
FUEL TRAJECTORIES OF NUCLEAR REACTORS 

by 

JEREMIAH CHUKWUECHEFULAM OSUWA, B.Sc. (Ife) 

A Report 

Submitted to the School of Graduate Studies 

in Partial Fulfilment of the Requirements for 

the Degree 

Master of Engineering 

McMaster University 

1979 



MASTER OF ENGINEERING 1979 McMASTER UNIVERSITY 
Hamilton, Ontario 

TITLE: Fuel Trajectories of Nuclear Reactors 

AUTHOR: J.C. Osuwa, B.Sc. (Ife) 

SUPERVISOR: Dr. A.A. Harms 

NUMBER OF PAGES: vii, 47 



ABSTRACT 

The fissile fuel inventory of an external stockpile that supplies 

a nuclear reactor is shown to be characterised by time dependent mean 

residence time of fuel in the core, the load factor for the reactor, and 

the breeding gains. The time dependent forms of these parameters have 

been considered and quantitative evaluations of the fissile fuel inventory 

have been carried out. The results show the substantial potentials of 

efficient reactors in extending the duration of fissile fuel for Nuclear 

industries. 

The inventory concept has also been extended to CANDU reactors and 

the result clearly depicts the effect of a net fissile fuel consuming 

system on the nuclear fuel reserves. 
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CHAPTER 1 

INTRODUCTION 

The fissile fuel inventory of a nu~lear reactor can be represented 

as a function containing time dependent parameters which include the mean 

residence time of fuel in the core and blanket, the capacity or load 

factor, and the breeding gains. An accurate assessment of the temporal 

variation of the bred fissile fuel therefore rests on the establishment 

of the time dependent forms of these determining factors. 

In this analysis, the fissile fuel inventory for a nuclear reactor 

based on earlier work, (Ref. 1 and 4), is presented and evaluations have 

been made for the case of asymptotic constant parameters. The time 

dependent forms of the mean residence time and load factor have been con

sidered from a practical point of view while rational approximations for 

the breeding gains have been made in other to provide an explicit integral 

form for the fuel inventory. The integrands involved however pose mathe

matical problems; further evaluation have therefore been based on a quasi

static scheme which incorporates the time dependent forms of the mean resi

dence time and the load factor. 

The analysis begins with a specification of the fissile fuel 

balance for a nuclear reactor and its peripheral support facility, followed 

by a detailed time dependent accounting of the fissile fuel production 

and consumption over the reactor life. The resulting function then repre

sents the fissile fuel trajectory from which we can obtain the net avail

able fissile fuel to supply other reactors. The inventory concept 
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has also been extended to CANDU reactors to demonstrate the effect 

of net fuel consuming systems on the available fissile fuel. 

A traditional problem encountered in the fissile fuel breeding 

analysis is the incorporation of various fertile and fissile nuclei into 

a sufficiently clear and tractable formulation, t.hi s problem has 

been circumvented by the use of the concept of 11 equivalent worth 11 of the 

various nuclei. This concept which is credited to Baker and Ross (1963) 

assigns some weight w., to a given nucleus to account for its contribu, 
tion to the maintenance of fissile fuel consumption processes in a given 

system. The mass which appears in the balance equation thus denotes the 

weighted sum of all the masses of the various nuclei in the fissile 

material. A detailed discussion of this .. equivalent worth 11 concept is 

listed in the Appendix. 



CHAPTER 2 

FISSILE FUEL INVENTORY 

The system of interest consists of a nuclear reactor 

and an associated stockpile of fissile fuel (Fig. 2.1 .). The fuel 

stockpile initially contains mi kg=of (equivalent) fissile fuel. 

Prior to the reactor start-up at t=O, me kg of this amount is removed 

to load the core. The fissile fuel inventory in the external stock

pile which will be designated by m~!f is then given by 

t 

J 
{(dm) 

dt 
0 c 

where (~~)c and (~~)b are the net fissile fuel flows to or from the 

external stockpile associated with the core and blanket processes 

respectively. 

Equation (1) is basically a statement of mass conservation 

which is solvable by different approaches depending on the extent 

of physical detail incorporated. As an initial observation, we note 

that the fissile fuel bred in the core or blanket is usually not 

(l) 

instantaneously available in its desired form because of reprocessing; 

accounting for this will require the insertion of time-delays in the 

mass flow. Except for very small fractions of process losses/retentions, 

these considerations do not change the total availability of the 

fissile fuel but only its availability in a preferred form. The time 

delays are therefore not included in the formulation and attention is 

focussed on the physical processes in the reactor that effect the pro-

-1-



duction and consumption of fissile fuel over the reactor life-time. 

In Eq. (1) the integrand terms are obtained by the following 

considerations. dm The net fissile fuel flows for the core term, (dt)c' 

consists of two main components: a constant equilibrium component and 

a transient component during the early part of the reactor life; this 

latter part accounts for the extra fissile fuel added to the core to 

compensate for the initial accumulation of neutron absorbing fission 

products. The core term can thus be written as 

4 

(2) 

The net fissile fuel requirements for the core at equilibrium is taken 

to be proportional to the fissile fuel destruction rate R(t). Hence 

where the core breeding gain Gc(t) is obviously a negative quantity. 

The transient contribution is taken to be a time dependent fraction of 
/ 

the equilibrium term and can be written as 

Here, T(t) is the transient-fraction function; it is required that 

T( t) -+ 0 as t-+ t . The core term can thus be written as 
00 

= Gc(t)R(t)[l + T(t)] 

(4) 

(5) 
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Fig. 2.1: A schematic illustration of fissile fuel flow between a 
nuclear reactor and its affilitated external stockpile 
of fissile fuel. 



The blanket is taken to consist of radial and axial regions 

each subject to a distinct fuel management scheme. The net fissile 

fuel production in each region is given in terms of a specified resi-

dence time J., by 

(dm) = mb,r(t) 
dt b, r J.r(t) 

and 

(dm) 
mb a ( t) 

= ' 
dt b,a J.a ( t) 

where the subscripts 11 r 11 and 11a 11 are used to identify the radial and 

6 

(6) 

(7) 

axial blankets respectively. The residence times J.r(t) and J.a(t) 

specify how long a blanket element remains in each of the blanket zones 

before being replaced. The blanket term in Eq. (1) is thus given by 

(8) 

The fissile fuel inventories mb,r(t) and mb,a(t) in the blankets 

appear with time according to their production rate by transmutation 

and removal rates with the specified residence times. · This requires 

that mb,r(t) and mb,a(t) in Eq. (6) and Eq. (7) satisfy the condition 

dmb ( t) ,r 
dt 

and 

(9) 

( 10) 
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where the net breeding gains Gb,r(t) and Gb,a(t) apply to the radial and 

axial blankets respectively. The initial conditions represent the initial 

fissile fuel mass in the blankets, usually in the form of heavily depleted 

fissile materials. 

Solutions of Eq. (9) and Eq. (10) are given by 

J 
dt 

mb,j(t) = exp(- A.(t) 
J J

t f dt Gb,j(t)R(t)exp( A.(t))dt + mb,j(O) 
0 J 

j = r,a ( ll.a) 

which can also be written as 

(ll.b) 

J dt I J dt + [mb,j(t)exp{ A.(t)) - Gb,j(t)R(t)exp( A·(t))dt]t=O} 
J J 

Substutition of Eq. (ll.b) into Eq. (1) gives the final form for 

the fissile fuel inventory of the external stockpile in terms of time 

dependent quantities to be specified; we thus have 

J
t mb r(t) mb a(t) 

mext(t) =mi-me+ {Gc(t)R(t)[l+T(t)] + A;(t) + ~a(t)} dt 
0 

=mi-me+ It {Gc(t)R(t)[l+T(t)] 
0 
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1 . f dt J J dt + :\a(t) exp(-. yn){ Gb,a{t)R(t)exp( :\a(t))dt 

f dt f f dt + [mb,a(t)exp{ :\a(t)) - Gb,a(t)R(t)exp( :\a(t))dt]t=O}}dt 

Equation {12) is the basic equation of interest and provides · 

for the evaluation of the amount of fissile fuel in the stockpile, on 

specification of the time dependent quantities. 

(12) 



CHAPTER 3 

ASYMPTOTIC PARAMETER SOLUTION OF THE FISSILE FUEL TRAJECTORY EQUATION 

The amount of fissile fuel available in the external stockpile 

can be obtained from Eq. (12) providing the various integrand functions 

are known. Before attempting to find time dependent forms for some of 

the integrand functions, a numerical test for the formulation can be 

provided by making rational approximations for the quantities involved. 

The functions Ar(t) and Aa(t) represent the length of time that 

a fuel element remains in the radial and axial blankets respectively. 

These time intervals may vary from a maximum of three to a maximum of 

six years respectively depending on the fuel management scheme and cycle 

lengths. If these times are designated as mean residence times, it is 

obvious that after a long time or after many cycles, the mean residence 

time will approach the maximum time that a fuel element can reside in 

the blanket and we can thus make the approximations Ar(t) = Ar and 

Aa(t) = Aa where Ar and Aa are the asymptotic residence times. 

The breeding gains are the ratios of the net fissile fuel pro

duced to the fissile fuel consumed as appropriate to the core and each 

of the blanket zones, and can be related to the breeding ratio BR(t) by 

(13) 

Under equilibrium condition which follows a relatively short initial 

transient period of the reactor life, these breeding gains are essentially 

constants. It is known( 3) that even during the pre-equilibrium period, 

-9-



the variations of the breeding ratio do not generally exceed ~10%. 

Such small variations suggest that these time dependent functions can 

be taken as constants. Hence we will use Gc(t) = Gc, Gb,r(t) = Gb,r 

and Gb,a(t) = Gb,a· 

The remaining functions to be specified are the destruction 

rate R(t) and the initial transient-fraction T(t). The function T(t) 

10 

accounts for such nuclear effects as fission product poisioning. These 

effects are of very short duration when considered on the time scale 

of years and,. in addition, in terms of the total reactivity capacity 

of the core, this fraction is not predominant. The approximation to 

be made here is then l + T(t) ~ l. The variation in the fissile fuel 

destruction rate will be incorporated by the introduction of the station 

load factor L(t) defined by 

R(t) = RL(t) ( 14) 

where R is a constant fissile fuel destruction rate. The load factor 

can vary typically from a low of about 0.3 in the first year of opera

tion to attain an equilibrium value of about 0.75 after one or two 

refuelling periods. Using the functions as specified above Eq. (12) 

reduces to 

( 15) 



For the present purpose the asymptotic value of the load 

factor will be used thus enabling us to write L(t) = L. This reduces 

Eq. (15) to the simple form 

m t(t) = m. - m + [Gc + Gb + Gb a]RLT ex 1 c ,r , 

+ [mb,r - ArGb,rRL][l - e-t/Ar] 

+ [mb,a - Aa Gb ,aRL] [1 - e -t/Aa] 

11 

(16) 

Further evaluation requires typical values for the parameters 

contained in Eq. (16) and the most relevant and complete data available 

for this purpose are those for the Clinch River Breeder Reactor( 4) which 

are contained in Table I. If for reasons of algebraic convenience we 

let mi =me, the use of the data in Table I leads to 

t/6 ( t/3 mext(t) = 66.0t- 702(1 - e ) - 198 1 - e ) 

Equation (17) is the asymptotic fissile fuel trajectory equation with 

the graphical form shown in Fig. 3. 1. 

(17) 
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TABLE I 

Parametric Values for the Calculation of Net Fissile Fuel F.(lQws". 
corresponds to those for the Clinch River Breeder Reactor. 5) 

The data 

Parameter Numerical Value Used 

Total breeding gain Gc+Gb,r+Gb,a BR-1 = 0.22 

Equilibrium residence time for radial blanket, Ar 6 yrs 

Equilibrium residence time for axial blanket, Ar 3 yrs 

Radial blanket breeding gain, Gb,r .39 

Axial blanket breeding gain, Gb,a .22 

Constant fissile fuel destruction rate, R 400 kg/y 

Equilibrium load factor, L .75 

Refuelling Interval, tc Annual 

Equilibrium reload fraction for axial blanket, aa 1/3 

Equilibrium reload fraction for radial blanket, ar l/6 

Blanket shuffling in+out 

Initial fissile fuel in radial blanket, mb,r ~o 

Initial fissile fuel in axial blanket, mb,a ~o 



CHAPTER 4 

TIME DEPENDENT PARAMETERS 

4.1 Time Dependent Average Residence Time for a Reactor Fuel 

The objective in this section is to obtain the average resi

dence time for all the fissile fuel fed into a reactor core up to and 

including those in the core at any point in time of the reactor life. 

The formulation will be based on fuel management scheme which allows 

replacement of some fuel bundles during each of many refuelling periods. 

In the CRBR( 2) for example, l/3 of the core fuel assemblies are replaced 

on a yearly refuelling basis. In this case all the initial fuel load 

are replaced at the end of the third year. During the next refuelling 

period the whole one-third of the core fuel used for the first refuelling 

is now replaced and this sequence is maintained for the subsequent 

cycles. 

It is important to note that the result we shall obtain for 

the core will be generally true for average residence times in the 

blanket regions since the difference in the refuelling schemes are 

primarily due to the fraction of fuel replaced in each cycle, and the 

cycle lengths which ar.e specified quantities. 

If we now adopt a method of lumping together all fuel bundles 

replaced in each cycle, we shall have 3 lumps of fuel for the first 

core load of the above example. The number of fuel lumps then corre-

spends to the number of refuelling periods required to replace all the 

initial fuel loads as illustrated schematically in Fig. 4.1. 

-14-
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In the formulation the following parameters will be employed: 

tc: Reactor refuelling time interval specified. 

N
0

: Number of refuelling periods or cycle required to replace all 

initial fuel loads; this is related to the fraction a of the 

core fuel assemblies replaced each time by N
0 

= 1/a. 

t: Point in time of the reactor life. 

N: Number of completed cycles at time t. 

16 

i(t): Average residence time for all the core fuel used by the time t. 

A notion for the value of I(t) can be obtained through the 

following considerations. Since all initial core load remains in the 

reactor till the first refuelling time t , this specifies a lower bound c 

for the average residence time while the upper bound is determined by 

the number of cycles N
0

, required to replace all the initial loads. 

Hence, 

t < I( t) < N t c 0 c ( 18) 

A bookkeeping procedure which counts all the fuel lumps that 

have been used in the core at the end of each cycle and the total time 

they have spent in the core is shown in Table II. In Table II, the 

average residence time for all the fuel elements that have been used 

and removed from the core together with those in the core during each 

of the refuelling periods have been obtained from the ratio of the 

cumulative time to cumulative number of fuel lumps in the storage 

bays and core. We can thus obtain directly from the last column of 

Table II a general form for the average residence time I(t) and this 

is given by 



TABLE II 

Fuel 11 lumps 11 used during the operation of a reactor in which one-third of the total core fuel is replaced 
per cycle. 

No. of cycles or refuelling 1 2 3 4 5 6 7 8 
periods (N) 

Time ( tc yrs) 1 2 3 4 5 6 7 8 

No. of fuel lumps in core 3 3 3 3 3 3 3 3 
(No) I 
Time for various fuel lumps 1 '1 ' 1 2' 2' 1 3' 2' 1 1 ,3' 2 2 '1 ,3 3 '2' 1 1 ,3 '2 2 '1 '3 
in core (t yrs) c 
No. of fuel lumps in storage 0 1 2 3 4 5 6 7 
bay 

Time for various fuel lumps 0 1 1 '2 1,2,3 1,2,3,3 1 ,2,3,3,3 1,2,3,3,3,3 1 ,2,3,3,3,3,3 
in storage (\ yrs) I 
Cumulative No. of fuel lumps 3 4 5 6 7 8 9 I 10 
in core and storage bay ! 
Cumulative time (tc yrs) 3 6 9 12 15 18 21 I 24 I 
Average residence time of 1 1.5 1.8 2.0 2.14 2.25 2.33 i 2.4 

1 each fue 1 1 urnp at the end of I each cycle (t yrs) c I 

N 

N 

N 
0 

N-1 

N +N-1 
0 

N
0 

N 

N
0 

N 
N +N-1 

0 

'-1 



"f( t) 
N

0 
N 

= =N -=-+--,-,-N ---::-1 
0 

Since the number of cycles N are related to the time t and 

the cycle length tc by N = t/tc we then have 

I(t) 

The average residence time "f(t) thus depends on the fraction of 

( 19) 

(20) 

fuel N
0
-l replaced at the end of each cycle and the refuelling time 

tc. To obtain i(t) in terms of the fraction a, of the fuel assemblies 

replaced in each cycle we make the substitution 

and this leads to 

lt c t 
"f( t) a (21) = l t+ (- -l)t a 

i.e. 

"f( t) 
tc t 

(22) = t + (l- a)t c 

18 



For the case where l/3 of the fuel is replaced in each cycle on a 

yearly refuelling basis the average residence time of all the fissile 

fuel used at any time t is thus given by 

t ( t) = ~-=-=-=-~~-::-= 0.333t + 0.6667 (23) 

In Table III the values of I(t) given by Eq. (23) at the end of each 

year of the reactor operation are shown. The values obtained in 

Table III correspond to those in Table II as it should, since the 

model for our formulation was based on the same refuelling conditions, 

and the average residence times of Table III have been calculated at 

times t corresponding to successive cycle periods used in the model. 

This calculation thus crosschecks that the final form of the average 

residence time given by Eq. (22) agrees with the counting procedure 

adopted in Table II. 

It is obvious from Eq. (22) that the average residence time 

will vary for different values of cycle length t , even for the case c 

when the same fraction a,offuel is replaced in each cycle. These varia-

tions are shown in Fig. 4.2. The maximum value of the mean residence 

time corresponding to t = oo for each va 1 ue of tc is equa 1 to tc/ a. 

4.2 Time Dependent Load Factor 

The load factor as noted earlier can vary from 0.3 in the early 

cycles to 0.75 during the equilibrium cycles. In the first one or two 

cycles the fissile fuel loadings in the reactor can be set to provide 

19 



20 

TABLE III 

Sample values of mean residence time of Eq. (23) 

t (yrs) I( t) (yrs) 

1 1 

2 1.5 

3 1.8 

4 2.0 

5 2.14 

6 2.25 

7 2.33 

8 2.4 

9 2.46 

10 2.5 
co 3.0 
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Fig. 4.2: Time dependent mean residence time of fuel in a reactor 
core in which one-third of the core fuel is replaced per 
cycle. The tc denotes cycle length. 



sufficient excess reactivity for 128 full power days of operation. 

For a cycle length of 366 days, this will correspond to a load factor 

of 128/366 or 0.35 . In the subsequent cycles the fissile fuel loading 

may have enrichment capable of providing 275 full power days of operation 

corresponding to a load factor of 0.75. The load factor thus varies 

from cycle to cycle in a stepwise manner shown in Fig. 4.3. 

It is important to note that the fuel burnup will vary accord

ingly as the load factor changes. Since higher load factor requires 

higher fuel enrichment, the fuel burnup will therefore increase with 

1 oad factor. 

One form of time dependent load factor that can be used is to 

approximate the stepwise variations by a linear function which simply 

1 eads to 

fc + at , 
L(t) =(constant, 

t ~ t 

t > t 
00 

(24) 
00 

where too denotes the time at which the load factor at tains a constant 

value. The load factor in the form of Eq. (24) obviously introduces 

as much errors as indicated in the shaded portion of Fig. 4.3. A more 

accurate form of the load factor can be obtained by the use of the 

Heaviside function which precisely defines a step function by the 

relation 

s(t-t') = { 
1' 
0, 

t > t I 

t ~ t' (25) 

22 
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We can immediately write the load factor as 

L(t) = c + xe(t-t1) + ye(t-t2)+ 

N 
= c +I a.e(t-t.) 

i =1 1 1 

(26) 

where c is the initial load factor and a1=x, a2=y etc., are the incre

ments in the load factor at times t; up to the equilibrium value. 

24 



CHAPTER 5 

MATHEMATICAL ANALYSIS OF THE FUEL TRAJECTORY EQUATION 

5.1 Detailed Integ~al Analysis 

With the time dependent forms of the average residence time and 

the load factor obtained, we can now proceed with a more rigorous 

mathematical evaluation of the fuel trajectory of Eq. (12) which is 

of the form 
m ( t) 

= m. - m +I {Gc(t)R(t)[l+T(t)] + ~'{t) 
1 c r 

m ( t) 
+ b,a }dt "a ( t) 

(27) 

where the parameters are as previously defined, and the fissile fuel 

inventories mb,r(t) and mb,a(t) in the two blanket regions are given by 

dt r I dt mb,j(t) = exp(- I f(t)) J Gb,j(t)R(t)exp( A.j(t))dt + mb,j(O) 
(28) 

j = r,a 

The approximations used in the asymptotic parameter calculations 

for the breeding gains G (t), Gb. (t), Gb (t) and the transient fraction c , r ,a 

function T(t) will be retained for the same reasons that their variations 

are very small and non predominant. Hence [1 + T(t)] will be approxi-

mated by unity and the breeding gains taken as constants. 

We now require to evaluate mb .(t) analytically from Eq. (28) ,J 

before substituting into Eq. (27). Using the average residence time 

given by Eq. (22) and the load factor of Eq. (26) we can then write 

Eq. (28) as 

-25-
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at+ (1-a)t Jt 
mb .(t) = exp(-J t t c dt) {Gb .R[c+L:a.e(t-t.)] ,J c ,J l l 

at+ (2-a)t 0 (29) 
exp(f t tc c dt)}dt + mb,j(O) 

For further simplification we will base our calculation on the data 

available on Table I for the CRBR and we can thus take the cycle 

length to be one year. Writing (1-a) as swill then lead to 

mb .(t) = exp(-f (a+s/t)J\b .R{c+l:a.e(t-t.)} ,J ,J l l 

0 

exp(f(a+s/t)dt)dt + mb .(0) ,J 

+ mb .(0) 
,J 

(30.a) 

(30.b) 

(30.c) 

From the property of the Heaviside function e(t-t;) has a value equal 

to unity if t>t; but zero otherwise and this allows us to write 

(31) 

For the purpose of simplifying the notations, the subscript j has been 

omitted from a and s which represent the fraction of fuel replaced per 

cycle in each of the blanket regions. 

In Eq. (31) the second term in the bracket can be broken into 

two terms and the equation then reduces to 



+ mb . ( 0) ,J 

Equation (32) accurately describes the fissile fuel inventory in the 

blanket regions, but we are now faced with the problem of integrating 

function of the form 

F(t) = J\att6dt 

0 
where a and B are non-integers. 
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(33) 

Further evaluation of Eq. (32) involves the use of hypergeometric 

functions and ultimately leads to infinite series solutions. Rather than 

pursuing this solution formalism we undertake some specific approaches 

whidh lead to more tractable representations and systems descriptions. 

5.2 Quasi-Static Solution of the Fuel Trajectory Equation 

In order to study the effect of the time dependent forms of 

the mean residence time and the load factor we will adopt a quasi-static 

approach aimed at improving the result obtained for the asymptotic 

parameter solution.of the fissile fuel trajectory equation. This requires 

that instead of the asymptotic values used for the mean residence time 

and the load factor in the evaluation of the external stockpile inventory, 

the appropriate values of the mean residence time and the load factor 

corresponding to the point in time at which the inventory is required 

will be used. 

We consider once more the specific case of a breeder reactor 

with a refueling interval tc, of one year and reload fractions, aa = 1/3 



for the axial blanket and ctr = 1/6 for the radial blanket. With the 

mean residence time given by Eq. 22 as: 

I"(t) = tct 
t + (1-ct}tc 

we then have 

and 

A. a ( t) = ~;-;;;-;---:t--::-:;:-:;;.333t + .667 

r ( t) = --:;-"0:~-=-t ,..---.,== 
r .1667t + .833 

(34) 

(35) 

(36) 

The operating requirements for annual refuelling are as shown in Table 

(IV). 

Using Eq. (26) for the load factor we then have 

L(t) = 0.35 + 0.2e(t-2) + 0.2e(t-3) 

t < 2 
(37) 

= 

t ~ 3 

For our case study the quasi-static fuel trajectory equation which 

follows from Eq. (16) takes the form 
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TABLE IV 

Operating and Fuel Performance Requirements for CRBR 

Cycle Number 

1 

2 

3 

4 

5 

Capacity Factor 
(full-power-days) 

0.35 {128 FPD) 

0.55 (200 FPD) 

0.75 {274 FPD) 

0.75 (274 FPD) 

0.75 (274 FPD) 

Maximum Allowable Burn-up Limit 
for Reload Core Assemblies Charged 

at the Start-of-Cycle 
(m WD/Tonne) 

80,000 

100,000 

125,000 

125,000 

150,000 
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mext(t) = [.35 + 0.2e(t-2) + 0.2e(t-3)]GRT 

t + {mb,a-Gb,a[.35+0.2e(t-2)+0.2e(t-3)]333 t+. 667 J 

{l-e-(.333t+.6667)} 

t + {mb,r- Gb,r[.35+0.2e(t-2)+0.2e(t-3) . 1667+. 833 } 
(38) 

{l-e-(.1667+.833)} ~ 

where G is the total breeding gain and all the other parameters are as 

previously defined. Substutitng the parametric values contained in 

Table I into Eq. (38) leads to the following result: 

30.8t- .33~~~~~67(1-e-(.333t+.667))-.166~!:~~3 
(1 _ e(l.667t-.833)), t < 2 

mext(t) = . 48.4t- .33~~~:~67(1-e-(.333t+.667)) 

- .1~~7~:833(1-e-(.1667t+.833)), 2~t<3 

66 t _ .66t (l-e-(.333t+.667)) 
.33t+.667 

- .1667il~833(1-e-(.1667t+.833)), t ~ 3 

(39) 

The graphical form of Eq. (39) is shown in Fig. 5.1 in which the effect 

of the discrete form of the load factor is quite pronounced with a 

higher load factor depicting a higher fuel destruction rate. 

Figure 5.2 is a comparison of the two results obtained in this 

work with the discrete space-time calculation by Paik et al. (5) for th-e 

CRBR case. 
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CHAPTER 6 

APPLICATION OF THE FUEL INVENTORY FORMALISM TO CANDU REACTOR 

6.1 Introduction 

In this section the fuel inventory formalism developed will be 

extended to CANDU reactors. First, we enumerate the various ways in which 

the fuel requirements of the CANDU which differ from those of other reactors can 

effect the formulation and results. In a CANDU reactor all the fissile 

fuel is accommodated in the core and no breeding blankets need be included 

in the formulation. The refuelling process in a CANDU is continuous and this 

implies that the spent fuel is being discharged at the same rate as fresh 

fuel is fed into the core. The fuel residence time in the core will there-

fore be determined by the refuelling rate. 

Since the CANDU is not basically designed to breed fissile fuel, our 

result should reflect the rate of depletion of an external stockpile of nat

ural uranium which supplies the fuel used for the continuous charging of the 

CANDU core, and to which is added only a smaller amount of fuel which acrews 

from the conversion of some fertile nuclei to fissile material inside the 

core. Thus, contrary to the present practice of storing spent fuel with the 

accumulated bred fuel in the storage bays, we assume that the bred fuel in its 

fissile feed "equivalent" form(lO) is added directly to the external stockpile 

to conform with the system of Fig. 2.1. 

6.2 Fuel Residence Time for a CANDU Reactor 

The continuous on power fuelling of a CANDU core proceeds in a 

calandria which contains 380 fuel channels. Each fuel channel contains 

12 fuel bundles which are continuously moved along the channel during 
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a refuelling operation. The most common fuelling scheme replaces roughly 

two thirds of the channel with fresh fuel at each refuelling. In one 

refuelling operation two alternate channels are continuously fed with 

fresh fuel bundles from opposite directions, while an equal number of 

spent fuel is discharged at the apposite ends of the channels. Figure 

6.1 shows a schematic form of the Calandria with an open section 

illustrating the fuelling directions in the channels. 

For the purpose of this analysis we assume that all the fuel 

bundles in a channel are replaced during a refuelling operation and 

that the fuel is fed at a constant rate through the channels. The 

length of each channel will be represented by l and the constant rate 

at which the fuel moves through each channel by U. The time taken by 

an element of fuel to move through the channel will then be given by 

>.' = l/u (40) 

There are 380 channels in the Calandria with n channels refuelled 

each day, where n is e~ual or greater than 2. After the first 

round of refuelling session each channel will be refuelled once in 

every 380/n daily operations. Except for the initial fuel bundles used to 

load the channels, all the fuel bundles used for refuelling will there-

fore have residence time given by 

A = 380 (T + A I ) 

n 

where T is the time interval between refuelling operations. 

( 41) 



FUEL CHANNEL 

FUELING DIRECTION 

FUEL BUNDLE 

THE CALANDRIA 
(CUT OPEN) 

Fig. 6.1: A CANDU Calandria showing fuel channels, a section 
of fuel bundles, and the directions of fuel move
ment during a refueling operation. 
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The fuel bundles used for the initial loading will reside in 

the core for some time between nA/380 to A. The mean residence time 

can thus be taken to be given by Eq. (41), an approximation which is 

more valid as the number of fuelling operations increases. 

6.3 External Stockpile Trajectory for a CANDU Reactor 

The rate of change of fissile fuel contained in external stock

ile that supplies a CANDU reactor is obviously determined by the amount 

of fuel fed into the core per unit time and the amount of bred fuel dis

charged per unit time from the core into the stockpile. As stated 

earlier we assume that all the bred fuel discharged goes directly 

into the stockpile; we can then write 

charge rate of fresh fuel + discharge rate 
of bred fuel 

(42) 

where mb(t) is the bred fuel discharged from the core in a refuelling 

session, and m
0 

is the amount of fuel fed into the core in each 

refuelling session, A is of course the mean residence time. 

To obtain the quantity of bred fuel discharged from the core, 

we note that mb(t) must satisfy the following condition inside the core: 

mb( t) 
= CR - >. , mb ( 0) = 0 

(43) 
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where R is the fissile fuel destruction rate in the core which is given 

by 

R = Jfiafi(r,E)~(r,E)drdE 
rE 

and C is the conversion ratio for the reactor which is defined by 

C _ production rate of fissile material 
- consumption rate of fissile material 

(44) 

(45) 

The solution of Eq. (43) directly gives the available bred fuel in the 

core as 

Using Eqs. (42) and (46) the fissile fuel inventory for the external 

stockpile is then 

dmext(t) mo -t/A} --:--:-- = - + CR{l - e dt A 

By direct integration we have 

m 
=- _q_t +CRt+ CRA(e-t/>._1) 

A 

(46) 

(47) 

(48) 

37 

Obviously the fissile fuel destruction rate R, determines the rate at 

which fuel is fed into the core to supplement it, and these two quantities 



can thus be set equal. Hence, 

Substituting Eq. (49) into Eq. (48) then leads to 

mo ( -t/A ) mext(t) = T (C-l)t + Cm
0 

e -1 (50) 

i.e. 

mext(t) l t/ 
---=-(C-l)t+C(e- "-1) m

0 
A 

(51) 

Equation (51) is the final form of the trajectory equation of an external 

stockpile for a CANDU reactor given in units of m
0

, the amount of fissile 

fuel fed into the core in one refuelling session. The graphical forms 

of Eq. (51) are shown in Figs. 6.2 and 6.3 for various values of A with 

constant values of 0.6 and 1.0 for the conversion ratio respectively, 

and in Fig. 6.4 for various values of C with a constant value of 1.0 yr. 

for the mean residence time. The two graphs cover typical ranges of 

mean residence time and conversion ratio that can characterize the system 

of interest. 
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CHAPTER 7 

CONCLUSION 

Starting with a relatively simple mass balance equation, the 

final basic fuel inventory equation for a nuclear reactor takes on a compli-

cated form. The first step in the solution of this equation which involves 

obtaining the forms of the time dependent reactor parameters that appear 

in the formulation has been successfully accomplished. However, a complete 

detailed evaluation of the inventory equation that incorporates the various 

forms of these parameters proved mathematically intractable due to the 

nature of the integrals involved. 

Two alternative solutions which are sufficiently instructive have 

been provided. One of these solutions is based on the asymptotic values 

of the various parameters involved as provided in a data for the CRBR. 

The second solution utilizes the forms of the mean residence time and the 

load factor obtained here in a quasi-static approach. In both cases, the 

results provide satisfactory information on the trajectory of an external 

fuel stockpile that supplies a nuclear reactor. The results also compare 

favourably with the discrete space-time calculation by Paik et al.(5) 

for the Clinch River Breeder Reactor. 

As is evident in these results, a breeder reactor is obviously a 

net fissile fuel consumer in the early stages of its life time but has 

an enormous potential of extending the duration of our limited fissile fuel 

which is a basic commodity for Nuclear Industries. 

An extension of the inventory concept to CANDU reactors provides 

a great deal of insight on the effect of net fissile fuel consuming systems 

-42-
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on the nuclear fuel reserves. The results obtained using various values 

of mean residence time and conversion ratios clearly indicates that fuel 

conservation strategy for such systems can be acheived by judiciously 

incorporating these two parameters in the fuel management scheme. 



APPENDIX 

11 EQUIVALENT WORTH'' OF REACTOR FUEL 

Suppose the fuel fed into a reactor were composed of only one 

type of fissile isotope (index j) and one type of fertile isotope 

(index j-1) which is a precursor of the fissile isotope j, we would then 

appropriately write 

{j-1) +neutron+ j 

and this would make the definition of fissile fuel particularly simple: 

the isotope j would be the fissile fuel, and the amount of fuel, mj' 

would be given by the amount of isotope j. A trivial consequence of 

(A-1) 

this assumption is that the fuel fed into the reactor would be indistinguish

able from the fissile fuel discharged from the reactor. 

The above "monoisotopic" concept of fissile fuel which enjoys a 

widespread application is clearly unrealistic since the predominant fissile 

feed isotope which is 235u has no fertile precursor. The· "equivalent worth" 

concept about to be discussed takes care of the consequent notational and 

conceptual difficulties of the real situation. Let {j-1) again denote the 

naturally occurring fertile fuel, then the fissile fuel isotope j is bred 

from (j-1) (as in Th 232-u233-cycle) so also can other higher isotopes j+l, 

j+2, etc. be bred (235u- 239Pu-cycle). Let nk be the atomic density of 

isotope k in the fuel' n5 representing 235u and let n be a fissile fuel 

composition vector 

(A-2) 

-44-



Since the fuel consumption and breeding processes affect the isotopic 

composition of the fissile fuel, the fissile feed fuel, nf' will differ 

in isotopic composition from the discharged fuel, nd: 

45 

i.e. (A-3) 

This makes direct comparison of amounts of fuel feed, mf' and discharged 

fuel md impossible; the definition of parameters based on amounts of 

consumed and produced fuel would thus be meaningless except for the case 

of "equilibrium composition" when nf = nd = iiequil (Ref. 10 and 11). 

This problem is overcome by the use of a gener~].ised notion of 
.,~.-

fissile fuel that is based on "equivalence weight factors" wi (ref. 10). 

defined for each isotope i. These factors account for the "worth" of 

the isotope i with respect to any one of the fuel isotopes taken as ref

erence isotope, preferably to the main fissile isotope, preferably the 

main fissile isotope. Thus taking 235u as the reference isotope, we 

then have w5 = 1. Then 1 kg of 235u would have the same worth as l/wi kg 

of isotope i if 

m5 = m.w. 
1 1 

(A-4) 

By the use of this concept the defirrition of fuel includes all the fissile 

and fertil~_j..s6f0Pe"s, occurring in the fuel cycle with (j-1) repres~nting 

the naturally occurring fertile isotope and the "fissile fuel" represented 

by all the other isotopes. The fissile fuel inventory, m, of a reactor 

or a stockpile containing m5kg of 235u, mi kg of isotope i etc. will be 

defined in terms of "Equivalent Inventory" of only 235u as 



m = m5 + L: w .m. 
i J J 

The reactor feed and discharge rates will be similarly defined as 

R = R5 + L: w . R . 
i J J 

The fissile fuel isotopic composition vector of Eq. (A-1) will now be 

replaced by 

The use of Eqs. (A-5) and (A-6) allows different inventories 

and rates to be compared and added to each other even for the case of 

different isotopic compositions since they are given in terms of 235u 

equivalent quantities. 
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(A-5) 

(A-6) 

(A-7) 

We note that the kind of 11Worth 11 has not been specified in the above 

discussion because of the generalized approach taken. The kind of worth is 

obviously not arbitrary but has to account for the worth of each isotope 

relevant in a given analysis. In thepresent study, the focus is on the 

amount of fuel that is consumed and produced by a reactor. The worth of 

each isotope is therefore determined by its contribution to the net amount 

of fuel in the stockpile: 

wj = relative mass of isotope j with respect to the 
mass of the reference isotope, 235u 

Hence, fissile fuel inventories, reaction rates, and transfer rates can 

be treated as if the fissile fuel were monoisotopic. 

(A-8) 
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