by

H. Moussadji, B. Bng.

A Thesis
Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirenents for the Degree Master of Engineering

MASTER OF ENGINEERING (1969) McMASTER UNIVERSITY
(Electrical Engineering)

Hamilton, Ontario.

TITLE: Solid State Speed Control of a Two Phase Generalized Machine
AUTHOR: Haim Moussadji, B.Eng. (McGill University)
SUPERVISOR: Professor C. D. diCenzo
NUMBER OF PAGES: vii, 86

Abstract

The voltage, current and torque equations of a two phase generalized machine are reviewed and the transformation are derived for the equivalent two phase commutator primitive of the three-phase slip-ring machine. The design of an SCR controlled inverter for speed variation of the two phase machine is presented and a method of comparing theoretical with practical values described.

ACKNOWLEDGEMENT

I am thankful for the guidance and encouragement of my supervisor Professor C. D. diCenzo and for the assistance and interest of Mr. J. M. Wylie in making this work possible. I wish to acknowledge the technical assistance given by Mr. B. Williams as well as the encouragement given by my wife, Mireille, who typed this thesis.

A special acknowledgement is made of the financial assistance given by the Canadian Westinghouse Company Limited in support of this work.

> TABLEOFONTENTS
Abstract ii
Acknowledgement iii
List of IJlustrations vi
Introduction 1
Chapter l. FQUATIONS OF A IWO PHASE GENERALTZED MACHINE 2
GENERAI 2
ROTATTNG AND STPATIONARY AXIS 3
THREE PHASE TO TWO PHASE IRANSFOMATION 8
THE THREX PHASE COMRUTATOR PHTMTTEVE 9
THREE TO TWO FHASE COMMUATOR TRANSFORWATION 15
TORGUE EQUATION 22
Chaptor 2. INVERTER DESIGN 24
GENERAT 24
SINGLE DHASE TNVERTER 24
SCR TURN-ORF MECHANISM 26
FORCED COMMUTATION 29
LC FORCED COMMUTATION 31
INVERTGR SPECIFTCATIONS 40
DEGIGN OF A 1.65 KVA INVERTER 42
Cnapter \%. TIMING AND TRTGGERING 46
GENERAL 46
GENERATION OF A SINGLE PHASE WAVERORMS 46
TWO BTT REGISTER 48
IOGIC EQUATIONS 51
the astable mujsivibrator usid as a clock 54
UJ'I PULSE TRIGGER CJRCUIT 58
GATT: ISOLATTON 61
GENERATION OF A STPPPED WAVEFORM 62
SUMMARY 70
Chapter 4. DJGITAL COMPUTER ANALYSIS OF INDUCTION
MACHJNES STARTING CURRENTS 73
GENERAL 73
RUNGA KUTITA METHOD 74
MFCHANTCAL PARAMETERS 75
ELECTRICAL PARAMETERS 77
RESULIS 78
Chapter 5. CONCLUSION 82
Appendix A ouTput powrir 84
Bibliography 86
LISTOFOLITUSTRATIONS
Fig. 1-1 Rotating system 4
1-2 Stationary system 4
1-3 SJip-Ring Primitive 6
1.4 Commtator Prjmitive 6
1-5 Three phase primitives 10
1-6 Three and Two phase equivalence 16
Fig. 2wl Single phaşe parallel capacitor commtated circuit 25
2-2 SCR waveforms for turn-off time measurements 27
2-3 Circuit to measure turnooff time of SCR 30
2-4 LC forced commation circuit 32
2-5 SCR commutated cut-off time 39
2-6 Flow djagram for obtaining the voltages and the currents of Fig. $2-4$ 37
Fig. 3-1 Two phase inverter circuit 47
3-2 Four mode inverter waveforms for two phases 49
3-3 Two bit register waveform 50
3-4 Two bit register block diagram 52
3-5 Logic equations 53
3-6 Overall logic realization 55
3-7 Astable multivibrator 57
3-8 UJT pulse trigger circuit 59
3-9 Overall block diagram 70
Fig. 3-10 Overall firjng circuit waveforms 71
3-11 Two phase bridge inverter 63
3-12 12 mode inverter waveforms 64
3-13 Synchronous recycling modulo 1.2 counter 66
3-14 Modulo 12 counter truth table 67
3-15 Overall logic realization 69
Fig. 4-] Block diagram for solving 3 simultaneous
non-linear equations 76
4-2 Block diagram for solving 5 simultancousdifferential equations 80
4-3 Phase currents versus External rotor resistance 81

INTRODUCTION

The speed of an induction motor can be controlled by; variation of the supply voltage, changing the number of poles, introduction of external rotor resistance, or varying the supply frequency. Variation of the supply voltage or changing the number of poles gives a very limited speed range and incorporation of rotor resistance is inefficient because of the large loss. Speed control using a variable frequency inverter is by far the most superior method.

In this thesis an SCR bridge inverter is designed for the provision of a two-phase variable frequency supply. The equations for a two-phase generalized machine are reviewed and transformation matrices developed to relate the more common three phase machine to the two-phase commutator primitive machine.

CHAMER ONE

EQUATIONS OT A TW PTASE GHNERMTZFD MACHINE

General:

The generalized machine is an assembly of standard and special components. It was first conceived by Professors D. C. White and H. H. Woodson fron the earlier work of Professor Gabriel Kron. Because of its flexibjity it can be used as any practical machine by appropriate connection of and supplies to its windings.

The theoretical treatmont starts from a consideration of the two phase slip-ring primitive and the trancformation leading to a two phase commator primitive.

The dynamic circuit theory is extended to cover the practical three phase slip ring and the transformation to a three phase commutator primitive. The latter is replaced by a two phase commtator primitive plus a zero sequence component.

Modification of the general equations to conform with the circuit configuration then yields the performance equations of an induction motor.

Primitive machines are essentially theoretical concepts and have no practical sienjficance since the compromise in their design attendant on their need to perform all tasks, means that they can do none well. However, such machines can be built and the two Westinghouse Generalized machines are practical examples.

Rotating And Stationary Axis :
Slip rings as well as a commutator can be interposed on the seme shaft of a rotor, and the equivalence of both requires that the overall flux distribution in both cases be identical at any instant in time.

If it is assumed that the flux distributions of the individual windings are sinusoidal then we can obtain the relationship between the rotating and the stationary systems as shown in Fie. l-1 and Fig. l-2.

$$
\begin{aligned}
& \phi_{r d}=\phi_{r \alpha} \cos \theta+\phi_{r \beta} \sin \theta \\
& \phi_{r q}=\phi_{r \beta} \cos \theta-\phi_{r \alpha} \sin \theta
\end{aligned}
$$

The above relationships can be expressed in matrix form

$=$| $\cos \theta$ | $\sin \theta$ |
| :---: | :---: |
| $-\sin \theta$ | $\cos \theta$ |

or

$\cos \theta$	$-\sin \theta$
$\sin \theta$	$\cos \theta$

where $r d$ and $r q$ define the fixed coils
$r \alpha$ and $r \beta$ define the rotating coils
If we include the stator windings as shown in Fig. $1-3$ and
Fig. 1-4 and consider the magnetomotive force to be equivalent, then matrix 1 expressed in terms of currentsbecomes

i_{1}
i_{2}
i_{3}
i_{4}

or

$$
I_{0}=C I_{n}
$$

i_{1}
i_{2}
i_{3}^{\prime}
$i_{i_{4}}^{\prime}$

where o stands for old and n stands for new,

FIG. l-l ROTATING SYSTEM

FIG. 1-2 STATIONARY SYSTEM

where $\quad C=$| 1 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 |
| 0 | 0 | $\cos \theta$ | $-\sin \theta$ |
| 0 | 0 | $\sin \theta$ | $\cos \theta$ |

and $\quad C^{-1}=$| 1 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 |
| 0 | 0 | $\cos \theta$ | $\sin \theta$ |
| 0 | 0 | $-\sin \theta$ | $\cos \theta$ |

The voltage relation can be deduced from the fact that the power flow in both machines is equal

$$
\begin{align*}
E_{n}^{\top} I_{n} & =E_{0}^{\top} I_{0} \\
& =E_{0}^{\top} C I_{n}
\end{align*}
$$

Transposing both sides

$$
\begin{gathered}
\left(E_{n}^{\top}\right)^{\top}=\left(E_{o}^{\top} C\right)^{\top}=C^{\top} E_{o} \\
E_{n}=C^{\top} E_{o}
\end{gathered}
$$

The next step is to establish interrelations between the winding impedances, which would satisfy the power invariance

$$
E_{0}=R_{0} I_{0}+p\left(L_{0} I_{0}\right)
$$

where $p=\frac{d}{d t}$
Substituting for E_{0} and I_{0} in equation 4 from equations 2 and 3

$$
\begin{align*}
& E_{n}=C^{\top} E_{0}=C^{\top}\left(R_{0} C I_{n}+p\left(L_{0} C I_{n}\right)\right) \\
& E_{n}=C^{\top} R_{0} C I_{n}+C^{\top} L_{0} C p I_{n}+C^{\top} p\left(L_{0} C\right) I_{n} \\
& E_{n}=R_{n} I+L_{n} p I+G_{c} \omega_{m} I
\end{align*}
$$

where $\quad R_{n}=C^{\top} R_{o} C$

$$
L_{n}^{n}=C^{\top} L_{0}^{0} C
$$

FTG. 1-3
THE SLIP RING PRTMITIVE

$$
G_{C} \omega_{m}=C^{T}\left(\frac{\partial}{\partial \psi}\left(\mathrm{I}_{0} C\right)\right) \frac{d \psi}{d H}=\left(\mathrm{m}^{\top} \mathrm{L}_{0} \frac{\partial C}{\partial \theta}+C^{\prime P} G C\right) \omega_{m}
$$

$$
\text { where } G=\frac{\partial I_{1}}{\partial \psi} \quad \text { and } \quad G_{c}=C^{T} G C
$$

For a machine with a uniform air gap the resistance and inductance matrices are given by

$R_{o}=$| R_{s} | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: |
| 0 | R_{s} | 0 | 0 |
| 0 | 0 | R_{r} | 0 |
| 0 | 0 | 0 | R_{r} |

$L_{0}=$| L_{s} | 0 | $-M \sin \theta$ | $M \cos \theta$ |
| :---: | :---: | :---: | :---: |
| 0 | L_{s} | $M \cos \theta$ | $M \sin \theta$ |
| $-M \sin \theta$ | $M \cos \theta$ | $\mathrm{~L}_{r}$ | 0 |
| $M \cos \theta$ | $M \sin \theta$ | 0 | $\mathrm{~L}_{r}$ |

The resistance matrix for fixed coil then becomes

1	0	0	0
0	1	0	0
0	0	$\cos \theta$	$-\sin \theta$
0	0	$\sin \theta$	$\cos \theta$

The inductance matrix is deduced similarly

$L_{n}=$| L_{s} | 0 | 0 | M |
| :---: | :---: | :---: | :---: |
| 0 | L_{s} | M | 0 |
| 0 | M | I_{r} | 0 |
| M | 0 | 0 | I_{r} |

The notional inductance tem is

Substituting matrices 6, 7 and 8 in equation 5 the impedance matrix becones

| v_{1} |
| :---: | :---: | :---: | :---: |
| v_{2} |
| v_{3} |
| v_{4} |$=$| $R_{s}+L_{s} p$ | 0 | 0 |
| :---: | :---: | :---: |
| 0 | $R_{s}+I_{s} p$ | $M p$ |
| $-m \omega_{m} M$ | $M p$ | $R_{r}+L_{r} p$ |
| $M p$ | $m \omega_{m} M$ | $m \omega_{m} I_{r}$ |
| m_{r} | $R_{r}+L_{r} p$ | |
| i_{1} | | |
| i_{2} | | |
| i_{3} | | |
| i_{4} | | |

where ω_{m} is the rotational speed of rotor
m is the number of pair of poles

Three Phase To Two Phase Transformation:

The method of dynamic circuit theory for a two phase commatator system has been derived. Although the resulting simplification in the matrix manipulations are quite handy to use, it is far removed from reality in which two phase system are practically non-existent. The next logical step is the consideration of the three phase system which is universal and the means of transforming the three phase system to a two phase system and then analyze as previously described. If one
would consider the nroblem in the three phase system, the result would be a complex matrix with 36 elenents as against 16 of the corresponding two phase mochine. In addition, since the windings are spacially distributed at 120 degrees rather than 90 degrees intervals, the mutual coupling are more complex. The impedance matrix for a three phase slip ring primitive as illustrated in Fig. 1-5 is given in matrix 9

The Three Phase Commutator Primitive :
The condition for equivalence of rotor M.M.F's leads to two equations which can be obtained by resolving the currents along the axis of winding 4 and perpendicular to it
$i_{4}+i_{5} \cos 240+i_{6} \cos 120=i_{4} \cos \theta+i_{5}^{\prime} \cos (\theta+240)+i_{6}^{\prime} \cos (\theta+i 20) \ldots--10$

$$
i_{5} \sin 240+i_{6} \sin 120=i_{4}^{\prime} \sin \theta+i \frac{1}{5} \sin (\theta+240)+i \frac{1}{6} \sin (\theta+120) \ldots-11
$$

the third relation is derived from the equality of the neutral or

(a) SLIP-RTNG

FJG. 1-5 THREE PHASES PRTMIITVES

(b) COMMUTATOR
whenco current i.e.

$$
i_{i_{4}}+i_{5}+i_{6}=i_{4}+i_{5}+i_{6}
$$

$$
\ldots \ldots \ldots 12
$$

Cons 10, 11 and 12 may be written in matrix form as follow:

	1	1
$\cos 240$	$\cos 120$	
$\sin 240$	$\sin 120$	

i_{4}
i_{5}
i_{6}

1	1	1
$\cos \theta$	$\cos (\theta+240)$	$\cos (\theta+120)$
$\sin \theta$	$\sin (\theta+240)$	$\sin (\theta+120)$

$i \frac{1}{4}$
$i \frac{1}{5}$
$i \frac{1}{6}$

mich by inversion of the appropriate matrix, the following
Gochips are obtained

$1+2 \cos e$	$1+2 \cos (\theta+240)$	$1+2 \cos (\theta+120)$	i_{1}
$1+2 \cos (\theta+120)$	$1+2 \cos \theta$	$1+2 \cos (\theta+240)$	11
$1 .+2 \cos (\theta+240)$	$1+2 \cos (\theta+120)$	$1+2 \cos \theta$	i. 6
$0 \cdot \quad I_{\text {ro }}=\mathrm{C} \mathrm{I}_{\mathrm{rn}}$			
$1+2 \cos \theta$	$1+2 \cos (\theta+120)$	$1+2 \cos (\theta+120)$	i_{4}
$1+2 \cos \left(\theta+2^{4}+0\right)$	$1+2 \cos \theta$	$1+2 \cos (\theta+120)$	i_{5}
$1+2 \cos (\theta+120)$	$1+2 \cos (\theta+240)$	$1+2 \cos \theta$	$\dot{1} 6$
$I_{r n}=C^{-1} I_{r c}$			

\therefore be noted that $C^{T}=C^{-1}$, therefore the connection matrix
n:s the property of orthogonality.
The complete current matrix has the form

$i_{s n}$
$i_{r n}$

:to impedance matrix Z_{c} of the commatator primitive is given by

1	0
0	0

$=$| Z_{S} | $Z_{m} c$ |
| :---: | :---: |
| $c_{t} Z_{m t}$ | $c_{t} Z_{r} c$ |

$----13$

The evaluation of Z_{C} is simplified by partitioning in this way.
The problem is reduced to determine the three submatrices $Z_{m} C$; $C_{t} Z_{m t}, C_{t} Z_{r} C$. For simplicity let us consjider the C matrix as a summation of two matrices C_{1} and C_{2} such that

$C_{1}=\frac{1}{3}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

$c_{2}=\frac{2}{3}$| $\cos \theta$ | $\cos (\theta+240)$ | $\cos (\theta+120)$ |
| :--- | :--- | :--- |
| $\cos (\theta+120)$ | $\cos \theta$ | $\cos (\theta+240)$ |
| $\cos (\theta+240)$ | $\cos (\theta+120)$ | $\cos \theta$ |

The problem will involve the products $\mathrm{C}_{1 t} \mathrm{C}_{1}, \mathrm{C}_{\text {It }} \mathrm{C}_{2}$ and $\mathrm{C}_{1 t} \frac{\mathrm{~d} \mathrm{C}_{2}}{\mathrm{~d} \mathrm{\theta}}$.
From 14 and 15

$$
\frac{d C_{1}}{d t}=0
$$

$\frac{d C}{d \theta} 2=-2$| $\sin \theta$ | $\sin (\theta+240)$ | $\sin (\theta+120)$ |
| :--- | :--- | :--- |
| $\sin (\theta+120)$ | $\sin \theta$ | $\sin (\theta+240)$ |
| $\sin (\theta+240)$ | $\sin (\theta+120)$ | $\sin \theta$ |

$$
\begin{aligned}
& C_{1 t} C_{1}=C_{1} \\
& C_{1 t} C_{2}=C_{2 t} C_{1}=C_{1 t} \frac{d C_{2}}{d \theta}=\frac{d C_{2}}{d \theta} 2 t C_{1}=0
\end{aligned}
$$

$$
\begin{align*}
& c_{2 t} c_{2}=\frac{1}{3} \quad \begin{array}{|c|c|c|}
\hline 2 & -1 & -1 \\
\hline-1 & 2 & -1 \\
\hline-1 & -1 & 2 \\
\hline & c_{2 t} \frac{d C_{2}}{d \theta}=\frac{1}{3} \quad \begin{array}{|c|c|c|}
\hline 0 & 1 & -1 \\
\hline-1 & 0 & 1 \\
\hline 1 & -1 & 0 \\
\hline
\end{array}
\end{array} . \begin{array}{c}
\text {-1 } \\
\hline
\end{array}
\end{align*}
$$

\because evaluation of $Z_{m} C$:
From inspection of submatrix Z_{m}, it can be rewritten ass

$$
\begin{aligned}
& Z_{m}=\frac{3}{2} M p C_{2 t} \\
& Z_{m} C=\frac{3}{2} M p C_{2 t}\left(c_{1}+C_{2}\right)
\end{aligned}
$$

From equation $16 \mathrm{C}_{2 t} \mathrm{C}_{1}=0$

$$
\begin{aligned}
Z_{m} C & =\frac{3}{2} M p C_{2 t} C_{2} \\
& =\frac{3}{2} M\left(C_{2 t} C_{2} p+C_{2 t}\left(p C_{2}\right)+\left(p C_{2 t}\right) C_{2}\right) \\
& =\frac{3}{2} M C_{2 t} C_{2} p+\frac{3}{2} m \omega_{m} M\left(C_{2 t}\left(\frac{d C_{2}}{d \theta}\right)+\left(\frac{d C_{2}}{d \theta}\right) C_{2}\right)
\end{aligned}
$$

From 17 and 18

$$
Z_{m} c=\frac{3}{2} M C_{2 t} C_{2} p
$$

$=$| $M p$ | $-1 / 2 M p$ | $-1 / 2 M p$ |
| :---: | :---: | :---: |
| $-1 / 2 M p$ | $M p$ | $-1 / 2 M \rho$ |
| $-1 / 2 M p$ | $-1 / 2 M p$ | $M p$ |

Pre evaluation of $C_{t} Z_{\text {mat }}$:
By transposing equation 19

$$
Z_{m t}=\frac{3}{2} M p C_{2}
$$

Hence $\left.c_{t} Z_{m t}=\frac{3}{2} M\left(C_{1 t}+C_{2 t}\right)\left(C_{2} p+p c_{2}\right)\right)$

$$
=\frac{3}{2} M C_{2 t} C_{2} p+\frac{3}{2} m \quad M C_{2 t} \frac{d C_{2}}{d \theta}
$$

$=$

$=$| $M p$ | $-1 / 2 \mathrm{Mp}+\frac{\sqrt{3} m}{2} M$ | $-1 / M p-\frac{\sqrt{3} m \omega_{m}}{2} \mathrm{M}$ |
| :--- | :--- | :--- |
| $-1 / 2 \mathrm{Mp}-\frac{\sqrt{3} m \omega_{m} M}{2}$ | $M p$ | $-1 / 2 \mathrm{Mp}+\frac{\sqrt{3} m \omega_{m} M}{2} \mathrm{M}$ |
| $-1 / 2 \mathrm{Mp}+\frac{\sqrt{3}}{2} m \omega_{m} \mathrm{M}$ | $-1 / 2 \mathrm{Mp}-\frac{\sqrt{3} m \omega_{m} M}{2}$ | $M p$ |

The evaluation of $C_{t} Z_{r} C$:
This will be accomplished in three parts, the resistance, the self inductance, and the mutual inductance components being treated separately.
a) Rotor Resistance

$$
c_{t} R_{r} C=R_{r} C_{t} C
$$

$$
=R_{r}\left(C_{1 t} C_{1}+C_{2 t} C_{2}\right)
$$

$=$| R_{r} | 0 | 0 |
| :---: | :---: | :---: |
| 0 | R_{r} | 0 |
| 0 | 0 | R_{r} |

b) Rotor Self Inductance

$$
C_{t} L_{r} p C=L_{r} C_{t} C p+m \omega_{m} L_{r} C_{t} \frac{d C}{d \theta}
$$

$=$| $\mathrm{L}_{\mathrm{r}} \mathrm{p}$ | $\frac{1}{\sqrt{3}} \omega_{m} \mathrm{~L}_{\mathrm{r}}$ | $-\frac{2 m}{\sqrt{3}} \omega_{m} \mathrm{~L}_{\mathrm{r}}$ |
| :---: | :---: | :---: |
| $-\frac{\ln }{\sqrt{3}} \omega_{m} \mathrm{~L}_{\mathrm{r}}$ | $\mathrm{L}_{\mathrm{r}} \mathrm{p}$ | $\frac{\ln }{\sqrt{3}} \omega_{m} \mathrm{I}_{\mathrm{r}}$ |
| $\frac{1 m}{\sqrt{3}} \omega_{m} \mathrm{~L}_{\mathrm{r}}$ | $-\frac{\ln }{\sqrt{3}} \omega_{m} \mathrm{~L}_{\mathrm{r}}$ | $\mathrm{L}_{\mathrm{r}} \mathrm{p}$ |

c) Mutual Inductance

$$
\text { Similarly } \quad C_{t} M_{r} p \mathrm{C}=3 \mathrm{M}_{\mathrm{r}} \mathrm{C}_{1 . t} \mathrm{C}_{1} \mathrm{C}_{1} \mathrm{p}
$$

The impedence matrix for a three phase commutator primitive with a uniform air gap is obtained by substituting matrices 20, 21, 22, 23 and 24 in 13

$\mathrm{R}_{\mathrm{S}}+\mathrm{I}_{\text {S }}{ }^{\text {p }}$	$\mathrm{M}_{\mathrm{s}} \mathrm{p}$	$M_{S} \mathrm{P}$	Mp	-1/4p	-1/Mp
$M_{s}{ }^{p}$	$\mathrm{R}_{\mathrm{S}}+\mathrm{L}_{S} \mathrm{p}$	$\mathrm{M}_{5} \mathrm{p}$	$-1 / 2 \mathrm{Mp}$	Mp	-1/2Mp
$M_{s} \mathrm{p}$	$M_{S} \mathrm{p}$	$\mathrm{R}_{\mathrm{S}}+\mathrm{L}_{\mathrm{s}} \mathrm{p}$	-1/20	-1/Mp	Mp
Mp	$\begin{array}{r} -1 / 2 \mathrm{Mp} \\ +\frac{\sqrt{3} m}{2} \omega_{m} M \end{array}$	$\begin{gathered} -1 / 2 \mathrm{Mp} \\ -\frac{\sqrt{3} \mathrm{~m}}{2} \omega_{\mathrm{m}} \mathrm{M} \end{gathered}$	$\mathrm{R}_{\mathrm{r}}+\mathrm{L}_{\mathrm{r}}{ }^{p}$	$\begin{gathered} M_{r} p+\frac{1}{\sqrt{3}} x \\ n \omega_{\mathrm{r}}\left(L_{r}-M_{r}\right) \end{gathered}$	$\begin{aligned} & M_{r} p-- \\ & \frac{1}{\sqrt{3}} m \omega_{m}\left(I_{r}-M_{r}\right) \end{aligned}$
$\begin{aligned} & -1 / 2 M p \\ & -\frac{\sqrt{3} m}{2} \omega_{\mathrm{m}}^{\mathrm{M}} \end{aligned}$	Mp	$\begin{gathered} -1 / 2 \mathrm{Mp} \\ +\frac{\sqrt{3}}{2} m \omega_{\mathrm{m}} \mathrm{M} \end{gathered}$	$\left[\begin{array}{c} M_{r} p^{-} \\ \frac{2}{\sqrt{3}} \omega_{n}\left(L_{r}+M_{n}\right. \end{array}\right)$	$\mathrm{R}_{\mathrm{r}}+\mathrm{L}_{\mathrm{r}} \mathrm{p}$	$\begin{aligned} & M_{r} p+ \\ & \frac{1}{\sqrt{3}} m \omega_{m}\left(I_{r}-M_{r}\right) \end{aligned}$
$\begin{gathered} -1 / 2 M p \\ +\frac{\sqrt{3} m}{2} \cdot m \end{gathered}$	$\begin{array}{r} -1 / 2 \mathrm{mp} \\ -\frac{\sqrt{3}}{2} \omega_{\mathrm{m}}^{\mathrm{M}} \end{array}$	Mp	$\begin{gathered} M_{r}{ }^{p+} \\ \frac{1}{\sqrt{3}} \omega_{m}\left(L_{r}-M_{r}\right) \end{gathered}$	$\begin{gathered} M_{r} p-\frac{1}{\sqrt{3}} x \\ m \omega_{m}\left(L_{r}-M_{r}\right) \end{gathered}$	$\mathrm{R}_{\mathrm{r}}+\mathrm{I}_{\mathrm{r}} \mathrm{p}$

Three To Two Phase Transformation :

The next move is the transformation of a three phase commutator primitive to a two phase commatator primitive as illustrated in Fig. l-6. The conditionsfor equivalence of magnetomotive forces are obtained by resolution along the direct and quadrature axes

$$
\begin{align*}
& i_{1}=i_{1}-i_{2} \cos 60 \div i_{3} \cos 60 \tag{26}\\
& i_{2}^{\prime}=i_{2} \cos 30-i_{3} \cos 30
\end{align*}
$$

These equations are sufficient to define the two phase system

FIG. 1-6 THREE AND TWO PHASE ERUIVAIENCE
in terms of the three phase system, but the extra drereo of frcedom possessed by the latter prohibits the inverse relationship, which is necessary for the impedance trangformation $Z_{n}=C_{t} Z_{o} C$. The two phase system must be given an additional degree of freedom which does not affect the magnetomotive force relationships of equation 26 and a new independent relationship between the variables must be established. The extra degree of freedom is obtained by introducing an impedance Z_{o}, carrying a current i_{0}, which is external to the two phase machine and hence make no contribution to its M.M.F's and defined by

$$
i_{0}=i_{1}+i_{2}+i_{3}
$$

Equation 26 and 27 can be combined in a matrix form as follow

| i_{0} |
| :---: | :---: | :---: |
| i_{1} |
| i_{2}^{1} | | 1 | 1 | 1 |
| :---: | :---: | :---: |
| 1 | $-\cos 60$ | $-\cos 60$ |
| 0 | $\cos 30$ | $\cos 30$ | | i_{2} |
| :---: |
| i_{3} |

Similarly a relationship for the rotor current can be derived and the comection matrix between the two and three phase becomes

| $i_{\text {os }}$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i_{1} | | | | | |
| i_{2}^{\prime} | | | | | |
| $i_{\text {or }}$ | | | | | |
| i_{3}^{\prime} | | | | | |
| 1 | 1 | 1 | 0 | 0 | 0 |
| i_{4}^{\prime} | | | | | |
| 0 | $-\cos 60$ | $-\cos 60$ | 0 | 0 | 0 |
| 0 | 0 | $-\cos 30$ | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 |
| i_{1} | | | | | |
| i_{2} | | | | | |
| i_{3} | | | | | |
| i_{4} | | | | | |
| i_{5} | | | | | |
| 28 | | | | | |
| i_{6} | | | | | |

A computer program was written to invert the connection matrix
28. The result is tabulated in matrix 29

i_{1}						
i_{2}						
i_{3}						
i_{4}						
i_{5}						
$1 / 3$	$2 / 3$	0	0	0	0	
$1 / 3$	$-1 / 3$	$1 / \sqrt{3}$	0	0	0	
0	0	0	$1 / 3$	0	$2 / 3$	
0	0	0	$1 / 3$	$1 / \sqrt{3}$	0	0
i_{6}						
0	0	0	$1 / 3$	$-1 / \sqrt{3}$	$-1 / 3$	
i_{1}						
i_{2}						
i_{0}						
i_{3}						
i_{4}						

or $\quad I_{0}=C I_{n}$
The voltage relationship may be directly written down using the invariance of power condition $V_{n}=C_{t} V_{o}$. The impedance matrix Z_{2} for the two phase equivalent is obtained from the three phase system Z_{3} by using the transformation $C_{t} Z_{3} C$ where Z_{3} is eiven by the matrix 25. Partitioning is used in this case bccause of the complexity of the matrices.

$$
\begin{array}{rl|}
z_{2} & =\begin{array}{|l|l|l|}
\hline c_{1 t} & 0 & z_{11} \\
\hline 0 & c_{2 t} \\
\hline z_{33} & z_{24} \\
\hline
\end{array} \begin{array}{|l|l|l|}
\hline c_{1} & 0 \\
\hline 0 & c_{2} \\
\hline c_{1 t} z_{11} c_{1} & c_{1 t} z_{22} c_{2} \\
\hline c_{2 t} z_{33} c_{1} & c_{2 t} z_{44} c_{2} \\
\hline
\end{array}
\end{array}
$$

The problem is reduced to determine the four submatrices of matrix 30

The evaluation of $\mathrm{C}_{1 t} \mathrm{Z}_{11} \mathrm{C}_{1}$:
This will be accomplished in two parts, the resistance and the terms which have the operator p
a) Resistance

$$
\begin{aligned}
& C_{\text {It }}{ }^{11} C_{1}=\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 / 3 & 1 / 3 & 1 / 3 \\
\hline 2 / 3 & -1 / 3 & -1 / 3 \\
\hline 0 & 1 / \sqrt{3} & -1 / \sqrt{3} \\
\hline
\end{array} \begin{array}{|c|c|c|c|c|}
\hline R_{s} & 0 & 0 \\
\hline 0 & R_{s} & 0 \\
\hline 0 & 0 & R_{s} \\
\hline
\end{array} \begin{array}{|c|c|}
\hline 1 / 3 & 2 / 3 \\
\hline 1 / 3 & -1 / 3 \\
\hline & 1 / \sqrt{3} \\
\hline 1 / 3 & -1 / \sqrt{3} \\
\hline
\end{array} \\
& =
\end{aligned}
$$

b) Terms in p

Similarly the terms in p are reduced to

$C_{1 t} X_{11} C_{1}=$| $\left(1 / 3 \mathrm{~L}_{s}+2 / 3 \mathrm{M}_{\mathrm{s}}\right) \mathrm{p}$ | 0 | 0 |
| :---: | :---: | :---: |
| 0 | $2 / 3\left(\mathrm{I}_{\mathrm{s}}-M_{\mathrm{s}}\right)_{\mathrm{p}}$ | 0 |
| 0 | 0 | $2 / 3\left(I_{s}-\mathrm{M}_{\mathrm{s}}\right) \mathrm{p}$ |

Combining a and b we obtain

$C_{\text {It }} Z_{11} C_{1}=$| $1 / 3 \mathrm{R}_{s}\left(1 / 3 L_{s}+2 / 3 M_{s}\right) p$ | 0 | 0 |
| :---: | :---: | :---: |
| 0 | $2 / 3 \mathrm{R}_{s}+2 / 3\left(\mathrm{~L}_{s}-M_{s}\right) \mathrm{p}$ | 0 |
| 0 | 0 | $2 / 3 \mathrm{R}_{\mathrm{s}}+2 / 3\left(\mathrm{~L}_{5}-M_{s}\right) \mathrm{p}$ |

The Evaluation of $\mathrm{C}_{2 \mathrm{t}} \mathrm{Z}_{44} \mathrm{C}_{2}$:
This will also be accomplished in two parts, the texms with and without p
a) Terms without p

$C_{2 t} \quad R_{44} \quad C_{2}=$| $1 / 3$ | $1 / 3$ | $1 / 3$ |
| :---: | :---: | :---: |
| 0 | $1 / \sqrt{3}$ | $-1 / \sqrt{3}$ |
| $2 / 3$ | $-1 / 3$ | $-1 / 3$ |

R	F	$-F$
$-F$	R	F
F	$-F$	R

$1 / 3$	0	$2 / 3$
$1 / 3$	$1 / \sqrt{3}$	$-1 / 3$
$1 / 3$	$-1 / \sqrt{3}$	$-1 / 3$

where $F=1 / \sqrt{3} m \omega_{m}\left(I_{r}-M_{r}\right)$

$$
c_{26} R_{144} c_{2}=\begin{array}{|c|c|c|}
\hline 1 / 3 R_{r} & 0 & 0 \\
\hline 0 & 2 / 3 R_{r} & -2 / \sqrt{3} \mathrm{~F} \\
\hline 0 & 2 / \sqrt{3} \mathrm{~F} & 2 / 3 \mathrm{R}_{\mathrm{r}} \\
\hline
\end{array}
$$

b) Terms with p

Similarly the terms in p are reduced to

$c_{2 t} X_{4 / 4} C_{2}=$| $\left(1 / 3 L_{r}+2 / 3 M_{r}\right) p$ | 0 | 0 |
| :---: | :---: | :---: |
| 0 | $2 / 3\left(I_{r}-M_{r}\right)_{p}$ | 0 |
| 0 | 0 | $2 / 3\left(I_{r}-M_{r}\right)_{p}$ |

Combining a and b

$\mathrm{C}_{2 \mathrm{t}} \mathrm{Z}_{44} \mathrm{C}_{2}=$	$1 / 3 \mathrm{R}_{\mathrm{r}}+\left(1 / 3 I_{\mathrm{r}}+2 / 3 \mathrm{~m}_{\mathrm{r}}\right)_{\mathrm{p}}$	0	0
	0	$2 / 3 \mathrm{R}_{\mathrm{r}}+2 / 3\left(\mathrm{I}_{r}-\mathrm{M}_{\mathrm{r}}\right) \mathrm{p}$	
	0	$2 / 3 \mathrm{~m} \omega_{m}\left(\mathrm{~L}_{\mathrm{r}} \mathrm{MM}_{\mathrm{r}}\right)$	$2 / 3 \mathrm{R}_{\mathrm{r}}+2 / 3\left(\mathrm{I}_{\mathrm{r}}-\mathrm{Mr} \mathrm{r}^{2}\right.$

The Evaluation of ${ }^{C_{2 t}}{ }^{Z}{ }_{33} C_{1}$:
The multiplication of the above submatrix will be done in two parts, terms with p and terms without p
a) Terms without p

$c_{2 t} R_{33} c_{1}=$| $1 / 3$ | $1 / 3$ | $1 / 3$ |
| :---: | :---: | :---: |
| 0 | $1 / \sqrt{3}$ | $-1 / \sqrt{3}$ |
| $2 / 3$ | $-1 / 3$ | $-1 / 3$ |

0	F	$-F$
$-F$	0	F
F	$-F$	0

$1 / 3$	$2 / 3$	0
$1 / 3$	$-1 / 3$	$1 / \sqrt{5}$
$1 / 3$	$-1 / 3$	$-1 / \sqrt{3}$

where $F=\sqrt{3} / 2 \mathrm{~m} \omega_{m} M$

$=$| 0 | 0 | 0 |
| :---: | :---: | :---: |
| 0 | $-\mathrm{m} \omega_{\mathrm{m}}^{\mathrm{M}}$ | 0 |
| 0 | 0 | $\mathrm{~m} \omega_{\mathrm{m}}^{\mathrm{M}}$ |

b) Terms with p

$$
c_{2 t} x_{33} c_{1}=
$$

0	0	0
0	0	0
0	$M p$	0

By adding a and b we obtain:

$C_{2 t} Z_{33} C_{1}=$| 0 | 0 | 0 |
| :---: | :---: | :---: |
| 0 | $-m \omega_{m}^{M}$ | 0 |
| 0 | $M p$ | $m \omega_{m}^{M}$ |

The Evaluation of $C_{1 t} Z_{22} C_{2}$:

The impedance matrix for the two phase commutator primitive with a uniform air gap is obtained by substituting submatrices 31 , 32,33 and 34 in matrix 30

$\begin{array}{r} \\ v_{1}^{\prime} \\ 1 \\ \hline 1\end{array}$	$=$	$\mathrm{R}_{\text {sl }}+\mathrm{L}_{\text {sl }} \mathrm{p}$	0	0	Mp	i1
1 v^{\prime} 2		0	$\mathrm{R}_{\text {sl }}+\mathrm{L}{ }_{\text {sl }} \mathrm{p}$	Mp	0	1'1
$\begin{array}{r}1 \\ \\ \\ \\ \hline\end{array}$		$-\mathrm{m} \omega_{m}{ }_{m}$	0	$\mathrm{R}_{\mathrm{rl}}+\mathrm{L}_{\mathrm{rl}} \mathrm{p}$	$-\mathrm{m} \omega_{\text {m }} \mathrm{L} \mathrm{rl}$	i' 3
v_{4}^{\prime}		Mp	$m \omega_{m}^{M}$	$m w_{m}^{L}{ }_{r l}$	$\mathrm{R}_{\mathrm{rl}}+\mathrm{L}_{\mathrm{rl}} \mathrm{p}$	i_{4}^{\prime}

$$
\begin{aligned}
& v_{o s}=\left(1 / 3 R_{s}+\left(1 / 3 L_{s}+2 / 3 M_{s}\right) p\right) i_{o s} \\
& v_{\text {or }}=\left(1 / 3 R_{r}+\left(1 / 3 L_{r}+2 / 3 M_{r}\right) p\right) i_{o r}
\end{aligned}
$$

$$
\text { where } \begin{aligned}
R_{\mathrm{s} I} & =2 / 3 \mathrm{R}_{\mathrm{s}} \\
\mathrm{~L}_{\mathrm{s} I} & =2 / 3\left(\mathrm{I}_{\mathrm{s}}-M_{\mathrm{s}}\right) \\
\mathrm{R}_{\mathrm{rl}} & =2 / 3 \mathrm{R}_{\mathrm{r}} \\
\mathrm{~L}_{\mathrm{r}]} & =2 / 3\left(\mathrm{~L}_{\mathrm{r}}-M_{\mathrm{r}}\right)
\end{aligned}
$$

The matrix 35 is identical to the two phase commutator primitive derived before. Hence the above lengthy calculations led to the familiar four by foux impedance matrix plus two independent zero sequence equations 36 . The resistances and inductances are adjusted from three to two phase.

Torque Equation:
In a rotating machine the mechanical output pover is equal to the product of output torque and speed of rotation

$$
T_{e} \frac{d \psi}{d t}=P_{\text {out }}
$$

And from Appendix A

$$
\begin{aligned}
& P_{o u t}=1 / 2 j_{o t} \frac{d I_{1}}{d t} i_{0} \\
\therefore & T_{c}=1 / 2 i_{o t} \frac{d I_{i}}{d \psi} i_{0}=1 / 2 i_{o t} G i_{o}
\end{aligned}
$$

$$
-----37
$$

where T_{e} is the elertromagnetic output torque
ψ is the angle of the rotor relative to the stator $G=\frac{d I}{d \psi}$

The current in the above equations are instanteneous values and the torque is the instantancous torque. Phasor currents may be used provided i_{t} is replaced by the conjugate of I i.e. by J_{t}^{*}

$$
T=1 / 2 I_{t}^{*} G I
$$

From equation $5, G_{c}=\left[m C_{t} L \frac{\partial c}{\partial \theta}+C_{t} G c\right]$
Equation 37 in the fixed axes becomes:

$$
T_{e}=1 / 2 i_{n t} C_{t} G_{o} C i_{n}=1 / 2 i_{n t} G_{n} \dot{i}_{n}
$$

By inspection the matrix G_{n} can be rewritten as $G_{c}+G_{c t}$
$\therefore T_{e}=1 / 2 i_{n t} G_{C} i_{n}+1 / 2 i_{n t} G_{C t} i_{n}$
but $\left(i_{n t} G_{c t} i_{n}\right)_{t}=i_{n t} G_{c} i_{n}=i_{n t} \cdot G_{c t} i_{n}$
Since torque is a scalar whose transpose is equal to itself

$$
\therefore T_{e}=i_{n t} G_{c} i_{n}
$$

$=m\left[\begin{array}{ll|l|l|l|l|c|}\hline i_{i}^{\prime} & i_{2}^{\prime} & i_{3}^{\prime} & i_{L}^{\prime} \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline-M_{d} & 0 & 0 & -L_{\alpha} \\ \hline 0 & M_{q} & L_{q} & 0 \\ \hline i_{1}^{\prime} \\ \hline i_{i}^{\prime} \\ \hline i_{3}^{\prime} \\ \hline i_{4}^{\prime} \\ \hline\end{array}\right.$

By omitting the factor $1 / 2$, the same rule as for the slipring machine may be used for deriving the torque equation of the commutator machine.

Equation 38 reduces to:

$$
T_{e}=m\left(-M_{d} \dot{i}_{1} \dot{i}_{3}-L_{d} i_{4} \dot{i}_{3}+M_{q} i_{L_{4}} i_{2}+I_{q} i_{3} i_{4}\right)-39
$$

The torque which is delivered to the Torquemeter by the generalized machine is given by:

$$
T_{m}=T_{e}-\left(J \frac{d \omega}{d t}+D \omega+C\right)
$$

where J is the moment of inertia
D is the coefficient of viscous drag (windage)
C is the Coulomb friction torque
T_{e} is defined in equation 39

CHAPTER TWO

INVERIER DESIGN

General:
In chapter one, the equations which express the voltage, current and torque of a two phase induction motor have been derived. The object of this chapter and the following chapter is the generation of a variable frequency, two phase waveshope, by a parallel bridge type-inverter, to power the two phase induction motor. The flux density for an induction machine is directly proportional to the voltage and jnvensely proportional to the frequency. Consequently, to maintain a constant flux density, a constant Volts/Hertz ratio must be maintained. This neans changing the applied voltage with a change in frequency.

Single Phase Inverter :
A single phase bridge inverter with feedback circuitry is shown in Fig. 2-1. Whe output terminals are labeled A_{1} and A_{2}. A blocking rectifier (R_{j}) is in series with each $S C R$, upper and lower commtating capacitors are indjcated between SCR and diodes, and feedback diodes $\left(F_{\mathbf{i}}\right)$ are connected to each output terminal. The series blocking diodes prevent the charge stored on the commutating capacitors from discharging through the Joad. The voltage of the cormutating capacitor is charged to a maximum immediately before the commation of an SCR. After commatation of an SCR,
I.

FIG. 2-1, STNGLE PHASE PARALLEL CAPACITOR COMMUTATED INVERTER
the residuel current of the load flove through one of the feerback rectifiers to the line. J'wo reactors (L), along with their shunt diodes (K), suppress the surge current due to the commatation transient, assuring a constant potential at the SCR bus. Consider the case where SCR_{1} and SCR_{2} are triggered; the capacitors C_{1} and C_{2} are charged to a voltage equal to the source voltage. When trigger pulses are applied to SCR_{3} and SOR_{4}, causing them to conduct SCR_{3} places the negative end of the charged capacitor C_{1} on the positive DC bus, and SCR_{4} places the positive end of the cherged capacitor on the negative DC bus. Capacitor C_{1} discharge current flows through the path R_{1}, F_{1}, L and SCR_{3} while the C_{2} path is I. $, \mathrm{F}_{4}, \mathrm{R}_{2}$ and SCR_{4}. The potential drop thus developped across I reverse bias $S C R_{1}$ and $S C R_{2}$ sjmultancously. Each succeeding mode repeats in a similar fashion.

One of the major disadvantagesof this construction is that an instantaneous switch must be made from one polarity to the other. This means a simultaneous turn-on of one SCR , say SCR_{4}, and turn-off of the other, say SCR_{1}. Because of the very fast turn-on (typically one microsecond) and relatively long turn-off time, the SCR's would present a direct short across the supply, and would result in component failure. This led us to investigate the SCR turn-off time, and the SCK turnoff mechanism in the following sections. SCR Turn-Off Mechanism:

When a thyristor is in the conducting state, each of the three junctions of Fig. 2-2a are forward biased and the two base regions $\left(B_{p}\right.$ and B_{n}) are heavily saturated with holes and electrons

FIG. 2-2 SCR WAVEFORMS FOR TURN, OFF TTME MEASUREMENTS
(stored charge). To turnoff the thyristor in a minimum time, it is necessary to apply a reverse voltage. When this reverse voltage is applied the holes and electrons in the vicinity of the two end junctions $\left(J_{1}, J_{3}\right)$ will diffuse to these junctions and result in a reverse current in the external circuit. The voltage drop across the device will remain at about +0.7 volts as long as an apreciable reverse current flows. After the holes and electrons in the vicinity of J_{1} and J_{3} have been removed, the reverse current will cease and the junction J_{1} and J_{3} will assume a blocking state. This interval is represented by $t_{\text {rr }}$ (reverse recovery time) in Fig. $2-2$ b. The reverse voltage across the device now increases to a value determined by the external circuit. Recovery of the SCR is, however, not yet complete, since a high concentration of holes and electrons still exists in the vicinity of the center junction J_{2}. These carriers are removed by recombination which is independent of external bias. When these carriers have nearly completely recombined the junction J_{2} can then regain its blocking state. If the carrjers are not sufficiently recombined, they can cause J_{1} and J_{3} to inject as soon as they are forward biased during the forward blocking cycle. This interval is represented by $t_{g r}$ (gate recovery time) in Fig. 2.2 b . The turn-off time $t_{\text {off }}$ is defined as $t_{r r}+t_{g r}$. It is not a constant but is a function of several parameters as increase in forward current, rate of decay of forward current, peak reverse current, increase in forward blocking voltage.

Foxee Connutation :

The commatating principle of the parallel inverter is illustrated in Fig. 2-3. The term parallel capacitor-commatated inverter is used to indicate an inverter which is comutated by a capacitor connected in parallel with the load. This circuit illustrates the commatation action obtained in more efficient parallel capacitor inverters.

When $S_{1} A_{2}$ and SCR , are gated on simultaneously, in Fig. 2-3, with switch 3 closed, the capacitor C will charge exponentially, with the polarity shown, approaching the DC source voltage. Then switch 5 is closed to discharge the capacitor c, switch 2 is moved from A to B, and switch 3 opened. SCR_{3} is gated-on, conaecting the capacitor C across $S C R_{1}$ in a direction to provide a negative anode to cathode voltage, thereby divertine the load current through the capacitor C, turning off $S_{C R}$. The capacitor C, resistance T and the voltage to which C is charged must be sufficient to divert the maximum load current from the $S C R$ for the time interval ($t_{o f f}$) required for the SCR to regain ability to hold off forward voltage.

The voltage across the capacitor is given by:

$$
v=v\left(1-2 e^{-t / R C}\right)
$$

$$
-----1
$$

For v in equation 1 to be zero, t should be equal to .7 RC . The circuit turn-off time T_{c} is equal to .7 times $R C$ and inust always be greater than the turn-off time of the SCR otherwise the SCR will turn-on. The values of R and C were decreased to a value that did not turn $S C R$ off. The value just above this combination can be taken as $t_{\text {off }}$ and was in the order of $30 \mathrm{mic} r o s e c o n d s$.

FIG. 2-3 CIRCUIT TO MEASURE TURN OFF TIME OF SCR

The delay betwoen the scope trigecting and the voltage measurement across $S C R_{1}$ is detemined by RC of the firing circuit and is given by $T=R C \ln 1 /(1-\eta)$
where η is the intrinsic standoff ratio
For an approximate value of $\eta=.63, \mathrm{R}=1.5 \mathrm{~N}$ and $\mathrm{C}=.15 \mu \mathrm{X}$ the value of T is equal to 225μ seconds.

LC Forced Commutation :
In the circuit, illustrated in Fig. $2-4(a), S C R, ~$ and $S C R 2$ are gated-on with switch 1 closed. The capacitor C charges as indicated to a voltage E_{i} equal to E. When stcady state is reached, switch 1 is opened and $S^{S C R}$ is triggered on, which reduces Fig. 2-4 (a) to Fig. 2-4(b)with initial voltage on the capacitor $E_{i}=F$ and initial currents $i_{2}\left(O^{+}\right)=I_{\mathbf{j}}$ and $i_{2}\left(O^{+}\right)=0$

Replace diode D_{2} by a resistance $R_{2} \simeq 0.2$.
The differential equation for the circuit is:

$$
\begin{aligned}
& i_{2} \cdot R_{2}=i_{I} R_{I}+I \frac{d i}{d t}-E \quad-\cdots---2 \\
& -i_{2} R_{2}=I_{1} \frac{d j_{1}}{d t}+L_{1} \frac{d i_{2}}{d t}+1 \quad \int i_{1} d t+\frac{1}{C} \int i_{2} d t-----3
\end{aligned}
$$

The Laplace Transforms of equations 2 and 3 are:

$$
\begin{aligned}
& \left(R_{1}+L S\right) I_{1}-R_{2} I_{2}=\frac{E}{S}+L I_{0}---4 \\
& \left(I S+\frac{I}{C S}\right) I_{1}+\left(L S+\frac{I}{C S}+R_{2}\right) I_{2}=\frac{E_{1}}{S}+L I_{0}----5
\end{aligned}
$$

Solving equations 4 and 5 the Laplace Transform of i_{1} and i_{2} are:

$$
I_{1}(S)=\frac{R(4)\left(\operatorname{CSI} S^{3}+B 1 S^{2}+A 1 S+1\right)}{S\left(Y(1) S 3+Y(2) S^{2}+Y(3) S+1\right)}
$$

where

$$
R(4)=\frac{E}{R_{1}+R_{2}}
$$

FIG. 2-4 LC FORCED COMMUTATION CIRCUIT

$$
\begin{align*}
C S I & =\frac{I_{0} L^{2} C}{E} \\
B I & =\left(E I C+2 I_{0} L R_{2} C\right) / E \\
A I & =\left(I_{0} L+2 E R_{2} C\right) / E \\
Y(1) & =I_{1}^{2} C /\left(R_{1}+R_{2}\right) \\
Y(2) & =\left(R_{1} L C+2 R_{2} L C\right) /\left(R_{1}+R_{2}\right) \\
Y(3) & =\left(R_{1} R_{2} C+I_{1}\right) /\left(R_{1}+R_{2}\right) \\
\text { and } I_{2}(S) & =\frac{Y(4)\left(B S^{2}+A S+1\right)}{S\left(Y(1) S^{3}+Y(2) S^{2}+Y(3) S+I\right)}
\end{align*}
$$

where $y\left(l_{4}\right)=-R_{1} /\left(R_{1}+R_{2}\right)$

$$
\begin{aligned}
& B=-\left(I_{0} L R_{1} C\right) / E \\
& A=-\left(E R_{1} C-I_{0} L\right) / E
\end{aligned}
$$

Factoring the denominator of cquations 6 and 7 yields:
$=(1+T S)\left[\frac{Y(1)}{T} S^{2}+\frac{1}{T}\left(Y(2)-\frac{Y(1)}{T}\right) S+\frac{1}{T}\left(Y(3)-\frac{1}{T}\left(Y(2)-\left(\frac{Y(2)}{T}\right)\right)\right]-8\right.$
where $R=1-\frac{I}{T}\left(Y(3)-\frac{I}{T}\left(Y(2)-\frac{Y(1)}{T}\right)\right.$
For the renainder to be zero equation 9 becomes:

$$
T^{3}-Y(3) T^{2}+Y(2) T-Y(1)=0 \quad-\ldots-10
$$

Equation 10 has et least one real root and two immaginary roots. Equation 9 is solved on a digital computer using Rajrstow technique. The value of T is substituted in equation 8 , then R is zero.

Substituting equation 8 for the denominator of 6 and 7:

$$
I_{1}(S)=\frac{R(5)\left(\operatorname{CSI} S^{3}+B 1 S^{2}+A 1 S+1\right)}{S(1+T S)\left(X(6) S^{2}+Y(7) S+1\right)}
$$

where

$$
\begin{aligned}
& R(5)=R(4) \cdot T /\left(Y(3)-\frac{7}{T}\left(Y(2)-\frac{Y(1)}{T}\right)\right) \\
& Y(6)=Y(1) /\left(Y(3)-\frac{1}{T}\left(Y(2)-\frac{Y(1)}{T}\right)\right) \\
& Y(7)=\left(Y(2)-\frac{Y(1)}{T}\right) /\left(Y(3)-\frac{1}{T}\left(Y(2)-\frac{Y(1)}{T}\right)\right)
\end{aligned}
$$

and $I_{2}(S)=\frac{Y(5)\left(B S^{2}+A S+1\right)}{S(1+T S)\left(X(6) S^{2}+Y(7) S+1\right)}$
where $Y(5)=Y(4) \cdot T /\left(Y(3) \cdots \frac{I}{T}\left(Y(2) \cdots \frac{Y(I)}{T}\right)\right)$
Equation 12 expressed in partial forms:

$$
I_{2}(S)=\frac{A A}{S}+\frac{B B}{i+T S}+\frac{D S+E}{Y(6) S^{2}+Y(7) S+i}
$$

where $\quad A \Lambda=\left.S I_{2}(S)\right|_{S=0}$

$$
B B=\left.(1+T S) I_{2}(S)\right|_{S=-1 / 2} 1 P
$$

D and E are found by equating 12 and 13:

$$
\begin{aligned}
& D=-(T \cdot Y(5) \cdot Y(6)+B B Y(6)) / T \\
& E=((B Y(5))-(Y(5) \cdot Y(6)+T Y(5) \cdot Y(7)+B B \cdot Y(7)+D)) / T
\end{aligned}
$$

All the above constants were calculated by using a digital computer for the following set of data

E-30 volis $i=1$ milliHenry $\quad R_{1}=2.72$ ohms $\quad R_{2}=.2 \mathrm{ohm}$ $J_{0}=11$ amperes $\quad E_{i}=30$ volts
$\therefore I_{2}(S)=\frac{-10.27}{S}+\frac{.251410^{-3}}{1+0.342 \times 10^{-3} \mathrm{~S}}+\frac{2.75 \times 10^{-7} \mathrm{~S}+7.5 \times 10^{-4}}{0.25 \times 10^{-7} \mathrm{~S}^{2}+0.494 \times 10^{-3} \mathrm{~S}+1}$
By using the tables the inverse transform of $I_{2}(S)$ is:

$$
i_{2}(t)=-10.274-0.7348 e^{-t / 0.342 \times 10^{-3}}+11.9 e^{-98.9 t} \sin (6321 t+67.4)
$$

By using the tables the inverse transform of. $I_{1}(S)$ is:

$$
i_{1}(t)-10.28^{4}+0.726 \times e^{-t / 0.34210^{-3}}+0.348 e^{-98.9 t} \sin (6323 t)
$$

The current in the top branch of Fig. 2-4 (b) is the summation of $\mathrm{i}_{1}(\mathrm{t})+\mathrm{i}_{2}(\mathrm{t})$

$$
i_{T}(t)=-0.085 e^{-2920 t}+e^{-98.9 t}(3.48 \sin (6321 t)+11.92 \sin (6321 t+67.4))
$$

The voltage across the inductor is obtained by differentiating the total. current $i_{q_{1}}$:

$$
\begin{aligned}
v_{L}= & \frac{d j_{T}}{d t} \\
= & -25.9 e^{-2920 t}+e^{-98.9}[-0.989(3.48 \sin (6321 t)+11.92 x \\
& \left.\left.\sin \left(6321 t+67.4^{\circ}\right)\right)+6.321(3.48 \cos (6321 t)+11.92 \cos (6322 t+67.4))\right]
\end{aligned}
$$

The expression for the voltage on the capacitor C is obtained
in a similar manner:

$$
e_{C}=-\left|E_{i}\right|+\frac{1}{C} \int_{0}^{t} i(t) d t
$$

$$
\ldots-\ldots-14
$$

The Laplace Transform of equation 14 is:

$$
E_{C}(S)=\frac{3.76710^{-6} \mathrm{~S}^{2}+2.20210^{-2} \mathrm{~S}+32.05}{\mathrm{~S}\left(1+0.3410^{-3} \mathrm{~S}\right)\left(0.2510^{-7} \mathrm{~S}^{2}+0.4910^{-5} \mathrm{~S}+1\right)}-\frac{E_{j}}{\mathrm{~S}}-15
$$

Equation 15 expressed in partial form:

$$
E_{C}(S)=\frac{32.05-\mathrm{E}_{\mathrm{i}}}{\mathrm{~S}}+\frac{4.14410^{-5}}{1+0.3410^{-3} \mathrm{~S}}+\frac{-8.0510^{-7} \mathrm{~S}+1.08610^{-2}}{0.2510^{-7} \mathrm{~s}^{2}+0.4910^{-5} \mathrm{~s}+1}
$$

By using the tables, the inverse transform of $\mathrm{E}_{\mathrm{C}}(\mathrm{S})$ is

$$
e_{C}=2.05+.12 e^{-2920 t}+76.1 e^{-98.9 t} \sin \left(6321 t-25^{\circ}\right)---16
$$

All the above equations are applicable for i_{2} positive only.
The results from the digital computer for $i_{1}, i_{2}, i_{\eta}, v_{L}$ and v_{C} are plotted in Fig. 2-5.

		+	\cdots		\cdots					\cdots									+-0													
	H				+	,				$\stackrel{\sim}{0}$	$\stackrel{\sim}{3}$	\cdots	N	\bigcirc	4	$\bar{\circ}$	-	4	-	9	\bigcirc	$\overline{4}$	0	0								
\cdots		\cdots			\pm															\square												
	$1+$	\cdots	$\underset{\sim}{3}$.																											
	\#	\square	1		\pm																									:		
	+				-																											
						¢																										
+																																
$4+\pi$	\%																		10													
4	,							4		1																						
4	4	4	,		-			1		[
		-	-			5		T	-	Tr.																						
\cdots	+	-	+		\cdots		.	-	\pm	\pm	,	\cdots	\cdots	+		\%										-						
						8				-	-																					
	4	4			\cdots	\bigcirc		H	\pm	+																						
\pm	-	+	-		\pm	\%	1	\pm	\pm	+	\pm	4				\pm	E.			1		\bigcirc										
+	T		+		\pm			4	\square	4			+	T.	-	+	+				入	$+$										
T	+	+	H	\#t	T				\square	F			4								5									4		
	+	\cdots										7																				
						,																										
		+		-		c	\pm			\#	H	4	$1+$	4	\pm		+	$\cdots 8$		1												
	,	$\underline{ }$,		+	r	+		+	+	\pm	H.	+	+	T		4			1)	$1+1$	\pm	\cdots									
	1	1	,	\square	+	-	+	+1.		\#	N	+	+	\square	1			- y	\cdots	1-1]	+	T	\%	4								
-	+ +	T	\cdots	-	\pm	4	,			\square	T	W	\cdots	-	\cdots	\%	T	-		\cdots	1 Cl	I	4	,				\cdots	-	\cdots		
	,	\cdots			\cdots			-				C.	\cdots		\cdots																	
+	-	\pm		-	+	+	+	+				\cdots	\pm	-	\square	T	\cdots	ctes			\pm											
+		\cdots	+	\pm	\pm	+	-	\pm		+	+	-	\square	\square	\pm		-	\cdots		$1+$	\pm	,	+									
W	$1 \times$				+					$\stackrel{+}{+}$,	4	10	N	4	a.	$\infty \quad 0$	4						1		
	,	+			\pm							\pm								+1+	4											
					-																											
		1				\pm				$\underline{\square}$	\#	-	+		-						\pm		+									
	+	1-4										4	$\underline{+}$				4	-	4	1,	4								+			

The point of interest of this whole analysis is the intersection of V_{C} with the time axis. As previously discussed this interval must always be greater than the turn-off time of SCR .

The experimental curve $\left(V_{C}\right.$ Exp.) is shown in Fig. 2-5. It crosses the time axis at 58 microseconds compared to 66 microseconds for the calculated one (V_{C} Theor.). This is due to many simplifiying approximations as follows:
a) neglecting the forward voltage drop of diode D_{2}
b) neglecting the leakage current and the forward voltage drop of SCR_{1} and SCR_{3}
c) the application of the mathematical model for a certain range only
d) the initial voltage across the capacitor is less than E due to leakage
e) the resistance of the inductor was neglected
f) the diode D_{2} was considered as a perfect switch

When the current is flowing in the forward direction, the circuit is an R, L and C network which is easily solved.

Inverter Specifications:
The main components of the bridge are the SCR's and the diodes. They must be capable of withstanding the rated voltage and the rated current during continuous operation. They must have reserve capacity for large motor starting currents; typically seven times the full load current.

Whon two SCR's on the same 7 eg race turned-on, a dject shomt circuit is placed across the DC supply, An induction reactor, L, must be supplied (Fig. 2-1) to limit the rate-of-rise of current within the specifications of the SCR's until one of the two SCR's is turned-off. The value of the reactor inductance is given by:

$$
L=1 / 2 \sqrt{2} v / \frac{d i}{d t}
$$

where V is the RMs voltage
Note the $1 / 2$ is used because there are two jnductors in serjes, the root of two for peak vollage.

If a failure-to-commatate should occur, the inverter will hang-up, and the sCR's will Duramout before convertiorel foses can melt. Consequently, a high sped ejectronic circuit breaker is necessary to avert $S C R$ burn-out. Io bring tho starting current to a value within the electronic breaker capacity (20 amperes) , an external rotor resistor should be added during starting only, then shorted-out for continuous operation.

Provision must be made for dissipation of the heat generated in the SCR's. The major sources will be those due to conduction and high rates of switching. The conduction dissipation is computed by integrating the products of anode currents and forward voltage drops for the waveshape of conduction. Meaningful dissipations for high repetition rates must be obtained by actual thermal measurements. For the switching speeds used in the proposed inverter configuration, the dissipation due to switching can be approximately the same as the conduction dissipation.

Design of 21.65 KVA Inverter:
The design of a two phase inverter to drive the generajized machine will be considered.

The characteristics of the generalized machine are:
Stator windins:
Standard two pole, two phase distributed winding, 230 volts, 3.6 amperes AC or DC (series) or 115 volts, 7.2 amperes $A C$ or $D C$ (parallel)

Rotor winding:
Standard two pole, continuous lap wound armature with comnutator, 230 volts, 8 amperes AC or DC.

The synchronous speed of the motor is given by:

$$
N_{\mathrm{s}}=120 \mathrm{f} / \mathrm{p}
$$

where $N_{s}=$ synchronous speed in RPM
$f=$ supply frequency in Hertz
$p=$ number of poles
To operate in the speed range of 300 to 4800 RFM the inverter nust have a frequency capability of 5 to 80 Hertz.

The De supply will consist of a bridge rectifier operating from the 20 volts, 3 phase, 60 Hertz power line. The average DC rectifier output is given by:

$$
E_{d}=\frac{\sqrt{2} E \sin \pi / p}{\pi / p}
$$

where $E_{d}=$ average $D C$ output in volts
$\mathrm{E}=$ phase voltage
$p=$ number of phases

Therefore $\mathrm{E}_{\mathrm{d}}=\frac{230 \times \sqrt{2} \times \sqrt{3} / 2}{\pi / 3}$
$=269$ volts
The peak of the ripple voltage will be

$$
\begin{aligned}
x_{\text {max }} & =230 \times \sqrt{2} \\
& =326 \text { volts }
\end{aligned}
$$

The SCR's should have a blocking capability in the range 600-650 volts ($85-100$ percent overshoot)

The line current of each inverter will be 7.2 amperes for the parallel comection of the stator. Therefore the SCR's should have a minimum current capability of 25 amperes for operation with external rotor resistance to limit the starting current to 25 amperes.

The diodes in series with the $S C R$ should have similar ratings to the SCR's, 600 volts and 25 amperes.

The SCR's, diodes and bridge rectifier used in reference 1 are used as components for this inverter. It will be noted that the rectifjer dindes are rated about twice the inverter SCR's, because they feed two single phase inverter bridgesin parallel.

Development of the triggering sequence and design of the associated circuitry are covered in chapter 3. It is established in chapter 3 that each leg of the inverter conducts for half cycle of the basic frequency. Assune that, at the maximum repetition rate, the leg sees continuous rated current for half cycle of the basic frequency; hence the percent duty cycle is 50 percent.

From the $2 N 690$ SCR forward V-I characteristic, the forward voltage drop, at the rated current of 7.2 amperes, is 1.25 volts,
therefore the conduction dissipation is
$=1 / 2 \times 7.2 \times 1.25$
$=4.5$ watts
The predominant dissipation for the $2 \mathbb{N} 69$, at repetition rates below 400 Hertz, is that due to conduction. The highest repetition rate of each SCR in the invertor is 80 Hertz. Hence a heat sink of 5 watts is required for each SCR.

Similar heat dissipating radiators are used for the diodes.
The current limiting reactors are designed next. The reactor should not saturate over its operating range. During the shortcircuit commation across the $D C$ supply, the rate-of-rise of current should be limited to 2 amps in 25 microseconds which is equal to $8 \times 10^{4} \mathrm{amps} / \mathrm{sec}$.

$$
\begin{aligned}
& L=\frac{V / 2}{\frac{d j}{d t}} \\
& L=\frac{165 / 2}{810^{4}}=1 \mathrm{mH}
\end{aligned}
$$

The reacto: siould be capable of continuous operation at 7.2 auperes.

The computer program develor ed is used to determine the value of the capacitor to commutate the SCR. A value of 48 microfarads is found to be satisfactory with a hundred percent factor of safety.

Current overload protection must be provỉed to detect commatation failures and disconnect the DC supply from the inverter.

The design of an electronic breaker with a ten microseconds fault-to-interrupt tims is covered in reference 1 . The resistance R to trigger the Unijunction lransistor for a 20 amperes load is choosen to be . O1. ohm.

TIMING AND TRIGGERING

General :

The logic unit generates the signals which are transmitted to the inverter for gating the different SCR's in a sequential manner. The logic unit has the capability of setting the operating frequency. The input voltage, however, is adjusted by using a Variac.

The inverter generates a square wave voltage from a DC source. A closer approximation to a sinusoidal waveshape is discussed and a typical circuit is included at the end of this chapter. Generation Of A Single Phase Waveform :

The square waveshape $c a n$ be generated by step triggering of SCR's in a bridge configuration. Consider the bridge configuration illustrated in Fig. $3-1, S C R 1-2$ and $S C R_{5-6}$ conduct the current during the positive half cycles of phase A and phase B respectively, while S_{3-4} and $S C R_{7-8}$ conduct the current during the negative half cycles.

Consider a system with a four mode operation as illustrated in Fig. 3-2. Establish an operation for phase A such that $S C R_{I}$ and $S C R_{2}$ conduct during modes 1 and 2 , which represent the positive portion of waveform. SCR_{3} and SCR_{4} conduct during modes 3 and 4 which represent the negative portion of the waveform.

FIG. 3-1 TWO PHASE INVERTER CIRCUIT

Fhase B is displaced by 90° from phase A, consequently, SCR_{5} and SOR_{6} conduct during modes 1 and 4 to form the positive part of phase $\mathrm{B}, \mathrm{SCR}_{\mathrm{r}}$ and SCR_{8} conduct during modes 2 and 3 to form the negative portion of the waveform.

Phase A and B are isolated from each other to form two phases in quadrature.

The highest frequency of operation is 80 Hertz, therefore the shortest period of one mode is:

$$
=\frac{1}{4} \times \frac{1}{80}=3.125 \text { milliseconds }
$$

Two Bit Register :
It has been established that two single phases in quadrature can be constructed from a four mode operation. The two bit register generates the necessary outputs for such an operation. The construction of this register involves the use of two binary counting units (flip-flop) and two inverters.

Consider the operation as illustrated in Fig. 3-3. The input C represents a clock which generates a continuous train of positive input triggers to the first binary. Q_{1} and Q_{2} represent the outputs of the first and second binary units respectively. The binary units are connected in cascade and respond only to changes from a. one to a zero level.

The realization of such a circuit js illustrated in Fig. 3-4. In this circuit four outputs are available $Q_{1}, \bar{Q}_{1}, Q_{2}$ and $\overline{Q_{2}}$. The J's, K's and reset terminals are connected to a high level (+3volts). The high level is obtained from a NAND gate with the

FIG. 3-2 4 MODE INVERTER WAVEFORMS FOR TWO PHASES

FIG. 3-3 TWO BIT REGISTER WAVEFORMS
incut prounded. The micromswitch show in the normal position will not affect the circuit, but when puched down will put the reset terminals at low level, consequently, Q_{1} and Q_{2} will go to zero level and will not respond to the clock input until the microswitch is relcased. The micro-switch clears the flip-flops and identifies the starting point.

Logic Equations :

The two bit register defines a four mode operation which provides for sequential triggering of the inverter SCR's. Each of the modes can be uniquely defined by wri' ing logic equations from the register waveforms. Referring to Fig. $3-5$, mode I is represented by $\bar{Q}_{1}=1$ and $\bar{Q}_{2}=1$. The logic equation for mode 1 can be written as:

$$
1=\bar{Q}_{1} \text { and } \bar{Q}_{2}=\bar{Q}_{1} \cdot \bar{Q}_{2}
$$

Proceeding in a similar fashion the remaining modes can be uniquely defined as shown in Fig. $3-5$ (a). Now that the four modes have been defined, the logic equations defining the triggering of the various SCR's can be established. Referring to Fig. 3-2 it will be noted that SCR_{1} and SCR_{2} conduct for both modes 1 and 2 . This represent a locic on operation, the logic equation for $\mathrm{V}_{\mathrm{A}}{ }^{+}$ can be written as:

$$
\mathrm{V}_{\mathrm{A}}^{+}=\mathrm{J} \text { OR } 2=1+2
$$

The logic equation for $\mathrm{V}_{\mathrm{A}}{ }^{+}$referring to Fig. 3-5 (a) can be written as:

$$
\mathrm{v}_{\mathrm{A}}^{+}=\bar{Q}_{1} \cdot \bar{Q}_{2}+Q_{3} \cdot Q_{2}
$$

FIG. 3-4 Two bit register block diegram

$$
\begin{gathered}
1=\bar{Q}_{1} \cdot \bar{Q}_{2} \\
2=Q_{1} \cdot \bar{Q}_{2} \\
3=\bar{Q}_{1} \cdot Q_{2} \\
4=Q_{1} \cdot Q_{2} \\
V_{A}^{+}=1+2=\bar{Q}_{1} \cdot \bar{Q}_{2}+Q_{1} \cdot \bar{Q}_{2} \\
V_{A}^{-}=3+4=\bar{Q}_{1} \cdot Q_{2}+Q_{1} \cdot Q_{2} \\
V_{B}^{+}=1+L_{1}=\bar{Q}_{1} \cdot \bar{Q}_{2}+Q_{1} \cdot Q_{2} \\
V_{B}^{-}=2+3=Q_{1} \cdot \bar{Q}_{2}+\bar{Q}_{1} \cdot Q_{2} \\
V_{B}^{+}=\left(\overline{Q_{1}} \cdot \bar{Q}_{2}\right) \cdot\left(\bar{Q}_{1} \cdot Q_{2}\right) \\
V_{A}^{-}=\bar{Q}_{2} \\
V_{B}^{+}=\left(\overline{Q_{1}} \cdot \bar{Q}_{2}\right) \cdot\left(Q_{1} \cdot Q_{2}\right) \\
V_{1} \\
V_{1}
\end{gathered}
$$

(c)

FIG. 3-5 IOGIC EQUATIONS

Proceeding in a similar fashion, the remaining logic equations can be established for both phases. These are summarized in Fig. 3-5 (b) $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{A}}{ }^{\prime \prime}$ can be modified using Boolean ja entities as follow :

$$
\begin{aligned}
& V_{A}^{+}=\overline{Q_{1}} \cdot \overline{Q_{2}}+Q_{1} \cdot \overline{Q_{2}}=\left(\overline{Q_{1}}+Q_{1}\right) \cdot \overline{Q_{2}}=\overline{Q_{2}} \\
& V_{A}^{-}=\overline{Q_{1}} \cdot Q_{2}+Q_{1} \cdot Q_{2}=\left(\overline{Q_{1}}+Q_{1}\right) \cdot Q_{2}=Q_{2}
\end{aligned}
$$

Circuit realization of Fig. 3-5 (b) is easily established using AND and OR gates, but these gates are not readily available on the commercial market. The logic equations must be transformed for the use of NAND gates only; which is easily accomplished by using delorgan's theorem and Boolean identities:

$$
V_{B}^{+}=\bar{Q}_{1} \cdot \bar{Q}_{2}+Q_{1} \cdot Q_{2}
$$

$$
=\overline{\left(\overline{\overline{Q_{1}} \cdot \overline{Q_{2}}}\right) \cdot\left(\overline{Q_{1} \cdot \overline{Q_{2}}}\right)}
$$

$$
----1
$$

and

$$
\begin{aligned}
V_{B}^{-} & =Q_{1} \cdot \bar{Q}_{2}+Q_{2} \cdot \bar{Q}_{1} \\
& =\left(\overline{Q_{1}}+\overline{Q_{2}}\right) \cdot\left(Q_{1}+Q_{2}\right)
\end{aligned}
$$

where $\quad Q_{1} \cdot \bar{Q}_{1}=Q_{2} \cdot \overline{Q_{2}}=0$

$$
V_{B}^{-}=\left(\overline{\overline{Q_{1}} \cdot \overline{Q_{2}}}\right) \cdot\left(\overline{\left(Q_{1} \cdot Q_{2}\right.}\right)
$$

$$
----2
$$

Equation 2 represents the compliment of equation 1 which can be realized by an inverter circuit. The overall logic circuit realization, using NAND gates, is shown in Fie. 3-6. It will be noticed that Q_{2} and $\overline{Q_{2}}$ are passed through additional NAND gates to provide input-output isolation.

The Astable Multivibrator Used As A Clock:
The frequency of the logic system is determined by the clock input to the first flip-flop. An astable multivibrator, illustrated in Fig. $3-7$ (a), is used as a variable frequency

FIG. 3-5 OVERALL LOGIC REALTZATION
source. The time for each portion of the cycles shown in
Fig. 3-7 (b) is given by:

$$
\begin{aligned}
T & =T_{1}+T_{2} \\
& =R_{1} C_{1} \ln \left(1+\frac{V_{c c}}{V}\right)+R_{2} C_{2} \ln \left(1+\frac{V_{c c}}{V}\right)
\end{aligned}
$$

For a symmetrical circuit with $R_{1}=R_{2}=9.2 \mathrm{~K} \Omega, C_{1}=C_{2}=$ $.33 \mu \mathrm{f}$ and $\mathrm{V}=\mathrm{V}_{\mathrm{cc}}=3.2$ volts

$$
\begin{aligned}
& T=1.38 \mathrm{R}_{1} C_{1}=4.2 \times 10^{-3} \text { seconds } \\
& f=\frac{1}{T}=240 \mathrm{Hertz}
\end{aligned}
$$

It will be noticed that varying R and C in equation 3 varies the perjod T which in turn varies the frequency. In Fig. 3-7 (b) it is noticed that there is a transient τ^{\prime} associated with the waveforms of the transistor when it is driven into saturation. Each collector waveform has one rounded edge because of the time required for this transient to die down. The transient of constant time τ^{\prime} is given by:

$$
\tau^{\prime}=\left(R_{c}+\dot{r}_{b b}{ }^{\prime}\right) c \quad-\cdots---4
$$

where $r_{b b}{ }^{\prime} \approx 200$ ohms

$$
\tau^{\prime}=150 \text { microseconds }
$$

The transient τ^{\prime} should be in the range of 200 microseconds for the trailing edge of the clock to trigger the flip-flop. Therefore R_{c} in equation 4 must be kept low but not so low so as to upset the saturation condition

$$
I_{B} \geqslant \frac{I_{C}}{\beta}
$$

$$
\begin{array}{ll}
\text { For this case } \quad & I_{B}=V / R_{1}=.348 \mathrm{ma} . \\
& I_{C} / \beta=V /\left(R_{c} \times 100\right)=.135 \mathrm{ma} .
\end{array}
$$

FIG. 3-7 ASTABLEMULTIVIBRATOR

Did Pulse Trimer Circuit:

The desired waveform for triggering the SCR's is shown in Fig. 3-8 (a). The pulse should be at least 50 microseconds wide and have an amplitude of from 6 to 10 volts to ensure positive triggering action. The desired waveshape can be obteined from a Unijunction Relayation Oscillator as illustrated in Fig. 3-8(b).

The resistor R_{2} is used to prevent the Oscillator from free running. The value of R_{2} is selected to bold the emitter at 2.8 volts below its peak-point--voltage, which is defined by:

$$
V=\eta v_{c c}+v_{s}
$$

where V_{s} is the equivalent emitter diode voltage in the order of $1 / 2$ volt at $25^{\circ} \mathrm{C}$
η is the irtrinsjic standuff ratio of the Unijunction Transistor and varies from 0.47 to 0.67 for the 2N1671A Unijunction Trancistor.

By selocting $R_{1}=R_{2}=18 \mathrm{KS}, C_{1}=.15 \mu f$ and $V_{c c}=25$ volts then the voltage at point P is equal to 12.5 volts. By choosing $R_{2}=18 \mathrm{KS}$, the voltage at point P is kept at 2.8 volts below the peak-point-volitage

$$
v=12.5+2.8=15.3=9 \times 25+.5 \quad----5
$$

Solving equation 5 in η yicls:

$$
\eta=.59
$$

The unit is tripgered by raising the emitter voltage above its peak-pojnt-voltage. The logic circuit develops 3 volts across the diode which raises the emitter voltage and the capacitor

FIG. 3-8 UJT PULSE TRIGGER CIRCUIT
discharges through the UJT, the pulse transformer and the diode D (which bypasses the output impedance of the NAND gate and the 470 ohms shunt resistor).

The use of the 470 ohms resistor is to shunt the large output impedance of the NAND gate (about $14 \mathrm{~K} \Omega$) and therefore speed up the charging of the capacitor.

The time constant of charging voltage should be compatible with the highest operating frequency. The oscillation time constant is calculated as follow:

$$
V_{C}=v\left(\frac{R_{2}}{R_{1}+R_{2}}\right)\left[1-e^{\left.-t /\left(R_{1} R_{2} C /\left(R_{1}+R_{2}\right)\right)\right]}\right.
$$

where V_{c} is the voltage across the capacitor in Fig. 3-8 (b).
For $R_{1}=R_{2}=18 \mathrm{KS}, \mathrm{C}_{1}=.15 \mu \mathrm{f}$ and $\mathrm{v}_{\mathrm{cc}}=25$ volts

$$
V_{C}=12.5\left(1-e^{-t / 1.35 \times 10^{-3}}\right)
$$

$$
------6
$$

The UJT fires when the voltage at point P is greater than or equal to 15.3 volts, or the voltage across the capacitor is greater or equal to the voltage at point P less the voltage across the diode. Expressed in mathematical form

$$
\mathrm{V}_{\mathrm{C}} \geqslant 15.3-3.0=12.3 \text { volts }
$$

$$
------7
$$

Substitute equation 7 in 6 to obtain the oscillation time constant:

$$
T=5.5 \text { milliseconds }
$$

Consider, for instance, an operating frequency of 100 Hertz then from the four mode inverter waveforms illustrated in Fig. 3-3, SCR_{1} and SCR_{2} will be on for two modes or 5 milliseconds. Hence the UJT will fire only once in the total period of 10 milliseconds.

The ouphit from the Unijunction circuit is dufficiont to drive the SCR gates directly in the proposed inverter.

Decoupling UTT Circuit Against SCR Gate Transients :
With the inverter configuration selected, pulse transformers must be employed in order to obtain electrical isolation between the two circuits and the firing of two SCR's at the same time. However, when transformers are employed, a negative current flows through the gate when the $\mathcal{S C R}$ is commutated. The negative voltage transjent appearing between the gate and the cathode of the SCR's when transmitted to the UJT can cause erratic triegering. Also the negative pulse can cause ringing in the secondary of the transformer, when the stray canacitoncesare considered. These transients can be eliminated by using a diode bridge in the gate circuit of the SCR as illustrated in Fig. 3-8 (b).

The diodes selected should be of high conductance, and short recovery, type. The use of high conductance diodes reduces the gate drive requirements because the gate characteristics of the SCR are that of a very high conductance diode. Fast recovery diodes are essential because the frequency of ringing is high, due to the relatively sinall stray capacitance. The bridge is placed before the primary of the pulde transformer to cut the number of bridges by two.

Generation OI A Stepped Waveform:

The square wave considered has a disadvantage caused by all the odd harmonics present in its fourier series, which cause an increase in iron and copper losses.

A waveshape closer to a sine wave is illustrated as V_{A} and V_{B} in Fig. 3-12.

The inverter to generate such a waveshape is illustrated in Fig. 3-11. It consists of four single phase bridges with the cutput of pairs of bridges added through isolating transformers to give phase A and B. The single phase inverters are operated so that their outputs are as shown in the four waveforms $V_{A l}$, $V_{A 2}, V_{B 1}$ and $V_{B 2}$ of Fig. 3-12. The summation of the two waveforms results in the load voltage waveform shown as V_{A} and V_{B} in Fig . 3-12.

The above system requires a 12 mode operation. Consider mode 6, for instance, SCR 1-2, SCR 11-12 and SCR 15-16 will be gated-on, ther, another set of SCR's will be gated-on for the next mode as shown in Fig. 3-12.

The use of four flip-flops will result in a 16 mode operation, hence feedback must be used to reduce the 16 mode to a 12 mode operation. Consider the operation as illustrated in Fig. 3-13. The register behaves like a conventional four bit register up to pulse twelve at which time feedback is employed to change $Q_{4_{4}}$ and to maintain Q_{3} at a zero level. The regular synchronous 16 mode operation has neither a NAND gate 3 nor $\overline{Q_{4}}$ at NAND gate 1 and NAND gate 4 is just an inverter.

FTG。3-11 TWO PHASF BRIDGE INVERTER

FIG. 3 - ia 12 MODE INVERDER WAVEFORMS

For a bettor understanding of the foedback operation iet us tabulate the output in a table as represented in Fig 3-14. From the table the J's and K's of flip-flop 3 will be at a zero level in mode l2, therefore the flip-flop will remain in its present condition when a clock pulse occurs. On the contrary, J's and K's of flip-flop 4 are at a one level in the same mode and the flipflop will go to a zero level on a clock pulse. Consequently, the four flip-flops will be at zero level in mode 12 which is the sane as mode 1 .

The four bit register defines a 12 mode operation which provides for sequential triggering of the inverter SCR's. The logic equations defining the triggering can be written using Fig. 3-12 and Fig. 3-13 for each pair of SCR's as shown below: SCR_{1} and SCR_{2} are gated-on from modes 1 to 6:

Mode $1+2+3+4+5+6=\overline{Q_{1}} \cdot \overline{Q_{2}} \cdot \overline{Q_{3}} \cdot \overline{Q_{4}}+Q_{1} \cdot \overline{Q_{2}} \cdot \overline{Q_{3}} \cdot \overline{Q_{4}}+$

$$
\begin{aligned}
& \overline{Q_{1}} \cdot Q_{2} \cdot \overline{Q_{3}} \cdot \overline{Q_{2}}+Q_{1} \cdot Q_{2} \cdot \overline{Q_{3}} \cdot \overline{Q_{4}}+ \\
& \overline{Q_{1}} \cdot \bar{Q}_{2} \cdot \cdot \overline{Q_{3}} \cdot \overline{Q_{4}}+Q_{1} \cdot \overline{Q_{2}} \cdot Q_{3} \cdot \overline{Q_{4}}
\end{aligned}
$$

By using the Karnaugh Mapping Technique the above expression is reduced to:

$$
=\overline{Q_{3}} \cdot \overline{Q_{4}}+\overline{Q_{2}} \cdot Q_{3} \cdot \overline{Q_{4}}
$$

SCF_{2} and SCF_{4} are gated-on from modes 7 to 72 :
Hode $7+8+9+10+11+12=\bar{Q}_{1} \cdot Q_{2} \cdot Q_{3} \cdot \bar{Q}_{4}+Q_{1} \cdot Q_{2} \cdot Q_{3} \cdot \overline{Q_{4}}+$ $\overline{Q_{1}} \cdot \bar{Q}_{2} \cdot \bar{Q}_{3} \cdot Q_{4}+Q_{1} \cdot \bar{Q}_{2} \cdot \bar{Q}_{3} \cdot Q_{4}+$ $\overline{Q_{1}} \cdot Q_{2} \cdot \bar{Q}_{3} \cdot Q_{4}+Q_{1} \cdot Q_{2} \cdot \bar{Q}_{3} \cdot Q_{4}$

Similarly it is reduced to $=\overline{Q_{3}} \cdot Q_{4}+Q_{2} \cdot Q_{3} \cdot \overline{Q_{4}}$

FIG.3-13 SYNCHRONOUS RECYCIING MODULO 12 COUNTER

OUTPUT	FLIP FIOP				NANDGATES			
MODE	2	Q_{3}	Q 2	Q_{1}	1	2	3	4
1.	0	0	0	0	1	1]	0
2	0	0	0	1	1.	1	1.	0
3	0	0	1	0	1.	1	1	0
4	0	0	1	1	0	1	1	0
5	0	7.	0	0	1	1	1	0
6	0	1	0	1	1	1	1	0
7	0	1.	1	0	1.	1	1	0
8	0	1	1	1	0	0	1	1
9	l	0	0	0	1	1.	1	0
10	1	0	0	1	1.	1	1	0
11	3	0	1	0	1	1	1	0
12.	1	0	1	1	1	1	0	1
1	0	0	0	0	1	1	1	0

FIG. 3-14 MODUio 12 couñer truyh TABLE
SCR_{5} and SCR_{6} are gated-on during modes 3 and 4 :
Mode $3+4=\bar{Q}_{1} \cdot Q_{2} \cdot Q_{3} \cdot \overline{Q_{4}}+Q_{1} \cdot Q_{2} \cdot \bar{Q}_{3} \cdot \overline{Q_{4}}=Q_{2} \cdot \bar{Q}_{3} \cdot \bar{Q}_{4}$
SCR_{7} and SCR_{8} are gated-on durjng modes 9 and 10:
Mode $9+10=\bar{Q}_{1} \cdot \bar{Q}_{2} \cdot \bar{Q}_{3} \cdot Q_{4}+Q_{1} \cdot \bar{Q}_{2} \cdot \bar{Q}_{3} \cdot Q_{4}=\overline{Q_{2}} \cdot \bar{Q}_{3} \cdot Q_{4}$
$\underline{S_{9}}{ }_{9}$ and $S C R_{10}$ are gated-on during modes 1 to 3 and 10 to 12 :
Mode $]+2+3+10+11+12=\overline{Q_{1}} \cdot \overline{Q_{2}} \cdot \overline{Q_{3}} \cdot \overline{Q_{4}}+Q_{1} \cdot \overline{Q_{2}} \cdot \overline{Q_{3}} \cdot \overline{Q_{4}}+$

$$
\begin{aligned}
& \bar{Q}_{1} \cdot Q_{2} \cdot \bar{Q}_{3} \cdot \bar{Q}_{4}+Q_{1} \cdot \bar{Q}_{2} \cdot \bar{Q}_{3} \cdot Q_{4}+ \\
& \overline{Q_{1}} \cdot Q_{2} \cdot \overline{Q_{3}} \cdot Q_{4}+Q_{1} \cdot Q_{2} \cdot \bar{Q}_{3} \cdot \overline{Q_{4}} \\
= & \overline{Q_{1}} \cdot \bar{Q}_{2} \cdot \bar{Q}_{4}
\end{aligned}+Q_{2} \cdot \bar{Q}_{3} \cdot Q_{4}+Q_{1} \cdot \overline{Q_{2}} \cdot \overline{Q_{3}}, ~ \$
$$

SCR_{11} and SCR_{12} are gated-on during modes 4 to 9:

$$
\begin{aligned}
\text { Mode } 4+5+6+7+8+9= & Q_{1} \cdot Q_{2} \cdot \overline{Q_{3}} \cdot \overline{Q_{4}}+\overline{Q_{1}} \cdot \overline{Q_{2}} \cdot Q_{3} \cdot \overline{Q_{4}}+ \\
& Q_{1} \cdot \overline{Q_{2}} \cdot Q_{3} \cdot \overline{Q_{4}}+\overline{Q_{1}} \cdot Q_{2} \cdot Q_{3} \cdot \overline{Q_{4}}+ \\
& Q_{1} \cdot Q_{2} \cdot Q_{3} \cdot \overline{Q_{4}}+\overline{Q_{1}} \cdot \overline{Q_{2}} \cdot \overline{Q_{3}} \cdot Q_{4} \\
= & Q_{3} \cdot \overline{Q_{4}}+Q_{1} \cdot Q_{2} \cdot \overline{Q_{4}}+\overline{Q_{1}} \cdot \overline{Q_{2}} \cdot \overline{Q_{3}} \cdot Q_{4}
\end{aligned}
$$

SCR_{13} and SCR_{14} are gated-on during modes 1 and 12 :
Mode $1+12=\overline{Q_{1}} \cdot \bar{Q}_{2} \cdot \cdot \bar{Q}_{3} \cdot \bar{Q}_{4}+Q_{1} \cdot Q_{2} \cdot \overline{Q_{3}} \cdot Q_{4}$
SCR_{15} and SCR_{16} are gated-on during modes 6 and 7:
Mode $6+7=Q_{1} \cdot \overline{Q_{2}} \cdot Q_{3} \cdot \overline{Q_{4}}+\overline{Q_{1}} \cdot Q_{2} \cdot Q_{3} \cdot \overline{Q_{4}}$
The overall logic circuit realization using NAND gates is shown in Fig. 3-15. This circuit was tested on the Digital Computer lab and porformed satisfactorely according to the specifications described ahove. This circuit was not built due to lack of fund. It is interesting to note that four times as many NAND gates are required in a 12 mode operation than are required in a 4 mode operation.

FIG. 3-15 OVERALL LOGIC REALIZATION

Summary:

The timing and triggering requirements are sumarized in block diagram form in Fig. 3-9. The output waveshapes are summarized in Fig. 3-10.

The Astable Multivibrator provides the basic frequency control. The two bit register provides a four mode operation. The logic unit assimilates the outpat of the register and generates a set of sequential timing pulses. The fixing circujts provide the necessary gate drive for reliable operation of the SCR's. The Variac changes the input voltage to the bridge rectifier to maintain a constant flux density. The bridge inverters, by gating the SCR's on and off, invert the DC voltage to two phase voltagesin quadrature.

FIG. 3-9 OVERALL BIOCK DIAGRAM

FIG. 3-10 overall firing circuit waveforms

CAPAER FOUR

DIGETAL COMPUTER ANALYSTS OF

INDUCTION MACHINES STARRTMG CURRENTS

Generel:

The $A C$ induction machine equations have been derived in chapter one in a stationary frame. The voltage and current relationship is given by matrix 35 which is rewritten as follow:

$V \cos \omega_{0} t$				
$V \sin \omega_{0} t$				
0	R_{s}	0	0	0
0	R_{s}	0	0	
0	$m \omega_{\mathrm{r}} M_{d}$	R_{r}	$m \omega_{m}{ }^{T_{d}} d$	
0	0	$-m \omega_{m} q^{M}$	R	

i_{2}				
i_{1}	L_{s}	0	M_{q}	0
i_{3}				
i_{4}	L_{s}	0	M_{d}	
M_{d}	0	I_{q}	0	
0	M_{q}	0	I_{d}	
$p i_{1}$				
$p i_{3}$				

where p is $\frac{d}{d t}$
The above matrix form can be written as:

$$
V=R I+Z p I
$$

Equation 1 can be rearranged to:

$$
\mathrm{p} I=Z^{-1} V-Z^{-1} R J
$$

The inverse of z, z^{-1}, is obtained by a matrix inversion subroutine. After Z has been numerically inverted; equation 2 can be expanded to give the explicit fnrm for the differential equations:

$$
\begin{aligned}
\mathrm{p} i_{1}= & A(2,2) v \sin \omega_{0} t+A(2,2) R_{S} i_{1}+A(2,4) m \omega_{m} I_{q_{1}} i_{3} \\
& -A(2,4) R_{r} i_{4}+A(2,4) m \omega_{m} M_{G_{1}} i_{2}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\mathrm{pi}_{2}= & A(1,1) V \cos \omega_{0} t-A(1,1) R_{5} i_{2}-A(1,3) \omega_{m} M_{d} i_{1} \\
& -A(1,3) R_{r} i_{3}-A(1,3) m \omega_{m} L_{d} i_{4} \\
p i_{3}= & A(3,1) V \cos \omega_{0} t-A(3,1) R_{S} i_{2}-A(3,3) m \omega_{m} M_{d} i_{1} \\
& -A(3,3) R_{r} i_{3}-A(1,3) m \omega_{m 1} L_{d} i_{4} \\
p i_{4}= & A(4,2) V \sin \omega_{0} t-A(4,4) m_{m} M_{q} i_{2} \cdots A(4,2) R_{S} i_{1} \\
& +A(4,4) m \omega_{m} L_{q} i_{3}-A(4,4) R_{r} i_{4}
\end{array}\right\}
$$

The torque is given by equation 40 :

$$
\begin{aligned}
T_{\mathrm{m}}= & J p \omega+D \omega+C-m\left(-M_{d} i_{I} i_{3}-I_{d} i_{4} i_{3}+M_{q} i_{l_{4}} i_{2}\right. \\
& \left.+L_{q} i_{3} i_{4}\right)
\end{aligned}
$$

Equation 4 can be rearranged to:

$$
\begin{align*}
p(1)= & \frac{P_{m}}{J}+\frac{m}{J}\left(-M_{\alpha} i_{1} j_{3}-I_{d} i_{4} i_{3}+M_{q} i_{4} i_{2}+I_{Q} i_{3} i_{4}\right) \\
& -\frac{I}{J} \omega \cdots C
\end{align*}
$$

Equation 5 is then in suitable form to be included with the four differential equations of the phase currents. A digital computer is used to solve the five differential equations using numerical approximations. Two of the most commonly used techniques are the Runga Kutta and the predictor-corrector (Milne) methods. Runga Kutta Method:

The Runga Kutta method was selected for use in this investigation. Fissentially this method involves using information available at the $n, n-1, n-2, \ldots$, etc., increments to predict values of the desired function at the $(n+1)$ increment. The predicted value at the ($n+1$) increment is then combined with previous values of the function, to obtain a corrected value at the ($n+1$) increment.

The equations used in the differential equation algorithm
being discussed here are:

$$
\begin{aligned}
& \frac{d i}{d t} l_{1} f_{1}\left(t, i_{1}, i_{2}, i_{3}, i_{4}, w\right) \\
& \frac{d i}{d t} 2=i_{2}\left(t, i_{1}, i_{2}, i_{3}, i_{4}, w\right) \quad \text { etc. }
\end{aligned}
$$

The increment in i_{1} for the first interval is found from:

$$
\begin{aligned}
& k_{1}=f_{1}\left(t_{0}, i_{10}, i_{20}, i_{30}, i_{40}, \omega_{0}\right) \\
& k_{2}=f_{1}\left(t_{0}+\Delta t / 2, i_{10}+k_{1} / 2, i_{20}+1_{1} / 2, i_{30}+m_{1} / 2, i_{40}+n_{1} / 2, \omega_{0}+c_{1} / 2\right) \Delta t \\
& k_{3}=i_{1}\left(t_{0}+\Delta t / 2, i_{10}+k_{2} / 2, i_{20}+1 / 2, i_{30}+m_{2} / 2, i_{40}+n_{2} / 2, \omega_{0}+0_{2} / 2\right) \Delta t \\
& k_{4}=i_{1},\left(t_{0}+\Delta t_{1} i_{10}+k_{3}, i_{20}+1_{3}, i_{30}+m_{3}, i_{10}+n_{3}, \omega_{0}+a_{3}\right) \Delta t \\
& \Delta i_{1}=\left(k_{1}+2 k_{2}+2 k_{3}+k_{1}\right) / 6
\end{aligned}
$$

Fach of the above expressions is applicable for the other variables $i_{2}, i_{3} ; i_{4}$ and o to obtain $1, m, n$ and q. Note that the initial conditions for the currents and speed are zero.

Mechenical Paremoters:

The constants J, D and C of equation 5 are determined using the Running Jown technique. When the Generalized Machine is unexcited and driven by the Prime Mover, equation 4 is reduced to:

$$
T^{\prime}=J p \omega+D \omega C \quad \ldots-\ldots-\ldots-6
$$

The motor torque is suddenly interrupted and the machine will slow down. During this movement equation 6 is reduced to:

$$
\bar{u} p+D \omega+C=0
$$

The solution of equation 7 is:

$$
(D \omega+C)=\left(D \omega_{\mathrm{O} r}+C\right) \sigma^{-D t / J}
$$

where ${ }^{\text {wor }}$ is the speed at shut down

F'IG. 4-1 Block Diagram For Solving 3 Simultaneous Non-Linear Equations

Three run down tests at different speeds were performed and the times taken for the machine to stop recorded.

Substituting for $\omega_{o n}$ and t in equation 8 , for the three run down tests, gives three simultaneous nonlinear equations.

Fig. 4-l describes the solution of these three simultaneous nonlinear equations using a digital computer.

From the progrem, the constants are:

$$
\begin{array}{ll}
J=0.028 & \text { Ke-Meter } 2 \\
D=0.00026 & \text { Newton-Meter/ radian per second } \\
C=0.386 & \text { Newton-Meter }
\end{array}
$$

Electrical Parameters:

The DC resistance was measured at room temperature. The stator resistance R_{s} is 1.4 ohms (1.6 ohms at 60 Hertr) ${ }^{*}$. The rotor resistance ercluding brush contact resistance is 0.46 ohms (0.53 ohms at 60 Hertz).

The self and mutual inductances were taken from the results of experiments performed on a similar generalized machine using the Operational Amplifier technique in Reference 4.

Due to saturation the curves for self and mutual inductances are nonlinear. A curve fitting subroutine using the least square technique was used to fit the curves of inductances to a polynomial of a degree n. For $n=5$ the mutual is:

[^0]$M=.18+.00327 i-.00004 i^{2}-.0002^{4}+i^{3}+.0003 i^{4}-.00001 i^{5}$
For $n=8$ the self inductance is:
$L=.48+.0425 i+.315 i^{2}-.484 i^{3}+.694 i^{4}-.492 i^{5}+.18 i^{6}$
$-.032 i^{7}+.0023 i^{8}$
Results:
The five differential equations were solved on a digital computer and the block diagrem is shown in Fig. $4-2$.

The peak starting currents for the various windigs versus external rotor resistances are illustrated in Fig. 4-3. From these curves, a four ohms external resistors will Iimit the maximum starting current to 10 amperes. This is within the limitation of the Electronic Breaker.

The accuracy of the Runga Kutta mothod is largely dependent on the size of increment Δt. This method, however, gave satisfactory results for this investigation.

If a greater accuracy is required the predictor-corrector method should be used because it has an automatic adjustment of Δt to keep the truncation error within prescribed limits.

FIG. 4-2 BIOCK DIAGRAM FOR SOLVING 5 SIMULTANEOUS DIFFERENTIAL EQUATIONS

| |
| :--- | :--- | :--- | :--- |

CHAPTER FIVE

CONCLJSION

The current, voltage and torque equations for a two phase generalized machine are reviewed. The transformation, from a three phase slip-ring machine to a three phase commutator primitive, is derived. The equations for the three phase commutator primitive are simplified to an equivalent two phase commutator primitive plus zero sequence components.

Runga-Kutta method is used to investigate the starting currents of the t wo phase machine. The currents for a three phase machine can be determined by using the connection matrices derived in chapter one.

From the results obtained in chapter 4, it was found that a four ohms external resistor would limit the starting current to ten amperes.

The speed of a two phase generalized machine can be controlled by varying the applied frequency. Two single phase bridge inverters are designed to provide a variable frequency supply.

To achieve the most efficient operation of the induction motor the magnetizing flux should be maintained at its designed value. The applied voltage must be varied in proportion to a variation of the frequency; a constant volts/hertz ratio must be maintained. The average voltage input to the inverter can be varied using a Variac.

It has been established in ahapter 3 that a 4 mode operam tion of the inverter provides a square wave output. Such a 4 -mode operation can be established by utilizing logic circuits.

An astable multivibrator constitutes the varjable frequency clock to the two bit register.

The firing circuits provide the necessary trigger signals for reliable operation of the SCR's. Pulse transformers are used for isolation and coupling of the trigger sources and the SCR gates.

When forced commtation of the SCF's is employed, additional circuitry is necessary to eliminate parasitic operation of the inverter. The negative voltage transient, appearing betwoen the gate and the cathode of the SCR's, when transmitted to the UJT can cause erratic trigeering. This situation is overcone by utilizing diode bridge circuits in the primaries of the pulse transfomers.

It was concluded, at the end of chapter 3 , that a 12 mode operation provides a more sinusoidal waveshape. A four bit register defines the 12 mode operation, which provides for sequential triggering of the inverter SCR's.

Output Power:
Consider a set of n mutually coupled circuits. The circuit equation is:

$$
v=R \dot{j}+\frac{d}{d t} L \mathbf{i}
$$

where

$$
\begin{aligned}
& v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \quad i=\left[\begin{array}{c}
i_{1} \\
i_{2} \\
\vdots \\
i_{n}
\end{array}\right] \\
& R=\left[R_{1}\right.
\end{aligned}
$$

The instantaneous electrical input power P_{1} is:

$$
\begin{aligned}
& P_{I}=i_{t} v=j_{t}\left(R+\frac{d}{d t}\right) i \\
& P_{I}=i_{t} R i+j_{t} L \frac{d i}{d t}+i_{t} \frac{d L}{d t} i
\end{aligned}
$$

The rate of dissipation of energy as heat by the circuit
resistance is:

$$
P_{h}=i_{t} R i
$$

Finergy storage $U_{S}=1 / 2 \dot{i}_{t} L i$
The rate of increase of stored energy is:

$$
\frac{d U}{d t} s=1 / 2 i_{t} L \frac{d i}{d t}+1 / 2 i_{t} \frac{d L}{d t} i+y / 2 \frac{d \dot{i}_{i}}{d t} L i
$$

Each of the three terms in the expression is a scalar so that each may be transposed without affecting its value

$$
1 / 2 \frac{d i_{t}}{d t} L^{i}{ }_{t}=1 / 2 i_{t} L_{t} \frac{d i}{d t}=1 / 2 i_{t} L \frac{d i}{d t}
$$

Substituting equation 2 in 1 yields:

$$
\frac{d U_{S}}{d t}=i_{t} L \frac{d i}{d t}+1 / 2 i_{t} \frac{d J_{1}}{d t} i
$$

The mechanical output power is:

$$
\begin{aligned}
& P_{\text {out }}=P_{j}-P_{h}-\frac{d \mathrm{U}}{d t} s \\
& P_{\text {out }}=1 / 2 \dot{i}_{t} \frac{d \mathrm{~L}}{d t} \dot{i}
\end{aligned}
$$

[^0]: * Knowlton, A. E. , Standard Handbook For wlectrical Engineers, McGraw Hill, New York, 1961, page 127 of section 4 and table 4-7.

