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A detailed synopsis of the state-of-the-art in the 

field of the Structural Analysis of sandwich beams is pre­

sented. Deficiencies, inaccuracies, lack of clarity, and 

the imposition. of unnecessary assumptions of behaviour 

found -in the related bibliography are presented in a compara­

tive fashion. A method of analysis with obvious advantages 

over the others studied in this thesis is derived, and its 

use is suggested. The presentation of all methods of 

anal ysis is made under the most general cases of dimensions 

and loadings to make them as applicable as possible to the 

common cases encountered in sandwich components for the 

building industry. 

Experim4~ntal work carried out on several materials 

with some pobential to be used in sandwich members for 

buildings and the tests carried out on some sandwich beams 

and beam-columns are reported. 
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CHAPTER I 

INTRODUCTION 

1 . 1 FORE~t\TORD 

Sandwi c h Construction has been very successfully u sed i n 

the field o f Structural Aeronautics . Th i s concept satisfies 

ma ny of the requirements for the production of indus t r ialized 

components of buildings. The most impor tant ones a r e str uctural 

as well as architect ural efficie ncy (its components carry out o t her 

function s be~id~s the structural one). "Besides , services may 

be embedded in the panels in the factory. · In addi ion, t r ans­

portation is cheaper owing to the lo,.,rer weights involved, and 

so are other structural compone nts as dead loads are smalle r 

than in buildings with monolitic panels. 

Because of the obvious merits of using sandwich types of 

building components their applicability to building design has 

been studied more extensively in recent years. However, not too · 

much of the previous research related to this subject may be 

readily applied to building design because of the lack of gener­

ality with respect to support conditions, loads, dimensions of 

the sections and combinations of materials. In addition, many of 

the relevant references either contain inconsistencies, or 

unjustified and often unnecessary assumptions or are not presented 

in a clear manner. One of the main goals of this work is to 

1 



prese nt s ome of the p ubli s he d m _t hod s of a nalys is i n a more 

clear , ge neral and rational wayc In_ a c omparative fashion, the 

assumptions of behavio r made by each author and the implication 

of these assumptions will be detai led . 

Because of the above mentioned lack of generality a method 

of analysis was formul a ted to prov ide a more genera l ·form of 

analysis than others to be found in the related bibliography. 

This · generalized form of analysis was obtained by two different 

methods by simply working through the mathematics on the most 

general pattern of deformations and taking care to avoid the 
' · ,. 

inclusion of arbitrary assumpti ons of behaviour.· It is suggested 

here that this method is simpler for the designer to use 

because _ it only employs concepts of ordinary beam theory and does 

nrd- rorrn; ro ~ rr~o~+- rio ~ 1 ,-..,.;: ;""+- o. r""'""''"'.f..~~~ .;,..__ · ,-.,... ... .,...~ ..., -. ...... _rl.:_,,..,,.,,. +.'J..- .... 
-- - - - - ·-....!. _ ___ - ·- :;.~---- -- - -- - - ---- - ..... l:"'-'- ....... ~ ...... 4........_,.... ... . ""'-....;J-""'-"-"......,.t"'"" ...... '""" ............. -:1""'"' 1 , 'lrri.PJ..4'--

variables dealt with are deflections and moments ·, which are of 

immediate practical use as compar ed with other methods' v.1here the 

variables cannot be interpreted directly with respect to physical 

behaviour. This method described above was obtained from genera- . 

lizations an~ corrections to the work by Hartsock( 12 ~~ ' ·and is 

presented in detail in Section 4.4 and Chapter VII. 

In this study some initial investigations were done regarding 

the use of new materials in sandwich panel construction. To 

establish the potential of some of these new materials , theoreti-

cal and experimental analyses of their properties as well as 

* References are l i sted at the end. 
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trials of fabrication methoCs were included$ This portion of 

the research program is described in Appendix Ae The results 

of some tests of sa-1d'V\1ich beams and sandv1ich beam-colu ms are 

also presented. 

For the most part this thesis presents a detailed theoreti-

cal study of only the basic flexural behaviour of sanawich con-

struction.. Aside from the study of bending of sandv.rich beams, 

there is no suggestion that this is an exhaustive tr~atise on 

the subject of sandwich consttuction. Such aspects as wrinkling 

instability, thermal warp, ultimate strength and two-directional . . 

b ending are not included. It is hoped the material presented 

in this thesis will aid designers understandinq and ~nalysing 

the basic behaviour of sandwich coristruction. In considering 

basic behaviour will undoubted ly be a necessary first step~ 

1.2 LITEHATURE REVIEW 

The earliest reference of the concept of sandwich construc­

tion is traced back to 1849 by Allen(l), but the first rela-
' I 

tively spectacular success of the idea was in the design of .the 

(1 21) . 
Mo~quito Bombe~ in 1943 ' • Since then the concept has been 

studied extensiv~ly mainly by aeronautical investigators and for 

t~is reason most of the literature available on the subject 

deals with sandwich members \vith thi11 or ve.Jty thin. skiris*, \~Thich 

*According to the common use of the term (see Allen<l), for 
instance), a sandwich section is said to have ve~ty thin skins . 
when (1) The bending stiffness of the skins with ~espect to their 
own centroids is negligible as compared with the total stiffness · 
of the section and (2) The distance bet\~en those centroids mav be 
approximately equalled to the core thicknessa A sandwich in whlch 
the approximation.(l) is valid but \·Jhere approximation (2) may not 
be made withou~ introducing consid~~able errors is said to have 
thi n skins. Finally, in a sandwich with thick skins, neither appro­
ximation (1) nor (2) is applicable. 
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are most commonly used in airplane design. 

] f h f (1,12,18) . ,. h 1' 't Severa . o . t .e re .. erences l.TICtl.cate t e 1.m1. a-

tions for application of the proposed methods of analysis but 

others do not, even though the assumptions used imply the 

analysis will be a curate only for cases of thin or very thin 

skins~ A typical example is the applicability of the Navier-

Bernoui lli p inciple, which says that o~iginafly plane ~eetion~ 

will ~emain plane a6te~ de6o~m a~ion. It will be shown in 

Section 4.6 that the application of such a principle is justi-

fiable only for cases with thin or very thin skins or where 

the core has a very high shear stiffness. In addition, it will 

be shot n that the particular formulas as presented by the 

aut". h()r~ n~i nrr 1-hi~ .::tc; ~nmn+-;nn rir~ rlnnliro~hlo 
"- • • ~ •• .. J.. l- - - · - --·- -..... -

symmetric conditions of loading and support. Again, this 

l imi tation has not been clearly defined. From the list of 

investigators applying this principle to facilitate use of the 

tquivalent I-Beam method, using ela~ti~ t~an~6o~mation . o6 the 

heetlon (see Chapter III ), the following were consulted for 

this \.vork : 

Allen(l ), who i s the only author warning about the non-

applicability of his formula for cases with non-symmetric loading 

and support conditions. 

Hughes and Wajda(l 4 ) , who include final formulas for 

particular cases of loading and support and for symmetric 

section~ (those haring identical skins)~ The formulas as pre-

sented in the paper by the latter authors have some printing 
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errors, unclear treatment and inconsistent conclusions as it 

will be sho,·;n in Section 2.,2 in this work. 

·narvas uses the above mentioned method in two papers. One 

of them (6 ) included the effect of shear defor mation in the 

core while the other (S) neglected this effect using the assump­

tion that ~tnlp~ o6 the whole handwieh o~lglnally plane and 

pe~pendic.ulan to the Neut~al Axl~ o~ the 6eetlon* nemain both 

plan e and penpendic.ula!t :to the Neu.tnal Ax.l¢ a6:ten de6otc.ma.tion. 

Smolenski and Krokosky< 23 ) use the same method to consider 

shear deformations of the core while Leabu(l?) neglects this 

aspect in his study of thermal warp problems as do Ellis and 

Curr~ings( 9 ) in their analysis of concrete sandwich panels**· 
I "' A \. 

m.l-~ l '"1J ("" P-~--L ""'·-- ..:1----.L.- T b--4-.L----- I ~ -r \ ~.::,~} -"1-- ··--- .... 1 • ..! -
.......... -.:;; '-'fao..)e J.V.L.C.:J~ ~.i..VU.U\,.oo\..-v .J..IU. VJ..d~VJ.._t \ .!..' J..J...J} Cl..Lo::>V I..A.o:::>C'-' \..-J.J..J-o:::> 

equi·alent I-beam method. Even though they apply the results 

to the study of sandwich panels with thick plywood skins, they 

neglect the local bending stiffness of the skins in the 

expression for the total stiffness of the section. 

The way in which Hoffls solution was originally presented 

in reference (13) makes it applicable only to the case of very 

thin skins. This is contrary to what Hoff states and results 

fr om t he study of the assumptions made in the derivations of 

*The 1eutral Axis of the secti on as defined by Darvas in his 
artic1e and in other papers by some authors coincides with the . 
11 Reference ·Level 11 or 11 Centroidal Axis II to be defined in Section 
2.3 o£ this thesis. The definition of Neutral Axis to be used 
in here will be given in Section 2.7. 

**The -v;ords panel and beam will be used interchangeably in here 
for members with unidirectional bending~ The word panel is used 
by some authors (1,3) in the sense of plate (two-directional 
bending) . 

'• 
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the s olution.· His original solut ion was p resented for a case 

with a synune tri.cal section unde r a particular system of lo ads. 

O'Dell and Graham(lg) when as~uming that the whole shear 

fo r ce is taken by the core, . imp ly that the results they obtain 

are applicable only to case s with very thin skins. Hoff used 

a strain energy approach while O'Dell and' Graham used the 

equivalent I-beam methc.d. 

Concerning thick skins, Hartsock(l2 ) has presented a method 

to solve the~ problem for a sandwich beam '\f\1i th a genera-li·ty 

\•.rhich is sufficient for ma ny p r oblems. He considers dissimila r 

skins and his solution is good o n y for t he cases of a simply 

supp orted sandwich beam with mid- span concentrate d load and 

uniformly dis~ribu~ed ioadingc ~owever, he does not identify 

this limita tion. The gerieralised methods presented in section 

4.4 and Chapter VIII are based on Hartsock's basic idea of 

splitting the total applied moment in two parts· but the treat-

ment, form and applicability of the solution in those Sections 

are different from those presented in his paper. 

Allen(l) presents three methods of analysis. The first 

one, which is applicable only to problem~ with thin and very 

thin skins, uses the method of the equivalent I-beam with 

allowance for shear deformations of the core and is appli~able 

to symmetrical cases of loading and s ·upport. In the second 

meth od he used the ordinary beam theory 'n a way which lacks 

clarity, even though it coinci des with the ex ae~ 
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~olutlon* for cases with symmetri c al loads and support condi-

t i on s a s applied to three particular cases o f lauding. The 

third method uses Strain Energy principles as applied to a 

deform~d section in which some arbi trary conditions of 

b ehaviour are imposed to obtain a solution which is again appli-

cable Of1ly to some cases of symmetrical loads and support. He 

presented this third method for a section \vi th identical skins 

but in his study of plates in the same book he includes formulae 

with allowance for sections with dissimilar skins. Being the 

most .general case, these formulae for plates were studied to 

generali ze his theory for beams. 

Hoff's approach mentioned above uses the principle of the 

total potential Energy as a stationary function by using as 

var iabl es the horizontal displacements of one of the skins and 

the vertical deflection. His solution was obtained for a canti-

lever having identical skins and a concentrated load at the 

free end. Contrary to his claims it is valid only for sections 

with very thin skins. Hughes and vvajda(l 4 ) give the same final 

result as obtained by Hoff with some errors, as commented 

earlier. Allen's Strain Energy method arbitrarily assumes 

that the ratio of the shear deformation of the core to the 

~lope of the member is constant and so his solution depends upon 

* A solution will be said to be exaet in this work when it is 
the re s ult of applying valid mathematical operations and struc­
tural p rinciples to a problem having been set-up with no arbi­
trarv assumptions of behaviour and in which only the factors 
previously proven to be numerically negligible are discarded. 
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the determin a tion of a function (the vertical deflection) and 

a parameter (the ratio mentioned above) while Hoff's solution 

depends upon two functions (the ones described above ). The 

change of a function to a parameter as suggested by Allen 

should facilitate the solution of the mathematical problem. 

However, as will be sh0wn, it does not happen in this c ase. 

Fisher (lO) sets up the expression for the strain energy 

stored in the b eam as a function of the externally applied 

bending moments a nd shear forces. Then he applies Castigliano's 

fi r st theorem to find the deflection at mid-s pan for three 

particular systems of load; mid-span concentrated load, two 

equal concentrated loads at the thirds of the span*, and uni-

formly distributed load. The main assumption in his derivations 

is that the whole applied moment is taken by the net elongation 

and contraction of the skins. · This is equivalent to neglecting 

the local bending stiffness of the skins and so his results are 

applicable only to members having thin skins. His idea of 

applying strain energy principles once the strains have been 

expressed as functions of the applied moments and shear forces 

\o!o.s used to solve the much more general problem described in 

Chapter VII. 

, Several authors, for example Doherthy et al(?) and 

Ben_j_ amin ( 3 ) use an approach ·originally derived by H. W. March of 

* A rigorous reworking of this formula revealed that it was 
derived for two equal quarter point loads, in contradiction to 
Fisher's claim. 
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the Forest Products Laboratory o f the United States a According 

t o their description of the meth od, it seems to . coincide with 

t le one developed by Fisher, but no veri ficat ion o f this was 

m..ade. rrhe paper by Doherthy et al gives an unrecognisable 

value for the shear stiffness o~ the section while the paper by 

Fisher g ives (in his Fig. 1) a d i stribution of shear stres ses 

i n the core which is inconsistent with the assumed distribution 

of axial stresses in the same figure.. Both apply formulae 

o b tained for symmetric sections to members having non-identical 

s~ in s . The fact that both papers have incons istencies on the 

s ame point may be easily understood from the fact that each 

i n cludes the other as its first reference. Their formu l ae are 

c o mmented o n in more dP-tai} in SP.ction -~- 4 ~ 

Pfeifer and Hanson( 2 0} study the limiting cases in which 

t h e core is either very stiff and the sandwich beam \-.rorks as 

a I-beam or the core is very \·leak and the skins act indepen-

dently. The conclusion from the exper i mental results is that 

t h e b ehaviour of sandwich beams, either with or without shea r 

connectors , lies somewhere between those two limiting cases 

Only a fe\·1 of the above mentioned papers derive or give 

f o rmulae applicable to sections with different skins. 

Ha rtsock (l 2 ) and Darvas (S ) i nclude t h is aspect f o r sandwich 

b e ams but the latter ' s work is not applicable for cases with 

t h ick skin s. Allen (l) includes this feature in his study of 

p lates . Doher thy et al (?) and Fi s her(lO ) also include non-

s ymmetric sections but they treat them in an unclear way as 
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mentio ned in more detail in Se ction 3.4. 

. (4 11) . 
Hansen and Curt1s ' g1ve some consideration to ultimate 

. (20) 
strength of concrete sandwich panels. Pfeifer and Hanson 

a nd Huminel (lS) study the effect of shear connectors only from 

the experimental view point Dundrov~ et al ( B) and Allen'(l) 

study the t\•lo-direc·tional bending '"i th the use of strain energy 

methods while Darvas (6 ) does it by u sing transformed areas in 

the tv1o di rections ~ . Skattum< 22 ) also uses strain energy in 

his dynamic analysis of coupled shear walls and applies the 

results to the problem of a sandwich beam. His work is not 

analysed in this thesis. 

1 3 SCOPE AND CONTENTS 

Af~Pr ~hP gpn~r~l viPw of the state-of-the-art made in 

the previous section, and due to the many inconsistencies, 

lack of generality and the many un justified assumptions found 

in t he related bibliography, the following Chapters present a 

detailed analysis of the methods that have been usede Many of 

those have been generalised to cover wider possibilities of 

loadings and dimensions of the elements of the section than was 

originally the case. Comparisons between them are also made. 

The detailed methods are presented as follows. 

Chapter II presents the elements of the theory of bending 

of sandwi c h beams and d efines the problem to be studied in 

t.his thesis. It also includes a list of the general assumptions 

re lated to the defined problem to be solved in this work. 

Chapter III includes the methods \vhich are based on the 
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assumption that plane sections remain plane after deformation, 

\..,i th t he effect of neglecting the shear deformation of the core 

being presented first. The method having allowance made for 

the shear deformation of the core is then presented and the 

effect of the various shear stiffnesses proposed by several 

author s is then included in a comparativ~ manner. 

Chapter IV contains Allen's and Hartsock 1 s .applications 

of ordinary beam theory to the elements of the section. The 

latter was generalized to accorr~odate more general conditions 

of loading and support. Also the set up of the problem is 

presented in a different, but still equivalent way~ Some 

comments about the problem in defining boundary conditions are 

lltctut: f ur . boi:i:1 methods 4 

Chapter V makes use of the principle that the Total 

Potentlhi Ene4gy ~to4ed in a de6leeted membe4 i~ a ~tationa~y 

6unctlon~ This is a generalization of the work by Hoff to 

cover wider P?ssibilities of loading (especially non-sym!'11etric 

loading systems), support conditions and dimensions of the 

elements of the section. 'Jlhe original work by Hoff is commented 

on and comp~red with the more general findings obtained. V~ria-

tiona l calculus and the Rayleigh-Ritz method are presented a~ 
' ' 

possibilitie~ for solution of the mathematical problem set-~p 

as indicated above~ Some comments are made about boundary 

conditions . 

Chapter VI presents Allen's strain energy method by 

following th~ d~ri~~tions he made for sandwich plates rather 
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th an sandwich be ams because i n his chapter on sandwich beams 

he consider ed only cases with ide ntical skinse The implica ­

tion s of Alle n's ass umptions o f behaviour are discussed and 

three possibi lities to solve the ma thematical p roblem are 

prop osed .. 

Chapter VII contains a method of analysis based on the 

App lication of · the Pftinciple o6 Lea~t Wok~ to the basic 

.pattern of deformatioris described in · Hartsoc~'s generalised 

solution {Section 4.4) • . This me thod is especially recommended 

owing to the simplicity of the derivations and its ready 

application to the mo~t general cases of loading, support 

and dimensions of the section. 

Chapter VIII contains some comments about the formulas 

compared by Hughes and Wajda(l 4 ) and also provides a list of 

conclusions and recommendations for an a lysis and future 

research. 

Appendix A contains some analyses made on materials not 

too commonly used in sandwich construction for the building 

industry, and it includes the results and some theoretical 

considerations concerning some tests made on them to deter­

mine some of their structural properties. ~ppendix B presents 

the description and results of some tests performed on sand­

wich panels with thick skins under transverse and beam column 

loadings. 



CHAPTER II 

PRINCIPIES 

. 2.1 INTRODUCTION 

A sandvlich beam is a flexural member c omposed of three 

elements which are banned together. The two external ones are 

~kin~ which are made of very strong materials to take most of 

the bending stresses due to their very high moment of i nertia 

creatAd by holding them apart from each other by means of a 

much w_aker eo~e. The latter element is usually made of a 

very light material in order to decrease the self-weight load . 

Materials with high thermal insulation properties are usually 

preferred for both, aeronautical and architectural purposes 

for obvious reasons. 

Fig~ 2.1 shows a section of a sandwich beam having two 

FIG. 2 .1 

Section of the Sa.nd\vich Beam 
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skins of thicknesses t 1 and t 2 

respectively and a core with a 

thickness c. The width of the 

section is b and the distance d 

joining the centroids of the 

skins is given by 

.t .l + t2 
d = c + 2 

The main role of the core, in 

addition to holding the skins 
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apart from each other, consists of tal·ing most of the shear 

forces~ A structure constructed this way is very effective, 

but the introduction of a weak material in the core may not b e 

made ~ithout penalty. In fact, the shear deformation of th~ 

c ore may be very l arge and ther efore must b e considered~ 

2.2 DEFINITION OF THE PROBLEM AND BASIC ASSUMPTIONS 

The problem to ·be studied in this work is the static 

struct ural behaviour of sand1ich panels subjected to uni-direc-

tional bending . . The skins are in general made of different 
~ 

materials and their thicknesses are in general different and 

not necessarily small compared with the core thickness. 

The general assumptions used throughou t this thesis are 

thP fn l Jowing nnP~ -

1. The con~tituent matenlal~ o6 both ~kln~ and co ~e behav e ln 

a tin ea~ ela~tle manne~ when subjected to stresse s below 

certain value s (limit of proportionality). Hence the 

applied loads are such that these stresses are not exceeded 

anyHhere in the beam for this study. 

2. Ve6leetlon~ and ~lope~ a~e ~matl and so the second derivative 

of the deflection may be equalled t o the curvature, i.e& 

1 
p (X) = v" (x) ___ ...:..._;__._.._. --- - vII (X) 

{1 + [v' (x)] } 31 2 

where p{x) is the radius of curvature at the absc!sa 

X, V '(X} is the deflection at the same section a.nd primes 

st~nd for derivatives with respect to x. 
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That is, there is bending in only one direction. 

4~ · The co~e and the ~k~n~ a~e. not de.6o~med ~lgni6lcantly ~n 

t he.iJt '-> hoiLteJ.>t dJ..me.n~.>.-i.on'-> ( thicJrnesses) • This means that 

the geometry of the section is not affected due to axial 

s tres ses in the vertica l direction~ This is usually 

a ccepted since in beams the direct vertical stresses due to 

t ransverse loading are much smaller than the longitudinal 

axial stresses and the shear stresses caused by those 

loadings. under concen·trated loading this condition may 

not be satisfied in the locality of the loads but the _over­

all behaviour will not be affected appreciably. Zahn (2S) 

use of a _non-linear theory to find stresses in the neighbor-

hood of concentrated loads. 

5.. All materials in the section are homog e.neou-6. rr-hat is, the 

s tructural · properties are the same ·at every point in any one 
( 

direction. Anl~ot~ople materials a~e not banned. 

6. S h ea~ de6o~mation6 o6 ~he. 6~in~ a~e. neglected because o f 

. the very high span-to-depth ra~io and because of the high 

shear modulus of the generally used skin materials. This 

does not imply that shear stresses in the skins are neglected. 

7 . T he . cont~lbution o6 the co~e to the bending 6ti66ne.~6 o6 the 

~ e. ction i~ negligible because the Young•s modulus of the 

core is so s~al l compared to the skins' that the stresses 

required to cause strains compatible with those in the skins 
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are n e gligiblec This assumption implies that the problem of 

bending of a sandwiGh beam having a stiff core (or the problem 

of I-shaped or homogeneous rectangular beams) may not be 

regarded* as a limit particular case of s andwich construction 

by the analytical approaches presented in this study when the 

core material is made very stiff. Allen(l) suggests a device 

to consider cases whe r e core materials have significant bending 

stiffnes s resulting from high modulus of elasticity. 

8. The bonding of skins and core is perfect. Hence, no slip 

exists at any section in the skins-core interface. 

2 .3 BENDING STIFFNESS 

The bending stiffness of the section shown in Fig. 2 el is 

4-Lveu uy i::he .Lollowir1g 8 :\:pression, where :8 1 , ~.., 
..... .... 

moduli of elasticity of skins 1 and 2 and core respectively and 

the ot.her syrnbol.s are as defined in Fig., 2 .. 1. 

(EI } = (EI) d + (EI)f + (EI ) 
c 

(2 .. 1) 

where (EI) d = b(E1 t 1d 1 
2 + E2t2d22) (2 .,2.a ) 

(EI) f = (EI)fl + (EI) f2 (2 .2.b) 

(EI) fi 
b E.t. 3 i 1,2 = 12 = 

~ 1 
(2.2.c) 

bE tl 3 t2 3] 
(EI) c 

(d2 = ~[ (d - -) + - -) 
c 3 1 2 2 

In express_:_ons (2.2. a ) and (2.2.d), the terms d 1 and d 2 

* ':!'h -- case of a homogeneous r e ct anqular beam ho\-Jever can be 
obtained as a particular case o f ~~nd\·Jich panels by making the 
core thi ckness c indefinitely small. The depth of the team wi ll 
be t 1 + t 2 and b its width. 
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define the location of a Jte.6 e.fl.enc.e. le.ve.l (shown in Fig., 2 .1) 

definPd as the centroid of the elastically transformed sectione 

From e q uilibrium considerations of the ne·t force acting in the 

section it may be easily found that 

( 2" 3) 

If the neutral axis of the section were defined as the sur-

face such that the axial stresses due to bending (total minus 

net axial stress in cases with applied thrusts) vanish, d 1 and 

a 2 as given by formulas (2 .3) would define its location in the 

section with reference to the centroids of the skins~ This 

cfpf) nit · on of neutral axis is found in most papers dealing with 

the problem of dissimilar skins in sandwich panels (s ee 

Hart~ock(l 2 ) or Darvas(S) for instance). The actual meaning of 

the l evel defined by Equations (2.3) is just the location of 

the centroid of the transformed section and it. \'Jill be referred 

to as Refte.Jt0nc. e Levet. In view of the fact that the meaning 

of neutral axis as defined above will di~appear when the axial 

stresses in the core are neglected, it will not be used in this 

work .$ In these cases all points in the cor~ are assumed to have 

z~ro axial stresses and in some m~thods, such as those not 

incorporating the Navier-Bernouill principle, the possibility 

exists of h aving extra points with zero axial stress in the 

skins ox: even o f having no such points anyv..rhere in the coree . 
... 
Another definition of neutral axis will be given in the next 
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pages. 

The first term on the right hand side of Equation (2.1) 

is invariably dominant. In cases with thin or very thin skins 

the second term may be neglected. In fact, that is the way 

~hin and ve~y ~hin skins were defined in Chap er I. For c ases 

\"lith different skins the term {EI) f should be evaluated and 

compared with {EI ) d , the decision o f ' keeping it or neglecting 

it being made only after t h at comparison is made5 For cases 

with identical skins, Allen (l) proved that, when d/t > 5.77 

{where t = t 1 = t 2 ) , the second term, (EC ) f"' is less than 1% 

of (EI) d and so (EI ) f may be neglected for practical purposes~ 

Concerning the last term on the right hand side of 

eac~ particular case before deciding whether to neglect it or 

not. In practical sandwich members, hov-1ever, the modulus of 

elasticity is almost always much larger for the skins than for 

the core . Hence the term (EI ) c is negligible in almost every 

case . Al1en ( l ) found that, - for symmetric sections, this term 

re)resents less than 1% o f (EI)d when 

Ef t ( £ ) 2 
G E-- c c > 100 

c 

\' here t = t 1 = t 2 as before and Ef = E1 = E2 (symmetri c section ). 

The above condition may b e unsatisfied in particular cases and 

it would seem wise to keep that term in the general derivationse 

Ho\,7ever, this makes the analysis a little too cumbersome and it 



will not be considered here based on ~he fact that in this study* 

and in most practical cases tie dimensions of the section and 

particularly the properties of the materials make it negligible. 

Allen{l) makes some sugges ions to transform his solution us ' ng 

ordinary beam theory by keeping (E I)c in· he expression for (EI), 

but using a transformed value of the shear modulus of the core. 

His suggested solution is applicable ·here .. 

As a result of neglecting (EI)c (and hence the longi­

tudinal axial stresses in the core) throughout this thesis, the 

case of a sandwich beam with a very stiff core is not a limiting 

case of the theories developed~ It was thought to be important 

to reaffirm that I-beams or rectangular sandt·!i ch beams \vi th high 

nf 'R I T? mnst hP r1n~ t ·vs ecj in a different way. - -- ·--· c, :t .... 

After these considerations are accepted , Equations (2.1) 

and (2.3 ) become 

and 

(EI) = (E I) d + (EI) f 

t E + t 2E2 1 1 

2.4 SIGN CONVENTIONS 

( 2. 4 ) 

( 2. 5) 

The following sign convention will be used throughout 

th i s thesis: . 

The .horizontal displacements artd distances along the 

abscisas are pos~tive when measured to· the right while deflec-

tions and other vert'C?a!_?rdinates are positive when measured 

* See Section 2.2 for types of panels studiedo 

' • 
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down\~Jard 

External bending moments are positive when they produce 

tension in the bottom fibres o f the beam. Correspondingly, 

the y produce n e gative curvatu re. The externa l shear fo r c es · are 

positive when they produce a p ositive slope in the deflecte d 

beam (To tal External shear force will alwa ys equal the deriva­

tive of the externa l bending moment with no ch ange in sign) . 

No sign convention is used for applied forces . The ir directions 

are arbitrarily assumed. Answers resulting in negative values 

indicate that the opposite direction to that shown i s correct . 

It also fo llows that once the sign convention is stated 

1 

FIG. 2.2 

Sign Convention f or Shear 

. Stresses and Strains 

as above for the horizontal displace­

ments! axial str esses and strains 

are positive when tensile and nega­

tive when compressive. Shear stresses 

and strains will b e positive 

(arbi trarily) v1hen they act as shown 

in_ Fig. 2.2, whi ch would contr ibute 

to a positive slope v' (x ) . 

2 ~ 5 DISTRIBU::C' ION OF SHEAR STRESSES IN THE SECTION 

Fig. 2.3 shows the distribution of axial strains and 

stre~~es and shear stresses and strains on a section of a 

s and\·.ri ch beam. It will be observed that the axial strains in 

~he core are not neglected (Fig. 2.3~ a ) because they are 
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Axial Stresses Shear Stresse~ Shear Strains 

Axial and Shear Stresses 

and Strains 

n eces s ary to comply with the compat ibi lity of deformations in 

the section. Not withstanding this, the axia stresses in the 

core (Fig 2.3~b) are neglected because of the very low modulus 

of elasticity of the core . The dashed lines in Fig. (2 .3.b ) 

show i n an exaggerated way the effect thnt would be obtained 

if thos e s tresses had been considered. The continuous heavy 

line in ·Fig,re 2.3.c illustrates the distribution of shear 

s tres ses i n the s ection, where it may be observed that shear· 

stresses are no t neglected in the skins. The width, b, times 

the are a between the parabola AB and the straight line with the 



s ame e nds i s t he portion o f the s hear force ~ aken by the top 

s k in when bending about its ccntroid6 The s a me t hing is appli-

cab l e to the bottom s kin. Whe n the d e flection of e a ch sl'in is 

v(x), the total she ar fo rce a pplied to the s e ction may t hen be 

shown to be 

H t , (X) = bd "[ c (X) - ( E I) f v I I ' (X) 

where M' (x) is the shear force at the section x,Tc (x) is the s ear 

stress in the core (Fig. 2 . 3.c ) and the negative sign in the 

second te rm on the right h a nd side v1as introduced to comply 

with the sign conve ntion. 

But the shear stress in the·core, Tc(x), may be expr esse d 

Tc(x) = Gy(x) 

where G is the shear modulus of the core and y(x) is the shear 

strain . So 

H' {x) = bdGy (x) - ( EI) fve • • (x) {2 .. 6) 

The dashed lines in Fig. 2.3.c show the effect of 

including the axial stresses in the coree Finally, Fig. 2.3.d 

shows the shear strains in the section, and it may be observed 

that the shear strains in the skins (dotted lines) are much 

smaller than the ones in the core because of the much higher 

shear modulus of ths skins materials compared to the core 

material. The d a shed lines for shear strains in the core 

corresponds, as above, to the case in which axial stresses in 
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the core are included. 

These figu r es shovv- the hypo'.,hetical model to be studied in 

this work. The modulus of elasticity of the core is assumed to 

b e ze r o, therefore, stresses are neglec~ed but strains are 

perm' t ted. The shear modulus of the skins is taken as being 

i nfinitely large so that shear strains in the skins are neglected 

but shedr stresses are not. 

In problems concerning sections with thin skins, the 

second · term in Equation {2.6) vanishes and the expression 

M' {x) = bdGy (x) 

is valide In cases of very thin skins the &pproximation d ~ c 

would yield 

2. 6 COMPATIBILITY OF DEFOPJ-1ATIONS 

Once the properties of the constituent elements are defined 

and restricted to the specified linits, the deformed section at 

the abscisa x may be drawn as shown in Fig. 2.4, where every 

variable is shown in its positive direc~ion as defined by the 

sign convention in section 2o4. 

A small length of the b~am, d . , is shown in its original 

position and in its position after deformations and displacements 

have taken place~ If the deformed sect:on appears to have no 

curvature , it is only due to its very small length. This curva-

ture could be in the shown case £ositive or negative~ 

As its name implies, the reference level as defined by 

., 
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equations (2.5) was u sed to measure vertical deflections while 

the horizontal displacements of the sk~n s , u 1 (x) and u 2 (x), are 

giren by the movement in the horizontal direction of the cen-

troid s of the skins in the deformed section. The originally 

. vertical line ABCDEFG deformed to a pol genal having the linPS 

ABC and EFG perpendicular to the deformed reference l evel 

b_cause of the fact that shear deformations of the skins were 

neglected. The portion CDE is a straight line because the 

axial stresses - in the core were neglected and t he shear stresses 

and strains along the core are both c onstant (Section 2.5). A 

very important relationship may be obtai~ed from Figure 284 

relating the shear deformation of the core y( x), the horizontal 

,.... ...... """' .... __ ~,......: ;:J,.... 
'-"'-"'• .. ""'"-. ........... _,_...., c-o lr .; ,..... t"' 1 1 ( V \ ~ r. ,...q l , · ( V \ . 

~ .... -A~~ f -l ' .. ~ I - -'; - - - - - ~ ' -- , • 

and t he slope of the member, v' (x) . Simply with geometry it may. 

be shown that 

y(x) = ~[v '( x ) 
c 

u
1 

(x) - u
2 

(x) 
d---] 

· This expression will be used several time s in this work. 

2. 7 DEFINIT ION OF NEUTRZ\L AXIS 

( 2. 7) 

n fin·al word concerning Fig. 2. 4 is related to the defini-

tion . of neutral axis ~o be used in this work. In this study, 

th~ locatiori defined by the point H in Fig. 2.4, which means the 

intersection of the line CDE representing the deformed core and 

the originally vertic~l line drawn through the undisturbed 

section, is defined as the neutral axis of the section. This· 

· .. eerns to be· an a bi.trary definition and in fact it really is, 
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but for many practical cases (de pending upon the section pro-

pertie s and the applied loads), the point H lies within the 

core and represents t1e point of the core with no hor izontal 

d isplacements. This definition seems to be Q logical one and 

it is used by the authors using strain eneray methods base~ on 

d i splacements (see Hoff(l 2 ) or Allen(l) for instance). They 

i nvariable draw H withi n the core, which is (as will be proven 

later in this Section ) correct only for particular cases of 

loading, support and section properties. 

Darvas(S), Hartsock(l 2 ) and others define the neutral 

axis as the points with neither tensile nor compressive stresses~ 

By their assumption (also made in this ~tudy) , that axial stresses 

leads 

every point in the core is · on the neutral axis. Moreover, it i~ 

clear t hat for sandwich beams having cores so weak that they are 

incapable of transmitting r1uch shea_r force, the t\.vo skins \.vill 

act relatively independently and two extra points \vi th neither 

tensi le nor compressive s t resses could exist. All of these 

a uthors use as neutral axis what has been called in here the 

Reference Le 1e 1. 

By the use of elementary concepts of elasticity, the net 

s trains in the skins (axial strains at their centroids ) may b e 

found to be u
1

• (x ) and u
2

• (x), where primes stand for deriva­

tives with respect to x and u 1 (x) and u
2

(x) are the displace~ 

ments as.shown in Fig. 2.4~ These stiains are positive if 

t ensile and negative if compressive. 
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By equilibri urn considerat ions l;f the forces acting per ~· 

pendiculo.r to the section it may be sho\ rn that 

u
1

• (x) u '(x) 
+ 2 == d-1- ---cr;-- Pd 

(Ef) d 
(2.8.a) 

where P is the net axial force acting on the section and the 

other terms are as defined earlier in this workc 

If w
1

(x) and w
2

(x }· are defi1ed·as the displacements of 

the centroids of the skins minus the net displacement of the 

section due to the compressive action of end thrusts P, it 

= 0 (2.8.b) 

point in making this distinction since u. (x} = w. (x) (i -- 1,2) o 
~ ~ 

The use of disolacements 'i.\r . (x) as define d above is very common, 
J. 

where the portion of the axial stresses due to end thrusts does 

not affect the bending behaviour. From Equation (2.8) 

w
1 

(x) 
+ 

w
2 

( x ) 
c dl- = 

d2 
( 2.9.a) 

and u 1 (x ) u
2

{x ) Pd 
+ - c -

(EI) d 
X 

dl d2 

here the constant C will be shown to vanish only in c ases in 

·hich at least one section of the panel remains undeformed. 

This case occurs for beams with at least one built-in end, or 
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in problems concerning symmetric conditions of loading and 

support or in cases \vhere an infinitely stiff insert in the 

c ore does not a1lot,.v any relat.i ve movement of the skins at 

t he section where it is located. These considerations have 

been identified because every problem that has appeared in 

the r elated bibliography on t he sub j ect i s of the kind having 

C = 0. In t hose cases the sketchi n g o f Fig . 2. 4 i s simple. 

I n e f fect , the l i ne joi n ing the cent roid s of the s kins (BF ) 

c r o s s es the reference l e vel at its inte rsecti on wi t h the 

o r igin ally vertica l lin e [i f ui( x ) are replaced . by wi (x), of 

course ] • 

The diffe rence in u s ing u. (x ) or w. (x) in the deriva tions 
J_ J_ 

is equ ivalent t o the difference in considering either the total 

stresses or only bending stres~es in a beam-column problem . 

If w. {x) is used, the net stresses due to end thrusts have to 
J_ 

be added to the bending stresses E.w~{x) if the total stresses 
. J_ J_ 

are of interest. The only method in this work using the actual 

displacements u. (x) is Hoff's generalized solution. The s e notes 
J_ 

are worthwhile t o include in here because several of the r e fe­
; 

rences consulte d use misleading definitions of these stresses, 

especially when defining the neutral axis. 

According to the above considerations, the deformed 

section for those particular cases in which C = 0 may be easily 

sketched. Figure 2.5 includes four very representative possi-

bili ties. Figure. 2. 5 . a sho\¥ the hypothetical limiting case 

where the core material is so weak that it cannot transmit 



(a ) 

Limiting Case 

(M.aximum shear 

defor mation in 

the co:ce) 

{b) 

NeA~ at Infinity 

(Positive shear 

in the core) 

FIG. 2 e 5 
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(c) (ct) 

Plane :Sebtidn ·{Negative 

Remaining Plane Shear in 

(No shear in the core) 

the core) 

Possible Deformed Sections 

she~rin~ forces and so only the skins act structurally to support 

the . loads. Figure 2.5~b shows a case in which ~he location of 

the neutral a~is is at an infinite distance from the section. 

Finally, Figures 2.5c and 2.5d show two interesting possibilities. · 

At a particular section 6f the member it could happen that the 

ef-fect .~f the applied loads would produce deformed sections as 
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h rnl . t t . ,.. ' d ' b A 1 'i •. a~ ( l ) sa 1' d sown . ~~ese a r e ~n .e res 1ng r1n 1ng2 'ecause J~•· 

that t h e case shown in Figure 2.5.c would be a limiting case 

and it corresponds to a sand~;,-vich beam having a core material 

infinite ly stiff in shear It does not seem reasonable to 

app·y conclusions obtained from a model structure having an 

infi , ·te ly weak core material under axial stresses (his basic 

conditions of deformabili y of the c6re material are the same 

as the ones adopted in this work), to a core material infinitely 

stiff under shear stresses. At least it is very difficult to 

think of a material having a very small Young•s modulus and a 

very large shear moduluse These possibilities will be further 

analysed in Chapter VI. 

7\11 ......... ~~ ...... ,, ... ,......;"""_<""" ,...,k ..... ..q,.: .,.... -....:J _...,._ . .., .. ,... .. '\,... 
A .J. • '- ..&.. ....... ...._, J,. ..l ~. \,oL ._J ..llo- .........., J. .&. "'-' "'-" .J,.J ~'-.A. ...L... J. L '-" U. .t"'"'-~V ... 'JU.•j 

applicable only to the cases with c = 0,. For cases having non-

sywmetric loading and support conditions, no rigid inserts and 

no built-in ends (and it could be added in here, for statically 

indeterminate structures and for overhangs, with or without 

loads ), the analysis of limiting cases for shear defo rmations 

of the core and the location of the neutral axis is too compli-

cated and will be omitted in here. The methods of analysis to 

be derived in section 4.4 and Ch~pter V and VII to provide the 

exa.et J::, olut),_o n, do not require the use o f the· concept of neutral 

axis . 



CHAPTER III 

EQUIVALENT I-BEAM 

3.1 INTRODUCTION 

As was mentioned earlier , sandwich construc~ion was 

initially used almost exclusively for aeronautical purposes and 

most studies were made for sandwich panels with thin or very 

thin skins. In these cases the solutions obtained by assuming 

that t he Navier-Bernoulli p rinciple is valid produces the 

exact ~olution*. For Sandwich s ections having thick skins, this 

assumption is not valid and the following derivations must be 

regarded as approximate. They are included mainly for the 

purpose of comparisons. 

Once . the Navier-Bernoulli Principle is assumed to be 

applicable, the concept of elastic transformation of the sections 

is invariably applied by every author. In order to keep con-

sisten cy in the presentation of all formulae in this work, the 

components of the sandwich section will not be transformed to 

a uniform material but the section will be kept as it was origi-

nally. It is however very easy to prove that the mathematical 

treatment of the section as it will be done in here is perfectly 

* The meaning of the term exact ~oiution used throughout this 
work was defined in a footnote in Section 1.2. 
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equivalent to the transformed s_ction concept~ 

The assumption of applicability of the Navier-Bernouilli 

pr'nc iple will imply basic distributions of axial stresses and 

strains in the section which differs from the ones shown in 

Figures 2 o3.a and b. The polygonal ACDEG will now become a 

straight line and the same thing may be said with respect to 

Figure 2.4, in which case that line will be perpendicular to 

the reference level if the shear deformation of the core is 

neglected (as shown in Figure 2.5~c). 

The assumption mentioned above st~ting that plane sections 

remai n plane after b ending deformations* may be easily under -

stood to be applicable for cases having thin or very thin skins. 

T'Y\ f!::tro+-
-~ . ----- I' 

and hence the lines AC and EG in Figure 2~3.a can be rotated 

about B and F respectively with no change in stress while the 

line CE may always be rotated uithout introducing forces either 

because of the assumption E =0. It will be shown later on that c. 

the exaet ~olution coincides with the ones assuming the Nav ier-

Bernouilli principle to be applicable when (EI)
6 

+ 0 in cases 

with C=O (s ee Section 2.7) and when the shear defor ations of 

the core are considered {See Section 3. 3) ~ 

* tmen shear deformations are considered, these can not co1~form 
to the Navier-Bernouilli principle as originally stated but 
only in cases with very thin skins~ 
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3., 2 A HErrHOD IN \·JHTCH cHEAR DEFOHYu-\.TJONS OF THE CORE ARE 
---·- NE-GLECTJ~D 

The basic as s umption is that plane sections perpendi cular 

to the Reference level remain both, pla ne and p e r pendicular to 

the Reference Level after defoimation~ The assumption that 

plane sections rema in place (Navier-Bernouilli principle ) permits 

the use of the Equivalent I-beam approacl while the condition 

o f no variation of the angle of the section with the Reference 

Level is equivalent to saying that shear deformations o f the 

core are negligible. 

The basic differential equation in this method is the very 

well kno\•,rn one , 

v , ( X. ) = M ( "~ ) 
-t E.1 r ( 3 .. 1 ) 

where v(x ) is the vertical deflection of the section loca·ed at 

the abscisa x, M(x } is the external bending moment at that 

s ection, (E1 ) is the total bending stiffness as defined in 

Equations (2o4 ) and the primes denote derivatives with respect 

to x. The negative sign was incorporated to comply with the 

sign conventions adopted throughout this work and specified in 

Section 2 . 4 .. 

The two boundary conditions necessary for the solution o f 

Equation (3 .1) are related with the deflections at two sections 

or \.Yith the slope at one sec·tion and the deflection at the same 

or other sectioris of the beam. 



34 

Except for the fact th~t Darvas{S) used transformed 

sections and neglected (EI) 6 in his derivations, this is the 

method he recommended .. Leabu(l7 ) also used formulas as. obtained 

from Equation (3.1) when studying the problem of thermal warp 

for sandwich panels with concrete skins (in which case the skins 

were necessarily thick). Pfeifer and Hanson( 20) used this 

method to evaluate minimum 1alues of deflection vs .. load. Maxi-

mum values were obtained from the assumption that the skins act 

i ndependently. Their conclusion is that test results fall some-

where between these two limiting curves, they being closer to 

the first curve in panels with shear-connectors and to the second 

one in sandwich rneniliers having very weak cores and no shear 

c onnectors . 

3.3 EQUIVALENT I-BEAM FOill4ULAE WITH SHEAR DEFORMATION NEGLECTED 

Because differential equation (3.1) coincides with the 

conunonly used formula for bending of homogeneous beams, formulas 

for some particular cases of loading may be obtained from 

elementary beam theory. For purposes of compari~ons, -he 

following loading cases a r e included for a simply supported beam 

of span L. 

A. Uniformly distributed load q 

V ( X) :: - q 
24(EI) 

3 2 3 ( L --Z L X + X ) X . 1 v(L/2) = _5_ qL
4 

384 Tm 
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B. · Concentrated load W at a distance a from the left support 

{t} b 
[2L ( L-x ) - b2 - ( L-x} 2Jx O< x<a 6TT1lL.-

\F( x ) = where a+b = L 
{JJ a 2 z a<x.<b 6-rrrrr [2Lb -·b - - (L -x } ] {L-x) 

c. Concentrat ed load W at mid-sp a n 

O<x<L/2 v(L/2) 

D. Moment M(O } applied at the left support. 

M(O ) Z 2 
·v{ x } = z-r~ ( L -3Lx+ x }x 

"" \ - •· I ._ 

E~ Eccentric end thrusts P with eccentr ici ty e (equal at both 

ends ) me asured from the Referen c e Level (Secondary moments 

cons idere d ) e 

p 
v( x. ) 

C.0-6 B ( f -'X ) 
= e [ -------.--

C.O).) S z 
- 1] v(L/2) = e[hec B~ - 1 ] with s2 

2 = lTI-} 

F~ Critical axial load. 

p 
c 
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3 4 A HErrHOD IN HHICH SHEAR DEFORMA'riONs· OF THE CORE ARE -----·--·- - . 

CONSIDERED 

Most of the practical examp es of s~ndwich construction 

involve the use of core materials having a very low shear . 

modulus, which means that the shear component of the deflection 

should not be discarded. The method presented in this section 

accounts for shear deformations. 

In addition to the general assumptions given in 

Sect ion 2.2, this method requires the application of the 

Navier-Bernouilli principle to th~ bending deformations of the 

section~ The b asi c differential equation describing the 

deflected shape is 

V :: ( X j 
M ( Y i M;; ( Y) rrn- .+ ·A-a- (j. 2) 

whi ch'may also be written as 

V ( X. ) ;: V l (X ) + V z ( X) ( 3 .. 2.a) 
I 

11 M{x ) 
V] ( X) :::: 

TITT (3.2.b) 

, 
M' ( x ) 

V z {X} ;: 

AG (3. 2.c ) 

~here v1 (x ) is the deflection due to bending and v2 (x ) is the 

deflection caused by the shear forces M'( x ) . G i s t h e shear 

,modulus of the c ore material and A is a factor q u ite similar 
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t o t he one used in o r dinary be am theory. The product AG is 

usua lly referred to as the shear stiffness of the sandwich 

be a.m. 

The differential equations above may be easily solved 

once M{x} a nd M' {x) are known. The two arbitrary constants 

may be found from the boundary conditions which define the 

deflections at tw0 po:.nts or the deflection a.nd the slope at 

two points (noi: necessarily different) • When considering 

slopes it must be borne in mind that the slope v' ( x ) does not 

h ave ·to b e conti uous in some particular cases of loading e In 

fact, the application of a concentrated load producing a sudden 

change in the shenr force M' (x}, will also produce [See 

a ~;nrlc'lr--n chanqP- in the slope v ~ ( x j (The 

beam then has infinite curvature at the point of application 

of a concentrated load) • 

As happens for homogeneous beams, the consideration of 

shear deforma tions i nvolves an inconsistency. As a matter of 

f a ct, the distribution of shear stresses at the section, 

obtained from the axial stresses found assuming the Navier­

Bernouilli principle, produces deformations in the section 

which do not conform to the above mentioned principle. The 

e f fects of this inconsistency are genera lly disregarded in 

homogeneous beam theory . 

Several different values for A in Equation (3.2ec) 

are found in ~he related bibliography. OtDell and Graham{lg) 
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2 use A = Jbe, which i- equivalent to saying that the skins do 

not take any ~hear, the shear stresses are zero at the top 

and bottom fibres of the core and the distribution of she ar 

stresses along the cor e is p~rabolic~ These three implications 

are absu~,..d .. 

In the formu las for defle ctions given by Darv s( 6 ) , 

he used A = be even though in his fo rmulas for shear stresses 

in the core, the total shear force M'( x) was divided by ~he 

area bd, which is in contradiction with the value of A he used. 

Most o f the authors consulted se "A = bd in their 

derivationsQ Hughes and Wajda(l 4 ) give final formulae for 

d~flection s for two particular c a ses o f loading by the use of 

thr e differen t methods of analysis. ~hose formulae a ppear 

with several errors \vhich ill be commented on in detail in 

Section 852. The value they give for A seems to be d instea d 

of bd, bu t checks made on their gr~phs showed t h at t he reason 

fo r this is that they took b: 1" in their par ticular problems , _ 

even though they rnenticrie~ that the width b to b e used was -

2 inche so 

M c (18) • (1 6) s 1 k ' d k k (2 3) L·~c avour , Kuenz~ , .mo ens .~ an Kro s ~y 

and Darvas{S) also used A:bd. The work in references (23) 

and (5) deserves special comment. In the setting up of the ir 

equations, they state that , for .more generality, - they negle cted 

neither the axial stresses in the core nor the loca l bending 

stiffness of the facings. Then, when s tudying the effect of 

't 
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shear deformations, they took the total shear force at the 

section as bd times the constant shear stress in the core 9 This 

is in contradiction with the t .-v.ro considerations above (See 

Figure 2.3). 

Several authors use a strain energy approach which is 

* attributed tb H~~e March According to their description, it 

is based in assumptions of behaviour which app ly only to sand 

wich meiTI.bers having thin and very thin skins depending upon 

the value of A u s ed. The final formulae coincide with the ones 

b eing dealt with in this section a~d it is therefore appropriate 

to include comments on the way some authors use them. Even 

hough the derivations of those formulae did not rely on the 

final fu:Litrul.cte ct.L."e, as said. above , exactlv 

the same and the implications of their results may be included 

here. , 

Doherthy et al (?) use March ' s approach and they give 

final formul as coinciding with formulae (3 2), but they take 

( E1) 
bE;. 3 3 

= u (h -c. ) 
~ 

• The p pers by March, which are quoted very often in related 
articles are: Harch, rr D W. 1 "Effects of Shear Deformation in the 
Core of a Flat Rectangular Sandwich Panel '', Forest Products Labora- . 
tory Report No.l58 3, U.S. Dept. of Agriculture, Madison, Wisconsini 
1948 and ''F lexural Rigidity of a Rectangular Strip of Sandwich 
Construction'•, Forest Products Lab. Report ro.l5d5, U.S o Dept. of 
~griculture, Madison, Wis consin, 1944. Unfortunately, neither of 
these ·were . avail~b le for · this work. 
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where h = ~ + t 1 + t
2 

is the total thickness of the section and 

E
6 

represents the modulus of elasticity of the sk insG They u se 

trans f o rmed areas in cases with non-identical skins . · Th~ first 

of these expressions coincides with the s tiffness found in 

Section 2~3 for the case of a section 1ith identical skins , b ut . 

they say that this expression may be used ,fo r cases with dissimi-

lar sl'"ins, in \vhich case E t. would be the Young • s modulus of the 
u 

transformed section~ They do not say what v alue of b should be 

taken in this case~ The express ion for . A above is not clear. 

F.'isher(lO) obtains de f lections by u sinq Cas tigliano's 

First Theorem as applied to a member with thin skins, =:-.nd the 

formu l ae he provides for three different load cases* coincide 

obtained from - l .. ,/2.,_., 
-- V\..4.. f'-• 

This value for A will be discussed later, bu t it may b e said 

here that .it coincides with the value to be · obtained in the 
I 

e xa ct ~olu~ion. His formulas roay b e said to be exact for cases 

with thin skins. He did not use the conditions shown in his 

Figure 1, where he shows shea and axial stresses which a re in-

compatible from the viewpoint of the equilibrium of stresses in 

the section. In fact, even though he neglected the axial 

stresses in the core, his distribution of shear stresses is 

p arabolic along the core (See Figtire 2.3~c ) , which seems to con-

tr~dict · the previous statement. Forturtately, as said before, he 

did not u se this ·inconsistency in h's derivations. For the 

~~veri f ication of the accuracy" of his · theory, he needed the 

* One of those formulas doe s not correspond to the loading case 
specified by Fisher as was pointed out earlier in this work. 
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moduli of e la~ticity of the skins, E6, and the shear modulu~ G, 

of the core. The first alue was obtained from the bending . 

tests of homogeneous samples as given by Doherthy et al(?) • . The 

shear modulus of the core was obtained from other tests cartied 

out by the s ame authors. These tests were performed on sandwich 

beams having five different combinations of skins. The value 

of the shear modu lus was obtained from the formulas studied by 

the other authors ~ho used different expressions than Fisher* 

for A and {EI ) . In synthesis , to verify his formula, Fisher 

used the values of G derived by applying other formulae to the 

results of sandwich beam tests,. 'I'he differences between experi-

mental and theoretical results he obtained (of the order of 1 0% 

attr i buted to the irrational way to determine G as described 

above •. 

Benjamin ( 3 ) used March's approach and his res u lts 

coinc ide with formula (3.2 ) with A = be whic h, as wi l l be shown 

in Section ~.6, is applicable orily for sandwich beams h aving 

very thin skins ,. 

In · Section 4.6 it will be proven tha t the exact ~olutlo n 

to the problem corresponding t o t h e basic assumptions in Chapter 

II~ and for cases with thin skins , coincides with equations (3 o2) 

* Tl ~val e Fisher finds for (EI } i s what has been cal led (EI)d 
in this thesis, while his expression for A i s bd2 / c. The 
values used by Doher thy et al were discussed earlier i n thi s 
section~~ 
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~~here 

( 3. 3) 

In problems involving sections with ~hick skins, the 

solutions given by Equations (3e2} are no longer exact but it 

will be proven in Section 3.6 tha t expression (3~3) provides 

the best approximation to the exact ~olutlon. The Forest 

d (24) . d f Pro ucts Labora·tory Vvood Handbook recommen s use o 

e xpression ( 3~3) and Alleri ( l) also arrived at this concl·sion. 

He derives this expression by studjing the shear deformation 

i n the core separately from the bending 0ituation where plane 

s ections are considered to remain plane. Exnression (363) will 

be derived by other me~oas_ late· on in this work. 

3 . 5 EQUIVALENT I-BEAJVI FORr-cULAE VJirrf SHEAR DEFORlf.tATION CONSIDERED 

Deflections may be found fo.- particular cases of loading 

vJhere shear deformations are considered by the use of Equation 

( 3 . 2 ) . Defl,ections for some common cases of loading in a simply 

supported beam of span L are included belor.·.r" For the sake of 

b revity, step by step derivations are not included. 

A. Uniformly distributed load q. 

V {X) 

v {L/ 2) 

q 3 2 3 q ; 24Tt1T ( L - 2 L . X + X ) X + 2 AG- ( L -X ) X 

4 
= 5 q t + 

384 ITT) 
2 

q L 
BAG (3.4) 



B. Concentrated loa d W at a distan ce a from t he left s pport 

Wb [ 2L(L - x) b2 2 Wb O<x<a 6"tr:rrc - - {1. - x) ]x + LAG- X 

v ( x.} ::: 

~ - a. 2 2 Wa a<x<b rrrz-rT [2Lb - b - {L-x) j (L .. x } + LAG(L-x} 

where a + b = L 

c. Concentrated Load W at mid-sp~n. 

v( x ) (tJ 
( 3 L 2 2 w · o<x<L/2 = :nnn - 4x } x -4- '"fAG 

, ... , :; r ... • f 

v ( L/2) V/.L. + L. ( 3. 5 ) ~ 

48 (E1) :n:rr 

D~ Moment M(O} applie d at ·h e l ef t e nd. 

V ( X I = M(O ) (L' 2 _ 3Lx. + v2) v 
. '~ rrmT ........ 

'i'f!e above E.xpr£.:si n would coin c i d e with the one found 

when . the shear deformation of the core was .neglected. Th~ 

reason for this is that, if shear is constant in Equation (3.2) 

for all values O<x<L, no shear component of deflection 

appears {The derivative of shear vanishes) • 

' E. Eccentric end thrusts P with ecce ntricity e (equal at 
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both ends) , measured from the Re ference Level (Secondar y 

moments considered) • 

eoh . s(i - x) 
V (X) = e[ (3[ - .1 j 

C.0-6 z 

v ( L/ Z) = e [ -& .ec. SL - 1 ] 2 

with B2 p 
= ( E I ) ( 1 -PI AG) 

Fo Critical load Pc. 

(3~6) 

3~6 CONCLUSIONS 

It '"ill be proven la.ter on in this work that the 

exac.t ~otut~on coincides with the one obtained from the method 

described in Secti6n 3c4 for cases in which the local bending 

stiffness of the skins is negligible and expression (3e3) is 

used for A. Methods which apply the Navier-Bernouilli principle 

are the most popular for the structural analysis of sandwich 

panel se Therefore, this chapter consists of a generalization 

of these methods to account for the effect of thick skin~. 

All of ,the . methods presented in this chapter have some arbitrary 

~ssumptions of ·behav'our such as applicability of the Navier-
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Bernouilli principle. Some of "':hem (w·hen shear deformation .vas 

considered) did not take into account an inconsi~tency in the 

~1ay the shear stresses were ac..c.ommoda.ted in the secJcion .. 

MIV-SPAN VEFLECTION 
CASE STUVY -

Mid-Span Loq.d U.V.L .. 
"'-· 

No .o hea.ft.. de.fioJtmat-i.on .J8Z2 .1457 

ExCJ..c. .t Solution ·• 3 56 1 .3006 s:: ·---------
0 

bd 2/c. ·--< A = .3839 .3475 
~ 

E ""!::} 
A 2 ( EI) t\ 0 e 4 52 1. 0 4 1..0 1 l~ <::.) = bd I c. ::: 

0 l:;! f- -
.. -Q <::J 

<.:,) "\j A 
~ •-.( 

= bd • 51 0 0 .4736 
..q 

~ ~ A = be. .7150 ~6876 ·t:: 0 
C:) u 

-s: 
A 2bc./3 • 9 8 1 1 .9654 C/) = 

TABLE 3*1 

Mid-Span Deflections for Two Cases of Load 

Tab l e . 3 . 1 presertts a comparison of the deflections at mid-span 

that would be obtained by using these methods in the case of a 

simply s upported sandwich beam \·?i th thick dissimilar skins s ·ub-

jected to a mid-span concentrated load in one case and to a 

uniformly distributed load in the other*9 The first line in 

* The particular cases of loading and dimensio ns studied will b e 
used as the basis for most comparisons in tlis thesis. It con­
sis t s of a simply supported sandwich beam spanning 8 fte and 
having a section with width ·b = 1 6 " , c. = 1'1

, :t 1 = 1/ 2", t
2 
~ 3 / 4" , E 

1 
= 

2.2 5xJ 06p~i, E 2 =1 . 75x1 0 6p~i and G=600p~i, correspo ding to a 
panel with unreinforced mortar skins and expa nded polystyrene 
core material. The values for the applied loading in this 
example are: Uniformly distributed loading q=53.33plf, corres­
pondin g to a wind pressure of 40 psf. Mid-span concentrated load 
W=2 12~13 lb. such that it produces the same mid-span momen~ as 
the uniform wind pressure of 40 psf~ 

,, 



Table 3., 1. was calcula .... ed by using· the Equivalent I-beam method· 

with no allowance made for shear deformations of the core. The 

second line was evaluated with the use of the exact ~otution to 

b . derived in Chapter VII The remaining values were obtain~d 

by the use of the Equivalent I-beam ethod which considers shear 

deform tions with different values of Ac The effect of neglec-

ting the local bending sticfness of the skins is also includedo. 

Figure 3~1 shows a plot of mid-span deflection versus 

an eccentrically applied ~nd thrust P* for the same section 

studied above and including the same cases studied in Table 3.lc 

Also included is an extra case which illustrates the effect of 

neglecting secondary bending moments. The panel is assumed to 

be originally perf~ctly Ilct~ . 

Table 3.1 and Figure 3.1 both show that, for the lo~ding 

cases studied, all formulas which consider shear deformations of 

·the core over-estimate deflections. The effect is the largest 

when A· = } be and the smallest when A = bd 2 !c~ The formula 
I 

which neglec~s the shear deformation of the core under-estimates 

the deflections. It can also be seen from Figure 3.1 that for 

small values. of end thrusts (v7hen . both, shear forces and secon-

dary moments are small) all formulas give· a very good approxima-

.tioh of the deflection. 

*The eccentricity, e, of the end thrust P in this particular case 
w s taken as ~=d 1 , whi~h . is equivalent to saying that the end 
thrusts are appl1ed at the centroid of skin 1 at both ends of the 
si_:nply supported beam .. 



.9 

, '0 

,7 

.6 

CASES STUD IED: 

(1) Equiv. !-beam method, shear 
deformation considered 

2 la) A = 3- be. 

lb) A = be 

lc) A :: bd 

A 2 ( EI ) n 0 ld ) = bd / c. , = 

le ) A bd 2! c. 

( 2 ) E x a c. .t S o lu tJ.. o n. 

(3 ) Equiv . !-beam method, shear · 
deformations neglected 

( 4) Equiv. I-beam method, shear 
~ .s deformations and secondary 

stresses both neglected 
c 
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tiJ 
I 

'U . 4 
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~ 

+J 
n5 

c .3 
0 e=d 

··~ ~ 
u 
QJ · 
rl 
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G =-6 00 psi 
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I 
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~c ~l. 
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11 

CJ .2 
Q 1--- b;:16'1 
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,...{ 
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2 3 4 

Load (kips) 

Pig re 3.1 

5 6 

Effect of Scv~ral Assumptions · fo r a Beam- Column Load 
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CHAPTER IV 

APPLICATION OF ORDINARY BEAH THEORY 

4.1 INTRODUCTION 

In Chapters II and III it was pointed out that the 

common use of core materials having a lO'Vl shear modulus makes 

it necessary to take into account the shear deformation of the 

core in practical sandv1ich beams. It v1as also mentioned that 

the bending stiffness of the skins with respect to their own 

centroids should not be neglected for sandwich beaTtls ~1i th thick 

may be seen from Equation (3.2.c) that, when concentrated loads 

act on the beam, a sudden change in the shear deformation exists 

at the points of application of these loads. This in turn 

leads to the conclusion that the curvatures at hese sections 

become infinite.. 'I1his is understandable for sand\vich members 

having skins which are so thin that their local bending stiff-

ness is not capable of resisting this bending. This situation 

does not apply to sa.ndvlich beams hav · ng thick skins because they 

are unable to have infinite curvature at any point. 

The inconsistency of using the Navier-Bernouilli prin-

ciple when studying the compatibility of shear deformations of 

the core ma,es the results only approximate. In order to obtain 

the exact ~olution, the Navier-Bernouil.i principle will not be 
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used in a1y of the remaining methods to be studied in this work. 

Two approaches which are based entirely on the applica-

t . f d' b th t d. ~ ·~ r Allen's methou~ ( l) lOn 0 Or 1nary earn eo~ 1 are S .U 18~ ~e eo . 

is not dev~._J.oped step by step b.:tt just commented on 

Hartsock's method(l 2 ) is redeve oped co as to present a more 

general solution, b ut co~nents about the way that he solved the 

problem are also includedo Both notations were changed from 

their original form -'co have a more compact t-erminology in this 

thesis .. 

4.2 ALLEN~S APPLICl\TION OF ORDINARY BEAM rrHEORY 
·--

The solution by Allen ( l) is based on the follo,•7ing 

t1ypor .hPse.s of structural. b ehaviour: ct S cUlLlW j_ (;h , .. - --· - -~ .t_,_ 
0 •• J..J~ClJll w ..L. l-.1..1. 

a total load q [ q ( x. }] undergoes two distinct sets ·of displacements, 

w7 [v 1 (x)] and w2 [v 2 {x)]. The first represents .the o~dinary 
r 

bending deflection associated with a shear force o 1 [M 1 ( x. ) ] which 

is shared between the faces [skins] and the core. The second 
r 

represents the shear deflection of the core due to Q7 [M
7 

(x) ]. 

The faces [skins] participate i. this extra deflection by 

bending about their own axes . In doing so, they support an 

extra shear force Q2 [ Mz(x}] .. The ·sum o f Q 1 [Ml (x}] and o.
2

[ Mz ( x ) ] 

is the shear force applied to the beam." 

The portions o f the applied loads related t o t he corres-

pending de£lections are given by Allen as: 
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rf J.f t { y } dM l ( X) v.l• .., , ,._ 

1 ( X } 
. J M] { x ) M 1 ( X) ( EI} v 111(x ) (4ol. a) ( - - - --crx--~· ; 

:::: ---ax.·--' ::: -

dM2 (x) dM (x.J 
q "~x ) M z ( x} 

2 M n { >~) { E I j 
6 

V rt {X) ( 4 "1 b) = dx = ----ax_-., -
L ' L 2 ' 

• 2. a) 

M] {x } + M2 ( x ) = M' (x. ) ( 4 .. 2 . b ) 

( 4.2.,c ) 

v 1 ( x ) + v 2 ( x ) = v ( x ) ( 4 . 2 .. d) 
.: 

where q{ X} , M, {X) and v ( X) are a s define d before, .. M (X ) is the 

tota l applied ben~ing moment a nd the v a lue s with sub-indexes 1 

and 2 are a ssociated with v 1 ( x) a~d v 2 (x ) . 

From the relationships given above and after some 

algeb r aicma nipula tions Allen arrives at t he following d i f fe ren-

t i al equat i ons 

I I I 

V T (X) = 

M J ( X) 

2 
et ( EI}n 

2 
a M' ( x } ( 4 .. 3 .. a ) 

(4 .. 3.b) 

{4. 3 . c) 
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whe r e 

2 A = bd /c. ( 3 .. 3) 

and 
d v = rx 

Equations (4o3) are very easy to solve and the next 

step is to find the six arbitrar y constants involved in the 

solution of those equations (two for Mi(x), three for v 7 (x} and 

one for v 2 (x). Then, the vertica l deflection v(x) may be found 

from equation (4n2&d) 0 

4.3 COMMENmS ON BOUNDAR : CONDITIONS FOR ALLEN'S APPLICATION OF 

ORD_NARY BEAM. THEORY 

The difficulty with the me thod as derived by Allen is 

in finding six suitable boundary conditions to evaluate the 

arbitrary constants for Equations (4.3). That difficulty arises 

because not enough is kno~n about the values of those functioris 

at the boundaries. For the problems he solves (uniformly distri-

buted load a~d concentrated forces at the two quartar points and 

at mid-span), four boundary conditions may be ~ound in terms of 

the total deflection v(x} and the values of the moment M(x) and 

shear M' (x) at the boundaries (See Section 4~5 ) . In fact, for 

the case consisting of a simply supported beam of span L, the se 

can be easily obtained as follort.Ts .. 
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1. v (O} - 0 (Ar bitrary, i mplie s choice of origin of coordina te 

axis at the left end of b e am ) • 

2.. v t {LIZ) = 0 (Symmetry, if ""he ·slope is continuous) • 

3. v" ( 0) = 0 (The skins deflect the same v..-1ay the whole member 

does, so that t e moment acting on the skins is given by 

- (EI) 6 v ''(x) andr unless end moments are applied to the skins, 

its . v a.ue at the boundary 0 must vanish. See f urther comments 

in Section 4 o S) • 

4. v ' ''(L/2) = 
w 

(W is the mid-span concentrated loado 
nr:~ 

A'- ·L /2, b ecause of symmetr.:ic loading and support· conditions, 

the . core ~s not detorme d 1n shear and so the whole shear 

force must be taken by the skins. Then condition {4 ) is 

clear becaus e thf= shear force taken by the skins is given 

by - ( EI) b V I f f '( X. ) • In the cases with uniformly d istribut:ed 

load and four point loading, the right hand side of condition 
I 

{4 ) is zero). 

If different ~ariables had been used, these fou r boun-

d ary . conditions ~ould suf£ice t6 the compleie solution of the 

problem. That is no the c ase with Allen's solution be~ause six 

bouridary conditions are required in his methode .The boundary 

conditions as stated ~y Allen* are the following: 

; ~.0+ a. ~~...1·ol1 a d ~· t t b th h d v~- en cooraJ.na -e sys · em are o c ange ~ 
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The th r ee conditions required for v 1 (x) are: 

( 1 ) ' 
1 

( 0 } = 0 (Arbitrary ) 

( 2) v f ( L/2) = 0 ( Symmetry) 

(3) vf ' '{L/2) = 0 (Symmetry) 

where the \vords within parentheses are direct.ly quoted from Allen. 

Condition ( 1.) defines the arbitrary choice of the origin of the 

c oordinates Condition (2} is generally a r cepted but should be 

·p roved because of the following arguments: The symmetry of 

loading and support conditions coupled with the fact that the 

slope of the beam v '{ x) must be a contin ous function lea ds to 

the condition v' (L/2) = 0 mentioned earlier in this Sectione 

The same thing may not be said so easily about v; (L/ 2) because, 

al t.hough the symmetry of the corresponding load q 
1 

( x) may be 

r .easonably assumed, its continuit-Y should be proven.. Condi t.ion 

(3) is less evident If the symmetry of q 1 (x) were accepted, 

the continuity of v; '' {x} is even less evident than the continuity 

of v](x}, because it is related to shear forces while v] (x } is 

related to slopes. 

The condition Allen gives for v
2

(x) is 

(Arbitrary) 

~ich is dictated by the coordinate system. 

Concerning the two required conditions for M; (x), 
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noth i n g i s known about the boundary _values of this function . or 

of its derivativ~s. Therefor e, other functions are required to 

find them. Condi tion (5) is sta ted as 

{5) M(L/2) - - (E1} vl(L/2·) ~ {ET)fi v;f(L/2j 

where M { L /2 )_ is knov.rn in the cases of loading solved by Allen~ 

The sixth condition could have boen found from the fact 

that no bending moments were applied at the supportsa It would 

have taken the form 

M(O) =- ( EI }v](O) - (EI}n v2(0) :: 0. 

Hotvever, Allen did not solve the problem this way 

'1-.-- --.. ... -..- &~""" \.....--,.._ 't-~ ~,Ju. ... ..:S..: ,.......:1 1-.. ..:1 ,... e• -....~-..L....,. .:. ..-. .ce. ... ., __ ').-..,_~ r'-. •v.: .A-l-. ,_ ...... 
._,.._...._.._.._...._., . .__ '-..1.4\- .o...~-.;;.~LH ..LL v'-\.4."-4..L"-\..A J..l.<..oi.U .:>.JLtUL.".;.'-~.A...'- t,J'<I-...;.LJ.J.U..1.4'='..::> \"Y.J-1-.LJ. .L.L'-J 

load. For the inne span he could find only five constants with 

the boundary conditions shown above . He then solves the problem 

for the overhang where six additional constants must be found , 

but·he could find only four boundary conditions as follows: 

V - v - v" - v" - 0 1 - 2 .. 1 -· 2 -

a the free · end of the overhang. The first of these conditions 

is arbitrary because the coordinate system for the overhang is 

located at the free end. The second one is a result of the 

first one and the two last conditions '' • • ~arise because M
7 

and 

M2 are assumed to vanish separately at the free end." 

[I t is interesting to remark at this point that if a 

problem is to be solved with no overhang, only one condition is 
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v -ill necessary (there o:,..rere five bef ~re) and any linear comb-1.-na-

tion of those t1o last conditions would produce the right condi-

tionb The vanishing of both v~ and v~ independently at the end 

could not be used any longer because seven conditions would ·be 

ob ained while only six were required] • 

The three conditions still missing (one for the loaded 

span and t~o for the overhangs) are obtained from the continuity 

o f the functions v;, v2 and v] at the supportp The continuity of 

v2, v;•' and vfv p rovides conditions which are linearly depon 

dent upon previous conditions acco~ding to Allen. 

To b e able 1:o compare these comments '-1i th Allen's 

original solution, Table 4cl contains the corresponding notations, 

DESCTIIP'l' ION ALLEN 1 S THIS THESIS 

Deflections 

Shepr Forces M]{x}, M2 lx), M' ( x} 

Stiffnesses ( EI) , ( E I) 
0 

Argument-. a. . 

'rABLE 4 .1 

Comparison with Allen's Notation 
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In addition, compar:ison of the formulas in this \vork 

with Allen's must take in~o account that the origins of co-

ordinates are different . 

An interesting fac_ ab ut Allenis ~elution is that it 

is applicable orly to sections with thick qkins. If the 

approximation (ET)n = 0 is made i his equations, no u seable 

resu l ts are obtained from them~ This is likely the reason 

he provided separate solutions for cases with thin and very 

thin skins. Other methods studied in this thesis will be 

appl i cable to s andwich sections '\)li t h any ~.>ize of skins. 

Formulae for the particular cases of loads studied 

for other methods are not included because it seems very 

choosee This _situation arises because he gives no criteria 

for the evaluation of these. The results obtained by him 

for t he cases of uniformly distributed load q and mid-span 

concentrated load W appear in his book and are not included 

here. Checks made on these show· that ~hey coincide with the 

exaQt ~olution to be presented in Section 4 . 5 and Chapters V 

and TII. However, as Allen warns, his method can not be used 

for cases with non-syw~etric loading and support conditio s 

or without rigid inserts in the core. 

4.,4 GENER.l\.LIZATION OF HAJ. 'l'SOCK 'S SOLUTION 

llartsock(l 2 ) dereloped a me~hod to analy~e the struc-

tural 'beh aviour of.·sandVTich structures based .~n the state of 



57 

str esse s at the d e forme d section. These stresses were found 

as fun c tions of the bending moments acting o n the skins and 

the b~nding mome nt resulting from the product o f the net 

axial force in the skins multiplied by the distance between 

their centr oids. These two moments , M
6

fx } and Md(x) 

respectively, add up to the total applied moment M(x) so that 

(4.5) 

where M(x) is the total e xterna l bending moment at the section 

i and Md{x) and. M6(x) are as defined above. 

Otice the moments M
6

(x) and Md(x) are expressed as 

functions of the curvature v"(x) produced by them, a differen-

tial equation relating M(x) and v"(.x) results. The relation-

ship of M6(x) with the curvature v''(x) is easy to find because 

the centroids of the skins deflect the same v;ay as the panel 

does due to the assumption that the core is not deformable 

in its shortest dimension {Assumption 4 in Section 2.2) and 

that shear deformations in the skins are neglected {Assumption 

6 in Section 2.2). Thus the realtionship 

M
6

{x) = - (EI)
6 

v"(x) (4.6) 

may be written at once. (EI} 6 is the local bending stiffness 

of the skins as defined by Expression {2.2~b), u''{x) is the 

curvature at the abscisa x., and the negative sign was intro-
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duced t:o com~. ly with the sign con~~entioi1 followed throughout 

this work 

Concerning the relationship be ~:"1een ·the momen·- Md ( x ) 

and the curvature v u(x) , it is not so simple to find., First, 

by definition 

(4 .. 7) 

where d is the distance between the centroids of the skins and 

F{x) is the axial force acting on one of the skins. The net 

c ompression due to any end thrust P is not included. If the 

c ross section, Young 1 s mo ulus and net axial s~Lain of the 

skin i are bz . , t. and w1' (x} respectively, the expression for 
-<... -<... 

the net axial force F(x) in each skin is given by 

F(x) = - b:t 1E1w; (x} = + bt2E2wz{x ) (4 .8 ) 

where the signs were introd ced because positive values of 

M(x) require positive 1alues of w~(x), 'hich is tension in the 

bottom skin and consequently negative values of w]{x) are 

required o 

The problem is now reduced to express w; (x} [or Wz( x. }] 

as a function of the curvature v''{x) and the moment M(x). 

Figure 2o4 shows a deformed section of the sandw'ch member under 

load and ~quation (2.7) is applicable. In thi s formula u.(x) 
,{. 

may be replaced by wl( x l beca use only the d~fference of the 
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d isplacements is included~ The effect of the thrust strains 

in the skins, being the same for both sJ .. ins, cancels out .. 

Differentiating Equation (2 o7) once gives 

y'( x. ) 
d ( ; (x)- w2(x) 

1 = ~ v"(x) -c a 

In Chapter II it was proven that 

w2( x) 
-cr,:- :: 0. 

2 
{ 2 8 ub) 

If w~(x ) i s now replaced in Equation (4e9) and the resulting 

equation i s solved for w; {x), the result is 

w; ( x ) = d 1 [ v " (x)- ~ y ' { x)]. 

This expression coincides with the one found by Har sock from 

a figure which is not too clear_ For comparisons with 

Hartsock's work, Table 4c2, ~resenting the equivalence of 

notations is useful. 

The only thing left is to find an expression to relate 

the shear strain y( x ) i n the core to the applied bending 

moment M(x ) and curvature v'' (x ) . The distribution o f shear 

stres~es alo ng the section is shown in Figure 2 .3, where 

T c. ( x) may b_~ easily shown to be given by 

F' ( x) 
:r c. ( x) - 0-- ( 4 .11) 



VESCRTPTI ON HART.:OCK 'S 

Bendi:r1g Moments n, NC, HO 

Force in skins F 

Dimensions c 1 , c 2 ,D,DC 

Angle Subtended by arc dx d8 

Axial de f ormation o f skin~ 8x1 

Deflection y 

Skins cross sections a 1 , a 2 

Core She ar Stress Ss e 

Component of Shear Force 

neglecting bending of 

skins vc 

Relative rotation of 

ski ns due to core shear 

· deformation 

Shear Stiffness 

Bend i ng Stiffnesses 

Tl\BLE 4. 2 . 
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T liS THr:SI S 

M(x) ,Md{x) ,M 6 ( x ) 

F {X} 

d1, d2,d,c. 

v"(x)dx 

w' ( x )dx 
1 

V (X) 

bt1 f b:t2 

Gy(x) 

c.y' (x} dx/d 

AG 

( EI }d, (EI) n' (E1) 

Comparison with Hartsock's Notation 



Relations ( 4~7) and (4.11) yield 

but T ( x ) is also equal to Gy { ·~) and so c. 

y(x} 
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(4 .12 ) 

By substituting Equation (4.1 2) into Equation (4;10) and the 

resulting e xpression in (4.8) and then in (4 . 7) gives 

( 4 .13) 

\vhere ( 3. 3) 

Be fore Equation (4el3) is usable, Md(x) in the rigLt 

hand side must be expressed as a function of the given moment 

M(x} and the sought after curvature v''(x) ~ Using Equations 

( 4 • 5 ) and ( 4 • 6 ) 

M" ( X} d = M"(x.) - M6{x) = M"{x) + {EI)[} v-<-'-'{ x. ) 

and then Equation (4. 13) becomes 



This equation is further simplified by the fact that 

therefore 

Finally, (4.15) and (4.6) in (4.,5) yield: 

M(x) 

where 

T"f'\!:)"""' ; ~,., 1 ..&- :. ,........,.... 
.& J. &.!Io,.A.,l, .. ..-r.' ~...A.."""" .._ ...... ...._, .. ;I. 

v2 2 
V2 (V 2 a. 2 )v(x) = [ a ]H(x) - Erf6 - Tt:n- · 

2 
Ct and d v = ax 
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( 4.14) 

( 4.16) 

Equation (4ol6) is a differential equation relating 

the externally applied b ending moments and the· vertical deflec-

t ion v{x) [or the curvature v''{x)] by means of properties of 

the section exclusively. From the derivations it was clear 

that no assumptions of behaviour different from the general 

ones statod in Chapter I we re applied. The differential 

., 
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equation (4Ql6) is then applicable ~o any case of loading 

and support condition. This will b e corrobo~ated in 

Ch pter VII. 

Equation ( 4 .. 16) ras not ol)tained by Hartsock. Instead r 

he made the integrations as coon as they appeared and, in 

order to do so, he had to define his boundary conditions 

early in his work. The boundary conditions he applied corres-

rond only to symmetric cases of loading and support.. Besides, 

he indirect ly used the fact that the applied bending moment 

M(x } ~as a polynomia_ · of the second d ~g~ee in x with no con-

stant term. Thi s makes his solution applicable only to 

symmetric concentrated loo.ding and uniformly distributed loads. 

equations from independent considera~ions and does not use the 

formulae found before in his work. 

Hartsock's treatment is so obscure t hat McCavour(lB), 

who l i sted Hartsock's reference ( l 2 ) as the first reference 

in his paper comments in the introduction that for sandwich 

panels with thick skins , "since a rational method of analysis 

has not been developed for this kind of facing [skins], the 

panels must b e desig-ned by testing rr. 

4. 5 CONMENT S ON BOUND!->,RY CONDI'riONS FOR THE GENERALIZED 

HARTSOCY'S SOLUTION 

Eguation (4.16) could be easily applied to more general 

cases .c.: O.L symmetric loading. The four boundary conditions 
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required for the solution could be .taken as follows: 

1) Deflection v(B} is given (usually zero) at one of the 

supports~ B represents the abscisa of the b oundary in 

~hich the condition is given 

2) SlopE: v' {B) is zoro at: the point of sym..metry B .. · 

3 ) It depe nds only on the applied end aments. There exist 

several possibilities as sho~n in Figure 4.1. 

~"'tlB >,_ if:; . . -.-:- . - . 
d ~~ . 

Mf/j:

9
· 

I ._, 

FIGURE 4 ol 

Possible Cases of Applie~ End Moments 

Case (a) i n Figure 4 .1 is only of theoretical interest 

because no practical situ&tion wh:ch duplicates these end 

moments is env · sioned (See further cornments in Section 5 ~ 4) . 

The compatibil ity of the deformations of the skins require 

t 1at: 



E :t 3 
2 2 

where M n (B ) is the total end moment of the form shovrn iiJ. 

Figure 4.1 $a at the boundary B. 
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The required boundary condition in case (a) would be 

V 11 ( B ) 

at the boundary B. 

Cases (b ) and (c) are of more practical interest 

especiall! in beam-col.umn nrnhl~ms . CR~P (h) r~~r~~~n~~ ~h~ 

app l ication of end moments fd ( B) at the boundary B by means 

of a couple acting on the gravity centers of the skins. Since 

no applied moment of the form of M
6

( B) exists, the required 

boundary conditio n would be 

v li ( B ) = 0 

a t the boundary B. 

Case (c) repr esen t s a case i n which both moments , 

Md {B) and M6(B) are acting and the corresponding boundary 

condition will ~e l i ke the one in ~ase ( a ) . A very practical 

particular case of this end load condition is the case of 

beam-·co_Lumns \vi th rigid inserts in the core at the eL~ds or 

built-in ends of beams . This condition also occurs at points . 
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of symmetry. '\t those sections th(;; re is no she1.r deformation 

o f the core because a line perpendicular to the skins remains 

perpendicular to these after deformation o Besides, at tha.·t 

particular section the Navier-Bcrnouilli principle is valid 

so thaL the Eouivalent I-beam approach vJhich neglects shear 

defo rmations of the core, studied earlier in this ~rk, is 

exactly applicable.. If M { B) is the ··total applied end moment 

at the boundary B, 

M( B} = M ,{ B ) + M1 ( B ) 
fl l.) 

and the section is kept undeformed at the ends, the corres-

r~n'l'' A i ·:- ·i A.,.., T. rn l 1 1 rl hi"'> • 
-- ··~ .... ---·-- ...... . .. __ .......,._,.... ;._ ... _-

v" ( B) == 
M(B) 
TIT} 

at the boundary B .. It '"i 11 be seen in Chapter VI I , hoi.·lever, 

that the condition to use in this case must be 

v "' ( B} = 

instead, wh i ch means that the total shear force is t aken by 

the skins .. 

4 ) Concerning the fourth boundary condition, it is also 

si·n_ 1~ to find it. At the section of symmetry, built-in 

ends or ends with rigid inserts, no sh2ar deformation of 
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the core exist.s ~ · \.'!ith no shear de fo:r:mation iL the core 

[y(B) = 0], the ~hear stress in the core will also be zero 

[Te(B} = 0] and so the whole externally a~plied s hear force 

is taken by the skins~ The above condition may be re-stated 

as 

v,,, ( B) M r (B) 
:::: - l E1)7. 

t\ 

at tle boundarv B. [It corresponds to a distribution of shear 

stresses as shown in Figure 2.3.c, but with T ( B) = 0]. e 

For non-·syr..unetric loading and support conditions with 

single spans and no concentrated loads along ~he span, the 

boundary condi t:ions will be sh0'\\7n later to be as follows: 

lJ Detlection has to be defined at one support at least . 

2 ) Eithe the deflection is defined at any other section or 

the slope is known at any of the boundaries. 

3) Curvature is zero at a boundarJ w_ere no end moments of 

the form M6(B) act and is- M6( B)/(EI )
6 

when they are 

acting. If there exists ~ re~triction of the kind of a . 

built-in end, or an end with a rigid insert, or a section 

of symmetry , the condition is as studied above for these 

c ases. 

4 ) Set-up in the same way as condition (3). 

Conditions for cont~nuous beams and segments of the 

beam under concentrated loads (when no symmet.ry may b e 

invoqucd) wi 11 be st.udied i.1 Chapter VI l o 
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No formul a'e · fo · partict:llar c ase;..; o:E load · ng - re 

included here because the solution coincides with the exaet 

~olutlon to be found in Chapter 7II, wh~re the analysis of 

these formulae is also prese n ted .· 

4.6 CONCLUSIONS 

The generalization o~ Hartsock's method produces a 

solution which will be called exaet here because no arbitrary 

assumptions of behaviour other than the standard ones 

specifie d in Chapter II were imposed. This rc~ethod may be 

sho~vn to coincide with the Equi val nt I -bearn Approach ,;here 

shear deformations of the cor~ are considered. In fact, 

( EI} 1 v-<..v(x. ) - (1E~~1Gd v"(x) = - M17 (x) + ~G M(x ) u (EI)d , • 

In cases where (E I ) 1 is negligible [and consistently, as 
1,) 

(EI} 6 ~ 0, { EI ) d + ( EI ) J, the. last equation b ecomes 

v" ( x ) :.; M(x. j 
TTIT 

M" (X) 
+ AG-- ( 3 "2) 

and the equivalence with the method stucied in Section 3.4 is 

then proven. This shows that the method of the Equivalent . 

!-Beam considering shear deformations of the core provides the 

exact solution for sandwich beams built-up with thin (and of 

course also very thin) skins ir the expression for A is taken 
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as . 

A b dz I f'\ - < I C ( 3.3) 

for the case with thin skins and 

A = ·bd ~ be. 

for the case with very th ' n skins. 

Also,. if v ( x) . and M { x) . are split into components. 

V ( X ) - V ] { X ) + V .'2 ( X ) 

and 

~nrl thP~P arP suh~tj~ut~d 1nto ~auation (4.16) # anorooriate 

manipulations of this formula by the use of expressions (4~1) 

and (4.2 ) produces Allen ' s equation (4.3.a), whi ch may then 

also be called exac.t for the cases studied Unfortunately , . 

i t seems complicated to verify the correctness of the boundary 

condi t.ions as stated by Allen by substitutions in t .he bou.ncary 

conditions c ommented on for Hartsoe].' s generalized solution 

{for example , six boundary conditions must be obtained from 

on ly four ) . 

Finally ( observing that a uniform beam can be con-

sidered as the limiting sandwi ch beam in whi ch the core 

thickness tends to vanish, the limit when c tends to zero in 

formula · ( 4.16) may be e a sily s ·1ov.rn to coincide \ i th the ver~' 

well known · form~la 



V 11 ( X} --
M(x) 
TETT · 

As said before, it is not possible to consider a 

homogeneous beam as the sand~i h beam in which the core 

becomes very stiffe At least it is not valid in the case 

derived here. 
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Another interesting limiting case is the one in which 

the core is so weak that it can not transmit any shearing 

force"" from skin to skin (See Figure 2 e,S. a.) .. In this case, 

the ubst ~tution G+O in (4.16) leads to 

-<-V M" ( x) v (x ) ::; T7--rl-
'- .. I/, 

~· 

or v" ( x ) :: 
M(x) 
l E I-f ' 

6 

which indicates that the total bending moment M( x } is taken 

by the skins acting independently. 



GENERALIZATI01J OF HOFF 'S SOLUTION 

5.1 INTRODUCTION 

The ana lytical methods s tudied in Chapter IV produce 

the exact .6 otutio n to the behaviour of the type. of sand\>Tich 

panel specified in Chapter II. However 11 Allen's solution is 

not too clear in its derivatirns and so many arbitrary assump­

tions of behaviour are inrolved that its applicability t o 

more qeneral cases of loading a nd support seems complicated o 

Har :sock•s generalized solution, on the other hand, does not 

provide the nece~sary boundary conditions for the solution of the 

differential equation which was shown to be right for every 

flexural loading situation. Th sc are not easy to find in many 

cases and the solution as presented in Chapter tv would not be 

easy to use. 

If Strain Energy Methods are applied, quite simple 

solutions may be derived and the values of the unknown variables 

at t he boundaries may be obtained from the an~lysis. This 

chapter and C apters VI and VII present methods of analysis 

based on Strain Energy Principles. The first two methods are 

generalizations of the work by Hoff (lJ) and Allen(l) to account 

for more general loading and support conditions and to make 
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the results applicable t o sandwich mem~ers with thick dissimil~r 

skins.. 'rhe third method is an application of the Stra in Energy 

Principles to the p roblem as set up in °ect ion 4 .. 4. 

5.2 DESCRIPTION OF HOF~ 'S METHOD 

Hoff(l 3 ) solve d the problem of bel ding of a cantilever 

sandwich b eam having very thin identical skins* and subj ected 

to a conce ntrated load at the free endo This work attempts to 

general ise his approach to consider the bending problem of a 

sandwich section having thick dissimilar skins and subjected 

t o much more general loading conditions~ 

Hoff assume d t hat the d eformation of the section under 

l n~0. ho <:: 1""11;+- -i'i"'' 
-·· - -.~.- --- - ---

mation due e~clusively to axial displacements of the centroids 

o f the skins with no bending allowed and the other being the 

d eformation due to bending o f the skins with no horizontal 

d isplacements of their centroi~s permitted. In order to main -
I 

tain uniformity, the pattern of deformations of the section is 

t aken as shown in Figure 2.4. A compatible solution could also 

be obtained by using Hoff 's superposition of deformations. 

The variables used by Hoff are the vertical deflection 

V( x) and the horizontal displacement of the top.skin u 1 ( i ) . The 

. *Contrary to what h e states, it will be shown later . that the fact 
that he did not neglect the local bending stiffness of the skins 
does not ne cessarily mean that his analysis is applicable to 
ca.es with th ick skins because his approximations are inconsistent. 
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latter is called u in his paper and u 2 (x ) is missing beca use 

in the particular case solved by him, having a built-in end, 

creates a relationship between u1 (x) and u 2 (x ) as shown by 

equation (2~9 . b) with C = P = 0. ~oreove~ as a result 

of the skins being identical in his case (d 1 = d2), the dis­

placements u 7 {x) and u 2 (x ) are equal and opposite. 

The physical model o f the sandwich b eam u sed by Hoff 

in hi s derivations consists in " ••• a beam, h aving two thin 

but not infinitesimal faces [ skins ] , and a core attached to 

the median lines of the faces [ s kins]. The extens ional 

rigidi ty of the core is very small compared to that of the faces 

[ skins ], and its portion extending between y = e/2 and 

y = (c+t)/2 [the inner halves of the skins] does not store 

strain energy". By ~~ ••• thin but not infinitesimal faces 

[skins], .•• ", according to his derivations, Hoff means that 

their thicknesses are negligible · compared with the core 

thickness* but the local stiffness of the skins, (EI) 0 is not 

negligible compared to their stiffness ~EI)d with respect to 

the reference level, which · in his case is in the middle of 

the core. These two statements seem to be contradictory. The 

ratio (EIJ 6/(EI}d depends on (~/dJ 2 while (d-e}/d is just ~/d. 

The · first ratio, being the square of a small number, is generally 

smal l er than the second one, which is orily of the first power. 

* He does not state this directly but indirectly when 
equa l ling the shear deformation of the core to the rotation 
with respect to the reference level of the line joining the 
median line s of the skins [y(x) = Angle EFB in Figure 2.4]. 
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It is important to mention again that the centroidal 

axis defined by d
1 

and d
2 

(Section 2~3) may not be taken as 

either the neutral axis or as ~.he surface vlhose points have 

no horizontal displadements~ In the case solved by Hoff, this 

is permissible only because he used identical skins where one 

of the ends of the beam \•las eTI·tbedded in a very stiff \vall ( case 

C=O, Section 2.7) and no thrusts, P, · were acting. For a 

g eneral case with non-synwetric loading and support cond itions, 

o r wh~n no ri~id inserts occur along the span b eing considered, 

or in c~ses studying overhangs with or without loading, it is 

\ rong to assume t h at the centroidal l ine my be ta~cn as the 

axis with no points moving hor£zontally Finally, if the 

placemen ts equal to the horizont· 1 movement due to elastic 

shortening of the beam-column when acted upon by an end thrust, 

P, the deflection v(x) is not affected b t the di~Jlacements 

i1. 1 ( , ) and u 
2 

{ x) change • 

5o3 STRAIN ENERGY 

The shear strains (unlike stresses) in the skins are· 

neglected and the very low modulus of elasticity of the core 

results in a negligible contribution to the bending stiffnes s 

of the section . This implies tha t the only strain energie s 

to be considered are the ones due to elongation ~nd local 

bending of the skins and shear ~trains 'n the core. The 

expression for the to~_al strain energy stored in the membe.~. ~· s 
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set up as follo\A,rs: 

1) Net elongation of the skinsQ 

Since the axial displacements at the centroids of the 

skins are u
1 

(x} and u
2

(x}, the net stra ins at the skins are 

u; (x ) and ~~(x). These in the basic expression for strain 

energy 

U =} J [Stnal n] 2 d Vol. 
Vof . • 

permit finding the strain energy due only to elongation of 

the sk ' ns as 

b:t.,E-: r n bt, En ( n 
11 :::.: I I I r .. ff •• \ 1"- ..J • • 
\A 1 - z-- -· ) L l l .\. 1 \ ~ I J u . ~ 

'- '- I r .. 1 f •• 1 1 L ..J •• - 2 -.-- ) L L U.. z 1 ~~ J u.~ 

'tvhere L stands for the \vhole length of the member under con-

sideration~ No relationsh ip bet~een u 1 (x) and u 2 ( x) was 

imposed and so this value \.rill b e the ·real o nes. (These 

displacements a r e then measured from the orig i nally vertica l 

line and not from the alre ady displ aced line corresponding to 

the net compression due to end thrusts P) • 

2 ) Bending deformatio n of the skins 

The strai n energy ass o ciated with the local bending 

deformation o f the skins only is given by 

(EI ) !. J 2 ll, = _ __ J.L [v "( x )] dx 
t. z . L 

( 5. 2) 
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where their def l ection v(x) i t~e same as for the whole p ane l. 

3) Shear deformation o f the c ore 

The shear strain in t1e core from Equation (2.7) in 

the exp--ession 

U • ~ f [~h ea~ S~~aln] 2 d Vol. 
Vo le 

gives 

whr:!re 

. . 'i . 
A = oa 1 c. 

( 5 "3} 

/ ') ')\ 
\ .J -'J 

Thus the to-al strain energy, U, stored in the member . 

may be obtained by adding up Equations (5.1}, (5.2 ) and (5 .3 ) * 

1 J 2 2 2 u1 - u.2 2 
U = 2 L [b-t 1£ 1u.] + bt 2E2uz + (EI)nv'' + AG(v' - a ) ]dx · 

( 5 .. 4) 

5 .. 4 LOSS OF POTENTIAL ENERGY OF THE APPLIED LOADS ------ ---- -·---
The strain energy as found above is -an exclusive 

function of the displacements ~ 7 (x) , u
2

(x) and v(x }, where no 

loading terms are included on its expression. Hence, the loss 

of the potent i .. l energy of the applied loads rill have to be 

considered in order to find the sought a fter relationship 

between displ ~cements and loading~ ln order to find ·the loss 
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of potential energy of the a~pli ed loads, any sys t em of forces 

acting on the member has to b -: assumed .. The loading system 

shov1n in Figure 5.1 , .... · 11 be used in order to mainta in the 

generality of loading. The kinds of loa ding which are missing 

X • 
~ . . r ·. q(x} 

' v ( X) TrTTi1iTTf111111TnTI ~!).,_ M'<U 

M (O~~lllllWBm~ l , ~U 
M'(Ol~ L J 

FIGURE 5 1 

Loading Sys ·tem 

are concentrated forces along the span and, less i.portant, 

concentrated moments and shearing forces along the span~ 

Inclusion of these t_rpes of loading is not absolut ely necessary 

because, in cas~ they d o appear in a particular problem , it 

could be solved by parts where each portion between concentrated 

forces o r moments has displacements uil (x ), ui 2 (x } and vi( x ) ­

and a length L i. The strain energy stored in the \'lhole member 

would then be given by the sum of the strain energies o f the 

severa l p o rt i onsr 

v . ' ,(. 
L . } • 

,{.. 

'Jlhc. potential energy lost. by he loads in Figure 5 .1 
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arc found as follo\-JS: 

1) Loss of potential energy of q(x ) 

f
L. 

v1 - - oq(x)v(x)dx (5.5 .. a) 

2) Loss of paten tial energy of the end shear forces f' 1 
( 0 ) and . 

M I { L) 

V
2 

= M' {O) v ( O) - M'(L)v(L) ( S.S .. b ) 

3) Loss of potential energy of end thrust P. This consists of 

two parts: 

a ) The loss of energy i~ partially due to the decrease in the 

distance from 0 to L owing ·o the curvature of the deflecte~ 

membere I"c may be easily fo nd(l ) that this loss is given by 

p I L 2 V 3 a.t :: - . f 0 ( V r ( X) ) d X ( 5~5 .. c) 

b) The remaining loss of energy is due to the elastic shortening 

of the beam. 'ro find this e~~pression it is necessary to 

define the way in w1ich end thrusts P are applied. The analy-

sis being made here includes. the application of end moments 

M(O) and M{L ) {the loss of energy o f these will be found next } 

and so it seemq reasonable to apply the end thrusts at su~h a 

lo9ation that they do not produce any end moment. To solv~ a 
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problem with eccentric end thrust3, th0se wi 1 be assumed to be 

appl ' ed ~ith no eccenLricity and then end moments Pe~ (e being 

the eccentricity) will be ~pplied 

The definition of the ref - ren e e le~el or -entroidal 

axis as 1sed in this work suggests that , if a load is applied 

right at the centroid of ·he tr ans formed section, the axial 

stresses produced in both skins are the sarne and so there is no 

contribution to b ending. This being the case , the end thrus ts 

will be assumed to act as s ho\·Jn in Figure 5. 2.. 'rhey do not act 

directly on the core but rather on the skins in order to be 

FIGURE 5 .. 2 

Application of End Thrusts 
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concistE~nt with the assumption th A-t ·the core does not contri-

bute ~ith any axia l stresses~ Thi s loss of potent~al energy 

of= the thrusts P may then bL found as 

p 
v 3 6 - - a { d z [ u 1 { a ) - u.. 7 r L ) J + d 1 [ u. 2 ( o ) - u.. 2 { L ) 1 } < s 0 s .. c ) 

v36 could have also been found as 

where , because it is i ndependent of all disp l a ceme nt rariables, 

i~ would drop out of t h e derivations when obtai n ing the 

var1at1on ot the tot-l potential e_eigy . r- the last expres-

sian were used instead of (5.5 d), it ould be equivalent to 

saying ' the the di sp lacements u.. 7 (x} and u2 (x ) were not defined 

1ith respect to the origina lly vertical line joining the 

cent~oid s of,the skins in the undeflected section but rather 

with respect to this line in the location it \'.rould have if 

only the thrusts P were acting [That i~ , wi (x) would be used 

instead of ~ . ( x ) ]. The locati on of those two lines will 
. -<.. 

di ffer by the amount representing the net axial shortening 6f 

t he length L due to the axia l l oads P. Expression (S.S.d ) 

will b e used here t o provide a more general definition o f th~ 

variables u
1

(x ). and 
2

{x ) . 

~ Loss of potent'al energy of end moments M(O) a~ M(L). 

This is a ve r y . delicate matter. In ordinar~ beams it 
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would be quite true to give the loss of energy of the end 

mor0.ents as 

- M(O}v'' (O) + M(L)v'(L) 

whe-e the loss of energy corresponds to the applied moment 

time s the angles they rotate through ~vher the beam deflects .. 

I n general, an applied end moment maJ be -hought of as being 

composed of a couple acting on the centroids of the skins 

plus end moments acting independen~ly about the centroids of 

the skins as shown in Figure 4.1, where 

Chapter II require that both s~ins deflect equally and this 

impli~s that thE-~ moments M 67 (B) and M 
6 2 (B) , at the boundary B 

being considered (0 or L), be related as follows: 

3 
M n (B) 

M ~ 1 (B) 
:t1E1 

= 

tiE1 + t 3E 2 2 

t 3E Mfi(B) 
M62(B) 

2 2 
= 

3 3 
t1E1 + tzEz 

In other words, M67 (B) and Hf\ 2 (B ) must be proportional 

to the local b riding stiffnLsses of the corresponding skins~ 



The loss o f energy of these momen~s is given by 

v4a =- M
6

{ o)v'(O) ·• M.0(Llv '( L) ( 5.,5 .. e) 

The los s of potential energy of the end mome nts acting 

as couples, Md(B) is 

[ t
7

( L ) - u
2

{ L)] 

(5c5.f) 

Now it is clear that defining the loss of potential 

energy of the app lied end moments in the way that at first 

glance seems to be logical, that is , 

is equiva l ent to saying that the whole external moment M( B) 

i s applied as shown ~n Figure 4.l~a. This implies that M6( B) 

·equals M(B ) and Md( B) is zero at the boundary Bo Even 

though it is theoretically possible to apply the end moments 

this way , it has no practical se since most of t he cases 

involving the application of end moments correspond to beam-

column problems, where the applied end moments are more l ikely 

o f the fo rm s how·n in Fi gure 4 . l.b o r are a c ombination o f both, 

M6(B) and Md (B) ~ This latter case borresponds t o bui l t - in ends 

and to sandv ich bearns · havi 1g rigid inserts at the ends . 

In this ca ... e of rigid inserts a t the end (sho....,.rn in 

., 
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Figur e 5. 3) r the !.oment ,\l 1 ( B ) t .aken by the skins and the 
u 

couple Md(B) may be shown ~o b~: 

F.Lyu.r.t::: 5.3 

Reference 
Leve l -

--

Effect of ·Rigid Inserts 

M (B) 
6 

( EI) ~ 
- tEIT M(B) ( S· .. 6.a) 

(5.6 .b) 

Expressions (5 .6) are 

applicable to any proble m 

h aving no shear deformation of 

the core at the boundary B. 

The bend"ng behaviour of 

external end moments has not 

been scudied by any of the 

authors whose papers were reviewed for this work. Even 

though many of them give forrnul e· for buckling loads, none o f 
I 

them indicates how the axial load should be applied in order 

not to introduce end moments due to eccentricity of the 

applied thrusts~ ' 15) I ummel' ·gives some experimental curves 

for sand'''ich beam-columns and stressed-skin beam-columns* and 

states that '' ... The load/deflectioh curve for these t~sts 

[eccentric compression of beam-columns with san~wich and 

* Strsssed~skin p~nels e ither do not have or do not count on a 
core mat erial to transmit shear forces and hold the s J~ins apart. · 

~ Longitudinal webs of stiff materials are used instead~ 
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s tressed-sk in sections] agrees very well with the theoretical 

1 oad/deflection c1rve as g iven by the secant formulal! He 

does not give any indication abo t that £ormula. This is the 

only part of his paper mentioning t eoretical analysis. All 

hi s other finding..:- are of the ki1d n .... the results of the 

test s fall some\•7herc betwet::n the theoretical case \-\7here the 

faces ( skins] act independe ntly ~nd the theoretical c ase 

v1here they act s a unit, ••• 11
.. No reference to this S e. c~an..t 

Fo~mula was found in any of the other references.* 

The cases of loading studied s6 far are sufficient 

for many .Jroblems but there is still a possibility missingo 

It 1as mentioned earlier that the derivations in this ~ection 

T.TC\ Y'~ h~~ Y\("0' 'n"l""'rl"- -1::,.... ..,.. ..., .....,..,.,.. ,., ,-..Ji= 
~ -.::.. -~ ---· ... "::) . .. ... ........ ........,....._ ...._.._, ...._ """" ·"""""~ ......,..._ "--

forces or momer~s applied along the soan L 

""'"~,_..-.. ....... .~- ........... ~,.:, 
'-''-'A6. "-'\_. .&.L \....,......_ ~ "-\.......<~ 

If a problem 

having forces or moments of this kind is to be solved, it was 

also mentioned that the proulem should be solved by parts, with 

each length between concentrated. forces or moments being taken 

as the spa n L .• In considering cases like this (see Figure· 5.4), 
,{_ 

special care must be e}:ercised in the evaluation of the 

boundary values of the shear forces and moments. When con-

sidering the val e of the shear force Mk{Ll) for the right 

* Sect~ons 3.3, 3.5 and 7.6 include, in their paragraphs E, 
formulas containing trigonometric Sec ant (or co~in~) functions 
for the problem mentioned by Hununel. It is likely thai: he was 
r .£erring to one of these in his paper, but unfortunately, no 
check on thi s could be made because the only graph he presents 
sho~s the load versus defl6 ction curve for a ~tressed-skin pane l~ 
The use of an I - beam approach is recomrrtende d in his case and 
proba bly that is the formula he used. 
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M \, 0 }r rrrrmllil' , 
1 

. 

Be nding Moment Ul I 
Oiagrarn 

Figure 5~4 

End Values of Phears and ~aments in Loading Case Having 

Concentrated Forces nd Moments Along the Span 

hande d of the length Ll, this should be taken as the shear 

force · mmediately to the left of the point C having the 

concentrated load We~ The same thing appl:es to the shear 

M~ ( 0) at ·the left end of span L fL. 

Concerning the boundary values for the moments, a 

sirrilar approach could he t~pen but an extra problem arises. 

The d.' strib tion of the moments Ml { L 1~) or MIL ( 0) in terms of 

the v~lue s ·for . M6 · and Md hnve o be k~own inde l endently to 
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find the potential ene~gy of the applied loads and so, know-

ledge of the values of the total end moments Mi(Ll ) and 

M~ { O ) is n~cessary but not sufficient to obtain their contri­

bution to the energy loss. The continuity of the siope 

vl(Li) = v~(O) and of the displacements of the centroids of the 

skins 

cause those losses of potential to cancel out when the opera-

tions a re performed for the whole be am. No f:Irther analysis 

is then necessary for the moments caused by the r emaining part 

of the beam at the boundary C. The way the e xtern al moment 

M is applied, however, does have to be indicated. c. 

5 • 5 FURTHER COI:-1J.1ENTS ON THE BOUNDARY LOADS 

In this work it has been insisted that the way the 

exter nal loads are applied be defined. Saint-Venant's 

principle*, although originally -derived for homogeneous beams, 

is quite often applied to other structural systems without 

demonstration of its validity. 

Alwar( 2 ) studied the applicability of Saint-Venant's 

principle by testing cantilever sandt.¥ich beams having a con-

centrated load at their free ends. The concentrated 16ad was 

applied by resting it on the top skin and by hanging it from 

the centroid of the bottom skin. He found differences in 

* Stresses due to statically equivalent systems of loading are 
appro xirnately the _same at sections located at a ' distance 
from the points of application of the loads equal to or g reater 
than the largest dimension of the section. 
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stresse s in the core in th e o r der of - 40 per c e nt at distances 

gre· ,t e r ·tha.n specified by Saint-Venant. His main conclusion 

is t hat, in general , Saint-Ven ant principle is not applicable 

to sandwich cons tructiono 

The differen ces in deflect ions produced y equ2 l end 

moment s of the forms M
6 

and Md are n accepta ly large. Even 

if Sa"nt-Venant's principle were applicable, it specifies that 

stresses, not deflections, are not too different when stat~cally 

equivalent load systems act. It is quite evident that large 

differ~nces in the curvatures exis- at the bounda ri .s of a 

simply supported beam h aving end moments M1 or ~d~ He nce, 
(' 

the d e flections are very different tooo However, as an 

measure of these beinq given by the second a.nd third deriva-

tives of the deflection} do seem to attenuate at distances over 

the one specified by Sa ' nt-Venant's · prin~iple. Figure 5.5 

's h ows comparative plots of the deflection and its first three 

derivatives for a beam column having the same properties as 

the beam studied in section 3.6 and hav~ng an end thrust 

P = 2,000 ib~. acting on the centroid of the top skin 

(eccentricity e equals d 7}. 

Large differences in deflection v ( x ) ·can be observed 

everywhere in the range 0 to L/2 plotted in Figure S~S.a The 

differences in the slope are still quit large but not as 

marked as for the deflections. The differences in the curva-

ture u" and the third derivative v' '' can be seen to gradually 

., 
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disappear for abscisas near the center~ As said b fore, t he 

example s h own in Figure~ 5 e 5 i.vas cal c ulated for a sandwi ch 

b eam - c o lumn h aving rather thick skins. In cases with thinner 

sk i ns, the d i fference would be greatly inc eased ~ 

5 ., 6 TOTAL P OTEN rriAL EdETIGY 

The total p otentia l e nergy stored in the s ystem ma y 

then be g ive n b y : 

~ - u + v 

r i. 

- j
0
qvd x + M' ( O)v(O) -AI ' ( L ) v ( L) 

p JL 2 u 7 (o) - u 1 (L) u.2 ( 0 ) - u 2 ( L ) 

2-
0
v' dx - P[ d 2 ---a + d 7 ----a-----] 

u..
1 

( 0) - u
2

(0) 
- Mn( O)v'( O) + Mb { L ) v '( L } - t{ d( O) d 

This e xpressio n ~as cons t r ucted f r om expressions (5 e4) 

a nd ( 5. 5 ) vh e r e , for the s ake of b r evity, t he fun c ti ons v ( x ) , 

u 1 ( x ) , u2 (x ) , q (x) and t heir d r i va tives were e xo r essed without 
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any explicit indication that the y are functions of x~ 

By using the general theorem stating that .the .to.to~t 

pote~tia! e.ne~gy o6 anlj ~y~t em ha~ a ~tationa~y value when 

.:that .cy.c.tem ;_.o in e.qu..-ttibfl..iu.m; an d a minimum va.tue whe..fl..e the 

e.qu.-t tib~r. iu.m i~.> .ctable., a relationship bet\veen the~ variables 

u 
1 

( X) , u
2 

( x) and v ( '} and the applied loads q ( x ) , A!' ( 0) t M' { L) , 

P, M
6

(o), M
6

(L), Md ( O) and Md(L) may be obtained. For the 

solution of the mathematical problem o f obtaining values of 

the f unctions v(x), u
1 

(x ) and u. 2 ( x) sa~isfying the theorem 

just stated, several approaches may be used and sorne o f then 

will be presented next~ 

S ~ ' j SOLlJ'J'JUl\ 1 BY Cl\ T.ClJLI)S OJ•' \lf.\ {1A'J'TUNS 

The general theorem of Me cha nics stated in the prev~ous 

section may be interpreted as follows: If v {x ) , u 1 ( x ) and 

u2 (x ) are the functions indicating the aetual displacements 

undergone by the deformed structure ·and very siTal l 

arbitrary v~riation s ov(x ), 8u 1 (·x) and 6u 2 (x ) are introduced 

i n these by any e x ternal means, the ehange in the total 

pote ntial energy due to the very. small c.ha.nge. in the deformed 

c6nfi guration must be zero. This fact expressed in mathematical 

form i s 

+ AG ( 
-u - u. 
. 1 2) ( OV 1 a 
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-· Pv'ov'}dx + M'(O)o v(O ) - M'( L}6v(L) 

6u1(0) - ou.1(L} 8u2(0) - OUn (L) 
- r r d z ---~--cr---·---- - d 1 - --:r ~. 1 

ou.
1 

( o ) - 6lL
2 

(0} 
·· M , { 0 ) 6 v ' _ 0 ) + M , ( L } o v t ( L ) - M d { 0 i -----:r--~-

t b u ' 

II 0 u 1 ( L ) - 8 (L 2 ( 'L } (5 .8) 
+ Wid ( L' a = o 

The mathematical process fo r finding 6Q as it is 

descr ibe d in Equation (5 ~ 8) is quite r ight for the very 

common case in whi ch the applied loads .. q ( x ) , f.!' ( 0 ) , M r { L) , 

P, M6(a}, M6(L), Md (O) and Md(L) do not depend upon the 

deformed configuration but rather are constant. It has been 

men t ioned e arli r, however, that the method being derived 

here should be anplicable to portions of the beam bounded by 

poin ts of application o f concentrated forces and/or moments. 

In this case the app lied loads at the boundar ies 0 and L are 

the reactions from the next portion of the beam and there is 

no reason to believe they are independent of the displacements. 

The mi~~ing te~m in Equation (5$8) may be e as ily found. The 

variations in the applied loads due to the change in the 
~: 

defo rmed configuration produce th~ mihhini te~m as : 

J > q v dx - ~ li P J > 1 2 
d x + 0 M 1 

( 0 ) v ( 0 ) - 0 M 1 
( L ) v ( L ) 

- oM 6(o) v ' (0) + oM{; ( L) ·' (L) 
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u i ( 0 ) - {{ 2 ( 0 ) t:- 1 { L } - u z ( L ) 
oM d! 0) -- ·cr-------- +. oM d ( L} ·---- - d~-

( 5 .. 9) 

It is no~ evidpnt before hand that this term must 

vanish in the case in which L docs not represent the whole 

span but rather a portion of the beam between concentrated 

forces W or moments M .. In fact, it does not vanish . A term c. c. 

like the one above must appear for each ·· portion L. of the 
-<~ 

total span. If the external loads on the whole structure are 

assumod to be constant [independent of the deformed configura-

oP could be easily understood to be zero.. By the same argu-

ment, the values M I, M 
~ 

and Md at t.he left hand end qf the 

first portion of the soan and at the right hand end of the 

~ast span must also be zero. The anal_,rsis then has to 

concentrate on the: values of M,, Mn and. Md at the points c. 

having concentrated force s and/or momentse When evaluating 

the so-called ml~~ ing tenm~ for two neighbouring portions of the 

span Ll and Ln, the terms 

( 5 .10) 

wil l appear along with all t_e o thers, where the sub:ndexes l 

and ~ refer to values calculated for the portions of the span 
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at t he l e ft a nd the right of the point C respe ctive ly (Poin t C 

is wh e re tbe concentrated forces W and/or moments M ac~c, a s c ~ 

shown in Figure 5.4) ~ 

From Figure 5.4 i t :s evident that 

(_t} •• ~.f I ( 0 ) 
c. !( 

and so the terms in (5 . 10) may be re-written as fo. lows: 

These terms vanish if the applied force W does not depend on the 
(I 

deformed configuration (8W = 0) and th - actual vertical c. 

deflection v(x) is continuous [vl(Ll) = v~(O)]. 

The same analysis may be performed in terms including 

6M 1 and 6M , . The condition for those terms to vanish are the 
. I) a 

constant value of the concentrated moment Me. externally appli0d 

at :?Oint C, the continuity of the slope v'( x) (no infinite 

cur. rature is allowed) and the continuity of the horizontal dis-

place~ents u 1 (x} and u
2

(x) of the centroids of the skins (the 

skins do not break ) . 

· It is important to make clear that in cases like the 

one just studied, Equation (5.8) should be of the form 

I 
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where each ~erm on ·. has tle form of the terms at the left h nd 
..{_ 

side of eq o.tion (5 .. 8 ) with subscrip·ts .i_ in the variables and 

loads .involved._ 

In order to obtain 0omething meaningful from Equation 

(5c8 ) , integration by parts must be performed in the terms 

involvi ng variat.ions of the derivatives of v ( x ) , tt. 1 ( x ) and u 2 ( x. } • 

After t h o se intGgrations bj parts are carried out and s ome extxa 

a lgebrai c rnanipu lati oris are performed, Equation (5.8 ) i s found 

t ote e qui valent to 

tt ' - u. ' 
- ( AG - P J v II + AG - 1 a 2 - rr 1 o v 

" u. ~ IL .. - U. ~ fi 11 ~ 
- [ b d ' t 

7 
E 

1 2_~_ + A G ( v I - I L ) J I a cr-

'M '( O) ] o v(O ) - [ ( ET ) nv ' ' '(L}- (AG- P ) v '( L } 

u
1

(L) - u
2

(L j 
+ AG cr- - ---t- M'(L) ) o v ( L ) 

- [ ( E I } 6 v , ( 0 ) + M 6 ( 0 ) ] 0 v I ( 0 ) + [ ( E I ·) 6 v II ( L ) + M ~ ( L ) ] 0 v I ( /_ ) 
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2 u; ( L) 8u 1 {L } 
+ [ p d Z + M d { L ) + b d :t 1 E 1 --d-] d 

( 5 .12 ) 

where, as in Equations (5.7 ), (5.8} arid (5.9 ) , for the sake of 

b revity, n o e xplicit indicati on of the dependency on x was made 

·· n t he variables invo lved. 

Since the imp sed var i a ions o '{X}, 8u 1( x ) a1d ou 2 {x ) 

a re arbitrary , each t erm in (S el 2} must vanish separa ely~ The 
I 

c ondi tion f or the i n tegra l t o b e zero is the vanishing of its 

t hree · terms within brackets~ This conc l usion could be arr i ved 

at by givin g zero va lues to t wo o f the t hree i ncrements i nvolved 

and a non-zero ·value to the third one (arbitrarily chosen) . · The 

fo llot.·:ing t h ree differential equations t hen resu l t 

U J ( X) - uz J x ) 
-<-V ( AG P) v, ( X) AG q (X) { E 1 ) O v ( X ) - + a = 

2 
u"( x } u

1 
( x) - u.2( x ) 1 AG[v'(x.} 0 bd .t 1E1 -cr- + -· a-·-J ·- (5 .13 .. b) 

2 
U" ( X} U J ( X) U z ( X) 2 A -, [v' ( x) bd .t

2
E

2 d - a ] = 0 ( S .. l?cc ) 
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The vani~hing of the eight -e~ s outside of the 

integral sign requires t h at either the function whose variation 

is involved be given (and so no var i ation is allowed) o r that 

t h e term within parenthe ses van ishes. The eiaht boundar y condi-

tions thus produced a re 
u. 1 {1.3) - u.z (B) 

Either (E1)
6
v'' '( 8 } - {AG - P}v' (B) + AG ~ - M' ( B} 

or v(B) given 

Either ( EI} v" ( B} ::: - M n ( B} or v' ( B } given (5.1 4 .. b) 
6 

Eit:her 
2 u] { B) 

Pd 2 Md(B) u·
1 

( B) given (5. 14 .. c) bd t 1E1 ---u- - - - or 

Either 
2 uz(B) 

Pd 1 M I {B) u2 (B) given (5el4.d) bd t 2E2 --a- ::: + or 
a 

where B represents 0 and L and so each co d'tion in (5. 14} must 

be satisfied at both boundaries. 

Equations (5el 3 ) represent a set of three simultaneous 

differen ial equations with constant coe fficients which are not 

too d i ff · cult to solve. It can be shotvn that .to completely define 

the solutions of th-se, eight boundary conditions are needed. 

There f ore, relation s (Sel4) . (e ight in total ) are sufficie nt. 

It is interesting to ana yse Equations (5813) and (5.1 4 ) 

beca use they contain a great deal of useful information about 

tha structural behaviour of sandwich beams. Some observation of 

properties de~ivad . from them follow. ·· 
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If Equations (5 ~13.b) and (5. 1 3.c) are added up, the1 

t. 1E1u]'\x} + .t 2E2uz!x}:: o 

but fro n formula~, ( 2. 5 ) ·it may be easily found that 

.t 1 E 1 
72 E-;· 

and so the expression above may be ~ritten as 

(L" { X. ) 
1 Uz(X) 

+ --a::-- ·- 0 
2 

( 5 .1.5) 

which, integrated once, v\'OUld produce equa ··:i on ( 2. 8. a ) after 

the c nstant of integration is found with the use of boundaiy 

condi tions (5.1 4 .c) and (5 .14.d). The implication s and 

interpretation of s u ch ~n equa~ion were already commented on 

in Section 2r.7 .. 

Equation (5.13. b ) may be written as 
• 

= ( bcf X} { ~ ( V 1 {X} 
c.. 

u.] ( x ) - u.2 (x} 
----a...------.-, J G} 

and this resul t may be interpreted as f ollows. The term on the 

le f t s"ide represents L.he diffe.rence of net axial forces in the 

top skin a t both sides of a differential element dx long while 

the right side is the shear force in the core which is necessary 
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to sat i s fy eq 1·'. librium. 'r1e t ern inside. the second bracke{· s is 

the shear stress in the core, as sLown in formula ( 2 .. 7} and bdx 

i s t h e area in ~hicl tha t shear s ' res s is acting Equation (5.13.c) 

r epresents the scme thing for the bottc m skin. 

5 .8 CO~U1ENTARY ON BOUN. ARY COtD ITIONS I N HOFF 'S G~NEJ~LIZED 
-~----

SOLUTI0l'1 

bd{ 9._ [v' {B) 
c. 

Expressidn (5. 4ea) may be written as 

u
1 

{B) - u. 1 {B) 
---a - J G}- ( E I)~\)' ' ' f B) = M' (B) - Pv' (B) 

and, as formula {2.7) shows it, the first erm on the left side 

,_ --
U :;_' lhe L:O:Le 1 lu:::; the 

linearly varying distribution of shear stresses as . shown in 

Figure 2 .. 3. 'J.lhe second term is the shear tal'en by the skins 

when bending about their own centroids. The terms on the right 

side represent the applied shear force at the boundary B(O or L) 

and the component of the axial force parpGn dicular to the deflected 

beam respectively . The value of the latter is significant on.ly 

when the slopes are not too s ta ll because it corresponds to the 

consideration of secondary bending stresses created by the 

thrust P. This boundary condition is applicable at ends where the 

def lection is not given. 

The boundary condition implied by expression (5.14 .b ) 

is that, if the slope at a boundary is not given, the curva ture 

at that end d epends exclusively on the momen · ex t ernally aprlied 

't 



about: t.hc~ centroids of the skins .. 

Expression (5 .14.c) irdicates that the total internal 

force in the top skin at the bonndaryr bt 1E1u.] (x), must equal 

the nega·ti ve of the total exterLal axial force 1 Pd 2 I d + M d (B) I d. 

'I'he last boundar r condi tior~ calls for ·the sa .. 1c requirement ,di th 

respect to the bo~tom skino The strict way in which each of 

these conditions should have been presented is to ~pecify that, 

at each boundary the total force (external plus in~ernal) musi 

vanish. This i~ the re?son that the external loads appear in 

all the boundary conditions with the opposite sign in the right 

hand side. 

The corsiderations discussed above are applicable for 

are applied, the analysis would have been made iri the f~llowing 

way: Three differential equations like {5$13) would have been 

obtained for each portion L. of the member, in which the variables 
,{_ 

would now be u 1 .{x), u 0 . ( X) and v . (x ) but a difference would 
,{, L ,{_ ,{_ 

exist in the boundary condi~ions. For the first portion of the 

span, boundary conditions as in (5.14) may be applied but for 

the left end of the second span those conditions are replaced 

by the continuity of v(x}, v'{x)' u1 (x) a.nd u2 {x) at the common 

point of both portions, while at its right end the conditions 

are again as in (5 .14). 'J?he same thing applies to all the 

partial spans. 

Formulas (5.13) and (5.14) coinciae with the ones found 

by Hoff once the loadinq and dimensions by Hoff are replaced. 
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The 01 y exception is the value of he C)r=tant A mentioned 

earli~r in this chapter. 

Hoff states in his book tha: hi s solu+- ion \va.s verified 

by experiments, but he neither gives any clue about the way 

those experiments were carried 0 1 t nor describes the dimensions 

and materials used in those testse He says that he obtained 

results which were satic factorily close to the theoretical 

predictions. 1'he possible reason for thL.:> is that he may h ave 

tested sandwich beams having very thin ckins, for !hich case 

his theory is exacte The solution of ei1ations (5.13) may be 

carried out by eliminating the aisplacement functions u 1 {x} 

and u2 (x ) from these equations by a process involving differen-

Eguations (5.13.b) and (5 .13.c) give 

U 'i {X } - u ;' ( x } 
2 

a 

after the identity 

AG u1 ( x ) - u2 {x) 
TEnd" [vI (X} - d . ] ( 5. 16) 

(5.17} 

is shown. If (5.13.a) is differentiated once and the resulting 

equatjon is solved s i nultaneously with (5616) the result is 

{ !\ G ) 2 (L { X ) - u z { X } 
'(x) + [v ' (x}-

1 ] = q'(x). TIIld 
(5 .18) 



'J ·he e 1 i"' i r: a t i n o f 

(5vlB ) produces 

__..2{V4 1/ -

vlhere 

z a 

.L v ..l. 

' I 'I " \ (. { " } ~- - 7 ;,_ i - / . 2 .,. 
-cr- --- ·---- f rorn \ 5 . 13 ~ a) and 

_ _! _____ [ v 2 - T~~---] q (X l 
(EI) 1 EI)d· 

t) 

( 5 ~ 9 ) 

The variables u 1 (x) and u
2

(x} may now be found from 

(5.13 ) . Even thouqh th~y are not too 1seful after all coefficients 

in v(x) are evaluated, they ha\e to be obtained in every case 

because they appe~r in the boundary con~itions for v(x)~ 

M ( X ) = M ( 0 ) + ,1.! I { 0 ) X. + p v ( X } (5.20) 

due to the load system shown ' n Figure 5. 1, is replac ed in 

Equation (4.16 ) r the result is 

AG 
TETT: d 

2 a = -{ E IT [ M ( 0 l + M I ( 0 ) X ] 

(5. 21) 

\d1ich r if derived t ··;ice with respect to x, coincides vTi th · 

Equation (5.19).. In brief, if the loading system used in the 
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dcrivcltion of Equation (5.13) is replaced in the second deriva-

tive of Equation (4.16), Equation (5.19) is produce d Eq ation · 

(5.19) had previously been obtained from the elimin tion of 

Thus the u
1 

( x) and u
2

(x} from D~fferential Equations (5.13) ~ 

generalized form of Hartsock's solut.J.on a ~d the generalized 

form of Hoff ' s sol1 tion are equiralent. The former has t he 

advantage of greater generality and simplicity 'vhile the latter 

rovides the boundary conditions; 'hich as said before are not 

a l ways easily obtained. 

Form lae for so~e 1 articular systems of l0ading are 

derived in f'ec ·tion 7... by using the me.~-hod of analysis 

rr pused in this thesis, which is 

e xactly . equivalent to Hoff's generali ed so ut1on tor the 

l oading case shown in Figure S ol Therefore, these will not be 

develo~ed i ndependently for Ho~f's generalized solution. 

5 .. 9 RAYLEIGE-Ri rrz METHOD 

'rhis is the method rr.ost commonly used for the solution 

of the mathe~atical problem o f finding t he values of t h e 

de flection and the othor displacements once _the express i on. for 

the total potentia l energy i s s e t - up$ This · i s done as follows. 
I 

I f t he load q( x } is expresied i n i t s tr i gonometr i c 

Fo urier form and sui table Fourier expressi ons* fo r u 1 ( x ) t u 2{ x ) 

---·---------- · 
*By suitabl~ Fourier ~xpressions for u 7 {x ) , u 2 ( x ) and v (x) it i s 
meant thbsc satisf . ing at least some of the boundary conditions 
of th~ problem, e-pecially those related directly to values of the 
fun~tions ~ 7 ( x), . u~(x } and v(x) and, if possib~ . e, their f irst 
der1vatives buf not necessarilv hiqher order derivativesQ If the 
chosen f unctions ~re such that-the~ satisfy all the boundary con­
di tions, the so l ution· converges much fas t er. (13 ) 
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and v(x) c an be found, hese func tions could be replaced in 

{5.7) and t.e integrations erformed (the fact that the trigo o-

metric eigen-functions i1 the Fourier se-ies constitute an 

o rth ogonal ~et of functions, makes the integration a very simple 

o ne ) . The requirements for Q to be a stationary function wi ll 

now imply that its partial deri~ative with respech to every one 

of the coefficients of the Fourier expansions for u 1 (x}, u 2 (x ) 

and v ( x) should vanish. In this r..-vay a n algebraic equation may 

be obtained fo r each of those · coefficients~ 'J~he integrations 

and subsequent diff~rentiations are VP ry simple as said above 

b~cause of the o rthogonality of the functions 
nrrx Sin -L- and 

(' 0 .6 11 TI X 
L 

(sin .{_'iT X 
-L-

0 
Si 11 J>o~ J 7f X dx inx 

- L- ::: - L-
{0 .{. :f j 

Co-6 
j TT X dx --L-

::: L/2 .{. - j • 

{5.22) 

llso the partial derivatives of n with respect to each of the 

coefficients of the Fourier expansions of u 1 (x}, u 2 {x) and v(x) 

provide linear algebraic equations containing only the coeffi-

cients of the three functions corresponding to the mode considered. 

That is, the partial derivative of n with th~ nth coefficient 

of the Fourier expansion of v(x}, for instance, gives a lin~ar 

th 
algebraic equation containing th- n coefficients of u 7 ( x), 

u 2 (x ) and v(x) at most. 
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By Fourier expansion of a funct'on 6(x} which is 

defined in a finite ~nterval (the span L in this case) , it is 

meant the Fourier expansion of a function F(x} which is 

defined for the range from minus infinity to plus infinity 

and i s st:ch that in the finite interval in which the former 

function 6(x) is defined, it coincides with the latter functiono 

It is possible to find an infinite number of functions F(x ) 

satisfying che conditions above and which are developable in 

a Fourier series (the conditions for this may be found in any 

text on the s bject) ~ This means that a function 6(x} defined 

in an interval O<x<L has· many possible Fourier expansions o 

The most comrnonly chosen functions F { x) have period 2 L, where 

h~lf the 'r\1"> ...... .; "';:~ ........... ,.. .. ~.;.-.~ !._,... ____ ._,......, ....... __ ....... ._.;. .s:,....,.,....,._.; ,.... ..... If..,\ ~ .,.l-- .; 1,... .&t.. ,..._ 
- ""'"' • . """' -..... ...... ""'.. .. 0 \ ,'\,. l .... ,.\_,_ ...... '-"' \... .1.~ '-' 

other half .is constru~ted arbitrarily in one of two ways • . If 

it is ·consti ucted arbitrarily as the mirror image of the given 

function 6(x), it yields a Co~ine series whereas an anti-

symmetric choice for the other hal f of the period produces a 

Fourier expansion which i s a Sine series. Figure 5.6 shows 

these two \.vays to. construct F ( x} • 

The func~ion q(x) may be expres~ed as a Slne or a 

Co~Ine series or as any linear combination of these. The same 

thing can be said with respect ~o the variables u.
7 

{ x} , 'u.
2 

( x) 

and v. { x) , but it is recommended to choose . a series such that 

each of its ·eigenfun6tions Sa isfies most of the boundary co~-

ditons, ' because the convergence is IDQch faster. For instance, 
.._ 

the zero d~£lection at the supports of a simply supported berun 
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C o~ine and Sine Series for F{x) 

suggests the use of a Sin~ series for v ( x) (when one of the 

supports is chosen as the origin) • In order to make operations 

simpler once the eigenfunctions for v(x) are chosen to be 

sinusoidal, it i s recommended to choose a Sine. series for q(x) 

and Co~lne. series for u 1(x) and u
2

( x). This is the way the 

derivations are to b e made here, but i t is clear t hat there 

are o ther possibilities . Therefore, by choice, 



00 

q (X} ~· 

U •• (X) -
..(. 

00 

L 
n= 1 

V ( X} ·· 

b. Co.o nnx 
..(.vt -L-

I: 
n = 1 

a Sln. n:rrx n -r , 

..(. = t,z. 

where the coefficients q are given by n 

and the coe fficients an, b1n and b2n are to be found6 

Substituting these values into equation (5.7) and 

per forming integrations as · n (5.23 ) produces 

b - b 1n 2n + a 

ivi d ( 0 ) - ( -1 1 nM d ( t ) 

106 

+. ( - 7)tts t. ~ 6 {L)a - n a (b1n (5.23) 

\vhere. n.n 
s = L. 

. . 
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'The principle of the s ·:at:ionary value o f n may novJ 

be app lied by saying that 

an = :: 
~1 11 

n = J , 2 1 3 ' • • • 

Equations (S .24) are easily found to produce 

d AGa n 

dsAGa n 

( 5 .. 24 } 

(5 .. 25.b) 

(5.25.c ) 

The solution 6f the simultaneous Equation~ (5e25) 

yields the values of the coefficients at 9 b1n and b2n which, 
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once repla ce d in the Fourier e xpansion for v(x}, u 1 (x) and . 

u
2

( x ) above, provide the solution of the problem. This will 

be the exact ~otution when all terms are considered in the 

Fourier expansions 

As it was seen in Section 3.3, the second and third 

derivatives of the function v(x) are necessary for the evalua-

tion of axial stresses and shear stresses. If hese are of a· 

special interest to the designer, he can evaluate these deriva-

tives by diff~rentiating v(x} in a term by term fashion with 

only one exception .. \men end mome·nts M fi { B} are applied at the 

boundaries or along the span, the third derivative of v(x) 

with respect to x gives a divergent series because the 

funct~on F(x) corresponding to the second dP.rivativP. (C!urvat:.nrP ) 

is not ·con inuous at the boundaries*. This is an obvious 

disadvantage of the method for that particular case of loading. 

However, this is not ·the case with .any other load condition . 

An advantage of the metbod is that the solution does not have 

to be split .'in .parts when concentrated loads and moments act 

along the span. Thus, a more general system of loads than the 

one shown in Figure 5~1 could be st died. Another advantage 

is the simplicity. of the theoretical solution where the three 

differential equations in the variational calculus app~oach 

with· their eight boundary conditions became simp.ly three 

* One of the conditions for a Fourier Series to be differentiable 
term by te~~ is its continuity for the whole range -oo<x<oo. See, 
for instance, \\Thittaker, E.T. and Watson, G.N., "Modern 
An a 1 y sis " , p . 16 9 • 
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algebraic equations. The numerical evaluations, h owever, 

invo lve more calculations and the use of an ~lect:ronic comouter 

is almost necessary. 

Rayleigh's method of t aking only one te rm of the 

Four i er expansions for the variables involved is often used .. 

Even though the accuracy in the n umerical values o f t he 

i nvolved variables is usually acceptable, the higher o rder 

derivatives (second and third main ly) , so important in the 

evaluation of · ~tresses in the section give results which 

have been shown t o be far from the actri~l results. Therefore , 

thi s method is impractical for purposes of stress analysis 

and design. 



CHAPTER VI 

ALLEN 'S STRAit'! ENERGY rlfETHOD * 

6.1 I NTRODUCTION 

Hoff's generalized solutio n a s presented in the 

previous chap~er is an exact Jolutlon for the problem defined 

in Chapter II. The solution is not too ,complicated but it has 

to be obtained from three simultaneous equations with three 

unknown dependent furictions u 1 (x), u 2 (x ) and v{x) .** Therefore, 

it is worthwhile to investigat.e solutions which are obtainable 

from simpler mathematical processes. This chapter presents a 

method employed by Allen (l) in -v.;hich two constants (only one 

in problems involving sections with identical 4 skins) are intrQ-

duced in the analysis with the probable intention of simplifying 

the solution. The method followed by Allen is described in the 

following sections. 

* Allen does not claim originalit~ in his derivations. He men­
tions Willi ams, Legget and Hopkins as being the first authors 
using the idealizations employed by him. He also says that he 
follows March' and Ericksen's derivations. The method studied 
here will be referred to as Allen's because he presents it in a 
conveni~nt form for discussion. 

** In problems with symmetric loading and support conditipns 
(or with sections having rig·id inserts) , a relationship bet,,leen 
u 1 (x} .and u 2 (x} may be found and the number of differential 
equa t lons may be reduced to two. 

110 
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6. 2 ASSUMPTIONS OF BEHAVIOUR IN ALLEN 1 S STRAIN ENEI~GY ~1ETHOD 

Allen made the derivations for sandwich beams having 

identical skins only. In this work all other methods have been 

generalized to a ccount for dissimi lar skins and, in order to 

make compari sons between them, Allen's theory is also genera­

lized .. ~ o include non-symmetric sections. . This is don e by 

followi ng the derivations he makes in h i s chapter on sandwich 

plates and applying them to sandwich beams. 

The model of deformations of the section used by 

Allen is shown in Figure 6~1. The only '. difference f rom the 

general model described in Figure 2.4 results from Allen's two 

main assumption s in his theory~ One of them says that after 

lcu.ding, the angle for !(Lf!u L_y au uJ::.iy.i.ndllv vertical line in 

the core with the vertical line is a constant ~ times the 

slope v' (x). This is equivalent to saying that the ~hear 

deformation of the core y(x), and the slope v ; (x) are related 

by 

y(x) == (1-A)v'(x) ( 6 .1) 

The second assumption states that the location of the 

neutral axis, defined by g 1 and 9{ in Figure 6.1, is fixed 

along the length of the beam. 

The point H could lie outside of the core but it was 

drawn inside just to make the derivations clear~r. Allen 

invariably draws it inside the core and he does not warn about 

the possibility of H being outside of the core. 
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FIGURE 6.1 

Allen's Deformed Section 
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Because of the way Allen made his derivatioris for 

sand\vich beams having identical skins, his solution is appli-

cab le only to symmetric loading and support conditions. This 

def i ciency is improved, however, when the neutral axis is left 

free and not restrctined to a particular pointo Thus the 

solution as presented here i s applicable to any loading system. 

6a3 IMPLICATIONS OF ALLEN'S ASSUMPTIONS 

.Allen defines his neutral axis as the family of 

points in the core with no horizontal displacements. From the 

exaQt-theory developed in the previous chapter it may be easily 

found that the location of the neutral axis as defined above 

is determined bv the distance a. ixi measured (nositive when 
- I · -

downwards) from the interface of the core and the top skin 

such that 

[c.-g7 { x. ) ]u.1 (x) + . g1 {x)u2 {x) 

{ c.v' (x) + 
d-e. t1 
- c.- 91 (x) - r }v' (x) ::: 0 ( 6. 2) 

where e, d, g 7 (x), v'(x) and t 1 are as defined in Figure 6.1 

and u 1 (x) and u 2 (x) are the displ~cements of the median lines of 

the skins as defined in Figure 2 .4 . Since v' (x) is not zero 

for all values of x, the sum o f the te rms enclosed in the 

brackets must vanish for all values of x. Therefore, the 

location of the neutral axis g
7 

(x) is obtained by equalling 

the terms inside the brackets to zero~ It is evideni that, in 

general, g 1 (x) wil l be a function of x but, if it is required 
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to be a constant, this imp lies that the proportionality 

.t1 d-e · 
= c_ ( 2 - -c.- g 1 } v t ( X.} ( 6. 3} 

must exist fo r all values of x. 

The implications of Allenis assumption, expressed in 

equation (6.1), may be studied by equalling the exaet shear 

deformation expressed by formula (2~7) with Equation (6. 1 ). 

Thus 

y(x} 
d · u 7 {x) - u 2 (x) 

== -r v ' ( x' - a 1 = c . 

produces 

{ 6 . 4) 

Also, expressions (6.3) and (6.4) produce 

( 6 .. 5·. a) 

t 
u 2 (x) =-( :Ag 2 + ~)v'(x) (6 .5.b ) 

and 

(6 .5.c ) 
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Equations (6.5 ) show that linear relationships exist (according 

to Allen's assumptions ) for the three displacements involved. 

These relationships wil l be used later on. 

Concerning Allen's de finition o f neutral axis , it ~s 

felt that he should have pointed out that it could fall o u t 

of the core because, in c a ses like that, his definition loses 

its sense. 

In o r der to keep consistency, his definition of the 

neutral axis should have been ma de as the intersection of two 

lines as was specified in Chapter II of thi s work o The 

neutral axis can in fact fall outside of tP e core as shown i n 

Figure 2.5 . Case (a) corresponds to A= 
t 1 + ;t2 

which is 

the minimumG Case (b) corresponds to A ; 0 or g
1 

= oo Case (c) 

t1 
corresponds to A = 1 or g 1 = d 1 - z-· Case (d) corresponds to 

A > 1, which is oppos ite to Allen 's stat ement limiting the 

v a lue of A to a maximum value of 1. 

6. 4 VARIAT ION OF ALLEN 'S PAru~~ETER A 

Concerning his definition of the constant A, it is 

worthwhile to study it in more detail. 

From expression (6 .3) 

A ( X) ( 6. 6 ) 

whe r e the f unction in the right hand side was called A(X) to 
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make explicit that Allen's ~ is re a lly a function of x, and 

that his assumption that it is constan·t is just an approxima-

tione Since the terms on the right side can be obtained from 

Hoff's generalized solution presen-ced in the previous chapter, 

the function A(x) is easily evaluated for every case of load. 

To indicate the variation of this supposedly constant function, 

Figures 6.2 and 6.3 were plotted to show the variation over 

hal f the length for the beam described .in Figure 6o2. The 

loading conditions are also described thereo 

From Figure 6.2 it is apparent that end moments of 

the f orm Md produce values of ~ (x) which may be greater than 1, 

as opposed to what Allen states. It is also apparent that 

unsatisfactory. A third very interesting observation is · 

the way the function A(x} tends to become constant when the 

thrusts P approach the critical loading regardless of the type 

of t ransverse loading. It may be proven by using Hoff's 
I 

generalized solution that when the thrust P reaches the critical 

value , A(x) is really constant. It may also be proven that 

any other.kind of loading produces non-constant functions A(x) 

unless critical values of the end thrusts P are also actinge 

As an interesting result, Allenis approximation is exact only 

for buckling analysis. 

Figure 6.3 shows that the approximation of A(X} being 

c onstant is not too bad for uniformly distributed load but is 
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far from valid for concentra ted loading at mid-span. For the 

latte~ case ~{ x ) has a sudden change of slope at x = L/2 

b 6cause of the sudden change in shear forces. 

Incidentally, in several p arts of his book Pllen says 

that i n his Section 7.7 he would prove that the assumption of 

~{x) being constan t was valid for certain c ases of load ~ No 

such p r oof was founde 

Allen states that the limiting values of .A are 

co ~~e~pondlng to Flgu~e 2.5.a 

.A • = + · ma.x.-<.mu.m eo n~e~ponding to Figu~e 2.5.c 

Allen justifies the value for Amaximum by saying that it corres~ 

ponds to a sandwich section having a core material which is 

infinitely stiff in shear. This may look to be correct but it 

must be remembered that Allen made all his derivations based 

on the main a s sumption that the core was · very weak. As a result 

he was able to neglect some terms in the · same way as was done 

in this work. By-. no means is the case of a . section v.ri th a . stiff 

core a particular c as e of his derivations. It is very difficult 

t o think of a material being simultaneously very weak for bending 

stresses and very stiff for shear stresses. Besides, values. 

equal to and greater than 1 were obtained for core materials 

.hich were very weak in sheare These values depend mainly on 
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the applied loads ~ 

The obvious lack of meaning of Allen~s con~tant ~ 

makes it of little use~ 

6.5 STRAIN ENERGY 

Referring to Figure 6.1, the strain energy ~tored in 

each of the components of the cection ,ay be round to be as 

fo llows: 

1. Strain energy due to net elongat:on o f the skins. 

2. Strain. energy due to local bending of t he skins ~ 

3. Shear strain e~ergy in the core. 

wi t h 
. z 

F
2

(A _) = bc.G(1-A) ( 6. 7) 

In ·the same ~ay as for the other methods~ the shear 

strain ·energy stored .in t he skins is neglected along with the 

bending strai~ energy stor~d in the cor e . 
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'rhe total strain energy stored in the member is then 

gi ren by 

1 JL 2 2 U = 2 0 
{ F 

1 
{ >\, g 

1 
) [ v" ( x) ] ~- F 

2 
(A) [ v ' ( x ) ] } dx ( 6. 8) 

whe re F 7 (A , g 1 ) 
.t 1 2 t 

= b [ t 1 E 1 { g 1 A ? 2- ) + ~ 2 E 2 ( g 2 A + ~} 2 ] + ( E I ) 6 • 

6.6 LOSS OF POTENTIAL ENERGY OF THE APPLIED LOADS~ 

I f the same extArnally applied loads as the ones con-

s idered for Hoff's generalized solution (Figure 5.1) are u sed, 

the loss of the potential energy of q(x), M'( O) , M' (L) , M6(o) 

~nrJ Ai . i L i a r P- as indicated in formula (5 .. 5) bui:. nuw the losses b -

for Md(O ) 1 Md(L ) and P have different expressions. These ma y 

be easily obtained by substituting Equation {6 .5 ) into Equations 

(5.5.d) and {5.5 . f ) so that 

p .t 1 
= - d.{ d 2 ( g 1 A + z-l [ v ' ( 0 ) - v ' { L -) ] 

:t 
- d 1 ( g 1 A + ~) [ v ' ( 0 ) - vI ( L ) ] 

( 6 .. 1 0) 

where 

And finally, 

'I 



1 2 2 

v 4 b :: 

( 6 .12) 

with ( 6 .13) 

The loss of potential energy o f the applied loads may 

now be obtained by adding expressions ( SeS ) (Except f or (5.5~d) 

and (S.S .f)], (6 .10) and (6.12) . 

I
L p J ~ 2 V = -
0
q( x. ) v ( x)dx. + M'(O)v(O) - M'(L)v(L) - 2" [v'(x.)] dx 

0 1 

Mfi(O)v' ( 0) + Mn(L)v' {L) - F
4

(A) [ Md(O )v' (0} - Md(L)v' { L )] 

L 
thus V = - J

0
{ q ( x )v[ x ) + frv' ( x JJ

2
}dx + M' (O}v(O} M' ( L) v ( L) . 

( 6 "14 ) 

( 6 e 15 .,'a) 
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(6.15 .. b) 

6.7 TOTAL POTENTIAL ENERGY 

Aa before , the total pot ential energy is obtained by 

adding the strain energy and the loss of pote ntial energy. 

Hence Equation · (6o8) plus Equation (6.18) give 

J

L · F - P 
Q = 

0
{} F

1
v" 2 + - 2-z-- v' 2 - qv}dx + M' (O}v{O} - M' ( L)v(L) 

( 6 .. 16) 

There are as before seve~al possibilities for applying 

th~ principle of the minimum potential energye The approa ches 

following the Rayleigh-Ritz' procedure are usually simp l er but 

the methods provided by the Calculus o f Variations furnish a 

great deal of useful information. Even though Allen invariably 

uses a Rayleigh-Ritz approach, it was thought to be interesting 

to inc l ude the Variational Calculus approach to facilitate 

comparison with Ho ff's generalized method . These fuethods are 

studied next. 

6.8 VARIATIONAL CALCULUS APPROACH 

In order to simplify the-calculations somewhat, a para-

meter g - Ag 1 will be used instead of g
1 

in the derivations in 

't 
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the same way as Allen suggests~ Th~ fOnc tion v ( x} and the 

parameters ~ and g must b~ such that , when they are subjected 

to small arbitrary variations ov(x) and 8\ and 5g, the total 

potential energy n remains ·unchanged . Thus 

.. 
- M' {L)o v ( L ) - F

5
ov' (OJ + F

6
ov f (L) 

- og{F
5

qv '(O) - F v'{L) - }_ F (Lv,Zdx} = 0 
~ 6g '2 7g ~ a 

(6 .. 17) 

where 

F1>.. 

a F 1 2b c.t 2E2 (g 2>. 
:t'l. 

= ar = + -rl (6.17.a) 

aF 1 t1 :t 
Flg 

::; ag :;:: 'l.b[t1E1 (g1J.. + r) t 2 E
2

(g 2 J.. + __!)] (6.17.b) 2 

Fz:>.. 
a F 'l. 

2 b e.G ( 1 - A) (6 .17 .c) = ax- = -

aF c.d1 
F3J.. 

3 
(6 .. 17ed) = ar = (1 

F3g 

aF 3 
(6 .17.e) = ag = 

F4A. 

aF 4 c 
(6.17 .. f) ax-- a 
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d -

F 5' 
5 c [Md( O) d 1 PJ (6 .17 .. g) = ax- -- ([ -· 

A 

aF 
r; 5 p (6 .. 17.h) ; -ag-- :: 

5g 

aF, c 
F6A 

0 [ Md( L ) d 
1 

P ] (6 el7.i ) = 8r ·- -a- -

3F 
and F 6 p (6.17. j) :: 

3g 
::: 

6g 

If integration by parts of the first i ntegral . in 

Equatio .... (6 .17) is performed to eliminate the v ariations of 

t he derivatives of v( x ) and if formulae (6 el7 .a ) ~o (6el7.j) 

J
L 2 

- { P [ v ' ( 0 l - v ' ( L } ] - f F 1 g O v" dx} dg 

+ [F
7
v'''(O) (F

2
-P )v'· (O} + M'(O)]ov(O) 

- [F
1
v'''(L)-(F

2
-P)v'(L)+M'(L)]ov(L)- [F

1
v"(O) + F

5
]ov'(O) 

-4- [F
1

v "(L) + F
6

]ov' (L) . = 0 (6 .18) 

't 
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The arbitrariness of the vaziations 6~, 8g and 6v(x) 

in Equation (6.18) produces two algebraic equations for ~ and g, 

(6.19.a) 

Zc.d
1

P 
- M d ( L ) v , ( L ) ] - d ·- [ v t ( 0 ) -. v ? ( L } ] I (6.19 .. b) 

one f ourth orde r differential equation for V (X} , 

Vz[Vz 
F2 (>\ i - P q ( x ) 

( 6 .. 20) - r-·rx:Pl-J v ( x J :: 

r:TA , ~ J' , A 9P 
I I 

and four b oundary conditions: 

F {A) -P M r ( 0) 
Ei t her v J t , ( 0) 2 v' ( 0) v ( 0) given (6~2l .. a ) F"1 (A' g} = 

f1lA,gT 
or 

II v'' ' ( L) 
F

2 
(/,) -P 

v ~ ( L) M' ( L) II v ( L) " {6.2l .. b) -
'F1 (X,gl 

= 
f11A,g) 

" v" ( 0 ) 
F

5
(A,g) 

" VI ( 0) " (6. 2l.c) ;:: 

F
1 

{A,gT 

" · v" ( L) 
F

6
(A,g] 

It vI ( L) , 
(6 .. 2l.d) ::: 

T-1()\,g) 

A comparison of fo r mulae (6~19), (6 . 20) and (6.21 ) with 

(5 .13 } and (5 .. 14) seems to indicate that Al len's assumptions 
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do simplify the mathematical p roblem.. In effect, t\·Jo of t he 

three di fferential equations in (5.13) become algebraic 

( i lgebraic equations are generally easier to solve) and con­

sistently, the corresponding boundary condi t"ons disappear . . 

From a practical viewpoint, however, Allen's solution is set 

up in a way which is almost impossible to solve because of the 

difficulty in solvin g the algebraic equations~ The mathemati­

cal p rocedure to solve the set of equations (6ol9) to (6 .21) 

is described below8 

Differential Equation (6.20) may be easily solved once 

q (x) is given. The result is the deflection v(x) expressed as 

a function of ~,g 1 and four _cons tan s that will be known (al so 

as function s of ), and g 1 ) once boundary conditions ( 6 • 21) are 

applied. 'rhe function V (X) is then differentiated twice and 

the_second power~ of its first two derivatives must be inte­

grated along the span of the beam L. The resulting functions 

of ).. and g 1 , ~are substituted int~ Equations (6 .. 19) and then 

those two algebraic· equations must be solved. The solution of 

Equations (6.20) will contain trigonometric functions if F2 (.A) 

is l ess than P, Polynomia l functions if F
2

(.Al is equal toP and 

hyperbolic functions if F
2

(.A) is greater t han P. This implies 

that_any one of the three pos i bilities has to be assumed before 

solvihg Equation (6 .2 0) and , after algebraic Equations ·(6.19) 

are s olved, a verifica tion of the value of F
2

{.A) versus P has 

to be made. If the as~umed sign of F2 (.A)-P does not agree with 

th~ final finding· , one .of the wo remaining assumptions has to 
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be tr i e d and the problem solved again6 The complica ted form 

of the algebraic equations makes it almost compuls o 4 y to use 

iterative methods and this is not feasibl e \vi thout the help of 

an electronic computerc 

A possibility for simplifying the solution to the 

mathematical problem arises if V ~ b is taken as 

::: -

instead of formula (5c5~d) . This is equivalent to stating 

tha t the net shortening of the member does not affect its 

bending behaviour. Thi s was discussed in Section 5.4e This 

change implies f i rst that the neutral aYiG now is defined as 

the surface \.vhere its points h ave an axial strain equal to t he 

net axial strain in the whole section rather than zero horizon-

tal displacements . Secondly it is i mp lied that the calculated 

axial stresses in the skins will have to be added t o the stress 

in the section due to end·thrusts t o obtain the actual v alues 

of the stresses. Boundary conditions (5.14.c) and (5.14.d) and 

Equation (6.19.a) are the only ones affected as a result of the 

disappearance of the terms accompanying P. The other functions 

are not affected because u
7

(x ) and u2 (x ) always are either 

subtracted one from the other (the net displa cements in the 

skins are affected by P but heir differen~es are not) or they 

appear in a second derivative (the strains c ~used by the thrusts 
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P ~re constant and so their derivatires vanish). Hence it is 

evident that the deflection v{x) is no~ affected by the net 

stresses caused by P. In cases with no axial thrusts acting, 

logically, the same simplifications take place. In both cases, 

Equation (6.l9c a ) becomes: 

which implies that 

2 c. d T A -. d 't. t 1 + d.1 t.2 
Zd). 

. ( 6.23) 

and the problem is less difficult to solve. 

uniformly distributed load , a mid-span concentrated load, e nd 

thrusts P and symmetric moments Md{O) = Md(L } and M6(o ) = M6( L) 

were performed using a computer to solve the complicated 

algebraic equations for A. Equation (6.23) was used, therefor e 

g 1. does not have·to be considered as an independent parame ter 

any longer. The resulting constant values o f A for the parti-

cular cases de s cribed in Figure ·6.2 are described in both, 

Fig~res 6.2 and 6.3 along with the variation of the actual 

function A(X) as obtained by applying Hoff ' s general"zea 

solution. It is n o t worthwhile to i nclude the d~rivations 

here because of thei~ length and complication . 
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6.9 THE GENERAL APPLICATION OF THE RAYLEIGH RITZ NETHOD 

In view of the difficulty in solving the mathematical 

p roblem set up in Section 6.8, t he use of the very simple 

application of the Rayleigh-Ritz method seems to be recommen-

dable. The set up o f this method is described below. 

If the distributed load q(x) may be expressed in a 

S~n~ Fourier Series, 

00 

q (X) = 

the solution v(x) may be stated to have the form 

00 

v(x} = 1: an S~n T 
n= 1 

Considering the orthogonality of the eigenfunctions 

S~n n~x and Co~ nrx, Equation (6.15) may b e written as follows : 

where n7T 
s = --y· 

The total potential energy will be a minimum if 

an 
= aT 

an :: ag = 0 n =. 1,2,3, ••• 



nd 

a. = 
rt 

1s n 
=-c[F

5
(A,g) (-7) F6 (A, g ).] + qn · 

2[ 2F (' ) F (i) -P ] S S 1 A,g + 2 f\ 

1 31 

n. = 1,2, 3, •• 

00 

L: s {} ~ s [s 2
F 7:\(A·,g}+F 2A(A)]a

11
- [F 5A ( - 1)n.F 6 A]}an -O 

n=1 
(6.2 4.b ) 

(6.,2 4~c) 

From Equation (6.24.c), and using Equation (6el7.b), g 1 ma y be 

·obt ained as a function of the coefficients a. in an expression n 

having the fo rm 
00 

L: (C 1 a + C"
11

) altl 
n = 1 11 n L ,~ 

00 
( 6 .25) 

i: (d a + d" ) a. 
n = l 1n n Lrt n 

where coefficients c 7 , Qn , d1 and d" are all exclusively n L rt n L rt 

dependent on the properties of the sand\vi ch beam and thus may 

be always found. By substitutirg the appropriate f unctions 

fiom Equation (6.17) into Equation (6.24.b), an expression of 
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the form 
00 

Z ( e.
1 

a + e. )a 

A = Yl - 1 
1t n 2n rt 

(6.26) 
00 

2: ( 1 a -r ~~ }a. UJn n v"n n 
n=1 

is obtained, where the coef£icients e 1nt e 2n, 6111 and 6zn 

d epend upon the prope_ties of the beam and also upon g. 

The solution becomes very complicated because g(or g 1> 

i s a function· of the unknown coefficients a
11

, and A is a 

function of g and of a 1 the coefficients a • 
It 

The solution 

requires the use of iterative methods v,ri th two independent 

p arameters , A and g, satisfying two conditions , and as a 

i t::: u,-.:. .,.~u ri ~ -F~ ~ ,...,, 1 +-
- ·- . - -..~. ---------- . 

As i t was said in Sec ion 6 8 , the solution of the ·. 

p roble·m may be simplified by changing the definition of the 

neutral axis . In that c se the ter~ accompanying P in 

Equation (6.24.c) di appears and this equation becomes 

00 

1 L 3 2 2 2 F 1 (.A , g 1 ) l: s a
11 

= 0 e 

9 n= 7 

Because the summation is always positive, F 
1 

g ( A, g 1) must be 

equal ·to zero, which l eads _ to expression (6.23) again., ' 

In this _case, the p r oblem must be solved as followsG 

F i rst , the number of ·terms to be u sed in series expansion o f 

v( x ) has to be defined ( the method i s no longer exact ) . Then 

a val~e for . A has -to be assumed so th~t coeffici~ ts a may be 
n 
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obtai e d f~om (6.24 ~ a} n d srib ~t ' tu~~d into (6 v26) to check 

he assumed ra lue of ~. The values of t he assumed and the 

calculated A may be made to converge by an iterative process, 

and o nce a satisfactory value of ~ is obtained, the coefficients 

an may be substi .uted into the expression for v{ x ) to ob t ain 

the final solution. Computer programs to -olve the problem as 

e xplained above were used to check the accuracy of t he method 

Answers q u ite close to the exact method studi d in the previous 

sec ion were obtained by using 10 to 50 terms. Cases with 

distr i bute d loads requi re fewer terms than case - with concen-

trated loa ds and end momen s~ 

The methods presented in Sections 6e8 and 6.9 are 

impr actical because o f· the difficulty in obt.aining answers 

beca use the mathematical prob l em is ve--y cumbersome to solve. 

Allen uses a method of analysis which is valid for simply 

supp orted beams having distributed loads and end thrusts with 

no eccentricity. His method is expla_ined as folloHs. If an 

axial thrust P with no eccentricity and a sinusoidaly v arying 

dist r ibuted load o f the form 

q {X j ::: q Sin sx, J1 . 

n;r 
== -y act on a simply supported sandwich beam, it may be 
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found f rorn Equation (6.24 .. a )*(if only the b onding· contr ibution 

of the end thrusts is considered) hat the deflection v ( x) 

may be expressed as 

v[x) = a Sin sx. 
YL 

Allen ~hen replaces v( x ) in the expression for the total paten-

tial energy (6 ~15) and finds 0~ , 
l1 

A and g from n n 

. n : 1 , 2 ' 3 ' ~ • • 

where the subindex n was added -o A and g in order to clarify 

that the values of A and g to be obtained are applicable only 

to the nth mode. Allen does not m~ke that distinction. 

The two last equations abore produce 

(6 .. 27.a) 

and 

(6 .27 .. b) 
A n. 

and the first one yields 

2 2 
s [s F7 (An,qn) + F2 (An)-P]an:: qn 

* This i s more strict than Allen's original form. He states 
t hat the sinusoidal deflectP-d shape 'may be a.ssumed 11

• 
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or (6 .28) 

The deflection at mid-span, an, and the parameters ~n 

and gn being now known perm "ts the ~o1 1 tion to be const_ucted 

and i t is the exact mathematical solution to the problem as 

set up earlier in this chapter under the loads described 

a b ove . 

To generalize it to a gcheral dis~ributed load given 

b y 

with 

q ( X ) -

Yl1T s = L' 

00 

2: o Sin sx. ·n 
/r1 ::;!' 1. 

Al len foll ows the s ame steps again . Firs t ~he solution i s 

" a s sumed" t o be of the fo rm 

00 

v ( X) = L 
.n= 1 

a Sin sx. n 

These values are s ubsti t uted i nto e xpression ( 6~ 1 6) a nd t hen 

he applie s 

an an an 
0 "5C{ ·- ax- = ag -

n n n 
n = 1,2, 3 , ••• 

' I 

t ' 



136 

The las· t10 of these equations give expressions 

similar to Equations (6 o27) the first equation g'ves fo mul 

(G·s28) s before. With those three values known, the solution 

is easily constructed. 

6.1 CONCLUSICNS 

It ,.,as shown in this chapter that Allen's assumptions 

simplify the problem of bending of sandwich beams under certain 

cond1tions of loading and if his mathematical methods are 

followed . Calculations .we:e perfor~ed for several loading 

cases in order to compare the accuracy of the solution. The 

results are commented on below., 

. r" .i.lJure 6., t1 shows a plot_ f t:he ae£ ect~on :tor halt the 

span of a simply supported beam subjected to uniformly distri ­

buted loading& The intensity of this load a d the properties 

of the beam unde r conside.ation are also indicated. The solu­

tions are ob~ained by the Equiva lent I-beam approach (both 

with and without including shear deformations of the core) . and 

the exa~t ~ olu~ion as presented in Chapter V are also included 

as a bas is for co~parisons. A close agreeme~t between All~n's 

Strain Energy method nd th e.x.ac.t ~ oR.u.tio 1'- is observed, .. the 

I. aximum difference (at mid-span ) beirig 1.4 percent. 

The convergence of both Rayleigh-Ritz methods studied 

in Sections 6. 9 and 6 ~ 10 is very fa-=;t.. The solution plotted 

i;.1 Figure 6. 4 \ .. ;as calc lated \vi th 50 terms and the first 8 

digits coincide. in'both approaches and in the variational 
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calculus approach~ A much smaller number of terms \vould very 

likely have produced sufficiently accurate answers~ From this 

viewpoint, t1e method as presented by Allen is an improvement 

(for the particular cases of loading discusse earl~er) over 

the generalized form of Hoff's me hod studied in Chapter V. 

For ocher kinds of loading the same thing can not be said. 

Figure 6.5 presents the plot of the deflection for the 

same beam as before but subjected to a mid-span concentrated 

load. If the exact rna~hematical so~ution o~ Allen's problem 

is used {either Section 6.8 or 6o9), the difference from the 

exaet ~olu~ion is 5.0 percent at mid-span. This difference 

i~ due just to the assumptionR tha~ l(Y) ~n~ gi Rre ~onQt~nt. 

If Alleri ' s apPlication of the Rayleigh-Ritz method is used*, a 

diffe rence of 10.6 percent from the exact ~olution is obtained, 

and this difference is not acceptable~ The coincidence of the 

methods outlined in Sections 6.8 and 6.9 is in this _case almost 

.perfect (50 terms were used in all series as before). 

In cases wiih eccentric end thrusts, where the end 

moments are assumed to be of the form Md (O) = Md{L) = Pe, shown 

in Figure 6. 6, the agreement be cween the resul·ts of all formulas 

( the Equivalent I-beam method considering shear deforrnat,ions of 

the c o r e excepted) i s very good due to the very small values of 

* I n his book, Allen applies his method only to distributed loads 
and end thrusts. The way he presented his theory, ho~ever, does 

' not seem to bah its application to other loading systems. 
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hear force~ In fact, the only shear forces ·acting are due to 

the secondary moments, which a·e very small$ A difference 

betwoen A len's method described in Section 6.10 and the exact 

~olution of his method also exists in this caseo 

As a final result, the accuracy of Allen's Strain Energy 

Method is quite good for some cases of loading and not so good. 

for others. The los s in accuracy (although small in some cases) 

is a penalty for simpler mathematical methods and so it 

represents an improvement ove r Hoff's generalized solution, b t 

only for some cases of loadingn The non-applicability to cases 

involving concentrated loads ~imits its usefulness~ 



CHAPTER VI I 

PROPOSED lviE'I'HOD OF ANALYSIS 

7. 1 INTRODUCTION 

Hoff's generalized solution presented in Chapter V , 

give s an exact. solution to the probl m cdrresponding and 

limited to the assum~tions specified in Chapter IIe As was 

men t ioned , the solution of the mathematica l problem involving 

three unknown displacements (in some cases only two) was 

i mmediate interest to the engineer., Once the deflection is 

known, the other structural aspects c an be determined.. Besides , 

the introduction of all types of applied loads had to be 

include d for t~e s ake of generality . This is not very practi-

cal s ince in most cases only some of the loads appoar and s o 

the handling of all t he others mal'es the solution unnecessarily 

comp licated. Finally, the application of intermediate concen­

trated moments and forcescreatescomplicated problems for this 

type of solution. 

Allen's Strain Energy method as presented in the previous 

chapter.is an attempt to simplify the solution a little by 

introducing two parameters to r eplace t wo of the three unknowns. 

However, this simplification is made at the expense of accuracy 

~ 142 
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because arbitrary assumption~ of behariour h~ve to be imp sed • 

. lso it was noted that the solution ·s simplified only for two 

dase~ of load and that f o r all the others, the _sol·tion ~a the 

mathematical problem is much more diificult than it was 

originally 

Tle method presented 'n this chapter makes use of a 

function (the bending moment) that in i~sel1 may represent 

every kind of loading and support condition as long as they 

· affec·t the bending behaviour of the member.· The same generality 

considered in Hoff i s generalized solution may be acquired by 

the single introduction of the bending moment function. Equili-

brium consideration~ are used to eipress two of the three dis-

placemenLs in the section as functions of the benaing moment 

M(x} and tle curvature v"(x) and so the final differential 

equation contains exclusively these t~o functions. 1he relation-

ships used are taken from the ge .eralized form of Hartsock's 

solution discussed in Section 4 '_3. 

7 • 2 STRA.IIJ ENERGY 

The strain energy stored ~n the beam when t he external 
J 

b end ing moment M{x ) is acting may be separated as f611o~s: 

1) The strain energy of the net strains in the skins is 
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but u~(x) mav be obtained ~sa direct function of· he applied 
-<... .J. 

momen M(x.) and the curvature v n (x.} at t1e section x. .. 

The internal f o rces acting at the centroids of the 

skins may be regarded as co ·isting of two distinct parts. 

'rhe f irst part:. consists of forces acting in the same directions 

such t ha t they add up to the applied end ·hrust P, and are 

distr i b uted in such a way that the s~resses produced by them 

are the s ame i n both skins& This force will not affect the 

bending behaviour at all because the deforma·cion introduced by 

them i n a portion d x of the beam do s not produce any curra-

ture .. * The second part c0n~iR L S of equal forces ~cting in 

oppo si t e direc tions , a nd t hey are given by 

M( x ) + ( EI )fiv" (x ) 

- --------~---- ' 

and t h e re f o re , the strains tJ..'] ( x. } and w 2_ ( x ) are d irectly 

'obta ine d a.s 

W J (X) = 
M ( X ) . + { E I } 6 v II ( X ) 

6at 2E2 ( 7 .. l) 

whe r e n egative sig s were intro du c e d to comp ly wi t h the sign 

conve ntions (Se ction 2:4 ) . 

The same e xpressions c ould ha e b een obta i ned by t he 

* The~e f orces are def i ned as being applied to the se c tio n x , 
no t to the ends of the beam, which neans that the secondary 
moments Pv( x ) are not beina discarded~ 
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use o f expressions ( 4 .. 5), ( 4~6 ), (4 .. 7) 2u d ( 4.8) .. Furthermore, 

the identity 

in equation (7ol) produces 

t-t' t ( X) 
1 ( 2. 8-.,c ) 

which agrees with whr.. t h ad been found and conunented on in 

Section 2. 7 .. 

The implication of splitting ~he forces in the skins 

·into two parts i s tha~ , when the solution is obtained, the 

actual· strains in the skins hare to be obtained by adding 

algebraically the value obtained for w! (x ) to the net strain 
A_ 

produced by the axial thr 1st , P, which is given by 

p 

Substitution of the values for strain from Equation 7~1 

int o t he expiession for the strai n _energy g ives 

L . 
+ i-r:-)J [ M{x ) + { EI ) 1 v " ( x JJ

2
dx 

2 2 0 u 
( 7 "2 ) 

wh ere the strain energy due . to ·the elastic ~hortening of the 

member 0u~ject~d _ t6 end thrusts P was not included since it 
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does not affect the bending behaviour of the member. If 

included, it vould consist of a cons~ant which would drop out 

of the deriva~ions when differentiations ere involved. 

and s6 

It may be proven that 

1 
TITl-

. d 
= _1tr (-1- -:- ~) 

L t 1E1 t-c~ bd 2 2 

u1 = 1 JL
0

[M( x ) + (E I } 1 v"(x)] 2dx .. 
2{EI}d u 

(5.17 ) 

(7.3) 

2 ) The strain energy due to the l ocal bending o f the skins 

was f o und before to be 

(EI) fi JL 2 
u2 = 2 - o[v"{ x )J dx ( 5. 2) 

3) The final portion of the strain energy is the shear strain 

energy stored in the core. Equations (4. 12), (4 .5 ) and 

( 4.6) yield 

y ( X) = 
M'(x) + ( EI} v '' ' (x) 

6 
bdG ( 7. 4) 

Therefore , 
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{7.5) 

with 
' 2 

A = bd / c.. 

The shear strain ener gy stored in the skins and the 

energy of b e nding strains in the c o re are neglected to be 

cons i s tent with the assumptions in Chapter II and to b e 

c omparable with a ll the o ther methods s tudied h ere . The 

tota l stra i n ener gy store d i~ the member i s then g i ven by 

J
L +~!'EI)_ 

U = { f [ M(x)+(E1)
6
v"(x)] 2 [v"(x)] 2 

O 2 .( E 1} d 

(7.6) 

7 . 3 APPLICATION OF THE PRINCIPLE OF LEAST WORK ·(SUBJECTED 
TO AN EXTERNAL CONS1'RAINT) 

The relationships between the strains used in the 

evaluation of formula (7.6) [this is; ~~(x), y(x) and local 
.{_ 

bending strains in the skins] and ~he applied moment M(x) 

and t h e curvature v'' ( x) at the section x were obtained with 
~ 

the exclusive use. of equilibrium considerations. No condition 

· o f compatibility of deformations in the section were required. 

* The problem is internally s rQtically indeterminate ·and the 
mome nt M6 (x) has been chosen as the r euundant. Because of 
the cons t it u t :i. v e re 1 at ions hip { 4 • 6 ) [ M 6 ( x ) = · - ( E I ) 6 v " ( x ) ) · 
it is p e rmi s s ible t o use the curvature v" ( x ·) as the unknown 
,var iable. Th e exter nal constraint a~is e s from the independence 
of the externally applied bending moment M(x). 
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Expression (7o6) thus "ndi cates the strain energy for a beam 

having an applie d loa d M( x ) and any curvature vrr(x). 

Regar~less of the v2lue of the curvature v''(x), the stresses 

at the section are in equilibrium ~lith the applied 1 ads 

repre~ented by M{x). From al possible deformed shapes, 

indicated by th~ curvature v" {x), the ·ctual one is, according 

to the Pnlnelpte o6 Lea~t Wo~k, the one whi h corresponds to 

the mini .. urn st:rclin energy .. 

Equation (7o6) w s set up in a way which does not 

indic te zero s~rain energy before the beam has been deforned .. 

~his is no t the c a se wl1en the strain energy is expressed as 

an exclusive function o f the displacement functions 

The str in energy as given by Equation (7.6) must then 

be a' minimum , which means that any very small variation 

8v''(x) introd1ced in the curvature does not change t he value 

of ·U[the variation 8v''(xJ is made along a ho~izontal tangent 
I . 

to the c.u.Jtv e U versus v" ( x) ] • There:. fore, 

. JL 1 6 u - ' E r 1 6 0 
{ 1 E 1 1 d r M { x ) + ( E r ) n v '1 

( x l J o v , ( x. l . + v , , x ) o v t1 ( x ) 

1 + · 7\(J [ M 1 
( X ) + ( E I ) 

6 
V 1 1 1 

( X ) ] 8· V 1 1 1 
{ X. ) }' d X. = 0 

· It may be noted that in the der i ation of Equation (7c7) 

the terms·, 



were not included. ~is does not mean that secondary moments 

are being neglected~ It merus that the bonding moment M(x ) 

is prescribed to be independent of the curvature v''{x) and the 

shear force ~' ( x } i s prescribed to b e independent of v' '' (x). 

This derivation does not exclude bending moments of the form 

Pv(x) nor does it xclude the corresponding shear forces 

Pv' {x). Even momeJ ts depending on the slope, if any kind of 

load producing them could be thought of, would be automatically 

included .. 

Going back to Equation (7.7), its last term may be 

integrated once by parts and replaced to obtain 

ou I
L M+ (E I)fl v" 

( E I } ;. [ -....,-rn-u__ 
u O lE itd 

+ v" -

( EI) 
- --r;:;i {[M'{O)+(ET) v'''{O)]ov"{O} 

AG 6 

- [ M ' ( L } + ( E I ) 6 v ' ' ' { L ) ] 8 v " ( L: ) } = 0 ( 7. 8) 

The arbitrariness of the variation ov"{x) imposed on 

the curvature v"(x) requires that each of the terms in 

Equation (7 .8 ) vanish ~eparately. Applied to the integral 

function, this produces 
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M(:-: ) + (f.I) ,v"(x) M"(x)+(EI) 1 v.i.v(x) 

----1 0 rt"--- -+ v " r x 1 - --~-A~ Q = o 

which may be \ •Tr · tten in a ompac.t.. form as 

1 Z AG . ~ 
(EI), [V - (EI) JM(x} 

u d 
(7 .. 9) 

\vith 

(EI)AG = '-=-"....-

TilldfEI) n 

where V stands for d a befo e. dx This equation coincides 

perfectly with tle one found in Section 4.3 , which was 

deforma tions at the section. 

The terms outside the integral p roduce the boundary 

condition of 

Either M 1 ( B)+ {f. I ) 
6 
v' t 

1 (B) = 0 or v" ( B} given (7.10) 

where B represents both, 0 and L. 

7. 4 FORMULAE F01 SOr1E PARTICULAR CASE S OF LOADING 

It i s interest ing to study some particular loading 

sys ems on simply suppo rted sandwich beams. 

A. Uniformly distributed load of intensity q. When the 

expre~sion for the bending moment, 
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M( x.) 1 
-· "'if q(L - x}x, 

l. 

is replace d ' n equation (7~9), and the bo~ndary conditions 

1 } v ( 0) = 0, 2) v '' ( 0) = 0, 3} v 1 
( L /2) = 0 [or v {.L} = 0) and 

4} vt '' (L/2} = 0 [or v"(L) = 0], are imposed in the solution, 

the foll owing expre s sion may be obtained 

V {X} 

L 
q 3 2 3 { E I } d 2 C o -6 h a { 7[ - . x } -

= ff( E ll- { L - 2 L x. + x } x .:. [ ( E I }. ] % G [ 2 a L 
a Co.oh z 

n 
.. . y~ ... ,..... ,..:. ..... 
.. ., .... A.~.._'-" 

~~ • .-:1 A - f..,. r! I ,. 
I ·._ t.J ,,.,_ I '-

and the maximum deflection may be easily found to be 

v ( L /2} (7 .1l .. b) 

B. Concentrated load W a t a distance a from the left supporte 

O<x<a 
. . v (X.} ::: 

a (t { 2 L 2 - 3 a L + a 2 ) a W 
= 6/EI)L -. + ilT 

bW 
6 { EI ) L 

(7 .. 12,a) 

I 

a<x<L 

( 7 12 .. b) 

(I) S ,{_ YL h <X b 
ap S-~. nh. aL 
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a ..lUI 
6 rrrr 

!I(I) 

B -2 

(JJ .&..i. n. h a a w Sinh eta. 

aW 
2lTIT' 

Co-6 h aL 
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B4 B5 73 6 - 6l~iTC' = = Sinh ~a L cq..t cqJ 

lJ ::: [{ EI ) ]2AG 
Tt!Td ' A - bd 2le and a , .. b = L. 

Ce Mid-~pan concentrated load W~ 

v (X. } 
W 2 2 .. ( E I) dW L ,. 2 x 

= 4ITE'11- ' 3 L - 4 x ) x ~· . z [ r-
4a. (EI)( E1}n 

v(L/2} WL 3 WL :: + 
48T£TT 4pw 

S-i.n. h a._x - ] 

~L Co~h ~ 

O<x<L/2 (7. 13.a) 

(7 .. 13.,b) 

D. End Moment M(O) applied at . the left end. The expression 

for the bendi ng marne t, 

v ( 0) 
M(x) = ~ ( L~x } , 

replaced in differential equation (7.9) yields the solution, 

( ) M(O ) 1 2 · 2 x S..i.nh a(L-x )] 
v x - t,TETIT , 2 L - 3 L x + x J x + B 5 [ r - 1 + ----sznTiei:c- , (7 .14.a) 
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with the use of t he botndary condition~ 

7) v{O ) = 0, 2} v(L ) 0 and 3 } v" ( L ) ~ 0 

The applic ation of the fourth boundary condition (to 

define B 5 ) _ requj res knowledge about how bending moment M ( 0) 

is applied. If the portion M6(o ) of the total moment M(O) ·is 

given , the fourth boundary condition is 

· v '' { 0 ) ~ - M n ( 0 ) I ( E 1 ) 0 

and the corresponding solution is (7.14.a) with 

r ~i{ 0 ) 
? L ! t J.1 a. -

M ( 0 ) 
~}; __ ___ , 
:t- I l . "' . . n 

If the curvature of the member is not given at t he 

boundary, the mathematical formul t ' on of the problem 

[Boundary condition (7~10)] produces results where the shear 

stress in t . e core is zero at the boundary. This i equiva-

ent to the existence of a physical restriction to relative 

movement of the skins at the bound ary, and the fourth condit~on 

is 

v , t, ( 0 ) M ( 0) 
;;: 

ITE16 

vlhi ch produc~s 

(7 .. 14.c) 
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E Eccentric end thrust P with eccentricity e measured from 

the r e ference level d efined by d 1 a.nd . d
2

. In this case, 

M{x) ~ P[e + v (x}] 

and the solution of Equation (7e9) may be easily f o und to be 

v(x) - e. (7. 15 a ) 

\vhere 

PilEI)£] 
u 

after applying the boundary conditions 

7) v (O) = 0, 2) v' (L/2) = 0, 3) v''' (L/2) = 0. 

The application of the fourth boundary condition, as before, 

ca l ls for extra knowledge of the way in which the loads are 

appl i ed. If the portion M
6

(o) of the total end moment Pe 

is g i ven, the fourth condition is-

v" ( 0) ::- -

, .. ,h i ch yields 
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Of particular importanc e is the case where Mn (O} i s zeroJ 

which corresponds to the case shown in Figure 5~3~ b . In this 

situation 

s 2 + 
1 

and v( x} s 2 
· 2 

L 
= e. {-~ 'B 2 Co.6h ~l r-cx l 

137 + S, L 2 S7 L 
(,. Co !.lh - 2-

L 
+ 

8 2 c o~ s2 (2 -x) 
1 8 L ]-J }. 

'l Co-5 ~2-

In ~he c a s e wi th rigid i nsa_ts at the ends , t he 

condition 

Pv' (O) + (EI)nv'' .'(O} - 0 

i s a pplied instead and i t yields 

(7 . 1 5 . c) 

( 7.,15 .. d) 

F. Buckling load for a pin- e n ded strut. The critical load 

for a pin-e nde d strut may be easily found to be 
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2 2 iT + 
L2 

(1. 
2 

p 1T { EI) 
0 ( 7 • 16} :::: 

2 Lz c. 
1T AG 

L2 
+ TEnd" 

which coincides with the expression found by Allen · in his 

applicati n of ordinary beam heory and also in his cha.pter 

using strain energy princ:plese It was mentioned before (and 

shown in Figure 6Q2) that his assumption of a constant v~lue 

for A(x) was true for (and only for) buckling loads. 

G~ Uniformly distributed load q, mid-span concentrated load 

W, end thrusts P and end moments o f the form Md(O} = Md (L} - Pe 

acting simultaneously& This quite genera~ probLem arises 

often in the study of beam-columns. The solution may be 

easily found to be given by 

v(x ) 

O<x<L/2 (7.17 ) 

with 8
3 

- q/2P , 
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~his solution i s important because , if transverse 

loading a cts simultaneously with end thrusts and secondary 

moments are to be cons idered, no superposit ion of independent 

r esults is .allowable. 

H. Mid-span concentrated load W, end thrusts P and end 

moments of the fbrm Md ( O) - Md[L ) = Pe acting on a simply ' 

supp~rted beam column which i s initially bowed. In order to 
I 

sh6w how the rnethbd of analysis being ~tudied in this chapter 

is applicable to cases like this one, he initial bowing will 

be assumed to be p arabol ic with amplitude a (measured posittve 

~when . in . the s a me direction as the eccentricity e). The initial 
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d e formed shap e may t.he n be exrn:essed as 

4a ( 1 X X 
rlr · 

The bend ing moment is now give n by 

M(x) = ~x + P[e 4a(1 ~ r1r + (x)J, 

which , when substituted into equation (7~9), produces the 

differential equat{on 

4 2 2 2 {V -[o: - P/(E1)
0
]V -a P/{EI)}v(x) 

2 
{ ~I} [4~P 

= [~m e - 8~ l p 
I. ( FI \ . . ~ 

2 
X • 

The application of boundary conditions 

v(O) ~ v'(L/2} = v"(O) = 0, V 
1 

' ' ( 0) 
w 

= - 2TtL'J6 

yields the solution 

{7 .18) 
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7.5 THE RAYLEIGH-RITZ HETHOD 
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6-z 2 B 1 .+ 2 B 3 

2 2 ' s 1 + s 2 

f3 1 L 

z-' 

If the bending moment function ~s expressed in its 

l~ourier form, 
00 

M ( X} - i> M Sin sx, 
rt=- 1 n 

., 



lith 

t'l'TT 
s = L' 

the solution may be sta ed o be of the form 

00 

v( x) = L: 
11 - 1 

a Sl11 sx. 
11. 

If bo hare rep aced in Equation (7.6), the result is 

au aa-
11 

2 2 [M - s (EI} a 
+ s ] n t1 n 

AG 2 

2 

which, after some manipulations, produces 

2 
+ 

AG 
s nn~ M d 11 

a. = 2 2 2 , n s + C.t s ( E 1 ) 
0 

1 60 

( 7 .. 19) 

which is very easy to use, as may ·be seen from the examples 

in the following section. 

7.6 FORMULAE FOR PARTICULAR CASES OF LOADING US ING THE 

RAYLEI~H-RITZ METHOD 

All the cases to be considered correspond to a simply 



161 

supported b eam .. 

A~ Uniformly distri buted load of in ensity q. 

M(x) 1 = .2 q(L - x.} x = 
00 

= iL. 11- 1 , 3, 5' •• ~ E M Sln sx , thus M 
n = 1 n n 

and then, with the result of 

a 
n = 

2 I AG 
s -. TET1d 

2 . 2 
s + a 

4q 
Ls 5 (EI) , 

. 6 
n = 1 , 3 , 5 , ••• 

the solution v(x) is now e sily cons -ructed 

Ls 
3 p 

·B. Concentrated load W at a dista~ce a from the left support . 

M ( x) = 

b (AJ rx - O<x<a 

thus,. M 
a(V n 
1- (L- x } a<x<L, 

;!: 
2 W L S i st sa , 

( s L) 2 n. =1,2,3, •• ·• 

The coe fficients a are easily obtained from Equation n 

(7.19 ). I~ this case the simplicity of the calcul a tions is 

remarkable c ompared to the calculations in the Var iational 

Calculus approache 

G· Mid-span concentrated load W. The replacement of a = L/2 

.in the formula above yields 

n=1,3,5, • •• 

which,. a fter ~ubsti tution in Equa t ion ( 7 .. 19) , yiel.ds -
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2 AG n- 1 s + T.rrr;; zw ( -1 l ·-y--
-y---2- 4~L (:--1 .-. 

s t a s ~ ~~ 
u 

n.= 1, 3, 5, ••• 

Of particular interest is he use of only one term of 

the Fourier ex ansion~ This is equivalent to assuming a 

sinusoidal deflection (Rayleigh~s me~hod ), 

v ( L /2) - a = 1 

2 AG 
s + Tfild 

s2 + a2 
zw 

21 . 1 

s L(EI}n 

which may be rewritten as 

v{L/2) = 
(EI }d Lz 

[ AG- + :zl · (7.20) 
II 

D. Buckling load for a pin~ended strut. 

M (X) = Pv ( x) and so M = Pa. 
11 n. 

This value in Equation {7.19) yields 

2 + 
AG 

s 
TE1}d Pa 

a. 11 = 2 z 11 2 s + a s { ET ) 
6 

or 

5
2 + AG 

ITTfd p 
- 1 ] a. 

11 
= 0 2 2 s + a 



\vhich mea s 

or 

p = 
J1 

that, ei tb.(-;r a n - 0 a1d there is no deflec~ion, 

2 + 
2 

2 ( EI) n s 0', 

2 AG 
+ s -mld 

whose first mode (n =1 ) coincides wi h expression (7~16). 

1.63 

The loading cases studied above are representative of 

the possibilities of the Rayleigh-R: tz method as applied to 

the approach being studied in this· chapter. 



C'-1APTER VI I I 

OBSE . VATIOt S, CO!JCLUSIO. 15 AND RECO.MMENDATIONS 

8.1 INTRODUCTION 

Throughout this thesis, an underlying theme which has 

developed is _that the state of development of sandwich panel 

analysis as applied to civil engitiee . :ng structures is not 

adequate. It - has been shown that most of the references 

studied include inconsistencies, or are not presented in a 

Many of these deficiencies ~ere pointed out earlier, and it is 

not necessary to recount them againo 

There is, lowever, a cortribu ion o the realm of 

structura l analysis of sandwich panels that has served as a 

major refe~~nce to many other workso At the beginning of 

this study, this reference caused considerable trouble because 

of its treatment of the subjecte It seems Torthwhile to 

include it here ~ecause it serv~s the purpo~e of showing the 

state-of-the-art and because it is a major reference, its . 
. . ' 

pa~ticular deficiencies should be pointed out. _Even thoug~ 

many authors have studied the work by Hughes and Wajda(l 4 ), 

none of. them has pointed out the deficiencies. 
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8. :::. COt--11 1EN'.rS ON HUGHES !\.. 1].) \'7\.JDA f S POHHULAS 

(14) 
Hughes and Najda' do not make step by step deriva-

* tions but simply compa re ·hree method.:.. of anal.! s is • In their 

pape .. the y compare the rnid-span deflect ion of a simply suppor· ed 

sandv1ich beam \ :Ji th a con centrated load at mid-span.. Predic-

~~ons given Ly three methods of analysis .are compa~ed with 

experimenta. results. 

The firct formula they give is "The engineering formula 

of bending with al_owance made for the. deflections due to 

shearing deformations at the core", which coincides with the 

Equivalent I-Beam method with consideration of shear deforrna-

tions (Section 363). In fact, the formula they give for the 

sed here) : 

v ( L/ 2) L 3 L 
= W[--- + -] ( 8.1)' 

48(EIJ 4dG · 

while the one obtained by solving the problem as presented in 

Section 3.3 is: 

v ( L/2} l-3 L 
= wrniErr + m 1 (3.5 ) 

with 

They state <thu.t those are thr ee udiffere1 t . 11 me t hods of an a ly­
sis. I t will be proven here that they are just the result of ·· 
different approximations from the game method . 
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From a comparison of these two formulas it is apparent 

that they took A eq alto bd*, which is applicable for sand-

wi ch panels with ve ry thin s~ins as was proven earlier. Since 

the xperiments they carried out were performed on sand'~vich 

eams with thin skins, formu _a (8 .. 1) should have provided a 

solution very close to the exaet ~olutlon. 

The second formula they give was obtained by using strain 

energy principles applying Rayle igh's method The r esul t they 

give is 

v(L/Z) (8 .2) 

with 

( 3 "3) 

wher e its coincidence vri th fo rmula (7, 20) for c ases with 

thin skins,. I [Implying that ( E I) . = ( E1) d] , is clear .. 

The th ird formula given is similar to formula (7.13.b) . 

'!'able 8 .. 1 shows a comparison of Hughe s and ~'Vajda • s formula 3 

with f ormula (7 oi3.b), rewritten in a diffe~ent form to m~ke 

compar i s ons easier 

* The term b is m:ssing in some of their formulas but checks 
made on thei r calculations show that ·they t ook b= 1 inch, 
even though they state the width b for their beams was 
2 i nches .. 



I 

I 
\ 

\ 

\ 

E x a c. .t S o .t u. t ;~ o n 
-·-·--~-·-- ... -

I . 

I 

\ 

\ 

I 

\ 

whe re tt = 1 + 

( EI) d 

Q 1~' 

and 

I 

I 

I 

I 

\ 

I 

I 

\ 

\ 

\ 

\ 

\ 

I 

· aL 
Ta~th 2 

Q - 3 [ 1- cr.L ], 
(aL/2 )

2 z-

2 AG 
CY. = -~-

v 

v = 
( E1 )d{E1) l_ 

(Ell 

Hughes ·and Y,lajda· ~ s 

v(L/2) 

tt = 1 + 

3 
L 

= tt ITfTIT' 

(EI ) d 
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( 3 .. 3 .. a) 

( 8.3 .. b) 

COMP~,.RISON OF HUGHES AND WAJDA'S FORHULJ.l 3 \'i'ITH HOFF'S 
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Huc;he s and Wajda do .lot say . \•.rhe re they obtained their 

~ormulae (8.3.b), but they me ntion an article by Hoff in . their 

references. ThiQ would e xplaiJ. the similarity in the presenta-

tion of their formulae wit~ Hoff's. Hoffvs formula takes 

A = be (see Section 5.2) as do Hughes and Wajda. 

The differences bet\~en Equations ( 8e3.a ) and (8.3cb ) 

are discussed next. ,irs : , in Equation {8 .3~b ), A equal to be 

2 is used instead of bd /e This is perfectly acceptable for 

c ases with very thin skins Secondly, ,.they intra uce lower 

case and capital L symbols with no stated meaning~ The correct 

Bolution yields L/2 instead of l and L. In addition, the sign 

of the second ter m in Q is also wronge Finally, the load W is 

missing in the expression for v(L/2). Some of these must be 

printing errors but it is not possible to .know which of them 

are .. 

As a synthesis , all their fo rmulas are variations of the 

exact ~otution and result from using different approximatiorise 

Their formula 1 [ (8.1) here] neglects (EI) 6 and takes A= bdp 

both approximations being applicable to members with very thin 

skins. Formula 2 [(8.2) here] neglects (EI)
0 

and uses 

A = bd 2 / e. This.is acceptable for members with thin skins. 

Their formula 3 [(8.3~b) here], if corrected, corresponds to 

the effect of taking A = be. This fact makes it applicable to 

sections with very thin skins, regardless of the fact that 

they did not neglect (EI)
6
. 



169 

Formulas 1 and 3 should then produce almost the same 

results whi.le Formula 2 produces differences with the former 

ones solely because the method sed to so~re the matlernatical 

problem ic approximate~ These comments a re conf1*med by 

Figure Bal, which shows the results of mid-span deflection 

over load p~otted for different core thicknesses, e, for the 

three formulas as originally presented •. he results for the 

corrected Formula 3, a reproduction of their curve attributed 

to Formula 3 (not corre.ponding to either their formula 3 or 

to the correc .ed one) , the exact ~olutlon a d the ir experi­

mental curve are also sho,•ln. The properties of the beam and 

loading system are also illustrated in Figure Sale 

Th~ir conclusion with reference to ' heir F:gure 21 

(-v;hich shows the dashed curves in Figure 8. 1) is that "The 

experimental . curve takes approximately the same shape as the 

theoretical curves and lies about midway between the theoreti­

cally predicted deflection curves of Equations 2 and 3 [(8.2J 

and (8.3.b) here]. It is considered that deflections can best 

be predicted by employing Equation 2[(8a2)], which is more 

directly applicable than Equation 3 [ (8o3.b)]; Equation 1 

[( 8.1)] over estimates deflections". 

Equat'on (8.2) is derived using the same basic assumptions 

as Equation (8.1) with only the definition of the term A being 

different. However r for the thin and very thin skins used, 

this difference in definition does not create significantly 
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different results. Therefor e, the major difference between 

the two forrnul s, is that eqtation (8~2} employed an ssumed 

deflected shape instead of using the strict mathematical 

solution. Hence it is absurd o co1clude that Equation (8.2) 

is more accurate than Equ~tion (8sl) just because it corres-· 

ponds , ore c osely to the cxpar'mental results In fact, i _ 

more terms of the Fourier expansion had been taken, 

(Rayleigh-Ritz method) , it would produce results that are very · 

close to the results of Equation (8~1) ~ 

It can be observed from Figure 8.1 that curves (1) 

[from (8 .. 1)], (3c) [from (8. 3. a.) , but ,,lith A ~ be.] and the 

exact ~olution [from (8 .3.a) or {7.13.b)] produce very close 

results. This means that the terms (EI)
6 

and the difference 

in values of A are not too important becaus the skins are in 

all cases either thin or very thin .. 

Coincidentialy, their experimental curve coincides quite 

well with the curve that they should have obtained from their 

uncorrected formu l a (8.3cb), and this is a surprising result 

b ecause that formula has many errors ~ Fortunately, they seem 

to have made mistakes in plotting tha formula because, ·other-

wis e , they could h ave concluded that it was the most accurate 

one .. 

Surprisingly, from the references studied, none of the 

several authors using this p aper as a reference has pointed 

out the errors and unjustified conclusions above. 
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CONCLUSIONS 

There ex'sts a lack of complete understanding of the 

structural behaviour of sandwich panel~ on t e part of many 

of the authors dealing with the sub'ect~ The previous section 

and many of the comments ear · ier in this thesis serve as 

evidence for the a ove statement Many of the references 

s·tudied for this "1ork present inconsi .. :tencies, inaccuracies, 

printing errors, assumptions of behaviour, the validity and/or 

the justi fication of which are not confirmed, and , quite often,. 

derivations which are not clearo 

Three methods of analysis (the ones presented in 

Secti on 4.4 and Chapters V and VII) were prove to provide 

the exac~ ~olution for the problem set up in Chapter II, and 

they were proven o be equivalent. The first t~o of these 

are not very easy to apply because of lack of information 

about the necessary boundary condit:ons in the first one and 

leng t hy mathematical treatment in the $econd onee The solution 

as p r esented in Chapter VII is quite simple, is more general 

and is at least as accurate as any solution s tudied for this 

work*. In the author's opinion the merits of this method 

have been clearly indicated and it is reconunended to be used 

in the analysis and design of sand\¥ich panels. 

* Some authors do not neqlect the bending stiffness of he core 
and this would make their solutions more accurate if they had 
not inconsisten ly made the distr:bution of shear tresses in 
the core to be constant. 

't 
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The solution propo2ed in Chapter VII is not verified 

by experiments in this worl·. Several authors have stated 

t.ha.t their theo:cetical results r which· are just particular 

cases of the general solution in Chapter VII, agree with 

experimental studies. S'nce these methods are jus t particular 

cases of the general sc.ution and are the resu~t of imposing 

extra arbitrary assumptions of behaviou~ some experimental 

verification of the app_icability of Equation {7 9) nai be 

thought to have been achieved alreaiy. The need for · ~erifi6~-

tion of its atpl icability under other systems of loading is 

pointed out in Section 8e5. 

8. 4 RECOf·'LMEND.Z\.'J:'IONS FOR J.I.NALYSIS 

\7.5) 1 

.Ut! 

applied to every case' of analysis· of sandwich beams having . 

thicR identical or di ssimilar skins complying with the 

assumptions specified in Section 2e2~ Boundary conditions 

( 7 .. 10) and the two arbitrary conditions defining the deflec-
' 

tions or deflection and slope (easily prescribed in each case) 

completely define the pr~blem. For some prcl lems it could be 

simpler t"o emp1Qy the solution described in Section.7e5 

wh ich, while still corresponding to the exac~ ~olution, use s 

a differerit · ma~hematical method to obtain the answer If 

· checks of the error introduced by taking only a finjte number 

of terms a~e made, the size of the error may be controlled 

within · acceptable imits. The last method is particularly 

simple to ap~ly ~f an electronic .computer is available. 
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In c a .... e s where the skins are thin, meaning th- t their 

local bending stiffness is ne::) - · gible, the Equivalent I-B~arn 

method with a lowance for the s h ear deformation of the core 

des cribea in °ection 3~4, with 

( 3. 3) 

may be used to obtain the exact solution. To check ~hether 

the skins are really thin, the criteria given in Section 2~3 

·are valid 

\\Then the skins are very thi.n, the same comments are 

applicable and A may be taken as bd or be~ How ver , it is 

very difficult to give criteria to tell ~hether the skins are 

.very thin or not. Fort nately, this distinction does not 

seem to be necessary any longer. The simplification p rovided 

by the fact that the skins ar very thin is not \vorth':vhile 

and it is recon~ended here to use expression (3.3) above in 

every case. 

BeS RECOMMENDATIONS FOR FUTURE RESEARCH 

1 ) The t~eory developed in Chapter VII should be experimentally 

verified, particularly for unsymrnetric· loading conditions on 

·sandwich panels with hick diasimilar skins. In the ~vent that 

the · agreement b etween the experimental results and theoretical 

predictions was not ·.adequate, the general as~umptions of 

behavi9ur specified in Chapte II would have to be ievised . . 

' 2) The theoretical developments in Chapter VII should be 
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extended to carer two-1irectional bending~ This extension 

should not be very com licated. 

3) Othe~ aspects of struc~ural behariou- like wrinkling 

ins ·.ability, differential thermal c.nd shrinkage warping, 

creep, and ultimate strength should be s~udied. It is suggested 

that the mLthod proposed in Chapter VII should form the basis 

for this future worko 

4) The applicab:lity of Saint-Venantis p rinciple to some 

load ing systems on sand~ich panels should be studied experi­

mentally .. 

5) An attempt should be made to study the case of ?and,·.rich 

membars with core material which contributes significantly 

to the bending st~ffnesse 

6) The effect of concentrated loads in the neighbourhood of 

their points of application shou d ~lso b e studied. An 

assumption made in all references on sarid\\rich construction 

(this thesis included ) , is that the core is not deform~d in 

the direction OI its thickness~ This assumption shou ld n9t 

enfor~ed in this casee 

7) The applicability of derivations in Chapter VII to sand­

wich members with honeycomb cores should b e studied experi­

mentally .. 



APPENDIX A 

TESTS ON MATERIALS 

A.l INTRODUCTION 

An effort was made to identify and make a · preliminary 

study of several materials with potential for use in sand­

wich components for the building industry. Some of ~hese 

materials are new and others, while having been used before 

in t he . building industry, have not been considered as struc­

tura l materials. A preliminary experimental study of some 

of t he most relevant structural properties of those materials 

was carried out. 

A.2 CLASSIFICATION OF THE r~TERIALS STUDIED 

Two skin materials: unreinforced mortar and commer­

cially available gypsum, and three core materials: 

Styrofoam~ Polystyrene-Concrete and Sawdust-Concrete, were 

studied for this report. Because all but one of these 

materials were used in the construction of several sandwich 

panels, a roman number indicating the corresponding panel 

wil l be used to identify the materials. In addition, the 

letters SC, ST, S or C will be placed before the roman 

nurr~er above to indicate whether the material was intended 

to be used in the compressive skin, in the tensile skin, in 
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both skins, or in the core, respectively. Finally, numbers 

1, 2 ,3, ••• will be used to differentiate bet\'leen repetitions 

of the same testo 

The materials for panel I were later reconstructed, 

and they are represented as IA. One core material, Sawdust­

Concrete, was not used in any panel and has no special 

class ification .. 

A.3 DESCRIPTION OF HATERIALS 

A.3. 1 Skin Materials 

The skin materials I, IA, II, IV and V were unrein­

torced mortar cast with the following proportions by weight: 

Sand/Cement = 2.5 

Water/Cement= 0.5 

-Materials I and IA both had entrained air, obtained by 

adding .008 gr. of DEREXR air entrainment agent per lb. of 

cement. The air entrainer was added to the water. The 

mortar for the compressive skin was always vibrated, but 

_the tensile skins were not vibrated except for Panel v. 

It was observed that vibration produced segregation of the 

components in the freshly placed polystyrene-concrete core. 

However, the compressive skin was invariably cast first so 

that there was no problem in vibrating it. The sand used 

in the mortars was dried indoors for an average of seven 

days . The cement used was Normal Portland Cement. 
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The materials corresponding to the tensile and 

compre ssive skins we re cast from different batches fo r 

p a ne l s I , I I and I V. For pane l V both skins were cast from 

the s ame b a t ch . For the recons tructed mate rial IA the r e 

is n o d isti n c tion between compressive and tensile skins. 

Th e skin material III was gypsum, conmercial ly 

available in 8 ft . by 4 ft. by 1/2 inch boards. 

A.3 . 2 Core Materi~ls 

The core materi a ls I, IA, II and IV were a mix 

calle d here Poly¢ty~ene~Con~~ete, prepared as follows: 

Commer cially avai lable polystyrene beads of diameters in 

the o r d er of 1/16 inch, were mixed with a cement paste in 

the volumetric proportion of 80 per cent of beads and 20 

per cent of cement paste (Equivalent to a polystyrene/cement 

paste weight ratio of 6.24 to 100). The cement paste was 

prepared with a water/cement ratio of 0.5. Air entrainer 

(DEREXR) had previously been added to the water in materials 

I and IA in the proportions specified by the manufacturer 

but no air entrainment was used in any of the other batches. 

Polystyrene-~oncrete could never be vibrated because of 

seg regation problems. Compaction was obtained by firmly 

pressing the mix into the mold. 

R 
Expanded Polystyrene boards (Styrofoam ) , cornmer-

cially available in dimensions of 8 ft. by 4 ft. by 1 inch 

were used as core materials III and v. 
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A third core material investigated for this work was 

Sawdu~t-Conc~ete. This material was studied in an attempt 

to prod~ce a satisfactory core material using natural 

vegetable fibres as the bulk component. The proportionings 

were tried as follows. Sawdust was added to a cement paste 

with a wate r /cement ratio of 0.5. It was observed that the 

sawdust absorbed much of the water from the cement paste 

and so extra water had to be added. In the first trial the 

final cement/water/sawdust ratio was 

a) 3.038/3.137/1 

by weight, A 12 inch by 6 inch diameter cylinder was cast 

\'lith this material and two days later, when it. was reffii')Ved 

from the mold, it collapsed. The materinl still looked 

saturated and showed no signs of hardening~ It had compacted 

over 2 inches. 

For the others, the sawdust was satnrctted beforehand. 

Another five samples were cast (b in a 12 inch by 6 inch 

diameter cylinder .and the other four in 2 inch cubes). These 

were prepared with the following proportions of cement/ 

water/sawdust in weight: 

b) 2.385/3.856/1 

c) 4.000/4.600/1 

d) 5.000/5.000/1 

e) 1.370/3.350/l 

f) 1.910/3.870/1 

These samples were left in the forms for seven days. The 
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last four showed no cohesion at all when they were taken 

out of the forms. The one in the cylinder, b, did not show 

much cohesion, but at least maint~ined its shape (a finger, 

however, could go through with no difficulty). The cylinder 

was the only sample thought to be worthwhile keeping to be 

tested. One month after being cast, it was dry. The crust 

which had formed on the outside was quite hard, whereas the 

inside was dry but remained very soft (It could be desinte­

grated with the fingers or by blov.ring on it) • 

A.4 TESTS FOR COMPRESSIVE PROPERTIES 

Cylinders for compressive tests were cast for the 

mortars, the polystyrene-concrete and the sawdust-concrete. 

All of these 'vere the standard 6 inch diameter by 12 inch 

high cylinders with the exception of four samples for 

-- panel I (two of each batch) , two of the cylinders for skin 

materials IA and a preliminary test on the polystyrene­

concrete. These were cast in 3 inch diameter by 6 inch 

cylinders. The sample of sa,vdust-cement kept to be tested 

was six inches diameter but only 4 1/2 inches high. 

The tests for the compressive properties of gypsum 

board were performed on samples built up from eight 12 inch 

by 4 inch by 1/2 inch pieces of board which were joined 

together to form a 12 inch by 4 inch by 4 inch prism. The 

attachment was made \vi th clamps for one specimen and by 

glueing these pieces _together with COLMA-DURR for another 



181 

specimen. 

Some of the compressive tests were performed in a 

120 k i p capacity TINIUS OLSENR Universal Testing Machine at 

a low speed (.05 in/min) whereas the others were performed 

in a 300 kip capacity machine at a higher spe~d. In the 

first case deflections were measured as the relative displace­

ment of the loading bridge of the machine with respect to 

its base. It was found later that those readings did not 

provi de an accurate measure of the total shortening of the 

compr ession test specimens. Therefore, no value for modulus 

of elasticity are listed in Table A.l for· these tests. The 

defor mations of the specimens tested in the larger machine 

were measured using a dial gauge (.0001 inch per division) 

between the spherical seat and the base. This provided a 

reasonably accurate reading of strain. However, some varia­

tions between similar specimens would be expected because, as 

a result of eccentricity of load or local weakness of the 

cylinder it is often found that one side deforms more than 

the other. The results for strength and modulus of elasticity 

are contained in Table A.l. 

Table A.2 contains the compression test results for 

the core materials. The strains and hence the modulus of 

elasticity were obtained using displacements of the machine 

loading bridge as described above. Howeverr it w~s decided 

that the very high deformations of the specimens sufficiently 

minimized the errors associated with the measurement tech-



Test 

SC-I-1 
- · 

SC-I-2 
·-

ST-I-1 
~ 

S'l'-I-2 

S-IA- l 

S-IA-2 . 
S-IA-3 

SC-II-1 

SC- I I -2 

SC-II·-3 

ST-II-1 

S'r -II--2 

S-Ili-1 

S-III-~ 2 

SC-IV-1 

ST-IV-1 

ST-IV-2 

S-V-1 

S-V-2 

Comments 
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E E (Avg .) 
ult ault (Avg .) Commen t s a 

camp COP1}? . camp comp 

(k si ) (ksi) (ps:i. ) (psi ) 1 2 

lA 
lB 
lC 
* 

2A 
2"3 

2C 

- 2 770 
2750 - 2730 

- 2580 23i5 
- 2170 

- 6200 

3340 
3205 6380 6240 

3070 6100 

1800 -
2320 

2245 
5720 

5680 
2170 5640 

2440 2260 4410 4870 
2080 5330 

84.4 
76.4 

480 
480 

68.4 480 

1750 4740 

1885 1760 4370 3990 
1635 3610 

2380 
2355 

5500 
5725 

2330 5950 

Unrein forced mortar with no air en trainer. 
Unreinforced mortar with air entrainer. 
Gypsum. 
Mortar had been vibrated. 
12" x 6" cy linders were used in the test. 

B* 

B* 

B 

B 

B* 

E* 

B* 

A* 

A* 

A* 

A 

A 

c 
c 
A* 

A 

A 

A* 

A* 

6" x 3" cylinders \'Jere used in the test. No 
usable Ec values found. 
Built-up prisms 12 11 x 4" x 4" \vere used in the 
test. 

TABLE A.l 

B 

B 

B 

B 

B 

A 

A 

A 

A 

A 

A 

A 

c 
c 
A 

A 

A 

A 

.,."' 

COMPRESSiv'"E TEST RESULTS FOR SKIN r-t.tATERIAI.S 

I' 
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E E (Av g .) 
ult u 1 t (A , Comments (j a c omp v g · ' 

Te st 
comp c omp c omp 

(ks i) (ks i) (ps i) (psi ) 1 2 3 4 

Prel i mi n a r y 12 . 5 8 8. 0 * A 

C- I-1 57. 6 131.5 * B 56 . 5 1 32.9 
C- I- 2 55 .4 1 34.3 * B 

C-IA- 1 1 1 .0 36.4 
27.2 

B -
C-IA-2 4.7 18.1 B 

C- I A-3 4 .. 1 18.4 * B 4.0 19.8 
C-Il-\-4 4 .0 21.3 * B 

C- I I -1 26.5 24.7 73.7 
65.3 

C-II- 2 23.0 57.0 

C- IV-1 61.4 57.0 166.5 
174.3 

C-IV- ? 52.7 182.2 

Sat.~dus t-- 14.7 260.0 * 
c e ment 

1. Af ter failure it was learned that voics insice (due to the 
qompaction har) had reduced the effective area considerably. 
Only 90% of the area of the cylinders \.v-as used for the cal-

2. 

3. 

4. 

c u l ation of both, E and a lt . cornp u comp 
Cy l inders 6" x 3" v1ere used, il!stead of the standard size 
12" X 6 " .. 

Mix had air entrained (.008 gr. per lb. of cement). 
3A. - It "\vas adrlecl to the beads-cement paste. 
3B. - It was added to the water. 

Cylind~r was only 4 1/2" high (x 6" diameter). 

TARLE A.2 

COr.1PRESSIVE TESTS RESULTS FOR CORE HATERIALS 
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nique to make this values worth printing. 

The results in Tables A.l and A.2 are discussed in 

the las~ section of this Appendix. 

A.S TESTS FOR TENSILE PROPERTIES 

Two types of tests were performed to evaluate tensile 

properties of skin materials. Firstly, direct tensile tests 

were performed for gypsum. · The results obtained, however, 

are not quite reliable due mainly to the lack of appropriate 

equipment for this kind of tests. The tensile strengths and 

one measured v a lue of the modulus of elasticity are shown 

in Table A., 3 and the sample used in the test is shown. i~ 

Figure A.l. 

FIGURE A.l 

Gypsum Sample for 

Tensile Test 

Di-al Caug~ 
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Test E ten 
ult Cornments (j 
ten 

(ksi ) (psi) 1 

S- IA-l 643 c 
-

S-TI I-1 128 207 A 

S-II I-2 86 A 

ST- IV-1 355 B 

ST-IV- 2 348 B 

S-V- 1 427 c 

S-V-2 430 c 

Comments: lA Direct test. 

lB Indirect test, mid-span concentrated 
load. 

lC Indirect test, two equal concentrated 
loads at the thirds of the span. 

TABLE A.3 

TENSILE TESTS RESULTS 
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The second t ype of test was indirect. To evaluate 

both, the tensile modulus of elasticity and the ultimate 

strength in tension, beams were cast from some of the 

mortar s corresponding to the skins working under tension. 

From the load-deflection behaviour of those beams, simple 

formulas yield the tensile modulus of elasticity and the 

ultima te tensile strength once the compressive modulus of 

elasticity was known from direct compressive tests. 

Unfortunately, difficulties were encountered in obtaining 

meaningful load-deflection relationships. Therefore, only 

the indirect tensile strengths (modulus of rup ture), calcu-

lated using a constant value of E = Et are included . comp en 

in Table A.3. 

If tests of this kind are intended, it is recommended 

here to measure strains at the to~ · and the bottom of the 

mortar beam with the use of electric resistant strain gauges 

in a constant moment region instead of load-deflection 

relationships. It is also recommended here to avoid the 

use of mid-span concentrated loading systems in these tests. 

The results of these tests, shown in Table A.3, are . 
. discussed in Section A.7. 

A.6 TESTS FOR SHEAR PROPERTIES 

Two types of shear tests were tried. In the first 

one, a 20 inch by 20 inch by 3 1/2 inch sample of polysty-
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rene-concrete was cast in a mold having very stiff sides and 

hinges in the four corners. Figure A.2 shows a schematic 

descriotion of the test, ~..vhich consists of defcrming t.he 

originally souare sanple into a roniDotdal shape. The shear 

modulus and the ultimate shear strength of th~ - material being 

tests can be obtained fro~ the slope of . the graph cor~ela-

tinq the applied forces and the angular deformation of the 

sample at the corners by simple methods* . Unfortunately, 

the adhesion of the sample to the mould was· weak and the 

FIGURE A.2 

FIRST TYPE OF SHEAR TEST 

* See, -f or instance, Allen, Howard G., "Analysis and Design 
of Structural Sandt·Jich Panels '1

, Pergamon Press, p. 25 5 or 
Penzien, Joseph and Dicriksson, Theodor, "Effective Shear 
Modulus of Honeycomb Cel.lula::- Structure", .Tl.IAP_ Journal, 
Vol. 2, No . 3, Harch 1964, pp. 531-535. --------
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samp le did not defo r m into a romsoidal shape as required. 

In a ddition, the hinges used were not sufficiently strong 

and thus the t es t r e sults are not trustworthy and are not 

included here . 

The second type of shear .test '\vas more direct. Two 

blocks of the material to be tested were glued to an appa-

ratus as shoHn in Fi g ure A. 3. Shear f orces \vere .created 

by a pply ing a vertica l load downward on the mi~rlle plate. 

The dimensions of the blocks ~ere such that, in the tests 

made on polystyrene~concrete, bending deformations must 

also be taken into account . 

. The theoretical prcblem could be ideaJ.izeo as a 

beam of span 2L with both en~s built-in, heinq acted upon 

b~ a mid-span concentrated load W. In that case the deflec­

tion at the mid-span, v(L), would be given by 

v(L) (A.l) 

where E is the modulus of elasticity of the constituent 

material, 1 is the moment of inertia of the section, L is 

the length of one block, G is the shear modulus and A is 

the equivalent shear area. It was felt that the use of a 

constant distribution of shear stresses reoresents more 

accurately the case here studies and, consistently, A \vas 

taken as 

A = bh (A. 2) 
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~ .. 
.c:. 

L 

FIGURE A.3 

SECOND ·rYPE OF SHEAR TEST 
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for t h e purposes of the calculations in this case. The 

values of 1 and A in expression (A.l) give 

G = 
( (V I 2 b h ) I f v ( L J I L l 

2 (A.3.a) 

- ~(WI2bh)l[v(L)IL] 
Eh 

whe re the slope Wlv(L} is obtained by tests, E has been pre-

viously found e xperimentally and all oth~r terms are known 

dime nsions in each case. 

In some tests (1 inch thick polystyrene boarda), the 

ratio Llh was 1/6 and it may be easily proven that, under 

those circumstances, the benrling deformations are under the 

one per cent of the shear deflection. For this case, the 

simple equation 

cv I 2 b h 
G = v(L)/L (A.3.b) 

will be used instead of (A.3.a). For this reason no direct 

compressive tests to obtain the modulus of elasticity E comp 

were performed for plain polystyrene. 

Deflections were measured by attaching dial gauges 

.with magnetic bases to the sides of the middle plate with 

the tips ~ the gauges resting on the base platform of the 

testi ng machine. Unfortunately, in some of the tests (in-

dica t ed in table A.4), readings were taken at only one side 

of the appa_ratus and the results are not very reliable. In 
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E used G found G (Avg .) T -r (Avg.) Comment! 
Test max. max. 

i 

l 
(ksi) {p s i.) (psi) (ps i) (psi) 1 2 3 41 

C-I-2 56.5 
28600 

22700 29.6 29.1 · B A. B 
I 

C-I-3 lGROO /.8 .5 R A B I 
! 

C-IA-Y 4.05 1460 1360 7.9 8.0 
B B A 

C-IA-2 1260 8.0 B n l\. 

C-III-1 - 102 2.30 A B B *: 
i 

C-III-2 - 127 3 .. 59 A. B R *: 

C-III-3 - 59?. 12.8 l\ B B I 

~-

C-IV-1 57.0 14700 22100 45.8 46 .2 .. B B B 

C-IV-2 29400 46. 7 R B B 

C-V-1 405 384 12 .. 8 13.7 
,T.\, B A -

C-V-2 362 14.6 A B A 

Comments: lA Ratio h/L = 6 and so, E is not necessary in the evaluation of G. 
lB Ratio h/L = 2. 
2A Deflections were measured at only one· side of the sample. 
2R Deflections were measured at b oth sides of the s~mple. 
3A Loadinq was transmitted to the middle plate through a 1/2 inch by 

1/2 inch bar. . 
3B Loading was directly applied to t he middle plate. . 
4 The shearing strength of the glue W? S exceeded and the sampleRblocks 

slid but di d not break . Glue used was other than COLMA-DUR . 

TABLE A-4 

SHEAR TESTS PB SULTS 

t-' 
\.0 
t-' 
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fact, checks made later showed large difference s in deflec-

tions on opposite sides of the apparatus. Use c· two dial 

gauges gave reasonable average results. 

The glue used to attach the sijmple blocks to the 

apparatus vras COL!~A-DURF. (Registered trade mark by Sika 

Products) , in most saMples and other kinds of commercially 

available glue in t wo of the samples·. This second · glue did 

not oroduce good results (Drying time is of the o rder o f 

months) • 

The results presented in table A.4 are discus~ed in 

the next section. 

A.7 CONCLU SIONS 

This appendix has presented the results of some 

attempts to identify and study the properties of suitable 

materials for sandwich panel construction. The results of 

the tests, some comments on the requirements for the mate-

rial s and suggestions for improved testing techniques are 

presented below. 

A.7.1 Skin Materials. 

a) Concrete Mortar: One of the most common skin materials 
"-

is concrete mortar. It satisfies many of the requirements very 

well in that it is readily produced, is fa i rly easily made, has 

a low cost, and physically has high fire resistance, good dura-
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bility, high compressive strength and high sound proofing cha­

racteristics. The major deficiency of concrete mortar for 

skins is related to its relatively low tensile strength for 

situations where high bending moments may be encountered. The 

tens i le strength may be improved considerably. by reinforcing 

with wire mesh {Ferro-Cement), or including fine randomly 

mixed lengths of wire. The thermal insulating properties of 

the concrete mortar skins are not good so that the core must 

be counted on for most of the thermal resistance. 

Table ·A.l contains the compressive test results for 

the concrete. A large variation in strength between nominally 

similar mixes is apparent. It is obvious that mixing and curing 

operat ions were not accurately reproduced. However, the dupli­

cated strength tests for each mix are reasonably close so that 

it is concluded that the strength values indicated are repre­

sentative of the real strength. The procedure for determining 

the compressive modulus of elasticity was discussed earlier. 

From experience with normal concrete these values appear to be 

· slightly low. However, there is not too much research litera­

ture available to compare the properties of concrete mortar. 

Since low amounts of aggregate {sand) should result in a de­

creased modulus of elasticity these values are accepted as 

being reasonable. 

Table A.3 contains the tensile strength results. No 

tensile modulus~of elasticity was found so it is assumed to 
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be equal to the value from the compressive tests. 

b) Gypsum Board: The compressive and tensile properties of 

1/2 inch thick gypsum board are shown in Tables A.l and A.3 

respectively. Considerable variation in results was observed. 

The tests were not repeated to obtain confirmed values because 

panel III (the only one using gypsum) failed due to improper 

glueing so that no values were needed for predicting its be­

haviour. However, even the minimal amount of work done on 

this material indicates its value as a structural component. 

It has many of the advantages of concrete mortar and in some 

cases will be less expensive and easier to use. The fact that 

this material has largely been used to satisfy only some of 

the architectural requirements is a waste of a considerable 

cont ribution to strength. 

A.7.2 Core Materials. 

a) Polystyrene: Low density polystyrene sheets are widely 

used as thermal insulation and have the advantage of light­

ness and being available in a convenient form. Polystyrene 

has t he disadvantages of very low fire resistance, low sound 

. insulation, low strength, special bonding requirements and, 

for some applications, high cost. Polystyrene (Density 1.5 

pcf.) was studied here to see if it had sufficient strength 
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to create composite action between .the skins and to see if 

the fabrication techniques could satisfy the bonding problem. 

The only structural prope~ty needed for the theore-

tical analysis was the shear modulus. Table A.4 contains these. 

b) Polystyrene-Concrete: The polystyrene-concrete should have 

high thermal insulating values as well as providing signif~ 

icant fire resistance and sound insulation, good bonding pro-

perties and greatly improved strength as compared to plain 

Polystyrene. The increased weight is a decided disadvantage 

and some i mprovement may be achieved through use of a better 

graded selection of beads. 

It was found that the properties of ~l1e polystyrene-

concrete varied considerably from mix to mix. Aside from pos-

sible differences in mix proportions and different curing
1
it 

was concluded that the amount of compaction could have the 

largest influence on the strength and elastic properties. The 

mix tended to segregate if vibrated,therefore, it was pressed 

into the molds. Table A.2 contains results which show a dif-

ference in compressive strengths where one mix (C-IV) is 10 

times the strength of a similar one (C-IA~. Table A.4 contains 

the results of the shear tests. The values of shear strength 

and shear modulus vary in a manner which corresponds to the 

compressive tests. 

The .conclusion is that if the polystyrene-concrete 

is properly compacted, its structural properties are more 
~ 

than adequate for its intended use. 
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c) Sawdust-Concrete: The trials with sawdust-concrete were 

performed to study the possibility of using natural vegetable 

fibres. A conclusion reached is that the materials should not 

be h i ghly water absorbent, which implies either careful selec-

tion of materials or pre-treatment to seal them. Th e possibi-

lity of using charred sawdust or other vegetable fibres seems 

to b e worth considering. TDR Engineering Developments Ltd., 

Toron to*, has patented a process for burning wheat to create 

a light weight aggregate. 

A.7.3. Comments on Test Procedures. 

a) Compression Tests: For accurate measurements of deforma-

tions, the . method recommended by AS'r!-1.* *, where one dial gauge 

is clamped to the cylinder, should be replaced by a system 

which measures deformations on opposite sides of the cylinde~e 

Use of a mechanical indicator or electric resistance strain 

gauges directly on the cylinder is suggested. The latter would 

be especially applicable when small speciMens are tested. 

b) Tensile Tests: For mortar the tensile strength and .tensile 

modulus of elasticity should be found from prc~erly shaped 

specimens where bending and stress concentrations are elirnin-

·ated. This direct tensile test is probably most ~epresenta-

tive of the conditions in the sandwich panel. Another measure 

of tensile properties may be obtained by testing mortar beams 

* "vlheat as an Agqreqate 11
, ·Concrete, Vol. 6, No. 1, January 

1972, London~ Engl a nd, p: 36. 
**Hedderich , H (F. and Artuso, J. F., "Testing Concrete", Chap­

ter 12 of "Concrete Construction Hancbook", Edited by Joseph 
J. Wadd~ll, Me Graw-Hill Book Co., p. 12-16. 
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where the compressive modulus of elasticity is known. In both 

cases strains would best be measured by using electric resis­

tance strain gauges~oading sys tems producing regions with 

constant rooment are recommend ed instead of the commonly used 

mid-span concentrated loadings. 

c ) Shear Tests: Concerning shear tests , the second type 

descr ibed ~arlier in this appendix and shown in Fi~ure A.3 

is c onsidered to give qui t e accurate results. In order to 

avoid the complication of considering bending deformations, 

the d imensions of the sample blocks should be changed in such 

a way that the height-to-length ratio becomes at least of 5. 

If t h e first shear test described earlier in this appendix is 

to b e used, care must be taken to design sufficiently strong 

hinges and also very i mportant, to glue the fresh material to 

the h i nged form. COLMA-FIXR is especially recommended to glue 

fresh concrete (No matter what aggregate is used) to the steel 

. form. 

A third type of shear test that could be used consists 

in the torsion of a cylinder of the material to be tested. A 

system of loadings could be easily devised with the use of 

pu~leys to convert unidirecti~nal forces (Gravity, or produced 

by a jack) into torques. Tensile load cells would have to be 

used to account for friction effects. 
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Ae7. 4 . Resumee 

The properties ·of materials found here are . used in 

t he analysis of the panels which is presented in Appendix B. 

Because of inexperience with testing techniques and other 

problems it is suggested that the values pres~nted here be re­

garded as preliminary results and as . such must be confirmed 

by subsequent repetition of tests. 



TESTS ON SAND\AII CH BE Af .S AND B EAM-COLU~!N S 

B.l INTRODUCTION 

Five panels were constructed to be failed under beam­

column loading . Some unaffected Pieces of these were later 

failed under mid-span concentrated beam loading. The descrip­

tions and results of these tests are presented in the follow­

ing sections. 

B. 2 DE SCRIPTION OF TEST METHOPS FOR BEAH-COLUrv1 N LOADING 

The tests with beam-column loadings were performed as 

follows. Eccentric loads distributed along the width of the 

panels were applied at the centroidal line of the compressive 

skin so that e ~ d1, according to the notation used throughout 

this thesis. This loading was applied through an apparatus as 

shown in Figure B.l. 

The load cell attachments were made with weldings but, 

for Panel V, two re-placeable r ings were used instead because 

it was learned later that the weldings had very likely affected 

the load cell. As will be discussed later, the calibration of 

the load cell for the second, third and fourth tests makes it 

impossible to quote exact load levels. 

199 



Hidraulic Jack 

Elevation 
FIGURE B.l 

load Cell 

Panel 

~PPARATUS FOR APPLICATION OF ECCENTRIC END THRUSTS 
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In Panels I and III only the eccentric end load 

des c ribed above was applied. In the remain ing panels, a con­

cent rated lateral load was applied at mid-height. That load 

was applied by the use of gravity forces turned horizontally 

with the use of a pulley, as shown in Figure a.2. The attach ­

ment of the rope to the mid-height of the panel was made as 

shown in Figure B ~ 2.a for panels II and IV. In Panel V it wa s 

considered better to drill a hole through the center of the 

panel and to transmit the l~ ral mid-height concentrated load 

through a wooden beam at the opposite side, as shown in Figure 

B.2.b. A tensile load cell was used in the latter test to ex­

clude the friction effect from the pulley, but none was used 

in the tests fer panels II and IV. In these cases i t was 

intended to measure the friction effect after the test, but 

this was not done. From the results of lateral loading for pa­

nel V approximate values for friction were obtained. An exact 

reproduction of the conditions for tests of panels II and IV 

was not attempted because other problems made these results 

only approximate. 

Three dial gauges were used to measure lateral deflec-

.tions at the mid-height and at the two quarter points of the 

height. In panels II to V, a dial gauge was set at the very 

top of the panel to measure possible rotations of the ?anel 

as a whole about the bottom. In the case of Panel I, the dial 

gauges were ·all placed at its middle vertical line , but be-

4 



Clamping 
Steel Bar 

Mid-Height of Panel 

(a) 

ATTACHMENT FOR ;PANELS II AND IV 

Centered Hole Through 
Beam and Parel 

Tensile Load Cell 

(b) 

ATTACHMENT FOR PANEL V 

FIGURE B.2 

APPARATUS FOR APPLICATION OF MID-HEIGHT 

CONCENTRATED LATERAL LOADING 
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cause some gauges "''ere damaged when the sandwich panel failed 

it was decided that for the remaining panels these would be 

set at the sides of the panel. Overhanging wooden pieces had 

been clamped to the panels for the purpose of measuring those 

deflections. The distances of the final location of the tips 

of the gauges to the center line of the panels were not mea­

sured. 

B. 3 TEST RESULTS FOR BEAM-COLUI'1N LOADING 

B.3.1 Panel I 

Panel I was poured with two . 1/2 inch thick un~ ­

reinforced mortar skins and had a 1 inch thick core made out 

of Polystyrene-Concrete. These materials were described in 

Appendix A. A wooden form was used, the flatness of which 

had been checked before with an optic level. The maximum de­

formation found in the form was in the order of 1/8 inch out 

of the tangent plane and it was not possible to correct it 

any f urther from there. The compressive skin was cast first, 

vibrated and then made even. The core was cast after three 

to four hours. It was not possible to vibrate it because, 

when an attempt was made, the beads tended to rise to the 

t op, whi6h, if allowed, would produce an undesirable seg­

regat ion. The third layer, cast after three or four hcurs, 

could not be vibrated either. The free surface of the last 

cast skin produced free water in large amounts, which ~ade 

t he l evelling o f that surface difficult to accompli s h. The 
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reason for the excesive amount of \vc?ter is unkno\vn. 

The panel was cured for seven days by pouring water 

on it twice a day without taking it off the form. It is pos ­

sible that this procedure produced differential shrinkage in 

the skins, which would cause the panel to bow . initi&lly. 

However, no measurements were taken to determine any initia l 

bowing. 

Panel I had entrained air in its skins as wel~ as in 

its core material. No other panel was built 'with air-entrained 

materials. 

Panel I was tested to failure when it was forty days 

old~ The eccentric load, measur~d with the use of t he load 

cell shown in Figure B.l, was increased by 124 lbs. , which 

corresponded to the weight of the apparatus hanging from the 

cell. The deflections of the top and bottom quarters o f the 

height, which should have coincided, did not. I t was thought 

at the time that the reason for this was that . the ~ panel had 

rotated as a whole with respect to the bottom edge line. 

Results obtained with the other panels show that this was 

not the reason. The graph for Eccentric End Load P versus 

Mid-Height Deflection v ·( L/2) is presented in Figure B. 3. 

In order to evaluate the theoretical Load versus Mid­

Height Deflection· curves, the properties of the constituent. 

materials are required. It was mentioned in Appendix A the 

great difficulty experienced in obtaining meaningful values 

for those properties. The values of the Young's moduli as 
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found in Appendix A for tension and compression of t he skin 

materials were too small. In order to weigh the importance 

of thos.::; numbers, theoretical Load-versus ·~Deflection curves 

were also plotted in Figure B.3 with three different values 

of the modulus of elasticity of the skins (Assumed equal in 

tension and compression). These values are 1750 ksi, 2250 

ksi ~nd 2750 ksi [Curves (1), (2) and (3) respectively]. 

The very large differences in results suggest that very ac-

cura te tests to predict the Young's moduli o f the skins are 

nece ssary. The same thing cannot be said about the shear 

modulus o f the core when its value is a large number. In 

fact, for this panel, variations in the shear modulus, G, 

of the o rder of the 50 percent produced variations of less 

than the one percent in deflections. Had the core material 

b e e n a foamed plastics (Modulus of Shear of the order of 

500 to 1000 psi) , an exact evaluation of its value would 

have been required. A representative value of the shear roo-

dulus, which was used for these calculations, is 22.6 ksi. 

Figure B.3 also shows that, when the loading was of 

·approximately 11 kips, slightly larger forces were required 

to produce comparable deflections, that is, the panel became 

sti ffer. No reason is known for this. No reason is known for 

the difference in deflections at the quarter points of the 
\ 
he i ght either. The assumed rotation as a whole was shown not 

to exist in later panels. Finally, flaws in the manufacture 

of the panel (Initial bov.1ing, mainly) , could have influenced · 
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the results. Using E,. = 2250 ks i, the theoret'ca l results 
r 

f r maximum initial bowing of 1/8 inch a nd 1/4 inch are 

sho~ n as cur ves (4) and (5) re s p e ctively in Figure B.3~ 

In addition, it was conclude d t ha t the load cell 

u sed wa s not 100 per cent trus t worthy, beca use a fter r e-

we lding for testing later pane ls it was found to produce 

l ar~ e variat ions in rea dings .. 

Because of the uncertainty involv ed in d e t e rmining 

the modulus o f elasticity of the concrete skins, ~he a mount 

o f ·i n itial bowing and the discrep ncy in load c e ll calibra~ 

tion , it is not possible to ma k e direct conclusion s a bout 

the e l a stic analysis. However, in terms o f ultimate capac~ 

ity ,. the l a te r calibrations o f the welded load c e ll showed 

tha t it always underestimated the actual load. Therefore, 

the recorded failure load of 15.1 kips is a conser vative 

value. This corresponds to an Eccentric Load Capacity of 

7. 5 5 kips per foot of wall. 

It is interesting to study the tensile stresses which 

appear .' in 'I(ablt~ .: ~- ... 1· fo:t the . skins of the _p ahel for the coridi.-

tions .·in Figure B.3: - The most reasonable values for concrete 

ten sile strength coincide with the curve which comes closest 

to the experimental curve. 
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'[ 
Stresses at Failure (psi) 

Assumed Ef Assumed Initial Compressive 
(ksi} · BOY.Iing a (in ) 

1750 0 3032 

2250 0 2262 

2750 0 2115 

2250 1/8 2045 

22.50 1/4 1788 

TF .. BLE B .1 

THEORETICAL STPESSES AT FAILURE FOR 

CASES CONSIDERED ·IN FIGURE B.3. 

Tensile 

1740 

1009 

824 

779 

522 

B.3.2 Panel II 

Panel II was cas t in a steel form to avoid the ini-

tial unflatness. The dimensions of the panel were (as in 

Panel I) 8 feet by 2 feet, but the thickness of its tensile 

skin was made 3/4 inch instead of 1/2 inch. In the same way 

as Panel I, only the compressive skin could be vibrated. 

The tests on Panel II included the application of 

Mid-Height Concentrated Lateral Loading. The attachments 

were made as shown in Figure B.2ea but, unfortunately, the 

lack of foresight .caused that , when the !-beams to h old the 

lateral loadinq acting on the panel were tightened together, 

too much tightening started visible cracking of the panel at 

mid-height. 

In addition, the welding spots holding the load cell 

failed before. the test was c arr i ed out. The load cell fell 

down with the heavy attachments and this could have affected 
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it~ The welding spots were replaced with continuous weld 

and the resulting high temperatures could have also af-

fected the load cell. A.s a result, it was learned after 

testing Panel IV that the results frcm the load cell did 

not agree with the initial calibration. l~en the stiff 

plates used to attach the load cell to the other lo~ding 

apparatus were kept in place during the c alib ration, it was 

observed that, depending upon the placement, the initial 

ze r o was shifted by between more than 1000 lbs. and less 

th ru1 2000 lbs. After many recalibraticns, a recalibration 

c u r ve for an initial zero shi~t of 1500 lbs. was used to 

calculate the loading from the r ecorded load cell readings 

it l5 

tr cted load values will be within 500 l bs. of the actual 

values . Using these corracted values it was possible to 

h a e a fair idea of the stresses acting on the panel at the 

failure load. With an eccentric axial load of P = 2350 lbs., 

an estimated value of horizontal load W- 160 lbs., and 

t~r ing the moduli Ef = 2250 ksi and G = 22~6 ksi, it was 

found that the maximum axial stresses in the skins at fail-

ure were 488 psi in compress'on and 280 psi in tension. 

These s mall values are reasonable when the previous cracking 

is considered. 
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B. 3 .. 3 Panel III 

Panel III was constructed by glueing 1/2 inch thick 

gypsum skins on both sides of an l inch thick Expanded Poly­

styrene sheet. A commercially available adhesive recommended 

by the distributor was used. The structural strength of that 

glue was very poor and the test did no ·t produce satisfactory 

resu lts. ~·Jhen the load had so roe value near 800 lbs., the 

tens ile skin went away from the core at the bottom of the 

pane l. Prior to this, large amounts of creep were observed 

an4 the def lections were disproportionately large . The test 

was carried out two months after the construction of the 

pane l. 

was r ecorded in this case, the correction to the calibration 

of the l oad cell produces an accuracy in the evaluation of 

the applied thrusts which is sufficient to gain some idea 

of -he behaviour of this panel. Figure B.4 shows a plot of 

Mid-Height Lateral tie fle ction versus Applied End Thrusts 

for the tests performed. 

T,cst 1 shows the first curve obtained. The high 

creep may be observed at the points with P = 570 lbs. and 

P = 840 lbs ., where the test was delayed for approximately 

15 :rninu~es . Vllien the loading reached 800 lbs., t h e bottom 

of the tensile skin had very ~isibly pulled away from the 

core indicating that ·the glue had not worked properly. Host 

o f t he creep mentioned above was due to slip at the skin 
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core interfaces. 

A clamp v.ras applied at the bottom of the panel to 

correct that problem and Curve Test 2 was obtained .. \vhen 

the load reached values nearing 1140 lbs., the tensile skin 

went away from the core at the top and both ends were 

clamped after unloading. Tests 3 and 4 were perf6rmed·with 

both ends clamped. In the case of Test 4, the clamps were 

tightened more than for Test 3. 

Four curves evaluated with the theory developed in 

Chapter VII are also included& Thev were calculated from 

four differe nt values of the elastic modulus of the skins 

(75, 150, 300 and 500 ksi). Ac before, the necessity of ac­

curately evaluating the modulus of elasticity is evident. 

A beam test of a length of Gypsum board gave a cal­

culated modulus of elasticity of 230 ksi. It can be seen 

that, at low loads, all the tests give results near the 

theoretical curves corresponding to similar cases. However, 

as creep and - del~6ina~ion ·oc~urred,the deflections incr~ased 

rapidly. For Test 4 it is suggested that the very tight 

clamping significantly increased the bonding. 

The shear strenqth of the glue used was experimen­

tally found to be approximately 3.7 psi two week? after it 

had been applied. With proper bonding, this type of panel 

6ould be used in loading bearing situations. 

1 
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T.:L 3. 4 Panel IV 

Panel IV was 16 inches wide and in other respects 

was the same as Panel II, where the thickness of the tensile 

sk i n was 3/4 inch, and the constituent materials were un-

reinforced mortar and Polystyrene-Concrete. 

Eccentri c thrusts vJere appl i.ed as explained for the 

othe r panels until an axial load that was thou]ht to be small 

was reached. Horizontal loading was then applied and after-

wards, end thrusts were gradually increased until structural 

co ~ lapse occurredo 

After the test was performed it was realized th a t 

tLe readings of the load cell were very different when the 

·- "' - ~-- - -- ---- _.._..._ __ ,__..:::! 
.1:--'.J..O.I...I.:::;;J VVC.L •..:; U."-1.-0.1....~-L - , _ _._ 

n1'J....-. .: -. .: .a......: ~ 1 ,... -" 1 .: \.-,..,.... _ .. 
.l.. .i. J.\..- ...l-.l.•...J- \.-J-t.,.\. .... .._... ........ ~...._.,_,'""- ._ .... 

tion had been performed for the load cell with no attach-

ments of any kind and therefore a recalibration with the 

plates on the load cell was necessary _to be able to evaluate 

the loads that had been applied to the panel. 

The new c alibration showed that the end thrust -ap-

plied before loading laterally was not as small as was 

intended. In fact, it could have reached a value as high as 

170 0 lbs. Figure B. s' shows a plot of the deflections at mid -

height ~ersbs applied - end thrusts. The fact that no signi fi-

c ant displace~ent took place at the top edge of the beam-co-

lu . . implies that the observed differences in the deflect ions 

at the top and bottom quarter points can not be explained 

as a rotation of the panel as a whole with respect to the 
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bottom edge. Possible reasons for the large differences 

cou l d be varyi ng eccentri c ities due to imperfections o r 

twist i na of the panel under load. 

Five trials to find theoretical curves to compare 

with the experimental graphs in Figure B.S were made. Three 

of them were made \lith material properties similar to those 

commented on in Appendix A and the other t\-.ro trials showed 

the effect of different initial shapes of parabolical bow-

ing \vi th 1 / 4 inch and 1 / 2 inch amplitude at mid-height, 

' i t h curvature towards the opposite side from the eccentri-

ci t y. This was done because the likelihood of having ini tial 

bowing in panel IV was indicated by measuring of these condi-

' - , _ - -- .!:! - --
L.ct.K.t:::!L1 ..L U..L 

Panel IV. 

Panel IV failed wheri the v ertical load was increased 

t o 3 .9 kips while the horizontal load was maintained at ap-

proximately 17 5 lbs . I t is interesting to n o t e that the ten -

s i le stresses at failure, sh wn in Table B.2 , are all in the 

Case 

1 

2 

3 

4 
:--------

5 

Stresses at Failure (psi) 
Assumed Ef Jl,ssumed Initial Compressive 

(psi ) Bovring a ( in) 

1750 0 1111 

2 2 5 0 0 1 0 78 

275 0 0 1 0 59 . . 

1750 1/4 1:001 
.175 0 1 /2 891 · 

TABLE B.2 

THEORETICAL STRESSES AT FAILURE FOR 

CASES CONSIDERED IN FIGURE B.S. 

Tensile 

586 

561 

5 48 

4 9 3 

401 
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range of generally acknowledged tensile strength for 4000 

psi concrete. The test results follow the same basic shape 

of the predicted behaviour and by choosing an appropiate 

modulus of elasticity and/or an initial bowing the agree­

ment could be spectacular. 

The ultimate capacity of this panel was 3 kips ·ec­

centric axial load per foot length of wall with a horizon­

tal concentrated load giving a maximum b ending moment · 

e qu ivalent to a 33 lb/ft2 wind loading. 

B.3.5 Panel V 

Panel V was also 8 feet by 16 inch by 2~ inch and 

wi t h ~kins similar to Panel IV, but this time the core rna-

terial was a n · l inch thick Expanded ?olystyrene b oard. COL­

lVlA F IXR (Registered Trade Hark by SIKA Products) was used 

to glue the fresh mortar to the core. In this pane l unlike 

the previous ones, both skins were vibrated. 

This panel was intended to be tested unde r eccen­

tric thrusts only but the behaviour under such a load was 

very strange. In fact, the panel was even deflecting in the 

wr ong direction. It was learned that this strange behaviour 

was due to initial bowing which was probably due t o differen­

tial shrinkage. The application of lateral loading was then 

introduced. A hole was drilled in the centre of the panel 

and the lateral loading was applied as shown in Figure B.2.b. 

The load cel l for measuring the end thrusts and its attach-

ments were rep laced because it was learned after the failure 
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of Panel IV that the cell used formerly was not providing 

satisfactory results. A tensile load cell was used to mea­

sure the lateral load. Deflections at mid-height and the 

corresponding loadings were recorded and their plot is 

shown in Figure B.6. The sequence of loading was: Vertical 

loading to 1·. 04 kips; 15 lbs. horizontal load; decrease 

vertical load to 300 lbs; increase horizontal load to 65 lbs; 

increase vertical load to 560 lbs.; increase horizontal 

load to 125 lbs.; gradually increase vertical load to 3.42 

kips; and finally the horizontal loading was increased to 

fa i lure at 175 lbs. 

As happened with the other oanPls: ~PflP~~inn~ ~~ 

the t wo quarter points ~f the height were very different 

from eachother. As said before, the likely reason for this 

is unsymmetrical initial bov1ing or some misalignment ,.,hich 

would cause twisting. 

For the evaluation of the theoretical curves, the 

following data were used: Ef = 1750 ksi [Curve {l)] and 

Ef = 2355 ksi [Curve (2)],G = 385 psi, and a= 9/32 inch 

(measured) . 

It · may be observed that, even though large differences 

be::Keen the absolute expe -·imental and theoretica l values of 

the mid~height deflections exist, the general slopes of 

both curves are approximately the same. Experimental deflec­

tions were measured from a state in which the panel had 

P = 1050 lbs. and W = 15 lbs. 
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f I 

The ultimate capacity of this panel was 2560 lbs. 

eccentric axial load per foot of wall length and a concen-

trated horizontal mid-height force which produces a max~ 

imum bending moment equivalent to a wind loading of 33 psf. 

No break down in bondina between the skins and ~he Poly-

styrene core was observed. The stresses in the skins at the 

failure loading are shown in Table B.3. 

Stresses at Failure _(·psi) 
Case 

1 

2 

Assurred Ef Assumed Initial Compressive 
(ksi) Bov.Jing a (in) 

1750 9/32 1180 

2355 9/32 1162 

THEORE'J.liCAL S'rRESSES AT FAILURE FOR 

CASES CONSIDERED IN FIGURE B.6. 

B . 4 BEAM LOADING TESTS 

'rensile 

862 

870 

Undamaged portions of panels II, IV and V from the 

beam-column tests described earlier ~ere used in some beam 

loading tests. These tests consisted of application of mid-

span concentrated loads on sirn?ly supported beams. The load 

was applied by using a TINIUS OLSENR Universal Testing 

Machine. Deflections at Mid-span were recorded. The ratios 

~(L/2)/W(Mid-span deflection over mid-span concentrated 

load) were evaluated for one beam ~rom Panel II, and two 

from each of Panels IV and V. Table B.4 presents these values 
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1'est tl t2~ c. L E-t- used G us e d v{L/2)/0J (xl0- 6 in/lb} 
.L --

' . (inches) (k s i) (psi) Theoret. E~periro .. 

II 1/2 3/4 24 1 45 2250 22600 70 .. 3 75.2 

IV-1 1/2 3/4 16 1 30 1750 22600 25.7 28.0 
-· 
IV- 2 1/2 3/4 16 1 16 1750 22600 5 .. 0 21.2 

-
V-1 1/2 3/4 16 1 40 2355 385 329. 221. 

r-- --- -- - ·· 1---f--- -
V-2 1/2 3/4 16 1 40 2355 385 329. 396. 

TJI.BLE B. 4 

BEAM LOA.DING TEST RESULTS 

and~ for purposes o f comparisons, it also i n cludes the 

theoretical predictions of these v alues and the properties 

of the beams used in the theoretical e va lua t ions. 

The inconsistencies in results are large. Again 

twi sting of the panel and local crushing at the load point 

and supports could acrou nt for some of this inconsi stency. 

B. 5 SUIWlARY AND CONCLUSIONS 

The program of experi~ents describe d in this appen-

dix was aimed at studying the performance of sand~ich panels 

construe L.ed \vi th materials common to the building industry. 

The loadings applied also correspond to the common cases in 

buildings. 

Unfortunately, the results were not entirely satis ­

factory, owing mainly to the lack of experience in de a ling 

with problems o f this kind. In f ac t, the re lative i mportance 

of several of the factors involved was not known when the 
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tes t s \·.rere being carried out. Some of the mo s t important 

aspe cts will b e discussed in the following p a ragraphs. 

The flatness of the panels was always thought to 

be important b ecause of the secon d a ry mome n ts invo,ved ~ 

Even thouah t he fo rms were ensured to b e a s fl a t as pos7 

sib l e, t h e initial bowing of the hardened panel was not 

meas ured until Panel V. In the case of this panel, the ini­

tial bowi ng (p robably due to diffe r ential shrinkage of the 

skin s) wa s ncticed because of the fact that d~flection s ini­

tial l y_ o ccurr ed in the op posite di rection to tha t e xpecte d. 

The necessity fo r accurate load control is obvi o us. 

The dial gauges to me a sure deflections at the three 

quarter points o t the n eignt o i the pane l were p l a c ed a~ 

the center line in the case of Pane l I. The collapse of the 

pane l, ho ieVer, broke several of them and, for the sake of 

econ omy, it was decided to set them out of the center lines 

in t he r e maini ng cases. The deflections were measured in 

these by clamping little pieces of wood to the panels and 

meas uring the displacereents of these points. Any twisting of 

the panel as a unit would produce wrong results and this 

ver like ly happened. It is suggested here to use dial gauges 

at b o~h sides of the panel _for future tests. The average of 

thes e s~ould p roduce more reliable results than from only 

one reading. 
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The problems found in the evaluation of the proper-

ties of the materials, already commented on in Appendix A, 

made it impossible to have direct comparisons with the the­

ories developed earlier in this thesis. Only hypothetical 

the oretical curves could be plot ted. 

These difficulties plus other problems accounted 

for earlier detracted from the overall usefulness of the 

test results. However, some generalities can still be drawn. 

The high .strength of the sandwich panels with only 

1/ 2 inch thick unreinforced mortar skins and a : 1 inch thick 

Polystyrene-concrete core is satisfactory for many purposes. 

With the exception of panels II and III, the capaci ties of 

the panels were encouraging in terms of considerin g the1r 

practical application. The test of Panel II gave warning of 

the low strength of those panels to transverse compression. 

Local cracking of -the skins resulted from ·clamping _a loading· 

beam in place·. Loadings of this type must be designed for. 

Panel III made clear the suitability of Gypsum~Ex-

panded Polystyrene panels when an effe-ctive bonding is 

achieved. COLP~-DURR is . especially recow~ended for future 

trials with those materials. 

Panels IV and V were subjected to lateral loading 

equival~nt to those .produced by strong winds (30 to 40 psf. 

uniform pressure ) and they were still able to withstand 

e ccentric end thrusts over tb.e values commonly found for 

load-supporting walls in low-rise buildings. 
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