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ABSTRACT

A combined experimental and theoretical investigation was carried
out with neutron scattering samples to study the effect of scatfering on
the edge spread function. |

A physically based mathematical formulation of the neutron pro-
cesses in radiographic specimen in which scattering is dominant was
found to be in good agreement with experimental results. In addition to
full integral description for the edge-spread function, a generalized
Lorentzian function has been proposed as an alternative method of

analysis.
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CHAPTER 1

INTRODUCTION

The current application of neutron radiography in such important

(1)

areas as dimensional measurements of radioactive nuclear fuel pins' ’/, and

in accessing the condition of hidden machine parts clearly demonstrates
the need for a higher precision in the attainable image sharpness(z).
Development of any technique for such precision measurements requires
among other things, the consideration of edge effects for which neutron
radiographers already focused attention on the discernment of the exact
location of the edge of a radiographed knife edge sample. The problem
posed here is that of optical density spread about the edge which takes
an S-shape form when scanned with a mfcrodensitometer thus rendering

the edge visually inaccessible.

Up to date, reports have successfully accounted for this optical
density spread across the edge by the use of the edge spread function(3’5)
(ESF), which gives a symmetric S-shape curve connecting two regions of
Tower and higher optical densities. This, however, is the case only if
the radiographed object is predominantly a neutron absorbing material.

In the case when the object is a neutron scatterer, or when the ratio of
the scattering cross-section to absorption cross-section of the maferia]
is appreciable, the edge spread function becomes non-symmetric. This

scattering effect needs to be incorporated in the development of any

reliable dimensional measurement technique in neutron radiography.



In the investigation that follows, a concerted effort has been
made to obtain in as much simplified form as possible a mathematical
formulation to account for the physical processes leading to this non-
symmetry. The approach takes as a starting point, the already established
form of the symmetric edge spread function and seeks to find some pertur-
bation flux due to the neutrons scattered in the radiographed object.

The total flux reaching any point on the converter inside the neutron
camera is thus the sum of the scattered flux and the unscattered flux.

The total flux incorporated with the Lorentzian function can be
integrated to obtain the desired edge spread function as in the'symmetric
case. However, unlike the symmetric case, the integration of fhe flux
with the Lorentzian function is analytically intractable due to the form
which the scattered flux assumes. The alternative is then to resort to
numerical computation to obtain the desired result. The problem becomes
more involved by the presence of double integration for which numerical
approaches are still on the developing stage.

The attainment of the end result presented in this report, has
been greatly enhanced by the use of the only existing computer library

(4)

programme for double integration at McMaster University - DCS2QU - a
two dimensional cubic spline quadrature.

In order to simplify the formulation, only the case of single
scattering has been considered in this presentation, and it is hoped that
cases involving multiple scattering can be accounted for by the inclusion
of build up factor in the analysis. To obtain experimental results which
are consistent wjth the single scattering treatment, the dimensions of

the radiographed lucite samples are chosen so as to reduce the effect of

multiple scattering.



CHAPTER 2
EXPERIMENTAL PROCEDURES AND RESULTS

2.1 A Review of Symmetric Edge Spread Function

As a brief review, we shall present the form which thé édge
spread function takes in the case when no scattering of neutrons occurs
in the radiographed sample.

It is generally known that the symmetric edge spread function
S(x,a) is related to a line-spread function, L(x,a) by a dual integral-

(5)

differential equation

L(x,8) = N! gd;S(x,a) (2.1)
S(x,3) = N [XL(g,Z)da (2.2)

where for a given radiographic system, & is a vector characterised by
film type, energy of source, converter material etc., and N is a normal-
isation constant usually chosen such that S(x,3) - {0,1} as x » {-w=,=}.
Taking & for the system as a dispersion parameter CL, known as
the Lorentzian coefficient, the Lorentzian line-spread function is then

given by

L(x,C, ) = ——— (2.3)
. 1 - CLx2

In this case, the edge spread function can be reduced analytically to the

form



X
S(X,C) =N J ._g_g__z. =
1+ Cg

-0

+

|-

tan'](x/E) (2.4)

N —

where N has taken on the normalization value vc/w, and the integration
1imit goes from -« to the point x about where the edge is located. The

incident flux % has also been taken to be unity, i.e.

i ) (2.5)

The edge-spread function given by equation (2.4) actually repre-
sents the converter response(6) to a unit incident flux which is assumed
to be totally absorbed in the region of the sample while the flux reaches
the converter unattenuated in the region with no object to intercept the
neutron beam. Figure 2.1 shows the schematic form of the most common

neutron radiographic system presently in use and identified as the back

converter arrangement.
(1,6)

Neutrons reaching the converter give rise to secondary radiations
which are emitted isotropically from any point u, say, on the converter,
and the converter response measured at any point x on the film is obtained

by using the Lorentzian function in the form

'l . 3
T a— (2.6)
VAt 1+ C(x—u)2

where x-u, is the distance measured from the edge of the object.
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Fig. 2.1: A back converter arrangement showing neutron induced
secondary radiations emitted isotropically about the
point of neutron absorption. ,



2.2 Experimental Procedure

Several pieces of Tucite samples with thicknesses ranging from
0.3 cm to 1.2 cm were thoroughly machined to give smooth and straight
edges.

The choice of the sample was motivated by its high hydrogen and
carbon contents which give the desired scattering effect. Lucite has a
scattering cross-section of 0.2429 cm_] as compared to absorption cross-
section of 0.01913 cm_], giving a scattering to absorption cross-section
ratio of 12.7:1.

The radiographic system used is the standard cassette type as
shown in Figure 2.1 with gadolinium converter and Kodak AA film. The
source of neutrons is a vertical beam port of a reactor which gives a

% em? s, The radiographed knife edges were placed as

flux of about 10
close to the centre of the neutron beam as possible to reduce any effect
that might be due to beam divergence. Some of the samples were radio-
graphed three different times with different exposures of 4 minutes, 6 min-

utes and 8 minutes in order to determine the effect of exposure time on

the ESF.

2.3 Results of Experiments

The scans obtained for the lucite samples using a densitometer,
clearly show a deviation from symmetry in the ESF. For a given thickness
of the lucite samples, the shape of the non symmetric ESF remains the same
irrespective of the exposure time, as shown in Fig. 2.2 - Fig. 2.11; but
for different thicknesses, different non-symmetric shapes are obtained

depicting the extent of scattering that occured.
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Fig. 2.2

Non-symmetric optical density scan for 0.3 cm thick

Fig. 2.3

lucite sample, exposed to standard neutron flux for

6 minutes.
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Fig. 2.10: Non-symmetric optical density scan for 1.0 cm thick
lucite sample, exposed to standard neutron flux for

6 minutes.

Fig. 2.11: Non-symmetric optical density scan for 1.2 cm thick
Tucite sample, exposed to standard neutron flux for

4 minutes.
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Aside from the visual analysis, the non-symmetry of the ESF was
further established by measuring the optical densities from the scans
and feeding the data into a computer code which calculates the Lorentzian
constant, CL by using the symmetric form of the ESF. Results usually
obtained when no scattering is involved are such that the values of CL
increase with increasing thickness of the knife edge for a given mater1a1(7);
but for the case of lucite, no such regular trend was obtained, which
suggests that a new formulation is required to account for the scattering.

“For illustrative comparative purpose we show in Fig. 2.12 the

symmetric and non-symmetric optical densities.
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CHAPTER 3
THEORETICAL ANALYSIS

3.1 Introduction

As mentioned in the Introduction, one basic assumption which has
been made here is that any scattered neutron suffers only a single scat-
tering before getting absorbed or leaving the sample. This assumption
| makes the analysis less complicated and relies on build up factors for
any modifications to include multiple scattering. Two different models
have been presented and the first model has been treated in both polar
and Cartesian coordinates; the reader may find the Cartesian form a little

easier to follow.

3.2.1 Model I: Single Scattering Approach - Polar

The theory is based on the probability that a neutron will,
following an attenuated penetration into the specimen, undergo an
isotropic scattering event. Figure 3.1 shows the general form which

the model takes. The details are now described.
A neutron incident on the sample in the direction shown, travels

attenuated to a point A, through a distance r (0 < r < b, where b is

the thickness of the sample), and is then scattered isotropically. The
scattered neutron now travels without further scattering through another
distance, ro before Teaving the sample. Once outside the sample, the

neutron undergoes no further attenuation and continues in a free flight

14
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Converter

Sample

incident neutron

Fig. 3.1: The general form of the single scattering model
illustrating how scattered neutrons can reach
the converter.
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until it reaches the converter. We shall not be concerned with what
happens in the converter as this has been covered in many ]iteratures(3),
but we shall have to incorporate the knowledge available in this regard
to our result in order to attain our goal.

As shown in Fig. 3.1, the neutrons scattered from point A have a
chance of getting to any point on the converter, as are the neutrons

scattered from point B. The flux reaching the point marked 1 on the

converter from A is simply given by

008 "1 €2 = g N1 ¥ T2) (3.1)

LF] is the fraction

where %o is the flux incident on the sample, and ¢og_
of this flux reaching the point A. Similarly, the flux reaching the same
point 1 from B is given by the same expression but different values of 8
and rss thus, the flux scattered from every point in the sample reach-
ing each of the points 1,2,3, etc. on the converter. |

We therefore require to obtain the total neutron flux reaching
each point on the converter due to scattering from all the points in the
sample. To do this, we shall make our model clearer by including all the
necessary coordinates as shown in Fig. 3.2 and we shall, without any
loss of generality, allow the converter to be in contact with the sample
as this will help to simplify the geometry.

In Fig. 3.2, the coordinate u represents the points on the con-
verter, and 6 is the scattering angle of the neutrons which are initially

travelling in the z-direction, while x denotes various points along the

length of the sample. From the geometry of the figure we have
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ro= — = (b-2z) sec o A (3.2)

where 6 = tan~! l%f%L

C r , forosuc<a
r, = < X, foruc<o (3.3)
2 X-U
a-x
e for u > a
\IX‘Ulr s 0

Making use of Eq. (3.1), the scattered flux reaching any point u on the

converter will be given by the general form .
- -2(ry + rp)
¢S(u) = ¢0jf e & drydr, , (3.4)

where the subscript, s, denotes scattering. Since the regions of the con-
verter not directly behind the sample also have different flux 902 reaching
them, we can represent the total flux, o> at various points in different

regions of the converter as

oo s u s a) ¢ (0 cucga)

S
¢o7(u <o) = ¢, ¢5(u < a) - (3.5)
o{u > a) = byt og(u > a)

We now require to make substitutions for " and ro in terms of 6 and z,
and also make the necessary transformations for change of variables in

Eq. (3.4).

18
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Since 8 = tan_] l%f%L

z =b - |x-u| cot e
Hence ry = z(e) (3.6) .
also  r, = ry(s,z) (3.7}

and, if we allow the incident flux % to represent a unit flux, the

scattered flux takes the form

¢5(u) = [[f(ryory)drdr, = fj'e'z(r1 *rodgr ar

1772
Py (3.8)
= fff(e,z)J( 2 ) dedz
where the Jacobian of transformation is
ry,r a(ry,r,)
1272y o [ -
AR I (3.9)
and the Functional Determinant
ar ar
1 2
alrory) 15 e
a(0,z) - (3.10)
ar] arz
9z Bz

From Eq. (3.2) and Eq. (3.3) we know r and ry in terms of 6 and z and
we shall evaluate the Jacobian only in one region of the converter, since
the values in the other regions will only differ by a multiplication
factor.

In the region 0 < u < a we have



20
| x-u| csce (b-z)seco tans
(3.11)

1 -seco

and the Jacobian of transformation is given by

(b-z)seco tan® + [x—ulcscze sec6 , 0 cuca

;%E-{(b—z)sece tane-FIX—u[cscze sec8} ,u <o (3.12)
i:ﬁ {(b-z)sece tano 4—]x—ulcsc285ece} , U>a

Making the substitutions we have

¢ (0 <

0

uga)-s= J [ e_z[Z + (b-z)seco] {(b-z)secotano +

¢ (u < 0) =

(3.13)
| x-u|sece csc?e} dodz

[ J’e—z[z + (b-2) ;%G-sece] ;%G-{(b—z)sece tane +

(3.14)

| x-u|sece cscoldedz
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o (u > a) = J J o-E[z + (b-2) T%E%T- sec?] TgféT{(bfz) seco tane +

(3.15)
- |x-u|sece csc2e}dorz
where
z] =0
Zz‘b
(3.16)
= tan-! Lul
61 = tan bz
and
-1 la-u
92 = tan by

Equations (3.13), (3.14) and (3.15) give the required expressions
for the scattered flux in the polar coordinate representation. It is now
a matter of numerical computation to obtain the values at each point on
the converter. A computer program required to handle this double integra-
tion must take care of all cases for which the integrand can blow up as

a result of the angle & assuming certain values; and this could happen
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quite easily due to the different forms of trigonometrical functions
involved. It could also happen when u and x assume the same values.

Some of these flaws are greatly reduced in the Cartesian coordinate
representation because in place of the trigonometrical functions, square
roots of squared quantities are involved; the squaring takes care

of any negative quantities.

3.2.2 Model I: Single Scattering Approach - Cartesian

The theory is essentially the same as in the polar coordinate
representation, and we shall continue to denote the coordinate of the
points on the converter with u. The distances ™ and ry through which
the neutron travels will now be given in terms of x and y only as sug-
gested by Fig. 3.3.

In this case. we can define a common distance r from any point

on the converter by the relation:

r= /(x—u)2 + (1—y)2 (3.17)

and the distances through which the neutrons are scattered in the sample

before reaching various regions of the converter are then given by

= _‘:l___ . [o]
ro =g’ suso (3.18a)
ro = r s 0zl ga (3.18b)

- a-X 3
ro = o T s u>a (3.18¢)
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24

The scattered flux now takes the form

Y‘-I ,Y‘2
X,y

g )dxdy (3.19)

¢ (u) = JJ f(x,y) JI(
We shall proceed directly to obtain the Jacobian of transformation
for the various regions of the converter.
In all cases, the distance which the neutron travels attenuated
in the sample before scattering is given by iy = ¥ (o <y <1, where

1 is the thickness of the sample).

For ry =y
31"] ar‘]
0B w0 (3.20)

and for u < o we have

"2 " % fxa)? + (1)? (3.21a)
aY‘Z = : _ __u__ { _ 2 ’ 2 ]/2 '
> (x-w)2+ (2-9)32 7 (xe) (x-u)® + (g y) } (3.21b)
- 2y .21
By (x-u){(x-u)? + (2-y)%31/? (3.21c)

With the Jacobian of transformation given by

(a2

J =
X,y

{3.22)

a(r],rz)’
d (x,y)



where
ary ar
a(r],rz) X X
Bly)
ar ar
1 2
Yy oy
we have
J(u g 0) = o - _E__{] %
{(X_U)Z i (Z_y)Z 1/2 X=-U
For o £ u £ a we have
rp = (x-u)? + (2-9)3 /%
Wy 2 2.1/2
o a (x=u){(x-u)® + (2-y)“} _
or
S = (1) E(x-0)” + (29)5y7V2
and
Jogcucga)s= s
{(x—u)2 + (z-y)z}]/2

For u > a we have

r
2 u-X

X

-y \2.1/2
(—:%? i

25
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(3.24)

(3.25a)

(3.25b)

(3.25¢)

(3.26)

(3.27a)
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rp - e u-a 2-y12,1/2
e -t 107 (3.27b)
x o ((u-x)? o+ ()2 U ux

ar, - _ -(a-x)(2-y) _

= ' {3.27c)

3y (U-X){(u—x)2 + (g_y)z}]/z

and
(2-x) - 9-y12.1/2
) = | (WZe ayB2 - (g O G305 (3.28)

The validity of these transformation functions can easily be

varified by noting that the following boundary conditions are satisfied:
(3.29)

and

= J(u < o) 1 -0 (3.30)

The form which the scattered flux assumes in the various regions
of the converter can now be given in the Cartesian representation by

the following relations

Lopa X )2 + (a2
¢S(u <0) = j e iy + X-U Jrkx u)e + {2-y) }*J(uso)dxdy (3.31)
0 o

. L “ 7 ENY :
¢S(o <uga)s=s e zy + /(x-u)2 + (2 y) }*J(osljsa)dxdy (3.32)

00
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) aX 15021 (o

where the J's are as obtained in Eqs. (3.24), (3.26) and (3.28).
With the scattered flux now given by Egs. (3.31), (3.32)
and (3. 33) and the total flux defined by Eq. (3.5), the non-symmetric

edge spread function, SN(u,x) takes the form

us
5, (Ux) = J o (u)L (u,x)du (3.34)
Hy
u
- (2 o¢g(u)du (3.35)

Uy H—C(x—u)2

3.3 Model II: Shielding Concept Approach

Another approach to the problem of accounting for the non-symmetric
edge spread function can be provided by considering the sample to consist
of tinny strips alligned parallel to the direction of the incident neutron
flux; we can then focus attention on each of the strips, with each point
on the strip acting as a neutron source, while the rest of the sample acts
as a shielding medium.

To obtain the total flux reaching each point on the converter,
we shall sum the flux from each point source over all the point sources
per strip, and then sum over all the strips in the sample keeping in
mind that our point source emitts neutrons isotropically. The geometry
for this model is essentially the same as with the single écattering
model, but with the sample now consisting of strips, Fig. 3.4

Our first task is obtaining the source strength of each point on

the strip. As the incident neutrons make their entrants into the sample,
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The shielding model.
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they immediately begin to suffer attenuation along each strip. The source
strength at each point will then be given by ¢Oe'zty, where y is the dis-
tance travelled by the neutron along the strip up to the point being con-

sidered, z, is the total cross-section of the sample material, and ¢0 is

o
the incident neutron flux.
From the geometry of the model shown in Fig. 3.4, the distance r

between each point source and the points u, on the converter, is given by

r = /(x—u)2 + (z-y)2 (3.36)

the distance r' for which the neutrons from the point source are further

attenuated before reaching the converter is given by

r' =y s U >0 (3.37a)

X
e 2 HER (3.37b)
If we now denoté the flux from each point on the strip to the converter

by Rpt(y,r ), we have

] o L ‘Zty —ZtY"
Rpt(y,r ) - 9 © e (3.38)

the factor 1/4 = is the fraction of the flux in any direction from the
isotropic point source.

The total flux R]n(y,r’) from the strip is then given by
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1=

Rln(y,r') -

) Rpt Ay (3.39)

1

where Ay is the step length along the strip.

The overall total flux Ru(y,r') at a point u, from all the strips

in the sample will then be given by

N
Ru(y,r') = Z Ry X
s=]
(3.40)
e )
= R ., Ay)Ax
s=1 n=1 pt
where Ax is the thickness of each small strip.
Substituting for Rpt(y,r') we finally have
¢ S N '
1y = 0 _ -It(y+r')
Rylyar') = 7 SZ] nz] e AyAX (3.41)



CHAPTER 4
NUMERICAL INVESTIGATION

4.1 Programming

The computation of the flux given by Egs (3.31), (3.32)
and (3.33) was carried out numerically by incorporating a number of
library programs into the main program as shown in the Appendix. The
first of these library routines, DCS2QU computes the approximate double
integral to a given set of data using a natural bicubic spline interpolate;
and in our case, the set of data are values of the integrand calculated
at various mesh points by a computer simulation of the sample model. The
value of the integral from DCS2QU corresponds to the scattered flux, ¢S(u)
reaching the point u.

Two other library routines, ISCICU and DSCQDU were used to obtain
the form of the non-symmetric edge spread function, §§u,x), by integrating
the total flux, ¢T(u), at u, Eq. (3.5), with the Lorentzian function,
L(u,x):

u ¢T(u)du

Sy(u,x) = N J ———
N 2o (x-u)?

In Eq. (4.1) x is the coordinate on the film in the back
converter system. The Lorentzian constant, CL’ which is a function of
the radiographic system, and hence depends on the material of the sample
has not been previously measured for Tucite. This quantity CL is thus
treated as a free parameter in the computation of the non symmetric edge

spread function, but with the values chosen within the ranges of known
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1
values of ¢, .

4.2 Result of Numerical Investigation

The results of the numerical investigations presented in this
section are the data and graphic output obtained directly from the com-
puter code NEUT77 , for the single scattering model.

A remarkable observation about the flux shape, is that it takes
a form similar to the non symmetric edge spread function or the optical
density across the sample edge; this is consistent with the direct
proportionality of the flux with the optical density in the linear response
range of the film. The flux in the region of the sample, shows some
numerical instability and this tends to smoothen out with a more refined
integration mesh. The flux in this region also show some distinct varia-
tion as the sample thickness was varied. Fig. 4.1(a), 4.2(a) and 4.3(a)
show these flux shapes for various thicknesses of the sample.

The results of integrating each of the above flux with the
Lorentzian function gave results shown in Fig. 4.1(b), 4.2(b) and 4.3(b)
which are quite comparable with the experimental results of Fig. 2.3(a),

(b) and 2.4(a),(b).
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COMPUTER OUTPUT OF THE OPTICAL DENSITY D(x), OBTAINED FOR 1.2 cm
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CHAPTER 5

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

The results obtained from the single scattering model are compared
graphically with experimental results by plotting the normalised optical
density in each case, against the spatial coordinates, a few millimeters
across the sample edge. Since the optical density scans obtained from
the microdensitometer lies between -1.0 mm to +1.0 mm across the sample
edge, this aparently defines our region of interest; and we therefore
require to obtain sufficient number of points to be plotted within this
small interval in our theoretical calculation. A minimum reasonable step
length for our mesh points may be taken as 0.1 mm. We also require the
integration of the flux with the Lorentzian function, to cover enough
distance across the edge which contributes to the optical density measured
about the edge; but in practice, it is very expensive even to integrate
from -2.0 cm to +2.0 cm across the edge, which will correspond to 400 mesh
points. This means that considering a sample thickness of 1 cm and using
a step length of only 1 mm, a total of 10 mesh points to cover the thickness ,
we will require to perform a total of 4000 1ntegrat16ns.

Indeed, the above is about the number of integrations performed
for each of the theoretical results we are about to compare with experi-
mental results. From the above economic considerations, we cannot afford
to carry out the optimum number of integrations required for the best
results.

Another factor which affects our theoretical results is the

choice of the Lorentzian coefficient CL’ which is not precisely

- -
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known for this radiographic system involving lucite samplies. The value
of CL =6 X 103 cm'2 used, was only chosen from a number of trial values.
We shall see shortly how the value of CL affects our result.

Inspite of the above limitations, the comparisons shown in Fig.
5.1 - Fig. 5.5 can be best described as satisfactory. The comparisons
between experiment and theory have been made for various thicknesses of
0.5 cm, 0.7 cm, 1.0 cm and 1.2 cm lucite samples. The general trend
in the comparison shows that we have more optical density at the toe and
less optical density at the hill in our theoretical results.

By increasing the value of CL’ the theoretical optical density
will be reduced, since in the calculation, CL appears in the denominator.
This is actually the case as shown in Fig. 5.5 with CL increased by a
factor of 10 to 6 x 104 cm-2 for 1.2 cm sample thickness. The decrease in
optical density due to increase in CL gives a very good fit at the toe of the
curves as shown in Fig. 5.5, but makes the theoretical optical density
even lower at the hill of the curves. This suggests that if we require
any improvement in our results, and assuming that the best value of CL
is known, we will have to resort to the following - refine the integration

mesh and increase the range of integration and/or include some . build-up

factor in our analysis.
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CHAPTER 6
PROPOSAL FOR GENERALIZED LORENTZIAN ANALYSIS

The detailed integral analysis described in the preceeding chapters
is both tedious and expensive to use for regular radiographic work. In
thisvchapter, we propose a generalized Lorenzian function and explore
its possibilities as an alternative method for analysis.

On the basis of the symmetric Lorentzian function, we propose a

generalized Lorentian function of the form

; C. =1 (6.1)

L(&,Cy) =

For the case of N = 2 we have

1

]X + C2X

(6.2)

L.(x,Cy,C,) =
G 1272 1+¢C 2

Equation (6.2) reduces to the familiar Lorentzian function when the odd
term in the denominator. is set to zero. The inclusion of this odd term
will produce a non-symmetric effect to an extent determined by the values
of the coefficients C] and CZ‘ In principle therefore, we can obtain a
more pronounced non-symmetric effect for the case N = 3 with

1

5 3 (6.3)
1 + C]X + C2X + C3X

LG(X,C1,C2,C3) =

or retaining, for simplicity, only one non-symmetric term we have

48
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1

La(x,C,,Cq) = (6.4)
G 2°73 1+ C2X2 + C3X3
The above non-symmetric Lorentzian function can be substituted

in the general relation

S(x,u) = [o¢(u)L(x,u)du (6.5)

The difference in this case as compared to the single scattering approach
is that the contribution to non-symmetry is now born by the Lorentzian
function and not by the flux reaching the converter. Since we now seek
to find a Lorentizan function which accounts for the scattering, the flux
will be considered to be constant and equal to unity.

Using the Lorentzian function of Eq. (6.2) we obtain a non-symmetric

edge spread function given by

X de
Sy(x:C15C) = | , (6.6)
1+ C]g + ng

We shall now initiate a numerical test for Eq. (6.6) to determine
how close we are to our goal. Analytically, Eq. (6.6) can be reduced to

the closed form
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2 2C2X-+C]

—t Al )
/(4c2-c]2) tan /(‘4(:2-(:]2) . [4c, > ¢;2]

S, (x,C1hCy) s = 20040y ATC,o4C) [c,? 1 (6.7)
X0y = 2 1o ' C.= > 4C 6.7
A 2 - g s
e /¢y 7-4C,) 2C, +C+/(C2-4C.,) 1 2
2 1 1 2
1 2C.X + C
—_— -1 2 1 2 2 2
2 tanh {———} , [C,%> 4C,,(2C, X+C,)>C,"-4C,]
VTC] —4C2) VTC]2-4C2) 1 2 2 1 ] 2
For the present analysis we choose
2C. X+ C
Sy(X:€yC,) = ———2——2-tan"] {-——2—————;——} , [4¢, > (:12] (6.8)

A curve fitting to Eq. (6.8) can now be performed to develop a feel for this
approach.

In Fig. 6.1 and Fig. 6.2 we show some of the results for the
curve fitting. The symbol E denotes the experimental curve and F for the
fitted curve. As we would expect, the shape of the fitted curve is deter-
mined by the values of the coefficients C] and C2. For the fitted curve

2

of Fig. 6.1 C; = .167957 *107° and C, = 0.1 x 107 um'2 and for Fig. 6.2

C, = -.018799, C, = .9999 + 107* ™2, |

Though none of the two curves yields a thorough fit, the former
appears satisfactory in the upper half while the later gives a fairly good
shape at the lower half. A combination of the two fitted curves, with
the upper half of Fig. (6.1) superimposed on the lower half of Fig. (6.2)
can lead to a logical satisfactory result as this would imply using dif-

ferent values of the coefficients 01 and C2 inside and outside the material

region in other to account for the scattering effect.
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CHAPTER 7
CONCLUSION

The results of the single scattering model give a satisfactory
account of the scattering effect on the edge spread function.

In addition to obtaining the required non-symmetric edge spread
function, the intermediate theoretical result for the flux shape gives an
expository description of the material response as dinstinct from the con-
verter response; the variation of this flux with sample thickness provides
an interesting area for further studies.

It is remarkable to observe that the flux shape takes the form of
the optical density which conforms to the direct proportionality between
the converter response and the flux reaching the converter for the case
of Tinear response region of the film.

The good agreement between theory and experiment suggests that
the inclusion of build up factor in the analysis will produce the effect
of increasing the flux reaching the converter without changing the flux
shape; however, a numerical test for this is another area for further
investigation. On the other hand, an accurate value of the Lorentzian
coefficient, CL’ combined with optimum mesh intervals will lead to very
satisfactory results. It may also be worth while to explore further,
the shielding concept appraoch.

The proposed generalized Lorentzian function holds a promising
alternative in terms of it's simpler form and reduced computer time but

it obvoiusly requires further investigation.
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