
PSEUDO- flOOLU\N PROGPJV·IMrnG

FOR

BIVALENT OPTIMIZATION

PSEUDO-BOOLEAN PROGRAMMING

FOR

BIVALENT OPTIMIZATION

By

M. NATESAN, M. Tech.

A Thesis

Submitted to the Faculty of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Engineering

McMaster University

March 1 1973

MASTER OF ENGINEERING (1973)
(Mechanical Engineering)

McMaster University
Hamilton, Ontario

TITLE: PSEUDO-BOOLEAN PROGRAMMING FOR BIVALENT OPTIMIZATION

AUTHOR: M. NATESAN, M. Tech.

SUPERVISOR: Professor J. N. Siddall

NUMBER OF PAGES: vi,64

ii

ABSTRACT

This thesis introduces an effective computational algorithm making

use of Boolean algebra for solving bivalent optimization problems with

linear and nonlinear constraints. This method is a combination of the

algorithm suggested by Hammer and the branch and bound method. The whole

system of constraints is replaced by a single Bcolean resolvent function

and the solutions of this resolvent are found by branch and bound method

which are found to be the feasible solutions of the system of constraints.

Some practical applications are also discussed.

ii i

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the active cooperation of people

who helped with this thesis work. In particular, I would like to thank

Professor J. N. Siddall for suggesting the problem, and for his all round

expert guidance and advice.

To Mr. Dave Bonham goes the credit for some invaluable suggestions

towards program development.

And finally, a last word of thanks to Miss Veronica Komczynski,

who typed the manuscript so well.

McMaster University Benefactor's Scholarship is gratefuliy

acknowledged.

iv

TABLE OF CONTENTS

CHAPTER I INTRODUCTION

CHAPTER II BOOLEAN ALGEBRA

2.1 Definition of Boolean Algebra
2.2 Notations and Terminology
2.3 Boolean Functions
2.4 Pseudo-Boolean Functions

CHAPTER III A REV IEW

3. l General

3.2 Linear Pseudo-Boolean Equations
3.3 Linear Pseudo-Boolean Inequalities
3.4 Systems of Linear Pseudo-Boolean Equations

and/or Inequalities
3.5 Nonlinear Pseudo-Boolean Equations and Inequalities

3.5.l Characteristic Function
3.5.2 Characteristic Function for a Lirear Case
3.5.3 Linear Equations
3.5.4 Nonlinear Equations
3.5.5 Linear and Nonlirear In2qualit i es
3.5.6 Characteristic Function for Systems

CHAPTER IV RESOLVENT

4. 1 General
4.2 Cover of a Linear Inequality
4 • .3 Reso1ve~t of a Linear Inequality
4.4 Resolvent of a Nonl i near Inequality
4.5 Resolvent of a System of Inequalities

v

Page

1

6

6

6

8

10

11

1l
11

12

20

22

22

23

24

24

26

27

28

28

28

29

30

32

CHAPTER V PSEUDO-BOOLEAN PROGRAMMING

5.1 General
5.2 Formulation of the Problem
5.3 Some Basic Theorems
5.4 Method of Successive Eliminations
5.5 The Basic Algorithm
5.6 Algorithm
5.7 Computer Program
5.7. 1 Structure of the Program
5.7.2 The Limitations

CHAPTER VI APPLICATIONS OF PSEUDO-BOOLEAN PROGRAMMiNG

6. l General
6.2 Applications to Netvmrk Problems
6.2.1 The Travel1ing Salesman Problem
6.2.2 To Find the Longest Path
6.3 Assignment Problem
6.4 Quadratic Assignment Problem
6.5 Plant Location
6.6 Electronic Assembly
6.7 Design of a System v1ith Reliability

CHAPTER VII CONCLUSIONS

REFERENCES

APPENDIX A SOME PROPERTIES OF BOOLEAN ALGEBRA

APPENDIX B COMPUTER PROGRAMS AND USER 1 S MANUAL

vi

Page

34

34

34

35
37
39
40

41

41

45

47

47
47
47
48
49

50

51
52

54

56

58

61

64

CHAPTER I

INTRODUCTION

It was Dantzig(l, 2,3) who first recognized that a great variety

of problems in operations research and related areas could be solved by

means of mathematical programming with bivalent variables.

For a long time bivalent (zero-one) problems were solved by programs

with integer variables by introducing additional constraints. Best-known

among them are R.E. Gomory's algorithm(4,s) for solving linear programs with

integer variables. The problems with zero-one variables were treated as

a special case in the above algorithm.

The cutting plane approach has also been used by Beale(6) and Gomory

to develop an algorithm for solving the mixed case when some but not all

of the variables are required to be integers.

Another type of algorithm for integer and mixed integer linear

programs developed by Land and Doig(?) also start with a non integer opt imal

solution and then finds the integer or mixed integer optimal solution sub­

sequently.

However, special methods using the peculiarities of bivalent problems

have also been studied. Working on these lines, Egon Balas(B) developed

an algorithm for solving linear programs with variables constrai ned to take

only one of the values, either zero or one. The algorithm starts by setting

all the n variables equal to zero and consists of a systematic procedure

of successively assigning to certain vari ables the value 1, in such a way

1

after trying a part of all 2n combinations, one obtains either an optimum

solution, or evidence of the fact that no feasible solution exists. The

only operations involved in this algorithm are additions and subtractions.

So this algorithm is better known as the additive algorithm. The initial

idea concerning the possibility of applying Booiean methods to economic

problems came from Robert Fortet. He pointed out that the bivalent nature

of Boolean algebra can be made use of in solving zero-one problems.

In 1963 Hammer, Rudeanu and Rosenberg(9,lO) suggested a Boolean

method for finding the minima of an integer valued function with bivalent

(0,1) variables, the variables being possibly subject to certain constra ·ints.

Later on they extended the same method for real valued functions. This

they called pseudo-Boolean programming. This pseudo-Boolean programming

was then successfully applied for solving problems in cperations research

and economic problems. But the above method suggested by them involved

manual inspection and a lot of hand computation. For problems with large

number of variables this was quite time consuming and from the view point

of making a computer program it was not efficient. Chapter IV explains

some of the above concepts.

Later on Hammer(ll) looking for an alternative method tried to

replace the whole system of constraints by a single Boolean function which

he called the resolvent. The system of constraints may include linear as

well as nonlinear constraints. Those solutions which make up the resolvent

zero were found to be the feasible solutions of the whole system of con­

straints. But the time consuming effort of solving the resolvent for its

feasible solutions was not overcome.

3

Yoshida, Inagaki and Fukumura< 12) suggested a branch and bound

technique to minimize a pseudo-Boolean problem under a constraint equation

expressed in the form of a Boolean function. The Boolean constraint function

in n variables is systemattically reduced to a single variable by the technique

of successive elimination. (l 3) At this point one can determine from the

consistency of the constraint function whether it can have a feasible

solution. Then, the feasible solutions are built up by adding the variables

one by one. In this process the solutions which give an objective function

value more than a prespecified limit·are left behind. This speeds up the

whole process of getting to an optimum solution without trying all the

possible combinations.

At this point a brief introduction to branch and bound method on

which the thesis work is developed is given.

Branch and Bound Method

Among the most general approaches to the solutions of constrained

optimization problems is that of branching and bounding. This is an intel­

ligently structured search of the space of all feasible solutions. Most

commonly the space of all feasible solutions is repeatedly partitioned

into smaller and smaller subsets and an upper bound (in the case of minimiz­

ation) is calculated within each subset. After each partitioning those

subsets with a bound greater than the specified bound are excluded from all

further partitioning. The total amount of computations is related to the

number of distinct bounding problems created, and hence to the total number

of nodes in the fully developed tree.

Some areas of application in mathe~atical programming which make use

of branch and bound method to a large extent are integer programming,

nonlinear programming, the travelling salesman problem, the quadratic

assignment problem, etc. The branch and bound technique can of course be

applied to a variety of problems in scheduling, decision processes, etc.

The name branch and bound arises from the two basic operations:

(a} Branching: which consists of dividing collections of sets of solutions

into subsets.

(b} Bounding: which consists of establishing bounds on the values of the

objective function over the subsets of solutions.

The branch and bound procedure involves recursive application of

branching and bounding operations with provisions made for deleting subsets

known not to contain an optimal solution.

Regarding the fields of application are considered, in operations

research - travelling salesman problem, scheduling and transportation

problems, in the field of science and engineering - graph theory, flows in

network etc. (B} and also to a number of miscellaneous problems, some of

which are discussed in detail in chapter VI. The field of application is

slowly getting widened and in that connection this thesis work constitutes

an introductory work for the larger problems of optimizing large problems,

particularly structural problems, where the running time is prohibitive

when the conventional optimization techniques are used. An interesting pos­

sibility is to discretize the variables into relatively few values and

transform the problem into a zero-one programming problem. The first trial

solution would then be rediscretized into a narrower region in the vicinity

of the first solution. It is the anomaly of the current techniques that

integer methods require more coMputer time than continuous variables methods,

yet less information is required. The first step in this approach is to

develop an efficient and rapid technique for zero-one programming which is

the aim of this thesis work.

5

This is done by a good combination of the two methods, one to replace

the whole system of constraints by a single Boolean function, called the

resolvent and then to solve the resolvent for its feasible solutions by

the branch and bound method. A computer program has been developed based

on the above combination.

In chapter II some of the basic fundamentals of Boolean algebra

which have been made use of in the development of the program are examined.

Chapter III deals with some of the pseudo-Boolean programming methods

developed earlier for hand computation.

Chapter IV defines the resolvent ¢(x1, ... ,xn) of a system of linear

and/or nonlinear inequa1ities in 0-1 variables, as being a Boolean function

with the property that the set of solutions to the original problem coincides

with the set of solutions of the Boolean equation

A simple method of determining the function ¢ is given.

Chapter V shows how the resolvent is successively reduced to a single

variable and how the branch and bound method is used to check the feasibility

of the sequence of Boolean equations and to prod~ce an optimal solution if

there is any.

C~apter VI deals with some of the well known problems that can be

solved using pseudo-Boolean programming.

In Appendix A some well known Boolean expressions are listed. Appendix

B lists the computer program developed to solve the pseudo-Boolean problem.

CHAPTER II

BOOLEAN ALGEBRA

2. 1 DEFINITION OF BOOLEAN ALGEBRA(l 3)

By a Boolean algebra we mean a set B2 in which two elements 0 and

1 are distinguished and three operations disjunction (U), conjunction (.)

and negatior. {-) are defined.

2.2 NOTATIONS AND TERMINOLOGY

The disjunction (U) is defined by

x u y = z

0 0 0

0 1 1

l 0 l

l l l (2. l)

The conjunction (.) is defined by

x . y • z

,0 0 0

0 1 0

l 0 0

1 1 l (2.2)

and the negation is defined by

x x

0 l

1 0 (2.3)

6

It is a·lso very easy to note that, since a and b are variables belonging

to the set {0,1} we can always write

a U b = a + b - ab

= max (a,b)

a . b = min (a ,.b)

a = l - a

(2.4)

(2.5)

(2.6)

and that the operation of disjunction is commutative and associative.

These properties permit us to introduce the symbol

k
U xi= x1 U x2 U ..•.. U xk

£=1

(2. 7)

Some of the basic Boolean identities which will be frequently used i n t his

work are*

a U a = a

a U b = b U a

a U ab = a

a U be= (a U b)(a U c)

a u b = a . b

a a = a

a b = b . a

a.(a U b) = a

a.(b Uc) = a b u a . c
-

ab -= a u b

*See Appendix A for more ident i ties

(2.8)

(2.9)

7

Other important relations are a U o = a and a U l = l for any a e: {0, l}.

2.3 BOOLEAN FUNCTIONS

A function f(x1, ..• ,xn) whose variables and values belong to 0,1

is called a Boolean function.

The following observations regarding the Boolean function are worth

noting.

8

Any Boolean function can be represented as a disjunction of elementary

conjunctions. Such an expression is called the normal disjunctive form of

the given function. By elementary conjunction we shall mean a product of

the form
-

c = .IIA X .•. IIB X.
JE J JE J

where xj £ { 0, l } j = {l, ... ,n}

while A and Bare disjoint subsets cf {1, ... ,n}

This may be illustrated by the following example.

Writing the above in disjunctive form

(2.10)

(2.11)

(Normally (.) are omitted in between variables while writing a Boolean

expression.)

Throughout this work all Boolean functions are written in the above form.

It is to be remarked that the disjunctive form of a given Boolean

function is not unique. The equation (2.11) can also be written as

(2.12)

By a Boolean equation (inequality) we mean an equation (inequality)

of the form

f(x1, •.• ,xn) = g(x1, •.. xn)

(respectively of the form

f(x1, ••• ,xn) ; g(x1, ••• ,xn)

where f and g are Boolean functions.

9

Two (systems of) Boolean equations (inequalities) are called equivalent

if they have the same solutions.

The following remarks will be useful in understanding Boolean

functions. (l 3)

l. A Boolean function f = g is equivalent to the Boolean equation

fg U gr= O and also fg U fg = 1, while a Boolean inequality f s g is

equivalent to the Boolean equation fg = 0 and also f U g = 1.

2. A system of Boolean equations of the fonn hj = 0 (j = l, .•. ,m),

is equivalent to the Boolean equation
m
u h. = 0

. 1 J J=

while a system of Boolean equations of the form kj = l (j = l, .•• ,m) is

equivalent to the Boolean equation
m
IT kJ. = l

j=l

3. Any system of Boolean equations and (or) inequalities is equivalent

to a single Boolean equation of the form h = 0 (and also to an equation of

the fonn k = 1).

2.4 PSEUDO-BOOLEAN FUNCTIONS

The pseudo-Boolean function is a real valued function with bivalent

variables, for example

x1x2x3 U x2x4x5 U x2x3x6 U x5

is a Boolean function

whereas

is a pseudo-Boolean function.

With regard to the properties of pseudo-Boolean functions, we notice

that such a function is always linear in each of its variables.

i.e. ,

More generally we have the following result due to Gaspar, (l 4)

11 Every pseudo-Boolean function may be written as a polynomial which

is linear in each variable and which after the reduction of the similar
II

terms is uniquely determined upto the order of the sums and products.

An equation (inequality) betv.1een two pseudo-Boolean functions is called a

pseudo-Boolean equation (inequality).

A problem of minimizing or maxiMizing a pseudo-Boolean function

whose variables are subject to a system of pseudo-Boolean inequalities is

called a pseudo-Boolean program (or a O, 1 program).

10

3. l GENERAL

CHAPTER I I I

A REVIEW

In this chapter some of the earlier methods suggested by Hammer

and Rudeanu(l 3) for solving pseudo-Boolean equations and inequalities are

reviewed. A procedure is described in \'Jhich the solutions are either com-

pletely listed or grouped into families of solutions. Each family is

characterized by the fact that for certain fixed indices

responding variables have fixed values. x. = k. , .. ,x .
11 11 lp

other variables xi , .•. ,xi remain arbitrary.
p+l n

3.2 LINEAR PSEUDO-BOOLEAN EQUATIONS

Let us consider an equation

where ai, bi (i = l, ... ,n) and Kare constants.

We may assume ai 1 bi.

For each i let us set

ri if ai > b.
1

Xi
z. if a. < bi 1 1

Then the terms a;zi + b·z· 1 1 may be trans fo rmed as

a .z. + b.z . = (a.-b .) x.+ b. ' f a. > b. 1 .
1 1 1 1 1 1 1 1 1 1

= (b·-a·)X · + a.i if a· < b.
1 1 1 . . 1 1

11

follows

i 1 , .• , i p the cor­

= ki , whi 1 e the
p

(3.1)

(3.2)

(3.3)

Thus equation (3.1) is transformed into

where c,, .. ,cn, dare constants, Ci > 0 (i = l, .. ,n) and in reindexing

the unknowns vie can suppose that

> - . 2: c > 0 n (3.5)

Now we are interested in finding a procedure for solving a canonical

form (3.4) under the assunption (3.5). But it would be unreasonable to

try out all the 2n possibilities. Hammer suggested that the systemmatic

use of the following table(l 3) (3.1) would avoid most of the blind al l eys.

Table (3. 1) studies eight mutually exclusive cases concerning

equation (3.4) and covering all situations. It is to be noted that unless

equation (3.4) is inconsistent or it has a unique solution, we must continue

in Table (3.1) to the nevi equations that resulted at the first step. This

process is continued until all the possibilities are exhausted.

When applied to problems this procedure was found to give all the

solutions of the equation (3.4). If T is the transformation from the

equation (3.1) to equation (3.4) then the solutions .of (3.1) are obtained

by applying T-l to the solutions of (3.4).

3.3 LINEAR PSUEDO-BOOLEAN INEQUALITIES

The most general form of inequality is either

(3.5)

or

(3.6)

12

No.

l .

2.

d < 0

d = 0

3. d > 0 and

Case

TABLE 3. 1

·Cone 1 us ions

No solutions

The unique solution is

x1 = x2 = .•. = xn = 0

c1 ? •.• ? CP> d ~ cp+i···~cn The solution, if any, satisfy
n

4. d > 0 and

5. d > 0, c.
l

n
and .E c. i=l l

6. d > 0, c.
l

n
and E c. i=l l

7. d > 0, Ci
11

.El i= c. 1 > d

8. d > 0, Ci
n

.El Ci > d 1=

< d (i = 1,2, •.• ,n)

< d

< d (i = l, ... ,n)

= d

< d (i = 1, ... ,n)
n

and .L: 2 J=
c. 1 < d

< d (i -· l, ... ,n)
n

and .I 2 J=
c. 1 ? d

x1 = ... = xp = 0 and j=~+l Cjxj = d

a) for every K= 1 , .• ,p : xK = 1

xl = ··· = xK-1 = xK+l = · = xn = 0

is a solution

b) The other solutions, if any, satisfy
n

x1 = ... = xp = 0 and j= ~+l Cjxj = d

No solutions

The unique solution is

x1 = • . . = xn = 1

The solution, if any, satisfy
n

x1 = 1, .~,,c .x. = d - c1 J-'- J J

The solution, if any, satisfy
n

x1 = 1 and j~ 2 Cjxj = d - c1
n

x1 = O and .E2 c. x. = d
J= J J

.13

No. Case

1. d ~ 0

2. d > 0

3. d > 0, c. < d (i
l

n
and .E 1 J= c.

l
< d

4. d > 0, c.
1

< d (i

n
and E c. > d i=l l

n
.E2 c. < d J= J

5. d > 0, c.
l

< d
(i = l, ... ,n)

= l, ... ,n)

= l, ... ,n)

and

TABLE 3.2

Conclusions

The unique solution is
x - x -1 - 2 -

a) For every k = 1,2, ... ,p

x = 1 K

xl = ..• = XK-1 = XK+l =

is a basic solution

= x = 0 n

I 'f

b) The other basic solutiors (if any) are
characterized by the property , x1 = ... = x~

= 0 and (xp+1, ... ,xn) is a basic solution
n

of j=~+l Cjxj ~ d

No so 1 u ti ans

The basic solutions(if any) are chara cter­
ized by the property: x1 = 1 and
(x2, ... ,xn) is a basic soluti on of

n
.E 2 C .x. ~ d-Cl
J= J J

The basic solutions(if any) are charact erizE
by the property ,either

cont'd .. .

Table 3.2 (cont'd) 15

n n x, = 1 and (x2, ... ,xn)
L: c. > d and .L: 2 c. 2: d i=l 1 J= J is a basic solution of

n
l: c .x. > d - c, j=2 J J -

or

x, = 0 and (x 2, ... , xn) is a basic

solution of
n

j~ 2 Cjxj ~ d

6. d > 0, c. < d (i=l, ,n) and The unique solution is
1

n
x, = x2 = ••..•• = xn = l

L: c. = d
i = 1 1

No. Case Conclllsions

1 d. < 0 , No solutions

2 d. ::: 0 All the appearing ,
vari c.b 1 es fixed

3 d. > 0 and Part of the appearing ,
variables fixed

C; l :: .•• ~C; p>d;

~cip+1···:::C;n

4 d. > 0 and There are p+l pos-l sibilities
c; 1 = ••• -=-C;p=d; a1, ••. ,ap' b
>C >C · - i ... - 1

p+l n

5 d. > o,c. < d. , lj l No solutions
(·-,) J-., ••. ,n

TABLE (3.3a)

Equation

Fixed variables

x'il = .•• = x'in = 0

x•i
1

= .•• = x'ip = 0

aK x I iK = 1 ,

xi.UtK) = o
J

(K= l , •.• , p)

b: x 1 = = x' = 0 i l . • • i p

Remaining equations

n
L c • • XI • •

j=p+l 1J 1j = di

~ c. x1
• = d·

j=p+l ,j lj ,

cont 1 d •••

•-'
O"I

No. Case

6 d. > 0, c. < d. , , . 1
J

(j=l, ... ,n)
n

and j~l Ci j = d;

7 d; > 0 C; . < d. J 1

(j=l, ••. ,n)
n

.I1 Ci. > d. and J= J 1

n
j;2 Cij < di

8 di > 0, c. < d. , . ,
J

(j=l, ••• ,n)
n

.I 1 Ci·> d. and J= J 1

n
I C' > d j=2 , j - i

Conclusions Fixed variables

All appearing var- x'. = ..• x'. = 1
, 1 , n iables fixed

One variable fixed x'.
1 l = l

There are two pos- (a) x'ii = l
si bil i ti es

(b) x'. = 0
11

Remaining equation

.~ cij x'i· =di - ci 1 J=2 J

. ~ Cij x'ij =di - Ci
J=2 l
n
L Ci . x Ii . = di

j=2 J J

......
"'-J

No.

2

3

4

d. s 0 ,
Case

d. > 0 and ,
c i 1 ~ • ~ i p 2: d ;> c i p+ 1

> > c. - • • • - , n

d. > O,Ci < d.
1 j 1

(j=l, ..• ,n)
n

and j~l Cij< di

d. > 0
1

Ci. < d. J 1

(j=l, ••• ,n)
n
l: C · - d . 1 1 . - . J= J 1

Conclusions

Redundant inequality

There are p+l possibil­
ities

a1 , ••• ,ap, b

No solutions

All appearing var­
iables are fixed

•I t VW .._ ""'• VIJ

Inequalities

Fixed Variables

a • XI - -x 1
• -o K. i,- ... - 1 -

b:

k-1

x I i k = 1 (K= 1 ' ••• 'p)

X I - - x' • -Q i,- ... - lp-

I• : x 11 = x'i = 1 n

Remaining Inequality

n
l:

j=p+l
X I• C;j lj > d. ,

cont 1 d •.•

co

No. Case

5 d. > o, c,· . < d.
1 J l

(j=l, ••• ,n)

n
.El C,·. >d. and
J= J l

~ Ci . < d.
j=2 J l

6 d. > 0 C; . < d.
l J l

(j=l, ••• ,n)

n
E Ci. > d. and

j=l J l

n
2": C. > d

j=2 1 j - i

Conclusions

One variable fixed

There are two pos­
si bil i ti es

Fixed Variables

x•; 1 = 1

(a) X'il = 1

(b) XI • - 0 11 -

Remaining Inequality
n

j~ 2 Cij x'ij ~di - ci
1

n
j;2 Cij x'ij? di - Ci 1

n c • I. > E 1 .x,._d.
j=2 J J l

_.
\0

Where a;, b;, hand Kare constants and we may assume that a; 1 b;

for all i (If we have the sign < or~ instead of > or 2 respectively we

multiply the whole inequality by -1). If the constants a., b. and hare
1 1

integers, then the strict inequality (3.5) may also be written in the

form (3.6), if we take K = h + 1. Therefore we shall confine our attention

to inequalities of the form (3.6). As a matter of fact the method reported

in this section in Table (3.2) for solving inequality (3.6) will directly

offer solutions of the equation (3. 1) and strict inequality (3.5).

As in the case of pseudo-Boolean equations the pseudo-Boolean

inequality may be written as

(3. 7)

where c1, c2, •.. , Cn,d are constants and

3.4 SYSTEMS OF LINEAR PSEUDO-BOOLEAN EQUATIONS AND/OR INEQUALITIES

The method just described in the previous two sections for solving

a linear pseudo-Boolean equation or inequality can easily be adapted to

the more general case of a system of linear equations and/or inequalities

(with real coefficients).

The algorithm proposed by Hammer and Rudeanu(l 3) for solving linear

systems comprises three stages.

Step 1 All inequalities of the type g ~ 0 are replaced by -g J 0.

In case of integer coefficients strict inequalities of the form f > 0 can

also be dealt with by replacing them by f-1 .::: 0.

Step 2 If x1, ... ,xn are the unknowns of the system, the relation

xi = l - xi can be used to write the i th i nequa 1 i ty for each i.

20

where xi , .•. ,xi are the variables on which the i th inequality effectively
1 n

depends on and xi is either x or x so that

All equations of the system are written in a si~ilar way. In other words,

we bring each inequality and equation to the canonical form with respect

to variables occuring effectively in it, but without changing the notation.

Step 3 Each equation or inequality is considered separately, and

each one is written in the canonical form with respect to the variables x•

contained in it. Each equation or inequality is analyzed by use of

Tables (3.3a,3.3b) and the results of this are combined for the whole

system.

For instance \'/hen a certain inequality or equation of the system

has no solutions, then the whole system is inconsistent. In the same way

if an equation has a unique solution x. = i 1, x. = 22, •.• ,x. = t this
1 1 1 2 ln n

should satisfy the remaining equations and inequalities of the system.

It may be seen from the above two tables that there are cases in

which some of the variables are fixed, or in which there are no solutions,

or in ~1hich the considered equation or inequality is redundant. These cases

are called determinate. There are other cases where practically no inform-

ation is available and they must be split into two cases for discussion,

these cases are called indeterminate. Finally there are cases when the

discussion is to be split into p+l cases with increased information and

they are call2d 'partially determinate=. The c1assification is shown below.

21

TABLE 3.4

Preferenti a 1 Equation Inequa 1 ity Characterization
order (Table 3.3a) (Table 3.3b)

First 1 , 2, 3 1 , 3, 4 Determinate
5, 6, 7 5

Second 4 2 Partially
determinate

Third 8 6 Indeterminate

Now step 3 continues as follows. If some equations and inequalities belong

to determinate cases, all corresponding conclusions are drawn. Two sit-

uations may arise. If at least one equation or inequality has no solutions

or if two distinct equations or inequalities lead to the conclusions of

the form xi = 1 and xi = 0 respectively, then the system has no solutions.

It is preferable to start solving the system in the order of determinate,

partially determinate and indeterminate.

If none of the equations and inequalities are in a determinate

case then we look for partially determinate cases and we follow the con-

clusions corresponding to one of these cases.

3.5 NONLINEAR PSEUDO-BOOLEAN EQUATIONS AND INEQUALITIES

3.5. l Characteristic Function

In the preceeding two sections a method was described for the

determination of all solutions of a system of linear pseudo-Boolean equations

and/or inequalities. In this part a method to replace the whole system

of constraints by characteristic equation which has the same solutions as

the system of constraints will be discussed. The construction of a char-

acteristic equation is based on the reduction of the general case to the

linear one.

.......

3.5.2 Characteristic Function for a Linear Case

Any system of linear pseudo-Boolean equations or inequalities has

a characteristic equation in a Boolean form

(3.8)

which has the same solutions as the system of expressions.

The characteristic function is given by the following expression

¢(x1, ••• ,xn) = uP
a1, •• ,an (3.9)

where uP means the disjunction is extended over all solutions
al ' ••. ,an

(a1, ••• ,an) of the system of expressions.

The above can be derived from the well known Boolean expression

al an
U ¢(a1, ••• ,an)x1 ••• x1 a 1 , ••• ,an (3.10)

where U means that the disjunction is extended over all 2n possible
al ' •. 'an

systems of values 0,1 of a1, .•. ,an and the notation xa means

= {:

if Cl = l
(3.11)

ifa=O

In other words we have

l al an u x1 ••• xn al ' •.. ,an
(3.12)

where ul means that the disjunction is extended over only those values
a 1 , .. ,an

23

3.5.3 Linear Equations

In the case of a linear equation the knowledge of all solutions,

obtained as described in Table 3.1 permits the direct formulation of the

characteristic equation. This is illustrated by the following example.

Table 3.5 gives the solution of a certain pseudo-Boolean equation

a.s shown.
TABLE 3.5

x, x2 X3 X4 X5

l 0 0 0 l
0 1 l 0

0 0 l 0

The characteristic equation is formed as

X1X2X3X4X5 u X1X2X3X5 u X1X2X3X4 = 1

3.5.4 Nonlinear Equations

Let us consider a nonlinear pseudo-Boolean equation with the unknowns

x1 , ••• ,xn

a1P1 + ••• + amPm = b (3. 13)

where each Pi(i = l, .•. ,m) stands for a certain conjunction (i.e., a product

of variables with or without negations). One can replace the product Pi

by a single bivalent variable yi and solve the resulting linear pseudo­

Boolean equation

(3.14)

where y1, y2, ••• ,yn are treated as independent variables. If ~(y 1 , ... ,ym)

is the characteristic equation of (3.14), then the Boolean function

24

(3. 15)

will be the characteristic function of (3. 13).

The whole process of substitution and resubstitution is best illLlstrat ed

in the following example

We let x1x2x3 = y1

X2X4 = Y2
-

X2X4X5 = Y3

X3X4 = Y4

The resulting linear equation has the fon11

This equation is solved as described in Table 3.1

Hence the characteristic function of (3.16) is

(3. 16)

Substituting for y1, y 2, y3 and y4 in terms of x1, x2, x3, x4, and x5 gives

This reduces 'to

The characteristic equation ¢ = 1 gives the solutions of (3. 16)

x1, x3 arbitrary

3.5.5 Linear and Nonlinear Inequalities

To find the characteristic equation and therefrom to solve the

solutions of the linear and nonlinear inequalities is similar to that of

the equations except that different tables should be used to find the

family of solutions. A family F of solutions was defined as being a set

of solutions characterized by the fact that certain variables have

fixed values, while the other remain arbitrary.

F: x1 = i 1, ... ,xm = im, xm+k arbitrary fork= l, ... ,n-m

For a particular problem the solutions are as shown below

xl x2 X3 X4 X5

1

- 1 0 1

0 1 1 0 1

1 0 1 1

The characteristic equation for the above is

x3 U x2x3x4 U - -¢ = XlX2X3X4X5

U x1x2x3x5

26

3.5.6 Characteristic Function for Systems

We take a system of pseudo-Boolean equations and inequalities

and let

f j (x 1' ... , xn) = 0

fh (xl' ••• ,xn) > 0

.
tliq(x1, ••• ,xn) = 1

j ,= 1 , ••• ,m

h=m+l, ••• ,q (3.17)

(3. 18)

be the corresponding characteristic equations determined as in previous

sections. If ~ is the characteristic function of the system (3. 17) it

is given by

(3.19)

27

4. 1 GENERAL

CHAPTER IV

RESOLVENT

The role of this chapter is to define the resolvent of a system of

pseudo-Boolean inequalities and to explain its effectiveness as a tool to

replace the whole system of constraints.

4.2 COVER OF A LI NEAR INEQUALITY(ll)

Let us consider a linear pseudo-Boolean inequal"ity

where x. E {0,1}
J

j = 1, ... ,n

b' and aj (j = 1, ... ,n) are given real numbers.

We can rewrite equation (4.1) as

where

a· = la'· I J J
j = 1, ... ,n

b b l n • (I 0) = - .L:
1

min aJ. ,
J=

{: if a'. ~ 0
J

a j =

if a'. < 0
J

and \'/here

{: if a = 1
xa. =

if a = 0

28

(4.1)

(4.2)

For the sake of simpli~ity we shall assume that the terms of (4.2)

are reordered, so that

If we define a set N = {1,2, ..• ,n}

Then a set of indices

will be called a cover of the inequality (4.2) if

.EJ a. > b
J E: J

(4.3)

(4.4)

The equation (4.4) will be a basic cover if no proper subset of J is a

cover.

Example: To get the minimal covers of

6x1 + sx2 + 4x3 + 2x4 s 7

Rewriting the above, after substituting

-
Y1 = xl ' Y2 = x2 ' Y3 = X3 ' Y4 = X4

The minimal covers are

{1,2}, {l,3}, {1,4}, {2,3}

4.3 RESOLVE NT OF A LINEAR INEQUALITY

If J is a basic cover the product
Clj

I 1 (x) = . TIJ x .
\; J E: J

will be called the basic implicant of the inequal i ty (4.2).

(4.5)

29

If n is the family of all basic covers of (4.2), then the Boolean

function

(4.6)

will be called the basic resolvent or simply the resolvent of the inequality

(4.2).

In effect we have replaced the pseudo-Boolean inequality with a

Boolean function. In the example described in Section 4.2, the resolvent

would be

or

4.4 RESOLVENT OF A NONLI NEAR INEQUALITY

The replacement of a nonlinear inequality with a resolvent is very

similar to that of a linear case.

We can write

m a .
J l: a.y. s b

j=l J J
(4. 7)

where

II II -y. = hd. xh . k£2 · xk J J J
(4.8)

and
T .

J
u z. ~

J
N j = 1 , ... , n (4.9a)

T. 7 = 0 j = l , ... , n . L •
J J

(4.9b)

30

and where

if a= l

-= y if a= 0

If the resolvent of (4.7) is denoted as w(y) and if we introduce

into w(y) the expressions (4.8) of the yj s

we get ~(x) = w(y(x))

Example: A Linear Case

Rewriting the above as a ~ inequality type

sx1 + 6x2 + Bx3 + 4x4 ~ 13

Bx3 + 6x2 + 5x1 + 4x4 ~ 13

The resolvent of the above inequality (4.'11)

In case of a nonlinear inequalHy

-
Y4 = X4

l--~(y) = YJY2 u Yi1Y 4 u Y2Y1Y 4

(4.10)

(4.11)

31

Substituting for y1, y2, y3 and y4 in terms of x's

Simplifying

w(x) ~ x2 • x3 • x4

4.5 RESOLVENT OF A SYSTEM OF INEQUALITIES

Let us consider a system of linear or nonlinear inequalities

i = 1 , .•• ,m

xj e: {0,1} j = l, ... ,n

If wi(x1 , ... ,xn) is the resolvent of the i th inequality and

w(x1, ••• xn) = w1 U w2 U ••• U wm

then w(x1, .•. ,xn) is called the resolvent of the system (4. 12).

('4.12)

(4.13)

Next we must prove that a solution vector x e: B~ is a solution of

the system (4. 12) if and only if it is a solution of the Boolean equation

w(x1, ••• ,xn) = 0

where w is the resolvent of (4. 12)

The proof for the above is very simple and directly follows from

equation (4.6),
Cl·

() LJ TI X·J w. x = J
l Jdl je:J

(4.6)

which was defined as the basic resolvent.
CL •

It is clear in equation (4.5), if all x.J = 1, that this set of
J

values will be violating the constraints. So it is obvious, if

aj
xj j = (1 , ••• J)

32

is to form a solution of the corresponding constraint, that at least one
CL •

of the above x.J must take a value zero. So in that case the product
J

CL •

IJ(x) = .rr x.J = 0 (4.5) J e:J . J

It should be noted that the above argument holds good only if J

is formed out of minimal covers. If IJ(x) = 0
CL •

w(x) = U n x ·J = 0
Je;Q je:J J

So those solutions which satisfy the .constraints, alone will make w(x) = 0.

Putting it in a different way, only those solutions (x1, ... ,xn) which ma ke

w(x) = 0 can be the feasible solutions of the system of constraints.

Remark: The system of constraint equations (4.13) is inconsistent if and

only if

33

CHAPTER V

PSEUDO-BOOLEAN PROGRAMMING

5. 1 GENERAL

In the previous chapter it was explained how a system of constraints

can be replaced by a single Boolean resolvent function and it was also

proven that the solutions which satisfy the system of constraints, when

substituted in the resolvent will make it zero. So we are mainly interested

in finding the solutions of the resolvent and such solutions are known as

feasible solutions of the system. Among these solutions one or more opti mum

solutions exist which will minimize or maximize the objective function as

the case may be. In this chapter a method for obtaining the feasible sol­

utions of the system of constraints and the optimum solution is discussed.

,.. ? o FORMULATI ON OF THE PROBLEM

This section formulates t he general problem to be treated in this

thesis. Let

B {cl} Br.= B x Bn-l '2 = ,, , 2 2 2

and i = 1,2, ... ,n

We also denote X _ (x1, .•. ,xn)

and further let the first r components of X be denoted as

rx = (x,, ... ,xr)

n r x E B2 and rx E B2

Next two Boolean functions Y; (x) and Fi (x) are defined with arguments x.

M
y(x) =).: . a . Y • (x)

1 = .1 l l .
(5.1)

34

and
. K

F(x) = U F .(x)
j=l J

(5.2)

Our ultimate aim is to find an X which makes equation (5.2) zero and mini­

mizes the objective function (5. 1).

It is required in the algorithm that ai values in equation (5.1)

may not be negative. Any negative value present must be replaced using

the following transformation

a.y.(x) = (-a.)y.(x) +a. (a. < 0) , , , , , , (5.3)

When a maximizing problem is encountered it can be reduced to that

of a minimizing one by taking note of the fact that the maximum value of

y(x) is equal to the minimum value of -y(x). This algorithm treats minimiz­

~tion problems only.

5.3 SOME BASIC THEOREMS

Before going into the details of the algorithm it becomes necessary

to state certain basic theorems which are made use of in proving the

validity of the algorithm.

Theorem 1(2)

Any system of Boolean equations and (or) inequalities is equfvalent

to a single Boolean equation of the form h = 0 and also to an equation of

the form K = 1.

or

A Boolean equation f = g is equivalent to the Boolean equation

fg u f g = 0

(5.4)
fg u fg = 1

35

While a Boolean inequality f:;; g is equivalent to the Boolean equation

fg = 0

and also (5.5)

f u g = 1

Also a system of Boolean equations of the form h. = 0 (j = l, ... ,m), is
m J

equivalent to the 8oolean equation Uh.= 0, while a system of Boolean
j=l J

equations of the form Kj = l (j = l, ... ,m) is equivalent to the Boolean

equation

m
TI K. = 1

j=l J

(Since xy = 1 if and only if x = 1 and y = 1)

(5.6)

Considering a very si mple case of a Boolean equation in one unknown,

we can write the above equation in the form

f (x) = 0 (5. 7)

or equivalently

ax u bx = o (5.8)

where

a= f(l), b = f(0)(3) (5.9)

Theorem 2

Equation (5.8) is consistent if and only if

a • b = O (5.10)

Proof of the above is very simple. If x be a solution of (5.8) then

ax = bx = 0
-and hence a -

~ x and -x :s b (By Appendix A).

-Therefore a ~ b (By Appendix A) or else

ab = O

36

5.4 METHOD OF SUCCESSIVE ELI MINATIONS(l 3)

Let us start off with a general Boolean equation in n unknowns.

In order to get a recursive relationship we take

f(x1, ••• ,xn) = f1 (x1, ••• ,xn)

Then

The above may be written in the form

f1(x1, ••• ,xn_ 1,l)xn U f1(x1, ... ,xn-l'O)xn = 0

If we set

f1(x1, ... ,xn_ 1,l). f1(x1, ••• ,xn_1,o)

= f 2(xl '· · .xn-1)

(5.11)

(5.12.1)

(5.13.1)

(5.14.1)

then the condition that equation (5. 13. 1) has a solution with respect to

xn becomes

f 2(x1, ••• ,xn_1) = 0 (5.12.2)

We assume that the above method of el iminations is carried out in the i th

step and therefore must solve the equation

(6.12.i)

We write the above in the form

fi(x,, ... ,xn-i'l)xn-i+l U fi(x, .•. ,xn-i'O)xn-i+l = 0 (5.13.i)

Then once again we set

f;(x1, ... ,xn-i'l) . f;(x1, ... ,xn-i'O)

= fi+l(x,, ... ,xn-i) (5.14.i+l)

37

and from the equation

fi+l(xl, ••• ,xn-i) = 0

In the n th step we obtain the equation

fn(x1) = 0

which may be written in the form

and

(5. 12.i+l)

(5. 12.n)

(5.13.n)

(5. 14.n)

If fn+l f 0, then (5. 13.n) or equivalently (5.12.n) has no solution

in view of theorem 2, section (5.3). Since equation (5.12.n) is just the

consistency condition of equation (5. 13.n-l), it follows that the ·1atter,

which coincides with (5.12.n-l), is also inconsistent. We define by

induction that (5.12. 1) has no soluticn.

38

If fn+l = 0, then the equation (5.12.n) is consistent. By introducing

its solutions into the equation (5. 12.n-l)

fn_ 1(x1,x2) = O

The latter becomes an equation with single unknown x2, and is consistent for

the reason explained above. We obtain thus the solutions (x1,x2) of t he

equation (5.12.n-l). We introduce them in the equation (5.12.n-2) etc.

In the last step we introduce the solutions (x1, ... ,xn_ 1) of equation (5.12.2)

into equation (5. 12.1), obtaining thus an equation with a single unknown Xn·

After solving this we have at hand the solutions (x1, ... ,xn) of equations

(5.12.l).

Thus the method of successive eliminations consists of two stages.

The first one, which includes the steps from the beginning to the fi nding

of fn+l' may also be considered as a way of deciding ~1hether or not the

given equation is consistent. If fn+l = 0, then the second stage leads to

the determination of all solutions of (3.12. l) and therefrom solutions of

(5.11).

5.5 THE BASIC ALGORITHM

r() (12) (r)() _ Two function series {F rx } and {y rx }, r - l, ... ,n are

defined as shown below

F(n)(x) = F(x)

F(r) (rx) = F(r+l) (rx,O) . F(r+l)(rx,1)

(5.16)

(5.17)

The above replacement becomes possible by the method of successive elimin-

ations.

= ~ a.y. (r) (rx) ; = 1 , , (5. 18)

where

y~n)(x) = yi(x) (5.19)

Yir) (rx) = Yir+l)(rx,O). Y~r+l)(rx,1) (5.20)

Next we define a parameter 'c', ~1hich is an arbitrary upper limit on the

objective function value. Only those feasible solutions which give an

objective function value less than or equal to the parameter 'c' are

searched for an optimum solution. Writing this mathematically, if we

define a set series {~(r)(c)} corresponding to the function series defined

above, we get

~(r)(c) = {rx/F(r)(rx) = O,y(r)(rx) s c} (r = 1,2, ... ,n)
(5 .21)

We still must prove that the vector rx, consisting of the first r

components of an arbitrary ele~ent r+lx in the set ~(r+l)(c), belongs to

39

the set ~(r)(c). From equation (5.20), the expression

(r)() < (r+l)()
Yi rX - Yi rX,xr+l

holds for any rx e: B~ and xr+l e: B2. Since all ai > 0, from the relation

aoove and equation (5.18), the inequaiity

(r)() (r+l) () y rx ::; y rx,xr+l

holds for any rx and xr+l' It follo~1s that if an (rX,xr+l) e: B~+l fulfilling

(r+l)() y rx,xr+l ~ c

exists, it also satisfies the inequality

Y(r)(rx) :: c

In addition by successive elimination, 1,1e have shown how to get t he solution

step by step. So regarding

F(r+l),) - 0 lrx,xr+l -

as a Boolean equati on with respect to xr+l' the condition

F(r)(r) = 0 x

(5.22)

is just the necessary and sufficient condition for the Boolean equati on

(5.22) to have a solution.

The number of feasible solutions that are obtained depends on the

value of 1 c 1 chosen. A theoretical upper li mit would be the sum of all

positive coefficients in t he objective function. If this value of 1 c 1

is chosen, all the feasible and opti mum solutions will be found.

5.6 ALGORITHM

Steo l ___.__

Assume a constant 1 c 1

40

a) If F(l)(x1) is identically equal to unity, no feasible solution exists

and the algorithm terminates.

b) If there is an x1 present such that F(l)(x1) = 0, construct a set

~(l)(c). If ~ (l)(c) is empty increase the value of 'c' by 6c (6c > 0) to

obtain another ~ (l)(c) which is not empty. Proceed to next step.

· ~tep r (r = 2, ... ,n-l)

a) If ~ (r-l)(c) t 0, obtain ~ (r)(c) from ~ (r-l)(c) and to to step (r+l)

b) If ~ (r-l)(c) = 0 replace 1 c 1 by c + 6c and return to step 1 (b).

~tep n

a) If ~(n)(c) t 0, obtain ~ (n)(c) and the algorithm terminates.

b) If ~(n)(c) = 0 replace c by c + 6c and return to step 1 b.

The algorithm terminates at (a) of step n, when a non-emp ty ~ (n)(c) is

obtained. Wh en no feasible solu t ions exist t he al gorithm terminates at

(a) of step 1.

5.7 COMPUTE R PROGRAM

5.7. 1 Structure of the Program

A computer program has been developed, based essentially on t he

algorithm described in section (5.6) and is attached as Appendix B. Th is

41

program solved problems with sixteen desi gn variables and nineteen constraints

efficiently. However the upper li mit on size can not be specified. The

basic difficulty is that it is not possible to predetermi ne the core

memory requirements for any particular problem. Diffe rent problems with

the same number of design variables and constraints may vary dras t icall y

in core memory requirements.

The computational ti me depends on the individ ual problem and al so

on t he value of 1 c 1
, the upper l imit. The t ime tends to i ncrease with the

START

READ IN M'N'C'
COFt B ,ot:3J ,Nl IN

NO

I=l

YES

ARRANGE COF !I,JJ,J=l t••'N
IN THE DECREASING OR DER
OF MAGN ITUDE

FIND ALL MINIMAL COVERS
OF C OF (I 'J > ' J = 1 ' • • • • ' N

PRINT I NPUT
DATA

CALL
COVER

YES BS TI TUTE NONL I Nt:AR--1
RMS FOR T hE CORRE s- I

~--- NDING LI NEAR sueSTl- .

NO

TES JI

,,____ _____ _____.+ t --
CONS Tr~UCT THE _I j CALL
RESOLVENT ~~1----1~_ SOLN

SIMPLIFY . TH~ ~ -CALL- I
RESOLVENT ~M3;~1---~1 _REDU~

$
1~

CALL
DECODE I

~-·---J

' CALL I ~BJECT

REDUCE THE N VARIA~L E

RESOLVENT TO A SINGLE
VARIABLE FU NCTION F (X

YES

J= 1

DETERMINE XK' (K=l, ••• ,Jl
SUCH THAT ~(X 1 ,x2-'••X..J l= O
AND y J (x I ' x 2.' ••••• x .J) (C

J=J+l

NO

CALL
BOOL

NO FEA S I BLE
SOLUTION

CALL
VIOLA T

PRINT OUT FEASIBL E ~ ~
AND OPTI MUM SOLUTION S --l~J

STOP

Fig 5 .1

General Arrangement o f Subroutines .

43

value of 1 c 1 since more and more feasible solutions must be completed and

scanned for the optimum.

The computer program is capable of dealing with linear and nonlinear

constraints and objective function. The nonlinear constraints may contain

only product of variables as their terms. For nonlinear objective function

subroutine UREAL should be written.

The accompanying flow diagram shows the general arrangement and

the sequence in which the subroutines are called. A brief description of

each subroutine is as follows:

Subroutine SABO calls the rest of the subroutines CANON, COVER,

SOLN, LSTR, DECODE, STORE, REDUCE, ASEMBL, BOOL, CHOOSE, CHANG E, VIOLAT

and OBJECT.

Subroutine CANON rea r ranges the coefficients of the variables in

44

the constraints in the decreasing order of their magnitude, after changing

the negative coefficients into positive and addi ng the corresponding quanti ty

to the right hand side constant.

Subroutine COVER finds all the min imal covers of t he constraints .

Subroutine SOL N identifies each member of the minimal cover with

its corresponding variable and forms the resolvent.

Subroutine LSTR stores the terms of the resolvent, formed out of

linear constraints.

If nonlinear constra i nts are present subroutine DECODE identifies

the corresponding nonlinear terms for their linear substitutes and fonns

the resolvent. The terms of the resolvent are stored in subroutine STORE.

The total resolvent comprising of all the terms is si mplified by

the subroutine REDUCE using Boolean properties.

Subroutine ASEMBL uses the system routine SHIFT to assemble a number

of single digit numbers into a single number. This is done essentially

to save core memory space and whenever a particular digit is wanted out

of this number, subroutines CHANGE and CHOOSE do the job.

Subroutine BOOL, using systematic elimination, forms various levels

of the resolvent, from n variables to a single variable function.

Subroutine VIOLATE checks whether the Boolean resolvent function

is satisfied at various levels, to determine whether a particular value of

x can form a part of feasible solution.

The linear objective function is evaluated by the subroutine OBJECT.

The feasible and optimum solutions are printed out in a standard

format by the subroutine BOUT.

5.7.2 The Limitations

If the time specified for the co~puta t ion is insuffici ent, one has

to start right from the beginning once again, since there are no iter­

ations involved in finding the optimum solution and it is not possible to

start from the stage where the computations were stopped.

45

This program contains two non-standard FORTRAN features. At one

stage of program development, the complete resolvent formed with n variables,

each term in the resolvent represented by a row and the various terms in

the resolvent by the different rows in the matrix. If we denote the matri x

of n variables as n th order, when this matrix was reduced step by step,

by systematic eli mination to a single variable, each step, depending on

the number of variables it contains, had to be identified as the n-1 th order

and so on down to the first or der. Hence it became necessary to de f i r. e

a three di mensional array, in which the first number denotes t he order , the

second number denotes the rows in the matrix and the third a particular

element in a row. This three dimensional array became too large for a

proBlem with a comparatively large number of variables. So it was necessary

to find an alternate way to reduce the core memory requirement. The CDC

system routine SHIFT was used to pack the numbers previously represented

by row, into a sixty bit word as a single number which reduces the

core memory requirements by a factor n. Whenever a particular digit is

needed for further computation, the same system routine SHIFT is used to

pick up the required digit. This is ·available only on CDC 6400 computers

46

and hence this program is machine dependent. Furthermore this facility

restricts the number of variables that can be handled to thirty in the case

of a problem with all linear constraints, since a sixty bit word can hold a

maximum of thirty single digit numbers which can either be 0, 1 or 2,

occupying two bits each. In the case of problems with nonlinear constraints,

since the terms are read in octal format each number occupies three bits

and a sixty bit word can hold a maximum of twenty numbers. Thus nonlinear

problems are limited to a maximum of twenty variables.

The other non-standard feature is the use of octal format to read

in the variables in the nonlinear constraints. This is necessary because

any variable present in the nonlinear term is represented by l, its negation

by 2 and its absence by O. For example the term x1x2x3x6 (assuming there

are only six variables) will be replaced by 121001. At a later stage we

would like to pick up any particular digit for further computation. Unless

the above number is read in octal fonnat, under which each digit in a number

is stored in three bits separately in a sixty bit word so that the picking

up of any particular digit is nothing but extracting those three bits, it

will not be possible to pick any desired digit.

CHAPTER VI

APPLICATIONS OF PSEUDO-BOOLEAN PROGRAMMING

6. 1 GENERAL

In this chapter some practical applications of pseudo-Boolean

programming methods, in various fields like operations research and science

and engineering are presented. The computer program used to solve the

problems is attached as Appendix B.

6.2 APPLICATIONS TO NETWORK PROBLEM~

6.2.1 The Travelling Salesman Problem(lB,l 9)

During the last decade there has been a great deal of interest in

problems that can be represented by networks. \>Je \'Jill define a network as

an array of nodes and branches. Each node is connected to at least one

other node by at least one branch.

A well known example of the network problem is travel between cities,

or the travelling salesman problem. We will let xij represent the branch

from node i to j and specify x .. = 1 if the branch from i to j is in the
lJ

solution, and xij = 0 if the branch from i to j is not in the solution. A

salesman is assigned n cities to visit. He is given the distances between

all pairs of cities and instructed to visit each of the cities once, in

one continuous trip and return to the starting city, using the route that

is of minimum length. Since a complete cycle is involved, it does not

make any difference which city is the starting city. The cities are numbered

from l ton and let x .. = l imply that salesman travels from city i di rectly
lJ

to city j, and xij = 0 signify that the link from i to j is not i n the tour.

47

In the matrix of distances, the distance from the city to itself (for

every ci'ty) i' s set equal to an arbitrary large number. This is done to

force each x . . to be zero in the optimal solution. The problem is form-
11

ulated as follows.
n n

Minimize E E C .. X ••
i=l j=l lJ lJ

where Cij ~ 0 is the corresponding distances between cities i and j

subject to
n
E x .. = 1 for i = 1 , ••• , n (departure)

j=l lJ

n
E Xij = 1 for j = l , ... , n (arri va 1)

i=l

Additional constraints are to be imposed to avoid subloops and to get a

complete cycle as a solution.

x .. +x .. sl
lJ Jl

i = l, ... n, j = l, ... ,n

prevents all subloops of order 2.

x . t + xt . + x . . :s 2 l J Jl i = l, .. ,n, j = l, ... ,n

t = l, ... ,n

prevents all subloops of order 3.

Subloops of higher order are prevented by sets of similar constraints.

It is necessary to block out subloops of order n/2 or lower only, for hi gher

order subloops can not exist if the lower order subloops have been prevented.

6.2.2 To Find the Longest Path

Many companies, involved in a long development project, such as

designing and building missiles and space veh i cles, use a technique called

PERT. A PERT netvmrk is an array of steps in such a project. The f irs t

48

step is usually the receipt of the contract financing the project and the

last step is the acceptance of the device. The steps in between consist

of the design, construction and testing activity necessary in the project.

There may be hundreds of nodes in the PERT network of a major project.

The time to complete each activity (branch) is estimated from experience

on similar projects. The length of the project is determined by the

longest path from the start of the project to finish. The essential dif-

ference bet\'Jeen PERT networks and the type discussed earlier is in the

existence of precedence relations. There is a precedence of node i over

node j if i can precede j but j cannot precede i. These arise naturally

in development projects, for components should be designed before they

can be built and should be built before they can be tested.

It should be noted that there are more efficient methods(20) of

finding the longest route through a neb1ork, and one of these is normal ly

used in PERT analysis rather than Boolean Programming. The demonstration

of this programming approach to this problem is included here just as

an application of this technique to network analysis.

6.3 ASSIGNMENT PROBLEM

In simple words this problem can be stated as follows.(20) Let us

assume that we are given n requirements that must be satisifed and n methods

of satisfying them, it being understood that each requirement must be

satisfied by one of the methods and that one method cannot be used to

satisfy more than one requirement. An n x n cost matrix is also given,

each element Cij being the cost of satisfying the j th requirement by the

i th method. The assignment problem consists of finding that combination

of methods and requirements that minimizes the total cost. It is specified

that, if X;; = 1, then the i th method is being L1sed to satisfy the j th ..,

requirement, if x .. = 0 the i th method is not being used to satisfy j th lJ .
requirement. From the fact that each method is being associated with one,

and only one requirement and that each requirement is associated with

one and only one method the mathematical formulation is as shown
n n

Minimize L: L: c .. x .. '
i=l j=l lJ lJ

n
L: x .. = 1 j = 1 , ••• , n

i=l 1J Subject to

n
L: x .. = 1 i = l , ... , n

j=l 1J

x .. = 0, 1. 1J

6.4 QUADRATIC ASSIGNMENT PROBLEM

The quadratic assignment problem(l7) differs from the ordinary

assignment problem only in that a quadratic cost function is to be minimized

rather than the linear one given above.

Minimize .L:J. L: c.. x .. x , 1, p,q lJpq 1J pq

n
Subject to L: x .. = 1

i=l lJ j = l, ... ,n

n
• L: Xij = 1
J=l

i = l, ... ,n

x .. = 1J 0, 1 i,j = l, ..• ,n

50

6.5 PLANT LOCATION

The problem of plant location has the fol lo1t1ing formulation. (21)

Let I= {1, ••. ,m} be the set of places where the plants can be located,

let J = {l, ... ,n} be the set of consumers, let Cj be the annuai rate of

market requirements for location j, let ai be the annual fixed cost of

constructi on and of operation at plant i, let bi be the manufacturing cost

per unit plant at i, and let Cij be the transportation cost per unit from

i to j.

The problem consists in finding that subset of I, which assures a

minimum for the total annual cost of construction, manufacturing and

transportation.

Let us put Y; = l if a plant is to be located in i and yi = 0, other-

wise. Let x .. lJ denote the amount shipped from i to j and 1 et d .. = bi + c . ..
lJ 1J

The problem is formulated as follm1s.
m m n

Minimize r. a.y. + I r. d . . x .. i=l , 1 i=l j :1 lJ 1J

Subject to . If Y· = 0, x .. = 0 1 1J i = l , ... ,m

j = 1, ... ,n

m
I X .. = C.

i=l lJ J
(j = l, ... n)

X;j z 0, yi E {0,l} (i = l, ... ,m)

(j = 1, ... ,n)

It is necess ary by suitable transfo rmati ons to replace x1j•s in the

above expressions, i n terms of (O-l)bival ent va ri ab les, so that t he who l e

problem become s a problem of pseudo-Boolean programn i ng .

51

6.6 ELECTRONIC ASSEMBLY

Among so many other problems that can be solved by pseudo-Boolean

programming a very interesting and a common problem(l 3) is formulated and

solved below.

To construct an electronic device several ways are possible.

1. Any one of the three types T1, T2, T3 of tubes may be used,

but only one.

2. The box may be made of wood (W) or plastic material (M). But

when using M dimensionality requirements impose the choice of T2, and there

is no place for the transformer F and a special power supply 'S' is needed.

3. T 1 needs F.

4. T2 and T3 need S (and not F)

The price of the above mentioned components are

Tube T1 28 units

Tube T2 30 units

Tube T3 31 units

Transformer (F) 25 uni ts

Special power supply(S) 23 uni ts

Wooden Box (W) 9 units

Plastic material box (M) 6 uni ts

The other necessary components of the device have the following costs.

27 uni ts, if tube T 1 is used,

28 uni ts, if tube T2 is used,

and 25 units, if tube T3 is used.

The assembly cost is 10 units for each set in all cases. Set is sold at

110 units if it is enclosed in a plastic material box and at 115 units in

;JC..

the other case.

It is to be determined \'1hi ch design is to be used in order to

maximize the profit.

The problem is · solved as follows. For each utilizable component X,

we shall denote by x the Boolean variable

x = . { l if X is used

0 if X is not used.

The conditions become,

t, + t2 + t3 = 1 (6. 1)

w + m = 1 (6.2)

If M=l, t = 2 s = 1 (6.3)

If t 1 = l, f = l (6.4)

If t -2 - l ' s = l (6.5)

If t 3 = 1 ' s = 1 (6.6)

and f + s = 1 (6. 7)

Under the above constraints, maximize

llOw + 105m - (28t1 + 30t2 + 31t3 + 25f + 235

+ 9w + 6m + 27t1 + 28t2 + 25t3 + 10)

The constraints (6.3), (6.4), (6.5) and (6.6) are obviously equivalent to

m ~ t 2s (6.8)

t, s f (6.9)

t2 ~ s (6.10)

t..., ~ s
,)

(6.11)

53

The above is a pseudo-Boolean problem with a linear objective function and

system of mixed linear and nonlinear constraints.

The above problem was solved using the program in Appendix B and

the obtained results are, t, = 0' t2 = 0' t3 = l' f = 0, s = 1, w = 1, m =

which means we have to choose T3 tube, the special power supply and the

wooden box, assuring a profit of 12 units. This result was found to be

the same as that of the solution obtained from hand computation(l 3) using

Tables (3.2) and (3.3).

6.7 DESIGN OF A SYSTEM WITH RELIABILITY

The original problem(22) is to design a system with six controllers

at six different stations, with sufficient redundant controllers at each

station so as to maximize the reliability, for a maximum cost of $6500Cl.

Four different alternate designs are available for each station. Since

the number of design variables involved in solving the problem exceed the

handling capacity of this developed program, the system is designed taking

the first th ree stations and two design alteratives only.

Station

1

2

3

R

.9983

.9992

.9846

Design alternatives

c
2100

3600

1500

R

.9967

.9906

.9637

The problem is formulated as follows:

c
1800

2900

1400

Let xi be the number of components that can be used at station i.

If T is the upper limit on the availability of components
T

x. = L: K • Z
1
.K

1 K=l

54

0

where

and

ziK = o or 1

T
r Z·K = 1 K=l 1

The constraints have the form

T ffii T
'I" 'I" C .. y .. * r K • Z

1
• k ~ Cs

1~1 j~l lJ lJ K=l

where mi is the number of design alternatives available, Cs is the total

expenditure authorized, and C;j is the cost of using the j th design

alternative in the i th station.

Also

The

i=l,2,3

m;
I: Yij = 1

j=l
i = 1,2,3

z1K and yij are 0-l variables.

rel i ab il i ty
3

U - II - . l i=

is to be maximized

mi x.
[1-{l- L: R .. y, .) 1

]
j=l lJ lJ

The solution of the above problem was obtained to give a maximum reliability

of 0.99868 with two components of the first design alternatives at station

one, two components of the first design alternatives at station two and two

components of the second design alternative at station three.

CHAPTER VII

CON CL US IONS

As mentioned in the introduction, for a long time bivalent problems

have been solved as a part of integer programming. Growing applications of

bivalent programming and the inherent difficulties in modifying other

algorithms to solve bivalent problems necessitated the development of sep­

arate algorithms which deal with 0-l problems exclusively. The algorithm

suggested in this thesis, apart from the Balas' additive algorithm, is one

of the very few that are directly applicable to bivalent opti mization. An

efficient computational program based on the particular combination of

replacing the system of constraints by a Boolean function and then to solve

the same branch and bound method for its feasible solutions, has been developed

for the first ti me in this thesis.

The best feature of this computational program l ies in the fact

that the search for an opti mum never stalls. The program finds the opti mum

so 1 uti on (if there is any) a hJays.

The efficiency of the algorithm can be imrroved by devising some

method to deal with the equality constraints directly, instead of replacing

each one of them by tv10 inequalities as it is done in the present al gorithm .

The wide range of applicability of Boolean techniques as explained

in chapter VI makes obvious the necessity for further research in zero-one

programming. The fields of integer prograrrrning, graph theory and other

domains offer very attractive problems which are easy to translate i nt o

Boolean language. Further investi gations are also necessary in develop·ing

improved te r, hni ques, perhaps to overcome the li mitations explained in

56

chapter V, and also it would be useful to have a pseudo-Boolean procedure

for solving mixed continuous-bivalent programs.

57

58

REFERENCES

l. Dantzig, G.B., llDiscreet Variable Extremum Problemsll, Operations Research~

5, 1957, n 2.

2. Dantzig, G.B., lion the Significance of Solving Linear Prograrrrning

Problems with Integer Variablesll, Econometrica, 28, 1960 n. l.

3. Dantzig, G.B., Linear Programming and Extensions, Princeton University

Press, 1963.

4. Gomory, R.E., llEssentials of an Algorithm for Integer Soluticns to

Linear Programsll, Bull. Amer. Math. Soc. 64, 275-278, 1958, No. 5.

5. Gomory, R.E., "An All Integer Programming Algorithm" in J.R. Muth and

G.L. Thompson (ed), Industrial Scheduling, Chapter 13, Prentice-Hall, 1963.

6. Beale, E.M.L., "A Method of Solving Linear PrograrT111ing Problems when

some but not all the Variables must Take Integer Values", Statistical

Techniques Research Group, Technical Report No. 19, Princeton University

1958.

7. Land, A.H., and Doig, A.G., "An Automatic Method for Solving Discreet

Programming Problems", Econometrica, 28, 497-520, 1960.

8. Balas, E., llAn Additive Algorithm for Solving Linear Programs with zero- one

Variablesll, Operations Research, July-August 1965.

9. Ivanescu, P.L., Rosenberg, I., Rudeanu, S., lion the Determination of

Minima of Pseudo-Boolean Functions''. Studii Si Cercetari Mathematica, 14 ,

359-364, 1963, No. 3.

10. Ivanescu, P.L., Rosenberg, I., Rudeanu, S., "An Application of Discreet

Linear Programning to the Minimization of Boolean Functions'', Revue. Math.

Pures et Appl., 8, 459-475, 1963, No. 3.

59

11. Granat, F., Hamner, P.L., On the Use of Boolean Functions in 0-1

Programming., Operations Research, Statistics and Economics Mimeograph

Seri es. No. 70.

12. Yoshida, Y., Inagaki, Y., and Fukumura, T., "Algorithms of Pseudo-

Boolean Programming Based on Branch and Bound Methods", Electronics

and Communications in Japan, Vol. 50, October 1967, No. 10.

13. Hammer, P.L., and Rudeanu, S., Boolean Methods in Operations Research

and Related areas, Springer-Verlag, Berlin, Heidelberg, New York, 1968.

14. Gaspar,
I ' '

"Programming the Algorithm for Minimization of Pseudo-

Boolean Function for a MECIPT-1 Computer (in Rumanian) 11
, Stud-Cere-Mat 19 ,

1135-1148, 1967.

15. Ivanescu, P.L., and Rudeanu, S., Pseudo-Boolean Methods for Bivalent

Programming, Lecture Notes in Mathematics, Springer-Verlag, Berlin,

Heidelberg, Hew York, Vol. 23: 1966.

16. Ivanescu, P.L., Pseudo-Boolean Programming and Applications, Lecture

Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York,

Vol. 9, 1965.

17. Lawler, E.L., Wood, D.E., "Branch and Bound Methods: A Survey",

Operations Research, Vol. 14, 699-717, 1966.

18. Flood, M.M., "The Travel"ling Salesman Problem", Operations Research,

61-75, 1956.

19. Wagner, H.M., Principles of Operations Research with Applications to

Managerial Decisions, Prentice-Hall, 1969.

20. Llewellyn, R.W., Linear Programming, Holt, Rinehart and Winston, Ne1-1

York, 1964.

21. Manne, A.S., ''Plant Locations Under Economies of Scale; Decentralization

and Computation", Management Science, 11, 213-235, 1964.

22. Siddall, J.N., Analytical Decision Making in Engineering Design,

Prentice-Hall, 1972.

OU

61

APPENDIX A

SOME PROPERTIES OF BOOLEAN ALGEBRA

Some Properties of Boolean Algebra

l. xUy=yux

2. x • y = y • x

3. (x U y) U z = x U (y U z)

4. {xy)z = x{yz)

5. x u x = x

6. x • x = x

7. x U xy = x

8. x(x U y) = x

9. x U yz = (x U y)(x U z)

10. x(y U z) = xy U xz

11. x u l = l

12. x • l = x

13. x u 0 = x

14.

15.

16.

17.

18.

19.

20.

21.

22.

x

x

x

x

xy

x

x

x

x

. 0

u y

. y

u y

=

u -x

-. x

0 y

. y

= 0

= 0

= l

= 1

0

= l

= 0

-= x

-= x

-. y

u y

if and only if x = y = 0

if and only if x = y = l

if and only if x = 1 or y = l

if and only if x = O or y = ~

the de Morgan laws

The above properties are proved by direct verification for all

possible val ues of x, y and z.

The follmving properties are also worth noting for every x, y, z

d0,1}.

23. x ~ y

24. x ; y

25. x ; x u y

if and only if x U y = y

if and only if xy = x

and y ; x u y

26. x • y ~ x and x • y ; y

27. If x :5 z and y ~ z then x u y ~ z

28. If z ~ x and z ~ y then z s xy

29. x s y if and only ifxUy= 1

30. x s y if and only if xy = 0

31. x = y if and only if xy -u xy = 0

32. x = y if and only if (x u y)(x u y) =

63

APPENDIX G

COMPUTER PROGRAMS AND USER'S MANUAL

HOW TO USE

In its simplest form, the calling program is written as follows:

a) DIMENSION Statement - check through the list of input, output and

working variables. Include all subscripted variables, dimensioning as

indicated.

b) Define logical variables LOGY,XY,XX,F.

c) Define input data in any manner desired.

d) Call subroutine BABO

e) Call subroutine BOUT to give printed output.

f) Add STOP and END.

If the optimization function, U(x1,x2, ... ,xn) is nonlinear, it is

defined in the user written subroutine UREAL.

1

2

SUBROUTINE BABO(A,AB,F,Y,X,XX,FF,YY,IA,C,M,N,COF,B,MAX,LOGY,CM,0BJ,IDATA,YC,
IAV, XY ,JC ,XOB, DX, FM,SF ,AY, D,NLIN ,MTERM, NOBJ, ID,NFEAS, KA ,NNON, I HI)

Purpose

To minimize U=U(x1,x2, ... ,xn)

Subject to ~j(x 1 ,x2 , ... ,xn)~bj

and all xi=O, 1

The optimization function may have any form. The constraint functions

may be nonlinear but must have the special form of a sum of terms, each of

which contains only the simple product of any number of the variables.

Variables must not appear in their complementary form, xi in a linear con­

straint. Such forms may be removed by the transformation

x. = 1 - x. , 1

Method

The solution of the problem with linear constraints uses Boolean

algebra to replace the set of constraints by a single resolvent function.

The feasible solutions may then be conveniently found and scanned for the

optimum solution.

If the constraints are nonlinear, the product of the variables in

each term is replac ec:J....by a new set of variables so as to linearize the

problem. This is illustrated in the following example:

The transformation gives

3

REFERENCES

1. Hammer, P.L., "Boolean Methods in Operations Research", Springer-Verlag,

Berlin, Heidelberg, New York, 1968.

2. Hammer, P.L., 11 A Boolean Approach to Bivalent Optimization", Centre

de Recherches Matematiques, Universite de Montreal, June 1971.

3. Yoshida, Y., Inagaki, Y., and Fukumura, T., "Algorithms of Pseudo­

Boolean Programming Based on Branch and Bound Methods", Electrcin~cs

and Communications in Ja~, Vol. 50, No. 10, October, 1967.

NOTE: Thi:; subroutine BABO is machine dependent in two respects. The first

one is the use of CDC 6400 system routine SHIFT to pack and unpack a

number of digits and the other one is the use of octal format to read in

the var·iables of nonlinear constraints. For more infonnation on these refe r

CDC 6400 FTN Reference Manual.

_Input ,Variables

N

M

NLIN

NNON

Mf'\X

IAV

number of design or independent variabies. Replace

with the value of MTERM if there are nonlinear con­

straints and MTERM >N

number of constraints

number of linear constraints

number of nonlinear constraints + 1

estimated number of terms in the resolvent = iOO for

the first trial. A message will be printed out if

MAX is too sma 11

estimated number of feasible sol u tio~s = 50 fo r t he

first trial. A message will be printed out if IAV

is too sma 11

NOBJ

MTERM

c

I DATA

COF(I,J)

B(I)

OBJ(J)

= 0 for linear .objective function

= l for nonlinear objective function

maximum number of terms in any of the nonlinear

constraints,= l for all linear constraints

upper limit on the linear optimization function. A

suggested value for C would be half the sum of all

positive coefficients in the optimization function

= 0 for nonlinear objective function

= l all input data printed out

= 0 input data is not printed out

coefficient of the J th variable in the I th con­

straint for linear or linearized constraints,

dimensioned with (M,N). See also Note (ii) below

re dimensioning.

4

right hand side constants of the constraints, dimensioned

with (M)

coefficient of the J th variable in the optimization

function, if it is linear dimensioned with (N+l),

and with (1) if nonlinear

(Note that if the optimization function is nonlinear,

this array need not be defined, but Subroutine UREAL

must be written)

See also Note (ii) below re dimensioning.

5

OBJ(N+l) value of the constant if it occurs i n a linear

optimization function

KA(I,J)

= 0 if there is no constant

(Note that this need not be defined for a nonlinear

objective function)

See also Note (ii) below re dimensioning

J th term in I th nonlinear constraint. Any variable

present in the term is replaced by l, its absence

indicated by 0, and its negation by 2. Example:

x1 x3 x5 x6 (Assuming there are only 6 variables)

will be replaced by 102011. This should be read in

octal format dimensioned with (NNON, MTERM). (See

the appendix for information on octal formats)

Note: i) In constraints which contain less than MTERM terms, the rest

of the terms should be replaced by N zeroes each.

ii) If MTERM exceeds the value of N, the value of N should be

replaced by MTERM in the input and dimension statements. The

whole problem will be treated as a problem of MTERM variables.

Output Variables

AB (I ,J)

YY(I)

NFEAS

array of feasible solutions. An element contains the

value of the J th variable in the I th feasible

solution, dimensioned \\lith (MAX,N)

array of optimization function values corresponding

to feasible solutions, dimensioned with (MAX)

total number of feasible solutions

Working Arrays

Variable

IFN

SF

FM

YC

D

CM

IA

A

AY

DX

F

y

x
xx
FF

xv
XOB

LOGY

JC

ID

Logical Variables

Dimension

(N,MAX)

(N,N) if nonlinear constraints are present

(N,l) if nonlinear constraints are absent

(IAV,N)

(M,N)

(M,N)

(M,N)

(MAX,N)

(MAX,N)

(MT ERM ,N)

(N)

(N)

(N)

(N)

(N)

(N)

(N)

(N)

(MAX)

(MAX)

(MAX)

Variables LOGY,XY,XX,F must be defined as logical variables in the

calling program.

6

Programming Information

Subroutine BABO has full variable dimensioning except for several

variables dimensioned with MAX and IAV. These depend on the number of terms

in the resolvent which cannot be predicted in advance.

Subroutine BOUT may be used to print out the feasible solutions and

the optimum solutions in standard form.

CALL BOUT(AB,YY,NFEAS,N,MAX)

The user may alternately write his own output logic. If the optimization

function U(x1,x2, ... ,xn) is nonlinear it must be defined in the user written

subroutine UREAL. Subroutines called by BABO are CANON,COVER,SOLN,REDUCE,

LSTR,STORE,BOOL,VIOLAT,OBJECT,DECODE,CHOOSE,ASEMBL and CHANGE.

7

SUBROUTINE UREAL(X,U)

Purpose

To calculate the value of the objective function at a point

U(x1,x2, ..••• ,xn) when the function is nonlinear,and where U=minimum at

the optimum.

Method

The objective function may be defined by a simple arithmetic

FORTRAN statement such as

U=6.*X(l)*(l.-X(2))-5.*(l.-X(3))*X(4)

Input Variables

X(I) the current values of the independent variables

Output Variables

U the value of the objective function corresponding to the input

X(I) variables

How to Set Up Subroutine UREAL

The following cards mu st be punched by the user:

SUBROUTINE UREAL(X,U)

DIMENSION X(l)

U= arithmetic function

RETURN

END

A more complex analysis to define the value of U may require more

complicated coding or additional subroutines.

Miscellaneous

8

If additional data is required to perform the analysis,the necessary

READ ststements should be inserted in the MAIN program and the data transferred

from MAIN to UREAL through labelled COMMON bloc ks. Where possible,the user

should include co~ditional STOP's in his coding to prevent invalid results

from being returned to the optimization procedure.

9

APPENDIX

Octal values are converted under 0 specifications.

Ow

w is an unassigned integer designating the total number of characters

Example:

in the field. The input field may contain a maximum of 20 octal

digits. Blanks are allowed and a plus or minus sign may precede

the first octal digit. Blanks are interpreted as zeros and all

blank field is interpreted as .minus zero. A decimal point is not

a 11 owed.

The list item corresponding to the Ow specification should be an

integer.

REl\D (5 , 1 0) J , K

10 FORMAT (010,02)

Input Card

.37373J37]],~

\ " 10 2

Input Storage (octal representation):

J 00000000003737373737

K OOOOOOG0000000000044

10

SUBROUTINE BABO (A,ABtFtYtXtXXtFFtYYtIA•C•M,NtCOFtRtMAX,LOGYt(MtOB
lJt!DATAtYCtIAV,XY,JCtXOBtDXtFMtSFtAYtDtNLINtMTERMtNOBJtIDtNFEASt~A
2tNNONtIFNl

c
c
C THIS SUBROUTINE USES BOOLEAN ALGEBRA TO REPLACE ALL THE CONSTRAINTS
C BY A SINGLE RESOLVENT.
C A SEARCH FOR THE OPTIMUM IS ~ADE BY BRANCH AND BOUND METHOD.
c
c

DIMENSION YC(Mtllt Sf(Ntl)t AY(MTERM•ll• DX(ll• XOB(ll• XY(l)t JC(
lllt COF(Mtll• B<llt 09J(1lt Ff(llt A(M~Xtllt AB(MAX,ll• F<ll• Y(l)
2• X(l)t XX{l)t YY(l)t CM(M,l)t FM(IAVtl)t IFN<Ntllt D(M,llt LOGY(l
3), ID(ll

DIMENSION KA(NNON,ll
DIMENSION IAIMAX,ll
LOGICAL XYtXX,FtLOGY
IF (!DATA.NE.I) GO TO 4
WRITE (6,29)
WRITE (6,3Gl N,M
WRITE {6,31) NLIN,MAX,IAVtC
WRITE !6t28) NOBJ,MTERM
WRITE !6,32l
DO 1 I= 1 , ~1
WRITE (6t33l ((OF(I,J),J=ltN)

1 CONTINUE
vJRITE (6,34)
WRITE (6,35l (B(I J,I=l,Ml
IF (NOBJ.EQ.ll GO TO 2
WRJTF U,.~I) l CORJ(T), I=l •Nl
GO TO 3

? CONTINUE
WRITE (6,37l

3 CONTINUE
4 CONTINUE

DO 5 KE=l'N
DO 5 KW=ltMAX
IFN(KEtKWl=0000C0000000000000008

5 CONTINUE
C SUBROUTINE CANON IS CALLED WHICH INTURN CALLS SUBROUTINE SOLN TO
C GET THE RESOLVENT OF THE SYSTEM OF CONSTRAINTS.
c

c

CALL CANON (M,NtCOF•B,CM•IA•DtYY,MAX,AtJCtlAVtYC,FMtABtSF•AYtNLIN,
JMTERMtKAtNNONtlFNl . .

C SUBROUTINE BOOL IS CALLED TO SPLIT THE RESOLVENT INTO VARIOUS
C LEVELS.
c

c
DO 6 I= 1, ~AX
YY(J)=O.
DO 6 J::l,N
AR(J ,J)=O.
A(J,J)=O.
IA(J,Jl=O

6 CONTINUE
7 CONTINUE

K=O

LCH=O
J=l

C X(l) JS GIVEN A VALUE OF 1 TO START WITH.
X(J)=l•
CALL VIOLAT cx,J,FF,N,KLM,FtLOGYtMAX,xx,xY,IFN•lA)

11

C THE FIRST LEVEL OF THE RESOLVENT IS SATISFIED ONLY IF FFCJl=O.
IF CFF(J) .NE.O. l GO TO 9
LCH=LCH+l
IF CNOBJ.EQ.l) GO TO 8
CALL OBJECT cx,J,Y,N,OBJ,XOB,DX)

C ONLY THOSE VALUFS OF X WHICH GIVE THE OBJECTIVE FUNCTION VALUE
C LESS THAN OR EQUAL TO C ARE ACCEPTED AS PARTS OF FEASIBLE SOLUTION

IF CY<J>.GT.C> GO TO 9
8 CONTINUE

K=K+l
A(K,J>=XCJ>

9 X(Jl=O.
CALL VJOLAT cx,J,FF,N•KLM•F•LOGY,MAX,xx,xY.IFN,IAl
IF (FF(J)eNE.O.l GO TO 11
LCH=LCH+l
IF CNOBJ.EQ.ll GO TO 10
CALL OBJECT cx,J,Y,N,OBJ,XQB,DX)
IF (Y(Jl.GT.Cl GO TO 12

10 CONTINUE
K=K+l
A(K,Jl::X(J)
GO TO 14

11 IF CK.EQ.O.AND.LCH.EO.Ol WRITE <6•38)
IF CK.EG.C.AND.LCH.EQ.Ol CALL CXIT

C IF NFTTHFR ZERO NOR ONE SURSTITUTED FOR XCll MAKES FIRST LEVEL
C OF THE BOOLEAN CONSTRAINT FUNCTION ZERO THE WHOLE SYSTEM
C IS INCONSISTANT AND NOFEASIBLE SOLUTION EXISTS.

GO TO 14
12 IF CK.NE.0.AND.LCH.NE.Ol GO TO 14
C IF THE SOLUTION MATRIX IS EMPTY INCREASE THE UPPER LIMIT ON
C OBJECTIVE FUNCTION VALUE.
13 C=C+O•l*C+5.0

GO TO 7
14 CONTINUE

L=l
MN=J
J=J+l
JJ-==0

15 DO 16 I=J,MN
XCJ>=ACL'1l

16 CONTINUE
XCJl=l.
CALL VJOLAT (X,J,FF•N•KLM•F•LOGY,MAX,XX•XY•IFN•IAl
IF CFF(Jl .NE.O. l GO TO 20
IF CNOBJ.EQel) GO TO 17
CALL ORJECT 1x,J,Y,N,OSJ,XOB•DXl
IF CYCJJ.GT .. Cl GO TO 20
GO TO 18

17 CONTINUE
C IF THE OBJECTIVE FUNCTION IS NONLI~EAR UREAL IS EVALUATED.

IF (J.EQ.N) CALL URE/\L (i<•Ul
Y<J>=U

18 CONTINUE

JJ=JJ+l
IF CJ.EO.N> YYCJJ)=YCJl
DO 19 I=l tJ
AB(JJ, I >=XC I l

19 CONTINUE
c
20 X(J)=O.

CALL VIOLAT (X,JtFFtN,KLM'F'LOGY,MAX,xx.xY,yFN,JA)
IF <FF!Jl.NE.O.J GO TO 24
IF CNORJ.EQ.ll GO TO 21
CALL OBJECT cx,J,Y,NtOBJ,XOB,DX)
IF (Y{Jl.GT.Cl GO TO 24
GO TO 22

21 CONTINUE
IF (J.EQ.N) CALL UREAL cx,u1
YCJl=U

22 CONTINUE
JJ=JJ+l
IF CJ.EO.Nl YY(JJl=Y(J)
DO 23 I=l•J
ABCJJ, I l=X(I l

23 CONTINUE
'4 CONTINUE

L=L+l
IF CL.GT.Kl GO TO 25
GO TO 15

;;>5 CONTINUE
IF (JJ.EQeOl GO TO 13
K::JJ
DO 26 MM= 1 .JJ
DO 26 NN=l,J
ACMM,NNl=ARC~M,NNJ

26 CONTINUE
IF CJ.EQ.Nl GO TO 27
GO TO 14

27 CONTINUE

c
c

NFEAS=JJ
RETURN

12

?R FORMAT (/,5X,*THE VALUE OF NOBJ •••••••••••••••••••••*tl5,//5
lXt*THE VALUE OF MTERM ••••••••••••••-•••e••*,15)

?Q FORMAT (//5X,*INPUT DATA FOR THE 0-1 PROBLEM*,/SX,*---------------
1---------------*l

~O FORMAT (/,5X,*NUMBER OF DESIGN VARIABLESCN>.••••••••••••••*•15,//,
15X,*NUMBER OF CONSTRAINTS(M) ••oeo••·········*'I5l

31 FORMAT (/,5X,*NUMBER OF LINEAR CONSTRAINTS(NLINJ •••••••••• *,I5,//,
15X,*THE VALUE OF MAX ••••••••••••••••••••••*'I5,;;,5X,*THE VA
?LUE OF IAV •••••••••a••••••••••••*'15,;;,5X,*U 0 PER LIMIT ON 0
3BJECTIVE FUNCTION(C>••••••••*'Eo.21

32 FORMAT (//,5X,*THE COEFFICIENT MATRIX FOR THE CONSTRAINT EQUATIONS
1 ••• COFCitJl*l

33 FORMAT (//,5XtlP12El0.2l
~4 FORM~T (//5X,* THE VALUES OF RTGHT HAND SIDF CONSTANTS ••• 31 Il*I
35 FORM4T (//,5X,1Pl2El0.2l
~6 FOR~AT (//,SX,*THE OBJECTIVE FUNCTION COEFFICIENTS •• OPJIJ)*,/,(//,

15X'1Pl2Fl0.2) l
~7 FORMAT (//,5X,*THE OBJECTIVE FUNCTION COEFFICIENTS •• *,//,5X,*NON-L

lINEAR OBJECTIVE FUNCTION*)
38 FORMAT (////tlOX,* NO FEASIBLE SOLUTION *l

END

13

SURROUTINE VIOLAT !XtJ,FFtNtKLM,FtYtMAXtXXtXYtIFN,IA)
c

14

C THIS SUBROUTINE CHECKS WHETHER THE RESOLVENT IS SATISFIED FOR A
C PARTICULAR SET OF VARIABLE VALUES.
c

DIMENSION Fil)• X!l)t Y!llt FF(l)t XX!l)
DIMENSION XY!l)t IFNtN•l>
DIMENSION !A(MAXtll
LOGICAL y,xy,xx,F
K=KLM
DO 1 KI=ltJ
IF (XtKI>.EOelel XX(Kl>=•TRUE.
IF (X(KI > .EQ.O.) XX!KI >=.FALSE.

l CONTINUE
C INITIALISE ALL 1 Y1 FUNCTIONS AS TRUE SINCE WHEN THIS •Y• GETS
C INTO ANY INTERSECTION WITH ANY OTHER FUNCTION THE RESULTING
C NATURE(EITHER TRUE OR FALSE> DEPENDS ONLY ON THE OTHER FUNCTION.

DO 2 I= l t K
Y(J)=.TRUE.

2 CONTINUE
C INITIALISE ALL •F•FUNCTIONS AS FALSE SINCE WHEN THIS •F• GETS
C INTO UNION WITH ANY OTHER FUNCTION THE REULTING NATURE
C !EITHER TRUE OR FALSE>DEPENDS ON THE OTHER FUNCTION

DO 3 I= 1 'J
F(IJ=.FALSE.

3 CONTINUE
JJ=J
DO 14 I= 1 'K
CALL CHOOSE !IFN,JJ,NtMAXtJ,IA)
JKI=O
DO 4 KJ=l•J
IF (IA(I,KJl.NE.O> GO TO 5

4 CONTINUE
GO TO 13

5 CONTINUE
DO 9 IJ=l•J
IF (I A (I , I J l • E Q. ll GO T 0 7

C -1 IN THE FUNCTION DENOTES A NEGATIONAND HENCE CHANGE.Te TO .F.
C ANO VICE VERSA.

IF (JA(I,IJl.E0.-1> GO TO 8
IF (IA! I, IJl .EQ.0) GO TO 6
Y!Il=.FALSE.
GO TO 12

6 XY(IJl=.TRUE.
GO TO 9

7 XY(IJ>=XX(JJ)
GO TO 9

R XY(IJJ=.NOT.XX(IJl
9 Y!Il=Y(IJ.AND.XY(!J)

IF !Y(!)l lOtll
10 CONTINUE

F(J)=.TRUE.
GO TO 15

11 CONTINUE
1? F(Jl=F(Jl.8R.Y(Il

GO TO 14
1 3 CONTJ NUE

FCJJ=.FALSE.
14 CONTINUE

15 CONTINUE
IF <F<J)l 17tl6

16 FFCJl=O.
RFTURN

17 FF<J>=l•
RETURN
END

15

16

r
'-

C THIS SUBROUTINE DETERMINES THE LINEAR OBJECTIVE FUNCTION VALUE.
c

DI MENS I ON DX (1l t XOB (1l ' OBJ (1) ' X (ll ' Y (1l
CONS=O.
DO 1 I= l t N
IF COBJ(Il.LT.O.) CONS=CONS+OBJCil
XOB< I l=ABS(ORJ(Ill

1 CONTINUE
Y(Jl=CONS
DO 4 I=], J
IF COBJ<Il~LT.O.l GO TO 2
DX (I l = X < I l
GO TO 3

:? DX< I l=I.-X(I l
'3 CONTINUE

Y<Jl=Y(Jl+XOB(I l*DX< 1 l
4 CONTINUE

Y(Jl=Y(Jl+OBJ(N+ll
RETURN
END

17

c
C THIS SUBROUTINE UETERMINES THt VA~lOUS LtVELS OF THt KES0LVENT•
C STARTING FROM THE 1 N1 TH VAR19LE ELIMINATIONS ARE MAUE
C SUCCESSIVELY TO ONE VARIA~LE.
c

DIMENSION AACMAX,1>, ACMAx,1>, C(ll, oc1J, IFNCN,1l, IACMAXtll
INTEGER c,D
COMMON /BOSO/ L
K=L
KLM=K
JJ=N
CALL ASEMBL CA,IAtIFN,NtMAX,K,JJl
GO TO 2

1 CONTINUE
CALL ASEMBL (A,IA,IFNtN,MAX,KtJJl

2 CONTINUE
IF CJJ.EQ.ll GO TO 38
KK=O
KL=O
DO 5 I= 1, K
IF CACJ,JJll 3,5,4

3 KL=KL+l
DCKL>=I
GO TO 5

4 KK=KK+l
CCKKl=I

"' CONTINUE
IF CKK.EQ.K.OR.KL.EQ.Kl GO TO 39
IF CKK.EQ.O.AND.KL.EQ.Ql GO TO 17
IF CKK.EQ.O.OR.KL.EQ.Ol GO TO 13
I=O
DO 9 L=l,KK
JL=CCL)
DO 8 LL=l,KL
JLL=D (LLl
I=I+l
KU=JJ-1
DO 6 J=l,KU
AACI ,Jl=ACJL,Jl+A(JLLtJI
IF CAA(l,J>.E~.o •• AND.A(JL,Jl.Nt.o.J bO TO 7
IF CAACI,J.l.EQ.2.l AA(J,Jl=l•
IF CAACI,Jl.EQ.-2.l AA(l,Jl=-1.

6 CONTINUE
GO TO 8

7 CONTINUE
IF CK.EQ.2l GO TO 10
I=I-1

8 CONTINUE
9 CONTINUE

GO TO 12
10 CONTINUE

DO 11 J=l,JJ

11 co.~n I ~LIE
12 CONTINUE

MN= I
GO TO 23

13 IF (KK.C:Q.Ol GO TO 19

MN=O
DO 16 J=ltK
DO 14 I= 1, KK
IF (J.EQ.C(I)) GO TO 16

14 CONTINUE
MN=MN+l
DO 15 IJ=l,JJ
AA(MN,IJ>=A(J,IJl

15 CONTINUE
16 CONTINUE

GO TO 28
17 CONTINUE

DO 18 I=l,K
DO 18 J=l,JJ

18 AACI,J>=A(I,Jl
GO TO 28

19 MN=O
DO 22 J=l,K
DO 20 I=l,KL
IF (J.EQ.DC I)) GO TO 22

;>O CONTINUE
MN=MN+l
DO 21 IJ=l,JJ
AA<MN,!Jl=A(J,IJl

21 CONTINUE
?2 CONTINUE

GO TO 28
?":\ CONTINUE

DO 27 I=ltK
DO 24 J=l,KL
IF (I .EQ.D(J) l GO TO 27

24 CONTINUE
DO 25 J=ltKK
IF (J.EQ.C(J)) GO TO 27

?5 CONTINUE
MN=MN+l
DO '?.6 J=l,JJ
AA(MN,Jl=A(J,Jl

26 CONTINUE
?7 CONTINUE
28 CONTINUE

KU=JJ-1
DO 32 LJ=ltMN
KJR=LJ+l
IF (KJR.GT.MN) GO TO 32
DO 31 I=KJR,MN
DO 29 J=l,KU
IF CAACLJ,Jl.EQ.AA(J,J)) GO TO 29
GO TO 31

29 CONTINUE
DO 30 J=l,JJ
AA(I,,J)=O.

~O CONTI~!UE
~ 1 C 0 N T I ~,: U F
"12 CONT I f\!UE

KFJ=G
DO 36 1:.: 1 ,MN
DO 33 J=l,JJ

18

IF CAA(J,J).EQ.O.> GO TO 33
GO TO 34

33 CONTINUE
GO TO 36

34 CONTINUE
KFJ=KFJ+l
DO 35 J=l,JJ
AACKFJ,J>=AA(J,J)

35 CONTINUE
36 CONTINUE

MN=KFJ
DO 37 L=l,MN
DO 37 J=l,JJ
A(L,J>=AA(L,J)

37 CONTINUE
JJ=JJ-1
K=MN
IFCK.GT.MAX>GOTO 41
CALL REDUCE (A,MAX,JJ,K,AA)
GO TO l

38 CONTINUE
RETURN

39 CONTINUE
KU=JJ-1

40 CONTINUE
JFNCKUd>=O
KU=KU-1
IF (KU.EQ.Ol RETURN
GO TO 40

41 CONTINUE
WRITEf6,'+2)

42 FORMATC//,5X,*INCRFASE THE VALUE OF MAX*>
CALL EXIT
END

19

c

SUBROUTINE CHOOSE (JFN,JJ,N,MAX,I,IA>
DIMENSION IFN(N,1), lA(MAXtll

C THIS SUBROUTINE CHOOSES A PATICULAR DIGIT OUT OF AN INTEGER
C CONSTANT.
c

KG=O
DO 1 J=ltJJ
IT=IFN(JJ,Y)
IT=SHIFT(ITtKGl.AND.3B
IF (lT.EQ.2) IT=-1
L=JJ-J+l
JA(ltl)=IT
KG=KG-2

1 CONTINUE
RETURN
END

20

21

SUBROUTINE CANON (MtNtAtHtCM,IA,o,cMAX,MAX,CO,JANtlAVtC,fM,Ab,SF,y
l,NLIN,MTERM,KA,NNON,IFN)

c
C THIS SU~ROUTINE RtARRANGtS THE CUEFFICltNTS OF THt VARIAoLES Ii"
C ORDER OF DECREASING MAGNITUDt.
c

DIMENSION AB(MAX,l), SF(N,11, Y(MTtRM,ll, CM(M,11, b(lJ, 1FN(N,1J,
1 A (M, 1 l , D (M, 1 l , C MAX (1 l , F iv\ (l AV, 1 J , CO< MAX, 1 J , C (i'"\, 1 l , JA1\J (1 J

DIMENSION IA(MAX,ll
DIMENSION KA!NNON,ll
COMMON /BOSO/ L
DO 1 I= 1, M
DO 1 J=l,N
IF fA(l,Jl.LTeOel B(Il=B(Il+ABS(A(I,Jll
CfI,Jl=ABSfA(I,Jl l
DfJ,Jl=C<I,Jl

1 CONTINUE
DO 7 L= 1, N
DO 3 I=l,M
CMAX (I I =C (I , 1 l
DO 2 J=ltN
IF (((J,Jl.GT.CMAX<Il 1 CMAX(Il=C(I,JJ

2 CONT I NUF~
~ CONTINUE

DO 5 I= 1, M
DO 4 J:.::ltN
IF (C(I ,JI •Nt.CMl-\X(I l i GO TU 4

C (I , J l =-C (I , J l
GO TO 5

4 CONTINUE
5 CONTINUE

DO 6 I= 1, M
CM(J,Ll=CMAX(Il

6 CONTINUE
7 CONTINUE

NNN=O
IB=O
DO 8 KL=l,M
CI>. LL C 0 VER (M , N , A , B , D , CM , MAX , I A , C 0 , JAN , I AV , C , F 1'vi , KL , AL ' I B 'SF , Y , 1''< L I i'i

l,MTERM,NNN,KA,NNON,IFNI
8 CONTINUE

DO 9 I=l ,M,\X
DO 9 J=ltN
CO(I,JJ=O.

9 CONTINUE
MN=O
uO 1 3 I = l , I 8
DO 10 J=l,N
IF {A.f3(I ,.J! .NE.a. l GO TO 11

) 0 co~n I NUE
CiO TO 13

11 Mi'J=MN+l
L:·O 1? J=l9M
-:._ ·~J r :\ f\1 , J l ::: 1\ J 1 I , .J)

1 1 C 1J ·'< T I 11! U ;:
L ::..f.~ 1\1
CAL~ REDUCE ((0,MAX,N,L~Abl

F~tTURN

22

SURROUTINE COVER (M,N•A•B•D•CM,MAX•IA•CO•JAN•IAV•C,FM•KL•AB•IB,SF,
lY,NLIN,MTERMtNNN,KAtNNON,IFNl

c
C THIS SUBROUTINE FINDS ALL THE MINIMAL COVERS OF THE CONSTRAINTS.
c

DIMENSION SF(N,l)' YCMTERM'll' FM(IAV'1 l' CO<MAX'1)' C<M'1 l' JAN(1
]l• CM<M•Il• R(1), tFN<N•ll• A(M,ll• D(M•ll' AB<MAX•ll• IAtMAX,ll

DIMENSION KACNNONtll
IJ=l
DO 1 LL=l•MAX
DO 1 ML=l•N
IACLL•MLl=O

1 CONTINUE
L=O

2 ·L=L+l
IF CL.GT.NJ GO TO 21
DO 11 KMN=l•N
KKK=KMN
MO=l
DO 3 IN= 1 'N
JAN(INl=O

3 CONTINUE
NAM=l
IF CL.GT.NJ GO TO 12
I=L
SUM=O•
IF <CM<KLdJ.GT.B(Kll l GO TO 9

4 SU~=SUM+CM(KL•Il

J=l+KKK
KKK=l
IF CJ.GT.Ml GO TO 10

5 TEST=SUM+CM(KL,Jl
IF CTEST.GT.B(Klll GO TO 6
I=J
JAN(NAMl=I
NAM=NAM+l
IF <I.EO.Nl GO TO 11
GO TO 4

6 CONTINUE
IA(IJ•L l=l
IACIJ,Jl=l
MAT=L+l
DO 8 K=MATtI
DO 7 MAN=ltNAM
IF C~.EQ.JANCMANll IA<IJ,Kl=l

7 CONTINUE
8 CONTINUF

IJ=IJ+l
J=J+l
IF CJ.GT.Nl GO TO 10
GO TO 5

9 IA< IJ,Y l=l
IJ=IJ+1
GO TO 2

JO I=I+l
IF (1 • GT. N l GO T 0 1 2

11 CONTINUE
GO TO 2

12 CONTINUE

L=O
13 CONTINUE

KKV=2
L=L+l
I F < L • E Q • N -l GO T 0 2 1
I=L+l

14 CONTINUE
SUM=O.
NAM=O
SUM=CM(KltLl+CM(K~tll
IF (SUM.GT.BCKLll GO TO 21
NI=I+KKV
IF (NI.GT.Nl GO TO 13
DO 15 IN=l,N
JANCIN)=O

15 CONTINUE
J=NI

16 CONTINUE
TEST=SUM+CMCKL,Jl
NAM=NAM+l
JAN(N/\Ml=J
IF tTEST.GT.BtKLl) GO TO 17
SUM= TEST
J=J+l
IF (J.GT.Nl GO TO 20
GO TO 16

17 CONTINUE
IA(IJ,L l=l
IA< I J,L+l l==l
MAT=L+2
DO 19 K=MAT,J
DO 18 MAN=ltNAM
IF CK.EQ.JAN(MANll IA(IJ,Kl=l

18 CONTINUE
19 CONTINUE

IJ=IJ+l
JANCNAMl=O
J=J+l
IF (J.GT.Nl GO TO 20
GO TO 16

20 CONTINUE
KKV=KKV+l
GO TO 14

21 CONTINUE
NJ=2
NO=NJ-1

22 CONTINUE
DO 25 NN=ltNO
DO 23 J=ltN
IF (JA(NJ,Jl.EO.IAINN,Jll GO TO 23
GO TO 25

23 CONTINUE
DO 24 J=l'N
IA(NJ,J)::CI

?4 CONTINUE
25 CONTINUE

MO::N.J
NJ=NJ+l

23

IF CNJ.GT.IJl GO TO 26
GO TO 22

26 CONTINUE

24

CALL SOLN (M,N,IA'A'D'CM,CO'C'IAV,MAX,FM,KL,AB'IB'SF,y,NLIN'MTERM,
lNNN,KA,NNON,IFNl

RETURN
END

25

SUBROUTINE SOLN (~,N,IA,A•D,CM,CO'C'IAV,MAX,FM'KL'AB•IB•SF,Y•NLIN,

lMTERMtNNNtKAtNNONtIFN)
c
C THIS SUBROUTINE CONSTRUCTS THE RESOLVENT OUT OF THE MINIMAL COVERS
c

DIMENSION SF(N,ll• Y!MTERMtll• AB!MAX•ll• FM!IAVtll• CO!MAX•ll• CC
lMtllt IFNCN•ll' A(M,ll• D!Mtl)• CMCMtll• IACMAXtll

DIMENSION KACNNON•ll
JA=l
l=KL
L=l

1 CONTINUE
K=l

2 CONTINUE
IF CDCitLl.EQ.CMCitKl) GO TO 3
K=K+l
GO TO 2

3 IF CCMCitKJ.EQ.A!ItLll GO TO 4
CM!ItK)=-CM(ItKl
GO TO 6

4 CONTINUE
Cf-JC I tKl=-CMC I tK)
DO 5 J=ltIAV
FM(J,Ll=FLOATCIACJtKll

5 CONTINUE
GO TO 8

6 CONTINUE
DO 7 J=ldAV
FM(J,Ll=-rLOATCIA(J,Kll

7 CONTINUE
8 CONTINUE

L=L+l
IF CL.GT.Nl GO TO 9
GO TO 1

9 CONTINUE
L=l
DO 13 KJ=ltIAV
DO 10 KM=ltN
IF CFMCKJtKMl.EQ.C.l GO TO 10
GO TO 11

10 CONTINUE
GO TO 13

11 CONTINUE
DO 12 J=ltN
CO!LtJl=FM(KJ,Jl

12 CONTINUE
L=L+l

13 CONTINUE
IF <I.GT.NLINl GO TO 14
CALL LSTR (C0tABtIBtLtMAXtNl
RETURl\J

14 CONTINUE

c

CALL DECODE (COtMAX•N•LtABtIAtIBtFMtSFtYtIAVtMTERMtNNNtKAtNNONtlFN
1)
Rf:TUR~J

END

c

SUBROUTINE ASFMRL (A,lA•IFN,N•MAX,KY,JJi
DIMENSION A<MAX,1), IA<MAX,ll• IFN<N,ll

26

C THIS SUBROUTINE ASSEMBLES A NUMBER OF SINGLE DIGIT INTEGERS INTO
C A SINGLE INTEGER CONSTANT.
c

DO 2 I= 1, KY
K=O
JT=77777777777777777777B
KT=77777777777777777770B
DO 1 J=l,JJ
IF CA(J,Jl.E0.1.l IA(J,Jl=lB
IF CA<l•Jl.EQ.0.) IA(J,Jl=OB
IF CA< I ,J) .E0.-1. l IAC I ,j) =2B
MT=SHIFTCIT,Kl.OR.38
NT=SHIFT<KT,Ol.OR.IA(I,Jl
NT=NT.OR.4B
JT=Ml.AND.NT
K=2

1 CONTINUE
IFN(JJdl=IT

2 CONTINUE
RETURN
END

SUBROUTINE REDUCE (COtMAX•N•L,BAl
c
C THIS SUBROUTINE SIMPLIFIES THE RESOLVENT.
c

DIMENSION CO<MAXtll• BACMAX•ll
KJ=O
DO 1 I= 1 'L
DO 1 J=l,N
BA(J,Jl=CO(J,Jl

1 CONTINUE
K=L
DO 9 I= l • K
DO 2 J=l•N
IF CBAC I ,J) .NE.O. l GO TO 3

2 CONTINUE
GO TO 9

3 CONTINUE
IF (I • E Q. Kl GO T 0 7
JS=I+l
DO 5 II=JStK
DO 4 J=l•N
IF (BA(ltJl.EQ.BA<II•Jl l GO TO 4
IF CBACI,Jl.EQ.1 •• AND.RACIItJl.EQ.O.l GO TO 4
IF (BA(J,Jl.E0.-1 .. AND.BACIItJl.EQ.O.l GO TO 4
GO TO 5

4 CONTINUE
GO TO 9

5 CONTINUE
KJ=KJ+l
DO 6 J= J 'fl!
(()(KJ•Jl=BA! I ,J)

6 CONTINUE
GO TO 9

7 CONTINUE
KJ=KJ+l
DO 8 J=ltN
COCKJ,Jl=BA!I,Jl

8 CONTINUE
9 CONTINUE

L=KJ
RETURN
END

27

28

SURROUTINE DECODE ((0,MAX'N'L'AR,IA,IB,TN,SF,Y,IAV,MTERM,NNN,KA,NN
lON,IFN)

c
C THIS SUBROUTINE RESUBSTITUTES THE NONLINEAR TERMS FOR THEIR
C LINEAR SUBSTITUTES.
c

DIMENSION CO(MAX,1), TN(IAV,J), SF(N,ll' IFN(N,ll, Y(MTERM,llt AB(
1MAX'1 J, 1A(MAX'1 l

DIMENSION KA(NNON,ll
L=L-1
NJ=N
DO 1 J=l,MAX
DO 1 K=l'N
IACJ,K)=O

1 CONTINUE
CALL CHANGE (N,~TERM,Y,NNN,KA,NNON)

KI=O
DO 27 I=l'L
NJ=N
KOUNT=O
DO 2 JB=l,IAV
DO 2 JC=ltN
TN{JB,JC)=O.

2 CONTINUE
KN=O
DO 26 J=J,MTERM
DO 3 JB=l,N
DO 3 JC=l•N
SFCJR,JCl=O.
CONTINUE
IF (CO(I,Jl.EQ.-1.l GO TO 5
IF CCO(I ,J) .EQ.O. l GO TO 26
KOUNT=l(OUNT+l
DO 4 JL=l•N
SF(J,JLl=Y(JdLl

4 CONTINUE
KH=l
GO TO 7

5 CONTINUE
KOUNT='<'.OUNT+l
DO 6 JL=ltN
SF(JL,JL)=-Y(J,JL)

6 CONTINUE
KH=N

7 CONTINUE
IF CKOUNT.EQ.ll GO TO 21
JF {KH.EQ.NI GO TO 8
JQ=J
JR=J
GO TO 9

8 JR=N
JQ=l

9 CONTINUE
DO 19 JH=J(J.JR
D 0 1 0 L /', ::-= 1 , ~1
IF tSF(.JH•LAl .. NF.O.l GO TO 11

10 CONTI NU[
GO TO 18

11 CONTINUE

IF (KOUNT.EQ.2.0R.KOUNT.EQ.3) 15=1
DO 17 JN=!StNJ
DO 12 LA=l•N
IF (IA(JNtLAl.NE.Ol GO TO 13

12 CONTINUE
GO TO 17

13 CONTINUE
KN=KN+l
DO 14 JK=ltN
TNCKN•JKl=SF(JHtJK.l+FLOATCIACJNtJK)l
IF CTNCKNtJKJ.EQ.-2.l TN(KN,JKl=-1•
IF CTNCKN•JKl.E0.2.l TNCKN•JKl=l.
IF CTNCKN,JKl.EQ.O •• AND.SF(JHtJKl·NE.O.l GO TO 15

14 CONTI~UE
GO TO 17

15 CONTINUE
DO 16 JK=l•N
TNCKNtJK)=O.

16 CONTINUE
IF (J.EQ.MTER~l GO TO 17
KN=l<'.N-J

17 CONTINUE
18 CONTINUE

IF CKH.NE.Nl GO.TO 20
19 CONTINUE
20 CONTINUE

IS=NJ+l
NJ=KN
GO TC! 23

21 CONTINUE
DO 22 JN=l•N
DO 22 JK=l•N
IACJN,JKl=SFCJN,JKl

22 CONTINUE
GO TO 26

23 CONTINUE
IF CKOUNT.EQ.2) IS=l
DO 25 MK=IStKN
DO 24 ML=l•N
IACMKtMLl=TN(MKtMLl

24 CONTINUE
25 CONTINUE
?6 CONTINUE

CALL STORf IIA,JS,J8•ItMAX,KN•AB,N•IFNl
27 CONTINUF

c
c

L=IB+l
RETURN

END

29

c
C THJS SUBROUTINE STORES THE TERMS OF THE RESOLVENT FORMED OUT OF
C NONLINEAR CONSTRAINTS.
c

DIMENSION IA(MAXtl), IFN(Ntl)t AB(MAXtl)
DO 2 J=!StNJ
IB=IB+1
IF (JS.GT.MAX> GO TO 3
DO 1 K=ltN
AB<IBtK)=IA(J,K>

1 CONTINUE
2 CONTINUE

GO TO 4
~ CONTINUE

WRITE (6,5)
CALL EXIT

4 CONTINUE

c
c

RETURN

30

5 FORMAT llHl,5X,*NUMBER OF SOLUTIONS EXCEED DIMENSION*,//,5X,*INCRE
!ASE THE VALUE OF MAX *)

EMD

31

c
C THIS SUBROUTINE STORES THE TERMS OF THE RESOLVENT FORMED OUT OF
C LINEAR CONSTRAINTS.
c

DIMENSION CO(MAX,ll' AB(MAX,ll
L=L-1
DO 2 J=l,L
IB=IB+l
IF (JB.GT.MAXl GO TO 3
DO 1 K=l,N
AB(JB,K>=CO(J,Kl

1 CONTINUE
? CONTINUE

GO TO 4
3 CONTINUE

WRITE (6,5l
CALL EXIT

4 CONTINUE

c
c

RETURN

5 FORMAT (IH1,5X•*NU~RER OF SOLUTIONS EXCEED DIMENSION*,//,5X,*INCRE
lASE THE VALUE OF MAX *l

END

32

SUBROUTINE BOUT CAB,YY,NFEAS'N,MAX)
c
(THJS SURROUTJNE PRINTS OUT THE FEASIBLE AND OPTIMUM SOLUTIONS.
c

DIMENSION ABCMAX,l), YYCll
WRITE (6,4)
IF CN.GT.15) K=l5
IF (N.LE.15l K=N
WRITE (6,5) (J,I=l,Kl
DO 1 MM=l•NFEAS
WRITE (6,6) YYCMMJ,CABCMM•NNJ,NN=l,Nl

1 CONTINUE
YQ:YY(l)
DO 2 I=l,NFEAS
IF <YY(I) .GT .YO) GO TO 2
YO=YYCI)

? CONT lr\!UE
WRITE (6,7)
IFCN.GT.15) K=l5
IFCN.LE.15lK=N
WRJTf (6,5) <I•I=l,Kl
DO 3 I =l •NFEAS
IF CYY<Il.NE.YO) GO TO 3
WRITE (6,6l YYC!h(AR!hNNJ,NN=l,Nl

-, CONTINUE
RETURN

c
4 FOR~AT C1H1,11,1ox,*FEASIBLE SOLUTIONS*,/lOX,*------------------*l
5 FOR~AT (//,gX,*U*'PX,15<*X(*'I2•*l*'3Xl)
6 FOR~AT (//,zx, El3.5,151F5.0,3X ,,;, I5X,15(F5.0,3Xll
7 FORMAT (//,lOX,*THE OPTIMUM SOLUT!ONCS)*,/lOX,*-------------------

1----*)
END

c

SUBROUTINE CHANGE CN,MTERM,y,NNN,KA,NNONJ
DIMENSION KACNNON,1J
DIMENSION YCMTERM,11

33

C THIS SUBROUTINE DETERMINES THE NATURE AND THE NUM6ER OF VARIAbl~

C PRESENT IN A PATICULAR NONLINEAR TERM.
c

NNN=NNN+l
DO 2 I=l,MTERM
K=O
DO 1 J=l,N
IT=KA(NNN,IJ
I T=SHI FT (IT ,K) .AND. 78
IF (IT.EQ.2) IT=-1
L=N-J+l
Y(I,L>=FLOAT(ITl
K=K-'3

1 CONTINUE
RETURN

2 CONTINUE
END

	Natesan_M_1973_03_master0001
	Natesan_M_1973_03_master0002
	Natesan_M_1973_03_master0003
	Natesan_M_1973_03_master0004
	Natesan_M_1973_03_master0005
	Natesan_M_1973_03_master0006
	Natesan_M_1973_03_master0007
	Natesan_M_1973_03_master0008
	Natesan_M_1973_03_master0009
	Natesan_M_1973_03_master0010
	Natesan_M_1973_03_master0011
	Natesan_M_1973_03_master0012
	Natesan_M_1973_03_master0013
	Natesan_M_1973_03_master0014
	Natesan_M_1973_03_master0015
	Natesan_M_1973_03_master0016
	Natesan_M_1973_03_master0017
	Natesan_M_1973_03_master0018
	Natesan_M_1973_03_master0019
	Natesan_M_1973_03_master0020
	Natesan_M_1973_03_master0021
	Natesan_M_1973_03_master0022
	Natesan_M_1973_03_master0023
	Natesan_M_1973_03_master0024
	Natesan_M_1973_03_master0025
	Natesan_M_1973_03_master0026
	Natesan_M_1973_03_master0027
	Natesan_M_1973_03_master0028
	Natesan_M_1973_03_master0029
	Natesan_M_1973_03_master0030
	Natesan_M_1973_03_master0031
	Natesan_M_1973_03_master0032
	Natesan_M_1973_03_master0033
	Natesan_M_1973_03_master0034
	Natesan_M_1973_03_master0035
	Natesan_M_1973_03_master0036
	Natesan_M_1973_03_master0037
	Natesan_M_1973_03_master0038
	Natesan_M_1973_03_master0039
	Natesan_M_1973_03_master0040
	Natesan_M_1973_03_master0041
	Natesan_M_1973_03_master0042
	Natesan_M_1973_03_master0043
	Natesan_M_1973_03_master0044
	Natesan_M_1973_03_master0045
	Natesan_M_1973_03_master0046
	Natesan_M_1973_03_master0047
	Natesan_M_1973_03_master0048
	Natesan_M_1973_03_master0049
	Natesan_M_1973_03_master0050
	Natesan_M_1973_03_master0051
	Natesan_M_1973_03_master0052
	Natesan_M_1973_03_master0053
	Natesan_M_1973_03_master0054
	Natesan_M_1973_03_master0055
	Natesan_M_1973_03_master0056
	Natesan_M_1973_03_master0057
	Natesan_M_1973_03_master0058
	Natesan_M_1973_03_master0059
	Natesan_M_1973_03_master0060
	Natesan_M_1973_03_master0061
	Natesan_M_1973_03_master0062
	Natesan_M_1973_03_master0063
	Natesan_M_1973_03_master0064
	Natesan_M_1973_03_master0065
	Natesan_M_1973_03_master0066
	Natesan_M_1973_03_master0067
	Natesan_M_1973_03_master0068
	Natesan_M_1973_03_master0069
	Natesan_M_1973_03_master0070
	Natesan_M_1973_03_master0071
	Natesan_M_1973_03_master0072
	Natesan_M_1973_03_master0073
	Natesan_M_1973_03_master0074
	Natesan_M_1973_03_master0075
	Natesan_M_1973_03_master0076
	Natesan_M_1973_03_master0077
	Natesan_M_1973_03_master0078
	Natesan_M_1973_03_master0079
	Natesan_M_1973_03_master0080
	Natesan_M_1973_03_master0081
	Natesan_M_1973_03_master0082
	Natesan_M_1973_03_master0083
	Natesan_M_1973_03_master0084
	Natesan_M_1973_03_master0085
	Natesan_M_1973_03_master0086
	Natesan_M_1973_03_master0087
	Natesan_M_1973_03_master0088
	Natesan_M_1973_03_master0089
	Natesan_M_1973_03_master0090
	Natesan_M_1973_03_master0091
	Natesan_M_1973_03_master0092
	Natesan_M_1973_03_master0093
	Natesan_M_1973_03_master0094
	Natesan_M_1973_03_master0095
	Natesan_M_1973_03_master0096
	Natesan_M_1973_03_master0097
	Natesan_M_1973_03_master0098
	Natesan_M_1973_03_master0099
	Natesan_M_1973_03_master0100
	Natesan_M_1973_03_master0101
	Natesan_M_1973_03_master0102
	Natesan_M_1973_03_master0103
	Natesan_M_1973_03_master0104

