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PREFACE 

The motivation for this work came from the following question 

" posed by Dr. George Gratzer: If one considers various operators 

on classes of universal algebras, (for example, the one that assigns 

to each class of algebras the class of homomorphic images of its 

member algebras), then what can be said about the finiteness of the 

partially ordered semigroups that various combinations of these 

operators generate? 

In section one we prove a general theorem concerning the 

finiteness of finitely generated positively ordered semigroups. A 

corollary to this theorem is used in section two to give a partial 
It 

answer to Dr. Gratzer's question. 
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SECTION ONE 

PARTIALLY ORDERED SEMIGROUPS 

A partially ordered semigroup is a triple (G, -' , Cf ) consisting 

of a set G, a partial order ~ on G and an associative binary operation 

'f on G such that, for all a, b, c, d € G, if a ~ b and c ~ d then 

Cf (a, c) S ~ (b, d). As usual, we write ab instead of Cf (a, b), and 

G instead of (G, ~ , 'f ) . 

A positively ordered semigroup is a partially ordered semigroup 

G such that for all a, b (. G, ab ~ a and ab ~ b. 

Every maximal element b of a positively ordered semigroup G 

is a maximum, since for every c E G, one has cb ~ b and hence cb=b. 

This together with cb ~ c gives b ~c. Consequently, b is a maximum. 

Let G be a positvely ordered semigroup generated by a set s. 

The elements of G are products of finite sequences of"elements inS. 

For any non-empty set T ~ S, let (T] be the sub-semigroup of G generated 

by T., Define the T-length ~(a) of an element a ~(T] to be the 

smallest natural number n for which there exists an n-element sequence 

in T, the product of which is a. If (:r] has a largest element, say u, 

define nT = lT(u). 

Assume now that S is finite and that for each T ~ S, (T] 

has a largest element. We define numbers Nk' l ~ k ~ IS I as follows: 

N1 =max.{~ITSS, ITI =11 +1 

Nk =max. {~IT~ S, IT\ = kJ for k~2. 

l 



Theorem 1: A positively ordered semigroup G generated by 

a finite setS is finite iff, for each T~S, (TJhas a largest element. 

In this case: 
k 

If Tis a k-element subset of S, then lT(a)~ ~ N. for 
i=l J. 

every a E (Tl • 

Proof: The necessity is clear since any finite positively 

ordered semigroup has a maximal element which, as remarked above, is 

a maximum. 

Assume now that the condition of the theorem is satisfied, 

and that S contains n elements. It is sufficient to prove (•) since 

this implies that every element in G is a product of a finite sequence 
n 

of elements from S of length strictly less than ~N., and there are 
i=l J. 

only finitely many such sequences. We prove (•) by induction on k. 

k=l: Let x E. S. (!xl] has a largest element y, say of\x\-length n\xl. 

But then y = xn\~. Since G is positively ordered, we have for any 

n t l +m n txl n \ 1 n \ l 
natural number m ~ 1 x x = x xm ~ x x , hence, since x x is 

n 1 l +m n \x) 
maximal, x ,x = x ' • It follows that, for every element a 6 \PcH , 
llx\ (a)' n{xl~Nl. 

Now assume that (•) is true for a given k~ 1 and that U~ S 

contains k+l elements. It will be sufficient to show that every 
k+l 

element of (U) that is a product of J:fNi elements of U is equal to a 
k+l :l::L k+l 

product of strictly less than !IfNi elements of U. Let N =~ Ni and 

2 

l k i=l N i=i 
N =TIN1• Suppose a ~(u1 and a =TIYi' where y.€. U for each i, l!:i~N. 

i=l i=l J. 

. Nk+l N1 . N1 

Then a =If ( 1J a(i-l)Nl+j) • With ai = ua(i-l)Nl+j' we obtain 

Nk+l 
a • lT a. • We distinguish two cases: 

ial l. 



Case 1: For each x e. U and each natural number i, 1' i' Nk+l, 

1 
there exists a natural number j, 1 ~ j ~ N , such that y ( i-l)Nl +j =x. 

(uj has a largest element w, of U-length ~· i.e., 

w = 1l{-z., zi c& U for all i, 1'- i ~ ~· By assumption, for each i, 
i•l l. 

1 
1 ~ i~ ~· there exists a j, 1 S:j ~ N , such that zi 

G is positively ordered, and since~~ Nk+l' a= 

But w is the largest element of tu1 and hence a = w. Thus lu(a) = 
k+l 

lu(w) = nu ~ Nk+l< l.~Ni. 

Case 2: There exists an x ~ U and a natural number i 0 , 

l~io~ Nk+l' such that x f Y(i -l)Nl+j for all j, l~j~Nl. This 
0 . 

implies that ai € (u- {xU and, since U- ~ x/ has exactly k elements, 
0 ' 

by the induction hypothesis, it follows that a. has (U- {x} )-length 
l. 

0 

strictly less than N1 , and hence has U-length strictly less than N1 • 
i -1 k+l 

Now a = rf-r ai ) aio TI ai t and since lu <ai) 'N
1 

for each i, 

1=1 i=i +1 
0 

lu(a) < Nk+l~ • N. Hence, in either case, lu(a).( N for arbitrary 

a e. [ul • 

Corollary: If G is a positively ordered semigroup generated 

by a finite set S of n idempotent elements, and if there exists a 

bijection f: S ~{1, 2, •• n1 such that, for x,yE. S, f(x) ~ f(y) 

implies yx 'xy, then G is finite and all elements of G have S-length 

strictly less than 2•n1 
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Proof: It is sufficient to prove that, if T~S contains k 

elements, then (T] has a largest element and this element has 

T-length less than or equal to k, for then Nk~ k for k ~ 2 and 
n 

N1 = 1+1 = 2, and J=~Ni ~ 2•n! 

k 
To show this let a =-rlr yi be an arbitrary product of a 

i=l 

sequence in T. If f(yi) >.,.f(y. 1) holds for some i, 1 ~ i 'k, then by 
' J.+ 

interchanging yi and yi+l in this product, we obtain an element 

1 a ~ a. This observation, tog~ther with an induction argument and the 

idempotence of the generators, shows that the product of all the 

elements of T in their natural order (via f) is the largest element 

of [T] , hence !\r ~ k. 

It may be noted at this point that the result in the corollary 

can be improved,~e., an upper bound less than 2n! can be found for the 

lengths of elements in the semigroup generated by n idempotents which 

satisfy the hypothesis of the corollary. For example, if the n 

4 

idempotents are ~, •• xn and if~ is the one that satisfies xi~ ~~xi 

for all i, 1!; i ~ n, then every element of the semigroup is a product 

of a finite sequence of the xi's in which~ appears at most once. 

Considerations of this type will yield better results; however, for 

the purposes of section 2, it is sufficient to know that the semigroup 

is finite. In fact, even if we obtain the best possible result for 

the general case of the corollary, special properties of the operators 

considered in Section 2, such as CS=SC or PgS=SP=SP5, further reduce 

the size of the semigroups they generate. Hence the best results for 



the general case will still not yield the best results in the special 

cases we consider. 

On the other hand the upper bound given in Theorem 1 for the 

lengths of the elements cannot be improved, at least in the case 

n•2, as the following example shows. 

Let G be the free semigroup generated by two elements 
0 

t, u, and let ::=1 be the smallest congruence relation on G
0 

such that 

t3 ~ t
2 

and u 3 ~u 2 • Let a1 = G0/~. G1 is a semigroup generated by 

5 

v, w, the equivalence classes modulo =.
1 

of t, u respectively, such 

thatv3-=V2 , ..,3:w 2 • Let ~l be the smallest quasi-order on a
1 

satisfying 

(i) v .(1 w' 

(ii) If a, b E: a1 , then a ~l ab and b ~l ab, 

(iii) If a,b,c,d€G1 , and a ~1b, c '
1

d, then ac ~1bd. 
Define a congruence relation ~2 on G1 by a E 2b iff a "l b and b -41a. 

Let G = G1/~. In the usual way, "l induces a partial order ~ on G. 

It is clear from the definition of ~ 
1 

that (G, 4 ) is a positively 

ordered semigroup, generated by x and y, the equivalence classes 

of v, w respectivley, and that x< y, ~ = x2 
and ,.3 = y2 • The largest 

element of (lx1] is x2, the largest element of [tYU is y
2 

and hence 

N1 = 2+1 = 3. The largest element of G = ~x, yn 
2 

is y , thus N2=2. 

Now x2yx2 
has length 5 = N1N

2
-l. This can be seen either by writing 

down explicitly the elements of G and a multiplication table for them, 

-or by considering exactly which elements of G are identified with 
0 

each other in G via the two congruence relations on G
0 

and a
1

• The 

fact ~hat there is an element of G with length 5 shows that, for the 



6 

case n•2, the upper bound given in the theorem cannot be improved. 



SECTION TWO 

SEMIGROUPS OF OPERATORS ON UNIVERSAL ALGEBRAS 

A universal algebra is a set together with afamily;of finitary 

operations defined on that set. Two universal algebras are of the 

same type if their families of operations have the same indexing set 

and, if the two families are (fx\~ L and (gX)X E. L and if fA is an 

n-ary operation, then gA is also n-ary. All algebras under consideration 

will be of the same type. We assume that the reader is familiar with 

the notion of subalgebra, homomorphic image, isomorphic image, direct 

1 product, congruence relation, and quotient of universal algebras. 

A universal algebra U is a subdirect product of the family (Ai\ f! I 

of universal algebras if it is a subalgebra of the direct product 

i~\IAi and if, for each i, the restriction to U of the natural pro

jection P : TIAi~A. maps onto A .• 
j J J 

If (Ai) i E I is any family of universal algebras and if ;' is 

a filter on I, then the relation =f" defined on TI Ai by f ~ g 
iE:I 

iff \i \ f(i) = g(i)} E:. ~, (where the elements of a direct product 

i~\IAi are denoted by choice functions on (Ai\E.I)' is a congruence 

relation. The quotient algebra 1TAi/ =-f; of1TAi modulo this 

congruence relation is called a filter product of the family (Ai)iEI. 

2 
If~ is an ultrafilter TfAi/-~ is called an ultraproduct. Note that 

1. For a detailed discussion of these notions, see (41. Numbers in 

square brackes refer to the bibliography at the end. 

2. Ibid. 
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if t =~I\, the filter product reduces to an ordinary product. 

A universal algebra U is called a cover of the family 

(Ai) iE. I of universal algebras if, for each i, Ai is a subalgebra of 

U, and if U = U Ai. 
i~I 

It may be noted at this point that all these operators are 

invariant under isomorphism, i.e., if (Ai\ E. I and (Bi) iE I are 

families of universal algebras such that Ai is isomorphic to Bi for 

each if:: I, and if one of the above operations is applied to both of 

these families of algebras, the two resulting algebras will be iso-

8 

morphic. For example, if ~ is a filter on I, then the filter products 

TT A.;/ 'E'r 
iH ... 7' 

and TI B./aF' are isomorphic. 
iei 1 

A class of universal algebras will be called algebraic if it 

contains all isomorphic cop~ of the algebras contained in it. 

For an arbitrary class K of universal algebras we define S(K) 

to be the smallest algebraic class containing all subalgebras of algebras 

in K. Then S is an operator on arbitrary classes of universal algebras. 

Similarly the operators H, P, P5, PF' PU and C are defined, to correspond 

to homomorphic images, direct products, sub-direct products, filter 

products, ultraproducts and covers respectively. 

For two operators X, Y, we define XY by XY(K) = X(Y(K)) 

for an arbitrary algebraic class K of universal algebras. This defines 

an associative binary operation and so we can consider the semigroup 

G generated by these operators. The relation ~ is defined on G by: 

X ~ Y iff X(K) £ Y(K) for all algebraic classes K of universal algebras. 

Then (G, $ ) is a partially ordered semigroup. Moreover, since, if X is 



any one of s, H, P1 P8, PF' Pt1 or C, then X(K) 2K for all algebraic 

classes K of universal algebras, (G)~) is a positively ordered 

semigroup. 

9 

Lemma 1: The operators S, H, P, P8, PF' PU and C are idempotent. 

2 2 2 p2 2 Proof: The proof that S =S, H =H, P =P, S = P8, C =C is 

trivial. 

2 PF =PF: Let K be an arbitrary algebraic class of universal 

algebras and let A E PF2(K). Since PF is invariant under isomorphism, 

it is enough to consider A=iiEIIAi/=r- where ~ is a filter on I, 

Ai = ,TT Bij/=..lf: for each i, f i a filter on Ji and Bij C. K. 
j~J ~ 

i . 
LetS= £_Ji = \Ci,j) \i&I, jeJi1• The filtered sum Olof 

ie.I 
the family ( r i)i& I of filters is defined as follows: 

Ot= {M ~ S I {i I M(i)E ~ i1 E.~{, where M(i) = \j \ j EJi and (i,j)E. M1. 
It is easy to check that Oc. is a filter. For each fe l1 Bij' 

' (i,j)ES 
and each i~ I, define f(i,•) E:A. by f(i,•)(j) 

J. 
= f(i,j) for jE. J 1 • 

Define 'f : TT B .. -4>A by 
(i,j)E:S l.J J 

q (f) = ~ [f(i, •)] =Fi\~ I -
=f 

where 

square brackets denote congruence classes, and subscripts the congruence 

relations. For f,g E (i,j~els Bij' 

iff {i I {j ~ J
1 

I f(i, ·)(j) = g(i,- Hj)f E 5it E.£ 
iff \<1, j) \ f(i, j) = g(i, j)1 e. en 
iff f =o-c g. 



This, together with the fact that ~ is an epimorphism, 

yields that (i,j}e\S Bij/5~ is isomorphic to A. Thus A e PF(K). 

2 I 2 
Hence PF -' PF and thus PF :PF. 

10 

If fi' , f. are all ultrafilters, then 0( is also an ultrafilter: 
:1. 

If M 4, Ot then l i I M(i) €: ~it 4- ~ Since ~ is an ultrafilter, 

this implies that \i \ M(i) 4. 9 i} €: ~ • But the 9" i are ultrafilters, 

hence ~i I Ji- M(i)f ~i~€f. Now Ji- M(i) = (S-M) (i). Hence 

~ i} (S- M)(i) ~ ~ i ~ e f . This implies that S-M e 0t and hence 0c. 

is an ultrafilter. 

2 This, together with the above, yields that PU 'Pu, and hence 

Lemma 2: 

Proof: Let K be an arbitrary class of universal algebras and 

let A 6 PyS(K). It is enough to consider A=JS:A
1
;:.10 where fl is a 

filter on I and, for each i, Ai is a subalgebra of Bi' and B1 ~K. 

Then the canonical homomorphism from 1€liAi/==f to ~e\IBi/==~ is 

a monomorphism, and hence A € SPF(K). Thus PyS~SPF. The same argument 

shows that PUS ~ SPU' and, if f = \ Il , that PS ~ s~. 

Lemma 3: P~~ HPF' Pdf ~HPU' PH ~HP. 4 

Proof: Let K be an arbitrary algebraic class of universal 

algebras and let AE.PpJl(K). Since PF is invariant under isomorphism it 

is enough to consider A=i~II Ai/==f where f is a filter on I and, for 

each i, there is a Bi €. K and an epimorphism Cf i : Bi ~Ai. Let 

B • M Bi/~, and defineCf: ~eiiBi~ IJrAi by ('f(f))(i) •£fi(f(i)). 

3. PS ~ SP is proved in (11 • 

4. PH 'HP is proved in [i] • 



It is then obvious that, for any f,gc niB., that f:S.~ g 
l. E. l. 7' 

(inTlBi) implies that q>(f) =~q>(g) (in1TAi). Hence Cf induces an 

epimorphism~ of J£TIBi/D~ 

and thus P~ ~ HPF. 

on to TIIA ./a ~ 
l.E. l. 'I' • 

'l'he same argument shows that P UH -' HP U, and, if ~ • { I 1 , 

Lemma 4: 

Proof: 

4 
PFC~CPF' PUC~CPU' PC,CP. 

Let K be an arbitrary algebraic class of universal 

algebras and let AEPFC(K). We may consider A= iiE.tiAi/=~, where~ 

is a filter on I and, for each i, Ai = i\riBij where the Bij are 

subalgebras of Ai and Bij e K. For each r E i l~\IJi' let 

Ar•ile.\IBir(i)/!!:11' • Then the canonical homomorphism Cfr: Ar ~A 

is a monomorphism. Moreover, A= U c.J? r (Ar). Hence A€. CPF(K), 

rEiTJi 
iii 

and so PFC~CPF. The same argument shows that PUC~CPU' and, in the 

special case where f = ~I 1 , that PC ~ CP. 

Theorem 2: The partially ordered semigroups generated by the 

following sets of operators are finite: 

1. \ H, s, P, Ps\ 

2. ~H, s, P, PF' cl 
3. {H, s, PF' PU' C ~ • 

Proof: These sets of operators generate positively ordered 

partially ordered semigroups, and, by Lemma l, each of the operators 

in these sets is idempotent. We apply the corollary of Theorem 1: 

1. Define Cf :. ~H, S, P, P8 1 ->~1, 2, 3, 41 by 'f (H)=l, 

.. 

4. PC ~ CP is proved in (2] • 

11 



~(S) = 2, q(P) = 3, C('(P 8 ) = 4. It is sufficient to show that 

SH ~HS, PH'-HP, PS.SSP, P8H~HP8 , PSS~SPS' and PSP~PPS. The first, 

fourth and fifth of these inequalities are proved in (31 , page 44 ff. 

PH~HP and PS,SP are proved above. Since P4PS' PSP = P8 ~PPS. 

Hence the semigroup generated by H, S, P, PS is finite. 

2. Define~: ~H, S, P, PF' c1~~1, 2, 3, 4, 5l by 

q>(C) = 1, '\'(H) = 2, ~ (S) = 3, (\'(P) = 4, <f(PF) = 5. In addition 

to what has already been shown it is sufficient to show that P:Jti~HPF' 

P~~SPF' PFC ~CPF' Pr~PPF' PC ~CP, HC '-CHand SC~CS. The first 

three and the fifth inequalities are proved in the lemmas above, 

Hence the semigroup generated by H, S, P, PF' C is finite. 

3. Define ~: ~ H, S, PF' PU' C l ~{1, 2, 3, 4, 51 by 

<f (C) = 1, ~(H) = 2, q> (S) = 3, ~(PF) = 4, <:V<Pu> = 5. In 

addition to what is shown above, it is sufficient to show that , 

PUH ~HPU' PUS ~SPU' PUC ~CPU and PUPF~Pru· The proofs of the first 

three inequalities are in the lemmas above, and since Pu-'PF' 

PUPF = PF '=P?u• Hence the semigroup generated by H, S, PF' PU and 

C is finite. 

.. 
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