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frequencies from the theory presented are compared with 
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CHAPTER I 

INTRODUCTION 

The dynamic behaviour of a rod of circular cross-

section, either solid or hollow, the axis of which is in 

the form of a general space curve is of interest. For 

example, some members in radar installations are naturally 

curved and twisted in the form of a space curve. Pipes 

have been designed to have an axis in the form of a 

space curve to allow for thermal expansion in chemical 

plants. Other naturally curved systems of this kind are 

found in springs, balcony structures and arches. A 

knowledge of the behaviour of such structural elements 

subjected to dynamic loads is of value for design pur-

poses. 

The static deformation of naturally curved rods 

is a classical elasticity problem, and many papers have 

been written on the subject. 112 ' 3 ' 5* The equations of 

motion are very complicated when the unstressed state of 

the rod possesses both curvature and tortuosity. 

Previous work on this subject has been done by 

l Love . In his study of the stress wave propagation along 

a helical spring of infinite length, it is assumed that 

*Numbers refer to the Bibliography listing. 
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the torsional inertia of the circular rod is negligible. 

In addition, he assumed the centerline of the rod to be 

axially inextensible. Wittrick 2 also worked on the elastic 

wave propagation in helical springs, where the wire cross-

section is of any doubly symmetrical shape, thus covering 

rectangular as well as circular sections. In addition, 

Wittrick took into account shear deformation due to bending. 

Ojalvo3 studied in detail the vibrations of incomplete rings 

which can be considered as a very special case of a rod 

possessing curvature but no tortuosity. Massoud 4 employed 

vectorial methods to derive the equations of motion of a 

naturally curved and twisted rod. However, the result is 

in vectorial form and is not readily useable. The static 

deformation of such a rod is also given in Love's treatise 

on elasticity5 . 

In this study, a simplified set of equations is 

developed governing the longitudinal, flexural and torsional 

motions of a circular uniform rod, or thick-walled tube 

whose natural state is in the form of a space curve. 

Unlike the previous work which takes into account shear 

deformation due to bending, the Euler-Bernouilli beam 

assumption of plane cross-sections remaining plane and 

perpendicular to the axis both before and after deformation 

is employed in the present derivation. The rod is assumed 

to be made of a linearly elastic, isotropic and homogeneous 

material. The couplings between the various types of 

motions caused byfue initial curvature and tortuosity are 



shown explicitly for the case when the rod is in the form 

of a helix. The equations can be reduced to the dynamic 

equations of a plane curve, or a straight rod as special 

cases. 

3 

A comparison is made in this thesis on the accuracy 

of Love's theory by comparing the natural frequencies cal­

culated based on Love's theory and the present theorJ. A 

computer program is developed to determine the natural 

frequencies of a helical rod under different boundary con­

ditions. Finally, a series of tests were performed on two 

helical springs and the experimental results are compared 

with the results from theoretical calculations. 



CHAPTER II 

FORMULATION OF THE EQUATIONS OF MOTION 

1. Vectorial Formulation of Equations of Motion 

Consider a rod of circular cross-section, either 

solid or hollow, the axis of which is in the form of a 

general space curve possessing both curvature and tortuosity. 

The rod is supported at its ends, and is subjected to 

loadings distributed along its length. The 

equations of motion are derived by equating the time rate 

of change of momentum and moment of momentum to the total 

forces and moments respectively, acting on a given segment 

of the rod. The following assumptions are made: 

(i) that the cross-sections remain circular after 

deformation 

(ii) that the Euler-Bernouilli assumption holds, 

i.e., a cross-section of the rod remains plane and per­

pendicular to the axis of the rod at all times. 

Due to such imposed constraints, each section of 

the rod has four instead of six degrees of freedom, namely 

three translational displacements and one rotational dis­

placement about the axis of the rod. 

Let r be the position vector of a point P on the 

axis of the rod relative to a fixed origin o. R is the 

4 
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FIG 11.1 ROD SEGMENT 
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position vector relating the position of any point B toP, 

in a plane perpendicular to the axis of the rod at the 

point P. The position vector of B is then given by (r + R) 

as shown in Fig. II.l. 

-The total linear momentum vector p of the rod seg-

ment from 0 to P is 

p = a 
Pff Cr + R) dA ds ••. (II.l) 

where s is the distance measured along the axis of the rod, 

and £ is the total distance from 0 to P measured along the 

axis, and JA denotes integration to be carried out over 

the cross-sectional area of the rod. 

Applying the linear momentum principle yields 

~~ ~ (Nt-N0 ) + (Q-60 > + r: fds ••. (II. 2) 

Similarly, the moment of momentum vector L for the 

rod segment is 

L ~ J: JA P ['r + R> x ,~ ,r + R>] dAds ••• (II.3) 

Applying the moment of momentum principle yields 

-r x .•. (II.4) 

Equations (II.2) and ~I.4) are now the dynamic 

equations for the rod subjected to the given loadings. 



pr.incipal unit normal 
vector 
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2. Simplification of Dynamic Equations 

In order to simplify (II.2) and (II.4), it is con~ 

venient to define a set of mutually orthogonal unit 

vectors et, e 1 and e 2 , attached to the point P, where et 

-is the unit vector tangential to the axis of the rod, e
1 

is the principal normal and e2 is the binormal at p as 

shown in Fig. II.2. 

- - -The set of unit vectors et' e
1 

and e 2 is known as 

the trihedral associated with the space curve, R, a 

vector in the plane of the cross~section can be expressed 

as 

(R* e) -
(R* Sin R = Cos el + 

,... 
e) e

2 
••• (II.5) 

and 3R 
R* [cos e 

Cle1 + Sin e 
Cle 2 = at at Clt + (Cos a e2-sin a e1 l ;~J 

••• (II.6) 

where e represents the rotation of the section of the rod 

about its axis. The right hand side of (II.l) can be 

written as 

, r r r 
0 0 0 

aR J + 3t de dR* ds, 

and since 

r 0 

aR -at de= O, and r is dependent of e, 

(II.l) reduces to 

p = pA 
J

9, 

3r 
3t 

0 

ds ••• (.II. 7) 
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Substituting (II.7) into (II.2) yields 

r£ 
pA j r ds = (Nt -No) + (Q-Qo) 

0 

+ r l'ds 
0 

[t 
-f] or J [PA£ d 

(Nt +Q) ds 0 = ClS 
0 

••• (II.8) 

If (II.8) holds for all values of t, it is necessary that 

the integrand be zero, i.e., 

.. 
pAr= 8! (Nt+Q) + f •.• (II.9) 

Similarly, (II.4) can be simplified. {II.3) can be written 

as 
. . 

R x R + r x R -

r and r are independent of e, and Rand R are dependent on e 

as shown by (II.S) and (II.6). But J
2
"sine de= j2

"cose de =0 

0 0 

. . 
x R- r x R) de=O, and (II.3) can be written as 

r J p]Y 

.!. . 
E = x r + R X RJ de R*dR*ds 

o A 

rr r of = A(r X r) ds + P 

0 

: 

0 

(R x ~) de R*dR*ds 

0 

The second term on the right hand side of the above 
. 

equation can be written after substituting for R and R as 



=p 

= 

= 

£ rd 
12 
I 

Jo 
2n 

R3 
* 

0 

10 

e1+Sine e2 )x [ (~ 1+e 2 ~)Cose +(~2 ~e1 ~)Sine]dedR*ds 

. r't R3 I 2 re1 x - 2 ete e2J dR* ds PTI 

} 0 0 

el + + e2 X 
* 

~4 
i Q, 

[! + et~] ds 
a 1 - 1 - .!. 

PTI 32 e 1 x el + 2 e 2 x e2 
) 0 

-£ 

E l [ pAi' 
.!. 

+ HJ = x r ds 

0 

.•• (II.lO) 

- .!. .!. -[~ 1 - a] where H = pi e
1 

x el + 2 e2 X e2 + et ••• (II.ll) p 

I is the polar moment of inertia = Tid 4/32 for a 
p 

solid circular cross-section. For a hollow pipe section, 

the limits of integration would be different from those 

used in the previous development, but Ip and A in (II.lO) 

and (II.ll) would be the polar moment of inertia and Area 

for that hollow section. 

Substituting (II.lO) into (II.4) yields 
r2 
J [pA ;t (i' x ~) + HJ ds =;: 

0 

r X f] ds 

••• (II.l2) 

In view of (II.9), the first term on the left hand 

side of (II.l2) can be written as 



11 
' X, {,Q, ) 

" 
. 

fr x [ ;s f] i pA 0 

<r x r)ds j c.r x pAr)ds (Nt+Q)+ ds I = = 
j 0 

3t 

i.e., 

;>!, 

~J 
0 

~r 
0 

0 

- 3 
(Nt + Q)ds + r x 

3S 

r 

(Nt +Q) l 3 l - ds 3s 
r x 

.J 

3 (r X r) ds = 
3t 

-r x 

0 

r c.r f) X ds 

0 

-r [3r (Nt +Q)] -x 3s 
0 

Subtracting (II.l3) from (II.l2) yields 

et X Q] ds = 0 

ds + r (rxl')ds 
0 

.•• (I I . 13) 

... (II.l4) 

noting that et X Nt = o. In order that (II.l4) is satisfied 

for all values of ,Q,, it is required that 

••• (II.lS) 

It is convenient to eliminate the shear force vector 

Q from (II.9). Using the vector identity (et X Q)x et = Q, 

(II.lS) can be written 

• - dM 
Q = H x et + et x 3s 

and (II.9) becomes 

• • d [ pAr=-- & 
3s t 

aPr ] + £ 
3s .•• (II.l6) 

Equations (II.lS) and (II.l6) will be taken as the equations 

of motion for the rod under the applied forces. 
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3. Reduction of Equations of Motions 

-The position vector r for the axis of the rod can 

be written r(s,t) = r (s) + u(s,t)' where r (s) is the 
0 0 

position vector denoting the axis of the rod in its un-

stressed state, and u(s,t) is the displacement vect'or of 

the rod under load. It is assumed that the displacements 

of each section of the rod from its unstressed state are 

small. By imposing that lu(s,t) l<<lr (s) I for all t and 
0 

s, approximations can be made that the trihedral et, el 

and e2 can be determined based on the unstressed configura­

tion r
0 

instead of r. The relationship between the posi-

-tion vector r
0 

of the space curve and the trihedral is 

well known. The variation along the length of the axis 

is given by the Frenet-Serret formulae, which can be 

stated as 
-

Clet -= K el Cls 0 

Clel - -
35 = -K et + -ro e2 0 

= 

where K is the curvature and -r is the tortuosity of the 
0 0 

centerline of the rod. A summary of useful relations is 

given in the Appendix (A.I.l) to (A.I.ll). If the tri~ 

hedral is defined based on ro as shown in the appendix, 

then it is a function of s only, and is independent of 

time t. Therefore, any time derivatives of the trihedral 
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will be zero due to the assumption of small motions of 

the rod. Using the relations given in the Appendix, each 

term of (II.l5) and (II.l6) can be written explicitly in 

terms of components in the et, el and e2 directions. 

From (II.ll) and (II.l5) 

. 
H = 

where 

and 

-Q = Qlel + Q2 e2 

.. - 8M - 8M2 - -
+ Ml [Toe2 -K e 1 pi e e = 1 el + e2 + _8 Mt et p t -- Cls 

0 t 
8s 8s 

Defining u
8
=e, and equating coefficients in the three 

directions yields 

••• (:U.l8) 

••• (II.l9) 

••• (II. 2 0} 

where ( 8 = 8I ( ) etc., ~ = s/a, and a is the radius of 

gyration of the rod. K and T are the non-dimensional 

curvature and tortuosity of the space curve given by 

K = a K
0 

and T = a T
0

• The radius of gyration of the rod 

is used throughout this thesis as the characteristic 
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length for purposes of normalisation . 
. 

Since H X et = 0, (II.l6) becomes 

pAr 

But, 
_ _ 3M [3M1 _ 3M2 _ 3Mt _ 
Nt + etxas = Ntet+ et X as-- e 1 + ~ e 2 + 35 et 

+ M1(Toe2- "oetl - M2Toe1 + Mt"oe1] 

~ N t e t + [ ::1 - M2 To + Mt K o ] e 2 " [ ::2 + M1 To] e 1 

Letting u(s,t) = u1 (s,t)e1 + u 2 (s,t)e2 + ut(s,t)et 

then pA (;;1 e1 + ;;2e2 + ;;tet) ~ 3! [ Ntet + ( ::1 " M2 To+ Mt "a) e2 

" ( ::
2 

+ Ml T 0 ) Ei1] + f 

Carrying out the differentiation and e~uating co~ 

efficients in the three directions, yields 

... (Il. 21) 

••• (l:t.22) 

3 .. 2 2 
pAa u2 = KMt+MtK'+Mi'-T Ml- 2TM2 - M2T'+ a f2 

••. (II. 23) 

where 

Equations (II.l8) to (II.20) are the e~uations per~ 

taining to the rotational equilibrium of the rod, as they 

are derived from (II.l5). Equations (II.21) to (II.23) are 
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equilibrium equations for the translation of an element of 

the rod obtained from equation (II.l6). ( I I. 19 ) and ( I I . 2 0 ) 

are expressions for the transverse shear forces 01 and 0 2 

in terms of the moments. In a similar manner, equations 

(II.l8) 1 (II.21) 1 (II.22) and (II.23) express the dimen-

sionless displacement variables ue, ut, ul and u2 in terms 

of moments and applied loadings. 

4. Generalised Force-Displacement Relationsh~ps 

In order to express equations (II.l8) to (II.23) 

in terms of displacement variables, it is necessary to 

obtain the generalised force-displacement relationships. 

5 These are given by Love , and the derivations are given 

in Appendix (A.V). They can be written as 

I I 
.•• (ll.24) a Mt = GI (ue + KTDl + KD2) p 

I ' 2 I I 

a M1 = El (KU
8 

.... TKU .... 2TUl - T ul + , u
2 .... u2 ) 

t 

.•. (li.25) 
I I I I 2 I ' a M2 = El ( KUt + K Ut+ ul .... , u

1 
.... 2TU2.- T D) 

• •• (I I. 2 6) 

••. (II. 2J) 

Substituting (II.24) to (II.26) into (II,l9) and 

(II.20), the transverse shear forces 01 and Q2 may be ex~ 

pressed in terms of the generalised displacements 

u8 , ut, u1 and u 2 • Substituting (Il.24) to (II.2J) into 

(II.l8) 1 (II.21), (II.22) and (II.23), four equations of 
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motion of the rod are obtained in terms of the displacement 

variables and applied loadings. 

5. Four Equations of Motion in 
Terms of Displacement Variables 

Substituting for Mt, M1 , M2 , Nt and their deriva­

tives where applicable as given by (II.24) to (II.27), the 

four equations of motion in terms of displacement variables 

u
8

, ut' u1 and u2 are developed. 

Equation (II.l8) becomes 

2 
2pa 
-E-

[ 
U' '+(K 1 T+KT 1 )U +KTU 1 +K 1 U 1 +KU 1 

·] e 1 1 2 2 

... (II.28) 

Equation (II.21) becomes 

KEI + -­a 
2 (2K 1 U 1 +KU 1 1 +K 1 1 U -2TT 1 U -T U'+U 1 

I 
1 -T' 1 U t t t 1 1 1 2 

... (II.29) 

Equation (II.22) becomes 

KT GI 
---a--~p (U~+KTU1+KU2) 

---a (K'U +KU 1 -T 1 KU -TK 1 U -TKU 1 -2T 1 U1 -2TU 11 -T 1 1 U e e t t t 1 1 1 

2 -T 1 U 1 +2TT 1 U +T u -U 1 
I 

1
) 1 2 2 2 

T 1 EI 2 
(KU -TKU -2TU 1 -T 1 ~ +T U -U' 1

) e t 1 1 2 2 . 
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- EI l~KU'''+3K'U 11 +3K 11 U 1 +K 111 U +U"" a t t t t l 
2 -T U 1 '-4TT 'U 1 

l l 

- ( 2 T 1 T 1 +2 T T 1 1
) U l 

-2TU' I '-5T 'U' 1 -4T I 
1 U 1 -T I 

2 2 2 

..• (TI.30) 

and equation (II.23) becomes 

K
1 GI 

= KGIP [u''+(K'T+KT 1 )u +KTU 1 +K 1 U 1 +KU 11J 
a e l l 2 2 + a p (U~+KTUl+KU2) 

+-- KU' 1 +2K 1 U 1 +K 1 1 U -KTU' 1 -(2TK 1 +2T 1 K)U' EI [ 
a e e e t t 

-2TU 1 
I '-5T 'U' 1 -4T I 

1 U 1 -T I' 
1 U +T 2U' 1 +4TT 1 U' l l l l 2 2 

+(2T 1 T 1 +2TT 11 )U -U'"' J 2 2 

, 2Er 2 
- ~ (KU 6-TKUt-2TUi-T'Ul+T U2-U2 1

) 

---a 
2 (2K 1 U 1 +KU 11 +K"U -2TT 1 U -T U'+U" 1 -T"U -3T'U'-2TU") t t t l l l 2 2 2 

•.. (II.3l) 

Subjected to the appropriate boundary and initial 

conditions, the motion of the rod can be studied using 

equations (II.28) to (II.3l), the four equations of motion. 

These equations are useful in studying the behaviour of a 

rod of circular cross section, the axis of which is in the 

form of any general space curve. It should be pointed out 

that these equations are indeed lengthy and complicated. 

In order to solve them, K(~) and T(~) must be known for a 
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general space curve, and this in itself may be a difficult 

problem. Numerical methods and the point by point measure­

ment of K and T along the space curve may be necessary. 



CHAPTER III 

DYNAMIC EQUATIONS OF MOTION OF A HELICAL SPRING 

l. Introduction 

Equations (II.28) to (II.3l) developed in Chapter II 

will now be used to study the dynamic behaviour of some 

special systems. 

One simple configuration of a naturally curved and 

twisted rod is in the form of a helix, in which both the 

curvature K and t~e tortuosity T of the axis are constants. 

In order to solve the problem of a helical spring under an 

external forcing function, it is necessary to solve the free 

vibrational problem. The equations for the free vibrations 

of a helical rod can be obtained from (II.28) to (II.31) by 

setting any derivatives of K and T equal to zero, and 

neglecting the applied loading terms. In matrix notation, 

the resulting equations can be written as 

fl 0 0 0 l ut yll yl2 yl3 yl4 ut 

0 l 0 0 ul E -yl2 y22 y23 y24 ul 
= --2 

,, 0 0 l 0 u2 pa yl3 -y23 y33 y34 u2 

lo 0 0 2 ue yl4 -y24 y34 y44 ue 

... (III.l) 

19 
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where the [y] matrix contains differe~ial operators as 

elements given by 

2 2 2 ... (III.2a) yll = D2 (l+K ) - K T 

yl2 = K[D3-(l+3T 2 )D] ... (III.2b) 

2 ..• (III.2c) yl3 = KT(T -3D2 ) 

2 ... (III.2d) yl4 = K T 

2 2 [ (2G 2 2)] ... (III. 2e) y22 == -D4 -K +T 6D 2- If K +T 

y23 == 2T [ 2D3 - ( ~ K
2

+2T
2

) DJ ... (III.2f) 

y24 == -2KT (l+i)n ... (III.2g) 

-D + ( 2; K2+6T2 ) D -T 4 ••. (III.2h) y33 = 4 2 

y34 = K [ ( 1 + 2EG) D2-T 2 J ••. (III.2i) 

2G D _ 2 ... (III.2j) y44 == K E 2 

where D 
() ()2 

etc. = IT' D = --
2 ()~2 

It is advantageous to represent the equations of 

motion in the form of (III.l) since the coupling among the 

displacement variables can be recognized easily. This 

coupling is represented by the off-diagonal terms in the 

[y] matrix. 

The four displacement variables Ut' U1 , U2 and U8 

can be considered as generalised coordinates representing 
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longitudinal motion, transverse motion in two perpendicular 

directions, and torsional motion of the rod respectively. 

It can be seen that in the general case of a rod possessing 

both curvature and tortuosity, all four types of motions 

will be coupled together. 

In general, K will be small compared to unity, and 

powers of K can therefore be neglected in.comparison with 

unity. Also when the pitch angle a is less than 60°, the 

tortuosity T is of the same order of magnitude as K, and 

higher powers of T can also be neglected in comparison 

with unity. 

2. Wave Propagation along a Helical Spring 

Consider the case of a sinusoidal wave train 

propagating along a curved rod in the form of a helical 

spring. Let the spring have a pitch angle a, radius R, 

cross-sectional diameter d as shown in figure III.l. No 

reflection of the stress wave from the ends of the spring 

are considered. In this respect, the helical spring can 

be considered infinitely long. 

The normalised curvature and tortuosity of the 

spring in terms of the coil dimensions are given by 

a 2 
K = R Cos a 

•.. (III.3) 

T =K Tan a 

The equations of motion (III.l) apply in this 

case. Investigate the propagation of a sinusoidal wave 
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FIG lli.l HELICAL SPRING 
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train of the form 

( 
I nt Sin A 1;: 

= 1 n1 Cos "' Sin wt ... (III.4) 

l :: :~: :: J 
where A = Tia/£ ... (III.4a) 

nt' n1 , n2 and n 8 are constants representing the 

amplitudes of axial, transverse in-plane, transverse out-

of-plane and torsional motions respectively. Equations 

(III.4) represent a harmonic wave train of wavelength 2V/A 

with a wave velocity of w/A. 

It can be seen that a sinusoidal wave of the form 

given in (III.4) satisfies the following conditions, namely, 

at ~ = 0 and £/a. 

U = U' - U"' t l - l . .. (III.4b) 

Therefore, the problem of studying the wavelength 

and wave velocity relationship for the propagation of a 

sinusoidal wave of the form given by (III.4) is equivalent 

to the study of the natural frequencies of a helical spring 

of finite length £ supported at the ends ~ = 0 and !;: = t/a 

such that conditions (III.4b) are satisfied. For conven-

ience of visualisation, the latter terminology will be 

used, and the natural frequencies of a finite helical 

spring of length £ subjected to boundary conditions (III.4b) 

will be investigated in detail. 
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Substituting equations (III.4) into (III.l) yields 

,-,, 

sll_r:;2 l rnt 612 613 614 0 

2 
0 s22-r:; 623 624 nl 0 pl2 

2 = 613 623 s33-n 634 n2 0 
•.• (III.S) 

~ 
0 

r. 
614 624 634 ne f 

11... 

where rl2 2 2 
- (;j pa /E ... (III.6) 

611= A2 (l+K
2

) + 2 2 K T ... (III.7a) 

... (III.7b) 

... (III.7c) 

614= 
2 -K T ... (III. 7d) 

622= 
A4 + 2 + T2 (6A 2 + 2G 2 T2) K E K + ... (III. 7e) 

623= 2AT(2). 2 G 2 + 2T 2 ) + - K E •.• (III.7f) 

624= 
G 2AKT(l+E) ... (III. 7g) 

633= A4 + 4 + 2).2 (~ 2 + 3T 2 ) T K 
E 

... (III. 7h) 

634= A2 K(l + 2G) + 2 
E KT ... (III.7i) 

644= 
2G A2 + 2 
E K ... (III.7j) 

For any given helical spring, the parameters K,T and 

A and hence the [S] matrix can be evaluated using (III.3) to 

(III.S). Equations (III.S) yield four eigenvalues n~ and 
l 

the associated eigenvectors 

{n}i , (i = 1, 2, 3, 4) 
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A typical set of values of the eigenvectors and 

natural frequencies is shown in Table III.l. The natural 

frequencies wi' (i = 1, 2, 3, 4) are obtained from (III.6) 

f h f '. l 2 or eac o tne elgenva ues n. , 
l 

(i = 1, 2, 3, 4) obtained. 

For example, consider the case of the helical 

spring of five turns. The associated eigenvector for the 

frequency of 90.69 cycles per second is given by 

(i:~'o, 0.101, -0.332, 0.007). Elements in the eigenvector 

indicate that, associated with this natural frequency, the 

mode of vibration consists of mainly displacement in the 

tangential direction. The displacements u1 , u2 and U8 

are small compared with Ut in this mode. 
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TABLE III.l 

Spri:tlg- Data: R=l.52"; d=0.266"; p= 0.734 X 10-Jlb 2/. 4 sec ~n. 

a=8.4°; E= 30 X 10 6 psi; G= 12 X 10 6 psi. 

No. of I 
I Associated Eig-envectors Natural Frequencies c.p.s. Turns l ! N ' n.._ nl n2 ne wl w2 w3 w4 

L. 

5.0 1 0.101 -0.332 0.007 90.69 
-0.101 1 * 0.002 20,868. 

0.329 -0.033 -, 

* 81.05 .l. 

-0.012 -0.006 0.0031 1 14,741. 
2.0 1 0.253 -0.503 0.008 210.80 

-0.253 1 * 0.006 21,416. 
0.473 0.119 1 -0.003 186.52 

-0.007 -0.013 0.011 1 15,052. 
1.5 1 0.337 -0.663 0.010 263.28 

-0.337 1 * 0.007 21,911. 
0.595 0.201 1 -0.007 229.00 

-0.003 -0.015 0.018 1 15,334. 
1.1 1 0.460 -0.954 0.016 316.56 

-0.460 1 * 0.009 22,853. 
0.788 0.362 1 -0.013 261.29 
0.003 -0.016 0.029 1 15,875. 

1.0 -0.930 -0.471 1 -0.019 328.87 
-0.506 1 * 0.009 23,368. 

0.856 0.433 1 -0.016 263.11 
0.005 -0.016 0.034 -, 16,115. .l. 

0.9 0.936 0.526 1 -0.020 257.30 
-0.562 1 0.001 0.010 23,819. 
-0.813 -0.457 1 -0.021 337.95 

0.007 -0.014 0.040 1 16,434. 
0.6 1 0.842 0.644 -0.027 103.42 

-0.842 1 0.001 0.011 27,166. 
-0.378 -0.319 1 -0.034 289.30 

0.015 -0.009 0.071 1 18,403. 
0.5 1 -0.990 -0.002 -0.011 29,551. 

0.990 1 -0.146 * 1.044** 
0.073 0.073 1 -0.044 267 .16 
0.017 -0.004 0.088 1 19,828. 

0.4 1 -0.793 -0.002 -0.008 33,504. 
0.792 1 -0.991 0.046 238.77 
0.486 0.612 1 -0.059 641.73 
0.018 0.001 0.109 1 22,219. 

(a=0°) 
0.5 l 1 0 0 2.6** -'-

I -1 1 0 0 30,027. 

I 
0 0 1 -0.044 0.340** 
0 0 0.088 1 20,162. 

11*11 indicates that the absolute value of the entr is less than 0.00 y 1. 
"**"indicates that these values are approximately equal to zero. 
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The calculations in Table III.l were done on the 

IBM 7040 Electronic Digital Computer using the Jacobi 

Rotations Method 6 . Essentially, the method transforms the 

[B] matrix into a diagonal matrix. The eigenvalue ~i is 

obtained from the first element of this diagonal matrix, 
? 

~2 is obtained from the second element and so on. 

It is noticed that two of the frequencies are 

lower than the remaining two by orders of magnitude. For 

a helical spring with the number of turns N less than one 

half, both the in-plane and out-of-plane bending stiffnesses 

are much less than the extensional and torsional stiffnesses. 

Hence, the two lower frequencies are associated with flexual 

vibrations. 

For a spring with N greater than unity, Table III.l 

shows that the element nt in a mode associated with one of 

the two smaller values of natural frequencies is always 

numerically larger than the other three elements, i~dicating 

that the mode of vibration consists mainly of longitudinal 

movements. This can be explained by observing that a ''long" 

spring of this kind is relatively flexible if it is rotated 

about its coiled axis. If the spring is vibrating at a 

frequency w1 , the lowest of the natural frequencies, then 

the elements of the spring are subjected mainly to longi-

tudinal movements, resulting in a relative rotation between 

the top and bottom of the spring about the coiled axis. 

For a ''long" spring, this mode of deformation offers less 
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rigidity than the in-plane flexural deformation, and hence 

such a mode is associated with a lower natural frequency. 

Wittrick 2 has shown that this is true for in-plane deforma­

tion of long springs, by pointing out that the kinetic 

energy associated with the longitudinal direction is 

numerically larger than the energies associated with the 

other directions. 

For a spring with N between one half and unity, 

the coupling between the in-plane transverse motion and 

logitudinal motion becomes strong, and it is difficult to 

identify which type of motion predominates in the vibra­

tional mode. 

Wittrick 2 has shown that for out-of-plane deforma­

tion, the kinetic energy associated with the out-of-plane 

direction is numerically greater than the energies 

associated with the other directions. This can be seen 

in Table III.l, where, for all lengths of spring con­

sidered, n2 is numerically the largest component of the 

eigenvector associated with the other low value of natural 

frequency. This indicates that the frequency w3 in 

Table III.l is always associated with the out-of-plane 

flexural vibration mode of the spring. 

In his investigation1 , Love has neglected torsional 

inertia of the rod, and has assumed that the axis of the 

rod is inextensible. The latter assumption implies that 

the axial strain at the axis, and hence the axial force Nt' 

is zero. The two assumptions can be expressed mathematically 



a.s 

a.nd from (II.27) 

I U = 0 
p 8 

ut = KU1 
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If these assumptions are introduced into (III.l), 

the resulting frequency equation as given by Love
1

becomes 

... (III.8) 

where cl (A 2 + K2) (A 2 + 
E K2) = 
2G 

[ 2A4 + A 2 K2 (1 E )] 2 2 2
2 

22[ 2 2
2

] c2 = + 
2G [ A - K + T ] + 4 T A ( A - K ) +C 1 

C = A
4 2 2 2 4 

3 (A - K - T ) 

Equation (III.8) is essentially a bi-quadiatic in 

~ 2 and can be readily solved to yield the two frequencies. 

The accuracy of (III.8) will be discussed in a later 

section. 

The spectrum curves are plotted for various helical 

spring parameters and are shown in figures (III.2a, b, c, d). 

3. Discussion of Soectrum Curves 

The spectrum curves of figures (III.2a, b, c, d) show 

the variation of the two lowest frequencies as determined 

from equation (III.S), with respect to length of the helical 

spring. The curves are shown for varying pitch angle a, and 

R/a, the normalised radius of the coil spring. The nor-

malised curvature and tortuosity for any of the springs 

considered are obtained from (III.3). It is shown that as 
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t ~ oo, i.e., for very long springs both frequencies approach 

zero value. Figures (III.2a, b) show the in-plane frequency 

variation, and figures (III.2c, d) show the out-of-plane 

frequency variation with respect to length of helical 

~pring. 

An examination of figures III.2a, b shows that when 

the nuniller of turns N of the helical spring is one half, 

the in-plane frequency is zero. This is independent of R/a 

and a. The zero frequency arises because rigid body motion 

is possible, and each element of the spring moves in planes 

parallel to each other. As N decreases from infinity to 

unity, the frequency increases, the greater the curvature, 

the greater is the rate of increase. It is interesting 

to note that the frequency attains a maximum value when N 

is approximately equal to unity. As N decreases further 

from unity to one half, the frequency decreases, until it 

is zero at one-half turn. The frequency increases once 

more as N is decreased from one half, and as N approaches 

zero, the frequency approaches infinite value. 

The zero frequency at infinite length is reasonable, 

because the rigidity of the spring at this length is small. 

It was pointed out in section III.2 that it was relatively 

easy to rotate a long spring about its coil axis by 

twisting, thus causing predominantly longitudinal motion 

of the spring elements. It should be noted that the longi­

tudinal direction for any element lies in the plane of the 
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spring· a·t that point. As N decreases towards unity, the 

rigidity of the spring against this type of deformation 

increases, and hence the frequency increases. 

The zero frequency at one half turn can be demon-

strated by considering the special case when the "spring" 

is a semi-circular arch. The eigenvector (1, 1, 0, 0) 

shown in Table III.l for N = 0.5, a = 0° 1 corresponds to 

this type of in-plane deformation. From (III.4), the 

mode shape is given by 

r c~ ~)f 
( 

CT~ ;i nt Sin rin t;) 
,, 

1"1 

= 
Cos (~ ~)J Cos ( TI~ ~) 

since nt = nl = 1. 

If the mode shape is determined by plotting the 

deformation of each point on the arch from ~= 0 to ~= ~/a, 

it will be found that rigid body motion has taken place 

in the plane of the arch. The zero frequency at one half 

turn of helical spring does not however depend on the 

value of a. It is shown in the appendix (A.II) that 

c3 in (III. 8) is zero at one half turn, thus yielding a 

zero frequency from Love's frequency equation. As N is 

further decreased from one half, the frequency increases. 

Figures (III.2c, d) show the variation of the 

out-of-plane flexural frequency with respect to length of 

spring. As ~ approaches infinite value, the frequency 



approaches zero value. As ~ decreases the frequency in~ 

creases, the smaller the curvature, the greater the in~ 

crease. The curves show a drop in frequency for low 

pitch angles when the length of the spring is such that 

the number of turns lies between one half and unity. For 

ring segments, a=0°, the frequency drops to zero at one~ 

half turn. 
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The zero frequency at infinite length is reasonable 

because the rigidity of the spring at that length is 

negligible. It is relatively easy to compress a long 

spring, thereby causing the spring elements to move pre~ 

dominantly in their out~of~plane directions. As ~ de~ 

creases, it becomes more difficult to do so, and therefore 

the frequency rises. For low pitch angle springs, and if· 

the spring is supported at its ends such that equations 

(III.4b) are satisfied, it becomes relatively easy to 

deflect the spring in the out~of-plane direction if the 

number of turns is approximately one half. In the limit, 

for a=0°, rigid body motion is possible when N is one 

half. It is shown in appendix (A.III), that c2 in (III. 8) 

is zero at one half turn if a=0° or c=O, thus yielding two 

zero frequencies from Love's frequency equation (III.8). 

Except for very long springs, it should be noted 

that the coupling of the spring is increased as a is in~ 

creased. This coupling in effect separates the two fre~ 

quencies. For example, consider a spring with a/~ = 0.01 



and R/a = 20 as shown in figures (III.2a, c). For a=0°, 

the in-plane and out-of-plane dimensionless frequencies 

are 7.4 x 10- 4 and 8.1 x 10-4 respectively. For the same 

length and R/a, the in-plane frequency decreases and the 

out-of-plane frequency increases as the pitch angle is 
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increased. However, for very long springs, the separation 

of the two frequencies is reduced. 

4. Configuration of the Rod in the Form of a Ring 

For the special case when T=O, the initial con-

figuration of the rod is in the form of a ring. The [y] 

matrix of (III.l) can then be written 

r y* y* 0 0 l 
I 

11 12 

-y* y* 0 0 

[y ij J = 
12 22 

.•. (III.9) 
0 0 y* y* 

33 
34 I 

0 0 y* y* 
34 44 J 

~vhere * = y .. of (III.l) with T=O. The dis-y .. 
l.J l] 

placement variables ut and ul are now uncoupled from the 

displacement variables u2 and ue. However, the longitudi-

nal motion is coupled with the in-plane transverse motion, 

and the out-of-plane transverse motion is coupled with the 

torsional motion of the rod. For T=O, the four equations 

are given by 
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;;-

l ! * l yll 
I E = --2 

pa 
u l -yi2 l ::) ... (III.lO) 

0 

for in-plane and extensional vibrations, 

r 
0 l ( .. 1 ~ 

u21 and I 1 

l ~:! 
,, 

* * ~ y33 y34 ,. 

u,J 
~ E 
I 

2J 
= --2 ... (III.ll) 

I l pa 
I Yj4 * lo y44 
L 

for out-of-plane and torsional vibrations. 

It should be noted that the [y] matrix for any 

plane curve will be similar to that shown in (III.9), because 

the uncoupling of the two sets of displacement variables 

depends on the fact that T=O and not on the assumption that 

K is constant. Therefore, the statement on the coupling 

of the longitudinal and in-plane transverse motions, and 

also the coupling of the out-of-plane transverse and tor-

sional motions is true for rods in the form of plane curves 

in general. 

Spectrum curves for ring segments are also shown 

in figures (III.2a, b, c, d). The maximum number of turns 

for ring segments as shown in figures (III.2a, b, c, d) is 

unity. 

5. Frequencies for One Half Ring 

Consider the various modes of free vibration of a 

half ring segment, supported at both ends such that condi-

tions (III.4b) apply. For one half ring· 



Let 

A = Tia = 
~ 

/ ) ! u t I 
I 
I, 

ul ~ 

Tia 
TIR 

= K 

( n 
i t 

Sin 

! nl Cos 
' 
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) nAt; ! 
! i 
~ 

nAi; 1 

~ ~ 

J 

= < 
r 

Sin wt ... (III.l2) 
~u 
' 2 n2 Sin nA.i; 
,, 
~ 

' 

J !u ne Sin nA~ 
l e ~ 

where n is the number of half wave lengths in the ring 

segment. 

S.a Extensional Vibration 

Considering the in-plane vibration part only and 

substituting for Ut and u1 in (III.lO) yields 

i 
-nA.K(n 2 A. 2 + l) 

L 

2 2 -nA.K (n A +l) 

.•. (III.l3) 

It is assumed that for extensional vibration there 

is no curvature change along the axis of the rod. This 

can be expressed mathematically as 

Substituting for n1 in the first equation of 

(III.l2), and noting that A.=K=a/R yields 

[11 :~) n2(~)2 rl2 
2 

( 2 2 

+ 1 J}t + + a a 
0 

R2 
n 

R2 
= 

rl2 
2 2 2 

( 
2 

2 1 ) pa a 2 ~+ or - ""E w = 
R2 

n + 
R2 
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2a 2 
The term ---2 in the above equation can be neglected since 

R 

and ... (III.l4) 

.. 7 
This agrees with the formula given in Flugge's Handbook. 

S.b Torsional Vibration 

Considering only torsional vibration, and sub-

stituting for u2 and u
8 

in (III.ll) yields 

,.... 
! A4 + 2G 

A
2

K 
2 ~2 A

2
K(l + 2G 

! E - E 0 

i 

I 2 2G 2G A.2+K2_ 2 rl2 LA K (1 + E E 

= 
0 

..• (III.lS) 

The second equation of (III.lS) becomes 

3 
2 a (l + 2G ) 

n R3 E n2 + 

For torsional mode of vibration n2 <<n
8

• In 

addition, the coefficient of n2 is of order {~) 3 , while 

the coefficient of n8 is of order (~) 2 . Since (~J is con­

sidered much less than unity, the coefficient of n2 is of 

higher order than the coefficient of n
8

• The term 

3 
2 a ( 1 + 2G ) 

n R3 E n2 

can therefore be neglected since it is a product of higher 

order terms, (~) 3 and 112· Based on this consideration, 

the equation reduces to 

~2 
2 2 2 

( n2 G '1) ~ a - w = 
R2 E + 2 E 



and G 

pR2 
= (n 2 + 1 + v) G 

pR2 
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... (III.l6) 

.. 7 
This agrees with the formula given in Flugge's Handbook. 

S.c. In-plane Flexural Vibrations 

Considering only in-plane flexural motion, and 

rewriting equations (III.lO) in full leads to 

... (III.l7) 

Differentiate the first of (III.l7) and multiply 

the result by K. Also differentiate the second of (III.l7) 

twice. This leads to 

... (III.l8) 

2 .. 
P a U' '= (D D ) U (D + 2o ) U ~ t K 3- 5 t - 6 K 2 1 •.• (II I. ·19) 

Subtracting (III.l8) from (III.l9) yields 

2 .. .. 3 2 
pa (U'' - KU')= ( D + D )U' (D + D )U ~ 1 t -K4K 2 t- 6K 41 

... (III. 20) 

It is now assumed that for this type of vibration, 

the axial strain at the center line of the rod is zero, or 

U' = KU 
t 1 

Equation (III.20) then reduces to 
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Substituting for u1 from (III.l2) yields 

2 2 2 2 2 ( 6A6 2 2 4A4+ 3 2A2) pa 
E; w (n A +K )n 1 = n - K n K n n1 

2 2 (n 2+l) 2 4 2 2 pa a or -y- w = n 
~ 

(n -1) 

2 2 2 2 
and 2 n (n -1) Ea ... (III. 21) w = 

n 2+l ~ 
l .. 7 

This agrees with the formulae given by Love and Flugge 

S.d Out-of-Plane Flexural Vibrations 

Considering only out-of-plane flexural motion and 

assuming that the torsional inertia term can be neglected, 

i.e., 

Equations (III.ll) then become 

2 
pa u = 
"-E 2 

... (III.22) 

Substituting for u2 and u
8 

as given by (III.l2) 

into {III.22) yields 

(n4A4 + 2i n2A2K2-n2) n2 + K(l+2i }n2A2ne = 0 

..• {III.23) 

+ 

Eliminating n8 from {III.23) yields 



n2 
( 2~ K2+ n2>-2) n2>-2(n4>-4 + 4 2n2/-2K2) or = K -

2 2 2 2 
and 2 n (n -1) Ea •.. (III.24) w = 

(n 2+l+v) pR4 

where is Poisson's ratio and is given by l+v E 
\) = 2G. 

.. 
(III.24) agrees with the formulae given by Love 1 and Flugge 

Equations (III.l4), (III.l6), (III.21) and (III.24) 

will now be used to check the frequencies obtained in 

Table III.l for the one half ring case. 

p=0.734 

With n=l, E=30 X 10 6 psi, G=l2 X 10
6 psi, 

10-3 lb 2;. 4 R=l.52", d=0.266" X sec 1n ' 

2 2E (III.l4) yields w = ---
pR2 

= 3.56 X 10 10 

and w = / 3. 56 x 10 10;2n~ 30,000 cps. 

(III.l6) yields w
2 = 2.25G = 1.60 X 1010 

pR2 

and w = /1.60 x 10 10;2n~ 20 1 160 cps. 

(III.21) and (III.24) yield w=O. 

These values for the extensional, torsional and 

the two flexural frequencies agree with the values in 

Table III.l. 

6. Configuration in a Straight Rod 

Here T=K=O, and (III.S) becomes 

7 



>.2-n2 0 0 0 T)l 0 

0 >.4-n2 0 0 T)l 0 

>. 4_02 
= 

0 0 0 T)2 0 

0 0 0 2G>.2_ 2n2 
E T)El 0 

..• (III.25) 

For a straight rod, the [y) matrix becomes a 

diagonal matrix and all four forms of motions are un-

coupled. It can be recognized that in this case, the 

first and fourth scalar equations of (III.25) represent 

the longitudinal and torsional motions for a straight rod 

as given in many books on vibrations 8 . Also the second 

and third scalar equations of (III.25) can be recognized 

as the Euler-Bernouilli beam equations for the flexural 

vibrations of a straight beam. 

7. Accuracy of Love's Frequencies 

The frequencies obtained from Love's frequency 

equation (III.B) can be compared with the flexural fre-

quencies obtained after solving (III.S). Table III.2 

shows that for "long" springs and springs of small pitch 

angle, the frequencies given by (III.8) and (III.S) are 

essentially the same. 

Love's frequency equation (III.8) therefore gives 

good results, and the assumptions made in its development 

are valid. 

For most practical purposes, only the lowest 
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natural frequencies are of interest. In this case, Love's 



equation provide~ a simple way to determine the natural 

frequencies. However, for short springs and springs with 

large curvature, equations (III.S) should be used to obtain 

the natural frequencies. 
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TABLE III.2 

Spring Data: d = 0.266": 
-3 2 4 

p = 0.734 x 10 1b-sec /in 

E = 30 X 10 6 psi: G = 12 X 10
6 

psi. 

Love's 
Frequencies (III. 5) Frequencies (III.8) 

No.of -2 -2 -2 -2 
cto R/a Turns n1x10 n2x10 n1Lx10 n2Lx10 

5 15 0.1 9.822 10.56 9.994 10.73 
20 5.573 5.984 5.622 6.037 
25 3.579 3.843 3.598 3.864 

15 15 8.661 10.64 8.772 10.84 
20 4.901 6.040 4.934 6.096 
25 3.145 3.879 3.158 3.901 

30 15 6.375 9.515 6.417 9.648 
20 3.597 5.389 3.610 5.427 
25 2.305 3.458 2.310 3.473 

5 15 0.7 0.1028 0.1423 0.1030 0.1426 
20 0.0579 0.0801 0.0579 0.0802 
25 0.0371 0.0513 0.0371 0.0513 

15 15 0.0731 0.1845 0.0731 0.1850 
20 0.0411 0.1039 0.0411 0.1040 
25 0.0263 0.0665 0.0263 0.0666 

30 15 0.0423 0.2375 0.0423 0.2381 
20 0.0238 0.1336 0.0238 0.1339 
25 0.0152 0.0856 0.0152 0.0857 

5 15 5.0 0.0390 0.0436 0.0390 0.0436 
20 0.0220 0.0254 0.0220 0.0254 
25 0.0141 0.0157 0.0141 0.0157 

15 15 0.0377 0.0424 0.0377 0.0424 
20 0.0212 0.0239 0.0212 0.0239 
25 0.0136 0.0153 0.0136 0.0153 

30 15 0.0335 0.0382 0.0335 0.0382 
20 0.0189 0.0215 0.0189 0.0215 
25 0.0121 0.0138 0.0121 0.0138 



CHAPTER IV 

GENERAL SOLUTION FOR HELICAL SPRING PROBLEM 

1. Introduction 

In the previous chapter, dealing with the in-

vestigation of wave propagation in a Helical Spring, it 

was shown that Love's approximations were valid for most 

springs. For simplicity,therefore, these approximations 

will be used in this development to formulate a general 

solution for the helical spring problem subjected to 

different boundary conditions in this chapter. 

Love's approximations are 

(i) Neglect torsional inertia or IPU =0 

(ii) Assume that the axial strain at the rod 

centerline is zero, or Ut = KU1 

By neglecting the applied loading terms, equa-

tions (II.l8}, (II.21), (II.22} and (II.23} can be 

written 

pia ut = aNt + KTM1 + KM2 

pia ul = aKNt 

pia u2 = KM 1 

t 

0 = M' -t 

- KTMt 

+ M'' -1 

KMl 
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- 2TMi + T
2

M2-M2' 
2 

T M2 - 2TM2 

..• (IV.l) 

••. (IV. 2) 

•.• (IV. 3) 

.•. (IV.4) 
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By eliminating the axial force Nt from (IV.l) and 

(IV.2) and differentiating the result once with respect 

to ~ yields 

0 = M' ,_ KM 1 

t 1 

.•. (IV. 5) 

.•. (IV. 6) 

••. (IV. 7) 

Substituting for Mt, M1 and M2 from equations 

(II.24) to (II.26) into the three equations above, and 

using the inextensibility of the centerline assumption, 

Ut = KU1 on the resulting three equations yields 

a
2 

[.. 2·· ] [ 2 2 · ( 2 2 4 4) ~ Ui'-K u 1 = -D 6+(6t -2K )D 4+ K T (6-m)-t -K 

+Grn5 + (•
2
,(3-m)-4,

3
) o3 (.

2
,

3
)p J u2 

+ [ KT (-2-m)D) - K)TD] U9 

2 
pa 
-y- u2 = [ -4tD4 + ( 4t

3
+K

2
t (m-3)) o2 

+ [-o5 + (6,
2

+m.
2 )o3 - ,

4o J u2 

+ ( K ( 1 +m) D 3 - T 
2 

K D J ue 

0 [Kt(2+m)D 2 + TK 3 ] ul = 

+ [K(l+m)D3 
2 

- Kt D J u2 + [ 2 mD 3-K D 

where m - 2G/E 

J ue 

..• (IV. 8) 

.•. (IV.9) 

•.• (IV .1 0) 



Letting ul 61 (U iwt = e 

u2 62 (!;) 
iwt = e 

ue 68 (0 
iwt = e 

yields upon substitution into (IV.8) to (IV.lO) the 

following systems of equations in matrix form. 

~-D6+alD4+a2D2+a3 

-a4D4-a5D2-a6 
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... (IV .11) 

where 6T 2 2K 2 
al = -

2 2 4 4 ~i a2 = K T (6-m) --r - K + 

4 2 
K

2 s? a3 = K T -

a4 = 4T 

2 
T(3-m)- 4T 3 

as = K 

2 3 
a6 = -K T 

a7 = KT(-2-m) 

3 
a8 = -K T 

6T 2 + 2 
ag = mK 

&12 4 
alO = - T 

all = K(l+m) 

2 
al2 = -T K 

al3 = m 
2 2 2 and &12 pa w 

al4 = -K = E 

Equations (IV .11) are a set of coupled ordinary 

differential equations with constant coefficients. 

0 

= 0 

0 
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Assuming a solution of the form 

lll (t;) = aellf; 

ll2 (t;) = BellE; 

ll 8 ( U = yellf; 

and substituting into (IV .11) yields 

6 4 2 
-ll +a1 ll +a 2ll +a3 

5 3 a 4ll +a 5 ll +a 6ll 3 a 7 ll +a 8ll r 0 

4 2 5 3 3 0 -a ll -a ll -a -ll +a 9ll +a10v a1lll +a12ll = 4 5 6 

2 3 3 0 -a ll -a a11ll +a12ll a13ll +a14ll 7 8 

•.• (IV .12) 

Eliminating Y from (IV.12) yields 

0 

= 
5 3 

-b ll -b ll -b ll 6 7 8 0 

••• (IV .13) 

where b1 = -m 

b2 6mT 2 2 = + K (1-2m) 

b3 
2 2 4 2 4 = K T (10m-2) + K (2-m) + m ( ~ -T ) 

b4 
4 2 6 4 2 K 2 ~ 2 (1+m) = K T (4m-2) + K + T K -

b5 = K4~2 

b6 = 4mT 

b7 
2 T(6m-2) 4mT 2 = K 

b8 2 (1-m) (K 
2 3 4 T) = T K 

bg 2m(3T 2 K2) ·~ = -
MILLS MEMORIAL LIBRARY 

McMASTER UNIVERSITY 



blQ = K2 T
2

(2m-4) + m(~ 2 - K4 - T
4

) 

bll = -K2~2 
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For nontrivial values of a and B in (IV.l3), it is 

required that the determinant of the coefficients of a and 

S in (IV.l3) be zero. 

This leads to the characteristic equation upon 

0 ... (IV. 14) 

There are two zero roots of (IV.l4), corresponding· 

to rigid body motion. These will be neglected from the 

characteristic equation, since only vibratory motions are 

of interest. 

In (IV.l4), the coefficients C., (i = 1, 2 •••• 6) 
l 

are defined as 

c2 [ 2 2 4 + T4) 2~2 J = m 6(2K T + K 

c3 
6 4 2 3 4 2 K6) + 2 [ 2 2 J = 4m (T + 3K T + T K + ~ K (l-3m)+l2mT 

c4 = m T +K +4(T K +K T +1.5K T ) +~ 2K +T K (6m-6) [8 8 62 62 44] 2[ 4 22 

-2mT +m~ 

C5 = n2
K

2
(m+l) [ 2T

2
K

2 
+ K

4 
+ T

4
- n2

] 

c6 = K4~4 

4 2 J 

Neglecting the zero roots the characteristic equa-

tion can be written 

.•• (IV .15) 
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2 where n=~ , in order to reduce the degree of the polynomial. 

In general, the twelve roots~·, (i=l, 2 .... 12) of 
l 

the characteristic equation for a given non-zero frequency 

may be real, imaginary or complex. Depending on the 

nature of the roots the solutions for ~ 1 (~), ~ 2 (~) and 

~ 8 (~) reRult.in different forms. After getting the roots 

~., (i=l, 2 .•... 12), the solutions can be written in the 
l 

form 

~1 (0 

~2 (0 

~8 (0 

12 
~·~ 

= .L: 1 a.e J 
J= J 

12 ~·~ 
= L: s.e J 

j=l J 

12 ~·~ 
= L: y.e J 

j=l J 

... (IV .16) 

where a., i3. and y., (j=l, 2 .•••• 12) are related by 
J J J 

equation (IV.l7) 

a. = 1 
J 

s. = 
J 

3 5 
b8~ .+b7~.+b6~' 

J J J 

2 3 
a8-al2s.~.+a7~.-alli3·~· 

J J J J J y. = 
J 

.•. (IV. 17) 

Equations (IV.l7) are obtained by arbitrarily 

setting a.=l and by solving for 13. andy. from (IV.l3) and 
J J J 

(IV.l2) respectively, for each of the twelve roots ob-

tained. 
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2. Nature of the Roots of the Characteristic Equation 

A negative root n yields two imaginary roots~· and 
J 

~j+l' one being the conjugate of the other. Sj and Sj+l 

will be imaginary, and will occur in complex pairs after 

substitution of ~· and ~j+l in (IV .17) . A similar condi-
J 

tion exists for y. and yj+l" Let the imaginary parts of 
J 

s. and y. be X. and X. respectively. Then the part of the 
J J J J 

general solution (IV.l6) contributed by ~j and ~j+l can 

be written 

L\l (0 = K. Sins.~+ K.+l Cos s.~ 
J J J . J 

= X. (K. Cos s. ~ 
J J J 

... (IV .18) 

where s. is the imaginary part of~·· 
J J 

Similarly, a complex root n yields two complex 

roots ~j and ~j+l' one being the conjugate of the other. 

ej and ej+l will be complex, occurring in complex conjugate 

pairs. Similarly, yj and yj+l will be complex conjugate 

pairs. Let the real parts of 8· andy. be W. and W. 
J J J J 

respectively. Let the imaginary parts of 8· andy. be 
J J 

z. and Z. respectively. Then the part of the general 
J J 

solution (IV.l6) contributed by the pair of comples roots 

l.l· and ~j+l is 
J 

L\1(~) = 
r. ~ 

e J (KjSin sj~+ Kj+lcos sj~) 

L\2(~) = 
r. ~[ 

e J K. (Z.Cos s.~+W.Sin s.~)+K.+l(W.Cos s.~ 
J J J J J J J J 

..• (IV .19) 
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r. E, 
= e J [K. (Z.Cos s.t,+W.Sin s.t,)+K.+1 cw.cos s.E, 

J J J J J J J J 

where rj is the real part of ~j 

and s. is the imaginary part of~·· 
J J 

For the third possibility, a real and positive root 

n yields two read roots ~j and ~j+l' one being the negative 

of the other. Sj and Sj+l will be real, one being the 

negative of the other. Also, yj and yj+l will be real. 

Let the real parts of s. andy. beY andY respectively 
J J 

in this case. Then the part of the general solution (IV.l6) 

contributed by the pair of real roots ~j and ~j+l can be 

written 

..• (IV. 2 0) 

where r. is the real part of~·· 
J J 

For each ~ 1 (t,), as given by (IV.l8), (IV.l9) and 

(IV.20), depending on the nature of ~j and ~j+l' Love's 

approximation ~· = K~ 1 can be. used to obtain the corres­
t 

pending part of the general solution for ~t(E,). 

3. Example 

Consider a hypothetical case where ~l' ~ 2 , ~ 3 , ~ 4 , 

~ 5 , and ~ 6 are imaginary, ~ 7 , ~ 8 , ~ 9 and ~lO are complex, 

and ~ll' ~ 12 are real, the relationships between ~j and 
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~j+l' (j=l, 3, 5 .•••. 11) as outlined in the previous section. 

Then the complete general solutions for ~t(~), ~ 1 (~), 

~ 2 (~) and ~ 8 (~) can be written 

~t ( ~) 
K K = 
51 

(-K1Cos x 1+K2Sin x 1 )+ 
53 

(-K 3cos x 3+K 4Sin x 3 ) 

+ _K_ 

rll 

+ ;
5 

(-K5Cos x 5+K 6Sin x 5 ) 

~ 1 (s) = K1Sin x 1+K 2cos x 1+K3Sin x 3+K4cos x 3+K5Sin x 5+K6Cos x 5 

r7~ rgs 
+ e {K7sin x 7+K8Cos x 7 ) + e (K 9Sin x 9+K10cos x 9 ) 

••• {IV. 2 2) 

+ x5 (K5Cos x 5+K6Sin x 5 ) 

+ er7<[ K7 (z 7cos x 7+w7sin x 7 )+K 8 (w7cos x 7-z 7sin x 7 >] 

+ / g< [ K9 ( z9cos x 9+w9sin x 9 ) +K10 (W9
cos x

9
-z9sin x

9
)] 

+ Yll [ KuCosh (rll<) + K12sinh (rll<)] 0 o o (IVo23) 
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+ x 5 (K 5Cos x 5+K 6Sin x 5) 

+ / 7 ' [ K7 ( z7cos x 7 +W7sin x 7 ) +K8 (W7cos x 7-Z 7sin x 7 )] 

+ / 9 ' [ K9 (Z9cos x 9+W
9
sin x 9 ) +K10 (W9cos x 9 -Z9sin x 9 )] 

where x. = s. F;., (i=l, 3, 5 ..... 11). 
1 1 

... (IV. 2 4) 

Thus, the solutions of the set of differential 

equations (IV.l~) are given by equations (IV.21) to (IV.24). 

The twelve arbitrary constants K., (i=l, 2 •.... 12) are 
l 

determined by imposing the proper boundary conditions at 

both ends of the spring. There are six conditions at 

each end, and altogether, there are twelve conditions to 

be satisfied. 

In general, it is not possible to satisfy all 

twelve conditions simultaneously unless the frequency of 

the oscillations n is a natural frequency of the system. 

If the frequency is one of the natural frequencies, the 

ratios among the arbitrary constants K. can also be 
l 

determined. To illustrate the procedure, consider a 

spring with its ends supported so that there is no rota-

tion, no axial displacement and transverse motion in the 

binormal direction. The boundary conditions can be 

expressed mathematically as 

6 t ( F;. ) = 6 
1
' ( F;. ) = 6 2 ( F;. ) = 6 2 ' ( F;. ) = 6 i" ( F;. ) = 6 

8 
= 0 at F;. = 0 and 9., I a 

•.. (IV. 2 5) 
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These boundary conditions were considered in chapter 

III in connection with the harmonic wave propagation study. 

Imposing the boundary conditions (IV.25) on equations 

(IV.21) to (IV.24) and evaluating at ~=0 and ~/a in turn 

yields 

Dll_. ____ - Dl,l2 Kl 0 
.... 

I 
f 

I = •. (IV. 2 6) 
.... .... I 

• I 
0 D12,1- - --- - - - D12,12 Kl2 

where D .. = D .. (~), and the D .. elements for this example 
l.J l.J l.J 

are shown in Appendix (A.IV). 

In shorthand notation (IV.26) can be written as 

[D] {K} = {0} ••• (IV.26a) 

For nontrivial values of {K}, [D] has to be singu-

lar. Thus a natural frequency of the system under these 

specific boundary conditions is determined by requiring 

the determinant of [D] to be zero, i.e., 

I D I = 0 • • • ( IV . 2 7 ) 

If (IV.27) is satisfied, then {K} can be deter-

mined. Substituting the values of {K} into equations 

(IV.21) to (IV.24) yields the general solution ~t(~), 

~ 1 (~), ~ 2 (~) and ~ 6 (~) respectively. The mode shape for 

that particular frequency is given by the vector function 

~t ( ~) 

~1(~) 

~2 (0 

~ 6 ( ~) 



The simplest way to obtain a natural frequency of 

the system is to assume an initial value of frequency. 

From (IV.lS), the values of~., (j=l, 2 .••... 12) are then 
J 

determined. For a given £/a, the [D] matrix can be formed 

and the determinant of [D] can be evaluated. In general 

IDI will not be zero. Another value of frequency is then 

chosen, and the whole procedure is repeated. Since IDI 

is a continuous function of the frequency parameter ~, a 

plot of IDI against ~ can be made, and the values of ~ at 

which IDI is zero will give a natural frequency of the 

system. By varying the values of £/a a spectrum plot can 

be obtained. A Fortran Program was written to carry out 

the scheme on the IBM 7040 Electronic Digital Computer. 

In particular, a check was made on the frequencies cal-

culated for a spring supported so that the end conditions 

satisfy (IV.25). 

Table IV.l shows that the two methods compare 

favourably in general. Such comparison gives confidence 

that the computer program is operational. Each trial 
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value of frequency takes approximately 5 seconds of machine 

time. This includes the forming and solving of the 

characteristic equation, the forming of the [D] matrix, 

and the evaluation of the determinant of [D] . Most of 

this work was done in double precision arithmetic, since 

the numbers involved in these calculations were relatively 

small, and it was desirable to retain accuracy throughout 

the calculations as much as possible. 



59 

TABLE IV.l 

Spring Data is same as that given in Table III.l 

Frequencies from Frequencies from 
No. of Turns Love's equation General Method 

N cps cps 

6.5 62.73 70.17 62.7 70.2 

6.25 65.19 72.92 71.1 72.9 

6.0 67.85 75.90 67.9 75.9 

5.75 70.74 79.13 79.1 81.9 

5.50 73.88 82.65 73.9 82.7 

5.25 7 7. 3 0 1 86.48 77.3 83.3 86.5 

5.0 81.05 90.69 81.1 90.7 

4.75 85.17 95.32 85.2 

4.50 89.73 100.43 89.7 100.4 

4.25 94.80 106.12 94.7 106.2 

4.0 100.45 112.47 100.5 112.5 

3.75 106.79 119.60 106.8 119.6 

3.5 113.96 127.67 95.8 113.9 127.7 

3.25 122.11 136.87 122.1 136.9 

3.0 131.44 147.42 131.4 147.4 



1. Introduction 

CHAPTER V 

EXPERIMENTAL PROGRAM 

In the previous chapter, it was shown that Love's 

theory and the General Theory presented gave essentially 

the same result. In order to provide an indication of 

the validity of these theories, a series of experiments 

were performed to find the natural frequencies of a helical 

spring and to compare them with theoretical values. In 

the experiment, the spring was held at its ends so that 

there was no axial displacement, no transverse in-plane 

motion, no transverse out-of-plane motion and no torsional 

motion. The ends of the spring were therefore fixed. 

These boundary conditions can be expressed mathematically 

as 

L\t (U = ll 1 (~) = ll 2 (U = L\ 8 (~) = ll]_ (U = L\2 (~) = 0 at ~=0 and £/a 

••• (V. 1) 

Two steel springs of varying lengths were tested 

for these fixed-ended conditions. It was not possible to 

determine the specific material properties of each spring, 

i.e., E and G from tests. However, from samples, the mass 

density of both springs was found to be approximately 

0.734 x 10-3 lb-sec2/in4 , which is the density of steel. 

60 
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Figure V.2 Test Sp~ins in Position. 
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The following assumptions for the material properties of 

the spring were made 

E = 30 X 10 6 psi 6 G = 12 X 10 psi. 

Other measured data for the springs were 

d D Max. No. of Turns 

Spring 1 0.266" 3.0" 6.5 

Spring 2 0.285" 2.9" 7.5 

2. Experimental Set Up 

The general set up of the experiment is shown in 

figure V.l. The ends of the spring were cut, straightened 

and levelled so that they would fit into the fixing 

blocks (A) figure V.ll. The blocks were placed at the 

proper level, so that the entire spring could be slipped 

into position without having to exert any forces on the 

spring. 

Four strain gauges were mounted near the top of 

the spring before placing it into position. The legs of 

the steel table, on which the experiment was performed 

were bolted to the concrete floor, and vibration pads 

separated the floor from the bottom of the legs. The 

frame holding the spring was bolted to the table, 

with a vibration pad between the bottom plate and the 

table top. 

Figure V.ll shows the bottom plate to which small 

T-sections were welded, and the top sliding guide to 
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which larger T-sections were welded. The two fixing blocks 

(A) can be held securely to the web of the T-sections by 

screws on both sides of the blocks. With the strain 

gauges attached, the ends of the spring can be slipped 

into position, and each end can be held by four more screws. 

The driver (B) could now be moved into position as shown 

in figure V.l. The driver arm was attached to the spring 

at about 1/4 turn from the bottom support, and was held to 

the spring by means of a pretensioned rubber band. 

Four strain gauges (Budd Metalfilm Type C6-121-B-120 

ohms ± .2%) were mounted on the spring. Gauges 1 and 2 

were located at about 1/8 turn from the top support. Gauges 

3 and 4 were about 1/4 turn from the support. Gauges 1 and 

3 were placed so as to measure the out-of-plane bending 

strain changes, and gauges 2 and 4 were placed to measure 

the in-plane strain changes. 

3. Equipment 

An oscillator, (C) figure V.l (Mod #4100-Electro), 

frequency range 20-20,000 cps, provided the forcing input 

to the driver, which in turn excited the spring. Any one 

of the gauge readings could be obtained on the Parker Bell 

Dual Beam oscilloscope (D), by switching the leads from the 

scope to the proper gauge through the switching box (E). 

The actual frequency of vibration of the spring for any 

given input could be measured by means of a proximity 
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transducer (F) held close to the point at which the fre­

quency of vibration is desired. This was connected to a 

converter (G) , and then to a frequency counter (H) where 

the frequency WilS read. A schematic diagram of the ex­

perimental set up is shown in figure V.3. 

4. Experimental Procedure 
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With the spring in position, the experiment could 

be performed after allowing about 30 minutes for the 

equipment to warm up. The testing procedure was as 

follows. Starting at the lowest driver frequency, to­

gether with a small amplitude setting on the oscillator, 

the forcing frequency was slowly increased, as the voltages 

corresponding to the strain measures were read at the 

scope for all four gauges. The frequency was slowly in­

creased until resonance was observed. 

As a natural frequency was approached in this way, 

one or more of the gauges showed an increase in amplitude 

on the oscilloscope. At resonance, this amplitude attained 

a peak value, and large motions of the spring were observed. 

At resonance, the following readings are taken: 

(1) oscillator input frequency; (2) spring output frequency 

from the electronic counter; (3) driver and all gauge am­

plitudes. The oscillator amplitude and all range dials on 

the scope were kept at a constant value throughout the 

tests, in order to compare the gauge readings. 
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In addition to measuring the frequencies and gauge 

readings, an attempt was made to distinguish the mode 

shape and type of vibration taking place at resonance. 

This was done by several methods: 

(a) by sight; 

(b) by running a small pointed probe along the 

spring to note the out-of-plane motion and the in-plane 

motion. As the spring vibrated and touched the small 

pointed end of the probe, and idea of the predominant 

type of vibration was obtained; 

(c) chalk marks were also placed at certain points 

along the spring, and the displacement of the chalk par­

ticles was used to indicate the type of vibration taking 

place. The probe was useful in pointing out the node 

points at higher frequencies. The chalk marks were a bit 

more useful than the probe in detecting node points 

because the probe could not easily detect tangential motion 

of the spring. The chalk marks detected tangential motion 

more conveniently because of the blurred effect. At 

resonance there was no blurred effect at the node points. 

At or above the second modes of vibration for 

bending, it became increasingly difficult to measure and 

note the type of motion taking place at resonance. 

Because of this, not more than four natural frequencies 

were found for any length of spring. The procedure was 

repeated by decreasing the input frequency and repeating 

all measurements. 
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5. Comparison of Experimental and Theoretical Results 

Following the procedure outlined in chapter IV, a 

set of equations, similar to (IV.21) to (IV.24) can be 

developed. The exact form of the equations would depend 

on the nature of the roots~., (j=l, 2 .•... 12). A [D .. ] 
J 1. J 

matrix as in equation (IV.26) can be formed after imposing 

the boundary conditions of (V.l) on the general solutions 

obtained. The natural frequencies for this system can be 

found by assuming a trial value of frequency and requiring 

that ID .. (ri) I be zero. In general ID .. (ri) I will not be 
l.J l.J 

zero. Another trial value of frequency is assumed and the 

entire process is repeated. The value of r2 at which 

ID .. (ri) I is zero is a natural frequency of the system. 
l.J 

The experimental and theoretical values of natural fre-

quencies are tabulated in Tables V.l and V.2. The 

greatest difference between the input and output frequency 

of vibration was approximately 1%. Only the resonant out-

put frequencies for the first two modes are presented in 

Tables V.l and V.2. 

6. Discussion of Results 

For the two springs tested, the experimental re-

sults are in general lower than the theoretical results. 

Also, the percentage error is smaller for long springs 

than it is for short springs. The theory predicts the 

two lowest frequencies within 11% at most. 
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TABLE V.l SPRING 1 

Spring data: d = 0.266": D = 3.0": a. = 8.4° 

E = 30 X 10 6 psi: G = 12 X 10 6 psi. 

No. of No. of Experimental Theoretical % Difference 
Turns Nodes freq. freq. 

N w cps w cps 

6.5 0 56.0 63.0 11 I 
0 70.5 70.6 --
1 117.0 127.0 8 
1 138.0 139.9 1 

5.5 0 73.1 74.0 1 
I 

0 80.4 84.5 5 
1 139.1 141.8 2 
1 149.8 154.5· 4 

4.5 0 88.0 90.2 2 
0 97.2 103.2 6 
1 105.7 108.2 3 
1 167.2 169.9 2 

3-5 0 110.3 114.5 4 
0 122.4 122.4 -
1 144.5 143.4 -1 
1 191.5 205.7 7 

2.5 - 155.1 165.7 6 
- 200.2 208.5 8 
- 241.2 - -
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TABLE V.2 SPRING 2 

Spring data: d = 0.285": D = 2.9": a= 7.5° 

E = 30 x 10 6 psi: G = 12 X 10 6 psi. 

No. of No. of Experimental Theoretical % Difference 
Turns Nodes freq. freq. 

N -w cps w cps 

7.5 0 55.8 62.4 9 
0 67.3 71.5 6 
1 117.2 123.0 5 
1 122.4 140.5 13 

6.5 0 69.6 72.5 4 
0 76.0 82.5 7 
1 135.9 142.5 5 
1 140.0 152.3 8 

5.5 0 80.0 86.8 8 
0 87.2 95.2 8 
1 94.3 100.9 7 
1 153.9 166.7 8 

4.5 0 105.7 105.0 1 
0 111.0 112.6 1 
1 178.2 198.1 10 
1 192.0 207.0 7 

3.5 0 122.5 134.1 9 
0 135.1 ' 142.3 5 
- 148.7 172.4 14 
- 217. 238.5 9 

2.5 - 154. 184. 15 - 177. 192. 8 
- 193. 246. 22 
- 262. 292. 10 
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The theory assumes that the spring is stress free 

prior to testing. This assumption is questionable because 

of the induced stresses caused by straightening the ends 

of the spring for testing. Induced stresses due to fab­

rication may be also present. The fixing blocks could 

also provide an applied moment at the ends of the spring, 

thereby creating stresses along the spring. The ends of 

the spring were assumed to be fixed so that conditions 

(V.l) apply. There is a possibility that the ends of the 

spring at resonance could move at the fixing blocks, 

since a perfectly rigid support is difficult to obtain. 

This would lower the true frequency of the spring under 

these end conditions. 

The mode shape of the first frequency observed 

for each spring indicated that in-plane vibration was 

taking place. Out-of-~ane vibration occurred at the 

second observed frequency. A combination of in-plane 

and out-of-plane motion was also observed at times. The 

node points for the higher modes were slightly below the 

middle of the spring, and were well defined in the longer 

springs tested. The mode shape and type of vibration 

were difficult to distinguish as the spring length was 

reduced. Tables V.l and V.2 therefore show no informa­

tion on the number of nodes for springs with 2.5 turns. 



1. Conclusions 

CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The validity of Love's theory was checked with a 

more exact theory, and it was shown that Love's theory 

is good for long springs, and for springs with small 

curvature in general. However, for short springs and 

for springs with large curvature, the more exact theory 

presented in Chapter III should be used to find the 

natural frequencies for the wave propagation problem in 

a helical spring. 

From a comparison of the experimental and 

theoretical results for the helical spring with both ends 

clamped, the following conclusions can be made: 

(i) The frequencies obtained from theory compare 

favourably with those obtained in the experiment, and 

the theoretical frequencies are in general slightly 

larger than the experimental frequencies. It can be con­

cluded therefore that the theory can be used to find the 

natural frequencies for any curved and twisted slender 

rod, the axis of which is in the form of a general space 

curve. 
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(ii) The experimental and theoretical values of 

frequency both show an expected increase in frequency as 

the length of the spring decreases. 

It was shown in Chapter III that Love's fre­

quencies were higher than the frequencies obtained from 

the theory presented. The assumptions made for the 
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e~luation of Love's frequencies are in effect added con­

straints to the system. This would result in frequencies 

greater than the true frequencies. Similarly, the theory 

presented in Chapter III did not take into account shear 

deformation due.to bending. A revised theory taking 

shear deformation into account would be more correct, and 

the frequencies obtained from this theory would be lower 

than those shown in Table III.2. As shown in Chapter V, 

it is not surprising that the experimental frequencies 

are lower than the theoretical frequencies. 

The theory presented can be described as a 

"Generalised Euler-Bernouilli Beam Theory'' for a curved 

and twisted rod. It was shown in Chapter III that the 

theory could be reduced to obtain the known natural 

frequencies for simpler systems, such as rings and straight 

beams. 

2. Recommendations 

Quite a lot of work remains to be done on this 

subject, both analytically and experimentally. The 

following recommendations are suggested. 
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(i) The differential equations and the proper 

boundary conditions should be checked by using the varia-

tional method and Hamilton's Principle. This method 

should give explicitly the natural boundary conditions of 

the ends of the spring. The differential equations should 

check with those obtained in Chapter IV. Once these· 

boundary conditions are obtained, analytical results could 

be obtained for any given end conditions. 

(ii) The material properties of the spring should 

be obtained by experiment or by a curve fitting trial and 

error procedure. 

(iii) More springs should be tested in order to 

obtain a more general picture of how closely the experi-

mental results agree with the theoretical. 

(iv) Although most of the frequency values in 

Table IV.l, obtained by the General Solution method agree 

with those obtained from Love's frequency equation, there 

is some discrepancy. It was only intended to check Love's 

frequencies, and therefore the initial trial value of 

frequency was slightly lower than Love's frequency. 

However, it is noted that for the 3.5 turn spring, the 

General Solution method predicts a frequency of 95.8 cps., 

which is an incorrect value. Because the elements of·the 

[D .. ] matrix are very small numerically, there is a 
l] 

possibility that rounding errors in the computer operation 

could result in this incorrect value. K., (i=l, 2 ..•.. 12) 
l 

could be found for each frequency that makes jD .. I equal 
l] 



to zero, and hence the mode shape could be obtained. It 

may be possible to exclude any erroneous frequencies by 

actually evaluating the mode shape. 
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(v) A similar study should be done without making 

Love's approximations for obtaining the natural frequencies 

of short springs and those with large curvature. 
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APPENDIX 

I. Properties of Helical Spring 

Fig. Aol - Helical Spring 

)( 

.r = R Cos ¢e + R Sin ¢e + p¢e 
X y z 
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r d 3r and 
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ds 3 = 

2 2 Hence T
0 

= p/(R +p ) 

y 

R2e I (R2+p2) 
5/2 

z 

•.. (A.I.4) 

.•. (A.I.S) 

3/2 

••• (A. I. 6) 

The vertical projection of the spring in the x-y 

plane is a circle of radius R. A unit vector along the 

circumference of this circle is 

e =-Sin ¢e + Cos cpe 
X y 

The pitch angle a is defined by 

Cos a = et. e = R I /R
2

+p
2 

a = Tan-l (Pitch/~D) ... (A.I.8) 

A2 
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Radius of gyration for circular section a = d/4 

2 2 2 d 2 
Now K

0 
= R/(R +p ) = Cos a/R and K = aK

0 
= 2D Cos a 

••• (A. I. 9) 

also T
0 

= K
0 

Tan a and T = aT
0 

= K Tan a ... (A.I.lO) 

The Frenet-Serret Formulae as given in many books on 

Elasticity are 

de1 -K e + Toe2 ... (A. I.ll) ds = 
0 t 

de2 -T e ds = 0 1 

II. Half Turn of Spring 

For half turn, = = 

Tan a) 
2 

d K 
= 2D Cos a = Cosa 

T = K Tan a 

in (III.8) 4 2 2 2 2 2 = A (K Sec a-K -K Tan a) = 0 

And (III.8) will yield a zero frequency as long as 

¢=n in Fig. (A.l), or number of turns = 1/2. 

III. Half Turn of Ring 

na na 
For T=O, A= -n = -- = K .., nR 

Then c2 of (III.8) = 0 by inspection, and the fre-



quency equation then yields two zero frequencies. 

IV. Elements of D .. - Eq. (IV.26) 1.] 

The D .. elements of (IV.26) are given by 
1.] 

Dk . 
K Cos s.t;. Dk '+1 

K Sin s.t;. = - - = -
-' J s. J I J s. J J J 

Dk+l . = s.Cos s.t;. Dk+l,j+l = -s. Sin s.t;. 
I J J J J J 

Dk+2 . = X.Cos s.t;. Dk+2, j+l = -X.Sin s.t;. 
,] J J J J 

Dk+3 . = X.Cos s.t;. Dk+3 '+1 = -X.Sin s.t;. 
'J J J ,J J J 

Dk+4 . 
2 

Dk+4, j+l 
2 s. =-s. X.Cos s.~ =s. X. 1.n s.t;. 

, J J J J J J J 

Dk+S ' 
3 

Dk+S I j+l . 
3s. = -s. Cos s.~ = s. 1.n s.t;. 

,] J J J J 

r. ~ 
~<e J . 

2 2 
(r.S1.n s.t;.-s.Cos s.t;.) 

r. +s. J J J J 
J J 
r. ~ 

e J (r.Sin s.~+s.Cos s.t;.) 
J J J J 

r.t;. 
e J (Z . Sin s . ~+W. Cos s . U 

J J J J j=7,9 
r.~ 

Dk t- 3 , j = e J ( Z j Cos s j t;. + W j Sin s j ~ ) 
r.t;. 

e J (c1sin sjt;.+C 2Cos sjt;.) 

r.t;. 
e J (c3sin sjt;.+c 4cos sjt;.) 

A4 

j=l,3,5 
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Dk+l '+1 ,] 

Dk+2 '+1 'J 

Dk+3 '+1 I] 

Dk+4,j+l 

Dk+S 1 j+l 

Dk . = 
I] 

Dk+l
1

j = 

Dk+2 1 j = 

Dk+3 . = 
I J 

Dk+4 . = 
I J 

Dk+S . = 
'J 

r. t;. 
K e J 

(r. Cos s. t;.+ s.Sin s. t;.) = 2 2 J J J J r. +s. 
J J 

r. t;. 
= e J (rjCos s.t;.- s.Sin s . t;.) 

J J J 

r.~ 

= e J (W .Cos s.t;.- ZjSin s. t;.) 
J J J j=7,9 

r.t;. 
= e J (W.Cos s.t;.- Z.Sin s . t;.) 

J J J J 

r.t;. 
= e J (c1cos s.t;.- c 2sin s. t;.) 

J J 

r.t;. 
= e J (c

3
cos s.t;.- c 4sin s . t;.) 

J J 

where 2 2 2r.s.Z. cl = W. (r. -s . ) -
J J J J J J 

2 2 2r.s.W. c ·= Z . ( r. -s . ) + 2 J J J J J J 

r. (r. 2 2 
c3 = -3s. ) 

J J J 

c4 s. (3r. 2 2 = -s. ) 
J J J 

K Cosh r, t;. Dk, j+l 
K Sinh r.t; - = -r. J r. J 

J J 

r. Cosh r . E; Dk+l '+1 = r.Sinh r.t;. 
J J I] J J 

Y. Cosh r. E; Dk+2 '+1 = Y.Sinh r . E; 
J J ,] J J 

'1. Cosh r. t; Dk+3 '+1 = Y.Sinh r. t; 
J J I J J J 

2 Cosh Dk+4 '+1 r. 2Y.Sinh r. Y. r. E; = r. l; 
J J J I J J J J 

3 Cosh r . l; Dk+S '+1 r. 3sinh r. t;. r. = 
J J ,J J J 

With k =1 and t;.=O the first six rows of D. . are 
ll] 

AS 

filled. With k=7 and t;=t/a 1 the last six rows of the D .. l,J 
matrix are filled. 

j=ll 



V. Derivation of Generalised Force-Displacement 
Relationships 

Figure A.2 

In fig. (A.2), let e, U, M and Q be vectors re-

A6 

presenting the resultant rotation, displacement, internal 

moment and internal force respectively at a cross section 

s, so that 

8 = elel + e2e2 + etet 

u = ulel + u2e2 + utet 

M = Mlel + M2e2 + Mtet 

Q = Qlel + 0 2e2 + Ntet 

Consider the deformation of element ds. The 

rotation of the cross-section (s+ds) relative to that 

of the sections is(~~} ds. 

By definition of flexural and torsional 

rigidities: 

( ~ ~) ds ... (A.II.l) 
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Also, the displacement of section (s+ds) relative to that 

of section s is 

... (A.II.2) 

where st' sl and s2 are the torsional and two flexural 

rigidities of rod, 

crt' cr 1 and cr 2 are the extensional and two shear 

rigidities of the rod. 

C.ancel ds from (A. II .1) and perform the differ-

entiation to yield 

••• (A. II. 3) 

From (A.II.2) similarly 

aut au1 _ _ _ au 2 
as- et + UtKOel +as- el + Ul(TOe2-Koet)+ as- 8 2- U2Toel 

~ :: et + (~~ + a2 ) e1 + (~~- a1 ) e2 ••• (A.II.4l 

Collecting terms from (A.II.3) and (A.II.4) and 

normalising the equations yields 

aMt = st [ 8 I - K8l) o •. (A".II.Sa) t 

aM1 = sl (8tK+8i-8 2 TJ o .• (A.IIoSb) 

aM2 = s2 (8 1 c+8.2) o •• (A.II.Sc) 

Nt = crt [U' - KUl) ooo(A.II.Sd) t 
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Ql 
+ 82 UtK + u~ U2T = -1 ... (A.II.Se) 

01 

Q2 
81 UlT + Ul - = 2 ... (A. I I. 5 f) 

02 

If shear deformation is neglected, then o 1=o 2 ~oo. 

Using the last two equations, substitute for 81 

and 82 in the first three equations to yield 

aMt = GIP [ 8 I + KTUl + KU I] 
t 2 

aM1 = EI (K8t - TKUt - T 1 U -2,U 1 + ,2u2-u2J 1 1 

aM2 EI [KU 1 + K 1 U + U" 2 2TU 1 T 1 U ) = - , u
1 - -t t 1 2 2 

and N = EA [U' - KUl] t t 

which are the free-displacement relationships. 

VI. Flow Charts and Computer Program 

The flow charts shown in figures A.3 and A.4 show 

a brief outline of the computer programs used for the 

analytical results. No attempt has been made to show 

the details involved in the programs. However, figure A.3 

shows a great deal of the Wave Propagation Program, as 

this was relatively simple. 

Figure A.S is the actual program used for the 

General Solution method. The appropriate boundary condi-

tions must be chosen for the system under study. 
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FLOW CHART-WAVE PROPAGATION PROBLEM 

l READ DATA- EPG,d,D,p' PITCH I 

l CALC. K, ~ A.,Q I 
It 

1 FORM [/3] MATRIX (111.5) I 
!-

USE JACOBi'S ROTATION FOR D.. ,7(. 
I I 

I WRITE FREQUENCIES a EIGENVECTORS J 

1 CALC. COEFFICIENTS OF LOVE'S FREQ. EQ. j 

i CALC. LOVE'S FREQUENCIES I 

I WRITE LOVE'S FREQUENCIES j 
·. 

~ 

I STOP I 

FIG A.3 WAVE PROPAGATION FLOW CHART 
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FLOW CHART FOR GENERAL PROBLEM 

READ DATA- E G d D 

I CALC. ROOTS OF CHAR. BY BAIRSTOWS METH.l 
i 

CALC~,7 of(IV.6) X.,X.,Z.,Z., etc. 
• {}j J J J J J J 

FORM GEN. SOLN. AS IN (IV.20-(IV.24) 

INTRODUCE BOUNDARY CONDITIONS 

FORM LD] MATRIX OF {IV.26) 

WRITE I 01 , SPRING LENGTH etc 

yes 

FIG A.4 GENERAL SOLUTION FLOW CHART 
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c 

DOUBLE PRECISION KtK2tK4tK6tTtT2tT4tT6tALtC1tC2tC3•EBtFR02tVALDET, 
1F1tF2•F3tF4tF5•F6tVtYYYtDETtDETERtWtPtZZ,TTtXtXXtAL 

D I~~ ENS I ON E B ( 7 l 'A ( 12 l 'B ( 12 l 'A C ( 1 3 l 'Y Y ( 12 l 'Y ( 12 l , REA Y Y ( 12 l , A I .\1 Y Y C 1 2 
lltDETERC12•12ltDETC12tl2l 

COMPLEX YtAtBtYY 
LOGICAL PIMAGtCOMLXtPREAL 
COMMON YtPLNGtCONVGtOVFLQW,UNFLOWtFPStPINFINtK 

EtG = YOUNG 1 S AND SHEAR MODULUS 
RHO = DENSITY TWOPI=2•*PI 
RODIAM=ROD DIAMETER 
DIAM= SPRING DIAMC OUT TO OUT OF COIL) 
PTCH=PITCH ( OUT TO OUT OF COIL) 

READC5t92)EtGtRHOtTWOPitRODIAMtJIAMtPTCH 
FOR~ATC3ElC.O,FlO.Ot3F5.0l 

TL IS THE ITERATION TOLERANCE FOR DETERMINING THE 
RESONANCE FREQUENCY. IF THE FREQUENCY INTERVAL IN WHICH 
WE ARE WORKING IS LESS THAN OR EQUAL TO TLt WE SAY WE HAVE 
FOUND THE RESONANCE FREQUENCY. 
READ(5tllUNFLOWtOVFLOWtEPS,PINFINtTL 
FORMAT<4E6e0tF10.0) 

IROOTStiDIAGtiDETtiDIAEL ARE CONTROL NUMBERS. 
IF THEY ARE NEGATIVE OR POSITIVE• CERTAIN INFORMATION IS WRITTFN 
I.E. THE ROOTS, THE TRIANGULISED ~ATRIXt THE 12*12 DETERMINANT ETC. 
IF ZERO• THESE BITS OF INFORMATION ARE NOT WRITTEN IN OUTPUT. 
NOCARD= NO. OF DATA CARDS TO BE READ --SEE FORMAT 14. 

READ<5•93) IROOTStiDIAGtiDETtiDIAELtNOCARD 
FORMATC5I2l 
RGYR=RODIAM/4. 
CONST=TWOPI**2*RHO*RGYR**2/E 
CONS=360./TWOPI 
COILD=DIAM-RODIAM 
PITCH=PTCH-RODIAM 
PIT=PITCH/TWOPI 
ANGLE=ATANC2.0*PIT/COILDl 
ANG=ANGLE*CONS 
K=COS<ANGLEl**2*RODIAM/C2eO*COILDl 
T=K*TAN<ANGLEl 
K2=K**2 
K4=K2**2 
T2=T**2 
T4=T2**2 
T6=T2*T4 
K6=K2*K4 
AL=2e*G/E 
Cl=6.*AL*<2.*K2*T2+K4+T4) 
C2=4e*AL*(T6+3.*K4*T2+3e*T4*K2+K6l 
C3=AL*<T2*T6+K2*K6+4.*(T6*K2+K6*T2+1e5*T4*K4)l 

C AC<Il= THE COEFFICIENTS IN EQUATIONS IVel2 AND IV.13 
c 



c 

ACill=-4.*AL*T 
ACI2l=4.*AL*T2*T+K2*T*I2.-6.*ALl 
ACI3J=2.*11.-ALl*K2*T*IK2-T21 
ACI4l=-AL 
ACI5l=2e*AL*I3.*T2-K2l 
ACI8l=K*T*I2.+All 
ACC9l=T*K2*K 
AC(lG l =K*Ile+AL l 
ACilll=-K*T2 
ACI12)=AL 
ACI13)=-K2 
Fl=l+e*AL*IK2+T2 l 
F2=K2*11.-3.*All+l2e*AL*T2 
F3=2e*K4+<6.*AL-6e)*T2*K2-2e*AL*T4 
F4=2e*T2*K2+K4+T4 
F5=K2*1AL+lel 
F6=K2*T2*2e*IAL-2.)-AL*(K4+T4l 
DO 15 MIT=ltNOCARD 

Al2 

C OMEGA:FIRST TRIAL FREQUENCY• OMEGL THE MAX., OMEGI THE INCREME~T. 
C TURNS= NUMBER OF TURNS IN SPRING. 
c 

READ<5•14lOMEGAtOMEGL•OMEG!tTURNS 
14 FORMATC4F5e0) 

SNO=TURNS*TWOPI 
WRITEI6t59l 

59 FOR~ATI1Hl/14H ANGLEtl0Xt5HPITCH,6Xtl3HROD DIAMETERt2Xtl3 
lHCOIL DIAMETERt4Xt9HCURVATUREt7X•7HTORSIONt7Xtl2HNORM LENGTH) 
WRITE16t58l 

58 FORMATC13H DEGtl2Xt3HINetl2Xt~HINetl2Xt~HIN.l 
SLNGTH=SQRTC ICOILD/2el**2+PIT**2l*SNO 
PLNG=SLNGTH/RGYR 
RPLNG=RGYR/SLNGTH 
WRITEI6•641ANG•PITCHtRODIAMtCOILDtKtTtPLNGtRPLNG 

64 FORMATI1H0t7Fl5e5tEl5.5) 
c 
C FROMI110) TO 11151 WE TAKE A FREQUENCY AND FIND VALUE OF 
C DETERMINANT D. WE NOTE THIS VALUE, INCREASE FREQUENCY 8Y 
C O~EGI AND FIND A NEW VALUE AGAIN. 
c 

c 

110 OMI=m·iEGI 
ICOUNT=O 
ILW=CJ 
NM=O 
D1=0• 
OM=O• 

C CALCULATE SQUARE OF NORMALISED FREQUENCY 
c 

130 FRQ2=0MEGA*OMEGA*CONST 
EBili=AL 
EBI21=F1 
EBI3l=Cl-2e*AL*FRQ2 
E814l=C2+FR02*F2 
EBI5l=C3+FR02*1F3+AL*FRQ2) 
E8(6)=F5*FR02*<F4-FRQ2l 



c 

EB<7l=K4*FR02**2 
AC(6J=F6+AL*FRQ2 
AC<7l=-K2*FRQ2 

Al3 

C CALL ROOTS2 TO GET ROOTS OF CHARACTERISTIC FQUATION. 
C IF !ROOTS IS + OR - THE ROOTS ARE WRITTEN--- IF ZERO, NOTHING 
C IS WRITTEN. 
c 

c 

CALL ROOTS2CEBtYtiROOTSl 
DO 117 I=1t11t2 

117 YY(IJ=Y<Il**2 
DO 119 1=1,11,2 

119 A< I l =- ( Y ( I l * ( AC ( 3 l + YY ( I l * ( AC ( 2 l + YY ( I l *AC ( 1 l l > l I< AC ( 7 l + YY ( I l * ( AC < r; l 
1+YY!Il*<AC!5l+YY!Il*AC!4) l) l 

DO 12 2 I= 1 d 1 '2 
12 2 B (I)= ( AC ( q l +Y (I l * (A (I l *AC ( J J l +Y ( I l * ( AC ( R l +Y (I l * (A (I) *AC ( 10 l l l l l I<-

1Y( I l*<ACC 13l+YY! I l*ACC 12 l l l 
DO 21 J=1d1'2 
REAYY(Jl=REAL!Y(Jll 

21 AIMYY(Jl=AIMAG<Y<Jl l 

C TESTS TO SEE WHETHER ROOT IS PURE IMAGINARY, COMPLEX OR REAL. 
C AFTER THIS DECISION IS MADE, TWO COLUMNS OF THE 12*12 MATRIX 
C ARE OBTAINED FROM THE SUBROUTINES PIMAGitCMLXI,OR PREALI. 
c 

c 
c 

450 DO 700 J=1t11t2 
PIMAG=REAYYCJleEQ.O.U.ANDeAIMYY(JleNE.OeO 
IFCPIMAGJGO TO 73 
COMLX=REAYY<JleNE.O.O.AND.AIMYY(JleNEeOeO 
IFCCOMLXl GO TO 74 
PREAL=REAYY(Jl.NE.O.O.AND.AIMYYCJleEOeOeO 
IF!PREALJGO TO 71 

73 X=AIMAGCA{J)) 
XX=AIMAG(B(J) l 
CALL PIMAGICX,XXtJ,DETJ 
GO TO 70 

74 ~v=REAL( A ( J l l 
P=REAL<B<Jl l 
ZZ=AH'iAG(A(Jl l 
T T =A I MAG. ( B ( J ) l 
CALL CMLXI!WtPtZZtTTtJ•DETl 
GO TO 70 

71 V=REALCACJ)) 
YYY=REAL!B(Jll 
CALL PREALI!VtYYY•J•DET> 

70 JJ=J+1 
DO 700 L=J,JJ 
DO 700 I=1d2 

70C DETERCI,Ll=DETCitLl 

C WE HAVE FORMED THE 12*12 DETERMINANT. IF WE WANT TO WRITE 
C IT OUT THEN IDET MUST BE+ OR -.IF WE DON'T WANT IT 
C IDET MUST BE ZERO. 
c 
c 



Al4 
IF<IDETJ540t530t540 

540 
1214 

c 

WRITEC6t1214l ( <DETERCitJl•J=1•12l ti=1•12l 
FORMATC1Xt12E10.31 

c 
c 
c 

WE THEN CALL DETTRI• TAKING INTO THAT SUBROUTINE THE 12*12 
DETERMINANT, IDIAGt AND IDIAEL IN ORDER TO GET THE DETER~INANT 
OF THE 12*12 MATRIX. 

530 CALL DETTRI<DETERtVALDETtFACTORtNNtiDIAGtiDIAELl 
WRITE<6t193)0MEGAtFRQ2,VALDETtFACTORtNN 

193 FORMATC1H0t10HFREQUENCY=tF7e2t1Xt3HCPSt5Xt20HNORM. FREQ. SQUAReD=, 
1E18e8t5Xt12HDETERMINANT=t1PE20e8t5Xt7HFACTOR=t1PE11·2•1Xt2H**•I2l 

IFCCOMEGA-OMleLEeTLl GO TO 260 
ICOUNT=ICOUNT+1 
IFCOMEGA.GT.OMEGLI GO TO 15 
IFCICOUNT.GT.1l GO TO 230 

210 D1=VALDET 
OM=OMEGA 
IF<ILW.GE.ll OMI=Oe5*0MI 
OMEGA=OMEGA+OMI 
GO TO 130 

230 IF<D1*VALDETI 240t26Ut210 
260 WRITEC6t1941 
194 FORMATC1H0t19HRESONANCE FREQUENCY) 

IFCNM.LE.11 OMEGAS=OMEGA 
OMEGA=OMEGAS 
GO TO 110 

240 NM=NM+1 
ILW=ILW+1 
IFCNM.EQ.1l OMEGAS=OMEGA 
OMI=0.5*0MI 
OMEGA=OM+OMI 
GO TO 130 

15 CONTINUE 
250 CALL EXIT 

END 
$IBFTC ROOTS2 

SUBROUTINE ROOTS2CCOtSStiROOTSJ 
COMPLEX XtYtTEMPtPtSS 
DIMENSION CO ( 7 I' S C 6 I 'XC 6 I' R ( 6 l 'R I ( 6 l 'Y ( 12 l, P ( 12 I' A IMP ( 12 I, 

1REALP<12ltSIC6ltREAPPC12ltAIMPP(12)tSSC1?l 
DOUBLE PRECISION COtS,SI 
LOGICAL SHUFF1tSHUFF2tSHUFF3tPIMAGtCOMPtPREAL 

c 
C USE BAIRSTOW•S METHOD TO FIND ROOTS OF CHAR EQUATION 
c 

CALL DBAIRS<COtStSit6) 
DO 11 I=1t6 
RCil=SCI> 

11 R I (I I =S I (I l 
DO 29 I=1t6 

29 X<IJ=CMPLXCRCiltRI<II I 
DO 17 I=1t6 
YC2*I-1l=CSQRTCXCIJl 

17 YC2*I I=-Y<2*I-1l 
DO 52 I=ltl2 
PCil=YCIJ 



c 

REALP! I l=REAL!P! I l J 
52 AIMP!Il=AIMAG!P!Ill 

Al5 

C THE COMPLEX ROOTS WILL OCCUR IN GROUPS OF 4. 
C THIS READJUSTS THEM IN 2 GROUPS OF 2' EACH GROUP 2 BEING 
C A COMPLEX PAIR-- I.E. THEY ARE CONJUGATES. 
c 

DO 15 I=1t9t4 
SHUFF3=ABS!REALP( I) l .NE.O.O.AND.ABS!AIMP! I) l .NE.O.O 
IF!SHUFF3JGO TO 16 
GO TO 15 

16 TEMP=P!I+ll 
PCI+1l=P!I+2l 
P!I+2l=P!I+3l 
PCI+3l=TEMP 

15 CONTINUE 
DO 13 I= 1 tl1 , 2 
SHUFF2=ABSCREALP!Ill.EQ.O.O 
IFCSHUFF2JGO TO 9 
SHUFFl=ABSCAIMPCIJJ.EQ.O.O 
IFCSHUFFllGO TO 7 
GO TO 13 

7 PC I l=CMPLXCREALP( I l ,o. l 
PC I+ll=CMPLXC-REALP(IltO.l 
GO TO 13 

9 P!Il=CMPLXCO.tAIMP!Ill 
PC I+l l=CONJG!PC Ill 

13 CONTINUE 
IF<IROOTSl 30t31,30 

30 WRITEC6,5ll 
51 FORMAT!10X,17HSQ. ROOT OF ROOTSt23X,14HSHUFFLED ROOTSt23X,l3HORD~R 

lED ROOTS) 
31 DO 14 I=lt11t2 

REAPPCI>=REAL!P!Ill 
14 AIMPPCIJ=AIMAG!P(Ill 

K=O 
DO 1 I=1tllt2 
PIMAG=REAPPCil.EQ.O.O.AND.AIMPPCil.NE.O.O 
IF<PIMAGl GO TO 3 
GO TO 1 

3 K=K+l 
SS!Kl=PC I) 
K=K+1 
SSCKl=P!I+ll 

1 CONTINUE 
DO 4 I=1tl1t2 
COMP=REAPP< I l eNE.O.O.ANDeAIMPP< I l eNE.OeO 
IFCCOMPl GO TO 5 
GO TO 4 

5 K=K+1 
SS!Kl=P! I l 
K=K+l 
SS(Kl=PCI+ll 

4 CONTINUE 
IFCK.EQ.l2l GO TO 66 
DO 6 I=lt11t2 



PREAL=REAPP<IJ.NE.O.O.AND.AIMPP<Il.EO.o.o 
IF<PRFALJ GO TO 8 
\I/ R I T E < 6 ' 1 0 1 0 l K 

1010 FORMATC30X,I3J 
STOP 

8 K=K+l 
SS<Kl=P<IJ 
K=K+1 
SS(KJ=P<I+1l 

6 CONTINUE 
66 CONTINUE 

IFCIROOTSl 32,33,32 
32 WRITEC6,53J(Y(Il•P<Il•SSCIJ•I=1•12l 

Al6 

53 FORMATI1X•2HREtEl7e8•2X•2HIM•El7e8t3X•2HREtE17•8•2X,2HIM•El7•A•3X, 
12HRE,E17e8•2X,2HIM•E17.8l 

33 CONTINUE 
RETURN 
END 

$lBFTC DETTRI 

c 

SUBROUTINE DETTRI(A,VALDET,FACT,LtiDIAG,IDIAELl 
COMMON Y,PLNG•CONVG•OVFLOW,UNFLOW,EPS•PINFIN,CUV 
DOUBLE PRECISION A•BIGA,T1,T2,DIV,VALDET,CUV 
COMPLEX Y 

C THIS SUBROUTINE FINDS THE VALUE OF THE DETERMINANT 
C BY TRIANGULATION. ONCE THE DETERMINANT IS TRIANGULISED, 
C THEN THE VALUE OF THE DETERMINANT IS THE PRODUCT 
C OF THE DIAGONAL ELEMENTS. 
c 
C IN THIS SUBROUTINE EPS IS A VERY SMALL NUMBER 
C PINFIN IS A VERY LARGE NUMBER 
C OVFLOW IS A LARGE NUMBER 
C IF THE VALUE OF THE DETERMINANT EXCEEDS THIS NUMBER 
C WE REDUCE IT. SIMILARLY UNFLOW IS A SMALL NUMBER- IF THE 
C VALUE OF THE DETERMINANT IS SMALLER THAN THIS NUMBER 
C WE BOOST IT. 
c 

DIMENSION YC12ltA<12,12J 
55 DO 99 J=1d1 

JONE=J+1 
BIGA=DABSCA(J,Jl l 
SIG=l. 
K=J 
DO 100 JMAG=JONEtl2 
IFIDABSCACJMAG,Jll-BIGAl 100t100,101 

101 BIGA=DABSCA<JMAGtJ) l 
K=JMAG 
SIG=-1. 

100 CONTINUE 
DO 102 N=Jtl2 
T1=AIKtNl 
T2=ACJtNl 
AIJtNl=Tl*SIG 

1U2 A(K,Nl=T2 
DO 104 N=JONE,12 
DIV=ACN,Jl 



DO 104 MULT=Jt12 
1J4 A<NtMULTl=A<Nt~ULTl-A(JtMULTl/A(J,Jl*DIV 

99 CONTINUE 
IF<IDIAGl 2tl1t2 

2 WRITE(6t1213l ( <A<ItJltJ=1,12l,l=1t12l 
1213 FORMAT(1Xt12E10.3) 

11 IF<IDIAELl 20t2lt20 
20 ~-JRITE(6tlU6l 

Al7 

106 FORMAT(1Xt58HPRODUCT OF THESE DIAGONAL ELEMENTS = DETERMINANT OF ~ 
lATRIX) 
WRITE(6tl07l <A< I til d=1tl2l 

107 FORMAT<1Xt6El7.8l 
21 DO 3 I=lt12 

3 IF<A<It!l.EQ.O.l GO TO 5 
GO TO 7 

5 WRITE(6t4l 
4 FORMAT<lH0t34HAT LEAST ONE TERM ON DIAGONAL = O.l 

FACT=l. 
VALDET=O• 
L=O 
GO TO 109 

7 NBIG=O 
NSMALL=O 
VALDET=l. 
DO 105 I=lt12 
VALDET=VALDET*A<Itil 
IF<DABS(VALDETl.LT.UNFLOWl GO TO 108 
IF<DABS<VALDETl.GT.OVFLOWJ GO TO 110 
GO TO 105 

108 FACT=PINFIN 
NBIG=NBIG+1 
GO TO 1070 

110 FACT=EPS 
NSMALL=NSMALL+l 

1070 VALDET=VALDET*FACT 
IF(DABS<VALDETJ.LT.UNFLOWl GO TO 108 
IF<DABS(VALDETl.GT.OVFLOWl GO TO 110 

105 CONTINUE 
IF(NBIG-NSMALLl l4tl3tl5 

14 L=NSMALL-NBIG 
FACT=PINFIN 
GO TO 109 

15 L=NBIG-NSMALL 
FACT=EPS 
GO TO 109 

13 L=O 
FACT=1e 

109 CONTINUE 
RETURN 
END 



Al8 
C THIS PACKAGE OF SUBROUTINES PIMAGitCMLXI,AND PREALI IS FOR 
C BOUNDARY CONDITIONS AS STATED IN EQUATIONIIV.251. 
C THE SU9ROUTINES EVALUATE THE ELEMENTS OF TWO COLUMNS IN THE 
C D MATRIX FOR ANY CNE ROOT. 

$IBFTC PIMAGI 
SUBROUTINE PIMAGI IXtXXtJtDETl 
COMPLEX Y 
DOUBLE PRECISION CUVtXtXXtDETtStS2tS3tCtSZ,COSSZ,SINSZ,ZtCl 
DIMENSION DETC12tl2ltYC121 
COMMON YtPLNGtCONVGtOVFLOWtUNFLOWtEPStPINF!NtCUV 
S=AIMAGIYIJ) I 
S2=S*S 
S3=S*S2 
C=CUV/S 
Cl=S2*X 
Z=O• 
DO 30 K=lt7t6 
SZ=S*Z 
COSSZ=DCOSCSZl 
SINSZ=DSINISZl 
DETCKtJl=-C*COSSZ 
DETCKtJ+ll=C*SINSZ 
DETCK+ltJ)=S*COSSZ 
DETCK+ltJ+ll=-S*SINSZ 
DET(K+2tJ)=X*COSSZ 
DETIK+2tJ+l)=-X*SINSZ 
DETCK+3tJI=XX*COSSZ 
DETIK+3tJ+ll=-XX*SINSZ 
DETCK+4tJl=-Cl*COSSZ 
DETIK+4tJ+ll=Cl*SINSZ 
DETCK+5tJ)=-S3*COSSZ 
DETCK+5tJ+ll=S3*SINSZ 

30 Z=PLNG 
RETURN 
END 

$!BFTC CMLXI 
SUBROUTINE CMLXIIWtPtZZtTtJtDETl 
COMPLEX Y 
DOUBLE PRECISION cuv,w,p,zz,T,DETtRtStR2•S2•R3•S3tCtSZtZt 

1SINSZEtCOSSZEtEXXtCltC2tC3tC4 
DIMENSION DETI12tl2l,YC12l 
COMMON YtPLNGtCONVGtOVFLQW,UNFLOWtEPStPINFINtCUV 
R=REAL(Y(J) l 
S=AIMAGCYIJJ l 
R2=R*R 
R3=R2*R 
S2=S*S 
S3=S2*S 
C=CUV/(R2+S2l 
Cl=(R2-S2J*W-2.*R*S*ZZ 
C2=CR2-S2l*ZZ+2e*R*S*W 
C3=R*IR2-3.*S2) 
C4=S*I3e*R2-S21 
Z=O. 
DO 30 K=lt7t6 



SZ=S*Z 
EXX=DEXP(R*Zl 
COSSZE=DCOS(SZl*EXX 
SINSZE=DS!N(SZl*EXX 
DET(K,Jl=C*(R*SINSZE-S*COSSZEl 
DET(K,J+ll=C*(R*COSSZE+S*SINSZEl 
DET(K+ltJl=R*SINSZE+S*COSSZE 
DET(K+l•J+ll=R*COSSZE-S*SINSZE 
DET(K+2•Jl=ZZ*COSSZE+W*SINSZE 
DET(K+2•J+ll=W*COSSZE-ZZ*SINSZE 
DET(K+3•J)=T*COSSZE+P*SINSZE 
DET(K+3•J+l)=P*COSSZE-T*SINSZE 
DET(K+4tJl=Cl*SINSZE+C2*COSSZE 
DET(K+4•J+ll=Cl*COSSZE-C2*SINSZE 
DET(K+5•Jl=C3*SINSZE+C4*COSSZE 
DET(K+5•J+ll=C3*COSSZE-C4*SINSZE 

30 Z=PLNG 
RETURN 
END 

$IBFTC PREALI 
SUBROUTINE PREALI(V,YYtJtDETl 
COMPLEX Y 

Al9 

DOUBLE PRECISION CUVtDtEtRtR2tR3,CtVtDET,yy,z,RZ,R2V 
DIMENSION DET(l2•12l,Y(l2l 

" COM~ON YtPLNGtCONVG,OVFLOW,UNFLOWtEPS,PINFJN,CUV 
R=REAL(Y(Jl l 
R2=R*R 
R3=R2*R 
C=CUV/R 
R2V=R2*V 
Z=O. 
DO 30 K=l.7t6 
RZ=R*Z 
D=DCOSH(RZl 
E=DSINH(RZl 
DET(K,Jl=C*D 
DET(K,J+ll=C*E 
DET(K+ltJl=R*D 
DET(K+ltJ+ll=R*E 
DET(K+2tJl=V*D 
DET(K+2•J+ll=V*E 
DET(K+3•Jl=YY*D 
DET(K+3•J+ll=YY*E 
DET(K+4•Jl=R2V*D 
DET(K+4tJ+ll=R2V*E 
DET(K+5tJl=R3*D 
DET(K+5tJ+ll=R3*E 

30 Z=PLNG 
RETURN 
END 
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C THIS PACKAGE OF SUBROUTINES PI~AGitCMLXItAND PR~ALI IS FOR 
C BOUNDARY CONDITIONS AS STATED IN EOUATIONIV.ll. 
C THE SUGROUTINES EVALUATE THE ELEMENTS OF TWO COLUMNS IN THE 
C D MATRIX FOR ANY ONE ROOT 

$IBFTC PIMAGI 
SUBROUTINE PIMAGI IXtXXtJtDETl 
COMPLEX Y 
DOUBLE PRECISION CUVtXtXX,DET,s,sz,cossz,siNSZtZtC 
DIMENSION DETI12tl2ltYI12l 
COMMON YtPLNGtCONVGtOVFLOWtUNFLOWtEPStPINFINtCUV 
S=AIMAG(Y(Jl l 
Z=O. 
C=CUV/S 
DO 30 K=lt7t6 
SZ=S*Z 
COSSZ=DCOSISZJ 
SINSZ=DSINISZ) 
DETIKtJl=-C*COSSZ 
DETIKtJ+ll=C*SINSZ 
DETIK+ltJ)=SINSZ 
DETIK+ltJ+lJ=COSSZ 
DETCK+2tJl=S*COSSZ 
DETIK+2tJ+ll=-S*SINSZ 
DETIK+3tJl=X*COSSZ 
DETCK+3tJ+lJ=-X*SINSZ 
DETCK+4tJ)=-X*S*SINSZ 
.DET ( K+4 t J+l l =-X*S*CJSSZ 
DETIK+5tJl=XX*COSSZ 
DETCK+5tJ+ll=-XX*SINSZ 

30 Z=PLNG 
RETURN 
END 

$IBFTC CMLXI 
SUBROUTINE CMLXICWtPtZZtTtJtDETl 
COMPLEX Y 
DOUBLE PRECISION CUVtWtPtZZtTtDETtRtStSZtZtSINSZEtCOSSZEtEXXt 

1CltC2tC 
DIMENSION DET<l2tl2),y(l2l 
COMMON YtPLNGtCONVGtOVFLOWtUNFLOWtEPStPINFINtCUV 
R=REAL(Y(JJ l 
S=AIMAGIY(JJ) 
Cl=R*ZZ+W*S 
C2=R*W-ZZ*S 
C=CUV/IR**2+S**2l 
Z=O. 
DO 3LJ K=lt7t6 
SZ=S*Z 
EXX=DEXPIR*Zl 
COSSZE=DCOSISZl*EXX 
SINSZE=DSINCSZl*EXX 
DETIKtJl=C*IR*SINSZE-S*COSSZFl 
DETIKtJ+ll=C*(R*COSSZE+S*SINSZEl 
DET<K+ltJl=SINSZE 
DETIK+ltJ+lJ=COSSZE 
DETCK+2tJl=R*SINSZE+S*COSSZE 



DET(K+2tJ+ll=R*COSSZE-S*SINSZE 
DET<K+3tJ)=ZZ*COSSZE+W*SINSZE 
DET(K+3tJ+ll=W*COSSZE-ZZ*SINSZE 
DET(K+4tJl=Cl*COSSZE+C2*SINSZE 
DET(K+4tJ+ll=C2*COSSZE-Cl*SINSZE 
DET(K+5tJl=T*COSSZE+P*SINSZE 
DET<K+5tJ+ll=P*COSSZE-T*SINSZE 

30 Z=PLNG 
RETURN 
END 

$IBFTC PREALI 
SUBROUTINE PREALI(V,YYtJtDETl 
COMPLEX Y 
DOUBLE PRECISIONCUVtDtEtRtVtDETtYYtZtRZtC 
COMMON YtPLNGtCONVGtOVFLO~tUNFLOWtEPStPINFINtCUV 
DIMENSION DET<l2tl2l,Y<l2l 
R=REAL(Y(J)) 
C=CUV/R 
Z=O• 
DO 30 K=lt7t6 
RZ=R*Z 
D=DCOSH<RZ) 
E=DSINH(RZl 
DET(KtJl=C*D 
DET(K,J+ll=C*E 
DET(K+ltJl=E 
DET(K+ltJ+ll=D 
DET<K+2tJl=R*D 
DET(K+2tJ+ll=R*E 
DET<K+3tJ)=V*D 
DET<K+3tJ+l)=V*E 
DET<K+4tJl=V*R*E 
DET<K+4tJ+ll=V*R*D 
DET<K+5tJ)=YY*D 
DET(K+5tJ+ll=YY*E 

30 Z=PLNG 
RETURN 
END 
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