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SCOPE AND CONTENTS: 

The Objective of this study is to investigate analytically the 

impact of certain technological and market conditions on the optimum 

location of the firm. The existing location models may be divided into 

those which consider both supply and demand aspects and those which 

concentrate on supply factors alone. Traditionally, the former group of 

models define equilibrium as the profit maximizing location and assume 

both a linear-homog~neous production function and a linear demand function. 

The latter class of models assume only the linear-homogeneity of produc-

tion, and equilibrium is found at the cost-minimizing site. 

In this paper two cases are examined. Firstly, the influence of 

a general non-linear homogeneous production function on a simple cost 

minirr~zing model is considered. Secondly, the effect of non-linear demand 

functions and non-linear homogeneous technology on a profit maximizing 

model are assessed. The results indicate that the optimum location in 

the cost minimizing situation does not vary with the level of output, 

whatever the degree of homogeneity of the production function. This 
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directly contradicts the common belief regarding the effects of production. 

Furthermore, in the profit-maximizing problem, and with non-linear homo­

geneous production, the solution is unaffected by the shape of the demand 

function. 

Suggestions for refining and extending this analysis include the · 

use of general rather than specific demand, transportation and production 

functions: the employment of exhaustible inputs, and generalization to the 

three-dimensional situation. 
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CHAPTER I 

INTRODUCTION 

AND REVIEW OF EXISTING MODELS 

Two schools of thought have developed in the location theory of 

the firm: the "point" location models, which assume that the market 

supplied by a producer may be represented by a point; and the "areal" 

models, which envisage a market distributed around the firm (see, for 

example, Churchill, 1966). The analysis undertaken below is concerned 

exclusively with the former school of thought. These models have tradi­

tionally focussed on the spatial behaviour of the individual firm, and 

are essentially normative in their structure; that is, they prescribe an 

optimum location for the firm arising from the maximization or minimiza­

tion of some function. All proceed along the lines of partial rather 

than general equilibrium analysis, that is, they focus on·a very small 

proportion of the pertinent relationships, and assume the others as 

given. (For a review of partial equilibrium in a spatial context, see 

Hoover, 1968). Successive relaxation of the assumptions hopefully brings 

the model closer to reality, and most theoretical research in point 

location analysis has proceeded along these lines. 

The brief critical review of point location models which follows 

may be useful in highlighting some of their deficiencies and indicating 

the need for research of the type pursued in succeeding chapters. 

1 
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1.1 The Classical Models 

One may distinguish two phases in this line of inquiry. In the 

earlier phase the existence of a linear homogeneou~ production function 

is explicitly or implicitly accepted; in the latter phase the role of 

different techno1ogical conditions is discussed. The original concept 

stems from the work of Weber (1909) although some of his ideas may have 

been anticipated by Launhardt (1885). The Weberian theory is based upon 

three factors of location; transportation costs, labour costs, and 

agglomeration forces. The first two are fundamentally spatial in their 

impact; the third is primarily a technical consideration. Weber reduces 

the various determinants of the price of the finished product to trans­

portation costs and labour costs alone. Initially, Weber assumes equal 

and constant labour costs everywhere and concentrates on the effect of 

transportation costs on the locational decision. Given a fixed market 

point C, and the location of the inputs, he forms a locational polygon. 

For simplicity we assume merely two factors of production, located at M1 

and M2 respectively, yielding a locational triangle M1MzC._ 

c 

FIG. 1. The Weberian Location Triangle 

If a uniform transport system_and a homogeneous land surface are 
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assumed then transportation costs will ultimately depend o~ weight and 

distance alone. Each apex of the triangle draws the location of the firm 

with a force proportionate to its own weight. The point of equilibrium 

represents the best location for production. Next, Weber relaxes the 

assumption of constant and equal labour costs. ~e conceives of labour 

costs as a point phenomenon, and so the location of lowest wages will not 

induce the firm to approach it, but rather offers itself as an alternative 

to the point of minimum transport costs. To determine which of the two 

points is preferable isodapanes (lines of equal unit freight charges) are 

constructed around the point of minimum tran~port costs. The value of 

the isodapane will naturally increase away from the transport cost minimum. 

Obviously a change will only take place if the savings in labour costs 

more than offset the increased transport costs. That is, if the optimum 

location from a labour cost standpoint lies on a lower isodapane than 

that on which labour savings equal transport costs, then the firm will be 

attracted there, and conversely. Agglomeration economies are treated in 

identical manner; a critical isodapane again being constructed where 

transport cost increases exactly cancel out gains from agglomeration. 

Hoover (1937), considers the activities of the firm in three parts 

(A) the procurement of raw materials, (B)' their processing, (C) the 

distribution of the product. The relative importance of these stages 

varies with the type of production involved. Procurement and distribution 

costs both vary systematically with distance from the raw material sources 

and the market, respectively, due to the role of transport costs. These 

costs generally increase with dis~ance but less rapidly, giving a tapering 

effect, which is more pronounced where terminal charges are considerable. 
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Rates are frequently grouped by sections so that a step-'like progression 

occurs as distance increases. When the volume of the shipment increases, 

transport costs per unit usually decrease, since te~minal costs typically 

do not increase. To minimize the cost of procurement, better access to 

material sources is sought; to minimize the costs of distribution the 

firm will seek better access to the market. As these objectives may be 

opposed to each other, the problem rests in balancing them so that aggre­

gate costs are minimized. 

Hoover's strategy is as follows. Firstly, holding everything 

constant except transport costs, the relative attractive forces of the 

materials and markets are examined. If the product loses considerable 

weight in processing it is more likely to be located close to the material 

source. This latter also attracts the location, if for any of the reasons 

listed above, the procurement costs per ton-mile exceed the distribution 

costs. On the other hand, if there is weight gain during processing or 

if transport costs are higher per ton-mile for distribution, the plant 

will be oriented towards the market. As goods become mor~ processed they 

usually become more fragile and hence more market oriented. To determine 

the loci of points of equal transport costs, Hoover introduces the concept 

of the "isotim" - a line joining points of equal delivered price. A contin­

uous family of isotims surrounds the location of each input and the location 

of the market. Total transport .costs at any point may be determined by 

summing the value of the three.isotims running through that point. Points 

with equal isotim totals are connected by isodapanes and the minimum 

transport cost region will be COtl cained by the lowest isodapane. 
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FIG. 2. The Hooverian Isodapane Map 

Following this the market supply areas are considered. Assuming 

a standardised product, each market point will buy from whichever producer 

supplies it most cheaply. If production and distribution costs are every­

where equal, market areas will also be equal. If costs are higher at any 

given center the boundary will move closer to it. In certain industries 

transport costs vary little in comparison with operating cost, so the 

latter would appear to be a significant locating factor in these instances. 

Factor price differences may arise from immobility, especially as regards 

"land inputs". The appropriate combination of inputs at any given site 

will depend on the relative prices there. The optimum site regarding 

these aspects is then compared with the optimum as regards transport costs. 

The former will be preferred only if it lies on an isodapane lower than 

that on which savings from processing costs balance increased costs of 

transportation. A similar trea1:1 !rtt is applied to economies arising from 

agglomeration. 
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Because of the broad similarity in the approaches of Hoover and 

Weber, the same criticisms may be applied to both. Isard (1956), Alonso 

(196 7), and Greenhut (1967) ,' among others, have pointed out that this 

approach is assymetric in that all location factors are defined in terms 

of cost. A profit-maximising equilib.rium, will, of course, depend on the 

interaction of demand and supply. Secondly, the Weber-Hoover approach 

assumes that market price and quantity sold are known and fixed, and 

this requires a state of perfect competition at the market. Given that 

every product in a given industry is differentiated by its spatial origin 

from all others this assumption appears unreasonable. Isard (1956) has 

indicated that Weber has committed a logical error when he considers 

variations in transport costs. Such variations, Weber claims, may be 

reduced to variations in the weights and distances. However, the distances 

concerned are those from the proposed plant location to the raw material 

sources and the market, and calculating these presupposes that the plant 

has in fact been located, which is incorrect. Another error is Weber's 

assumption that when a factor is highly priced at a given site then that 

site may be considered farther away from the proposed location. The 

location of this input will to a large extent determine the least cost 

location itself. Predohl (1927) has shmvn that the Weberian scheme does 

not permit exhaustible resources, whose prices vary with the firm's 

consumption of them. A further defect is that once the assumption of 

fixed factor proportions (which implies that technology and factor 

endowment are constant through space) is removed, then the solution 

becomes indeterminant. Weber also utilises an unrealistic linear transport 

function. Both Weber and Hoover ignore any long run changes in the economic 



7 

environment (e.g., technol~gical progress) and their analyses are completely 

static in nature. 

Isard (1956) attempts to synthesize the "point" and "areal" types 

of location models, again using the Weber-Hoover polygonal situation. He 

likewise begins by assuming all costs but transport, but he uses these in 

a substitution framework. He analyses transport orientation in two phases: 

(1) he assumes fixed factor proportions and constant market demand and 

so reduces all variations in transport inputs to variations in distance. 

(2) realising that the amounts of raw materials used may vary he frames 

the corresponding substitution analysis in terms of transportation inputs. 

In the first phase, if a single mobile unit m1 is used, then location may , 

be anywhere along M1C, where C is the location of the market. 

(A) 

Ml M2 

+ (B) 

N 
~ 

13 
0 
l-1 

44 

Q) 
t) 

~ 
oi-l 
fJ) ..... 
~ 

Distance from M1 + 

FIG. 3. (A) Single Input, (B) Two Input Situations in Isard's Model 

The introduction of another material m2 at M2 in the process yields 

the locational triangle_, and instead of a single transformation line there 

is a series of them. 
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c 

FIG. 4. Finite Location Possibilities in Isard's Locational Triangle 

The transformation line TJHS between m1 and m2 is drawn on the basis that 
, 

the site is to be located three miles from C. T,J,H, and S represent the 

finite number of possible locations along the arc TS. Since factors are 

used in fixed proportions, the relationship of freight rate to distance 

is the most important one. Assuming that freight rates are proportional 

to distance and that one ton of each material is used per unit of output 

then the iso-outlay curves EF, GK, LN, may be constructed. 

~ s 
~ 

s 
0 
~ 
~ 

~ u 
~ 
~ 

00 
"M 
A 

Distance from M1 

FIG. 5. Tangency of Location Arc TS to an Iso-Outlay Curve. 
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Since the transport rate on both inputs and final product is equal 

the price ratio lines for each must be straight and have a slope of -1. 

The tangency point J gives the proper location on arc TS, always assuming 

that the plant must be located three miles from C. 

Allowing C to vary we can consider all conceivable transformation 

lines and their respective points of tangency. This is done by the partial 

equilibrium approach -- taking distance from M
2 

consistent with point J as 

fixed,Isard constructs transformation lines for variable distance from Mz, 

and from C. Knowing the transport rate structure he can construct price 

ratio lines and determine the partial equilibrium for these two points. 

As a result the transformation line between the variables, distance from 

M1 and distance from M2,changes and therefore it may be necessary to find 

a new partial equilibrium with respect to these two variables. A full 

equilibrium is reached when partial equilibria between distance from C 

and M1 , distance from C and Mz, and distance from Mz and M1, all coincide. 

Next Isard begins to introduce complexities, and he reframes the 

problem recognizing that usage of any given factor depends on the location 

of the plant. He uses transport inputs which encompass both the distance 

variable and the weight variable. He now assumes that the producing site 

is located 5 miles from C, and the feasible locations are A,B,D,E,F. 

c 

FIG. 6. Isard' s Locational Triangle with Variable Factor Proportions 
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Since usage of a factor depends on the location of the plant, a location 

at A, for example, will employ more of m1 than a location at F. The 

proportions of ml and mz required to produce 1 ton of output at each 

location may be calculated, as may the distance in miles from the alternate 

sites to ml and mz. These may be combined to produce transport ton-miles. 

This information is plotted on transformation lines ABDEF. 

Transport Input on M2 

FIG. 7. Isard's Tangency Solution with Variable Proportions 

Assuming that it costs the same to move 1 ton of m1 and 1 ton of 

m2 , B is the point of minimum transport cost. When the weight ratio changes, 

the price ratio lines remain unchanged, and a new transport-input trans-

formation line becomes relevant. A full equilibrium is again attained 

when the three partial equilibria, this time expressed in terms of trans-

port inputs rather than distance, coincide. 

The model proposed by Isard is again faulted on the issue that 

price differentials are assumed beyond the power of the firm, implying 

therefore that demand is infinitely elastic and the firm is a perfect 
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competitor, which is essentially the Weber postulate. Like its pre-

decessors, this model also assumes infinite factor supplies and ignores 

long-run or dynamic aspects of the location problem. As argued by Moses 

(1957), this theory is likewise based on the acceptance of a linear homo-

geneous production function, wherein substitution between the factor in-

puts is not permitted. The substitution which Isard is considering here 

is that between transport expenditures for inputs. This linearity 

assumption leads Isard to conclude that there is a single locational 

optimum, which occurs where the marginal rate of substitution between any 

two transportation inputs equals the reciprocal of the corresponding 

freight rates. 

1.2 The Modern Models 

Genuine reformulations of the Weber-type location problem begin 

with Moses (1958). This model again considers two transportable inputs 

located at M1 and M2, and a point form market at C. Initially location 

is restricted to the arc IJ, some fixed distance from C. 

Ml 

c 

Mz 

FIG. 8. Moses' Locational Triangle 

If the firm locates at I, m1 will be cheaper, while at J, mz is 

less expensive. The various combinations the producer can buy at I with 

I I 
his fixed income are given by the isocost function ml mz· The various 

combinations he can buy at J are represented by the isocost mi mi. If 
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m2 

FIG. 9. Tangency Between the Isoquants and 
Fixed Isocosts in Moses' Model 

q1 , q2 , q3 are samples of isoquants from the firm's production function, 

then at a level of output corresponding to q1 , I is the optimum location, 

J J I I 
since q1 is tangent to m1 m2 but not m1 m2• If, however, the level of 

output rises to q2 then J becomes the optimum location since J's isocost 

curve is tangent to q2• Nowif location is possible anywhere along.the 

arc IJ then the kinked line mi m~ will become a smooth curve, since each 

location will have its unique isocost, and therefore makes a unique 

tangency solution vli th the set of i~oquants. Each point' on this smoothed 

curve therefore corresponds to a particular location, and shows the 

combination of factors the firm will use at that location. If the level 

of expenditure is allowed to vary then a series of such smoothed isocosts 

FIG. 10. Tangency Between Continuous Locational 
Isocosts and the Isoquants in Moses' Model 
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is generated. If the firm wishes to produce a given level of output, 

then optimum input proportions are indicate~ by the point of tangency of 

the relevant isoquant to one of the isocosts (e.g., Din Fig. 10). How­

ever, D now represents not just the input level, but also a particular 

location along IJ. This leads Moses to conclude "If the production func­

tion is not homogeneous of the first degree there is no single optimum 

location along the arc IJ. The optimum location varies with the level of 

output". 

As Sakashita (1967) has pointed out, this conclusion is partially 

incorrect. The situation Hoses envisaged when location does not change 

· with output is actually one wherein the inputs are not substitutable, 

i.e., a fixed factor production function. The conclusion of this model 

is, therefore, not pertinent to the most common production function- the 

linear homogeneous and input substitutable one. The Moses model may also 

be criticised for ignoring market considerations. Although in the latter 

part of his article Moses adds the impact of transport costs to a linear 

demand function, he does not show in any analytical or potentially 

analytical sense how the firm incorporates a demand function in its 

optimum production decision, and hence in its locational decision. 

Churchill (1966) attempts to remedy certain of the defects of the 

location mode~s by 1) introducing more realistic transport costs; 2) by 

including imperfectly competitive factor markets; 3) by incorporating 

plant size as a decision variable; 4) by treating production technology 

directly; 5) by introducing monopolistic competition arising from product 

differences. He posits the familiar situation with two inputs V1 and V2 

located at m1 and m2 respectively, and a market located at C. 



L . 
1 

L . 
2 

M ,.~ 
2 

FIG. 11. Churchill's Location Map 

He then expresses the cost of the inputs as functions of the 
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quantities of them consumed, as well as their basic prices and transport 

costs. Similarily, he develops a transport function for the finished 

product which reflects volume and the tapering effect of- distance as well 

as quantity shipped. 

Churchill now comes to the crux of his argument, which is that 

before the physical plant is installed, both plant size and location are 

decision variables for the firm. This, he reasons, implies that location 

theorists should employ a stock-flow production function in which capital 

is treated explicitly as an input. The function he employs is of the form 

q = 

where q is output, v1 and v2 the current inputs, v3 the capital inputs, 



and the a's are the output elasticities. Churchill claims that site to 

site productivity differences may be represented by Changes in the a's, 

and returns to scale may be varied by Changing (a1 + a2 + a 3). v3 is 

assumed to be non-transportable, and available only at a finite number 

15 

of points (the L's in Fig. 11). The Lagrangean Lis then formed from the 

cost and production functions, where the P's are the unit prices of the 

L = P V + P V + P V + ' [ vlal v2a2 v3a3] 1 1 2 2 3 3 . A q ~ 

inputs. The partial derivatives of L with respect to the inputs are equal 

to zero, the resulting simultaneous equations are solved, and the cost-

output expression is obtained. 

Next Churchill assumes that the demand for the product at the 

market may be represented by a linear function 

p = a- bq 

From this the total revenue function (Pq) is readily constructed. The 

profit equation. (total revenue minus total cost) then follows a'!-ltomatically, 

and this relates the level of output to profit at each particular site. 

The maximum profits available at each site are then compared to discover 

the maximum maximorum. 

Apart from including a better treatment of transport costs and 

factor prices, this model is open to the same criticisms as its pred-

ecessors. The idea that plant size and location are variable for the 

firm in the long run is very correct, and undoubtedly this factor should 
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be considered in location theory, but the manner in which Churchill tries 

to incorporate this idea in his theory is highly questionable. The use 

of a finite number of possible locations is unnecessary and destroys the 

elegance of the analysis. Since his objective is to find the long run 

cost curve, the correct method would appear to be through constructing 

the mathematical envelope of the short-run cost curves' which may then 

be used in conjunction with the total revenue equation to find the long 

run profit maximizing location. 

Sakashita (1967) states his objective as that of investigating 

the case of an input substitutable and linear homogeneous production 

function in the location problem. He employs two models, a cost­

minimizing one and a profit-maximizing one. In the former he uses an 

even simpler situation than is generally assumed. Two inputs v1 and Vz, 

are located a fixed distance s apart. Cost is defined in terms of the 

distance which each input must be carried to the chosen location, an 

unknown distance X from mz. Given the transport rates on the inputs as 

m1 and m2 respectively, and their base prices as r 1 and r 2 , we may form 

the cost equation for the firm. 

c = 

Given a linear homogeneous production function q = f(V1 , Vz) then the 

Lagrangean is formed 

L = 
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which may be solved for the optimum factor proportions, eventually getting 

V1 and V2 in terms of x. From this he is able to minimise c in terms of 

x -- that is, to find the cost-minimizing location ~etween M1 and M2• He 

discovers that the optimised cost function is strictly concave with respect 

to x. This means that the preferred location will always be at one of the 

input sources in this class of problems. Furthermore, he concludes that 

the optimum location does depend on the base prices of the inputs, and is 

not affected by the level of output. 

The second model proposed by Sakashita is a profit maximizing one. 

The market for the final product is concentrated at some point C, v1 is 

still obtainable only at M1, but v 2 is available everywhere along CMr 

C and M1 are a distance s apart, and the distance between the firm's 

location and the market is the unknown x. Given some demand function 

P(q) for the product and its transport rate h, the firm's profit function 

is 

'IT = 

Maximization of this function with respect to x leads to the conclusion 

that the optimised profit function is strictly convex with respect to x, 

which implies that intermediate locations are excluded. As before, he 

shows that the optimum location does depend on the prices of the inputs, 

and in addition, the shape and positi~n of the demand function does not 

influence the profit-maximizing site. 

The two models of Sakashi ca are both liable to criticisms of the 

sort levied by Churchill, eg., unrealistic transport rates and factor 
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prices, no accounting for plant size, etc. However, they do appear to be 

the most promising models so far developed in this approach. Their use­

fulness lies not in any new insight they have given location theory, 

(in fact, they are little more than rigorous restatements of pre-existing 

models), but rather in their structure, which reveals avenues for future 

research far more explicitly than did that of their predecessors. 

1.3 Summary and Conclusions 

The development of the classical location problem proceeded along 

the lines of sophisticated redefinitions of the Weber problem up to the 

contribution by Moses. He made the critical connection between the theory 

of production and the theory of location. Since then, efforts have been 

directed at introducing standard microeconomic notions to the location 

problem and re-interpreting their significance from the heretofore 

neglected spatial perspective. One of the most recent investigations has 

been that of Sakashita, who has formulated a simple theory using the most 

restrictive assumption about production and demand (linear-homogeneity and 

linearity, respectively). This paper attempts to continue this modern 

tradition by using some common economic analysis to examine the role of 

different technological and market condit~ons in a Sakashita-type model. 



CHAPTER II 

THE NON-LINEAR COBB-DOUGLAS 

COST-MINIMIZATION LOCATION MODEL 

2.1 Introduction 

Sakashita (1967) indicates Moses' error in assuming that a linear 

homogeneous production function with fixed input coefficients is necessary 

to ensure that the optimum location of the firm depends only on transport 

costs and the location of the factor inputs. Moses claims that if pro-

duction conditions are otherwise, several other influences, including the 

level of output, will come to bear upon the optimum plant site. Sakashita 

proceeds to demonstrate that the fixed coefficient assumption is not 

essential, and he derives an optimum location determined by transport 

rates and input locations on the basis of a linear-homogeneous and factor-

substitutable production function. In this chapter the effect of variable 

homogeneity in the production function is investigated to determine whether 

the linearity assumption of Sakashita, Moses, and others is necessary for 

reaching these conclusions. 

2.2 The Model 

Assume the production function 

q = V a V S 
1 2. 1 > a, S > 0 

19 

(1) 
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where q represents outputs,V
1 

and v2 are the inputs, and a and S are the 

technological parameters (more precisely, a and S are the input elasti-

cities). This is the general form of the Cobb-Douglas production function, 

which is homogeneous of any degree (a+ S) (see Ferguson 1969). 

The inputs vl and v2 are located some arbitrary distance s miles 

apart at M1 and M2 respectively. r1 and r2 are their base prices, and m1 

and m2 are their corresponding transport rates. 

: . .......•.............•. ·s 

M2 

. . . . ................. ~ ................ ·-
X 

................................ . 

FIG. 12. The Locational Cost 
Minimising Situation 

The plant is located at some unknown distance x from M2• The cost function 

(c) of the firm associated with a same level of output q will, therefore, 

be 

c = (2) 

Firstly, we wish to establish the optimum input ratio at any location. 

To this end we form the Lagrangean (L) 

L = (3) 



21 

therefore, 

= 0 • (4) 

0 (5)· 

Consequently, 

a v2 ,. r1 + m1 (s - x) 
(6) , 

s v1 rz + mzx 

vz ,. [ r1 + ml (s - x) ] s v (7) - 1 
rz + mzx a 

rz + mzx a 
vl "' - v2 (8) 

r 1 + m1 (s - x) B 

From (1) 

a+ S [rl + ml(s - x) JS f3 f3 
v a v 8 q = "' vl • 1 2 . rz + m2x a 

(9) 

l [: . ] 
8 

(q)a + S rz + mzx a+B 
vl ... 

r1 + m1 (s - x) 
(10) 

Similarly, 



1 

= 
[

a r1 + m1(s - x) 1 
6 r 2 + m2x 

. -

a 

a+ {3 

We wish to minimize c with respect to x, so from (2), 

de = dC = {Samuelson, 1948). 
dX ax 

From (10), (11), and (12)' 

de = 

dX 

= 

1 

~ 
( )a+ B r2 + m2x 

ml q 
r1 + m1 (s - x) 

1 
a + {3 t . r 1 + m1 (s - x) + m2(q) 

{3 . r2 + m2x 

1 {3 

a + sl.-{3]. a + {3 
- ml(q) -

a 

s 
o: + B 

a + {3 

·-

J 

] 

a + {3 

a 
a+ B 

1 
a+{3 

+ m2(q) 

-I (rz + mzx)m1 -(rl + :1 (s - x) )mzJ . 

l (r2 + m2x) 

22 

(11) 

(12) 

(13) 

(14) 



That is, 

r(rl + ml(s- x))m2 + (r2 + m2x)mlj 

[ (rl + m1 (s- x))2 

s -1 
a+S 

a 
-.__,.. -1 
a+ S 

Since a, S, q, m1 , and~ are all positive, we may conclude that 

< 0 for all 0 ~ X 5 S • 

2l 

(15) 

(16) 

Equation (16) implies that the locational cost function is concave, 

and the cost-minimizing location must, therefore, be at one of the terminals. 



c(x) 

FIG. 13. The 02timized Location 
Cost Function 

The problem now rests in choosing between the two input sites. 

where 

Let 

From (12), 

de 

dx 

v = 

= 

Frqm (6), 

= 

v = a [ rz + "'2 x l 
f3 r 1 + m1 (s - x) J 

24 

(17) 

(18) 
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therefore~ 

= (19) 

Consequently, 

a. r2 ] <P (0) = - ml- + mz (20) 

13 rl + m1s 

a. t2 :1m2s] <P (s) = - ml- + m2 (21) 
13 

If ¢(0) < 0, then the locational cost function will be as shown in Fig. 

14, and the optimum location will be at M1. 

FIG. 14. Optimized Locational Cost 
Function where ¢(s) ~ 0 



If ¢(s) > 

solution. 

0, then c(x) behaves as in Fig. 15, and M2 is the optimum 

FIG. 15. Optimized Locational Cost 
Function where ¢(s) ~ 0 
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If ¢(0) > 0 and ¢(s) < 0, then the solution is .not readily apparent, 

as may be seen from Fig. 16. 

c(x) 

FIG. 16. Optimized Locational Cost Function 
where ¢(0) > 0, ¢(s) < 0 
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To deduce the superior site we must compare the average cost (AC) obtaining 

at both 

c(O) 
AC(O) = 

q 

AC(s) 
c(s) 

= 

q 

2.3 Conclusions 

= 

= 

(rl + m1(s - x))Vl + rzV2 

vla. vl) 

r1V1 + (r2 + mzs)V2 

v a. v 13 1 2 

As with Sakashita, the optimum location must be at one of the 

terminals, there is no possibility of an intermediate location. The 

• (22) 

• (23) 

optimum location does depend on the base factor prices and transport costs, 

and considerations of the level of output, returns to scale, etc.,"have 

no impact upon the cost minimizing location. These conclusions have thus 

been shown by the above analysis to extend to the case of a non-linear 

homogeneous production function, which is a direct refutation of Moses'' 

claim that the optimum location varies with output if the production 

function is not homogeneous of degree one. 



CHAPTER III 

PROFIT MAXIMIZING MODEL 

3.1 Introduction 

In his second model, Sakashita considers the firm in a somewhat 

different linear spatial context. One input (V1) is obtainable only at 

location M1 as before, while the other is available at any point, effect-

ively reducing transport costs for v2 to zero. At some point C, represent­

ing the market, the firm is faced with a demand function p(q) in which 

market price in some way depends upon quantity sold. The symbol s now 

represents the distance between the fixed input and the market, and x 

s 

C ~----------------~----------------·!Ml 
• ............................... 1"" 

X 

FIG. 17. The Profit Maximizing Situation 

represents the distance separating the unknown location of the plant and 

the market. In his example, Sakashita uses a linear demand function with 

a linear homogeneous production function, and concludes that under these 

circumstances the optimum location will be independent of the demand 

conditions. However, he also claims that once the linear-homogeneity 

28 



assumption is relaxed, demand conditions do exert an influence on the 

firm's decision. 

3.2 Tl1e Model 

29 

It is consequently proposed to test this latter assertion by using 

the h-homogeneous production function employed in the previous chapter 

with a simple demand relationship of the form 

p = a- bq a, b > 0 (24) 

Since 

'IT = pq - c 

where 'IT is profit and c is total cost, 

then 

'IT = (25) 

That is 
a 

r~ 
r 1 + m1 (s - x)J a+ 13 

'IT (a - bq)q -
r2 

(a + 13) = 

13 r2 
1 

a+ 13 
q (26) 

Now let us assume for convenience, the special case of decreasing returns 
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to scale where a.+ s :::: 1/2. 

i.e. 

r~ -x)] 2a. 

r2 r1 + m1 (s 
q2 7T = (a ~ bq)q -

2!3 r2 
(27) 

(Notice in the above that the cost of transporting the final product to 

the market from the plant has not been incorporated in the cost function; 

it is not considered critical to the analysis and may, it is felt, be 

omitted without altering the logic of the argument). The general condi-

tions for a maximum of the profit function at any location are 

= 0, < 0. 

From (27)' 

r _rl + ml (s - x) ] 

2a. 
rz 

0 (28) 7Tq a - 2bq-- q = 
s a. r2 

[: 
]2a r2 rl + m1 (s - x) 

7Tqq = - 2b - (29) 
s r2 

Since a,b,r2 ,S > 0, it is reasonable to assume that the maximising 

conditions are fulfilled. We thus have a maximising value of q for a 

given x, and the problem is to find the optimum x. 



1Tx 

1Txx 

From (28), 

q 

therefore, 

dq 

dx 

= 

= 

= 

= 

ml r~ 
] za- 1 rl + m1 (s - x) 

q2 

rz 

[~ -x)] 
- (2a - l)m1 

r1 + m(s 

r2 

[a r1 + m1 (s - x) ] 
2a- 1 

+ ml a 

2b +~~ 
S a 

- a 

r2 

a 

2a- 2 
S m1 

a r2 

2 dq q_ 

dx 

-2 

a 

Since 2a < 1 given a+ S = 112 and a,S > 0, then we conclude that 

1Txx > 0 

31 

(30) 

(31) 

(32) 

(33) 

This implies a strictly convex profit function with respect to distance 
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from the market. If dn > 0 at x = 0, then m1 is the preferred location. 
dx 

If dn < 0 at s = x then c is the optimum. 
dx 

From (32), 

q (0) = 

q (s) = 

2b + r2 

s 

2b + r2 

s 

a 

a 

Since rr(O) (a - bq)q r2 [~ 
r 1 + m1s ra q2 

2S r2 

a2 1 
therefore rr(O) = 

r2 

[: 
rl + 

m1s J 2a 
2b +_ 

s r2 

Similarily, rr(s) a2[ 1 
- lj 2 = 

l2b 
+ rz [~ r1J 

2a 

s (l rz 

1 
- /2 

If drr < 
dx 

. ~ 0 . 0 at x = 0 and_ > at x = 3, then the optimum location 
dx 

(34) 

(35) 

(36) 

(37) 

(38) 

depends on which of (37) and (38) is the larger. This essentially implie9 
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comparing 

2Ct with rz 

r
s r 1 J za 
a rz 

Therefore, we conclude that selection of the preferred site is independent 

of the demand conditions. 

3.3 Conclusions 

Sakashita states: "Since the total delivery cost is a linear 

function of q [in the linear homogeneous case] a homogeneity assumption 

about the production function other than a linear one, will change this 

result, i.e., the demand conditions are generally relevant to the locational 

decision unless a linear homogeneous production function is assumed by 

contrast". The above analysis demonstrates that, at least in the instance 

of a production function homogeneous of degree (1 /2), the demand conditions 

are also irrelevant to the locational decision. 



4.1 Introduction 

CHAPTER IV 

THE ROLE OF DEMAND FACTORS 

IN THE PROFIT-MAXIMISING MODEL 

In the preceding chapter the optimum location of the firm in a 

linear situation is discussed using a linear demand function. In this 

section the spatial impact of various non-linear classes is examined 

within the same model. It is emphasized that this is not a treatment of 

spatially induced demand as envisaged by location theorists from LBsch 

(1938) to Long (1970), all of which are concerned with an areal distribu­

tion of consumers and the effect of this on the product demand, and 

consequently the location of the firm. What we are concerned with here 

is essentially a non-spatial demand at single market point. The different 

demand functions, therefore, correspond to different assumptions about 

the consumers' preference for the particular good being marketed rather 

than their attitude to the disutility of .travelling or paying delivery 

costs to obtain it. The impact of demand in such a situation is, there­

fore, indirect (if it exists at all), operating through the constrained 

optimization process on the production decision and thence on the loca­

tional choice. 

The procedure adopted in this chapter is to select certain of 

those demand curves discussed by Stevens and Rydell (1966) and apply them 

34 
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to the profit-maximising model of Chapter Ill,using the most convenient 

assumption about the homogeneity of the production function in an attempt 

to derive an optimal location dependent upon the demand parameters. 

4.2 Selected Demand Functions 

From the seven demand functions discussed by Stevens and Rydell, 

the linear example is identical to that utilised in the above chapter. 

From the remainder-, the convex, concave, and rectangular-hyperbola types 

are chosen for study in this context. A demand curve is defined as 

convex if and only if 

II 

q (P) > 0 

The condition is satisfied by the inverse function 

p = bql/2 b > 0 

qii(P) = 

A concave demand function exists where 

II 

q (P) < 0 

This is satisfied by 

p = a,b, > 0 ' 
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since 

II -1 
q = 

2b 

A demand schedule which is a rectangular hyperbola is defined where 

q" (P) 
2 [q' (P) ] 2 

= 
q 

4.3 The Convex Demand Model 

Given P = bq112 , then the firm's profit function is 

ex 1 

3f2 - r2(ex + 
a> [: 

r1 + m1(s - x)] ex+S ex+S 
(39) 7T = bq q . 

s rz 

Assuming (ex + {3) = lf 3, then 

[: 
x)] 3ex 

3f2 r2 rl + m1 (s- 3 • (40) 7T = bq q 
3S rz 

G 
X>] 

3cx 
3 lfz r2 r1 + m1 (s - q2 = 0 . (41) 

7Tq = - bq 
2 s rz 

Therefore, 
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3b f3 _r_l_+_m_l_c_s_-_x_) l -3a 

r2 -J 
' (42) = 

2/3 

[~ r2a 3b s r1 + m1 (s - x) 
q = -- (43) 

2 r2 r2 

Therefore, 

= [3b ~-J 
2

/3 [~ 
L2 r 2 a 

_ x)] -2a-l 
> o. ------

r2 

dq 
(44) 

dx r2 

From (40), and (43), 

= [: _r l_+_m_l_<_s_-_x_)l J<l-1 

r2 -j 
(45) 

'IT XX = [ J 
3a-l 

3 
2 S r1 + m1(s - x) dq 

q - m,l-
a r2 dx 

(46) 
a rz 

Since (a1S) > 0 and (a+ S) = 1/3, then (Ja-1) must be negative and so 
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1Txx is positive. This implies, as in the linear demand case discussed in 

Chapter III,that the optimised profit function of the firm is strictly 

convex with respect to x, and the selection of the best location returns 

once again to a choice between the market and the source of m1• This 

again involves comparing the profits obtainable at each of the two. 

From (40), and (43), 

[ ~ r1 + m1 (s - x) ] - 3a 
[: r1 + x)J 

3a. 
3b s rz m1(s-

1T = b --
2 rz (l rz 3S r2 

. [3b ~] 2 r r6a ~ r1 + m1(s- x). 

2 r2 (l r2 

[: 
m1(s - X'] 

-3cx 
3b2 s = rl + (47) ----

r2 4 r2 

[: <1 + J -:Ja 3b2S m1(s - x) (48) 1T (O) = 

r2 4r2 

1T(x) = rs rl] -
3

(l 

(l rz 
(49) 

4r2 

As before, the decision reduces to comparing the relative magnitude of 



_r l_+_m_1_cs_-_x_) J -3
a 

rz 
and [ ~ r 1] -

3
a 

a r 2 
' 

and the demand characteristics drop out of consideration. 

4.4 The Concave Demand Model 

Given P = (a- bq2), 

Then we can calculate profits, 

1T = 

Assuming (a + !3) 

1T 

1T q 

Therefore, 

= 

aq - bq3 - r2(a+!3)q 

!3 

l/3, then 

a -

1 

a+S 

f -x)] r1 + m1 (s 

rz 

_r_l_+_:-~-(_s_-_x_) ] ~ 

a 

a+S 

q 
1/2 

a = 

] 

3a. J _1,2 - x) 

39 

(50)-

(51) 

(52) 

(53) 
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dx 2 

_rl_+_:-:-(s_-_x_l] Ja] _3/2 > 0 (54) dq 

From (51), 

[ 

. 3a 1 
3 _s r1 + m1 (s - x) ] -

q ml 
<l rz 

(55) 

'IT XX = 2 dq [ _s 3q m1 
dx a 

3a-l 

(56) 

Given (a + S) = l/3, then a < 113 and (3d-l) > 0, therefore since 

dg > 
dx 

0, we conclude 'ITxx > 0. Again we have a strictly convex optimised 

function and the preferred location is an end point. 

From (51) and (53), 

[ •
1
12 [ 3b+ :2 [: <1 + ::<· -x)r r112

J 
2 

'IT = a - b 

• alfz 
[3b 

rz 

[: 
r 1 + m1 (s - x) ] 3" ] -1/z 

+-
s rz 
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[ -~ _ r2 ~ r 1 + m1 (s - x) J 
36 (l r 2 

l3b + :2 [ ! 
3f2 -3/2 

3f2 r1- m1(s- x)J 

J 
, (57) a 

r2 

3a -1/2 

3f2 [ ~ r1 + m1 (s - x)] ] = a 3b +-
a r2 

_ 113 [ 3b + r2 [ ~ r1 + m1 (s - x) 

(3 a r2 (] 
3/2 [ r2 [a r1 + ml(s - x) J 3" r312 

• (58) • a 3b + -- -
(3 a r2 

= r1 + m1 (s - x) -J 
r2 

~] _1/2 2 3/2[ J 3/2 /3a :aJ • (59) 

The profits at the fixed input source and the market are respectively 

'IT(x) = [3b +& r1 :

2

m1s] ~] -
1

/

2 

[:ar , (60) 

'IT(O) = [3b +~ ::] 3a J -1
/2 t:ar • (61) 

As before, this reduces to comparing 



3a 

and 

the demand factors play no part in the selection process. 

4.5 The Rectangular Hyperbola Demand Model 

Given P = b + aq-1, then 

7T = 

Assuming (a + S) 

7T = 

7Tq = 

therefore, 

q = 

'IT X = 

bq + a - r 2 (a+S) 

s 

= 1;2, then 

r2 f3 
bq + a--

213 a 

,-

b 
r2 

[: 
q 

-- q 

s 

bS [ ~ r1 + m1 (s 

r2 a rz 

r 1 + m1 (s - x) 

r2 

+ m1(s - x) ] 

rz 

- x) ra-1 

ml [ 
s r 1 + m1(s - x) ] 2a-l 

a r2 

a 
a+S 1 

x)] qa+a 

2a 

J 
q2 

2a 

= 0 

S m1 
> 

a r 2 

q2 
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(62) 

(63) 

' 
(64) 

0 
(65) 

(66) 
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2 

[: 
r 1 + m1(s _ x) J 2"-2 2 (3 1 

'IT XX = - m (2a. - 1) . q --1 
r2 a. r2 

J 2"-1 
. 

+ ml 
£ r 1 + m1 (s - x) dq 

(67) 2q-

a. r2 dx 

Since (a. + f3) 112, and a.,f3 > 0 then a. < 1/2 and (2a. - 1) < 0. 

Since from (33) dq > O, we conclude 'ITxx > 0. The conclusion once more 
dx 

is that the optimised profit function is convex with respect to x and the 

optimum location is at one of the terminals. 

Then from (63) and (64), 

'IT = 

r2 r2 

bf3 2G r1 + m1(s - x) r4a 
r2 r2 

(6~) 

b2f3 

[: J 

2a. 
rz 

a+--
2r2 rl + m1 (s -.x) 

(6~) 

Comparing profits at the two extrema, 

'IT(O) = (70) 

2a. 



n(x) 

2 
b B a r2 

a+--

2r2 f3 r 1 

This implies comparing, 

and 
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2a, 

(71) 

2a 

This means, as in all the casea analysed above, that the demand function 

is irrelevant to the locational decision of the firm. 

4.6 Conclusions 

Obviously, the deductions which one can make from the above analysis 

are very limited. We have examined the effects of three different demand 

functions on the location model using two different homogeneities of the 

production function, and have found that the optimum location is always 

at a terminal point, and that the demand function plays no role in deterroin-

ing the comparative profitability of these poles. We are not justified in 

concluding that such solutions hold for all demand and production condi-

tions, but further calculations, including several with increasing returns 

to scale [(a+ S) > 1], indicate an absolute consistency in this outcome. 



CHAPTER V 

CONCLUSIONS 

5.1 Summary 

The objectives of this research were: 1) to determine the effect, 

if any, of a non-linear homogeneous assumption about the production function 

on the cost-minimising location, 2) to investigate the impact of such non­

linear conditions on the firm's locational decision in the context of a 

simple profit-maximising model, employing a linear demand function, 3) to 

examine the effects of various non-linear demand situations on the optimum 

location in the context of the non-linear homogeneous technology. It has 

been discovered that a production function homogeneous of any degree will 

generate an end-point solution in the Sakashita-type model. Furthermore, 

such a result holds true for the profit maximising case also, at least 

for the special case chosen. Finally, the end point optimum appears to 

stand with variable market conditions. 

5.2 Limitations of the Analysis 

The main deficiency in the strategy adopted in the above research 

is the reliance on special cases rather than general formulations. The 

conclusions one may draw from the results, therefore, are strictly speak­

ing, limited to these particular situations. It was hoped that a general 

model with the production function homogeneous of any degree and a general 

demand function q = q (p) could be used in Chapters Ill and IV. However, 
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attempts in this direction proved analytically intractable. Given this 

defect in the methodology, the number of special cases examined (most of 

which are not included in the text) with different degrees of homogeneity 

in the production process prompt some intuitive comments on the efficiency 

of this general framework. In all instances the degree of returns to 

scale do not affect the choice of site, and so it appears that this type 

of model is not appropriate for examining such topics as the impact of 

technological progress on the optimum location. Similarily, the uniformity 

of results for different demand conditions leads one to suspect that this 

is not an adequate basis for discussing the role of dynamic demand on 

location, etc. 

5.3 Possible Extensions of the Analysis 

Nevertheless, certain means o.f improving the model are apparent. 

Sakashita has suggested, as one possible course of generalisation of his 

model, a conversion to a two dimensional form from the linear one. How-

ever, such a model will be analytically inelegant, and it is doubtful 

whether an algorithmic approach will be a fruitful medium for developing 

the theory along the lines attempted in this work. 

Another possibility for improving the model is the incorporation 

of a non-homogeneous production function, for example, the general Solow 

function q = (v1a + vzS]
0 , for which according to Hilhorst (1964), 

could prove to be a more useful tool for examining the nature of technical 

progress than its homogeneous counterparts. 

An obvious alteration, which will overcome many of the objections 

to the established location theory literature, is to treat the inputs 
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v1 and v2 as exhaustible in supply by expressing th.eir values as functions 

of th.e level of output. Similarily, transport costs may be expressed as 

a non-linear function of x for both inputs, reflecting the empirical 

evidence for tapering carrying rates. A four-dimensional approaCh may 

then be adopted for the locational strategy of the firm, with the various 

combinations of technical, market, factor supply, and transport conditions 

generating a vastly more realistic locational profit function. 

Another development, within the general context of the above model, 

is the use of a stock flow production function (i.e., a function treating 

capital as well as the variable factors as an input) as suggested by 

Churchill (1967). Churchill, however, does not try to use this innovation 

to bring the location decision into the general investment theory of the 

firm, which appears to be the most advantageous course to take. 

Some of the simpler extensions of the model include the use of a 

larger number of resource supply points and several market points. As 

long as we remain in a linear setting such changes merely involve adding 

additional expressions for cost and revenue (corresponding to each new 

supply point or market) into the equations described above for the one­

market, one-fixed input case. 

At a more advanced level, given that the locational process may 

be subsumed in the investment decision, some established methods of 

introducing dynamics to the problem appear feasible. For instance, 

multiperiod production and investment functions (Henderson and Quandt, 

1958) may be employed to derive solutions for optimum production decisions 

througn time. The optimum location through time will follow as a con­

sequence of the latter. 
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However, given the serious drawbacks mentioned above, it may be 

more rewarding to commence with a Hotelling-Sroithies-Chamberlain (e.g., 

Smithies 1941) type problem with two or more rival producers interacting 

along a linear market, and examine how cost, production, and demand factors 

affect a competitive locational solution. It is felt that the lack of 

useful results from the operations described in the preceding chapters is 

not due to the unimportance of the questions attempted, but rather to the 

sterility of the specific locational situation posited. 
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