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NOTATION

force magnitudes

displacement magnitudes

force vectors

displacement vectors

virtual displacement of a point "i"

virtual work of all forces in a finite system
a stress vector on.a surface S

body force intensity per unit (undeformed) volume
assigned force vector

bilateral constraining force vector
unilateral constraining force vector

virtual work of assigned and bilatera! forces
assigned stress vector

bilateral constraining stress vector
unilateral constraining stress vector
inertial or apparent force

time parameter

mass

position vector, undeformed configuration
position vector, deformed configuration
material acceleration vector

a point located by R

a region of the undeformed continuum
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a point located by T

a region of the deformed confinuum
the displacement of a point at R
parametric coordinates at Py and P
a volume element of By

a volume element of B

a line element along Oi in By
a base veéfor at Po

the basis spanningifhe space R
a base vector reciprocal to @;
the basis reciprocal To'{ﬁi}

the KRONECKER Delta

i .
a surface element on the surface 6~ = Constant in Byp

the magnitude of d§i
the directed derivative

a line element along o inB

a base vector at P

the basis spanning the space T(R)
a base vector reciprocal to 5}

the basis reciprocal TOY{EA}

a surface element on the surface 6* = Constant in B

the magnitude of dgi
the mass density at R
the mass density at r

an arbitrary line element at Pq
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an arbitrary line element at P

the identity tensor

the strain tensor

components of the metric tensor in R
components of the meiric tensor inr

covariant components of the strain fensorgf

a stress vector on a surface (9%) or (g 4 det)
an arbitrary stress tensor

an arbitrary stress vector on a surface'defined by 5;
a stress vector on a surface defined by -5;

a force vector on a surface As

a force vector corresponding to the stress Zg
the net force acting on the elemental volume dv
body force intensity per unit (deformed) volume
the displacement U plus U

a small real number

a vector such that nZ = 6U

a unit vector ccllinear with §i

the CAUCHY-GREEN "true" stress tensor

contravariant components of T

a force vector on a surface of normal §i
the TREFFTZ stress tensor

contravariant components of S

a unit normal to the surface § of B

a stress vector on S
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the
the
the
the
the

the

the
the
the

the

portion of S on which T; is prescribed

portion of S on which U is prescribed

strain energy density function

(total) strain energy of a volume V

potential function for surface stresses

sum of U° and V° ("total- potential energy")

prescribed stresses on St

prescribed displacements on Su

funciional of fhe Potential Energy Principle

classical complementary strain energy density function

functional of the Complementary Potential Energy Principle

infinitesimal version of Il

the

complementary strain energy of the CROTTI Theorem

comp lementary work for a particle

the

the

LIBOVE complementary strain energy

LIBOVE total .complementary (potential) energy

a point of prescribed location after deformation

the

the

discrete force at F?

CAUCHY-GREEN (left) deformation tensor

the MASUR complementary strain energy density function

prescribed location field (r* = R + U*)

"covariant" displacement derivative

as above

contravariant components of the Lagrange stress tensor

the

Levinson complementary strain energy density function
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the deformation gradient

[i] the displacement gradient or Lagrange strain tensor
T the Lagrange stress tensor

Y a potential (energy density) function

?,Tz.j;,f tensor-valued functions of tensors

u§ the present complementary strain energy density function
T the tensor reciprocal to T

K a constant vector

v the left stretch tensor

W the right stretch tensor

[) the finite rotation tensor

B the CAUCHY-GREEN (right) deformation tensor

? a strain measure based on B

D a mixed deformation tensor

T? a tensor which differs from T:by a rotation

E; ,E2 unit vectors in a Cartesian frame

B a numerical parameter

{a,b} a set of real positive or real negative numbers

F a solenoidal tensor

E;? tensor-valued funciions of tensors

{,m tensor-valued functions of tensors

f a function of T and T

4 an energy density function

T a stress tensor

uc the total complementary energy (volume integral of us)
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a redundant force in a finite elastic system

the MASUR formulation of the CROTTI energy

the undeformed length of a unidimensional element
the undeformed area of a unidimensional element
the location of the end-points of a unidimensional element
stress magnitudes in a unidimensional continuum
displacement-related magnitudes (unidimensional)
material constants

a stress parameter related to S

stress parameters related to T

elongation of a unidimensional element (LIBOVE)
elongation of a unidimensional element (this work)
displacement-related magnitudes (unidimensional)

a material constant

a general! stress-related tensor variable

a general displacement-related tensor variable
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INTRODUCT | ON

This work establishes the general Principle of Complementary
Potential Energy, for the case of finite deformations of a general
elastic continuum, in which the Lagrange stress tensor is employed as
the stress tensor variable.

it is demonstrated that the nature of the lagrange stress
tensor is such that constitutive relations which are formulated in
terms of this tensor and the deformation gradient will admit inversion.
The form of the Principle which has been proposed by LEVINSON, based
on the hypothesis of a similar constitutive inversion in terms of the
Lagrange stress tensor and the lagrange strain tensor (or displacement
gradient), is examined. 11 is then established that, as the constitu-
tive inversion has been shown to be possible, LEVINSON'S Theorem is a
valid formulation of the Complementary Potential Energy Principle. The
complementary strain energy densiiy function of the LEVINSON Theorem,
constructed as a Legendre transformation on the conjugate tensor
variables of that theorem (i.e., the Lagrange stress and displacémenT
gradient), is examined, and it is determined that this energy density
is a function of the rigid-body rotations of the displacement field.
The complementary strain energy density of The‘presenf theorem,
constructed as a Legendre transformation on the Lagrange stress tensor
and the deformation gradient, is then also examined, and it is
established that this energy density function is independent of any



rigid displacements. Thus, the complementary strain energy density of
the present theorem satisfies all pertinent requirements in order to
qualify as the basis for the constitutive relations of an elastic -
medium. |t is noted, however, that due to the nature of the Lagrange
tensor variables in the LEVINSON formulation, a constitutive relation
based on an energy density which is a function of rigid roTaTioné does
not constitute an error in the theorem. {t is, at most, an inconveni-
ence. Yet, as the present theorem avoids this condition, the Lagrange
stress tensor and the deforméfion gradient are considered to represent -
the appropriate conjugate tensor variables for the formulation of the
Principle.

The admissibility conditions for the stress tensor are pro-
nounced, and CAUCHY'S second axiom of motion is developed in a direct -
tensorial form which does not require the explicit use of reciprocal
base vectors of the deformed configuration. Consequently, both CAUCHY
axioms of motion (in this case, stress and stress-couple or "moment"
equilibrium) are established in @ form which is amenable to a stress
function approach to the problem. The relationship of the presenT
statement of the Principle to the other formulations, as given by
MASUR, LEVINSON and REISSNER, is examined, and it is demonstrated that
the four formulations arise as a consequence of the various possible
expressions for the strain energy density function.

The general form of the Principle is reduced to the form
appropriate to finite elastic systems, or systems of discrete forces.

In this case, the complementary strain energy of the LEVINSON Theorem



is established as the energy of the CROTTI Theorem (often denoted as
"CASTIGLIANO'S Principle"), and consequently, LEVINSON'S energy is
shown to represent the frue finite counterpart of the complementary
strain energy of the infinitesimal theory. Thus, it is established
that LEVINSON'S Theorem represents the generalization of the CROTTI
Theorem to continuous stress systems, in finite elasticity. The
present theorem is proven to reduce directly to, and therefore to con-
tain as a special case, the LIBOVE Theorem for finite elastic systems:
also, the present theorem admits a simple relationship o the CROTTI
Theorem, while retaining the property of independence of rigid
rotations. Thus, the present theorem is shown to represent the direct
general ization of the LIBOVE Theorem to continuous stress systems.

It has been necessary, in order o avoid confusion, to refer
to the theorem constructed in terms of the Lagrange stress tensor and
the displacement gradient as "LEVINSON'S Theorem", while denoting the
theorem formulated in terms of the lLagrange stress tensor and the
deformation gradient as "the present theorem" (a policy which is
followed throughout this work). However, it is proposed that the
terminology "LEVINSON'S Theorem" be employed hereafter to describe the
Comp lementary Potential Energy Princiéle in which the Lagrange stress
tensor is employed with either kinematic variable, as LEVINSON was the
first to propose the cons+rucfi§n of the Principle in terms of this

stress tensor.



CHAPTER 1

The Energy Principles

I.1. THE VIRTUAL WORK PRINCIPLE

The general Principle of Virtual Work, which provides the
foundation upon which much of the structure of noanelaTivisfic
mechanics may be constructed, yields for an elastic continuum, the
Potential Energy Principle and its dual, the Complementary Potential

Energy Principle.

l.l1.1. Historical and Inftuitive Development
The most primitive mathematical criterion of equilibrium of two

gravitational forces, F, and F2, acting upon a rigid horizontal lever,
‘may have been known to ARISTOTELES (or "ARISTOTLE": 384-322 B.C.),
and would then have been expressed in the traditional Hellenic

dimensionless form

A _ U | -
Fz = Ul {'n'ol. '}

In this relation, Uy and Uz denote the vertical displacements of the
lever at the points of application of the forces Fy and F2, respec-
tively.

This relationship could be expressed as a "work" equation,
Fili = FaU, RIN N

or in contemporary vector form,



FaieUy = F2-0; {1.1.1.-3}

and it is noted that a form similar to that of {i.1.1.-2} was well
known to HERON (or "HERO": cinca 60 A.D.), a Hellenistic mathe-
matician and engineer who possessed a considerable mastery of the
"work principle”.

The concept of Vintual Work, produced by actual forces and

virtual displacements, was employed by Galileo GALILEIT

(1564-1642),
René DESCARTES de PERRON (1596-1650), Evangelista TORRICELL! (1608~
1647), Christiaan HUYGENS de ZUYLEN (1629-1695), and others. It was
not until 1715, however, that the first mathematical formulation of
the Virtual Work Principle for a discrete force system was given.*

Johann BERNOULLI (1667-1748), in a letter to Pierre VARIGNON (1654-

1722), gave a formulation which would appear as

Fi-GUi = 0 {1.1.1.-4})

in contemporary vector summation tferminology. The system of discrete
forces is represented here as ?}, and GUE denotes the corresponding
set of compatible virtual displacements of the body. Inherent in
this formulation is the requirement that ?& = ?}(ﬁ) represents a
set of forces, each of which is a continuous function of the space,

R.

Referring to the quantity F, « &U; as the Virtual Work &W,

T References are given chronoclogically in the bibliography.
¥ Refer to Historical Notes, page C-19, Appendix C.



then
W = F.o8U, = 0 “{1.1.1.-5)

In the event that the system under consideration is a (hypothetical)
nigid continuum with applied surface stresses T; and a body force

infensify'F per unit volume, then the above relation could be given

oW = fan.GUds + ffff-éﬁdv = 0 {1.1.1.-6}
S v

where S designates the bounding surface of the volume V of the ’

as

continuum, and is the surface upon which the applied stresses T; are
assumed to act.

Jacob BERNOULLI (1654-1705) and later Jean LeRond D'ALEMBERT
(1717-1783) postulated that each force ?} could be resolved inte two
distinct, separate parts: The applied or "assigned'" force and the
constraining force. Joseph Jean-Baptiste FOURIER (1768-1830) postu-
lated, following BERNOULLI and D'ALEMBERT, that any force F& could be

represented as a superposition of forces:

F. = F@ 4 F® , 7@ {1.1.1.-7)
l 1 1 h

where ?;a) denotes the assigned force, ?;w

denotes the bilateral or

"reversibie" constraining force which is a continuous function of R,
={C, . . o . .

and F; ) designates the unilateral or "irreversible" constraining

force which is a discontinuous function of R.

In 1798, FOURIER further posiulated his celebrated Fourier



Inequality which stated, essentiailly, that the virtual work performed
by the unilateral constraining forces is always equal to, or greater

than, zero. Thus,

' FO.sU. > 0 {1.1.1.-8}
d b
in which case,
F@ .0 + FP . oU. = FO.6U. < 0 {1.1.1.-9}
i i i i i i .

or, introducing the +erminoldgy oW to denote all virtual work except

that which is produced by the unilateral constraining forces, then

s F@, g7 . D oar : .
oW Fl $ 86U, + FU 80, < 0 {1.1.1.-10}

For the case of the rigid continuum, the equivalent assumption

appears as

T = 7@ 4 7® 4 70 =11}
n b1 n n

and it follows that

& =ff‘fr§a’.s‘ads +ff TO . 6T ds
S : ,
+ff‘f1§°>-5Uds + fff?»a‘ﬁdv {1..1.-12}
JJ, |

v



since

ff‘fn‘c’~aﬁds > 0 {1 .-14)
S

in accordance Qifh the Fourier Postulate.

However, whether the "discrete force" form or the "rigid
continuum" form of this relationship ié employed, the fact remains
that for bilateral systems (systems without unilateral constraining
forces), the displacement §U and the reversed displacement ~8U must

yield the same result. Therefore, both

oW = “F-;a).gg‘ + Fy « 80 < O {1115}

and o= FR. (ol + FV (6l < 0
L [e@, g . w=®, - A
i.e. oW o= - [FP.o0 + F _au] £ 0 {1.1.1.-16)

must be true. This is, of course, generally possible if and only if

oW = fi(a). T + F;bf‘.gg =0 {1 .17}

This result represents the celebrated Virtual VWork Principle for bi-
lateral constraint sysfehs. In this formulation, it is assumed that
the system is static or meving wifh a constant velocity, and consists
only of a rigid body (or system of bodies). The corresponding result

for the rigid continuum would appear as

W =fjfx§mowds + ff‘r‘rib)'éﬁds + fff’f-d’ﬁdv = 0
S : v

s .
{1.1.1.-18}



where the distributed stresses act in the capacity of the discrete
forces of the previous representation. It is observed that this

equation may be given as

W = fanoé'u‘ds + fff?-aﬁdv = 0 {t.1.1.-19}
S v

if it is stipulated that T; is to specify only a bilateral stress
system.

In the event that the system is not a static (or constant
velocity) one, the effects of acceleration, in the form of apparent
forces, must be considered. Following the concepts of HUYGENS, Jacob
BERNOULL! (especially), EULER, D'ALEMBERT, and Lazare CARNOT, the

apparent or inertia forces FO

(b

are considered "ordinary" forces,
such as F® and F¥, and are considered equipollent to the reversed
material acceleration for the given unit mass of the system., Thus,

for a system of constant mass,

g _ _%[mgfc‘:] - {1.1.1.-20}

defines the apparent or inertia force in Terhs of the mass m and the
material acceleration %’of the body with respect to an inertial frame
of reference.

The Virtual Work Principle for discrete forces acting on a

rigid body under. bilateral constraint conditions therefore becomes,

in the general form

W o= FP.50. + FP .o, + F .
3 3 j j j 3



and the corresponding result for a rigid continuum appears as

ff @ . 6T ds +ff“‘b’~<suds
+fffr 8T dv +fff(dmr~6U) = 0 {l.1.1.-22}

The foregoing discussion represents the historical and
intuitive approach to the Virtual Work Principle for (hypothetical)

non-deformable bodies.

I.1.2, Formal Development

The fundamental postulate of the Virtual Work Principle is as
fol lows.

For a non-holonomic, nheonomic system, the necessary and
sufficient condition for a dynamic state of the system Lo exist 4is
that: Zhe work perfonmed by the force sysiem of the dynamic state,
over any admissible vintual displacements which are imposed on that
state, 48 equal Lo on Less than zero: &W < O

In the enunciation of this principle, a non-holonomic system
is defined as one in which the forces are polygenic (i.e., cannot be
derived from a'single scalar function); a holonomic system is, there-
fore, one in which the forces are monogenic. A rheonomic system is
defined as one in which the fotal energy of the system is not
constant with respect to time; a system in which the total energy is
conserved is then called scleronomic. Furthermore, the apparent or

inertia force of the dynamic state Is postulated, following Jacob



BERNOULL!, to be equipollent to the reversed material acceleration for
the given unit mass with respect to an inertial frame of reference.
An admissible virtual displacement shall be construed to
signify, in the most general sense, a displacement which is:
(a) hypothetical
(b) of such a magnitude that terms of the order of
its square (or higher) may be considered
negligible, in comparison with the quantity
itself
(c) instantaneously applied.
The most general (non-holonomic and rheonomic) system, as given in
the postulate, may be subject to reduction to a more restricted
system, if desired. The statement of the principle remains exactly
as given above for systems which are: non-holonomic and scleronomic,
holonomic and rheonomic, and holonomic and scleronomic. In conjunc-
tion with the latter case, if an admissible virtual displacement, in
addition to satisfying the criteria (a), (b) and (c) above, is also
required to be
(d) compafible with the kinematic constraints of
the system
(e) bilateral or "reversible"
then the general statement appears és follows.
Fon a holonomic, scleronomic sysiem, the neceAAaAy.and
sufficient condition forn a dynamic sitate of the system Lo eiiét 48

Zhat: the work perfonned by the force system of the dynamic state,



over any admissible vintual displacements which are imposed on that
dlate, must vanish: &w = 0.

Since this statement of the Virtual Work Principle restricts
the system to a holonomic one, and since the apparent or inertia
force is polygenic, such a force should be excluded from the '"force
system”" mentioned in the general statement. That is, the system
under consideration should be a static or constant velocity one.
However, as a time~integration procedure may be implemented to avoid
this difficulty in the case of the apparent force, such forces will
be admitted: the "scleronomic and holonomic" system will then be
understood to include systems which are "scleronomic and reducible-
to-holonomic".

The Virtual Work Principle, as given above for admissible
virtual displacements [which satisfy all five conditions (a) to (e)],
may be expressed mathematically for a continuum, as follows. Consider,
in Fig. l.1.2.-1 below, a point P in the undeformed body-r Bo. This
point is denoted as P in the deformed body B (after Bo has been
subjected to a displacement field U); thus Py and P represent the same
material point in two different states or configurations of the body. At
Po and at P, there exists a system of curvilinear parametric
coordinates 6, 82, 6% which define an elemental volume dV at Py and
and dv at P. The elements dV and dv are, therefore, infinitesimal

curvilinear parallelepipeds which are bounded by the surfaces

T The "body" denotes an arbitrary, finite region of the space

occupied by a continuum at some time, t.



(6%, 6%+d6™) = Constant.
Before an examination of the forces acting on the element dv
may be conducted, it is necessary to establish certain (differentiai)

~geometrical relationships of the system shown in Fig. 1.1.2.-1.

CFIGURE 1.1.2.~

A line element along parametric coerdinate 6} in the unde-

formed configuration By may be represented zs dﬁk, where
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@R, = Bt - 7, aol Uaa.2.41}

where the underscored indices indicate no sunmation on those indices
(indices not so designated are summed over the range |, 2, 3, as
usual). The independent base vectors @i of the directed base'{ﬁi}

are thus prescribed as

—. {1.1.2.-2}

@)
"

| o]
[
@

(™

in terms of the position vector R and coordinate 8*. The reciprocal
base vectors G- define the set of independent base vectors which must,

by definition, satisfy the relationship
R {1.1.2.-3}

where 6; denotes the KRONECKER delta. Therefore, the reciprocal

directed base is specified explicitly as:

= = = A
Gl = /é‘szea
62 = /é'g'sxa 5 {1.1.2.-4}
s _ 1l . &
6 = /é-Glez /
where G = G1°G2xGs = Gy x0Bp°*0G3 {1.1.2.-5}

A differential surface element dS; on the surface 8! = Constant

may then be obtained as
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&5 = c{ﬁzxdﬁs = (G, % B3)do%do?®

\
or dS; = G'/Gdo*de?
Simitarly, &5, = G*/Gdo'do’ Y {i.1.2.-6}
and dS, = G*/Cdolde?

/

for the surfaces 62 and 6%. The magnitude of any surface element

(the differential area) may pe found directly from {l.1.2.-6} as
&S, = | &5, | = Gettdodde* #5200 RIS
where il = gl.gt “{1.1.2.-8}
An element of volume dV may then be calculated as

&N = dﬁ;'dﬁzx({ﬁa

(Gy * G2 % T3)do’do?de’
or, by virtue of {I.1.2.-5},
dv = /Gdo’de?de® {1.1.2.-9}
Finally, the directed derivative is expressed as

2oy =520 {1.1.2.-10}
oR o0t

and is sometimes denoted as V( ), which is then called the
HAMILTONIAN form of the operator.
A line element along parametric coordinate 6% in the deformed

body B may be represented as dFi, where



I~

dF. = 20_ gt - g,de La1.2.-11)

i P i

ahdlihe independent base vectors §} of the directed base'{ﬁk} are

therefore prescribed as

— or N
9, = —r {1.1.2.-12}
or, since . r=R+ 1T . {1a.2.-13)
then 53 = ARV . 5 o4 A {1.1.2.-14}
] 1 ae™

The independent reciprocal base vectors Ei satisfy the

requirement

— - i : _
L4 - = 6. lo'c2-_|5
9"+ 9y 3 { }

and therefore appear, similar to the undeformed case, as

1 —
@ =

= /g 92 X gs A
- _ 1= = :
@ s pRaE } 01.1.2.-16)
- 1 - -
g® = /g 91 X g2 /
where G =_§1*§2 Xgs = 91 X§2'§3 {1.1.2.-17}

A differential surface element dsy; on the surface

8! = Constant may then be obtained as
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d-S.l = d'l-:zxd-frs = (32 x,§3) de2de?

\
or ds; = g'vg do*de®
Similarly, ds; = g*/g do'de® 5 {1.1.2.-18}
and ds; = g3/g dolde?
| /

Finally, an element of volume dv is calculated as
dv = dryedr; x dFsA = (g1°9g2 X gs) deﬂde%tc;3 {1.1.2.-19}
or, by virtue of {1.1.2.-17},
dv = /g do'de*de’ {1.1.2,-20}

Several important relationships may be constructed to relate
the deformed and the undeformed states. |f po and p denote the mass
densities in the undeformed and the deformed states, respectively,

+hen

din dm

po = & and o = L {1.1.2.-213

Consequently, if mass is conserved in the deformation, as is assumed

here,‘fhen
podV = pdv = dm {1.1.2.-22}
or po/G = g {1.1.2.~23}

which is known as the Equation of Continuity. This may also be
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expressed as

1 1 _ a2 403 ‘ -
/édv = @dv = do'de?ds {1.1.2.-24}

which is an implicit form of the Equation of Continuity.
Another relation between the two states is the comparison of
line elements in the undeformed and the deformed configurations. An

arbitrary line element dr in the deformed state may be given as

dr = §idel {1.1.2.-25}
and in the undeformed state, as dR, where
dR = T.do" {1.1.2.-26}

Then the magnitudes dr « dr and dR * dR, representing the squares of

|dr| and |dR|, respectively, differ by the amount

dFedF - dR+df = dR-C.70 .

LR - dRedR
dR O9R
where ;: represents the tensor conjugate to 25:, or - (éﬁ)
oR oR oR 3R/c

where the subscript "c" denotes the conjugate.

The previous relation may be written in a form in which the

dot products with dR are extracted, i.e.,

FedF - dRedR = c{ﬁ.[?_'é.f_é__j.dﬁ {1.1.2.-27}
~ 9R oR



or dr«dr -
where
dehofes the identity tenso
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dR+dR = dR+(2E) *dR {1.1.2.-28}
T-2R {1.1.2,-29}
3R
r, and
- %.[E_F: L_":-T] {1.1.2.-30}
R R

2_5 - 3-9_ al"i - 61?:_{ - 515.
3R 3R 90 30
so that 3C.70 . gig .58d - (5. .5.08% = o..5%
9R oR 7 173 1]
and T=71.T=2R.%. R 5 .58
3R 9R R oR J
so that I = (6.:6.)6%6 = 6,.65%
j ij
where gij = 9; .gj and Gij = Gi 'Gj
then T = €86 = Xg -0 )50 {1.1.2.-31}
rs 2%°p rs
. 1 _
where rs 7(grs Grs)
Also, E.. = G,6.%E = 06.G.:E “{1.1.2.-32}
ij i3 i i

and the fﬁncfions Eij are
strain tensor ?; referred

The forces acting

the symmetric covariant components of the
to the reciprocal directed base.

on the element dv in the deformed state may

now be examined (the element dV, being in the undeformed state, is of
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little interest at present). Consider the element dv as shown in

F'go I"OZQ-ZO

62 (0% + do?)ds.

Il (9l + do! )d51
; ol

~Z3(03)ds 5 e =T3(0° + d6%)ds

%, (6%)ds,

-£,(02)ds:

‘FIGURE 1.1.2.-2

The forces on the surfaces 6% = Constant are denoted as JIi(elddsi,

where the surface area dsi Is given as

ds; = |ds;| = /agit deide®

; S 3AELAK

{1.1,2.-33}

and -Zi(ﬁl) indicates the stress vector on the surface, an external

normal to which is —51. This follows directly from the CAUCHY Stress

Principle,
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“{1.1.2.-34}

afl

0 = e
n n

where g:represenfs a stress tensor, and 3; denotes the stress vector
on a surface, the unit normal to which is E;. That is, if E:-)
denotes the stress vector on a surface, the unit normal to which is

-e , then
n

7 2 (F)F = -6+ = 5 {1.1.2.-35}
n n n n

Similarly, the forces on the surfaces ol+do? = Constant are
denoted as Zi(ei+dei)dsi, and Zi(ei+dei) thus indicates the stress
vector on the surface, an external normal to which is §i. The stress
vectors represent, of course, a true measure of the stress, being

defined in general for a force Af on a deformed surface area As, as

T = tim £L - —g- {1.1.2.-36}
Asg
Considering {1.1.2.-33}, the forces on the 6°- surfaces may

be written as

Z(e8)ds, = -%,(eM)/ge™t dola® - £ (eDdodae®  (1.1.2.-31)

where T, = /ggiifi {1.1.2.-38}

Similarly, for the (6 +do*) - surfaces, the forces on these surfaces

may be given as

z, ol + doly ds, = %, of + doly deIdeX {1.1.2.-39}
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where T& is prescribed by {1.1.2.-38}.
The superposition of forces for the surfaces

(67+d0™) = Constant then appears as

= (7 ;i i il gad ek : _
dF, = [ teh + Foolsodo )] do3deX {1.1.2.-40}

or, denoting T;(ei) as f& and employing a TAYLOR series expansion,

1o [0 .
dF; = [Jf. + T, +———’§d6‘~“—“-+-2- il xldatz + . . . 1dedo
1 g0t a0t \ s0%/

Neglecting infinitesimals of the second order or higher, then

o, oL |
df. = —Ide*delde {t.1.2.-41}
1 sex

Consequentiy, the superposition of all these forces acting on the

elemental volume dv appears as

dF=c{?1+d7f'z+c(f_3

ot ot, ot

s0 dF = | — + —— + —— ldo¥de2de?
26! 802 20?
ot.
or df = ———;--de’dezde3 {1.1.2.-42}
- 26

Two other forces are present in the element, namely the body
force and the apparent or inertia force (considered in the capacity
of an ordinary force, in conjunction with the Jacob BERNOULLI

concept). These forces, like df, are considered to act, in the limit,
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at the centroid of the elemental volume. Denoting the body force
as § dv, where § represents the body force intensity in the deformed

volume, and the apparent force as -r dm for the element of constant

mass, then

N oF, .
df 4+ dv o+ (-Fdn) = —xdolde’de® + Tdv + (-F dm)
:1¢]

“{1.1.2.-43}

represents the superposition of all forces acting on the element.
Since dv = /g de*de?de?
and dn = pdv = p/q dotde?de?

as previously noted, then {I.1.2.-43} may be given as

. ot, . :
df + T dv + (-rdm) = w-ﬁ- + T3 + (-F p/g)|dede?de?
26

{1.1.2.-44})
Consider now that the deformed configuration is subjected to
an admissible virtual displacement, 6U. That is, let it be assumed
that the elemental volume, originally located (in the undeformed
state) at R, at time t¢= 0, instead of being subjected to the dis-
placement U(6',0%,6%,t), was instead subjected to the displacement

—#

U (6!,62,6%,t), where

W =T + & {1.1.2.-45}

That the admissible virtua! displacement 8U must be instantaneous and



24

compatible with the kinematic constraints of the system, is readily

observed from {1.1.2.-45}, for (v

= U + 8U and U must represent two
kinematically possible displacements during the same time, t.

©  From {1.1.2.-45}, 8U is given as

and this may be written as

— . U#

U = - U = nZ , {t.1.2.~46}

where n represents a real number, such that (nf n’, . . <<,

as required by part (b) of the definition of an admissible virtual
displacement. Thus, the virtual displacement 8U may be identified
with the (first) variaTioﬁ of the displacement U, in accordance with
the tenets of the calculus of variations.

It is noted that this restriction on the magnitude of &U in
no way restricts the magnitude of the dispiacement field U, which may
be arbitrarily large (but finite).

_ The work done by the elemental volume dv, in the course of

the virtual displacement 8U, under the actual forces previously given,

represents the virtual work of the element, or

T, . .
SW(dv) = [ ~—%- + g + (—F‘pJa)] - U de'do?de?
| a6

{1.1.2.-47}
This may be written, since dv and dV denote the same elemental! volume

in different states, as
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1oty . . - . »
SWidv) = /§|[-—§. + Vg + (-rovg)|[-6Udv {1.1.2.-48}
36

by virtue of {1.1.2.-24}. The virtual work performed by the entire
body Is then found as the integral of {!.1.2.-48} over the undeformed
volume V (or the integral of {1.1.2.-47} over the deformed volume v,

if so desired). Thus, the virtual work for the body is obtained as

1 ot. _ . - .
W = [/§~f_%- + F + (—por)] « 68U dv {1.1.2.-49}
20
v .

where F = /_(9;‘{

denotes the body force intensity per unit volume of the undeformed
continuum, and. po represents the mass density in that configuration,
as specified by {1.1.2.-21}.

Finally, as &U is an admissible virtual displacement,
satisfying all criteria (a) to (e) as previously specified, then the

primary form of the Principle of Virtual Work emerges as

1 3*} - - = n -
- ] . . - . =
V -
“{1.1.2.-50}
Equation {I.1.2.-50} represents the necessary and sufficient condition
that the deformed state of the continuum be an actual dynamic state.

The Virtual Work Principle is frequently written in an

alternate form. Noting that
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as previously defined, then consider that the stress vector 3&,
which prescribes the true stress on the surface which is defined by

-i . .
a normal g, is determined as

Z, = (‘e”l-'gj)'fj {i.1.2.-51}
. = = |
where e = 9. = 9 {1.1.2.-52}

o E

-] P .
. Thus, e~ represents a unit normal vector to the surface, or a unit

vector which is collinear with g-. Consequently, from {I.1.2.-51},
z = (El-gj)'r“j = 8 e(g.T.) = e -1 {1.1.2.-53}

and the quantity T is then known as the CAUCHY-GREEN "true" stress

tensor

T = 57 - 1ilgg | -54)
T = 9,1, 1799, {1.1.2.-54}

referred to the directed base'{ﬁk} of the deformed state. The
symmetric contravariant components w3 thus provide a true measure
of the state of stress in the continuum.

It follows from the above, that

S S ‘ -
Zi x v{;ﬁT 9 {1.1.2.-55}

so the vector T& may be expressed as

T, = AT = /g <7, {1.1.2.-56}
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Now, another stress tensor S is defined, relative to the true stress

tensor T, such that each component s™ of S (referred to the

directed base'{ﬁi} of the undeformed state) is related to %7 as
siigy = iy {1.1.2.-57}
i5 _ dv _ij _ /g .35 . )
or §° = U = JET {1.1.2.-58}
where s = Slj_G— G. or sii - gigi: s {1.1.2.-59}

i7]
The quantities s')  thus describe the state of stress in the deformed
state of the continuum, but the measure of the stress magnitude is
given per unit area of the undeformed state. Thus, SJ, known as
the TREFFTZ stress components, provide a correct measure of the stress
when considered with the proper base system: however, as the scalar
magnitudes of s')  differ from those of T3, then S'J is not
called a "true" stress.

The vector f& may now be written as

T, = /5#35]. = /€ 51353. “{1.1.2.-60}

and the first term in the integrand of the Virtual Work Principle

"{1.1.2.-50} then becomes

ot.
1 i 1 23 ij— —
-—.—'5” = --—.—(VGSJQ)'GU
"G et 6 a0t
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This expression may be written as

at, . o ‘ is - ,
A0 = Lus'lgg, . om - st A8 (26
gt R J I a0

v

and the Virtual Work Principle then appears as

oM = f f [é___.<si55.“g‘.-a'5> - giig,. 28D
yL R 3 1 a0t

+ F.8U + (“po-l-:=6U)]dV = 0

Transforming the first term of the integral by means of the GAUSS

® ~
Divergence Theorem, then W

‘

///
W = f f N - (s*36.9.) ds
. i%j
! S
+ -Sij-é. . _a—(_.gg.?_ + -f:- . 6U + ("QQF . GU) dV = 0
' I a0t
V. _

“{1.1.2.-62}

where S represents the bounding surface of the undeformed volume V,

and N = Niﬁi denotes a unit normal to the surface S. Now, as

N iig= = ij= = /g i
N*S8G.g. NiS gj & Nit gj

then Nes*l6g, = T {1.1.2.-63}

where Tﬁ denotes the stress vector on the deformed surface, the unit

normal to which {in its undeformed position) is WN. The stress
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vector T; thus measures the stress per unit undeformed area of the

continuum.

Furthermore, from the definition of the strain tensor

“{1.1.2.-31},

==

2E

Now, as &G, =
i

. Then
26€
and since
then

20 =

it is observed that

- (.. -6.88 = G..35. -6 508%
_(gij ij)G G (gi .gj Gi Gj)G G
=

= 0 for the base vectors of the undeformed state,

=a@yﬁy?@ =‘@?55+%f@9?@

.5 . 0
g—Gi+"'—'r

135 + Gl
06 J 507

QL

However, from the definition of 6U as

then

Therefore, since S = §;

U = O - U = nZ
3 (1) 87y | BZ_ 6F§1}
00™ 36" 26™ i
(or Sij = Sji, in component form), the

first term in the volume integrand of {1.1.2.-62} becomes

g . 360 {1.1.2.-64}

: siise. . = SisE
I 39 1

J

S
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and the virtual displacement 8U is now identified with the formal

variation of the displacement U. The Virtua! Work Principle then

becomes, in final form

+ fff[-§:6= + F<8U + (’Po%'Gm]dV = 0
| v :

For static systems, in which the body force is neglected -~

“{1.1.2.-65}

a situation of particular interest in the analysis of deformable

bodies -~ the Virtual Work Principle appears as

oW = .I:’mT'-SU'ds - .I:/.!~§fzéﬁ‘dv = 0 {i.1.2.-66}
N _
Y Js Jy

In the entire discussion of The Virtual Work Principle, the

volume V and the associated bounding surface S have defined a
hypothetical "body", which was in reality, an arbitrary finite region
of the geometric space occupied by a continuum at some time, t. Now,
in The event that the volume V and the surface S prescribe an
actual boundary (i.e., a true body), then the Virtual Work Principie
is still valid, as no restrictions have been imposed on V or S.

In this case, however, it may be advantageous to consider the surface

S as the sum of two surface areas, or

where S, defines that part of the boundary on which there exist
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prescribed stresses T;*, and Su defines that part of the boundary
on which there exist prescribed displacements U*,
Then, T =T % on S_. and 6U=680%¥=0 on S, as there
n n t u
can be no variation of a prescribed kinematic condition if 8U is to
be compatible with the kinematic constraints of the system. Conse-

quently, the Virtual Work Principle may be given in the form

W = ff‘i‘n*-sn"ds - ffj?:a?dv = 0 {l.1.2.-67}
S, A vy

This relation is, of course, also true for the hypothetical
body (the region of space occupied by the continuum), but is of less

significance in such a case.

1.2. THE POTENTIAL ENERGY PRINCIPLE
Consider the Virtual Work Principle in the form of {I.1.2.-66},
for a static or constant velocity system without body force, which

may then be written as

ffj’é:a’édv = ff¥n~cﬁd5 {1.2.-1}
v S

Now, if the integrand S 1 6E may be represented by the total véria-
tion of a single scalar function, then the body is said to be efasiic.
In this case, the Virtual Work Principle yields the Principle of |
Stationary Potential Energy, or briefly, the Potential Energy
Principle. That is, if there exists a function U%, which is known

as the internal energy density function or the stfrain energy density



32

function, such that sy = E::GE, then the continuum is elasTicT.

Since E = Eijﬁiﬁg, then the tensor (or directed)

derivative with respect to E is defined in terms of the base which

is reciprocal to {6}, namely '{Ei}. Thus,

3 e .
— ) = 66, xp— ( ) {1.2.-2}
SE 1+ ﬁEij

and the elasticity of the continuum is then prescribed by the reiation

s o dug _
SUg = BE-— = S:I6E {1.2.-3}
ok
Since Us is a scalar quantity, then
_ ols g _ |
GE:-'-: = "'::GE {’.2."‘4}
oF oE
and {1.2.-3} may be written as
< Uy _ _ .
g = —26E = S:i6E {1.2.-5}
ok ,

It then follows from {1.2.-5} that the constitutive relation

for an elastic material is given, in terms of the strain tensor and

the TREFFTZ stress tensor, as

T This requirement is considered further, in Chapter II.
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S = -—— {1.2.-6}
oE
or, in terms of components
53 P P aug _
s = 6T = TE I — = 5 {1.2.-7}
e ij

Employing {1.2.-5} in {1.2.-1}, the latter assumes the form
fffauﬁ av = ffﬁ*‘n 8U ds {1.2.-8}
v s |

dv = /G dolde?do® = (G« G, x C;)delde®de?®

Recalling that

and that &5, = 0, then
§(/G doldo2de®y = © {1.2.-9}
so it follows that

fffcui dv = afffu? dv {1.2.-10}
v v

The total strain energy for the body Is then denoted as Us, where

us = fffui’ dv {1.2.-11}
v

since it Is assumed that U° = 0 in the undeformed configuration, as

implied by the absence of a constant in equation {1.2.-10}.
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From {1.2.-i10} and {1.2.-11}, it is observed that {i.2.-8}

U = ff‘fr‘ « §U ds
n
S
su° - ffﬁn-aﬁds = 0 {1.2.-12}
s .

which is the primary form of the Potential Energy Principle. Equation

may be written as

or as

"{1.2.-12} specifies the condition required for the existence of an
equilibrium state of the deformed configuration of an elastic
continuum.

If the surface forces can be derived from a potential energy

function VS, such that

ff’m‘-n- sUds = -&V° “{1.2.-13}
S

then the Principle ensures the equilibrium of the continuum if the

. s s .
functional (U” + V°) assumes a stationary value, or

80° = 0 “{1.2.-14}

where Q° = US + V° represents the fotal potential energy of the
system.
Returning to equation {!.2.-12}, it is seen that a formal

total variation of T «U yields
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“{1.2.-15}

and {1.2.-12} therefore becomes

.
sus -f MTn- U ds + ffaﬁ?ﬂ-ﬁ'ds = 0 {1.2.-16}
js v g
su° - aff'-fnwt?ds + ffa?fn- Uds = 0 {1.2.-17}
S S

The virtual displacement &8U is thus identified with the formal

or

variation of the vector U (as was previously implemented in the
derivation of equation {1.1.2.-64}. However, as noted eariier, this
is entirely permissible due to the precise definition of an "admissible
virtual displacement” in §1.1.2., above.

Considering now, that the surface S may be represented as
the sum of 5, and Su, as previously defined, and noting that

t
GT;* =0 on 5, and U* =0 on Sy’ ther {1.2.-17} may be written

sus - 5ff'”fnoﬁds + aff*n- U*ds = 0 '{|.2.§18}
S S
u
S5 - affﬁnhﬁds = 0 “{i1.2.-19}
St

Therefore, the Potential Energy Principle shows that equilibrium of

as

or

the continuum is ensured if the functional



36

n° = fffui’ dv -fffr‘n*-'ﬁds “{1.2.-20}
v S ‘

assumes a stationary value.
The EULER-LAGRANGE equations, obtained from the vanishing of

the first variation of HS, are the stress equilibrium equations
— = 0 | {1.2.-21}

or, as fi = /5’51355,

astigy o
—_—3 = O {1.2.-22}
o6t

and the natural boundary condition is that the stress vector on St
must be the prescribed stress vector T;*.

Since the virtual displacement, as an entity, has been re-
placed in the Potential Energy Principle by the variation of the
displacement field U, it is necessary that U be subjected to
certain restrictions, in order that &U may retain all the properties
originally postulated for an admissible virtual displacement. This is
reflected in the '"genera! statement" of the Potential Energy Principle,
as follows.

For admissible displacement fields, i.e., those fields which
satisfy continuity and which aré consistent with the prescribed dis-
placements, the stresses which are predicted from these fields via
the constitutive relation of the elastic medium will not satisfy

equilibrium, nor bas consistent with the prescribed stresses, except
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for the admissible displacement field which coincides with the true
one. For the admissible displacement field which does coincide with
the true one, the functlional I° assumes a stationary value.

Since the strain tensor E is a derived function of U, the
above general statement may also be phrased in terms of "admissible

states of strain" as well as "admissible displacement fields".

I.3. THE COMPLEMENTARY POTENTIAL ENERGY PRINCIPLE

The Principle of Stationary Complementary Potential Energy is
a consequent of the Potential Energy Principle, obtained by means of
a transformation executed on the variables employed. The Comple-
mentary Potential Energy Principle is, however, unlike the Potential
Energy Principle, a "mathematical entity" which does not represent a
real physical work principle, although the quantities employed in its
formulation possess dimensions of work.

Consider the functional T° of the Potential Energy

s = fffu%dv - ffi"n*oUds
v S,

or, in the form of {i.2.-18}

s = fffu%dv - ffT-Uds + ffT’-U*ds
n n
o'y S S

u “{1.3.~1}

Principle

where sus = S:8E {1.3.-2}



Now, if E may be expressed as a function of S, then a Legendre+

transformation on U defines a comp lementary strain energy density

function Uf
uf = S:E - U3 {1.3.-3}

Therefore, a new functional ¢ may be constructed from the

functional NI° and the transformation {1.3.-3}. That is,

i
- fLTn-Uds + flfnoﬁ*c{s {1.3.-4}

where the constitutive relation of the elastic continuum is now pre-

2

‘E - u?] dv

scribed to be

_au§ . . auf |
E = — = G06 —x {1.3.-5}
3s as™J

Since E may be expressed as

= - 1 — — _—— .‘— .——i—-—‘
E = 3 [gi g; - T;* 5, ]GG
as before, then the expansion of this expression in terms of '{53}

and U is

-2 [§i- G O LR ]'G‘i'G‘j
367 J a0 90t 307

T Refer to Historical Notes, page C-19, Appendix C.

38
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Therefore, S:E is obtained as

S:F = 5155..?}% + %sljég-i--?i {1.,3.-6}
30 20> aed

— — _aU
G. = g. - e———
k3 1 ael
in {1.3.-6}, then
§:F = s'ig .2 o 2 A 1,37}
3 30 30 80’

The functional ¢ +hen becomes

nc = sij'g..a.g, . 151530 30 | ug | dv
| T3 et 2 2ot 397
v 29
- .I:’:f «UdS + ./:sz o U* dS
n n
S S

u
“{1.3.-8}

The first term in the volume integrand may be transformed as

follows:

siig, . &Y

I
14z}
Q
:o

|
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Therefore, employing the GAUSS Divergence Theorem under the assumption
of equilibrium in the continuum, the functional I° assumes the final,

irreducible form

= _fff[uf4.%.sij?_9.i..§9_,.] dv +ffﬁ"oﬁ*ds
y 26" 26’ g

u
{1.3.-10}

This functional, as noted by LEVINSON, does not provide a
suitable foundation for the Complementary Potential Energy Principle,
by virtue of the explicit presence of the displacement terms in the
first integral.

lf the restrictions of small-deformation theory are applied

to the functional {1.3.~10}, then the result appears as

1~1° = -fffu?dv +ffi?n-U*ds
s Su

which demonstrates that the formulation of the functional in Terms
of S and E does provide a suitable foundation for the Principle
in the theory of infinitesimal elasticity.

The formulation of the Complementary Potential Energy |
Principle requires that restrictions be imposed upon the state of
stress, similar to the restrictions placed on the displacement field
in the Potential Energy Principle. This is reflected in the "general
statement" of the Complementary Potential Energy Principle, as
fol lows.

For admissivle states of stress, i.e., Those stress states
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which satisfy equilibrium and are consistent with the prescribed
stresses, the states of sffain which are predicted from these stress
states via the constitutive relation of the elastic medium will not
satisfy compatibility nor be consistent with the prescribed displace-
ments, except for the admissible stress state which coincides with
the true one. For the admissible stress state which does coincide

with the true one, the functional ‘Hc assumes a stationary value.

1.4, THE DUAL PRINCIPLES

From the foregoing developments of the dual Principles of
Potential Energy and Complementary Potential Energy from the Virtual
Work Principle, the following information may be obtained.

The Potential Energy Principle is a real work principle, in
:which displaceménfs or displacement-related quaniities are taken as
-the independent variabies. The a paiori satisfaction of prescribed
kinematic conditions is required for the admissibility of displace-
ment fields or displacement-related quantities, and the true dis-
placement field is then selected from the set of all admissible ones
by virtue of the fact that the functional I° assumes a sfafiohafy
value for the true field. The Potential Energy Principle may thus be
said to represent a "minimal principle of displacemenis”.

Once the true displacement field has been obtained, the state
of stress may be found from this field in conjunction with the
constitutive relation of the elastic meterial.

The Complementary Potential Energy Principie is a mathematical
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entity, expressed in terms of quantities which have dimensions of work,

in which stresses or stress-related functions are employed as the
independent variables. The a prioni satisfaction of prescribed
stress conditions is required for the admissibility of stress states,
and the true stress state is then selected from all admissible ones
by virtue of the fact that the functional n¢ assumes a stationary
value for the true state. The Complementary Potential Energy
Principle may thus be said to represent a "maximal principle of
stresses'.

Once the true state of stress has been obtained, the state
of strain may be found from this stress state in conjunction with the
constitutive relation of the elastic material.

In order to establish which of the dual principles may yield
the most satisfactory result in a given situation, it Is necessary to
consider, in addition to the obvious a paioni requirements of each,
the following pertinent fact. Since the solution of engineering
problems is accomplished very infrequently in anaiytical form, it is
most likely that the solution willvrequire the use of approximate
procedures. Therefore, the appropriate Principle should be selected
under this criterion.

For example, if a solution for a displacement field is
obtained as an approximation by means of the RAYLE|GH-RITZ Trial
Function Method @ifhin the framework of the Potential Energy Principle,
then the results will likely be a close approximation to the true

solution. However, the state of stress must be calculated from the
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constitutive relation, which necessitates the use of the displacement
~gradient. Since the accuracy of the results will generally deterior-
ate rapidly with differentiation, the approximate stress state
solution will not be of the same order of accuracy as the solution
for the displacements.

It may therefore be concluded that the Complementary Potential
Energy Principle is an advantageous principle in the analysis of elastic
media, for both infinitesimal and finite deformations.

The establ ishment of a strict Complementary Potential Energy
Principle (i.e., in which displacement quantities are not explicity
present in conjuncfion with the complementary strain energy density)
for the case of finite deformations, representing the verification
and extension of the principle proposed by LEVINSON, forms the core

of this work, as presented in the following chapters.



CHAPTER II

The Complementary Potential Energy Principle

In Finite Elastic Deformations

2.1. RECENT DEVELOPMENTS

The most recent comprehensive statement regarding the status
of the Complementary Potential Energy Principle for the case of finite
deformations has been given by WASHIZU, in 1968, He has said, in
part, that "..... coupling of the displacements with the stress com-
ponents in finite deformation problems complicates the derivation of
the principle of stationary complementary [potentiall energy .....;
the principle can no longer be expressed purely in terms of stress
components'", WASHIZU has further observed that "..... these
[complementary] principles play important roles in the small displace~
ment theory of elasticity. However, extensions of these principles
to the finite displacement theory of elasticity are not found success-
ful .....".

These statements may be considered as a succinct description
of the state of the Complementary Potential Energy Principle at the
time at which they were written, assuming that the works of MASUR
and of LEVINSON were unknown to WASHIZU. The developments which led
WASHIZU to fhese‘conclusions represent the history of the Principle,
the salient points of which are as follows.

The fundamental concepts of complementary potential energy
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and the long and torfuous development of those concepts by earlier
engineers and mathematicians have been we!l documented in the papers
by ORAVAS and McLEAN, in 1966. Subsequent to those developments, the
first earnest attempt to extend the Complementary Potential Energy
Principle from the infinitesimal case to the case of finite deforma-
tions appears to have been made by C.-T. WANG in 1949, In this paper,
however, the author has constructed a special method to deal with the
analysis of thin plates and shells, subject to many restrictive
assumptions. Consequently, the approach cannot properly be ter. ! a
form of the Principle: it does, however, represent a method of analysis
which is the "complement" of the Potential Energy Principle for a
particular class of problems which contain certain aspects of finite
deformation.

The first approach dealing with the finite extension of the
Complementary Potential Energy Principle, in the true form of a
principle, was constructed for the one-dimensional case by LANGHAAR,

in 1953. In his paper, LANGHAAR stated "CASTIGLIANO'S Theorem™" as

_ool®
Ui = 3r7
1

{2011
where Fi represents the scalar value of the discrete force ?& at
a point "i" (i = 1,2, ..., n) in the system
Ui = Ui(Fl,Fz, ey Fn) denotes the components of the
displacement Ui (at point "i") in the direction of ?}
us represents the strain energy of the system.

LANGHAAR observed that {2.1.-1} is valid only for linearly elastic
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materials, and subsequently constructed a Legendre transformation in
order to define the complementary strain energy W°  as
we = F..0, - U° “{2.1.-2}

i

where the summation takes place over the n degrees of freedom of the
finite system. Ultimately, he developed the "generalization of

CASTIGLIANO'S Theorem",

C R
y = %-“FL {2.1.-3}

for a force F = FE%

thus establishing the validity of the CROTT! Theorem for the case of

and a corresponding displacement U = U-e

finite deformations. LANGHAAR entered into a short discussion of the
Comp lementary Potentiai Energy Principle for a continuum, but re-
stricted the discussion to the consideration of 'finite-but-small'
displacements, for which there is "no appreciable change in geometry".
Consequently, the contribution of LANGHAAR to the finite deformation
formutation of the Complementary Potential Energy Principle lies in
re-exposing the lLegendre transformation {2.1.-2} to the profession,
and in the development of the CROTTI Theorem {2.1.-3} for the case of
finite deformations.

In 1953, REISSNER piresented a very general variational theorem
for the finite deformations of élasfic continua. This theorem,
although valid, is formulated in terms of the strain tensor and the
TREFFTZ stress tensor, and is therefore subject to the observations

made by WASHIZU, as given above. It is important To'nofe, however,
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that this theorem possesses an advantage over many other varjational
theorems, in that no subsidiary conditions or "admissibility
conditions" need be imposed upon the variables. Iﬁ the same paper,
REI§$NER presented the theorem in its specific form for the analysis
of plates, but subject to the restriction that the finite deformations
be 'small'. |

The next significant contribution to the Complementary
Potential Energy Principle for finite deformations was made by LIBOVE,
in 1962. LIBOVE postulated fhaf since the work W of a force F,
accrued in the displacement of a particle ("a") from a position ﬁ;

to a position r_ =R_+U_ is defined as
a a a

F(:l
W = j;‘;?.d‘,r : {2.1.-4}

a

then the “complementary work" W® for the same particle could be

constructed, by analogy, as

wC =f‘r'ed? "{2.1.-5}

where the integration takes place from "state A" to "state B" of the
system. Applying this result to an elastic body (one for which the
strain energy density function exists), upon which n discrete forces
?& are assumed to act, LIBOVE constructed a type of complementary

energy H® as the sum of *the complementary work of all the applied

forces in the finite system:
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=B .

4.C — - .

H e dFi {2.1.-5}
A

where F} represents the point of application of the force ?} as
the system deforms from state A to state B. Finally, LIBOVE obtained

a quantity which he called the "total complementary energy" Q%: this

quantity is defined from H® as

Q¢ = Hc-,F;e-?j“" {2.1.-7}

where F; denotes the position, after deformafﬁon, of any pofn?s in
the sysfém which have a prescribed Location and ?;ro represents the
reaction force at prescribed point AF§. Thus, LIBOVE constructed his
complementary energy principle by requiring that the functional Qc

be stationary when an admissible state coincides with the true state

of the system, or
GQC = 6(Hc -r¥e -F'(r) )y = 0 ) {2.!."'8}

where &% = 0. It is observed that the quantity H® in the LIBOVE
Theorem, contrary to LIBOVE'S suggestion, does not represent the finite
counterpart of the complementary strain erergy of the infinitesimal
formuléfionf. That is, although H® represents a type of complemen-
tary energy, it is not equivalent to the energy WS of the CROTTI

Theorem. Furthermore, since the LIBOVE Theorem has as its foundation,

The energy 4% is further examined in Chapter IV.
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the work analogue for a particle and several subsequent definitions,
it is possible neither to prove nor to disprove the theorem on its
own merit: external verification which does not employ the analogue
is required.

In 1962, a paper by PIPES was published, in which the work
analogue was stated but was never employed. This paper is quite
similar to the 1953 paper of LANGHAAR, and serves to re-establish
LANGHAAR'S results.

The next significanficoniribufion to the Complementary
Potential Energy Principle for the case of finite deformations was
made by MASUR, in 1965, MASUR, in a brief discussion of LIBOVE'S
work, established the complementary strain energy density function
2 by means of a Legendre transformation on the TREFFTZ stress tensor

S and the CAUCHY-GREEN deformation tensor E‘:, as

Q = %E‘“:?‘:’-ui’ "{2.1.-9}

where C is related to the strain tensor E by the relationship
C=2E+1 (as will be discussed in greater detail, presently) and
us represents the sfrain'energy density, as before. MASUR then
noted that the constitutive relation for the elastic continuum, in

terms of , appears as
C = 2% {2.1.-10}

since £ = QS), as {2.1.-9} is a Legendre transformation. Finally,



50

he obtained the Complementary Potential Energy functional n°(S) as

n°(s) =fff[‘§:§§+ sz]dv -ff‘fn-‘r'*ds {2.1.-11}
95
v S
u

where r* = R + U*¥ denotes the location of any regions of prescribed

displacement U* on the surface $,» and T; = N\>Sij§i§5 = NiSij§5

as before. Thus, MASUR verified LIBOVE'S Theorem, extended it from

a one-dimensional theorem to a principle valid for an elastic
continuum, and avoided a functional form which would be subject to
comments such as those given by WASHIZU. It is noted, however, that
the complementary strain energy density function Q appears both alone
and as a tensor derivative, and that admissible stress states S

must satisfy the equilibrium equation which cannot be expressed in
terms of S alone.

The latest significant contribution to the Complementary
Potential Energy Principle was made by LEVINSON, in 1965. LEVINSON
constructed a complementary strain energy density function WS as a
Legendre transformation on the Lagrange stress tensor components Tij
and the Lagrange strain tensor (or displacement gradient) components

Ujli' Employing the notation of GREEN and ZERNA or GREEN and ADKINS,

these tensor components may be defined as follows:

U], = G,. 2 {2.1.-12)
5 3" 5ol
v, = &. {2.1.-13}
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thus, CIURETIN T - BT I {2.1.-14}

The Lagrange stress tensor components are then defined from the

TREFFTZ stress tensor or the CAUCHY-GREEN stress tensor components, as
il - sim[ég + ujlm] = V/ngim[§i + ujlm] {2.1.-15}
or pi o gim g_ s §I
The variational strain enefgy density may then be shown to be
suS = sijaeij - TijGUin {2.1.-16}

(as will be discussed later in this work), and the constitutive

relation of the elastic continuum exists in the form

= 910 {2.1.-17}
;T

Now, LEVINSON postulated that if the constitutive relation {2.1.-17}

could be inverted, so fhaf the éomponenfs Ujli could be expreéséd as
a function of T'° (a disputed point), then a Legendre transformation
could be constructed o define the complementary strain energy density

function w% = wS(TrS) as
Wy = T”ujii T {2.1.-18}

. . . c
where the constitutive equation, in ferms of Wy, now appears as
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ollg

J.o- 0. {2.1.-
Jll - {2.1.~19}

- LEVINSON then proved that, if This constitutive inversion is possible,

the Complementary Potential Energy functional Hc(le) appears in the
Y pp

n°('rij) = - [ffw% dv + ffﬁ"n-ﬁ* ds {2.1.-20}
(4
“v S,

i

form

Lte

where components T of admissible stress states are required to

satisfy the equation of stress equilibrium,

I, - [s"“"usfgruj|r)]li = 0 {2.1.-21]

and the equation of stress-couple or "moment" equilibrium
q p q

™G .G = 2. {2.1.-22)
where the latter fs an alternate statement of the symmetry of the
TREFFTZ stress tensor, expressed in terms of Tij.

Thus, 1f the constitutive inversion {2.1.-19} is possible,
LEVINSON'S Theorem provides the most attractive form of the Principle,
since w% appears alone in the volume integral of the functional, and
comments such as those given by WASHIZU are no longer applicable.
Also, the volume integral of W% can be shown, for discrete force

systems, to be identical with the complementary energy W of the

CROTTI Theorem: thus, the volume integral of W represents the
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"finite counterpart" of the complementary strain energy of the

infinitesimal

formulation. Although this constitutive Inversion,

contrary to some expressed opinions, is not generally impossible (due

to the particular nature of the Lagrange stress tensor components Tij)

it is most unfortunate that the complementary strain energy density

W§ of the LEVINSON formulation is a function of rigid-body rotations

in the displacement field (see Chapter III).

Therefore, at the time of the writing of WASHIZU'S compre-

hensive work,

four different approaches existed, regarding the

Complementary Potential Energy Principle for the case of finite

deformations.

Briefly, these approaches may be summarized as foilows.

The LANGHAAR-PIPES Approach

This is an approach characterized by the extension

of the CROTTI Theorem to the case of finite

deformations of one-dimensional elastic bodies or

elastic systems of a finite number of degrees of

freedom. Any attempted generalization of the

theorem to include the finite deformations of

elastic continua is, at best, uncertain, and has

usually resulted in the construction of a

functional containing displacement quantities in

addition to the complementary strain energy

density function, in the volume integral.

The supposed impossibility of such an inversion has been stated by
the anonymous Reviewer of the proposed paper ''Complementary Varia-
tional Principles in Elastodynamics" by B. H. Karnopp.

1.



2. The REISSNER Approach

This approach establishes the validity of the
Complementary Potential Energy Principle for the
case of finite deformations of an elastic
continuum, considering the strain tensor and the
TREFFTZ stress tensor as the conjugate variables.
Therefore, this theorem is subject to the remarks
made by WASHIZU, concerning the coupling of the
displacements with the stress components. It is
noted, however, that the theorem requires the
imposition of no subsidiary conditions on the

variables.

3. The MASUR Approach

This approach formulates the Complementary
Potential Energy Principle for an elastic
continuum in terms of the TREFFTZ stress tensor
and the CAUCHY-GREEN deformation tensor, thus
avoiding the coupling of stress and displacement
components. However, the complementary strain
energy density function appears both alone and as a
tensor derivative in the volume integral, and the
stress. tensor must satisfy admissibility conditions
(equilibrium conditions) which cannot be expressed

in terms of the stress tensor alone. The MASUR

54
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Theonem neduces 2o, and therefore contains as a
special case, the LIBOVE Theorem, when the

continuun £8 assumed to be unidimensional.

4. The LEVINSON Approach

This approach postulates the inversion of the
constitutive relation of an elastic continuum in
terms of the lLagrange stress and the Lagrange
strain (displacement gradient) tensor components.
From this inversion, it follows that the
complementary strain energy density function,
defined by a Legendre transformation on these
Lagrange variables, is not found in conjunction
with displacement quantities in the functional.
Furthermore, the volume integral of W§ can be
shown to be identical with the complementary
strain energy W® of the CROTT! theorem, in the
case of discrete force systems. Thus, the
LEVINSON Theorem appears to be the most advan-
tageous form of the Principle. However, the
complementary strain energy density WS is un-
fortunately a function of rigid-body rotations in
the displacement field. Although this condition
does not constitute an error ?n the formulation,

it does place a restriction upon its applicability,

since energy densities which are functions of
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rigid-body Fotafion must be employed with caution.
It is noted, however, that LEVINSON'S formulation
depends only on stresses, and not explicitly on

rotations.

The investigation of LEVINSON'S Theorem has generated this work, in
which it is demonstrated that the Lagrange stress tensor and the
deformation gradient define the appropriate conjugate tensors for the
formulation of the Complementary Potential Energy Principle (not the
Lagrange stress tensor and the displacement gradient, as proposed by
LEVINSON). It is demonstrated that the complementary strain energy
density, defined by the former set of Lagrange variables (above) is
not a function of rigid-body rotations, and is therefore a suitable
function to serve in the constitutive relations of an elastic
continuum. This complementary strain energy density is shown to be
quite similar to the energy density @ of the MASUR theorem, if
expressed in terms of S and 'C_—!, differing only by a constant factor
in part of the expressibn.

It is also shown that the present formulation reduces to, and
therefore contains as a special case, the LIBOVE Theorem, when the
continuum is assumed to be unidimensional. Since the complementary
strain energy density WS of the LEVINSON Theorem co}reSponds to the
energy W® of the CROTTI Theorem, and as W§ is a function of rigid-
body rotations, it is shown that W has no simple extension to a
general continuum in the case of finite deformations. That is, the
theorems of CROTTI and MENABREA cannot be generalized to a continuum

in a simple form in the finite case, in contrast to the case of
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infinitesimal deformaticns.

2.2. THE COMPLEMENTARY POTENTIAL ENERGY PRINCIPLE IN FINITE ELASTICITY
The Virtual Work Principle, prior to the (usual) representation
formulated in terms of the strain tensor E and the TREFFTZ stress

tensor =§, appeared as

ffj' F_ur.su + F+60 + (-po:r'}-SU)}dV = 0

{2.2.-1}
which is the primary form of the Principle and is, of course, valid

for both infinitesimal and finite deformations. Equation {2.2.-1}

may be expressed in terms of variables other than S and f: namely
the Lagrange sfress tensor T and the displacement gradient or
Lagrange strain tensor ﬁ; which are defined as follows.

With reference to Fig. 1.1.2.~-1, the deformation gradient

T is defined as

3R 4+ M

Q
=

N R T S T 1 (2.2.-2)
dR aRr oR oR
or T = 1+0 {2.2.-3}
where T-R.¢5% -85 (2.2.-4}
;R i J
represents the self-conjugate identity tensor,
and [ i {2.2.-5}

oR 30t
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represents the displacement gradient. However, as T may also be

given in the form

or idr

T = = = 6 {2.2.-6}
R 36
then T = 1T+0 = §i§ {2.2.-7}

The Lagrange strain tensor U is referred to the directed base {G'},

so that
U = U,.6% {2.2.-8}
1]
or . U.. = G.6.:0 "{2.2.-9}
1] 1]

and a component Uij of the tensor U is thus seen to be identical
with a component Ujli of the LEVINSON formulation. Now, the Lagrange

stress tensor, referred to the directed base {Ei}, i.e.,
T = 155, {2.2.-10)
1]

is defined from the TREFFTZ stress tensor s and the deformation

gradient T by means of the mapping

"{2.2.-11}

H3]

ST =

Since S and T have algebraic structures of the same type, and
since operations are preserved in the mapping, {2.2.-11} is actually
a homomorphism (see Appendix B).

From this definition, it is observed that T correctly
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represents a stress tensor, since the tensor S represents a measure
of the state of stress, and the tensor T is dimensionless. In fact,
a component i - §53: T denotes the magnitude of stress in the
defogmed continuum, but measured in terms of the undeformed continuum
and referred to the directed base '{ﬁil of the undeformed reference
state of the continuum.

Employing the trinomial form of T from {2.2.-7} in {2.2.-11},

T may be written as

== = =‘=:’_.' - ij—--... ‘....1?_.. = irb:.-._. . -
T S«T S GiGj G'g, s7G.g . {2.2.-12}
and therefore, from the dot product with Em,
T = 1G_ = s™g,, {2.2.-13}
and so A SmYE;» G" {2.2.-14}

which establishes that the components '.[‘ij of the tensor T are
identical with the components ‘I‘ij of LEVINSON'S formulafion+ (as
desired).

From {2.2.-13}, it is observed that the form SmrE; suggests
that the force vector f& in the Virtual Work Principle may now be
represented in terms of T as well as S or (originally) T.

Consequently, from {1.1.2.-60} and {2.2.-13},

T GREEN and ADKINS denote these tensor components as tlj, defined by

the relation tljﬁs = Slm§%.
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i 3 {2.2.-15}
or T, = BT, = L6.F {2.2.-16}
and the first term in the integrand of {2.2.-1} becomes
ot
R e 1 9 i = -
—5+8U = —= (/GG +T)+ 6U
"G 3o 76 g6t |
= .(—;.l- ?..."I..:.i“..'(s-[j-
a0
= 2T 4y {2.2.-17)
IR
However,
3T i = L@ty - 7AW {2.2.-18)
R aR oR
and, since éﬁi = 655 = 0 for the vectors of the directed bases of
the reference configuration, then
CICITAg. a{‘ﬂi] = &0 {2.2.-19}
oR oR
as previously established in §1.1.2.. Consequently,
L0 = —(Tel) ~ T8 {2.2.-20}
96 oR

and the Virtual Vork Principle appears as
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znl“’
"‘?i!

§U) - T:60 + F«6U + (-poFoGU)]dV =

- fffiz

v

{2.2.-21}

Employing the GAUSS Divergence Theorem, this may be expressed as

.;i;;g}~T &0 + F+oU+ -por ~5U)]dV

f T «sUds = 0 {2.2.-22}
S

whare T; designates the stress vector on the surface S, The unift
nocrmal to which (referred to its undeformed position) is N = Niﬁi.
Thus,

T = NeT {2.2.-23}

or T = NTV6, = N,8"Mg {2.2.-24}
n 1 | i

as previously specified in terms of s by {1.1.2.-63}.
For systems of constant or vanishing velocity in the absence

of body force, the Principle may be written in the form of {1.2.-1},

[fj?:s’ﬁ‘ dv = f 'E:‘n~ 8U ds "{2.2.-25}
. v ~g

Now, if the variational form T :60 may be represented by the total

f.e.,

variation of a single scalar functiorn (so that T:8U is no tonger

a variational foxm, but ratheir a total variation), then the bedy is

0
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said to be elastic, and the Virtual Work Principle yields the Potential

Energy Principle. That is, if fhere exists a function ¥, such that

8% = T:80 {2.2.-26}
then the continuum is elastic. However, since
8Y = T:60
= S-T:680
= siigg ¢8|
Y3 |eR
ij,= | =k,— oy
= S°(G,* G )g.* §|—+
7 [aek]
atT 1
= 81351- s oU
1 Lt
= S:6E {2.2.-27}
¥ is seen to be identical with the strain energy density
function U; = US(E) = US(D), or
Y = 8U; = S:6E = T:i6U {2.2.-28}

to E as (see also, Chapter III)

Furthermore, since the CAUCHY-GREEN deformation tensor C is related

E =

D] =
ol
i

o

"{2.2.-29}
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and as the deformaticn gradient T s related to. U as

T = 140 {2.2.-30}
then it follows that

HT = oF {2.2.-31)
and T = &0 {2.2.-32}

since the identity tensor Tiyis composed of base vectors 5& and
@i, the variation of which, vanish.

Therefore, the variation of the strain energy density Uy
may be expressed in four forms, each of which suggests a different set
of conjugate tensor variables for the eventual Legendre transformation

which will define a complementary strain energy density function,

That is, 6&U may be expressed as

dUs = S:6E (REISSNER)  {2.2.-33}
= 25168 (ASUR) {2.2.-34)
= T:6U (Lévmsom ‘{2.2.435}
= T34T (This Work) {2.2.-36}

Returning to the consideraiion of the strain energy density
variation in the form T :&U, it is seen that, if U; exists (as
postulated), then the elasticity of the continuum is prescribed by the

relationship
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s =.3u§ == )
Uy = 6U: L = T:6U {2.2.-37}

9

Since U? is a scalar function, then the double dot product of its
derivative with respect fo U is commutative, and {2.2.-37} mey be

written as

s g . = =, = :
S = ~=L:80 = T:8U {2.2.-38}
1]
. Thus, by transposition,
[%-‘L-i?]:aﬁ = 0 '{2.2.-39}
oU

and, as 6U # 0 in general, then the elasticity of the continuum is

prescribed by the relationship

el

s
= M {2.2.-40)
20

which follows from the postulate of the existence of sUs as the
total variation of the function U%.

Consider now, however, that the existence of U% is not
postulated: assume instead, that the constitutive relation of the

continuum is specified in some form

S = §E = RO {2.2.-41}

or T = h(D) = LUD) {2.2.-42}

where ?; E; R and T repiresent tensor-valued functions of the tensors

?, a U and ?—_’ respectively. Then it is still possible to write
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U = T:éU {2.2.-43}

but in this case, 6Ug is only a varniational form, and is not
necessarily the total variation of a quantity us (i.e., U3 does not
necessarily exist, even though 8Us exists as a variational form).
The conditions under which 6Us does represent the total variation of
a function U5 are therefore of primary importance, for it is under
these conditions that the continuum will be elastic.

In order to deduce the conditions which guarantee the
existence of U§ as a function which is independent of the inter-
mediate states in its evaluation (i.e., a state function), the
implications of the original postulate of the existence of Us are

examined in detail. In this way, the desired conditions are obtained

al
2]

in the form of a relationship between the tensors T and or
and E, which are now assumed to be specified.
If U3 is postulated to exist as a state function, then it

foliows that

S
7 o= {2.2.-44)

a==

as established above. Now, as T = h(U), then the operator -2=—( )
aU
may be applied to this relation as & pre~operator, fto yield

== S 2,
L 3;[%_1] . 2Us {2.2.-45)
oU LI ED] 90U
3T P X I —
or -a-:__- 530 ©1%4%nCn {2.2.-46}
U ij " mn



66

Similarly, applying the same operator to equation {2.2.-44} 35 a post-

operator, yields

= S
1‘:3:_ = [?.__”:&Ji’; {2.2.-47}
oU 30 a0
T ’2u3 }
or =L = 666G {2.2.-48
30 5Ursaqu PqQPrs

or = -

Now, as us is required to be a state function (continuous and single-

valued), then

22Uy s%j -
dU_ dU T 90 _ou {2.2.-50}
pq rs rs pq
so that {2.2.-49} becomes
t == '.
é:l‘_: - '£?=. =0 {2.2.-51}
30 30
or LR ) {2.2.-52}
oU 30




67

mn ij '
as = gg {2.2.-53}
ij nn

and it is noted that a similar form may be constructed in terms of s

and E. Also, since T differs from U only by 1 and C differs

from E only by the factor %- and the tensor 1, then {2.2.-52}

implies that
Z .1 {2.2.-54}
ol ol

and the corresponding condition in ferms of S and E, namely

LERNSE ) {2.2.-55}
oF oF

also implies that
LER | {2.2.-56}
3C aC

Thus, {2.2.-52} and {2.2.-54} are equivalent forms, as are {2.2.-55}
and {2.2.-56}, and all four are equivalent in the sense that each one
prescirribes the condition (in different variabies) which guaraniees the
existence of U; as a state function. However, for simplicity, the
discussion will be con?iﬁued in terms of T and U (and S and TE:),
it being understood that T and C are also appropriate variables,
if desired.

Therefore, the strain energy density ug is guaranteed to
exist as a state function, if the relationship

— {2.2.-52}
7]

1
&yl
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. | N R {9 o s
|aeo, au.. - '&U {ZOZU—)S}
ij mn

exists between the tensors U and T = h(0) = Z(T); or equivalently,

if the relationship

9_3_ = 50 "{2.2.-55}
oE 0

. as™ s :

'ce" aE.. = aE {2;2."57}
"1 nn

exists between the tensors E and S = 7( ) = R{C).
These relationships are often denoted as the "conditions of

exactness", under which

duf = T:dl = T:dlf {2.2.-58}
or dif = S:df = E:4 {2.2.-59}

become "exact" or "perfect' differentials, such that the state

function U may be evaluated as

W = JT:d0 = §T:dF {2.2.-60}
or S = [5:df = %g’;c{?f {2.2.-61}
E c

For this reason, these same relationships are also known as
"integrability conditions"

In either case ({2.2.-52} or {2.2.-55}, above), the strain
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enérgy density U5 is assured to exist as a state function; the
quantity Uy represents the total variation of uﬁ; the strain
energy density may be evaluated as shown in {2.2.-60} or {2.2.-61};
and the continuum is said To be elastic. Thus, The postulate of the
existence of U as a state function implies the relationship
{2.2.-52} or {2.2.-55}: conversely, the existence of either of these
relationships for a continuum of specified constitutive relation
defines {2.2.-58} or {2.2.-59} to be an exact or perfect differen?ial;
" from which it follows that U5 is guaranteed to exist as a state
function.

The Virtual Work Principle then becomes, for an elastic

fjﬂ;‘auﬁ dv = fjfn 8U dS {2.2.-62}

or Ut - f["i‘" 80 dSs = 0 "{2.2.-63}
n
Js
S

where uw = ‘i:;i£1€ dv {2.2.-64}
v

as before, and U? is considered to be a function of T and U

continuum,

(or T), as defined by {2.2.-66}. The absence of a constant in
'{2.2.-63} indicates that U° = 0 in the undeformed state, as
previously observed. Thus, equation {2.2.-63} represents the primary
form of The Potential Energy Principle.
The equilibrium cf the continuum is then ensured if the

functional
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n° = ff ug dv -ff-“f;;.’tids {2.2.-65}
v S,

assumes a stationary value. This is the final form of the Potential
Energy Principle, obtained from {2.2.-63} by the process of §1.2.. The
EULER-LAGRANGE equations, obtained from the vanishing of the first
variation of 1°, are the stress equilibrium equations,
2T .3 {2.2.-66}
aR
and the natura! boundary condition is that the stress vector

T = NeT on S, must be equal to the prescribed stress vector T:
Consider now, the complementary strain energy density function
U%, defined for an elastic continuum by the Legendre transformation on

the tensor variables T and ?, as

u = T:T7 - U5 ' {2.2.-67}

where T is thus required to be expressed as a function of T (as
will be further discussed in Chapter IIl), similar to the requirement
of the LEVINSON Theorem that U must be expressed as a function of T.
It is noted that US always exists as a state function if U5 exists
as a state function, without the necessity of a constitutive
invekéionT: however, in such a case, u§ is guaranteed to exist only

as a function of_ the independent variable of us (namely Ti ?):E or

T See Appendix A for proof of this statement.
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?), and not necessarily as a function of T or S. Consequentily, it

is noted that the existence of U} guarantees the existence of US

in terms of the same independent variable.

1f T is expressed as a function of T, then the Legendre

transformation 2.2.-67 vyields
duf = T:dT + T:dT - duj
or du§ = T:dT

since it is required that dUs = T:dT in order that the strain energy
density may exist. Therefore, the constitutive relation for the

. c
continuum now appears, in terms of Up, as

T = ==L {2.2.-68}

a .. | {2.2.-69}
T aT
oT ar. . ,
i.e., mo= {2.2.-70}
o] o

Employing the Legendre transformation to define us as

u; = T:T - U§ {2.2.-71}
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then the functional {2.2.-65)} of the Potential Energy Principle bacomes

the functional 1€ of the Complementary Potential Energy Principie,

. nc = fff[?f;’ﬁ_u%]dv -f[ﬁg.ﬁds {2.2.-72}
v Js
t

This may be writften in the form

f{[{?z?wuﬁdv ~j . T ds
eov
fj"r-(u—»u*)ds

since U =1U* on S,- Therefore,

e = ff{[ﬁ?ﬁ“—w@]dv —ffﬁ‘f’n-'ﬁds +f T T* dS
eV S Su |
{2.2.-73}
Now, since
T:T = T:1 + T:0 {2.2.-74}
and since
5 = 2
¢R
then F16 = 7:90 o L.F.0) - 220 (2.2.-75)
aR aR oR
and under the assumption of equilibrium in the continuun,
LAR {2.2.-76}
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so that T:F = T:T + 2. @ {2.2.-77}
ok

Thus, the functional ¢ appears as

fff? T + -~—'('1‘ W - u%]dv
-f{fﬁ-ﬁds +jjﬁ

n n

,C:.S S

. u

~ From the GAUSS Divergence Theorem, it is seen that

ﬁfi (TU) dv = H.N“;F‘ﬁds = fj?r‘-n‘ds
-R— n
Vv S _ S

so the Complementary Potential Energy functional assumes the form

jff[m' t1 - uSldv + jfw « U* ds {2.2.-78}

Or, since the first scalar invariant of T may be expressed as

T:T = T8 - 2.4.0 - &1.F
oR aR oR

which, under the assumption of equilibrium in the continuum, becomes

2.7
oR

34
il
1

then the functional {2.2.-78} may also be given as

-fj{u%dv +ff“'r‘e§ds +ff¥-ﬁ*ds
n n
vy S S

u - {z2.2.-79}
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which reduces to the final form

n = - ul:ﬁ:}quﬁ dv + &;:;~T;-.F* ds {2.2.-80}
v S

u
where T* = R + U*, as in the MASUR formulation.

If admissible Lagrange stress states are required to satisfy
the equation of equilibrium {2.2.-76} and the stress boundary
conditions, then the EULER-~LAGRANGE equations are the conditions of

compatibility for the deformation:

3%U
36*507

%0

g {2.2.-81}
00doe?

and the natural boundary condition is that, on Su, the displacement
is the prescribed displacement U¥.

In either form of the functional ({2.2.-78} or {2.2.-80} above),
coupled displacements and stress components are not found in con-
Junction with the complementary strain energy density ug. In Tﬁe
first form, U§ is found only with the first scalar invariant of the
Lagrange stress tensor; in the second form (the MASUR form), the
function U§ is found alone. Consequentiy, these (equivalent)
functionals provide a suitable foundation for the Complementary
Potential Energy Principle in finite elasticity. The Lagrange stress
tensor T and the deformation gradienf T - therefore represent the
appropriate conjugate tenscr variables for the formulation of the
Principle: the comments of WASHIZU are no longer applicable in this

case.
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Thus, for the admissible stress state which coincides with
the true stress state, the functional IS; as given by {2.2,-78} or
{2.2.-80}, assumes a stationary value. This is the Complementary
Potential Energy Principle for the case of finite deformations of an
elastic continuum.

It is now necessary to establish the fact that u§ is a
function only of the "stretching" portion of the displacement field,
and not of the rigid-body rotation (as this is not at all obvious
from the formulation). Also, it is advantageous to examine the nature of
the constitutive inversion required for the operation of the Principle,
and to establish in greater detail, the admissibility conditions for
the Lagrange stress tensor T. These, and other pertinent topics,
including a comparison of u§ of the present theorem with § of the
MASUR Theorem, WS of the LEVINSON Theorem, and U? of the classical

theorem, are treated in the following chapter.



CHAPTER 111

Continued Investigation

of

The Complementary Potential Energy Principle

3.1. THE COMPLEMENTARY STRAIN ENERGY DENSITY

The complementary strain energy density function U%, as
" formulated in terms of the Légrange variables T and T, must be
esfaplished as a function which is independent of rigid-body rotations
in the ﬁiSplacemenT field, if the present formulation of the Principie
is to be of general applicability. In order to establish this fact,
the tensors employed in the previous chapter are first examined in

greater detail.

Consider the homomorphism

{3.1.-1}

—}f
it
=3

S

in which T maps S onto T, as previously given by {2.2.-1}. Now,

if T is invertible, then the homomorphism {3.1.-1} becomes a
bijective homomorphism or an isomorphism. That is, if there always

exists a tensor T}, such that

=

T «T} = T.T = {3.1.-2}

-

then it is always possible to construct the inverse transformaticn

76
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. I‘"’1 =

ol
"
i
ta

!

T.T? = 5. {3.1.-3}

where T' maps T onto S. In this case, the mappings {3.1.-1}
and {3.1.-3} are said to be isomorphic.

Now, from the definition of T in trinomial form,

T = G'9. {3.1.-4}

=]

. -I."—-l =

and as _ T.T!

L]
[¢p)
[{o]

then the inverse tensor T~! is seen to be

T - g%, {3.1.-5}
so that T.T! = 'G'i_l . gJC_j = 6%, = 1
T1!.F = -j— o gl= = ara = I
or r r g Gj G g; 979, 1

as required by the definition.

Thus, T! always exists (or T s always invertible),
except in the case that T = K, where K is a constant vector. How-
ever, although this is a mathematical possibility, it is, of course,
a physical absurdity, as it implies that U = K-R, which is a
specification that the entire confinu;m must col lapse into one point.

Since T1 always exists, then T may be expressed as the
(dot) product of two othar tensors, by virtue of the polar decom-

position theorem. Thus,

"{3.1.-6}

i
i}

<l
o
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where V represents a symmetric, positive-definite tensor known as
the left stretch tensor of the deformation, and % denotes an ortho-
gonal tensor known as the (finite) rotation tensor. The decomposition

of T may also be written as
T = %W {3.1.-7}

where @ again denotes the rotation tensor, as above, and W
represents a symmetric, positive-definite tensor known as the right

" stretch tensor of the deformation.

=3

Since ¢ is an orthogonal tensor, then by definition,

= ¢ +® = {3.1.-8}
Cc C

W

ol

D

z 9§} {3.1.-9}

e

or
(o]

and it follows from the above decompositions that

Ff - ¥.5-@-®_ =557 = §.I.9
c c c c c
or : I‘-I‘c = VeV,
and similarly,
T oT=§-3:3-% - 717 - @0
c c ¢ c c

However, as V and W are symmetric, then 7571 and ﬁ=ﬁc, so the

above expressions become

{3.1.-10}

—3l
|
1]
<
<1
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W {3.0.-11}

=1

T T =
C

so that ?:~?; and Ti:°?: are functions only of the "stretching"
portion of the deformation.

I+ is noted that since

o !
t

<
o
#

=Y
éﬂ

"
i

053
=1

then Fd = Ve9:9 = VI =V = X
c c - c

so that V and W are related through the "similarity ftransformations"

«-@c {3.1.-12}

=l

V = 0

=3 == ===

AT {3.1.-13}

=1
]

and

=

Now, from the definition of the strain tensor E, as

E = %[3{_-5%-1 {3.1.-14}
oR oR
then it is sesen that
£ - L4FF -7 -  §.9-1 G-
E = -2-(1 T, 1) 2(v vV-1) {3.1.-15}

so that the strain tensor is defined by means of the quadratic 7'3

(sometimes denoted as V2) of the left stretch tensor. In terms of

components, since

gJ {3.1.-16}



then TT = 6'9,°+9.67 = g Relel
and as 1 =606, = 6,68 = 6,.60¢
then E may be given as

E - %(gij - 6;,)5C

80

{3,1.-17}
{3.1.-18}
{3.1.-19}

which agrees with the eariier definition, constructed as {I.1.2.-31}.

Denoting V+V as the (left) CAUCHY~GREEN Deformation Tensor

C, and W+W as the (right) CAUCHY-GREEN Deformation Tensor B, so

that

<i

ol
i
-

OH"
i
<
<1

ol
f)

-
-
il

=
=

and

then the strain tensor E is given as

mi
fl
N
al
]
-,

i

Since T may be written as

T = 1+0U
then T =1 +U0 = 1+0
C C C C

and the tensor C appears in the form

{3.1.-20}

{3.1.-213

{3.1.-22}

{3.1.-23)

{3.1.-24}
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Thus, in terms of the displacement gradient,

== - l= == =.:= .. -
E = -2—(U+UC+U Uc) {3.1.-25}
or T = %[GiﬁHT+w£j + ‘G”‘f’-%- aumé*"] {3.1.-26)
aet 267 58° 90
which has components of the form
E.. = B.6.:FT = g, .0 4,5 .89 , 30 3y
ij i3 2073 gl L o593 ppl 9ol
{3.1.-27}

It is of interest to note that the tensor E is only one of
several possible measures of the state of strain. The strain is often

expressed in terms of the (right) CAUCHY-GREEN Tensor E, as

tmil

= .32;(§ - 1) {3.1.-28}

However, from {3.1.-13} and {3.1.~21}, it is observed that

B« Weil - B V55 07
c c
or B = ?;°7°§-3 = EL-E-? {3.1.-29}
3 . 1= =z == =
Therefore, E = i(Qc' C+*% ~ 1)

but this may be written as

“{3.1.-30}

o

€ -5 [je-0)

since 3 °T'E = 3 -3 = T
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Consequently,

{3.1.-31}

v
'!
ol
ml
ol

and ?= and € are thus observed to be entirely equivalent measures of
the state of strain in the continuum, the difference between the two
being merely one of basis.

Examining the foregoing results, it is seen that the necessary
and sufficient condition for a pure rigid displacement (rigid-body

translation and/or rotation) fs that

Cc = 1 {3.1.-32}
from which it follows that
V=W =1 {3.1.-33}
and T=19 , T =79 {3.1.-34}
C C

In the event that a displacement represents a "pure stretch"” (without

rigid-body rotation), then

% = ?c = 1 {3.1.-35}
from which it follows that
T =T =V=74 {3.1.-36}
Finally, in the event of a zero displacemert field,
T =0 {3.1.-37}
from which it follows that
T =T =V =W%Wo=29 =9 =1 {3.1.-38}
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and all deformation mappings become, in this case, automorphisms.
- Consider now, the complementary strain energy density function

u§, defined previously as

u§ = 7T - U3 {3.1.-39}

The strain energy density function Us- is a function only of the
stretching portion of the deformation, as may be readily observed from

the formulation of this quantity as

us =f‘§':d'fj:‘ = %‘['s_‘:di {3.1.-40}
E ¢ |

Of course, it is also true that

us =fff:ai? ﬁ%sd’ﬁ {3.1.-41}
] T

but in this case, it is not so obvious that us is independent of

rigid deformations: however, as all four forms of U% in {3.1.-40}
and {3.1.-41} have been shown to be equivalent, then {3.1.-40} serves
to establish the point.

Consequently, the nature of T:T determines the nature Qf
ug (as might have bzen anticipated). Examining this quantity, it is

seen that, from the definition of ?,

= S+T:T {3.1.-42)

=)l

o
TS

and employing the trinomial form of T,
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tpll
3
=1
n

o

{3.1.-43}

However, the second member of this deuble dot product may be written

as
S - (T T VS
66g, 9, = &(g,*9,)
=S~ | — oS _ F.F
or GG 9,°9; = G 9 gSG r rc

S+T:T = S :T-T {3.1.-44}

Since S s symmetric, this result appears as

§:T:T = B:T-T {3.1.-45}
and the function in question assumes the form
T:T = S:T-T = 5:V-V {3.1.-46}

Therefore, as the stress tensor S = ???3 and the left stretch tensor

V are completely independent of any rigid displacements, then T:T
(and hence, u§) is also independent of such displacements and is thus
a function only of tThe stretching portion of the deformation, as

required. Consequently, it is concluded that U represents a function
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which provides a suitable foundation for the constitutive relations of
the elastic continuum.

The above analysis may be employed to demonstrate that The
compfemenfary strain energy density W§ of the LEVINSON formulation
45 a function of rigid-body rotations in the displacement field. The

function WS has been defined as
w§ = leUjli T {3.1.-47}
which, in direct form, is given as

w§ = T:0 - U5 {3.1.-48}

W§ = S.T:0U - U3 {3.1.-49}
or, as ﬁ=?-i then
W = SeT:T-S-T:1-Us {3.1.-50}
or w§ = uS-—?-?:T

{3.1.-51}

Since the complementary strain energy -density U§ of the present
formulation has been shown to be independent of any rigid-body dis~

placements, it is seen that the nature of wS hinges on the nature

of the term S+T !1. Expressing T as

- by virtue of the

<!

polar decomposition theorem, then
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i
o
-l
1]

al
<
]
)

=

= D-

]

+1 {3.1.-52)

=z

where D represents the tensor S+V (which is generally unsymmetric,

even though both S and V are symmeiric, as SV is not general ly

commutative). Therefore,

) {3.1.-52}

ol
o
1
1]

ol

S.T:1 =
[o]

where the form Ec: ® is obtained for simplicity of discussion.

Consider now, two displacement fields U and U%*, such that

= AR+0) . 5.3 {3.1.-53}
oR

and e o ARETD g {3.1.-54)
oR

Thus, these two displacement fields give rise to the same state of

stretch, 7, and differ only by a rigid-body rotation. Now, as

?*-?’é = '"f-?c = VeV
then S* =8 , D* =D
so that §+T:T = D379 {3.1.-55}
and S*eT*:T = D, : ¥ {3.1.-56}

Therefore, as =l—);c: ? and 3(:: * are general ly different quantities,

then it must be concluded that the energy density W§ is a function
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both of the strefching portion and of the rigid-body rotation of the
djsplacemenf field. Moreover, it appears that no special cases of
particular value exist, in which this problem is avoided. Even in
the two-dimensional cartesian case, in which the rotation tensor
assumes a type of anti-symmetry, the problem stiil exists. That is,
if Ey and E, denote a self-reciprocal orthonormal base, then T
may be represented in this bidimensional space as

EE  + 41.EE aE1E;  + bEE:

P = = B
+ &, 1Ez.ﬁ1 + 922FE, -~ bﬁzﬁ; + aE2E;

. |
2

where B = (a2 + b2)72, and the tensor ® is then orthogonal for any

values of a, b (a, b are both real and pcsitive or both real and

negative). Then,
D : 9 = B(Di1a -~ Dizb + Da1b + D22a)

and even if D should happen to be symmetric,

Ec: © = Ba(D1y + D22)
which is still a function of a, b =-- of which there are an infinite
number of combinatiocns. Only if b=0, i.e., if 3=T, wiltl D ¢

c

become constant.

It is therefore concluded that the energy density U§ is
prefefable to WS in the formulation of the Principle, as the former
is independent of any rigid displacements, while the latter is

generally not.
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3.2. THE CONDITIONS OF ADMISSIBILITY
An admissible Lagrange stress tensor T must satisfy the
first CAUCHY Axiom of motion (in this case, the stress equilibrium

equation),

Y
=3

!
i

= 6. '{3.2."'}

?él,

as previously established in the development of the Complementary
Potential Energy Principle. However, this is not the only condition
of admissibility which must be imposed on T; this tensor must also
satisfy a condition which is analogous to the symmetry condition of
the TREFFTZ stress tensor or the CAUCHY-GREEN siress tensor. That is,
T must satisfy the second CAUCHY Axiom of motion (in This case, the
stress couple or "moment" equilibrium condition).

Since the symmetry of the stress tensor S exists as a result
of this Axiom, it is possible to deduce the equivalenf>condi+ions in
terms of T which follow from this symmetry. From the expansion of

T in terms of S,

T = 796G = s"GG -6'g = sS™Cg {3.2.-2}
17j mn

the component s*? is obtained as

or sl - qlsg .3 {3.2.-3}

- i

Therefore, since S is symmetric, S , and the equivalent

condition in terms of the components of T is
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Tlmﬁmf'g;‘J = Tjnfs‘n-gl {3.2.-4}

as obtained by LEVINSON. Although this result represents the desired
condition which must be saffsfied by the components of ﬁi the explicit
presence of the reciprocal base vectors '{§i} of the basis of the
deformed state indicates that some difficulty may be encountered in

the attempted application of the condition. Noting that

™0 = Gl.T {3.2.-5}
then it is possible to write {3.2.~4} in the direct form
gt.7.99 - g.7.69 {3.2.-6}

but this does little to alleviate the situation.

Considering, however, that the symmetry of 8 is a derived
condition which follows as a consequence of the stress coupie
equilibrium condifion, this latter condition is examined directly.
With reference to Fig. |.1.2.~2, the equilibrium of stress couples in

the elemental volume dv is prescribed by the relationship

_§1Xf1+§2x'f2+§3x'fg = 0
or g. X f} = 0 {3.2.-7}
However, as 'fi is related to T as

t, = &7, - /c?le‘é'j {3.2.-8)

as given by {2.2.-15}, then {3.2.-7} becomes



or
Now;\since
then

but
Similarly,

90

9. x /613G, = 0
s xoils . 5 (3.2.-
g; X T Gj = 0 {3.2.-9}
5; " @& * égf
36
. xoilg, + 8 _xqils = @ {3.2.-10)
1 ] 86-‘- ]
€. x79G, = G «1x7%
i 3 i j
= TsriisE
= 1T {3.2.-11}
?—-L—].—.»-XTij'(?. = G. .U, ilg
00t J 1R J
= G.+0 x 179G,
i 3
= UxT {3.2.-12}

Therefore, the condition of stress couple or moment equilibrium appears

as

5. xT5. = T+0)%xT = 0 {3.2.-13}

or, since T=1+ ﬁ, simply as

0 {3.2.-14}

=i

Xe |
=1
H]

Equation {3.2.-14} thus represents, in terms of the conjugate variables

==

T and T, the second condition which must be satisfied by an admissible

Lagrange stress tensor.
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It is of interest to note that this condition may be expressed
in another form, which may prove to be convenient in particular cir-

cumstances. From {3.2.-14},

TsT =237 -0
R
but ¥ eF = LT F-2.@Fx7) {3.2.-15}
oR R oR

and, by virtue of the stress equilibrium equation, the first member
of the right-hand side of {3.2.-15} must vanish. Therefore, the two

admissibility conditions for T may be stated as

() 2T .5 {3.2.-1)
oR
(2) 3:(IxF) . § - T37 {3.2.-16}

oR
Consequently, any solenoidal tensor i‘—:, for which FxT is also
solenoidal, is an admissible stress function tensor in this formula-

tion.

3.3, THE CONSTITUTIVE RELATION

It is advantageous to examine the general nature of the
constitutive relation in terms of the Lagrange stress tensor T and
the deformation gradient ?; as it has been suggested that, a!though
T may be expressed as a function of TZ an inversion of this relation
is always impossible. This, however, is not the case, as will be

demonstrated in what follows.
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Consider first, the argument which has been proposed in order
to show that T (or U) can never be obtained as a function of a stress
tensor.

Any stress tensor (say, o) which is expressed as a function of

the state of strain may be written as

c = {(T) {3.3.-1}

=

since T represents one of the primary quantities of the deformation,
from which other quantities may be derived. However, o is not a
function of T per se, so that although {3.3.-1} is true, a more

explicit statement of this relation would appear as

o = kT, T) {3.3.-2}

or, even more explicitly,
o = WI-T) = 4r, «T) {3.3.-3}
i.e., o = R(C) = Z(B) {3.3.-4}

Or, in words, although G is a function of T in the formal sense,
it is actually not a function of the entire deformation gradient:

rather, o is a function only of a part of ?; namely the symmetric
positive-definite (quadratic) part C=V'V or B=W+W. Conse-

quently, it follows from {3.3.-4} that an inversion of the type

()

fi
"

[ w(c) {3.3.-5}

(o) y(o) {3.3.-6}

wi
I'

H]

or
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is generally not impossible, so that C or B may be expressed as a
function of the stress tensor. This inversion may be written explicitly

in terms of =I?, as

Tf-?; = w(o) {3.3.-7}
or ‘Fc' T = y(o) {3.3.-8}

so that T .?c or T:c T may be expressed as a function of G. How-
ever, here, the process stops. Since there exists.an infinite number
of deformation gradients ?*, each one differing from the others only

by a rigid rotation, such that

=*‘ * = ==.= - f— %3 . _

I*.T¥ IeT, w(o) {3.3.-9}

=*.t=* = = .= = == g . _
or r*.T r T y(o) {3.3.-10}

then it is possible only to obtain T‘=°=I—Tc or ?C-T? as a function of
o, not T itself. Therefore, a constitutive inversion is generally
not impossible for B or C, but is always impossible for T or 'f_J-,
in terms of the stress tensor o.

The above argument is entirely true: however, it happens not
- to be applicable to the Lagrange stress tensor of the present formula-
tion. The major premise in this argument is that the stress tensor
0 is not a function of the entire deformation gradient (from which it
follows that T ’canno'l' be recovered from ©). However, the Lagrange
stress tensor T, by virtue of its particular nature, 48 a function of

the entire deformation gradient, from which it follows that recovery
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of T from T is not a general impossibility.

relationship

T = ST
since S = E(C)
then T = R(C,T)
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That is, from the

“{3.3.-11}
{3.3.-12}
{3.3.-13}

However, once T is known to be present explicitly in its entirety,

==

then it is possible to express T as

- 30

1
A
=

since C

{3.3.-14}

{3.3.-15}

Therefore, it is not always impossible to obtain T from the Lagrange

stress tensor as

T = TI(T)
or to obtain U (as in LEVINSON'S Theorem) as

U = WMT)

{3.3.-16}

{3.3.-17}

Of course, it is true that there exist numerous relations of the form

{3.3.-14} which cannot be inverted to yield the form {3.3.-16} (as is

true for constitutive relations in terms of any tensors), but the

significant point here, is that such an inversion is not a priond

impossible.
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This conclusion Is further evidenced by the form in which the

second condition of admissibility is obtained. Recalling {3.2.-i4},

it is seen that this condition

3

TeT = 0 {3.3.-18}

[%

prescribes the existence of a relationship of the form
FT,T) =0 {3.3.-19}

Therefore, by the implicit-function theorem,

N RN, SR
or oT
or & = 3:[2:.3.;&;] - 0
oT ' T
o . _ . 23f {3.3.-20}
T or oT
| .
so that, if -— is nonsingular, such that
ar
T [a¥ ] 4
?—__’;P—L] = T {3.3.-21}
o Lor
then {3.3.-20} becomes
= F =11
8L . -9.;[[31}] {3.3.-22}
oT oT Lol

and T is found to be a function of the Lagrange stress tensor T.
Thus, the implicit-function theorem shows that, given a function of T

and T in the form of {3.3.-19}, it is possitle to express T as a

function of T when {3.3.-21} holds.
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i+ should be noted that there exists one set of conditions,
under which inversion is not possible; namely, when the state of stress

is identically zero, or

{3.3.-23}

=]
i
tll
H]
ol

In this case, T and S are identically zero, but it is necessary
only that T te orthogonal (not necessarily zero) in order to produce
this condition. Consequently, in this case, inversion is not possible.
However, as this represents a situation of relatively little importance
in the mechanics of deformable media, it is considered to impose only
a frivial restriction upon the use of the Cocmpliementary Potential
Energy Principle.

It is perhaps advantageous, at this point, to discuss the
constitutive relation in terms of T and T (and its inversion) in
a different context, for a constitutive reiation based on these

variables is somewhat unusual. Consider first, the more familiar form

of constitutive equation,

= f(c) = {V-%) {3.3.-24}

0l

in which a state of stress S is prescribed as a function of the
symmetric, positive~definite atretch quadratic, C=V-.V. The
material being elastic, S and C are related by means of a sirain

energy dencity function U?, as
s = =2 {3.3.-25}

where UJ is a function only of the stretching portion of the
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déformaﬂon, and not of any rigid-body displacements. When the
parﬂcular form of {3.3.-24} admits inversion, then S and C are
further related through a compliementary strain energy density function
t(z = 29), as

¢ = {3.3.-26}

Sl

where [, defined by a Legendre transformation on S and C, is also
a function only of the streiching portion of the deformation.

Consider now, a constitutive relation of the form

T = ‘_'E—(.“?) ' {3-30"27}

in which a state of stress T is prescribed as a function of the
symmetric, positive-definite stretch tensor, V. The material being
elastic, T and V are related by means of a strain energy density

N S
function Uy, as

= S .
7T = o {3.3.-28}
v

where U3 is a function only of the stretching portion of the defor-

mation, and not of any rigid-body displacements. When the parﬂ'cuiar

==

form of {3.3.-27} admits inversion, then T and V are further

related through a complementary strain energy density function u§, as

C
: oT

where U§, defined by a Legendre transformation on T and V, is also

a function only of the strefching portion of the deformation.
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However, as the stretch V is an exceedingly difficult
quantity to isolate for use as a tensor variable, then let V be
mapped onto T by @ ({as given by {3.1.-6}) and similarly, let T
be mapped onto T by '$, so that the constitutive refation now appéars
as

= R(T) ‘ {3.3.-30}

el

The elasticity of the material is then prescribed as

aug
or

T = {3.3.-31}

where Up nemains a function only of the stretching pontion oﬁ'tha
deformation. When {3.3.-30} (or {3.3.-27}) admits inversion, then T

and T are further related, as before:
{3.3.-32}

where u%, defined by a Legendre transfcrmation on T and T, also
remains a function only of the &tretching portion of the defermation.
This, in brinciple, represents the rationale of the somewhat
unusual constitutive relations of the present theorem, and of the
similar relations of LEVINSON'S Theorem (in terms of T and U). In
conjunction with the latter theorem, it is observed that the absence
of a simple mapping of V onto U accounts for the failure of the
complementary strain energy density function of that theorem WS o
retain its independence of rigid displacements, in contrast to the

energy density U? of The present formulation.
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3.4. FOUR ENERGY DENSITY FUNCTIONS

As noted in Chapter II, there exist four sets of conjugate
tensor variables, by means of which it is possible to define the |
strain energy density function us. Consequently, as each of these
sets suggests a different set of variables for use in the construction
of the Legendre transformation which defines the complementary strain
energy density, then four different complementary functions may be
produced.

These functions, written in terms of their original variables,

appear as follows.

uf = S:E - U; (Classical, REISSNER) {3.4.-1}
Q — 1';30:-7 us 2}
= 58:C - U (MASUR) {(3.4.-

w§ = T:G - U5 (LEVINSON) {3.4.-3}

uS = T:T - U5 (This Work) {3.4.-4}

The functionals which are constructed from these Legendre transforma-

Tions appear as, respectively:

nm°(s) = - Jrjul +---5‘:= ﬁ]dv + ff"fn-ﬁ* ds {3.4.-5}
Su (Classical)
'_ p
n°(s) = —flj{su’s::?{;]dv +f T or*ds {3.4.-6}
J Iy 9 s ,

u (MASUR)

n%(T) = —jjfw% dv [ T 0% ds {3.4.-7}
v

Su (LEV INSON)
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ne(r) = —fffu& dv + ff‘tﬁn-,?* ds '{3.4.-8}
v Sy

AThis Work)
and this latter functional has the alternate form

n(T) = -fff[u%-?:"f]dv + jfﬁ‘-ﬂ-ﬁ* ds {3.4.-9}
v : S

u (This Work)

where all functionals are shown in the form of a "maximum principie",
for purposes of comparison.

Examining the complementary strain energy densities agaln, in

terms of S and C or T and T only, the following relationships
are observed.
W = 18:% - 15:7 - & (Classical)
2 2
_ Y= = s
Q = §-S tC - Uy {(MASUR)
Ww§ = T:T - T:1I - U; (LEVINSON)
u§ = T:T - U3 (This YWork)

It is, of course, possible to express the last two functions in terms
of E: but this is misleading, as S is not the stress variable in
the functionals which emznate from W§ and U§ ({3.4.-7}, {3.4.-8}
and {3.4.-9}).

From the functionals {3.4.-5} to {3.4.-9}, by reducing these
forms to a common form, the relationship between the various energy

density functions is found To be as follows

McMASTER UNIVERSITY LIBRARY.



101

54
2

0+ %rg':‘ﬁ.ﬁc + 8:T = g + §:& {3.4.-10}
38

= w§ + T:T {3.4.-11}

= U§ {3.4.-12}

Since the terms of the classical expression may be written in the

form
=,“..r_—. l=.’=.= - .-_... b 1:-—."::::
S:T + 38:0-U, = S (T + 5 U %)
= 51T+ T + 16.5)
¢ 2 ¢
= §:(I + E) {3.4.-13}

(since S is symmetric), then the above relationships may be given as

u$ + 5:(T + F) = 2 + 5:8 {3.4.-14}
S

= w$ + T:1 {3.4.-15)

= s ' {3.4.-16}

IT may be concluded that if the TREFFTZ stress tensor is
employed as the stress vériable, then the Classical expression results
in a coupling of stress and displacement Terms in the functional.
MASUR'S formulation, however, avoids this difficulty, and is therefore
the appropriate formulation of the Principle in terms of the TREFFTZ
stress tensor.

If the Lagrange stress tensor is employed as the stress



102

variable, then the LEVINSON expression results in a functional! of
simple form, which is distinctly advantageous: yet, tThe complementary
strain energy density W§ is a function of rigid displacements. The
present formulation, however, avoids this difficulty, and is therefore
the appropriate formulation of the Principle in terms of the Lagirange
stress tensor.

I+ is noted once again, that the dependence of w% on rigid
displacements (rigicd-body rotation) does not constitute an error in
the LEVINSON formulation == ﬁerely an inconvenience. The LEVINSON
Theorem is equally as applicable as the present theorem, and
constitutive relations in ferms of ?: U eand w% are no mofe unusual
than those in terms of ﬁi T and U% (as in the present theorem), due
to the nature of the Lagrange stiress tensor. The only difference is

that W§ must be employed with caution, as it does not remain constant

under rotation in the course of the displacement,



CHAPTER IV

The Complementary Potential Energy Principle

For Unidimensional Continua

4.1. SYSTEMS OF DISCRETE FORCES

The discrete-force formulation of the Complementary Potential
Energy Principle for finite deformations represents an important
special case of the general formulation of the Principle. This case,
in addition to its importance in the area of structural mechanics,‘
contains the Theorems of CROTTI and MENABREA. - Consequently, it is
advantageous to examine the reduction of the general Principle to this
case, and in so doing, to demonstrate that the CROTTI Theorem
("CASTIGLIANO'S Theorem™) has no convenient extension to a general
continuum in finite-deformation theory, in contrast fo the results of
the infinitesimal theory. 1t is shown, in fact, fthat the CROTTI
Theorem, which is usually considered as "equivalent" to the Comple-
mentary Potential Energy Principle in infinitesimal elasticity, leads
to the LEVINSON formulation as a direct generalization in finite
elasticity. Therefore, the true "finite counterpart" of the comple-
mentary strain energy of the infinitesimal formulation is established
as a function of rigid displacements, and must be employed with
caution.

Consider the functional IS of the general formulation of

the Principle in the form {2.2.-80}, i.e.,

103
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nc = -ffjugdv + [f’fﬂ-?* ds {4.1.-1}
v o &g
u

Denoting the (total) complementary strain energy, i.e. the volume

integral of the density us§, as uc;

e = ffju% dv {4.1.-2}
v

then the functional appears in the form

nc =. -u¢ + fjﬁn-F* ds {4.1.-3}
; _

u

Now, if the stress vector T; = Ne«T on the surface S represents a
number of very small areas of very high stress magnitude concentration,
then in the limit, T* prescribes the location of certain specified
points at which there exist "discrete forces": or, the surface integral

in {4.1.-3} is represented by a summation

”ﬁ" T dS > T*.FWD {4.1.-4)
T il 3
S

u

where ?gr) denotes the discrete force located at the prescribed '

position Ff (i =1,2,...,n). In this case, the functional becomes
1° = -t + . F® {4.1.-5)
i i

Therefore, comparing {4.1.-5} and {2.1.-7}, the functional I% s
seen to be equal to the (negative) functional -Q¢ of the LIBOVE

Theorem. The difference in signs arises as a result of the fact that
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the present theorem is obtained as a maximum principle by a Legendre
transformation on a minimum principie (the Potential Energy Principle),
while LIBOVE'S Theofem is constructed as a miniwum principle.
Consequently, the complementary strain energy U of the
present formulation and the energy H® of the LIBOVE Theorem represent

the same quantity: or, in the case of a discrete force systenm,

f?i-a’F‘i = H® = (° = fffu%dv {4.1.-6}
F ' v

Thus, the present theorem contains the LIBOVE Theorem as a special
case for finite elastic systems, and the complementary strain energy
U¢ of the present theorem represents the direct generalization of HC
of the LIBOVE Theorem to a continuous stress system.

Employing the relationships between the various energy densities,

as given in §3.4,, it is also possible to say

fF.-df-’i - H® fjf{w&v"ﬁ'rﬂdv {4.1.-7}
F
fff Q+8: .-gdv {4.1.-8)
s ,
ffj\[u?+*s-=:(f+?)]dv
V

which relates the energy densities wE, Q and US +o the LIBOVE energy

]
T
4]

{4.1.-9}

H® for discrete force systems. The first of the above relationships
may be transformed, in a manner similar fo that shown for {2.2.-79},

as follows. From
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[ffrae - e

which is valid under the assumption of equilibrium in the continuum,
then the surface integral may be interpreted as a summation in the case

of discrete forces, and {4.!.-7} appears as

f(?i-ﬁi)edr'i = fffwﬁdv

F

" or fU. . d.?, = fﬂwﬁ dv {4.1.-10}
» X 1 4 V
F .

However, recalling the complementary strain energy defined by LANGHAAR,
as

we = F,.U, - U° {4.1.-11}
which, as a Legendre transformation, may be expressed as

v’ = U, « dF; {4.1.-12}

i
then it is seen that {4.1.-10 }may be written as

fUi-df-’i . W¢ = fffw%dv {4.!;-13}
- v

F
Thérefdre, the LEVINSON formulation of the Complementary Potential

Energy Principl!e represents the direct generalization of the CROTTI
Theorem to a continucus stress system, and the complementary strain
energy wc, considered as the volume integral of the LEVINSON density

WS, represents the true "finite counterpart" of the complementary
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strain energy of the infinitesimal theory. As noted previocusly, how-
ever, W5 is a function of rigid displacements, and therefore the
CROTTI Theorem does not admit a simple extension to a general continuum
in finite elasticity, in confrast to the infinitesimal theory.

The constitutive relations of the general formulation, relating

tf?, T and u%‘ {or ﬁ, T and w‘o’),

_ ¢
T - 2o {4.1.-14}
a7
C
U = ‘igi {4.1.-15}
oT -
C C —
i.e., T - % . 3 {a.1.-16}
oF  oF

become statements of the CROTTI Theorem, when a discrete force system
is considered. In this case, {4.1.~16} becomes, for complementary
strain energies W and UC (representing the volume integrals of the

densities w% and us respectively),

w3 e
Up = o T o
1 1

Rj- Fj) {4.1.-17}

for a force ?i = Fiﬁ'(where E denotes a unit vector) and the corres-
ponding component of displacement U, = Uk'-ﬁ} since the surface
integral of T; = N+ T bears interpretation as a discrete force. The

relation of the two densities, previously established as

u§ = WS +T:

ot

{4.1.-18}
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thus leads to the relation
u = H¢ = WC+R -F {4.1.-19}

for the total energies, in the case of discrete force systems.
For finite elastic systems containing redundant (statically

indeterminate) forces, then

aw® ) — =

- ——— - [PU— c-. L ] ’ -
0 = xE aFl‘(u R, F.) {4.1.-20}

1

which represents the MENABREA Principle for a redundant force ?; = F E.
These theorems may also be stated in terms of the complementary

strain energy of the MASUR formulation. From the relationship

WS+ F:T = +85:% {4.1.-21}
aS
then the CROTTI Theorem may be given as
u, = -(T -'F”’.) {4.1.-22}

where [fj Q+ 95t dv {4.1.-23}

_ ° cC_ 5 . : _
0 = -a—!-:;(T R. *F.) {4.1.-24}

It is observed that, in the case of discrete force systems,
the energy formuiation in terms of we provides a simpler and more

direct basis for the Theorems of CROTT! aﬁd MENABREA than does the
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formutation in terms of US. However, as the system becomes generalized
to a continuous stress system, the energy density u§ is more
appropriate than w%, the latter being a function of rigid-body rotation.
This problem does not arise in the infinitesimal theory, due to
the nature of the definition of the strain tensor in that theory. In
fact, in such a case, Thé LEVINSON density w% becomes identicatl with
the energy density U§ of the Classical Theory (hence the statement
that the CROTTI Theorem is "equivalent" to the Complementary Potential
Energy Principle in infinitesimal elasticity). This is easily esta-

blished from {3.4.-11}, which states that

u§ + %ﬁzu-uc + 83T = w§ + T:1 {4.1.-25}

Now, since T $1 may be written as

T:I = S+T:1 = 5:T {4.1.-26}
for symmetric E; then
W+ %—’é‘:’“ﬁ-ﬁc = S | {4.1.227}

and as T;'fi: is precisely the "quadratic" portion of the strain

tensor which is neglected in the infinitesimal theory, then

in infinitesimal elasticity (only). Consequently, the situation is

simplified considerably in this case.
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4.2. THE UNIDIMENSIONAL CONTINUUM

Consider now, for purposes of comparison with the well-known
results of the infinitesimal theory, a unidimensional continuum.
Specifically, consider a prismatic rod of length L and cross-sectional
area A in the undeformed state (the "truss member'" discussed by LIBOVE),
subjected to axial forces F and -F at the end points. The coordinate
description of the rod being arbitrary, one end point will be considered
located at R; = K (where K is a constant vector) at which point the
force -F will be applied, and the other end point will then be denoted

as R,, where

Rz

K+L = XK+16, {4.2.-1}

at which point the force F will be applied. Thus, the axis of the rod
is chosen as the 6!-coordinate, and, as implied by {4.2.-1}, the base
vector G, denotes a unit vector. Therefore, any point on the rod axis
is specified as

R = K+ 05, {4.2.-2}

The base vector sysfem'{ﬁg} is now constructed as an orthonormal basis,

so that
G, = [ {4.2.-3}
G,. = G.+6, = Br+GC., = §.. 4.2.-4}
and ij i°%5 j ij {
with - Gy xG, = G3 {4.2.-5}

which specifies the basis as a dextral system.

The displacement field U for the rod is the usual one-
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dimensional field U = U;8', produced by the action of the axial forces

at the ends of the rod. Thus,

T = UG = Ut = ut {4.2.-6}

and Uy = s = 3 - 5 2 {4.2.-7)
ae! 3!

since G, fis not a function of the parametric coordinates. That is,

G+ = 0 ;0 3 F1 {4.2.-8}
207

Ei-a"’- =0 5 i#1 {4.2.-9}
36!

in accordance with the usual postulates of one-dimensional analysis.

Therefore, the position vector r is prescribed as
r = R+U = K+ (6 + UG {4.2.-10}

and the basis'{§£} of the deformed configuration appears as

26}
gz = G2 {4.2.-11}
gs = OGg3

Or, as the deformation gradient is obtained as

T = (1+un)6i6 {4.2.~12}
. - e Ui =
with U = Unbi16y = —6:6; {4.2.-13}

00!
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then 51 = (14' U11)61 {4.2.-14}

and g2 = G2, gs = G3, as given above. From the foregoing, it follows

that -

W = 6126, xGs = 1 {4.2.-15}
and Yg' = g1°g2xg: = 1+ Un {4.2.-16}
so that V/%? = 14Uy, ©{4.2.-17}

and the components of the stress tensors T and S are related, from

{1.1.2.-57}, as
(L + Uy )t = si? {4.2.-18}

other components being assumed to vanish. Furthermore, from the

definition of the Lagrange stress tensor as

T {4.2.-19}

=l
"
2]

then pli

i

st (1 + un,) {4.2.-20}
and all three types of stress components are related as
(1 +Uy,)%0* = (14 up,)stt = 7! {4.2.-21}

For simplicity in this one-dimensional case, ! may be denoted as T,

s'! as 8, Uy as U, etc., so that {4.2.-21} appears as

(L+u)%t = (1+U)s = T . {4.2.-22}



Now, for a unit normal N, prescribing the surface upon which the force

F (or -F) is defined to act, then

sl
n
=

N = -5 at

N

so that P ;
F =fji‘"nds - ffé’,-ﬁ’?’ds
S S

which, in this case, becomes

F = FG, =ff'1‘§1d/\= fdeA G,
s A A -
or F = .i:ﬁir dA
. A

"
)
[
[+)
-+
=

i
=l
+
t“

{4.2.-23})

{4.2.-24}

{4.2.-25}

{4.2.-26}

{4.2.-27}

Since T is constant over the cross-section in this case, then

{4.1.-27} becomes simply

F = TA

"{4.2.-28}

The strain tensor E is obtained from U and E;, as given by

{3.1.-25}, and appears as

E = E;6i6: [Un + -5—"(011)2]516"1
or f = E116:6; = [U+-21U2]§1G—1

Now, if a linear constitutive relation, of the form

m]l
e
)
S—
=

S = 2uE + A(

exists between §:‘and E, then

{4.2.-29}

{4.2.-30}

{4.2.-31}
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s = (2u+ A5, {4.2.-32}
or s = y[U + -Jiu"] {4.2.-33)
where Y = 2u+ A {4.2.-34}

Denoting S/y as o, then {4.2.-33} yields U as
U = (1+20)% -1 {4.2.-35)

and the relationship of the various stress components may be written

in the form
(L+20)r = (1 + 20);‘58 = {4.2.-36}

so that T and U are both represented in terms of o (or ¢ appears
in the capacity of a parameter).

From {4.2.-36}, S and T are seen to be related as

1
T = s[1+zf]”2 {4.2.-37}
or 28 + ys%? ~ y12 = 0 {4.2.-38}

and from this result, with {4.2.-33}, U and T are seen to be

related as
T = %—(U)‘(U+1)(U+2) {4.2.-39}
or yu! 4+ 3yU%2 + 2yU - 2T = 0 {4.2.-40}

The complementary strain energy density ug may now be evaluated.
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Recalling that U§ is given as

u§ = T:T - U3 {4.2.-41}
'rheh_ T:T s found, in this case, as
T:T = 17y, = T(1+ V) {4.2.-42})

However, as

Ty o= (L+U0) = 1+ [(1+20)%-1] = (1+20)%

{4.2.-43}
then from {4.2.-36} and {4.2.-43}
T:TF = [S(1+20)%{1 + 20)%
= 8(1 + 20) {4.2.-44}
and this result may be given completely in terms of 8, as
T:T = S[l + %S.] ' {4.2.-45}

P . C .
The remaining term in the expression for Ug, namely the strain energy

s
Us, is found as

u; = .iai::dF {4.2.-46}
or so u; = ".§=:JE {4.2.-47}

or as either of the other two possible representations,; as discussed

in §2.2.. in the first case, U3 is obtained as
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us f'r dl(1 + 20)%]

i}u+2ﬂﬁl+mrgw

PY.

- dS

]
. gn.ﬁ
<!

ft
%

5 . {4.2.-48}

This result, of course, could also have been obtained from the inte-

u; f?:df
fYEu dEyy

gration of S :dE, as

"

I s?
= 3Yhyy Vi

since the construction of the strain energy density function in all
four sets of variables must {ead to the same resulf.
From the expressions for T:T and U%, the complementary
strain energy density is obtained as
2 s?
u§ = s[} + ——] -0
’ YJ %

_ 382
— '?—"'Y"""+ S

B

3s :
S[l + 27] {4.2.-49}

This result may be expressed in terms of T, from the solution of

{4.2.-38} or {4.2.-40): if
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S & e N
v o= [F»ﬁ] {4.2.-50}
T, s [z ] e
and [74( WJ ; B = [? ] {4.2.-51}
with E = - §{A + B+ (A - B)/=3] {4.2.-52}

then U may be given, in terms of T, as
U = E£~1 {4.2.-53}

and S is obtained from {4.2.-33} as

s = Juw+2)] = e -1) {4.2.-54)

In simpler form, if
cos ¢ = -3-{%-"3 {4.2.-55)
then 7 £ = /%’ cos %- {4.2.-56}

and U and S follow as given by {4.2.-53} and {4.2.-54}.
Verifying this result, the constitutive relation may be examined in
the form

ug _ 3o aug

5 ° 57 55 {4.2.-57}

since © 1is employed in the capacity of a parameter in the formulation

of u%. Since

' 1
o _ _(1+2)° "{4.2.-58}
oT y{1+ 30) e
- aug '
and =X = (1 + 30) {4.2.-59}
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C 1 .
then 820 - (1+20)% = U+1 = Iy, {4.2.-60}

as desired. Similarly, the energy density W5 of the LEVINSON

formulation, i.e.,

WS = T:0 - U {4.2.-61}

may be obtained from the expressions for T, U and us as glven

above. From {4.2.-35} and {4.2.-36},

yo(l + 20)%[(1 + .'zcx);E - 1]

T:U =
= s[1+%§.] - s[:u %9-]1’4 {4.2.-62)
so that W§ becomes
wg=sb+%}- P+%k 4.2.-63

The volume integral of the density ug yields the total compiementary

e 1
Pl

and, as S is constant over the cross-sectional! area and the length in

energy u®, or

uc {4.2.-64}

$0 uc

this case, then

W = K = S[l + -]AL {4.2.-65)



Ho

This expression represents the total complementary energy for a uni-
dimensional member subjected to axial forces.

LIBOVE has obtained a corresponding expression, under the
assumption that the elongation, e, (the total displacement) of the bar
is a function of the total force F applied to the end points. In this

case, he obtained the result

H® = FL +fe df {4.2.-66}
or, in the case of "a bar which obeys Hooke"s law", he obtained
c F2L
H™ = FL+ % {4.2.-67}

where E denotes the modulus of elasticity (corresponding to y, above).
LIBOVE observed that "It is important to note that [H®] is not the
same as the definition usually given for the complementary energy of
a bar. The usual definition consists only of the second part .....
While the usual definition is sufficient for trusses with negligible
rotations [small changes of geometry], the extra term FL in the new
definition is needed for application to trusses whose bars undergo
large rotations [large changes of geometryl]. It will become clear
through the later discussion that when the rotations are assumed to
be vanishingly small, the extra terms in the new definition reduce to
a constant, which may be dropped from the complementary energy
expression, thus bringing the new complementary-energy theory into
agreement with the conventional dne".

It is important to note that LIBOVE'S explanation of the

nature of the energy H® is in error. The term FL has no relation
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whatever to the finite aspect of the theory and, in fact, remains
constant for all deformations of the member -- finite or infinitesimal.
It is the energy W® of The LEVINSON formulation which reduces to the
“conventional" expression, not the energy H® of the LIBOVE Theorem
(or its generalization, the energy U® of the present theorem). The
term FL arises as a natural consequence of the conjugate variables
which are selacted for the formulation of the theorem. In the general
case, FL corresponds to the fefm which marks the difference between
the functions WS and US: namely, the volume infcgraf of T:I. In the
case of disérefe forces, this difference is represented, as noted by
{4.1.-19}, as R; *F;. This is easily established by considering the

original specification of the system:

R, = K and F, = ~-F at R; {4.2.-68}

R: = K+L and F, = F at R {4.2.-69}
Thus, the term ?& ~?} is found as

R, *F, = Ke(~F) + (K+I)-F

= FI, {4.2.-70}

and this term remains unchanged (in form, not magnitude), whelher the
deformation is finite or infinitesimal. Thus, the Term FL in LIBOVE'S
formulation is a function of the choice of conjugate variables and is

not a term which arises as a result of the finite nature of the



121

deformation.

The second term in LIBOVE'S expression, 5223 agrees with the
"conventional" expression because it is precisely that. A linear
force-displacement relation considered with a linear stress-strain
relation implies a strain tensor of the form E = %(ﬁ:+ E;) in which
the term T?-ﬁ; is neglected. Consequently, the complementary strain
energy is obtained as a result of the infinitesimal theory. Of course,
the use of a linear force-displacement and stress-strain relation may
well be a very reasonable approximation in the analysis of engineering
problems, due to the nature of most 'engineering materials!, but it is
essential to note that in such a case, the theory is not a true "finite
theory". Rather, it becomes a theory of infinitesimal elasiicity, in
which the equations of equilibrium are considered in terms of the
deformed geometry, or a "hybrid theory".

. From the expression {4.2.-65} for the complementary strain

energy Uc, it is seen that

ou” L[1+?-5-’]1/2'

oF Y
= L(U + 1) {4.2.-71}
However, as
g = U . %—‘- {4.2.-72}
96!

in this case, due to the nature of the force system, then

C
g—g—- = U +L = ¢ {4.2.-73}
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where £ represents the length of the member after deformation and
Ut (=U1) denotes the total elongation of the member. This result

agrees with the corresponding genera! statement, previously given as

‘ w3

i oF . oF,
i i

(u¢ - ﬁj -f-“j) {4.2.-74}

Here, ﬁ% °F} has been established as FL, so

Wt 9,,c
O R A
C C
or : u, = %ﬁf.l- = -g—g—--L {4.2.-75})

and it is seen that {4.2.-73} and {4.2.-75} represent the same

relationship, as required.

4.3, THE STRESS-STRETCH RELATION

It is instructive to examine the relationship of the Lagrange
stress to the state of stretch, as discussed in 83.3.. The unidimen-
sional continuum provides a convenient vehicle by means of which this
may be accomplished, due to the simplicity of the expressions in fhis
case. |

As noted in 83.3., a state of stress T may be expressed in

terms of the state of stretfch _—\7, as
T = %V {4.3.-1}

which is mapped by % into a relationship between the Lagrange stress

tensor and Ti



123

= R(T) {4.3.-2}

H3

In the case under consideration at present,

T = (1+01,,)6,6; {4.3,-3}

n
=i

and {4.3.-4}
so the relationship to be examined wili appear in the form

T = h(V) {4.3.-5}

Since a linear constitutive relation (in terins of the TREFFTZ stress

==
N

S and the strain E) has been assumed for purposes of discussion
above, it will be assumed that this relation is still enforced: the
corresponding relationship in terms of T and V will then be

deduced. Since

m|
1
N} pot
e
!
Hi

then C = 2FE+

=
f

=
)
1]

<
<i

or, denoting Ciy as C, I'1y as T, efc., in this case,
C = 2641 = 1?2 = 2 {4.3.-6}
The relation of S to E, previously given as
s = (2u+A)E = ¥E {4.3.-7}

yields {4.3.-6} as
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c = (1+2) = v*° {4.3.-8)
where o = S/y, as before. Now, as
T = yo(L +20)% = yov " {4.3.-9}
and as o = 2 -1) {4.3.-10}
then the stress-stretch relation Is obtained as
T = ov(v? - 1) {4.3.~11}

where a = y/2 denotes the material constant.
This relationship, produced by a linear constitutive relation

(in terms of § and E), is seen to be nonlinear. Of course, this
result was anticipated, since a linear relation of S to E is a
linear relation of § to the stretch quadratic, V V.

The cubic form of the relation of T +o V, with multiple
values at the zero-stress state (V= -1, 0, +1) raises the question of

the single-valuedness of the inversion V= {{(T). However, as may be

observed from {4.3.-6},
vl = 1 {4.3.-12}

so that the multi-valued region -1 <V <+l presents no obstacie
whatever. Since the relationship {4.3.-11} is monotonic in the
regions V £ -1 and V 2 +1 (everywhere except =1 <V < +1), and
since |V| 2 1, then it is of no consequence that the relationship is

multi-valued in the region -1 <V < +1, as this region is inadmissible.



The Lagrange stress T may thus be prescribed in terms of any
fqncfion of the stretch V which is deemed appropriate to the consii-
tution of the material under consideration. It is not necessary that
the function be single-valued in the interval -1 <V < +1, since this
region is an inadmissible one.

Comparing the expressions for T in terms of V and T in

terms of U (as given by {4.2.-39}),
T o= ov(v: -1) = al'(T* - 1) {4.3.-11}
T = oU(U+ 1)U+ 2) {4.3.-13}

it is observed that the latter admits zero~-stress state values of
U=-2, -1, 0. However, as the region -2 < U < 0 is inadmissible,
then the inversion U = k(T) presents no difficulty.

IT is of interest to note that equation {4.3.-13} shows the
order of approximation which is implicit in the assumption that the
force is a linear function of the (tctal) displacement. In this case,
U is considered to be negligible with respect to 1, and T Iis

assumed to be
T = oU(U+ 1){U+2) & 200 = YU {4.3.-14}

I+ then follows that

[fffr dv =j[[yu dv {4.3.-15}
¢ v oJ Sy
or ~ FL = yAU, {4.3.~16}



& = f_l; ’ -
S0 U, = oy {4.3.-17}

which is the familiar expression of the infinitesimal theory.

Both zero-stress stete conditions (in terms of V and of U)

follow from the criterion of pure rigid deformation

ol
Hl

1 {4.3.-18}

or, here, cC =1 {4.3.-19}
" and from the relation of C,‘V and U,
C =V = (U+1)® = 26+1 {4.3.~20}

Thus, the Lagrange stress T may be prescribed in terms of

T (or V) as in the present theorem, or in terms of U=T -1 as in
the LEVINSON formulation, according to the constitution of the
material, and the Compiementary Potential Energy Principle for finite

deformations assumes the forms given in §3.4.



CHAPTER V

‘Conclusion

5.1. CONCLUSIONS

This work establishes the general Principle of Complementary
Potential Energy for the case of finite deformations of an elastic
continuum, in which the Lagrange stress tensor ,T' and the deformation
gradient T appear as the appropriate conjugate variabies. This study,
wvhich was generated by an investigation of LEVINSON'S Theorem, serves
to establish several important results regarding the Principle and its
formulation, and also relates the various functionals and different
tensor variables which have been proposed for the construction of the
Principle.

The formuiation of the Principle by means of the Lagrange
stress tensor and the lagrange strain tensor or displacement gradient

U has been demonstrated to be a valid construction of the Principle.

The inversion of the constitutive relation

3l

= R(®) = R(T -71) {5.1.-1}

to express U in terms of ?; as

= T-1 = Z(T) {5.1.-2}

al

has been established as not always Aimpossible, due to the explicit

dependence of the lagrange stress tensor on T. Therefore, LEVINSON'S
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formulation of the Principie has been shown to be a valid one, in
contrast to the previously-held opinions that it could never be valid
as a consequence of the supposed impossibility of constitutive relations
of the form {5.1.-2}.

As a matter of interest, iT is noted that the direct tensor
formulation of this work, in which the lLagrange stress tensor is con-

structed as

A
"

ol
éﬂ

demonstrates with almost deceptive simplicity that T is a function
of T 4n its entinety (the fundamental requirement of inversion). The
original definition of this tensor, however, as first given by GREEN

and ADKINS in the indirect form
3 = gin(ed 4 ] )
m m

does |ittle to demonstrate this fact. Even in The semi-indirect form

the relationship appears to be only a "change of basis", as noted by
GREEN and ADKINS. This, of course, is true: but the far-reaching
consequences of this 'change of basis",‘such as the nature of the
tensor T, as established in this work, are of far greater importance
than the change of basis, per se.

As previously noted, the fact that {5.1.-2} is not always
impossible cannot be construed to mean that such a relation is always

possible. That is, constitutive relations in terms of T and U may
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certainly be constructed in such a form that inversion is not possible,
as is true for constitutive relations in terms of S and C (or S
and =E=, etc.). The important point, however, is that T and U form
a set of conjugate variables, the nature of which does not preclude
inversion. This may also be said of the sets of variables {T,I'}, {S,C}
and {S,E}, but not, for example, of the sets {S,T}, {5,U0}, {T,T} o
{z,U}, for the reason discussed in Chapter III.

The validity of LEVINSON'S formulation having been established,
it was demonstrated that the complementary strain energy we, repre-
senting the volume integral of the density function w% of this
theorem, was identical with the energy W® of the CROTTI Theorem for
discrete force systems or "finite elastic systems". Thus, it was shown
that the LEVINSON Theorem represents the direct generalization of the
CROTT! Thecrem to continuous stress systems. That is, the energy we
;f LEVINSON'S formulation has been established as the frue finite
counterpart of the complementary strain energy of the infinitesimal
theory, as the function W reduces to the volume integral of ut in
the infinitesimal case, and WS therefore appears as the energy
function in both the CROTTI Theorem and the Complementary Potential
Energy Principle in both (finite and infinitesimal) cases. Conse-
quently, LEVINSON'S Theorem was found to be the most advantageous form of
the Complementary Potential Energy Principle for finite deformations.

Briefly, the functional of LEVINSON'S Theorem is given as

_fffw% dv + ff@’n-ﬁ* ds {5.1.-3}
v S,
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vhere the Lagrange siress tensor must satisfy the condifions of
admissibility

N T . g {(5.1.-4}

N 3

o}

T = 0 {5.1.-5}

=

2)

Further investigation of the nature of the compiementary
strain energy density function W§ of the LEVINSON formulation,

defined as

{5.1.-6}

=
of
1
=l
L=
i
oy
L=37]

revealed, however, that this energy density is generally a function of
rigid-body rotations in the displacement field. This does not con-
stitute an error in the LEVINSON formulation. In fact, it is a result

which is not even inconsistent with the nature of the other variables

employed in the formulation, since T and U are both functions of
T and hence, of the finite rotation tensor d. Constitutive relations

in the form

oY
=
o

U =

|

{5.1.-7}

it
h

Q

are therefore entirely permissible for an energy density § which is
a function of rigid rotetions, due to the nature of the variables T
and U. However, the original éons?ifu?ive retation of the elastic
material in terms cf the same variables, namely

alg
38U

{5.1.-8}

=3
(]
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employs an energy density (the strain energy density U3) which is not
a function of rigid rotations. Censequentiy, it was considered that a
constitutive relation based on a function U?, which Is Independent of
=$, wbich inverts to yield a constitutive relation based on a function
WS, which is dependent on ®, is not particularly advantageous. Such
an inversion, it was felt, would necessarily require caution in its

use and would be less convenient than a relation based on U% which
inverts to yield a relation which is also independent of. rigid rota-
tions. For this reason, it Was stated that the CROTTI Theorem has no
convenient generalization to continuous stress systems: the gencraliza-
tion is LEVINSON'S Theorem, but this requires the use of the function
W§ which is dependent upon rigid rotations in the finite case (although
not in the infinitesimal case).

Subsequent investigation revealed that it was possible to
construct the Complementary Potential Energy Principle in a form which
retained the advantages of the Lagrange stress formulation, buf‘which
fed to an energy density which was not a function of rigid rotations.
In this case (the present theorem), the Lagrange stress tensor T and
the deformation gradient T were found to be the appropriate conjugaTe
variables for the formulation of the Principle. |In this regard, the
construction of the present theorem in ferms of T and T instead of
T and U is enalogous to MASUR'S construction of the theorem in
terms of S and C rather than S and E. Both instances are seen

to involve a change of the displacement-related variable oniy by the

addition of the identity tensor 3l for the purpose of securing a more
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advantageous form of expression.

It has been established that constitutive relations may be
constructed in terms of T and T and that the inversion of such
relations is not generally impossibie, due to the nature of the stress
tensor T (this fact is established; it then follcws that the same is
true for T and :ﬁ, as stated above). Thus, the inversion of the
relation

T = BF) = BU+T) {5.1.-9}

to express T in terms of T, as

+1 = F(T) '{5.|V.—io}

<l

T =
has been demonstrated to be not always impossible. However, as
previously observed, an inversion may be impossible because of its
particular form -~ as is true for constitutive relations in terms of
any tensor variables. I+ was shown that relations in terms of T and
T bear inTerprefaTion as a relation of the state of stress to the
state of stretch, and the rationale of such relations is therefore more
easily constructed in terms of these variables than in terms of T
and U.

The complementary strain energy density function U§ of the

present theorem, defined as
U = T:T - U5 {5.1.-11}

has been established as an energy density which is not a function of

rigid rotations. Thus, the constitutive relation
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f
(=34
o<
o

= 40 {5.1.-12}
and its inversion
T = 0+T = 9o {5.1.-13}

are both based on energy density functions which are independent of
rigid rotations.

The Complementary Potential Energy Principle of the present
formuiation has been showntfd reduce directly to, and therefoire to
contain as a special case, the LIBOVE Theorem, in the case of systems
of discrete forces or finite elastic systems. Thus, the present
theorem represenfs the direct generalization of the LIBOVE Theorem to
continuous stress systems. Aithough the complementary strain energy
U of the present theorem, representing the volume integral of the
density U§, has been established as being different from the energy
WS of the CROTTI Theorem (for this is LEVIMSON'S energy), it has been
demonstrated that the CROTTI Theorem may still be expressed in terms
of UC in a reasonably simple form. Thus, the present formulation
el iminates the dependence of the complementary strain energy function
on rigid rotations without sacrificing the CROTTI Theorem for discrete
force systems.

The conditions of admissibility have been established for the
Lagrange stress tensor T of the present formulation, in a form which
is amenable 1o a stress-function solution to the probiem, and which

does not require the explicit use of reciprocal base vectors of the
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deformed state. !t has been noted that the admissibility conditions of
the present theorem are identical with the admissibility conditions of
The LEVINSON Theorem, as the stress tensor variable remains the sazme
in both formulations, although the displacement-related tensor variable
differs by the identity tensor.

The unidimensional continuum has been examined, and the results
have been compared to the results of the infinitesimal theory. The

erroncous interpretation of the nature and the origin of the term
?21-?& in the discrete-force formulation, as given by LIBOVE, has been
corrected. It has been shown that this term arises as a result of the
particular conjugafe variables employed, and is not peculiar fo finite
deformations.

The complementary strain energy density functions proposed by
other authors have been examined, and the relationships between these
functions have been constructed. |t has also bzen demonstrated that
the four differenf fermulations which have been discussed, representing
four different sets of conjugate tensor variables, have arisen as a
result of the fact that the strain energy density function us may be

constructed in these different variables as the same function.

Specifically, it has been shown that
sus = X:6Y {5.1.~14}

where  {X,Y} = {5,E}, {zsz,k’?}, {T,0}, {T,T}. Each of these four sets
of variables has Tthen been shown to yield a different formulation of

the complementary strain energy density function, by means of a



Legendre transformation on the variables of the set. The first set,
' ﬁﬁ:f}, generates the Classical (and the REISSNER) formulation, in which
the complementary energy density U? is found: +this formulation
results in the coupling of stress and displacement components, as
previously noted. The seT‘fE,ié} generates the MASUR formuilation, in
which the energy density § is found: this formulation avoids the
difficulties of the Classical form of the Principle, and is the most
advantageous form of the theorem in terms of the TREFFTZ stress tensor.
The set {T,U} generates the LEVINSON formulation, in which the energy
densif? W§ is found: this formulation has been shown to represent the
true finite counterpart of the infinitesimal theory, and would be the
most expedient of all four representations, were it not for the fact
that w% is a function of rigid rotations. The set {Eﬁ?? generates
the present theorem, in which the energy density US is found: this
formuiation avoids the construction of a complementary strain energy
which is a function of rigid rotations; also, the present formulation
reduces 1o the LIBOVE Theorem for finite elastic systems and retains
a simple relation to the energy W° of the CROTTI Theorem. Thus, the
present theorem represents the most advantageous form of the Comble—
mentary Potential Energy Principle in terms of the Lagrange stress
tensor.

In summary, the following facts and their subsequent conclu-
sions have been established by this work. The nature of the Lagrange
stress tensor, as determined by the direct tensor formulation, has

been established as such that constitutive relations in terms of T
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and U do admit inversion. Consequently, it is concluded that
LEVINSON'S Theorem is valid, contrary to previous arguments regarding
the impossibility of such inversions (and the subsequent impossibility
of LEVINSON'S formulation). It has also been established that
LEVINSON'S complementary strain energy represents the energy function
which is appropriate to the CROTT! Theorem, and which reduces to the
classical expression in the case of infinitesimal deformations. Thus,
it is concluded that LEVINSON'S complementary strain energy represents
The ftrue finite extension of.fhe comp lementary strain energy of the
infinitesimal formulation. The LEVINSON energy has been shown to be a
function of rigid rotations in the displacement field, and a new comp~
lementary strain energy density function has been defined by T and
?; to re-formulate the Principle in such a way that this characteristic
of the energy is avoided. In addition, the latter formulation has been
demonstrated to be the direct generalization of LIBOVE'S Theorem, and
has been shown tc retain a simple relationship to the CROTTI Theorem.
Therefore, it is concluded that the formulation of the Principle in
terms of T and T represents the most advantageous form of +he'
Principle in terms of the Lagrange siress tensor, and that the CROTTI
Theorem has no convenient generaiization to continuous stress systems
in finite elasticity, in centrast fo the case of infinitesimal
elasticity. The relationship of all four compiementary energy density
functions proposed for the construction of the Principle has been
examined. From this, it is concluded that all are valid, and that

four such functions exist as a consequence of the four possible
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definitions of the strain energy density in terms of four different

sets of tensor variables.

5.2, RECOMMENDATIONS FOR FUTURE RESEARCH

Since this work has established the validity of the Complemen-
tary Potential Energy Principle in which the Lagrange stress tensor
appears as the stress variable (LEVINSON'S or the present Theorem),
it is hoped that future research in this area may be devoted to the
application of the Theorem to problems of engineering interest.

The primary objective of future investigations will doubtless
be the construction of constitutive relations in terms of T and T
(or T and U) which describe the material properties of the system
under investigation. Once such relations have been constructed, the
Theorem may be employed to advantage, due to the simplicity of the
functional form. Certainly, the one-dimensional or "structural case
represents the point at which investigation is likely to begin, for
two reasons. First, this case is one of considerable practical impor-
tance, as the majority of structures which are currently being designed
are "linear element" structures. Second, this case represents the
simplest area df application of the theorem. In fhis regard, the
theorem should be investigated for simple cases of idealized two-

dimensional elements which are usually considered in the same context
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as one-dimensional elements: e.g., linear elements subjected to flexural
loading systems ("beam elements'), This case, representing cne of great
pfatfical value, is one of the simplest cases of a continuous stress
distribution which is not constant throughout the member. LIBOVE has
examined this case by means of his formulation of the theorem, but
since his theorem is restricted to the consideration of discrete forces,
he was forced to consider the stress distritution in a flexural member
as a superposition of discrete forces. The present theorem, which

" represents the generalization of the LIBOVE Theorem to continuous

stress distributions, is not subject to this restriction, and is there-
fore more appropriate to the analysis of such a system. The results of
such an investigation would be quite valuable, particularly in the
event that the order of approximation of LIBOVE'S results could be
estab! ished for particular classes of problems. |In this event, it
would be possible to predict the cases in which the simpler formulation
of the theorem (LIBOVE'S Theorem) could be employed without significant
error.

The theorem will probably prove to be of greatest value in the
true two~dimensional case, in the analysis of thin plates, thin Shallow
shells, and plane strain problems in general. In this regard, a
défailed investigation of stress function tensors which satisfy the
conditions of admissibility would be of considerable value. Although
a great deai of information regarding stress function tensors (and
displacement functions) has been accumulated in terms of the familiar

representations of these quantities, such as the CAUCHY-GREEN Tensor,
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the TREFFTZ Tensor and the strain tensor, very little is known of such
functions in terms of the variables of the present formulation.

Since it will doubtless be difficult to obtain solutions to
all but the simplest problems in analytic form, as is true for
elésficify problems in general and finite elasticity problems in
particular, the subject of approximation techniques should be investi-
gated with regard to their application to the present theorem.
Approximations in the constitutive relation should be examined, in
order to obtain the simplest possible meaningful relations for
particular situations.

Since the "physical significance" of a relationship between s
and E is more readily interpreted than one between T and T due
to the length of time for which the former set has been in use, the
construction of constitutive relations in terms of T and T might
be investigated as follows. If a constitutive relation (invertible) is
prescribed in terms of T and ?: and this relationship ié assumed to
be the "fundamental relation for the material, then the relationship
between S and E which follows from this fundamental relation may
be constructed as a "secondary" relation, for purposes of comparison.
The two constitutive relations will,‘of course, specify the same
condition in terms of two different sets of variables: the relation of
T to T (or U, if desired) will be employed in the Complemenfafy
Potential Energy Principle, while the equivalent relation of S to
E will provide a comparison to the better-known forms of constitutive

relations.



APPENDIX A

The Existence of the Complementary

Strain Energy Density Function

Consider the complementary strain energy density function Uf,
defined for an elastic continuum (one for which the strain energy
density U3 exists as a state function) from the function U5 and

the Lagrange variables T and T, by means of a general contact

transformation

C == ==

u§ = T:T - U5 (A-1)

The finite nature of this definition of U§ (as opposed to the
differential nature of the definition of Uj) shows that no ancillary
conditions are required for the existence of U§ as a state function.
That is, the complementary sirain enengy density exists as a state
function 4§ the strain enengy density exists as a state function.
This assertion, which has been the subject of some dispute, may be
proven as follows.

From the definition of uE, consider the total differential of

this quantity, as

du§ = d(T:T) - du; (A-2)
or duS$ = TedT + T:dF - dif (A=3)
Howevér, as du = T:dT



by virtue of {2.2.-60}, then
duf = T:dT (A-4)

This.is the point at which the dispute regarding the existence of us§
usually arises. T has been frequently noted that "equation (A-4)
shows that the constitutive relation must be inverted, i.e., T must
be expressed as a function of T, in ordér that U§ may exist',

This is not true. The inversion of the constitutive relation is
required for another properfy of US, namely its independence. from

Us in its definition, but the inversion is not a prerequisite for the
existence of the complemenfary strain energy densify.

To prove this, proceed from (A-4) as follows, noting that no

inversions have been postulated: T s still considered as the

independent tensor variable, and T = T(?).

From du§ = T:dr (A-5)
since T = Z(T), then
ds - ?:[f:g]
or
or dus = ?:'I-l-i: T
oF
Now, this may be written as
dus = T:dl (A-6)
where € = ?:-’Ilf_-; = ?-;I'_»;:? (A-7)
or or '



Since =E is a function solely of :?, then 'U% exists as a state

function if E:dl

exists as a state function if

Ll
]

which is the condition under which (A~6) becbmes exact.

form, this condition appears as

is an exact or perfect differential.

Thus, U§

(A-8)

[ > Naai
2

In component

ag'mn agpq -
5T b (A-9)
Pq mn
where a component £ s given from (A-7), as
ij
g = 1, X (A-10)
ij ol
rs
Therefore, US exists as a state function if
2 a1 ] 3 arid )
T [Pij | T T [rij 3T (A-t1)
—pq mn mn PQ
C Mgyt L akt Migortd | . o)
or 3 T ij oT_or ar__ o ij ar__or__
PQ m pPq mn mn ° pq mn pq
1] 2pi 13 213
p.q oT e°T . gamen oT e°T
6383 * Ty §85 57— + Tyy sror—
mn pq mn pPq m  pq
arPd a2pi) D 92r1]
s0 ar— Y Tysarar— = 3r— * Ty ar
mn pq mn p mn  pg

This may be written in the form



T N G N S (A-12)
ij | oT_ar T _ar | T 3T 5T
pq” mn mn” pq pq mn

However, the right-hand side of equation (A-12) must vanish identicaily,
since it is necessary that

™™ arPd

F =F (A-13)
Pq mn

in order that the strain energy density may exist as a state function.

Therefore, (A-12) becomes

o2pt] 92t .| _
Fislorsr— - ar a7 | = © (A-19)
PQ mn mn - pq
which is generally satisfied, as rij #0, if
a2pid a2l
3 or- - arar— - 0
Pg mn mn pg
. a2ptd g2l ,
PqQ mn mn  pq

for any component Tij of T.

But equation (A-15) is nothing more than the specification
that ?7 must be a continuous function of T, a specification which is
implicitly required by {2.2.-54} in any case. (The essentizal dif-
ference in equations (A-13) and (A-15) is of inferest: the former
represents a set of relations between the components of T and T

while the latter is merely a specification of continuity -~ if the

former is assured to exist!)
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Consequently, the conditions {2.2.-52-56} which guarantee.the
existence of U also guafanfee the existence of Uﬁ, or: the comple-
mentary strain energy densitly exists as a state function Lf the. stnain
enengy densiily exisis as a siate function; constitutive inversion is
not required.

It is of interest to note that this statement is also true for

the complementary strain energy density U?, formulated in terms of

the strain tensor and the TREFFTZ stress tensor as

u$ = S:E- U3 (A-16)
as previously given by {1.3.-3}, where E represents the independent
tensor variable and S = ?Yf). In this case, the condition [corres-
ponding to (A-15)] which guarantees the existence of Uf as a state

function, appears as

azsij B 3255-5
5 3E~ - B3E 9F (A=17)
mn~ pq pPqQ mn
since it was required that
mn Pq o
gg = g? (A-18)
Pq mn

in order to guarantee the existence of U3. It is observed here, that

if S is a linear function of ?: such that

bl B
ml

S = (A-19)

I‘SUV@—
rsuv

xje
=
@]
2!
]

where



is a fourth-order tensor known as the HOOKE tensor, then a component

s'J = §76%:S is obtained as

gii . pijuvg
uv

and therefore, the strain energy density us is guaranteed to exist

if, by (A-18),

o mnrs - _gnm_.pqrs
5qu(H Ers) aEmn H Ers)
LR, NS
or, as H # H(B),
HIrSgPed o PATS gD
rs rs
so WhPd - PamR (A-20)

This is often called the "third type of symmetry" of the HOOKE Tensor;
the first type (H™PL = 4Py and the second type (0P - yMn4P,
follow from the symmetry of S and E, respectively. Noting that the
first derivative of S with respect fo E is a constant in this
linear case, then (A-17) is satisfied identically, and US exists as
the state function specified by (A-16).

It is noted that in the above developments, the complementary
strain energy density is assured to exist as & function of T (or )
or E (or C) if the strain ener‘Qy density exists as a state function.
However, the cocmplementary strain energy densitv does not necessarily
exist as a function of T or S. If a constitutive inversion is
possibie, then u§ (or W) or US (or 2, respecfiveiy, exists as a

=

function of the state of stress T or S.



APPENDIX B
Mappihg

DEFINITION of an Ordered Pair

An ordered pair is defined fo be a palr of elements, "a" and
"b", in which the order is fixed. Denoting such a pair as (a,b),

(a,b). # (b,a) » (B~1)

unless "a" and "b" are identical elements.

CARTESIAN PRODUCT — B

If aeA and beB, then the Cartesian product of set A and set
B is the set of all ordered pairs, in which the first element (or pre-
element) is a member of sel A and the secohd element (or post-element)
is a member of set B: i.e., the set of all ordered pairs (a,b).

Denoting the Cartesian product of A and B as A x B, then
AxB = {(a,b) | acA, beB} , (B-2)
Since A x B is as defined above, and
BxA = {(b,a) | aeA, beB} (B~3)
then AxB # BxA (B-4)

as might be anticipated from (B-1).

RELATION of Sets

A relation, R, of a set A to a set B is a propositicnal

B~
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function for an ordered pair of unspecified elements, such as (a,b)
where a€A and beB, which yields a meaningful statement.

An alternate definition of a relation may be constructed in
pro&gcf form, as follows. A relation, R, of a set A to a set B is a
subset of A x B.

“Thus, a reiation of a set A to a set B is,ahy rule which
assigns to one or more elemen*; of A, a correspondence with one or
more élemen?s of B.

From the product forﬁ'of the definition, it may be observed
that there exists a definffe order in fﬁe re!a}ion R, as EAis a subset

of AXB, and A ¥ B # B x A, as established by (B-4),

DOMAIN and RANGE

The set of all elements of the set A which are found as pre-
elements of ordered pairs in R, is called the domain of R, The set of
| all elements of the set B which are found as post-elements of orderedr
pairs in R, is called the range of R. Thus, if D denotes the démain,

and R represents the range of R, then

o)
1

{a | aeA, (a,bleR) (8~5)

{b | beB, ta,b)eR} (B~5)

X
"

MAPPING

A particular type of relation between sets has become funda-
mental for all aspects of mathematics. This ftype of relation is known
as mapping, and has its primitive roots in the obscure LEIBNIZ

definition of the properties of curves.
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By definition, a mapping of a set A info a set B (or, "a
function of A into B") is any rule of correspondence or propositional
fﬁncTion, the variables of which are the elements of sets A and B,
which assigns a unique element of B to each element of A. (Note that
this definition does not require a unique element of B to be assigned
to a unique element of A. Thfs is a special type of mapping which will
be discussed presently.)

SYmbolicalIy, the sfafemenf that "frmaps A info B" appears as
T f:A > B ’ ‘ (B~7)

An alternate definition of mapping may be constructed in the
form of a product specification, as foliows. A mapping of set A into
set B is any subset A X B, in which every element acA appears in only
one ordered pair, and in which the set of ordered pairs of the function
(or graphs of the function) are distinguished from the rule of corres-
pondence itself.

The property which is characteristic of a mapping is the fact
that any prescribed element of its domain corresponds 1o a uniquely-
determined element of its range. For the mapping f:A -+ B, the éef
A is called the domain of the function f, and B is calied the co-
domainiof the function f. The range of the mapping is then defined by
the elements in B which correspond to kér are assigned to) elements in

A. Thus, if aeA, then

R = {f(a) | aeAl (B-8)



defines the range of the mapping.. This set, which is a subset of B,

may be written as
R = f(A) « B (8-9)

since the set of a!l f(a) defines the function § of {a}, and A={al.
"Since the unique element beB is determined by the mapping
f:A =+ B
and is given as
b = f(a) (B-10)
then f(a) is called the image of acA. It follows that the image of a

set S< P is defined by the set of all images of seS. That is,

f(S)

#{s | ses}

so, £(S) {f(s) | ses} (B~11)

This cénclusion follows from (B-8) and (B-9) above, for the set A < B.

Again, it should be noted that, although a unique element beB
is determined by f: A+ B, it does not ﬁecessariiy follow that a unique
element acA may be determined by the "reverse" mapping F : B + A. That
dis, it is possible that more than one element aeA corresponds fo the
element beB.

PRE-IMAGES and IDENTITY MAPPING

Any domain element of the mapping f: A+ B (i.e., any element
acA) which has as its image the element beB, is called the pre-image of
b. That is, just as b = f(a) is called the image of acA, so acA is

called the pre-image or "inverse image" of beB.



The pre-image of a set S« P is the set of all pre-images of

the elements of S, and is prescriﬁed for the mapping

f:A > S
as £71¢s) = {a | aeA, f(a)eS}

It is possible, but not necessary, that

- . . £71(s) = A

(B-12)

(B-13)

(B-14)

. If (B-14) is true, a particular type of mapping exists which is more

restrictive than the general type specified by (B-12).

The mapping which causes each element of a set A to produce it-

self as its image is ca!led identity mapping.

In this case, the

operating function f is denoted as I, and the general expression

f:A + B
becomes » I:A +-A
Thus, I(a) = a

and The'range-R méy be given as
R = {1(a) | acA}
which reduces, because of (B-16), to
R = {a] achl = A
It also follows, from (B-12) and (B-13), that
1A = fa | ach, I(aeA}

which reduces to

(B-15)
(B-16)
(B-17)
(B-18)
(B-19)



IA) = {a | acA}l = A (B-20)

Finally,

I(A) R = INA) = A (B-21)

INVERSE MAPPING

Considering the mapping of X into Y,

f:X > Y (B-22)
that is, for xeX and yeY, gohsidering the entire set of images

f(x) =y , o (B-23)
the question arises as to whether an inverse set of relations exists,
such that

gly) = x (B-24)

for all xeX and yeY, or in other words,

g:Y + X (B-25)

That (B-24) follows from (B-23) [or (B-25) follows from (B-22]
is obviously not ALWAYS true, since it is possible that a unique image,
Yy, may be cbtained from more than one element x, as noted previously.
Consequently, the inversion (B-25) would requive that the domain be
specified by Y, some elements of which do not possess a unique image
in the range g(Y).

Conversely, if it is poésible to eschew a non-unique corres-
pondence of the type described above, then it is seen that an Inversion

of (B-22) into (B-25) may be possible. (This will be considered below.)



ONTO MAPPING

A mapping, such as
f:A > B

" is said to be "onto", if every element beB is the image of at least
one element acA.

That is, B contains no elemenfé which are not images of the
elements of A.

ONE-TO-ONE MAPPING

A mapping, such as
f:A » B

is said to be "one-to-one", If every Image beB has a unique pre-image
acA.
From the foregoing considerations of onto and one-to-one

mapping, it is observed that if the mapping -
f:A > B

is both onto and ona-to-one, then
(i) every element achA hag a‘uﬁique image beB, where f(a) = b
(ii) every element beB has a unique pre-image atcA
(iii) no elements of B exist which are not images of the elements
of A
Consequently, it may be concluded that iff a mapping is both
onfo and one-to-one, then it is a reversible mapping (the inverse
mapping exists).

In such a case,



f: X =Y ‘ (B-22)

admits the inverse mapp ing
g:Y + X | (B-25)
or | oty o X (= g (8-26)

Or, in terms of the entire set of images,

fix) = vy (B-23)

admits the set of pre-images -
gly) = fy) = x (B-27)

The onto and one-to-one correspondence rules may therefore be

considered as the necessary and sufficient conditions for the rever-

sibility of a mapping (o the existence of an inverse mapping).

EQUAL MAPPINGS

- Two mappings,

f:A > B and g:A > B (B-28)
are defined as equal mappings iff
fla) = gla) (B-29)
for all aeA. Or, briele; +he twe mappings are equal iff
f(A) = g(A) (B--30)

COMPOS I TE MAPP INGS

Two mappings, e.g.,

f:A + B and g:B + C . (B-31)



may be expressed as a composite mapping

(gof):A +» C

where the symbol o defines an operator such that

A

(g o f)(a) = glf(a)]
Since, in general
gffa)] # flgla)]
then it wiil be assumed that, in generai,
(gof) ) # (fog) )

THEOREM |,

For any mapping,

f:A »+ B
and the identity ﬁapping,
i.e., I:8 - B
then (Tof)( ) = f( )

PROOF: By definition of the composite operator,

(Iof)a) = Ifa)]
but CIffa)] = f(a)

as is required for identity mapping.
Therefore,

(Ief)C ) = £( )

(B~32)

(B-33)

(B-34)

(B-35)

(B-36)

(B-37)

(B-38)

(B-39)

(B-40)

(B-41)
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THEOREM 2.
If two mappings,
f:A > B and g:8 =+ C (B-42)
are both onto and one-to-one, then the composite mapping
(ge f):A =+ C (B-43)
is both onto and one-to-one.
PROOF: To demonstrate that (B-43) is one-to-one If both members of
(B-42) are one-to-one, consider two domain elements a, aqu, such
that a_ # a_. Then
r s
f(ar) # fa)
since f is one-to-one. However,
f(a_ ), f(a JeB
r s
and therefore, are distinct domain elements of g. Thus,
g[f(ar)] # g[f(as)] (B-44)
as g is one-to-one. This implies that
(gefila) # (geo fila) (B-45)

by definition of the composition (B-3{).

Therefore, (g e f)( ) is one-to-one.

To demonstrate that (B-43) is onto if both members of (B-42)
are onto, it is necessary to establish that every element of C is the
image of some element of A.

I f ceC, then there exists some beB, such that
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gb) = ¢
as g is onto.

Similarly, there exists some agA, such that

f(a) = b
as f is onto.
Substitution then yields
c = g(b) = glf(a)] A (B-46)
But | | g[f(a):l.v = .@ o f)(a) (B-47)

by definition of the compasife mapping.
Thus, aeA is a pre-image of ceC, and since ¢ is arbitrary,
then every element of C is the image of some element acA, under
(g o f)C ).
Therefore, the mapping (g o f) 1A~ C is onto mapping.
THEOREM 3, |
If the mapping .
f:A > B (B-48)
is one-to-one and onto, then
fleof = I (B-49)
defines the identity mapping on set A
PROOF: The mapping f possesses an Inverse mapping f~, as f is both
oné-fo—one and onto. |
Now, (71 o £)(a) = f7[f(a)]
by definition of the composition. Also,
@] = a

by definition of the inverse 71,
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Therefore, T o f)a) = a (B-50)
Also, I(a) = a _ (B-51)
by definition of the identity mapping.

Therefore, (7! o £)(a) = X(a) {B-52)

This holds for all acA, since f is defined to be onto. Therefore,

(e ) = I
for the set A, or T

(+7 o £) :A = I:A + A . {B-53)

- ALGEBRAIC STRUCTURE OF SETS

In analysis, it frequently becomes necessary to combine
elements of sets; this process cannot be treated adequately by mapping
funcfions,_since such functions may require that several elements fuse
to form a new element (as in the case of composite mappings). This
reéul+s, of coursé, in a loss of identity of the original elements,
which defeats the purpose of the mapping in this particular case.

For problems of this type, the concept of a product, e.g. the
Cartesian product, is quite useful.

Since the combination of two elements may be generally con-
sidered as an operation between two elements, combinations of this
sort will be called "binary operations". ‘

DEFINITION: A binary operation on a set A represents any rule or
process which orders a unique element of A to each ordered pair of

elements of A.
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A binary operation on a set A is a mapping of A X A into A, or
HIAXA > A (B-54)

That is, relation {B-54) states that the operator x maps A x A intc A.
If a, b, ceA, relation (B-54) specifies the set of operaticns
axb = c (B-55)
thus demonstrating that * is an operation on set A which assigns the
element ¢ to the ordered pair (a,b)f Element ¢ is then the image of

(a,b) under x, and in strict mapping notation is represented as
c = x ((a,b)) (B-56)

However, it is customary to denote the image of (a,b) under % as a x b,
as given by (B-55). This product notation will be employed in what
follows.

COMMUTAT I VE Operations

1f, for all a, beA

axb = b*xa , {B-57)

in an operation * on A, then the operation % is said to be commutative.

ASSOCIATIVE Operations

If, for all a, b{ cEA
(a*b) *xc = ax (bxc) (B-58)

in an operation x on A, then the operation % is called associative.

DISTRIBUTIVE Operations

if, for all a, b, ceA

aoflbxc) = (aob) % (aoc) (B-59)
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in the operations o and x on A, then the operation o is called pre-
distributive (or "left-distributive") under «.
Analogously, o is called post-distiributive (or "right-distribu~

tive") under =, if
(axb)oc = (agoc) % (boc) {B~60)

for all a, b, ceA, in the operations o and » on A,

If the operation o is commutative, then either type of distri-
butivity (above) implies the other. In this case, ; is simply said to
be distributive under x.

Similarly, if for all a, b, ceA,
ax(boc) = (axb)e (asxc) (B-617

in the operations * and o on A, then the operation x is called pre-
distributive under o.

Analogously, * is called post-distributive under o, if
(@aob) xc = (@axc)o (bxc) (B-62)

for all a, b, ceA, in the operations o and * on A,

If the operation ¥ is commutative, then either type of dis-
tributivity (above) implfes the other. In this case, % is simply said
to be distributive under o.

If ¥ and o are both commutative, and if (B~59) and (B-61) [or
(B-60) and (B-62)] hold simultaneously, then the former is the dual of
the latter, and conversely.

As may be inferred from the above discussions, binary operations

require the a prioni prescription of the set on which the operations
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are defined.
| Thus, the definition of an algebraic structure may be con-
structed as follows.

The prescription of a set, together with the definition of one
or more operations acting on this set, will be callied an algebraic
structure.

The general abstract treatment of algebraic structures was
_initiated by the German mafhemafician,:Gﬁnfher GRASSMANN in 1844,
GROUPS |

One such algebraic structure, which was initiated by the French
mathematician Evariste GALOIS and the Norwegian mathematician Niels
Henrik ABEL, in connection with nonlinear algebraic equations, is
called "group theory".

The properties of groups derive from generalizations of the
fundamental laws of arithmetic.

In order to examine the theory of groups, it is expedient to
define two quantifying symbols, as fol lows.

UNIVERSAL QUANTIFIER:

Denote by y, the universal quantifier, which is defined to mean
"for atl" or "for every", and is employéd in an operational capacity.
e.g., V xeP signifies "for al! elements x in the set P", or "for

every element x in the set P" |
YV a,b,ceA | a x b = ¢ signifies "for all elements a,b,c, in

A, a xb=c",
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EX]STENTIAL QUANTIFIER
" Denote by 3, the existential quahfifier, which is defined to
mean “for some" or "for at least one", or "there exists at least one",
and is employed in an operational capacity similar to V.
e.g., IxeP | f(x) = a signifies "there exists at least one
element x in the set P, for which f(x) = a" -
3P | Q=P signifies "for some set P, Q is a subset of P",
or "there exists at least one set P such that P contains
¢ as a subset". |

DEFINITION of a Group

The algebraic structure which consists of the prescribed set
G and the defined operation %, written (G, %), is called a group iff

it satisfies the following conditions.

(2a) G is closed with respect to *
f.e., (a % b)eG is unique for all a, beG
or Va, beG ] (a * D)EG is unique
Thus, Ya, b, ceC | (a x b) # (ax¢e); b #c
(b) The operator x is associative in G,
or Ya, b, ceG | a *x (b x¢c) = (a xb) » ¢
(c) There exists an identity element i in G, such that the operation
# with i has no effect on any element acG,
or 3JieG I i*xa=ax1i-=a, YaeG
(d) There exists an inverse element a~! in G, such that the operation

1

% of @~ with aeG yields the identity element i€C,

or Ja'eG | a ' xa=axa? =i, VaeG
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ABELIAN Group
If the algebraic structure (G, #) defines a group in which the
operation ¥ is commutative, then (G, x) is called an ABELIAN Group. In

this case, then,

Va, be6| a x b b x a

THEOREM 4.
A group possesses a unique identity element.
- THEOREM 5.
For all a, b, ceG, a * b = a x ¢ implies b = c. Sinmilarly,
b* a=cxaimplies b =c. (This is known as the cancellation law
for groups.)
THEOREM 6.7
Each element of the set G in a group possesses a unique
inverse.
THEOREM 7.
| If a, x, beG and (G, x) defines a group, then the equaticn
a x x = b possesses a unique solution in G.
NOTE: If a, beG but x£G, then a x x is undefined. Consequently, the
relation a ¥ x = b cannot exist: thus, a, x, beG if a ¥ x = b,
SUBGROUPS
If S= G where (S, x) denotes a gE;up, then (S, x) Is called
a subgroup of (G, %) under the (identical) operation .
THEOREM 8. |
. The structure (S, %) is a subgroup of {G, %) if S= G, such

that
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I. S is closed under the operation x
2. a'es, Vaes or, the element which is the inverse of ae$S is also
* a member of the set S (for all ae$).

SPECIAL GROUPS

i. TRANSFORMATION Groups

The set F of all one-to-one mappings of a set into another set
is a group with respect to an operation %, if the following conditions
afe satisfied.

(a) If £, geF then (f x g)eF is unique

(b) If feF, then f x i =i = f = f, iefF
(c) It feF, +then f Yef

A structure (F, %) which satisfies these conditions is called
a transformation group. It is observed that YfeF must be onto trans-
formations in order that condition (c) be satisfied.

Since the operation x is not generally commutative, it is
anticipated that the group (F, %) will not generally be Abelian,
2. PERMUTATION Groups

A one-to-one mapping of a set onto itself is called a permuta-
tion, and any group of such mappings is known as a permutation group.

RINGS

A consideration of two binary operations on the elements of a
set leads to the concept of a ring.

DEFINITION of a Ring

The algebraic structure which consists of @ set R and the two

binary operations * and o, written (R, %, o), such that
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(a) (R, %) is an Abelian group

(b) o is associative in R

(c) o is distributive (bofh(pren and post-distributive) under x
< inR

is called a Ring.
The concept of a ring exhibits the absence of three properties

of the algebraic structure (R, o), namzly

(a) commutativity of the operator o
(b) existence of an identity element ueR under o
(c) existence of an inverse element r~'eR, VYreR under o

Any algebraic structure (R, o) which satisfies one or more of these
three conditions yields a ring (R, %, o) which is of a restricted
nature.

A ring which satisfies (a) above, i.e., a ring in which the
operation o is commutative in R, is called a commutative ring.

A ring which satisfies (b) above, i.e., a ring in-which an
identity element ueR exists under o, is called a unitary ring. (The
identity element is denoted as u and is called "unity" to avoid con-
fusion with ieR, which is the identity element under x).

Thus, in a unitary ring,
aou = uea = a, VaeR (B-63)

The unitary ring then possesses two identity elements, unity ueR and
identity i€eR, and in general, u # i, as may be observed from the

following theorems.
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THEOREM 9.
In any ring (R, %, o)

Vaek

A

and aoci = 1
THEOREM (0.
In any unitary ring (R, ¥, o), which contains at least two

elements in R,

An important algebraic structure is a ring which is commutative
and unitary and which possesses one additional property: the property
of integral domain.

DEFINITION of Integral Domain

The commutative unitary ring (R, %, o) which contains more than
two elements in R constitutes an integral domain if it possesses the
following property.

For any two elements a, beR, such that

aob = |
the condition a = i or b =i is valid..
THEOREM 1.

If a, beR in the ring (R, %, o), then

(@aeb)? = aob? (B-64)
THEOREM 12,
A commutative unitary ring which contains at least three

elements is an integral domain iff, for any elements a, b, c of the



B-21

ring, such that a # i, the relation
aeb = aocc

implies that b = ¢ 4
THEOREM 13. (CONVERSE OF THEOREM 12.)
In an integral domain (R, %, o) containing elements a, b, ceR

in which a # i, the relation

implies that b = ¢

Finally, the last absent property of a ring (R, ¥, ¢), namely
the existence of inverse elements r~teR (VrzR) under o, leads to the
concept of a "field".

DEFINITION of a Field

A commutative unitary ring (R, ¥, o) containing at least two
elements is said to be a field if every element aeR, except I, has an
inverse under o. That is, if a leR; VaeR (a # i) under o.

Therefore, in summary, a field is an algebraic structure

(F, *, o} containing at least two elements a, beF, iff

(F, %) (F, o)
(a) is associative (é) is associative
(b} has an identity, i - (b) bhas a unity, u
(¢) has a~'eF, VaceF | (c) has a7 'eF, VaeF, a # i
(d) is commutative : (d) 1is commutative

where o is distributive (pre- and post-distribuiive) under o,



B-22.

THEOREM [4.
Every field is an integral domain.

ALGEBRAIC STRUCTURE OF MAPPINGS

Mapping functions permit a comparfson between two sets. Thus,
the quesfion naturally arises as to whether the concept of mapping may
be extended to sets in combination with operations, such as groups,
rings and fields.

lf.is intuitively evident that any comparison between any
objecfs‘Which consisf of component parts, deals wifﬁ‘fhe "size" and
"shape" of these composite objects. Such objects are then sald to be
"the same" or "equivalent" only if the "size" measures and the "shape"
measures are identical for both (or all) objects under consideration.

Algebraic structures are compared in a manner analogous to the
above. Thus, the "size" of two sets, considered as the objects,
implies a measure of their elements, and the "shape" implies their
binary operations.

DEFINITION of a MORPHISM

A mapping
f:A » B (B-65)
of a set A into a set B, which preserves prescribed operations, is
called a morphism.

HOMOMORPH | SM

Two algebraic structures A and B are said to be homomorphic,
if there exists an operation-preserving mapping

f:A »+ B ' (B-65)
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which is not necessarily one-to-one or onto. The homomorphism of
A and B is then denoted by A 1ﬂB (scmetimes A ~ B).

Thus, in homomorphism:
(a) every element beB appears at least once as an image
(b) every operation between a, ceA hoids for the corresponding image

elements b, deB.

Very explicitly, in terms of % and o, a homomorphism may be
defined as follows, employing the symbolism of (B-65).

A homomorphism with fespecf to % and o of a set A'info a set
B, denoted as "(A, %; B, o) - homomorphism", is a transformation A
under * into B under e such that, for every a, ceA and every f(a),
f(c)eB,

fla xc) = fla)o fle) 7 (B-66)

It is observed that, under homomorphic mapping, the identity
maps into the identity, and the inverses map into inverses.

Fﬁrfhermore, the homomorphic image of a group is itself a
group, and the homomorphic image of a ring is itself a ring.

ENDOMORPH | SM

If a homohorphism maps a set A into itself,
f:A + A
then the mapping is endomorphic, and the relationship
f:A > B, B S A (86D
defines an endomorphism. (Recall that B & A defines a subset, not a

proper subset, relation).
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AUTOMORPH | SM

If an ehdomorphism Is one-to-one, then it is known as an
autcomorphism. -
| SOMORPH | SM
If a homomorphism
f:A » B
is one-to-one and onto, then it is called an isomorphism.

That is, a reversible homomorphism, sometimes written as

f:A+—>B ' (B-68)
to indicate that f:A » B
and f71 B > A

~ - .

is called an isomorphism.
This may be expressed in terms of x and o, as shown above for
homomorphism, if so desired.

When the (A, %; B, o) - homomorphism is reversible, it is

known as an (A, x; B, o) - isomorphism, and is usually written as
(A, ¥) = (B, o) (B-69)
or A £ B (8-70)

thus denoting that (A, %) and (B, o) are isomorphic.
The following diagram of isomorphic transformation is quite
benefiéial:.

(A, ) ; ’ (B,0)
a,c “ > fla)y , f(c)

* (4]

a % C > f(a * ¢c) = f(a) o f(c)



The diagram for homomorphism would be exactly as above, except
that the operations f(a) and f(c) would not be reversible (as they are
above, for isomorphism).

b

i.e. for homomorphism, f(a)

for isomorphism, f(a) = b, b)) =a
as shown on the diagram by reversible directions for f(a), f(c).

The operators x and o are always "reversible", as
x ((a,c)) == a * ¢, etec.
THEOREM 15.

If (G, %) represents a group which is isomorphic to the
algebraic structure (S, o), then (S, o) is also a group.
THEOREM 16.

tf (S, °) represents a group, then the set F of all functions
from some set A to (S, o), constituting an algebraic structure (F, o)

is also a group.

LINEAR TRANSFORMAT | ONS

If the algebraic structures discussed above represent directed
spaces, then the morphisms are called linear transformations, |inear
operators, or transformation tensors.

TOPOLOGY OF MAPPING

Geome+ry may be considered to be a éfudy of equivalence
relations on the set of all geometric figures in some spacé. The
equivalence relation fn each case is determined by the allowable
transformations: such transformations may involve shrinking, flexure,

stretching and twisting, and will produce two topologically equivalent
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~geometric transformations. In the event that the transformations
prescribe rigid displacement, the relations are congruences.

It becomes necessary to formulate the topological equivalence
femofe from the descriptive point of view. In order to institute such
a formulation, the concept of a neighbourhood is useful.

DEFINITION of a Neighbourhood (Euclidian Plane)

Let P be a point in the Euclidian Plane and let d be eny
positive real number. Then the set of all points in the plane, such
that the distance to any point from P is less than d, is called a
d-neighbourhood of P.

Clearly, the concept of a d-neighbourhood facilitates the
establ ishment of a precise notion of "nearness", through the choice of
the positive number d.

DEFINITION of the Continuity of Mapping

A mapping
f:A =+ B
is continuous at a point PeA if, given any d-neighbourhood D of P,
there exists a d*—heighbourhood D* of P, such that D¥* <= D. Then f is
said to be continuous iff it is continuous VPeA.

In terms of "nearness'" or "préximify", a function is continuous
at a point P, if regardless of how near one approaches f(P) in the
range, all points of some disc éf centre P in the domain pocssess
images which are sufficiently "near" to f(P).

DEFINITION of Homeomorphic Mapping

If the mapping
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f:A > B
is one~-to~-one and onto, i.e., if

f:A<+«>B
such that both ¥ and £ are continuous, then the mapping is called a
homeomorphism. The sets A and B are then known as homeomorphic or
topologically equivalent.

I+ is easily demonstrated that the set of all homeomorphisms
of a plane forms a group with respect to mapping composition. However,
such a development require; as a foundation, the concept of a d-
neighbourhood, and the development is therefore restricted to Euclidian

geometry.
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HISTORICAL NOTES

The Legendre Transformation (page 38)

The contact transformation known as the Legendre Transforma=-
tion should be denoted as the "Euler-Legendre Transformation", as
Leonhard EULER presented the first formal development in 1732. The
original concept of such a transformation is due to Gottfried-Wilhelm
Freiherr von LEIBNIZ, who applied it to the discussion of a circle in
a letter to HUYGENS (November 6, 1673) and to the discussion of

general curves in a letter 1o H. OLDENBURG (July 15, 1674).

The Virtual Work Principle (page 5)

Although DESCARTES was the first to sketch the analytic form
of the Virtual Work Principle, Johann BERNOULLI was the first to
provide a true analytical formulation thereof. BERNOULLI wrote two
important letters to Pierre VARIGNON: the first of these was written
August 12, 1714, regarding the work Qf RENAU and particularly the
latter's book on ship mechanics. In this letter, the word "energy"
was first employed to denote the product of force and displacement.
The second IeTTer, written February 26, 1715, contained the first
analytical formulation of the Virtual Work Principle (this date was
later misquoted in Varignon's book, "Nouvelie Mécanique'" -- published

posthumously 1725, Paris -~ as January 26, {717).





