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INTRODUCTION

In 1935, Garrett Birkhoff introduced the notion of equational
class, and proved that a class of algebras is equationally definable
if and only if it is closed under the formation of homomorphic images,
subalgebras and direct products. ([31) In this same paper, he also
proved that the collection of equational élasses of algebras of a given

type form a complete lattice.

The first results concerning equational classes of a particular
kind of algebra were obtained in‘1937 by B, H. Neumannb[21} on
equational clasées of groups. An account of results ﬁbtained in this
area up to 1967 and refereaces for them may be found in Hanna Neumann's

book i:22] .

In recent years there has been much interest in lattices of
equational classes of algebras. Some of the results obtained concern-
ing the lattice of equational classes of lattices may be found in
Baker [2], Gratzer [9], [11], Jonsson [15], [i6], McKenzie [20] and
Wille [26], [27]; In 1964, Jacobs and Schwabauer [13] proved that the
lattice of equational classes of zlgebras with one unarj operation is
isomorphic to NxN' with a unit adjoined, where N is the lattice
of natural numbers with their usual order. and N+ the natural numbers
with division. T. J. Head proved that the lattice of equational classes

of commutative monoids is also isomorphic to (NxN+) v {1}. Complete

~~
<
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descriptions of the lattices of equational classes of idempotent
semigroups and of distributive pseudo-complemented lattices have

been given by J. A. Gerhard {8] and K. B. Lee [19] respectively.

Peter Perkins [23] has shown that every equational class
of commutative semigroups can be defined by finitely many equations;
it follows that the lattice of equational classes of commutative
semigroups is at most countable. On the other hand, Trevor Evans,{6],
using an example of A. K. Austin [1] has shown that there are uncount-
ably many equétional‘classes*af semigroups. There are only countably
many atoms in the lattice of equationmal classes of all semigroups
(Kalicki and Scott, {18]); however, there are uncountabiy many groupoid
atoms, ({17]). J. Jezek [14] has given necessary and sufficient condi~
tions for the lattice of equationzal classes of all algebras of a given

type to be countable.

The present paper is concerned with equatiomal classes of
commutative semigroups. In Chapter 1, we define what is meant by an
equation in commutative semigroups, and give certain rules of inference
for these equations. It is then shown that these rules are precisely
what one would intuitively want; i.e., one equation e can be inferred
from another equation £ by these rules if and only if every com-
mutative semigroup that satisfies f also satisfies e; this is the
completeness theorem for commutative semigroups. In Chapter 2, a
"skeleton sublattice" of the lattice of equational classes of commuta-

tive semigroups is defined; this sublattice is isomorphic to AxN+,

{vi)



where A 1s the lattice of pairs (r,s) of non-ﬁegative integers
with r < s and 8 > 1, ordered component-wise, and N 1is as
defined above., Every other equational class "hangs between" two
members of the skeleton sublattice; in Chapter 3 we investigate
the intervals of the form | ﬁl, \'iz} , where W 1° \5.2 are
members of the skeleton, and the relationships between these inter-
vals., By restricting attention to a special type of quatioual
class, one obtains & distributive sublattice of the whoie lattice

(Schwabauer [24]) which contains the skeleton; we show that this

sublattice is actually a maximal modular sublattice,
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CHAPTER 1

BASIC CONCEPTS

Section 1. Egquations and Completeness

A semigroup is a pair (5,f) consisting of a set S and
a binary operétion f omn S satisfying £{(f(a,bt),c) = £(a,f(b,c))
for all a,b,c ¢ S, (8,f) is called commutative 1if, for all
a,b e 8§, £(a,b) = £(b,a), We will deal exclusively with commutative

semigroups, and will write simply ab for £(a,b) and § for (§,f).

The free commutative semigroup on countably many generators,

)

such that u_ =0 for all but finitely many n € N, and Zu_ > 1,

F(w), is the set of sequences ( of non-negative integers,

un nelN
with component-wise additiou. For convenience we write (un) for
() .., and, if u_ =0 for all n > m, we sometimes write

n neN n

(“1, uz’ LN O“m) fOf <un)n€N.

A commutative sewigroup equation is a pair ((uﬁ), (vn}) of
elements of F(w). A comaustative semigroup § 1s sald to satisfy the
vequatiom ((uﬂ),(vh)) if, for every family (&n)neN of elements of s,

4 Vi
WVV{ai u; ¥ 0} = T{a, i v, % 0},
A class W of commutative semigroups is said to satisfy an equation
e (a set I of equations) 1if every semigroup in WV  satisfies e

(satisfies evety equation in I ).



For a set I of equations, we define a set Tl of equations
as follows: e e 'l if and only if there exists a finite sequence

€ys€y5000 of equations such that e, =& and such that
®) : for each 1 < m, one of the following holds:
(P1) e, € I or e, = ((un),(un)) for some (un)nsN e Flw).

(P2) There exists j < i such that ej = ((“n)’(vn>) and e, =

(v ), ).

{(P3) There exists j < i and a permutation % of N such that

ey = ((u),(vp)) and ey = (u 00), (v 0y))e

(P4) There exists j < i such that e, is obtained from ej by
ry 2 = e ’
multiplication, i.e., ej _(\un)g(vn)) and ey ((un+wh),(vhfw5))

for some (wh) e Flw).

neN

(®5) There exists j < i such that e, is obtained from ej by

e

substitution, {.e., &

k)

= ((un)”<vn)) and for some p e N and

j
= 25 o " % o - R
2eN e Flw), e, ((un > &nup),(vn r kﬁvp)). (See note below)

(P6) There exists J < i such that e, is obtained from ej by

identification of variables, i.e., e, = ((un),(vh)) and there

3

exist p,q with 1 <p < q such that e, =

((ul’on.up_lgo’uwl'c‘.uq_l,uq + up, uq’*’l’..')’

(Vl’...vp"l,o’vp+l’.‘.vq-’lqu + Vp, Vq+1,¢00))

(®7) There exist j,k < 1 such that ey = ((un),(vn)), e, = (v ) hw )



and e, = ((u),(w)).

Note: (P5) does not yield what intuitively is the result of sub-

stituting some term (hn)né for the pth wvarisble in e, to

N 3

obtain

((ul + hlup’cjou + h

o1 » B u , u

pwlup PP p+1 + hp+1upffoo);

(v1 + hlvp"f'vp-l + hp—lvp’ hv,vVv +

oVp? Vol hp+1vp,...)) from

(<un)neN’(vn)neN)‘ However, these two operations are equivalent

modulo (P6). For example, to obtain the above equation from ((uﬂ),(vh))

i i
for i 4+ p and kp = hpfi. if hp = 0 then we may assume, in view

using (P5) and (P6) : if hp 2 1 then apply (P5) with k, = h

of (P3), that hq > 1 for some gq > p, and then apply (P5) with

k, =h, for 1i#%¢, k =h = 1. The resuit will be
i i q q

((“1 + hlup’octu + h » u., u u ,..fu + hqup - up,o.c)’

Py + .
p=1 = “p=1p* Ypr Up+1l T “p+iYp q

(VI + h +h v,v ,vV +h V ,eev. +hv = VP’°°'))'

1% Vp-1 p=ip’ 'p’ ‘prl ptl'p q qp

If (P6) 1is then applied to identify the pth variable with the gth,

one obtains the desired result.

+

A set I of equations is called closed if I = I'l. We
also write I + e for e € I'Z, and, in the case I consists of

exactly one equation, f, we write £ -+ e,

 Theorem 1.1: (Completeness Theorem) e ¢ I'L  if and only 1f

every commutative semigroup that satisfies I also satisfies e,



gggggf It is enough to show that TIZ is the smallest fully
invariant congruence relation on F(w) containing ., (See [4],
Chapter 6, Section 10), But by (Pl), I €TI. By (P1), (P2) and
(P7), respectively, IIl is reflexive, symmetric and ¢ransitive, By
(P4), TI is compatible with the multiplication im ?(w). Thus T

is a congruence relation containing I,

Now suppose ¢: F(u)—»F(w) is a homomorphism, and that
D s é((v )

For each i ¢ N, let ay be the ith generator of F(w), i.e.,

((un),(vn)) ¢ 'L, We must show that (¢((u ) ¥y € TI,

neN neN

a where & is 0 1if 41 4%n and 1 4if 41i = n. There

i~ (ain)neN in

exists m € N such that u =v = 0 for all n > m, and then

m m +
Zua,, (v ) L v,a,. Let pr, : Flu)—>1I (where
Py 171 neN a1 i1 i

(u)

=
n’ neN

f+ is the non-negative integers) be the ith projection map, i.e.,

(\wn)neﬁ) =Wy and define ¢: Flw) —» F(w) by :

priaw =0 for all 1 <m
pricy = pri_mod for 1> m,

We will prove by induction that for each n < m,

n T

(*) (ifl ui“’(ai) + (O,Qtan, un+19000um)’il Vi\'}(di) + (0,.0.0,Vn+l,nocvm))
ol n

e I'L, ‘

The case n = 0 is trivial, since we assumed that

((ul,oooum)p(Vi,---Vm)> ((u ) N°? ( )

a’ne )EI'Z.

nelN

Now assume (*) holds for some n with O < n < m, There



exists k > 1 such that prk(w(an+1)) > 1 ; in view of the definition
of ¢, k > m, Define (wi)ieN e F(w) as follows:

w, = prk<w(au+1)) -1

vy = pri(w(an+1}) for 1% k.

n

By the definition of ¥, pr:3 (z uiw(ai)) =0 for j < m., Thus
n , i=] ‘

PT 41 (iﬁl uiwcai> + (0,..40, un+l,...um)) =u similarly

n
n .
(il uid)((!i) + (09..009“n+1’00Qum) + (un+1wi)i€N,il

n
L viw(ai) +

0,...0, vn+1,...vm) + (vn+lwi iaN> € TZ. By (P6), by identifying

the (nt+l)st and the kth wvariables, we obtain

n+l u+l
( x uiw(ai) + (0’0!'0’ un+zgilvum)9“2 Viip(ai) + (0,.-.0,Vn+2,...vm))
i=]1 i=3
€ TZ, Thus by induction, (*) holds for all n < m, In particular,
i m ‘
it holds for m, thus (I wu,y(a,) , E viw(ai)) e I'l, But, by (P3),
: imi 5 % i=l
in view of the definition of ¢, this implies that
n m m n
(Z ua,) , 2 v¢a,)) eTE, But I wu,¢(a,) = ¢(Z wu.,a,) and
{=] i i {=1 i i {1 i i =1 i1
m m
L v,o(a,) =¢(ZI wv,a,), since ¢ is a homomorphism. This yields
{=1 i i 1= i“i

the desired result; thus Il is a fully invariant congruence relation
containing I. On the other hand, it is clear from (P1) to (P7)
that if © 41is any fully invariant congruence relatlion containing I

then 't €0, This compietes the proof,



For a class W% of commutative semigroups, 1et:‘ R * be the
set of all equations satisfied by every member of W , then W *
is closed. For a set I of equations, let, I* be the class of all
commutative semigroups sgatisfying Z; then I#* is equational. For
equational classes R, ®B', WE& ®' if and only if R '* & W*,

and for closed sets I,I' of equations, I £ ' if and only if

'k o I%,

Let £ be the lattice of equational classes of commutative
semigroups, and L' the lattice of closed sets of equations; then

£ 1is dually isomorphic to £ ' by the mapping Bews>®*, For

RE, e, Rin, =R Nk, =@ *xv, R,%*, and
Y{l v, K, = (W* A KM% = (W% o i,k

Section 2, The Free Commutative Semigroups Satisfving ((r),(r + nJ)).

For each‘pair {r,n) of natural numbers, define

fr a’ I‘.+-—-9 {0,1,s0er +n -1} a8 follows:
?

SO ( kK  if k<r

Le+fk=-1] if ko>r
e

where [m]n is the least non-negative residue of m modulo n, and

I+ is the set of non-negative integers,

For each m ¢ N, let F_ (m) = {(1y5001 )]0 < i, < rho-l, I, > 1}

3

and define a binary operation on F. n(m) as follows:
1

(11’12,...1111) (jl,’jZ’”'jm) = (fr,n(il + jl)’.'. fr (im + jm))o Then

0



Fr n(m) with this operation is a commutative semigroup. In fact,
, :

we will show that it is the free commutative semigroup on m generators
satisfying ((r),(r + n)). The free generators are the m m-tuples
with one entry 1 and all other entries O.

r
Let (il,...im) € Fr n(m). Then (il,...im) =

»

m 4,
(£, o) peen £ (x10)) and (dg,. i)™ (6 ((r)L)) 00, ()L,

For each j < m, rij = (¢ + n)ij (modulo n), and, if ,rij # (r + n)ij
then ij > 1, thus rij >r, (r+ n)ij > r, hence fr,n(rij) =
. N b 1
rr’n((r + n)ij). It follows that (il,...im) = (il""im) .

?hus. F (ms satisfies ((r),(r + n)).
r,n

For each j <m, let B, be the m-tuple with jth entry 1

h|
and all other entries O, Clearly {81,82,...6m} generates Fr n(m).

9

If S 1is any commutative semigroup satisfying ((¥),{r + m)) and
{81,...8 }—>S 1is any mapping, then the mapping $:F (m)-—J?S
defined by  F((iy,...1)) = TV{6(3,) 5!1 Sysmoi b o} is a

homomorphic extension of ¢.

It foliows that Fr n(m) is the free commutative semigroup
' ?

on m generators satisfying ((v),{(r + nj).

Section 3. Definition of the Invariants D, V,L.U, -

An equation ((un),(vn)) is calied non-~trivial if u % v
for some n ¢ N, A set of equations is called non-trivial if it
contains at least one non-trivial equation; an equational class R

is called non-trivial if W * is gnon-trivial,



For a non-trivial equation e = ((un),(vn)), define
D(e) = greatest common divisor of {lun - vnl In e N, u # vn}

V(e) = minimm {u_,v_ | neN, u v}

L{e) = minimum - {maximum {ur | o e N}, maximum {vnln € N}}
. £
minimum {nEN Y ’nEN vn} it ngN Yn t ngN Va
U(e) =

ngN Yn + Ve if ngN Yp © ngN Yn
Note that D(e), L(e), and U{e) > 1, and that V{e) < L(e) < U{e).

For example, if e = ((0,1), (1,0)) then D(e) = 1,
V(e) = 0, L{e) = 1 and U{e) = 1+ 0 = 1, A semigroup S satisfies

e if and only if S has at most one element,

If e= ((1,0), (1,p)) then D(e) = p, V(e) = 0, and
L(e) = U(e) = 1. A commutative semigroup S satisfies e if and
only if, for all s,t ¢ S, 8 = st? , 1.e., if and only if S 1is

an abelian group satisfying s? =1 for all s ¢ S.

For a non-trivial set I of equations, we define

D(r) = greatest common divisor of {D{e) | e ¢ I, e non-trivial}

<
7~~~
()
p
'

minimum {V(e) | e € £, e non-triviall

o
~
™M
~
L}

minimum {L(e) | e ¢ I, e non-trivial}

i
~
™~
~

[}

minimum {U(e) | e ¢ £, e non~trivial},

Section 4. Elementary Properties of D,V,L,U.

Lemma 1.1: Fr n(1) satisfies a non-trivial equation e 1if
?



and only 1f U(e) 3 r and n|D(e).

Proof: Let e = ((ui) ) be a non-trivial

_ ieN? (vi)ieN
equation with r < U(e) and n|D(e).

Case 1: Iu, % Zv,. Then Iu,,Iv, > r. The elements of Fr,n(l)

»

are the I=tuples of positive integers < r 4+ n - 1 ; we write

simply k for (k). If (k,) is a family in F_

i“4ieN n(l) then

Uy kyug
TV (kg lui $0} = TT{1 iui % 0} = fr’n(2£kiui[ui # 0 ), and

v
i
Tk [vi * o} = frsn (Z{Rivifvi 4% 0}). But Z{kiuilui $ 0}

> Efuilui # 0} = ZIu r ; similarly Z{kivilvi # 0} > r,

2
i w
Moreover, since n|D(e), it follows that n}ui - v, for all i,

thus Ekiui = fk,v, (modulo =n). This implies that fr

i'1 n (Fkjug)

9

u v
‘ i , . i
fr,n (Zkivi)’ thus i‘{ki {ui % 0} = ‘\tki Ivi % O},

= Iv,. Then U(e) = Zu, + V(e) > r. Let (ki)ieN

1 i
be a family in F,

Case 2: Zu {

n(1). If ki = 1 for all 1 with uy & vy

> 1 for gome 1 with ui L vy then,

> V(e), it follows that

s

then Zkiui - Zkivi. If %k

since u, v

i

implies that ug v

i i

keu, > Zu, + V(e) > r, Ik,v, > Iv

Yy 2 { V4 + V(e) > r. Thus

i

we again have fr,n(Zki“i) = fr,n (Zkivi)’ hence
uy vy
TV {k, Iui $ 0} = T{k, “|v, # 0}.

It follows that Fr n(1) satisfies e.
9



10

For the converse, assume e = ((ui)iEN’ (vi)ieN) 3i8 a

non~trivial equation with U(e) < r, If ZIu, # Zvi, then

i

> by - ] v
r > minimum '{2ui, avi}, is a family in Fr,n(l)° and

(14 en

u . v
i ) i
T {1 My, # 0} = fopn (Bup ¥ £, (Bv) = T {1 v, = ol
Thus, in this case Fr n(1) does not satisfy e. If Eui o Evi,
L
then we may assume without loss of gemerality that V(e) = uy

>
(and then vi 2y and Eui + u,

(2v1,v2,...)) and by (P4), e ((Zul,uz,...), (v1 + uss vz,...)).

< ). By (PS),‘e > ((2u1,u2,...),

Thus, by (P7)f e ((2vl,vzge..), (v1 + u, vz,...)). <1)i€N is a

3 i o == > =
family in Fr,n<l) , and TV {1 [wi vy, w, = v, for 12 2}

. ] X1 _
£V V) & £ By Fup) = AL Txg =uy 4y, %y = vy for

i > 2}, Thus F_ (1) does not satisfy ((2v1,v2,.,.), vy 4-ul,v2,...))

®

and hence does not satisfy e.

If U(e) > r but n{D(e) then we may assume without loss

1 avii. As above, e »

((2v59V55000)5 (V) + Uy Vy,000))e But since  Iv, + v, FIv, +u,

of gemerality that wu, % v, and af ju

(modulo =n), it follows that Fr n(l) does not satisfy ((Zvl,vz,.o.),

(v1 + ul,vz,...)) and hence does not satisfy e.
This completes the proof.

Lemma 1.23 For each m > 2, Fr n(m) satisfies a non-trivial
¢

equation e if and only if V{e) > ¥ and u|D(e).

Proof:v Fr a (m) satisfies ((2),(r +n)). ((2),(r + n))

+ ((¥), (r + kn)) for ail k> 1. If e = ((u and

1w Vil



i1

if V(e) > r, n|D(e), then w # v, implies uk’vk >r and

nlu, - v, thus ((r),(r +n)) = ((w),(v)). Thus ((x),(r +n)) ~»
() (v)4ey) = e+ It follows that if V(e) > r and n|D{e)
then Fr n(m) satisfies e,

Conversely, if Fr,n(m) satisfies e = ((ui>ieN'(vi)ieN)’

then, since Fr n(1) is isomorphic to a subsemigroup of Fr n(m),
$

’

it follows that Fr ﬁ(1) satisfies e and thus n|D(e). We.

may assume without loss of generality that V(e) = ul {and then

u; < vl). Let a, = (1,0,.,..0) ¢ Fr,n(m)’ and for 1 > 2, let

1

= ‘ i Y
a, (0,1,0;...0) > Fr,n(m)' Then (ai}ieN is a family in Fr,n(m)
i m (£
and ‘TT{ai lui % 0} (“r,n(ul)’ f?’n(ifzui)’ 0,...0), and
v, -

‘TT{ai {vi 0} = (frgn(vl)’ fr,n(ifzvi;, 0,.5.0). Since tr’n(m)
satisfies e, it follows that rr,n(ui) = fr,n<v1>' But uy & Vis
thus u, vy > T This means that V(e) > r.

Theorem 1.2: If I+ e and e is non-trivial then
U(z) < Ue), V(Z) < V(e), L(Z) < L(e) and D(Z)|D(e).
Proof: Assume I - e, Since rU(2>9D(2§1) satisfies

I, it also satisfies e, thus U(Z) < U(e) and D(X){D(e). Moreover,

FV(E),D(sz)' satisfies I, and hence also e, and thus V(L) < V(e).

To ehow that L(Z) < L(e), it is enough to show that if
L RRERLM is a sequence of equations satilsfying (P) -and L(ei) > L(Z)
for all 1 <m thea L{e) > L(Z). Let e, = (a,,8;) where

ai.Bi e Flw), 'Then L(ai) > L(Z) means that there exists an entry



iz

> L{Z) in each of ay and Bi'

then it is clear that whichever of (Pl) to (P7) e satisfies,

But if this holds for all i < m,

there will be an entry > L(I) in each of o and B i. e,

L(ey) > L(D).

Corollary 1: If I + &' then U(L) < U(X"), V(Z) < V"),

L(Z) < L(Z') and D(I)|B(Z").

Corollary 2: D,V,L,U as operators on sets of equatioms
are invariant under I, i.e., for any non-trivial set I of equatiomns,

D(Z) = D(rz), v(&) = v(ri), L(I) = L{rz) and U(I) = U(TL).

For a non-trivial equational class W , define D(®w) = D{®E%*),
V(R) = V(®m*), L(E) = L(GE*) and U(R) = U(\i*). Since for two
equational classes Ei,ﬁz, B‘i < k& ; if and only 1f § ¥ + %,

ic follows that if & ,§ &, then U(RK,) = UW(R,), V(& £ Wy,
(‘T‘i )?D(Egz)ﬂ

3
A

L(E’IB fi(ﬁz) and D



CHAPTER 2

THE SKELETON SUBLATTICE CONSISTING OF THE CLASSES §r,s,n

Section 1. Definition of the Skeleton

For non-negative integers r,s,n with r <s and n > 1,

let nr,s,n = {((r,8),(r + n,8)), ((s), (s + n))}*, Then

u( ) = 8 = L(Q Y, V(Qr

Q = n,
r,8,n T,8,0 s,n> =r and D{ T58 )

¥ ’n

Note that since ((0,8),(a,s)) -+ ((8), (s +n)) by (P6),

8 g0 ™ {€(0,8),(n,8))}% . Since ((r),(r + n)) + ((x,r),(r + n,r))
| Ao ]
by (B4, . . .= {({D),(z+a)},
QO i,p is the class of all commutative groups G satisfy-
 Radt ]

ing x’ = 1 for all x e G. = {((0,1), (1,1))}* and since

%5,1,1
((0,1), (1,1)) » ((0,1), (1,0)) it follows that & 11 1s the
[ ot ]

zero of the lattice ft .

Clearly, in view of (P4), if r < t and s <u them &

T,8,n
C:Qt c.n® If in addition njm then a simple induction argument
s .
‘ . ner | ‘ k at the
yields Qr,sﬁxggnt,u,m On the other hand, by the remar t

. < < and nm,
end of Chapter 1, if Qr,3ﬂxsgnt,u,m then r <t, 8 <u |

o i LM,
Thus Qr,s,nglat,u,m if end only if r < t, s <u and |

* of atio
Section 2, The Set leg,n of Equations Holding in ar,s,n'
Theorem 2,1: For a non-trivial equation e, e € Qr s n*
t gl |

if and only if r < V(e), s < L(e) and n|D(e),

13



Proof: The “only if" part is a direct comsequence of

the results of the last section of Chapter 1.

L ‘ ‘ . 0t
For the converse, let e (&ui)ieN’ (vi)iaN)) and assume
r < V(e), 8 <L(e) and n|D(e). It follows directly from the

definition of V,D, and L that there exist j,k with “j’vk > 8,

and thag if ui ay vi

assume without loss of gemerality that U, 2 8. But then

then n[ui - v, and u;,v, > r. We may

((rbs)s (r"' F’s)) -> ((ﬂisuztvt)s (&1,V2,V3,...3). if VE. i 3

then ((s), (s + n)) - ((u139(v1}) - ((ul,vz,.”), (vl,vz,.a.))..

If v, <8 then v, >3 for some j > 2 aund then ((zr,s), (v + n,s)) >

3
((ultvj>9 (viﬁvj>) g ((ﬁlpvzstow}g <V19V29000>)a

Thus * 4+ e, .., ec %
TsS,0 T,8,0
Coroliary l: For an equational class W, Q <R

r,8,a =
if and only 4f r < V(®), s < L{®) and n{D(R).

roll: 23 - 2 = max {r,t
Corollary nr,s,n ) Qzﬁmgm Qv,w,p’ where v {r,t},

w = max {8,u}, p = least common multizie {n,m}.

Proof: Since & <80 and @ . 5 , 1t

et Lol ,ft = WV W,P Lol = VWP
follows that @ AVARY) <R » Thus it is enough to show

8,0 E,U,m = V,W,P.
g sl $ o2 ha 9] % ® & Q *

Ehat QV:»W’p&_: r’39nv tyu,m’ 1.2., that srsgs‘ﬁ n ntsusm = VoW, P
B - i a g ® * b he theorem
ut e non-trivial and ¢ ¢ Qr,s,n N Qt,u,m implies by the the
that V(e) > r, L(e) > &, a|D(e) and V(e) > t, L(e) > u and m|D(e),
thus V(e) > v, L(e) > w and p|D{e). It follows from the theorem

that e ¢ @ % , and this compleces the proof,
VWP


http:enuation.al

Since every non~trivial equational class is contained in

some R it follows from Corollary 2 that the class of all

T,8,n
commutative semigroups is not the join of two smaller classes,

This was also proved in Dean and Evans, [5].

Theorem 2.2: ﬁr,s,n Aﬂt,u,m = Rv,w,d’ where v = min {r,t},

w = min{s,u} and d = greatest common divisor {m,m}.

——-—-—-—PrGOf: Since Qr,s,n =2 Q‘szadsv and Qt s UM E stwné’

it follows that @ »n’\-g

.+ To show the reverse
T8,

=R
t,U,m ~ YV, W,G
inclusion, it is emough to show that {({v,w),(v + &,w))}{(W,(w+d))} <

K as * " %
(Qr,s.n’\ Qt,ugm) B s,n VY % um

Assume 8 < u, Then there exist natural numbers p,q such

that pn = qm + d and pn > u. By Theorem 2.1,

((8),(s + 2pu)) = ({(8), (s + pu+ ¢m+ d)) ¢ Qr s n*
. b ]

; oy e Yy & 0 %
((s+pan+qgn+d), (¢ +on+dj) < 3t,u,m

((s+pun+d, s+dj)eq, _*.
Ty8,0

Thus ((8), (g8 + d)) = Q %, The case u < 8 follows

* R
ros,n Y Yt u.m

by symmetry, thus {w), (w+ 4)) ¢

%, 0 *
rsesn Y Ct,u,m

Now asgume 1t < t, Then v = r, There exist natural numbers

h,k such that w+ kd > g, r + hn > w. Then:



ié

((I,W), (r;w + kd)) e 0 *

* 9
r,s,n ¥ “t,u,m

((x,w + kd), (r + hn, w + kd)) ¢ Qr,s,n*

% { e . > % *®
{(z + hﬁs wH+ kd), (r+hn+d, wi kd)) e .Qr’s’n Vv Qt,u,m

(e + hog +d, we kd), (¢ +d, wt+ kd)) ¢ & %

*

v‘ *
((r+d, wrkd), (r+d, w)ea, . *va  o*.

Thus, {(v,w), (v + d, w)) ¢ (& % =

* *
roo,n vV %% ,u,m v B w,m

Y] * . The case t < r follows by symmetry. This

*
rys,n Vv ﬂt,u,m

completes the proof.

Let AY be the lattice of pairs (r,8) of non-negative
integers such that r < & and s > 1, ovdered component-wise, i.e.,
(ry8) < (tyu) if end only if v <t and s fvu. Let N be the
lattice of natural anumbsars ordeved by division. Then, by the above“

theorems, the map given by (r,s,n)nww99r

is & lattice
s5,0 :

isomorphism of A x ' onto a sublattice of &K .
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Section 3., Equations Implving Qr,s,n

Theorem 2.3: For a non-trivial equation e, e - Q. o n*
<9

if and only if V(e) < r, U(e) < s and D(e)lan.

Proof: It follows fyrom the results in the last section of

% : = '
Chapter 1 that if e + Qr,sgn then V{e) <r V(Qr,s,n)’

n) and D{e)|n = D(Qr )N

Ule) < s ﬂ'U(Qr,s 8,0

H

For the converse, let e = {({u,) and assume

¥ d LY
$Pgews Vilgen)

Vie) < r, U(e).ﬁ s and D{e)|m, For each i ¢ K,

e -+ (<ul""ui-l’ Zui, ﬁi+1°"°)’ (vi,.;.vi_15 A + Uy, vi+1,...) and

e + ((ul""ui-l’ 2“1' ui+i,.e.), (Vi°"°vi—1’ Zvi, vi+1,...)), thus e +
((vl"'°vi-1’ vy tug, Vi#l"")’(vi"°°vi~l’ 2vi, Vipgseedt)s Let

P P4 LY - o i H o ! e, &~ P
w, = jzmvj + mintu,,v,; , and let di = lui vyi+ Then for each

iegN, e= ((wi),(wi 4 di}). Thus for each L ¢ N with wu, ¥ v

i

i@
* o By Theovem 2.2, e* o & . ~where w = minf{w,ju, & v
e -Qbi.wi»&i' s ihe : =Yww,e T biglug % vyly

and d = ged {d, | d, ¢ 0} = Die).

-

If Zu,= v, then Ule) =w

i for some 3§ e N, and thus
1N feR * 3 ‘

4
%

£ Lu, % Iv,, then e > ({& u,), (I
- + ieN ~© ieN

{({U(e)), (U(e) + h)) where h = izui - Iv,| 1s divisible by D(e).

& -»
S (e),u(e) D) il

Bug ‘then e¥ ‘-_: QU(&) ,U(a),D(e§‘

Now assume without loss of genmerality that Vie) = u, . Then



i8

e + ((u,, Zu),(v,zv))»((u ,ude) + L u,), (v,,U{e) + Z.v,)).
1 1>2 i 1 1>2 1 1>2 i 1 1>2 i

Since D(e)| Z u

4 " Lv,,and since e > ((U(e)), (U(e) + D(e))),
i»2 1>

21

it follows that e = {(ul,Ua@))‘, {vl,‘ﬁie}))u Thus e¥% CQV(e} Ue),h’

where h = v, - u, is divisible by D{e). This, together with

1 1
Q % & ‘.-’ .
e¥ QU(@) Ufe), D{e) vields e QV(;) Ule), De Since
V(e) < r, UCe) < s and D{e)im it follows that e¥ €a. .
Vs
o 1 0 ;o S i
Coroliary: Por an equational clags W , E & Qr,s,n if

and only if V(E) < r, U(E) < s and D(®)|n.

Procf: The "only 1f" part follows from the remark at the
end of Chapter 1; the converse follows from the fact that if W is
a non=-trivial equationai class, then there exist equations el,azgeB e R %

such that V(e;) = V(WJ), Ule,) = U{RA) and DleyH = D(R).

- PSP 4 S

Lempa 2.1: For a nou-twivial equatien e, 4f L{e) < ¢
then there exists k ¢ N such that e - {({£,8...08), (2 + Dle) 2.t 00:t))0
hisioman, oomomssrs)

k k-1

4

Proof: Let @& be a non~trivial equation with L(e) < ¢
and D{e) = d. We may assume without loss of generality that

<t for all i <.

e = ((ui,...ﬁﬁ), (Vlg'.‘v‘ﬂ)) Wh@rei Wi

If u, <v, forsome j <n them e - ({&,t,...t), (vl + t-ul,.,.vn-é-t-un))

3 3

where v, + t - u, > t., If w, > v, for all i< n, then

3 3 i i
@ - ((u1 + - Vises el g - vn}g {tyest)) where, sirz.x:@ & is

non-trivial, + ¢ =-v, >t for some i <mn, Thus, in either casa,
5 =

Uy



iy

there exist WoseseW and s > 1 such that e » ((t,...t)b,(t+s.w2,...wn)).
' n
Choose h so that t + hs > U(e) and let k = h(n - 1) + 1, For each

m with © cmg h, let a, = (¢ + ms,wz,aMwn,ge.wz,.”wn,t“”i;)e
m(n~l; terms k-m{n-1)~1
By (P4), e -> (e + ms,&g...g),(t + ms + s,wz,...wn)) for each m > 0.
-1

Thus, again by (P4), ¢ - (am, a for each m with 0 < m < h,

m+1)
By (P7), it follows that e - (ao,ah) w ((t..,..,5),(t+hs,w29...wn,...wn)-)

k , k terms

and thus by (P4), e » (¢ + d,2,...L),{(t + hs + d,w?,“.wﬁ,...wzg.,.'aj%)).
4 wf_
k

But t + hs > U(e), thus e » ((t + hs), (¢t + hs + d)). It follows

that e - ((c,.;.t), (¢ + d, tgg;.,t)}.

Summarizing the results of this section and the preceding omne,

~trivial equational class & , .S
we have that for a non=-trivial equational class o, , QV('@}{LT\%&),E(\L) <

A ',”'m’ . ! lces of th ez
k < QV(K}gU(R)sﬂ{’\;&,) Moreover these choleces of the 8 are

the best possible im the followlng semse: 1f &, n.g_: % then
E a4
a . 4 & &
roen S Ty, ww), o) BE RS frpn then
QV(VU,U( E),_B(E.}g" Qrgs,n' Thus 1f @ {Qr,s,n’ 52zf:,t,zm] then

Vi) = r, L{R) > s, U(K) <t and D(R) = n.

It foliows from tiuis and from the results in Bection 2

concerning meets and joins of different 321_ s n"s that for non-trivial
b Radt 4 :

equational classes EI’QZ’ ‘D(E{.:i A Vﬁz) @ g.c.d, {D(ﬁl),D(QZ)}.



20

D(K;v E‘z) = lecom. {D(R,), D(W,}, V.(Vzilx\ W, =

min {V(R,), V(R )}, V(&; v K,) = max {V(R,), V(R,}},
LRy A K, =min {L(Yii), LK)} and U(E,Vv R, =

max {U(®), U(®,)}. Also, U(E, A &, = U(E*y R, =
min {U( ﬁl), U(Ez)}. Moreover, it follows from Lemma 2,1 that
LR, v K,) =max {L{K ), LK)} :

Let L(®,) =t > L{(&,), Then there exist e, ¢ K * with

L(ei) <t for i= 1,2, By the lemas, there exists k ¢ N such

that e, - ((tye,00t), (E+d, £,,08)) for 4= 1,2 where
k k~1

d=l.c.m, {i?»(\il)9 E‘fék?-iz}}. Thus ({(t,C,...8), (¢ -é-'d,t,«.ag)) €

o

X k=1

& %
El A Ez = (Ryv B ,0% . It follows that L(WvE,) = t.
But L(R;wv R,) >L{g) =¢t, thuse L{R;v R,)=t=

max {L(&l), L{ ﬁz}}a Thus wo have the following

Theorem Z2.4: D is a lattice howoworphism from 4 - {E

*r+ ] g ¥ . e gy b RO e <3 w

to N, and V,L aud U are lsttice howoworphisms from w~ = {E}
to the non-negative integers with their usual order, where E is

the class of all coumutative semigroups,



CHAPTER 3

HANGING THE MEAT ON THE BONES

~Begtion 1, The Intervals {Qr,s,n’ Qtnu,m3

Since for each equational class & there exist r,s,t,n ¢ N

, it follows that the interval [Q R ]

with s“!r r,s,n’ r,8,pn

C s

is a jump for p prime, and [0 1 is a jump for all

g .
t,8,n’ "r+i,s,n

r > 0, Thus [a 1 conziste of exactly the classes

Q v
r,8,1* "r,a,m T,8,0

where nlmw and ] consists of exactly the classes

.
1Y 1]
Yo,s,n° “s,8,n

where r < 8. Moreover, if R < Qr ein then either

Q
;8,1 9 ¥y

< Q or B £ @ for some w < un, Thus & .
E haned r“l,r,n h - Y,l’i‘.’,m ® = 15151’

the class of all semilattices, is an atom in £ , #nd, for p prime,
Qo,l,p » the class of all abelian groups G satisfying x° = 1 for
all x ¢ G, is an atom in £ . {((1,1,0), (@,0;2})}* , the class of
all semigroups with comstaat multipliication, is alsc an atom in L .
Moreover, it is an casy cousequence of the above remarks that thi

exhausts the set of atoms in X , a result proved by Kallcki and

Scott in [18].

It remains only to investigate intervals of the form

3 ) & ™ % 3,
igr,s’np Qr,t,n} where 8 < t. It is casy to see tﬁat every such

; : : : - *
interval is infinite: for each p > t, let Vip g leg o}

where e *‘((19190"1’0): (0,...0,€)). Then h,p € Egr,s,n’ Qr,t,n}

typ \——v"_)
P ?

and 1f p < q then R pg &qf, Moreover, if p > r + s, then

23
s
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fp = ((r,s,&,l,f..l),(r + n,s8,1,1,...1)) ¢ Ep *  but fp i EP”- *
p=r-s p-r-s

since e +£f . Thus {R_|p>t, p>r+s} is an infinite
tp - P P e
1.

chain in mr,s,n’ Qr,t,n

The fbllowing lemma will be useful in the rest of this

chapter:
Lemma 3.1: If @ & B for some t then
e r,t,n =
* 3 ) - - . . w s
ee (GQAn Qr,s,n) if and only if there exist C19TysTgeTy € Flw)

such that e = (Tl""é) , and (11,12),, (’1'3,14) e R ¥, (12,1‘3) €

0 *
Y,8,n

Proof: The "if" wpart is trivial. On the other hand, if

eec (RASR YR = gy Q) % ¢hen, since for arbitrary

T,8,n $S,0

congruence relations ©,, 0,, 0,V 0, = U{eioezoei ...oeiin > 1,

n odd} and since W* and o -z* are congruence relations oa Flw),
Foll: 9y

%

it follows that theve exists a finite sequence TysTgsorsTy, € Flw)

R* for i odd
such that e = (Ti,rz?) and {‘ri,'ri_f_l) £ .

Q *# for i even
r,s,n.

We may assume without loss of generality that (Ti’Ti-H.) is
non-trivial for all i % 1 or 2p - 1, and that p > 2, But then,

by Theorem 2,1, L((t 7 ,4)) 2 8 for even 4, i.e., for all

i with 2.<1<2p -1, T4 has an entry > 8. But then for ail

odd i with 3 <i < 2p - 3, V((Ti;Ti+l)) > T, L((ri,riﬂ_)) > s, and



. - * k
n|D((ri,'ri+l)) ; thus (Ti’ri+1> > Qr,s,n . It follows that

*
(TZ’TZP-I) € Qr,s,n . Thus we may take TysTysT for

2p-1°"2p

the four elements of F(w) in the theorem statement,

Theorem 3,1t If R e inr s j and if u<r
Aleorem ok , . hd

i’ Tr,t,n

then R = (R A Qu,t,n)v Qr,s,n'

Proof: Since & A ngtm £ W and Qr,s,ng—‘ B it
followsl that (R A Qu,%gn) vV R Thus it is enough to
show that if e c ((€K A Qu,t,n)v Qr,s,n>* thén ee B* .,

Assume e ¢ (( & A Qu9t9n> v Qr,e,n)* = (R A Q’u.t,n)*‘“ Qr,sgn* .
Then by Lemma 3.1, there exist TysTgoTqsT, € F{(w) such that
(11,‘:2), (1457,) € R*, (12,?3) £ Qu,t,n* and e = (10,70 € Qr,s,n* .
But | *¢ Qr’a’n*g thus {(Tl,ré)g (‘fig‘rz}, (?3,':4)} < ngmf .
Since {(11,14), (11,‘:2), (135?&)} > ('rzyr3), it follows that
('rz,-rs) € Qr,s,n* . B8ince (1‘29?3) € Qu,‘t:m* , we have that
(12,13) € Qr,ssn* N Qu,t,n* = Q.r,t,n* . But Qr,t,n* £ g% , thus

it follows that e ¢ R* ,

Theorem 3.2: If | ¢ mr,s,n‘ Qr,t,nj and if mjn then

)V { o
,t,m rgg’“

E'(ﬁ/\ﬂr
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Proof: By changing Qu’ t,n to Qr, t,m in the proof of the
* * = *
'last theorem and using the fact that Qr,t,m O Qr,s,n Qr,t,n s

we obtain a proof of the theorem,

Corollary: If R e [® ] and min then

§2
]
r,8,n° r,t,n

R=(r AQr,t,m)\‘ QO,I,n'

Proof: By the theorem, R = (& A th,m)v Qr,s,u' But
& = © : d
Qr’s,mg ﬁ’,l\ Qr’t’m , and Qrss’m\/ QO,I,n Qr,s,n ; this yields

the desired result.

Section 2, The Sublattice f‘n with Conmstant D

For neN, let {_={Re&| D(®) «n}, and for each

non-negative integer k, let ﬁ'"x - {R eﬁln | V(W) = k}. Then
iy

the 's are palrwise disjcéiat, ead =
{n,k palrwise disjéint, and ﬁn k¥ 0%a,k

For p < define a mapping & [ e £
=% PPERE 09 q,n ﬁn»q Lap 3

follows: for W ef with U(W) = u, & (&) = QA&
‘ ,q _ y T

Psq pyu,n’

If u'< s, the i < i )
< 8, n, since ® *Qq,u,n’ E"Qp,a,n o

RAQ Q a
qu,n > % 6n = A Qp,u,n = Gp,q,n( ®). It follows from

this that 6? n is a meet homomorphism. Clearly if p < g<r

t e )

then § = §

, , . e
- p,q,n°6q,r,n' By Theorem 3.1, if W& eﬁ'n,q and

< q then ¢ ® 0 = | ~to-one.
P d 'Pstn( v Gsqg,nt » thus Sp’qsn is one~to-one
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To see that Gp o 188 lattice monomorphism it remains only to
e S

show that it preserves joins,

Let E‘}.’E‘Z € f”npq' Then Qq,q,ng i& E29 and there

exists u > q such that ®,,R,cQ _ . Then

(Ryv By = (v YA, o2 (R A, IV (B a0

8
Prq,n Pslyn = pyusa Pyushi

i 5 a ° 4 i & i€ 4 =
pyq,n (R v 8%%“ (R,). On the other hand, if e ¢

YR o= .3 %Y % 2 %
(Psq, S PRV ép,q,n(ﬁ‘?;)’ (€% v Qp,u,i’i ) (Ry*y b,u,n s

then, by Lemma 3.1, there exist e F(w) for 1 <1 <6 such

Ty
that e = (Tl_’Té) and (11,12% (13,16) € ﬁi*, (Ti’Té)’(Ts’TG) € Ez*

and {12,13), ('ré,’rS) e 0 % ., If both ('c2913) and (*:4,?5) are

Py,

non-trivial then TosTaeTy and T all contain an entry > u.

* o0 ® Y oe W% % h
But (t,,7,) € ﬁi qu,qgn . ('ci,r&) e &, Eﬁq,qsn implies that

(1'2,'1'4) £ S‘zq q n* s it foliows taat {t
} 2§

Thus \rl, J e W& «35.’ o Similarly (t.,7t.) ¢ ®.%* . Thus

* * % ¢ "
ece (El N 52 )RV, ngum . If {1,,7y) is trivial then

o * L * °
e (rl,ré) € ‘5‘1 . Thus (71914), (ngaé) and (-rl,'r6) € Qq,q,n

Since {(1547,), (15,7g)s (7y51g)} + (r,,75)s we have (1,,75) ¢ 2 qn

Thus (74.15) € Q * R k w Q * o ﬁz* . It follows that

94,0 Prushi Getihi

e c ﬁl* n B % . Similarly if (-r&,'ts) is trivial then e ¢ ﬁl* nR,* .

Thus in any case, e ¢ (W;i*ﬁﬁiz*)vﬂ (\ilv 17 ) .

x =
Psu,n Psan

It follows that & (’*“51) v & (ﬁz) = §

psq9n (ﬁi ~/ ﬁz) ¢

Pedunt Psq,n

McMASTER UNIVERSITY LIBRARY,



Thus, for p < q, 6p 4,0 is a lattice monomorphism of
E A & ]

i ith = R,
in,q nto ,f'n,p with the property that 5p,q,n (K) v Qq.q,n R

Theorem 3.,3: For ﬁl, Ez € ﬁ‘n‘ the following are

equivalent:

&) ®.C R,
(2) V(R;) s V(R and &, < SV(E PRI (ﬁz)
(3) v( ﬁl) S V(®,) and 8

0,v(ry),n (K17 € %,v(w,)n B2

Proof: (1) =(2) : Assume R, € ®,. Then V(W) < V(&,),
and, if u = maximum {U{ El), U¢{ Ez)} . then

=Vi AR

1 v( Yil),u,n € BoA Sywun T (R, V(R A (R

(2) =>(3) :+ If ﬁ < Gv(ﬁ ) V{ﬁz),n (ﬁz) then

%0,v(Rm (X2 €%, pn Sv(r . viry,n (R T %0,v(% ) ,n <2

{(3) =2(1) : Assume (3} holds. Then

Ry = So,vcmp . B0V g ,vie e € %0,vw ), B2 Y fuem), v

S 80,v(R ) (BDY By(,), V(R ) = V20

Theorem 3.4: The mapping ﬁw(GO,V('ﬁ),n(w)’ V(R ))

is an embedding of ‘?;“ as a meet subsemilsttice into ‘éln o X 1’.+,
. . 3

where I+ is the lattice of non-negative integers with their usual

order,
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Proof: Since V(E:l/\ Ez) = min {V(El), V((&z)} and

since the 60 p n's are one-to-omne, it is enough to show that if
P&

(&,; =

5‘1’%’*2 € ﬁn then & (B A8 p

0,V{®&,},n 0, V(R ),

6o.v(‘i-?.1/\ R ,),n (Ry AR, o Assume R, %, ¢ .En ‘ami let

u = maximum {U(ﬁl), U(\iz)}. Then GO,V(ﬁl),ncﬁi) A §O,V(§2)’n(‘i2)

g(i‘ill\ﬂ )/\(ﬁzz\ﬂo,u’n)=(€£l/\ ﬁz)AQ

O,u,n O,u,n =

50,V(‘§1 A \3*2) " (‘ﬁi A “QZ) s and this completes the proof.

It will be shown in the next sectioun that this embedding

is not a lattice embedding, i.e., that it does not preserve joins,

Section 3. A Mavping Beiween Intervals of the Lattice

If r,s8,t,u,n are non-negative integers such that

r<s8<t<u and n > 1 then, since ) : = Q
- y = » SimCe G e AN T uw r,i,n

and @ A R = 0 , it fellows that the restriction
8,U,n T,u,n Tou,n

of & to l i is a lattice wonomorphism mapping
r,s,n E%gam‘ Yo, u,nt - TPRLSM MaPPLNE

into [ Q i + Let

v, t,n’® r,u,n

e

d’r,s,t,u,n g,tyn’ %,u,ﬁj Emr,t

" Qr a n} be the restriction
1} [ Rl ]

. L ‘ .
of ar,s’n. We will iamvestigate which of the ¢r,a,t,u,n 8 are

actually isomorphisms, i.,e.,, for which values of 1r,s,t,u,n the

y R I

is the whole interval Wr,t,ﬂ ry,u,n

m £ 4
image o ¢r,s,t,&,n



Lemma 3,.2: maps onto [Q

¢0,l,t,u,n ]'

O,t,h’_no,u,n

for all t,u,n > 1.

Proof: Let % ¢ mo,t,n’ QO,u,n}' it is enough to show
that for each non-~trivial e ¢ W%, there exists I Q. *
e = l,tyn
such that {e} u Qo,u,n “ I v Qo,u,n , for then
K 5 * [
= ¢0,1,t,u,n ((Jgé“ ZJ* A Ql,u,n)

let e € @* be non-trivial, Them L(e) > t and n|D(e).
If V(e) > 1 then we can take I_ = {e}. If V(e) = 0, then we

may assume without loss of generality that e = <(ui)ieN R <vi)ieN)

where u, = 0, v

1 > 0 (and then n}vl) and u

> 0. Then let

1 2

Ee = {((vi)ieN’ (2v1,v29...)), ((uz, ug,o..), (u2 + Vis u3,...))}.

o -
Clearly z C ng . and e + I ., It remains only to show that
% B
Iy QO, . > e, ut

(<Vi)ieN' (uvz, Vg) VB,‘..)) e TI,

{(uvi, Vs v3g..,},{ﬁ, u, * uvy, ﬁspiooﬁﬁ e &
((0, ‘u2 EE uv1, ‘139o-c). (O, uz, u390.00>) [ PZe.

Thus I uf

R o AL 8 ”
e 0,u,n e¢. This completes the proof.v

Corollary: 50’1’n is an isomorphism of _g'n,l onto

£'n,0 for each‘ n e N.

%
C,u,n

28



Lemma 3.3: If ¥ >0 and r+n<u then ¢rstun
PPy Lyliy

does not map oato mr,t,n’ Qr,u,n

Proof: Let e = ({zyr + u, t), {(r + n, v,t)), and let

R o= et A Qr,u,n' Then & ¢ mr,t,n’ Qr,u,n]" If € = ¢r,s.t,u,n(ﬁ’)
for some R' ¢ Eﬂs,t,n’ stu’n] then oy Theorem 3.1, E\'Qs,t,n =
(R' A Qr,’u,n) v Qs,t,n = ®', and this imples that & = q’r,s,t,u,n(ﬁvgs,t,n)
= (@ v ns,t;n)‘A Qr,u,n‘ Thus to prove the lemma, it is enough to
show that R # (R v Qs,t,n)’\ Qr,u,n'
Since e e R*, it is enough to show that e ¢ ((Wv Qs,t,m)AQr,u,n)*
= (R#*n Qs,t,n*)v Qr,u,n* . Suppose e e (R*¥n Qs,t,n*)v 2 r,u,n* .

Then there exist TysTy € F(w) such that ((r,r + n,t),rl),(rz,(r + n,r,t))

ceB*n Q

1] * a Y ” ﬁ‘.
s,t,n and (Tl,TZ) £ Qr

sUW, Ik

Now ({r,z + n,t), T.J € @% = lav Q % implies that
_ i Tou,0

there exist TgeTy, € P{w) wsuch that ({¥,r + n,%), 133 e Te,
*® s gy ol & - P’y e .
(T3:"¢) € Qr.u,n and \Tle"lj e Me. But ((zr,r + a,t), 13) e Te

implies that Ty {(Tor + n,t) or (r+a,r,t) in the case r +n # t,

and that = (r,x+0a, t+n), (x+n, v +na,r) or (r+ n,r,r+ n)

'3
in the case r + n = t, In any case, since ¥ +n < u and

(13,14) € Qr * it follows that

Ju,n T4 Thus ((r,r + n,t),rl) e le,

T‘,‘o

A repetition of this argument yields T = Thus ({r,r,t),{(r+n,r,t)) ¢

'('2.

Qa ¢ n*' But this is & coatradiction since ¥ < 8. This completes the proof.
[ ]



Section 4, Restriction of the mapping to Schwabauer classes

An equational class is called a Schwabauer class, or

S=class, if it can be defined by equarions of the form (Qui)ieﬁ"vi)ieNj

where u, <v, for all i ¢ N, Clearly all the & 's are
i- "4 r,8,n

S~classes. The set of all S-classes forms & distributive sublattice
¥ of the lattice of equational classes of commutative semigroups

(Schwabauer, [25]) ; this will be proved inm Section 9.

Lemma 3.4: If r+an >t then e, s Qr,t,n] < ¥

Proof: et ® ¢ {Qr s ] where r+n>t. To
1)

ou’ Rr,tgn
prove that R is an S-class, it is enocugh to prove that every

ec B* with e ¢ Qr « ﬁ* is equivalent with an equation of the
A

form ((ui)ieN' (vi)ieN) where w, < v, for all 1 ¢ N,

Assume e c W* and ed Q_ _ %, Since @ *c & LR

T,,0 r,8,n

5 impiies ugs vV, 2 T and

= 3 - 1, %
e ((hi)isN’ (vi)ieN) where u, ¥ v

nju, - v,., Since e ¢ 0 % we may assume without loss of
i i r,E,0

generalicy that u, < t for all 1 e N. But then, if u, > vy

for gome i, it follows that wu, = v, + kn where k'z'l and v, > 1,

i i i

But then wu, > v

{ +n2r+n>t and this is a contradiction, Thus

i

u, <v, for all 1ice N,

i i

For t < u, let lt’u = {(uiBiEN £ F(w)fui < u for all
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i, u

l;t}. m’a.r Tg_rt’u, and n>1, let T(n) =

*
{((ui)ieN’ (u1 + n, Uy, u3,...))!(ui)isN € T}. Then T(un) E'Qt,i:,n R

since if (u,) T, , them wu, >, thus ((¢), (¢ +n)) ~
, _

ieN © 1

((ul)’ (ul + n)) -> ((ui)iEN’ <u1 + 0o, BZ, us,...)).

Q ] is an S-class if and

Lemma 3.5: " mr,s,n’ r,t,n

only if there exists T CT_ such that R = T(n)*A @

’t r’t,n.

Proof: Clearly if W = T(a)*A @  for some T CT

't’ : 9t

then @ is an S-class,

On. the other haad, if B is an S-class there exists a

) where u, <V

set I of equations of the form ((mi) 4 SV

sent Vadien
for all 1 ¢ N such that & = I*, It is enough to show that for

each ec I with e ¢ & * there exists e & T, t(n) such that
14

* e % 20 C ow {a - %} .
{el v Qr,t,n_ > {e} v Qr,tan , for then R = {e] ec I Qr,t,n )i AQr,t,n
= 4 b P LI
Let e = ((ug)y e (Vo) € D=0, o
Since I CER*cC Q % , there exists j e N with u, > s, and
=7 = ¥.8,n 3 -
1 - & &
if u; <v, then nju, - v,. Since e R gn* s Uy <€ for all

i e N, Thus e = ((ui)‘iaN’ (ui “* kimieﬁ) where we may assume without
loss of gemerality that u; 2 8. Let e = ((ui)isN’ (ul +n, u,, u3,...)).

Then e e T, .(n) . Now ki 21 for some j e N, Choose k & N so
»



that uj + kkj > t. Then

((ui)ieN’ (ui + kkia)ien) ¢ Te

a é F 3
((ui + kkin)ieN’ (nl +n + kkln, u, + kkzn, uy + kk3n9..a)) € Qt,t,n

((u1 +n+ kkln, u, + kkzn, ug + kk3n,...), (ul + n,uz,u3,...)) e Te,

R~
Thus {e}L)Qr’t’n - @,

On the other hamd, if h ¢ N is chosen so that u, + hn > ¢t,

1

then ((ui)ieN’ (u1 + hn, Uy, u3,...)) e e

((u1 + hn, Uy, g3,...), (ui + hn + kin, u, + kzn, u, + k3n,...)) € Qr,t,n

((u1 + hn + k.n, u, + kzn, u, an,...}, (ug + Kin)ieN) e Te .

1

Thus {e} U @ * > @, This completes the proof.
r,t,n

Corollary 1: restricted to [Q R ia¥
-——-—-—-.-—-—:-,—-——- ¢r,sgﬁ’w5ﬁ - ‘-‘sst,ng gguynj
is an isomorphism of [Q s 5 in¥d onto [0 ., Q 1In¥ .
B &"gt,ﬂ S,ﬂ,ﬁ rp‘t,ll r,u,ﬁ

Proof: It is an imnedlate consequence of the definition of

¢ that it maps S~-classes to S-classes. We already know
T;8,t,u,n .

that ¢ is a lattice monomorphism, thus it is enough to show
r,8,t,u,n



that for every S-class in [Q ] there is an S-class

Q
r,t,n’ “r,u,n

in [Qs R Qs ] that maps onto it under ¢
® 4

t,n »U,n r,8,t,u,n’

Let Re [0 2 o ¥ . By the lemma, there exists

$
r,ten’® r,u,n

* s
TCT, , such that R = T(n) ARy y,p+ But then

* Y * =
T(n) Aﬂs,u,n € ms,t,n’ Qs,u,n] n ¥ and ¢r,s,tgu,n(T(n) ’\Qs,u,n>

* " . s
T{n) A'Qs,u,n_A Qr,u,n = ¥ . This completes the proof,

Corollary 2: If r +mn >u then % s.t.up 18 a0
- 92y by iy

» 8 ] onto [&

isomorphism of [Q 8,u,n T,t,n

8,t,0 > Qr,u,nj *

In view of Lemma 3.3 and the last corollary, ¢

T,8,L,u,n
maps onto [Qr.t,n’ ﬂr,u,n] for v >0 if and only if v + n > u,
For 1<s $t<u, since ¢O,s,t,u,n = ¢0,1,t,u,n°¢1,s,t,u,n » and

s8ince ¢0 1 is an isomorphism by Lemma 3.2, it follows that
]

stru,n

maps onto {& if and only 1f n+ 1 >u .,

¢O,S,t,u,n Cot,n’ Qasuﬁn}

s
)
"

Thus ¢ raps onto [N if and ounly

T,8,t,u,n ,6,m° r,u,n’

if r=0 and =1, 0f r=0 and n+1>u, or r >0 and

r+n>u,

From this we see that the embedding of in‘ into ;(n o ¥ al
b4

in the last section does not preserve joims: Let n > 1, Let p > n,

does not map onto ([f } + Let

Then ¢oaPop9p+1’ﬁ 0,p,n’ Qosp+1’n
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] such that ® is not in the image of

Roe [Qo9psn’ QO!P‘H-sn

+ Let ''=Q . If the above~mentioned embeddin
¢0,p,p.p+1,n R PsPstd i e g

preserved joins, then we would have

o« v
600‘7(\3\).11 (%) v 60,V(ﬁ‘)’n(\3‘°) GO,V(ﬁVR'),ﬂ ( 'Rvi’),
But 85,v(r),n(®) = %,0,a(F) = By 8 yign,alRD =
= = . h
f,pyn A Qo,p,n. %,p,n* 20 8,p,n VY W =R, Thus we would have

B= (RVE") A Q

0,p+1,n and this would imply that ® is in the

image of ¢0 « Thus the embedding does not preserve joins,

9?SP9P+1:n
. ® P B} b i b
Lemma 3.6: For all a > 1, both mo,i,n’ QO,Z,nj and

["1,1,u'»"1,z,n3 are isomorphic to w + 1, i.e., to a countable

ascending chain with unit¢ adjoined,

Proof: The proof follows immediately from Lemmas 3,2,

3.4 and 3.5, and the fact that TE’Z = {{1,1,0..1,0,0,00.)fm > 1}
m

Section 5. The Relatiomship Between ‘fn v anc%ﬂm

> e £ 2 - '{g
For n % m, in aad X are disjoint. & x;ka)N‘n v {E}.
1f n(m, we define a mapping Bngm : {m—-—»ﬁn as follows: for
R e £m with_ VW(R) =r, U(R) = 8, Smm(‘i) = ‘a/\ar,sm. Then

for any t,u with R € we have that W A Q,

- Ttyu,m sU,0i

P ] Y vy 1
(RAQr,s,m)" Qt,u,n 17 Aaurwam Bn’mﬂz). It follows from this
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that B.n m is a meet-homomorphism. Moreover, by the corollary to
$

Theorem 3.2, if Weg  then W =B, LRIva thus B
$

0,1,m’ ]
is one-to-one, Thus, to show that 6‘1 o is a lattice monomorphism
iy

of jim into {n, it suffices to show that it preserves joias.

Let W 1° \75:2 € -f’;m. We may assume without loss of generality

that r = V(®;) < V(®,) = s. Let u = max {U(ﬁi),'U(ﬁz)} . Then

Bam(RVRY = (Ryv R AR, D (RAT, DV wz,\ag,u,‘n) =

Ba,m( RV By (&, On the other hand, if e ¢ Wn,g("ii}" By m(B % =

*§ * ®”., X atn % T <
(ﬁl VQr,u.n ) A (ﬁz v e n ) , then there exist 12729707, sT5sTg € F(w)

su

_— .
such that (Tl’T2)* (13916) 3 \zl 5 (r2,13; € szr “

i et ]

n*n (?1974)!(75,.{6) £ §2*$

* if i (. .1.}.
(T",ts) eas,u,n and e = (1’1,16). if both iTZ,TB) and (Té’TS) are

non-trivial, then each of TysTgeTysTg contain an enlry 2> u.

T - 2 . % % w3 T s * Sk hus
(t107) & Ry* o Qr,rgm s (5.7 € az -—Qrﬁgm » ¢
(TZ,TA) € Qr,r,m* . Since both T, and T, contain an entry > u,

o LR Th *
it follows that (7,,7,) € Qr,u,m © W% o Thus (1,1,) e By* .

Similarly (15,16) € ﬁiﬁ , hemce {11,16) € (Yil*n ﬁz*) v & *

,Usn
1f (12.”3) is trivial, then (11,16) € ﬁl*g Qr,r,m* . Since
(rl,ra) and (15,16) € Viz* c Qr,r,m* , it follows that

(T407g) € R L %0 O u,n* = %,u,n* € Rp* - Thus ec Wo*a Ro*

Similarly, 1f (7,,7;) dis trivial thea e ¢ El* n®,* . Thus in

4"


http:T1'r2,T3,T4,T5,.r6

= ((Ryv @A B %=

any case, e ¢ (El* nﬁz*) v & s, u,m

s,u,n
(Bn’m(ﬁlv R,))* . It follows that Bn,m( '(11) v Bn,m( R, =

By m(Ryv &y

Thus 8 . is a lattice monomorphism of L into K n
with the property that for each R e ﬂms ' Smm(@) v Qggl,m =R .
Moreover, B . retains the skeleton ; Bn,m(ﬂr,s,m) = % sn'

Clearly if ulm and m|p then Bap = Bn,m B
H

© .
n,Mm MmMyp

Theorem 3.5: For non-trivial equational classes Kl’ Ez.

the following are equivalent:

M) ' <%,
() Dp(Ry lf)(?iz) and B, S BD(El),D( ‘&2)((@2)
(3) D(Kl) zD(EEz} and Blan(ﬁ.l)(El) ‘_:_' Bl,D(ﬁ2)<ﬁ2) .

Proof: (1) = (2): Assume ﬁlg R,. Then D(ﬁi)gD(‘iz),

and there exist s,u with ®, SQs,u,D('ﬁl)' Ezg Qs.u.D(ﬁz}' But

then By = RyA 9% uncrp € R2A % un(gy Bo( R 2,0(R ) (B2

(2) = (3) : Rl c BD(\El)sD(ﬁz)(ﬁz) implies that

"1,008) BV S Fncr) Bocgyy,ner, (R = Frpcr )R -
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(3) #(1) : If D(R,)[D(W,) then Bl,n(al)(ﬁx)g

B1,0(r ) (Rp) fmplies that R, =8 5og ) (RDY %o,10¢e)) €

f1,0(8) (R Y %0,1,005,) € P10 (R Y %o,1,00m,) T B2

Theorem 3.6: The mapping EW(BI D )(55. Y, D{w ))

is an embedding of K =-{E} as a meet subsemilattice into ﬁl x N,

Proof: Since B is one~to~one for each n ¢ ¥, the

I,n
mapping in question is one-to-one. Since for non-trivial equational

classes ?{1, ﬁz, D(\ZI/\ \'{2) is the greatest common divisor of

D(Rl) and ?(hz), it is enough to show that Sl,D(E'l/\Ez)(WlA ‘ﬁ?_)

Sl,D(El)(all)A BI,D(?S,E)(E‘E} . If r,ue N are chosen such that

c

RS %,u,p(0 )0 B2 %0, pir,)e Chen

BlsD(stlA EZ)(EIA \—0:2> = ﬁll\mz /\Qr,u,l = (ﬁi)\ Qrgu’l)A(Qzl\Qr’u,l)

'Bl,D(El)(hl) A BI’D(EZ)((QZ) . This completes the proof.

It will be seen in the next section that this embedding does

not preserve joins.

Combining the results of this section with those of Section 2,

we see that & is isomorphic to a meet subsemilattice of ﬁl 0 X i x Nt
9

with a unit adjoined.
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- Section 6, Another Mapping Between Intervals of the Lattice

For r<s<t and njm, n ¥ m, let a be the
- T,8,t,n,Mm
7 y §
restriction of Bn,m to igr,s,m’ Qr,t,m}' Then ar,s,t,n,m is
a lattice monomorphism of mr,s,m" nr,t,m} inte mr,s,n’ Qr,t,n]’

We will investigate for which values of o,s,t,n,m ar,s,t,n,m

I

actually maps onto the whole interval mr,s,n’ Qr,t,n

' .7 y <
Lemma 3,7¢ If r» 0 and r+n<t then- %r,8,t,n,m

does not map onto mr,s,n’ Qr,:,u}'

Proof: Let e = ((r,r + n,8), (r + n,r,s8)) and let

R = e*x A Qr,i:,n‘ Then R ¢ mr,s,n’ Qr,t:,nﬁ' If W is in the
image Qf af,s,t,n,m then W = ar,s,t,n,m(ﬁ') for some
R' € mr,s,m’ Qr,t,m}’ and then by Theorea;n 3.2, R v ers,m = 7',
thus R = ar,s,t,n,m (g v Qr,s,m) = {@w Qr,s,m)'\ Qr,t,n' Thus it
is enough to show that R #% (ﬁ\’ar,s,m)" Qr,t,n' Clearly e € & *.
We will show that e ¢ ((Hv Qr,s,m)/\ Qt.t,n)*'
Assume e e ((Kv Qr,s,m) A Qr,t,n)* = (R*n ﬂr,s,m*)v Qr,t,n*'

Then there exist TysTy € F{w) such that {((r,r + n,s),‘rl),

*
(Tz, (r + n,r,s)) eR*a Qr,s m* and (11,12) e Qr-',t k, But

’ ,n

((r,r + n,s),rl) e W* implies that there exists TgsTy € F(w) such

o * S
that ((r,r + n,s),‘ta), (11,14) e le, (13,‘4) € Qr,t,n « Since



39

((xr,r +An,s),r3) € Te, it foliows that, if r +.n 5 and r ¢ s
then T4 = (r,r + n,8) or (r +n,r,s), if r =8 then

T, = (r,r + n,r), (r + n,zr,r) or (r,r,r+n), and if r +na =3s
then T4 = (r,f +a,r+n), (x+n, r,r+n) or (r+n, r+n,z).
In any case, since r+an < ¢t and s <t and (13,1:&) € Qr,t,ﬁ*
it follows that (13,,?4) is trivial, Thus {(r,r + n,s),‘rl) e Te.

But then the same argument yields = Tye But this implies that

"1
. 3 % ® *
((x,r +my8), (r+o,1,8)) e R¥n g %< o * and this is

a contradiction. This completes the proof.

Lem 3.8: O s,t,0,m restricted to {Qr,s,m’ ﬂr’ﬁ’min‘@'
j.s an isomorphism of mr,s,m’ Qr’t’mfn‘&” outo [Q ’ nr,t,n](\ 5 .

8,0

Proof: It 1s clear from the definition of “r‘,s,t,n,m

that it maps S-classes to S-classes. Thus it is enough to show

) ¥
that for every @ ¢ mr,s,n’ Qr,‘:,n} n % there exists R ' ¢
- ¢
mr,s,m’ Qr,t,m]n.‘& such that ®& ar,a,t,n,m(ﬁ ) .
{ b ‘ol 'y i W b '“"S
Let R e iﬁr‘gm, s’zrﬁtmjﬁg By Lemma 3.5 there exists
\ ® % =
TC Ts.t‘. such that B = T(a)* A Ql‘;.ﬁm' Since n|m, T(m)* A nr,t,n
' %* = S &
T()* A Qr,t.n' Thus B T(m)yk A Qr,i:,m A Qr,t,n =
* : ' .
“r,s,c,n,m (T{m)* A ﬂr,t,m} and this completes the proof
Corpllag: If r+na >t then ar,s,t,n,m maps onto
[« ],

193
r,8,n° r,t,n
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Proof: Follows from the lemma, and Lemma 3,4.

Since a5 o . 0.m°%,1,s,c,m ¢0,1,8,tsn°ql.s,t;nsm’

and since ¢0 are isomorphisms, it

,1,8,t,n and ¢0,1,s,t,m

foliows that aO,s,t,n,m maps onto [QO,s,n’ nO,t,n] if and oniy

if al.s,t,n,m maps onto ml,s,n’ Ql,t,nL From the above results

we have that ar,s.t:,n,m maps onto Iﬂr&’n, Qr,t,n} for r >0

if and only 4f r+ n > t. Thus o maps onto [Q , R ]

T,8,t,n,m T,8,0

if and only if r =0 and an+ 1>t or ¥r>0 and r+n > ¢,

It foliows from this that the embedding of £ ~{E} into
£l X N+ described in the last section does not preserve joins :

let ﬁl £ £l such that Elé image of B8, _, and let R

i,n 2 = Q63*,1,:1’

Then 8 (R v By (R =R v, A% ;) =RV, =K,

L3

but ﬁl * Bl’n(ﬁlv ﬁz) since B 1 ¢ image of Bl,n

/Section 7. The Sublattice of Schwabauer Classes

It has already been mentiomed that ¥, the set of all
§-clasges, forms a distributive sublattice of £ . In this section,
this, and the fact that ¥ is a maximal modular sublattice, will be

proved., We first give the following characterization of S-classes:
Lemma 3,9: R e [0 s 9 ] is an 8S-class if and

r,8,n' “r,t,n’
only if it satisfies : (1) for all u with r <u <s, Wis in the

image of ¢r,s,t,u,n
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‘and (2) for all m > n with n|m, ¥ is in the

ma .
image of ar,s,t,n,m

Proof: If R e (R Q }In¥ then (1) and (2)

?
ry,s,n’ "r,t,n

follow from Lemma 3.5 Corollary 1 and Lemma 3.8 respectively.

On the other hand, if W satisfies (1) and (2), then
choose m >n such that r+m >t and njm. Then by (2), RK=R'A &% ¢ n
E Bl ]

for some W' e [ Jo By Lemma 3.4, ®' i1s an S-class.

r,5,m’ Qr,t,m

Thus ® i1s an S-class and this completes the proof,

Let ¥ _ = {Re¥ |[D(R) =n} = :fﬁn Y’.‘ Then the ‘&“n

n
are pairwise disjoint and & = n&ﬁ? 5: u{E}., Moreover, from Lemma 3.8,

B a,m restricted to %\‘m is an isomorphism of ‘Em onto ‘&“n. This

implies that the mapping R (Bl D(\Z)(E)’ D(R)) 1is a meet-
®
monomorphism of ¥*- {E} onto 3“1 x N*, But a mapping from one
lattice to another that is one~to-one,onto, aud meet préservimg is also join

preserving, i.e,, it is a lattice isomorphism.

It follows that ¥° is lattice isomorphic with 6"1 x N

with a unit adjoined.

Lenma 3,10: [90’1’1, QO,t,l] n¥ is diqtributive for

all t > 1,

Proof: For TCT, ., define T to be the set of those
&Loof , |

sequences T,

1’t
*), Then (ui)

(u:,_)ieN € such that ((ui)ieN’(ul + 1,uy,u5,...)) €

T(T()u & ¢ T if and omnly if there exists

0,t,1 ieN


http:preserri.ng

*
(vi)ieN €T sqch that {(vi)ieN’ (vl +1, v,, v3,...)} v Qo,t,l -+

((ugdy o (ug + 1, uy, uyyeel)). Thus the set of all TET .

such that T = T is closed under unioms and intersections. More~

c T and T, =T,, T, =T, then

over, if Tl’ T 1,¢ 1 1* T 2

2
* (1)* = (T *
(Tlfl) A QO,t,l) A (Tz(i) A Qﬁgt,i) (11\) T2) (L)* A Qo,t,l and

T ARG o DV D% A G ) = (T Ty (WD* AR, .

,€,1

Since for ecach & ¢ 190’1’1, Qo,ﬁ,ij” g there exists Tc Tl,t

such that T =T and % = T{)* AR it follows that

o,t,1°

[a ") in ¥ is isomorpiic to a sublattice of the power
0,1,1° "0,t,1

set of T and hence is distributive,

1,t

[y P N . (o
Corollary: 5‘1 o 3\1,0"\ ¥~  is distributive.

Proof: Tais foliows immediately from {he lemma, and

the fact that {[Qo’i’lsﬁa,tgj_]n‘o" jt > 1} forms an ascending chain
= %
and '&190 é%% [9091"1, Qostgijn‘&‘.

Since for p < g, maps S~classes to S-classes,

8
Peqsl
it follows thgt the mappiag EW("SO,V(E),I(W‘)' V(R)) 1is a meet

monomorphism of ¥°. into O, . x 17, Moreover, this mapping
i i,0

preserves joins : let Wl' R, e Y V{Q,) = p, V(®V,) =q. We

may assume without loss of geacrality that p < q. Let

u = max {U(ﬁl), U( E‘iz)}- Then 8 1(\&11)\/60‘7(1’1(&2%/ 2

O.ps q,q,1 -

8 Q ’ . {
0,p,1 <E1)V 1Y 609@91(E4)V 2@:‘39

paps = Elv W,. But
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Ez?_ Q thus 60’q’1(ﬁ2)‘:_3_ Qo,q,l’ and thus

q,q,1°
GO,p,l( E1.) v Go,q,l(ﬁz) € mo,q,l’ Qo,u,lj n % . It follows from

In¥

Corollary 1  of Lemma 3.5 that there exists ¥ ¢ mq,q,l’ Qq,u,l

with ¢, (R} = 609p,l(wl>v 50’%1((&;2) . But then &:1\'6‘2 =

»q,1
%0,p, 10 RV 80,q,10RV 8 g3 = Sg g1 (BRI 8 gy = K. Thus

S0,p,1(B 1V o4,

It follows that ¥y is lattice isomorphic to a sublattice

of Xﬁlo x 1T, But ¥ .is distributive, thus ‘&"1 is also
3

1,C
distributive.

Thus, since & is isomorphic to ‘Fl X N+ with a unit

adjoined, we can state the following :
Theorem 3.7: ‘S’ is distributive.
Theocrem 3.8: ¥ is maximal modular.

Proof: Let @ be any equational class not in ¥~ ,

R« mr,s,n’ Qr,t,nj’ say. Choose m such that n|m and
r+m>t., Then R is not in the image of % s,t,n,m’ and thus
R4 (Eva A8 . But this implies that the sublattice

r,s,m r,t,n
of L generated by §V{R} is not modular, Thus ¥ is a maximal

modular sublattice.
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Section 8. MS' is a Sublattice

In the preceding section, we described a sublattice of £
that is distributive, and has the property that ény stfictly larger
‘sublattice is not even modular. One might well ask whether the set
of maximal distributive sublattices of £ coincides with the set
 of maximal modular éublattices of 4 ; this is the case if and only
if every modular sublattice of £ 1s distributive. This section is
devoted to giving a description of a sublattice of X that is

isomorphic to MS’ the five-element.modular, noan-distributive lattice,

Let e = ((1,1,1,1,1,1,0), (0,0,0,0,0,0,6)), and let

I = {((ui)ieN’ (vi)ieN))lZui, v, > 6}. Then it is clear from (P1)

to (P7) that ¢ is a closed set of equations and £ = T{e}.

Let e, = ((1,4),(2,3)), e, = ((1,4),(3,2)) and
e, = ((3,2),(2,3)). Then any two of e;:85,8, imply the third by

(7). 1If F‘i - {ei,e}* for i =1,2,3 and if ﬁl. - {el,ez,es,e} *

then EIAKZ'EIAE3‘ Ez,\a3-ﬁ4.
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Define sets 21, 22, 23 of equations as follows:
((ui)ieN’ (vi)ieN) e I, if and only if there exist j,k ¢ N such

that u, = v

" = 0 for all i % j,k, and either uj = 1, u = 4,

i
vj-?.,vk-3, or uj-Z,uk-3,vj-l,vk-4.

((“i)ieN’ (vi)ieN) e I, if and only if there exist .j,k ¢ N such

that Uy =v, - 0 for all 1 # j,k, and either uj = 1, u = 4,

i

-3,vk-2 or u -3,uk=2,v nl,vk-lo.

Y3 3 3
((ui)ieN’ (vi)ieN) € I; if and only if there exist j,k ¢ N such

that u, = v, = 0 for all 1 % j,k, and uj-vk-S,ukavjsz.

i i

Then, for i = 1,2,3, I‘{ei,e} = I,9L, L.e,, ﬁi* = I, ul.

i i

Since the I i are pairwise disjoint and non-empty, it follows that

El, R,» R, are incomparable, Moreover, ﬁlv \"12 = (3 uI)*v (I, vI)* =

.(‘(Xlu D) A (Z,uI))* = I* ; similarly R,V ﬁs = Ez VE3 = I* ,

It follows that {Vzi, R, ®a, ﬁa,z*} forms a sublattice of X

isomorphic to MS .
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