

~ = 2 

~ = 2 0 0 

!f = 2 

x~ = -3 0 - . 10 

li = 2 

' kc- =4 0 0 
!s- =-2 

x~ = - 5 -34 0 

:tf = 2 . 

.{4) 

k .. = 2 )(Q = - 3 

T = 2 -f If. = 2 

0 · 0 

0 0 

1 0 

.0 1 

~ 

-.14 0 

.o 0 

.J = 5/2 SET II 

Q = - 15 barns 
0 

( 88) ' 

' 

k. = 4 Q. ke. = -5 

.! = 2 If = 2 
f -

0 0 

0 0 

0 0 

0 0 

1 0 

0 1 
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Xe. = 2 ke. = - 1 x~ = 2 K = - 3 e.. Xe. = 4 

If = o If = 2 . :If = 2 l ;: 2 
F I f = 2 

k«.. = 2 1 0 0 0 0 

If ;: 0 

Ke. = -1 0 1 0 0 0 

If = 2 

x._ . = 2 0 0 1 0 0 

'lf . = 2 

l<c.. = -3 0 . 19 0 1 0 

rf ···.= 2 

J(._ = 4 - . 25 0 0 o . 1 

If = 2 

(5) J = 3/ 2 SET I 

Q. = + 15 barns 
0 

)(e. = 2 }t( = -1 c. .(c... = 2 )(e.. = - 3 )( = 4 c. 

~ = 0 ~ = 2 ; = 2 ~ = 2 If = 2 

x~ · = 2 
1 0 0 0 0 

lf = 0 

}(*! = - 1 0 1 ~ 0 0 0 

lf = '2 

k~ = 2 
0 0 1 0 0 > 

rr = 2 

Xc. = -3 0 -.19 0 1 0 

1f ·=, 2 

ke... = 4 .24 0 0 0 1 

If = 2 

(6) J = 3/2 SET I 

Q. = - 15 barns 
0 
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~e. = 1 .\\~ = -2 l<e. = 3 

)(L- = -2 0 

lf = 2 

)(~ :::: 3 

lf :::: 2 
- . 16 

(9) J = 1/2 

1 

0 

SET I 

Q. ·= + ·15 barns 0 . 

0 

0 

1 

)((.. = -1 k = .e 2' . )(e.. = -3 . 

~ =0 ! = 2 f .! . = -2 

Xe. = - 1 1 0 0 

If = 0 

)C~ = 2 0 1 0 

If = 2 

ke. = - 3 -.16 0 1 

\ ~ 2, 

(11) . J = 1/2 SEI' II 

Q.o = + 15 barns 

(91) 

X~ = 1 K.e. = -2 ~ = 3 

t = 0 { 
kct_ = 1 

1 

' ' '~ = 0 . 

Ke.. = -2 0 
. If = 2 

l<e._= 3 

rf = 2 

.16 

0 

1 

0 

. (10) J = 1/ 2 · · SET I 

. Q = - 15 barns 
0 

0· 

0 

1 

ke.. = -l: X~ = 2 k~ = -3 

!f = 0 rf = 2 l f = 2 

Ke = - 1 1 0 0 

'If = 0 

~e :: 2 0 1 0 

"lr= .2 

~~ = -3 .:16 0 1 

! = 
~ -

2 

(12) J = i/2 SET II 

Q = - 15 barns 
0 
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. 
Since t he o~~-diagonal element s are a measure o£ the quadrupole 

. 
c oupling it .will be seen ~rom -the for m o~ the above matrices that there 

is not a very large amount of coupling . However, the functions 

represented in the C mat rices have ( K&, lf_. ) bec omi n,g constants o~ motion 

as the orig in is appr oa ched., · wh~reas we want (.k&J\"'f ) to be asymptotic 

constants o~ motion. The neo~ssary trans~orraation (5 .17) requires the 

inverses of ·the c· matrices . They were obtained on the computer but \7e 

do not display t hem .because ~here turned dut to -be a very simpl e numerica l 

relation between the C matri ces and.their inverses . The latter may be . 

repre'sonted to 'lithin a hieh degree ' of a ccuracy by a reversal of s i en 

of the of~-dia0onal elements , al l the diagonal elements remaining unity . 

'lie can now i rrunedia t e l y v;ri te down the ex-pression for the r adial 

functions having the r equired boundary c onditions in terms of t he 

c omputed -functions 

= ( 3) 

' 
and likewise f'or t he G £unctions . 

Vle ·nm'T r ecall how t he F and G ·functions a r e involved in .. che 

e:X:p~ession :for the transition probability , ( 3.7 ) and ( 3~ 8) . 'rhere the 

. Q' s involv$.. the quantities .p x.: (:rwJ~; 1 J , jJc: ("SWI,f". 1 I.} 
defined by ( 3 . 2) as 

,P.;_ 
1. 2_{u-'} F· . (:nJJjJ K) -. - (4) -

)("' 
K. :.£K e_ 

etc ., where we have made an obvious abbrevi ati on of notation. 
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The a trix U i s given by ( 2 . 10 ) and i s . 

-[f (!w'lf .lM) f (Jwlf ,"") 
Ke. . kL 

(5 I 

+ ~k.,(Jw'Jp-) l; ~c:,.(.Jwlr , " )FJ.r-
The delta- f unction t hat is involved in this definition poses a problem 

in t he calculation of U since the integrand o£ · (5) is only known 
mn 

numerically . Ho·:;eve , the delta-function may be removed from ( 5) by 

i ntec;r a ting both s i des o:f C5) over ·a small interval o:r .W
1
around W. 

Then the double integration of the right hand side of (5) can be 

performed numerica lly· now , i:f we integra.te first over t he finit e 
I . 

interva l of W, s ince the subsequent intet;ral over r must be convergent. 

liavinc; seen how it is poss.ible in princ iple to remove the . 

delta-function from t he definition of' U we can now say all we want ·. . mn . 

to about t ho latter. Ii' the functions wore orthogonal ·then [ U~ would, 

of course, be diagonal. 1~ow our functions have been chosen to approach 

orthogona l functions asympto·tica.lly and we have seen, · in f act, that 

it is only .for r ~ 5 ~ at the most that there is any significant 

· departure of our · f unctions · from the orthogon.:1l :functions. This depart-

ure f rom or~nogonality arises from the coupl ing in of angular momentum 

va lues t hat disappear a s t he centra·l field region is reached, at or 
' 

before r = 5 .~ • From the form of (5) it is clear tha~ the functions 

associated wi~h t hese angular m0mentum values g ive rise to the off-

diagonal el~ments, whic~ ~ccordingly must be very small compared to 

the diagonal elements. Then to a good approximation we can write 
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f 

and likewise ~or is the c·onsta.nt introduced in Section 2 .1. 

Now the condition that coupling is aFpreoiable is that there ' 
IJ i ' ;. . 

be functions f .. 1 ':J.;. , with dll'fer.fnt values o:f If' but be-

longing to the same asymptotic value J[F , that have comparable orders 

of magnitude at t he nuclear radius, \ • That is, we require · that 

J. - .J.. 
. P~•t (e) 

and . j..: .. ~ ( e) 

p; (~) j J_.R (pJ 1. 
·and _).. value~. be siffnifica.ntly dii'f erent f.'rotn zero for some ..,t 

It ha~pens that in general the solution of any particular 

~unction, having t e largest value at the nuclear radius, is that 
(. 

solution for which the :function is the principal f unction. That is, 

·for given i 

>> l 



0. :_A. nnd likewi~e for d ,. 
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• lt'urt 1er ore , in any particular solution, 

by i'ar the lare;est functions at the nuclear suri'ace are the principal 

functions for t hat solution i . e. for g ivEm )._ 

· It shou l d be noted of c ourse, t hat t hese remarks do not necc~sarily 

appl~ to the transformed funct i ons satisfying t he required boundary 

conditions • 

(6) now gives 

'J~ JJ \ ( ~) p )_ (<') A~,~ e ). , 1 
Also if f .i .(P) is to be comparable to F.t {<') then the 

,:.*t 
approximation 

1. · • 

p. I 

c:...t J-
}. 

(E) (e) - "\. 

~:-::f:'.Q. ll:r, r e A.. 

is good. Thus we at last see the manner in which the off-diagonal 

(7) 

(8 ) 

elements of the C matrices describe the effective c oupling . With the 

· C mat~ices given above. in Table I it is now possibl e to write down the 

possible couplings. These are displayed in Table II below. 



(96 ) 

TABLE II 

TIIE COUPLED STATES 

J Asymptotic Quantum Angular Moment um States 
\ 

Value Humbers . that a.re Coupl ed in 
r . Close t'O t he _Jucleus 

.. 
IF rf X e. I x~· 

c 0 

1 2 ' 
' 

' 2 

c3 0 

- 1 2 
- 3 2 

5/ 2 
3 0 5 2 

- 3 0 -5 2 
r 

2 ~ 4 2 

-2 . 2 - 4 2 

I 

0 2 4 2 

- 2 0 - 4 2 

3/2 
2 ( 1 3 2 . 

' - 1 2 - 3 2 

. 1 0 3 2 
1/ 2 -- ! 0 - - 3 2 
-
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Now in every case the only states that are coupled in have 

/(._ > 2, v:hich correspond t o hilJher dec r ees of forbiddo1mess. From 

the computed values of t hese functions at the nuclear radius it_ turns 

out that, as in the central field case, higher deerees of forbiddeimesa 

can be i[~nored. The lare est amount of coupling is about 17~ : this is, 

for t he n~ixture of ( Jr~ = ! 3, Jf = 0 ) stntes . into states that 

.asymptotica lly have )<._ = 1 'lt =· 2. 

· In t his c hapter we have merely presented the ess e ntials of the 

computa tional procedures and t he numerica l result s . For more de'tail 

reference ·,should be made to the author, c/o IJcMastar Univer s ity , who is 

in posses sion of t he complete computed electron v1ave functions. 
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CONCLUSION 

It has been seen in the previous chapter that the o~y coupling 

between di£:f"erent nuclear states j.s that which oocur.a through electron 

states belonging to higher degrees of' forbiddenness. At the nuclear 

surface these are considerably smaller thau the electron states 

corresponding to the first degree of forbiddennesa, as in the central 

field case, so that the actual amount of coupling is very s.ma.ll c 1% 

is the largest amount of admixture in any state characterized by 

asymptotic constancy of electron and nuclear angular momenta. 

Thus, although there is a certain amount of' mixing o~ electron 

states associated with different nuclear states, the states that are 

mixed are such as to be of little oonsequ~nce for f3 -decay. . . This 

is rather surprising, since a rather naive perturbation theory approach 

would indicate the largest coupling to o.ccur between states of low and 

comparable electron angular momenta e.g. between the states 

( xe. ::: 2, If = 0) and ( Xe.. =2, If = 2). Instead these states are 

only very weakly coupled. 

It will be noted that in this thesis we have adopted the model 

o:f" ~ -decay taking place in the nuclear surface, since we have 

evaluated the electron fUnctions at the radius of the charge dis-

tribution • Now as the effective radial distance of a decaying nucleon 

(98) 
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from the center of t he nucleus must be less than the surface radius 

it follows that the relative cont ribution of the electron states of 

hi gher degre~s of forbiddenness must be even smaller than we have 

estimated. Hence a correct treatment of the effective nuclear radius 

would reduce t he coupling still further. 
I 

It is . seen f rom (3.7 ) t hat t he effect of t he coupling on the 

branching ratio will depend on the intrinsic nuclear matrix eleme.nts. 

However, a large anomaly in the branching ratio could only arise from · 

a small coupli ng if" t here v•ere a large cancellation between the 

different terr..1a of the Q. ' s in ( 3. 7). But such a cancellation would 

mean an abnorma-lly low 

reports a quite normal 

transition pr-obability, whereas Gray · (1956) 

236 value for Np • 

Vie therefore conclude that the quadrupole interaction of the 

kind •;1e have considered in this thea is is not of imp~rtance in P -decay , 

since its effect on the transition probability is unlikely to be more , 

than 1%, at the very most. 

There are now two possible ways of" accountillg f or t he observed 

. 1 . .N 236 ( . th . f L 176 d T 180 . b anoma y 1n p 1n e case o u an a we can never e sure 

that the Bij matrix element is not responsible, however unlikely this is) . 

(i) The anomaly may be spurious. That is to say, either the 

par~nt or daughter states may not possess pure intrinsic states. This 

would mean that Alaga's formula (our 1.41) is no longer applicable. 

Neither Up23~ nor .its daughter, Pu236 , appear to have had their level 

structure carefully examined. On the other hand it is well knovrn that 

the -transuranic nuclei generally have well developed rotational 

structure. In particular the spectra of" Np237 and Pu238 (see e.g. 

., 
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Stromi ncer at al . (1958)) indicate that mixing o£ intrinsic states 

must be very small. Thus it seems possible that 

(ii) · the anomaly is real, in which case another explanation 

has to be sought. \lithout developi ng the idea at all it is now 

suggested that there is a possibility of t he Dirac single electron 

theory breaking down and radiative corrections becoming necessary. 

That this is possible can be seen by remembering t hat at the nuclear 

surface the quadrup.ole interaction is comparable to the central 

potential. Hence on some regions of the nuclear surface the electric . 

potential will corr espond to an atomic number of' the order of 180, so 

t hat contribution$ from t he negat ive energy states may become im-

portant . In that case t ere would certainly be a departure of the 

electron wave functions from the Dirac f orm. lJow there appear~ to be 

some evidence f or this happening in np236 : since 0( 'l/ e.>> (wo~l) 
the spectrum shap~ should be statistical (s ee the article of Konopinski 

in t he book af Siegbahn (1955)) whereas in actual point o£ fact the 

spectrum has a f orbidden s hape, according to Gray (1956). On the other 

hand it is rather difficult. to see how a differential effect on the 

transitions to the t wo nuclear states coulci arise. 

Nevertheless, the genera l problem of the polarization of the 

vacuum by quadrupole distributions of charge is a matter worthy of 

further investigation, since it may be of' general importance :for both 

~ - decay and internal conversion in strongl y deformed nuclei of 

high z. 



APPE1JDIX A 

LHSCELLANEOUS NOTES ON THE QUANTUM THF.ORY 

OF AlJGULAR '. OLlE.i'\FruM 

The following is au explanation of notation and statement of 

r e sults occur ring in the q,uantum t heory of angular momentum , relevant 

to this thesis . 

1 . C LEBSCH- GORD.AN C OEFF IC IENTS . 

Consider .the combination of two angular momenta, denoted by 

the usual quantum numbers ( j 
1

; ""' ) and (j'). 1 W\2. ) , respectively, to form 

the ane;u l a.r momentum (J, 11) : 

-"5 = j I + J 'L 
~ "" A 

so 

J, -J'l. ~ J ..:::: jl +j'l (1 ) -
VYI

1
-rm 1 ·- M (2 ) 

and 

.Then t here exists a unitary transformation connec ting a representation 

in which ( j 1 ; Wl1 ) and ( j. 'l., W\2. ) are diagonal with one in which ( J, !~ ) 
.. 

and j 
1 

, and J 1 are diagonal, t hus 

(3 ) 

M 
t ( 101) 
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where -the C (1 j, j"l) factors are the Clebsch'-Gordan coeffic ients , 
M W\ I 'Ml.. 

denoted ( J, j l. m, IY.l. 'j, j· ~ J M) by Condon and Shortley ( 1935). They , 

are zero unless .(1) and (2) are satisfied. 

~here exists an inverse to (3) 

Tables of values of Clebach-Gordan coefficients , sufficient 

for our pu~pose , are given on pp . 76-77 of Condon and Shortley (1935). 

In this connection i t is convenient to note that 

( ( b ~· ~·) - 0 (5·) - ., ' ~J)_ J, -t J' ~ J 2 = unless 

where )_ is· an integer. 

The foll owi ng orthogonality condit ions hold 

2_ C(~ j, j" ) c (~ j, jL) £ l 

ml m, Wll. jJ Wl2 

(6) ~ 

M 
I 

;-c( "]' J, j,)C(_J j, JL) = r 
M ~r I'YI ~ M ~,1 ~i yY'\ WI 

l I 

(7) 

.J 
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There are the following permutation rela tions: 

c (J j, 
M -m , = 

(8) 

( This is not a · c ompl ete l ist but a l l other per mutation relations ~an 
I 

be eenera ted from these . ) 

2. RACAH C OEF IC I ENTS . 

These aris e in the combi nation of t hree aneular momenta. They 

may be defined by 

' t (2e• 0(2f•')) 2 V( a_\J c d. e f) 

cl) c r f 6 ct) C r c . ~ ~) 
~ \~f.~ f?> . ~) ~fop~ ~ ()( ~ ~ b 

I (9) 

Revi ews of' t heir properties are g i ven by Biodenharn, Blat"!; and 

Rose (195~) and by Rose (1957; ; however, t he for mer contains more 

extens ive t ables . 
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~vo relations of importance are 

f ) • 
~ -~ ~ 

= 
(10) 

(11) 

W( abcdJef ) vanishes unless the following triangle conditions 

hold: 

where A (a. e,' means 

( Q-(:,\ < e_ ~ a_ ~ .fb 
There are t wenty-four poss:j.ble permutations of the six a r guments 

which preserve the triangle r elations. The result of any permutation 

may be gener ated f rom the following basic relations: 

W (de, c d. ; e ~ ) :: W ( e, a- otc ; e f) =- W t olQ e, ; e f) 
- ~~-f -a..-.l e.+-f- e.-c 

W ( {/_ c_ e, d i f e) +) W ( e !b c f; £L <A.) ' ~) . IJ ("-• fol ~ '-0 = 
(12) 
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3. S PHEBICAL HARl!03 ICS AND THE ROTATION liA.TRICE3 . 

The spherical harmonic functions, '( ~ c~ f) , ·may be defined 

to satisfy t he f'ollovd.ng relations 

- 2(-e•') y; (e,crJ 

L ~ y; (e, 1j = ~ J; [ e, <P] (13) 

, 

( l x ~ -<- L '.l ) Y; ( !J, 4>) • { ( -e • -.) [ -t r ~ , 1) ~ } y '"~ ( e , q,) 
. Q 

If the normalization condition 

1 

is i mposed; we obtain the f'ollowine unique expression: 

. (15 ) 

where 

This · is the definition customarily adopted in quantum mechanics; it is · . 

the one used by Condon and Shortley (1935 ). Characteristic of' this 

definition is the relation 

(17) 

/ 
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which c omes from the identity 

m 

(-} 
(1-m) t 
(i+M) 1 

p m ( 8) 
l 

(e) thl > (B 11> ~~·) uppose there are two unit vectors , ~) r 
I 

such tha-t t he angle between them is B • Then 

= 

where ~is simply the This is the well-knovrn s pherical 

harmonics addition theorem. 

Let us now consider the transformation properties of the 

spheric~ har monics under rotations of the coordinate sysiem. Such a 

rotation . is specified by the t hree Euler angles, which we shall denote 

by e. ; it is not necessary to o:ff'er any def'ini tion of' them here. Then ,. 

i f -(8, ~) are the coordinates of a point on the unit sphere in the 

orig inal frame .and ( e ',f) t hose of' the same point in the new f'rame we 

can v.rr i te 

(19) 

D _Q, (e.) is known as a rotation 
mt\"1 . 

The transf'ormation matrix, 

matrix, and, in f'act, it constitutes a ( 21 + 1) dirnensionai irreducible 

representation of' the rotation group (see, e.g. Wigner (1931)). 

A g:rea·t deal of conf'usion arises :from the use of' dif':ferent 

def'initions of the D-matrix. (19) is essentially the definition of 

Edmonds (1957) (note, however, that (B, f) and(e: </>') are used t here in a 
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different sense) but differs f rom that of Rose (1957), who apparently 

takes the complex congugate of the Edmonds definition. The latter has 

the distinct advantage of leading to the conventional form of the 
.... 

eige~unctions of t he syrmnetric top (see, e. g . Bohr (1952)) , whereas 

Rose's d.af·inition does not. Thus it is i mportant to realize t hat when 

the rotation matrices are used in t his context the definition (19) is 

i mplied. However, the r elations listed below are valid for -both 

definit ions. 

Since the spherical harmonics are orthonormal the rotation 

n~trices must be unitarya 

2 p ~ . *'( e,) D .. 
1 

( e~J 
m mYT~ ' l'flm 

~ I ll 
M('(\ 

(20) 

The orthogonality relations for t he irreducible representations 

of a continuous group (see 10.11 of \li gner (1931)) lead to the fol~owing 

inteffral on the unit sphere, taken over all three Euler angles: 

D 1 
· ~ ( e~) D J,_ 

m m rn rn 
I I ")... ?v 

(21) 

By considering the transformation induced in both sides of 

(4) by a rotation we arrive a t the so-called Clebsoh-Gordan series: 

/ 

, 



-L 

Dll ( ek) D ~. ( e.) -
' ro rn · I 

I I rt\"1.. m,_ 

_Lc(~ ~I X,_) ( ( l ' 
m, m1. ~ 

L 
From (18) and (22) 

. (t!,+ t) (1!.,_ + \) 

4<Jr (~L+I) 

can be deduced 

( .1.08) 

l 
.1, :~) J) (G.) rnl 

I ~ MM ' 

( 22 ) 

( 23) -

4 . SPHERICAL mElJSOR OPERATO}m AND THEIR REDUCED MATRIX ELEMENTS . 
M 

-A spherical tensor of' rank L, T L , is a set of' (2L,_+ 1) 

f'unctions that transf'orm under rotations like spherical harmonics of' 

order L i.e. 

(24) 

whei'e W represents all the ar guments of' the f'unotion. If' we have two 

T M, M7.. 
spherical tensors, T L , the quantity . L I 

. I ~ 

M M1-. 

~J -\-l,' T L2. ( 25) 

M, 
is a spherical tensor also , since it can be easily shown with the aid 
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of. (6) and ( 22) that it transforms according to (24). Thus we have a 

prescription for forming tensors of arbitrary rank from two given 

tensors. 

A special instance of this procedure can be obtained by noting 

that t he spherical harmonics themselves must be spherical tensors. 

N'ow ( 23) can be inverted by using ( 7) to yield , 

!;, ~) Yt~· (e,<P)Y;: (e. t) 
m 

I 

[ ( L £, £4) y M (e <f). 
k~ (-a L + \) 0 0 0 L I 

is just (25), aside from a constant numerical £actor. 

(26) 

whic h 

BUt thus £ar all we have obtained are spherical tensors on the 

unit sphere. We now note that a:fJ.Y vector A 
r'\, 

mu~t be a spherical tensor . 

of rank 1. This may be shovm most explicitly by writing the components 

as 

Then 

+Jf(Ax 

Am:)~ 

-1- L A1) ; A " 

A y ,IVl ( e, <P ) 

== A 
. ~ ( 27) 

(28 ) 

whence ~ transforms as y~ ( e, f). 'fe ca~ then £orm spherical tensors 

from the vector A by means of (26). It is convenient to introduc~ 

the s o-called solid harmonic: 

. ' 

M A L 
M . 

Y (e,t) 
L (29) 

(\~ 
L 

, 

/ 



c~l, +lJ c~RJ.+ 1) 

'+~- (lL-..l) 

Lc( 
jll\' 

L 
M 

This again is just (25) with extra numerical facto.rs. 

(110) 

--

(30)_ 

The matter of greatest interest is the possibility of forming 

s pherical tensors of more than one vector a r gument: t here is nothing 

t o requir e t hat t he t wo tensors on t he right hand side of (25) be 

f ormed f rom the same vector ~ • In t he t heory of~ -decay t here is 

just one- particul ar kind of tensor of t h i s f or m t hat occurs: 

M (,. ) ~ ( l A I ) m, "'a. ) 
Tu.\.r>~ = Lc M ... , .,.,. LjA (r)'Lj, (~ 

m( ( 31 ) 

A may be any vector other than '(' 
~ ,.._ Here It is always i nvolved in 

(31) as a vector; the rank of t he other solid har monic is denoted by 
M 

t he s ubscript A on the Tl)l. • 

I n f ormi ng (31) attention mus t be pai d to a possible non-

of A M 
commut ation and .1"' • The parity ofTl~ is clearly ,..., """ 

(-)A n n ( ~) - (32 ) 

\'le usually encounter s pherica l tensors as operators and we 
~ 

r equire t heir matriX element between t wo angular momentum eie enstates, 

(j,\M1) · and (ja.,"'l.) · By remembering that the matrix element must be 
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invariant under rota tions it is easy to show that (see pp . 263- 4 of' , . 

Wi gner (1931 )) . 

- c ( J I L Jl. ) <j, II 1:. f( J.a. > 
fV\, M m.a. - (33 ) 

where .< j , \1 TL. ll j ,.,> is known as the reduced matrix element. The 

essential content of this result, t he 'iligner-Eckart theorem, is that 

the dependence of the matrix element on the magnetic quantum numbers 

resides wholly in the Clebsch- Gordan coefficient . 

We now evaluate the reduc ed matrix element 

. )J- .<X K I ll Y~ II X K > 
where X J< is the Pauli spinor 

X~= 
· k 

:Sy {33) a nd (6) 

Now from (23) and (14) 

v1here the integration g oes over t he s olid angle 4-lC . Then 
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/ 

S(:tlk•r) ( (fx'lk 2 ). X 
lr'Jr ('-.J k,.,..,) . 0 0 0 

~ c ( j: ~K' i) c (j .QI( 1) c (i~' Lie l.) 1=- }' f' -r- r p .f-·r r ·,P·r )"-r m · , 

Then \lith (35 ) and various of' the listed relations :for the ·clebsch- · ' 

Gordan and ·Raoah coefficients v1e obtain 

~xK·I/YJx)(> =(-{1(·+/-i [S(:tP~:(lJ+? }~ x 

C ( 1.0)(/ 10)(' 2 ) \ '(1 I 1J ) 
0 w J\/j .c}(j)±l 

(37 ) 



APPEl'IDIX B 

FIRST ORDER TIME-DEPENDENT PERTURBATI ON THEORY 

FOR NOI\f-.ORTHOGONAL STATES 

W'9 refer here to pp . 195-7 of Schiff (1955 ) . In our case {...un.> 
are to be a set of linearly inde pende nt but non-ort hog onal e i genstates 

of H • 
0 

Putti ng 1;, -= 1 we have , with Sc hiff, 

~ ~ f J.\.1 O.iw) h ("-')> e .~.~t-' =~ Irllv'~(W) H }t ('ol~ e ~:)kit 
Then 

~ .~ fJ\J<.uK(w?\P1 {w)> 
. 

a. (w)e 
~ 

--

~ J JIJc;(w)Y•\(w? IH'I1(w)> e- • vt 
1 

( 2) 

\7here we can no l onger make use of orthonorma.l i ty on t he left hand s i de • 
. . 

However , we can s till follow Schiff ' s first order procedure of 

a s suming t hat at t = 0 there is only one sta te occup i e d i.e. 

--
(113) 
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and that' c:Mnges in ·.all CL-1 have a. negligible e:ffect on the right hand 

side of' (2). VIe then have the essentially first order result 

i. IfJW<-"'K(W')I~(w)> 
J, 0 

--

< ..u K (W') I H ' / ft' (w")) . (3) . 

VIe now note that because the states. I J.-l.t ('~)) belong to . the 

continuum their s calar product will lmve a delta-function dependence 

on ene~. This can be seen most easily by expressing the non-orthogonal 
• 0 • 

states \»-,(W'~ as 

l '\Jm (w)> , thus 

Jp~ (w) .> 
where 

wl;lere 

v 
Kl 

linear combinations of orthonormal states, 

= I c.elfl (w) I",. (w) > 
,..., 

. 
(, 

c 
.2,i. (VJ) 

(4) 

(5) 
, 

(7) 
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T~en, with a re-arrangement of primes (3) becomes 

IuK.e 
- L cw-'W)t 

L a (~) e ~ K(W) l HI I pi (W/)> .l 
-

1 (8) 

\'le t hen have 

. - (._ 

This has essentially the same form as Schiff's equation (29.5) , 

the o~ly difference being that the simple perturbation matrix 

one 
I 

is replaced by the more complicated 

, 

<".-u-t(w) 1 ~ \.,u, (w?) == l{v)~,<P,(w 1 ' .J-'<Jw1) 
in . (10) 

For the cas e of particular interest here, that of the constant 

perturbation switched on for a finite time interval, .we simply have to. 

rewrite (29. 9) of Schiff, thus 

a (W) 
. .)_ 

e 1 

(11) 

·,Je ,no v recall from Section 1.1 tha t in the correct formulation 

of ~ - decay the perturbation Hamiltonian is the field interaction 

Hamil tonian (1.6) and t hat the states between which transitions mu.a:t 
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be p~esumed to be occurring are occupation number states. It is now 
I 

shown that, as for orthogonal states, we can formally identify the fl. 
' 

above with the H ~ oi' (1. 8) and ~he states 

states . 

with the 

~:rMW'>n,> 
The non-orthogonal states I J M ~ l'l. > can always be expressed 

· as linear combinations of orthonormal states ·as in (4). The cor-

responding occupation number states are t hen 

0 - ... ) 
" (12 ) 

We shall then have 

< N, (IJ') I N~ (w)),. = <JMW> .. ) JMI.V; ") 

> . . (13) 
since both the set of states ~ Vm (W) and that of the states , 

I 0 ~ - - 0) nl't (WJ: 1) 0 ~ - -> are orthonormal. . It .now foll ows . in. 

the same way as for the orthogonal states in Section 1 .1 that we can 

make the required formal identification. 



. APPElffiiX C 

THE BVALUAT I OH OF THE DJTEGRALS ( 2 . 13) 

Tie offer here a deri vation of the integrals (2 . 13 ) , whi ch are 

i mplicit ip. the papers of Greuling (1951) and Lee-~'lhiting (1958) . · 

Let us write 

-w 1 
whence 

Ii' we now put 

co-r:: } w-t - a 8-
the integrals become 

I 
-..1. a:~ 

1- e 

) 

-
- ( ~ \v'..e 

±~r.a l+~ 
e f~ (1 ) 

Next we note that t he integ-rand has a fairly stro·ng maximum 

at a:: 0 ' .whence an approximate value of the i ntegr a ls may be 

· obta in.ed by confining attention· to the ne i ghborhood of the origin. 

Thus we expand the surd occurring in the s econd exponent ial term 

around } = 0 to obtain 

+ o(~) 
(2 ) 

(117) 
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Discarding all but the first pm-,er of Q ( 1) becomes 
dJ --

± i. f..e ..,. . ( -~ e d - '- ~ ~ I 
c<) _i-a,'l + . ~ 

e · d.~ e · I~ 
-00 

} 
which iwGediately leads to the required result by means of t~e identity 

j ~JA t..A~ 
e e 

?(. 
- 00 . 

i8x. 

--
~n c. i£ A + ve an:d B ~ ve -

0 A - ve and f3 - ~ 
(3 ) 

This method o~ evaluation can clearly be only approximate. 

' Inspection of (2) shows, however, that the approximation will improve 

as r increases . In fact, (2.~3) may be regarded as an asymptotic 

value of t he integrals for large r. 

This point may be illustrated by considering the case r = o, 

which can be evaluated exactly : 

- Q.a 
/-. e 

.which is .quite different from (2.13 ) . 

for a + ve 



APPEUDIX D 

l !ATR IX ELEJIE:NTS DT ROTAT I ONAL STATES 

He are concerned with the evaluation of' matrix elements of the 

:form 

<:r;: T: (w) [ -t;: > 
where t he .nuclear s tates have their rotational motion and intrinsic 

. M 
structure completely s eparated and t he ir~ are spherical tensor 

operators of rank l_ in the space of any single nucleon. 

A transformation to the usual system of coordinates fixed ~n 

t he nucleus can be effected by use of (A.24 ) , thus: 

T\w)= 
L 

I'V\{ 

The nuclear states can be written 

. 
~ 
~~ 

I 

~f or<:(~) 
. f 

(119) 

(1 ) 

(2 ) 
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'( 

·the daub'hter state ll.a.vins' the simpler form since i t is in the lowest 

rotatio:q.a.l band of an even-even nucleus and· hence 1\f: 0 (see Section 

1 .. 3 ) • 

The matrix element t hen factors thus : 

(~1~-rt )(:J..I+~') 
. , ~ 

I 

m 

I ~ . 
In t he :first term here only M -=.-J\l contributes a.nd in the second term 

• I 
onl y rrt =IC • By means o:f (A.21 ) and (A.22) we then have 

. (. 

/ Oif I 0 
L 

I 0 It: ) ~ 
~fo Mf-M - 1<". nz K~ 

i ) (.. 

8n~ c( rf I. 
L I c( If r. 

-~J ' (. 

J.I f+ I Mf M- M -M· 0 f<i {, f I. / 

<o If b 
L 

....-, ') .J t: 

Mf- r, 
M -M, /(· f !. l . L 

I , - < . , 
t ) I . (. 

1. 
(.. 

k~ ) 
(4) . 

M . 

/ 
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Noting that 
. , 

we t hen have 

w1ere. 



APPElDIX E 

THE COUPLED muATIOUS 

J ;; 1/2 

. sm I '}l (o), ~,(o), ':t .. 4 ("-), ~ .. 1-CJ·L ~(~),1], (1)_ · 

(\.N'~ Vc. ~ l) j.'- ( o) - J.~, (o) _ 1) 
1 

( o) 
. . d.i' - --r 

· + fa- e .. 9o f(v)[Ji 3:.,_ (2) .. J3~5 (1)~ = 0 

d. 3 (o) 
I ~ (o) ,. 

( \.J ~ E .. -V> I) 3::2, ( '1.) - J~ -~ ( 2.) -1- !1. ~-L ( 2
) 

d..-r ...,. 

+ ~ "-,_ Q. f(-r) [Fl ~ ( 0 )-~o J~ (2)+ j£ ~ (l.)) =: 0 . ' 

( 122) 



(\J ~'_ El.- \{ • 1) \ p.)- .ot. ~. (2) - 3 -53 (2) 

d..-r .-r 

3 ~ (2.) 

r 

(123) 

, 

. ( 
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SET II 

~/ -Vc +I) :3:, (o)- J._!J.,(o) -+ 

c:l-r 

+ - 0 

(W *- V c- \) l-• ( 0 ) + .J. J:, ( 0) 
J.-r 

+ ~' (o) 

c! ~l. (2-) - 2 ~l. (:t) . 

c:A."r 
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- . 

-+ ;;; e7- C(. f'(r) [E ".t; (o) +[5" '},_(,_) ~~ [
3 

(2.) j = 0 

4- 4 ~3(2) + 3 J_), (l.) 

d .. r ~ 

~ .l e. 1. <fl 0 f ('d [J3.Q. _ ( o)-+ p; .0. (L} + _!t J2 (2.)i 
l~ ( "jt ~ jL 3~~~ 

. . 
- 0 -
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J = 3/2 

SEI' I ~1.(o) 1 ~2.(o\ 1 ")._, (1.) 1 ~_,(2.), ~(~))~2.~2.} -

~"- Vc. + r) )~(c)- ct~l. (o) _ 
1 

.1j7.(o) 

d.'(" < 

0 

(\,/'-. Vc.-t}~,_(o)-t d }._(o) - '2 ~._(c) 
J..-r " 

+ 1~ €. <fo F(..-) [ - ~-t (2.}- ~7.(2.)-+ ~ ~-!.(l.) 
. . 

--



(W J'- E,- V c.+ 1) 3:_, (l.) _ d. ~-, ( 2) A ( ) 
+ J-t 2 

(12T) 

_. To .,._ 2. <fo H ,.) {- ~,_ (o) -~~-• (4) -1- ~ ~ ~-~ (2j 

- ~ fi ~"{2) ~ = o -



{~/'-E._-- \!c.+ I) ~?. {2.) - J~"J (2.) -+ 3 ~-3. (2.) 

r ., 

\ , 

- . 
' + i!; e.,_Qo f'( .-) {n },Jo )- r:;- :t, (2) + if J!a J~ (2) 

(128) 

'2. 0 ll. f3' ~ ) J ·- 0 - lt-'l :.tl {2.) + L,.'l ,J t ,.(J.. . . -

-+to .._~Cf. fH {If ~,(o) -J;o~-• (1.)+~1!; ~,_(LJ 
- ~; -':1-3 (2 ) + ~~ Jf ~~ (~) j :: 0 

( 'w ,._ £.,_- Yc. + I) J-lt- ( L) - d.~,. (l) - J,. i. (2) . 

J..r "f' 

+ ~ e.,_Q. t(-r) [Jlf' 3,_(o)- fJ{~(l.)-t- -&J~'J:/:i.) 
(00 ""' · ) 

,.. ~ "",. (2) J = o_ 

fw *- E,_- v.,_- 1) \. (2_) + d.; :2.J - 4 J-~2.1 

+ I~ e. "2. 9. W Y) [ j~i ~~ ( 0) - ; J.f~,_(2) -t-4~4 .[ ~-?. (2.j 

+ ~ ~ (2) l - 0 ,s . Jlt j 



SET II ~-.. ( o)' '!J-.. ( o)' -a,('~) • ~. (2) • 3::>..(2.)' ~-L(l.) 

33( 1.) > ~~ (l.) ' =] .... (2.), ~-¥ (2.) . 

~ · 

+ · · "t., e?- 9o ~ (-.--) [- j 
1 

(1.)- J -1.. (:1.) +jf J-~ (-'--) 
/ 

+ J ',8 
J--'+ 6,) ~ -==- 0 

+ .L e"' 9
0 

f(.-) J -/j,C:>-:J- ~-l. (2.) + Jf .q,~ (2.) · 
£C ( 

+ ~~l~-4~-'--)S ~ 0 



/ 

I -
(130 ) 

. (w .. - El-- vt- ')~,(2) + o. d, (LJ J.JL) 
cL '(" 1"" 

-i ~ ~' 9ofH(-lL(o)<t,lL) +~oJ;:~~(L) 

-;It 1~(2.) ~ = 0 

a 
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(W*-El.-V"'-+1)~:!.(1.)- d.~3(2.) -3~(2.) 
J.-r Y' 

+ fo e.~ Oo V(.-) (Jr l 2 C o>-§.f 3; (?-) + ~o l_{ ;;t,_(2.) 

- ~ 3-2 (2.) + E- ri"" j h ( ~) 2 ~ 0 
Jt,q ;;1 4'1 "\J 2 -, . ~ 

. ( W ,._ E~-vc- t)~/~.) + J ~?. {:t) _ S ,~3 ('l.~ · 

cL.~ "'(" 

-! '/o e '1. Q., f('") {Jf l-,_ (o) -Jf ~. (:Lj+ ~"~ ~-.:L.,_) 

- 'b.<l !J. (2.) + ~) ~ '.2. (2.) 2 "=' 0 
lr'\ J3 4-'i 2. - )-'f. ) 

(\/'-£,-V,-tl) ~Lt-(2)- c:l.~_,.(L) -4- 4 ~-~(2.) 
d.r . 

/ 

:::. 0 .· 
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. J = 5/2 

SNr I J~( 0 )1 ~3 ( 0
)) 1-, (!), 'l· (_l)) · '3:2(.2), ~-:l~'-) 

j-~ (})' ~~ l2J, 3:4 ().), ~-Lf ('\ :ts (l ). ~ f (_l) 

( W "- V ~ t- 1}. '}~ ( o) - .,(__ ~ 3 ( 
0

) _ 3 ~3 (o l 
~{"" \"' 

<D e_l qo Fe-<} { 'J, (1) -·/1 'J._~ l')- -R 'J, U) 4 ,g )_~ (2) 

t ru } s (1.) 1 . 0 0 

• ~0 e.' 90 fl~) [~. <J)- n ~-l (J.j- P, ~l (2) +[f ~-4 {2) 

. ~ ~. [~) j : 0 
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( W~ -£ :>.- V<-- I) ~,(_1) • d.. J, l>-1 . 3-, (2! 

el-f -r 

. · . + 1 ~ e' Glo f[ ' ) l ~ ~ ( o) -~ ~ _,_ ( J) - J1 ~ ~ [0 ~ : 0 

(w ~-f.,_- v,_~ r) L~.C::>.)- ol~_,_u) + :z .fj_.,l'-l 
~..,f If" 

+ I~ e_1 ~o J (-r) t~ 1, (o) -If~. (>-) - ~ :J_,_ (7. J 

ltro h J l ~ 
~ J ~ -J.f (!2.) J =- 0 

-1 ~ D e_). q, h • ) i -n; 4 ; (D) -ff ~ ,(>) - ; ~- 1 ( ~) 

-1- ~; ~ 3 (l) - ~:5 If -f5_., (>.)) '" 0 
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+ ~~ e. ~~o }C r) {- J1 \ (o)- Jf J, C'·J • -!{, -a_,_ (1.) 

- '-o )~(_l) ~ ,# L'i (1) - ~1 JT 1s (:)} - 0 
1.{ ~ 147 

(w"- E.,_- v~- 1) ~~ ll) + ctJ..~t'l _ ) 3~(2.) 
d.v- -y-

• ~ e. 
2 

C?o )c.-) l- ~~~ (o)- A ~' (') + ~~ 5_,(1) 

~ I 'l to . e_ 
n t l ) L r;; I 18o n "r . r,{i, 'r . ~0 t'" .A)~ ~~Co)--;:-- - J ( 2.) J.- J~ {).) 

2.1 "'~ 2. -l.; ~. /L{/ 
. ' 



(~35 ) 

-'" . ,~ e? 9o ~(r) { r--;;--P (o) _ ~ fT P._~ (>) • n/h f)_ (-'-] ~ ~ J 3 '2.4 5 _.j )_ J I Lf7 J ~ 
. . 

- 0 

I 
e_'L ~0 J (r) [~ j:l(c) 

so 
~~(l) +-~ ~- 4_( 2) . . 

+ lo -
4Cf 13'· . 14112. 

4 2o 1 ~ (l) } - 0 -21 

/ 
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-

L, C'-)' ~-> (lJ , Jq (1) , ~'I c,). 1-selJ, 1-s (lJ 

+ t~ "'-'- C\:o f ('") { 1_, (:>.) - If J~ (l) - 4 J-?> (i l 

+ fi J ~ l"-) ~ [fj 1-, L'-) } ~ o .. 

cLr 

+ fo- "-.,_ Q., h·) i ~-I (-:..) - If~"- (l) -If L (l) .· 

. . , 

G; .P. (l.) r;; -~ (l.J .( ' _· 0 ~ .J;:u J4 +J./ij }-S J-
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( V ~- t )_- 'fc +I ) i_, (:1.) _ ,t ~-I (l) 
o\.'(" 

. . 
~ ~~ e?- ~D t H [ 'J.-_, (o) -~ 1,_ c~)- ~1,,(2-) ) . - a 

2 ~ l ( l ) 

- -

~- ~ €__ 
1 

q 0 f C ~) { - jf L , Co J -~ 3-_, ll_) - ~} ~ (1) 

+ ~ L, [ l ) - ~~D; JT ~4 (l ) I = p 

., 
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4- _l1 J(; 111 L:l) - ----:..._~ o_ 
1~1 "I Lfq~ =-o 

/ 

~ ~~ Q.. 2 ~o fc_.) ~ )_~ (o) - ~~: {f '(LlJ + :y t3 (.2) 

~ 0 J ( l) 4 s- 0 j- f)- ( 1 ). ( = 0 ~ 'l.Cj <-I q IU1 12 ~ 



(139 ) 

t- s ~-5 (1) 

. 
'So so · - - ·:r rJ.) ,. '] , c~) 

11q\f1) - ~ l: 147Ji . J !:1 • 

"'-l, ()_) !- -. J-,,-(iJ 

+ )o 

'2./ 

o4- r 

= 0 
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