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ABSTRACT 

A combined experimental and theoretical investigation was carried 

out with neutron scattering samples to study the effect of scattering on 

the edge spread function. 

A physically based mathematical formulation of the neutron pro~ 

cesses in radiographic specimen in which scattering is dominant was 

found to be in good agreement with experimental results. In addition to 

full integral description for the edge-spread function, a generalized 

Lorentzian function has been proposed as an alternative method of 

analysis. 
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CHAPTER l 

INTRODUCTION 

The current application of neutron radiography in such important 

areas as dimensional measurements of radioactive nuclear fuel pins(l), and 

in accessing the condition of hidden machine parts clearly demonstrates 

the need for a higher precision in the attainable image sharpness( 2). 

Development of any technique for such precision measurements requires 

among other things, the consideration of edge effects for which neutron 

radiographers already focused attention on the discernment of the exact 

location of the edge of a radiographed knife edge sample~ The problem 

posed here is that of optical density spread about the edge which takes 

an S-shape form when scanned with a microdensitometer thus rendering 

the edge visually inaccessible. 

Up to date, reports have successfully accounted for this optical 

density spread across the edge by the use of the edge spread function( 3,S) 

(ESF), which gives a symmetric S-shape curve connecting two regions of 

lower and higher optical densities. This, however, is the case only if 

the radiographed object is predominantly a neutron absorbing material. 

In the case whentheobject is a neutron scatterer, or when the ratio of 

the scattering cross-section to absorption cross-section of the material 

is appreciable, the edge spread function becomes non-symmetric. This 

scattering effect needs to be incorporated in the development of any 

reliable dimensional measurement technique in neutron radiography. 



In the investigation that follows, a concerted effort has been 

made to obtai n in as much si mplified form as poss ible a mathematical 

formulation to account for the physical processes leading to this non

symmetry. The approach takes as a starting point, the already established 

form of the symmetric edge spread function and seeks to find some pertur-

bation flu x due to the neutrons scattered in the radiographed object. 

The total flux reaching any point on the converter inside the neutron 

camera is thus the sum of the scattered flux and the unscattered flux. 

The total flux incorporated with the Lorentzian function can be 

integrated to obtain the desired edge spread function as in the symmetric 

case. However, unlike the symmetric case, the integration of the flux 

with the Lorentzian function is analytically intractable due to the form 

which the scattered flux assumes. The alternative is then to resort to 

numerical computation to obtain the desired result. The problem becomes 

more involved by the presence of double integration for which numerical 

app roaches are still on the developing stage. 

The attainment of the end result presented in this report, has 

been greatly enhanced by the use of the only existing computer library 

programme for double integration at McMaster University - DCS2QU( 4) - a 

t wo dimensiona l cubic spline quadrature. 

In or de r to si mplify the formulation, only the case of single 

scattering ha s been considered in this presentation, and it is hoped that 

cases involving multiple scattering can be accounted for by the inclusion 

of build up factor in the analysis. To obtain experimental results which 

are consistent with the single scattering treatment, the di mensions of 

the radiographed lucite samples are chosen so as to reduce the effect of 

multiple scattering. 

2. 



CHAPTER 2 

EXPERIMENTAL PROCEDURES AND RESULTS 

2.1 A Review of Symmetric Edge Spread Function 

As a brief review, we shall present the form which the edge 

spread function takes in the case when no scattering of neutrons occurs 

in the radiographed sample. 

It is generally known that the symmetric edge spread function 

S(x, a ) is related to a line-spread function, L(x,a ) by a dual integral

differential equation(S) 

-+ -1 d ( -+ L(x,a) = N dx S x,a) (2.1) 

S(x,~) = N r L( ~ .~)d ~ (2.2) 
- co 

whe re for a given radiographic system, "t is a vector characterised by 

fil m type, energy of source, converter material etc., and N is a normal-

isation constant usually chosen such that S( x ,~ ) -+ {0,1} as x -+ {-oo,co}. 

Taking t for the system as a dispersion parameter CL' known as 

the Lo rentzian coefficient, the Lorentzian line-spread function is then 

given by 

(2.3) 

In this case, the edge spread function can be reduced analytically to the 

form 

3 



S(x,c) (2.4) 

where N has taken on the normalization value /Cjn, and the integration 

limit goes from -oo to the point x about where the edge is located. The 

incident flux ~0 has also been taken to be unity, i.e. 

~0 L(x,c) = --~ 
l + Cx2 - ---'1'---= 

1 + ci 
(2.5) 

The edge-spread function given by equation (2.4) actually repre

sents the converter response( 6) to a unit incident flux which is assumed 

to be totally absorbed in the region of the sample while the flux reaches 

the converter unattenuated in the region with no object to intercept the 

neutron beam. Figure 2.1 shows the schematic form of the most common 

neutron radiographic system presently in use and identified as the back 

conve rter arrangement. 

4 

Neutrons reaching the converter give rise to secondary radiations(l, 6) 

which are emitted isotropically from any point u, say, on the converter, 

and the converter response measured at any point x on the film is obtained 

by using the Lorentzian function in the form 

L(x,u) l = ---=------= 
1 + C(x-u) 2 

(2.6) 

where x-u, is the distance measured from the edge of the object. 



ponvert er 
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. ,. ... .. "' . . . . 
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Fi l rn 

l !11 t 111 
Incident Flux 

Fig. 2.1: A back converter arrangement showing neutron induced 
secondary radiations emitted isotropically about the 
point of neutron absorption. 
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2.2 Experimental Procedure 

Several pieces of lucite samples with thicknesses ranging from 

0.3 em to 1.2 em were thoroughly machined to give smooth and straight 

edges. 

The choice of the sample was motivated by its high hydrogen and 

carbon contents which give the desired scattering effect. Lucite has a 

scattering cross-section of 0.2429 cm-l as compared to absorption cross

section of 0.01913 cm-l, giving a scattering to absorption cross-section 

ratio of 12.7:1. 

The radiographic system used is the standard cassette type as 

shown in Figure 2.1 with gadolinium converter and Kodak AA film. The 

source of neutrons is a vertical beam port of a reactor which gives a 

flux of about 105n cm-2 s-l The radiographed knife edges were placed as 

close to the centre of the neutron beam as possible to reduce any effect 

t ha t might be due to beam divergence. Some of the samples were radio

graphed three different times with different exposures of 4 minutes, 6 min

utes and 8 minutes in order to determine the effect of exposure time on 

the ESF. 

2.3 Results of Experi ments 

The scans obtained for the lucite samples using a densitometer, 

clearly show a deviation ffom symmetry in the ESF. For a given thickness 

of the lucite samples, the shape of the non symmetric ESF remains the same 

irrespective of the exposure time, as shown in Fig. 2.2- Fig. 2.11; but 

for different thjcknesses, different non-symmetric shapes are obtained 

depicting the extent of scattering that occured. 

6 
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Fig. 2.2: Non-symmetric optical density scan for 0.3 em thick 
lucite sample, exposed to standard neutron flux for 
4 minutes. 

Fig. 2.3: Non-symmetric optical density scan for 0.3 em thick 
lucite sample, exposed to standard neutron flux for 
6 minutes. 
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Fig. 2.4: 

Fig. 2.5: 

Non-symmetric optical density scan for 0.5 em thick 
lucite sample, exposed to standard neutron flux for 
4 minutes. 

Non-symmetric optical density scan for 0.5 em thick 
lucite samp le, exposed to standard neutron flux for 
6 minutes. 
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Fig. 2.6: Non-symmetric optical density scan for 0.5 em thick 
lucite sample, exposed to standard neutron flux for 
8 minutes. 

Fig. 2.7 : Non-symmetric optican density scan for 0.7 em thick 
lucite sample, exposed to standard neutron flux for 
4 minutes . 
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Fig. 2 .8 : 

Fig. 2 . 9 : 

Non-symmetric optical density scan for 0.7 em thick 
lucite sample, ex posed to standard neutron flux for 
6 minutes. 

Non-symmetric optical density scan for 0.7 em thick 
lucite sample, exposed to standard neutron flu x for 
8 minutes. 
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Fig. 2.10: Non-symmetric optical density scan for l .0 em thic k 
lucite sample, exposed to standard neutron flux fo r 
6 minutes. 
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Fig. 2.11: Non-symmetric optical density scan for l . 2 em thick 

lucite sample, exposed to standard neutron flux for 
4 minutes. 
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Aside from the visual analysis, the non-symmetry of the ESF \1/as 

further established by measuring the optical densities from the scans 

and feeding the data into a computer code which calculates the Lorentzian 

constant, CL by using the symmetric form of the ESF. Results usually 

obtained when no scattering is involved are such that the values of CL 

increase with increasing thickness of the knife edge for a given material(?); 

but for the case of 1ucite, no such regular trend was obtained, which 

suggests that a new formulation is required to account for the scattering . 

. :For illustrative comparative purpose we show in Fig. 2.12 the 

symmetric and non-symmetric optical densities. 
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3.1 Introduction 

CHAPTER 3 

THEORETICAL ANALYSIS 

As mentioned in the Introduction, one basic assumption which has 

been made here is that any scattered neutron suffers only a single scat

tering before getting absorbed or leaving the sample. This assumption 

makes the analysis less complicated and relies on build up factors for 

any modifications to include multiple scattering. Two different models 

have been presented and the first model has been treated in both polar 

and Cartesian coordinates; the reader may find the Cartesian form a little 

easier to follow. 

3.2.1 Model I: Single Scattering Approach- Polar 

The theory is based on the probability that a neutron will, 

following an attenuated penetration into the specimen, undergo an 

isotropic scattering event. Figure 3.1 shows the general form which 

the model takes. The details are now described. 

A neutron incident on the sample in the direction shown, travels 

attenuated to a point A, through a distance r1 (o ~ r ~ b, where b is 

the thickness of the sample), and is then scattered isotropically. The 

scattered neutron now travels without further scattering through another 

distance, r 2 before leaving the sample. Once outside the sample, the 

neutron undergoes no further attenuation and continues in a free flight 

14 
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Fig. 3.1: The general form of the single scattering model 
illustrating how scattered neutrons can reach 
the converter. 
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until it reaches the converter. We shall not be concerned with what 

happens in the converter as this has been covered in many literatures( 3), 

but we shall have to incorporate the knowledge available in this regard 

to our result in order to attain our goal. 

As shown in Fig. 3.1, the neutrons scattered from point A have a 

chance of getting to any point on the converter, as are the neutrons 

scattered from point B. The flux reaching the point marked l on the 

converter from A is simply given by 

(3.1) 

where ~ 0 is the flux incident on the sample, and ~ e-~rl is the fraction 
o . 

of this flux reaching the point A. Similarly, the flux reaching the same 

point 1 from B is given by the same expression but different values of r 1 

and r 2; thus, the flux scattered from every point in the sample reach

ing each of the points 1,2,3, etc. on the converter. 

We therefore require to obtain the total neutron flux reaching 

each point on the converter due to scattering from all the points in the 

sample. To do this, we shall make our model clearer by including all the 

necessary coordinates as shown in Fig. 3.2 and we shall, without any 

loss of generality, allow the converter to be in contact with the sample 

as this \'Jill help to simplify the geometry. 

In Fig. 3.2, the coordinate u represents the points on the con-

verter, and e is the scattering angle of the neutrons which are initially 

travelling in the z-direction, while x denotes various points along the 

length of the sample. From the geometry of the figure we have 



:o n v e rt G r l 

..0 

l . I 
l 
I 
l 
' v 

u 
r---- u -~io4- - u --\ 

? 
~= Z 

r-- ~·-a 

·11 r 1 r 1 r · i r rr r r 1 
i n cident neut ron flu x 

Fig. 3.2: The single scattering model in polar-coordinate 
representation. 

17 



where 8 

b- z r = cos 8 

= tan-1 I x-u I 
b-z 

= ( b - z) sec 8 (3.2) 

Making use of Eq. (3.1), the scattered flux reaching any point u on the 

converter will be given by the general form 

where the subscript, s, denotes scattering. Since the regions of the con-

verter not directly behind the sample also have different flux ~0 , reaching 

them, we can repres~nt the total flux, ~T' at various points in different 

regions of the converter as 

<t>1 (o ::: u ::: a) 

<PT(u < o) 

<PT(u > a) 

= 

= 

= 

~s(o ::: u ::: a) 

~o + <~>s(u < a) (3.5) 

<Po + <Ps(u > a) 

We now require to make substitutions for r 1 and r 2 in terms of 8 and z, 

and also make the necessary transformations for change of variables in 

Eq. ( 3. 4). 

18 



Since -1 !x-u! 8 = tan b-z 
z = b - jx-u! cot e 

Hence rl = z(8) 

also r2 = r2(e,z) 

and, if we allow the incident flux ~0 to represent a unit flux, the 

scattered flux takes the form 

rl ,r2 
= fJ f ( e, z ) J ( 

6 
) d 8 d z 

,Z 

where the Jacobian of transformation is 

r 1,r2 la(rl,rzll 
J( 8,z ) = · a(8,z) 

and the Functional Determinant 

a(r1,r2) 
ar1 ar2 
a8 a8 

a(8,z) = 
ar1 ar2 
az az 

19 

( 3. 6) . 

(3. 7) 

(3.8) 

(3.9) 

(3.10) 

From Eq. (3.2) and Eq. (3.3) we know r1 and r2 in terms of e and z and 

we shall evaluate the Jacobian only in one region of the converter, since 

the values in the other regions will only differ by a multiplication 

factor. 

In the region o ~ u ~ a we have 



a(ri,r2) 
a(e,z) = 

(b-z)sece tane 

-sece 

and the Jacobian of transformation is given by 

(b-z)sece tane + lx-u!csc2e sece , 0 ~ u ~a 

20 

(3.11) 

~ {(b-z)sece tane+ lx-uicsc 2e sece}, u < o (3.12) x-u 

a-x 
x-u {(b-z)sece tane + !x-ujcsc2esece} , u > a 

Making the substitutions we have 

(b-z)sece] {(b-z)secetane + 

lx-u!sece csc 2e} dedz 

__ J J e-I[z + (b-z) _u_ sece] ~ {(b-z)sece tane + 
~s(u < o) x-u x-u 

2 lx-u!sece esc e}dedz 

(3 .13) 

(3.14) 
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I J 
'"[z + (b z) a-x sece] 

1
a-x

1 
C(b-z) sece tane + 

<J>
5

(u > a) = · e- " - jx-11 -x-u -

(3.15) 

lx-ujsece csc 2e} dedz 

where 

z2 = b 

(3.16) 

el tan -1 hl = b-z 

and 

82 tan -1 la-ul = b-z 

Equations (3.13), (3. 14) and (3.15) give the required expressions 

for the scattered flux in the polar coordinate representation. It is now 

a matter of numerical computation to obtain the values at each point on 

the converter. A computer program required to handle this double integra-

tion must t ake care of all cases for which the integrand can blow up as 

a result of the angle e assuming certain values; and this could happen 
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quite easily due to the different forms of trigonometrical functions 

involved. It could also happen when u and x assume the same values. 

Some of these flaws are greatly reduced in the Cartesian coordinate 

representation because in place of the triqonometrical functions, square 

roots o.f squared quantities are involved; the squaring takes care 

of any neqative quantities. 

3.2.2 Model I: Single Scattering Approach -Cartesian 

The theory is essentially the same as in the polar coordinate 

representation, and we shall continue to denote the coordinate of the 

points on the converter with u. The distances r 1 and r 2 through which 

the neutron travels will now be given in terms of x andy only as ~ug-

gested by Fig. 3.3 . 

In this case. we can define a common distance r from any point 

on the converter by the relation: 

r = /(x-u) 2 + (l-y) 2 (3.17) 

and the distances through which the neutrons are scattered in the sample 

before reaching various regions of the converter are then given by 

u . ( 3. 18a) r2 = -.r u ~ 0 x-u 
, 

r2 r 0 ~ u ~ a (3.18b) 

= a-x (3 .18c) r2 .r u > a u-x 
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Fig. 3.3: The single scattering model in Cartesian-coordinate 
r epresentation. 
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The scattered flux now takes the form 

(3.19) 

We shall proceed directly to obtain the Jacobian of transformation 

for the various regions of the converter. 

In all cases, the distance which the neutron travels attenuated 

in the sample before scattering is given by r1 = y (o ~ y ~ 1, where 

1 is the thickness of the sample). 

For r1 = y 

ar1 = 
1

; 
ay 

ar1 --0 ax 

and for u ~ o we have 

r 2 = ~ v1x-u) 2 + (t-y) 2 
x-u 

ar2 = x 
ax {(x-u) 2 + (t -y) 2}112 

ar2 = -x( t -y) 
ay (x-u){(x-u) 2 + ( t -y) 2}112 

With the Jacobian of tran sformation given by 

r r 
J( 1' 2) = x,y 

a(r1,r2) 

a (x,y) 

(3.20) 

(3.21a) 

(3.21b) 

(3.2lc) 

(3.22) 
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where 
ar1 ar 2 

a(r1,r2) ax ax 
a(x,y) = (3.23) 

ar1 ar2 -ay ay 

we have 

J(u ~ o) = (3.24) 

For o ~ u ~ a we have 

2 r2 ={(x-u) + ( .Q. -y)2} 1/2 (3.25a) 

ar 2 2 2 1/2 
(3.25b) - . = (x-u){(x-u) + (.Q.-y) } ax 

ar2 2 2 -l/2 (3 .25c) -<= -(.Q,-y){(x-u) + (.Q,-y) } ay 

and 

J(o ~ u ~ a) x-u = 
{(x-u)2 + (.Q.-y)2}1/2 

(3.26) 
1 

= 
/1 + (U)2 

x-u 

For u ~ a we have 

a-x r = -2 u-x I (u-x) 2 + (2-y) 2 (3.27a) 



and 

ar 2 = (a-x) 
ax {(u-x) 2 + (t -y) 2J1/ 2 

u-a 
u-x 

ar 2 = -(a-x)(1-y) 
ay (u-x){(u-x)2 + (1-y) 2J112 

J(u :,: a) 
(a-x) (u-a) n 2 l/2 

= 2 2 l /2 {l + (!::::_Y__) } {(u-x) + (1-y) } - (u~x) u-x 

26 

(3.27b) 

(3.27c) 

(3.28) 

The validity of these transformation functions can easily be 

varified by noting that the following boundary conditions are satis fi ed: 

J ( u ?: a) I u=a = J ( o ~ u ~ a) I u=a (3.29) 

and 

J ( o ~ u ~ a) l u=o = J ( u ~ o) I u=O (3 .30) 

The form which the scattered flux assumes in the various regions 

of the converter can now be given in the Cartesian representation by 

the following relations 

J
1 J·a -L:{y + _x_ nx-u)2 + f 1 y)2J 

~ s(u ~ o) = e x-u ' - *J (u~o)dxdy (3.31) 
0 0 

f
1Jae-L:{y + /(x-u)2 + (1 )2} ~ s(o ~ u ~ a) -y *J(o ~ u ~ a)dxdy (3.32) 

0 0 
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{ ) = J£Ja -I{Y + a-x ;r(u-x)2 + (£-y)2}*J · <P s u ~ a e u-x . (u~a)dxdy (3.33) 
0 0 

where the J 1 s are as obtained in Eqs. (3.24), (3.26) and (3.28). 

With the scattered flux now given by Eqs. (3.31), (3.32) 

and (3. 33) and the total flux defined by Eq . (3.5), the non-symmetric 

edge spread function, SN(u,x) takes the form 

~T(u)du 

1 + C(x-u) 2 

3.3 Model II: . Shielding Concept Approach 

(3.34) 

(3.35) 

Another approach to the problem of accounting for the non-symmetric 

edge spread function can be provided by considering the sample to consist 

of tinny strips alligned parallel to the direction of the incident neutron 

flux; we can then focus attention on each of the strips, with each point 

on the strip acting as a neutron source, while the rest of the sample acts 

as a shielding medium. 

· To obtain the total flux reaching each point on the converter, 

we shall sum the flux from each point source over all the point sources 

per strip, and then sum over all the strips in the sample keeping in 

mind that our point source emitts neutrons isotropically. The geometry 

for this model is essentially the same as with the single scattering 

model, but with the sample now con sisting of strips, Fig. 3.4 

Our first task is obtaining the source strength of each point on 

the strip. As the .incident neutrons make their entrants into the sample, 
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in cicJC? nt neutro n f lux 
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Fig. 3.4: The shielding mode l . 
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they immediately begin to suffer attenuation along each strip. The source 

strength at each point will then be given by ~ e- I tY, where y is the disa 

tance travelled by the neutron along the strip up to the point being con-

sidered, It is the total cross-section of the sample material, and $
0 

is 

t he incident neutron flux. 

From the geometry of the model shown in Fig. 3.4, the distance r 

between each point source and the points u, on the converter, is given by 

r = (3.36) 

the di stance r' for wh ich the neutrons from the point source are fu rther 

attenuated before reaching the converter is given by 

r• = r ' u > 0 (3.37a) 

r • X 
= x-u·r , u < o (3.37b) 

If we now denote the flux from each point 6n the strip to the converter 

by Rpt(y,r'), we have 

( ) 1 -ItY - I tr' 
Rpt y,r• = 4TI ~o e e (3.38) 

the factor l/4 TI is the fraction of the flux in any direction from the 

isotropic point source. 

The total flu x R1n(y,r') from the strip is t hen given by 
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N 
R.Q,n (y' r I) = I 

n=l 
(3.39) 

where ~y is the step length along the strip. 

The overall total flux Ru(y,r 1
) at a point u, from all the strips 

in the sample will then be qiven by 

s 
= I 

s=l 

where ~x is the thickness of each small strip. 

Substituting for R t(y,r 1
) we finally have 

p 

= cpo ~ N Ru(y,r 1
) -4 L I 

1T s=l n=l 
-l:t(y+r 1 ) 

e ~y~x 

(3.40) 

(3.41) 



4.1 Programming 

CHAPTER 4 

NUMERICAL INVESTIGATION 

The computation of the flux given by Eqs (3.31), (3.32) 

and (3.33) was carried out numerically by incorporating a number of 

library programs into the main program as shown in the Appendix. The 

first of these library routines, DCS2QU computes the approximate double 

integral to a given set of data using a natural bicubic spline interpolate; 

and in our case, the set of data are values of the integrand calculated 

at various mesh points by a computer simulation of the sample model. The 

value of the integral from DCS2QU corresponds to the scattered flux, ~s(u) 

reaching the point u. 

Two other library routines, ISCICU and DSCQDU were used to obtain 

the form of the non-symmetric edge spread function, S(u,x), by integrating 
N 

the total flux, ~T(u), at u, Eq. (3.5), with the Lorentzian function, 

L(u,x): 

(4.1) 

In Eq. (4.1) xis the coordinate on the film in the back 

converter system. The Lorentzian constant, CL' which is a function of 

the radiographic system, and hence depends on the material of the sample 

has not been previously measured for lucite. This quantity CL is thus 

treated as a free parameter in the computation of the non symmetric edge 

spread function, but with the values chosen within the ranges of known 



values of CL. 

4.2 Result of Numerical Investigation 

The results of the numerical investigations presented in this 

section are the data and graphic output obtained directly from the com

puter code NEUT77, for the single scattering model. 

A remarkable observation about the flux shape, is that it takes 

32 

a form similar to the non symmetric edge spread function or the optical 

density across the· sample edge; this is consistent with the direct 

proportionality of the flux with the optical density in the linear response 

range of the film. The flux in the region of the sample, shows some 

numerical instability and this tends to smoothen out with a more refined 

integration mesh. The flux in this region also show some distinct varia

tion as the sample thickness was varied. Fig. 4.l(a), 4.2(a) and 4.3(a) 

show these flux shapes for various thicknesses of the sample. 

The results of integrating each of the above flux with the 

Lorentzian function gave results shown in Fig. 4.l(b), 4.2(b) and 4.3(b) 

which are quite comparable with the experimental results of Fig. 2.3(a), 

(b) and 2.4(a),(b). 
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Table I: COMPUTER OUTPUT OF THE TOTAL FLUX, ~(U) REACHING EACH POINT U ON 

THE CONVERTER 

-.s:uo.::+oo 
-.SGJJ7'+GO 
-.:.,.giJO:=."+GO 
- .... 11QGC:+JO 
- .... ?GOE+OO 
-·"'"f290s+go 
- ... ?uO::tuO 
-.'1-.:...oc:::+-oo 
-.:...300E+OO 
-.<+20JE+-GO 
- • '+1 ~ 0 ~ .. ~ 0 
-.-.uuO:..+-uO 
-.3goot:+co 
-.3aou::+co 
-. 37 Q o::: .. 0 0 
-.36QG::+CO 
-.35GOE+-CO 
-. ~~ 0 0 ~ + g Q 
-.,):>JO::.+ui.J 
-.3200::':":+-C:O 
-.31GOC:+OO 
-. 30QJ::+-:JG 
- ?yQ·~i=+-[:0 
-:2~DJE+-OO 
-. 27 0 0 E t 0 0 
-.2600::-:+GO 
-.2500:::+-00 
- • 24 •J G::: + C 0 
-.230GC:+-GJ 
- • 22 0 OE +- G 0 
-.210GE+CJ 
-.2000>::+-CC 
-.lgJQE+-00 
-.1.RGOE+-GO 
-.17GJC:+-CO 
- • 16 0 0:: +- c 1] 
-.1500E+GO 
-.14GOE+CG 
-.1300EtCO 
-.1200E+CO 
-.i100:::+ 1JJ 
-.lOGOC:tGO 
-.gooo::-c1 

..-. ,, 
. ..,.--" 

U(cm) 
u • 

.lCGDE-Cl 

.2oco::-o1 

.3000E-G1 

.... ooo:::-c1 .sooo::-ot 

.oOtJOE-C1 

.700GE-C1 

.'lOOOt:-01 

.gOQGE-01 

.100CE+CG 

.1100E+OO 

.120G::tJO 

.130E+CO 

.1400:::+00 

.1500C:t00 

.160Q~+CO 

.17GOE+u0 

.1800::+00 

.iqoo::+ou 

.zooa:::+-oo 

.21uo::•co 

.2zoo:::+oo 
• 230 o::+ oo 
.2400::+-GO 
.250CE+-CJ 
.2600~+00 
.270G::+GO 
.zaoo::+cJ 
.2900E+OO 
• 3GQOE+CO 
•. HOOt::+-00 
.32DGE::+OO 
.3300Et00 
.34-uC.::tGO 
• :;so o::+-oo 
• 3oOOE+oo 
.:37uOC:+-C0 
.3BOOE+G0 
.3gUO~+GD 
.' ... occ.::+cG 
.-i:JG::+GO 
.-2JO:::+GO 
.<+30G:::+CC 
....... oo::+oo 
.45QOE+-CO 
.-.ooo::+co 
.... 70E+OO 
• .:..ROQ=:tCO 
.... qoo::+-co 
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Table II: COMPUTER OUTPUT OF THE OPTICAL DENSITY D(x), OBTAINED FOR l .2 em 

THICK LUCITE SAMPLE 

X(cm) 
- • S .i G J ::: + U ,j 
-.?GG:J2:+JJ 
- • ...,,JGOC:+-00 
-.~dJOt:+LJO 
-.4700~+0t) 
-.4600c+OO 
-. 4 5u octO u 

-.~+~o,g;+oJ 
-·'+-'t.: c:.+U'IJ 
-.42uCJ::+oO 
-. 4 :_,-:;;);:: +-J 0 
-.4000E+-OO 
-.3%Q!:t-QO 
-.3dJOC:+0J 
-.3700:::+00 
-.36J02:+JJ 
-.3500C:+CO 
-.3400C:+JO 
-.33GOC:+CJ 
-.3zoot:+uG 
-.:3lOO:::+OJ 
-.3000C:+JJ 
-.zgoo.::+JJ 
-.2dGOC:~:-tJO 
-.27002:+00 
-.26C02:+-Gu 
-. 250 Ot::+LJ J 
-.z .... co~+CJO 
-.23GQ;:.+CJ 
-.2200~+00 
-. 210 OE+O 0 
-.2000E+JO 
-.1900 ~+00 
-.laJOC:+uu 
-.1700C:+GO 
-.160 1] ~+0 0 
-.1300C:+-00 
-.1 ... cu.:+-:JJ 
-.1300c~f-00 
-.1200~+-:.0 
-.1lJJC::+-.:..J 
-.lOJO.:+JO 
-.goooc:-o 1 
- RGOOC:-01 
-:70002:-01 
-.oooo ::-c 1 
-.?OuOC:-:jl 
-.~:goog-~~ 
-._;uOOc.-.., .... 
-.zoco.=-.;1 
-.lOuOC:-0 1 

• E1 !.."- :- 0 1 
.o1q7Y-01 
.01:..4-:.:.-0J.. 
.r::1:20~-c:.. 
.o1::..3::.-c:. 
,OlOq~-J: 
.G:..G7E-•~,:. 

X(cm) 
o. 

.1CGJE-J1 

.zoooc:-o1 

.3ouo=:-u1 

.4GGOC:-:J1 

.sooo.:-01 

.60GOi:-u1 

.7GOOC:-u1. 

.BOOOC:-J l 

.900Qi:-Jl 

.10CGC:+~J 

.11oo=:+oo 

.12uuC:+GJ 

.13C,JC:+:JJ 

.i<+OO::+JO 

.13GQ :+00 

.1ou'J:::+:J 

.1700C:+JJ 

.1Roo:::+uo 
• 1 ~j Q::: +j 0 
.2GOO=:t-Jl) 

.2100~+~0 
.Z.:::uu :.+J J 
• 2 3 0 0 .:: +0 i) 
.z ... oo.::+oo 
• 2 so o c:+o o 
• 2 60 0 t:+O 0 
• 2 7 0 0 C.+O 0 
• 2 8Q 0 E +-0 0 
• 2 90 0 dO J 
.3uOOt:+oo 
• 31 c 0 E: +0 0 
.320JE+uO 
.3300C:+OO 
• 3 '+u 0 C.+J 0 
.3500E+JG 
.36QJi:+JJ 
.37COt:+,:u 
.3aoo:::+oo 
• 3 9u o c: h.J u 
.itJODC:+~o 
.410Di::+uo 
.'+2iJJ::+oo 
.43CJi:+J.: 
·~';!JO~+OQ 
e'+?OO.:.+uu 
.'+6CJ:":+JC 
.4700C:+OJ 
.4~oo::+oo 
.... goo,:::+oo 

.;.p'±e~+ ... co 
o.-.~,;5U- Uu 
.l052=:+GO 
.1053i:+OQ 
.:1.C55E+CC 
.1056t:+CO 
.1C3~C:+OO 
.10 59i:+C J 
.1oso=:+co 
.1G6i=:+JJ 
.1062t:HO 
.1063t:+GJ 
.1064-t=:+co 
.1G65C:+GO 
.1.06SE+OO 
.1G67E+GO 
.1C68C:+GG 
.1069E+OO 
.1069::+00 
.1070f+GJ 
.1071.C+-CJ 
.1.071E+0J 
.1072C:+:o 
.1072~+[0 
.1Q[~~+~J 
.1r...r.:Jt.h .. J 
.1074-E+GJ 
.1.G74C:+Cu 
.1.::;?s:::+~u 
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Fig. 4.1 (a): Graphic computer output of the flux shape for 1.0 em thick lucite sample, 
using the single scattering model. 
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E Y= 2.100 

¥~---1.J~oa 
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Fig. 4.l(b): Graphic computer output of the flux shape for 1.0 em thick lucite sample, 
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Fig. 4.2(a): Graphic computer output of the flux shape for l .2 em thick lucite sample, 
using the single scattering model. 
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Fig. 4.2(b): Graphic computer output showing the optical density for 1.2 em thick 
lucite sample. 
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Fig. 4.3(a): Flux shape obtained for only a few mm across 1.2 em thick lucite 
knife edge sample, using a more refined mesh. 
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CHAPTER 5 

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS 

The results obtained from the single scattering model are compared 

graphically with experimental results by plotting the normalised optical 

density in each case, against the spatial coordinates, a few millimeters 

across the sample edge. Since the optical density scans obtained from 

the microdensitometer lies between -1.0 mm to +l .0 mm across the sample 

edge, this aparently defines our region of interest; and we therefore 

require to obtain sufficient number of points to be plotted within this 

small interval in our theoretical calculation. A minimum reasonable step 

length for our mesh points may be taken as 0.1 mm. We also require the 

integration of the flux with the Lorentzian function, to cover enough 

distance across the edge which contributes to the optical density measured 

about the edge; but in practice, it is very expensive even to integrate 

from -2.0 em to +2.0 em across the edge, which will correspond to 400 mesh 

points. This means that considering a sample thickness of 1 em and using 

a step length of only 1 mm, a total of 10 mesh points to cover the thickness , 

we will require to perform a total of 4000 integrations. 

Indeed, the above is about the number of integrations performed 

for each of the theoretical results we are about to compare with experi

mental results. From the above economic considerations, we cannot afford 

to carry out the optimum number of integrations required for the best 

results. 

Another factor which affects our theoretical results is the 

choice of the Lorentzian coefficient CL' which is not precisely 
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known for this radiographic system involving lucite samples. The value 
3 -2 of CL = 6 x 10 em used, was only chosen from a number of trial values. 

We shall see shortly how the value of CL affects our result. 

Inspite of the above limitations, the comparisons shown in Fig. 

5.1 -Fig. 5.5 can be best described as satisfactory. The comparisons 

between experiment and theory have been made for various thicknesses of 

0.5 em, 0.7 em, 1.0 em and 1.2 em lucite samples. The general trend 

in the comparison shows that we have more optical density at the toe and 

less optical density at the hill in our theoretical results. 

By increasing the value of CL' the theoretical optical density 

will be reduced, since in the calculation, CL appears in the denominator. 

This is actually the case as shown in Fig. 5.5 with CL increased by a 
4 -2 factor of 10 to 6 x 10 em for l .2 em sample thickness. The decrease in 

optical density due to increase in CL gives a very good fit at the toe of the 

curves as shown in Fig. 5.5, but makes the theoretical optical density 

even lower at the hill of the curves. This suggests that if we require 

any improvement in our results, and assuming that the best value of CL 

is known, we will have to resort to the following - refine the integration 

mesh and increase the range of integration and/or include some build-up 

factor in our analysis. 
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CHAPTER 6 

PROPOSAL FOR GENERALIZED LORENTZIAN ANALYSIS 

The detailed integral analysis described in the preceeding chapters 

is both tedious and expensive to use for regular radiographic work. In 

this chapter, we propose a generalized Lorenzian function and explore 

its possibilities as an alternative method for analysis. 

On the basis of the symmetric Lorentzian function, we propose a 

generalized Lorentian function of the form 

For the case of N = 2 we have 

c = 1 
0 

(6.1) 

(6.2) 

Equation (6.2) reduces to the familiar Lorentzian function when the odd 

term in the denominator is set to zero. The inclusion of this odd term 

will produce a non-symmetric effect to an extent determined by the values 

of the coefficients c1 and c2. In principle therefore, we can obtain a 

more pronounced non-symmetric effect for the case N = 3 with 

(6.3) 

or retaining, for simplicity, only one non-symmetric term we have 

48 
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(6.4) 

The above non-symmetric Lorentzian function can be substituted 

in the general relation 

S(x,u) = J~(u)L(x,u)du (6.5) 

The difference in this case as compared to the single scattering approach 

is that the contribution to non-symmetry is now born by the Lorentzian 

function and not by the flux reaching the converter. Since we now seek 

to find a Lorentizan function which accounts for the scattering, the flux 

will be considered to be constant and equal to unity. 

Using the Lorentzian function of Eq. (6.2) we obtain a non-symmetric 

edge spread function given by 

(6.6) 

We shall now initiate a numerical test for Eq. (6.6) to determine 

how close we are to our goal. Analytically, Eq. (6.6) can be reduced to 

the closed form 



1 2 2C2X+C1-I[c1 -4C2) 

2C2+c1+1(c1
2-4c2) 

50 

(6. 7) 

1 -1 2C2X + Cl 2 2 2 
/[C

1
2_4C

2
) tanh { 2 . } , [C1 > 4C2,(2C2X+C1) >Cl -4C2] 

/fC 1 -4C2) 

For the present analysis we choose 

(6.8) 

A curve fitting to Eq. (6.8) can now be performed to develop a feel for this 

approach. 

In Fig. 6.1 and Fig. 6.2 we show some of the results for the 

curve fitting. The symbol E denotes the experimental curve and F for the 

fitted curve. As we would expect, the shape of the fitted curve is deter-

mined by the values of the coefficients 

of Fig. 6.1 c1 = .167957 *10-2 and c2 = 
-4 -2 c1 = -.018799, c2 = .9999 * 10 ~m . 

c1 and c2. For the fitted curve 
-4 -2 0.1 x 10 ~m and for Fig. 6.2 

Though none of the two curves yields a thorough fit, the former 

appears satisfactory in the upper half while the later gives a fairly good 

shape at the lower half. A combination of the two fitted curves, with 

the upper half of Fig. (6.1) superimposed on the lower half of Fig. (6.2) 

can lead to a logical satisfactory result as this would imply using dif

ferent values of the coefficients c1 and c2 inside and outside the material 

region in other to account for the scattering effect. 
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CHAPTER 7 

CONCLUSION 

The results of the single scattering model give a satisfactory 

account of the scattering effect on the edge spread function. 

In addition to obtaining the required non-symmetric edge spread 

function, the intermediate theoretical result for the flux shape gives an 

expository description of the material response as dinstinct from the con

verter response; the variation of this flux with sample thickness provides 

an interesting area for further studies. 

It is remarkable to observe that the flux shape takes the form of 

the optical density which conforms to the direct proportionality between 

the converter response and the flux reaching the converter for the case 

of linear response region of the film. 

The good agreement between theory and experiment suggests that 

the inclusion of build up factor in the analysis will produce the effect 

of increasing the flux reaching the converter without changing the flux 

shape; however, a numerical test for this is another area for further 

investigation. On the other hand, an accurate value of the Lorentzian 

coefficient, CL' combined with optimum mesh intervals will lead to very 

satisfactory results. It may also be worth while to explore further, 

the shielding concept appraoch. 

The proposed generalized Lorentzian function holds a promising 

alternative in terms of it's simpler form and reduced computer time but 

it obvoiusly requires further investigation. 
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PROGRAM LISTINGS FOR THE COMPUTER CODE NEUT77 
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