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The Objective of this study is to‘investigate analytically the
impact of certain technological and market conditions on the optimum
location of the firm. The existing‘location models may be divided into
those which consider both supply and demand aspects and those which
concentrate on supply factors alone. Traditionally, the former group of
models define equilibrium as the profit maximizing location and assume
both a linear-homogeneous production function and a linear demand function.
The latter class of models assume only the linear-homogeneity of produc-
tion, and equilibrium is found at the cost-minimizing site.

In this paper two cases are examined. Firstly, the influence of
a general non-linear homogeneous producfion function on a simple cost
minimizing model is considered. Secondly, the effect of non-linear demand
functioﬁs and non-linear homogeneous technology on a profit maximizing
model are assessed. The results indicate that the optimum location in
the  cost minimizing situation does not vary with the level of output,

whatever the degree of homogeneity of the production function. This

ii



directly contradicts the common belief regarding the effects of production.
Furthermore, in the profit-maximizing problem, and with non~linear homo-
geneous production, the solution is ﬁnaffected by the shape of the demand
function.

Suggestions for refining and extending this analysis include the
use of general rather than specific demand, transportation andhproduction

functions: the employment of exhaustible inputs, and generalization to the

three-dimensional situation.
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CHAPTER 1

INTRODUCTION

AND REVIEW OF EXISTING MODELS

Two schools of thought have developed in the location theory of
the firm: the "point" location models, which assume that the market
supplied by a producer may be represented by a point; and the "areal
models, which envisage a market distributéd around the firm (see, for
example, Churchill, 1966). The analysis undertaken below is concerned
exclusively with the former school éf thought. These models have tradi-
tionally focussed on the .spatial behaviour of the individual firm, and
are essentially normative in their structure; that is, they ﬁrescribe an
op timum lécation for the firm arising from the maximization or minimiza-
- tion of some function. All proceed along the lines of partial rather
than geﬁeral equilibrium analysis, that is, they focus on-a very small
proportion of the pertiﬁent relationships, and assume the others as
given. (For a review of partial equilibrium in a spatial context, see
Hoover, 1968). Successive relaxation of the assumptions hopefully brings
the model closer to reality, and most theoretical research in point
location analysis has.proceeded along these lines.

The brief critical review of point location models which follows
may be useful in highlighting some of their deficiencies and indicating

the need for research of the type pursued in succeeding chapters.



1.1 The Classical Models

One may distinguish two phases in this line of inquiry. in the
earlier phase the existence of a linear homogeneous production function
is explicitly or implicitly accepted; iﬁ the latter phase the role of
different technological conditions is discussed. The original concept
" stems from the work of Weber (1909) although some of his ideas may have
been anticipaféd by Launhardt (1885). The Weberian theory is based upon
three factors of 1qcation; transportation costs; labour costé, and
agglomeration fofces. The first two are fundamentally spatial in their
impact; the third is primarily a technical consideration. Weber reduces
the various determinants of the price of the finished product to trans-
portation costs and labour costs élone. Initially, Weber assumes equal
and constant labour costs everywhere and concentrates on the effect of
transportation costs on the locational decision. Given a fixed market
point C, and the location of the inpﬁts, he forms a locational polygon.
For‘simplicity we assume merely two factors of production, located at My

and M, respectively, yielding a locational triangle M1M2Ct

My

M)
FIG. 1. The Weberian Lccation Triangle

If a uniform transport system and a homogeneous land surface are



assumed then‘transportation costs will ultimately depend on weight and
distance alone. Each apex of the triangle draws the location of the firm
with a force proportionate to its own weight; The poiﬁt of equilibrium
represents the best location for production. Next, Weber relaxes the
assumption of constant and equal labour costs. He conceives of labour
cosfs as a point phenomenon, and so the location of lowest wages will not
induce the firm to approach it, but rather offers itself as an alternative
to the point of minimum transport costs. To determine which of the two
points is preferable isodapanes (lines of equal unit freight charges) are
constructed around the pcint of minimum transport costs. The value of
the isodapane will naturally increase away from the transport cost minimum.
Obviously a change will only take place if the saﬁings in labour costs
more thaﬁ offset the increased tranéport costs. That is, if the opfimum
location from a labour cost standpoint lies on a lower isodapane than
that on which labour savings equal transport'costs, then the firm will be
attracted there, and conversely. Agglomeration economies are treated in
identical manner; a critical isodapane again being constructed where
transport cost increases exactly cancel out gains from agélome;ation.
Hoovér (1937), considers the activities of the firm in three parts
(A) the procurement of raw materials, (B) their processing, (C) the
distribution of the product. The relative importance of these stages
varies with the type of production_involved. Procurement and distribution
costs both vary systematically With distance from the raw material sources
and the market, respéctively, due to the role of transport costs. These
costs generally increase with di::ance but less rapidly, giving a taperiﬁg

effect, which is more pronounced where terminal charges are considerable.



Rates are frequently grouped by sections so that a step-like progressibn
occurs aé distance increases. When the volume of the shipment increases,
transport costs per unit usually decrease, since terminal costs typically
do not increase. To minimize the cost of procuremenf, better access to
material sources is sought; to minimize the costs of distribution the
firm will seek better access to the market. As these objectiveé may be
opposed to each other, the prdblem rests in balancing them so that aggre-
. gate costs are minimized.

Hoover's strategy is as follows. Eirstly, holding everyﬁhing
constant except transporﬁ costs, the relative attractive forces of the
-materials and markets are examined. If the product loses ﬁonsiderable
weight in processing it is more likely to be located close to the matériai
source. This latter also attracts the location, if for any of the reasons
listed above, the procurement costs per ton-mile exceed the distribution
costs. On the other hand, if there is weight gain during processing or
if transport costs are higher per ton—miie for distribution, the plant
will be oriented towards the market. As goods become more processed they
usually become more fragile and hence more market oriented. To determine
the loci of points of equal tramsport costs, Hoover introduces the concept
of the "isotim" - a line joining points of equal deiivered price. A contin-
uous family of isotims surrounds the location of each input and the location
of the market. Total tramsport costs at any point may be determined by
suﬁming the value of the three isotims running through that point. Points
with equal isotim totals are connected by isodépanes and the minimum

transport cost region will be coucained by the lowest isodapane.



FIG. 2. The Hooverian Isodapane Map

Followiné this the market supply areas are considefed. Assuming
a standardised product, each market point will‘buy from whichever producer
supplies it most cheaply. 1If production and distribution costs are every-
where‘equal, market areas will also be equal. If costs are higher at any
given center the boundary will move closer to it. 1In certain industries
transport costs vary little in comparison with operating cost, so the
latter would appear to be a significant locating factor iﬁ these instances.
Factor price differences may arise from immobility, especially as regards
"land inputs'. The appropriate combination of inputs at any given site‘
will depend on the relative prices there. The optimum site regarding
these aspects is then compared with the optimum as regards tramsport costs.
The former will be preferred only if it lies on an isodapane lower than
that on which savings from processing costs balance increased costs of

transportation. A similar treati:nt is applied to economies arising from

agglomeration.



Because of the broad similarity in the approaches of Hoover and

Weber, the same criticisms may be applied to.both. Isard (1956), Alonso
(1967), and Greenhut (1967), among others, have pointed out that this
approach is assymetric in that all location factors are defined in terms
of cost. A profit-maximising equilibrium, will, of course, depend on the
inﬁeraction of demand and supply. Secondly, the Weber-Hoover approach
~assumes that market price and quantity sold are known and fixed, and

this requires a state of perfect competition at the market. Given that
every product in a given industry is differentiated by its spatial origin
from all others this assumption appears unreasonable. Isard (1956) has
indicated thaﬁ Weber has committed a logical error when he considers
variations in transport costs. Such variations, Webef claims, may be
reduced to variations in the weiéhts and distances. Hoﬁever, the distances
concerned are those from the proposed plant location to the raw material
sources and the market, and calculating these presupposes that the plant
has in fact been located, which is incorrect. Another error is Weber's
assumption that when a factor is highly priced at a given site then that
site may be considered farther away from the proposed location. The
location of this input will to a large extent determine the‘least cost
location itself. Predohl (1927) has shoﬁn that the Weberian scheme does
not permit exhaustible resources, whose prices vary with the firm's
consumption of them. A further defect is that once the assumption of
fixed factor proportions (which implies that technology and factor
~endowment are constant througﬁ space) is removed, then the solution
becomes indeterminant. Weber also utilises an unrealistic linear transport

function. Both Weber and Hoover ignore any long run changes in the economic



f environment (e.g.,ltechnolqgical progress) and their analyses are completely
static in nature.

Isard (1956) attempts to synthesize the "point";and "areal" types
of location models, again using the Weber-Hoover polygonal situation. He
likewise begins by assuming all costs but traﬁsport, but he uses these in
a substitution framework. -He analyses transport orientation in two phases:
(1) he assumes fixed factor propoftions and constant market demand and
so feduces all variations in transport inputs to variatioms in distance.
(2) realising that the amounts of raw materials used may vary he frames
the corfesponding substitution analysis in terms of transportation inputs.
In the firsﬁ phase, if a single mobile unit my is used, then location may

be anywhere along Mlc, where C is the location of the market.

(4)

=
RS

(B)

Distance from M2 >

Distance from Mj; -~

FIG. 3. (A) Single Input, (B) Two Input Situations in Isard's Model

The introduction of another material m, at M, in the process yields

the locational triangle, and instead of a single transformation line there

is a series of them.



My

FIG. 4. Finite Location Possibilities in Isard's Locational Triangle

The transformation line TJHS between my and my is drawn on the basis that
the site is to bé located three miles from C. T,J,H, and S represent the
finite number of possible locations along the arc TS. Since factors are
used in fixed proportions, the relationship of freigﬁt rate to distance
is the most important one. Assuming that freight rates are proportional

to distance and that one ton of each material is used per unit of output

then the iso-outlay curves EF, GK, LN, may be constructed.

Distance from M2

Distance frém Ml

FIG. 5. Tangency of Location Arc TS to an Iso-Outlay Curve.



Since the transport rate on both inputs and final product is equal
the price ratio 1ines.for each must be straight and have a slope of -1.
The tangenc§ point J gives the proper location on arc TS, always gssuming
that thé plant must be located three mileé from C.

Allowing C to vary we can consider all conceivable transformation
lines and their respective points of tangency. This is done by the partial

equilibrium approach -- taking distance from M, consistent with point J as

2
fixed, Isard constructs transformation lines for variable distance from M,,
and from C. Knowing the transport rate structure he can construct price
ratio lines and determine the partial equilibrium for these two points,
As a result the ttansformation line between the variables,vdistance from
M; and distance from M), changes and therefore it may be neceééary to find
a new partial equilibrium with respect to these two variables. A full
equiiibrium is reachéd when partial equilibria between distance fromFC
and M, distance from C énd‘Mz, and distance from My and Mj, éll coincide.
Next Isard begins to introduce complexities, and he reframes the
problem recognizing that usage of any given factor depends on the location
of the plant. He uses transport inputs which encompass both the distance
variable and the weight variable. He now assumes that the producing site
is located 5 miles from C, and the feasible locations are A,B,D,E,F.‘

My

My

FIG. 6, Isard's Locational Triangle with Variable Factor Proportions
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Since usage of a factor depends on the location of the plant, a location
at A, for example, willvemploy more of m; than a location at F. The
prOportioné of my and my required to produce 1 ton of output at each
location may be calculated, as may the distance in miles from the alternate
sites to m; and my. These may be combined to produce transport ton—miles;

This information is plotted on transformation lines ABDEF.

Transport Input on Ml

Transport Input on MZ

FIG. 7. 1Isard's Tangency Solution with Variable Proportions

Assuming that it costs the same to move 1 ton of m; and 1 ton of
my, B is the point of minimum transport cost. When the weight ratio chaﬁges,
the price ratio lines remain unchanged, and a new transport-input trans-
formation line becomes relevant. A full equilibrium is again attained
when the three partial equilibria, this time expressed in terms of trans-
port inputs rather than distance, coincide.

The model proposed by Isard is again faulted on the issue that
price differentials are assumed beyond the power of the firm, implying

therefore that demand is infinitely elastic and the firm is a perfect
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competitor, which is essentially the Weber postulate. Like its pre-
decessors, this model also assumes infinite factor supplies and ignores
longfrun or dynamic aspects of the location problem, As érguéd By Moses
(1957), this theory is likewise based on the acceptance of a linear homo-
' geneous production function, wherein substitution between the factor. in-
puts is not permitted. The suﬁétitution which Isard is considering here
is that between transport expenditures for inputs. This linearity
assumption leads Isard to conclude that there is a single locational
~optimum, which occurs where the marginal rate of substitution between any
two transportation inputs equals the feciprocal of the cofresponding

freight rates,

1.2  The Modern Models

Genuine reformulations of the Weber-type location probleﬁ begin
with Moses (1958). This model again considers two traﬁsportable inputé
located at M; and My, and a point form market at C. Initially location

is restricted to the arc 1J, some fixed distance from C.
M1

My
' FIG. 8. Moses' Locational Triangle
If the firm locates at I, my will be cheaper, whilé at J, my is

less expensive. The various combinations the producer can buy at I with
1 I
his fixed income are given by the isocost function my M. The various

combinations he can buy at J are represented by the isocost mg m{. If
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J
my
I
my
93
92
q1
J I

FIG. 9. Tangency Between the Isoquants and
Fixed Isocosts in Moses' Model

491> 42, q3 are samples of isoquants from the firm's productién function,
then at a level of dutput corresponding to q1, I is the optimum location,
since qq is tangent to m{_mg but not mi mﬁ. If, however, the level of
output rises to qp then J becomes the optimuﬁ location since J's isocost
curve is tangent to.qz. Now if location is possibie anywhere along;the
arc 1J then the kinked line mi mg‘will become a smooth curve, since each
location will have its unique isocost, and therefore makes a unique
tangency solution with the set of isoquants. Each pbint'on this smoothed
curve therefore corresponds to a particular,location, and shows' the
combination of factors the firm will use at that location. if_the level

of expenditure is allowed to vary then a series of such smoothed isocosts

,ml

]

FIG. 10. Tangency Between Continuous Locational
Isocosts and the Isoquants in Moses' Model
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is generated. If the firm wishes to broauce.a given level of output,
then optimum input proportions are indicated‘by the pbint of tangency of
the relevant isoquant to‘one of the isocésts (e.g., D in Fig. 10). How-
ever, D now reﬁresents not just the iﬁput level, but aléo a particular
location along IJ. This leads Moses to conclude "If the productionifunc— ;
tion is not homogeneous of the first degree there is no single bptimum
location along the arc IJ. The optimum location varies with the level of
output", |

As Sakashita (1967) has pointed out, tﬁié éonclusion is partially
incorrect. The éituation Moses envisaged when locafion does_no£ change
-with output is aétually one whereiﬁ‘the‘inputs'are not substitutable,
i.e., a fixed factor production function. The éonclﬁsion of this model
is, therefore, not pertinent to the most common production function - the
linear homogeneous and input substitutable one. The Moses model may.also
be criticised for ignoring market considerations. Although in the latter
part of his article Moses adds the impact of tramsport éosts to a linear
. demand function, he does not show in any analytiéal or.pofentially
analytical sense how the firm incorporates a demand function in its
optimum production decision, and héncé‘in'its locatioﬁal decisidn.

Churchill (1966) attempts to remeay‘certain of the defects of. the
location models by 1) intfoducing more realistic transport costs; 2) by
ihcluding imperfectly competitive faétorkmarketé; 3) by incorpbrating
plant size as a decision variable; 4) by treating production technoiogy
directly; 5) by introducing monopolistic competition arising from product
differences. He posits the familiaf situation with two inputs Vj and V,

located at mj and m) respectively, and a market located at C.
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L, L, Liq Ls L1g
Ml ’.\ . &
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2
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FIG. 11. Churchill's Location Map

He then expresses the cost of the inputs as functions of the
quantities of them consumed, as well és their basic prices and transport
costs. Similarily, he develops a transport function for the finished
product which reflects volume and the tapering effect of-distance as well
as quantity shipped.

Churchill now comes to the crux of his argument, which is  that
before the physical plant is installed, both plant size and location are
decision variables for the firm. This, he reasons, implies that location
theorists'should employ a stock—flqﬁ production function in which capital
is treated explicitly‘as an input. The functioﬁ he employs is of the form

o1 v a2 V3O"3

¢ = V-V

where q is output, Vl and Vz'the current inputs,'V3 the capital inputs,
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and the a's are the output elasticities. Churchill claims that site to
site productivity differences may be represented by changes inAthe a's;
and returns to scale may be varied by changing (al +a, + a3). Vg is
assumed to be non-transportable, and available only at a finite number

of points (the L's in Fig. 11). The Lagrangean L is then formed from the -

cost and productioh functions, where the P's are the unit prices of the
- ‘ | oy, %1y %2 y O3
L = ?1V1 + PpVy + P3Vy + Afq - Vy -V, eV, ]

inputs. The partial deri?afives of L with respect to the inputs are equal
to zero, the resulting simultaneous equations are solved, and the cost-
output expression is obtained.

Next Churchill assumes that the demand for the product at the

market may be represented by a linear function

From this the total revenue-function (Pq) is readily constructed; The
profit equation,(total revenue’minus tptal cost) then follows automatically,
and this relates the level of output to profit at each particular‘site.
The maxiﬁum profits availab;e at each site are tﬁen compared to discover
the maximum maximorum.

Apart from including a better treatment of transport costs and
factor prices, this model is open to the same criticisms as its pred-
ecéssors. The idea that plant size and location are variable fof ;he

firm in the long run is very correct, and undoubtedly this factor should
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be considered in location theory, but the manner in which Churcﬁill‘tries
to incorporate this idea in his theory is highly questionable. The use
of a finite number of possible locations is unnecessary and destroys the
elegance of the analysis, Since>his objective is to find the long rum
cost curve, the éorrect‘method would appear to be through constructing
the mathematical enyelope of the short-run cost curves, which may then
be used in conjunction»with the total revenue equation to find the long
run profit maximizing location.

Sakashita (1967) states his objective as that of investigating
the case of an input substitutable and linear homogeneous production
function in the location problem. He employs two models, a cost=-
minimizing one aﬁd a profit-maximizing one. In the former he uses an
even simpler situation than is generally assumed. Two inéuts Vi and V3,
are located a fixed distance s apart. Cost is defined in terms of the
distance which each input must be carried to the chosen location, an
unknown distance x from mj. Givén the transport rates on the inputs as
m; and my respectively, and their base prices as r; and r;, we may form

the cost equation for the firm.
c = (rl + ml(s - x))Vl + (rz + mzx)Vz .

Given a linear homogeneous production function q = f(Vl, V) then the

Lagrangean is formed

L

£(V1, Vo) + Alc = (ry + my(s = x))]1V; - [(ry + myx)Vy]
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which may be solved for the optimum factor proportions, eventually getting
V1 and Vy in terms of x. From this he is éble to minimise ¢ in terms of
X -=- that is, to find the cost-minimizing location between Ml‘and‘Mz. He
discovers that the optimised cost function is strictly coﬁcave with respect
to x. This means that the preferred location will always be at one of the
input sourceé in this class of problems. Furthermére, he concludes that
the optimum location does depend on the base prices of the inputs, and is
not affeéted by the level of output.

‘.The second model proposed by Sakashita is a profit maximizing one,
The market for thé final bfoduct is concentrated atvsome point C, V; is
still obtainable only at Mj, but V, is available everywhere along CM,.
C and M; are a distance s apart, and thevdistaﬁce between the firm's
location and the market is the unknown X. Given some demand function
P(q)‘for the product and its transport rate h, the firm's profit function

is
T = [P(q) - hx]q - [(rl + ml(s - x) ]V, - roVy

Maximization of this function with respect to x leads to the conclusion
that the optimised profit function is strictly convex with respect to x,
which implies'that intermediate locations are excluded. As before, he
shows that the optimum location does depend on the prices df the inputs,
and in addition, the shape and position of the demand function does not
influence the.profit—maximizing site.

The two models of Sakashica are both liable fo criticisms of the

sort levied by Churchill, eg., unrealistic transport rates and factor
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prices, no accounting for plant size, etc. Hdwever, they do appéar to be
the most promising models so far developed iﬁ this approach. Their use-
fulness lies not in any new insight they have given location theory,

(in fact, they are little more than rigorous restatements of pre-existing
models), but rather in their structure, which reveals avenues for future

research far more explicitly than did that of their predecessors.

1.3 Summary and Conclusions

The development of the classical location problem proceeded along
the lines of sophisticated redefinitions of the Weber problem up to tﬂe
contribution by Moses., He made the critical connection between the theory
of production and the theory of location. Sinée then; efforts have beén
directed at introducing standard microeconomic notions to the location
problem and re-interpreting their sigpificance from the heretofore
neglected spatial perspective. One of the most recent investigations has
been that of Sakashita, who has formulated a simple theory using the most
restrictive assumption about production and demand (linear-homogeneity and
lineérity, respectively). This paper attempts to continue this modern
tradition by using some common economic analysis to examine the role of

different technological and market conditions in a Sakashita-type model.



CHAPTER II

THE NON-LINEAR COBB-DOUGLAS

COST-MINIMIZATION LOCATION MODEL

2.1 Intfoduction

Sakashita (1967) indicates Moses' error in assuming that a linear
homogeneous production function with fixed input coefficients is necessary
to ensure that the optimum location of the firm depends only on transport
costs and the iocation of the factor inputs. Moses claims that if pro-
duction conditions are otherwise, several other influences, including the
level of output, will come to bear upon the optimum plant site. Sakashita
proceeds to demonstrate thét the fixed coefficient assumption is not
essential, and he derives an optimum location determined by tramsport
rates and input loqations on the basis of a linear-homogeneous and factor-
substitutable production function. In this chapter the effect of variablé
homogeneity iﬁ the production function is investigated to determine whether
the linearity assumption of Sakashita, Moses, and others is necessary for

reaching these conclusions..

2,2 The Model

Assume the production function

q = v° st | 1>0,8>0 (1

19



20

where q represents outputs,Vl and V2 are thé inputs, and o and B are the
technological parameters (more precisely, o and B are the input elasti-.
cities). This is the general form of the Cobb-Douglas production functionm,
which is homogeneous of any degree (o + B) (see Ferguson 1969).

The inputs V; and V; are located some arbiﬁrary diétance s miles
apart at Mj and M, respectively. rj and rp are their base prices, and my

and mg are their corresponding transport rates.

.
e nm

FIG. 12. The Locational Cost
Minimising Situation -

The plant is located at some unknown distance x from M. The cost function
(c) of the firm associated with a same level of output q will, therefore,

be
c = (rp + my(s - x))Vl + (r2 + mz)V2 . )

Firstly, we wish to establish the optimum input ratio at any location.

To this end we form the Lagrangean (L)

L = Vla VZB + )\{C - (rl + ml(s - X))Vl - (rz + mzx)VZ} '3 (3)



therefore,
Ll = thvl - (rl + ml(s - X)) = 0 ’
L, = BqV, t- (x +mg) = 0 .
2 2 27" |
Consequently,
S.XE . | 1t ml(s - %) ,
+ -
v, = r] +m(s - x) ‘E v,
rz + mzx a
%) + myx a
Vl = — VZ .
rp + ml(s -x) | B
From (1)
‘ 3] B
ay B _ yoth ry ¥ myls - x) B
LI B ) 1 Ty + myx o
1 B
o + B B8 Ty + myx o+ B
Vl = (Q) i
o Tyt ml(s - x)

Similarly,
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(4)

(%)

(6)

(N

(8)

€))

(10)
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1 ’ o

o+ B ’_2 r{ + m(s - x) | o+ B . (11)
B

r2 + m2X

\ = (q)

We wish to minimize ¢ with respect to x, so from (2),

de = d¢ =

ac oc - mVy + myV, (Samuélson, 1948). . (12)
dX oX .
From (10), (11), and (12),
1 - : - B
+ B 9 + m a+ 8
de = 5. 2 T Mo¥
dx o ry+ mj (s - x)
1 ) - o]
™~ ' N 7o +B
+ mz(q)a + B o r + my(s - x) ) (13)
B r, + m,X .
1 B ] |
2 @8 (B ** 8 [(ry + m(s - x))my + (rp + myx)my
it = — ml q —
dx2 a (r; + my(s - x))2
N - B ) '
-1
_ _a+ B 1 ) [0
B8 Ty + mox a+ B fa m
o+ B r; + mle - X) B
_ , _ a
B -1
o Jri+ms-x] T8
) o + B r2 + mzx
(ry + mzx)ml - (r; + m(s = x))my . (14)

(ry + mox) 2
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That is,
e . -k (ry + my(s = x)Imy + (ry + myx)my
dx? (r1 + my(s -~ %))2
B_ -1
{
1) + myX o+ B
r, + ml(é - %)
- K, (xrg + mzx)ml + (rp + my(s - x))m,
(r2 + m2)2
' a“i‘“‘e -
r. + m, (s ~ x) '
2 1 . (15)
I, + myX
Since a, B, q, my, and m, are all positive, we may conclude that
ac . -
< 0 for all .0 £ x X s. (16)
dx2

Equation (16) implies that the locational cost function is concave,

and the cost-minimizing location must, therefore, be at one of the terminals.



The problem now rests in choosing between the two input sites.

where

Let

c(x)

My

™| e

FIG. 13. The O

From (12),
de
. = (— m]_V + mz)VZ
dx :
Vv
v = _1
V2
(- m,V + m2) = ¢
From (6),
v - Ty + m, X

ry + ml(s - %) J

M

timized Location
Cost Function

24

1n

(18)



therefore,
a r, + b:4
B ry + ml(s - x)
Consequently,
a 9
¢(0) = - ml —_ ————— + mz ’
o ry + mys
¢(s) = - m — + my
R rl

25

(19)

(20)

(21)

If ¢(0) < 0, then the locational cost function will be as shown in Fig.

14, and the optimum location will be at Mj.

My | M

FIG. 14. Optimized Locational_Cost
Function where ¢(s).2 O



If ¢(s) 2 0, then c(x) behaves as in Fig. 15, and M, is the optimum

solution.

c(x)

FIG. 15. Optimized Locational Cost
Function where ¢(s) 2 0

If ¢(0) > 0 and ¢(s)

M

26

< 0, then the solution is not readily apparent,

as may be seen from Fig.'l6.

c(x)

M,

FIG.

16.

Optimized Locational Cost Function
where ¢(0) > 0, ¢(s) < O

My
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To deduce the superior site we must compare the average cost (AC) obtaining

at both

c(0) =‘ (r1 + my (s - x))Vl +>r2V2

AC(0) = . (22)
. I R 2
Acle) . _ c(S) - erl + (rz + m28)V2 . 23)

2.3 Conclusions

As with Sakashita, the optimum location must bg at one of the
terminals, thefe is no possibility of an intermediate location. The
optimum location does depend on the base factor prices and transport cdsts,
and consideraﬁibns of the level of output, returns to scale, etc., have
no impact upon the cost minimizing loéation. 'These conclusions have thus
been sﬁown by the above analysié to‘extend to the case of a non—iinear
homogeneous production function, which is a direct refutation éf Moses'
claim thaf the optimum 1océtion varies with output if the production

function is not homogeneous of degree one.



CHAPTER III
PROFIT MAXIMIZING MODEL

3.1 | Introduction

In his second model, Sakashita considers the firm in a somewhat
different linear spatial context. One input (Vl) is obtainable only at
location M; as before, while fhe other is available at any point, effect-
ively reducing transport costs for Vo, to zero. At éome péint C, repfesent—
ing the market, the firm is faced with a demand fgnction p(q) in which
market price in some way dgpends upon quantity sold. The symbol s now

represents the distance between the fixed input and the market, and x

FIG. 17. The Profit Maximizing Situation

represents the distance separating the unknown location of the plant and
the market. In his example, Sakashita uses a linear demand function with
a linear homogeneous production function, and concludes that under these

circumstances the optimum location will be independent of the demand

conditions. However, he also claims that once the linear-homogeneity

28



29

assumption is relaxed, demand conditions do exert an influence on the

firm's decision.

3.2 The Model
It is consequently proposed to test this latter assertion by using

the h-homogeneous productibn function employed in the previous chapter

with a simple demand relationship of the form

o
]

a - bq a, b > 0 (24)

Since

==
]

Pq - ¢

where 7 is profit and ¢ is total cost,

then
T = (a-bgqg- [r+mGs- 0]V -1V, . (25)
That is
o
: i ' ' - a+B
: ‘ + - :
T o= (a-bq-"2 (a+p [P LTmE-®
B [0 r2
1
o+ B
c q . (26)

Now let us assume for convenience, the special case of decreasing returns
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to scale where oo+ 8 = _1/2.
i.e.

20,
ry - B rp+ m(s - x) _
(a - bq)g - — |- q? (27)
. 28 o) r2

-

=
W

(Notice in the above that the cost of transporting the final product to
the market from the plant has not been incorporated in the cost function;
it is not considered critical to the analysis and may, it is felt, be -
omitted without altering the logic of the érgument). The general coqdi—

tions for a maximum of the profit function at any location are

nq = 0, 'quq < 0.
From (27),
By s -x] ‘
r r mls—x,
T, = a-2q-_’q ot = 0 , (28
B o] ry
. . ,.) 20
. T B 1y +m(s - x
o= o= 2 ! (29)
qq 8

a rz

Since a,b,ry,8 > 0, it is reasonable to assume that the maximising
conditions are fulfilled. We thus have a maximising value of q for a

given x, and the problem is to find the optimum x.
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8 ( 5 200~ 1
r{ + m(s - %
Ty = my; |- 1 1 q2 ,  (30)
Q )
r 20, - 2
B8 rp +m(s - x) B m
TTXX = - (Za - l)ml —
~ 20 - 1
' + - d
+ m E- r; ml(s x) 2q —g- . (31)
o Iy dx
From (28),
a
q = s (32)
op + T2 B | 11+ my(s - x) 20
B (o3 v r2 .
therefore,
2a’1 -2

A - . 42 |PTATmE"® )

dx B a I, o :
Since 24 < 1 givena + B = 1/2 and o, > O, then we conclude that

Txx > O .

This implies a strictly convex profit function with respect to distance



32

dmw

from the market. If = > 0 atx = 0, then my is the prefe.rred locétion.
If gﬂ ‘< 0 at s = x then ¢ is the optimum.
X
From (32),
B ‘ ]
q) = : . (3
r B [ty + mys ] 20
»+ 2 |21
B a Iy
L : J
f a .
qs) = . (35)
| 20
p+2 {8 M
B o ry
-
. g B oritms |2 5 '
Since m(0) = (a=-bg)q -_£ | . -~ q > (36)
28. o r2
) 1 7T 1 -
therefore m(0) = a2 - /s . (37)
. ) - 20 ] 8
T B rq + m,s
P
B o ]'.'2
- - .
similarily, m(s) = a2|. ! _ Y, . (38)
w2 [B om] 2
B [0 r2
dm o dn :
If I < QO at x =0 and = > 0 at x = 3, then the optimum location
X X ;

depends on which of (37) and (38) is the larger. This essentially implies
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comparing
20, : 20
rg | B ry + mys with ryp |B 11
B | a ry B8 ¢ 1)

Therefore, we conclude that selection of the preferred site is independent

of the demand conditions.

3.3 Conclusions

Sakashita states: "Since the total deiivery cost is a linear
function of q [in the linear homogeneous case] a homogeneity assumption
about the production function other than a linear one, will change this
result, i.e., the demand conditions are generally rélevant to the locational
decision unless a liﬁear homogeneous production function is assumed by
contrast". The ébove analysis demonstrates that, at least in the instance
of a production function homogeneous of degree (1/2),the demand conditions

are also irrelevant to the locational decision.



CHAPTER IV

THE ROLE OF DEMAND FACTORS

IN THE PROFIT-MAXIMISING MODEL

4.1 Introduction

In the preceding chapter the optimum location of the firm in a
linear situation is discussed using a linear demand function. In this
section the spatial impact of various non~linear classes is examined
within the same model. It is emphasized that this is not a treatment of
spatially induced demand as envisaged by location theorists from L8sch
(1938) to Long (1970), all of which are concerned with an areal distribu~
tion of consumeré and the effect of this on the product demaﬁd, and
consequently the locatibn of the firm, What we are concerned with here
is essentially a non-spatial demand at single market point. The different
demand functions, therefore, correspond to different assumptions about
the consumers' preference for the particular good being marketed rather
than their attitude to the disutility of travelling or paying,delivery’
costs to obtain it. The impact of demand in such a situation is, there-
fore, indirect (if it exists at all), operating through the constrained
optimization process on the production decision ana thence on the loca-
tional choice.

The procedure adofted in this chapter is to select certain of

those demand curves discussed by Stevens and Rydell (1966) and apply them

34
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to the profit-maximising model of Chapter III,using the most convenient
assumption about the homogeneity of the production function in an attempt

to derive an optimal location dependent upon the demand parameters.

4,2 Selected Demand Functions

From the seven demand functions discussed by Stevens and Rydgll,
the linear example is identical to that utilised iq the aBove chapter.
From the remainder, the convex, concave, and rectangular-hyperbola types

are chosen for study in this context. A demand curve is defined as
convex if and only if

q"(P) > 0 .

The condition is satisfied by the inverse function

P = bq ; b > 0 ’
" 2

A concave demand function exists where
q"(P) < 0 o

This is satisfied by

2

[ ]
-
o
-
v
(=]
-

P = a - bqg
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since

1/
n -1 a - P -2

2b b -

A demand schedule which is a rectangular hyperbola is defined whefe

| z[qv(P)]Z '
q ®) = — .
' q

4.3 The Convex Demand Model

Given P = bql/z, then the firm's profiﬁ function is
3/9 r ry + my(s - x o+B at+B
po= b P Reem|f Lrme o w q . (9
B [0 ro

Assuming (o + B) = 1/3, then

' 3a
3/p r B rp+ my(s - x)
T o= bq t-_21|2 - 3 . (40)
38 o ro
- ) o)

3 r B ri+m(s - x 2 .
'.n-q = _bql/z _.__E - 1 1 . B q 0 . (41)

2 B o br2

Therefore,



Therefore,

dg _
dx

From (40), and

Since (OLlB) >

37

=30
3 B B rq +m((s - x)
S e T ,  (42)
2 I, o ry
2 ' -20
38 /3 |8 ry+ m(s - % 3
2 r, o r) '
: - = 2/3 ‘ -20-1
2m48 EEE— E r] + my(s - x) > 0. (44)
ry 2 I'z [0} r9
(43),
B ( ) ot
r, + s - X
q3m1 FaTth (45)
a r2
8 + ( ) 3a-1 d
3q2 B rp+m(s - x ny dq
o o)} dx
' 30~1
B 17+ m(s - x) B m
- Go-Dmgd | 2 22 °a (46)
o r2 [0 r2
0 and (00 + B) = 1/3, then (30~1) must be negative and so
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MTex 1s positive. This implies, as in the linear demand case discussed in
Chapter III ,that the optimised profit function of the firm is strictly
convex with respect to x, and the selection of the best location returns
once again to a choice between the market and the source of mj. This

again involves comparing the profits obtainable at each of the two.

From (40), and (43),

-3a -
3b B B rp + m(s - x) . o) B r; + my(s - x)
T = b ~——— - -— |-
2 1y a rp 3B a Iy
3b B 2 B|ry + mi(s - x) -6a
2 1y o 1 9/] |
i T -30 2
= B rp + my(s - x) 3b° B . U
a 9 4 1))
~ - 4 =30 2
r1 + mi(s - %) 3b“B
ny = |2 IATm . 48)
o T 4r
i 2 i 2
=30 2 _
) = [P T 3678 . 49)
o r 41‘2

As before, the decision reduces to comparing the relative magnitude of



-3o -
B ry+ m(s - x) B r
— 1 and - _:E

o 1’.‘2

and the demand characteristics drop out of

4.4 The Concave Demand Model

Given P = (a - qu),

Then we can calculate profits,

consideration.

1 o .
o+B ~ oFB
v N _
T = aq - bq3 —,fE(u+s)q E_ 1yt m(s - x)
. B a - r2
Assuming (o + B) = 1/3, then
g o tmGe-n]
r T m(s - x
T = aq_bq3___2q3 L
r B rq + m;(s - xj 3a
Mg = a- 3bq2 - _g.q3 s d 1
' 38 o I,
Therefore,
. 1 1 <1/,
¢ = a1/2 3+ 52 .E ry + ml(s'- X)

39

(50) .

(51)

(52)

(53)
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. =3/2
1 3o
dq 3a /2 my 3b+r |B rp+tms-x)|- > 0 (54)
dx 2 3B |a Ty
From (51),
1 30~1
3 B ry; + m(s - x)
Tx = qQm |- » (39)
a rz
3a~1
L 32 dg | B ry + m(s - x)
Tex qQm; — | —
dx [0 ) I.‘2
1'3r+m(s—x)‘30‘-'2 B m
1 1 : 1
- Paen| - Pm (s
o, r2 a .1"2

Given (o + B)

Sﬁ > 0, we conclude MTex > 0.
dx - : .

1/3, then o < 1/3 and (3d-1) > 0, therefore since

Again we have a strictly convex optimised

function and the preferred location is an end point.

From (51) and (53),

ry) | B rp+ mi(s - x)

3 . =12, 2

r2

30 4 -1/2

r ) a—
1
T = a-b>b a /2 3b + 2§ -
. B a
T B r; +m(s - x)
. al/2 3b +._E — 1 1 ’
B o . r)
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: — 3a
rg [ B rp +m(s - x)

3B | a r,
3, =3,
232 |3 4 P2 B T mmGs - %) , (57)
B o Ty
_ » 30 -1/2
3/2 B rq +m(s - x)
= a / 3b o+ % 1
o ‘r2
. 30' _
—1/3F3b+f_2_ B ot ms-x
B a ].'2
3/2 rg (B rp +m(s - x) 3o --3/2 8
a 3b +— |- , . (58)
B o ra
i
4 - _1/2
3a 3
= [ +® ritmb-» » 2/35°/% 2212 (s9)
o, 1) 3

The profits at the fixed input source and the market are respectively

i 30 -1/2 3
% r] + m;s : 2a /2 (60)
T(x) = 3 +|— — —_ >
o Iy 3
1
F - 30 ) -/2 3/2
2
m(0) = %+Efl o . (61)
i LRy 3

As before, this reduces to comparing



B

r1

3a ' 30

and B ry + mis

o rz o ry

the demand factors play no part in the selection process.

4.5 The Rectangular Hyperbola Demand Model

Given P = b + aq“l, then
o
‘ o+B
r re + m(s - x)
T o= bgta--2 (@ |BIATM
’ 8 a ro
Assuming (o + B) = 1/2, then
o : 20,
ro B ry + ml(s - x) 2
m = bg+a-— |- q
ZB o r2
20
Tq = b- r2 .E r; + my(s -’x) - 0
B o rz
therefore,
-20~1
bB| B ry+ my(s - x) B my
q = I = ' -
ro o I, o ro
20~1
B ry + my(s - x) 2
fo = my —_ . q

s 4 Iy

a+B

42

(62)

(63)

(64)

(65)

(66)



43

i 2&—2 ‘
2 B ry +m(s - x) ‘ B 1
Tyx = - m (20-1) |- cogf - —
o rz 8] r2
- | 20-1 .
- d
#mg BT - %) 2q ~ . (67)
dx
& T2
Since (a + B) = 1/2, and 0., > 0 then a' < 1/2 and (20 - 1) < 0.

Since from (33) g& > 0, we conclude Txx = 0. The conclusion once more
X .

is that the optimised profit function is convex with respect to x and the
optimum location is at one of the terminals.

Then from (63) and (64),

20

b8 |8 r1+ m(s - x) B rp+ m(s - xf]

ro a ry 28 | o r2 J

bR 2 B r1+ m(s - x) | -4

- - , (68)
- 20
bZB o r2 )
2r2 B ry + m (s - x)
Comparing profits at the two extrema,
sz o T 20
T = a4+ — |- "1 ‘ » (70)

2r2 B i + mls



44

2 2
b B | e rp @
T(x) = a+—-—"] - — . (7D
2r2 B ry
This implies comparing,

o 20, : o T~ 20

~ and — 2 ) .

B B r; + my(s - x)

This means, as in all the casea analysed above, that the demand function

is irrelevant to the locational decision of the firm,

4.6  Conclusions

Obviously, the deductioms which one can make from the above analysis
are very limited. We have examined the effects of three different demand
functions on the location model using two different homogeneities of the
production fﬁnction, and have found that the optimum location is always
at a terminal point, and that the demand function plays no rdle in determin-
ing the comparative profitability of these poles, We are not justified in
concluding that such solutions hold for all demand and production condi-
tions, but furtherbcalculations, includiﬁg several with increasing returns

to scale [(a + B) > 1], indicate an absolute consistency in this outcome.



CHAPTER V
CONCLUSIONS

5.1 Summary

The objectives of this research were: 1) to determine thé effect,
if any, of a non-linear homogeneous assumption about the production function
onbthe cost-minimising location, 2) to investigate the impact of such non-
linear conditions on the firm's locationaiidecision in the context of é
simple profit-maximising model, employing a linear demand function, 3) to
examine the effects of various non-linear demand situations on the op timum
location in the context of the non-linear homogeneous technology. It has
been discovered that a pfoduction function hqmogeneous of any degree will
generate an end-point solution in the Sakashita—type\model. Furthermore,
such a result hélds true for the profit maximising case also, at least
for the special case chosen., Finally, the end point optimum appears to

stand with variable market conditions.

5.2 Limitations of the Analysis

The main deficiency in the strategy adopted in the above research
is the reliance on special cases rather than general formulations. The
conclusions one may drgw from the results, therefore, are strictly speak-
ing, limited to these particular situations. It was hoped that a general
model with the production function homogeneous of any degree and a general

demand function q = q(p) could be used in Chapters Il and IV. However,
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attempts in this direction proved analytically intractable., Given this
defect in the methodology, the number of special cases examined (most of
which are not included in the text) with different degrees of homogeneity
in the production process prompt some intuitive comments on the efficiency
of this general framework., In all insﬁances the degree of returns to

scale do not affect the choice of site, and so it appears thatAthis type

of model is nof appropriate for examining such topics as the impact of
technological pfogress on the optimum location. Similarily, the uniformity
of résults for different demand conditions leads one to suspect that this
is not an adequate basis for discussing the role of dynamic demand on

location, etc.

5.3 Possible Extensions of the Analysis

Nevertheless, certain means of improving the model are apparent.
Sakashita has suggested, as one possible course of generalisation of his
model, a conversion to a two dimensional form from the linear one. How-
ever, such a model will be analytically inelegant, and it is doubtful
whether an algorifhmic approach will be a fruitful medium for deveibping
the theory along the lines attempted in this work.

Another possibility for improving the model is the incorporation
of a non—homogeneous production function, for example, the generai‘Solow
function q = tvla + v23]5 , for which according to Hilhorst (1964),
could prove to be a more useful tool for examining the nature of teéhniéal
progress than its homogeneous counterparts.

An obvious alteration, which will overcome mahy of the ijections

to the established location theory literature, is to treat the inputs
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Vy and V, as exhaustible in supply by expressing their yalues as functions
of the level of output. Similarily, transport costs may bé expressed as

a non-linear function of.x for both inputs, reflecting the empirical
evidence for tapering carrying rates. A four-dimensional approach may
then be adopted for the.locational strategy of the firm, with the various
combinations of technical, market, factor supply, and transport conditions
generating a vastly more realistic locational profit function.

Another development, within the general context of the abovermodel,
is the use of a stock flow production function (i.e., a function treating
capital as well as the variable factors as an input) as suggested by
Churchill’(1967). Churchill, however, does not try to use this innovation
to bring the location décision into the general investment theory of the
firm, which appears to be the most advantageous course to take.

Some of the simpler extensions of the model include the use of a
larger number of resource supply points ;nd sevefal market points. As
long as we remain in a linear setting such changes merely involve adding
additional expressions for cost and revenue (corresponding to éach new
supply point or market) into the equations described above for the one-

‘market, one-fixed input case.

At a more advanced level, given that the locatioﬁal‘process may
be subsumed in the investment decision, some established methods of
introducing dynamics to the problem appear feasible. vFor instance,
multiperiod production and investment functions (Hendefson and Qﬁandt,
1958) may be empioyed to derive solutions for optimum production decisions
through time. The optimum location through time will follow as a con—

sequence of the latter.
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’

However, given the serious drawbacks mentioned above, it may be
more rewardiﬁg to commence with a Hotelling-Smithies-Chamberlain (e.g.,
Smithies 1941) type problem with two or more rival producers interacting
along a linear market, and examine how cost, production, and demand.factors
affect a competitive locational solution. It is felt that the lack of
useful results from the operations described in the preceding chapters is
not due fo the unimportance of the questions attempted, but rather to the

sterility of the specific locational situation posited.
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