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SCOPE AND CONTENTS: 

The pulling of the free frequency of a nonlinear saturation-

type oscillator by an external forcing signal is investigated, the 

oscillator being described by the van dcr Pol equation. 

Both experimental and theoretical methods arc used to find the 

relation between the amplitude and frequency of the external signaland 
I 

the frequency pulling of the oscillator. 

The case of a sinusoidal forCing signal is examined theoretic-

ally, and experimental results are shown for a sinusoidal signal and 

also for narrow band noise. 
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ABSTRACT 

The frequency pulling of the van dcr Pol nonlinear oscillator 

due to an external forcing signal is investigated. The nonlinearity is 

of the zero-!llep-tory symmetric-cut ... offtype following a cube law. 

An experimental oscillator was built, and curves of the fre­

quency shift of the oscillator fundamental against the magnitude of the 

input forcing signal are shown~ both for a sinusoidal input and for a 

narrow band noise input. An empirical result is derived.· 

The case of the sinusoidal input is examined theoretically. The 

importance of harmonic and intermodulation frequencies in the oscillator 

output is shown, and relations giving the oscillator frequency shift 

are given for·small forcing amplitudes and for ·large amplitudes when 

the oscillator is nearly synchronized. 
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CHAPTER I 

INTRODUCTION 

Nonlinear systems exhibit phenomena not found in linear systems. 

For example, a spring-mass system with a nonlinear spring will have 

resonance curves similar to the linear case, but skewed.over, and the 

amplitude may have discontinuous jumps as the frequency is varied. 

In the autonomous case, an oscillator may have nonlinear damping. 

The basic negative resistance oscillator is made up of an antiresonant 

circuit in parallel with a negative resistance to cancel losses, and 
I d2e follows the (normalized) equation -- + e = 0 where e is the output 

dt2 

voltage. The frequency is 1 and the amplitude is entirely determined 

by the initial conditions. In the more realistic case, the negative 

resistance element is not precisely linear, due to the curvature in the 

tube or transistor characteristic for example. The van der Pol 1 equation 

de 
- + dt e = 0 (1) 

describes an oscillating system where the damping is negative near the 

origin, but becomes positive away from it. If a is zero, the system is 

linear, but if a is finite, however small, ·then the system has a fixed 

amplitude, t])e frequency is slightly less than 1, and harmonics appear at 

the output. The principal of superposition docs not apply, and special 

analytical techniques have to be used. First order approximate solutions 
1 
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to the van der Pol equation may be found in the standart texts. A 

number of methods of solution may he used, for example, the principle of 

harmonic balance2, the perturbation method3, the method of Andronov and 

Witt 4, or van der Pol mcthodli s 

If an external forcing term F(t) is introduced on the right hand 

side of equation (1), then both the frequency and amplitude are changed 

from the freely oscillating case. If F(t) is sinusoidal, the free oscil­

lation frequency is pulled towards the frequency of F(t), and modulation 

product frequencies appear at the output. 

The ·response of the forced van der Pol oscillator has attracted 

some attention, both in the case of F(t) a stochastic function 6 • 11 , and 

a deterministic onel,3,12,1~,14,16. 

If the oscillator is used as a local frequency standard, then the 

.effect of any extraneous inputs on the monochromacity or on the mean 

frequency is of great importance. This work is concerned with the 

deyiation·· of the oscillator frequency from its unperturbed value for 

inputs F(t) of small amplitude, and for small a. 

For the experimental investigation an oscillator was built which 

corresponded closely to the ideal van der Pol oscillator. To investigate 

the effect of random noise on the oscillator quantitatively, white noise 

from a noise generator was passed through a band-pass filter, and the 

resultant narrow band noise injected into the oscillator through a buffer 

amplifier. Internal noise, such as shot or flicker noise, can then be 

neglected in comparison with the injected noise, and quantitative measure­

ments madelS, 
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Chapter 2 describes the general nonlinear oscillator, and the 

van der Pol equation which describes an oscillator with cubic nonlinearity 

is derived. 

Chapter 3 details tho theoretical methods usod to inv~stigato tho 

frequency pulling phenomenon. Two main methods arc used, the general 

method of Gilliesl2a and a novel variational method, both of which 

demonstrate the importance of modulation products between the free and 

forced oscillations. A qualitative explanation of the oscillator 

behaviour under the influence of large amplitude narrow band noise is 

also given. 

Chapter 4 gives details of the experimental methods used. 

1.1 Review of the Literature: 

There is considerable literature concerned with the problem of 

noise in non-linear oscillators. In 1956, in the case of o•correlatcd 

white noise Rytov 10 used correlation methods to deduce expressions for 

the amplitude and phase fluctuations of the oscillator output. The part 

of the noise spectrum near the oscillator frequency is considered to be 

the major influence, and is expressed as a sine wave of slowly varying 

amplitude and phase. The method uses Fourier series and power series 

expansions to obtain a series of approximate linear equations. A 

simplification is made by associating the forcing term with a2 • A 

description of the method is given by Tanglob. 

In 1957Garstcns 17 investigated .the power spectrum of the noise 

driven oscillator by separating the nonlinear part of the noise from the 

linear part, and calculating the two spectral densities. The correlation 



4 

between the two parts is, however, not calculated. 

Udson7 deals statistically with starting time jitter and found 

that it depended only on "a", the value of the nonlinear negative 

resistance of the origin. The phase and amplitude spectral densities 

arc calculated for a driving force of narrow band noise centered about 

the oscillator frequency, and show that the oscillator spectral line 

width is broadened (phase modulation spectrum) and superimposed on weak 

broadband noise (amplitude modulation spectrum). The paper deals with a 

general nonlinearity. The parameter describing the nonlinearity is not 

. unique but depends on the magnitude of the disturbance as well as the 

values of the circuit elements, and so may not be easy to evaluate for 

the practical case. I 

Mullenl8 calculates the spectrum of the noise perturbed 

van der Pol oscillator, and obtains an approximate result by neglecting 

harmonics and modulation products. Golay9 considers monochromacity in 

an A.G.C. oscillator. 

More recently, Hafncrl 1 used a different approach, not involving 

any linearization of the non-linear equation, unlike previous work, or 

the slowly varying principlellb, where a solution of the form 

e = R cos (w t-e) is assumed and R and e are slowly varying quanti ties 
0 

compared to w t, where w is the approximate oscillator frequency. The 
0 0 

only assumption is that (in the derivation of the perturbation equation) 

u 2 and uu,.wherc u is. the disturbance, are negligably small compared to u: 

The van der Pol nonlinearity is taken as a specific example, and a 

perturbation equation, linear in the ~mall) disturbance is obtained. This 

equation is similar to the variational equation used later in this work. 
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However, although harmonics are considered, intermodulation products are 

not, the output being considered as narrow band noise at the oscillator 

frequency. 

It can be seen that considerable progress has been made with 

white noise, or narrow band noise centered about the oscillator frequency, 

as the forcing function. If the disturbance is at a different frequency 

from the free running frequency, intermodulation terms arc formed at 

frequencies away from the harmonics of the fundamental and these arc 

responsible for the frequency pulling of the free oscillator frcquencyl2h 

in the same way that the harmonics of the fundamental cause a slight 

deviation of the free oscillation frequency from that of the resonant 

circuit in the unperturbed oscillator. 

There are a number of papers using ·the Sine Wave model, in which 

the disturbance is approximated by a sine wave. As pointed out by Edson7 , 

this is not a very realistic model of noise, as the effects of fluctua­

ting phase and amplitude are omitted completely. It does, however, 

permit an investigation of frequency pulling phenomena. 

A general approach using a sinusoidal forcing function is given 

by Adler20 , for a nonlinear oscillator, or a linear A.G.C. oscillator 

whose A.G.C. time constant is much less than the beat frequency between 

the free and forced oscillations. Stover21, extending Adler's analysis, 

examines the output spectrum. His results are verified by Raue and 

Ishii 13 , but only qualitative experimental agreement was found with the 

theoretical values of the frequency and amplitude of the fundamental 

component. 
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A different technique is used by Gillies 12a. Here, power and 

Fourier series are used to reduce the problem to a single equation which 

may be solved for the frequency and amplitude of the fundamental. In 

theory the method may be carried to any desired accuracy, but in practice 

the algebra becomes very tedious after the fifth order modulation terms 

are taken into account. Only qualitative agreement with experiment was 

obtained when the method was used to examine frequency pulli~g in the 

van der Pol oscillator (Chapter 3). 

I 



CHAPTER II 

TilE VAN DER POL OSCILLATOR 

2.1 Oscillation Equation: 

The oscillator circuit used consisted of an LC parallel circuit 

in parallel with a cube-law voltage controlled resistor as in Figures 2.1 

and 2.2 below. 

i n 

r i c 

1 t L c 

iL 

FIGURE 2.1 

It can be seen that 

where 

i = -ae + be 3 

riL L 
diL 

e = + 
dt 

lienee, 

i 

+ 
t e 

Nonlinear 
Resistance 

ic = 

i 

e 

3 
i = -ae + be 

Nonlinear Resistance 
Characteristic 

FIGURE 2.2 

C de 
dt 

i = r cos (wl t :t" ¢1) n 

I cos(w1t + ¢1) = c~~ - ae + be3 + t J edt + f J Cic + i - i ) dt n 

7 



Differentiating: 

1 
+ LC c + 

= 

r 
LC [c ~ ..; ae + hc3 

8 

In g~ncral the Q of the tuned circtd t is high and so the term in r can he 

neglected. Hence, 

1 
+ LC e = sin 

or 

- a(l Se2 ) e + w 2 e 
Iw1 sin (w1t 4>) (2) e - w = -c- + 

0 0 

I 

where 

a 
8 

3b w 2 1 
a = Cw = - = LC a 0 

0 

which is the Van der Pol Equation, with a forcing term. 

If there is a positive resistance R shunting the circuit (the 

internal resistance of the current source, for example), then the value 

of a is modified. 

e 

a -+ (a - __!_) 
R 

8 is a factor which normalizes the amplitude. By replacing e by 

t and t by -- , the van der Pol equation. in its normalized form is 
wo 

obtained, Equation (1), for the unforced case. 



2.2. Solution of the van der Pol Equation: 

The van der Pol equation may be solved using standard 

techniquesl,2,3, 4 ,5. Since these methods are well known, only the 

results will be quoted here. 

The unperturbed oscillator output is: 

e = (2 - ia2) cos wt + i asin wt + ~ 6 a2 cos 3 wt - } a sin .3wt 

- ~6 a 2 cos 5 wt + _ _ _ 

where the frequency is given by 

w = a2 
(1 - - ----) 16 

for the normalized van der Pol equation (1). 

' ! 

9 

Thus it can be seen that the effect of the nonlinearity is to fix 

the amplitude of the output, and decrease the frequency. 

The above solutions are valid only if the nonlinearity is small 

(i.e. a<< 1). If this is not so, the output is not approximately sinu~ 

soidal as above, but consists of a relaxation type of oscillation24 • 

The method used by van der Pol for the driven oscillator is given 

in Appendix A. The oscillator resonance curves, and the synchronization 

limits are derived. 

The output in the region of combination oscillations (of free and 

forced frequencies) has been calculated to th~. first order terms, usi.ng 

the above methods, and the result is also given. 



CIIAPTER 3 

FQEQUENCY PULLING OP TliE VAN UER POL OSCILLATOR 

If an external signal is introduced into a linear oscjllator, the 

output is merely the sum of the oscillator output and the external signal. 

In the case of the nonlinear van der Pol type of oscillator, this is not 

so. Both the frequency and amplitude of the free oscillation arc 

affected, and if the external signal is too large, the free oscillation 

will be suppressed and the forced oscillation alone will exist, and the 

oscillator is said to be synchronized or entrained. 
I 

As the injected signal increases in magnitude from zero, the free 

oscillation decreases in amplitude and the frequency is pulled towards 

that of the injected driving signal, until the free oscillation is 

suppressed. Simultaneously, sidebands appear about the free frequency, 

of spacing equal to the frequency difference between the driver and 

partially pulled oscillator frequencies. The presence of these sidebands 

was observed in the experimental oscillator built, and has been observed 

in other types. of oscillator, such as a reflex klystron 1 3 , a tunnel diode 

oscillator21 , and a bulk GaAs oscillator2 5. 

In paragraph 3.2 the method of A. W. Gillies 12a is used to calcu-

late the amplitude and frequency of the free oscillation in the driven 

van der Pol oscillator. The results are found to be in only qualitative 

agreement with experiment. 

10 
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In paragraph 3.3 a variational approach is used to find the free 

oscillation frequency just before the oscillator becomes entrained. 

Although a sine wave is not a realistic model of narrow band 

noise, the frequency pulling of each is similar (see Figures 4.5 and 

4.6 ) in the region where synchronization does not occur, and both 

. follow a square law (sec Paragraph 4.7). 

3.1 The Approach of A. W. Gillies: 

The method is to assume a solution v which contains the funda-

mental frequencies (free and forced) and their higher harmonics and 

intermodulation products. This is substituted into the van der Pol 

equation and the coefficient of the component of the free frequency 

equated to zero by the principle of harmonic balance. This component 

consists of the fundamental term, and terms resulting from the inter-

modulation of the higher order terms. This then yields a complex 

equation describing the frequency and amplitude of the fundamental, from 

which the deviation of the free frequency from its free running value 

can be found. 

It is assumed that 

where wa is the free frequency 

wb is the forcing :freq~n9y 

n 
m 

and m, n are integers. That is, no coll)bination of 

ncar w . a 

w and a· is. 
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The basic approach of consideJing the oscillator output as the ' 

sum of the forced and fundamental frec1uencies and their modulation 

products and harmonics is described by Gillies 12b. The compl etc analysis 

of tho effect of these frequencies on tho mean oscillator ,free froctucncy 

is given in his earlier paper12a 

Consider the driven van der Pol equation(2), integrated and 

written in the form 

(3) 

where D is the differential operator, v is the oscillator output and e 

is the extern~l driving input. The nc,tation of e, V 1 wa' ~ is USt}d in 

this section to conform with Gillies paperl 2a. Then equation (3) is of 

the'form 

If a steady state has been reached when v is of the form 
jwkt . ·jwkt · 

t V e + V e 
k CAlk •CAlk 

then D may be replaced by jw, and henc·.e 
•.• 2 I . .., 

Ye • • C.cos~wbt'Y + P1 • aw0 ~ j(w - ~ ), P3 • 

(Expressed in terms of Figure (2.1), 

Y = ·- ~ where y is the admittallce of the LC tank circuit 
a b 

pl • c p = -3 - c 

(4a) 

I e = y cos wbt, the equivalent voltage generator in series ltith 

the tank circuit.) 

In the general case where the nonlinearity is not just a cubic 

(Fig. 2.2), but a general polynomial, then equation (4) t.akes the :form 
Ye • (Y + P1) v + p y2 

2 + P3v3 + 

~he output v consists of the !;urn of the two-first-order (free and 
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forced) frequencies together with higher order modulation frequencies 

, being the third order terms, and so on 

for the higher order terms, where w is the frequency of the free a 

oscillation. 

lienee let 

(6) 

where V(n) represents the sum of the nth order modulation products. 

Subti tution of this into equation ( 5) yields: 

Ye = (Y + p 1) [ vCl) + vC2) + vC3) + ] . 

+ p2 [ vCl) + vC2) + vC3) + ]2 ( 7) 

+ p3 ~ vCl) + vC2) + vC3) + 13 

Terms of like order can now be equated to give a set of recursive· 

equations for determining the vCn): 

Ye = (Y + P ) vCl) (Sa) 
1 

0 = (Y + P ) vC2) + P2V(l)2 (8b) 
1 

0 = (Y + P ) vC3) 
1 

+ 2P V(l)V{!l) 
2 

+ P3V(l)3 (Sc) 

The vCn) can be expanded into their frequencies. For the 

synchronized oscillator these are: 

vCl) = vb (I) + v_b (1) (9a) 

vC2) = v2b 
(2) '+ v (2) 

+ v-2b 
(2) (9b) 

0 

vC3) = v3b 
(3) v (3) 

+ b + v_b 
(3) ·(3) 

+ v-3b (9c) 

where 
.. jw

0
t 

v (1) c I v b c 1 ) I fo~ c 1) ) = e b 
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If both free (wa) and forced (wb) oscillations are present, 

then 

(10) 

and hence V(n) n = 2, 3, ____ can he found in terms of V (1), V (lJ 
. a -a 

Vb (1), V -b (1) from equations (Sa, 8b, · .•.... ), and equation ( 9) will 

thus contain cross modulation terms a:; well. [The first order equation 

· (Sa) yields 'w ·= w (1 p76, 2 p21S), and equations (Sb, Be, ••• ) will a . o . 

contain terms of frequency wa. The procedure is hence modified by 

letting Va (l) be the resultant term in wa, and setting the higher order 

terms in wa in equations (8) to zero. Equation (7) is then used 

instead of equation (Sa)] 

The y(n) can n~w be1found from equation (10) and equations (8b, 

8c,L and substituted back into equation (7). In this way, equation (7) 

is identically satisfied for all frequencies except the fundamental. 

The fundamental terms can now be picked out and equated to zero, the left 

hand side of equation ( 7) having no fundamental (w ) term. a 

Equat-ion ( 7) is then a complex equation determining the 

frequency and amplitude of the fundamental. The algebra is somewhat 

tedious, but the frequency/amplitude equation redu·ces, for the van der Pol 

oscillator (that is, P2 = P4 = P5 = P6 = ---= 0) up to·the fifth order 

terms., to 

+ 12V 2y 2 ( z; 
a b -b 

+ 6V 2y 2 ( z; + 
a b 2a+b 

l; )]l + 
2a-b 

I; ) 
-b 

+ 3V 4 ( l; + 
b a-2b 

l; ) 
a+2b 

(11) 



15 

1 
where ~· = y· P , and 

. 1 i+ 1 
the superscript (I) has been dropcd from the vCI) 

jw t 
(1) a 

for convenience. The term V e has been cancelled throughout, a . 
2 · ( 1 ) (1 ) j wb t 

and vb = vb v_b ,e 
-jwbt 

e 

The seventh order terms arc numerous, but all involve products 

of ~. and so may be neglected in comparison with the fifth order terms. 

The terms in ~3a,t 2a+b may also be neglected as being small as these 

frequencies are far removed from the resonant frequency 

For convenience the foHO\dng .. substitutions are now made: 

w = w + t:.w = fundamental frequency 
0 

wl = w + t:.wl = forcing frequency 
0 

X = 2t:.w/o.w
0 

xl = 2t:.w1/o.w
0 

y = jv 1
2 

a e 

y1 = 1Vbl 2 e 

Hence, using equation ( 4), 

y 
+ ~1 = o.w (1 - jx) a 0 

[1 o.(x - ~ )2 
y + pl = o.wo - j(2x- x1 ~ 2 ) ] 2a-b 1 + o.(x- ~) 

( 12) 

[I a(x - "l 
2 l 

y2b-a + pl = o.wo - j(2x - x- 1 2 ) 
1 

1 + o.(x1 - ~ ) 

If we neglect the o. 2 terms in the above, equation (11) becomes 

after substitution and separation of real and imaginary parts, 



from equations (4a) and (8a), which is still valid for Vb (l) 

These equations(l3)were solved for x and y for various values of 

x1 and y1. Figure 3.1 shows an experimental curve of the frequency 
0.2 

deviation of the fundamental from its free running frequency (=w
0

(1-16) 

from paragraph 2.2). Also plotted is the curve given hy equations (13). 

I 
In.thi~ case, 6w = 0 when I·~ 0 and the free oscillation coincides with 

w . This is shown (curve 1) by the fact that the 
0 

at the origin, but at a value corresponding to w
0 

curve does not start 
0.2 
16• which was 90. S I!z 

for the experimentally tested oscillator, for which w was 216 Kllz. 
0 

If the cl terms in equations ( 12) are considered, and the terms 

in t 3a etc. not neglected, curve 2 results. This starts at the origin, 

that is, the unperturbed frequency is correct, but the curve rises too 

steeply, and synchronization (y = O) occurs too early. With forcing 

frequencies nearer to w , these disparities were even more pronounced. 
0 

In view of this it can be concluded that either the seventh order 

terms are important, or that the experimental oscillator was not a true 

van dcr Pol oscillator. Since it is a second order effect which is being 

sought, it is important that the experimental circuit conform as nearly 

as possible to the ideal. The presence of a small square term in the 
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nonlinear element would cause extra spurious frequency deviations 

(although the second harmonic content of the oscillator output was very 

small (paragraph 4.1)). Also the active nonlinear clement may contain 

some nonlinear reactance. 

On the other hand, the current required to lock the oscillator 

agreed very well (Figure A2 ) with that calculated (Appendix A) 

indicating that the circuit was, to the first-order at least, a good 

approximation to the van der Pol circuit. However, at these higher 

values of the forcing current, the seventh order terms which were 

neglected would assume more importance, and may account for the 

disparities. 

· ~.7 Variational Approach: l 

3.2-1 The variational equation-

The method used here is to assume a solution 

e = e + E; 
0 

where e is an approximate solution and E; is a second order correction. 
0 

In the case of a general nonlinear resistance following the law 

i = f(e) 

the oscillator equation is 

e + 

where F(t) 

1 df(e) 
C de 

. 
e + w 2 e = F(t) 

0 
(14) 
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When i = -ae + bc3 this results in the van der Pol equation derived in 

Chapter 2. 

This can be rewritten: 

Let 

Expanding f(e) as a 

f(e) = f(e
0

) 

and so, 

df(e) df(e0 ) 
= dt dt 

1 Jf(o) ... c -ar-

e = e + E; 
0 

d 
de 

e o -= -- + dt dt 

= -- + 

I 

Taylors series about e gives 
0 

df(e
0

) 

f; 
d2f(e

0
) £;;2 

+ + 2T + de de2 

dE;;. 
df(e ) d df(e ) 

0 0 
+ dt + f; dt de de 

£;;2 d 
d2f(e ) 

0 
+- dt + 

2 de2 

Substituting these equations into equation (14) , gives 

d2e d2; 1 [ df(e ) 
dE; 

df(e ) d 0 0 0 
+ E;; -- + + c + dt dt dt2 dt2 dt de 

------

d d2f(e ) 
+ E;;~ 0 

dt de2 

df(e
0

) 

+ ---1 de 

(15) 



Since e satisfies equation ( 14) to the first order, equation ( 15) 
0 

reduces to the variational equation for small variations ~: 

d2~ 1 
df(e ) 

d~ [w
0 

2 1 d df(e
0

) ] 0 
~ 0 (16) +- dt + + c dt -' 

dt 2 c de de 

where terms in~olving ~ 2 , ~~. or powers of ~ higher than these have 

been neglected. 

For a system with a van der Pol nonlinearity 

f(e ) = i = 
0 

-ac 
0 

+ be~ 
0 

= -a + 3be 2 
0 

and hence equation ( 1 '6) becomes 

Writing 

gives, 

a = 

[ w 2 + 
. 0 

a 
Cw 

0 

6b ·e -:c 0 

B 
3b = -a 

de · 
a (1 - Be 2 ) w

0 
dd~t + [w 2 + 2aBw e --

0 
] 

0 0 0 o. dt = 0 

(17) 

which is the first order variational equation to the van der Pol 

20 

equation (1). The ·stability conditions (A7) and (AS) can be derived from 

this equation. The oscillator output when synchronized may be written 

with F(t) 

e =·E cos w
1

t 
0 1 
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Substituting this into equation (17) yields 

(18) 

If ~ 
st = Ae cos(w1t + A.) is substituted into equation (18) and 

st st .. 
terms in e sin w1t and e cos w1t separately equated to zero, two 

equations in A sin A. and A cos A. arc formed. If the determinant of 

coefficients of these is then equated to zero for consistancy, a single 

fourth order polynomial equation in S is obtained. Applying the Routh 

stability condition for negative roots of S yields the stability limit 

equations (A7) and (AS). 

3.2-2 I Frequency of the free oscillation at the 

stability limit-

When the oscillator is close to the stability limit, that is, 

when the free oscillation has a very small amplitude and the oscillator 

is nearly synchronized, the output is found to consist of sidebands 

about the driving frequency of spacing (w1 - ~ where w is the frequency 

of the free oscillation. The most significant of these sidebands arc 

those adjacent to the driving frequency, that is at ~and (2w1 - ~). 

Using the method described in Appendix B, the approximate relative 

magnitudes of the sidebands are shown in Figure 3.2 below. 

FIGURE 3.2 

Output Spectrum 

Near Locking 

Relative 
Amplitude 

0.04 
. 0.2 

1 

0.08 0.02 
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'1: .w1 



As a first approximation, therefore, let 

~ = A sin (wf + ~) 

+ B sin ((2w1 - w}t + e) (19) 

and substitute this into equation (18)), together with the stability 

limit condition·derived in Appendix A,,for w
1 

away frqm the ellipse 

E 2 
1 = 2 

8 

Equating coefficients of sin w;., cos w;, sin (2w1 w; t, 

cos (2w1 - wjt separately to zero gives the four equations. 

(w 2 
0 

0 

X 

0 0 

(w 2 - lw2f) -aw ~ 
0 0 2 

awo (wl - I£) [C2wl - w/2-wo 2] 

0 

A cos ~ 

A sin ~ 
= 0 

B cos e 

B sin e 

The condition for consistancy is: 

-aw ~ o T. 

[ ( 2w - .. ..l 2 -w 2 ] 
1 '"1" 0 

0 

0 

(C2w. - ~2-w 2) 1 0 

(20) 

,- 0 
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Substituting wt= w1 - 6 and normalizing w
0 

= 1 gives: 

-t (wl - o) 

[Cw
1

2 - I) + 2w1o + o2J 
= 0 

Solving this, 

' 

Now the frequency shift of the 

free oscillation from its 

unperturbed value is 
I 

·where 

wf = free frequency 

wl = forced frequency 

wfo = unperturbed free frequency 

(1-
cx2 
16) 

Hence the frequency deviation at critical locking is given by: 

cx2 (wl 2 - ~) 
wf- wfo = T6 w

1
(w

1
- 1) 

where the frequencies are normalized with respect to w
0 

= 1. 

(21) 

w 

(22) 
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This may be compared with the deviation calculated by van der Poll 

where 
= 32(w

1 
...; 1) (23) 



24 

is the frequency deviation from w
0 

(normalized to 1). 
Cl2 

If the free running frequency is taken as (1- T6 ), then 

. equation (23)) becomes: 

(24) 

although it is questionablci to do this since to the order of accuracy of 

van der Pol's solution the free running frequency is w
0

• (This is 

bec;auc;e only the fundamental component of· the nonlinear element output 

was considered). 

The analysis can be extended to· include the third harmonic of 

the forced oscillation. In this case, 

I 

c
0 

= E1 cos ~l t + E3 cos. (3w1 t + ~) 

and the variational equation .(17) becomes 

E 2 

Cl {I - s-1-2 

and the variation ~ is taken as 

{w 2 -
0 

(25) 

The method is similar to the prev;ious solution, although the alge-

bra is rather lengthy, the solution is: 



... 
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= 

w 2. 
1 (26) 

These three formulae were compared numerically, and the results 

are given in the table below, with w
0 

normalized to 1. 

Equation ( 24) 
wl Equation ( 22) Equation ( 26) (van cler Po 1) Experimental 

0.694 0,036 X 10-3 -0.388 X 10-3 -0.265 X 10-3 -2,78 X 

0.926 -2.130 II -2.510 II -2.38 II -6.02 

1.158 1.921 II 1.644 II 1. 741 II 3.14 

1.390 1.104 II 0.866 " 0.954 II 1.20 

1.621 0.883 II 0.675 II 0.755 II 0.787 

1.851 0.777 II 0.590 II 0.664 It 0.671 

2.084 o. 711 " /0.543 " 0.611 " 1.16 

The values taken for w1 correspond to the frequencies used in 

the experimental curves of Figure 4.6, and a was taken as a = 0.0819, 

the value used experimentally. 

3.2-3 Frequency of the Free Oscillation for 

Small Disturbances 

For small disturbances, e in the variational equation, 
0 

10-3 

II 

" 
" 
II 

" 
" 

equation (17), is set equal to the free running undisturbed output, which 

is (Chapter.2.and Appendix A) given by 

2 
= rs cos ~ 



· The variational equation then becomcsi with 8 normalized to 1 

!; + a [1 + 2 cos 2wf] w
0
t + [w0 

2 
- 2aw0 wfsin2wt] !; = - f~~ sin w1 t . 

. . (27) 

Since the free running solution was used for e
0

, the right hand 

forcing term is not cancelled. 

In this case it is expedient t,o choose (paragraph 3 A··) 

~ =A sin (w1t + ~) 

+ B sin ((2wf- w1)t + e) (28) 

which are the two main sidebands. 
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Substituting this into the variational equation, and equating 

the coefficients of sin w1tf cos w1t, sin (2w- w1)t and cos (2w -w1)t 

separately to zez'o yields the four equations, written in matrix form as: 

1-w 2/w 2 -aw/w
0 

0 · -awfw
0 

1 
1 0 

aw1/w
0 

1-w 2/w 2 -awfw
0 

0 
1 0 

0 -a(2wrw1)/w
0 

l-C2crwl)2/wo2 -a(2<yw1) /w0 j (29) 

-a (2wfwl) /w
0 

0 (2w~ 1)/wo 1- C2urw1) 11,w~ 

A ~ 

Iw1 cos - C"W7 
0 

A sin ~ 0 
X = 

B cos e 0 

B sin e 0 

which is similar to equation (20), but has fewer zero elements. For 

convenience the time scale has been normalized as in Chapter 2 i.e. 

To simplify the algebra, we make the substitutions: 



a = W/Wo 

b = (2w - wJYw0 

and normalize 13 = 1. 

The equation becomes: 

l-a2 0 A 1jJ 
I a 

-a a -a a cos - Cw
0 

a a l-a2 -a a 0 A sin 1jJ 0 
= 

0 -ab l-b2 -ab B cos e 0 

-ab 0 ab l-b2 B sin e 0 

The magnitudes and phases of the sidebands can now be found. 

Hence, 

A sin 1jJ 
I · a2 (1 _ b2) 2 /l:. = a.--

Cw 
0 

B e a2 I b [a(l - b2) b(l - a2)]/ t:. cos = Cw
0 

B sin e I ab (1 - a2) (1 - b2)/t:. =· -a--Cw 
0 

where t:. is the determinant of the coefficients 

The solution may be written (with B normalized to 1) as: 

e = e + ~ 
0 

(30) 

= 2 cos wt + A sin (w1 t + ljJ) + B~.sin ( (2w-w1) t + 6) · (31) 

with A and B given by equations (30). 
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\Ve now return to the van cler Pol equation, equation (2) to obtain 

the final relation needed to find the frequency. 

If equations (30) are substituted into equations (2}, and the 

· coefficient 'of cos wt equated to zero. the following equation is. 

obtained: 

w 2 
-f 
w9 

- 1 - ~ (A sinljl ·scose +A coslj; Bsin e) ~ = 0 
wo 

Since A sinljl Bcos a<< A cosljl· Bsin a, this is approximately 

w 2 a. 
.....-f - 1 - 2 A COS1jl wo . 

Bsin a . ...!li = 0 
w 

0 

Ignoring powers of a. greater than a.2 

A cos 1jJ 
I 

Bsin e 

The frequency deviation is small, so we look for a root of 

Let ~f = 1 + 6 
w 

0 

b = (2 a) + 2 

b2 = (2 - a)2 +4 

Equation (33) then becomes: 

a.2 
2 6- 2 

wf - w 
where 6 fo 

= w 
0 

6 

6(2 - a) 

a2 (2-a + 26)(1 +o) 

Ignoring terms in o2, the solution is found to be: 

w 
w 

0 

a 2 (2-a) (1 + (2-a) 2 j 
(a-1) 3 (l+a)2(3-a)2 

. (32) 

(33) 

near 1. 

= o. 

(34) 
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with the amplitude normalizing pnramcter B reinserted. Values obtained 

from equation (34) are tabled below, and correspond with the frequencies 

experimentally used, in Figure 4.7. 

INPUT 
FREQUENCY 

150 KHz 

200 

250 

300 

350 

400 

wo 
,- = 216 k'Hz 
2.'1r 

a EQUATION 

.694 -3.74 

• 926 -314. 

1.158 29.6 

1.390 1.8 

1.621 .34 

1.851 .08 

I 
I = 10-1 mA(peak) 

(34) EXPERHIENTAL 

Hz -1. 7Hz 

-74 . 

14. 

1.7 

.29 

.02 

C = 780 pF a = .0819 
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3.3. Elementary Approach for a Large ~arrow 

Band Noise Input: 

When white noise is passed through a narrow band filter, it can 

be shown that the output is of the form22' 

ll(t) = V(t) cos (w t + ~(t)) 
n 

where wn is the filter centre frequency, and V(t) and ~(t) arc slowly 

varying random time functions, varying with a maximum frequency of ~::>f, 

the filter bandwidth. The double sided spectrum S(f) is of the typc:­
S (f) 
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It should be noted that while Vt and cpt are independent random variables, 

the processes yielding them arc not independent. Sec Reference 22. 

The cumulative distribution for vt is: 
v 2 v 2 

v t c 
vt 

-·-
P(V t ..:;: Ve) I e 2a 2 

dVt 1 
za2 

= e = - e 
a2 

0 

Now if a is large, the noise input to the oscillator will rise 

above the value required for synchronization, and the oscillator will 

lock onto it. When it drops back below this value, the free oscillations 

will recommence. Thus from the above, the proportion of the time the 

oscillator is locked can be found, and the net frequency·is then; 

where f = oscillator unperturbed frequency. 
0 

(35) 

The assumptions are that the oscillator locks and unlocks 

instantaneously onto Vt, and returns to its free running frequency when 

unlocked. 

Neither of these assumptions are true. The oscillator required 

of the order of 200 cycics to lock or unlock (the ~nlocking transient is 

slightly faster than the locking transient, but both ar~ of this order). 

Also the oscillator docs not drop back to f in the unlocked condition, 
0 

but to some frequency near f , depending on the magnitude of the noise. 
0 

The error, however, becomes insignificant when an appreciable proportion 

of the time is spent in the locked condition. 

The approach does not hold iff n ~ nf
0 

(n = 
1 1 
~· !' 0, 1, 2,-~ 

since resonances will occur. 
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If the rms magnitude of the noise is low, the time spent above 

the locking value becomes very small, and the oscillator rarely becomes 

synchronized. In this case the frequency shift of the oscillator is due 

almost entirely to the pulling effect seen in the sine wave disturbance 

case, paragraph (4.~. Calculation shows that the knees in the curves of 

Figures 4.5 and 4.6 occur when the magnitude of the narr6w band noise 

is large enough so that it remains above the critical locking value for 

several hundred cycles, allowing synchronization to occur. 

Figures 4.5 and 4.6 are graphs of the frequency deviation from 

the free frequency against the· rms ma:gni tude of the input noise current. 

Also plotted (dashed curves) are the curves obtained from·Equation (35). 

It can be seen that agreement is at best only fair;curves for 
I 

noise of centre frequency below 125kHz, were not plotted as the agree-

ment was very poor. 

However, considering the difficulties in obtaining the curves, 

and also in obtaining the data for the calculation, the agreement is 

remarkable, and shows that a random locking phenomena in fact occurs. 

3.4 Discussion of the Methods 

The method of A. W. Gilliesl 28 is of some interest since 

theoretically it is possible to consider the effect of as many harmonics 

as desired. However, as has been found in practice, the algebra becomes 

rapidly intractable. The solution is in the form of a series, equation 

(11), and it is difficult to ascertain its convergence. The frequency 

deviation is, however, proportional to i2 over the rising part of the 

curve (Figure 3.1 curve 2), although the empirical relation 

0 
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Frequency Shift 
1 

obtained in paragraph 4.7 does not hold when w1 is varied in Gillics' 12a 

formulae. The method docs, however, show the importance of the higher 

order modulation terms, and indicates that the seventh order terms may 

be significant. 

The variational technique of using a known solution to find a 

better higher order solution is also useful; Hafner 'sll method being of 

this .type. 

The variational equation used in paragraph 3.2-2 is different 

from that used in paragraph 13.2-3 in that the right hand forcing term · 

F(t) has been cancelled by the first order solution, and that in para-

graph 3.2-3 has not. This means that in 3.2-2 we are not obtaining a 

"better" solution when the oscillator is just locked, rather we are 

introducing a perturbation ~ at the output and examining the nature of 

this perturbation to find its frequency; while in 3.2-3 we are examining 

the variation in the output due to a small perturbing input. 

The choice of ~ is of significance. Consider the variational 

equation (18), If we assume ~=A sin wt in paragraph 3.2-1; modula-

tion frequencies of w and 2w1 - w arc produced after the substitution of 

~. and the frequency 2w1 -w cannot intermodulate to produce w. It can 

be seen that in this case, the solution is w = w
0 

and there would be no 

frequency shift (from inspecting equation (20)). Therefore, if frc-

quencies w and w1 arc present, so also must the frequency 2w1 - w, and 

this has to be recognized in the choice of t. Thus, if ~ is chosen as 
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in equation (19), the required third order modulation product of 

frequency w will result. 

A similar argument for the free running oscillator will show 

that the thirc.l ho.rmonic, 3w. in tho output (Chaptor 2) intomodulntos in 

the nonlinear element to produce a current of frequency w, but having a 

different phase than the first order component. The resonant circuit 

must then be slightly reactive to restore the phase shift round the 

circuit to zero~ which causes the slight lowering of the frequency from 
a2 . 

w
0 

to w
0 

- 16. w
0

• 

The same reasoning applies to paragraph 3.2-2, the term of 

frequency 2w - w
1 

is necessary to obtain the third order modulation pro­

duct of frequency w, whose ~hasc determines the frequency of the funda-

mental.· The phase angle included with the frequency 2w- w1 is neces­

sary bec~use this frequency originates from the third order modulation 

products of w and w1, and its phase is thus related to the phases of 

these frequencies. The phase angle ~ associated with w1 is the phase 

angle between the drivin~ current and resulting voltage of this frequency. 

Equation (29) can also be obtained directly from the van der Pol equation 

(2); the procedure is the same, but substituting equation (28) into 

equation (2) instead of the variational equation (27), and neglecting B2 

compared to the squared amplitude of the fundamental. If the third 

harmonic is included, that is 

c' = e + Dsin (3wt + A) 

then the e~pression in parenthesis of equation (32) contains the 

additional terms: 



w 
w 

0 

D cos >. + 
ABD 
-2- cos (>. - e -$) 
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E The first term, with D cos A. = - a S , E = normalized free run-
a2 

ning amplitude (Chapter 2), gives the constant deviation of- T6 w
0 

from 

w 
0 

This is evident also in Gillies•l 2a solution, curve(~ (Figure 

3.1) including the third harmonic (represented by the presence of r;; 3a in 

equation (ll)) shows zero deviation from the free running frequency 

while curve 1 (which does not include z; 3 ) ·gives the free running fre-. a 
a2 

quency as w
0 

, that is, a deviation of I6 w
0 

from the actual. The 

second term is of order a2 and so can be neglected to the order of 
I 

approximations used in 3.3-2. Additiona-l terms to the above are intro-

duced by considering the two sidebands about 3w3 , of frequency Zw + w1 

and 4w - w1, but these arc of order a 2 , also. 

The agreement with experiment is only fair, as can be seen.from 

the table of equation (34). Qualitatively, the triple p~le at ~ - I is .:; 

in experimental agreement J as is the fact that the frequency deviaticm 

is proportional to the square of the input perturbation. 

Stover's 2 1 observation of the assymmetric sideband distribution 

.can be explained in terms of the above theory, ?Y noting that A (para­

graph 3.2-2 or 3.2-1) is an order of a higher than B. Carrying this 

further, consider an output with frequencies w, w1. These will inter­

modulate in the nonlinear clement and produce the sideband (2w - w
1

la) 

where (a) indicates that this sideband has a magnitude of order.a. ~ow 

consider an output of~ frequencies w, w
1

, (2w -·w
1
)(a). These will 
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similarly intermodulate and prDduce 3w(a
2
), (3w- 2w

1
)(a

2
) as additional 

frequencies. Thus it can be seen that the sidebands on 

the side of the fundamental opposite the driver arc of the same order 

as :; those on the same side as the driver. Furthermore, each sideband 

is a times its neighbour nearer the fundamental, also obse.rvcd by 

Stover21 • 

log (Amplitude) 

I . 1 [ 

t+-1 31+-l 
~('J 
I I 
..-1 ..-1 

f+-l..-1 3 3 
3 3 N t'l 

I l 

Fundamental/."' 
w 



CHAPTER IV 

EXPERIMENTAL INVESTIGATION 

The nonlinear oscillator circuit of Figure (4.1) was set up to 

experimentally examine the van der Pol oscillator. 

4.1 Oscillator Circuit: 

The non-linear element was simulated by using the cathode coupled 

double-triode circuit of V3 in Figure (4.1). The first stage, a cathode 

follower, feeds the second, a common grid amplifier, which provides the 

inversion necessary for negative resistance operation. 

To obtain the cubic form required, the tubes were biased near 

cut-off, so that one, V2b, · eut..:off .. on the positive half cycle and V2a 

on the negative half cycle. By adjusting the cathode resistor, the 

amount of ' cut-:tlff . could be varieq, which corresponds to varying the 

cubic coefficient b in the nonlinear resistance characteristic, 

i = -ae + be3 

The resistor shunting the circuit can be altered to change the 

.resultant value of a. 

The voltage I current characteristic of the circuit could be 

displayed on an oscilloscope using the 1000 resistor for the current 

measuremcn.t. 

Also in the circuit is a potentiometer chain which changes the 

relative biassing of the two tubes. This is necessary to ensureth~t the 
37 
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characteristic is· symmetrical, that is, there is no e2 term in the non­

linear characteristic. This can be adjusted by examination of the 

oscilloscope characteristic, but it was found that a more accurate 

setting could be obtained by examining the free running oscillator for 

any second harmonic. By very careful adjustment, the second harmonic 

content of the oscillator was reduced to less than 0.1%. When doing this, 

the filter must be connected directly tQ the oscillator, since a buffer 

amplifier will introduce enough. second harmonic to mask that of the 

oscillator. 

The oscillator circuit was completed by adding the LC tank 

circuit as shown. 

Tubes were used ratryer than transistors because of the better 

aging charac_te.ristics, and the better input/ output isolation. When 

transistors were tried it was found that the junction capacitance varied 

with time and teJ11perature to give a random frequency drift in the oscil­

lator output. This was largely avoided by using tubes, and allowi.ng the 

oscillator to warm up for.several days while enclosed in a box to exclude 

draughts. The oscillator was also mounted on shock absorbant material 

to avoid microphonics. 

4.2 Noise Source: 

The narrow band noise source was obtained by passing white noise 

from a noise generator through a narrow band filter. The filter 

consisted of a simple L.C. circuit, as shown below in Figure (4.2). 

A coil of 1.71 mH (using Ferroxocube) gave a Q factor > 100 up 

to 150 KHz and a coil of 356 llll (Mullard) gave. 0 > 100 from 150-400 Kllz, 



thus covering the entire range of interest. 

17pF 4.7pF 

~~~~--~--~~ 

White 
Noiso --- 6000 
Source 

. 4.3 Input/Output Circuits: 

(i) Input-

FIGURE 4.2 

- to prc•ampli fior 
1300pF 
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The noise filter outpu~ was fed into a preamplifier Vl, 

Figure 4.1. The 12AX7 is a high-~ double triode tube, whose output 
I 

was fed to the pentode current-source driver stage V2. V2 was biassed 

at 11 rnA and it was found that it delivered up to 2 rnA rms of signal 

current before saturation effects occurred, and that 2.5 rnA would be 

delivered before this became.serious. 

(ii) Output-

It was found that the direct connection of measuring 

instruments (voltmeter, counter, etc.) to the oscillator affected the 

oscillator frequency and amplitude. An output buffer amplifier was 

therefore provided. 

This consisted of a high pass (8 :KHz.) RC filter feeding a 

cathode follower as in Figure 4.1, Thus a constant output load was 

presented to the oscillator, independent of the various meter settings. 

For the larger values of input noise, the oscillator output was found to 

be highly amplitude modulated, and as the counter used did not count 
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small inputs' the wave was clipped and amplified by the clipper circuits 

shown, to produce an approximately square wave output, of the frequency 

. of the zero crossings of the input. 

Alternatively, the' frequency of the fundamental could be measured 

by inserting a band pass filter after the cathode follower V4a, although 

in this case, care had to be taken that the resulting phase shift in the 

clipper circuits did not feed itself back to the oscillator) by capaci-

tive or inductive coupling in the wiring for example, and thus affect 

the free running frequency. 

4.4 Measurement of Circuit Parameters: 

The parameters to be determined·are L, C, and a, b-.-the negative 

·resistance parameters. These para-

meters must be determined under 

working conditions, that is, with the 

input and output buffer amplifiers 

connected. 

The values of L, C and the Q factor of the coil were found using 

a Q-meter. 

The values of a and b can be found from the geometry of the 

nonlinear resistance characteristic which can be displayed on an 

oscilloscope (Figures 4.3 and 4.4). 

i = -ae + be 3 

di 3be2 
de = -a + 

= 0 at turning points, A and B •. 

i 

3 i =-ae + be 

FIGURE 4.3 



Also at 

Hence a= 3be2 and we find: 

b = 
at the turning points A and B. 

a = 3be2 

Point C i = 0, e = If. 
Values found in this way were: 

a = 0.25 X 10-3 l) 

b = 8,70 X 10-6 '/1V2 

The value of "a" obtained in this way must be modified to 

1 a -+ a -·if. 
~ 

in order to be of use in calculations. R, is a distributed resistance 

made up of the input and output buffer amplifier re,si$tance$ and the 

(neglected) tank shunt resistance. 

It is known that in the free running state, the oscillation 

amplitude is: 

I 1' 
4 (a - if) 

= 3b 

4a 
3b -

4 
3b 

1 
if 

where R is an external 
shunt, and a is the 
modified value. 
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If. E'2 is plotted against 1/R a straight line, slope - ~b' intercept "a" 

on the 1/R axis, should result. This was done; the oscillator was 

shunted with various known resistors and the amplitude noted. The resul-

tant graph was linear, and gave the values below which are the values 

used in the calculations. The error in the value of "a" was estimated 



Tho value of b was adjusted within its range of error so that the free 

running amplitude was: 

3.67 = na-' 
I 3b 

which is the measured value. 

An attempt was made to measure the parameters by measuring the 

harmonics in the oscillator output and calculating a and b from the 

second order harmonic balance solution (paragraph 2.2), 

where 

= 
a 

Cw 
0 

and 

sin.3w t) 
0 

E· = /["' 

The harmonics could not however be determined with sufficient 

accuracy. This was because the measuring instruments had to be connected 

directly to the oscillator, which altered the operating parameters. A 

buffer amplifier introduced a spurious second harmonic, and as the third 

.harmonic .content is only about 1%, and the atte!llpt was abandoned. 

In summary, the parameters were found to be; 

[a = .25 x 10-~D(N.L.R. only)] 

a = 0.088 x 10-3 D (overall circuit) 

b = 8. 72 x lo-6tYv2 

. /4a3ba = 1 Th 3.67 volts 

and c = 780 pR w
0 

= 216 mz· •.. 
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Hence, the constants of the van der Pol equation for the oscillator are: 

a = 0.0819 

B = 0.297 

4.5 Experimental Technigue: 

The frequency shift of the forced oscillator from its free 

running frequency was investigated experimentally. Since random 

frequency drifts due to thermal or other effects could never be comple­

tely eliminated, these had to be allowed for by taking the mean of the 

free running frequency before and after a measurement. 

The procedure was as follows: 

(i) The switch S (Figure 4.1) ~as turned to positjon 1. This 

places the output of the pentode across a known resistor, so that by 

measuring the voltage at this point, the effective current source 

strength can be found. The level was set to a small value by adjusting 

the noise generator gain control. 

(ii) The noise generator was disconnected from the narrow band filter 

and switch S turned to position 2. The frequency of the free running 

oscillator was measured by the counter, using a ten second gate time, 

several readings being made. 

(iii) The noise generator was reconnected to the narrow band filter, 

and several readings of the perturbed frequency taken. 

(iv) The noise generator was again disconnected and the free running 

frequency again recorded. 

The mean frequency deviation is then the average of (ii) and (iv) 

less the average of (iii). 
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This procedure was repeated for other input values and also at 

other noisri centre frequenc~es. The ·filter was tuned using a (sine wave) 

oscillator. 

When a sine wave was used as a forcing function instead of narrow 

band noise, the narrow band filter was still kept in the circuit as it 

acted as an attenuator pad, isolating the external oscillator, and 

filtering switching transients.which sometimes caused a jump in the 

oscillator free running frequency. The (fluorescent) room lighting was 

turned off as trouble was 6xperienced with mains hum. 

4.6 Exp~rimental Results: 

The results of the experimental work are given in graphical form 
I 

in Figures 4.5~ 4.6, and 4.7. These are graphs of the deviation of the 

oscillator frequency from the free running frequency ~gainst the 

magnitude of the input disturbance. The frequency was measured by 

counting the number of zero crossings (obtained from the clipping circuits 

of Figure 4.1 ) over ten seconds and dividing by two. 

Figures 4.5 and 4_.6 are with a narrow band noise input and 

Figure 4.7 with a sine wave input. The curves of Figure 4.7 termin-

ate at th~ point of synchronization when the amplitude of the free 

oscillation becomes zero. Figure 4.4 shows some experimental waveforms. 

4.7 An Empirical Result: 

The curves of Figure 4.7 are replotted in Figure 4.8 on log-

log scales, and it can be seen that these are approximately straight 

lines, for small inputs. The curves deviate from a straight line for 



(a) 

. 
I. 

(b) 

(c) 

FIGURE 4.4 Experimental Waveforms . 

(a) Voltage and current waveforms for the nonlinear 
element in the free running oscillator. Scales are: 

v - 5v/div 
i - 0.5 ma/div 

(b) Voltage/current characteristic of the nonlinear 
clement. Scales are: 

v - 2.16 v/div 
i - 0.5 ma/div 
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(c) Output waveform of the forced oscillator. The upper 
wave is the input current of 0.5 mA (peak) at 250 Kllz. 
and the lower is the oscillator output voltage waveform, 
scale 2v/div. This can be compared with the computed 
waveform, Figure C2. 



0 o-5 1·0 
~r-------~--------~------~--------~--------~------~--

1·5 2·0 2·5 3-Q 

-10 

-100 I · · 
I 

-1.000 

-10,000 

I 

I 
I 

Frequency 

Shift. Hz. 

Noise Current (RMS. ma.) 
47 

Fig4.5 
Frcgucncy Shift vs Input Current 

(Narrow Band Noise Input) 

~=216KHz. 

-Experimental 

- --computed 

---



100K 

10K 

100 

10 

Frequency 
Shift. 

Hertz. 

I 

I 
I 

350 I 
I 

I 
I 

/ 

/ 

/ 
/ 

48 

Centre Frequency 
(KHz) 

Frcgucncy Shift vs Input Current 

(Narrow Band Noise Input) 

. Fig4.6 

2 rms ma. 

Input Curl"ent 
1:-----~----~~----~--~--~------~--~ 

0 1 3 



Frequency 
Shift 

1,000 

Hz. 

100 

10 

. Fig47 

000 =216KHz 
2'1T 

Frequency Shift vs. Forcing Current (Sinusoidal) 

49 

+ 

1~--~----~------~~------~--------~------~~--------~-----o ~ H ~ H H H 
Input Current rms. ma. 



so 
large inputs. This is particularly marked in the curve for w1 = 400 Kllz. 

The cause of this is not known, but it may be noted that this frequency 

is ncar the second harmonic of,the fundamental, and so may thus introduce 

effects unimportant at other frequencies. For example, there will be a 

modulatio~ product 2w1 - wf close to the fundamental. 

The slope of the lines is 2 which means that the frequ~ncy shift 

of the fundamental is proportional to the square of the input disturbance. 

Further, the spacing between the lines- indicates that: 

Frequency Shift 1 

wl 3 
(- 1) 
w 

0 

In addition to the curves of Figure 4.7, Figure 4.8 also 
I 

shows curves for driving frequencies less than the fundamental. In this 

case, the frequency shift is negative (i.e. the shift is still towards 

the driving frequency) and so these curves have been shown clashed. 

The dependence of the shift on a, the small parameter 

describing the "degree" of nonlinearity in equation (1) was found 

difficult to determine and no significant results were obtained, although 

there were indications that a square relation may hold. 

Empirically, therefore, the approximate relation 

Frequency Shift ~ 

was found to hold for the experimental oscillator. 

The same dependence also holds true if narrow band noise is used 

as an input, the portions of the curves of Figure 4.6 below the "knee" 

being similar to the curves of Figure 4. 7. 

MILLS MEMU~•AL LIBRARY 
McMASTER UNIVERSITY. 
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4.8 Accuracy: 

The oscillator was found <. be stable (after a warm-up period of 

several days) to 3 parts in 107 over a period of one minute. It was 

thus possible to dotoct frequency shifts as low as .s Hz, or about 3 

parts in 107 with an accuracy of the order of 10% (determined by the 

"repeatability" of the measurements). At higher inputs and hence larger 

frequency shifts;· the error is proportionately small cr. 

The accuracy of measurement of a, the nonlinear parameter was 

considered good (2%). The value of b (obtained from a and the free run­

ning amplitude) is therefore of a similar accuracy. The presence of an 

element of nonlinear capacitance in the circuit was found very difficult 

to investigate; an analysis/Of the circuit was attempted, to investigate 

the effect of the grid-cathode capacitance on the nonlinear resistance, 

but it was found that this led to expressions far too unwieldy to be of 

any practical assistance. The presence of a small nonlinear reactance 

cannot be discounted, and this may acc01.mt for the difference between 

the measured and calculated values, in addition to the experimental 

errors mentioned above. 

Thus, _although the accuracy of the measurement of the 

frequency shift was acceptable, there were· additional uncertainties 

caused by the above, which although negligi!ble in the first order, 

become significant when second order effects such as frequency 

d'e.viation are considered. Hence although qualitative conclusions can 

be drawn, accurate quantitative conclusions would require a much more 

sophisticated experimental investigation to eliminate any spurious 

nonlinearities, in particular nonlinear reactance, or any slight 



assymmetry of the nonlinear characteristics which would introduce even 

harmonics at the output. These will tend to lower the free running 

frequencyl 6 • Also, second harmonic resonances may occur which 

pro8ably account for. the shape of the second and half harmonic curves 

of figures (4.5, 4.6, 4.7). However, the square and quintic terms in 

the nonlinearity were very small, and would only assume importance 

near the second and fifth harmonics. A more detailed analysis would 

be required to ascertain the effect of these additional terms. 

53 



'· 

CIIAPTER V 

CONCLUS10NS 

The frequency shift of the van der Pol oscillator due to an 

external forcing sinusoid has been experimentally found to be 

proportional to 

A f a.: 
I2 ---

(a -. 1)3 

where I is the input current magnitud() and a is the ratio of the 

forcing frequency to the free frequency. This is in agreement with the 

calculated shift (equation C34)): 

A f I 
(w C ) 

0 

a7 (2-a)(1+(2-a) 2 ) 

(a-1)3(1+a) 2(3-a)2 
(34) 

Unfortunately, the experimental data was not accurate enough to observe 

the effect of the other poles and zeros of equation (34). 

The result of A. W. Gillics12a showed that the frequency shift 

was proportional to the square of the input, but did not give as good 

results as equation (34) for the magnitude of the shift. 

_The maximum frequency shift occurred just before synchronization, 

and was calculated to be (equation (2(i)) 
w 2 

1 

(w12 - 1) 
(26) 

Equations(34) and (26) are both in good qualitative agreement with 

·the experiment, but are only fair quantitatively. 
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APPENDIX A 

THE ~1ETHOD OF VAN DER POL 

The van der Pol equation was first solved by Balthazar 

van der Pol after whom the equation is named 1 • In this Appendix, his 

method 6f solution is presented, and an expression for the magnitude of 

the input signal for the oscillator to just b~ synchronized is derived. 

The dri v'ehr' van der Pol equation (Equation (2)) is 

a(l ee2) w ~ + w 2e I sin c - - = (- -) wl w1t 
0 0 c 

where 
a 

8 = 
3b 

(1) 2 1 (Al) a = Cw = LC a 0 
0 

and a, b are the nonlinear clement parameters. 

L, C are the antiresonant circuit elements in Figure 2.1. 

Assume a general solution of the form 

(A2) 

where the possible presence of a free oscillation is allowed for by 

.letting b1 and b2 be slowly varying functions of time (varying slowly 
.. 

enough so that b1 and b2 can be neglected, where the dot represents 

differentiation with respect to time, and b~<<w 1b 1 , b;<<w1b2). 

If Equation (A2) is substituted into Equation (Al), and coef-

ficients of sin w1t and cos w1t equated, the following two equations 

are obtained. 
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2b; bl ab
2

(1 - .§_ b2) aw x w = 
0 4 0 

w 2 - w/ 
where 0 , b2= bl2 X = aw1w

0 

and 2 

18 
= free running amplitude. 

1\ particular solution of equations (A3) is given 
. 

b; bl = = 0 

and hence, 

axb
2 - ab 1 p - .§. b2) 4 . = 0 

axb1 + ab 2 
(1 - .§_ b2) I 

= Cw 4 
0 

Squaring and adding equations (A4) gives: 

= 

or 
= 

where 
and 
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(/\3a) 

I c- c) (A3h) 

+ b 2 
2 

by: 

(/\4a) 

(A4b) 

(AS) 

(A6) 

These are the resonance curves for the van der Pol oscillator, and are 

shown in Figure ·Al , where x is proportional to the frequency difference 

w
0 

2 -w 12, or the ''detuning" of the input, and y is proportional to the 

magnitude squared of the resultant oscillator output. Since, for this 

solution, b~ = b; = 0, Equation (AS) must represent the oscillator in 

the synchronized state with the free oscillation suppressed. 
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-1·0 -0·5 0 0·5 2-Q DETUNING 

FIGURE (Al): Resonance Curves for the 

van der Pol Oscillator 
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The stability of the system can be investigated by examining the 

behaviour ~f small variations in h1 and b2 with respect to time. This 

may be accomplished by substituting b1 + 6b1 and b 2 + 6b2 for b1 and b2 

in Equations (A3), to form another pair of equations. Equations (A3) 

arc then subtracted from these new equations, which arc then solved for 

6b1 or 6b 2. The resulting linear equation is: 

The Routh stability criteria gives the conditions: 

a2 [Cl- ~ b 2)(1 3 ~ b 2 ) + x2] > 0 
I 

·which can be rewritten, 

1 
y>2 

x2 + (1- y)(l- 3y} > 0 

Equation (AS) is the ellipse shown in Figure (Al). 

(A7} 

(AS) 

The synchronization range for large input amplitudes and 

detuning is governed by equation (A6), anc.l by the boundary condition 

(A7). Hence, on the stability boundary, 

That is, 

and hence, 
I2 = 

2c2 · 
.. -8-

E2 = ~ [x2 + -} ] 

1 
= 2 

[ 

(w
0 

2 _ 

w 2 
1 

w '2) 2 
1 

+ 

+ ~ l 
(A9) 
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which is plottgd, for the oscillator experimentally measured, in Figure 

A2. Some experimental points·are also plotted, showing good agreement. 

If w
0 

. w
1 

and the term in a2 is negligible, 

I ~ 

where C is the tank circuit capacitance and 2//8 is the free running 

. amplitude. 

That·b
1 

and b
2 

are slowly varying (particularly when w
0

- w1 is 

small) can be seen experimentally from the waveforms in Figure (4A). 

The solution, 

(AlO) 

could have been used instead of equation (A2). This form is more 

convenient for examining the response when both free and forced oscil-

.lations are presentl, 2 • In this case, the resonance curves are, 

where 

Y -! b 2 
- 4 2 

and the amplitude of the free oscillation is given by: 

b 2 -
1 

4 
8 - 2b 2 

2 

(All) 

(Al2) 

The connection between·curves (A6) and curves (All) is good 

away from the ellipse but is incomplete in a small region ahout the 

ellipse. A more accurate solution of equation (Al) is required to 

complete the curves. 
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APPENOIX B 

FREQUENCY Cm1PARISON 

The following mcthod23 may be used to iucntify the harmonics in 

the oscillator output and obtain a qualitative estimate of their 

magnitudes. 

The system is shown in Figure 81 1 below. 

waveform under 
study 

l Local 
Osc1llator 

X oscilloscope 

y FIGURE: Bl. 

Band Pass 
F i 1 t er 1---l-----1 

Counter 

The waveform to be studied is applied directly to the x plates 

of an oscilloscope, and through a variable narrow-bandpass filter to the 
co 

y plates. The input to the x plates can be considered as .~ 1 sin n.wt 
1= 1 

and that to they plates as sin n.wt if the filter is turned to the ith 
1 

frequency component. An ellipse \'lill appear on the screen, and if this· 

frequency is unrelated to any other x plate frequency, this ellipse will 

move in a stationary envelope (e.g. if x =sin w
0

t + sin w
1
t and 

y =sin w
1
t, then an ellipse of frequency w

1
, moving horizontally with 

a frequency w
0 

will appear as in Figure .B2 ). 

() () FIGURE B2 



In this way, by tuning the filter correctly, the sidebands may 

be isolated, and an approximate value of their magnitudes obtained by 

measuring the size of the ellipses. 

This method was found to be more convenient than beating the 

unknown x waveform with a local oscillator. Due to random frequency 

drifts of both, it was found difficult to stabilize the display. As 

the filter output was small (particularly for the smaller sidebands), 

a local oscillator could be substituted and tuned to the filter 

frequency, in order to measure frequencies more accurately, as shown 

in Figure Bl, 

I 
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APPENDIX C 

CONPUTER ANALYSIS 

The van der Pol equation was solved on a digital computer to give 

the oscillator output under different conditions. 

The analogue-digital simulators MIMIC and ~!IDAS were used. By 

means of these preprocessing routines it is possible to run an analogue 

computer programme on a digftal computer. There are several advantages in 

doing this; greatly increased accuracy; no time or magnitude scaling 

problems; 95 integrators (MIMIC), or 100 (MIDAS) are available, and any 

number of summing amplifiers, function generators, etc. is permitted. 

Both processors have the built in facility of automatically selecting a 

step size for the numerical integration routine to maintajn a given 

accuracy. MIMIC has a limited capability for hybrid computation by means 

of the Track And Store (TAS) subroutine, although trouble has been 

experienced with this if more than two parameters need to be recalculated. 

Of the two processors, MIMIC is easier to programme, it being 

possible to wri.te the programme directly from the system differential 

equation. MIDAS requires a block diagram to be prepared initially. Of 

the two, MIMIC is the faster, the execution times for the MH!IC and f'.!IDAS 

programmes, 1 and 2 given below, being 100 seconds and 240_seconds 

respectively. MIDAS is, however, the easier of the two systems for 

"debugging" programme errors, and the processor also prints out the 

maxima and minima of all the system variables, unlike MIMIC. 
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The programmes which solve the van der Pol equation are given in 

the following pages. Prograrr.m,; 1 is a t,1HIIC s,ource language programme, 

and programme 2 is in MIDAS language. Both solve the system for the 

initial build up of oscillations when the oscillator is switched on. The 

output from these programmes is shown in Figure (Cl). A forcing term 

F(t) can be inserted in the programmes, and Figure (C2) shows the computed 

output for a forcing current of 0.5 rnA at 250KI!z. This can be compared 

with Figure 4.4 which shows the· waveform of the experimental oscillator 

under similar conditions. 

Using MIMIC, 200 points of a cycle of the steady free running 

oscillator were computed. These were analyzed by a Fourier Analysis 

programme (programme 3) and the results of this arc given with the 
I 

programme. They are in excellent agreement with the solution calculated 

in Chapter 2. 
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APPEt\DIX D 

APPARATUS. 

Power Supply, John Fluke moder 407 

Oscillator, llcwlctt Packard modcr 241A 

Cathode Follower Probes and Power Supply, Type 128, Tektronix 

Oscilloscopes, Tektronix Types 502A and 516 

Counters, Beckman model 7370, llcwlett Packard model 5245L 

Random Noise Generator, General Radio Company, Type 1390B 
I 

V.T.V.M., John Fluke, model 910A 

71 



rtEr:ERENCES 

1. van dcr Pol, B., "Forced Oscillations in a. Circuit with :--Jonlinear 

Resistance", Phil. l\lag. Vol. 3, No. 13, p. 65, 1927. 

2. Cunningham, W . . J., "Introduction to Nonlinear Analysis',' McGraw-llill 

Book Co., Inc., 1958. 

3. llayashi, C., "Oscillation in Nonlinear Systems'', 1·1cGraw-liill Book 

Company, 1965. 

4. Stoker, J. J. "Nonlinear Vibrations", Interscience Pub. Inc., N.Y. 

1950. 

5. Stern, T. E., "Theory qf Nonlinear Networks and Systems", Addison-

Wesley Pub., 1965. 

6. Kuznetsov, P. I., Stratonovich, R. L., Tikhonov, V.I., "r\onlincar 

Transformations of Stochastic Processes", Ch. III, Pergamon Press 

1965. 

7. Edson, W. A., "Noise in Oscillators'', Proc. IRE, Vol. 8, p. 1454 

August, 1960. 

8. ~lull en, J. A., "Background Noise in Nonlinear Oscillators", Proc IRE 

Vol. 48, p. 1467, August, 1960. 

9. Golay, J. E., "Monochromacity and Noise in a Regenerative Electrical 

Oscillator'', Proc. IRE, Vol. 48, P. 1473, August, 1960. and, 

"Normalized Equations of the Rcge:-terative Oscillator-Noise, Phase 

Locking and Pulling", Proc. IRE, Vol. 52, p. 1311, November 1964. 

lOa. Rytov S.M. ,''Flwctuations in Oscillating Systems of the Thomson 

Type,! and II", Soviet Phys. JETP, Vol. 2, p.217, ~1arch 1956. 

72 



73 

lOb. Tang, C. L. "The Behaviour of Nonlinear Oscillatjng .Systems in the 

Presence of Noise", Proc. IEEE, Vol. 48, p. 1493, August, 1960. 

lla. llafner, E., "The Effects of t\oise on Oscillators", Proc. IEEE, 

Vol. 54, No. 2, February 1966 . 

. llb. Hullen, J. A., llafner, E., "Comments on the Effects of t~oise in 

Oscillators", Proc. IEEE, Vol 55, No.1, p. 87, .January 1967. 

12a. Gillies, A. W., "The Application of Power Series to the Solution 

of Non-Linear Circuit Problems", Proc. lEE, Vol. 96 III No. 44 

November, 1949. 

12b. Gillies, A. \\1,, "Electrical Oscillations -A Physical Approach to 

the Phenomena'', Wireless Engineer, Vol. 30, No. 6, June, 1953. 

13. 'Raue, G. E., Ishii, Ti K., "Analysis of Observed Spectrum in the 

Pulling of Hillimeter Reflex Klystrons", Proc. IEEE, Vol. 54, No .12 

p. 1942, December, 1966. 

14. Groszkowski, J., "The Interdependence of Frequency Variation and har­

monic Content and the Problem of Constant Frequency Oscillators", 

Proc. IRE, Vol. 21, pp. 958-981, May 1933. 

15. Yogev, H., "Noise in Oscillators - Experimental Results", Proc. 

IEEE, Vol. 51, p. 1681, 1963. 

16. Gladwin, A. S., ~The Frequency of a Nonlinear Oscillator with a 

Perturbing Force", Proc. IEEE, Vol. 55, No. 2, p. 246, Feb. 1967. 

17. Carstens, t-1. A., "Noise in Nonlinear Oscillators", J. App. Phys. 

Vol. 28, No. l, p. 352, March 1957. 

18. ~·1ullen, J. A., "Background Noise in Nonlinear Oscillators", Proc. 

IEEE, Vol. 48, p. 1467, August 1960 •. 



19. Golay, 1'-1. J., ''~lonochromacity in a Regenerative Electrical Oscil­

lator", Proc. IEEE, Vol. 48, p. 1473, Aup,ust 19()0. 

20. Adler, R., "A Study of Locking Phenomena in Oscillators", Proc. 

IEEE, Vol. 34, p. 351, June 1946. 

74 

21. Stover, ·Ii. L., "Theoretical Explanation for the Output Spectra of 

Unlocked Driven Oscillators"~ Proc. IEEE, Vol 54, i\o. 2, p. 310 

r-:eoruary 1966. 

22. Davenport and Root, "Random Signals and ~oisc", McGraw-Hill, 1958. 

23. Jones, N. B.,"The Generation of Simultaneous Oscillations at 

Unrelated Frequencies using a single Non-Linear Element'', Thesis, 

McMaster University, 1965. 

24. Ponzo, P. J., Way, N., 1"0n the Periodic Solution of the van der Pol 

Equation", Proc. IEEE, CT-12 pp. 135-6, March 1965. 

25. Hakki, B., Beccone, J. P. and Plauski, S. E., "Phase-Locked GaAs 

Microwave Oscillators", Proc. IEEE, ED-13, pp. 197-199, Jan. 1966. 

---------000---------




