PSEUDO-BCOLEAN PROGRAMMING
FOR
BIVALENT OPTIMIZATION

PSEUDO-BOOLEAN PROGRAMMING
FOR
BIVALENT OPTIMIZATION

By

M. NATESAN, M. Tech.

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Master of Engineering

MclMaster University

Marcn, 1973

MASTER OF ENGINEERING (1973) McMaster University
(Mechanical Engineering) » Hamilton, Ontario

TITLE: PSEUDO-BOOLEAN PROGRAMMING FOR BIVALENT OPTIMIZATION
AUTHOR: M. NATESAN, M. Tech.

SUPERVISOR: Professor J. N. Siddall

NUMBER OF PAGES: vi,64

ii

ABSTRACT

This thesis introduces an effective computational algorithm making
use of Boolean algebra for solving bivalent optimization problems with
linear and nonlinear constraints. This method is a combination of the
algorithm suggested by Hammer and the branch and bound method. The whole
system of constraints is replaced by a single Bcolean resolvent function
and the solutions of this resolvent are found by branch and bound method
which are found to be the feasible solutions of the system of constraints.

Some practical applicaticns are also discussed.

iid

ACKNOWLEDGEMENTS

It is a pleasure to acknowiedge the active cooperation of people
who helped with this thesis work. In particular, I would like to thank
Professor J. N. Siddall for suggesting the problem, and for his all round
expert guidance and advice.

To Mr. Dave Bonham goes the credit for some invaluable suggestions
towards program development.

And finally, a last word of thanks to Miss Veronica Komczynski,
who typed the manuscript so well.

McMaster University Benefacter's Scholarship is gratefuliy

acknowledged.

iv

CHAPT
CHAPT
2.1
2.2

2.3
2.4

CHAPT

3.1
3.2
S
3.4

3.5

35, 1
3.5.2
35,3
3.5.4
3.5.5
3.5.6

CHAPT

4.1

4,2
4.3
4.4
4,5

TABLE OF CONTENTS

ER T INTRODUCTION
ER II BOOLEAN ALGEBRA

Definition of Beolean Algebra
Notations and Terminology
Boolean Functicns
Pseudo-Boolean Functions

ER IIT A REVIEW

General
Linear Pseudo-Boolean Equations
Linear Pseudo-Boolean Inequalities

Systems of Linear Pseudo-Boolean Equations
and/or Inequaliities

Nonlinear Pseudo-Boolean Equations and Inequalities

Characteristic Function

Characteristic Function for a Linear Case
Linear Eguations

Nonlinear Equations

Linear and Nenlinear Ineqgualities
Characteristic Function for Systems

ER IV RESOLVENT

General

Cover of a Linear Inequality
Resolvent of a Linear Inequality
Resolvent of a Nonlinear Inequality
Resolvent of a System of Inegqualities

Page

— O OO O O

1
11
12

20
22

22
23
24
24
26
27

CHAPTER V. PSEUDO-BOOLEAN PROGRAMMING

9O O O OO OO
« 2 e @ e e & e

1
2
3
4
.5
6
7
7
7

General

Formulation of the Problem

Some Basic Theorems

Method of Successive Eliminations
The Basic Algorithm

Algorithm

Computer Program

.1 Structure of the Program

2 The Limitations

CHAPTER VI ~ APPLICATIONS OF PSEUDO-BOOLEAN PROGRAMMING

6.1
6.2

6.2,

oy O Oy O O O
. . . N . N
~N O OB W

General

Applications to Network Problems

1 The Travelling Salesman Problem

2 To Find the Longest Path
Assignment Problem

Quadratic Assignment Problem

Plant Location

Electronic Assembly

Design of a System with Reliabiiity

CHAPTER VII CONCLUSIONS

REFERENCES

APPENDIX A SOME PROPERTIES OF BOOLEAN ALGEBRA

APPENDIX B COMPUTER PROGRAMS AND USER'S MANUAL

vi

Page

34

34
34
35
37
39
40
41
41
45

CHAPTER 1
INTRODUCTION

It was Dantzig(]’2’3)

who first recognized that a great variety
of problems in operations research and related areas could be solved by
means of mathematical programming with bivalent variables.

For a Tong time bivalent (zero-one) problems were solved by programs
with integer variables by introducing additional constraints. Best-known

(

among them are R.E. Gomory's algorithm 4.5) for solving Tinear programs with
integer variables. The problems with zero-one variables were treated as
a special case in the above algorithm.

(6)

The cutting plane approach has also been used by Beale and Gemory
to develop an algoritam for solving the mixed case when some but not all
of the variables are required to be integers.

Another type of algorithm for integer and mixed integer linear
programs developed by Land and Doig(7) also start with a non integer optimal
solution and then finds the integer or mixed integer optimal solution sub-
sequently.

However, special methods using the peculiarities of bivalent problems
have alsc been studied. Working on these lines, Egecn Ba]as(g) developed
an algerithm for solving linear programs with variables constrained to take
only one of the values, either zero or one. The algorithm starts by setting
a1l the n variables equal to zero and consists of a systematic procedure

of successively assigning to certain variables the value 1, in such a way

after trying a part of all 2" combinations, one obtains either an optimum
solution, or evidence of the fact that no feasible solution exists. The
only operations involved in this algorithm are additions and subtractions.
So this algorithm is better known as the additive algorithm. The initial
idea concerning the possibility of applying Booiean methods to economic
problems came from Robert Fortet. He pointed out that the bivalent nature
of Boolean algebra can be made use of in solving zero-one problems.

(9,10) suggested a Boolean

In 1963 Hammer, Rudeanu and Rosenberg
method for finding the minima of an integer valued function with bivalent
(0,1) variables, the variables being possibly subject to certain constraints.
Later on they extended the same method for real valued functicns. This
they called pseudo-Boolean programming. This pseudo-Boolean programming
was then successfully applied for solving problems in cperations research
and economic problems. But the above method suggested by them involved
manual inspection and a lot of hand computation. For problems with large
number of variables this was quite time consuming and from the view point
of making a computer program it was not efficient. Chapter IV explains
some of the above concepts.

Later on Hammer(]]> looking for an alternative method tried to
replace the whole system of constraints by a single Boolean function which
he called the resolvent. The system of constraints may include Tinear as
well as nonlinear constraints. Those solutions which make up the resolvent
zero vere found tc be the feasible solutions of the whole system of con-

straints. But the time consuming effort of solving the resoivent for its

feasible solutions was not overcome.

(12)

Yoshida, Inagaki and Fukumura suggested a branch and bound
technique to minimize a pseudo-Boolean problem under a constraint equation
expressed in the form of a Boolean function. The Boolean constraint function
in n variables is systemattically reduced to a single variable by the technique
of successive e]imination.(]3) At this point one can determine from the
consistency of the constraint function whether it can have a feasible

- solution. Then, the feasible solutions are built up by adding the variables
one by one. In this process the solutions which givé an objective function
value more than a prespecified limit-are left behind. This speeds up the
whole process of getting to an optimum solution without trying all the
possible combinations.

At this point a brief introduction to branch and bound method on

which the thesis work is developed is given.

Branch and Bound Method

Among the most general approaches to the solutions of constrained
optimization problems is that of branching and bounding. This is an intel-
ligently structured search of the space of all feasible solutions. Most
commonly the space of a}] feasible solutions is repeatedly partitioned
into smaller and smaller subsets and an upper bound (in the case of mfnimiz-
ation) is calculated within each subset. After each partitioning those
subsets with a bound greater than the specified bound are excluded from all
further partitioning. The total amount of computations is related to the
number of distinct bounding problems created, and hence to the total number

of nodes in the fully developed tree.

Some areas of application in matheratical programming which make use

of branch and bound method to a large extent are integer programming,

nonlinear programming, the travelling salesman problem, the quadratic
assignment problem, etc. The branch and bound tebhnique can of course be
applied to a variety of problems in scheduling, decision processes, etc.

The name branch and bound arises from the two basic operations:

(a) Branching: which consists of dividing collections of sets of solutions
into subsets.

(b) Bounding: which consists of establishing bounds on the values of the
objective function over the subsets of solutions.

The branch and bound procedure invoives recursive application of
branching and bounding operations with provisions made for deleting subsets
known not to contain an optimal solution.

Regarding the fields of application are considered, in operations
research - travelling salesman problem, scheduling and transportation
problems, in the field of science and engineering - graph theory, flows in

(8)

network etc. and also to a number of miscellaneous problems, some of
which are discussed in detail in chapter VI. The field of application is

- slowly getting widened and in that connection this thesis work constitutes
an introductory work for the larger problems of optimizing large problems,
particularly structural brob]ems, where the running time is prohibitive
when the conventional optimization techniques are used. An interesting pos-
sibility is to discretize the variables into relatively few values and
transform the problem into a zero-one programming problem. The first trial
solution would then be rediscretized into a narrower region in the vicinity
of the first solution. It is the anomaly of the current techniques that

integer methods require more computer time than continuous variables methods,

yet less information is required. The first step in this approach is to

develop an efficient and rapid technique for zero-one programming which is
the aim of this thesis work.

This is done by a good combination of the two methods, one to replace
the whole system of constraints by a single Boolean function, called the
resolvent and then to solve the resolvent for its feasible solutions by
the branch and bound method. A computer program has been developed based
on the above combination.

In chapter II some of the basic fundamentals of Boolean algebra
which have been made use of in the development of the program are examined.

Chapter III deals with some of the pseudo-Boolean programming methods
developed earlier for hand computation.

Chapter IV defines the resolvent ¢(x],...,xn) of a system of linear
and/or nonlinear inequaiities in 0-1 variables, as being a Boolean function
with the property that the set of solutions to the original problem coincides

with the set of solutions of the Boolean equation
¢(X],...,Xn) = O

A simple method of determining the function ¢ is given.

Chapter V shows how the resolvent is successively reduced to a single
variable and how the branch and bound method is used to check the feasibility
of the sequence of Boolean equations and to produce an optimal solution if
there is any.

Chapter VI deals with some of the well known problems that can be
solved using pseudo-Boolean programming.

In Appendix A some well known Boolean expressions are listed. Appendix

B 1ists the computer program developed tou solve the pseudo-Boolean problem.

CHAPTER I1I
BOOLEAN ALGEBRA

2.1 DEFINITION OF BOCLEAN ALGEBRA(]s)

By a Boolean algebra we mean a set 82 in which two elements 0 and
1 are distinguished and three operations disjunction (U), conjunction (.)
and negation (-) are defined.
2.2 NOTATIONS AND TERMINOLOGY

The disjunction (U) is defined by

x U y = 1z
0 0 0
0 1 1
1 0 1
1 1 1 (2.1)
The conjunction (-) is defined by
X y = 2z
0 0 0
0 1 0
1 0 0
1 1 1 (2.2)
and the negation is defined by
% X
0
1 0 (2.3)

It is also very easy to note that, since a and b are variables belonging

to the set {0,1} we can always write

aUb=2a+b-ab
= max (a,b) (2.4)
a.b=min (a,b) (2.5)
ad=1-a (2.6)

and that the operation of disjunction is commutative and associative.

These properties permit us to introduce the symbol

k

U %, = %3 U X5 U cuvis U x
g L 1 i k

E Xg = Xq * Xp eennn Xy (2.7)
=1

Some of the basic Boolean identities which will be frequently used in this

work are*

ala = a
alUb = bUa
alUab= a
aUbc= (aUb)(aUc)
aUb = a.b (2.8)
a.a = a
a.b = Db.a

a.(aUb)=a

as.(bUc)=a.bla.c

ab =aUb (2.9)

*See Appendix A for more identities

Other important relations are aUo=aanda U1 =1 for any a ¢ {0,1}.
2.3 BOOLEAN FUNCTIONS |

A function f(x],...,xn) whose variables and values belong to 0,1
is called a Boolean function.

The following observations regarding the Boolean function are worth
noting.

Any Boolean function can be represented as a disjunction of elementary
conjunctions. Such an expression is called the normal disjunctive form of
the given function. By elementary conjunction we shall mean a product of

the form

where Xj e {0,1} LI PP,
while A and B are disjoint subsets of {1,...,n}

This may be illustrated by the following example.

(x2 U x4) e Xy e Xy UXg o Xg oo xg UXg o Xg Uxy L Xg (2.10)
Writing the above in disjunctive form

X1+ Xoe Xg U Xy » Xge Xg U X3 « Xp « Xg U X3 « Xg U Xy « Xg

(2.11)

(Normally (.) are omitted in between variables while writing a Boolean
expression.)
Throughout this work all Boolean functions are written in the above form.

It is to be remarked that the disjunctive form of a given Boolean
function is not unique. The equation (2.11) can also be written as

X1XoX4 U X1X3Xa 1] X3Xn U XoXp (2.12)

By a Boolean equation (inequality) we mean an equation (inequality)
of the form

f(x1,...,xn) = g(x],...xn)

(respectively of the form

f(x],...,xn) s g(x],...,xn)

where f and g are Boolean functions.

Two (systems of) Boolean equations (inequalities) are called equivalent
if they have the same solutions.

The following remarks will be useful in understanding Boolean
functions.(]s)

1. A Boolean function f = g is equivalent to the Bbo]ean equation
fg U gF = 0 and also fg U fg = 1, while a Boolean inequality f < g is
equivalent to the Boolean equation fg = 0 and also fu g=1.

2. A system of Boolean equations of the form hj =0 (j=1,.c.,m),
’is equivalent to the Boolean equation
m
jE] hj 0
while a system of Boolean equations of the form kj =1(j=1,...,m is
equivalent to the Boolean equation
m
jgl kj = 1]

3. Any system of Boolean equations and (or) inequalities is equivalent
to a sing]e Boolean equation of the form h = 0 (and also to an equation of

the form k = 1).

2.4 PSEUDO-BOOLEAN FUNCTIONS
The pseudo-Boolean function is a real valued function with bivalent
variables, for example

x]xzx3 U x2x4x5 U x2x3x6 U Xg

is a Boolean function
whereas
6XoX5 - 5x2>'<4x5 + AX XeX5
is a pseudo-Boolean function.
With regard to the properties of pseudo-Boolean functicns, we notice
that such a function is always linear in each of its variables.
TuBas

FlXqaeeenxp) = X5 o 9(XqaeeaXs 1o

xi+],...,xn) +

h(X-l,.. . ,X_i_-l ’ X_i+'| 9 xn)

More generally we have the following result due to Gaspar,(]4)

" Every pseudo-Boolean function may be written as a polynomial which
is linear in each variable and which after the reduction of the similar
terms is uniquely determined upto the order of the sums and products?

An equation (inequality) between two pseudo-Boolean functicns is called a
pseudo-Boolean equation (inequality).

A problem of minimizing or maximizing a pseudo-Boolean function
whose variables are subject to a system of pseudo-Boolean inequalities is

called a pseudo-Boolean program (or a 0,1 program).

10

CHAPTER III
A REVIEW

3.1 GENERAL

In this chapter some of the earlier methods suggested by Hammer
and Rudeanu(]3) for solving pseudo-Boolean equations and inequalities are
reviewed. A procedure is described in which the solutions are either com-
pletely listed or grouped into families of solutions. Each family is
characterized by the fact that for certain fixed indices 1],..,ip the cor-

responding variables have fixed values. Xy = Ky sea X = ki » while the
1 1 p p
other variables x. seeaXy remain arbitrary.
p+1 n
3.2 LINEAR PSEUDO-BOOLEAN EQUATIONS

Let us consider an equation

12y * b]z] + ... taz +tbz =K (3.1)

where a;s by (i = 1,...,n) and K are constants.
We may assume a, 7 bi'

For each i let us set

% £3.2)

Then the terms ajz; + bjz; may be transformed as follows

.Z. + b.z. -b.)x.+ b. if a. .
a;z; + b.Z. (a1 91) 5 b, if a; > b1

(3.3)

{(h.oeg:)ys .
\b] azixg t o2y if a4 < b1

11

12

Thus eguation (3.1) is transformed into

Cixqg + Coxp + 0 0 Cnxn =d (3.4)

where C],..,Cn, d are constants, Ci >0 (i =1,..,n) and in reindexing

the unknowns we can suppose that

c]zczz...zcn>o (3.5)

Now we are interested in finding a procedure for solving a canonical
form (3.4) under the assumption (3.5). But it would be unreasonable to
try out all the 2" possibilities. Hammer suggested that the systemmatic
use of the following tab]e(]3) (3.1) would avoid most of the blind alleys.

Table (3.1) studies eight mutually exclusive cases concerning
equation (3.4) and covering all situations. It is to be noted that unless
equation (3.4) is inconsistent or it has a unique solution, we must continue
in Table (3.1) to the new equations that resulted at the first step. This
process is continued until all the possibilities are exhausted.

When applied to problems this procedure was found to give all the
soclutions of the equation (3.4). If T is the transformation from the
equation (3.1) to equation (3.4) then the solutions of (3.1) are obtained

1 to the solutions of (3.4).

by applying T
3.3 LINEAR PSUEDO-BCOLEAN INEQUALITIES

The most general fcrm of inequality is either

ayzy + b]z] tayz, + b222 oo tazot bnzn > h (3.5)
or

ayzy + byzyt az, + b222 * .o tagz +bz 2K (3.6)

No.

TABLE 3.1

Case
d <0
d=20
d > 0 and
C] 2 sy 2 Cp> d 2 Cpﬂ...zcn
d > 0 and
C-l = = Cp d > Cp+-|- _Cn
d> 0, Ci <d (i=1,2,0..50)
n
z)i
and 187 Ci <d
d> 0, Ci 8 {1 = T,0eeph)
7
and ;2, C; = d
d >0, Ci ¢l (1 = louessli)
n n
d>0, Ci 2@ {1=1,,0esh)
g n
327 Ci >d and jéz Ci >d

Conclusions
No solutions

The unique soluticn is

The solution, if any, satisfy

n
= = = c b N, o=
Xp = e =Xy 0 and j=p+1 CJxJ d
a) for every K=1,..,p : Xg = 1
= ~— =x =0

X]=...=

is a solution

b) The other solutions, if any, satisfy
n

Xp = eee = X5 = 0 and d=%+1 ijj =4

No solutions

The unique solution is

The solution, if any, satisfy

n
X.I:]’ -Ezc-izd-c

X
J=273"] 1

The solution, if any, satisfy

n
= Z = -
xy =1 and j=2 ijj d -Gy
n
X = D and 352 ijj = d

No.

Case
ds o0
d>0
C] 2 2 Cp >2d > Cp+1
2 > Cn
d>0,Ci<d(i=1,...,n)
n
X
and 41 C_i <d
d >0, C_i <d {i=1, ,n)
v
and ;2. C, > d and
n
.z o &
J=2 CJ .

TABLE 3.2

Conclusions

The unique solution is
X] = Xp = .. =X 0= 0
a) For every k = 1,2,...,p

Xy = 1
X-l T e e = XK_-I

is a basic solution

b) The other basic solutiors (if any) are
characterized by the property, Xp = eee = x;

= 0 and (x ,xn) is a basic solution

p+]’--¢

)
f & Ko 2
of 4op+l C 5%, d

No solutions

The basic solutions(if any) are character-
ized by the property: X] = 1 and

(Xz,...,x) iS a baSiC SOIUtiOH OI
Z

. oA o 2 =

J 2 CJXJ d C]

The basic solutions(if any) are characterize
by the property,either

cont'd...

Table 3.2 (cont'd)

z
j=1 ¢4 7 d and

M=

x; = 1 and (x2,...,xn)

is a basic soiution of
n

5 XK 2 -
ik CJxJ > d C]

or
X] = 0 and (xz,...,xn) is a basic

solution of
n

X Xy 2
=2 CJxJ d

The unique solution is

15

No.

d; > o,cij< d,

O PP

Conclusions
No solutions

A11 the appearing
variables fixed

Part of the appearing
variables fixea

There are p+1 pos-
sibilities

a],...,ap, b

No solutions

TABLE (3.3a)
Equation

Fixed variables

11 n
X'y ® *ip
ay x'1.K ™
x; . (3#K) = 0
J
(K=1,...,p)
be '1.] = = x!

Remaining equations

cont'd...

i

No.

Case
d,i > 0, Cij < d_I
(3=1,...,n)
it
and =1 Cij = di
di >0 ij < d_i
L PR
n
jE] ij > di and
n
j£2 CiJ < dj
di » 0, Cij < d1
(321 500040)
n
jg] Cis > di and
i
j=2 Cij z dy

Conclusions

A1l appearing var-
iables fixed

One variable fixed

There are two pos-
sibilities

Fixed variables

x'i] = ...x'in =]
x'-]1 =]

(a) x'11 =]

(b) Xl'i'l =0

Remaining equation

(]

pr}
x

1

(=K

-t

1

o
—

-

/1

No.

Case

di > 0 and

APET - Cip,

WL ST

Inequalities

Conclusions Fixed Variables

Redundant inequality

There are p+l possibil- a,: X', =...=x"s =0
ities on Tk-1
ayseenps b x'1k=](K=1,...,p)
b '- = .= ' -
X4 % 1y 0
No solutions
A11 appearing var- x'i] = ie. = x'in =

iables are fixed

Remaining Inequality

cont'd...

81

Conclusions Fixed Variables Remaining Inequality

n
One variable fixed X'jq =1 jgz Cij x'1j 2 d; - Ci]
(a) :
There are two pos- a) x'y9 =1 Z, Ci; X', 2 dy - Cy
sibilities 1 j=2 W13 M5 = A 1
1 n ',
(b) x i1 0 j£2 C,j X'y 2 d1

6l

Where ays bi’ h and K are constants and we may assume that a, 7 bi
for all i (If we have the sign < or < instead of > or 2 respectively we
multiply the whole inequality by -1). If the constants a5 bi and h are
integers, then the strict inequality (3.5) may also be written in the
form (3.6), if we take K = h + 1. Therefore we shall confine our attention
to inequalities of the form (3.6). As a matter of fact the method reported
in this section in Table (3.2) for solving inequality (3.6) will directly
offer solutions of the equation (3.1) and strict inequality (3.5).

As in the case of pseudo-Boolean equations the pseudo-Boolean
inequality may be written as

C-lx-I ¥ 5% ot Cnxn zd (3.7)

where C], Cz, R Cn,d are constants and

3.4 SYSTEMS OF LINEAR PSEUDO-BOOLEAN EQUATIONS AND/OR INEQUALITIES

The method just described in the previous two sections for solving
a linear pseudo-Boolean equation or inequality can easily be adapted to
the more general case of a system of Tinear equations and/or inequalities
(with real coefficients).

The algoyithm proposed by Hammer and Rudeanu(]a)

for solving linear
systems comprises three stages.

Step 1 A1l inequalities of the type g = 0 are replaced by -g = 0.
In case of integer coefficients strict inequalities of the form f > 0 can
also be deait with by replacing them by f-1 2 0.

Step 2 If Xq,...,X, are the unknowns of the system, the relation

X; = 1 - ii can be used to write the i th inequaiity for each i.

21

C Ly XL Foaes 0 X2 2 d;

xl
1] 12 12 'In 'In 1

i

where Xj seeesXs arve the variables on which the i th inequality effectively
1 n

depends on and x; is either x or X so that
Ci] 2 Ciz 2 xen B Cin> 0
A1l equations of the system are written in a similar way. In other words,
we bring each inequality and equation to the canonical form with respect
to variables occuring effectively in it, but without changing the notation.
Step 3 Each equation or inequality is considered separately, and
each one is written in the canonical form with respect to the variables x'
contained in it. Each equation or inequality is analyzed by use of
Tables (3.3a,3.3b) and the results of this are combined for the whole
system.
For instance when a certain inequality or equation of the system

has no solutions, then the whole system is inconsistent. In the same way

if an equation has a unique solution Xi] = 21, x1.2 = 22,...,xin = zn this
should satisfy the remaining equations and inequalities of the system.

It may be seen from the above two tables that there are cases in
which some of the variables are fixed, or in which there are no solutions,
or in which the considered equation or inequality is redundant. These cases
are called determinate. There are other cases where practically no inform-
ation is availabie and they must be split into two cases for discussion,
these cases are called indeterminate. Finally there are cases when the

discussion is to be split into p+1 cases with increased information and

they are caliad 'partially determinate’. The classification is shown below.

TABLE 3.4

Preferential Equation Inequality Characterization
order (Table 3.3a) (Table 3.3b)
First 1y 24 3 1: 3; & Determinate
5, B, 7 5
Second 4 2 Partially
determinate
Third 8 6 Indeterminate

Now step 3 continues as follows. If scme equations and inequalities belong
to determinate cases, all corresponding conclusions are drawn. Two sit-
uations may arise. If at least one equation or inequality has no solutions
or if two distinct equations or inequalities lead te the conclusiens of
the form X; = 1 and X5 = 0 respectively, then the system has no soiutions.
It is preferable to start solving the system in the order of determinate,
partially determinate and indeterminate.

If none of the equations and inequalities are in a determinate
case then we look for partially determinate cases and we follow the con-
clusions corresponding to one of these cases.
3.5 NONLINEAR PSEUDO-BOOLEAN EQUATIONS AND INEQUALITIES
3.5.1 Characteristic Function

In the preceeding two sections a method was described for the
determination of all solutions of a system of linear pseudo-Boolean equations
and/or inequalities. In this part a method to replace the whole system
of constraints by characteristic equaticn which has the same solutions as
the system of constraints will be discussed. The construction of a char-
acteristic equation is based on the reduction of the general case to the

linear one.

(3 N

3.5.2 Characteristic Function for a Linear Case
Any system of linear pseudo-Boolean equations or inequalities has
a characteristic equation in a Boolean form

¢(x],...,xn) =1 (3.8)

which has the same solutions as the system of expressions.

The characteristic function is given by the following expression

- P =1 %n
w(X1’oo.,Xn) B U X] ...Xn (3.9)
a],..,an
where Up means the disjunction is extended over all solutions

a],..-,an

(a],...,an) of the system of expressions.

The above can be derived from the well known Boolean expression

a1 an
w(x],...,xn) = a]’.y.’an w(a],...,an)x] CeXy (3.10)
where U means that the disjunction is extended over all 20 possible

a],..,an

systems of values 0,1 of Gpsesssl and the notation x* means

X ifa=1
o (3.11)

[}
o

X if a
In other words we have

pxpaeeeax) = U x b (3.12)

a],...,a

where . u! o Means that thedisjunction is extended over only those values
| Sk e 5 .

of the vector (a],...,an) for which w(a],...,an) = 1.

3.5.3 Linear Equations
In the case of a linear equation the knowledge of all solutions,
obtained as described inTable 3.1 permits the direct formulation of the
characteristic equation. This is illustrated by the following exampie.
Table 3.5 gives the solution of a certain pseudo-Boolean equation

as shown.
TABLE 3.5

The characteristic equation is formed as

X XoX3X s X U X1 XoX3Xg U X XoXaXy = 1

3.5.4 Nonlinear Equations

Let us consider a nonlinear pseudo-Boolean equation with the unknowns
XyseeeaXy
a1P] t yen * aum = b (3.13)
where each Pi(i = 1,...,m) stands for a certain conjunction (i.e., a product
of variables with or without negations). One can replace the product Pi
by a single bivalent variable Y; and solve the resulting linear pseudo-

Boolean equation
Yy tay, t.. tay = b (3.14)

where Y15 Ypseeesy, are treated as independent variables. If w(y],...,ym)

is the characteristic equation of (3.14), then the Boolean function

¢(x],...,xn) = w(x]]....x]k,...,xm] xmk) (3.15)

will be the characteristic function of (3.13).

The whole process of substitution and resubstitution is best illustrated

in the following example
-6x]>'(2x3 - Axpx, * 2x2x4>'<5 + 4§3i4 = =2 (3.16)

We let X1XoX3 = ¥4

XXg = Y2
Xokake = Jg
X3Xg =Yy

The resulting linear equation has the form

-Gy] - 4y2 + 2y3 + 4y4 = -2

This equation is solved as described in Table 3.1

Hence the characteristic function of (3.16) is
V(Y yseeayg) = YYo¥3Ya U yq¥o¥sy,
Substituting for Y1 Yos Y3 and Yy in terms of X1s Xps X35 Xy and Xg gives
¢(x],...,x5) = (R] Ux, U 23) . XoXg - x2x4>'<5
(x3 U x4) u x]>'<2x3 (22 U 24)

B U% 0] - % - &

26

This reduces to

¢(x],...,x5) = XoXgXp
The characteristic equation ¢ = 1 gives the solutions of (3.16)

Xy = 1, Xg = 1; Xg = 0 X1s X3 arbitrary

3.5.5 Linear and Nonlinear Inequalities

To find the characteristic equation and therefrom to solve the
solutions of the linear and nonlinear inequalities is similar to that of
the equations except that different tables should be used to find the
family of solutions. A family F of solutions was defined as being a set
of solutions characterized by the fact that certain variables have

fixed values, while the other remain arbitrary.

F: Xp = 21,...,x =2 arbitrary for k = 1,...,n-m

m m* Xm+k

a - 1 e -
. 1 0 1 .
0 1 1 0 1
1 0 1 - 1

The characteristic equation for the above is
$ = x3 U x2>'<3x4 U §1x2x3i4x5

U x]x2x3x5

3.5.6 Characteristic Function for Systems

We take a system of pseudo-Bcolean equations and inequalities

fj (X]”"’Xn) =0 j=1,...,m

N Y h = mt,...,q (3.17)

n

and let
wl(x],...,xn) =]
(3.18)

be the corresponding characteristic equations determined as in previous
sections. If ¢ is the characteristic function of the system (3.17) it

is given by

e (Xqaenanx) (3.19)

27

CHAPTER IV
RESOLVENT

4.1 GENERAL

The role of this chapter is to define the resolvent of a system of
pseudo-Boolean inequalities and to explain its effectiveness as a tool to
replace the whole system of constraints.
4.2 COVER OF A LINEAR INEQUALITY(]1)

Let us consider a linear pseudo-Boolean inequality

al Xy * ...+ar',xn < b! (4.1)

where xj e {0,1} J=1,...4n

b' and aé (3 =1,...,n) are given real numbers.

We can rewrite equation (4.1) as

o a
1 n
ayXy Lo tax s b (4.2)
where
ay = |a3| 32 Tyeeaalt
n]
b = b' - j§1 min (aj , 0)
1 49F &l 0
if a5 2
aj _ 0 if a' 0
if a3 <
and where
X if a =1
x% =
X ifa=0

28

For the sake of simplicity we shall assume that the terms of (4.2)

'are reordered, so that

ay 2 ... 22,20 (4.3)

If we define a set N = {1,2,...,n}
Then a set of indices
J = {j],,..,dm} < N
will be called a cover of the inequality (4.2) if

The equation (4.4) will be a basic cover if no proper subset of J is a
cover,

Example: To get the minimal covers of

bxq + 522 + 4xgy + 224 g7

Rewriting the above, after substituting
V=X ¥p =X Y37 X3 Vgt Xy
6y] 4 5y2 + 4y3 + 2y4 2 7

The minimal covers are
{1,2}, {1,3}, {1,4}, 12,3}

4,3 RESOLVENT OF A LINEAR INEQUALITY

If J is a basic cover the product

b
B J
IJ(x) = jgd X; (4.5)

will be called the basic implicant of the inequality (4.2).

29

If @ is the family of all basic covers of (4.2), then the Boolean

function
|
w(x) = U I X, (4.6)
Jeo jed

will be called the basic resolvent or simply the resolvent of the inequality

(4.2).

In effect we have replaced the pseudo-Boolean inequality with a
Boolean function. In the example described in Section 4.2, the resolvent
would be

W=y Uyys Uyy, Uyoysg
or

W = x]xz U x]x3 U x]x4 U x2x3

4.4 RESOLVENT OF A NONLIMEAR INEQUALITY
The replacement of a nonlinear inequality with a resolvent is very
similar to that of a linear case.

We can write

(0 Y

m j :
I a.y.” < .
i1 3% (4.7)
where
= H v \
Y5 = heT, *h v kezy Xk (4.8)
and
A _ i [;
TJ 1] 3 N j=1 n (4.9a)
T Z.=0 J=1,...,n (4.9b)

30

and where

yr=y ifa=1
=y ifa=0

If the resolvent of (4.7) is denoted as w(y) and if we introduce

into w(y) the expressions (4.8) of the y& s
we get y(x) = w(y(x))
Example: A Linear Case

5xq = 6x, + 823 tAx, 2 4
Rewriting the above as a < inequality type

45-4

1
Ky
x

—5x] + 6x2 - 8x3
52] + 6x2 + 8x3 P 4x4 s 13
8x3 + 6x2 + 5x]) 4x4 213
The resolvent of the above inequality (4.11%)
w(x) = X3Xo U XX Xy U XoX Xy
In case of a nonlinear inequality
By = 6y, * 8Y5 + 4y, 2 4
where —y; = XqX3, ¥y = XoX3, Y3 = x122§4

Yg = %y

w(y) = Ya¥o U .‘/3)-/]94 u 3’2«‘715’4

(4.10)

(4.17)

Substituting for Y1 Y5 Y3 and Y in terms of x's

w(x) = X1XoX3X, U x]x2>'<4 . (x] . x3) . X

U XoXq (x] ,
Simplifying
w(x) = Xo « X3« Xy

4.5 RESOLVENT OF A SYSTEM OF INEQUALITIES
Let us consider a system of linear or nonlinear inequalities

¢5 (x],...,xn) £ by ST PR (4.12)

xje {0:,1F 3 = lseuaph

If wi(x],...,xn) is the resolvent of the i th inequality and

w(x],...x) = W, Uw, U ... U W (4.13)

n
then w(x],...,xn) is called the resolvent of the system (4.12).

Next we must prove that a solution vector x e Bg is a sclution of
the system (4.12) if and only if it is a solution of the Boolean equation

w(x],...,x) =0

n
where w is the resolvent of (4.12)
The proof for the above is very simple and directly follows from

equation (4.6), .

J

= U I X3
Wi (x) = 55q jed Y (4.6)

which was defined as the basic resoivent.
(o TN

It is clear in equaticon (4.5), if all ij = 1, that this set of

values will be violating the constraints. So it is obvious, if

Xi & J= {1s00ed)

is to form a solution of the corresponding constraint, that at least one

a.
of the above x. must take a value zero. So in that case the product

J

O

= I J
IJ(x) jou %y

|
o

(4.5)

It should be noted that the above argument holds good only if J

is formed out of minimal covers. If IJ(x) =0

(-
wix)=U T x35*=0
) Je@ jeJ v

So those solutions which satisfy the.constraints, alone will make w(x) = O.

Putting it in a different way, only those solutions (x],...,xn) which make
w(x) = 0 can be the feasible solutions of the system of constraints.
Remark: The system of constraint equations (4.13) is inconsistent if and
only if

w(x],...,xn) = 1

33

CHAPTER V

PSEUDO-BOOLEAN PROGRAMMING

5.1 GENERAL

In the previous chapter it was explained how a system of constraints
can be replaced by a single Boolean resolvent function and it was also
proven that the solutions which satisfy the system of constraints, when
substituted in the resolvent will make it zero. So we are mainly interested
in finding the solutions of the resolvent and such solutions are known as
feasible solutions of the system. Among these soluticons one or more optimum
solutions exist which will minimize or maximize the objective function as
the case may be. In this chapter a method for obtaining the feasible sol-
utions of the system of constraints and the optimum solution is discussed.
5.2 FORMULATION OF THE PROBLEM

This section formulates the general problem to be treated in this

thesis. Let

_ no_ o en=1
B2 = {0,1}, 82 = 82 X 82
and X; € B2 fa 1,2 c0a,0

We also denote X = (x],...,xn)
and further let the first r components of X be denoted as

N = (x],...,xr)

Next two Bonlean functions Yi(x) and Fi(x) are defined with arguments x.

M
2, asy.(x) (6.1}

y(x) = &,

34

and

F(x) =

Falx) . (5.2)
j J

n cx
—

Our ultimate aim is to find an X which makes equation (5.2) zero and mini-
mizes the objective function (5.1).

It is required in the algorithm that a, values in equation (5.1)
may not be negative. Any negative value present must be replaced using
the following transformation

a'i‘y'i(x) = (‘ai)vi(x) +a (a‘i < 0) {5.3}

;

When a maximizing problem is encountered it can be reduced to that
of a minimizing one by taking note of the fact that the maximum value of
y(x) is equal to the minimum value of -y(x). This algorithm treats minimiz-
ation problems only.
5.3 SOME BASIC THEOREMS

Before going into the details of the algorithm it becomes necessary
to state certain basic theorems which are made use of in proving the
validity of the algorithm.
Theorem 1(2)

Any system of Boolean equations and (or) inequalities is equivalent
to a single Boolean equation of the form h = 0 and also to an equation of
the form K = 1,

A Boolean equation f = g is equivalent to the Boolean eguation

fg U fg = 0
or (5.4)
fg U fg

]
et

While a Boolean inequality f < g is equivalent to the Boolean equation

fg = 0
and also (5.5)
fu g =1
Also a system of Boolean equations of the form hj =0 (j=1,00.,m), is
equivalent to the Boolean equationj?]hj = 0, while a system of Boolean
equations of the form Kj =1(j=1,...,m) is equivalent to the Boolean
equation
o .
I K, =1 (5.6)
=1 !

land y = 1)

(Since xy = 1 if and only if x
Considering a very simple case of a Boolean equation in one unknown,
we can write the above equation in the form
f(x) = 0 (5.7)

or equivalently

ax Ubx =0 (5.8)
where

a=f(1), b=f0)3 (5.9)
Theorem 2

Equation (5.8) is consistent if and only if

a.b=0 (5.10)
Proof of the above is very simple. If x be a solution of (5.8) then

ax = bx =0

and hence a < x and X b (By Appendix A).

o !

Therefore a < (By Appendix A) or else

ab=20

5.4 METHOD OF SUCCESSIVE ELIMINATIONS(]3)

Let us start off with a general Boolean equation in n unknowns.

f(x],...,xn) =0 (5.
In order to get a recursive relationship we take

f(x],...,xn) = f](x],...,xn)
Then

f](x],...,xn) =0 (5.
The above may be written in the form

f](x],...,xn_],l)xn U f](x],...,xn_],o)xn =0 (5.
If we set

IR ITRRRTT R Y DARIR Y CSTOPRRE SEP 1)

= f2(x],...xn_]) (5.

then the condition that equation (5.13.1) has a solution with respect
Xq becomes

f2(x],...,xn_]) =0 (5.
We assume that the above method of eliminations is carried out in the i
step and therefore must solve the equation

f_i(X-l,...,Xn_,i_*_-l) = O (6.
We write the above in the form

f,i(X],...,Xn_i,1)Xn__i+] U f_i(X-I...,Xn__i,O)Xn_.H_] - O (5‘

Then once again we set

fi(x],...,x 1) ., Ff.lx

n-i’

= f1+](x],...,xn_i) (5.

1)

12.1)

13.1)

14.1)

to

12.2)

12.1)

13.1)

14.i+1)

38

and from the equation

fi+](x]""’xn—i) =0 (5.12.1i+1)

In the n th step we obtain the equation

fa(xy) =0 (5.12.n)

which may be written in the form

fn(l) X1 U fn(O) X; =0 (5.13.n)
and

f.(1) . F(0) = f B, , (5.14.n)

If fn+] # 0, then (5.13.n) or equivalently (5.12.n) has no solution

in view of theorem 2, section (5.3). Since equation (5.12.n) is just the
consistency condition of equation (5.13.n-1), it follows that the latter,
which coincides with (5.12.n-1), is also inconsistent. We define by
induction that (5.12.1) has no solutien.

If fn+1 = 0, then the equation (5.12.n) is consistent. By introducing
its solutions into the equation (5.12.n-1)

fn_](x],xz) =0
The latter becomes an equation with sinale unknown Xos and is consistent for
the reason explained above. We obtain thus the solutions (x],xz) of the
equation (5.12.n-1). We introduce them in the equation (5.12.n-2) etc.
In the last step we introduce the solutions (x],...,xn_]) of equation (5.12.2)
into equation (5.12.1), obtaining thus an equation with a single unknown xp.
After solving this we have at hand the solutions (x],...,xn) of equations
{5.12.1).

Thus the method of successive eliminations consists of two stages.

The first one, which includes the steps from the begirining to the finding

39

of fn+1’ may also be considered as a way of deciding whether or not the

given equation is consistent. If f = 0, then the second stage leads to

n+l
the determination of all solutions of (3.12.1) and therefrom solutions of
(5.11).
5.5 THE BASIC ALGORITHM

Two function series {Fr(rx)}(]z) and {y(r)(rx)}, r=1,...,n are
defined as shown below

F(n)(x) = F(x) (5.16)

) (rn) = B (0 L Dy 1) (5.17)

x)

The above replacement becomes possible by the method of successive elimin-

ations.
. m
y(‘)(rx) =5 aiyi(”) (ry) (5.18)
where
y§")<x> = s (x) (5.19)
v (r) = M0 Ly M D) (5.20)

Next we define a parameter 'c', which is an arbitrary upper 1imit on the
objective function value. Only those feasible solutions which give an
objective function value less than or equal to the parameter 'c' are
searched for an optimum solution. Uriting this mathematically, if we

(Y‘)(

define a set series { c)} corresponding to the function series defined
above, we get

W) = g /F M) = 0y M) s (r = 1h2,00000)
(5.21)

We still must prove that the vector rys consisting of the first r

5
components of an arbitrary element rtly in the set w(r+')(c), belongs to

40

the set w(r)(c). From equation (5.20), the expression

(r+1)(r

yi) < o X*Xr+1)

holds for any ry € B; and Xpi] € BZ' Since all a; > 0, from the relation

above and equation (5.18), the inequaiity

¥y <y (M gk)

r+1

holds for any ry and x It follows that if an (rX’Xr+]) € B2 fulfilling

r+1°

(r+1)
y (rx,xr+]) < cC

exists, it also satisfies the inequality

y(r)(rx) <c

In addition by successive elimination, we have shown how to get the solution
step by step. So regarding
+ \ - 2]
F \rx3xr+]) - 0 . (5.24)

as a Boolean equation with respect to x the condition

r+1?

F(r)(r =0

y)
is just the necessary and sufficient condition for the Bcolean equation
(5.22) to have a solution.

The number of feasible solutions that are obtained depends on the
value of 'c' chosen. A theoretical upper limit would be the sum of all
positive coefficients in the objective function. If this value of 'c'
is chosen, all the feasible and optimum solutions will be found.

5.6 ALGORITHM
Step 1

Assume a constant 'c'

41

a) If F(1)(x]) is identically equal to unity, no feasible solution exists
and the algorithm terminates.

(1)(

b) If there is an Xy present such that F xl) = 0, construct a set
w(l)(c). If w(])(c) is empty increase the value of 'c' by ac (ac > 0) to

obtain another w(])(c) which is not empty. Proceed to next step.

Step r (r =2,...,n-1)
a) If w(r'])(c) # 0, obtain w(r)(c) from w(r'])(c) and to to step (r+1)
b) If w(r_])(c) = 0 replace 'c' by ¢ + Ac and return to step 1 (b).

Step n
a) If w(n)(c) # 0, obtain w(n)(c) and the algorithm terminates.

b) If ¢(n)(c) = 0 replace ¢ by ¢ + Ac and return to step 1 b.

The algorithm terminates at (a) of step n, when a non-empty w(n)(c) %
obtained. When no feasible solutions exist the algorithm terminates at
(a) of step 1.
5.7 COMPUTER PROGRAM
5.7.1 Structure of the Program

A computer program has been developed, based essentially on the
algorithm described in section (5.6) and is attached as Appendix B. This
program solved problems with sixteen design variables and nineteen constraints
efficiently. However the upper Timit on size can not be specified. The
basic difficulty is that it is not possible to predetermine the core
memory requirements for any particular problem. Different problems with
the same number of design variables and constraints may vary drastically
in core memory requirements.

The computational time depends on the individual problem and also

on the value of 'c', the upper 1limit. The time tends to increase with the

Cm=)

READ IN MsNsC»H
COFsBsOBJsNLIN

YES
IDATA=1

NO

-l

f

PRINT INPUT /.
DATA

I=1

!

ARRANGE CCOF(IsJ)sJ=1%eesN
IN THE DECREASING ORDER
OF MAGNITUDE

1]

FIND ALL MINIMAL COVERS

OF COF(ISJ)’ J=1%eeeesN

YES

I >NLIN

CALL
COVER

SUBSTITUTE NONLINEAR
TERMS FOR ThE CORRES-

| PONDING LINEAR SUBSTI-

TUTES
NO
| SR 3
/

CONSTRUCT THE v CALL CALL
RESOLVENT -« SOLN DECODE |

4
SIMPLIFY THE CALL
RESOLVENT REDUCE

!

¥

I=1+1

|
NO /I%

w

REDUCE THE N VARIABLE
RESOLVENT TO A SINGLE
VARIABLE FUNCTION F (X)

YES

CALL
BOOL

43

—

i CALL

DETERMINE XK, (K:I.’..O’J)

| OBUECT

o SUCH THAT B(Xloxag..XJ)=O
AND YJ (X|’X?_9.oo.ox‘.‘)<c

NO FEASIBLE
SOLUTION

-

CALL
EXIT

S

J=J+1

. 1
J >N
YES
v

PRINT OUT FEASIBLE
AND OPTIMUM SOLUTIONS

—X
(stor)

Fig 5,

CALL
VIOLAT

CALL
BOUT

4
General Arrangement of Subroutines.
o

value of 'c' since more and more feasible solutions must be completed and
scanned for the optimum.

The computer program is capable of dealing with linear and nonlinear
constraints and objective function. The nonlinear constraints may contain
only product of variables as their terms. For nonlinear objective function
subroutine UREAL should be written.

The accompanying flow diagram shows the general arrangement and
the sequence in which the subroutines are called. A brief description of
each subroutine is as follows:

Subroutine BABO calls the rest of the subroutines CANON, COVER,
SOLN, LSTR, DECODE, STORE, REDUCE, ASEMBL, BOOL, CHOOSE, CHANGE, VIOLAT
and OBJECT.

Subroutine CANON rearranges the coefficients of the variables in
the constraints in the decreasing order of their magnitude, after changing
the negative coefficients into positﬁve and adding the corresponding quantity
to the right hand side constant.

Subroutine COVER finds ail the minimal covers of the constraints.

Subroutine SOLN identifies each member of the minimal cover with
its corresponding variable and forms the resolvent.

Subroutine LSTR stores the terms of the resolvent, formed out of
linear constraints.

If nonlinear constraints are present subroutine DECODE identifies
the correspending nonlinear terms for their linear substitutes and forms
the resolvent. The terms of the resolvent are stored in subroutine STORE.

The total resolvent comprising of all the terms is simplified by

the subroutine REDUCE using Boolean properties.

45

Subroutine ASEMBL uses the system routine SHIFT to assemble a number
of single digit numbers into a single number. This is done essentially
to save core memory space and whenever a particular digit is wanted out
of this number, subroutines CHANGE and CHOOSE do the job.

Subroutine BCOL, using systematic elimination, forms various levels
of the resolvent, from n variables to a single variable function.

Subroutine VIOLATE checks whether the Boolean resolvent function
is satisfied at various levels, to determine whether a particular value of
x can form a part of feasible solution.

The linear objective function is evaluated by the subroutine OBJECT.

The feasible and optimum solutions are printed out in a standard
format by the subroutine BOUT.

5.7.2 The Limitations

If the time specified for the computation is insufficient, one has
to start right from the beginning once again, since there are no iter-
ations involved in finding the optimum solution and it is not possible to
start from the stage where the computations were stopped.

This program contains two non-standard FORTRAN features. At one
stage of program development, the complete resolvent formed with n variables,
each term in the resolvent represented by a row and the various terms in
the resolvent by the different rows in the matrix. If we denote the matrix
of n variables as n th order, when this matrix was reduced step by step,
by systematic elimination to a single variable, each step, depending on
the number of variables it contains, had to be identified as the n-1 th order
and so on down to the first order. Hence it became necessary to defire

a three dimensional array, in which the first number denotes the order, the

46

second number denotes the rows in the matrix and the third a particular
element in a row. This three dimensional array bécame too large for a
problem with a comparatively large number of variables. So it was necessary
to find an alternate way to reduce the core memory requirement. The CDC
system routine SHIFT was used to pack the numbers previously represented
by row, into a sixty bit word as a single number which reduces the
~core memory requirements by a factor n. Whenever a particular digit is
needed for further computation, the same system routine SHIFT is used to
pick up the required digit. This is available only on CDC 6400 computers
and hence this program is machine dependent. Furthermore this facility
restricts the number of variables that can be handled to thirty in the case
of a problem with all Tlinear constraints, since a sixty bit word can hold a
maximum of thirty single digit numbers which can either be 0, 1 or 2,
occupying two bits each. In the case of problems with nonlinear constraints,
since the terms are read in octal format each number occupies three bits
and a sixty bit word can hold a maximum of twenty numbers. Thus nonlinear
problems are Timited to a maximum of twenty variables.

The other non—stahdard feature is the use of octal format to read
in the variables in the ﬁon]inear constraints. This is necessary because
any variable present in the nonlinear term is represented by 1, its negation
by 2 and its absence by 0. For example the term x]>'<2x3x6 (assuming there
are only six variables) will be replaced by 121001. At a later stage we
would liké to pick up any particular digit for further computation. Unless
the above number is read in octal format, under which each digit in a number
is stored in three bits separately in a sixty bit word so that the picking
up of any particular digit is nothing but extracting those three bits, it

will not be possible to pick any desired digit.

CHAPTER VI
APPLICATIONS OF PSEUDO-BOOLEAN PROGRAMMING

6.1 GENERAL
In this chapter some practical applications of pseudo-Boolean
programming methods, in various fields like operations research and science
and engineering are presented. The computer program used to solve the
problems is attached as Appendix B.
6.2 APPLICATIONS TO NETWORK PROBLEMS
6.2.1 The Travelling Salesman Prob]em(lg’]g)
During the last decade there has been a great deal of interest in
problems that can be represented by networks. Ve will define a network as
an array of nodes and branches. Each ncde is connected to at Teast one
other node by at least one branch.
A well known example of the network problem is travel between cities,
or the travelling salesman problem. We will let Xij represent the branch

from node i to j and specify X5 = 1 if the branch from i to j is in the

solution, and Xi5 = 0 if the branch from i to j is not in the solution. A

J
salesman is assigned n cities to visit. He is given the distances between
all pairs of cities and instructed to visit each of the cities once, in

one continuous trip and return to the starting city, using the route that

is of minimum length. Since a complete cycle is involved, it does not

make any difference which city is the starting city. The cities are numbered

from 1 to n and let Xij = 1 imply that salesman travels from city i directly

to city j, and xij = 0 signify that the 1ink from i to j is not in the tour.

47

In the matrix of distances, the distance from the city to itself (for
every city) is set equal to an arbitrary large number. This is done to
force each X to be zero in the optimal solution. The problem is form-

ulated as follows.
n n
inimi DI, pa X
Minimize i=1 351 C1J x1J

where Cij > 0 is the corresponding distances between cities i and j

subject to
n
E - ¢ o
j=1 1 L for i = 1,...,n (departure)
n
1‘2] Xjj =1 for j = 1,...,n (arrival)

Additional constraints are to be imposed to avoid subloops and to get a
complete cycle as a solution.

Xij + in <1 i=1,e.ony, 3 =1,...50
prevents all subloops of order 2.

Xit + xtj + in <2 i=T1,00en, J=1,.00.,0
prevents all subloops of order 3.
Subloops of higher order are prevented by sets of similar constraints.
It is necessary to block out subloops of order n/2 or lower only, for higher
order subloops can not exist if the lower order subloops have been prevented.
6.2.2 To Find the Longest Path

Many companies, involved in a long development project, such as
designing and building missiles and space vehicles, use a technique called

PERT. A PERT network is an array of steps in such a project. The first

step is usually the receipt of the contract financing the project and the
last step is the acceptance of the device. The steps in between consist
of the design, construction and testing activity necessary in the project.
There may be hundreds of nodes in the PERT network of a major project.
The time to complete each activity (branch) is estimated from experience
on similar projects. The length of the project is determined by the
Tongest path from the start of the project to finish. The essential dif-
ference between PERT networks and the type discussed earlier is in the
existence of precedence relations. There is a precedence of node i over
node j if i can precede j but j cannot precede i. These arise naturally
in development projects, for components should be designed before they
can be built and should be built before they can be tested.

It should be noted that there are more efficient methods(zo) of
finding the longest route thrcugh a network, and one of these is normally
used in PERT analysis rather than Boolean Programming. The demonstration
of this programming approach to this problem is included here just as
an application of this technique to network analysis.

6.3 ASSIGNMENT PROBLEM

(20) Let us

In simple words this problem can be stated as follows.
assume that we are given n requirements that must be satisifed and n methods
of satisfying them, it being understood that each requirement must be
satisfied by one of the methods and that one methecd cannot be used to
satisfy more than one requirement. An n x n cost matrix is also given,
each element Cij being the cost of satisfying the j th requirement by the

i th method. The assignment problem consists of finding that combination

of methods and requirements that minimizes the total cost. It is specified

50

that, if Xij = 1, then the i th method is being used to satisfy the j th
requirement, if Xij = 0 the i th method is not being used to satisfy j th
requirement. From the fact that each method is being associated with one,
and only one requirement and that each requirement is associated with

one and only one method the mathematical formulation is as shown

n n
Minimize E & L.y %eu
j=1 3=1 1N
n
Subject to I x,. =1 J = Jassash
i=1 M
n
F Xuex = 1 2 1500550
i
=1
Xij =0, 1

6.4 QUADRATIC ASSIGNMENT PROBLEM
The quadratic assignment prob1em(]7) differs from the ordinary
assignment problem only in that a quadratic cost function is to be minimized

rather than the linear one given above.

Minimize ifJ pfq Liipq %43 *pg®
n
Subject to 151 xij =] J=T1,...sn
n
jgl Xij =] ; T PR
Koo = Oy 1 5] & Tyeunsh

51

6.5 PLANT LOCATION

The problem of plant Tocation has the following formu]ation.(Z])

Let I

{1,...,m} be the set of places where the plants can be located,

let J

{1,...,n} be the set of consumers, let Cj be the annual rate of
market reguirements for location j, let a; be the annual fixed cost of
construction and of operation at plant i, let bi be the manufacturing cost

per unit plant at i, and let Ci' be the transportation cost per unit from

J
ito j.

The problem consists in finding that subset of I, which assures a
minimum for the total annual cost of construction, manufacturing and
transportation.

Let us put ¥y = 1 if a plant is to be located in i and ¥y # 0, other-
wise. Let Xij denote the amount shipped from i to j and let dij = bi + Cij'
The problem is formulated as follows.

m m n

inimi ZIoawy. + 20T di. X
Minimize i=1 245 21 391 d1J X313

.

i

Subject to ~ If ¥y = 0, Xij =0 T 5 lyueosl

pad
\Y
(e}
-
<
-
m
.
o
-
—
el
—
—
n
—
-
-
3
~—

(d = Touneshi)

It is necessery by suitable transformaticns to replace Xij's in the

above expressions, in terms of (0-1)bivalent variables, so that the whole

problem becomes a problem of pseudo-Boolean programming.

6.6 ELECTRONIC ASSEMBLY
Among so many other problems that can be solved by pseudo-Boolean

(13) is formulated and

programming a very interesting and a common problem
solved below. |

To construct an electronic device several ways are possible.

1. Any one of the three types T], T2, T3 of tubes may be used,
but only one.

2. The box may be made of wood (W) or plastic material (M). But
when using M dimensionality requirements impose the choice of T2, and there

is no place for the transformer F and a special power supply 'S' is needed.

3. T] needs F.

4, T, and T3 need S (and not F)

The price of the above mentioned components are
Tube T] 28 units
Tube T2 30 units
Tube T3 31 units
Transformer (F) 25 units

Special power supply(S) 23 units
Wooden Box (W) 9 units

Plastic material box (M) 6 units

The other necessary components of the device have the following costs.
27 units, 1if tube T] is used,
28 units, if tube T2 is used,
and 25 units, 1if tube T3 is used.
The assembly cost is 10 units for each set in all cases. Set is sold at

110 units if it is enclosed in a plastic material box and at 115 units in

the other case.

It is to be determined which design is to be used in order to
maximize the profit.

The problem is solved as follows. For each utilizable compenent X,
we shall denote by x the Boolean variable

1 if X is used
x -
0 if X is not used.

The conditions become,

Byttt =] " (6.1)
w+m =1 (6.2)

'If M=1, t2 =s =1 (6.3)

If t] =1, f=1 (6.4)

If t2 = 1, s=1 (6.5)

If t3 =1, s=1 (6.6)

and f+s=1 (6.7)

Under the above constraints, maximize

110w + 105m - (28t] + 30t2 # 31ty + 2bF + 235

3

+ Ow + 6m + 27t, + 28t2 + 25t, + 10)

1 3

The constraints (6.3), (6.4), (6.5) and (6.6) are obviously equivalent to

m s t,s (6.8)
ty = f (6.9)
t, £ (6.10)

t. = % (6.11)

54

The above is a pseudo-Boolean problem with a linear objective function and
system of mixed linear and nonlinear constraints.

The above problem was solved using the program in Appendix B and
the obtained results are, t1 = 0, t2 =0, t3 =1, f=0,s=1,w=1,m=20
which means we have to choose T3 tube, the special power supply and the
wooden box, assuring a profit of 12 units. This result was found to be
the same as that of the solution obtained from hand computation(]s) using
Tables (3.2) and (3.3).
6.7 DESIGN OF A SYSTEM WITH RELIABILITY
(22)

The original problem is to design a system with six controllers
at six different stations, with sufficient redundant controllers at each
station so as to maximize the reliability, for a maximum cost of $65000.
Four different alternate designs are available for each station. Since

the number of design variables involved in solving the problem exceed the

handling capacity of this developed program, the system is designed taking

the first three stations and two design alteratives only.

Station Design alternatives
R C R C
1 .9983 2100 .9967 1800
2 .9992 3600 .9906 2900
3 .9846 1500 .9637 1400

The problem is formulated as follows:
Let X; be the number of components that can be used at station i.

If T is the upper Timit on the availability of components

= T
X o1 N Lk

where ZiK = Dor 1l

T : -
and Z] Zik = 1

The constraints have the form

T my . T <
Z y ZK.Zok_C

&1 55 SNRAT ik = s

where m; is the number of design alternatives available, CS is the total

expenditure authorized, and Cij is the cost of using the j th design

alternative in the i th station.

Also
T
E] Z'|K-]‘ 1=122:3
mj
I Yij = 1 i=1,2,3
J=1

Z_iK and yij are 0-1 variables.

The reliability is to be maximized

3 my X

- I _{1- 1

The solution of the above problem was obtained to give a maximum reliability
of 0.99868 with two components of the first design alternativesatstation

one, two components of the first design alternatives at station two and two

components of the second design alternative at station three.

CHAPTER VIT
CONCLUSIONS

As mentioned in the introduction, for a long time bivalent problems
have been solved as a part of integer programmina. Growing applications of
bfva]ent programming and the inherent difficulties in modifying other
algorithms to solve bivalent problems necessitated the development of sep-
arate algorithms which deal with 0-1 problems exclusively. The algorithm
suggested in this thesis, apart from the Balas' additive algorithm, is one
of the very few that are directly applicable to bivalent optimization. An
efficient computational program based on the particular combination of
replacing the system of constraints by a Boolean function and then to solve
the same branch and bound method for its feasible solutions, has been developed
for the first time in this thesis.

The best feature of this computaticnal program lies in the fact
that the search for an optimum never stalls. The program finds the optimum
solution (if there is any) always.

The efficiency of the algorithm can be improved by devising some
method to deal with the equality constraints directly, instead of replacing
each one of them by two inecualities as it is done in the present algorithm.

The wide range of applicability of Boolean techniques as explained
in chapter VI makes obvious the necessity for further research in zero-one
programming. The fields of integer programming, graph theory and other
domains offer very attractive problems which are easy to translate into
Boolean language. Further investigations are also necessary in developing

improved techniques, perhaps to overcome the Timitations explained in

56

chapter V, and also it would be useful to have a pseudo-Boolean procedure

for solving mixed continuous-bivalent programs.

57

10.

REFERENCES

Dantzig, G.B., "Discreet Variable Extremum Problems", Operations Research,
5, 1957, n 2.

Dantzig, G.B., "On the Significance of Solving Linear Programming

Problems with Integer Variables", Econometrica, 28, 1960 n.1.

Dantzig, G.B., Linear Programming and Extensions, Princeton University
Press, 1963.

Gomory, R.E., "Essentials of an Algorithm for Integer Soluticns to

Linear Programs", Bull. Amer. Math. Soc. 64, 275-278, 1958, No. 5.

Gomory, R.E., "An A1l Integer Programming Algorithm" in J.R. Muth and

G.L. Thompson (ed), Industrial Scheduling, Chapter 13, Prentice-Hall, 1963.
Beale, E.M.L., "A Method of Solving Linear Programming Problems when

some but not all the Variables must Take Integer Values", Statistical
Techniques Research Group, Technical Report Ne. 19, Princeton University
1958.

Land, A.H., and Doig, A.G., "An Automatic Method for Solving Discreet
Programming Problems", Econometrica, 28, 497-520, 1960.

Balas, E., "An Additive Algorithm for Sclving Linear Programs with zero-one
Variables", Operations Research, July-August 1965.

Ivanescu, P.L., Rosenberg, I., Rudeanu, S., "On the Determination of
Minima of Pseudo-Boolean Functions". Studii Si Cercetari Mathematica, 14,
359-364, 1963, No. 3.

Ivanescu, P.L., Rosenberg, I., Rudeanu, S., "An Application of Discreet
Linear Programning to the Minimization of Boolean Functions", Revue. Math.

Pures et Appl., 8, 459-475, 1963, No. 3.

11. Granot, F., Hammer, P.L., On the Use of Boolean Functions in 0-1
Programming., Operations Research, Statistics and Economics Mimeograph
Series. No. 70.

12. Yoshida, Y., Inagaki, Y., and Fukumura, T., "Algorithms of Pseudo-
Boolean Programming Based on Branch and Bound Methods", Electronics
and Communications in Japan, Vol. 50, October 1967, No. 10.

13. Hammer, P.L., and Rudeanu, S., Boolean Methods in Operations Research
and Related areas, Springer-Verlag, Berlin, Heidelberg, New York, 1568.

14. Gaspar, T., "Programming the Algorithm for Minimization of Pseude-
Boolean Function for a MECIPT-1 Computer (in Rumanian)", Stud-Cere-Mat 19,
1135-1148, 1967.

15. Ivanescu, P.L., and Rudeanu, S., Pseudo-Boolean Methods for Bivalent
Programming, Lecture Notes in Mathematics, Springer-Verlag, Berlin,
Heidelberg, Hew York, Vol. 23, 1966.

16. Ivanescu, P.L., Pseudo-Boolean Programming and Applications, Lecture
Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York,
Vol. 9, 1965.

17. Lawler, E.L., Wood, D.E., "Branch and Bound Methods: A Survey",
Operations Research, Vol. 14, 699-717, 1966.

18. Flood, M.M., "The Traveliing Salesman Problem", Operations Research,
61-75, 1956.

19. Wagner, H.M., Principles of Operations Research with Applications to
Managerial Decisions, Prentice-Hall, 1969.

20. Llewellyn, R.W., Linear Programming, Holt, Rinehart and Winston, New

York, 1964,

21.

22,

Manne, A.S., "Plant Locations Under Economies of Scale; Decentralization
and Computation", Management Science, 11, 213-235, 1964.
Siddall, J.N., Analytical Decision Making in Engineering Design,

Prentice-Hall, 1972.

APPENDIX A

SOME PROPERTIES OF BOOLEAN ALGEBRA

61

Some Properties of Boolean Algebra

s xUy=yUx

2 X.¥y=Y.X

3 (xUy)Uz=xU(yUz)
4. (xy)z = x(yz)

5. xUx=x

6 X o X=X

8 x U xy = x

8 x(x Uy) = x

xUyz=(xUy)(xU2)
10. x(y U z)=xyUxz
1. x U1

1}
—

12, x.1=x

13. xUO0=x

14, x.0=0

15, xUy=0 if and only if x =y =0

16. x .y=1 if and only if x =y =1

17. xUy=1 if and only if x =1lory =1
18. xy =0 if and only if x =0 ory =0
19. xUx-=1

20, x.x=0
2].

x
<
1]
x
<1

the de Morgan Taws

<1

22, X.y=x1U

The above properties are proved by direct verification for all

possible values of x, y and z.

The following properties are also worth noting for every x, y, z

e{0,1}.
23, X<y if and only if x Uy =y
248. xzy if and only if xy = x

25, xxUyandy xUy

26, X .y s<xandx .y =<y

27, If xZ2zandy zthenxUy=z
28, If z <xand z <y then z = xy

29. x = if and only if x Uy =1

1]
o

30. x

IA

Y

y if and only if xy
31. x=y if and only if xy U xy = 0

¥

32, x = if and only if (x U y)(x Uy) =1

APPENDIX B

COMPUTER PROGRAMS AND USER'S MANUAL

HOW TO USE

In its simplest form, the calling program is written as follows:

a) DIMENSION Statement - check through the list of input, output and
working variables. Include all subscripted variables, dimensioning as
indicated.

b) Define logical variables LOGY,XY,XX,F.

c) Define input data in any manner desired.

d) Call subroutine BABO

e) Call subroutine BOUT to give printed output.

f) Add STOP and END.

If the optimization function, U(x],xz,...,x) is nonlinear, it is

n
defined in the user written subroutine UREAL.

SUBROUTINE BABO(A,AB,F,Y,X,XX,FF,YY,IA,C,M,N,COF,B,MAX,LOGY,CM,0BJ, IDATA,YC,
IAV,XY,JC,X0B,DX,FM,SF,AY,D,NLIN,MTERM,NOBJ , ID,NFEAS KA ,NNON, IFN)

Purpose

To minimize U=U(x],x2,...,xn)

Subject to ¢j(x],x2,...,xn)$bj

and all xi=0, 1

The optimizaticn function may have any form. The constraint functions
may be nonlinear but must have the special form of a sum of terms, each of
which contains only the simple product of any number of the variables.
Variables must not appear in their complementary form, X. in a linear con-

i
straint. Such forms may be removed by the transformation

Method

The solution of the problem with linear constraints uses Boolean
algebra to replace the set of constraints by a single resolvent function.
The feasible solutions may then be conveniently found and scanned for the
optimum solution.

If the constraints are nonlinear, the product of the variables in
each term is replacedby a new set of variables so as to linearize the

problem. This is illustrated in the following example:
-8x4 Xg Xg * 4x3 X7 Xg = 3x] Xp = Xg = Xg = Xgp < -2
The transformation gives

“Byy + byp - g - Yy g Vg = 2

REFERENCES

1. Hammer, P.L., "Boolean Methods in Operations Research", Springer-Verlag,
Berlin, Heidelberg, New York, 1568.

2. Hammer, P.L., "A Boolean Approach to Bivalent Optimization", Centre
de Recherches Matematiques, Universite de Montreal, June 1971.

3. Yoshida, Y., Inagaki, Y., and Fukumura, T., "Algorithms of Pseudo-
Boolean Programming Based on Branch and Bound Methods", Electronics

and Communications in Japan, Vol. 50, No. 10, October, 1967.

NOTE: This subroutine BABO is machine dependent in two respects. The first
one is the use of CDC 6400 system routine SHIFT to pack and unpack a

number of digits and the other one is the use of octal format to read in

the variabies of nonlinear constraints. For more information on these refer

CDC 6400 FTN Reference Manual.

Input Variables

N number of design or independent variabies. Replace
with the value of MTERM if there are nonlinear con-

straints and MTERM>N

M number of constraints

NLIN number of linear constraints

NNON number of noniinear constraints + 1

MAX estimated number of terms in the resoivent = 100 for

the first trial. A message will be printed out if
MAX is too small

IAV estimated number of feasible solutions = 50 for the
first triai. A message will be printed out if IAV

is too small

NOBJ

MTERM

IDATA

COF(I,J)

0 for linear objective function

1 for nonlinear objective function

maximum number of terms in any of the nonlinear
constraints,= 1 for all linear constraints

upper limit on the linear optimization function. A
suggested value for C would be half the sum of all

positive coefficients in the optimization function

n

0 for nonlinear objective function

1 all input data printed out

0 input data is not printed out

coefficient of the J th variable in the I th con-
straint for linear or linearized constraints,
dimensioned with (M,N). See also Note (ii) below

re dimensioning.

right hand side constants of the constraints, dimensioned
with (M)

coefficient of the J th variable in the optimization
function, if it is 11neaf dimensioned with (N+1),

and with (1) if nonlinear

(Note that if the optimization function is nonlinear,
this array need not be defined, but Subroutine UREAL
must be written)

See also Note (ii) below re dimensioning.

OBJ(N+1)

KA(I,J)

value of the constant if it occurs in a linear
optimization function

= 0 if there is no constant

(Note that this need not be defined for a nonlinear
objective function)

See also Note (ii) below re dimensioning

J th term in I th nonlinear constraint. Any variable
present in the term is replaced by 1, its absence
indicated by 0, and its negation by 2. Example:

X3 23 Xg Xg (Assuming there are only 6 variables)
will be replaced by 102011. This should be read in
octal format dimensioned with (NNON, MTERM). (See

the appendix for information on octal formats)

Note: 1) In constraints which contain less than MTERM terms, the rest

of the terms should be replaced by N zeroes each.

ii) If MTERM exceeds the value of N, the value of N should be

replaced by MTERM in the input and dimension statements. The

whole problem will be treated as a problem of MTERM variables.

OQutput Variables

AB(I,Jd)

YY(I)

NFEAS

array of feasible solutions. An element contains the
value of the J th variable in the I th feasible
solution, dimensioned with (MAX,N)

array of optimization function values corresponding
to feasible solutions, dimensioned with (MAX)

total number of feasible solutions

HWorking Arrays

Variable Dimension
IFN (N,MAX)
SF (N,N) if nonlinear constraints are present

(N,1) if nonlinear constraints are absent

FM (IAV,N)
YC (M,N)
D (M,N)
M (M,N)
IA (MAX,N)
A (MAX,N)
AY (MTERM,N)
DX (N)

F (N)

Y (N)

X (N)

XX (N)

FF (N)

XY (N)

XOB (N)
LOGY (MAX)
JC (MAX)
ID (MAX)

Logical Variables

Variables LOGY,XY,XX,F must be defined as logical variables in the

calling program.

Programming Information

Subroutine BABO has full variable dimensioning except for several
variables dimensioned with MAX and IAV. These depend on the number of terms
in the resolvent which cannot be predicted in advance.

Subroutine BOUT may be used to print out the feasible solutions and
the optimum solutions in standard form.

CALL BOUT(AB,YY,NFEAS,N,MAX)

The user may alternately write his own output logic. If the optimization
function U(x],xz,...,xn) is nonlinear it must be defined in the user written
subroutine UREAL. Subroutines called by BABO are CANON,COVER,SOLN,REDUCE,
LSTR,STORE,BOOL ,VIOLAT,OBJECT ,DECODE ,CHOOSE ,ASEMBL and CHANGE.

SUBROUTINE UREAL(X,U)

Purpose

To calculate the value of the objective function at a point
U(x],xz, ,xn) when the function is nonlinear,and where U=minimum at
the optimum.
Method

The objective function may be defined by a simple arithmetic
FORTRAN statement such as

U=6.*X(1)*(1.-X(2))-5.*(1.-X(3))*X(4)

Input Variables

X(I) the current values of the independent variables

OQutput Variables

u the value of the objective function corresponding to the input

X(I) variables

How to Set Up Subroutine UREAL

The following cards must be punched by the user:
SUBROUTINE UREAL(X,U)
DIMENSION X(1)
U= arithmetic function
RETURN
END
A more complex analysis to define the value of U may require more
complicated coding or additional subroutines.

Miscellaneous

If additional data is required to perform the analysis,the necessary
READ ststements should be inserted in the MAIN program and the data transferred
from MAIN to UREAL through labelled COMMON blocks.Where possible,the user
should include conditional STOP's in his coding to prevent invalid results

from being returned to the optimization procedure.

APPENDIX

Ow Input

Octal values are converted under 0 sbécifications.
Ow
w is an unassigned integer designating the total number of characters
in the field. The input field may contain a maximum of 20 octal
digits. Blanks are allowed and a plus or minus sign may precede
the first octal digit. Blanks are interpreted as zeros and all
blank field is interpreted as minus zero. A decimal point is not
allowed.
The Tist item corresponding to the Ow specification should be an
integer.
Example:
READ (5,10) J,K
10 FORMAT (010,02)
Input Card
373737373744,
HO ‘\2
Input Storage (octal representation):
J 00000000003737373737
K 000000060000000000044

a2 XaXakaNaXala!

aNeRaR%L

a¥aNaNa!

N

10

SUBROUTINE BABO (AsABsFsYsXsXXsFFsYYsTAsCsMsNsCOFsBIMAXsLOGY sCM»OB
lJvIDATA9YC9IAVaXY’JC9XOB9DX9FM95FSAYQDsNLIN9MTERM’NOBJ9ID!NFEASsKA

2sNNONs IFN)

THIS SUBROQUTINE USES BOOLEAN ALGEBRA TO REPLACE ALL THE CONSTRAINTS

BY A SINGLE RESOLVENT.
A SEARCH FOR THE OPTIMUM IS MADE BY BRANCH AND BOUND METHOD.

DIMENSION YC(Ms1)s SF{Ns1)s AY(MTERMs1)s DX{(1)s XOB(1)s XY{(1)s JCI
11)s COF{(Ms1)s B(1)s 0OBJ(1)s FF(1)s A(MAXs1)s AB(MAXs1)s F(1)> Y{(1)
59 X({1)s XX{1)s YY{1)s CM{Ms1)s FM(IAVs1)s IFN(Ns1)s D(Ms1)s LOGY(1
3)s ID(1)

DIMENSION KA (NNONs1)

DIMENSION TA(MAXs1)

LOGICAL XY sXXsFsLOGY

IF (IDATAWNE.1} GO TO 4

WRITE (6,529)

WRITE (6430) NsM

WRITE (6431) NLINJMAXsTAVC

WRITE (6s28) NORJSMTERM

WRITE (6432)

DO 1 1=1sM

WRITE (6933) (COF(1sJ)sJd=1sN)

CONTINUE

WRITE (64+34)

WRITE (6+35) (B(1)sI=1,M)

IF (NOBJeEQel) GO TO 2

WRITF (As23h) (OBJ(T)sI=1sN)

GO 10 3

CONTINUE

WRITE (6s37)

CONTINUE

CONTINUE

DO 5 KE=1sN

DO 5 KW=1sMAX

IFN(KFsKW)=00000000C0000000000008R

CONTINUE

SUBROUTINE CANON IS CALLED WHICH INTURN CALLS SUBRQUTINE SOLN TO

GET THE RESOLVENT OF THE SYSTEM OF CONSTRAINTS.

CALL CANON (MsNsCOFsBsCMsIASDsYYsMAXsAsJCsIAVIYCsFMsABsSFsAYsNLINS
IMTERMsKASNNONs IFN)

SUBROUTINE BCOL IS CALLED TO SPLIT THE RESOLVENT INTO VARIOUS
LEVELS.

CALL BOOL (NsIFNsKLMsAsABIMAX»IAVsJCsIDsTA)

DO 6 I=1sMAX
YY{(I)=0.

DO 6 J=1sN
AB{1+J1=0,
AlTs0)=0.
TA(T+U)=0
CONTINUE
CONTINUE

K=0

10

11

aNaRa]

A NA]

14

15

16

18

11

LL.CH=0

J=1

X{1) IS GIVEN A VALUE OF 1 TO START WITH,

X(J)=1,

CALL VIOLAT (XsJosFFsNoKLMsF sLOGY sMAX9sXX XY IFNsIA)

THE FIRST LEVEL OF THE RESOLVENT IS SATISFIED ONLY IF FF(J)=0.
IF (FF(J)sNE«Oe) GO TO 9

LCH=LCH+1

IF (NOBJ.EQ.1) GO TO 8

CALL OBJECT (XsJsYsNsOBJsXOBsDX)

ONLY THOSE VALUES OF X WHICH GIVE THE OBJECTIVE FUNCTION VALUE

LESS THAN QR EQUAL TO C ARE ACCEPTED AS PARTS OF FEASIBLE SOLUTION

IF (Y(J)eGTWC) GO TO 9

CONTINUE

K=K+1

Al(KsJd)=X(J)

X(J)=00

CALL VIOLAT (XoeJsFFaNsKLMsFsLOGYsMAXsXXsXYsIFNsIA)
IF (FF(J)YeNE«Oe) GO TO 11

LCH=LCH+1

IF (NOBJ.EQsl) GO TO 10

CALL OBJECT (XsJsYsNsOBJ»XOBsDX)

IF (Y{J)eGTWaC) GO TO 12

CONTINUE

K=K+1

A(KsJ)=X(J)

GO TO 14

IF (KeFEQeOeANDLCHWLEQeO) WRITE (6938)

IF (KeEGeTeANDeLCHSEGeC) CALL CXIT

IF NFTTHFR ZERDO NOR ONFE SURSTITUTEDR FOR X(1) MAKES FIRST LEVEL
OF THE BOOLEAN CONSTRAINT FUNCTION ZERC THE WHOLE SYSTEM
1S INCONSISTANT AND NOFEASIBLE SOLUTION EXISTS.

GO T0 14

IF (KeNEeOcANDeLCHNELO) GO TO 14

IF THE SOLUTION MATRIX IS EMPTY INCREASE THF UPPER LIMIT ON
OBJECTIVE FUNCTION VALUE,

C=C+0e1%C+5.0

GO TO 7

CONTINUE

L=1

MN=J

J=J+1

JJ=0

DO 16 I=1+MN

X(I)=A{LsI)

CONTINUE

X(J)=1a

CALL VIOLAT (XsJsFFaeNsKLMsFsLOGY sMAX XX XYsIFNsTA)
IF {(FF({J)eNELCe) GO TO 20

IF (NOCBUJ.EQel) GO TO 17

CALL ORJECT (XsJsYsNsOBJsXOBsDX)

IF (Y{J)eGTuC) GO TO 2C

GO TO 18

CONTINUE

IF THE OBJECTIVE FUNCTION IS NONLINEAR UREAL IS ©VALUATED.
IF (JeEQeN} CALL UREAL (XsU)

Y(Jy=u

CONTINUE

19

20

21

22

23
24

25

26

31

32

332
24
.

\J5

37

12

JJ=JJ+1

IF (JeEQLN) YY(JJ)=Y(J)
DO 19 I=1sJ
AB(JJs11=X(1)

CONTINUE

X(J)=0,

CALL VIOLAT (XeJsFFeNsKLMosFsLOGY sMAXsXX XY TFNsTA)
IF (FF{lJ)NFeOs) GO TO 24

1F (NOBJ.EQ.l) GO TO 21

CALL OBJECT (XsJaYsN+OBJIsXOBsDX)
IF (Y(J)eGTC) GO TO 24

GO TO 22

CONTINUE

IF {J«EQeN) CALL UREAL (XsU)
Y(J)i=U

CONTINUE

JJ=JJ+1

IF (JeEQeN) YY(JJ)=Y(J)
DO 23 I=1sJ
AB(JJs1)=X(1)

CONTINUE

CONTINUE

L=L+1

IF (L.GTeK) GO TO 25
GO TO 15

CONTINUE

IF (JJEQ.C) GO TO 13
K=JJ

DO 26 MM=1,JJ

DO 26 NN=1sJ
A(MMsNN)=AB(MMsNN)

CCONTINUE

IF (J«EQeN) GO TO 27

GO TO 14

CONTINUE

NFEAS=JJ

RETURN

FORMAT (/DSX’*THE VALUE OF NOBJ o..o....0....-.-0.-.0*’159//5
lXQ*THE VALUE OF MTERM .oon-ooooooo‘lao-.0.1*915)

FORMAT (//58Xs*¥INPUT DATA FOR THE 0-1 PROBLEM¥*s/5Xs¥—mme—mom————m———
1o e %)

FORMAT (/’SX’*NUMBER OF DESIGN VARIABLES(N).o'ooooonocoo..*’lS’//’
15X s ¥*NUMBER OF CONSTRAINTS(M) sescssectssscnsseXs]5)

FORMAT (/35X 9 %*NUMBER OF LINEAR CONSTRAINTS(NLIMN)eessesesee®s155//
15X9*THE VALUE OF MAX .oo.o..oooeoooooo..ooo*QISS//?BX’*THE VA
?LUE OF IAV o-ooooooocooooonoo.c.|*9159//9SX9*UDPER LIMIT ON O

BBJECTIVE FUNCTION(C)-ooooooo*iEQQZ)

FORMAT (//+5Xs*THE COEFFICIENT MATRIX FOR THE CONSTRAINT EQUATIONS
1 QQQCOF(IQJ)*)

FORMAT (//+5Xs1F12E10.2)

FORMBT (//5Xs% THE VALUES QF RTGHT HAND SIDF CONSTANTS.ea2(71) %)
FORMAT (//¢5Xe1P12E10.2)

FORMAT (//95Xs%¥THE ORJECTIVE FUNCTION COEFFICIENTSeeCRIIII® /9 (/7
15X51P12F10.2))

FORMAT (//s5Xs*THE OBJECTIVE FUNCTION COEFFICIENTSee%s//s5Xs*NON-L

38

1INEAR OBUECTIVE FUNCTION#*)
FORMAT (////s10Xs% NO FEASIBLE SOLUTION #)
END '

13

a¥aNa¥a!

O NN

aYaNak

10
11
12
13

14

14
SURROUTINE VIOLAT (XsJsFFsNsKLMsFsYsMAXsXXsXYsIFNsTA)

THIS SUBROUTINE CHECKS WHETHER THE RESOLVENT IS SATISFIED FOR A
PARTICULAR SET OF VARIABLE VALUESe.

DIMENSION F({1)s X{1)s Y(1)s FF(1)s XX(1)

DIMENSION XY(1)s IFN(Ns1)

DIMENSION TA{MAX,s1)

LOGICAL Y sXY s XXsF

K=KLM

DO 1 KI=1,J .

IF (X(KI).EQ.I.) XX(KI)=0TRUEO

1F (X(KI)QEQ.OQ) XX(KI)=eFALSE.

CONTINUE

INITIALISE ALL 'Y' FUNCTIONS AS TRUE SINCE WHEN THIS 'Y' GETS
INTO ANY INTERSECTION WITH ANY OTHER FUNCTION THE RESULTING
NATURE(EITHER TRUE OR FALSE) DEPENDS ONLY ON THE OTHER FUNCTION.

DO 2 I=1sK

Y{1)=eTRUE.

CONTINUE

INITIALISE ALL 'F'FUNCTIONS AS FALSE SINCE WHEN THIS *Ft+ GETS
INTC UNION WITH ANY OTHER FUNCTION THE REULTING NATURE
(EITHER TRUE OR FALSE)DEPENDS ON THE OTHER FUNCTION
DO 3 I=1sJ

F(I)=eFALSE.

CONTINUE

JJd=J

DO 14 1I=1sK

CALL CHOOSE (IFNsJJsNsMAXsIsIA)
JKI=0

DO 4 KJ=1sJ

IF (TA(IsKJ)eNELO) GO TO 5
CONTINUE

GO TO 13

CONTINUE

DO 9 TJU=1sJ

IF {(IA(Is1J)eFEQel) GO TO 7

-1 IN THE FUNCTION DENOTES A NEGATIONAND HENCE CHANGE«T« TO oFs,
AND VICE VERSA.

IF (IA(Is1J)eFQe-1) GO TO 8

IF (IA(1,1J)«EQe0U) GO TO 6
Y(1)=eFALSE.

GO TO 12

XY(1J)=eTRUE

GO TO 9

XY(1J)y=XX(1J)

GO TO 9

XY(1J)=eNOTXXI(TJ)
Y(I)=Y(1)eANDXY(IJ)

IF (Y(I1)) 10,11

CONTINUE

F(J)=.TRUE.

GO TO 15

CONTINUE

FUUY=F(JY«ORWY (1)

GO TO 14

CONTINUE

F{J)=eFALSE.

CONTINUE

15
16

17

CONTINUE
IF (Fl{UM)
FF(J)=0.

RETURN

FF(J)=1a

RETURN
END

17+16

15

aNa¥e

16
SUBROUTINE OBJECT (XsJsYsNsOBJsXOBsDX)

THIS SUBROUTINE DETERMINES THE LINEAR OBJUECTIVE FUNCTION VALUE.

DIMENSION DX(1)s XOB(1)s 0OBJU(1)s X{1)s Y(1)
CONS=0,

DO 1 I=1sN

IF (OBJ(IVelL TeOa) CONS=CONS+0BJII(I])
XOB(I)=ABS(0OBJ(1))

CONTINUE

Y(J)=CONS

DO &4 I=1,J

IF (OBU(I)¢LTe0W4} GO TO 2
DX(I)=X(1)

GO TO 3

DX(I)=10—X(I)

CONTINUE

Y{U)=Y(JY+XOB(1)*DX(1)

CONTINUE

Y{J)=Y(J)+OBU(N+1)

RETURN

END

ONN ON

A9 1]

17

SUBROUTINE BOOL (NsIFNsKLMsAsAAIMAXsIAVsCobsIA)

THIS SUBROUTINE DETERMINES THt VARIOUS LEVELS OF THbE KESULVENT.
STARTING FROM THE 'N' TH VARIBSLE ELIMINATIONS ARE MADE
SUCCESSIVELY TO ONE VARIABLE.

DIMENSION AA(MAXs1)s A(MAXs1)s C(1)s D(1)s IFN(Nsl)s IA(MAXs1)
INTEGER CsD

COMMON /B0OSO/ L

K=L

KLM=K

JJ=N

CALL ASEMBL (AsIAsIFNsNsMAXKsJJ)
GO 710 2

CONT INUE

CALL ASEMBL (AsIASsIFNsNsMAXsKsJJ)
CONT INUE

IF (JJeEQel) GO TO 38

KK=0

KL=0

DO 5 I=14K

IF (A(IsJJ)) 3454

KL=KL+1

D(KL)=1

GO 7O 5

KK=KK+1

C(KK)=1

COMNTINUE

IF (KKeEQeKeORSKLeEQeK) GO TO 39
IF (KKeEQeOeANDeKLWLEQsO!) GO TO 17
IF (KKeEQeO«eORWKLSENsO?! GO TO 13
I1=0

DO 9 L=1sKK

JL=C(L)

DO 8 LL=1sKL

JLL=D(LL)

I=1+1

KU=JJ-1

DO 6 J=1sKU

AA(T s J)=A(JLsJI+ACILL I

IF (AA(IsJ) eEQeQoe e ANDeA(JLsJI eNESOe! GO TO 7
IF (AA(IsJ)eEQe24s) AA(IsJ)=1.

IF (AA(I’J’.EQ."ZO) AA(I’J’z"lo
CONTINUE

GO TO 8

CONTINUE

IF (KeEQe2) GO TO 10

I=1-1

CONT INUE

CONT INUE

GO 7O 12

CONT INUE

DO 11 J=19JJ

AA(T ¢J)=04

CONT INUE

CONT INUE

MN=1

GO TO 22

IF {KK4EQ«O?! GO TO 19

14

15
16

17

18

19

20

21
22

23

24

25

26
27
28

29

30
31
32

MN=0

DO 16 J=1sK

DO 14 1=14KK

IF (JeEQ.C(1)) GO TO 16
CONTINUE

MN=MN+1

DO 15 1J=1.JJ
AA(MNSTU)=A(Js1U)
CONTINUE

CONTINUE

GO TO 28

CONTINUE

DO 18 1=1sK

DO 18 J=1sJJ
AA(T s J)=A(1sJ)

GO TO 28

MN=0

DO 22 J=1.K

DO 20 I=1,KL

IF (JeEQ4D(I1)) GO TO 22
CONTINUE

MN=MN+1

DO 21 1Jd=1sJJ
AA(MNs T JY=A(Us1J)
CONTINUE

CONTINUE

GO TO 28

CONTINUE

DO 27 I=1sK

DO 24 J=1sKL

IF (1.EQsD(J)Y) GO TO 27
CONTINUE

DO 25 J=1sKK

IF (1«4EQ.C(J)) GO TO 27
CONTINUE

MN=MN+1

DO 26 J=1+JJ

AA(MNs JY=A(TsJ)
CONTINUE

CONTINUE

CONTINUE

KU=JJ-1

DO 32 LJ=1:MN.

KJR=LJ+1

IF (KJR«GTMN)Y GO TO 32
DO 31 I=KJRsMN

DO 29 J=1sKU

IF (AA{LJsJ) eEQeAA(TI9J)) GO TO 29
GO TO 31

CONTINUE

Do 30 J=1sJJ

AA(T+0)Y=0,

CONTIMNUE

CONTINUE

CONTIMNUE

KFJ=0

DO 36 1=1.MN

DO 32 U=1,JJ

18

33

34

36

37

38

39

40

41

42

IF (AA(IsJ)eEQeOs) GO TO 33

GO TO 34
CONTINUE

GO TO 36
CONTINUE
KFJd=KFJ+1

DO 35 U=1-sJJ
AAIKFJsJ)=AA
CONTINUE
CONTINUE
MN=KFJ

DO 37 L=1sMN
DO 37 JU=1+JJ

(IsJ)

AlLsJ)=AA(LJ)

CONTINUE
JJd=JJ-1
K=MN

IF({KGT«MAX)GOTO 41

CALL REDUCE
GO TO 1
CONTINUE
RETURN
CONTINUE
KU=JJ-1
CONTINUE
IFN(KUs11)=0
KU=KU-1

IF (KU,EQ.O)
GO TO 40
CONTINUE
WRITE(6442)

(AsMAX s JJsKsAA)

RETURN

FORMAT(//+5Xs#INCRFASE THE VALUE OF MAX¥*

CALL EXIT
END

19

aNalaNs)

SUBROUTINE CHOOSE (IFNsJJsNaMAXsTIs1A)
DIMENSION IFN(Nsl)s TA(MAXs1)

THIS SUBROUTINE CHOOSES A PATICULAR DIGIT
CONSTANT,

KG=0

DO 1 J=1sJJ
IT=IFN(JJs 1)
IT=SHIFT(ITsKG)«AND3B
IF (IT.EQ.Z) IT==1
L=JJ-J+1
TA(TsL)=IT

KG=KG=-2

CONTINUE

RETURN

END

OUT OF AN INTEGER

20

aNaNaNe!

NN

(S,

21

SUBROUTINE CANON (MoelNsAsBaCivis IAsDsCMAXsiMAXsCUOs JANYIAVICoFMesAD9sSF oY
1sNLINSMTERMsKASNNONs IFN)

THIS SUBROUTINE REARRANGES THE CUOEFFICIENTS OF THE VARIAoLES InN
ORDER OF DECREASING MAGNITUDE.

DIMENSION AB(MAXs1l)s SF(Nsl)s Y{(MTERMsl)s CM(Msl)s BL1}s IFN(Nsl),
1 A(Msl)s D(Mel)s CMAX(1)s FM(IAVsl)y CO(MAXslly C(Mel)s JAN(1)
DIMENSION TA(MAXs1)

DIMENSION KA(NNONs1)

COMMON /BOSO/ L

DO 1 I=1sM

DO 1 J=1sN

IF (A(IsJ)elTeOs) B(I)=B(II+ABS(A(IsJ))
ClIsJ)=ABS(A({IsJ))
D(IsJ)=C(IsJ)

CONT INUE

DO 7 L=1sN

DO 3 I=1sM

CMAX(I)=C(Is1)

DO 2 J=1sN

IF (C(IsJ)eGTeCMAX(I)! CMAX(I)=C(IyJ)
CONT INUE

CONT INUE

CO 5 I=14M

DO 4 J=1¢N

IF (C(IsJd)aNEeCMAX(I}) GO TO 4
Cilesd)==C{IsJ)

GO TO 5

CONT INUE

CONT INUE

DO 6 I=1sM

CM(IsL)=CMAXI(])

CONT INUE

CONT INUE

NNN=0

1B8=0

DO 8 KL=1sM

CALL COVER (MsNsAsBsDsCMaMAX 9 TASCOsJANSTAVsCoFMsKL sALs IB9SF Y oNLIN
1o MTERMINNN s KASNNONS IFN)
CONTINUE

LC 9 I=194MAX

DO 9 J=1sN

CO(IsJ)=0e

CONTINUE

MN=0

D0 13 I=1.18

DO 10 JU=1lsN

IF (AB{IsJ)eNEeQe} GO TO 11
CONT INUE

GO TC 13

MN=MN+1

GO 172 Jd=1sN

COINNe) =AR T,)

CONT INUE

CONTITHNUE

L=MN

CALL, KEDUCE (COsMAXaNsLsAB)
RETURN

C A~y

SURROUTINE COVER (MsNsAsBs>DsCM+sMAXsTASCOsJANITAVICoFMsKLsABIIBsSF
1Y SNLINsMTERMsNNN9sKASsNNONs IFN)

THIS SUBROUTINE FINDS ALL THE MINIMAL COVERS OF THE CONSTRAINTS.

N ON

DIMENSION SF(Ns1)s Y(MTERMs1)s FMUTIAVsl)s CO(MAXs1)s C(Msl)s JAN(1
1) CM(Ms1)s B(1)s IFN(Ns1)s A(Ms1)s D(Ms1)s AB(MAXs1)s TA(MAXs1)
DIMENSION KA(NNONs1)
1J=1
DO 1 LL=1sMAX
DO 1 ML=1sN
IA(LLsML)Y=0
1 CONTINUE
L=0
2 L=L+1
IF (LeGT&N) GO TO 21
DO 11 KMN=1sN
KKK=KMN
MO=1
DO 3 IN=1sN
JANCINY=0
3 CONTINUE
NAM=1
IF (LeGTeN) GO TO 12
I=L
SUM=OO
IF {CM(KLsI)eGT&BI(KL)) GO TO 9
4 SUM=SUM+CMIKL 1)
J=1+KKK
KKK=1
IF (JoGTNY GO TO 10
5 TEST=SUM+CM{KL s J)
IF (TESTLGTWBI(KL)) GO TO 6
I=J
JAN(NAM) =1
NAM=NAM+1
IF (14FQ.N) GO TO 11
GO TO 4
6 CONTINUE
IA(IJst)=1
IA(IJsJ)=1
MAT=L+1
DO 8 K=MATsI
DO 7 MAN=1sNAM
IF (KeFQeJAN(MAN)Y) TA(IJsK}=1
CONTINUE
R CONTINUF
1J=1J+1
J=J+1
IF (JeGTeN)Y GO TO 10
GO TO 5
9 IA(TIJs1)=1
IJ=1U+1
GO TO 2
10 I=1+1
IF (1eGT.N} GO TO 12
11 CONTINUE
GO TO 2
12 CONTINUE

~

13

14

15

16

17

18
19

20

21

22

23

24
25

L=0

CONTINUE

KKV=2

L=t+1

IF (LeEQeN) GO TO 21
I=L+1

CONTINUE

SUM=00

NAM=0
SUM=CM (KL sL)+CM (KL s T)
IF (SUM.GT.B(KL)) GO TO 21
NI=I1+KKV

IF (NIGT«N) GO TO 13
DO 15 IN=1sN
JAN(IN)=0

CONTINUE

J=N1

CONTINUE
TEST=SUM+CM (KL s J)
NAM=NAM+]

JANINAM)=J

IF (TESTW.GT.BI(KL)) GO TO 1
SUM=TEST

J=J+1

IF (JoGTaN) GO TO 20
GO TO 16

CONTINUE

IA(IJsL)=1
TA(TJsL+1)=1

MAT=L+2

DO 19 K=MATsJ

DO 18 MAN=1sNAM

7

IF (KaEQsJANIMAN)Y) TA(IJsK)=1

CONTINUE

CONTINUE

1J=1J+1

JAN(NAM) =0

J=J+1

IF (J.GT«N) GO TO 20
GO TO 16 :
CONTINUE

KKV=KKV+1

GO TO 14

CONTINUE

NJ=2

NO=NJ-1

CONTINUE

DO 25 NN=14sNO

DO 23 J=1,N

IF (TA(NJ»J) «EQeTAINNsJ))
GO TO 25

CONTINUE

DO 24 J=1sN

TA(NIs =0

CONTINUE

CONTINUE

NO=N.J

NJ=NJ+1

GO TC 23

23

24

IF (NJ.GTeIJ) GO TO 26
GO TO 22

CONTINUE
CALL SOLN (MsNsTASAIDICMICOsCrIAVIMAXSFMIKL s AB*IBsSFsYsNLINISMTERM
INNNsKASNNONs IFN)

RETURN

END

10

11

12

12

14

SUBROUTINE S
IMTERM o NNN s KA

THIS SUBROUT

DIMENSION SF
IMs1)s IFN(NS
DIMENSION KA
JA=1

1=KL

L=1

CONTINUE

K=1

CONTINUE

IF (D(IsL)E
K=K+1

Go TO 2

IF (CM(IsK)a
CM(IsK)=-CM!
GO TO 6
CONTINUE
CM(T 9K) =—CM(
DO 5 J=1sI1AV
FM(JsL)=FLOA
CONT INUE

GO TO 8
CONTINUE

DO 7 J=1sIAV
FM(JsL)=—FLO
CONTINUE
CONTINUE
L=L+1

IF (LeGTeN)
GO TO 1
CONTINUE

L=1

DO 13 KJ=1s1
DO 10 KM=1sN
IF (FM(KJsXM
GO TO 11
CONTINUE

GO TO 13
CONTINUE

DO 12 J=1sN
CO(LsJ)=FM(K
CONTINUE
L=L+1
CONTINUE

IF (1.GToNLI
CALL LSTR (C
RETURN
CONTINUE
CALL DECODE
1)

RETURN

END

OLN (MoNsIAsADSCMsCOsCsIAVIMAXSFMaKLsABsIBsSFsYsNLINS
sNNONs IFN)

INE CONSTRUCTS THE RESOLVENT OUT OF THE MINIMAL COVERS

(Ns1)s Y(MTERMs1)s AB(MAXs1)s FM(IAVs1)s CO(MAXs1)s C{
1)s A(Ms1)s DI(Ms1)s CM(Msl)s TA(MAXs1)
{NNON+1)

QeCM(I4K)) GO TO 3

FQ.A(IsL)) GO TO 4
1K)

1+K)

TITA(JIK))

ATLTIA(JISK))

GO TO 9

AV

)eEQeCs) GO TO 10

JsJ)

N) GO T0O 14
D9sABsIBsL sMAXIN)

(COSMAXsNsL sABsTAsIBsFMsSFsYsTAVSMTERMINNNIKASNNONSIFN

AN ON

26

SUBROUTINE ASFMBL (AsTAsIFNsNsMAXsKYsJJ)
DIMENSION A(MAXs1)s TA(MAXsl)s IFN(Ns1)

THIS SUBROUTINE ASSEMBLES A NUMBER OF SINGLE DIGIT INTEGERS INTO
A SINGLE INTEGER CONSTANT.

DO 2 I=14KY

K=0
YT=777777777777777777778
KT=777777777777777777708R

DO 1 J=1,JJ
IF (A(IsJ)eEQele) IA(ILJ)=18B

IF (A(19J)eEQeOs) IA{(IsJ)=0B
IF (A(lsJ)ebEQe—1e) TA(I+J)=2B
MT=SHIFT(ITsK)eORe3B
NT=SHIFT(KT+0)aOReIA(IsJ)
NT=NT.OR.48

1T=MT ANDWNT

K=2

CONTINUE

IFN(JJs 1) =1IT

CONTINUE

RETURN

END

aNaNa!

SUBROUTINE REDUCE (COsMAXsNsL +BA)
THIS SUBROUTINE SIMPLIFIES THE RESOLVENT,

DIMENSION CO(MAXsl)s BA(MAX»1)
KJ=0 '

DO 1 I=1sL

DO 1 J=1sN

BA(IsJ)=CO(IsJ)

CONTINUE

K=L

DO 9 I=1,sK

DO 2 J=1sN

IF (BA(I1sJ)eNE«Os) GO TO 3
CONTINUE

GO TO 9

CONTINUE

IF (I1.EQe.K) GO TO 7

JS=1+1

DO 5 11=JSsK

DO 4 J=19N .
IF (BA{IsJ)eEQeBA(II»J)) GO TO 4
IF (BA(IsJ)eEQeleeANDBA(ITI9J)eEQeOs) GO TO 4
IF (BA(I’J).EO."IO.AND.BA(II’J).EQ.OQ) GO TO 4
GO TO 5

CONTINUE

GO T0 9

CONTINUE

KJ=KJ+1

DD 6 J=14N

CO(KIsJ)=BA(1,s])

CONTINUE

GO TO 9

CONTINUE

KJ=KJ+1

DO 8 J=1sN

CO(KJsJY=BA(TsJ)

CONTINUE

CONTINUE

L=KJ

RETURN

END

27

NN NN

11

28

SURROUTINE DECODE (COsMAXsNsLsABsTAsIRsTNsSFsYs ITAVIMTERMaNNNSKASNN
I0NSIFN)

THIS SUBROUTINE RESUBSTITUTES THE NONLINEAR TERMS FOR THEIR
LINEAR SUBSTITUTES,

DIMENSION CO(MAXs1)s TN(IAVs1)s SF(Ns1)s IFN(Ns1)s Y(MTERMs1)s ABI
1IMAXs1)s TA(MAXs1) ’
DIMENSION KA(NNONs1)

L=L~-1

NJ=N

DO 1 J=1s+MAX

DO 1 K=1»sN

TIA(JsK)=0

CONTINUE

CALL CHANGE (NsMTERMsY sNNNsKAsNNON)
KI=0

DO 27 I=1»L

NJ=N

KOUNT=0

DO 2 JB=1l,IAV

DO 2 JC=1»sN

TN{JBsJCY=0,

CONTINUE

KN=0 :

DO 26 J=1sMTERM

DO 3 JB=1sN

DO 2 JC=19N

SF{JB+JC)Y=0,

CONTINUE

IF {(CO(1sJ)eEQe~1e) GO TO 5
IF (CO(1sJ)eEQeDa) GO TO 26
KOUNT=KXOUNT+1

DO 4 JL=1N
SF(JsJLI=Y(JsJL)

CONTINUE

KH=1

GO TO 7

CONTINUE

KOUNT =X OUNT+1

DO 6 JL=1sN
SFUJLs L) =~Y {JsJL)

CONTINUE

KH=N

CONTINUE

IF (KOUNT.EQel) GO TO 21

IF {KHe.EQeN) GO TO 8

JO=J

JR=J

GO T0 9

JR=N

JQ=1

CONTINUE

DO 19 JH=JQsJR

DO 1C L A=1sN

IF {SF{JHWLAYWNFLOeY GO TC 11
CONTINUE

GO TO 18

CONTINUE

12

13

14

15

16

17
18

21

22

23

24
25
26

27

IF (KOUNTeEQe2sOR+KOUNTLEQe3) 15=1
DO 17 JUN=ISsNJ

DO 12 LA=1sN

IF (TA(UNsSLA)NELO) GO TO 13
CONTINUE ’

GO TO 17

CONTINUE

KN=KN+1

DO 14 JK=1sN

TNIKNs JK)Y=SF (UH» JKY+FLOAT(TA(JUNs UK))
IF (TN(KNsJK)eEQe—24) TN(KNsJK)=-14
IF (TN(KNsJK)eEQeOe o ANDeSF(JUHsJK)eNEoOe) GO TO 15
CONTINUE

Go TO 17

CONTINUE

DO 16 JK=13sN

TN(KNsJK)=0.

CONTINUE

IF (JeEQ.MTERM) GO TO 17

KN=KN-1

CONTINUE

CONTINUE

IF (KHJNE«N) GO 70O 20

CONTINUE

CONTINUE

IS=NJ+1

NJ=KN

GO 17O 23

CONTINUE

DO 22 JUN=1>sN

DO 22 JK=1sN

TA(JUNs UK)=SF (UNsJK)

CONTINUE

GO TO 26

CONTINUE

IF (KOUNTLEGQ.2) IS5=1

DO 25 MK=ISsKN

DO 24 ML=1sN |
IA(MKsMLY=TN(MKsML)

CONTINUE

CONTINUE

CONTINUE

CALL STORE (ITAsISsIRsIsMAXsKNsABINsIFN)
CONTINUF

L=18B+]

RETURN

END

29

aNaYaNa

n

30

-

SUBROUTINE STORE (IAsISsIBsIsMAXINJIsABsNsIFN)

THIS SUBROUTINE STORES THE TERMS OF THE RESOLVENT FORMED OUT OF
NONLINEAR CONSTRAINTS.

DIMENSION TA(MAXs1)s IFN(Ns1)s AB(MAXs1)

DO 2 J

=1SsNJ

IB=I8B+1

IF (IB
DO 1 K

«GTeMAX) GO TO 3
=14N

AB({IBsK)=TA(JsK)
CONTINUE
CONTINUE

GO TO 4
CONTINUE

WRITE

(6+5)

CALL EXIT
CONTINUE

RETURN

FORMAT

(1H1 95X »*NUMBER OF SOLUTIONS EXCEED DIMENSION#*s//s5Xs*INCRE

1ASE THE VALUE OF MAX %)

END

ond aNaRaNa!

SN aNe]

SUBROUTINE LSTR (COsABsIBsL sMAXSN)

THIS SUBROUTINE STORES THE TERMS OF THE RESOLVENT FORMED OQUT OF
LINEAR CONSTRAINTS.

DIMENSION CO(MAXs1)s AB(MAXs1)
L=L-1

DO 2 J=1sL

IB=IB+1

IF (IB.GTeMAX) GO TO 3
DO 1 K=1sN
AB(IBsK)=CO(JsK)
CONTINUE

CONTINUE

GO TO 4

CONTINUE

WRITE (64+5)

CALL EXIT

CONTINUE

RETURN

FORMAT (1H1+5Xs%¥NUMBER OF SOLUTIONS EXCEED DIMENSION#¥*s//95Xs#INCRE

1ASE THE VALUE OF MAX %)
END

»

~N>o N

SUBROUTINE BOUT (ABsYYsNFEASsN>MAX)
THIS SURROUTINE PRINTS QUT THE FFASIBLE AND OPTIMUM SOLUTIONS,.

DIMENSION AB(MAXs1)s YY(1)
WRITE (6+4)

IF (N«GT415) K=15

IF (N.LE'IS) K=N

WRITE (695) (IsI=1sK)

DO 1 MM=1sNFEAS

WRITE {(6+6) YY(MM)s (AB(MMINN) sNN=1sN)
CONTINUE

YO=YY (1)

DO 2 I1=1sNFEAS

IF (YY(I)«GTW&YO) GO TO 2
YO=YY (1)

CONTINUE

WRITE (6+7)

IF(NeGT#15) K=15

WRITE (6s5) (Is1=15K)

DO 3 I=1sNFEAS

IF (YY(1).NE.YO) GO TO 3
WRITE (6s6) YY(I)s{AB(IsNN)sNN=1sN)
CONTINUE

RETURN

FORMAT (1H1s/7/910Xs*FFASIBLE SOLUTIONS#39/10Xs¥momm—mm e e — e e %)
FORMAT (//79s8XsxUxsrXs15 (%X {#s]29%)%x33X))

FORMAT (/792X F1345915(F5,083X)s/9 15X915(F5,093X))

FORMAT (//+10Xe#THE OPTIMUM SOLUTION(S)¥*4/]10Xs¥r—memm e mmm e
1-——=%)

END

aNaNeaNa

SUBROUTINE CHANGE (NsMTERMaY s NNNgiKAsNNON)
DIMENSION KA(NNONs1)
DIMENSION Y (MTERMs1)

THIS SUBROUTINE DETERMINES THE NATURE AND THE
PRESENT IN A PATICULAR NONLINEAR TERMe

NNN=NNN+1

DO 2 I=1+MTERM

K=0

DO 1 J=1sN
IT=KA(NNNsI)
IT=SHIFT(ITsK)eANDS7B
IF (ITeEQe2) IT=-1
L=N=-J+1
Y{I+L)=FLOAT(IT)
K=K~-3

CONTINUE

RETURN

CONT INUE

END

33

NUMBER OF VARIAGLL

	Natesan_M_1973_03_master0001
	Natesan_M_1973_03_master0002
	Natesan_M_1973_03_master0003
	Natesan_M_1973_03_master0004
	Natesan_M_1973_03_master0005
	Natesan_M_1973_03_master0006
	Natesan_M_1973_03_master0007
	Natesan_M_1973_03_master0008
	Natesan_M_1973_03_master0009
	Natesan_M_1973_03_master0010
	Natesan_M_1973_03_master0011
	Natesan_M_1973_03_master0012
	Natesan_M_1973_03_master0013
	Natesan_M_1973_03_master0014
	Natesan_M_1973_03_master0015
	Natesan_M_1973_03_master0016
	Natesan_M_1973_03_master0017
	Natesan_M_1973_03_master0018
	Natesan_M_1973_03_master0019
	Natesan_M_1973_03_master0020
	Natesan_M_1973_03_master0021
	Natesan_M_1973_03_master0022
	Natesan_M_1973_03_master0023
	Natesan_M_1973_03_master0024
	Natesan_M_1973_03_master0025
	Natesan_M_1973_03_master0026
	Natesan_M_1973_03_master0027
	Natesan_M_1973_03_master0028
	Natesan_M_1973_03_master0029
	Natesan_M_1973_03_master0030
	Natesan_M_1973_03_master0031
	Natesan_M_1973_03_master0032
	Natesan_M_1973_03_master0033
	Natesan_M_1973_03_master0034
	Natesan_M_1973_03_master0035
	Natesan_M_1973_03_master0036
	Natesan_M_1973_03_master0037
	Natesan_M_1973_03_master0038
	Natesan_M_1973_03_master0039
	Natesan_M_1973_03_master0040
	Natesan_M_1973_03_master0041
	Natesan_M_1973_03_master0042
	Natesan_M_1973_03_master0043
	Natesan_M_1973_03_master0044
	Natesan_M_1973_03_master0045
	Natesan_M_1973_03_master0046
	Natesan_M_1973_03_master0047
	Natesan_M_1973_03_master0048
	Natesan_M_1973_03_master0049
	Natesan_M_1973_03_master0050
	Natesan_M_1973_03_master0051
	Natesan_M_1973_03_master0052
	Natesan_M_1973_03_master0053
	Natesan_M_1973_03_master0054
	Natesan_M_1973_03_master0055
	Natesan_M_1973_03_master0056
	Natesan_M_1973_03_master0057
	Natesan_M_1973_03_master0058
	Natesan_M_1973_03_master0059
	Natesan_M_1973_03_master0060
	Natesan_M_1973_03_master0061
	Natesan_M_1973_03_master0062
	Natesan_M_1973_03_master0063
	Natesan_M_1973_03_master0064
	Natesan_M_1973_03_master0065
	Natesan_M_1973_03_master0066
	Natesan_M_1973_03_master0067
	Natesan_M_1973_03_master0068
	Natesan_M_1973_03_master0069
	Natesan_M_1973_03_master0070
	Natesan_M_1973_03_master0071
	Natesan_M_1973_03_master0072
	Natesan_M_1973_03_master0073
	Natesan_M_1973_03_master0074
	Natesan_M_1973_03_master0075
	Natesan_M_1973_03_master0076
	Natesan_M_1973_03_master0077
	Natesan_M_1973_03_master0078
	Natesan_M_1973_03_master0079
	Natesan_M_1973_03_master0080
	Natesan_M_1973_03_master0081
	Natesan_M_1973_03_master0082
	Natesan_M_1973_03_master0083
	Natesan_M_1973_03_master0084
	Natesan_M_1973_03_master0085
	Natesan_M_1973_03_master0086
	Natesan_M_1973_03_master0087
	Natesan_M_1973_03_master0088
	Natesan_M_1973_03_master0089
	Natesan_M_1973_03_master0090
	Natesan_M_1973_03_master0091
	Natesan_M_1973_03_master0092
	Natesan_M_1973_03_master0093
	Natesan_M_1973_03_master0094
	Natesan_M_1973_03_master0095
	Natesan_M_1973_03_master0096
	Natesan_M_1973_03_master0097
	Natesan_M_1973_03_master0098
	Natesan_M_1973_03_master0099
	Natesan_M_1973_03_master0100
	Natesan_M_1973_03_master0101
	Natesan_M_1973_03_master0102
	Natesan_M_1973_03_master0103
	Natesan_M_1973_03_master0104

