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ABSTRACT 

This thesis introduces an effective computational algorithm making 

use of Boolean algebra for solving bivalent optimization problems with 

linear and nonlinear constraints. This method is a combination of the 

algorithm suggested by Hammer and the branch and bound method. The whole 

system of constraints is replaced by a single Bcolean resolvent function 

and the solutions of this resolvent are found by branch and bound method 

which are found to be the feasible solutions of the system of constraints. 

Some practical applications are also discussed. 
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CHAPTER I 

INTRODUCTION 

It was Dantzig(l, 2,3) who first recognized that a great variety 

of problems in operations research and related areas could be solved by 

means of mathematical programming with bivalent variables. 

For a long time bivalent (zero-one) problems were solved by programs 

with integer variables by introducing additional constraints. Best-known 

among them are R.E. Gomory's algorithm( 4,s) for solving linear programs with 

integer variables. The problems with zero-one variables were treated as 

a special case in the above algorithm. 

The cutting plane approach has also been used by Beale(6) and Gomory 

to develop an algorithm for solving the mixed case when some but not all 

of the variables are required to be integers. 

Another type of algorithm for integer and mixed integer linear 

programs developed by Land and Doig(?) also start with a non integer opt imal 

solution and then finds the integer or mixed integer optimal solution sub

sequently. 

However, special methods using the peculiarities of bivalent problems 

have also been studied. Working on these lines, Egon Balas(B) developed 

an algorithm for solving linear programs with variables constrai ned to take 

only one of the values, either zero or one. The algorithm starts by setting 

all the n variables equal to zero and consists of a systematic procedure 

of successively assigning to certain vari ables the value 1, in such a way 
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after trying a part of all 2n combinations, one obtains either an optimum 

solution, or evidence of the fact that no feasible solution exists. The 

only operations involved in this algorithm are additions and subtractions. 

So this algorithm is better known as the additive algorithm. The initial 

idea concerning the possibility of applying Booiean methods to economic 

problems came from Robert Fortet. He pointed out that the bivalent nature 

of Boolean algebra can be made use of in solving zero-one problems. 

In 1963 Hammer, Rudeanu and Rosenberg( 9,lO) suggested a Boolean 

method for finding the minima of an integer valued function with bivalent 

(0,1) variables, the variables being possibly subject to certain constra ·ints. 

Later on they extended the same method for real valued functions. This 

they called pseudo-Boolean programming. This pseudo-Boolean programming 

was then successfully applied for solving problems in cperations research 

and economic problems. But the above method suggested by them involved 

manual inspection and a lot of hand computation. For problems with large 

number of variables this was quite time consuming and from the view point 

of making a computer program it was not efficient. Chapter IV explains 

some of the above concepts. 

Later on Hammer(ll) looking for an alternative method tried to 

replace the whole system of constraints by a single Boolean function which 

he called the resolvent. The system of constraints may include linear as 

well as nonlinear constraints. Those solutions which make up the resolvent 

zero were found to be the feasible solutions of the whole system of con

straints. But the time consuming effort of solving the resolvent for its 

feasible solutions was not overcome. 



3 

Yoshida, Inagaki and Fukumura< 12) suggested a branch and bound 

technique to minimize a pseudo-Boolean problem under a constraint equation 

expressed in the form of a Boolean function. The Boolean constraint function 

in n variables is systemattically reduced to a single variable by the technique 

of successive elimination. (l 3) At this point one can determine from the 

consistency of the constraint function whether it can have a feasible 

solution. Then, the feasible solutions are built up by adding the variables 

one by one. In this process the solutions which give an objective function 

value more than a prespecified limit·are left behind. This speeds up the 

whole process of getting to an optimum solution without trying all the 

possible combinations. 

At this point a brief introduction to branch and bound method on 

which the thesis work is developed is given. 

Branch and Bound Method 

Among the most general approaches to the solutions of constrained 

optimization problems is that of branching and bounding. This is an intel

ligently structured search of the space of all feasible solutions. Most 

commonly the space of all feasible solutions is repeatedly partitioned 

into smaller and smaller subsets and an upper bound (in the case of minimiz

ation) is calculated within each subset. After each partitioning those 

subsets with a bound greater than the specified bound are excluded from all 

further partitioning. The total amount of computations is related to the 

number of distinct bounding problems created, and hence to the total number 

of nodes in the fully developed tree. 

Some areas of application in mathe~atical programming which make use 

of branch and bound method to a large extent are integer programming, 



nonlinear programming, the travelling salesman problem, the quadratic 

assignment problem, etc. The branch and bound technique can of course be 

applied to a variety of problems in scheduling, decision processes, etc. 

The name branch and bound arises from the two basic operations: 

(a} Branching: which consists of dividing collections of sets of solutions 

into subsets. 

(b} Bounding: which consists of establishing bounds on the values of the 

objective function over the subsets of solutions. 

The branch and bound procedure involves recursive application of 

branching and bounding operations with provisions made for deleting subsets 

known not to contain an optimal solution. 

Regarding the fields of application are considered, in operations 

research - travelling salesman problem, scheduling and transportation 

problems, in the field of science and engineering - graph theory, flows in 

network etc. (B} and also to a number of miscellaneous problems, some of 

which are discussed in detail in chapter VI. The field of application is 

slowly getting widened and in that connection this thesis work constitutes 

an introductory work for the larger problems of optimizing large problems, 

particularly structural problems, where the running time is prohibitive 

when the conventional optimization techniques are used. An interesting pos

sibility is to discretize the variables into relatively few values and 

transform the problem into a zero-one programming problem. The first trial 

solution would then be rediscretized into a narrower region in the vicinity 

of the first solution. It is the anomaly of the current techniques that 

integer methods require more coMputer time than continuous variables methods, 

yet less information is required. The first step in this approach is to 



develop an efficient and rapid technique for zero-one programming which is 

the aim of this thesis work. 
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This is done by a good combination of the two methods, one to replace 

the whole system of constraints by a single Boolean function, called the 

resolvent and then to solve the resolvent for its feasible solutions by 

the branch and bound method. A computer program has been developed based 

on the above combination. 

In chapter II some of the basic fundamentals of Boolean algebra 

which have been made use of in the development of the program are examined. 

Chapter III deals with some of the pseudo-Boolean programming methods 

developed earlier for hand computation. 

Chapter IV defines the resolvent ¢(x1, ... ,xn) of a system of linear 

and/or nonlinear inequa1ities in 0-1 variables, as being a Boolean function 

with the property that the set of solutions to the original problem coincides 

with the set of solutions of the Boolean equation 

A simple method of determining the function ¢ is given. 

Chapter V shows how the resolvent is successively reduced to a single 

variable and how the branch and bound method is used to check the feasibility 

of the sequence of Boolean equations and to prod~ce an optimal solution if 

there is any. 

C~apter VI deals with some of the well known problems that can be 

solved using pseudo-Boolean programming. 

In Appendix A some well known Boolean expressions are listed. Appendix 

B lists the computer program developed to solve the pseudo-Boolean problem. 



CHAPTER II 

BOOLEAN ALGEBRA 

2. 1 DEFINITION OF BOOLEAN ALGEBRA(l 3) 

By a Boolean algebra we mean a set B2 in which two elements 0 and 

1 are distinguished and three operations disjunction (U), conjunction (.) 

and negatior. {-) are defined. 

2.2 NOTATIONS AND TERMINOLOGY 

The disjunction (U) is defined by 

x u y = z 

0 0 0 

0 1 1 

l 0 l 

l l l ( 2. l) 

The conjunction ( . ) is defined by 

x . y • z 

,0 0 0 

0 1 0 

l 0 0 

1 1 l (2.2) 

and the negation is defined by 

x x 

0 l 

1 0 (2.3) 
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It is a·lso very easy to note that, since a and b are variables belonging 

to the set {0,1} we can always write 

a U b = a + b - ab 

= max (a,b) 

a . b = min (a ,.b) 

a = l - a 

(2.4) 

(2.5) 

(2.6) 

and that the operation of disjunction is commutative and associative. 

These properties permit us to introduce the symbol 

k 
U xi= x1 U x2 U ..•.. U xk 

£=1 

(2. 7) 

Some of the basic Boolean identities which will be frequently used i n t his 

work are* 

a U a = a 

a U b = b U a 

a U ab = a 

a U be= (a U b)(a U c) 

a u b = a . b 

a a = a 

a b = b . a 

a.(a U b) = a 

a.(b Uc) = a b u a . c 
-

ab -= a u b 

*See Appendix A for more ident i ties 

(2.8) 

(2.9) 

7 



Other important relations are a U o = a and a U l = l for any a e: {0, l}. 

2.3 BOOLEAN FUNCTIONS 

A function f(x1, ..• ,xn) whose variables and values belong to 0,1 

is called a Boolean function. 

The following observations regarding the Boolean function are worth 

noting. 

8 

Any Boolean function can be represented as a disjunction of elementary 

conjunctions. Such an expression is called the normal disjunctive form of 

the given function. By elementary conjunction we shall mean a product of 

the form 
-

c = .IIA X .•. IIB X. 
JE J JE J 

where xj £ { 0, l } j = {l, ... ,n} 

while A and Bare disjoint subsets cf {1, ... ,n} 

This may be illustrated by the following example. 

Writing the above in disjunctive form 

(2.10) 

(2.11) 

(Normally (.) are omitted in between variables while writing a Boolean 

expression.) 

Throughout this work all Boolean functions are written in the above form. 

It is to be remarked that the disjunctive form of a given Boolean 

function is not unique. The equation (2.11) can also be written as 

(2.12) 



By a Boolean equation (inequality) we mean an equation (inequality) 

of the form 

f(x1, •.• ,xn) = g(x1, •.. xn) 

(respectively of the form 

f(x1, ••• ,xn) ; g(x1, ••• ,xn) 

where f and g are Boolean functions. 

9 

Two (systems of) Boolean equations (inequalities) are called equivalent 

if they have the same solutions. 

The following remarks will be useful in understanding Boolean 

functions. (l 3) 

l. A Boolean function f = g is equivalent to the Boolean equation 

fg U gr= O and also fg U fg = 1, while a Boolean inequality f s g is 

equivalent to the Boolean equation fg = 0 and also f U g = 1. 

2. A system of Boolean equations of the fonn hj = 0 (j = l, .•. ,m), 

is equivalent to the Boolean equation 
m 
u h. = 0 

. 1 J J= 

while a system of Boolean equations of the form kj = l (j = l, .•• ,m) is 

equivalent to the Boolean equation 
m 
IT kJ. = l 

j=l 

3. Any system of Boolean equations and (or) inequalities is equivalent 

to a single Boolean equation of the form h = 0 (and also to an equation of 

the fonn k = 1). 



2.4 PSEUDO-BOOLEAN FUNCTIONS 

The pseudo-Boolean function is a real valued function with bivalent 

variables, for example 

x1x2x3 U x2x4x5 U x2x3x6 U x5 

is a Boolean function 

whereas 

is a pseudo-Boolean function. 

With regard to the properties of pseudo-Boolean functions, we notice 

that such a function is always linear in each of its variables. 

i.e. , 

More generally we have the following result due to Gaspar, (l 4) 

11 Every pseudo-Boolean function may be written as a polynomial which 

is linear in each variable and which after the reduction of the similar 
II 

terms is uniquely determined upto the order of the sums and products. 

An equation (inequality) betv.1een two pseudo-Boolean functions is called a 

pseudo-Boolean equation (inequality). 

A problem of minimizing or maxiMizing a pseudo-Boolean function 

whose variables are subject to a system of pseudo-Boolean inequalities is 

called a pseudo-Boolean program (or a O, 1 program). 

10 



3. l GENERAL 

CHAPTER I I I 

A REVIEW 

In this chapter some of the earlier methods suggested by Hammer 

and Rudeanu(l 3) for solving pseudo-Boolean equations and inequalities are 

reviewed. A procedure is described in \'Jhich the solutions are either com-

pletely listed or grouped into families of solutions. Each family is 

characterized by the fact that for certain fixed indices 

responding variables have fixed values. x. = k. , .. ,x . 
11 11 lp 

other variables xi , .•. ,xi remain arbitrary. 
p+l n 

3.2 LINEAR PSEUDO-BOOLEAN EQUATIONS 

Let us consider an equation 

where ai, bi (i = l, ... ,n) and Kare constants. 

We may assume ai 1 bi. 

For each i let us set 

ri if ai > b. 
1 

Xi 
z. if a. < bi 1 1 

Then the terms a;zi + b·z· 1 1 may be trans fo rmed as 

a .z. + b.z . = (a.-b . ) x.+ b. ' f a. > b. 1 . 
1 1 1 1 1 1 1 1 1 1 

= (b·-a· )X · + a.i if a· < b. 
1 1 1 . . 1 1 

11 

follows 

i 1 , .• , i p the cor

= ki , whi 1 e the 
p 

(3.1) 

(3.2) 

(3.3) 



Thus equation (3.1) is transformed into 

where c,, .. ,cn, dare constants, Ci > 0 (i = l, .. ,n) and in reindexing 

the unknowns vie can suppose that 

> - . 2: c > 0 n (3.5) 

Now we are interested in finding a procedure for solving a canonical 

form (3.4) under the assunption (3.5). But it would be unreasonable to 

try out all the 2n possibilities. Hammer suggested that the systemmatic 

use of the following table(l 3) (3.1) would avoid most of the blind al l eys. 

Table (3. 1) studies eight mutually exclusive cases concerning 

equation (3.4) and covering all situations. It is to be noted that unless 

equation (3.4) is inconsistent or it has a unique solution, we must continue 

in Table (3.1) to the nevi equations that resulted at the first step. This 

process is continued until all the possibilities are exhausted. 

When applied to problems this procedure was found to give all the 

solutions of the equation (3.4). If T is the transformation from the 

equation (3.1) to equation (3.4) then the solutions .of (3.1) are obtained 

by applying T-l to the solutions of (3.4). 

3.3 LINEAR PSUEDO-BOOLEAN INEQUALITIES 

The most general form of inequality is either 

(3.5) 

or 

(3.6) 

12 



No. 

l . 

2. 

d < 0 

d = 0 

3. d > 0 and 

Case 

TABLE 3. 1 

·Cone 1 us ions 

No solutions 

The unique solution is 

x1 = x2 = .•. = xn = 0 

c1 ? •.• ? CP> d ~ cp+i···~cn The solution, if any, satisfy 
n 

4. d > 0 and 

5. d > 0, c. 
l 

n 
and .E c. i=l l 

6. d > 0, c. 
l 

n 
and E c. i=l l 

7. d > 0, Ci 
11 

.El i= c. 1 > d 

8. d > 0, Ci 
n 

.El Ci > d 1= 

< d ( i = 1,2, •.• ,n) 

< d 

< d ( i = l, ... ,n) 

= d 

< d ( i = 1, ... ,n) 
n 

and .L: 2 J= 
c. 1 < d 

< d ( i -· l, ... ,n) 
n 

and .I 2 J= 
c. 1 ? d 

x1 = ... = xp = 0 and j=~+l Cjxj = d 

a) for every K= 1 , .• ,p : xK = 1 

xl = ··· = xK-1 = xK+l = · = xn = 0 

is a solution 

b) The other solutions, if any, satisfy 
n 

x1 = ... = xp = 0 and j= ~+l Cjxj = d 

No solutions 

The unique solution is 

x1 = • . . = xn = 1 

The solution, if any, satisfy 
n 

x1 = 1, .~,,c .x. = d - c1 J-'- J J 

The solution, if any, satisfy 
n 

x1 = 1 and j~ 2 Cjxj = d - c1 
n 

x1 = O and .E2 c. x. = d 
J= J J 

.13 



No. Case 

1. d ~ 0 

2. d > 0 

3. d > 0, c. < d (i 
l 

n 
and .E 1 J= c. 

l 
< d 

4. d > 0, c. 
1 

< d ( i 

n 
and E c. > d i=l l 

n 
.E2 c. < d J= J 

5. d > 0, c. 
l 

< d 
( i = l, ... ,n) 

= l, ... ,n) 

= l, ... ,n) 

and 

TABLE 3.2 

Conclusions 

The unique solution is 
x - x -1 - 2 -

a) For every k = 1,2, ... ,p 

x = 1 K 

xl = ..• = XK-1 = XK+l = 

is a basic solution 

= x = 0 n 

I 'f 

b) The other basic solutiors (if any) are 
characterized by the property , x1 = ... = x~ 

= 0 and (xp+1, ... ,xn) is a basic solution 
n 

of j=~+l Cjxj ~ d 

No so 1 u ti ans 

The basic solutions(if any) are chara cter
ized by the property: x1 = 1 and 
(x2, ... ,xn) is a basic soluti on of 

n 
.E 2 C .x. ~ d-Cl 
J= J J 

The basic solutions(if any) are charact erizE 
by the property ,either 

cont'd .. . 



Table 3.2 (cont'd) 15 

n n x, = 1 and (x2, ... ,xn) 
L: c. > d and .L: 2 c. 2: d i=l 1 J= J is a basic solution of 

n 
l: c .x. > d - c, j=2 J J -

or 

x, = 0 and ( x 2, ... , xn) is a basic 

solution of 
n 

j~ 2 Cjxj ~ d 

6. d > 0, c. < d (i=l, .... ,n) and The unique solution is 
1 

n 
x, = x2 = ••..•• = xn = l 

L: c. = d 
i = 1 1 



No. Case Conclllsions 

1 d. < 0 , No solutions 

2 d. ::: 0 All the appearing , 
vari c.b 1 es fixed 

3 d. > 0 and Part of the appearing , 
variables fixed 

C; l :: .•• ~C; p>d; 

~cip+1···:::C;n 

4 d. > 0 and There are p+l pos-l sibilities 
c; 1 = ••• -=-C;p=d; a1, ••. ,ap' b 
>C >C · - i ... - 1 

p+l n 

5 d. > o,c. < d. , lj l No solutions 
( ·-, ) J-., ••. ,n 

TABLE (3.3a) 

Equation 

Fixed variables 

x'il = .•• = x'in = 0 

x•i
1 

= .•• = x'ip = 0 

aK x I iK = 1 , 

xi.UtK) = o 
J 

( K= l , •.• , p) 

b: x 1 = = x' = 0 i l . • • i p 

Remaining equations 

n 
L c • • XI • • 

j=p+l 1J 1j = di 

~ c. x1
• = d· 

j=p+l ,j lj , 

cont 1 d ••• 

•-' 
O"I 



No. Case 

6 d. > 0, c. < d. , , . 1 
J 

(j=l, ... ,n) 
n 

and j~l Ci j = d; 

7 d; > 0 C; . < d. J 1 

(j=l, ••. ,n) 
n 

.I1 Ci. > d. and J= J 1 

n 
j;2 Cij < di 

8 di > 0, c. < d. , . , 
J 

(j=l, ••• ,n) 
n 

.I 1 Ci·> d. and J= J 1 

n 
I C' > d j=2 , j - i 

Conclusions Fixed variables 

All appearing var- x'. = ..• x'. = 1 
, 1 , n iables fixed 

One variable fixed x'. 
1 l = l 

There are two pos- (a) x'ii = l 
si bil i ti es 

(b) x'. = 0 
11 

Remaining equation 

.~ cij x'i· =di - ci 1 J=2 J 

. ~ Cij x'ij =di - Ci 
J=2 l 
n 
L Ci . x Ii . = di 

j=2 J J 

...... 
"'-J 



No. 

2 

3 

4 

d. s 0 , 
Case 

d. > 0 and , 
c i 1 ~ • ~ i p 2: d ;> c i p+ 1 

> > c. - • • • - , n 

d. > O,Ci < d. 
1 j 1 

(j=l, ..• ,n) 
n 

and j~l Cij< di 

d. > 0 
1 

Ci. < d. J 1 

(j=l, ••• ,n) 
n 
l: C · - d . 1 1 . - . J= J 1 

Conclusions 

Redundant inequality 

There are p+l possibil
ities 

a1 , ••• ,ap, b 

No solutions 

All appearing var
iables are fixed 

•I t VW .._ ""'• VIJ 

Inequalities 

Fixed Variables 

a • XI - -x 1 
• -o K. i,- ... - 1 -

b: 

k-1 

x I i k = 1 ( K= 1 ' ••• 'p) 

X I - - x' • -Q i,- ... - lp-

I• : x 11 = x'i = 1 n 

Remaining Inequality 

n 
l: 

j=p+l 
X I• C;j lj > d. , 

cont 1 d •.• 

co 



No. Case 

5 d. > o, c,· . < d. 
1 J l 

(j=l, ••• ,n) 

n 
.El C,·. >d. and 
J= J l 

~ Ci . < d. 
j=2 J l 

6 d. > 0 C; . < d. 
l J l 

(j=l, ••• ,n) 

n 
E Ci. > d. and 

j=l J l 

n 
2": C. > d 

j=2 1 j - i 

Conclusions 

One variable fixed 

There are two pos
si bil i ti es 

Fixed Variables 

x•; 1 = 1 

(a) X'il = 1 

( b) XI • - 0 11 -

Remaining Inequality 
n 

j~ 2 Cij x'ij ~di - ci
1 

n 
j;2 Cij x'ij? di - Ci 1 

n c • I. > E 1 .x,._d. 
j=2 J J l 

_. 
\0 



Where a;, b;, hand Kare constants and we may assume that a; 1 b; 

for all i (If we have the sign < or~ instead of > or 2 respectively we 

multiply the whole inequality by -1). If the constants a., b. and hare 
1 1 

integers, then the strict inequality (3.5) may also be written in the 

form (3.6), if we take K = h + 1. Therefore we shall confine our attention 

to inequalities of the form (3.6). As a matter of fact the method reported 

in this section in Table (3.2) for solving inequality (3.6) will directly 

offer solutions of the equation (3. 1) and strict inequality (3.5). 

As in the case of pseudo-Boolean equations the pseudo-Boolean 

inequality may be written as 

(3. 7) 

where c1, c2, •.. , Cn,d are constants and 

3.4 SYSTEMS OF LINEAR PSEUDO-BOOLEAN EQUATIONS AND/OR INEQUALITIES 

The method just described in the previous two sections for solving 

a linear pseudo-Boolean equation or inequality can easily be adapted to 

the more general case of a system of linear equations and/or inequalities 

(with real coefficients). 

The algorithm proposed by Hammer and Rudeanu(l 3) for solving linear 

systems comprises three stages. 

Step 1 All inequalities of the type g ~ 0 are replaced by -g J 0. 

In case of integer coefficients strict inequalities of the form f > 0 can 

also be dealt with by replacing them by f-1 .::: 0. 

Step 2 If x1, ... ,xn are the unknowns of the system, the relation 

xi = l - xi can be used to write the i th i nequa 1 i ty for each i. 

20 



where xi , .•. ,xi are the variables on which the i th inequality effectively 
1 n 

depends on and xi is either x or x so that 

All equations of the system are written in a si~ilar way. In other words, 

we bring each inequality and equation to the canonical form with respect 

to variables occuring effectively in it, but without changing the notation. 

Step 3 Each equation or inequality is considered separately, and 

each one is written in the canonical form with respect to the variables x• 

contained in it. Each equation or inequality is analyzed by use of 

Tables (3.3a,3.3b) and the results of this are combined for the whole 

system. 

For instance \'/hen a certain inequality or equation of the system 

has no solutions, then the whole system is inconsistent. In the same way 

if an equation has a unique solution x. = i 1, x. = 22, •.• ,x. = t this 
1 1 1 2 ln n 

should satisfy the remaining equations and inequalities of the system. 

It may be seen from the above two tables that there are cases in 

which some of the variables are fixed, or in which there are no solutions, 

or in ~1hich the considered equation or inequality is redundant. These cases 

are called determinate. There are other cases where practically no inform-

ation is available and they must be split into two cases for discussion, 

these cases are called indeterminate. Finally there are cases when the 

discussion is to be split into p+l cases with increased information and 

they are call2d 'partially determinate=. The c1assification is shown below. 
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TABLE 3.4 

Preferenti a 1 Equation Inequa 1 ity Characterization 
order (Table 3.3a) (Table 3.3b) 

First 1 , 2, 3 1 , 3, 4 Determinate 
5, 6, 7 5 

Second 4 2 Partially 
determinate 

Third 8 6 Indeterminate 

Now step 3 continues as follows. If some equations and inequalities belong 

to determinate cases, all corresponding conclusions are drawn. Two sit-

uations may arise. If at least one equation or inequality has no solutions 

or if two distinct equations or inequalities lead to the conclusions of 

the form xi = 1 and xi = 0 respectively, then the system has no solutions. 

It is preferable to start solving the system in the order of determinate, 

partially determinate and indeterminate. 

If none of the equations and inequalities are in a determinate 

case then we look for partially determinate cases and we follow the con-

clusions corresponding to one of these cases. 

3.5 NONLINEAR PSEUDO-BOOLEAN EQUATIONS AND INEQUALITIES 

3.5. l Characteristic Function 

In the preceeding two sections a method was described for the 

determination of all solutions of a system of linear pseudo-Boolean equations 

and/or inequalities. In this part a method to replace the whole system 

of constraints by characteristic equation which has the same solutions as 

the system of constraints will be discussed. The construction of a char-

acteristic equation is based on the reduction of the general case to the 

linear one. 

....... 



3.5.2 Characteristic Function for a Linear Case 

Any system of linear pseudo-Boolean equations or inequalities has 

a characteristic equation in a Boolean form 

(3.8) 

which has the same solutions as the system of expressions. 

The characteristic function is given by the following expression 

¢(x1, ••• ,xn) = uP 
a1, •• ,an (3.9) 

where uP means the disjunction is extended over all solutions 
al ' ••. ,an 

(a1, ••• ,an) of the system of expressions. 

The above can be derived from the well known Boolean expression 

al an 
U ¢(a1, ••• ,an)x1 ••• x1 a 1 , ••• ,an (3.10) 

where U means that the disjunction is extended over all 2n possible 
al ' •. 'an 

systems of values 0,1 of a1, .•. ,an and the notation xa means 

= {: 

if Cl = l 
(3.11) 

ifa=O 

In other words we have 

l al an u x1 ••• xn al ' •.. ,an 
(3.12) 

where ul means that the disjunction is extended over only those values 
a 1 , .. ,an 
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3.5.3 Linear Equations 

In the case of a linear equation the knowledge of all solutions, 

obtained as described in Table 3.1 permits the direct formulation of the 

characteristic equation. This is illustrated by the following example. 

Table 3.5 gives the solution of a certain pseudo-Boolean equation 

a.s shown. 
TABLE 3.5 

x, x2 X3 X4 X5 

l 0 0 0 l 
0 1 l 0 

0 0 l 0 

The characteristic equation is formed as 

X1X2X3X4X5 u X1X2X3X5 u X1X2X3X4 = 1 

3.5.4 Nonlinear Equations 

Let us consider a nonlinear pseudo-Boolean equation with the unknowns 

x1 , ••• ,xn 

a1P1 + ••• + amPm = b (3. 13) 

where each Pi(i = l, .•. ,m) stands for a certain conjunction (i.e., a product 

of variables with or without negations). One can replace the product Pi 

by a single bivalent variable yi and solve the resulting linear pseudo

Boolean equation 

(3.14) 

where y1, y2, ••• ,yn are treated as independent variables. If ~(y 1 , ... ,ym) 

is the characteristic equation of (3.14), then the Boolean function 
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(3. 15) 

will be the characteristic function of (3. 13). 

The whole process of substitution and resubstitution is best illLlstrat ed 

in the following example 

We let x1x2x3 = y1 

X2X4 = Y2 
-

X2X4X5 = Y3 

X3X4 = Y4 

The resulting linear equation has the fon11 

This equation is solved as described in Table 3.1 

Hence the characteristic function of (3.16) is 

(3. 16) 

Substituting for y1, y 2, y3 and y4 in terms of x1, x2, x3, x4, and x5 gives 



This reduces 'to 

The characteristic equation ¢ = 1 gives the solutions of (3. 16) 

x1, x3 arbitrary 

3.5.5 Linear and Nonlinear Inequalities 

To find the characteristic equation and therefrom to solve the 

solutions of the linear and nonlinear inequalities is similar to that of 

the equations except that different tables should be used to find the 

family of solutions. A family F of solutions was defined as being a set 

of solutions characterized by the fact that certain variables have 

fixed values, while the other remain arbitrary. 

F: x1 = i 1, ... ,xm = im, xm+k arbitrary fork= l, ... ,n-m 

For a particular problem the solutions are as shown below 

xl x2 X3 X4 X5 

1 

- 1 0 1 

0 1 1 0 1 

1 0 1 1 

The characteristic equation for the above is 

x3 U x2x3x4 U - -¢ = XlX2X3X4X5 

U x1x2x3x5 
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3.5.6 Characteristic Function for Systems 

We take a system of pseudo-Boolean equations and inequalities 

and let 

f j ( x 1' ... , xn) = 0 

fh (xl' ••• ,xn) > 0 

. 
tliq(x1, ••• ,xn) = 1 

j ,= 1 , ••• ,m 

h=m+l, ••• ,q (3.17) 

(3. 18) 

be the corresponding characteristic equations determined as in previous 

sections. If ~ is the characteristic function of the system (3. 17) it 

is given by 

(3.19) 
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4. 1 GENERAL 

CHAPTER IV 

RESOLVENT 

The role of this chapter is to define the resolvent of a system of 

pseudo-Boolean inequalities and to explain its effectiveness as a tool to 

replace the whole system of constraints. 

4.2 COVER OF A LI NEAR INEQUALITY(ll) 

Let us consider a linear pseudo-Boolean inequal"ity 

where x. E {0,1} 
J 

j = 1, ... ,n 

b' and aj (j = 1, ... ,n) are given real numbers. 

We can rewrite equation (4.1) as 

where 

a· = la'· I J J 
j = 1, ... ,n 

b b l n • ( I 0) = - .L:
1 

min aJ. , 
J= 

{: if a'. ~ 0 
J 

a j = 

if a'. < 0 
J 

and \'/here 

{: if a = 1 
xa. = 

if a = 0 
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For the sake of simpli~ity we shall assume that the terms of (4.2) 

are reordered, so that 

If we define a set N = {1,2, ..• ,n} 

Then a set of indices 

will be called a cover of the inequality (4.2) if 

.EJ a. > b 
J E: J 

(4.3) 

(4.4) 

The equation (4.4) will be a basic cover if no proper subset of J is a 

cover. 

Example: To get the minimal covers of 

6x1 + sx2 + 4x3 + 2x4 s 7 

Rewriting the above, after substituting 

-
Y1 = xl ' Y2 = x2 ' Y3 = X3 ' Y4 = X4 

The minimal covers are 

{1,2}, {l,3}, {1,4}, {2,3} 

4.3 RESOLVE NT OF A LINEAR INEQUALITY 

If J is a basic cover the product 
Clj 

I 1 ( x) = . TIJ x . 
\; J E: J 

will be called the basic implicant of the inequal i ty (4.2). 

(4.5) 
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If n is the family of all basic covers of (4.2), then the Boolean 

function 

(4.6) 

will be called the basic resolvent or simply the resolvent of the inequality 

(4.2). 

In effect we have replaced the pseudo-Boolean inequality with a 

Boolean function. In the example described in Section 4.2, the resolvent 

would be 

or 

4.4 RESOLVENT OF A NONLI NEAR INEQUALITY 

The replacement of a nonlinear inequality with a resolvent is very 

similar to that of a linear case. 

We can write 

m a . 
J l: a.y. s b 

j=l J J 
( 4. 7) 

where 

II II -y. = hd. xh . k£2 · xk J J J 
(4.8) 

and 
T . 

J 
u z. ~ 

J 
N j = 1 , ... , n (4.9a) 

T. 7 = 0 j = l , ... , n . L • 
J J 

(4.9b) 
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and where 

if a= l 

-= y if a= 0 

If the resolvent of (4.7) is denoted as w(y) and if we introduce 

into w(y) the expressions (4.8) of the yj s 

we get ~(x) = w(y(x)) 

Example: A Linear Case 

Rewriting the above as a ~ inequality type 

sx1 + 6x2 + Bx3 + 4x4 ~ 13 

Bx3 + 6x2 + 5x1 + 4x4 ~ 13 

The resolvent of the above inequality (4.'11) 

In case of a nonlinear inequalHy 

-
Y4 = X4 

l--~(y) = YJY2 u Yi1Y 4 u Y2Y1Y 4 

(4.10) 

(4.11) 
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Substituting for y1, y2, y3 and y4 in terms of x's 

Simplifying 

w(x) ~ x2 • x3 • x4 

4.5 RESOLVENT OF A SYSTEM OF INEQUALITIES 

Let us consider a system of linear or nonlinear inequalities 

i = 1 , .•• ,m 

xj e: {0,1} j = l, ... ,n 

If wi(x1 , ... ,xn) is the resolvent of the i th inequality and 

w(x1, ••• xn) = w1 U w2 U ••• U wm 

then w(x1, .•. ,xn) is called the resolvent of the system (4. 12). 

('4.12) 

(4.13) 

Next we must prove that a solution vector x e: B~ is a solution of 

the system (4. 12) if and only if it is a solution of the Boolean equation 

w(x1, ••• ,xn) = 0 

where w is the resolvent of (4. 12) 

The proof for the above is very simple and directly follows from 

equation (4.6), 
Cl· 

( ) LJ TI X·J w. x = J 
l Jdl je:J 

(4.6) 

which was defined as the basic resolvent. 
CL • 

It is clear in equation (4.5), if all x.J = 1, that this set of 
J 

values will be violating the constraints. So it is obvious, if 

aj 
xj j = ( 1 , ••• J) 
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is to form a solution of the corresponding constraint, that at least one 
CL • 

of the above x.J must take a value zero. So in that case the product 
J 

CL • 

IJ(x) = .rr x.J = 0 (4.5) J e:J . J 

It should be noted that the above argument holds good only if J 

is formed out of minimal covers. If IJ(x) = 0 
CL • 

w(x) = U n x ·J = 0 
Je;Q je:J J 

So those solutions which satisfy the .constraints, alone will make w(x) = 0. 

Putting it in a different way, only those solutions (x1, ... ,xn) which ma ke 

w(x) = 0 can be the feasible solutions of the system of constraints. 

Remark: The system of constraint equations (4.13) is inconsistent if and 

only if 
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CHAPTER V 

PSEUDO-BOOLEAN PROGRAMMING 

5. 1 GENERAL 

In the previous chapter it was explained how a system of constraints 

can be replaced by a single Boolean resolvent function and it was also 

proven that the solutions which satisfy the system of constraints, when 

substituted in the resolvent will make it zero. So we are mainly interested 

in finding the solutions of the resolvent and such solutions are known as 

feasible solutions of the system. Among these solutions one or more opti mum 

solutions exist which will minimize or maximize the objective function as 

the case may be. In this chapter a method for obtaining the feasible sol

utions of the system of constraints and the optimum solution is discussed. 

,.. ? o ..... FORMULATI ON OF THE PROBLEM 

This section formulates t he general problem to be treated in this 

thesis. Let 

B {cl} Br.= B x Bn-l '2 = ,, , 2 2 2 

and i = 1,2, ... ,n 

We also denote X _ (x1, .•. ,xn) 

and further let the first r components of X be denoted as 

rx = (x,, ... ,xr) 

n r x E B2 and rx E B2 

Next two Boolean functions Y; (x) and Fi (x) are defined with arguments x. 

M 
y(x) = ).: . a . Y • ( x) 

1 = .1 l l . 
(5.1) 
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and 
. K 

F(x) = U F .(x) 
j=l J 

(5.2) 

Our ultimate aim is to find an X which makes equation (5.2) zero and mini

mizes the objective function (5. 1). 

It is required in the algorithm that ai values in equation (5.1) 

may not be negative. Any negative value present must be replaced using 

the following transformation 

a.y.(x) = (-a.)y.(x) +a. (a. < 0) , , , , , , (5.3) 

When a maximizing problem is encountered it can be reduced to that 

of a minimizing one by taking note of the fact that the maximum value of 

y(x) is equal to the minimum value of -y(x). This algorithm treats minimiz

~tion problems only. 

5.3 SOME BASIC THEOREMS 

Before going into the details of the algorithm it becomes necessary 

to state certain basic theorems which are made use of in proving the 

validity of the algorithm. 

Theorem 1( 2) 

Any system of Boolean equations and (or) inequalities is equfvalent 

to a single Boolean equation of the form h = 0 and also to an equation of 

the form K = 1. 

or 

A Boolean equation f = g is equivalent to the Boolean equation 

fg u f g = 0 

(5.4) 
fg u fg = 1 
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While a Boolean inequality f:;; g is equivalent to the Boolean equation 

fg = 0 

and also (5.5) 

f u g = 1 

Also a system of Boolean equations of the form h. = 0 (j = l, ... ,m), is 
m J 

equivalent to the 8oolean equation Uh.= 0, while a system of Boolean 
j=l J 

equations of the form Kj = l (j = l, ... ,m) is equivalent to the Boolean 

equation 

m 
TI K. = 1 

j=l J 

(Since xy = 1 if and only if x = 1 and y = 1) 

(5.6) 

Considering a very si mple case of a Boolean equation in one unknown, 

we can write the above equation in the form 

f (x) = 0 (5. 7) 

or equivalently 

ax u bx = o (5.8) 

where 

a= f(l), b = f(0)( 3) (5.9) 

Theorem 2 

Equation (5.8) is consistent if and only if 

a • b = O (5.10) 

Proof of the above is very simple. If x be a solution of (5.8) then 

ax = bx = 0 
-and hence a -

~ x and -x :s b (By Appendix A). 

-Therefore a ~ b (By Appendix A) or else 

ab = O 
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5.4 METHOD OF SUCCESSIVE ELI MINATIONS(l 3) 

Let us start off with a general Boolean equation in n unknowns. 

In order to get a recursive relationship we take 

f(x1, ••• ,xn) = f1 (x1, ••• ,xn) 

Then 

The above may be written in the form 

f1(x1, ••• ,xn_ 1,l)xn U f1(x1, ... ,xn-l'O)xn = 0 

If we set 

f1(x1, ... ,xn_ 1,l). f1(x1, ••• ,xn_1,o) 

= f 2(xl '· · .xn-1) 

(5.11) 

(5.12.1) 

(5.13.1) 

(5.14.1) 

then the condition that equation (5. 13. 1) has a solution with respect to 

xn becomes 

f 2(x1, ••• ,xn_1) = 0 (5.12.2) 

We assume that the above method of el iminations is carried out in the i th 

step and therefore must solve the equation 

(6.12.i) 

We write the above in the form 

fi(x,, ... ,xn-i'l)xn-i+l U fi(x, .•. ,xn-i'O)xn-i+l = 0 (5.13.i) 

Then once again we set 

f;(x1, ... ,xn-i'l) . f;(x1, ... ,xn-i'O) 

= fi+l(x,, ... ,xn-i) (5.14.i+l) 
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and from the equation 

fi+l(xl, ••• ,xn-i) = 0 

In the n th step we obtain the equation 

fn(x1) = 0 

which may be written in the form 

and 

(5. 12.i+l) 

(5. 12.n) 

(5.13.n) 

(5. 14.n) 

If fn+l f 0, then (5. 13.n) or equivalently (5.12.n) has no solution 

in view of theorem 2, section (5.3). Since equation (5.12.n) is just the 

consistency condition of equation (5. 13.n-l), it follows that the ·1atter, 

which coincides with (5.12.n-l), is also inconsistent. We define by 

induction that (5.12. 1) has no soluticn. 
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If fn+l = 0, then the equation (5.12.n) is consistent. By introducing 

its solutions into the equation (5. 12.n-l) 

fn_ 1(x1,x2) = O 

The latter becomes an equation with single unknown x2, and is consistent for 

the reason explained above. We obtain thus the solutions (x1,x2) of t he 

equation (5.12.n-l). We introduce them in the equation (5.12.n-2) etc. 

In the last step we introduce the solutions (x1, ... ,xn_ 1) of equation (5.12.2) 

into equation (5. 12.1), obtaining thus an equation with a single unknown Xn· 

After solving this we have at hand the solutions (x1, ... ,xn) of equations 

(5.12.l). 

Thus the method of successive eliminations consists of two stages. 

The first one, which includes the steps from the beginning to the fi nding 



of fn+l' may also be considered as a way of deciding ~1hether or not the 

given equation is consistent. If fn+l = 0, then the second stage leads to 

the determination of all solutions of (3.12. l) and therefrom solutions of 

(5.11). 

5.5 THE BASIC ALGORITHM 

r( ) (12) (r)( ) _ Two function series {F rx } and {y rx }, r - l, ... ,n are 

defined as shown below 

F(n)(x) = F(x) 

F(r) (rx) = F(r+l) (rx,O) . F(r+l)(rx,1) 

(5.16) 

(5.17) 

The above replacement becomes possible by the method of successive elimin-

ations. 

= ~ a.y. (r) (rx) ; = 1 , , (5. 18) 

where 

y~n)(x) = yi(x) (5.19) 

Yir) (rx) = Yir+l)(rx,O). Y~r+l)(rx,1) (5.20) 

Next we define a parameter 'c', ~1hich is an arbitrary upper limit on the 

objective function value. Only those feasible solutions which give an 

objective function value less than or equal to the parameter 'c' are 

searched for an optimum solution. Writing this mathematically, if we 

define a set series {~(r)(c)} corresponding to the function series defined 

above, we get 

~(r)(c) = {rx/F(r)(rx) = O,y(r)(rx) s c} (r = 1,2, ... ,n) 
( 5 .21 ) 

We still must prove that the vector rx, consisting of the first r 

components of an arbitrary ele~ent r+lx in the set ~(r+l)(c), belongs to 
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the set ~(r)(c). From equation (5.20), the expression 

(r)( ) < (r+l)( ) 
Yi rX - Yi rX,xr+l 

holds for any rx e: B~ and xr+l e: B2. Since all ai > 0, from the relation 

aoove and equation (5.18), the inequaiity 

(r)( ) (r+l) ( ) y rx ::; y rx,xr+l 

holds for any rx and xr+l' It follo~1s that if an (rX,xr+l) e: B~+l fulfilling 

(r+l)( ) y rx,xr+l ~ c 

exists, it also satisfies the inequality 

Y(r)(rx) :: c 

In addition by successive elimination, 1,1e have shown how to get t he solution 

step by step. So regarding 

F(r+l), ) - 0 lrx,xr+l -

as a Boolean equati on with respect to xr+l' the condition 

F(r)(r ) = 0 x 

(5.22) 

is just the necessary and sufficient condition for the Boolean equati on 

(5.22) to have a solution. 

The number of feasible solutions that are obtained depends on the 

value of 1 c 1 chosen. A theoretical upper li mit would be the sum of all 

positive coefficients in t he objective function. If this value of 1 c 1 

is chosen, all the feasible and opti mum solutions will be found. 

5.6 ALGORITHM 

Steo l ___.__ 

Assume a constant 1 c 1 
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a) If F(l)(x1) is identically equal to unity, no feasible solution exists 

and the algorithm terminates. 

b) If there is an x1 present such that F(l)(x1) = 0, construct a set 

~(l)(c). If ~ (l)(c) is empty increase the value of 'c' by 6c (6c > 0) to 

obtain another ~ (l)(c) which is not empty. Proceed to next step. 

· ~tep r (r = 2, ... ,n-l) 

a) If ~ (r-l)(c) t 0, obtain ~ (r)(c) from ~ (r-l)(c) and to to step (r+l) 

b) If ~ (r-l)(c) = 0 replace 1 c 1 by c + 6c and return to step 1 (b). 

~tep n 

a) If ~(n)(c) t 0, obtain ~ (n)(c) and the algorithm terminates. 

b) If ~(n)(c) = 0 replace c by c + 6c and return to step 1 b. 

The algorithm terminates at (a) of step n, when a non-emp ty ~ (n)(c) is 

obtained. Wh en no feasible solu t ions exist t he al gorithm terminates at 

(a) of step 1. 

5.7 COMPUTE R PROGRAM 

5.7. 1 Structure of the Program 

A computer program has been developed, based essentially on t he 

algorithm described in section (5.6) and is attached as Appendix B. Th is 
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program solved problems with sixteen desi gn variables and nineteen constraints 

efficiently. However the upper li mit on size can not be specified. The 

basic difficulty is that it is not possible to predetermi ne the core 

memory requirements for any particular problem. Diffe rent problems with 

the same number of design variables and constraints may vary dras t icall y 

in core memory requirements. 

The computational ti me depends on the individ ual problem and al so 

on t he value of 1 c 1
, the upper l imit. The t ime tends to i ncrease with the 
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Fig 5 .1 

General Arrangement o f Subroutines . 
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value of 1 c 1 since more and more feasible solutions must be completed and 

scanned for the optimum. 

The computer program is capable of dealing with linear and nonlinear 

constraints and objective function. The nonlinear constraints may contain 

only product of variables as their terms. For nonlinear objective function 

subroutine UREAL should be written. 

The accompanying flow diagram shows the general arrangement and 

the sequence in which the subroutines are called. A brief description of 

each subroutine is as follows: 

Subroutine SABO calls the rest of the subroutines CANON, COVER, 

SOLN, LSTR, DECODE, STORE, REDUCE, ASEMBL, BOOL, CHOOSE, CHANG E, VIOLAT 

and OBJECT. 

Subroutine CANON rea r ranges the coefficients of the variables in 
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the constraints in the decreasing order of their magnitude, after changing 

the negative coefficients into positive and addi ng the corresponding quanti ty 

to the right hand side constant. 

Subroutine COVER finds all the min imal covers of t he constraints . 

Subroutine SOL N identifies each member of the minimal cover with 

its corresponding variable and forms the resolvent. 

Subroutine LSTR stores the terms of the resolvent, formed out of 

linear constraints. 

If nonlinear constra i nts are present subroutine DECODE identifies 

the corresponding nonlinear terms for their linear substitutes and fonns 

the resolvent. The terms of the resolvent are stored in subroutine STORE. 

The total resolvent comprising of all the terms is si mplified by 

the subroutine REDUCE using Boolean properties. 



Subroutine ASEMBL uses the system routine SHIFT to assemble a number 

of single digit numbers into a single number. This is done essentially 

to save core memory space and whenever a particular digit is wanted out 

of this number, subroutines CHANGE and CHOOSE do the job. 

Subroutine BOOL, using systematic elimination, forms various levels 

of the resolvent, from n variables to a single variable function. 

Subroutine VIOLATE checks whether the Boolean resolvent function 

is satisfied at various levels, to determine whether a particular value of 

x can form a part of feasible solution. 

The linear objective function is evaluated by the subroutine OBJECT. 

The feasible and optimum solutions are printed out in a standard 

format by the subroutine BOUT. 

5.7.2 The Limitations 

If the time specified for the co~puta t ion is insuffici ent, one has 

to start right from the beginning once again, since there are no iter

ations involved in finding the optimum solution and it is not possible to 

start from the stage where the computations were stopped. 
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This program contains two non-standard FORTRAN features. At one 

stage of program development, the complete resolvent formed with n variables, 

each term in the resolvent represented by a row and the various terms in 

the resolvent by the different rows in the matrix. If we denote the matri x 

of n variables as n th order, when this matrix was reduced step by step, 

by systematic eli mination to a single variable, each step, depending on 

the number of variables it contains, had to be identified as the n-1 th order 

and so on down to the first or der. Hence it became necessary to de f i r. e 

a three di mensional array, in which the first number denotes t he order , the 



second number denotes the rows in the matrix and the third a particular 

element in a row. This three dimensional array became too large for a 

proBlem with a comparatively large number of variables. So it was necessary 

to find an alternate way to reduce the core memory requirement. The CDC 

system routine SHIFT was used to pack the numbers previously represented 

by row, into a sixty bit word as a single number which reduces the 

core memory requirements by a factor n. Whenever a particular digit is 

needed for further computation, the same system routine SHIFT is used to 

pick up the required digit. This is ·available only on CDC 6400 computers 
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and hence this program is machine dependent. Furthermore this facility 

restricts the number of variables that can be handled to thirty in the case 

of a problem with all linear constraints, since a sixty bit word can hold a 

maximum of thirty single digit numbers which can either be 0, 1 or 2, 

occupying two bits each. In the case of problems with nonlinear constraints, 

since the terms are read in octal format each number occupies three bits 

and a sixty bit word can hold a maximum of twenty numbers. Thus nonlinear 

problems are limited to a maximum of twenty variables. 

The other non-standard feature is the use of octal format to read 

in the variables in the nonlinear constraints. This is necessary because 

any variable present in the nonlinear term is represented by l, its negation 

by 2 and its absence by O. For example the term x1x2x3x6 (assuming there 

are only six variables) will be replaced by 121001. At a later stage we 

would like to pick up any particular digit for further computation. Unless 

the above number is read in octal fonnat, under which each digit in a number 

is stored in three bits separately in a sixty bit word so that the picking 

up of any particular digit is nothing but extracting those three bits, it 

will not be possible to pick any desired digit. 



CHAPTER VI 

APPLICATIONS OF PSEUDO-BOOLEAN PROGRAMMING 

6. 1 GENERAL 

In this chapter some practical applications of pseudo-Boolean 

programming methods, in various fields like operations research and science 

and engineering are presented. The computer program used to solve the 

problems is attached as Appendix B. 

6.2 APPLICATIONS TO NETWORK PROBLEM~ 

6.2.1 The Travelling Salesman Problem(lB,l 9) 

During the last decade there has been a great deal of interest in 

problems that can be represented by networks. \>Je \'Jill define a network as 

an array of nodes and branches. Each node is connected to at least one 

other node by at least one branch. 

A well known example of the network problem is travel between cities, 

or the travelling salesman problem. We will let xij represent the branch 

from node i to j and specify x .. = 1 if the branch from i to j is in the 
lJ 

solution, and xij = 0 if the branch from i to j is not in the solution. A 

salesman is assigned n cities to visit. He is given the distances between 

all pairs of cities and instructed to visit each of the cities once, in 

one continuous trip and return to the starting city, using the route that 

is of minimum length. Since a complete cycle is involved, it does not 

make any difference which city is the starting city. The cities are numbered 

from l ton and let x .. = l imply that salesman travels from city i di rectly 
lJ 

to city j, and xij = 0 signify that the link from i to j is not i n the tour. 
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In the matrix of distances, the distance from the city to itself (for 

every ci'ty) i' s set equal to an arbitrary large number. This is done to 

force each x . . to be zero in the optimal solution. The problem is form-
11 

ulated as follows. 
n n 

Minimize E E C .. X •• 
i=l j=l lJ lJ 

where Cij ~ 0 is the corresponding distances between cities i and j 

subject to 
n 
E x .. = 1 for i = 1 , ••• , n (departure) 

j=l lJ 

n 
E Xij = 1 for j = l , ... , n (arri va 1) 

i=l 

Additional constraints are to be imposed to avoid subloops and to get a 

complete cycle as a solution. 

x .. +x .. sl 
lJ Jl 

i = l, ... n, j = l, ... ,n 

prevents all subloops of order 2. 

x . t + xt . + x . . :s 2 l J Jl i = l, .. ,n, j = l, ... ,n 

t = l, ... ,n 

prevents all subloops of order 3. 

Subloops of higher order are prevented by sets of similar constraints. 

It is necessary to block out subloops of order n/2 or lower only, for hi gher 

order subloops can not exist if the lower order subloops have been prevented. 

6.2.2 To Find the Longest Path 

Many companies, involved in a long development project, such as 

designing and building missiles and space veh i cles, use a technique called 

PERT. A PERT netvmrk is an array of steps in such a project. The f irs t 
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step is usually the receipt of the contract financing the project and the 

last step is the acceptance of the device. The steps in between consist 

of the design, construction and testing activity necessary in the project. 

There may be hundreds of nodes in the PERT network of a major project. 

The time to complete each activity (branch) is estimated from experience 

on similar projects. The length of the project is determined by the 

longest path from the start of the project to finish. The essential dif-

ference bet\'Jeen PERT networks and the type discussed earlier is in the 

existence of precedence relations. There is a precedence of node i over 

node j if i can precede j but j cannot precede i. These arise naturally 

in development projects, for components should be designed before they 

can be built and should be built before they can be tested. 

It should be noted that there are more efficient methods( 20) of 

finding the longest route through a neb1ork, and one of these is normal ly 

used in PERT analysis rather than Boolean Programming. The demonstration 

of this programming approach to this problem is included here just as 

an application of this technique to network analysis. 

6.3 ASSIGNMENT PROBLEM 

In simple words this problem can be stated as follows.( 20) Let us 

assume that we are given n requirements that must be satisifed and n methods 

of satisfying them, it being understood that each requirement must be 

satisfied by one of the methods and that one method cannot be used to 

satisfy more than one requirement. An n x n cost matrix is also given, 

each element Cij being the cost of satisfying the j th requirement by the 

i th method. The assignment problem consists of finding that combination 

of methods and requirements that minimizes the total cost. It is specified 



that, if X;; = 1, then the i th method is being L1sed to satisfy the j th .., 

requirement, if x .. = 0 the i th method is not being used to satisfy j th lJ . 
requirement. From the fact that each method is being associated with one, 

and only one requirement and that each requirement is associated with 

one and only one method the mathematical formulation is as shown 
n n 

Minimize L: L: c .. x .. ' 
i=l j=l lJ lJ 

n 
L: x .. = 1 j = 1 , ••• , n 

i=l 1J Subject to 

n 
L: x .. = 1 i = l , ... , n 

j=l 1J 

x .. = 0, 1. 1J 

6.4 QUADRATIC ASSIGNMENT PROBLEM 

The quadratic assignment problem(l7) differs from the ordinary 

assignment problem only in that a quadratic cost function is to be minimized 

rather than the linear one given above. 

Minimize .L:J. L: c.. x .. x , 1, p,q lJpq 1J pq 

n 
Subject to L: x .. = 1 

i=l lJ j = l, ... ,n 

n 
• L: Xij = 1 
J=l 

i = l, ... ,n 

x .. = 1J 0, 1 i,j = l, ..• ,n 
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6.5 PLANT LOCATION 

The problem of plant location has the fol lo1t1ing formulation. (21 ) 

Let I= {1, ••. ,m} be the set of places where the plants can be located, 

let J = {l, ... ,n} be the set of consumers, let Cj be the annuai rate of 

market requirements for location j, let ai be the annual fixed cost of 

constructi on and of operation at plant i, let bi be the manufacturing cost 

per unit plant at i, and let Cij be the transportation cost per unit from 

i to j. 

The problem consists in finding that subset of I, which assures a 

minimum for the total annual cost of construction, manufacturing and 

transportation. 

Let us put Y; = l if a plant is to be located in i and yi = 0, other-

wise. Let x .. lJ denote the amount shipped from i to j and 1 et d .. = bi + c . .. 
lJ 1J 

The problem is formulated as follm1s. 
m m n 

Minimize r. a.y. + I r. d . . x .. i=l , 1 i=l j :1 lJ 1J 

Subject to . If Y· = 0, x .. = 0 1 1J i = l , ... ,m 

j = 1, ... ,n 

m 
I X .. = C. 

i=l lJ J 
(j = l, ... n) 

X;j z 0, yi E {0,l} (i = l, ... ,m) 

(j = 1, ... ,n) 

It is necess ary by suitable transfo rmati ons to replace x1j•s in the 

above expressions, i n terms of (O-l)bival ent va ri ab les, so that t he who l e 

problem become s a problem of pseudo-Boolean programn i ng . 
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6.6 ELECTRONIC ASSEMBLY 

Among so many other problems that can be solved by pseudo-Boolean 

programming a very interesting and a common problem(l 3) is formulated and 

solved below. 

To construct an electronic device several ways are possible. 

1. Any one of the three types T1, T2, T3 of tubes may be used, 

but only one. 

2. The box may be made of wood (W) or plastic material (M). But 

when using M dimensionality requirements impose the choice of T2, and there 

is no place for the transformer F and a special power supply 'S' is needed. 

3. T 1 needs F. 

4. T2 and T3 need S (and not F) 

The price of the above mentioned components are 

Tube T1 28 units 

Tube T2 30 units 

Tube T3 31 units 

Transformer (F) 25 uni ts 

Special power supply(S) 23 uni ts 

Wooden Box (W) 9 units 

Plastic material box (M) 6 uni ts 

The other necessary components of the device have the following costs. 

27 uni ts, if tube T 1 is used, 

28 uni ts, if tube T2 is used, 

and 25 units, if tube T3 is used. 

The assembly cost is 10 units for each set in all cases. Set is sold at 

110 units if it is enclosed in a plastic material box and at 115 units in 
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the other case. 

It is to be determined \'1hi ch design is to be used in order to 

maximize the profit. 

The problem is · solved as follows. For each utilizable component X, 

we shall denote by x the Boolean variable 

x = . { l if X is used 

0 if X is not used. 

The conditions become, 

t, + t2 + t3 = 1 ( 6. 1) 

w + m = 1 (6.2) 

If M=l, t = 2 s = 1 (6.3) 

If t 1 = l, f = l (6.4) 

If t -2 - l ' s = l (6.5) 

If t 3 = 1 ' s = 1 (6.6) 

and f + s = 1 (6. 7) 

Under the above constraints, maximize 

llOw + 105m - (28t1 + 30t2 + 31t3 + 25f + 235 

+ 9w + 6m + 27t1 + 28t2 + 25t3 + 10) 

The constraints (6.3), (6.4), (6.5) and (6.6) are obviously equivalent to 

m ~ t 2s (6.8) 

t, s f (6.9) 

t2 ~ s (6.10) 

t..., ~ s 
,) 

(6.11) 
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The above is a pseudo-Boolean problem with a linear objective function and 

system of mixed linear and nonlinear constraints. 

The above problem was solved using the program in Appendix B and 

the obtained results are, t, = 0' t2 = 0' t3 = l' f = 0, s = 1, w = 1, m = 

which means we have to choose T3 tube, the special power supply and the 

wooden box, assuring a profit of 12 units. This result was found to be 

the same as that of the solution obtained from hand computation(l 3) using 

Tables (3.2) and (3.3). 

6.7 DESIGN OF A SYSTEM WITH RELIABILITY 

The original problem( 22 ) is to design a system with six controllers 

at six different stations, with sufficient redundant controllers at each 

station so as to maximize the reliability, for a maximum cost of $6500Cl. 

Four different alternate designs are available for each station. Since 

the number of design variables involved in solving the problem exceed the 

handling capacity of this developed program, the system is designed taking 

the first th ree stations and two design alteratives only. 

Station 

1 

2 

3 

R 

.9983 

.9992 

.9846 

Design alternatives 

c 
2100 

3600 

1500 

R 

.9967 

.9906 

.9637 

The problem is formulated as follows: 

c 
1800 

2900 

1400 

Let xi be the number of components that can be used at station i. 

If T is the upper limit on the availability of components 
T 

x. = L: K • Z
1
.K 

1 K=l 
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where 

and 

ziK = o or 1 

T 
r Z·K = 1 K=l 1 

The constraints have the form 

T ffii T 
'I" 'I" C .. y .. * r K • Z

1
• k ~ Cs 

1~1 j~l lJ lJ K=l 

where mi is the number of design alternatives available, Cs is the total 

expenditure authorized, and C;j is the cost of using the j th design 

alternative in the i th station. 

Also 

The 

i=l,2,3 

m; 
I: Yij = 1 

j=l 
i = 1,2,3 

z1K and yij are 0-l variables. 

rel i ab il i ty 
3 

U - II - . l i= 

is to be maximized 

mi x. 
[1-{l- L: R .. y, .) 1

] 
j=l lJ lJ 

The solution of the above problem was obtained to give a maximum reliability 

of 0.99868 with two components of the first design alternatives at station 

one, two components of the first design alternatives at station two and two 

components of the second design alternative at station three. 



CHAPTER VII 

CON CL US IONS 

As mentioned in the introduction, for a long time bivalent problems 

have been solved as a part of integer programming. Growing applications of 

bivalent programming and the inherent difficulties in modifying other 

algorithms to solve bivalent problems necessitated the development of sep

arate algorithms which deal with 0-l problems exclusively. The algorithm 

suggested in this thesis, apart from the Balas' additive algorithm, is one 

of the very few that are directly applicable to bivalent opti mization. An 

efficient computational program based on the particular combination of 

replacing the system of constraints by a Boolean function and then to solve 

the same branch and bound method for its feasible solutions, has been developed 

for the first ti me in this thesis. 

The best feature of this computational program l ies in the fact 

that the search for an opti mum never stalls. The program finds the opti mum 

so 1 uti on (if there is any) a hJays. 

The efficiency of the algorithm can be imrroved by devising some 

method to deal with the equality constraints directly, instead of replacing 

each one of them by tv10 inequalities as it is done in the present al gorithm . 

The wide range of applicability of Boolean techniques as explained 

in chapter VI makes obvious the necessity for further research in zero-one 

programming. The fields of integer prograrrrning, graph theory and other 

domains offer very attractive problems which are easy to translate i nt o 

Boolean language. Further investi gations are also necessary in develop·ing 

improved te r, hni ques, perhaps to overcome the li mitations explained in 
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chapter V, and also it would be useful to have a pseudo-Boolean procedure 

for solving mixed continuous-bivalent programs. 
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APPENDIX A 

SOME PROPERTIES OF BOOLEAN ALGEBRA 



Some Properties of Boolean Algebra 

l. xUy=yux 

2. x • y = y • x 

3. (x U y) U z = x U (y U z) 

4. {xy)z = x{yz) 

5. x u x = x 

6. x • x = x 

7. x U xy = x 

8. x(x U y) = x 

9. x U yz = (x U y)(x U z) 

10. x(y U z) = xy U xz 

11. x u l = l 

12. x • l = x 

13. x u 0 = x 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

x 

x 

x 

x 

xy 

x 

x 

x 

x 

. 0 

u y 

. y 

u y 

= 

u -x 

-. x 

0 y 

. y 

= 0 

= 0 

= l 

= 1 

0 

= l 

= 0 

-= x 

-= x 

-. y 

u y 

if and only if x = y = 0 

if and only if x = y = l 

if and only if x = 1 or y = l 

if and only if x = O or y = ~ 

the de Morgan laws 

The above properties are proved by direct verification for all 

possible val ues of x, y and z. 



The follmving properties are also worth noting for every x, y, z 

d0,1}. 

23. x ~ y 

24. x ; y 

25. x ; x u y 

if and only if x U y = y 

if and only if xy = x 

and y ; x u y 

26. x • y ~ x and x • y ; y 

27. If x :5 z and y ~ z then x u y ~ z 

28. If z ~ x and z ~ y then z s xy 

29. x s y if and only ifxUy= 1 

30. x s y if and only if xy = 0 

31. x = y if and only if xy -u xy = 0 

32. x = y if and only if (x u y)(x u y) = 
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APPENDIX G 

COMPUTER PROGRAMS AND USER'S MANUAL 



HOW TO USE 

In its simplest form, the calling program is written as follows: 

a) DIMENSION Statement - check through the list of input, output and 

working variables. Include all subscripted variables, dimensioning as 

indicated. 

b) Define logical variables LOGY,XY,XX,F. 

c) Define input data in any manner desired. 

d) Call subroutine BABO 

e) Call subroutine BOUT to give printed output. 

f) Add STOP and END. 

If the optimization function, U(x1,x2, ... ,xn) is nonlinear, it is 

defined in the user written subroutine UREAL. 

1 
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SUBROUTINE BABO(A,AB,F,Y,X,XX,FF,YY,IA,C,M,N,COF,B,MAX,LOGY,CM,0BJ,IDATA,YC, 
IAV, XY ,JC ,XOB, DX, FM,SF ,AY, D,NLIN ,MTERM, NOBJ, ID,NFEAS, KA ,NNON, I HI) 

Purpose 

To minimize U=U(x1,x2, ... ,xn) 

Subject to ~j(x 1 ,x2 , ... ,xn)~bj 

and all xi=O, 1 

The optimization function may have any form. The constraint functions 

may be nonlinear but must have the special form of a sum of terms, each of 

which contains only the simple product of any number of the variables. 

Variables must not appear in their complementary form, xi in a linear con

straint. Such forms may be removed by the transformation 

x. = 1 - x. , 1 

Method 

The solution of the problem with linear constraints uses Boolean 

algebra to replace the set of constraints by a single resolvent function. 

The feasible solutions may then be conveniently found and scanned for the 

optimum solution. 

If the constraints are nonlinear, the product of the variables in 

each term is replac ec:J....by a new set of variables so as to linearize the 

problem. This is illustrated in the following example: 

The transformation gives 
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NOTE: Thi:; subroutine BABO is machine dependent in two respects. The first 

one is the use of CDC 6400 system routine SHIFT to pack and unpack a 

number of digits and the other one is the use of octal format to read in 

the var·iables of nonlinear constraints. For more infonnation on these refe r 

CDC 6400 FTN Reference Manual. 

_Input ,Variables 

N 

M 

NLIN 

NNON 

Mf'\X 

IAV 

number of design or independent variabies. Replace 

with the value of MTERM if there are nonlinear con

straints and MTERM >N 

number of constraints 

number of linear constraints 

number of nonlinear constraints + 1 

estimated number of terms in the resolvent = iOO for 

the first trial. A message will be printed out if 

MAX is too sma 11 

estimated number of feasible sol u tio~s = 50 fo r t he 

first trial. A message will be printed out if IAV 

is too sma 11 



NOBJ 

MTERM 

c 

I DATA 

COF(I,J) 

B(I) 

OBJ(J) 

= 0 for linear .objective function 

= l for nonlinear objective function 

maximum number of terms in any of the nonlinear 

constraints,= l for all linear constraints 

upper limit on the linear optimization function. A 

suggested value for C would be half the sum of all 

positive coefficients in the optimization function 

= 0 for nonlinear objective function 

= l all input data printed out 

= 0 input data is not printed out 

coefficient of the J th variable in the I th con

straint for linear or linearized constraints, 

dimensioned with (M,N). See also Note (ii) below 

re dimensioning. 

4 

right hand side constants of the constraints, dimensioned 

with (M) 

coefficient of the J th variable in the optimization 

function, if it is linear dimensioned with (N+l), 

and with (1) if nonlinear 

(Note that if the optimization function is nonlinear, 

this array need not be defined, but Subroutine UREAL 

must be written) 

See also Note (ii) below re dimensioning. 
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OBJ(N+l) value of the constant if it occurs i n a linear 

optimization function 

KA(I,J) 

= 0 if there is no constant 

(Note that this need not be defined for a nonlinear 

objective function) 

See also Note (ii) below re dimensioning 

J th term in I th nonlinear constraint. Any variable 

present in the term is replaced by l, its absence 

indicated by 0, and its negation by 2. Example: 

x1 x3 x5 x6 (Assuming there are only 6 variables) 

will be replaced by 102011. This should be read in 

octal format dimensioned with (NNON, MTERM). (See 

the appendix for information on octal formats) 

Note: i) In constraints which contain less than MTERM terms, the rest 

of the terms should be replaced by N zeroes each. 

ii) If MTERM exceeds the value of N, the value of N should be 

replaced by MTERM in the input and dimension statements. The 

whole problem will be treated as a problem of MTERM variables. 

Output Variables 

AB (I ,J) 

YY(I) 

NFEAS 

array of feasible solutions. An element contains the 

value of the J th variable in the I th feasible 

solution, dimensioned \\lith (MAX,N) 

array of optimization function values corresponding 

to feasible solutions, dimensioned with (MAX) 

total number of feasible solutions 



Working Arrays 

Variable 

IFN 

SF 

FM 

YC 

D 

CM 

IA 

A 

AY 

DX 

F 

y 

x 
xx 
FF 

xv 
XOB 

LOGY 

JC 

ID 

Logical Variables 

Dimension 

(N,MAX) 

(N,N) if nonlinear constraints are present 

(N,l) if nonlinear constraints are absent 

(IAV,N) 

(M,N) 

(M,N) 

(M,N) 

(MAX,N) 

(MAX,N) 

(MT ERM ,N) 

(N) 

(N) 

(N) 

(N) 

(N) 

(N) 

(N) 

(N) 

(MAX) 

(MAX) 

(MAX) 

Variables LOGY,XY,XX,F must be defined as logical variables in the 

calling program. 
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Programming Information 

Subroutine BABO has full variable dimensioning except for several 

variables dimensioned with MAX and IAV. These depend on the number of terms 

in the resolvent which cannot be predicted in advance. 

Subroutine BOUT may be used to print out the feasible solutions and 

the optimum solutions in standard form. 

CALL BOUT(AB,YY,NFEAS,N,MAX) 

The user may alternately write his own output logic. If the optimization 

function U(x1,x2, ... ,xn) is nonlinear it must be defined in the user written 

subroutine UREAL. Subroutines called by BABO are CANON,COVER,SOLN,REDUCE, 

LSTR,STORE,BOOL,VIOLAT,OBJECT,DECODE,CHOOSE,ASEMBL and CHANGE. 
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SUBROUTINE UREAL(X,U) 

Purpose 

To calculate the value of the objective function at a point 

U(x1,x2, ..••• ,xn) when the function is nonlinear,and where U=minimum at 

the optimum. 

Method 

The objective function may be defined by a simple arithmetic 

FORTRAN statement such as 

U=6.*X(l)*(l.-X(2))-5.*(l.-X(3))*X(4) 

Input Variables 

X(I) the current values of the independent variables 

Output Variables 

U the value of the objective function corresponding to the input 

X(I) variables 

How to Set Up Subroutine UREAL 

The following cards mu st be punched by the user: 

SUBROUTINE UREAL(X,U) 

DIMENSION X(l) 

U= arithmetic function 

RETURN 

END 

A more complex analysis to define the value of U may require more 

complicated coding or additional subroutines. 

Miscellaneous 

8 

If additional data is required to perform the analysis,the necessary 

READ ststements should be inserted in the MAIN program and the data transferred 

from MAIN to UREAL through labelled COMMON bloc ks. Where possible,the user 

should include co~ditional STOP's in his coding to prevent invalid results 

from being returned to the optimization procedure. 
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APPENDIX 

Octal values are converted under 0 specifications. 

Ow 

w is an unassigned integer designating the total number of characters 

Example: 

in the field. The input field may contain a maximum of 20 octal 

digits. Blanks are allowed and a plus or minus sign may precede 

the first octal digit. Blanks are interpreted as zeros and all 

blank field is interpreted as .minus zero. A decimal point is not 

a 11 owed. 

The list item corresponding to the Ow specification should be an 

integer. 

REl\D ( 5 , 1 0) J , K 

10 FORMAT (010,02) 

Input Card 

.37373J37]],~ 

\ " 10 2 

Input Storage (octal representation): 

J 00000000003737373737 

K OOOOOOG0000000000044 
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SUBROUTINE BABO (A,ABtFtYtXtXXtFFtYYtIA•C•M,NtCOFtRtMAX,LOGYt(MtOB 
lJt!DATAtYCtIAV,XY,JCtXOBtDXtFMtSFtAYtDtNLINtMTERMtNOBJtIDtNFEASt~A 
2tNNONtIFNl 

c 
c 
C THIS SUBROUTINE USES BOOLEAN ALGEBRA TO REPLACE ALL THE CONSTRAINTS 
C BY A SINGLE RESOLVENT. 
C A SEARCH FOR THE OPTIMUM IS ~ADE BY BRANCH AND BOUND METHOD. 
c 
c 

DIMENSION YC(Mtllt Sf(Ntl)t AY(MTERM•ll• DX(ll• XOB(ll• XY(l)t JC( 
lllt COF(Mtll• B<llt 09J(1lt Ff(llt A(M~Xtllt AB(MAX,ll• F<ll• Y(l) 
2• X(l)t XX{l)t YY(l)t CM(M,l)t FM(IAVtl)t IFN<Ntllt D(M,llt LOGY(l 
3), ID(ll 

DIMENSION KA(NNON,ll 
DIMENSION IAIMAX,ll 
LOGICAL XYtXX,FtLOGY 
IF (!DATA.NE.I) GO TO 4 
WRITE (6,29) 
WRITE (6,3Gl N,M 
WRITE {6,31) NLIN,MAX,IAVtC 
WRITE !6t28) NOBJ,MTERM 
WRITE !6,32l 
DO 1 I= 1 , ~1 
WRITE (6t33l ((OF(I,J),J=ltN) 

1 CONTINUE 
vJRITE (6,34) 
WRITE (6,35l (B(I J,I=l,Ml 
IF (NOBJ.EQ.ll GO TO 2 
WRJTF U,.~I) l CORJ( T), I=l •Nl 
GO TO 3 

? CONTINUE 
WRITE (6,37l 

3 CONTINUE 
4 CONTINUE 

DO 5 KE=l'N 
DO 5 KW=ltMAX 
IFN(KEtKWl=0000C0000000000000008 

5 CONTINUE 
C SUBROUTINE CANON IS CALLED WHICH INTURN CALLS SUBROUTINE SOLN TO 
C GET THE RESOLVENT OF THE SYSTEM OF CONSTRAINTS. 
c 

c 

CALL CANON (M,NtCOF•B,CM•IA•DtYY,MAX,AtJCtlAVtYC,FMtABtSF•AYtNLIN, 
JMTERMtKAtNNONtlFNl . . 

C SUBROUTINE BOOL IS CALLED TO SPLIT THE RESOLVENT INTO VARIOUS 
C LEVELS. 
c 

c 
DO 6 I= 1, ~AX 
YY(J)=O. 
DO 6 J::l,N 
AR( J ,J)=O. 
A(J,J)=O. 
IA(J,Jl=O 

6 CONTINUE 
7 CONTINUE 

K=O 



LCH=O 
J=l 

C X(l) JS GIVEN A VALUE OF 1 TO START WITH. 
X(J)=l• 
CALL VIOLAT cx,J,FF,N,KLM,FtLOGYtMAX,xx,xY,IFN•lA) 

11 

C THE FIRST LEVEL OF THE RESOLVENT IS SATISFIED ONLY IF FFCJl=O. 
IF CFF(J) .NE.O. l GO TO 9 
LCH=LCH+l 
IF CNOBJ.EQ.l) GO TO 8 
CALL OBJECT cx,J,Y,N,OBJ,XOB,DX) 

C ONLY THOSE VALUFS OF X WHICH GIVE THE OBJECTIVE FUNCTION VALUE 
C LESS THAN OR EQUAL TO C ARE ACCEPTED AS PARTS OF FEASIBLE SOLUTION 

IF CY<J>.GT.C> GO TO 9 
8 CONTINUE 

K=K+l 
A(K,J>=XCJ> 

9 X(Jl=O. 
CALL VJOLAT cx,J,FF,N•KLM•F•LOGY,MAX,xx,xY.IFN,IAl 
IF (FF(J)eNE.O.l GO TO 11 
LCH=LCH+l 
IF CNOBJ.EQ.ll GO TO 10 
CALL OBJECT cx,J,Y,N,OBJ,XQB,DX) 
IF (Y(Jl.GT.Cl GO TO 12 

10 CONTINUE 
K=K+l 
A(K,Jl::X(J) 
GO TO 14 

11 IF CK.EQ.O.AND.LCH.EO.Ol WRITE <6•38) 
IF CK.EG.C.AND.LCH.EQ.Ol CALL CXIT 

C IF NFTTHFR ZERO NOR ONE SURSTITUTED FOR XCll MAKES FIRST LEVEL 
C OF THE BOOLEAN CONSTRAINT FUNCTION ZERO THE WHOLE SYSTEM 
C IS INCONSISTANT AND NOFEASIBLE SOLUTION EXISTS. 

GO TO 14 
12 IF CK.NE.0.AND.LCH.NE.Ol GO TO 14 
C IF THE SOLUTION MATRIX IS EMPTY INCREASE THE UPPER LIMIT ON 
C OBJECTIVE FUNCTION VALUE. 
13 C=C+O•l*C+5.0 

GO TO 7 
14 CONTINUE 

L=l 
MN=J 
J=J+l 
JJ-==0 

15 DO 16 I=J,MN 
XCJ>=ACL'1l 

16 CONTINUE 
XCJl=l. 
CALL VJOLAT (X,J,FF•N•KLM•F•LOGY,MAX,XX•XY•IFN•IAl 
IF CFF(Jl .NE.O. l GO TO 20 
IF CNOBJ.EQel) GO TO 17 
CALL ORJECT 1x,J,Y,N,OSJ,XOB•DXl 
IF CYCJJ.GT .. Cl GO TO 20 
GO TO 18 

17 CONTINUE 
C IF THE OBJECTIVE FUNCTION IS NONLI~EAR UREAL IS EVALUATED. 

IF (J.EQ.N) CALL URE/\L (i<•Ul 
Y<J>=U 

18 CONTINUE 



JJ=JJ+l 
IF CJ.EO.N> YYCJJ)=YCJl 
DO 19 I=l tJ 
AB(JJ, I >=XC I l 

19 CONTINUE 
c 
20 X(J)=O. 

CALL VIOLAT (X,JtFFtN,KLM'F'LOGY,MAX,xx.xY,yFN,JA) 
IF <FF!Jl.NE.O.J GO TO 24 
IF CNORJ.EQ.ll GO TO 21 
CALL OBJECT cx,J,Y,NtOBJ,XOB,DX) 
IF (Y{Jl.GT.Cl GO TO 24 
GO TO 22 

21 CONTINUE 
IF (J.EQ.N) CALL UREAL cx,u1 
YCJl=U 

22 CONTINUE 
JJ=JJ+l 
IF CJ.EO.Nl YY(JJl=Y(J) 
DO 23 I=l•J 
ABCJJ, I l=X( I l 

23 CONTINUE 
'4 CONTINUE 

L=L+l 
IF CL.GT.Kl GO TO 25 
GO TO 15 

;;>5 CONTINUE 
IF (JJ.EQeOl GO TO 13 
K::JJ 
DO 26 MM= 1 .JJ 
DO 26 NN=l,J 
ACMM,NNl=ARC~M,NNJ 

26 CONTINUE 
IF CJ.EQ.Nl GO TO 27 
GO TO 14 

27 CONTINUE 

c 
c 

NFEAS=JJ 
RETURN 
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?R FORMAT (/,5X,*THE VALUE OF NOBJ •••••••••••••••••••••*tl5,//5 
lXt*THE VALUE OF MTERM ••••••••••••••-•••e••*,15) 

?Q FORMAT (//5X,*INPUT DATA FOR THE 0-1 PROBLEM*,/SX,*---------------
1---------------*l 

~O FORMAT (/,5X,*NUMBER OF DESIGN VARIABLESCN>.••••••••••••••*•15,//, 
15X,*NUMBER OF CONSTRAINTS(M) ••oeo••·········*'I5l 

31 FORMAT (/,5X,*NUMBER OF LINEAR CONSTRAINTS(NLINJ •••••••••• *,I5,//, 
15X,*THE VALUE OF MAX ••••••••••••••••••••••*'I5,;;,5X,*THE VA 
?LUE OF IAV •••••••••a••••••••••••*'15,;;,5X,*U 0 PER LIMIT ON 0 
3BJECTIVE FUNCTION(C>••••••••*'Eo.21 

32 FORMAT (//,5X,*THE COEFFICIENT MATRIX FOR THE CONSTRAINT EQUATIONS 
1 ••• COFCitJl*l 

33 FORMAT (//,5XtlP12El0.2l 
~4 FORM~T (//5X,* THE VALUES OF RTGHT HAND SIDF CONSTANTS ••• 31 Il*I 
35 FORM4T (//,5X,1Pl2El0.2l 
~6 FOR~AT (//,SX,*THE OBJECTIVE FUNCTION COEFFICIENTS •• OPJIJ)*,/,(//, 

15X'1Pl2Fl0.2) l 
~7 FORMAT (//,5X,*THE OBJECTIVE FUNCTION COEFFICIENTS •• *,//,5X,*NON-L 



lINEAR OBJECTIVE FUNCTION*) 
38 FORMAT (////tlOX,* NO FEASIBLE SOLUTION *l 

END 
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SURROUTINE VIOLAT !XtJ,FFtNtKLM,FtYtMAXtXXtXYtIFN,IA) 
c 

14 

C THIS SUBROUTINE CHECKS WHETHER THE RESOLVENT IS SATISFIED FOR A 
C PARTICULAR SET OF VARIABLE VALUES. 
c 

DIMENSION Fil)• X!l)t Y!llt FF(l)t XX!l) 
DIMENSION XY!l)t IFNtN•l> 
DIMENSION !A(MAXtll 
LOGICAL y,xy,xx,F 
K=KLM 
DO 1 KI=ltJ 
IF (XtKI>.EOelel XX(Kl>=•TRUE. 
IF (X(KI > .EQ.O.) XX!KI >=.FALSE. 

l CONTINUE 
C INITIALISE ALL 1 Y1 FUNCTIONS AS TRUE SINCE WHEN THIS •Y• GETS 
C INTO ANY INTERSECTION WITH ANY OTHER FUNCTION THE RESULTING 
C NATURE(EITHER TRUE OR FALSE> DEPENDS ONLY ON THE OTHER FUNCTION. 

DO 2 I= l t K 
Y(J)=.TRUE. 

2 CONTINUE 
C INITIALISE ALL •F•FUNCTIONS AS FALSE SINCE WHEN THIS •F• GETS 
C INTO UNION WITH ANY OTHER FUNCTION THE REULTING NATURE 
C !EITHER TRUE OR FALSE>DEPENDS ON THE OTHER FUNCTION 

DO 3 I= 1 'J 
F(IJ=.FALSE. 

3 CONTINUE 
JJ=J 
DO 14 I= 1 'K 
CALL CHOOSE !IFN,JJ,NtMAXtJ,IA) 
JKI=O 
DO 4 KJ=l•J 
IF (IA(I,KJl.NE.O> GO TO 5 

4 CONTINUE 
GO TO 13 

5 CONTINUE 
DO 9 IJ=l•J 
IF ( I A ( I , I J l • E Q. ll GO T 0 7 

C -1 IN THE FUNCTION DENOTES A NEGATIONAND HENCE CHANGE.Te TO .F. 
C ANO VICE VERSA. 

IF (JA(I,IJl.E0.-1> GO TO 8 
IF (IA! I, IJl .EQ.0) GO TO 6 
Y!Il=.FALSE. 
GO TO 12 

6 XY(IJl=.TRUE. 
GO TO 9 

7 XY(IJ>=XX(JJ) 
GO TO 9 

R XY(IJJ=.NOT.XX(IJl 
9 Y!Il=Y(IJ.AND.XY(!J) 

IF !Y(!)l lOtll 
10 CONTINUE 

F(J)=.TRUE. 
GO TO 15 

11 CONTINUE 
1? F(Jl=F(Jl.8R.Y(Il 

GO TO 14 
1 3 CONTJ NUE 

FCJJ=.FALSE. 
14 CONTINUE 



15 CONTINUE 
IF <F<J)l 17tl6 

16 FFCJl=O. 
RFTURN 

17 FF<J>=l• 
RETURN 
END 
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r 
'-

C THIS SUBROUTINE DETERMINES THE LINEAR OBJECTIVE FUNCTION VALUE. 
c 

DI MENS I ON DX ( 1l t XOB ( 1l ' OBJ ( 1) ' X ( ll ' Y ( 1l 
CONS=O. 
DO 1 I= l t N 
IF COBJ(Il.LT.O.) CONS=CONS+OBJCil 
XOB< I l=ABS(ORJ( Ill 

1 CONTINUE 
Y(Jl=CONS 
DO 4 I=], J 
IF COBJ<Il~LT.O.l GO TO 2 
DX ( I l = X < I l 
GO TO 3 

:? DX< I l=I.-X( I l 
'3 CONTINUE 

Y<Jl=Y(Jl+XOB( I l*DX< 1 l 
4 CONTINUE 

Y(Jl=Y(Jl+OBJ(N+ll 
RETURN 
END 
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c 
C THIS SUBROUTINE UETERMINES THt VA~lOUS LtVELS OF THt KES0LVENT• 
C STARTING FROM THE 1 N1 TH VAR19LE ELIMINATIONS ARE MAUE 
C SUCCESSIVELY TO ONE VARIA~LE. 
c 

DIMENSION AACMAX,1>, ACMAx,1>, C(ll, oc1J, IFNCN,1l, IACMAXtll 
INTEGER c,D 
COMMON /BOSO/ L 
K=L 
KLM=K 
JJ=N 
CALL ASEMBL CA,IAtIFN,NtMAX,K,JJl 
GO TO 2 

1 CONTINUE 
CALL ASEMBL (A,IA,IFNtN,MAX,KtJJl 

2 CONTINUE 
IF CJJ.EQ.ll GO TO 38 
KK=O 
KL=O 
DO 5 I= 1, K 
IF CACJ,JJll 3,5,4 

3 KL=KL+l 
DCKL>=I 
GO TO 5 

4 KK=KK+l 
CCKKl=I 

"' CONTINUE 
IF CKK.EQ.K.OR.KL.EQ.Kl GO TO 39 
IF CKK.EQ.O.AND.KL.EQ.Ql GO TO 17 
IF CKK.EQ.O.OR.KL.EQ.Ol GO TO 13 
I=O 
DO 9 L=l,KK 
JL=CCL) 
DO 8 LL=l,KL 
JLL=D ( LLl 
I=I+l 
KU=JJ-1 
DO 6 J=l,KU 
AACI ,Jl=ACJL,Jl+A(JLLtJI 
IF CAA(l,J>.E~.o •• AND.A(JL,Jl.Nt.o.J bO TO 7 
IF CAACI,J.l.EQ.2.l AA(J,Jl=l• 
IF CAACI,Jl.EQ.-2.l AA(l,Jl=-1. 

6 CONTINUE 
GO TO 8 

7 CONTINUE 
IF CK.EQ.2l GO TO 10 
I=I-1 

8 CONTINUE 
9 CONTINUE 

GO TO 12 
10 CONTINUE 

DO 11 J=l,JJ 

11 co.~n I ~LIE 
12 CONTINUE 

MN= I 
GO TO 23 

13 IF (KK.C:Q.Ol GO TO 19 



MN=O 
DO 16 J=ltK 
DO 14 I= 1, KK 
IF (J.EQ.C( I)) GO TO 16 

14 CONTINUE 
MN=MN+l 
DO 15 IJ=l,JJ 
AA(MN,IJ>=A(J,IJl 

15 CONTINUE 
16 CONTINUE 

GO TO 28 
17 CONTINUE 

DO 18 I=l,K 
DO 18 J=l,JJ 

18 AACI,J>=A(I,Jl 
GO TO 28 

19 MN=O 
DO 22 J=l,K 
DO 20 I=l,KL 
IF (J.EQ.DC I)) GO TO 22 

;>O CONTINUE 
MN=MN+l 
DO 21 IJ=l,JJ 
AA<MN,!Jl=A(J,IJl 

21 CONTINUE 
?2 CONTINUE 

GO TO 28 
?":\ CONTINUE 

DO 27 I=ltK 
DO 24 J=l,KL 
IF (I .EQ.D(J) l GO TO 27 

24 CONTINUE 
DO 25 J=ltKK 
IF (J.EQ.C(J)) GO TO 27 

?5 CONTINUE 
MN=MN+l 
DO '?.6 J=l,JJ 
AA(MN,Jl=A(J,Jl 

26 CONTINUE 
?7 CONTINUE 
28 CONTINUE 

KU=JJ-1 
DO 32 LJ=ltMN 
KJR=LJ+l 
IF (KJR.GT.MN) GO TO 32 
DO 31 I=KJR,MN 
DO 29 J=l,KU 
IF CAACLJ,Jl.EQ.AA(J,J)) GO TO 29 
GO TO 31 

29 CONTINUE 
DO 30 J=l,JJ 
AA(I,,J)=O. 

~O CONTI~!UE 
~ 1 C 0 N T I ~,: U F 
"12 CONT I f\!UE 

KFJ=G 
DO 36 1:.: 1 ,MN 
DO 33 J=l,JJ 
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IF CAA(J,J).EQ.O.> GO TO 33 
GO TO 34 

33 CONTINUE 
GO TO 36 

34 CONTINUE 
KFJ=KFJ+l 
DO 35 J=l,JJ 
AACKFJ,J>=AA(J,J) 

35 CONTINUE 
36 CONTINUE 

MN=KFJ 
DO 37 L=l,MN 
DO 37 J=l,JJ 
A(L,J>=AA(L,J) 

37 CONTINUE 
JJ=JJ-1 
K=MN 
IFCK.GT.MAX>GOTO 41 
CALL REDUCE (A,MAX,JJ,K,AA) 
GO TO l 

38 CONTINUE 
RETURN 

39 CONTINUE 
KU=JJ-1 

40 CONTINUE 
JFNCKUd>=O 
KU=KU-1 
IF (KU.EQ.Ol RETURN 
GO TO 40 

41 CONTINUE 
WRITEf6,'+2) 

42 FORMATC//,5X,*INCRFASE THE VALUE OF MAX*> 
CALL EXIT 
END 

19 



c 

SUBROUTINE CHOOSE (JFN,JJ,N,MAX,I,IA> 
DIMENSION IFN(N,1), lA(MAXtll 

C THIS SUBROUTINE CHOOSES A PATICULAR DIGIT OUT OF AN INTEGER 
C CONSTANT. 
c 

KG=O 
DO 1 J=ltJJ 
IT=IFN(JJ,Y) 
IT=SHIFT(ITtKGl.AND.3B 
IF (lT.EQ.2) IT=-1 
L=JJ-J+l 
JA(ltl)=IT 
KG=KG-2 

1 CONTINUE 
RETURN 
END 

20 
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SUBROUTINE CANON (MtNtAtHtCM,IA,o,cMAX,MAX,CO,JANtlAVtC,fM,Ab,SF,y 
l,NLIN,MTERM,KA,NNON,IFN) 

c 
C THIS SU~ROUTINE RtARRANGtS THE CUEFFICltNTS OF THt VARIAoLES Ii" 
C ORDER OF DECREASING MAGNITUDt. 
c 

DIMENSION AB(MAX,l), SF(N,11, Y(MTtRM,ll, CM(M,11, b(lJ, 1FN(N,1J, 
1 A ( M, 1 l , D ( M, 1 l , C MAX ( 1 l , F iv\ ( l AV, 1 J , CO< MAX, 1 J , C ( i'"\, 1 l , JA1\J ( 1 J 

DIMENSION IA(MAX,ll 
DIMENSION KA!NNON,ll 
COMMON /BOSO/ L 
DO 1 I= 1, M 
DO 1 J=l,N 
IF fA(l,Jl.LTeOel B(Il=B(Il+ABS(A(I,Jll 
CfI,Jl=ABSfA(I,Jl l 
DfJ,Jl=C<I,Jl 

1 CONTINUE 
DO 7 L= 1, N 
DO 3 I=l,M 
CMAX ( I I =C ( I , 1 l 
DO 2 J=ltN 
IF (((J,Jl.GT.CMAX<Il 1 CMAX(Il=C(I,JJ 

2 CONT I NUF~ 
~ CONTINUE 

DO 5 I= 1, M 
DO 4 J:.::ltN 
IF (C( I ,JI •Nt.CMl-\X( I l i GO TU 4 

C ( I , J l =-C ( I , J l 
GO TO 5 

4 CONTINUE 
5 CONTINUE 

DO 6 I= 1, M 
CM(J,Ll=CMAX(Il 

6 CONTINUE 
7 CONTINUE 

NNN=O 
IB=O 
DO 8 KL=l,M 
CI>. LL C 0 VER ( M , N , A , B , D , CM , MAX , I A , C 0 , JAN , I AV , C , F 1'vi , KL , AL ' I B 'SF , Y , 1''< L I i'i 

l,MTERM,NNN,KA,NNON,IFNI 
8 CONTINUE 

DO 9 I=l ,M,\X 
DO 9 J=ltN 
CO(I,JJ=O. 

9 CONTINUE 
MN=O 
uO 1 3 I = l , I 8 
DO 10 J=l,N 
IF {A.f3( I ,.J! .NE.a. l GO TO 11 

) 0 co~n I NUE 
CiO TO 13 

11 Mi'J=MN+l 
L:·O 1? J=l9M 
-:._ ·~J r :\ f\1 , J l ::: 1\ J 1 I , .J ) 

1 1 C 1J ·'< T I 11! U ;: 
L ::..f.~ 1\1 
CAL~ REDUCE ((0,MAX,N,L~Abl 

F~tTURN 
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SURROUTINE COVER (M,N•A•B•D•CM,MAX•IA•CO•JAN•IAV•C,FM•KL•AB•IB,SF, 
lY,NLIN,MTERMtNNN,KAtNNON,IFNl 

c 
C THIS SUBROUTINE FINDS ALL THE MINIMAL COVERS OF THE CONSTRAINTS. 
c 

DIMENSION SF(N,l)' YCMTERM'll' FM( IAV'1 l' CO<MAX'1)' C<M'1 l' JAN( 1 
]l• CM<M•Il• R(1), tFN<N•ll• A(M,ll• D(M•ll' AB<MAX•ll• IAtMAX,ll 

DIMENSION KACNNONtll 
IJ=l 
DO 1 LL=l•MAX 
DO 1 ML=l•N 
IACLL•MLl=O 

1 CONTINUE 
L=O 

2 ·L=L+l 
IF CL.GT.NJ GO TO 21 
DO 11 KMN=l•N 
KKK=KMN 
MO=l 
DO 3 IN= 1 'N 
JAN(INl=O 

3 CONTINUE 
NAM=l 
IF CL.GT.NJ GO TO 12 
I=L 
SUM=O• 
IF <CM<KLdJ.GT.B(Kll l GO TO 9 

4 SU~=SUM+CM(KL•Il 

J=l+KKK 
KKK=l 
IF CJ.GT.Ml GO TO 10 

5 TEST=SUM+CM(KL,Jl 
IF CTEST.GT.B(Klll GO TO 6 
I=J 
JAN(NAMl=I 
NAM=NAM+l 
IF <I.EO.Nl GO TO 11 
GO TO 4 

6 CONTINUE 
IA( IJ•L l=l 
IACIJ,Jl=l 
MAT=L+l 
DO 8 K=MATtI 
DO 7 MAN=ltNAM 
IF C~.EQ.JANCMANll IA<IJ,Kl=l 

7 CONTINUE 
8 CONTINUF 

IJ=IJ+l 
J=J+l 
IF CJ.GT.Nl GO TO 10 
GO TO 5 

9 IA< IJ,Y l=l 
IJ=IJ+1 
GO TO 2 

JO I=I+l 
IF ( 1 • GT. N l GO T 0 1 2 

11 CONTINUE 
GO TO 2 

12 CONTINUE 



L=O 
13 CONTINUE 

KKV=2 
L=L+l 
I F < L • E Q • N -l GO T 0 2 1 
I=L+l 

14 CONTINUE 
SUM=O. 
NAM=O 
SUM=CM(KltLl+CM(K~tll 
IF (SUM.GT.BCKLll GO TO 21 
NI=I+KKV 
IF (NI.GT.Nl GO TO 13 
DO 15 IN=l,N 
JANCIN)=O 

15 CONTINUE 
J=NI 

16 CONTINUE 
TEST=SUM+CMCKL,Jl 
NAM=NAM+l 
JAN(N/\Ml=J 
IF tTEST.GT.BtKLl) GO TO 17 
SUM= TEST 
J=J+l 
IF (J.GT.Nl GO TO 20 
GO TO 16 

17 CONTINUE 
IA( IJ,L l=l 
IA< I J,L+l l==l 
MAT=L+2 
DO 19 K=MAT,J 
DO 18 MAN=ltNAM 
IF CK.EQ.JAN(MANll IA(IJ,Kl=l 

18 CONTINUE 
19 CONTINUE 

IJ=IJ+l 
JANCNAMl=O 
J=J+l 
IF (J.GT.Nl GO TO 20 
GO TO 16 

20 CONTINUE 
KKV=KKV+l 
GO TO 14 

21 CONTINUE 
NJ=2 
NO=NJ-1 

22 CONTINUE 
DO 25 NN=ltNO 
DO 23 J=ltN 
IF (JA(NJ,Jl.EO.IAINN,Jll GO TO 23 
GO TO 25 

23 CONTINUE 
DO 24 J=l'N 
IA(NJ,J)::CI 

?4 CONTINUE 
25 CONTINUE 

MO::N.J 
NJ=NJ+l 

23 



IF CNJ.GT.IJl GO TO 26 
GO TO 22 

26 CONTINUE 

24 

CALL SOLN (M,N,IA'A'D'CM,CO'C'IAV,MAX,FM,KL,AB'IB'SF,y,NLIN'MTERM, 
lNNN,KA,NNON,IFNl 

RETURN 
END 



25 

SUBROUTINE SOLN (~,N,IA,A•D,CM,CO'C'IAV,MAX,FM'KL'AB•IB•SF,Y•NLIN, 

lMTERMtNNNtKAtNNONtIFN) 
c 
C THIS SUBROUTINE CONSTRUCTS THE RESOLVENT OUT OF THE MINIMAL COVERS 
c 

DIMENSION SF(N,ll• Y!MTERMtll• AB!MAX•ll• FM!IAVtll• CO!MAX•ll• CC 
lMtllt IFNCN•ll' A(M,ll• D!Mtl)• CMCMtll• IACMAXtll 

DIMENSION KACNNON•ll 
JA=l 
l=KL 
L=l 

1 CONTINUE 
K=l 

2 CONTINUE 
IF CDCitLl.EQ.CMCitKl) GO TO 3 
K=K+l 
GO TO 2 

3 IF CCMCitKJ.EQ.A!ItLll GO TO 4 
CM!ItK)=-CM( ItKl 
GO TO 6 

4 CONTINUE 
Cf-JC I tKl=-CMC I tK) 
DO 5 J=ltIAV 
FM(J,Ll=FLOATCIACJtKll 

5 CONTINUE 
GO TO 8 

6 CONTINUE 
DO 7 J=ldAV 
FM(J,Ll=-rLOATCIA(J,Kll 

7 CONTINUE 
8 CONTINUE 

L=L+l 
IF CL.GT.Nl GO TO 9 
GO TO 1 

9 CONTINUE 
L=l 
DO 13 KJ=ltIAV 
DO 10 KM=ltN 
IF CFMCKJtKMl.EQ.C.l GO TO 10 
GO TO 11 

10 CONTINUE 
GO TO 13 

11 CONTINUE 
DO 12 J=ltN 
CO!LtJl=FM(KJ,Jl 

12 CONTINUE 
L=L+l 

13 CONTINUE 
IF <I.GT.NLINl GO TO 14 
CALL LSTR (C0tABtIBtLtMAXtNl 
RETURl\J 

14 CONTINUE 

c 

CALL DECODE (COtMAX•N•LtABtIAtIBtFMtSFtYtIAVtMTERMtNNNtKAtNNONtlFN 
1 ) 
Rf:TUR~J 

END 



c 

SUBROUTINE ASFMRL (A,lA•IFN,N•MAX,KY,JJi 
DIMENSION A<MAX,1), IA<MAX,ll• IFN<N,ll 

26 

C THIS SUBROUTINE ASSEMBLES A NUMBER OF SINGLE DIGIT INTEGERS INTO 
C A SINGLE INTEGER CONSTANT. 
c 

DO 2 I= 1, KY 
K=O 
JT=77777777777777777777B 
KT=77777777777777777770B 
DO 1 J=l,JJ 
IF CA(J,Jl.E0.1.l IA(J,Jl=lB 
IF CA<l•Jl.EQ.0.) IA(J,Jl=OB 
IF CA< I ,J) .E0.-1. l IAC I ,j) =2B 
MT=SHIFTCIT,Kl.OR.38 
NT=SHIFT<KT,Ol.OR.IA(I,Jl 
NT=NT.OR.4B 
JT=Ml.AND.NT 
K=2 

1 CONTINUE 
IFN(JJdl=IT 

2 CONTINUE 
RETURN 
END 



SUBROUTINE REDUCE (COtMAX•N•L,BAl 
c 
C THIS SUBROUTINE SIMPLIFIES THE RESOLVENT. 
c 

DIMENSION CO<MAXtll• BACMAX•ll 
KJ=O 
DO 1 I= 1 'L 
DO 1 J=l,N 
BA(J,Jl=CO(J,Jl 

1 CONTINUE 
K=L 
DO 9 I= l • K 
DO 2 J=l•N 
IF CBAC I ,J) .NE.O. l GO TO 3 

2 CONTINUE 
GO TO 9 

3 CONTINUE 
IF ( I • E Q. Kl GO T 0 7 
JS=I+l 
DO 5 II=JStK 
DO 4 J=l•N 
IF (BA(ltJl.EQ.BA<II•Jl l GO TO 4 
IF CBACI,Jl.EQ.1 •• AND.RACIItJl.EQ.O.l GO TO 4 
IF (BA(J,Jl.E0.-1 .. AND.BACIItJl.EQ.O.l GO TO 4 
GO TO 5 

4 CONTINUE 
GO TO 9 

5 CONTINUE 
KJ=KJ+l 
DO 6 J= J 'fl! 
(()(KJ•Jl=BA! I ,J) 

6 CONTINUE 
GO TO 9 

7 CONTINUE 
KJ=KJ+l 
DO 8 J=ltN 
COCKJ,Jl=BA!I,Jl 

8 CONTINUE 
9 CONTINUE 

L=KJ 
RETURN 
END 

27 



28 

SURROUTINE DECODE ((0,MAX'N'L'AR,IA,IB,TN,SF,Y,IAV,MTERM,NNN,KA,NN 
lON,IFN) 

c 
C THIS SUBROUTINE RESUBSTITUTES THE NONLINEAR TERMS FOR THEIR 
C LINEAR SUBSTITUTES. 
c 

DIMENSION CO(MAX,1), TN(IAV,J), SF(N,ll' IFN(N,ll, Y(MTERM,llt AB( 
1MAX'1 J, 1A(MAX'1 l 

DIMENSION KA(NNON,ll 
L=L-1 
NJ=N 
DO 1 J=l,MAX 
DO 1 K=l'N 
IACJ,K)=O 

1 CONTINUE 
CALL CHANGE (N,~TERM,Y,NNN,KA,NNON) 

KI=O 
DO 27 I=l'L 
NJ=N 
KOUNT=O 
DO 2 JB=l,IAV 
DO 2 JC=ltN 
TN{JB,JC)=O. 

2 CONTINUE 
KN=O 
DO 26 J=J,MTERM 
DO 3 JB=l,N 
DO 3 JC=l•N 
SFCJR,JCl=O. 
CONTINUE 
IF (CO(I,Jl.EQ.-1.l GO TO 5 
IF CCO( I ,J) .EQ.O. l GO TO 26 
KOUNT=l(OUNT+l 
DO 4 JL=l•N 
SF(J,JLl=Y(JdLl 

4 CONTINUE 
KH=l 
GO TO 7 

5 CONTINUE 
KOUNT='<'.OUNT+l 
DO 6 JL=ltN 
SF(JL,JL)=-Y(J,JL) 

6 CONTINUE 
KH=N 

7 CONTINUE 
IF CKOUNT.EQ.ll GO TO 21 
JF {KH.EQ.NI GO TO 8 
JQ=J 
JR=J 
GO TO 9 

8 JR=N 
JQ=l 

9 CONTINUE 
DO 19 JH=J(J.JR 
D 0 1 0 L /', ::-= 1 , ~1 
IF tSF(.JH•LAl .. NF.O.l GO TO 11 

10 CONTI NU[ 
GO TO 18 

11 CONTINUE 



IF (KOUNT.EQ.2.0R.KOUNT.EQ.3) 15=1 
DO 17 JN=!StNJ 
DO 12 LA=l•N 
IF (IA(JNtLAl.NE.Ol GO TO 13 

12 CONTINUE 
GO TO 17 

13 CONTINUE 
KN=KN+l 
DO 14 JK=ltN 
TNCKN•JKl=SF(JHtJK.l+FLOATCIACJNtJK)l 
IF CTNCKNtJKJ.EQ.-2.l TN(KN,JKl=-1• 
IF CTNCKN•JKl.E0.2.l TNCKN•JKl=l. 
IF CTNCKN,JKl.EQ.O •• AND.SF(JHtJKl·NE.O.l GO TO 15 

14 CONTI~UE 
GO TO 17 

15 CONTINUE 
DO 16 JK=l•N 
TNCKNtJK)=O. 

16 CONTINUE 
IF (J.EQ.MTER~l GO TO 17 
KN=l<'.N-J 

17 CONTINUE 
18 CONTINUE 

IF CKH.NE.Nl GO.TO 20 
19 CONTINUE 
20 CONTINUE 

IS=NJ+l 
NJ=KN 
GO TC! 23 

21 CONTINUE 
DO 22 JN=l•N 
DO 22 JK=l•N 
IACJN,JKl=SFCJN,JKl 

22 CONTINUE 
GO TO 26 

23 CONTINUE 
IF CKOUNT.EQ.2) IS=l 
DO 25 MK=IStKN 
DO 24 ML=l•N 
IACMKtMLl=TN(MKtMLl 

24 CONTINUE 
25 CONTINUE 
?6 CONTINUE 

CALL STORf IIA,JS,J8•ItMAX,KN•AB,N•IFNl 
27 CONTINUF 

c 
c 

L=IB+l 
RETURN 

END 

29 



c 
C THJS SUBROUTINE STORES THE TERMS OF THE RESOLVENT FORMED OUT OF 
C NONLINEAR CONSTRAINTS. 
c 

DIMENSION IA(MAXtl), IFN(Ntl)t AB(MAXtl) 
DO 2 J=!StNJ 
IB=IB+1 
IF (JS.GT.MAX> GO TO 3 
DO 1 K=ltN 
AB<IBtK)=IA(J,K> 

1 CONTINUE 
2 CONTINUE 

GO TO 4 
~ CONTINUE 

WRITE (6,5) 
CALL EXIT 

4 CONTINUE 

c 
c 

RETURN 

30 

5 FORMAT llHl,5X,*NUMBER OF SOLUTIONS EXCEED DIMENSION*,//,5X,*INCRE 
!ASE THE VALUE OF MAX *) 

EMD 



31 

c 
C THIS SUBROUTINE STORES THE TERMS OF THE RESOLVENT FORMED OUT OF 
C LINEAR CONSTRAINTS. 
c 

DIMENSION CO(MAX,ll' AB(MAX,ll 
L=L-1 
DO 2 J=l,L 
IB=IB+l 
IF (JB.GT.MAXl GO TO 3 
DO 1 K=l,N 
AB(JB,K>=CO(J,Kl 

1 CONTINUE 
? CONTINUE 

GO TO 4 
3 CONTINUE 

WRITE (6,5l 
CALL EXIT 

4 CONTINUE 

c 
c 

RETURN 

5 FORMAT (IH1,5X•*NU~RER OF SOLUTIONS EXCEED DIMENSION*,//,5X,*INCRE 
lASE THE VALUE OF MAX *l 

END 



32 

SUBROUTINE BOUT CAB,YY,NFEAS'N,MAX) 
c 
( THJS SURROUTJNE PRINTS OUT THE FEASIBLE AND OPTIMUM SOLUTIONS. 
c 

DIMENSION ABCMAX,l), YYCll 
WRITE (6,4) 
IF CN.GT.15) K=l5 
IF (N.LE.15l K=N 
WRITE (6,5) (J,I=l,Kl 
DO 1 MM=l•NFEAS 
WRITE (6,6) YYCMMJ,CABCMM•NNJ,NN=l,Nl 

1 CONTINUE 
YQ:YY(l) 
DO 2 I=l,NFEAS 
IF <YY( I) .GT .YO) GO TO 2 
YO=YYCI) 

? CONT lr\!UE 
WRITE (6,7) 
IFCN.GT.15) K=l5 
IFCN.LE.15lK=N 
WRJTf (6,5) <I•I=l,Kl 
DO 3 I =l •NFEAS 
IF CYY<Il.NE.YO) GO TO 3 
WRITE (6,6l YYC!h(AR!hNNJ,NN=l,Nl 

-, CONTINUE 
RETURN 

c 
4 FOR~AT C1H1,11,1ox,*FEASIBLE SOLUTIONS*,/lOX,*------------------*l 
5 FOR~AT (//,gX,*U*'PX,15<*X(*'I2•*l*'3Xl) 
6 FOR~AT (//,zx, El3.5,151F5.0,3X ,,;, I5X,15(F5.0,3Xll 
7 FORMAT (//,lOX,*THE OPTIMUM SOLUT!ONCS)*,/lOX,*-------------------

1----*) 
END 



c 

SUBROUTINE CHANGE CN,MTERM,y,NNN,KA,NNONJ 
DIMENSION KACNNON,1J 
DIMENSION YCMTERM,11 

33 

C THIS SUBROUTINE DETERMINES THE NATURE AND THE NUM6ER OF VARIAbl~ 

C PRESENT IN A PATICULAR NONLINEAR TERM. 
c 

NNN=NNN+l 
DO 2 I=l,MTERM 
K=O 
DO 1 J=l,N 
IT=KA(NNN,IJ 
I T=SHI FT (IT ,K) .AND. 78 
IF (IT.EQ.2) IT=-1 
L=N-J+l 
Y(I,L>=FLOAT(ITl 
K=K-'3 

1 CONTINUE 
RETURN 

2 CONTINUE 
END 
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