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CHAPTER I

INTRODUCTION

The dynamic behaviour of a rod of circular cross-
section, either solid or hollow, the axis of which is in
ghe form of a general space curve is of interest. For
example, some members in radar installations are naturally
curvéd and twisted in the form of a space curve.v Pipes
have been designed to have an axis in the form of a
space curve to allow for thermal expansion in chemical
plants. Other naturally curved systems of this kind are
found in springs, balcony structures and arches. A
knowledge of the behaviour of such structural elements
subjected to dynamic loads is of value for design pur-
poses.

The static deformation of naturally curved rods
is a classical elasticity problem, and many papers have

*
1/2,3,5 The equations of

been written on the subject.

motion are very complicated when the unstressed state of

the rod possesses both curvature and tortuosity.
Previous work on this subject has been done by

Lovel. In his study of the stress wave propagation along

a helical spring of infinite length, it is assumed that

*Numbers refer to the Bibliography listing,

1



the torsional inertia of the circular rod is negligible.

In addition, he assumed the centerline of the rod to be
axially inextensible. Wittrick2 also worked on the elastic
wave propagatioﬁ in helical springs, where the wire cross-
section is of any doubly symmetrical shape, thus covering
rectangular as well as circular sections. In addition,
Wittrick took into account shear deformation due to bending.
Ojalvo3 studied in detail the vibrations of incomplete rings
which can be considered as a very special case of a rod
possessing curvature but no tortuosity. Massoud4 employed
vectorial methods to derive the equations of motion of a
naturally curved and twisted rod. However, the result is

in vectorial form and is not readily useable. The static
deformation of such a rod is also given in Love's treatise
on elasticitys.

In this study, a simplified set of equations is
developed governing the longitudinal, flexural and torsional
motions of a circular uniform rod, or thick-walled tube
whose natural state is in the form of a space curve,

Unlike the previous work which takes into account shear
deformation due to bending, the Euler-Bernouilli beam
assumption of plane cross-sections remaining plane and
perpendicular to the axis both before and after deformation
is employed in the present derivation, The rod is assumed
to be made of a linearly elastic, isotropic and homogeneous
material. The couplings between the various types of

motions caused by the initial curvature and tortuosity are



3
shown explicitly for the case when the rod is in the form
of a helix. The equations can be reduced to the dynamic
equations of a plane curve, or a straight rod as special
cases.

A comparison is made in this thesis on the accuracy
of Love's theory by compariﬁg the natural frequencies cal-
culated based on Love's theory and the present theory. A
computer program is developed to determine the natural
frequencies of a helical rod under different boundary con-
ditions. Finally, a series of tests were performed on two
helical springs and the experimental results are compared

with the results from theoretical calculations.



CHAPTER II

FORMULATION OF THE EQUATIONS OF MOTION

1. Vectorial Formulation of Equations of Motion

Consider a rod of circular cross~section, either
solid or hollow, the axis of which is in the form of a
general space curve possessing both curvature and tortuosity.
The rod is supported at its ends, and is subjected to
loadings - distributed along its length. The
equations of motion are derived by equating the time rate
of change of momentum and moment of momentum to the total
forces and moments respectively, acting on a given segment
of the rod. The following assumptions are made:

(1) that the cross-sections remain circular after
deformation

(ii) that the Euler-Bernouilli assumption holds,
i.e., a cross~section of the rod remains plane and per-
pendicular to the axis of the rod at all times.

Due to such imposed constraints, each section of
the rod has four instead of six degrees of freedom, namely
three translational displacements and one rotational dis-
placement about the axis of the rod.

Let r be the position vector of a point P on the
axis of the rod relative to a fixed origin 0. R is the

4
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6
position vector relating the position of any point B to P,
in a plane perpendicular to the axis of the rod at the
point P. The position vector of B is then given by (¥ + R)
as shown in Fig. II.1.
The total linear momentum vector p of the rod seg-

ment from O to P is

2
5 = { J 0 5% (F + R) dA ds . (T1.1)
o ‘A

where s is the distance measured along the axis of the rod,
and & is the total distance from O to P measured along the
axis, and j denotes integration to be carried out over

the cross—sictional area of the rod.

Applying the linear momentum principle yields
- &
dp _ % _T 5.8 z ;
= (N -N_) + (0-Q_) + fds eeo (I1.2)

dt
Similarly, the moment of momentum vector L for the
rod segment is

2

= (F+ ﬁ)} da ds ...(II.3)

Ei
n
Hd
©
—
K
+
%l
®

Applying the moment of momentum principle yields

18
=r x (ﬁt+é) + (M-MO) + (r x f) ds v (IT.4)

Qxl Qi
p

Equations (II.2) and (I.4) are now the dynamic

equations for the rod subjected to the given loadings.
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FIGII.2 TRIHEDRAL OF SPACE CURVE




2. Simplification of Dynamic Eguations

In ordexr to simplify (II.2) and (II.4), it is con-
venient to define a set of mutually orthogonal unit

vectors ét' 51 and 52, attached to the point P, where Et

is the unit vector tangential to the axis of the rod, 51

is the principal normal and 52 is the binormal at P as
shown in Fig. II.Z2.

The set of unit vectors e 51 and e, is known as

t’ 2

the trihedral associated with the space curve. R, a

vector in the plane of the cross-section can be expressed

as
R = (R, Cos 6) e, + (R, Sin 8) e, ... (II.5)
= 3e 3e
SR _ 1 . 2 - . - . 96
and =& = R, | Cos 6 sg- * Sin © 5t (Cos 6 e,~Sin 6 el) 5T
»e+ (II.6)

where 6 represents the rotation of the section of the rod
about its axis. The right hand side of (II.l) can be

written as

SN

and since
2w

I
+
ol

} de dRr, ds,

de= 0, and r is dependent of 6,

ol

(IZ.1) reduces to
2

5 = pA -'tn(.II¢7)

il
o
4]

(o]



Substituting (II.7) into (II.2) yields
T

o
pA J r ds = (Nt_No) + (Q—Qo) + J fds
0 (0]
{E .. ; ‘

or J
o]

If (II.8) holds for all values of &, it is necessary that

the integrand be zero, i.e.,
= ) — - — '

s (N +Q) + £ «es (IT.9)
(II.4) can be simplified, (II.,3) can be written

Similarly,
- r x R] de R, dRr, ds.

R+r xR

el

as .
olr x ¥ + R x
o A

R and R are dependent on 6
27
j Cose de =0

r and ¥ are independent of 6, and

27
as shown by (II.5) and (II.6). But I Sin6 de
0 o

. { (rf x R—r x R) do=0, and (II.3) can be written as
A

%
L= J { olr x * + R x Rl d6 R,dR,ds
o ‘A

2

d 27
[ (R x R) de R,dR,ds

[¢] o]

2 %
pj A(r x r) ds + pJ [
0 o]
The second term on the right hand side of the above

equation can be written after substituting for R and R as
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R} (Cos b e +Sine e,)x [(51+526)COSG +(52~516)Sine]dedR*ds

x f
1 r
—‘2 | R> [e Xo. +8, X8 éJCo 26+IF X&', ~8.x8 é]S'nze dedr,d
‘?J J J * 1¥e17me%e) S brleyxe,meyxe,dlsl *4S
0“0

(4rd
—on | 2R3 3, xe, + 25,6+ 5. x 6.] dr, ds
J * 1 1 t 2 2 *
0”0
L (2
cor | [la i +la xd o+
=0T 3% {2 el X e_.L + 5 e2 X e2 + ete] ds
"O
- %
. L = [pAr x ¥ + H] ds ... (I1.10)
JO
where & = oI la, x&, +Lc xa. +3, o (II.11)
p |2 %1 177 %2 2 t Bt

Ip is the polar moment of inertia = ﬂd4/32 for a
solid circular cross-section. For a hollow pipe section,
the limits of integration would be different from those
used in the previous development, but Ip and A in (II.10)
and (II.1ll) would be the polar moment of inertia and Area
for that hollow section,

Substituting (II.10) into (II.4) yields
L

f A2 (Fx é) +flds = T x (N, +0) + ¢ | 3l + r x £| ds
J PE Bt t 5s
0] [0}
ees (IT,12)
In view of (II.9), the first term on the left hand

side of (II.1l2) can be written as
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IR {2 123
I - I ot | = 8 (T 4By4 F
j oA =< (r x r)ds = {r x pAr)ds = [ r X [55'(Nt+Q)+ f] ds
o} e} (0]
r R 2
= fxg—g(ﬁt+§)ds+ (F x F) ds
lo 0
% i3 %
o [ = = .- 3%
= 35 { r x (Nt+Q)1 ds ~ LEE X (Nt+Q)] ds + (rxf)ds
4

'}O 0] [o]

Q

L A
i.e., I oA EE (r x r)ds = ¥ x (ﬁéé) - { [ét x (ﬁt+§)—(fxf)] ds
o

ceo (ITI.13)
Subtracting (II.13) from (II.12) yields
2/ —
S M _ o = _ -
{[H—a—s-—etXQ]ds—-O ..-(11.14)
0]
noting that ét x ﬁt = 0. In order that (II.1l4) is satisfied
for all values of &, it is required that
= M - -
H - 'é—'s_ + et X Q QI'(II.lS)

It is convenient to eliminate the shear force wvector
Q0 from (II.9). Using the vector identity (ét x Q)x ét = Q,

(IT.15) can be written

= _ % .= = 5M
Q= H x et + et X s
and (IIZ.9) becomes
‘..‘_»3 - = = - 3]_\7_[ -
PAr = o= N, +Hxe +e x= |+ f ... (IT.16)

Equations (II.1l5) and (II.16) will be taken as the equations

of motion for the rod under the applied forces,
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3. Reduction of Equations of Motions

The position vector r for the axis of the rod can

—

be written T(s,t) = r (s) + u(s,t), where fo(s) is the
position vector denoting the axis of the rod in its un-
stressed state, and u(s,t) is the displacement vector of
the rod under load. It is assumed that the displacements
of each section of the rod from its unstressed state are
small. By imposing that ]G(s,t)]<<|fo(s)| for all t and

—

s, approximations can be made that the +trihedral e e

1

and 52 can be determined based on the unstressed configura-

tl

tion Eo instead of r. The relationship between the posi-
tion vector fo of the space curve and the trihedral is
well known. The variation along the length of the axis
is given by the Frenet-Serret formulae, which can be

stateg as

2%t _ c o
3s o 1
.3

1 - -
39S - Ko & T 75 &
%2 -t &
9s o 1

where Ko is the curvature and To is the tortuosity of the
centerline of the rod. A summary of useful relafions is
given in the Appendix (A.I.1) to (A.I.1l1l). 1If the tri-
hedral is defined based on Eo as shown in the appendix,
then it is a function of s only,band is independent of

time t. Therefore, any time derivatives of the trihedral



will be zero due to
the rod. Using the

term of (II.15) and

13

the assumption of small motions of
relations given in the Appendix, each

(IT.16) can be written explicitly in

terms of components in the ét’ él and‘e—a2 directions.
From (II.1l) and (II.15)
- B L _ ai\—/_[ - -
H = pIpeet = 55 + e, X Q
where
M = Mlel + M2e2 + Mtet
and
Q=018 + 0, &
) ve = M, = M., = ~ - =
- . el B e = e, + 2 e, + oM e + Mite, KoetX
s S s ,

~- MZToel + MtKOe_.L + Qle2 - Q2el

Defining Ueze, and equating coefficients in the three

directions yields

pzpaﬁe = M - kM ve.(II.18)
aQ, = My - Ty o+ My _ «..(II.19)
an =—TMl - Mé « e (II.20)
where ( )' = 3% () etc., ¢ = s/a, and a is the radius of

gyration of the rod,.

curvature and tortuo

Kk = ax_and T = a T
(@] o]

¢ and t are the non~dimensional
sity of the space curve given by

The radius of gyration of the rod

is used throughout this thesis as the characteristic



14

length for purposes of normalisation.

Since H x 5t = 0, (IIZ.16) becomes
o2t = 208 +5, x84z
s L t t 9s
Eut’ .
= oM oM oM
= - M = = 1 - 2 - t -
Nt + etxas = Ntet+ et X T el + T5 e2 + Is et
+ Ml('roe2 - Koet) - M2T0el + MtK ey
_ BM | _ M, _
=Neeg Flgs ~ Mo MtKo] ¢y " 35 T M| &1
Letting u(s,t) = ul(s,t)él + uz(s,t)é2 + ut(s,t)ét
= o= = 3 - oMy -
then pA(ulel + u,e, + utet) = 53 Ntet + 35 " M2T0+ MtKo e

oM, L _
_a—S_+MlTO)el + £

-

Carrying out the differentiation and equating cor~

efficients in the three directions, yields

3 . _ : 2 .
pAa Ut = a Né + KTMl + KM2 + a ft oo (IT.21)
Aa> U, = acN, = 1M, = 27MI~M, ¢ '+12M ~ML '+ af
P 1 t £ 1™ 272 1
.. (IT.22)
Aa3 ﬂ = ¢M!'+M K'+M"~T2M - 2TM'Y- M,1'"+ a2f
P 2 £ 1 1 2 2 2

e (IT.23)
where U = u/a f Utet + Ulel + U2e2
Equations (II.18) to (II.20) are the equations perm

taining to the rotational equilibrium of the rod, as they

are derived from (II.15)., Equations (II.21) to (II.23) are
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ecuilibrium equations for the translation of an element of
the rod obtained from equation (II.16). (IIZ.19) and (II.20)
are expressions for the transverse shear forces Ql and Q2
in terms of the moments. In a similar manner, equations
(I1.18), (Ir.21), (Ir.22) and (II.23) express the dimen-
sionless displacement variables Ue, Ut’ Ul and U2 in terms

of moments and applied loadings.

4. Generalised Force-Displacement Relationships

In order to express equations (II.18) to (II.23)
in terms of displacement variables, it is necessary to
obtain the generalised force~displacement relationships.
These are given by Love5, and the derivations are given

in Appendix (A.V). They can be written as

1 Y
a Mt = GIp (Ue + KTUl + KU2) .. (IT.24)
1 ! 2 ]
a Ml = EI (KUe - TKUt - 2TU1 - T Ul + T U2 - U2 )
ee. (II.25)
B ! ( 1 2 5 v “U )
a M2 = BEI (|<Ut + K Ut+ Ul - T Ul~ TU2— T U,
.o (IT.26)
| .
Nt = EA (Ut - KUl) e e (ITI.27)

Substituting (II.24) to (II.26) into (II.,19) and
(II1.20), the transverse shear forces Ql and Q2 may be ex~
pressed in terms of the generalised displacements

U,,» U, U; and U,. Substituting (II.24) to (II.27) into

8’ 2
(Ir.18), (Ir.21), (II.22) and (II.23), four equations of
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motion of the rod are obtained in terms of the displacement

variables and applied loadings.

5. Four Eguations of Motion in
Terms of Displacement Variables

Substituting for Mt’ Ml’ M2, Nt and their deriva=~
tives where applicable as given by (II.24) to (II.27), the
four equations of motion in terms of displacement variables
ny Ul and U2 are developed.

Equation (II.1l8) becomes

20a° = 26
—%—~ Ue = Ué'+(K'T+KT')U1+KTUi+K'Ué+KUé'
2
- - - T T
K[KUG TKUt 2TU1 T Ul+T U2 U2 ] ... (IT.28)
Equation (II.Z21) becomes
Iaﬁ = aEA(U!"=k'U,-cUM)+ KTE£ (kU _=-kx1U —2TU'-T'U‘+T2U -ur")
praty t 1771 a 6 t 1 1 2772
4 KEL (2K'U£+KU£'+K"Ut—ZTT'Ul—TzUi+Ui"—T"U2
1TYT V¢ L | 2
- 37t U2-2TU2 } + a ft .. (IT.29)
Egquation (II.22) becomes
. ‘ kt GI
— ' - 1 1
pIaUl = aKEA(Ut KU1> S (Ue+KTUl+KU2)
- 27EI ] Tt - ' - 1 ' '_ Tt
5 (x U8+KU6 T'kU -tk ' U Ul 21 Uy ZTUl ' 'y
-7'Ud +217'U +T2U -yl
1 2 2 2
_ T'EI _ _ T 2 JE
S (KUe T«U =270 =1 ' U +17U,=U,")
T2EI

(KU£+K'Ut+Ui'—T2U -2t U'—T'Uz)

1 2
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EI!’ ' 2 o Kl
- E;-LKUt"+3K'Ué'+3K"Ué+K'"Ut+Uf" - Ul 4t Ul
—(2T'T'+2TT")U1
2
— o R B VTl Ty
2TU2 57 U2 41 U2 T U2 + a fl
c.o (IT.30)
and eguation (II.23) becomes
. KGI 'GI
pIaU2 = ap Ué'+(K'T+KT')Ul+KTUi+K'Ué+KUé' +——E~E (Ué+KTUl+KUé)

Tﬂ Py VT e Ty - vy ' 1 v
+ = [KUG +2k U6+K Ue KTUt (21 "+271 K)Ut

(1" "k+T""+27'c")U

t
~27U8 =57 UL =d U= O+ UL AT U
T ) 17 - e
+(27"'t'"+271T )U2 U2 ]
T2EI 2

- - - | IRIN

S (KUG TKUt 2TUl T U1+T U2 U2 )
_ 21EI (2 'U'+xU!' "+ "'y, -277'U —T2U'+U"'—T"U -37'Url=27U1l")

a t t t 1 1'"1 2 2 2
-~ I EI (kU!'+c'U +U"—T2U ~21U0l=1'U,) + a2f (IT1.31)

a t t "1 1 2 2 2 e *

Subjected to the appropriate boundary and initial
conditions, the motion of the rod can be studied using
equations (II.28) to (II.31l), the four equations of motion.
These eqguations are uﬁeful in studying the behaviour of a
rod of circular cross section, the axis of which is in the
form of any general space curve. It should be pointed out

that these equations are indeed lengthy and complicated.'

In order to solve them, « (&) and t (&) must be known for a
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general space curve, and this in itself may be a difficult
problem. Numerical methods and the point by point measure-

ment of « and t along the space curve may be necessary.



CHAPTER IIT

DYNAMIC EQUATIONS OF MOTION OF A HELICAL SPRING

1. Introduction

Equations (II.28) to (II.31) developed in Chapter II
will now be used to study the dynamic behaviour of some
special systems.

One simple configuration of a naturally curved and
twisted rod is in the form of a helix, in which both the
curvature k and the tortuosity 1 of the axis are constants.
In order to solve the prbblem of a helical spring under an
external forcing function, it is necessary to solve the free
vibrational problem. The equations for the free vibrations
of a helical rod can be obtained from (II.28) to (II.31l) by
setting any derivatives of « and 1 equal to zero, and
neglecting the applied loading terms. In matrix notation,

the resulting eguations can be written as

"1 0 o o1 (v B 1 {u)
t Y11 Y12 Y13 Y14 t

61 00 ) Ul> _E “Y12 Y22 Y23 Yaq4 U1$

. - "—'-'2— <

o 0 10 U, pa Y13 "Y23 Y33 Y34 U,
0 0 0 2 U Y -y Y34 Y44 U
i i Y | Y14 Y24 73 44 | |79
e (ITT.1)

19
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where the [y] matrix contains differen_tial operators as

elements given by

Y11 %

where D

2
3E

D2(1+K2) - K2T2

K[DB-(1+3T2>D}

KT(T2—3D2)
2
K T
2 2G6 2. 2
-D4-K +1 [GDZ— 5 +T ]
27T 2D3— % K2+2T2) D
-2xTt { 1 + % D
2G 2 2 4
—D4+ -E- K +6T D2"T
2G 2
K { 1 + . D2—T ]
2G 2
& P2 7 K
82
D,= —= etc.
2 ag2

... (III.2a)

... (III.2b)
«..(III.2¢c)
... (ITT.24)
... (III.2e)
;;.(III.Zf)
... (ITI.2q)
... (III.2h)
ee. (IIT.21)

e (IIT.275)

It i1s advantageous to represent the equations of

motion in the form of (III.1l) since the coupling among the

displacement variables can be recognized easily.

This

coupling is represented by fhe off-diagonal terms in the

[vy] matrix.

The four displacement variables U

and Ue

can be considered as generalised coordinates representing
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I,,_.l

ongitudinal motion, transverse motion in two perpendicular

p1

ct

irec

¢

ions, and torsional motion of the rod respectively.
It can be seen that in the general case of a rod possessing
both curvature and tortuosity, all four types of motions
will be coupled together.

In general, « will be small compared to unity, and
powers oi k can therefore be neglected in.comparison with
unity. Also when the pitch angle o is less than 60°, the
tortuosity 1 is of the same order of magnitude as «, and
higher powers of 1 can alsoc be negiected in comparison

with unity.

2. Wave Propagation along a Helical Spring

Consider the case of a sinusoidal wave train
propagating along a curved rod in the form ofqa helical
spring. Let the spring have a pitch angle o, radius R,
cross-sectional diameter d as shown in figure III.l. No
reflection of the stress wave from the ends of the spring
are considered. In this respect, the helical spring can
be considered infinitely long.

The normalised curvature and tortuosity of the

spring in terms of the coll dimensions are given by

.. (IIT.3)

T =« Tan «
The equations of motion (III.1l) apply in this

case. Investigate the propagation of a sinusoidal wave



FIG ill.1 HELICAL SPRING
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train of the form

( hY 7 ~
‘ Ut Ny Sin Mg
[ Uy ny Cos g
inf= Ty = ¢ Y Sin wt ... (III.4)
U2 Ny Sin )¢
Ue ne Sin Ag
\ / \ )
where X = wa/Q ... (IITI.4a)

Ngr Nyr Mo and n, are constants representing the
amplitudes of axial, transverse in-plane, transverse out-
of-plane and torsional motions respectively. Equatiops
(IITI.4) represent a harmonic wave train of wavelength Zﬂyﬁ
with a wave velocity of w/{A.

It can be seen that a sinusoidal wave of the form
given in (III.4) satisfies the following cgnditions, namely,
at ¢ = 0 and /a.

= = Ty — v — =
Ut = Ui = Ul = U2 = U2 = Ue = 0 e (IIT.4Db)

Therefore, the problem of studying the wavelength
and wave velocity relationship for the propagation of a
sinusoidal wave of the form given by (III.4) is equivalent
to the study of the natural frequencies of a helical spring
of finite length % supported at the ends € = 0 and & = /a
such that conditions (III.4b) are satisfied. For conven-
ience of visualisation, the latter terminology will be
used, and the natural frequencies of a finite helical
spring of length % subjected to boundary conditions (III.4b)

will be investigated in detail.
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(III.5).

the asso

Substituting equations (III.4)
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into (III.l) yields

2 - (Y
812 #13 814 SUS TN
_Q2 B 0
Y 823 24 N1
2 { b=l ... (III.5)
8o3 83378 B34 "o 0 (.
R R —ZQ2 0
By 34 44 Ng
_J \ / \ )
Q2 = wzpaz/E c..(III.6)
8. .= A2(1+K2) + K2T2 ...(III.7a)
11
~ 2 2
Bpp™ = (AT + 1+ 377) ... (III.7D0)
_ 2 2
Bpz=™ — kr(rT + 3a7) .. (III.7¢C)
8. = —¢2q (III.74d)
14 . o » »
822‘ A4 + K2 + T2(6A2 + %? K2 T2) ee. (III.7e)
8,5= 20t % + §? + 202 .. (ITI.7F)
Bo,= 2xxT (1l + G ) (ITII.7g9)
24 = .o .
633“ k4 + T4 + 2A2 (% K-+ 312) .. {(ITI.7h)
834= XZK(l + %g) + KT2 e (ITI.71)
_2G .2 2 .
844 'i“')\ + « -..(III.7J)
For any given helical spring, the parameters «,t and
nce the [B] matrix can be evaluated using (III.3) to

Egquations (III.5) yield four eigenvalues Qi and

ciated eigenvectors
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A typical set of values of the eigenvectors and

natural frequencies is shown in Table III.l. The natural

frequencies w,, (i =1, 2, 3, 4) are obtained from (III.6)
L

for each of the eigenvalues Qi , (i =1, 2, 3, 4) obtained.

For example, consider the case of the helical
spring of five turns. The associated eigenvector fof the
freguency of 90.69 cycles per second is given by
a o 0.101, -0.332, 0.007). Elements in the eigenvector
indicate that, associated with this natural frequency, the
mode of vibration consists of mainly displacement in the
tangential direction. The displacements Ul' U2 and Ue

are small compared with U, in this mode.
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TABLE IIT.1

Spring Data: R=1.52"; d=0.266"; p= 0.734 x 10 >1b sec®/in.*
a=8.4°; E= 30 x 106 psi; G= 12 x 106 psi.
No. of C o4 . , .
Turns Assoglapea Elgenvegtors Natural Frequencies C.p.S.
N g ny o g w1 wy w3 Wy
5.0 1 6.,101}-0.332) 0.007 90.69
-0.101 1 * 0.002 20,868.
0.329]-0.033 1 * 81.05
-0.012}|~-0.006; 0.003 1 14,741.
2.0 1 0.253{~-0.503| 0.008 210.80
-0.253 1 * 0.006 21,416.
0.473) 0.119 1 -0.003 186.52
-0.007{-0.013} 0.011 1 15,052.
1.5 1 0.337{-0.663] 0.010 263.28
-0.337 1 * 0.007 . 121,911.
0.595| 0.201 1 -0.007 229.00
-0.003{-0.015| 0.018 1 15,334.
1.1 1 0.460|-0.954] 0.01ls 316.56
-0.460 1 * 0.00¢9 22,853,
0.788| 0.362 1 -0.013 261.29
0.003{-0.016| 0.029 1 15,875,
1.0 -0.9304{~-0.471 1 -0.019 328.87
-0.506 1 * 0.009 23,368. .
0.856] 0.433 1 -0.016 263.11
0.005{~0.016 0.034 1 16,115.
0.9 0.936| 0.526 L -0.020 257.30
-0.562 1 0.001f 0.010 23,819.
~-0.813|-0.457 1 -0.021 337.95
0.007|-0.014} 0.040 1 16,434.
0.6 1 0.842( 0.6441~0.027 103.42
-0.842 1 0.001) 0.011 27,166.
-0.378|=-0.319 1 -0.034 289.30
0.015{-0.009 0.071 1 18,403.
0.5 1 -0.990{-0.002~0.011 29,551,
0.990 1 -0.146 * 1.044%*
0.0737 0.073 1 -0.044 267 .16
0.0171-0.004 0.088 1 , 19,828.
0.4 1 -0.793{~-0.002|~0.008 |33,504.
0.792 1 -0,991] 0.04¢ 238.77
0.486| 0.612 1 -0.059 641.73
0.018f 0.001; 0.109 1 22,219.
(a=0°)
0.5 1 1 0 0 2.6%%
=1 1 0 0 30,027.
0 0 1 ~0.044 0.340%*%
0 0 0.088 1 20,162.

"%" indicates that the absolute value of the entry is less than 0.001.
"#*"indicates that these values are approximately equal to zero.
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The calculations in Table III.1 were done on the
IBM 7040 Electronic Digital Computer using the Jacobi
Rotations MethodG. Essentially, the method transforms the
[B] matrix into a diagonal matrix. The eigenvalue Qi is
obtained from the first element of this diagonal matrix,

Qg is obtained from the second element and so on.

It is noticed that two of the frequencies are
lower than the remaining two by orders of magnitude. For
a helical spring with the number of turns N less than one
half, both the in-plane and out-of~-plane bending stiffnesses
are much less than the extensional and torsional stiffnesses.
Hence, the two lower frequencies are associated with flexual
vibrations.

For a spring with N greater than unity, Table III.1l
shows that the element Ne in a mode associated with one of
the two smaller values of natural frequencies is always
numerically larger than the other three elements, ipdicating
that the mode of vibration consists mainly of longitudinal
movements. This can be explained by observing that a "long"
spring of this kind is relatively flexible if it 1is rotated
about its coiled axis. If the spring is vibrating at a
frequency wy the lowest of the natural frequencies, then
the elements of the spring are subjected mainly to longi-
tudinal movements, resulting in a relative rotation between
the top and bottom of the spring about the coiled axis.

For a "long" spring, this mode of deformation offers less
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rigidity than the in~plane flexural deformation, and hence
such a mode is associated with a lower natural frequency.
Wittrick2 has shown that this is true for in-plane deforma-
tion of long springs, by pointing out that the kinetic
energy associated with the longitudinal direction is
numerically larger than the energies associated with the
other directions.

For a spring with N between one half and unity,
the coupling between the in-plane transverse motion and
logitudinal motion becomes strong, and it is difficult to
identify which type of motion predominates in the vibra-
tional mode.

Wittrick2 has shown that for out-of-plane deforma-
tion, the kinetic energy associated with the out~of~-plane
direction is numerically greater than the energies
associated with the other directions. This can ‘be seen
in Table III.1l, where, for all lengths of spring con-
sidered, s is numerically the largest component of the
eigenvector associated with the other low value of natural
frequency. This indicates that the frequency W in
Table III.1 is élways associated with the out-of-plane
flexural vibration mode of the spring.

In his investigationl, Love has neglected torsional
inertia of the rod, and has assumed that the axis of the
rod is inextensible. The latter assumption implies that
the axial strain at the axis, and hence the axial force Nt’

is zero. The two assumptions can be expressed mathematically
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o))
[¢7]

and from (II.27) U'! = «U

If these assumptions are introduced into (III.1),

, : . . 1
the resulting frequency equation as given by Love becomes

C, &° - C, Q +c3=0 ... (III.8)
where Cl = (A2 + Kz) (A2'+ ;% K2)
| 4 2 2 E 2 2 2.4 22 2 2.2
Co = 1207 + 2% (1L + = )i [2=c“+17] +47°»x (A"=k7) +C
2 2G 1
4
C3 = X4 (Az - K2 - T2)

Equation (III.8) is essentially a bi-quadiatic in
92 and can be readily solved to yield the two frequencies.
The accuracy of (III.8) will be discussed in a later

section.

The spectrum curves are plotted for various helical

spring parameters and are shown in figures (III.2a, b, c, d).

3. Discussion of Spectrum Curves

The spectrum curves of figures (III.2a, b, c, d) show
the variation of the two lowest frequencies as determined
from equation (III.5), with respect to length of the helical
spring, The curves are shown for varying pitch angle o, and
R/a, the normalised radius of the coil spring. The nor-
malised curvature and tortuosity for any of the springs

considered are obtained from (ITI.3). It is shown that as
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L - », 1.e., ﬁor very long springs both frequencies approach
zero value. Figures (III.2a, b) show the in-plane frequency
variation, and figures (III.2c, d) show the.out—of~plane
fregquency variation with respect to length of helical
spring.

An examination of figures III.2a, b shows that when
the number of turns N of the helical spring is one half,
the in-plane frequency is zero. This is independent of R/a
and ao. The zero frequency arises because rigid body motion
is possible, and each element of the spring moves in planes
parallel to each other. As N decreases from infinity to
unity, the frequency increases, the greater the curvature,
the greater is the rate of increase. It is interesting
to note that the frequency attains a maximum value when N
is approximately equal to unity. As N decreases further
from unity to one half, the frequency decreases, until it
is zero at one-half turn. The freguency increases once
more as N 1s decreased from one half, and as N approaches
zero, the frequency approaches infinite wvalue.

The zero frequency at infinite length‘is reasonable,
because the rigidity of the.spring at this length is small.
It was pointed out in section III.2 that it was relatively
easy to rotate a long spring about its coil axis by
twisting, thus causing predominantly longitudinal motion
of the spring elements., It should be noted that the longi-

tudinal direction for any element lies in the plane of the
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spring at that point. As N decreases towards unity, the
rigidity of the spring against this type of deformation
increases, and hence the freguency increases,

The zero frequency at one half turn can be demon-
strated by considering the special case when the "spring"
is a semi-circular arch. The eigenvector (1, 1, 0, 0)

shown in Table III.1 for N = 0.5, « 0°, corresponds to

It

this tyvpe of in-plane deformation. From (III.4), the

mode shape is given by

{
[n Sin =) _ sin (%= ¢)
;”l Cos 1% EJ Cos (1% g)
since ng = nq < 1.

If the mode shape is determined by plotting the
deformation of each point on the arch from &= 0 to &= &/a,
it will be found that rigid body motion has taken piace
in the plane of the arch. The zero frequency at one half
turn of helical spring does not however depend on the
value of o. It is shown in the appendix (A.II) that
C3 in (III. 8) is zero at one half turn, thus yielding a
zero freguency from Love's freguency equation. As N is
further decreased from one half, the frequency increases.

Figures (III.2c, d) show the variation of the

out-of-plane flexural frequency with respect to length of

spring. As & approaches infinite value, the frequency
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approaches zero value. As % decreases the freguency in-
creases, the smaller the curvature, the greater the in-
crease. The curves show a drop in freqguency for low
pitch angles when the length of the spring is such that
the number of turns lies between one half and unity. For
ring segments, a=0°, the frequency drops to zero at one-
half turn.

The zero frequency at infinite length is reasonable
because the rigidity of the spring at that length is
negligible. It is relatively easy to compress a long
s pring, thereby causing the spring elements to move pre-
dominantly in their out~of-plane directions. As & de-
creases, it becomes more difficult to do so, and therefore
the frequency rises. For low pitch angle springs, and if.
the spring is supported at its ends such that equations
(ITI.4b) are satisfied, it becomes relatively easy to
deflect the spring in the out~of-plane direction if the
number of turns is approximately one half. In the limit,
for 0=0°, rigid body motion is possible when N is one
half. It is shown in appendix (A.III), that Cy in (III. 8.)
is zero at one half turn if oa=0° or =0, thus yielding two
zero frecguencies from Love's frequency equation (III.S8).

Except for very long springs, it should be noted
that the coupling of the spring is increased as o is in~
creased. This coupling in effect separates the two fre~

guencies. For example, consider a spring with a/2 = 0.01



and R/a = 20 as shown in figures (III.Z2a,

c).
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For a=0°,

the in-plane and out-of-plane dimensionless frequencies

are 7.4 x 10_4

and 8.1 x 1074

respectively.

For the same

length and R/a, the in-plane freguency decreases and the

out-of-plane frequency increases as the pitch angle is

increased. However,

of the two frequencies is reduced.

for very long springs, the separation

4. Configuration of the Rod in the Form of a Ring

For the special case when 1=0, the initial con~-

figuration of the rod is in the form of a ring.

matrix of (III.1l) can then be‘written

The [vy]

v ¥ v ¥ 0 0
11 12
-k v 0 0
12 22
Lo = e o (III.9)
[YIJJ 0 0 y* Y*
33 34
O O * *
34 44
where Yij = y.. of (III.1l) with t=0. The dis-

placement variables U

displacement variables U

2 and Ue.

and Ul are now uncoupled from the

However, the longitudi-

nal motion is coupled with the in-plane transverse motion,
and the out-of-plane transverse motion is coupled with the
the four equations

torsional motion of the rod. For =0,

are given by
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/s ()
b3 -:‘ 5 5_ % *
TR I S R S ¥ Ue
.. = = {
| R 7| Y 0 ...(III.10)
oA I % *
S L-vi, % Uy
\ 7/ N J
for in-plane and extensional vibrations,
’ A 4 -
and [1 ol iU Ty vy U
; 2 [ 733 34 2
| E !
% ¢ v = — § < 2 ...(III.11)
i ‘ﬁ ' pa | *
L0 24 | Y RETERSY Us
. 7 . /

for out-of-plane and torsional vibrations.

It should be noted that the [yl matrix for any
plane curve will be similar to that shown in (III.9), because
the uncoupling of the two sets of displacement variables
depends on the fact that =0 and not on the assumption that
k 1s constant. Therefore, the statement on the coupling
of the longitudinal and in-plane transverse motions, and
~also the coupling of the out~of-plane transverse and tor-
sional motions is true for rods in the form of plane curves
in general.

Spectrum curves for ring segments are also shown
in figures (III.2a, b, ¢, d). The maximum number of turns
for ring segments as shown in figures (III.2a, b, c, d) is

unity.

5. PFreguencies for One Half Ring

Consider the various modes of free vibration of a
half ring segment, supported at both ends such that condi-

tions (III.4b) apply. For one half ring:
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AE TR TS
Let
/ R ~
(v ¢ : .
;Jt e Sin nixég
i
!
%Ul ; Ny Cos nai¢
S = > Sin wt ... (ITI.12)
§U2 up Sin nig
U n_ Sin nac
W 9 . O J

where n is the number of half wave lengths in the ring

segment.

5.a Extensional Vibration

Considering the in-plane vibration part only and

substituting for U_ and U in (III1.10) yields

(l+K2)n2A2 - 92 —nAK(n2A2+l) Ny

—nAK(n2A2 + 1) n4A4+K2-92 Ny 0

et e ot i

[

v e o (IIT.13)
It is assumed that for extensional vibration there
is no curvature change along the axis of the rod. This

can be expressed mathematically as

1 = - =
Ul KUt, or nknl Knt

Substituting for nq in the first equation of

(ITI.12), and noting that i=«x=a/R yields

~
i 2 2 2 2
1+ 35 nz(%) - % 4 35 n® 57 + 1|jn, =0
R R R
2 2 2
2 _ pa 2 _a a 2]
or Q = = w ——-2- 2—-2-+n + 1

e}
Py
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2

The term a2 in the above equation can be neglected since

242 R

2a

5 << l.

R

and o’ = T (n? 4 1) ... (III.14)
oR '

This agrees with the formula given in Flﬁgge's7 Handbook.

5.b Torsional Vibration

Considering only torsional vibration, and sub-

stituting for U, and Ue in (III.1ll) yields

2
4 26 .2 2 2 2 26 . | ) )
)\ + ’E—— )\ K - )\ K(l + "—E-' ) n2 O
2 2¢ 26 .2 2 .2 [~ (
ATk (1 + —E\; ) —E- AT+ T=20Q ne 0
- N ) )

e« (IIT.15)

The second equation of (III.1l5) becomes

3 2 2

2 a 2G 2G _2 a a 2 _
n——§-(l+~—£~:-)n2+{——§ —74‘——2-—29)1']—0

)
o)
by

For torsional mode of wvibration Ny<<n In

6"
addition, the coefficient of no is of order (%)3, while
is of order (%)2. Since (%) is con-

sidered much less than unity, the coefficient of Ny is of

the coefficient of Ny

higher order than the coefficient of Ng - The term

3
2 §§ (1 + 28 )

n B

N

)

can therefore be neglected since it is a product of higher

3 . . .
order terms, {%} and Ny e Based on this consideration,

the equation reduces to

2 ,
2 _ pa 2 _a 2 G 1
@ = w-—"z*(n §+7)

bo
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2

2 E G _ G
and w” = (n° + oTel ) —= = (n° + 1 + v) — ... {III1.16)

DR2 pR

This agrees with the formula given in Fl{.;gge's7 Handbook.

5.¢. In-plane Flexural Vibrations

Considering only in-plane flexural motion, and

rewriting equations (III.10) in full leads to

pa . _ 2 _
5 Ut = (1 + « )D2Ut + K(D3 D)U1
5 5 . (III.17)
pa . _ _ _ 2
2- Uy = «(D-Dy)U, - (D, + «°)U;

Py

Differentiate the first of (III.1l7) and multiply
the result by «x. Also differentiate the second of (III.17)

twice. This leads to

2
pa” =, _ 3 2 _
S5 Ué = (k+x )D3Ut + « (D4 D2)Ul eo.{IXIT.18)
P2 Gitz ¢ (D.-D.)U, - (D.+«°D.)U (III.19)
Bt 37757 Y 6 2’ %1 v .

Subtracting (III.18) from (III.19) yields

pa - _ Tt y= - 3 - 2
- (Ui' KUé)— (KD4+K D2)U£ (D6+K D4)U1

... (II1.20)
It is now assumed that for this type of vibration,

the axial strain at the center line of the rod is zero, or

! =
Ut KUl

Equation (III.20) then reduces to

e 2 e 2 3
Yoo = (=D -~ -
< (Ul K Ul) ( D6 2k D4 K D2)Ul



42

Substituting for U, from (III.12) yields

1
pa’l 2 ., 2.2 2 6.6 . 244 322
e wT (AT T)n, = (A =2k"n A+ n " A")n
E 1 1
2 4 2
pa 2 2 2 a 2
or *— w" (n“+1) = n {(n“-1)
E X
2
2, 2 2
and 0% = D (3 ~1) Ea4 e..(III.21)
n"+1 pR

This agrees with the formulae given by Lovel and Flﬁgge7.

5.d Out-of-Plane Flexural Vibrations

Considering only out-of-plane flexural motion and
assuming that the torsional inertia term can be neglected,
i.e.,

IpUe =0

Equations (III.1l) then become

2
pa’ = _ (26 2 _ 2G
- vu, = |5 <D, D4) U, + K(l+—E-)D2 Uy
.. (ITII1.22)
_ 2G 2G 2
0 = K(l+_f ) D2U2 + ( —-E- D2—K ) Ue

Substituting for U, and Ue as given by (III.12)

into (III.22) yields

4 4 2 2.2 2 2 2 2.2
(n AT+ —%-n ) ) ny + K(l+—%-)n ATy =0 |
eeo (IIT.23)
K(l+2%) n2)\2n2 + (3% n2A2 + Kz) Ng = 0

Eliminating n_ from (III.23) yields

e



b3

.2
n6A6 _ n2)\292 + n2A2K4 _ < E 92 _ 2n4}\4'(2 ha =0
2G 2
or 92 (5% K2+ n2A2 = n2A2(n4A4 + K4 - 2n2A2K2)
2
2,2 2
and w2 = = én 1) Ea4 ee. (ITI.24)
(n“+1+v) pR
where v is Poisson's ratio and is given by 1+v = 52.

(III.24) agrees with the formulae given by Lovel and Fl{igge7

Equations (III.14), (III.16), (III.21) and (IITI.24)
will now be used to check the frequencies obtained in
Table III.1 for the one half ring case.

With n=1, E=30 x 10° psi, G=12 x 10° psi,

p=0.734 x 1073 1b sec2/1n4, R=1.52", d=0.266"
(III.14) yields w® = 22 = 3.56 x 100
pR

and w = 7 3.56 x 102%/2+2 30,000 cps.

(III.16) yields o’ = 2238 = 1,60 x 1017
PR

and o = 7 1.60 x 1019/2+2 20,160 cps.

(ITI.21) and (III.24) yield w=0.

These values for the extensional, torsional and

the two flexural frequencies agree with the values in

Table IITI.1.

6. Configuration in a Straight Rod

Here t=k=0, and (III.5) becomes



1292 0 0 o | ,nlT o]
0 \i-q? 0 0 Ny 0
0 0 viee? o 4n2> " Yof
| o 0 0 2%-207 Ny 0
— L / { /

... (I11.25)

For a straight rod, the [y] matrix becomes a
diagonal matrix and all four forms of motions are un-
coupled. It can be recognized that in this case, the
first and fourth scalar equations of (III.25) represent
the longitudinal and torsional motions for a straight rod
as given in many books on vibrationss. Also the second
and third scalar equations of (III.25) can be recognized
as the Euler-Bernouilli beam equations for the flexural

vibrations of a straight beam,

7. Accuracy of Love's Frequencies

The frequencies obtained from Love's frequency
equation (III.8) can be compared with the flexural fre-
quencies obtained after solving (III.5). Table III.2
shows that for "long" springs and springs of small pitch
angle, the frequencies given by (III.8) and (III.5) are
essentially the same.

Love's frequency equation (III.8) therefore gives
good results, and the assumptions made in its development
afe valid.

For most practical purposes, only the lowest

natural frequencies are of interest. 1In this case, Love's
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equation provides a simple way to determine the natural
frequencies. However, for short springs and springs with

large curvature, equations (III.5) should be used to obtain

the natural frequencies.



TABLE III.Z2

L

Spring Data: d = 0.266": p = 0.734 x 1073 lb-secz/in4
E = 30 x 10° psi: G = 12 x 10° psi.
‘ Love's
Frequencies (III.5) Frequencies (III.8)
No.of =5 ) ) -
o R/a | Turns lelO szlo QlelO QZLxlO
5 15 0.1 9.822 10.56 9.994 10.73
20 5.573 5.984 5.622 6.037
25 3.579 3.843 3.598 3.864
15 15 8.661 10.64 8.772 10.84
20 4,901 6.040 4.934 6.096
25 3.145 3.879 3.158 3.901
30 15 6.375 9.515 6.417 9.648
20 3.597 5.389 3.610 5.427
25 2.305 3.458 2.310 3.473
5 15 0.7 - 0.1028 0.1423 0.1030 0.1426
20 0.0579 0.0801 0.0579 0.0802
25 0.0371 0.0513 0.0371 0.0513
15 15 0.0731 0.1845 0.0731 0.1850
20 0.0411 0.1039 0.0411 0.1040
25 0.0263 0.0665 0.0263 0.0666
30 15 0.0423 0.2375 0.0423 0.2381
20 0.0238 0.1336 0.0238 0.1339
25 0.0152 0.0856 0.0152 0.0857
5 15 5.0 0.0390 0.0436 0.0390 0.0436
20 0.0220 0.0254 0.0220 0.0254
25 0.0141 0.0157 0.0141 0.0157
15 15 0.0377 0.0424 0.0377 0.0424
20 0.0212 0.0239 0.0212 0.0239
25 0.0136 0.0153 0.0136 0.0153
30 15 0.0335 0.0382 0.0335 0.0382
20 0.0189 0.0215 0.0189 0.0215
25 0.0121 0.0138 0.0121 0.0138




CHAPTER IV

GENERAL SOLUTION -FOR HELICAL SPRING PROBLEM

l. Introduction

In the previous chapter, dealing with the in-
vestigation of wave propagation in a Helical Spring, it
was shown that Love's approximations were valid for most
springs. For simplicity,therefore, these approximations
will be used in this development to formulate a general
solution for the helical spring problem subjected to
different boundary conditions in this chapter.

Love's approximations are

(i) Neglect torsional inertia orx Ipﬁ =0

(ii) Assume that the axial strain at the rod
centerline is zero, or Ué = KUl

By neglecting the applied loading terms, equa-

tions (II.18), (II.21), (II.22) and (II.23) can be

written
oIa i'Jt = aN! + k1M; + M} e, (IV.1)
.e 2
= -— -— 4 _M1 !
pla Ul aKNt KTMt 2'rMl + T M2 M2 e (IV.2)
. 2
= 1 | L - - ]
pIa U, kML + My M, 2TM2 e.e.(IV.3)
— [
0 - Mt KMl . LI 3 (IV.4)

b7
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By eliminating the axial force N_ from (IV.1l) and

t
(IV.2) and differentiating the result once with respect

to £ yields

pIa [ai'— Kﬁ{__] = T2Mé"—KTM"—2’L‘M”' ~M'2'"~K2(T M'+Mé')

t 1 1
...(IV.S)
pla Ué = KM,('_"+ Mi"— TZMJ'_ - ZTMé' e (IV.6)
— 1 '
0 - Mt KMl ...(IV.7)

Substituting for M, Ml and M, from equations
(IT.24) to (II.26) into the three equations above, and
using the inexténsibility of the centerline assumption,

Ué = kU; on the resulting three equations yields

2 7. . _
p_%_ [Ui'—KzUl] =[—D6+(6T2-2K2)D4+ (K2T2(6—m)—T4—K4 D +K4T2] Ul

2
+{4‘Z‘D5 + (K21(3-—m)-—41‘3) D3- - (K2T3)DJ U2
+ [m(-z—m)n3 - K3TDjl Ug e.. (IV.8)
pa2 - 3 2 32
! = -— -
--E——UZ—-[4TD4+(4T+KT(1T13))D2+TK}U1
+ ['Ds + (612+m.<2)D3 - T4D] U2
+ [K(l‘l"m)D - T2K‘D] U ' (IV.9)
3 e * e o L]
0 = [KT(2+m)D + TK3 ] U
2 1
2 2
+ [K(l+m)D3 - kT D] U, + [mD3—.< D ] U, ...(IV.10)
where m = 2G/E



Letting U twt

1 Al(i) e

iwt

a
il

5 Az(a) e
iwt
UO

yields upon substitution into (IV.8) to (IV.10) the

Ae(a) e

following systems of equations in matrix form.

’
-

~

-D6+alD4+a2D2+a3 a4D5+a5D3+a6D a7D3+a81) Al(a)
—a4D4-a5D2—a6 -D5+a9D3+aloD allD3+a12D <A2(g)
L._—a./Dz—a8~ . allD3+a12D a13D3+a14DJ Pe(g)
... (IV.11)
where a; = 6T2 - 2K2
a, = « 12(6—m)-14 - K4 + 92
a3 = K412 KZQZ
a, = 41
_ 3
ag = « T(3-m)- 4t
4 = - 2.3
6 = T
a, = kT (=2-m)
a. = - 3
8 = K T
ag = 612 + sz
_ 2 4
alO = Q - T
a;; = k (1+m)
— 2
alz = T K
a = m
13 2 9
a = -—|<2 and 92 — u
14 E

Equations (IV.11l) are a set of coupled ordinary

differential equations with constant coefficients.




Assuming a solution of the form

A, (8) = aet®
— uE
— ué

Ae(a) = ye

and substituting into (IV.1ll) yields
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6 4 2 5 3 3 )
-u +alu +a2u +a3 a4k +a5u +a6u a-u +a8u o 0
4 2 5 3 3 L
Tayp Tagh —ag - taguTragg apguirag,u | (Bp= (00
2 3 3
R ajpu *agou e ELI L 0
.o (IV.12)
Eliminating ¥ from (IV.1l2) yields
8 6 4 2 7 5 3 o
blu +b2u +b3u +b4u +b5 b6u +b7u +b8u 0
¢ P = 4
5 3 6 4 2
—b6u —b7u -b8u bl“ +b9u +blou +bll 8 0
L / .\ J
ceo (IV.13)
where bl = -m
b2 = 6mr2 + K2(1—2m)
b3 = K2T2(lom—2) + K4(2—m) + m(Qz—T4)
b4 = K4T2(4m-2) + K6 + T4K2 - K292(1+m)
42
b5 = ¢ ' Q
b6 = 4mt
b7 = K2T(6m—2) - 4mT2
by = 2(1-m) (®t> - «*r)
by = 2m(3t% - «%) .

MILLS MEMORIAL LIBRARY
McMASTER UNIVERSITY
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blO = K2T2(2m—4) + m(R° ~ k¢ = 1)

Py = -«

For nontrivial values of o and g in (IV.13), it is
reqguired that the determinant of the coefficients of « and
B in (IV.13) be zero.

This leads to the characteristic equation upon

expansion

2 12 10 8 6 4 2
H [mu +Clu +C2u +C3u +C4u +C5u +C6] = 0 ... (IV.14)

There are two zero roots of (IV.14), corresponding
to rigid body motion. These will be neglected from the
characteristic equation, since only vibratory motions are
of interest.

In (IV.14), the coefficients Ci’ (i =1, 2....6)

are defined as

4m(K2 + T2)

c, =

c, =m [6(2K2T2 + et - 292}

cy = am(x® + 3?4 3:4? 4 k%) o+ g2 [K2(1—3m)+l2mT2J

C4 =m [T8+K8+4(T6K2+K6T2+l.5K4T4)]+92 [2K4+T2K2(6m—6)
—2mr4+m92}

cg = 92K2(m+1){ 2022 + A ot 92}

C,. = K4Q4

Neglecting the zero roots the characteristic equa-

tion can be written

mn6+Cln5+C2n4+C3n3+C4n2+C5n+C6 =0 eeo(IV.15)
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where n=u2, in order to reduce the degree of the polynomial.
In general, the twelve roots T (i=1, 2....12) of
the characteristic equation for a given non-zero frequency
may be real, imaginary or complex. Depending on the
nature of the roots the solutions for Al(a), Az(g) and

Ae(g) result in different forms. After getting the roots

Wy (i=1, 2.....12), the solutions can be written in the
form 12
Ujg
12 T3
by(E) = I B.e J ... (IV.16)
j=1
12 Usg
Ag(E) = 1 y.e
j=1

where aj’ Bj and yj, (=1, 2.....12) are related by

equation (IV.17)

o. = 1
j
' 3 5
b .+b .+b .
5y = 8" ] 7“% 6“1 - L L. (2v.aT)
by +b) gu3+hgus+hy s
2 3
y. = ag=apgByuytazug=ayq Byuy
J

a +a 3
14¥5791344

Equations (IV.17) are obtained by arbitrarily
setting aj=l and by solving for Bj and Y5 from (IV.13) and
(IV.12) respectively, for each of the twelve roots ob-

tained.
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2. Nature of the Roots of the Characteristic Equation

A negative root n yields two imaginary roots M and

“j+l’ one being the conjugate of the other. Bj and Bj+l

will be imaginary, and will occur in complex pairs after

substitution of uj and uj+l in (IvV.17). A similar condi-

tion exists for Yj and y Let the imaginary parts of

j+1°

Bj and Yj be Xj and Xj respectively. Then the part of the

general solution (IV.16) contributed by My and “j+l can

be written

Al(E) = Kj Sin sjg + Kj+l Cos. sjg
Ay (E) = Xj(Kj Cos sjg - Kj+l Sin sjg) ... (IV.18)
Ae(E) = Xj(Kj Cos sjg - Kj+l Sin sjg)

where sj is the imaginary part of M.
Similarly, a complex root n yields two complex

roots uj and “j+l’ one being the conjugate of the other.

Bj and 8j+l will be complex, occurring in complex conjugate
pairs. Similarly, yj and Yj+l will be complex conjugate
pairs. Let the real parts of B and Y5 be W, and Wj

respectively. Let the imaginary parts of Bj and Y5 be

Z and Zj respectively. Then the part of the general

solution (IV.16) contributed by the pair of comples roots

“j and uj+l is
r.g

Al(é)‘= e J (KjSin sj;+ Kj+lCos sjg)

r.g
j .
Az(g) e [Kj(ZjCos sjg+szln sjg)+Kj+l(WjCos sjg

~ z,5in sjg)] ... (IV.19)
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&€
_ J -— —— . —
Ae(g) = e [Kj(ZjCos sj£+wj81n sj5)+Kj+l(WjCos Sj£

- Z.Sin s,
j8in s50)]
where rj is the real part of u,

and sj is the imaginary part of u..

For the third possibility, a real and positive root
n yields two read roots “j and “j+l’ one being the negative
of the other. Bj and Bj+l will be real, one being the
negative of the other. Also, Yj and Yj+l will be real.
Let the real parts of Bj and Y3 be Y and Y respectively
in this case. Then the part of the general solution (IV.16)

contributed by the pair of real roots My and M4l can be

written
Al(g) = KjSinh rjg+ Kj+lCoSh rjg
Az(é) = Y(KjCosh rjg + Kj+lsinh rjg) «e. (IV.20)
Ae(g) = Y(KjCosh rjg + Kj+lSinh rjg)

where rj is the real part of “j'

For each Al(g), as given by (IV.18), (IV.1l9) and
(Iv.20), depending on the nature of “j and ”j+l' Love's
approximation A' = KA, can be used to obtain the corres-

1
t
ponding part of the general solution for At(g).

3. Example

Consider a hypothetical case where Mir Hor Hgr My
Y and ug are imaginary, Hor Mgr Ug and Hig are complex,

and Hyps Hqp are real, the relationships between uj and
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My (j=1, 3, 5.....11) as outlined in the previous section.

Then the complete general solutions for At(a), a4 (g),

Az(g) and Ae(g) can be written

A (E) =

It

Al(E)

AZ(E) =

K ' K .
EI (-KlCos xl+K281n Xl)+ E; (—K3Cos x3+K481n x3)

K

+ g; (-KSCos x5+K681n x5)
r75
K e . .
+ — [ K7(r751n x7—s7Cos x7)+K8(r7Cos x7+s781n x7)}
r +s
7 7
r9£
K e . : .
+ —— { Kg(rgsln X9—89COS x9)+KlO(r9Cos x9+5981n xg)}
r9 +59

K . '
+ P {:KllCoél (rllE) + K1281nh (rllg)} e (IV.21)

11
.K181n xl+K2Cos xl+K381n x3+K4Cos x3+K581n x5+KGCos x5
r7€ rgg

+ e (K781n x7+K8Cos x7) + e (KQSin x9+KlOCos x9)

+ KllSinh (rllg) + K12Cosh (rlla) e (IV.22)
Xl(KlCos xl+KZSin xl)+X3(K3Cos X

3+K481n x3)

+ X5(K5Cos x5+K681n x5)
r7g
+ e [ K7(Z7Cos x7+W7Sin x7)+K8(W7Cos x7—Z7Sin x7)}

Yot
+ e 9 [K9(29Cos x9+W98in x9)+KlO(W9Cos x9-Z9Sin xg)}

+ Yll [1K11Cosh (rllg) + Klzsinh (rllg)] oo (IV.23)
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AG(E) = Xl(KlCos X +K,5in xl)+X3(K3Cos x4+K,Sin x3)

+ XS(KSCOS x5+K681n x5)

r.g
7 = — . — -
+ e [ K7(Z7Cos x7+W781n x7)+K8(W7Cos x7—Z751n x7i

r.t
9 — — . _ = .
+ e [K9(29Cos x9+W981n x9)+KlO(W9Cos Xg 2981n xgq

+ Yll [K31Cosh (rllg)+KlZSinh (rlla)} e e (IV.24)
where x, = sig, (i=1, 3, 5..... 11).

Thus, the solutions of the set of differential
equations (IV.1ll) are given by equations (IV.21l) to (IV.24).
The twelve a;bitrary constants Ki’ (i=1, 2.....12) are
determined by imposing the proper boundary conditions at
both ends of the spring. There are six conditions at
each end, and altogether, there are twelve conditions to
be satisfied.

In general, it is not possible to satisfy all
twelve conditions simultaneously unless the frequency of
the oscillations @ is a natural frequency of the system.

If the frequency is one of the natural frequencies, the
ratios among the arbitrary constants Ri can also be
determined. To illustrate the procedure, consider a

spring with its endé supported so that there is no rota-
tion, no axial displacement and transverse motion in the
binormal direction. The boundary conditions can be

expressed mathematically as

(€)= 8/(8) =24,() =85"(€) =27"(€) =2,=0 at £=0 and 2/a

... (IV.25)
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These boundary conditions were considered in chapter

IIT in connection with the harmonic wave propagation study.

Imposing the boundary conditions (IV.25) on equations

(IV.21) to (IV.24) and evaluating at &£=0 and f2/a in turn

yields

| P12,1

. I
“Dyp,12

pu B

~K12i

{0

[

.. (IV.26)

where Dij = Dij(Q), and the Dij elements for this example

are shown in Appendix (A.IV).

In shorthand notation (IV.26) can be written as

(D] {K} = {0}

For nontrivial values of {K},

... (IV.26a)

[D] has to be singu-

lar. Thus a natural frequency of the system under these

specific boundary conditions is determined by requiring

the determinant of [D] to be zero, i.e.,

ID| = 0

oo (IV.27)

If (Iv.27) 1is satisfied( then {K} can be deter-

mined. Substituting the values of {K} into equations
(IV.21) to (IV.24) yields the general solution At(E),

A, (g), b,(E) and Ae(g) respectively.

The mode shape for

that particular frequency is given by the vector function

(8, (€)Y

b, (E)

A, ()
Ly

\Ae(g)/
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The simplest way to obtain a natural frequency of
the system is to assume an initial value of frequency.
From (IV.1l5), the values of “j’ (=1, 2......12) are then
determined. For a given %/a, the [D] matrix can be formed
and the determinant of [D] can be evaluated. 1In general
|ID|] will not be zero. Another value of freguency is then
chosen, and the wholé procedure is repeated. Since |D]
is a continuous function of the frequency parameter @, a
plot of |D| against @ can be made, and the values of o at
which |D| is zero will give a natural frequency of the
system. By varying the values of %/a a spectrum plot can
be obtained. A Fortran Program was written to carry out
the scheme on the IBM 7040 Electronic Digital Computer.

In particular, a check was made on the frequencies cal-~
culated for a spring supported so that the end conditions
satisfy (IV.25).

Table IV.l shows that the two methods compare
favourably in general. Such comparison gives confidence
that the computer program is operational. Each trial
value of frequency takes approximately 5 seconds of machine
time. This includes the forming and solving of the
characteristic equation, the forming of the [D] matrix,
and the evaluation of the determinant of [D]. Most of
this work was done in double precision arithmetic, since
the numbers involved in these calculations were relatively
small, and it was desirable to retain accuracy throughout

the calculations as much as possible.
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TABLE IV.1

Spring Data is same as that given in Table III.1

Frequencies from Frequencies from

No. of Turns Love's equation General Method

N cps Ccps

6.5 62.73 70.17 62.7 70.2

6.25 " 65.19 72.92 71.1 72.9

6.0 67.85 75.90 67.9 75.9

5.75 70.74 79.13 79.1 | 81.9

5.50 73.88 82.65 73.9 82.7

5.25 77.30 86.48 77.3 83.3 86.5

5.0 81.05 90.69 8l.1 90.7

4,75 85.17 95.32 85.2

4.50 89.73 100.43 89.7 100.4

4,25 94.80 106.12 94.7 106.2

4,0 100.45 112.47 100.5 112.5

3.75 106.79 119.60 106.8 119.6

3.5 113.96 127.67 95.8 113.9 127.7

3.25 122,11 136.87 122.1 136.9

3.0 131.44 147.42 131.4 147.4




CHAPTER V

EXPERIMENTAL PROGRAM

l. Introduction

In the previous chapter, it was shown that Love's
theory and the General Theory presented gave essentially
the same result. In order to provide an indication of
the validity of these theories, a series of experiments
were performed to find the natural frequencies of a helical
spring and to compare them with theoretical wvalues. In
the experiment, the spring was held at its ends so that
there was no axial displacement, no transverse in-plane
motion, no transverse out-of-plane motion and no torsional
motion. The ends of the spring were therefore fixed.

These boundary conditions can be expressed mathematically

as
At(E) = Al(ﬁ) = AZ(E) = Ae(E) =.Ai(€) = Aé(E) = 0 at £=0 and %/a
ooo(Vol)
Two steel springs of varying lengths were tested
for these fixed-ended conditions. It was not possible to

determine the specific material properties of each spring,
i.e., E and G from tests. However, from samples, the mass
density of both springs was found to be approximately

3

0.734 x 1073 1b-sec?/in?, which is the density of steel.

60
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Figure V.2 Test Spring in Position.
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The following assumptions for the material properties of
the spring were made
E = 30 x 10° psi : G =12 x 10° psi.

Other measured data for the springs were

d D o Max. No. of Turns
Spring 1 0.266" 3.0" 8.4° 6.5
Spring 2 0.285" 2.9" 7.6° 7.5

2. Experimental Set Up

The general set up of the experiment is shown in
figure V.1l. The ends of the spring were cut, straightened
and levelled so that they would fit into the fixing
blocks (&) figure V.11l. The blocks were placed at the
proper level, so that the entire spring could be slipped
into position without having to exert any forces.on the
spring.

Four strain gauges were mounted near the top of
the spring before placing it into position. The legs of
the steel table, on which the experiment was performed
were bolted to the concrete floor, and vibration pads
separated the floor from thé bottom of the legs. The
frame holding the spring was bolted to the table,
with a vibration pad between the bottom plate and the
table top.

Figure V.1l shows the bottom plate to which small

T-sections were welded, and the top sliding guide to
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which larger T-sections were welded. The two fixing blocks
(A) can be held securely to the web of the T-sections by
screws on both sides of the blocks. With the strain
gauges attached, the ends of the spring can be slipped
into position, and each end can be held by four more screws.
The driver (B) could now be moved into position as shown
in figure V.1l. The driver arm was attached to the spring
at about 1/4 turn from the bottom support, and was held to
the spring by means of a pretensioned rubber band.

Four strain gauges (Budd Metalfilm Type C6-121-B-120
ohms * ,2%) were mouhted on the spring. Gauges 1 and 2
were located at about 1/8 turn from the top support. Gauges
3 and 4 were about 1/4 turn from the support. Gauges 1 and
3 were placed so as to measure the out-of-plane bending
strain changes, and gauges 2 and 4 were placed to measure

the in-plane strain changes.

3. Eguipment

An oscillator, (C) figure V.1l (Mod #4100-Electro),
frequency range 20-20,000 cps,'provided the forcing input
to the driver, which in turn excited the spring. Any one
of the gauge readings could be obtained on the Parker Bell
Dual Beam oscilloscope (D), by switching the leads from the
scope to the proper gauge through the switching box (E).
The actual frequency of vibration of the spring for any

given input could be measured by means of a proximity
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FIG V.3 SCHEMATIC DIAGRAM OF EXPERIMENTAL SET UP
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transducer (F) held close to the point at which the fre-
quency of vibration is desired. This was connected to a
converter (G), and then to a frequency counter (H) where
the frequency Qas read. A schematic diagram of the ex-

perimental set up is shown in figure V.3.

4, Experimental Procedure

With the spring in position, the experiment could
be performed after allowing about 30 minutes for the
equipment to warm up. The testing procedure was as
follows. Starting at the lowest driver frequency, to-
gether with a small amplitude setting on the oscillator,
the forcing frequency was slowly increased, as the voltages
corresponding to the strain measures were read at the
scope for all four gauges. The frequency was slowly in-
creased until resonance was observed.

As a natural frequency was approached in this way,
one or more of the gauges showed an increase in amplitude
on the oscilloscope. At resonance, this amplitude attained
a peak value, and large motions of the spring were observed.

At resonance, the following readings are taken:

(1) oscillator input frequency; (2) spring output frequency
from the electronic counter; (3) driver and all gauge am-
plitudes. The oscillator amplitude and all range dials on
the scope were kept at a constant value throughout the

tests, in order to compare the gauge readings.
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In addition to measuring the frequencies and gauge
readings, an attempt was made to distinguish the mode
shape and type of vibration taking place at resonance.
This was done by several methods:

(a) by sight;

(b) by running a small pointed probe along the
spring to note the out-of-plane motion and the in-plane
motion. As the spring vibrated and touched the small
pointed end of the probe, and idea of the predominant
type of vibration was obtained;

(c) chalk marks were also placed at certain points
along the spring, and the displacement of the chalk par-
ticles was used to indicate the type of vibration taking
place. The probe was useful in pointing out the node
points at higher frequencies. The chalk marks were a bit
more useful than the probe in detecting node points
because the probe could not easily detect tangential motion
of the spring. The chalk marks detected tangential motion
more conveniently because of the blurred effect. At
resonance there was no blurred effect at the node points.

| At or above the second modes of vibration for
bending, it became increasingly difficult to measure and
note the type of motion taking place at resonance.
Because of this;not more than four natural frequencies
were found fb? any length of spring. The procedure was
repeated by decreasing the input frequency and repeating

all measurements.
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5. Comparison of Experimental and Theoretical Results

Following the procedure outlined in chapter IV, a
set of equations, similar to (IV.21) to (IV.24) can be
developed. The exact form of the equations would depend

on the nature of the roots “j’ (3=1, 2.....12). & [D,.]

ij
matrix as in equation (IV.26) can be formed after imposing
the boundary conditions of (V.1l) on the general solutions
obtained. The natural frequencies for this system can be
found by assuming a trial value of frequency and requiring
that |Dij(Q)| be zero. In general ]Dij(Q)l will not be
zero. Another trial value of frequency is assumed and the
entire process is repeated. The value of @ at which
|Dij(Q)| is zero is a natural frequency of the system.

The experimental and theoretical values of natural fre-
qguencies are tabulated in Tables V.1l and V.2. The
greatest difference between the input and output frequency
of vibration was approximately 1%. Only the resonant out-
put frequencies for the first two modes are presented in

Tables V.1l and V.2.

6. Discussion of Results

For the two springs tested, the experimental re-
sults are in general lower than the theoretical resuits.
Also, the percentage error is smaller for long springs
than it is for short springs. The theory predicts the

two lowest frequencies within 11% at most.
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TABLE V.1 SPRING 1

]

Spring data: d 0.266": D = 3.0": a = 8.4°

E = 30 x 10° psi: G = 12 x 10° psi.
No. of No. of Experimental Theoretical Difference
Turns Nodes freq. freqg.

N w Cps w Cps

6.5 0 56.0 63.0 11
0 70.5 70.6 -
1 117.0 127.0 8
1 138.0 139.9 1

5.5 0 73.1 74.0 1
0 80.4 84.5 5
1 139.1 141.8 2
1 149.8 154.5- 4

4.5 0 88.0 90.2 2
0 97.2 103.2 6
1 105.7 108.2 3
1 167.2 169.9 2

3¢5 0 110.3 114.5 4
0 122.4 122.4 -
1 144.5 143.4 -1
1 191.5 205.7 7

2:5 - 155.1 165.7 6
- 200.2 208.5 8
- 241.2 - -
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TABLE V.2 SPRING 2
Spring data: d = 0.285": D = 2,9": o = 7.5°
E = 30 x 10° psi: 6 = 12 x 10° psi.
No. of No. of Experimental Theoretical % Difference
Turns Nodes freq. freqg.
N -w Cps w Cps
7.5 0 55.8 62.4 9
0 67.3 71.5 6
1 117.2 123.0 5
1 122.4 140.5 13
6.5 0 69.6 72.5 4
0 76.0 82.5 7
1 135.9 142.5 5
1 140.0 152.3 8
5.5 0 80.0 86.8 8
0 87.2 95.2 8
1 94.3 100.9 7
1 153.9 166.7 8
4.5 0 105.7 105.0 1
0 111.0 112.6 1
1 178.2 198.1 10
1 192.0 207.0 7
3.5 0 122.5 134.1 9
0 135.1 142.3 5
- 148.7 172.4 14
- 217. 238.5 9
2.5 - 154. 184. 15
- 177. 192, 8
- 193. 246, 22
-~ 262. 292, 10
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The theory assumes that the spring is stress free
prior to testing. This assumption is questionable because
of the induced stresses caused by straightening the ends
of the spring for testing. Induced stresses due to fab-
rication may be also present. The fixing blocks could
also provide an applied moment at the ends of the spring,
thereby creating stresses along the spring. The ends of
the spring were assumed to be fixed so that conditions
(v.1l) apply. There is a possibility that the ends of the
spring at resonance could move at the fixing blocks,
since a perfectly rigid support is difficult to obtain.
This would lower the true frequency of the spring under
these end conditions.

The mode shape of the first frequency observed
for each spring indicated that in~plane vibration was
taking place. Out-of-pane vibration occurred at the
second observed frequency. A combination of in-plane
and out-of-plane motion was also observed at times. The
node points for the higher modes were slightly below the
middle of the spring, and were well defined in the longer
springs tested. The mode shape and type of vibration
were difficult to distinguish as the spring length was
reduced. Tables V.1l and V.2 therefore show no informa-

t ion on the number of nodes for springs with 2.5 turns.



CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

l. Conclusions

The validity of Love's theory was checked with a
more exact theory, and it was shown that Love's theory
is good for long springs, and for springs with small
curvature in general. However, for short springs and
for springs with large curvature, the more exact theory
presented in Chapter III should be used to find the
natural frequencies for the wave propagation problem in
a helical spring.

From a comparison of the experimental and
theoretical results for the helical spring with both ends
clamped, the following conclusions can be made:

(i) The frequencies obtained from theory compars

favourably with those obtained in the experiment, and
the theoretical frequencies are in general slightly
larger than the experimental frequencies. It can be con-
cluded therefore that the theory can be used to find the
natural frequencies for any curved and twisted slender
rod, the axis of which is in the form of a general space

curve.
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(ii) The experimental and theoretical values of
frequency both show an expected increase in frequency as
the length of the spring decreases.

It was shown in Chapter III that Love's fre-
quencies were higher than the frequencies obtained from
the theory presented. The assumptions made for the
ewluation of Love's frequencies are in effect added con-
straints to the system. This would result in frequencies
greater than the true frequencies. Similarly, the theory
. presented in Chapter III did not take into account shear
deformation due to bending. A revised theory taking
shear deformation into account would be more correct, and
the frequencies obtained from this theory would be lower
than those shown in Table III.2. As shown in Chapter V,
it is not surprising that the experimental frequencies
are lower than the theoretical frequencies.

The theory presented can be described as a
"Géneralised Euler-Bernouilli Beam Theory" for a curved
and twisted rod. It was shown in Chapter III that the
theory could be reduced to obtain the known natural

frequencies for simpler systems, such as rings and straight

beams.

2. Recommendations

Quite a lot of work remains to be done on this
subject, both analytically and experimentally. The

following recommendations are suggested.
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(i) The differential equations and the proper
boundary conditions should be checked by using the varia-
tional method and Hamilton's Principle. This method
should give explicitly the natural boundary conditions of
the ends of the spring. The differential équations should
check with those obtained in Chapter IV. Once these
boundary conditions are obtained, analytical results could
be obtained for any given end conditions.

(ii) The material properties of the spring should
be obtained by experiment or by a curve fitting trial and
error procedure.

(iii) More springs should be tested in order to
obtain a more general picture of how closely the experi-
mental results agree with the theoretical.

(iv) Although most of the frequency values in
Table IV.1l, obtained by the General Solution method agree
with those obtained from Love's frequency equation, there
is some discrepancy. It was only intended to check Love's
- frequencies, and therefore the initial trial value of
frequency was slightly lower than Love's frequency.
However, it is noted that for thev3.5 turn spring, the
General Solution method predicts a frequency of 95.8 cps.,
which is an incorrect value. Because the elements of: the
[Dij] matrix are very small numerically, there is a
possibility that rounding errors in the computer operation
could result in this incorrect value. Ki’ (i=1, 2.....12)

could be found for each frequency that makes [Dij| equal
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to zero, and hence the mode shape could be obtained. It
may be possible to exclude any erroneous frequencies by
actually evaluating the mode shape.

(v) A similar study should be done without making
Love's approximations for obtaining the natural frequencies

of short springs and those with large curvature.
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APPENDIX

I. Properties of Helical Spring

z

27Tp
<:::: Fig. A.l - Helical Spring
F
o 7 7 Y
A
x

r = R Cos ¢ex + R Sin ¢ey + p¢ez

2 o a= 2 dr d¥ _ 2 2 2
and ds® = d¥.dr = d¢ as " dp (R™+ p7) d¢
.. ds = /R2+ p2 d¢ and JA /R2+ p2 (¢l-¢0) e (AVILY)
s =0 _ G0 dF _ (i oo R
€ =35 T Ts a5 ( a Sin ¢ex + a Cos ¢ey + pez) /% + p

.. (A.I.2)
ézdzf a’s and dzf_d (df) _d (d¢ df)
g — , —— = o | 2| = 2 =P =
1 d52 d52 d52 s \ds S s d¢
-4 4 (es)ar, (asy’a oz jan? &’ since
ds d¢ \dsl d¢ ds 6 do (ds d¢2
d_ (.d_?.) =
¢ s 0

cf. 8 = - (Cos ¢éx + Sin ¢§&) ces (ALIL3)

Al



I
I
i
"
0]

. — —_ — 2 2
5 c ] = (p81n¢ex - pCos¢ey + Rez)///ﬁ + p

e (A.I.4)
_ d2f d2f dzf R
KO = -——2- = ——2- . ——2- = 2 ...(A.I.S)
ds ds ds R™+p
1 df¥ d2f d3f
o T 2 ds 2 X3
K ds ds
o
3. 3/2
é—% = =-R(-8in ¢&_ + Cos ¢&_) //(R2+p2)
Y
ds
2 3 5/2
and d ¥ X d g = Rzéz //(R2+p2)
ds ds
2 2
Hence t_ = p/ (R°+p™) ...(A.I.6)
Darboux Vector D = v &, + «_ €., = € /(R2+ 2) (A.I.7)
ot o 2 z P et

The vertical projection of the spring in the x-y
plane is a circle of radius R. A unit vector along the
circumference of this circle is

€ =-8in ¢§X + Cos ¢€

The pitch angle o is defined by

Cos o = & é=R/VR2+p2

£

1

.". a = Tan ~ (Pitch/nD) ...(A.I.8)



Radius of gyration for circular section a = d/4

_ 2, 2, _ 2 _ _d_ 2
Now Ky = R/(R“+p~) = Cos” a/R and «k = ak, = 53 Cos™a
... (ALTL9)
also Ty = Ko Tan o and 1 = at, = « Tan o ee.(A.I.10)

The Frenet-Serret Formulae as given in many books on

Elasticity are

Ct o _ s
ds T "ol
de,
a—s—— = —Ko—e-t + TO—Z ...(A.I.ll)
2 s
ds - TR
II. Half Turn of Spring
For half turn, = 1% = 12
/D 2 D 2
b (7) + {5 Tan a)
d K
= 7p Cos «a Cosa
T = k¥ Tan o
4
e C3 in (III.8) = )\4()\2—K2—T2) = }\4(K28e02a—K2—K2Tan2a) =0

And (III.8) will yield a zero frequency as long as

¢=m in Fig.(A.l), or number of turns = 1/2.

IITI. Half Turn of Ring

For 1=0, A= — = —= =

Then C, of (III.8) = 0 by inspection, and the fre-



quency equation then yields two zero frequencies.

IV. Elements of Dij - Eg. (IV.26)
The Dij elements of (IV.26) are
= - K
Dk,j = Sj Cos sjg Dk,j+l
Dk+l,j = stos sjE Dk+l,j+l
Pria,; = %408 syt Pkt+2,4+1 =
Pyt3,3 = *4C0s s4¢ Px+3,5+1
D =-s 2X Cos s.¢ D
k+4,5 5 45708 84 k+4,5+1
Dk+5,j —sj Cos sjg Dk+5,j+l‘=
r.g .
D =E§_2___ (r.Sin s.g-s.Cos s.¢)
kK,J 2,02 73 it 73 J
J J
rjg
D L= .51 .E+s.Co .
k+1,4° € (rJ in sjg §,Cos sjg)
rjg
Dk+2,j= e (Zj81n sjg+WjCos S.E)
rjg
D = e 7Z.Cos s.E+W.Sin s.
k+3,3 (J 55705 JE)
rjg
Dk+4,j= e (C181n sj£+C2Cos‘sj£)
rjg
Dk+5,j= e (C3Sln sS.&)

sjg+C4Cos

given by

K

=g Sin s.&

J

= -5. Sin s.
j S1m s4f

~X.81in s.¢
J J

= =X.S8in s.
J ]g

2 .
=s., X.Sin s.
R

J

s.3Sin S.&
J J

A4

i=1,3,5



J
K e .
D, . (r.Cos s.&+ s.Sin s.&)
K,j+l rj2+S 2 J 3 3 j
rjg .
Dk+l,j+l = e (eros sjg— sj81n sjg)
Dk+2,j+l = e (WjCos sjg- Zj81n sjg)
rjg_ _ .
Dk+3,j+l = e '(WjCos sjg— Zj51n sjg)
rjg .
Dk+4,j+l = e (ClCos sjg— C281n sjg)
rj£
Dk+5,j+l = e (C3Cos sjg— C4Sln sjg)
where C, = W.(r.z-s.2 - 2r.s
1 373 . J
2 2 :
C, = 2.(r. -s. + 2r.s
2 J(J J)
_ 2
C3v— rj(rj ~-3s.7)
2 :
C, = s.(3r."~-s
4 J( J )
= XK.
Dk,j = rj Cosh r.¢g Dk,j+l
Dk+l,j = rj Cosh rjg Dk+l,j+l =
Dk+2,j = Yj Cosh rjE Dk+2,j+l =
Dk+3,j = Yj Cosh rj£~ Dk+3,j+l =
‘ 2
Dk+4,j = rj Yj Cosh rjg Dk+4,j+l =
- . 3 _
Dk+5,j = rj Cosh rjg Dk+5,j+l =
Wwithk =1 and ¢£=0 the first six rows of D.
filled. With k=7 and g=%/a, the last six rows of the Dy
matrix are filled.

= £ sinh r.&
r. ]

J
r.Sinh r.¢
J J
Y.Sinh r.¢
J J
Y.Sinh r.¢
J J
2 ,
r. Y.Sinh r
J 3

r.3Sinh r.&
J J

i,j

jE

are

’

11
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V. Derivation of Generalised Force-Displacement

Relationships
9
M
N

Q -— 5 d?
g )

U

Figure A.2

In fig.(A.2), let 8, U, M and Q be vectors re-
presenting the resultant rotation, displacement, internal
moment and internal force respectively at a cross section

s, so that

cil
i
c
0l
=
+
et

=i
l
=
0]
+
=
Ot
+
=
of

0 =08 + 0,8 +NZ&

Consider the deformation of element ds. The

rotation of the cross-section (s+ds) relative to that

of the section s is %%) ds.

. . By definition of flexural and torsional

rigidities:
M M M
38 M _ 2 _
('SE) ds = Bt et ds + -é—]-:el ds + -B'—?:- e2 ds ...(A.II.l)
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Also, the displacement of section (s+ds) relative to that

of section s is

e.ds

c.. (A.II.2)
where Bt, Bl and 62 are the torsional and two flexural
rigidities of rod,

oq and 9, are the extensional and two shear

rigidities of the rod.
Cancel ds from (A.II.l) and perform the differ-

entiation to yield

[+5

D
(o34
[as]

9 -
55 St £Xc%1 T 35 9181 T ©

[
(o}
[y
1

A
(o}

]
rf.

+
Qo
n

ol
[\)

|

D
N

~
O

)
=

M M M
... (A.II.3)

Collecting terms from (A.II.3) and (A.II.4) and

normalising the equations yields

— v .

aMt = Bt [et Kel] ee.(AvITI.5a)
— LI

aMl = 31 [et.<+el ezr] ... (A.II.5h)

aM2 = 82 [elr+eé] | ... (A.IT.5cC)

Nt = 0, [Ué - KUl] «..(A.II.54)
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Q
1 - Vo
'O—l- -+ 62 = UtK + Ul UZT ...(A.II.Se)
Q,
- - = 1
75 el UlT + U2 ce. (A.II.5F)

If shear deformation is neglected, then G{=0,>®.
Using the last two equations, substitute for 61

and 6, in the first three equations to yield

aMm, = GIp [eé + ktU; + KUé]

aM; = EI [ke,_ = txU_ = t'U; =270  + T2U2—U5]

aM, = EI [KU% + K'Ut + Ui - T2Ul - ZTUé - T'Uz]
and N, = EA [Ué - KUl]

which are the free-displacement relationships.

VI. Flow Charts and Computer Program

The flow charts shown in figures A.3 and A.4 show
a brief outline of the computer programs used for the
analytical results. ©No attempt has been made to show
the details involved in the programs. However, figure A.3
shows a great deal of the Wave Propagation Program, as
this was relatively simple.

Figure A.5 is the actual program used for the
General Solution method. The appropriate boundary condi-

tions must be chosen for the system under study.
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FLOW CHART-WAVE PROPAGATION PROBLEM

READ DATA-E,G,d,D0,p, PITCH

v

CALC. K. T.A. X

FORM [B] MATRIX (111.5)

A

USE JACOBI'S ROTATION FOR Q7

E

WRITE FREQUENCIES & EIGENVECTORS

\

CALC. COEFFICIENTS OF LOVE'S FREQ.EQ.

CALC. LOVE'S FREQUENCIES

g
WRITE LOVE'S FREQUENCIES

STOP

FIG A.3 WAVE PROPAGATION FLOW CHART
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FLOW CHART FOR GENERAL PROBLEM

READ DATA-E Gd D F;ITCH MAX.S2 , A
ASSUNME FF?EQ. 0

CALC. ELEMEN*TS OF (iv.2)
FORM CHAR. EQ. (1V.3)

y
CALC. ROOTS OF CHAR. BY BAIRSTOWS METH.

)

CALCA‘,%{ of (IV.6) X X.Z,,Z;, etc.

1
FORM GEN. SOLN. AS IN (1v.2]) -(Iv.24)

3
INTRODUCE BOUNDARY CONDITIONS
FORM [D] MATRIX OF (IV.26)
1
FIND IDI
.
WRITE IDI , SPRING LENGTH etc

=~ STOP

* 0=0+A8

FIG A.4 GENERAL SOLUTION FLOW CHART




Figure A.5 All

$J0OB 003321 K PILGRIM 160 010 030
$IBJOB NODECK
$IBFTC MAINDK
DOUBLE PRECISION KsK2sKa4sKEsTsT29Ta4sT6HsALICI9C29C39sEBSFRQ2sVALDET s
1F19F29F3oF49FSeFAsVeYYYsDETIDETERsWePesZZ s TTeXeXX AL
DIMENSION EB(7)sA(12)sB(12)sACI13)sYY(12)sY(12)sREAYY(12)sAIMYY(1?2
1)sDETER(12s12)9DET(12,12)
COMPLEX YsAsBoYY
LOGICAL PIMAGsCOMLXsPREAL
COMMON Y osPLNGsCONVGsOVFLOWSUNFLOWSEPSsPINFINSK

EsG = YOUNG'S AND SHEAR MODULUS

RHO .= DENSITY TWOPI=2.%PI

RODIAM=ROD DIAMETER

DIAM= SPRING DIAM( OUT TO OUT OF COIL)
PTCH=PITCH ( OUT TO OUT OF COIL)

AN OO0

READ(5992)1EsGsRHOsTWOPI sRODIAMsDIAMIPTCH

92 FORMAT(3E10e0sF10e093F540)
TL IS THE ITERATION TOLERANCE FOR DETERMINING THE
RESONANCE FREQUENCYe IF THE FREQUENCY INTERVAL IN WHICH
WE ARE WORKING IS LESS THAN OR EQUAL TO TL»s WE SAY WE HAVE
FOUND THE RESONANCE FREQUENCY.
READ(591)YUNFLOWsOVFLOWSEPSSsPINFINSTL

1 FORMAT(4E6409F1040)

AN NN

IROOTSsIDIAGSIDETSIDIAEL ARE CONTROL NUMBERS.

IF THEY ARE NEGATIVE OR POSITIVEs CERTAIN INFORMATION IS WRITTEN
IeEe THE ROOTSs THE TRIANGULISED MATRIXs THE 12%12 DETERMINANT ETCe
IF ZEROs THESE BITS OF INFORMATICN ARE NOT WRITTEN IN OQUTPUT.
NOCARD= NOes OF DATA CARDS TO BE READ -~SEE FORMAT 14.

aYaN o N NANANA]

READ(5993) IROOTSsIDIAGsIDETSsIDIAELsNOCARD
93 FORMAT(51I2)

RGYR=RODIAM/ 4

CONST=TWOPI**2*RHO*¥RGYR**2/E

CONS=3604/TWOPI

COILD=DIAM-RODIAM

PITCH=PTCH-RODIAM

PIT=PITCH/TWOPI

ANGLE=ATAN(20%PIT/COILD)

ANG=ANGLE*CONS

K=COS (ANGLE) *%*2%¥RODIAM/ (2.C*¥COILD)

T=K*TANCANGLE)

K2=K#%2

K4=K2¥#%2

T2=TH%2

T4=T2%%2

T6=T2*T4

K6=K2#K4

AL=2e*G/E

Cl=6e*AL*¥ (2 #K2*¥T2+K4+T4)

C2=b o ¥AL# (THE+3 ¢ ¥K4¥T2+3 e # T4 ¥K2+K6)

C3=AL®(T2#TE+K2*KE+4 o ¥ (TOHHK2+KEHT2+1 45%#T4#K4L) )

C AC(I)= THE COEFFICIENTS IN EQUATIONS IVel12 AND IVel3



AN NN

AOOY OO

[aNaNe!

14

59

58

64

110

130

ACLl)Y=—4¢*AL*T

ACI2) =4 o AL T2HTHK2¥TH (2 4—-6*AL)
AC{3)=24#(1e—ALY#KZ2*T*{K2-T2)
AC(4)Y==AL

AC(5) =2 ¢ *AL ¥ (3 e#T2=K2)
AC(8)=K#T*(2 e+AL)

AC(9)=T*xK2*K

AC(10)Yy=K*{1le+AL)

AC{11)==K*T2

AC(12)=AL

AC(13)=-K2

Fl=4e#*AL%X(K24T2)
F2=K2%(le=3e¥AL)+12e*¥AL*T2

F3z2 o ¥K4+ (6 eHAL—6 o ) ¥T2%K2 =2 *¥AL*T4
Fu=2e®T2%K2+K4+T4

Fo=K2*(AL+1s)
FOE=K2%¥T2%2e# (AL—26¢ ) —AL*(K4+T4)
DO 15 MIT=1e+NOCARD

OMEGA=FIRST TRIAL FREQUENCYs OMEGL THE MAXes OMEGI THE INCREMENT.
TURNS= NUMBER OF TURNS IN SPRINGe
READ(5914)0OMFGAsOMEGL sOMEGI s TURNS

FORMAT(4F5e0)

SNO=TURNS#TWOPI

WRITE(6959)

FORMAT (1H1/14H ANGLE 10X s5HPITCHs6Xs13HROD DLIAMETERS2Xs13
1HCOIL DIAMETER s 4Xs9HCURVATURE » 7X9s 7THTORSTION s 7Xs12HNORM  LENGTH)

WRITE(6+58)

FORMAT (13H DEGs12X93HINe912Xs3HINe 912X 93HINS)
SLNGTH=SQRT{{COILD/ 24} ¥%2+PIT*%2}%#SNO
PLNG=SLNGTH/RGYR

RPLNG=RGYR/SLNGTH

WRITE(6964)ANGePITCHIRODIAMSCOILD sKoT9PLNGsRPLNG
FORMAT (1HUs7F15e59E1545)

Al2

FROM{110) TO (115) WE TAKE A FREQUENCY AND FIND VALUE OF
DETERMINANT De WE NOTE THIS VALUESs INCREASE FREQUENCY BY

OMEGI AND FIND A NEW VALUE AGAINe

OMI=0OMEGI
ICOUNT =0
ILW=U
NM=0
D1=0Ce
OM=0C,

CALCULATE SQUARE OF NORMALISED FREQUENCY

FRQ2=0OMEGA*¥OMEGA*CONST
EB(1)=AL
EB(2)=F1

EB(3)=C1=2«*AL*¥FRQ2
EB(4)=C2+FRQ2%F2
EB(5)=C3+FRQ2* (F3+AL*FRQ2)
EB(6)=F5%FRQ2* (F4~-FRQ2)



AN NON

aNaNaNaNal

aNaNaNaYaRANA!]

117

119

122

21

450

73

T4

71

70

70C

Al3

EB(7)=K4*¥FRQ2%%2
AC(6)=F6+AL%*¥FRQ2
ACIT)==-K2*FRQ2

CALL ROOTS2 TO GET ROOTS OF CHARACTERISTIC FQUATION.
IF IROOTS IS + OR - THE ROOTS ARE WRITTEN--- IF ZEROs NOTHING
IS WRITTEN.

CALL ROOTS2(EBsYsIROOTS)
DO 117 I=191192
YY(I)=Y(])#*2

DO 119 I=1s11s2
ACT)Y== (YD) ®{AC(R3)+YY ()2 (ACI2Y+YY (I %AC(1)Y)))/ZLACETI+YY (I )% (AC(g)

1+YY(I)#(AC(B5)+YY(I)*AC(4))))

DO 122 I=191192
BII)=(AC{o)+Y (I )*(A(D)*¥AC(11)+Y (D) *¥(AC(8)+Y (1) *(A(T)*AC(10)))))/(~

IY(I)*(AC(13)+YY(I)*AC(12)))

DO 21 J=1s1ls2
REAYY(J)=REAL(Y(J)})
AIMYY (J)=AIMAG(Y (J))

TESTS TO SEE WHETHER ROOT IS PURE IMAGINARYs COMPLEX OR REALe
AFTER THIS DECISION IS MADEs TWO COLUMNS OF THE 12%12 MATRIX
ARE OBTAINED FROM THE SURROUTINES PIMAGI+CMLXIsOR PREALI

DO 700 JU=1s11s2
PIMAG=REAYY(J)QEQQOOU.ANDOAIMYY(J)QNE-OOO
IF{PIMAG)YGO TO 73

COMLX=REAYY(J) «aNEeQOeCleANDeAIMYY(J)aNEeQeO
IF(COMLX) GO TO 74
PREAL=REAYY(J)eNEeOeUeAND«AIMYY(J)eEQeQeO
IF(PREAL)GO TO 71

X=AIMAG(A(J))

XX=AIMAG(B(J))

CALL PIMAGI(XsXX9sJsDET)

GO TO 70

W=REAL(AC(U))

P=REAL(B(J))

ZZ=AIMAG(A(J))

TT=AIMAG(B(J))

CALL CMLXI(WsPsZZ9TTeJsDET)

GO 10 70

V=REAL(A{J))

YYY=REAL(B(J))

CALL PREALI(VsYYYsJsDET)

JJd=J+1

DO 70U L=JsJJ

DO 700 [=1s12

DETER(IsL)=DET(IsL)

WE HAVE FORMED THE 12%12 DETERMINANTe IF WE WANT TO WRITE
IT OUT THEN IDET MUST BE + OR =eIF WE DON'T WANT IT
IDET MUST BE ZEROe
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IF(IDET)Y540953049540C
WRITE(691214) ((DETER(I9J)sJ=1912)91=1s12)
FORMAT(1Xs12E10C63)

WE THEN CALL DETTRIs TAKING INTO THAT SUBROUTINE THE 12%12
DETERMINANTs IDIAGs AND IDIAEL IN ORDER TO GET THE DETERMINANT
OF THE 12%12 MATRIX.

CALL DETTRI(DETERsVALDETsFACTORsNNsIDIAGIDIAEL)
WRITE(69193)OMEGASFRQ2sVALDETsFACTORSNN

FORMAT(1HO 91 OHFREQUENCY=9F74231X93HCPS95X920HNORMe FREQe SQUARED=)
1E18e895Xs 12HDETERMINANT =9 1PE2Cea835X s THFACTOR=91PE11e291Xs2H¥*%512)
IF({OMEGA-OM) e LEsTL) GO TO 260

ICOUNT=ICOUNT+1

IF(OMEGA+GT«OMEGL) GO TO 15

IF(ICOUNT«GTel) GO TO 230

D1=VALDET

OM=0OMEGA

IF(ILWeGEel) OMI=045%0MI

OMEGA=0OMEGA+0OMI

GO TO 130

IF(D1*VALDET) 24092604210

WRITE(6+194)

FORMAT € 1HO #+19HRESONANCE FREQUENCY)

IF(NMeLEel) OMEGAS=0OMEGA

OMEGA=0OMEGAS

GO TO 110

NM=NM+1

ILW=TLW+1

IF(NMeEQel) OMEGAS=OMEGA

OMI=0e¢5%0OMI

OMEGA=0OM+0OMI

GO 70 130

CONTINUE

CALL EXIT

END

$IBFTC ROOTS2

aNaNa!

11

29

17

SUBROUTINE ROQOTS2(C09SSsIR0OOTS)

COMPLEX XsY9sTEMPsP+S5S

DIMENSION COUT)oS(6)sX(6)9R(E)IRI(E)sY(12)sP(12)sAIMP(12),
IREALP(12)9ST (&) sREAPP(12)sAIMPP{12)955(12)

DOUBLE PRECISION COsS»SI

LOGICAL SHUFF1sSHUFF29SHUFF39sPIMAGsCOMPsPREAL

USE BAIRSTOW'S METHOD TO FIND ROOTS OF CHAR EQUATION

CALL DBAIRS(CO9SsSIs6)
DO 11 I=196

R{IN=S(1I)

RI(CI)=8I(I)

DO 29 I=1s6
X(I)=CMPLX(R(I)sRI(I))
DO 17 I=1s6
Y(2#]~-1)=CSQRT(X(I))
Y(2%])==Y(2%]~1)

DO 52 I=1,12

PLIY=Y(I)
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REALP(I)=REAL(P(I))
AIMP({I)=AIMAG(P(]})

THE COMPLEX ROOTS WILL OCCUR IN GROUPS OF 4,
THIS READJUSTS THEM IN 2 GROUPS OF 2s EACH GROUP 2 BEING
A COMPLEX PAIR-- Ie+Ee THEY ARE CONJUGATES.

DO 15 I=19994

SHUFF3=ABS{REALP(1))eNEeDeQOeAND«ABS(AIMP(I))eNEeQeO

IF(SHUFF3)GO TO 16

GO 70 15

TEMP=P(I+1)

P(I+1)=P(I+2)

P(I+2)=P(1I+3)

P(I+3)=TEMP

CONTINUE

DO 13 I=1911s2

SHUFF2=ABS({REALP(1))eEQe0e0

IF(SHUFF2)GO TO 9

SHUFF1=ABS(AIMP(1))eEQeCaO

IF(SHUFF11GO TO 7

GO TO 13

P(I)=CMPLX(REALP({I)+04)

P(I+1)=CMPLX(-RFALP(I)s0,)

GO TO 13

P(I)=CMPLX(QesAIMPI(I))

PUI+1)=CONJG(P(IM)

CONTINUE

IF(IROOTS) 30931+30

WRITE(6951)

FORMAT(10Xs17HSQe RCOT OF ROCTS9»23Xs14HSHUFFLED RCOTSs23Xs13HORDER
1ED ROOTS)

DO 14 I=191192
REAPP(I)=REAL(PI(I))
AIMPP(I)=AIMAG(PI(I)
K=0

DO 1 I=1911s2
PIMAG=REAPP({]) eEQe0eU s ANDAIMPP(I)sNEe06O
IF(PIMAG)Y GO T0O 3

GO T0O 1

K=K+1

SS(K)=P(1I)

K=K+1

SS(K)Y=P(I+1)

CONTINUE

DO 4 I=1s1192

COMP=REAPP (1) eNEeCeOaANDeAIMPP (1) eNEeQeO
IF{COMP) GO TO 5

GO TO 4

K=K+1

SS(KY=P(I)

K=K+1

SS(K)Y=P{I+1)

CONTINUE

IF(KeEQel2) GO TO 66

DO 6 I=1911s2

)
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PREAL=REAPP (1) eNEeCoUeANDeAIMPP(I)4eEQeD60
IF(PREAL)Y GO TO 8
WRITE(6+101C)K
1010 FORMAT(30XsI73)

STOP

8 K=K+1
SS(K)Y=P(1)
K=K+1
SS(K)=P({I1+1)

6 CONTINUE

66 CONTINUE
IF(IROOTS) 32933932

32 WRITE(6353)(Y(I)sP(1)sSS5(I)eI=1912)

53 FORMAT(1X92HRESE17e892X92HIMIE17e893X92HREIE1T7e892X92HIMsE1T7e893X
12HRE9E17e892X92HIMsE1768)

33 CONTINUE
RETURN
END

$IBFTC DETTRI

SUBROUTINE DETTRI(AsVALDETeFACTsLsIDIAGsIDIAEL)
COMMON YsPLNGsCONVGIOVFLOWSUNFLOWSEPSsPINFINsCUV
DOUBLE PRECISION AsBIGAsT1sT2sDIVsVALDET»CUV
COMPLEX Y

THIS SUBROUTINE FINDS THE VALUE OF THE DETERMINANT

BY TRIANGULATION. ONCE THE DETERMINANT IS TRIANGULISEDS
THEN THE VALUE OF THE DETERMINANT IS THE PRODUCT

OF THE DIAGONAL ELEMENTS.

IN THIS SUBROUTINE EPS IS A VERY SMALL NUMBER

PINFIN IS A VERY LARGE NUMBER

OVFLOW IS A LARGE NUMBER

IF THE VALUE OF THE DETERMINANT EXCEEDS THIS NUMBER

WE REDUCE ITe SIMILARLY UNFLOW IS A SMALL NUMBER- IF THE
VALUE OF THE DETERMINANT IS SMALLER THAN THIS NUMBER

WE BOOST ITe

NN NANA RO AR NARA RS NA NS

DIMENSION Y(12)9sA(12912)
55 DO 99 J=1,11
JONE=JU+1
BIGA=DABS(A(Js J))
SIG=1e.
K=J
DO 100 UMAG=JONEs12
IF(DABS(A(UMAGsJ))=-BIGA) 1001005101
101 BIGA=DABS(A{JUMAGsJ))
K=JMAG
SIG==~1,
100 CONTINUE
DO 102 N=Jsl2
T1=A{(KsN)
T2=A(JsN)
AlJsN)=T1*#SIG
102 A(KsN)=T2
DO 104 N=JONEs12
DIV=A(NsJ)



Al7T
DO 1u4 MULT=Jesl2
104 AC(NSMULTYI=AINSMULT)I-A(JsMULT)I/A(I 9 J)I*DIV
99 CONTINUE
IF(IDIAGY 291192
2 WRITE(691213)Y({A{TIsJ)eJ=1912)91=1s12)
1213 FORMAT{1X912E1043)
11 IF(IDIAEL) 20921520
20 WRITE(6910U6)
106 FORMAT(1Xs58HPRODUCT OF THESE DIAGONAL ELEMENTS = DETERMINANT OF M
1ATRIX)
WRITE(69107) (A{TIsI)sI=1912)
107 FORMAT (1Xs6E178)
21 DO 3 I=1s12
3 IF(A(IsI)eEQeOe) GO TO 5
GO T0 7
WRITE(694)
4 FORMAT(1HO»34HAT LEAST ONE TERM ON DIAGONAL = Q.)
FACT=1a
VALDET=U,
L=0
GO TO 109
7 NBIG=0
NSMALL=0
VALDET=1,
DO 105 I=1912
VALDET=VALDET*A(Is1)
IF{DABS{VALDET )} «eLT4UNFLOW) GO TO 108
IF(DABS(VALDET) GT.OVFLOW) GO TO 110
GO TO 105
108 FACT=PINFIN
NBIG=NRIG+1
GO TO 107C
110 FACT=EPS
NSMALL=NSMALL+1
1070 VALDET=VALDET*FACT
IF(DABS(VALDET)«LT.UNFLOW) GO TO 108
IF(DABS(VALDET) ¢GT4OVFLOW) GO TO 110
105 CONTINUE
IF(NBIG-NSMALL) 14513415
14 L=NSMALL~NBIG
FACT=PINFIN
GO TO 109
15 L=NBIG-NSMALL
FACT=EPS
GO TO 109
13 L=0
FACT=1,
109 CONTINUE
RETURN
END

wun
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THIS PACKAGE OF SUBROUTINES PIMAGIsCMLXIsAND PREALT IS FOR
BOUNDARY CONDITIONS AS STATED IN EQUATICN{(IVe25),

THE SUBROUTINES EVALUATE THE ELEMENTS OF TwO COLUMNS IN THE
D MATRIX FOR ANY CNE ROCT,

"N ON

$IBFTC PIMAGI
SUBROUTINE PIMAGI(XeXXsJsDET)
COMPLEX Y
DOUBLE PRECISION CUVeXeXXoDET 959529539 C 9572 9C0OSSZ9SINSZeZ9C
DIMENSION DET(12s12})sY(12)
COMMON Y sPLNGsCONVGsOVFLOWSsUNFLOWSEPSesPINFINSCUV
S=AIMAG(Y(J))
52=5%5
53=5%#52
C=CUV/S
C1=52#%X
Z=Oo
DO 30 K=1s7s6
SZ=5%Z
C0SSZ=DCOS(52)
SINSZ=DSINI(SZ)
DET(KsJ)=-C*COSSZ
DET(KeJ+1)=C*¥SINSZ
DET(K+19J)=5%C0OSS5Z
DET(K+1eJ+1)=~5%¥SINSZ
DET{(K+29J)=X%C0OSSZ
DET(K+29J+1)=~X3#SINSZ
DET(K+39J)=XX*¥C0SSZ
DET(K+39J+1)==XX*#SINSZ
DET(K+49J)==C1*C0OSSZ
DET(K+44J+1)=C1l*SINSZ
DET{K+5+J)=-53#C0SSZ
DET(K+59J+1)=53%5INSZ

30 Z=PLNG

RETURN
END

SIBFTC CMLXI
SUBROQUTINE CMLXI(WsPoeZZosTsJsDET)
COMPLEX Y
DOUBLE PRECISION CUVsWePsZZsTosDETIR9SIR29523R39539Ce9529 7
1SINSZE s COSSZESEXX9C19C29C3sC4h
DIMENSION DET(12+12)sY(12)
COMMON Y osPLNGsCONVGsOVFLOWSUNFLOWIEPSsPINFINsCUV
R=REAL({Y(JU))
S=AIMAG(Y(J))
R2=R*R
R3=R2#R
$52=5%S
53=52#%#S
C=CUV/(R2+52)
Cl={R2-S2)¥W=2 ¢ ¥R*#SHZZ
C2=(R2-S2V#ZZ+2 ¢ ¥R¥*S*W
C3=R#{R2-34%52)
C4=5%(34%R2=52)
Z=Oo
DO 30 K=1sT96



SZ=5*%7 Al19
EXX=DEXP(R*Z)
COSSZE=DCOS({SZ)*EXX
SINSZE=DSIN(SZ)*EXX
DET(KeJ)=CH(R¥SINSZE-S*COSSZE)
DET(KoJ+1)=C*(R#COSSZE+S*#SINSZE)
DET(K+19J)=R¥SINSZE+S*¥COSSZE
DET{K+19J+1)=R#COSSZE~S*SINSZE
DET(K+29J)=2Z%COSSZE+W*SINSZE
DET(K+29J+1)=W*COSSZE-ZZ#SINSZE
DET(K+3eJ)=T*¥COSSZE+P*SINSZE
DET(K+39J+1)=P*COSSZE-T*#SINSZE
DET (K444 J)=C1#SINSZE+C2¥COSSZE
DET(K+49U+1)=C1¥COSSZE-C2*SINSZE
DET(K+5sJ)=C3%*SINSZE+C4%COSSZE
DET{(K+5¢J+1)=C3%COSSZE~C4*SINSZE
30 Z=PLNG

RETURN
END

$IBFTC PREALI
SUBROUTINE PREALI(VeYYsJsDET)
COMPLEX Y
DOUBLE PRECISION CUVsD9sEIRSIR29R39CesVeDETeYYsZsRZ9R2V
DIMENSION DEI(12912)9Y(12)
COMMON YsPLNGsCONVGsOVFLOWSUNFLOWSIEPSsPINFINICUV
R=REAL(Y(J))
R2=R*R
R3=R2*R
C=CUV/R
R2V=R2*V
Z=O.
DO 30 K=1s796
RZ=R*Z
D=DCOSHI(RZ)
E=DSINHI(RZ)
DET(KeJ)=C*D
DET(KsJ+1)=C*E
DET(K+1sJ)=R*D
DET{K+19sJ+1)=R*E
DET(K+2sJ)=VXD
DET{(K+2sJ+1)=VH*E
DET{K+3+J)=YYH#D
DET(K+3eJ+1)=YY*E
DET(K+49J)=R2V*D
DET(K+49J+1)=R2V¥*E
DET(K+59¢J)=R3%D
DET(K+59J+1)=R3#*E

30 Z2=PLNG

RETURN
END
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THIS PACKAGE OF SUBROUTINES PIMAGIsCMLXIsAND PRFALI IS FOR
BOUNDARY CONDITIONS AS STATED IN EQUATION(Vel)e

THE SUBROUTINES EVALUATE THE ELEMENTS OF TWO COLUMNS IN THE
D MATRIX FOR ANY ONE ROOT

aNaale

$IBFTC PIMAGI
SUBROUTINE PIMAGI (XeXXsJsDET)
COMPLEX Y
DOUBLE PRECISION CUVeXsXX9DET 95952 eC0OSSZeSINSZe2sC
DIMENSION DET(12912)eY(12)
COMMON YsPLNGsCONVGsOVFLOWSUNFLOWSIEPSsPINFINsCUV
S=AIMAGIY(JU))
2=0,
C=CUuUvVv/s
DO 30 K=19796
SZ=5%7
COS5Z=DCOS(SZ)
SINSZ=DSIN(SZ)
DET(KsJ)==C*C0SSZ
DET(KesJ+1)=C*SINSZ
DET(K+1sJ)=5INSZ
DET(K+19J+1)=C0SS2Z
DET(K+29+J)=5#C05S2Z
DET(K+29J+1)=—-5S*#SINSZ
DET{K+39J)=X%#C0SSZ
DET(K+3sJ+1)=—X#SINSZ
DET(K+49J)==X%S*SINSZ
DET (K+49J+1) ==X%5*COSS2Z
DET(K+59J)=XX*#C0SSZ
DET(K+5eJ+1)==XX%*¥SINSZ

30 Z=PLNG

RETURN
END

$IBFTC CMLXI
SUBROUTINE CMLXI{WeP9sZZsTsJsDET)
COMPLEX Y
DOURBLE PRECISION CUVoWePeZZsTeDETIR 9535728 Z9sSINSZE9COSSZESEXX
1C1yC2sC
DIMENSION DET{12912)sY(12)
COMMON Y osPLNGsCONVGsOVFLOWsUNFLOWSEPSIPINFINsCUV
R=REALIY{(JU))
S=AIMAG(Y{J))
Cl=R¥#ZZ+W*S
C2=R¥*¥W=27Z%S
C=CUV/(R##24+S3%%2)
Z2=0,
DO 30U K=1s796
SZ2=5%7
EXX=DEXP(R*Z)
COSSZE=DCOS(SZ)#EXX
SINSZE=DSIN(SZ)#*EXX
DET{K s J)=CH(R*¥SINSZE-S*COSSZE)
DET (Ko J+1)=C#*#{R*¥COSSZE+S*SINSZE)
DET(K+1sJ)=SINSZE
DET(K+1sJ+1)=C0OSSZE
DET(K+29J)=R*SINSZE+S*COSSZE



30

DET(K+29J+1)=R*¥COSSZE-S*SINSZE
DETUK+39J)=ZZ%COSSZE+W*SINSZE
DET(K+39J+1)=W*¥COSSZE-ZZ*SINSZE
DET(K+49J)=C1#COSSZE+C2*SINSZE
DET(K+49J+1)=C2%COSSZE-C1*SINSZE
DET(K+59J)=T*COSSZE+P*SINSZE
DET(K+59J+1)=P*¥COSSZE-T*SINSZE
Z=PLNG

RETURN

END

$IBFTC PREALI

30

SUBROUTINE PREALI(VsYYsJsDET)

COMPLEX Y

DOUBLE PRECISIONCUVsDSEsRsVIDETsYY sZsRZsC

COMMON YsPLNGsCONVGsOVFLOWSUNFLOWSIEPSsPINFINsCUV
DIMENSION DET(12s12)sY(12)

R=REAL(Y(J))
C=CUV/R

Z=Oo

DO 30 K=19796
RZ=R*¥Z
D=DCOSHI(RZ)
E=DSINH(RZ)

DET(KsJ)=CH*D
DET(KsJ+1)=CHE
DET(K+19J)=E
DET(K+1sJ+1)=D
DET{K+2sJ)=R*D
DET(K+29J+1)=R*E
DET(K+349J)=V%D
DET(K+39J+1)=V*E
DET(K+49J) =VH*R*E
DET(K+49J+1)=V¥R*%D
DET(K+59J)=YY%D
DET(K+5sJ+1)=YYH*E
2=PLNG

RETURN

END
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