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SCOPE AND CONTENTS: 

Using atomic beam magnetic resonance techniques the 

hyperfine structure (hfs) constants for the magnetic dipole 

and electric quadrupole interaction, AJ and BJ' have been 

measured for the following isotopes: 40-hour 140La, 1.8-hour 
149Nd and 11-day 147Nd. 

For 140La the hfs constants are (relative to the 
2 J = 5/2 state of D) IA512 1 = 55.9(4) MHz, IB512 1 = 38(4) MHz, 

B512;A512 > 0. Application of the Fermi-Segre relations in 

comparison with 139La yields the nuclear moments; 

].li = (+}0.73(3) n.m., and Q = (+}0.11(4) b. The adopted signs 

are based on Blok's measured sign of Q for 140La. 

For 149Nd the hfs constants are: IA4 1 = 91.0(19) MHz, 

IB4 1= 266(53) MHz, and B4/A4 > 0. Comparison with 145Nd 

yields ].li = (-)0.350(10) nm., and Q = +1.3(3)b. The signs 

of these moments are based on Q>O as indicated by nuclear 

systematics in this region. 
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For 147Nd the hfs constants are IA4 1 = 143(4) MHz, 

IB4 1=181(64) MHz, and B4/A4> 0 • Comparison with 145Nd 

yieldslllrl = 0.553(15) n.m.; lol = 0.9(3) band J..li/Q <0. 

The error in the 140La magnetic moment allows for 

a possible 2% hfs anomaly. The quadrupole moments allow 

for a possible 25% error in the core polarization correction 

(Sternheimer). 

These results are discussed in terms of the 

shell model, the quasi-particle model, and the Nilsson model. 
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CHAPTER I 

INTRODUCTION 

Any observable quantity q of a physical system can 

be expressed as the expectation value of an operator 0 

.with the system's wave function: 

Since the nuclear multipole operators can be 

developed quite rigorously from electromagnetic theory, 

so far as the calculation of nuclear moments is concerned, 

nuclear theory is the problem of developing the nuclear 

wave function, !arm)> (where I = total angular momentum, 

M is its magnetic projection and a stands for all other 

quantum numbers which may be required to specify the state). 

At first sight the nuclear wave function should be an 

impossibly complicated creature which must faithfully des­

scibe the space, spin, and isospin co-ordinates of each 

of the A nucleons. To reduce the number of co-ordinates, 

and thereby make the nuclear problem tractable, various 

nuclear models have been proposed. Of course the success 

of any model must be gauged by its agreement with experi­

ment. Proceeding by this comparison using several nuclear 

models one is able to pick out the important physical 

content of the true nuclear wave function as it is represen-

1 
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ted by the models. 

The model wave function I~)> is the solution of the 

Schrodinger equation Hmod I~> = El~) , and unless Hmod 

(model Hamiltonian) is equal to the true Hamiltonian dis­

crepancies will result (as is always the case). These 

discrepancies,can be.viewed as the inability of the model 

potential to satisfactorily account for the effects of the 

true inter-nucleon potential. The left-over bit is known 

as the residual interaction. The effect of the residual 

interaction is to mix various model states so that in the 

presence of the residual interaction, 

where the ~n are eigenfunctions of Hmod• Provided that 

a>> a, y ••• perturbation theory can be used and the wave 

function can be calculated, in principle, to any desired 

degree of accuracy. This approach has been very successful 

in atomic spectroscopy where the residual interaction due to 

electron-electron repulsion, spin-orbit coupling, and other 

higher order effects such as the spin-spin coupling are small 

compared to the central Coulomb potential which appears in 

the electronic model Hamiltonian. 

However,, in the nuclear case, residual interaction 

is of the same order of magnitude as the model potential 

and a great deal of interconfiguration mixing can be expected. 
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As will be shown later, magnetic moments are sensitive to 

interconfiguration mixing and this fact makes them useful 

tests of the models. For example, it was used here to deter­

mine the composition of the 140La ground state. 

Nuclear quadrupole moments are particularly sensitive 

to the degree of nuclear deformation and so they can also act 

as a kind of nuclear model selector. ~he 149Nd results led 

to interpretation of that nucleus in terms of the Nilsson 

model. 

In the work reported here, the simple attempts 

at fitting models and configurations to measured nuclear 

moments are of really secondary import to the experimental 

values themselves, which should be viewed as fundamental 

nuclear constants entering on an equal footing with spin, 

binding energy, or half life. ~hat is, the nuclear moments 

must be reproduced by any future calculation which hopes 

to fully explain nuclear structure. 

Atomic beam magnetic resonance (ABMR) represents 

an extremely important technique for measuring nuclear 

moments. For radioactive isotopes, that method often 

provides the only way that the moments of certain nuclei 

can be measured. Certainly, such was the case· for one 

of the isotopes r.eported here - 1. 8 hr. 14 9Nd • 

a) ~he half life is too short to permit growth of a 

host crystal for nuclear magnetic resonance or 



electron paramagnetic resonance studies. 

b) The number of radioactive atoms that can be produced 

in a sample is too small to permit observation of 

the hyperfine structure by optical spectroscopy. 

4 

In Chapter II of this work the theory of the multi­

pole operators and the values based on several different 

nuclear models· are P,resented. Chapter III deals with the 

atomic hfs interaction and the requisite corrections to 

nuclear moments determined from hyperfine structure con­

stants. The theory and operation of the apparatus and 

the experimental results are given in Chapter IV. Chapter 

V concerns itself with a discussion of those results. 



CHAPTER II 

NUCLEAR MOMENTS AND MODELS 

Although the actual form of the nuclear force has 

not been established ,to anything like the certitude of the 
I 

Coulomb force and th~ much smaller magnetic forces that 

determine atomic structure, several of its features can be 

made out. Mass spectroscopic studies reveal that, on the 

average, the binding energy per nucleon is nearly constant 

at about 8 MeV per nucleon. The relative constancy of the 

specific binding energy indicates that the nuclear force 

becomes saturated. Saturation implies both that the 

attractive nuclear force has a very short range and that 

it becomes repulsive for even smaller values of inter-

nucleon s·eparation. The repulsive core is required to 

keep nuclei from collapsing and, indeed, to ensure that 

the specific binding energy doesn't increase with in-

creasing A. The core repulsion and the longer-range 

attractive potential can be pictured as compensating each 

other to yield an overall attractive effective potential. 

Then, provided one doesn't look too closely at details, 

the nucleus itself becomes a localized region of attractive 

potential energy. That is, a gross nuclear potential 

is envisaged, built up as an average of all the effective 

5 



6 

internuclear potentials. In addition to saturation, the 

nuclear force also exhibits the pairing property. That is 

the nucleons tend to couple pair-wise to spin zero. One 

manifestation of the pairing force is the fact that all known even­

even nuclei have zero spin ground states. 

Generally the starting point of a nuclear model is 

the assumption of some specific form for this nuclear poten­

tial. Of c·ourse, to' be useful, the chosen potential must 

be readily soluble, either analytically or by computer, when 

it is substituted into the Schrodinger equation. The 

justification for generating this average nuclear potential 

is based on the Hartree-Fock approach to the concept of 

a self-consistent field. Implicit is the assumption that 

the nucleons move independently of one another. 

This independence means that it should be possible 

to describe at least some nuclear properties by a single 

particle model in which the Ath nucleon is assumed to move 

in the model potential contributed by the other A-1 nucleons. 

For example,once the model potential has been chosen and 

the Schrodinger equation is solved it is possible to 

obtain the model's prediction for the nuclear moments. 



A. Multiple Moment Operators 

The electro-magnetic properties of the atomic 

nucleus are due to the charge and current distributions 

of the constituent nucleons. The static electromagnetic 

fields set up by an arbitrary charge-current system can 

be written in terms of the electric scalar potential V 

and the magnetic vector potential A. Classically, at a 
+ point r from some origin these potentials are: 

7 

(2 .1) 

where p(r') is the electric charge at a source point r' 

and j(r') is the current density due to the motion of the 

charges. At points outside the charge-current system V 
+ and A are given by [Schw-55] 

+ 
A= 

Q) 

v = t 
k=O 

(X) k 
r r 

k=l ~=-k 

k c~~ > < e, cp > 
L: E~ 

~=-k 
k+l • k 

i (-ir V X Ck(~) (6 ,cp)) •Mk~ • ·rk+l 

where Y~(e,cp) is the 

normalized spherical harmonic of order k,~ and E~ and 

~ are the electric and magnetic multipole moments, 

respectively. 



The utility of such expressions arises because 

usually the series expansion in Ek and ~ converges very 

quickly. Thus, the fields can be well described by only 

considering the lowest order multipole. When the system 

is the atomic nucleus, expression of the nuclear electro­

magnetic properties in terms of the multipoles is most 

useful because these multipoles are intrinsic nuclear 

quantities and can't depend on the position of the field 

point. 

8 

Under the assumption that we only attempt to measure 

the multipole moments using fields external to the nucleus, 

the nuclear moments M~ and E~ can be found from equation 

2.1 [Schw-55]. The nuclear charge is due to the Z protons; 

thus the electric multipole operator is 

z k ll 
Ekll = e ~ r. Yk(e. ,¢.). 

. 1 ~ ~ ~ 
~= 

(2. 2) 

The nucleons have associated with their intrinsic 

spin of one half unit of angular momentum an intrinsic 

magnetization. For the free proton and free neutron this 

magnetization is expressible as a point magnetic dipole 

moment. Thus there are two contributions to the effective 

current density j(~) and these are written in terms of 

orbital and intrinsic spin g-factors, g~ and gs for the 

neutrons and the protons. Then one can write 
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(2. 3) 

where \.IN = 

protons and 

eli . 
2MC ~s 

p 
gt = 0 

the nuclear magneton, and gt = 1 for 

for neutrons. The intrinsic spin g-

factors are +5.59 and -3.83 for protons and neutrons, respectively. 

These intrinsic spin g-factors can be pictured as being due 

to 110rbital" motion of the nucleon's constituent 7!'-mesons. 

In a q~antum-mechanical context, the static 

nuclear moments become the expectation values (IIIo~IIi) 1 

where the nuclear angular momentum is I and III> denotes 

the nuclear state with magnetic quantum number equal to I. 

The operators 0~ are the appropriate multipoleexpressions in 

(2.2) or (2.3). Their parities are determined by noting 

that 7!' (Vrk Yk) = (-l)k+l 1 and 7!' (Y~) = (-l)k. .Thus 

'Tl'(M~) = (-l)k+l 
(2. 4) 

For.states of definite parity, such as the nuclear 

states liM), the expectation values of odd operators are 

zero. Referring to equation (2.4), this rule means that 

only even electric moments and odd magnetic moments can be 

non-zero. This result is in contrast to the classical case 

where no such restrictions apply for charge and current 

systems of arbitrary shape. 

Another restriction also exists. Making use of 



10 

the Wigner-Eckhart theorem the nuclear moments are given 

by 

= ( I k I) 
-I o I (2. 5) 

where the double-barred symbol is a reduced matrix element 

and Ok = Ek for k even, ok = Mk for k odd. The 3-j symbol 

vanishes unless the triad (I,I,k) can form a triangle. 
1 . . 

Hence, only for I ~ 2 can the nucleus have a non-zero 

magnetic moment. Similarly, unless I > 1, the quadrupole moment 

is zero. 
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B. Shell Model 

The shell model of Mayer and Haxel, Jensen and Suess 

[Mayr-49, Haxl-49, Mayr-55] derives its name from its 

treatment of the motion of the nucleons in terms of orbits 

that have been primarily defined by a central potential. Thus, 

in analogy with the shells formed by the atomic electrons, 

nuclear shells arise by virtue of the model potential. In 

addition, a pairing force is invoked as a coupling rule that 

permits tremendous simplification of the problem. 

The first step is to write down a potential that 

will roughly reproduce the attractive nuclear field. For 

that purpose a spherically symmetric oscillator well is 

chosen 

where m is the reduced mass of the system consisting of the 

single particle, mass M, and the rest of the nucleons, mass MT, 

which generates the potential in which the particle moves. 

Solution of the Schrodinger equation for the harmonic 
3 oscillator potential yields a spectrum~= ~w(~N)+V0 

where N is a positive integer. Each harmonic oscillator level 

of energy ~ is composed of (N+l) (N+2) degenerate states 

which can be chosen to have definite orbital angular momentum, 

In order to remove this degeneracy 

and, indeed, to more realistically reproduce observed nuclear 
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properties, two additional terms are added to the parabolic 

well so that 

(2. 6) 

The term in ! 2 splits the levels EN into states whose ener­

gies depend on i also. The spin-orbit term further splits 

each of these levels into two characterized by j = i+~ 
1 and j = i-2. The eigenfunc~ions are then written as 

I ni jmj) where the change to n, signifies a redefinition of the 

radial quantum number and m. is the z-axis projection of j. 
J 

The relative strengths of w, C, and D are adjusted to 

produce gaps in the spectrum at the experimentally observed 

magic numbers. 

The building up of the various nuclear species is 

similar to what happens in the chemical periodic table. Only 

2j+l nucleons can be accommodated in each level (nij). 

Because of charge independence, the model predicts that 

protons and ·neutrons should have the same states available 

to them. However, for z ~ 50, Coulomb repulsion becomes 

so important that a re-ordering of the proton levels takes 

place. The Coulomb repulsion is also responsible for the 

neutron excess in stable nuclei which means that, for A > 60, 

the neutrons and protons are filling different shell model 

states. In the extreme single particle shell model, the ground 

state nuclear spin for odd A nuclei is determined by the 
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j-value of the last unpaired nucleon. While this is general-

ly observed to be true there are some notable exceptions. 

For odd-odd nuclei, the shell model proper can only predict 

.... -r + -r 
I = J J p n 

-t- -t-where Jp and Jn are the j-values of the odd 

proton and odd neutron respectively. The different possible 

values of nuclear spin would be degenerate. 

Clearly some residual force must be introduced, 

that is, a force acting between the odd proton and odd 

neutron or, more generally, between all the nucleons in 

unfilled shells. The residual interaction does not necessari-

ly resemble the "real" internucleon potential but, rather, 

seeks to reproduce that part of the real internucleon poten­

tial that has not been included in the central shell-model 

potential. Nordheim,and later Brennen and Bernstein, 

[Nord-51, Bren-60] have been able to enunciate rules which 

correctly predict the ground state spin in an impressively 

large number of cases. These authors assume that the 

residual interaction can be written as a contact or delta-

function potential. 

The shell model magnetic dipole moment ~I is found 

using equation 

~I = (I ,m=I lllN 

(2. 3) 

~ 'i/.(r.Yol~(g~(i) !. + g(i) ;;)!I,m=ry. 
. 1 ~ ~ ~ s 4 
~= 

Operating with 'Vi on riY~ yields the unit vecto~ Zi which, 

when multiplied by the term involving the g-factor, means 
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.... .... 
that only the Z components of t. and s. need be considered. 

~ ~ 

The extreme single particle model attributes the 

nuclear spin· to the last unpaired nucleon so that, for this 

model, the sum over the A nucleons is dropped.and the 

equation becomes 

(2. 7) 

.... 
The generalized Lande formula for any vector operator 0 

gives 

(2. 8) 

In the shell model the state liM) is identical to lntj7. 

Hence 
<IIIIziii)<IIjgx, I•! + gsi·~III) 

~I = ~N I(I+l) 

(2. 9) 

72 + + 2 ~2 +2 + + The dot products are evaluated using ~ = (I-s) = ~ +s -2I•s, 

etc. The single particle moment is 

(2 .10) 

If it is assumed that the nucleons retain their 

free particle g-values in the nucleus then moments predicted 

by {2.10) are known as the Schmidt values. Obviously, the 
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value of the moment depends on which shell model state !nR-j) 

is involved. As such, measurement of ~ should help to 

determine the correct character, in particular the R, value, 

of any given nuclear state. 

For odd-odd nuclei the simplest nuclear wave 

function is 

ml m ( jpmpjnmn I jpjnrM) I jm 'p;-1 jm n) 
n' p 

where the kets ljm ~~ ljm n) stand for the states lnR-j) 

of the last odd proton and the last odd neutron, respectively. 

Application of j-j coupling yields the odd-odd Schmidt value 

~o-o 
I jp(jp+l)-jn(jn+l) 

= 2 [(gp+gn) + (gp-gn) I(I+l) J (2.11) 

where g and g are the g-factors based on the Schmidt values 
p n . (~)Schmidt 

for the odd proton and neutron, l.. e. g = . etc. 
p JP ~N 

Alternatively, the proton and neutron g-factors can be taken 

from the measured magnetic moments of neighbouring odd-A nuclei. 

If the latter procedure is adopted quite good agreement with 

experiment \lSUally results. 'l'he reason for the improvement 

is that the empirical g-factors allow for interconfiguration 

mixing in the neutron and proton single particle wave functions. 
2 ·ETI 

'l'he nuclear quadrupole moment is defined to be e ~~ 
times the ]..[=0 component of E~, the 

to historical development. 'l'hus Q 

since the neutrons are uncharged. 

factor of two being due 

< ~ 2 0 > = 2 ~ ri Y2 (ei•i> 
i=l 

If it is assumed that there 
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is only one proton in the orbit lnij/ , the quadrupole moment 

for the single particle is 

'l'he sum over z has been reduced to the one unpaired proton 

since the core, on the basis of the shell model, represents 

a spherical charge distribution which cannot possess a 

quadrupole moment itself*· Evaluation of the matrix element 

yields: 

(2 .12) 

Without any specific reference to the shell model, 

electron scattering data reveals that the nuclear r.m.s. 

radius is 1.2 A113 x lo-13 em. Hence Q ~ -A2/ 3 x lo-26 
s.p. 

cm2 • With A~ 150, then, Q ~ -.25b for odd-proton s.p. 
nuclei • 

For an odd-neutron nucleus the single particle model 

seemingly predicts zero quadrupole moment. However the 

motion of the odd neutron causes a "wobble" of the remaining 

core particles so as to keep the centre of mass fixed. On 

the average the odd neutron sees the rest of the nucleus as 

a blob of charge Ze, a distance r /A away. n 
2 rn 2 

drupole moment operator r -+- z<r> , or On ::= 

(odd proton) for A ::= 150. . . 

• See below in Section D. 

Hence the qua-

!_ Q 1 
A 2 s • p. 

01 
37'S 0 sp 



17 

A more realistic approach is taken if only those 

particles in closed shells are treated as forming an inert 

core. In general, there may be k active particles in the 

jntj) orbit where k is odd. For k > 3, the matrix elements 

of the magnetic dipole and electric quadrupole operators 

can be reduced, using coefficients of fractional parentage (cfp), 

to the matrix elements for k-2 particles. The process can 

be continued until the matrix element for k particles, 

(jkjojjk), is reduced to a single particle matrix element 

Each shell can accommodate 2j+l particles and whenever 

k>j+;, it is more convenient to speak of K holes where 

K = 2j+l-k. Hole states can be generated from particle 

states by reversing the signs of them .• Thus, the matrix 
J 

elements for k particles and K holes are related by a phase 

factor 

For magnetic moments A=l, so that the phase factor is 

positive, while for quadrupole moments A=2 and the phase 

factor is negative. This means that ~((j)K)- ~((j)k), and 

Q( (j)K) = _ Q( (j)k) • 

Even more informative relationships can be derived. 

For t~~~mjgnetic moment, the trick is to note that, in 
I ~. -r ~ 

gi = -'t'~ , both ~Ji a%ld ~lJi are vector operators, that 
IEJillJN 1 ~ 



is, A=l. Thus, their expectation values in the state 

I (nR-j) k, II) both have the ~ cfp in the reduction to 

single particle matrix elements. Hence the form is 

ll 
j 

X CfJ2 ( ) 
x cfp = gi s,p.' 

18 

and the nuclear g-factor cannot depend on the number of 

particles in the orbital. If nuclear g-factors are observed 

to change as an orbit is apparently filled, (e.g. the 

neodymium isotopes),then the source lies elsewhere- such 

as in configuration mixing. 

For the electricquadrupole moment, no such cancel-

lation involving the ratio of identical cfp's occurs, and so Q 

is dependent on the number of particles in a given orbit. 

For states of the type I (n.R.j)k; I=j,J), 

2J- 2k+l 
Q = 2j-l Q s.p. (2.13) 

where Q is the single particle moment given by eq. 2.12. s.p. 
We note that as k increases the magnitude of Q decreases 

until, at one nucleon more than a half-filled orbit, the 

sign of Q reverses. For states of the type I (n.Q,j)k, I=j-l,I>, 

3 the relationship is changed; thus, for (2f712 >I=5/ 2 , 

Q ~ 3(Q2 f ) [Mayr-55]. 
7/2 s.p. 
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c. Con·figuration Mixing 

It is an experimental fact that most nuclear magnetic 

moments deviate considerably from the single particle Schmidt 

values. Furthermore, quadrupole moments, notably in the 

regions cor~esponding to A ~ 150-170 and A ~ 240, are 10-30 

times larger than the shell model predictions. This latter 

effect is due to permanent deformation of the nucleus, and 

the moments of deformed nuclei will be discussed in the section 

on the Nilsson model. 

In deriving the Schmidt values it was assumed that 

the nucleons retained their free-particle g-values inside 

the nucleus. The nucleons owe their charge and current 

densities to their constituent mesons. Very roughly, the 

proton can be viewed as a "bare" nucleon which is coupled 

virtually to a positive ~ meson. Similar considerations hold 

for the neutron. In the nucleus, the nucleons can fairly 

readily exchange these mesons, thereby setting up currents 

which may be expected to alter the free g-values. These 

exchange effects have been deduced from measurements on some 

light mirror-nucleus pairs and are found to be only ~ .1 to 

.2 n.m. [See, for example, Habe-64]. Because departures 

from the Schmidt values are usually 0.5 to 1 n.m., meson 

exchange can not be solely responsible for them. 

Any possible velocity dependence on the inter-nucleon 

force, that is velocity dependence of the appropriate 
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residual interaction, can also alter the free-nucleon g-

values. + 
~his comes about because the momentum p becomes 

+ e + 
p--A c for systems in the presence of an electromagnetic 

field. If the residual potential v .. is velocity dependent 
~J 

+ 
so that vij = vij(o) + vij(p), then an additional term must 

be included in the orbital g-factor. ~here is still no 

clear-cut answer regarding just what the velocity dependence 

of the nuclear potential is but it is unlikely the depen-

dence would change rapidly with A. Thus, quite different 

moments in neighbouring nuclei can be taken to be an 

indication of configuration differences. 

The most successful way of describing departures 

from the Schmidt limits is through interconfiguration mixing 

of model states[Blin-54, Arma-55, Noya-58]. Presuming that 

the nuclear wave function can be written as liM)- ~ +L a ~ '/- '¥" n'i'n' on 
where ¢

0 
represents the model state (e.g. the shell model 

state (n~j)k which best approximates the true nuclear wave 

function, then 

I ~1> Since the magnetic moment operator can connect states n~j± "" 

sizable correction to the Schmidt values (~0 ltl4>0/ can thus 

result in first order. The shell model wave function should 

be a good description for nuclei which are doubly magic ±1 

nucleon and indeed it is observed these nuclei have moments 



which are close to the Schmidt values. However 
2 ~~Bi 126 

has a moment which is only half its Schmidt value. Part 

208 of the reason for this is due to the fact that 82Pb126 

is doubly magic only in pure j-j coupling. 
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Noya et al (~ cit) consider the several possible 

cases. For example, suppose that orbits j
1 

and j 2 contain 

even numbers of nucleons paired off to zero angular momentum 

and orbit j has an odd number of nucleons. Then, if a 

nucleon jumps from orbit j 1 to j 2 through its interaction 

with the nucleons in orbit j we will have three active orbits 

j, j 1 and j 2 all contributing to~. Other processes are 

also possib.le, such as a nucleon leaving orbit j to go into 

j., or, conversely, a particle being excited into j from j. 
~ ~ 

J2 I 

J, : . I • • l 
I 

J 
• • 0 J • 

• • • • Jl 

with similar terms for the other processes. 

Assuming that the residual interaction can be written 

as a o-function force, Noya ~ al. show that the corrections 

to~, denoted by 6~, from these three types of excitations 

Jl 

J 
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have a common factor 

(2 .14) 

Examination of the measured moments for odd-neutron nuclei 

reveals that the vast majority lie within, rather than on, 

the Schmidt values. These are just the corrections predicted 

by (2.14). Similar considerations hold for odd-proton 

nuclei. In the special case of p
112 

nuclei, the correction 

vanishes - indeed it is observed that the moments of these 

nuclei usually do lie close to their Schmidt values. 

Furthermore the deviations o~ for mirror nuclei show 

which again confirms (2.14). 

(gs -g .Q,> P 
(gs -g t)n 

Quite good quantitative agreement results when the· 

authors consider specific cases. Encouragingly, the 

results are fairly insensitive to the depth and shape of the 

shell model potential used. This insensitivity implies 

that if the members of an odd isotope or isotone group show 

different departures from their Schmidt values, the cause 

is unusual interconfigurational effects and not minor changes 

in the nuclear potential. 

For an odd-odd nucleus, Cain [Cain-56] has shown 

that if the·departures of neighbouring odd-Z and odd-N 

nuclear moments from their Schmidt values are due to inter-
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c.onfiguration mixing - so that 

then the correction to the odd-odd moment is 

o~ ~ 2 ( o~d an <¢~I~ I¢~} + o~d ap <¢~I~ I¢~))· ( 2 .15) 

n P 

But (2.15) is just the amount included when effective moments 

for the odd proton and odd neutron, as determined by the 

measured magnetic moments of neighbouring odd nuclei, are 

used. 

Attention is now paid to a model or, perhaps more 

properly, a scheme of calculations which has the configura-

tion mixingapproach built in. 1'he action of the nuclear 

force causes the mixing of several nuclear states. Thus 

any one particle really is distributed over several model 

states and, as such, it is known as a quasi-particle. Because 

some of these states may be quite high in energy relative 

to the ground state, it is also appropriate to include 

contributions (usually quite high in energy) due to vibra-

tions of the nuclear core. In the calculation of Kisslinger 

and Sorenson [Kiss-63] the residual interaction is chosen 

to be the sum of a short range pairing term and a longer range 

quadrupole force based on the observation of vibrational 

spectra in even-even nuclei. 

The contributions to the total Hamiltonian are split 
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into a pairing contribution - based on superconductivity 

theory [Bohr-59]-and the (quadrupole) phonon contribution. 

The development of the theory utilizes the notation of 

second .quantization in which all nucleons in filled shells 

are treated as a vacuum state I 0)
0

• The creation and 

annihilation operators A; and Aj are used to enumerate the 

contributions of the active orbitals. 

In particular, the magnetic dipole and electric 

quadrupole operators can be separated in terms of quasi-

particle and phonon contributions. The matrix elements 

for these operators have been worked out [Kiss-op cit] for 

several nuclei. In general, the resulting values for 

magnetic moments are inward from the Schmidt value as is 

to be expected because of the allowance for configuration 

mixing. Because the phonon amplitude represents a 

dynamic distortion, the results of Kisslinger and Sorenson 

do not predict quadrupole moments which are significantly 

larger than those of the shell model. 
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D. Nilsson Model 

As experimental values for quadrupole moments be­

carne available it was apparent that there existed regions 

of A for which the nuclear quadrupole moments were several 

times larger than the values predicted by the shell model. 

In addition, these moments were, without exception, positive. 

Rainwater [Rain-50] concluded that the nucleus was shaped 

as a prolate ellipsoid and the large quadrupole moment 

was proportional to the degree of deformation. Consider 

a uniformly charged ellipsoid with charge density 
Ze 3 Ze P = v- = 4 ----2 where a and b are the lengths of the serni-

'!Tab 
major axes, respectively. If the symmetry axis is denoted 

by z•, then the quadrupole moment with respect to the z• 

axis is [Pres-62, Chapter 4] 

Q' = ~ J p r
2 Y~ dV rv! J p (3z•

2
-r2

)dV 
(2.16) 

= ~ Z(a2-b2 ) rv Z R 2 6 + 0~ 62 
5 0 3 

. 1 2_b2 
where 6 is the deforrnat~on parameter 6 ~ 2 a 2 a 
and R

0 
is the equivalent spherical 'radius defined 

R 3 2 by 
0 

= ab • 

Hence the intrinsic quadrupole moment Q' is approxi-

rnately Z6 times larger that the single particle moment. 

This possiblity is excluded in the shell model because of the 

inherent assumption of nuclear sphericity. An important 
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distinction involving the rotational propertie$ of the ellip-

soid must be made however. If the descriptionof the nucleus 

as an axially symmetric ellipsoid is valid, then the nucleus 

is able to rotate as a whole about an axis. The angular 

momentum of this collective rotation is R and the total nuclear 

angular momentum is I = R + j and for the ground state R 
is perpendicular to the intrinsic nuclear symmetry 

axis. The nuclear Hamiltonian is HN = Hrot(R) + Hint(j) 

where the first term is the rotation kinetic energy due 

to collective rotation of the deformed nucleus and the 

second is the intrinsic energy of the nucleon moving in the 

deformed deformed potential. The nuclear wave function 

is thus ln;I,M,K) ~ V,~K Xn where V is a rotation D function 

which characterizes the collective rotation and connects 

intrinsic angular momentum values to those in the lab frame, 

M is the projection of the total angular momentum I on the 

z axis of the lab frame, K is the projection..of I on 

the body fixed symmetry axis z' and x0 is the intrinsic 

single particle wave function. 

The relation between the classical intrinsic ellipsoidal 

quadrupole moment Q', obtained above, and that quadrupole 

moment as seen in the lab frame Q involves a term in the 

product of the D-functions Q = J Q'd'!. Due to 

orthogonality rules of the D-functions the following expression 

is obtained [Eder-6~ Chapter 21] 



Q = 3K2 - I (I+l) 
{I+l} (2,!+3) Q'. 

for the ground state K = I so the observed quadrupole is 
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Q I(2I-l) Q' • 
(cbs) = (I+l) (2!+31 (2.17) 

The significance of this expression is that the D-function 

provided the link between a quantity measured with respect 

to the body's symmetry axis anda quantity defined in the 

lab frame. The factor I(2I-l}/(I+l) (2I+3) gives the 

projection of Q' on the lab fixed axis along which I has 

the projection M. 

Next we shall discuss the single particle solution 

for motion in a distorted well given by Nilsson [Nils-55] 

so as to develop expressions for the magnetic moment; later 

we shall return to the consideration of the quadrupole. 

The Hamiltonian .is given by 

As was the case in the shell model the terms in C and D 

introduce the strong spin orbit interaction and "round" the 

bottom of the harmonic oscillator well. The only dif-

ference is that now the harmonic oscillator term is chosen 

to be anisotropic. The term H
0 

is parameterized by a 

deformation parameter c viz: 



where distances x, y and z define the intrinsic nuclear 

coordinates. Rewriting H
0 

to more clearly dis~lay the 

deformation dependence of H , Nilsson obtains: 
0 

o (-'V2+R2) 4 .{; _2 
H0 = H0 + H0 = nw

0 2 - o~w ~ vt EtY~. 

where R2 
= x2 + Y2 + z2 , and x2 = ~x2 etc. The first 

term is spherically symmetric and the second represents 

the coupling of the particle to the axis of deformation 

which is parallel to z. The Hamiltonian is diagonalized 

I ' . 0 ~2 in a basis NiA~/ in which the operators H
0

, ~ , iz and 
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sz are themselves diagonal with eigenvalues (N+~)~w0 ,where 
N = total number of Oscillator quanta, i (i+l), A and 2: 

respectively. Now iz + sz = jz and correspondingly the 

quantum number n = A + 2: is introduced; further since jz 

commutes with the total Hamiltonian, n is a constant. 

The wave function of the nucleon moving in the distorted 

well is Xn = 2: aiA(o) jNiAE). At zero deformation groups 
i,A 

of the Nilsson orbitals coincide with the shell model 

levels and, as o increases, the shell model state in effect 

splits into j + j deformed orbitals. At very large values 

of 0, contributions from c and D appearing in the 

Hamiltonian are negligible and each state can be labelled 

by n:, the parity and the triad [N,n ,A] z where nz is' the 

number of quanta along the deformation axis. 

The magnetic moment predicted by the Nilsson model 

is found by evaluating the magnetic moment operator 
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+ 
llop 

+ 7 + 
= llN (gss + g i x, + gRR) where use has been made of equation 

2.7. The additional term gR R is the contribution to the 

magnetic moment caused by the collective circulation of 

the z protons. The collective motion of the nucleus is 

viewed as a kind of 3rd orbital angular momentum with an 

averaged g-factor gR ~ Z/A. The magni~ude~of the magnetic 
llop"I 

moment ll is found by noting that ll = I+l • Nilsson 

obtains for the ground state moment 

For the case of K = 1/2 there is an additional term involving 

a parameter which measures the amount of coupling between 

the collective rotation and the single particle motion, thus 

violating the assumption that I ~,I,M,K) could be given as 

product wave function. This need not concern us in this 

work however. 

If it is assumed tht the nucleons retain their free 

g-factors, then lines akin to the Schmidt limits can be drawn. 

Once again, the observed moments deviate from their "limits" 

indicating the importance of configuration mixing effects. 

After investigation of several deformed nuclei it was found 

that better agreement usually results if one uses reduced 

values for intrinsic spin g-factors gs, so that for odd 

neutron nuclei the choice is gs = 0.6 g f [Borg-69] 
eff s ree · 
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Returning to the quadrupole moment it is noted 

that properly Q = Q + Q where Qsp is the contribution sp core 

of the single particle moving in the anisotropic well. However 

since typically Qc >> Q the latter can safely be neglected. sp 

Recalling that the equation for the intrinsic quadrupole 

moment is given (in terms of o) by, 

o • = o • a z Fo2 a ( 1 + }a + • • > · · (2. 20) 

where R
0 

is the charge radius of the nucleus, R
0 

= 1.2xlo-13A113 

em. Combining this equation with projection factor (equation 

2.17) the collective deformation is, in terms of observed 

quadrupole moment for A = 150: 

3 v 8 Q 1 Q' o ~ T (-1 ± 1 + 3 2) ~ 2 
~ 0.8ZR

0 
0.8ZR

0 

where the positive sign has been adopted. Thus 

0 = ( I 1 } (I+l) (2.1+3) Q 

0 SZR 2 I (;n-1) cbs 
0 0 

where Q b is the observed quadrupole moment in barns. 
0 s 



CHAPTER III 

HYPERFINE STRUCTURE 

In order to measure nuclear moments use is made of 

the hyperfine structure interaction (hfs) whose origin is 

the electro-magnetic coupling of the nuclear charge and 

current distributions with the magnetic and electric fields 

and gradients at the nucleus set up by the atomic electrons. 

Typically these fields and gradients are larger than those 

easily obtainable in the laboratory, and they are therefore 

exploited as a kind of natural resource which generates 

interactions that are large enough to permit easy obser­

vation. Because hfs depends on both nuclear and electronic 

contributions it does not provide the means for a direct 

determination of the nuclear moments. In the case of the· 

nuclear magnetic moment direct determination is possible 

through techniques such as NMR or triple resonance. However 

the higher order moments do not admit themselves to direct 

determination. It turns out that important corrections, 

or at least allowances for possible uncertainties, must 

be made for moments determined through the hfs interaction. 

These corrections primarily centre about uncertainty in the 

electronic wave function. 

31 



Since the hfs "levels" can be characterized 

by an angular momentum quantum number these levels 

exhibit Zeeman splitting when subjected to an external 

magnetic field. The elucidation of the hfs constants, 

and in turn the nuclear moments, is effected through 

measurements of the separation of these magnetic sub­

states. 

32 
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A. Atomic Hamiltonian 

The Hamiltonian describing the free atom is the 

sum of 3 terms, viz: 

3.1 

The first of these terms, Hnuc(I), was discussed in Chapter 

II and gives the nuclear contributions. The electronic 

· contribution is represented by Helec (J) , where J is the 

total electronic angular momentum quantum number. The 

eigenstates and eigenvalues of H 1 (J) and solutions to e ec 

the Schrodinger equation Helec(J) 1jJ = EJ(ntk)ljl. In the 

electronic case the self-consistent field yields states 

which are usually appropriate to the L-S coupling scheme. 

Such states are denoted by the expression 2S+lL where s 
J 

is the coupled spin S = ~ S., L is total orbital angular . ~ 

~ 7 ~ ·~ 7 
momentum (L = ~~.) and j = L+~. For n equivalent . ~ 

]. 

electrons the term value for the ground state can be found 

by application of Hund's rules which are based on general 

considerations concerning the overall symmetry of the 

electronic wav~ function and the repulsive nature of the 

inter-electron potential. 

The third term, Hhfs(F), is the hfs Hamiltonian 

and forms the centre of our interest. The quantum number F 

is a result of the electron-nuclear coupling effected by 

the hfs interaction and F is given by the vector equation 
~ ~ -+-
F = I + J. 
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Typically the energies corresponding to changes 

of a nuclear state or an electronic state are much larger 

than those due to Hhfs(F), and so I and J are taken to 

be good quantum numbers. 
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B. · Magne·tic Dipole Interaction 

Let us assume that the nucleus can be represented 

as a point mass. The magnetic field at the origin,or 

at the point nucleus, due to an orbital atomic electron 

is given by 
+ 
H = 

0 
(3.2) 

+ + . 
where ~ is the intrinsic electron moment and r ~s a vector e 

joining the origin and the electron. Substitution of the 

orbital and 
+ + 

intrinsic angular momenta, ~ and s yields 

7 + + + + 2 
~ = _ 2 ~ (x,-s+3r(s•r)/r ) (3 • 3 ) 

o o r3 

00 where ~0 is the Bohr magneton = 2mc • Since the interaction 

. . + + 
energy of a magnetic dipole in a magnetic f~eld ~s W = -~·H 

the magnetic hfs Hamiltonian is the sum 

rr.nag = - L: iri • (H ) . hfs . o ~ 
~ 

(3. 4) 

h (+ ) . h f . ld th . . d h . th w ere H . ~s t e ~e at e or~g~n ue to t e ~ non-s 
0 ~ 

electron. The s-electrons have a finite probability amplitude 

at the origin and to account for this an additional term is 

added to (3.4) so that [Nier-57] 

Hmag = 
hfs 

+ + 
L: ~I • (H ) . ... 
. 0 l. 
~ 

~;CO 

L: 
i 
~=0 

Each electronic sub-shell can only accomodate 2(2~+1) 

(3. 5) 

electrons - otherwise the Pauli principle would be violated. 
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For a filled sub-shell half the electrons have spin up and 

these 2i+l spin-up electrons have accounted for all the 

magnetic quantum numbers. The other half have spin down 

and, again, they range through all the 2i+l mi-values. 

Assuming that both spin groups have the same radial distri-

bution an exact cancellation of the fields takes place 

and the sum in (3.5) need only be taken over electrons in 

unfilled shells. For the cases of interest here, 147 , 149Nd 60 
140 and 57La, the ground configurations are 

Lanthanum ls 22s 22p63s 23p63d10 4s 24p64d10ss25p65d 6s2 

Neodymium ls22s 22p63s23p63d104s24p64<i105s 25p64f46s2 

and, even though lanthanum does have a large amount of 

unpaired 6s electrons admixed from the configuration (5d26s). 

(see Section D)) we presently assume that there are no 

unpaired s-electrons. Thus 

1-lr (re-3> where ai = 21-lN y- and ]..IN 

= 2~c where M is the proton 
p p 

+ N. characterizes the field at 
~ 

(3. 6) 

is the nuclear magneton 

mass. The vector operator 

the point nucleus located 

at the origin, and (r;3 ) is the expectation value of the 

inverse cube of the electron radius. The matrix elements 

of H~~; are diagonal in the total atomic angular momentum 

.. ..,.. .... I > F = I+J. Calculation in the basis JIF yields [Wybn-65] 



where 

and 

K = F(F+l) - J(J+l) - I(I+l) 

llr (re-3/~11 ENi l!J> 
hA - 2llN 

I rJ (J+1) (2J+l) 
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For all isotopes the atomic factors {re-3_:>, <J II ~Ni II J) , 
J. 

etc. remain constant and the following relationship (Fermi-

Segre formula) applies between isotope ·1 and isotope 2, 

(3. 8) 

For the case of both an unpaired s-electron and n 

electrons with i~O Wybourne [Wybn, ~cit] shows that 

WMl = 4J (~!l) [A{J (J+l) +J 1 (J l +1) - s (s+l)} 

(3. 9) 

+ as{J(J+l)+s(s+l)-J1 (J1+1)}] ~ llr<c1+c2 ) 

where as is the s-electron hfs constant, as=~· 1T 1-lo ~I I 'ljJ s (0) 12 • 

In the above formula J 1 is the angular momentum to which the 

non-s-electrons couple,and J is the total electronic angular 

1 momentum so that J = J 1±2 e The important point is that 

the hfs interaction is still directly proportional to the 

nuclear moment llr• 

These relations hold only for point nuclei and 
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indeed departures from equation (3.8) have been observed 

where both the A's and ~r's have been measured independently. 

This departure is known as the hfs anomaly and will be dis­

cussed in section D of this chapter. 
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c. Electric Quadrupole and Higher Order Interactions 

In addition to a magnetic field, the atomic electrons 

also create an electric field gradient at the nucleus. It 

will prove useful to relax the assumption that the nucleus is 

a point and so the electric hfs interaction may be written as 

ff.lec 
f J 

PePn d3 d31' (3.10) = hfs 
lre-rnl 

"t'e n 
"t'e "t'n 

where the p's are the electronic and nuclear charge densities 

and re and ~n are radius vectors to infinitesimal volume 

elements of the electron cloud and nucleus, respectively. An 

expansion of the term lAre-rnl is now made in terms of 

spherical tensors of rank k, viz: 

k 
___ 1 __ = l: rn (C (k) •c (k)) 
lr -r I k rek+l e n 
. e n 

{3.11) 

where it has been assumed that rn<re. When the integration 

over the nuclear co-ordinates is carried out, the terms in 

the sum represent the energies of the various. electric 

multipole moments, Ek. 

It was shown in Chapter II that the only non-zero 

values for Ek~ are for even k. If k=O, then Helec is the hfs 
Coulomb operator and its contributions have been taken into 

account in the electronic Hamiltonian Helec(J). However 

because of the finite size of the nucleus the assumption 

that rn<re for all values of the integration in (3.10) is not 
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quite true in general. This consideration manifests itself 

by the presence of isotope effects whereby all the atomic 

energy levels are shifted. As far as the hfs splittings 

are concerned, it only alters the zero of energy and not 

the separations betweeri the levels themselves. 

The k=2 term is the electric quadrupole interaction. 

The matrix elements of Helec for k=2 are given by: hfs 

(JIF!Helec!JIF) = -e2(-l)J+I+F+2 {J J k=2} 
hfs I I F 

(3.12) 

= e2 Q (re-3) (3/4 K(K+l)- I(I+l)J(J+l)) (J!Ice(2)11J'. 
2I (2I-l) J (2J-l) '/ 

where Q is the nuclear quadrupole moment, K = F(F+l)-J(J+l)­

I(I+l), and the expression in curly braces is a 6-j symbol 

which keeps track of the components in the coupling I+J + F. 

Traditionally, one defines the electric quadrupole interac-

hB = e 2 o (re-
3> < II <

2 
> II > tion constant B by J Ce J • As was 

the case for the magnetic interaction constant A, the following 

ratio holds for isotopes 1 and 2 of a given element. 

(3 .13) 

The 6-j symbol in equation 3.12 has the property that it 

vanishes unless the elements of each of the triads (I,I,k), 
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(J,J,k) and (I,J,F) can form a triangle. One consequence 

of this rule is that the nuclear quadrupole moment (k=2) 

would not be observable if J=l/2 even though the nucleus 

could indeed possess a non-zero intrinsic quadrupole moment. 

Schwartz [Schw-55] has shown that a similar rule holds 

for any order k so that one can o.nlY observe :multipoles 

up to order k such that k = lesser of 2I or·2J. This 

restriction harks back to the result of Chapter II where 

the nuclear moments of order k had to satisfy k~2I. 

If I~3/2 then it is possible that the nucleus possesses 

a non-zero magnetic octupole moment. In addition, if 

J~3/2 is also satisfied, there is a magnetic octupole 

hfs interaction which has been written by Schwartz (£e cit) 

as 

where Rn is the nuclear radius, re is electronic orbital 

radius and E(~,J) is a function of the electronic quantum 

numbers ~ and J while N(I,gs,g~) is a function of the 

nuclear spin I and the nuclear spin and orbital g-factors 

gs and g~. Assuming that E(~ 1 J) and N(I,gs,g~) are of 

order unity it is possible to estimate the size of the 

octupole interaction relative to that of the; dipole interac-

tion 



2 5 
llo llr Rn/re 

llo llrlre3 
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Because of the· smallness of the octupole interaction its 

contributions to Hhfs can be very safely neglected in the work 

reported here. 

In the same way, other higher order hfs interactions 

are negligible. Thus, combining the results of this and 

the previous sections, we have the hfs interaction given by 

[i K(K+l)-I(I+l)J(J+l)] 
= 1:_ hAK + hB 2 2I(2I-l)J(2J-l) 

(3 .14) 
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o. Hyperfine Structure Anomaly 

If the above description of the hfs interaction 

were complete then the Fermi-Segre relation, eq. 3.8, would 

hold exactly. ~hus independent measurements of A and ~I' 

for any two isotopes, 1 and 2, of a particular element would 
Al I2 (lJI)l 

always satisfy A
2 

= Il (~I) 
2 

• In fact Murphy's fifth 

law prevails and the Fermi-Segre relation must 

be amended by the inclusion of a correction term. 

Al 
as- = 

A2 
anomaly. 

It is useful to re-write the Fermi-Segre relation 
I2 (~I) 1 
Il (lJI)

2 
(1 + 1~ 2 ) where 1~2 is called the hfs 

For very light nuclei, 1~2 can be attributed to 

changes in electron radial term -3 
re due to the centre 

of mass moving in as the neutron number increases. For heavy 

elements, such as Nd and La, the anomaly is due to the 

finite size of· the nucleus. 

In section B we assumed that the nucleus was a 

point dipole. In fact the finite nuclear size causes a 

smearing out of the nuclear moment [Bohr-50]. 

In order to calculate the hfs energy H~~~ the interaction 

is split. into the sum of two integrals - one from the origin 

to the nuclear "edge" and the other from the nuclear surface 

out to co. Bohr and Weisskopf specifically assumed a 

uniform charge distribution in the nucleus. ~he electronic 

wave function is described using the Dirac equation. Because 

only s and p112 electrons wave functions have non-zero values 

at the origin, only configurations involving unpaired s or 
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p112 electrons should show appreciable effects. For these 

type electrons, Bohr and Weisskopf find 
1

t:.
2 

~ 0.7-1.0% 

with the anomaly becoming larger with increasing z. Stroke 

et al [Strk-62] have extended the calculation to allow 

for a trapezoidal nuclear charge distribution in keeping 

with the electron scattering experiments of Hofstadter 

and co-workers [Hofs-63]. The contributions to 1 ~::. 2 from 

the spin and orbital g-factors are calculated using the 

configuration mixing approach of Noya ~ al. [~cit.] 

Such an approach means thatStroke et al are able to calculate 

1 ~::. 2 for specific shell model states. Typically, for the 

cases tested, they found 1 ~::. 2 ~ 0.2% which was in good 

agreement with experimental results known to those authors. 

For distorted nuclei, Reiner [Rein-59] used pure Nilsson 

orbitals and a uniform nuclear charge distribution to find 

a possible anomaly of 
1

t:. 2 ~ 2%. 

Recently Vanden Bout [Vand~67] measured 1 ~::. 2 ~ 8% 

for 197Au and 198Au1 Part of the reason that the anomaly 

is so large in odd-odd nuclei is because both protons 

and neutrons can sum their separate anomalies·to the odd­

odd moment. Large anomalies are no.t limited to ·_Au isotopes 

either; Mossbauer spectroscopy has shown an hfs anomaly 

of 7% for 193rr (73 keV state) in comparison with 193rr 

ground state (Peri-69). 
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2 The electronic ground doublet for 57 La is o
312

,
512

• 

Using atomic energy levels M.s. Freed of the Argonne group 

[Chil-69] has calculated 

That is, the observed lanthanum ground doublet is really a 

mixture of two electron configurations*.' This degree of 

mixing is consistent with Ting's measurement of the A values 

for 139:t.a which showed A512 :A312 = 1.29 and not 3.3 as 

predicted by equation (3.7). This mixing means that the observed 

A's are really the sum of contributions due to equations (3.7) 

and (3.9). In view of the 8% anomaly observed in 198Au, we 
140 . 139 estimate that the hfs anomaly for La compared to La 

could be possibly as large as (.45) 2xa% ~ 1.5% due to the 

admixture of the state l5d26s 2o312 , 512:>. 
For the case of neodymium isotopes, comparison 

of the hfs splitting constants AJ=4 for 143Nd and 145Nd with 

their moments determined by triple resonance reveals 1~2 
~ 1/2% [Smit-65, Pend-63] even though there is no sizable 

admixture of unpaired s or p112 electrons in the ground 

multiplet. Because 149Nd is apparently a distorted nucleus 

and thereby may possess a quite differe~t distribution of 

nuclear magnetism than_that found in 145Nd, we allow a 2% 

* Other terms are present too but they do not have nearly 
the amplitude of the term from 5d26s. 
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uncertainty in determining ~I from A. 

Another small correction to ~I results from the 

fact that when an external field H
0 

is applied to an atom, 

the electrons set up a diamagnetic field which reduces the 

external field by an -crH
0

• Thus the true moment is l~cr 

the apparent moment. The shielding factor cr has been 

·calculated and is accepted to have only a 5% error [Full-60]. 

The calculated values of cr are given by Kopfermann [Kopf-58] 

and are typically 1-2%. 
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E. Sternheimer Correction 

Electronic configuration mixing is responsible for 

a large contribution to A in the case of lanthanum. ~he 

configuration interaction is also responsible for large 

corrections in the value of Q derived from B. The most 

famous case involves 65cu and the breakdown of equation (3.12). 

. 10 2 9 2 Measurements of B ~n the states 3d 4p, P
312 

and 3d 4s 

2o512 yield Q = -.161(3) and -.228(5) barns respectively. 

Similarly Murakawa has shown that discrepancies also exist 

among various electronic states of 139La [Murk-SS,Murk-61]. 

In a series of papers Sternheimer has considered 

the effects of core polarization on the quadrupole coupling 

constant B. [Ster-59, Ster-67]. The nuclear quadrupole 

moment Q induces a distortion of the core electrons. Thus, 

the elect~icfield gradient is altered and is no longer 

calculable by equation {3.12). The electron core distortion 

Q(3cos 28-l) is treated as a perturbation H1 = -
2

r 3 , and the 

matrix elements of H
1 

are evaluated for certain appropriate 

electronic states. In general the only non-vanishing contri-

butions of H1 are the so-called angular excitations ni~n~±2 

and the radial excitations ni~n·~ • Since electronic wave 

functions have to be anti-symmetrized there are both direct 

and exchange terms for the angular and radial excitations. 

Excitations of the type n~~n~±2 are characterized by an 

angular rearrangement which tends to concentrate the electrons 
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in regions of minimum potential, which are near the poles 

of the nuclear symmetry axes for Q>O. This concentration 

causes the quadrupole constant B to be decreased from the 

unperturbed value (H1=0) and hence the effect is one of 

shielding. On the other hand, the radial excitations nt*n't 

tend to enhance (anti-shield) the value of B compared to 

the unperturbed case. The exchange terms are of opposite 

sign to the direct terms and thus angular-exchange leads 

to enhancement of B and radial-exchange leads to shielding 

of B. 

Sternheimer's results are summarized by the 

equation Q = Q (1-R) where Q is the apparent quadrupole app app 

moment - apparent because the perturbation H1 has induced 

either shielding or anti-shielding of the true quadrupole 

moment, Q. Because the final value of R depends on the 

sum of the angular and radial contribution for direct and 

exchange terms no general conclusions can be drawn about 

R until all effects are included. For copper, Sternheimer 

finds (l-R4p)/(l-R3d)= 1.43, in excellent agreement with the 

ratio, 1.42(5), of the measured values of Q measured in the 
65 4p and 3d states of Cu. This agreement is felt to be an 

overwhelming triumph of the Sternheimer calculation. 

Sternheimer has also found that for the 5d states 

of Pr and Tm R5d = -0.38 and -0.44, respectively. The 

average value is in good agreement with Murakawa•s results 
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f B . . . t " t t. f 139L or ~n var~ous a om~c s a es o a. This value for R 

will be adopted in the analysis of the present lanthanum 

results. Sternheimer also finds that R4f = +0.2. Such a 

result has been confirmed by measurements in rare earth 

salts [Ster-67,Hufn-65] 1 but has not yet been verified for 

free atoms. Nevertheless it will be used in the analysis 

of the neodymium results. 
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F. Zeeman Effect 

In order to determine the hfs constants atoms of 

the substance under investigation are subjected to a steady, 

uniform, and weak magnetic field so that the hfs "levels" 

split up into their magnetic sublevels in accord with the 

Zeeman effect. The separations between these sub-levels, 

which depend on the constants A and B, are found from the 

frequency of applied rf field required to induce transitions 

between the sub levels. The theory of these induced 

trahsitions will be discussed in the next section. The 

present section deals with the Zeeman effect itself. 

The Hamiltonian describing the interaction of an 

atom with a constant magnetic field H is 

where ~0 is the Bohr magneton and gJ is the electronic g­
~ ~J 

factor gJ = J~o , gi 

is of order gJ/2000. 

is the nuclear g-factor = yf- which 
~0 

Because of the negative charge of the 

electron ~J is negative and so gJ<O. Assuming that I and J 

are constant, the atomic Hamiltonian for an atom in a magnetic 

field becomes 

(3.15 ) 

The hfs interaction couples I and j to form the total 

angular momentum F. Using the well known angular momentum 
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operators the matrix elements of Hmag can be calculated. 

Allowing the direction of H to define the z axis, the matrix 

elements of H are: mag 

<F,mFIHmaglF,mF) = HmF (a(J,I,F)gJ + S(J,I,F)gi) 
(3.16) 

< F' ,mFIHmagjF,mF) = HmF(gi-gJ)y(J,I,F) ; F
1 

= F - 1 only 

110 
a (J, I ,F) = - 2F(F+l) (F(F+l)+J(J+l)-I(I+l)) where 

S(J,I,F) 
11o 

(F(F+l)+I(I+l)-J(J+l)) = - 2F(F+l) 

(J F )- 11 o / (F-I+J) (F-J+I) (F+I+ J+l) (J;+J-F+l) '(F2~mp2) 
Y 'I' gmF - 2F (2F-l) (2F+l) 

where mF denotes one of the 2F+l Zeeman sublevels. It is 

to be noted that the matrix elements of H are diagonal in mag 
mF because of the axial symmetry of the applied field. 

For weak magnetic fields we can treat terms in Hmag 

as a perturbation on the hfs interaction energy, thus: 

where w; is the hfs energy given by (3-14) • In very strong 

fields (H,::: 10 4 G), the interaction energy of the electronic 

dipole moment with the applied field becomes comparable to 

the hfs splittings, so that the nuclear and electronic 

moments are no longer coupled. The splittings are then 

calculated in an jimi, JmJ)basis. In this scheme the 
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hfs sub levels are at energies given by: 

(3mi 2-I (I+l) ) (3mJ 2-J ( J+l) ) 
wmi,mJ = mJ mihA + hB 4IJ(2J-l) (2I-l) • (3.17) 

Because of the decoupling, I and J and their magnetic quantum 

numbers mi and mJ enter symmetrically. Due to the large field 

the diagonal terms: 

<Imi' JmJIHmagiimi,JmJ) = ~0H(gJmJ+gimi) 
are typically much larger than the hfs terms and so the latter 

are treated as perturbations in the strong field limit. 

Restricting ourselves to only first order perturbation theory, 

the structure of the magnetic sub-level can be obtained from 

the weak field and strong field expressions. Interpolation 

between these limits and application of the principle that 

levels having identical values of ~ never cross leads to 

a schematic drawing of the energy levels as in Figure (3.1). 

Here, in the weak field region, the hyperfine levels are split 

into 2F+l eq~ally spaced components in accordance with eq. (3.16). 

In the strong field region, the levels split into groups 

determined by mJ, having a slope-~0mJgJ/h MHz/gauss. Within 

an mJ group, the projections of the nuclear spin mi are 

ordered in accordance with the hfs splitting term (3.17). 

Because of the de-coupling the strong field region is 

analagous to the Paschen-Back effect of atomic spectroscopy. 

With the general features of the energy level diagram 

established, consideration is now paid to the determination 



Fig. 3.1 ZEEMAN SPLITTING OF A hfs MULTIPLET 

For weak field each hfs level is split 

into 2F+l equally spaced levels. For very 
~ ~ 

strong fields I and J decouple and have 
gJ ~0 

a slope ~WmF/ H = h mJ MHz/gauss. 

Hence they are split into groups determined 
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of the hfs constants A and B from the Zeeman splittings. 

For illustration it is sufficient to consider only second 

order terms in H 

WF = W~ + a (I,J ,F) HgJm_ + l: 
,mF ~· F'=F±l 

(3.18) 

where use has been made of equation (3.16). Because of 

the difference w~ - w~. in the denominator, the depa4tu4e 

ofi WF fi4om a linea4 dependence on magnetic fiield p4ovide~ 
,mF 

a mea~u~e ofi A and B. One way of measuring these departures, 

is to induce transitions between the magnetic substates of 

a hyperfine multiplet. The details will be discussed in 

the next section. 
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G. Induced Magnetic Dipole Transitions 

The hfs constants A and B may be determined by 

measuring the frequency required to induce t·ransi tions between 

the Zeeman levels of a hfs multiplet. In the experiments 

reported here, an oscillating r.f. field is applied perpen­

dicular to the ·static field (C field) which is along the 

z-axis. 
~ A 

Thus H f = H cos (wt) i and the r.f. Hamiltonian r o 
is 

The raising and lowering operators J± and F± have been used to 

express the x components of I and J. 

For non-zero C field, F is no longer a good quantum 

number and a state of a hfs multiplet is given by a sum over 

all states F having a component mF, I (F)mF?= E aF, (mF) IF'mp ), 
F' 

where label (F) indicates the level from which the state 

evolved. The aF, are found from solution of the eigenvector 

problem - equation 3.15 • Thus, at non-zero values of 

C-field, 

where 

(2I+l) gi. 
<F' ,mF' I (2I+l) (J+ +J_) + (F ++F .. .> IF ,m~ 

gJ-gi 
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In this investigation, we are only concerned with 

transitions of the type F' = F. Also, because the mixing of 

states IF'~F,mF) into I (F),mF) is very small in a weak field, 

we write 

a ':: m,m 

Consider the two-level case in which the allowed 

states are ll) and j2), and assume that, at t=O, the atom 

is in state jl). The matrix to be solved is 

-iwt where the counter-rotating components e associated with 

(ll H j2) , and e+iwt associated with (21 H 11>, have been 

dropped. This is necessary in order to make it possible to 

formulate certain analytic expressions required to calculate 

the MQT probabilities. In any event, their contribution to 

the transition probability is small since they involve 

----+1 rather than --1-- [Bloc-40] • If the perturbation is w w
0 

w-w
0 

applied for a time T the transition probability is [Rabi-37] 

P - (2b) 2 2 1 1 2 2 --~:---:..-~ sin <~ (w
0

-w) + b T ) • (3.20) 
1~2 - (w -w)2+(2b)2 ~ 

where w = 
0 

0 

and w is the angular frequency of the 

applied r.f. field. We note that the transition probability 
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is 100% if w = w
0 

and if b = ~TI {n=l,2, •• ). The resonance 

line shape is governed predominantly by the Lorentzian 

f(x) 1 aP 
= l+x2 and the r.f. amplitude dependence is ob(w=wo) ~ 

for very small b. 

A multiple quantum transition (MQT) is one of 

type !FmF) + JFmF±n) wher~ n>l. Because of the selection 
I 

rule for Hrf' ~ = ~±1, an n-quantum transition takes place 

by the absorption or stimulated emission from the rf field 

of n separate quanta. Using a perturbation theory approach, 

Salwen [Salw-55] and, independently, Hack [Hack-56] 

showed that the transition probability for an n-quantum 

transition has the same form (Lorentzian in frequency) as 

equation (3.20) 

2 
b . ' m ,m p ~ 

m' ;m 
2 1 * 2 b2 (sin (nTI (wm' ,m - w) + m',m 't')) (3.21) 

n = Jm'-mJ. 

* where wm',m is the angular frequency which corresponds to 

the resonance intensity peak. In ·fact 

* b 2 Ja. 12 
w = wo ~ (-) ( E 1,m 

n i=m-1 wm,i-wm',m 
+ 

+similar terms form'). 

The term w
0 

is the "generalized Bohr frequency" given by 

w = 
0 

w -w F,m F,m' 
lm-m' 1¥1 
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That is, w
0 

represents a kind of compromise frequency which 

is used to connect the levels m', m through the (n-1) 

intermediate states of the Zeeman multiplet. Because of 

the (b/n) 2-term in w* there is a shift in the nominal 

frequency w
0 

due to the perturbing field. If such shifts 

are large, then corrections allowing for those shifts should 

be made. The rf field parameter b , is defined by m ,m 

b , = 3. bn 
m ,m n l: 

i=m±l 
i' =m±2 

a . a. , . " --- a ( l) 
m,~ ~ ,~ . n- , 

~ ,m 

(n-1) • i =m±(n-1) 

The frequency denominators, (v ,-v , .) measure the depar-m,m m ,~ 

ture of the levels of a Zeeman multiplet from equal spacing 

and thus their product, which appears as the denominator of 

bm',m' grows very rapidly as the C-field increases. For 

large fields, vastly larger r.f. amplitudes are required to 

achieve sizeable transition probabilities than would be 

required at very small fields when the energy levels are 

nearly equally spaced. Also, because of the factor n in 

the probability expression (3.21) and in its role in bm'm the 

full width at half maximum for MQT is only ~ times the width 
n 

for a single quantum transition (equation 3.20). Indeed this 

narrowing of MQT is observed in the experiments reported here. 

Salwen's perturbation theory results are only taken 



to 2nd order i.n b. But, because of the ·large b values 

required to excite MQT some question may be raised as to 

* the validity of boldly applying Salwen's formula for w 
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to see if serious frequency shifts occur which would require 

correction. A non-perturbation theory solution which uses 

exact diagonalization of Hrf has been reported elsewhere 

[Pier-66-] • Using the methods developed there, the expected 

frequency shifts were calculated for the transitions observed 

in 140La. It was found that, for the r.f. field amplitudes 

required to maximize the transition probability, the peaks 

of the resonances were shifted only 1 or 2 kHz from the 

nominal MQT frequencies - an amount which is entirely 

negligible. 

In practice, far more serious shifts of the frequency 

peak can occur due to inhomogeneities of the C-field 

{Happ-64]. These shifts can be either positive or negative 

depending on the concavity, as evidenced by the second 
2 

derivatives ~ ~~ of the C-field intensity profile. 
X 

Broadening of the resonance line shape beyond the width giv'en 

by the uncertainty principle, ~v ~ 1/nT, is also symptomatic 

of field inhomogeneity. Great care must be taken, therefore, 

to ensure that in each run the field inhomogeneities have 

been eliminated or, at least, minimized. This procedure 

will be discussed later. 
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In s~ary, an oscillating field of the type defined 

by equation (3.19), can induce transitions of the type 

IF,m~~IF,m) so that, if lm'-ml>l ann-quantum transition 

is induced. Calculation reveals that these transitions 

are narrow, FWHM ~ l/n ~WHM the single quantum transition), 

and require a lot of r.f. power for their excitation. 

Even at these large r.f. amplitudes, however, only very 

small frequency shifts from "nominal" frequency w are 
. 0 

expected. 

It is also possible for the r.f. field, (3.19), 

to excite transitions of the type jF,m)~IF±l,m±l) , that 

is, transitions between the sub levels of different hfs 

multiplets. Such transitions are called "direct" transi-

tions in contrast to the "Zeeman" transitions. Observation 

of direct transitions permits very accurate determination 

.of t.r1e hfs constants A and B. 
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THEORY OF EXPERIMENT AND EXPERIMENTAL RESULTS 

The atomic beam apparatus has been described in 

detail elsewhere [King-60,Came-62] and, accordingly, only 

those aspects of its operation important to the inter-

pretation of the experimental results will be discussed 

here. In addition the results of the experiments performed 

will be given in this chapter. 

A. Operation of the ApEaratus 

The source material is evaporated from a small 

tantalum oven and emerges through a slit to form an atomic beam. 

Figure 4-l shows the layout. The apparatus is under a 

vacuum of approximately 10-6 Torr to prevent beam scattering. 

The atoms of the beam, in their nearly 1-meter journey along 

the x-axis are subjected to three regions of magnetic field. 

The fields of the A- and B-magnets are strong and inhomqgeneous 

and their field directions and gradients are parallel to each 

other but perpendicular to the beam direction. Because 

the fields are strong (H "' l0 4G) it can be assumed that 

I and j are completely decoupled. ~he magnetic energy ip 
-+ -+ -+ 

Wmag = -~J·H-~I·H = -~0 gJ mJ H where gJ < 0 and the 

direction of H has been taken to define the z-axis. The 
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Fig. 4.1 APPARATUS 

The trajectory of the focussed atoms is 

indicated schematically. The locations 

of the collimating slits and the buttons 

are also shown. 
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force on the atoms due to the gradient is 

-'i/W mag 
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'l'herefore atoms having mJ>O and initially emerging 

at a positive angle e are deflected towards the apparatus 

axis. Similarly atoms having mJ<O and emerging at negative e 
are deflected back towards the apparatus axis. All other 

atoms are, in principle, deflected away from th~ axis and 

miss the 'collimating slits and are lost. Those atoms moving 

too fast to be deflected or those having mJ = 0 are blocked 

from reaching the exit slit by the stop wire. In the B­

field, atoms are deflected (again) in the same direction as 

they were in the A-field region, and thus miss the exit slit. 

If, however, the sign of mJ has changed between the A and B 

regions, then the atom is subjected to a kind of restoring 

force by the B-field and is refocused so that it can pass 

the exit slit and land on the resonance button. The requisite 

sign change of mJ is effected by inducing a transition 

between the original magnetic subs tate IIt,mF) and another IF 'mp ). 
A hot wire or surface ionization detector is mounted behind 

the buttons. The current generated by beam atoms becoming 

ionized and boiling off the tungsten wire is amplified by 

an electrometer. The mount is capable of being swung in an 

arc so that different regions of the beam can be intercepted. 

This mobility is very useful during the alignment procedure. 

Figure 4-2 shows the exit beam profile taken .with ·the hot Wire. 



Fig. 4.2 EXIT BEAM PROFILE 

The resonance and monitor components of 

the beam are shown. The data is for 133cs 

but the shape is preserved for all atoms having 

J>O. The dashed lines correspond to the 

profile obtained with no rf inducing field 

applied. 



64 

1000 

, .... 
..,. .... , 

,. - ,. ,. 
en "-
LaJ 
ex: 
w 
0.. 
:e 
<t -

rt) 100 -0 

JC 

(!) 

z 
0 
<t 
LaJ 
cr: 

or: 
LaJ 
1-
w 
::E 10 
0 
a: 
1-
0 
LaJ 
....J 
LaJ 

MONITOR ·RESONANCE 

·12 ·08 ·04 0 

DISTANCE FROM CENTRE· LINE (INCHES) 



65 

The hot wire is also used to find the frequency peaks of 

the calibrating resonances in 39K. Discussion of the 

calibration procedure will take place later in section D. 

Atoms of 147Nd, 149Nd and 140La are radioactive and 

undergo S- decay. The number of atoms deposited on 

the button is indicated by the button's activity. The 

buttons are counted using low background S-counters which 

are shielded from cosmic rays by the use of anti-coincidence 

circuits in conjunction with hemispherical guard tubes sur­

rounding the inner tubes. 

The runs themselves are conducted in the following 

way: The C-field is set to some predetermined value using 

. 39K resonances ~n • After allowing time for magnet stabili-

zation, and subsequent field calibration (again, of course, 

using the 39K beam), the radioactive beam is raised (like 

Lazarus) and pairs of buttons, one 11 resonance" and one 

"monitor" are loaded into the apparatus. Loading is 

accomplished through the use of a button bar. A channel cut 

into its base permits the insertion of a pair of buttons, 

side by side, when the bar is out of the vacuum case. The 

bar is then advanced through two stages of pump-down 

and finally brought to rest with the buttons behind the 

exit slits. After depositing for 10 to 15 minutes, the 

buttons are changed for another pair and a new r.f. frequency 

is set. While the second pair is being exposed, the first 
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pair is counted and the ratio of their activities, resonance-

to-monitor, is noted. Any changes in exposure time can be 

made as may be required by observing the monitor counting 

rate. 

An increase in the ratio of the counting rates at a 

particular frequency means that transitions which reverse the 

sign of mJ are being induced at that frequen.cy. Proceeding 

in this way a resonance can be traced out and presented as 

a plot of relative activity against applied frequency. 

Neutron irradiation of natural neodymium metal can 

be summarized by the following reactions: 

1.8 hr 54 hr 
148Nd + n ~ 149Nd e 149Pm i3 ) 149Sm 

12 m 28 hr -
150Nd + n lSlNd e 151Pm i3 > 151Sm 

11 d 
146Nd + n ~ 147Nd i3 ) 147Pm. 

Thus to facilitate the 149Nd experiments an automatic 

counting syst~m was installed. This action was taken because 

the presence of the radioactive promethium isotopes in the 

beam (the vapour pressure of Pm is close to that of Nd) 

obscured the 149Nd activity thereby masking the 149Nd 

resonances. 

The outputs from the eight i3 counters were fed to 

scalers which were slaved to a master timer-scaler that 
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allowed the scalers to accumulate counts for some predeter­

mined time interval. At the end of the interval on command 

from the master timer-scaler the contents of each of the 

scalers was read out and printed on a teletype. After the 

contents of the last scaler in the chain had been printed 

the scalers were re-zeroedand the process repeated. In this 

way decays could be followed for several half lives and 

the amount of 149Nd activity identified. 

Table 4.1 lists the pertinent apparatus components 

used in these experimen~s. It will be noted that several of 

the components listed were "built, designed and perfected" 

by the author's esteemed colleague, Mr. R.G.H. Robertson. 

It is a pleasure to acknowledge his substantial contribution 

to this work. 



Item 

Magnet Supplies 
for A,B, and C 
Magnets 

Electrometer 

Automatic oven 
temperature con­
trol and supply 

Frequency 
Counter 

Rf Signal 
Generators 

Rf-amplifier 

Automatic Counting 
System 

TABLE 4.1 

Electronic Equipment 

Designed, built and 
perfected by R.G.H. 
Robertson 

Designed, built and 
perfected by R.G.H. 

·Robertson 

Designed, built and 
perfected by R.G.H. 
Robertson 

Hewlett Packard 
Model 5246L 

Wandel and Golterman 
Model LMS-68 and LO 
Series plug-in units 

Boonton Radio Corp. 
Model 230A 

Canberra Industries 
10-Blind Scalers Model 
1476, Timer Scaler 
Model 1493, Blind 
Scaler Display Model 1477 
Teletype Scanner Model 
1488, Teletype console 
Model 33 ASR 

Description 

Transistorized, current Regulated. A & B 
Supply capable of 1.5 A into 10 3 0. C 
supply can be varied continuously to pro­
duce fields from 0 to 300 G. Stability 
is !::! 1 part in 10 5 over 4 hours. 

Sensitivity (FSD) is lo-14 A. 

Oven is kept at constant temperature by 
controlling filament current so that 
product of emission current and accelerating 
voltage is a constant. Arc protection via 
SCR's. Capable of 1000 V at 500 rnA. 

0-3 GHz via suitable plug-in units. Long term 
stability is l part in 107. 

Range 4-1,000 MHz via plug....:in units. Maximum 
Rf output is 1/2-1 watt into 60 n 

Range 10-500 MHz. Output is nominally 4 watts 
into 50 n 

Prints out, at preselected time intervals, the 
contents of up to ten scalers. ~ 

00 
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B. Computer Programmes 

Several computer pro.grammes have been written to 

facilitate these investigations. The first of these, written 

by R.G.H. Robertson and called FCALC, prints out the 

frequencies of all focussabletransitiorts for a given choice 

of H, A, and B. The programme finds these frequencies by 

diagonalizing the atomic Hamiltonian H (eq.3.15). 

After several resonances have been observed the 

programme LOLA is used to calculate, for different 

combinations of A and B, the residuals between the experi-

mentally observed frequencies and those predicted at the 

appropriate fields for the particular transitions assumed. 

The results of all the observed resonances are combined 

by calculating 

2 
X = 

N 
L: 

i=l 

2 (v. -v. obs) 
~ ~ 

where vi is the frequency calculated for the ith resonance, 

viobs is the experimentally observed frequency of the ith 

resonance and a. is its error. Resonances in different J 
~ 

states can be combined with each other if the ratios 

AJ 1 /AJ" andBJ 1 /BJ" are known for at least one isotope of 

the element under investigation. The values of A and B 

which minimize x2 are adopted as the experimentally de-

termined values. 
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In essence the programmes LOLA and FCALC are 

different versions of the same programme. However, because 

they were written independently they served as verification 

that, indeed, both programmes are correct. This was done by 

comparing their results for specific values of the input 

constants. So as to rule out the presumably unlikely 

possibility that ~ programmes were making the same 

mistake their results were also compared, for certain 

alkali atoms in their J=l/2 states, with the results of 

a programme which used the exact Breit-Rabi formula. Since 

the latter is a solution for the case of I or J=l/2, only 

a quadratic equation need be solved to find the eigenvalues 

of H. In all these tests the agreement was exact. 

The programme MQT finds the optimum rf field 

amplitude for a given transition and choice of A, B and 

magnetic field H. When the optimum value has been found, 

the resonance line shape is printed out to reveal if a 

significant power shift will occur. 

Finally, it was necessary in the 149Nd experiments 

to separate the 1.8-hour 149Nd activity on the buttons 

from the background activity due to 28-hour 151Pm and 

54-hour 149Pm.. Th · t · d · th t ~s separa ~on was one us~ng · e compu er 

programme FIX which least-squares fits the observed decay 

of the activity to a two-component exponential growth and 

decay, thus 
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-A. t -A. t 
c ] + Be b 

where the different background activity of the promethium 

isotopes are lumped together into a single pseudo-activity 

having a decay constant A.b taken appropriate for a 36-hour 

half life. The initial amount of 149Nd is given by A 

and the initial promethium activity is B. The term 

allows for that amourit of long-lived activity which is 

specifically due to decay of 149Nd to 54-hour 149Pm. 

Here A. is taken appropriate to the half life of the c 

daughter. 
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c. General Experimental Considerations 

1. The Plan of the Experiments 

At low field, the resonance frequency of any Zeeman 

transition can be accurately predicted when J, gJ, H, I and 

F are known. This is implied by the linear term in the 

perturbation expansion, equation (3.18). Thus any given 

resonance can be found at low field in spite of one's ignorance 

of the values of the h.f.s. constants. At higher field, the 

quadratic terms in H, whose denominators are functions of 

the hfs intervals, cause the observed frequencies to depart 

from a linear dependence on field. In general, the frequency 

shift is 

where c1 , c2 and c3 are known. Obviously, the shift may be 

determined with greater and greater accuracy as the field 

is increased. Measuring cv in two F-states permits the 

evaluation of two independent linear combinations of A and 

B, resulting in a unique solution for them. Additional 

measurements in other F-states makes an over-determination 

possible. 

Ideally, the hfs constants would be determined by 

measuring the hfs intervals using direct transitions 

(i.e. ~F = ±1, ~mF = 0,±1) at low field. 
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For the lanthanum and neodymium atoms reported here, it turns 

out that these transitions would be practically impossible 

to observe. With several values of J and relatively large 

nuclear spins, the beam intensity is distributed among a 

great number of separate quantum states. Thus, any effect 

which acts to increase the resonance height becomes important. 

Under fairly broad assumptions, it can be shown [Rams-56, 

King-60] that the transmission (I/I
0

) of the apparatus is 

given by 2 2 -v /a 
I/Io ~ 1 - e c (4.4) 

where a = / 2~T is the most probable velocity in the oven at 

temperature T, and vc is called the critical velocity of the 

apparatus. For v < vc' all atoms passing through the colli­

mating slits can be refocussed by the magnets provided they 

undergo appropriate transitions. However, the faster moving 

atoms are not deflected enough to avoid the stop-wire. In 

fact, vc2 depends linearly on the field gradients, the gJ 

of the atoms and l~mJI in the transition. For both lanthanum 

and neodymium, (v /a) 2 is small with the present apparatus and c 

so, from equation (4.4), the relative intensity of two transi-

tions of different multiplicity becomes 

I(~mJ = ±N) 

I(~J- ±1) ~ N. 

The preferential focussing of multiple quantum transitions 
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over 1-quantum transitions forms an important experimental aid 

when investigating atoms with small gJ. Since direct transi­

tions do not permit large multiplicity their resonances will 

be weak in comparison to the most favourable Zeeman resonances. 

There is another circumstance which favours the obser-

vation of Zeeman transitions. In certain F-states, it is 

possible for transitions of several different multiplicities 

to be superimposed at the same frequency if the magnetic field 

is not too large. When this occurs, those resonances will be 

further augmented relative to resonances due to only a single 

transition. 

These considerations were confirmed by experiments 

performed with a stable lanthanum beam and the hot-wire de­

tector. The hfs constants for 139La (99.9% abundance} have 

been accurately determined by Yu Ting [Ting-57J using the 

ABMR apparatus at N.R.C., Ottawa. Thus one can calculate that 

the following transitions in the J=5/2 1 F=6 state all occur 

at the same frequency, 14.164 MHz, in a 20G field: 

m = -3~-4 f).m = 1 N = 1 F J 

-2~-5 3 3 

-1 E---t-6 5 5 

Other MQT in F=6 should be split off from each other by 

0.030 MHZ and are not superimposed. In the F=4 state, 

there is only a single Am = J ±1 transition. When these 

resonances and the direct hyperfine transitions were examined 
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it was found that the latter (bmJ = ±1) were only about 1/10 

as intense as the F=6, superimposed transitions. The search 

for the F=4 transition was unsuccessful. Thus, only if the 

. d' . d . 140 't correspon ~ng super~mpose resonances ~n La were qu~ e 

intense, i.e. if they were observed with a signal-to-background 

ratio of ~ 10, could there be any hope of observing ~mJ = ±1 

resonances. Similar considerations apply to the radioactive 

neodymium experiments. 

2. Field Calibration 

The C-field strength was calibrated by means of a 

39
K beam detected on the hot wire at the beginning and end 

of each run. Two resonances were used, the one-quantum 

Zeeman transition 12,-2)~12,-1) and the field dependent 

hyperfine transition j2,2/~jl,l/. First it was established 

by plotting out the resonance line shape that the resonances 

were symmetrical and that the frequency of the peak did 

not shift when the rf voltage on the loop was increased by 

a factorof 5 or 10. If shifts did occur, implying an in-

homogeneity, the C-field was de-gaussed, or simply raised 

and lowered, and the whole procedure repeated until no power 

shifts could be seen. The frequencies at the peaks of the 

two resonances were each taken ten times and the fields 

predicted from each group were averaged to provide the re­

corded field strength. The error assigned included the 
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extremes of both groups. In the same manner, the fiela was 

remeasured at the end of each run and the average of the 

initial and final values was adopted, viz. 

H ± oH = 1 
< oH. . t + oHf. > • 

212 ~n~ ~n 

So as better to insulate the results against the 

effects of any possible systematic error and thereby to verify 

that the calibration procedure was valid, a separate series 

of tests was conducted using several calibrating beams. 

23 39 133 These beams were the alkalis Na, K, and Cs whose 

properties are very well known. For some values of C-field 

the resonance frequencies for the calibrants were found 

and from these frequencies the field value was computed. 

The results were compared and it was found that within the 

error, good agreement always resulted. These runs were 

done for both strong and weak fields (~ 200 G and 20 G) • 

The same sort of experiment was carried out using 

the F=6 resonances in stable 139La. Here the resonances 

were used to predict the value of gJ for the J = 5/2 of 
2

D. 

This method of measuring gJ was possible because of Ting's 

· t f A d B f 139La, and because prec~se measuremen s o 
512 

an 
512 

or 

of Sheriff and William's determination of ~I £sher-51J.· 

The resonances were observed at 75 and 125 G and use was made 

of a chart recorder to monitor the electrometer output while 

the oscillator slowly swept through a resonance. The results 



of these runs were: 

a (Gauss) gJ 

75 (4 times) -1.1985(9) } gJ = -1.1991(5) 
125 (4 times) -1.1993(6) 

where the errors represent a standard deviation. This 

result should be compared with the very accurate value, 

7/ 

gJ = -1.19885(5) of Goodman and Childs [Good-68]. The 

agreement is quite satisfactory and confirms the,assertion 

that there is no serious systematic error in the field 

calibration procedure. 

3. The Radioactive Counting Procedure 

In the experiments with the radioactive beams, the 

buttons were exposed to the beam for, typically, 10- or 

15-minute periods which resulted in counting rates of about 

300 c/min and 5 c/min on the monitor and resonance buttons, 

respectively. The buttons were first sprayed with a plastic 

lacquer (so as to prevent contamination of the counters) and 

then put into the counters. The monitor button and the reso-

nance button were counted, in turn, in the same counter -

thereby removing any dependence the results might have on 

relative counter efficiencies. Generally the buttons were 

counted until about 103 counts were recorded. Standard 

corrections for decay were made and the results were computed 
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as the resonance-to-monitor ratio 

where CR is the count rate for the resonance button and CM 

is that for the monitor. The counter background is 

B(~2 c.p.m.},andNR and NM are the total number of resonance 

and monitor counts respectively. Typically the relative 

error in r was ~ 3%. 
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D Th 140L E . t • e · · a xper~men s 

Samples of natural lanthanum, in the form of metal 

chunks sealed in evacuated quartz vials, were irradiated 

in the McMaster reactor. The purity of the material was 

verified by analyzing the resulting y-spectrum. The only 

activity present in any significant amount was 40-hour 140La, 

which was to be expected since the isotopic composition 

of natural lanthanum is 99.9% 139La and 0.1% 138La. The 

atomic beam sources, of about 20 milligrams, were irradiated 

for 20 hours to produce a specific activity of 10 mCi/mg. 

After activation, the samples were loaded into a 

tantalum crucible which, in turn, was placed in a .. small tanta-

lum atomic beam oven. The latter had a 0.010 11 slit and a 

total surface area of about one square inch. It was heated 

by electron bombardment at a constant power of 250 watts. 

Each sample would last for about 12 hours,· thereby permit-

ting the collection of about 50 exposures per source. 

One troublesome feature of the project was the 

extremely intense y-fields surrounding the samples, typically 

5 to 10 r/hour at one meter. The hazardous aspect meant 

that the experiments had to be spaced out in time so as to 

reduce the radiation dosage to the author and his colleagues. 

Other measures included· surrounding the oven-chamber end 

of the apparatus with lead blocks and self-enforcement of 

a rule never to try to make any required repairs to the oven 
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interlock or oven chamber within two weeks after a lanthanum 

run. 

The major experimental difficulty, however, was in 

the production of a steady lanthanum beam. Beam instabili­

ties showed up in two ways: 

(a) The beam intensity, as determined by the activity on 

the monitor button, could vary by a factor of two 

on occasion during a run even though the oven-heating 

power was kept constant throughout. 

(b) The rf-off background activity could vary by as much 

as a factor of four during the course of a run. 

These two variations were apparently quite independent of 

one another and so the background could not be related to 

the monitor activity. Of course, the background fluctuations 

were of primary concern since the use of the double collection 

scheme compensated for beam intensity variations. 

Resonances in stable 139La were investigated for 

the purpose of optimizing the machine alignment to produce 

the best signal-to-background ratio for the 140 La resonances. 

It proved to be of crucial importance to very carefully 

secure the oven position since the background was very sensi­

tive to oven placement. Therefore during the 140La runs 

several exposures were taken initially with the rf turned 

off, moving the oven bar small distances in and out. The 
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position corresponding to minimwn "rf-off" activity was 

picked and the experiment was then finally under way. Although 

this procedure minimized the severity of the background 

fluctuations by minimizing the background itself, it by 

no means eliminated the fluctuations. Thus it was necessary 

to take several more "rf-off" exposures during a run. A 

graph of these data was then plotted and the background 

during the resonance exposures was inferred by interpolation. 

The data for a typical run is shown in Figure 4.3. Also 

illustrated is the resulting resonance line shape after 

the background is subtracted. 

The instabilities were probably due to surface dif-

fusion of lanthanum through the exit slit of the oven and 

its subsequent 

evaporation 

evaporation from the outer surface. This 

has the effect of enlarging the source's 

extent in the Z direction far beyond the design parameters 

of the apparatus. 

It has been stated already that two atomic states, 
2 2 o312 and o

512
, are present in the beam at the temperature 

used. Since I = 3 for 140La [Pete-60] there are five 

different F-states in which focussable Zeeman transitions 

should occur; namely, 

J = 3/2 

J = 5/2 

F = 9/2 and 7/2 

F = 11/2, 9/2 and 7/2. 

However, in the light of the discussion about the advantages 



Fig. 4.3 BACKGROUND INTERPOLATION AND RESONANCE LINE 

SHAPE (140La) 

On the left the raw data from a lanthanum run 

are presented. The background or rf-off ex-

posures are indicated by the crosses. The 

resonance line shape on the right is the 

result of subtracting the interpolated back-

ground from the resonance exposures. This 

interpolated background is indicated by the 

solid line. 
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of observing superimposed MQT, the experiment was pretty much 

restricted to the observation of transitions of the type 

~mJ = ±3 and ±5. It was decided, therefore, to search for 

the F = 11/2 and 9/2 resonances in J = 5/2. By virtue of 

the relationships 

B5/2 
= 1.2902(1) and s--- = 1.2106(6) 

3/2 

reported by Ting [Ting-57] for 139La, the J = 3/2,F = 9/2 

resonance served as a check. 

To second order in H, the frequencies of the transitions 

are given by: 

J = 3/2 F = 9/2 ~mJ ±1,±3 'V1,3Q 

0.420 H2 
'V1,3,5Q=0.?63H + 11 . 1 

2(A5/2+108 5/2) 
J = 5/2 F =11/2 ~mJ=±l,±3,±5 

" 11 0.420 H2 
vnQ(n;:5)=0.763 H +{ ~n) 11 l 

2(A5/2+10B5/2) 



where v, AJ and BJ are in MHz and H is in gauss. For the 

F = 11/2 transition, the 1-, 3- and 5-quantum transitions 

superimpose at the same frequency until the third order terms 

in H become large enough to split them apart. It turned out 

that this began to be significant at fields of about 60 G. 

The resonance in J=5/2, F=9/2 was very useful because it is 

quite insensitive to B
512

• 

In all, 20 resonances were observed in 140La, which 

represents the achievement of some 95 separate experiments. 

That is, only about one fifth of the experiments were success-

ful. Of the 20 resonances, 2 were rejected - one at low field 

on the basis of gross disagreement with all the others, and 

one at 40G because of its distorted line shape. Figure 4-4 

shows the 14, observed at higher fields, which were used in 

the calculation of the hfs constants, A512 and B512 , by means 

of the programme LOLA. 

Of course, that programme requires that each resonance 

be uniquely identified by initial and final quantum numbers. 

Because the third order splitting of the superimposed resonances 

was small compared to the line width at the fields used, 

resonances in F = 11/2 were assigned quantum numbers appropriate 

to the 3-quantum transition (whose predicted frequency is in 

between that for the lQ and that for the 5Q transition) • The 

resonancesinF = 9/2 (for both J-values) were also treated as 



Fig. 4.4 140La RESONANCES USED IN OBTAINING THE FINAL 
RESULTS 

In these drawings, the vertical error bars 

primarily reflect the uncertainties in the 

background interpolation. 
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pure 3-quantum transitions - the argument being that these 

should represent the major contribution because of the 

preferential focussing of tunJ = ±3 compared to ll.mJ = ±1. 

To confirm the validity of this approach the data were also 

analyzed treating the transitions all as lQ, and then all 

as 5Q or 3Q (as appropriate). There were no significant 

changes in the values of A and B at which the minimum x2 

2 was found, although a slightly smaller x occurs for the 3-Q 

compromise fit. 

For the x2 distribution, the standard deviation is 

12f where f is the number of degrees of freedom. We are fitting 

14 resonances to two parameters so f=l2. Figure 4.5 is a 
2 2 plot of x versus A512 and B512 • The fact that Xmin ~ f/2 

indicates a somewhat conservative assignment of error in the 

frequency of each resonance. Noting that the displacement of 

either A or B by one standard deviation from its central value 

should increase x2 by 12(12) ~ 5, we find: 

IA5;2I = 55.9(4) MHZ 

IBS/21 = 38 {4) MHZ 

and A5/2/B5/2 > o. 

This means that hfs constants in 139La and 140La are related 

in the following way: 

Al40 
5/2 

Al39 
5/2 

= 0.307(2) 

140 
B5/2 _ 
Bl39 -

5/2 

0.70·(7). 



Fig. 4.5 2 140 
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Of course, the hfs constants in the J=3/2 state were cons­

trained to maintain the ratios observed in 139La. No separate 

determination was possible here because only one Zeeman 

transition in J = 3/2 was investigated. Table 4.2 summarizes 

the data and also gives the individual residuals calculated 

for the adopted values of A
512 

and B
512

• 

The nuclear moments for 140La are found using the 

Fermi-Segre formula 

and 

140 A.l40 .1140 139 

llr. = ~ ~ llr 

Ql40 = B140 
139 

::T39 Q 
B 

For the comparison isotope, the pertinent ·values [Sher-51, 

Ting-57] are 

1139 = 7/2 

139 
11 1 = +2.778(1) n.m. 

A139 = 182.1706(6) MHZ 
5/2 

B
139 = 54.213(14) MHZ. 
5/2 

Ting reported o139 = +0.27(2) b, but he assumed a net 

Sternheimer shielding of the nuclear quadrupole moment given 

by R5d =+0.116. In an extensive calculation, including both 

direct and exchange terms, Sternheimer [Ster-67] found that 



'l'ABLE 4-2 

140 
The La Resonances 

IF,mF) + IF'm;) vexp ovexp H(G) oH (G) Total 'V -
Error calc 

(MHz) (MHZ) 
(MHZ) 'Vexp (MHZ) 

J = 5/2 

11/2,-9/2 11/2,-3/2 11.713 .015 14.990 .015 .019 .006 

19.850 .030 24.970 .020 .034 -.011 

28.225 .020 34.980 .010 .022 .018 

32.525 .020 40.007 .015 .024 .039 

41.360 .020 50.018 .010 .022 .003 

50.424 .050 60.008 .020 .053 -.012 

41.415 .030 50.033 .020 .. 036 -.039 

11/2,-11/2 11/2,1/2 27.965 .020 34.980 .020 .026 .011 

9/2,-7/2 9/2,-1/2 19.575 .015 24.980 .010 .017 -.005 

37.310 .025 45.019 .010 .027 -.005 

J = 3/2 

9/2,-9/2 9/2,-3/2 5.715 .025 14.853 .010 .025 .022 

9.875 .025 24.984 .014 .026 .022 00 
\.0 

14.215 .025 35.020 .010 .025 .006 

21.065 .010 50.003 .005 .010 -.003 

X2· = 6 2 m1.n · 
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RSd = -0.42 for Pr and 'l'm. Murakawa found that RSd = -0.3 

f h f th Sd f . . ' 139L [M k 58] or t e states o e con ~gurat~on ~n a ur - • 

Therefore, we adopt 

Ql39 = 0.27(1-0.12) = 0 17 b + • • 
(1+0.40) 

The present experiments were not accurate enough to determine 

140 the sign of ~I through its small contribution to H 

(see equation 3.15). However, Blok and Shirley [Blok-66) have 

found, using combined nuclear and solid state techniques, 

that o140 =+0.47 Q
139 , with 10~ standard error~ Adopting their 

sign for o140 we have: 

140 
~I = (+) 0.73(3) n.m. 

o140 = (+) 0.11(4) b. 

The errors include allowances for a possible 2% hfs anomaly 

and a 25% uncertainty in RSd" 

* Only their sign has been adopted because of the very un-
certain nature of parameters used by Blok and Shirley. 
Since these authors only give the standard error, no 
real means exists for comparing their value with ours. 
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E Th 149 d E . • e N xper1ments 

Samples of natural neodymium, in the form of single 

metal pellets enclosed in evacuated quartz vials, were 

irradiated in the McMaster reactor for four hours. The 

composition of the material was verified using neutron acti-

vation techniques and I am indebted to Dr. James Mason for 

providing the high resolution y-spectrum. Three radioactive 

neodymium isotopes are produced by thermal neutron capture. 

147 The amount of 11-day Nd present after a short irradiation 

is negligible. This is not the case for 151Nd (L
112 

= 12 

minutes),but one can delay the start of the beam experiments 

for approximately an hour to ensure that the activity has 

decayed before the buttons are counted. This leaves only 

the 1.8-hour 149Nd isotope but, of course, the samples also 

contained the promethium daughter activities. Typical sample 

size was 200 mg which was sufficient to yield 50 mCi of 149Nd. 

The source material was loaded into a tantalum oven 

of similar design to that used in the lanthanum experiments. 

The oven power was set to about 180 watts which allowed 

the beam to last for about 3 hours. Fortunately, the beam 

intensity was very steady, exhibiting none of the wild 

fluctuations experienced in the lanthanum runs. Neodymium· 

is readily detected with a hot-wire ionizer and so, at the 

beginning of each run, the oven was aligned to maximize the 
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signal-to-background ratio for the J=4, I=O resonance 

in the even-even isotopes in the beam. This resonance 

was also used to check that no serious field shifts occurred 

during a run. Because of the characteristic beam stability, 

only two or three rf-off exposures were necessary. Buttons 

were exposed for 10-15 minutes which produced a counting 

rate of 300-600 c.p.m. for the monitor button. 

Because of the presence of the promethium isotopes 

(50-hour 149Pm and 28-hour 151Pm) the automatic counting 

system was set to print out the counts accumulated from each 

resonance button at 40-minute intervals. Occasionally 

this sequence was interrupted and the higher-counting monitor 

buttons were placed in their respective counters for a short 

time. Counting was continued in this way for 12 hours 

after each run. The analysis of the decay data, using the 

computer programme FIX, has been described above. 

The electronic configuration of the neodymium atom 

is 4f46s 2 which forms a ground multiplet 5 rJ where 

J = 4,5,6,7 and 8. Experiments conducted using the even-

even isotopes in a stable beam revealed that resonances in 

the J=4 state were approximately 50% more intense than those 

in J=5. According to the Boltzmann factor, the population 

of the J=4,5 and 6 states should be in the ratio of 5:2:1 if 

an oven temperature of 1800°K is assumed [Budk-62]. However, 
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the gJ's for J~4 and 5 are -0.60324(10) and -0.9002(2} 

respectively [Spal-63]. The expected relative intensities 

of the resonances follow from equation (4.4) noting that 

2 
vc is proportional to gJ. Thus, 

I(J:::4) _ 5 -0.6 
I(J=5) - 2 -0.9 ~ 1 • 7 ' 

which explains the observation. 

The spin of 149Nd has been determined to be I=5/2 

[Budk-641· Thus, for J=4, the possible F-values range from 

3/2 to 13/2. For normal ordering, however, focussable 

Zeeman transitions occur only for F=l3/2, 11/2, 9/2 and 7/2. 

There should be five more observable transitions in J=S. 

Because J is integral for neodymium, the lowest multiplicity 

of any focussable Zeeman transition is two so that mJ can 

be changed from +1 to -1 or vice versa. The resonances in 

F=l3/2 and F=ll/2 (J=4) were used in this experiment to deter­

mine the J=4 hfs constants. Weaker resonances were also 

seen in J=4, F=9/2 and J=5, F=S/2 but, because of the overall 

consistency of the other data it was decided that it was un-

necessary to obtain further resonances. 

As was the case in the lanthanum experiment , the 

resonances in F=l3/2 and 11/2 are the superpositions up to 

second order in H, of several transitions. In particular, 

for F=l3/2, there are 2-, 4-, 6- and 8-quantum transitions 

superimposed and, for F=ll/2, 2-, 4- and 6-quantum 

transitions occur at the same frequency. Third order effects 
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were small enough to permit observations up to 90G without 

significant splitting. Figure 4.6 shows the 10 high-field 

resonances used to obtain A4 and B4 • The resonances in 

F=l3/2 were fitted to the 6-quantum transition frequency 

and those in F=ll/2 were treated as pure 4Q. Table 4.3 

lists the data and the residuals obtained from LOLA. The 

results are: 

and 

IA41 = 91.0(19) MH~ 

IB41 = 266(53) MHZ 

B4/A4 > 0 

Again, the errors quoted represent one standard deviation of 

the x2 distribution. The values of A and B were not sig­

nificantly changed when the data were reinterpreted by assigning 

the resonances to other transitions within the superimposed 

groups. 

The nuclear moments for 149Nd are found by again 

using the Fermi-Segre relations. Either 143Nd or 145Nd 

can be used as the comparison isotope. The hfs constants for 

the J=4 states of both stable isotopes were measured by 

Spalding [Spal-63]. Smith and Unsworth have made direct 

measurements of the magnetic moments using atomic beam 

triple resonance [Smit-65]. In addition, these authors also 

deduced the quadrupole moments from the measured B's. The 



Fig. 4.6 149Nd RESONANCES USED IN OBTAINING THE 
FINAL RESULTS 

The crosses on the left hand side of some 

of these resonances are the rf-off 

intensity. As can be seen, good reproduci-

bility was verified by repeating the 

resonances. 
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TABLE 4-3 

149 The Nd Resonances (J=4) 

IF,mF) + IF'm;) \) 0\) H(G) oH (G) Total vcalc-exp exp Error (MHZ) (MHZ) V (MHZ) (MHz) exp 

(13/2,11/~~3/2,-1/~ 31.535 .010 60.010 .015 .013 -.001 

39.500 .015 74.959 .010 .016 +.000 

39.500 .025 74.948 .035 .031 -.006 

47.570 .015 90.041 .020 .018 +.013 

47.560 .010 89.985 .015 .013 -.007 

(11/2,7/2) {11/2,-1/2) 16.817 .010 30.029 .010 .012 -.003 

25.315 .010 45.042 .035 .022 -.028 

25.370 .015 45.095 .035 .025 -.007 

33.860 .010 59.983 .015 .013 +.012 

33.860 .010 60.015 .010 .012 -.013 

2 "' Xmin = 4.3 "' 
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errors in Q include no allowance for uncertainty in the 

Sternheimer correction. ~he properties of the. two isotopes 

are: 

143Nd 145Nd 

I 7/2 7/2 

A4 -195.649{9) MHZ -121.627(27) MHZ 

B4 +122.25(29) MHZ + 64.60 (37) MHZ 

llr -1.063 ( 5) n.m. -0.654 4) n.m. 

Q -0.48 2) b. -0.25 1) b. 

~hus, from the present measurements, the moments of 149Nd are: 

IJ.li49 1 = 0.350(10) n.m. 

lol = 1.3 < 3) b. 

and llr/0 < o. 

The errors reflect the experimental uncertainties in the 

hfs constants for 149Nd and also allow for a possible 1% hfs 

anomaly and allow for a 50% error in the shielding parameter R. 

The magnetic moment is corrected for diamagnetic shielding. 
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F. The 147Nd Experiments 

The study of 11-day 147Nd followed as a natural 

t ' f th. 149Nd ' t Th . d t' ex ens~on o e exper~men s. e sp~n an magne ~c 

moment of 147Nd have been measured by Kedzie et al. [Kedz-57] 

using EPR and the spin was confirmed to be I=S/2 by an 

atomic beam experiment [Cabz-62]. Since both 149Nd and 147Nd 

have I=S/2, focussable transitions have the same quantum 

numbers for both isotopes. Our goal was to determine the 

quadrupole moment of 147Nd so as to complete the data concer-

ning the ground state quadrupole moments of all the accessible 

neodymi urns • 

Samples of natural neodymium metal, sealed in 

evacuated quartz vials, were irradiated in the McMaster 

reactor for a period of 14 days. In order to eliminate the 

promethium activities a minimum 6-day cooling period was 

allowed before the beam experiments were carried out. The 

sample activity was verified to be due to the decay of 147Nd 

through the observation of the resulting y-spectrum. I am 

indebted to Mr. Brian Cook for providing the y-spectrum. 

In addition, a small amount of the sample was painted on 

a button and counted at intervals over a two-week period 

using one of the a-counters. The observed decay was con­

sistent with a 11-day half life• 

During the 147Nd runs it was found that the rf-off 
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tended to be somewhat less constant over the course of a 

run than it had been for the 149Nd experiments. It proved 

to be expedient to interpolate and subtract off the back-

ground from the resonance buttons in the same way as in the 

lanthanum experiments. 

The 11-day half life of 147Nd meant that the activity 

of the various buttons could be considered to be constant 

'throughout the counting periods - typically 6· hours in 

duration - so that no corrections for decay were made. 

The resonances were observed in J=4 state only and they 

are shown in Fig. 4.7 

For.these experiments resonances were seen in the F=9/2 

state as well as in F=l3/2 and F=ll/2. The resonances were 

assumed to be pure 6Q (F=l3/2) and pure 4Q (F=ll/2 and 

F=9/2) for utilization of the fitting programme LOLA. Again 

no significant changes in A and B resulted when other 

appropriate choices were used. 

and 

The hfs constants A4 and B4 are: 

!A41 = 
jB4j = 

B4/A4 > 0. 

143( 4) MHZ 

181(64) MHZ 

Table 4.4 gives the data and the residuals for the 

adopted values of the hfs constants. Again the errors in 

the hfs constants represent one standard deviation of the x2 

distribution. Application of the Fermi-Segre relations in 



Fig. 4.7 147Nd RESONANCES 

The rf-off background was interpolated 

and subtracted off as was the case for 

the lanthanum resonances. Unless otherwise 

noted, the F=l3/2 resonances are predominantly 

6Q .and the F=ll/2 and F=9/2 are 4Q. The term 

Vopt refers to the rf voltage applied to the 

loop to optimize the 39K 1-Q resonance. 
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TABLE 4-4 

147 The Nd Resonances (J=4) 

IF,mF) + IF'mF l v ov H(G) oH(G) Total v -exp exp Error calc 
(MHZ) (MHZ) {MHz) vexp (MHz) 

(13/2 1 11/2) (13/2 1-1/2) 26.163 .025 49.993 .015 .026 -.012 

52.660 .015 100.005 .020 .018 +.000 

(13/2,13/2) (13/2,5/2) 52.515 .015 99.990 .010 .016 -.003 

65.790 .025 124.959 .010 .026 +.010 

(11/2 17 /2) (11/2 1 -l/2) 42.175 .015 75.020 .010 .016 +.000 

(11/2,9/~ (11/2,-5/2) 42.010 .025 75.020 .010 .026 -.008 

42.018 .010 75.045 .010 .012 -.002 

(9/2 ,5/2) (9/2,-3/2) 30.9.20 .015 50.014 .020 .020 +.002 

30.913 .025 50.014 .020 .030 +.009 
,_. 
0 ,_. 

2 
X . = 0.64 
m~n 
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comparison with the moments and hfs constants of 145Nd yield~ 

1~r1 = 0.553(15} n.m. 

lo 1 = o.9(3} b. 

where the quadrupole moment has been corrected for a net 

shielding of R = +0.2(1). The magnetic moment includes the 

diamagnetic correction. The magnitude of ~I is in fair 

agreement with.the paramagnetic resonance value of Kedzie 

and the later data of Halford [Full-69] on the crystal 

field parameters. 



CHAP'I'ER V 

DISCUSSION 

A. 'I'he 140La Results 

140 'I'he low-lying states of 57La 83 must come about 

from the coupling of the seven protons beyond the closed 

shell at Z=SO and the 83rd neutron which is almost certainly 

in a 2f
712 

orbital. In this region, the proton orbitals 

g 712 and 2d512 appear to compete forground state and first 

139 excited state. 'I'hus, in 57La82 , a state of I = 5/2 is 

only 166 keV above the I = 7/2 ground state and these can 

be assumed to be predominantly 2d512 and lg712 respectively. 

0 th th h d . 141p th d h 5/2 n e o er an , ~n 59 r 82 ; e groun state as I = 
and the spin of the first excited state is 7/2. 

In 139La, the internal conversion coefficient shows 

that the 166-keV transition is predominantly Ml in character 

[Geig-65]. Furthermore, the y-transition rate is hindered 

by a factor of 300 compared to the Weisskopf estimate. If 

one does suppose that the two proton states involved are 

d 512 and g 712 , then a small amount of other configurations 

must be present because otherwise an Ml transition between 

them would not proceed at all. 

A lt t . 1 t' f 139L . 'bl n a erna ~ve exp ana ~on o a ~s poss~ e -

namely, that the ground state proton configuration is 

103 



state is 
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5 
(g7/2)5/2 

Then the Ml transition would be totally forbidden 

because of the changes in seniority quantum number, so small 

amounts of other configurations would reproduce the experi-

mental findings. 

In the light of these ideas, we can expect the odd­

odd nucleus 140La to have a set of eight low~lying states 

due to the coupling of the f 712 neutron to the jp = 7/2 proton 

configuration to produce I= 0,1, ••• 7. In addition, also 

at low energy, there should be a set of six states with 

I= 1, 2, ••• 6 due to the coupling of the odd neutron to 

the jp = 5/2 excited proton configuration. Because of 

the residual neutron-proton interaction states of the same 

I can mix. Thus the 3 ground state, for example, 

would be the lower of the possible I =3 states. The magnetic 

moment can be used to choose between the alternatives presented 

above. 

Recalling equation (2.11), we have 

In accord with Cain's results (section II-c) the value for 

gn should be taken from the known magnetic moments for N=83, 

even-odd nuclei. Since ~I = 1.1 n.m. for 141ce and ~I = -1.06 n.m. 

143 for N<;l. [Ful.l-69], gn=0.31. Similarly, g should be evaluated p 
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from neighbouring odd-even nuclei. For a g
712

-proton the 

average of 135cs {~I= +2.73 n.m.), 137cs (~I= +2.84 n.m.) 

and 
139

La (~I= +2.78 n.m.) yields gp = +0.79. The d 512 -

value comes from the moment of 141Pr (~I= +4.3 n.m.); 

for that proton configuration gp = +1.7. The gp for the 

5 seniority-3 coupling (g
712

)
512 

should be the same as that 

for g
712 

above (section II-C). On the basis of these values, 

140 then, the following moments are predicted for the La ground 

state: 

I 

11T g7/2 v f7/2; I=3) ~I = +0.72 n.m. 

l1r dS/2 v f7/2; I=3> ~I = +0.23 n.m. 

11T 
5 

(g7/2)5/2 v f7/2; I=3; ~I = -0.24 n.m. 

If the ground state is a mixture of the first two, 

then the moment is given by 

if it is a mixture of the first (amplitude=S) and the third, 

The measured moment of 140La is ~I= +0.73(3) n.m. indicating 

a virtually pure g
712 

proton configuration. This is in sharp 

contrast to the case of the I=3 ground state of 138cs, which 

also has 83 neutrons. For it, ~I= (+)0.48(10) n.m. [Stin-67] 

indicating a significant degree of configuration mixing. 
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Kern et al [Kern-67l used the (d,p} reaction on 139La 

to investigate the low-lying levels of 140La. It is known 

from direct reaction theory that the differential cross 

section~~ a: S (2I+l), where Sis the so-called spectroscopic 

factor, which is proportional to the overlap between the 

wave functions of the initial and final states, and I is 

the spin of the final state. Under the assumption that only 

140 two active configurations contribute to the La spectrum, 

the final states may be written 

and the orthogonal mixture, 

II)' = (1 2 ) 112 1~ vf I> ~j~d vf I> 
-1), 

11 g7/2 7/2; - ~ II 5/2 7/2; 0 

For I= 0 and 7, Cl. = 1 and the second state doesn't exist because 

the d512 f 712 configuration can't form those angular momenta. 

Compared to the largest cross-section (for the formation of 

the spin-7 level), the relative cross-sections for the others 

become 

do a2 (2I+l) a d (l-C1.2 ) (2I+l) 
<dn>rel = 15 n 15 

Thus the spins of the observed levels, and the squares of 

their mixing amplitudes, can be determined. In particular, 

Kern ~ al. found for the 140La ground state 

jg.s.) = 0.90 j1Tg712 v£712 ;3)+ 0.43j'!Td512 v£ 712 ;3). 
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For such a mixture, the magnetic moment should be 0.62 n.m., 

which is only in fair agreement with pur result. 

More recently, Kemper et al. at Indiana State [Kemp-

69] have measured the S-y angular correlations in the decay 

of 140La to 140ce. From the data and the calculated wave 

140 functions for the states involved in Ce, they deduce 

that the mixing coefficient in the ground state of 140La has 

the value a~ 1.00(4). The error is an experimental one 

and no allowance is assigned to the calculation itself. Their 

result is, of course, in excellent agreement with our 

conclusion. 

Two attempts have been made to explain the properties 

of the low-lying states of 140La theoretically. Struble [Stru-

67] used a variety of residual internucleon forces within 

a quasi-particle coupling model. The neutron was assumed to 

be in the 2f712 orbital, but the protons were allowed to 

have amplitudes in all the shell model states that come 

between the magic numbers at Z=SO and Z=82. With reasonable 

success he was able to fit the observed y-transition rates, 

branching ratios and (d,p) cross-sections. Unfortunately, 

the calculated level ordering is not in accord with the 

observed spectrum (an I=6 state lies lowest) although the 

levels do "group" in the right places. The calculation is 

a noteworthy achievement, nevertheless, in that the requisite 

parameters (the strengths and radial dependence of the residual 
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interaction, and the shell model energies} have reasonable 

values. 

Heyde and BrllSsaard [Heyd-68] have calculated the 
140La spectrum in terms of the unified model which seeks to 

combine collective oscillations of the nuclear core with 

shell model states (here 'IT g 712 , Tid512 and vf712 for the 

odd nucleons}. The procedure involved, in essence, the 

evaluation of the parameters of the model Hamiltonian by 

least-squares fitting the calculated eigenvalues. to the 

observed energy levels. After several iterations, parameters 

which give the d512-g712 gap , the strength of the phonon­

proton and phonon-neutron coupling, the phonon energy and 

the strengths of the residual particle-particle interaction 

are generated and these values determine the spectrum. 

Although fair .agreement exists between the calculated and 

experimental Ml transition rates, the calculated spectrum 

does not compellingly reproduce the observed spectrum, 

despite the fact that 10 of the 14 low energy levels were 

used in the least-squares fit. Indeed, the authors note 

that it was not possible to reproduce the known ground 

state spin. They suggest, however, that an I=3 might be 

depressed far enough by more appreciable mixing in a larger 

configuration space. Such a solution would not be consistent 

with our finding that the ground state may be considered 

essentially pure. 
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149 B. The Nd .Results 

149 d According to the simple shell model, 60N 89 should 

have 7 neutrons in the 2f712 orbital , which is to say, one 

2f712 hole. However, the measured spin of the ground state 

is 5/2 [Budk-64]. One might suppose, therefore, that residual 

interactions make it favorable to have configurations such 

5 2 5 2 6 
as v( 2f7/2)5/2(hll/2)0 ' v(2f7/2)5/2( 3P3/2)0 or v(2f7/2)0 

(2f512 >512 • For the spherical shell model to be applicable, 

however, the ground state quadrupole moment should be quite 

small, say~ 0.2 b (section II-b). In view of the fact 

that our value for Q is ±1.3(3)b, we are led to interpret 
149Nd in the light of the Nilsson model. 

Indeed, there is a fair amount of evidence for this 

interpretation besides the magnitude of Q. An isotone of 
149Nd 153Gd has recently been shown to have levels 

I 64 89 

whose life-times are consistent with the Ml/E2 ratio to be 

expected in the rotational bands of distorted nuclei [Andr-

69]. Furthermore, Nielson and Wilsky [Niel-68], who investi­

gated the level structure of 153Gd using conversion electrons 

and gamma coincidence techniques, note that the very high 

level density in the vicinity of the ground state is 

indicative of permanent nuclear deformation. 

A useful indication of changes in nuclear shape is 

provided by mass spectroscopic studies of the double neutron 

separation energy (Sn) and the neutron pairing energy (Pn). 
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Duckworth and legions have shown [Duck-69], for neodymium and 

samarium, that there is a pronounced dip in Sn and a peak in 

P in the vicinity of N=89 as one progresses from N = 82 to n 

N = 90. Such features are interpreted to mean that the shape 

of the nucleus changes from spherical to ellipsoidal. In 

accord with the result of Duckworth et al , several authors 

have attempted to interpret the levels of 151sm in terms of 

the Nilsson model. 

Nealy [Neal-65] used the direct reactions 148Nd(d,p) 149Nd 

150 149 . 
and Nd(d,t) Nd to observe the energy levels populated in 

149Nd. Since the 148Nd is spherical with a classic 0+, 2+, 

2+ vibrational spectrum and 150Nd exhibits a rotational 

spectrum, Nealy argued that either the (d,p) or the (d,t) 

cross-section should be enhanced depending on whether a given 

1 1 . 149 d . h . 1 d' t d Wh'l h' d eve ~n N ~s sp er~ca or ~s orte • · ~ e ~s ata 

do indicate a large number of states at low excitation, they 

don't lend themselves to any clear-cut decisions on the 

shape of the nucleus. 

In the region of small deformation, the contribution 

of the Coriolis force 1 orbitals and the ~N=2 on K= 2 -
mixing due to the quadrupole interaction can alter the customary 

I(I+l) appearance of rotational bands. Expanding the 

Hamiltonian to calculate the mixing of states by these 

processes, Borggreen, L¢vh¢iden and Waddington [Borg-69] 

very successfuly predicted, among other data, the energies 



and cross-sections of levels in 155Gd populate~ in the 
156Gd(d,t) 155Gd reaction. Contrary to the unperturbed 
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"zeroth-order" Nilsson scheme, their results showed that 

positive parity states, of presumed high excitation energy, 

were greatly depressed. The fact that the levels Nealy 

saw in 149Nd don't correspond to the I(I+l) rule is taken 

as an indication that configurations of the type evident 
155 149 in Gd may be important in Nd also. 

Provided that K ~ ~~ then systematics for the 

lanthanide region indicate that the deformation parameter 

8 is positive and hence we adopt Q = (+)1.3(3) b for 
149

Nd 

which implies that ~I= (-)0.350(10) n.m. because B/A > 0. 

Using equation (2 • .17) to find the intrinsic quadrupole 

moment Q' and solving for 8 from equation (2.20), we obtain 

8 ~::: 0~18(4). In the region of N = 89 the only Nilsson levels 

available which have n = 5/2 for this small positive 

deformation are 5/2+[642], 5/2-[523] and 5/2-[512]. 

Although the work of Borggreen ~ al. indicates that it 

may be very dangerous to attempt to interpret a nucleus 

having a small deformation (6<0.3) in terms of pure Nilsson 

states we are forced to do just that because of the lack 

of detailed reaction data concerning the 149Nd levels. 

Figure 5-l is a plot of the magnetic moments of 

the three n = 5/2 states as a function of deformation. 

Because no satisfactory evidence is available about the 



Fig. 5.1 NUCLEAR MOMENTS OF I = 5/2 NILSSON STATES 

AND 149Nd MOMENTS 

The effective g-factor, gn = 0.6 (gn)free 

was used. The quadrupole moment has been 

corrected for a net shielding of 12%. The 

vertical line is the deformation 6 as deter-

mined by the observed value of Q = (+) 

1.3(3) b. Because experimentally ~I/Q < 0, 

the 5/2-[523] state is rejected since it 

predicts ~I > 0 for positive c. As can 

be seen, no real distinction can be made 

on the basis of the · data between the 

5/2+[64]] and 5/2-[512] states. 



11.2 

0~------~~--------
f.O 

- 8 -..Q -0 

. 5/2 + :[642] 

-1.0 -1.0 



113 

amount of inter-configuration mixing we have applied the commonly 

used ad hoc rule that g ff = 0.6 g f [Kerm-56] and -- --- n e n ree 

further we use gR = 0.2 as is the case for 150Nd [Pres-62]. 

It is seen that the 5/2- [523] orbital predicts a positive 

moment while both the 5/2+[642] and 5/2-[512] orbitals have 

negative moments. Therefore the first possibility is ruled 

out if ~I < 0. Reference to Fig. 5.1 reveals that no definite 

choice can be made between the 5/2+[642] and 5/2-[512] or-

bitals in the vicinity of o " 0.18 

The log ft value for the S-decay of 2.3-minute 
1:~Pr90 

to the ground state of 149Nd is 5.9 [Vank-67]. This means 

that probably the transition is allowed or first forbidden 

[Gall-62]. Presuming that 149Pr is also distorted with a 

cS " 0.2, then the 59th proton has available to it the state 

1/2-[550] I 3/2-[541], 3/2-[411] I and 5/2+[413]. For s-
transitions the asymptotic quantum numbers [N n 3 AJ have 

selection rules which must be obeyed if the transitions 

are not to be hindered {Alag-57]. None of the states for 

the 59th proton are consistent with an allowed transition, 

(6N, 6nz' 6A) = (0,±1,0), to the ground sta~e of 149Nd-

presumed to be either 5/2+[642] or 5/2-[512]. The possi-

bilities consistent with a first-forbidden transition are 

summarized in Table 5.1. The possible transitions are 

indicated by the arrows. Unfortunately, no definite choice 
149 . 

for the Nd ground state can be made on the basis of these 

considerations. 



TABLE 5-l 

Possible S-Transitions for 149Pr ~9Nd on Nilsson Model 

Proton 

1/2-[550] 

3/2- [541]-

Neutron 

5/2+ [642] 

5/2-[512] 

5/2+[642] 

5/2-[512] 

3/2+ [411] ~ 5/2+ [642] 

5/2-[512] 

5/2+[413] "'-5/2+[642] 

5/2-[512] 

AI 

2 

2 

1 

1 

1 

1 

0 

0 

yes (-1 +1 -2) 

no ( 0 4 -2) 

yes (-1 0 -1) 

no ( 0 3 -1) 

no (-2 3 -1) 

yes (-1 0 -1) 

no ( 2 -3 1) 

yes (-1 0 +1) 

114 



115 

c. The 147Nd Results 

As was pointed out above, the 147Nd experiments 

were undertaken so as to complete the measurements of Q 

for all the odd-A neodymium isotopes. The systematics of 

this region strongly indicate that Q > 0 - combining this 

with the measured ratio B4/A4 > 0 we obtain: 

~I= -0.553(15) n.m. 

Q = +0.9(3) b. 

The size of the quadrupole moment is large but in 

terms of o it yields o(147 ) = 0.12(4), which is quite 

small for simple Nilsson model arguments. It is interesting 

to note that 147Pm also has a moderately large Q for its 

I= 7/2 ground state <lol = 0.8(3)* [Budk-63]}indicating 

the "softness" of the core for these nuclei. Nealy (~cit) 

has shown from (d,p) reaction study on 150Nd that 151Nd 

exhibits a rotational spectrum. Reasonable agreement with 

experiment resulted for the choice o = 0.2. Figure 5.2 is 

a plot, based on the above data, of the ground state 

quadrupole moments of the odd-A neodymium isotopes. The 

onset of nuclear deformation is clearly demonstrated. 

The spin 5/2 ground state of 147Nd could be 

-3 accounted for by a coupling of the type (f712 >512 , since 

* The correction factor R = .2 has been applied to Budick's 
results 



Fig. 5.2 GROUND STATE QUADRUPOLE MOMENTS OF ODD-A 
NEODYMIUMS 

All these moments have been adjusted for 

a· net 12% shielding-type Sternheimer 

correction. 
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such states are frequently near to, or even form, the ground 

state [Kiss-66]. Because the g-factor fork nucleons in a 

state is the same as for one nucleon in that state (see II-C) , 

the moment is reduced to jjl of its original value. 

Typically the moments of these states have signs which would 

put them into the wrong Schmidt groups [Barr-69] and so 

the presence of these states is announced in this way. For 
147 . 

Nd the predicted moment would be 5/7(-1.1) = -0.78 n.m. 

which is in fair agreement with the measured value. However, 

Kisslinger and Sorenson [Kiss-63] predict that for the 3 quasi­

particle coupling (f
71

; 3 >512 Q =-0.38 b, in strong dis­

agreement with our result Q = +0.9(3) b. 

Although there is a strong branch to the I = 5/2 

first excited state of 147Pm in the S- decay of 147Nd,there 

is only a very weak branch to the I = 7/2 ground state 

[Beek-66]. The size of the quadrupole moment for 147Nd 

indicates that this nucleus.is just on the edge of defer-

mation. Thus one might expect that the ground state 

would show the interconfiguration mixing of several shell 

model states. Such interconfiguration mixing has the 

effect that it can greatly reduce S transition probabilities. 
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D. Summary 

In summary, then, the magnetic dipole and electric 

quadrupole moments of 140La, 149Nd and 147Nd have been 

determined by atomic beam resonance methods. The correc­

tions and uncertainties involved in translating the measured 

hfs constants to nuclear moments were discussed. Finally, 

the relationship between these nuclear moments and other 

known properties of the nuclei was developed. 

Several additional experiments, related to this 

work come to mind. The effective magnetic moment of the 

83rd neutron, used in determining the lanthanum ground 

state configuration, was based on the measured moment of 
143

Nd 

and 
141

ce. It should be feasible to check that value by 

determining the magnetic moment of 81-minute 1;~Ba83 through 

the use of ABMR. Since the electronic ground state of 139Ba 

is 6s 2 1s
0

, the atoms would have to be excited into another 
3 electronic state, for example 6s5d DJ' so that the atoms 

could be de:t;lected by the A and B magnets. Excitations 

into the 6s5d configuration should be possible through a 

thermally heated "·snout 11 on the oven or by microwave 

stimulation. 

It was demonstrated in this work that 149Nd is 

permanently distorted; it is the lightest lanthamide 

to show such distortion. Of course a complete reaction study 

would be very helpful in better understanding the ground 
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state nuclear magnetic moment. In particular, the determina-

tion of the ground state parity would be useful. Further­

more, it is interesting that 149Pr exhibits such a propensity 

to beta decay to the ground state of 149Nd. Reaction studies, 

such as 150Nd(d, 3He) 149Pr, to populate levels in 149Pr would 

prove enlightening. 

For comparison with Nealy and Sheline•s published work 

en 151Nd [Neal-67] a spin determination of 12-minute 151Nd 

should be undertaken by ABMR. 

Finally, the relative signs of ~I and Q for 147Nd 

seem to be in strong disagreement with the calculations of 

Kisslinger and Sorenson. The ABMR experiments should be 

extended to determine the absolute sign of ~I so that 

the sign of the quadrupole moment can be definitely established. 
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