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ABSTRACT 

This thesis details work done in the development of the phase field model which 
allows simulation of elasticity with diffuse interfaces and the extension of a thin 
interface analysis developed by previous authors to study non-dilute ideal alloys. 
These models are coupled with a new finite difference adaptive mesh algorithm to 
efficiently simulate a variety of physical systems. The finite difference adaptive 
mesh algorithm is shown to be at worse 4-5 times faster than an equivalent finite el­
ement method on a per node basis. In addition to this increase in speed for explicit 
solvers in the code, an iterative solver used to compute elastic fields is found to 
converge in O(N) time for a dynamically growing precipitate, where N is the num­
ber of nodes on the adaptive mesh. A previous phase field formulation is extended 
such as to make possible the study of non-ideal binary alloys with complex phase 
diagrams. A phase field model is also derived for a free energy that incorporates an 
elastic free energy and is used to investigate the competitive development of solid 
state structures in which the kinetic transfer rate of atoms from the parent phase 
to the precipitate phase is large. This results in the growth of solid state dendrites. 
The morphological effects of competing surface anisotropy and anisotropy in the 
elastic modulus tensor is analyzed. It is shown that the transition from surface­
energy driven dendrites to elastically driven dendrites depends on the magnitudes 
of the surface energy anisotropy coefficient (E4 ) and the anisotropy of the elastic 
tensor ({3) as well as on the super saturation of the particle and therefore to a spe­
cific Mullins-Sekerka onset radius. The transition point of this competitive process 
is predicted from these three controlling parameters. 
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DON'T PANIC 

I study snowflakes, growing inside of other snowflakes .... 
except they're made of metal.. .. 
and simulated on a computer. 
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OVERVIEW 

The main theme of this thesis is a study of the effects of elasticity on the phase 
transformation process. I will focus mainly on solid state transformations, but will 
also touch on some issues regarding solidification, mostly by way of demonstrating 
new advances that I have made to the phase field methodology that are generic to 
phase field modeling. My objective is to study and elucidate the mechanisms of 
growth of solid state dendritic structures and the structures that have come to be 
known as Widmanstatten precipitates (plates, needles, etc .. ), to do so by advancing 
the phase field model developed by Alain Karma [8] to include elasticity (as well 
as the ability to model non-ideal alloys quantitatively), to implement this model on 
an efficient adaptive meshing algorithm based on finite differences rather than the 
slower finite element methods and to investigate the anisotropic nature of elasticity 
in solids. This thesis is broken down into several chapters. The first chapter in this 
thesis overviews some of the history of solid state transformations and solidifica­
tion, elastic effects in phase transformations and phase field models incorporating 
elasticity. It also details much of the terminology and theoretical background used 
to develop the models and analyze their results. Chapter 2 describes the adaptive 
mesh structure, it's algorithms and the overall efficiency of the code. The porta­
bility of the code is demonstrated by the implementation of the data structure and 
algorithms to several different projects. Chapter 3 extends an existing phase field 
model for ideal dilute binary alloys to a model for non-linear phase coexistence 
lines. Another extension to this phase field model which incorporates elastic fields 
is introduced in Chapter 4 and in Chapter 5 this model is used to look at the com­
petitive effects of elastic anisotropy and surface anisotropy. 
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Chapter 1 

Introduction 

This chapter will overview some of the past work done in both experiments on and 
modeling of phase transformations. First the classical theories of phase transforma­
tions and experimental work in Widmanstatten structures and solid state dendrites 
are outlined. The theory of elasticity is overviewed as it pertains to this thesis and 
two cases of morphological linear stability theory are discussed, a spherical pre­
cipitate in an isothermal melt and a planar front driven in a temperature gradient. 
The phenomenology of phase field models is then reviewed, in the context of solid­
ification of pure materials and alloys with a discussion of the history and physical 
connections of the model. Finally, the inclusion of elastic free energies into the 
phase-field model is shown. 

1.1 Solidification and Solid-State Phase Transforma­
tions 

1.1.1 Sharp Interface Kinetics of Second Phase Formation 

The growth of a second phase in a host phase of an alloy, as happens, for example, 
during the solidification of binary alloys is largely controlled by mass transport, 
particularly in isothermal conditions. Diffusion of impurities is in tum coupled to 
the underlying energies of the two phases through their local equilibrium state at 
the interface 1• This influence is characterized by a phase-diagram of the particular 
alloy. The simplest binary-alloy phase diagram is shown in figure 1.1. 

This diagram is obtained by a Gibb's construction using the free energy of a Cu­
Ni mixture at different temperatures. For a given undercooling (quench) into the co­
existence region (point B), solidification proceeds while maintaining concentrations 
corresponding to the liquidus (CL) and solidus (Cs) for that temperature on either 
side of the solid/liquid interface, provided that the interface can be maintained at 

1 at least for low to intermediate cooling rates 
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Figure 1.1: Binary phase diagramfor CuNi.[95] 

equilibrium. The flux of solute across the interface is related to the local normal 
velocity at the interface, and to C s and C L by mass conservation expressed as: 

ac ac 
Ds-1 - - DL-1 + = (CL- Cs)V ax xint ax xint 

(1.1) 

where Ds is the rate of diffusion in the solid, DL is the rate of diffusion in the liquid 
and V is the local normal velocity of the interface2• Diffusion of impurities in bulk 
phases is governed by Fick's law, 

ac = V(D(C)VC(x)) 
8t 

(1.2) 

where D( C) is the diffusion function and C(x) is the local impurity concentration. 
The thermodynamic correction due to curvature of the interface is controlled by 

the effects of surface tension. The equilibrium correction to the interface compo­
sition (on either side of the interface) from this effect is described by the Gibbs-

2These also can have curvature corrections to Equation 1.1, although these are typically small. 
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Thomson condition, 

Cint(T)- c;q(T) 
fl.C = -dar~, - f3k V (1.3) 

where j is either the solid (S) or the liquid (L) phases, Tis the temperature, do is the 
chemical capillary length, r~, is the curvature of the interface and f3k is the interface 
kinetic coefficient. The capillary length is strictly different on different sides of the 
interface. This effect will be omitted in this work. 

While the kinetics above were introduced in the context of isothermal solidifi­
cation, their form remains essentially unchanged for solid state precipitate growth. 
However, other solid state considerations must be included, such as elastic effects, 
depending on the nature of the solid-solid interfaces. These will be described below, 
following a review of some relevant solid state precipitation phenomena. 

1.1.2 Experimental Studies of Widmanstatten Plates and Nee­
dles 

The Widmanstatten structure was first observed around 1808 by Alois de Wid­
manstatten. His name has been used to describe this structure that has been ob­
served to occur in many different alloys. The Widmanstatten structure is formed by 
the precipitation of a new phase in a solid solution. These precipitates form a net­
work of regular patterns related to the crystallographic nature of both the precipitate 
phase and the original parent phase, as seen in figure 1.2. 

Figure 1.2: Cubic polish of a meteoric iron illustrating the Widmanstiitten 
structure. [ 1] 

3 
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The problem of Widmanstatten precipitates is broken down into two areas: 

1. The crystallographic mechanism in the precipitation leading to the nucleation 
of the Widmanstatten precipitates. 

2. The factors influencing the growth of the precipitate once nucleation has oc­
curred. 

These patterns and their formation was the focus of intense experimental study 
in the early 1900s. The one commonality found to be shared between all alloys 
studied, and that which defines the Widmanstatten structure, is that all were found to 
exhibit similar relationships between the nucleating phase relative to the orientation 
of the parent phase. These orientational relations can create low energy boundaries. 
In iron-carbon alloys it is found that the { 110} plane in the FCC precipitate phases 
grows parallel to the {Ill} plane in the BCC parent phase. Similarly, orientational 
relationships are found in both Cu-Zn brass and Al-Cu alloys [76, 75, 58]. 

The growth rate of the Widmanstatten transformation implies that a slow trans­
fer process is controlling the rate at which the precipitates can grow. The diffusion 
of a solute species is largely thought to be responsible for the transformation rate. 
Composition not only controls the transformation rate but also the morphologies of 
the precipitates nucleated. This can result in either primary plates growing from 
grain boundaries directly or secondary plates which develop from grain boundary 
allotriomorphs. 

Kirkaldy and Townsend [73] presented experimental evidence detailing the im­
portance of crystallographic orientations between experimental morphologies by 
showing that certain grain orientation mismatches inhibited the growth of Wid­
mansUitten structures, consistent with the predictions of earlier theories of Mehl et 
al [76, 75, 58]. More importantly they provided a model for a diffusional shape 
instability of the secondary plates from the grain boundary allotriomorphs. This 
model used shape instability theory to calculate the morphological spacings, which 
were found to be in relatively good agreement with experiments. This theory how­
ever excluded the effects of strain energy, grain boundary diffusion and anisotropy 
in the surface energy. [96, 59] 

Investigations into the growth rates have been used to understand the kinetics 
involved in the formation of the Widmanstatten precipitates. Growth rate prediction 
models have been developed with varying degrees of success and disagreement 
regarding the comprehension of the controlling aspe~ts of the precipitate growth. 

In 1946 Zener [104] and then in 1957 Hillert [31] produced models for growth 
rates on diffusion controlled transformations by considering the flux balance at the 
interface. Both predicted a growth rate proportional to the supersaturation (0) as­
suming that the supersaturation is small (0 < < 1). 

In 1961 Ivantsov [35] developed a more rigorous model to predict growth rates 
and this derivation produced rates proportional to the square of the supersaturation 
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(Q2). This derivation assumed an isoconcentrate boundary and neglected curvature 
on the equilibrium concentrations as well as diffusion. Horvay and Cahn [25] de­
veloped a similarly rigorous extension to the Ivantsov model which also predicted 
growth rates proportional to f12

• But this model also assumed an isoconcentrate 
boundary and still lacked elastic effects. 

In 1969 Trivedi proposed a variant of the lvantsov model [77, 11] in which 
the variation of concentration along the interface due to capillarity was small and 
therefore the interface shape could be approximated by a parabola yet still include 
a variable concentration along the interface. This model, however, also neglected 
elastic strain energy and anisotropic surface energy effects. It assumed a dilute alloy 
capillarity effect and the diffusion coefficient of the solute was independent of the 
concentration. 

Semi-empirical models have generally given good understanding of some of the 
basic physics in solidification and solid state transformations. They are however, 
limited -as any modeling formalism- in several key ways. They generally rely on 
qualitative geometric constructions. They also usually contain several parameters 
that need to be fit in order to predict experimental data. They cannot predict growth 
behavior over the entire range of supersaturations or cooling rates. Moreover, and 
most importantly, such modeling formalisms cannot be used to self-consistently 
examine the complex dynamics and pattern formation inherent in microstructure 
growth. These are all areas where phase field models can help complement previous 
semi-empirical approaches. 

In the 1990s Bhadeshia et al [80] claimed that the transformation process of 
Widmanstatten plates was a paraequilibrium process in which the plates lengthen 
at a rate controlled by diffusion but was nevertheless a displacive transformation. 
Bhadeshia claimed that the transformation was stress controlled due to misfit strains 
from elastic mismatches between parent and precipitate phases. This growth pro­
cess would be much like the transformation of martensite, but at rates controlled 
by the diffusion of the solute. This theory failed in the growth of single plates. 
Bhadeshia showed that the energy required for the transformation of a single plate 
was much too high due due to strain energy at the plate tip. He therefore concluded 
that plates must grow in pairs to mutually accommodate this strain energy. 

1.1.3 Observations and Conditions for Solid State Dendrites 

The appearance of precipitate dendritic structures in the parent phase can be found 
in solid-state transformations, given that the relationship between the parent and 
precipitate meet certain properties. A high rate of atomic transfer from the parent 
phase to precipitate phase, relative to the diffusion of solute ahead of the growth is 
required. The appearance of dendrites in the solid state can be found if the precipi­
tating phase and the parent phase have similar lattice structures and the transforma­
tion is driven by a diffusional process in the presence of an anisotropy. 
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As with the Widmanstiitten structures, there is present a crystallographic mech­
anism in the precipitation process that leads to the nucleation of a precipitate. This 
effect and various other factors will also influence the growth process of the precipi­
tate once nucleation has occurred. While there is some investigation into the effects 
of this crystallographic anisotropy in the process of nucleation [52], the focus of 
much of this thesis will revolve around the competitive growth process of these pre­
cipitates after they have already nucleated. This thesis investigates the mechanism 
by which coherency and surface energy anisotropy effects can influence the growth 
process of a precipitate in the solid state. 

(a) Solid state dendritic precipitates in Cu-52.7 wt pet Zn [92] 

(b) Seaweed-like r·' precipitate in Ni base superalloy[103] 

Figure 1.3: Solid State structures for Brass(a) and aNi base Superalloy(b) 

In 1 967 Malcolm et al [ 41] produced experimental solid state dendrites in j3 
brass. The dendrites had semi-coherent interfaces and low energy boundaries. 
Laraia and Voorhees [38, 93] showed how a coherent precipitate can shift the inter­
facial composition towards the far field alloy composition, thus reducing the driving 
force for the transformation. They examined the equilibrium shapes of elastically 
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coherent particles in an anisotropic matrix. It was found that the particles formed 
complex geometric shapes determined by the nature of the anisotropy present in the 
material. Husain et al [92] reviewed a series of experimental materials papers and 
postulated the following conditions for solid state dendrites to occur(see figure 1.3 
(a): 

1. A solid solution gets supersaturated on cooling and forms precipitates of an­
other solid solution.[92] 

2. The two phases must have similar crystallographic structures.[92] 

3. The lattice parameter of the precipitate phase is a simple multiple of the par­
ent phase.[92] 

The three dimensional effects of elastic stress on Ni-Al 'Y- ry' precipitates were 
studied by Lund and Voorhees [ 12]. Overlapping elastic fields caused by high den­
sities of precipitates was found to be the controlling aspect of the growth process. 
The morphological instability of precipitates in a nickel base superalloy was in­
vestigated by Yoo [103], illustrated in Figure 1.3 (b). It was found that at certain 
undercooling solid-state precipitates driven by diffusion limited growth would un­
dergo Mullins-Sekerka instability and then evolve into an almost isotropic growth 
pattern. 

Much like solidification, under the proper conditions, nucleated precipitates in 
the solid state will undergo growth and instability. The morphological development 
of the particle should be controlled not only by the diffusion in both parent and pre­
cipitate phases and anisotropy in the surface energy but also in elastic contributions 
to the energy, as well as any anisotropic effects due to the elasticity. 

Anisotropic driving forces cause precipitates to grow in preferential directions. 
When two differing anisotropic driving forces coincide, their mutual competition 
can cause destructive and constructive interference and therefore morphological 
changes to the resulting dendritic structures during solidification and in the solid 
state occurs. This effect was illustrated by Provatas et al [63] in solidification by 
the introduction of a temperature gradient at an angle to the growth direction pre­
ferred by surface energy anisotropy. It was found that by changing either the rate 
of solidification or the angle of the temperature gradient, a transition from dendritic 
to seaweed structures was forced. Haxhimali et al [85] showed that the introduc­
tion of competing surface anisotropies could also destructively interfere producing 
seaweed like structures in 3 dimensions. 

1.2 Basic Theory of Elasticity 

A solid state transformation process will inherently involve some sort of elastic 
strain. This strain will usually involve a lattice mismatch at the interface or a volu-
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metric change of the precipitate size. Presented here is the basic elastic theory that 
is used in the analyses later in this thesis. 

The first element of elasticity theory [23] is the definition of the displacement 
field Ui, where i is a cartesian coordinate(x,y,z). Ui is a vector that defines the 
displacement of atoms or the displacement of any point P in a strained body from 
its original position to the position P' in the strained state, illustrated in figure 1.4. 

z 

y 

X 

Figure 1.4: The di~placement ofposition P to position P' broken down into orthog­
onal components Ux, Uy and Uz. 

When a deformation occurs the distances between two local points change. The 
relative change between two points undergoing displacement is defined by the strain 
Eij. 3 For small changes in relative displacement, linear elasticity can be assumed and 
the strain is given as [23], 

(1.4) 

Lattice mismatches at interfaces, composition and temperature variation, and 
volumetric changes can be characterized by eigenstrains C<i), a state in the material 
that has a different relaxed strain state than that of the reference material. For a 
hydrostatic eigenstrain (ie no shear component) the eigenstrain tensor can be char­
acterized by placing 0 values at all points in the eigenstrain tensor except on the 
diagonal. This can be defined as [19, 45] 

* *£ 
Eij = E Uij (1.5) 

3Einstein notation is used in this thesis. Summation conventions apply to repeated suffixes. 
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where e* = ao-af3 for a lattice mismatch and ai is the lattice parameter for the a 
ao 

and f3 phases. 
As a driving force in phase transformations, elastic strain is the strain relative to 

the relaxed state of the current phase. This defines the elastic strain as [23] 

(1.6) 

and the stress is therefore computed as [23] 

(1.7) 

where Cijkl is the elastic modulus tensor and is related to the lame constants A and 
1-l for an isotropic linear elastic solid as [72] cijkl = -\8ij8kl + !l( 8ik8jl + 8il8jk) .

4 

For square symmetry in 2 dimensions, Cn = Cxxxx = Cyyyy,C12 = Cxxyy = Cyyxx 

and C44 = Cxyxy = Cyxxy = Cyxyx = Cxyyx· 

The elastic free energy is calculated from the elastic strains and stress in the 
system through Hooke's law and is defined to be [23] 

(1.8) 

The equilibrium stress state of the material can be calculated by assuming that 
a control volume is in static equilibrium along each set of orthogonal stresses, in 
general this is described by the tensor equation 

(1.9) 

and in two dimensions this results in the following simultaneous equations(by using 
repeated summation), 

(1.10) 

Eshelby produced an analytical solution to these equations in three dimensions 
for isotropic elliptical particles with a hydrostatic eigenstrain ( e*) [17, 72]. For a 
spherical inclusion the displacement for a point outside the inclusion was found to 
be, 

(1.11) 

4 
t5ij = 1 if i = j and 0 otherwise. 
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and for a point inside the inclusion, 

U ( ) = E*r 3,\ + 2p, 
r r 3 ,\ + 2p, (1.12) 

where ,\ and p, are the lame coefficients and a is the particle radius. Similarly for 
a 2-D circular inclusion it is expected that these solutions would be proportional to 
Ur (r) ex ~

2 

outside the precipitate and Ur ( r) ex r inside the precipitate. The total 
elastic energy of the inclusion was solved and found to be ex €*2a3 in 3-D and is 
expected to be ex E*2a2 in 2-D. 

1.3 Formation of Instabilities on Precipitate Interfaces 
- Linear Stability Analysis 

As interfaces move during phase transformations instabilities can form from minor 
fluctuations in the continuum fields. These fluctuations are usually due to small 
amounts of thermal "noise" arising at the atomic level. In the linear stability anal­
ysis by Mullins and Sekerka, it is the diffusion away from an interface that drives 
instability, balanced against the stabilizing force of surface tension. Instabilities 
can also be amplified by strain fields where the reduction of strain energy becomes 
the driving force for the instability, a situation known as the ATG (Asaro-Tiller­
Grinfeld) instability [5, 55, 40]. 

The transition from planar to unstable fronts is well documented and is impor­
tant in nearly all microstructure phenomena. 

1.3.1 Mullins-Sekerka Instability Theory for an Isothermal Pre-
cipitate 

In 1963 Mullins and Sekerka [ 60] analyzed the moving interface of a growing 
sphere to characterize the instability modes as the sphere grew in an undercooled 
melt. Applying a spherical harmonic perturbation to the interface and applying the 
boundary conditions (Equations 1.1 and 1.3) to the perturbations, they calculated 
the fastest growing mode of instability and also the critical radius at which a grow­
ing sphere will become unstable to linear order in the perturbation [60, 53]. This 
radius, R; is given as, 

R; = R* ( 1 + ~ ( 1 + ~ + Dr) p(p + 2)) (1.13) 
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where Dr is the ratio of the diffusion in the parent phase and the precipitate phase, 
p is the mode of the instability5 and R* is the nucleation radius approximated by 

R* = 2d0 

n (1.14) 

where do is the capillary length and 0 is the supersaturation or undercooling. Figure 
1.5 shows a plot of the instability criterion in Equation 1.14. A cooling path can be 
followed to either cause (Path I in Figure 1.5) or hinder (Path 2 in Figure 1.5) the 
instability of the interfacial region. 

2~--~--------------~~----------------~ 

I 

I 

/ 

/ 

UNSTABLE 

STABLE 

0~-------------------r------_.--------~ 
0 supersaturation 

Figure 1.5: Stability plot [ 60] illustrating regions of precipitate stability and in­
stability. Precipitates can follow growth paths that maintain stability by decreas­
ing the supersaturation during precipitate gro~vth. Contrarily the precipitate can 
be plunged into a region of instability via quickly increasing the supersaturation 
achieved by changing the temperature . 

5p = 2 is the minimum mode to become unstable, p = 1 represents a simple translation of the 
precipitate. 
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1.3.2 Linear Stability of Planar Fronts in a Temperature Gradi­
ent 

A planar front advancing into a temperature gradient can also undergo a transition 
from planar to non-planar growth. Mullins and Sekerka [60] and later Langer [53] 
solved the steady state diffusion equation and applied the boundary conditions 1.1 
and 1.3. By doing so Langer was able to calculate the amplification rate Wp for 
different perturbation modes p of an interface, where the wavelength ,\ = 27r. An p 
example of this is illustrated for directional solidification where the solid diffusion 
rate was zero. In this case the amplification rate is 

W = 
2
D ((qlD- 2 + 2k) (1- 2_- ~d p2lD-

2
k ) ) 

P l'b v' 2 ° qln - 2 + 2k 
(1.15) 

where d0 is the capillary length, p is the perturbation mode of the instability, D 
is the diffusion coefficient, k is the partition coefficient, v' = 2lr / l n, ql n = 1 + 
J1 + (klD) 2 , ln = 2{/ and lr = mtC~I-k) are the diffusion and thermal lengths 
respectively, mz is the liquidus slope, G is the thermal gradient and V is the rate at 
which the gradient is pulled into the melt. 

A plot of the amplification rate wP vs the perturbation frequency p, as shown 
in figure 1.6, can be used to determine not only the selected wavelength ( 27r) but 

p 
also the condition for interfacial stability. The interface is stable when all possible 
modes result in negative growth amplification, shown by the v' = 0. 7 plot in Figure 
1.6. The interface becomes unstable for conditions that cause any modes to have 
positive amplification rates. This stability criteria was determined to be point at 
which the peak of the amplification curve touches the the axis. This is illustrated by 
the v' = 1.05 curve in Figure 1.6. 

1.4 Phenomenology of Phase Field Modeling 

In recent years, the phase field method has emerged as a standard and powerful tool 
to tackle free-boundary problems. This method has the advantage that it avoids ex­
plicit front tracking by making phase boundaries spatially diffuse through the use 
of order parameters that vary continuously across interfaces. However, the multi­
scale nature of solidification and other phase transformations makes it difficult to 
use phase-field models quantitatively due to the computational complexity associ­
ated with making the solid-liquid interface thin enough to mimic the desired sharp­
interface limit. The phase field methodology and new advances that have helped to 
overcome some of the traditional problems of phase field models will be discussed 
next (as well as later in the Thesis). 
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Figure 1.6: Amplification rate( wp) plotted vs wave number p for 3 different ve­
locities. An unstable interface, the stability criteria and a stable interface are all 
shown[ 53]. 

1.4.1 General Phase Field Concepts - Solidification of a Pure 
Material 

A brief review of the phase-field method will be used to introduce the concepts 
pertaining to a phase field by examining the well-documented case of the solidifi­
cation of a pure material.[16, 67, 61, 63, 86, 22, 49, 102, 15, 32] The phase field 
method begins with a phenomenological free energy (G) of the solid-liquid system 
expressed in terms of the temperature and the order parameter field ¢( x), which 
takes fixed values in either phase (e.g. ¢ = -1 in the liquid and¢ = 1 in the solid) 
and continuously interpolates between these values across a thin interface whose 
width scales with the length W¢. The interface is defined as the level set of points 
satisfying ¢(x, t) = Ci, where -1 < Ci < 1 [22]. A form of G for a pure material 
is given by 

G[¢, U] = /<1 W<'(ii)V'¢ 12 +h{¢)- AUg(tf>))dV (1.16) 

where U = (T - T M) I ( L I cp) is the dimensionless temperature field, T M is the 
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_, ~ 
{interface width) 

Figure 1.7: Schematic of an interface of the phase .field in 1 D. The solid phase has 
a value of¢ = 1, followed by a smooth transition through the interface and a value 
of¢ = -1 in the liquid. 

melting temperature, L is the latent heat of fusion and cP is the specific heat at 
constant pressure. The constant A is proportional to the inverse of the nucleation 
energy. In cases where we are not concerned with modeling nucleation kinetics but, 
rather, the kinetics of dendritic growth, A can be treated as a free parameter, which 
is used to "tune" the parameters of the phase field model to emulate an appropriate 
sharp interface model. The gradient energy term I W¢(n)V"¢ 12 controls the surface 
tension energy, made anisotropic through the function W¢>(n) = W0 A(n),[49, 102] 
where n is the local normal to the interface and Wa denotes the isotropic liquid-solid 
interface width. A typical form often used for A(n) is given by 

(1.17) 

where c:4 controls the 4-fold anisotropic strength [22, 102, 15, 94, 43, 10, 8, 14]. 
Equation 1.17 was originally introduced phenomenologically. More recently, this 
form and corrections to it have been obtained from first principles calculations using 
density functional theory [78]. The function h( </>) = - ~

2 +if is the "double-well" 
potential that separates the energy between the solid and liquid phases. The function 
g(¢) is an algebraic function that assumes the limits g(±1) = ±1 and g'(±l) = 0. 
In the sharp interface limit of phase-field models, the specific form of g( ¢) in the 
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interface is not important, as all that enters the analysis are its limits at ¢> = ± 1 
[22, 49, 8, 14, 6]. A convenient choice for the interpolation function g(¢>), which 
maintains the bulk phases at¢= ±1, is given as 

15 ( 2¢
3 ¢5

) g(¢) = - ¢>-- +-
8 3 5 

( 1.18) 

The form of the bulk free energy density g(¢>)- )..U(T)g(¢>) is shown in figure 1.8, 
which illustrates the relative changes in the free energy between the bulk solid(¢> = 
1) and liquid(¢= -1) as the temperature changes. 

02 

' 
.. 
. , .. 
-0.1 l . .. 

1 
. . . 

I . . 
0.0 \ 

. . . 
1 . 

' -OJ l 
l 
\ 

-0.2 \ 
\ 
\ 

-03 \ 
\ 

-1.5 -1.0 

Liquid 
-0.5 

---U>O 

-U=O 

. .. . 
... 

. . .. .. . 

0.0 0.5 LO L5 

Solid 

. .. 

Figure 1.8: Free energy density for a pure material. Solid Line: Energetically both 
solid and liquid phases are favoured. Dotted Line: The case forT < TM resulting 
in the well shifting tolvard the solid. Dashed Line: The case forT > T111 resulting 
in the well shifting to the liquid. 

The evolution equation for¢ is described by dissipative minimization of the free 
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energy, expressed as 

(1.19) 

where r(fi) = T0 B(n) represents the anisotropic interface kinetics attachment time 
scale, with T 0 a constant. It's value scales with the atomic mobility [64]. When the 
function B ( n) = A ( fi), it is possible to simulate the limit of (3 = 0 of the sharp 
interface model, even for large ratios of the interface width to the capillary length 

(~) [49]. 

The evolution of ¢ is coupled to the dynamics of the temperature field via a 
modified form of the heat diffusion equation 

au 1 a¢ 
- = V7 · (DV7U) + --at 2 at (1.20) 

where D here is the thermal diffusion coefficient. The second term on the right 
hand side of Equation 1.20 represents the latent heat released during solidification, 
as illustrated in Figure 1.9. This form "smears" the latent heat across the diffuse 
region of the interface, and reduces to a delta function source in the sharp-interface 
limit Wo --+ 0. Equation 1.20 was originally derived from a condition of entropy 
growth during a phase transformations [74, 81]. Equations 1.19 and 1.20 can be 

Figure 1.9: Schematic of an advancing interface. The interface advances essentially 
as a propagating front. The quantity EJ¢ I at represents a 110 rmalized quantity of heat 
released at the inte1face. 
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conveniently studied in dimensionless form by rescaling space as x ~ x /Wo and 
time as t ~ tjT0 • In that case we can treat T0 = W0 = 1 in equation 1.19 while 
D ~ DTa/W; in equation 1.20. 

The parameters of the phase-field model can be selected to recover the dynamics 
of the sharp interface limit. This can formally be achieved by letting W0 ~ 0 and 
,\ ~ 0, such that~ ex d0 and -X~o ex f3k [14, 15]. In simulating the important case 
of f3k = 0, use of these relationships would require that the simulation time scale T0 

become prohibitively small. This asymptotic limit is of little practical value when 
there is a significant disparity between the capillary length do and the diffusion 
length~· Since the interface width is of order 10-9m, this precludes simulation of 
large-scale dendritic structures over a significant amount of time. 

An improvement was developed for the mapping of the phase-field model to 
the sharp interface model for equal thermal conductivities in both the solid and 
liquid phases. [49]. That work showed that the sharp-interface limit can be faith­
fully reproduced if the interface width (W0 ), the kinetics time( T0 ), and the coupling 
parameter(.\) are inter-related according to 

(1.21) 

and 

(1.22) 

where a 1 and a2 are constants that depend on integrals of the steady-state phase­
field function cPa· For the choice of the phase-field free energy described above, 
a 1 = 0.8839 and a2 = 0.6267. The remarkable feature of equation 1.22 is that 
it allows for the simulation of f3k = 0 for large values of the ratio ~: merely by 
choosing an appropriate interface kinetics time scale T0 • 

1.4.2 Dilute Ideal Binary alloys: Innovations for Working with 
Diffuse Interfaces 

For the case of binary alloy solidification in metals, in which the solute diffusion 
coefficients of different phases can vary by several orders of magnitude, the situa­
tion is far more complex than in pure materials. A second order matched asymp­
totic analysis (ie. a boundary layer analysis) of various two-sided alloy phase field 
models [6, 48, 8, 62] reveals that their thin interface limit gives rise to three "cor­
rection" terms to the standard sharp-interface models of solidification (described 
by the same kinetics reviewed in Section 1.1.1 ). Two of these "correction" terms 
emerge precisely due to the two-sidedness of diffusion. In the limit of rapid so­
lidification, where the diffusion length of impurities becomes comparable to the 
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interface width, these corrections define physically relevant corrections to the usual 
sharp interface models of solidification [65, 36]. At low solidification rates, how­
ever, these corrections are not relevant, and their influence -inherent in all phase 
field models- must be eliminated, particularly if diffuse interfaces are to be used 
for efficient computations. 

For the specific case of a dilute, ideal, two-sided binary alloy, a method for 
eliminating the thin interface corrections introduced by the diffuseness of the phase 
field was recently calculated by Karma and co-workers [ 48, 8]. The phase field free 
energy for a dilute ideal binary alloy used by Karma and co-workers is 

(1.23) 

where as with the pure model, 4> and T are the phase field and temperatures and C 
is introduced to the phase field model as the composition. The function f ( 4>, T m) is 
defined to be 

(1.24) 

and is the double well potential where H is the strength of the nucleation barrier. 
For a dilute ideal alloy the bulk energy (fi(¢, C, T)) is 

(1.25) 

where i represents either the solid state or liquid state, R is the gas constant and v is 
the molar volume. The phase dependent entropy isS(¢)= ~(Sa+ Sb- in9z(¢)) 
and the phase dependent enthalpy of mixing is E(¢) = ~(Ea + Eb + (Ea- Eb)9I(¢)). 
91 and 92 are interpolation functions through the diffuse interface with the limits of 
9i(¢ = ±1) = ±1 and the derivative limit of 9i(¢ = ±1) = 0. 

The evolution equation for 4> is described by dissipative minimization of the free 
energy, expressed as 

8¢ 
T-

8t 
(1.26) 

and the dynamics of the composition field via a Fickian diffusion equation as, 

(1.27) 

where D L is the liquid diffusion coefficient and q( ¢) interpolates the liquid diffu­
sion coefficient into the solid phase through the interface. 
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Having redefined the variables to 

2C 
u = ln---------

C[(1 + k- (1- k)h(¢)) 
(1.28) 

where C[ is the equilibrium composition on the liquid side of the interface, h( ¢) is 
an interpolation function which is set to h( ¢) = ¢ and k is the partition coefficient 
k = ~.Karma et al [48] wrote the phase field equations in a compact form as, 

l 

rfM, = W2\72</>- !'(</>)- 1 ~ kg'(<i>)(e"- 1) 

8tC+ V · J = 0 (1.29) 

where ,\ has the same relationship to the capillarity (do) and kinetic time (r) as 
defined in section 1.4.1 and the flux G) is written as, 

(1.30) 

where the first term is the standard Fick's law for diffusion and the second is an 
anti-trapping current that corrects for diffusion through an overly diffuse interface. 
This term is controlled by the anti-trapping coefficient (at) and is related to the 
difference in diffusion in the bulk phases by, 

(h(¢) - 1)(1- q(¢)) 
at= J2(¢2- 1) (1.31) 

where q( ¢) interpolates the diffusion coefficients through the two phases. i.e. for 
h( <P) = <P and one sided diffusion q( <P) = ~ the coefficient becomes at = 2~ 
and for equal diffusion (q( <P) = 1) at = 0. 

The anti-trapping technique has also been extended to the study of non-isothermal 
solidification of dilute ideal binary alloys by Ramirez and co-workers [42]. This 
situation exploits the fact that thermal diffusion relaxes on time scales several or­
ders of magnitude faster then solute diffusion. This allows the temperature at the 
interface to be treated as quasi-statically "frozen" in time relative to the dynam­
ics of solute segregation, thus allowing the dynamics of the solute diffusion to be 
evolved/corrected using the anti-trapping flux technique developed in Refs. [ 48, 8]. 
Similar approaches can also be utilized to couple phase field models of alloy solid­
ification to other fast fields, such as electrostatic, and elastic fields. 

More recently still, the anti-trapping technique was also extended to the study of 
quantitative modeling of pattern formation in eutectic (i.e. two-phase) solidification 
by Folch and Plapp Ref. [71]. At the core of their approach is an idealized triple­
well potential that approximates the free energy of each of three phases with an 
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identical quadratic well. Following analogous approach to Ref. [8], the free energy 
parameters are chosen such as to decouple the steady state phase and concentration 
fields between any two coexisting phases. This gives rise to a phenomenological 
form of the equilibrium chemical potential to any experimental value through the 
equilibrium of the two solidus and liquidus coexistence lines of any particular eu­
tectic phase diagram. These features, along with the use of an anti-trapping current 
acting at the two solid-liquid interfaces allows eutectic growth to be simulated effi­
ciently and true to the sharp interface kinetics, even with rather diffuse phase field 
interfaces. 

Chapter 3 will return to the specific binary alloy model of Karma and co­
workers, showing several new features that we have made to the model, which make 
it possible to study alloys with non-linear co-existence curves, i.e. non-ideal binary 
alloys. Chapter 4 will then extend this model further to handle elastic effects. 

1.5 Phase Field Modeling with Elasticity 

Borrowing from ideas developed originally for solidification, the phase field method­
ology has also rapidly developed in the area of solid state transformations. This 
work is broken down into several categories; the study of elastically driven insta­
bilities, primarily A-T-G instabilities [5, 55], the study of cracking behaviour, the 
effect of dislocations on interface migration and diffusion in the solid state, and the 
morphological patterning of precipitates in the presence of elastic fields. 

Figure 1.10: Island morphology of a stressed solid in contact with its melt. The 
equivalent unstressed solid results in a purely stable planar front.[46] 

Phase field models to study thin film instability from lattice induced strain and 
strained solids in the presence of their melt have been developed [ 46, 4 7, 99, 100, 
39] to study the instability relationship to the applied and internal strain fields. 
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Kassner [46, 47] developed a phase field model that, in the sharp-interface limit, 
recovered the equations describing the A-T-G instability. This instability is illus­
trated in Figure 1.10 where a stable planar front becomes unstable with an applied 
stress. In the course of their study of the instability, they examined the additional 
effect of body forces, such as gravity, and found a system of period doubling in the 
patterning process. 

Kessler and Levine [20] introduced the development of the phase-field model to 
the study of crack development and in particular used this model to provide insight 
into how a crack velocity is actually determined based on short scale dissipation. 
Karma, Kessler and Levine[2] further developed the phenomenological continuum 
model for a mode III fracture and reported two-dimensional simulations that yielded 
a function for the steady state crack velocity. Wang [87] used their phase field 
model to study the effect of multiple voids and cracks in both single crystals and 
polycrystals. Dislocations and precipitates were trivially included into their model. 
In 2004 Henry and Levine [27] studied the properties of fracture using biaxial strain 
with a phase field model. 

Dislocations can have profound effects on phase transformations in the solid 
state and influences the effect of solute segregation. In 2001 and 2002 Hu and Chen 
[82, 83] examined the effect of solute segregation and the nucleation of coherent 
precipitates in the presence of dislocations. In 2002 Koslowski et at [57] studied 
dislocation dynamics, investigating effects such as hardening. Rodney [18] inves­
tigated the motion of dislocations due to elasticity in a microstructure of late stage 
1 - 1' and Haataja and Leonard [56] and Hu and Chen[84] investigated the effects 
of dislocations on phase separation. 

In 1995 Morin [9] proposed a phase field model for the simulation of the trans­
formation of amorphous solids undergoing order-disorder transformations. Jou [37] 
incorporated elastic energies into phase field models for the solid state. They qual­
itatively illustrated how the application of anisotropic external source strains af­
fected the precipitate and parent phases with isotropic elastic coefficients. After 
applying these anisotropic stresses, initially isotropic precipitates instead grew in 
strictly anisotropic morphologies. 

Bouar [97] looked at the origin of chessboard structures in coherent decomposi­
tion of alloys using a phase field model with elasticity and Aguenaou [ 45] proposed 
a model with elasticity to explain the quasi-dendritic growth of cobalt on a platinum 
surface. The elastic anisotropy of the lattice strain was found to have a profound 
impact on the morphology of the domain growth. Wang [88, 89] proposed a phase 
field model for three dimensional solid state precipitates with arbitrary elastic inho­
mogeneities, the model was later extended to investigate the effect of free surfaces 
on martensitic transformations [90]. 

Solid state plate growth was studied by Vaithyanathan [91]. They presented a 
phase field model to study the coarsening of B' precipitates in Al- Cu alloys incor­
porating elastic fields to elucidate the effects of the various energetic contributions 

21 



PhD Thesis- Michael Greenwood McMaster- Materials Science and Engineering 

on the equilibrium shapes of the particles. Their particular form for the surface en­
ergy resulted in lens shaped precipitates, while the addition of anisotropic elasticity 
caused their precipitates to maintain a more rectangular shape. Zhu [ 44] similarly 
studied the coarsening kinetics of solid state precipitates by studying 1' precipitates 
in Ni - Al alloys. Mecozzi [24] used a phase-field model to simulate the 1 ~ a 
transformation in C - M n steel and Lu [98] detailed the effects of elasticity on the 
morphology of 1' precipitates in Ni - Al alloys. Yeon [101] presented a model 
for the study of morphological evolution of second phase particles that were co­
herently precipitated in the parent phase. They also included the sharp interface 
assymptotics of the elasticity showing that in the thin interface limit, the elastic­
ity is decoupled from the effect of the capillarity and interface kinetics at least to 
first order. Their simulations showed that relatively isolated precipitates grew as 
solid state dendrites, whereas a material of densely packed precipitates would fail 
to become unstable and quickly grew to an equilibrium square shape morphology. 

Elasticity in most of these models has been incorporated into phase field models 
by the addition of phase dependent elastic free energies such as the form in Equation 
1.8. [46, 37, 45, 88, 91, 101, 34] By the introduction of strain sources, such as the 
eigenstrain Eij' and making the elastic modulus tensor CiJkl depend upon the order 
parameter ¢, the dynamical evolution of strain field, order parameter (i.e. phase 
field) and concentration field are simply given by simultaneously solving Equations, 
1.9, 1.19 and 1.20. 

This addition to the free energy adds an additional corrective term to the Gibb­
Thomson condition (Equation 1.3) [69]. Including the effects of anisotropy the 
Gibbs-Thomson relationship can be written as, 

(1 .32) 

where f (B) and h( B) are trigonometric functions of the interface normal direction. 
c:4 and Ee are the corresponding strengths of these anisotropies, while t:,.Ccapillarity 

and t:,.Celastic are the isotropic corrections to the interfacial composition of the cap­
illarity and elastic strain respectively. The values of t:,.Ccapillarity and t:,.Celastic are 
presented in chapter 5 for a cubic elastic modulus tensor. 

For a two phase system the elastic modulus tensor is interpolated from phase 
to phase by a function (as in section 1.2. 1) which has the limits such that g( 4> = 

±1) = ±1 (where it is recalled that 4> = ±1 denotes the order parameter in the two 
bulk phases). The elastic tensor, thus defined for two phases, becomes, 

1 + g(¢) 1- g(¢) 
C··kz = Cl .. kz + C2 .. kz ZJ 2 ZJ 2 ZJ (1.33) 

where C1ijkl are the elastic tensors in each respective phase. Correspondingly the 

22 



PhD Thesis - Michael Greenwood McMaster - Materials Science and Engineering 

eigenstrain sources can be made phase dependent as, 

(1.34) 

for two phases, where c;p is the lattice eigenstrain. 
As mentioned earlier, Chapter 4 will make use of this phenomenology in an 

alloy phase field model, which will then be used to report new results on solid state 
morphological transitions. 
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This chapter introduced thermodynamic aspects of the phase field phenomenol­
ogy and discussed its connections to solid state transformations and solidification. 
The following chapters report on new contributions made in this thesis. These in­
clude new phase field formulations for solidification and/or elasticity, novel meth­
ods of solving phase field models computationally and applications of the phase 
field method to solid state transformations and solidification. 

The next chapter begins by delving into the subtle and all too often unappre­
ciated details of numerical solution methods and their efficiency for phase field 
models in all areas of materials science. This is a necessary first step without which 
quantitative modeling with this approach is impossible. 

24 



Chapter 2 

Multi-Scale Modeling and The 
Adaptive Meshing Technique 

A finite difference adaptive mesh technique is used to approximate the partial differ­
ential equations solved in the models that will be presented in chapters 3 and 4. This 
chapter will describe the data structure for a new dynamic adaptive mesh refinement 
(AMR) algorithm to solve coupled transient (diffusion-type phase-field) and time­
independent (elastic equilibrium) equations. It will go beyond the AMR technique 
introduced by Provatas et. al.[68] by using the finite difference (FD) method rather 
than the finite element method (FEM) as the primary solution method. This will be 
shown to increase the portability of the technique allowing many new models us­
ing higher order derivatives to be simulated with minimal interaction with the code 
structure. This new multi-scale technique is demonstrated on two very different 
solidification microstructure phenomena. 

2.1 Multi-Scale Modeling 

The simplest method of computing time dependent solutions of phase-field equa­
tions is to solve the partial differential equations using an explicit finite difference 
method and to update each nodal point in a uniform mesh by explicit time stepping. 
However, the typical interface width of a material undergoing a phase transforma­
tion is of the order of 10-9 to 10-8m while the final microstructure size can be 
on the order of 10-4m or larger. This length scale disparity can result in as much 
as 5 - 6 orders of magnitude difference during the phase transformation process. 
Limiting the simulation to a two dimensional problem can generate a static uniform 
mesh with as many as 1012 nodal points. This results in unrealistically long compu­
tation times and memory management becomes almost impossible. Two methods 
each independently can decrease this nodal count by several orders of magnitude. 
First is the technique by which to widen the interface while maintaining realistic 
interface kinetics such as was discussed in section 1.4.1 and secondly a numerical 
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method which dynamically increases the nodal count efficiency by taking advan­
tage of the physical aspects of multiscale phase transformation problems. Such a 
numerical method is discussed and further developed in this chapter. 

The nodal count efficiency can be increased by decreasing the number of nodes 
in regions where a high density of nodes is not required to gain the numerical ac­
curacy required for the simulation. In phase transformations, this typically occurs 
in regions away from the interface. By allowing a mesh to dynamically change its 
resolution from a higher resolution to a lower resolution in regions where such grid 
resolution is not required can save both computation time and computer memory. 
This method of numerical efficiency applies to any problem where 

Inter face Length( or Area) 
----------- << 1 
Domain Area(or Volume) 

such as in solidification and solid state transformations. 

(2.1) 

A dynamic adaptive mesh routine for use with finite differencing numerical 
techniques is developed to increase this nodal efficiency over traditional uniform 
meshes. The adaptive algorithm (Section 2.3) creates a non-uniform mesh that 
places a higher density of grid points in regions determined by problem specific re­
finement conditions. The use of dynamic tree data structures (Section 2.2) contains 
information about the nodes, their inter-connectivity and the computed field values 
of the model at those nodes. For example, for the pure alloy phase-field model 
discussed in section 1.4.1 a simple refinement condition can be set using a linear 
combination in the gradients in both the phase and the dimensionless temperature 
as in equation 2.2, 

IV <PI + riY'UI >Threshold (2.2) 

that will result in high densities of nodes at the interface and in regions where the 
dimensionless temperature is steep, as shown in figure 2.1. 

2.2 Finite Difference Adaptive Grid Structure 

The finite difference adaptive grid data structure handles two distinct processes, the 
mesh quad tree adapter and the linear array finite differencing solver, the details of 
which are graphically represented in Figure 2.2. The linear array finite differencing 
solver is the user side interface on which the model is implemented. It contains three 
arrays of node points (grid points), field value nodes, ghost nodes and boundary 
nodes. These are all described below in section 2.2.2. The mesh quad tree adapter 
includes the additional data structures of the element, described in section 2.2.1, 
and the quad-tree in section 2.2.3. Both the adapter and the solver each access the 
node structure via pointers in either the elements or the solver arrays. The grid 
structure also contains all global information about the domain area, such as initial 
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Figure 2.1: Adaptively grown dendrite of a pure metal illustrating the phase and 
thermal fields. High resolution is adapted at the interface where needed and unre­
solved in other regions. 

undercooling U for the pure alloy, supersaturation for an alloy, material parameters, 
etc. Each tree structure describes a square domain area and the tree pointer array 
allows many trees to be interconnected to simulate non-square domain areas. In 
addition to this functionality a later implementation will allow individual or clumps 
of trees to be spread over multiple processors for parallel computation. This feature 
and a 30 version of the code will not be discussed further in this thesis . 
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Adaptive Grid Structure ..----------. 
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Element Level 

Adapter 

Element 
Children 

[]] 
Element Stack 

Figure 2.2: A schematic diagram of the adaptive grid data structure. The arrows 
represent connectivity pointers. 

2.2.1 Element Structure 

The element structure can be visualized as a branching point in the mesh. The 
structure of the element contains pointers to its 4 children, its parent element, to 9 
nodes and to its 8 immediate element neighbours, see Figure 2.3. If the element has 
no children then this element is termed a leaf and its ghost nodes can potentially 
be active. With reference to Figure 2.3, ghost nodes can only exist at the white 
nodes and the black nodes are strictly field nodes. Field nodes become termed 
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boundary nodes when they are against a domain boundary. These are discussed 
further below. The relationship between the nodes and the element neighbours is 
schematically shown in figure 2.3. During the course of the adaption process each 
element follows three rules: 
ELEMENT RULE 1: All adjacent elements can vary by only one level in refinement 
ELEMENT RULE 2: All elements contain 9 nodes, field, boundary or ghost 
ELEMENT RULE 3: Element neighbour pointers only point to elements of the 
same level 

eo 

no 

e7 

c3 ~ 
ne '07 nu 

ee es e4 

Figure 2.3: Schematic of the element data structure for the element outlined in bold. 
The element has 8 immediate neighbours of the same level, eo- e7, 9 nodes no- ng, 
4 children element pointers eo - c3 and a link to its parent element P denoted by 
the grey region. Black nodes are field nodes and white nodes may be either ghost 
or field nodes. 

Element Rule I is the core to the adaptive process providing both stability to the 
solutions of partial differential equations on the non-uniform mesh and allowing for 
a systematic method of providing uniform mini-meshes at each field node. Rule 3 
states that all of these pointers must point to neighbours on the same level (even if 
they don't exist). This is schematically shown in the Figure 2.3 where each element 
neighbour (eo - e7) is identical in size as the current element. In the course of 
adaption there may however be no element neighbour of the current element in a 
particular direction (white elements in Figure 2.3). In that case the pointer points 
to nothing at all. Rule 1 however requires that the element's parent must have an 
existing neighbour in that location. 
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2.2.2 Node Structure 

The node structure is the lowest level of the finite difference adaptive process. This 
structure contains the field values, such as ¢ and U from the model in section 1.4.1, 
which is used by the solver to update the solutions and through which the adaptive 
algorithm determines whether further refinement is required. The node structure 
maintains a local mini-mesh around each node by containing pointers to its local 
neighbour nodes. This is done by following these three rules during the course of 
adaption: 
NODE RULE I: Node neighbours are all the same level of refinement 
NODE RULE 2: Nodes are at the center of a uniform mini-mesh 
NODE RULE 3: A node takes the resolution (dx) of the most resolved element 
attached to it 

There are three types of nodes, a field node, a ghost node and a boundary node. 
All nodes have no knowledge of whether they are a ghost, a field or a boundary 
node. It is the adaptive grid that determines this by storing them in the appropriate 
solver array after the adaption process. 

A boundary node is a node which lies on a user defined boundary at which spe­
cial functions are applied to simulate the appropriate physical boundary conditions. 
For example, such conditions could be zero flux boundaries or a boundary in which 
heat and/or additional material is added. The adaptive process also has the provi­
sion for not including boundary nodes, in this case the adaptive grid is structured 
with periodic boundary conditions on a toroid. 

A field node is a node that exist at the corner of square elements, which form the 
bulk of the simulation domain. In figure 2.3 n0 , n 2 , n 6 , n 8 are always field nodes 
(except for the case of user defined boundary nodes). The nodes in the center of 
an edge, n 1 , n3 , n5 , n7 may be field nodes if they are corner nodes to any of the 
four elements to which they can be attached. The field values at these nodes are 
determined by the partial differential equations of the model. 

A ghost node is a node that is required to exist to provide a uniform mini­
mesh for a field node. Edge nodes n1, n 3 , n 5 , n 7 are ghost nodes if they are not 
also corners of other elements (i.e. field nodes). Center nodes n4 are always ghost 
nodes. The field values at these nodes are not determined by the model but are 
instead determined by a user input function which interpolates their value from 
neighbouring field nodes. For the purposes of the research presented in this thesis, 
all interpolations are done linearly. For example for the edge node n 1, 

1 
Xnl = 2(Xno + Xn2) (2.3) 

and the ghost at the center of the element is interpolated by 

(2.4) 
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where X is the field value to be interpolated. 

2.2.3 Quad Tree Structure 

The quad-tree data structure presented here is similar to the tree structure developed 
by Provatas et al [ 68]. The difference between their data structure and the one pre­
sented here lies on the focus placed on the node data structure for finite differencing 
as opposed to the element centered focus used with finite element solvers in their 
1999 paper. A single quad-tree data structure is defined on a square domain of the 
study area. Several trees can be strung together to form rectangular study domains 
or spread over several computer processors for memory and speed increases. 

0 0 

0 

Element Tree Structure 

Root Level e 

1st Refinement Level ··-····~····························~ .2nd Refinement Level 

Figure 2.4: Schematic diagram of a quad-tree data structure used in adaptive mesh­
ing. An element splits and creates 'children' beneath it in the tree structure. Active 
'Field' nodes are represented by black nodes and active 'Ghost' nodes are repre­
sented by white nodes. 

The adaptive tree (or quad-tree) can be pictured as the hanging branch of a tree, 
with a root element at the top, as illustrated in Figure 2.4. Every time an element 
splits it spawns four new children to the resolution level beneath it, much as the 
branch would split to smaller and smaller branches. Any element that has no chil­
dren is considered to be a leaf. These leaves represent the regions that have resolved 
to the needed resolution and therefore the nodes connected with these elements will 
be passed to the solver algorithm for the model update. The element leaves are 
stored in the element pointer arrays by level of resolution. These arrays are used 
to determine the element refinement and unrefinement process, discussed below in 
section 2.3. 
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2.3 Adaptive Mesh Refinement Algorithm 

The adaptive mesh refinement technique is broken down into two distinct objects. 

1. The mesh quad tree adapter algorithms (Section 2.3.1 ). 

2. The linear array finite differencing solver algorithm (Section 2.3.2). 

These two independent object structures pass the node structures back and forth 
between them. The layout of the basic relationship between these two algorithms 

Algorithm 1 Basics of Control 
Initialize program variables and parameters 
Resolve mesh according to initial parameters 
Apply initial field values 
for time= 1 to End Of Simulation do 

if Readapt Criteria met then 
Mesh Quad Tree Adapter 

end if 
Linear Array Finite Difference Solver 

end for 

is given in Algorithm 1. The initial simulation parameters are set and the mesh is 
initially resolved to the initial geometry of the study domain, ie. a small circular 
particle in a melt or a seed particle in a matrix. Once the mesh has been resolved to 
this domain, the initial field parameters are applied to the mesh and the simulation 
begins. A regridding criterion is defined, typically re-gridding every M time steps 
as the simulation progresses. At every time step the solver is called to update the 
field values on the nodes. When the readapt criteria is met, the node structures are 
passed to the Mesh Quad Tree Adapter to reconstruct the mesh. 

2.3.1 Mesh Quad Tree Adapter Algorithms 

The Mesh Quad Tree Adapter Algorithm takes as input all of the nodes from the 
Linear Array Finite Differencing Solver and empties the ghost node array. The al­
gorithm (the flow of which is shown in Algorithm 2) first inspects every element for 
the criteria of unsplitting and then checks every element for the criteria of splitting. 
It continues this process until no elements have been split or unsplit. To help main­
tain the rules in sections 2.2.1 and 2.2.2 every leaf element is checked only once for 
splitting and unsplitting by cycling through the element level pointer array. Once 
each element in these lists have been checked once the lists may be cycled through 
again to check for further refinement. 

The splitting algorithm is the dominant routine in the adaption process, ie. split­
ting takes priority over unsplitting. Each element is examined sequentially, starting 
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Algorithm 2 Mesh Quad Tree Adapter Algorithm 
Delete the Ghost Pointer List 
while Some elements have split or unsplit do 

Check All elements for unsplitting criteria 
Check All elements for splitting criteria 

end while 
Update Node Neighbours Lists 
Build Ghost Node List 
Set Ghost Averaging Information 

at the 2nd highest of resolved elements in the element level pointer array, the high­
est resolution already having been split as far as allowed. Each element is checked 
for the defined splitting criteria. If the element must be split, it is pushed onto a 
stack data structure and each of its neighbours are then checked against ELEMENT 
RULE 1. If splitting will violate this rule, neighbours are pushed onto the stack 
for splitting and their neighbours are checked against element rule 1. This process 
occurs recursively down the levels of refinement until no adjacent elements violate 
element rule 1. Once the order of splitting is determined by the stack, the element 

Algorithm 3 Splitting Algorithm 
for ElementLeve1Array=maxLevel-1 to 0 do 

while Level is not empty do 
if Element Splitting criteria is met then 

Push Element onto stack 
while Stack is not empty do 

if Top of Stack's neighbours need splitting then 
Push Needed Neighbours onto stack 

else 
Pop the Element from the Stack 
Create 4 new children elements 
Push children onto ElementLevelArray + 1 
Add New Nodes to the Node List 
Remove former Ghosts from Ghost List 

end if 
end while 

end if 
end while 

end for 

on the top of the stack is popped and the element is split. New elements are cre­
ated as the element's children, pointers to the element's neighbours are updated, 
new nodes are generated, ghost nodes are converted to field nodes and the node 
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neighbours are updated. The process of splitting is illustrated in algorithm 3 
Unsplitting is a procedure for determining whether an element will have its 

four children elements removed, making the procedure to determine whether an 
element is unsplit much simpler. ELEMENT RULE 1 must still be maintained. 
The unsplitting algorithm begins at the bottom of the element level pointer array 
(i.e. at the lowest level of refinement) and the elements are sequentially checked to 
see if it's parent element requires splitting. If the parent element does not require 
splitting then the parent is unsplit IF the neighbours allow it (ELEMENT RULE 1 ). 
There is no recursive unsplitting of elements. The elements neighbours and node 
neighbours are updated. The flow of the unsplitting algorithm is shown in algorithm 
4. 

Algorithm 4 UnSplitting Algorithm 
for ElementLevelArray=maxLevel-1 to 0 do 

while Level is not empty do 
if Element Splitting criteria is NOT met then 

if Element's Parent's Splitting criteria is NOT met then 
if Parent's Children Have NO Children then 

if Parent's Neighbour's are Same level or One level Lower then 
ADD Parent to ElementLevel+ 1 
REMOVE Parent's Children from ElementLevel 
REMOVE Unneeded nodes from node list 
REMOVE Ghosts from Ghost list 
Center Node Becomes a Ghost 
Edge Nodes Become Ghosts depending on neighbour levels 
DELETE Children 

end if 
end if 

end if 
end if 

end while 
end for 

Once there are no elements that require splitting or unsplitting the field, bound­
ary and ghost node lists are all updated and passed back to the solver. This and the 
method of solution of the phase field equations on the node structure is discussed 
next. 

2.3.2 Simple Adaptive Mesh Modeling Solver Routine 

Typically, any algorithm you can apply to a uniform mesh can also be applied in the 
solver algorithm. The solver algorithm can be very simple, with the addition of one 
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additional step over a uniform meshing algorithm. In the adaptive solver routine, 
the ghost nodes must be interpolated before the field node values are used. The 
simplest form for the solver algorithm is outlined in algorithm 5. 

Algorithm 5 Linear Array Finite Difference Solver Algorithm 
Update Boundary Conditions 
Update Ghost Nodes 
Update Field Nodes 

The ghost nodes are updated by the interpolations described in equations 2.3 
and 2.4. Each field node is the located at the center of its own local mini-mesh as 
illustrated in Figure 2.5. The field nodes are calculated by standard finite differ­
ence templates (these templates are described in Appendix A.l) on the mini-mesh 
without the knowledge of whether the field values of its neighbours are from ghost 
nodes or other field nodes. 

Node n Mini-mesh 

0 0 0 

n 

0 

,.,--. 

Figure 2.5: Global (left) and Local (right) meshes around the node n. The node n 
sees only a local uniform minimesh. 

2.4 Finite Difference Adaption Efficiency 

The adaptive mesh approach provides the advantage of dramatically reducing both 
the computer memory requirements and reducing the overall time for a given sim­
ulation to be completed, allowing for larger domain and precipitate sizes. This is 
accomplished by reducing the total number of grid points that must be stored in 
memory and therefore the total number of grid points that must be evaluated at 
each time step. Traditionally adaptive meshes have been employed using the fi­
nite element method. In this thesis, the node structure is specifically designed (e.g. 
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ghost nodes in Figures 2.4 and 2.5) for the use of finite differencing to approximate 
derivatives. 

The remainder of this chapter proceeds as follows. The total node count pro­
duced by an adaptive mesh is characterized below, followed by a section over­
viewing the efficiency of finite difference techniques over finite elements. Three 
examples are then used to illustrate the portability and advantage of the finite dif­
ference adaptive mesh in the application of a myriad of problems in microstructure 
formation. 

2.4.1 The Reduction of the Total Node Count 

The nodal count efficiency is considered for a circular precipitate of the pure mate­
rial model briefly introduced in section 1.4.1. The node count at the refinement level 
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Figure 2.6: Total Node Count of nodes at the inteiface grid refinement level as a 
function of the total arc length ofthe precipitate. The relationship is linear with the 
total arc length. 

along the arc-length of the precipitate interface is plotted in Figure 2.6 showing a 
linear relationship to the total arc-length of the precipitate, ie Narc = Aa · Larc' 

where Larc is the total arc length of the precipitate and Aa is a constant repre­
senting the adapted thickness of the interface. The remainder of the total node 
count in the bulk of the domain, Figure 2.7, shows a logarithmic relationship as 
Nbulk = Ablog2(Lsystem) where Lsystem is the total system size along one edge and 
Ab is a constant related to the geometry of the elements. Only when the precipitate 
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radius is of the same order of magnitude as the total system size, ie 2~ ~ 1 does the 
logarithmic behaviour break down resulting in a decrease of the total bulk nodes. 
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Figure 2.7: Total Node Count in the bulk of the domain for a series of circular pre­
cipitates in increasing domain sizes. The total count strictly follows a logarithmic 
behaviour except when the precipitate size approaches that of the domain size. 

The total node count is constructed by the addition of these two contributions: 

Ntotal =Narc+ Nbulk 

= Aa · Larc + Ablog2(Lsystem) 

= O(Larc) + O(log(Lsystem)) (2.5) 

To characterize the total node count the magnitudes of each of O(Larc) and 
O(log(Lsystem)) must each be considered. As illustrated in Figures 2.6 and 2.7 the 
total count of the bulk nodes is much less than the interface nodes for the chosen 
particle and domain sizes. The condition of Node count dominance is such that 
Narc = Nbulk· If a precipitate is grown to a size of lOOnm with a grid spacing of 
0.5nm, for the above condition to occur the total domain size (ie. Lsystem) must 
be of the same order of magnitude as the size of the universe. Therefore it can be 
assumed that the total node count is, 

Ntotal = O(Larc) (2.6) 
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2.4.2 The Efficiency of Finite Differencing Techniques over the 
Finite Element Method 

The finite element technique has many advantages, such as complicated element 
structure and domain boundary shapes, however it also has some computational 
disadvantages. When considering simple domain geometries, such as rectangular 
or periodic domain boundaries, there are two primary reasons for using finite dif­
ferencing in adaptive mesh refinement over a finite element formalism: 

4e+06 

le+06 

Node Calculation Rate vs Simulation Time 

10000 

- Finite Difference Sorted List 
Finite Elements 

······· Finite Difference Unsorted List 

20000 
Time 

30000 

Figure 2.8: Time comparison of the finite difference method and the finite element 
method. The finite difference method is found to be at least jive times faster than the 
finite element method on a per node basis. This plot also shows the computational 
importance of maintaining an ordered list in computer memory. 

1. It provides a significant increase in computational efficiency over finite ele­
ment codes. This can be seen in figure 2.8 where an ordered array of adaptive 
finite differencing nodes (Figure 2.8 - Finite Difference Sorted List) has an 
increase in computational speed of approximately 5 times over an adaptive fi­
nite element method (FEM). Depending on the problem solved and the finite 
element method used, this can be increased to 30 times or more due to ei­
ther matrix inversion in the finite element process or local matrix calculations 
performed in each element, which carry a high overhead per node. 

2. The finite difference method is much simpler to code numerically and there­
fore a more robust and portable meshing algorithm and data structure can be 
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"served up" for others to use in implementing their own model(s). The finite 
difference method also allows the approximation of higher order derivatives 
without a significant loss in speed, while finite element codes must use higher 
order elements resulting in significant increases of matrix manipulations and 
solution time. 

2.4.3 Application of the Finite Difference Adaptive Mesh to Phase­
field Simulations of Velocity Selection in Rapidly Solidified 
Binary Alloys [36] 

This section summarizes the results of a recent paper in which simulations of an 
alloy phase field model solved with the adaptive mesh technique described above 
were performed to examine dendrite tip velocity and solute partitioning during rapid 
solidification of an isothermally cooled alloy. To run simulations with available 
memory and in realistic times the adaptive meshing was very important [36]. 

The phase field model used to simulate isothermal solidification of a 2-D binary 
alloy is given by 

_1 aq; = V. (W2(B)V¢) _ !__ (w(B) dW(B) aq;) 
M1 at ax dB By 

+~ (w(B) dW(B) a¢) _ 8/(¢, C, T) 
By dB ax 8¢ 

(2.7) 

ac = V · (M C(l- C)V (a!(¢, C, T))) 
at 2 ac (2.8) 

The field C(x, t) is the dimensionless (molar fraction) alloy concentration field, 
while T denotes the constant temperature and ¢ is the usual phase field or order 
parameter. The parameter M1 is related to the interface kinetic coefficient while M2 

is related to the solute diffusivity D. The function f(¢, C, T) is the bulk free energy 
of the a binary alloy. The first three gradient terms on the right hand side of Equation 
2. 7 arise due to the fact that the surface energy is assumed to be anisotropic, as 
discussed in the introduction in section 1.4.1. The model essentially represents a 
coupling of the dissipative equation for the evolution of the order parameter with 
Fick's law of diffusion. The details of this model can be found in the reference 
[64, 36]. 

The model is used to study time-dependent simulations of two-dimensional 
isothermal Ni-Cu dendrites simulated on the above mentioned adaptive mesh re­
finement technique. The use of the adaptive mesh allowed for the simulation of 
system sizes that would have required 256 · 106 nodes at all times (approximately 
5-10 GBytes of computer memory), whereas at early times the AMR algorithm 
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contains only a few thousand nodes ( ~ 1 MByte of computer memory with the 
adaptive mesh memory overhead). At late times the efficiency of the algorithm is 
found to scale with the available microstructure interface, not the system area (2-D) 
or volume (3-D). 

The dendrite tip velocity selection is examined and found to exhibit a transi­
tion between two markedly different regimes as the undercooling is increased. At 
low undercooling, the dendrite tip growth rate is consistent with the kinetics of the 
classical Stefan problem, where the interface is assumed to be in local equilibrium. 
At high undercooling, the growth velocity selected approaches a linear dependence 
on the melt undercooling, consistent with the continuous growth kinetics of Aziz 
et al. and with the one-dimensional steady-state phase-field asymptotic analysis of 
Ahmad et al. [64]. Moreover, it was found that the solute partitioning coefficient 
at the solid-liquid interface approaches unity as the velocity increases such the dif­
fusion length of impurities approaches the scale of the solid-liquid interface width. 
The simulations are also consistent with other previously observed behaviors of 
dendritic growth as the undercooling is increased. This includes the transition of 
dendritic morphology to absolute stability and non-equilibrium solute partitioning. 
The results of this study show that phase-field models of solidification, which in­
herently contain a nonzero interface width, can be used to study the dynamics of 
complex solidification phenomena involving both equilibrium and non-equilibrium 
interface growth kinetics. 

2.4.4 Application of the Finite Difference Adaptive Mesh to Poly­
crystalline Pattern Formation Using a Coarse-grained Ap­
proximation of the Phase-Field Crystal Model[7] 

The second application of the new adaptive mesh refinement algorithm is to a new 
class of phase field models known as "phase field crystal" models [51, 50, 66]. 
These models can be represented by one or more amplitude equations, the solu­
tion(s) of which can be combined to model phase transformations that incorporate 
atomic-scale elastic and plastic effects. These types of equations are not the topic of 
this thesis. They represent the future of phase field modeling, particularly for prob­
lems at the nano-micron scale which involve atomic scale elasto-plasticity. These 
types of equations are, however, a type of phase field model that poses a problem 
to traditional FEM approaches because they contain higher order derivatives (up to 
order 12), which leads to large overhead per node using FEM. A finite difference 
adaptive meshing algorithm allows the calculation of higher order derivatives with 
little extra work. The new AMR code developed in this work has been implemented 
to increase the overall efficiency of these models. The phase field crystal model and 
the amplitude equations are overviewed here briefly. Further details can be found 
in reference [7]. 

The phase field crystal (PFC) methodology constructs the equilibrium free en-
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Figure 2.9: PFC simulation of an applied shear stress, illustrating the mean posi­
tions of atoms in a pure material and a dislocation.[66] 

ergy such as to produce periodic atomic density states, rather than ones uniform in 
space. The conserved dynamics of the PFC model then naturally reproduce many 
of the nonequilibrium dynamics arising in real polycrystalline materials, thus the 
model will naturally include such properties as the elastic energy and surface en­
ergy anisotropic properties of the material. The peaks in the periodic density states 
actually represent the mean position of the atoms over billions of atomic vibration. 
This is shown in Figure 2.9, where Stefanovic [66] studied the effects of applied 
shear stress on the dislocation motion through a material. 

In the PFC model of a pure matieral, the evolution of the density p is given by 

(2.9) 

where G is the free energy functional, which can be written as G = J dflf (p, \72 p, ... ) ] , 
f is the local free energy density and r is a constant. The density p can be rewritten 
in a dimensionless form w ex p, determined by the form of the energy f and the ma­
terial properties such as the Young's modulus and the lattice spacing [51, 50]. This 
dimensionless spatial density can be appoximated in terms of complex amplitudes 
Aj as 

3 3 

W ~ L Ajeiki'x + L Aje-ikrx + q, (2.1 0) 
j=l j=l 

where W is the mean density. While the field w varies on atomic dimensions, the 
amplitudes AJ vary over longer length scales and are thus amenable to adaptive 
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mesh refinement1• The idea behind this work was that the original phase field crys­
tal equation (Equation 2.9) is formulated in terms of equations for the Aj, which 
are then solved for adaptively. The complete solution is then reconstructed by sub­
stituting the Aj back into Equation 2.10. 

The complex amplitude equations for the Aj are given as 

(2.11) 

where j, k E [1, 3] and 

- [ 2 . J [ -2 { 2 . } 2] Cj = 1- \7 - 2zkj · \7 -r- 3'ljJ - \7 + 2zkj · \7 (2.12) 

The superscript "*" denotes the complex conjugation, r (:S 0) and if; (~ 0) are 
model parameters that control the bifurcation from a uniform liquid phase to a crys­
talline phase with hexagonal symmetry. Thus r is proportional to the temperature 
quench from a critical temperature Tc, whereas if; can be viewed as a mean density. 

Away from a topological defect, grain boundary or vacancy, the complex am­
plitude equations for Aj can be further reduced to a set of real phases (W j) and 
amplitudes (<l>j). These vary over long lengths scales compared to the atomic scale, 
and can be solved adaptively. The equations for these variables are give by, 

awj 
at 

8<I>j 
at (2.14) 

where the operators erR and c~ contain only first and second order derivatives in q, j 
and <I>j. 

The phase and amplitude formalism of Equations 2.13 and 2.14 has neglected 
higher order derivatives of w J and <I> J, limiting these equations to only second order 
derivatives. However these equations are only solved in the crystal interior, away 
from the interface. The complex amplitude formalism (Equation 2.11 ), which is 
valid near topological defects, requires 6th order derivatives and is implemented 
with ease on a finite difference adaptive mesh. Figure 2.1 0 shows the average of the 
three complex amplitudes Aj of Equation 2.11 ( re-constructed from W j and <I> j) for 
the case of polycrystalline solidification. 

1 strictly speaking it is these amplitudes that are the authentic "phase fields" 
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(a) t = 0 (b) t = 248 (c)t = 552 

(d) t = 840 (e) t = 1620 (f) t = 2800 

Figure 2.10: The top (a,b,c) is a region densely populated by precipitates. The 
system size is 256 1r, or roughly 45 nm. The bottom(d,e,t) is a region sparsely 
populated with precipitates, the region size being 4096 1r or about 0.722 f.Lm .[7] 
The highly dense regions of red are grain boundaries of different precipitates, i.e. 
variations in the amplitudes Aj . The yellow yellow dots seen in the grain boundaries 
are dislocations that occur in the boundary. 

In figure 2.10 a,b and c, the simulation speed up factor was of the order of 
S = 10 since the grains are very densely packed and the volume to surface ratio 
is small. Whereas the much larger simulation sizes, where grains can grow to the 
order of f.Lm (figure 2.10 d,e and f) results in simulation speedups of S = 1000 or 
more. 

It can be shown [7] that the new adaptive mesh approach leads to an acceleration 
by three orders of magnitude in model calculations of polycrystalline grain growth 
in two dimensions, where the speed up factor was defined as, 

(2.15) 

where Nuni is the number of grid points required to solve the PFC equation on a 
uniform mesh, and Nrot is the number of grid points required to solve the hybrid 

43 



PhD Thesis - Michael Greenwood McMaster - Materials Science and Engineering 

implementation of the modified PFC model, ~t are the respective time steps of the 
implementations and ~ is the overhead of the AMR algorithm, which is found to be 
about~ ~ 0.97. 

2.4.5 Application of the Finite Difference Adaptive Mesh to the 
Solution of Static Elasticity by Gauss-Seidel Iteration 

The final application of the adaptive mesh refinement technique is the efficient so­
lution of the phase field model coupled to elasticity, which will be the main focus of 
Chapters 4 and 5. As this model will be presented in detail later, only the results of 
the efficiency of the new adaptive mesh algorithm on this model will be presented 
in this section. 

The displacement fields that satisfy equation 1.9 and that are coupled to the 
phase field model in chapters 4 and 5 are solved by Gauss-Seidel iteration. In brief 
this method incrementally improves the static strain fields by using an approximate 
solution at iteration j to give an improved solution estimate at step j + 1. When 
solutions stop changing, the methods is said to be converged to the correct solution. 
The templates for updating these equations on a numerical mesh are presented in 
appendix A.3. Typically the solution time for a Gauss-Seidel iterative technique is 
of the order of O(N2

), where N is the total number of grid points in the system [28]. 
On a uniform mesh this is simply an unmanageable way to solve strain fields (or 
any static fields) for every time step of the dynamic phase field equations. However, 
presented below are two new techniques developed in this thesis, which together 
are used to increase the computational efficiency with which the strain field can be 
calculated, with no changes required to the the Gauss-Seidel algorithm. Through 
this method a numerical solution to equation 1.9 is achieved in a time of the order 
O(A), where A is the number of grid points on the surface area (3-D simulation) or 
arc length (2-D simulation) of a precipitate. These techniques are as follows: 

First, the Gauss-Seidel algorithm works most efficiently by using an accurate 
approximation to the solution field. At timet during the phase transformation pro­
cess the displacement fields are approximated from the solution of the displacement 
field at time t - dt. The phase and composition fields each only vary by a small 
amount in each time step. If the solution at timet - dt is converged, then using 
this as a guess for the displacement fields at timet results in a solution that is al­
ready very close to convergence. Therefore, only the initial time step (ie. around 
the initial seed) will require a convergence time of O(N2). 

Secondly, the solution to equation 1.9 on the finite difference adaptive mesh 
is improved by the decrease in the total number of grid points and the far field 
propagation of the iterative correction to the displacement field is quickly solved 
by a coarse mesh. Section 2.4.1 shows that the total number grid points is linear 
with the total surface area (3-D simulation) or arc length (2-D simulation) of the 
precipitates. This alone changes the solution time for a uniform mesh from O(L4

), 
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Figure 2. 1 1 : Precipitates are grown in a parent phase and the displacement fields 
are converged to a threshold error of e = 0.0001 and e = 0.00001. Plotted is 
the number of convergence iterations required to attain the selected error vs the 
particle size represented by the total number of grid points. The total number of 
required iterations is found to approach a constant at every time step. 

where L is the number of grid points along the edge of the domain, to at worst 
O(A2). For a dendrite the size of the domain this results in a solution time of 
0(£2), a marked improvement over the uniform solution. 

It is found that a combination of these two methods results in a convergence time 
of O(A). This is illustrated by Figure 2.11 in conjunction with the total node count 
in Equation 2.6. Figure 2.11 shows that for two convergence criterion (e = 0.0001 
and e = 0.00001 where E is an error measure as described in Appendix A.3) the 
number of iterations required to converge the solution approaches a steady state 
constant as the total particle size increases (ie. the number of grid points increases). 
The number of convergence iterations required is therefore dependent only on the 
convergence criterion e, ie. 

isteps = F( e) (2.16) 

where isteps is the number of convergence iterations and F( e) is a function depen­
dent only on the convergence criterion e and is independent of the number of grid 
points N. In combination with Equation 2.6 the total convergence time is thus found 
to be 

iconvergence = Ntotal · fsteps = O(A) (2.17) 

A dendrite grown to the domain boundary on an adaptive mesh has O(L) grid 
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points by Equation 2.6. This technique shows that the convergence time of this den­
drite will be O(L), a marked improvement over a similar solution time of 0(£4

) 

for the same dendrite grown on a uniform mesh with no initial guess for the so­
lution. Other techniques for rapid solutions to the displacement fields could also 
have been implemented. Two standard techniques are the Multi-grid technique and 
the fourier techniques developed by Khachaturyan. Both of these techniques are 
typically applied to uniform meshes and would require a solution O(L2log(L)). If 
these techniques are applied on an adaptive mesh the solution times would at best 
result in O(L) time. Therefore the Gauss-Seidel methodology on an adaptive mesh 
is superior in its simplicity of application. 
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Chapter 3 

Thin Interface Asymptotics for 
Quantitative Modeling of Phase Field 
Models for Alloys with Non-Linear 
Phase Boundaries. 

This chapter develops mathematical modifications to a recently formulated phase 
field of an ideal, dilute binary model [8]. This contribution incorporates a new for­
malism for phase transformations that allows one to exploit a thin interface asymp­
totic analysis developed by previous authors [8, 49] to the study of non-linear phase 
diagrams [ 13]. 

A significant advantage afforded to the approach introduced by previous work­
ers [8, 49] is the ability to choose the interpolation functions (such as Equation 1.18) 
for the entropy and internal energy in the free energy functional such that the steady 
state phase field and concentration equations decouple for all values of the interface 
width (W). This allows the surface energy in the phase field model to be set inde­
pendently of concentration, a feature critical when making the phase field interface 
diffuse for computational convenience. Otherwise, a concentration-dependence to 
the surface energy would exist, detracting from the efficiency with which equivalent 
sharp-interface parameters can be calculated and subsequent computations carried 
out. An additional advantage of the approach of Karma and co-workers is the in­
clusion of an anti-trapping flux, a mathematical construct that enables the model to 
cancel the effects of spurious kinetics and solute trapping that arise when the model 
is run at an accelerated rate for numerical convenience. The construction of this 
anti-trapping flux in order to operate the model with diffuse interfaces was coined 
the "thin-interface" analysis. There are alternative phase field formulations that 
also decouple the phase and concentration equations [26, 33, 79]. However, a thin­
interface asymptotic analysis for simulating these models in their corresponding 
sharp-interface limit is presently lacking. This implies that while these other for-
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mulations can unambiguously set the surface energy into their model, they are not 
generally free of spurious interface kinetics and non-equilibrium solute trapping. 

To date most quantitative phase field studies of single-phase solidification have 
been formulated strictly for dilute ideal alloys, characterized by linear coexistence 
curves. A notable exception is the two-phase solidification model of Ref. [71], 
which can be collapsed to a single-phase solidification model that can describe so­
lidification in alloys with non-linear coexistence curves. A limitation of this model, 
however, is that it approximates the second derivative of the free energy of each 
phase to be equal. Because of this, the thin-interface limit of this model does not 
correctly capture any curvature corrections arising from the unequal second deriva­
tives of the Gibb's free energy at equilibrium. Moreover, their work modeled solid­
liquid coexistence at all temperatures by linear liquidus and solidus lines. 

This Thesis developed an extension to the approach of Karma and co-workers 
which allows non-ideal alloy phase field models to be simulated in the limit of a 
diffuse interface (called a thin-interface limit). Section 3.1 first considers the sharp 
interface kinetic equations for non-linear phase equilibrium lines in the binary alloy 
phase diagram. In section 3.2 an approximation of the Gibbs Free Energy Func­
tional is made by taylor expansion about reference compositions. This Taylor ex­
pansion is fit to the general free energy of a binary alloy with non-linear coexistence 
curves is proposed in section 3.3. Section 3.4 shows results with an application to 
a non-ideal binary alloy undergoing both isothermal and non-isothermal solidifica­
tion. Finally, the technique is applied to the practical problem of diffusion limited 
growth rates of a needles in f3 brass in section 3.5. 

3.1 Sharp-Interface Kinetics of Binary Alloy Solidi­
fication 

After generalizing the Gibbs-Thomson condition in the introduction of this thesis, 
equation 1.3, this boundary condition can be expressed as 

_ eq eq ( ( ) ) [ 2"(T / L l 
CL,s- cL,s- cL,s 1- k T imL,s(T)i(l- k(T))c~q ~ 

where 
RT2(1- k(T))[G"(ceq )ceq ] 

lmLs(T)i = L,s L,s 
' vL 

and where we have defined 
c~q(T) 

k(T) = c~q(T) 

(3.1) 

(3.2) 

(3.3) 

as the temperature dependent partition coefficient between solid and liquid phases, 
which is uniquely defined by the phase diagram of a particular alloy. Meanwhile, 
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6" (c~q8 ) is the second derivative of the dimensionless molar Gibb's free energy 
evaluated at the equilibrium concentrations c~~s (made dimensionless by redefining 

G = G j RT). L is the latent heat of fusion, cL,s ( x, t) is the concentration field, 
v is the molar volume of the phases, T is the temperature, R is the natural gas 
constant, 'Y is the surface energy of the solid/liquid interface and /'i, is the local 
interface curvature. 

Equation 3.1 shows that for two co-existing phases the relative change in con­
centration is in general different on each side of the interface. The work here is 
limited to the class of alloys that satisfies G" ( c~q) c~q ::::::: G" ( c~q) c~q, which implies 
that mL = m 8 = m(T), the slope of the liquidus curve at temperature T. This 
can be seen by following standard procedures [29] to derive the liquidus slope of a 
binary alloy, which is given by 

dT 
d eq 

CL 

RT2(1- K(T)k(T))[G" (c~q)c~q] 
vL 

where K(T) (not the partition coefficient) is defined by 

(3.4) 

(3.5) 

When K ::::::: 1, dTjdc;} = m(T). The consequence is that the solutal capillary 
length (large square bracket in equation 3.1) is the same on both sides of the inter­
face. This working approximation becomes exact in dilute ideal solutions, but can 
also be assumed reasonable for a wider class of alloys at low enough concentrations. 

3.2 Approximating the Gibb's Free Energy Functional 

The Gibb's free energy function for a binary alloy will be constructed with the phase 
labeled by the index i. This will be used to motivate the choice of the phenomeno­
logical free energy used in our phase field model in the next section. Rather than 
attempting to fit or approximate the Gibb's free energy of the phase over its entire 
concentration domain, the function is, instead, expanded to second order in a series 
around c = c~q, which we will require to be accurate only in the neighborhood 
around the equilibrium concentration. This approach is reasonable since at low un­
dercooling, kinetics and curvature effects typically only cause the concentrations at 
the interface to deviate by a small amount from their equilibrium values. 

Proceeding in this manner, the expansion for the Gibb's free energy of phase i 
is written as 

(3.6) 
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where 

9i(T) j(T)- Si(T)(T- Tm(T)) + 

RT (ln c~q(T) + E~(T) - 1) c~q(T) 
v 

(3.7) 

RT (ln c~q(T) + E~ (T)) 
v 

(3.8) 

RT 
(3.9) 

The coefficient si is the entropy of the phase, while E~ = EiV I RT where Ei is a 
free parameter of the phase, which has units of energy density. The functions f(T) 
and Tm(T) are for, the moment, arbitrary functions of temperature that are to be 
determined. 

The free parameters of Gi will next be constructed so that the free energy self­
consistently reproduces some relevant thermodynamic properties of a general bi­
nary alloy phase. Beginning with the chemical interpotential defined by f.-li(T) = 

dGi/dclcc~q and equating f.-ls = J-lL gives 

k(T) = c~q = (- ( E8 - EL)v) 
c~q exp RT (3.1 0) 

which fixes the internal energy difference E8 - EL in terms of the partition coefficient 
at temperature T. Alternatively Ei can be fixed in terms of the chemical potential 
and the equilibrium concentration of phase i, both obtainable from thermodynamic 
databases. 

The function f(T) is determined by evaluating Gi( c) at c~q, giving 

(3.11) 

Requiring that f(T) be independent of phase (i = s, L) imposes the constraint 

(3.12) 

which allows the reference parameter Tm(T) in equation 3.7 to be self-consistently 
determined. Specifically, (Ss- SL) = - LjT, where Lis the latent heat of fusion. 
(L is assumed to be independent of temperature, although making it depend on 
temperature would not change any of the arguments presented here). Equation 3.12 
is therefore re-cast as an explicit condition on the parameter T m (T) 

(3.13) 
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The factor in the rectangular brackets of equation 3.13 (hereafter denoted md(T)) 
is precisely the instantaneous liquidus slope of the alloy represented by the free 
energy in equation 3.6 at temperature T. This can be seen by substituting equation 
3.6 into the general expression of the liquidus slope in equation 3.4. In general 
equation 3.13 defines a linear "phase diagram" that passes through the coordinates 
at (T, C1q(T)) of the actual alloy phase diagram, and whose intercept Tm(T) is 
temperature dependent. 

It is convenient to cast the free energy expansion in equation 3.6 in terms of 
a more tractable analytical form, which will be used to link the phase field free 
energy functional to other phase field formulations in the next section. This is done 
by noting that the form of Gi(c) defined by equation 3.6 is precisely a second order 
Taylor series expansion of the function 

(3.14) 

about c = c~, where all parameters in equation 3.14 have the temperature depen­
dence defined above. It should be emphasized that while equation 3.14 has the same 
analytical form used to model ideal solutions, its parameters are quite different. In­
deed, through the effective temperature dependence of the parameters in equation 
3.14 many relevant properties of a general binary alloy phase near c = c~q can be 
approximated to a reasonable accuracy . 

3.3 A Phase Field Model for Solidification of Binary 
Alloys 

At the heart of this phase field formulation is the free energy functional given by 

RT 
G = IWo \7¢1 2 + f(T)- S(¢)(T- Tm) +- (clnc- c)+ c(¢)c 

lJ 
(3.15) 

where ¢ is the usual order parameter that continuously interpolates between solid 
( ¢ = 1) and liquid ( ¢ = -1 ). The parameters in each phase i are as defined in 
equation 3.14. The interpolation functions for the entropy S( ¢) and internal energy 
c(¢) interpolate between their respective values in each phase (i.e. S(¢ = ±1) ---+ 

S s,L and E ( ¢ = ± 1) ---+ Es,£). Their form is chosen precisely as in Refs. [ 48, 8] 
in order to guarantee that the concentration and phase field equations of motion 
introduced below decouple in a steady state, even for large values of the interface 
width (W). 

The free energy functional (Equation 3.15) is substituted into the standard dy-
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namical equations of motion for the phase given as 

and for the solute field as 

(
__,)a¢ _ _ 5G('V ¢,¢,C) 

T n at - 5cjJ 

ac - --=-'V·J at 

(3.16) 

(3.17) 

where J is the solute flux and T is related to the kinetic attachment time [ 48, 8, 
62]. Following the procedure in [8] gives the following dimensional phase-field 
equations of solidification for a binary alloy: 

r(T)A(n)"~~ = ~ · [W(T?A(n?~¢>] 
+ ¢ - ¢3 - ,\(T)(1- ¢ 2)2U 

+V · (1V¢!2W(T) 2 A(n) aA~(n)) 
8(\1¢) ' 

(1+ :(T) - 1- :(T) </.>) ~~ = ~. ( D(T)q(¢>)~U 

+at[1 + (1 - k(T) )U] aa¢ ~ ¢ ) 
t i'V¢1 

+~ [ 1 + (1- k(T))U] ~~ , (3.18) 

where D(T) is the liquid state diffusivity, U is the dimensionless supersaturation 
defined to be U = ( eu - 1) / (1 - k(T) ), at = 2~ is the anti-trapping prefactor, 

q( ¢ ) = 1;¢ modulates the two sided diffusion (i.e. between solid ( ¢ = 1) and 
liquid(¢ = -1) and 

( 
2C/Ceq ) 

u = ln 1 + k(T)- (1 L_ k(T)¢) (3.19) 

The function A(n) provides four-fold anisotropy as in the pure model, equation 
1.17, while W(T), the interface width, and T(T), interface kinetic attachment time, 
may in general be temperature dependent. Finally, the coupling coefficient, A, be­
comes 

15 L6T 
,\(T) = S 2HTm(T) (3.20) 

where 6T = lmd(T) I (1 - k(T) )c~q(T) represents the freezing range on the ef­
fective linear phase diagram defined by equation 3.13, H is the nucleation barrier 
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height and T m (T) is the intercept of the linear phase diagram of equation 3.13. Fi­
nally, noting that by using the same anti-trapping term defined in Refs. [ 48, 8] in 
the U -equation, we can eliminate all thin-interface correction terms appearing in 
the thin interface limit of equation 3.18. 

The model equations, 3.18, are identical in form to that examined in Ref. [8]. 
This connection allows the use of the same parametric relationships between >..(T), 
W(T) and T(T) defined in [8] to map model equations, 3.18, onto the sharp inter­
face model in section 1.1.1. Specifically, the solutal capillary length is related to 
the phase field model parameters as 

W(T) _ ~ 
a1 >..(T) = do(T) = ~T* (3.21) 

where a 1 = 0.8839 [48] and ~T* = lm(T)j(l- k(T))c~q(T) with m(T) = ms = 
mL given by equation 3.2. It is interesting to note that)..= >..(T) can be treated as an 
adjustable convergence parameter in phase field simulations of the model equations, 
3.18 [48, 8]. As such, any capillary length via equation 3.21 can be modeled by a 
suitable choice of W (T). 

The interface kinetic coefficient is set to be zero in the phase field simulations 
(at least to second order accuracy in the ratio WI do [ 48, 8, 62]) by setting 

(3.22) 

where a2 = 0.6267 [ 48]. For a constant temperature the coupling constant >..(T) 
may be chosen arbitrarily since its value does not affect the convergence of the 
dendritic tip velocity and radius, provided it is small enough [49, 48, 8]. However, 
once a value of ).. has been set, W and T can still depend on temperature according 
to equations 3.21 and 3.22. 

This approach can also incorporate non-isothermal conditions. In the limit when 
the thermal diffusion coefficient is much larger than the solute diffusion coefficient 
in the liquid (typically DL/a ,....., 10-4 ), it is reasonable to model temperature as a 
frozen field that adjusts quasi-instantaneously to changes in the concentration and 
phase (i.e. 8T I at ::::::: 0). Replacing T ---+ T( t, x) in the model equations, 3.18, 
makes W, T and k time and spatially dependent via equations 3.21 and 3.22, while 
the coupling parameter ).. can be set to a constant. 

It is found that it is more convenient to maintain the interface width W fixed 
with changing temperature, thus shifting the temperature dependence in equations 
3.21 and 3.22 onto>... In particular, comparing equation 3.21 at two different tem­
peratures with the requirement that W stay fixed requires that).. change with tern-
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perature according to 

>..(T) (1- k(T)) c7q(T) m(T) >..(Tt) 
(1- k(To)) c7q(To) m(T0 ) 

0 (3.23) 

where the subscript 0 refers to the temperature at t = 0 (ie. the first temperature of 
entry into the coexistence region) and T = T(t), the temperature at timet. After 
the simulations are completed, the record of >..(T(t)) is used with equations 3.21 
and 3.22 to re-scale time and space axes back to real units. 

3.4 Isothermal and Non-Isothermal Solidification of 
an Isomorphous Alloy 

To demonstrate the feasibility of this approach, the dendritic solidification of an A­
B binary alloy with an isomorphous phase diagram as shown in Figure 3.1 is con­
sidered. This phase diagram is obtained by applying a common tangent construction 
to the phenomenological solid/liquid alloy free energies defined in [65]. The mate­
rial properties of the A- B alloy used are LA= 31000J/mol, LB = 24622J/mol, c: = 26.07 J /mol, c: = 24.02J /mol, T~ = 1728K, T/:, = SOOK, identical to the 
material properties of a Ni-Cu binary alloy with the exception that the latent heats 
of Ni and Cu are about one half those values and the melting point of Cu is 1358K. 
The liquidus and solidus concentrations are given by 

e-2f::l.TB 1 RT _ e-2f::l.TA 1 RT 

1 _ e-2f::l.TAIRT 

(3.24) 

where ~Ti Li(T:n - T)j2T:n with i = A, B. From the liquid-solid coexis­
tence concentrations in equation 3.24, the partition coefficient is given by k(T) = 

c~q(T)jc~q(T) and 1/m(T) = dc~q(T)jdT because this alloy system satisfies K = 
1 in equation 3.5 for low enough concentrations. 

The model equations, 3.18, are used to simulate both isothermal quenches (fixed 
T = T0) and non isothermal cooling (T = T0 --* T(t)) through the coexistence 
region of the phase diagram in figure 3.1. The parameters used in the model 
equations, 3.18, are determined dynamically using the temperature dependence 
of ).. in equation 3.23, where the equations 3.3 and 3.24 are used to calculate 
k(T) and m(T). The interface kinetics are made to vanish by setting T(T) = 

(d0 (T)2 
/ D)a2 >.. 3(T)/ai and equation 3.21 is used to compute the temperature de­

pendent interface width W(T). The value of >..(To) is arbitrarily chosen but as the 
temperature evolves >..(T) is chosen according to equation 3.23 in non-isothermal 
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Figure 3.1: Phase diagrams for Ni-Cu binary alloy (broken lines) and the A- B 
alloy studied in this work (solid lines). 

situations. As mentioned above, use of Equation 3.23 implies that W actually stays 
constant during the cooling process. The time scale, however, is changed by a fac­
tor T(T)/T(T0 ) = ~T / ~T0. Finally, without loss of generality, the temperature 
dependence in the surface energy, '"Y, is neglected. 

First, isothermal two dimensional dendritic growth simulations are performed 
to investigate the convergence behavior of the tip radius and tip velocity for de­
creasing values of the coupling constant A. Four different values of A are examined, 
A = 1.5957, 2.1275, 3.1913, 4.2550. The simulations have a numerical grid size 
set to ~x = 0.4W(T0 ) and the physical domain is chosen to be the same for all 
A, 800X800W, 600X600W, 400X400W and 300X300W, respectively. Explicit 
time-marching is used to solve the phase-field equations with a time step of dt = 
0.02, 0.02, 0.018 and 0.014, in units of T(T0 ), for the four A, respectively. 

In these simulations, the far-field concentration is chosen to be CL ( oo) = 0.1827 
, corresponding to the liquidus concentration at 1600 K. The solidification quench 
temperature is set to T0 = 1450 K, corresponding to an equilibrium liquidus concen­
tration of C1q = 0.3875 and a partition coefficient k = 0.1902. Figure 3.2 displays 
the predicted variations of the steady state tip velocity and tip radius at the different 
values of A. The tip velocity is found to converge faster than the tip radius as A 
is decreased, however both are close to convergence for the value of A ~ 2.1275. 
The corresponding centerline solute concentration is found to agree well with the 
Gibbs-Thomson relation c8 jc~q = k[1 - (1- k)doK] for all values of A. 

Next a simple case of non-isothermal solidification of the A-B alloy is consid­
ered to investigate the convergence of this technique for transient processes. An 
A-B alloy with initial concentration corresponding to the liquidus concentration 
at 1600 K is quenched to T0 = 1450 K and is solidified isothermally until it ap­
proaches the steady state. The alloy is then quenched to a temperature of 1400K 
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Figure 3.2: Predicted dimensionless steady-state tip velocities as afunction of Ajar 
isothermal solidification of the binary alloy in Figure ( 1 ), with T0 =1450 K and 
initial concentration corresponding to the liquidus concentration at temperature 
1600 K. All simulations have the same physical domain and initial seed size, and 
the tip velocities are evaluated after steady state has been established. The inset 
shows the steady-state tip radius as a function of A. 

and a new steady state for the dendrite is reached. The temporal evolution of tip 
velocity and tip radius for the choices of A(T0 ) = 2.1275 and 3.1913 are shown in 
Figure 3.3. The relative change in the steady state tip velocity and radius after the 
new quench shows some dependence on the choice of A(T0 ), this is consistent with 
the isothermal convergence test shown in Figure 3 .2. After quenching to 1400 K, 
the temperature-dependent coupling constant becomes A(T) = 1.1803A(T0 ), there­
fore the convergence comparison occurs between two larger coupling constants and 
can be prone to an increase in error. These changes in the steady-state values are, 
however, within 10 % of each other, which is in reasonable agreement. 

The solute field along the dendrite centerline is examined to demonstrate that 
the anti-trapping flux term in the concentration equation still successfully eliminates 
any excess solute changes due to the solute trapping effect caused by the diffuseness 
of the interface between solid and liquid phases [ 48]. Figure 3.4 shows the solute 
distribution along the dendrite centerline for the simulation of A(T0 ) = 3.1913 in 
Figure 3.3. The concentration profile is illustrated both with and without the use of 
anti-trapping in the phase field equations. It is found that solute partitioning in the 
solid obeys the Gibbs-Thomson relation quite well with the anti-trapping flux, and 
in the absence of the corrective term the concentration in the solid phase displays 
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Figure 3.3: Comparison of temporal evolution of dimensionless tip velocity for non­
isothermal solidification conditions corresponding to a quench to 1450 K and then 
to 1400 Kfor .A(To) = 2.1275 (solid line) and 3.1913 (broken line). The change in 
temperatures occurs at the jump in the curves. In the inset, the comparison of the 
temporal evolution of the corresponding (dimensionless) tip radius is displayed. 

significant error. 
Finally, a continuous cooling between two temperatures during the solidifica­

tion process is considered. Using the same initial concentration from the previous 
numerical tests, the A-B alloy is cooled to 1450 K and isothermal solidification 
is allowed to proceed until the dendrite tip velocity approaches the steady state 
( rv26000 dimensionless time steps as shown in Figure 3.5). The alloy is then step­
wise cooled one degree at equal time intervals down to 1400 K, from time 26000 to 
40000, following which isothermal solidification is continued at 1400 K. Figure 3.5 
shows that the tip velocity and radius corresponding to .A(T0 ) = 2.1360, 2.4061 and 
3.1913 are fairly close to each other, indicating a good convergence of this method 
in the transient and steady state regimes. Figure 3.5 also shows the tip velocity and 
tip radius vs time for the case of .A(T0)=2.1360 with no anti-trapping current used 
in the phase field equations (3.18). Without anti-trapping there is a systematic shift 
in the radius at all times and in the velocity over most of the time domain. 

The centreline concentration along the dendrite axes for the three values of 
.A(T0 ) simulated in the data of 3.5 are plotted in Figure 3.6. The convergence of con­
centration for the different .A(T0 ) are in excellent agreement in both the transient and 
steady state regimes. Again the centreline concentration for .A(T0)=2.1360 without 
anti-trapping is plotted and shows a very large deviation from the the solution with 
anti-trapping fluxes, the latter of which isfound to obey the Gibbs-Thomson bound­
ary condition. 
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Figure 3.4: Plots of solute concentration (in molar fraction) along the centerline 
dendrite axis for the non-isothermal case corresponding to .A(T0 ) = 3.1913 in Fig­
ure 3.3. The solid line corresponds to the case when anti-trapping is turned on, 
\tVhile the broken line corresponds to the case that anti-trapping is s\tvitched off. The 
x axis is in units ofb.:r corresponding to .A(T0 ) = 3.1913. 

3.5 Diffusion limited growth in Beta-Brass 

The solid state transformation of a needles in j3 brass is investigated using the above 
quantitative phase field model to simulate the solute partitioning in needle growth in 
Cu-Zn. The phase diagram is as shown in Figure 3.7. It should be noted that semi­
coherent boundary effects and volumetric strains were neglected in this part of the 
study. As a result, the comparison assumes the needle growth in beta-brass is solely 
diffusion limited. A series of simulated iso-thermal quenches are performed and 
the corresponding solid state dendrite tip velocities are measured for the resulting 
precipitates. 

The simulations use a four fold symmetry to describe surface tension anisotropy. 
Each tip in the 4-fold structure is studied upon reaching an isolated needle at steady 
state. Strictly speaking, the morphologies of the a needle network morphology 
does not look like a collection of 4-fold dendrites, as shown in Figure 3.8 (a) and 
(b). This is to be expected as the simulations are for isolated dendrite arms while the 
experiments reflect a highly interactive dendrite environment. Interestingly, the tip 
morphology of the simulated needle agrees quite well with isolated tip morpholo­
gies from various experimental needles, as shown in Figure 3.8 (c) and (d). 

For the examination of tip velocities, the alloy composition is set to c;n = 

0.441 as per the experiments [54]. The anisotropy coefficient in the surface energy 
is set to a value of E4 = 0.01 1 and the numerical convergence constant .A(To) is set 

1 Strictly speaking, without a correct measurement of the experimental anisotropy the velocity 
comparison presented here can only be semi-quantitative, where (as shown below) the anisotropy, 

58 



PhD Thesis - Michael Greenwood McMaster - Materials Science and Engineering 

20 .... ·······-····-·-r········-· ... ·····.,.-····----·-····-r--·-·---···--,. ····-···········-,-----······--..,-··- ·········· ...... , ...................... .. 

1S 

16 

14 

e 12 ;:o 
- 0 10 

~ 
~ s. 

6 

0.5 

140 

;:o 80 

? 60· 

40 

20 

-'-=2.1360 
-- -l...2.4061 

}..,..3.1913 
A.-2.1360 
with Anti-trap off 

%~--~-----2~--~3----~4----~5 

tDfd0CTJ2 x 104 

1.5 3 3.5 4 4.5 

)( 10
4 

Figure 3.5: Temporal evolution of dimensionless tip velocity for non-isothermal 
solidification conditions corre!,ponding to slowly cooling from 1450 K to 1400 K. 
Different values of .A(T0 ) are compared. In the inset, the comparison of the temporal 
evolution of the dimensionless tip radius for the same simulation parameters is 
di.~played. Also displayed are the results for a case without anti-trapping in the 
phase field equations. 

to a value of 1.6. A series of iso-thermal quenches were performed in the range 
of 308K to 524K and the corresponding partition coefficients and values of the 
equilibrium composition on the f3 side of the interface, C~q13 were tabulated and are 
summarized in table 3.1 

I Temperature(K) I c~Qrj I Partition coefficient k I 
454 0.4443 0.8618 
427 0.4490 0.8599 
400 0.4560 0.8605 
373 0.4589 0.8496 
346 0.4620 0.8357 
319 0.4646 0.8173 
291 0.4658 0.8016 
264 0.4684 0.7891 
237 0.4715 0.7705 

Table 3.1: Equilibrium parameters extracted from phase diagram tables. 

The temperature dependence of the diffusion coefficient for f3 brass is readily 
available in the literature [3]. The Kirkendall effect [21, 4] in f3 brass causes the 
diffusion coefficient of Zn in Cu,Dzn, and Cu in Zn,Dcu, to have two distinct 
values (as a function of temperature). In this work an effective diffusion coefficient 

as well as the capillary length are scaled out of the data. 
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Figure 3.6: Plots of dendrite centreline solute concentration (in molar fraction) 
corresponding to the >.(To) values simulated in the data of 3.5. For comparison a 
case without anti-trapping is also shown. 

is used, determined from the alloy composition and the measured values of Dcu 
and Dzn as derived by, 

(3.25) 

where C zn and Ccu are the alloy compositions of Zn and Cu respectively. The 
values of the effective diffusion coefficients are summarized in table 3.2. 

I Temperature(K) I Dejf ( 
11~2 ) I 

454 1.70E-8 
427 1.13E-8 
400 2.94E-9 
373 1.07E-9 
346 3.64E-10 
319 1.16E-10 
291 3.38E-ll 
264 9.00E-12 
237 2.14E-12 

Table 3.2: Effective ditiusion coefficients calculated from equation 3.25 

Performing a conversion of the simulated tip velocities to real units, as shown 
in Chapter 3, results in a velocity of the form, 

(3.26) 
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Figure 3.7: Cu-Zn Phase diagram. The iso-thermal quench range is marked into the 
co-existence region of /3 and a(Cu). 

where Vn is the velocity in units of r;-, V is the velocity in the dimensionless units 

of the model, D ef f is the effective diffusion coefficient in units of n;2 
, d0 is the cap­

illary length in units of m, a2 = 0.6267 and .\(To) = 1.6. Capillarity measurements 
( d0 ) for /3 brass are not readily available, nor is a corresponding measurement of 
the anisotropy of the capillarity. The growth rates depend heavily on the choice of 
the anisotropy and conversion to physical units requires a value of the capillarity, 
without experimental values for these quantities, only a semi-quantitative compar­
ison of the growth rates is performed, assuming that neither the anisotropy nor the 
surface energy varies greatly with temperature. 

To scale the velocities for comparison with the experimental velocities, both ex­
periments and simulations are dimensionalized relative to a reference velocity, Vref• 

chosen at T = 423°C. This creates a new scaled velocity equation, 

(3.27) 

assuming that the surface energy and anisotropy are constant with temperature. 
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(c) Cu-Zn Needle Tip 

(b) Phase-Field Dendrite 

(d) Phase-Field Dendrite Tip 

Figure 3.8: Morphological comparison of needle growth in {3 brass (left)[ 54] and a 
phase field dendrite (right). The simulated dendrite is performed with a four-fold 
anisotropy, tip velocities are measured and compared to the experimental growth 
rates of the needles. 

This scaling makes it possible to compare simulation with experiment without 
knowing the capillary length and its anisotropy explicitly. The results of the scaled 
steady state velocities are plotted with the scaled experimental growth rates in Fig­
ure 3.9, indicating a reasonably good agreement. 

The turnover of velocity is explained by a competition between the driving force 
of the transformation and the diffusion limited step. The supersaturation (driving 
force) of the transformation is found to decrease with increasing temperature, as 
expected. Conversely the diffusion rate (limiting step) increases with increasing 
temperature. A comparison of these two controlling factors, shown in Figure 3.10, 
illustrates the crossover trend of dominance, resulting in a peak in the velocity set 
in the growth rate of the needles, as shown in Figure 3.9. 
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Chapter 4 

Incorporating Elasticity in the Phase 
Field Model 

Chapter 3 developed a mathematical modification to an existing binary alloy phase 
field model [8] for the application of non-linear phase diagrams. The contribution 
enables the exploitation of the thin interface asymptotic anlaysis developed by the 
previous authors [8, 49]. This chapter further develops the model of Chapter 3 to 
incorporate elasticity for the use in solid-state transformations. It shows that most 
of the relationships allowing for a thin interface, which were examined in Chapter 
3, may be brought to bear on phase transformations involving elasticity if certain 
conditions apply. 

This chapter begins with the sharp interface kinetic equations from section 1.1.1 
with the addition of corrective terms for the elastic free energy. In section 4.2 the 
phase field free energy is constructed in the form presented in Equation 3.15 with 
the addition of an elastic free energy. New phase field equations of motions are pre­
sented in section 4.3. In section 4.4 the thin interface composition field is projected 
onto a sharp interface and the results are compared with the theoretical sharp inter­
face elastic correction to the interface composition presented in section 4.1. Finally, 
anisotropic elasticity is simulated about a growing coherent solid state precipitate 
and an approximation to the anisotropic strain field is fitted to the simulation results. 

4.1 Sharp Interface Kinetics of Phase Transforma­
tions with Elasticity 

With the addition of elasticity the Gibbs-Thomson condition, equation 1.3, can be 
expressed as 

Cint C G 
B = L,S- ele (4.1) 

where CL,S is the interfacial composition as defined by equation 3.1, Gele is a cor­
rective term for the elastic free energy change across the interface. The kinetic 
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attachment coefficient (f3k) is effectively zero in these solid state simulations, since 
the interfacial velocity is slow enough to neglect that correction. Also, reverting 
back to an ideal binary alloy for simplicity, the partition coefficient is taken to be 
independent of temperature as 

ceq 
k = c:q =constant 

B 

(4.2) 

It should be noted that the temperature dependency of the phase-field equations in 
chapter 3 could hold here, however it is omitted here for simplicity. 

In addition to the additional term in the Gibbs-Thomson condition, elastic bound­
ary conditions are imposed on the precipitate interface. The displacement on either 
side of a coherent interface must be equal and is expressed as 

(4.3) 

Where A is the parent phase and B is the precipitate phase. The radial forces normal 
to the interface must be balanced. This is given by the equation 

A B 0 
ann- ann= 

A B 0 
ans- ans = 

(4.4) 

(4.5) 

where n is the direction normal to the interface, s is the direction along the arc 
length in curvilinear coordinates and ai is the normal stress on the ith side of the 
interface. 

4.2 Phase Field Elastic Free Energy Functional 

The Gibb's free energy functional for a binary alloy begins with the form presented 
in Chapter 3 without elasticity effects. The free energy in equation 3.14 is coupled 
to the elastic free energy of Equation 1.8, wherein each bulk component is now 
dependent upon the order parameter ( ¢ ). This energy is defined by 

RT 
G(¢, c, Eij) = IWo \7¢1 2 + f(T)- S(</>)(T- Tm) +- (cln c- c)+ E(¢)c + fet(cf>X4.6) 

v 

The elastic free energy is defined by Hooke's law, given by 

(4.7) 

where Eij is the total strain, E*(¢), equation 1.34, is the total eigenstrain, Etj(¢) = 
I+g(¢) E~~L + I-g(¢) E~~L (E~!- and E?!- are the eignestrains in phase 1 and 2 (par-

2 tJ 2 tJ t) tJ 

ent and precipitate), respectively). The phase dependent compliance tensor is also 
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interpolated across the interface from their bulk phase values by equation 1.33 
,Cijkl = 

1 +~(¢) C1ijkl + 1 -~(¢) C2ijkl and the interpolation function g( ¢) has the 
form given in equation 1.18 

The elastic energy can be re-cast as a function of g ( ¢), leaving the elastic free 
energy in the form of 

(4.8) 

This energy is still a generalized free energy, however each pre-factor of one of 
the powers of g(¢), Z3 , Z2 , Z 1 and Z0 , is a non-linear function of the strains and 
the components of the elastic modulus tensor, best evaluated through the use of 
mathematical software such as Maple. Explicit expressions for Zi are given in the 
appendix (App A.2) for the cubic elastic modulus tensor in two-dimensions. 

The parameters of G( ¢, c, Eij) are constructed so that the free energy self-consistently 
reproduces some relevant thermodynamic properties of a general binary alloy phase. 
The chemical interpotential defined by J.-li(T) = dGddclc~q for an elastic energy 
that is independent of composition gives a partitioning relationship as 

k = c~q = (- (Es- EL)v) 
- c~q exp RT (4.9) 

by equating J.-ls = J.-l£, identical to the form in chapter 3. 
A double tangent construction is performed on the elastic Gibbs free energy 

functional, equation 4.6, for each constituent bulk phase (i.e. ¢ = -1 or ¢ = 1). 
This produces a modification to the equilibrium composition C~q by the additional 
term Get which corrects for the presence of an elastic strain field. For the case of a 
constant strain in each phase, this new equilibrium composition is given as, 

C _Ceq_ G _ (T- T m) Lv _ 2v (Z3 + Z1) 
b - b ete - T m T R ( 1 - k) T R ( 1 - k) ( 4.1 0) 

where c;q = ~~-:;,~(/~;) is the equilibrium coexistence line (i.e. concentration) cor­

responding to the parent phase in the absence of elasticity, and Gete = i~ <~~~;)1 ) 
is the correction to the phase diagram due to a local change in the strain. 

4.3 A Phase Field Model For Elastically Influenced 
Phase Transformations 

Incorporating the elastic free energy of the previous section into the phase field 
model, the following evolution equations for the phase field, the dimensionless su­
persaturation U = e;~k1 , and the strain (or displacement) fields are derived (see 
appendix for details): 
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Phase Mobility: 

Chemical Diffusion: 

roA(n?~~ =.g. [w;A(n?.g1>] 

+V · (1V¢1 2W 2 A(n) aAA(n)) 
0 a(\7¢) 

-(q}- ¢)- A(1 + B)U(1- qi) 2 

au -- --w8t = \7 · (Dij(¢)Cb\7U) 

( 
aZ2 ) acjJ 

+(1 + (1- k)U)Cb 1 + Cb(1 _ k) at 

-(1 + (1- k)U) -- cjJ -(
k+1 )acb 
1- k at 

Strain Relaxation: 

The explicit form of B in equation 4.11 is 

1 (( aZ1 ) aZ2 aZ1) 
B = 2(1- k) (1- k)C~q - 1 cb g(¢)- c~q 

( 4.11) 

( 4.12) 

(4.13) 

(4.14) 

where here Cb is the equilibrium composition corrected for the local strain. As­
suming z3 is negligible, this is given by cb = c~q - ~ (~~k) where c;q is the 

equilibrium composition in the absence of elasticity, while a = ~~ modulates the 
elastic coefficients to the energy units of the model. 

The dimensionless supersaturation (U = e1u~k1 ) is modified to incorporate the 
elastic correction to the equilibrium composition by modification to the dimension­
less measure of the deviation from the equilibrium chemical potential ( u) through 
interpolation function matching outlined in appendix B. The resultant equation is, 

(
2C ( 1 aZ2 2 )-

1
) u = ln - k + 1- (1- k)g(¢)- --(1- g(cjJ) ) 

cb 2 cb 
(4.15) 

where z2 is the prefactor tog(¢? in the elastic free energy and cb is the equilibrium 
interfacial composition corrected for elasticity by equation 4.1 0. w modulates the 
diffusion through the interface correcting for the diffuse nature of¢ and is given by 
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equation 4.16. 

Z2a( 2 w = Cb(k + 1- (1- k)</>-
20

b 1- </> )) (4.16) 

Two-sided diffusion is controlled by the function ij( </>) = q( </>) Zb where q( </>) 
modulates the diffusion in the two phases, to simulate equal diffusion coefficients 
q( ¢) = 1. By setting the diffusion coefficients equal in both phases the need for 
the anti-trapping flux correction term described in section 1.4.2 is eliminated due to 
the coefficient at = 0. Surface energy anisotropy is entered into the model by A( n) 
using the four-fold anisotropy described in equation 1.17. 

This model is studied in the limit where Z3 --t 0, the condition for a small differ­
ence in the elastic coefficients in either phase. This condition holds for all materials 
in which f < < 1 holds. Generally speaking Z1 > Z3 even in the most extreme 
disparities of the elastic coefficients, so this assumption is not unreasonable. 

Equations 4.11 and 4.12 are presented in the form of the phase field equations 
(Equations 3.18) introduced in chapter 3. Equation 4.11 has a correction (1 +B) 
to the term containing the dimensionless undercooling (U). This correction is a 
strain dependent modification of this dimensionless equation. Equation 4.12 has the 
term w multiplying the time rate of change of the undercooling which is corrected 
for strain. This term is similar to the multiplying factor in the chemical diffusion 
equation in the phase field equations of Chapter 3 with the addition of a correction 
for the strain. In addition to this pre-factor an additional term proportional to (8f/) 
is introduced. 

Following the procedure for the derivation of the phase field model presented 
in [8] and extended in chapter 3, the constants W0 , T0 and ,\ are inter-related by an 
asymptotic analysis [ 49], which maps the phase field model onto the sharp interface 
limit. Attaining the limit where the interface kinetic coefficient, f3k ( ii) = 0, in 
the Gibbs-Thomson condition Cint = Ceq - ~Cdo(ii)"' - ~C{3(ii)V, requires 
~ = 0.8839,\ and D = 0.6267 .A. These relations arise by expansion of the phase 
( </>) and composition ( 4>) inside of the interface and matching to the sharp interface 
limits [8]. 

The inter-relationship of W 0 , T 0 and ,\ (discussed in chapter 3) are assumed to 
be at least approximate in the formulation of the elasticity-corrected phase field 
model presented in this chapter. This can be checked by comparing the phase field 
equations in the form presented in Equations 4.11 and 4.12 to the equations in the 
absence of elasticity (Equations 3.18). The phase field model presented in this chap­
ter is identical to the one of Chapter 3 in the limit when:(a) ~ < < 1 in Equation 
4.12 which is numerically found to be at least an order of magnitude smaller than 
the other terms in this equation and (b) when B < < 1, which is also about an order 
of magnitude smaller than 1. B accounts for the effect of a variable strain field 
on the development of the precipitate. This is analogous to the temperature depen­
dence of,\ presented in chapter 3. With correction terms described above being 
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small, it is expected that a thin interface analysis of this more complex phase field 
model will still yield to lowest order the same thin interface parameter relations as 
the original model of Karma and co-worker. An even more simplistic argument 
is that even if the elastic terms of our model induce spurious kinetics in the thin 
interface limit, they will not not significantly perturb the interface away from its 
[elasticity-corrected] equilibrium since only very small growth rates are being con­
sidered here. 

It should also be noted that both of these terms are zero in the limit of zero 
strain, but are also valid for small lattice eigenstrains. For larger strains these ap­
proximations are valid when the interfacial velocity (V) is small, in effect this small 
velocity eliminates the excess kinetic effect at the interface. In this thesis only small 
eigenstrains (E* ::::::: 0.005) and small growth rates (V < 1J.lm/ s) are considered. 

4.4 Growth of an Isotropic Second Phase Precipitate 
with Coherent Interfaces in an Isotropic Parent 
Phase 

To confirm that the model (Equations 4.11-4.13) reproduces the expected elastic 
correction to the Gibbs-Thomson condition in equation 4.10 an isotropic second 
phase precipitate is quenched into a coexistence region. The surface energy is made 
isotropic by setting the surface energy anisotropy coefficient E4 = 0 in equation 
1.17. The elasticity solver is formulated in terms of cubic tensor coefficients, ie 
C11 ,C12 and C44 as described in appendix A.2. For isotropic linear elastic coeffi­
cients the cubic elastic terms are related by, 

(4.17) 

where for this simulation C11 = 1011 and C12 = 729 (Cii is dimensionalized by 
a ) and a coherent hydrostatic eigenstrain is set to a strength of E* = 0.005. The 
constant A (i.e. the convergence constant in the phase field equation) is set to a value 
of A= 3, the equilibrium composition is C~q = 0.1 with an initial alloy composition 
of Co= 0.04 and the partition coefficient is set to a value of k = 0.1. The diffusion 
coefficients are set equal in both phases thus removing the phase dependency in the 
diffusion coefficient (ie. q ( ¢) = 1) in equation 4.12. 

A precipitate particle is grown under the conditions of the previous paragraph. 
A cross section of the composition field solved by Equation 4.12 is shown in Figure 
4.1. The figure also indicates the corresponding value of the equilibrium interfacial 
composition as calculated by equation 4.10 where the curvature term is neglected by 
choosing a precipitate radius such that this correction is negligible. Cb is plotted as 
a function of the phase by interpolating it through the interface to its corresponding 
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Figure 4.1: A circular isotropic coherent precipitate is grown in an alloy with ini­
tial composition of Co = 0.04 with a hydrostatic lattice eigenstain of E* = 0.005. A 
cross section of the composition is sho~vn with the corresponding equilibrium com-
position corrected for strain, Cb C~4> + 1 ~¢ k). The compositions are interpolated 
to the center of the interface and are found to be in good agreement with the sharp 
interface boundary condition. 

precipitate side value by cb ( ¥ + !.¥k). The composition field is interpolated to 
the interface described by the point where ¢ = 0 both from inside the precipitate 
bulk and from outside the precipitate in the parent phase. The points are denoted 
c~q and c~q and are found to have good agreement with the interpolations to the 
center of the interface. 

4.5 Approximation of the Strain Field Around a Pre­
cipitate with Cubic Elastic Coefficients 

The elastic field is analyzed around a circular precipitate to investigate the be­
haviour of an anisotropic elastic strain tensor for cubic coefficients that are equal 
in both phases. The anisotropy is entered into the cubic elastic coefficients by in­
troducing a deviation from the isotropic relation in equation 4.17 as defined here 
by, 

(4.18) 
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where f3 is the deviation from the isotropic elastic coefficients. Cn and C12 remain 
unchanged. While the analytical solution to the isotropic strain field has been de­
rived for elliptical inclusions under a hydrostatic eigenstrain [17], a solution to an 
anisotropic precipitate under the same conditions is mathematically cumbersome 
[70]. Instead, a perturbed form for the strain field is considered. 

·~ 
~ 

Effect of l'a.rticle Kadiw on .Ani!otropi<: Amplitude 

0.\102 
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·0.001 

(a) The effect of precipitate radius 
(R = 10 lV0 , 20 IV0 ) on the strain 

SUm, Exx + Eyy. 

Etfect of Bet:~ on Strain around a static particle size 

' t 
<HlOO~i'- I 

(b) The effect of the deviation from 
anisotropy (/3 = 0, 100, 200) on 

the strain sum, Exx + Eyy. 

Solid 1ines denote Exx + Eyy 

Figure 4.2: Strain fields Exx• Eyy and their sum for two particle radii with /3 = 200 in 
units of the model. Strain fields Exx• Eyy and their sum for a constant particle radius 
and varied /3. 

A circular precipitate in a parent phase with identical elastic coefficients in both 
phases is considered. The dimensionless elastic coefficients are set to values of 
Cn = 1011 and C12 = 729 (Cij is dimensionalized by o:, ie. o:Cij), the hydrostatic 
eigenstrain is set toE* = 0.005 and the concentration field is made constant. 1 The 
deviation from elastic isotropy is studied by two controls, the particle radius and 
the strength of the deviation from isotropic elasticity, f3. 

The effect of the precipitate radius is studied first by setting the value of f3 to 
200 (in dimensionless units of the model, ie. o:f3) and varying the precipitate radius. 
The resultant strain fields along iso-radius contours just outside of the precipitate 
interface are plotted in Figure 4.2 (a) for two precipitate radii, R = 10,20 in units of 
the interface width W0 • With an increase in particle radius it is found that individ­
ually each orthogonal component to the strain field, Exx and Eyy. is also increased 
a proportional amount. However, the trace of the strain tensor is found to remain 
essentially unchanged with increasing particle radius. 

1 The elasticity here is not influenced by compositional effects and therefore any concentration 
field will produce similar results. 
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Figure 4.3: Measured values of Vamp plotted vs ci3 and the fitted prediction of 
11 

Next the effect of increasing the anisotropic parameter (3 while maintaining a 
constant particle radius is investigated. Unlike the case where particle radius was 
increased, each individual component of the diagonal terms of the strain tensor has 
little relative change in their magnitude. However, the amplitude of the variation in 
the trace of the elastic tensor has a notable increase, as shown in Figure 4.2 (b) for 
anisotropic values of the elastic tensor of j3 = 0, 100, 200. 

The () dependence of the strain trace can be approximated to lowest order by a 
single Fourier mode as defined by, 

( 4.19) 

To elucidate the form for the fourier mode amplitude, Vamp, the anisotropic strength 
j3 is varied and the values of Vamp are measured for the corresponding waveform 
at the interface of the precipitate. These measured values are fitted to a functional 
form, given by the equation, 

1 j3E* 
Vamp - 2 Cu + j3 (4.20) 

The functional form of equation 4.20 shows good agreement for all values of j3 in 
the regime where c/3 < 2 as shown in figure 4.3. This range of anisotropies is well 

11 

within the limits of the relative anisotropic strengths that will be further studied in 
this thesis. 
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Chapter 5 

Morphological Transitions Due to 
Elastic and Surface Energy 
Competitions 

Competing growth materials properties, such as surface energy anisotropy and tem­
perature gradients, can cause transitions in the dominant growth morphology of 
precipitate structures.[63, 85] In the presence of an anisotropic influence dendritic 
structures can form. If however there are multiple anisotropic influences these 
anisotropic fields interact leading to the emergence of various off-dendritic struc­
tures. If the anisotropic influences are of similar form, but are simply out of phase, 
two extreme phenomena can occur. In one extreme, the anisotropic fields destruc­
tively interfere causing the precipitates to grow as if under isotropic conditions. 
Conversely the anisotropic fields can amplify and strengthen the preferential growth 
direction of the dendrite. The understanding of how these fields interact is of im­
portance in the formation of a precipitate structure. 

In this chapter the phase field model presented in chapter 4 is used to inves­
tigate how the competition between the anisotropic nature of both the surface en­
ergy and the cubic elastic energy affects the growth morphology of precipitates. 
The analysis of the morphology considers the Gibbs-Thomson condition, modified 
for anisotropic elasticity and including surface energy anisotropy, coupled with the 
Mullins-Sekerka linear stability analysis of growing precipitates [60]. A scaling 
mechanism is derived for determining the transition between dominant growth di­
rections. 

Section 5.1 reports on simulations that illustrate how the material properties 
affect dendritic morphologies in solid state precipitates. In section 5.2 phase field 
simulations are used to elucidate the transition point between the dominant growth 
planes by consideration of both the Gibbs-Thomson modification to the interface 
composition due to elasticity and the linear stability analysis of growing interfaces. 
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5.1 Conditions Influencing the Structure of Precipi­
tates 

Three distinct controlling influences on the selection of a dominant morphology of 
precipitated dendrites are characterized. These controlling properties are the super­
saturation and the anisotropies in the surface energy and elastic tensor. The effect 
of each of these parameters are systematically tested by increasing the strength of 
the test parameter while holding the other parameters constant. 

In the following phase field simulations, the free parameter ,\ is set to a value 
of,\ = 3 and as required by the sharp interface phase field sharp-interface analysis, 
while the dimensionless diffusion coefficient is set to D = 0.6267 ,\, which makes 
f3 = 0 via Equation 1.22. The equilibrium composition is set to C~q = 0.1 and 
the partition coefficient used is k = 0.1. The elastic coefficients were converted to 
units of the model by the elastic modulating factor a = 6.005 · 10-9 ";

3 
and in these 

units the elastic coefficients are set to a value of C11 = 1011 and C12 = 729, where 
Cij = aCij· 

Precipitate structures are grown in a system with periodic boundaries, where the 
system size is set to 6400Wx6400W, W being the interface width. The precipitates 
grew to sizes of at most 2000W and the solution to the displacement field drops off 
as 1/ R. This justifies the claim that purely isolated precipitates are studied while 
using the periodic boundaries. The diffusion coefficients and elastic coefficients 
have no phase dependence. The grid spacing is set to dx = 0.4W. 

5.1.1 Elastic Anisotropy (/3) 

The elastic anisotropy emerges from the elastic tensor, where C11 , C12 and C44 = 
~(C11 - C12) + {3. The anisotropy of the tensor is varied by holding C11 , C12 
constant and varying C44 through changes in {3. Figure 5.1 (a-c) shows the effect of 
increasing the strength of the elastic anisotropy by increasing c44 while holding all 
other parameters constant (surface energy anisotropy E4 and average concentration 
C0 ). From left to right the values of f3 used are f3 = 25, 100, 400 respectively. 
As can be seen in this figure, small elastic anisotropy causes the surface energy to 
dominate and the dendrite grows in the [10] direction (Figure 5.1 (a) ). When the 
elastic anisotropy is increased to sufficient strength ( Figure 5.1 (c) ) the dendrite 
grows in the [11] direction. When the anisotropies effectively destructively interact 
the resultant structure leads to an almost isotropic growth morphology ( Figure 5.1 
(b)). 

5.1.2 Surface Energy Anisotropy (E4) 

The surface energy anisotropy is entered into the model using the simple form for 
4-fold surface energy r = ro(l - f4Cos( 48)) ( ie. A( n) function in the phase field 
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model Equation 1.17). The effect of surface energy anisotropy is controlled by 
varying E4 and holding both the super saturation (0 = 0.555 through C0 ) and the 
elastic anisotropy (/3 = 400) constant. Figure 5.1 (e-f) shows the effect of increas­
ing the strength of the surface anisotropy with these constant parameters. From left 
to right in Figure 5.1 the values of the E4 used are E4 = 0.01, 0.03, 0.05 respec­
tively. As with the effect shown in section 5.1.1 for an increasing (3, increasing the 
strength of E4 causes the morphology to transform from a preferential growth along 
the [ 11] direction ( Figure 5.1 (d) ) to that of the [ 1 0] direction ( Figure 5.1 (f) )with 
a transition region where the precipitate structure is isotropic ( Figure 5.1 (e) ) . 

5.1.3 Supersaturation(O) 

The supersaturation is varied by changing the initial alloy composition C0 • Fig­
ure 5.1 (g-i) shows the effect of decreasing the supersaturation while holding the 
strength of the surface anisotropy and elastic anisotropy constant. From left to right 
the values of the initial alloy composition used are Co = 0.04, 0.06, 0.08 respec­
tively. For large super saturations (Figure 5.1 (g)) the growth direction is domi­
nated along directions preferred by the surface energy, i.e. the [1 0] directions. As 
the supersaturation is decreased a transition from the [ 1 0] growth direction to the 
[11] direction is observed (Figure 5.1 (h) and (i) ). 

5.2 Characterization of the Morphological Transition 

This section provides a method to predict the transition point of the dominant pre­
cipitate growth direction. In section 5.1 three effects were shown to combine to 
create a transition between dominant growth directions: the anisotropy in the cap­
illarity, the anisotropy in the elastic fields and the supersaturation of the material, 
the latter of which is linked to the selected tip radii of the precipitates. The point 
at which this transition occurs is defined and measured by examining the envelope 
of the precipitate tips in R - () space. It is found that the amplitude of the envelope 
allows the critical surface energy anisotropy parameter( Ef) for a specified elastic 
anisotropy (/3) to be determined. With a measured relationship for Ef and f3 the ra­
dius needed to scale the transition curves is found by balancing the Gibbs-Thomson 
corrections for surface energy V s. elastic anisotropy. This radius is found to be 
proportional to the Mullins-Sekerka critical radius of instability (R0 ). Finally, with 
the Gibbs-Thomson condition and the Mullins-Sekerka critical radius, a condition 
relating Ef as a function of f3 and R0 at the transition is proposed. 

75 



PhD Thesis - Michael Greenwood McMaster - Materials Science and Engineering 

(a) Co= 0.04,;3 = 25 (b) Co= 0.04,$ = 100 (c) Co= 0.04,;3 = 400 
and E4 = 0.01 and E4 = 0.01 and E4 = 0.01 

(d) C0 = 0.05,$ = 400 (e) C0 = 0.05,$ = 400 (f) C0 = 0.05,$ = 400 
and E4 = 0.01 and E4 = 0.03 and E4 = 0.05 

(g) Co = 0.04,;') = 200 (h) Co = 0.06,$ = 200 
and E4 = 0.03 and E4 = 0.03 

(i) Co = 0.08,$ = 200 
and E4 = 0.03 

Figure 5.1: Morphologies of growth precipitates for variations in the elastic 
anisotropy (a-c), suiface energy anisotropy ( d-f) and in the supersaturation ( g-i). 
The composition field is plotted on the adaptive mesh, blue being low concentration 
and yellow is a higher concentration. The total system size is 6400W, plotted is an 
area of 2000W on one side. Co is the average concentration and E4 controls the 
suiface energy anisotropy. 

5.2.1 Defining the Transition Point Between Dominant Growth 
Directions 

The transition point that characterizes the controlling mechanism of growth mor­
phology is the point at which all competing anisotropies exactly cancel. Under this 
condition an isolated precipitate will grow (ideally) as a circle (a sphere in three 
dimensions) until the interface becomes unstable by the Mullins-Sekerka criteria. 
While in this case the interface will become unstable, the envelope around the par-
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tide will continue to grow as a spheroid. It is this envelope that allows the point of 
transition to be characterized. 
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Figure 5.2: R- e space of 4 precipitates with varied ,B values, E4 = 0.03 and super 
saturation = 0.666. The dashed lines illustrate the envelope of the precipitate, as 
the control values approach a transition point, the envelope amplitude goes to 0. 

The concept of the precipitate envelope is illustrated in Figure 5.2 where the 
interface for 4 precipitates with values of f3 = 100,200,300,400, E4 = 0.03 and 

fl = 0.666 in R - e space are plotted, where fl = (~~:)gfq. The dashed line 

shows the envelope surrounding the interface. As the magnitude of f3 approaches 
the transition point the amplitude of the envelope decreases, approaching zero. 

5.2.2 Measurement of the Critical Surface Anisotropy ( cf) 

The critical surface energy anisotropic coefficient, denoted cf, is the value of E4 at 
a given supersaturation and f3 which results in an envelope amplitude of zero. cf 
is interpolated from the amplitudes of the precipitate envelopes by varying E4 for 
given values of the supersaturation nand elastic anisotropy (3. 

The envelope amplitude is approximated by measuring the difference of the to­
tal growth distance from the center of the precipitate along the [I 0] direction to the 
growth distance along the [I I] direction. The transition point is the interpolated 
value for E4 such that these amplitudes approach zero. Seven different supersatura­
tions are run where E4 is varied between 0.005 and 0.05 and f3 is varied from 100 to 
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Figure 5.3: Interpolation of Ef by examination of the envelope amplitude (in units 
of Hl) for different values of (3. The alloy composition is Co = 0.06. Fits are used 
to inte1polate to the transition point where the amplitude of the envelope goes to 
zero. The negative amplitudes denote a phase shift as the direction of orientation 
switches from one growth direction to anothe1: 

400. The ratios are measured at arbitrary times, chosen in each case such that the 
precipitate is grown to a sufficient size as to have outgrown any initial transients. 

For each value of j3 at each alloy composition C0 , the envelope amplitude is 
plotted vs E4 • Figure 5.3 illustrates this for an alloy with an average composition 
of Co = 0.06, and the deviation from elastic isotropy is characterized for values 
of f3 = 100,200,300,400. For each value of (3, the data is fitted linearly and is 
interpolated to the transition line to extract the critical surface anisotropic value 
Ef(/3, D). A linear relationship between Ef and f3 is found for each of the selected 
supersaturations. These linear relationships are plotted in Figure 5.4 for the alloy 
compositions of Co = 0.04, 0.05, 0.06, 0.07. Figure 5.4 thus predicts that 

(5.1) 

where the fitting parameter Aco has values of A0.04 = 6.84 · 10-5 ,A0 .05 = 8.33 · 
10-5,A0.06 = 10.68 · 10-5 and A0.07 = 16.98 · 10-5 for the given supersaturations. 

5.2.3 Critical Tip Radii at the Transition Point 

The competing anisotropic effects cancel when all correction terms that are depen­
dent on the interface normal angle (8) in the interfacial equilibrium composition ( 
ctnt = c;q- ~Ccapillarity(1 + 15E4j(8))- ~Celastic(1- Eeh(B))) exactly cancel. 
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Figure 5.4: The relationship between Ef and f3 is extracted by fitting their plots. 
Shown here are the Ef vs f3 for 4 supersaturations, n = 0.666, n = 0.555, n = 
0.444, n = o.333. 

fj_Ccapillarity and fj_Cetastic are the isotropic corrections to interfacial equilibrium 
composition and E4 and Ee represent the strength of the surface energy and elastic 
energy anisotropies. Assuming a linear fourier expansion with a 4-fold symmetry 
in both f (B) and h( B) (ie. cos ( 4B)) the terms of the solute correction can be grouped 
by order of the fourier expansion. 

ctnt = c~q - ( fj_Ccapillarity + fj_Celastic) - ( Esur f - Eele) cos ( 4B) (5 .2) 

where Esur f = 15£4/j_Ccapillarityl'l: and Eele = Eefj_Celastic are the relative anisotropic 
strengths of the surface energy correction and the elastic energy correction respec­
tively. The factor of 15 in the capillarity term comes from the stiffness of the cap­
illarity, da(ii) = d0 (1 + 15t:4cos(4B)). The elastic anisotropy strength Ee is yet to 
be determined but is linked to the strength of the elastic anisotropy through f3. For 
an isotropic morphology to emerge the coefficient cos(B) term in Equation 5.2 is 
required to vanish, ie. 

Esurf- tele = 0 (5.3) 

In Equation 5.2 the capillary term (/j_Ccapillary) contains a curvature correction, 
while the elastic term (/j_Celastic) does not. When these terms cancel a curvature K 

is selected, which will be associated with a critical radius Rfrans' ie. Kc = 1/ Rfrans· 

From Equation 1.3 the capillarity correction is fj_Ccapillarity = (1 - k )d0C~q and 
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substituting to calculate fsurf results in a surface anisotropy strength of 

(5.4) 

The total elastic correction for cubic coefficients is defined by Equation 4.10 as 
~C . = l & = l Cu +C12 t:*2 ( 1 - Exx+Eyy) In the absence of elastic anisotropy elashc 2 1-k 4 1-k ~:* · 

the strain trace (Exx + Eyy) is zero as shown in Section 4.5. Therefore 

~c _ 1 Cn + C12 *2 
elastic - 4 1 _ k f (5.5) 

Eele is calculated by consideration of the anisotropy in the strain field as calculated 
in Section 4.5. Substituting Equation 4.19 for fxx + Eyy gives 

fxx + fyy Uamp ( ) ) 1- = 1- --cos 40 = 1- Eecos(4B 
£* £* 

(5.6) 

where Uamp is defined by Equation 4.20 and Ee = u::r. This results in Eele becom­
ing 

1 Cn + C12 j3c*2 
fele = ------- '-

8(1-k) Cn+f3 
(5.7) 

Substituting Equations 5.4 and 5.7 into Equation 5.3 and solving, the critical radius 
of curvature required to maintain isotropic conditions is given by, 

(5.8) 

A fit to a selected critical radii is attained by substituting the fitted equation for the 
critical surface anisotropy coefficient, t:f given by equation 5.1 and by choosing a 
reference point of j3 = 0. This results in a relationship for the magnitude of the 
j3 = 0 transition radius that depends on concentration through Aco in Equation 5.1 
given as, 

R _ 120(1- k) 2 (Cn)C~do A 
trans - (Cn + c12)E*2 Co 

(5.9) 

The next section will produce a method by which to predict this radius without the 
need for measured values of Aco· 

5.2.4 Linear Stability Calculation of the Transition Tip Radius 
(Rc) 

In the previous section a selected precipitate radius is derived based on the inter­
polated values for the critical surface energy anisotropy. However, this method re-
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quires a physical measurement of the relationship between Ef and f3 by measuring 
the value of Aco. A method by which to approximate the selected radius by theo­
retical consideration of the Mullins-Sekerka linear stability analysis on an isotropic 
particle is now shown. 

Mullins and Sekerka in 1963 [60, 53] predict a critical particle size R'k=2 = 
11 R*, where R* = ~, after which the particle interface becomes unstable. A 
particle at the transition point can be considered to be an isotropic particle in a su­
percooled matrix. The difference from the Mullins and Sekerka treatment is in the 
nature of the supersaturation. The supersaturation of the precipitate under elastic 
strain is modified by the elasticity such that the elastic supersaturation is redefined 
to be nel = (~~kfcb' where cb is the equilibrium interface composition with cor­
rections due to elasticity, equation 4.1 0. This supersaturation is used in the linear 
stability analysis to arrive at a minimum critical radius of, 

(5.1 0) 

A comparison of this instability radius with the fitted radius of equation 5.9 
shows excellent linear agreement as shown in figure 5.5. Equation 5.9 is calculated 

12 

11 •• 
10 .· 
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Figure 5.5: The fitted critical tip radius for isotropic growth, from equation 5.9, vs 
the onset Mullins-Sekerka wavelength for seven different supersaturations. 

such that C11 + /3 ----t Cu in Equation 5.8. The Rtrans dependence on /3 is rein­
troduced through its relationship to Ee by the term c1~+/3. The final result for the 
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critical selected radius as a function of {3 and Oel is 

44 d0 {3 
Rc = --(1 + -) 

5 Oel Cu 
(5.11) 

5.2.5 Calculation of the Critical Transition Point 

With a predicted value for the critical tip radius, determined by the supersaturation, 
the required measurement of the relationship between Et and {3 can be eliminated. 
The linear stability prediction of the critical radius, given by equation 5.11 is sub­
stituted back into the equation for the isotropic criteria for the selected radius, equa­
tion 5.8. The resultant equation is solved for the critical surface energy anisotropy 
pre-factor (Et) versus beta, given by the equation, 

(5.12) 

This equation describes the transition points as a function of supersaturation (0), 
elastic anisotropy ({3) and the anisotropy of the capillarity (E4). The transition lines 
for Oel = 0.606, 0.479, 0.353, 0.226 are plotted in figure 5.6. Precipitates grown 
above the transition line will grow in the 10 directions while growth for conditions 
below the line will grow along 11 directions. Some morphologies are overplotted 
above and below the transition line for 0 = 0.606 in figure 5.7 to further illustrate 
the transition points. 

Equation 5.9 is the main result of Chapters 4 and 5. It makes an explicit pre­
diction regarding the morphological selection of solid state precipitates growing in 
a host matrix with anisotropic surface energy and elastic coefficients. The parame­
ters in this equation can be measured experimentally in order to validate these phase 
field predictions. 
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Figure 5.6: The critical transition points from equation 5.12. Above the line the 
precipitates prefer to grow in directions that minimize the surface energy [ 10 }, and 
below the dzrections which minimize the elastic energy [ 11]. Transition lines for 
different nel are plotted. 
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Figure 5.7: The critical transition line from equation 5.12. Above the line the pre­
cipitates prefer to grow in directions that minimize the surface energy [ 10 ], and 
below the directions which minimize the elastic energy [ 11 ]. The curve is plotted 
vs beta for C0 = 0.04(Dez = 0.606). Overplotted are 4 simulations correspond-
ing to different values of E4 and {3. The plotted line represents the value of cf, the 
transition point whffre anisotropies cancel out. 
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Chapter 6 

Summary 

The goal of this thesis was to develop a phase field model for the transformation of 
solid state precipitates and to use this model to help elucidate the pattern formations 
that occur during solid state transformations. The phase field model developed in 
Chapter 3 illustrates a technique that allows for the simulation of alloys that have 
non-linear phase diagrams using a model the mathematics of which was originally 
developed strictly for dilute alloys by Karma and coworkers [ 49, 8]. Chapter 4 
further develops this model to incorporate an elastic free energy in order to study 
strain energy effects. These two advances allow for the simulation of solid state 
precipitates with elastic effects using the sharp interface analysis developed in the 
solidification model which enables artificial widening of the interface width without 
losing any of the pertinent physics. Therefore, much larger microstructures can be 
computed and studied without an increase in computational power. 

Also in this thesis a new numerical adaptive mesh algorithm is developed that 
was tailored specifically for a finite difference numerical scheme. This algorithm 
places densely packed grid points about regions of importance and sparsely packed 
grid points in regions of unimportance. This has two added benefits. First larger do­
main sizes can be simulated with the same amount computer memory and secondly 
the simulation time is greatly decreased. The choice of a finite difference adaptive 
mesh stemmed specifically due to finite differencing algorithms being computation­
ally faster than finite elements. In addition to this it is found that the elastic fields of 
growing precipitates could be relaxed using Gauss-Seidel iteration in strictly O(N) 
time. 

The adapted phase field model and newly developed numerics were used to 
study and predict a transition between dominant growth directions in the presence 
of competing anisotropies (In this case the surface energy [ 1 0] and elastic energy 
[11 ]). This competition is quantified in Chapter 5 by analysis of the Gibb-Thomson 
condition using a numerical solution to the anisotropic elastic field and a consider­
ation of the Mullins-Sekerka instability. 
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Appendix A 

Appendix - Numerical Techniques 

A.l Finite Differencing 

Many different techniques are used to discretize and solve partial differential equa­
tions. Discussed here is a simple technique of discretizing differential equations 
through which the continuum equations can be solved approximately on a discrete 
grid. Consider a mesh, as shown in Figure A.l (left). Each node in this mesh can be 
denoted by a unique node number Ni. 1 This is known as global referencing. How­
ever, every node can also be mapped onto a local grid, Figure A.l (right), where 
each local node can exist at the center of it's own minimesh and it's nodal neigh­
bours are assigned a local node number ni 2 based on it's orientation to the central 
node. 

~~Ill !----"" -.--: 
4 .no ---.6..1; ~X-

4~n3 

Figure A.l: Global and Local coordinates in a 2D mesh used in a finite difference 
solver. 

Partial Differential equations can be discretized by approximating the deriva­
tives with a Taylor expansion of a function fat a node about one of it's neighbours 
from the local minimesh. For example the node n0 can be expanded about its neigh-

1 i = 0, 2, .. , m- 1, where m is the total number of nodes in the global mesh 
2 'i = 0, 2, .. , q- 1, where q is the total number of nodes on the local mesh 
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bour n2 as 

df ~x2 d2 f I ~x3 d3 f I 
dx Llocat=O 2. dx Xtocat=O 3. dx Xtocat=O 

n2 =no + ~x- +-
1
---2 +-,---3 + .... (A.l) 

given that the grid spacing ~x =I no - n2 I· 
Approximation of the derivatives in this manner introduces some error in the 

calculation. For explicit differentiation some of this error can be minimized by in­
creasing the order over which the derivatives are calculated. The error is reduced 
in this manner by expanding over multiple grid points and combining their expan­
sions, for example taking the expansion about n 4 as well as n 2 and subtraction of 
the two equations gives a difference equation of 

df ~x3 d3 f 
n2- n4 = 2~x-l +2-,---31 + .... 

dx Xtocat=O 3. dx Xlocat=O 
(A.2) 

This particular difference form is known as central differencing. Equation A.2 
can be solved for the first order derivative, given as 

(A.3) 

and results in a discrete approximation of the first order derivative with an error of 
the order 0 ( ~x3 ). 

A.l.l Finite Difference Templates of Gradient Operators 

The technique above is used to develop the finite difference templates for the ex­
plicit solutions to the phase and chemical diffusion equations presented in chapters 
3 and 4, as well as the templates used to solve implicit solution to the static dis­
placement fields for elasticity by Gauss-Seidel iteration. In the equations below i 
and j are orthogonal cartesian coordinates, dx is the grid spacing and X is the field 
parameter being discretized. 

Templates for Explicit Solutions 

Derivatives to the phase and composition functions are expanded to include di­
agonal node neighbours in addition to the closest node neighbours to minimize 
anisotropy introduced by grid asymmetry. One such finite difference template was 
developed by examining the fourier transform of this discretization [30]. The Lapla-
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cian operator is given as 

2 1 1 
\7 X= '2(Xi,j+1 + Xi,j-1 + Xi+1,j + Xi-1,j) + 4(xi+1,j+1 

+Xi+1,J-1 + xi-1,J+1 + xi-1,J-1)- 3Xi,J)(dx
2
)-

1 
(A.4) 

and a single derivative is given by 

ax (xi+1,j+1 + xi+1,j-1) - (Xi-1,j+1 + xi-1,j-1) 
axi 4dx 

(A.5) 

Templates for Gauss-Seidel iteration of Elastic Fields 

The Gauss-Seidel iteration discussed in section A.3 uses a lower order template. 
Any grid errors that arise are minimized by additional relaxation steps. The Lapla­
cian operator is given as 

\72 X= (Xi,J+1 + Xi,j-1 + Xi+1,J + Xi-1,j) - 4Xi,j 

dx2 

and a single derivative is given by 

ax xi+1 - xi-1 
axi 2dx 

A.2 Cubic Elastic Free Energy Coefficients 

(A.6) 

(A.7) 

In the generalized elastic portion of the phase field free energy, as described by 
equation 4.8 fet = Z3 (g3(cjJ)) 3 + Z2 (93 (c/J))2 + Zt93(cP) + Zo, several terms Z3, 
Z2, Z1 and Z0 are introduced. These coeffiecients are dependent on the particular 
values of the elastic modulus tensor in either of the precipitate or matrix phases. 
Presented here are the explicit forms for these functions for two sided cubic modula 
and a hydrostatic elastic eigenstrain of the form, 

and the elastic modulus tensor is described as introduced in section 1.2 and its phase 
dependence in section 1.5. The zeroth order component(Z0) has no dependence on 

88 



PhD Thesis - Michael Greenwood McMaster - Materials Science and Engineering 

the phase at all and is calculated to be 

1 E* 2 
Zo = 4(C1n + C2n)(Exx- 2) 

1 E* 
+

4
(C1u + C2n)(Eyy- 2? 

1 E* E* 
+2(C112 + C212)(Exx- 2 )(Eyy- 2) 

+( C144 + C244)E;y (A.8) 

This pre-factor has no dependence of phase (nor concentration) and therefore it 
does not appear in either the phase mobility equation (equation 4.11) or the chem­
ical diffusion equation (Equation 4.12) since the growth kinetics are dependent on 
differences of energy. It does however appear in the static elasticity equation (Equa­
tion 4.13). 

The first order component is the most prominent term in the model equations 
and is calculated to be 

Z1 = ~(3(C1n + C112) + C2n + C212)t:*2 

-~(C1n + C112)(Exx + Eyy)t* 

1 2 2 
+4(C1u- C2n)(txx + Eyy) 

1 
+2 ( C112 - C212)ExxEyy 

+( C144 - C244)E;y (A.9) 

The second order coefficient to the elastic energy in terms of the phase is calcu­
lated to be 

Z2 = ~(3(C1n + C112)- (C2n + C212))t:*2 

+~(C2n + C212- C1n- C112)(Exx + Eyy)t* (A.IO) 

and in the presence of equal elastic coefficients this term becomes a constant, inde­
pendent of strain. 

The third order component is calculated to be 

(A.ll) 

and has no dependence on the dynamic strain field. In the presence of equal elastic 
coefficients this term vanishes completely. 
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A.3 Static Elastic Solution for the Displacement Fields 
by Gauss-Seidel Iteration 

Equation 1.9 is solved by Gauss-Seidel iteration [28]. This iterative technique 
discretizes the equations and solves for each local component of these equations. 
These iteration "templates" are coupled and are iterated until the solution converges 
to within a defined threshold. The templates for the 2-D displacement fields that sat­
isfy the elastic static equilibrium equation (Equation 1.9) are derived for two sided 
cubic elastic coeffients using the finite different templates of Equations A.6 and A.7 
and are derived to be, 

and 

U .. = ¢x(PoUxx + P2UYy + 2P3dx) + c/JyPl(Uxy + Uyx) (,+,.)' 
Xz,J 8(P4 + Ps) g 'f/ + 

4PsUx+y + 4P4Ux+x + P6UYxy 
8(P4 + Ps) 

U .. = ¢y(PoUYy + P2Uxx + 2P3dx) + ¢xPl(Uxy + Uyx) (,+,.)' 
Yz,J 8(P4 + Ps) g 'f/ + 

4PsUY+x + 4P4UY+y + P6Uxxy 
8(P4 + Ps) 

(A.I2) 

(A.l3) 

where Pi are functions of the phase and the elastic modulus tensor Cijkl and are 

defined in section A.3.1, g( ¢ )' = 8~~) and the subscripted terms of U and¢ are 
grid descritizations with respect to coordinates i and j as described in section A.3.2. 

A.3.1 Elastic Coefficient Pre-factors to the Discretized Displace­
ment Templates 

For cubic elastic coefficients with a hydrostatic lattice eigenstrain the pre-factors~ 
are calculated to be: 

Po= i(Clu- C2u) 
P1 = 1 ( Cl44 - C244) 
P2 = 2(Cl12- C212) 
P3 = tE;'L[(C2u + C212- Clu- Cl12)g(¢)- Clu- Cl12] 
P4 = 1(g(¢)(Clu- C2u) + Clu + C211 ) 

Ps = 1(g(¢)(Cl44- C244) + Cl44 + C244) 
P6 = 2(g(¢)(Cl44 + Cl12- C244- c212) + C244 + Cl44 + C212 + Cl12) 

where P0,P1 and P2 become 0 when the elastic coefficients are equal on either side 
of the interface. 
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A.3.2 Discretized Terms of Ui and ¢i 

Equations A.12 and A.13 are dependent on the discretized fields of ¢ and Ui. The 
fields ¢(x, y) and Ui(x, y) are discretized using equations A.6 and A.7. The resul­
tant discretized forms of the subscripted U and ¢ terms in equations A.12 and A.13 
are defined to be: 

cPx = cPi+1,j - cPi-1,j 

¢y = cPi,j+1 - ¢i,j-1 

Uyy = Uyi,J+1- Uyi,J-1 
Uyx = Uyi+1,J- Uyi-1,J 
U Xx = U Xi+1,j - U Xi-1,j 
U Xy = U Xi,j+1 - U Xi,j-1 
Ux+y = Uxi,J+1 + Uxi,j-1 
Ux+x = Uxi+1,j + Uxi-1,j 
U Y+y = U Yi,i+1 + U Yi,J-1 
Uy+x = Uyi+1,i + Uyi-1,J 
Uyxy = Uyi+1,J+1 + Uyi-1,J-1- Uyi-1,i+1 - Uyi+1,j-1 

U Xxy = U Xi+1,j+1 + U Xi-1,j-1 - U Xi-1,j+1 - U Xi+1,j-1 

A.3.3 Threshold in the Convergence of the Displacement Field 

The Gauss-Seidel templates in equations A.l2 and A.13 are iterated until a thresh­
old criteria is reached. The threshold to the displacement field is defined by the 
threshold criteria, 

(A.l4) 

where j is the time iteration. The iteration over the entire field is repeated until 
e < e' is satisfied everywhere, where e' is the threshold to which the displacement 
field is within a satisfied convergence. 

To approximate the error in the displacement field for this threshold criteria, the 
radial displacement is considered for a circular inclusion. The total displacement 
inside a circular precipitate can be approximated as~ ~E*r and outside as~ ~a; E* 

where a is the particle radius. The displacement change e is calculated everywhere 
in the domain and if it fails to meet the threshold anywhere then the entirety of the 
domain undergoes further convergence of the displacement field. If the displace­
ment field is considered at the center of a circular precipitate and infinitely far away 
from the precipitate, assuming no translational displacement, the total displacement 
at these positions is zero. This results in no error in the solution at these positions. 
The position of greatest error is therefore surmised to be the position where the 
largest change in displacement occurs as the precipitate grows. This position cor­
responds to the precipitate interface. At the interface the displacement is ~ ~E*a 
resulting in an error correction of ( ~i ) which is ~ 0~1 % and ~ 0~1 % for values of 
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e' = 0.0001 and 0.00001 and are considered to be worst case values for the error in 
the displacement field. 

A.3.4 Displacement Field Dependency on the Interface Width 
Wo 

An isotropic circular precipitate with a lattice eigenstrain oft:* = 0.005 is placed in 
a parent phase with identical elastic coefficients of Cn = 1011 and cl2 = 729. The 

0.025 

0.02 

0.015 
U, 

0.01 

0.005 

0 
0 

--interface 

5 10 
r 

15 

• w = 0.5 

' w = 1.0 
X w = 2.0 

20 

~~u~e A.2: Radial displacement field Ur for a precipitate with interface widths 
H a - 0.5, 1.0, 2.0. 

strain field is solved by Gauss-Seidel iteration with a threshold value of e' = 0.0001. 
Interface widths are chosen by setting Wo = 0.5, 1.0, 2.0 (in units of the capillary 
length) and the strain field is solved for each. Figure A.2 displays the resultant 
radial displacement field Ur = JU]; + u; for these three interface widths. There 
are two points of note. Firstly, outside of the interface width each of the resultant 
displacement fields have excellent agreement. And secondly is the linear behaviour 
of the displacement field inside the precipitate and a ~ behaviour outside of the 
precipiate, as expected. 
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Appendix B 

Appendix - Phase Field Model 
Derivation with Elasticity 

Derived here are the chemical and phase field mobility equations presented in chap­
ter 4. These two equations are derived from the following free energy: 

2 c/J2 ¢4 
G(\lcjJ, c/J, C, Eij) = IWo \l¢1 + f(T) + H( 2- 4) 

RT 
-S(cjJ)(T- Tm) +- (ClnC- C)+ E(¢)C +fez(¢) (B.l) 

ZJ 

All of the terms in this equation are as defined previously in chapter 4 and 
H represents the nucleation barrier of the transformation. The phase dependent 
entropy is S(¢) = ~(Sa + sb - L92(¢)) and the phase dependent enthalpy of 
mixing is E(¢) = ~(Ea + Eb + (Ea- Eb)9I(¢)). 91 and 92 are interpolation functions 
through the diffuse interface with the limits of 9i ( ¢ = ± 1) = ± 1 and the derivative 
limit of 9i(¢ = ±1) = 0. 

The standard dynamical form for the phase mobility equation is 

8G(\l¢, ¢, c, Eij) 

8¢ 
(B.2) 

where K¢ is related to the interface kinetics time. The chemical diffusion equation 
is given by 

(B.3) 

To manipulate these equations to the forms presented in chapter 4 it is instruc­
tive to examine the equilibrium properties of G and develop a relationship for the 
chemical potential from this free energy. Namely, 

(B.4) 
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This gives an equilibrium composition inside the interface as 

(B.5) 

Consider a static strain at some steady state, the composition at the interface is 
defined by the interfacial correction to the composition in equation 4.10 as 

(B.6) 

Dividing these two relations gives a relationship between the sharp interface com­
position and the equilibrium composition in a diffuse interface as 

(B.7) 

Under certain choices of the interpolation functions 91 and 92, the phase field 
equation is in equilibrium and in 1-D the mobility equation collapses to 

8¢ = w2d2¢- H(¢3- 4>) = o 
at 0 dx2 

(B.8) 

The solution to this equation is a hyperbolic tangent of the form -tanh( Aw ), 
where W = ~. The relationship between 91 and 92 is derived by substitution 
of the energy (Equation B.1) into the standard dynamical equation for the phase 
(Equation B.2). The double well (H(¢3

- ¢))and the gradient energy (WJ~) 
terms define the hyperbolic tangent form for the phase field. All other terms must 
exactly cancel to produce this steady state profile. These terms are set to zero and 
produce the following relationship of the two interpolation functions, 

(B.9) 

By integrating the relationship in equation B.9 with respect to¢ and using Equa­
tion B.7. A relationship between 91 and 92 can be derived to later eliminate 91 in 
favour of 92 . This relationship results in the equation 

91 = --ln - ( k + 1 - ( 1 - k) 92 - --( 1 - 9 ) - 1 2 (1 1 aZ2 2 ) 

ln(k) 2 2 cb 2 (B.lO) 

The function Z2, which depends on the strain fields, is slowly varying across the 
interface and adjusts instantaneously compared to 4> and the concentration. As such 
it can be treated as decoupled from the phase field and concentration field in the 
manipulations below. Of course, in the actual dynamics its form is adjusted instan­
taneously from the strain relation equations 4.13. 

These relationships are now used to form the phase-field equations in Chapter 
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4. 

B.l Phase Field Equation 

The phase field equation described in chapter 4 is derived by following precisely 
analogous techniques in the derivation of the phase field model in reference [8]. By 
substitution of the free energy in equation B .1, eliminating 91 with equation B .1 0 
and the use of equation B.7 the functional derivative of the free energy with respect 
to ¢ is rewritten as 

(B.ll) 

where Le = L + .;;:,(Z1 + Z39§) and /31 = 2c:c~:._k)" The underlined portion of 

this equation is found to be ~~g~~~~ = 1 by matching to the phase diagram and 

using the partition coefficient k = ~ = exp (- ~~). The functional derivative is 
s 

rewritten as 

oG 2 2 3 1 RT ) u) I 
o¢ = -Wo V' ¢ + H(¢ - ¢)- 2Cb(1- k)--;-(1- 2{3192 (1- e 92 (B.12) 

where eu = ~ = ~ ( k + 1- (1- k)g2 + ~(1- 9~)) -
1

. Substituting Cb from 

equation 4.10 and defining .\. = ~ RT(1 ~';}
2

C't/, the functional derivative becomes 

oG 2 2 ( 3 ) ( Hj_ ) ( )( u) 1 o¢ = - Wo V' ¢ + H ¢ - ¢ - 1 _ k - Z1 1 - 2/3192 1 - e 92 (B.l3) 

Dividing this equation through by Hand substituting into the standard dynami­
cal form for the phase field equation (equation B .2) the phase field mobility equation 
becomes, 

a¢ 2 2 3 ( A 15 z1) u 2!i9 r- = W V' ¢- (¢ - ¢)- ---- (1- 2f3192)(e - 1)(1- ¢ \P.14) at 1-k sH 

where r = H~.p is related to the kinetic attachment time, the interface width is W = 

Wo/ v'H, the constant A = 1
8
5 j_, 92 is the interpolation function and a convenient 

form is identical to the form in equation 1.18. 
Defining a dimensionless undercooling as U = e;~~ and some rearrangement, 
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the phase field equation can be reformulated to a form similar to the pure model 
equation (Equation 1.9). This equation is 

(B.l5) 

h B __ 1 (( aZ1 _ 1) aZ2 (-+-) _ ~) w ere - 2(1-k) (I-k)cg cb g '+' cg · 

B.2 Chemical Diffusion 

The chemical diffusion equation described in chapter 4 is derived by calculating the 
chemical potential with respect to the free energy in equation B.l. This equation is, 

ac -- --8t = V · (DqCVp,)) (B.16) 

where D is the rate of diffusion in the parent phase and q( ¢) is a function that 
interpolates the diffusion into the precipitate phase (q( ¢) = 1 for equal diffusion 
rates). The diffusion is reformulated into the dimensionless undercooling field U = 
e;_=-k1• This is done by reformulating the composition field by the equation 

A A [el-L- 1 ] A C = -el-L= - --(1- k) + 1 = [U(1- k) + 1]-
2 2 1-k 2 

(B.17) 

where A= Cb(k + 1- (1- k)g2 - ~(1- g§)). First the left hand side of equation 
B .16 is reformed in terms of U and then the right hand side will be reformed. 

The left hand side of equation B.l6 is modified by substituting equation B.l7 
and rearranging, this forms the left hand side into 

ac 1 au 1 
- = -A(1- k)- + -[U(1- k) + 1] · at 2 at 2 

( 
acb o:Z2 8g2) (k + 1- (1- k)g2 )-- Cb(1- k + -g2)-at cb at (B.18) 

The right hand side of equation B.l6 is modified by substituting p, = ln(U(1-
k) + 1) and this results in the equation 

~ ....... ~ A __, 
V · (Dq(cj;)CVp,)) = V · (Dq(¢)2 (1- k)VU) (B.l9) 

By combining the left (Equation B.18) and right (Equation B.19), the chemical 
diffusion equation is reformulated in terms of the dimensionless undercooling U. 
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The equation is 

au _, _, 
\J!Bt = V' · (Dij(¢)CbV'U) 

( 
aZ2 ) 8¢ 

+(1 + (1- k)U)Cb 1 + Cb(1 _ k) at 

-(1+(1-k)U) --¢ -(
k + 1 ) acb 
1- k at (B.20) 

where \J! = Cb(k + 1- (1- k)¢- ~~~(1- ¢2
)). 
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Terminology 

Array A computer data structure in which information is 26 
stored in line in a contiguous block of computer 
memory. 

Element, Child An element that is a subdomain of another ele- 28 
ment. 

Element, Parent An element that has split to form 4 children. 28 
Element A branching point in a tree structure with refer- 28 

ences to the assigned nodes. 
Mode A mode is an integer that sets the frequency, with 11 

higher modes representing larger frequencies. 
Neighbour A structure of the same refinement level that 28 

shares a second common data structure, such as 
an element sharing a node. 

Nodal Count Total number of grid nodes used to describe a do- 26 
main. 

Node, Boundary A grid node which lies on a user defined boundary. 30 
Node, Field A grid node existing in the bulk of the domain on 30 

which the model equations are applied. 
Node, Ghost A grid node that is required to provide a uni- 30 

form mini-mesh for a field node, the field values 
at these nodes are interpolated from nearby field 
nodes. 

Pointer A structure containing a computer memory ad- 26 
dress. 

Pop The act of removing an object from a data struc- 33 
ture, such as a stack. 

Push The act of placing an object into a data structure. 33 
Root The highest level of refinement in a tree, or an el- 31 

ement representing the entire domain area that a 
tree structure describes. 
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Stack A data structure that has a first in last out organi- 33 
zation. 

Tree Data Structure A tree structure is a way of representing a hier- 26 
archical breakdown of a domain. A tree is com­
posed of a root domain and from the root the do­
main is broken into sub domains, each of which 
can be viewed as a sub tree. 
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