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NOTATION

A Area factor in Shear Stiffness

a ; initial bowing at mid-height

a, Fourier Coefficient

B General representation of the abscissa of

a boundary

b Width of the Section
b!n’bZn | Fourier Coefflc;ents
€ Constant of integration; also point of

application of concentrated forces and/or

moments along the span

38 Core thickness
Cip2Cop Fourier coefficients
D : Operator indicating derivative with respect

to the abscissa; also point indicating the
location of the Reference Level
d , Distance between centroids of skins, also

differential operator

d,, d2 Distances from Reference Level to the cen-
2 troids of the top and bottom skins respec-
tively
dln’ dZn Fourier Coefficients
Ec ' : Modulus of Elasticity of the core material
Ecomp Modulus of elasticity under compressive
stresses
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r "2
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(€1,
(ET),

(51)6

1, 2,000

61n’ 6Zn

Modulus of Elasticity of the skins, when

they are equal to each other

Modulus of elasticity under tensile stresses
Modulus of Elasticity of top and bottom skins
respectively

Total Bending Stiffness of the section

Bending stiffness of the core

Part of the total bending stiffness consisting
in the product of the areas of the skins times
their corresponding modulus cf elasticity
times the squares of the distances from their
centroids to the Reference Level

Bending stiffness of the skins with respect

to their own centroids

Bending stiffness of the top and bottom skin
respectively with respect to their own centroid
Eccentricity of the end thrusts, measured
with respect to the Reference Level

Fourier Coefficients

Net axial force in each skin, the direct
effect of end thrusts excluded, also, general
functién developable in Fourier series :
Functions of the parameters A and g

Function defined in a finite interval

Fourier coefficients
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Shear modulus of the core material

Parameter

Distances from the neutral axis to the inter-
faces of the core with the top and bottom
skins respectively.

Point indicating the location of the

neutral axis

Total thickness

Integers _ ' 3

Span

Portion of the span between concentrated
forces and/or moments and other such points
or supports

Subscript indicating portion to the left;
also, span (Section 8.2 only)

Total bending moment

Total shear force 

Portion of the total bending moment consisting
in the net axial force in one skin (effect of

end thrusts excluded) multiplied by the

~distance between the centroids of the skins

Portion of the total bending moment, taken
by the skins when bending with respect to

their own centroids
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in Section 4.2
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the span} respectively
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n : Integer; also, summation counter

P End thrust

Pc Critical loading

q - Distributed loading

Q, Fourier coefficient

7, @y Portions of the total distributed loading,

as defined in Section 4.2
n Factor defined in Section 8.2; also, subscript

indicating "portion to the right"
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i Skins thickness, when they are equal to
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t,, tz ’ Thicknesses of top and bottom skins respectively

u Total Strain Energy
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CHAPTER I

INTRODUCTION

1.1 FOREWORD

Sandwich Construction has been very successfully used in
the field of Structural Aeronautics. This concept satisfies
many of the reguirements for the production of industrialized
conmponents of buildings. The most important ones are structural
as well as architectural efficiency (its components carry out other
functions besides the structural one). "Besides, services may
be embedded in the panels in the factory. In addition, trans-
pertation is cheaper owing to the lower weights involved, and
so are other structural components.as dead loads are smaller
than in buildings with monolitic panels.

Because of the obvious merits of using sandwich types of
building components their applicability to building design has
been studied more extensively in recent years. However, not too-
much of the previous research related to this subject may be
readily applied to building design because of the lack of gener-
ality with respect to support conditions, loads, dimensions of
the sections and combinations of materials. 1In addition, many of
the relevant references either contain inconsistencies, or
unjustified and often unnecessary assumptions or are not presented

in a clear manner. One of the main goals of this work is to

1



present some of the published methods of analysis in a more
clear, general and rational way. In a comparative fashion, the
assumptions of behaviour made by each author and the implication
of these assumptions will be detailed.

Because of the above mentioned lack of generality a method
of analysis was formulated to provide a more general form of
analysis than others to be found in the related bibliography.
This generalized form of analysis was obtained by two different
methods by simply working through the mathematics on the most
general pattern of deformations and taking care to avoid the
inclusion of arbitrary assumptéons of behaviour. It is suggested
here that this method is simpler for the designer to use
because it only employs concepts of ordinary beam theory and does

At ramiire 2 cvraatr Aanl AT Tndarrmvradaded Aan Ay S neeler T
noT EeculIYre great 'aeal @i TNCtel precalticn OIS joieietond ngLY s, <S4

variables dealt with are deflections and moments, which are of
immediate practical use as compared with othér‘methods'where the
variables cannot be interpreted directly with respect to physicél
behaviour. This method described above was obtained from genera-
lizations and corrections to the work by Hartsock(lz);, and is
presented in detail in Section 4.4 and Chapter VII.

In this study some initial invgstigations were done regarding
the use of new materials in sandwich panel construction. To

establish the potential of some of these new materials, theoreti-

cal and experimental analyses of their properties as well as

* References are listed at the end.




trials of fabrication methods were inclﬁded. This portion of
the research program is described in Appendix A. The results
of some tests of sandwich beams and sandwich beam-columns are
also presented.

For the most part this thesis presents a detailed theoreti-
cal study of only the basic flexural behaviour of sandwich con-
struction, Aside from the study of bending of sandwich beams,
there is no suggestion that this is an exhaustive treatise on
the subject of sandwich construction. Such aspects as wrinkling
ipstability, thermal warp, ultimate strength and two-directional
bending are not included. Tt is hgped the material presented
in this thesis will aid designers undefstanding and analysing

the basic behaviour of sandwich construction. In considering

ar nAavredandine AfF +ha
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basic behaviour will undoubtedly be a necessary first step.

1.2 LITERATURE REVIEW

The earliest reference of the concept of sandwich construc-
tion is traged back to 1849 by Allen(l), but the first rela-
tively specfacular_success of the idea was in the design of the
Mosquito Bomber in 1943(1’21). Since then the concept has been
studied extensively mainly by aeronautical investigators and for
this reason most of the literature available on the subject

deals with sandwich members with thin or vexry thin skins*, which

*According to the common use of the term (see Allen(l), for
instance), a sandwich section is said to have very thdin skins

when (1) The bending .stiffness of the skins with respect to their -
own centroids is negligible as compared with the total stiffness’
of the section and (2) The distance between those centroids may be
approximately equalled to the core thickness. A sandwich in which
the approximation(l) is valid but where approximation (2) may not
be made without introcducing considerable errors is said to have
thin skins. Finally, in a sandwich with thick skins, neither appro-
ximation (1) nor (2) is applicable.



are most commonly used in airplane design.

(1,12,18) indicate the limita-

Several of the references
tions for application of the proposed methods of analysis but
others do not, even though the assumptions used imply the
analysis will be accurate only for cases of thin or very thin
skins. A typical example is the applicability of the Navier-
Bernouilli principle, which says that oadiginally plane secitions
will nemain plane after deformation. It will be shown in
Section 4.6 that the application of such a principle is justi-
fiable only for cases with thin or very thin skins or where
the core has a very high shear stiffnesg. In addition, it will
be shown that the particular formulas as presented by the
avthors nsing this asanmntion are applica%le only +o cases with
symmetric conditions of loading and support. Again, this
limitation has not been clearly defined. From the list of
investigators applying this principle to facilitate use of the
Equivalent I-Beam method, using elfasifdic t&anééo&hation.oﬁ Lhe
section (see Chapter ITI), the following were consulted for
this work:

Allen(l)

, who is the only author warning about the non-
applicability of his formula for cases with non-symmetric loading
and support conditions.

(14), who include final formulas for

Hughes and Wajda
particular cases of loading and support and for symmetric
sections (those having identical skins). The formulas as pre-

sented in the paper by the latter authors have some printing



errors, unclear treatment and inconsistent conclusions as it
will be shown in Section 2.2 in this work.

Darvas uses the above mentioned method in two papers. One

(6)

included the effect of shear deformation in the

{5}

of them
core while the other neglected this effect using the assump-
tion that stnips of the whole sandwich oniginally plLane and
peapendiculan to the Neutral Axis of the section* nemadin boih
plLane and perpendiculan fo the Neutral Axis aften deformation.
L£3)

use the same method to consider
(17)

Smolenski and Krokosky
shear deformations of the core while Leabu neglects this

aspect in his study of thermal warp problems as do Ellis and
{9)

Cummings in their analysis of concrete sandwich panels**,
2 s AN
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equivalent I-beam method. Even though they apply the results
to the study of sandwich panels with thick plywood skins, they
neglect the local bending stiffness of the skins in tﬁe
‘expression for the total stiffness of the section.

The way in which Hoff's solution was originally presented
in reference (13) makes it applicable only to the case of very
thin skins. This is contrary to what Hoff states and results

from the study of the assumptions made in the derivations of

*The Neutral Axis of the section as defined by Darvas in his
article and in other papers by some authors coincides with the
"Reference Level" or "Centroidal Axis" to be defined in Section
2.3 of this thesis. The definition of Neutral Axis to be used -
in here will be given in Section 2.7.

**The words panel and beam will be used interchangeably in here
for members with unidirectional bending. The word panel is used
by some authors (1,3) in the sense of plate (two-directional
bending) .



the solution. His original sclution was presented for a case
with a symmetrical section under a particular system of loads.

0'Dell and Graham(lg)

when assuming that the whole sheavr
force is taken by the core, imply that the results they obtain
are applicable only to cases with very thin skins. Hoff used
a strain energy approach while O0'Dell and Graham used the
equivalent I-beam methcd.

Concerning thick skins, Hartsock(lz) has presented a method
to solve the problem for a sandwich beam with a generality
which is sufficient for many problems. UHe considers dissimilar
skins and his solution is cood only for the cases of a simply
supported sandwich beam with mid-span concentrated locad and
uniformly distributed ioading. However, he does not identify
this limitation. The generalised methods presented in section
4.4 and Chapter VIII are based on Hartsock's basic idea of
splitting the total applied moment in two parts but the treat;
ment, form and applicability of the solution in those Sections
are different from those presented in his paper.

Allen(l) presents three methods of analysis. The first
one, which is applicable only to problems with thin and very
thin skins, uses the method of the equivalent I-beam with
allowance for shear deformations of the core and is applicable
to symﬁetrical cases of loading and support. In the second
method he used the ordinary beam theory in a way which lacks

clarity, even though it coincides with the exaet



solution® for cases with symmetrical loads and support condi-
tioné as applied to three particular cases of loading. The
third methcd uses Strain Energy principles as applied to a
deformed section in which some arbitrary conditions of
behaviour are imposed to obtain a solution which is again appli-
cable oanly to some cases of symmetrical loads and support. He
presented this third method for a section with identical skins
but in his study of plates in the same book he includes formulae
with allowance for sections with dissimilar skins. Being the
most general case, these formulae for plates were studied to
generalize his theory for beams.

Hoff's approach mentioned above uses the principle of the
total potential Energy as a stationary function by using as
variables the horizontal displacements of one of the skins and
the vertical deflection. His solution was obtained for a canti-
lever having identical skins and a concentrated load at the
free end. Contrary to his claims it is valid only for sections

with very thin skins. Hughes and Wajda(l4)

give the same final
result as obtained by Hoff with some errors, as commented v
earlier. Allen's Strain Energy method arbitrarily assumes
that the ratio of the shear deformation of the core to the

slope of the member is constant and so his solution depends upon

* A solution will be said to be exact in this work when it is
the result of applying valid mathematical operations and struc-
tural principles to a problem having been set-up with no arbi-
trary assumptions of behaviour and in which only the factors
previously proven to be numerically negligible are discarded.



the determination of a function (the vertical deflection) and
a parameter (the ratio mentioned above) while Hoff's solution
depends upon two functions (the ones described above). The
change of a function to a parameter as suggested by Allen
should facilitate the solution of the mathematical problem.
However, as will be shown, it does not happen in this case.

Fisher(lo)

sets up the expression for the strain energy
stored in the beam as a function of the externally applied
bending moments and shear forces. Then he applies Castigliano's
first theorem to find the deflection at mid-span for three
particular systems of load; mid-span concentrated load, two
equal concentrated loads at the thirds of the span*, and uni-
formly distributed load. The main assumption in his derivations
is that the whole applied moment is taken by the net elongation
and contraction of the skins. This is equivalent to neglecting
the local bending stiffness of the skins and so his results are
applicable only to members having thin skins. His idea of
applying strain energy principles once the strains have been
expressed as functions of the applied moments and shear forces
vas used to solve the much more general problem described in
Chapter VII.

(7)

Several authors, for example Doherthy et al and

2
Benjamin(“) use an approach originally derived by H.W., March of

* A rigorous reworking of this formula revealed that it was
derived for two equal guarter point loads, in contradiction to
Fisher's claim.
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the Forest Products Laboratory of fhe United States. According
to their description of the method, it seems to coincide with
the one developed by Fisher, but no verification of this was
made. The paper by Doherthy et al gives an unrecognisable
value for the shear stiffness of the section while the paper by
Fisher gives (in his Fig. 1) a distribution of shear stresses |
in the core which is inconsistent with the assumed distribution
of axial stresses in the same figure. Both apply formulae
obtained for symmetric sections to members having non-identical
skins. The fact that both papers have inconsistencies on the
same point may be easily understood from the fact that each
includes the other as its first reference. Their formulae are
conmented on in more detail in section 3.4.

(20)

Pfeifer and Hanson study the limiting cases in which
the core is either very stiff and the sandwich beam works as
an I-beam or the core is very weak and the skins act indepen-
dently. The conclusion from the experimental results is that
the behaviour of sandwich beams, either with or without shear
connectors, lies somewhere between those two limiting cases..
Only a few of the above mentioned papers derive or give
formulae applicable to sections with different skins.

(12) (5)

Hartsock and Darvas include this aspect for sandwich

beams but the latter's work is not applicable for cases with

thick skins. Allen(l) includes this feature in his study of

(7) (10)

plates. Doherthy et al and Fisher also include non-

symmetric sections but they treat them in an unclear way as
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mentioned in more detail in Section 3.4.

4,1 : : : i
alL give some consideration to ultimate

(20)

Hansen and Curtis

strength of concrete sandwich panels. Pfeifer and Hanson

and Hummel(ls) study the effect of shear connectors only from
the experimental view point. Dundrova et al(g) and Allen(l)

study the two-directional bending with the use of strain energy
methods while Darvas(6) does it by using transformed areas in

the two directions. Skattum(zz)

also uses strain energy in
his dynamic analysis of coupled shear walls and applies the
results to the problem of a sandwich beam. His work is not

analysed in this thesis.

1.3 SCOPE AND CONTENTS

After the génera] view of the ‘state~of-the-art ‘made in
the previous section, and due to the many inconsistencies,
lack of generality and the many unjustified assumptions found
in the related biblioqraphy, the following Chapters présent a
detailed analysis of the methods that have been used. Many of
those have been generalised to cover wider possibilities of
loadings and dimensions of the elements of the section than was
originally the case. Comparisons between them are also méde.
The detailed methods are presented as follows.

Chapter II presents the elements of the theory of bending
of sandwich beams and defines the problem to be studied in
this thesis. It also includes a list of the general assumptions
related to the defined problem to be solved in this work.

Chapter III includes the methods which are based on the
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assumption that plane sections remain plane after deformation?
with the effect of neglecting the shear deformation of the core
being presented first. The method having allowance made. for
the shear deformation of the core is then presented and the
effect of the various shear stiffnesses proposed by several
authors is then included in a comparativé manner. .

Chapter IV contains Allen's and Hartsock's applications
of ordinary beam theory to the elements of the section. The
latter was generalized to accommoda?e mnore general conditions
of loading and support. Also the set up of the problem is
presented in a different, but still equivalent way. Some
comments about the problem in defining boundary conditions are
siade Lor both methods.

Chapter V makes use of the principle that the Total
Potential Enengy stored in a deflected memben L5 a stationary
gunction. This is a generalization of the work by Hoff to
cover wider ppséibilities of loading (especially non-symmetric
loading systéms), support conditibns and dimensions of the
elements of the section. The original work by Hoff is commented
on and compared with the more general findings obtained. Varia-
tiqnal calculus and the Rayleigh-Ritz method are presented as
'poséibilities for solution of the mathematical problem sét—up
as indicated above. Some comments are made about boundary
conditions. |

Chapter VI presents Allen's strain‘energy method by

following the dqrivations he made for sandwich plates rather
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than sandwiéh beams because in his chapter on sandwich beams
he consideréd only cases with identical skins. The implica-
tions of Allen's assumptions of behaviour are discussed and
three possibilities to solve the matheﬁatical problem are
proposed. |

Chapter VII conéains a method of analysis based on the
Application of the Padincdple of Leabf Work to the basic
pattern of deformations described in Hartsock's generalised
solution (Section 4.4). This method is especially recommended
owing to the simplicity of the derivations and its ready
application to the most general cases of loading, support
and dimensions of the section.

Chapter VIII contains some comments about the formulas

(14)

compared by Hughes and Wajda and also provides a list of

conclusions and recommendations for analfsis and future
research,

Appendix A contains some analyses made on materials not
too commonly used in sandwich construction for the building
industry, and it includes the results and some theoretical
considerations concerning some tests made on them to deter-
mine some of their structural properties. Appendix B presents
the description and results of some tests performed on sand-

wich panels with thick skins under transverse and beam column

loadings.



CHAPTER 11

PRINCIPLES

2.1 INTRODUCTION

A sandwich beam is a flexural member composed of three

elements which are bonded together. The two external ones are

skins which are made of very strong materials to take most of

the bending stresses due to their very high moment of inertia

created¢ by holding them apart from each other by means of a

much weaker coze. The latter element is usually made of a

very light material in order to decrease the self-weight load.

Materials with high thermal insulation properties are usually

preferred for both, aeronautical and architectural purposes

for obvious reasons.

Fig. 2.1 shows a section of a sandwich beam having two

t Skin1 —-

Core

{2 Skln 7 _.".._‘ -

FIG' 2.1

Section of the Sandwich Beam
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skins of thicknesses ty and t2

respectively and a core with a

thickness c. The width of the

section is b and the distance d
joining the centroids df the

skins is given by

The main role of the core, in

addition to holding the skins



14

aparf from each other, consists of taking most of the shear
forces. A structure constructed this way is very effective,
but the introduction of a weak material in the core may not be
made without penalty. In fact, the shear deformation of the
core may be very large and therefore must be considered.

2.2 DEFINITION OF THE PROBLEM AND BASIC ASSUMPTIONS

The problem to be studied in this work is the static
structural behaviour of sandwich panels subjected to uni-direc-
tional bending. . The skins are in general made of different
materials ond their thicknesses aré in general different and
not necessarily small compared with the core thickness.

The general assumptions used throughout this thesis are
the following ones.

1. The constituent matenials of both Ahin$ and core behave 4in
a Linear elastic manner when subjected to stresses below
certain values (limit of proportionality). Hence the
applied loads are such that these stresses are not exceeded
anywhere’in the beam for this study.

2. Degleciions and sLopes are smallf and so the second derivative
of the deflec?ion may be ecualled to the curvature, i.e.

s e v®(x) o it far)

alx) {1+ [v'(x)]1}%/2

where p(x) is the radius of curvature at the abscisa
X, v(x) is the deflection at the same section and primes

‘stand for derivatives with respect to x.



ALE Rongitudinal ventical sections deform Ldentically.

That is, there is bending in only one direction.

The core and the skins are not deformed sdgnificanily. in
thein shontest dimanbion@ (thicknesses). This means that
the geometry of the section is not affected due to axial
stresses in the wvertical direction. Thié is usually
accepted since in beams the direct vertical stresses due to
transverse loading are much smaller than the longitudinal
axial stresses and the shear stresses caused by those
logdings. Under concentrated loadin§ this condition may

A

not be satisfied in the locality of the locads but the over-
all behaviour will not be affected appreciably. Zahn(25)

...... 1ecdliagible vertical stresses with the
use of a non-linear theory to find stresseé in the neighbor-
hood of concentrated loads. o '

All materials in the section are homcgeneous. That is, the

structural properties are the same at every point in any one

direction. Anisotropic materials are not banned.

Shean deformations of the skins are neglected because of

_the very high span-to-depth ratio and because of the high

shear modulus of the generally used skin materials. This

does not imply that shear stresses in the skins are neglected.

The contrnibution of the core to the bending stifgness of the
seciion 448 negligible because the Young's modulus of the
core is so small compared to the skins' that the stresses

required to cause strains compatible with those in the skins
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are negligible. This assumption implies that the problem of
bending of a sandwiCh beam having a stiff cofe for the problem
of I-shaped or homogeneous rectangular beams) may not be
regarded* as a limit>particular case of sandwich construction
by the analytical approaches presented in this study when the

(1)

core material is made very stiff. Allen suggests a device
to con%ider cases where core materials have significant bending
stiffness resulting from high modulus of elasticity.

8. The bonding of skins and core is perfect. Hence, no slip

exists at any section in the skins-core interface.

2.3 BENDING STIFFNESS

The bending stiffness of the section shown in Fig. 2.1 is
given by the following expression, where B,, EBE, an
moduli of elasticity of skins 1 and 2 and core respectively and

the other symbols are as defined in Fig. 2.1.

(BI) = (EI)d + (EI)f + (EI)C , (2.1
where (EI), = b(Eltldlz + E2t2d22) (2:2.a)
(EI)f = (EI)fl 4 (EI)f2 (2.2.b)
N 3 -
(EI)fi = '1—2- Eiti 3 == 1'2 . (2.2.0)
bz (o 3 t 3
5 c P ¥ e G0 (2.2.4)
(EI), = —5~[(d; = 57 "+ (4, = 57)

In expressions (2.2.a) and (2.2.d), the terms dl and d2

* The case of a homogeneous rectancular beam however can be
obtained as a particular case of sandwich panels by making the
core thickness ¢ indefinitely small. -The depth of the team will

be tl + t2 and b its width,
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define the location of a heference Levef (shown in Fig. 2.1)
defined as the centroid of the elastically transformed section.
From eguilibrium considerations of the net force acting in the

section it may be easily found that

1 i 2

= cl{ctt )+t E.4 = c(e+t,)+t. E. 4
dlziE+cFl+t§32 and d2=iE+cE2+t%l (2.3)

171 “rg t2 s A M

If the neutral axis of the section were defined as the sur-
face such that the axial stresses due to bending (total minus
net axial stress in cases with applied thrusts) vanish, dl and
d2 as given by formulas (2.3) would define its location in the
section with reference to the centroids of the skins. This
definition of neutral axis is found in most papers dealing with
the problem of dissimilar skins in sandwich panels (see

(12)

Hartsock or Darvas(s) for instance). The actual meanin§ of
the level defined by Equations (2.3) is just the location of

the centroid of the transformed section and it will be referred
to as Referehce Level. In view of the fact that the meaning

of neutral axis as defined above will disappear when the axial
stresses in the core are neglected, it will not be used in this
work. In these cases all points in the core are assumed to have
zero axial stresses and in scme methods, such as those not
incorporating the Navier-Bernouill principle, the possibility
existé of having extra points with zero axial stress in the

skins oxr even of having no such points anywhere in the core.

Another definition of neutral axis will be given in the next
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pages.

The first term on the right hand side of Equation (2.1)
is invariably dominant. In cases with thin or very thin skins
the second term may be neglected. 1In fact, that is the way
thin and very thin skins were defined in Chapter I. For cases
with different skins the term (EI)f should be evaluated and
compared with (EI)d, the decision of keeping it or neglecting
it being made only after that comparison is made. For cases

(1)

with identical skins, Allen proved that, when &/t > 5.77

(where t = t, = tz), the second term, (EC) is less than 1%

1 £
of (EI)d and so (EI)f may be neglected for practical purposes.

Concerning the last term on the right hand side of

each particular case before deciding whether to neglect it or
not. In practical sandwich members, however, the modulus of
elasticity is almost always much larger for the skins than for.
the core. Hence the term (EI)c is negligible in almost every
case. Allen(l) found that, for symmetric sections, this term

representé less than 1% of (EI)d when

E 2
£ 4.4
G g ¢ (3} > 100
c
where t = tl = t2 as before and Ef = El = E2 (symmetric section).

The above condition may be unsatisfied in particular cases and
it would seem wise to keep that term in the general derivations.

However, this makes the analysis a little too cumbersome and it



will not be considered here based on the fact that in this study*
and in most practical cases the dimensions of the section and
particularly the properties of the materials make it negligible.
Allen(l) makes some suggestions to transform his solution using
ordinary beam theory by keeping (EI)c in the expression for (EI),
but using a transformed value of the shear modulus of the core.
His suggested solution is applicable here.

As a result of neglecting (EI)c (and hence the longi-
tudinal axial stresses in the core) throughout this thesis, the
case of a sandwich beam with a very stiff core is not a limiting
case of the theories developed. It was thought to be important
to reaffirm that I-beams or rectangular sandwich beams with high
ratine nf Fc/pr must be analvsed in a different wavy.

After these considerations are accepted, Equations (2.1)

and (2.3) become

(EI) = (EI)d + (EI)f (2::4)
- F.d S DN G|
272 i
and d, = : - e e - : (2a5)
1 tlEl + t2b2 ) 2 tlhl + t2E2 :

2.4 SIGN CONVENTIONS

The following sign convention will be used throughout
this thesis:.

The horizontal displacements and distances along the
abscisas are positive when measured to. the right while deflec-

tions and other vertical ordinates are positive when measured

* See Section 2.2 for types of panels studied.
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downward.

External bending moments are positive when they produce
tension in the bottom fibres of the beam. Correspondingly,
they produce negative curvature. The external shear forces are
positive when they produce a positive slope in the deflected
beam (Total External shear force will always equal the deriva-
tive of the external bending moment with no change in sign).
No sign cénvention is used for applied forces. Their directions
are arbitrarily assumed. Answers resulting in negative values
indicate that the opposite direction to that shown is correct.

It also follows that once the sign convention is stated

| as above for the horizontal displace-

ments, axial stresses and strains

q——-—
_g are positive when tensile and nega-

tive when compressive. Shear stresses

—-—-@,
and strains will be positive
(arbitrarily) when they act as shown

P, 2.2 in Fig. 2.2, which would contribute
Sign Convention for Shear to a positive slcpe v'(x).

Stresses and Strains

2.5 DISTRIBUTION OF SHEAR STRESSES IN THE SECTION

Fig. 2.3 shows the distribution of axial strains and
stresses and shear stresses and strains on a section of a
sandwich beam. It will be observed that the axial strains in

the core are not neglected (Fig. 2.3.a) because they are
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necessary to comply with the compatibility of deformations in
the section. Not withstanding this, the axial stresses in the
core (Fig. 2.3.b) are negleéted because of the very low modulus
of elasticity of the core. The dashed lines in Fig. (2.3.b)
show in an exaggerated-way the efféct that would be obtained

if those stresses had been considered. The continuous heavy
line in Figure 2.3.c illustrates the distribution of shear
stresses in the section, where it may be observed that shear:
stresses are not neglected in the skins. The width, b, times

the area between the parabola AB and the straight line with the



same ends is the portion of the shear force taken by the top
skin when bending about its centroid. The same thing is appli-
cable to the bottom skin. When the deflection of each skin is

v(x), the total shear force applied to the section may then bhe

shown to be
M'(x) = bdt_(x) - (EI)fV"'(X)

where M'(x) is the shear force at the section X,TC(X) is the shear
stress in the core (Fig. 2.3.c) and the negative sign in the
second term on the right hand side was introduced to comply
with the sign convention.

But the shear stress in the core, Tc(x), may be expressed
ag the product

TC(X) = Gy (x)

where G is the shear modulus of the core and y(x) is the shear
strain. So

M'(x) = bdGy(x) - (EI) v®''(x) (2.6)

The dashed lines in Fig. 2.3.c show the effect of
including the axial stresses in the core. Finally; Fig. 2.3.d
shows the shear strains in the section, and it may be observed
that the shear strains in the skins (dottea lines’ are much
smaller than the ones in the core because of the much higher
shear modulus of the skins materials compared to the core
material. The dashed lines for shear strains in the core

corresponds, as above, to the case in which axial stresses in
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the core are included.

These figures show the hypothetical model to be studied in
this work. The modulus of elasticity of the core is assumed to
be zero, therefore, stresses are neglected but strains are
permitted. The shear modulus of the skins is taken as being
infinitely large so that shear strains in the skins.are neglected
but shear stresses are not.

In problems concernihg sections with thin skins, the

second term in Eguation (2.6) vanishes and the expression
M'(x) = bdGy(x)

" is valid. In cases of very thin skins the approximation d = c

would vyield

2.6 - COMPATIBILITY OF DEFORMATIONS

Once the properties of the constituent elements are défined
and reericted to the specified limits, the deformed section at
the abscisa x may be drawn as shown in Fig. 2.4, where every
variable is shown in its positive direction as defined by the
sign convention in section 2.4.

A small length of the beam, dx, is shown in its original
position and in its position after deformations and displacements
have taken place. If the deformed section appears to have no
curvature, it is only due to its very small length. This curva-
ture could be in the shown case positive or negative.

As its name implies, the reference level as defined by
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equaﬁions (2;5) was used to measure vertical deflections while’
the horlzontal displacements of the skins, uy (x) and u, (x), are
given by thc movement in the horizontal direction of the cen-
troids of the skins in the deformed section. The originally
vertical line ABCDEFG deformed to a polygonal having the lines
ABC and EFG perpendicular to the deformed reference level
because of the fact that shear deformations of the skins were
neglected. The portion CDE is a straight line because the
axial stresses in the core were neglected and the shear stresses
and strains along the core are both.constant (Section 2.5). A
very important relationship>may be obtained from Figure 2.4

relating the shear deformation of the core y(x), the horizontal

o~ PR Y T W demm Al £ W
nents of the centroids of theitsking, u](x) and w. (x),;

and the slope of the member, v'(x). Simply with geometry it may

be shown that

Vadx): —iaes)
Y(x) = SIv' (%) = Fee B (2.7)

'This expression will be used several times in this work.

2.7 DEFINITION OF NEUTRAL AXIS

A final word concernlnq Fig. 2.4 is related to the deflnl—
tibnfof neutral axis to be used in this work. In this study,
“the Jboation defined by the point H in Fig. 2.4, which means the
1intefsection of the line CDE representing the deformed core and
the originally vertical line drawn through the undisturbed
§Qction, is defined as the neutral axis of the section. This

seems to be.an arbitrary definition and in fact it really is,
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but for many practical cases (depending upon the section pro-
perties and the applied loads), the point H lies within the
core and represents the point of the core with no horizontal
displacements. This definition seems to be a logical one and
it is used by the authors using strainAenergy methods based on

f(lz) or Allen(l) for instance). They

displacements (see Hof
invariable draw H within the core, which is (as will be proven
later in this Section) correct only for particular caseé of
loading, support and section properties;

Darvas(s), Hartsock(lz)

and others define the neutral
axis as the points with neither tensile nor compressive stresses.

By their assumption (also made in this study), that axial stresses

in the pora are neclicibhle
allr2he eore aY¥e negllgipie

4]

Tasde +m +ha ahenird s»acivléd &had
p <«SQUS LU LA QRS WIN AT owd e LSS SRS o8

every point in the core is on the neutral axis. Moreover, it is
clear that for sandwich beams having cores so weak that they are
incapable of transmitting much shear force, the two skins will
act relatively independently énd.two extra pqints with neither
tensile nor compressive stresses ¢ould exist. All of these
authors use as neutral axis what has been called in here the
Reference Level.
By the use of elementary concepts of elasticity, the net

strains in the skins (axial strains at their centroids) may be
found to be ul'(x) and uz'(x), where primes stand for deriva-
tives with respect to.x and ul(x) and uz(x) are the displace-
ments as shown in Fig. 2.4. These strains are positive if

tensile and negative if compressive.



By equilibrium considerations of the forces acting per-

pendicular to the section it may be shown that

ul'(x) : u2'(x) b ?d
Gl 3 (FIT,

(2.8.a)

where P is the net axial force acting on the section and the
other terms are as defined earlier in this work.

TE wl(x) and wz(x)'are defined-asvthe displacements of
the centroids of the skins minus the net displacement of the
section due to the compressive action of end thrusts P, it

follows that

w., ' (x) Wt (x) :
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