MOBLE METALS IN THETFORD MINES OPHIOLITES



THE ABUNDANCES AND GEOCHEMISTRY OF
SOME NOBLE METALS IN
THETFORD MINES OPHIOLITES, P.Q.

By
IGBEKELE OYEYEMI OSHIN, B.Sc., M.Sc.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Doctor of Philosophy

McMaster University

February 1981



DOCTOR OF PHILOSOPHY (1981) MeMASTER UNIVERSITY

(Geology)

TITLE:

AUTHOR:

SUPERVISOR:

NUMBER OF PAGES:

Hamilton, Ontario

The Abundances and Geochemistry of
Some Noble Metals in Thetford Mines

Ophiolites, P.Q.

Igbekele Oyeyemi Oshin, B.Sc. (Univ. Ibadan)
M.Sc. (Univ. Ife)

Professor James H. Crocket

xx, 391

ii



ABSTRACT

Ophiolites are generally regarded as fragmeﬁts of ancient oceanic
crust and upper mantle emplaced on the continents. Thetford Mines
ophiolites pfdbably formed in a marginal or back-arc basin by three
separate but related igneous events. The first event involved the
partial melting of a rising mantle diapir. The melt produced later
underwent extensive fractional crystallization involving olivine, spinel,
pyroxene and plagioclase to form a layered sequence of dunitic,
pyroxenitic and gabbroic cumulate rocks. The residual magma fraction
after this extensive fractional crystallization was later erupted as
part of hypabyssal rocks and MgO, Cr and Ni poor 1ava$. During the
second and thfrd stages, the residual mantle material from the first
episode of melting was remelted to produce melts from which low TiO2
lavas were formed. The low TiO2 lavas are also depleted in other
incompatible elements such as Zr and Y which presumably were lost into
the magma produced by the first stage melting of the mantle. The
mantle residue after the multi-stage melting of the mantle is believed
to be represented by the harzburgite occurring at the base of the -
ophiolite suite.

The cumulates display wide variability in their major and trace
as well as noble metal contents principally in response to fractional
crystallization while the harzburgite displays uniform chemistry,
compatible with its origin as a residue of extensive partial melting
of the mantle. However, on the average, Thetford Mines plutonic rocks

have similar noble metal contents to Mt. Albert pluton, Gaspe, but
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have higher PGE than the Troodos ophiolites. Thetford Mines rocks

are also depleted in the noble metals in comparison to the stratiform
layered complexes such as Bushveld and Stillwater. The volcanic rocks
can be classified into three groups on the basis of their noble

metal contents viz., i) low Ir, low Pd lavas, ii) low Ir, high Pd and
iii) high Ir, high Pd lavas. These groups correspond to the lavas
produced during the first, second and third igneous events respect-
ively. The noble metal contents of the first group are similar to
most ocean floor basalts while the third group lavas are comparable
only to oceanic island and intraplate basalts.

During fractional crystallization of the parental magma of the
cumulates, Ir was strongly partitioned into early formed rocks such
as the olivine-chromite cumulates while Pt and Pd were progressively
enriched in the residual magma fraction. Au, however, was less
sensitive to fractional crystallization than the PGE.

After the formation of the ophiolites, the lavas and hypa-
byssal rocks were metamorphosed to greenschist facies by hydrothermal
sea water, and the ultramafic rocks were serpentinized, first in the.
oceanic environment by sea water and later on the continent by meteoric
water, Most of the major and trace elements were mobilized during the
hydrothermal alteration of the lavas but the PGE were immobile. It
is suggested that the redox potential of the hydrothermal solution
was not high enough to oxidize the noble metals and so permit mobil-
ization. Au, however, shows some degree of mobilization, and it is
believed that some Au occurred along grain boundaries and was carried
as particulate material (mechanically) by hydrothermal solution. The

noble metals were only slightly mobilized during the continental

iv



serpentinization episode. Their inertness during the oceanic
serpentinization episode is attributed to the reducing condition of
the oceanic environment which prevented formation of soluble noble
metal complex ions.

Unlike many ophiolite occurrences, Thetford Mines rocks
appear to have very little economic potential with respect to base
and noble metals, principally because of lack of abundant sulfides

to act as concentrators of the metals.
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CHAPTER OMNE

INTRODUCTION

One of the major concepts in modern geology is the theory of
plate tectonics. This theory, developed over a decade ago, sugaests that
the surface of the earth consists of several thin (100-150 km) but rigid
plates. These plates, which may comprise either continental or oceanic
crust or both, are in constant motion relative to one another. According
to the plate tectonic theory, new oceanic crust is being generated from
the mantle at mid-oceanic ridges. From the ridges the newly created
crust, with its upper mantle, migrates laterally towards an oceanic trench
where it may meet another plate moving in the opposite direction. At the
margins where the two approaching plates meet, one plate slips down under-
neath the other and is consumed. This process is subduction. A postulate
of the plate tectonic theory is that under certain circumstances portions
of the subducting ocean plate may escape subduction, become detached and ev-
antually incornorated or thrust onto the continental crust. This is
obduction. Such obducted fragments of ocean crust and mantle are now
called ophiolites (Dewey and Bird, 1970; Bailey et al., 1970; Coleman, 1971).
In current usage, an ophioclite may be defined as én orderly
succession of specific ultramafic and mafic igneous rocks, usually with
a characteristic pelagic sedimentary associate. Such rock assemblages

include peridotite, dunite, pyroxenite, gabbro, pillow basalt and



Figure 1-1. World distribution of ophiolites
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argillaceous sediment. Ophiolites generally occur in orogenic zones
and island arcs. Figure 1-1 shows the world distribution of ophiolites.
In North America ophiolites occur along the western margin of the
continent from Alaska to California and along the eastern marcin
within the Appalachians orogen from Newfoundland in Canada to Alabama
in the United States of America (Figure 1-2).

Although rocks now regarded as ophiolites have been studied
since the 18th century, for example, Brongniart (1827), Suess (1905),
and Steinmann (1906, 1927), a new interest has been generated in the study
of ophiolites since they were first conceived as being obducted
ancient oceanic crust. Within the last decade an impressively large
number of papers have been published on the petrology and geochemistry
of ophiolites. The initial interest in ophiolites was a consequence of
attempts to test the theory of plate tectonics by comparing ophiolites
with modern day oceanic crust. Comparisons have been made of the
physical properties, geology, petrology, mineralogy and chemistry for
ophiolites with similar properties inferred for oceanic crust from
geophysical observations and experimental petrology. Although
differences exist between ophiolites and modern day oceanic crust,
the similarities between the two are impressive. With the wide but
not universal acceptance by earth scientists that ophiolites represent
ancient oceanic crust and mantle, studies shifted to the use of
features observed in ophiolites to speculate about the geological
process that takes place at mid-oceanic ridges and the use of ophiolites

to raconstruct zones of ancient lithosnhers convergence.



Figure 1-2. Map of North America showing ophiolite occurrences (from

North America Ophiolites (1977): R.G. Coleman and W.P. Irwin, eds).
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However, during the Tast half of the last decade, samples
of the oceanic crust from oceanic ridges and ocean fracture zones
have been successfully recovered by both drilling and dredging.
Studies on these samples show that although the 1ithology of
ophiolites may not be significantly different from that of the
oceanic crust, the chemistry of some ophiolitic rocks are quite
different from the chemistry of mid-oceanic ridge rocks. As pointed
out by Karig (1971), Dewey and Bird (1971) and Miyashiro (1975)
oceanic crust could be generated at cher oceanic environments such
as marainal basins, island arcs, back-arc basins and inter-arc basins.
Consequently, recent studies on ophiolites have been largely concerned
with identifying the oceanic environment of formation of the ophiolites
by the use of such trace elements as Rb, Sr, REE, Ti, Zr, and Y.
Regretably, however, up tiTl now, no suitable geochemical parameters
for unequivocal distinction between the various oceanic environments
have been found, and the problem of environment of formation is still a
subject of debate amongst petrologists. Another aspect of ophiolite
studies which has always cenerated controversy among geologists is the
problem of the genetic relationship of the various rock types within an
ophiolite suite. Petrological and gecchemical consideration have been
used for postulating different models to explain the association of
ophiolite rocks.

Part of the present study is an attempt to deduce the environment
of formation of the Thetford Mines ophiolite and the genetic relationship

between the various rock types using their observed noble metal



abundances. This is essentially making use of noble metals as
geochemical parameters. Similar attempts have been made in using
noble metal ratios such as Au/Ir (Greenland et al., 1974), Pd/Pt
(Yushko-Zakharova et al., 1967), Pt/Pt+Pd+Ir (Cabri and Harris, 1975),
Pt/Pt+Pd (Naldrett and Cabri, 1976) as indicies of magmatic differ-
entiation.

Noble metals are becoming increasingly important both in
economics and in industrial use. It is therefore important that the
geochemical nrocesses of concentration of these metals and their
distribution in rocks be adequately known for exploration purposes.

At present the geochemical trends of noble metals in sulfur rich rocks
are fairly well known. This is so because the known hosts of noble
metal ores, particularly the Pt group metals, are sulfur rich rocks,
1ike the layered igneous complexes of Stillwater and Bushveld and other
sulfide bearing rocks such as those found in Sudbury and Kambalda,
Australia. On the other hand, the geochemical distribution of the
noble metals in sulfur poor rocks have not been well studied despite
the fact that some sulfur poor rocks are mineralogically and
lithologically similar to the sulfur rich rocks. Ophiolites are one
example of such sulfur poor rocks and a study of the distribution of
the noble metals in such a suite of rocks will throw some light into
the distribution and geochemical behavior of the noble metals in
sulfur poor rocks. Although Agciorgitis and Becker (1979), Becker and
Agiorcitis (1978) and Agiorgitis et al. (1979) have reported some

noble metal values for the Troodos ophiolite, no detailed noble metal



geochemical work has been undertaken on any ophiolite.

Mineral denosits of Cu, Zn, and Fe sulfides have been described
for many ophiolites, e.g. Constantinou and Govett (1973), Bonatti et al.
(1976), Duke and Hutchinson (1974). However, no noble metal deposits
have been reborted in any ophiolite. The sulfide deposits in onhiolites
are formed by'hot fluid leaching of metals from ophiolitic lavas during
hydrothermal alteration with redeposition of the metals as sulfides
towards the stratigraphic top of the volcanics. Although no major noble metal
has been reported in these deposits, there is spaculation that the noble
metals, particularly Au and Ag could be mobilized by hydrothermal
activity to form ore (Fryer and Hutchinson, 1976; Spconer and Fyfe,
1973). It is therefore of interest to study the effect of hydrothermal
alteration of the lavas on the noble metals, and the Thetford Mines
ophiolite was chosen for this study with the hone that the findings
will shed some 1ight into the behavior of the noble metals in aceothermal

systems.

1.1 Thesis Obiective

The nrincipal objective of this study is to determine the
distribution of some noble metals (Au, Ag, Pt, Ir and Pd) in the
ophiolites of part of southern Quebec, Canada, for the purposes of:
i) characterizing the ophiolites with respect to their noble metal

content,

ii) comparing the Quebec ophiolites with other rocks of similar



mineralogy, litholoay and chemistry from different tectonic
environments, in term of their noble metals, thereby determining
their probable environment of formation,

111) assessing the geochemical and mineralogical factors which control
noble meta! distribution in sulfur poor rocks,

jv) assessing‘the effect of secondary geologic processes like
serpentinization and hydrothermal alteration on the noble metal
distribution in rocks, and

v) evaluating the economic potential of the Quebec ophiolites with

respect to their noble metals.

1.2 The Study Area

The study area, situated in southern Quebec, Canada, lies
between latitudes 45°55' and 46°05', and longitudes 71°10' and 71°30°
(Figure 1-3) and occurs within the northern part of the Appalachian

Systenm.

1.2.1 The Geology of Southern Quebec Appalachians

Southern Quebec can be divided into three geological provinces
(Poole et al., 1970; St. Julien, 1972; and Laurent, 1975) which, from the
northwest to the southeast, are:
i) the Canadian Shield (Arenville Province) with Precambrian metamorphic,
igneous and sedimentary rocks,

ii) the St. Lawrence Platform which consists of flat lying lower



Figure 1-3. Map of the Appalachians Qf southwestern Quebec showing the
main structural zones and the major ophiolite localities (after Laurent
et al., 1979). 1) Precambrian crystalline basement. 2) Sedimentary
cover of the St. Lawrence platform (mainly Ordovician). 3) Cambro-
Ordovician outer zone or Appalachian allochthon. 4) Cambro-Ordovician
inner zone or Notre Dame schist belt. 5) Ophiolites. 6)AEar1y
Ordovician St. Daniel Formation (melanges). 7) Lower to Middle
Ordovician Formations of Weedon and Ascot. 8) Middle Ordovician flysch
of the Magog Group. 9) Siluro-Devonian belt of the Gaspe-Connecticut
Valley synclinorium. 10) Devonian granites. 11) Mesozoic alkaline

syenitic and gabbroic intrusive rocks of the Monteregian Hills.
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Paleozoic sediments (orthoquartzite and carbonate), a flyschoid
sequence and some minor occurrences of alkaline igneous rocks,
iii) the Appalachian System which is the host of the ophiolites.

The Appalachian System is an orogen believed to have been
developed by the destruction of an ancient continental margin of
eastern NorthrAmerica (Wilson, 1966; Williams and Stevens, 1974) and
extends from Newfoundland to Alabama.

In southern Quebec, the Appalachians consist of Cambrian-Devonian
rocks which have been tectonically deformed. They can be grouped into
northeast trending zones (St. Julien, 1972; Laurent, 1975), each zone
probably representing rocks formed during different stages of the
evolution of the Appalachians. From northwest to southeast, the zones
are (Figure 1-3): a) the External Flysch Trough

b) the Notre Dame Trough

c) the Gaspe-Connecticut Valley Synclinorium,

a) The External Flysch Trough (Outer Zone). This zone, lying

southeast of the St. Lawrence platform of flyschoid allochtonous

sequences, consists of a series of nappes, imbricated thrust slices

and klippen (St. Julien, 1972) emplaced duringCambrordovician times.

These rocks include:

i) Cambrian - Lower Ordovician: shale, sandstone, limestone and
conglomerate, believed to have been deposited during the initial
and main stages of the opening of the proto-Atlantic (Iapetus)

Ocean (Yindley, 1978) when two sedimentary environments - a
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continental shelf and a continental rise were formed,

ii) Mid-Ordovician: calcareous wild flysch, representing sediments
derived from foundering of the Cambrian carbonate shelf and the
redeposition of these sediments on the subsiding shelf. This
probably occurred during the main phase of the Taconic orogeny and

marked the initiation of the closing of the proto-Atlantic Ocean.

b) The Notre Dame Trough (Inner Zone). This zone comprises

formations which probably represent another part of the continental

rise and represents a deep sea facies formed during the initial

opening of the proto-Atlantic Ocean (Laurent, 1975). Formations include:

i) overturned Cambrian rocks of a) basal quartzite-shale-agreywacke
assemblage (Rosaire group) and b) an upper impure graded sandstone,
quartzite and greywacke (Caldwell group). Associated with these
sediments is an igneous complex of mainly mafic-ultramafic rocks
with felsic rock which together with the sediments form a belt of
about 250 km long. This belt extends throughout the length of the
Eastern Townships of Quebec and into the Schikshock mountain of
the Gaspe Peninsula. This belt is generally referred to as the
Serpentine Belt (Dresser and Denis, 1944; St. Julien, 1972). The
mafic-ultramafic rocks of the Serpentine Belt probably represent
portions of the oceanic crust formed during the formation of the
proto-Atlantic Ocean.

ii) Lower Ordovician rocks of raworked Precambrian rocks (St. Daniel

Formation) and calc-alkaline hypabyssal and volcanic rocks (Ascot
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and YYeedon Groups). The calc-alkaline rocks are believed to have
formed during the subduction of the proto-Atlantic oceanic crust
and therefore represent fossil island arcs. Locally they overlie
the mafic rocks of the Serpentine Belt,
iii) Mid-Ordovician flysch sequence of turbidite and black slate
(Magog Formation),
jv) Upper-Ordovician conglomerate-slate-sandstone assemblage (Sherbrooke

Formation.

c) The Gaspe-Connecticut Yalley Svnclinorium. This zone

¥ .

consists of mainly post-Taconic orogenic terrigennous rocks, carbonates
and volcanics laid down in Early-Mid Silurian and later deformed

during the Acadian orogeny in Middle-Late Devonian.

1.2.2 Occurrences of Onhiolites

The Serpentine Belt of the Appalachians in southern Quebec
owes its name to the fact that the ultramafic members of the belt have
undergone varying degrees of serpentinization and at present these
serpentinized rocks are the world's largest producer of asbestos. Ever
since the Serpentinite Belt was first mapped and described by Sir
William Léqan (1863) the mafic-ultramafic rocks have been subjected to
a variety of interpretations over the years. The current interpretation
is that they represent tectonically emplaced vestiges of ancient

oceanic crust and mantle (Laurent, 1975; Sequin and Laurent, 1975): in
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other words, the mafic-ultramafic rocks are ophiolites. Evidence
for their tectonic emplacement include gravity and magnetic data
which suaqgests that the rocks are rootless; lack of extensive
metamorphic aureole or chilled margins around the rocks that miaght
suggest intrusjon and their fault and thrust plane contacts.

The sﬁructura] and stratigraphic relationships of the mafic
and ultramafic members of the ophiolites are not everwvwhere the same
along the Serpentinite Belt. In some occurrences comnlete sequence
of ultramafic and overlying mafic rocks are observed. Other ophiolites
occur as slabs of ultramafic rocks only or dismembered ophiolites while
in some cases, the dismembered ophiolites are also fragmented and
occur as ultramafic lenses. Some of these incomplete ophiolite
suites have locally been interpreted as dykes, intrusive plutons or
mantle dianirs. Examples of these are the Mont Albert pluton and the
Penninaton Dike.

The discontinuous nature of the Serpentinite Relt has resulted
in the grouping of the ophiolites in southern Quebec into different
comnlexes. From the south to the north, these complexes are Orford,
Asbestos, Thetford mines, East Broughteon, St. Fabien and St. Omar
(Laurent, 1975) (Figure 1-3). This study is carried out in part of
the Thetford Mines Complex principally because it is tha most complete

and best preserved of the five ophiolite complexes.
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1.2.3 Pravious Hork

The first published geological records of the mafiﬁ-u]tramafic
rocks of southern Quebec are those contained in Sir William Logan and
Sterry Hunt's renorts for the Geological Survéy of Canada (1863) and
since then mah& workers have described these rocks, e.g. Harvie (1911-
1916), Cooke (1937), Dresser and Denis (1944) and Riordon (1953). The
main objectives of these early workers have been to define and identify
the major structural units of the area. However, with the racognition
of the mafic-ultramafic rocks as ophiolites or ancient oceanic crust
(Lamarche, 1972; Church, 1972, Laurent, 1973) extensive petrological
but Timited geochemical work has been carried out by St. Julien
(1972), Sequin and Laurent (1975), Hebert (1974), Laurent and Hebert
(1977), and Laurent (1979). These workers have confirmed the ophiolitic
nature of the mafic-ultramafic assemblage. They have also identified
the major lithological units of the ophiolite suite and described the
main petrclogical characteristics of the various lithological units,
However, geochemical and isotopic studies of the Quebec ophiolites are
still lacking and to the best knowledge of the author none of the
ophiolite complexes have been studied for noble metal geochemistry
until now.

In the p%esent study, no new field mapning was undertaken and
rocks which are described and analyzed here have been sampled by the
author using - maps of earlier workers. Geological description of

the rocks is based Targely on the limited observations made during
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sampling and supplemented by Titerature review.



CHAPTER TUO

GEOLOGRY OF THE THETFORD MINES OPHIOLITE COMPLEX

2.1 Structural Setting

The allochtonous massifs of the ultramafic and mafic rocks
together with some felsic rocks occurring in the Eastern Townships of
Thetford Mines, Black Lake, Coleraine, St. Daniel, Mt. Adstock and Mt.
Ham in the Province of Quebec, constitute what is generally known as
the Thetford Mines Ophiolite Complex. The complex is about 48 km long
with a maximum width of about 12 km (Hebert and Laureqt, 1979) well
exposed in most parts and easily accessible.

The rocks of the Thetford Mines Complex (TMC) occur in three
separate but parallel units, the Black Lake, Mt. Adstock and Mt. Ham
massifs, trending NE-SW (Map 1). These massifs have been thrust over
the country rocks and contacts of the ophiolite rocks with their
country host are invariably sheared and faulted. The Black Lake
massif which 1ies in the NW part of the complex has either been thrust
over the Cambrian Caldwell sandstone (Laurent, 1979) of underthrust
beneath the Caldwell sandstone (St. Julien, 1972) at its NW margin and
is limited on the south by the Mid-Ordovician flysch sequences
(Magog Group). The Mt. Adstock massif in the SE part of the complex

together with the southeasterly Mt. Ham massif, has been thrust

16



Map Ia. Map of Geology of the Thetford Mines ophiolite complex

showing sample locations. (also in back cover)
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Map 1b. Map of Geology of Lac de 1'Est area showing sample locations.
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between the Magog Group and the St. Daniel formation - a melange
sequence of black shale, siltstone, phyllites, sandstone, quartzite

and mudstone.

2.2 Lithology

Ultramafic rocks make up about 80% by volume of the Thetford
Mines Complex. Based on the classification of ultramafic rocks of
Streckeisen (1974), these rdcks include harzburgite, dunite, wehrlite,
ortho- and clino-pyroxenite and websterite. The mafic rocks are
mainly gabbro, basaltic and andesitic (?) lavas, diabase dikes and sills,
A reconstructed stratigraphy of the Thetford Mines Complex by Laurent
(1977) (Table 2-1) is similar to the stratigraphy of other ophiolites,
and suggests a stratigraphy consisting of a basal unit of peridotite
overlain by an upper unit of layered ultramafic and mafic cumulates
which, in turn, are overlain by hypabyssal and volcanic rocks and
capped by argillites of probable deep sea origin. Although the
Thetford Mines ophiolite is regarded as the most complete of the
ophiolite complexes in Quebec, there is no section where the complete
sequence from peridotite to volcanics could be traced. The most
complete section of the Thetford Mines Complex occurs in the SW part
of the Black Lake massif in the vicinity of Lac de L'Est and even here,
the ophiolite lacks the peridotite portion. For the purposes of
discussion, the ophiolite rocks will be described as metamorphic

peridotite, cumulates, hypabyssal rocks and volcanic rocks.



Table 2-1
Rock Units of the Appalachian Ophiolitic Belt of Southern Quebec

Arc island (?) (up to 600 m thick) Pillowed metabasalts, meta-andesites,
assemblage volcaniclastic tuffs, breccias, and mudstones
Extrusives B. Red chert and argillite
and  cover A. Pillowed metabasa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>