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The pulling of the frece frequency of a nonlinear saturation-
type oscillator by an external forcing signal is invcgtigatcd, the
oscillatof being described by the van der Pol cquation.

Both expcfiﬁental and theoretical methods are used to find the
relation between the amplitude and frequency of the external signaland
the frequency pulling‘of thé'oscillator;

The case of a»sinﬁsoidal forcing signal ié examined theoretic-
ally, and experimental results are shown for a sinusoidal signal ‘and

also for narrow band noise.
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ABSTRACT

The frequency pulling of the van der Pol nonlinear oscillator
due to an external forcing signal is investigated. The nonlincarity is
A of the zero-memory symme;ric-cutnoffitypevfollowing a cube law.

An experimental oscillator was built, and curves of the frc-
quency shift of the oscillator fundamental against the magnitudec of the
input forcing signal are shown, both for a sinusoidal input and for a
narrow band noise input. An empirical result is derived.’

The case of the sinusoidal input is cxamined theorctically. The
importance of harmonic and intermodulation frequencies in the oscillator
outbut is shown, and relations giving theioscilla;or frequency shift
‘are given for small forcing amplitudes and for large amplitudes when

the oscillator is nearly synchronized.
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CHAPTER 1

INTRODUCTION

Nonlinear systems exhibit phenomena not found in linear systems.
For example, a spring-mass system with a noﬁlinear spring will have
resonance curves similar to the linear case, but skewed over, gnd the
amplitude may have discontinuous jumps as thé frequency is varied.

In the autonomous case, an oscillator may have.nonlinear damping.
The basic negative resistance oscillator is made upAof an antiresonant
circuit in parallel with a negative resistance to cancel losses, and

: P
follows the (normalized) eqﬁation Qi% + e =0 where e is the output
: dt :

voltage. The frequency is 1 and the amplitude is entirely determined
by the initial conditions. In the more realistié case, the ncgative

resistance element is not precisely linear, due to the curvature in the

tube or transistor characteristic for example. The van der Poll equation

dZe 24 de _
-——-——a(l.-e)a-i--re-ov (D

dt?
describes an oscillating system where the damping is negative near the
origin, but becomes positive away from it. If a.is zero, the éystem is
linear, but if o is finite, however small, then the system has a fixed
amplitude, the frequency is slightly less than 1, and harmonics appear at
- the output., The principal of superposition does not apply, and special

analytical techniques have to be used. First order approximate solutions
1 ‘ : -



to the van der Pol equation may be found in the staﬁdart texts. A
number of methods of solution may be used, for exémple, the principle of
harmonic balance?, the perturbation metﬁod3,vthe method of Andronov and
witt*, or van der Pol methodls S,

If an extecrnal forcing tefm ?(t) is introduced on the right hand
side of equation (1), then botﬁ the frequency and.amplitude are changed
from the freely oscillating case. 1f F(t) is sinusoidal, the freé oscil-
lation frequenéy is pulled towards the frequency of F(t), and modulation
product frequencies appear at the output.

The-respénse of the forced vanvder Pol oscillator has attracted
some attention, both in the case of F(t) a stochastic function® = 11 and
a deterministic one1’3’12?13»1“’16.

fIf the oscillator is used as a local frequency standard, ihcn the
effect of any cxtraneoué inputs on.the monochromacity or on the mean
frequency is of great importance. This work is concerned with the
de&iatibnw of the 6sci11ator frequency from its unperturbed value for
inputs F(t) of small amplitude, and for small a..

For the experimental investigation an oséillator‘was built thch
corresponded closely to the ideal van der Pol‘oscillator. To investigate
the effect of random noise on the oscillator quantitatively, white noise
from a noise generator was passed through a band-pass filter,-and the
resultant narrow band noise injected into the oscillator through a buffer
amplifier. Internal noise, such as shot or flicker noisé, can then be
neglected in comparison with the injecfed noise, and quantitative measure-

ments madelS,
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Chapter 2 describes the general nonlinear oscillator, and the
van der Pol equation which describes an oscillator with cubic nonlinearity
is derived. |

Chapter 3 details tho theoretical mothods used to investigatc the
frequency pulling phenomenon. Two main methods are used, the general
method of Gilliesl?? and a novel variational method, both of which .
demonstrate the importance of modulation products bétwecn the free and
forced oscillations. A qualitative explanation of the oscillator
behaviour under the influence of large amplitude narrow band noise is
also. given.

Chapter 4 gives detéils of the experimental methods used.

/

.1.1 Review of the Literature:

There is considerable literature concerned with the problem of
. noise in non-linear oscillators. In 1956, in the case of 6-correlated
white noise Rytovl? used correlation methods to deduce cxpressions for
the amplitude and phasc fluctuations of the oscillator outpuf. The part
of the noise spectrum near the oscillator frequency’is considered to be
the major influence, and is expressed as a sine wave of slowly varying
amplitude and phase. The method uses Fouricr series and power series
expansions to obtain a series of approximate linear equations. A
simplification is made by associating the forcingdtcrm with a2. A
description of the method is given by Tanglob.

In 1957Garstens!” investigated .the power ‘spectrum of the noise
driven oscillator by separating the nonlinear part of the noisc from the

linear part, and calculating the two spectral densities. The correlation



between the two parts is, however, not calculated.‘

LEdson’ deals statistically with starting time jitter and found
that it depended only on "a'", the value of the nonlinear negative
resistance of the origin. The phase and amplitude spectral densities
are calculated for a driving force of narrow band noisc centered about
the oscillator frequency, and show that thc oscillator spcctrél linc
width is broadenéd (phase modulation spéctrum) and superimposcd on weak
broadband noise (amplitude modulation spectrum). The paper deals with a
general nonlinearity. The parameter déscribing the nonlinearity is not
- unique but depends on the magnitude of the disturbance as well as the
values of the circuit elements, and so may not be easy to evaluate for
the practical case. /

Mullenl8 calculates thé spcctrum‘of the noise perturbed
van der Pol oscillator, and obtains an approximatc result.by ncglécting
harmonics and modulation products. Golay® considers moﬁochromacity in
an A.G.C. oscillator. |

More recently, Hafnerl! used a different approach, not involving
.any linearizafion of the non-linear equation,.uhlike previous work, or
the slowly varying principle!!P, where a solution of the form
e = R cos (wot-e) is assumed and R and 6are slowly varying quantities
compared to w,ts where w, is the approximate oscillator frequency{ The
only assumption is that (in the derivation 6f the perturbation equation)
u? and ud, where u is the disturbance, are negligably small compared to u:
The vah der Pol nonlinearity is taken as a‘spccific example, and a
perturbation equafion,.linear in the (small) disturbancé is obtained. This

equation is similar to the variational equation used later in this work.

H
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However, although harmonics are considered, intermoduiation products are
not, the dutputbeiné considered as narrow band noise at the oscillator
frequency. |

| It can be seen that considerable progress has becn made with
white noise, or narrow band noise ccntered about the oscillator frequency,
as the forcing function. If the disturbance is at a diffcrent frequency
from the free running frequency, intermodulation.tcfms are formed at
frequencies away from the harmonics of the fundamental and these are
responsible for the frequency pulling of the free oscillator frequcncy12b
in thersame way that the harmonics of the fundamental cause a slight
deviation of the free oscillation frequency from that of the resonant
circuit in the unperturbed oscillator.

Thgre are a number of papers using the Sine Wave model, in which
the disturbance is approximated by a sine wave. As pointed out by Edson’,
. this is not a very’realistic model of noise, as the effects of fluctua- |
ting phase and amplitude are omitted cbmpletely. It does, however,
permit an investigation of frequency pulling phenomena.

A general approach using a sinusoidal forcing function is giVen
by Adler2?, for a nonlinear oscillator, or a linear A.G.C. oscillator
whose A.G.C. ‘time constant is much less than th¢ beat frequency Between
the free and forced oscillations. Stover21, extending Adler's‘analysis,
examines the output spectrum. His results are verified by Raue and
Ishiil3, but only qualitative experimental agreement was found with the
theoretical values of the frequency and amplitude of the fundamental

component.



A different technique is used by Gilliesl?3, Here, power and

Fourier series are used to reduce the problem to a single equation which
may be solved for the frequency and amplitude of the fundamental. In |
theory the method may be carricd to any desired accuracy, but in practice
the algeﬁra becomes very tedious after the fifth order modulation tecrms
ére faken into account.: Only qualitative agrecement with experiment was
obtained when the method was used to exémine frequency pulling in the

van der Pol oscillator (Chapter 3).



CHAPTER II

THE VAN DER POL OSCILLATOR

2.1 Oscillation Equation:

The oscillator circuit used consisted of an LC parallel circuit

in parallel with a cube-law voltage controlled resistor as in Figures 2.1

and 2.2 below.

. b
i
n
Y i
IV~ + ‘ ' e
118 4
e
i . .
Nonlinear 3
Resistance i = -ae + be
EEEEBE_—ELi' Noﬂlinear Resistance
Characteristic

It can be seen that

ip= 1+ i + 1
where

- - 3 - cde
i ae + be 1C C It
diL
e=7T1i, + L —= i =T cos (w, t + ¢)
L n 1

dt

Hence,

_Sl_(_:__ 31 _l_“ . . .
I cos(mlt + ¢) = Cdt ac + be® + T J edt + T J (1C +.1 - 1n) dt

7



Differentiating:
: a , 3b 5 . 1 T , 3
-7 ¢+ o2 é +ipe+ 1 [C&-ae+he
. . ) le i - .
-1 wy ‘cos (wlt + ¢)] ‘= e = Sin (wlt + 6)

c

In general the Q of the tuned circuit is high and so the term in r can he

neglected. Hence,

N L . o
a 3b2. 1 - 1 o )
g - E—(l - ) & + e e = - - -51n (wlt + )
or
'2 y le .
e - a(l - Be<) wy, & +w fe= - -—= sin (wlt + ¢) (2)
‘ /
where
_ @ _ 3 2 _ 1
® = Cu B= % T IT

which is the Van der Pol Equation, with a forcing term.
If there is a positive resistance R shunting the circuit (the
internal resistance of the current source, for example), then the value

of a is modified.

B is a factor which normalizes the amplitude. By replacing e by

and t by EE » the van der Pol equation in its normalized form is

/B o

obtained, Equation (1), for the unforced case.



2.2 Solution of the van der Pol Equation:

: The van der Pol equation may be solved using standard
techniques!»2+3:4>5, Since these methods are well known, only the
results will be quoted here.

The unperturbed oscillator output is:

~ 1, 3. 3 05 1 .
e = (2 - 309 cos wt + 7 aSin wt + Jz a® cos 3 wt - 7 a sin 3wt

2

o cos 5wt + _ _ o .

Qojwn
[y}

where the frequency is given by

2
= I
w = (1 e

for the normalized van der Pol equation (1).

‘ C :
Thus it can be secen that the effect of the nonlinearity is to fix

the amplitude of the outfut, and decreasc the frequency.

Tﬁe above solutions are valid only if the nonlinearity is small
(i.e. a << 1). If this is not so, the output is no;lapproximately'sinuf
soidal as above, but consists of a relaxation type of oscillation2“.

The method used by van der Pol for the driven oScillator.is given
in Appendix A. The oscillator resonance curves, and the synchronization
limits are derived.

The output in the region of combination oscillations (of free and

forced frequencies) has been calculated to the first order terms, using

the above methods, and the result is also given.



CHAPTER - 3

FREQUENCY PULLING OF THE VAN DER POL OSCTLLATOR

If an cxternal signal is introduced into a linear oséillatbr, the
output is merely ;he sum of the oscillator output and the external signal.
In the case of thevnonlinear van‘der Pol type of oscillator, this is not
so. Both the frequency and‘amplitudc of the free oscillation are
affected, and if the externai signal is too large, thc frec oscillation
will be suppressed and the forced oscillation alone will exist, and the
oscillator is said to be synchronized or entraincd;

As the injected sigéal increases in magnitude from zcro, the free
oscillation decreases in amplitude and the frequency is pulled towards
that of the injected driving signal, until the free oscillation is
suppressed. Simultaneously, sidebands appear about the free frequency,
of spacing equal to the frequency difference between the driver and
partially pulled oscillator frequenciés. The presence of these sidebands
was observed in the expefimental'oscillator built, and has been observed
" in other types of oscillator, such as a reflex klystron!3, a tunnel diode
oscillator?!l, and a bulk GaAs oscillator?S,

In paragraph 3.2 the method of A. W. Gillies!?® is used to calcu-
late the amplifude and frequency of the free oscillation‘jn the driven
van der Pol oscillator. The results are found to be in only qualitative

agreement with experiment.
10
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In paragraph 3.3 a variational approach isruscd to find thé free
oscillation frequency just before the oscillator becomes entrained.
Although a sine wave is not a realistic model of narrow band
noise, the frequency pulling of each is similar (see Figures 4.5 and
4,6 ) in the region where synchronization does not occur, and both

. follow a square law (see Paragraph 4.7).

3.1 The Approach of A. W. Cillies:

'The method is to assume a solution v which contains the funda-
mental frequencies (free and forced) and their higher harmonics and
intermodulation products. This is substituted into the van der Pol
equation and the cocfficient of the component of the free frequency
equated to zero by the prineiple of harmonic balance. This component
consists of the fundamental term, and terms resulting from the inter-
modulation of the higher order terms. This then yields a complex

- equation describing the frequency and aﬁplitude of the fundamental, from
which the deviation of the free>frequency from its free running value

can be found.

It is assumed that

where w_ is the free frequency

Wy is the forcing.frequency

and m, n are integers. That is, no combination of w, and Wy is.

near w_.
a
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The_Bagic approach of ¢onsidering the oscillator output as the
sum of the forced and fundamental frequencics and their modulation
products and harmonics is described by GillicSIZb. Thc'complete analysis
of the effect of these frcduencies on the mean oscillator free frequency |
is given in his earlier paperl?a

Consider the driven van der Pol equation(Z), integréted,and

written in the form

2
w
cos ubt = (umo =D - —%—-) v - %-aewo Y?' : (3)

o)

where D is the differential operator, v is the oscillator output and e
is the external driving input. The notation of e, v, W, Wy is used in

this section to conform with Gillies paper‘zax_ Then equation (3) is of
. ‘ / '
the form

‘.8 3
_ Yg Y + Pl).v + P3 v

If a steady state has been reachéd when v is of the form
IV e . +V e
ko % “%

then D may be replaced by jw, and hence

w2 ! aBw

I : - . o _
Ye = - Eicosjmbt:Y + P1 = aw, - jlw - —%— )s P3 = - - (4a)

(Expressed in terms of Fighre (2.1),

Y = - %' where y is the admittance of the LC tank circuit

P,

a b
1°¢ P3=-¢

3 A
I . P . .
e = y cos w,t, the equivalent voltage generator in series with
the tank circuit.)

In the general case where the nonlinearity is not just a cubic

(Fig. 2. 2), but a general polynom1a1. then equation (4) takes the Form

Ye=(Y+P)va+P v2 4 P.vd o

2 3V e A
The output v consists of the sum of the two.first-order (free and
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forced) frequencies together with higher order modulation frequencies .-

Wt W, W T W, Zwa, Zmb being the second order te?ms, Swa, 3w

a b’

w o+tw +tw W o*tw o-w -~-=-, being the third order terms,. and so on
a b a’ "a b a’ ’ 8 ’

for the higher order terms, where wy is the frequency of the frce

oscillation.
lience let .
vav@D L@ 3, (6
(n) : th -
where V represents the sum of the n~ order modulation products.

Subtitution of this into equation (5) yields:

Ye = (Y + Pl)'[ V(]) + v(z) + V(Z) + ]
' + P, [ V(l) + V(Z) + VCS)'+ ———— ]2 (7N
+ P3 L V(l) + VCZ) + V(S) + ____ ]3

Terms of like order can now be equated to give a set of recursive:

equations for determining the V(n):

Ye = (Y + P v(1) | O (8a)
0= (v+p) v, pyll)2 - (80)
0= (Y +P) v, 2p2v(1)v(2) +’P3V(l)3 (8c)

- The V(n) can be expanded into their frequencies. For the

synchronized oscillator these are:

MO RO IVINCS | | sa)
v oy, By B Ly ) | (9b)
V(S) = V3b(3) + Vb(s) + V_b(3).+ V‘SE(S) | »' (9¢)

where

' Loy et
: vb(l) - (lvb(1)1‘¢ (1)) e o
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1f both free (wa) and forced (wb) oscillations are present,
then

V(I) = Va(l) + V_a(l? + Vb(l) *‘v-b(l) ‘(10)

(1)

and hence V(n) n=2, 3,__.. can‘be found in terms‘of Vacl), V-a ,

‘ Vbcl), V_bcl) from equations (8a, 8b,......), and equation (9) will
thﬁs contain cross modulation terms asAwell. [The first order equation
. fsa) yields m;;}wo (1 p76, 2 pZ;S), an§ equations (8b, 8c,...) will.
contain terﬁs of frequency w, . The procedure is.hence'modified by
letting ya(l) be the resultant term in w, and setting the‘higher order
terms in wy in equationé (8) to zero. Eqﬁation (7) is thgn used
instead of equation (8a)] N

The V(n) can néw be found from equation (10) and equations (8b,
86;;, and.substitutcd back into equation (7). 1In this way, equation (7)
is identically satisfied for all frequencies except the fundamental.
.The_fundamental terms can ﬁbw be picked out and-equated to zéro, thé left
hand side of equation ( 7)’having no fundamental (wa) term.

Equation (7) ig then a complex equation determining the
fréquency and amplitude of the fundamental. The algebra isvsomewﬁat

tedious, but the frequency/amplitude cquation reduces, for the van der Pol

- oscillator (that is, P2 = P4'= Ps = PG = w--= 0) up to -the fifth order
terms, to
= 2 2 _gp [y b u '
0= (Y, +P))+ P (3V.2+6V 3P, [Va L +3VY (g + ¢ )

b

i

3a a-2b . a+2b

+12V.2v.2 (g + ¢ ) + 6V." (¢ + ;)‘
ab "y b Py b
A A G R D B L | (11)

2a+b 2a-b
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. where g, = Ylipl' and the superscript (1) has been droped from the V(l)

1 jwat
for convenience. The term Va(l)‘c has been cancelled throughout,
. jw,t =~juw_ t
2, (D), (1) %" TIY%
and Vb = Vb V_b .e e .

The seventh order terms are numerous, but all involve products
of g, and so may be neglected in comparison with the fif;h order terms.
The terms in 8240 8004p MY also be neglected as being small as ;hcsc
frequencies are far removed from thé resonant frequency

For convenience the following.substitutions are now made:

w o= Wt Aw = fundamental frequency

Wy =Wt Awl = forcing frequency

~
L]

2Aw/awo

»
"

1 ’2Aw1/aw°

~<
]

2
lv 12 8

= |vbt2 B

~<
—
H

Hence, using equation (4),

Y + P = am0(1 - jx)

a 1 ,
a(x - %,)2 (12)
,YZa-b + P1 = aw [1 - j(2x - X, - — }
1 + C!(X- —2-)
, . alx) - *
Y2b—a + Pl = oW, 1 - J(2x1 - X - : 3 )
_ 1+ a(x1 - 7-)

If we neglect the a? terms in the above, equation (11) becomes

after substitution and separation of real and imaginary parts,



o 16
2 1 4

‘0.0=1 - 2y, -y + — + -
1 1 2 "
‘ 1‘+ (le - X) ; + xl |
. , . o (13)
2(2x - xl) ‘ 2x1 - X :
0= -x = yyl . - T+ y12 + el
. 1+ (2x - x1)2 1+ (2% = x)
where
. = 128 1
1 622 a?(1 + x?)

from equations (4a) and (8a), which is still valid for Vb(l).
These equations(13)were solved for x and y for various values of
Xy and Y1 Figure 3.1 shows an experimental curve of the frequency

2
deviation of the fundamental from its free running frequency (=wo(1-%30
from paragraph 2.2). Also plotted is the curve given by equations (13).
In this case, Aw = O when I/é 0 and the free oscillation coincides with
Wy e This is shown (curve 1) by the fact that the curve does not start

Ei which was 90.5 liz
o 16’ R
for the experimentally tested oscillator, for which w, was 216 Kliz.

at the origin, but at a value corresponding to w

If the o terms in cquations (12) are considered, and the tcrms
in €3a etc. not neglected, curve 2 recsults. _This starts at the origin,
that is, the unperturbed frequency is correct, but the curve rises too
steeply, and synchronization (y = 0) occurs too eéfly. With forcing
- frequencies nearer to W, these disparities were even more pronounced.

In view of this it can be concluded that either the seventh order
. terms are important, or that the experimental oscillator was not a true
van der Pol oscillator. Since it is a second order effect which is being
sought, it is important that the experimental circuit conform as nearly

as possible to the ideal. The presence of a small square term in the
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nonlinear element would cause extra spurious frequency‘dcviations
(although the second harmonic content of the oscillator output was very
small (paragraph 4.1)). Also the active nonlinear élcment may contéin
some nonlinear reactance.

On the other hand, the current required to lock the oscillator
agrced very well (Figure A2 ) with that calculated (Appendix A)
indicating'that the circuit was, to the first-order at.least, a good
approximation to the van der Pol circuit. However, ét these higher
values of the forcing current, the seventh order terms which were
neglected would assume more importance, and may account for thé

| disparities.

" 3.2 Variational Approach: /

3.2-1 The variational equation-

"The method used here is to assume a solution

e=e + g

where €, is an approximate solution and £ is a second order correction.

In the case of a general nonlinear resistance following the law

i= f(e)
the oscillator equation is
- 1 df(e) . 2 o
e + & —he- & *tu e = F(t) ‘ | s

di
n

where F(t) = ey

Of

iy c L eT i=f(e)
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When 1 = -ae + bc3 this results in the van der Pol cquation derived in
Chapter 2.

This can be rewritten:

24 :
Cul - -é- afe) 4 4 2.0 w F(1)
dt?2 t ° :

Let
e = eo + £
de %% _ dr
dt dt dt
2,
d2e _ d®e, . d%
dt? dt2 dt2

Expanding f(e) as a Taylors’series about e, gives

df(e)) a?fle)) 2
f(e) = f(eo)v + T £ + -:;7;__ 3T *eeees
. 02
and so,
." 2
af(e) | df(ey) , ag M) a9, g T
dt dt dt de dt de dt o2
2 4 d2f(eo)
T T, -
de?
Substituting these equations into equation (14). gives |
2 ‘ : B .
d%e d2g 1 df(e ) dE df(eo) d df(eo)
' T Tt @ T YR w oIt ---
2 & 2 o ‘
Y ute gt = ) as)



20
Since c, satisfies cquation ( 14) to the first order, cquation ( 15)

reduces to the variational equation for small variations £:

Cdf(e) ‘
1 o, dg 2
C ~“de  at ° {wo .

. [« 5

rh

[a® PN

olo

~

e
e
u

<0 (16)

where terms involving £2, Eg, or powers of £ higher than thesc have:
been neglected.

For a system with a van der Pol nonlinearity -
: 3
f(e ) =i = -ae_ + be
‘ o ‘ 0 ‘o

df(e ) )

= -a + 3be
- de

and hence equation ( 16) becomes

: de
d?g 1 2, dg 2, 6b- o .
G S oo g v |t T g | 8= 0
Writing
a . 3b
° T T B =
gives,
2 v de
Ll S a- Beoz) W, ‘%% + w02 + 2aBw e — 1 € =0
dt2 dt '

(17)

which is the first order variational équation to the van der Pol
equation (1). The stability conditions (A7) and (A8) can be derived from

this equation. The oscillator output when synchronized may be written

e = E., cos w,t

o 1 1

Iw

with F(t) = - == sin (ut + ).
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Substituting this into equation (17) yields

T 2
25 BE
d7e a(l - ——%— (1 + cos 2w1t)) w

Q_E_ 2 L2 -
S de2 odt * [wo anowlL1 ls;n Zwlt].g- 0

- (18)

If £ = AeSt cos(mlt + Aj is substituted into equation (18)  and
terms in eSt sin wt and ¢°% cos w,t separately equagéd to zero, twov
equations in A sin A and A cos A are formed. If the determinant of
coefficients of these is then equated to zero for consistancy, a single
fourth order polynomial equation in S is obtained; Applying the Routh
stability condition for negative roots of § yields'the stability limit

equations (A7) and (A8).

3.2-2° Frequency of the'free oscillation at the

stability limit-

When the oscillator is close to the stability limit, that is,
when the free oscillation has é very small amplitude and the oscillator
is nearly synchronized,bthe output is found to consist of sidebands
about the driving frequency of spacing (ml - u where w is the frequency
of the free oscillation. The most significant of these sidebands arc '
those adjacent to the drivihgbfrequency, that is-#t u and (Zm1 - @Q;
Using the method described in Appendix B, the approximate relati#e

magnitudes of the sidebands are shown in Figure - 3.2 ' below.

1\Re1ative 1
Amplitude
FIGURE 3.2 \
Output Spectrum
' R 0.2
Near Locking 0.04 l - 0.08 0.02
' v ¢ - L » Frequency w
: e w, ,

Zwl-w
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As a first approximation, therefore, let

£ = A sin (Qg + )

+ B sin ((2wl - w}t + 8) (19)

and substitute this into equation (18)), together with “ch‘e stability
limit condition:derived in Appendix A, for w) away from the ellipse

2 . 2
E,)° = B

Equating coefficients of sin wt;,, cos wtr., sin (2(»1 - wt)t’

cos (Zm1 - wgt separately to zero gives the four equations.
~ . v . -1
2 _ 2 o : _
(wo _ wf) 0 | 0 ‘ - -aw %
2 729 L e :
0 (0" -/uwg) “w, 7 |
WES Feg, ‘ ‘
0 .awo(ml - if)[(Zwl - m@z-woz] v .O
WS ’ . .
o () - ,°2—f) 0 ; 0 (2w - “,92-9’02]
A cos ¢
A sin ] o o
x | = 0 | (20)
B cos 8 : o
B sin 6
-l o

The condition for consistancy is:
2 _.2 ) |
(w5, % - “f ) ™ %f

dwo(wl - %f) : [(Zwl - q@z-woz]
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Substituting T § and normalizing w, = 1 gives:
' - 2 . - &2
(1 wy ) + 2w16 8 _ g_(w - 8)
2 Y71
o 2 =0
5 (w; + 8) [(wy? - 1) + 20,8 + §2]

Solving this,

. \
§ = ‘///ﬁé Wl // ) o2 ot _
AT T A U el v ¥ (21)

Now the frequency shift of the

free oscillation from its

w W, w
. fo\ﬁ 2) .f' Wy
unperturbed value is , X !f fj' _
We = We = Wy - § - We §
‘where
we = free frequency
w; = forced frequency
Wy = unperturbed free frequency
) .
a
(lﬁ- 15 )
Hence the frequency deviation at critical locking is given by:
: .
I S |
U7 % T T8 L (e - D _ (22)

where the frequencies are normalized with respect to w, = 1.

This may be compared with the deviation calculated by van der Pol!l

where ‘ a2

S N (23)
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is the frequency deviation from Wy, (normalized to 1).
. T2
If the free running frequency is taken as (1 - %3-), then

. equation (23)) becomes:
w

2 1
] R N R
We = Bgo 1§ e -1 : (24)

although it is questionable to do this since to the order of accuracy of
van der Pol's solution the free running frequency is W, (This is
because only the fundamental component of the nonlinear element output
was considered).

The analysis.can be extended to'inciude the third harmonic of

the forced oscillation. In this case,

/

e, = El cos glt + E3 cos_(Swlt + )

and the variational equation (17) becomes

E,? E.2 .
EEE- - a {1 - B—l—- - B -l-'cos 2w,t - BE.E.{(cos{4uw,t + @)
+cos(ut + M)} w S5 4 (w2 - aBw  [wE 2 sin 2ut
1 ' o dt o} o L7171 1
+ ElEs (4 sin (4w t + #) + 2 sin (2wt + ﬂ))]} £E=0

and the variation £ is taken as

: g = A1 sin (QF + P) o+ Bfin ((Zwll- 9@? + 8)

A, sin (Swf‘. + €) +_B35in ((4w1 - “Pt +0)

The method is similar to the previous solution, although the alge-

bra is rather lengthy, the solution is:
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o
©n - W = & 4 - (26)
f 'fO 16 (wlz - 1) :

These three formulae were compared numerically, and the results

are given in the table below, with w, normalized to 1.

EQuation (24)

wy Equation (22) Equation (26) (van der Pol) Experimental
0.694 0.036 x 107> | -0.388 x 1073 -0.265 x 10™° | -2.78 x 1073
0.926 | -2.130 2,510 " | -2.38 " -6.02 "
1.158 1.921 " 1.644 1.741 n 3.4 v
1.390 1.104 »  0.866 @ " 0.954 1.20 v
1.621 0.883 " 0.675 0.755 " 0.787
1.851 0.777 0.590 0.664 " | 0.671
2.084 0.711 " /0.543 " 0.611 1.16 "

The values taken for w, correspond to the frequencies used in

1
the experimental curves of Figure 4.6, and a was taken as o = 0.0819,

the value used experimentally.

3.2-3 Frequency of the Free Oscillation for

Small Disturbances

For small disturbances, eovin the variational equation,
equation (17), is set equal to the free running undisturbed output, which

is (Chapter 2 and Appendix A) given by

[ =

2
° B ;
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- The variational cquation then becomes; with 8 normalized to 1

. : . : o Tw v
£+ afl +2cos ZQg]wOE + w2 - 200 w sin2ut] £ = - sin w,t

) of C 1
(27)
Since the free running solution was used for e6,<the right hand

forcing term is not cancelled.

In this case it is expedient to choose (paragraph 3 4)

g = A sin (mlt +.9)

¢ Bosin ((ug- wp)t + 6) (28)

which are the two main sidcbands.
Substituting this into the variational cquation, and cquating
the coefficients of sin wltf cos wlt, sin (2w - wl)t and cos (2w -wl)t

separately to zerbfyields the four equations, written in matrix form as:

1'w12/w°? -awl/wo ‘ 0 z-aw{mo‘
awl/wo l-wlz/wo2 : -awl/mo' : 0 .
29
0 —a(ZQEwl)/wo 1-(2q;m1)2/m02 fa(Z%rml)/wo (29)
2
S YA 0 (g0 1)/ 0, 1'(2%'“’1)2,4“’0 ]
_ ) - le .
A cos ¢ . - m:z—
A sin ¢ ' ' 0
X '. ) =
- B cos 6 : 0
B sin 6 0
| ) L ]

which is similar to equation (20), but has fewer zero elements. For
convenience the time scale has been normalized as in Chapter 2 i.e.

t . . ' s
t - - To simplify the algebra, we make the substitutions:
o .



a = w./w

b = (Cw - wiyw

and normalize B8 = 1.

The equation becomes:

- . ' - 5 - A
} 1-a2 -aa 0 -0a ] A cos - %i
- o
0a 1-a2 -aa - 0 A sin ¢ 0
0 - -ob 1-b2 -ab B cos 6 0
-ab 0 ab 1-b? B sin 8 0 |
L o L i L -

The magnitudes and phases of the $idebands can now be found.

Hence,
: / .
Acos ¥ = - = a [(1-a2) ((1-b3)2 - a?b?) - a2ab(1-b2)] /a
L o : ,
. - L2 242
Asiny = o o (1 - b%) /A’
o . - (30)
Bcos 8 =a2—— b [a(l - b2) - b(1 - a¥)]/ &
[o I
B sin 6 = . -a Eé"‘ ab (1 - a?)(1 - b2)/a

Y
where A is the determinant of the coefficients
s = [(1-a2)2 + a2a2 | [(1-b2)2 + o2bZ] - 2a2ab(1-a2)(1-b2)-a“a2b?
The soiution may be written (with B normalized to 1) as:

e=e +
o €

2 cos wt + A sin (wlt + ¥) + Bisin ((Zw-wl) t + 0)- - (31)

with A and B given by equations (30).

27
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We now return to the van der Poi eqﬁation, equation (2) to obtain
the final relation necdéd to find the‘frequency.

If cquations (30) are substituted into equgtions.(Z}, and the
" coefficient of cos wt equated to zero, the following cquation is

obtained:

;ﬁf -1 - %-(A siny Bcos® + A cosy Bsin 6) ;ﬂf = 0 (32)
0 o :

Since A siny Bcos 6<< A cosy Bsin 6, this is approximately

) | | ‘
2f -1-2 Acosy Bsine =¥ =0 (33)
W 2 N ;

Ignoring powers of a greater than g2

' / 2 2
A cos ¢y Bsin & = a { I a’h
| kzwoz (1-22)2 (1-b2)

The frequency deviation is small, so we look for a root of %— near 1.
0
. : W W
Let “LE o= 1486 where 6§ =. £ _fo
w w
o : -0
b = (2-a)+238
b2 =

(2 -a)2+4 602 -a)

Equation (33) then becomes:

2 1 \2 aZ(2-a + 26) (1 +§)
w C
0

[N
o
1
NlQ
]
o

(1-a2)2(1-(2-a)2- 46(2-a))

Ignoring terms in 62, the solution is found to be:

2 2 L2799 2123
wg - gy =0, g B wIc alz) [ Lee))
o (a-1)3(1+a)2(3-a)2

(34)
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with the amplitude normalizing parameter B rcinscrted. Values obtained-
from equation (34) are tabled below, and correspond with the frequencies

experimentally used, in Figure 4.7.

INPUT o ;
FREQUENCY a EQUATION (34) EXPERIMENTAL
150 KHz .694 -3.74 Hz -1.7Hz
200 . .926 =314, -74.
250 1.158 29.6 14,
300 1.390 1.8 1.7
350 1.621 .34 .29
400 - 1.851 - .08 .02
wo ' ; -1 : . .
T 216 kHz I =10 " mA(peak) C =780 pF o= .0819
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3.3 . Elcmentary Approach for a Large Narrow

Band Noise Input:

When white noise is passed through a narrow band filter, it can

be shown that the output is of the form??

v(t) = V(t) cos (mnt + ¢(t))

where W, is the filter centre frequency, and V(t) and ¢(t) arc slowly

varying random time functions, varying with a maximum frequency of Af,

phe filter bandwidth. The doublevsidcd spectrum S(f) is of the type:-

Af

4 S(E)

— . -

f
n

The probability density functions for V(t) and '¢(t) are found

to be??
p(V,)
p(s,)
_p(Vt_, ¢~t)
where
Vt
¢t
o

2

N
Ve 202 :
- ¢ V. 3 0
o2 t ”
0 otherwise
2n v, 0<¢ <27
Vt 2¢2

e

2ng2

sample function of V(t)
sample function’of o (t)

root mean squarec value of Ve
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/

It should be noted that while Vt and ¢, are independent random variables,
the processes yielding them are not independent. See Reference 22.

The cumulative distribution for Vt is:

2 ' 2

. Vt vc
» Ve'v, "3 e

: t 20 - 20

P(Vt < VC) J ;—; e dvt =1 -~ e ‘

(o]

Now if o is large, the noise input to the oscillator will rise
above the value required for synchronization; and the oscillator will
lock onto it. When it drops back below this value, the free oscillations

will recommence. Thus from the above, the proportion of the time the

oscillator is locked can be found, and the net frequency is then;
. / ' ) :
f = P(Vt.z Ve) fn +; (1 - P(Vt > Ve)) fo - (35)

‘ where fo'= oscillator unperturbed frequency.

The assumptions are that the oscillator locks and unlocké
instantaneously onto Vt, énd returns to its free running frequency when
unlocked.

Neither of these assumptions are true. The‘oscillatbr required
ofvthe order of 200‘cycies to lock or unlock (the unlocking transient ié
slightly faster than the locking transient, but both are of this order).
Also the oscillator doeé nof drop back to fo in the unloCked:conditibn,
but to some frequency near fo’ depending on the magnitude of the noise.
The error, however, beéomes insignificant when an app:eciablc proportion
of the time is spent in the locked condition.

1iff = oLl 1o -
The approach does not hold ;ffrl— nfo (n=-- > 3 0, 1, 2, )

W

since resonances will occur,
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'If the rms magnitude of the noisclis low, the time spent above
the locking value becomes very §ma11, and the oscillator rarely becomes
synchronized. In this case the frequency shift of the os;illator is due
almost entirely to the pulling effect seen in the sine wave diéthfbance
~case, paragraph (4.6 . Calculation shows that the knees in the curves of
Figures 4.5 and 4.6 occur when the magnitude of the narrow band noise
is large enough so that it remains above the critical locking value for
several hundred cycles, allowing synchronization to occur.

Figures 4.5 and 4.6 are graphs of the frequency deviation from
the free frequency against the rms magnitude of the input noise current.
Also plotted (dashed curves) are the curves obtained from Equation (35).

It can be seen that agreement is at best only fair;curves for
noise of centre frequency bélow 125 KHz . were not plotted as the agree-
menf was very poor.

However, considering the difficulties in‘obtaining’the curves,

and also in obtaining the data for the calculation, the agreement is

remarkable, and shows that '‘a random locking phenomena in fact occurs.

3.4 Discussion of the Methods

The method of A. W. Gilliéslza is of some interest since
theoretically it is possible to consider the effect of‘ds many harmonics
;s deéired. However, as has been found in practice, the algebra becomes
rapidly intractable. The solution is in the form of a series, cquation
(11), and it is difficult to ascertain its convergence. The frequency
deviation is, however, proportional to i2 over the rising part of the

curve (Figure 3.1 curve 2), although the empirical relation
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lFreqﬁency Shift « !

(/Y]
1 3
(= - 1)
[o]

obtained in péragraph 4.7 dqes not hold whén w, is Qaried in Gillies'122
formulae. The method docs, howevcr; show the importahce of the higher
order modulation terms, and indicates that the’seventh‘order terms may
be significant.

The vériationalltechnique of using a known solution to find a
better higher order solution is also useful; Hafner 'si! method being of
this type.

The variational equation used in pgragraph 3.2—2 is different
- from that used in paragraph/3.2-3 in that the right hand forcing'term~
F(t) has been cancelled by the first order solution, and that in para-
graph 3.2-3 has not. This mean§ that in 3.2-2 we are not obtaining a
"better'" solution when the oscillator is just locked, rather we are
introducing a perturbation £ at the 6utput and éxamining‘the nature of
" this perturbation to\find its frequency; while in 3.2-3.we are examining
. the variation .in the output due to a small perturbing iﬂput.

The choice of & is of significance. Consider the variational
equation (18). If we assume & = A sin wt in paragraph 3.2-1, modula-
tion freqﬁencies of w and 2m1 -~ w are producéd after the substitution of
£, and the frequency 2w1 -w cannot intermodulate to producc w. It can |
be secn that in this case, the solution is‘m = W, and therec woulq be no
frequency ﬁhift (from inspecting equation (20)). Therecfore, if fre-
quencies w and w, are present, so also must the frequéncy Zwl - ¢, énq

this has to be recognized in the choiée ofng. Thus, if ¢ is chosen as
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in equation (19),>thc fcquired third order modulation product of '
frequency w will result.

A similar argument for the free running oscillator will show
that the third harmonic, 3w, in the output (Chapter 2) intermodulates in
the nonlinear element to produce a current of frequency w, but having a
differcnt phase than the fifst order component. The resonant circuit
must then be slightly reactive to festore the phase shift round the
circuit to zero, which causes the slight lowering of the frequency from

2
o
w tow - =—

o o 16 o
The same reasoning applies to paragraph 3.2-2, the term of
fre&uency 2w - Wy is necessary to obtain the third order modulation<pro~
duct of frequency w, whose phase determinés the frequency of the funda-
mental.  The phase angle included with the frequehcy 2w - wy i§ neces-
sary because this frequency originates from the third order modulation
products of w and wys and its pﬁase is thus related to'thc phases of

these frequencies. The phase angle y associated with w, is the phase

1
angle between the driving current and resulting voltage of this frequency.
Equation (29) can also be obtained directly from the van der Pol cquation
~ (2); the procedure is the same, but-substituting équationv(28) into
cquation (2) instead of the variational equation (27), and neglecting B2

compared to the squared amplitude of the fundamental. If the third

harmonic is included, that is

e' = e + Dsin (3wt + A)

then the expression in parenthesis of equation (32) contains the

additional terms:
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: w
-2 D cos A+ ARD 1 cos (A - 8 -y)
w 2 ,
) : o
The first term, with D cos X = - a g—, E = normalized frce run-
. . 2 .
ning amplitude (Chapter 2),.gives the constant deviation of - %E-wo from

w_ .
)

This is evident alsb'in Gillies'12? soiution, curve(2) (Figure
3.1) including the third harmonic (rgpresented by the presence of Cza in
cquation (11)) shows zero deviaéioﬁ from the free running frequency
while curQe 1 (which does not include csa)~gives the free running fre-

2

quency as wo', that is, a deviation of %g'wo from the actual. The

second term is of order a2 and so can be negiectéd to the order of
approximations used in 3.3-5. Additional tefms to the above are intro-
" duced by conéiﬁering the two Sidebands about‘3w3? of frequency 2w + Wy
anﬁ 4w - w;, but these qré of ordef 2, also.

The agreemeﬁt with experimeht‘is,oniy fair; as can . be seen .from
the table of eqﬁation (34). Qua;itatively, the triple p%%e at@ - D is
in experimental agreement,.as is the fact that the frequency deviation
is proportionai to the square of thé input perturbation. |

Stover's 21 observation of the assymmetric sideband diétfibution
-.can be explained in terms of the above theory, by noting that A (para-
graph 3.2;2 or‘3.2-1) is an order of a higher than B. Carrying this

further, consider an output with frequencies w, w These will inter-

1
modulate in the nonlincar eclement and produce the sideband (2w -_wlﬂﬁ

(a)

where indicates that this sideband has a magnitude of order a. Now

consider an output of frequencies w, w

1 (2w --wl)(a). These will
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similarly intermodulate and produce 3w(a2), (3w - 2@1)(a2) as additional
frequencics.', L - Thus it can be seen that.the sidcbandé on
the side of the fundamental opposite thé driver arc of the same‘ordef
as . thosc on the same side as the driver. Furthermore, cach sideband
is a times its neighbour nearer the fundamenta}, also oﬁservcd by

Stover?l,

log (Qmpiitude) ,‘ ~

e B

: Vod
~ Fundamental * Driver



 CHAPTER IV

EXPERIMENTAL INVESTIGATION

The nonlinear oscillator circuit of Figure (4.1) was sct up to

experimentally examine the van der Pol oscillator.

4.1 Oscillator Circuit:

The non-linear element was simulated by using the cathode coupléd
double-triode circuit of V3 in Figure (4.i)7 The first stage, a cathode
* follower, feeds the sccond, a cbmmon érid amﬁlifier, which provides the
inversion necessary for negative resistance operation.

To obtain the cubic férm required, the tubes were Dbiased near
cut-off, so that one, V2b, :cut-off. on the positive half cycle and V2a
on the negative half cycle. By adjusting the cathode rcsistér, the
amount of ¢ cut-off . could be Qaried, which corresponds toivarying.the

cubic coefficient b in the nonlinear resistance characteristic,
i = -ae + be3-

The resistor shunting the circuit can be altered to change the
.resultant value of a.

Thé voltage / current characteristic of the circuit could be
displayed on an oscilloscope using the 100Q resistor fbr the current
measurement.

Also in the circuit is a potentiometer chain which changgé the

relative biassing of the two tubes. This is necessary to ensure that the
. 37 v
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chardtteristic is'symmctrical, that'is, there is no e2 term in the non-
linear characteristic. This can be adjusted by cxamination of the
oscilloscope characteristic, but it was found that a more accurate
setting could be obtained by CXamining the free running oscillator for
any second harmonic. By very careful adjustment,‘the second harmonic
content of the oécillator was reduced to less than 0.1%. 4Whén doing this,
the filter must be connected directly to the oscillator, since a buffer
amplifier will introduce enough. second harmonic to mask that of the
oscillator. |
The oscillator circuit was completed by adding the LC tank
circuit as shown.
Tubes were used rather than transistors because of the better
~aging characteristics, and the better input/output isolation. When
transistors were tried it was found ihat the junction capacitanée varied
with time and temperature to give a raﬁdom frequency drift in the oscil-
lator output. This was largely avoided by using tubes, and allowing the
oscillator to warm up for .several days while enclosed in a box to exclude
draughts. The‘oscillator was also mounted on shock absorbant material

to avoid microphonics.

‘4.2 Noise Source:

The narrow band noise source was obtaiﬁed by passing whi;e noise
from a noise generator through a narrow band filter. The filter
consisted offa simple L.C. circuit, as éhown below in Figure (4.2).

A coil of 1.71 mH (using Ferroxocﬁbe)’gave‘a Q factor > 100 up

to 150 KHz and a coil of 356 uH (Mullard) gave.Q > 100 from 150-400 Kiz,
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thus covering the entire range of interest.

17pF 4.7pF
/! | —
White o
Noise =—= 6000 - to pre=amplifier
Source 1300pF
[« ~ o

FIGURE 4.2

|

. 4.3 Input/Output Circuits:

(i) Input-

The noise filter output was fed into a preamplificr V1,
Figure 4.1, The 12AX7 is/a high-u double triode tube, whose output
was fed to the pentode curfént-source driver stagé V2. V2 was biassed
atvll mA and it was found that ;t delivered up ﬁo 2 mA rms of signal
current before saturation effects occurred, and that 2.5 mA would be
de;ivered before this became.serious.

| (ii) Output-

It was found that the direct'connectidn of~measuring
instrumentst(voltmeter, counter, etc.) to the oscillator»affeétcd the
oscillator frequency and amplitude. An output buffer amplifiér was
therefore provided.

This consisted of a high pass (8 KHz.) RC filter feeding a
cathode follower as in Figure ,431. Thus a constant odtput ioad was
presented to .the oscillator,bindependent of tﬁé Various»meter settings.
For the larger values of input noisc, the oscillator output‘was found to

be highly amplitude modulated, and as the counter used did not count
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small inputs, the wave was clipped and‘émplified by the clipper ciicuits
shown, to produce an approximately squaré wave output, of the frequency
of the zero crossings of the input.

Alternatively, the frequency of the fundamental could be meésured
by inserting a band pass filter after the cathodéﬁfollower‘V4a,'althougﬁ
in this case, care had to be taken that the resulting phase shift in the
clipper circuits did not fécd itself back to the oscillator, by capaci-
tive or inductive coupling in the wiring for example, and thus affect

the free runhing frequency.

4.4 Measurement of Circuit Parameters:

The parameters to be determined. are L, C, and a, b—the negative
- resistance parameters. These para-
meters must be determined under

. 3
. A, . . =.ae + be
working conditions, that is, with the b o=-ae

input and output buffer amplifiers

connected.

The values of L, C and the Q factor of the coil werc found using
a Q-meter. ‘ |

The values of a and b can be found from the geometry of the

nonlinear resistance characteristic which can be displayed on-an
i

oscilloscope (Figures 4.3 and 4.4). 1
C : A
i = -ae + be3 /
di _ ‘22 €
T - -a + 3be , o C
= 0 at turning points, A and B. B
‘ FIGURE 4.3
5 _

i =-ae + be
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Hence a = 3be? and we find:

b = =2
2e3 ' ' ,
at the turning points A and B..
a = 3be?

Also at Point C 1 =0, e =V 3-.
Values found in this way were:

0.25 x 107° &

6 z;,VZ

]
n

o
i

= 8.70 x 10

The value of "a" obtained in this way must be modified to

a -+ a-~
Ry

in order to be of use in cafculations.. R;is a distributed resistance
made up of the input and output buffer amplifier resistances and the
(neglected) tank shunt resistance.

It is known that in the free running state, the oscillation

4(a - 10 where R is an external
B = R shunt, and a is the
T 3b modified value.

4a - i_

30 3b

amplitude is:

E2 =

==

IfE? is plotted against 1/R a straight line, slope - %E’ intercépt "a'.
on the 1/R axis, should result. This was done; the oscillator was
shunted with various known resistors and the amplitddc noted. The resul-

tant graph was linear, and gave the values below which are the values

used in the calculations. The error in the value of "a'" was estimated
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to be 2%, and that of b to be 15%.

a .088 x 10751

b

8.72 x 1_0'6 A

The value of b was adjusted within its range of crror so that the free

running amplitude was:

N
s

3.67 = =

(3]
o

which is the measured value.

An attempt was made to measure the parameters by meagufing the
harmonicé in the oscillator output and calculating a and b from the
~ second order harmonic balance solution (paragraph 2.2),

/

T oab . .
= E + -
é E cos wot g (3 sin mot 51n.3wot)

a . 4a
a-m-— and E'_/'ZTH

where

The harmonics could not however be determined with sufficient
accuracy. This was because the measuring instruments had to be connected
.dircctly to the oscillator, which altered the opcrating parameters. A
buffer amplifier introduced a spurious second harmonic, and as the third
harmonic content is only about 1%, and the attempt was abandoned._
In summary, the parameters were found to be;

[a = .25 x 10726(N.L.R. only)]
a = 0.088 x 100 (overall circuit)
b = 8.72 x 10-%yvy2

- f4a
/35- = 3,67 volts

and C = 780 pE w, = 216 KHz..
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Hence, the constants of the van der Pol cquation for the oscillator are:

0.0819

[0

B 0.297

4.5 Experimental Technique:

The frequency shift of the forced oscillator from its free
" running frequency was investigated cxperimentally. Since random
frequency drifts due to thermal or other effects could ne?er bc comple-
tely eliminated, these had to be allowed for‘by taking th; mean of the
free running frequency beforc and after a measurement.

The procedure was as follows:
(1) The switch S (Figure 4.13' was turned to position 1. This
places the output of the pentode across a known resistor, so that by
measuring the voltage at this point, the effective current source
strength can be found. The level was set to.a small value by adjusting
the noisec gencrator gain control.
(ii) The noise generator was disconnected from the narrow band filter
and switch S turned to position 2. The frequency of fhe free running
oscillator was measured by the counter, gsing a ten second gaté time,
" several readings being made.
(iii) The noise generator was reconnected to the narrow band filter,
and several readings of the perturbed frequency taken. |
(iv) The noise generator was égain disconnected and the free running
frequency again recorded.

| The mean fréquency deviation is then thé gverage:of (ii) and (iv)"

less the average of (iii).
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This procedure was repeated for other input values and also at
_ other noisé centre frequencies. The filter was tuned using a (sine wave)
oscillator.

When a sine wave was used as a forcing function instcad of narrow
band noise, the narrow band filter was still kept in the circuit~as'it
acted as an attenuator pad, isolating the external oscillator, and
filtcfing switching transients which sometimes caused a jump in the
oscillator free running freqﬁcnéy. The (fluorcscent).room lighting was

turned off as trouble was experienced with mains hum.

4.6 Experimental Results:

The results of the experimental work are éiven in graphical form
in Figurcs 4.5, 4.6, and 4.;. These are graphs of the deviation of‘thc
oscillator frequency from the frec runﬁing frequeﬁcy dgainst the
magnitude of the input disturbance. The frequency was measured by
counting the number of zero crossings (obtainedvfrom the clipping circuits
of Figure 4.1 ) over fen seconds and dividing by two..

Figures 4.5 and 4.6 are with a narrow band noise input and
Figure 4.7 with a sine wave input. The curves of Figure 4.7  termin-

ate at the point of synchronization when the amplitude of the frec

oscillation becomes zero. Figure 4.4 shows some experimental waveforms.

4.7 An Empirical Result:

The curves of Figure 4.7 are replotted in Figure 4.8 on log-
log scales, and it can be seen that these are approximately straight

lines, for small inputs. The curves deviate from a straight linc for
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(a)

Y

— Vv ’(b)bl

i

(a)

(b)

(c)

FIGURE 4.4 Experimental Waveforms |

Voltage and current waveforms for the nonlinear
element in the free running oscillator. Scales are:
v - 5v/div
i - 0.5 ma/div

Voltage/current characteristic of the nonlinear

eclement. Scales are:

v - 2.16 v/div |
i - 0.5 ma/div

Output waveform of the forced oscillator. The dppcr
wave is the input current of 0.5 mA (pcak) at 250 KHz,
and the lower is the oscillator output voltage waveform,

scale 2v/div. This can be compared with the computed
waveform, Figure C2. ‘ :
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large inputs. This is particularly marked in the curvé\for wy = 400 Kiiz,
The cause of this is not known, but it may be noted fhat this frequency
is ncar the second harmonic of .the fundamental, and so may thus introduce
cffects unimbortant at other frequencics. For exaﬁple, therc will be a
modulation product 2w1 - we ciose to the fundaméntal.

The slope of the lines is 2 which means that the‘frequbncy shift

of the fundamental is proportional to the squarc of the input disturbance.

Further, the spacing between the lines indicates that:

Frequency Shift o

In addition to thé Syrves of Figure 4.7, . Figure 4.8 also
shows curves for driving fréquencies less than thg fundamental. In this
case, the frequency shift is negative (i.e. the shift is still towards
the driving frequency) and 50 these curves have been shown dashed.

The dependence of the éhift on a, the small parameter
describing the ''degrce'" of nonlinearity in equation (1) was found
difficult to determine and n§ significant results were obtained, although

there were indications that a square relation may hold.

Empirically, therefore, the approximate relation .

I2

—
L - n?

W
O

Frequency Shift

was found to hold for the experimental oscillator.
The same dependence also holds true if narrow band noise is used
as an input, the portions of the curves of Figure 4.6 below the "knee"

being similar to the curves of Figuré4}7.

MILLS MEMURIAL LIBRARY .
McMASTER UNIVERSITY..
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4.8 Accuracy:

The oscillator was found ic be stable (after a wafm-up peridd of
sevefal days) to 3 parts in 107 over a period of one minute. It was
thus possible to detect frequency shifts as low as .5 Hz, or ahout 3
parts in 107 with an accuracy of the order of 10% (dctcrmincd by the
"repeatability" of the measurements). At higher inputs and hence larger
frequency shifts, the error is proportionatcly smaller. .

The accuracy of measurement of a, the nonlinecar parametef was
considered good (2%). The value of b (obtained from a and the frece run-
ning amplitude) is therefore of a similar accuracy. The presence of an
element of nonlinear capacitancé in the circuit was found very difficult
to investigate; an analysis/of the circuit was attempted, toiinvestigate
the effect of the grid-cathode capacitance on the nonlinear resistance,
but it was found that this led to expressions far too unwieldy to be of
any practical assistance. The presence éf a émall nonlinear reactance
cannot be discounted, and this may account for the difference between
the measured and calculated values, in addition to the éxperimental
errors mentionéd above. |

Thus, although the accuracy of the measurement of the
frequency shift was acceptable, there were additional uncertainﬁies
caused by the above, which although negligiible in the first order,
become significant when second order effects such as frequency
deviation . afe considered. Hence although qualitative conclusions can
be drawn, accurate quantitative conclusions would require. a much more
sophisticated experimental investigation to eliminate any spurious

nonlinearities, in particular nonlinear reactance, or any slight



assymmetry of the nonlinear characteristics which would introduce even
harmonics at fhe ouﬁput. These will tend to lower the free running
fiequencyis. Aléo, second harmonic resonances may occur whici
probably'aCCOUnt for the shape of the second and half harmonic curves
of figures (4.5, 4.6, 4.7). Hoﬁever, the square ahd_qﬁihtic térms in
the nonlinearity were very smali, and would only assume importance
near ;he sgcond and fifﬁh harmonics. A more detailedlanalysis would

be required to ascertain the effect of these additional terms.



CHAPTER V

CONCLUSIONS

The frequency shift of the van der Pol oscillator due to an
external forcing sinusoid has been experimentally found to be

proportional to .
bfe —I
(a - 13

where I is the input current magnitude and a is the ratio of the
forcing frequency to the free frequency. This is in agreement with the

calculated shift'(equation 634)):

2 Ay A (2-a) (1+(2-a)2)
© (a-1)3(1+a)2(3-a)?

(34)

Unfortunately, the experimeﬁtal data was}not accurate enough to observe
the effect of the other péles and zeros of equation (34).
| The result of A. W. Gillies!2? showed fhat'the frequency shift
".waé probortional to the square of the input; but did not givé‘as good
.results'aé equafionv(34)'for the magnitude of the shift.
_The maximum frequéncy Shiff dccurred 5ust'b¢fore synéhronization, :

rand waS'calculated'to bé (equation (20))

T T 5 (26)
" . (wl - 1) C

EqUatiOns(34)and:(26) are both in good qualitative agreement with .

-the experiment, but are only fair quantitatively.
L 54



APPENDIX A

THE METHOD OF VAN DER POL

The van der Pol equation was'first solved by Balthazar
van der Pol after whom the equation is namedl, 1In this Appendix, his
method of solution is presented, and an expression for the magnitude of
the input signal for the oscillator to just bé synchronized is derived.

The driveh~ van der Pol cquation (Equation (2)) is

. a2 2. _ . L )
e a(l - Be<) woe +w ‘e ( C) w; sin wt
where /
-2 - 3 2 . 1.
&= Cu, B= 3 ' Yoo T T (Al)

and a, b are the nonlinear element parameters.
L, C are the antirecsonant circuit elements in Figure 2.1.

Assume a general solution of the form

e = b, sin w,t + b2 Cos w

. . € W

1

wheré the possible presence of a free oscillétion is allowed for by
.letting b1 and b2 be slowly varying function; of time'(varying slowly
enopgh so that 81 and 52 can be neglected, whe;e the dot represents
differentiation with respect to time,band bi<<w1b1,‘bé<<w1b2).

If Equation (A2) is substituted into Equation (Al), and coef-.
fi;ients of sin wt and cos w;t equated, thgnfollowing two equatioﬁs

arc obtained.
55



e B .2 -
2b1 + awoxib2 - abl(l -3 b )_@o -‘0 (A3a)
.2b. - aw x b -~ ab, (1 - 8 b?) w_ = (;»13 ‘ (A3b)
2 o] 1 7 2 4 o C _ _
, w02 - wl'Z
where X = ’W" b2= blz + b22
o 170

and = free running amplitude.

Q.I'f’

A particular solution of equations (A3) is given by:
bp = by =0

and hence, o
B

. ) B2y .
axb2 abl gl ) b_) = .0 (A4g)
axb. + ab, (1 - £p2) = 1_ (Adb)
1 2 4 Cwo _
Squaring and adding equatioﬁs (A4) gives:
b2 [x2 + '(1 - Bpny2] o L | '(AS)Y |
- 4 : awoC : ’
or : _ | : )
y x2+ (1 -y?] = E? o (A6)
where : _
b2 . . I
y = EZ_ and E2 = g-(aw = )2
: o]

These are the resonance curves for the van der Pol oscillator, and are
shown in Figure -Al , whefg x is pfoportional to the frequency difference
woz—wlz, or the "detuning" of the input, and y is proportional to the
magnitude squared of the resultant oscillator output. Since, for this

solution, bl = bé = 0, Equation (AS) must represent the oscillétor in

the synchronized state with the frec oscillation suppressed.
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-

290 DETUNING

' FIGURE (Al): Resonance Curves for the

van der Pol Oscillator




The stability of the system can be investigated by examining the
behaviour of smali variations in bl and b2 with respect to time. This
‘may be ac;omplished by substituting b1 + Abi and b2v+ Ab2 for b1 and b2
in Equations (A3), to form another pair of equations.  Equations (A3)

are then subtracted from these new cquations, which arc then solved for

Ab1 or Abz. The resulting linear cquation is:

2 (-8 -2 e+ x2] =0

. . B )
4Ab1 4awoAb1(1 > bs) + Abla W

The Routh stability criteria gives the conditions:
- 8,
-4&(1-'2—b)>0'
2 B2 8 12 2 ‘
o [(1-Z_b)(1-3z-b)+x] > 0
: ;o | | v

-which can be rewritten,

y>%,. NI D
x2 + (1 -y)(1 - 3y) >0 | (A8)

Equation (A8) is the ellipse shown»in’Figurc_(AL).

The synchronization range for large input amplifudes-and
detuning  is governed by equation (A6),’and by‘the boundary condition
CA7)- Hence, on the stability boundary,

e g [ e 7]

2
That is, ) ‘
2 _ 2

1 SRR U R S AN

2, 202 2 2 2. 2 4
4o, Wy C efw “w

an§ hence, e (woz _ wi2)2 a2w02
12 = - - + (A9)

"B .2 K
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which is plotted, for the oscillator cXperimcntally mecasured, in Figure
A2, Some cxperimental points-are also plotted, showing good agrecment.

If w 7w and the term in o? is negligible,

1
. J2
I= T ?C [wo - ml]

B

where C is the tank circuit capaéipancé and 2//B 1is the free running
_amplitude.

| That'b1 and b2 are sl§w1y‘vqrying (particularly when Wy " mi is
small) can be secn experimentally from the waveforms in Figure (44).

The solution,

e = b1 si# Qt + bzlsin wlt . (A10)
could have been used instead of equation (A2). This form is more
convenient for examining the respohée whén-both free and forced oscil-
lations are presentl»2, In this case, the resonance curves are,

y [x2+ (1 - Syz)z] = E2 | (A11)

where

and the amplitude of the free oscillation is given by:
b.2= X | gp2 | (A12)
1 8 2 :

The connection between curves (A6) and curves (All) is good
away from the ellipse but is incomplete in a small region about the
ellipse. A more accurate solution of equation (Al) is required to

complete the curves.
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APPENDIX B

FREQUENCY COMPARISON -

The following method?3 may be used to identify the harmonics in
the oscillator output and obtain a qualitative estimate of their
magnitudes.

The system is shown in Figure Bl, below.

waveform under

study x |~ oscilloscope
o - |
y  TFIGURE: Bl
A
,/ - .
Local _ 4 Bapd Pass _ Counter
Oscillator Filter

The waveform to be studied is applied directly to the x plates
of an oscilloscope, and through a Variablevnarrow-bandpass filter to the

y plates.  The input to the x plates can be considered as sin n wt

th

(-
ify
+ and that to the y plates as sin'niwt if the filter is turncd to the i
frequency component. An ellipse will appear on the screen, and if this
frequency is unrelated to any other x plate frequency, this ellipsec will
move in a stationary envelope (e.g. if x = sin w,t + sin wt and

y = sin w t, then an ellipse of frequency Wys moving horizontally with

a frequency Wy will appear as in Figure B2 ).

FIGURE B2
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In this way, by tuning the filter correctly, the sidebands may
be isolated, and an approximate value of their magnitudes obtained by
measuring thé size of the cllipses.

This method was found to be more conVenient_thén beating the
unknown x waveform with a local oscillator. Due to random frequency
ldrifts of both, it was found difficult to stabilize the display. As
the filter output was small (particularly for the smaller-sidgbands),

a local oscillator could be sﬁbstituted and tuned to the filter

frequency, in order to measure frequencies morc accurately, as shown

in Figure 'Bl,



APPENDIX C
COMPUTER ANALYSIS

The van der Pol cquétion was solved on a digital computcr t; give
the oséillator output under different conditions.

The analogue-digital simulators MIMIC and MIDAS were uséd, By
means of these breproces§ing routines it is possible to run an analogue
computer programme on a dgéital computer. There are several advantages in
doing this; greatly increased accuracy; no time or magnitude scaling
problems; 95 integrators (MIMIC), or 100 (MIDAS) are available, and ény
number of summing amplifiers: function generators, etc. is permitted.
Both processors have the built in facility of automatically selecting a
step size for the numerical integration routine to maintain a given
accuracy. MIMIC has a limited capability for hybrid computation by mcans
of the Track And Store (TAS) subroutinc, although trouble has been
experienced wiﬁh this if more than two.parameters need to be recalculated.

Of the two processors, MIMIC is easier to programme, it being
possible to wfiie the programme directly from the system differential
equation. MIDAS requires a block diagram to be pfeparcd initially. Of
the two, MIMIC is the faster, the execution times for the MIMIC and MIDAS
programmes, 1 and 2 given below, being 100 seconds and 240 scconds
respectively. MIDAS is, however, the casier of the two systems for

""debugging" programme errors, and the processor also prints out the

maxima and minima of all the system variables, unlike MIMIC.
63
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The programmes which solve the van der Pol equation are given in
the following pagés. Programm: 1 is a MIMIC source 1anguage programme,
and programme‘Z is in MIDAS language. Both solve the system for the
initial build up of oscillations when the oscillator is switched on. The
output from these programme; is shown in Figure'tCI). A forcing term
F(t) can be inserted in the programmes, and Figurc (C2) shows the computed
oQtput for a forcing current of 0.5 mA at 250Kliz. This can be ;ompared
’with Figurc 4.4 which shows the waveform of the expcriméntal oscillator
under similar conditions. | o

Using MIMIC, 200 points of a cyc{c of the stcady frece running
oscillator were computed. These were analyzed by a Fourier Analysis
programme (programmeiS) and the results of this arc giveh with the

' /

programme. They are in excellent agrecment with the solution calculated

in Chapter 2.
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FIGURE (C2): The Forced van der Pol Oscillator

Forcing Current = 0.5 Pcak ma at’250 Kilz (MIMIC Solutich)
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PROGRAMME 1 MIMIC SOLUTION. 67

SEXECUTE MIMIC
CON(ALsBTsWQsDT)
02X ADDI(AL#¥(1,0=-DTX%X)#WO#D1X 9=WOXWO*X)
DLIX INT(D2Xs040000)
A INT(D1XsCWl )
FIN(Ts15C.0)
OUT(TeXsD1X)
HDR(TaXsD1X)
HDR
END 2
UeUBLY 02973 1357

L)
-
N

PROGRAMME 2 MIDAS SOLUTION,

OSCILLATOR CUNSTANTS

CON ALsBToWCsTRsTFele WO NOT NORMALIZED
INITIAL CONDITIONS '

IC I1xl2 GIVES, STARTING TRANSIENT
PATCH BOARD CONNECTIONS

11 52 EDOT

12 i1 § E

Ml 12812 ) NONLINEAR

M2 M1lsBT ) TERM

Sl M29le

M5 ALswWU

M3 S1sM5

M& M3sll

M7 WuslWu

Mo MT79l2

NEGL M&

S2 M&sNEG1 EDQUBLEDGQT

FIN I s F

HDR TIMEsEsEDOT

HOR

RO ITel2s11 WHERE IT=TIME

END CONSTANTS AMD IMITTAL CONDITIQNS FOLLOW
eUBlY -e2973 e ol 150 1,

Ue ! Vel




L 4 i :
‘ |
¥ PRUGKAMME 3 FOURIER ANALYSIS.
SIBFTC MAIN 68 18
C FOURJER ANALYS515 OF 'FREE RUNNING VAN DER PCL OSCILLATOR,. .
DIMENSION B(2CU) C(la" 5(121s VI(212)» ANGI12) :
REAL(Ss1l) D ] 4
M=12 ad
N=2Uu
WRITE(693) B
CALL FORAN(BGsNsMsCeSsVaANGsAAVG)
WRITE(692) AAVG 1
DO 2uU J=1lsw 'F
4 FORMAT(3H C(sI294H) = sEl14e8s8H SEs12s4H) = sF144895Xs2HVI IR

154H) = 9E14e895Xs4HANG  9I1294H) = sF8s394HDEGS)
2 FORMAT(/9H C( Q) = sEl4e3)

WRITE(B94) Jw e e e S0l - g VT IS sk ANGT D)
CONT LNUL ,
FORMAT (BF lueb)

FORMAT( TH Ct U)= #Elle5 ) :
FORMAT (1Xe8F 14e6) L3
FORMAT(3H C(#]292H)= sE114593Xs 2HS(212s2HY= 9F114523Xs2HV I o Dil0S
192H) = sE11e593Xs4HANG (9 I292H )= sFeels4HHDEGS) "
STOP i
END ¢ '
SENTRY

$1BSYS ,

2

FwN = C



$IBFTC FURAN
N=POINT FOURIER ANALYOSIO

a¥alalatalalakalalala

POINTS EQUALLY
N+1TH POINT AND 15 NOT

AT

N=NUMBER CF PQINTS

M=NUMBER

ANSWERS ARE=-

C=ARRAY OF COSINE TERMS
S=ARRAY OF SINE TERMS
V=ARRAY OF VECTORS
ANG=ARKAY OF VECTOR ANGLES
AAVG=DeCe COMPONENT :
SUBROUTINE FORAN(BeNsMeCeSeVIANGIAAVG)
DIMENSION B(N)sC(M) sS(M) V(M) s ANG(M)

198

199
PAVIY)

2y’

2U3

2U5

MM=M

IF(NeGEe2*M) GO TO 200
MM=N/2

WRITE(69198) MM

SPACEU COVER
USEDe

-
s

OF HARMONICS REQUIRED

NE

FORMAT (1HUs 20HONLY ENOUGH DATA FOR

K=MM+1

DO 199 I=KsM

C(I)=Oo

S(I)=0,

V(I)=U,e

ANG(1)=0.

CONTINUE

CONTINUE

ZN=N

AAVG=060

DO 201 I=1sN
AAVG=AAVG+B( 1)
AAVG=AAVG/ZN

DO 205 J=1sMM

ZJ=J

Cld)=Ue

S5(J)=0a
AL=6e¢2831853%2ZJ/ZN

DO 202 I=1sN

Al=1-1
S(J)=S5(J)+SIN(AL#*AL) #B(
ClJ)=ClJIY+COS(AL*AL ) B¢
CONTINUE

IF(JeNEeN/2) GO TO 203
CiJI=ClJ) 720
S51J)=50J) 720

CONTINUE
S(J)=5(J)*2eU/IN
ClJ)=sClJ)*2e 0/ ZIN
V2=ClJ)*C(J)+S5(J)*5(J)
VIJ)=5QRTI(V2)
ANG(J)=ATANZ(C(J)sS(J))
ANG(J)=ANG(J)%¥5729578
CONT INUE

RETURN

END

1 29HHIGHER HARMONICS SET TO ZEROe

/)

L
g 12

I3

69
LAST (2PI) POINY IS

12H HARMONICS

THE
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APPENDIX D

APPARATUS

Power Supply, John Fluke moder 407 , N
Oscillator, Hewlett Packard moder 241A

Cathode Follower Probes and Power Supply, Type 128, Tektronix
Oscilloscopes, Tektronix Types 502A and 516

Counters, Beckman model 7370, llewlett Packard model 5245L
Random Noise Generator, Gene/ral Radio Company, Type 1390B

V.T.V.M., John Fluke, model 910A
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