
A MULTIPROGRAMMING OPERATING SYSTEM

THE DESIGN AND IMPLEMENTATION OF A

MULTIPROGRAMMING OPERATING SYSTEM

by

HOON-LIONG ONG, M.Sc.

A Project

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

DeC'ember 1978

MASTER OF SCIENCE (1978)
(Computation)

McMASTER UNIVERSITY
Hamilton, Ontario

TITLE: The Design and Implementation of a
Multiprogramming Operatin~ System

AUTHOR: Hoon~Liong Ong, B.Sc.
M.Sc.

SUPERVISOR: Dr. Y.S. Kwong

NUMBER OF PAGES: vi ' :80

i i

(Nanyang University)
(Lakehead University)

ABSTRACT

A multiprogramming operating system (MOS) which is

useful in operating systems education and research is designed

and implemented in this project. The project includes the si

mulation of a hypothetical machine on a host computer system,

and the design and implementation of a MOS for the simulated

computer. A large number of compute-bound, balanced, and I/O

bound sample jobs have been created and run on the simulated

system. Statistics are collected to measure the performance of

the MOS.

i i i

ACKNOWLEDGEMENT

I wish to thank my supervisor, Dr. Y.S. Kwong,

for his guidance and assistance during the preparation

of this project.

iv

1.

2.

3.

TABLE OF CONTENTS

INTRODUCTION

MACHINE SPECIFICATIONS

Page

l

3

2 . l T h e V i rt u a l M a c h i n e 3

2.2 The Virtual Machine Instruction Set 4

2.3 The Hypothetical Machine 7

2.4 Slave Mode Operation 10

2.5 Master Mode Operation 12

2.6 Channels and I/0 Devices 13

2.7 Timer 14

THE OPERATING SYSTEM 1 5

3. 1 The MOS Structure 1 5

3.2 Input of Jobs 25

3.3 Job Schedu1i_ng 30
3.4 Interrupt Handling 31

3.5 Output of Jobs 37

3.6 The MOS Statisttcs 41

v

4 . IMPLEMENTATION DETAILS

4.1 Overview

44

44

4.2 Representation of User Storage, Spooler 45

Buffers, Backing Storage, and CPU Registers

4 . 3 Simulation of I/0 Devices and Channels 47

4 . 4 Simulator for CPU Clock and Timer 51

4.5 Simulator for Paging Hardware 53

4.6 Implementation of Queue Data Structures 53

4. 7

4.8

and Resource Semaphores

Implementation of Processes

Updating of MOS Statistics

59

63

5. SAMPLE JOB STATISTICS AND THE MOS PERFORMANCE 65

6 . CONCLUSION OF PROJECT 73

APPENDIX A: JOB, PROGRAM, AND DATA CARD FORMATS 75

APPENDIX B; PROGRAM LISTING 78

BIBUOGRAPHY 79

vi

1. INTRODUCTION

Research and development efforts in operating systems

have produced a number of useful techniques and concepts. As

a result, the subject is now established as an area of study

in an academic computer science program. In a course on oper

ating systems, students usually learn the basic techniques and

the underlying principles. An operating system project would

provide them with an opportunity to consolidate and apply

some of the concepts and techniques taught in the course, and

to become familiar with the different resources available in

a system and their allocation schemes.

To prevent degrading the service provided to other

users, students are not allowed to implement their operating

system program on a real machine. Instead, a hypothetical

machine is simulated on the real machine, and the operating

system program will be implemented on the simulated machine.

To reduce the cost and the complexity of a project, the hypo

thetical machine should be kept simple.

To illustrate how an operating system for a computer

system can be constructed, a MOS for a simple hypothetical

machine is designed and implemented in this project. The MOS

has the major characteristics of a small computer system which

can support multiprogramming.

The project consists of the following major components:

(1) the simulation of the hardware system,

1

2

(2) the implementation of a virtual instruction set, and

(3) the design and implementation of a MOS for the simulated

machine.

The hardware system consists of a card reader, a

printer, CPU, main memory, channels, paging and interrupt

~ystems, and a drum which is used as a secondary storage device

for the MOS designer and implementer .. The detailed :character.is~ "'

tics and components of the hardware system are described in

Section 2.

The main function of the MOS is to process a batch of

user jobs efficiently. This is accomplished by spooling input

and output and to execute user's jobs in a multiprogramming

environment. The main components of the MOS are given in

Section 3.

Some details of implementation, such as the simulation of

the hardware system, the implementation of resource semaphores,

and the representation of queue data structures etc, are pre

sented in Section 4.

To study the performance and response of the MOS to

different input job characteristics, a large number of compute

bound, balanced, and I/O-bound sample jobs have been created and

run on the simulated system. Statistics collected from these

batches of sample jobs are tabulated and discussed in Section 5.

In the final section, some conclusions on the project

are presented.

2. MACHINE SPECIFICATIONS

This section presents the configuration of the simulat

ed machine [Sl] which can be described in terms of the virtual

machine viewed by a typical user, and the hypdth~tical machine

used by the operating system designer. The former machine is

called 'virtual' because it may not necessarily be implemented

in hardware; it is a machine viewed by a user. For example,

the PASCAL. language describes a virtual machine. The PASCAL

programmer only sees a machine that directly executes his

PASCAL program. He is not concerned with the problems of re

gister and storage allocation, I/0 interrupts etc. The latter

machine is called hypothetical because it is not real. The

operating system implementer has to simulate it on an existing

computer system and implement the operating system on the simu

lated machine. We shall call the host computer system which

simulates the hypothetical machine a real machine.

2.1 The Virtual Machine

The virtual machine seen by a user is shown in Fig. 2.1.

It consists of a .CPU, a card reader, a line printer, and the

main storage. The machine can execute programs written in a

set of instructions given in Section 2.2.

The CPU has a five-byte general register R, a three

byte instruction counter IC, which contains the virtual machine

address of an instruction, and a one-byte 'boolean' toggle C,

4

which may contain either 1 T 1 or •f•.

The main storage consists of a set of 1000 five-byte

words, with addresses from 0 to 999.

The card reader can read the first fifty columns of

a card into the main storage by an input instruction. The line

printer can print a new line of fifty characters by an output

instruction. The first character on each line is interpreted

as a printer control character with the following meanings:

blank single spacing,

•o• double spacing,

•1 • print on top of next page.

2.2 The Virtual Machine Instruction Set

Table 2.1 illustrates a small virtual machine instruction

set proposed by Shaw [Sl]. With this simple instruction set,

a batch of compute-bound, I/O-bound, and balanced programs can

be quickly written. For this reason, this virtual machine ins

truction set was implemented in our project.

Each virtual machine instruction consists of five bytes;

the first two bytes and the last three bytes contain the opera

tion code and the operand address of the instruction respecti

vely. The operand address can address a virtual machine memory

with a maximum of up to 1000 words.

CPU

R

c Orcl
~ It-

\ \

\

\

\
\

\
\ \
\ \ ..::/

~

Card reader Line
printer

Keys ---?> data flow

~--- -) control path

Fig 2.1 Virtual user machine

t---t----t--t----t---1 0
t--r----+--t----t---1 1

Main store

5

998
999

6

Table 2.1 Instruction set of virtual machine

Operator Operand Execution time Interpretation

LR xlx2x3 1 R: = [a];

SR xlx2x3 1 a: = R;

CR xlx2x3 1 if R=[a] then C:= 1 T 1

else c: =IF I;

BT xlx2x3 1 if C= 1 T 1 then IC:=a;

RD xlx2x3 3 Read ([S+i], ;-o '')· - ' . . . ' ~ ,

WR xlx2x3 3 Write ([S+i],i=O, ...• ~);

H 0 halt

Notes: 1. xl ,x2 ,x3 € {0, 1 ' ... ' 9}~

2 . a = 100x 1 + 10x 2 + x3;

3. s = lOOx 1 + 10x 2 ;

4. [a] denotes the contents of location a;

5. the leading zeros of the operand field
can be replaced by blanks.

7

The I/0 operations are performed by the two virtual

I/0 instructions, RD and WR. The operand addresses of these

two instructions are always multiples of ten.

It is assumed that all the compute-type instructions

(LR, SR, CR, BT) are executed in one time unit, and the two

virtual I/0 instructions are executed in three time units,

while the halt instruction H is executed in zero time units.

An example of a user program written in this instruction

set is given in the Appendix A.

2.3 The Hypothetical Machine.

The hypothetical machine is a virtual machine viewed

by the MOS designer. The components of this machine are

illustrated in Fig. 2.2. The CPU may operate in either master

or slave mode. In master mode, instructions from supervisor

storage are processed by the high-level language processor (HLP).

Any high level language that is available on the host system

can be used. In this project, the language PASCAL was selected.

In slave mode, instructions from user storage are processed by the

virtual machine emulator which simulates the execution of the

virtual machine instructions on the CPU.

The CPU has a ti~e clock, a hardwar~ timer, and a set

of registers. The time clock is initialized to zero at system

start time and it is incremented by one whenever a time unit

has elapsed. The timer will be discussed in Section 2.7.

The CPU registers of interest are:

C a o n e - by t e '· boo 1 e a n to g g 1 e ' ,

R a five-byte general register,

"'TI
(Q

N .
N

--1
';S'
('1)

~
-o
0
c+
';S'
('1)
c-t
(")

AI
-'

3
AI
(")
';S'
::s
('1)

Sl.lpervi sor
storage 1£,

1
(
Card reader

CPU

r~HW>~ 0Clock

I Timer] I Registers]

..,...

I

...v

khannel 21

1
Line
printer

"'

Keys
....
7 data flow

~--- -) control path

'

P~ 'User
L__j~ storage

...
' ' ' I ,

......_

co

IC the virtual machine instruction counter,

IR a five-byte instruction register,

PI protection interrupt register,

SI supervisor interrupt register,

IOI a three-bit I/0 interrupt register,

TI timer interrupt register,

PTR page table register,

MODE mode of CPU, 'MASTER • or 'SLAVE •.

The function of these registers will be described in the

Sections2.4- 2.7.

9

User storage contains 3000 five-byte words. It is

divided into 300 ten-word blocks for paging purposes. A user

storage location is addressed by the orderedpair (page-frame

number, offset), where page-frame-number points to a page

frame in the user storage and offset is the displacement of

a word in that page.

The supervisor storage is loosely defined as that

amount of storage required for the MOS implementation.

The backing storage is a high-speed drum of 1000 tracks,

with one ten-word block per track. A transfer of one block of

data to/from the drum takes two time units.

The card reader and line printer both operate at the

rate of three time units for the I/0 of one record. The re

cord size for the card reader is the same as the virtual

machine reader, while the record size for the printer is 51

bytes. The extra byte can only be used by the MOS designer/

implementer for reformatting the user program and input data

1 0

(refer to Section 3.5).

Channels 1 and 2 connect th~ supervisor storage to t~e

card reader and line printer, respectively. Channel 3 is used

to connect the drum to the supervisor and user storage.

2.4 The Slave Mode Operation.

User programs are read in from the card reader and

transferred to the drum. A user program is ready to run after

it has been loaded into the user storage. All user programs

are executed in slave mode and the first instruction of a pro

gram must always appear in location zero of the virtual machine.

User storage addressing while in slave mode is accom

plished through paging hardware. The PTR register consists of

the following two parts:

p L

where P is the number of user storage page frames allocated

to the running user program and L contains the page table base

location in the supervisor storage.

As illustrated in Fig. 2.3, the virtual address x1x
2

x3
is mapped into the user storage through the following trans

formation:

(2.4.1)

where page-table [a] denotes the contents of the ath entry

of the page table.

Each user program can only access those user storage

locations which are allocated to them, and any attempt to

11

Page table
user stora e

/ •

(page -frame :-number, ioffset)

address

where offset = x3

Fig 2.3 Paging hardware

address a location outside its address space would cause a

protection interrupt (i.e. if 10x1 + x2 + 1 > P).

1 2

tl,n instruction in the user storage is fetched into the

instruction register IR and then decoded. The interrupt re

gisters PI, SI and TI will be set to the following values if

any .of the associated interrupt events arise

PI = 1 protection interrupt;

PI = 2 invalid operation code;

SI = 1 input instruction (RD) encountered;

SI = 2 output instruction (WR) encountered;

SI = 3 halt instruction (H) encountered;

TI = 1 timer interrupt

The state of the slave process is then saved in the supervisor

storage locations and the CPU is switched to the master mode.

2.5 The Master Mode Operation.

Master mode programs residing in supervisor storage

have a c c e s s to the user s tor a g e an d the CPU reg i s t e r s . They

consist of a set of procedures for scheduling job execution,

allocating and accounting the resources in the system, etc.

Master mode instructions are assumed to be executed in zero

time units except that a master mode program may wait until

the CPU clock has been advanced a specified number of time

units to change the current state of the MOS.

The CPU is not interruptable while it is executing a

supervisor program. The conte~s of the interrupt registers

can be interrogated and reset by the interrupt servicing

l 3

routines. The CPU can switch back to slave mode by lOading

the state of a slave process stored in the supervisor storage,

and set the CPU mode to SLAVE.

2.6 Channels and l/0 Devices

A channel descriptor and a device ~tate descriptor

are associated respectively with each channel and device of

the hypothetical machine. The channel descriptor contains

information about the current state of the channel, the de

vice to which it is connected, device record block size, I/0

transfer rate, etc. The device state descriptor contains

information about the current state of a device and the re

sult of the I/0 operation (i.e. end of file, invalid I/0

command, or the I/0 has been performed successfully).

A channel can be activated by the CPU to instruct the

connected device to perform an I/0 operation when it is free.

The I/0 transmission occurs completely in parallel with CPU

activity.

The IOI is a three-bit I/0 interrupt register, with

bits 1, 2 and 3 corresponding to channels 1,2 and 3, respecti

vely. A bit is set to indicate an I/0 interrupt when the

associated channel has completed an I/0 operation. It will

be reset by the l/0 i~terfupt s~rvicirtg rdutine after the

interrupt has been serviced.

14

2.7 Timer

The timer hardware decrements the supervisor storage

location TM by one whenever the CPU clock has advanced by

one time unit. The timer interrupt register TI is set to one

to indicate a timer interrupt whenever TM is decremented to

zero. If the timer interrupt is raised in slave mode, the

state of the slave process will be saved and the interrupt

will then be serviced by the timer interrupt servicing routine;

otherwise, no action will be taken.

3. THE OPERATING SYSTEM

We begin this section by presenting a brief description

of the MOS structure. It is then followed by a detailed dis

cussion on some of the software components of the MOS. These

include input of jobs, job scheduling, interrupt handling,

output of jobs, and the MOS statistics.

3.1 The MOS Structure.

The main objective of the MOS is to process a batch of

user jobs efficiently. In this MOS, several jobs are residing

in user storage concurrently. However, only one of them is

being executed at any time by the CPU. If a running job issues

an I/0 command to a channel, it must wait until the channel

has completed the I/0 operation before it can continue. Instead

of allowing the CPU to idle during this period, it can be

, switched to execute another user job which is ready to run.

With proper scheduling, the amount of CPU and channels

idling time can be reduced.

The MOS, including the user jobs executing within it,

can be logically described as a set of processes that operate

almost independently of one another, but compete for the

limited available resources. The term process used in this

project report refers to the activity resulting from the

execution of a program by a processor (CPU or channels). To

1 5

1 6

distinguish the activities of executing master mode programs

and user programs in the system, the processes in the MOS

are divided into two categories: supervisor processes and·

user processes. The supervisor processes are responsible

for scheduling and controlling the user jobs in the system,

providing the means for communication and synchronization

among processes, allocating and accounting for all hardware

and software resources. A user process refers to the activity

resulting from the execution of a user job on the virtual

machine. Since a user process is executed in slave mode, it

is sometimes referred to as a slave process.

After system initialization, the whole system is

controlled and driven by a supervisor process called the

basic supervisor. As illustrated in Fig. 3.1, the basic super

visor repeats the following three steps until a batch of user

jobs have been processed:

l. Call the CPU scheduler to select a process from

the ready queues. If all the ready queues are

empty, the idling process which forces the CPU

to idle for a certain number of time units will be selected.
2. Run the selected process until it is either blocked or

terminated.
3. Examine the interrupt registers and call the appro-

priate interrupt handling routines to service the interrupts.

All the supervisor processes can be described by a set
of master programs together with their data structures in the

supervisor storage. Supervisor processes have access to user

call the scheduler
to select a ready
process

run the selected
process

call tne interrup
service routines
to service the
interrupts

Fig 3.1 . The basic supervisor control chart

17

18

storage and the CPU registers. The following major super

visor processes are included in the MOS:

1. Read-in-cards:

2. Job-to-drum:

3. Loader:

4. Get-put-data:

5. Lines-from~drum:

6. Print-lines:

7. Terminate:

8. Idling:

Read cards into supervisor
input buffers.

Create a job descriptor for a
new user job and transfer the
job to the drum.

Load a job into the user storage.

Perform the user I/0 operation.

Transfer the source program,
and output data of a terminated
job from the drum to the supervi
sor output buffers.

Print output lines from the super
visor output buffers on the printer.

Perform a job termination.

Force the CPU to idle until an
I/0 interrupt is raised from any
of the channels.

As shown in Fig. 3.2, a user job J will pass sequenti·a11y

through the following phases:

1. J is read into card buffers by the Read-in-card
process.

2. J is transferred to drum by the Job-to-drum process.

3. J is loaded into the user storage by the Loader process.

4. J is then ready to run and becomes a user process

j until j terminates, either normally or as a result
of an error.

5. I/0 requested by j will be performed by the

Get-put-data process.

supervisor
storage

innut card
buffers

j cftarmel 1

1
C .__us_, •_r_j_ob_s____.____,~

Key:---->

G;J
j[user processes

user
storage

supervisor
storage

output line
buffers

19

Loalr 1 Lines

urn I Get-~t-dat from-drum lPri nt-1 i nes

I eft anne 1 3 I channel 2 ·

j
printer

flow of data

Fig 3;2 Major supervisor and user processes control chart

20

6. J•s output, including job statistics, system

messages~ and its original program are trans

ferred from the drum to the output line buffers

by the Lines-from-drum process.

7~ Data in the output line buffers are printed

on the printer by the Print-lines process.

The interactions among processes are controlled by a

set of logical r~sourte semaphores. A logital ~esou~ce is

anything that can cause a process to enter a logically blocked

state [52].

The logical resources used by the MOS can be classified

as follows:

1. Channels 1, 2 and 3: Used to transfer data between

the I/0 device and memory.

2. Empty-card-buffers, full-c~~d~buffe~: The input

card buffers are characterized by the two logical

resources empty-card-buffers and full-card-buffers.

They are used by the Read-in-cards and Job-to-drum

processes to transfer data between the two I/0

devices, reader and drum.

3. Empty~line-buffers, full-li~e-buffers: The output

line buffers are characterized by the two logical

resources empty-line-buffers and full-line-buffers.

They are used by the Lines-from-drum and Print-lines

processes to transfer data between the two I/0

devices, drum and printer.

21

4. Free-core-frames: Free user storage page frames.

5. Free-drum-frames: Free drum blocks.

6. Waiting-jobs: User jobs created by the Job-to

drum process to be run on the CPU.

7. End-jobs: Terminated user jobs to be printed on

the printer.

8. User-process-identifiers: The process identifiers

to be assigned to a newly created user process.

The producers and consumers of these logical resources

are illustrated in Table 3. 1.

A semaphore is associated with each of the logical

resource [02,8~3].-.., Each semaphore is represented by a counter

which denotes the number of available resources, and a waiting

queue which contains the processes blocked by this logical

resource.

Two operations are allowed on each semaphore, namely,

the wait and signal operations. When a process requests a

logical resource, the associated semaphore wait operation will

be performed. If the resource is available, the semaphore

counter will be decremented by one and the resource is alloca

ted to the requesting process; otherwise, the requesting pro

cess will be entered into the semaphore waiting queue. When

a resource is released by a process, the semaphore signal ope

ration is performed. The resource is allocated to one of the

processes in the semaphore waiting queue if it is not empty;

otherwise, the semaphore counter is incremented by one. The

implementation of the resource semaphores and their wait and

Table 3.1 Producers and consumers of the logical
resources

Resources Consumers Producers

Channel 1 Read-in-cards Read-in-cards

Channel 2 Print-lines Print-lines

Channel 3 Job-to-drum, Job-to-drum,
Loader, Loader,
Get-put-data, Get-put-data,
Lines-from-drum Lines-from-drum

empty-card-buffers Read-in-cards Job-to-drum

full-card-buffers Job-to-drum Read-in-cards

empty-line-buffers Lines-from-drum Print-lines

full-line-buffers Print-lines Lines-from-drum

free-core-frames Loader Terminate

free-drum-frames Job-to-drum, Get-put-data,
Loader Terminate

~aiting-jobs Loader Job-to-drum

end-jobs Lines-from-drum Job-to-drum,
Terminate

user-process-identi Loader Terminate
fiers

22

23

signal operations will be discussed in Section 4.

A priority level in the range from 1 to ma~priority

is assigned to each of the processes in the system, where max

priority is the highest priority level selected by the MOS

implementer. In this project, the highest priority level, 3,

is assigned to the supervisor processes Read-in-cards, Job-to

drum, Loader, Get-put-data, Lines-from-drum, and Print-lines.

Priority levels for the user processes are determined at job

creation time, and is computed by a priority algorithm which

we shall discuss in detail in the next section.

As shown in Fig. 3.3, a process can be in one of the

following states: ready, blocked, running, suspended, or

terminated. Initially, all the orocesses are in the terminated

state. Supervisor processes are in the ready state after they

have been initiated at system start time. User processes

will be in the ready state after they have been created by the

Loader process. There is a ready queue in the system for

each level of priority. A process in the ready state is in

one of them according to its priority level. Ready processes

are competing for the CPU, and one of them will be selected

by the CPU scheduler. The scheduling policy is to serve the

highest-priority processes first and employ the FIFO discipline

within the same priority ready queue. As a result, a ready low

priority process has to wait until all the higher priority

processes are blocked, suspended or terminated.

24

Activate

Suspend

Fig 3.3 Process status

25

To prevent deadlock,when a process requests a particu

lar resource it may be desirable to defer the allocation of

the resource for .·s'ome time ; even t·houg h the resource

is available at the time of request. The requesting process

can ~e suspended by the Suspend process. The suspended process

will remain in the suspended state until it is activated by

the Activate process.

To prevent a process from .. monopoli.zing'the CPU,. a time slice

is assigned to each of the user processes in the system. A

user process is executed until either its quantum runs out,

it becomes blocked, it terminates, or it is interrupted.

After processing for the duration of .its time slice, it is

returned to the ready queue. Since all the supervisor processes

except the idling process are executed in zero time units, and

the idling process is always terminated by an I/0 completion

interrupt in a finite number of time units, the CPU will never

be monopolized by a supervisor process.

3.2 Input of Jobs.

User jobs are read in from the card reader. The reader

operates at a speed much slower than the CPU. To avoid having

the CPU wait for its data from the reader, and allocating

a card reader and printer to each job executing in a multipro

grammed system, jobs are collected on auxiliary storage prior

to their execution and their outputs are also written on auxiliary

2G

storage during processing. By this means, the job scheduler

has more freedom in selecting jobs and the I/0 operations
~.

are faster. This decreases the amounV of times a job would

be in the main storage. The subsystems that read jobs into

auxiliary storage and print job outputs from auxiliary storage to

_the printer are called input and output spoolers, respectively.

The input spooler has ten buffers in the supervisor

storage. Each of them is capable of holding the contents of

one input card (the first fifty columns of a card). It is

controlled by two supervisor processes: the Read-in-cards

proce~s and the Job-to-drum process. The Read-in-cards process

requests the Chan~el process to transfer a card from the

reader into the input spooler buffer via channel l while the

empty-card-buffers resource is available. The I/0 request is

carried out by performing the wait operation of the semaphore

associated with the channel 1 resource. The Read-in-cards

process then waits for the I/0 completion interrupt and it

will be entered into the appropriate ready queue after the

interrupt has been serviced. This process is repeated until

the whole batch of jobs h,as been read in.

The Job-to-drum process examines the contents of the

input spooler buffer produced by the Read-in-cards process.

If it is a job card, a j~b d~scri~tor for the user job is

created. If it is a source program card or input data card,

the contents of the buffer is transferred to the drum via

channel 3. The drum frames which store these data are

recorded in the source queue arrd input-data queue respectively.

27

All the pertinent information is kept in the job descriptor.

A job descriptor contains the following information:

1. Entries appearing on the job card: these include

job name, user account number, and estimated

resource limits such as time estimate, line

estimate, user storage estimate etc. Details

are given in APPENDIX A.

2. Job information: these include the priority level

assigned to the job and the s6urce, input-data,

output~data, and reserv~~drum-frames queues.

These queues contain information about where the

user•s original program, input data, and output

data are stored in the backing store and the drum

frames reserved by this job (to be used for

storing output data and will be discussed in the

next section). Some of these queues might be

empty initially. They will be updated as the

job passes through the input spooling and processing

phases.

3. Accounting and system information: these include

the time when a job is read into the system, the

CPU and I/0 run times, and any messages produced

by the system. This information is used to update

the system statistics and produce a system report

for the user job.

28

The priority level of a user job is computed by

taking the weighted average of the three resource priority

components P1,P
0

, and Pt associated with the numher of input

data cards~ line estimates, and ttme estimates respectively.

The weighti~g factors for the three priority components

P1,P
0
,Pt are selected by the MOS implementer. The three

factors 0.25,0.25, and 0.50 are used in our project.

As illustrated in Fig 3.4, the priority for a parti-

cular resource is a step function of the resource requirement

estimated for the job, and can be computed as follows ;

priority= max(l, fB-~_r x maxpriorityl)

where maxpriority is the ~ighest priority level allowed for a

job in the MOS, R is the maximum resource limit, and r is the

estimated resource limit.

For example, suppose the following parameters arc used

in the MOS implementation ~

maximum number of -input data ca~ds allowed for a job = 200,

maximum number of output lines allowed for a job = 200~

maximum execution time allowed for a job =]000.

If a user job is supplied with the following information:

input data cards = 10,

line estimate = 50,

time estimate = 500,

then we have Pi = 3, P
0

= 3, Pt = 2. The weighted average

of these three resource priority components = 0.25 x 3 + 0.25 x 3

+ 0.50 x 2 = 2.5, and the priority level for this user job will

be rounded up to 3.

priority

max priority

priority i

' '
' '

' ' '

29

---:
0
T _ _,___...a....+~-:--'-------~---'* resource limit

estimated maximum
resource resource
limit limit

r R

Fig 3.4 Resource priority component of a resour·ce

To avoid system deadlock, the Job-to-drum process will

be suspended when the number of free-drum-frames is less than

a certain limit (20% of the drum capacity is used in our imple

mentation), and it will be activated when some drum frames are

released by some other processes in the system.

3.3 Job sch~duling.

The user storage is divided into a number of ten

word · page frames. User programs and data can be scattered

throughout it on a page basis. The free page frames are

recorded in the free-core-frames queue.

30

In this project, a maximum of up to ten user processes

can be in the system simultaneously. Each user process is

identified by a unique number in the range from 8 to 17

(numbers 1 to 7 are reserved for supervisor processes). Free

user process identifiers are recorded in the free~ptocess-id

queue and controlled by the resource semaphore us~r-process

identifiers. When the free-process-id queue and the waiting

jobs queues are not empty, the Loader process will be

activated and try to load a user job into the user storage.

There are three possible classes of user-jobs in the

waiting-jobs queues. The Loader process uses the highest

priotitY~fi~st~fit scheduling rule to select a job from the

waiting-jobs queues and loads it into the user storage.

The scheduling rule can be described as follows:

1. Start from the first non-empty highest priority

wafting-jobs queue.

2. Examine the estimated user storage and estimated

lines entries of the job descriptor in the queue,

and select the first one with estimated resources

less then or equal to the available resources.

3 . I f none of the j ob s c a n be s e 1 e c ted , try the next

non-empty lower priority waiting-jobs queue.

31

4. Repeat steps 2 and 3 until a user job is selected

or the waiting-jobs queue is exhausted.

If none of the jobs are selected, the Loader process

will be suspended. It will be activated when either additional

user storage page frames, or drum frames become free or new

user jobs are available.

By using the highest~priority~first-fit scheduling

policy, a low priority job may have to wait for a longer time

in the queue. Having selected a user job to be run, the user

program part will be loaded into the user storage. The loaded

user job is assigned a proc~ss identifier taken from the free

process-id queue. The user job is then ready to run and it

becomes one of the user processes in the system.

Several user processes may be in the system simultaneously.

These user processes may activate the Get-put-data process to

transfer their output data to the drum, and thus free-drum

frames may be requested by the Get-put-data process at run

time. To prevent system deadlock, the number of estimated

drum frames to store the output data are allocated to the

user job at job loading time. They are recorded in the reserve

drum~frames queue and kept in the job descriptor.

3.4 Interr~pt Handling.

The contents of the interrupt registers are examined

to check for interrupts at the end of every instruction cycle

if the CPU is executing a user process. If the CPU is executing

a supervisor process, the interrupt registers will only be examined

32

when the supervisor process is blocked or terminated.

As we have mentioned in Section 2, there are four

possible types of interrupts in the MOS:

1. Program: protection, invalid operation code.

2. Supervisor: RD, WR, H.

3. l/0: completion interrupts.

4. Timer: TM decremented to zero.

The program and supervisor interrupts can happen only in

slave mode, while 1/0 and timer interrupts can occur in both

master and slave modes. Several of these events may happen

simultaneously.

When an interrupt occurs in slave mode, the instruction

co u n t e r I C , t h e boo 1 e an to g g 1 e C , a n d t h e gene r a 1 reg i s t e r R

of the CPU will be saved in the process descriptor of the

interrupted user process and the CPU is then switched to the

master mode to handle the interrupt.

As shown in Fig. 3.5, the contents of the four inter

rupt registers, 101, PI, Sl, and TI will be examined in turn.

If they are not zero, the four interrupt service routines

!OINT, PROGINT, SUPINT, and TIMERINT will be called to service

the interrupts. If an interrupt was raised in slave mode,

the interrupted user process will be either entered into the

appropriate ready queue or terminated by the appropriate

interrupt service routine. After the interrupts have been

serviced, the CPU will then be allocated to a new process

selected by the CPU scheduler.

33

~--4--1 service the I/0
interrupts

Fig 3.5 Interrupt handling flow chart

34

The four interrupt service routines can be described

as follows:

1. I/0 interrupt service routine (JOINT): As

illustrated in Fig. 3.6, the three bits of IOI

interrupt register are examined one by one. If

it is set, the status of the associated I/0 device

is checked to see what kind of I/0 interrupt was

caused by this device. If it is an I/0 completion

interrupt, the process that was requesting the

I/0 operation will be entered into the ready queue

and the busy flag in the asosciated channel des

criptor is set to false to indicate that the channel

is free now. If it is an unusual I/0 interrupt,

the appropriate action will then be taken. For

example, if it is an end of file interrupt initiated

by the card reader, the reader status will be set

to a normal state and the Read-in-cards process

will be terminated.

After the 1/0 interrupt has been serviced, the

signal operation of the associated resource sema

phore will be performed, so that the free channel

may be allocated to another requesting process.

The three bits of the IOI register are set to zero

after all the I/0 interrupts have been serviced.

If the interrupt was raised in slave mode, the

interrupted user process is then entered into the

ready queue.

N

examine the first
bit of the IOI
register

enter the process
which was requesting
the l/0 operation
into the reay queue

set l/0 device to normal
state; set channel to
free; reset the examined
bit of the IOI register

send a signal to
the channel
semaphore

perform the
appropriate
action

e~amine the next
>--'------"1'--lblt of the ror

register

:nter the process
:>-..:..._:~- 1 n to the rea t:ly .

queue

Fiq 3.6 l/0 interrupt service routine

35

36

2. Program irtterrupt service routine (PROGINT): As

shown in Fig. 3.l, there are two kinds of program

interrupts, protection or invalid operation code

interrupt. The appropriate error message will be

written on the job descriptor of the interrupted

user job. The Terminate process will then be acti

vated to release the user storage and unused drum

frames to the free-core-frames queue and free-drum

frames queue respectively. The user job is then

entered into the end-jobs queue waiting for the output

spooler to print it on the printer. The PI register

is set to zero after the interrupt has been serviced.

3. Supervisor inte~~upt servit~ routine (SUPINT): As

illustrated in Fig. 3.8, there are three kinds of

supervisor interrupts: the read, write, and halt

supervisor interrupts. In case of user I/0 inter

rupt, the user-storage-page-frame number and drum

frame number (i.e. the locations in the main and

backing store involved in the data transfer) are

set in the process descriptor of the user process.

The user process is then entered into the user-I/O

request queue which is followed by sending a signal

to the Get-put-data process to perform the I/0 ope

ration. If an exceptional condition arises from

an user I/0 request, e.g., end of file encountered

from an input request or the line limit exceeded

37

from an output request, then an error message

will be written on the job descriptor of the user

job and the Terminate process is activated to

transfer the user job to the en~jobs queue.

If the supervisor interrupt is a halt supervisor

call, the user job will be transferred to the end

jobs queue by the Terminate process.

The supervisor interrupt register is set to zero

after the interrupt has been serviced.

4. Timer interrupt service routine (TIMERINTl: The

action of this routine is illustrated in Fig. 3.9.

If the interrupt occurs in the master mode, except

for setting the timer interrupt register to zero,

no action will be taken. If it happens in the

slave mode, the time used (CPU plus I/0 time) by

the user process is checked to see whether the time

limit has been exceeded or not. If it has, ames

sage will be written on the job descriptor of the

user job and the Terminate process will be activated

to transfer the user job to the end-jobs queue;

otherwise, the user process will be entered into

the ready queue.

3.5 Output of Jobs.

The output spooler is the software module which reads

the user•s original program and output data from the drum to

the supervisor output buffers and prints it on the printer.

38

start

.._v

write an error
message on the
joo descriptor

\ I'

terminate the
user process

\v

reset the program
interrupt registey

PI

'"

Fig 3.7 Program interrupt service routine

write an error
.?-~--+message on the

N

set the main and
backing store buffe
fndei on the proces
descriptor

enter the user
process into user
io-request queue and
send a signal to
Get- ut-data recess

reset register SI

8

job descriptor

terminate the
user process

Fig 3.8 Supervisor interrupt service routine

39

enter the user
process into
ready queue

reset the timer

write a message
'>-__:~-4 on the job

descriptor

terminate the
user process

interrupt register~------------~
.t--~--t TI

Fig 3.9 Timer interrupt service routine

40

41

The accounting and system messages for each user job are also

printed on the printer.

The output spooler has ten buffers in the supervisor

storage, each of which is capable of holding 51 characters.

It is controlled by two supervisor processes: the Lines-from-

-drum process and the Print-lines process. The Lines-from-drum

process removes the job descriptor of a terminated user job

from the end-jobs queue and produces a system report for this

job. The report contains the error messages that were written

on the jo~ descriptor and also the user job statistics (number

of cards read in, number of lines printed, user storage required,

CPU and I/0 times used by the job).

The user•s original program is fetched from the drum

and reformatted into the printer· format by adding a printer

control character to each block of data fetched from the drum.

The user•s output data fetched from the drum has only fifty

characters. A blank in inserted into the last character posi

tion of the spooler buffer.

On the completion of the reformatting of the data in

the spooler buffer, the Lines-from-drum process sends a signal

to the resource semaphore full-lin~~b~ffers to activate the

Print-lines process which prints the contents of the output

spooler buffer on the line printer via channel 2.

3.6 The MOS St~tistics.

The performance of the MOS can be measured from the

statistics collected by the MOS. The statistics maintained by

42

the MOS software are as follows:

1. Resource statistics: Fig. 3.10 shows the graph

of a resource semaphore counter plotted against

the CPU clock during a run; from this graph, we

define the total availability of a logical

resource as the area under the curve and the average

availability of a logical resource as its total

availability divided by the total run time. If

the maximum capacity of a logical resource is defined,

then we define the ~tiliiation of a logical resource

as

average availability
1 - maximum capacity of the logical resource

The total availability of a logical resource is

recorded whenever the wait and signal operations of

the logical resource semaphore are performed. These

statistics are printed at the end'of a run.

2. Job characteristics: the run time, elapsed time,

user storage required, input length, and output

length for each user•s job are recorded by the

Lines-from-drum process. The mean values of these

statistics and the distributions of user• jobs

(i.e. number of users• job belonging to each prio

rity classes) are also printed at the end of a run.

resource
semaphor
counter

e ~~

TT

z·

1

0

I

total availability

' /

CPU clock

Fig 3.10 Graph of resource semaphore counter against CPU clock

43

4. IMrlEMENTATION DETAILS

The MOS is implemented in a modular and structured

manner as a set of procedures written in PASCAL. As a result,

the software modules of the operating system can easily be iden

tified, maintained and modified. Some of the programming techni

ques and data structures used are discussed in the following

sections.

4.1 Overview

In this project the following major modules have been

implemented:

1. Simulators for hardware: these include the user

storage, backing storage, CPU registers, reader,

printer, drum, channels, CPU clock, timer, and

paging system.

2. An emulator which simulates the CPU of the virtual

machine.

3. The MOS: it includes a set of interacti~g processes

and a set of procedures to handle the interrupts and

the allocation and administration of resources in the system.

The size and time parameters of all the hardware (virtual

machine size, user storage and drum size? I/0 transfer rates, ins

truction ttmes,word size,etc) and some of the software parameters

(priority level range, system buffer size, maximum number of ccn-

44

45

current processes,etc) are represented by symbolic names in the

constant section of the PASCAL program. It is therefore very

easy to change these parameters to study the MOS behavior under

different hardware and software assumptions.

The MOS statistics and user program listings are written

on two separate files. As a result, it offers an option to the

user to determine whether the contents of one or both files are

to be listed on the printer of the real machine.

4.2 R~p~esertt~tiort 6f Use~ St6rag~, Sp6ole~ ·suffers,

a~tktrtg St6~ag~, artd CPU R~gi~t~rs.

The user storage is divided into pages. The pages and

input spooler buffers are of the same size; each of them can hold

ten words.

word

We represent them by the following array structure:

= ~acked a~ray [l .. wordsize] of char;

wordindex = 0 .. pagesizeminusl

textbuffer = array [wordindex] of wordi

corebufindex = 1 .. maxcorebufi

var memory: array [corebufindex] of textbuffer;

where maxcorebuf = number of user storage pages + number of

input spooler buffers + 1. The user storage and input spooler

buffers are represented by the first n~mb~r-6f~~set~storage-pages

locations and the next ~u~b~r-6f-i~~~t-~poolet~b~ffers of the

array m~mory respectively. The last entry of the array memory

is a temporary buffer area used by the Lines-from-drum process

to store the data fetched from the drum, which are then reforma

ted and transferred to the output spooler buffers.

The output spooler buffers are represented by the

following array structure:

46

~line = packed array [l..linebufsize] of char;

var linebuffer: array [1 .. maxlinebuf] of line;

where linebuf~ize is the number of characters per line to be

prin~ed, and maxlinebuf is the number of output spooler buffers.

The backing storage can be represented as either an

array structure or a file structure. Since drum frames are

accessed randomly, it is not efficient to implement the backing

storage as a sequential file in PASCAL (direct access files are

not allowed). It is therefore better, in our opinion, to imple

ment the backing storage as an array structure if its size is

not very large. An alternative solution is to implement the

backing store on a direct access file~ but an assembly sub

routine for accessing has to be written to coordinate with the

PASCAL program. For the sake of simplicity, the drum frames

in our implementation are represented by the following array

structure:

drumframe = 1 .. noofdrumframes;

var backingstore: array [drumframe] of textbuffer.

Instead of specifying the sizes of user storage, spooler

buffers, and backing storage in the constant section, our first

intention is to pass these parametric values through some para

meter cards; but because of the language restriction in PASCAL

(dynamic arrays are not allowed), all the parametric values are

set in the constant section and the whole program is recompiled

47

whenever a change is desired.

Each of the CPU registers is represented by a variable

of the type simple, packed array, or record in PASCAL.

4.3 Simulati~rt of I/0 Oevic~s artd Chartnels

The card reader, line printer, and drum are simulated

by a set of routines. Each individual device has a device

descriptor which contains information about its current state

and the result of an I/0 operation.

The device descriptor is represented by the following

record structure:

·~ dev i cedes c ri ptor = record

>

busy boolean;

status · (complete; endoffile,
errcommand);

end

As shown in Fig 4.1, a device is activated by setting

its busy flaq. When the busy flag is set, the device examines

the type of I/0 command specified in the command buffer. If

the command is valid, the necessary I/0 operation is performed;

otherwise, an error will be indicated in the status of the

device descriptor . Any unusual condition occuring on a devite

should be cleared before attempting to call the device simula-

tion routine; otherwise, the system will be aborted. The busy

flag is reset after the I/0 operation has been performed.

The three I/0 devices are connected to three channels.

Each channel has a ch·annel descriptor which contains all the

necessary information about the current state of the channel

48

and the device to which it is connected.

The channel desdriptor is represented by the following

record structure:

·~ channeldescriptor = record

devicename: (reader, printer,drum);

recordsize: integer;

blocktransferrate: integer;

busy: boolean;

process: processid;

readytime: integer;

end

where ~ec6~d~ize is the number of characters to be transferred

per I/0 operation; blotkt~~nsferrate is the time required to

transfer a block of data between the main store and the device

buffer.

When a process requests I/0, the wait operation of the

associated channel semaphore is performed. If the channel is

free, the identifier of the requesting process is set in the

channel descriptor, and the channel busy flag is then set to

true to activate the associated channel. A channel is con-

trolled by th~ Ch~nnel process. As shown in Fig. 4.2, when

the channel is activated, the Channel process extracts the

main/backing store buffer index and the type of I/0 command

from the process descriptor of the requesting process. This

information is passed over to the approrpiate device simulation

routine, which then performs the specified I/0 operation.

output an error
'>-...;......;+--i message

set the error in
">----'ill---• the device status •-~-.

perform the I/0
operation

reset the device
bus fla

set the exception
-;---::ll,___

1
condition in the

1 device status

Fig 4.1 Device simulation routine

49

start

Extract the I/0 command
and buffer index from
the requesting process
descriptor

set the appropriate
device busy flag and
call the associated
device simulation
routine to perform
the I/0 operation

mark the I/0 completion
time on the chann~l
descriptor and reset
the channel busy flag

Fig 4.2 Channel control process

50

51

The Channel process resets the busy flag after the requested

I/0 operation has been performed.

4.4 Simulator f6~ CPU Cl6tk a~d Timer

The CPU clock plays an important role in the simulated

MOS. From the current time in the clock and the I/0 completion

interrupt time recorded in the channel descriptor, the CPU

knows when to service the I/0 interrupt. Thus, the parallel

processing activity of the CPU and channels can be simulated.

The CPU clock is represented by an integer variable.

It is updated at the end of every virtual instruction cycle

and when the Idling process is called to force the CPU to wait

for a certain number of time units (the difference between the

smallest I/0 interrupt due time recorded in the ~hannel des

criptors and the current CPU clock time).

The timer hardware is simulated by the procedure Timer.

As shown in Fig. 4.3, the Timer procedure performs the following

tasks:

1. Decrements the supervisor location TM by t units of

time, where t is the virtual instruct.ion execution

time or the CPU idling time.

2. Updates the CPU clock.

3. Sets the timer interrupt register TI and the I/0

interrupt register IOI if the corresponding types

of interrupts are due to occur.

start

update TM and
CPU clock

set timer
interrupt
register TI

set I/0 interrup
register IOI

Fig 4.3 The timer simulator

52

53

4.5 Simulator fot Paging Hardware

As we have mentioned in Section 2.4, user storage

addressing while in slave mode is accomplished through paging

hardware. As illustrated in Fig. 4.4, the paging hardware

is simulated by the procedure NLMAP. A virtual address is

mapped into user storage through the transformation defined

in the equation (2.4.1) (pp.lO). The protection interrupt

register PI will be set if an invalid virtual machine instruct

ion is detected.

4.6 Implementation of QU~Ue Data SttUttUre~ artd Resource

Semaphores.

As shown in Fig. 4.5, all the queue data structures

are represented by linked lists. The courtter is an integ~r

variable which indicates the number of entries in the queue.

The first and last are two pointer variables which point to

the first and last element respectively of the queue.

A resource semaphore is represented by the following

record structure:

·~ semaphore = record

end

mutex: boolean;

counter; integer;

waiting: processqueue;

where mutex is a boolean variable used for controlling mutually

exclusive access to the critical region of the resource;

c6unter is an integer variable which represents the number of

start

decode the_virtual
addresss

set the protection
>-_,..--I interrupt register

transform tne
virtual address
into user storage
address

PI

Fig 4.4 Simulator for paging hardware

54

55

1 inked 1 ist

Queue

counter

first

last

Fig 4.5 Queue data structure

56

available units of the resource; Waiting is a queue of pro

cesses blocked by the resource and it is empty initially.

As shown in Algorithm 4.1, the two semaphore operations,

wait and signal, are implemented by the procedure wait and the

procedure ~igrial, respectively. The function testandset tests

and then sets the boolean variable ~utex. It is used to prevent

two processes simultaneously accessing the same semaphore. When

the procedure wait is called by a process, the semaphore counter

is checked. If it is greater than zero, it is decremented by

one and the calling process continues; otherwise, the calling

process is entered into the waiting queue and the status of the

calling process is set to the blocked state. When the proce

dure signal is called, the semaphore waiting queue is examined.

If one or more processes are waiting in the semaphore queue,

one of them is transferred to the ready queue and its process

status is changed to READY state; otherwise, the semaphore

counter is incremented by one. The calling process continues

in any case.

As shown in Algorithm 4.2, the wait and signal opera

tions for a channel semaphore are implemented by the two

procedures, r~guest and fel~~se, respectively. The implementa

tion of these two primitive operations is slightly different

from Algorithm 4.1. In the procedure request, if the semaphore

counter is greater than zero, then instead of simply decrement

ing the semaphore counter, the identifier of the requesting

process is set in the associated channel descriptor and the

channel is activated by setting its b~sy flag. Since the calling

Algorithm 4.1 The Semaphore Operations Wait and Signal

procedure wait (RS: semaphore);
begin

with RS do
begin

while testandset (mutex) do;
if counter> 0 then counter: = counter -1 else

begin
enter (process, waiting);

57

set the status of the calling process to BLOCKED state;
end;

mutex: = false;

end

procedure signal (RS: semaphore);
var

blockedprocess: processid;
begin

with RS do
begin

end

while testandset (mutex} do;
if not empty (waiting} then

begin
remove (blockedprocess~ waiting);
enter (process, ready);
set the status of the removed process to READY state;

end else counter: =counter +1;
mutex: = false;

end· __ ,

Algorithm 4.2 The Request and Release Operations for a
Channel Semaphore

QI_ocedure
begin

with CS do
begin

request (CS: semaphore);

while testandset (mutex) do;
if counter> 0 then

begin
counter: = counter -1;

58

set the identifier of the calling process in the
channel descriptor;

end

activate the channel;
·end e 1 s e en t e r (pro c e s s , w a i t i n g) ;

set the status of the calling process to BLOCKED state;
mutex: = false;

end;

procedure release (CS: semaphore);
var

blockedprocess: processid;
begin

with CS do
begin

end

while testandset (mutex) do;
.:!1_ not empty (waiting) then

begin
remove (blockedprocess, waiting);
set the identifier of the removed process in the

channel descriptor;
activate the channel;

end else counter: = counter +1;
mutex: = false;

end;

59

process has to wait until the I/0 has been performed by the

channel, its process status is set to BLOCKED state, and con

trol is returned to the basic supervisor after the request

operation. In the procedure release, if the semaphore waiting

queue is not empty, then instead of entering the removed pro

cess into ready queue, its identifier is set in the channel

descriptor, and the channel is activated. Although the imple

mentation of the wait and signal operations for a channel sema

phore is different from other resource semaphores, they are

logically equivalent.

4.7 Implementation of rrocesses

A process can be specified by a procedure and data

structure. The data structure associated with a process is

the process descriptor, which defines the values of the pro

cessor registers and states of the process.

There are two kinds of processes in the MOS: the

user processes and the supervisor processes. Each user pro

cess is associated with the activity of running a user job on

the CPU. A user process is processed by the virtual machine

emulator which simulates the execution of a user job on the

virtual machine in slave mode. The operations of the virtual

machine emulator can be summarized by the following procedure:

60

procedure

begin

VMEMULATOR;

repeat

fetch a virtual machine instruction into the instruction

register;

rc: = rc + 1 ;

decode the instruction;

execute the instruction;

update the CPU clock and timer;

until I/0 interrupt or supervisor interrupt or protection

interrupt ~ timer interrupt;

end

A process descriptor is associated with each user process

in the system. It contains the following information:

(1) priority level of the process;

(2) type of I/0 request: read or write;

(3) main and backing store buffer indices;

(4) result of I/0 request: invalid I/0 command, end

of file, or complete;

(5} process status: ready, running, blocked, suspended

or terminated;

(6} values of the virtual machine CPU registers: IC,

R, and C;

(7) contents of page table register;

(8) page table of the user process;

(9) job descriptor of the associated user job.

-

61

When a ready user process is scheduled to run on the

CPU, the values of the virtual machine CPU registers which are

stored in the process descriptor will be loaded into the cor

responding registers of the CPU. These registers will be

saved in the process descriptor when the process is interrupted.

Supervisor processes are run in master mode, and they

are implemented by a set of procedures and process descriptors.

Supervisor processes are executed by the HLP processor directly.

They are not interruptable and can only be blocked by a logical

resource or suspended to await for some condition at certain

points. A blocked or suspended supervisor process will become

active when the requesting resource has been allocated to it or

when the awaiting condition has been satisfied. Since supervi-

sor processes are processed by the high level language processor,

we are not concerned with the instruction counter, general regis

ter, boolean toggle etc. Thus, instead of storing these CPU

registers in the process descriptor, a variable which indicates

the implemented procedure entry point is recorded in the process

descriptor, the entry point is updated whenever the supervisor

process is blocked or suspended. In addition to this entry

point and the first five entities in a user process descriptor,

a supervisor process descriptor contains other information

depending on which supervisor process we are considering. A

brief description of this additional information in a supervi

sor process descriptor follows:

1. Read~i-~~ta~d~ ·~roc~ss:

ca~d~full~in·dex: current input-spooler-buffer

index used by the Read-in-cards process.

2. 'Jo b-to--d~um ·process:

62

hew~job: the job descriptor of a new user job

created by the Job-to-drum process;

· ·c·a'r'd-·e·m·p-ty'-i'ndex: current input-spooler-buffer

index used by the Job-to-drum process;

- fr~~~dru~~delay: a boolean variable used to

indicate whether the Job-to-drum process is

blocked by the resource fre~-drum-frames.

3. Loader process:

n~w-protess: the user process identifier assigned

to the user job currently being loaded.

loading-page: an integer variable used to

indicate the number of pages of the new user job

that have been loaded by the loader process;

- ~o~rceptr; a drum frame pointer p6ints to the

drum frame of the user job's source queue which

is currently being loaded into the user storage.

4. Lfrt~s~f~Om~dru~ p~oc~ss:

us~r~job; the job descriptor which is currently

being processed by the Lines-from~drum process.

head-no: an integer variable used to indicate

the current heading line number for the terminated

user job in the system report produced by the

63

Lines-from-drum process.

print~h~ading: a boolean variable used to

indicate whether the Lines-from-drum procesS

is producing the heading or source/output data

for the terminated user job.

Line~f~ll-iridex: current output-spooler-buffer

ind~x used by the Lines-from-drum process.

listing: the source and output-data queues of the

user job are combined into a single drum frames

queue called li~ttng. This queue is updated

whenever a line has been reformated on the

output spooler buffer by the Lines-from-drum

process.

5. P~int~liries process:

Line~empty~index: current output-spooler·buffer

index used by the print-lines process

6. Get~put-data process:

~s~~~p~ot~ss: the process identifier of the

user process whose I/0 request is currently

being processed.

4.8 Updating of MOS ~t~tistits

The resource availability statistics are recorded and

updated by the procedure updatest~tistics~ which is called by

the procedures wait, signal~· request, and release whenever

they are called by a process.

64

Job characteristics statistics are maintained by the

procedure updatej6b~tatistfcs. It is called by the Lines-from

drum process whenever a terminated user job is processed by the

Lines-from-drum process.

The MOS statistics are written on a statistics file

sepa~ated from the user jobs listing. It can be listed on the

printer at the end of a run if required.

5 .. ·sAMrLE "JOB STATISTfCS AND THE MOS PERFORMANCE

In this section, we shall discuss the behavior of the

MOS by examining the statistics of running several batches of

user jobs of different classes.

To classify the user jobs into compute-bound, I/O-bound

or balanced programs more precisely, we define th~ computation

fraction of a user job as

CPU time tak~n t6 ru~ th~ job
CPU time + I/0 time taken to run the job

To study the behavi.or of the MOS, five :hatches of user

jobs with computation fractions of 0.9, 0.7, 0.5? 0.3, and 0.1

have been created and run on the simulated hypothetical machine.

The resource utilization and job characteristics statistics

for these five batches of jobs are tabulated in Tables 5.1 and

5.2, respectively. To illustrate the resource utilization gra

phically, these statistics are plotted in Fig. 5.1. The ana

lyses of these sample job statistics are summarized as follows:

1. The CPU was highly utilized while it was processing

a batch of highly compute-bound jobs~ and it was

idling for most of the time while it was processing

a batch of highly I/O-bound jobs.

2. Channels 1 and 2 are not very sensitive to the

type of user jobs in the system, and they are only

65

~ I}
Run time

Ti_me in system

User storage
required (Words)

Input length
(cards)

Output length
(lines)

No. of concurrent
user processes

Total system
run time

0.9 0.7 0.5

. . . .

269 319 384

2660 2188 3772

270 270 270

4.8 1 3. 4 32. 1

4.3 1 6. 3 32.7

3.6 3.4 6.5

26820 31322 42771

Table 5.2 Job Characteristics Statistics

66

0.3 0. 1

I
477 635

I
I

! 4044 440!~

l
I
I

270 270

55.8 95.4

55.6 9G.3

5.2 3.7

61042 92755

67

F'. Co41. u '1'. -~ t(l· q~ qt.
. ?~att t>o 7t>·

on 'IJ oiJ 0.9 0.7 0.5 0.3 0. 1

Resource ' ' ' '

CPU 0.90 0.71 0.44 0.24 0.07

Channel 1 0.39 0.44 0.44 0.42 0.41

'

Channel 2 0.45 0.50 0.48 0.45 0.42

Channel 3 0.74 0.93 0.98 0.99 1 . 00

User storage 0.30 0.29 0.57 0.41 0.26

Drum frames 0.30 0.32 0.69 0.75 0.76

Table 5.1 Resource Utilization Statistics

utilization

0.8

channel 3
lr-----~~~~---------

0.6

0.4

68

channel

~0~--~10~----~3~0------~5±-------~7~------9+---~--~

computation fraction

Fig 5.1 CPU and channels utilization

69

utilized for about 40% to 50% of the total system

run time.

3. Channel 3 was utilized about 74% of the total

system run time for a batch of user jobs with com-

putation fraction of 0.9 and its utilization in

creased to 1 rapidly as the computation fraction

of the user jobs decreased. This is due to the

fact that a batch of heavily I/O-bound user jobs

produces a lot of virtual reads and writes on the

drum, and hence channel 3 will be busy for most of
'

the time in transferring data between the main and

backing stores.

4. The user storage has the highest utitization for a

batch of balanced user jobs, and i~ utilization is

lower for a batch of highly I/O-bound or compute

bound user jobs. This is.due to the fact that

for a batch of highly I/O-bound user jobs, most.

of the user jobs cannot be loaded into the user

storage because the requesting free drum frames for

storing output data are not available at loading time.

For a batch of highly compute~bound user jobs~ once

a user job is terminated, the free us~r storage

page frames are not utilized until new user jobs

have been read in by the reader.

5. For the same reason as stated for channel 3, the

drum frames are highly utilized for a batch of highly

70

I/O-bound jobs and its utilization decreases as

the computation fraction of user jobs increases.

6. The average run time and turnaround time for a

user job in the system increase as the computation

fraction of the user jobs decreases. This is

because the execution time of the 1/0 instructions

is longer than those of the compute-type instruc

tions.

To study the MOS behavior under different hardware

assumptions, the five batches of sample jobs were run on the

simulated MOS by changing the size of the user storage from

300 pages to 100 pages and 500 pages. We find that the utili

zation of the CPU and the three channels are almost the same

as before, while the user storage has a higher utilization in

the case of small capacity (100 pages) and a lower utilization

in the case of large capacity (500 pages) relative to that with

the original user storage size (300 pages). The turnaround times

of user jobs are slightly longer for a small capacity of user

storage, and slightly shorter for a large capacity of user sto

rage.

One conclusion from the above analyses ·is that the

capacity of the user storage in the range of 200 to 300 pages

is sufficient for running a batch of small or medium size

user jobs, and the overall CPU and channels can better be uti

lized for a batch of balanced or compute-bound user jobs.

71

By changing the I/0 transfer rates of the three I/0

devices, the utilizatioffiof the CPU and the three channels

are altered significantly for the running of the same five

batches of sample jobs. The resource utilization statistics

collected from running these sample jobs under the following

new hardware assumptions are tabulated in Table 5.3:

·nevfces

Reader

Printer

Drum

· I/0 t~ansfer rate

New as sump t i on s

1 0

1 0

5

Previous assumptions

3

3

2

By comparing Table 5.3 with Table 5.1, we find that

the CPU has a relatively lower utilization when compared to the

results obtained with previous MOS software assumptions, and

channels 1 and 2 have a relatively higher utilization than

before, while the channel 3 utilization is almost the same as

before, except for a batch of highly compute-bound user jobs.

It appears that the performance of the MOS under the new hardware

assumptions may be improved by attaching an additional reader

and printer to the system.

Utr~::~tr; ...
~0.9

CPU 0.43

Channel 1 0.66

Channel 2 0. 78

Channel 3 0.94

User
Storage 0.15

Drum
frames 0.21

0.7

0.27

0.65

0.71

0.98

0.16

0.20

72

0.5 0.3 0. 1

0.17 0.09 0.03

0.60 0.58 0.55

0.64 0.60 0.56

0.98 0.99 0.99

0.32 0.39 0.26

0.45 0.72 0.75

Table 5.3 Resource Utilization Statistics under the
New I/0 Transfer rates.

6 . . CONCLUSfON OF THE PROJECT

The primary goal of this project was to demonstrate how

an operating system for a hypothetical machine can be constructed.

The end-product of the project, namely MOS, can be used as a

teaching tool in a course on operating systems, with parts of
-~
the simulated operating system being used for demonstrations to

the students. Products similar to MOS can be used as research

tools for testing new ideas in operating systems primitives

and design methodologies.

Even though the MOS and machine presented in this pro-

ject deviate from a real system, it has the major characteristics

of a small computer system which can support multiprogramming.

Since the MOS has been designed and implemented in a modular

and structured manner, it is easy to expand it to include some

of the following omitted features:

and

(1) demand paging,

(2) an expanded virtual instruction set,

(3) a more general virtual machine t~at would permit

multistep jobs and the use of language translators 9

(4) a system to organize and handle files,

(~) an operator communication facility ,

By simulating some more I/0 devices in the system~ this MOS can

73

be modified and expanded to include the timesharing as a

subsystem.

74

Unlike some other software projects,operating systems

are better implemented in . a language which allows coroutines or pa

rallel processing [84,01]; such as PL/I with multitasking or

concurrent PASCAL. Since this facility is not available at

McMaster University, we have to implement the MOS with a se

quential language, namely, PASCAL. It has some advantages over

most other sequential languages, e.g. its powerful data struc

tures as compared with those in FORTRAN. One disadvantage of

implementing an operating system program in PASCAL is the in

flexibility of changing the size of the simulated machine. The

whole operating system program has to be recompiled if we wish

to a l ter the size of the simulated machine.

Finally, we give the timing breakdown of this project:

(1) The preparatory step: reference collecting

and studying took one month.

(2) The design stage: took one month.

(3} The implementation stage: coding, testing and

debugging took two months.

(4) The documentation stage: .writing up for the

project took one and half month.

APPENDIX A: JOB, PROGRAM, AND DATA CARD FORMATS

A user job is submitted as a deck of control, program,

and data cards in the following ordert,

<JOB card>, <Program~, <DATA card>, <Data>, <ENDJOB card>.

1. The <JOB card> contains six entries which appear in the

following order:

$AMJ, ·user A/CNO, time estimate, line estimate, user

storage estimate, job identifier.

These entries are explained as follows~

(1) $AMJ: stands for A Multiprogramming Job, it must be

punched at column l ~ 4,

(2) User A/C NO: a four~character user account number

(column 6 ~ 10). All the user account number are

stored in the user account file (ACFILE). A user job

can only be processed if the A/C NO appearing on the

<JOB card> is one of the account numbers in the ACFILE.

{3) Time estimate~ estimated time required to run the job.

If it is omitted, the default ~alue will be taken,

(4} Line estimate:, estimated number of output 11nes to be

printed, If it is omitted~ default value will be

taken,

(5) User storage estimatej estimated numb~r of user sto~

r~ge (in ten~word block unit} required to run the

75

76

job . If i t is omitted 1 the number of source cards

in the user job deck will be assumed.

(6) Job identi f ier t. user job identifier (maximum up to

ten charac t ers) to be printed on the user's job listing.

All the entries in the <JOB card > are separated by a

~omma. The number of leading or trailing blanks for a

numeric parameter in the <JOB card > are not significant,

but all the entries of the <JOB card > must be specified

within the firs t fifty columns and in the correct order.

Two <JOB card > examples are illustrated as follows ~

. Example 1 : $AMJ,ArH0,50,10,20,H.L. ONG

Example 2 ~ $AMJ,AM50,,0,,PAUL

In the first example, the user job specifies that the

job may run for a maximum period of fifty time units , a

maximum number of ten output lines may be pr i nted, and

twenty blocks of user storage should be allocated to t he

job ,

The second example only specifies that there is no

output for this job , Thus, default values for the job

running time and user storage required will be assumed by

the MOS.

2 , Each card of the ~ Program ~ deck contains information in

columns l ~ 50 , The tth card contains the initi~l contents

of user virtual memory locations

lO(i ~ l), lO(i -, 1)+1 1 ... ~ l0(i " l)+9

77

3, The <DATA card> has the format;

$DATA (in cc 1 .,. 5)

4. The <Data> deck contains the user input data (in cc 1 - 50)

to be retrieved by the virtual machine RD instructions.

5, The <ENDJOB card> has the format:

$END (in cc 1 .. 4)

The <DATA card> m~y be omitted if there are no input data

in a job.

A complete deck of user job is illustrat-d by the

following example:

Colomn 1
+
$AMJ,AM10,50,S,3,JOHN
RD030LD010CR030BT007WR020CR010BTOOOH

$DATA
1 THIS IS AN I/0 BOUND PROGRAM. THE PROGRAM READS

INPUT DATA CARDS INTO MEMORY AND PRINTS THEM ON
THE PRINTER UNTIL FIVE ASTERISKS APPEARING ON
THE FIRSt FIVE COLU~NS HAVE BEEN READ IN, ***** . . '.

$END

Colomn 50
t

The ~bove program reads a data card into the memory.

If the contents of the first five columns are not all ~qual

to the character •*', the information in the data card is

printed on the printer; otherwise, the job is terminated.

The process is repeated until either it halts normally or

is aborted by the system,

.. AFPENDfX B: .. FROGRAM liSTING

A copy of the program listing is kept in the Depart

ment of Applied Mathematics, McMaster University.

78

BIBLIOGRAPHY

[A 1] Atwood , J . W . , C 1 ark , B . L . , Grush cow, M . S . , H o 1 t , R . C . ,
Horning, J.J., Sevcik, K.C., and Tsichritzis, D.,
~roject SUE Stat~s Rep., Tech. Rep. CSRG-11. Comput.
Systems Res. Group, University of Toronto, Toronto,
1972.

[Bl] Bri nth Hansen, P., The nucleus of a multiproqramminq system,
Comm. ACM 13,4, pp. 238-250, April 1970.

[B2] Brinch Hansen, P., St~~tt~~~d ~~ltip~og~amming, Comm.
ACM 15, 7, pp. 574-578, July 1972.

[B3] Brinch Hansen, P., Operating Sj~t~m P~intiples, Prentice
Hall, Inc., Englewood Cliffs, N.J., 1973.

[B4] Brinch Hansen, P., The Architect~r~ of C6ncurrent Pro
grams, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1977.

[Cl] Control Program -67/Cambridge Monito~ Syst~m User 1 S
Guide, IBM Publication, 1969.

[Dl] Dennis, J.B., Coroutines and parallel computation, Proc.
Fifth Annu. Princeton Conf. Information Sci. and Systems,
pp. 293-294, 1971.

[02] Dijkstra, E.W., Cooperating Sequential Processes, Tech
nological U., Eindhoven, The Netherlands.

[03] Dijkstra, E.W., The structu~~ df the T.H.E: ~~ltipro
gramming system, Comm. ACM ll, 5, pp. 341-346, May 1968.

[Hl] Habermann, A.N., Prevention of system deadlocks, Comm.
ACM 12,7, pp~ 373-377, July 1969.

[H2] Habermann, A. N. , Tn trodu·ctfo·n· to Operating System
Design, Science Research Associates, Inc., Chicago.
Palo Alto, Toronto, 1976.

[Jl] Jensen, K., and Wirth, N., PASCAL User Manual and
Report, Springer-Verlag, New York, 1974.

[Kl] Kwong, Y.S., On reduction of asynchronous syst~ms,
Theoretical Computer Science, 5, ~p. 25-50, 1977.

79

80

[K2] Kw?ng, Y.S., ~ivelo~ks Jn Parallel Pr6grams, Computer
Sc1ence Techn1cal Reoort~ 78-CS-15 and 78-CS-16,
McMaster University, Hamilton, Ontario, 1978.

[Ll] Lehman, M.M., and Rosenfeld, J.L., Performance of
a simulat~d ~~ltipfdgfamming system, Proc. AFIPS 1968
Fall Joint Comput. Conf., Vol. 33, pp. 1431-1442.

[L2] Liskoy, B.H., The desigh of th~ Venus operating systems,
Academic Press Inc., London, New York, 1976.

[Sl] Shaw, A.C., and Weiderman, N.H., A Multiptogramming
System for Education· ·and ·Res·earch, Proc. IFIP Congress
71, North-Holland Publishing Co, Amsterdam, The Nether
lands pp. 1505-1509, 1971.

[S2] Shaw, A.C., The Logical Design of Operating Systems,
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974.

[Tl] Tsichritzis, C.D., and Berstein, A.P., Operating Systems,
Academic Press, New York, 1974.

[W 1] W a t s on , R . W . , T i me s h a r in g Sy s t e JTi De s i gn C o n c e p t s ,
McGraw-Hill Book Co., New York, 1970.

	Ong_HoonLiong_1978_12_master0001
	Ong_HoonLiong_1978_12_master0002
	Ong_HoonLiong_1978_12_master0003
	Ong_HoonLiong_1978_12_master0004
	Ong_HoonLiong_1978_12_master0005
	Ong_HoonLiong_1978_12_master0006
	Ong_HoonLiong_1978_12_master0007
	Ong_HoonLiong_1978_12_master0008
	Ong_HoonLiong_1978_12_master0009
	Ong_HoonLiong_1978_12_master0010
	Ong_HoonLiong_1978_12_master0011
	Ong_HoonLiong_1978_12_master0012
	Ong_HoonLiong_1978_12_master0013
	Ong_HoonLiong_1978_12_master0014
	Ong_HoonLiong_1978_12_master0015
	Ong_HoonLiong_1978_12_master0016
	Ong_HoonLiong_1978_12_master0017
	Ong_HoonLiong_1978_12_master0018
	Ong_HoonLiong_1978_12_master0019
	Ong_HoonLiong_1978_12_master0020
	Ong_HoonLiong_1978_12_master0021
	Ong_HoonLiong_1978_12_master0022
	Ong_HoonLiong_1978_12_master0023
	Ong_HoonLiong_1978_12_master0024
	Ong_HoonLiong_1978_12_master0025
	Ong_HoonLiong_1978_12_master0026
	Ong_HoonLiong_1978_12_master0027
	Ong_HoonLiong_1978_12_master0028
	Ong_HoonLiong_1978_12_master0029
	Ong_HoonLiong_1978_12_master0030
	Ong_HoonLiong_1978_12_master0031
	Ong_HoonLiong_1978_12_master0032
	Ong_HoonLiong_1978_12_master0033
	Ong_HoonLiong_1978_12_master0034
	Ong_HoonLiong_1978_12_master0035
	Ong_HoonLiong_1978_12_master0036
	Ong_HoonLiong_1978_12_master0037
	Ong_HoonLiong_1978_12_master0038
	Ong_HoonLiong_1978_12_master0039
	Ong_HoonLiong_1978_12_master0040
	Ong_HoonLiong_1978_12_master0041
	Ong_HoonLiong_1978_12_master0042
	Ong_HoonLiong_1978_12_master0043
	Ong_HoonLiong_1978_12_master0044
	Ong_HoonLiong_1978_12_master0045
	Ong_HoonLiong_1978_12_master0046
	Ong_HoonLiong_1978_12_master0047
	Ong_HoonLiong_1978_12_master0048
	Ong_HoonLiong_1978_12_master0049
	Ong_HoonLiong_1978_12_master0050
	Ong_HoonLiong_1978_12_master0051
	Ong_HoonLiong_1978_12_master0052
	Ong_HoonLiong_1978_12_master0053
	Ong_HoonLiong_1978_12_master0054
	Ong_HoonLiong_1978_12_master0055
	Ong_HoonLiong_1978_12_master0056
	Ong_HoonLiong_1978_12_master0057
	Ong_HoonLiong_1978_12_master0058
	Ong_HoonLiong_1978_12_master0059
	Ong_HoonLiong_1978_12_master0060
	Ong_HoonLiong_1978_12_master0061
	Ong_HoonLiong_1978_12_master0062
	Ong_HoonLiong_1978_12_master0063
	Ong_HoonLiong_1978_12_master0064
	Ong_HoonLiong_1978_12_master0065
	Ong_HoonLiong_1978_12_master0066
	Ong_HoonLiong_1978_12_master0067
	Ong_HoonLiong_1978_12_master0068
	Ong_HoonLiong_1978_12_master0069
	Ong_HoonLiong_1978_12_master0070
	Ong_HoonLiong_1978_12_master0071
	Ong_HoonLiong_1978_12_master0072
	Ong_HoonLiong_1978_12_master0073
	Ong_HoonLiong_1978_12_master0074
	Ong_HoonLiong_1978_12_master0075
	Ong_HoonLiong_1978_12_master0076
	Ong_HoonLiong_1978_12_master0077
	Ong_HoonLiong_1978_12_master0078
	Ong_HoonLiong_1978_12_master0079
	Ong_HoonLiong_1978_12_master0080
	Ong_HoonLiong_1978_12_master0081
	Ong_HoonLiong_1978_12_master0082
	Ong_HoonLiong_1978_12_master0083
	Ong_HoonLiong_1978_12_master0084
	Ong_HoonLiong_1978_12_master0085
	Ong_HoonLiong_1978_12_master0086
	Ong_HoonLiong_1978_12_master0087

