
\'

I

A HICRO-PASCAL INTERPRETER

HASTEB OF SCIENCE (1977)
(Computation)

I1cNASTER UNIVERSITY
Hamilton, Ontario

TITLE: A Micro-Fascal Interpreter

AUTHOR: David R. Bandy, B.Sc. (McMaster)

SUPERVISOR: Dr. N. Solntseff

NUMBER OF PAGESa viii, 91

11

A f.li CRO-P AS CAL

INTERPRETER

by

DAVID R. BANDY, B.Sc.

A Project

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

ltlaster of Science

McMaster University

September 1977

c

ABSTRACT

A discussion of portability is presented along

with a. description of the i1ICRO-F'ASCAL language. The

program developed and documented in this project,

accepts an intermediate abstract machine lan~lage (intcode)

as input and executes these 1ntcode programs on the HP2100.

A description of the intcode instruction set and the

microprograms used in the interpreter is given. The

Nicro-Pascal Ba.ch1ne design reflects the current trend to

increase program portability.

111

ACK1\IOWLEDG2NENTS

I want to thank my supervisor Dr. N. Solntseff,

Nark Green and Chris Bryce for their kind help during

my project. An honourable mention is reserved for the

secretaries of the Applied Hathematics Department whose

good spirit is always refreshing. The typing was ably

handled by Virginia Rakoczy.

lv

INDEX

CHAPTER 1 INTRODUCTION

1.1 Portability
1.1.1 How Can Portability Be Achieved

1.1.2 Problems

1.2 Interpreters and Compilers
1.) The Portable STAB System

CHAPTER 2 MICRO-PASCAL

Design Philosophy

Basic Features
2.1

2.2

2.3
2.4
2.5
2.6

Micro-Pascal Machine
Portability and. MICRO-PASCAL
Language Assessment
Interpreter Outline

CHAPTER J INTERPRETER DESCRIPTION

).1 Structural Design

).2 The Micro-Pascal ~Achine

).2.1 Data Representations
3.2.2 Procedure Structure

I

).2.) Addressing Modes

).2.4 Instruction Set

J.J Code Discussion

j.).l Main Program

\._

v

Page

1

1

J
4

5
6

8

8

10

11·

12

lJ

15
. 1?.

18
19
20

21

JJ
JJ

J;.J.2
3.3.3

Subroutine Design

Fro gram Input

J.4

3.4.1
3.4.2

3.4.3
3.4.4

Using The Interpreter

Frogra.m Input

Output

Summary of Error Messages

Input/Output B.outines

Instruction resting

CF~PTER 4 MICROCODING

4.1 I1icroprogra.mming On The HP2100

4,2 Microprograms For The Interpreter

4.2.1 INCST

4.2.2 DECST

4.2.3 GBYTE

CF..APTER 5 INTERPRETER TESTING

5.1 Ideal Interpreter Test Program

5.2 Sample Programs

Test Progra.m One

Test Program Two

CF..APTER 6 SUNFiARY

Conclusion

APPENDIX A Running The Interpreter

APFENDIX B

APPENDIX C

ARITH

Listing Of HP Microprograms

Test Frogra.ms

vi

Page

37
37

39

J9
40

40

41

42

44

45
45
47

47

50
53
54
61

67

69

72

75

81

81

BFUNC

LOAD+ STORE

LOGIC

MANIP

PC ALL

TRANS

Test of Error Messages

BIBLIOGRAPHY

REFERENCES

vii

Page

82

8)

84
86
8?

88

89

91

91

FIGUHES

2.1 Data Types

2. 2 EICRO-FASCAL InterpretB.tion on HF2100

3.1 Table of Subroutines

3.2 Subroutine Hap

3.3 Instruction Register

3.4 Stack Representation of String

3.5 Stack Representation of An Array Header

).6 Procedure Header Format

].7 Stack Set-Up for Load Using Relative Address

3.8 Stack Set-Up for Store Using Relative Address

).9 Relative to Absolute Address Conversion

J.lO Two-Byte Integer Load

).11 Two-Byte Integer Store

J.12 Two-Byte Integer Stack Configuration

).13 Case Header Format

3.14 Flowchart of Main Program

3.15 Input Stream Subgroups

3.16 Fix-Up Group Description

).17 Sta.ck Configuration for Procedure Test
Program

4.1 Flowchart of INCST Microroutine

4.2 Flowchart of DECST M1croroutine

4.3 Flowchart of GBYTE M1crorout1ne

v111

35.

Fage

9

11

15
16

18
18

19
20

22

23
24

25
26

27

31

36

37

38

43
46

47

49

CF.APTER 1

INTRODUCTION

This project documents the development of an

interpreter to execute intermediate code representations

of I~ICRO-FASCAL programs on the Hewlett-PackArd 2100.

The interpreter is one part of a portable language system

known as the I'ficro-Pa.sce.l Hachine. This introductory

chapter considers the portability question in general and

documents my own experience with the portA.ble STAB system.

1.1 Portability

Portability is R subjective measure of ease

with 1Arhich ft program can be moved from one instella.tion

to another. A program is highly portable if the effort

required to transfer it is significantly less than the

original implementation effort. Adaptability is a. related

problem which measures the eAse of progrem alterRtions

needed to meet different system constraints. The

difference in these two operations is that portAbility

concerns environment~lly governed changes in the algorithm.

The need for portability seems to arise in two

situations. In the first case, programs should be portable

1

2

over a whole machine range to permit moving to a larger

machine or adding a smaller one in parallel. The second

case concerns portability to and from alien machines. An

installation with a program library that 1s highly portable

is not as apt to be committed to a specific computer or

manufacturer. SUch an installation has a better bargaining

position when in the market for new machinery. Manufacturers

whose programs are portable are able to provide working -

software in short order to complement new hardware.

A program package written 1n a portable fashion is

more attractive to other installations due to the relative

ease in adaptation. Programmers can often save time and

effort by adapting an existing program that does some or

all of the desired task instead of designing a new one

from scratch. As an illustration, academic and research

people could move to other installations easily and

exchange portab~ designed programs avoiding much wasteful

duplication.

It has been said that programs should not be

portable because they can be improved if they are rewritten.

However if a program is portable the user has the option

to allocate resources to improve it or rewrite the program.

Even if the decision is made to rewrite, the portable

version can be used during the rewrite period and as an

aid 1n designing the new program.

In summary the advantages of portability lie in

the minimization of development time and duplicate

programming effort, the reta.ined usefulness of older

programs and the increased mobility of program packages.

1.1.1 How Can Portability Be Achieved?

3

Portability requires a program to be independent

of special properties of the operating system or, more

generally, requires that an appropriate program environment

be provided on many current installations. Some people

have suggested rigid standardization as a possible

solution. This solution would permit greatly increased

application portability. However, program packages like

compilers and operating systems would still have to be

installation dependent. In the past, standards have been

incomplete, compromised because specific machine features

were not exploited and several years behind current trends.

Another solution may lie in machine independent

systems. Machine independence refers to program

properties that isolate it from the details of the computer

structure such as word length, addressing scheme and the

number and kind of registers.

These two solutions to the portability problem are

'different yet not mutually exclusive. Both properties can

be achieved by using a high-level programming language.

4

These programs are machine dependent only with respect

to the accuracy of real arithmetic, the range of arithmetic

values and the character set. The character set problem

can be partially alleviated through the use of a standard

48 character set. Programs written in high-level

langua.ges are more portable if the use of Input/Output is

restricted to the more standard sequential files.

Anoth~r solution suggests dividing a program into

a data description segment and an algorithmic section. The

algorithmic part would be as machine independent as

possible while the data description would be adjusted to

cope with the host machine. An abstract machine model is

a mechanistic interpretation of the data and algorithm

split up. The basic operations and data types are used to

define a fictitious computer or abstract machine. An

abstract machine model of this type can be used to construct

a new high-level language like HICRO-PASCAL and the

Hicro-Pascal Hachine.

1.1.2 Problems

One of the problems facing program portability is

the lack of good current programming standards. Strict

adherence to such standards will pave the way for more

portable programs. Portability is hindered by the wide

variation in machine codes and architectures currently

available in the market place.

5

Historically tasks such as input/output ~nd code

generation have relied on machine-code programming. These

habits must be broken if more porta.ble programs are to be

written.

It is often claimed that portable software is

synonymous with inefficient software. Unfortunately

this has frequently been the case. Inefficiency usually

stems from data packing schemes that are not suited to

fast access on the host computer, very complicated

interfaces to the environment like the operating system

and inefficient code for heavily repeated loops. The

trade-off between portability and efficiency is a problem

that will likely persist for some time. Its current

solution lies in minimizing the inefficiency until machine

architectures and therefore machine-codes become

standardized.

1.2 Compiler - Interpreters and Compilers

Consider the differences in compiler - interpreter

and compiler systems in the light of our portability

discussion. A compiler - interpreter, as the name suggests,

performs two functions, In the first phese,it Analyzes

the complete source program and translates it into an

internal form. The second phase interprets or executes

the internal code representation of the source program.

6

In compiler systems the source progr~m 13 analyzed

and translated into object code. Fro~r~ms compiled into

object code usual1y execute faster beceuse this code is

handled faster by system routines than internal code is by

the interpreter. Compiler - interpreter systems tend to be

more portable thRn compiler systems. The compilation phase

is largely machine independent and can usually be lifted

intact for a transfer. The execution segment is fairly

stra.ight-forwa.rd and can be NTi tten for the host machine

without undue difficulty if the documentation is thorough.

Compiler systems generate machine dependent object

code which makes them significHntly less portA-ble. However,

if the system was written to be reasonably portable and

modifiable the prospects for successful transfer are

dramatically improved. The mRchine dependent area.s such as

code generation and input/output could be clearly marked

so that modifications could proceed as smoothly as

possible.

1.3 The Portable STAB System

Prior to this project I spent about six weeks

working with the portable STAB system. The STAB machine

is very similar to the Hi cro-Fasce.l Nachine. STAB source

code is compiled into an intermediate machine language

which is subsequently interpreted.

S'rAB is a. progre,mming language spawned from BCf'L

and designed as a high-level language implenent~ble on

small machines as ~-1ell 9S Et straight-for~'lard compiler

i-Iri ting tool. I was writing a. new STAB compiler because

the existing one tva.s unstructured, unreadable and

unmodifiable. As parts of the new compiler were written

they were tested using the old compiler. This testing

procedure was hampered considere.bly by numerous errors

detected in my source code by the old compiler, ~~ny

7

of the errors were not sufficiently explained by the err6r

messages or by the STAB programming language documentation.

Numerous errors remained a mystery to both my supervisor,

Dr. Solntseff and myself. Initially I was able to correct

these errors by intuition and program re-organization.

However, as time went on the situation deteriorated to the

point where little real progress was being made on my

compiler and its code was so significantly altered to

facilitate a clean compile that it was inefficient, At this

point the project was halted and this project started.

The portable STAB system failed on two accounts: a

poor compiler a.nd insufficient documenta.tion. :·Je can

conclude that a portable system needs a readable, structured

and easily modifiable compiler eccompanied by a full and

thorough documentation to be workable in A new surrounding,

CHAPTER 2

NIGRO-PASCAL

2.1 Design Philosophy

NICRO-PASCAL is a high-level langua.ge to be

implemented on micro or mini-computers like the HP2100.

It is a lan~tage well suited for writing compilers in a

readable, understandable and modifiable form.

2.2 Basic Features

r•IICRO-FASCAL, as 1 ts name would suggest, is

modelled after the full PASCAL language. The quantities

in a Micro-Pascal program are constants, simple variables,

arrays, strings, procedures and the presently unimplemented

functions. There are five types of declarations: labels,

constants, variables, procedures and functions. Data

types fall into three categories based on their size.

8

9

SIZE NAHE DESCRIPTION

One Byte Byte integer

Char character

Two Byte Integer integer

N Byte String character string

Array integers, characters

figure 2.1 Data Types

Numbers in MICRO-PASCAL are represented by one or two byte

integers.

Arithmetic operations available include addition,

subtraction, multiplication and division on BYTE and

INTEGER types. The basic boolean operations of EQ, NE,

LT, LE, GT, GE, AND, OR and NOT exist for BYTEs and

INTEGERs. I1ICRO-PASCAL has four basic input/output

operations, READ-reads from the current input buffer,

READLN-terminates reading from the current input buffer,

WRITE-writes to the output buffer and WRITELN-dumps the

output buffer to the desired output unit.

Valid statements include a compound form as well

as the standard assignment. A compound statement consists

of a group of statements surrounded by a BEGIN and an END.

The Hicro-Pascal control statements are limited to a GOTO.

an IF-THEN and IF-THEN-ELSE block, a CASE block and a

~fHILE-DO repea. t block. Parameter passing on procedure

calls is limited to call by value only.

Some of the PASCAL features removed from

HICRO-FASCAL include sets, records, pointers, types,

10

reals and the REPEAT and FOR statements. Fuller

documentation on HICRO-PASCAL is available elsewhere.(GRE)

2. 3 Micro-Pascal T1R.chine

We refer to the Micro-Pascal package as the

Micro-Pascal Machine. The Micro-Pascal source program

is executed by a compiler - interpreter which works in

two phases. Source code is first compiled into an

intermediate abstract machine language referred to as

intcode. The intcode is then executed on the host machine.

i>ly goal, in this project, is to develop and document an

interpreter to execute intcode programs on the Hewlett

Packard 2100.

Ftrst Fh~se

I·~ICE.O- :t; AS C1.\L
~

.SCUnCZ

~econd Fh9,se

INTCODE)

I-:icro-I'Pscal Compiler --7 INTCODE

~rlri tten in r:I-F

ProgrAm written in RP

A.ssembly lang-119 ge Rnd

microcode executes

intcode instructions.

11

figure 2. 2 I'Iicro-Fa.scfll Interpretation on HF2100

The Eicro-Fascal Machine hes alreRdy been

implemented on the CDC 6400. This project will ~llow

Micro-Fascal progrems to be compiled into intcode on the

CDC then executed on the HF2100. The full Micro-rascal

I~achine will be realized on the HF2100 11-rhen the compiler

is written in MICRO-FASCAL end interpreted into lntcode.

2.4 Fortability and NICRO-FASCAL

~e can now consider the Vicro-Fascal Machine with

respect to the portability queRtion. The compile phase of

interpretation is fairly machine independent since it is

written in NIGRO-PASCAL and generates the stf\nde,rd

abstract machine language as code. It could be used with

intcode executors on vRrious host machines requiring only

minor alter~tions if ~ny.

The execution phase of the interpreter is firmly

rooted in the host machine. Its flexibility stems from

the fact that a compile operation for Rny source len~tage

emitting compAtible intcode programs could be used with

1 t. The execution phase could theoretics.lly be part of a

number of different lA-nguage me. chines or interpreters.

2.5 L8n~age Assessment

12

Even though MICRO-PASCAL and its implementations

are still in the experimentel ph~se, some general language

criticisms are worth considering. A Micro-Pascal program

must be compiled then interpreted. in order to run. This

two phase operation contributes to a lengthy totPl run

time as ~ell as a slow execution speed. Programmers

accustomed to the larger and more powerful high-level

languages such e,s PASCAL will find J'vliCRO-PASCAL restrict! ve,

at least initially, due to the limited control statements.

The size restriction on Micro-Pascal programs will depend

on the aveilable host machine memory and the efficiency of

the interpreter implementation.

A strong argument for MICRO-PASCAL is the

availability of a high-level language on a mini or micro

machine that has been previously restricted to lower-level

languages. The mini or micro-machine programmer is given

new freedom not present in Assembler and machine la.nguages.

This freedom should contribute to a reduction in program

13

development time. Since MICRO-PASCAL is a small and simple

language its compiler can be written using time and space

to maximum efficiency. In a small machine environment it

is essential that resources be efficiently allocated.

The Micro-Pascal system is semi-portable since the

compile phase emits a standard machine independent intcode.

Once the execution phase has been adapted to the host

machine to accept intcode,the standard compile program can

be used. MICRO-PASCAL is intended RS a modifiable system

which is fairly flexible to locRl tampering unlike some

systems such as PASCAL-S.

2.6 Interpreter Outline

The interpreter is written in Hewlett-Packard

assembly language E:tnd microcode. It accepts end executes

intcode programs which are read as a string of bytes.

These programs can be read by the interpreter from eny

specified input device. As currently implemented, input

during program execution is limited to cards and the

keyboard while output can be routed to the line printer or

the keyboard.

Instructions executed by the interpreter are at

least one eight-bit byte long and this first byte is split

into a group and level number. The main program decodes

the group and level components of the current instruction

and bra,nches to the required group subroutine. The flow of

control within the subroutine is based on the level number

and when it is matched the required instruction is executed.

Control is then returned to the main program where the

instruction cycle is repeated until the stop command is

encountered.

CHAPTER 3

INTERPRETER DESCRIPTION

).1 Structural Design

The interpreter consists of one main routine,

three m1crorout1nes, twenty-five subroutines and six

input/output subroutines. The heart of the interpreter is

the main program, INTRP, along with the subroutines ARITH,

BFUNC, LOAD, LOGIC, MANIP, PCALL, STORE and TRANS.

Assembler Subroutines

A - ARITH

B - ASSBY

c - BEGIN

D - BFUNC

E - DECSK

F - DIGIT

G - FINI

H - GETAD

I - GETBT

J - GETBY

K - GETIN

L - GPERR

I1 - GT2IN

N - INCSK

figure 3.1

N - INCSK

0 - LLERR

p -LOAD

Q - LOGIC

R - MANIP

s - PCALL

T - PUTBT

u - READP

v - STBYT

w - STINT

X - STORE

y - TRANS

z - ZASSY

Table of Subroutines
15

Microprogram

Subroutines

Ml - INCST

M2 - DECST

I-13 - GBYTE

I/O Subroutines

Il - WRCRT

12 - WRLP

IJ - RDCRD

I4 - RDCRT

I5 - RDPT

I6 - RDDSC

16

. Symbols

~-represents subroutines that can call other subroutines

c=J- represents subroutines that do not call other

subroutines

figure 3.2 Subroutine Map

The subroutine map illustrates the overlapsthat

are avoided with a modular type design.

).2 The Micro-Pascal ~Achine

The }Ucro-Pascal }~chine consists of three main

arrays: CODE, STACK and DSPLY and a few main pointers.

Intcode generated by the Micro-Pascal compiler is stored

17

two bytes per word in the CODE array. The instruction

pointer, IP, points to the executable byte in the CODE array.

The STACK array is used for run-time data storage and is

referenced by all but a few instructions. SP is the stack

pointer which indexes the top stack element. A zero SP

value indexes the first stack element. Even though each

stack element is two bytes large,only the lower byte is

used in the stack operations. The level of procedure

nesting is stored in LVL. DSPLY is a sixteen bit array

used in addressing and LVL is the index of the most

current entry. When a procedure is called,DSPLY(LVL + 1)

is set to the current value of SP. After procedure

execution the stack pointer can be reset to the proper

value using the DSPLY array. Initial values for these

variables are SP = O, LVL = O, DSPLY(LVL) = 0 and IP = 1.

All the interpreter instructions have an initial

byte of the following forms

18

,_GROUP LEVEL

4 bit 4 bit

figure J.J Instruction Register

The first four bits represent the group category of the

instruction while the other four usually specify a

particular instruction within a general group classification.

There can be zero or more bytes following the initial one

that are part of an instruction.

3.2.1 Data Representations

The data representations fall into three categories

one, two and N-byte types. Characters and integers are

stored in one byte, larger integers can be accomodated in

two bytes and strings and arrays take an unspecified

number of bytes. Strings are at least two bytes long and

appear on the stack as follows•

Byte 1 2 '3 •••••

PHYSICAL SIZE LOGICAL SIZE CHARACTERS •••••••

figure).4 Stack Representation of String

Each string occupies two plus the physical string size

bytes on the stack.

N

19

An array has a header that describes its structure

and data. The header appears on the stack as illustrated

below:

Byte 1 2 4 5 6

elsize dim # I
1;1 I size 1 lb2 size 2 •••

elsize - the total array size in bytes

dim # - the number of array dimensions

lbl - lower bound of the first array index

size 1 - the range of the first array subscript

upper bound - lower bound + 1
•
•
•

etc.

figure 3.5 Stack Representation of An Array Header

3.2.2 Procedure Structure

When a procedure is called,a seven-byte header is

created on top of the stack and an entry is made in the

DSPLY array which points to the start of the header. The

procedure call specifies the new value of LVL for the life

of the procedure and the address of the procedure.

Byte

1

2 + 3

4 + 5

6 + 7

Contents

the old LVL value

the return e.ddress

address of the result for functions

entry in DSPLY for the old LVL

fisure 3. 6 Procedure Header FormB.t

3.2.3 Addressing Modes

Instructions

All the instruction addresses are relative to

the first element of the CODE errey. The instruction

pointer value, IP, that references the first byte in the

CODE array is one.

Data

All data addresses are relative to byte zero of

20

the STACK array. This starting location corresponds to a

stack pointer or SP value of zero. StAck addressing can

be relative or absolute. A relative address consists of

three bytes. An element of the DSPLY A.rray is specified by

the index in the first byte and this value serves as the

base address. The following two bytes form a· positive

sixteen bit displacement which is added to the base address

giving the final Rddress. An absolute stack address

consists of two bytes which together specify a sixteen bit

stack e.dd ress.

3.2.4 Instruction Set

The instructions currently implemented in the

interpreter are described belows

GROUP 0 - LOAD

This is a three-byte instruction in which the

LEVEL component of the first byte pointa to an entry in

the DSPLY array and this value acts as the base address.

The second and third bytes of the instruction form a

sixteen bit address, ADR. The byte at address

DSPLY(LEVEL) + ADR is loaded onto the top of the stack.

GROUP 1 - STORE

STORE is a three-byte instruction where the LEVEL

part of byte one specifies an element of the DSPLY array.

Bytes two and three form a sixteen bit address, ADR. The

byte on the top of the stack is stored at stack address

DSPLY(LEVEL) + ADR.

GROUP 2 - STACK MANIPULATION

Level

0 - In this two-byte instruction byte two specifies

the number of bytes by which the stack pointer is

to be incremented.

1 - The second byte is stored on top of the stack.

2 - The string following the first byte is stored onto

the stack. See figure).4 for string format.

21

GROUP 2 - STACK HANIPULATION cont'd

Level

3 - The second byte speci~ies the number of following

bytes that are to be loaded onto the stack.

4 - The top three bytes on the stack specify an index

into the DSPLY array and a sixteen bit address,

ADR. The byte at DSFLY(LVL) + ADR is loaded onto

the stack

Low byte

of' address

High byte
of address

LVL

figure 3.7

SF

SF - 1

SP - 2

Stack Set-Up for Load Using Relative

Stack Address

22

GROUP 2 - STACK NANIPULATION cont'd

Level

5 - The top stack element is stored at the address

DSPLY(LVL) + ADR.

Top Stack Element SF

Low byte of
SP - 1

address, ADR

High byte of
SP - 2

address, ADR

LVL SF - 3

figure 3.8 Stack Set-Up for Store Using Relative

Stack Address

23

GROUP 2 - STACK NANIFULATION cont'd

Level

6 - ri'he three-byte relat1 ve sta.ck address on the top of

the stack is converted to a two-byte absolute stack

address preceded by a zero byte.

Low byte of relative
SP Low byte of absolute

address address

High byte of relative
SP - 1

High byte of absolute
address a_d.dress

LVL SP - 2 0

Stack Before Stack After

figure 3.9 Relative to Absolute Stack Address

Conversion

7 - The second byte specifies the number of bytes by

which the stack pointer is to be decremented,

24

25

GROUP 2 - STACK I1ANIPULATION cont'd

Level

8 - This instruction determines a relative stack address

SP

SP - 1

SP - 2

and loads a two-byte integer onto the stack using

that address. The top three stack elements form

the relative stack address, ADR. The high byte of

an integer stored at ADR is loaded onto the stack

at SP - 2 while the low byte of the integer is

loaded from ADR + 1 onto the stack at SP - 1.

Low byte ADR SP

High byte ADR SP - 1
Low byte of

Integer

LVL SP - 2
High byte of

Integer

• •
• •
• •

ADR + 1
Low byte of

Integer

ADR High byte of
Integer

Stack Before

figure 3.10 Two-byte Integer Load

Stack After

26

GROUP 2 - STACK I1ANIPULATION cont'd

Level

9 - This instruction stores the two-byte integer on

top of the stack at the relative stack address,

SP

SP - 1

SP - 2

SP - J

SP - 4

ADR, specified by the three bytes below it.

Low byte of
Integer

High byte of

~ Low byte of
Integer

DSPLY(LVL)
+ ADB + 1

Integer
~ High byte of DSPLY(LVL)

Integer + ADR
Low byte ADH

High byte ADR

LVL

Stack Before Stack After

figure J.ll Two-byte Integer Store

27

GROUP 3 - ABITm1ETIC OPERATIONS

Level

0 - The top stack element is negated in two's complement

form.

1 - The two bytes on top of the stack are added together

and stored at stack position SP - 1.

2- The byte at STACK(SP), the top stack element, is

subtracted from STACK(SP - 1) and the result is

stored at stack position SP - 1.

3 - The byte at stack position SP is multiplied by the

byte at SP - 1 and the result is stored at SP - 1.

4 - The byte at stack position SP - 1 is integer divided

by the byte at SP with the result stored at SP - 1.

The next five operations work with two-byte integers

that appear on the stack as follows:

SP Low byte of Integer } referred to as I2

SP - 1 High byte of Integer

SP - 2 Low byte of Integer 1 referred to as Il

SP - 3 High byte of Integer

figure).12 Two-byte Integer Stack Configuration

GROUP J - ARITI-Il·:E~rrc OPERATIONS con t 'd

Level

5 - The top two-byte integer, I2, is negated in t~o's

complei!lent form.

6 - Add the integers I2 and Il storing the low byte of

the integer result at SP - 2 and the high byte at

SP - 3.

7 - Subtract I2 from Il and store the result at SP - 2

and SP - 3.

8 - ~~ltiply I2 by Il and store the result at SF - 2

and SP - 3.

28

9 - Divide the integer Il by the integer 12 storing the

result at SP - 2 and SF - 3.

GROUP 4 - LOGICAL OF~::l:iATIONS

The top two stack elements are compared according

to the specified logical relation. If the relation holds

a one is placed at stack location SP - 1. Otherwise a

zero is placed at SP - 1. The logical operation is

performed as illustrated below.

STACK(SP - 1) Logical Operator STACK(SF)

GROUP 4 - LOGICAL OPERATIONS cont'd

Level

0 - equal

1 - not equal

2 - less than

3 - less than or equal to

4 - greater than

5 - greater than or equal to

29

The next six operations repeat the same tests on two-byte

integers

SP Low byte of Integer
referred to as I2

SP - 1 High byte of Integer

SP - 2 Low byte of Integer
referred to as Il

SP - 3 High byte of Integer

Il Logical Operator I2

6 - equal

7 - not equal

8 - less than

9 - less than or equal to

10 - greater than

11 - greater than or equal to

GROUP 5 - BUILT-IN FUNCTIONS

Level

0 - This instruction termine.tes the current output

line. (For those femiliar with PASCAL this

corresponds to a r.JRITELN).

JO

1 - This instruction terminates reading from the current

input line. If the input is coming from cards the

rest of the card is skipped and a further read will

use the next input card. (READLN).

2 - The character on the top of the stack is written to

the output device specified by the byte at stack

position SP- 1. (HRITZ).

The Input/Output units currently implemented on the HF2100

are illustr~ted below:

Available for

Execution and

Input

Intcode

INFUT

CRT

PAPER TAPE

DISC

OUTPUT

0 - CRT

1 - LINE PRINTER

GROUP 6 - TRANSFER OPERATIONS

Level

0 - This is an unconditional jump instruction. The

second and third bytes specify a relative

instruction address which is transferred to

immediately.

1 - This is a conditional jump instruction. The

second and third bytes provide a relative

instruction address which is transferred to if

the top stack element is zero. If the top stack

element is non-zero then the next instruction is

executed.

31

2 - This instruction specifies a case statement on the

top stack element. The GROUP - LEVEL byte is

followed by a number of case elements which consist

of a case header and code for the case element. The

case header format is

Byte 1 2 + 3

item address

figure 3.13 Case Header Format

where: item - the case label for the case element

address - the relative instruction address

of the next case header

GROUP 6 - TRANSFER OPERATIONS cont'd

Level

)2

2 - If the address value 1s zero then the case statement

has ended. Therefore the final case element

consists of an undefined item value and a zero

address. When the case statement is executed,

the ease header items are searched and compared with

the top stack item. If .a match 1:s made, the code

corresponding to the particular cas~ item is

executed before continuing with the next instruction

after·the case. When no match is made with top

stack element control passes directly to the

instruction after the case.

3- This 1nstruction·1s a procedure return which uses

the procedure header, created on call, to recreate

stack condition as they were before the call.·

These activities include resetting LVL, DSPLY(LVL),

the stack pointer, SP, and the instruction pointer,

IP, to the return address.

4 - This is the stop instruction which terminates

program execution.

GROUP 9 - PROCEDURE CALL

The two bytes after the GROUP - LEVEL byte specify

the relative instruction address of a procedure to be

called. A procedure header is created on top of the stack

JJ

as described in section 3. The base of the procedure

header is pointed to by the DSPLY(LEVEL) entry and control

is transferred to the procedure.

3.3 Code Discussion

3. 3.1 I1a1n Program

The main program performs the following five

basic funct1onsa

1) Declares and initializes program variables and error

messages.

2) Introduces the interpreter to the user.

J) Beads in the intermediate code.

4) Executes the code.

5) Prints summary information related to interpreter

execution.

Two of the more prominent variables initialized

at the start of interpretation are STLIM, the maximum

value of stack pointer, and CODMX, the maximum number

of bytes that can be stored in the CODE array.

The program execution begins with some descriptive

information that is sent to the CRT via the BEGIN routine.

This routine flags the start of interpretation, summarizes

the input and output numbers and lets the user for·ce program

output to the CRT or the line printer.

34

The intcode program is read into the CODE array

by the READP routine. A program pause occurs so the user

can specify the input device number. When this is

completed the program reads characters one at a time from

the input stream assembling instruction bytes and storing

them in the CODE array. Once the termination header is

encountered the reading process is over.

The transfer of control in the main execution

loop is based entirely on the group number of the current

instruction. The loop begins with a call to GETBY which

recovers the current instruction byte pointed to by IP.

This byte is split into the GROUP and LEVEL components

and the GROUP number tested against the valid possibilities.

(An error message for an invalid group number is emitted

if the matching attempt is unsuccessful.) If a match is

made,then the appropriate group subroutine is called to

execute the instruction. After exeeution,control returns

to the start of the loop where an end flag is inspected.

A--stop instruction sets this flag and brings the main

loop to an end.

INITIALIZE VARIABLES

INTRODUCTION TO
INTERPRETER

READ IN THE PROGRAM
IN INTCODE

ASSEMBLE THE NEXT

INSTRUCTION INTO ITS GROUP
AND LEVEL PARTS

END MAIN LOOP
PRINT OUT SUMMARY
STATISTICS

35

figure 3.14. Flowchart

of Haln ProR;ram

YES

YES

YES

YES

YES

ERROR MESSAGE
ILLEGAL GROUP NUMBER

figure 3.14 Flowchart of Main Program

37

3.3.2 Subroutine Desi~n

The Plein subroutines, ARITH, BFUNC, LCGIC, NANIP

and TRANS were written in as structured e.nd readable a

manner as possible in assembly language. The transfer of

control within these subroutines is based upon the LEVEL

number of the current instruction. A valid LEVEL value

uniquely defines en instruction within a GROUP subroutine.

These subroutines are equipped with error exits which

flag the occurrence of unexpected high LEVEL values after

the legal ones have been checked.

3.3.3 Program Input

The interpreter accepts a string of octal bytes

as input. Within the input stream there cs,n be occurrences

of three subgroups. One group consists of code bytes,

another of fix-up bytes to edit addresses and the other

is an end of information marker.

TYPE OF INFUT 1st BYTE 2nd BYTE FOLLOWING BYTES

CODE 001 nl n1 bytes

FIX - UP 002 n2 n2 bytes

END OF INFO 143 000

figure).15. Input Stream Subgroups

Each form has a header consisting of two bytes. The first

byte indicates the type of input to follow. The second byte

of the code block indicates the number of bytes that

38

follow and are to be placed in the CODE array. A code

block must be the first form appearing in the input. It

can reappear anywhere in the input stream except as the

last block which is always the end of information. The

fix-up block can appear after eny code block. The number

of bytes in the block, specified by the second byte, is a

multiple of four since each fix-up instruction uses four

bytes. The I11cro-Pascal compiler uses a. one-pass approach

so that labels are often left unspecified until they are

encountered later on in the program scan. A zero address

is generated by the compiler when a label with an unknown

address is scanned. When the label is determined a fix-up

entry is prepared to replace the zero address.

Byte Number 1 2

form 16-bit

relative instruction

address - ADR

Fix-Up Address

High byte Low byte

J

load a.t

ADR

4

load at

ADR + 1

figure 3.16 Fix-Up Group Description

The first two bytes of the fix-up group specify a

sixteen bit relative instruction address within the CODE

array where the third byte will be loaded followed by the

fourth byte in the next location. Together,these final two

bytes form the previously undefined label address. The

end of information block occurs only once at the end of

the input stream.

3.4 Using The Interpreter

3.4.1 Program Input.

The intcode program can be read from disc, cards

39

and paper tape. Input is expected to be in the form of

octal bytes separated by some delimiter. Illegal

characters, those that are not octal digits, are completely

ignored. A sample program is illustrated below.

U?l

c·=·t
0 _,.1

..• ·!

·- L!C

:jCJO

1210 ;~i
044
r•o 1

1") - .:::

'1: •)

... ':1

l ·::!- 0
OCC!
0:1.?
0·":-l
CJ.:::-1
1.:10
!~i :!. ;~:

000

CI41.
~::1nn

f::)Jji)

Ci'j 1
rj.:·! 0

(I 1 ~::
l 0 :l
0·:!-1

(1::)2

001

• --·f ••
••• J

;, ·!· 1
~~j l,·.t

0~] _l

ij.::j. :1.

!~:; "'!· 0
c::::: l
UUC!

!1 .. 0
0 l ~3

: C) 1 0 .:;. C
-:100 014
-'!C iJ C·=:! ~:~

-· ?~::: 1 4 ·-~·
Cl ,. : t:i 0 Ci 0 :,~i •1 <~i 0 0 :!. Cl -:-~ 0 f2: C 1 :') .::\. !J r) 0 1. {J •l 0 0 0 l
o ~:. t :jO 1 •<21. ono o ·'- o oo 1 l:::ii~.IO H 1 ~~=~ .· 'l :l o :l ;~~

002
eoo
O:JO

054
l ::::o U'=iO

~~tOO

,_., r=11

~~~~ 00 

l 4:2 
1 :::) .. ::' 
.-·~ ·-: 
t::~ .. ~-

!-:~ ·- '7 
•:..• :.~ I 

::::1!]0 
040 
000 
C:IO 1 

1·:·~ 0 
oo::: 
_I ... I 

000 
0017.1 
l,:)Ci 1 
:~11:3 :l 

147 
?ll 
~:.?6 

0 :~~ 

C! o:a o t-:::o 
•;_.100 ;:::34 

CtOel ·~·12 
(;:0:2 005 



40 

J.4.2 Output 

Program output is normally routed to the unit 

specified in the program code. It can also be directed to 

the CRT or line printer by the user from the CRT. 

3.4.3 Summary of Error Messages 

After each error message printout we get the 

normal program termination output which includes the 

number of instructions executed, the maximum stack 

pointer value during program execution and the program 

size in bytes. The error messages are summarized below. 

1) Group number of current instruction is not valid. 

2) Level number of current instruction is too large. 

3) CODE array is too small to accomodate the program. 

4) The index of the DSPLY a.rray is greater than fifteen 

and therefore references an out of bounds element. 

5) The stack is too small for the current program, stack 

overflow. 

6) The stack pointer has been decremented below zero, 

stack underflow. 

7) An input block with an illegal type header, not 1, 2, 

or 143, has been encountered. 

If error three is encountered the size of the CODE 

array can be increased by changing source lines 84 and 

219. Similarly an occurrence of error five mey require 



an increased stack size which can be ma.de by changing 

source lines 91 and 213 • The dimension of the DSPLY 

array limits the level of procedure nesting to fifteen. 

3.4.4 Input/Output Routines 

41 

The input/output routines used by the interpreter 

provide the interface between the Hewlett-Packard DOS-M 

operating system and the Hicro-Pascal 1•1achine. This 

group of routines makes available all of the peripheral 

devices related to the Hewlett-Packard 2100 at Mcf1aster. 

The routines are summarized below2 

1) Line - Printer 

2) 

J) 

4) 

5) 

6) 

7) 

8) 

9) 

Paper - Tape Punch 

Paper - Tape Reader 

CRT - Input 

CRT - Output 

Card - Reader 

Read from Disc 

Write to Disc 

Write to Job Binary Area 

All of these routines are 

equipped to handle single 

character and buffered 

information. 

These routines work 

with one binary 

byte. 

10) ~lri te a record to Job Binary Area 

11) Display time of day 

These routines were written originally for use ln 

the STAB system by my supervisor, Dr. N. Solntseff. The 

routines currently used by the interpreter are 1, J, 4, 5, 

6 and 7. 



42 

3.5 Instruction Testing 

Programs were written to verify each group of 

instructions. The test program created the conditions 

where the operation of each instruction could be 

sequentially checked. This checking procedure was possible 

using a debug package loaded with the program. Stack 

conditions including the stack pointer were sampled before 

and after the instruction execution. The actual stack 

configurations were checked against the expected values 

which were calculated by hand before execution. All of the 

test programs are included in Appendix c. The testing 

process is illustrated here for the procedure call and 

return program. 



Ire-Calculated Results 

E>F 

1) Load 1 onto the stack, .SP ..... 1 4 

2) Load 2 onto the stack, sp~ 2 0 

J) Procedure call - return address 12, 

SP,.....11 

0 

0 

12 

11 

10 

7 

6 4) Load 4 onto the stack, sp.,_ 12 

5) Procedure return, 

Set If .,.__12 

LVL 4-0 

SF._ 2 

6) Load 377 onto the stack, SP--3 

7) Stop 

Octal Representation of Program 

041 

012 

143 

001 

041 

041 

377 

002 

144 

220 

041 

0 

7 

Q_ 

0 

2 

1 

figure 3.17 

I 377 

Stack 

5 

4 

3 

2 

1 

0 

ConfigurAtion for 

Procedure Test Program 

000 

004 



CHAPTER 4 

1-liCROCODING 

4.1 Microprogramming On The HP2100 

The Hewlett-Packard 2100 used in this project is 

equipped with microprogramming facilities. It has four 

writable control store modules where the micro-instructions 

are stored. Module 0 contains the basic 2100 instruction 

set, module 1 the floating point instructions and the 

remaining modules 2 and 3 are available for programmer 

use. A microprogram is a program-structured s~quence of 

commands residing in the hardware or writable control store. 

When a microprogram is executed it is translated into 

hardware actions by hardware controls. This hardware 

translation means fast and efficient execution. 

Microprograms are usually more difficult to write because 

they work on such a primitive level. Further information 

on Hewlett-Packard Microprogramming can be found in the 

HP2100 Microprogramming Guide and Microprogramming Software 

Handbook. 

The three most frequently called subroutines: 

DECSK-stack decrementat1on, INCSK-stack 1ncrementat1on and 

GETBY-extract1on of next instruction byte were chosen for 

44 



microcoding because they would maximize the increase in 

interpreter execution speed and could be implemented 

fairly quickly. 

4.2 ~ioroprograms For The Interpreter 

This section summarizes the microroutines with 

brief program descriptions and flowcharts. The micro

program listings appear in Appendix E. 

4.2.1 INCST 

45 

This microroutine increments the stack pointer, SP, 

by a specified value, checks for stack overflow and retains 

the maximum stack pointer value. It has four arguments: 

the stack increment in the B register, the stack pointer 

address, the address of maximum a.llol~able SP value - STLIH 

and the address of maximum SP value to date - MSTCK. The 

value returned in the B register on microprogram 

termination indicates a stack overflow condition with a 

one and a normal exit with a zero value. 



FLAG 

OVERFLOW 

CONDITION 

figure 4.1 INCST 

46 

SP +- SP + INCREMENT 

'fes 

No 

YES 

MSTCK +--- SF 



4.2.2 DECST 

This routine decrements the stack pointer, SP, 

by a specified value and checks for stack underflow. It 

has two arguments, the stack pointer address and the 

47 

stack pointer decrement in the B register. On microprogram 

exit an A register value of one indicates stack underflow 

while a zero value flags a normal termination. 

FLAG STACK 

UNDERFLOW 

figure 4.2 DECST 

YES 

SP .,__ SF - DECREMENT 

NO 



48 

4.2.3 GBYTE 

This routine extracts a specified byte out of an 

array of two byte words. It has two arguments, the 

starting address of the array and the index of the desired 

byte in the B register. The index specifies a particular 

byte within an array word. This array word is determined 

from the index value and the byte is extracted from it. 

The byte is returned in the A register. 



Shift masking bits 

to top of word 

Shift byte into the 

low eight bits of 

A register 

Figure 4.3 

Set up a mask of eight one bits or 3778 

YES 

Get word index, WI. 

Ttl I +- ( INDEX + 1 ) /2 

Get array element (WI) = AE 

Mask out the desired byte 

of AE using the mask word 

YES 



CF...APTER 5 

INTERPRETER TESTING 

The interpreter testing process is intended to 

verify the instruction set and monitor its performance 

on complete programs. Two I•'licro-Pa.sce.l test programs 

included in this chapter illustrate the latter quality. 

The interpreter instruction set was verified using the 

test programs documented in Appendix c. In the following 

section a more comprehensive possible test program is 

considered. 

5.1 Ideal Interpreter Test Pro~ram 

I would like to outline an approach which could 

be used to write a comprehensive interpreter test program. 

First we must determine what such a program will do. It 

should test almost all of the instruction set. An 

indication of the instruction being tested should be 

followed by an error report if an error is detected or 

the next instruction if the instruction worked as expected. 

An error message will provide as many details as possible 

about the machine environment at the time of detection. 

Documentation of some sort will probably be required to 

fully interpret the error messages. 

50 



51 

The v~lue of our test progrem lies in the quick 

debugging and verificAtion possible of a new interpreter. 

~hen a malfunctioning instruction is detected, the test 

proo;ram will indicate the particular machine p~rameters 

that are in error. These ·parameters include the stack, 

instruction pointer and stack elements 

A subset of the basic instruction set will have 

to be verified by other meAns for use in the program. 

This subset could be checked, using a debug packa.ge and 

programs like those in Appendix C, and e.ssumed correct 

for use in the test program. Instructions likely to be 

members of this set are stack load operations, some 

logical tests, some transfer operations and keyboard 

input/output operations. 



52 

The design of an instruction test will be as follows. 

1) The test conditions are set up by loading 

values onto the stack. 

2) The instruction is executed. 

3) The results of the instruction are tested 

against the expected results. This means 

we check the values of the stack pointer, 

instruction pointer and stack contents. 

If an error is located we, 

a) indicate the source of error by 

displaying a meaningful symbol 

(ex. SF for stack pointer and 

IF for instruction pointer) 

b) display the values of pertinent 

variables at the time of error 

to aid in debugging 

and c) cause the program to pause so 

the user can assess the error 

before deciding to continue 

error checking or abort. 

These three steps are repeated until all of the 

instructions have been considered. 



53 

5.2 Sample Fro~rams 

In this segment two test programs are presented to 

illustrate the execution of Micro-Pascal code. The source 

listing is followed by the intermediate code output from 

the compiler and ended by the results of program execution. 

Test 1 

This program illustrates some of the arithmetic 

operations available in NICRO-PASCAL. The program input 

consists of two positive integers separated by a 

non-numeric character. Each integer is less than 256 

since this is the maximum value storable in eight bits and 

1 s input from the keyboa.rd. These input values are then 

used in four arithmetic operations. 

. 
.... 



T.ES T F'EOG riA.I•l ONE 

THIS FROGHAl>1 ILLUSTRATES rrHE HATHEI•IATICAL 
O}ERATIONS IN 1~ICRO-F'A3CAL 

T\JO INT'~;GER NUIT3ERS ARE REQUESTED AS INPU·r. 
TEE BASIC ARITHI·~ETIC OPERATIONS OF .ADDITIO~J, 
SU3TMCTION, IiULTIFLICATION AND DIVISION ARE 
APFLIED 'I'O THE Tl·lO INPUT VALUES. 

VAR 
EQUAL : BYTE ; 
DIV : BYTE ; 
EULr : BYTE ; 
HINUS : BYTE: ; 
PLUS : BYTE ; 
ZERO : BYTE ; 
BLANK : BYTE ; 
UNITl : BYTE ; 
UNIT2 : BYTE ; 
NUI,il BYrrE ; 
NUj\~2 : BY'TE ; 
TEI•iF : BY·rE ; 
NUIV:BEH : BYTE 

PROCEDURE TO ASSEi·1BLE AN INTSGER VALUE IN NUNBER. 
I~JTEGER DIGITS ARE HEAD U!\TIL A NON-INTEGEii 
CF~RACTEn IS DETECTED • 

• 
PROCEDURE REDNUM 
VAR 

L : BYTE 
f.l : BYTE 

BEGIN 
H := 0 ; 
NUHBER := 0 ; 
r,~EILE H EQ. 0 DO 

END 

B2GIN 
.i:1EAD ( UNIT 1 , L ) 
L : = L - LJ.S ; 
IF (L GE 0) AND (L LE 9) THEN 
NU~BER := NUMBSil * 10 + L ELSE ~ := 1 

END 

THIS :FnOCr::I:JU!iE ~.~RI'rES OUT THE IN'l1~~GER VALUE TRA·r 
IS S·l'ORED IN THE AHGUi·:ENT N ON DEVICi~ SPECIFIED 
BY UNIT2. (IN THIS CltSE THE LI~JE FRI?~TER) 

54 



. 
FROCEDUHE \,JRTNUI'·1(N 3yrp-:~) 

--.1.-1 

'IAE. 
L : BYTE 
1'1 : BYTE 

3EGIN 
N := N I 10 ; 
IF ( 11 1'JE 0 ) T~-IEN '~';RTNUH (H) 
L : = N - ( i ~ * 10) + 48 ; 
~:fRITE ( UNIT2 ,·L) 

END ; 
3EGIN 
• 

ASCII CODES FOR CHARACTERS ARE SET UP FOR 
FEINTING PURPOSES. 

~1UL·T : = 42 ; 
EQUAL := 61 
HINUS 1 = 4 5 
DIV := 47 ; 
BLANK := 32 
ZERO := 48 
PLUS := 43 

UNITl IS THE KEYBOARD OR TI:Rr.IINAL AND UNIT2 IS 
THE LINE PRINTER. 

UNIT! := 0 ; 
UNIT2 : = 1 ; 

READ IN THE T~>JO NUNBERS NUI"ll AND NUH2. 

READLN(UNIT1) 
B.EDNUH ; 
r~u.rr11 r = NUHBER ; 
REDNUi·: ; 
NUT·I2 : = NUi··IBER 

ADDITION SEQUENCE 

-W'RITE~(UNIT2, BLANK) 
lvRITELN{UNIT2) ; 
Tv-IR"INUH (NUNl) ; 
WRITE(UNIT2,BLANK) 
~RITE(UNIT2,FLUS} ; 
WRITE(UNIT2,BLANK) 
-/;RTNUl'l ( NU r-12 ) ; 
'tlRITE (UNIT2, BLANK) ; 

55 



iJiRITE (UNIT2, EQU.AL) ; 
T;JRITE ( UNIT2 'BL&~K) ; 
TEHF : = NUNl + NUH2 
WRTiJUE( TEI1P) ; 
V!RITELN (UNIT2) ; 

SUBTRAC'riCN SEQUENCE: 

• 

WRITE(UNIT2,BLANK) ; 
WRITELN(UNIT2) ; 
WRT~TUN ( NUHl) ; 
WRITE(UNIT2,BLANK) 
WRITE(UNIT2,HINUS) 
WRITE(UNIT2,BLANK) 
WRTNUH(NUI·12) ; 
WRITE(UNIT2,BLANK) 
WRITE(UNIT2,EQUAL) 
HRITE(UNIT2,BLANK) 
TEI1P : = NU F!l - NU I1I2 
TJRTNUN( TENF) ; 
~~RITELN (UNIT2) ; 

~IDLTIFLICATION SEQUENCE 

WRITE(UNIT2,BLANK) 
WRITELN(UNIT2) ; 
WRTNUl·'I( NUHl) ; 

• 

l~JRITE ( UNIT2, BLANK) 
WRITE(UNIT2,NULT) ; 
~-IRITE {UNIT2, BL.Al'JK) 
WRTNUN(NUI-12) ; 
WRITE(UNIT2,BLANK) ; 
vlRITE ( UNIT2 , EQUAL) ; 
\vRITE(UNIT2, BLANK) ; 
TEMP := NUMl * NUM2 
WRTNUI-1 (TEMP) ; 
~.JHITELN (UNIT2) ; 

DIVISION SEQUENCE 

WRITE(UNIT2,BLANK) 
'tl RITELN ( UNI'l'2) ; 
\.-TRTNU H ( NUHl ) ; 
WRITE(UNIT2,BLru~K) 
r.~RITE(UNIT2 ,DIV) ; 
WRITE (UN rr2 , BLANK) 
WRTNUN(NUIY12) ; 
H RITE (UN I ~r2 , BLA.l~K ) 
t.JRI'rE: (UNI T2, EQUAL) 



1wvRITE (UNIT2, BLANK) ; 
TEHP : = NUHl / NUN2 
T Y.,-, :Tt'r\"'U"'~ ( Tl":'""!tP) w h ..i..h 1'1 .C.11l ; 

~,JRI TELN ( UNI T2 ) 
END. 

57 



INTCODE Listing of Test Program One 

~i 0 1 1 .::!. 4 
010 005 040 001 040 001 040 001 040 001 
040 001 840 001 848 001 040 001 040 001 
;:~1 •l· Ct :~i 0 t Ci ,: !· 0 0 0 :L •? 4 ~J 0 0 1 Ci 4 0 0 0 1 ~- 4 0 0 0 ~J 
800 040 000 040 001 040 001 041 800 021 
G00 810 041 000 020 000 021 001 800 010 
041 800 100 141 000 000 000 000 014 123 
021 000 007 001 000 007 041 060 062 021 
000 007 801 000 007 041 000 105 001 000 
007 041 811 103 063 141 000 000 000 000 
021 041 012 063 001 000 007 061 028 000 

001 144 
021 140 000 150 041 001 821 000 010 140 
000 057 143 040 000 040 001 044 021 000 
012 040 004 040 001 040 001 001 000 012 
041 012 064 021 000 014 001 000 014 041 
000 101 141 000 060 040 007 041 001 041 
600 041 814 046 047 012 221 000 161 140 
000 242 001 000 812 001 000 014 041 012 
063 062 041 060 061 021 000 013 080 000 
015 001 800 013 122 143 041 052 020 800 
007 041 075 020 000 005 041 055 020 000 

o:211 144 
010 041 057 020 000 006 041 040 020 000 
013 041 060 020 000 012 041 053 020 000 
011 041 000 020 000 014 041 001 820 000 
015 000 000 014 121 221 000 037 000 000 
021 020 000 016 221 000 037 000 000 021 
020 000 017 000 000 015 000 000 013 122 
000 000 015 120 040 007 041 000 841 000 
041 016 046 047 012 221 000 161 GOO 000 
015 000 000 013 122 000 080 015 000 000 
011 122 000 000 815 000 000 013 122 040 

001 144 
001 041 000 041 000 041 817 046 047 012 
221 000 161 000 000 015 080 000 013 122 

Cl:Sl 
041 
1] 15 

000 
00!] 
~~120 

020 
1 ~:: 0 

!J1~:5 000 
~J13 L~:~ 

U00 020 

~:j 0 (i 
000 
040 

L~ ~ !::" 
····' 1 ._.1 

0(35 1 :2;2 
000 01.6 
007 O·::J. 1 
;221 i2iO~J 

000 ODO 

~:100 

000 
001~1 

u;1 
013 

01~10 

000 
041 

015 
017 
000 
000 
000 

000 015 12J 040 807 041 800 041 000 041 
816 046 847 012 221 ·000 161 800 000 015 
000 000 013 122 000 000 015 000 000 010 

58 



001 144 
1 .--.. -, 
' c. t:: 

041 
008 J00 015 000 000 013 122 040 007 
800 041 000 041 017 046 047 012 221 
161 000 000 015 000 000 013 l~~ 000 

013 
000 
~~=~oo 

020 000 820 040 007 041 000 041 000 041 
0 :2 0 0 4 iS C:! ,::j. 7 0 1 ;2 ;~:: 2 1 ~~~ 0 0 J. 6 1 0 0 0. 0 t;3 0 0 1 5 
120 000 800 015 000 000 013 122 000 000 
015 120 040 007 041 000 041 000 041 016 
046 047 012 221 000 161 000 000 015 000 

0(11 144 
000 013 122 000 000 015 000 000 007 122 
000 000 015 000 000 013 122 040 007 041 
000 041 000 041 017 046 047 012 221 000 
161 000 000 015 000 000 013 122 000 000 
015 000 000 005 122 000 000 015 000 000 
013 122 080 000 016 000 000 017 063 020 
000 020 040 007 041 000 041 000 041 020 
046 047 012 221 000 161 000 000 815 120 
000 000 015 000 000 013 122 000 808 015 
120 040 007 041 800 041 000 041 016 046 

o:J 1 1 :~:2 
047 012 221 000 161 000 000 015 000 000 
313 122 000 000 015 000 000 006 122 000 
000 015 000 000 013 122 040 007 041 000 
041 000 041 017 046 047 012 221 000 161 
000 000 015 000 000 013 122 000 000 015 
000 000 005 122 000 000 015 000 000 013 
122 000 000 016 000 000 017 064 020 000 
020 040 007 041 000 041 000 041 020 046 
017 012 221 000 161 000 000 015 120 144 

t;:HL:: 030 
000 126 000 150 000 146 000 155 000 066 
080 160 000 161 040 002 000 217 000 242 

··::- .. 7 •") 
.:..1.:..... 

14:3 000 

59 



RESULTS 

:24 .• 1~::: ··-· ;2 

Test 2 

This program performs an arithmetic sort on ten 

positive integers. These ten values are less thfln 256, 

separated by a non-numeric character end input from the 

keyboard.. The program echo-prints the ten input values 

end follows with a sorted display of the numbers in 

ascending order. 

60 



THIS PROGRAH SORTS INTEGER VALUES IN ASCENDING 
ORDER. 
THE USER PROVIDES THE TEN INTEGER VALUT~S TO BE 
SORTED. 

VAR 

3LAIJK : BYTE ; 
nos : ARRAY (1 •• 10) OF BYTE 
1JNIT1 : BYTE 
UNIT2 : BYTE 
IJ BYTE ; 
CH : BYTE ; 

~rHIS PROCEDURE READS IN INDIVIDUAL INTEGER 
DIGITS UNTIL A NON-INTSGER IS DETECTED. 
THE INTEGER NUl•lBER IS ASSEHBLED IN LOCA'riON CH. 

PROCEDUD.E REDNUr.I 
VAR 

L : BYTE 
N : BYTE 

SEGIN 
E := 0 ; 
CH : = 0 ; 
1tJHILE Iii E Q 0 DO 

BEGIN 
R~;AD(UNITl, L) 
L := L - 48 ; 
IF {L GF.; 0) AND (L LE 9) THEN CH : = CH * 10 + L ELSE 

H := 1 
END 

END ; 
• 

THIS PROCEDURE HRITES OUT THE I~JT'EGER VALUE 
THAT IS STORED IN LOCATION N. 
TEE NUHBER IS :·JRITTEN TO TIIE DEVICE CORRESPO~·~DIIJG 
TO UNIT2. 

PROCEDURE ~·JRTNUH(N 
VAil 

L : 3YTE 
ft1 : BYTE 

BEGIN 
fr'~ ! = I'J I 10 ; 

BYT"C;) 

IF (I,l NS 0) THEN :JnTNUH(E} 
L := N - (M * 10) + 48 ; 
·,,ii-iiTE (UNIT2, L) 

2ND 



THIS FnOCEDURE SORTS ·rHE INTEGZRS IN ARRAY NOS 
INTO ASCENDING SEQUENCE. 
THE CURRENT II·~PLE:NENTATION SORTS 10 NU!'~BERS. 

PROCEDURE SORT 
VA..-q 

K : BYTE ; 
J : BY'rE ; 
I : BYTE ; 
TE!•lP : BYTE 

BEGIH 
J:=l; 
HHILE J LT 10 DO 

BEGIN 
I := J 
K := I ; 
\.JHILE K LT 10 DO 

BEGIN 

J 
END 

K := K + 1 ; 
IF NOS(I) GT NOS{K) THEN 

END 

BEGIN 
TEMP : = NOS(K) ; 
NOS ( K ) : = NOS ( I ) 
NOS(I) := TEMP ; 

END ; . , 
:= J + 1 ; 

END 
BEGIN 
• 

UNIT1 CORRESPONDS TO THE KEYBOARD OR TERNINAL 
AND UNIT2 CORRESPONDS TO THE LINE PRINTER. 

• 

UNIT1 := 0 ; 
UNIT2 := 1 ; 
BLANK:=32; 
READL1\T(UNIT1) 
IJ := 1 

THIS LOOF READS IN THE TEN INPUT INTEGERS AND STORES 
THEN IN THE NOS AHRAY. 

62 



~EILE IJ L~ 10 DO 
BEGIN 

REDNUM ; 
NOS(IJ) := CH 
IJ := IJ + 1 ; 
~'!RITE ( UNIT2, BLANE) ; 
-,;RT:lUI·1 ( CH) 

END ; 
~V"RITELN(UNIT2) ; 

~-JRITE OUT THE INITIAL CONFIGUP,ATION 
OF THZ INPUT VALUES. 

:·.JRITE (UNIT2, BLANK) 
TATRII'ELN (UNIT2) ; 

USE THE SORT PROCEDURE TO OHDER THE NOS 
ARR.A Y ELEf1EN~es. 

SORT ; 
IJ := 1 

WRITE OUT THE SORTED ARRAY. 

HHILE IJ LE 10 DO 
BEGIN 

WRITE(UNIT2,BLANK) 
CH : = NOS ( I J ) ; 
~'J'RTNUI1 ( CH) ; 
IJ := IJ + 1 ; 

END; 
'.I[RITELN (UNIT2) 
END. 



INTCODE Listing of Test Program Two 

no 1 1 ··~4 
G<J 885 049 001 841 001 041 801 001 001 
041 012 040 012 040 001 040 081 040 001 
040 001 140 800 080 040 G80 840 001 040 
001 041 008 021 008 010 041 000 020 000 
027 001 000 01G 041 000 100 141 0CO 000 
808 000 824 123 l21 000 007 001 000 007 
041 060 062 021 000 007 001 800 0G7 041 
080 105 001 000 JJ7 041 011 103 GSJ 141 
080 000 800 000 127 041 012 063 001 000 
007 061 020 000 027 140 000 142 041 001 

01211 144 
021 000 010 140 000 051 143 040 090 040 
001 044 021 000 012 040 004 040 001 040 
001 001 000 012 041 012 064 821 000 014 
001 000 814 041 000 101 141 000 000 040 
Oi2i'? 041 
;;:~ ;2 1 0 i~i 0 

041 Oi2i0 12i41 Cl14 

140 OFJO :23·:+ ~~!0 1 
:~~46 047 0:!.2 
00121 012 001 
0 ;:; 0 0 6 1 0 ~:: 1 
0.12: l:~·;::: 143 

040 000 040 001 J40 001 840 001 040 001 
0 4 :t 0 0 1 0 2: 1 ~:::1 0 0 Ci 1 0 0 0 1 : ::: 0 0 ~::1 1 0 0 4 1. 0 1 ~~ 

O!Zl J. 14·'+ 
1!21;2 141 
i2i0 1 000 
0 L~ 102 
[161 021 

0 l 1 
1. 41 
•J00 

021 
000 
007 

001 000 OJ.O 
000 007 OOJ. 
Ol~il~j 001 000 
041 000 001 

0~~1 000 011 
noo oo·? 041 
0~~17 041 001. 
000 O:l1 124 

041 001 124 067 000 000 006 124 070 041 
800 041 004 066 041 000 041 006 066 044 
041 000 001 080 007 124 041 001 124 067 
000 000 006 124 070 041 ~00 041 004 066 
041 000 841 006 066 044 184 141 800 000 
041 000 001 000 007 124 841 081 124 867 

e:o1 14·4 
000 000 806 124 070 041 
041 000 841 006 066 044 
000 801 800 007 124 041 
000 006 124 070 8·~1 000 
000 041 006 066 J41 000 
041 001 124 067 000 000 
008 041 084 066 841 000 
045 041 J~n 001 000 011 
Ub( 000 J00 066 124 070 

001 
1>~ 1 

0 !~J6 
f:i 4 t 
!. ;~~ 4 

041. 
000 
124 

£J.::j.1 

(l~~!4 066 
O:i.2 041. 
1,::1•;7 000 
06;::: 041. 

Cl J. 1:24 
Ci?O t14l 
OE6 (:t44 
c:ot 1~~4 

Cl4l 0~~~4 

64 



0~31 144 
l40 
001 

041 

1:-, 1 
·:..· ... .!. 

;,-:··:l'i 
~- .l. 

0 ::1 13 .-, ,:::: ' 

!2141 001 
00!21 041 
r~i ~~~l~~ 1:) .-, 7 

~J ~~~ ~:;:1 :2i ~=: ~=· 

!2101 144 

1 4 ~~1 0 !J C1 3 .. ::· 0 
eoo 010 140 

001 
:;~tOO 

.i ... -, 1 :~:: 4]. 

001::. 1.24 
1~'1 4 1 i/i 0 6 
041 12:01 
f:l C2i 0 Ci ~~~ 5 

041 
001 
-t .·i.; 
.L"·I· .1. 

02b 
070 
o .. _.t:. 

061. 
L~~~ 

840 007 041 000 041 000 041 027 046 047 
012 221 000 153 140 001 27~ 000 000 025 
120 u0o 000 o~5 000 000 005 122 000 000 
025 1~0 221 008 :b4 041 001 020 000 026 
G00 000 0~b 041 01~ 103 141 000 0J0 000 
000 025 000 ~08 005 122 041 000 080 G00 
02b 124 841 001 124 0b7 000 880 0~6 124 
0t0 041 000 041 804 066 041 000 0~1 006 
!366 044 0,~.0 000 027 04f1 00 I 041 o~~~o 041 
000 041 02, 046 047 012 221 000 1~- 008 

001 020 
000 026 041 001 061 020 000 026 140 002 
034 000 000 025 120 144 

[1(12 

~:;:1 (.H3 
~~10 IZ1 

~~:1 0 1 
001 

f:i54 
120 
152 

~3~30 

OfH] 

040 IJ01 
24:~~ OOCi 

142 000 140 000 147 000 060 
153 040 002 000 211 000 234 
::~ 2 3 o 0 o .:.. 3 , o o 1 :~. 2 t::; o o 0 ._. 1 ::~ 
027 801 24~ 801 ~02 802 005 

0 !::-1 2 0 4 3 ;J 0 :2 l 4 .:.. 

1 ,,:;. - 000 

65 



RESULTS 

_0 43 52 9 8 7 1 3 1 734 2 

2 3? 8 9 ·-~0 43 ~--~--... ~-~ -?34 

66 



CHAPTER 6 

SUHHARY 

Project work preceded smoothly while the 

Hewlett-Packard machine was operating properly. Disc 

problems arose on two occasions delaying progress in the 

middle stages of the project. My implementation of the 

interpreter on the HP2100 closely followed the initial 

writing and debugging of the Hicro-Pasca.l ra.chine by 

I•'Iark Green. During this time instructions were 

understandably added and changed as problems in the compiler 

were solved. A minor problem arose due to the incomplete 

documentation of the Hicro-Pasca.l :tr:a.chine. ·rhe exact 

nature of the input stream was left unspecified in the 

interpreter description. This oversight was not recognized 

until the latter stages of the project. Input routines 

had to be redesigned and implemented so the interpreter 

would accept programs in the form output by the compiler. 

Since the Micro-Pascal I~chine is a rather new 

concept, test programs are currently in short-supply. The 

intermediate code instructions were individually tested 

but the interpreter performance on larger programs was not 



extensively probed. A number of compiler errors ~-1ere 

uncovered during the debugging of the two test programs 

found in chapter five. 

There are about four hundred words a-llocated to 

literal messages and summaries. Hany of these messages 

could be pared down to representative numbers and some 

descriptive statements concerning the interpreter excised 

entirely if the interpreter size had to be decreased. 

The current input capabilities are limited to keyboard, 

paper tape and card access while output is set up for the 

keyboard and the line printer. Other features in the 

input/output package such as disc reads and writes could 

easily be added when desired. 

The size of an HP2100 word is sixteen bits or two 

bytes. In my stack implementation there are two bytes 

allocated for each stack item where in the ideal case one 

byte would do. By doing this I can bend the rules of a 

68 

byte stack item so that negative values can be represented 

in a normal HP fashion using sixteen bits the first of 

which is a sign bit. Positive byte items are able to use 

a.ll eight bits a.nd no special handling of negative byte 

values is necessary. This was done only to permit convenient 

implementation on the HF2100 and might not be appropriate 

for other machines. In addition my experience with the 



interpreter performance so far indicates that a stack size 

of two hundred words would easily handle program executions. 

This would mean a maximum of one hundred wa.sted words. In 

the light of these arguments the implementation of a one 

byte stack is not yet warranted. 

The execution speed could be increased by partially 

or entirely microcoding other interpreter routines. 

Instruction group categories and specific instructions 

within given groups can be easily added. The maximum 

number of groups and instructions per group a.re each 

limited to fifteen. 

Conclusion 

The interpreter is the key piece of software in 

the Micro-Pascal compiler-interpreter system. Once the 

compiler is wr1 tten in r·1ICRO-PASCAL 1 t can be self-compiled 

into intermediate code. When an interpreter is established 

on a host machine the Micro-Pascal system is readily 

available. 

HICB.O-PASCAL was designed as a basic high-level 

language for use on mini and micro processors. Once 

I1ICRO-PASCAL is implemented and debugged there are plans 

to make it concurrent. 



70 

MICRO-PASCAL, as currently implemented, has a 

very limited source language instruction set. Compiler 

implementation has not reached the stage where strings can 

be successfully handled. Their complete implementation 

will contribute greatly to the usefulness of the language. 

The availability of more and varied control statements 

would improve language flexibility and ease of use. 

The interpreter code is fairly readable using 

comments liberally to indicate the flow of control. 

Subroutines invoke a modular design which contributes to 

an efficient program with minimized redundancy. If errors 

are detected during interpreter execution the user is 

provided with valuable information not contained in an 

error number alone. 

Work on this project has certainly given me a 

better understanding of portable le.nguages. Ny experience 

with the STAB system brought to light the importance of 

good language and program documentation. If programs are 

to be portable they must be precisely described in order to 

be understandable and modifiable. 

I have also acquired a better understanding of 

terminal programming, edittlng and file management. 

During the disc problem phase of the project I learnt the 

hard tvay that files should a.lWAYS be well backed up for 



security against machine failure and other mishaps. The 

documentation process was a good disciplinary exercise 

illustrating an important yet unglamorous aspect of a 

complete program. 

71 



APPENDIX A 

Running The Interpreter 

This appendix describes how to run the interpreter 

with microprograms. The commands input by the user are 

underlined and described where appropriate. The statements 

in capital letters are system comments. 

:JOB,DB04 

:PR,DBTST 

- begin interpreter execution 

BEGIN •DEBUG' OPERATION 

H,10400 

- base address for loading of program in core 

- run the program 

HICRO-DF.BUG EDITOB. 

COEHAND? LOAD 

- load the microprogram 

ENTEH. FILE NAr•:E DBHPl 

- nF.tme of file where microprogra.ms 8re stored 

CG EI'·1AND? E, 0 

- begin to execute the program from the beginning 

72 



START OF HICRO-FASCAL INTERFfiETER 

THE UNIT NUHBERS FOR I/0 ARE 

- these unit numbers refer to 1/o during program 

execution 

IN:FUT 

OUT:FUT 

0 - CRT 

1 - CARDS 

0 - CnT 

1 - FRINTER 

OUTPUT CAN BE DIR::I:CTED 

CRT - ENTER A 

FRINTER - ENTE.a A 

AS SPECIFIED - ENTER A 

TO 

1 BELOH 

2 BELOH 

0 BELOH 

IN PROGRAH 

') 0 or 1 or 2 DBTST SUSP 

OR 

OR 

73 

- the interpreter is now waiting for the user to specify 

the origin of source program input. The current 

implementation permits three options: 

2 - USER DISC 

5 - CAHD HEADER 

10 - PAPER TAPE (default option if unit number is 

not 2 or 5) 

:GO, unit number 

program execution 



74 

summary of pro~ram execution 

- this includes the number of instructions executed, 

the maximum stack size and the program size in bytes. 



AFFENDIX B 

Listing- of HP n1croproP:rams 

7S 



76 

~ MICROPROGRAMS FOR MICRO-PASCAL INTERPRETER. 

::: l.1.l R I T T :::: r·~ E: 'l D (! 1
•,•

1 E B ~~ r·~ D \' 
* DATE - AUGUST 1977. 

:·l·: 

*-----------------------------------------------------------

::::op I G I i-.1::::: 1 !]06 



77 

:·!·: 

:+: 

~=++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++ 

:+: I r-iP UT 
~ B REGISTER - AMOUNT OF STACK INCREMENTATION TO STACK 
····· P 0 I i··~ T E P .. ~:; F' . 

=+= OUTPUT 
* 8 REGISTER 0 IF NO STACK OVERFLOWJ 
* - 1 IF STACK OVERFLOW 

* 
:+: 

* THIS ROUTINE INCREMENTS THE STACK POINTER, SP, 
:+: B 'r' T HE \·' 1::~ L U E ~:; F' E C I F I ED I H T !-1 r:: B P E G I ~:; T E R . I T T H E t·~ CHECKS 
° FCR STACK OVERFLOW BY COMPARING SP WITH STLIM, THE MAXIMUM 

AL.LOWABLE STACK VALUE. THE VARIARLE MSTCK IS ALWAYS SET TO 
* THE ~ARGEST STACK POINTER VALUE THAT HAS BEEN ENCOUNTERED. 

p I OF.: r•! F.: i.d GET ~:; F' I~D.DF:E::::~:: 

F' I f..l!-. F' I 1·1c T 1··1::;T PO I t·-ITEF.: f 'I 1
-· J. 

T I ()F.~ C:! ::;p ~i .D D P 1:. ~:; ::; I t·1 C! 
G! !? F::!:; I OP r··1 r:: r .• J GET ~=: F' '·.·'1~LUE 

T I o~: .-.. -, 
·=l.::. 

•• NO ·-t I:::I:DD ~=; 1 ~:::p + I r··l C P E i'r E !··~ T J: I··~ 
,-. 1 ·=· t::. .::. 

I Ol? 
r::: F.:::; I 01:;;: 1'1 CJ .• J Ur·4C 

I or.;;: 
,-. 
·=) 1 I OP T :::TOPE t··!EI.d .-·rr .::·1- 'v'::::1LUE 
F' I CIP i"·1 l?l .. .i C:iET :::TL I i"'r ~~~ :D D F: E ~:: ~:; 
p I nc D 1 p ·-- I p + l I 

T I Cl r-::: ~3 ~:: 
t-· .-. I :::r r:: 1"·1 Pf.r.l -::~ ~:~-

T I C:i F;: 1::1 ::::TL I t·1 I t·~ (:! F::EG 
,-·. 1 :::1 ...IU I··~EG ~::TL I t·1 - ::;p ·=t 

._rr•!P I f··~C 1 i·iO 0\.' CI?F L OI.,J 



* STACK OVERFLOW. 

I r·~C 1 

:~ :·-.JC:2 

.-. 
l 

PP:3 I or;;: !'·1 
IOP 

~=:;! IC:r? T 
I !]P 

I o;:::· 

1 

F: !,,J 

O'·.·'EPFLOI.,J ::;ET B= 1 

GET MSTCK ADDRESS 
C L. E ~~ l? E: P E c:; I S 'f E P 
IP == IP + 1 

NEG MSTACK - SP 
INC2 DO NOT RESET MSTCK 
C!.,J Ut·4C 

t·1:::;TCK = :;:;p 
EOP 

78 



J 

:f: 

:i·· -~ .. ·-~-· -;- ~-- -:- ·i-- + -~- -i- ·? + ~- + + + -r -:-· + -~ .. ·+-+++-I--!~ -1- -r- -r- ~- -:·· + -1· + + + + ~- -t- -r -r- + ·{ .. ;- + -1- ·r .. i. -~ .. + ·1- + -! .. -r ··1- + -f- + -r- + 

:+: DEC::::T 

· ~-: I l··1 P U T 
* 8 REGISTER - AMOUNT OF STACK DECREMENT 

:-:·: 0 U T F' l .. r T 

:+: 

* 
DEC:ST 

E ~-~DDC 

8 

(i 

1 

P IOR f·1 
F' It·! C P 
T IOR 0 
r-;.:F.:S IO~: :::1 

I OR ~~ 

F:: P ::: I Ci F: 1"·1 
T IO? 
:=:1 t'~tDD B 
FRS I 0~: 1··1 

IDR 
RF.:S IO:? T 

Jt•iP 

IHC A 
._1 i·1 p 
IOP 
I OF: 

NO STACK UNDERFLOW 
::: T (1 C t< U i··-i DE~: F L 0 1.•.1 

f?l.d 

Cl.t.l 

E!··-IDDC 

El··iDDC 

GET ::;;p ADDF.:ESS 
I J··i C I t·~ :::; T . F' 0 I ti T E R 
ADDP. ::;;p I H C! 
:::: T 1:::1 C K D E C P . I l··i ::: 1 
C L E ~:1 R r:::t R E G I :~; -~ E R 
G E T r.,.t ;~ L U E 0 F ::: P 
::: P I t·i E:: R E G I ::: l E F.: 
S P -- !,/ ~~ L !_I E ( ::;; 1 ) 

UNC STORE NEW SP VALUE 

NEG CHECK FOR UNDERFLO 

~~ --

EOP 

79 



:+: 

::-: + + + +· -:- + + --:- + + + + -:- + + + + + + + + + + + + + + --1· -{-· + + + + + + -{· + + + + + + + + + + + + + + + -:· + + + + + + + 

*+++-~·~++~+++++++++++++++++-~+++++++++++++++++++++++++++++++++ 

:{·: 

· •· B ;:.:: E G I S T E P -- I t·1 D E ;:.; 0 F D E ~:: I F.: E D r:~, P P A \' E L E 1·1 E t-~ T 

:+: OUTFUT 

~ A R~GISTER - DESIRED BYTE 

:-f-: 

GB'r'TE 
B 

CR CLO A 
IOF: B 
._lt·1P 

I 0 r-;:: ~~~ 

IOF:: A 
I 0 F:: 0 

I~-~ C B 
CF::::; B 

377 MASK WORD IN A REG 
0 D D I :::; I t·i J:! E ::-:: 0 D D 

NXT INDEX IS EVEN 
SET OVF~AL~ IN IR 
I~LF 

i~LF 

It·HrE>< + 1 
r:. I r·i TJ E ::·:: + 1 ) . ...- 2: 

* LOCATE THE STARTING ADDRESS OF THE ARRAY. 
:f: 

F· I OR t-1 F:I .. J GET ~: F:: i? (1 \' ,-:, Tl D P E ::;; ::;; 
p I HC F' I t·iC I >-i:3TP PO I t·-!TER 
T I 01? ,-. 1 r:iDDPES::; c I '..·'E::: '·/ALU -:~ 

,-. 
·=· 1 I D F.: t·1 F.: hi 
T I o;? , ..... -. . ::·~ 

B ,-. .-1 

·=·~ ,:::,nn :::; =~ 
~:;3 I -· 

iF~: 1"•1 Pi.~.l , __ 

T I CIF: ::::4 
0 :::4 (J!""iD (i O'·.•'F 

..Ji"·IP E 1·-~ D CiT 
:+: 

:+: t·l 0 '·.·' E E: \' T E T 0 THE L 0 hiE P F' 0 f~: T I 0 t·i 0 F ~1 P E G I S T E R . 
:t: 

EHDCT 

A 
;:::r 

IOR IP 
IOP A 
I :=~ l? ~~ 

I CIP 
I() F~ 

27 

EOF' 

ASSEMBLE ALF INST. 
(iLF 
(:1LF 

80 



APPENDIX C 

This appendix contains test programs that can be 

used to verify the correct operation of the interpreter 

instruction set. Each program tests an instruction group 

or groups. Most of the programs have a step by step 

description of their operations included. It is assumed 

these test programs will be used with some type of 

debugging package so that stack contents and 

variables can be periodically sampled. This 

elegant but it is painfully precise. 

ARITH 

001 051 

041 004 060 041 007 061 041 001 -
002 063 041 002 064 041 000 041 

041 000 041 011 066 041 000 041 

041 000 041 006 070 041 000 041 

144 

143 000 

1 - Load 4 onto the stack and negate it 

2 - Load 7 onto the stack and add it to -4 

to give 3 

J - Load 1 onto the stack and subtrAct it 

from 3 to give 2 

81 

relevant 

may not be 

062 

003 

002 

004 

060 

061 

062 

041 

Q§j 

Q§:z_ 

QZ.1 



4 - Load 2 onto the stack and multiply it 063 

by 2 to give 4 

_ 5 - Load 2 onto the stack a.nd d1 vide 4 by 064 

it to -give 2 

6 - Load the two-byte integer J and negate it 

7- Add the two-byte integer.ll to -J to 

give 6 
. 

. 8 - Load 2, subtract to give 4 

9 - Load 6, multiply to give JO 

10 - Divide by 4 to give 6 

11 - Stop 

BFUNC 

001 026 

041 000 ill 041 000 041 

123 041 001 041 104 m 
12'3 041 377 124 144 

143 000 

c 
E 

102 122 

120 121 

065 
I 

066 

067 

970 

071 

041 

041 

. 82 

001 

001 

1 - Load a zero unit number onto the stack, read 123 

in a character from the t-erminal ·and place 1 t 

on top or the stack 

2 - Place a zero unit number on the stack, load a 122 

102 and write this character to the terminal 



J - Load a 1 and read a character from unit 1 

(in this case the card reAder) 

4 - Load 1 and 104 and send 104 or the ASCII 

character D to the line printer' 

5 - The current output line is terminated and 

D is printed on the line printer 

83 

123 

122 

120 

6 - Terminate reading from the current line and 121 

reset the read pointers 

7 - Load 1 and read a character from the card 123 

reader to the top of the stack 

8 - Load 377 onto the stack then move 377 to 124 

SF + 1 while a zero byte is inserted at SF 

9 - Stop 

LOAD + STORE 

001 011 

041 004 000 

143 000 

000 001 000 000 

144 

144 

1 - Load a 4 onto the stack at location one, 041 

STACK(l) = 4 

2 - Load the element stored a.t STACK( 1) onto the 000 

stack top, STACK(2) = 4 

3 - Store the top staclr element at STACK( 0) 020 

4 - Stop 144 



84 

LOGIC 

001 310 

041 005 041 005 100 041 005 100 041 005 

041 005 101 041 005 101 041 003 102 041 

004 041 002 102 041 000 102 047 002 041 

005 041 005 1Q1 041 005 1Q1 041 000 1Q1 

041 005 041 005 104 041 003 104 041 004 

041 002 104 041 001 1.9.2 041 000 1.9.2 041 

003 ill 047 002 041 000 041 001 041 000 

041 001 106 041 000 041 001 041 000 041 

002 106 041 000 041 002 041 000 041 001 

1Q1 041 111 041 112 041 111 041 112 1Q1 

041 000 041 002 041 000 041 004 110 041 

000 041 002 041 000 041 001 110 041 000 

041 002 041 000 041 002 110 041 000 041 

002 041 000 041 004 111 041 000 041 002 

041 000 041 001 111 041 000 041 002 041 

000 041 004 112 041 000 041 002 041 000 

041 001 112 041 000 041 002 041 000 041 

002 112 041 000 041 002 041 000 041 004 

111 041 000 041 002 041 000 041 . 001 ill 
041 000 041 002 041 000 041 002 llJ. 144 

143 000 



Testing One-Byte Commodities 

1 - Test 5 EQ 5 which results in a 1 (true). 

and test 1 EQ 5 which results in 0 (false). 

2 - Test 5 NE 5 - false and test 0 NE 5 - true. 

J - Test 1 LT 3 - true, test 4 L·r 2 - false 

and test 0 LT 0 - false. 

4 - Decrement the stack pointer, SP by 3. 

5 - Test 5 LE 5 - true, test 1 LE 5 - true 

and test 1 LE 0 - false. 

6 - Test 5 GT 5 - false, test 0 GT 3 - false 

and test 4 GT 2 - true. 

7 - Test 0 GE 1 - false, test 0 GE 0 - true 

and test 1 GE 0 - true. 

8 - Decrement SP by 2. 

Testing Two-Byte Commodities 

85 

100 

101 

102 

047 

103 

104 

105 

047 

9 - Test 1 EQ 1 - true and test 1 EQ 2 - true. 106 

10 - Test 2 NE 1 - true and test 107 

44512 NE 44512 - false. 

11 - Test 2 LT 4 - true, test 2 LT 1 - false 

and test 2 LT 2 - false. 

12 - Test 2 LE 4 - true, test 2 LE 1 - false 

and test 2 LE 2 - true. 

13 - Test 2 GT 4 - false, test 2 GT 1 - true 

and test 2 GT 2 - false. 

14 - ·rest 2 GE 4 - false, test 2 GE 1 - true 

and test 2 GE 2 - true. 

110 

111 

112 

113 



1,1ANIF 

001 052 

040 004 041 377 042 004 004 101 

104 043 003 000 000 006 044 043 

000 005 077 045 043 003 001 000 

04? 003 043 006 000 000 002 000 

oc;o - lli 144 

143 000 

1 - Increment the stack pointer by 4 to 4. 

2 - Load a 377 onto the stack at SF = 5. 

3 - Store the character string ABCD onto the 

stack, that is 4, 4, 101, 102, 103 and 104. 

102 

004 

005 

000 

86 

103 

000 

046 

005 

040 

041 

042 

4 - Load 3 bytes onto the stack O, 0 and 6. 043 

5 - Load the byte at SF = 6 onto the stack, 4. 044 

6 - Load 4 bytes onto the stack 0, 0, 5 and 77. 045 

Store 77 at stack location 5. 

7 - Load 3 bytes 1, 0 and 5. Convert this o46 

three-byte relative stack address to a 

two-byte absolute stack address preceded 

by a zero byte. 

8 - Decrement the stack pointer by 2. 

9 - Load O, 0, 2, 0, 0 and 5. Load the contents 050 

of stack element 5 at SF - 2 and stack 

element 6 at SF - 1. 



10 - Store 4 at stack location 3 and 77 at 

stack location 2. 

11 - Stop 

FCALL 

001 015 

041 

041 

001 

004 

143 000 

041 

143 

002 000 012 041 

1 - Load 1 and 2 onto the stack. Call a 

procedure and thereby create a seven-byte 

header. 

Byte 1 Old L\TL = 0 

Bytes 2 + 3 Return Address = 6 

Bytes 4 + 5 Add. of Ftn Result = 0 

Bytes 6 + 7 DSPLY For Old LVL = 0 

Also set DSPLY(l) = 2, set LVL to 1 and 

instruction pointer IF = 11 (which will be 

immediately incremented to 12) 

377 

87 

051 

144 

220 

2 - Load 4 onto the stack to show we have reached 041 

the right spot. 

J - End the procedure which 

Restores LVL to DSPLY(LVL - 1) = 0 

Resets IF to 6 

Resets the stack pointer, SF to 2. 



88 

4 - Load 377 onto the stack to show the proced~re 041 

has concluded correctly. 

5 - Stop 

I' HANS 

001 

140 

041 

003 

002 

056 

004 

002 

114 

077 

143 

122 

000 

001 

142 

000 

041 

142 

000 

041 

144 

000 

OOJ 

141 

001 

046 

06J 

001 

104 

063 

041 

000 

000 

041 

140 

000 

041 

140 

000 

021 

036 

062 

000 

074 

062 

000 

141 

041 

041 

140 

061 

041 

140 

117 

000 

002 

061 

000 

377 

061 

000 

377 

012 

041 

140 

061 

000 

140 

117 

000 

041 

001 

000 

003 

000 

000 

003 

000 

144 

002 

041 

061 

000 

041 

117 

000 

041 

1 - Pass control to instruction 3 in that IP is 140 

set to 2 before 1ncrementat1on. 

2 - Load a zero (false) onto the stack. Execute 141 

e conditional jump on the top stAck element. 

Since this element is false control jumps to 

IF = 12 so that 041 002 will not be executed. 

3 - Load a one (true) onto the stack. In this 

case the conditional test fails so th&t a 2 

should be loaded onto the stack. 

141 



4 - Load 1 and 3 onto the stack. Perform a 

case statement based on the top stack 

element J. There are 3 c~se elements 1, 2 

and J so there should be a match with the 

third. element. ~rhis will ca.use t=l load of 

63 to occur. 

5 - Load 4 onto the stack. Perform the same 

case statement on 4. There should be no 

match with the case elements 1, 2 or 3. The 

next instruction to be executed should be a. 

load of 077 onto the stack. 

6 - Stop 

89 

142 

142 

144 

Note - 143 is a procedure return and is tested with the 

procedure call in FCALL. 

Test Of Error Messages 

1 - Illegal Level Number 

001 003 

117 

143 

000 

000 

144 

2 - Illegal Group Number 

001 003 

160 000 144 

143 000 



3 - Code Array Overflow 

Four sets of the following 001 group if the 

code size = 400. 

001 144 

[041 001 041 001 041 001 041 001 

Nines lines like the above. 

001 002 

041 001 

143 000 

4 - Attempt to access a non-existent DSPLY element 

i.e. element 16 

001 010 

041 021 041 000 041 001 . 044 144 

143 000 

5 - Stack Overflow - tried to set SP.-12810 

001 005 

041 001 040 200 144 

143 000 

6 - Stack Underflow - tried to set SF +- -8 

001 005 

040 001 047 011 144 

14J 000 

7 - Illegal Input Table ·rype 

003 000 

90 

041 001 



BIBLIOGRAPHY 

Boon, C. High Level Languages. Berkshire, Englanda 
Infotech Info Ltd, 1972. 

-
Goos, G., and Hartman1s. Lecture·Notes In Computer 

. 91 

Science, Software Engineering - An Advanced Course. 
New York: Springer - Verlag, 1973. 

Gries, David.· Compil.er Construction For Digital Computers. 
Torontoa John Wiley and Sons, 1971. 

Hewlett-Packard. Assembler Referen.ce Manual. CUpertino, 
California: Hewlett-Packard Compa;ny, 1972. 

Hewlett-Packard. Microprogramming Guide For HP2100. 
CUpertino, California: Hewlett-Packard· Company, 
19?&. 

Hewlett-Packard. Microprogramming Software For HP2100, 
CUpertino, Californiaa Hewlett-Packard Company, 
19?). 

Solntseff, Dr, N. • A Pascal 6000 Primer. Hamil ton: 
Applied Mathematics Department, 1975. 

Wirth, N1klaus. Algorithms and Data Structures = Programs. 
Englewood Cliffs, New Jersey: Prentice-Hall- Inc., 

. 1976. 

REFERENCES 

GBE. Private Communication with Mark Green, 1977. 




