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PREFACE

The concept of "ring of quotients" of a ring
was introduced by R. Johnson [17], Y. Utumi (24 ]Jand
others, and a generalized ring of quotients was studied
by G. Findlay and J. Lambex [ 71. N. Fine, L. Gillman
and J. Lambek [ 8 ] considered this concept for the ring
C(X) of all real-valusd continuous functions on a com-
Pletely regular Hausdorff space X, in which case the
maximal ring of quotients 1s realized as the ring of
all continuous functions on the dense open subsets in
X, modulo the equivalence relation which identifies
‘two functions if they agree on the intersection of
their domains. In a recent paper [1 ] B. Banaschewski
has generalized this result to arbltrary commutative
semi-prime rings by describing the maximal ring of quo-
tients as a ring of functions (with variable domain)
modulo a sultable 1deal.

In (87, many results actually concern extensions
of the ring C(X) which are more general than their maxi-
mal rings of quotients, and it is a further study of
these extensions that this thesis 18 devoted to. A
brief synopsis of the material presented here is given

below.
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In Chapter 0, we collect together the basic defi-
nitions and theorems which we utilize in the ensuing
chapters. In particular we list the definition of real
compact space, ring of quotients of a ring, Archimedean
F-ring, and some examples of dense ideals of C(X).

In Chapter I, we introduce the quotient-like
extension Qg(X) associated with a filter base 9 consist-
ing of dense subsets of X in a manner suggested by [1 ]
and observe that these extensions can also be described
as direct limits of suitable direct systems which relates
them to 8], Further we give a necessary and sufficient
condition for such a quotient-like extension to be a ring
of quotient of C(X) and a self-contained proof of the
particular case of Banaschewski's theorem (Theorem 6,
Chapter I)(cf.[1]) as it applies to the rings C(X).
Finally we describe certain relations between continuous
mappings from a space X into a space Y and homomorphisms
from a quotient-like extension of C(Y) into that of C(X).

In Chapter 11, we consider the natural partial
order on an extension ring QSQX) of C(X), showing that
the resulting partially ordered rings are Archimedean
F-rings. Further we establish a necessary and suffici-
ent condition for certain rings ngx) to be totally
unreal, i.e. to have no unitary algebra homomorphisms

to B, Finally we introduce the m-topology on a commu-
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tative F-ring with unit, and apply this to the exten-
sions Qq(X) of C(X).

In Chapter 111, we study a specific type of
injective system (B, QQP) in which all Bx are normed
algebras over the reals with unit and ﬂ;P are norm-
preserving embeddings which generalizes the injective
system (C*(D))(D ¢ © ) with respect to the restriction
homomorphisms, where * denotes boundedness. The main
object in this chapter 1s to obtain a connection with
the projective cover of the Stone-éech cvompactification
of the underlying space (in the category of all compact
Hausdorff spaces and continuous mappings); our result
is that the maximal ideal space of Qg(x) is the projec-~
tive cover of 3 X if O contains all disconnected dense
open subsets of X, where Qg(x) is the injective limit
of the injective system (C*(D))(D€2 ), end BX denotes
the Stone«Eech compactification of X. The analogous
partial generalization for arbitrary commutative semi-
simple rings with unit and Hausdorff maximal ideal
space 1s proved independently.

In Chapter IV, we conslder certain generaliza-
tions of the preceding work. In the first section, we
replace the range space R (the field of real numbers) by
€ (the field of complex numbers), and show that analo-

gous results to those obtained in Chapter I and II holds
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our main tool here is the complexification of a real
algebra, We prove that the maximal ring of quotients
of the ring of all complex continuous functions on X

1s 1somorphic to the complexification of the maximal
ring of quotients of its subring of real functions,

and that the maximal ideal spaces of the two rings of
quotients are homeomorphiec. In the second section we
discuss relevant extensions of the algebra C{U) of all
unrestrictedly differentiable functions on an open sub-
set U ¢ B", and show among other things that the maximal
ring of quotients of C®(U) 1s totally unreal.



CHAPTER 0O

Preliminaries

This chapter 1s a collection of all the basic
definitions and results which wlll be needed in the

ensuing chapters.

Section 1: Rings of Functions.

Let X be a topological space. Let C(X) denote
the ring of all continuous functions from X into the
reéls B, under the functional operations; the subring
of bounded functions in C(X) is denoted by C*(X). It
is obvious that C(X) and C*(X) are commutative rings
with unit 1. They are also lattices under the pointwise
definition of order. It is clear that C(X) is semi-prime,
i.e. there is no nilpotent ideal except (o), and it is
known as semi-simple.

In studying C(X), we assume that the space X is
a completely regular Hausdorff space. The standard refer-

ence for the theory of C(X) is [12] and[231].

Definitions Let f € C(X). The set of points in

X for which f vanishes is said to be the zero get of ¢
and is denoted by Z(f). The complement X-Z(f) is said to

be the cozero-set of £ and 1s denoted by Coz(f).



Theorem ls Every completely regular space X has
a compactification PX, with the following equivalent
properties.

1) Every continuous mapping ¢ from X into any
compact space Y has a continuous exténsition @ from BX
into Y.

11) Every function f in C*(X) has an extension to

a function f? in C(@X). \

Definition: The compact space PX is said to be

the Stone-Cech compactification of X.

Theorem 23 Let X be a completely regular space.

X 1s open in (X if and only X is locally compact.

‘Theorem 3s Every continuous function on a dense
open set V in X can be continued to an open set (DV) in
X, Every continuous function on a dense cozero-set in

X can be continued to a cozero-set in @X.
£

Definitions A space X is éaid to be realcompact

if every real maximal in C(X) is fixed.

Theorem 4: Every completely regular space X has
a real-compactification yX, contained in BX, with the
following egquivalent properties.

1) Every continuous mapping ¢ from X into any
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real compact space Y has a continuous extension ¢° from
yX into Y.
11) Every function f in C(X) has an extension

to a funétlon ¥ in Cc(vX).

Theorem 5:¢ X is realcompact if and only if, to
each homomorphism ¢ from C(X) onto B there corresponds

a point x of X such that ¥(f) = f(x) for all f € C(X).

Theorem 6: Let ¢ be a unitary homomorphism
from C(Y) into C(X). If Y is realcompact, then there
exists a unique continuous mepping ¥ of X into Y such

that ¢(g) = g oV for all g € C(Y).

Section 2: Rings of Quotients.

According to a well-known theorem of algebra,
an integral domain can be embedded in a field, called
its field of quotients. The simplest form of this is
the theorem concerning the integers and the rational
numbers. Many generalizations have been given in which
a "ring of quotients™ is constructed for a given ring

(e.g. 1, 7, 8, 17, 22, 24],

Theorem 7: Let A be a commutative ring with unit
and S be a multiplicative submonoid of A consisting of non-

zero divisors of A. Then there exists an extension ring



E D A such that
1) All elements in S are invertible in E;
11) E is generated by A U S-1;
moreover, E is uniquely determined up to a unique 1iso-

morphism extending the identity on A,

Definition: The ring E obtained in Theorem 7

is called a classical ring of quotients of A with res-

pect to S and is denoted by A[S'll. If S is the monoid
of all non-zero divisors of A, then A[S'llis called the

full ring of quotients of A.

Definition: An ideal D in A is said to be dense

if its only annihilator in A is 0, i.e. D 1s dense in A
if for all a € A, aD = 0 implies a = 0.

Note that a principal ideal (d) is dense precisely

when d is a non-zero-divisor in A.

More generally, we can speak of denseness of any
subring. If A is a subring of B, then we shall say that
A is dense in B provided that A has no non-zero annihi-

lator in B.

Definition:s A ring A is called semi-prime if it

has no nilpotent ideal except (0)-equivalently (for com-

mutative A), if it has no nilpotent element except O.



Proposition 8¢ For commutative ring A with unit

1, the following holds:
i) A is dense.
11) If D 1s‘dense and D ¢ D' then D' is dense.
111) If D and D' are dense, so are DD' and D N D',
ijv) If A # 0 then O is not dense,
Let B be a commutative ring containing A and having
the same unit element e. For b ¢ B, we write
b-1a = fa ¢ A lba €4 }.
Obviously, b~1A is an ideal in A. For b = 0 or e, b-1a

1s dense: it is A itself.

Definitions An extension ring B 2 A of a ring A

is called a ring of left quotients (or rational extension)

of A if for any a, b in B, b # 0, there exists a ¢ in A

and an integer k such that ca + ka € A and ¢cb + kb # 0,
It is obvious that the reference to the integer

k is redundant if A contains a unit, i.e. B is a ring of

quotients of A if for every b ¢ B, b~1A 1s dense in B.

Definitions A maximal ring of gquotients of a

ring A 1s a ring Q D A of quotients of A such that there
exists no proper extension ring E D Q which 1s also a ring

of quotients of A, and denoted by Q(A).

Theorem 93 Any ring A has a maximal ring of (left)

quotients Q which is unique up to isomorphism over A.



Remark 1ls Let A (B ¢ C. Then C is a ring of
quctients o A if and only if B is a ring of quotients

of A and C is a ring of quotients of B,

Remark 2+ If B is a ring of quotients of A and

D 1s a dense ideal in A, then D 1s dense in B,

Theorem 103 Let B D A, If A is semi-prime, then

B is a ring of quotients of A if and only if be{(b=14) #£ 0
for all non-zero b € B -~ that isg, for O # b € B, there

exists a € A such that 0 # ba ¢ A.

Definitions A ring A is sald to be von Neumann

regular if for each element a, there exlists an element

x (in general, not unique) such that axa = a. In the

commutative case, this may of course be written azx

a.

Theorem 11t If A is semli-prime, then the maximal

ring of quotients of A is von Neumann regular, and the

converse holds if A is commutative.

Some examples of dense ideal in C(X).

1. Let (X,T9) be a completely regular space,
Then an ideal A in C(X) is dense if the Zariski topology
determined by A, i1.e. the topology generated by the sets
Coz(f), f ¢ A, coincides with 7 .

2. Every free ideal in C(X) is dense.



Let C,(X) denote the family of all functions in
C(X) having compact support and Cg (X) denote the family
of all functions in C(X) vanishing at infinity.

3. Co(X) (hence Cogx)) 1s dense in C(X) if X 1is
locally compact.

L, An ideal A in C(X)(or C*(X)) is dense if and
only if UCoz(f) (f € A) is topologically dense in X.

5. A prime ideal P in C(X) is dense if Z(P]
has a non-isolated cluster point.

6. Every maximal ideal in C(X) 1is dense if X

is perfect.

Section 3:+ Lattice Ordered RBings.

Definition: A partially ordered ring is a ring

A tggether with a partial order relation 2 such that
for'a, b ¢ A |
| 1) a > b implies a + ¢ 2> b + ¢ for each ¢ € A,
and
11) a > o and b > o implies ab 2 o.

Definition: A partially ordered ring A is saild

to be Archimedean if for every palr a, b of elements of

A, with a # 0, there is an integer n such that na ¢ b.

Definition: A ring homomorphism © of a lattice-

ordered ring A into a lattice ordered ring A' is called



an f-homomorphism Af one of the following equivalent
conditions is satisfied for a, b€ A
1) e(av b) =6a vV 6b and ©(a A D) = 6a A OD;
11) ©1lal = loal ;

111) a A b = 0 implies 6a A &b = 0,

Definition: A subset I of a lattice-ordered ring

A is sald to be an‘f-ideal of A if:
i) I is a ring ideal of A, and

11) ac¢ I, b ¢ A, and |b| £ |a| imply b € I.

Defirnitions A lattice-ordered ring A is called

an F-ring if the followling holds:
aN\Nb=0, ¢c2> 0, implies that ca Ab = 0 and
ac A b =0,

Note that every totally ordered ring is F-ring,
since, in a totally ordered ring, a A'b = 0 implies either
a=0o0rb-=20.

If A is an F-ring, we will call a subring of the

ring A a sub-F-ring if it is also a sublattice of the
lattice A,

Theorem 123 If A 18 an F-ring, theni o

1) Every sub-F-ring of A is F-ring;

11) Every f-homomorphic image of A is an F-ring.



Definitions An ideal I in a partially ordered

ring A is said to be convex if whenever 0 { ¥ <y, and

y ¢ 1, then x ¢ 1.

Theorem 131 Let I be an ideal in a partially

ordered ring A. In order that A/I be a partially ordered
ring, according to the definitioni

a + I > 0 if there exists x ¢ A such that x > o
and a = x(mod I), it 1s necessary and sufrficient that I

be convex.

Theorem 14%: For a convex ideal I in a lattice

ordered ring A, the following are equivalent,
1) I is {-ideal.
11) a € I implies {al € I.
111) a, b € I implies a vV b € I.
iv) avb+I=(a+1I)V(b+ I)-~whence A/I is
a lattice.

v) a+1I 20 iff a = lal (mod I).

Section 43 Categories and Direct Limits.

Definition: A category (3 consists of a class

of objects and with each pair A, B of objects a set M(A,B)
called the set of morphisms f + A ——> B such that for

any three objects A, B, C 1in C; there is given a mapping

N
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M(A,B) X M(B,C) — >M(A,C) denoted by (f,g) ~w> gf
which satisfies (1) f + A—> B, g+ B — C, h:1 C —>
D implies h*(g.f) = (h.g)*f . (2) For each object A

in {Z there exists a morphism ey in M(A,A) such that
e,*f = f for all f in M(B,A) and f.ey = f for all f in
M(A,B).

Definition: A set (I, > ) 1is called directed (up

directed) if for any j, k in I there exists i1 in I such
that 1 2> J, k.

Definiticns For a directed set I, a system

(Dy, f“)i. j ¢ 11s called a direct system in C over I
if D, ¢ (G for each 1 € I and for each palr (1,J) with
1<) the morphism fij ) Dl-u——e>DJ satisfles fjk'fij =

fikforlsj.{kandfn=eni.

Definitions Let (D3, fyj), be a direct

Je1l
system in G_ . A family of morphisms (Dyj—> X), o 1 1s

called a compatible family with respect to the systen

if for any pair (i, J) with 1 ¢ J, Dy —>Dy —> X =

D; —> X. L is called the direct limit (or colimit) of
the system(D; fy4) in the category (R Af there exists a
compatible (D4 —> L)i ¢ 1 Such that for any compatible
family (Dy —> Y)4 ¢ 1 there exists a unique morphism L
—>Y for which Dy —> L —>Y = Dy —> Y for each 1 € I;
(Dy —> L)y ¢ 1 1s called a limit family.



CHAPTER I

Algebraic properties of the ring Qe(x).

Section 1ls Direct limits.

Let X be a completely regular Hausdorff space and
S be a filter base of dense subsets of X. For D €95,
let Cp(X) denote the ring of all real-valued functions f
on X which have continuous restriction fiD to D. Put Cg(X)
= p¢h Cp(X). Since D E implies Cp(X) 2 Cg(X) and for
f, g € Cg(X) with £ € Cp(X), g & Cg(X), £ + g € Cpe(X)
for some D' €93 with D' ¢ D N E, C,Q\(X) is a ring of func-
tions. Now let Zp(X) ={ f € Cp(X)| fID = 0§ and put Zg(X)
= pes ZplX). Then Zp(X) is an ideal in Cp(X), and Zg(X)
1s an ideal in Cg(X) since for any f € Co(X) with f € Cp(X)
and h € Zo(X) with h € Zp(X), fh € Zpe(X) for some D'€ .S~
with D' ¢ DNE, and f + g € Z(X) whenever f, g € Z (X).

Finally we put Q¢ X)

CA;X)/Zsﬁx). Then Qﬁgx) is a com-

mutative semi-prime ring with unit.

Proposition 1l

1) Cp(xIn z{sgx) = Zp(X) for any D €3S .
11) The restriction {’D t £ ~» f{D induces an

isomorphism Cp(X)/Zp(X) —> C(D) for each D € I .

11
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111) The natural mapping V s Cel(X) —> Q£5x)
determines, for each D € &, , an embedding Jp ¢ C(D)—>
Qgéx) such that J(f) = Jp(fiD) for f € Cp(X).

iv) For any D, E € O\ where D E, Jp(fiD) =
JE(f) for all £ € C(E).

Proof:

1) Clearly Cp(X) N 2 (X) 2 Zp(X). Let £ ¢ Cp(XIN
Z4(X) end f € Zg(X), E€ S~ . Suppose f ¢ Zp(X); then there
exists a point x, ¢ D such that f(x,) # 0, and f|[END = 0,
But D 1s completely regular,hence there exists &n open
neighborhood V of x, such that f‘V % 0 where E ND N\V ¥ g,
Hence f|E # 0; this is a contradiction.

11) We show () is an epimorphism. Let f in C(D).
Define f* on X by f*(x) = f(x) if x € Dand f* = 0 if
x ¢ X\ D; then clearly f* ¢ Cp(X) and f*|D = f. Hence
there exists f* in Cp(X) such that fy(f#*) = f; 1.e. p is an
epimorphism. Ker( \°D) = Zp(X) is trivial; thus FD induces
an isomorphismi

Cp(X)/Zp(X) —> C(D).

111) For f ¢ Cp(Xx), Jp(flD) = v(f) is well defined,
since for f{ and f% in Cp(X) such that f} |D = r|D = r3lD,
then f% - % € Zp(X)s l.e. ff - £5 € 2 (X): thus J(ff) -
»(f%) =V(ff - £%) = 05 d.e. V(ff) = V(fY). Now for
r ¢ c(p), ir JD(f) = 0, then there exists f* in Cp(X) such
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that f#|D = f; then Jp(f#|D) = V(f*); this implies that
f* € Zg(X) for some E €S . Hence f#IDNE =0, But
r#|D € ¢(D), and EN D £ D implies that £*|D = 0; 1i.e.
f = 0. Hence Jp 18 a monomorphilsm.
iv) Let T € C(E), and f* be an element in

C(X) ¢ Cp(X) such that f*|E = f; then by (1ii1)

| 3(*ID) = 3p(£ID) = V(£%);
on the other hand,

Jg(f*|E) = Jp(f) = V(%) Q.E.D.

Now, the family of rings (C(D))Dé& together
with the restriction mappings be 1+ C(E) —> C(D) for
each pair D, E €S where DC E form a direct system, and
the proposition shows that the maps Jjp : C(D) —> Qg(X) are
compatible with respect to this systems i.e, If D, E €5,

D £ E, then the following diagram is commutative

¢(D) > Qg(x)

T

C(E)

Theorem 2: Qgﬁx) is the direct 1imit of the direct
system (C(D), FDE)D. E ¢S » ¥With (Jp)peo. as a family of
limit homomorphisms, in the category of all rings with unit

and unitary ring homomorphisms.
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Proofs To prove this we have to establish that
for any given unitary ring homomorphism Pp ¢+ C(D)—> R
(R is arbitrary ring with unit) such that for D, E in g,
with D C E:  @p(fID) = Pg(f) for f € C(E) (i.e. the
family (®p)p ¢ & 1s compatible), there exists a unique
unitary ring homomorphism @ : Qﬁ( X) =—> R such that
Qo Jp = Pp for each D € ® (ef. + Theory of Category by
B. Mitchell Chapter II & 2.)

First we show the uniqueness: Let @' 1 Qﬁ(x)———?
R be another ring homomorphism such that @' o jp =<PD
for each D€ 9 . If u be any element in Q/g(x) » then
there exists a member D in & such that for some f € CD(X).
Y(f) = u, hence by 111) of Preposition 4

?'(u) =@ (V(f)) = @' (Jp(£iD)) = Fp(f\D)

(€0 Jp)(£iD) =x(V(f)) = P(u).
Now we establish a ring homomorphism ¢ @ Q(&(X) —> R

with @0 Jp =4>D. Let u ¢ Qa(x) an element; then there
exists f ¢ Cp(X) for some D such that ¥(f) = u. Define ¢
by ¢ (u) ==<PD(f\ D). We show that 9 1is well defined. For
any u € Q’S(x) if u = v(f) =y(g) for some f, g € Cy(X)
with f € Cp(X), g € Cx(X), then by 11i) Jp(fiD) = jE(giE),
and by iv) JDAE(ND(\ E) = JDnE(g\D(\ E) since DN E ¢
D, E. But then by hypothesis P,(fiD) =¥, E(f\D AE) =
?DAE(s‘D N E) =Pg(glE): this shows that 9 depends only
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upon u, not upon the choice of representative f: thus
?® is well-defined. Clearly ¢ is a ring homomorphism.

Finally for f € C(D), (®o Jp)(f) =P (Jp(f*ID))
=@ (v(f*)) = Pp(r*ID) = Pp(f) where f* € Cp(X) such that
| D= f, Q.E.D.

Remark: The ring QS(X) can be made into a [R-

algebra in the obvious way, namely ru = v(r)u for r¢ R,

u € Q(s(X)-

"Proposition 3: Let uy, +..., Uy be elements in
Qq{X) and P be a polynomial in k indeterminates over R
such that P(ul. ceey uk) = 0, then there exist fq, ...,
fk in Cg(X) with P(fl, coes fk) =0, and uy = Q(fl) for

eaCh1=1, 00 k.
Proof: Let fy in ngx) such that u, = v () (L =1,

nl
+e+y k), and let P = 2 Thl, o., nk * X1 ceees x%k and

£, € Cp (X) (1 =1, ..e, ¥)5 put D = }1% D, -+ Then P(uy,

_ nl nk
ceer Uy) "Z?rnl, ceey Nk U1 oWy T z (rnl, e, nk)
ni nk _ ni nk
wleee wt = 2 (T ) MED) e vEER) = ) 5

T, oL, e Ip(ERTIDY e g (e AD) = 3D(Zrn1.--nk(

nl‘

Ty

D) ... (fﬁk\D)) = 0. Hence P(f1]D,...,f,|D) = 0. Now

define f§(1i=l...k) on X by ff =fy Don D and f§{ = 0, on~D;



then rf € Cg(X) (1 =1, ..., k). Also, P(f¥, ..., ff) =0,
Moreover, Y(f{) = J (f}ID) = Jp(f41D) = v(fy) = uy. .
Q.E.D.

Remark: One also shows that the same result holds
for several polynomials Py, ..., Py such that Pi(ui' cees

w) =0(1 =1, ..., m). We observe that 1f 1g is the

unit in Qg(X), then for any e in Cg(X) such that V(e) = 1g
there exists a D € & such that e = 1 on D.

Corollary 13 u is invertible in Qﬁ(x) iff there

exists an element f in Q3(X) such that u = Y(f) and f is
invertible 1in C»(X).

Proofs There exists u' in ngx) such. that uu' = lQ
i.e. un' - lQ = 0, By the above proposition there exists

f, f'* and e in cﬁxx) such that ff' - e = 0 holds, and 1lg =

v(e), u = v(f), u* =y(f'), and also f(x):f'(x) = e(x) =1
for x ¢ D, for some D € o . .
Define %, f'* by
f*(x) = f(x) and £'%(x) = f'(x) on D
f*(x) =1 and f'*(x)»= 1 on ~ D,

Then %, f*'#% in CQJX). Thus f* is invertible 1in ck;x) and
V(f*) = J(£*ID) = Jp(f|D) = Y(f) = u.

Corollary 2:+ O # u 1s a zero divisor in Qy(X) iff
there exist f in C4(X) such that u = v(f) and f is a zero

divisor in C(X).

1
1
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Section 2: Ring of gquotients with respect to an embedding.

Let © be a filter base of dense subsets of X.

We note that C(X) & C (X) since C(X) < Cp(X) for each
DeS , but X need not itself belong to 9 . Also we

note that the natural mapping Yy gilves an embedding of C(X)
into Qq4(X)s it 1s clear because C(X) N\ Zg(X) = 0, and hence
f + Z245(X) = 0 for £ ¢ C(X) implies f = O.

To say a ring B(D> A) is a ring of quotients of A
with respect to an embedding ¢ + A —> 2 means that the
ring B is a ring of quotients of $(A) C B. Also we note
that Qﬁ(x) is a ring of quotients of C(X) with respect to
the embedding Y if and only if each C(D), D€ S 1is a ring
of quotients of C(X) with respect to the embedding given

by the restriction f ~~y fiD,

Proposition 41 Let g be a filter base of dense

subsets of X. A necessary and sufficient condition for
Qb(x) to be & ring of quotients of C(X) with respect to

the embedding ¥ 1is thats For each D€ S , for any f € C(D)
and open subset U of D, there exists an open subset V in

X such that VA DC U and £flV N\ D has a continuous exten-

sion to V.

Proof: gyfficiency: Let f, 0 # g in C(D) and U =

{x € D | a(x) # 0} an open subset of D. By hypothesis there
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is an open subset V in X such that VA D U.

Let a € VA D and‘? be the continuous extension
of VA D to V. Then there is a function h in C(X) such
that h(a) # 0 and hl€V = 0. Define a function u on X by

u(x) = f(x)*h(x) for x in V
=0 for x in CV.
Then clearly u ¢ C(X) and f+h{D = ulD, and g.h|D # 0
since g(a)+-h(a) # 0. This shows that C(D) 1s a ring of

quotients of C(X) with respect to the embedding u ~~» ulD.

Necessity s+ Let £ € C(D) and U be any open subset

of D, Then there i1s an open subset V' in X such that U =
VCA\ D. Let a € V' (\ D, then there is g in C(D) with

gla) # 0 and g(x) = 0 for x € D\ U. By assumption there

is an h 1nvC(x) such that £.hlD = u}lD for some u € C(X)

and g.h|D # 0 in C(D). Let ¢ € U such that g(e¢)-h(e) # O,
Then there is a neighborhood V" of ¢ in X such that hl V"

#0., Put V=V V® £4, since c ¢ V', V", Then VAN DU,

and £.h!D = u(D implies f = wlVAD, then 2!V (nlv # 0)
hiv A D mv #

i1s the desired continuous extension of f to the open set

V in X. Q.E.D.

Remarks Evidently the condition in Proposition 4§

holds for every dense open D.
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Lemma 5: Let A be a countable dense subset of
irrational numbers and let 73 A—{1,2, ....3 be a one
to one mapping. For each x¢ R define a function f by:

£(x) = 2 1/7%(a),
a<x
a € A
then f is continuous at each point of Q but f(a*) > f(a)

at each point a ¢ A,

Proof:s First we show that f is not continuous at

each point of A. To see this take any aj € A, then
m f(x) = S 1/p%a) = 5 1/2(a) = flag)s

x->a, a<zx a <ag

X—)&o

on the other hand

lim  f(x) = E:: IAA?(a) > 1/2%(a) +
X &g a<x a <a,
a <« x

> 1/a%(a) > f(ay).

a, sa<x

Secondly we show that f is continuous at each point q of

Q Clearly

lin f(x)
X —»>Qq

£(q);

on the other hand

1tm  f(x) = inf ( 2_ 1/,2(a))
xX-—> qt xX>q a<x

inf (X 1/2%(a) +
X > qac<q

2 1/2%(a))
q<cadx

£(q) +inf  ( 2__ 1/2%(a)).
x>q qgq<ac<zx -
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Let no(g 1) be given natural number, and take a

point anoé ANnla, g+ %o 1 sueh that 7\(ano) < Aa)

for all a € A N(q, @ +} 7T next take n; (natural
o

number > n,) such that a, ¢ A N\ [q, q +1 7, and pick
1

a point o, € Anfar a+ %1] such that 7\(an1) £ Ala)

for all a¢ AN [q, a + %fl] . Hence, inductively, take

a natural rnumber ny (> m ;) such that a, ¢ AN\

¥ 1 1

la, @ + .n..k] and ank € AN [q. qQ + “k] such that x(ank)sA(a)
for all a ¢ A n[q, q + %k] . Let P be the set of all

nk(k =0, 1, 2, +...) defined by above process. Then for
any m , n ., with ny < nyge in P 1t is clear that A(ank) <

Af(a_. )3 now clearly
L}

Ty
2
inf { Z: 1 l/A(ank)} = 0,

n ¢
Hence inf i Z 1/7\2(a)§ = 0, This concludes
XxX>qlg <ac<x

that £ is continuous at the point q.

Corollary: C(Q) is not a ring of quotients of C(R)
with respect to the embedding f ~~~> £|Q.
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Proof: If f is the function defined in Lemma 5,
then g = flQ € C(Q). Since every open subset V in R
intersects with A, the function glVrﬁ € can not be extended
to V; by the previous proposition, C(Q) is not a ring of
quotients of C(R).

Theorem 6: (Banaschewski Ilj.) QAJX) is a maximal
ring of quotients of C(X) with respect to the embedding f ~v
f + zs(x) if S 1s the set of all dense open subsets of X.

Proof: From the Proposition 4, clearly Q. (X) is
a ring of quotients of C(X). We shall show that for any
A, a ring of quotients of C(X), there exists a monomor-
phism of A into Q§4X). :

Take any a € A and consider T = i € C[ af € (J},
where C dénotes C(X); then T is a dense ideal in A; thus
the set V = deJ Coz(f)(f € T) is a dense open subset of
X; l.ee V ES

For each a € A define a function a%¥ :+ X —>R by

a¥*(x) (af)(x)/f(x) if x € Coz(f) for some f € T

=0 if x ¢ V3
this is well defined because if x € Coz(f) and x ¢ Coz(g)
for some f and g in T. Then ((af)g)(x) = ((ag)f)(x)
implies (af)(x)/f(x) = (ag)(x)/g(x) for x ¢ Coz(f) N Coz(g)
= Coz(fg). Hence a*, thus defined, belongs to Cy(X), and
clearly a* = a if ae C(X) since a¥(x) = (af)(x)/f(x) = a(x)
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for some Coz(f) containing x.

Now we show that the mapping a ~s a* + Z (X) of A
into Qﬁﬂx) 1s a monomorphism, We show first that this map-
pring is a ring homomorphism. If T1 = { f € Claif € C} for
a; ¢ A(1=1,2). Then T = dle(\ T, is a dense ideal in A,
For V= U Coz (f\f € T), then it is easy to see that V =

N V, where V, = U Goz(aXg € Ty) .

Via v,

Take an element x ¢ V. Then there is an f € T
such that x € Coz(f)where f € Ty(1=1,2); hence 8T + a,f =
(aq + az)f belongs to C(X). Thus (a; + az)*(x) =
(a1)(x)/f(x) + (apf)(x)/f(x) = a}(x) + a%)x) for x € Vs
This shows that (a; + a,)%* - (af + ag) € Zg(X), and in
the same manner (a;-a,)* - (af-af) € zﬁjx). This concludes
that the mapping a ~> a¥% + zx;x) is a ring homomorphism.
Finally we show this mapping is one to one. For
any a,, 8, in A, let af - 35 € ZS(X). Iffe T=Ty N T2,
where T,, T, are defined as above, then f(a} - a%) =
f.af - f.a% 1in zﬁ(x), since Zy(X) is an ideal. Consider
the equality:
f.a; - f.a, = (fea; - f.af) + (f.af - f.a8) + (f.a8 - f.a,).
Note that (f.a; - fe.af)(x) = (f.aq)(x) - £(x).(fay)(x)/f(x)
= 0, for all x € Coz(f)< Vy; hence (fa; - fa})|V = 0, where
V=V, NV, similarly (fat - fa3)| Vv = 0.
Thus both (fa; - fa}) and (fa¥ - fa,) belong to
ZS(X): consequently f(a1 - az) = 0, on some dense open

subsets of X, but f(a; - a,) 1s element of C(X); hence
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f(a1 - az) =0 for all x ¢ X. This implies that
T(ay - ap) = 0; but T is dense ideal in A; hence a; = a,.
This completes the proof.

Note: A maximal ring of quotients of C(X) is

von Neumann regular.

Proposition 7: A necessary and sufficient con-

dition for Qﬁ(x) to be a von Neumann regular ring is the
following: For each D€ S and f ¢ C(D), the subset (EN
Coz(f)) U EgCp (E N Coz(f)) belongs to S for some E L D
in 9.

Proof. Sufficiency: Let u € Q»(X) with u = y(r*)

for some f' € Cﬁ(x),and put f*| D =f for some D in S .
Note that E n Coz(f) and IECE(Coz(f)(\ E) are E-open
subsets of E and disjoint. Put E' = (E N Coz(f)) U
IgCr(E N Goz(f)). Define a function g on E' by

g(x) = 1/f(x) for x in E N Coz(r)
= c for x in IECECoz(f).,

then clearly g ¢ C(E'); hence there is a g' 1in Cg(X)
such that G' | E' = g and f'zg' = f* on E'; hence we have

w?v = u where v = yig*).
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Necessity : Let D € O and f ¢ C(D) be given,

end let u = ¥(f') where f'I{D = f for some f' ¢ CE§X). By
the hypothesis there 1s a v in QQSX) such that u2v = u,
Let v = y(g*') with g* ¢ CD.(X) and g = g'\|D'. Then u?v = u
implies that fzg =f onsome E ¢€J, ECDND'. Bya
well-known theorem, we have

E = Lg(E N\ Coz(f)) U Sx(E N Coz(f)) U Iz€5(E N Coz(f)),
SE denotes the E-boundary, where Ig(E N Coz(f)) N SE(E N
Coz(f)) N IEC(E NCoz(f)) = # and TH(E N Coz(f)) = Ig(E N

Coz(f)) U SE(Ef“ Coz(f)).

Now we claim that SE(E N Coz(f)) = @g. If there is &
point p in SE(E N\ Coz(f)), then for any E-neighborhood Up
of p, fzg - f =0 implies

g(x) = 1/1(x)
for all x in U A (EN Coz(f)) # &, but then g(x) = o
as x tends to p, p € E. This contradicts the fact that
g 1s continuous on E.; thus we have SE(E(W Coz(f)) =4,
and since E M Coz(f) is E-open, we have

E = (E N Coz(r)) U IzCE(E M Coz(f));

this completes the proof.

Remark 11 The ring Q}§X) can be a von Neumann
regular ring and still be rationally in-complete. Let
X be a 7;-set; that is, a totally ordered set with the

property that for any nonempty countable subsets A and B



25

of X with A ( B there exist element u, v and w satisfying

u (A {v (B ( w. Then if the . 7,-set X is endowed with
the interval topology the space X is what is called a P-
space without isolated points [12). Hence C(X) is not
rationally complete. Take any proper dense open subset D

of X and let 5 = {D} then clearly Qg(X) = C(D), and hence
Qegx) 18 not rationally complete either. But D is again
P-space, hence C(D) is a von Neumann regular ring, and so is
QS(X). This is an example of a non-maximal ring of guotients

of C(X) which is a von Neumann regular ring.

Remark 2: The ring Qg(X) can be a von Neumann

regular ring without being a ring of quotients of C(X)
(w.r.t.¥.). Take X = R, and 5 the set of all relatively
open dense subsets of &, the rational numbers; then clearly
Q»(Q) is the maximal ring of quotlents of C(Q) and a von
Neumann regular ring. Moreover we have C(X) ¢ C(Q) ('Q£$Q)
with the embeddings:

Qv ¢ —> c(@) vy () = rlq and y* + C(Q) —
QAAQ) by » (&) = g + Z4(Q); also the composition y' o ﬁQ :
c(Xx) ——e»QA;Q) is an embedding. As was shown previously,
C(Q) is not a ring of quotients of C(X) w.r.t. the embed-
ding ﬁQ s Hence QagQ) is not a ring of quotients of C(X).
Now we show that Qo(X) ¥ Qu(Q). Define ¢: Q (X) — Q&iQ)
by ®(u) = rlQ + Zo(Q) for u € QA&(X) with u = £ + z/&(x).
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We show ¢ is ontos Take any v € Qg(Q) with v = g + Z.(Q),
define g* on X by

gh(x) = g(x) on Q

= 0 on ’\'Qo.

then g¥* ¢ CQJX) and let u = g* + zajx); then ¢(u) =

g*1Q + Z4(Q) = g + Z24(Q) = v; hence ¢ is onto. Since
£1Q + Z45(Q) = 0 implies f € Zo(X), and hence ¢ 1is one to
one, Clearly Y{f) = (1’1 o y' o fQ)(f); thus Qﬁ§x) is
a von Neumann regular ring without being a ring of quo-~

tients of C(X) with respect to the embedding v .
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Section 3: Induced homomorphisms.

Let o and § be two distinct filter bases of
dense subsets of X; we say © is finer than & Aif and
only if for each F € § there exists a D in S with
D F.

Proposition 8: Let 9 and § be two filter bases

of dense subsets of X, If 2 is finer than S, then there
is a unique embedding @ Q&\g}() ——> Q(X) such that for
any F €5 and D € 9 with D¢ F the following diagram

commutes.
.
Q () > Q(X)
Ip Ip
f ~~>flD
C(F) > C(D)

Proof: Define @1 Q(X) —>Q(X) by ¢(Jp(f)) =
jD(le) for £ ¢ CF(X). Then Clearly ¢ is a monomorphismj

and from the definition of ¢ the uniqueness 1s evident.

Remark 1: In particular if $ 1s finer than §
and § is finer thang, then ¢ Q%\(X) —> Q4(X) is
an isomorphism. To see this, define ¢' Q%(x) ———-—e—Qs_(X)
by ¢'(v) = Jo,(fIF') where v = jp(f), f € C(D'), F*' ¢ D',
F'ée S , D' €9 . Then (fo ¢')(v) =P (Ipe (£IF))
= JD(fID)(Dg F', D€ ) = v, and hence @ o @' = id.
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Similarly @' o ¢ = 143. Hence @ 1s an isomorphism.

Remark 2: Also if §£<C 9O, then clearly 5 is

finer than §°, but the converse need not hold.

Remark 33 1In particular, if S is finer than g’
and Qg(x) is a maximal ring of quotients of C(X), and
S is such that Q&(x) is a ring of quotients of C()g)
(always with respect to the embeddings), then ¢ 1is an
isomorphism. Hence if QS(X) is & maximal ring of quo-
tients of C(X) and S (consisting of dense open subsets)

is finer than § , then @ 1is an isomorphism.

Example: Let §" be the set of all dense open
subsets of X and & be the set of all disconnected dense
open subsets of X, then O is finer than S 1 hence
QLX) F Qgx).

The following discussion is another approach to
obtain a maximal ring of quotients of C(X).
| Let §> be the family of all filter bases S\’ of
dense subsets of X such that Qgix) is a ring of quotients
of C(X). On ? we define an ordering in the following wayj;
for two member %, ‘5'(; in §, $.2 5%,11‘ and only if
-5'; - S;} } 1.e. each member of Sx 1is a member of‘f@ .
Then clearly the set f? with the ordering " ( " becomes

a partially ordered set.
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Now let I, be a chain in $ and
& VL = { F. | F, € §y, for some &, in K }.
Then UX is again a filter base of dense subsets of X;
for let Fy, Fg in UK with Fy ¢ S and Fe € 5(}, , and
€. <S5 . then there exists F§ 1in S such that E§ C Fu.
Since ?éis a filter base , there is Fg € §@ such that
Fg < F@' ) Fé CE N FP' And Que(X) 1is a ring of quotients
of C(X) since each C(F), Fe UL 1s a ring of quotients
of C(X). Thus the partially ordered set (? ,4) is in-
ductive, hence there exists at least one maximal filter

base 7T of dense subsets of X such that ngx) is a ring

of quotients of C(X).

Remark: Let ,S& and 25 be two filter bases of
dense subsets of X such that Dl(ﬁ D2 in dense for all
D; € «91. D,€¢ O,. Denote

,91/\,9‘2={D10D2‘D1€ S'Dzé%z'

then clearly -Ea A ﬁz is a filter base of dense subset,
since for any two E' and E" in «9& ﬂ~f9§

E'*'N E"

(D, O Dp) A (D} D)
(le\ Di) (\(Dz(\Dé)
2DAaD =E D¢ D, D¢ O,

We also denote:

9 v -H={D|pecH or DeI,},
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9‘1 Vv '\9‘2 need not be a filter base of dense subsets, but
we shall show that (©4 v "95) U (B A 9‘2) EQ is a
filter base. For E', E" of $, we have three cases:
1) If E', E"€ 9, VvV V,, then clearly E'N E"

contains some member E of .

11) If E', E* € &y A &, then also clearly
E'*' "\ E" contains a member E of 5 .,

111) If B'¢ Oy V Oyand E" ¢ Oy N\ I}, then
E' N E" = E*' N\ (Dy N\ Dp), D3& ~2>, Dy€ Sp; the either
E' N Dy or E' N D, contains some member of Sy A Oy
hence E' N\ E" contains a member of & . This shows that

S 1s a filter base.

Theorem 9:+ For a maximal filter base 77U in % .

o

the ring ngx) is a maximal ring of quotients of C(X).

Proofs Let T be the set of all dense open sub-
sets of X, We claim that(y £ 7{, where < is of course
a filter base of dense subsets., Note that O \\ M is dense
for all 06y , M eV,

Let ¢ = (OVI) U (IAM); then by above remark
T' 18 a filter base of dense subsets containing < andrrt
vclearly Qu (X) is a ring of quotiénts of C(X); the maxi-
mality of M implies that 7 & m' which means that 77 £ WX
and ' /:.77(-' Hence ¢ £ yn s+ thus by the previous proposi-

tion the ring Qﬁ(x) can be embedded into the ring Qm(JX).
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Qs(x) is known as the maximal ring of quotients of C(X),

hence Qn{X) is a maximal ring of quotients of C(X). Q.E.D.
In what follows we shall describe the relation

between a continuous mapping from a space X into a space

Y and homomorphism from Qg(Y) into Q&(X) where 48 and g~

are filter bases of dense subsets of X and Y respectively.
Let ¢+ X —> Y be a continuous mapping with qﬁl(F)egy

for each F € § 3 then @ 1induces a homomorphism from ngY)

into Qb(x). Namely, a mapping ¢* 1 QéY)———> Q(&(X) defined

by
@*(u) =f o + z(&(x).

where u = y(f), f e C?(Y). is a homomorphism.
To verify this we define a mapping ?# t CSjY) —_

C_(X) by
“n g#(f) =f o (recs\(Y)).

Then evldentlywp# is a homomorphims induced by
¢ and it carries the constant functions onto the constant
functions; for any x € X, @#(r)(x) = (r og )(x) =r.

Let v 1 C(X) —> Qy(X) and ps C(Y) ——>Q(Y)
be the natural homomorphisms. Consider the followlng
diagram:

4 ,
CAY) _ff*__? Co(X) X Qu(X)

M - P
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We first show that the homomorphism Y o ¢#
annuls the Ker M= Z%\(Y). Let f ¢ Ker/k = Z@_(Y), then
flF = 0 for some F€ 5§ and (Yo P#)(f) = Vie#(£)) =
f o +24X). Also (f 0¢)(9~L(F) =0, ¢L(F)e S
hence (Y o @#)(f) = 0. Thus the homomorphism Vo ¢#
induces a homomorphism ¢%* 1 Q(Y) —> Q (X) and the
diagram is commutative; i.e. @*(u) = ( YoP#)(f), where
u =MK(f). Hence g*(u) =Y(f o) =f o + zﬁgx).

We call ¢* the homomorphism induced by ¢.

Proposition 10: Let ¢* QLY) —>Q (X) ve

the homomorphism induced by a c<ontinuous mapping @ s+ X

—> Y. Then 9* 18 a monomorphism if ¢ has dense image.

Proofs Since @*(u) = f o® + Z.(X), where u = w(f),
&* is monomorphism iff f o @ € ngx) implies f € ZQ(Y).
This is again equivalent to saying that there exlists a
D€ S such that (D) <€ Z(f) implies there exists F € §
with F € Z(f),

Now we show that (D), for each D€ O , is a dense
subset of Y. Since ¥(X) 1s dense in Y, for any 0 # U,
f(X) N U # g+ Then this would mean that there is a point
x € X such that ¢(x) € U; 1i.e. Q'I(U) # ¢ and open in X;
hence D N ¢71(U) # @ thus (D) N U # g,
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Finally let u = m(f), f € Cp(Y) and g*(u) =0,
then there exists D € & such that ¢(D) € Z(f); 1i.e.
£fl@(D) = 0; thus f| ¢(D)N\ F = 0, but (D) "\ F 1s a dense
subset of F since qa‘l(F) € O ; hence f|F = 0; 1.e. Fg Z(f).
Q.E.D.

Proposition 11s Let @ X ——> Y be a homeomor-

Phism with dense image such that every continuous func-
tion on a dense open set V in @(X) can be continued to an
open set (DV) in Y, then ® induces an isomorphism between

a maximal ring of quotients of C(Y) and that of C(X).

Proof: Let S and S! be the set of all dense open
subsets of X and Y respectively. First we show that ?‘1(D')é
S for each D'€ .O'. Let V be any non void open set in X.
Suppose VN ¢=1(D') = g , then ¢(V) N\ D' = g, But (V) is
an open set in ?(X); hence there is an open set U in Y such
that €(V) = @(X) N\ U; thus we have @(X) A UN D' =4,
which is a contradiction.

Hence ¢ induces a homomorphism ¢¥, and ¢¥% 1is
clearly one to one from the above proposition. Now we
show¢ # is onto. To show this it is enough to show that
Q# 1 Cq(Y) —> C‘&(X) is onto.

Take any h € c,.‘,(x) with h € Cp(X) for some D € 5 .
Clearly ?‘1 18 a continuous mapping from ¢(X) onto X. Hence
h o¢-1 is continuous on ¢(D) ( open in ¢(X)), and, by hypo-
thesls there is a dense open D' D 4¢(D) in ! and g in
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CD.(Y) such that g|9(D) = h o q‘l. Then clearly ¢#(g)
=goP =ho¢"lo@=nh. Q.E.D.

Corollary 1s Qu(X) % Qg (fX), (T, 0" the set

of all dense open subsets of X and gX respectively).

Corollary 23 If ¢ s X —>Y is a homeomorphism

with open dense image, then ¢ 1induces an lsomorphism.

Let ¢ + X —>Y be a continuous mappling with
the following propertys

(*) ¢-1(F) € & for each Fef§ ,
where ,O and § are filter bases of dense subsets of X
and Y respectively. Then the homomorpnism<® * QéY)
—> Q (X) induced by ¢ satisfies the conditions

(*%) o#*( m(C(Y)) € v(C(X)) where *,y are the
embeddings, and for each F €§° there exists D €5 such
that ¢*(Jp(C(F))) C 3p(C(D)).

Proposition 12: Let <V Q.(Y) —> Qﬂgx) be a

unitary homomorphism and Y be a hereditary realcompact,
where & and § are the sets of all dense open subsets
of X and Y respectively. Then Y = ¢% for some continu-
ous mapping ¢ ¢+ X —> Y satisfying (*) iff VYV satisfies

(*i).
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Proofs We only need to show the "if" part.
Without loss of generallty we may put jr(C(F)) = C(F)
and Jp(C(D)) = C(D) for F€ES and D€S . Since F is
realcompact, VY(C(F)) C C(D) implies that there exists
a unique continuous mapping ¢* 3+ D—> F such that
Y(rIF)(x) = ((£IF) 09')(x) for each x ¢ D and for all
f € ¢(Y). Wnile VY(C(Y)) C C(X) implies that there exists
a unique continuous mapping ¢ X —> Y such that ¥(f)(x)
= (f 09 )(x) for each x ¢ X and for all f € C(Y). Since
f = fIF 1n Q(Y), Y(F\F)(x) = W(f)(x) for each x € D and

for all f ¢ C(Y), and hence (fIF)(?'(x)) = £(2'(x)) =
f(%(x)) for each x ¢ D and for all f € C(Y)., Hence ¢'(x)

= ¢(x) for each x € D. This means that ¢' = ¢|D, Then
'clearly D ¢ q'>'1(F). But D is dense and ¢~1(F) 1s open,
hence ¢~1(F)€,9 . Thus ¢ induces a homomorphism % Q.(Y)
——> Qg(X). To show ¢* =Y , let u¢ Qg_(Y) with u = p(f)
= Jp(fIF) for some F¢§ . Put D = ¢"1(F). Noting

Jp(glD) = g|D and Jp(flF) = fIF, ¢%(u) =V(f 0o ?) =

Jpl(f 0@)ID) = (f 0®)ID = ((fIF) 0@ )ID =V(fIF) =

¥ (Ip(fiF)) =V (u). Q.E.D.

The following characterizes a prime ideal P in C(X)
via the maximal ring of quotients of C(X)/P. We first

show the main clue of this idea.,.
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Lemma 131+ Let C be a commutative ring with unit
e and B be a C-module with the property that for a fixed
prime ideal P in C there is no element b in B such that
the order ideal O(b) = { ¢cc Cleb = O} = P; then the

same holds for any essential extension of B.

Proofs Let Q D B be an essentlal extension of
B, and suppose there were an element q ¢ Q such that
0(q) =i'c € Cleq =0 } = P; then q # 0 since P is a
proper ideal. Thus there exists an element ¢ ¢ C such
that cq € B and ¢q # 0 since Cq N B # (o).

Now we show that O(eq) = P. Let p € P, then
pcq = epq = 0 since 0(q) = P; hence p € O(eq). Conver-
sely let a ¢ 0O(cq), then acq = 0; hence ac € 0(q) = P.
But ¢c & P since cq # 0; thus a ¢ P since P is prime.
Hence O(cq) = P. But cq € B; this is a contradiction to

the hypothesis.

Remarks Let B be a rational extension ring of a
ring C and B' =9 (B) where ¢ + B —> B' is a ring isomor-
phism. Then B' can be made into a C-moédule in the fol-
lowing ways For any b' € B', define cb' =@ (c) ¢(b)
where b' =@(b), b€ B, By stralghtforward checking
this gives a C-module structure. Then the ring isomor-
phism becomes a C-module isomorphism. We observe that

for any b € B, 0(b) = O(®(b)), order ideal in C.
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Corollary 1l: Let X be without isolated points

and B any rational extension of C(X), then there is no

b in B such that the order ideal 0(b) in C(X) is prime.

Proofs It is enough to show that there 1s no f
in C(X) such that O(f) in C(X) is prime (by the above
lemma). Suppose there were an f in C(X) sueh that O(f)
= P for some prime ideal in C(X); then fg = 0 for all
g € P, and Coz(f) C Z(g). This implies that Coz(f) N
Z(g)(g € P). It suffices to assume P 1s a fixed ideal;
then the assoclated prime Z-filter has a cluster point
and hence NZ(g) is a singleton. It follows that Coz(f)
= @ since X has no isolated point. This is a contradic-

tion. QOE. D.

Corollary 23 Let P and P' be two prime ideals in
C(X) then Q(C(X)/P) = Q(C(X)/P*') over C(X) if and only 1if

P =P', (Q denotes a maximal ring of quotients.)

Proof: The "if" part is trivial. For the "only
if" part, assume P ¥ P', For any non-zero element
u € C(X)/P, clearly the order ideal O(u) = P in C(X);
in othef words for any non-zero element u in C(X)/P,
O(u) # P'. This implies from the Lemma that there is no
element u' in Q(C(X)/P') such that O(u') = P'; in parti-

cular there is no element u' in C(X)/P' such that O(u')= P*,
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But this i1s a contradiction because for a non-zero ele-

ment u' in C(X)/P', O(u')

P, Q.E.D.

Corollary 3s Let P be a prime and M be a maximal

ideal 1n:C(X). If C(X)/M is isomorphic to a ring of quo-

tients of C(X)/P over C(X) then P is maximal.
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Section 4: Classical ring of gquotients.

Let S be a multiplicative submonoid of C(X)
consisting of non-zero divisors of C(X) (abbreviation:
m.s,) and $(S) be the filter base generated by the
cozero sets of S, then C(X)[S‘l] is a classical ring
of quotients of C(X) with respect to S. Now we have

the followlng proposition.

Proposition 14s Let S be a m.s. of C{X) such

that, for £ € S and g ¢ C(X), Coz(f) = Coz(g) implies
g € S. Then C(X)[(s-1]= Qg(s)(X).

Proof: For an f € C(X) and a g ¢ S, define a
maﬁping rg=1 s (rg~l)* + z§(8>(x) of ¢(X)[s~1] into
QSTS)(X) where (fg'i)* is defined by (fg‘l)*\ vV = rg-1
and vanishing outside of V for some V€ §(S). Then
clearly this mapping 1s a homomorphlism and one to one
sSince if (fg~l)* ¢ Zg(g)(X), then £fg=l | Vv = 0 for some
V¢ Coz(g)s Thus fIX = 0; hence fg~1 = 0 1n c(X)[s7Y].

Now we show the mapping is onto. Let uc¢ Q;(S)(X)
with u = »(h), h € Cy(X), V€ §(S). Then there exists

a g in S such that V = Coz(g). Let g' = g/1+h?. Then

g' € C(X) and Coz(g) Coz(g'). Thus g' € S. Define a

function f on X by £ = hg'. Then clearly f € C(X) and
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(fg'~1)% + Zg(g)(X) = u since (rg'~1)*| v* = fg'~1 = n
for some V* C Coz(g'). Q.E.D.

Thus for a m.s. S of C(X) consisting of non-
zero divisors of C(X) satisfying the condition in the
proposition, the ring ngs)(x) can be regarded as a
classical ring of quotients of C(X) with respect to S,
i.e. the image of the f € S under the underlying natu-
ral homomorphlsm are invertible and Qg(s)(x) is generated

by these inverses and the image of C(X).

The proof of the following statements are straight-

forward.

1. If S is the gset of all non-zero divisors of

c(X), then QS(S)(X) is the full ring of quotients of C(X).

2, For any m.s. S in C(X), the ring Qg(g)(X) 1is

a ring of quotients of C(X).

Remark:s We have seen in (2) that for any m.s.
S the ring Qf(s)(x) is a ring of quoﬁlents of C(X) with
respect to the obvious embedding. From the previous
sectloﬁ if the filter basis £°(S) is finer than the
filter basis of all dense open subsets of X, then

sts)(X) is a maximal ring of quotients of C(X).
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Now we have a questions If QE(S)(X) is a maximal
ring of quotients of C(X), then does this imply that $(S)
is finer than the filter basis of all dense open subsets
of X7 For the time being we shall leave this as a pro-
blem. However, we give here some examples that provide
some partial answers to this question.

We note first that the classical ring of quotients
of C(X) is the maximal ring of quotients of it if and only
if for any £ € C(U), where U is a dense open, there exists
a g € C(V), where V is a dense cozero set, such that fi{UNYV
=gun visl,

l. If X is separable space then every open dense
subset contains a dense cozero set, hence QSTS)(X) is a
maximal ring of quotients of C(X) if S is the set of all
non-zero divisors.

2., Every metric space need not be separable, but
every open subset of a metric space is cozero set; hence
every dense open set itself is a dense cozero set.

3. Let X be an ﬂl-set endowed with the interval
topology; then X is P-space without isolated points;
hence every zero set is open; more precisely, every contin-
ous functlon vanishing at a point p vanishes on a neigh-
borhood of p. Thus no proper cozero set 1s.dense. Clearly-
@x has no isolated points. Then @x is the space that is

compact without isolated points such that the maximal and
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classical (full) ring of quotients of C(X) do not coin-
clde.

4, Let X be a topological space in which every
open subspace 1ls paracompact such that every subset of
X, all of whose points are isolated, 1s countable. Then
'as 1s well-known every open subspace of X 1s Lindelof;
thus every dense open subset itself 1s cozero dense sub-
set. Hence the maximal and classical (full) ring of

quotients of C(X) coincide.

Let A be a finite set of non-zero divisors of
C(X) containing unit and S be the set of all finite pro-
ducts of elements of A, then S 1s a m.s. Since, for each
f € ¢(X), Coz(f1) = Coz(f) for integer n > 1, we see that
the filter basis §(S) generated by the cozero sets of
f € S 1s the set of all finite intersectlions of the co-

zero sets of & A, Let T = Coz(f); then T is the

N\
f € A
smallest member of §(S) contained in every member of §(S).

Hence we have the following.

Remark:s If S is a m.s. generated by the finite
set A, then Q?IS)(X) is a maximal ring of quotients of
C(X) if and only if Coz(gzgf ) 1s discrete.

Proof': ngs)(x) % C(T), where T = Coz(TIr)(f € A),

and C(T) has no proper rational extension iff T is discrete,



CHAPTER 11

Order and Topological properties

of the ring Qq(X)

Section 1: Archimedean F-ring.

In the ring C4(X) defined in Chapter I, one
defines a partial order in the usual function way, that
is, for any f and g in CQJX); f < g Iff f(x) < g(x) for
all x € X. Next for any f and g, the function k defined
by the formula

k(x) = f(x) Vv g(x)
satisfiess kX » f and k » g; furthermore if f ¢ Cp(X)
and g € Cpe(X), D, D'€ G, then k € Cp,pe(X), and for
all h such that h > f and h > g, we have h> k. There-
fore f v g exists in cagx)s It is X, and (f v g)(x) =
f(x) v g(x). Dually f A g exists and (f A g)(x) =
f(x) A g(x), and f A g € Cp,pr(X). This shows that the
ring QS(X) is closed under the meet and join and hence 1is
a lattice ordered ring. Also the partial order is purely
algebralcally determined, i.e. > 0 iff f = g2 for some
g € cﬁsx).

b3
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Now z(s(x) is an ﬂ-ideal. that is for f € Z,S,(X) if
lgl £ 1f]|, then [f] | D = 0 for some D €5, hence |g\|D = 0;
thus g|D = 0, 1.e. g € zﬁgx).

‘Hence the ring Q(X) inherits a partial order

',a(
which is a lattice order. Thus one has u g v, u = Y(f),
v =y(g) if ¢ < &, and the natural homomorphism V 1is a
f-homomorphism, i.e. Y(fVv g) =V(f)V V(g) andV(f A g) =
Yy(f) AN v(g). Also one shows the followings
V(f) € V(g) iff fID £ glD for some D € & .
Since V(f)< V(g) implies V(g - f)> 0, it follows that
there is an h > 0 in Cy(X) such that (g - f) - h € Z5(X),
i.e«. g ~-~f =honsome D inS . The converse is trivial.
Now let nu £ v for all integersn, where u = v(f),
v =Y (g), then nf ¢ g holds on some D in $>; thils implies
that £ = 0 on the D3y hence u = 0. Also iIf u Av =0 and
w > 0 where u = v(f), v =V(g) and w =y (h), then f A g =
0, h> 0O on some D in S . This implies that for each
'x € D, f(x) = 0, or g(x) = 0, or both are 0. Hence
(h(x) - f(x)) AN g(x) =0, t.ee« hfA g = 0; thus wu A v =
0. One has the followlng.

Proposition 1l: For any filter base S, the ring

Q}(x) is an archimedean F-ring.

For an F-ring one has the following identities
(C91):
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1) if w 20, then (u Vv v)w = uwyvy ww

(U AV)W = uw A VW
11)  luv| = luleiv}
111) u® 3 0 for each u

iv) uA v = 0 implies uv = 0,

Remark: The partial order in the ring Q@(X) is
alsoc algebraically determined, i.e. u > 0 iff u = v2.
v € QA(X), and each positive element u > 0O has a! unique
positlive square root yiui, and for any u, tul = u V-u is
also \)-1_1_2 .

We recall that the mapping jp 3 C(D) —> Q4(X)
defined by Jp(fiD) = V(f), £ & Cp(X), is an embedding.

Since Y 1is a { -homomorphism, so 1is Jp. Hence we have:

Proposition 2i QS(X), with its partial order,
is a direct limit of the direct system (C(D), PDE)D. BeS
with (JD)DGQ« as limit homomorphisms, in the category
of all semi-prime commutative F-ring and lattice-order

ring homomorphlisms.

Remarks For any two elements u > 0, v> 0 in &

commutative semi-prime F-ring, if u? = v2, then u = v,
To show this let 8 = u(u - v)2 end t = v(u - '»,’/)2, then
both s > 0and t » 0, and s +t = (a + v)(u % = 0,

Hence s =t =0, Thus (4 - v)J2 = + - - = 0. But the
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ring l1s seml-prime, hence u = v,

Here one shows that the unique unitary ring homo-
morphism s Qq(X) —> R, coming up in the proof of the
Theorem 2, Section 1, Chapter I, satisfles the two condi=-
tions 1) u > O implies ¢(u).> 0, and 1i) P (iul) =
| ¢(u) ! . Incidentally, the ring R here is an arbitrary
commutative semi-prime F-ring in the category. The first
condition is clear because there is an element v in Qﬁ(x)
such that u = v2 and ¢(v)2 > 0 in the F-ring R. | For the
condition 1ii) 1let u ¢ Qh(x), then [¢(iul) ] 2 = jui?)
= §(u?) = |9(w)l?, and ®(1ui) > 0 and (¢(u)} »0. It
follows from the remark that ¢(iut) = {(F(u)| .

As usual for each r¢ R, r.u = ged(r)u gives a
vector lattice structure on the ring Qs(x). since for
*r >0, u=y(f) >0, we have (rf)l D> O for some D€ ,
Now if the ring R 1s a vector lattice over, at least the
field of rational numbers €, then the condttlons‘ i) and
11) imply that the ring homomorphism preserves the meets
and joins. Since Qb(x) is a vector lattice over R,
uvv=1/2'(u+v-|u-vl) and ?(l/z-lq) = 1/F-eR .
® being a unitary ring homomorphism; thus¢(uv v) =
172+ (9(u) +@(v) = [ 4(u) - g(v)l) =¢(u)v ¢(v) since
the R 1s a vector lattice; and the same hold for meets.

We have the followings: i
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Corollary 1s If @ : Qg(X) —> R, the reals, 1is

a unitary ring homomorphism, then it 1is anf-homomorphism.

Proofs Define a homomorphism ¢p 1+ C(D) —> R for
each D¢ & by ?D = o0 jp. Then for any D, E € O with
D C E, wé have f(fiD) = (®o 3p)(fID) = ?(Jp(fiD)) =
®(Jgl r)) = Pp(f) for £ € C(E). This means that the family
(?D)De o is compatible with respect to the direct systen.
Hence ¢ 1s the one which is uniquely determined. Thus

is a I-homomorphism.

Corollary 21 Let < be such that N\D # # (D € 5 );

then there exists a unitary ring homomorphism, hence an j-

homomorphism, from Q/s(x) into the reals IR.

Proofs Let p, € (\D(D €5 ) be a fixed points
for each member D¢ & , define a mapping ?D s C(D)— R
by ?D(f) = f(p,)s then clearly each Yp is a ring homomor-
phism and moreover for each pair D, E in$S with D¢ E
and each f € C(E), we have Pp(f) = f(py) = (fID)(py) =
@p(fID); this means the family (fp)p¢ o 18 compatible
with respect to the direct system. Hence there exists a

unique unitary ring homomorphism € 1 Qgq(X) —> R.
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Section 23 Real ideals.

Proposition 3: Every prime ideal P in Q(X) 1is

an f-1deal and the residue class ring Qﬁ(x)/P is totally
ordered and the mapping r ~~» r + P is an order-preserv=~
ing isomorphism of the real field into the residue class

ring.

Proofs Let |v| < |u| with u € P and u = Y(f),
v = V(g), then |g| < |f| holds for some D € & . Define
a function h on X by:

n(x) = g2(x)/f(x) for x ¢ DL Z(f)

= 0 elsewhere.

Since \g| <If|, s(x)/f(x) is bounded for each
x ¢ D-DNZ(r), and hence h is continuous on D, 1i.e,
h € Cp(X). Thus V(h)+V(f) = v(hf) = V(g2) = v2 is an
element of the prime ideal P; hence v € P, thus P is
an_j-ideal.

Since Qg(X) is anF-ring, for each u in erx)
ul? = w?; hence (u - lu])(u + (u}) = 0 holds; thus either
u- (ul € Poru+ |ul € P; the former implies u + P 2 0,
the latter implies u + P { 0.

For the last part, clearly the mapping is an iso-
morphism and r.> O implies r + P> O,
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Definition: A maximal ideal M in a ring A is

called real iff its quotient field A/M 1is Archimedean.

Bemarks From the Proposition 3, we have seen
that for any maximal ideal.M<:Q2(X), the quotient field
Qaix)/M is a totally ordered field containing anisomor-
phic copy of the reals H, and every Archimedean ordered
field is order-isomorphic to a subfield of the field of
reals B, hence a maximal ideal M in Qﬁ(X) is real if and
only 1f Qu(X)/M is isomorphic with .

Proposition 43 If %1 Qq{X) —> R, the reals,
isla nonzero homomorphism, then the kernel, ker® = M? is
a real maximal ideal, and @ ~ MQ is a one-to-one corres-
pondence between the homomorphisms from QS(X) into R and

the real maximal ideals.

Proofs Observe the ring homomorphism ¢ oV from
C(X) into R is an onto mapping; hence so is ¢ . Thus the
ker ¢ is a real maximal ideal. Since distinct homomor-
phisms onto R have distinct kernels, the correspondence
between the homomorphisms of QS(X) onto B, and the real

maximal ideals, 1is one to one.

Remarks Clearly for any D, IfND#P (D €9)
then by the above proposition there are plenty of real

maximal ideals, the number of such ideals 1s at least the
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cardinal number | ADI|., This implies that if the space X
has isolated points, then the number of real maximal ideals
is at least the number of isolated points, since every iso-

lated point 1is contained in every member of S .

Definitions A ring (or algebra) is said to be

totally unreal if it does not have any real ideal,

The necessary condition in the following proposi-

tion has been conjectured by Professor Banaschewski.

Proposition 5: Let each member D of O be real-

compact; then the ring Qggx) is totally unreal if and only
Af ND=g (D€S).

Proofs Sufficiency: It is evident, since if ND # &

(D€ © ), then by Corollary 2 to Proposition 2, there is a

real maximal ideal.

Necessity: Suppose there were a real maximal ideal;
then there 1s a unitary ring homomorphism ¢ from Q»(X)
onto the reals R. Let D be a member of & . Then the map-
ping ? o Jp 1s again a homomorphism from C(D) onto R since
the mapping r ~wy ¢oO JD(r) 18 & nonzero homomorphism from
R into B and hence is the ldentity mapping. Since each D
is realcompact, to the homomorphism ¢ o Jp» there corres-

ponds a point x, of D such that ¢ o Jp(f) = f(xo) for all
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f € C(D). Now we claim that each member of & contains

thé point x,. Let E be a member of & ; then there exist

a member D' in R such that D' € D N E; hence jp(f) =
Jpr(£ID') for all f ¢ C(D). Similarly, the mwapping @ o JIps
is a homomorphism from C(D') onto B, and since D' is real-
compact, there corresponds a point y, of D' such that (

@0 Jpr)(f') = f*'(y,) for all f* € C(D')s In particular
(®o0 Jp)(fID*) = f(y,) for all £ € C(D). Since (¢ o Jpr)
(£fID*) = (¢ 0o Jp)(f) for all f ¢ C(D), it follows that
f(xg) = f(yo) for all f ¢ C(D), and since D 18 a completely
regular space we have x5 = yo. Thus x5 &€ D' and hence x,€ E.
One concludes that x, é(\D (D €2 ) which is a contradic-

tion to the hypothesis; this completes the proof.

Remark: If X is realcompact, and each point of X

is a Gy, then every subspace of X is realcompactl 12 ] ,
Now we have the following:

Corollary 1s Let X be a separable realcompact

space without isolated points such that every closed subset
is a Gg=-set; then the maximal ring of quotlents of C(X) 1is

totally unreal.
Proof: Let A be a countable dense subset of X

such that A = (_J {ayl, where the index set I ={1,2, ... }.
iel
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For each 1 ¢ I, let Ji be a countable index set; then

{al} = Jc:} vi,J where Vj 4 1is an open set containing a,
i

for each j. Then A = k_} ( N\ vy J) = /ﬁ\ ( UJ v, (1))
el JeJi ' Ped Lel ' ¢
|
Where @ is the set of all functions ¢ with domain I such
that ?(1) € Jy for each 1 € I; hence A itself is an inter-
section of dense open sets. On the other hand, the set X-
{air @20 «oov anl , 84 €A (1 =1,..., n) is a dense open
P7e) o0
subset of X. Hence (" \ (X - {aj, ..., a3} ) = C( U {al,
1 =1 1 =1
crey ai&>= X - Ay thus X - A is an intersection of dense
open sets. Consequently, the intersection of all dense open
subsets of X is empty, and alsc by above remark every sub-

space 1s realcompact. Hence the maximal ring of quotients

of C(X) is totally unreal.

Corollary 2: For a separable metric space X

without isolated points, the maximal ring of quotients

of C(X) is totally unreal.

Proof: A separable metric space 1s realcompact,
and every closed set 1s a G;-set, hence every dense open

subset 1s realcompact; thus the proof is evident.

Remarks Every maximal ideal in QS(X) is real

if and only if each member of o 1is pseudocompact.
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Proof:s For a member D of & , an element f & C(D)
and a maximal ideal M in Qgﬁx) we have the followings
For some natural number n; | jp(f) + M| = |ip(f) | + ¥ <
nelom 1Ff [Ip()l = Jp(If1) < nelg Aff If|l < n where 1g/y
and 1g are units in Qe(X)/M and Q4(X) respectively. Hence

the assertion holds.

Example: The following i1llustrates an example of
a ring of quotients of C(X), in which every maximal ideal
is real. Let < be the first uncountable ordinal. Let
zZ =W =foloo¢uwy §,and Y=2& ... ©2Z, t.e. the
free join of finitely many Z; then clearly Y is locally
compact and pseudocompact, and |BY - Y| >1. Let X be
the one-point compactification of Y, and O =i:Y§. Then
Q4(X) 1s a ring of quotients of C(X) in which every maximal
ideal 1s real.
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Sectlon 3+ Residue class fields.

For a maximal ideal M in Q(X), let M' be the
preimage of M under the natural homomorphism v ; then
M is a maximal i1deal in Cg(X) containing Z (X). Denote
Z(M*) = {Z(f) \f € M'}. Then one checks that for any
f € Cy(X), fe M' A and only if Z(f) ¢ Z(M').

Let f ¢ cﬁ(x) with £ > 0, and let r be any positive
real number. The function fT, defined by

fT(x) = (£(x))T

is an element of qﬁ(x). Hence 1t is possible to define
exponentiation in the ring QS(X) bys For any r > 0 and
u 7 0 in Q. (X) define uf = Y rT) where u = y(f), f is non-
negative; then u¥ depends only upon u and r, not upon the
particular representative f: For if u = ¥(f) =y(g), then
f = g on some D in & if and only if fT = gT on this D.

Furthermore for any r >>0, and a > 0 in Q4(X)/¥,
where M 1s a maximal 1deal in Qg(X), a = M(u) = u + N,
u € QS(X). define ar, by ar = M(uT); then also aTl depends
only upon a and r, not upon the particular representative u,

Since if a = M(u) = M(v), then u - v € M, then
f - g & M where £, g and M' are preimagesof u, v and M
respectively. Note that Z(f - g) = Z(r¥ - gT), and since
Z(f - g) € Z(M*') hence Z(fT - gT) ¢ Z(M'); thus fT - gI € M',
Consequently Y(fT - gT) = V(fT) - V(gT) = u¥ - vT € M,

hence af = M(uf) = M(vT).
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Clearly the following are valids For any a >0
in Qu(X)/M,a¥ as = a¥¥8; (aT)® = aTS; if a < b, then
a¥ ¢ bT; and if a 1s infinitely large, then so is aT
(r > 0). Hence, in a completely analogous way to[}z,.glj.z]

one obtains the corresponding results, that is:

Proposition 631 The transcendence degree over the

reals R of a non Archimedean field QSKX)/M is at least ¢.

Definition: An ordered field K is ssid to be real-

closed if every positive element is a square and every poly-
nomial over K in one indeterminate of odd degree nas a zero
in K.

From the definition of exponentiation, for any maxi-
mal ideal M, every positive element of Qggx)/M is a square;
for if a > 0 in Q(X)/M',then a = M(u), u> 0 and u = v,

v € QN(X); hence a = M(u) = M(v)% = b2, b € QX)) /M.

Now for any odd number n, let S + ulsn'1 + e + Uy
be a polynomial over Q (X) with one indeterminate S. Put
a(s) = s + ;8% + [, + 1., where £3(1 =1, ..., n)
are representatives of u,(i =1, ..., n), and each f, 1is

continuous on some D ¢S . Define a mapping f + X —>RD

by
£(x) = (£f1(x), «.., fp(x)),

then clearly f 1s continuous on the D. Note that for each
p01nt a = (a1, L Y an) é Hn, let pl(a). * e ey pn(a) denote

the real parts of the (complex) roots of the polynomial
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Pa(S) = s% + alsn"l + ... * apytaken such that py(al)<
<

po(a)s ... <p,(a); then the functions py(i =1, ...,

fa

)t B?——> B are continuous [ 127,
Define a function g4 ¢+ X —— R, by g4 = py o f,

then gi(i = 1, ..., nN! i8 continucus on the same D, and
clearly for each x ¢ X, gi(x)(l =1, «v., n) are the real
parts of the roots ¢f the polynomial Pf(x)(S) = 3N 4 fl(x)Sn'1
+ ..+ fo(x).

On the other hand, since the fleld of reals is real~
closed, the polynomial Pf(x)(s) has at least one real zero.

Hence for each x € X, there corresponds at least one
index 1 (1< i € n) such that g4(x) is a zero of Pf(x){s>3

it.e, for easch x € X;

it

Pr(x)(81(x)) = (2 + £8770 + o0 + 1) (%)

H

a(gy)(x) = O,

This implies that q(g¢) ... a{g,) =0 in CslX), hence
v(a(gy)) .. P(algy)) =0 in Qu(X). Since M is a prime
ideal, hence there exists an index 1 (1< 1 € n) such that
“lalgy)) € M, 1.e. v(algy)) = V(g™ + vir ) V(g )"t

cee +9(0f) = v 4w vl 4 L0+ wy,, where v =V (g,),

belongs to M. Thus one has the following.

Proposition 7: For any maximal ideal M in Qﬁﬁx).

the field Qg(X)/M is real-closed.
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Section 4: m-topology.

Let A be a commutative F-ring with unit e.
For a positive invertible element u in A; define a set
wu by

W, =% 8 | ist cul,

Let & denote the family of all W,;. We show that & is
a filter base on A. Take Wu, Wy in f}, where u, v are
positive invertible in A. Since A is F-ring, we have
(u A v){u-lv v“i) = uw(u~lv vi) A w(u-lv v"l) =
(e v uv"l) A (vu-1V e) > e; on the other hand (u A v)e
(u=lv v71) = (uA viurlv (unA ¥)vl = (e Avul) V
(uv=iA e) e, tve. (uA vi(uiv v1) =e, Thusuanv

is positive invertible, and clearly W LWy N Wy

uA v
Now if A is divisible as an additive group, then

one shows that (1)i o € W for all Wedr ; (2)s For any

WEdr , there exists V €b such that V + VC W; (3)s

W =-W for each WE€ob . (1) and (3) are trivial. For (2),

let W = Wy, Since A is divisible additive group, there is

a u€ A such that 2u = v, and u~! exists, namely u-! = 2v-1,

Then clearly W, + Wy ¢ Wy. Hence we have the following:

If A is a commutative F-ring with unit e and divi-

sible as an additive group, then there 1s a unlque topology

on A, compatible with the zroup structure of A, for which

the family {W, +sls ¢ A, Wy €45 1is a basis for the




58

topology. The resulting topology will be called the

m-topoicEy .

Moreover, if A is convex, i.e. all x{( > e) are
invertible, and the multiplicative group of all positive
Invertible elements of A is divisible, then one has that
(4)s For each Weds , there exists V ¢ such that
Vv < W; (8)s For each a¢ A, WedH , there exists V €6
with aV, Va ¢ W, For (#4), let W = Wv; then there exists
u, positive invertible, such that uw? = v, Put V = Wys then
clearly VWC W. For (5), let W = Wy u = (e v ka\)'lvg

end put V = W;; then aV ¢ W. Thus we have the following:

Proposition 8is 1If a commutative F-ring 4 with

unit is dlvisibie as an additive group and cornivex, and
the multiplicative group of alli positive invertible ele-
ments of A is divisible, then the m-topology on A is com-

patible with the ring structure.

Corollary 1: In addition to the proposition, if

A is Archimedean, then the m-topology is Hausdorff.

Proofs For each positive integer i, there exists
a positive invertible element uqy such that iuy = e, Let
a € (MWuy. Then |al uy, 1.e. 1lal € tuy = e. This
implies that kjal € e for all kK = + 1, + 2, ..., o

Thus (al = 0, hence a = 0. Q«E.Ds
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Corollary 2¢ Under the same condition as in

Coroliary 1, the zero ideal of the ring A is m-closed.

Proof: Let a € I (o), where Iy denotes the
closure operator with respect to the m-topology; then
every neighborhood Wy + a of a contains the o; in
particular wui + a contains the o, where u; is defined
as in Corollary l; i.e. =-a € Wu1 for all positive inte-
ger 1, hence |-al = |a| < uy; as Corollary 1, we have

a = Oo QIE.D.

It has been mentioned that the ring Qy(X), for
a filter base of dense subsets of X, is a commutative
F-ring. Clearly it is convex and divisible as an addi-
tive group. Also the multiplicative group of all positive
invertible elements of Q3(X) is divisible. Thus we have

the following proposition.

Proposition 931 The m-topology on Qé§x). for any

S, is compatible with its ring structure.

Proposition 10: The ring Q95x) endowed with the

m-topology is Q-ring, 1.e. the set of all invertible

elements is m-open,

Proofs Let 8 be an invertible element; then

ls|] > 0. If t ¢ W o+ s, then |t - 5| < Isl/2.
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Let s =Y(f), t =V(h); then |h - £\ € \f!/2; thus h is
invertible in C{(D) for some D €3 ., Hence t is inver-
tible. Q.E.D.

Corollary 1: Every maximal ideal in Qg(X) 1is

m-closed,

Corollary 2: Every ideal in the maximal ring

of quotients of C(X) is m-closed.

Proposition 11ls If X has dense cozerc sets

D # X, then, for any /5 containing such D, the natural

mapping ¥ s C(X) —> Q4(X) 1s not m-continuous.

Proofs Take h € C(X) with Coz(h) =D € S and
h(x) > 0 for alli x € D. Let p =v(h) and suppose v‘l(wp)
= recx)| Wnig p! 1s an m-neighborhood of 0 in
C(X), i.e. there exists a positive invertible ¢ ¢ C(X)
such that {g| € g impiies {y(g)! £ p. In particular,
V(q) £ p and hence q|E £ h|E for some E €5 , E ¢ D.
Thus, by continuity, @ < h and hence gq(x) = 0 for all
X ¢'D which contradicts the existence of q‘l. Hence Y

is net m-continuous, Q.E.D.,

Remarks As a simple example, consider an ordered
field K. Evidently K satisfies all those conditions in
Proposition 8; thus the m~topology defined on K is compa-

tible with the ring structure of K.



CHAPTER III

Systems of Algebras and Their Limits.

Section 1: Injective and Projective Systems.

Let (By, ‘?d{; ) o0l be an injective system of
B-algebras with unit and unitary algebra homomorphisms.
Then, the injective limit B, as a ring, can be made
into an R-algebra by defining X@(x) = ¢, (rx) (x € By)
where (%) is the family of limit homomorphisms; this
is then the injective limit in the category of all R~
algebras with unit and unitary algebra homomorphisms.

Moreover, if each By 1s a normed algebra with
norm { iy , and the 4&9 are all norm-preserving em-
beddings, then one sees that the injective limit B can
be made into a normed algebra, the norm .l defined
in the following way: If u € B with u = %éﬁg) for some
X€ I, define t uw = U fy il . Then definition of hull
1s independent from the choice of the representation
?(fx). To see this, let u = F,(fy) = Q@(f@), £, € By,
f(b ¢ Bg. Then there exists 12 » § such that G008y (L)

= ¢ o ‘%\,{ (fa). Since @( A€I) is one to one, hence

61
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Il = Wele)lly = W gl = lgglg .
Clearly | uil =0 iff u =03 fuvh = |f g0l <
LN Uy ellgyl = tulle vty lu+tvil L lub+{vis
and (I ull =it} el ull . B as a normed algebra is then

the injective limit of the injective system (B,, fﬂs) in
the category of all normed algebras (over the reals) with

unit and norm-decreasing unitary algebra homomorphisms.

In what follows we shall discuss specific injec~
tive systems (By, %% ) in which all Bx are normed algebras
over the reals with unit and the <Q@ are norm-prgserving

embeddings; B will be the injective limit,

Definition: 4&n up-directed set 1 ig callied o -

directed, if for any countably meny i, %, «.., in I

there exists « € I such that « Z & for all 1.

Propcsition 13 If I is & -directed and all By

are compiete, then B is complete.

Proof:s Each Bymay be assumed to be a normed
unitary subalgebra of B. Let (fp) iz a Cauchy sequence
of B with f, € By, for suitable ;. Then there exists
X € I such that « z,wi for all i, and hence (f,) in B,.
Hence one has { = 1idefn &nd since B, is a normed sub-

algebra, f = limenA.
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Proposition 25 If I' 2 I and the injective
system on 1 18 the restriction of one on I', then
there exists a natural homomorphism from B into B'

which is embedding.

Proofs Let (B'wso o @ 4o @p) and (B, CP’((_,,) be the
injective systems over I' and I respectively. Since the
faéily of restrictions ?l 8 Bu—> B of 1limit homo-
morphism ¢°_,, is compatible, there exists a unitary homo-
morphism ¢ s B —> B' such that ¢° = ¢ o P4 for each

A € I, and clearly ¢ 1is one to one.

Now we discuss an injective system (3., ?a@) with
injective limit B and limit homomorphisms (¢,) satisfying
the following condition:

S*Zs Bach By 18 a ring with the property that each

prime ideal is contained in a unigue maximal

ideal and, foro S @ , if Py C Bx and Fg < Bg
are prime ideals such that BB )< %lPa),
then M) S @(Ms) for the maximal

ideals My 2 Py and Mg 2 B .

We shall provide an example of an injective sys-

tem which satisfies the condition (¥*) in Section 2,

Lemma 33 Let (B, QQQ) be satisfying the condi-

tion (*) and M be a maximal ideal in B. For eachd, let
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My be the maximal ideal in By containing q;l(m); then
U gin) = .

Proofs Since QQ is monomorphism, we may put
Mo = 9(Mx). Let M' = 32{M«; then clearly M'> M and
is proper subset of B. From the condition (*), for any
My, Mg there exists 7 > «,( such that My 2 My, Ma.
This imp.ies that for any u, v in M' there exists 71 such
that u, v€ My, and for any u € B and v € M' there exists
Y such that u € By and v€ My, Hence M' is an ideal; 1i.e.
M* = M.

Corollary:s Let (By, ¢k@) be a system satisfying
the condition (%) and such that all maximal ideals in Bu,

for eachd , are real; then the same holds for B.

Proofs Since M = &iIMa.lRed + M, = By implies
‘.Be + M = B, Q.EQD'

We have another approach to obtain this result
as we shall see, In fact the following arguments will

give something more.

Lemma 4: Let (My) 4. 1 be a system of maximal
ideals such that each M, C B, and, for d<p , M) <
CPES(M(S)' If, for each« , My = ker €,, where 6, :+ B,—> R

is a unitary algebra homomorphism, then the family (9‘,()0“I

is compatible with respect to the system (B, ¢Qe).
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Proof: < (M,) C @G(M@) implies 4’(50 @d(b(ker 6,4) C
Fo(ker & ); whence (&g o ?&e)(ker €,) =0: l.e. ker 6, =
ker (ee o<@9)s Let this be denoted by N. But there is
at most one isomorphism from Bi/N onto IR, and therefore

eo( = g@ (e} @D(P ° QoEtDo

Proposition 5:+ Let (B, ?g@) be a system satis-

fying condition (¥*). If all maximal ideals in B«, for
each® , are the kernels of unitary algebra homomorphism
into R with norm < 1, then the same holds fcr its injec-

tive 1limit B.

Proofs Let M be a maximal ideal in B, and let
My D ¢-1(M) be the maximal ideal in By. From (*), we
have q;(Md) ¢ Q@(MG), for each <@ . Let M, = ker O
where ©, s B,—> B is a unitary algebra homomorphism.

By Lemma the family (6x) is compatible with respect

ode I
to the system (B, Qy@ ). Hence there exists a unique
unitary algebra homomorphism®: B —> R such that @ o ¢ =
Os for each o . Now, for eachX , ¢~1(M) ( ker 6, =
ker(Qo%). For any ué€ M, and let u = ¥¢,(fy); then

f, € G5 thus® (u) = P R(f)) = 01 t.e. (M) = O,
Hence M ¢ ker® ; i.e. M = ker® . Finally, for esch

u € B, |9(u)) = [(Fo)(fu)] = |04(fy)] < Nrlig =
WulW 1f lexll € 1. 1.e. NRUs1,
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Notation: A (A) denotes the space (endowed with
the weak topology determined by the Gelfand representa-
tion of A) of all continuous unitary algebra homomorphisms

of A into &,

Proposition 6:+ Let all B,be complete. Then,

if for all By the norm 1s the spectral norm, the same

holds for B.

Proof: It has to be shown that nui g " L
where u = 9,(fy). Since each By is complete normed sub-
algebra of B and symetric, any algebra homomorphism G4
Bq > R can be extended to an algebra homcmorphism Ed :

e — land
B —> IR, where B is the norm completion of B, Let Oy =

— i /\ , \—

0,0 B, Then Ik uli = W fuliy, = gdu&(Bd)lf,ue.() =

sup \ e ()l = sup { 5;(u)‘6' sup ?6(u)i =
Ba € A(Ba ) Bt € &(By) g <a(B)

\lunm.

The dual system of (B,, ?Q@) can be discussed
as followss

For any o(-é(& , define a mapping @:@ 8A(B€‘) —>
A (By) by ‘P?i(b (8) (fy) = 99( 45,,(9(1:,()) and ¢* i+ A(B) —>
A (By) by @*(@)(fu) = 0( Puplfu)) for each f € B,.
Then it 1s not hard to show that<ﬁ@ and ¢¥ , thus

defined, are continuous. Now we have the following pro-

position.
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Proposition 7: The correspondence B, ~» A(B,)

(B ~»a4(B)), ?o((»rws ?d*(s ( ®u > ¢*) 1s a contravariant
functor from the category of all normed rings with unit
and continuous homomorphisms to the category of all com-

pletely regular Hausdorff spaces and continuous mappings.

As a result one has that the dual system (4(By),

‘P;@ ) is a projective system. Now we see that A(B) is the

projective limit, with respect to ¢*, of the dual system;

i.e. for any continuous mapping Fx ¢ X—>A(By), X & com-

pletely regular To-~space, with F, o F(A for each

= ?‘;Z*
LB there exists a unique continuous mapping F I X —
—> O(B) such that ¢® o F = F, for each o . The uni-
queness of F, if 1t exists, 1s clear.

For each « , define F% 1 B,—> C#*(X) by E¥(fy) =
?d o] Fo, , then clearly EF is an algebra homomorphism.
Since Fyu(x)(f,) = ?A(Fd(x)) = (?‘o( o Fal)(x) = 6}:(?0( o E )
= 0 (Fi(fx)) = FE*(0,) () = F%¥(x)(fa) where 8y 1 C*(X)
—> R with 6,(f) = f(x), x ¢ X end x ~> 0, T ~» /f\‘,
f € C*(X), are 1 - 1; hence F&¥(X = Fy. Also |l F#(fa)lly

PaN
=l f4 o Fy “X = sup

. A \<. N
oy | (a0 RO gupyy LT

< full,» fx € By, and hence F¥ is norm-decreasing.
Now we show the family (E¥) ¢ 18 compatible with
respect to the system (B, ?d@ ). For <%, F‘;(‘fo{@(f«))(x)

N
= ( plfa) o Fe)(x) = Fo(x)(Fyplfa)) = (Q;E; o F\}’)(x)(fq)
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= Fy(x)(fy) =/\fd(Fd(x)) = FR(f)(x)s t.e. FE o @4, = FX.
Hence there exists a unique algebra homomorphism F¥* : B
—> C*(X) such that F* = F* o ¢, for each £ . Thus by
the proposition there exists a continuous mapping F : X
—> A(B) such that ¥ o F = F, for each« , nemely F =
F**lx, where F¥ y B —>C¥%(X) 1is the algebra homomorphism
defined by F¥(f) =‘? o F.

Proposition 8: If all Bu are complete, then the

-
set 0 of all invertible elements in lig’ By is open, and

hence every maximal i1deal in 1im_ B, 18 closed.

Proof:s First we show that for every element
fe 133' By for which e - fit < 1 has an inverse ele-
ment g. If e - f A < 1, then there exists £« € I such
that Wey - £, |y < 1 where f = ¢,(f,), f, ¢ By. But
By is complete, hence f has an inverse g, in B,; and

e

"

fog = ¢(f,)- 2le,). Now let Uyle) ={& ¢ lim Be |
le - gl<« 1}, a neighborhood of unit. Take an element

£ € 0, then f-f-1 = e; and then by the continuity of
multiplication, there exists a neighborhood U(f) of f
such that U(f).f~1 C U,(e). Hence, for arbitrary ele-
ment h € U(f), hr=1 ¢ Ug(e); t.e. NI e - ke~ |t ¢ 1

thus hf~! has an inverse element (hf=1)-1:; n.r-1l.(nr-1)-1
= e; l.e. h is invertible, hence h € 0. i.e. U(f) £ 01
Q+«E.Ds



69

Section 2: The ring Q%(X).

ifor each member D €, , the subset C§(X) of Cp(X),
consisting of all bounded functions in CD(X), is also
closed under the algebraic and order operations discussed
in the previous chapters. Therefore cg;x) = U CB(X)(D € )
1s & subring and sublattice of Cg(X). Thus %;(X) =
Cﬁéx)(ﬂ q&(x) is an ideal in the ring qggx). We put
Qﬁéx) = C%(X)/2%(X), and then one sees that the natural
mapping v* s+ CJ(X) —> Q%(X) determines, for each D €D ,
an embedding Jjf : C*(D) ——;-ng(x) such that y*(f) = j%(fiD)
for each f ¢ CB(X) end, for DC E, J§(fiD) = jﬁ(f) for all
f € C¥(E), For DC E, we dencte the restriction homomor-
phism f ~w» £ID 1 C*¥(E) —> C¥(D) by?*ﬁD. Each C*{(D), D €&

is a normed ring with the sup norm {f]Jl = sBup Le(x,
x €D

f € ¢C*¥(D), and also qg(x) becomes & normed ring with norm
defined in the manner described in Section 1. We have the

following:

Proposition 9:+ The ring Q:;x) is the injective
limit of the injective system (C*(D),fﬁD) in the category
of all normed rings with unit and norm-decreasing unitary

homomorphisms.

The following shows the direct proof of semi-
simplicity of the ring QESX).
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Proposition 103 The injective limit QZﬁX) is

semi-gimple for any filter base ~» of dense subsets of X.

Proof: Suppose the radical of ngx) is not 0,
then there is an element u # 0 in Q:ix) such that 1 - ux
is invertible in QZAX) for all x € ngx); e 1 = usJH(f)
is invertible for all f € C¥(D) and all D €3 . Let u =
J%(g). g #0 in C*(E). Then, in particular, 1 - J%(g).
J%(f) = j%(l - gf) 1is invertible for all f € C¥(E), This
would mean that 1 - gf|D' is invertible in C*(D') for
some D* ¢ E, D' €, 9 and for all f € C*(E); i.e., for each
f, |1 - gfi'D"2~r for some r> 0. But E is completely
regular and D' 1s dense in E, Hence 1 - gf 2> r on E.
Thus 1 - gf is invertible in C¥(E) for all f € C*(E),

This 1is a contradiction.

Proposition 11: The injective system (C*(D))Défi
with the restriction homomorphisms satisfies the condi-

tion (*).

Proof: For D ¢ E, we may assume that C*(E) is a
subring of C#(D)., Let P < C*(E) and P' C C*(D) be prime
ideals such that P< P', and M 2 P and M' 2 F' be the
maximal ideals. Since C¥(D)/M' = |R; for each f € C¥*(E)
we have f + M' = r for some r ¢ B; 1.es f - T € M* N

C*#(E)., Thus C*¥(E)/C*(E) N M* =1R, Hence C*(E) W M' 1is
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a maximal ideal in C*(E) containing P. Consequently

M <M, Q.E.D.

We now apply the discussion in the previous sec-
tion to the normed algebra Q%JX) in order to show how
various results in [ 8 ] are consequences of these general

results concerning injective limits of normed algebras.

1. Proposition 1 implies that Q§$X) is a Babach
algebra if S is o-filter base (1.e. closed under count-
able intersections)([8, Lemma h.5].

2. Proposition 5 impllies that every maximal idesl
is real{:S, Lemma 5;1] and closed.

3. Proposition 6 implies the norm is the spectral
norm [ 8, Theorem 5.2].

4, Finally we have £1(Q3(X)) = %%g_@D [8, Theorem
6.8]. This follows from Proposition 7 and the fact that
Qeex(x)) = M(an(x)) = A(Qy(x)) = 1an (C*(D)), A(C*(D))

~

m(C*(D)) % gD, where Q(.) and M(+) denote the maximal
1deal spaces with the Stone and the weak topology respec-

tively.

Definition:t An element z of a normed ring A is

called topological zero-divisor if there exists a sequ-

ence {zn} in A such that 12f \lzn|l> 0 and ﬁ;gw szn“ = 0,
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Bemark: As is well known, a zero-divisor is a
topologlical zero-divisor and topological zero-divisors

cannot be invertible,

Notation: For an element f &€ A, we denote by
SpA(f) the set of all real numbers r such that (f - re)~1

does not exist in A,

Lemma 12: If all By have the property that each
non-invertible element is a topological zero divisor then

the same holds for 1lim By,
—>

Lemma 13: Any non-invertible element in C¥(D)

is a topological zero divisor.

Proof: Let f be a non-invertible element in C¥*(D);
then there exists a maximal ideal M, in C*(D) containing f,
and hence containing £2, Thus the minimal element of
Spc*(fz) is 0. Let r, be a sequence of negative real
numbers converging to 0. Then (f2 - rne) is invertible.,
Put z, = (£2 - rpe) 1/0(£? - rpe)=l|| . Clearly Nz i =
1 and gé(Mo) = 0, hence

N (£2 - rne);3||‘

1 £2 - -1 -1
3 on) T Ty Il e

as n -»o0q, where MM(C*) igs the maximal ideal space of

C*¥, Hence we have (f - rne)zn-———> fz,—> 0



as n —>» o . Thus fz, —> 0 as n —— 00,

Q- Ec D.

Proposition 14: For any S , an element in

Qggx) is a topological zero-divisor iff it is non-
invertible.
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Section 33 Maximal ideal spaces and projective covers.

In [ 3]and [13], the existence of projective
covers in the category of compact Hausdorff spaces and
continuous mappings has been established. The spaces
were made up of filters in certain topologlcally defined
lattices; in other words, for a compact Hausdorff space E,
let R(E) be the collection of its regular open subsets,
and [](E) be the space of maximal filters L ¢ R(E) whose
topology is generated by the sets TWV(E) ={1ﬁ_l Vew ,ULe
fW(E)B for each V € R(E). Then [1(E) is an extremally
disconnected compact Hausdorff space. Denote by limE the
mapping [ |(E) —> E which assigns to each UL € [ {(E) its
limit. ‘Then 11mE is a projection, closed, continuous and
essential mapping (i.e. limp maps no proper closed subset
of [(E) onto E).

In the following, A° denotes the set of all idem-

potents of A, and we prove:

Lemma 193 If A is a commutative regular ring with
unit, then XA) = {)(ac).

Proofs Define a mapping QA) — (N A°) by
M~>M M A°, We show the mapping is one to one. Let

MNA% = M* N A for any M, M*'¢ ()(A)., Take any a ¢ M.,

2

Suppose a ¢ M'; then there exists x ¢ A such that a“x = aj
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j.e., a(l - ax) ¢ M'. Hence 1 - ax € M'., Since 1 - ax
1s an idempotent, 1 - ax ¢ M' N\ A°, and hence 1 - ax ¢

M N A°, This implies that M > 1, a contradiction.

Hence a € M'; i.e. M = M'. To show the mapping is onto,
let N ¢ ((a°). Put M = AN =§ ae |a € A, e € N}. Then
M is a proper subset, since if 1 € M, then 1 = ae for
gome a €¢ Aand e ¢ N, and hence 1 - e = 1+(1 -~ e) =

ae(l - e) =0; i.e. e =1¢€¢ N, a contradiction., We show
M is an ideal in A. Clearly AM C M. Now take any ajej,
ases in M. Put e = ejH epfejep where @ is defined as
fog = (f - g)z. Then clearly e ¢ N and e,e = ey, eze =
es. Thus aje; * ajze, = (ajeq % azez)e € M. Hence M is

a proper ideal in A. To show that M 1s a maximal idsal,

take any a € A and let a & M. There exists x € A such that

a?

x = a, hence ax & M, and hence ax ¢ N. Since ax ¢ A and
N is a maximal ideal in the Boolean ring A°, 1 - ax € N.
Thus 1 - ax € M, This means that M is maximal. Since

N is a maximal ideal in A° and M D> N, M N A® = N, Thus

the mapping is onto. For each e ¢ A9, put Q°0(e) =

i Née QA°) | N ? e}, then (°(e) is a basic open set

of }(A°). Note that for any a ¢ A, there exists x ¢ A
such that ax ¢ A°. By straightforward checking one shows
that )(a) | A° = 1%(ax) for a ¢ A and ()e) | A° = N°(e)

for e ¢ A°. This shows that the mapping carries a basic

open set onto a basic open set and the inverse image of
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e basic open set 1s again a basic open set. Hence the

mapping M ~»M N AC i3 a homeomorphism. Q.E.D.

Note: For a subset U of a space E, let
U'L =dfCEIEU’ Then it 1s easy to see that a set V is
1
regular open set of E iff V = U for some open set U of

: 1
E. Also it follows that V is regular open iff V = V’L .

Let A be a semi-simple ring. For an ideal I in
A, we write I% = { ac€ A laI = 0 }. I is called an anni-
hilator ideal iff I = I*#%, The family of all annihilator
ideals of A will be denoted by J(A). For an ideal I of A
and a subset U of Q(A), we define the set (YI) and A(U)

as follows:

oD =§me aluwdbrl,
A(U) =N¥ (M € U),
Noting that [ ,\U = {M € Q(a)| M AU} one can easily
show the following identitiles:
(a) U = (Qod)(U), where (QoA)(U) =5¢ SU(2(0));
(b) I* = (AoQ)(I), where (AoQ)(I) =4, A(AI)).

The following lemma is due to [8 ].

Lemma 163 If A 1s semi-simple, then J(A) = BR({(A)),
and hence Q(A)° = R({ Q(A)).

Proofs Define mappings J(A) ——> R(SL(A)) by
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I ~~> (XI), and R{Q(A)) —> J(4) by V ~ A(V),
Since I = I** and by (a), (b), we have ((I) = Q(I*%) =
(0 40Q)(1%) = (Q0A)(Q(I%)) = QI*)", and for V =
U, A(V) = A(UY) = (40Q04)(U) = A(U)*; hence the map-
pings I ~~» SNI), V ~~> A(V) are well defined. Since
QUINJ) = QUD) o QI = QUI**) A Q(I**) and ) (1%%)
= ll(I*fL, the mapping I ~~ ((I) is a homomorphism. By
a stralghtforward checking one shows that Slo(4 oL cb)
= 14 on R(Q{A)) and (L0oSlod)ofl = i, on J(A). For the
last assertion, it is well known in{20 , pp 44 ] that J(A)
= OJ(Q(A) = Q(a)°. Q. E. D,

Propogiticn 17¢ If A is & commutative semi-simple

ring with unit and L A) is Hausdorff, then ) Q(A)) is the

projective cover of {YA4).

Proof: Since Q(A) 1s regular, we have ()(Q(A)) =
Q(Q(A)°), and since A is semi-gimple, Q(A)O = R(u(A)).
Let [j= [(QU(4))s i.e. the space of maximal filters
YL R(Q(A)). Then clearly LU{(R{ Q(A)) [} under the
mapping M ~~» M? =§: P|P* € M, P' is the complement of P}.
Since Ll(A) is compact Hausdorff, 1imgqa) 1l —— (Na)

is the projective cover. Q.E.D.

Corollary 1: Let .S: be such that Qg(X) 1is the

maximal ring of quotients of C(X). Then the maximal ideal
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space of Qg(X) is the projective cover of IQX.

Corcllary 23 Under the same condition as Corol-

lary 1, 1im (PD) is the projective cover of ﬁx.
Des

In the preceding paragraph we have obtained
algebralcally the result that the maximal ideal space
of Qq{X) is the projective cover of BX if Qagx) is the
maximal ring of quotients of C{(X). Now we are interested
in finding an analogous result in a more topological man-

ner.

To proceed with this, let E be a compact Hausdorff
space, O(E) be its topology and NA(E)} be the space of maxi-
mal filters VYl L O(E) whose topology is generated by the
sets AL(E) z%m) weul , x € /\(E)}for each W ¢ O(E).
Then N(E) is an extremally disconnected compact Hausdorff
space, and the mapping limg s N(E) —> B is compact,

closed, essential and continuous projection[ 37.

Now let X and Y be topological spaces such that
X is dense in Y. If UL ¢ 0{Y) is a maximal filter in O(Y),
then Qﬂﬁx C 0(X) is a maximal filter in O(X) as can be
seen as follows: Clearly vmlx is a proper filter on X
since X is dense in Y. Let W D WX be a filter, Y O(X).

Take any member U of Vil , then U NV # g for all V€ ’ULIXG



79

Let U=U'NXand V= V' X where Ul ¢ 0(Y) and Ve W,
Then Ul N\ V' # § for all V'€ UL . Since AR is maximal,
Ul€ M . Hence U ¢ WM|X; 1.es 9NT=U|X. Moreover if
UL # W,y W V! <O(Y) then QX £ ¢ | X3 because if
W # N, then there exists U° & UL and VO € ) such
that U9 N\ VO = ¢&; thus (U°N X) N (VO N X) = g. This
means that VL{X # U¢|X. Now we show that for any maxi-
mal filter VWU ¢ O(X) there exists a maximal filterPr ¢ 0(Y)
such that QUX =nT. To end this, we define AL, by

U= § U € o(Y) | U A X eTy,
We show that Uly is a maximal filter on Y: Clearly
g & Yy and 0 N V' € Vi whenever U, V' € ‘Utm . Let
Us € UG and U ¢ W', W<€ O(Y). Then W* = U' U W', and
hence W'\ X = (U'n X) U(W'N X); thus U " X € W' X,
But W' X ¢ 0(X), and hence W' X ¢77, Therefore
W' € Uy . To show the meximality of Wy, , let § 2 Vyr
be a filter in 0(Y). Take any member U'€ § ; then
U N\ V* £ for all V' € VU4,, Hence (U' N\ X) n (V' N X)
# § for all V' € ULy ; in particular, (U' N X) AV £ ¢
for all VETV ; the maximality of ™ implies that U'n XeMm;
t.e. U'€ Uy, . Consequently, § = Ve ana U X =71,
Finally we show that, for any W € 0(YJ}, /\W(Y)ﬁx =
Ny A x(®, wnere Agnix = fwlx [weh1)}. creardy
/\W(Y)ixc Aw A X{X). Now take any UL € /\w N x(X), then
Ul is clearly contained in /\W(Y). end Wy |X =72 .
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Thus A (DX = Ay, (0.
From this consideration we have the following

consequences

Lemma 18s Let X and Y be the topological spaces
such that X is a dense subspace of Ys then A{Y) = A(X),
given by the mapping I ~ "U(IX. L€ A(Y).

Lemma 193 For any X € A{X), if U¢VUl, then
-1

Proofs Take an arbitrary member W € WU, then
UAW # 5, and Ay(X) 1s an open neighborhood of .
Let a € UN W. Take a member YU in /\(X) which converges
to the point a. Then every member of V{ intersects with
W. Since YU is & maximal filter, Y contains W; i.e. I
is a member of /\W(X). On the other hand Y[ converges to
the point a of U, hence Y ¢ limé)ic(U). Thus we have A (X)N
limg:(U) # #. Q. E. D.

Lemma 203 Let ¢ 3 K —— (X be a projective cover
in the category of compact Hausdorff{ spaces and continuous
mappings. Then for each dense subset D of X, ?'I(D) is

dense in K.

Proofs Note that D is8 also dense in @X. Since K
is a compact space, FKq:"i(D) iz also a compact subset of

K. Since @ 1is onto, D = ®(¢"1(D)) C @ qu:"i(D)).
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Hence ( T"an?'l(D)) is dense in 8X. But ¢( Iy $1(D)) ts
compact, hence 1s closed in 3X; 1l.e. ¢( qur1(D)) = BX.
Since X 1s projective cover, rkqfl(D) can not be a proper

closed subset of K; l.e. [yxg (D) =K. Q. E.D.

Corollarys K = @ﬁd(D) for each dense subset
D of X.

Proof: It is well known [12, pp 96 ] that a compact
space K is extremally disconnected if and only if K = FBS

for every dense subspace S, Qe e D

Now take a member D of S\, then a function
f € C*(D) defines a continucus function f o® on ¢-1/D).
Since K = @q?l(D) the function f o9 has a unique con-
tinuous extension T to K. Let uy be the element in Q¥ (X)
with ue = y*(f) and £ € C*(D) for some D€ O , where
il cg;x>-———> Qgéx) is the natural mapping. Define a
napping Q§§X)-———> C(K) by up ~~y %¥. Clearly this map-
ping is well defined and the mapping is a norm preserving

monomorphism.

We have the following proposition for the pro-

Jective cover K of @X.

Proposition 21s: If S\ contains all disconnectéd

dense open subsets of X, then the maximal ideal space of

QESX) is homeomorphic to K.
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~

Proofs Since the mapping Up ~~» [ is a norm
preserving monomorphism of ggix) into C(K), it is enough
to show that the family of all t separates the point of
K. Take any a, b in XK with a #¥ b,

Since A(PX) = A(X) (¥ K), we may assume that
a, b are members of A(X), and hence ¢ = lime‘ Since
a # b, there exists open gsets U and V in ?X such that
UNV=@andUnXca, VaX €b, Then, by Lemma 19,
a € ¥ UAX) and b ¢ TxFHUVAX). Let
D=(UNXU (X EguC )
then clearly D€ S 3 and define a function f on D by
0 ifx¢ UnNnKX
f(x) =
1 ifx¢ Xn ipxepxU.
Then £ € C*(D)., Thus f 0% has an extension f on K, and
t(a) = 1im (f o%)(z) = O,
z-> &
z¢ (UM X)
T(b) = 1im (f o®)(z) = 1.
zZ->b 1
ze FHVAX)
Thus the family of ? separates the points of K. By the

Stone-Welerstrass theorem the proposition holds. Q.E.D.



CHAPTER IV

Change of Range and Regtricted

RBings of Functions.

Section 1. Complex-valued functilons.

We now replace the range space by the complex
number field €. In this section €(X) will denote the ring
of all complex-valued continuous functions defined on a
space X, and C(X,R) will denote the ring of all real—valued.
continuous functions on the space X, We shall attempt to
obtain the analogous results that we obtained in Chapter

I& 1T,

Proposgsition 13 Let U be a dense subset of X. Then

€(U) is a ring of quotients of ¢€(X) iff C(U,R) is a ring of
quotients of C(X,R).

Proof: Let €(U) be a ring of quotients of C(X).
Take f, g # 0 in C(U,R), then there exists h ¢ €(X)|U
such that fh ¢ C(X)|U and gh # 0, Let h = u + iv; then
fh = fu + 1fv € C(X)|U, and hence fu, fv € C(X,R)|U. Since
gh = gu + 1gv # 0, hence gu # 0 or gv # 0. This shows that
C(U,B) is a ring of quotients of C(X,R). Conversely,
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let f, g8 €¢C(U) withg#0and f =u + iv, g = s + 1it,
Without loss of generality we may assume s # 0. Then there
exists h € C(X,R)| U such that uh € C(X,R)|U and sh # 0;

and also there exists h' ¢ C(X,R)|U with vh' € C(X,R)|U

and shh' # 0. Then hh' ¢ C(X)|{U, fhh' € C(X)|U and ghh' # 0.

This completes the proof.

Let v be a filter base of dense subsets of X. In
the same way as described in the Chapter I, one obtains the
ring Qaﬁx) agssoclated with the ring €(X). The corresponding
ring for the ring C(X,R) will be denoted by QSSX.R). It 1is
easy to check that the ring ngx) 1s a ring of quotients of
€(X) if and only if, for each D€ 5, €(D) is a ring of

quotients of C(X). Hence we have the following:

Corollary: Qg(X) is a ring of quotients of C(X)
iff Qﬁéx,R) is a ring of quotients of C(X,R).

Remark: In a completely analogous way to the

Theorem 6, Chapter I, one shows that Af .S\ is the set of

all dense open subsets of X, then Qa(X) is the maximal ring

of quotients of €(X). The necessary and sufficient condition

for Qggx) to be a von Neumann regular ring is the following:
For each D€ Oy and £ ¢ C(D), the subset (E N Coz(f)) U
IECEgE(W Coz(f)) belongs to o for some EC D in o (cf.

Proposition 7, Chapter I).
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Let A be a commutative real algebra with unit,
and let A, denote the carteslan product A X A in which
algebraic operations are so defined that (a,b), a, b€ A,
behaves like a + ib., More precisely, define (a,b) + (c,d)
= (a+c¢, b+ 4d), (a,b)(c,d) = (ac - bd, ad + be) and
(o« + 1@)(a.b) = (da - B, db + @a). L1 & € R. Then it is
easy to verify that Ac is a complex algebra with unit (1,0).
A, 1s called the complexification of A[23]. Also it is not hard
to check that if I is an ideal in A then its complexification

Ic is an ideal in Ac.

Lemma 231 Let O, be a filter base of dense subsets

of X. Then Q$$X)‘§ Q(ssx,R)c as C-algebras.

Proofs Let f ¢ Q. (X). We may assume that f ¢ c(D)
for some D& G, . Then f = Re(f) + iIm(f) and Re(f), Im(f)
€ C(D,R)s and hence Re(f), Im(f) ¢ Qggx.a). Def'ine a map-
ping: Q&(X)w——> Q&(x.n)c by £ ~~ (Re(f),Imn(f)). Since
(Re(f + g), Im(f + g)) = (Re(f), Im(f)) + (Re(g), Im(g)),
(B(fg), In(fg)) = (Re(f).Re(g) - Im(f).Im(g), Re(r).Im(g)
+ Im(f).Re(g)) = (Re(f), Im(f))(Re(g), Im(g)) and (o« + 1p)-
(Re(f) + 1Im(f)) ~~ («,@)(Re(r), Im(f)) = (£ + 18)(Re(f),
Im(f)), the mapping is clearly a C-algebra homomorphism.
Clearly the mapping is one to one., To show the ontoness,
let (u,v) € Qﬁﬁx,R)C; then there exist f, g in C(D,R) for

gsome D€ QO such that u = f and v = g in Qﬁéx.R). Then
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f + ig € Qﬂﬁx) and clearly (u,v) is the image of f + ig

under the mapping. QeE«Ds

Proposition 31+ The maximal ring of quotients of

C(X) is isomorphic to the complexification of the maximal
ring of quotients of C(X,R).

Proofs Let 5 be the set of all dense open subsets
of X. Then, by Lemma 2, Q(C(X)) & Q§5x) &= Q&(X.R)c'ﬁ
Q(C(X,R)) 4.

Lemme 4: For a commutative real algebra A with
unit, and an ideal I in A, A./I, £ (A/I), as C-algebras

under the mapping (a,b) + Ic'a«ﬁ; (a + I, D+ 1),

Observations 'Foro(,é € R, (% 1(3)((a,b) + I.) =
(¢/y @)(a,b) + I, gives a C-module structure on As/Is; and
dla + I) =oda + I gives a BR-module structure on A/I and

hence L + I = o(+1,

Proofs Since (a,b) + I, + (c,d) + I, = (a + c,b + d)
+ I, A~y (a+ec+I, b+d+1I)=(a+1I,b+1I)+
(¢ + 1,d +I), ((a,b) + I,)((c,d) + I.) = (a,b)(c,d) + I, =
(ac - bd, ad + be) + Ig ~» ((a + I)(c + I) = (b + I){d + I),
(a + I)(da +I) +(b+I)e+1I)) =(a+1I,b+1I)(ec+1I,8+T1I)
and (4 + 1@)«((a,b) + I.) = (o(,\@)(a,b) $ T, = (X % T, 8% 1)
(a + I,0 + I) = &,08)(a+I, b+1I)=(4+ ig)(a + I, + I),

hence the mapping is a €-algebra homomorphism. Clearly the
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mapping is onto. If a, b € I, then (a,b) € I,; hence

the mapping is one to one, Q«E«D.

Definitiont An 1deal I in a complex algebra A is

called complex if A/I ¥ € (the field of complex numbers).

A complex algebra is said to be totally uncomplex if it

does not have any complex 1deal. A complex ideal 1is auto-

matically a maximal ideal.

Lemma 5: Let M' be a maximal ideal in Qg,(X,R)c .
Then there exists a maximal ideal M in QX£X.R) such that
M* = M,, and moreover 1f M' is a complex ideal, then M is

a real 1deal,

Proofs Define My = §{ f |(f,h) € M*, £,h € Q (X,R)
and My = { g[ (h*, g) € M', h*, g € Qa(x.R) + We show
M; = M21 Let f € My; then (f,h) € M* for some h. Since
M* is an ideal, (0,1)(f,h) = (-h,f) € M'; hence f ¢ Msy;
i.e. My ¢ M2. Conversely, let g ¢ Mp; then (h', g) ¢ M!
for some h'. Similarly, (0, -1)(h', g) = (g, -h') € M*;
l.e. g ¢ Ml' Hence M1 = M. Let M = My = Ma. Clearly,
1 ¢ M, since (1,h) ¢ M': Suppose (1,h) € M' for some h.
Then (1/1 + h%, =h/1 + h%) + (1,h) = (1,0) € M'; a contra-
diction. Now we show M is an ideal in QaSX-R)- Let f,g ¢ M.
Then (f,h), (g,h') € M* for some h and h'., Clearly f + g€ M.
Since M' 1s an ideal in Q§£X.R)c. (f,0)(g,h*) = (fg,fh*) € M*,
hence fg € M., Similarly, let uc¢€ Q&(X.R); then (u,o0) €
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Q{X,R)¢, and (uw,0)(f,h) = (uf, uh) € M*; thus uf € M.
Next, to show M' = M,, it is enough to show that M' =

M X M. Clearly M' ¢ My X My =M XM, Let (f,g) € M XM,
Suppose (f,g) & M'; i.e. (f,g) + M' # 0 in Q¢(X,R)./M'.
Then there exists (u,v) € Qﬁéx.n)c such that ((f,g) + M*):
({(u,v) +M*) =1 = (1,0) + M'; 1.e. (1,0) - (f,g)(u,v) =
(1 - (fu - gv), - (fv + gu)) € M'; hence 1 - (fu - gv) € M,
This implies that 1 € M, a contradiction. Thus M' = Moo
Now we show that M is a maximal ideal. By Lemma &4,
(Qfa(x.R)/M)c is a field, denote by XK. For any f € ngx.R),
if £ € M, then (f + M, o) # 0 in K. Hence there exist g, h
in Q(X,R) such that (f + M, o)(g + M, h + M) = 1y = (1 + M,0).
i.6¢ (1l - fg +M, fh + M) =0 in K. Hence 1 - fg € M,
Thus M is a maximal ideal. Finally let M' be a complex
ideal. By Lemma 4, (QA)(X.R)/M)c = ¢ = (R),. Thus for any
T e Q’éX,R) there exists r € B such that (f + M, o) = (r,0)
and vice versa; i.e. f + M = r, Hence Qﬁéx.R)/ﬁ =R; 1.e.

M is a real idesal.

Remarks The same holds for algebras A, A, if all

1 + xz, X € A are invertible.

Proposition 63 If Q (X) is totally uncomplex, then
— A

N\ QD =@, and the converse holds, provided each member of

O 1s real-compact.,
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Proofs Suppose N\ # #. Then there exists a
real maximal ideal M in Q£5X,R) such that QXAX,R)/M is
the real field (Proposition 5, Chapter II). Hence M, is
a complex maximal ideal in Q%(X.R)c. Therefore there
exists a complex ideal in QKAX); a contradiction., For
the converse, we note that QX4X,R) is totally unreal
iff N5y = ¢ and by Lemma 6, the assertion holds. Q.E.D.

Lemma 7:+ Let K be a formally real fleld. Then

its complexification K, 1s a field.

Proof: Clearly K. is a ring with unit (1, 0).

Let (a,b) #0 in Ko3 then a # 0 or b # 0 in K. Since K
is formally real a2 + b2 # 0, Clearly (a/a2 + b2, -b/a? +
bz) ¢ K,» and hence (a/a2 + bz, -b/al + bz)(a,b) = (1,0);

i.e, each nonzero element of K, is invertible.

Corollarys If M is a maximal ideal in QXJX,R), then
Mc 1s a maximal ideal in Q5$X'R)c .

Proofs Qﬁﬁx,R)/M is a real-closed field, and hence
a formally real field(25 ], thus (Qﬁéx.R)/M)c = QaﬂX.R)c/Mc
is a fleld. Hence M, is a maximal ideal in Qﬁéx.ﬁ)c .

Proposition 81 For any fillter base 9, of dense
subsets of X, (AQgX,R)) = QUQe(X)).
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Proof: It suffices to show that ()= _O.(Q&(X,R)) -4

Slc = ll(QﬁﬁX.R)c). By the previous Corollary one has a

mapping © 1 1(Q(X,R)) > ((Q (X,R),) by 6(M) =M, .
For M, N ¢ Q0 , let 6(M) = ©(N); 1.e. M XM =N XN; then

M = N, hence 6 is one to one. By lLemma 5, © is onto. To
show © 1s homeomorphism it is sufficient to prove that
6(Q(fg)) = £Q.((f,g)) for any £, g € Q¢(X,R). This follows
from the fact that fg ¢ M 1ff £ & M and g € M iff (f,g) ¢&

M XM =906(M). Q.E.D.

From the remark following Lemma 5 and the above

proof, one obtains the more general,

Corollarys For any R-algebra A such that

(1) A modulo any maximal ideal is formally real and

(11) all 1 + a%, a ¢ A, are invertible, one has
0(a) 2 Q).
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Section 2s c®-functions.

The ring C“?U) of all real-valued unrestrictedly
differentiable functlions on an open subset U of B" has the
following properties: (a) for any £ € C™(U), if f(x) # 0
for all x ¢ U then the inverse f~! of f exists in C*(U),
and 1f £(x)> o for all x ¢ U then there exists g € C™(U)
such that f = 52; (b) for any a € U and real numbers ry

and r, such that 0 < rq <'r2. there exists f € C«QU) such

that
=1 hx - allgry
f(x) = {=0 for all x
= 0 ix -allyr,

(¢c) all algebra homomorphism p: ¢w(U)-———> R are evalua-

tion maps [ 2 J.

From these facts one has that the topology of U
(always understood as a subspace of B") 1s generated by
the cozero sets of the functions of C®(U); namely, let V
be an open subset of U and a € V; then there exists r; and
r, with 0 < r; < 1y, and{xlua- xu(rﬁ({ x| la - xil
< r23<: V, and a function f, € CQ%U) such that { x\|lla - xil
< rlg C Coz(fry,) < V. Thus V= [JCoz(fg)(a € V). Hence
for any algebralcally dense ideal A in C™U), the set E =
UCoz(f)(f € A) 38 topologically dense in U. Next, we check
that for any dense open subset E of U, the ring cE) 15 a

proper rational extension of c™(U) with respect to the map-
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ping f ~~» f|E., Clearly the ring c™(E) 1s a ring of
quotients of C°°(U), and the extension is proper as can
be seen as follows: The function g, defined by g(x) =
Tén—;‘lxl - a,| ,where x = (Xg0 o0es X))y & = (ags ooy ay),

a € UNE, is unrestrictedly differentiable on E but not
on U. Since the ring C®(U) is locally inversion closed,
one obtains that for the set S of all dense open subsets
of U the ring of fractions Qg(U) = C{U)/Z.(U) of C*(U) is
the maximal ring of quotients of cXu) (ef. {1] and Chap-
ter I) where C‘;(U) is the ring of all real-valued functions
on U which are unrestrictedly differentieable on a member
of © which evidently contains Z,&(U) as defined earlier
(Chapter 1) as an ideal., Also, for any filter base &Shof
dense open subsets of U, the ring ngU) 18 the limit of
the directed system (CY(D))(D € & ) with mapping Pp c*(p)

— Qg(U) as 1imit homomorphisms.

Lemma 93 For any fllter base & of dense open
subsets of U, there is a one-to-one correspondence from

Aes A(Q;(U)) onto NS .

Proof: Take ¢ €/, then py = Po s C (D) —>
B is an evaluation mapping; hence there exists Xp € D such
that pD(le) = f(xp) for all f € c™U). Now take any E
then also there exists xp € E such that pg(flE) = f(xg)
for all f € C*(U). But pp(fID) = py(fIE), hence f(xp) =
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f(xE) for all f € Cw(U). Thus xp = xz = &, i.e. a =

xp for all D€ Y . Hence a¢ N & and P(fr) = gla) for
= $(g), 8¢ c™(D) for some D € S . Conversely, this
defines a ¢ € A for any a ¢ NS « Hence the correspond-
ing A ——> 0% by 9 ~~>»a is onto, and it is one-to-one

since Coo(U) separates the points of U.

Proposition 103 The maximal ring of quotients of
(%)
C (U) is totally unreal.

Proofs Let £ be the set of all dense open subsets

of U; then N\ & = @, and hence A(Q:;(U)) is void. Q.E.D,

Definitions A ring A is called real semi-simple
iff the intersection of all real maximal ideal of A is

Zero.

Proposition 11s For any filter base g, of dense
open subsets of U, the ring Q;(U) is real semi-simple iff
NS 1is dense 1in U,

Proofs Let NS be dense in U. Suppose there
were 0 £ f € N\Ker¢( %€4). Then f = F(g), & € c™(D)
for some D € 9 . By Lemma, if g(x) # O for some x € D,
then x ¢ N+ since if x € NS » then there exists ¢ e
such that ¢(f) = g*'(x) =0, f = ?D.(g') g' e Cw(D') for
some D'€S, , and g|E = g'| E for some EC D D', E€ 5.
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Hence g(x) = 0, a contradiction. Thus g | NS = 0, and
hence g = 0 on D. Hence f = <?D(g) = 0, a contradiction;
i.es [ = 0., Conversely, suppose N\ S 1s not dense in U,
then there is an open subset W C U such that WN (A Q) =
#. Let c € W; find £ ¢ C*(U) such that f(c) # 0 and f(x)
= 0 for x § W. Note that g = F,(f|D) = FR(flE) for all

D, E€ S . Then, by Lemma, for each ¢ e¢ A, there corres-
ponds an element a € N\ S\ such that @(g) = (£|D)(a) = f(a)
=0, 1.e. g €(\Ker@. But g # 0 because £fiD # 0 for all
DeSr . 1.e. NKerd # 0, a contradiction. Thus N S 1is
dense in U. Q.E.D.

Remark: Many conditions which are known to hold
for any ring Cw(U) carry over, in virtue of their form,
to the ring Qf;(U) for any filter hase 5, of dense open
subsets of U, since Q:;(U) is the injective limit of rings
of the type CM(D). For instance, the following which are
related to the work in[ 2 1.

(1) For any f € Q:;(U) and ¢ € A(Q (U)) with
?(f) = 0 there exists a g € Q:;(U) such that ¢(g) = 0 and
(1 - g)2 (1 - ) +1 18 invertible in thgU) for each non-
zero X € R,

(2) For any £ € Qu(U), 1 + 2 1s invertible.

of
19»( o
(3) For the elements Ugs eeey Uy € Q&(U) corres-

ponding to the n Cartesian coordinate functions on U and
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any CPQ:A(Q':;SU)). Ker(?) is the ideal generated by
L‘ll - Q(ul)'l. e 0 g un —q(ur’)'l #

(4) For any f ¢ Qz(U) and qiéA(Q:(U)) such
that @(f) # 0 then there exist £ € R and g € Q;(U) for
which 37 (u, - (u;)1)2 + £2 = 21 + g2, the uy, ..., u

, n
are as in (3).



PROBLEMS

For further investigation the following problems
could be considered.

l. Study real semi-simple rings of quotlents
of C(X).

’ 2, Let A be a commutative semi-simple ring

with unit whose maximal ideal space {XA) is Hausdorff,
Find an explicit description of the mapping LQ(A))
—> ()(A) given by Proposition 17, Chapter III.

3., For any maximal ideal M in QZ(U), is the
quotient field QZKU)/M real closed.

L, Study the maximal ideal spaces of the rings
Q;jU). in particular their relation to those of the
rhmsQAUL

5. Let 9 be a filter base of dense open subsets
of U; study the derivations of R-algebra Qg(U).

6. For any filter base 9 of dense subsets of
U, let C*(D) be the ring of all functions f = g|D where
g € Cw(V) for some open neighborhood V of D in U and
define QZ&U) in the obvious menner, and study those exten-
sions of C7(U).

7. Discuss the rings Qagg(U) defined in terms of

(k) £0
C -functions instead of C -functions.

96
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8. In place of the bounded functions with
supremum norm, as used in thé discussion of QE}X).

consider C(k)-functions f whose derivatives up to

order k are bounded with the usual norm [T || =
sup 25% If(i)(x)\ /1t
i=

x
9., Generalize to suitable sheaves of rings in

place of the rings of continuous (resp. C”-) functions.
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