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SCOPE AND CONTENTS:

A flexible, modular program system for the synthesis of optimal
energy exchange networks (OPENS) is developed. It is capable of generating
realistic process equipment networks to satisfy both stream temperature and
pressure specifications. The system contains elements of heuristic decision
making and employs a 'branch and bound" combinatorial technique for solving the
discrete prcblem of optimizing network configuration. An (energy) price-based
decomposition algorithm is developed for sub-process integration; this is
achieved by determination of the optimal (stream) interconnections between such
sub-processes.

The system is applied to the design of energy recovery networks for
two quite dissimilar ethylene recovery schemes; the high and low préssure
processcs. Process interactions between the main processing sequence and the
associated refrigeration facility are used to explore sub-process integration.

Some conclusions are made regarding the effectiveness of the program
system for the example processes presented and recommendations are made for

improvement and extensions.
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PART I

THEORY AND PROGRAM SYSTEM



CHAPTER 1

INTRODUCTION

1.1 CGeneral

.

In recent years chemical process design has become increasingly
automated. The desion of many equipment units is now computerized and modular
simulation systems are widely used for generalized mass and heat balancing
and equirrent sizing and costing for large process networks. Later advances
have produced capabilities for automated process optimization and simulation
of process dynamics. These simulation systems are in general capable only of
analyzing a user-supplied flowsheet, leaving the creative aspects involved in
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design engineer. However there is a growine interest in developing techniques
for process synthesis, which is concerned with the analysis, ordering and
automation of the logic reauired for process design decision making. Synthesis
covers a broad and largely unexplored range from the evolution of a basic
processing concept to the actual selection and arrangement of process equipment.
This study is concerned with the latter stages of the synthesis
procedure. It reports on the development and application of OPENS (Optimal
Process Equipment Network Synthesizer), a modularly oriented program system for
the synthesis of optimal energy exchange networks. It combines recently developed

theoretical concepts with practical design considerations to form a flexible

system capable of generating very realistic, useful process designs.



1.2 Backeround

There are three general areas of the literature that form a back-
ground to this study. They are simulation, synthesis and optimization, and

this section covers the relevant published work in each of these fields.

1.2.1. Simulation

M

The modular approach to steady state chemical process simulation
is now widely accepted. The basic concept is that of transforming the con-
ventional process flowsheet into an information flow diagram in which process
equipment are represented by closely corresponding computation modules.
Computation of any process proceeds by sequential calculation of the individual
module routines, a scheme which may need to be repeated if recvcles are present.
Manipulation of strewn, equlppent and other necessary itfontation is handied by
the simulation executive. The modular approach has the distinct advantages of
this close and easily understood correspondence between process flowsheet and
information flow diagram and a ready facility for altering process configurations.
Further, within the modular approach, any number of equipment units of the same
type may be represented by a single module with different parameter sets. An

(2)

equation oriented approach to simulation can also be used and such systems
which are based on equation structure rather than plant structure may be
canputationally more efficient. HHowever theoretical difficulties in solving
large sets of generally non-linear equations and lack of convenience when
conpared with modular systems have prevented wide use of such an approach.
Most modular executives described in the literature, e.¢. PACER(l),
(4)

GFMCS(JE CHESSY '/ and FLOWTRAN(S), employ the same fundamental information

handling algorithm, They differ only in their degrees of sophistication, sizes



of equipment subroutine libraries, etc. The systems are well suited for
simulation of process performance as well as for equipmcht sizing and cost-

ing and have been used in plant improvaﬁent and optimization. However when

they are cxamined from a synthesis viewpoint it is seen that they have
virtually no creative capability. They are limited to user-supplied flowsheets
and for the improvement of plant configuration or particularly for the evolution
of a new plant configuration the approach is inefficient. Improvement must be
gained by what is largely a trial and error process of successive evaluation

of process configurations and this can in no way be guarantced to arrive at

the best attainable configuration. An example of design by this method is

(6)

reported by Batstone and Prince in planning steam systems for sugar refineries.

Especially for design purposes, the development of a capability for process
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next logical stage in the evolution of the modular systems approach to process

design,

1.2.2 Synthesis

The sequence of decision making steps reauired for the complete
synthesis of any chemical process has been detailed by Siirola and Rudd(7).
They describe twelve steps alternating between synthesis and analysis, which
lead from a given chemical reaction path through to the evolution of the final
process flowshect. Nine of these steps are implemented by their AIDES
(Adaptive Initial DEsien Synthesizer) program which combines the computer
capacity for systematic apalysis with an intuitive capability provided through

program interaction with the design engineer. AIDES is capable of proceeding



through to the identification of the various processing tasks which together
determinc a basic processing scheme. The present study is mainly concerned
with proceeding bevond this point to the implementation of the final synthesis
steps, in particular to the 'Task Integration'" and "Final Fvaluation' stages.
These involve the actual selection and arrangement of the processing equipment
to produce an optimal process flowsheet.

The selection and arrangement of equipment is essentially a discrete,
combinatorial problem. Tt involves a choice between a very large but finite
nunber of possible configurations which satisfy the specified processing
objectives. It is necessary to select the configuration which meets some
optimality criterion while at the same time being hoth feasible and operable.

Several recent approaches to optimél synthesis have dealt with the

heat evehanoer netwnrk prrﬂ\'lnm whirh 1¢ hriefliv ctatad ac fal
ger netwoy rohiem wnich 18 'n 1Y stated as 104

b

ows, Given 2
munber of hot and cold strears with given inlet conditions and outlet tempera-
ture specifications, construct the heat exchanger network which meets these
requirements at minimum cost. To date studies have concerned only streams
which have constant specific heats and transfer only sensible heat. Three such
studies are described below,
Kessler and Parker(s) used a modified integer programming formulaticn
(1 representine exchange between two streams, 0 representing no exchange)
in which stroaﬁ heat loads were divided into heat "elements'' of finite size
in order to linearize the network cost objective function. Satisfactory results
were obtained for problems with up to 6 streams with a total of 28 elcments.

However the coptimal solution must in general be dependent on element size and

in practice the mmber of elements necessary te approach continuity in heat



loads and thus ronove this dependence may well make problems prohibitively
large. Further, the strict mathematical formulation does not readily pemmit
the flcﬁihility of later approaches.

Masso and Rudd(g) introduced "HEURISTICS'" to the problem. These
heuristics are ofherwise known as decision rules or rules of thumb. They are
empirical rules embodyving perhaps intuition or experience which are useful
for problen decision making but are unproved or incapable of being proved.
There may be some confusicn regarding the association of the term heuristic
with a learning process. There is in fact such a learning element in Masso's
work but further use of the term heuristic in this study does not necessarily
imply any such association.

In Masso's approach the network is constructed exchanger by exchanger,
W stream matches al each stage by using a set of heuristics. An
example of such an heuristic is to select from those available that match which
has minimum cost, Weighting functions were associated with each heuristic at
cach stage to build up experience on heuristic selection. This provides the
program with a learning capability whereby it may move towards an optimal
solution. The method has the advantages of simplicity and flexibility with the
opportunity to incorporate useful empirical design rules within the heuristic
set. However this dependence on the heuristic set used precludes any cuarantee
of optimality. The convergence rate of the iterative learning process is also
dependent on the heuristics chosen and Masso has been unable to show that heuristic
experience can be uscfully transferred from one problem to another.

A more promising approach, since it does guarantee optimality, is the
"branch and bound' method of Lee et al.(lg). It begins by generating all

rossible combinations of exchange to create a very large combinatorial problem.



The extraction of the optimal configuration then proceeds by branch and
bound which is a very general technioue from the field of operations research.
It decomposes the original combinatorial set into (branches to) sets of much
smaller and thus more easily solved sub (bounding) problems. With its guarantee
of optimality, mathematical simplicity and generality the techniaue is a very
attractive one. Branch and bound is in fact the optimizing technicue to be
ﬁscd in this study and a more detailed description is given in section 2.1.
Another approach to svnthesis is the "evolutionary' one developed by
King et al(]]) in their studies of separation processes. The evolutionary
approach makes extensive use of heuristics. Tt starts with a basic user-
supplied process flowsheet. This is then improved during an iterative sequence
in which sets of heuristics are used both to isolate a process component to be
improved and to suggest an appropriate improvement. The approach probably
more closely follows the human desigrer's decision making process than do any
of those above. Tt is a very practical one which allows the incorporation of
a maximum amount of prior knowledge and experience but the usualrheuristic-
dependent limitations apply. The authors describe applications to an ethylene
plant demethanizer column and a methane liquefaction process. The heuristic
logic is automated only in the latter. The approach has been extended to the
more gencral aspects of separation process synthesis in a very recent paper by

(12)

Thampson and King

1.2.3 Optimization

The sizes of large system optimization problems can still become over-

whelming even if efficient solution algorithms are employed. In such cases it



may still be possible to solve the problem by decomposition methods. These
entail making use of the process structure to decompose it into a set of sub-
processes which give rise to smaller, more readily soluble sub-problems.

(13)

La@don as described such a methed, for continuous process
optimization proh]cms, in which process decomposition is achieved by means of
the assigmient of transfer 'prices' to flows between sub-processes. Prices are
shown to be gencralized Lagrange Multipliers. Sub-processes are then optimized
with sub-process demands and productions free to float as.additional decision
variables, i.e., each sub-problem must decide on the quantities of inputs to
be "bought' and cutputs ''sold' at the assigred transfer prices. Such provisions
render the sub-process problems independent of the remainder of the process
structure. The optimization algorithm then is a two level one with independent
solution of the sub-probiems at the Iower level, while at the uprer level vrices
are adjusted to reduce excess demands or supplies for flows connecting sub-
processes. The overall optimum is reached when all such excesses have been
reduced to zero. Overall convergence is not assured and may be slow particularly
vhen there is strong physical sub-process iteraction. A further disadvantage
is that the dimensional improvement (the reduction in number of problem decision
variables) achieved through decemposition may be partially lost due to the
additional decision variables introduced into each sub-problem. Process
applications have been reported by Brosilow and Nunez(ld) and Gembicki(]s) and
the latter has incorporated the algorithm into a modular process optimization
system.

The prosent study is however concerned with discrete optimization
problems. 1vcrott 16) has shown that the generalized lLagrange Multiplier
formulation for constrained optimization makes ne restriction on the nature

of the functions involved. Thus the approach is equally valid when the decision



variable set and the objective and constraint functions are discrete. He
shows that the method is especially useful for resource allocation problems
wvhere the resources can be committed to a number of independent areas (cells)
and the overall payoff is merely the sum of the payoffs from each cell.

This cell problem is in fact of the type considered by Lasdon. Fverett

describes an application to such a non-linear, integer allocation problem.

1.3 Synthesis - Study Philosophy and Objectives

This section is concerred with placing the present study within
the broad general area of process synthesis and with defining the study

objectives.

1.8.1 Ctircy Phia Tncnnhy
st en.  sAakeay TetdArC oty Mg

(7

Of all the stages in process synthesis described by Siirola and Rudd
those of most coﬁcern to the practising design engineer are probably the
final steps which result in the evolution of the process flowsheet. Frequently
a basic processing concept will alrcady be available to the engineer, whethe
it is from an existing process which is to be modified or from basic research
or pilot plant studies for a new process. This concept may perhaps take the
form of a reactor scheme or sequence. of separation steps or both. The
synthesis steps required to transform such a basic concept into a complete,
operable process are in Siirola and Rudd's terminology, Task Identification,
Task Integration and Final Fvaluation. Tasks may take the form of requirements
for stream temperaturc,pressure or phase changes, for component separations or
for stream mixing or splitting. It is for the satisfaction of these require-

ments that equipment networks must be synthesized. The conplexity of such



networks will depend primarily on two factors. The first_is the range of
resources available to perform the tasks and the second is the degree to

which it may be possible or required to integrate tasks by using some tasks

to drive their inverses, e.g¢., a heating task driving a cooling task. Special
regard must be civen to problems of process feasibility, control and start-up,
especially as the degree of process integraticn increases. The usual economic
criteria for the worth of a design take no account of whether or not a
process is practically operable.

The present study is concerned in particular with the complex
probiems of Task Integration. A meore specific objective is to create a capability
for automated process f]owshce§ generation within the framework of the modular
approach which has been found so suitable fof rrocess evaluation or simulation.
Such gimmlation cystems are a very nseful starting point for develonment and
provide useful guidance as to data structures and equipment representation.
Chemical processes represent a great diversity in processing concepts and
equipment functions embodied in them. For this reason it is not considered
practicable at this ecarly stage in the development of process synthesis techniques
to attempt to deal with completely ceneral process concepts. This is especially
true if a system is to be capable of the depth and detail necessary for the
creation of very realistic process designs.

MoreAspcciFicully this study deals with synthesis of energy exchange
systems which involve mainly stream temperaturc and pressure requirements. The
important requirements involved in specics transformation (reaction) and
separation are more often embodied in the initial synthesis stages, i.e., the:
invention of the basic process concept which concerns the selection of the

major equirment units. In this context energy exchange networks can be regarded
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as supporting equipment networks which satisfy processing needs external to
the major equipment units. Nonetheless the efficiency of the supporting
nctwork‘in recovering process energy is often a vital factor in the overall
process econonics, and it may require a very high degree of process inter-
action and cunplfxity of ecaquipment interconnections. FEnergy exchange net-
works can thus provide a very useful area for development and application of

synthesis technicues.

1.3.2 Study Obhjectives

The svstem to be developed in this study is to proceed through
the following distinct three stages of synthesis.

1. Analysis of a basic processing scheme to identify a set of
streans with unsatisfied temperature and pressure demands.

2. Generation of all possible eauipment networks which
satisfy these demands.

3. Ixtraction of the optimal network.

The system is to be built around the branch and bound combinatorial
optimization technique. The reasons for its choice, as outlined in section
1.2.2, are mainly its guarantee of optimality, mathematical simplicity and
generality and freedom from any true iteration scheme. It is most important
in the broad area of optimal synthesis that the solution techniques themseclves
impose as few constraints as possible on the generality of solutions which
may be obtained. Branch and bound is currently felt to be the most flexible
in this regard. The incorporation of heuristic decision making into the
branch and bound structure is very easy and extensive use will be made of it.

This inclusion of heuristics may destroy the guarantee of optimality. However
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the heuristic capability to incorporate realistic and otherwise unusable
design experience into the logical synthesis framework is a valuable, almost
essential one in generation of reélistic designs. In practical processes the
concept of strict mathematical optimality is in any case difficult to apply

as important additional factors such as controlability are much more difficult
to rate than are the usual economic‘considcrations.

A discrete, price-oriented, pfocess decomposition algorithm is also
to be included in the system. It is capable of achieving substantial reducticns
in sizes of discrete optimization problems by decomposition of the process into
a mumber of smaller independent sub-process problems. The pricing structure
imposed on flows between sub-processes is to be used to determine optimal
interconnections between sub-processes. The algorithm can, conversely, be
used for intecration of a mmber of independent precessing units which may
function more efficiently as a single process. The decomposition techniaque
can greatly extehd the size of process which can be handled by the system.

It should be noted that in general this study is not concerned with
equipment parameter setting. This falls into the area of continuous optimizaticn,
techniques for which are already well developed.

The above techniques are to be demonstrated by application to the
design of ethylene recovery plants, commercially very important processes, in

wvhich efficient energy recovery is vital to the overall process economics.



(HAPTER 2

THEORY

There are two major arcas of optimization theory which require
further description and/or develorment for the present study. They are branch
and bound and process decanposition, covered respectively in the following

two scctions.

2.1 Branch and Bound

(10)

This section reviews the work of Jee et al. on the branch and

bound optimization technique.
i} Gengral

The branch and bound mcthod is one of the most general approaches
to the solution of constrained optimization problems. Its mathematical
foundation can be simply expressed in terms of a bounding and an optimality
condition, as follows. Start with an optimization (maximization) problem, A,
which is excessively difficult to solve. The problem may be able to be replaced
by branching to a problem or set of problems, B, which is related to but is
much more easily solved than A. To be useful B must satisfy the following
bounding condition. If the optimal solution to A were available and applied
to B, that design must be feasible for B (i.e., must satisfy 511 technical
constraints), but not necessarily optimal for B. Then if it also exhibits an
cqual or greater objective function value for B than for A, B is a valid

(upper )} bound for A. This bounding condition is expressed in (1).

12
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Op(Dp) 2 040y Y (1

where O(D) is the objective function to be maximized for design problem D.
Note that (1) also implies that everv feasible solution for A is
also feasible for B.
Now if the optimal solution for problem B is found and is feasible
for A and gives caual values of the objective function when applied to both A
and B, then it is also the optimal solution to the original problem, A. This

optimality condition is expressed in (2).
Op (D) = O, (D) (2)

Thus (1) and (4) guarantee that Ny 1s the optimal solution TO probiem
A, and a very difficult problem has been solved through the solution of a much
casier alternative problem.

The only difficulty in the application of the method is that of
inventing appropriate bounding problems for particular situations - the basic
strategy provides no guidance as to their selection, merely conditions which

they must satisfy.

ii) hpplicatién to lieat I'xchange Networks

Lee's stratery in applying branch and bound to the synthesis of
optimal heat exchanger networks is described as follows.

Consider the problem of designing an optimal heat exchange network
to satisfy temperature specifications for m given streams. These streams

are conveniently classified as "hot" (to be ccooled) or '"cold" (to be heated).
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They arc to be series processed, contacting each with a sequence of other
process and/or service streams until specifications are met.

" Branch and bound takes a combinatorial approach to the problem. A
useful bounding problem is first created by temporarily relaxing the network
FEASIBILITY criterion. For a network to be feasible it is merely required
that no stream be used more than once. Relaxing this criterion and thus
allowing nultiple stream use oreatly simplifies the problem since it leaves the
user free to formulate all possible STREAM MATCHES (matching of hot/cold stream
pairs for heat exchange) without regard to the feasibility of any network created
through any combination of these matches. Starting from the m primary or
original streams, stream matching for exchange is becun. For each match the
extent of exchange is fixed, i.e., it will proceed either until one stream is
completely satisfied or until a certain minimum approach temperature is reached.
Thus most matches produce residual (partially processed) streams which are then
free to match with any other suital:le streams. The matching process is continued
until therc are no further unsatisfied residuals. Stream matching information
is used to build up sets of STREAM PPOCESSING PATHS (scauences of matches/
exchangers), one set for cach primary stream. Costs are summed for all such
conplete processing paths, cach of which represents one possihle complete
processing sequence for the primary stream in cuestion. Note that it must be
required that cach path itself must be feasible ( involve no multiple stream
use); however any combination of paths, one per primary stream, which together
form a possible network, may not nccessarily be feasible. -

For the m primary streams, if there are for each ny (i = 1,m) possible
processing paths pij (i =1, ni), th¢n the mmber of possible networks that

can be formed through combination of these paths is
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N = ]1' ny (3

Although the majority of such networks may be infeasible, the task
of merely testing the N networks for feasibility may be prohibitively large.
This situation can be greatly improved by further implementing the branching
strategy as follows.

- Now branch to a set of bounding problems, each of which is defined
to contain a certain specified stream match. One further problem, which
excludes all such matches in the set, is added. This produces a set of
problems which mutually bound or completely contain at least all feasible net-
works in the original set. By applyinc the network feasibility criterion to
the problem at this stage (i.e., excluding all matches which require multiple
use of any streams involved in specific bounding problerm matches) a great
nunber of infeasible networks can be immediately and efficiently eliminated.
This efficiency is due to a "magnification' effect described as follows.

Each bounding problem must contain the specified stream match on
which it is based. This allows elimination of any other matches which involve
either of the streams in the specified match. The rejection ¢of cach such match
may lead to elimination of a nurber of paths which contain the rejected match.
The effect is further magnified since the rejection of each such path may
lead to climination of a still larger number of path combinations (networks)
which contain the rejected path. )

Thus the sizes of each of the bounding problems can be considerably
reduced to the point where the bounding problem set is jointly a much smaller

problem than the original, N. Further levels of branching can be made from
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cach current bounding problem. This should proceed until the sizes of the
problems are sufficiently small. Then they can be solved directly by sorting
the network costs for each into increasing order and moving down this cost list
until a feasible network is found. The minimm of all of these final level
problem solutions is the overall optimum. The general branching strategy is
shown in Figure 1 in which each node is associated with a specific stream match.
Exarmple -

" For exanmple, consider the 4 stream problem (streams 1, 2 hot, 3, 4
cold) described by Lee ct al.(]n). The stream matching process produces a
total of 34 (10 + 5 + 7 + 12) primary stream processing paths which combine
to produce a total of 4200 (10 x 5 x 7 x 12) possible networks. In the process
30 residual streams are created. The first level of branching problems is
hased solely on nrimary/nrimary matches excent for the additionai problem
in which all streams are satisfied by services. The branching structure is
shown in Figure 2, which also gives the sizes of the individual branching
problems. A considerable reduction from 4200 is already evident and after a
further level of branching the maximm individual prcoblem size is reduced to
8, with a2 total of 55, at which étage problems are very readily solved by hand.

As an example of the way in which the magnification’effect described

ahovc»lcnds to this efficient reduction in problem size consider 1/4 suh-pro%lcw
shovn in Figure 2. The reauirement that the 1/4 match rust be included leads
to irmediate climination of 8 matches which are incompatible with it. Elimina-
tion of all paths containing any one of these matches removes 24 paths, leaving
a total of 10 paths (1 + 2 + 4 + 3) out of the oéiginn] 34, These remaining
paths combine to give a total problem size of only 24 (1 x 2 x 4 x 3) compared

with the original 4200.
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Further refinements -

Further refinements to the basic strategy can be introduced by making
use of the current best network cost to reject all paths which must lead to
higher cost networks and by including a procedure to find a good initial
feasible network. The reader is referred to Lee et al.(lo) for further details.
The efficiency of the branch and bound method is best reflected in the maximum
size of sqrting problems produced at the lowest level of branching. This is

dependent on the choice of bounding problems as is seen in a later section.

2.2 Process NDecompositicon

It will be remembered from section 1.2.3 that decomposition is a
technique which may be used to reduce the sizes of larce svstem optimization
probiems by decomrosing the propiem concerned into a mmber of smaller mere
easily solved problems. This section shows how decomposition methods may be
applicd to the present type of discrete process design problem. For backeround

(13) and Everett(16).

the redader is referred to the work of lLasdon
Consider the process represented in Figure 3. The overall process

is to be optimized by choice of a set of decision variables, M, associated with

it. It has been divided or decomposed into two interconnected‘sub—procosses

cach with its own subset of decision variables, meM. The aim is to show how

the overall process may be optimized by independent optimization of the sub-pro-

cesses. . This decanpesition strategy, as will be seen later, leads to very

substantial reductions in problem size as well as to more practical bencfits

in terms of limitations on process interaction. The present problem is concerned

with the discrete choices involving cauipment selection and arrangemert so that

the decision variable set, M, is both discrete and finite, i.e., there are only
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a finite number of discrete choices for the manner in which processing eauip-
ment may be assembled to fulfil the stream processing requiraments.  The
interconnecting flows, X, are dependent on M and thus are also discrete. They
represent flows of intermediate streams transferred between (''sold" to or 'bought"
from) sub-processes. Other feed and product streams need not be shown.

The problem is of the ''cell" or separahle resource allecation type
described by Fvorctt(]ﬁ) or the discrete analog of the continucus decomposition
problem dealt with by Lasdon(ls). The resources concerned here are the internal
flows, X, which must thus satisfy eguality constraints. Hence the problem is
one of optimal discrecte allocation of internal resources or, in terms of the
sub-processes, the determination of cptimal (stream) interconnections between
then.

The original problem is

Minimize F(M) | (4)

M
or in terms of the sub-processes, since the problem objective function is
scparable,

Minimize F = [fl(ml) + fz(mz)] (5)

my,My, eM
vhere T is the overall process cost functicn and f are those for the.sub-processes.

Consider the transfers between sub-processes

X]i = le (ml,(ij,j=],n2)], i=l,n1 (6a)
and
ij = ij {mz,(X]i,j=1,nl)], jr],nz (6b)
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The sub-processes can be made independent by assigning to each X, a

price, P, which is actually a generalized Lagrange Multiplier. Then the
independent sub-process optimizations can be stated as their corresponding

Lagrangians, (7),

1 2
Minimize fi = f](ml) + .E P1i X35 - -E PZ] ij (7a)
my i=1 j=1
and
n, ny
Minimize £5 = f,(m,) + _E sz XZi - .E Pis Xy (7b)
mz ]—] - - i=]
noting that fi + Fy = F (8)

provided that the (lows, :i, dre Contliudus daCruss e sub-process buwrial 1es,
For a given set of prices, P, each sub-problem can be solved hy branch

and bound combinatorial optimization teo yield optimal sub-process conficurations.

The mathematical advantage of decomposition is now obvious, since without it,

the sfze of the combinatorial problem for the overall process is the product

of those for the sub-processes. With the correct set of prices, i} the problem

is decomposed such that the sum of the independently optimizod‘suh-process

solutions is guaranteed (the preof is given by Fverett(]ﬁ)) to give the overall

optirum of the problem, or

£y + £y = F* ©)
where
Av.__ g ' - A.|=vg' ol T 10
fl Min Fl (P), fz Min fz (P) (10)
", .,
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and F* is the overall process optimum, the solution to the original problem, (4).

The problem then is to adjust P in such a way as to move towards i.

As Lasdon(IB) has shown, for X continuous, P can be adjusted by deliberately
creating a discontinuity in X between sub-processes and introducing X as
additional decision variables for the sub-processes. Then P is adjusted to
reduce excess supplies or demands for X. This has certain disadvantages, as
seen in section 1.2.3, of introducing convergence problems and sacrificing some
of the reduction in dimensionality achieved through decomposition. In any case,
in the present studv, it is inconsistent with the discrefe formulation of the
problem to allow any such discontinuity in X. Further it is scen that the
solutions to (7), since they represent optimal sub-processes, are always in
themselves feasible, i.e., they dc not involve any multiple stream use or
violate any constraints. Then with no discontinuity in X between sub-rrocesses.
there is the advantage that the overall sclution F = fi + fé, is feasible if
not necessarily optimal. This will always be the case where onlv two sub-processes
arc involved since it is obvious from Figure 3 that the ecuality constraints

on X nust always be met.

In the more gcneral case, where a number of sub-processes are competing
for the same resource, X, constfaint violation, i.e., multiple use of X, is
rossible unless prices are correctly adjusted.

In order to proceed further, consider the dependence on the price
vector, P, of the overall process cost function, F. It can be scen that for
this discrete system, F will be discontinuous with respect to choice of prices,
P; F in fact is piccewise constant in P. This is because prices are artificial,
internal variables and a change in price will not produce a change in overall

process cost unless it produces a change in network configuration with correspondine
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change in flows, X. Thus there will in general be a certain range of P
around i.within which the overall optimal solution F* will be constant. Tt
is necessary only to be within this range to solve the overall problem and
this permits a certain amount of flexibility in price adjustment.

Everctt(lc) has sugeested in the solution of such discrete cell
problems, that prices be adjusted by trial and error or by scarching over a
pre-determined grid. In this way solutions can be produced over a range of P
and the optimum extracted from them. This is the method to be used in this
study. llowever as will be seen later, it is possible tovobtnin close estimates
of prices from a physical standpoint. Through this technicue the problem of
dimensionality in the choice of P can be substantially reduced by using a
camon scale for pricing streams of a similar nature.

In general unless an infinitely small erid is used the test solution
obtained cannot actually he guaranteed to be the glchbal optimum but good
feasible solutions can always be generated. In fact generation of a range of
process configurations may he an advantage, especially if there is little cost
difference between them. Then other more practical criteria, related to process
operability may be appiied to select the '"best" process configuration.

More specific details of the costing scheme for the particular

process examples considered in this study are given in section 3.3.



CHAPTER 3
DESTCN CONSIDERATTONS

Tn order to be ahle to synthesize realistic process networks it is
necessary to supplement theory with more practical process-oriented considera-
tions. This study is concerned with the synthesis of energy exchange networks.
in particular as applied to low temperature gas separation processes where
the cfficient recovery of low temperature thermal energy is particularly
important. Thus many of the design considerations te be develcped in this
section will tend to be specific to this type of procesé. These considerations

may be described in threc sections, the sclection of equipment or unit operations,

1les or heurigtice and gtream enerov pricing congidera-
2 s Sl i SR

..... LR

tions.

3.1 Unit Operations

Any energy exchange network is to be synthesized from a basic set of
unit operations or process equipment. Those for the present study are listed
below. .

1) Countercurrent heat exchange
ii) Polytropic single stage cempression
1ii) Adiabatic (valve) expansion
iv) Adiabatic stream mixing/splitting
Further, there are certain instances where it is desirable to provide

a standard pre-coded assembly of unit operations, termed 'sub-process procedures''.

24
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Thus the present synthesis system provides for multistage compression with
water interccoling and for vapor reconmpression condensation/reboiling. A
special case, described in detail later, is the refrigeration routine which
iscoded as a skeleton flowsheet generator with some limited decision making
capability. With the exception of the refrigeration unit all unit operations

and sub-process procedures are shown symbolically in Figure 4.

3.2 Heuristic Develorment

For most processes it is possible to draw up a list of relevant design
considerations. These may vary widely in form. They may range from the very
general to rather specific, from being highly empirical to being theoretically
justifiable. However they may be broadly categorized as relating to -

i) Processing cbjectives
ii) Operating objectives - control during start-up, shutdown or steady
operation
iii) Thermodynamics
iv) Ceneral desicn experience

Where possible these considerations can be translated into a set of

logical, programmable design rules or "heuristics''. These may then be used to

considerable advantacc in setting the order and extent of unit operations and

particularly in pre-screcening of prospective stream matches for heat exchange.

Their use can greatly reduce unnecessary design effort and problem size and
complexity. DBy their very nature these heuristics tend to be rather specific
to certain processes or types of processes where similar objectives apply.
However this capability of being able to incorporate design rules into the
logical synthesis structure adds considerably to the flexibility and usefulness

of the approach.
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The major heuristics used in the present study are described below.
Additional heuristics are introduced as required for application to specific
processes.

Ordering Unit Operations -

i)  Carry out all pressure change operations before heat exchange.

This is generally the rule for the type of low temperature gas separa-
tion process considered, where gases must be compressed in order to

- liquefy them and refrigeration must be recovered at the lowest possible
temperature. This heuristic can be justified rather more generally
as follows. The processing objectives for the present process type
are largely concerned with thermal rather than pressure energy recovery.
Thus pressure changing can be regarded as raising or lowering the
thermal energy level of a stream in order to make technically feasi-
ble or to improve the thermodynamic efficiency of the subsequent
heat exchange. Pressure change thus precedes heat exchange.

Extent of Unit Operations -

i)  Set a minimum temperature of approach for heat exchange.
This is a practical limitation imposed by process equipment.
ii)  For vapor recompression, compress just sufficiently, to meet the above
minimum approach in the subsequent exchanger.
iii)  Limit the pressure ratio for a single compression stage.
This again is a practical equipment limitation.

Stream Matching -

i)  Set a maximum entropy increase/BTU for process/process exchange.
This is aimed at minimizing heat exchange irreversibilities and thus
conserving refrigeration and reducing overall energy costs. It is a

particularly important consideration expecially in low temperature situa-

tions.
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ii)  Exclude vapor/vapor matches
This is necessitated by the low heat transfer coefficients in vapor/
vapor exchange. These lead to high costs for recovering what are,
since only vapor phase sensible heat is involved, usuvally only small

quantities of energy.

3.3 Stream Energy Pricine for Process Decamposition

The stream pricing scheme emploved for process decomposition/integration
in the present study is developed as follows. Thermal energy recovery, particularly
at low temperatures, is rcgarded as the prime consideration. Thus it follows

that basic stream values or prices can be estimated as a function of temperature,

i.e.,

Price/RTl} = nr(T) (in

..... RN

In the present case the form of the function is readily established
from the real'physical costs associated with service streams. Sold streams
are classified as hot or cold with respect to cooling water, which serves as
a convenient basis point for both temperature and cost. Pemaining points are
provided by steam on the hét side and actual refrigeration production costs
on the cold side. To provide a continuous function for purposes of interpolation

(17) are fitted to both hot and cold sections.

and integration, cubic splines
This can be seen in Fipure 14.

An approach to stream pricing that is more theoretically based should
be considered at this stage. This comes from the work of Tribus and Evans(lg)
on heat rccovery in sea water desalination processes. They suggest the use of
"exergy' or availability rather than oncfpy as a stream pricing parameter, since

it is cxergy rather than energy which is consumed by process irreversibilities.
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The exergy function is given by
e = All - ToAS _ (12)

Then for an incremental energy transfer at constant pressure, i.e., heat transfer,
the exergy function, expressed on a unit energy basis, can easily be shown to
be .

T -T

e/BIU = ~%~—- , the Carnot fraction . (13)

In the present case the sink temperature, TO, is conveniently taken
as that of cooling water. Thus the price function, (11), should be of Carnot
fraction form for both hot and cold streams. The simplicity of the relation-
ship is clearly attractive and its validity will be examined in light of
conputaticnal results.,

The stream pricing technique is a means of determining optimal stream
interconnections between sub-processes, i.e., it determmines whether a given
stream is to be used within a given sub-process or sold to another. For this
reason it is nccessary to modify the price function to account for twe further
factors which affect the true value of a stream to any sub-process.

The first is the degree 6f irreversibility involved in stream usage.
This depends on the temperature difference between the two streams during
exchanee; the hicher the irrcvcrsihiiity the less desirable the match and the
lower the true value of the strean in auestion. This factor can be accounted
for by introducing a temperature displacement, §, termed a "discount' paramecter.
[t can be thought of as being representative of the actual tcmperatﬁre difference

|
between the two contacting streams. Thus the price function, (11), becomes

ot 5 e . _—
pr(T-8). To reflect irreversibility the sipgn should be positive for cold streams
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and neeative for hot streams, thus always in the direction‘of reducing value
due to irreversibility. TFhile & itsclf should be positive to reflect
irreversibility, it is in fact a parameter representing relative irreversibility
between internal and external usage and thus can have either positive or
negative value,

There is also a variation in the (equipment) cost of stream usage
and though it is‘not strictly related to exchanger irreversibility, its effect
is conveniently included in the discount parameter.

Thus the value of a stream between any specified temperature limits
is obtained by the integration

T

e[ prein) G de (14)

ad
L

where dli/de is, for a single phase strcam, just the specific heat.

The integration method is described in detail in Appendix I.1.

The & parameter is thus used to adjust stream transfer prices, the
basic prices being fixed bv the form of the energy value spline(s). As seen
earlier, prices are Lagrange Multipliers and strict optimality can only be
guaranteed if all multipliers are adjusted independently, i.e., if there is
one ¢ associated with each stream transfer. However if there are a large
nunber of transfers, then the problem of dimensionality in the adjustment of
the price vector, P, may becore serious. In this case it is supgested that a
single ¢ be applied to a sct of similar (hot or cold) stream transfers between
any two sub-processes or even for all similar inter-process transfers. The
nurber of adjustable parameters is then reduced from the number of transferred

streans to the mmber of independent &s. This introduces the possibility of
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missing some solutions. However as the optimum solution has been shown to
be constant over a certain range in P and the expected variation in §s
is camparatively small, the risk is considered to be justified in temms of the

reduction in dimensionality.



CHAPTER 4

PROGRAM SYSTEM

4.1 General

The techniques described or developed in earlier sections have
been implemented in the form of a program system called CPENS (Optimal Process
Equipment Network Synthesizer). In its present form it is oriented towards
the synthesis of cnergy exchange networks required to safisfy process stream
temperature and pressure demands. The particular process applications
demonstrated are in the area of low temperature gas separation. However the
concepts should be generally applicable to any similar energy exchange situation
which can be fomulated as a discrete, sequential processing problem. The
synthesis steps accomplished by the system have been given earlier but will

be repeated here in order to facilitate the description of the individual

program functions within the system. They are:

i) Analysis of a given basic processing scherme to identify a set of streams
with unsatisfied temperature and pressure demands.

1i) Ceneration of all pessible equiprent netwerks which satisfy these
demands.

iii) Ixtraction of the optimal network.

The structurc of the procram system with its major elements is shown
in Fieure 5. It is, as will be scen later, a modularly oricnted system, i.e.,
any network is synthesized from a combination of basic processing modules,
represented within the system by equipment subroutines. The system borrows

- 32
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greatly from its simulation system predecessors, particularly with regard to
data structures and equiprment representation. However the realistic synthesis
procedure demands decisions to be made that are specific to certain eaquipments
in the available unit operations sct. lience this synthesis system is of
necessity much more specific to particular precesses than are comparable
simulaticn systems. The major features of the system are described in the
following section. Full program listings, graphical algorithms and sample data

sets are given in Appendices II and III.

4.2 Program Functions

Descriptions of major program sections are given as follows.

4.2.1., Task Identification (CDﬂSYS)

'

represented in the present case by unsatisfied strecam temperature and pressure
demands. It is carried out by COLSYS. Since the example processes studied
are gas separation plants built around sequences of distillation columns, COLSYS
is set up specifically to analyse such systems. It is esséntin]ly a small
modular simulation executive which computes a specified column sequence, perform-
ing overall heat and mass balances and thus computing stream flows and conditions.
Process tasks are identified by corparing supplied stream specifications with
actual conditions. A special case is that of the column liquid and Qapor reflux
generation tasks which are created automatically within the prdgram. Streams
are classified as "hot" or '"cold" (to be cooled or heated), a necessity for
later stream matching.

The approach used here is rather specific to a certain class of

processes and in general it may be necessary for the user to provide particular
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task identification routines. There is no restriction on the manner in which
tasks are identified and it is possible that this stage may be accomplished
outside the program system.’

4.2.2 Strecam Processine Path Generation (SMATCH)

Stream processing is handled by SMATCH which computes all possible
equipment sequences to satisfy the stream temperaturc and pressure specifications
generated above. As seen in section 3.2, pressure specifications are to be
met first. These are satisfied by either (multistage) conpression or expansion
and since no alternatives are involved this ”pre-processiﬁg” rhase does not
enter into the subsequent branch and bound optimization. The program then
proceeds to satisfy all temperature specifications by exchange with other process
streans or services (steam, cooling water or-suitable levels of refrigeration).
Only discrete, series processing is in general pemitted, as limited by the
formulation of the branch and bound technicque. Fxchance matching is continued
until all specifications have been met for all.primary (original) streams and
their (partially processed) residuals. Vapor recompression is permitted between
primary streams for which phase changes are indicated. In this case the comnression
and subsequent exchange steps are treated as a single stream match for optimization
purposes.  The sets of heuristics described earlier are used to determine the
extent of equipment operations, and in particular to pre-screen each technologically
feasible match .in order to reject unfavourable matches a priori. Due to the
wide variation in form that they may assume they are programmed into the routine
rather than supplied in some fashion as input data. Stream matching information
is built up as scquences of equipment nmumbers in the stream processing rath
matrix. A routinc is included to ensure that cach individual processing path

remains feasible, i.e., uses no stream more than once. A stream sale is



36

represented as a processing equipment in order to be compatihle with the process-
ing path data structure.

4,2.3 Stream Energy Costing (FNERGY)

Sold stream values are computed by ENERGY. The routinc also selects
appropriate refrigeration levels and corputes costs for exchangers using
refrigeration. Values for both process streams and refrigeration are obtained
from the current energy value splines, as shown in Figure 14. Total costs
for cach processing path are computed after this cnergy costing step.

4,2.4 Sclection of Optimal Network Configuration (BRBND)

The set of stream processing paths (equipment sequences) from SMATCH
foms the primary input to BRBND,\thc branch and bound optimizing routine. Its
task is to select the lowest cost feasible set of processing paths (one per
primary stream) which jointlv define the optimal process network conficuration.
It is essentially a computerization of Lee's branch and bound technique, as
described in secticn 2.1. The program allows up to three levels of branching
and automatically seclects appropriate bounding problems. A routine is included
which establishes a good initial feasible network in order to increase
computational efficiency.

4.2.5 Thysical Properties Calculation

Accurate equilibrium, enthalpy and compressibility values are supplied
< p . 4) . ; 5
to the system by a modified version of the CUFSS(I' simulation system physical
properties calculation package. The package calculates mixture valucs from
sets of 15 basic physical constants for each pure component. Equilibrium data
9 . '
arc conruted by the method of Chao and Seader(l ) as modified by Cravson and
, (20) . e . g . .
Streed . Vapor phase fugacities are obtained from the Pedlich-Kwong equation

of state. [Inthalpies for both phases arc based on zero pressure heat capacities
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as derived from the Redlich-Kwong equation, with liquid phase compressibilities

- . : W (21) ) 5
supplied by the gencralized equations of Yen and Woods . The package supplies
values for single phase streams only. DProperties for the two-phase region are
conputed throuch a rigorous adiabatic/isothermal flash routine. This program,
which also serves as an equipment routine, is also modified from the CHESS
system.

4,2.6 Youipment Routines

.Conventional simulation-type routines are used to size and thus cost
all equipments. They are briefly described below.

The column model is based on the approximate pseudo-binary design

procedure of Hengstehcck(zz). It makes the McCabe-Thiele assumption of

constant molal over{low and uses constant relative volatilitics to represent
phase equilibria. Tt is much faster than conventional plate-to-plate methods

and is capable of gcod accuracy as long as the constant molal overflow assumption
is reasonably valid.

The exchancer routine uses a set of supplied film heat transfer
coefficients corresponding to the phases of the contacting fluids. Overall
coefficients are computed by addition of film resistances. The exchanger area
is then computed by numerical integration with the total heat }oad divided into
10 equal increments.

The compressor model is based on a single stage polytropic compression
process.  The power requirerents are estimated from the enthalpy at the computed

utlet temperature assuming adiabatic operation.

The CESS based rigorous adiabatic flash routine described previously

is used as the adiabatic CEpansion routine. The same routine also serves as an
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Sub-process procedures are, as described in section 3.1, standard
assemblies of unit operations. Such procedures for multistage compression
and vapor reconpression are. included within SMATCI. The only independent sub-
process procedure is that for the refrigeration unit. It is a small executive
which generates the equipment sequence for a conventional cascade refrigeration

(23)

unit and is described in more detail in section 5.4.

Fquipment costs are computed from standard 'power law' relations with
Lang factors to relate installed to delivered costs. Values were obtained
from Bauman(24), Peters and Timmerhaus(zs) and Hand(26).' A constant fraction
of the total capital cost is amortized each year and added to the opecrating
cost to obtain the total yearly process cost which is the objective function
for optimization. Data for eauipment and service costs as well as for other

relevant system parameters are given in Table 1. Data for distillation columns

are given separately in Table 2.

4.3 System Data Structurcs

The successful solution of large system problems of the type considered

in this study depends largely on the use of efficient dafa structures. There
is a large ocuantity of strcam and ecuipment information which rust be stored in
very conpact fashion yet must rcouire a minimum of recencration of necessary
information. The major data structures for the present system are described
below. It can be scen that they are loosely based on the comparable structures
for modular sirulation systems, but the nature of the synthesis procedure requires
a certain amount of additional information. More specific details of system
data structures are civen in Appendix IT.2.

1) Stream infomation is stored in a simulation-type stream matrix with

separate sections for hot and cold streams. Two. vectors are used for
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Table I

General System Parameters

Equipment Costs [Installed Capital Cost = a*(sizeb * Lang factor (f)]

Equipment a Size b f
Heat Exchanger 82 < 400 ftz 0.6 4.0
Heat Fxchanger 25 > 400 ft? 0.8 4.0
Campressor 480 HP 0.76 2.5
Compressor Motor 34 HP 1.0 R

Material Cost Factors for lleat Exchangers

Down to -50°F Carbon steel 1.0
-50°F - 150°F Nickel steel 2.0
Beiow - 150°F Stainless steel FoD
Amortization fraction 0.3/year

Service Costs

Steam $1.00/1000 LB @ 365°F (150 psia)

Cooling Water $0.02/1000 GAL(IMP% e 75°F - Temperature
Rise 10°F

Electric Power $0.007/KwWH .

Other Parameters

Minimum Exchanger Approach 10°F

Maximum Compressor Pressure Ratio per Stage 4.0
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Table 2

Distillation Colunn Parameters

Equipment Costs [Installed Capital Cost = a*(size)b * Lang factor (f)]

a Size b £
Column Shell 14.5 Wt (1bs) 0.7 4.0

Trays 48.0 Diam. (ft) 1.7 4.0

Material Cost Factors and Stresses

Cost Factor Stress (psi)

Down to -50°F Carbon Steel 1.0 13750
-50°F to -150°F Nickel Steel 2.0 16000
Delow -150°07 Stainlcss Steel %K 18750
Tray Efficiency 70% throughout

Tray Spacing 24" (18" for CZ’ C3 Splitters)

Corrosion Allowance 1/16"
(Carbon Steel)
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each stream; the stream control vector contains stream status and

specification information and the stream properties vector contains

. normal properties and flow information.

It should be noted that both stream bubble and dew point temperatures
have been added to the usual parameters as these values are frequently
used in phase calculations. For the present series processing situa-
tion, where stream compositions are constant, these temperatures

change only infrequently when stream pressures are altered. Thus
significant computation time (around 0.1 seconds per bubble or dew
point estimation) can be saved by carrying these values in the stream
vectors.

The constancy of stream compositions permits another economy in storage,
since compositions for a primary stream and all of its residuals can

e represenied Dy a single vector of stream mole fraciions.

Within equipment routines stream property information is accessed
through working vectors. Information transfer between the stream matrix
and working vectors is handled by a stream moving utility routine.

Each equipment is represented by a two section vector in the equipment
matrix, containing (a) equipment number and type and inlet/outlet
stream numbers and (b) size and cost information. An equipment working
vector is used to transfer values to and from equipment routines.v

Stream processing paths are storeaas sequences of equipment numbers in

columns of the stream path matrix, which also contains total path costs.
Each column contains a unique, complete processing path for that stream

and is a very compact means of path representation.
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As each new match is added to a given path a check must be made to
ensure that no multiple stream use is introduced. This is made through stream
"histories' ecach of which is a list of streams used in the evolution of the
matched stream in question. These histories are generated from information
in the ecuipment, stream and stream path matrices each time they are needed
and thus a certain amount of data regeneration is necessary to achieve this
conpaction in storage. This approach should be compared with the original

method of -Lee et al.(lo)

, which, although not computerized, did not use equip-
ment numbers and maintained stream history informmation for all residuals. The
present approach is felt to be less curbersome and more ecasily understcod by

the user as well as reaguiring less total storage.

4.4 Prograrminc and Operating Details

The CPINS system has heen progranmed in TORTRAN IV for the CDC 6400
computer. Both to allaw user operatine flexibility and to reduce storage
requirements, the system has been run in three major batch sections, represented
by COLSYS, SMATCH and BRBND. The refrigeration unit (RUNIT) which is described
later forms a fourth section. With a data structure capacity for 100 cquipments,
100 total streams (including residuals) and 200 processing paths, the maximum
core storage requirement has been SOKB. The maximum computation time for any

sectien for the process cases run has been less than 20 seconds.
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APPLICATION STUDIES



GIAPTER 5

ETHYLENE PLANT - PPOCESS
JESCRIPTION AND CONSIDERATIONS

The two process applications to be presented in Chapters 6 and 7
are both to ethylene plant designs. The ethylene process is of grewing impertance
to the petrochemical industry as the demand for ethylene as a basic chemical is
now second only to that for synthetic ammonia. FEthylene production is an area
for considerable interest and technolegcical improvement and is thus the subject
of a wealth of literature. These are not the only reasons for its seclection.
As will be seen later, the process has very high enerov costs which make it
a particularly suitahble area for application of the synthesis techniques developed
in this study.

5.1 Ethylene Plant Description

For murposes of process analysis, an ethylene plant may be divided
into three main sections - cracking, purification and product recovery. A
schematic of a typical process is shown in Figure 6. For descriptions of two
modern cthylene plants the recader is referred to Clancy and Townscnd(27) and
a8

Aalun

5.1.1 Cracking

Ethylene may be obtained from cracking almost the whole range of
petroleun fractions from ethane to crude oil. The choice of feed stock is a
matter of economics depending on availability and, to a smaller extent, the

market for the by-products. Fthane, propane, natural gasoline and naptha are
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the most common.

The feed is first vaporized and mixed with steam before entering the
cracking reactor which operates at high temperature and atmospheric pressure
with short contact times. Steam addition serves several purposes. Firstly
it lowers the hydrocarbon partial pressure thus favouring the equilibrium of
the desired reaction; secondly it reduces reactor contact time lessening
production of undesired products; finally it acts as a scavenger for éome of
the coke fommed.

The reaction is arrested immediately by water quenching followed by
scrubbing with either water or oil. The waste heat recovered by these two units
is used to generate process steam at appropriate levels. Together with steam
generated from cracking furrace flue gases, the total may be sufficient to
supply all subseguent process energy requirements.

5.1.2 Feed Purification

In this section of the process impurities such as water and acid gases
are reroved prior to separation of the major hydrocarbon components. The
cracked gas mixture is compressed in a multistage compressor train provided
with intercoolersand separator drums. Water and some heavy hydrocarbons are
partially removed. The cas is then scrubbed with caustic primarily to remove
carbon dioxide and hydrogen sulphide. This stage may also be accomplished
after some intermediate compression stage: Finally the last traces of water
are removed by drying over alumina and/or molecular sieves. This is essential
to prevent the formation of solid hydrocarbon hydrates in the low temperature
recovery section.

5.1.3 Product Pecovery

The product recovery stage is perhaps the most important and expensive

and subject to the greatest depree of variability. It is also the process
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section with which this study is primarily concerned and will thus be described
in some detail.

The gas stream from the purification section contains hydrogen and
hydrocarbons from methane down to C4s and heavier, the composition varying
with the feedstock. The principal products required are (high purity) ethylene
and propylene. Ethane and propane product streams are generally recycled to
cracking reactors. There are two further products, a tail gas containing
hydrogen and methane and a stream containing C4s and heavier. These separations
are achieved by conventional bubble-cap or valve-tray distillation columns. A
minimum of five columns are required to obtain all of the above product streams.
Separation conditions throughout the process may range as high as 565 psia for
pressure and as low as -250°F for temperature.

i) Separation Sequencing
The separation sequence which has been shown in Filgure O 1s uvuly wiie
of a number that may be emploved. The ethylene-ethane (C2 splitting)
and propylene-propane (C3 splitting) separations are the most difficult
because of close component relative volatilities. Therefore they are
always at the end of the separation scheme where the flows are smallest.
The ordering of the other three separations is by no means standard
and depends largely on cracked gas composition. The gas composition
and separation order together determine the quantities and .levels of
refrigeration required in the process. As temperatures may be very
low the refrigeration costs are frequently the determining factor in
choice of separation sequence. These considerations are discussed

(23) (29)

by King and Charlesworth
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Three alternative separation sequences are shown in Figure 7. Probably
\

the most comon is (a) as was shown in Figure 6, which is typical

of plants cracking ethane and propane. Here demethanization is the
first stage. A variant is shown in (b) where deethanization precede
demethanization. If the demethanizer is placed after the deethanizer,
(b), its feed is reduéed to a minimum and the column becomes of

minimum size. However all tail gas must then pass through the
|

deethanizer increasing its refrigeration requirements. If the
demethanizer is placed first, (a), it must be larger and will require

|
additional refrigeration. However the deethanizer refrigeration

requirements are great&y reduced with the elimination of the tail gas
which is the reason thét this sequence is normally preferred especially
if the tail gas flow ig large.
When the feedstock is ﬁaptha or natural gasoline contiguration (C)
is usually preferred. ‘Here there are substantial quantities of Cq
and Cy hydrocarbons in‘the cracked gas and placement of the
depropanizer first enables these components to be separated before
other steps which require low temperature refrigeration.
Operating Conditions |
The other major design‘decision is that of choosing operating conditions
or more specifically oberating pressures. In this regard ethylene
plants can generally be divided into two categories, high and low

‘

pressure processes.

The high pressure process, most common in North America, involves

demethanization at arcund 550 psia with subsequent separation
pressures ranging down to around 200 psia in the C2 splitter and 100 psia

in the Cyq splitter. A typical plant is described by Aalund(zg).



ot C2°

C3"
74 . ‘
| \
A) DEME THANIZER FIRST
& C3°

\ 1
| M DEMETHANIZER
| E DEETHANIZER

'» P DEPROPANIZER
o 1" G C2 C2 SPLITTER
| C3 c3 SPLITTER
) \
o L Al
) i > C3-
| (f_‘
‘ 1
L ‘\ SR C3
\
RB) DEETHANIZER FIRST |
H2 Cl \
P |
‘ |
N
!
—”’i g ' — M
\
\ \
\

Cas ‘ ] c3

C) DEPROPANIZER FIRST |

)-Cs

FIGURE 7. PF?OWUCT SFPAMATIUN SCHEMES

i



49

The lowest temperature required is that to produce demethanizer
overhead reflux. It must be low enough (around —1600F) to minimize

| overhead ethylene loss in the tail gas. At high pressures this can
generally be achieved by ethylene refrigerant from a propane-ethylene

or propylene-ethylene cascade system, perhaps supplemented by Joule-

Thompson cooling with expanded tail gas(zs).
The low pressure process,as described by Baldus and Linde(so) or
Brooks(SI),is more frequently used in Furope and is descended from

‘ liquid air technology. Separation pressures do not exceed 250 psia

and range as low as 20 psia for C, splitting. This produces much

lower temperatures (down to around -250°F for the demethanizer over-
head) and requires the addition of a methane cycle to the refrigeration
cascade. Inevitably refrigeration costs are increased but advantages
resuit from lower feed campression reauirements and easier sevarations
due to increased relative volatilities at lower pressures. Baldus

and Linde claim significant improvement in power consumption over the
high pressure process. Features of both high and low pressure opera-
tion have been compared by Ruhemann and Charlesworth(sz).

As will have been noted above, a most important requirement for
product recovery is the provision of a large quantity of refrigeration.
The refrigeration unit associated with the process is comonly a two
or three section cascade compression system employing as refrigerants
propane or propylene, ethylene, and methane if required. A number of
different levels may be required from each section or circuit to
satisfy process cooling and condensation requirements. A typical
system is described by King(zs) and a more detailed description will

be given in section 5.4.
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5.2 Process Energy Considerations

Since it is the product recovery section which is to be the object of
the application studies,the energy recovery aspects of this section of the
process should now be considered in some detail.

A large component of ethylene production cost is associated with
power consumptioﬁ,mainly for feed and refrigerant compression. Assuming electric
compressor drivers, the total power requirement is around 1350 kWWh per ton of
ethylene and campressors make up the largest item of capital expenditure. Thus
the efficient utilization and recovery of energy is of prime importance and
much recent technological effort has been expended in this direction. Modern
ethylene plants embody a high degree of process interaction and integration
with complex supporting equipment networks aimed at achieving these ends.
These energy recovery considerations are discussed at length by Ruhemann and
Charlesworth(KQ).Haselden(33) deals with similar aspects for air separation
processes.

Thermodynamic analysis of ethylene plants shows reversible separation
efficiencies of less than 5% (Ruhemann and Charlesworth). As Haselden points
out, if some of the products are required to be liquefied, then a significant
proportion of the energy input may be consumed by liquefaction with consequent
reduction in expected efficiency. However there still exist &$ignificant sources
of irreversibility which provide opportunities for improvement. Table 3, taken
from Haselden for an air separation plant (a similar low temperature gas separation
process), indicates the major sources of irreversibility. The greatest energy
usage, in compression, is generally beyond the control of the designer so that
attention should be focussed primarily on colunn and heat exchanger losses.

These can be physically interpreted in terms of irreversible degradation of

"cold" which necessitate increases in expensive refrigeration requirements.



Distribution of Losses in Air Separation

Table 3

Compressor Irreversibility
Column Irreversibility

Heat Exchange Irreversibility
Heat Inleak

Expansion Valves

Turbine Irreversibility

Reversible Separation Work

Power Consumption (%) Loss (%)

42 -

20 52

9 23

7 15

2 5

2 5

18 =

100 100

51
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High temperature heat recovery in the product recovery section is of rather
lesser importance as the associated energy costs, e.g., for steam are considerably
lower. |

Column losses are dependent on the temperature difference existing
between overhead and bottoms and for a given column can only be reduced by
provision of intermmediate reflux. Although such temperature differences may
be very high, especially early in tﬁe separation sequence where a wide range
of components exist, associated capital costs appear to preclude such changes
in present plants.

Reduction in exchanger losses is in principle much easier, since it
can be achieved by minimizing exchanger temperature driving forces. us
suitable choice of stream matches for exchange can result in increased cold
recovery and reduction in process energy requirements. Additionally stream
thermal energy levels may be raised or lowered Dy compression or expaislon
(e.g., vapor recompression or flashing) to increase thermodynamic contacting
efficiency. =

Efficient energy utilization may involve considerable stream inter-
action both within and between individual processing sections. It is with the
synthesis of such energy recovery networks of compressors, expanders and heat

exchangers that the present program system applications are concerned.

5.3 Major Process Assumptions

There are a number of assumptions inherent in the application studies.
They do not lead to great loss of generality but should be stated at this

point. They are as follows:
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i) Plant feed and capacity are fixed. No allowance is made for process
modification due to feed changes. Nor are the effects of over-
design for future expansion or for safety and/of maintenance purposes
considered.

ii) Column arrangement and operating conditions are fixed. The configuration
of the columns is pre-specified as are individual column operating
conditions, i.e., product éompositions,operating pressure and reflux
ratio. It is convenient to set the latter as the ratio between actual
and minimum reflux(R/RMIN). The value is dictated by the economic
balance between operating and capital costs. The general value used in
this study was 1.2, reducing to 1.1 for particularly low temperature
colunns where condensation costs are high. The reader is referred to
Perry(34) for further details.

iii) Components present in smail quantities (CO. COZ, Nz, etc.) are negiecied.
A1l heavy canponents (C4+) are treated for convenience as n-butane.

iv) Refrigefants are assumed pure. Refrigerant systems are in fact filled
from product lines and thus contain some impurities, which will have
some effect on evaporation levels but little on circulation rates.
However the advantages of reduced computation time are considered to
outweigh the loss in generality. Refrigerants are also assumed to
transfer only latent heat during use.

v) All process equipment pressure losses are neglected.

5.4 Refrigeration Unit (RUNIT)

i) General

The type of cascade refrigeration unit employed in ethylene plants has

(23)).

a fairly standard configuration (King- Thus there is little point
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in attempting to synthesize such a unit by starting from basic
principles. However, changes in refrigeration demands and levels of
availability require frequent re-computation of the unit and make
autonated computation highly desirable. A routine, RUNIT, has been
written to perform this function.

This routine has been programmed as a skeleton flowsheet generator
which automatically generates and costs an equipment network for any
given set of refrigeration demands. The approach may be regarded as
being intermediate between simulation and synthesis. The standard
flowsheet generated for a typical unit is shown in Figure 8. It

shows two cascaded refrigerant circuits employing propane and ethylene
refrigerants with two process levels for each. The process is essentially
simple compression refrigeration with the ﬁsual compression-condensation-
flashing-evaporation steps. Several teatures are added. ‘Ihe saturated
liquid refrigerant may be sub-cooled by contact with one or more

process streams to permit recovery of refrigeration with reduction in
refrigerant circulation. Especially at the lower temperatures this

may extend to campletely internal streams as is shown in the ethylene
section. Cold is recovered by cross-exchange between the evaporated
vapor and the liquid before flashing. Within the multi-stage
compression train water intercooling may be employed, where temperatures
are high enough, to reduce compression power requirements.

Canputational Sequence

Within each refrigerant circuit the computation sequence is as follows.
Firstly an iterative sequence is required to determine the refrigerant

circulation rates. For this purpose the circuit may be divided into
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two parts; liquid sub-cooling, flashing and evaporation, ('B' to "A"
in Figure 8) and compression and condensation, ("A" to 'B'"). The
~iteration only involvés the former. Starting from '"B" where the
stream is a saturated liquid, the total flow is estimated from the
total ;ircuit refrigeration load. Then the sub-cooling by process
streams can be computed to obtain the stream condition prior to
flashing down to the individual levels. From these flash calculations
the refrigerant flow necessary to satisfy the demand for each level is
estimated. Where cross-exchange is used a separate iteration around
each flash/cross-exchange loop is required. The total flow is obtained
by summing level flows to begin the next iteration.
When the total flow has converged,the compression train-condensation

section can be computed directly. The refrigerant circuits in the

caccade miuct he comnutoc

S, e —

icreasing-order of temperature since
condensation loads for lower circuits must be added to process
refrigeration demands for the next highest circuit.

iii1) Refrigeration Levels
The selection of refrigerant temperature levels is a difficult
problem for which there is little theoretical guidance. The number
of levels for each refrigerant can be limited to a maximum of two or
three by practical considerations such as minimizing control probléms
and compressor costs. The spacing of the levels is more difficult.
There is some themmodynamic basis (lower energy requirements) for
level spacing so as to give approximately equal compression ratios

between stages. However the effect of the possible process demand

levels must be considered as the selection of levels influences
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refrigerant costs which in turn influence the refrigerant demands

at those levels. A large process demand at a particular temperature

.may dictate the provision of refrigerant at that level. An "optimum"

set of levels for any particular process should exist but would be
somewhat difficult and time consuming fo establish, especially as
both continuous and discrete variables are concerned.

The approach taken in this study was initially to choose approximately
equally spaced levels (equal pressure ratios) and then to make some
subsequent adjustments for specific process demand levels. It is
felt that the final results represent reasonably good and practicably
realizable designs.

RUNIT Operating Details

The present refrigeration routine, RUNIT, can handle up to a total of
ten process relrigerant levels with up 10 thiee arvitvary refvigervant
species (three circuits). Those used for the present processes were
methane, ethylene and propane. Internal cross-exchange was used only
for the two lowest level circuits. A typical canputation time on the
CDC 6400 was around 5 seconds. A graphical algorithm and further

details of RUNIT are given in Appendix IT.



CHAPTER 6

HIGH PRESSURE PROCESS

6.1 Process Considerations and Problem Computation

The first application is to a conventional high pressure process as
described in section 5.1. The basié separation scheme is shown in Figure 9
and feed details are given in Table 4. The feed composition is typical of
plants cracking a propane feedstock with conditions corresponding to those after
the acid gas removal step. Feed rates for modern plants may be rather higher
than those shown; however the present values approximate those for an existing
Canadian ethylene plant which served as a guide for this first application study.
Operating conditions for all columns are given in Table 5. Once again product
specifications tor recently huiit nlants may be rather higher than those shown.
Table 5 also gives specifications for the feed and for two product streams from
which "'cold"” may~be recovered. These are the demethanizer overhead tail gas
and the liquid ethane product stream from the bottom of the C, splitter.

The cascade refrigeration unit can be treated conveniently as a separate
sub-process. It may 'buy' cooling from or 'sell' waste heat to the main
processing sequence which forms the other sub-process. This decomposition
serves the double purpose of reducing problem size and preventing unwanted
interaction between streams in the two sub-processes. The configuration of the
refrigeration unit is virtually fixed as the only optimization decision to be
made is in ordering the use of at most two purchased streams. This is easily
carried out by hand so that the full synthesis procedure is to be applied only
to the main processing sequence.

58
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Table 4

Process Feed Details

Composition (Mole %) -

Hydrogen
Methane (Cl)
Ethylene (Cz-)
Ethane (Czo)
Propylene (C3-)

Propane (Cso)

Butane (C4)

Total Flow
Pressure

Temperature

60

17
33
21
14
9
3
3

100

1500 1b moles/hr.

115 psia

60°F
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Table 5

High Pressure Process Operating Conditions

Column Conditions

Column Pressure (psia) R/RMin Key Splits (Mole fractions)

Keys Overhead Bottom

Demethanizer 565 1.1 C1 0.65 0.01
C,- 0.01 0.43

Deethanizer 465 .2 Cy0 0.39 0.015
Gy~ 0.025 0.47

C, Splitter* 215 1.2 C,- 0.96 0.01
C,0 0.02 0.93

Depropanizer 200 1.2 C0 025 0.04
C, 0.04 0.84

C3 Splitter 115 1.2 Cz- 0.90 0.08
CSO 0.08 0.76

Additional Stream Specifications

Demethanizer feed temperature -60°F
Demethanizer tail gas pressure 215 psia
Ethane product pressurev 115 psia

* Overhead product to be drawn off as vapor,
not condensed.
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Analysis of the column system by COLSYS shows a total of 14 streams
requiring further processing. There are 7 hot and 7 cold streams which may be

further categorized as follows:

Feeds 1
Intermediates (all reflux) 10
Products 2

Compressed propane vapor 1

'This latter propane vapor stream comes from the refrigeration unit.
It is a waste heat stream which must be condensed either by cooling water or by
its use asa heat source within the process.

Three additional stream matching heuristics are now introduced, all

aimed at reducing network complexity and thus minimizing start-up and control

i) Exclude feed/reflux matches.

This helps to ensure reliable and well-controlled reflux generation
which is essential for satisfactory column operation.

ii)  For reflux streams allow only one process/process match, then satisfy
residual by services.
The same considerations apply as for (i). .

iii)  Set a minimum heat load for process/process exchange.
This helps to avoid a proliferation of residual streams which have
only been very slightly processed, a situation which leads to greater
network complexity.
A further heuristic was introduced to limit the maximum stream tempera-

ture reduction achieved by a single level of refrigerant. It was aimed at

: . ; 0 .
conserving low level refrigeration. The value used was S0 F which corresponded
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approximately to the situation in the actual plant mentioned earlier.

The synthesis system may now be applied to the solution of the problem.

The solution sequence is shown in Figure 10. Note the following points.

i)

ii)

iii)

iv)

Initial (low temperature) energy costs were established by prior
computation of self-standing refrigeration unit examples. Subsequent
passes through the refrigeration routine serve to adjust these values.
The solution of each general sub-process problem requires separate
computation of the SMATCH-ENERGY-BRBND sequence; the present case
involves only one such sub-process so that this sequence is computed
only once for each overall iteration.

Re-computation of SMATQ1, the stream processing path generating routine,
on successive iterations is only necessary when stream flows change.
The only such case in the present example is the compressed propane
vanor from the refrigeration init, whose flow chanees with refrigeration
demands and cold stream sales.

The overall computation seauence is converged when there is no change
in configuration, and thus process cost, between successive iterations.
This is attained when energy costs have been established within the
correct range to render all sub-processes truly independent.

The computation sequence shown in Figure 10 must be’ repeated for each
new set of discount parameters. Since the present example involves
only one discount parameter a simple trial and error scheme was used
to determine the effect of the parameter on optimal network cost and
configuration (refer to section 6.4).

The configurations of the optimal process network and its associated

refrigeration unit are shown in Figures 11 and 12. Note that in Figure 11, hot

streams are denoted by positive numbers and cold streams by negative numbers.
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Complete process details are given in Appendix III.1. The optimal configurations
are found to be essentially identical to those for the existing plant mentioned
earlier. The process requires a comparatively low degree of interaction between
process streams and thus is satisfactory from a start-up and control standpoint.
An interesting point is that in spite of the ready availability of waste heat
both C, and Cq splitter columns are reboiled by vapor recampression. This is
primarily dictated by the very high refrigeration costs for any alternative

means of overhead condensation.

6.2 Entropy Aspects

In the light of the results the heuristic with the most interesting
effect is that which limits the entropy increase for any process/process
stream exchanger match. It was designed to conserve refrigeration by minimiz-
ing total process ncat cxchanger irreve:
i) preventing stream matches which contribute too largely to process irreversibility
or by ii) effectively forcing such matches to be delayed until one of the
streams has been processed to the extent that a match can be made with a
tolerable degree of irreversibility. Thus the maximum entropy increase parameter
(DENMX) affects both the pattern and sequencing of stream matches. It was
found to have a significant effect on the size of the problem to be solved and
relevant solution statistics for the SMATCH and BRBND computations are shown in
Table 6 for three parameter values. Times quoted are for a CDC 6400 computer
for three levels of branching. A DENMX value of 25 corresponds to constant
temperature heat transfer at a temperature of around 50°F with a temperature
difference of around 60°F. The value can be estimated from the approximate

relation

DENMX 2-2— (15)



Table 6

Effect of Maximum Fntropy Change
Parameter (DENMX) on Problem Size

DENMX Total No. of No. of No. of SMATCH No. of Path Max. Size BRBND
(XlOs/oR) Streams Equipments  Processing Paths Time Combinations Sorting ‘Problem Time
(seconds) (seconds)
25 40 53 37 10 0.18 * 10° 34 7
30 42 57 40 12 0.58 * 10° 22 10
s
40 47 66 48 18 3,20 * 10° 78 15

89
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where a is the temperature difference and T the average (absolute) exchange
temperature. The derivation is given in Appendix I.Z.

This temperature function clearly shows the correct trend with respect
to low temperature energy usage as it strongly reflects the increasing energy
value with decreasing temperature.

It can be seen from Table 6 that the total problem size increases
rapidly with DENMX, although the corresponding branch and bound solution time
increases rather more slowly. Fxamination of the optimal network shows that the
maximum entropy increase value for both process/process and process/refrigerant
exchange is almost exactly 25. It is interesting to note that for both vapor
recompression exchangers the values are below 8.0; this may partially explain
the apparent desirability of vapor recompression.

It may not always be easy to establish a priori a suitable value for
the upper 1limit, DENMX, which does not allow the possibility of excluding an
exchange match which forms part of the optimal network. However the value of
such a heuristic is evident especially as it is so simply implemented and has

the advantage of some theoretical thermodynamic basis.

6.3 Branching Problem Selection

Implications of the branch and bound algorithm can now be examined.
The efficiency of the branch and bound procedure is most usefully measured by
the sizes of the problems to be solved at the final level of branching. This
can be illustrated by examining a typical distribution of calculation times for
the whole branch and bound procedure, given below:

Establishing initial good upper bound 25%

Executing general branch and bound logic 25%

Solution of final level problems 50%
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The final entry is strongly dependent on the size of problems; in
particular the time taken to sort the network costs is a very non-linear function
of problem size. Another related consideration which may also be important is
the amount of core storage required to solve large size problems.

As is seen in section 2.1, the branch and bound concept makeé no
restriction on how to choose bounding problems as long as the problem set at
each level mutually bounds the original problem. However bounding problem
choice has been found to have a strong influence on resulting problem size and
especially for autamated solution the need for an efficient, systematic selection
method is obvious. The major consideration is to select problems so that many
processing paths are eliminated for each problem at each level,thus achieving
considerable reduction in problem size. This should not however be achieved

at the expense of creating too large a number of problems.

A very satisfactory set of rules for problem celection for the two

process examples considered in this study is given below. Problems are classified
according to the stream match on which they are based. Streams are described by

the number of exchange steps they have undergone, e.g., a secondary stream has

been processed by one exchanger [P = Primary, S = Secondary, T = Tertiary].

Branching Level Problem Type (Stream Match)
i | P/P matches §
2 | P/S and S/S matches
3 P/T, S/T and T/T matches

This set has two convenient computational advantages. Firstly the
problems are conveniently located in the first, second and third equipment rows
respectively of the processing path array. Secondly since the problem subsets
for each level are mutually exclusive, a minimum of checking is required to

avoid duplication of problems.



71

There are two important restrictions.

i) Problems at any level which do not lead to elimination of a sufficient
nunber of paths will not produce a satisfactory reduction in problem
size and are consequently disregarded.

ii) There is a minimum mumber of bounding problems branched from any node
(refer to Figure 1). This is because the final problem in the set,
which excludes all paths containing any of the bounding problem matches
for other members of the set, will otherwise produce too few elimina-
tions. This will lead to the same difficulty as in (i). This minimum
number is always achieved by adding problems of the level 1 type to
those lower level branchings which fail to meet the minimum.
Restrictions (i) and (ii) give rise to two adjustable parameters,

in addition to the number of branching levels, which may be chosen to give
pest resuits for any particular probiem.

Process/service matches were found to produce an insufficient number
of path eliminations to be useful.

The value of establishing a good initial feasible network (whose cost
forms an upper bound on subsequent network cost) in rejecting paths which must
lead to higher cost networks was found to be considerable. This was in spite
of the somewhat involved and time-consuming program logic which was found
necessary to establish it. The reader is referred to Lee et al.(lo) for

further details.
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6.4 Stream Pricing and Exergy Considerations

i)  Process Decomposition - Discount Parameter
The trial and error price adjustment scheme and its implementation by
use of a discount parameter have been discussed earlier in section 3.3.
The results of its application to the present process should now be
considered. For this process there are two categories of stream
transfers.
The first involves the sale of refrigerant propane vapor to the main
processing sequence. This is however a sale which is already fixed,
i.e., it was decided a priori to process this stream completely within
the column system, condensing as much as possible by its use as a
heat source for process matches and water condensing the remainder.
Thus the configuration of its use is an internal optimization decision
for the coiumn system and no transfer nrice need he assioned.
The other category of sale is that of cold process streams to the
refrigeration unit for cold recovery. This situation does demand the
assignment of transfer prices in order to be able to decide which
canbination of streams are to be sold. The streams involved are numbers
-1 and -4 and their residuals. The transfer price function, based on
the cold section cost spline, is to be adjusted by a single discount
parameter, 8. Thus the overall decomposition problem for this process
can be expressed in terms of only one price adjustment variable.
An estimate of the value of this & parameter may be.obtained by
physical reasoning, as follows. For this process, particularly in the
low temperature region, energy costs are considerably greater than
equipment costs. Hence from physical considerations & may be expected

to reflect primarily the relative degree of degradation of cold between
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internal use and use within the refrigeration unit. For internal use
of any cold stream there is a single degradation step in its use for
process/process exchange; if such a stream is sold to the refrigeration
unit there are two degradation steps involved before useful process
cooling is produced. The first is in exchange for cold recovery within
the refrigeration unit and the second is in the process/service exchange
involving the use of the refrigerant which may be regarded as being
produced as a result of the cold recovery step. Thus § can be expected
to reflect this single extra degradation step and thus be of the order
of the minimum exchanger approach temperature (ATNin)' This is shown
to be the case in Figure 13 where the optimal process cost is shown

as a function of § (expressed as a multiple of AT, It can be seen

Min)'
that any positive value of § leads‘to the overall optimum.
In this simpie case there are in fact oniy three possiblie cambinations
of stream sales produced by different configurations of use of stream -4.
Since all of these cases have been evaluated (Figure 13) it can be
guaranteed that the overall optimum has been found. The fractional
cost margins between the three appear to be small but it should be
pointed out that the high proportion of invariant costs in the overall
yearly figure somewhat dampens the real value of the improvement
produced.

ii) Exeréy in Stream Pricing
The final energy value splines, which it will be reﬁembered are
obtained from service costs, are shown in Figure 14. The figure also
shows the exergy or availability function suggested by Tribus and

(18)

Evans and described in section 3.3. The correspondence between
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that function and the cold section spline is seen to be reasonably

good. This suggests that the exergy concept may prove a useful

.one with regard to cold.recovery as well as for the high temperature

region with which Tribus and Evans were concerned. Although not
needed in the present study where physical cost figures were readily
available,the simple form of the exergy function may be useful for

interpolation and/or extrapolation of energy values in other less well

defined situations.

Exergy in Equipment Driving Férces

The exergy concept may also be used qualitatively to examine equipment
driving forces. This applies in particular to the heat exchanger
minimun approach temperature which may determine the average thermal

driving force for exchange. Tribus and Evans(ls) have shown that the

- P e
[

B
Lalliy Vi Luuapainest

-

optimal equipment driving {0rCe Can ve 1elated to the
to exergy costs, i.e., the lower the cost ratio the lower the
desirable approach temperature. For the present process, particularly
in the low temperature region, equipment costs are very low compared
with those for exergy; the ratio of cost for exchangers using
refrigeration to that for refrigerants is around 10:1. Thus a very
close approach temperature with consequent reduction in exchanger
irreversibility is desirable.

This can be illustrated with respect to the refrigeration unit.
Although a more usual design figure for the approach temperature is
150F, a reduction to 10°F gave a total unit cost saving of around 4%.
This was due mainly to a decreased propane circulation resulting from

a lower condensation temperature/pressure. A further reduction in
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condenser driving force results from reducing the cooling water
temperat&re rise from 20°F to 10°F; this produced a further cost
saving of around 8%. Thus a value of 10°F was used for both of these
parameters (with one exception, described later) throughout the study.
Some further decrease may be theoretically desirable but, particularly

for the approach temperature, may be subject to equipment limitations.



CHAPTER 7
LOW PRESSURE PROCESS

7.1 Process Considerations and Problem Strategy

The second application is to a low pressure ethylene separation process
which involves a somewhat different.separation sequence from the previous
example. The basic separation scheme is that described by Baldus and Linde(so)
and shown in Figure 15. There are several features which require coment. The
first separation step is deethanization rather than demethanization and requires
feed compression to 250 psia as against 565 psia for the high pressure process.

The Cs, bottom stream is processed in the same sequence as in the high pressure

plant. It is in the separation of the Cyo overhead stream that the major

ound, This stream is firet cooled low enough to condence

4ada ~

{
[
(
}

virtually all C,s while still leaving essentially all of the hydrogen and some
methane in the Vépor phase. These light components can then be removed without
fractionation. This decreases the load on the demethanizer which operates
conventionally except for the manner of overhead reflux generation. Since its
overhead product is essentially pure methane, reflux is produced by feeding the
overhead directly into the methane refrigeration circuit. C, splitting is achieved
by a double coiumn system similar to the configuration used in air separation.
Due to the smaller temperature differences between the column ends the system
is potentially more efficient than a single column.

The much lower separation pressures for this process (250 psia down
to 20 psia) result in much lower temperatures than for the high pressure
process and this requires the addition of a methane refrigeration circuit.

Advantages claimed for the process over high pressure operation include lower
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overall power consumption and easier separations,both due to the lower operat-
ing pressures. An increase in thermcdynamic efficiency or effectiveness of
cold recovery is also claimed.

The feed conditions are the same as for the high pressure process
as are the product specifications. It should be noted that this process
achieves slightly higher ethylene recovery than the former and this is discussed
latef. Operating conditions for all columns are given in Table 7 which also
gives necessary additional specifications for feed, intermediate and product
streams.

As before,the refrigeration unit is treated as a separate sub-process.
However for this process, examination also shows that the main processing
sequence can be conveniently divided, on a temperature basis, into two non-
interacting sections thus further reducing problem sizes. This division is
somewhat arbitrary but on examination is seen to be quite logical and justified
in temms of the reduction in problem complexity and minimization of unwanted
stream interactions.

The first section is comprised of the deethanizer, depropanizer and
C3 splitter and covers a temperature range of 160°F down to —64OF. There are
no streams suitable for recovery of cold by sale to the refrigeration unit.

The second, low temperature, section consists of the demethanizer and
high and low pressure C, splitters and covers a temperature range of -64°F
down to -210°F. Two product streams are available for cold recovery and since
both are vapor and thus not storable, an a priori decision was made to sell
both to the refrigeration unit to make for easier start up and control. At a
later stage (refer to section 7.4) a liquid stream was made available for cold

recovery; again an a priori decision was made to sell this stream to the
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Table 7

Low Pressure Process (Operating Conditions

Colunn Conditions

Colunn Pressure (psia) R/RMin Key Splits (Mole Fractions)

Keys Overhead Bottom

Deethanizer 250 1.2 Czo 0.16 0.003
CS- 0.015 0.57

Demethanizer 75 | C1 0.98 0.005
Cz- 0.01 0.58
High Pressure 65 1.1 Cz- 0.96 0.03
C, Splitter C,0 0.45 0.54
Low Pressure 20 i 1 | C,- 0.96 0.04
C2 Splitter#® Czo 0.01 0.94
Depropanizer 200 1.2 C0 0.25 0.04
C4 0.04 0.84
C3 Splitter 5 5 1.2 C3- 0.90 0.08
CSO .0.08 0.76

Additional Stream Specifications

Deethanizer feed temperature -40°F

Demethanizer feed temperature -190°F

* Overhead product to be drawn off as
vapor, not condensed
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refrigeration unit. Since this removes any decision making regarding use of such

streams there is no sub-process integration problem in this process application.

7.2 Pseudo-Service Stream Usage

Before.proceeding to the solution of the problems a change is made
in the method of handling the compressed propane waste heat stream from the
refrigeration unit. For the high pressure process this was series processed
in the normal fashion. However it could be seen that this stream alone contributed
a factor of over 20 to the total problem size. This was largely due to its
very large heat content relative to other process streams, which resulted in
the generation of a large number of processing paths with changing sequences
but essentially identical costs and results. For the high pressure process
this stream must be series processed in order to provide sufficient heat at a
high enough level to reboil the demethanizer. However it is obviously desirable
~ to avoid this problem of heat content imbalance. This can be done for this
external stream (internal streams cannot be treated in this fashion) by
providing for parallel usage, designating it as a "pseudo-service'" as was done
for this application.

Such pseudo-service streams are treated in the following fashion. For
any match involving a pseudo-service stream the quantity of i£ required to
satisfy requirements for the other contacting stream is calculated and entered
in the exchanger equipment vector. These streams are disregarded by the
branch and bound algorithm as their use is always feasible unless the cumulative
demand exceeds the supply. Although this difficulty was not encountered in this
study,it can be avoided by setting a sufficiently high stream transfer price.

For the propane stream concerned, any quantity not required for

pseudo-service usage was water-condensed within the refrigeration unit.
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Strictly a transfer price should have been assigned but for the reasons given
above this was not required. Thus the effective transfer price was zero; a
realistic value would perhaps even have been negative since this pseudo-service
waste heat usage would usually lead to a joint saving in both steam and cooling

water.

7.3 ‘Problem Computation

Analysis of the first sub-process, the medium temperature Section,
produces 4 hot and 3 cold streams requiring further processing. There is also
the propane pseudo-service stream from the refrigeration unit to be considered .
The solution of the problem is handled almost identically to that for the
high pressure process and presents no difficulties. The total number of

possible networks is only 16 so that the optimal network could readily have

heen celected hy hand.  Ac may he exnected the nrocess confiouration for the
depropanizer and Cs splitter streams is unchanged as seen in sub-process 1 in
Figure 16. Equipment and stream details are given in Appendix III.Z2.

The low temperature sub-process requires some changes in approach.
Conputation of the colunn network identified 3 hot and 6 cold streams available
for or requiring further processing. Some rearrangement of these streams was
made before proceeding with the solution. The vapor stream pre-separated from
the demethanizer feed was combined with the demethaniier overhéad product
to produce a cold tail gas sfream at demethanizer pressure. This was to be sold
to the refrigeration unit for cold recovery. The bottom reflux and product
streams from the low pressure C2 splitter were combined into a single stream
to be reboiled while providing process cooling. This was to allow comparison

(30)

with the process configuration described by Baldus and Linde A separate

stream was created from the low pressure CZ splitter bottom product after
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reboiling. This was again to be sold to the refrigeration unit. This left 3

hot and 5 cold streams to be processed along with the propane pseudo-service.

Since process temperatures were uniformly low it was decided to rule out the

use of steam as a service heat source and to replace it with the pseudo-service.
Disregarding the two sold streams and the "hot' overhead stream

from the low pressure C2 splitter (it is actually colder than any remaining

coldlstream) there remain 5 process streams within a temperature range of -66°F

to -117°F, a difference of only 51°F. The heuristic which limits the maximum

exchanger entropy increase was found to be ineffective within this narrow

temperature range and was thus discarded. (The maximum value for process/process

> cf. 25.0 x 10”° for the

exchange found in the optimal network was 17.3 x 10~
high pressure process.) Due to the very low temperatures and consequent necessity
for efficient cold recovery, the first two additional stream matching heuristics
introduced tor the high pressure application were discarded. They were:
i) Exclude feed/reflux matches
ii)  For reflux streams allow only one process/process match, then satisfy
residual by services.

This was aimed at permitting greater flexibility in stream matching
while hopefully not producing serious process control problems. The heuristics
for minimum process/process heat load and maximum stream température reduction
by a single refrigerant level were retained. The necessity for efficient coid
recovery also dictated reduction in the minimum exchanger approach tempera-
ture. It was reduced from 10°F to 7°F.

In spite of the small number of streams involved,the low temperature

section problem could not be solved within the existing system data storage capacity.

It is estimated that the total problem size (number of possible networks) would
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have reached around 108. In an effort to overcome this difficulty,attention
was directed at the processing of the feed stream, 2, which must be cooled

from -66°F to -190°F. It became obvious that unless either of cold streams

-1, at —870P, or -2, at -810F, was initially contacted with the feed, after
any one match the feed would be below their temperature range and thus valuable
cooling/reboiling would be lost. Hence it was concluded that the optimal
configuration must include either the 2/-1 or 2/-2 match. This in effect
created two parallel sub-problems one of which would contain the overall
optimum. It actually represents a limited introduction of the branch and bound
branching strategy at the stream matching rather than optimization stage.

The resulting sizes of the two sub-problems were found to be 1944
and 3024, striking reductions from 108. Thus it is seen that an appropriate
branching strategy introduced at this stage is particularly effective in
problem size reduction.

The configurations of the optimal process network and refrigeration
unit are shown in Figures 16 and 17. (The low temperature section is sub-
process 2.) Full details are given in Appendix III.2. The optimal solution
is seen to contain the 2/-1 match; the cost for the best solution containing
the 2/-2 match was substantially higher. The optimal process_configuration
appears to present no real operating problems, based as it is on conventional
vapor recompression cycles for each of the two C2 splitter columns. The low
temperature section configuration may be compared with that described by
Baldus and Linde(so), shown in Figure 18. At least for the present feed it

is found to cost approximately an additional $30,000/year.
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7.4 Modifications to Optimal Process Configuration

Further improvements to the process configuration shown in Figure 16
appear to be possible. For the first consider the means of generating the
deethanizer overhead reflux. In the configuration shown this reflux is wholly
supplied by partial condensation of the column overhead stream with medium
pressure ethylene refrigerant.. At the same time only part of the demethanizer
bottom reflux can be used to further condense this overhead stream due to
the minimum approach temperature limitation. If however the ethylene refriger-
ant flow is reduced to the point where the whole of the demethanizer bottom
reflux stream can be used for condensation, a saving of $73,000/year would
result. The only other process change required is the elimination of the
use of the propane pseudo-service in providing demethanizer bottom reflux.

Of course a portion of the deethanizer overhead reflux would then have to be
withdragn at some intermediate stage from the demethanizer reboiler. This
feedback may introduce some problems in start-up and control but the financial
incentive to solve them is obvious.

A second possibility should also be investigated. As will be
remembered the low pressure C, splitter bottom reflux and product streams were
combined into a single stream and an additional product vapor stream was
created for sale to the refrigeration unit (refer to section 7.3). However
it is seen, in Figure 16, that a substantial proportion of this combined C,
splitter bottom stream is reboiled with the waste heat propane pseudo-service
whereas the refrigerant potential of this stream could be more valuably
employed elsewhere. In fact the quantity of cold used by the pseudo-service
is almost exactly equal to the latent heat of the bottom product portion of the

combined stream. Thus it was decided to run another case without combining
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the two bottom streams, leaving the reflux stream free for internal exchange
and the liquid product stream to be sold to the refrigeration unit. As
expected the optimal network configuration is found to be essentially unchanged
except for the removal of the propane pseudo-service exchanger and the increase
in quantity of cold sold to the refrigeration unit. The saving amounts to a
very substantial $106,000/year.

Both modifications are indicated on the modified low temperature

section configuration shown in Figure 19.

7.5 Comparison Between High and Low Pressure Processes

A comparison is made between the high and low pressure processes in
Table 8. Four cases are presented for the low pressure process, the original
solution, then those for the first and second modifications alone and finally
that for both modifications. It is seen that for the present feed even the
best low pressure case has a substantially higher cost than for the high
pressure process. There are several reasons for this, as follows.
i) Comparing the power requirement figures it is evident that the low
pressure process never attains the same thermodynamic efficiency
as does the high pressure process. The reduction in feed compression
requirements for low pressure operation appears to be more than
balanced by the increased power requirements for refrigeration.
ii) Further examination shows that a high proportion of total process
costs are associated with large cooling loads for feed condensation.
The high pressure process requires cooling of only one such stream,
while to achieve the much lower temperatures for low pressure operation
this must be done for the 'feeds" to both sub-processes. In spite of

the complex energy exchange networks employed,not all of this cold
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Table 8

Comparison between High and Low
Pressure Processes(All Costs in $/Year)

ITEM

Process Section

Costs

Process Network
(Including Columns)
Refrigeration Unit

Equipment Cost

Breakdouns
Columns

Heat Exchangers

Compressors

Service Costs

Steam
Water

Power

Other

Ethylene Product
(1b moles/hr)

Ethylene Saving ($/yr)

Total Compressor HP
Power (kWh/Ton)

TOTAL COST/YR

91

PROCESS
High Pressure Low Pressure
#1 #2 #3 #4

734,000 568,000 568,000 567,000 567,000
476,000 948,000 874,000 843,000 789,000
175,000 156,000 156,000 156,000 156,000
231,000 322,000 319,000 315,000 310,000
511,000 647,000 604,000 585,000 555,000
57,500 67,500 67,500 67,500 67,500
22,200 37,200 35,100 34,600 33,200
213,300 .287,300 261,400 252,900 235,300
302.4 309.4 309.4 309.4 309.4

- 48,000 48,000 48,000 48,000
5,090 6,903 6,301 6,090 5,680

897 1190 1086 1050 979
1,210,000 1,469,000 1,395,000 1,363,000 1,309,000



can be recovered as a significant proportion of it is lost in column
irreversibilities.

iii) Another significant factor is the extra cost of around $100,000/year
required by the low pressure process for heat exchangers. This is
primarily attributable to the close temperature approaches and the
expensive low temperature construcfion materials.

There is one advantage of low pressure operation that should be noted.
This is the increased ethylene recovery, estimated to be worth around
$48,000/year, at 3¢/1b. The major ethylene loss in high pressure operation
is in the demethanizer overhead tail gas. The quantity of this loss is determined
mainly by the available refrigerant temperature to the partial condenser.
This in turn is set by the lowest practical ethylene refrigerant evaporation
A somewhat lower temperature i attainahle hy
cooling with expanded tail gas as déscribed by King et al.(ll), or by addition
of a methane refrigerant circuit, neither of which were considered in the
present study. In the low pressure process the demethanizer loss is much
reduced as not only is the methane/ethylene separation easier at the lower
demethanizer pressure but a suitably colder methane overhead refrigeration
system is available. This lower demethanizer loss is only slightly offset
by a small extra loss infroduced by p?e-separation of the tail gas from the

demethanizer feed.



CHAPTER 8

PHYSICAL PROPERTIES CALCULATION

The present program system has depended on the CHESS(4) package
for physical property estimation., It will be remembered that the package
consists of a properties calculation routine which estimates single phase
(liquid or vapor) properties and an isothermal/adiabatic flash routine which
handles two-phase mixtures. As part of a process design program system such
a package must meet three major requirements. It must (i) be completely
reliable and (ii) be sufficiently accurate over a wide range of stream condi-
tions without (iii) consuming an excessive proportion of the overall comput-
ing time. The present application studies have covered temperature and pressure
ranges of approximately -ZSQOF to +200°F and 1 at to 40 at respectively for
canponents from hydrogen to butane. This is to the author's knowledge the
first really extensive test of the CHESS package. Over this wide span it has
in general proved most satisfactory. With one exception, described later,
the package has provided property values accurate enough to permit the
sophistication of equipment calculation necessary for realistic process design.
It is estimated that around 30% of camputation time is used in property estimation.
There have however been several areas of difficulty necessitating modification
to the original package and these are detailed below.

i) The original package used an iterative technique to establish the
(compressibility) root of the cubic equation resulting from the
Redlich-Kwong equation of state. It appeared that the wrong root
was found under some conditions so that this iterative procedure was

satisfactorily replaced by an analytical root finding routine.
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ii) Convergence procedures for dew and in particular bubble points
were not satisfactory especially as mixture critical points were
approached. This was found to be due mainly to poor initial
estimates of the composition of the other phase in equilibrium
with the stream in question and produced an incorrect bound for
the reguli-falsi iteration. The problem was sclved by introducing
an autamatic re-start procedure to be used when problems were
detected during iteration. Speed of covergence was further improved
by addition of a simple procedure for approximate estimation of
bubble and dew points from a regression equation involving mixture
pressure and average molecular weight. .
i1i) Covergence routines for the isothermal and adiabatic flash routines
also required modification. Problems stemned largely from poor
starting estimates. With thé availability of bubble and dew point
temperatures in the stream list good starting estimates were readily
obtained by interpolation between these single-phase bounds and
the resulting bounded reguli-falsi iteration scheme worked well.
iv)* In only one instance did unsatisfactory property estimation result
from deficiencies in the correlations rather than in the convergence
‘procedures. This occurred in estimation of bubble/dew points for
pure methane in the low temperature refrigeration circuit. Significantly
low dew point estimates were obtained at pressures above around 100 psia
and above 300 psia meaningful valuestcould not be obtained. The
problem, which appears to resulf from poor liquid activity coefficient

estimation, is that K values for the pure component reach a minimum

with respect to temperature which is greater than unity.
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Only one addition was made to the package. This was to allow estima-

tion of bubble and dew point pressures for a given temperature,
required in vapor recarpression and refrigeration unit calculations.
It was implemented simply by changing the iteration variable from

temperature to pressure in the bubble and dew point iteration

precedures.



CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

i) The branch and bound optimization technique has been found most
effective for the present type of discrete, sequential processing
problem. Especially with the automatic bounding problem selection
the necessary logic has been readily incorporated into the
computerized synthesis system. As was shown in the final process
application, the branch and bound concept may be employed rather
more freely in syntﬁesis problems than was originally demonstrated
by Lee et al.(lo).

ii) The incorporation of heuristic decision making into the system has
been shown to be very valuable both in reducing problem sizes and
in permitting design experience to be embodied in the logical
structure of the design system. The effectiveness of the branch
and bound/heuristic combination has been demonstrated in the evolution
of very realistic process designs. |

iii) Price-based process decomposition has been shown to be of particular

value in discrete, combinatorial synthesis problems. Not only is it
useful in limiting problem sizes by creation ofbindependent sub-processes
and subsequent detenninafion of optimal interconnections between them;

it can also be used to prevent unwanted and/or unnecessary stream

interactions between sub-processes. Integration of existing processes
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should also be possible by this method. Implementation of the
method by use of prices based on real process costs and modified

by the discount (8) parameter has been demonstrated by a rather
simple decamposition example. However the simplicity and flexibility
of the technique combined with its potential for reduction in
dimensionality and maintenance of overall process feasibility should
reconmend its application to rather more complex situations.

The synthesis program system created (OPENS) is modularly oriented
and with its stream number/equipment number based data structure

it should be readily understood and easily used by the design
engineer. However ;t must be emphasized that uqlike some comparable

simulation systems the executive program cannot be treated as a
"black box" but rather as a "hands on" system which demand
decision making and programming input from the user. This is largeiy
attributable to the equipment-dependent decisions which must be made
within the system and the variability of the heuristic set which must
be programmed into system routines. Due to the very nature of
realistic synthesis, certainly at this early stage of its development,
the same generality as has been achieved in simulation cannot be
expected., “

One feature of this study has been to elucidate further the possible
range of creative capability and levels of decision making between
simulation and synthesis. The current upper level is probably
represented by the work of Siirola and Rudd(7) on evolution of basic

processing schemes. The present OPENS s&stem has dealt with synthesis

of process equipment networks within such a pre-defined processing



scheme. A still lower level is represented by the refrigeration

unit routine vwhich essentially generates equipment networks according
to a pre-determined pattern. It has some limited decision making |
capability. At the lowest level are the familiar simulation systems
which evaluate completely pre-determined equipment configurations.

It is important to be aware of this range of approach if only to
avoid the need for unnecessary creative sophistication in solution

of any particular problem or class of problems.

9.2 Recomendations

9.2.1 Improvements to Present System

There are a number of possible areas of improvement to the present
OPENS system which may imnrove its efficiency
These areas are detailed below.
i) As has been described earlier the present system stores a minimum
of process information thus minimizing core storage but necessitating
some increase in computation time for regenerating certain information.
A particular example is the stream "history' information required
for feasibility checking. It is suggested that if such information
were retained in scme form aqd perhaps more use were made of it
than at present the samewhat involved branch and bound logic may be
able to be simplified and its efficiency improved.
ii) The whole area of heuristics warrants a considerable amount of
further study particularly if increasingly realistic process designs

are to be developed. One particularly relevant area for improvement

is that concerning the identification of dynamic problems particularly
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in process start-up and control. These probiems are particularly
difficult to forsee during the synthesis procedure but are very
important to the successful operation of any synthesized process.

In the absence of any systematic identification method a form of
heuristic decision making applied to stream matching, as used in

this study, is probably the best hope at present.

One possible direction for improvement, not just relevant to dynamic
problems, is the introduction of scoring or penalty functions for
stream matching in a manner similar to their present use in evaluating
moves in game playing(ss). Points could be awarded for both individual

stream and stream match characteristics with a certain accumulation

of points necessary for a match to be acceptable. For example reflux
streams could be penalized in comparison with product streams as
regards the possible flexibility in their usage. Matches involving
too great a degree of process feedback could be penalized from a
start-up viewpoint. Too great an entropy increase in stream exchanger
matching should also be penalized, etc. It may also be possible to
Sitrothios gome degree of automated learning with such a nurerical scale
for evaluating stream matches.

The use of the exergy concept in stream pricing may be able to be
extended in certain situatjons where an accurate, compreheﬁsive
physical cost basis is not as readily available as in the present
study. Most processes will have some associated service facilities
and although these may provide some basis points for costing, the
exergy function may still be useful for extrapolation and/or inter-

polation.
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iv) A systematic price (6) adjustment algorithm was not really required

for the applications described but should be considered for future,
more complex situations. The piecewise-constant nature of the
process optimum cost vs § function (refer to Figure 13) makes any
guarantee of optimality difficult, since the use of any finite step
in § makes it possible that solutions may be missed. However for
practical purposes the following algorithm is suggested for the
general multi-dimensional (§) case. It can be argued intuitively
and from the present computational results that the cost function
(of 6) is unimodal. Thus it is suggested that the practical & space
(say from -5 to +10 times ATmin) first be explored by grid search
using a comparatively coarse grid. The region of the indicated
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and cxplored using a p
smaller grid,continuing until the user is satisfied with the
éccuracy obtained.

The potential for interactive operation should also be explored

as the opportunity to complement the computer's computational

speed with the human designer's decision making ability should
considerably increase the power and flexibility of the system. It
should be noted that the system has been run in four separate batch
sections in this study and this has permitted a certain valuable

degree of user interaction.
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9.2.2 Extension of Applications of Present System

The present OPENS system is in principle capable of handling any
discrete, sequential processing problem which can be defined in terms of
temperature.and pressure specifications for known streams. In an attempt
to explore the wider potential of the system several process areas of applica-
tion are examined below.

i) Gas Separation Processes
The most obvious applications are to other similar low temperature
gas separation processes whether they are other ethylene plants,
natural gas plants, etc. The system should be capable of handling
such processes with little or no modification.
There is however one potential difficulty which should be examined.
The system presently handles sequential processing probléms for
which overall mass and heat balances can be made prior to the applica-
tion of the synthesis procedure, i.e., these balances must be independent
of the processing method or sequence. There are two process sections
in gas separation processes where this condition may not apply.
Firstly consider a stream (usually a feed) being ccoled in an
exchanger train with condensate being removed between cooling stages.
Then, although this situation may be regarded as a sequential process,
the mass and heat balances depend on the seguence and levels of cool- .
ing as these determine the changing flow profile through the train.
This occurs for example in demethanizer feed cooling trains as
described by King et al.(ll), and would strictly require an iterative
computation in which the effects of each cooling sequence on the

subsequent balances would need to be determined. Note that it would’
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also violate the current system requirement of constant stream
camposition, although this could be changed moderately easily.

The second situation occurs in vapor recompression condensation

of a column overhead stream. The stream is compressed in order

to be able to condense it against some other stream, usually the
same column bottom stream. However after condensation at this
increased pressure a portion of this stream will be fed back to
the column as liquid reflux. The decrease in pressure on column
entry will result in flash vaporization of a certain quantity of
liquid and this additional vapor flow is added to the existing
column overhead stream. Thus a recycle situation develops which
strictly necessitates iterative calculations. This difficulty

has been sidestepped in the present examples by settingla fixed
fraction flash-off -(10%) for the returning liquid condensate.

Air Separation Processes

The other major low temperature gas separation area is that of air
separation(36). Although these processes involve many of the

same energy recovery considerations as in ethylene plants, closer
examination shows considerable difficulties in potential appliéation
of the OPENS system. The process temperatures are rather lower
than in ethylene plants so that very high energy efficiencies are
required. In order to achieve this efficiency modern plants tend
to be extremely complex with considerable equipment specialization,
e.g., non-conventional columns, multi-fluid heat exchangers, etc.
Also, partly as a result of these factors, it may be difficult to

specify stream temperature requirements accurately in advance.
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Attainable temperatures may depend on the other process streams
available since nc service refrigerants are used. Thus it may

be difficult to define the problem adequately without prior know-
ledge of the actual final configuration. The considerations involved
in process start-up and control may also play a large part in
determining process configuration.

In view of these factors it does not appear that air separation
processes presently present a very worthwhile area for system
application. The evolutionary approach of King et al.(ll) is
probably better suited to this type of application.

High Temperature Heat Recovery Processes

Another potential area of application is to high temperature heat
ethylene plants, the reactor sections of ammonia plants and refinery
steam systems. However there are a number of difficulties here

as well,

There is again the problem of equipment specialization, as instead
of using conventional countercurrent heat exchangers, heat may

be generated and/or recovered in furnaces, boilers or even scrubbing
towers.

A major consideration in these high temperature processes is that
heat is frequently recovered by steam generation, i.e., by using
evaporating water as a heat sink (such a provision would have to

be made in the program for dealing with such systems) rather than
by process/process exchange. This has considerable advantages from

an operating flexibility viewpoint since steam can be distributed
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much more freely than can the streams that create it. However

it effectively reduces the number of interacting energy levels

to the point where the problem may not be large enough to warrant
the application of branch and bound based synthesis. In fact,
particularly in steam systems, the considerations involved in
choosing the number and magnitude of the steam levels may be
rather more important than those involved in determining system

configuration(37).

Thus the problem may often involve a mixture
of discrete and continuous decision making.
In view of the relative inflexibility in process configuration and
the equipment specialization, the design of many such process net-
works may be handled better by the type of skeleton flowsheet
generator approach as used in the refrigeration unit. éuch a
generator may serve as an objective function evaluator for the
discrete and continuous design optimization calculations. The use
of the OPENS system approach in high temperature processes should
not however be ruled out.
One related area that is worth investigating is that of multistage
evaporator networks. Batstone and Prince(6) have reported on the
design of such systems using a repetitive simulation-based approach
but it appears that the branch and bound synthesis technique may
be able to lead directly to optimal process configurations.

iv) Summary
In view of the above examinations it would appear that the OPENS type

of synthesis system does not have the breadth of usefulness that was

hoped at the ocutset of the study. liowever these are some areas that
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should at least be worth investigating. Modifications to both
executive and equipment routines may be necessary in many cases

and the application of the system to any potential area is of
course dependent on the provision of a suitable physical properties

package.

9.2.3 Wider Extensions

There are two further areas which, although beyond the scope of
the present study, may prove worthy of future investigation.
i)  The present study has gone beyond previous energy exchange network
studies in allowing for stream pressure changes. However pressure

has been regarded only as a themmal energy level modifier and the

been explored. There are a number of process areas where such energy
recovery is important, e.g., in natural gas processing. Pressure
energy is usually recovered by turbo-expanders which may at the
same time achieve required process stream cooling. The pricing of
such streams embodying pressure and/or themmal energy may provide
a further opportunity for use of the generalized exergy concept.
This may require the provision of generalized entropy calculation
within the physical properties package.

ii) It would be useful to examine the possibility §f integrating the
present energy exchange network synthesis system with the work of
Thompson and King(lz) on separation process synthesis. 'Their work

encompasses many similar principles to those used in the present

study. It includes a significant heuristic element and the optimum
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separation sequencing problem is essentially a combinatorial

one. Thus such a conbination of techniques would be a significant

step towards complete process synthesis.

The whole field of systematic, automated process synthesis has
only begun to be explored and a great deal of additional work is required
in many areas before the real creative capability of the camputer in this
field can be gauged. It is particularly important to learn which tasks can
best be accomplished by both the computer system and the human designer as

it is by such a merging of capabilities that the most efficient synthesis

methods will be evolved.
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CONTRIBUTIONS

In the author's estimation this study has made the following

contributions to engineering knowledge.

i) A flexible computer system for synthesis of optimal energy exchange
systems has been developed. It is capable of handling both stfeam
temperature and pressure demands. The development of this system
has involved:

(a) An extension and greater understanding of the branch and bound
combinatorial optimization strategy.

(b) An effective combination of branch and bound strategy with
heuristic decision making.

(c) An extension of price-oriented, Lagrange Multiplier decamposi-
tion techniques to large discrete, combinatorial process design
problems.

ii)  The usefulness of the 'modular approach' in process design has been
significantly extended by incorporating within it a creative capacity
for automated synthesis.

iii) To the author's knowledge, this study has produced the first automated,
optimal synthesis of a complex real chemical process and has thus

demonstrated the practical capabilities of the approach.

The following publications have been produced during this study:

1. "Synthesis of Optimal Energy Recovery Networks using Discrete Methods',
accepted for publication by Can. J. Ch.E.

2. "Synthesis of Optimal Energy Recovery Networks using Discrete Methods',

to be presented at the 71st National AIChE meeting, Dallas (Feb., 1972).
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’ NOMENCLATURE

a Temperature difference

D Design

f- Sub process cost function

F Overall process cost function

H Stream enthalpy

m Discrete decision variable subset
M Discrete decision variable set

N Number of processing path combinations (networks)
0 Objective function

p Stream processing path

pr Stream price function

P Stream transfer price

S Stream entropy

T Stream temperature

X Flow of transferred stream

s Stream pricing "discount'' parameter

€ Stream exergy



10.

11.

12,

13.
14,

15,

109

REFERENCES

Crowe, C. M., Hamielec, A. E., Hoffman, T. W., Johnson, As Isy
Shannon, P. T. and Woods, D. R., "Chemical Plant Simulation', Prentice
Hall (1971).

Westerberg, A. W., and Edie, F. C., "Conputer Aided Design', Chem.Eng.J.,
2, No. 1, 9 (1971).

Johnson, A. I., and Associates, 'GEMCS Manual and Application Studies',
Dept. of Chem. Eng., McMaster University, Hamilton, Ontario (1970).

Motard, R. L., Lee, H. M., Barkely, R. W., and Ingels, D. M., "CHESS,
Chemical Engineering Simulation System, System Guide', Tech. Publ.
Co.,4375 Harvest Lane, Houston, Texas (1968).

Harris, R. E., "FLOWIRAN: An Approach to Computer Aided Process Analysis
and Design Tool", Conputerized Engineering Dept., Monsanto Company (1971).

Batstone, D. B. and Prince, R. G. H., ”Computer-Aided Design and its
Application to Planning Steam Systems in Sugar Factories'', Presented
to CHEMECA '70 Conference, Melbourne and Sydney, (Aupust 1970).

Siirola, J. J. and Rudd, D. F., "Computer-Aided Synthesis of Chemical
~~~~~~~~~~~ ", I§EC Tundamentals, 10, Ne. 3, 353 (1071),

}\.{U\-C.jﬁ JJLJ‘LI 110 9 LML J.u.uucuu\,u\,u*o, eedt )
Kessler, M. G. and Parker, R. 0., '"Optimal Networks of Heat Exchange',
CEP Symp. Series, 65 No. 92, 111 (1969).

Massc, A. H. and Rudd, D. F., "The Synthesis of System Designs,
IT. Heuristic Structuring', A.I.Ch.E.J., 15, No. 1, 11 (1969).

Lee, K. F., Masso, A. H. and Rudd, D. F., "Branch and Bound Synthesis
of Integrated Process Designs', I&EC Fundamentals, 9, No. 1,48 (1970).

King, C. J., Gantz, D. W. and Barnés, F. J., "Systematic Evolutionary
Process Synthesis'', Presented to Am.Chem. Soc. Annual Mtg.,Los Angeles
(March, 1971).

Thompson, R. W. and King, C. J., "Systematic Synthesis of Separation
Schemes'’, to be presented at A. I .Ch.E. 71st National Mtg., Dallas, Texas
(February, 1872).

Lasdon, L. S., "Optimization Theory for Large Systems'', MacMillan (1970).

Brosilow, C. and Nunez, E., 'Multi-Level Optimization Applied to a
Catalytic Cracking Plant', Can. J. Chem. Eng., 46, 205 (June, 1968).

Gembicki, S, A., '"Modular Optimization of Chemical Processes', Ph.D.
Thesis, Thayer School of Engineering, Dartmouth College, Hanover, New
Hampshire (1969).



, 26

b

18.

19,

20.

21,

22,

26'

&l

28

29,

30.

31,

110

Everett, H.,''Generalized [agrange Multiplier Method for Solving Problems
of Optimal Allocation of Resources", Operations Research, 11, 399 (1963).

Ahlberg, J. H. et al., "The Theory of Splines and Their Applications',
Academic Press, New York (1967).

Tribus, M. and Evans, R. B., "Thermo-Economics of Saline Water Conversion',
16EC Proc. Des. and Dev., 4, No. 2, 195 (1965).

Chao, K. C., and Seader, J. D., "A General Correlation of Vapor-Lioguid
Equilibria in Hydrocarbon Mixtures", A.I.Ch.E.J., 7, No. 4, 598 (1961).

Grayson, H. G. and Streed, C. W., Paper 20-PD7, Sixth World Petroleum
Conference, Frankfurt (June, 1963).

Yen, L. C. and Woods, S. S., "A Generalized Equation for Computer
Calculation of Liquid Densities", A.I.Ch.E.J., 12, No. 1, 95 (1966).

Hengstebeck, R. J., "An Improved Shortcut for Calculating Difficult
Multicomponent Distillations', Chem. Eng., 76, No. 1, 115 (1969).

King, C. C., "The Low Temperature Separation of Hydrocarbons', T.I.Ch.E.,
36, 162 (1958).

Bauman, C. H., "Fundamentals of Cost Engineering in the Chemical Industry',

DimtevleaTes ™h,l? -~ FincaAn
NOLILIVLL (UL e LU (ALJUT ) .

Peters, M, S. and Timmerhaus, K. D., '"Plant Design and Economics for
Chemical Engineers', 2nd Ed., McGraw-Hill (1968).

Hand, W. E., "From Flowsheet to Cost Estimate', Petr. Ref., 37, No. 9,
331 (1958).

Clancy, G. M. and Townsend, R. W., "Ethylene Plant Fractionation",
CEP, 67, No. 2, 41 (1971).

Aalund, L., '"Houston's Big Ethylene Plant Marks a New Era in Olefins'',
0il and Gas J., 158, (Nov. 20, 1967).

Charlesworth, P. L., '"The Production of Light Olefins", Brit. Chenm.
Eng., 10, No. 12, 834 (1965).

Baldus, H. and Linde, G., '"Tieftemperaturzerlegung Kohlenwasserstoffreicher
Gase zur Gewinnung Von Athylen und Propylen', Kaltetechnik, 15, No. 6,
158 (1963). o

Brooks, K. W., "Low-Temperature Separation for Ethylene Recovery",

0il and Gas J., 70 (Dec. 21, 1964).



K0

L5

34,

K1

56.
37,

111
Ruhemann, M. and Charlesworth, P. L., "The Thermodynamic Efficiency

of Gas Separation Plants", Brit. Chem. Eng., 11, No. 8, 839 (1966).

Haselden, G. G., "An Approach to Minimum Power Consumption in Low
Temperature Gas Separation", T.I.Ch.E., 36, 162 (1958).

Perry, J. H. (Ed.), "Chemical Engineers' Handbook', 4th Ed.,p. 18.25
(1963).

Dale, E. and Michie, D. (Eds.), 'Machine Intelligence 2', Am. Elsevier
Publ. Co. (1968).

Latimer, R. E., 'Distillation of Air'", CEP, 63, No. 2, 35 (1967).

Arnstein, R. and O'Connell, L., 'What's the Optimum Heat Cycle for
Process Utilities', Hydr. Proc., 47 No. 6, 88 (1968).



APPENDICES



APPENDIX I
DERIVATIONS

I.1 Stream Energy Value Integration

From equation 14, section 3.3, the value of any stream between

tenperature limits T, and T, is given by the integration

Y

p = f pr(e + 8) (5 (1.1)
b))

The function pr is defined by a known cubic spline in T and the
value and sign of the § parameter are known. H is the stream enthalpy.

The integration range is first divided into its various phase
regions (liquid, two-phase and vapor). Over each region it may be assumed
that the differential dH/dT, which is actually the stream specific heat, is
approximately constant, i.e. H is a linear function of T. Then for each phase

segment the integration, between limits A and B, becomes

PAB =

Tp

Mg f pr(8 * §)de (1.2)

T )
A

This function can then be integrated numerically using Simpson's

Rule, as follows:

1 Tyt Ty
Pag = §iHpp [Pr(Ty * 8) + dpr( == £ 8) + pr(Ty £ 8)1  (1.3)
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The contributions of each phase segment can then be assumed to

give the total stream value.
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1.2 Approximate Expression for Heat Exchanger Entropy Increase

TJ 1

7] o!

m \i L %
Q

Consider the heat transfer between an infinite source and sink,
1 and 2, as shown above. The mean temperature is Ty and the temperature
driving force for exchange is a. The entropy change for the process for

transfer AQ is given by:

AS = -4AQ +AQ
T, 1,
(I.4)
- - AQ ¢ 4Q
Tts T g

Expressed on a per unit heat transfer basis the expression becomes:

AS | -1 o+ 1 (I.5)
AQ Li*a T,.-a
M > M >
which simplifies to
AS | ___a | (1.6)
A0 TMZ' ﬂi
4

and since the temperature difference, a, will be much smaller than the absolute

temperature TM’ then
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AS F a
AQ 2
By

(1.7)

In the more general case where temperatures are not constant through-

out the exchange process the expression, I.7, remains a useful approximation.



APPENDIX II
PROGRAM SYSTEM

ITI.1 Program Descriptions and Listings

The OPENS program system is presently run in four sections, both for
greater operating flexibility and reduced central memory requirement. Each of
these sections has a main program, primarily for data input purposes, which
then calls a series of subroutines to carry out the appropriate system func-

tions. The program make-up of the four sections is detailed below.

A Task Identification (Column Calculation) MAINC

COLSYS, STMOVC
B Stream Processing Path Generation MAINS

SMATCH, STMOVS, SHIST
C Selection of Optimal Network Configuration MAINB

ENERGY

BRBND, (STMOVS, SHIST)
D Refrigeration Unit MAINR

RUNIT, STMOVR

There are two further groups of subroutines, those for physical prop-
erties calculation and handling, and those for equipment calculation. They

are listed below.

E Physical Properties PROPL, KHZT, FLASH, ZERO, ZEROI

116
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F Equipment Routines (FLASH)
DIST

HXER

COMP

SPLIT

SPLINE, SVALUE, INTER

Note that the flash routine, FLASH, serves both as a two-phase
properties estimation routine and as an equipment routine for adiabatic expan-
sion and mixing.

The final three routines above (SPLINE, SVALUE and INTER) are all
involved with the spline-based stream pricing scheme.

Brief program descriptions and full listings follow in the order
detailed above.

The programs are set up as for the‘high pressure process case study
and on the few occasions where statements are specific to that particular study

this is indicated by "HP" in the card identification field (columns 73, 74).
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A TASK IDENTIFICATION

MAINC reads the input data for this section. It also performs the
initialization functions of pre-zeroing appropriate matrices and computing
input stream bubble and dew point temperatures and enthalpies.

COLSYS is the simulation-type executive for column system calcu-
lation. It computes the specified column configuration (coded in process
matrix form) in sequence, performing an overall mass and heat balance and
computing flows and properties for intermediate and output streams. Streams
with unsatisfied pressure, phase and temperature demands are identified by
comparing their properties with supplied specifications. Any phase spec-
ifications are converted into corresponding temperature specifications.
Streams are classified as either "hot" or 'cold" (requiring cooling or heating)
for laﬁer stream matching purposes. In addition to dealing with supplied
strean specifications, two special demands are automatically created for each
column, those for overhead and bottom reflux generation. The program finally
produces a punched deck of stream specifications and properties which serves
as input to the following stream processing path generation section.

SIMOVC is the stream handling utility routine which moves stream

properties information between the stream matrices and working vectors.
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AM PROCESSING PATH GENERATION

MAINS reads the input data for this section. This data consists

of the stream specification and properties information from the prev-
ction.

SMATCH is the routine which generates the set of processing paths
ment sequences for all primary streams. A description of its function
1 given in section 4.2.2 and will not be repeated here. Instead a

a1l algorithm is given in Figure II.1. There are several points of

tion which should be noted.

All pressure specifications (excluding vapor recompression, which
is not actually a pressure specification) are met before proceeding
with stream matching for satisfying temperature specifications.

The maior use of stream matching héuristics is in rejecting '"'type-
infeasible' matches as indicated in Figure II.1. Some use is also
made of heuristics in screening for vapor recompression matches.

A C++++ card in the program listing indicates the use of heuristics.
The test for match infeasibility due to multiple stream use is made
using the SHIST stream history subroutine which is described below.
The major output from SMATCH is in the form of stregam, stream pro-

path and equipment information which jointly define all possible process

equipment network configurations. These data serve as input to the following

section

| c.

SIMOVS is the version of the stream handling utility routine for

this and the following section.

streams

SHIST is the routine which generates ''stream histories' (list of

used in producing a given stream) which are used in identifying match
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infeasibility due to multiple stream use. These histories are generated from

information in the stream, stream processing path and equipment arrays.




DO 50 ALL STREAM
PRESSURE SPECTFICATIONS

{
SELECT APPROPRIATE
EQUTPMENT
= . 400
110 X
DO 200/201 STREAM MATCHING
FOR TEMPERATURE SPECTFICATIONS
PRE - SCREEN
—(N)< BY HFURISTICS
-1 MATCH "TYPE
/\INFFASIBLF"?
< (N PROCESS/ 4
MULTIPLE
STREAM USE?
1S
MATCH .
TECHNICALLY Y
WIBLE? !
| B /l |
VAPOR-
N RECOMPRESSION L/ 1
RSLBLES SELECT APPROPRIATE
EQUIPMENT
[ 400
\/;X
200)}-=
7

Figure II.1

110

ANY NEW
RESIDUAL

N STREAMS?

WRITE
‘OUTPUT
DATA

RETURN

SMATCH Algorithm (Contimued on page 130).
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I
400 Y

COMPUTE SELECTED
EQUIPMENT

/
MAKE ENTRIES IN
EQUIPMENT AND
STREAM PROCESS-
ING PATIHi ARRAYS

OUTPUT
STREAM TEMP,
SPECTFICATION
MET?

Loy

|

CREATE + LOAD 50/200
NEW RESIDUAL STREAM ' T

Figure 11.1 SMATCH Algorithm (Continued).

130



151

O *
wi (6
a: o
< e o o
- ~ <
* [se) (2’ - @
- o— QO - a
> ~0n < N o.
Q (o o TS T - a
pd - Q o <
Lol O Q w0 'S
] wao o - L
n e I r~ =
T8 Q—~ « —~ N
o <w I s8] (V]
<L &~ = e o -
- ~L M () v
- cow O = )
~ ~ ) - S L
o 2L U0 - %)
o == v — >
— <L e o [gV] i
] o~ ) - -«
= o~ I n -
M ~ <L o [¥p] - «
2 U— v I [ee} -
(. >0 = - ~— <
- < » o« Q. << i —
= At~ - Z % o W — i
o ~0 C o (&) -~ - a. ®
(@) W— = -~ = (o) = = ©
— —-F U O ) ~ — V) @) u
] O o« « - ped & - ) -
— a-QO = - —~ < - = — —~ O ™
e Tt = L o~ L — << %) —~ ~I~ Z ¢
a Qe~ O ~ — < - o QO & N~ o r~
= U~ & <« = 0 = V) o~ wi e e~ — — LE
= QW~— +— QO ) — L Z un - ~ il o i > -
(@] Z—— < Z = ” « Z Z O ~ w 1 S J | Y - — wi o
- W = O~ F e~ @ v o O J = & - & deQ - (V0 | .
~ A = ~O e« O ~ X = — < -~ o) -~ - Z o
o DL & O —~ O a E B = 4 W (0.4 ~N ~MO =\ Ww = —
o Qe~ U O~ N i O~ ¢ U A <« ¥ < Ve M eZ O e > ~w
— Z~®0 ¥ (N> ~— o XU = e T U e a. a4 a7 o) e wd Y w —
1] ~e~— T eU X O o0 @ a X = -~ L N e MDe~ u = e ®—
_— % OZ~1T e W4 W ™ el O E O U ¥ = Vv —~ e_J e_jj N £ 0 e
D> % A=A = - V) - ~e 3T O WL > = W Z M A~ e~ —_— z -~ —~l
Az %% ~Z2ZgL ¥ T e Z T wa <« VU Z I = w'ay Z ~ ~d ~—~@ e~ =X C = —~0 L
Z3 Xepn e Q > Z U ~O N O — Qoo w B U « ¥ I QI~VYOa-~I — [TalC I
D M WIS~ T oW ~ = we - 2 =a - - <(X> @ O TV TU— a3 XU 2> X X
-0 W ULZOo~ o4 —~~UW O ) N = =00 = — =)~ a Z UVUE US-NHO0OXX <<l TN~ ~
NI W =NU—-ON DZ NN e Z—— 4 0O Z ZuX — - L = OZ ZZZVNZITUX eV IV & lal - e e N\
Z0 0O NINE—ZT N\Z-— «T Q — ¥ = wW-—~woa =N ~U— ) +Z I ZUV—ZN—X~0 —~~— wZao WD e~ —
— ——A>AOC T J0xXoU W < O Z0aZZ~— ~e ~(~Ld L~N~Z—~Z— e Z N~ O—~—=T N e eOOO N
<0 Z CZ20CIXX—LIaHE O U v 0OZQ e~ WO~ CIHNOXX N o e~ e~N~0 & «O N~ N0 00—
S< O WO eI(XIWSZ ol VUZZ NN 00— 10O~ FO0OWd ITOA——A—~MO—NOMI—=DOM xOMk Wl g<<Oo
= X WL~ Qo OoOZoZ OWw FHk SUSHME e o< —Z0 UINS I el eUN & el W7 ONMMS 00—
S e T ONNNO~ANFFNNU ~— r—_ UV O e0r ¢ meeaxXCUlelle ST oav/NDH e WD o0 eZ =YD We el we—wwww—
L~ O ZZZ—DVZ «¢ZZ ZXZ WO e UNU N O~ U. 0D N Z O~ O~ —~—2Z XN bbb e
x>dD U 000.1—-0xoovwOIO VZ> Je.d ~ O~ —~0O W ~ - —~OZO0~ WO~ U~ il O Xl — G -G -G -¢ - ¢ 4
oa S 2 UDSHZTZTZSUE W= Wi QO00~0 20oWJ-O0O000 QoMo Qo=Z0TIFE- 0003 SS S35 555
Ob= ¥ 25 QUTNSISIIETI Nt ST LT C T T—LAIAL A< 2 <~ <=0 U—Z dI<Jd ey
x> X O000aANOCOO0OJOVO% Z—0 «add WWwoOW wuu Couiuwiy WuoZowxowxrw J103x0 wuwwd O00Cco0oCcozT
ado x CVUuUU U LVUVUnuU Uk =QOW Z Z o cCoe—~UR0XrYy XeoZOox=z0ox:xXu o3y oo wluwubuly
~—t —N ~ — —
(@] —0\ (5] OO ~—=S NN C —In
i s} agFn —~OMNMOOC
* —r—
F'3
(AL v (A LU UV L) U LU (A



154

w
Vo
20 =
Wl = 9
no O - 1
Wy = o>
a4 v v Od—~w
aN 2Z J %) ZOu
<< < Lt OOZ
+e QO D n Ll —
X B8 O > e O
Wik= Ul e — s =< V) V)
(i ) %) < = ui
S0 & k) = W B
- = B L -0
L - wi Z noxw
o n < - = —l Qo
wI oD (a8)] X
oV < v — e &
w— 0O < %) Q> i<
— < w (&) eI JW
@ a VSRS g
>U) > ~ woern -
L m v - P-d > <
n < < w ——>=0 e
— » Z~ W w —-Zm o~
Y O W w o O~ !
< Z~W N U << > 'S
wnwy <<O>-=w v) LS
T i—x Z eOUNITLOD
O, W=z — ! O =<
QO O0m+ w o O
sl >= @ | <{+—-_d —~
no wrwne o = @ ¥ [al1%] w M =
wow ooww @) Oul ° W w ()
&) 201 Z - O v O<w ! wWo 0 L
=z AU Wi Y = Y Z Ik O w = )
w+ I>H= ) OO 1w >wi =
D U< — w o 2= o> i - =<
(&) = e Zx W U <<WeA—=xwd <<Q
Wk w2 > ca v Wz uw> ouwa L] () ud >
no. xows m —> D >~ 1 OUV> U U X uizz
I SOw—d< =0 Wik=— == i < - O
- mwuuuow O <V W dxunouwxo | A~ F L=
= NU) ==~ U Xw x O «ocooom v —a0)
wi. wwonv = wy < ¢n>Z2> DD ) i (Vo] €]
SO o~ <« (U] ~ =T Wy Wil ) <Ld
0. a0 >3 =y v Z>a9N 0o xa wosz @ wag
L rtp- oV =<y W OxloWwIZI~aEZ DUV WO VU< (L
VU DWw dO ET Fuwduan J UCZ5GCT < Vv <= W I O =it
- GV JuJ UVUlFr-d<g<uWwg DO O o lLiLLILD QL Xxorog<we oo
<< << JduW CSUVMEXD> X S—~UFX eNXWWSE uwuvun=rxa<ii)
= < W< WU N | X dud <<V
v NYW = Weeeee O LWANCN-—ULA M (o e 0 ¢ 0 0 e
Y WY NS W o2 = <C AN NN
W <O =l < Z k- e 0 0o 0 o o0 Z
=z L LW O VNS o~ D
- V=IOV v — o
- Wy —=—Q = W (%5] i (A
D =0 - Ud3Z> %) |
O D L0 D < < <t
o NZUW - i T U
(s« T ") I~ N | 1 N U R—
= O ey e W X = <
v U0 ~ON+ W a v =

LULULLLULULLLLLULULLLULLLLLLLUVLLOLLLLLULULVLLULLLULLULVLULULLOLOLU

-~ i
] W)
uJ o
s =1
(] @]
- )
<C
= -
(@]
%] i
) —
i >
& =0
(@] < W
. wl
Q. oo
) ~ )
%] =2
%] Vs
w D~
(W] -
O oW
x N
o U >
[alloXa)
O> W<
——Ouwa
— ey =
> Swouw I
A UZ = o
Z DX —~ -
Ot - <
v >w =
><axa J
~SWIEOZ Tl
Qe U
a2 —<C
LrD>Z X <
w<< =4O
nwI | = ul
1O X (s >
N <Ty) O
~-—ZZ0Zauw
O W=
| JONVWEZ>Z
CWOUVON—

OXXuwx o\
wid wWw—-00
Z0U il
UlaxX X <l
WO>wWoo>u
S

Ui e o e e o o
AN N0

NC4)sTINCL) sPINCL4) sHIN(LG)}sVFIN(G) sTMIN(G) s
NSM(2) s SMCHA(835092) s SMCHB (7950352 9

BPOUT (4) sDPOUT(4) s TOUT(4) sPOUT(4)sHOUT(4)sVFOUT (4) s
M/ AMORT s HRS s TWAT sDTW o CWAT s TSosHVS s CS9sCKWHsAPPP s APRR

%)}
s
[
Q.
=
-
(@]
o
a ~
= b
(®) -
O <
Q Q.
zZ Zz
LS o~ N -
b —~0 o O
= O~ —~ O
O~ O~ N ~
Z e N> o~ -
—_ e - el x [Te}
OZ~ = -~ [~ TN I VO Y
—— 0~ e 2 —~X V) =~
—~Z g « e Z T
@ & D~ «© > Z U
—waozZ ~ <t e 3
b Z e - ot ~—~W
—N\N\Q = NDZ NN e
ZNARm NOZ: NN Z- e
O\ =X« ITIJ0XxoU
2L DZ D =L o+
SWOCH~O~<Y WS Z » W
cuoungunIaxoxozZzoz
UNNNN eN—NENNU  —
ClZZNIZrZ 0o ZZ ZTXKZ
COOO~0D0xCONOIO
¥EEFSSZZS0O0SESIZSUS
T XSS SSseoso2> A3 35
* OCOCXO—OCOO JCNO
x» DOULVU U U waou v
~— i — —i
s
%
(U]

|

s JSTPI(2)

[}
)

g? JCHA(192)) s (JACT s JCHA(193) ) s
PRMAX sRDTMX s VRTMX /46 3506 360/

|
A



133

JPATH + NPATH ARRAYS
SET INACTIVE FLAG FOR INPUT STREAM

3 U I I I JE 3 I 3 3 0 36 3 36 336363 3 3 3 KK

2 COoLD)

1 HOT

3¢

(KCH

)
89J5sKCH)

s JSsKCHsKPR)
POSSIBLE HEAT EXCHANGE MATCHES

R R e R R S R & R R S
LOAD STREAM JS INTO INPUT NI

COUNTERS -~ SCAN ACROSS C FOR EACH H

MATCH BEEN COMPUTED BEFORE

i
|
X 3
O b3
) B =
—~ar ° <C
* —~ w
Pty ) it @
~ Z — —
~ O B = %]
X~ — (©
Q. —~ - V4 —
v Z1 < o =
Q =X () ) o
TS — - —
—~7 w Lk =
o) —~— ot — — N0 o
(ORI S L —~ — O~
Z s L ~ ~ <l » s o
D Qe Q 2z ZVTO
u M- n) — —ZUn o
~ -~ ) Q<3 & —
— =0 (@) w I Tnn 2
Z xZ N—~% (X o wny ~ C uJ
u nZ CO%x D - ul —~ w (%]
= XI¥ ~ODk U =z Y uj~~—~ Q
W o o ok U) — 2 QCre—~ o <
F aa TOU%x Wi s ~——~ < (@]
wN=z" —Uk o2 [Vo3%) - ~0Z~+~ I O ]
Ui LI Q N~Z7 — e V)
<< ON~ —~ a =k -~ «TZ O ~0 0Z <« (@]
2INTET D—x  dH —U e X = ~ ol oe— _J e —
avnuuv ——k N e—<t I uoxuwa W
¥ e iy T CO%x «r™~ T—nwunu O WwWwHZi L QO
——- e [ads 4 -« UZWVNXXDNM ~A00 V) o) U ono
QoYX owwXk >0 MU I G VUVLUVNVNW — O o i <
ZaQ NN~ -t 2 Ve~~~ Z Qe = gG~-CO~Z
X T X X NWY) OZ0 e VO N Xoroa < HHNOO
Welaesr QO dbk =W NN O~ —=— A A0~ = JUW |~
OF=NZ T A% b V) CZTHV W~ —— @ JUKLC.ZUV
e ZE e} << OZ200R0U[ oL TIT O <<TO~=00
< VUZ9d-DOH <O

O ZUUX N~ OZOQ D)= ZC<OA =

GO TO COMPRESSION ROUTINE

COMPRESSION
20 GO TO 450

COMPUTE ALL

C %3 % % % %5 %

C
Cr¥*

CH*¥
(&

C
C



oo [eWaRaN
IXX 23 N g

HP

Q
1]
H —~
)] Z o
M w Z i
— T = U
J i il
- o &
< . ~
= < oz
> w
w w
il o o
s8]
— - L
(%2 —
< i =
)~ w 1 —
oL e w X H
(@) = o = 1
I — — Z () o
(@ V4 | o ~ = o
o w I w = =z o~
o >T | o (@] o < ~
= ! > - 00 L & o
o OZ - onN - W -
- Z %2 o o C «~ (%] —
—l Z ~ o — O i G O << (@]
o 3= o « N U N NN O = e
D o — - —t w W >+ I
O~ = = O X QJ 0O - -~
-~ =~ v O @] w = 9 e ZO VO — s —
o w - — xw - COWU = — e
o onN ] wo O« w - — w
o - w O (@] OQIVVUVXE o)~ %] > = =
v Z0 o o O O 0w ~wo | w - °
° —t O ~ T DU e e T (ole] ZOO %] =
i = NZ v o~ — G R R e e e o ) woo olole] wi —
=i [@X ] Z 1Z ~ | OO ZZ o o< M>OO0 NN [gUiaN} o ~
° w Qo> 1O | O —~ O —~Z o ® <C (04 w o a4
V) zZ0 —— jr—~d o [-NUOO ZWWIWO ouwuvuI T O0DO00a VOO - Q.
= —_ I © - L I—=NC 1O N WU e olld FNZZ OO t=— o o o << Z
< (@) LA o ¥/ <OW O~ | O W~~~ O ZZ2 | —y) = L = w =w °
e JU TV ¥ o~ SO W e U D~C— X o> o o (eolele) %)) (e]e]e] (%) v 0
€Y @] =Z | [a I JOL 1 Z 00 voNnatNw OomoOo ouLseow o nov o e Z
Z e ZZ o O O O~~~ | We=Z Z0-+—~ V- d~+— Z ZZ X b= <C < D <
< - (T} N o~ o ey v Z | e INAD>ZZ =< < (V) ~—0 () oL~~~ o * O o
° Z V) e N Z e | O e 1O OO Wk N i1itr o< o o Z OO0~ ol OO~ s vy e
o O _ N Z O —O e | O | Z2~00 xyuuxu.N ~HNN Z O e a0 u o e =z 4
O VO = O O wao v O <o QAXOIC>O o e o * LSOO 4 (@] aw (@) Zx oa
i o b~ o~ - el [b=——~ e | @ 86—~~~ Dk A WNONOT —~<Twiiy - ow=z = * O wa
= TZ ety 4 s O~ o <N | O O~~~ W sl = O> e e+ — e e w oL
o L—T oo eNHUN X~ |3 o0 | 6D e ¢ UNDSrilrd 6~ o o <C 0T e~ o dem o = ~g
w W VUCC =) eded =—F e | WOO b= el 1 ~ ~ N~ —~—~0 W QO+rX OO <N OO0 a0 i+
o XM Ji- i —OZ2~-2ZW 1VZWO 10> Jd FEAXZXTDHODOH—NN X W ——Ww NO > —-— NO W ~ =
s O e O e0 o~ 1A YO~ |+ oo | o 8 ¢ UVO—CH=0O ~Q~~—r— o | o X < xo & Kl O
e HO WIOIIIIw— er—Z VUULUAZ } b LT | TWT O —Ju_itu.JOa-aa V) T =TI = | —~-NO Z <t =
Z > NV ZZNZO00 b= | i ZZ0 | Z2VNZZ EI)ud> N30 > 3 TR Up) nHoN—=OO Lo VO V> Uk
-~ & < | S = § i L R VAV RV E e e R e BB L--4--d i I -l B~ S ST - f i M T N S o W~ & o T L [ T R TV e RO I I ] - I I | O
~ W < ~—~II-Z—-TV) V~-—=2Z Wy~ |v—ww LWN—-u-) —~—-— - ~lw—e—_JuanNym e O e N N[V - =<
w U ooouL~u—LuUNoWLLO Jlouud il IT—u—u~=0CuLouLu O O WL-LLILICONUVC CLLILCCNVNO O w=0
=L IO Z =) ot O = V) | D= | it Sk Q= O = QL= O U =)= UZ = 0 o= Z =IO T =t
I |
n O i | — + o ™ + [Tg) (@) o
— o ] I o + ~N o + o (39 &
— (] |~ + — — <+ % ~— — * —
it i + % Kk X * + % b3 b3 sk
() (GLL) () VUV v LvLVLY C v v VLY U (V) L% (ORVIULIW)



135

- |
L
>
O w
w o |
O
wi vl
wi —
| XL X
> - Qa
58] <
B =
n -~ w
— — (45
> o~ <<
-~ - > )
> & i =
= O .
— (a4 =
ouwl S N < (@]
(s o n O ~uU W Q
~ <{ — O ~=U o 24 o
= O o~ Z -
Ll O X Z Z 0= - @]
o O> O — e - << = -
o Zom O =l () il - <L
N <C [a\] O J — Z ~ i A ikl (@]
T+ O w ~ Z> Q- [ e (O]
O ™~ v O > (e < —) ——
— V) ~ uw O 2 - ~ ) g
~ a xX d U wol Ll - -
(@) o >0 = olid w < i O nzz ~N
oW On w409 — 1 = Z— — O -
o ~Q =10 e T RS | =) >N I= g |
-~ << < -~ X << D L Cxow ~O= ~
O O~ O+ o QX —O~ s > ~« 381 —l—— ~ «O -
N = O S <<= - << ~0O = v X O—~u n
— — < O w ws e -3 —_ W I wioo <9 —
oo ~=2 O v = <OQ Xl ~ (%) owl D0k-= I~ I
O O+ <t W O waov+ ~Z0 >+ O =l o0 v Uno -
- < = <C b= << O~ Lud < <<V DO =T °
~F O O O Ww w—= W~y Jd> O = VUKD %Z ]
O OF o << _J A 100 - O-Xuw>roe J ~ <) N aU) '8
O e~ I O =<t o WX | OWi - = wa-~ |I—w °
SGe VI ud O D2ZOC ¢ WW—~ J~Z O < | w OgC v — O~
~ Ul QO - codwi— UF—~0Z~W + wi ZX e tiN~—-X —— i
o o J ~O + —) oD X |~ e vy —Or-X %~ O & » e
o ~ o ~—~HUIL (@} V) ~ e uw~Z ~XQa O = - LW D=~ =~ — i
g O~ ~ =2Bx OO <l g~ = Z U~ OO WNZ Q eN Il DNV —~—1l |I~
W s~ Udk=uw NO W~ X pmrmp—T  (NO — Ob=2> D= it = (Nt D=
o @~ L)X < (a3 ~ EZNI <O I v LoctzY ZIT -~ n
U -Z aZ~InNnZ QA Z NN WS Z VpNa'd Whoow—y)  nNoO O~
Zxlu —~onnO—~ 11 OO NDUL—OOF——inD 10 W ~MUWU>On™D VI TOvI
Zldrmib= b= o~ U~ L l 2R WU = UV) BUX=O I IO ZZ AT
~ e N2 U Lp=t= D= =0 =X ~ MU OZ Mullls-g F—_Jwhn ~
L b N LIICCNO Wwiwu g vttt oL <O 0O OI L uwounadI ~NOOW
o o [QVENE o O [ve] (@)
g n non %* [Tal n O
— — - - %k - — —
3 S * >
v v v LLLVL O () o ¥ VLV VL L o

T
O
L
(®)
[0
a
[N
<
i O
V] -
<C
(©) >
(nal i
s
Q >
3 < ea}
b= Z D
[ = — ud
-~ = — = %}
o =
VO Lt Q. - Q
fado\] > << O =
| — K L
Qo O] = o' o
V- O wi
o O — L -
—O i %) - <
o ¥ I ! (Vp)
I =0 &= -~ I
~O— ul = = >
xomn %] ~ Sal
O o/ — Z pv4 Z
uLcCoo w — V) @
Wi o W - w
Y +— e~ (¢ H 2 =z
x a—~ w w - (W] <<
X Wrd> e N~ o
<L U~k—> U B + O U
o XA w - — |
Z wJu a X s >
— = U= V) Ui~ V-~0Oxo
> D= THXO C<—~Fliliey
O X er— e O wr~ ON U W
< COND W e X~0O< | O
S2NZ 2 o OO IO
—~— O<< O O——0O o0 0O W
LN~ oL e =1 D= Ce~—D0O+
V) x~UX Z w o ~Z>WO
O XXZ <L— = OCZO Fri— vy I
Z —ZF 3 QuW—O N-ZIna~U
i oh———Q Q. { o w—o— O<
(= ol I ood @ D ¢ o ~——e~ NOC & O
A=~ O e U) = OO O~ OO0
= ord Ul i T eMZ o 200
WE—~—-xOwJd Ol xC~0O0C uvZOUD e
JONZO eX o = NWU — eOF=> <L
ZL--uLZ Z L | elly ¢ W0 OOUX
—HZ =A— I OO Y < Wwa
=M~~~ DO tOoOu—~0 D JxHnd
———2ZU0>0 ArrMNZ—T e~ QA0 UWL—
U S ~— ~— M U (O~~~ ~— MA(WR:\T
waouwrITunue OO0~ L S TR @ I T iT
L= QU= U0V = YU | =)
o <
No) o)
— —~
%
(V1) v VU VU (AW WL W



136

COUNT REJECTIONS BY CATEGORY

-
Z
(%5} W
= i
< 1
ul &
& o
- b— =
(%] = (@]
= v
= w
= zZ
o (&) O
- .
2D (%] © .
=) = ) u.
< o
O wi - |
< x <C T
O - v)
s ) o <
) -
. + ui X < W
— @) - O
= . a4 (@] e d (@)
Q. s =2 m oa -
<C <t O o W
* - v - << v w
= o ) O &, =2 .2
(&) — <Z L -z v O
— v) <C —t (%]
%] VF] [0 g 4 [ wl ([@> w =
{ & Wi s wal AN (28 x O =
-~ i — [ae] 00O I8} Qa J <
= lad [ST)) < — oo —> w w
~ O — ) = %] >l =l (a4
= w T8]ad %2 Q0O P < Qa =
— (o 3 > (®) = L o V< %)
- - w) Do Q. X w —_ >
1] W) —d N O QO >< w - -
~ w > onwN - OO = e o o4 — Z 58}
i) — o 10 oV IaNIoY] ®; N—O o o -
| o O NO O Z ~~ WQOF - J W -
™ B N N oOoNOWw aQ i~ e > < L Z 2D
~ Suw N U V) omo ~C < wouw - O~
b a o <O o -0 35} o e LU~ ) > N <C = 4
78} — - wZ OOV O ww VN ~0. O w D -
| ol D +— O =z 40 Z-<g (¢ = e nox ~0O0 OZ
(& 1%] Z O o vV~ < o ¢ W< e DU <<~V O LWw—
- wo O VO uwx 0LV~ <« it i XX o n o=z Z - a
v < — < O el = o - Wi w L~ o Z NOw— OZ Um
— oo vy o~ >ul —~O M- e e L ey U e Wy —~ «O Wi
= << .J V O XX ~rie . A8} o0 w~2D e~ T P~ UG e— A~
Q. O L o g O W—Zh ) ZZ ——Y) NZXZ L~Lr— oU) Ut
< O x o =w ¢ COCO < <L O-—-v) -—Q.Z U oY &) -
(QV] ° — QA W — N el e 8 ol o} e e — Ll o e~ Ol -l ax
LR = > n = e XX ¢ o~ ~ a e -~ Q0 QADUE~~UX—=D>>0 ¢ ~w—XX W
o e I ¥ O O —~ QA e~Di— e~ ~ D=~—~00 T IAFA~OLO—-O0IdILZCOVA Wy
Ik e Waxxoo U n T~~~ i~~~ e ¢ v —~0) ¢~V N—W——0OZO0O— 11 Z o
AN~ NWNO W ~ IO~V U OO US~WIW A Z 2N o0 e o VO ~ZUulO
| B —_—x g X X = ~Qut-w ~ UWIZF I XQOQrmr=+ LHOQH I eNNOADSDUITZT~1H O~
ON—n + I =Z — QWm0 O O Z0 irs 0 ¢ XLlUrQ.o~—~Q~—~—~DW WV W ~Z
Vil VOO ¥ w O ~MMUOBVIV UnN—NaQ—r— O Hileded W~ X= O0ZUNCO
—SZOo0UH I d= O - NeZD0 WNFFOQF- X2~ -0V A 0O Jdl-+— W—~T+
O~V NIy A ~ WL ~wrw—-Z— =3 HUHNH s~ QA-NAKIZIZ I=-ZZ2W~_J 01 =-0Z0
O~ <ONCUO « LWL xIouuu << WO=—Xoaau W QLU Il JIX<OCULW=—~XO
OUZ=— U0 > =~ | Qo= YO OQMr~ < ==A -0 UR~A0—~<VOOOON—DIWO
NoYeo) O+ — + o o
ogve] I 2 P~ + [Tq) g
i ¢ — - + o + —i
* % + % + % E I + * ES
V) VLUV VUV O VoVuv U v (S D) v v v UL

=MREJ(NREJ)+1
3YJIN«NREJY

)
Ei

C*¥%



137

v)
- |
<<
s |
@]
—
9p]
§%}
Y
=
XX ul
v oz
=
w
Z O
L R
(o
voow
e PP
2 2
o QO
Lr =
n O ~
x v a.Q
Z ==
~ + QO )
— (Wi} -
- == WO~
= w @ o IS —~ o~
(9p] - ~r— ~ N o e
= & I o a o —~\0\0 o
=z = —— ot et et z = O e e [Te} Ta
cOC —t et bt bk et - - O — — —
—~r~0) o e L N 1 — No N - -
~\0 — o~~~ o~ [¥p)] Q. (0% —~ Ot — - —~
) - = =& i 5 Wl ) S 5 o Z Z U) O nool
4 = Ow 28%) (O VOV - it L ~ee —
< N—Z =z oD B ) Q. — = = W~ — -
oD 2z * =22 - o o o e o b — — QA A0 S -
[a) ZOr % - - i mininie) + o e Z =D -~
— «OLJ K [afa's « o "~ m emem v (Y e e LAV
[Vp] ) (V] b3 il et bt Pt bt Pt bt T g — TE - -
o XO = b3 =22 ~— — e T M~ ~ O ~~—— —
= e * ZzZ XXX <<Om & T T .= o1 1T St
= NN OV *) " - s i TT LI ~ ~F F—NWL Or+— II I I
w TooLwo %k XX o oV VOV L LI <O~ oL VOUOTUV U
Z Z2ZU sl Xk (aWaW =5 ==X +0U LA AT~ Caa IEJUS T
EZ < ~— 3 ZZN Zunv) Znununy N~~~ Z Z*« WO W W
w 11z H LZ OnZ rse o it St e T ows S| o ZZUl~ ~
O S} K S e e e T 22 aiabom o o PO L O o o (1 (L o8 o S ioms, oo, N BN
~NIT XOC 3 QOO HU «ONNO U st(NNIT JO HOHANIAOCOD HIMNALDDD00 «NON
O ——r~ZU ¥ VOOINASAODIANNNNY T eZ «ZOWD i~MHO D000 —inwn
Z ZZIM~4+ NNO¥  OOVVU~ I OO0~ [ O0V0VO0 UrAZ ~ZCO0Q XX 00000 i 00O
N e« TOU X —i% e e e s oS T e e e e e & ¢ 6 )T | & & & & &)/ & & &
W ZZOWN_LZZ~% OO0 QA DOYV) OVOOVWOD DMNZZLCYVO OO VXCOVOVWO VO
= ZZ-0OZZ ¥ ——~NZO—-—w—-ZO————— [(SYalatalald Sb Jw i -apiod g O~ ~—w—Z
= ntwZ 0Ok WHWNZHwWwwZNwwiuwin ==l g == W o w il oF
QA T U~ LWONNFX OOl O~~~ QOitil OO0 I~ O~ D
S VWN—-—>00 % ——— Pt et b 27 bt bk et bt O A O = ket (L D~ bt et bt bt b bt bt by
O XU <UIOx oo zZoxooy Ol arOoN oo oul
o NNWvleMQbH ZZTOZOZZZZOXETTEZE ONONZZBIEZOXI>-—EZTEZEZZEZOETE=2X
X O (@] on on o
k — NN gy n\
H Nel D (XelNe} OO 0
WAV () (L (V]

(*****%******************************************%**********

¥* ¥

IP NO NEMCH INTO STREAM PATH ARRAY

MS JCHIJPR$JSS)
Y CONTAINS NO OF EQUIP ENTRIES IN COL

MENT FOR PRIM STREAM CORR TO JN

GO TO 308
GO TO 310

N*(3-2%JCH) )
J{JPR s JCH)
55+1
ESeEC.0V)

MAKE ENTRY IN COL 1
JPATH(1 sNCOL)+1

=NCJ+1
GO TO 330

FKo I HHHH FHH KR AFH XA HNNX

NCOL

IS STREAM NON-PRIMARY
IF(NROWeNES1)

CREATE NEW COL

NROW

CHEXREH®XX
308
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C*¥

CH*¥

C*¥%

1
1

1

SUBROUTINE STMOVS(IWVsISMyIITsNX)
STREAM MOVING UTILITY ROUTINE eee(SMATCH + BRBND VERSION)

IWV ~ ELEMENT NUMBER IN SIN OR SOUT WORKING ARRAY
+ SIN
-~ S0UT
ISM - VECTOR NUMBER IN SM—-
13 0 - 0 MOVE TO OR FROM SMPB
1-2 MOVE TO OR FROM SMCHB = (1-2)
3-5 MOVE TO OR FROM SMRB - (1-3)
NX - VECTOR NUMBER CONTAINING MOLE FRACTIONS (III GT 0)
3 ENTRIES -
1 MVS0O51 MOVES SOUT VECTOR ISM TO SIN VECTOR IWV (I11=0)
2 MVFSM MOVES FROM SM-- TO SIN OR SQUT
3 MVTSM MOVES TO SM-=- FROM SIN OR SOUT
#¥%# COMMON DECK %%
COMMON/CONTL/NE s NINsNOUT s NOCOMP
CQTM?N/SIN/BPIN Q)vDPIN(4)9TIN(4)’PlN(Q)’HIN(Q),VFIN(Q)9TMIN(4)9
N(8s4)
CONMO&}SoUT/B ouUT( )9DPOUT(4)sToUT(4)9POUT(4)aHOUT(a);VFOUT(A)»
TMOUT (4) s XOUT (8 s 4

BLANK CFMMO'
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COMMON NNPR{2)sNNSER(2) sNNSM(2) s SMCHA(895092) s SMCHB(755052) s

SMCHX(8+1042)
¥

DIMENSION SMPB(1s151)sSMRB(1s151)sSMRX(1s191)
DIMENSION SIDUM(4s7)sSODUM(%s7)
EQUIVALENCE (BPINsSIDUM) s (BPOUT s SODUM)
ENTRY MVSOSI

[ENT=1

GO TO 1

ENTRY MVFSM

PENT= 2

GO TO 1

ENTRY MVTSM

IENT=3

JJJ=111+1

GO TO (29393 9494)JJJ

ITYPE=1

GO TO 5

ITYPE=2

KKK=11T

GC 10O 5

ITYPE=3

KKK=TIT~2

GO TO (100s2005300)IENT f
MVSOS I

DO 50 I=1,7
SIDUM(TWVs1)=SODUM(ISMs 1)

B0 60 1-1.M0CO0P
AIN(I»IWV)I=XOUT(1sISM)

RETURN

MVF SM

DO 10 I=1,7

GO TO (657:8)ITYPE
AA=SMPB( 1+ ISM)

GO |TO 9

AA=SMCHB(1s1SMsKKK)

GO TO 9

AA=SMRB (1 1SMsKKK)

IF(IWVeGToU) STDUMIIWVs1)=AA
IF(IWV.LTe0) SODUM(=IWVsI)=AA
CONTINUE
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SUBROUTINE SHIST(JSSsNHISTsJHIST)

ROUTINE GENERATES STREAM HISTORY FOR STREAM J
- COMPILES LIST OF STREAMS (JHISTsNOs NHIST)

COMMON/PATH/JPATH(85200) sNPATH(20) s NPTHS

COMMON NNPR(Z)sNNSER(2) sNNSM(2) s SMCHA(855052)
1 SMCHX(8510s2) ’
COMMON NEMCHSsEMCH(155100)

DIMENSION JHIST(1)+sJIS(10)

INDEX DISPLACEMENT FUNCS FOR JPATH s NPATH AR
IDJ(IPRsJCH)Y=NPTHS*( (JPR-1)+NNPR(1)#(JCH~=1))
IDN(JPR s JCH)=JPR+NNPR(1)* (JCH~-1)

JJ=N1S=0

NHIST=1

JHIST(1)=J8§S

CALL ZEROI(JISs10)

JSTR=JSS

GO T0O 12

SELECT NEXT STREAM FROM JIS

JJ=JJ+1

IF(JJeGToNIS) RETURN

JSTR=JI1S(JJ)

JCH=(3—~1ISIGN(1sJSTRY)/2

JSR=TABS(JSTR)

JPR=SMCHA(1sJSRsJCH)

JSEC=S5MCHA (2 s JSR s JCH)

IFINHISTeEQele ANDeJSEC.EQeO) RETURN
IF(JSECeEQev) GO TO 10

LOCATE EQUIP NODE FROM WHICH JSTR IS AN OUTPU
NC1=I1DJ(JPRsJCH)+1

NCN=IDN(JPR s JCH)

NC2=NC1+NPATHINCN)

STR=JSTR

DO 20 NCOL=NC1sNC2

NEQ=JPATH(NR sNCOL)

IF(NEQ:EQeVU) GO TO 20

IF(EMCH(5INEQ) eEQeSTReOReEMCH(6sNEQ) eEQeSTR)
CONTINUE

SCAN UP REMAINDER OF COL NCOL SAVING INPUTS
DO 30 N=2sNR

NN=NR-N+2

NEQ=JPATH(NNsNCOL)

DO 26 NI=3s:4

NS=EMCH(NI sNEQ) )
IF(NScEQeUeOReNS«GTL200) GO TO 26

IF NS IS A *SIDE STREAM¥ — OPP SIGN FORM JSTR
IF(INS*¥JSTR)«GTeU) GO TO 24

NIS=NIS+1

JISI(NIS)=NS

ADD INPUTS TO JHIST

NHIST=NHIST+1

JHIST(NHIST)=NS

CONTINUE

CONTINUE

GO TO 10
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SS
USED IN PRODUCING JSS

s SMCHB(7355092)

RAYS

T

GO TO 22

s ADD TO JIS
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C SELECTION OF OPTIMAL NETWORK CONFIGURATION (Branch and Bound Optimization)

MAINB reads the input data for this section. The data consists
mainly of the stream, stream processing path and equipment arrays from the
preceding section. The routine also sets up the stream energy cost splines
from supplied temperature level/cost data.

ENERGY has two entries, ENEC called prior to BRBND and ENDS called
immediately after BRBND.

ENEC is responsible for computing capital and operating costs for
all equipment which involve energy costs, i.e. refrigeration exchangers and
stream sales. This step completes the equipment costing process thus allowing
costs to be sumed for each complete processing path. The set of these paths
for each primary stream is then sorted into order of increasing cost for con-
venience in the branch and bound optimization .calcula

After the optimal network configuration has been selected by BRBND,
entry ENDS is accessed to compile lists of energy usages and transfers for the
optimal plant, i.e. refrigeration demands, stream sales and pseudo-service
usages.

BRBND is the branch and bound optimizing routine. Its task is to
select the lowest cost feasible combination of stream processing paths which
jointly define the optimal network configuration. The branch and bound
procedure has been described earlier, in section 2.1, so that only a graphical
algorithm for the actual routine is presented here, in Figure II.2. There are
several notes of explanation which should be given. .

i) The first is the two-pass solution method (IPAS = 1, 2). The first
pass is used to establish a good feasible network whose cost provides

a uscful initial upper bound for the normal calculation path on the
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second pass. Only one level of branching is used for the first
pass. This results in the evolution of a sufficient number of
feasible networks to produce a good bound without necessitating an
excessive computation time for the procedure. On the second pass
branching continues down to the number of levels specified,at which
point problems are solved as indicated in Figure II.Z2.

ii)  The basic algorithms for, (a) establishing good feasible networks
and for, (b) using their (bounding) costs to reject all processing
paths which must lead to higher cost netwofks have been described
by Lee et a1(1) and will not be detailed here. However it should
be pointed out that both procedures basically depend on having the
set of processing paths for each primary stream sorted into increasing
order of cost. This allows easy selection of either the lowest cost
active path for any stream or the lowest cost active path which is
compatible with a partial set of other paths already selected. More
detail should be obtained from the reference given above and the
actual program listing.

iii)  Each processing path has an active/inactive flag which is conveniently
used to indicate whether or not a path is active for the current
problem. Paths are inactivated either through imcompatibility with
bounding problems or becaﬁse they must lead to networks of higher
cost then the present bound. The branching structure dictates that
the inactive flags retain information on the branching level at which
paths were inactivated in order to be readily able to re;activate
them at an appropriate point for succeeding problems. Thus inactive

flags take the value of the level number at which they were set.
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The final point refers to the method of encoding path combinations
(networks) into 'plant numbers'' used in the routine (but not
indicated in Figure II.2). These numbers are needed for reference
purposes. They have as digits the sequence numbers (1...) of the
component stream processing paths which define the network in
question. The number base is the maximum number of paths allocated
per primary stream (NPTHS in the program). For an example refer to
page 240. This scheme allows any process configuration to be encoded
into a single number; decoding to identify component paths is

accomplished by the reverse of the encoding procedure.
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DO 201 IPAS = 1,2 |

3
SET UP 1st LEVEL BRANCHING

IPAS X B

¥

DO 200 1st LEVEL PROBLEMS

= |

¥

D>

SET UP 2nd LEVEL BRANCHING
1

300 \
¥ IDENTIFY SUITABLE
: DO 190 2nd LEVEL PROBLEMS BOUNDING PROBLEMS
: [
340 v X -e——l
I inAcTIVATE ALL | : R $ R R |
PATHS INCOMPAL - !SET UP 3rd LEVEL BRANCHING i
TRLE WITH BOUND- [ -
ING PROBLIM _ ¥

L e

DO 180 3rd LEVEL PROBLIMS

?
v

Figure II1.2 BRBND Algorithm (Continued on page 148 ),



| 148

110 Y
USE PRESENT BOUND
TO INACTIVATE ALL
PATHS LEADING TO
GT COST NETWORK

ESTABLISH FEASIBLE
NETWORK STARTING
WITH EACIH PRIMARY \

STREAM : .
12 o1 13 T
REPLACE BOUND ‘ PATHS

ENTER FOR SORTING
IF COST LT BOUND

\
SORT NETWORKS
INTO INCREASING
ORDER OF COST

DO 160 ALL NETWORKS
_ IN LIST
W IS
N NETWORK Y

i \“r/\cIm; 7.~ &3

¢
REPLACE

BOUND

NO }"IASIBI F

BRANCHING ST ICN r
Ler (LB,

260

‘_\) RE-SET APPROPRIATE
¢ PATH ACTIVE FLAGS

‘/ FOR NEXT PROBLEM

16

ﬁ«é

COMPUTE I (\UIPM} NT
NUMBER VECTOR FOR
OPTIMAL NETWORK

> RETURN

Figure I1.2 BRBND Algorithm (Continued) .
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D REFRIGERATION UNIT

MAINR reads the input data for this section. The data consists
mainly of refrigeration demand and purchased stream information. The routine
sets up the energy cost spline based on previous refrigeration cost data and
places the purchased streams in their correct refrigerant circuit array for
subsequent use.

RUNIT is the routine which automatically generates a standard
cascade refrigeration unit for a given set of refrigeration demands (tempera-
ture levels with associated cooling loads). The calculational procedure has
been described in section 5.4 and is given here in graphical form in Figure
I1.3. The following points should be noted.

i)  Refrigerant circuits are computed in increasing order of temperature,

i.e. methane, ethylene, then propane. This is required for the

correct direction of information transfer (condensation loads and

purchased stream residuals) between circuits.

ii)  The refrigeration unit serves as an energy cost updating routine.
Cost data from previous computations are supplied to the routine in
order to cost purchased stream energy. After computation of the
refrigeration unit the routine combines these purchase costs with
equipment capital and operating costs tb produce a new set of energy
cost figures for the next computation cycle.

SIMOVR is the version of the stream handling utility routine for

this section.
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Figure 11.3 RUNIT Algorithm (Continued on page 166 ).
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DO 150 ALL LEVELS
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Figure II.3 RUNIT Algorithm (Continued).
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" IF(NNbP E ) GO TO 120
CHh¥* COMPUTE LIQ COOLING BY PURCHASED STREAMS
¢

SP
C++ ORDE URCHASED STREAMS
C++
C LOAD NSL INTO SIN(1) (SET TO FLOW FOR JP=1) » NP INTO SIN(2)
CALL MVFSM({1sNSLsIR2sNLIQ)

N 110 TO IFLO

FQRael) GO TO 440
VFSM(2sNPsIR2sNP)

GE s LOAD STREAMS + EQUIP

110

Z2ZXe

C*
C*

CALL HXER(1s49TEX9Q)

ASSIGN 112 TO LOADS
GO TO 400
112 NRS%(NP)QNSM
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GO T

120 NSL=NSM

122 NSMSVTNSM

TSL=SMRB(35NSLsIR)

COMPUTE FLASH (+ CROSS EXCHANGE) FOR ALL LEVELS - TO DETERMINE FLO

FLO=FX0=0.

150 L=NL1sNL2

QLEV (L)

GQ+EQe0e) GO T

D NSL INTO SIN
L ]
S

ano
*
%
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(@]

0 15

L MVFSM(]1sNSL
COMPUTE FLASH +
124 CLEV=0,
NIN=NOUT=1
C*

CALL ADBF(PLEV(L))
C*
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IR2sNLIQ)
ET UP SAT VAP OUTPUT
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C CALC?%?TEIFNTHALPY CHANGE AVAIL/MOLE + REQUIRED FLOW
VFOU 1=1le
CALL ENTH(—19HOUT(])9DUM)
HAVL=(HOUT(1)=HIN(1))/TMIN(1)
FXN=QQ/HAVL
& SET SQUT(1) TO FXN
IWv=-1
XFLO=FXN
ASSIGN 126 TO IFLO
5 GO TO 440
C LOAD STREAMS + EQUIP FOR FLASH
126 f1N2=o
F(IR.EQe3) GO TO 128
C IS CROSS EX POSSIBLE
DTX:(TSL—TOUT(I))—(I 5*APRR)
IF(DTXeGTeUs) GO TO 130
c* PROPANE
128 JIN1=NSL
ASSIGN 142 TO LOADS
. GO TO 400
Cc* IR=152 — REQUIRES ITERATION OF FLASH/CROSS EX LOOP
¢ RESET COUNTERS BEFORE LOADING
130 NSM=NSMRB(IR)=NSMSV
NEMR(IR)=NEMSV
JIN1=NSM+2
ASSIGN 132 TO LOADS
GO 70 400
C TRANSFER SOUT(1) TO SIN(2) s LOAD NSL INTO SIN(1) + SET TO FXN
132 CALL MVSOSI(2s14040)
?@bLlMVFSM(l,NSLaIRZsNLIQ)
ASSIGN 134 TO IFLO
GO TO_440
C COMPUTE CROSS EXCHAMGE + LOAD STREAMS + EQUIP
Cx
I 134 CALL HXER(1s4sTEXsQ)
%*
JINI=NSL
JIN2=NSM -~
ASSIGN 140 TO.LOADS
GO _TO 400
c* TEST FOR CONVERGENCE OF LEVEL FLOW
140 FDF=ABS(FXN-FXO)/FXN
IF(FDFelLTeUsUl) GO TO 142
FX0=F XN
NIT=NIT+1
" GO TO 124
C UPDATE COUNTERS
142 NSMSV=NSM '
NEMSV=NEM
C SET LEVEL FLOW + COST s STORE OUTPUT STREAM NO
FLEV(L)=FXN
FLO=FLO+F XN
COST(L)=CLEV
’ NVP (L )=NSM
¢ 150 CONTINUE
(g CHECK FOR CONVERGENCE OF TOTAL FLOW
FDF=ABS(FLO-FLOW)/FLO
IF(FDFsLT4UsU1) GO TO 152
FLOW=FLO
" GO TO 105
e SET NSM TO NVP(NL1) + LOAD INTO SIN(1)
152 NSM=NVP(NL1)
CALL MVFSM(1sNSMsIR2sNLIQ)
.FLO=0.

Q
C*#x  MIX COMPRESS + AFTERCOOL FOR ALL LEVELS
DO 200 L =NL1sNL?2



172

O TO 160

oa.

VIL)sPLEV(L) sQLEV(L)sFLEVI(L)

Q
M

L

QQo

AMS

0 S
M({2sNMXsIR2sNLIQ)

P i oL~

~_J xez

d (@l

_~> o)

o wl e INE

e~ A0 Jd~

N J Z<~- 4y

L S eCO — Ll =X

LCO> «sCuI>0> 0wz
~Juwow Z>F —~ZZ
wu Ji ee Z ol N U
FHO>d OJdil——N
O N WX IXJIZDZZ
X IC I —OZT = O+
L OCUE JZVUZZID

*
%
v

CALL MIXR(O.)

TO LOADS
LOAD STREAMS + EQUIP

0
$

CALL COMP(PLEVI(L+1))

L J

—

o +

7 -

—~ Q. —

— ~

O e | Z

[ C —

w a

(@) (&)

O -~ + ~

Q. -

~wa v -
MO a

o <~ <L Q
O~ o
wn=s o 1=

(%] N~ QO— +
alN i dolal g% -
<< —Q -+ <<
o e OO =
-4 00ICOLC -
ZZ= O =

O A=~ ~
- o _j— @ —
NO 1O = >

O 4O~ o <
VO ZWr— _J =

—O eX—_JOZIN<
TOWZ eOUNO |
Z W= O ZN—~
QO e+ 1 —
ptp— _J<C I QAN ~
V) — L—-—ZZX
NOW WU L ——
LO == O~ <D

0
0
—

C*¥*

C*

CALL HXER(192+sTEXsQ)

ASSIGN 170 TO LOADS

GO TO 400
170 IF(LeLTeNL2)

GO TO 180

H¥

= wd
= w e
03] ~Ne »
= s &
(78] = B *
[a'4 )
r— ot L
=) > - Z
&) i = ~—
> wt A~ -
s o - =
Z ~—— @)
o F8] K~ o d
() - V) S
O ™ C - W O
—_ o~ > * v JO Z
D > = v o VU —
o Wiy @) — w (&) (O o
u O wvw wd — - < - - <
- HIEYD) w + Lo © b - Q
ol o= — o N - =t -
<~C O - %) V) e _I
O~ DI (@] zZ — e]®)] — =) = -
i~ w—~ - - O = —b e~ )~ <
, Z~ U > O o~ = e} ZO0o w
f— Q- < Ul N~ ZO ~ ZuHoUd A
0 «&@ Z MO O Jd + HOY)y Ol o —
LI = CO b= == —~3d =3I W ~eHANR e~ el )
N J—US I vy X N I = A0
Z~ o A} = ~Zr— 1 -~Z it XN JI-Z -
WOt ~NOOMN I aAaVonD QO—-W~—O =
O rmib== O Il b= N Oerib—Z Qb= — 22
EXss Mad DNV} NXZZ Jd° HDV) O O WeZ -
QuWuODl. ZUVVOVW—— <« QUCWVOU KOOxXOO o |
U= =QOUN X =0~ U Hwg<oo anuzue (o)
[aN] [3aBNEN 4 O onNn O
~ ~ o~ r~ W O *
% r— -+ -+ — o~ — —~e— *
3 + + * %k *
() (R ) (O (V1] LUV



173

v

o~

o

<

(@)

[

O

Uz

—

° -

] [eV]

|§8] —

¢« I QO
NU—HO
+JiiF D
xsv, ~C
— V00 | W

JO=1

—

[QV]

L]

O

(§9]

®

Q.

o

—

*® -
(a'd —
o ~
° X Z
o o
o 2 =
N~ V) -
e + ~O ~
- ~ ONZ ~
O X o= ~
[} bt o -
N~ XOU) =
Z 0O —Z -
— (Y - O =
N SO0~
e V) UVGHFZX
X Z Z Vomn
(@ ] e~
e O~ MHMXOX
oD ™ ewZw
e o O *~ o
T~ Il
wim V) e JinNO

e X WL O=—Z M
N TO> U =%
ZOUV) eI L (N

——Zk QUlde~ O

W osmtrmb= |l NS il D= X

N~ I

VAo i~

= 1 1=

XL OO0 OoOLOMNDICUFOXEC
= DO =D OZOHU—) OV O

o
o
<

N
o
<

o
—
<

<
(@]
3

~N
—
&

C

EQUIP LOADING ROUTINE

CH¥x¥®
C

9$112+13291404514251609170+176)

ROUTINE TO SET STREAM VECTOR IWV TO XFLO %%

> ~—
— u) ~
+ &~ T
e (@V] o N
(2 N —~ ~U)~
— $—~0 O O~M
~ = O enNO
oz Ol DO mm
= O O o— o
w MDD WwW~—0\0
Z O—~0C il e~
i AN U~~~ D~
~ZTZZ T A~ O e

QL) bt ) =~ @bt D)~ [} )
—_ZHIDHOZN—H e« OU) + 0O
~H i ol eliZTVNO>S
X—~~~C~0ONuw wnWo
S Jwnld Zuli>_ ad
U~ o olN «e ¥ UV

Za000a0NY0O 10
Ut vt et ) et ) G e > b
Z2D2D0D~D~ xwvduw

wooouLouLOIT WL IO
ZWwWWw—uwi—-ououo

an
NN
g

(V)

420

(@
™
s

C

C¥*%¥%
C

>

= —

— —

~ >

- =

oD —t

] ~

0 Z2 =~

- -

S, O

OX bF—_d—

il N e

L~ OX<
g O X>S Jum™
g - o~
F oKk X D> e

- e XD
O >U %x=N
- E2EZ e

Pt >U e
O ~+— =ZZ0
O k=D e

DO =2
—~ OX Zr~
O Iu =X e
e W~ T uO
_ ~>0u~.
OU>>=Zun~>Su
P TSR
e b = —
Zl~—0O=—0
— D~ Z
~>D0 Zw—
L=EOZO—=0
—_— T~ OI-0
o < O
< g v
< < 3

PSsCPE*¥sF10,095X353F10,095Xs3F10,0/7)

D —
® o
o~ °
w ~ «©
™M . W
« @ 0
4 3 —~
L] - @ X
N ™M * N
WL—~e N =
U~~~ ~0

~¥9]1535X92F8e19F10s03F8461/)

® o|lp— od & & o}
GO A~ZXuWLowv
* —iU) 3 X nNe o O
Q= OZ O U
92507 ’Al’l -«
= e QD Ww e U >
¥ UD e » » UuJ
0. DN
e Wb v o)
XN N * X<
NNk — kNN WL X
NHNNON N NN
Lt et ol ol ol S S e S S
LT LI L LTl I
2 ESSSSFIFTS S
(0 dle dadaadlodododladiodm)
(o]o]elololalolololer4
bbb b uwiw
(@}

O ™~O INANMANNO
NN O M0 0 O
nooroonooeonoN o0



174
SUBROUTINE STMOVR(IWVsISMsITIsNX)
STREAM MOVING UTILITY ROUTINE eee(RUNIT VERSION)
IWV = ELEMENT NUMBER IN SIN OR SOUT WORKING ARRAY

ISM = V%CTOR NUMBER IN SM=—-—
IT1 MOVE TO OR FROM SMPB
1-2 MOVE TO OR FROM SMCHB - (1-2)
3-5_ MOVE TO OR FROM SMRB - (1-3)
NX - VECTOR NUMBER CONTAINING MOLE FRACTIONS (III GT O)
3 ENTRIES -
1 MVSOST MOVES SOUT VECTOR ISM TO SIN_VECTOR IWV (III=0)

2 MVFESM MOVES FROM SM--= TO SIN OR SQUT
3 MVTISM MOVES TO SM-- FROM SIN OR SOUT

#%% COMMON_DECK %%

COMMON/CONTL/NE s NINsNOUT s NOCOMP

CO?MOQ/SIN/BP INCG) sDPIN(4) s TIN(4) sPINC(4)sHIN(4)sVFIN(4) s TMIN(4)
1 XIN(8s4)

COMMON/SQUT/RBPOUT ( )9DPOUT(4)9TOUT(4)aPOUT(a)sHOUT(Q)sVFOUT(A)s
1 TMOUT (4) s XOUT (894

s BLANK COMMON

¢ ngMON NSMRB(3) s SMRB(792093) s SMRX(83453)

DIMENSION SMPB(1s1)9sSMCHB(19181)sSMCHX(191s1)

DIMENSTON SIDUM(447)sSODUMI497)

EQUIVALENCE (BPINsSIDUM) s (EPOUTsSODUM)

OO OYOYOYDYOYNYOYOYO O OY

ENTRY MVSOSI
IENT=1
GO TO 1

ENTRY MVFSM
TENT=2

o T 1
s LR N L

C*#%

C*%

- W

V=

=4

UM(ISMs 1)
IsISM)

HUZT WXOW
m 2

TUuEn
s et
e
)OO~
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—-1Z0
~TV0O

QO Me=QOr
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E PHYSICAL PROPERTIES

PROPL is the routine which contains the library of basic pure com-
ponent physical properties constants. It punches out data decks for any
selected set of components; such data is then read into the /PROP/ labelled
COMMON arrays in KHZT for use in properties correlations.

KHZT is, as described in section 4.2.5, the physical properties
calculation routine which supplies equilibrium, enthalpy and density data to
other system routines. Apart from some nomenclature changes and streamlining
and the modifications described in chapter 8, it is the crEess (2) physical
properties package and a detailed description of its function can be found in
that reference.

ZERO and ZEROI are not actually property routines but are included
here as‘they are also syvstem service routines. They provide automatic (float-
ing point and integer) array zeroing.

FLASH serves both as part of the properties system and as an equip-
ment subroutine. It provides a rigorous two-phase calculation capability for
other routines, eifher in isothermal or adiabatic mode (entries ISOF and ADBF).
The isothermal mode is essentially a direct calculation which computes the
enthalpy of the outlet stream (a two-phase stream or separate liquid and vapor
streams, as specified by the user) for a specified inlet stream temperature.
In the adiabatic mode an iterative isothermal calculation is generaily required
to establish the outlet stream(s) temperature corresponding to the specified
inlet stream enthalpy. As with KHZT, FLASH is derived from the corresponding
CHESS(Z) system routine (ADBF) and modifications are again described in
chapter 8.

As an equipment subroutine FLASH represents either adiabatic (valve)

expansion (entry ADBF) or adiabatic mixing (entry MIXR).
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SUBROUT INE KHZT(ARGsANSsLIST)

THIS IS A COMPRFHENSIVE THERMO. DATA SUBROUTINE WITH 8 ENTRY POINTS
ENTRY DENS (ARGsANSsAAMW)
?. ENTRY ENTH (ARGYANSsDUM)
-. ENTRY KVAL (ARGsANSsL IST)
ENTRY TSUBH (ARGsANSsDUM)
5. ENTRY BUBTP (ARGsANSsL IST)
6e¢ ENTRY DEWTP (ARGsANSsL IST)
7¢ ENTRY PBUB (ARGsANSsLIST)
8¢ ENTRY PDEW (ARGsANSHLIST)
*¥¥x¥  COMMON D;CK
COMMON/ CON L/NE,NENoNOUT,NO$OMP
COMMON/SIN/BPIN(4) sDPIN(4) s TIN(4) sPIN(4) sHIN(4) sVFIN(4)sTMIN(4) »
1 XIN(8s4)
CQMMOi/SoUT/q??UT(a),DPOUT(4),T0UT(4)9pOUT(4),HoUT(4),VFOUT(4)o
1 TMOUT(4)sXOUT(894)
COMMON/PROP/COMPNT(8) s APC(8)sATC(8)sAVC(8)sAMWI(8) s AOMEG(8) s
1 ADEL(8)sAVWI(B)sAPHI(B)BET 8)’GAM(8)9DTA(8)sBASEA(8)98ADEB(8)s
2 ZCD(8)sALD(8)
FHX K%
INTEGER ARGsCOUNTTsCOUNT s COUNsCOMPNT s VPFRAC _
REAL X(8)sLIST(8)sLNPHI(8)sLNACT(8)sLNNU(8) sKV(8)sNEWX(8)sAV25(8)
REAL LHCsMPOLYsMADDY
LOGICAL FFLAGsFLAGAKFLAG
EQUIVALENCE (TREsTEMTUR)
DATA TTLOW/240,/
INTERNAL FUNCTIONS ¥*¥¥¥ DELHV + DELHL *3¥%x¥%
AS STATEMENT FUNCTION DELHVL
DELHVL(HsZ)=(1e5%ASQDB*ALOG(1le+H)+1e—=Z)*¥TEMTUR¥*]1 4986
DPOLY(AsBsFsHsZ)=A+(B+(F+H¥*Z)*Z)*Z
DADDY (AsBsFsHsZ)=A+B*SRED1+F*SRED2+H¥*ARED+Z*SRFD4
MPOI Y{AT«aA2 e AR AL a7 V=AY (AL (ARLALRT YHT V7
MADDY (A1sA235A33A493A5)=A1+A2*SRED1+A3%SRED2+A4*ARED+AS*SRED4
FUNCTION FOR TEMTUR STARTING VALUE FOR BUBBLE + DEW POINT ITERATION
REGR;SSFD OVER RANGE AAMW=11+455 » PRSSUR=10s565 (HYDROCARBONS CO0-C
TEMST (AAMWsPROSSUR ) ==42 ¢ O+AAMW* (18 e6—0¢ 143 *¥AAMW ) +0 ¢ 282¥PRSSUR
1 -1007./PRSSUR
CHAQO-SEADER COQEFFICIENTS FOR _LIQUID FUGACITY
AS MODIFIED BY GRAYSON AND STREED.
CHAO-SEADER COEFFS RETAINED FOR H2sCH4
REAL COEFFT(2,+10)
DATA COEFFT/1e5671832¢43840352060513591e402972+-24245509-2,108995
1 -0,0540099-0,34084+0,+0,0005288+0,00212+-0, 1939630.9-04002235
2 0,02282+90,00858530,104865040885290463-00 03691s5*0.,— «0087292%#04
3 =0,0035352%0,450,00203/ i
CONSTANTS FOR YEN AND WOODS CORRELATION
REAL FRI(5+3)
DATA FRI/ 008179632749 -650149438709-013423e09339~43445344042
19-0208394054735,0899=043449479159-47654%43367/
REAL FRJ(553)
DATA FRJ/ ~—6e02309-,012494162595-421359,086439.0229-,003363
1 —.0796’.08546;—.0217 00674 9-40610954062613=623789,1665/
REAL FRK(453)
DATA FRK/ 056269—.35189.6194’--38099.019379—.030553.0631090 6]
o—.01393o—.003459a—.1611s « O/
REAL FRL(543)
DATA FRL/ —21e095541749-33,637> 0109926627735 =16e0930.699
1 19¢6459-81e¢30594740319~66¢5557e8027 0344 3s~37e049206169/
eee PRESET VALUES oo
DATA LNPHIsLNACTsLNNU/24%0,/
FHEHH ZDENS %333
ENTRY DENS
ASSIGN 20 TO LOC
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33

40

oy O
[

ol S o =

50

52

55
56
57

GO TO 1000

ASSIGN 22 TO LOC

GO TO 3000

IF (VPFRAC_oNEes 1) GO TO 24
ASSIGN 23 TO LOC

GO TO 5000
ANS=PRSSUR/ (10, 73*TEMTUR*ZFAC)

(VPFRAC .NE.CO) GO TO 26

N
~

OPERLY SPECIFIED)

MZ—OAM—2Z0W0n™mMm
——0hn =<0 W0

cu

XXRHE ENTH H¥Hx%

ENTRY ENTH

ASSIGN 30 TO LOC

GO TO 1000

ANS=0,

RETURN

IF(TEMTUR.LTe1le) GO TO 31

LO
GO TO 1400C
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)
éOHU*** DENSITY CANNOT BE CALCULATED BECAUSE VAPOR FRACTION
R

ANS=GETH
RETURN
®XUEFE KVAL #¥%x%
ENTRY KVAL
ASSTGN 40 TO LOC
GO |TC_ 100D
IF(VPFRAC «NEe 0O) GO TO 43
LOS=1
GO TO 7000
IF(VPFRAC "«NEe 1) GO TO 45
LOS=1
GO TO 8000
WRITE(63s46)
FORMAT(71HU**% K-VALUES CANNOT BE CALCULATEDs VAPOR FRACTION IMPRO
PERLY SPECIFIED)
DO 48 I=NFCsNLC
LIST(I)=KVI(I)
RETURN
EX%¥% TSUBH *¥%¥*x
ENTRY TSUBH
1CAL=1
ASSIGN 50 TO LOC
GO TO 1000 '
IF(TEMTUR«EQeOe) TEMTUR=500.
FRDV=0.,10
DO 56 COUNT=1s10
LOS=2
GO TO 14000
HTRY=GETH
SUMM=HCONT-HTRY
IF(ABS (SUMM/HCONT) «GTe 1leE-=3 ) GO TO 55
ANS=TEMTUR
RETURN :
ASSIGN 56 TO LOC
GO TO 20600
CONTINUE
WRITE( 6457)

FORMAT(54HU* %% TEMPERATURE AT INDICATED ENTHALPY
ANS=TEMTUR
RETURN

CANNOT BE FOUND)
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FOR TEMTUR

GO TO 751

IF(ICAL.EQe2)
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HFAFKK

¥¥*%%¥% PRUB

(SR LY

310 TO IPR

25
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nw)
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>nnooax
Q- A vtb= -2

PBUB
0

H K% K%

¥¥%x%% PDEW

LV

XER*¥ COMVEC *%¥¥x%

FUNCTION

INTERNAL
1000 IF(ARG«GT.0)

GO TO 1007
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GO TO 1005

GO TO 1004
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GO TO 2010

2008 IF(SUMM.GT404)

=VAR
SUMM

VHIGH
SUMH

GO TO 2012
=VAR

VLOW
SUML =SUMM

2010
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VAR= (VL OW*SUMH=VHI GH*SUML ) / ( SUMH-SUML )

DIFV=VHIGH=-VLOW
IF(NCMP.FQ.1) GO TO 2113
SGN=SIGN(1lesFRDV)
DFV=DIFV#SGN
IF(ICALEQel) VIOL=2,
IF(ICAL.EQe2) VTICOL=0,02%VAR
IF(DFVeGT«VTIOL) GO TO 2113
SPECIAL RESTART PROCEDURE FOR BUBTP + PBUB CONVERGENCE
?%—E%TABLISHES LOW TEMP OR HIGH PRES (LOW K VALUE) LIMIT
DV==Ue5%*¥FRDV*VLOW
VAR=VLOW
GO TO 2015
RSUM=ABS (SUML/SUMH)
IF(RSUMeLTeUel5) VAR=VLOWH+03%DIFV
TF(RSUMeGTe740) VAR=VLOW+047%*DIFV
GO TO 2016
DV=FRDV*SIGN (VAR sSUMM)
VAR=VAR+DV
IF(ICALEQel) TEMTUR=VAR
IF(TEMTURGT « TTLOW) GO TO 2017
WRITE(6s210U)
FORMAT (20H *%% NON-CONDENSABLE)
TEMTUR=TTLOW

6
?P(¥8A&g%&.2) PRSSUR=VAR
IF(PRSSURGT & (1405%PCRIT)) GO TO 61
GO TO LOCs (5691649174
INTERNAL FUNCTION *¥¥x¥* CALCAB *a¥xx#
A=B=SUMX=0,
DO 23001 T=NFCeNIC
B——Q_LQII\SEEI 1 \.K.\"II )
A=A+BASEA(T ) *X (1)
SUMX=SUMX+X(1)
A= A/SUMX/TEPTbR**l 25

B=B/SUMX/TEMTUR
ASQODB=AXA/B
GO TO LOCs(4001+8001514001422s74 )

INTERNAL FUNCTION *HEXK PCRIT *XE¥x

ASSIGN 4001 TO LOC

GO TO 3000

TRASH= (44,94 /ASQDB) *%+ 6666667
PCRIT=640867/ (TRASH*B)

GO TO (63s73)sL0OS

INTERNAL FUNCTION ¥HXHX ZFAC HHHAKX )

ORIGINAL NEWTON-RAPHSON ITERATIVE SOLUTION FOR REDLICH-KWONG
HAS BEEN REPLACED WITH ANALYTICAL SOLUTICN FOR CUBIC IN Z

THE VAPOR COMPRESSIBILITY ZFCTOR IS ALWAYS THE FIRST ROOT-22Z

ZBl=-

ZB2=BP*(ASQDB-1.0-BP)
ZB3==ASQDB*BP*BP

ZB10OV3=/4B1/3.U

ZALF=2B2-ZB1%2B10V
IBET=2.0%ZB10OV3%**3~-7ZB2%ZB10V3+ZB3
ZBETOV2=ZBET /2.

ZALFOV3=ZALF /3.
ZCUAOV3=ZALFQV3#%%3
Z5QBOV2=ZBETOV2#%%2
ZDEL=45QBOV2+ZCUAQV3

FOR ZDEL +VE THERE IS ONLY ONE REAL ROOT
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EXPI(
C*(D
E*10s73E0%PST)

AAMW) /(104 73*TEMTUR*RO)

ZL1Q

0
*EXP(RL
ZC*(DEL

»14004)

O3 NS<C O %k NN
o ol TXQXN
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6113

6107
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#EEXE LJQPRM *3%%3%
*H¥%%* VAPPRM *3%¥%%
XHHFH EQR H*H%%

EXEXF GASFUG #%%xx

s LOS
NNU(I)+LNACT(I)=LNPHI(])

O 11000
7002 ASSIGN 7003 TO LOC
9000
47
TO0 LOC
(47469)
348004469)
INTERNAL FUNCTION

~
v

INTERNAL FUNCTION
T

7000 ASSIGN 7001 TO LOC
INTERNAL FUNCTION

INTERNAL FUNCTION
8000 ASSIGN 8001 TO LOC

GO TO 12000
8001 ASSIGN 8002

7001 ASS%GN 7002 TO tocC

GO
GO TO
GO

CC3
8003 ASSIGN 8004 TO LOC
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F EQUIPMENT ROUTINES

The equipment routines are all design-oriented, simulation-type
modules, each of which computes fhe equipment size and cost for processing a
given stream to some specified extent. With the exception of the column
routine, DIST, all receive input values through the CALL argument list and
return output values through the /EQUIP/ labelled COMMON vector.

DIST is the column routine. It operates in the design mode, i.e.
computes colunn size for specified product compositions. The tray require-
ments are computed by the approximate pseudo-binary ﬁethod proposed by
Hengstebeck(s). The method combines all components in a pair of "'equivalent
(multiconponent) keys' the separation cf which can be computed by the McCabe-
Thiele method, assuming constant mole flows of liquid and vapor in each column
section. Eaquilibrium relations are represented by a constant key relative
volatility and the McCabe-Thiele tray calculation is made with the analytical
procedure described by Stoppe1(4). Column sizing (for 4" bubble caps) is
achieved with the simplified method described by Bolles(s). The costing method
is based on the column shell weight and tray diameter.

HXER is the countercurrent heat exchanger design routine. It
computes exchanger area and cost for exchange between two streams with speci-
field inlet and outlet temperatures. The calculational pafh depends to some
extent on the stream types (service; pseudo-service or process) but the
algorithm basically depends on constant film heat transfer coefficients. Each
side film coefficient is valued according to the phase condition and pressure
of the fluid in question as shown in the program listing. Values were
obtained from Peters and Timmerhaus(6). The overall coefficient is obtained

by suming of the film resistances. The exchanger area is obtained through a
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ten step (in Q) numerical integration along the exchanger length. For inter-
polation purposes it is assumed that stream temperature‘is a linear function
of enthalpy within each phase segment of the T vs H curve.

COMP is the single stage compressor routine which estimates the
power requirement for compressing a stream to a specified pressure. The

algorithm is based on a single polytropic compression coefficient, n, i.e.

Touor  [Pour| ™ - I1.1

Ty \PIN

Then since the compression is assumed to be adiabatic, i.e. Q = 0,

the compression work is given by the stream enthalpy change

A =
LAl

A factor is included to account for mechanical inefficiencies in the
conpressor system.

The polytropic coefficient, n, is estimated as a simple linear func-
tion of stream molecular weight. Average values were obtained from Edmister(7).
The costing is for a single stage reciprocating compressor with electric motor
driver. |

SPLIT splits a stream linearly into two output streams.

SPLINE, SVALUE and INTER are routines required for stream energy
value estimation. SPLINE sets up a cubic spline of temperature vs value/unit
enthalpy to fit a set of specified points. A separate spline is created for
both hot and cold temperature regions;cooling water temperature is the change-

over point. SVALUE estimates the value of a given stream between specified
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temperature limits. The basis of the calculation is described in Appendix I.1.
INTER provides energy values at any temperature by interpolation of the splines

created by SPLINE.
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SUBROUTINE DIST

C
Cxx*%% EQUIP TYPE 100
¢
c COLUMN DESIGN MODEL
c BASED ON HENGSTEBECKS PSEUDO-BINARY PROCEDURE
¢ COMPUTES COLUMN SIZE + COST FOR SPECIFIED KEY SPLIT
¢ FOR 4IN BUBBLE CAPS :
C EQUIP INPUT VECTOR CODING -
le— 2« EQUIP NO + TYPE
C % CONDENSER CONFIGURATION FLAG - O. TOTAL CONDENSER
c 1. PARTIAL CONDENSER »
C 1. O/H PRODUCT WITHDRAWN AS VAPOR BEFORE TOTAL CONDENSER
¢ 4o REFLUX RATIO FACTOR - R/RMIN
¢ Se— 6o OVERHEAD LIGHT + HEAVY KEY MOLE FRACTIONS
C 7e- 8. BOTTOM LIGHT + HEAVY KEY MOLE FRACTIONS
¢ 9.~10. LIGHT + HEAVY KEY COMPONENT NOS
€ 114 COLUMN PRESSURE" (PSIA)
¢ 12. TRAY SPACING (INS)
C PARAMETERS - _
¢ STRES - STRESS CARBON STEEL - PSI
s TREFF - TRAY EFFICIENCY - FRACTION
c ACOL sBCOL - COST COEFFS = COLUMN
¢ ATRSsBTR — cOST COEFFS — TRAYS (5SS BUBBLE TRAYS)
¢ CFCOL - FACTOR TOT CAP INV/COL CAP COST
¢ AMORT - FRACTIONAL CHARGE ON CAPITAL/YR
¢ CORR - CORROSION ALLOWANCE FOR SHELL =— INS
C ————————————————————————
C MATERIALS DATA - NOT IMPLEMENTED BY PROGRAM
¢
c STEEL TEMP RANGE STRESS COST FACTOR STRESS CORR. COST FACTOR
¢ CARBON TO —50Ff 13750, 1.00 1.00
¢ NTCKEL TO -150F 16000, 2.00 1a12
c STAINLESS BELOW -150F 18750. 3.5 56
3 s BEhol —doup 19
¢
C OUTPUTS -
C D le O/H PRODUCT - LIQUID (PCOND=0.) s VAPOR (PCOND==1lassls)
¢ B8 2+ BOTTOMS PRODUCT — LIQUID
C v 3., FLOW TO CONDENSER (PARTIAL OR TOTAL) - VAPOR
¢ VBAR 4. FLOW TO REBOILER - LIQUID
¢
C EQUIP OQUTPUT VECTOR CODING -
¢ le— 2o EQUIP NO + TYPE
C 4e CONDENSER CONFIGURATION FLAG (PCOND)
¢ 5. OUTLET TEMP FOR PARTIAL CONDENSER (DEG R)
¢ &+ REFLUX RATIO
C ¥ e NO OF RECTIFYING TRAYS
C 8. NO OF STRIPPING TRAYS
C 9. COLUMN DIAMETER (FT)
¢ 10, COLUMN THICKNESS (IN)
C 11. MATERIAL COST FACTOR
¢ 12, COLUMN SHELL WEIGHT (LBS)
C 13, CAPITAL COST (%)
s 144 OPERATING COST ($/YR)
E 1E TOTAL COST ($/YR)
c
Cx¥%%%% COMMON DECK
COMMON/CONTL /NE s NIN s NOUT s NOCOMP
COMMON/EMI/EMI(ISle)
COMMGN/EQUIP/EQUIP(15)
1C9TR?§’?§ (/BPIN(4)sDPIN(4) s TIN(4) sPIN(&) sHIN(4) sVFIN(L) s TMINCG ) »
* 4
COMMON/ZSOUT/BPOUT (4) sDPOUT (4) s TOUT (4) sPOUT(4) sHOUT (&) s VEOUT (4 )
1 TMOUT (&) s XOUT (84) G h s PULL G sREUT LA #IFOU RIS o
COMHON/prAF/AMORT9HR59TNATQDTWQCWAT’TS’HVS,CSQCKWH’APPP’APRR’

1 ARRR s TRRR
CHEERX
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SUBROUTINE COMP(PDIS)

@
C*¥%x%%¥ EQUIP TYPE 11
C
C COMPRESSOR DESIGN ROUTINE
C COMPUTES POWER REQUIREMENTSsCAPITAL+POWER COSTS FOR SINGLE
E STAGE I1SENTROPIC COMPRESSION
C TOUT/TIN = (POUT/PIN)**((COEFF-1.)/COEFF)
C Q ASSUMED ZERO s THEN W=-DELTA(H)
C
C NOMENCLATURE -
C 1S - DISCHARGE PRESSURE
C PARAMETERS =
C COEFF - ISENTROPIC TEMP COEFF
C HRS =~ NOes OF OPERATING HOURS/YEAR
C EFE - OVERALL MECHANICAL EFFICIENCY FACTOR
C ACOMP ¢BCOMP — COST COEFFSe FOR COMPRESSOR
C AMOT sBMOT - COST COEFFSe FOR COMPRESSOR MOTOR
C CKWH - PCWER COST/KWHR
@ AMORT - FRA TION_OF CAPITAL COSTS CHARGED/YEAR
C CFCP - FACTOR TOT CAP INV/COMPR CAP COST
C
C :
C EQUIP OUTPUT VECTOR CODING -
C le— 2+ EQUIP NO_+ TYPE
C 3e— 6¢ INLET/OUTLET STREAM NOS
C Te COMPRESSOR HP
C Be~ 9 INLET/OUTLET PRESSURES (PSIA)
C 13. CAPITAL COST (%)
C 14 OPERATING_ (POWER) COST (3%/YR)
C 1.Die TOTAL COST (3/YR)
¢
C*x*x¥x  COMMON DECK
COMMON/CONTL /NE s NINsNOUT s NOCOMP
COMMON/EQUIP/EQUIP(15)
rnMVﬂNIQIm/BD[N(q),DDI (4) « TINCL) «PIN(4)sHIN{L)YVFIN(L)Y s TMIN(4) s
1 AINUOs4)
COMMON/SOUT/BPOUT (4) sDPOUT(4) s TOUT(4)sPOUT(4) sHOUT(4) s VFOUT(4) s
1 TMOUT (4) s XOUT(8s4)
COMMON/PARAM/AMORT sHRS s TWAT sDTW s CWAT s TSsHVS s CSsCKWH s APPP s APRR s
1 ARRRsTRRR
CH¥¥XH
C
c DIMENSION DUMI(8)
DATA EFFsACOMP sBCOMP s AMOT sBMOTsCFCP/0499480,906763534631632¢5/
" DATA CF1sCF2sNC3/1631906195/
COST{AsB)=A¥HP*%B
DO 1 I=1sNOCOMP
1 XOUT(I+s1)=XIN(Isl) .
TMOUT (1)=TMIN(1)
VFOUT (1)=1e
POUT(1)=PDIS
PR=PDIS/PINC(1)
C gg?PgTE COEFF (= CF1 - CF2*FRACTION C3+)
DO 2 1=NC3sNOCOMP
2 FC3=FC3+XIN(Is1)
FRC3=FC3/TMIN(1)
COEFF=CF1=CF2*FRC3
COMPUTE DISCHARGE TEMP
; TOUT(1)=TIN(]1)#PR**((COEFF-14)/COEFF)
@ COMPUTFE OQUTLET BUBBLE + DEW POINT TEMPS
CALL BUBTP(-1sBPOUT(1)sDUM)
CALL DEWTP(—1sDPOUT(1)sDUM
C COMPUTE _ENTHALPY CHANGE + HP (ADJUST FOR EFFICIENCY)
CALL ENTH(=1sHOUT(1)sDUM)
HP=(HOUT(1)-HIN(1))*3,93E~4/EFF
CPWR=Ve T46#HP*HRS*CKWH



nn

alala!

CALCULATE CAPITAL + YEARLY COSTS

CCOMP=COST(ACOMP yBCOMP)
CMOT=COST (AMOT sBMOT )
CAP=CFCP* (CCOMP+CMOT)
CYR=CPWR+AMORT*CAP

SET OUTPUT PARAMETERS
CALL ZERO(EQUIPs15)
EQUIP(2)=11,
EQUIP(7)=HP
EQUIP(8)=PIN(1)
EQUIP(9)=PDIS
EQUIP(13)=CAP
EQUIP(14)=CPWR
EQUIP(15)=CYR
RETURN

END
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SUBROUTINE SPLIT(FR1)
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SPLINE(JCH)
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SUBROUT INE SVALUE(JCHsTEXsTDSPsVALUE)

rx¥¥¥% EQUIP TYPE 30

COMPUTES INPUT STREAM ENERGY VALUE/YEAR
VALUE/BTU AS FUNCTION OF TEMP 1S OBTAINED EFROM INTERPOLATING SPLINE
ASSUMES O VS T "LINEAR WITHIN EACH PHASE SEGMENT

JCH 1 HOT » 2 COLD
TEX EXIT TEMP SPEC
TDSP  TEMP DISPLACEMEN
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3 VAPOR
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INTER(JCH9XRsYR)

SUBROUT INE

FROM CUBIC SPLINE

a4
>
|
i
+ 2
N~
—~ ~ >
@ x 1
> —
~ % X
Q oL ¥
= M~
18] o~ — - b ¥
- o ~D I~
— —— N\~
~ +X~
- = DIl X~
<C Q. ~ Y X X
- XX ||
— ~— o~ (Y
—~ (45 sk ok <
a4 — e
> ~ X~ "%
~ > X)) ——~
- | —xX o
) —_~ X~ 0
- o —~ — N
[se] — —N +x~I
s — ZZ qa MX ex
W xX O e ~~— 0L
=) s N XX O C Xk Nk
=4 U T T = = ~~T~
< O Z 0O e =K —
> 4 e - XX O Q ~TE
O I %) O o~k %D
> LU Z O o~ L #s
(O] ~ O ~— o~ —~ % OO
@ o W —~N X X~ e——0Q
w z ~ ZZoNX HYIONE |
= * - N\ ~ 2 e o~~~
wi o e e~ MK el OXN—= | —
- a O + e o— D wil~+~+
w O v w IO =2Z el e~T)TTMOD
w I N O ~Z M IOl ~D) et~
e Z I++ + o o—=Z =+ TZTEZT>> —=Z
D = O VUUO UKY —w—ei-D00~~0—X
A U ZE DZZFrAZXXAXE | X~ ot =D
S I I ~Ui Ui~ —Zrm—=Xli+ =0
O U O uw—NO—NLLOLOHW N oxwZ
(O INNGNNIIDICJIHY* - vv.ruv.nﬁ_..._
o O —N g
o™

vLuULL L



I1.2 System Data Structures

The major system data structures can be divided into five
categories:
1) Parameter
ii)  Stream
iii)  Equipment
iv)  Stream processing path
v) ~ Other
The data arrays are generally stored in labelled COMMON blocks.
Especially for the larger stream and equipment arrays some use is made of
blank COMMON in order to conserve central memory (the CDC 6400 program

loader will overlay plank COMMON but nct labelled COMMON). The five system

- po— TP AR . X
data st ow. I'Or most arvays ai Lndica-

=

tion is given as to the system section(s) with which they are associated -

C = COLSYS, S § B = SMATCH & BRBND, R = RUNIT

i) Parameters

Parameters which are common to many system routines are stored in

the /PARAM/ labelled COMMON block. Their nomenclature is as follows:

AVORT - Amortization factor (fraction of capital investment charged/yr)
HRS - Number of plant operating hours/yr

TWAT - Cooling water temperature (°R)

DIW - Cooling water temperature rise (°R)

CWAT - Cooling water cost ($/1b mole)

TS - Steam condensation temperature (°R)

HVS - Steam enthalpy available (BTU/1b mele)
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CS

Steam cost ($/1b mole)

CKWH - Electric power cost ($/KWH)

APPP - Exchanger closest temperature approach-water cooling (°R)

APRR - Exchanger closest temperature approach-process stream and
refrigerant usage (°R)

ARRR - Exchanger closest temperature approach-below TRRR (°R)

TRRR - See ARRR above.

DTE()

Stream energy pricing discount (§) parameters

ii) Stream
(a) Working vectors
The /SIN/ and /SOUT/ COMMON blocks contain stream properties work-

ing vectors. These are conveniently used for most stream manipulation within

system routines. The coding is as feollows:
BPIN/BPOUT Bubble point temperature (°R)
DPIN/DPOUT Dew point temperature (°R)
TIN/TOUT Temperature (°R)
PIN/POUT Pressure (psia)
HIN/HOUT Enthalpy (BTU)
VFIN/VFOUT Vapor fraction [
TMIN/TMOUT Total flow (1b moles/hr)
XIN/XOUT Component flows (1b moles/hr)

(b) General stream arrays
There are in general three types of vectors for each stream in the
general stream arrays. They are:

i) Stream control vectors - SMPA(C), SMCHA(S § B)
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The SMCHA matrix has two sections, one each for hot and cold streams.
The coding for SMCHA vectors is given below. Note that a slightly
different coding is used for the SMPA vector and this is described
in the listing for COLSYS.

1. Primary stream number

2. Secondary stream number (incremented by 1 foreach heat exchange match)

3. Active/inactive flag - 0. Active, 1. Inactive
4. Stream type - 1. Feed, 0. Intermediate, -1. Product
(2. High Priority - satisfy By service only)
(-2. Pseudo-service stream)
5. Stream sub-type - 0. Load, 1. (Heat/Refrigeration) Source
6. Not used
7. Pressure specification (psia)
8. Temperature specification (°R)
ii) Stream properties vectors - SMPB(C), SMCHB(S & B), SMRB(R)
The order of coding for these vectors correspends exactly to that
for the stream working vectors described in (a) above. Transfer
between the two is accomplished conveniently by the appropriate
version of the stream handling utility routine, SIMOV. Note that
as for the SMCHA matrix, the SMCHB matrix has two sections, one
each for hot and cold streams. The SMRB matrix has a separate
section for each refrigerant circuit.
iii) Mole fraction vectors SMCHX(S & B), SMRX(R)
Since the compositions of streams do not change throughout stream

processing path generation and refrigeration unit calculation, it
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is convenient to store these constant compositions as mole fractions.

Then the component flows for a primary stream and its subsequent

residual streams are generated when required from the appropriate

mole fraction vector. This is carried out automatically by the

stream handling utility routine, STMOV, during information transfer

to the stream working vectors.

iii) Equipment

(a) Working vector - EQUIP

The EQUIP working vector is used primarily to output information

from equipment routines. Its general coding (slightly different for the DIST

routine) is as follows:

1.
Sl
LY
Tu=12,
135:~18,

Equipment number

Inlet stream numbers
Outlet stream numbers
Equipment size and parameter data

Equipment cost data

The type numbers (2.) for the presently available equipment are

listed below.
1.-2.
10.'
11.
20.
21,
30.

100.

Heat exchanger (1. Cooler, 2. Heater)
Adiabatic (valve) expander

Compressor

Splitter

Mixer

Stream energy value module (Stream sale)

Distillation column
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There is a special convention for inlet/outlet stream number and

size for the EQUIP vector, as follows:

Hot (process) streams +
Cold (process) streams -
Service streams >200 (201 steam, 202 cooling water, 203
refrigerant)
Pseudo-service streams 300 +signed stream number
- e.g. 301 for hot stream 1, 299 for cold stream 1
(b) Input equipment array - EMI (C)
The EMI array is used to input (column) equipment parameters to
COLSYS. The coding of its vectors is described in the DIST routine listing.
(c) General equipment arrays - EMCH(S § B), EMR(R)
The coding fov vectors of these arrays 1s identical v that for the
EQUIP working vector described in (a) above. Note that the EMR array has a

separate section for each refrigerant circuit.

iv) Stream processing path

The stream processing path data are stored in the /PATH/ COMMON
block. The JPATH matrix stores the actual processing paths and the NPATH
vector stores the number of paths (excluding the initial pre-processing path)
used for each primary stream. Primary streams are each allocated a maximum
of NPTHS paths (columns in the JPATH matrix) and there are separate sections
for hot and cold streams. The first path for each primary stream is reserved
for pressure change processing (pre-processing). Two subscript indexing
functions, IDJ and IDN, are used to locate the correct positions in the JPATH
and NPATH arrays for any given primary stream. The coding for the stream pro-

cessing paths, stored as columns of the JPATH matrix, is given below:



222

1. Number of equipments in path
2.-6. Equipment numbers
Ts Total path cost

8. Active (0)/inactive (>0) flag

v) Other

Other system labelled COMMON blocks are briefly described below:

/XKPM/ Input process matrix to COLSYS. The coding is described in the
COLSYS 1listing.

/PROP/  Physical properties pure component ccnstant vectors

/CONTL/ System control information -
NE Equipment number, NIN, NOUT Number of input and output streams
to an equipment, NOCOMP Maximum number of stream components.

/REFL/  Refrigerant level information

/SPLINE/ Stream energy cost spline information (Costs are in $/BTU)

/PLOPT/ Optimal process configuration information

/REFD/  Refrigeration unit input level and demand information

NAMELIST usage

Some use has been made of the FORTRAN NAMELIST free form input
feature, specifically for COLSYS input and for the /PARLST/ and /COMP/ NAME-
LIST blocks. It has been used because of its convenience when only parts of
particular arrays are to be provided and for the ease of identifying and

changing system parameters.



APPENDIX III

CASE STUDY AND PROCESS DETAILS

I1I1.1 High Pressure Case Study and Process Details

A full set of input, intermediate and final output data is given in
this section for the high pressure (HP) process case. Data sets are grouped
according to the four sections in which the system was run, i.e.

A Task identification

B Stream processing path generation

C Selection of optimal network configuration (Branch and bound

optimization)

D Refrigeration unit.

The sequence of data within the sets is essentially the same as
expected for input to and output from the programs as listed in Appendix II.1.
Brief notes of explanation are provided to guide the reader through the
various sections. Specific data can be identified through the system data
structure descriptions given in Appendix II.2. Some comments have been inter-
spersed in the data to further facilitate understanding. Additional title
cards are identified by C**% k2% and comment.cards by C.. . Some
blank cards have also been added.

| Note that as the component physical properties data set is common

to all four sections it has been removed from all but the first.

223
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A TASK IDENTIFICATION (COLSYS Section)
i) Input (to MAINC)
 The first section of data is that for component physical properties
for the 7 pure components used in the study. There are 15 constants per
component.
This is followed by the column system data which is provided in 4
NAMELIST groups as follows:
a) - PARLST
This is the group of common system parameters.
b)  KPMLST
This is the process matrix data which defines the column system
configuration, coded as sets of equipment number, equipment type
number and inlet and outlet stream numbers (+ inlet., - outlet).
c) SMPLST
This is the relevant stream control (SMPA) and properties (SMPB)
information for process streams.
d) EMILST
This is the (column) equipment parameter information.
ii) Output (from COLSYS) A
The output equipment vectors for the columns are shown on page 226.
Their coding is described in the DIST routine listing.
The stream demand and properties output from COLSYS is described

as input to the following system section, B.
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HIGH PRESSURE PROCESS CASE %%
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COLUMN EQUIPMENT VECTORS ¥*¥*
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B STREAM PROCESSING PATH GENERATION (SMATCH Section)
i) Input (to MAINS)

The title card is followed by the 'features' card (1111 .) which
activates (with a '"1", deactivates with a "(0'") desired processing options
in SMATCH, i.e. steam, stream sales, cooling water, refrigeration and vapor
Trecompression.

This is followed by the system parameter NAMELIST block, PARLST.

The next card (7700) gives the numbers of hot and cold primary
streams and hot and cold pseudo-service streams.

The following stream data, obtained as output from the preceding
COLSYS section, is provided in two groups, one each for hot and cold streams.
Within each the block of specification vectors (SMCHA) for all primary

streams ream properties vectors (SMCHB)

and stream component flow vectors. The latter are immediately converted into
stream mole fraction vectors (SMCHX). Note that within each (hot or cold)
stream group pseudo-service streams should always precede all other streams.
For this particular application there are nc pseudo-services.

The final input is that for refrigerant temperature levels. These
data are provided for the refrigerant level scheduling algorithm in SMATCH.
ii) Output (from SMATCH)

The output from SMATCH (stream, stream processing path and equip-
ment data) is described as input to the following system section, C. The

intermediate output produced during SMATCH execution is primarily for error

detection purposes and is not shown.



Cc¥x¥ HP SMATCH SECTION INPUT *¥*#
HP PLANTI—PQOEANE 5ERIE§ PROCESSED
$PARLSI %= B00
AMORT=0¢33sHRS=8000U, s
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SEND
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Cee HOT STREAM DATA -
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1 -] 1 0.0 55540
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5 0 0.0 41660
6 0 060 55240
T 0 . 0.0 50862
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C SELECTION OF OPTIMAL NETWORK CONFIGURATION (BRBND Section)
i) Input (to MAINB)

The title and system parameter cards are as for the previous section
with one addition, the discount (§) parameter for cold stream energy trans-
fers (DTF(2)).

The card containing parameters for the branch and bound optimiza-
tion is next.

The remainder of the data, with the exception of the final refrig-
erant level/cost information, is obtained as the complete punched output
from SMATCH., It is divided into three sections as described below:

(a) Stream information

The first card (7 7 0 0 24 16) gives the numbers of primary, pseudo-

service and total streams for the hot and cold categories. Within

each category the block of mole fraction vectors (SMCHX) for primary
streams is first. This is followed by the block of alternate

stream control (SMCHA) and properties (SMCHB) vectors for all primary

and residual streams.
(b) Stream procéssing paths

Within this section information is again divided into hot and cold

(primary) stream categories. Within each the first card gives the

number of processing paths used for each primary stream (NPATH

vector). Then follow the processing path matrix (JPATH) sections

for all primary streams, each preceded by the primary stream number.
(c) Equipment vectors

The number of equipments precedes the complete listing of equipment

vectors. Within each vector the equipment number is first. The
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second entry is the equipment type number and the coding for the

remainder of the vector can be found in the corresponding equip-

ment subroutine listing. Note that at this stage cost values for
equipment involving energy costs (types 1 and 30) are missing.

They are to be provided as a first step in this system section by

the ENERGY routine.

The final data cards contain refrigerant level and cost information.
These cost figures (in $/BTU) are either estimated or obtained from previous
calculation and are updated later by the refrigeration routine, RUNIT. Final
convergence of the overall problem cannot be obtained until these costs are
within the correct range (refer to Figure 10, section 6.1). The values shown
here are those for the final computation pass.

ii) Output from ENERGY (entry ENEC)

The ENERGY routine (specifically the ENEC entry) computes all costs
associated with energy transfers, i.e. refrigerant usages and stream sales.
This completes the equipment costing process and allows processing path costs
to be totalled and sorted into order of increasing cost for each primary
stream. The completed output fran this computation phase is shown on page 239.
The stars (*) which indicate optimal paths for each primary stream were added
after the following branch and bound optimization stage.

Note that the first processing path for each primary stream is not
shown. This is the pressure-changing or pre-processing path which does not
present any processing alternatives and hence is not directly required for
the branch and bound optimization calculations. The pre-processing path cost
has however been added into the costs for all other paths for the appropriate

stream.
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Note also that costs for process/process matches are divided
equally between paths for the tﬁo respective streams to avoid duplication
of costs.

iii) Output from BRBND

The intermediate output produced during execution of the branch'
and bound optimizing routine, BRBND, is not shown. After the optimization
has been completed BRBND compiles a list of thenumbers of the equipment
which comprise the optimal plant (NEOPT vector). This is shown on page 240
together with the optimal plant number and cost. Note that since the maximum
number of processing paths per stream (NPTHS),which is also the base for
the plant number, is 10 then each decimal digit of the plant number is a
component path sequence number.

iv) Output from ENERGY (entry ENDS)

Fron the NEOPT vector the ENERGY routine (specifically the ENDS
entry) compiles lists of energy transfers and overall cost statistics for the
optimal plant. These are shown on page 240. Note the following points.

The temperatures given in the REFD refrigeration demand array are
the maximum temperatufes at which refrigeration should be supplied. Dependent
on the levels available the actual temperature used may be rather lower than
that shown.

As the high pressure process does not use any stream as a-pseudo-
service the PSR array is not used.

The costs shown do not agree exactly with the values given in Table
8 (section 7.5) as the energy cost values have yet to be updated by the final
pass through the refrigeration routine.

The ENDS routine also writes out the sequence of complete equipment
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vectors for the optimal plant. AThis is not shown in the line printer output
in which it is produced due to page width limitations. However complete
details of the optimal plant abstracted from the SMATCH output are shown on
pages 241 and 242. Both stream and equipment details are shown. Note that
only data for those streams and equipment which form part of the optimal

plant are presented.
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STREAM PROCESSING PATH ARRAY #*¥%
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OPTIMAL PLANT DETAILS ¥
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D REFRIGERATION UNIT (RUNIT Section)
i) Input (to MAINR)
' The data set begins with the usual title and system parameter cards.

This is followed by previous refrigerant temperature level and cost
information (X, Y vectors) which is required to compute the cost for streams
purchased by the refrigeration unit for cold recovery.

The new refrigeration demand data (temperature levels and cooling
loads, RLEV matrix) is preceded by a card specifying the number of levels for
each refrigerant circuit (methane, ethylene and propane) and the total number
of levels.

Finally the purchased stream information is read consisting of: 1)
the number of such streams and ii) stream properties and mole fraction vectors
preceded by the circuit number within which the stream is first to be utilized
for refrigerant cooling.

ii) Output (from RUNIT)

The output is divided into three sections, one for each refrigerant
circuit (methane, ethylene and propane). Within each section there is a
stream properties vector (SMRB) block followed by an equipment vector (EMR)
block. Note that no stream control vectors are required and since each
circuit uses a pure refrigerant no mole fraction vector is needed. Note also
that the saturated liquid stream (stream 2 in both sections) is shown as
being of unit flow for convenience in calculation. Its true flow is the total
refrigerant circulation as shown for the final stream in both sections.

The final output consists of summarized information for each refrig-
erant level in the unit. This includes updated refrigerant unit cost values
(in $/BTU) which serve as data points for creation of subsequent energy cost

splines.
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III.2 Low Pressure Process Details

In this section data for the low pressure process case are presented.
For this case only essential input data and output data for the optimal
process configuration are presented. The figures correspond to case #3 in
Table 8 (section 7.5). As the data format corresponds so closely to that for
the previous high pressure case few notes of explanation are included with
‘the data. Note that LPM and LPL refer to the medium and low temperature sub-

processes as described in section 7.1.
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