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This thesis consists of a rigorous development of the
direct kinematic, small-displacement theory of thin elastic
shells. The theory is developed, so as to facilitate a deriva-
tion of the equations of compatibility of middle-surface
strains. These equations are developed by the kinematic
approach and it is shown that this produces a more coherent
re]ation of such equations to the general theory of shells,
as no special techniques are required. The equations of
compatibility are developed again by the formal Saint-Venant
method; this development serves to substantiate the validity
of the kinematic approach. At the same time, it provides
many useful identities which are then employed as transformation
‘relations, in order to compare the various forms of compatibility
equations, as developed by other authors. A general comparison
of kinematic shell theory with other nonkinematic methods is

undertaken, and appended to the main discussion.
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PREFACE

The reason for the encompassing character of this thesis on
the Theory of Thin Elastic Shells, lies in the fact that no single work
exists, which pursues a consistent and rigorous direct kinematic theory.
In the opinion of the author, the direct kinematic exposition of the
theory of thin shells offers a more intuitive conceptual grasp of the
subject matter for physically-motivated professionals, such as engineers.

The lack of direct kinematic considerations in the available
treatments of the ‘conditions of compatibility of deformation of the
elastic surface', causes this facet of the topic to be especially
unsatisfactory for engineers. It is this direct kinematic treatment of
the compatibility conditions which forms the core of the research in
this thesis.

It soon became apparent, in the course of planning the material
to be included herein, that one of two courses of action must be taken,
either: to assume that any reader might be expected to be familiar with
the basic kinematic concepts and to thus begin a discussion of compat-
ibility 4n media nes, or: to develop the entire theory from the very
fundamentals of the direct method of vector analysis and thus include a
Targe amount of material which is not original with this author. The
latter approach hav1ng‘been selected as the better of the two, it is then
essential that the following be noted.

The whole of Book I (Chapters 1, 2 and 3) does not originate with
this author. These chapters represent, in fact, suitably-modified versions
of the lectures as delivered by Professor G. AE. Oravas, during the course

of the 1965-1966 session of lectures on the "Theory of Surface Structures”.

itd



In Book II, approximately half of Chapter 4 falls into the same
classification as Book I, above; the remainder of Chapter 4, as well as
the whole of Chapters 5 and 6, constitutes the original research of the
author.

In this way, the direct kinematic analysis of the problem has
been developed from the basic postulates, thereby requiring no a priond
knowledge of this method on the part of the reader. Furthermore, the
monographic form of this thesis has permitted an integrated and consis-
tent development of the theory, without the necessity of introducing a
multiplicity of interspersed explanatory footnotes (as would be other-
wise required for the clarification of the various procedures and
concepts employed).

The author takes this opportunity to express his sincere
gratitude to his Research Supervisor, Professor G. AE. Oravas, not only
for his omnipresent guidance through a multitude of difficulties, but
also for his inspiration in the execution of this, and all endeavours.
The author extends to Dr. W. K. Tso, of the Department of Civil
Engineering and Engineering Mechanics, his sincere thanks for that
gentleman's comments and suggestions, regarding specific points in
the development of the compatibility equations. Siﬁcere thanks are
also due the National Research Council of Canada, whose award greatly
facilitated the author's investigation. The author wishes also, to
express his thanks to Miss Joan E. Armour, who typed the entire
manuscript.

L. McLean

Hamilton, Ontario
September, 1966.
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NOTATION

position vector to an arbitrary point in the shell
arc length of curve

tangent vector to space curves

normal vector to space curves

unit normal vector to space curves

curvature (normal) of a space curve

an angle/also an arbitrary scalar point-function
unit vector specifying direction of rotation

unit normal vector (in general)

Radius of curvature

-unit binormal vector to space curves

a scalar factor/also an elastic constant
torsion of a space curve |

the Darboux vector

parametrjc coordinates for the surface

base (surface.tangent) vectors in direction ai, ap
unft (surface tangent) vectors fn direction aj, ay
unit normal to the surface

directed differential surface area

absolute value of dA, above

911s 9129 922 metric coefficients of first fundamental form

differential arc lengths along aj, oy
absolute value of g;, G '

an area of arbitrary nature
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geodesic curvature of a surface (directed)

normal curvature of a surface (directed)

geodesic curvature of a surface

normal curvature of a surface

radius of normal curvature of a surface

coefficients of the second fundamental form

an arbitrary vector point-~function

symbolic representation of the first fundamental form
symbolic representation of the second fundamental form
symbolic operator indicating the first variation

the determinant of a matrix

the roots of an equation in A

constants

a line of intersection of two planes

an auxiliary position vector

a vector defined by other (previously~-defined) vectors
unit tangent vector to a curve in a surface

unit binormal vector to a curve in a surface

the CESARO-BURALI-FORTI vector

geodesic torsion of a curve in a surface

geodesic curvature of a curve in a surface

pure curvature vector (for a geodesic)

- the KRONECKER Delta (for Cartesian systems)

the identity tensor, rank 2 (dyadic)
the planar identity tensor, rank 2 (dyadic)

symbolic representation of the third fundamental form

xii



o

Y1sY2

< <I

o]

Q140

wi2==wz1 .

0 )

-sol

the conjugate of a tensor
unit binormals to lines a; and oy
normal curvature, line 1 (aj)

geodesic torsion, line 1 (a;)

~ geodesic curvature, line (o;)

geodesic torsion, line 2 (ay)

normal curvature, line 2 (o;)

geodesic curvature, line 2 (ay)

the CESARO-BURALI-FORTI vector for Tine 1

the CESARO-BURALI-FORTI vector for line 2

the Gaussian curvature |

an angle/also an arbitrary scalar point-function
arbitrary scalar point-functions

arbitrary vector point-functions

base of natural Togarithms (&)

differentials of the logarithms of g2, g1 W.r.t. 81,42

an arbitrary vector in the undeformed surface

an arbitrary vector in the deformed surface

an arbitrary unit vector, undeformed surface

C, and C, , augmented by a geodesic curvature term
n

angle between e, and e,, if other than 5

differential operator defined as (—— + v;) ( ) or (—3-+72) ()
94 949

position vector to the undeformed middie surface
position vector to the deformed middle surface
arc length in‘the deformed middle surface

base vectors for the deformed middle surface
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Gy1+612,G22 metric coefficients for the deformed middle surface

Eyy E, unit tangent vectors for the deformed middle surface
Es unit normal to the deformed surface
ue displacement vector of middle surface

uj, us , u§ components of u° in directions e, e,, ez

€913¢11  longitudinal straining (direction e;) during deformation

¢12 detrusion (e} towards e, about e3) during deformation
¢13 rotation (e; towards e; about -e;) during deformation
21 detrusion (e, towards e; about -e3) during deformation

€52%ba9 longitudinal straining (direction e,) during deformation

$23 rotation (e, towards Eg about e,) during deformation
my, My incremental metric measures, accrued in deformation
El binormal to line 1, deformed configuration

E2 binormal to line 2, deformed configuration

o Ci plus its first variation

[ C, plus its first variation

Ki1sKip(etc) same as ky1, ky2, but referring to the deformed case

a3 . - parametric coordinate normal to the surface
u displacement vector of parallel surface
ds¥, dsx arc lengths in a parallel surface (undeformed)

ds¥, dS¥ arc lengths in a parallel surface (deformed).

h shell thickness "

ay ratio of ds; to ds¥

a, ratio of ds, to ds%

u the deformation tensor for a parallel surface

Upps Upp(etc) components of U in directions €,8,,81€5, (etc.)
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the strain tensor for a parallel surface

components of € in directions eje;, €162, (etc.)

the strain tensor for the middle surface

same as v, Yo, but referring to the deformed case

ET and fg augmented by an incremental geodesic curvature

the tensor representing — x ¢ ("Curl &")
T2

the tensor representing 4% X € x-@: ("Double Curl &")
ar or

body force intensity vector

absolute acceleration of a mass centre

a stress vector on some normal face

mass density

the stress tensor
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stress resultant tensor, defined through o
stress couple tensor, defined through o
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moments caused by boundary stresses (directly)
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BOOK I. DIFFERENTIAL GEOMETRY
CHAPTER 1

Differential Geometry of Space Curves

1.1. THE FUNDAMENTAL SYSTEM

(r + ar)

Fig. 1.1.=1.

A space curve may be specified by the position vectorn (ox
nadius vecton), v = r(s), which can be considered to be afunction of
the arc length parameter, s, of the curve.

Two points on such a curve, separated by the (small) finite
distance, A4, along the curve are specified by ?(4)’ and r(s + 88). A
Taylor Series expansion shows:

-
a"a/s r(s) = r(s) + MM 2-!9—57(-'3)1342 T

Neglecting terms of the second and higher orders as being negligible,

then, (s + 88) =7 + ar

where it is assumed, in all fondwing discussion, that

T = 7(s) unless otherwise specified.
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Thus, the relative positions of r(s) and r(s + a4) may be given by

A7 = (s + as) = T(s)

1.2. THE TANGENT VECTOR
The tangent vector, t, to a space curve will be defined as
the limiting position of the secant, Ar, as the arc length, 4s,

approaches zero.

CE(r + ar)]

|

e
Z
From Fig. 1.2.-1., Tz r(s)
_ - as before
r(s + 88) =1 + ar
. AY dr -
Then lim (= = =t
A O [AA} ds
Hence, t is referred to as the tangent vectonr.
Considering the magnitude of this vector:
- . AV | . a4 lar] _ 4. |Ar]
[t] = lim |—=—] = 1lim = lim ‘=
85+ 0 B8 >0 1881 5o 88
= ld-Fl = ds a ]
a5 s

this substantiates that T is a unit tangent vectonr.



Consequently, from %[ZE =t, dr =T ds

thus, dr » dr = T dsT ds = (teT)ds?
or, dr « dr = ds? ' {as Tt = 1}

1.3. THE NORMAL VECTOR

The normal vector, N, to a space curve will be defined as the
change of the tangent vector, t, per unit arc length; or, the rate of

change of the tangent vector with respect to the arc length.

t(r)

[E(r + ar)]

o|

F1Q. ]c30"2.



FY‘0m Figo ]'3.-20 '
or

Then,

T(s) + ot = T(s + as)
T(s + 08) - T(s) = 2T

Jin [E]-& =7

Hence, N is referred to as the nommal vecton.

NOTE:

1.3.1.
From the identity
Then

or .

SO

W - 4]

¥
ds?

ds

The Relation of Tangent and Normal Vectors

TT =
& (®1) = Z)
'g.nag}o
Nt +TN=0

2 TN =0

os £E -

N

Therefore, for nontrivial T, N, then T and N must be mutually perpendi-

cular, in order for the dot product to vanish. Thus, N is at g-to t.

1.3.2. Curvature

As t is a unit vector, then N'=~§§ will not, in general, be of

unit magnitude,

N, then it may be said:

If n is introduced as a unit vector in the direction of

where « is a constant



Obviously, as N = [Nj n = «n

= dt d?r

th » = N = = ————

en K IN] lagi IdAZ
dt . At . At
Now, IHZ* = lim |== = [|lim =
rs> 0 88 rs> 0 B4

By EUCLIDIAN geometry, Fig. 1.3.2.-1. is obtained:

[t(s + 84)]

Fig. 1.3.2.-1.

[T(s)] = [T(s + 08)] =1
2|T| sin (égl)

_ 3
2|T| [%g._ %](%?) P
(Sine Series expansion)

$0, lat] = 2|t] %§-= Ad

-to the first order of approximation,

From the above,

then, |at]

as |t] = 1.
Then 1t may be said:
. T _ 4. |ot] . Ad dé
Tim &Y = 1im 1A = qim 22 -

rs+ 0 89 rs> 0 28 as> 0 B4 s

dt . At

but k= |32 = lim |

ds As> 0 B2

$0, oc.’= %f—

. {1.3.2.-1.}



The quantity « = %% is thus called the curvature, being defined as:
the (angular) rate of change of tangent with respect to arc length.
NOTE: Prescribing the very small rotation, 44, to be
vectorial in character, as A = (A¢)E; where E; is a
unit vector in the direction of the axis of rotation
(as is usual for the kinematic description), then:
for T ] a9, T x 09 = |T][a¢] Sin § e

where E; is normal to both t and E;

E] a0 cevns {1.3.2.22.}

Thus, | [T x a9 =[T]|a9]
Then {1.3.2.-1.} and {1.3.2.-2.} are virtually identical. It is realized
therefore, that if 4¢ is small, a rotation may be validly expressed as

a vector quantity. This holds as a first-order approximation, as shown
above but is quite valid for angles 0° < 8 <~ 6°, For angles > ~ 6°,
the approximation becomes poor (8 no longer approxiﬁates Sin B) and the
operations using the rotation as a vector fail to give commutative

results: i.e., the order in which rotations are used will affect the

result.

1.3.3. The Osculating Plane and Circle

The plane subtended by the vector double, {t, n} , is called the
osculating plane. The oscwlating circle,defined as a circle passing
through three consecutive points on the curve, has its centre at the
terminus of the vector, N = «n. The radius, R, of the osculating circle

is thus seen to be the reciprocal of the curvature; 1i.e., R =-%



It is to be noted that thevequation of the space curve admits a unique
determination of «2, but not of «. In order to obtain the ‘proper’
(conceptually feasible) centre of the osculating circle, it is sometimes

. necessary to choose x as the negative radical.

]

- Centre of
Curvature

2 Fig. 1.3.3.-1. e,’ ' Fig. 1.3.3.-2.

This is interpreted geometrically, of course, as signifying
that the ‘proper' centre may be in a position, symmetric (about the

point under consideration on the curve) to the one chosen.

1.4. THE BINORMAL VECTOR

Having defined the two orthogonal unit vectors, t and n, the
introduction of a third unit vector would then prodqce a unit vector
triple, or trniad. Prescribing the triad to be a dextral (right-handed),
rectangular Cartesian triple, then it may be said: |

E=TEXF '¢o¢->00-.- {].4.-]0}

where b is referred to as the binoamak vecton, and is

considered to be defined by {1.4.-1.} (above).



z ' Fig. 1.4.-1.

The unit triple, {T, n, B} , is thus constructed for a space
curve, and is referred to as the FRENET Triad, after the French

mathematician, Frederic FRENET (1816-1888), in 1847.*

1.5. TORSION

From the definition, b =T x n, then:

%=§;{‘fxﬁ)=%xﬁ'+’fx%
but, as : %=N-=KF
then %=K"n'xﬁ+ ?x-g%—
or %=?x%§: asnxn=0
Thus, %E— Lt (and%,[;;E J_%)

s0, %’—must 1ie in the plane {n, b}.

However, from beb = 1, then by a process exactly similar to that of

5.1.3.1.,

bb =
so 4 (55) = 2 5-L = 0
hence, 'S(.TE.L b

* References are given chronologically, in the BIBLIOGRAPHY.



Therefore, if gf— is 1) in the plane {n, b}
and 2) perpendicular to b
db

then 7 Must be collinear with n.
Hence, % =An

where A is a scé]ar factor.
This scalar mu1tip]iér. above, is usually given the symbolism -z,
such that
™ = -%j_- ...... A1.5.-1.3
and T is then referred to as the tonsion df-the curve., Scalar premulti-
plication of {1.5.~1.} by n shows

m i = - 2
)
or, T--n'E;-

1.5.1. The Relation of Torsion to Curvature

From | T=-ngs,andb=1txn
then .' r_-=-ﬁ‘-[gz—('fxﬁ')]
=-n~[g§xn+tx%£——]
=-'n--[;<'n—xn+tx%§—]
=-ﬁ'-?x%§—

-However, as n = J—N'= 1
K K
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Then R A 2
=14t g, 1 4t
k ds K gs2
1 dt —, dit
=--—-—-——ot ————a
szA ” dt?
1 d?r  dr d3r ' dr
S - . s t=
2 A X 3 as Y

and so, the torsion of the curve may be written as:-

c= - p.d0 |1 dr 4% di
|2 ds 27 3
This relationship connects the curvature, «, and the torsion, t, by
—
9{-—’:, n=1,2,3 - which are readily
dAn

evaluated from the parametric representation of the curve.

means of the primitive'quantities,

1.6 THE FRENET-SERRET FORMULAS

dn _d = . =
From -d—;-a;(bx )
= fgx T+Db x %
=-TFX-E+EXKF1- cocoo-‘{]o6o"]o}
= 1b = «t

and using the two previously-determined quantities, %}-f— = «n and

%ﬁl = - 1fi, then the FRENET-SERRET Formulas are revealed as:

~

%2_3_’(? +TB‘ > ooo.oo’{]-G."Zo}
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These relationships, existing between the unit vectors of the FRENET
Triad and their arc 1éngth derivatives (in conjunction with the
curvature and torsion), are named in honour of FREMET and the French

applied mathematician, Joseph Alfred SERRET (1819-1885), in 1851.

1.7. THE DARBOUX VECTOR: A Kinematic Form of the FRENET-SERRET Formulas .
From %g =-tnxt+Dbx«n {1.6.-2}; re-writing in altered
form yields:

= gt xn+kbxn={(tt+«b) xn

5 &5

or Dxn
where D = 7t + «b is called the DARBOUX Vector.
The FRENET-SERRET Formulas may be re-stated in terms of

the DARBOUX Vector, as:

£.pxt \
Mo pxw [ veeees {1.7.-10)
L.DxF ,

The advantages of such a representation ére far more than the obvious
ones of the sucéinct and symmetric form. The DARBOUX Vector admits
kinematic interpretation as a notfational vector, existing in the
rectifying {t, b} plane and spécifying the rates of rotation of the
three unit vectors of the triad. This places the concepts of curvature

and torsion on a firm conceptual footing: the curvature appears as the
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relative rotation of the space curve per unit arc length, about the
binormal, b; the torsion is interpreted as the relative rotation
(or "twist") of the space curve per unit arc length, about the tangent,

t.

z Fig. 1.7.-1.

The curvature, «, thus exists in the capacity of the magnitude
of a rotation vector, ¥ = «b, and the torsion as the magnitude of a
rotation vector, T = tt. Hence, the DARBOUX Vector represents the
relative rotation of the FRENET Triad, as it moves a unit distance along
the arc length of the curve.

The DARBOUX vector is so named, after the French applied
mathematician, Jean-Gaston DARBOUX (1842-1917), who employed it in
his lectures of 1887-1896.



CHAPTER 2

Differential Geometry of Surfaces

2.1. THE FUNDAMENTAL SYSTEM

[ [/ /,3?

®|

@ |

Fig. 2.1.-1.

The parametric coordinates, o; and a,, trace out a coordinate
'net', in the surface. If one parameter is held constant while the
other 1is varied (and vice-versa), the result is a set of space curves
as shown above. The parametric coordinate o; is defined by the position
vector

F (aljaz = Constant) sesovee {2.1.‘10}

- 13 -
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and correspondingly, parametric coordinate o, is defined by the
position vector

r(a, = constant, a,) ' ’ ceeees {2.1.-2.%
where in" {2.1.-1.},0, assumes arbitrary values, and in {2.1.-2.}, a,

assumes arbitrary values.

2.2. THE TANGENT VECTOR
In a manner similar to that of § 1.2., the tangent vector to

“parametric coordinate a," will be giveh by:
- _ar

g, = '5&‘1
The partial differentiation is employed, as a, = constant.

Similarly, a tangent vector to “parametric coordinate o," will

be given by:

- 3

= 9r
92 F da,

NOTE: Since the derivative of the position vector

has been taken with respect to the parametric co-ordinate,
Gis rather than the arc length parameter,'éi, then the
ity base vectons, 5}, are not of unit magnitude.

The unit tangent vectons, E}. to the space curves forming

the surface are given by

< oo .
ey 341 _ i 1,2

It will be convenient, however, to retain the unitary base vector

system for the present; the unit vector system will be discussed in

a later section.
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2.2.1, The Differential Surface Area
With reference to Fig. 2.1.-1., 1t will be observed that
the area of the differential surface formed by g;da; and gyda, can

be obtained quantatively.

j.e.: dp = §1d°t1 X Ezdaz = le X dz_r'

ar ar
'a—a*ld(!l X 5‘(;2d(!2

(97 x 92) doy day

Since both tangent vectors are in the plane tangent to the surface,
the surface area (as a vector quantity) will be perpendicular to

both, i.e., normal to the surface at the point common to gjda; and

aédaz-
Hence, dh = dA = dA e3 = (g1 x 92)da; day

= |91 x 92| doy dojes

where €3 48 a unit vector, nowmal to the surface.
Then, dAna.a = |§-1 X Ep_ldaldaz Eg
1

50 dA, = |91 X Gz| duyday = (df +dR )2
or di_ =[[3111T]  Sin ¢ dayda]

2.3. THE FIRST FUNDAMENTAL FORM
The arc length, measured in the surface can be prescribed as:

dr «dr = ds? (see § 1.2.)
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This is called the Fundamental Metrnic Form. Expanding this gives:

= = _ [ar ar ar ar
2 = . = (2L gl o« (2L L
ds dredpr (aalddl_ + aazda2> Y (Balda1+ 301.2da2>
_{for , ar 3r , ar ar . ar
= [(—az-l —OTI) dal + 50y T dalda?_ + '5—(;2 Wldazdal

ar ar 2 or ar ar ar 2
2 = —— O —— o b S
ds ( )da1+ 2 Toy aazdaldaz ( > day

2 - _ 2
gi1°9; doy + 2g1°gy dojdoy + gp°gp dop

Hence, ds2 represents a Positive Definite Quadratic Form. Representing

g5 55 as gy then:
2 2
(I) ds% = gyidoy + 2g1pdojdo, + gpp dop
which is referred to as the Finst Fundamental Form of Zhe
Sungace.

NOTE: - The scalars gj1, G125 9o are frequently given in alternate
notation, in many standard works on the subject. These are

shown here, in order of frequency of usage.



- 2 2
g1 = E = A = H
912 = F

2 2
G2 = G = Ay = H

2.3.1. Special Cases of the First Fundamental Form

G2

dsy oy

Fig. 2.3.1.-1.

Considering Fig. 2.3.1.-1., it is seen that:
a) if ds is along ay, then ds = ds;, in which case,

ap = constant, or da, = 0

2 2
then - dél = d11 dal
or ds; = ¥gj1dar= g;dog

b) if ds is along ay, then ds = ds, , in which case,
oy = Constant, or da; =0

2 2
then déz = gzzdaz

or dsy = Vgppday = gpday

17
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where, in (a) and (b) above, 9; = /9.5 = |§}|
The radical is assumed positive, always. If the parametric lines,
¥ (a7, a; = constant) and r(o; = constant, ay) are orthogonal, then

6= 7 and gy, = 0 = g;°g,. In such a case,

2 2 .
ds2 = gyydoy  + gpoday

2.3.2. The Surface Area as a Positive Definite
The magnitude, |91 x 92| = |9i| |g2] Sin ¢ «can
be transformed through the use of the identity Sin% ¢ + Cos? ¢ = 1,

as follows:

|9y x 92| = |91] |92] Sin ¢ = 9192, VT = CosZ ¢
or (97 x 92)°(91 x 92) = 911922 (1 - Cos? ¢)
h c _ 53 5& 5}'55 912
PETRER AR SSS 9, 92 9192 019;
—_ - . i, el — gi12
then (91 x 92)+(9; x 92) = (91 x 92)2 = 910z (1 o 3
i
[RRPERR 2 |2
Thus, |9, x 9| = [911922 - 912] O "

Now, |91 x T,| represents the surface area subtended by parametric

increments Aaj;= 1, 8a; = 1 ( see § 2.2.1.) and thus, since

= e ar ar
lor x g2] = |53, x 55,1 >0
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S0 Area = A = [911922 - 912] % 50

thus, 911 912

2
ij = (911922 - 912)> 0
921 922

1s always a Positive Definite quantity.

NOTE: The introduction of the relationship

5& 55 912

Cos ¢ = — o — =

TR 319, comes directly from

the fundamental definition,

91°0; = |§}||§E| Cos ¢ = g192 Cos ¢.

The angle between the two vectors is thus

conveniently specified by

(a? or )
c -1( 913 ¢ -1 ooy 90y
¢ 0s -gl-—g—— 0s e

..‘/a?.aF ar_, ar \'
da; 9dag da; da,
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2.4. THE CURVATURE OF A SURFACE AND MEUSNIER'S THEOREM

N-PLANE

normal
plane

N=«n N-(n)

3]
@
(¢}
W
el

|
|

VIEW A.A

|

, A

o]

Fig, 2.4,-1,
From Fig. 2.4.-1. (VIEW A.A) N (® describes the rate
of rotation of the projected curve on the tangent plane. This
is referred to as the Géodeéic'Cunvatune. N® may be described as
“"the curvature for the curve whose tangent is common to the tangent

of the nomal section"”. This is referred to as the Nommal Curvature.
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NOTE: A nomwmal section of a surface at a given
point contains the normal at that point. Such

a section will trace out a curve on the surface,
the Principal .Normal (§ 1.3.) of which, is parallel
to the surface normal ..... the normal section

(defined by EULER in .1760) being a planar curve.
Then, N=RO +§®

SO = & e; + N®

where 8 s a unit vector in the direction of N® ,
as it is the surface (unit) normal.

Scalar premultiplication by e; gives:

keaeh = kW g3y + 65 N®

or @n = PEE; = @ ceees {2.8.-1.)
(e, N®=0ase; | N® )

However, as ez*h = Cos ©

then xk Cos & = K(m

Saying k® = —%: » Where Rn is the normal radius, then

1 . 1
T Cos G=—R—n—

or R Cos 6 =R
n
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This is known as MEUSNIER's Theorem, after MEUSNIER, in 1785.

With reference again to Fig. 2.4.-1.,

N= «n=dF
dAZ
and N = Kv(n)g3 + K(g)E't

where N® = ® Et, 'ét being a unit surface tangent vector.

Solving for the normal curvature of the surface, associated with the

direction t = %{; of the curve, by expanding {2.4.-1.} yields:

() - —_— dt dt

k' = kez'n = ey g~ since Fx =N=«n
However, as €3+ t = 0

des 4@
SO ‘?Z_. t + ej3* m-=0

and hence, the normal curvature is given by:

-  de. des
m _ 5 .dt _ 3 = 3 dr
R /S A )
de.
or g(m-.g.-mi
d_Y'-'({e—g ({F’dg3
T

Referring to dredez as II, the Second Fundamental Fonm, and recognizing
dredr as I, the First Fundamental Form, then '

n _ Il I
. --T'TIL
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2.5. THE SECOND FUNDAMENTAL FORM

From the definition of the Second Fundamental Form, (II,

above),
Il = d?‘d-e—3 = d—e—g'd—Y'-
Expansion of this reveals, in a manner analogous to § 2.3.,
o -_ 363 383
dF-de, = ( Cdog+ Zduz) (-5-&—1—du1+ Ecmz)
. i _ = ]
since 33} = Gy then:
_ de3
d?‘_'deg = (gldal + gzdaz) (——dal + — daz)
383 2 383 3-6—3
gl- '5——- dOLl + gl'-——— dO(.ldOl.z + gz°-———— d(xdeL]_
3e; 2}
+ Gprp—d
92 % G2
363
Referring to g, i"5eT s b P50 then:
J

2 2
d?'dé-3 = blldal + (b12 + b21)da1da2 + bzy_ dOt?_

0= éE—-E}(due to the perpendicularity of
i

and €3), then by differentiating with respect to as (i, j =1,2):

Now, from the identity g;°€5 =

Q>
%!

%]
Q

& (£5) - 2o
1

J
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BT 1) °es 0
L2 3 D — * as—— -—
Baj Bai a1 an
— e —
ar 3 32y - :
SO — == = *B3  deees {2.5.-1.}
e, aj aajaa
For i =1, j =2, {2.5.-1.} gives
— Jde —_
ar °T3 - 3%y = :
Ty —87;:): = by = — W €3 ceee. 12.5.-2,1
Fori=2,3=1, {2.5.-1.} gives
ar s L T o ceees {2.5.-3.3
90, ooy 21 dajoay’ 3

Employing Nicholas BERNOULLI's condition:

‘Balaaz 3@23@1
which is extended to
8%g _ 8%
dajody d0g 3

where ¢ and £ are arbitrary scalar and vector point-functions, respectively.

Then, comparing {2.5.-2.} and {2.5.-3.} ,

T S A
Jap0a; 3 dajoay 3

and so b12 = b21




25

Therefore, the Second Fundamental Form assumes the (positive definite)

quadratic form:

_ 2 2
IT = dr‘-dE;,; = blldal + 2b12d01d02 + b22da2

As a consequence of this form,

2 2
@ I byida; + 2bjpdajday + byoday
K =

-—I-—=-

2 2
Qlld“1_+ 29;2dayday + gppda

NOTE: Frequently, in the literature of the subject,
I is referred to as I,
IT is referred to as -I,

I,
so that « T

Also, frequent representation of the Second Fundamental Form are:

2 2
Il = edo; + 2fdojda, + gday (American)

II

2 2
Lda; + 2Mda;da, + Nda, (British, German)

2.5.1. Positive Definite Quantities In General
If, for any curve, ds»0 (or ds2>0), then ds is said to be a

Positive Definite Quantity. As an example, consider the expression for
the First Fundamental Form:

2 : 2
ds2 = dredr = (gy,day + 2gjpdajday + gpoday )
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Operating on this yields

2 2 ' 2
ds? = 5%;— [ g11day + 2911912da1day + g11922da;

2

L2 } 912 12

| gip0a; TR &2
[ 1 2 2 2 2
={§;; ( g11day + 2931912darday + giodog

2
911922 = J12 J 2 ]
911 %2

1 r 2 2 2
ey L (g11day + gyodap )+ (911922 - 912) dop

and this whole quantity must be greater than zero, since:

2
(gy1day + g1pday ) > 0 for 911, 912 real
2 2 2
(911922 - 912)day > 0 for do, real, [as (911922 - 912)>0;
§2.3.2.]

Thus: 1) ds2 >0
2) (g1:day + gypday)>0
3) (911922 - 9?2)>0
Similarly, it may be shown that
drede3> 0
and (by1boy =~ b§2)> 0, etc.
Thus, any relationship developed for the First Fundamental Form

is also valid for the Second Fundamental Form.
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2.6. PRINCIPAL NORMAL CURVATURE AND DIRECTIONS

Recalling from §2.5.:

2 2
@ byyday + 2bypdarday + byyday Iy
k=W = ) P )
911day + 2gjpdagda, + gpodas _
(-I, 1is used in place of II for convenience, here)
Then this may be written as
@ by1aZ + 2byoh + by Ly
K = - = "I‘l‘— K (X)
C911A% + 29122 * g2 :
C(’.OL]_
where A = v “Slope" of Normal Section in the surface.
2 .

(NB! Since no lengths are involved, this is not the l"s]ope" in the
true geometric sense.)

Now, in order that « ® may have an extremum value with respect
to the direction A, it is necessary that the first variation of the
expression for ) (with respect to A) vanish; i.e., at extremum

values of ¢ ® R «®  must be stationary with respect to A.

3@

Hence, GKGn =0 = = SA
I,
since &<QD- = § 7] this (above) becomes:
I, 1.8 Ip = I,81,
sc @ =s[-i—l-} = — =0
| I7

: 31, o1,
SO, > . Ilg}'\——ak - I2—3—>\‘~ S =0
I7 L
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thus, for —?1- ¢ 0,
I

3l, 8l,
Il Fy 12 YN sy =0
o1, a1,

or Ila—x—-lzs-i-——o

as & # 0, being an arbitrary variation.

' 312 311
thus, Ilﬁ—g Ig-é—x—

] |2
3l I, ¥
[37"

- g%'(bllxz + 2byzA + byy)

or

a1,

Now, 3

- (2by1a + 2b;3)

= 2(by1A + by)

a1,
and similarly, 5= = 2(g112 + 912)

Thus, it is found that the extremal nomal curvature in the direction

)
2 K(n)= i bllk + b12
g112 + g2

This might be written as, more generally:

® by1A2 + 2byoh + by | | byyd #+ by,
« T T Tl 9nx * 910
91122 + 29121 + 922 In 12

where the first expression yields «® fop any direction of the normal

section; the second expression yields «® which is valid only for the

directions A...... where @ possess extremum values.
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ol, 9l
The expansion of IIEX"'“ Ipz5— = 0 gives:

312 311 ! .
Ly - Loy = i_[glllz + 2012% + gop] [-2(b11A + b12)]

o
+ [by1a% + 2byoh + bpp] [2(g114 + g12)] _} =0
Expansion and re-arrangement reveals:
[-(g112 + g12)(by1x + b1p)Ah = (9112 + g12)(b13ad + byp)

+ (byga + byp)(g1ar + g12)a + (bygx + byy)(gyr + g22)] = 0

byid + by DiaX + byy > ,
: - + =0 L.... 2.6.-1.
or 9112 * g12 G122 * Q22
As the first term in {2.6.-1.} is equal to « @ ,
' byix + by bypA + byy ,
then - 2 .. = c® {2.6.-2.}
g11r * 912 g12A + J22 ‘

Hence, one additional form of «® is obtained ({2.6.-2.1) for the case
in which the normal curvature assumes the extremum value.

Re-writing {2.6.-2.}, the result is:

ey

|
o

(912X + gp)x + (byoh + byy) =

(9112 + g1p)k ® (by1r + byp) =

t
o

This set of equations ({2.6.-3.}) will be called Zhe quadratic equations

fon principal curvatures and principel directions.
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2.6.1. Principal Direction of Normal Curvatures

If the set of equations, {2.6.-3.}, is manipulated for
solution, it becomes immediately apparent that the set is degenerate;
i.e., solution for « @ as a unique value fails, and K¢n = %%%— is

obtained, where

; (912X + g22)  (byor + byy)

D] = } ..... {2.6.1.-1.}
(g11r *+ g12)  (byia + byy) i

A nontrivial solution may still exist, however, iff the solution
for « @ can be made to assume the indeterminate form: « @ +%+-.
In such a case, it is essential that |D| = 0. Expanding the determinant,
as given by {2.6.1.-1.}, and setting the result equal to zero, reveals:

(g12% + g22)(byid + b12) = (g11x + g12)(by2r + byy) = 0

Further expansion, upon carrying out the products, shows:

[912b7122 + (gaoby1 + 91ob12)A + goobyp = 91907222

= (g1abys + g11boo)A = g3pby]1 =0

Collecting terms to give a quadratic in A,

(g12b11 = 911b12)2%  + (g22b11 - 911b22)A + (g22b12 - g12b22) = O

..... {2.6.1.-2.}
From the theory of equations, if the roots are Ay, XA,, then a

quadratic equation in A appears as

(A =x1) (A=) =0
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or A2 = (A] F XA + A2 =0 ..., {2.6.1.-3.}

The solution of equation {2.6.1.-2.} will give the two directions for

which the normal curvature, « ™ , assumes an extremum value. Avoiding
the complicated procedure of solving {2.6.1.-2.} in terms og 945
the root X, is given an arbitrary variational designation, 3;;—

by
1
J dOLI

(and )\1 = aa—??).
Now, considering two infinitesimal surface vectors, dr and ¢&r,

at an angle ¢ , one to the other:

dresr = |dr||sr| Cos ¢

or | Cos =[%%I = HZ’JsT JAresr {2.6.1.-4.}
since |dr| = ds, so |6r] = ss.
now, as dr = gida; + Gpday
then §r = g180; + Goloy
and dreér =[911da16ai + glz(dq16a2 + §aydas)
; 922d°‘2502] | ‘ ceee. {2.6.1.-5.}

Thus, from {2.6.1.-4.} and {2.6.1.-5.} ,

‘glldaléal + glz(dal(SOLZ- + Galddz ) + 922d026a2 = dsss  Cos ¢

~1
multiplication by (dajsa;) gives:

Sap  dop . doy  Sap Tds es
911 * 912(3;‘;*3;1-) 922 \Ta7 '5'071') "% Tar Cos ¢
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1 1 {1 _ds 88
[911 + 912 6;"* ;;‘) + gzz\klxz)} * day Sa; Cos ¢

A¥Aa 1 ds 65 :
[gll * 912( A1>\2) + 922()\1)\2)]= aal 6(11 COS ¢ ----- {2.6.1."6.}

Writing equation {2.6.1.-2.} in the form of {2.6.1.-3.} ,

'to obtain expressions for (A7 + A,) and (A;2,) reveals:

911b22 - 922b13 )
(g + 47) = g12b11 = g11b12
S {2.6.1.-7.}
(ihy) = 922b12 = g12b22
912b11 - 911P12
/

Substitution of {2.6.1.-7.} into {2.6.1.-6.} then shows:

. (911b22 - g22b1: ) . (glzbll - 9nbiz )] _ds 85 .
9117 912 {G0b17 = Gi2b22 922\G3;b17 = G12bez J| - ey Sag o5 °

or simplifying,

[§11 + 922b1l b,y L[912(911b22 - ga2bi11)

ds 85
+ g22(912b11 - 911b12)ﬂ= Tor To Cos ¢

. 1 ‘ _ds 85
[%11 ¥ 922b12 - g12b22 [911(g12b22 - 922b12)§]- Tag Sag C0S ¢

ds 68
g1y + 911 (-1) = 0= Tog Ta Cos ¢

Thus, for £S5 0,

Cos ¢ =0
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Therefore, it is established that the directions of Principal
Noamal Curvatures are such that they are always onthogonal to each
other. This was established by EULER, in 1760,

These directions, A; and x,, may be obtained quantitatively
from equation {2.6.1.-2.} but no useful purpose is served by this;
it is sufficient to know the directions as related to each other

(orthogonal, as proved).

2.6.2. Principal Curvatures
If the set of equations ({2.6.-3.}) originally found is

re-written, so as to place A in the position of a variable, instead

of « @ , then:

[
jon ]

(912¢® - by)n + (920 ® - by,) =
'0.0'0{20602."].}

' (gllK@ﬂ - by )r 4+ (glzKov - byp) =0
Following the procedure of the previous section (§ 2.6.1.), it
is observed that an attempt to solve set {2.6.2.-1.} for a unique value

of A fails, unless the determinant of the system is equal to zero.

Setting |D| = 0 and expanding, yields:

2
(912 ™ - b12)" = (9338 = b11) (g2 - by0) = 0
Further expansion, and grouping to obtain a quadratic in « @ s
gives:

2 2
[(g12 = 911922) (c @ )" + (g11b2p + Gobyy = 2g15D75) « @

2 .
+ (by, - byibys)] = 0 ceses {2.6.2.-2.}
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' 2 ,

referring to (911922 - 912) as |g] (see §2.3.2.)
2 .

and thus, to  (b;;b,, - byp) as |b]

then {2.6.2.-2.} becomes, upon changing to standard form:

2 ' -
[(KGD ) "T%T‘(gllbzz + G22b11 = 2012b12)c ® *‘%%%] =0..{2.6.2.-3.}

a solution is thus obtained by considering {2.6.2.-3.} to be of the

form
(K (n) )2 + 2C1K(n) + C2 = 0 seeeee ‘ {2.6.2."’4.}
d11b22 + 922b11 = 2912b12
where - 2C; = — '
la]
—L-l. eeveoes {206.2."5.}
b
Cz =
19}
)

o
2

Thus, for roots «; and «, , from the theory of equations:

-2 == (P 4D
and G = <D «D)

and so, the {nvariant coefficients emerge as:

Cl= %— (K(?) +K(121))

which is called the SOPHIE GERMAIN Curvature or Mean Curvature, and
CZ:@Q)K@)
which is called the GAUSSIAN Cwrvature or Total Curvatwre.
NOTE:'AThe SOPHIE GERMAIN Curvature is named after
that author's work in 1831 ; the GAUSSIAN curvature

is named for GAUSS, in 1827, yet it was first found
by EULER in 1760.
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Thus, a solution for the curvatures appears quantitatively as
(solving {2.6.2.-4.})

2

K(rll) =C1+VC1-CZ
2

KQ? =C -/ -G

where C, and C, are given in terms of primitive quantities
by {2.6.2.-5.}

2.7, CONJUGATE DIRECTIONS

Fig., 2.7.-1

Conjugate directions at.a given point, r, on a surface are

defined as follows: Let r and (v + 4&r) be two neighbouring points on



36

a surface. If the tangent planes to the surface at r and (r + 4r)
intersect, forming a line, £, then the limiting directions of 1line AT
and line Z (as Ar approaches zero) are called the conjugate directions
at r.

Considering Fig. 2.7.~1., it is observed that &r traces
out the 1ine of intersection of planes ABCD and CDEF, where the former
represents the tangent plane at r and the latter represents the tangent
~plane at ¥ + ar, Thus, 6r will be orthogonal to both e3(r) and e3(r + 4r)
in the 1imit. Assuming that second-order differential terms are
negligible, then

es(r + Ar) = e3 + de

Hence, &r must be orthogonal to both e; and (e3 + des3) in the limit.

i.e. 1im - [sre €3] = lim [6re(e; + de3)] = 0
Ar+ 0 Ar>- Q0 .
thus, lim [67-des] = 0 cee. {2.7.-1.3
Ar> 0

where {2.7.-1.} is the necessary and sufficient condition for
conjugate directions, |

Two curves then form a conjugate system if:

0
0

: 6?‘ dé-3

~ peeen {2,722
d-F~6e3 '

Conjugate systems need not be orthogonal systems; however,
in such a case that the conjugate and orthogonal systems are identical,
then: o
Sredr = 0
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If the first member of {2.7.-2.} is expanded:

i.6.: 5?;d35 =0
by employing: §F = §160; + gybap
4 de; de;
an da3 = %-ldal + 3?2-(1(!2

or g1* — Galdal + |g;°+— Galdaz
day day

i 333 ‘ __ des .
+ (gz's-;i-) Gazdal + (gz'm-z-) 6a2da2 =0 cesee {2'7'-3'}

_ deg
or, using gi-aaj = bij’ (see § 2.5.), then {2.7.-3.} becomes:

b115G1d01 + b126a1dq2 + b21602d01 + b226a2da2 =0

but as by, = by, (see § 2.5.), then

b116a1da1 + blz(éaldaz + 6a2d(!1) + b2260.2d02 = () .000‘0{2.7.-40}

which i{s the general equation, specifying conjugate directions.
NOTE: If the second member of {2,7.-2.} is developed
in the same manner as the first, the result is observed
to be identical (this is obvious, as Gaidqj = daj 6a1).

Conjugate directions were first discovered by DUPIN, in 1813,
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2.8. THE EQUATION OF RODRIGUES
The necessary and sufficient condition that a curve on a
surface be a Line of curvature, can be determined in the following

way.

es(r)

'e-3('r‘ + (ﬂ‘—)

Fig. 2.8.~1.

If 53. is the surface unit normal at v, and R the principal
radius of a curvature of the normal section, then the corresponding

centre of curvature, 2 = r - Rej

Saying R(r+dr) =R+ dR
and .33 ('F+d?)=_e'3+dé—3
then Q= [R + dR] [e3 + de;]

= R-é-3 + Rd€3 + dR-e_3 + dRC[é-3
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neglecting second-order differential terms,

Q= Rga + Rde,+ dR€3 = R€3 + d[R-e-3]

From 2 = * - Re;

then, di = dr - d[Re;]

= dr - dRe; - Rde,
or dr - dn - dRez -~ Rde; = 0
but, dt = -dRe3 (Fig. 2.8.-1.)

and, as dr is parallel to de; (to the first order of approximation),
since for principal directions, they are coplanar, then:

dr - Rde; = 0
or, as ]]Q-= « ®

«cODdrode;=0 ..., {2.8.-1.}

which 1{s RODRIGUES' equation, after Olinde RODRIGUES (1794-1851) in 1815,

2.8.1. Lines of Curvature and Conjugate Systems

Since 1ines of curvature are orthogonal (§ 2.6.1.), then

§redr = 0
“where §F and dF are segments of the lines of curvature.

But as RODRIGUES' Equation specifies the necessary and sufficient
‘condition for a 1ine in the surface to be a line of principal curvature,
then a substitution of the orthogonality condition into RODRIGUES®
equation yields:
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§re Rd.e_g =0
S0 sredes= 0

Thus, Lines of curvature form a conjugate system as well

as an orthogonal one, as {2.8.-1.} is identical to {2.7.-2.}

2.8.2. Parametric Lines and Conjugate Systems
Parametric lines would form a conjugate system, if they
satisfied the general requirement:

b116cx1da1 + blz(saldaz + Gazddl) + b226a2da2 =0 ..... 12.8.2.-1.}

(see {2.7.-4.1)

If the arbitrary line segments,

dr = gjda; + gpdo,
and » sr = -516011 + 52501.2
are constrained to be in the directions of r(a;) and r(a,), respectively:

VIZ: ' ([Y-‘- = §1d0L1 ’ (da2

0) veeees. {2.8.2.-2.}
6F = g36ay ,  (6ay = 0) eees  12.8.2.-3.)
then da, and 8a; must vanish simultaneously for a system of parametric
curves. | ‘
Substitution of {2.8.2.-2.} and {2.8.2.-3.} in {2.8.2.-1.}
thus reveals: | |
bizdaIGaz =0
which, for da;8a, # 0, must reduce to:

byo= 0 = by, (as by = byy)
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1.e.: __3_?_‘_.___3_ =0-_-3_f.

(by definition of b, and b,,)

This 1is, therefore, the necessary and sufficient condition
to be satisfied for parametric lines to form a conjugate system.

NOTE: Recall that the requisite condition for

parametric 1ines to form an orthogonal system was

given by the (analogous) expression:

g12 = 0 = ¢

2.8.3. Principal Coordinates

In the case that the parametric lines are both orthogonal
and conjugate; 1i.e., that g, = 0 and by, = 0, they are then lines
of curvature. Or, again, lines of curvature must satisfy RODRIGUES'
Equation, thus necessitating that both the orthogonality and
conjugation conditiohs be enforced.

If parametric lines are lines of curvature, they are referred

to as principal coordinates.

2.9. THE CESARO-BURALI-FORTI VECTOR and KINEMATIC SURFACE THEORY
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Fig. 2.9.~1. shéws the familiar FRENET Triad (£, 7, B) (5 1.4.),
together with the RIBAUCOUR Triad (E;, e ,e = e;), and the infinitesimal
tangent plane ABCD at a point on a surface.
The distinction between the two types of triad is as follows:
the FRENET Triad employs T, the tangent to a curve in space and n, the
normal to the curve (and to t) which is defined according to § 1.2.
and §1.3.. The binormal, b, is defined by T and n. In the RIBAUCOUR
Triad, the tangent E; is tangent to the "space curve" represented by
a parametric line (ai) in the surface; thus, the tangent E; and the
tangent T are identical. The normal e;, however, is defined as the
normal to the surface tangent plane at the point of contact, and is
thus not the‘same as n of the FRENET Triad. The normal ez is usually
defined with the aid of the croés-product of E; with another vector
in the tangent p]ane;vavconvenient choice for this other tangent-plane
“vector is, of course, the tangent to the other ﬁarametric Tine. 1In
this way, the normal e; always maintains a position on the "outside"

of the surface. It ié quite possible for e3 and n to be oriented in
different (general) directions. The fundamental difference between

the two triad systems; then, is that the FRENET Triad prescribes both
T and n as independently-obtained quantities and n as a “cwrve normal®
while the RIBAUCOUR Triad prescribes E; as the only independantly-
obtained quantity and e3 as a "surface normal®. In the latter system,
once 85 has been obtained (through &. and another tangent-plane vector),

t

then the binormal, E£ , is defined: Eg =e;3 X E;. The binormal, e,
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naturally resides in the tangent plane as well. Since, in both systems
the binormal is defined via the other two members of the triad, then
e, and b do not describe the same vector.
The CESRRO-BURALI-FORTI Vector in the RIBAUCOUR Triad is
best defined by'comparison: it is precisely analogous to the DARBOUX
Vector (5 1.7.) of the FRENET Triad. That is, the CESARO-BURALI-FORTI
Vector specifies the (relative) rotation of the RIBAUCOUR Triad, per
unit arc length, as the triad moves along a line in the surface. This,
of course, specifies the (relative) orientation of the surface itself.
Designating‘the CESARO-BURALI-FORTI Vector as E} then with
reference to Fig. 2.9.-1., the relation of C to the DARBOUX Vector

can be given:

= D+%§-_t'= 'c-f>+ KB-+%§-E_t

ol
]

et) ceess  {2.9.-1.1

('l:-*‘%-)Et + kb (as T =
But it is desired to express C solely in the RIBAUCOUR system. Realizing
that b must 1ie in the {e3, Eg} plane, as it is perpendicular to t

(or e e, ), then:

e3 + (bee.) e

b = (b-e3) e
Cos (%— + ¢)€3 +(Cos ¢) &,

=(Sin ¢)e; +(Cos ¢)E£
Referring to (t + %% ) as « ® , then {2.9.-1.} becomes:
T= «OF +(c cos ¢)e, +(c'sin 9T,
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or, redefining terms,

T=x® e + P g+ e {2.9.-2.}
where «® = [+ ggi z Ceodeéic Tonsion (BONNET, 1845)
@ = [« Cos ¢] = Noamal Curvature
«© . [k Sin ¢] = Geodesic Curvature (BONNET, 1848)

The vector, T, is thus the Kinematic Rotation Vectorn (of
the RIBAUCOR Triad) of the parametric line in the surface under

consideration,

Calling the curvature in the'{E;, Eg} tangent-plane, Pure

cwwature, ¥ = [« P8, + PE1 -5, xTx e, eenes (2.9.-3.)
.= ., %€ €3 _ =
ey x5 as A=Txe

Therefore, T=x+ (e, ceenes {2.9.-4,}

The CESARO-BURALI-FORTI vector is named for Ernesto CESARD
(1859-1906) in 1896 and Cesare BURALI-FORTI (1861-1931) in 1912. The
RIBAUCOUR triad derives its name from the work of Albert RIBAUCOUR (1845-
1923) in 1872-1875.

2.9.1. Classification of Surface Curves By Means of the CESARO-BURALI-

FORTI Vector (KINEMATIC CLASSIFICATION)

Various types of surface curves may be identified by means
of the fact that they cause certain curvature components, x(i)

(i = t, n, 3), to vanish.
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(3)
2.9.1.1, If « "=0: (LIOUVILLE's Criterion, 1884)

(t)—e- + K(n)--— -

t & = K
Such a curve is called a geodesic and is the "shortest curve (between

Then C= «x

‘two neighbouring points) in the surface". The curve is produced by

a normal section in the surface.

2.9.1.2. If® =o0:
Then T= «®¢ +»<(3)'e'3
This surface curve specifies a principal Line of curvature, or the
curve whose consecutive normals intersect (a planar curve). In this
case, the vector C is perpéndicu]ar to the tangent, E; . Thus,
Te, =0

Hence, for principal lines of curvature,

dey 3
T = Tx = k® 5 + P8 xT ...02.9.0.2.010)
de-g L
or HZ— = K(n)"gt
This will be recognized as RODRIGUES'quuation, when re-written
as
d-e_s = K® “ .é-t . [ X BN N ] ‘ {2.9']'2'-2'}

or.as€t=%§-,then dbgt = dr
so {2.9.1.2,=2.} becomes
d33 = K(n) dr-:

de—a-ép,)(ﬁ‘- =0
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OY‘ K(n)d-r-: - d€3 = 0 es e e ’{2390102.-30}

A comparison of {2.9.1.2.-3.} with {2.8.-1.} shows
that only a difference of notation exists. The two are otherwise

identical.

2.9.1.3. If «x®=0:

Then C=« ®© Et + « @) e;

Such a curve, which exhibits no normal curvature, is called an

asymptotic Line Lo the surface.
NOTE: Equation {2.9.1.2.-1.} illustrates the use
of the CESARO-BURALI-FORTI Vector. The derivative
with respect to the arc length, of a unit vector
(the change of the unit vector per unit change of
arc length) must be a 'rotational change' of that
vector, It is self-evident that a unit vector,
having constant magnitude, has no rate of change of
its magnitude;'the rate of change of such a vector
is thus prohibited from having a component in the
direction of the vector 1tself. Therefore, 1t 1s
obvious that the increment of the unit vector must
be perpendicular to that vector and thus, may be
given as a cross-product of a vector (prescribing
rotation) and the unit vector in question. The
CESARO-BURALI-FORTI vector 1s, of course, the

vector which prescribes the arc-rate of rotation.
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Geodesics

Fig. 2.9.1.1.- 1,

K(t)= 0

(
N

14

Principal Lines of Curvature
 Fig. 2.9.1.1.- 2.

«M= 0

Asymptotic Lines
F1go 2.9.].].- 30
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de;

Thus, i = Cxe,

where E} is any unit vector, or any vector of constant
magnitude which is fixed in the mobile RIBAUCOUR Triad.
In the case that the vector to be differentiated is not

of constant magnitude;

(say) €= Tls) = ey, (£=&(s) = [E]):

d‘
then %=a%(e:3,-) L 1+sa,3—'
or §'= %Ai-e-'i + E(Ex_.i)

as might be expected.

2.10. PARAMETRIC COORDINATES COINCIDENT WITH PRINCIPAL LINES OF
CURVATURE
Recalling the equation for the directions of principal
curvature, {2.6.1.-5.}
(912b37 = 911b12)A% + (g22b11 = 911b22)A + (g22b12- 912b22) = O

ecseces . {2.]00"].}

da1
or since A = Ty then {2.10.-1.} becomes

2 .
[(912b11 = g11by2)day  + (gzpbyy = 911bp2) dojday

2
+ (922012 -.912b22)da2] =0 ... {2.10,-2.}

A) Now, for parametric line a;, as the line of principal curvature;
then
d(!l

arbitrary

do, = 0  (as ap = constant)
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2 .
50, dojda, = 0 and (-gy1byp day) = 0 from {2.10.-2.}

B) For parametric line a,, as the line of principal curvature;

then

docz

dal

arbitrary

0 (as a; = constant)

0 from {2.10.-2.}

: 2
SO, dalddz = 0 and (gzzblz d(xz)

Thus, in general, for parametric coordinates as principal

lines of curvature, the following equation is satisfied:
daqday= 0

which is equivalent to the equation of conjugate directions.

Now since §i°gy = 917 > O

55’55'5-922‘> 0

2
and since (=g11bjp doy) = 0 (condition "A")

2 v
then b1y =0 ... (&as gj1de; # 0) - ceseees {2.10,-3.}

2
and since  (gpbyp day ) =0  (condition "B")

: 2. .
then by = 0 ... (as gpoday # 0) ceesses 12.10.-3.}

Therefore, for lines of curvature as parametric coordinates
(or vice-versa), it is necessary (and sufficient) that the following

conditions be satisfied:

|
o

912 = ,
seevess {2.10--40}
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The first member of {2.10.-4.} represents the orthogonality condition
of coordinates; the second represents the condition for conjugate
directions of parametric coordinates.

NOTE: This sections shows direct agreement with

§s(2.8.1., 2.8.2., 2.8.3.), where the same results

were developed by more intuitive (but less rigorous)

arguments.

As a consequence of {2.10.-4.}, the expression for the

curvature, « @ (s 2.5.), reduces to:

2 2
bl ldal + bzzddz

L@ : .
g11dog + gppda)
: 2 2
biida; * byaday
) @ do‘l. 2 dOtz 2 .
or, K = b]_]_ (E—) + b?_z (Eg—) cesees {2.10.-5.}

Equation {2.10.-5.} prescribes the curvature of any arbitrary
surface curve (for o, ay as principal lines of curvature), as shown

in Fig. 2.10.=1,

Fig. 2.10.-1.




The normal curvature, « & , of the parametric line

[day = arbitrary, ddz =0 (ap = constant)] is:
G
1 911
The normal curvature, « ® , of the parametric line
[da, = arbitrary, day = 0 (o; = constant)] is:
Lo D2
2 g
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where the subscript of the term « (?) (i = 1,2) refers to

the line, with which the curvature is associated.

2.10.1. EULER's Theorem

Fig. 2.10.1.-1,

‘ With reference to Fig. 2.10.1.-1; for the two vectors
dr and ér,
| dresr  _ _drest
| dF] | 67 dse

Cos¢ =



S0,

or,

A) Consider the

52

Cos ¢ = a%gz‘(@idaz,* Godaz )+ (G181 + Gobaz)
= a%gg’[911da15“1 *+ g12(daySay + Sogday ) + gapdazéas]
doy Gai day 8ap 8oy da, da, Sap
Cos o= Onggmg *9elgmw tag o)t m

line ay:

VIZ: [da; = arbitrary, da2'= 0 (ap = constant)]

i.e.: "o0=0, Fig. 2.10.1.-1.

Then, 912 = 91°92 = 0
. dai GOLJ_ dOLZ 50!.2
and Cos o= \Oug 5 * 922 55
then as
or s "9 0% 1-_;_/—"11=~9—1-
. Saq doy 1
if a4 > dsy , then — > g—= 9
(Sdz ’
if 84 » ds, , then 5 0 (as 6oy = 0)
Hence, from {2.10.1.-1.}
dd.l. 6(11 dOLl -I
Cos ¢ = Qugy g5 = 91 g g~
dOLl ’ .
or Cos ¢ = gla—
' dOLI
or again, y: Cgi‘g

special case that dr is coincident with parametric

e s0 0000 '{2.]00].-10}

2 . '
ds; = dryedr; (Subscript indicates "line 1)

{2,10.1.-2.}
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B) Consider the special case that ér is coincident with parametric

line ay:

VIZ: [da; = 0 (a; = constant), do,

i.e.:
Then, by a
(above):
where
S0

and finally,

w = 09 Figo 2.]0.]0-].

process precisely the same as for case "A"

da2 5“2

= arbitrary]

Cos (7 - ¢) 922 7~ 55—

842 = S 2
g22 oap

6(12. -l
% G
o2 Sin g
ds 92

(as 8a; = 0)

Employing {2.10.1.-2.} and {2.10.1.-3.}, in

then

or, as

then:

K

K

@

dal 2
bi1 \gzz—) + b2z

by Cos? . bz2
J11 5T ¢ 922

o
2
]

@, e D2
! g1’ 2 " 22

m) Y]

= |<(11])COS2 ¢+ ko

(da2
a5,

Sin2 ¢

(sZJOJ

Sin2 ¢

which is EULER's Theorem in DUPIN's form.

It is taus observed that through the use of the two

important theorems:

{2.10.1,-3.}

({2.10.-5.})
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i.e.: K ®) = K %” Cos2 ¢ + KQ? Sin2 ¢ eesees EULER
«® 2y cos o eveneenanenas MEUSNIER

then the curvatures in all directions at a point on the surface
may be evaluated. |
The EULER Theorem is named in honour of the great mathemétician,
Leonard EULER (1707-1783), for his work in 1760.
2.10.2. DUPIN's Indicatrix
From EULER's Theorem (§ 2.10.1.)

i.e.: «® = Deos2 ¢+« Dsin? ¢
@ - _1
and from Ky = —ﬁ;-
1 _ 2 1 esn2
then R- T Cos< ¢ + R Sin¢ ¢
= R_ 2 R (02
or 1= R; Cos< ¢ + T Sinc ¢
which, by comparison to the "standard form":
x2 2
1=—-2—+L2-
a b

is observed to represent the equation of an ellipse.

Thus, x= /R Cos ¢, y= VR Sin ¢

Hence, an ellipse may be constructed to prescribe the EULER Theorem:
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VIZ:

m(ﬁ—' ":—

9
oo + o X
\\\\\ﬁngnCos¢ ‘S\\\ .

Fig. 2.10.2.-1.

This ellipse is known as DUPIN's Indicatrix, after Francois-

Pierre-Charles Baron DUPIN (1784-1873) in 1813, (Discovered in 1807)

2.11. THE DIRECTED DERIVATIVE IN THE SURFACE

The total directed derivative being given as fL-, then the

dr
directed derivative in the surface is:
2. % x <4 x5 ceeee  {2.11.-1.3)
ar r

Intuitive conceptual justification of the above is accomplished
kinematically: the directed derivative may be considered to obey

the manipulative and conceptual postulates of vector algebra. Thus,

e; X %é = E is a pseudo-vector, perpendicular to e; and " fL-".
dr dr
Hence, —== &3 x -4_: x €3 is therefore perpendicular to € and to ej
ar dr

thus permitting it to 1ie only in the plane of the surface. No formal
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proof of this plausibility argument is considered necessary, for

a rigorous discussion of the directed derivative itself is beyond

the intended scope of this work.

where

recall:

SO

but

thus,

—%—_E-é-g)(‘c'{— X—3
ar dr
= = d
S €3-€3 — - e3°
dr
=4 _ (5.5 o
:dF"(e3e- 34
:g__..s ._(.S..._.
= dr 31 651
34 is the KRONECKER DELTA
61j =1 fori=]

Dod A
ar dr Mn
d . g 2

3 .= 3 .=
—=ze 5ot

ar 1

\e, (non-operative on e;)

ey (sumon i =1, 2,3,
Cartesian Base System)

sumon 1§ = 1,2,



NOTE: Although the directed derivative is given,

using an arc length parameter for the normal direction
derivative(ggg), it is to be realized that since

the normal direction is represented by a strajght-

A I
33 ~ da; °

line coordinate, then
Generally, since
K s %
5T Ty i aéi 30

0

3 —
SO, - g = g,
a7 191 da. 1 Bai

then the above-mentioned condition may be interpreted
as:

g; =033 =e3 , oOr|gz] =gz =1

whereas IE}I g; £1, 1=1,2 (in general).

2.11.1. The Idemfactor in Two Dimensions

The idemfactor (identity tensor) in three dimensions may

be given as a function of rectangular coordinates:

dyadt . (elji@—+e2 a: + €3 af)r
dr r o1 2
= 3r. ar = ar
= enay t e, tens,

= @je; + ee; + €je3

57.
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dr_ _dr .=
where Ty @ (s 2.11.)
0, .7

The idemfactor in two dimensions for rectangular surface

coordinates is given by:

Referring to the planar idemfactor as 7,

then 1= £ = 91 + e3e3 = 1+ 23-8-3
dr or
or 1 =T -Gjey =L
' or

2.11.2. The First Fundamental Form
Using the results of §2.11.1., the First Fundamental Form

may be obtained directly, as follows:

dredr =drdr: 9-—:: drdr: (T - 33-53')

ar
= drdr: (_8—131 + Ez-é-z)
= dre(eje; + ejey)-dr
= [(dree,) (e, dr) + (dree;)(erdr)]
also, dredr = dre=- ar o (dred ) = dr . (-:- . ?_a_) s drdr
ar ar ar ar

expansion of this reveals:

d—d— KL <[(d4191 + dézez + da393)
ar
+ 61 (d6181 + dbzez + da3e3)]
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+ [(dzsl"e-l+ daz'é'2+ clma"e'3).2§2

+tex(ds e+ dsy e, + day ?3)])

[d"l (e,eds, +eje, ds))

+ ds(ej-eyds ) + @ e ds, )]

and as eidéi gid"‘i’ then

— 2 . 2 =
drdr: 2 = gy day + 291pdaida; + gapday = dFdY:g

[+ 54
-

which is I, the First Fundamental Form,

2.11.3. The Second Fundamental Form

In a manner similar to §2.11.2., the Second Fundamental

Form may be obtained directly, as follows:

de. 353
dredes = drdr: — = dre— «dr  (by symmetry;see 5§ 2.12.1.)
ar or

_ se; e

— 3 —_
= (dsy eg) (g + Gogg )o(dsj ey)

(sum on i,j = 1,2,3)
333 _ 2 3—9-3 _ 3-3—3 -
= (3‘;1- '91) day + (5‘—' ‘G2 * 5o~ O ) dayday

' 3—é-3 _ 2
+ (30. 92) d°‘2

. 3-53 — 383 —
and since o 95 = bij = bji =359
1 J
0€;
then d?d—-—- = blldo'l + 2b12da1da2 + bzzdaz = ({—d— b
ar

which is II, the Second Fundamental Form,
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2.11.4, The Third Fundamental Form

In a manner again similar to§2.11.2., the third fundamental

form may be expressed as:

de;  dey de,  3es
G- |22 52 6]

ar  ar

de; dez\ 2 de3 dej g
) (‘a‘?-?{’%?)d“l * 2% ", ) derde

de; de -
+(-—3-- —i)dai] = drdr:a

3(!2 3(12
3-53 333
referring to Too Fa- s aij
1 J
se3 des 2 2 =
then drdr: [—:'——_‘-— = alldal + 2a12da1da2 + azzdaz = drdr:a
ar ar

which is III, the Third Fundamental Form. (Sometimes, Ij)
NOTE: This form does not have a broad usage, but

is employed as a preliminary to later developments.

2.12. INVARIANTS OF THE SURFACE TENSORS

Referring to the quantity -a-_'l_ as the First Surface Tensor,
ar des
since the First Fundamental Form is produced from it, and to — as

ar
the Second Surface Tensor, for a similar reason, then the invariants of

these tensors may be investigated. =~ _
- - = degy ey ra =
Note that 9:_’:=§_.':'.!"_3__=g and -——=-—¢ —=zp ,
ar ar ar ar ar ar
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No useful information being produced from the invariants

of the First Surface Tensor (or Surface Metric Tensor), attention is
directed to the Second Surface Tensor.

2.12.1. The Vector Invariant of the Second Surface Tensor

ags = = . =
Denoting the vector invariant as | — =b =1xb
air |v
3_9-3 — . 3—3
ar v ar ~ar

X e3

- 3 .= 8 .= 3 -
— +
[el 557 2 35, T €3 55, } X €3
de3 _  de3 _  de3

—_— —_— —_—
35, %2 Xggy Tes X

=31x

(as i_-_x £ = § X %—g.,sumon1‘=1,2,3>
ar i

_ 333 — 3—3—3
=& Xt e X
33‘3
(33—3— = 0, as a3 is a straight-line coordinate)
4
now, specifying the relationships: e; = e; x e3 E
. . — — — -1
e, = ez xe; E

where E =[_e'1-32 X 33]

" I -1 [(._ 5 I (. x5 ) sey
then e = E ez X ea X —— + e3 X el X
3T v _ 941 945
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_16 des\ _ (_ des \ _
= E e -m) ez =~ e3"§z—l‘> ez
 dez y\ _ _ de3 _
¥ (e3'%z ) €1 - (el'%z ) i

_ ey T
and, as es J_—-——% , then eje—— =0 (i =1, 2)
' i

3/5]'

9e, -1 [__ 5€;  _ oey ] _
$0 — E leye— =-ej—— | e3

o F (v 3 %2
oy 3% v 2%
E 35, 94, 367 by | 3
-1 — " ’ - "
e | ar 983\ 7 (ar .383) 3
. glgz 30,2 30L1 9192 30{.1 3&2 3

e

= Y (byy = byp) | (see 5 2.5.)
5e;
This serves to establish that — is a symmetric tensor.
ar

The vanishing of the vector invariant is the necessary and sufficient

condition for symmetry of the tensor. Hence, the conjugate ténsor

€49 3€ 4
— g | — and the original tensor are identical -- a fact
or or c

which has been employed in § 2.11.3. and § 2.11.4., without a detailed

explanation being given in that section

2.12.2. The Second Scalar Invariant of the Second Surface Tensor and

The HAMILTON-CAYLEY Equation of Surfaces )

58, |\

The expression for the Second Scalar invariant -—_—_—J R

- ar 32
0€j

of the tensor, — , is:
ar
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3-é-3 X 3-53 = )
— 1

— X
ar ar

se3|(s)
o7 2

]

To obtain a meaningful expression from this, it is first

ey
necessary that—
or
say
now
yet

be expanded in some form,

“ar ar  or 3r or

3_6—3 3_8-3 _ 3@3

— = &1 53 + e =3 (as in § 2.12.1)
ar

3e3 -

_3—5—— = i X e3 (§2.9. ff.).

where f} represents the CESARO-BURALI-FORTI Vector

for the triad, the tangent of which is tangent to

parametric line o (hereafter referred to as 'the

CESARO-BURALI-FORTI Vector for line a.')

1

Then, with reference to {2.9.-2.}

3_8—3
04 1
35-3

also B—A—;

=Ty X e3 =(;<(§)'e"1 + K(I{) e,

—_ ) —
=0 x e3 =(é§ €+ Ky €y + Kz €3)

1 () — -
+ k] e3) X e3

3 — -

2
@ X &3

-1 2
The vectors e, and e, are the binormals to lines o and ap

(respectively), and the unit normal, e;, is naturally common to both

triads, being a surface normal.

This system of employing two separate
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triads, one for line o, and one for line ay, faci]ftates both a
conceptual appreciation of the situation and the mathematics itself.
The non-orthogonal case is shown in Fig. 2.12.2.-1., in order to
illustrate the two separate dextral triads. Note that only one
triad is distinct.in three directions; expressions involving

vector directions of both triads must necessarily be resolved into
the directions of one triad during the process of extracting

components.

Fig. 2.12.2.-1.

The symbolism previously employed will now be altered, so

as to form a consistent system with the tensorial approach.
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Thus, define:

k @z ey vee. Nowmal Curvature, Line 1
K(E) z K2 eeee Geodesic Tonsion, Line 1
K (f)s K13 eevs Geodesic Cwrvatune, Line 1.
k@ z’xzz eoes Nomwmal Curvature, Line 2
K(E) Z Kp1 «oss Geodesic Tonsion, Line 2
K(i)s K23 eese Geodesic Curvaturne, Line 2
then, Ty = «18) * k1180 + k1383 veeen {2.12.2.-1)
T, = kg8, + Kzz-éi + kp3€3 ceees {2.12.2.-2.}

Then, in 'operator' form, for rigid vectors:
_é._( Yy =TCx () i=1,2

For the case under consideration at present, then

-9€3 _ _ 1 - _
(1) Wy Ty x &5 = (k1281 * k118, + x)3€3) X €3
1 —
= - k12€x ¥ k1€
. 9€5 . _ _0 _ _
(2) 3% T, x 83 = (kp18; *+ kp284 *+ xp3€3) X €3
—2 -
= = k2184 ¥ k228
3e; _1 — — =2 —
thus, — = [ey(~xype0 + «1181) + €x(=kp18, + x32€5) ]
ar

Note: equations (1) and (2) above are known as the RODRIGUES-WEINGARTEN

Formulas for vector differentiation.
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from which form, the second scalar invariant may
be obtained without difficulty:

1 [des  , des 5

5| T —T

2l ar X ar

—_— — —1 2 - 1
= (el X &p '163) [(Klze* X Kp1€ ) + (a<29_e2 X Klze*)

-2 — — — —
+ (Kzle* X n<1_1e1) + (s<11e1 X Kzzez)]‘e3 ...12.12.2.-3.}

This expression is better left in the present form,
as expansion thereof yields only a more complex representation.

However, in order to demonstrate the significance of

{2.12.2.-3.} , the case of oathogonal porametric Lines (op,ep) is

considered:
if 6 = 121‘ (see Fig. 2.12.2.-1.)
0 2 —
then, - €, = €y, €, % -8
hence, -El = KIZEI + Kll—e;z + K13_e-3
C, = kp18p = K2€1 * Kp3€3
se3 — - - - o
and so - = [El(Kllel -.Klzez) + e?_(Kzlel + Kzzez)]
ar
- +t ky11€181 = K10€1€)2
363
or — =
or

+ k216261 t k226262

as e;, €,, €5 are mutually perpendicular in this case, then e; x e, e3 = 1,

and {2.12.2.-3.} becomes:
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1 [?€s ae; | |
é‘l -::- X _:-. : T = (KIIKZZ + K]ZKZ],) coe0s e {2.12.2.'4.}
ar ar

t K11 = K12 =

"
|
n
=i

+ Koy + Koo

where |( )| represents the absolute value of the quantity

within the brackets, whether vector or tensor.

Proceeding one step further in specialization, if these
(orthogonal) parametric lines are also coincident with the principal
lines of curvature, then the geodesic torsions vanish {§2.9.1.2. ff.},

i.e.:. K12 = 0= K21

. —_ __ e
then K = kpj@18; + Kkpp €8 = —
ar
The First Scalar Invariant of ¥ , is then:
-E(i) = Kll +K22 oocooo.{a}

and the Second Scalar Invariant is given by {2.12,2.-3.}, as:

E(g) = K11K22 . ooc.oo'{b}

also, recalling

)

=€1E1+é—2€2+€3€3 .ooccaa{c}

Then, the relation existing between {a} , {b} and {c} (above) may

be expressed in the convenient form:
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333 -é-38 3.8-3 —
ar
— ¢ — o (k11 tKk2p) — + kK = =0
ar ar ar T
3-8-3 —533 _
or ag ~—— = — = X
ar ar
then R o- BPR4RD T =0
or R o RVE R T=0 L.l {2.12.2.-5.}

This equation,'{2;12.2.-5.} s is known as the HAMILTON-CAYLEY
equation for surfaces. It may be stated as: "The surface tensor,
k= 35?—, satisfies its own (SEGNER) Eigenvalue equation". Hence,
the gEGNER Efgenvalue equation for principal directions of p might
be given as:

A2 = (kA + k] =0

ao oo
The HAMILTON-CAYLEY equation may also be reduced to the
scalar form by taking a double dot product with drdr.
k11k22d7edF = (k11 + k22) drede; + dejede; = 0
or I:I dredr - i:.—[ dF‘dé-3 + dE3'd€3 =0

or again, as dredr = I, etc.,

(] ) I - (&:TII+III=0
This equation permits a solution for one scalar invariant in terms
of the other two., The HAMILTON-CAYLEY equation is named for Sir
William Rowan HAMILTON (1805-1860), for his work in 1853, and for
Arthur CAYLEY's (1821-1895) work in 1859, The SEGNER eigenvalue equation
derives its name from Johann Andreas von SEGNER (1704-1777), in 1755.



2.13. THE SURFACE AND ITS SPHERICAL IMAGE

.é-3 (al » (12+Ad.2)

3‘3(01+A0.1 ’ (!2)

E}(al, a2+Aa2)
Es(al'*'Aal » Gz)

2)-- r

Fig. 2013.'2-

The total curvature, Ky 2 due to RODRIGUES (1815) and

GAUSS (1827 ), is (from Fig. 2.13.-1. and 2.13.-2.):

S
k_ = 1im =

Spherical Image of
Surface at r(al,az)

69
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— [5r or
where dA = 83'<'g‘5;da1 X -ﬁ-zd(xz) (52.2.].)
as  dbi = dA e;, or dA = dA-e;

_ [3e, de;
and where  dA_ = eg(aaldal X a7 daz)
/ey de; _
(5&'1‘ oy ‘ea> dA
(55w | ¥
-
341 deg ses

Hence, Kg =
ses
now as
do]
3_8—3
then —=
30(,1
3_6_3
Similarly, Ty
Then
o)
Now, as
then . « =

= o wey Wy T 91l xes

g1(k1 + k13€3) X €3 (from {2.9.-4.})

gi1k1 X €3 as e; x e, =0
= gokz X €3
se;  de4 L L
ToT X ey~ 9192 (k1 x e3) x (x2 x e3)
= 9102[(x1 X esre3)r = (k1 x ezexp)es]
= 9192[-x1 x e3xz]es
= 9192[21 X kpe3les
=,9192(Eﬁ X K3)*eses
de;  des _ o
Tag X e, €3 T 9192(K1 X x2)+ezes*es
= g192(x1 X k2)°e3
i = (Bl 15 I stn & tem cos (B

9192(x1 X kp)-e3 K1 X Kge€j3

919, Sin ¢ ez-ez Sin ¢



71

and finally, Kg = Ty 5 K1 X Kp* €3 veer 122130410

Expanding {2.13.1.} is accomplished by means of the

definitions of k] and ¥y

- - 4 _ 2
VIZ: k1 X k2 = (k1261 + k11@,) X (kz1€2 + kage,)

- - _ 2
[c1ax21 (€3 X €2) + k12k22 (€1 X ey)

1 . -1 2
+ okiioi(e, X &) + o kikaa(e, x e,)]

realizing that: €] X e, = Sin ¢ e;
- 2 — —
e; X e, = Sin (§-+ ¢) e3 = Cos ¢ ej
ey X € = =Sin (5 -9 ) &3 = - Cos ¢ &3
e, x e, = Sin ¢ ez
then K1 X 'Kz = [(K12K21 + K11K22). Sin ¢
+ (k12k2p - K11K21) COs 4] e3

S0, Kg = [K11K22 + KioKkp1 (K12K22 - K11K21) Cot ¢] ee. {2.13.-2.}

~ which is, then, the total (GAUSSIAN) curvature for
the surfaca at the point (aj,0,), Where a1 and ap

are at an angle, ¢.

In the case that ¢ = %- (orthogonal parametric lines),

then {2.13.-2.} becomes:

Kg = (ky1Kpp * K12K21) ceves 12.13.-3.1

(compare with {2.12.2.-4.})
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2.13.1. BONNET's Theorem _
383
Having previously established, in § 2.12.1., that —
ar
is a symmetric tensor_and that consequently (as a criterion), the
Jej
vector invariant | —| vanishes, it is then possible to express
ar | v
this condition in terms of the curvature components.

ae; —
From —_ = -%:.x e3 =0
or v or

then an expansion reveals:

2 xE = x ;EE- + e, X EEE-= 0
3T 41 952
or e; x (C;p xe3) +e x (C, xe3) =0
ey x [(kq + xy3e3) x e3] + e x [(k2 + xp3e3) x €3] =0
e; x (k; xe3) +e x (ko xe3) =0
s (e1° e3)ky - (eq* ki)es + (ezves)kz = (ex *kz)es = 0
or o ()% + Tpery)Es = 0 (as €8 =0, 1= 1,2)
thus, as -e; # 0,
e1°ky + €p°kp = 0
e1°(k12€) + k1182) + €2°(k21€p = kp2€1) = 0
(for orthogonal parametric lines)
thus, expanding the above reveals: | . v
k12 *+ k21 = 0 ceeee {2.13.1.-1.1

which is BONNET's Theorem for orthogonal parametric
1ines.
The Theorem derives its name from the work of Ossian-Pierre

BONNET (1819-1892) in 1856.



CHAPTER 3

Three Fundamental Equations of Surfaces

3.1. THE INTEGRABILITY CONDITION

In the ordinary calculus, a form of the following type

may occur: |
dy = A*dx + Aydy z R-dr
where dy, 4in general, does not represent a total

differential of some function, v. However, if dy does represent

a total differential of some function, then (and only then):

dy = dy(¥) = dF & = &7 %

or
or dF (i% - Tx‘) = 0
ar
SN aw - _ .
so that, as dr # 0, — - A =0 {3.1.-1.}
. Y
then R Y
or ar ar
A A,
0=—-= . Y
y ax
3A 3A
X = Y ' 21
or 5 X e {3.1.-2.}

- 73 =~
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then, as Ax = %%v, Ay = %%- (from {3.1.-1.1})
2y . 32y ' .
then 5y x K37 ceose {3.1.-3.}

{3.1.-2.} is usually referred to as the Integrability Condition of
CLAIRAUT (1743), as well as {3.1.-3.}. The latter equation is,

however, sometimes known as the Nicholas BERNOULLI equation .

3.1.1. Geometric Interpretation of the Integrability Condition

Fl

5 ((11 + d(!l, a2 + daz)

day (F + le) \0‘1

Fig. 3.1.1.-1.

The value of a point-function, F', at some point (a; + dap,
oy + day) in the surface, referenced to the value of the function, F,
at the point (aj,a), may be determined in two ways. Translating the

function F from (a,,az) to (a; + daj, az + day) over two infinitesimal

"paths in the surface", then with reference to Fig. 3.1.1.-1.:
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for Path 1: F{ = F + diF +d, (F + d;F)

for Path 2: Fz' F+d2F+d1 (F+d2F)

In order that the surface function, F, may remain "single-
valued" it is necessary that the function F has the same value at the’

point (ay*+daj,ar+day), regardless of the paths traversed , i.e.:

Fi = F
or F+ diF +dy(F +dyF) = F+dyF+ dy(F + dyF)
So dzdl F = dlsz LN ’ {3.].1."].}

substituting for the symbolic d; and d, :

3 - 9 -
dal "a-a—; :d1 . dazm :d2

then {3.1.1.-1.} becones

3_dF 3_oF =
(5or %55 - 5y ho ) deadey = 0
3 dF 3 oF

or

aal aaz - aaz aal = 0 EEEX] {3.].1."2.}

which is the Integrability Condition for the surface

function, F.

This concept may be expressed in several other ways;
for conceptual clarity, two of these are offered here.
A) The value of a point-function, F', at the point (a; + daj,
ap + doy) must be unique, regardless of the 'path' taken

from some other point (aj,a,) to the point in question.
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B) The value at a point, as determined by passing around a closed
loop, from the point over the surface and back to the point, must
be the same as that value which was existing for the point before
the loop was made, i.e.: d;d,F - dyd;F = 0.

In keeping with the kinematic approach, {3.1.1.~2.} may
be expressed in terms of the arc length derivatives, as an alterna-
tive to the parametric coordinate derivatives.

Employing the substitutions:

] 9
dsy = gido; ; so Ty = 91 3T
= . 2 g, o

d'62 = gZdaZ » SO 30, 92 34,

then, {3.1.1.-2.} becomes

e PO L 10 W L
91557 (38, ) T 925 as, T 925, \wsp)” N1925,usy T

1 (392)3F L 02 1 (391)35-' 22F

or -g-;- 0484 3, 361362 - g1 98, ] 043 - 362361 =0 ... {3.1.1.-3.}
forri ' 1 (392
O 3g,
and to T ( ;) 85 12
1 392) ) 3(Ln g,)
then nc g \my) T
1 (391) _3(en gy)
Y2 " g\, T T e,
and so, {3.1.1.-3.} appears as:
32F 32F 3F oF . ,
341342 - 362361 + Yl ﬁz_ - 72'3‘4"; 0-. IR {3.]0]."4-}
3 aF 3 oF .
or, (‘é‘Z‘l + Yl)-axz - (—a-—‘--MZ + 72)'53-1 0



which is the kinematic Integrability Condition
for a point-function, F. This relation has
general validity, as F may be either a scalar

or vector (etc.) point-function.

3.2, THE GAUSS EQUATION AND THE MAIMARDI-CODAZZI EQUATIONS

FOR SURFACES, IN THE CASE OF ORTHOGONAL PARAMETRIC LINES

From the Integrability Condition, {3.1.1.-4.} , by

setting the arbitrary function, F, equal to the position vector,

¥, the following result is obtained.

3%y 32y T or
———— —_———— 'Yl r— - ‘Yz —~ - 0 essee
aélaéz _ 3623/51_ 3/52 941
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(3.2.-1.3

Equation {3.2.-1.} specifies the closing of the infinitesimal

surface parallelogram, in accordance with § 3.1.1.

Rewriting {3.2.-1.} yields:

o [ar ). 2 far )\, 8 _ er
081 \ 9o 3, \ 981 Y1352 Y%Al

EI

“and as

= e,, then the above reduces to
84 i
5€, 3e; _ _
e - orsan————— + - = LA

recalling the CESARO-BURALI-FORTI Vectors:

1

Ci = xize1 * k1184 * k1383 ‘
— — 2 — esscsee (aY‘thY‘aY’_\/ al, 0.2)
or Co = Kkp1€p + ko€, + ko383

Cy = «1p€1 + k1182 F k1363

cecscee (01.1 _LOLZ )

Co = kp18p = Kkppe) + kp383

{3.2.-2.}
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Thus, {3.2.~2.} becomes
tl XEZ ".-C-z X—e.l + YIEZ - 72-51 =0
(Klzaﬁ + Kllaé + Klsaé) X Eé - (Kzlgé ~ kpp€; + kp3e3) x e1 + yviep - vze1= 0

k1283 = k13€] ¥ kp1@3 ~ k38 + y18 ~ yvze; = 0

“(K13+ yple; + (= kp3* vi)en * (k1o *k21)ez =0 ..... {3.2.-3.}

As the vector directions €;, e, Eg are independent for
the case of orthogonal parametric lines, then {3.2.-3.} is satisfied

iff the following conditions are true:

a)  =(k1z3 ¥v2) =0 or vy =~k
b) - kpg* v1= 0 or yi = x23

c) ki tky= 0 (BONNET's Theorem)

Hence, for the case of orthogonal parametric Tines, the

IntegrabiTlity Condition may be given as

_82F  __&%F oF o3F

+ + = -
3(Lng,)
Where Kiz = -"—"’B‘A—é— = = Y2
3(Lng,)
K23 % T En

A more general case is now considered, still within
the framework of orthogonal pardmetric lines. Let the Integrability

Condition be applied to any arbitrary vector, V'='V(4). The vector
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Vv is understood to satisfy only the condition of being a (single-
valued) point~function of the surface; thus, it is a completely
arbitrary surface vector.

From {3.2.-4,}

3%y a2y 3V vV _
- + S+ — =
36104, _ 08,08, & <13 3, T *23%, 0

3 3V 3 [av oV vV _ T
- + + =
381 (342) 362\361) k13557 Rasgz; = 0
expanding, and considering v = v e_, then:
9 v — = e d v — — -
—— | —— + - m— ——— +
381 [342 ey * G2 x v] 3, { 57 Sv C1 x V]
V — . % o= W o— = _
+K13ETIQV+C1XV] + K23y ev+C2xfr}-0
2v__ = LV F LT 4 3(Cy x V) 22v__ -
3,98, v, 17 v 3 4 08, vV
- C, xe 8(C1 : V) + K3 Al e + K13—61 XV
aél 2 v 4 5341 v
+ Kza——gzz e, * k2302 X V] =0 veeeses  13.2.-5.}

the block of terms,

32y a2y 3y v |
- + +
[a»slazsz By08y | <13y ¢ “2%%,|%

vanishes identically, as this represents the Integrability Condition,

operating on (scalar) v. Expanding the remainder of {3.2.-5.} and

collecting terms yields:



80

. —
( ;Z%XV+[-C-2 x (T, XV,)]' ;.;:_XV-[—C-I x (Cy XV)]

+ K13—€1 XV + K'23-62 XV ) =0
FsC, 3G ‘ _
or. L‘a“: - ’5‘6‘2— + K13C1 + K23E—2 XV
+ -62 X (El X V) - —Cl X (-(_:.2 XV) =0 ..;{3.2."6.}

now, as the pekmutable vector triple product sum is equal to zero,

et [T x (WxT)+[Fx (€ x T)]+[T x (€@ x W)= 0

then {3.2.-6.} becomes, upon substitution of this identity,

3C,  aCy - — - -

3C, 3C; L _
or 3/3—1- - —32‘2""‘!(13-61 + K23EZ + (C2 X Cl) xv=0

Referring to the larger factor in the above cross-product
equation as A, then the equation is represented as:

Axv=0 covee {3.2.-7.}

The conditions, under which {3.2.-7.} will be satisfied, are:
a) A is parallel to V
b) V=0
c) A=0
Both a) and b) are not allowable conditions, as v is to be an
arbitrary vector. Therefore, the remaining possibility manifests
itself (retranslating A to its original form) as:
aC, o, _ - ,
T 35, + k130 ¥ «23C, + Cp x C; =0 ceees {3.2.-8.}
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This equation contains both the GAUSS and MAINARDI-CODAZZI
equations, in combined form.

Expanding {3.2.-8.}, by carrying out the differentiations
(and the cross-product) requires that the CESARO-BURALI-FORTI vectors

be employed again:

C
3 — — -
VIZ: = = (Kp18p = Kppe] * Kp3€
Ty (k2182 - kazer *kases)
3K21 3K —_ —_ —
=357 ey + k2101 x €2 - 557 €l - k2201 X e
K23 __ - =
55, o3t k2301 X €3
9K22 _ oK1 __ dK23 __ _
=|- + ——— T, + + Kpg = K13k
w1t w2t g e+ (K1ikes - K13k e
- (k13k22 + K12k23)ep + (K12K21 + K11K22) 63]
and similarly,
3_61 . [3!(12_ 35(11__ 3K13 _ _
— = | T ey + + (K13Kp1 = K11K
5%, 55, 81t 35,0 Ty e + (Kiskal - xaikas)en

+ (k12k23 + K13K22)e2 = (K12K21 + K11K22) 53}

Substitution of these results, together with the expansion
of the cross-product term, into {3.2.-8.} yields (after algebraic

s1mp11f1cat1on

K2 K12 -
- + - - -
341 YR (k11 = x22)k23 = (k21 = k12)K13 €1
(S

L
[ ok21  3kp
L

- - + - €.
o1 9sp (k21 = k12)k23 + (k11 - k22)k13 ] e2
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. dkg3  OK13 . . I S 0 (3.2
341 - 862 Ki2K21 K11K22 Ki3 K23 63 = ot.ln{ . -'90}

Since the vector directions are independent, {3.2.-9.} is

satisfied iff:

dkz2 3K12 '
341 * 355 + (K22 -k11)K23 * (kp1 = K12)k13 = 0 ceses {3.2.~10.1}
3K21 3K11 '
85y * (k21 - Kl?)K23 - (k22 = x11)k13 =0 ..., {3.2.-11.}
3K23 3K13 2 2 .
55, " 35, T Ki2k21 * K1Kzp * kg tokgg =0 ceves {3.2.712.}

Equations {3.2.-10.} and {3.2.-11.} are known as the MAINARDI-
CODAZZI Equations of Surfaces and {3.2.-12.} is called the GAUSS
Equation, for orthogonal parametric lines aj,as.

If the parametric coordinates are coincident with the principal
lines of curvature, then the geodesic torsions vanish (kj2 = 0 = kp7)
and equations {3.2.-10.}, {3.2.-11.} and {3.2.-12.} reduce to

(respectively):

3K22 '
55 2Kz - 2311 = 0 {3.2.-13.}
342 + K13K22 = Ki3K11] = 0 , essece {3.2.-14.1}
3K23 3K13 ' 2 2

5, 94, MLFSLPEIRALS EAR P E I 0 ceves {3.2.-15.}

These equations {3.2.-10.} to {3.2.-15.} are of primary
importance in the Differential Geometry of Surfaces. The relationships
thus established between curvatures and their rates of change (with

respect to the arc length parameters) provide, in numerous instances,
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the only means by which useful expressions may be gleaned from
complex developments.

The MAINARDI-CODAZZI equations are named after Gaspare Angelo
MAINARDI (1800-1879) in 1856 and Delfino CNDAZZI (1824-1873) in 1860.*
The GAUSS equation is so called, after GAUSS in 1827.

3.3. THE GAUSS EQUATION AND THE MAINARDI-CODAZZI EQUATIONS FOR
SURFACES, IN THE CASE OF NON-ORTHOGONAL PARAMETRIC LINES.

If a vector, %, in its transfer from a point r to another
point, r + ar, is independent of path, then this transfer or
displacement is called Integrable Directional Thansfer, after Gerhard
HESSENBERG in 1925. This is also known as Integrable Linean Transfen
and Tntegrable Parallel Displacement [in the sense of Tullio LEVI-
CIVITA's (1873-1941) parallel displacement, 1917].

Kinematically, such an integrable directional transfer can
be represented by the model of a rigid body which is always in
contact with the tangent plane of the surface and where the tangent
vector, e, of the path of motion always coincides with the vector
n, fixed in the body and maintaining the same direction as e.

In such a case, the CESARO-BURALI-FORTI vectors, C; and C,,
do not prescribe the integrabie direction, but rathér prescribe a
direction which differs from the integrable, by a rotation about e3
at each point. Thus, if a body is translated along an arbitrary line,
the rate of change of e with respect to the arc length &;, will be

prescribed by (with reference to Fig. 3.3.-1.):

* Since Karl PETERSON obtained essentially the same result
in 1853, these equations are really the "PETERSON~MAINARDI" equations.
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(e pointing out
of paper)

&1

Fig. 3.3.-1.

This is actually a mathematical statement describing the
fact that a; and ay(as fami11e§ of 1ines) do not, in general, meet
at a constant angle at different points in the shell surface.

Similarly, for the body translated along the same arbitrary
line, the rate of changé of & with respect to the arc length 45,

will be prescribed by:

— . a¢2

ae = — —
%, (C, + 323-e3) X e

Therefore, introducing the notation from Fig. 3.3.-1.,

[¢1' ¢4= wyz T < w2y
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then for the derivatives which occur frequently in the course of

evaluation of expressions in the two different triads,

BEZ '__ dwya__ i _ _
§ZT=(C1+§Z-1‘93)X62=91 X e
ae; _ duwyy _ L
— = + =
and 55, (C, 555 e3) x e =9 x e
de;  9e, 3e;
Obviously, for such derivatives as =— , — and —
_ 85 4 3 %
8w12 30.)21
(i = 1,2), the additive terms, w5 O 5 do not occur.
i i

This is easily seen from the fact that the angle of intersection

of the parametric lines has no effect on the rate of change of the

unit vectors of a triad, with respect to its own arc length parameter.
Now, from the Integrability Condition, {3.1.1.-4.}, by setting

the arbitrary function, F, equal to the position vector, r, the

following result is obtained:

%y _ 3%r . dr 3 g
361342 362341 Y1 342 2 361
or _3__ (32) - __3__ (E ) + ‘Yl_e-z - 'Yp_-e_l =0
; 941 342 1

expanding gives:
Q) X € =9y Xxep +ye; - ye =0

- dwyp _ - — dwp
+ - +
or (Cy 557 e3) x ez - (Cy 555

e3) x €1 + y1e; - ye; = 0

- 1 dwyip -
<1281 * k118, * (k13 57—) €3 | X €

30)21

- 2 — — - A
- [K21ez t K22€4 * (Kzs + 555 ) 83] X e1 * yiep - voepp= 0 .43.3.-1.}
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Extracting components is easily accomp]ished’by taking the

R | —
dot product of this equation with e;, e, and e;, respectively.

a) scalar multiplication of {3.3.-1.} by e; shows:

T - - _ J oo dwiz
K1p€] X € ° €] * K118, X €pc€y + (kg3 + 351 ) e3 x exce;

- - - 2 - dwpr . _
- K21€2 X @1°€] = kpz8, X €1v€] - (ka3 * 355 ) e3 x erce;
* viep°€; - YZEI',EI] =0
Jwio ' .
50 k13 ¥ 3z— | Cos (wiz+ %) + vy Cos wip = v2| =0
1 A
) w12 .
or [—( k13 + -a-"T) Sin wya* v1C0swiz=- v2[= 0 we.13.3.-2.}

. : 2
b) scalar multiplication of {3.3.-1} by e, shows:

- = -1 dwiz . _ 1
K128] X €2°€4 * k1184 X €2°€, + (k13 *+ -3‘;1—) €3 X €2°€,

a0 2 o dwyy 1

-k21€7 X €1°€, = Kp2€, X €)°€, = (kp3 + ggg—) e3 X e1°e,

- |
t yiez°e, - Yzel‘e*:l =0

dwyo dwa1 . .
SO <K13 + 551 ) Cos wis= (K23 + 5%, ) + v;Sin wio= 0 .....{3.3.-3.1}

c) scalar multiplication of {3.3.~1.} by e; shows:

- - - 1 dwi2 o . _
[Klzel X €¢@3 * k118, X €pve3 * (ki3 + % ) €3 x exees
-2 ' duwp

- Kp1€p X €1°@3 = Ko28, X €1°€3 = <K23 +

55 ) e3 x ejees

+ yi€y°€3 - Y231’_e-3] =0
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so [(c1o *k51) Sin gz + (= k11% xz2) Cos w1z)= 0 ceeee  {3.3.-4.)

From a) and b), the parameters y; and y, are defined.

Re-writing {3.3.~3.};

W ow
_ 1 21 12

using this as a replacement variable 1n'{3.3.¥2.}, the result emerges

ow 30
- 1 21 12 ,
Y2 7 T5in g, [(K23 * 359 ) COS w12 < (Kls + 52;—-)] .. {3.3.-6.}

(NOTE that for w,= %-; Cos wyp = 0, Sin wyp = 1
duwyz dwpy .
and 5%, =0-= % in which case, vy; = «a3

and vy, = = k33 which is correct for the orthogonal

as:

case.)

From c), the resulting expression is seen to be:

K12 + K'21=.(K11 - KZZ) Cot wio caces '{3.3."7.}

which is recognized as BONNET's Theorem in non-orthogonal coordinates

Having thus prescribed y; and vy, , let the Integrability
Condition now be applied to some arbitrary vector, v = v(4), as was
done for the "orthogonal" case. Then:

22V %V v 3V _ g
35106, 069041 13, - Y2 Ts,

: 3¢2
3 ‘ 3V - — — l
or ——3!1 ““‘—352 e -+ (Cz ""‘—"'362 33) XV
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991 3¢2 ]
. 3 3V 3V

- . ot 3 o r— + oA PR

55, [ 5 e," ‘(Cl T e3) X v} YI[BAZ e, + (Cp e3) XV

-Yz[_z—f eV + (Cl +--§Z-1- 63) X V] =0 .-..{3.3."8.}

395
Referring to 'C'i + — 34 e3 as -C' for convenience, then expanding
‘ {3030-80}
2 aC3
32y — V s o, = - [—- v — ]
+ =— (C} + = ' =
941949 ev 942 (Cl X eV) L1 x v+l x 941 eV

: 8T}
= . 32V — AV my o, T
+ C4 ! Y e e - ) - —
€3 x (C} xv) 555557 Sy '—"<841 C; x e =XV

avl—' 1 v =
- YoggT &y 7 Y2 1XV} =0

This reduces, through the integrability condition operating

on scalar v and through algebraic summation, to:

+Y1C5XV-Y2.C—iXV] =O 20000 '{3.3.-9.}

The permutable cross-product sum being equal to zero, permits

the substitution:
(T3 x T1) x )= [E x (€1 x 0)-[€1 x (@ x )]

hence, {3.3.-9.} becomes:" |
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§
Y +v1C ~v2C +T xC | xv =0
557 " 5, 162 - 720 2 X O]

which, for arbitrary v, is satisfied iff

aCs 8Cy

m - '87'2— + 'YI.CZ' - Yz.c—i + -Czl XE]'_ = 0 seene '{3.3._‘10.}

returning to the original form of 'C',;, and regrouping, then {3.3.-10.}

becomes:

(azs * Yl) (CZ o, 33) (aA * 72) ( G+ 57 33)
3¢

— — 2 391
+ Cy'x C; + ¥y ee,xC1+C2xM e3|= 0

b __ 361 _
[(82 )Ez - ( "‘Yz)ﬁ (32 + Yl) m‘ €3 = (‘5753—2—"' Yz) -5;3—1—63

9¢p - _ 393

- —C-1 X-Ez - EA—;CIX ey + '5'5'1"62 xga] =0 ... {3.3.-11

‘now, as
) 32 _ [/, 30 1 86 _
(a»sl * Yl) %, €3 st my et G xes
3¢

3 3¢y _ ([ 5 1 e 901 0 _
= = {2 —— t e
555 Y2) %5 €3 \552 *ye ggy|est gy le xes

then {3.3.-11.} reduces to:

5 = 3 = 5 0\ %2 )
(341+YI>C2' (aA ”2)‘3“ (32';”1)?5 €3

1

3¢ _
3 S T T s
-[<_8-5+ Yz)—a-‘g;] e3 - Cl X C2 ﬂ - O eosses {3.3.-]2.}

as [¢1 - ¢2] = wyo (from Fig. 3.3.-1.)
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) 3 3o (3 +’ ) 341 dwy2
then (341 Y1) 3%,  \®, Y|, = @,

Hence, in {3.3.-12.}, the integrability condition operating

on ¢; sums to zero, and the result is:

. _ , _ 3 dwi2 1
(e o) (o) (o) B0

..... {3.3.-13.}
referring to the operator
3 \ 9 [ 3 |
(e )ait )= (e )ait ) s 00
‘then {3.3.-~13.} becomes
(8211» yl)t‘,_ (aj +y2)fl Ty xCy+ [Dwp] @ eneen {3.3.-14.}

This equation contains both the GAUSS and MAINARDI-CODAZZI
equations, in compound form. Extraction of these equations is
possible in two forms: A) Operational Form

. and B) Component Form

These two forms will be discussed separately as follows.

A) Operational Form

Using the identity,

- - _ 383 -
L= K, 4 z —_— K,
Cj = K+ xy4e3 és X 5 Kig €3] »

as a replacement expression for E} in {3.3.-14.}, and recalling

that

Ky X Ko = < Sin wi2 €3 (from {2.13.-1.1),

then {3.3.-14.} becomes, after some minor manipulation:
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) 3 . -
[(5};‘1‘ + Yl)Kzs - (’az‘;* Y2)'<13 + kg Sin wyp = (lez)] es
+~gx_a__(i"i+ffi__a_?_‘fi_?_‘ii - 0

3 941 94 o Y1 L2y 085 \ 34 YZBAI

The second factor of this equation (above) vanishes, as it

represents the integrability condition, operating on E;. Thus;
3 ' 3 _ . — ,
[(-a-z-;"' Yl) Ko3= (-32'2— + Y2)K13+ Kg Sin wy2 = lez ] ?3 = '..{3.3._]5.}

9 ] . .
or {:(;;;*' Yz)K13 - ('52-;"' Y1)K23 + Dw12}=[t<g Sin ‘012]----- {3.3.-16.1

which is the GAUSS Equation in operational form, for non-orthogonal

parametric lines.

Realizing that the above is the e3 - component of equation
{3.3.~13.}, then by subtracting {3.3.-15.} from {3.3.-13.}, the

result dis:

3 ~ d - . - ,
[(&T{ * Yl)"z - (33-2- * Yz)Kl] =[2'<g Sm wlz]e3 {3.3.-17.}
which contains both the MAINARDI-CODAZZI Equations in operational

form, for non-orthogonal parametric lines.

B) Component Form
Returning to {3.3.-14.}, and expanding in full, using the
\
component form of the CESARO-BURALI-FORTI Vectors, the results appear

—_ =) -
as (taking the dot products with e, e,, e3):

aK].2 3K’22 .
- + + + + i
34, K11K23 T Y2K12 3%, K13K21t Yikz2 | Sin wyp
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-

3K21 ' ‘
- L341 = k13k22 * y1k21 | COS wipp = 0 ceeee {3.3.-18.}

0K11 9K21
-—_—+ + - - + Aq 1
[aéz K12K23 Y2K11] [aél K13K22 * Y1K21 Sin w2

| 9K22 :
B [341 T k1gka1 * YiK22 } Cos wi2p =0 {3.3.-19.}
9K13 k23 ,
[aéz - 341 + Y2K13 = Y1K23 - [Kllfgz + K12K21] Sin wi2
+ [K11K21 - K12'<22] Cos wy2p= 0 ceees  {3.3.-20.}

“where equations {3.3.-18.} and {3.3.-19.} are the trigonometric
(expanded) form of the MAINARDI-CODAZZI equations for non-orthogonal
parametric lines; equation {3.3.-20.} is the trigonometric form of
the GAUSS equation for non-orthogonal parametric lines.
These equations reduce, for wj, = %-, to the forms as
given for the case of orthogonal parametric lines.
NOTE: In the case that the arbitrary vector, v,
is not a function of the arc length, the develop-
ments of §3.2., and §3.3. still hold. In fact,
the development is somewhat simplified in the
case that v # v(s); this will be easily seen from
an inspection of the preliminary work in either
section (up to {3.2.-8.} for'§3.é., and to
{3.3.-14.} fOP'§3.3a).



BOOK II. THIN ELASTIC SHELLS
CHAPTER 4

The Kinematics of Deformation

4,1. DEFINITIONS

Shelts are defined to be bodies, the third dimension
("thickness") of which is very small in comparison to the other
two dimensions,

The Middle Surface is the locus of pointé which are

equidistant from the two bounding surfaces of the shell.

4,2 GEOMETRY OF THE SHELL

ol
A-3
_ A —
: ' 8 _— —_—
. ddle g
—
Deformed
Shell
R/ foo
middie
surface \[ ]
s N
Y& Undeformed
Shell

o]

F'ig. 4.2.-] *

- 93 =
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4,3, THE BASE VECTOR SYSTEM FOR THE DEFORMED MIDDLE SURFACE

Recalling the base vector system for the undeformed

(middle) surface:
— e _ %y

9; = da;  Ba; a4 95 & (no sum, 1 =1,2)

where the position vector r° is now used in place
of ¥, when referrning to the middle surface.(The
vector r thus retains its status as an arbitrary

vector, describing any point within the shell).

Then, to the above may be added (with reference to Fig.
4.2."].)"‘ . |

- 3 3 =° —
= ey = —— +
9 = Far (M = 557 (r +o3e5)
= .a_-.F.o_+ 3.03.3 + a .a.f.?’_
3(!3 3(!3 3 3 30.3
= Eé

since a3 1is a straight-line coordinate,

oe.
“therefore 3——‘- =0 (i =1,2,3).
3 -

Now, for the deformed middle surface,

Re =r° +u° from Fig., 4.2.-1.
then as ds2 = dreedr® = I (see §2.3.)
50 ds? = dR°+dR® = [d(¥® + U°)+d(r¥® + )]

d-Fo'd-Fo + 2 d-r_‘o‘dio + d-ao.d'ao .'.{.4.3.-].}‘
expanding {4.3.-1.} by the introduction of:



a7 = A ge 4 3 g = Giday + God
a1 o, 22 = Giday ¥ Goday

. auo aab
du® = S doy + ——day

2 2
then, d32 s E}‘Eﬁdal + 23}°Géda1da2+ Eé°ﬁéda2
2 : 2
= Glldal + 2G12da1da2 + Gzzddz
where T, = 28 , and
1 aai
_ = au° 3u° _du°  _
Gll -'gll + 291'3a1 + 3&1 .301 = (gll + 5911)

_ — au°
Gip = g1p + 913,
— 9u°., 3au° au°
-~ + P + . —
922 29; 30y | 3ap 3ap (922 + 6g22)

EUb + aab .aab

+ gz‘aal Sa;  3ap (912 + 8912)

(2]
N
N

|

Thus, G, and G, define the base vecton system or the
defommed middle surface.

NOTE: Because of the complexity of the expressions,

as exemplified above, all future discussion will

assume ornthogonal parametric coordinates fon the

undeformed shell, Naturally, this precludes that

in the deformed state, the coordinates cannot be

orthogonal, being deformed (by detrusion) from the

original state.

4.4, THE UNIT VECTOR SYSTEM FOR THE DEFORMED MIDDLE SURFACE

The base veeton associated with parametric line a; has

been given, in s4.3., as:

= _ 9R°
G'i - 3a1




Hence, the unit vecton associated with the line o
-E—:' = -G"i = ] aﬁ° = a-h_° ( PR -l 2)
i 'G; Gi aai GSi 1=

where dS1 represents the deformed arc length
parameter, as before. |

Expanding the original expression for Ei:

T = R =[8r° + au°]

~1 Bai Bai aai
-3 ;[3_*1 z‘:_]
1 .aai 361\
= 3U° -
=q, + q. —
9 7 94 33,
i
— o
= g; (ei + 24. ) (no sum, i= 1,2)
i
. Au°
Now, expanding Yk
i
aa‘o - a o . + o A + o
361 '3;;(“1 e; + u3 ex + ug e;)
ug _ _ _ ug _ _
= ——a@ +u°[C xe}-i- e+u°[Cx
3‘61 1 1 1 1 341 2 2 1
ug _ _ _
+-3-A-1-83+U§[C1X63]
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is

ceees {4.4.-12

]

using the component form of the CESI\\RO-BURALI-FORTI Vectors, carrying

out the cross-products and regrouping, gives:

3U° auci 3 - B, QUE ° Q
Bay o \3gy " YaKas * USkay @y + gy Ulkys - USKy

3ug —
+(331— = Uik * Uk ) e3

—

es



By a similar procedure,

ST aug . . _ aus . _
5, = 555 = Uk,g T U3k, [e; + sz—z-+ Uik, 4 + U§K22 ez
au3 _
+ %, - Uik, ~ UZK,, ) es3

Introducing the notation

'au‘{ . . ] 57° —
911 e Uzkis * Usk11)= gt e
3u 0 A T
%12 =357 T Uikas - Uski2{= 557" &2
[9u$ . 1 a7e — .
913 =[_-3.A_1— - Ujkyp + U2K12‘= 341 °e3 cesen {4.4,-2.}
[ou o o | =
21 Tl < Uzka3 ¥ U3K21) T g e
(9u3 To  _
b22 |55y * Uikes * U§K22]= 555 2
s 0 U =
$23 "3, Uikay = U2K22]= 58,  ©3 J
where 413 (i # j) is interpreted kinematically as the
rotation of E} towards E& (and about the axis E; = E}XEE),

during the process of deformation; the‘terms 03 represent
longitudinal dilations in the direction E}.
Then,
T 61181 + 0108, + 0136
541 1161 1282 1383

T - - -
Tag | $2181 F 62282 ¥ 62383
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Using this result in the expression {4.4.-1.} for E},

then the result appears as:

Gy =gy [og + o8 + 05,8 * ¢y 6]

thus, Gy =gy [(1 + ¢11)e; + o126 + ¢13€3]
G, = g [e0181.% (1 + ¢p5)ep + ¢23€3]

therefore, as E} = IEfI = - » the problem reduces to an evalua-

. i '

i
tion of Gi'

= = s

Hence, from Gi = LGi'Gi]

2 2 2
Gy = g1 [T+ 2¢11 + ¢11 + 632 ¢13]%

2 2

2 1
Gy = gp [1 + 2850 + 620 + 691 + ¢23]°

Making the following simplification in notation:

2 2 2 .
[T+ 2611 + 611 + 612 + 4131 "

= m].
2 2 2 .3
[V % 2¢p2 + 6220 + 921 + ¢23]) “=my
_ G _ - _
then &y = = =m LT+ dur)e; + o182 + ¢1383]

and E,

[} _ _ _
(el malé2181 + (1 + ¢22)ex + ¢23e3]

Now, an assumption is made for the "linear" theory of shells,
which is known as KIRCHHOFF's Hypothesis, after KIRCHHOFF in 1876.

This fundamental postulate asserts that: nommals to the surface before
deformation remain nonmals 2o the surnface aften deformation, and undergo
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no axial dilatation., Mathematically, this is expressed by saying

that the deformed surface normal may be expressed as:
-E3=€1 XE-Z
According to the expressions given for E; and E, above, then

E; = mmy[(612023 = 013 = 613622 )er + (613921 = 623 = ¢23011) €
+ (14 091 + 022 + 611022 = 912021 ) €3]

Obviously, to obtain any useful results, an approximation
must be made, with regard to the relative size of the ¢-terms.
Since the deformations are small, (certainly, any ¢1j<<]) then the
quadratic terms (¢1j¢rs ) may be neglected, when compared to the

linear terms. Consequently,

my = T;%TT ;3 mp = 1:%;;
then E; = e; + moéjzex + myoy3es

Ey, = My¢p1€1 + €y + My¢p3es

Ej = -My¢13€; - Mygpzep + €3

It is to be emphasized, however, that unlike (e;, e, e3), the set
(Ey, By, E3) does not degfine an onthogonal vecton triple, due to the *
detrusion incurred in the E; - E, - plane. Hence, accepting E; to be
defined as above, then E} and E% may be defined by the cross-product



100

—

Thus =E; x E

- Mi¢jpe; + e + Mydyzes

*

E’Ea X.E.z

- e + mMo¢y18; = Méyzey

and the entire set of unit vectors for the deformed configuration

may then be given in terms of the parameters of the undeformed system.

E; =& + moroey + Mdy3e; 1

EL = - moi.e; + & + Moy3e;

B, = Myop18; + € + Mygyzes Y wosew  LhBo=3.}
EZ = - e + my¢piep - mydy3es

E3 = - mo13e; - Mygoze, + €3 4

It is to be noted, from {4.4.-3.}, that any unit vector
in the deformed system may be expressed as the corresponding unit
vector in the undeformed system, plus its first variation. That

is, in general: (as a first-order approximation)

Ei = E} + GE} i=1,2,3
and Bl =2 +se) i=1,2
:
Therefore, sey = my(¢12e2 + ¢13€3)
8€, = My(dp1€; + ¢p3€3) P { % M
€3 = = Myo13€) - Mpdr3€; J
and because e} = e, and e2 = - e; (orthogonal coordinates in the

undeformed state), then to those above, may be added:

-6e} = 6@y = = My¢p1€ + Mydy3€y *

MILLS MEMORIAL CIBRARY
MCcMASTER UNIVERSITY



se;

NOTE:

§ey = = My¢jp€; + Mygp3es

A comparison of the two possible forms for

se, and ée, then reveals that

This is an identity which must hold true, in

Mid1 + Maépy = 0

order that the results as given above will remain

valid.

Therefore, a tensor, GE, may be constructed which will

prescribe the total variation of the triad {e;, €,, €3} ,

101

necessary to produce the triad {E;, E,, E3} of the deformed surface.

Defining this tensor in terms of the original triad, say:

Ge.l = e.i '6E

in which case, any element may be defined as

Hence,

—

ei-sE -ej = ej-c‘Se,i i

0 eje; + my¢ipe1e + Myg13e1e3

+ Mydpi1epe; + 0 ezep + Madrzezes

| ~ Maby588Q; = Mzdgqeg6p + 0 ezes

»J =

e

-

{4.4.-5.}

This (or any other) tensor may be expressed as the sum of

two other tensors of the same rank.

kinematic interpretation of &E.

This is advantageous for the
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Specifying that: sE = 6E_ + oE ceees  {4.4.-6,}

where GEa is chosen to be the antisymmetric part
of ¢, and GEr is the remaining part,
then by inspection of {4.4.-5.},

gr— —

GEa = -0 El-é-l +0 '6132 + m1¢1351€3

+ O -e—z_e-l + O —e—z-é_z + m2¢23-é-2-é-3 sseee ‘ {4.49-70}

- Myé13eze; - My¢rzezer + 0 eze;

. —

This requires that, from {4.4.-5.},

= o= — - - —_— )
GEY‘ = 0 eje; + mypireq.e, + 0 eiej

+ nb¢21.é-2-é-1 + 0 Ez-e—z + 0 .é-z.e-3 seseae '{4.4."80}

+0 'e—-3'51 +0 -6-3.5-2 +0 536-3
— . —

It is then observed that since theyentire variation, GE},
of any vector dealt with here is of a rotational nature (since E}-sé} = 0,
or s, may be given by T x e;), then the tensor SEa nepnesents the
nigid-body notation of the triad {8y, S, 8s}. This is self-evident,
as Gga is totally antisymmetric. The Zenson sﬁr nespnesents zha’
nekative notation of e; and e, (about €3), as the components found
in this tensor specify the detrusion in the tangent plane of the
middle surface.

In purely kinematic terms, it is instructive to construct a
rotational tensor, 63 » Which will prescribe the variations, 55}, as
the cross-product of a rotational vector (contained within the tensor),

and the unit vector, E}.



Thus, say: GE} = 63} X E%

and hence, 63} = E}- 6

ot

From the previously-given expressions for GE}, then:

§¢, -Mi¢13€2 + My¢1z€3
662 = Mydp3e; = Mydpie3

= Mydp3e; =~ M1d33€2

(=]
©-
w

[

and hence,
§¢ = 0 eje; - mpg13e182 + My¢yze1€3

+ Madp3ee; + 0 eze; - my¢ygese3

+ my¢p3e3€; ~ Mydjzeze, + 0 eze;

by

-

which is the kinematic rotation tensor, thus

specifying 63&, as:
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{4.4.-9.}

4.5. THE CESARO-BURALI-FORTI VECTORS FOR THE DEFORMED MIDDLE SURFACE

Recalling the CESARO-BURALI-FORTI Vectors for the

undeformed case (non-orthogonal coordinates)

Cy = k1pe7 + k1184 + «y3€3

Ca = kp1€p + K262 + k2383

then by analogy to: E} = E} + GE}

it is said that: E: =T, + o, (i=1,2

where EI represents the CESARO-BURALI-FORTI Vector

for the deformed suface.
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Extending this analogy to the logical conclusion, say:

T = K121 + Ki1EL + Ki3E3
EZ = K1 Ep + KpoFR + Ky3E;

This effectively postulates that any quantity in the deformed
configuration can be’represented by the corresponding quantity in the
undeformed configuration, plus its (first) variation. The variational
increment is thus considered as "the increment produced by the
existence of the state of deformation".

Then T] =T, +¢C; = [(Klz + 8k1p)(e1 + e1) + (k11+éxyi)(ez + Sey)
* (k3% 8x13) (e3 + 553)]

Expanding, and neglecting second-order terms (products of
variations), which are considered very small in comparison to the

"first variations", then:
—41- _ -— . — a— —-— —
Ci = [ri2€1 + kjp6e; + 6kjp €1 + k182 + k1368,

+ 8ky185 + k13€3 * Ky36€3 + Sk13€3]

now, as 6T, = T1 - T,
SO 6-(_:-1 = [K125-e—1 + 50(1251 + K115-e-2 + 6k Eg

+ K136-€3 + 6'(1333] eses e .{405n-]o}
or 6Cy = 6(kyp€1) + §(k11€3) + 6(kq13€3)

A substitution of previously-obtained values ({4.4.-4.})

for GE} into {4.5.-1.}, then reveals
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§Cy =[(6k12- MKq1612 = MK13613) €

+( 8kt MK12012 = MaKy3023 ) €

+( 6ky3t MKyad13 + Maky1023 ) €3 T eeeee {4,5,-2.}

and by a similar procedure,

§C, = [(-8kpp + Mykp16p1 = MiKp3023 ) e

+( Skpy * Mykpoday = MaKp3023 ) €2

+( 6!(23 + m2K21¢23 - m1K22¢13')E3] cssse .{4.5.'3.}

However, {4.5.-2.} and {4.5.-3.} are not particularly useful

forms of the variational expressions, as &k, .

13 remains undefined in

terms of any primitive quantities (i.e.: éx,. is defined only symbolically,

iJ
at present).

4.5.1. The Curvature Variations in Terms of the Primitive Quantities

From the basic kinematic concept,

oF.
1 _ =t
'a—S:j--CjXE-,i

then the curvatures in the deformed system may be obtained by taking
the dot product with (Cg'x E}), thus causing all but one cdmponent
(the desired one) to vanish.
For example, to obtain the expression for K;3:
38 '

s,

n

T} x Ep°E}

(K12E; + K;lzl + K;3E3)E}

Kis
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1) , ,
thUS K13 = Kls + 6‘(13 = ‘agr‘.ﬁ.]* . esseoe {405010-10}

Recalling that E; = €; + Moj0ep + Mydq3€3

EL = - mojoe; + ey + mpép3e3
Y. 9o, 0d,
0 _ 1 3 i i 3
and that 38,738, %, " 3%, %, %
i i i i i i
or A ) 9

T ol
:33,i G1 1341 1341

1

“where my = "'I—TET (see §4.4.)

then {4.5.1.-1.} may be written, in expanded form,

as:
3 - — - — —_ —
Kis = [mlgz;'(e1 t méioer + m1¢1393)] “(-mi¢12e1 + ey + Moy3e3)

Carrying out the differentiation, and neglecting third-~and-higher-

order terms, the result appears as:
3912 :
K13 = m; [K13 - Myky1¢23 + ml-a-é—l'—,- MiKy12913 ] R {4.5.1.-2.}

Then, from 6k;3 = Ki3 - k13 , @ subtraction of k33

from {4.5.1.-2.} yields the final result:
9912
Sk13= = My [k13611 + Mak11023 = Mg+ Mix12613 ]

Employing a similar procedure for all other K”. and thus,

Sk, .t ' ‘
i G_E—l 3?3
Kip == 5578 » Kiz = = 557 Ex
oEZ oF, : 3,
Koi = 555 s o Koo = = 557 *Fs o Kos = 75, E5
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then the result is obtained:

3¢13 -
Skyp = my M1 5357 = MK12412 + Maky3923 = K11911
9% 3 ]
Skyg = My [mz 35 T Mikii012 ¥ Mikizé13 = k12011
9612 1
6ky3 = My [ml w3 " Makyid23 = Mikizé13 = k13911
_ a¢13 ] L
Skp1 = My My —— = Makpz021 ¥ MaKka3023 = k21022 {4.5.1.-3.}
_ a¢23
Skgg = My +Mokp1021 = Miko3913 = K22022
_ a¢21 i
Skgg =My |= My 5o = Makzidz3 ¥ MiKa2613 = k23022
“ 7/

Having thus obtained a somewhat cumbersome set of results,

the approximations

1 . 1 .
= = ]’ E eee———— =
M I M2 T+ ¢, ]

would be useful. This is more than justified, due to the relative
size of the longitudinal dilatations, ¢i; and ¢,2 and the number 1

(i.e.: 1> 411, ¢22). Application of this approximation to {4.5.1.-3.}

reveals:
Sk1y = - ;;;3-- Ki2612 + K13¢23 | 1
6Kz =';iii + Ki11612 + K13913
5‘13';;;-2--"11"23 - <12013 S ‘{4.5.1;-4.}
K21 =-§;§3 - k22021 + k23623
<




923
6K22 = - 35

5 + k1621 = k239313

9¢21 .
Ok23 = = g5, " <2123 * k22813

which is a considerablesimplification, as witnessed

by a comparison of {4.5.1.-4.} with {4.5.1.-3.}

If this set of results({4.5.1.-4.}) is substituted into
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{4.5.-2.} and {4.5.-3.}, still holding valid the approximation that

my =1, my = 1, then the expressions for the variations of the

CESARO-BURALI-FORTI Vectors result:

- Id23 __ 3¢13 _ 3¢12 _
G =g @1-g et
. 9¢23 __ 9613 __ 9¢21 __
§C, = ey - 555 e - 55, €3

355

Then, as.EI =T, + 6T, the CESARO-BURALI-FORTI Vectors

for the deformed configuration are realized:

923 9613
— - -
C1 = (ka2 + 55) ey + (kny - w5 € * (kg ¥
- _ 923 .
C2 = (k22 *+ 557) 1 * (k21 = g5

4.6. THE DEFORMATION OF PARALLEL SURFACES

9d13 __

3¢12  __
55T €3

"
Surfaces which aréla constant distance from the middle

surface are referred to as parwllel surgaces, and are prescribed

by a3 = constant,



agjcoordinate

Parallel
Surface

Middle
Surface

Figo 4.6-"]0

The position vector, v, to any parallel surface may

be described as (with reference to Fig. 4.6.-1.):

r = e+ 0'1.333
A differential line‘segment in the parallel surface is thus given
by:

dF.= d(?o + (13-9-3) = dFo + dO(.3-e—3 + a3d€3

109
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The metric measure in the parallel surface, corresponding to the
same parametric increment in the middle surface is:

[ds*]2 = dy-dyr
or [dA*]Z = (d?'o + da3—§3 + 0.3d€3)~(d?° + dcx3€3 + a3d_e-3)
where ds* is used to represent ds(r), as distinguished
from ds, which could now be referred to as ds(r°) (with
respect to the notation of deformed surface).
Expanding the above expression for [ds*]2:
o - 2
[dé*]_z = [d?‘o'dY‘o + 2da3d7°°e3 + a3d7°'dé-3 + da3
+ da3'€3°d-é-3‘ + a3d€3°dF° + agdag d€3'€3
2
+ agdezede;]
50 [ds*]2 = [ds + 6(ds)]? = ds? + 2dss(ds) + [8(ds)]?

The directed derivative operator for the parallel surface

may now be obtained. Consider a displacement function, u = u(r)

i.e.: u=u; e, sum on i = 1,2,3
— 333
T = da,2U - dod
then du = d“iaai R de; d“iaai
. recalling, for i=1,2,
— 34 - —
U i au au .
3, 30, 0b; i 38 sum on i = 1,2
i i i
- U, oe
-§-——= ——l— .—J— 3 =
or a“i 91[34i 3 + uj aéi} (sum on j=1,2\

no sum on i }



m

Q

— u.
U o B -y ry
0 Saq g, [ 7y &5+ uy E} X e ]

Thus, du [91913.+‘92923'+ g3 Dsu

+ a3 (dalglacll'é'l + dazgszz_e—z )-('e_IDl'LT + -é-zvzu + 3303-6)] P ;{4.6.-].}

where D (1 =1,2,3) is the particular differential

operator, the exact form of which is being sought.

Expanding {4.6.-1.}, and regrouping,
du = g3(1 + agcyy JdayDiu + go(1 + agkay )dapDyu + dagls U ..{4.6.-2.}
(since g3 = 1, as per §2.11.)
Now, expanding du as
du = dalg‘; + daz-ggT + d“s“";
and substituting in {4.6.-2.}, then
dal[%g‘l' - g1(1 + Ot3'v<11 )913] + daz[%g'z" 92(1 + askz;) Dzi]
+ ‘dag[%%- v;u'] -0 veeee {4.6.-3.}

or, by referring to the coefficients of d“i as E%. then {4.6.-3.}

is expressible as:

" ETyday + Epday + Eadaz = 0 Ceeee. {4.6.-4.2

This admits phys1ca1'1nterpretation as a closed spatial triangle.
Hence, the component vectors are coplanar. _For three vectors to sum
to zero in a plane, the conclusion may thus be drawn that they are

not Linearly independent; condition {4.6.-4.} is.then satisfied for



two cases:

a) if Eydoy= - (Epday + E3dag)

b) ifg =0=%, =0=2%¢;
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Since a) is a special condition, then b) is the only acceptable

solution for the general problem. This requires that the following

be true:
gTUI_= g1(1 + m3|<11)vlU
% - 92(] + ayczz)vza-
%5_3= A

and so, in operator form:

3
Bt = R + a3K11) ] L {97
D2 ) |50 + a3K22) } aOl2
D3( ) = 3%— ()= 'g;;

: 1 .
referring to 1—;:7;55;; as a, (i =1,

derivative for a parallel surface is given by:

2),

then the directed

J\&¥ .= 9 - 0
— Zdi8; +=— t+ a8y +—
,)F;F 941 LLY)

+ ez

9

3(‘13

1 )

1 * G.3l<11 . 341 ( )
1 )

1 + 03Kp9 362 ( )

> {4.6.-5.}

{4.6.-6.}

ne |

The relationships given by {4.6.-5.} also serve to define‘;_;h

the arc lengths for a parallel surface in terms of the arc lengths

of the middle surface:
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VIZ: dé’;= 91(1 + a3.<11)da1 = (] + a3kl )dAl
*
déy = gp(1 + agkpp)day = (1 + ageyy )ds,
*
d63 = d0t3 = dA3

The last of these three relations is seen to be physically
justifiable from the fact that a3 is a straight-line coordinate,
and hence, its "arc length" (= linear length) is not affected by
changes in position, relative to the middle surface.

NOTE: For practical applications of the above;

since o3 is always equal to, or less than, h/2

(where h is the shell thickness) and since Ky = ﬁ%;

(where Rii is the radius of curvature in the

direction of “i)’ then agk,. << 1, and

dey = dsy, dsy = ds,
1

+ 03K, -
1 3%44

i.e.: =

This is known as LOVE's Finst Approximation, after
Augustus Edward Hough LOVE (1863-1940), in 1888 and
in 1927,



4.6.1. .The Strain Tensor for a Parallel Surface

Undeformed
Middle
Surface

Deformed
Middle

e

Fig. 4.6.1.~1.

With reference to Fig. 4.6.1.-1., P is a point on a

parallel surface of the shell, distant from the middle surfaée
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by the amount a3; P' is the same point, in the deformed configura-

tion of the shell.

From the kinematicsof deformation, and in accordance with

KIRCHHOFF's Hypothesis:
a3é-3 + IT= Ub + G3E3

or ' u=u°+ 03F3 - a3'53 = Uu° + 0.3(E3 - .é-g)
so, as E% = E}'+63} (s4.4)

then tl- = U°+a36-€3



Then, the displacement gradient, or defomnmation tensor

will be given by
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- o ’
9'_2_" = a_li + 3‘:(&3653) seso e {4.60".-10}
ar or ar

where the operator -%: is as defined by {4.6.-6.}
ar
0
The term af_ is readily evaluated, since
or
CITA a;e; ” arep 3u° + @5 3U°
5T Y FY3 da3
. _ 1

(recall: a; = W )

BU° au° u° ,
and 5:;- = 0, plus the fact that EZI'a"d 5zz-have been previously

evaluated. (5§4.4). Hence, multiplying the appropriate quantities

[+

by a;€; and a,e, , the expression for égr- can be immediately written

as:

aa‘o [

ar
+

+
S,

[<]

-where 935 = %%T
i

by {4.4.-2.}.

Then, the term -%: (a3de3) must be evaluated. This is

accomplished, as

- or

a;¢11€e;e; * az¢joeey; + aj¢33€5e3

a2021€281 + az¢z2€287 + az¢23€2€3

0 'é'3'e'1 +0 -8—332 + 0 ezes

oo 000

{4.6.1.-2.}

-E} (1i=1,2; j=1,2,3) have been previously defined

o ar
follows:

writing e; in the original form of (E; - e3),
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3 - 3y (F. - =
then —— (a3be;3) — [a3(E3 - e3)]
ar ar
daz d} = =
— (E3 - e3) +a3 — (E3 - e3)
ar ar

recalling the operator -3_: to be defined by {4.6.-6.}, then the
ar
expansion of the above shows:

3 — .= 3 = = - 3 e =
'-'a: (agdey) =<oj [3191 T (E3 - e3) + aze; 5y (E3 - ea)]
T .

+ 33 '5'2? [aa(fg - -e-3)] sevee ’ {4.6.1.-3.}

examining the first term:

_ [ oE3 553]
a;€1 -—-—361 - ———841

_ [ 38, 3E, 353]
a8 951 331‘- 951

—_ ) = =
ae; 5~ (E3 - es)

S 381, %0y 38y
considering that 37 38y * % a7 38
1 )
= Gl gl asl
)
= m ——
1 98, _ N
— 3 — — _ 3E3 333]
‘then ae; 3;‘1“(53 - e3) = ajey | m BT Wy

aje; [mC x B3 - Ty x &5 ]

however as 'C"{ x E3 = (C; + 6C;) x (e;5 + &e3),

ae; -3-2-1- (Ey - €3) = a,8; [my(Ty + 6Cy) x (€3 + 6e3) - Ty x &3 ]

n

alé-l [m;C; x e3 + méCy x e3 + m;C; x Sez

+ mIG-C-l X 55‘3 - El X 333

ajmie;[=¢1:C1 'x €3 + 6Ty x & + Ty x 86y

+ Gt—l X 33]
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and, if m; = 1 (to maintain consistency with former developments)
and the second-order variation, 6C; x &e3, is neglected as being
small in comparison with the first-order quantities, then the result

is:

al-él -a"z—'i‘ (E3 - -e—g) 31_9—1(8-61 X .é-g + El X 633) .......'.{4.6;].'4.}‘

A similar procedure shows

3232(6_62 X -53 +62 X 5—8-3)' "““‘,'{4.5.]."5.}

a6, T, (E; - &3)

and the final tem is quickly evaluated as:

3(!3
— 3 — - — - 3 —_ —
€j -37;; [a‘3(E3 - 23)] = e3 -a—a-s— (E.3 - 63) + oazej -&.-"; (Eg - 63)

_6-3 (E-3 - —8_3)

3-36-6'3 XXX {406010"60}

Replacing {4.6.1.-4.} to {4.6.1.-6.} in {4.6.1.-3.}, the result

appears as:

2 [a368;] = [a1038;(6C; x €5 + Ty x 683)
ar

+ a036,(6C, x €3 + Ty x 6e3) + a3 €36e3]...(4.6.1.-7.}

expressing the final term, azesdes;, as aze38dsx e; (in accordance
with s4.4.), then {4.6.1.~7.} may be written in the convenient,

kinematic form:
= [a36€3] = [(a105816C) + a203626C; + €3603) X €3
57 |

+ (alaa_e-lfl + azd3-e—2-62) X 633 ] sec00 v{4.6.]o"‘8.}
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If the expressions for'ﬁi, dﬁi,'Ei, dEi, §¢3 (in terms
of the primitive quantities) are substituted into {4.6.1.-8.},

the result appears as:

9913 ‘
3 ™ —
~= (agdes) =[ ajo3 (= = - k12012 * x13923) e1&
ar ' 1

923

* aj05(- % " K13613) €1€p

+ aj03(k11913) €1€3
3¢13 —
+ ayaz(- 35, + kp3923) €2€;

923 : —_—
agaz(- 55, T k21421 - k23613) eze2

+

aya3(konda3) €€3

$13€3€6; - ¢p3€3€, + 0 _53—53} veeee  {4.6.1.-9.}

+

Superimposing the results of {4.6.1.-2.} and {4.6.1.-9.},

the deformation tensor results:

= - - -
= a0 L - — —
T ujiere; + Upperep * ujzere; | =u ee  (r,s=1,2,3)
r
+ Uyjepe) + Upreze; + Upsezes
+ Ugjese; + Uzpe3ep + U3zeze;
e —
where:
9913
up; = al‘[¢11 + ag(- EYE k12612 *+ K13¢23)]
_ r ;8¢23 i
Uiz = 33 [¢12 ¥ aa('-gz;"' K13013)
Uz = &, [¢13 +013(K11¢13)] = a1413(1 + azk11) = ¢13

9413
+ ag(- B, K23¢23)]

" 9623

[¢21
az [¢22 +agz(= 53—+ k2162, 7_K23¢13)]
[

Uzp = @,

Uz
2

Uz3 = 8 | 423 ¢ 03“22¢23)] = az023(1 + a3k2z) = 623
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Usz

Uss

may be

- 913

- $23
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note that ujz + uz; =0, U +uzp, =0

Then, the strain tensox, € , for the parallel surface

constructed:

e = %-[Ell + EE%] =‘%.[VU'+ uw ]

ar or

which is the linear strain tensor, as obtained from the displacement

gradient.

The additional accuracy of the nonlinear strain tensor,

3U , ud L U, ud

E*:%— —_—t e

ar ar ar or

is not considered to be warranted here, due to the fact that comparable

approximations have been made already, in an effort to reach this

point.,

NOTE:

[yl ]

5 !C|
=] {o

is the confugate tensorn to 3%;.

or

The strain tensor is thus given by (in symbolic notation):

= —Lllaléﬁ + %‘(U1z'+ Upq) €16, + 0 eqeg 1 - €43 E}E&
+ ']2‘ (U21 + Ulz) 3231 + Uzzgzgz +0 3253 (sum on i,j = ],2,3)
+ 0 eje; + 0 eze, + 0 ezes

where €33 = €31 and €3 = €33 vanish due to the algebraic

summation of components (as noted above), and e33 is zero identically.
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If written in full, to show the form of the strain

‘tensor in terms of the primitive quantities, then:

= 3¢13 ——
e = [a1¢11+31°‘3(" 55, - K12tz ¥ '<13¢z3)] ee;
1 9923 3913 -
+ 5 {21912+ ax021* ay05(- 55, k13013) + azaz(- 35, +K23¢23) | eiez
1 3923 3613 -
t 5| a161p+ a2¢p1% ar03(- % k13¢13) *+ aza3(- 5%, +K23923) | €201

923 , ——
+ [a2¢22 + aza3 (- 35, T k21921 - '<23¢13)] 1)

However, a comparison of the factors of a; (as found
in the above) with the set of expressions given by {4.5.1.-4.1,

shows that the strain tensor may be written as:

€= [a;¢11 * 3503 (5K11)} eje)
+ %‘[314512_ + a0p1 + ajo3 (= Skyo¥ ky1612) + aa3(8ky; + .<22¢2'1)] €16,
* %‘ [a1¢12 + az¢21 * aj03 (= 6kyo* k11912) + 8pa3(6kp; + K22¢z1)] e

+ [az¢22 + aza3 (GKzz)] exe;

which may be simplified (algebraically) to give (writing a; and

ap in full):

= 611 * a3dky1 | _ _ . 612 + $21 . 03 Skoy Sky2 —
ETVTF 03K 8161‘ 2 ra 1+ azkop T+ ®3K1q €12

b12 + ¢21 ‘+ a3 8k21 8k12 -
* 2 7z T+ 0akoo T + aak éz28;
3K22 3K11

$22 + @38K22]_ _ .
+ m—— e2e2 seccnee {4.60].‘]00}
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which is the final form of the strain tensor.

for the parallel surface, a result obtained
by John SCHROEDER, in 1964.

If LOVE's first approximation is invoked, then {4.6.1.-10.}

reduces to
€ = (611 + azdkyy) ejeq + %’[¢12 + ¢z1 * az(6kp1=8ky2) 1 eje
1 ' {4,6.1.-11.}

+ 5 [012 + 621 + a3(8kp1-6k15)] @xey + (922 + a3deyz) ezep

However, it is strongly advised that this form, {4.6.1.-11.},
be employed with caution, as the approximation is dependent directly
upon shell thickness and shallowness.

Either form {4.6.1.-10.} or {4.6.1.~11.} will reduce,

for a3 = 0, to the strnain tensorn for the middle Aunﬂace,§°.
. = S — =
f.ec: €% =l ¢11 eiey + 3 (¢12 + ¢21) erep

+ %’ (012 + 921) ezey + ¢zze2e7

1 o
Hence, ¢11 = €%, 5‘(¢12 + ¢21)= €}, = €3; (for

the symmetric tensor), and ¢,, = €3,. This symbolism aids
in the recognition of the various quantities, in future

developments.



CHAPTER 5
The Compatibility Equations for the Strained Middle Surface

5.1. THE KINEMATIC COMPATIBILITY EQUATIONS
The local integrability condition, which was previously

given in general form as

92F 32F aF oF _ , i
361985 ~ 985067 T M1 aRER v 0 (see {3.1.15 4.})

24,

. L 3(ingy)
where , LWl veei 55

v, .1 239 3ltag)

9; 2.y 949

expresses the local independence of the integral of the function F
from its path of integration, :In this representation, the function
F is understood to be any arbitréry scalar or directed quantity, as
a point-function of the surface. Hence, this equation may be
considered to representva necessary condition to be satisfied, if
F is to be a function of the surface. |
Inasmuch as this equation has been developed (§3.1.1.) for
an arbitrary surface, it is then applicable to the deformed surface
as a particular case of interest. Therefore, in the notation pertaining

to that region.'{S.l.l.-4.} appears as:

32F 32F . oF oF _
35135, ~ 35,58, T T13s; "Tagsy= 0 ceees  {5.1.-10)

- 122 -
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1 G 3 (LnG,)

where n = 5 5 53,
1 3G, 8(!_nG1)
T2 * % 735, ~ 735,

This is obviously the same equation as before, with the exception
that it now refers to deformed surfaces. 7

The operatidn of the integrability condition upon the
function F, must prescribe the relationships necessarily eXisting
.5 8k..s €tC.)

J 1]
for the middle surface in the deformed configuration. The relation-

between the defining parameters of the surface (¢1

ships found to exist between such parameters, via the same operation
for the case of the undeformed surface, revealed the GAUSS and
MAINARDI-CODAZZI Equations (5§3.3.); such an operation for the
deformed surface must, thereforé, yield a similar result. Thus, it
will be shown that the GAUSS and MAINARDI-CODAZZI Equations for the
deformed surface, expressed in terms of the parameters of the
undeformed surface actually represent the Equations of Kinematic
Compatibility of Strains in the middle surface of the shell.*
Prescribing the arbitrary function, F, to be any vector

V=V(s) =V E& associated with the surface, then {5.1.-1.} becomes:

32V el ¥ oV _
S, " 358y T T 35T 3y <0 ceeee {5.1.-2.}

The vector differentiation is accomplished with the aid of the modified

CESARO-BURALI-FORTI Vectors:

* Particularly pertinent to the kinematic development, is the
paper of LOBELL, F., 1929, (Also pertinent are the papers of
HESSENBERG, G.,1925 and LUBELL, F., 1927.)
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30 39
—t = 1 _ _— )
Q1 = C1 + 537 B3 = KioBy + KnEg + (Kis + 537)Es

— —t 3@2 _ 00,
2 = (2 * 5z~ ks = K21E2 + K2E% + (Kp3 + 35;) Es

3% 3%,
The additive terms 333-and 53;-represent the rates of change of

the angle ¢; between E; and V and the angle ¢, between E; and V,
in order to preserve an integrable direction (of HESSENBERG), indepen-
dent of any particular choice of integrable displacement.

NOTE: The use of such additive terms to maintain

an integrable direction has been discussed in §3.3.

The expansion of {5.1.-2.} then proceeds as follows:

or, carrying out the second differentiation,
2V = V[t = 35’;— of (& F
537335 Ev * '53'{[91 X Ev]"' T XV +(92 X 33, v)

-
af

— 52 —_ 3 —F 1 —

+[§Z X(?Z‘{ XV)'?SZ_X'STEV --g—[ﬂz XE] -5'3'2-XV

-(?z"{ x—g-ngv)-[nl x (2 xV)]+ rl%-'i-:‘ +[ IEZ,xV]

re-grouping:
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32V 32V oV 5V 3V =+ -
. [331332 - 332351 * Pl -5-3‘2-- I‘2 —] -E-V + _——Ql x B

_a-l-
a8y _ _ _
b Vo[ 3JE, o[ x @« 7] 3L

aSl BS]_ S1 v
5,
-s-g-z—xV -[?2‘11. X-g-\-/-z—]fv-[ﬁ‘;)((a; XV)]"’PIFZZ xV
- rza’{ X V = ()

which therefore reduces, through the integrability condition

operating on (scalar) V, and through algebraic summation, to:

o S . =
ExV{nz x (9] x V)]- 55 X v -[91 x (2 x \/)]+ riQ,x V
bhad I‘ZE'{ XV} = 0 se s 0. '{5010-3'}

Since the sum of permuted cross-products vanishes
i.e.: [5'{ X (?2; X V)]+[Vx (5'{ X 5;):[4-[52 x (V x 5'{)] =0
then the following substitution is employed:

@ x5t ) xV =[x @ x V] -[a x @ x7)

and hence, {5.1.-3.} becomes

A -

['551—'8—5';+ T19Q; = TpQp + Q7 X Ql] x V=20

This is satisfied for any arbitrany V, if and only if:
T |

gt =0

— rl?{; - I‘Z-ﬁ'{' + 92 Xﬂl sesoe . {5-]."4.}

98] ~ 88,

L



ot =, 2%
Re-writing the expressions for Qs in the form Ci + g E;, and
i

re-grouping, then {5.1.-4.} becomes

| 0
3 =t ) =t 3 2 =
{(ss";”l) 2 - ('53:“‘2)"1 * ('53?1‘)(35" 53)

99, 9%, - 30 —
B} (332 ¥ rz)(sg-rfg)- T x T -[;S—Z-T:'{ X 53]4,[33?5'; X 53]}= 0..45.1.-5.}

Now, as

99 od 2
9 2 — 3 . 2 — 2 —
(5'37”1)(53}"53> -[(337”‘1) ES‘] s+ (0 X 3

90, - 99
3 _ 1 =\_(f3 —_ 1 =
s (s e (B me) | B e sl B

1

then {5.1.~5.}is reduced to:
: Y]
) =t ) =t 3 2 =
G vm) e (o)t [(en ) m] B

| 30,
3 = =t , wF
- [(—53—2— + I‘z ) ‘53‘1— ] E3 - Cl X C2 = 0 ooooo

Since the quantity (#; - ®,) represents the angle subtended by E; and

E,, then let this angle be denoted by xjs.
Hence’ ¢2 = 01 - X12 ‘ 2es e

A substitution of {5.1.-7.} into {5.1.-6.} then yields
30 .
3 ) =t d 1] =

30, 7 _ 3X12 | .
(i) 8] o[ -t
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{5.1.-6.}

{5.1.-7.}

J
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where it is observed that the integrability condition, operating

on ¢;, vanishes, Hence:

9X12
) d =t d = =t =t
(a??"' I‘l)_fg - (3_3_2- + I‘z)Cl - [(g{"" Tl) B‘é—'] E3 -C3 xC, =0 {5.1.-8.}
Now, referring to the operator
3 3 (3 3 +
(E-I-‘f I’l) -8—3-;( ) = (-g‘g-z—‘f' rz)"—’asl< ) as D ( )
Then {5.1.-8.} appears in final form as:

3 3 - =t =t
(3§T+ pl)tg ) (5.324 rz)"c‘{ -0 (B + T x T =0 ... (5.1.-9.)

This equation must now be expanded to the full component form,
in order that the three Eq&ations of Compatibility may be extracted.
Expanding to the full form, and taking the dot product with Ey, EL

and E; (as these three vector directions are unique), then the

resulting component equations appear as (respectively):
3K12 ’ 3K22 i '
(ggz- = K11Kp3 + PzKlz) + (33;-'+ K13Kz1 + T1Ka2 ) Sin  xi12

3Ky 1
'(332; - =Ki3Kap + T K21) Cos X12:l= 0 {5.1.-10.}

K1y oKz ‘
[(332 + K12K23 + I'an) “(R-l— - K13K22 + T4 K21 ) Sin X12

3Kz 2
-(—ég—l——"' K13K21 + I‘IKZZ ) Cos Xlz}’“ 0 EEEE {5.]."]1.}

{(332 = 331 + r2K13 - Pl K23) -(K11K22 + K12K21 ) Sin X12

+(K11K21 - K12K22 ) COS XIZ} = O | eseee {5.].']2.}
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These equations will now be written in terms of the

kinematic parameters of the undeformed surface, via the following

transformations

Ki1 = k11 + 6k13

k12 + 8kio
3X12
Kla = K13 + 6K13 + SST—

> ess e '{5.].']3-}
K21 = k21 + 6k

Koz = kag + 6k22
" s . IX21
= +
23 = K23 K23 38, )
) , 3X12

where all anij are as defined by {4.5.1.-4.}. The terms PP and
IX21 .. .
3§;"(X12 = - xp1) appear as the additive quantities, specifying the

rate of change of the angle between E; and E, . However, as xj»
may also be expressed as the angle between e; and e, (of the undeformed
system), plus the change of this angle due to the detrusional

rotations, then:

X12 = = X21 = [ 5~ (412 * ¢21)]

3% 12 3(¢12 + ¢21) -
thus, 33:“'= - T 88, ceses {5.1.-14.1
3X21 3(dy2 * ¢21) |

.a.g.;.--i-—___sg;___
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Also, for the transformation of {5.1.-10.}, {5.1.-11.} and
{5.1.~12.}, the following approximations are made, in order to

retain consistency with former developments:

8. - g

3 -1 3 A 3 : 9
E EEPY ;% 38 ;
and Cos x;, = Cos [ 7= (912 + ¢21)] = Sin (912 + ¢21) = (912 + ¢21)
Sin x32 = Sin [ 5= (012 + ¢21)]' = Cos (912 + ¢21) =1

(as (41, + ¢,1) 1s a very small angle)

and finally, for r; and T,

. 862 1 9go

Iy

. R A N T
T2 =v2 ¥ 6v2 % g7 35,3, 3, ~ 2

thus. Yl = K23 9 Y2 F - Kla (See §3.20)
and 8y; = 0 = 8y, if the same order of approximation is
enforced throughout all developments.

The replacement of {5.1.-13.}, {5.1.-14.} and the approxima-

tion 1isted above in {5.1.-10.} then produces the result:

a1z 3(8ky2) 3(012 * ¢21) . e22
55, | s, C K11K23 = K118k23 ¥ K1y 355 MICELL SR ver
3(8x22) | 3(012 + ¢21)

+ ki3kg1 + K13kt Kka318Kky3 = Koy

941 941

. k1 3(6kz1)
* yikzz F vi8ka2 = (612 + ¢21) 5, | eay 13K22
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3(¢12 + ¢21) |
= k138Kkp2 = k228Kky3 t+ Kk 55, * yik2y * vk =0

(where the second-order variations have been neglected.)

Deducting from this equation, those terms which sum to zero by
virtue of the MAINARDI-CODAZZI relations for the undeformed
surface ({3.2.-10.}, {3.2.-11.}, {3.2.-12.}), and neglecting
terms of the fourtﬁ order and higher, then the final form of the

first Compatibility Equation appears as:

al6kpp)  alekyy) 3(¢12 + 921) | (412 + 921)
55y ek, 11| Skas? 55, + k21| Sky3- 557

+ k13 [Okp1= Skqp + kpo(d12 + ¢21)]  + kp3[8kpp= 8ky1= k21(é12 + ¢21)]

3K21 v .
- (012 * 021) 55 = cevees  {5.1.515.}

Ll
o

Similarly, the same substitution processes produce the
- other two Compatib{]ity Equations (from {5.1.-11.} and.{5.1.-12.})

as follows:

(k1) 3(Skp1) . N 3(012 + ¢21) . : 3(12 + ¢21)
3%, 953 K12 | Sk23 55, K22|0Kk13 557

+ k13[0kpn = 6k11 = xk21(012 + ¢21)]% K23[5K12_' Ska1 = k22(d12 + ¢21)]

’ 3K22 ]
- (612 + 21) 351 =0 cecons {5.1.-16.1}

3(6ka3) 3(6k13) 3(e12 + ¢21)
5 e, T K118k2z ¥ kzp8kyy * w23|8Kka3 ¥ 35,

3(¢12 * ¢21) ‘ :
+ K13[“13 - 56, * k12 [8k21-6k12 + (1 * x22) (612 + 921) ]
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92(¢12 + ¢21) 3(¢12 + ¢21)
862341 = K23 abz 0 secsse {5.].-]70}

Equations {5.1.-15.}, {5.1.-16.} and{5.1.-17.} are therefore;
the Equations of Compaxxbizity;oﬁ Strains in the middle surface, for
the case of orthogonal parametric lines in the undeformed configuration
of the shell,

If these orthogonal parametric lines are coincident with the
lines of principal cufvature, then the geodesic torsions,x;, and k31,
-vanish (§2.10.). Consequently, the Compétibi]ity Equations simplify

to the following forms:

3(8k22) 3(dk12) (12 + ¢21)
5%, + 55, K1l Skp3 *+ 555 +4K23[6K22- 8ky1]
+ k13 [Skpp = 8kyp + ko2(612 + ¢21)] =0 eeenn - {5.1.-18.}
a(6ky1 ) 3(6ka1) 3(912 *+ ¢21)
342 - 351 + K22 .6K13 - 361 + K13 [5!(22 - (SKll]
* K23 [6K12' 6xpq =k11(12 + ¢21)]1 7 =0 veesss  {5.1.19.}

3(5K23) 3(5K13)
58~ oa, | K1bkaz T kap8k1y * k230K23

=0 ... {5.1.-20.}

3(912 + ¢21) 32(912 *+ ¢21)
ML E TR R V3 355987
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5.2, THE SAINT-VENANT COMPATIBILITY EQUATIONS

A unique strain tensor, 2, is defined by a single-valued,
prescribed, displacement function, u, by the relationship
: - ‘7[9-_@_ +7‘—-i—] eee5.2.010
ar ar '
That is to say, so long as the prescribed u is a continuous, single-
valued vector point-function (apart from arbitraky rigid-body
displacements), then the strain tensor is unique.

If, however, it is considered that in {5.2.-1.}, the strain
tensor ¢ is prescribed and it is u which is sought, then there must
exist certain relations between the components €55 in order that
it might have been produced from a single-valued U. A prescribed,
single-valued u thus defines a unique €, but the converse is not true.
Obviously, the relations between €53 must emanate from {5.2.-1.1},
yet such relations must not contain G'exp]icit]y. Consequently, the
condition to be imposed upon € which guarantees the existence of the
single-valued unique displacement field is obtainable from the strain
tensor definition {5.2.-1.} by a formal elimination of u from this
relationship.

This is accomplished by taking the "double curl" of €

VIZ: —?—_x:x-i_=—§_—x%-%+2% x-g_:
ar or or ar

0

which is equal to zero, regardless of the actual value of U, as Curl

Grad U = —9_: X 9—_‘_‘-; = 0, It is then obvious that if the strain tensor
or or
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¢ is prescribed and satisfies the equation

q-= 2 x & x JE =0
ar

Sl
&

then this equation will, in turn, prescribe the relations existing

between all €j4s such that e is defined by a continuous, single-

J
valued displacement field.
For exampie, for a rigid-body displacement

U=u*+3%*xTr

where ¢* # ¢*(r) denotes a small rotation vector and u* # u*(r)

‘denotes a constant displacement, then
= 1 {au, ud '1 AU* | U*D 3 /=
e=g | =t st r=[(evx)
2 [ar ar} 2.{}r ar} ar [ }
- d
+[(¢*X7)'::]
ar
or %=

[@_ x F}+[$* X .a_E] +[ﬁ X .F]"'F;* X _.r.:._a.]
r arj Lar ar

g
ar or
=[x [T x 3= 0

This demonstrates that the rigid-body displacement has no effect

ar

upon the strain tensor -~ a result which is intuitively obvious,
in any case.

The tensor

ol

T- Zxixeo
or ar
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is called the Local Kinematic SAINT-VENANT Compatibitlity Tenson.
This tensor is symmetric (i.e., § = ﬁc), a fact which will be
presently shown to lead to interesting results. The symmetry,
although somewhat obvious, may be demonstrated as follows:
Consider any symmetric tensor, &, not necessarily composed of the
gradient of a vector plus its conjugate (as is the strain tensor),
but simply any symmetric tensor. Then, representing € as the sum
of two other tensors, one of which is the conjugate of the other:

(say) E=3a+a

will
x
n
x
Lo
il
+
=}
e
*x

then -—3:_ X — :
ar ar ar ar

n
Qo
1l,v
x
1
el
b 4
D o
St
+
———
Qo
Sile
x
(1011
[}
—t
x
QU
-

also (

Q
1I!m
p 4
Maatil
x
St
S———”
(9]
1]

]
—
&?J“
1!'”
S

x
el
O
x
g’\
sll”
|

+

i) 5
ar ar

thus, if T is a symmetric tensor, then C%E X E X 3E§ will also be
ar or

wlo,
-]

a symmetric tensor.

Returning to the original tensor under consideration
VIZ: §=0;88: = —xex>==0  (i,j=1,2,3)

it is seen that if the strain tensor for a parallel surface were

subjected to the application of the operator -%: x () from both
‘ ar



135

sides, and the quantity aj(see §4.6.) were set equal to zero, then
the resulting equations would be the Compatibility Equations for
middle-surface strains,

It has been demonstrated that for a paraliel surfacevof

the shell (a3 # 0), the directed derivative assumes the form:

9 - 9 — ) — ] '
= = 3,8y =+ 2,8, =— + @3 —— {4.6.-6,}
a.F 1*1 341 22 352 3 30‘3 ( )

= - 1
where a; = TF o’ 2 7 TF azraz
The strain tensor for a parallel surface has also been calculated
({4.6.1.-10.}), and is given by

= ) _—— 1 ——
e=| [a1(011 + asdkyn)] ere; + 5 [o12 + 921% a3(azsey1 - a16x12)] ere

1 - -
t 5 [612 * ¢21% a3(agéey; - a18k12)] €x8; + [ax(022 + a3dkz] €26

or, retalnlng the symb011c form for the present,

€= €119131 + e1p €167
+ gp1€281 + €228387

where €13 are given by the corresponding coefficients of the tensor
directions in the expanded form (above).

Applying the directed derivative in cross-product to e
(in symboﬁc form) and evaluating the vector derivatives with the aid

of the CESARO-BURALI FORTI Vectors
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T.e. C1 = k1281 ¥ kyj€p + k1383 (Orthogonal Parametric

C, = -»<22€1 + K‘21.€2 + l<23.é-3 LineS)

then a tensor P will result, where

= - = d
P=P,.e. e, = —
i3 1 J ST

ol

X

One further application of the directed derivative will then yield

the desired result,

A typical operation of the first step (to obtain 5) is

as follows:

3(ez100€;)

aie; X 341

- 3 ——
4181 g7 X €218281

- 921 _ — Je; _
+ —_—
[alel X 351 €, aje; X 821361 e

— _ 3e;
+ a;e; X g9 eZ-BTl—

3821 - . _ _ _ _ _
[alaAI (e1 x e2) e; + ajezie; x (Cy x e1) e

+ ajez (e x €)(Cy x Eﬂ)}

de€0y
31[351 €381 - €21K12 €281 = €21K1) €3e3

+ €21K13 esez]

Performing twelve of such operations and accumulating the coefficients

of the tensor dyads, reveals the tensor:
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+ Ppjeje; + Ppeje; + Prjeje;

P= + Pyreze; + Pyzepe; + Prjeze;

+ P3jeje; + P3aeze; + Pijezes ]

3621
where: Pi; = -462(811K12 + €2iK22 ) - 303
3522
P12 = = az(e12xa1 + €22k22 ) = 5as
P13 =0
3611
Po1 = a1(e11k11 = €219, ) *+ ErP
.3612
= - ) +
Paa = ai(e1k11 = e22¢12 ) + 557
P =0
9€0
. + -
P31 = (}1[811K13 35 - c22¥13 |
d9e1] '
+ ap[e — + +
azl[ 365 €12K23 elezai)
3622
P3p = (}1[812K13 + ep1k13 + 33;—J

912
+az[~ e11¢23 - 55, | €22%23]

P33 = (}1[&22K12 - e21k11 ] + azfegax22 +»€11K21i)

Taking the transposed curl of P,
i.e.: P x -
or
produces the tensor, 5. Performing the twenty-seven operations

required, and accumulating coefficients, the result is:
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+ Qiieje; + Qizejey + Qrzeres

3 = —_ — —_—
— x ——={ =)+ Qyese; + Quoezep + Qa3eze3 =0
or ar

au

Oy
+ Q31e3e; + Q32e3e; + (O33ezey

where (in terms of the former coefficients, Pij)‘

aP1o
Qui = az [P12%22 = Pagkar + Prukz1 ] + 37
. 3Py
Q12 = & [Pagk1n *+ Prkiz ~ Pk 1 = 557
oP1o
Qi3 = (}1 [ -Pricas = g+ Pazkas = Paaxyy ]
P11
+ 3 [Paikay ¢t el Pi2x23 - P2ikz3 i) '
Q21 = 32 [Paikz1 * Pagkaz = Paskaa] + 5=
aPsoq
Q22 = a1 [Pizk1z2 = Paikin = Pageia] = 5~
' i 3P22
Q3 = (}1 [ -P1zx13 = Paic1s = 37— * Pazeia]
Py,
+az [ Prikas + 5y = Pagkas + P31Kzzi)
\ . 2
Q31 = a2 [P3akz2 + P3ikgy = %, 4 T 3
3P33 3P 3,
Q32 = a1 [Paakiz = Paikin * Pagkiz + g1 = 35—
Q3 = (}1 [ Piaxi1 = Paaxiz= 55— = Paixus ]
‘ P31

*az [-Prika1 = Paikga = Pagiag # g+ Pagean]

Since Q is a zero-tensor, and since the tensor dyads, E}E&,

are unique, then each of the coefficients, Qij’ must vanish separately

in order for § to vanish. This produces 9 scalar equations (as

components of the tensor), of which only 6 are unique, as the tensor

Q0 is symmetric.
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Substituting the values of a;, a,, and Pij

the coefficients in the tensor { and setting each such coefficient

into the expressions for

equal to zero, reveals the following results:

(]) From Qll =0

K21[(¢12 + ¢21)(2K22 - Kll) + 2(5K21_- 6K12) + 2K12(¢22 - 2¢11)] = 0.;{5.2.-2.}

(2) From Q;, =0

{(K11 - x22) [(k11 = k22) (612 + ¢21) = (8k12 + 8kz1)]
+ K21[2K11(¢gz - ¢11) + 2x22011 - 2(8k11 + 8x32)

+ k12(012 + ¢21) ] ] =0 ceeee {5.2.-3.} 1

0

(3) From Q;3

3(6K22) 1 3(5K12) Q(SKZQ ] 1 , '3(¢12 + ¢21)
944 ¥ 2 342 - 982 * 2-(K11 - KZZ) 3do
+ k13[6kz1 - Skjat %‘(Kzz - k11)(%12 + ¢21)]
BKZI
* k23l6kn = Sky1* k21(¢12 + ¢21)] - 1155,
3(012 + ¢21) 3¢ :
* K21 55, - 255t st

+

+

k11 [k23(¢11 = ¢22) = 961

322

] 3K21 3K22 )
7‘(¢12 + ¢21) %, T 3, = 0 veens {5.2.-4.}
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(4) From Qy = 0

[(Kll = k22) [k11 = k22) (912 + ¢21) = (8ky1p + 6kz1)]
+ k1p[2¢02(022 = ¢11) = 2011022 + 2(8k1y + Sk23)
+kp1(¢12 + ¢21)]] =0 ceeee {5.2,-5.}

(5) From Q22 =0

k120012 * ¢21)(2¢11 = k22) + 2(8kay = 8k12) + 2¢21(2622 - ¢11)] = 0 {5.2.-6.}

(6) From Qp3 =0

(k1) [ 9(8k12)  3(8k21) 3(912 + ¢21)
%, 7 551 85 + g (ka2 = «k11) 357
: 9K12
+ k13822 = k11t k12(612 + 921)] + ¢22 W

+ kp3[6kyp = Skp1t %‘(Kzz - k11) (912 + ¢21)]

(412 *+ 021) 9922
+ Klz[- 555 - + 2 351 + 2K23¢22]
3¢
* k22 [K13(¢11 - 922) - 33%11
-I 3K11 3K12‘ ]
-7 (612 + ¢21) [ '3-5‘1—"' -éz-z—-] =0 cesns {5.2.-7.}

(7) From Q31 =0

3 (8k22) 1 3(6k12)  3(8x21) 3(¢12 + ¢21)
341 ty 38, o4, + ?'<K11 - K27) 35,
K21

+ k13[8kgy = Sk1p¥ (k22 = k11) (912 + ¢21)] + (¢22 = ¢11) 57—

2
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K22
*tk23[8kap = Sy * k21(012 + 621) - k22022] - 22—
3(¢12 * ¢21) 9911 9922
L 7 = 2 g 13 (011 = d22) ¥ g
922 _ k11 dK22
tenlosens - = 1+ 7 (612 + 021) | g - 55| (=0 .... 15.2.-8.0

(8) From Q32 = 0

3(6k11) 1 [ a(8k1g) - 3 (6kz) ] 3(¢12 + 921)
TR i’[ 557~ 95, * g (k22 = *11) 557
9K
* k13[8kap = Sk1y *+ k12(012 * 921) + k1161114611 - 922) 557
: 3911
+ ko3lékyp = ka1 + (k22 = k11)(¢12 + ¢21)] - Kzz[‘13¢22+ 533—1
3(¢12 + ¢21) 3922 3¢11
+ Klz[’ 7 55 *2gt <23(022 - 411) - 333-]
. 1 9Kz  9K11 9K11 _ ¥ )
5 (912 + ¢21) %y 333-] - t1iyg— =0 veees 15.2.-9,

(9) From Q33 =0

: 82917 %22
k118k22 + Kp28Kk11  + 2¢13k23 (412 + ¢21) + " + —
2 1

+c1p[6kpg = Sk1p + (912 + ¢21) (k22 - k11) + 3k21911 + K12622]

v 3 3(¢12 + ¢21) 311 9922
+ k13|k1a(é11 = ¢22) + 7 vy -2 sty
3 3(¢12 + ¢21) 3922 9913
+ k23[k23(¢22 = ¢11) - 7 555 + 2 il v
k13 OK23 [ 313 3kag3
* oz - o) | gt | (2t e | m - wy
CRetbn) 960+ 621)

1 .
-2- 341342 - 2— 352841 = 0 0-00{5.2.‘]0.}
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Each of these equations ({5.2.-2.} to {5.2.-10.}) is a
“compatiblity equation” in the sense that each prescribes a
relationship,differential or otherwise, which must exist between
the components of the original strain tensor. However, equations
{5.2.-2.} (from Q;; = 0), {5.2.-3.} (from Q;, = 0), {5.2.-5.} (from
Q, = 0) and {5.2.-6.} (from Qu, = 0) are algebraic equations and
are thus classified as identities.* Therefore, equations {5.2.-4.}
(from Q3 = 0) {5.2.~7.} (from Qo3 = 0) and {5.2.~10.} (from Q33 = 0)
are the Compatibility Equations of Middle Surface Strains which
have been sought. As was previously noted, the equation resulting
from Qij = 0 will express the same relationship as the equation
resulting from jS-= 0, due to the ;ymmetry of the tensorlﬁ. This
gives rise to the following interesting resuit.

Any component, Qij’ may be set equal to any other component,
Qrs’ since each has the value of zero; in most cases, the result
of setting one component equal to another would yield mere]y a
combined form of results which have already been obtained ({5.2.-2.} to
{5.2.-10.}). However, in the case of the components which are equal
by symmetry considerations, the setting of one equal to the other might
reasonably be expected to produce a result which is not a combined
form of both., (This is anticipated by virtue of the fact that the
forms of such components are quite similar, yet not identical).

Pursuing this investigation produces the following results:

* A substitution of the more primitive forms of the quantities
employed in these equations causes the equations to vanish identically.
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From Q12 = Qp;

K11911 = k22922 = 0 ceess {5.2.-11.}

From Q13 = Q33

118%%21 911 dkp2 9Ky
Zlm " an, t qaslean - kea) | (12 * 021) * Tt

[ o012 + 421) 3422
- kp3(k11 = k22) + K13K21 |02, + Koy 2 38, Y

+ K13¢14 =0 | cesee {5.2.-12.}

From Q23 = Q32

a1  9K1)
— - —— - +
[341 34, Kl3(‘<11 KZZ) K23K21 ¢11,

1 9Ko 9 K12 3911
Tt any - <2alkan = k22) | (612 021) + k21 | T

t3

3(¢12 + ¢21)
355

- —;— + K23¢22] = 0 cevse . {5.2.']3.}

One further equation suggests itself, from the fact that the forms
of {5.2.-2.} and {5.2.-6.} are similar (although these are not equal
by symmetry). Consequently,

From Q11 = Q22

(k11 = x22) (912 + ¢21) + k120011 = ¢22) =0 ..... {5.2.-14.}

Equations {5.2.-12.} and {5.2.-13.}, through the use of
{5.2.-14.} (as the primary substitution) and the application of

previously~developed transformations, produce the set of equations:
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k21 K1 |
1 8, *ky3(kyy = k22) + ka3(kpy = k32) = 0 ceves {5.2.-15.}
92 K12 |

36 ¥ 96, k23(k11 = Kzz) *+ k13(k2) = k12) = 0 cores {5.2.-16.}

It is then observed that equations {5.2.-15.} and {5.2.-16.} are
identical with equatidns'{3.2.-11.} and {3.2.-10.} (respectively),
which are the MAINARDI-CODAZZI Equations for the undeformed surface.
Thus, the SAINT-VENANT compatibility equations contain the MAINARDI-
CODAZZI equations fon the undeformed sunrface implicitly, as the
transformation identities requisite to comply with the symmetry
condition of the tensor Q (or its zero value).

In the case that the orthogonal parametric lines are coin-
cident with the principal lines of curvature (i.e.: the geodesic
torsions, k;, and 3, vanish), then a cursory inspection of {5.2.-12.}
and {5.2.-13.} shows that the appropriate MAINARDI-CODAZZI equations
appear without further manipulation. For, in such a case, it is
observed that the MAINARDI-CODAZZI equations are not coupled.

It is to be noted that the expression

mn

%x x 2 =0 ceens {5.2.-17.}
or or .

may be considered as an integrability condition. If, for example,
an infinitesimal displacement, U, is considered as*
dU = du, + dreec + dr+ %

*  Seeé Appendix A for a discussion of the kinematic representation
of deformation.
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(where du, represents rigid-body translation, ¢ denotes the strain
tensor, and 3 designates the rotation tensor) then the displacement

u may be found as _ _

r r
'u“=m,+fd7-z+ f &3
Y‘o r

Thus, dr.e must be an integrable differential form, and the

requirement {5.2.-17.} specifies this.

5.3. A COMPARISON STUDY OF THE COMPATIBILITY EQUATIONS OBTAINED
BY VARIOUS AUTHORS

The methods employed and the results obtained for compatibility
equations by various authors wiT] now be considered, with a view toward
the extablishment of the position of the results of §5.1. and §5.2.,
relative to the "standard" works on the subject. The authors selected
for purposes of comparison are: GOL'DENVEIZER, NOVOZHILOV, PEISSNER
and VLASQOV, There is a multiplicity of authors who deal with the
question of compatibility, but the four mentioned above are selected
for the reason that they deal with this question at approximately the

same (unsophisticated and detailed) level of discussion.
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5.3.1. The Compatibility Equations of GOL'DENVEIZER

GOL'DENVEIZER, in 1953, produced a set of compatibility
equations by applying the integrability condition to two separate
vectors, U and @, where he termed the former, the “vector of elastic
displacement" and the latter, the “"vector of elastic rotation". U,
in the notation used in this work, is the displacement vector of
Chapter 4, U = U° + aze; , while @ could be expressed as
[-02581 * 6158 * 5 (012 = 921081, Applying the integrability

condition as a mathematical, rather than a physical criterion,

i.e.:

and 3 50 3038~ 0

GOL'DENVEIZER then obtained six "equations of compatibility". He
noted however, that only the first three of these ( {5.3.1.-1.1},
{5.3.1.-2.},{5.3.1.-3.}, below) are equations of compatibility,

as the remaining three are identities. These six equations appear

as:

2 ¢)) (2, o )
%(BXZ)JAT -%(AT )-—2—2-)(1+AB ——+—-}=o eer {5.3.1.-1.3

s @ A ; s () [z, T2 |
= (Br )--g-é-x2+-5§(Ax1) --3%-: SAB| = + 22| =0...{5.3.1.-2.}

v D@ )
AB| moh oyt T =T - 2 (Bgy) + 2 (Agg) = O 15.3.1.-3.)
Wl- 'R'{ -——R-l—z—-— 5o L2 38 T1 eJdele=3,
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) A ap @ .
- -a%_ (Bw ) + 26 82 - 5—6— (A€1) + -a'a- w + ABCI = 0 EEEX) {5.31010-41}
) » )
'a—aa_(Bez) +§_2-w -SQB_(Aw ) -%S_EI +ABC2 = 0 eo s {5.3.]0-50}
(2) 6] - :
¢ w © €1=€2 :
T + T - Ri - R2| + R12 = O esvse {5.30].‘6.}

If these six equations are transformed into the notation used in this

work*, they appear respectively as:

3(8kpz)  8(6xy2)
341 * 34, + «k13l6kay = Sk + x22(612 + ¢21)]

3K21
+ kp3l6kap = 81y * k12(d12 + 621)] = (412 + ¢21) D3R

9(912 + ¢21) : 8(¢12 *+ ¢21)

+ K21[6K13 - 341 ] - K11[5K23 + 362 ] = 0‘{5.3.].-7.}

3(8k11)  9(8k21)

55, T e k13[8kao = 8k11 + k21(012 + ¢21)]

. 3Klé
*eagloan = 6ka1 = k11(612 + 02101 + (012 * 021) 7

3(¢12 + ¢21) 3(¢12 + ¢21)

+kypL6Kkpg + 55, ] + Kzg[ﬁKlg - 55T ] =0 ’{'5.3.].-8.}

3(8k23)  3(6ky3)

- + K746k + k1168« + Kopfk
341 342 13°9%13 110K22 220K11

. 92(¢12 * ¢21)
te1pllk1r + k22) (612 * 921) + 8kp1- 6kyp] + 34194,

3(¢12 *+ ¢21)

+ kp3[6k,3 + 35 7 =0 | ceeess  15.3.1.-9.}

* See Appendix B for notation transformations.
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8(¢1p + $21) 9913

<23 (912 * ¢21) + x13(¢11 - ¢22) + 55, iyl 8ky3

0.15.3.1.-10.

3(¢12 + ¢21) 322
5%, M3

€13(012 + 621) + x23(622 ~ ¢;1) - - 8ky3 0...4{5.3.1.-11.

(17 - Ko2) (91, + $21) = (8kqp + §kp1) + k12(611 = 622) =0 ceee {5.3.1.-12.

A comparison of the kinematic compatibility equations, as
obtained in §5.1., with these equations of GOL'DENVEIZER shows the
following correspondence. v
1) Equation {5.1.-15.}, through the use of BONNET's Theorem {2.13.1.-1},
becomes identical with {5.3.1.-7.} above. ,

2) Equation (5.1.-16.1, through the use of MAINARDI-CODAZZI Equation
{3.2.-10.}, becomes identical with {5.3.1.-8.}, above.

3) Equation {5.1.-17.}, through the use of the Integrability Condition
{3.2.-4.} (operating on ¢;, + ¢21), becomes idential with {5.3.1.-9.}
above.

A comparison of the SAINT-VENANT compatibility equations, as
obtained in §5.2., with these equations of GOL'DENVEIZER shows the
following correspondence.

1) Equation {5.2.-4.} (from Qi3 = 0), through the use of BONNET's
Theorem {2.13.1.-1.} and transformation identities {5.3.1.-12.} and
{5.2.-14.}, becomes identical with {5.3.1.-7.} above.

2) Equation {5.2.-8.} (from Q31 = 0), through the use of BONNET's
Theorem {2,13.1.-1.}, transformation identities {5.3.1.-12.} and
45.2.=14.}, and MAINARDI-CODAZZI Equation {3.2.-11.}, becomes identical
with {5.3.1.-7.} above.



149

3) Equation {5.2.~7.} (from Qz3 = 0), through the use of BONMET's
Theorem {2.13.1.~1.} and transformation identities {5.2.-4.} and
{5.3.1.-12.}, becomes identical with {5.3.1.-8.} above.

4) Equation {5.2.-9.} (from Qs, = 0), through the use of BONNET's
THeorem {2.13.1.-1.}, transformation identities {5.3.1.-12.} and
{5.2.~4.}, and MAINARDI-CODAZZI Equation {3.2.-10.}, becomes identical
with {5.3.1.-8.} above.

5) Equation {5.2.-10.} (from Q33 = 0), through the use of trans-
formation identities {5.3.1.-10.} and {5.3.1.-11.}, and the Integrability
Condition {3.2.-4.} (operating on ¢;, + ¢,1), as well as BONNET's
Theorem {2.13.1.-1.}, becomes identical to {5.3.1.-9.} above.

It is therefore concluded that the kinematic equations, the
SAINT-VENANT equations and the GOL'DENVEIZER equations all represent
different forms of the same Compatibility Equations for the Strained
Middle Surface of a shell.

NOTE: GOL'DENVEIZER's equations of 1953 agree with

his results of 1939, at which time he obtained equations

of a different form by applying formal variational

procedures to the MAINARDI-CODAZZI and GAUSS Equations.

5.3.2. The Compatibility Equations of NOVOZHILOV

NOVOZHILOV, in 1951, produced a set of compatibility equations
by applying the integrability condition (as a purely mathematical
criterion), separately, to the vectors, R, E;, el, and e}. In the

notation used in this work, these vectors would be written as R, E3, E;



and E,, respectively.
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From the twelve scalar equations (some of

which, are identities) which result from the operation of the integr-

ability condition on the four vectors, he concluded that groups of

terms in some equations were linear multiples of groups in other

equations,

Setting these groups equal by eliminating the linear

multiples, he then obtained several identities (which are not given)

and three equations shown below ({5.3.2.-1.}, {5.3.2.~2.} and

{5.3.2.-3.1}).

8/-\1 B(AzT) 3A2 3A2 -I a(AIEI)
m—(A1x1)= «2 - -1 * o -
) oa da1 da1 Ri dag Rz day
B(Azw) BAll ) )
" e T f2%a, =0 ceses {5.3.2.~1.}
A 3(AyT) 3A 3A, 3(Azel)
Flhaka)- Kigee = e = T L |
o da dop das Rz da; RY du1
3A2 3(A1w) .
Elaal - aaz = secee {5.3.20-2-}
“1 k2 1 X 1 A %€2 32 1 dw
mY R R s R Rewt w2 m7 Mg
3A1 381 BAI
o 1 1 dw
ﬁ] * 'a";xr[ Mosg e (1) szl g
3h, -
"'5—(.0 =O escee {5.3.2"3.}
o1

If these three equations are transformed into the notation

employed in this work*, they appear respectively as:

* See Appendix B for notation transformations.



151

3 (Sk13) 3 (6x12) .
%, T T, <13l8kaz = 8k11] + 2¢p3[6k12 - 5 x11(612 + 921)]

9Ky 3(¢12 + ¢21) 3911
- (412 * ¢21) %, - <1 5%, k22| 35

3(¢12 + ¢21) v
o =0 {5.3.2.-4.}

+ k13(d22 = ¢11) = k23(012 + ¢21) =~

3 (8k22) . 3 (6k12) ¥ kpalkyy = Sk11] + 2¢13[- 6x1p* l-(K - o) x
34 ¢ 94, 23 22 11 13 127 2 11 22

L 9k11
x (612 + 92101 = (612 * ¢21) 55— - K11[k23(¢22 - ¢11)

v 3¢22 ) .
k13(012 + ¢21) + %y =0 cesoe {5.3.2.-5.}

+

322 911 4 922
K228K11 * K118k22 * K23g— = Kiggp— ¥ T 3+ xe3le22 - en1)

1 3(¢12 + ¢21) 5 9411
-5 555 *oeaslonz + 021 * g | g

1 3(¢12 + ¢21) : .
k13(011 = ¢22) - 7 55, - k23(¢12 + ¢21)| p= 0 {5.3.2.-6.}

NOTE: The absence of any geodesic torsions, «jp or
Koy » 15 easily explained by the fact the NOVOZHILOV
considens only the case that the onthogonal parametric
Lines are coincident with the Lines 0§ principal
awwvature, The geodesic torsions vanish for such

a case, as previously noted.
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A comparison of the kinematic compatibility equations, as obtained
in §5.1., with these equations of NOVOZHILOV shows the following
correspondence (where k1, and x,; are set equal to zero in the
Kinematic system, so as to be comparable to NOVOZHILOV's system).

1) Equation {5.1.-18.}, through the use of transformation
identities {5.3.1.-10.} and {5.3.1.-12.}, and MAINARDI-CODAZZI
Equation'{3.2.-14.}; becomes identical with {5.3.2.-5.} above.

2) Equation {5.1.-19.}, through the use of transformation identities ‘
{5.3.1.-11.} and {5.3.1.-12.}, and MAINARDI-CODAZZI Equation {3.2.-13.},
becomes identical with {5.3.2.-4.} above.

3) Equation {5.1.-20.}, through the use of transformation identities
{56.3.1.-10.} and {5.3.1.-11.}, and GAUSS Equation {3.2.-15.}, becomes
identical with {5.3.2.-6.} above.

A direct comparison of the SAINT-VENANT compatibility equations
with these equations as obtained by NOVOZHILOV will not be undertaken,
as it has been shown that the kinematic equations and the SAINT-VENANT
equations differ only in form. Hence, as the kinematic equations agree

with NOVOZHILOV's equations, so must the SAINT=VENANT equations.

5.3.3. The Compatibility Equations of REISSNER

REISSNER, in 1965, produced a set of compatibility equations
by showing that the coefficients of four stress functions in his
"work equation" must vanish. The four expressions so obtained are

his compatibility equations, which appear as
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1 : €12 €21 ]
[K21 - <t R (e11 = €22) + Rz~ Rin | 1o [(G1Y1),2 - (azYz),l]

coses {5.3.3.-1.}

1
o <a1€11)’2 = (“2821)s1 = 012€22 =02,1€12
ao 2

1
*'[Eaf'(gazszz)»l - (a2€12)32 = 02,1€11 = alszszg)]’l

. [Kll . K22 1 k1, + )]
s e - K K
192 | B> Y R T Ryp ‘K12 Y K2l

a1Y2 a1Y1 G2Y1 a2Y2 )
= - — + - —— sse e {5.303.-20}
Ri1 Ri2 " R22 Ri2 "

1
ai0p [ (uszz)-l - (alKlz),z = 0G251K11 <“01,2K21 ]

1
= \Q1€ - € - O € 5
o n [ (a2e22)s1 = (w1€12)02 = 02,1811 = o1,2621 } RS

| | | :
- - O € -Q € =
1o, [ (e1e11)s1 = (02821) 51 = @1,2822 =02,1812 1 RS

- ] - 1 l ’ -
[R;z R11R22] Yl cevee {5-3.3. 3.}
1

@105 [ (alKll)sz - (a2K21),1 = Q1s2K22 = azlelz]

1 1
a10, (a1€11).2 - (a2€21).1 = 0152822 = Q2,1€12 ﬁ;;

1 1
a5 (a2e22)s1 = (01€12) 92 = G251€11 = G1s2€21 o
\ ‘ 12
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1 1 :
= - ssoseoe 03- e “fre

If these four equations are transformed into the notation
used in this work* and, as REISSNER requires (for comparisons),
"make the assumption of no transverse shear deformation, that is,

set y; =y, =0 ...", then the equations appear respectively as:

[}KZI + 6kyp * (kpp = k11)(d12 + ¢21) + x12(¢11 - ¢22§}= 0..{5.3.3.-5.}

: 311 4 3(¢12 + ¢21)
852 c13(022 = ¢11) = 23612 + ¢21) + %, 2 951

: » 8920 1 3(¢12 + ¢21)
BT k13(012 + ¢21) + 23 (622 = ¢11) + sy 2 045

+eo8Kk11F K118k + k12(8Kkyp = Sk21) P =0 ..., {5.3.3.-6.}

3 (Skaz) 3(5K12) ]
5 T ey ocaslear - Sk ¥ 7 (k11 * 22} (012 + ¢21)

1 K21 3(012 + 921)
* k23(8kp2 = Sk11) = 5 (12 + ¢21) 55y~ <2l 35,

1 K11 3622
- 5 (612 + ¢21) 3%, k11lk23(¢22 = 611) + c13(¢12 + ¢21) + % ]

9911 _
- k1zlk13(d22 = 011) = k23(012 * ¢21) + 55 1y=0 {5.3.3.-7.}

* See Appendix B for notation transformations.



155

3(6kyy)  a(skay) 1
5, 9a1 k23[8ka1 = Sk1p + 5 (ka2 + k11) (612 + ¢21)

1 8Kz 3(¢12 + ¢21)
+ k13(6kpp = 6k17) *+ 2'(¢12 + $21) 5;2“*'K12 34,

1 3k22 ‘ 9911
- 5 (612 *621) 551 ‘-K22[K13(¢22 - ¢11) = x23(012 * ¢21) * 355 ]

- 9922
- k12lk23(920 = ¢11) + k13012 + ¢21) + 551 I»=0 {56.3.3.~8.1}

REISSNER concludes that this system of equations "differs from the
system of three such equations as given by NOVOZHILOV .... [but] ....
agrees with four equations which may be obtained from the six
equations .... of GOL'DENVEIZER's text".

This would not appear to be the case, for a comparison of
REISSNER's equations {5.3.3.-5.} to {5.3.3.-8.} with GOL'DEMVEIZER's
equations {5.3.1.-7.}, {5.3.1.-8.}, {5.3.1.-9.} and {5.3.1.-12.}

(by means of MAINARDI-CODAZZI Equations {3.2.-10.} and {3.2.-11.},

and transformation identities {5.3.1.-10.} and {5.3.1.-11.1}) shows
that although the terms appear to be the same, there exist differences
in the signs of the terms; For example, compare REISSNER's equation
{5.3.3.~5.} to GOL'DENVEIZER's equation {5.3.1.~12.}. It is noted
that these expressions are identical, save for the sign of the term
k12(911 = ¢22); all attempts to transform the forms, in order to
eliminate the differences, fail.

Furthermore, it is known that GOL'DENVEIZER's and NOVOZHILOV's
results do agree, except for the fact that NOVOZHILOV considers the
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parametric coordinates to be coincident with the lines of principal
curvature; i.e., the results of GOL'DENVEIZER simplify to those
of NOVOZHILOV for kio= 0 = xp1.

It is therefore concluded that the kinematic compatibility
equations and the SAINT-VENANT compatibility equations do not
agree with the equations as obtained by REISSNER, It is speculated
that since these two former results agree with each other and with
GOL'DENVEIZER's results, there may well be typographical errors in
REISSNER's paper.

5.3.4. The Compatibility Equations of VLASOV

VLASOV, in 1949, obtained a set of compatibility equations
by a method analogous to that as employed by NOVOZHILOV. That is,
VLASOV "eliminates the displacement terms" from the expressions for
the Tongitudinal strain and detrusion terms, by differentiation and
grouping to obtain similar quantities. (His results are not shown
here for that reason). Furthermore, as VLASOV considers (very
thoroughly) only the case that the parametric lines are coincident
with the lines of principal curvature*, his results and NOVOZHILOV's
are therefore exactly equivalent.

VLASOV noted that his results did not agree with GOL'DENVEIZER's
1939 results, as "the quantities .... that we [VLASOV] have determined

* In the supplement to the English edition of VLASOV's work, the
author considers the equations of compatibility on the basis of the
vanishing RIEMANN-CHRISTOFFEL Curvature Tensor for EUCLIDIAN space.
Such a discussion is beyond the intended scope of this work.
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have a different géometrica] sense and differ from the analogous
quantities derived by A. L. GOL'DENVEIZER ... ". However, if the
transformation identities, as enumerated for NOVOZHILOV's equations,
were invoked, then VLASOV's results could be shown to become
identical with GOL'DENVEIZER's (for the case that the latter's
equations are reduced by setting k1, = 0 = xp1, of course).

It is therefore concluded that the compatibility equations,
as obtained by the kinematic approach, the SAINT-VENANT method,
GOL'DENVEIZER, NOVOZHILOV and VLASOV all agree, even though the
agreement must be obtained through a multiplicity of transformations
in which all conceptual significance is destroyed. The equations
of REISSNER evidently agree with none of the above-mentioned results,
and attempts to rectify the situation fail -~ leaving only the
conclusion that REISSNER's paper must be plagued by typographical

errors.



CHAPTER 6

The General Force and Moment Equilibrium Equations

6.1. THE FUNDAMENTAL SYSTEM
In order to obtain the criteria for equilibrium, a

general form of CAUCHY's analysis is pursued, as follows.

®|

Z Fig. 6.1;"']0

With reference to Fig. 6.1.-1., it will be observed that

the elemental section of the continuum is considered to be in a

state of dynamic equilibrium if

- J[ dm?;-+ Jr Tdv + ~[.G' dA_ = 0
m v A no-n

- 158 -
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This may be expressed, through the use of the transformation

dm = pdv, as:

[ - +fAn S.dh =0 e {61.1)
v

By virtue of CAUCHY's Relation,
VIZ: e -

=0, =opiey *ony € * onzez’

an

(where E; is any surface normal, not generally
identical with e3)
- then {6.1.-1.}may be given in the form

f (f - p-'r"‘c)dv + j En-gdAn = 0 : {6.1.-2.}
v A

n

where T = fie; + foe, + fies represents the body
force intensity,

%%- denotes the mass density

p:
= 2y . .
r = —— designates the absolute acceleration
€ 42
of the centre of mass;
and o =

[-6—1;1 + gzgz + _8-3;3] = 'é'.lB',‘ (sum on i = ],2,3)

og11€1€; * 010€e1€5 + 013e183

+07182€) + 0p2€2€p + 0238203 =

to31€30] + 03p€4€, + 033€3€3 (sum on 1,3=1,2,3)



represents the stness Lensorn which specifies
the state of stress acting on the elemental
section of the continuum under consideration

(given arbitrarily in terms of the coordinates

-e-l, Ez, ea).

Equation {6.1.-2.} can be re-arranged somewhat, to give

v - A
n .
or, as e dA_ = dA
n n 11
then BN EGRETAE f dA, -
v An

Employing the GAUSS Divergence Theorem, which in operator form,

is given by (among other forms)

den-( )5[-—3-_:-()dv
A VBY‘

then equ.ation‘ {6.1.-3.} becomes

f (f - p’ﬁc)dv +f
v v

or j’(—f--p:; + 29 yqy -
C 57
v

(This equation will be presently employed as the basis of the

Force Equilibrium Equations.)

o

3

——

r

)

0

Qat

0

dv

0

LN 2
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{6.1.-3.}



Returning to equation {6.1.-1.},

i.e., -f dm?c+ f?”dv + f?ndﬁ\l =

m v An

and employing EULER's Law of Dynamic Equilibrium, it may be said

that (with reference to Fig. 6.1.-1.):

[ Fowani s [FoxTav o+ [T xTan -
m | A, -

v
Introducing dm = pdv as before, then

R x (7 7 e o FoxTan =0

&

(o n
An |
or f?x(f-or)dV-anx?ndAn=0
' v , An

which, as 'En-é'r = Fn , becomes

f re X (f - pr.)dv - f e coxr dA =0

v | Ay

or f?c X (?' - p'?c)dv - f ('e'ndAn)-(g' X ?n) =
v | A

$0 f?cx (?"'-p;r"c)dv-f ﬁn-,(?rx?n) =0 veees
v A
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{6.1.-5.}

Once this form ({6.1.-5.}) has been obtained, the GAUSS Divergence

Theorem becomes applicable and equation {6.1.-5.} becomes



162

OY‘ f [Fc x (? -~ p..F.c) - “a: '(; X ?)]dv = 0 sesee -{6-1.-60}
ar
v

(This equation forms the basis of the Moment Equilibrium Equation.) :

Now having obtained equations {6.1.-4.} and {6.1.-6.}, the
specification is made that the problem to be considered, will be

a static problem. This causes {6.1.-4.} to reduce to

f(?+3—'i_;:-)dv=o veees  {6.1.-7.}
) )

ar

and {6.1.~6.} to reduce to

f [FCXT-—a—_-o(fny)]dv=0 ..... " {6.1.-8.}
or
v
Finally, for "engineering" problems, the body force
(self-weight) will be neglected for the present, and considered
as an applied boundary load, after a solution has been obtained.
This forces a further reduction of {6.1.~7.} and {6.1.-8.},

respectively, to:

29 =0 eeee T 16.1.49.3
y " '

and [”%'(;XﬂdV”o esecee v .{6010"]0.}
T S
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Thus, equation {6.1.~9.}, above, prescribes the conditions
necessarily existing in the continuum for the equilibrium of
stress resultants and will therefore yield the "Force Equili-
brium Equations”. Equation {6.1.-10.}, above, prescribes the
conditions necessarily existing in the continuum for the equili-
brium of the stress couples about some (arbitrany) point and

therefore will supply the "Moment Equilibrium Equations".

6.2. THE FORCE EQUILIBRIUM EQUATIONS

A segment of the shell with boundaries a;, (a; + ds;),
ay, (ap + dby), az = %-, a3 = - %- is now considered, as in
Fig. 6.2.-1. Since the volume integration has only one integral,
the limits of which are definite (the integration over the
thickness, h, in the a3-direction), then equation {6.1.-9.}

may be given in the following convenient form.
a3 = h/2

U * % ‘ .
da3d62db1 = 0 seecee {6.20‘].}

8% 57 a3—-h/2
It is to be noted that the shell segment itself (Fig. 6.2.-1.) is
infinitesimal in two dimensions and small but finite in the third;
the element of this sggment which is under consideration is, of

course, infinitesimal in all three dimensions.
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a3 {l coordinate

F.ig. 6.2."1.

From previous investigations of the local geometry of

the shell (5 4.6.) it is known that



165

*
d"l

(1 + azeyp)dsy |
* ({4.6.-7.1)
ds,

(1 + agkaz)ds,

Equation {6.2.-1.}, upon substitution of {4.6.-7.} then becomes
. a3=h/2

| fff —E).TE (] + a3.<11)(]+ ausz)da3d62d61 =0 {6.2.,-2.}
.or

61 462 (13="h/2

And, as stated above, since this integration takes place over
indefinite limits of "4:" and "4," -- which are not functions

of az=- then the integrand of the "area integral"
VIZ: f f (u « . o)dézdél = 0
78178, '

must vanish separately, in order that {6.2.-2.} be satisfied.
This requires that . |
a3=h/2

39 (1 + 0t3l<11)(] + azkgp)daz = 0 {6.2.-3.}

ar
az=-h/2.

This will be written, in the following discussion as

dlp éi?'(] + agky1)(1 + agkpp)dag = 0 {6.2.-4.}
o3 ar

the limits of the integration being understood to be a3z = = h/2

tO 0t3 = + h/z.
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Having previously established (5§ 4.6.) that for surfaces
other than the middle surface, the directed derivative is given

as

€1 5 € 3 5

__3_ o+ e
] + a3K11 361 1 + G3K22 342 3 30.3

ar

({4.6.-6.1})

then with the aid of this expression, {6.2.-4.} appears as

ao
22 1wy dags j‘(ifzel [—101 + @205 + e303]

or
a3

+ "192'-"-'[6101 + ep0, + €303]
+ 1711T2€3"5-215‘ [51;1 + -8_227-2 + -é-3-&-3i)da3 =0 ecee{6,2.-5.}
where the short-form notation

mp = (1 + azkyy)s mp = (1 + azkyy)

. has been employed for convenience.
: \
The CESARO-BURALI-FORTI Vectors will be required for the

vector differentiations in the expansion of {6.2.-5.}:

(recall) %;%-- C. x eB (no sum. . r=1,2; 8 = 1,2,3)
where C1 = k12 €1 + k11682 + K13€3
¢, - -k22€1 * k2185 *+ Kp3€3
for the case of orthogonal parametric lines. _
NOTE: Obviously, an expression such as ;;% =0,

as oaj is a straight-line coordinate, and its

DARBOUX Vector (s 1.7.) is consequently zero.
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. N
Expanding {6.2.-5.} with the aid of the CESARO-BURALI-FORTI Vectors
then yields

= 331
9:?‘“1“2d03 = T2 { T - K1302 + K1103
as 1
ar o3 .
a3 da
- 2 -
+ TT1[’<23°1+ EYYe K2203]
303
+ T2 33;' da3 = O

Further expansion into the component form of the tensor g is

accomplished by expanding Eé as

Og = 0g € (sumon y = 1,2,3)

and performing the requisite differentiations. Grouping terms
as coefficients of the vector directions, 1, €2, €3, yields

the equation

9011
[341 mp = k13(o12 = 021) ™2 * k11loyz * oardmy + kp3lony - 022)
%3 3921 3031

*k22031m1 * kp1032m o e T ogom— MM ] €1

3612
+ {K13(°11 - 022)7p ¥ k11032mp ¥ 55, "2 ¥ k23(o12 * 021)m

3022 3032 -
* k22(023 * 032)m1 = k12013mp * T, " T g, M2 &2
+ [K11(°33 - 011)m * kp2(033 = 095 )My = k130,372 + k23013M1

9013 9923 9033 -
¥ k1201972 = K21021M1 * p— M g My g Mg | egpdag= 0

XEXY) . {6.2."6.}
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Now, as the vectors themselves are not functions of aj,
and the integration is distributive to each term; and since all
three vector directions are unique, then {6.2.-6.} reveals three
'scalar expressions (the coefficients of the vectors) which must
each vanish separately, after integration over agj.

The integration of these coefficients is straightforward,

~except for those terms which contain derivatives of the stresses.

Consider, for example, the integration of a term such as

3011 3011 :
g5 m2des = | gy (1 F agegp)dog
O3 ’

a3
This expands to

011 (1 + askag)
JL; 33, M2 =Jr [o11(1 + agxzz)]dag 'J[ 711 35 s

a3

3 3K22
FYYY f°11(] + agkgp)dug -f°11“3 5‘5‘1—‘1“3

a3 a3
3 3K22
= 35 .jall(] + G3K22)- 1 611d3da3
a3
a3 o [as x22 # x22 (a3)]

Three equations thus result from {6.2.-6.}, and are given below

From the e; - direction

8K22
3
Ty [l * agkzz)dag - Erey J[ o1103dag + KIIJ[ o13(1 + agezz)dag

3 o3 a3

+ K23[ 011(1 + G3K11)d0.3 - K23f022(].+ agKll)da3
a3

aKll
* Kzlf 032(1 + agkyg)dag + 35— o21(1 + agkyp)day - -32'2"] 02103d03
. 3 o3 a3
#ay [ ol +and(1 4 ey 0 e 06,2072
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From the e,-direction

3 3K22

'az‘l'f o12(1 * agepz)dag - f o1203dagt K13f o11(1 + agkpz)das
03 a3 a3

- Klaf 022(1 + agkyp)dag + 2'<23f 021(1 + agky; Jdag
¢4

a3

+ Kzz[ op3(1 + agkyp)dag - Klzf 013(1 + azkyp)daz
a -

3 3K11
* %, 022(1 + azkyy)deg - %5, f o2203da3
a3 : 03
¥ %; 032(1 + azk11)(1 + azkpp)dey =0 veees  16.2.-8.}
a3
From the e;-direction

- Kllj 011(1 + agkyp)dag - Kzz[ 022(1 + azkyp)dag - K13f°32(1 +a3Kkpg )dag
a3 | ag a3
+ Kza[ o31(1 + agkiy)dag + Klzfclz('l + agKkgp)dagz - '<21f 021(1 + azkpp)dag

G3 a3

5 dag - 22 J[ d
BTy 013(1 + agepz)das - 357 01303003

a3 as

3 911

+ 2 + - —

%7 ) 023(1 + agerp)dag - 5 fa 02 303da3

3 3
3 .

7oy | 03301+ aac11) (1 + agkpp)dag =0 {6.2.-9.}

a3

The use of the MAINARDI-CODAZZI equations ({3.2.-10.},
{3.2.-11.}) permits these three equations above to be written in a

more convenient form, as follows.

5 3 ‘
B3y 011(1 + agkyp)dag + T2y | O21(1 + agkiy)dag ¥ '<11f°13(1 + agkpp)dag

o3 a3 o3
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- k23 [ 022(1 + azkyy)dag + ’<21j o23(1+ agzky)day + K23[°11(T + agkyy)dag

a3 &3 o3
. 3K12
- k13 [ 912(1 + agepp)dag - k13 [ 021(1# ageyy)dag + YO 2K21K13f°11a3da3
a3

G3

3K2?3 : .
- (351 + 2K21K23)jr 012a3da3 + 031(]+ G3K11)(]+ G3K22) =0 {6.2.-]0.}
o

3
9
38y
a3

K23[°21(] + agkyp)dag + Kzzf o23(1 + agkyy)dag - Klzf o13(1+a3xz; )dag
0(.3 0!.3 0.3

a3

‘ | 9
012(1 + agkpp)dag + Té—z_f 022(1 + ageyp)dag + '<13f o11(1+azky; )day
o3 a3

+

K13f°22(] + agkyp)dag + Kzsf 012(1 + azkzp)dasy
a3 ‘ a3

3K12 . \3K21M
* (M + 2'<21'<13) o1203dag = g+ ‘2'<21'<23) 02203da3
2 . O3 1 Qa3
+ 032(1 + ageyp) (1 + agkay) =0 {6.2.-11.}
a3
3 « 3
381 f 013(1 + agkpp)dag + 'az‘z'f 023(1 + asky1)dos - an 011(1 + agkzp)dag
a3 o3 ' a3
- Kzzf 022(1 + agkyp)day + K12f°12(1 + agkpy)dagz - K21f°21(1 + azkyp)dag
a3 a3 3
+ Kzaf o13(1 + azkpy)dag - Klsf o23(1 + azkyp)dag
a3

a3

k1, K21
+ <34 + 2'<21'<13)f o1303dag - Sy Yu 2'<21'<23)‘f o2303das
2 a3 1 a3

* o33(1 + age11) (1 + azez)) = 0 {6.2.-12.}

a3
These three equations, {6.2.-10.}, {6.2.-11.}, {6.2.-12.} above,

are the equations of "Force Equilibrium" for any general shell.
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Now, the quantities which appear in these equations admit
physical interpretation, for the most part. With reference to
- Fig. 6.1.-1.,, it will be observed that for a unit width of section

at the middle surface (as considered), then a term such as

Co11(1 + agkgz)das

03

represents the integration of the stress o;; over the elemental area
of the section. Hence, this integral represents the stress nesultant
for the stress o;;, taken over the cross-section. Referring to

this integral as F;;(o), then the remainder of the quantities

fo]]ow$. to give the result:

F11(o) =‘J( o11(1 + azkzz)dos 1
a3
Fiz2(o) = J[ 012(1 + a3kgy)dag
a3
Fia(a) = J[ 013(1 + azkyp)dag
13 a3 2 s csese {6.2."13..}
Fa1(0) = J( o21(1 + agkyp)dag
o3
F22(0') = [ 0'22(] + (13K11)d0.3
a3

F23(0) = [ 0'23(] + a3K11)da3 )
a3

Furthermore, there is a physical interpretation for terms such

as +h/2
(331 (1 + a3|<11)(1 + a3l<22) = 031 (] + a3K11)(] + 0L3K22)

G3 -h/2
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Such terms are seen to be the boundary forces acting on the shell.
This is easily seen by the interpretation of LI itself -~ the
stress on the surface of the element, the normal to which is ej,

and acting in the i-direction. Then, as the quantity [(1 + asxjy)x
(1 + azky,)] represents the surface aréas (when a3 = h/2, a3 = - h/2

are inserted as limits), the entire quantity T3 (1 + azey1)(1 + azke2)

o3
" becomes the "algebraic sum of the boundary forces", or the net
boundary forces. Referring to such terms as Pi’ then
Py = 031(1 + azk11)(1 + aszkzp)
, o
Pz = 032(] + a3K11)(] + 03K22) ooo;{6¢20-14o}
4 a3
P3 = a33(1 + azk11)(1 + azkyy)

. a3
Hence, {6.2.-13.} and {6.2.-14.} allow the equations of Force
Equilibrium to be written in final form as:

8Fll(c) 3F21(0)
94 + 94 + K11F13(°)-K13[ FIZ(O) + F21(°) - 2K21 jr 011a3da3
1 2 a3

' ’ aKlz
* K23 [ Fi1(o) = Fa(o) - ZK@Z'°12“3da3} + k21F23(0) + 33;—-Jf 61103dag
| 3 a3

9K , - . .

- abl ‘/’0'12(!3(10.3 + Pl = O T coseoe {6.2.-]5.}
a3 ' '
8F12(0)  3Fz3(0)
st e *xs|fulo) -/Fzz(O).+ 2x21 jza 01203dag

+ K23 [ Fa1(c) + Fia2(e) - 2K21J[ 0p203dag } + kpoF23(0) - k12F13(0)
a3



173

K12 K2} ,
+ % 4 f 0'120(.3d0t3 - 341 f 622G3d0.3+ P2 = 0 v..oo. {6.2.-16.}

o3 o3

aF;3(c)  9Fy3(o)
o F ey - <13|Fas(o) - 2¢py Jr o1303dag

a3

+ Kzs[F13(0) - 2K21J[ Uzaaadua] - k11F11(0) = x22F22(0)

' 9K :
+ Klz[Flz(U) + Fz1(°)]‘ + 86:2 Jf 01303dag
a3
3K21 o
B 32;“J( ga3a3dag + Py p =0 ceene {6.2.-17.}

o3

A comparison of the form of these three equations with

the kinematic compatibility equations ({5.1.-15.}, {5.1.-16.},
{5.1.-17.}) shows that the two forms display an exceptional similarity.
This 48 usually neéenned.to as the statico-geometrnical analogy

in shell theony.

The simi]afity is even more pronounced in the case that the
orthogonal parametric lines are coincident with the lines of principal
curvature. In this case, the geodesic torsions,<;, and 1, vanish
and the reduced form of the kinematic compatibility equations
({5.1.-18.}, {5.1.~19.}, {5.1.-20.}) may be compared to the reduced

form of the force equilibrium equations, below.

aF11(0) aF21(0)
;:1 - ¢ "%%;“ - k13[ Fia(o) + F21(°)] + k3 [ F1a(o) - Fzz(o)]

+ kyiFy3(0) + Py =0 ceees " {6.2.-18.}
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3F1,(0)  3F,,(0)
;421 + ;:2 + ’<13[F11(°) - FZZ(O)] + K23[F12(0') + F21(0')]

+ K22F23(o) + P2 = O CAC LN ) ’ {602.-19.}

aFy13(a)  3Fy3(0)
EYY * 3 5 - k13Fa3(0) + kp3F13(0)

= k11F11(0) = kaoFp2(0) +P3 =0 ceese {6.2,-20.}

6.3. THE MOMENT EQUILIBRIUM EQUATIONS

Commencing with the previously-developed relationship

[- Z-GxPav=o ({6.1.-10.3)
v or

this may be expanded immediately as

- [9-':"-x?+—?_-~§xi]dv=0 e 16.3.-1.3
v or ar

where the underscored quantity indicates that the directed deriva-

tive operates only on that quantity.

However, 2 GxTF=g QX

ar ¢ ar

where the subscript ¢ denotes the conjugate tensor, as
usual,

The symmetry of the stress tensor requires that

Qhl
[]
all
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]
(=]
L

Qu
Qn
L]

and so,

—-5 xF=g, L =5
ar ar ar

3 X T
_ o
identity tensor, §§;= 1, and is consequentiy equal to zero,

ar
Therefore, {6.3.~1.} reduces to

| ij[. 29 yFdv=0
, o

or [ -F 'QT_;&- dV = 0 escee '{6.30-20}
| v ar | |

Now, the position vector ¥ to a parallel surface may be

However, the term is the vector invariant of the

considered to be the sum of two other vectors: r$ which locates a
point in the middle surfacé, plus the normal vector, aze;, from
the middle surface to the parallel surface. Thus,

T =7r° + azey
Equation {6.3.-2.} then becomes

(P4 e @) x 28 gy =0 ’{6.3.-3.}‘
ar

By prec1se1y the same argument that was advanced for the Force

Equitlibrium equat1on, {.e., since the 1ntegrat1on is def1n1te only

over the limits of a3, then {6.3.-3.} reduces to (see §6.2.)

f (?-o + 0333) x‘a‘_.:‘a" "lﬂzdus s ( senee -{6030"40}
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Since, however, r° # r° (a3) then {6.3.~4.} may be given as

r° x ____3‘—0' 'n'l'n'zda3 + 0.3-8—3 X '——'8_._0 wlwlda3 =)
o or a ar

3 3

The first term of this equation vanishes, as the integral itself
vanishes, being the "Force Equilibrium Equation" (see {6.2.-5.}).
This reveals the Moment Equitibrium equation in its most succinct

form, as

[ 0.3-6.3 X -a':-:i'; “1"2da3 = 0 see e ‘ {603.-5.}
a3 ar

Considerable effort in the expansion of this expression
is saved, by considering that the quantity E£§-ﬁ1W2 has been
expanded in the course of obtaining the Forcerqui1ibrium equations.
Thus, taking the cross-product of azes; with the expanded form of
Efé-nlwz(i.e., equation {6.2.-6.}), and retaining the result as

or
the integrand ofJ[ ( )dos , then {6.3.-5.} appears as
a3

' 3012
: .l. = o3 [ k13(o1 = 922)mp * Kk1y03,m, + 55, "2t k23(012 + 021)m;
a3

3022 3032 —
* kp2(023 ¥ 032)m = k1p003mp * W, "1V ag mim2| &

Q0171 . _ .
+ a3 [ abl ’772 - K13(612 - 021)11'2 + K11(0'13 + 0'31)'"'2 + K23(0'11 - 022),",1

9021 9031
'ﬂ']_ +
9489 dag

+ K22031“1 + K91923% + 1T1'ﬂ'2] Ez =0 ' {6.3."6.}

The third term originally found in the expansion of §£§1n1n2 » naturally
_ ar
vanishes as it was in the ej~direction, and the cross-product is.

taken with ej.
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Since the vector directions e; and e, are independent
of a3 (and of each other), then for {6.3.-6.} to vanish, the
coefficients of e; and €, must vanish individually. Therefore,
performing the integration of these coefficients and setting
the results equal to zero (as for the Force Equilibium equations)

reveals the two following equations.

] : o
——36 faaolz(] + a3|<22)da3 + _—ab [ Ct30'22(]+ a3o<11)da3
1 o3 2

as
+ K13f°¢3°11(1 + azkpg)dag

G3

+ Kzs/aadzlﬁ + agkyy)dag ~[ 023(1 + agkyy)dag - '<12f°‘3°13(1 + azkzz)day
a3 a3 a3

- Klsf @3022(1 + a3kyy)dag + Kzsj a3012(1 + agkyy)dag
(s 4

3 a3
LIPS ' 2 Kz 2 '
+ (;""* 2e21€13 j a301zda3 - (34 + 2'<21'<23) f a3 0zpdug
‘62 0'3 1 a3
+ a3032(] + G3Kll)(] + G3K22), -e-l = 0 ’ ceseve . {6.3."7.}
. a3

2 \ 3.
3;1-] a3011(1 + agezp)day * 355 | s021(1 + }aa,Kn)daa-fGla(] + a3kzz)dag

a
a3 o3 3
- Kzsj a3022(1 + azkyy)dag + '<21f a3023(1 + agkyy)dag + Kzefasm(Hausz)da
a3

a3 : a3

- '<13/ a3032(1 + agzkpp)dug - Klsf a3021(1 + agkyy)dag
' ag - a3

K12 2 L3 2
75t k21K 0301163 = {m— + 2¢p1Kp3 a3012du3
2 a3 ! a3
*+ a3031(1 + agey1)(1 + askz;)

e2 =0 o eeees 16.3.-8.3

o3
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where the form of these equations -has been altered, by means of
the MAINARDI-CODAZZI Equations ({3.2.-10.}, {3.2.-11.}), as was
done for the Force Equilibrium equations.

Now, just as the.quantitiesgrcij(l + a3nrr)da3 were
~ observed to bear physical interpretation as‘stress resultants for
the case of the Force Equilibrium equations; so the quantities
in the two Moment Equilibrium equations above, allow a similar
“interpretation.

Consider Fig. 6;3.-1., below., Here, the infinitesimal
element of the shell is shown removed from the "semi-infinitesimal
segment of the shell, as shown in Fig. 6.1.-1. The stress vectors
E% are shown applied tothe element, although only o; = ojie; +

0128, + 01363 1s shown in detail, to avoid confusion,

Fig. 6.3.-1.
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With reference to the system of Fig. 6.3.-1., it is observed

that a quantity such as

[ (!3011(1 + G3K22)da3
a3

may be considered as

‘f(as) lo11(1 + a3zxzz)ldag.
o3

This quantity is thus observed to be a stness couple, as it is

a moment, oy;(1 + azkpp) being multiplied by a distance (o3) and
integrated over the region of action of o;;. A similar inter-
pretation is possible for the remaining integrals of the same
form; referring to such stress couples as Mij(°)’ and retaining
consistent vector notation for the subscripts, then

Mii(o)e; = -f a3012(1 + agkpp)daz €
a3

Miz(o)e; =f a3011(1 +agezz)dog e

o
Mis(o)es jz a3013(1 + agezz)dag €3

3
_ M21(0)€1 = '-] 0!.3022(] + G3K11)da3 '61 '\{6.3.-9.}
¢3

Mpo(o)e, = f a3051(1 + a3kyy)dag €

a3
Ma3(o)es = _/;3%023(1 + agey)daz €3’
where MI(O) = Mll(a)-é-l + M12(0)-é-2 + M13(o)'e'3 ‘

and  Mp(o) = Myy(o)e; + Maa(o)e, + Ma3(o) e
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There also exist quantities which have the form

a3 031(1 + azky1) (1 + agean) (i =1,2)
lag
Such quantites are seen to represent the algebraic sum of the

moments caused d{rectly by the boundary forces (when the limits,
as = h/2, az = -h/2 are inserted). This is quite obvious, since
the term o3; represents the components of the vector o3 = o3;e;

+ 03,8, + 03385 in the tangent plane at the boundary (for i=1,2
as above), while the QUantity (1 + azc11)(1 + a3zcyy) represents
the area of the surface at the boundary (for a unit element of
area at the middle surface). Denoting such terms as this by the
symbolism, Mi’ then equations {6.3.-7.} and {6.3.-8.} may be

written as follows.

aM11(0)  3Myy(0) : )
943 +. 342 -'K13[M12(0) + MZI(O) + 2K21 '[aa a3012da3]

+ K23 [M11(0) - Myy(a) + 2'<21f
o

, .
Gaozzdaa] + k15My3(0)
3

‘ 8K12 2 aKZl' 2
+ F23(G) - 34 fagolzda3 + 381 f ago'zzdag - Mz =0
a3 . 03 ‘

ecese «‘.{6030-]0.}

M12(e)  aMza(o) '
51 T as, T <13 Mi11(0) = Maa(o) + 2«9,

f a%ol 1dag ]

a3

' 2
+ k23 [ Mia(o) + Myq(o) - 2K21Jf “3012d“3] + kz1M23(0) = Fy3(0)

o3

oK oK :
+ 22 agoudag - 21 agolgdag + Ml =0 seese - {6.3.-11.}
Y} LYY
' @3 » o3
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The close simf]arity between the form of these two
equations and that of the kinematic compatibility equations
is another illustration of the statico-geometrical analogy.
As was noted for the Force Equilibrium equations, the analogy
is even more pronounced for the case that the orthogonal
parametric Tines are coincident with the lines of principal
curvature. In such a case, the Moment Equilibrium equations,

' {6.3.-10.} and {6.3.~11.} above, reduce to the following

equations.

BMH(O) 3M21(c) ,
%y e, T <13 [M12(°) + Mz1(0)]

* k23 [ Miy(o) - Mzz(o)] +Fp(o) =My =0 ... {6.3.-12.)

CaMpp(e) oMy, (o)
;zlo + 2:20 + k13 [M11(0) - Mzz(c)]

+ g3 | Mia(o) + Myr(o)] = Frslo) ¥ My =0 wevee  {6.3.-13.)

NOTE: The conventional symbolism for the stress
couples,. as used in many works on éhe11 theory *
VIZ: Mae(°) ij;3a3°a6 (1 +a3kii)daa

has the inherent disadvantage that physical
interpretation of such terms is exceptionally
difficult. The direct notation, as employed

in this work, permits immediate recognition

of the physical significance of these terms.

* See page 187.
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6.4. THE CONSTITUTIVE COMPATfBILITY CONDITIONS

Since the expression for the strain tensor, e, showed
.the tensor to be two~-dimensional (§4.6.1.), it becomes evident
that a contradiction exists between this tensor and the stress

besultant tensor

Flo) = 'F;j(g) Ei'éj =[aaoij“ + agc_)dag EiEj (sum: i=1,2; §=1,2,3)
where all F, (o) are as given by {6.2.-13.}. This
contradiction arises over two terms, F;3(o) and F,3(c) -~ or
in reality, over the two terms which form the basis of F;3(¢) and
 Fy3(0), namely 013 and o,3. .The strain tensor, as given by {4.6.1.-10}
implies that such terms should not exist; the equilibrium equations,
as given by {6.2.~15}, {6.2.-16.} and {6.2.-17.} contend that
such terms must exist for equilibrium to be satisfied.
The most convenient resolution of this dilemma would appear
to be as follows. Since the introduction of a three-dimensional
strain tensor would contradict KIRCHHOFF's Hypothesis, then assume
that the strain tensor is two-dimensional, and that the kinematic
KIRCHHOFF Hypothesis remains valid. On the other hand, oj3and o,3
will continue to exist, for satisfaction of the equilibrium equations.
Thus, the appropriate solution to the contridiction is simply to
admit that i1t exists and to say that the strain tensor is a good
(Tinear) approximation to the,true state of strain -- and that the
terms neglected are small in comparison to the terms retained.
This 1is, naturally, Jjustified by the fact that the transverse strains

would always be much less than the surface strains.
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The Constitutive Compatibility Conditions, or the stress
resultants and stress couples in terms of the strain parameter
relations, can then be found in the following way: since Eij
(i,3=1,2) is known, then Fij(o) and Mij(c) (i,j=1,2) can be found
directly, Once these are known, F;3(o) (i=1,2) may be determined,
using the Equilibrium Equations as the vehicle of evaluation.

Proceeding in accordance with the above, the expression
for F1;(c) is obtained as follows.

By definition: Fii(o) =J[ 611(1 + azkpy) dag ceee {6.4.-1.}
a3

From the stress-strain relation for an isotropic, homogeneous
HOOKEAN (linearly elastic) material,
VIZ: o = 2ue + A(e:T) T

e.e. = e.e. + =:- . .e.e.
or o588y Zusijeie:.l A(e T)Gljele]

where u and A are the usual CAUCHY-LAME elastic
constants
then 01181681 = [Zueu + Ale;] + €90 * €33)] €1e7 .... {6.4.-2.}
This introduces énother unknown, e33. This problem is quickly
overcome, however, by making the assumption that o33 = 0, an
assumption consistent with the discussion’of the contradiction
(above). That is, for surface structures, the cross-sectional

surface}stresses are much larger than the stresses normal to the

middle surface.



Thus 033 = 0 = 2ue33 + Aleg; + epp + €33)

rMeyg * e22)

or €33 = -

2u + A
- _VE -
ors 8s P ERITTRT P YT 20w)
where v s POISSON's Ratio
then €33 % - (—1—'\:—\’—‘)(611 + €22) ceces

Consequenfly; from’{6.41-2.} and {6.4.-3.},

2ueq; *

og11 = (e11 + €22)
-V
E vE
=yr-oent ~ (€11 + €22)
-V
SO 611 = [€11 + V€22] RN N
1 «v

Equation {6.4.~4.}, in conjunction with {6.4.-1.}, gives

F11(0) =J/F [ E X (e11 + ez J(1 # as‘zzﬂdaa
s 1 «v
or: Fi1(o) = E e11(1 + azkpz)dog
A 'l-vza

3

+ vE ; f 622(] + a3|<22)da3 cecse

] LAY a3

Substituting the expressions for €;; and e,,, as given by the

strain tensor ({4.6.1.-10.})

' 1
VIZ: €11 = 1—3753231(¢11 + a36k11)

1

= +
€22 Tage, $22 * @3dkz2)
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{6.4.-3.}

{6.4.-4.}

{6.4.-5.}
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into equation {6.4.-5,} above, reveals

£ 1 + 03K11
Fri(o) = (611 + agdkyy) 5o dos
1 - y2 3K22

a3

+ -lﬁi-7; Jf (422 + a3bkyy)dos
1 =wv s

Carrying out the integration, and evaluating between the 1imits

of ag (+ h/2, = h/2) produces

Fi1(a) = ] 2 ~ Q% T veaa ¥ %7 [ k11(k11011 = k22022) * Sky1(kz2 - K11)}
LAY

2
thll

* =0 [ k11(k11011 = k22022 ) + Skyq (koo = Kll)]

By a similar procedure, the other terms, Fi(0), Fo1(c) and Fy,(o)

are evaluated as
2

. h%c

2 11

Fi2(o) = uh ‘:(Mz + ¢p1) + ‘T’Q‘ Skyalkyy = ko) + s Sxqa(kyy = "22)]
h2 huK%Z

F21(0) = uh | (012 + ¢21) + 3 Skailkiy - k22) + —gy— Sxailky1 = ¢g2)

_ Eh | h2
Faa(o) = N ¢11 + Vo2 + ¥ [ko2(kp2020 = k11611) +6xp2(k22 = x11)]
- v . N
hicss

-0 [k22(k22022 = k11011) + Sk22(k2p - K11)]:)

and without any essential difference in procedure, the stress couples

appear as

3 5 :
Mi1(o) = -%%— [8k12= 6k21 = k22(012 + 921)] + %%— k118k12(x22 = k11)
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3 .
Mip(o) = Eh [011(kp2 = x11) + k11 + véky;]
12(1-v2)
Ethll ‘
+ = (k11911 = 8k11) (k22 = ¥11)
80(1-v2) .
Eh
Mpy(o) = {m——— [022(x22 =~ k11) = 8kpp = vék; ]
12(1-v2)
Ethzz
+ o (k22022 = Skz2)(k22 = K11)
80(1-v2)

3 5
Mya(o) = “%g—-' [§xp7 = 8ky2 + x11(d12 + ¢21)] + -%%“—' Kop8kz1(k22 = ®K11)

htc. .
Considering the insignificance of such terms as -—Tﬁfl

L . uhS

in the expressions for Fij(q) and of such terms as 7 or
5

Eh ij

80(1 ~ v2)

terms in these expressions) and considering also, for the case of

in the expressions for Mij(o) (with respect to the other

Fij(o), that 11911 = 52622 ({5.2.-11.}), then these expressions

above reduce to the following.

_ Eh h2 :
F11(o) = ] (411 + véop + T§'5K11(K22 - x11)]
; h2
Fia(o) = wh [(012 + ¢21) = 75 Sxi2(k2z2 = x11)]
h2 '
Fa1(o) = wh [{e12 + ¢21) = 7y Sk21(kaz = %11)]
| 2
Faa(o) = Eh2 (922 f vé1] - %zﬁKzz(Kzz - «11)]

-V
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3
Mii(o) = %%— [6k12 ~ 8kp1 = k22(¢12 + ¢21)]

3
Mi2(c) = _Eh® [6k11 + vékap + ¢11(k22 = k11)]
12(1-v2)
3
Ma1(o) = —EhT [~6kpp = VvoKkyy + $22(Kk22 = k11)]
12(1-v2)

3
Moo (o) = %%— [6kpq = 8kqp * k11(d12 + ¢21)]

The remaining stress resultants, Fy3(c) and Fy3(c) may
be obtained, if desired, by the substitution of the expressions
for Fij(°) and Mij(c) above, into Equilibrium equations {6.2.-15.}
and {6.2.-16.} or {6.3.-10.} and {6.3.-11.}.

NOTE: Often, in the literature of the subject,

the indirect approach leads to the naming of

the stress couples in the following manner.

Mij(o) = ]a3cij(] + c"3"1,11,)d°"3

a3

Thus, the following correspondence exists:

This Work _ o Other Authors
+ My1(o) - My2(o)

+ Mip(o) + M;11(0)

+ My3(0) + Myz(0)
+ Mp1(o) - My (o)

+ Map(a) + My, (o)

+ Mp3(a) + Mz3(0)



CHAPTER 7

Conclusions

The development of the general theory of thin elastic
shells via the direct kinematic method provides the foundation
for the derivation of the equations of local compatibility of
middle-surface strains. This method is seen to provide a set
of conceptually-motivated compatibility equations which do not
require the use of special techniques or a prioni knowledge in
their formulation. Thus, the "synthetic" approach to the
development of such equations is eliminated and the general
theory of shells benefits from increased coherence as a result.
To the author's knowledge, such equations have not been derived
by the kinematic approach before this time. Some difficulty
was originally encountered in the development of these equations,
in the form of extraneous terms, the existence of which was
not justifiable. However, subsequent analysis showed that these
terms arose from the use of expressions which were too accurate;
;hat is, expressions had been employed which were accurate beyond
the 1imits of the original basic assumption that the Linean
shell theory would be employed as the foundation of the work.
Such expressions were then corrected so as to conform to the

"Tinear theory" hypothesis.

- 188 -
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In order to compare the kinematic compatibility equations
with the equations developed by other authors, two things were
necessary. First, a "standard of comparison" which was independent
of the kinematic method and the method of another author was
required. Second, it was necessary to have available a set of
transformation identities which would relate the various quantities
employed in the equations of compatibility. The Saint-VYenant
approach to compatibility provided both these requisites. Although
it is a formal technique, it was nevertheless, invaluable for the
information produced. It was noted that the Saint-Venant approach
yielded results which contained the Mainardi-Codazzi equations
of surfaces implicitly. To the author's knowledge, the equations
of compatiblity of strains in the middle surface of a thin elastic
shell have never been developed by the Saint-Venant approach
before.

Using the identities provided by the Saint-Venant method
(and others), the compatibility equations as developed by
Gol'denveizer, Novozhilov, Reissner and Vlasov Were compared to the
kinematic equations, the Saint-Venant equations, and therefore,
to each other. It was seen that after a multitude of transformations,
in which all conceptual significance was destroyed, all the
different sets of equations of compatibility agreed (within the
scope of the linear thgpry), except the equations as given by Reissner.
The difference being one of algebraic signs, however. it was concluded

that Reissner's equations must contain typographical errors (of signs).
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A general comparison of the kinematic method with other
methods of shell analysis was undertaken and was appended
(Appendix B) to the main discussion. This was thought to be
of value to those who are not at all familiar with the kinematic
approach. It was shown in this discussion, that the kinematic
method maintained at least as high a standard of accuracy (or,
in many cases, a higher one) as did any of the other methods
considered. The 1959 paper of Koiter was employed as the

vehicle, by means of which the comparison was carried out.



APPENDIX A

A.1. THE FUNDAMENTAL DEFINITIONS

The Continuum

A continuum represents a continuous distribution of
structureless matter. The very concept is, therefore, a
macroscopic notion,

Homogeneity of Continua

A continuum is homogeneous if the physical properties
(or physical constitution) thereof are independent of position,
Y.

Isotropy of Continua

A continuum is isotropic at any point, r, if the physical
properties are independent of direction (orientation) at this
point. A continuum, the physical properties of which are
dependent upon direction at any point, is referred to as a "non-
isotropic”, "aelotropic", or "anisotropic" continuum,

Stress

If a very small force, oF, acts on a very small area, AA,

then the state of stress experienced by the element of area is

defined to be ;
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The stress distribution, i.e., the way in which the stress
vector o is distributed, over infinitesimal distances, da,
is assumed to be essentially Linear. This disallows the
existence of any discontinuous functions. Then,

dF'(E;) = E;(FE)da
[or in words] if the stress vector at the centre of mass is
muitiplied by the differential area of the face upon which

the stress is acting, the stress resultant for that face is

produced.

A.2. THE GENERAL NATURE OF TENSORS

A tensor of any order is a multilinear vector form
which remains invariant under a rotation of coordinates.

It is observed that a tensor is thus defined in terms
of vectors (i.e., a tensor is a "vector form"). No attempt
will be made to define a vector in more primitive terms.

Since tensors are multiply-directed quantities, this
gives rise to the following "classification".

SCALAR: a tensor of the 0% order

VECTOR: a tensor of the 15¢ order

DYADIC: a tensor of the Z"d order

TRIADIC: a tensor of the 3"

order

POLYADIC: a tensor of the n®D order



Employing the EINSTEINIAN Summation Convention for

repeated indices, these forms are represented in direct notation

as follows:

SCALAR: T
VECTOR: T=Te

o o
DYADIC: I = Taseaes
TRIADIC: T =T=T ce%

oaBy a By
’ n e

POLYADIC: T =T eeee e

The subject of elasticity in general (and shell theory
in particular) deals with tensors which are primarily of the
second order, i.e., dyadics. Accordingly, the following section

deals exclusively with such quantities.

A.3. PARTICULAR DYADICS OF INTEREST
A.3.1. The Identity Tensor

The identity tensor ("idemfactor', or "eigentensor") is
defined as

1=¢, &

This definition naturally arises, since the identity tensor must
be a tensor, the fundamental property of which is to reproduce
any quantity taken in (dot) product with it. For example, any

vector v could be written as

A3
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il
<

[ ]
—
(1]
o
S

]
<|

[ )
—itf]

1]
<]

thus, 1 = @,8, + €,e, + 6se3 for the.summation_over three
directions in Cantesian space. Unless otherwise specified,
repeated indices in this discussion will be assumed to sum
over three directions. |

The identity tensor reproduces also, any dyadic

taken in dot product with it,
T=Tel =1

—H
n
—u

o |

thus, | 1="e.0.8.. = €.6.
iv§713 iti

where sij is the (simplified) KRONECKER DELTAsdefined as:
Gij 0, i #3J

Gij =1,1=]

A.3.2. Conjugate Dyadics

If a dyadic, ?, is given as

T=T..e.e.
1371773
then the conjugate dyadic is defined as
T =T..e.e.
c ji
OR T =T, .e.e.
- c 1] ]

The conjugate of a dyadic is thus precisely analogous to the "transpose"
of a matrix. It follows obviously that

(Tc)c = (Tjieiej)c = Tijeiej =T



A5

A.3.3. Symmetric Dyadics
A dyadic is defined to be symmetric iff

or, as T = T..e.e. and T = T..e.6.
157175 c 3JiTiT]

then for symmetry,

. c ij ji’ otivj
which requires that the components, Tij and Tji’ be equal.

A.3.4. Antisymmetric Dyadics
A dyadic is defined to be antisymmetric iff

=-T

c

+T =0=(T.. +T..) e.e.
ij ji

c 173 )
which requires that the components, (+Tij) and ("Tji) be equal.

1
-1

or,

It is to be observed that in the case that i = j, the above
requirement is that (+Tii) must be equal to ('Tii)' This is
possible only for T.. = 0; therefore the principal diagonal of
the nonion form of an antisymmetric tensor vanishes.

The “nonion form" of a dyadic is simply its representation
~in fully-expanded form, written as an array for convenient use of
such familiar matrix terms as "principal diagonal", etc.; the

nonion form of a general tensor, ?, is as follows.
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Tiieje; + Tipejey + Trzejes
T= + Toi1eze; + Tozesey + Tazezes

+ T31eze; + T3peze, + Tazese;

A.3.5. Resolution of a Dyadic

Any dyadic may be resolved into two other dyadics of
particular interest, namely a symmetric and an antisymmetric
dyadic. Denoting the symmetric part of T as T and the

TGD

antisymmetric part as » then consider the identity

I_n

-=r

[F+7 1+ F-73

[AC]

as [T+7 1 =[T +T1=[T+T]
then this part of the tensor is symmetric. Similarly, as
F-%1 =0, -7

is antisymmetric.

- [T - TC] then this part of the tensor

Then T-7@ 7@
:(A) _ 1 = =
where T E'[T + Tc]
— (a) 1 r= -
T ?-[T - Tc]

A.4. THE ALGEBRA OF DYADICS

Any dyadic, D, may be considered to be the sum of the juxta-
position of vector pairs, say ﬁiﬁi = B. (This holds as long as
the dyadic D is real, as the real number system is closed under

multiplication and is, in fact, a field.) This representation affords



one explanation for the various products, while the summation
notation provides another. The two are, naturally, equivalent --
but one or the other may be more useful for some particular

purpose; accordingly, both are discussed here.

A.4.1. Single Products of Dyadics
A.4.1.1. Dot Product

a) with a vector

Dinect: D-v=(mn)v=mnmnv)=mV)nm
Swnmation: DV = Dijgié—j' Ve,

= DijvkE;(Eg-Ek) = Dl]vkégajk

= Dy;vs; RESULT: A vector

D
=D,.T e.(e.-e)e =D,.T e.eé
»r S R
D..T. e.e RESULT: A dyadic

A.4.1.2. Cross Product
a) with a vector
Direct: DxVs=(mn) xV=mnxVv)

Summation: D Xx v = Dijeiej x‘vkek
= Dijvkei(ej Xe) = 15Vk81" 5%l
= DijvkEjkreier RESULT: A dyadic



NOTE: The symbol E is used here to denote

afy
the LEVI-CIVITA Three-Index Density Function

It is defined as:

EaBY =0 fora=80r B=y Ora-=y
=+ 1 fora#B8, B#7Y, a # v, and
cyclic order is maintained
= -1 fora#8,B8#vy,a#y,and
cyclic order is not maintained.
b) with a dyadic
Direct: BxT=(@m x (53 =7 @ xP)q
Summation: D x '_'l" = Dljelej x T, €.&
= DijTrsei(ej X er)E; = DijTrsgiEjruE;E;
=D,.T_E. e.ee RESULT: A Triadic

ij'rs jruiTu’s

A.4.2, Double Products of Dyadics
A.4.2.1. Double Dot Product

Direct: D:T=(mn):(pq) = (mp)(n-q)

Sumation: D:T = e.e.:T_ee
ijtivj"  'rsr's
= DijTrs(ei'er)(ej ) Dl]TPSGlPGJS
= D..T.. RESULT: A Scalar
1] 13

A.4.2.2. Double Cross Product
Direct: Dy T= (@M X (3 = (@xp)NAx7)

A8
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Summation: D ;( T= Dij_e—lgj ; Trs_érEs
= DigTrs,(Ei X -é-r)(_é-j x eg) = DijTrsEiruequstv
B DijTrsElru jSVE;—
= 0T 8l ve e, RESULT: A Dyadic
where sﬁﬁz is the Generalized KRONECKER DELTA

(see any standard work on Tensor analysis)

A.4.2.3. Mixed Dot and Cross Product

Dinect: DxT=@mx(pa) = (mp)(nx7q)
Summation: D x T = Dlj'é'i_e—j X T o€
= DijTrs(E;.E;)(Eg X e ) Dlers 1rE]suEL
= DijTiSEjsuE; RESULT: A Vector
Similarly,
Direct: DXT = P9 = (mxp)(ng = (nq)(mxp)
Swrmation: D X T = 013—1_3)-( T €8
= Dl] rs(e X e, )( ) DlersEer—Bjs
= D; TPJEer"V - RESULT: A Vector

NOTE: From the above discussion, it is evident

that the double products are commutative,

ol
—jli
n
-
ol

i.e,

o
-

n
4
.ol
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A.5. DYADIC INVARIANTS
A.5.1. The First Scalar Invariant
= (1) =
~The first scalar invariant, D S of a dyadic, D, is

defined to be

=D = =
D = D:1
S
Th 5P . 55 EE - e.ce_)(e.*e )
us D -_Dijeiej.erer = Dij(ei er)(ej e,
=D..6. 8. =10
o ij irdr Ty
or D = (Dj; + Dy + D33) in expanded form. In

)

matric form, B(é) is equal to the sum of the elements of the

principal diagonal, and is known as the trace of the matrix.

A.5.2. The Second Scalar Invariant

‘ - (2 -
The second scalar invariant, D<; , of a dyadic, D,

is defined to be

=x==
b =% B XD
= (2) D22 Doz D11 D12 Di1 D12
or D s = + +
D3, Dsj D3; Dss D21 D2z

(@)
In matric form, D o ‘represents the sum of the minors of .the

matrix, expanded about the principal diagonal.

A.5.3. The Third Scalar Invariant

= 3 =
The third scalar invariant, Dﬁg , of a dyadic, DB, is
defined to be
= (3)
D

21 &
s 3l 0

o

=X
DX
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Di1 Di2 Dis

- (3)
or, = D21 Do2 Dos

D31 D32 Dss

=3
In matric form, D _ represents the {ull determinant of the matrix.

A.5.4. The Vector Invariant
The vector invariant, ﬁv (sometimes, 5X), of a dyadic,

D, is defined as

(= =D X7

ol

X

o3
]
—ll

—
-—h
O
}
o |
o
1}
[(2]
—
(e}
(o)
+
D
N
(-
N
+

;0 = e3D3 (the “trinomial® form of the
dyadic), then, |
b, =1 X e;D; = Eix D;
or BV=(_e-1x_51+-é_zxﬁz+-é-3x53)
[t 1s observed that if the dyadic were expressed as the juxta-

position of two vectors

(say) D=mn as before

then l=)v=7xmﬁ
=7x[%—(ﬁ1-ﬁ-+ﬁﬁ)+%(—3-57n_)]
= (@xn 4+ xm 45 (Mxn - xm

The first term vanishes asnxm=-mxn

S0 DV %—(mxn-nxm)=%—(ﬁxﬁ)=(?ﬁx'ﬁ)

Thus, the vector invariant is obtained solely from the antisymmetric
part of the dyadic. Thus, this is a criterion for dyadic symmetry =--
if the tensor is symmetric, the antisymmetric part does not exist

and consequently, fon symmetrnic dyadics, the vector invariant vanishes.



A12

By a similar argument, it is easily seen that {on an

antisymmetric dyadic, the §insit scalan inveriant vanishes.

A.6. THE LAGRANGIAN FORM OF TAYLOR'S SERIES EXPANSION FOR A
POINT~FUNCTION
In the differential calculus, the TAYLOR's Series expansion
is usually developed as
d o2 o, d
F(x + ax) = [ D4 gy (00 + g S axf e Snen)” ] F(x)
dx dx
However, there is a direct one-to-one correspondence between this

representation and

Z _ 1 1 y4
e~ = 1+ Ti 2 + 5| 2 T d Tz

(where e is the base of natural logarithms)

such that if z = %;-(Ax)

“and [%;-(Ax)] " is understood to signify gﬂﬁ-(Ax)n
dx
d .
[—c&' AX] [ 1 d 1 d? 2 1 d" n
th = + + - + s e + - - A
en e 1 T X (ax) 71 2 (ax) nl P (X)
and therefore, it may be said that
| ol
F(x + ax) = e F(x)

or, as %;(— is non~operative re: &x, this might be written, to

d
[AX H)?]
F(x + ax) = e F(x) ceeee {A.6.-1.}

avoid ambiguity, as
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A.6.1. The Expansion for a Scalar Point-Function
Given a scalar point-function, F(x,y,z) and any parametric

variable, t, such that

a = alt), a = {x,¥,z}, then
F(t + at) = e F(t)

Now, since
d _ dx ., dz 3
T=T5WW%W+R57

dx 9 )
S0 At E st t At HX'"“'+ it H— 3z

With reference to the usual concepts of EUCLIDIAN three-space,
it may be concluded that zy"'a" »as a "pseudo-geometric (or affine)
proportiona]ity".

3 3 3

d = e 2
Then Ata—-Ax—a‘i'*'Ayay'i'AZaz r =

S T s T 4o
where r xe yey ze,

Therefore, for any scalar point-function, F(t)

2]

Fit+at) =e  °" F(t) e {AE.1.-10)

A.6.2. The Expansion for a Vector Point-Function

Having established {A.6.1.-1.} for scalar point-functions,
then it is but a simple step to specify that scalar point-function
in terms of a constant vector in dot-product with a vector point-

function.
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VIZ: (say) F(t) = a*F'(t) [a # a(r)]
From this, it follows that 37
T
F(t + at) = ek 2% [@Fi(t)]
;&7._3_%

[ T F(t)]

Therefore, the TAYLOR's Series expansion for a vector point-

function appears as )

3
Fr(t+at) =et o™ Frg)

A.7. THE LINEAR THEORY OF STRAIN

It is assumed that the deformation of a continuous
medium is homogeneous; i.e., infinitesimal vectors, dr, may
deform to infinitesimal vectors, dR, but not to infinitesimal
(or finite) curves (see Fig. A.7.-1.).

In Fig. A.7.-1., the quantities (dree) and (dr-¢) are
the components of du, parallel to and perpendicular to dR,
respectively.

From Fig., A.7.=1., it is seen that

dui =u (r+dr) - u(r)

Expanding u(r + dr) as a TAYLOR's Series expansion:

L
T(Fed) = °YOUm
e Eel @ELpe.. T
or ar 4



Fig. A.7.-1.

Assuming a first-order approximation to be sufficiently accurate

for the linear theory, then
T (F+ dr) = T(r) + dre &
, or

Therefore,
di = [U(F + dr) - W(r)] = d~
or

- du = dF-a—E_
ar

A15
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which represents the total relative displacement of dr.

Referring to U = 9% as the deformation tensor

a7 -
(sometimes: displacement ghadient), then by allowing u to

be decomposed into its symmetric and antisymmetric parts

(see 5A.3.5.), then the total relative displacement is composed

U}

of two parts: -

=
d—.._.._ = dpe ,au + __U_a—:! + -
ar Lar ar | 3r

S |

c|

U

o] —
i
=1

ji.e., the relative straining displacement is given by

[uRll

dye

i
i
l

J

rf—

N
—
Q Q
1I|cl
[-%] CI
R IRCH

where ¢ is the strain tenson and the relative
(rigid-body) rotational displacement is given

by

-]

T |
; dre] 34 _ U3 o 4
ar  or
where ¢ is the rotation tenson.
Recognizing that the form of the rotation tensor is analogous
to

Ax (BxC)=(AC)B - (AB)T

[fF x (Tx-2)]
ar

then dr « % ='%

thus, the relative rotation of dr, i.e., dr- ¢, may be given

Qo
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3
oI

n
O} -
Q2
@ I X
3 o

x

8

Then, in summary,
a) the relative rigid-body rotation of dr during deformation is

given by

=_;_ BX_—def;
or

-l

d?\—o

b) the relative straining displacement of dr during deformation

is given by

A.8. THE SEGNER EIGENVALUE EQUATION FOR DYADICS
Consider first, the development for a vector rather than
a dyadic. Although somewhat trivial, this serves to clarify the

basic conceptions.
vy

Z F’igg Ao8o-].
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In Fig. A.8.-1., the vector v may be given as

vV = vaE; (sum on & = X,y,z)

It is desired to represent this vector (V) in such a form that
it will have its components maximized in one direction ahd
minimized in the others. Hence, a new coordinate system (say,
the §,, €, 83 system) is sought which is different from the present
(e, E;, e ) system.

This is a minimum-maximum or extremum problem, since Vv
has its maximum along e; (arbitrarily chosen from e;, e, and e3)

and therefore, its minimum components along e, and ej.

Now, v = vaE; = (vee ) e

(for Cartesian-base unit vectors)

For an extremum value of va.

dv, = 0
o) 6(v-ea) =0
or svee + vede =10
[o (o]

However, the whole vector, V, is an invariant quantity, so

v =0

Thus, iﬁéea =0 ceees.  {A.8.-1.1

The constraint condition enforced for the variation is
—+_ o—+— =——o—
(ea 6ea) (ea 6ea) e, e,

or, neglecting second-order variations,

e e + e +8e + 8e e =¢e e ceess  {A.8.-2.}
[+ [0} o o3 o ¢} o a
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In words, this could be stated as: the variation of E& must not
change its length; this implies a rotational variation. Thus,

from {A. 8."2. } ’

_0—+_o— —o_z‘
e de * de e Zea Se 0

i}

SO e +se o .. {A.8.-3.}
o o

Such a constraint condition would be formally referred to as the
construaint condition on the variation of the axis of refenence.
The rotational nature of the variation would allow GE; to be
expressed as &¢ X E; , if desirea -- thus 1ndiéat1ng that 53; has
no component in the direction of E;.
Examining {A.8.-1.} and{A.8.-3.}, it is seen that these
are proportional equations.
Therefore, vede = A e e,
where the surplus scalar factor, Ay is called
the eigenvalue (or "éharacteristic value").
Then (v = AaE&)-éE; =0
and for nontrivial variations, se_, then
| Va-aie (no sum on o now)
) Vv=2ie (no sum)
The eigenvalue Ay thus prescribes the extremum for the direction E&.
Having thus described the underlying basis of the extremizing
process, this procedure will be now employed for a second-order tensor;

in this case the result will not be so obvious as for the above.



Any dyadic can be given as

T=T..e.e. (as before)
137173

and the trace of its matrix form, as

A20

According to EULER's Extremal Property for the Principal Directions

of Tensors, the main diagonal terms assume extremal values.

3 = S =
i.e., T, = extremum, so 6T =0

It is noted that GTaa = 0 is a necessary, but not a sufficient

condition for an extremal value. It may then be said that t

he

necessary condition for the extremal value of Taa is the stationary

value: 8T o = 5(ea-T-e ) =0

or 56’0-7-3 + @ +6Tee +e<Tee =0

or, as T vanishes (? itself being invariant) then

§e +Tee + ¢ +Tese =0 ..
Qa o o

o
Iff the tensor is symmetric (% = 70), then {A.8.-4.} becomes

2e +Tese_ = 0
[0 ] a

0

or eaoT-éea ceees
The constraint condition on the variation is again given as
"restriction to variation of rotation"
i.e. e e =0

[0}

a ses e

the

{A.8.-4.}

{A.8.-5.}

{A.8.-6.}

Now, as {A.8.-5.} and {A.8.-6.} are proportional equations, then

e +Tese = (e.+6e.)
o o1 o s} o}

where s is the eigenvalue, as before.
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Then (€ +T-xr €)ese =0
o QG QO a

and consequently, for nontrivial GE;,

—é- 'T - )\ —e— = 0 LI I '{Ao8o-7.}

Q Qo o

Now, it is always possible to say

e = e "
(¢ [+

so, {A.8.-7.} becomes
eeT -2 8+1=0
o

or e« [T-2 T]

t

0 cosas {A.8.-8.}

where (T - AaaT) may be referred to as the elgentensox.

It is now desired to solve for both E& and A, but one more
relationship is required in order that the number of equations be
equal to the number of unknowns (determinate form). This relationship

is actually available from the criterion E;-E; = 1, Then, proceeding,

—

€ =% (8T +&T +¢&T
o o X X vy A

T + 0T +L°T
a o a

where Zi is the cosine obtained from the product

- - _ = 8
eB ea = Cos ¢ Za

Accordingly, {A.8.-8.} becomes

- =\ _ rp¥¥ Ve ZF X— y— Z—
(ea T Aaaea) [ﬂaTx + zaTy * LT - (Le, * zaey +Le )]

= [P¥(F = = - Z= —_

- [EG(TX - Aaaex) + Ka(Ty - Aaaey) + KG(TZ - Aaaez)]

= (K + K +2°K) =0 veeee  {A.8.-9.}
o X oy oz

where Ai = (Ti - Aaaei)
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From this ({A.8.-9.}), it is observed that for the three vectors,
K&, to sum to zero, then they must satisfy the physical interpretation
of a closed, spatial triangle. Hence, these are three coplanar
vectors, and for such a case, the relationship (expressing zero
volume)
ﬂ;-ﬂ& xA, =0

is valid. In original form, this appears as

(T, - Aaaé;)°(f§ - Aaa5§) x (T, = r,e,) =0

or, expanding,

-2 (ex-ey xe )] =-0 _ ceeee {A.8.~10.}

For the Cartesian unit vectors, E;-E; X E; =1 and if E; be represented

-by e, X e, (etc.) in the coefficient of A g and allowing e, x e, to be

- 2
represented by e, (etc.) in the coefficient of Ayo» the A.8.-10.

becomes

3 2 - —
(} A+ xaa[égoT; + ey-T& + ez-T;]

+ Aaa[(é& X E;)-(T; X T;) + (5; X E;)-(T; X T;)

P X E) T X TYI+ T, xT1) =0 e (ATl

However, the coefficients of AZQ are seen to be the expanded form

of the scalar invariants of the tensor, T.



A23

That 1is;
ST +T.T +3 ——='=-7'(D
exoTX ey- y eZ-TZ— 1:T = s
(e xe ) (T x Tz) + (e xe ) (T xT.)+ (e x ey)~(Tx X Ty)
_] =X==_=(2)
=7 Ty =Ts
= % ._._'l :x—=_=<3)
xyXTz""B"lTx "'TS

Therefore, equation {A.8.-11.} may be written as

=3
z

S

A -
o S e¢)

=0

3 =) 2 = (2
T A+ T A

S.
= (D)
TS

to as the invariants of the Eignevalue Equation, and E; are the

which is the SEGNER Eigenva]ue.Equation. Hence, are referred
invariant directions.
NOTE: The quantity X o is sometimes referred to
as the EULER-LAGRANGE Multiplier. Generally,
in the literature, the aboVe development is-
presented as:
if F = extremum, then 8F* = (
where F* = F + X¢ ; the X being defined as above,
and ¢ being the constraint condition(s). In this
case, the constraint condition would be
$=0=(1- E;-E;)

or e e =1



B.1. NOTATION TRANSFORMATIONS

B.1.1.

APPENDIX B

GOL'DENVEIZER

Vs,

cccccccccc

cccccccccc

oooooooooo

oooooooooo

This Author

%‘(¢12 *0p1)% €35

%-(¢12 + 921) = ~el

$13
923

$12

K
Qo

-+

$21)
- $12)
e® )

[¢]e)

——

'Klz(élz + ¢21)

7
1
g‘K21(¢12 + ¢51)

1

5 <11(¢12 * 621)
%‘K22(¢12 + ¢21)
1 5(612 * ¢21)

Z 351

1 3(¢12 + ¢21)

2z 35,
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B.1.2, NOVOZHILOV Vs, This Author
€1  eeecesescescacaasans ¢11(= €%1)
€2 ceetecenacsaans ceres 922(= €82)
w3y cecctercanas ceseanee $12
wo ceessecsecssccrrsnee $21
w C eeeececseceesnsnaas (612 + ¢21) = 2e%2
K1 cesecscssseacscccvnne §k11
Ko cececeenaas ceceneans ka2
T1 ceesnscsscesscensans =8k1p + k11912
To ' cesesescscsssess ceee Skp1 ¥ Kp2021

E'itheY‘ R -(SKIZ + K11(¢12 +4 ¢21)

T . esss s s
or sssvsseece GKZI + K22(¢12 + ¢21)

1 | ’
r ..."‘...l'......".. aa

o .

-é- . 9 6 0 0 08 66 080 0d e NEBe -é-

o3 ¢}

- —

ea 9@ 8 0 06900 0680 86000 PVes Ea

NOTE: These two expressions for t are identical
for the case (as considered by NOVOZHILOV) that
k12 = 0 = k7. See equation {5.2.~3.} when

kK12 = 0 = kp1..

*



B.1.3. REISSNER

€11

€12

€21

€22

B1

K11
K12
K21
K22
&)
o2

L)

a1

a‘z—( )s2

o

w

v1 and yp

'I .
Rus

Vs,

00 vs 0o encsons
e s 28600008000
¢e 0000 ess0vssons

e 0o ess s 000 a
n‘.ot.ooaouacoo.--l
G668 0000000000
Sese0enesesss s

s e sdsves et

®e 000000 0000svc00s
@9 s s s 0000 csste s
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This Author

$11(= €%1)
%’(¢12 + ¢21) = €95
%‘(¢12 + ¢51) = €92
922 (= €32)
= ¢13
- $23

1
sk11 + 5 k12(012 + ¢21)

Sk1p F %‘K11(¢12 * ¢21)
ka1 * %‘K22(¢12 + ¢21)
Skap = %‘K21(¢12 + 621)

g1

1
7’(¢12 - $21)

Zero1~

+ NOTE: vy, and y, are set equal to zero by REISSMER for comparison

with other works,

When y; and y, are not equal to zero, they

have no counterpart in this work.
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KOITER VS. This Author
€1 Ceeecesersanns ¢11(= €%1)
€ Ceeeneaciecnas 922(= €32)
¥ tecessecccsnen (612 + ¢21) = 2e12
3 tecsetccnes oo - 913
$2 . eesececesences - ¢$23
) ceseesreccenes %‘(¢12 ~ $21)

. €11

1

-R-z—“ ssereceeccccce Koo

T cecescscsesess =K1z

u cescssescansae ug

v coscsscesarses us

W cesescssscnsas -u§

NOTE: KOITER's quantities ky, xp and tv

represent the "change of curvature" of

ﬁ%—', §%~ and T, respectively. This is

thoroughly discussed in §B.2.
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. B.2. A GENERAL COMPARISON OF THE RESULTS PRODUCED BY THE DIRECT

KINEMATIC METHOD WITH THE RESULTS OBTAINED BY THE NONKINEMATIC
METHODS OF OTHER AUTHORS

The classic paper of KOITER, in 1959, discussed the results
obtained in some thirteen different books and papers, with respect
to (primarily) the expressions for the changes of curvature. KOITER
noted that no less than ten different expressions had been put
forth by the thirteen papers -- each set of results having been
derived under the assumptibns of the same (linear) theory. His
object in the paper was, as the title specifies, to provide "a
consistent first approximation in the general theory of thin elastic
shells" [italics mine]; the expressions for the curvature changes
simply provide a convenient vehicle which facilitates the comparison
with other authors.

This author has taken the liberty of reproducing KOITER's
tabulated results in Tab]e B.2.1., and appending his results to the
1ist (at the end of the original 1ist). The table is given in |
KOITER's notation, in deference to that author, but it may be
re-converted to the notation employed in this work, through the use
of §B.1.4. above.

In a note above the table, KOITER explains the meaning of
the tabulated quantities by the following statement:

“The‘entrances in this table indicate the corrections Axq,
bkp, At which must be added to our expressions for «; , kps7 in

order to obtain the expressions in the cited references, Where
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necessary, adjustments for sign and/or a numerical factor 2 have
been made to achieve conformity with our notation. Essential
differences in the sense of paras. 2.5. and 3.5. are marked by
an asterisk. References employing the lines of curvature as
parametric curves are marked by a small circle".

It can be observed, from Table 8;2.1., that the corresponding
results of this preéent work -differ from KOITER's results for all
"eurvature change" expressions by a multiple (which is a numerical
factor times a curvature) of the shear strain between the orthogonal
parametric curves (i.e., v). KOITER has shown that such a difference
is not an "essential difference", for as he states in §2.5. of his.
paper:

"In particular, it is therefore permissibie ceses tO

add to the expressions for the physical components of

the changes of curvature and torsion (xi, ko and t)

terms of the type e/R (where ¢ is any of the middle

surface strains €7, €5 Or v , and R is any radius

of curvature or torsion of the middle surface R;,

R, or T), multiplied by a numerical factor, provided

this factor is not large compared to unity.".

Such a conclusion, as given by KOITER, is implicit in the
kinematic development of the deformation parameters.(Chapter 4.),
although with (admittedly) less stringent mathematical criteria

as a basis. Consider §4.4.; the variations of the unit vectors
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€1, €, €3, aS a consequence of the process of deformation, were

developed and given by

the following relations,

Sep = my(¢10e, + ¢13€3)
Sey = My(4p1€1 + ¢p3€3)
§e3 = -myo13€] - Mpdp3er
Sel = - my¢10e0 + Mpop3es
§€Z = my¢p18p - Mydy3e3
_ 1 . w
where m; = T+ 901 TF S,
> (as before)
I
and  m = T+ 620" 1+ €3, )

e; = - e
and e, = e}
then consequently,
Sey = -8e
and e, = del

Either one of these two equalities was then seen to reduce to

Mid12 = -M2¢d21 {B.2.-1.}
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This result was not pursued further in §4.4., for the reason that

when it is carried to its logical conclusion, it allows a "free-u

choice" to be made for fhe forms of the terms in the quantities

dKij -~ a choice which was not desired at that time, if the

kinematical forms were to be obtained with no a paionl prejudice.
Now, however, if equation {B.2.-1.} is subjected to close

scrutiny, in the Tight of the procedures employed in Chapter 4.,

the following ensues.

From Mid12 = =Mpé23

it is observed that the approximations which were subsequently

employed in Chapter 4

i.e., that m1=-l——+—]—€'3i-r=] (as €31 < < 1)

and m = T_"'—Le—g-z_—'= 1(as €3, < < 1)

produce the relationship

¢12 s - ¢21 IR .{8.2.-2.}

Before proceeding further in this discussion, it is
important to note that such approximations as m; = 1, etc., are
not additional approximations to the linear theory but are rather
necessary ones, required for the purpbse of maintaining all
expressions at the required level of accuracy. That is, if such
approximatiqns’were not made, the mathematical operations would
accumulate terms in the various expressions which would be far
beyond the level of accuracy warranted (or'a11owed!) by the initial

restrictions of the linear theory.
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Returning to equation {B.2.-2.}, it is seen that this
result affords two "physical" interpretations. The first is
that, although ¢;, and ¢,1 are separately non-negligible, the
combination of the two as (¢12 + ¢21) may be considered as
negligible. This approach has the inherent disadvantage that
the resulting forms of various expressions would not reveal
the position occupied by the quantity (¢1o + ¢21), thereby
destroying (in part) the conceptual unity. The second approach
is to consider {B.2.-2.} literally in the form in which it is
shown above. That is,‘considér'{B.Z.-Z.} to specify the fact
that ¢;, may be replaced, at any time, by -¢51 with negligible

error resulting from the substitution. This, then, implies
$12 = %‘(¢12 - 421) = %‘(¢12 - 3¢21) = (etc.) = =¢21  {B.2.-3.}

which explains why a "free-choice" for the form of terms would
then be possible,

If this result ({B.2.-3.}, above) were employed in the
'expressionS‘for GKij’ then all such expressions would agree in

form with the corresponding results obtained by KOITER.
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[ Cont'd

invariants

- of dyadics A10

- of surface tensor 60
isotropy of continua Al

kinematic
- compatibility equations 122(f), 130
- method; comparison of B5
~ theory of deformation Al4
Kirchhoff's hypothesis 98, 114, 182
Kronecker delta, simplified 56
» general A9

L

Lagrangian form of Taylor's series Al2
Levi-Civita

- parallel displacement of 83

- density symbol A8
linear theory of shells 98
Tinear transfer, integrable 83
lines of curvature 38

- as parametric coordinates 49
Love's first approximation 113

M

Mainardi-Codazzi equations
- orthogonal parametric lines 77, 82
- non-orthogonal parametric 11nes 83, 92
- re: compatibility 123 -

mean curvature 34

metric form, fundamental 16

- metric measure in parallel surface 110

Meusnier's theorem 20, 54

middle surface 93
- strains in 97

mixed products (dyadics) A9

moment equilibrium equations 158(f), 180

N

norm (of tensor) 67

normal curvature 20, 44, 51, 65
- extremal 27 -
- principal 27

normal, principal 21



N Cont'd

normal radius 21
normal section 21, 27
normal vector 3, 4, 15
notation
- of Gol'denveizer BI1
- of Novozhilov B2
- of Reissner B3
- of Koiter B4

0

orthogonal coordinates 50

orthogonal systems 36

orthogonality of principal curvatures 33
osculating circle 6

osculating plane 6

p

parallel surface 108

- directed derivative in 112
parametric coordinates 13

- as lines of curvature 49
parametric lines 40

- orthogonal 41
permutation symbol A8
position vector 1, 13
positive definite form 16, 18, 25
postulate

- of Hessenberg 83, 124

- of Kirchhoff 98
principal coordinates 41
principal curvatures 33, 45, 46

- of equations of 29
principal normal curvature 27

- directions of 27, 30

- equations of 29
principal radius of curvature 38
products of dyadics A7(f)
pure curvature 44

R

radius of curvature, principal 38
radius, normal 21
rectifying plane 11
resultant, stress 171
, moment 179



R Cont'd

Ribaucour triad 42

Rodrigues' equation 38, 45
rotational strains 97

rotation tensor 102, Al6é

rotation vector 6, 11, 44, 46, 102

S

Saint-Venant compatibility equations 132(f), 139
scalar invariants (dyadics) A10(f)
Schroeder's strain tensor 121
second fundamental form 22, 23, 26, 58
second scalar invariant (dyadics) A10
Segner eigenvalue equation 68, A17(f)
Serret formulas (see Frenet-Serret formulas)
$ell 93
Sophie Germain curvature 34
space curves 1(f)
statico-geometric analogy 173
strain rotations 97
strain tensor Al6

- middle surface 121 -

- parallel surface 114, 120
strains Al4.

- middle surface 97
stress Al
couples 179, 187
resultant tensor 182
resultants 171, 186
resultants as functions of strains 182
tensor 159

- vectors 178
surface

- area (as positive definite) 18
area (differential) 15
curvature 20
curves 44
directed derivative in 55
middle 93

- spherical image of 69
symmetric tensor 62, A5

T

tangent vector 2, 4, 14
Taylor's series expansions Al12(f)
tensor (see also "dyadic") A2

- conjugate 119

- deformation 115, A16

- identity 57, A3



T Cont'd

tensor (cont'd)
- norm of 67
rotation Al6
strain 120, Al6
stress 159
stress resultant 182
theory of deformation, kinematic Al4
third fundamental form 60
third scalar invariant (dyadics) Al0
torsion 8, 9, 12
- geodesic 44, 65
total curvature 34, 69
transformations, notation B1(f)
- Gol'denveizer B1
- Novozhilov B2
- Reissner B3
- Koiter B4
transverse strains 182
triad, Frenet 8, 42
» Ribaucour 42

U

unit tangent vector 2, 14
unit vectors 42

- variations of 100

~ for deformed middie surface 95, 100
unitary vectors (see "base vectors")

v

variations ‘
- of unit vectors 100
of curvature 105, 107, B5(f)

base 14, 94
binormal 6, 42(f)
Cesaro-Burali-Forti 42(f), 63, 77
Darboux 11, 43
normal 3, 4, 15, 42(f)
position 1, 13
rotation 6, 11, 44, 46, 102
stress 178 :
tangent 2, 4, 14, 42(f)
vector invariant 61

- of dyadics A1l
vector triple product 80
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