A MICRO-PASCAL INTERPRETER

MASTER OF SCIENCE (1977) McMASTER UNIVERSITY

(Computation)
TITLE:
AUTHOR:
SUFPEHRVISOR:

NUMBER OF FPAGES:

Hamilton, Ontario
A Hicro-Fascal Interpreter
David R, Bandy, B.Sc., (liclaster)
Dr. N. Solntseff

viii, 91

11

A MICRO-PASCAL
INTERPRETER

by
DAVID R. BANDY, B.Sc,

. A Project
Submitted to‘the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Master of Science

McMaster University
September 1977

ABSTHACT

A discussion of portability 1s presented along
with a description of the MICRO-FASCAL language. The
program developed and documented in this project,
accepts an intermediate abstract machine language (intcode)
as input and executes these intcode prbgrams on the HP2100.
A deécription of the intcode instruction set and the
microprograms used in the interpreter 1s given. The
Mlcro-~Fascal HMachine design reflects the current trend to

increase program portability,

111

ACKNOWLEDGEMENTS

I want to thank my supervisor Dr. N. Solntseff,
' lMark Green and Chris Bryce for their kind help durlng

my project., An honourable mention 1s reserved for the
secretarles of the Appliled HMathematics Department whose
good spirit is always refreshing, The typing was ably

handled by Virginia Rakoczy.

iv

INDEX

CHAFPTER 1 INTRODUCTION

1.1
1.1.1
1.,1.2
1.2
1.3

Portability

How Can Portability Be Achieved

Problems
Interpreters and Compilers
The Portable STAB System

CHAPTER 2 MICRO-PASCAL

2.1
2.2
2.3
2.4
2.5
2,6

Design Philosophy

Basic Features

Micro-Pascal Machine
Portability and MICRO-PASCAL
Language Assessment
Interpreter Outline

CHAPTER 3 INTERPRETER DESCRIPTION

3.1
3.2

3.2.1
3.2.2
3.2.3
3.2.4
3.3

3.3.1

Structural Design
The Micro-Pascal Machine

Data Representations

Procedure Structure
Addressing Modes
Instruction Set
Code Discussion
Main Program

. Page

N Fw e

10
11
12
13

15
17
18
19
20
21
33
33

3.3.2 OSubroutine Design
3,3.3 FProgram Input
3.4 Using The Interpreter
3.%.1 Frogram Input
34,2 cutput
3.4,3 Summary of Error Messages
3.4, Input/Output Routines
3.5 Instruction Testing
CHAPTER 4 MICROCODING
h,1 Microprogremming On The HP2100
L,2 Microprograms For The Interpreter
4,2,1 INCST
4,2,2 DECST
L,2.3 GBYTE
CHAPTER 5 INTRRPRETER TESTING
5.1 Ideal Interpreter Test Program
5.2 Sample Programs
Test Program One
Test Program Two
CHAPTER 6 SUMMARY
Conclusion
APFENDIX A hunning The Interpreter
AFFENDIX B Listing O0f HP Microprograms
APPENDIX C Test Frograms

ARITH

vi

Page
37
37
39
39
Lo
Lo

u2

Ly
Ls
L5
w7
47

50
53
sk
61

67
69

72
75

81
81

Pége

BFUNC 82

LOAD + STORE 83

LOGIC, 8l
 MANIP 86
PCALL , + 87

TRANS 88

Test of Error Messages 89
BIBLIOGRAPHY A 91

REFERENCES , - ' 91

vii

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

k.1
b,2
LL.B

FIGURES

Data Types

[1ICRO-FASCAL Interpretation on HF2100

Table of Subroutines
Subroutine Map

Instruction Reglster

Stack Representation of String

Stack Representation of An Array Header

Procedure Header IFormat

Stack Set-Up for Load Using Relative Address
Stack Set-Up for Store Using Relative Address

Helative to Absolute Address Conversion

Two-Byte Integer Load

Two-Byte Integer Store

Two-Byte Integer Stack Configuration

Case Header Format
Flowchart of Main Frogram
Input Stream Subgroups

Fix-Up Group Desecription

Stack Configuration for Frocedure Test

Program
Flowchart of INCST lMicroroutine

Flowchart of DECST Microroutine
Flowchart of GBYTE Microroutine

viii

43
L6
b7
b9

CHAPTER 1

INTECDUCTICN

This project documents the development of an
Interpreter to execute intermediate code representations
of MICHAO-FASCAL programs on the Hewlett-Packard 2100,

The interpreter is one part of a portable language system
known as the Micro-Pascal Machine., This introductory
chapter considers the vortability guestion in general and

documents my own experience with the portable STAB system,

1.1 Portability

Portability is a subjective measure of ease
with which a program can be moved from one installation
to another., A program is highly portable if the effort
required to transfer it is significantly less than the
original implementation effort, Adaptability is a related
problem which measures the ease of program alterations
needed to meet different system constraints, The
difference in these two operations is that portabllity

concerns environmentally governed changes in the algorithm,

The need for portability seems to arise in two

situations. In the first case, programs should be portable

over a whole machine range to pefmit moving to a larger
machine or adding a smaller one in parallel, The second
case concerns portabllity to and from allen machines, An
installation with a program library that is highly portable
is not as apt to be committed to a specific computer or
manufacturer, Such an installation has a better bargaining
position when in the market for new machinery, Manufacturers
whose programs are portable are able to provide working -

software in short order to complement new hardware,

A program package written in a portable fashion is
more attractive to other installations due to the relative
eagse in adaptation. Programmers can often save time and
effort by adapting an existing program that does some or
all of the desired task instead of designing a new one
from scratch, As an illustration, academic and research
people could move to other installations easily and
exchange portably designed programs avoiding much wasteful

duplication,

It has been sald that programs should not be
portable because they can be improved if they are rewritten.
However Af a program 1s portable the user has the option
to allocate resources to improve it or rewrite the progranm,
Evgn if the decision is made to rewrite, the portable
version can be used during the rewrite period and as an

aid in designing the new program,

In summary the advantsges of portability lie in
the minimization of development time and duplicate
programming effort, the retained usefulness of older

rrograns and the increased mobllity of program packages.

1.1.1 Eow Can Fortability Be Achleved?

Portability requires a program to be independent
of special properties of the operating system or, more
generally, requires that an appropriate program environment
be provided on many current installations. Some people
have suggested rigid standsrdization as a possible
solution. This solution would permit greatly increased
application portability. However, program packages like
compilers and operating systems would still have to be
installation dependent, In the past, standards have been
incomplete, compromised because specific machine features

- were not exploited and several years behind current trends,

Another solution may lie in machine independent
systems, Machine independence refers to program
properties that isolate it from the detaills of the computer
structure such as word length, addressing scheme and the

number and kind of registers,

These two solutions to the portability problem are
‘different yet not mutually exclusive, Both properties can

be achieved by using a high-level programming language,

These programs are machine dependent only with respect

to the accuracy of real arlthmetic, the range of arithmetic
values and the character set., The character set problen
can be partially alleviated through the use of a standard
L8 character set, Programs written in high-level

languages are more portable if the use of Input/Output 1is

restricted to the more standard sequential files,

Another solutlon suggests dividing a program into
a data description segment and an algorithmic section. The
algorithmic part would be as machine independent as
possible while the data description would be adjusted to
cope with the host machine, An abstract machine model 1is
a mechanistic interpretation of the dats and algorithn
split up., The basic operations and data types are used to
define a fictlitious computer or abstract machine. An
abstract machine model of this type can be used to construct
a new high-level language like MICRO-PASCAL and the

Micro-FPascal Machine,

1.1.2 Problems

One of the problems facing program portability is
the lack of good current programming standards. Strict
adherence to such standards will pave the way for more
portable programs., Portability is hindered by the wide
variation in machine codes and architectures currently

avallable in the market place.

Historically tasks such as input/output and code
generation have relied on machine-code programming, These
habits must be broken if more portable programs are to be

written,

It is often clalmed that portable software 1is
synonymous with inefficient software. Unfortunately
this has frequently been the case, Inefficiency usually
stems from data packing schemes that are not suited to
fast access on the host computer, very complicated
Interfaces to the environment like the operating system
and inefficlient code for heavily repeated loops. The
trade-off between portability and efficiency is o problem
that will likely persist for some time, Its current
solution lies in minimizing the inefficiency until machine
architectures and therefore machine-codes become

standardized,

1.2 Compiler - Interpreters and Compilers

Consider the differences in compiler - interpreter
and compiler systems in the light of our portability
discussion. A compiler - interpreter, as the‘name suggests,
performs two functlons. 1In the first phase,it analyzes
the complete source program and translates it into an
internal form. The second phase Interprets or executes

the internal code representation of the source program.

In compller systems the source vrofrsm is analyzed
and trenslated into object code, TFrograms compiled into
object code usually execute faster becsuse thils code is
handled faster by system routines than internal code is by
the interpreter, Compiler - interpreter systems tend to be
more portable than compiler systems. The compilation phase
is lergely machine independent and can usually be lifted
intasct for a transfer. The execution segment is fairly
straight-forward and can be written for the host machine

without undue difficulty if the documentation is thorough,.

Compiler systems generate machine dependent object
code which makes them significantly less portable., However,
1f the system was written to be reasonably portable and
modlfiable the prospects for successful transfer are
dramatlically improved. The machlne dependent areas such as
code generation and input/output could be clearly marked
so that modifications could proceed ss smopthly as

vossible.

1.3 The Portable STAB Systen

Prior to this project I spent about six weeks
working with the portable 3TAB system, The STAB machine
1s very similar to the Micro-Fascal Machine, STAB source
code 1is compiled into an intermediate machine language

which is subsequently interpreted,

STAB is a programming language spawned from BCFL
and designed as a high-level language implementable on
small machines as well as e stralght-forward compller
writing tool. I was writing a new STAB compiler because
the existing one was unstructured, unreadable and
unmodifiable. As parts of the new compiler were written
they were tested using the old compller. This testing
procedure was hampered COnsiderably by numerous errors
detected in my source code by the oid compiler, HMany
of the errors were not sufficiently explained by the error
messages or by the STAB programnming language documentation.
Numerous errors remained a mystery to both my supervisor,
Dr. Solntseff and myself., Initially I was able to correct
these errors by intuition and program re-organization,
However, as time went on the situation deteriorated to the
point where little real progress was being made on ny
compiler and its code was so significantly altered to
facilitate a clean compile that it was inefficient., At this

point the project was halted and thls project started.

The portable STAB system failed on two sccounts: a
poor compller and insufficient documentation., e can
conclude that a portable system needs a readable, structured
and easily modifiable compller accompanied by a full and

thorough documentation to be worksble in a new surrounding.

CHAPTER 2
MICRO-PASCAL

2.1 Degign Philosophy

MICRO=PASCAL 1s a high-level language to be
implemented on micro or mini-computers like the HP2100,
It is a language well suited for writing compilers in a

readable, understandable and modiflable form.

2.2 Baslc Features

MICRBC-FPASCAL, as its name would suggest, 1is
modelled after the full PASCAL language, The guantities
in a Mlcro-Pascal program are constants, simple variasbles,
arrays, strings, procedures and the presently unimplemented
functions, There are five types of declarations: labels,
constants, variables, procedures and functions, Data

types fall into three categorles based on their size,

SIZE NAME DESCRIPTION
One Byte Byte _ integer
Char v character
- Two Byte Integer integer
N Byte String character string
Arrsy integers, characters

figure 2.1 Data Types

Numbers in MICRO-PASCAIL are represented by one or two byte

integers.,

Arithmetic operations avallable include addition,
subtraction, multiplication and division on BYTE and
INTEGER types. The basic boolean operations of EQ, NE,
LT, LE, GT, GE, AND, OR and NOT exlst for BYTEs and
INTEGEHs. MICRO-PASCAL has four basic input/output
operations, EFEAD-reads from the current input buffer,
READLN-terminates reading from the current input buffer,
WHITE-writes to the output buffer and WRITELN-dumps the

output buffer to the desired output unit.

Valld statements include a compound form as well
as the standard assignment., A compound statement consists
of a group of statements surrounded by a BEGIN and an &ND,

The Micro-Fascal control statements are limited to a GOTC.

10

an IF-THEN and IF=-THEN-ELSE block, a CASE block and a
WHILE=-DO repeat block, Parameter passing on procedure

calls is limited to call by value only,

Some of the PASCAL features removed from
MICRO-FASCAL include sets, records, pointers, types,
reals and the BEPEAT and FOR statements, Fuller

documentation on MICRO-FASCAL is avallable elsewhere, (GRE)

2,3 Micro-Pascal lMachine

We refer to the Mlcro-Pascal package as the
Micro~Fascal Machline, The Micro~Fascal source program
is executed by a compller - interpreter which works in
two phases, Source code isg first compiled into an
intermediate abstract machine language referred to as
intcode., The intcode is then executed on the host machine,
My goal, in this project, is to develop and document an
interpreter to execute intcode programs on the Hewlett-

Packard 2100,

11

¥irst fhase

MICRC-TASCAL iero-Fesecal Compller | —5 INTCODE

SCURCE Aritten in M-F

Jecond Fhase

Frogram written in EP
INTCODE ———> | assembly languasge and
microcode executes

intcode instructions,

figure 2.2 IHicro-Fascsl Interpretation on HF2100

The Vicro-fascal lMachine has alresdy been
implemented on the CDC A400. This project will allow
flicro-Tascal progrems to be compiled into intcode on the
CDC then executed on the HF2100, The full rilcro~tascal
Fachine will be realiged on the HF2100 when the compiler

i1s written in MICRO-FASCAL and interpreted into intcode.

2.4 TFortability snd MICRO-FASCAL

e can now consider the Micro-Fascal Hachine with
respect to the portability question. The complle phase of
interpretation is falrly machine independent since 1t 1is
written in NHNICRO-PASCAL and generates the standerd
abstract machline languasge as code. It could be used with

intcode executors on various host machines requiring only

minor alteratiohs if any.

12

The execution phase of the interpreter is firmly
rooted in the host machine, 1Its flexlibility stems from
the fact that a complle operation for any source language
emitting compatible intcode progresms could be used with
1t. The execution phase could theoretically be part of a

nunber of different langusge mschines or interpreters.

2.5 Language Assegsment

Even though MICRO-PASCAL and its implementations
are still in the experimental phase, some general language
criticisms are worth considering. A MHlicro-Fascal program
must be complled then interpreted in order to run., This
two phase operation contributes to a lengthy total run
time as well as a slow exXecutlon speed., Programmers
accustomed to the larger and more powerful high-level
languages such ss PASCAL will find MICRO-TASCAL restrictive,
at least initially, due to the limited control statements.
The size restriction on lMicro-FPascal programs will depend
on the avallable host machine memory and the efficlency of

the interpreter implementation,

A strong argument for MICRO-PASCAL 1s the
avallability of a high-level language on a mini or micro-
machine that has been previously restricted to lower-level
languages, The mini or micro-maschine programmer is given
new freedom not present in assembler and machine languages.

This freedom should contribute to a reduction in program

13

development time, Since MICRO-FASCAL is = small snd simple
Janguage 1lts compiler can be written using time and space
to maximum efficliency. In a small machine environment it

1s essential that resources be efficiently allocated.

The lllcro-Fascal system 1s semi-portable since the
compile phase emits a standard mechine independent intcode.
Once the execution phase has been adapted to the host
machine to accept intcode the standard complle program can
be used. MICRO=-PASCAL is intended as s modifiable system
which is fairly flexible to local tampering unlike some

systems such as PASCAL-S.,

2.6 Interpreter Outline

The interpreter is written in Hewlett-Packard
assembly language and microcode, It accepts and executes
intcode programs which are read as a string of bytes.
These programs can be read by the interpreter from any
specified input device. As currently implemented, input
during program executlon is limlted to cards and the
keyboard while output can be routed to the line printer or

the keyboard.

Instructions executed by the interpreter are at
least one elght-bit byte long snd this first byte is split
into a group and level number, The malin program decodes

the zroup and level components of the current instructlon

14

and branches to the required group subroutine. The flow of
control within the subroutine is based on the level number
end when 1t 1s matched the required instruction 1s executed,
Control is then returned to the main program where the
instruction cycle 1is repeated untll the stop command is

encountered,

3.

1

CHAPTER 3

INTERPRETER DESCRIPTION

Structural Design

The interpreter consists of one main routine,

three miéroroutines, twenty~-five subroutines and six

input/output subroutines,

The heart of the interpreter is

the maln program, INTEP, along with the subroutines ARITH,

BFUNC, LOAD, LOGIC, MANIP, PCALL, STORE and TRANS.,

Assembler Subroutines

A - ARITH

B

H R 4 H H Qo "o oo a

ASSBY
BEGIN
BFUNC
DECSK
DIGIT
FINI

GETAD
GETBT
GETBY
GETIN
GPERR

N K X E 9 & B3 » oo W oo =
I

GT2IN
INCSK
figure 3,1 Table

INCSK
LLERR
LOAD
LOGIC
MANIP
PCALL
PUTBT
READP
STBYT
STINT
STORE
TRANS
ZASSY

of Subroutines

15

Microprogram
Subroutines
M1 - INCST
M2 - DECST

M3 = GBYTE

I/0 Subroutines

I1 - WRCRT

I2 - WRLP
I3 - RDCRD
I4 - RDCRT
I5 - RDPT
I6 - RDDSC

Main Program - INTRP

16

I1

M1l

C 7)) () (x) (=m
-
[l [vl73) 3] (m)(0) (&) (g
z m1| [m3|[m2] i3]]
13| [19 [18} (w) (&) {(J) |5
M1l (m2| (M3
i
K
K M2
M2 I
11 (12| (13 |14
- Symbols

M3

M2

<:)- represents subroutines that can call other subroutines

are avolded with a modular type design.

- represents subroutines that do not call other

subroutines

figure 3.2 Subroutine Map

The subroutine map 1llustrates the overlapsthat

17

3.2 The Micro-Pascal Machine

The lMicro-Pascal Machine consists of three main
arrays: CODE, STACK and DSPLY and a few main pointers,
Intcode generated by the Micro-Pascal compiler is stored
two bytes per word in the CODE array. The instruction
pointer, IP, points to the executable byte in the CODE array,
The STACK array is used for run-time data storage and is
referenced by all but a few instructions, SP 1s the stack
pointer which indexes the top stack element, A zero SP
value indexes the first stack element, Even though each
stack element 1s two bytes large,only the lower byte is
used in the stack operations. The level of procedure
nesting is stored in LVL, DSPLY is a sixteen bit array
used in addressing and LVL is the index of the most
current entry, When a procedure 1is called,DSPLI(LVL + 1)

. 1s set to the current value of SP. After procedure
execution the stack pointer can be reset to the proper
value using the DSPLY array. Initial values for these
variables are SP = 0, LVL = 0, DSPLY(LVL) = 0 and IP = 1,

All the interpreter instructions have an initial

byte of the following form:

18

GROUP LEVEL

4 bit 4 bit
figure 3.3 Instructlion Register

The first four bits represent the group category of the
instruction while the other four usually specify a
particular instruction within a general group classification.

There can be zero or more bytes following the initial one

that are part of an instruction.

3.2.,1 Data Representations

The data representations fall into three categories
one; two and N-byte types. Characters and integers are
stored in one byte, larger integers can be accomodated in
two bytes and strings and arrays take an unspecified
number of bytes. Strings are at least two bytes long and

appear on the stack as follows:

Byte 1 2 3essee N

PHYSICAL SIZE LOGICAL SIZE CHARACTERS .sc0eae

figure 3,4 Stack Representation of String

Each string occupies two plus the physical string size

bytes on the stack,

19

An array has a header that describes 1ts structure

and data., The header appears on the stack as 1llustrated

below:

Byte 1 2 3 L 5 6
elsize dim # 1b1 size 1 1b2 size 2 ...

elsize - the total array size in bytes

dim # - the number of array dimensions

1bl - lower bound of the first array index

size 1 the range of the first array subscript

upper bound - lower bound + 1

ete,

figure 3.5 Stack Representation of An Array Header

3.2.2 Procedure Structure

When a procedure 1is called)a seven-byte header is
created on top of the stack and an entry is made in the
DSPLY array which points to the start of the header, The
procedure call specifies the new value of LVL for the life

of the procedure and the address of the procedure,

20

Byte Contents
1 the old LVL value
2+ 3 the return address
L o+ 5‘ address of the result for functions
5 + 7 entry in DSFLY for the old LVL

figure 3.6 Procedure Eeader Formet

3.2.3 Addressing Modes

Instructions

A1l the instruction addresses are relative to
the first element of the COLE arrsy. The instruction
pointer value, IP, that references the first byte in the

CCDE array is one,

Lata

All data asddresses are relative to byte zero of
the STACK array. This starting location corresponds to a
stack pointer or SP value of zero, Stack addressing can
be relative or absolute, A relative address consists of
three bytes., An element of the DSPLY array is specified by
the index in the first byte snd this value serves as the
base address., The following two bytes form a positlve
sixteen bit displacement which is added to the base address
giving the final address. An absolute stack address

consists of two bytes which together specify a sixteen bit

stack address.

3.2.4 Instruction Set

The instructions currently implemented in the

interpreter are described below:

GROUP O - LOAD
This is a three-byte instruction in which the

LEVEL component'of the first byte points to an entry in
the DSPLY array and this value acts as the base address,
The second and third bytes of the instruction form a
sixteen bit address, ADR. The byte at address
DSPLY(LEVEL) + ADR is loaded onto the top of the stack,

GROUP 1 - STORE
STORE is a three-byte instruction where the LEVEL

part of byte one specifies an element of the DSPLY array.
Bytes two and three form a sixteen bit address, ADR, The
byte on the top of the stack is stored at stack address

DSPLY(LEVEL) + ADR.

GROUP 2 - STACK MANIPULATION
Level
0 = In this two-byte instruction byte two specifies
the number of bytes by which the stack bointer is
to be incremented,
1 - The second byte is stored on top of the stack.
2 - The string followling the first byte is stored onto

the stack., See figure 3,4 for string format.

21

GROUP 2 - STACK MANIFULATION cont'd
Level
3 - The second byte specifies the number of following
bytes that are to be loaded onto the stack,
4 ~ The top three bytes on the stack specify an index
into the D3SPLY array and a sixteen bit address,
ADR. The byte at DSFLY(LVL) + ADR is loaded onto

the stack
Low byte
3P
of address
High byte
of address SF -1
LVL SP - 2

figure 3.7 Stack Set-Up for Load Using Relative

Stack Address

22

23

GROUP 2 - STACK MANIPULATION cont'd

Level

5 - The top stack element is stored at the address

DSPFLY(LVL) + ADR.

Top Stack Element

Low byte of
gddress, ADR

High byte of
address, ADR

LVL

SF

SP -1
SP - 2
SP - 3

figure 3.8 Stack Set-Up for Store Using Relative
Stack Address

2L

GROUP 2 - STACK MANIPULATION cont'd
Level v |
6 - The three-byte relative stack address on the top of
the stack 1s converted to a two-byte absolute stack

address preceded by a zero byte.

Low byte of relative SP Low byte of absolute
address address

High byte of relative High byte of absolute

SP -1
address eddress
LVL SP - 2 0
Stack Before Stack After

figure 3.9 RHelative to Absolute Stack Address
Conversion

7 - The second byte speciflies the number of bytes by

which the stack pointer is to be decremented,

25

GROUP 2 - STACK MANIPULATION cont‘'d

 Level

8 - This instruction determines a relative stack address
and loads a two-~-byte integer onto the stack using
that address, The top three stack elements form
the relative stack address, ADR., The high byte of
an integer stored at ADR 1s loaded onto the stack
at SP = 2 while the low byte of the integer is
loaded from ADR + 1 onto the stack at SP - 1,

SP Low byte ADR Sp
SP - 1 High byte ADR sp - 1 | Low byte of
Integer
SP - 2 LVL ~ SP - 2 High byte of
Integer
Low byt f
ADR + 1 yre ot h
Integer
ADR High byte of
Integer
Stack Before Stack After

figure 3,10 Two-byte Integer Load

26

GROUP 2 - STACK MANIPULATION cont'd
Level
9 -~ Thils instruction stores the two=byte integer on
top of the stack at the relative stack address,
ADR, specified by the three bytes below 1it,

SP Low byte of
Integer
& \\\\‘s; Low byte of DSPLY (LVL)
Integer + ADR + 1
o -y [e e of
e
< | H1gh byte of | DSPLY(LVL)
Integer + ADR
SP - 2 Low byte ADR
SP - 3 High byte ADR
SP - 4 LVL
Stack Before Stack After

figure 3,11 Two-byte Integer Store

GROUP

Level

0-

27

3 = ARITEMETIC OFEBATIONS

The top stack element is negated in two's complement
form.

The two bytes on top of the stack are added together
and stored at stack position SP - 1.

The byte at STACK(SF), the top stack element, is
subtracted from STACK(SP - 1) and the result is
stored at stack position SP ~ 1,

The byte at stack position SP i1s multiplied by the
byte at SP = 1 and the result is stored at SP - 1,
The byte at stack position SP -~ 1 1s integer divided
by the byte at SP with the result stored at SP - 1.

The next five operations work with two-byte integers

that appear on the stack as follows:

SP

SP - 1
SP - 2
SP - 3

Low byte of Integer
referred to as I2

High byte of Integer

Low byte of Integer
referred to as Il

High byte of Integer

figure 3.12 Two-byte Integer Stack Configuration

GROUP

Level

5 -

o\
|

GROUP

28

3 - ARITHMETIC CFERATIONS cont'd

The top two-~byte integer, 12, is negated in two's
complement form.,

Add the integers I2 and Il storing the low byte of
the integer result at 3P - 2 and the high byte at
SP - 3.

Subtract I2 from Il and store the result at 3P - 2
and SP - 3.

ultiply I2 by I1 and store the result at SP - 2

and. SP - 3.
Divide the integer I1 by the integer I2 storing the

result at SP - 2 and 3P - 3,

4 - LOGICAL CFEHATIONS

The top two stack elements are compared according

to the specified logical relation. If the relation holds

a one

is placed at stack location SP - 1, Otherwise a

zero 1is placed at SFP - 1, The loglcal operation 1is

performed as i1llustrated below.

STACE(SP -~ 1) Logical Operator STACK(SF)

29

GROUP 4 - LOGICAL OPERATIONS cont'd
Level
0 - equal

1 - not equal

2 = less than

3 - less than or equal to

Ik - greater than

5 - greater than or equal to
The next slx operations repeat the same tests on two-byte
integers
SP Low byte of Integer

referred to as I2

Sr -1 High byte of Integer

SP - 2 Low byte of Integer
' referred to as I1

SP - 3 High byte of Integer

I1 Logical Operator I2
6 - equal
7 - not equal
8 - less than
9 « less than or equal to

10 - greater than

11 - greater than or equal to

GROUP
Level

0 =

5 « BUILT-IN FUNCTIONS

This instruction terminates the current output

line. (For those familiar with FASCAL this
corresponds to a WRITELN).

This instruction terminates reading from the current
input line, If the input is coming from cards the
rest of the card is skipped and a further resd will
use the next input card, (READLN),

The character on the top of the stack is written to
the output device specified by the byte at stack

position SP - 1. (WRITZ).

The Input/Output units currently implemented on the EF2100

are 1llustrated below:

Available for INFUT OUTFUT
Execution and 0 - CHT 0 - CRT

Input 1 - CARDS 1 - LINE PRINTER
Intcode Input<gz: PAFER TAFE

DISC

GROUP
Level

0 -

31

6 - TRANSFER OPERATIONS

This 1s an unconditional jump instruction, The
second and third bytes specify a relative
instruction address which 1s transferred to
immediately.

This 1s a conditlional jump instruction, The

second and third bytes provide a relative
instruction address which is transferred to if

the top stack element is zero., If the top stack
element is non-zero then the next instruction is
executed,

This Instruction specifles a case statement on the
top stack element, The GROUP - LEVEL byte 1s
followed by a number of case elements which consist
of a case header and code for the case element, The

case header format 1s

Byte 1 2 + 3

itenm address

figure 3.13 Case Header Format

where: 1tem - the case label for the case element
address -~ the relative instruction address

of the next case header

GROUP

Level

2 .

32

6 - THANSFER OPERATIONS cont'd

If the address vaiue is zero then the case statement
has ended. Therefore the final case element |
consists of an undefined 1£em value and a zero
address. When the case statement is executed,

the case header items are searched and compared with
the top stack item. If e metch is made, the code
corresponding to the particular case 1temvis
executed before continuing with the next instruction
after the case. When no match is made with top
stack element control passes directly to the
instruction after the case.

This instruction is a procedure return which uses
the procedure header, created on call, to recfeate
§tack condition as they were before the call.

These activities include resetting LVL, DSPFLY(LVL),
the stack pointer, SP, and the instruction pointer,
IP, tb the return address,

This is the stop instruction which terminates

program execution,

GROUP 9 - PROCEDURE CALL

The two bytes after the GROUP - LEVEL byte specify

the relative instruction address of a procedure to be

called. A procedure header 1s created on top of the stack

33

as described in section 3, The base of the procedure
header 1s pointed to by the DSPLY(LEVEL) entry and control

i1s transferred to the procedure,

3,3 Code Discussion

3.3.1 Main Program

The main program performs the following five
basic functions:
1) Declares and initializes program variables and error
messages.
2) Introduces the interpreter to the user,
3) Reads in the intermediate code,
L4} Executes the code.
5) Prints summary informastion related to interpreter

execution,

Two of the more prominent variables initialized
et the start of interpretation are STLIM, the maximum
value of stack pointer, and CODMX, the maximum number

of bytes that can be stored in the CODE array.

The program execution begins with some descriptive
information that 1s sent to the CRT vlia the BEGIN routine.
This routine flags the start of interpretation, summarizes
the input and output numbers and lets the user force program

output to the CRT or the line printer,

3

The intcode program 1s read into the CODE array
by the BREADP routine, A program pause occurs so the user
can specify the input device number, When this is
completed the program reads characters one at a time from
the input stream assembling instruction bytes and storing
them in the CODE array. Once the termination header 1is

encountered the reading process is over.

The transfer of control in the main execution
loop is based entirely on the group number of the current.
instruction. The loop begins with a call to GETBY which
recovers the current instruction byte pointed to by IP.
This byte is split into the GROUP and LEVEL components
and the GROUP number tested against the valid possibllities,
(An error message for an invalid group number is emitted
1f the matching attempt is unsuccessful,) If a match is
made,then the appropriate group subroutine is called to
execute the instruction, After execution,control returns
to the start of the loop where an end flag is inspected,
A stop instruction sets this flag and brings the main

loop to an end.

35

(smaz)

INITIALIZE VARIABLES

INTRODUCTION TO
INTERPRETER

READ IN THE PROGRAM
IN INTCODE

END MAIN LOOP
PRINT OUT SUMMARY
STATISTICS

ASSEMBLE THE NEXT STOP
INSTRUCTION INTO ITS GROUP
AND LEVEL PARTS

GROUP = 1
(STORE)
figure 3.14, TFlowchart
of Main Programnm

(STACK
0PS

CALL .
ARITH
YES 1S
CALL . ROUP = 47
LOGIC (LOGIC
OPS
NO
YES IS
CALL) GROUP = 57
BFUNC (BFUNC
OPS
NO
YES S
CALL ROUP = 6%
TRANS (TRANSFER
OPS
NO
YES 13
CALL GROUP = 9%
PCALL (PROCEDURF,
CALL)
NO

ERROR MESSAGE
ILLEGAL GROUP NUMBER

figure 3.14 Flowchart of Main Program

37

3.3.2 Subroutine Design

The msain subroutines, ARITH, BFUNC, LCGIC, MANIP
and THANS were written in as structured snd readable a
manner as possible in assembly language, The transfer of
control within these subroutines is based upon the LAVEL
number of the current instruction, A valid LEVEL value
uniquely defines an instruction within a GROUF subroutine,
These subroutines are equipped with error exits which
flag the occurrence of unexpected high LEVEL values after

the legal ones have been checked,

3.3.3 Frogram Input

The interpreter sccepts a string of octal bytes
as input, Within the input stream there can be occurrences
of three subgroups. One group consists of code bytes,
another of fix-up bytes to edit sddresses and the other

is an end of information marker.

TYFE OF INFUT 15t zyrp 219 ByTR FOLLOWING BYTES

CODE 001 nq ny bytes
FiX - UP 002 n, n, bytes
END OF INFO 143 000

figure 3,15, Input Stream Subgroups

Each form has a header consisting of two bytes, The first
byte indicates the type of input to follow. The second byte

of the code block indilcates the number of bytes that

38

follow and are to be placed in the CODE array. A code
block must be the first form appearing in the input, It
can resppear anywhere in the input stream except as the
last block which is always the end of information. The
fix-up block can appear after any code block. The nunber
of bytes in the block, specified by the second byte, is a
multiple of four since each fix-up instruction uses four
bytes. The lMicro-~-Fascal compller uses & one-pass approach
so that labels are often left unspecified until they are
encountered later on in the program scan. A zero address
is generated by the compiler when a label with an unknown
address 1s scanned, When the label i1s determined a flx-up

entry is prepared to replace the zero address,

Fix-Up Address

High byte Low byte

Byte Number 1 2 3 b
form 16-bit load at load at
relastive instruction ADR ADR + 1

address - ADR

figure 3,16 Fix-Up Group Description

The first two bytes of the fix-up group specify a
sixteen bit relative instruction address within the CODE
array where the third byte will be loaded followed by the

fourth byte in the next location, Together,these final two

39

bytes form the previously undefined label address, The
end of information block occurs only once at the end of

the input stream,

3.4 Using The Interpreter

3.4.1 Frogram Input

The intcode program can be read from disc, caxrds

and paper tape, Input is expected to be in the form of
octal bytes separated by some delimiter, Illegal
characters, those that are not octal diglts, are completely

ignored. A sample program is lllustrated below,

40

3.4.2 Qutput
Program output 1is normally routed to the unit

specified in the program code., It can also be directed to

the CRT or line printer by the user from the CRT.

3.4,3 Summary of Error lMessages

After each error message printout we get the
normal program termination output which includes the
number of instructions executed, the maximum stack
pointer value during program execution and the program
size in bytes. The error messages are summarized below.
1) Group number of current instruction is not valid.

2) Level number of current instruction is too large.

3) CODE array is too small to accomodate the program.

4) The index of the DSPLY array is greater than fifteen
and therefore references an out of bounds element,

5) The stack is too small for the current program, stack
overflow,

6) The stack pointer has been decremented below zero,
stack underflow,

7) An input block with an illegal type header, not 1, 2,

or 143, has been encountered,

If error three is encountered the slze of the CCD=
array can be increased by changing source lines 84 and

219, CSimllarly an occurrence of error five may require

41

an increased stack size which can be made by changing
source lines 91 and 213 . The dimension of the DSPLY

array limits the level of procedure nesting to fifteen,

3.4.4 Input/Output Routines

The input/output routines used by the interpreter
provide the interface between the Hewlett-Packard DOS-M
operating system and the HMHicro-Fascal Machine, This
group of routines makes avallable all of the peripheral
devices related to the Hewlett-Packard 2100 at McMaster.
The routines sre summarized below:

1) Line - Printer \
2) Paper - Tape Punch All of these routines are
3) Paper - Tape Reader > equipped to handle single

L) CRT - Input character and buffered
5) CRT - Qutput information.

~ 6) Card - BReader j
7) Read from Disc These routines work
8) Write to Disc with one binary
Q) Write to Job Binary Area byte.

10) VWrite a record to Job Binary Area

11) Display time of day

These routines were written originally for use in
the STAB system by my supervisor, Dr. N, Solntseff, The
routines currently used by the interpreter are 1, 3, &, 5,

6 and 7.

42

3.5 Instruction Testing

Programs were written to verify each group of
instructions. The test program created the conditions
where the operation of each instruction could bdbe
sequentlally checked. This checking procedure was possible
using a debug package loaded with the program. Stack
conditions including the stack pointer were sampled before
and after the instruction execution., The actual stack
configurations were checked against the expected vaslues
which were calculated by hand before execution., All of the
test programs are included in Appendix C. The testing

process 1s illustrated here for the procedure call and

return program.

b3

Ire-Calculated Results

SFE

1) Lo=d 1 onto the stack, SPe1 ‘ L 12
2) Load 2 onto the stack, SPe 2 7 0 11
3) Frocedure cgsll - return address 12, 0] 10
SFPe-11 0 7

4) Load 4 onto the stack, SPe 12 0 4
5) Procedure return, | 7 5
Set JF«12 Q 4

LVL +0 0 _| 377 3

SF «— 2 2 2

6) Load 377 onto the stack, SFe3 1 1
7) Stop 0

figure 3.17 Stack
Configuration for
Procedure Test Frogram
Octal Representastion of Program
ok1 001 oh1 002 220 000
012 041 377 144 041 004
143

CHAPTER 4
MICROCODING

4,1 Microprogramming On The HP2100

The Hewlett-Packard 2100 used in this project is
equipped with microprogramming facilities. It has four
writable control store modules where the micro-instructions
are stored. Module O contains the basic 2100 instruction
set, module 1 the floating point instructions and the
remaining modules 2 and 3 are available for programmer
use, A microprogram is a program-structured sequence of
commands residing in the hardware or writable control store,
When a microprogram is executed it is translated into
hardware actions by hardware controls, This hardware
translation means fast and efficlent execution,
Microprograms are usually more difficult to write because
they work on such a primitive level., Further information
on Hewlett-Packard Microprogramming can be found in the
HP2100 Microprogramming Guide and Microprogramming Software

. Handbook.

The three most frequently called subroutines:
DECSK~stack decrementation, INCSK-stack incrementation and
GETBY-extraction of next instruction byte were chosen for

Ll

b5

nicrocoding because they would maximize the increasse in

interpreter execution speed and could be implemented

fairly quickly.

4,2 icroprograms For The Interpreter

This sectlion summarizes the microroutines with
brief program descriptions and flowecharts, The micro-

‘program listings appear in Appendix E,

L,2,1 INCST

This microroutine increments the stack pointer, SP,
by a specified value, checks for stack overflow and retalns
the maximum stack pointer value, It has four arguments:
the stack increment in the B register, the stack pointer
address, the address of maximum allowable SP value - STLIHM
and the address bf maximum SP value to date - MSTCK, The
value returned in the B reglister on microprogram
termination indicates a stack overflow condition with a

one and a normal exit with a zero value,

SP <— SP + INCREMENT

A

FLAG
OVERFLOW
CONDITION

A

MSTCK «— SP

figure 4,1 INCST

STOP

L6

L7

%,2.2 DECST

This routine decrements the stack pointer, SP,
by a specified value and checks for stack underflow. It
has two arguments, the stack pointer address and the
stack pointer decrement in the B reglster, On microprogram
exit an A reglister value of one indicates stack underflow

while & zero value flags a normal termination,

SP <«— SP - DECREMENT

1S
YES sSp € 0
) ?
NO
FLAG STACK
UNDERFLCW
STOP

figure 4,2 DECST

48

4,2,3 GBYTE

Thls routine extracts a specified byte out of an
array’of two byte words., It has two arguments, the
starting address of the array and the index of the desired
byte in the B register, The Ilndex specifies a particular
byte within an array word., This array word is determined
from the index value and the byte is extracted from it.

The byte is returned in the A register,

L9

Set up a mask of eight one bits or 37?8

INDEX

A

Shift masking bits

to top of word

0DD 2

Get word index, WI,

WI e— (INDEX + 1)/2

Get array element (WI) = AE |

Mask out the desired byte

of AF using the mask word

Y

Shift byte into the
low eight bits of

A register

L

Figure 4,3

GBYTE

The interpreter testing process 1s intended to
verify the instruction set and monitor its performance
on complete programs, Two HMicro-Pascael test programs
included in this chapter illustrate the latter quality.
The interpreter instruction set was verified using the
test programs documented in Appendix C, In the following
section a more comprehensive possible test program 1is

considered.

5,1 Ideal Interpreter Test Program

I would like to outline an approach which could
be used to write a comprehensive interpreter test programr,
First we must determine what such a program will do. It
should test almost all of the lnstruction set, An
indication of the instruction belng tested should be
followed by an error report 1f an error is detected or
the next instruction if the instruction worked as expected,
An error message will provide as many detalls as possible
about the machine environment at the time of detection.
Documentation of some sort will probably be required to
fully interpret the error messages,

50

51

The value of our test program lies in the quick
debugging and verification possible of a new interpreter.
“hen a malfunctioning instruction is detected, the test
program will indicate the particular machine paraméters
that are in error. These parameters include the stack,

instruction pointer and stack elements

A subset of the basic instruction set will have
to be verified by other means for use in the progran,
This subset could be checked, using a debug package and
programs like those in Appendix C, and assumed correct
for use in the test program. Instructions likely to be
members of this set are stack load operations, somne
logical tests, some transfer operations and keyboard

input/output operations,

52

The designvof an instructlon test will be as follows,

1)} The test conditions are set up by loading
values onto the stack,

2) The instruction is executed,

3) The results of the instruction are tested
against the expected results. Thlis means
we check the values of the stack pointer,
instruction pointer and stack contents,
If an error 1ls located we,

a) 1indicate the source of error by
displaying a meaningful symbol
(ex, SP for stack pointer and

IP for instruction pointer)

b) display the values of pertinent
variables at the time of error
to aid in debugging

and ¢) cause the program to pause so

the user can assess the error
before decidlng to continue

error checking or abort,

These three steps are repeated until all of the

instructions have been considered.

53

5.2 Sample Frograms

In this segment two test progrems are presented to
illustrate the execution of licro-Fascsl code, The source
listing is followed by the lntermediate code output from

the compiler and ended by the results of program execution.

Test 1

Thls program 1llustrates some of the arithmetic
operations available In MICRO-PASCAL. The program input
consists of two positive integers separated by a
non-numeric character. Fach integer is less than 256
since this is the maximum value storable in eight blts and
i1s input from the keyboard. These input values are then

used in four srithmetic operations.

ba

54

TEST FROGLHAM CNE

THIZ PROGRAM ILLUSTRATES THE MATHEMATICAL
OCFEHATICNS IN MICAC-FASCAL

TWG INTEGER WUMBEAS ARE BEQUESTED AS INFUT,
THE BASIC ARITHMETIC OFSRATIONS OF ADDITION,
SUBTHACTICN, [TULTIFLICATICN AND DIVISION ARRE
APFLITYD TO TEHE TWO INPUT VALUES,

VAR
BEQUAL ¢ BYTH ;
DIV : BYTE ;

FULT ¢« BYTE
MINUS : BYTE
FIUS : BYTE ;
ZERO : BYTE ;
BLANK : BYTE ;
UNIT1 : BYTE ;
UNIT2 : BYTE

NUI1 ¢ BYTE

NU¥N2 : BYTE ;

TEMF : BYTE

NUFBER : BYTE ;
FHECCHEDURE TO ASSENMBLE AN INTEGER VALUE IN NUNMBER.,
INTEGER DIGITS AER RFAD UNTIL A NON-INTEGEHR
CHARACTER IS DETECTFED.

FROCEDURE REDNUHM ;
VAR
L : BYTE
M : BYTE
BEGIN
M o= 0 3
NUMBER := 0 ;
WEILE M EQ 0 DO
BEGIN
AEAD(UNITL1,L) ;
L :=1L - 48 ;
IF (L GE 0) AND (L L& 9) THEN
NUMBER := NUMBER * 10 + L FLST @ := 1 ;
END ;
END ;

s e

TEIS FaQCuDUnkn WRITES CUT THE INTEGER VALUE THAT

IS STOR=RD IN THE ARGUUENT N ON DEVICE SFECIFIED
BY UNIT2. (IN THIS CASE THE LINE FRINTER)

o
kS

25}
e
-

PROCEDURE WRTNUM(N
VAR
L : BYTE ;
M : BITE ;
BEGIN
M =N / 10
IF (i1 NBE
L 3= H - (
WRITE(UNIT2
=ND
BEGIN

-~

THEN WHTNUHM(I) ;
10) + 48

O

ASCII CCDES FOR CHARACTERS ARE SET UP FOR
FRINTING PURFOSES,

MULT := 42

EQUAL := 41
MINUS := h5 ;
DIV := 47

BLANK := 3 3
ZERO := 48
PLUS := 43 :

UNIT1 IS THE XKEYBOARD QR TEEMINAL AND UNIT2
THE LINE PRINTER.
UNITL := 0 ;
UNITZ2 := 1 ;

READ IN THE TWO NUMBERS NUM1 AND NUM2,
READLN(UNITL) ;
REDNUIT ;

NUN1 := NUNMBER ;
REDNUM i
NUM2 : = NUWMBEK

ws

ADDITION SEQUENCE

WRITR(UNIT2,BLANK) ;
WRITELN(UNIT2) ;
WRTNUM(NUM1) ;
WRITn(UNITz BLANK)
WRITE(UNIT2,FLUS) ;
WRITr(UNIT2.BLANK) :
ndTNUI(mUNZ) :
WRITE(UNIT2,BLANK) ;

Is

55

WRITE(UNIT2,EQUAL)
WRITE(UNIT2,BLANK) 3
TEMF := NUNM1 + NUM2
WRTNUN(TRIIP) 3
WRITELN(UNIT2) ;

SUBTRACTICN SEQUENCE
WRITE(UNIT2,BLANK) ;
WRITELN(UNITZ2) ;
WRTNUM(NUM1) ;
WRITE(UNITZ2,BLANK) ;
WRITE(UNIT2,lINUS) ;
WRITE(UNIT2,BLANK) ;
WRTNUM(NUM2) ;
WRITE(UNIT2,BLANK)
WRITE(UNIT2,EQUAL)
WRITE(UNIT2,BLANK)
TEMP := NUN1 - NUN2
WRTNUM(TEMP) ;
WRITELN(UNIT2) ;

. we we

MULTIPLICATION SEQUENCE

WRITE(UNIT2,BLANK) ;
WRITELN (UNIT2) ;
WRTNUM(NUML)
WRITE(UNIT2,BLANK) ;
WRITE(UNIT2,MULT) ;
WRITE(UNIT2,BLANK) ;
WRTNUM(NUM2) ;
WRITE(UNIT2,BLANK) ;
WRITE(UNIT2,EQUAL) ;
WRITE(UNIT2,BLANK) ;
TEMP := NUM1 % NUM2
WRTNUM(TEMP) ;
WHITELN (UNIT2) ;

DIVISION SEQUENCE
WRITE(UNIT2,BLANK) ;
WRITELN (UNIT2) ;
WRTNUNM(NUML) ;
WRITE(UNITZ,BLANK) ;
WRITE(UNIT2,DIV) ;
WRITE(UNIT2,BLANK) ;
WRTNUM(NUM2) ;
WRITE(UNIT2,BLANK)
WRITE(UNIT2,5QUAL) ;

s
1]

56

WRITE(UNIT2,BLANK) ;
TEMP := NUNM1 / NUM2 ;
WRINUM(TEMP)
WRITELN(UNIT2) ;i

END.

INTCODR Listing of Test Program One

Den)
o
]

o

¥}

.
N
i)

A I

51
i

e 1

fen)

£x]
-
el T e T

T
=)

B

Z
=
Y
o
R e

RS N I S RN B IR
[I

]

il

0 T T S T L T o B S S

T I
T

i
)

,,...
KN
-
o
12

1
D

i,

51 aEE mia 14

.

t [l

LR TR

AR
ARERY

]
-

T e
I

T T ek et
R ‘..I.l =
T
i)

[t S L I - 3

(R AR B = S T K BN N 0 Y
e]

sl
N e 1T

1
oo

[3 BN BT S
=
kA

ok el ped b
in]
v,

s
R
[RA R RIS

AR
DI S S G SR G C R W A % |
W
3N
N
pn,

C T < Tt A
X5
T T A pen

RSO I 8

=%
e

1

n—-
ol

e

o = D e

Ead ot B I
[

LR DR S

R
[

s

=
o
I S o S

T

R %
T e T e

R]
ot
eI
=
oy
T

&N
1
g

i

%%

A]

I

T

%l
b

[R

s
5

RN A I
—t
F
e

L]

L

ot

-
S
oI
[I

o

IS B S S
DRERN

o

ERN! 5 s
12 i HOE
i1 By B
15 2
- "

SO Sl

T
AN
-

R T T

fax)

Ty
fa—y
!

T e

- :
[S

Y

[N
-

15 OEe

P R s S W

x gy
[y SR
g
i

LA

,..
R
oy
o0
ot
K

fx]

.
Lt

3

&
A Tl
-
pen}
—

a3 i

=
b
—

@

T

DI
fxa)

T s
bt

BE &8 1 5 1

[S XY
i
1

[g en]

xR I
(RN

o3 1y

=Y
3
Deal
her)
[t
{xx]

,_
2]

o I N

T e [3)

i Hl A E 5

(R A

PR - 0
]
g

I)
i

‘M
IR
7
L S |
o
]
o
K
ol

L
£

-
X

E‘

0
3

W U) g
i
by

I SR I
I S S ' S SR |

B B I R W v

gl 1E 22 B 5 i
Hia 5l Hle & [3@
5 Bl BERG & @41 @

,..
a
Jonl
Lot
PRy

b
o
2

[I T}
I

A Y
i = i

b 1

-
Pl
1o
E«

J

S O

o

T
-

£

hy

BT o I
E LY
P

DR] |

A
.

2] L

]

[BT
P

oy
e
P
L
Pex
iy
el
o

I oy B
)

5 i E‘
1 817 &de TOn =21
5OERa aEa a1y oLl HEE
5122 BEa apa @ |5
;"1 - K

o

fux]
—
X
—
T
X
pea i RS 1]
oy
i O RN
Ly B T

[
Pend

T
oy
]
=
(R
=
15!

s
s
POCE]
=
X
.
x|

R}
v
o
1
T
[kx]

ot

Ty T 5

Pt

front
—
]

EA

T
A
P Bl
[
P
=
Fice T Y
)
ot

)

¥

-
e

RESULTS

Test 2

This program performs an arithmetic sort on ten
positive integers, These ten values are less than 256,
separated by a non-numeric charascter snd input from the
keyboard. The program echo-prints the ten input values
and follows with a sorted display of the numbers in

ascending order,

60

61

TEST PROGRAM TVWO

THIS PROGRAM SORTS INTEGER VALUES IN ASCENDING
CRDER.
THY, USER PRCVIDES THE TEN INTEGER VALUES TC BE
SORTED.

VAH

BLANY : BYTE

M08 : AHRAY (1..10) OF BYTE ;
UNIT1 : BYTE
UNIT2 : BYTE
IJ :« BYTE
CH : BYTE

- we

THIS PROCEDURE READS IN INDIVIDUAL INTEGER
DIGITS UNTIL A NON-INTEGER IS DETECTED,
THE INTEGER NUMBER IS ASSEMBLED IN LOCATION CH,

PROCEDURE REDNUIM ;
VAR

L : BYTE ;
4 ¢« 3YITE 3
BREGIN
o= 0
CH := 0 ;
WHILE M EQ O DO
BRGIN
HEAD(UNIT1,L) ;
L :=L - 48 ; _
IF (L GE 0) AND (L L& 9) THEN CH := CH * 10 + L ELSE
F =1 ;
END ;
IND

*

THIS PROCEDURE WRITES CUT THE INTEGER VALUE

THAT IS STORED IN LOCATION N,

THEER NUMBER IS WRITTEW TO TII¥ DEVICE CORRESFONDING
TC UNIT2.

PHOCEDURE WRETNUM(N : BYTE) ;
VAR
L : 3YTE

BEGIN
Moo= N/ 10 ;
F (¥ NA 0) THEEN WRTNUM(K)
L =N - (i % 10) + 48
WRITE(UNIT2,L) ;

ot N
ial D H

62

THIS PROCEDURE SORTS THE INTEGERS IN ARRAY NOS
INTC ASCENDING SEQURNCE.
THE, CURRENT IMPLEMENTATION SCRTS 10 NUNMBERS.

FROCEDURE SORT
VAR
K : BYTE ;
J : BYTE ;
I : BYTE ;
, TEMFP :+ BYTE
BEGIN
Ji=1;
WHILE J LT 10 DO
BEGIN
I :=
K =1
WHILE K LT 10 DO
BEGIN
K=K+ 1 ;
IF NOS(I) GT NOS(K) THEN
BEGIN
TEMP := NOS(K)
NOS(X) := NOS(I) ;
NOS(I) := TENP ;
1 H
END ;
Jd 1=dJd + 1
END
END ;
BEGIN

- wa

UNIT1 CORRESPCNDS TC THE KFYBOARD OR TERMINAL

AND UNIT2 CORRBRESPONDS TO THE LINE PRINTER.
UNIT1 := 0 ;
UNIT2 := 1
BLANK:=32;
READLN(UNIT1) ;
IJ =1 3

.
’

THIS LOOF READS IN THE TEN INPUT INTEGERS AND STORES
THEM IN THE NOS ARRBAY,

.

WHEILE IJ Ln 10 DO

BEGIN
REDNUN
NOS(IJ) := CH
IJ :=1IJ + 1
WRITE(UNITZ,B
WETNUM(CH)
LND :

W TRI@((Q T2) ;

.
1

shid
1'}\- I$8

)

WRITE QUT THE INITIAL CONFIGURATION

OF THE INPUT VALUES,

WRITE(UNIT2,BLANK)

WRITELN(UNITZ2) ;

USE THE SORT PROCEDURE
ARRAY BELEMENTS,

WRITE

WRITELN (UNIT2) ;

SORT
IJ :=1 ;

WHILE IJ LE 10 DO
BEGIN

.
1

TC ORDER THrR NOS

QUT THE SOHRTED AKRAY.

WRITE(UNIT2,BLANK) ;

CH := NOS(IJ)

WRETNUK(CH) ;

1J := 1IJ + 1
END;

END,

63

pos B

ey
ik

[y
ft

.,_
e

iU IR

[

T ek e 0

o

i

AN IR
"k

KA IR T R

]
¥

SO I N S 808

fx]

o~
o

Test Frogram Two

i

i
RIS Y

£

SO B X

g
[y
.
R

Y
fin]
m~

1

T

pok £o) el 3

T
x
-
F

Tl

T T O
PRy N
e TS e
T e T

,F-.,.
i
P
R it
[
o e F

Dor R S]

64

)
fax |

[
]
& [

fxd

o pe

o

£ 0T

Pl
)

]

)
L,

=

[I P51

[R IS

[N
g
e

A
&

T e
C. .
fxa)

fa]

RN

P
i

x|

i

[RA BN

1E D

ot

Pt Y

iy

foy

i

flcx]

ROt T % B % B T o T S |

SR B b

Fed

KRS e I

Iyx}
LA NS s R <8
(5 Bt B KRR

s
fea]

2

]
s
=N
.

Fasd

,_
o
K]
1
i

L@

RE
ey
Paliph]
21
W

"

L
A

65

x = T oy
19 2 hE 3 -
e i i ey 4. g
JES A B 8 5 S S

CHAFTER 6

SUMMARY

Project work proceded smoothly while the
Hewlett~-Fackard machine was operating properly. Disc
problems arose on two occésions delaying progreés in the
middle stages of the project, Iy inmplementation of the
interpreter on the HP2100 closely followed the initial
writing and debugging of the lMicro-Fascal MNachine by
Mark Green. During this time instructions were
understandably added and changed as problems in the compller
were solved, A minor problem arose due to the incomplete
documentation of the Micro-Pascal NMachine., The exact
nature of the input stream was left unspecified in the
interpreter description. Thils oversight was not recognized
until the latter stages of the project, Input routines
had to be redesigned and implemented so the interpreter

would accept programs in the form output by the compiler,

Since the HMicro-Pascal liachine 1s a rather new
concept, test programs are currently in short supply. The
intermediate code instructions were individually tested

but the interpreter performance on larger programs was not

67

68

extensively probed. A number of compiler errors were

uncovered during the debugging of the two test programs

found in chapter five,

There are about four hundred words allocated to
literal messages and summeries, HMany of these messages
could be pared down to representative numbers and some
descriptive statements concerning the interpreter excised
entirely if the interpreter size had to be decreased,

The current input capabilities are limited to keyboard,
paper tape and card access while output 1s set up for the
keyboard and the line printer, Other features in the
input/output package such as disc reads and writes could

easlly be added when desired,

The size of an HP2100 word is sixteen bits or two
bytes. In my stack implementation there are two bytes
allocated for each stack ltem where in the ideal case one
byte would do. By doing this I can bend the rules of a
byte stack item so that negative values can be represented
in a normal HP fashion using sixteen bits the first of
which 1s a sign blt, Positive byte items are able to use
all eight bits and no special handling of negative byte
values 1s necessary., Thlis was done only to permit convenient
implementation on the HF2100 snd might not be appropriate |

for other machines, 1In addition my experience with the

69

interpreter performance so far indicates that a stack size
of two hundred words would easily handle program executlons,
This would mean a maximum of one hundred wasted words. In
the light of these arguments the implementation of a one

byte stack is not yet warranted,

The execution speed could be increased by pertislly
or entirely microcoding other interpreter routines.
Instruction group categories and specific instructions
within given groups can be easily added, The maxXximum
number of groups and instructions per group are each

limited to fifteen,

Conclusion

The interpreter l1ls the key piece of software in
the Micro-FPascal compiler-interpreter system, Once the
compiler 1s written in MICRC-PASCAL 1t can be self-compiled
into intermediate code. When an interpreter is established

on a host machine the Micro-Pascal system is readily

avallable.

MICRO=-PASCAL was designed as a basic high-level
language for use on mini and micro processors. Once
MICRO~-PASCAL 1s implemented and debugged there are plans

to make it concurrent,

70

MICRO-PASCAL, as currently implemented, has a
very limlited source language instruction set, Compller
implementation has not reached the stage where strings can
be successfully handled, Their complete implementation
will contribute greatly to the usefulness of the language.
The availability of more and varied control statements

would 1mprove language flexibility and ease of use,

The interpreter code is fairly reasdable using
comments liberally to indicate the flow of control,
Subroutines invoke s modular design which contributes to
an efficient program with minimized redundsncy., If errors
are detected during interpreter execution the user is
provided with valuable information not contained in an

error number alone,

Work on thls project has certainly given me a
better understanding of portable languages, iy experience
with the STAB system brought to light the importance of
good langusasge and program documentation, If programs are
to be portable they must be precisely described in order to

be understandable and modifiable.

I have also acquired a better understanding of
terminal programming, editting and file management,
During the disc problem phase of the project I learnt the

hard way that files should slways be well backed up for

71

security against machine faeillure and other mishaps. The
documentation process was a good disciplinary exerclse

1llustrating an important yet unglamorous aspect of a

complete program,

AFPENDIX A
Running The Interpreter

This appendix describes how to run the interpreter
with microprograms. The commands input by the user are
underlined and described where appropriate, The statements

In capital letters are system comments,

: JOB,DBOY
:PR,D3TST
- begin interpreter execution
BEGIN *DEBUG' OPERATION
i1,10400

- base address for loading of program in core

I

- run the program
MICHO-DSBUG EDITOR
COIMAND? LOAD
- load the microprogram
ENTER FILE NANE DBHP1
- name of file where microprograms are stored
COLMAND? E,O0

- begin to execute the program from the beginning

72

73

START OF NMICRO-FASCAL INTERFARTER
THEE UNIT NUMBERS FOR I/0 ARE
- these unit numbers refer to i/o during program
execution
INTUT 0 - CHT
1 - CAHDS
OUTFUT 0 - CaT
1 - FRINTER
VOUTPUT CAN BE DIRECTED TO
CRT - ENTER A 1 BELOW OR
FRINTER - ENTER A 2 BELOW OR

A5 SPECIFIED - ENTER A O BELOW

> 0Oor 1L or 2 DBTST SUSP

= the interpreter is now waiting for the user to specify
the origin of source progrem input. The current
implementation permits three options:
2 - USER DISC
5 - CARD READZR
10 - PATFER TAPE (default option if unit number 1is
not 2 or 5)

:GO, unit number

progrem exXecution

74

summary of program executlon
- this includes the number of instructions executed,

the maximum stack size and the program size in bytes,

AFFENDIX B

Listing of HP licroprograsms

i -
e
=
B

]

-

Faps FOR

MICED-Fa

IHTERPRETER.

77

o

H

e R el als sl o P R S A o o T e e o TR S A o
1 =T

R B B e e o T AR A S R o S
g4

~¢
-
r
=
=
_.{

E REGISTER ~ AMOUMT OF STaCH IMCREMEMTATION TO STACH

s POIHTER. SF.
= 8 IF MD STRCE OVERFLOW.

& - 1 IF ZTACK WERFLOW

THIS ROUTIHE IMOREMEMNTS THE STSCE POINTER. SP.

YaLUE SFECIFISD IM THE B REGISTER. IT THEH CHECES
” ETE Low BY O COMFARIHME 5P WITH STLIM. THE MaxIp
- SlOWALUE. THE YARISPLE MSTCOK IS ALMAvYs
® BT OSTACE POIHTER YALUE THAT HeS BEEM EHCOUHTE

T F o H il
F IHC F
T ToE o IH &
i RS TOR M Fld HE

o 52 fon =51 SEFIHOREMENT IH 51
t RS IOR M Chd LR

1 Dk T STORE MEW SP MaLUE
F IOR 1 bl GET STLIM AlDRESS
F MG P IF = TP + 1

=2 o M L

REXO ETLIM IM & REG.
AR WG BTLIM ~ 3P
JdHE THC HI OWERF LI

BTACE DWERFLOW
i:: F’ :[E: 1 1] 'r,ll E’ F- F‘ L G |I| E‘ E T E: - 1

. THCE
F i il Fil GET H
I [CLEsE
& i F IF =
T I i FSTOR
i I I Fid GET M
I fi :
i) HELG HSTOCK
THCZ oo oMOT MSTCE
2l REE M Cid LIME

T MSTOE = 5P

THOE -

Pod bd el ke Rt I

w

B

o B
7l
g
i
_I

EMTOLE

STHCH

UHDERFLOW

IHC
JME
ToR
Iy

F

Chd LM

HETD
EHDRG

EHDOC
EQP

HHD

NECEEMEMT

ERFLON

Lo

GET SF ADDRESS
ITHC IMST. POIMTER
ghoR., 3P IH &
STRCE DECE. IM 51
CLEAR @ REGISTER
GET wAallE OF S
SFOTH OB ORESISTER
SR - WALUES
STORE HEU

WVl UE

FOR UNMDERFLO

O T o S P S

e i b b

79

B
s
B

: il
R S e o
B ke nll vl
Lt T L
st 1 o
CRE T) S T S SN
s
B
i
T kAT il
ot 1‘_1 i
Y Lol 4
i Tia ok
B
.1

]

LacaTeE T

¥ %
g

)

~4 117
[y

B e
T
BS54

* MOVE

R

EYTE T

m
X
I

oL
I
JHF

HE ZTaRETIMG

10R
IR

Ly
NIk

I0R

THE

TES

[LOWMER

IRET

R o A L e e

BYTE

LT

=i

ADDRELRS

oF

FORTION

ARRET ELEMEMT

MaSk WaORD
1% THDES
IMDEY 15
BET OWF.aLF
AlLF

ML

IH A
oo
EWEM
IH

REG

IR

ITHIEX + 1
CIMTER +

IHZ I

REGISTER.

oF #

MESEMBLE ALF IMST.
HLF
MLF

80

AFPENDIX C

This appendix contalns test programs that can be
used to verify the correct.operation of the Interpreter
instruction set, TFach program tests an instruction group
or groups. Most of the programs have a step by step
description of their operations included., It 1s assumed
these test programs will be used with some type of
debugging package so that stack contents and relevant
variables can be periodlically sampled. This may not be

elegant but it is painfully precise,

ARITH

001 051

okl 004 060 041 007 061 O41 001 062 Ohi
002 063 oh1 002 Qéﬁ o1 000 oh1 003 Qéj
ok1 000 O41 011 D66 041 000 Oki 002 067
oh1 000 okl 006 070 o1 000 041 o0l 071
14h

143 000

1 - Load 4 onto the stack and negate it 060

2 - Load 7 onto the stack and add it to -4 061

to give 3 |
3 - Load 1 onto the stack and subtract it 062

from 3 to give 2
81

1 - Loed a zero unit number onto the stack, read

I - Losd 2 onto the stack and multiply 1t
by 2 to give 4 » :
. 5 = Load 2 onto the stack and divide 4 by
it to give 2 4
6 - Load the two-byte integer 3 and negate it
7 - Add the two-byte integer 11 to -3 to
give 6 |
'8 - Load 2, subtract to give 4
9 - Load 6, multiply to give 30
10 - Divide by 4 to give 6
11 - Stop
BFUNC
001 026
Ok1 000 123 O41 000 O41 102 122
123 oh1 001 o4y 104 122 120 121
123 o4l 377 12% 14k
143 000 |
c
E

063

o6l

065
066

067
870
071

ol1
Ok1

in a character from the terminal and place it

on top of the stack:

2 - Place a zero unit number on the stack, load a

102 and write this character to the terminal

82

001
001

123

122

Ioad a 1 and read a character from unit 1
(in this case the card reader)

Load 1 and 104 and send 104 or the ASCII

character D to the line printer

The current output line 1s terminated gnd
D is printed on the liﬁe printer

Terminate reading from the current line and

- reset the read pointers

Load 1 and read a character from the card
resder to the top of the stack
Load 377 onto the stack then move 377 to

SP + 1 while a zero byte is inserted at SF

Stop

LOAD + STORE

001

ouy

143

011
004 00 000 001 02

— e

000 000

@]

000

Load a 4 onto the stack st location one,
STACK(1) = 4

Load the element stored at STACK(1) onto the
stack top, STACK(2) = 4

Store the top stack element at STACK(O)

Stop

144

83
123

122

120

121

123

124

144

ob1

000

020
144

LOGIC

001
ob1
ob1
o0k
005
ob1
oL1
003
ol
002
107
o411
000
okl
002
okl
000
ok1
002
113
ol1
143

310
005
005
Ol1
Ob1
005
002

105
001

Ok1
000
o41
002
o1
000
041
001

ol
000
000

ob1

002
005
ok1

104

ol7

Ol
111
ol
002
ok1
000
Ol1
ook

ok1
000

041

005
oh1

P T
o 1O
~

005
ok1
002
ok1
000
oh1
002
o41
000
ol1
001

Ob1
000
ob1
002

005
ok1
ob1

104

001
ok1
000
0k1
112
ok1
000
ob1
o0k

ok1
000
ol1
002
o41

ob1
101
000
005
ol1
105
000
ok1
002
oh1
000
ok1
002

Ol
000
Oh1
002
o041
000

005
ob1

T
o |o
o

Gl
ok1
001
ol1
111
ol1
001

ol
000
ok1
002
ok1
000

oh1

003
ou7
Ok1

104

000
001
ok1
000
ok1
ook

o1
000
Ok1
002
o1
000

oh1

002

okl

102

002
000
ob1
105
Oh1
000
ok1
112

ob1
000
Ob1
002
ol1
000
041
001

84

005
ol
ok41
103
004
o411
000
ok1
001
107
ok1
000
o4 1
002
ok1
000
oh1
ook

113
144

Testing One-Byte Commodities

1 -

Test 5 EQ 5 which results in a 1 (true).
and test 1 EQ 5 which results in 0 (false).
Test 5 NE 5 - false and test 0 NE 5 - true,
Test 1 LT 3 - true, test 4 LT 2 -~ false
and test 0 LT 0 - false,

Lecrement the stack pointer, SP by 3.

Test 5 LE 5 - true, test 1 LE 5 - true

and test 1 LE 0 - false,

Test 5 GT 5 - false, test 0 GT 3 - false
and test 4 GT 2 - true,

Test 0 G 1 - false, test 0 GE 0 - true
and test 1 GE 0 - true,

Decrement SP by 2.

Testing Two-Byte Commodities

9 -
10 -

11 -

12 -

b -

Test 1 EQ 1 - true and test 1 [EQ 2 - true,
Test 2 NE 1 « true and test

L4512 NE 44512 - false,.

Test 2 LT 4 ~ true, test 2 LT 1 - false
and test 2 LT 2 - false,

Test 2 Lb 4 ~ true, test 2 LE 1 - false
and test 2 LE 2 -~ true,

Test 2 GT 4 - false, test 2 GT 1 - true
and test 2 GT 2 - false,

Test 2 GE 4 ~ false, test 2 GE 1 - true

and test 2 GE 2 - true,

85

100

101
102

o7
103

104

105

0L7?

106
107

110

111

112

113

MANIF

001 052

040 ook 0O41 377 0k2 004 004 101 102
104 ok3 003 000 000 006 oL 043 (oJol%
000 005 077 0ohs o043 003 001 000 005
o47 003 043 006 000 000 002 000 000
050 051 144

143 000

1 - Increment the stack pointer by 4 to 4.

2 - Load a 377 onto the stack at SP = 5,

3 - Store the character string ABCD onto the
stack, that is 4, 4, 101, 102, 103 and 104,

4 - Load 3 bytes onto the stack 0, 0 and 6,

- Load the byte at SP = 6 onto the stack, 4,

6 - Load 4 bytes onto the stack 0, 0, 5 and 77.
Store 77 at stack location 5,

7 = Load 3 bytes 1, 0 and 5., Convert this
three-byte relative stack address to a
two-byte absolute stack address preceded
by a zero byte.

8 - Decrement the stack pointer by 2.

Q - Load 0, 0, 2, 0, 0 and 5, Load the contents

of stack element 5 at SF - 2 and stack

element 6 at SP - 1.

103
000
046

005

oko
oh1
ok2

043
Olsly

045

oué

ou?
050

87

10 - Store 4 at stack location 3 and 77 at 051

stack location 2.

11 - Stop 144
FCALL
001 015
okl 001 O41 002 220 000 012 O41 - 377 1L4
041 o0k 143
143 000
1 - Load 1 and 2 onto the stack. Call a 220
procedure and thereby create a seven-byte
header,
Byte 1 0lda LVL = O
Bytes 2 + 3 Return Address = 6
Bytes 4 + 5§ Add. of Ftn Result =0
Bytes 6 + 7 DSPLY For 014 LVL = 0O
Also set DSFLY(1) = 2, set LVL to 1 and
instruction pointer IP = 11 (which will be
immediately incremented to 12)
2 - Load 4 onto the stack to show we have reached ol1
the right spot,
3 - End the procedure which ’ 1473

Restores LVL to DSPLY(LVL - 1) = 0
Resets IF to 6

Resets the stack pointer, SP to 2.

L -

5 -

Load 377 onto the stack to show the procedure
has concluded correctly,

Stop

TRANS

001

140

ok 1
003
002
056
00k
002
114
077
143

122
000 003 041 000 141 000 012 Obi
001 141 000 021 O41 002 041 001
142 001 000 036 O41 061 140 000
000 046 O41 062 140 000 061 003
ok1 063 140 000 061 377 000 000
142 001 000 O74 041 061 140 000
000 104 O41 062 140 000 117 003
o4l 063 140 000 117 377 000 000
1l

000

Pass control to instruction 3 in that IP is
set to 2 before incrementation.

Load a zero (false) onto the stack, FExecute

a conditional jump on the top stack element,
Since this element is false control jumps to
IP = 12 so that 041 002 will not be executed.
Load a one (true) onto the stack, In this
case the condlitional test falls so thet a 2

should be loaded onto the stack,

88

oh1

144

002
ob1
061
000
o411
117
000
ol1

140

141

141

4 = Load 1 and 3 onto the stack.,

Ferform a

case statement based on the top stack

element 3, There are 3 case elements 1,
and 3 so there should be a nmatch with the

third element. This will cause a load of

63 to occur.,

Load 4 onto the stack,

case statement on 4,

Ferform the same

There should be no

matech with the case elements 1, 2 or 3.

next instruction to be executed should be a

load of 077 onto the stack,

6 - Stop

Note - 143 is a procedure return snd is tested with

procedure call in PCALL,

Test Of Frror HMessages

1 - Illegal Level Number

001 003
117 000 144
143 000

I1legal Group Number
001 003
160 000 144

143 000

2

The

89
142

142

144

the

3 - Code
Four

code

001

i%hl
Nines

001
o41
143

90

Array Overflow

sets of the following 001 group if the
size = 40O,

144

001 ol 001 oh1 001 L% 001 ok1 001
lines like the above,

002

001

000

L - Attempt to access a non-existent DSPLY element

l.e.
001
okl
143

5 - Stack
001
Oh1
143

6 - Stack
001
040
143

element 16

010

021 041 000 O41 001 - OML 14l
0090

Overflow - tried to set SPe128,,
005

001 040 200 14l

000

Underflow - tried to set SP« -8
005

001 04y 011 1uk

000

7 = Illegal Input Table Type

003

000

- 91

BIBLIOGRAPHY

Boon, C. High Level Languages. Berkshire, England:
‘ Infotech Info Ltd, 1972.

Goos, G., ahd Hartmanis., Lecture Notes In Computer
Science, Software Fngineering « An Advanced Course,
New York: Springer - Verlag, 1973.

Gries, David. Compiler Construction For Digital Computers.

Toronto: John Wiley and Sons, 1971,

Hewlett-Packard. Assembler Reference Manual. Cupertino,
California: Hewlett-Packard Company, 1972.

Hewlett-Packard. Microprogramming Guide For HP2100.

Cupertino, California: Hewlett-Packard Company,
1972. ’

Hewlett-Packard. Microprogramming Software For HP2100,
Cupertino, California: Hewlett-Fackerd Company,

1973.

Solntseff, Dr, N.., A Pascal 6000 Primer. Hamilton:
Applied Mathematics Department, 1975.

Wirth, Niklaus. Algorithms and Data Structures = Programs.
Englewood Cliffs, New Jersey: Prentice-~Hall Inc,,

. 1976,

REFERENCES

GRE, Private Communication with Mark Greén. 1977.

