
PROVING lMPLEMENTABILITY OF TIMING
PROPERTIES WITH TOLERANCES

PROVING lMPLEMENTABILITY OF TIMING
PROPERTIES WITH TOLERANCES

By

XIAYONG Hu, B.Eng., M.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree of

Doctor of Philosophy

McMaster University

©Copyright by Xiayong Hu, August 2008

DOCTOR OF PHILOSOPHY (2008)

(Software Engineering)

MCMASTER UNIVERSITY

Hamilton, Ontario

TITLE:

AUTHOR:

Proving Implementability of Timing Properties with

Tolerances

Xiayong Hu

B.Eng., Shanghai Jiao Tong University, China

M.Sc., McMaster University, Canada

SUPERVISOR: Drs. Mark Lawford and Alan Wassyng

NUMBER OF PAGES: xvi, 127

ii

To Jia and Felice

Abstract

Many safety-critical software applications are hard real-time systems.

They have stringent timing requirements that have to be met. We present de­

scriptions of timing behaviors that include precise definitions as well as analysis

of how functional timing requirements (FTRs) interact with performance tim­

ing requirements (PTRs), and how these concepts can be used by software

designers. The definitions explicitly show how to specify timing requirements

with tolerances on time durations.

This thesis shows the importance of specifying both FTRs and PTRs,

by revealing the fact that their interaction directly determines the final im­

plementability of real-time systems. By studying this interaction under three

environmental assumptions, we find that the implementability results of the

timing properties are different in each environment, but they are closely re­

lated. The results allow us to predict the system's implementability without

developing or verifying the actual implementation. This also shows that we can

sometimes significantly reduce the sampling frequency on the target platform,

and still implement the timing requirement correctly.

We present a component-based approach to formalizing common tim­

ing requirements and provide a pre-verified implementation of one of these

requirements. The verification is performed using the theorem proving tool

PVS. This allows domain experts to specify the tolerance in each individual

timing requirement precisely. The pre-verified implementation of a timing re­

quirement is demonstrated by applying the method in two examples. These

examples show that both the design and verification effort are reduced signif­

icantly using a pre-verified template.

A primary focus of this thesis is on how to include tolerances on tim-

IV

ing durations in the specification, implementation and verification of timing

behaviors in hard real-time applications.

v

Acknow-ledgments

First of all, I shall express my sincere gratitude to my supervisors. Dr.

Mark Lawford, my supervisor since my master's program, has been guiding

me patiently and supporting me to finish this long run. Dr. Alan Wassyng,

who became my co-supervisor in 2005, has dedicated a huge amount of his

time to help me make progress in my Ph.D. studies.

Second, I must thank my supervisory committee members. Dr. William

M. Farmer has provided invaluable comments on my research work ever since

my master's thesis work. Dr. Tom Maibaum provided careful review and so

many helpful comments.

Third, I must thank my friends for their knowledge, encouragement

and help. Yutong He shared a lot of experience in both thesis writing and

defense preparation.

Last and certainly not least, I must thank Jia Yu, my parents and

my in-laws. They have always supported my studies and encouraged me to

complete them. With my family, I have shared every day of this endeavor.

Vl

Contents

Abstract

Acknowledgments

List of Figures

List of Tables

1 Introduction

1.1 Motivation .

1.2 Related work ..

1.2.1 Summary

1.2.2 Two Major Challenges

1.2.3 Examples of Requirements Validation .

1.2.4 Related Work in Implementation Verification .

1.3 Contributions

1.4 Thesis Outline .

2 Preliminaries

2.1 PVS Preliminaries

2.1.1 PVS Proofs in Sequent Calculus .

2.1.2 Unprovable Sequents and Counterexamples .

2.1.3 PVS Support for Tables

2.1.4 Overview of the Naming Convention in PVS

iv

vi

xi

XIV

1

2

4

4

5

5

7

10

12

13

13

14

15

16

19

2.2 Requirernents Refinement and SDV Procedure Overview 21

2.3 The PVS-RT method 23

2.4 Limitations of Held_For operators without tolerance . 25

Vll

3 Environmental Assumptions and Impact on lmplementability 29

3.1 Environmental Assumptions 30

3.2 Functional and Performance Timing Requirements 31

3.3 Implementability of Held_For in a Perfect Clock Environment 39

3.3.1 Manual Analyses of Implementability Results . . 41

3.3.2 Latest Results for the Perfect Clock Environment 43

3.3.3 PVS Aided Analysis for Case 2 46

3.3.4 Examples of Feasible Sample Interval Ranges . . 48

3.4 Comparing the feasibility results in different environments

3.5 Implementability of Held_For in an Omniscient Environment

3.6 Implementability of Held_For in a No Clock Environment .

3.7 Summary

4 Formal Verification of Feasibility Results

4.1 Overview of the PVS Theories

4.2 PVS Theory for Sample Type .

4.2.1 Time Theory

4.2.2 Samplelnstance Theory .

4.2.3 FeasibilityResults Theory .

4.3 Roadmap to Prove the Feasibility Theorems

4.3.1 Proving Strategy for Case 1

4.3.2 Proving Strategy for Case 2

4.3.3 Proving Strategy for Case 3

4.4 Summary

50

53

55

57

59

60

61

61

61

64

68
68

69

72

73

5 Implementing Held_For with Tolerance 75

5.1 Refining Time 76

5.1.1 Timing Model in Physical Domain . . 76

5.1.2 PVS Theories Based on the Tick Type 77

5.1.3 Difference between Tick and Clock Types. 79

5.2 Held_For operator in Physical and Software Domains 80

5.2.1 Definitions 83

5.2.2 Filtered Tick Predicate 87

5.3 A more detailed Implementation Roadmap 89

5.4 Verification of Held_ForJ Based on High Level Requirements 91

Vlll

5.5 Implementation of Held_For 96

5.6

5.5.1 Timer Implementation of Held_ForJ 96

5.5.2 Verification of the Implementation of Held_For_B . 98

5.5.3 Verification of the Implementation of Held_ForJ

Summary

99

100

6 Examples 101

102

102

103

104

105

6.1 Example: Sensor Lock System

6.1.1 Overview of the System

6.1.2 Software Requirement Specification (SRS)

6.1.3 Software Design Description (SDD)

6.1.4 Implementation Assumptions

6.1.5 Formal Verification of the SenLock System 108

6.2 Example: Delayed Trip System 112

6.2.1 Software Requirement Specification (SRS) 113

6.2.2 PVS Software Design Description (SDD) . 114

6.2.3 Formal Verification of the Delayed Trip Example 117

6.3 Summary 118

7 Summary 122

127 7.1 Future Work .

A Time Theory 128

B Samplelnstance Theory 129

c FeasibilityResults Theory 132

D ClockTick Theory 138

E SamplelnstanceOnTick Theory 140

F Held_For Theory 142

G TimerGeneral Theory 148

H Sensor Lock Theory 151

IX

I DelayedTrip Theory 156

X

List of Figures

2.1 Horizontal Condition Tables

2.2 A Labeled Complex Horizontal Condition Table

2.3 PVS Code of the sample ELOCK Function .. .

2.4 PVS Naming Convention Example

2.5 Revised Commutative Diagram for 4 Variable Model

2.6 The SRS for the Delayed Trip System Block

17

17

18

21

22

26

3.1 Two Valid Implementations of a Sustained Timing Requirement 32

3.2 Held_For Functional Timing Requirement 34

3.3 Formal Definition of "(Condition) Held_For (d, JL, JR)" 35

3.4 A Periodic Functional Timing Requirement 36

3.5 Formal Definition of "Periodic(Condition, d, JL, JR)" . 36

3.6 Synchronized Periodic Functional Timing Requirement

3.7 Formal Definition of "SyncPeriodic(d, JL, JR)"

37

37

3.8 Timing Resolution for Time Continuous Monitored Variable 38

3.9 Timing Resolution for Time Discrete Monitored Variable 38

3.10 An Example of Sample Instances 40

3.11 An Example of Decision Points 41

3.12 Sample Intervals Required for Sustained Events 42

3.13 Sample Points in the Duration Interval . . 43

3.14 Case 1 of the Perfect Clock Environment . 44

3.15 Case 3 of the Perfect Clock Environment . 45

3.16 Case 2 of the Perfect Clock Environment . 46

3.17 Case 2 of the Perfect Clock Environment (Boundary Example) 48

3.18 Feasible Sample Intervals for Various Durations and Tolerances 49

3.19 Case 2 of the Omniscient Environment 54

Xl

3.20 Case 1 of the No Clock Environment 56

4.1 Overview of PVS Theories and their dependencies 60

4.2 Time Theory in PVS 61

4.3 Samplelnstance PVS Theory 62

4.4 PVS Lemmas of Sample Properties 64

4.5 FeasibilityResults PVS Theory . . . 65

4.6 PVS Theorems: Feasibility in Perfect Clock Environment 66

4.7 PVS Theorems: Feasibility in Omniscient Environment . 67

4.8 PVS Theorems: Feasibility in No Clock Environment . . 67

4.9 PVS Theorems: Relationship between Feasible Functions 68

4.10 Proving Strategy for Case 1 69

4.11 PerfectClock_CASE2 and NoClock_CASE2 Break Down 70

4.12 Proving Strategy for Case 2 71

4.13 PVS Theorem TminAndKmax 71

4.14 PVS Theorems for PerfectClock_CASE2A 72

4.15 Proving Strategy for Case 3 73

5.1 ClockTick Theory 78

5.2 SamplelnstanceOnTick Theory 80

5.3 Time Model based on Clock Type 81

5.4 Time Model based on Tick Type 81

5.5 Relationship between Held_For.l and High Level SRS 82

5.6 Held_For Versions in Physical and Software Domains 84

5.7 PVS Function Held_For...S 85

5.8 PVS Lemma TICK.l3ETWEEN_SAMPLE 85

5.9 Left_8ample Definition in PVS 86

5.10 PVS Lemma Left_8ample_PROPERTY3 86

5.11 PVS Function Held_For.l 87

5.12 PVS Function Held_For_F 87

5.13 Demonstration of Filtered Tick Predicate . 88

5.14 Definition of FilteredTickPred 89

5.15 A Detailed Roadmap of Implementation . 90

5.16 PVS Theorem Held_For.l_TRO 92

5.17 Response Allowance Scenario for PVS Theorem Held_For.l_TRO 93

Xll

5.18 PVS Theorem Held_For_:LVERIFY_FTR4

5.19 PVS Theorem Held_For_I_VERIFY _FTR2

5.20 PVS Theorem Held_For_I_VERIFY_FTR3

5.21 Timer_S Function ...

5.22 TimerUpdate Function

5.23 Timer_I Function

5.24 PVS Theorem TimerGeneraLS.

5.25 PVS Theorem TimerGeneraLI .

6.1 Block diagram for real-time SenLock controller .

6.2 The upgraded version SRS of SenLock System

6.3 PVS Definition of Sensor Lock SRS .

6.4 PVS Definition of Sensor Lock SDD

6.5 PVS Definition of ElockUpdate

6.6 Example of disagreement on second sample point

6. 7 Spike behavior between consecutive sample points

6.8 SenLock System Proof Obligation

6.9 Theorems and Lemmas of the SensorLock Theory

6.10 SenLock_SRS__8 Function

6.11 PVS Theorem SensorLock_Block_S6

6.12 PVS Theorem SensorLock_Block_S2

6.13 The Upgraded SRS for the Delayed Trip System

6.14 PVS Pseudo-SRS of Delayed Trip System.

6.15 RelayUpdate Function ...

6.16 PVS Code for DTS SDD . .

6.17 PVS Lemma Timer1_Timer

xiii

94

94

95

97

97

98

99

99

102

103

103

104

105

106

108

109

110

111

112

112

113

114

115

116

118

List of Tables

2.1 The Updated SRS for the Delayed Trip System block 28

3.1 Comparison of Implementability Results 51

4.1 Comparison of the Proof Work of Case 3 . 73
4.2 Proof Work of the Feasibility Results 74
4.3 Proof Work of General Theorems ' 74

6.1 Verification Effort Comparison of Two Examples . 120

7.1 Summary of Contributions 123

xiv

Glossary
JR2::0 25 Non-negative real numbers

N 39 Set of Natural Numbers ({0, 1, 2, ... })

T 14 Boolean constant TRUE

j_ 14 Boolean constant FALSE

I= 15 Semantic entailment

gof 23 Functional composition

d 33 Duration of Held_For operator

6L 33 (Left) Tolerance of duration d

6R 33 (Right) Tolerance of duration d

Tmin 39 Lower bound of the sample interval

Tmax 39 Upper bound of the sample interval

Kmax 44 l d-OL J
Tmm

Kmin 44 ld-OLJ
Tmax

bt 76 Arbitrarily small time interval between clock ticks

FTRs 31 Functional Timing Requirements

PTRs 31 Performance Timing Requirements

TR 36 Timing Resolution

RA 38 Response Allowance

SDV 21 Systematic Design Verification

DTS 25 Delayed Trip System

SRS 22 Software Requirements Specification

SDD 22 Software Design Description

Held_For 2 An operator defined for sustained events

Held_For_W 24 H eld_For operator without tolerance defined in [9]

Held_For_N 24 Held_For operator without tolerance with a

"narrower" window

XV

PVS Glossary

PVS 13 Prototype Verification System

TCC 18 Type Correctness Conditions

Held_For_S 83 A PVS function defined for sustained events

at sample level

Held_For_I 11 A PVS function defined as an intermediate

operator between the design and high level

requirements of H eld_For with tolerance

Held_For _p 83 Held_For operator. which reflects the sustained

result in the physical domain.

Timer _S 97 A PVS function implements the Held_For _s

with a timer design

Timer_! 98 A PVS function implements the Held_For_I

with a timer design

TimerGeneral_S 99 A PVS theorem pre-verifies Timer _S

implements Held_For _s

TimerGeneral_I 99 A PVS theorem pre-verifies Timer_l

implements Held_For _I

xvi

Chapter 1

Introduction

"A real-time system is one whose correctness depends not only on values of

its outputs, but also on the times at which they are produced" [22]. In order

to ensure its correct operation in critical contexts, it is important to rigor­

ously demonstrate that a system's timing requirements are satisfied [7, 25]. In

other words, the implementation must not only produce the correct functional

outputs but also has to produce them right on time.

Modern real-time systems often have requirements that determine the

current outputs based not only on current inputs, but also upon the history

of inputs and outputs [15, 34]. An example of such a system is a nuclear

reactor shutdown system that has the requirement, "If power and pressure

both exceed their maximum allowable limits for 3 seconds, then open the relay

for 2 seconds" [14]. Another example is a pacemaker, which is a small device

that can be placed under the skin of a patient's chest, to help control abnormal

heart rhythm. If a patient's heart does not beat or becomes abnormal for a

specified duration, the controller must take action to initiate an electrical pulse

to prompt the heart to beat at a normal rate. For both examples above, we

can see that real-time systems are often safety-critical. Any failure can cause

unrecoverable system failures (i.e., a loss of containment of nuclear material

or a pace at the wrong time that might end a patient's life).

Formal methods have been applied in software development in order to

provide precise and rigorous specifications, validate the requirements, verify

the implementation, etc. However, most formal methods do not scale well

1

PhD Thesis- X.- Y. Hu- McMaster- Computing and Software

(e.g., consider the state-explosion problem in model checking) or they ignore

the hard to deal with real-world details (such as timing tolerances) in order to

make the resulting mathematical models tractable for analysis and refinement.

In this thesis, we present an approach to precisely define complex timing re­

quirements that include tolerances on all time durations to formally verify the

feasibility of implementing those requirements, and finally we use this knowl­

edge to build a pre-verified template that implements one of the most common

timing requirements that occurs in real world applications.

1.1 Motivation

A central focus of this thesis is the specification and implementation of sus­

tained events (later described by the Held_For operator). Sustained events

are extremely common in hard real-time systems. The following is a typical

example of such an event:

If there has been no ventricle pace initiated for the automatic interval

and no sensed event for the spontaneous interval, then pace for k_pace Width.

In this simple requirement, we can find three "held for" events. The

first two are the conditions to trigger the pacing: the condition "no ventricle

pace initiation" (from the pacemaker) has "held for" the automatic interval

and the condition "no sensed event" (from a patient's heart) has "held for"

the spontaneous interval. The third one is the pacing control, saying if the

above conditions are satisfied, then the pacing must start and be "held for" a

sustained duration of k_pace Width.

There are other reports of the application of H eld_For operators in the

real-time systems in the industrial world as well (e.g., the Darlington Nuclear

Shutdown System [29]). Therefore, we choose the Held_For operator as the

focus of our interest and work. The following overview of the topics highlights

the motivation for this thesis.

Difficulties in formalizing, designing and verifying system timing re­

quirements. Specifying, implementing and verifying real-time requirements

for embedded software systems is a difficult and time-consuming task. If a

2

PhD Thesis -X.- Y. Hu -McMaster- Computing and Software

developer fails to correctly stop, start or reset a timer under conditions that

seldom occur, it can result in a design flaw detected late in the development

phase, or even worse, a system failure in the field. Hence real-time systems

have become an active area of research in the formal methods community. An

extensive survey of formal methods for the specification and verification of

real-time systems was completed recently by Wang [28] (Section 1.2.1). The

survey contains references to well over 200 publications related to the topic.

The publications can be categorized by the model of time that they use, ei­

ther continuous/dense time or discrete time. The overwhelming majority of

the referenced publications are dedicated to the specification and validation of

real-time requirements within their chosen model of time.

Large gap in requirements and implementation models. Despite a

number of comparisons and surveys of real-time formalisms, relatively little

work has been done connecting the two types of models when they are used at

the levels they best represent: continuous time at the requirements level and

discrete time at the implementation level.

Necessary and sufficient conditions for implementation. More re­

searchers are now focusing on using a "platform-independent" layer [8] as

a bridge between the abstract high level specification and coding languages

like C++. The benefit of using a middle layer is to narrow the large semantic

gap between modeling languages and implementation languages. However, the

inconsistencies between the design model and realization typically cannot be

observed until the final stages. A large amount of work can be saved if we can

figure out the necessary and sufficient conditions for implementing the major

timing components of the whole system before proceeding to any detailed im­

plementation of the system. For example, the method in [29] shows a way to

tell whether further implementation activities are worth it or not as soon as

the timing requirements have been specified.

Use pre-verified timing elements. Most real-time systems can be mod­

eled based on basic timing operators at the requirements level, for example

3

PhD Thesis- X.-Y. Hu- McMaster- Computing and Software

"Since P" [25] and Held_For [9, 29]. The serialization, composition and nest­

ing of these fundamental timing elements can be used to model the system

requirements in complex real-time systems. A pre-verified timing operator

library will benefit real-time system design and verification in the following

ways:

1. Developers can pick the timing operator from the library to imple­

ment the system and plugin the pre-verified theorem to get the whole system

verified on-the-fly.

2. Developers can also provide their own timing operator during the

system design, and compare and prove its equivalence to any existing operator

or combination of operators in the library, which can speed up the verification

of the whole system.

The motivation for this library is that real-time system design and

verification is difficult because real-time timing requirements are difficult to

implement and verify. We simplify this process by extracting the fundamental

timing behaviors of the system, specifying and verifying them using pre-verified

timing operators, and thereby saving repetitive work when dealing with sys­

tems that fall within the domain for which we have developed a timing operator

library.

1.2 Related work

1.2.1 Summary

We took an extensive survey [28] of formal methods for the specification and

verification of real-time systems as our roadmap to investigate the related

work. Although it contains references to over 200 publications, very few of

them are found to be related to our research topic. The overwhelming majority

of the cited works are dedicated to the specification and validation of real-time

requirements. Despite this intensity of research, relatively little work has been

done on formally modeling timing tolerances and implementation verification.

4

PhD Thesis -X.- Y. Hu -McMaster- Computing and Software

1.2.2 Two Major Challenges

There are two major challenges in designing and implementing real-time sys­

tems: requirements validation and implementation verification. Requirements

validation, also called "design validation" in [4], is to ensure the correctness

of the requirements at the earliest stage possible, while implementation veri­

fication is to verify the correctness of the implementation against the formal

requirements. For most real-time systems, they are equally important since

any mistake in the implementation may directly lead to unrecoverable loss.

In the last two decades, many achievements in requirements validation

of real-time systems have been reported [28]. Some of the most referenced

modeling techniques are timed automata [2], timed Petri Nets [1] and timed

process algebras (e.g., [21]). However, they are not related to our research

topic as most of them only focus on modeling the real-time system and vali­

dating the correctness of the model. Our objective is to formally model and

implement real-time systems with timing tolerances, ensuring the correct tim­

ing properties in the implementation using design verification. Since the timed

automata formalism is one of the most widely researched modeling techniq~es

introduced, we will use it as an exarnplc to explain the differences between our

design verification focus and the more common requirements validation focus.

1.2.3 Examples of Requirements Validation

Timed automata modeling and validation

A model describes selected behavior of a system [28]. Modeling is the first task

to convert a design into a formalism accepted by a model checking tool [4].

Timed automata were introduced as a formal notation to model the behavior

of real-time systems. They provide a general way to annotate state-transition

graphs with timing constraints using finitely many clock variables [2].

Temporal logic (with timing extensions) can be used to specify the

real-time properties that the design must satisfy. Branching time temporal

logics [3] like Computational Tree Logic can, for example, express whether a

formula will eventually be true on at least one path or on all paths.

5

PhD Thesis- X.- Y. Hu- McMaster- Computing and Software

Model checking provides a means for checking whether a model of the

design satisfies a given specification. Given the system descriptions as timed

automata and the specification temporal logic formulas that describe the prop­

erties we want to verify, we can determine whether the models of a given sys­

tem description satisfies the specification described by Temporal Logic formu­

las. Some model checking tools can also generate counterexamples, a series of

reachable states which do not satisfy the Temporal Logic formula. This helps

the verifier to easily identify errors during the validation process. Compared to

theorem proving, model checking is almost fully automatic, requiring less user

supervision and expertise. However, it is impossible to determine whether the

given specification covers all the properties that the system should satisfy [4].

The coverage of the specification formulas usually determines how deeply a de­

sign is validated. The specification formulas should be as complete as possible

to cover all the important timing properties.

Testing implementation for timed automata

There are mainly two approaches to generate the test cases for timed au­

tomata, either online or offline. In online (on-the-fly) approaches, the testing

environment is responsible for computing the next test primitive and verifying

the current output against the specification on-the-fly. In offline approaches,

the complete set of test scenarios are computed before execution [12].

The algorithm for online testing with the timed automata model checker

UPPAAL described in [12] randomly offers an input, waits for an output until

a timeout, or restarts the testing process in each testing cycle. If UPPAAL

observes an output or a time delay, it checks whether this is legal according

to the state set. Whenever an input is offered or an output/delay is observed,

the state set will be updated. Once UPPAAL detects an illegal occurrence or

absence of an output during any test cycle, a fail signal is produced and the

testing process is ended. Although the state-space-explosion problem experi­

enced by many offline test generation tools is reduced in UPPAAL, because

only a limited part of the state-space needs to be stored at any point in time,

very large specifications with an extreme amount of non-deterministic behav-

6

PhD Thesis- X.- Y. Hu- McMaster- Computing and Software

ior may still need significant time to compute the reachable symbolic state

set [18]. Plus, the coverage of this approach is random which has an impact

on its error detection capability [12]. Sprinintveld et al., presented the first

test generation algorithm [27] that yields a finite and complete set of tests

for dense real-time systems. In order to limit the infinite problem size, some

strong assumptions are made to restrict the problem size. For example, the

system is assumed to be deterministic and have isolated outputs (for each

state, if an output is enabled then no other input/output transition can be

enabled). Even with these strong assumptions, the algorithm itself is super

exponential and cannot be claimed to be of any practical value (according to

the authors) [27].

We have the following conclusions from the above discussion: 1. So

far, we still lack a formal and effective method to verify the implementation

from a timed automata model of a real-time system. 2. Although researchers

have done a lot to minimize or even remove the non-determinism in the timed

automata, the problem size is still too big to be of practical use. Tremendous

work has been done on validating timed automata, but the verification and

testing gap between a timed automata model and its implementation is still

huge. Our goal is to introduce a formal approach to perform both requirements

validation and implementation verification. In this approach, we will consider

timing uncertainty (i.e., outputs and given stimuli classified in an interval of

time rather than a time instance), which has not been taken into account in

timed automata yet [12, 18].

1.2.4 Related Work in Implementation Verification

The overwhelming majority of the cited works in [28] are dedicated to the

specification and validation of real-time requirements. Despite this intensity

of research, relatively little work has been done on formally modeling timing

tolerances.

Recent work has begun to address the issue of the timing tolerances

.when verifying implementations of requirements modeled as timed automata

with Almost ASAP (as soon as possible) semantics [35, 36]. De Wulf et

7

PhD Thesis - X.- Y. Hu - McMaster - Computing and Software

al., consider the case of implementing a continuous-time controller with a

discrete-time system, assuming that there is a delay ~ associated with the

controller's reaction to the environment. Both the controller and the plant are

first modeled as timed automata. Their control objective is to ensure that the

closed-loop system satisfies a safety property by avoiding bad states. Provided

that all control actions can be delayed by up to some fixed ~ > 0 without

violating the safety property, they say that the controller is "implementable" .

A PSPACE-complete decision procedure to test implementability is described

in [35], while [36] provides a semi-decision procedure to compute the maxi­

mal reaction delay ~ allowable by the implementation that still preserves the

correctness of the closed loop system. Further it is shown that the system is

implementable by a cyclic executive with loop time upper bound ~L and a

finite precision clock with a resolution of ~p, provided that ~ > 3~L + 4~p.

Giotto is described as a domain-specific high-level programming lan­

guage in [8]. The approach provides an intermediate layer between the math­

ematical model and the code, called the embedded software model, which is

independent of the target execution platform, but closer to programming code

than a mathematical model. The code generation task of Giotto is parti­

tioned into two steps, program generation and compilation. During the pro­

gram generation, a high level mathematical model (e.g., a Simulink model) is

transformed into an embedded software model, which is completely indepen­

dent of any execution platform. Then in the second step, the software model

is converted into low level executable code for a target platform. Program

generation specifies only the reactivity of the system relative to a physical

environment, while compilation ensures the schedulability of the system in a

specific execution environment [8]. Therefore the programs in Giotto can be

separated into two parts, a timing program which handles the timing concerns

(e.g., sampling) and a functionality program which handles the low level im­

plementation. The concept is close to the functional and performance timing

requirements that we will introduce in this thesis. The difference is that our

approach will predict the impact of their relationship on the implementability

of the system in the early stage of the analysis, to avoid unnecessary complex

implementation and verification.

8

PhD Thesis -X.- Y. Hu -McMaster~- Computing and Software

The assumption of zero-time for computational action in the model

language is impossible to ensure on the target platform in the implementa­

tion language [6]. Thus the predictable design approach introduced in [10]

an £-hypothesis to fill the gap between the physical domain and the software

domain. This £-hypothesis requires the model and its realization to have the

same observable execution sequence. Also, time deviations between activa­

tions of corresponding actions in the model and realization should be less than

E seconds. In the predictable design approach, the generation tool called Rota­

lumis takes the model coded with model language POOSL, and automatically

generates the executable for the target platform. We note that this hypoth­

esis is very close to what we call "response allowance" (Section 3.2), one of

our performance timing requirements, which is measured from the time the

event actually occurred in the physical domain until the time the value of the

controlled variable is generated and crosses the application boundary into the

physical domain. Our research also covers the tolerances in timing require­

ments when crossing from the physical domain to the software domain, which

is not discussed in [6, 10].

The summarized research above is focused on connecting the require­

ments and implementation. We notice that we can categorize most of the

current approaches into two categories: platform-independent and global tol­

erance. Most research based on the platform-independent idea will plug in

another layer between the high level requirements and coding implementa­

tion, e.g., "program generation" in the Giotto approach [8] and the POOSL

model in [6, 10]. In these approaches, whether or not a system can be im­

plemented on a target platform cannot be known until the final scheduling

stage is finished. In the case of the generation of an unimplementable result,

the designer has to improve the hardware performance or relax the timing

requirements, both of which are problematic.

The approaches with global tolerances (e.g., reaction delay parameter

.6. in [36] and E-hypothesis in [10]) all define a global constraint as the con­

stant upper bound of the delay during implementation. The benefit of a single

global tolerance is clear. It is easy to analyze and greatly simplifies the prob­

lem. However, in most industrial applications, different tolerances are required

9

PhD Thesis - X.- Y. Hu - McMaster - Computing and Software

for different timing requirements. A global tolerance on all timing durations

does not make much sense at the requirements level. In addition, at the imple­

mentation level, timing tolerances in sampling intervals (jitter) may be caused

in many ways. Unless the executive is a very simple loop, it is likely that dif­

ferent timing functions will exhibit different jitter. Again, a global tolerance

seems to be both a simplification and too restrictive. The results we have

so far (see Chapter 5) allow one to consider things like jitter associated with

such a fast requirement being implemented by repeated calls within a cyclic

executive. Our approach, to replace a very conservative global tolerance by

including tolerances in each individual timing requirement, may significantly

reduce unnecessary load on the target platform. This is illustrated by the

Delayed Trip example in Chapter 6.

1.3 Contributions

The main contributions of this thesis include:

1. We present how functional timing requirements (e.g., H eld_For) and per­

formance timing requirements (e.g., timing resolution) interact with each

other to determine feasible conditions of the final system implemen­

tation [29). The results that we have obtained through the feasibility

analyses can be used to predict the system's implementability without

carrying out the real implementation or verification work.

2. We have identified three environmental (time) assumptions and their

impact on the feasibility results. They are the Omniscient, the Per­

fect Clock and the No Clock assumptions. For each environmental as­

sumption, we verified the corresponding feasibility results using the the­

orem proving tool PVS [23). A feasibility function is defined to indicate

whether the timing requirements can be implemented or not under each

environmental assumption.

3. We have developed a roadmap of verification, which enables signifi­

cant reductions in the verification work of the feasibility results, by

10

PhD Thesis - X.- Y. Hu McMaster - Computing and Software

applying two general theorems, NoClock_Implies_PerfectClock and

PerfectClock_Implies_Omniscient. These two general theorems, which

have been formalized and verified in PVS, reveal the relationships be­

tween the feasibility functions across three environments. Using the same

general theorems, we also propose an approach to estimate the feasibility

results, if a new environment is provided.

4. We demonstrate the approach used to properly formalize functional

and performance timing requirements in PVS, through the example of

the Held_For operator with tolerance defined in [29]. We define the

Held_For _I function which is ready to be applied in the pseudo Soft­

ware Requirements Specification (pseudo-SRS) 1 , as an intermediate step

of verifying our design against requirements. This operator is then veri­

fied in PVS based on the functional and performance timing requirements

we have defined. For example, we verify that the Held_For _I operator

is in the expected tolerance range as specified in the functional timing

requirements, and conforms to the Response Allowance, which is one of

the performance timing requirements.

5. We present a pre-verified implementation template for common pieces

of the timing requirements (e.g., H eld_For) that often appear in real­

time systems. These can be reused to guide the design and reduce the

associated verification work. We present rnethods that show how to

design and verify a software component (e.g., a timer) that implements

the Held_For _I operator. The pre-verified component is then used to

guide the design of more complex components and to decompose their

design verifications into simple inductive proofs.

6. We provide two examples, Sensor Lock and Delayed Trip, to demon­

strate our implementation templates and verification approaches. In the

Delayed Trip example, we show that our approach allows us to specify

different tolerances for each individual timing requirement, which may

1 Imagine a version of the Software Requirements Specification (SRS) that is decomposed
so that the data flow of the reorganized SRS is the same as that of the software design. This
reorganized SRS is known as the "pseudo-SRS" [31]

11

PhD Thesis- X.- Y. Hu- McMaster- Computing and Software

make it possible to implement the real-time systems in a scenario where

a global tolerance is not feasible.

1.4 Thesis Outline

The remainder of this thesis consists of the following chapters and appendices.

Chapter 2 introduces the related background and a procedure for soft­

ware design verification. Our results on the Held_For operator without toler­

ance are presented as the preliminary work that motivates this thesis.

Chapter 3 presents three environmental assumptions and discusses the

implementability of a new version of the Held_For operator with tolerance in

each environment. Together with the environmental assumptions, interactions

between functional and performance timing requirements determine feasibil­

ity results. We compare the feasibility results in the three environments and

present a possible approach for estimating the feasibility results if a new envi­

ronment is encountered.

Chapter 4 presents the PVS work to formalize and verify the results

that we have in Chapter 3. Following an overview of the PVS theories and

their dependencies, we introduce the roadmap of our verification work and

how we used the general theorems to reduce duplication of proof efforts.

Chapter 5 introduces the implementation and verification of the

Held_For operator with tolerance. We first refine our time model, which as­

sumes arbitrarily small clock ticks, and formalize the model using PVS the­

ories. We then defi~e the intermediate operator, Held_For _I, and verify it

against the high level functional and performance timing requirements. A

pre-verified timer implementation of Held_For _I is introduced to guide the

design of more complex components. In Chapter 6 we show how to apply

this pre-verified result to simplify the design and verification of two sample

applications.

Chapter 7 includes concluding remarks and suggestions for future work.

12

Chapter 2

Preliminaries

In this chapter we review the essential concepts and notations as well as pre­

vious results. Section 2.1 presents the PVS concepts and notation. We pro­

vide a brief overview of a Systematic Design Verification (SDV) procedure in

Section 2.2. The PVS real-time method [15) and Held_For operator without

tolerance, developed in previous work [9, 15], are introduced in Section 2.3.

We revisit the Delayed Trip example in [9] and discuss the limitation of the

Held_For operator without tolerance in Section 2.4. This also becomes our

motivation to define a new Held_For operator with tolerance and implement

it in the next chapter.

2.1 PVS Preliminaries

The Prototype Verification System (PVS) was developed by SRI Interna­

tional's Computer Science Lab to provide mechanized support for formal spec­

ification and verification. PVS consists of its own specification language, pre­

defined theories, a theorem prover, libraries, utilities and documentation with

several examples (33). Currently it supports Mac, Linux and some other UNIX

platforms that have Emacs or Xemacs installed. The formalization and verifi­

cation work was completed on PVS version 4.1 [33] with NASA Langley PVS

Libraries [32].

13

PhD Thesis~ X.- Y. Hu- McMaster~ Computing and Software

PVS font

In this thesis, all PVS expressions are displayed in typewriter font (also

called PVS font). For example, "ELOCK" is a PVS function name, then it

will be displayed in the thesis as ELDCK. Section 2.1.4 will provide the naming

conventions that we use in the PVS theorem proving.

2.1.1 PVS Proofs in Sequent Calculus

The basic structure of the PVS sequent calculus is a sequent [24].

Definition 2.1.1. Let (r, D..) denote an ordered pair of sets of formulas in

higher-order logic. A sequent in the sequent calculus is written r ~ D... Here

~ denotes syntactic entailment. r is called the antecedent and D.. is called the

consequent {26].

A sequent can be written as P1 1\ P2 1\ ... 1\ Pn ~ Q1 V Q2 V ... V Qm,

where P1 , P2 , ... , Pn are the antecedent formulas, and Q1 , Q2 , ... , Qm are the con­

sequent formulas. The goal of the PVS proof process is to determine whether

a sequent is TRUE by proving that one of its consequents is a logical con­

sequence of its antecedents. A sequent can be proved directly using decision

procedures and simplification, or split into a collection of subgoals whose con­

junction implies the root sequent.

Let T and .l denote boolean constants TRUE and FALSE. In any of

the following cases, a sequent can be discharged [34]:

(1) FALSE is one of the antecedents.

(2.1)

(2) TRUE is one of the consequents.

14

PhD Thesis- X.- Y. Hu- McMaster- Computing and Software

(2.2)

(3) Formula A is both an antecedent and a consequent.

A (2.3)

A

When any one of these three cases appears in the sequent, PVS recog­

nizes them as trivially true and completes the subgoal. When all subgoals are

completed, PVS shows "Q.E.D." at the end of the proof [24, 34].

2.1.2 Unprovable Sequents and Counterexamples

During PVS theorem proving, unprovable sequents can often help to construct

counterexamples by examining their characteristic formulas [16]. Suppose we

are going to use PVS to check whether the following statement is valid or not:

m'rpVq (2.4)

We create the following theorem in the PVS approach to prove this
sequent.

EXAMPLE1: THEOREM m IMPLIES p OR q

Applying the (bddsimp) proof command gives us the following unprov­

able sequent:

15

PhD Thesis- X.-Y. Hu- McMaster- Computing and Software

{1} m

1----------
{-1} p
{-2} q

which has the characteristic formula m ---+ (p V q). This formula is FALSE

when m = T and p = q =F. Therefore in this case, the sequent is unprovable.

We can easily verify that this assignment provides a counterexample showing

the original formula (2.4) is not a valid formula. One can also generate this

counterexample with the random-test command that was added in PVS 4.0.

In this case, the counterexample is the conjunction of all the antecedents

being TRUE and all the consequents being FALSE.

2.1.3 PVS Support for Tables

In this section, we briefly present PVS's support for tabular expressions. This

section is based on [29}.

Labeled Complex Horizontal Condition Table

Where possible, we use tabular expressions to define functions. We are con­

vinced that tabular expressions (function tables) are a superb notation for

describing software functions.

There have been a number of publications on the semantics and usage

of tabular expressions (e.g., [11, 30, 31]). The tabular expressions we use most

in this thesis are called Labeled Complex Horizontal Condition Tables. Fig. 2.1

presents an example table together with its informal semantics. Disjointness

and completeness criteria help us to ensure that the functional descriptions

are unambiguous and complete [20].

Here we give a practical example shown in Figure 2.2 which arises in [9]

in a verification problem. This example has multiple conditions and actions.

When the conjunction of atomic propositions in a given row of the

Condition columns is TRUE, then output variables Elock and lLockDly are

set to the Result value for that row, i.e., the first row of Figure 2.2 could be

read as:

16

PhD Thesis -X.- Y. Hu -McMaster- Computing and Software

I f_name I
if C ondition1 then f _name = result1

Condition1

Condition2

Conditionn resultn

else if C ondition2 then f _name = result2

else if ... then ...
else if C onditionn then f _name = resultn

Disjointness: Conditioni /\Condition) {:::}FALSE, Vi, j = l..n, i =!= j, and

Completeness: Condition1 V ... V Conditionn {:::}TRUE.

Figure 2.1: Horizontal Condition Tables

Result
Condition Elock lLockDly
Elock I Reset Good 0

'Sensor =Lock I ~Reset Lock 0
Elock=/=Lock Good 0

LTime< I Elock=/=Lock Bad next(LTime)
Sensor ldelay J Elock=Lock Lock next(LTime)

LTime~ ldelay Lock NoChange

Figure 2.2: A Labeled Complex Horizontal Condition Table

if ~Sensor/\ (Elock = Lock)/\ Reset then Elock =Good 1\ lLockDly = 0

The PVS definition of the table in Figure 2.2 is shown in Figure 2.3. To

represent the possible N oChange status of the result for lLockDly, in PVS,

we use the RECURSIVE statement to define the function. The last statement

MEASURE rank(t) is a monotonically decreasing function on a well-ordered set,

used to prove termination of recursion to ensure that the recursive function

is well defined. A well-ordered set is a totally ordered set such that every

non-empty subset has a least element in its ordering. In this case, rank(t)

is of the type of natural numbers N and bounded with least element 0, which

allows one to prove the recursion terminates as rank (t) represents a monoton­

ically decreasing quantity bounded below that is associated with the recursive

function.

17

PhD Thesis - X.- Y. Hu - McMaster - Computing and Software

Lock_State: TYPE= {Good, Bad, lock}
SDD_State: TYPE = [# Elock: Lock_State, lLockDly: clock #]

ELOCK(t,ldelay): RECURSIVE SDD_State ~
IF init(t) THEN

COND
NOT sensor(t) -> (# Elock:= lock, lLockDly:= 0 #),
sensor(t) -> (# Elock:= lock, lLockDly:= next(O) #)

ENDCOND
ELSE

COND
NOT sensor(t) AND Elock (ELOCK(pre(t),ldelay))=lock

AND reset(t) -> (# Elock:= Good, lLockDly:= 0 #),
NOT sensor(t) AND Elock(ELOCK(pre(t),ldelay))=lock

AND NOT reset(t) -> (# Elock:= lock, lLockDly:= 0 #),
NOT sensor(t) AND NOT Elock(ELOCK(pre(t),ldelay))=lock ->

(# Elock:= Good, lLockDly:= 0 #),
sensor(t) AND lLockDly(ELOCK(pre(t),ldelay))<ldelay ->

(#Elock:=Elock(ELOCK(pre(t),ldelay)),
lLockDly:=next(lLockDly(ELOCK(pre(t),ldelay)))#),

sensor(t) AND lLockDly(ELOCK(pre(t),ldelay))>=ldelay ->
(#Elock:=lock,lLockDly:= lLockDly(ELOCK(pre(t),ldelay))#)

ENDCOND
END IF

MEASURE rank(t)

Figure 2.3: PVS Code of the sample ELOCK Function

In PVS we can use· a record type to define the system outputs or actions.

In this case the record type SDD_State contains the system outputs Elock and

lLockDly.

In order to make sure that a table is well-defined, PVS can generate

the completeness and disjointness proof obligations which constitute Type Cor­

rectness Conditions (TCCs) for the function. PVS will first try proving these

proof obligations automatically using PVS's built-in proof strategies. If a TCC

is too complex for PVS to handle itself, the user can attempt the proof of the

TCC interactively. The unprovable sequents of TCCs can often help the user

to construct counterexamples to reveal the incompleteness or inconsistency of

the specifications. Although one can start proving other theorems by skipping

the TCCs, these proofs will not be considered completely proved until all the

18

PhD Thesis- X.- Y. Hu --McMaster- Computing and Software

TCCs of the dependent definitions, theorems and lemmas are proved [24].

2.1.4 Overview of the Naming Convention in PVS

In this section we go through the major objects in the PVS language and

provide an introduction to the naming convention we employ in the thesis.

Theories

Specifications in PVS are built from theories, which contain definitions, lem­

mas, theorems, etc. PVS theories can be parameterized to provide genericity,

reusability, and structuring [19]. We apply the Pascal Case convention1 to

theory names. The Figure 2.4 shows the PVS theory SampleinstanceOnTick.

Types

Most of the build-in types in PVS are defined in lower case convention (e.g.,

real). We follow this naming convention when defining mathematical types

(e.g., tick represents the type of arbitrarily small clock ticks).

Theorems and Lemmas

The names of theorems and lemmas are specified in a way that best describes

their purpose. Between each Pascal Case name, we use _ to make them more

understandable to readers. For example: SensorLock_Block is the name of

the theorem to perform block comparisons between the requirement specifica­

tion and implementation of the SensorLock industry example.

Due to the large number of type check proof obligations generated by

PVS, we create lemmas to handle the repetitive proof work. Therefore, we

only need to prove them once, and instantiate them everywhere they are used.

Most of them are related to the property of the definition, so the naming con­

vention of these lemmas is: identifier followed by PROPERTY or RELATIONSHIP,

separated by _. For example, the PVS lemmas SampleTick_PROPERTY1 and

1The first letter in the identifier and the first letter of each subsequent concatenated word
are capitalized (i.e., SensorLock).

19

PhD Thesis - X.- Y. Hu - McMaster - Computing and Software

SampleTick_PROPERTY2 state and prove the two trivial properties of the

SampleTick type in Figure 2.4.

Variables in Lemmas and Theorems

When defining local variables for lemmas and theorems, we keep it as straight­

forward as possible in PVS. Most of them are one or two letters in lower case

convention. In the example shown in Figure 2.4: n denotes a natural number

variable and t denotes a time variable.

Consistency with the Industry Conventions for Important Identifiers

There are quite a few important identifiers in our PVS theories that come

from the industry examples or documents [15, 29, 31]. We keep those names

as consistent as possible so that the theorems are user-friendly to the domain

experts and system implementers. Some examples are: Held_For stands for

the sustained event operator and Sample is used to specify a series of sample

instances (see Figure 2.4).

PVS Proving Commands

The PVS proof commands are the commands that we type in to prove the

PVS obligations. They need to be in parentheses to be recognized by PVS.

For example: (split) is the PVS command to split a conjunctive formula in

the current goal sequent. The command must be in either upper case or lower

case; otherwise it will be considered as an illegal keyword by PVS.

In this section, we reviewed the naming conventions of the PVS work.

A glossary on page xvi provides a quick reference to the commonly used PVS

names.

20

PhD Thesis - X.- Y. Hu - M eM aster - Computing and Software

SampleinstanceOnTick[K: posreal, (IMPORTING Time) TL,
TR: {t: time I t < K},
delta_t: {tk: posreal I tk < K - TL}]: THEORY

BEGIN

IMPORTING ClockTick[delta_t]

IMPORTING Sampleinstance[K, TL, TR]

t: VAR tick
n: VAR nat

SampleTick_Type: TYPE =
{S: Sample_Type I FORALL (n: nat): EXISTS (t: tick): S(n) = t}

Sample: VAR SampleTick_Type

n: VAR nat

SampleTick_PROPERTY1: LEMMA EXISTS (n1: nat): Sample(n) = n1 * delta_t

SampleTick_PROPERTY2: LEMMA
pre(Sample(n + 1)) > Sample(n) AND pre(Sample(n + 1)) < Sample(n + 1)

END SampleinstanceOnTick

Figure 2.4: PVS Naming Convention Example

2.2 Requirements Refinement and SDV Pro­

cedure Overview

In this section we provide an overview of our verification process in a two

step approach based on the Systematic Design Verification (SDV) procedure

in [13]. In the first step, called Requirement Refinement, a pseudo-SRS is cre­

ated and verified as a refinement of the high level requirements. In the second

step, called the pseudo-SD V Procedure, we verify that the Software Design

Description (SDD) is in compliance with the requirements for the behavior as

specified in the pseudo-SRS.

When the high level requirements of the real-time systems are cre­

ated by the domain experts, they can be a combination of formal documenta­

tion (e.g., tabular expressions), graphical explanations and example (scenario)

21

PhD Thesis- X.- Y. Hu- McMaster- Computing and Software

demonstrations. All these efforts are intended to provide as accurate and

complete information as possible to the later stages (e. g., requirements refine­

ment, design and implementation). As an example, the Held_For operator

with tolerance that we will present in the next chapter is a functional timing

requirement. However, high level requirements are usually not formalized com­

pletely and intentionally include under specifications that needs to be further

refined in the design and code ~mplementation.

Our approach is to first create the pseudo-SRS as an intermediate step

between the high level Software Requirements Specification (SRS) and Soft­

ware Design Description (SDD). To ensure it is a correct refinement, we need

to verify the pseudo-SRS based on all the timing requirements that are spec­

ified in the high level requirements. In other words, the behaviors that are

specified in the refined pseudo requirements (pseudo-REQ) must be a subset

of the ones specified by high level requirements (REQ). The proof obligation

of our first step verification can be formalized as:

pseudo-REQ ~ REQ

In the scope of this thesis, we restrict the pseudo-SRS to be a functional

refinement of the high level requirements. The second step of the verification

process is then similar to the SDV process presented in [13], as illustrated in

the revised 4 variable model shown in Figure 2.5.

pseudo-REQ
~ ~~--------~~

IN)
I

SOF
------------~~ 0

Figure 2.5: Revised Commutative Diagram for 4 Variable Model

In the figure, pseudo-REQ represents the pseudo-SRS state transition

function mapping the monitored variables represented by~ to the controlled

variables represented by C. The other parts are unchanged from [13]. SOF

22

PhD Thesis- X.- Y. Hu- McMaster- Computing and Software

represents the SDD state transition function mapping the behavior of the im­

plementation input variables (represented by statespace I) to the behavior of

the software output variables (represented by the states pace 0). The mapping

IN models hardware functionality and relates the specification's monitored

variables to the implementation's input variables. Similarly, the mapping OUT

also models hardware functionality, and relates the implementation's output

variables to the specification's controlled variables. The resulting proof obli­

gation

pseudo-REQ =OUT o SOF o IN (2.5)

is illustrated by the solid arrows in the commutative diagram of Figure 2.5,

which verifies the functional equivalence of the pseudo-SRS and SDD by com­

paring their respective one step transition functions [17]. Here o is used to

denote functional composition. Given functions j : Vi ---* V2 and g : V2 ---* V3 ,

we use go f to denote functional composition, i.e., go f(v 1) = g(f(vi)).

Through this two step SDV procedure, the high level requirements are

connected with low level implementation. In each of the steps, the verification

can be formally conducted (e.g., by PVS). In later chapters, we demonstrate

this approach and provide the reader with two practical examples.

2.3 The PVS-RT method

The PVS real-time (PVS-RT) method introduced by Lawford et al. in [15],

investigates the use of PVS for the specification and verification of the real­

time behavior of control systems software. In this section we will review the

PVS-RT method and some related preliminary work of [9].

The model of time employed by the proposed method in [9J builds upon

a discrete time "Clocks" theory originally defined in [5J. While the model of

time put forward in [5] allows for multiple clocks of different frequencies and

continuous time functions, we restrict the scope to discrete time functions of

a single clock frequency in [9J. We consider time to be the set of non-negative

real numbers, denoted by IR~0 . Then for a positive real number K, we define

23

PhD Thesis- X.- Y. Hu- McMaster- Computing and Software

a clock of period K, denoted clockK, to be a set of "sample instances"

clockK :={to, t1, t2, ... , tn, .. . } = {0, K, 2K, ... , nK, .. . }

For a period K = 5ms, the clock is simply

clocks :={Oms, 5ms, 10ms,15ms, ... }

Note that clocks, like all clocks as defined above, "starts" at time t 0 =Oms.

Building on this work in [9, 13], we designed an implementation of

timing properties (specified in the real-time system requirement) and verified it

using PVS. This result can then be used to guide system design and decompose

design verification into simple inductive proofs.

We first specify requirements of a Sensor Lock System using the Held_For

operator [9] and verified it for an arbitrary value of the system timing param­

eters. By refining and comparing the related condition/result logic embedded

in the tabular expressions, we were able to relate the timing behavior of the

Software Requirements Specification (SRS) and Software Design Description

(SDD), which allowed us to finish the verification of the Sensor Lock System.

In this thesis we rename Held_For to Held_For_ W in order for it not

to be confused with the names of the other versions of Held_For operators

we introduce in this thesis. Therefore, Held_For_ W stands for the Held_For

operator in [9], which is TRUE while input has been holding for a "wider"

window (in the next section we will compare it to another similar definition

Held_For_N, which is a narrow window version).

We now state a preliminary definition that will aid us in defining the

Held_For operators. For the clockK, the set of clock predicates, denoted

pred (clock K), is the set of all boolean functions of clock K:

pred(clockK) := {Jjf: clockK ~{TRUE, FALSE}}

The Held_For_ W operator [9, 13, 15, 34] is formally defined as:

Definition 2.3.1. Let "duration" denote a non-negative real number, and

"P" represent a clock predicate. H eld_For_ W is an operator, written infix, that

24

PhD Thesis -X.- Y. Hu - McMaster - Computing and Software

takes a clock predicate as its first argument, a non-negative real number as its

second argument and returns a clock predicate:

such that (P)Held_For_ W(duration)(tn) = TRUE iff

Note that we are supposing the sampling behavior in the physical do­

main always happens at a constant, fixed interval and we are ignoring inter­

sample behavior of the condition P, i.e., the truth value of Held_For_ W is only

dependent upon the value of P at the sampling instances corresponding to the

clock values. Timing tolerance is also not considered in this version of the

Held_For_ W operator. In the next section, we will review the Delayed Trip

Systern we have verified based on the SRS defined with the Held_For_ W oper­

ator to demonstrate the limitation of the H eld_For operators without timing

tolerances.

2.4 Limitations of Held_For operators with­

out tolerance

The Held_For_ W operator in [9] does not consider any timing tolerance. As

a result, in some scenarios, it might not be able to reflect the exact timing

properties that domain specialists want to specify. To illustrate this, we revisit

the Delayed Trip System (DTS) [14] which is implemented and verified in [9].

The informal description of the desired input/output relationship for the DTS

block is:

Whenever the power exceeds the Power Threshold (PT) and the pressure

exceeds the Delayed Trip Set Point {DSP} simultaneously for timeout1 = 3s,

then open the relay. The relay must remain open for at least timeout2 =
2s, from the time that the power or pressure no longer satisfy the specified

condition.

25

PhD Thesis- X.-Y. Hu- McMaster- Computing and Software

The DTS block's cycle time is K = lOOms, which means that the

system reads its inputs and updates its outputs every 0.1 seconds. The formal

specification is shown in Figure 2.6:

Result
Condition relay

(PP) Held_For timeout1 TRUE
(--, [(P P) H eld_For timeoutl]) H eld_For timeout2 FALSE

•[(PP) Held_For timeout1] 1\
•([• (PP) Held_For timeout1)] Held_For timeout2) No Change

where PP(t) = Power(t) ~ PT 1\ Pressure(t) ~ DSP

Figure 2.6: The SRS for the Delayed Trip System Block

Above is the Software Requirement Specification (SRS) for DTS. PP is

a time predicate which is TRUE when power exceeds PT and pressure exceeds

DSP. The inputs to this SRS function table are Pressure and Power, both of

which are clock predicates. The function output is a boolean variable. When

the conjunction of atomic propositions in any give row of the Condition column

is TRUE, relay is set to the Result of that row. For example, when

(PP) Held_For timeoutl is TRUE,

then relay = TRUE.

A complete implementation of the DTS can be found in [9]. However,

we also noticed that we cannot perfectly recognize the two sustained events

because our assumption is based on an "ideal" constant sampling interval.

Recall the Held_For_ W Definition 2.3.1. The relay may not open until the

condition P P has been held for at least 3 seconds in the physical domain. It

is still possible that PP has been held TRUE for 3.05 seconds but the re­

lay is not open. The domain specialist may find that this is not acceptable

and may require the capture of any case in which the condition P P holds

over 3 seconds in the physical domain. Thus, in this case, the Held_For_ W

operator, with a larger window, cannot be used to specify the safety require­

ments correctly. In order to fix this problem, we can make slight changes

26

PhD Thesis ~ X.- Y. Hu -McMaster- Computing and Software

and define the following Held_For_N operator. The only difference between

Held_For_N and Held_For_ W is that Held_For_N uses next(tn) in the dura­

tion condition to narrow the held for window for condition P. In [9], we defined

next(tn) = tn+l = tn + K, which returns the next clock value of tn.

Definition 2.4.1. Let "duration" denote a non-negative real number, and

"P" represent a clock predicate. Held_For_N is an infix operator that takes a

clock predicate as its first argument, a non-negative real number as its second

argument and returns a clock predicate:

Held_For_N: pred(clockK) x JR20
----+ pred(clockK)

such that (P)Held_For_N(duration)(tn) =TRUE iff

(3tj E clockK) ((tn - tj ~ duration) 1\ (next(tn) - tj > duration)) 1\

(Vti E clockK)(tj ~ ti ~ tn ===} P(ti))

In this scenario, H eld_For_N can help us specify the requirements better

th;;:tn H eld_For _ W, by guaranteeing a smaller window time to trigger the relay.

On the other hand, for some safety requirements we really need to utilize the

larger window of the H eld_For _ W operator to ensure a long enough sustained

event or action. For example, the DTS requires that once the channel gets

tripped, then open the relay for at least 2 seconds. If we use the Held_For_N

operator with a duration of 2 seconds, it can only guarantee a relay signal

longer than 1.9 seconds (e.g., 1.95 seconds). From a safety perspective, domain

experts might reasonably insist that the relay should open for "at least" 2

seconds. In this case, the Held_For_ W operator with a duration of 2 seconds

is a better choice (to produce a relay for any interval over 2 seconds but no

more than 2.1 seconds).

An updated version of the Delayed Trip System specification is shown

in Table 2.1. We also used PVS to prove some relationships between the

Held_For_ W and Held_For_N operators. In the special case when duration

is the clock type, not just a positive real value but rather a multiple of the

clock period, we can prove that they are equivalent. In this case, both oper­

ators check the same history window of the system samples and generate the

identical result.

27

PhD Thesis - X.- Y. Hu - McMaster - Computing and Software

Result
Condition relay

(PP) Held_For_N tirneoutl TRUE
(-, [(PP) Held_For_N timeout1]) Held_For_W timeout2 FALSE

-,[(PP) Held_For_N timeout1] 1\

-,([-, (PP) Held_For_N timeout1)] Held_For_ W timeout2) No Change

where PP(t) = Power(t) ~ PT 1\ Pressure(t) ~ DSP

Table 2.1: The Updated SRS for the Delayed Trip System block

We have defined the two Held_For operators without tolerance and ap­

plied them to the Delayed Trip example. But domain engineers may still argue

about the safety of the gap left by the smaller and larger windows of H eld_For

operators. Worse still, the implicit tolerance or safety margins of these oper­

ators is dependent upon the sampling period K. Changing K from lOOms to

200ms effectively doubles the tolerated behaviour. Instead of becoming true

when the condition has held for between 1.9 and 2.0 seconds, the Held_For_N

operator now becomes true when the condition has held for between 1.8 and 2.0

seconds. To provide a better solution, we need a H eld_For operator with (ex­

plicit} tolerance and the concepts of timing resolution and response allowance,

which will be explained in the next chapter.

28

Chapter 3

Environinental Assuinptions

and IInpact on lmpleinentability

In this chapter we will present three different environmental assumptions and

discuss the implementability of an upgraded version of the Held_For operator

with tolerance in each of them. In order to fully analyze the problem, two

types of the timing requirements (functional and performance) are introduced

in Section 3.2.

To formalize the investigation, we have defined one feasibility function

for each of the environments, which directly indicates the implementability of

this Held_For operator in that environment. Sections 3.3- 3.6 show how the

relationships of the functional and performance timing requirements become

the conditions which satisfy the feasibility function in each environment. By

comparing the feasibility results across these three environments, we find an

approach to roughly estimate how difficult it will be to implement the Held_For

operator in a new environment. This chapter provides the basic results for the

subsequent chapters that discuss the implementation of the H eld_For operator

with tolerances.

29

PhD Thesis - X.- Y. Hu - McMaster - Computing and Software

3.1 Environmental Assumptions

We assume that there are four different implementation environments which

govern how we recognize a sustained event like the H eld_For operator. They

are the Omniscient, the Perfect Clock, the Imperfect Clock and the No Clock

environments. We limit the scope to assume the implemented system will

refresh the output at each sample point, which is a polling based rather than

interrupt driven setting. However, even in an interrupt driven system where

the analog signal is fed into a comparator to generate an interrupt when the

signal exceeds or falls below setpoint, the comparator output is effectively

being sampled at the system clock frequency.

Omniscient: This environment provides full read access to the timing of the

events that happen in the physical domain. In this environment, we

know the exact time of each event when the condition becomes TRUE

or FALSE. However, we can only take actions on these events at sample

times.

Perfect Clock: This environment provides the value of the condition only at

sample instances and we know the exact timing of samples by using a

perfect real valued clock. Like the Omniscient environment, we can take

actions on the events only at sample times.

Imperfect Clock: This environment is the same as in the Perfect Clock en­

vironment but with access to an imperfect clock (e.g. finite precision,

bounded drift, etc). To precisely specify this situation, we need to first

model the imperfect clock and construct any real-time operators based

on it. We leave as future work, the formalization of possible subcases

that are associated with different imperfect clock assumptions.

No Clock: In this environmental assumption, our access to the timing of the

events becomes very limited. The exact time of a sample instance is not

exposed to the software domain. In this case we have no recourse in our

implementation but to simply count the number of samples since we first

detected the event. In this case we need a "count" value, n, that will

30

PhD Thesis- X.- Y. Hu -McMaster- Computing and Software

work under any possible bounded sample spacing and the actual time of

occurrence of an event.

We will introduce each of the environments in detail in the later sections

when discussing the feasibility results.

3.2 Functional and Performance Timing Re­

quirements

This section is based on [29). All the figures in this sections are from [29).

Many safety-critical software applications are hard real-time systems.

They have stringent timing requirements that have to be met. We present a

description of timing behavior that includes precise definitions as well as anal­

ysis of how functional timing requirements interact with performance timing

requirements, and how these concepts can be used by software designers. The

definitions and analysis presented explicitly deal with tolerances in all timing

durations.

We differentiate between Functional Timing Requirements {FTRs) and

Performance Timing Requirements {PTRs). Functional timing requirements

are timing requirements that are directly related to the required behavior of

the application. Performance timing requirements are really timing tolerances

that we specify so that the application does not have to adhere to the idealized

behavior described by the requirements model.

Functional Timing Requirements

Here we introduce three functional timing requirements that occur frequently

in practical applications: sustained, periodic and synchronized periodic timing

requirements.

Sustained Timing Requirements: A common functional timing require­

ment is one that specifies that a condition must be sustained over a particular

time duration. For example, the Held_For_ W operator in [9] is one form of a

31

PhD Thesis - X.- Y. Hu - McMaster - Computing and Software

sustained timing requirement. However; in the real world, without tolerances

on the time duration, these requirements would be impossible to meet. In

the previous chapter, we already showed that the Held_For_ W operator of [9]

lacked the ability to handle tolerances, resulting in two versions, each version

having to cover two different scenarios.

To further understand the sustained timing requirements with toler­

ance, we can look into a simple sensor-trip example. To filter out the effect of

a noisy signal we may specify that an event in which a sensor signal is above

its setpoint should be sustained for 300 ms before it can cause a trip. This

means that the implementation must guarantee that if the sensor event is sus­

tained for less than 300 ms, the trip must not occur. Similarly, if the sensor

event is sustained for 300 ms or longer, the trip must be generated. Without

tolerances on the time duration, these requirements would be impossible to

meet .

Sensor event in physical domain

setpoint

11111111111111111111111111 ~
0 100 200 300 400 time (ms)

250-350

Figure 3.1: Two Valid Implementations of a Sustained Timing Requirement

Figure 3.1 shows an implementation of the behavior specified above for

32

PhD Thesis ~X.- Y. Hu ~McMaster -- Computing and Software

a controlled variable c_result and sustained condition m_signal ~ setpoint.

The strange behavior in the top implementation is almost certainly not what

the specifier intended, but it may be cornpliant with its specification. We

need to be able to specify the desired behavior precisely enough to allow many

different behaviors that should be permitted, but disallow behaviors that do

not comply with the specifier's intention. So, how should we interpret this

specification? A logical interpretation is that c_result should not equal trip

until m_signal ~ setpoint has been TRUE for at least 250 ms, and that

c_result must equal trip if m_signal ~ setpoint has been TRUE for 350 ms.

The problem is: what happens in the range 250-350 ms? Figure 3.1

shows another two possible implementations that really would be compliant

with this requirement. The difference here is that for each event we have

effectively restricted ourselves to a single representative duration inside the

specified range.

There are a number of important points to emphasize. i) The time

duration is measured from when the event started in the physical application

domain. It is not measured from the time it is detected. Since the require­

ments are (supposed to be) developed by the domain experts, and should be

independent of any implementation, it does not make sense to define timing

requirements with reference to when events are detected. ii) Many different

implementations are valid. The behavior in the dark shaded interval rep­

resenting time in the interval [250, 350] ms is not deterministic. It is vital

that everyone has the same understanding of what the requirement means.

iii) Even though we have introduced tolerances into the requirement, the re­

quirement still describes idealized behavior understood within the constraints

of the requirements model. For instance, it does not take into account that

processing time is not infinitely small, and it makes no reference to how often

the application samples the values of the sensor.

To model these sustained events with tolerances, we developed a new

version of the infix Held_For operator with tolerance, (Condition) Held_For (d,

5L, 5R), which uses a duration defined by the constant time d (> 0), with

tolerances -5L, +5R, 0 ::;; 5L < d, 0 ::;; 5R. Held_For with tolerances is

illustrated in Figure 3.2, and is defined formally using tabular expressions in

33

PhD Thesis - X.- Y. Hu - McMaster - Computing and Software

I
I
I
I
I

(Condition) Held for (d, aL,~R)

d-oL -
d

Condition

F

F

time

Figure 3.2: Held_For Functional Timing Requirement

Figure 3.3. A critical concept is that although duration can be any value in the

interval [d-oL, d+oR], it must be constrained so that duration has only a single

value throughout an event. The initiating event in this case is when Condition

changes from FALSE to TRUE. The event lasts until Condition changes from

TRUE to FALSE. Without this constraint, many different bizarre behaviors

are possible, all of them are clearly not the intent of the function.

Periodic Timing Requirements: Periodic timing requirements are com- ·

mon in hard real-time systems. To help us model periodic timing require­

ments we developed a function, Periodic(Condition, d, oL, oR). This function

(Periodic) is TRUE for 1 clock-tick at the instant that Condition changes

from FALSE to TRUE, and, as long as Condition remains TRUE, the func­

tion is TRUE again, some time "period" after the most recent time it changed

from FALSE to TRUE. The effective period of the function is defined by the

constant duration d (> 0), with tolerances -oL, +oR, 0 ~ oL < d, 0 ~ oR.

Periodic is illustrated in Figure 3.4, and is defined formally using tabular

expressions in Figure 3.5.

A different kind of periodic function is one that is synchronized with

an external clock as illustrated in Figure 3.6.

34

PhD Thesis -X.- Y. Hu -McMaster - Computing and Software

(Condition :bool) Held_For (d: JR.> 0 , 6L, 6R: IR.:::: 0) :bool
where duration(Condition: bool): [d- 6L, d + 6R]

Event..start_time(Condition :bool) : IR.::::o
Initially: duration = any value in [d-oL, d +oR]

Event...start_time_l = 0
Condition_ 1 = FALSE

(Condition = TRUE) & (Condition-1 = FALSE)

Condition = FALSE OR Condition-1 = TRUE I

duration

Any value in
(d- oL, d + SR]

No Change

C d 't' = T'RUE I tnow- Event...starLtime2 duration
on 1 Ion I E . d .

tnow- vent...starLtime< urat10n
Condition = FALSE

I Event start_time I -

tnow

No Change

I Held_For I
TRUE

FALSE
FALSE

Figure 3.3: Formal Definition of "(Condition) Held_For (d, JL, JR)"

If the periodic functional requirement is synchronized with an external

clock, definitions equivalent to t mod period = 0 are useless when the period

involves tolerances. The requirement t mod 400 ± 50 ms = 0 results in milli­

second intervals of [350-450], [700-900], [1050-1350], [1400-1800], [1750-2250],

[2100-2700], ... , and after a relatively short time period the requirement does

not constrain behavior much at all. A practical, formal specification of this

periodic functional requirement can be developed from Vn : tn E [n x d­

JL, n x d + JR], and is defined using tabular expressions in Figure 3.7. This

definition does not deal explicitly with a consistent clock drift, but this could

be included by specifying d as a constrained function of time.

Performance Timing Requirements

Functional behavior of the application is (typically) described using a model

that describes the ideal behavior of the application. It totally ignores the fact

that an implementation cannot continuously monitor sensor values and re­

quires a finite, non-zero amount of time to process its results. To complete the

description of the required behavior, the requirements must also specify the

performance tolerances that are allowed in meeting functional timing require-

35

PhD Thesis - X.- Y. Hu - McMaster - Computing and Software

d

Condition

I
I
I

81.: -·
d

T

8Ll8R
-~- F

time

Figure 3.4: A Periodic Functional Timing Requirement

Periodic(Condition :bool, d :~>O, JL, JR: ~2:0) :bool
where period(Periodic_1: bool): [d- JL, d + JR]

previous_time(Condition :bool) : ~;:::o
Initially: period = any value in [0, JR]; previous_time_1 = 0; Periodic-1 =FALSE

Condition=
TRUE

Periodic_1 =TRUE
Periodic_1 =FALSE

period

Figure 3.5: Formal Definition of "Periodic(Condition, d, 5L, 5R)"

ments. We have identified two different performance timing requirements,

timing resolution and response allowance. These are defined and discussed

below.

Timing Resolution: Each monitored variable has a timing resolution asso­

ciated with it. The definitions for this interval are different for time continuous

and time discrete monitored variables.

The timing resolution {TR) for a time continuous monitored variable

36

PhD Thesis -X.- Y. Hu -McMaster - Computing and Software

J I I
SyncPeriodic(d, ol, oR)

period period period

I I I I J I 1 ...
~~~ 1 oL a~ II)L 5J~ 1 oL Rl,... 

d d d time 

Figure 3.6: Synchronized Periodic Functional Timing Requirement 

SyncPeriodic(d: JR>0 , 6£, 6R: JR2': 0): bool 
where n: N, and b.. : IR 
Initially: n = 0; b..= any value in [0, 6R]; SyncPeriodic_1 =FALSE 

SyncPeriodic_1 = TRUE 
SyncPeriodic_1 = FALSE 

I Any value in [-.SL, clR] 
No Change 

tnow 2: nxd + b.. 
tnow < nxd + b.. 

I SyncPeriodic I 

1~----1 ----=i=-:--::'A~~~~=-----HII 

n 

n+l 
No Change 

Figure 3.7: Formal Definition of "SyncPeriodic(d, 6L, 6R)" 

(shown in Figure 3.8) is the minimum time duration of an initiating event de­

pendent on that monitored variable for which the application must guarantee 

that it will detect that event. Thus, the TR is also an indication of the maxi­

mum time interval that the computer can allow between successive sampling 

instances for that stimulus. 

The TR for a time discrete monitored variable is the smallest time 

interval separating two events dependent on that monitored variable, in which 

the application must guarantee that it will detect both events. Figure 3.9 

shows this situation. 

37 



PhD Thesis - X.-Y. Hu - McMaster - Computing and Software 

time 

Figure 3.8: Timing Resolution for Time Continuous Monitored Variable 

k_setpolnt 

M signal - \:______ 
y M_signal 

Must detect 
this event 

time 

Figure 3.9: Timing Resolution for Time Discrete Monitored Variable 

Note that if a monitored variable is used in determining the behavior 

of two (or more) controlled variables, it is probable that at least two differ­

ent events (one on each controlled-monitored variable path) are dependent 

on that monitored variable, and that the monitored variable could have two 

different TRs associated with it. In general, we assign a TR for each controlled­

monitored variable pair in which the controlled variable value can be affected 

by the value of the monitored variable. 

Response Allowance: The Response Allowance {RAJ for a 

controlled-monitored variable pair specifies an allowable processing delay. Each 

controlled variable must have an RA specified for it . The RA applies to the 

controlled variable and the particular monitored variable on which the con­

trolled variable's behavior depends. The RA is measured from the time the 

event actually occurred in the physical domain, until the time the value of the 

controlled variable is generated and crosses the application boundary into the 

physical domain. 

38 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

3.3 lmplementability of Held_For in a Perfect 

Clock Environment 

The major objective of this chapter is to find out under what conditions it is 

possible to implement the Held_For operator with tolerance, which we refer to 

as the implementability of Held_For. Our manual analysis in [29] was based 

on the Perfect Clock environmental assumption. Thus we pick it as the first 

environment to illustrate the interactions between functional and performance 

timing requirements, and its impact on the implementability of the Held_For 

operator. 

Definition of the Sample Instances 

Let Sample be a possible sequence of sample times and Sample(n) be the time 

of the (n + 1)-th sample (n E N). Sample is assumed to satisfy the bounded 

jitter constraint, where Tmin and Tmax are the minimum and maximum sample 

intervals over the complete range of sample intervals, respectively. 

Sample(O) = 01\ '\In: Sample(n + 1)- Sample(n) E [Tmin, Tmax]· 

We then also assume that the first sample point happens when t = 0, which 

is Sample(O) = 0. Note that when Tmax=Tmin, the problem is simplified to a 

fixed sample interval scenario, which is discussed in [9] for Held_For without 

tolerances. 

In the example shown in Figure 3.10, we assume Tmin = 10 and Tmax = 
20. The first sample Sample(O) occurs when t = 0, and the interval between 

any two consecutive sample points is in the range [Tmin, TmaxJ, e.g., Sample(6)­

Sample(5) = 85 - 70 = 15. 

Definition of the Feasibility Function in the Perfect Clock Environ­

ment 

The initiating event of the Held_For operator can take place at any time point t 

between two successive samples, Sample( n) and Sample( n+ 1). Let Sample( nd) 

be a future decision point that works for any possible event time. If the 

39 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

Sample(O) \ 
(7) " 

Figure 3.10: An Example of Sample Instances 

Held_For requirement is implementable, Sample(nd) must satisfy the following 

condition: 

\:!Sample : \:In: :3nd: \:f(t iSample(n):::; t:::; Sample(n + 1)): 

d- 6L:::; Sample(nd) - t:::; d + 6R 
(3.1) 

In the condition above we can think oft as the event start time and nd is 

the index of the sample where we will make our decision. It is known from the 

earlier discussions (Section 3.2) that if the system behavior is specified in the 

form of (Condition) Held_For (d , 6L , 6R) , with duration E [d- 6L , d+ 6R], 

t he final decision as to whether Held_For generates TRUE or FALSE based 

on the sampled values, cannot be made until we are sure that a time period 

with length d- 6 L has elapsed since the event occurred in the physical domain 

(i.e. d- 6L :::; Sample(nd) - t). The decision also must be made before d + 6R 

has elapsed since the event occurred. 

To explain this , we introduce an input signal and the duration with 

t olerances to the example in Figure 3.10. As shown in the Figure 3.11 , the 

initial event (when signal goes above the setpoint) occurs between Sample(!) 

and Sample(2) . It is not hard to find t hat all the sample points before (in­

cluding) Sample(5) are too early for us to determine the value of the Held_For 

operator, and all the sample points after (including) Sample(7) are too late for 

us to make decision as well. Only when t = Sample(6) , it is the right sample 

for us to make the decision. 

Our research shows that implementability of the Held_For operator 

varies with different environmental assumptions. To properly state the envi-

40 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

setpoint 

~----------~~L----------~ 
~--------------,d+~R--------------~ 

1...--Tmax~ 

~Tmin-...J 

Figure 3.11 : An Example of Decision Points 

ronment conditions for implementation, we define the predicate Feasible( d) as 

a function of the sustained condition's nominal duration d and assume that the 

other parameters, 6 L, 6 R , T min and T max, are fixed. The feasibility function 

of the Perfect Clock environment is defined as follows. 

Definition 3.3.1. 

Feasible_PerfectClock( d) : bool = V Sample : Vn : 3nd : 

V(t iSample(n) < t ~ Sample(n + 1)) : d - 6L ~ Sample(nd)- t ~ d + 6R 

We also assume that duration d should be larger than its tolerance, i.e., 

d > 6L 1\ d > 6R. To implement the Held_For operator , it is required that 

the minimum duration d- 6 L should always cover at least two sample points , 

so that a decision can be made at the second sample point , when the initial 

event occurs at the first one. Therefore, we also assume d - 6 L > T max. 

3.3.1 Manual Analyses of lmplementability Results 

This section is based on [29] . We know from earlier discussion (Section 3.2) 

that if we specify behaviour in the form of (Condition) Held_For (d, 6L , 6R) , 

then the requirernent rneans that we . cannot make the final decision as to 

whether Held_For generates TRUE or FALSE based on values that were sam­

pled before we are sure that d - 6 L time has elapsed since the event occurred 

in the physical domain. We also cannot delay the decision past d + 6R. 

The situation is illustrated in Figure 3.12. Let us assume that the 

sample intervals are tso, ts 1 , ts2 , etc, where Tmin ~ tsj ~ Tmax for each j E 

41 



PhD Thesis - X.-Y. Hu - McMaster - Computing and Software 

decision must not be based on • decision must be based on 
values from this time interval values from this time interval 

measured from earliest time event could h 
d-oL 

n-2 

decision must be 
made based on 
values current at 

this time 

Figure 3.12: Sample Intervals Required for Sustained Events 

{O .. n}. We will see later that any variation in sample intervals results in fewer 

feasible implementations. If the event is detected at sample time 1, then we 

know that the event must have occurred sometime between sample time 0 and 

sample time 1. We can now assume that Condition remains TRUE at sample 

times 2, 3, , ... , n-2. (If it does not remain TRUE, we simply t erminate the 

event and the "Held_For" value becomes FALSE.) 

If we study the situation in Figure 3.12, we see that the only way 

we can be certain that we base our decision on values sampled in the time 

interval [d- 8L, d + 8R] is to ensure that we have at least two sample points 

inside that interval. It turns out this is a necessary condition, but it is not 

sufficient. Based on the analysis presented in [29] , there are 3 cases and under 

each of them the condition determining the feasibility of the implementation 

is different. Figure 3.13 provides the scenarios for each of them. 

Case 1: 0 < Tmax ~ (8L + 8R)/2 In Case 1, we can guarantee there are 

always at least two sample points in the time interval [d- 8L , d + 8R], based 

on which we can ensure the implementability of H eld_For. 

42 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

d-8L 

Always 2 samples in the range 

C&se1 • • • l ; 

Sometimes 2 samples in the range 

lcase2 • • 1 
Never 2 samples in the range 

cases • • 1 
(3l +3R) 

2 

Figure 3.13: Sample Points in the Duration Interval 

Case 2: (8£ + 8R)/2 < Tmax ~ (8£ + 8R) In Case 2, we still find that 

two sample points will be in the time interval [d- 8£, d + 8R] under certain 

conditions. These will be necessary and sufficient conditions to implement 

Held_For. 

Case 3: Tmax > (8£ + 8R) In Case 3, it is not possible to implement the 

Held_For operator, since there is at most one sample point in the range of 

[d -8L, d+8R]. 

3.3.2 Latest Results for the Perfect Clock Environment 

Based on the manual analysis presented in previous section, there are 3 cases 

and under each of them the condition determining the feasibility of the imple­

mentation is different. For each of these cases we have formalized a theorem 

and verified it in PVS. In this section, we briefly introduce the latest results 

and how they are verified in PVS. 

Case 1: 0 < Tmax :::; (8£ + 8R)/2 In case 1, it is easy to tell that it is 

always possible to implement the sustained event. In the example shown 

43 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

in Figure 3.14, the upper bound on the time between two samples, T max, is 

(6L + 6R)/2 , so the event can occur at any time inside the grey area and must 

be detected at the next sample time. In this example, there are 3 feasible 

samples and we can make the decision to trip the channel at any of these 

samples. 

. Decision can be made at 

I 
m_srgnal any of these 3 points 

~-~- "'• "'•., Event Detected •• ,-• • • • "' "' • ... 
,•'' "'!', ,• -· --~ ... 

setpoint --.;~·· •• · - ·- · ••• •• - - - - - f.oo,· ----------······ ···--- --·-·;ar -· -- -· · · · - --- -· ·· ··· --- -- · · ·· ::o ~;;;.·· -· · - ·· -- -
r- .............. ••1 1 , ~ ............ . 

I I I I I I I I I I 

: : : : : : : I : : 

Event occurs in this interval ____;.. .... :::1---.d-bL-_____,IIr~l 
.1'.. d+ r5R---~ 

Figure 3.14: Case 1 of the Perfect Clock Environment 

Nowadays, with cheap, high performance chips , more and more industry 

implementations take the "easy" approach, which is to use chips with high 

sampling rates to achieve the performance timing requirement. Theorem 3.3.1 

verifies that if the sampling rate is high enough to guarantee T max ::; ( 6 L + 
6R)/2 , it is possible to implement the Held_For operator with tolerances. 

Theorem 3.3. 1. 

Tmax ::; (6L + 6R)/2 ~ Feasible_PerfectClock(d) 

C ase 2 : (6L+6R)/2 < Tmax ::; (6L+6R) It may happen that the hardware 

platform is not fast enough for us to arrange a sample interval that always 

works as defined in Case 1. Alt ernatively we might be interested in operating 

at a slower sample rate in order to conserve power. It is still possible to 

find sample intervals that allow us to implement the sustained event . In this 

case, it is important to understand the interactions between the functional 

and performance requirements and their impact on the final feasibility result. 

Because of the complexity of Case 2, we will give the result here first and focus 

on the detailed analysis in the following section. 

Let Kmin = l ~~:~ J and Kmax = l ~::: J , then the feasibility result in 

Case 2 is given by the following theorem: 

44 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

Theorem 3.3.2. 

(8L + 8R)/2 < Tmax ~ (8L + 8R) 1\ Tmin-/:: Tmax ===} 

(Tmin ~ K~!~1 1\ (Kmin + 2) X Tmax ~ d + 6R {:} Feasible_PerfectClock(d)) 

Case 3: Tmax > (6L + 6R) In Case 3, it is not possible to implement the 

Held_For operator. Since the Feasible_PerfectClock(d) function is defined to be 

TRUE when all the possible sample series satisfy the condition, one specific 

sample sequence as our counterexample will be enough to show it will be 

FALSE in Case 3. In Figure 3.15, it is assumed that all the intervals of any 

consecutive sample points are T max, which leads to: 

Sample(n) = n X Tmax· 

As shown in Figure 3.15, an event can happen at any time between 

(t0 , t1]. If there exists a sample point between [t1 +d - oL, t0 + d +oR], then 

it can be our candidate decision sample point (readers can refer Figure 3.11). 

However, under the Case 3, such sample point does not exist. Because t 1 - t0 = 

T max, we can get 

Therefore, we can prove t 1 + d - o L > t0 + d + 0 R as shown in the figure. This 

means that the interval [t1 +d-oL, t0 + d +oR] to contain decision sample 

points is empty in Case 3. 

to l1 1+-----d-JL------.j 

Event occurs in this interval ~fooll ... l-----,d+JR'---~ 

Figure 3.15: Case 3 of the Perfect Clock Environment 

Theorem 3.3.3 formalizes the Case 3 feasibility result. 

45 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

Theorem 3.3.3. 

T max > 8 L + 8 R ====> -,Feasible_PerfectClock( d) 

Theorems 3.3.1, 3.3.2 and 3.3.3 are all verified using the theorem prov­

ing tool PVS. During this process, with the help of PVS, we identified some 

differences from the results presented in [29] for Case 2. 

3.3.3 PVS Aided Analysis for Case 2 

In Case 2, the feasibility condition will be more restrictive than for Case 1. In 

the example shown in Figure 3.16, there is only one possible candidate sample 

point to make the decision, otherwise it will be too early or too late. 

Decision must be made 

I 
m_signal at th1s sample pomt 

, •• r-··- ....... Event Detected •• --- ••• ......... . ~' ~~. ,~-- .... 
setpomt ~.-: • ••••••••••••••••••• ·--~---r·~::··················:·;-;~" !"..~... •••••• • ••••• •••••• •••••••••••••• ":.:-• ._l;.·~········· 

I "'j-·'"j·-·j I .......... 

I I I I I 
I I I I I 

Event can occur in this interval -...L d-JL ., I 
I• d+!5R---~ 

Figure 3.16: Case 2 of the Perfect Clock Environment 

The initial discussion of Case 2 can be found in [29]. Based on that, 

our first attempt to formalize and prove the feasibility result for Case 2 is 

shown in Conjecture 3.3.4: 

Conjecture 3.3.4. 

(8£ + 8R)/2 < Tmax :::; (8£ + 8R) 1\ Tmin #- Tmax ===* 

(Kmin = Kmax 1\ (Kmin + 2) X Tmax :::; d + 8R {::} Feasible_PerfectClock(d)) 

We were NOT able to prove Conjecture 3.3.4 completely. During our 

PVS verification process, Kmin = Kmax 1\ (Kmin + 2) X Tmax :::; d + 8R was 

shown to be a sufficient feasible condition (Theorem 3.3.5) , but we could not 

prove that it is necessary. This provided us with the following result. 

46 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

Theorem 3.3.5. 

(8L + 8R)/2 < Tmax ::; (8L + 8R) 1\ Tmin i= Tmax ~ 

(Kmin = Kmax 1\ (Kmin + 2) X Tmax ::; d + 8R ~ Feasible_PerfectClock(d)) 

In Chapter 2, we introduced how PVS can help to debug unprovable 

obligations. Using the same approach, we identified an interesting boundary 

condition which is also feasible when Kmin i= Kmax· Figure 3.17 shows an 

example based on this new boundary condition. The scenario constructed is 

Tmax=3.1, Tmin=3.0, d=24.09 and 8L = 6R=3.09. Then 

d- b"L d- 8L 
K min = l J = 6 i= 7 = l J · 

Tmax Tmin 

The upper part of the figure shows a case that the sample interval is always 

Tmin and the lower part shows the case when the sample interval is always 

Tmax· Starting from the sample in which the event is detected, it is not hard 

to find that the 7th sample point ( t7 ) is the feasible point, using the fact that 

t 7 - t 0 E [21, 21.7]. Assuming the event in the physical domain occurs right 

at to, so that to = tevent, t7 is the feasible point since t7 - to = d - 6L. If 

tevent happens earlier than t0 , again we can conclude h is feasible. Because 

to -tevent < Tmax and t7-to::; Tmax X 7, we can get t7 -tevent < 24.8 < d+b"R, 

where 24.8 is the longest elapsed time that could occur in the case shown in 

the lower part of the figure. 

After verifying this special boundary example in PVS. We formalized 

our findings in a theorem that states the existence of a feasible implementation 

when Kmax i= Kmin: 

Theorem 3.3.6. 

(8L + 8R)/2 < Tmax :S (b"L + b"R) 1\ Tmin i= Tmax ~ 

(Kmax = Kmin + 1/\ Kmax X Tmin = d- b"L 1\ (Kmin + 2) X Tmax :S d + b"R 

~ Feasible_PerfectClock( d)) 

With this PVS verified special case of feasibility, we noticed that it 

only occurs when Kmax = Kmin + 1 and Kmax x Tmin must be exactly d- 8L. 

47 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

Kmax *Tmin=2 1 =d-JL 
Decision can be made at 

m_signal '-... this point 
Event detected at 
this sample point 

·-~ --- · ··· ------- --~ -------- -
setpoint -+;:;:;;·;•or-•-~--=~ ~.:.~:~-~-~~- -·-----······· ··-·······-··· ····· ···-~-~~ -~:~-~-~-~=~-- ·············· · --~~-~-~-~~: :~ .. ,-~-~-~-

Ev.nt ctn occur 
atanyUme ln 

~;~~3~~-
~ 0 

Epyjronment Pa rameters 1.-- ----- - - ,d-JL (21)--------~ 

d=24.09 

Figure 3.17: Case 2 of the Perfect Clock Environment (Boundary Example) 

This greatly restricts the applicat ion of this boundary result in any industrial 

example. However, for the completeness of our research results , this scenario 

helps us to conclude the necessary and sufficient condition of the exist ence of 

a feasible sample point. Lemma 3.3.7 was developed and proved in PVS to 

simplify this necessary and sufficient condit ion: 

Lemma 3. 3.7. 

d - 8L 
Kmax = Kmin V Kmax = Kmin + 1 1\ Kmax X Tmin = d- 8£ {::} Tmin ~ ---­

Km{n + 1 

With Lemma 3.3. 7, Theorem 3.3.5 and Theorem 3.3.6 , it is straight­

forward to get the final revised version of the Case 2 result as shown in The­

orem 3.3.2. 

3.3.4 Examples of Feasib le Sample Int erval Ranges 

This section is based on [29]. It is instructive to examine the ranges of sam­

ple intervals that result in feasible implementations of sustained events that 

are dependent on monitored variables. The analysis from Case 2 was imple­

mented in a spreadsheet and graphs showing the feasible sample intervals were 

48 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

generated (Figure 3.18). Each graph lists [d - 5L,d + 5R]. It also shows the 

nominal sample intervals as labels along the x-axis, and lists the deviations 

as ( -1!, +r). So, for sample interval T 8 =50, with deviation ( -3, +2) we have 

Tmin = 47 and Tmax=52. A deviation of ( -0, +0) indicates a constant sample 

interval. 

duration in [300-SO, 300+60} 

Sample Interval + (-0, +0) 

duration in [200-50, 100+60] 

~' -.-... ">'.. "' ; .. ~ ~·~ ,-.. "'" ¢ -..' "-"). ,...~ .... ~ ..... . ..,: .. "):.. \.'?' ... , ... ., ' ,~ 
.__\. ..... \. ~ .. .. ""-:.''" ~ ....... \. ' \.~, ...... ~ .... . ,~, .~ ,,~,,. ... ,,-;~"! - -'·'::'": ..;, - ~. "::"'"':'" ... , .. , ... ,- ... v: ...:::~ ~~ ~~· 

Sample Interval+ (-3, +S) 

duration in [300-SO, 300+60] 

I 
.... , .. } ' .;,~~' ·~, .. ?-~''-:,,,\' ,~)'' ,~-~ ,\,·_:!:- .~/·,.'::.:; - ~,'~ +;.:::-- ;:<::). .,...;.:··. _,/',:,~~:: -'*~>~~~;;.~,·~~::: 

Sample Interval+ (-3, +S) 

duration in [400-50, 400+60) 

Sample Interval+ (-3, +S) 

Ql duration in [400-SO, 400+60J 
;§ 

~ l .,,, ... l .,,,,,. ,.,I .,,,,,,,,., .... , ... ,,, .. 
'-:··'"\,_ , , '-""-~ ,~-:. ,/' ',:·,~.:..,.< .. . '', ,,-~ _,,'' ;::-_,::: ~,?-";,,:;:,'~' .. ,..:.·· ,;,'::-.;:~::/ .. /.:'~~{:;;-~;­

Sample Interval+ (-2, +3) 

duration in [400-50, 400+60] 

.::::.~"' ~/'\/' .:;f ,~-"''-: ,~'""' •. ~;.~· •. {' •. -;/' ~~':;: ¥ ,:::. _; . .'-::"" ..-+'->-,,,'""'' ,,, .. ~·,_./-~,)~~<-~,,.~,' 
Sample Interval+ (-0, +0) 

Figure 3.18: Feasible Sample Intervals for Various Durations and Tolerances 

Figure 3.18 shows that in the case when duration E [400 - 50, 400 + 60] , 

49 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

rather than requiring the code to run with every T8 :::; 50ms (a 20Hz or faster 

task), it is possible to detect the event with every T8 E [74-1, 74+2] ms 

(roughly a 13.5Hz task). This represents an approximately 32% reduction 

in CPU time required for the task! This pattern results in a positive cycle. 

Making execution times more precise may present the opportunity to reduce 

the CPU load, which in turn should make it easier to meet timing requirements. 

While scheduling conflicts may be more difficult to resolve with the tighter 

constraints on a larger Ts, we note that the tolerances only restrict when the 

sample of input m must be taken, not when output c must be updated, which 

is specified by the response allowance. 

Intuitively, when tolerances are allowed on the sample interval (non­

zero jitter), it is more difficult to detect sustained conditions of longer duration 

with the same precision. E.g., as the duration changes from [200-50, 200+60] 

to [300-50, 300+60] to [400-50, 400+60] in Figure 3.18, the available sample 

times in [50,110] are first significantly reduced, then completely eliminated. 

3.4 Comparing the feasibility results in differ­

ent environments 

Before discussing the detailed results in the No Clock and Omniscient environ­

ments, we first provide an overview and comparison of the feasibility results 

in the three environments: Perfect Clock, No Clock and Omniscient. 

To compare the results, the following two feasibility conditions are in­

troduced. 

Condition 1: ([ d;,:.~L l + 1) x Tmax '5_ d + iiR 

d-6L 
Condition 2: Tmin ~ /\ (Kmin + 2) X Tmax :::; d + 5R 

Kmin + 1 

Table 3.1 provides the comparison of the feasibility results and other 

important facts in each environment. The headers of the tables are Environ­

ments, Case 1, Case 2, Case 3, Event Visibility and Clock Readable. The 

Environments column lists the three environments (readers can ignore the 

50 



PhD Thesis -X.- Y. Hu -McMaster - Computing and Software 

Imperfect Clock case at this stage and it will be discussed at the end of this 

section). Columns Case 1-3 list the if and only if conditions of the feasibility 

function for that case. Event Visibility specifies in which domain we can access 

the timing of any physical event. The final column of the table is Clock Read­

able, indicating whether the clock is accessible in the environment. Taking the 

Perfect Clock environment as an example, here is the approach we used to fill 

in the values in this comparison table. 

I Environments II Case 1 Case 2 Case 3 Event Visibility Clock Readable 

Omniscient TRUE TRUE FALSE Physical Domain YES 
Perfect Clock TRUE Condition 2 FALSE Software Domain YES 
Imperfect Clock ??? Condition 2 FALSE Software Domain YES 
No Clock Condition 1 Condition 2 FALSE Software Domain NO 

Table 3.1: Comparison of Implementability Results 

We filled in TRUE for Case 1 because we do not require any additional 

condition to attain feasibility for Case 1. For Case 2 and Case 3, the values are 

Condition 2 and FALSE based on Theorem 3.3.2 and Theorem 3.3.3. We set 

Event Visibility to "Software Domain" because we will not be able to observe 

any event in the physical domain until the next sample point occurs in the 

software domain. Based on our discussion in section 3.1, the value for Clock 

Readable should be YES. 

We can now discuss the comparisons contained in Table 3.1. At one 

extreme, the Omniscient environment assumes that the time of the event 

is instantaneously reported to the software domain and the controller can 

calculate and produce the output simultaneously. The idealization embodied 

by this assumption allows us to design the implementation of the H eld_For 

operator in a simpler way than any practical capability will allow. In Case 2, 

this environment does not require any feasibility condition. On the other hand, 

the No Clock assumption completely forbids access to the clock during the 

implementation process, which increases the difficulty of the implementation. 

Therefore, even in Case 1, an implementation is not always feasible. In Case 3, 

the H eld_For operator is not implement able under any of the 3 environmental 

assumptions for the same reasons noted in Section 3.3.2. 

Readers might note that the difficulty of the implementation of the 

51 



PhD Thesis- X.-Y. Hu- McMaster- Computing and Software 

Held_For operator increases as we progress down Table 3.1. The following 

theorem states this observation in a more formal way. 

Theorem 3.4.1. 

Feasible_N o Clock( d) ==::::? Feasible_PerfectClock( d) 1\ 

Feasible_PerfectClock( d) ==::::? Feasible_ Omniscient( d) 

The relationship between the feasibility functions under different envi­

ronmental assumptions determines the difficulty levels of implementing the 

H eld_For in those environments. For example, Feasible_N o Clock( d) ==::::? 

Feasible_PerfectClock(d), and we find that for any of the Cases 1-3, the con­

dition to implement Held_For is always equivalent or more restricted under 

the No Clock environmental assumption than under the Perfect Clock envi­

ronmental assumption. 

To determine the feasibility conditions for a new environment is not 

an easy task. Usually it is time consuming since we need to explore the re­

lationship of the performance and functional timing requirement elements in 

that environment very carefully. Now we have found a relatively easy way to 

estimate the feasibility conditions of a new environment. By identifying the 

feasibility function and comparing its relationship with the feasibility func­

tions in other environments (e.g. Theorem 3.4.1), it is possible to estimate 

the range of the conditions under Cases 1, 2 and 3. Assume that we only 

know the results in Omniscient and No Clock environments, so the Perfect 

Clock environment is a new environment to us. The feasibility condition of 

Case 3 can be deduced immediately to be FALSE. The feasibility condition 

for Case 2 can be expected to be in the range between TRUE and Condition 

2. The same estimation approach can be applied to Case 1 of the Perfect 

Clock environment. 

As another example consider the Imperfect Clock case described in Sec­

tion 3.1. The information available to the implementation falls in between the 

Perfect Clock and No Clock cases. Since the latter two scenarios have the same 

necessary and sufficient conditions in Case 2, we can conclude that Condition 

2 is necessary and sufficient for any imperfect clock environment! 

52 



PhD Thesis -X.- Y. Hu -McMaster-- Computing and Software 

Interested readers can also determine the feasibility function for an 

imperfect clock case and find the range of the feasibility condition for that 

class of environmental assumption in Case 1 (shown as ??? in Table 3.1, 

Cases 2 and 3 having already been inferred from the previous results). 

3.5 Implementability of Held_For in an Om­

niscient Environment 

The Omniscient environment provides full read access to the timing of the 

events as they happened in the physical domain. For example, we know the 

exact time of the "event" t when the condition becomes true but can only 

react at sample times. The difference in comparison to the Perfect Clock 

environment is the relaxation of the existence requirement for the decision 

point. For each t between Sample(n) and Sample(n + 1), a different decision 

sample point Sample( nd) is acceptable. Putting this all together we can find 

the feasibility function in the Omniscient environment. 

Definition 3.5.1. 

Feasible_ Omniscient( d) : bool = V Sample : Vn : 

V(t!Sample(n) < t S Sample(n + 1)) : =:lnd: d- 5L S Sample(nd)- t S d + 5R 

We used a similar analysis approach for the Omniscient environment 

and the feasibility results are similar to the Perfect Clock environment: 

Case 1: 0 < Tmax S (5L+5R)/2 In Case 1, with Theorems 3.4.1 and 3.3.2, 

the feasibility result for Case 1 is obvious. 

Theorem 3.5.1. 

Tmax S (5L + 5R)/2 ===? Feasible_Omniscient(d) 

Case 2: (5L + 5R)/2 < Tmax S (5L + 5R) In Case 2, we can refer to the 

perfect clock scenario and attempt to prove a similar result. However, the only 

theorem we have managed to prove in PVS is: 

53 



PhD Thesis~ X.-Y. Hu ~McMaster~ Computing and Software 

Theorem 3.5.2. 

(8£ + 8R)/2 < Tmax :::; (8£ + 8R) 1\ Tmin-/= Tmax ===} 

(Tmin 2:: K~~~l 1\ (Kmin + 2) X Tmax ~ d + 8R ==? Feasible_Omniscient(d)) 

After investigating the reasons why we could not prove Tmin 2:: K~~~1 1\ 

(Kmin+2) xTmax ~ d+8R as the necessary condition of Feasible_Omniscient(d) 

in the Omniscient environment, we found that the nature of this environmental 

assumption provides weaker requirements for feasibility than the other envi­

ronments. Recalling that in the Omniscient environment, the time when the 

actual event happens (tevent) is "visible" to the software domain during the 

implementation. In this case, it is possible to use tevent as the reference value 

to decide the feasible point. As shown in Figure 3.19, it is always possible to 

find at least one sample point between [tevent + d- 8L, tevent + d + 8R], since 

Tmax < 8L + 8R. 

Figure 3.19: Case 2 of the Omniscient Environment 

With the above analysis, we conclude that in the Omniscient environ­

ment it is always possible to find a feasibility point for Case 2. The corre­

sponding theorem is: 

Theorem 3.5.3. 

(8L + 8R)/2 < Tmax ~ (8L + 8R) 1\ Tmin ::/= Tmax ===} Feasible_Omniscient(d) 

We note that Theorem 3.5.3 again proves our assertion that the fea­

sibility condition becomes looser when the environment changes from Perfect 

54 



PhD Thesis -X.- Y. Hu McMaster - Computing and Software 

Clock to Omniscient. Later we will see that Case 1 of the No Clock environ­

ment again proves our assumptions. The feasibility condition is always the 

same or becomes less strict when the environment changes from No Clock to 

Perfect Clock, or from Perfect Clock to Omniscient, as one would expect. 

Case 3: Tmax > (8L + 8R) In Case 3, it is not possible to determine a 

feasibility range. The proof strategy is the same as in the Perfect Clock envi­

ronment case. 

Theorem 3.5.4. 

Tmax > JL + 8R ===} -.Feasible_Omniscient(d) 

3.6 Implementability of Held_For in a No Clock 

Environment 

Under this environmental assumption, our access to the timing of the events 

becomes very limited. The exact time of samples is not exposed even in the 

software domain. Our knowledge is only that each sample interval is between 

Tmin and Tmax and we also know the number of samples since the condition 

became true. 

In this case we have no recourse in our implementation but to simply 

count the number of samples since we first detected the event. In this case 

we need a "count" value n that will work under any possible bounded sample 

spacing and actual time of occurrence of the event. Let Sample( n + nd) be the 

decision sample point, which is the ndth sample point since Sample(n). Then 

we have the definition of the feasibility function in the No Clock environment 

as follows: 

Definition 3.6.1. 

Feasible_NoClock(d) : bool = 3nd: \/Sample: \In: 

V(t!Sample(n) < t::; Sample(n + 1)) : d- 8£::; Sample(n + nd)- t::; d + 8R 

The feasibility analyses of the No Clock environment are as follows. 

55 



PhD Thesis -X.- Y. Hu -McMaster- Computing and Software 

T min case, the first sample that is guaranteed to be on the right side of d - 8 L 

is r ~~~~ l + 1. If k = 1 ~~~~ l + 1, then it is obvious that for feasibility in the 

T max case, we must have that k x T max cannot be to the right of d + 8 R. 

Case 2: (8L+8R)/2 < Tmax ::;; (8L+8R) The feasibility result is the same as 

the Perfect Clock environment in Case 2. The analysis is very close to the Case 

2 scenario we have shown in Section 3.3. In Chapter 4, we will demonstrate 

the proving strategy that uses the result of Theorem 3.4.1 to reduce around 

50% of the verification work for the Case 2 of both environments. 

Theorem 3.6.2. 

(8£ + 8R)/2 < Tmax :=;; (8£ + 8R) 1\ Tmin # Tmax ===} 

(Tmin 2 K~!~1 1\ (Kmin + 2) X Tmax ~ d + 8R {::} Feasible_NoClock(d)) 

Case 3: Tmax > (8L + 8R) In Case 3 it is easy to prove the following 

theorem, based on Theorems 3.5.4 and 3.4.1: 

Theorem 3.6.3. 

Tmax > 8L + 8R ===} -.,Feasible_NoClock(d) 

3.7 Summary 

The main contribution of this chapter is to provide formal specifications of a 

basic real-time sustained condition requirement (the H eld_For operator with 

tolerance) and feasibility analyses, (the necessary and sufficient conditions for 

Held_For's implementability). The implementability results are determined 

by both the implementation environment and the interaction of the timing 

requirements. 

We presented three environmental assumptions and provided the dif­

ferent feasibility analyses for each of them. As the indicator of the imple­

mentability of Held_For in a specific environment, the feasibility function plays 

an important role in helping us complete the analysis. Also, our research shows 

that the relationship between feasibility functions across different environment 

57 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

Case 1: 0 < Tmax :::; (6L + 6R)/2 The first interesting finding is that 

our Case 1 analysis in [29] is no longer applicable under this environmental 

assumption. Figure 3.20 shows the analysis of the No Clock environment , with 

different sampling rates for the same input signal. To make our counting easy, 

we start counting at the sample point at which the event is actually detected 

in the software domain (as the Oth point). In the case of the bottom figure, 

there are 3 sample points (number 4, 5, 6) which are feasible. If we double the 

sample rate as shown in the upper figure , there are 6 sample points (number 

8, 9, 10, 11, 12, 13) that are feasible. 

I 
m_signal 

_. .. • .. Event Detected 
' , ,.. (count as o'h point) 

setpomt --.;•·· -- -- --- --- -- -- --- _.. •••••••••••••••••••••••••• ';; 
r-.................... , 
I I I I I I I I 
I I I I I I I I 

I 
m_signal 

.. •.. .. Event Detected 
,..... .... (count as o'h point) 

setpoint ---.;•~- ------ ------- ------ ---~ ... _.--------------------------';; r- ...... _______ , •• 
I I I 
I I I 

Decision can be made at any 
·of these 6 points 

Decision can be made 
at any of these 3 points ---- -------- ------ ------- ----~~- ':!"......,.~-~:::····· 

I ...... 

I 

d-JL----., 
,._----,d+JR----~ 

Figure 3.20: Case 1 of the No Clock Environment 

The intersection of set { 4,5,6} and {8,9,10,11 ,12,13} is empty, so there 

is no deterministic number we can use to locate the feasible point for these 

two sample rates. In PVS, we further conclude and prove the theorem: 

Theorem 3.6.1. 

T max :S ( 6 L + 6 R) /2 ======? 

( ( I~~~~ l + 1) X T max :S d + 6 R {::} Feasible_N o Clock( d)) 

To understand this new condition for Case 1, we can consider the two 

extreme cases, when the sample intervals are always Tmax or Tmin· For the 

56 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

assumptions can help us estimate the implementability results. In Chapter 4, 

these feasibility analyses will be verified using PVS, and the verification work 

will be proved to be significantly reduced by the application of Theorem 3.4.1 

(the theorem for the relationships between the feasibility functions). 

The feasibility analyses show that sampling faster is not always the 

only option and also not always the correct choice in implementing real-time 

systems. Once the environmental assumption is provided, the results are de­

termined by the interaction between the functional timing requirements (e.g., 

duration tolerances of the Held_For operator, 8L and 8R) and performance 

timing requirements (the upper and lower bound of sample intervals: T min 

and T max). The feasibility analyses of the three environments that we have 

studied show that it is still possible to implement the H eld_For operator with 

tolerance when Tmax > (8L + 8R)/2 (shown as Case 2), which provides an 

alternative solution to the designer of real-time systems, when coping with the 

limitations of the hardware. On the other side, the results of Case 1 in the No 

Clock environment show that it is not always safe to assume implementability 

when Tmax :::; (8L + 8R)/2. 

58 



Chapter 4 

Formal Verification of 

Feasibility Results 

In Chapter 3, we have precisely defined three different environmental assump­

tions on timing information available to the implementation and then stated 

the feasibility results for the Held_For operator with tolerance under each as­

sumption. Informal justification was provided for each of the results. Our 

formal proof to these feasibility results are conducted with the PVS theorem 

proving tool. One of the benefits of using PVS is that it will help us to identify 

any ambiguities or inconsistencies in an informally stated mathematical theo­

rem and finalize it to a correct version. The boundary feasibility condition in 

Section 3.3.3 is one such example. 

In this chapter, we will describe how PVS is used to verify the results 

in Chapter 3. Section 4.1 provides an overview of the PVS theories and their 

dependencies. Section 4. 2 presents two basic theories formalizing the time 

and sample instances. We will then review all the PVS theorems which have 

been created and proved to verify the feasibility results. Section 4.3 presents 

a roadmap to prove all the feasibility theorems across the three environments. 

The proofs are based on the relationships between different feasible functions 

(Theorem 3.4.1), so that duplicated proof work is saved. 

59 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

4.1 Overview of the PVS Theories 

Before presenting the detailed PVS proofs , we first provide an overview of the 

PVS theories and their dependencies. 

Figure 4.1 provides all the main PVS theories in this thesis. The 

arrows show the dependencies between the theories. For example, theory 

Sampleinstance depends on (i.e. , imports) Time and SampleinstanceOnTick 

depends on both ClockTick and Sampleinstance. Theory Time is a base the­

ory and does not depend on any of the t heories in the figure. In this chapter , 

we will introduce the theories in the left part of the figure. This part will be 

covered in detail in the next section. 

LEGEND 

A Theory A 

A 
Theory A is imported by .., , 

Theory B ._. __ 8 _ _. 

Figure 4.1: Overview of PVS Theories and their dependencies 

The PVS theories Time , Sample Instance and Feasibili tyResul ts 

contain the basic definitions and theorems that will be used in the theories on 

the right side. 

60 



PhD Thesis- X.-Y. Hu- McMaster- Computing and Software 

4.2 PVS Theory for Sample Type 

In this section, we introduce the PVS theories Time, Sampleinstance and 

Feasi bili tyResul ts. Theory Sample Instance imports theory Time, and 

theory Feasibili tyResul ts imports theory Sampleinstance. 

4.2.1 Time Theory 

The PVS theory Time is shown in Figure 4.2. It defines time to be the built­

in PVS nonneg_real type for our later real-time system discussion. The 

nonneg_real type is defined in PVS prelude file for the non-negative real 

numbers. We then define non_ini tial_ time as a subtype of time for all 

non-initial time values. 

Time: THEORY 
BEGIN 

time: TYPE+ = nonneg_real 

non_initial_time: TYPE+ = posreal 
END Time 

Figure 4.2: Time Theory in PVS 

4.2.2 Samplelnstance Theory 

The Sampleinstance theory differs from the Clocks theory in [9, 34] in that 

the Clocks theory is based on the assumption of no sampling jitters during 

the implementation of real-time systems, i.e., the system maintains a constant 

(non-negative real number) sample interval. In Section 3.3, we considered 

the case when the interval between any two consecutive sample points is not 

constant, but bounded with lower and upper bound limits, i.e., Vn: Sample(n+ 

1)-Sample(n) E [Tmin, Tmax]· The PVS theory Sampleinstance is introduced 

to accommodate this new sample type. In this section, we will also present 

the PVS lemmas that have been proved regarding the properties of the sample 

type instances. 

61 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

When PVS theories are constructed to prove the feasibility results, one 

of the objectives is to make it as general as possible. Hence, our PVS theory 

should consider that Sample(n) can occur at any non-negative real number. 

This allows us to apply the verified feasibility result to a continuous physical 

domain, or any discrete physical domain (e.g., arbitrarily small clock tick), 

provided the timing resolution in that environment is a subset of the non­

negative real numbers. The PVS theory Samplelnstance in Figure 4.3 defines 

the Sample_Type, which is the same type of sample instances introduced in 

Chapter 3. 

Sampleinstance[(IMPORTING Time) 
K:non_initial_time, TL, TR: {t: time I t < K}]: THEORY 

BEGIN 

n, n1, n2: VAR nat 

t, tl, t2: VAR time 

Tmin: posreal = K - TL 

Tmax: posreal = K + TR 

init(x: time): bool = (x = 0) 

Sample_Type: TYPE+ = 
{c: [nat -> time] 

c(O) = 0 AND 
(FORALL n: 

Tmin <= c(n + 1) - c(n) AND c(n + 1) - c(n) <= Tmax)} 

END Sampleinstance 

Figure 4.3: Samplelnstance PVS Theory 

To be close to industrial practice, Tmin and Tmax in the theory are 

defined through an ideal sample interval K with the jitter tolerance TL and TR. 

Therefore, K and TL and TR can be passed as parameters when domain experts 

want to reuse this theory. So, Samplelnstance imports the Time Theory 

before defining them. 

62 



PhD Thesis-- X.- Y. Hu- McMaster- Computing and Software 

Properties of Sample Points 

Throughout the verification process, we encountered a large number of type 

check proofs. PVS generates them to ensure that our definitions and theorems 

are consistent. Due to the extensive Type Correctness Conditions (TCCs) 

in Feasibili tyResul ts and other theories, it is worthwhile to introduce the 

theorems we have utilized to prove the properties of sample series, which are in 

the type of Sample_ Type. To keep consistent with the lemmas we have proved, 

Sample represents a variable of Sample_ Type type defined in PVS from now 

on. 

Interval between any two sample points: It is obvious that the distance 

between any two sample points is in the range of [m x Tmin, m x TmaxJ, 

where m is the sequence number difference of the sample points. This 

property is stated in Theorem 4.2.1 and theorem 4.2.2 as follows. 

Theorem 4.2.1. 

'I! Sample: 'lin, m: Sample(n + m) ~ Sample(n) + m x Tmin 

Theorem 4.2.2. 

'I! Sample: 'lin, m: Sample(n + m):::; Sample(n) + m X Tmax 

Sample function is injective. If two sample points have the same value in 

the time domain, we must be looking at the same sample point. In 

another word, Sample is an injective function. However, it is obvious 

that Sample function is not surjective. Let nl and n2 be any two natural 

numbers, the injective theorem is shown below. 

Theorem 4.2.3. 

'I! Sample: '1/nl, n2 : Sample(nl) = Sarriple(n2) ==} nl = n2 

Relationship between time and sample. For any time point t, it is al­

ways between two consecutive samples. 

63 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

Theorem 4.2.4. 

'\/Sample: Vt: 3n: Sample(n) :::; t < Sample(n + 1) 

The PVS lemmas corresponding to the above theorems are proved and 

listed in Figure 4.4. 

Sample_Interval2: LEMMA 
FORALL (n: nat, m: nat): Sample(n + m) >= Sample(n) + m * Tmin 

Sample_Interval3: LEMMA 
FORALL (n: nat, m: nat): Sample(n + m) <= Sample(n) + m * Tmax 

Sample_Sequence: LEMMA 
FORALL (n1, n2: nat): Sample(n1) = Sample(n2) IMPLIES n1 = n2 

TIME_BETWEEN_SAMPLE: LEMMA 
FORALL (t: time): EXISTS (n: nat): Sample(n) <= t AND Sample(n + 1) > t 

Figure 4.4: PVS Lemmas of Sample Properties 

4.2.3 FeasibilityResults Theory 

The PVS theory Feasibili tyResul ts contains the definition of the feasibility 

functions in the Omniscient, the Perfect Clock and the No Clock environments, 

as well as the PVS theorems that map to the feasibility results in Chapter 3. 

A complete copy of the PVS specification file is available in Appendix C. 

Figure 4.5 contains an extract of the theory, listing the feasibility functions 

corresponding to the three environmental assumptions. 

As an advanced theory, Feasibili tyResul ts imports the Time and 

Samplelnstance theories that have been introduced in the previous section. 

It also defines a new type, Duration in PVS. Based on the discussion we have 

for Definition 3.3.1 in Section 3.3, we define Duration as a subtype of time 

and require that a variable of type Duration d should satisfy d>delta_R and 

d-delta_L>Tmax. 

We will walk through the PVS theorems of the feasibility results, in 

the same environment sequence we have discussed in Chapter 3 (first Perfect 

Clock, then Omniscient and finally No Clock). 

64 



PhD Thesis- X.- Y. Hu- McMaster· Computing and Software 

FeasibilityResults[(IMPORTING Time) K: non_initial_time, TL, 
TR: {t: time I t < K}, delta_L, delta_R: time]: THEORY 

BEGIN 

IMPORTING Sampleinstance[K, TL, TR] 

%% Variable Declaration 
Duration: TYPE = {du: time I du > delta_R AND du - delta_L > Tmax} 
d: VAR Duration 
n, nO: VAR nat 
t : VAR time 
Sample: VAR Sample_Type 

%% Feasbility Functions 
Feasible_Omniscient(d): bool 

FORALL Sample: 
FORALL nO: 

FORALL (t It> Sample(nO) AND t <= Sample(nO + 1)): 
EXISTS n: 

Sample(n) - t >= d - delta_L AND Sample(n) - t <= d + delta_R 

Feasible_PerfectClock(d): bool = 
FORALL Sample: 

FORALL nO: 
EXISTS n: 

FORALL (t t > Sample(nO) AND t <= Sample(nO + 1)): 
Sample(n) - t >= d - delta_L AND Sample(n) - t <= d + delta_R 

Feasible_NoClock(d): bool 
EXISTS n: 

FORALL Sample: 
FORALL nO: 

FORALL (t It> Sample(nO) AND t <= Sample(nO + 1)): 
Sample(n + nO) - t >= d - delta_L AND 

Sample(n + nO) - t <= d + delta_R 

%% Feasibility Results in each environment 
%% 

END FeasibilityResults 

Figure 4.5: FeasibilityResults PVS Theory 

65 



PhD Thesis~ X.- Y. Hu ~McMaster~ Computing and Software 

Perfect Clock 

The discussion of the feasibility results in the Perfect Clock environment was 

broken down into 3 cases in Section 3.3.2. To verify the results in PVS, we fol­

low the same approach and create 3 PVS theorems mapping to Theorems 3.3.1, 

3.3.2 and 3.3.3. They are shown in Figure 4.6. We merged all of them into 

one theorem PerfectClock_ALLCASES and this theorem will be applied in the 

Chapter 5 to produce more advanced results. 

PerfectClock_CASE1: THEOREM 
Tmax <= (delta_L + delta_R) I 2 IMPLIES Feasible_PerfectClock(d) 

PerfectClock_CASE2: THEOREM 
(delta_L + delta_R) I 2 < Tmax & 
Tmax <= delta_L + delta_R AND Tmin I= Tmax 
IMPLIES 
(Tmin >= (d - delta_L) I (Kmin(d) + 1) AND 

(floor((d - delta_L) I Tmax) + 2) * Tmax <= d + delta_R 
IFF Feasible_PerfectClock(d)) 

PerfectClock_CAS£3: THEOREM 
Tmax > delta_L + delta_R IMPLIES NOT Feasible_PerfectClock(d) 

PerfectClock_ALLCASES: THEOREM 
Tmax I= Tmin IMPLIES 

((Tmax <= (delta_L + delta_R) I 2 OR 
((delta_L + delta_R) I 2 < Tmax AND 

Tmax <= (delta_L + delta_R) AND 
Tmin >= (d - delta_L) I (Kmin(d) + 1) AND 

(Kmin(d) + 2) * Tmax <= d + delta_R)) 
IFF Feasible_PerfectClock(d)) 

Figure 4.6: PVS Theorems: Feasibility in Perfect Clock Environment 

Omniscient 

The discussion of the feasibility results in the Omniscient environment has 

been broken down into 3 cases in Section 3.5. To verify the results in PVS, 

we follow the same approach and create 3 PVS theorems mapping to Theo­

rems 3.5.1, 3.5.2 and 3.5.4. They are shown in Figure 4.7. 

66 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

Omniscient_CASE1: THEOREM 
Tmax <= (delta_L + delta_R) I 2 IMPLIES Feasible_Omniscient(d) 

Omniscient_CASE2: THEOREM 
(delta_L + delta_R) I 2 < Tmax & 
Tmax <= delta_L + delta_R AND Tmin I= Tmax 
IMPLIES Feasible_Omniscient(d) 

Omniscient_CASE3: THEOREM 
Tmax > delta_L + delta_R IMPLIES NOT Feasible_Omniscient(d) 

Figure 4. 7: PVS Theorems: Feasibility in Omniscient Environment 

No Clock 

The discussion of the feasibility results in the No Clock environment has been 

broken down into 3 cases in Section 3.6. To verify the results in PVS, we follow 

the same approach and create 3 PVS theorems mapping to Theorems 3.6.1, 

3.6.2 and 3.6.3. They are shown in Figure 4.8. 

NoClock_CASE1: THEOREM 
Tmax <= (delta_L + delta_R) I 2 AND Tmin I= Tmax IMPLIES 

((ceiling((d- delta_L) I Tmin) + 1) * Tmax <= d + delta_R IFF 
Feasible_NoClock(d)) 

NoClock_CASE2: THEOREM 
(delta_L + delta_R) I 2 < Tmax & 
Tmax <= delta_L + delta_R AND Tmin I= Tmax 
IMPLIES 
(Tmin >= (d - delta_L) I (Kmin(d) + 1) AND 

(floor((d - delta_L) I Tmax) + 2) * Tmax <= d + delta_R 
IFF Feasible_NoClock(d)) 

NoClock_CASE3: THEOREM 
Tmax > delta_L + delta_R IMPLIES NOT Feasible_NoClock(d) 

Figure 4.8: PVS Theorems: Feasibility in No Clock Environment 

67 



PhD Thesis- X.-Y. Hu- McMaster- Computing and Software 

4.3 Roadmap to Prove the Feasibility Theo-

rems 

PVS Theorems: Relationships of Feasibility Functions 

Two PVS theorems shown in Figure 4.9 are created to prove Theorem 3.4.1, 

which shows the relationship between the feasible functions. 

%%-------------------FEASIBLE FUNCTION RELATIONSHIPS---

NoClock_Implies_PerfectClock: LEMMA 
Feasible_NoClock(d) IMPLIES Feasible_PerfectClock(d) 

PerfectClock_Implies_Omniscient: LEMMA 
Feasible_PerfectClock(d) IMPLIES Feasible_Omniscient(d) 

Figure 4.9: PVS Theorems: Relationship between Feasible Functions 

The proving work of the feasibility results can be reduced by around 

50%, if we properly instantiate the proved PVS theorems 

NoClock_Implies_PerfectClock and PerfectClock_Implies_Omniscient. 

To demonstrate this, it is better to review Case 1, Case 2 and Case 3 of the 

three environments all together. 

4.3.1 Proving Strategy for Case 1 

Figure 4.10 shows the strategy to prove the Case 1 theorems in each environ­

ments. There are 3 types of the theorems in terms of the PVS proof work: 

Base Theorems, General Theorems and Target Theorems. 

Base Theorems are ones where we have to construct the proof from 

scratch. In most of the cases, we cannot utilize the existing theorems to easily 

get them proved. PerfectClock_CASE1 and NoClock_CASE1 are this type 

of theorem. The proof of PerfectClock_CASE1 takes 31 PVS commands. 

Comparing to the base theorems of Case 2, this theorem's proof is relatively 

simple. However, it would be nice if we do not need to repeat similar proof 

work for Omniscient_CASE1. 

68 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

PERFECT _CLOCK_IMPLIES_OMNISCIENT 

NO_CLOCK_CASE1 

OMNISCIENT _CASE1 

LEGEND 

1 

Part of an implication relationship 

1 L__A _ _J ,.. Theorem B is instantiated to prove theorem A 
8 

Base Theorem I General Theorem I I Target Theorem I 

Figure 4.10: Proving Strategy for Case 1 

General Theorems, such as PerfectClock_Implies_Omniscient, con­

tain the general results of the feasibility functions across the three environ­

ments. In some cases, they can make our target PVS theorems easy to prove. 

Considering theorem Omniscient_CASE1 as a target theorem, its proof work 

is simplified after instantiating the base theorem PerfectClock_CASE1 and 

the general theorem PerfectClock_Implies_Omniscient (only takes 6 PVS 

commands to complete). 

4.3.2 Proving Strategy for Case 2 

The PVS proof of the feasibility theorems in Case 2 is the most complicated 

one in the three cases. The approach here is again to reduce the duplicated 

work as much as possible. We will skip the introduction on how to prove 

Omniscient_CASE2 since it is relatively easy. Readers can review the complete 

proof files from the attached CD. The focus here is on how we prove theorems 

PerfectClock_CASE2 and NoClock_CASE2. 

Each theorem will be broken down into two obligations by PVS. As 

an example, the two proof obligations of PerfectClock_CASE2 are listed in 

Figure 4.11. In the proof of NoClock_CASE2 , another two proof obligations 

will be generated as well. If we choose to prove all these 4 obligations from 

69 



PhD Thesis- X.-Y. Hu- McMaster- Computing and Software 

scratch, there will be quite a lot of work. Again, like in Case 1, almost half of 

the proving work here can be simplified, by instantiating the general theorems 

NoClock_Implies_PerfectClock andPerfectClock_Implies_Omniscient. 

PerfectClock_CASE2A: THEOREM 
(delta_L+delta_R)/2 < Tmax & Tmax <= delta_L+delta_R AND Tmin/=Tmax IMPLIES 
(Feasible_PerfectClock(d) 
IMPLIES Tmin >= (d-delta_L)/(Kmin(d)+1) AND (floor((d-delta_L)/Tmax)+2)•Tmax<=d+delta_R) 

PerfectClock_CASE2B: THEOREM 
(delta_L+delta_R)/2 < Tmax & Tmax <= delta_L+delta_R AND Tmin/=Tmax IMPLIES 
(Tmin >= (d-delta_L)/(Kmin(d)+1) AND 
(floor((d-delta_L)/Tmax)+2)•Tmax<=d+delta_R IMPLIES 
Feasible_PerfectClock(d)) 

NoClock_CASE2A: THEOREM 
(delta_L+delta_R)/2 < Tmax & Tmax <= delta_L+delta_R AND Tmin/=Tmax IMPLIES 
(Feasible_NoClock(d) IMPLIES 
Tmin >= (d-delta_L)/(Kmin(d)+1) AND (floor((d-delta_L)/Tmax)+2)•Tmax<=d+delta_R) 

NoClock_CASE2B: THEOREM 
(delta_L+delta_R)/2 < Tmax & Tmax <= delta_L+delta_R AND Tmin/=Tmax IMPLIES 
(Tmin >= (d-delta_L)/(Kmin(d)+1) AND (floor((d-delta_L)/Tmax)+2)•Tmax<=d+delta_R 
IMPLIES Feasible_NoClock(d)) 

Figure 4.11: PerfectClock_CASE2 and NoClock_CASE2 Break Down 

In Case 2, only two obligations, PerfectClock_CASE2A and 

NoClock_CASE2B, are necessary to us in the roadmap of proving. The roadmap 

is shown in Figure 4.12. We can treat the two obligations as our new target 

theorems, because once they are proved, the rest of the work is trivial. 

Based on our analysis in Section 3.3.3, there is a special boundary 

case when Kmax = Kmin + 1 and Kmax * Tmin = d- 8£. Accordingly, each 

proof obligation is further split into two branches1, which correspond to two 

boundary cases, Kmax = Kmin + 1 A Kmax * Tmin = d- 8L (i.e., Theorem 3.3.6) 

and Kmax = Kmin (i.e., Theorem 3.3.5), respectively. Lemma 3.3.7 unifies 

these two cases into one single condition Tmin ~ K~~~~1 , which is corresponding 

to TminAndKmax lemma in PVS (shown in Figure 4.13). 

In PVS, our verification path is close to the above analysis. The major 

piece of the proof work is covered by PVS theorems PerfectClock_CASE2A_1 

and PerfectClock_CASE2A_2 (shown in the Figure 4.14) for these two branches, 

1 Readers can consider branches as the sub proof obligations in PVS. 

70 



PhD Thesis - X. - Y. Hu - McMaster - Computing and Software 

OMNISCIENT _CASE2A 

PERFECT_CLOCK_CASE2A_1 NO_CLOCK_CASE2B_1 

LEGEND 

A ~~------------' B I 
Part of an implication relationship 0 

L__ _ __J Theorem B is instantiated to prove theorem A 

Base Theorem General Theorem I J Target Theorem I 

Figure 4.12: Proving Strategy for Case 2 

TminAndKmax: LEMMA 
(Kmax(d)=Kmin(d) OR (Kmax(d)=Kmin(d)+1 & Kmax(d)*Tmin=d-delta_L)) 
IFF Tmin >= (d-delta_L)/(Kmin(d)+1) 

Figure 4.13: PVS Theorem TminAndKmax 

71 



PhD Thesis- X.-Y. Hu- McMaster- Computing and Software 

respectively. Then lemma TminAndKmax helps to merge the results to prove the 

target theorem PerfectClock_CASE2A. Neither of the theorems in Figure 4.14 

is an easy task to prove in PVS. 

PerfectClock_CASE2A_1:LEMMA 
(delta_L+delta_R)/2 < Tmax & Tmax <= delta_L+delta_R IMPLIES 
(Feasible_PerfectClock(d) AND floor((d-delta_L)/Tmin)*Tmin/=d-delta_L 
IMPLIES FORALL (t:timelt<=Tmax AND t>=Tmin):floor((d-delta_L)/t)*t<d-delta_L) 

PerfectClock_CASE2A_2: LEMMA 
(delta_L+delta_R)/2 < Tmax & Tmax <= delta_L+delta_R 
AND floor((d-delta_L)/Tmin)*Tmin=d-delta_L AND Tmax/=Tmin IMPLIES 
(Feasible_PerfectClock(d) IMPLIES Kmax(d)=Kmin(d)+1) 

Figure 4.14: PVS Theorems for PerfectClock_CASE2A 

Due to the complexity of the Case 2, our roadmap just shows the major 

proving path we have taken to prove our target theorems. There are around 50 

lemmas and TCCs to support the main theorems introduced above. Interested 

readers can review all of them in the source code available in the CD. 

4.3.3 Proving Strategy for Case 3 

Compared with Case 1 and Case 2, Case 3 is a scenario where we can 

utilize both the general theorems to reduce almost 2/3 of the proof work. 

The roadmap is shown in the Figure 4.15. We only need to prove theorem 

Omniscient_CASE3, and then instantiate the general theorem 

PerfectClock_Implies_Omniscient to prove theorem PerfectClock_CASE3. 

Taking the same approach, NoClock_CASE3 can be proved trivially by instanti­

ating theorems NoClock_Implies_PerfectClock and PerfectClock_CASE3. 

To most readers, any theorems in Case 3 should be very trivial. How­

ever, the formalized PVS theorem proving process is not that simple, because 

PVS will do all the type checks and create related proof obligations. Table 4.1 

shows that it takes 81 PVS commands to prove Omniscient_CASE3. With 

the help of general theorems, the proof works of PerfectClock_CASE3 and 

NoClock_CASE3 have been reduced to 6 commands each. 

72 



PhD Thesis - X. - Y. Hu - McMaster - Computing and Software 

I PERFECT_CLOCK_IMPLIES_OMNISCIENT II NO_CLOCK_IMPLIES_PERFECT_CLOCK I 

t OMNISCIENT_CASE3 Jl----'----1:-~j PERFECT_CLOCK_CASE3 ~f----'---1~~~ NO_CLOCK_CASE3 1 

LEGEND 

I 
Part of an impl ication relationship 

L__A_ --' ,.. Theorem B is instantiated to prove theorem A 
B 

Base Theorem J General Theorem J I Target Theorem I 

Figure 4.15: Proving Strategy for Case 3 

PVS Theorem Name Number of the proof commands 
Omniscient_CASE3 81 
PerfectCl ock_ CASE3 6 
NoClock_CASE3 6 

Table 4.1: Comparison of the Proof Work of Case 3 

4.4 Summary 

In this chapter we formalized three environmental assumptions and verified 

the feasibility results in each of them using PVS. The verification strategy 

we took was to prove the general theorems that reveal the relationships of 

these three environments first, then applied them to the proof to reduce the 

verification work. Based on our rough calculation, we saved from 30% to 60% 

of the required work, based on the cases we explored. 

Table 4.2 provides a summary of the verification cost of Cases 1,2 and 

3 of each environment. 2 In the table, the number of the PVS commands to 

prove the theorem is listed in normal font size and the subscript number be­

side it is the effort of the t heorem which is instantiated, that is to simplify the 

proof, together with general theorems. For example, in Case 2A of the Per-

2The statistics data does not include the effort of the lemmas, theorems and TCC proofs 
of imported t heories. 

73 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

feet Clock environment, the number of the PVS commands to prove theorem 

PerfectClock_CASE2A is 897. Then this theorem, and the two general theo­

rems, are instantiated to prove Case 2A of the No Clock environment. This 

reduces the work of the same case in No Clock to only 13 PVS commands. 

Therefore, in the figure, the effort of Case 2A in the No Clock case is listed 

as 13 897 . It is obvious from the table that with the proper application of the 

general theorems, the amount of the verification work has been significantly 

reduced. 

I Environmental Assumptions I Case 1 I Case 2A I Case 2B I Case 3 

Omniscient 6 31 15 81 
Perfect Clock 31 897 17 99 6 81 

No Clock 159 13 897 99 6 81 

Table 4.2: Proof Work of the Feasibility Results 

Readers may be interested in the effort needed to prove the general 

theorems. The verification costs of the two general theorems are listed in 

Table 4.3, which shows the effort is close to trivial. 

I PVS Theorem Name I Number of proof commands I 
NoClock_Implies_PerfectClock 9 
PerfectClock_Implies_Omniscient 12 

Table 4.3: Proof Work of General Theorems 

To summarize, to perform feasibility analyses is complex and timing­

consuming. However, the relationships between the feasibility functions across 

the environments can possibly simplify some of the verification work for us. 

The relatively tiny amount of the effort to verify these general theorems pro­

vides a simplified and feasible way for us to possibly estimate the effort of 

a new environment as well. An environmental assumptions library could be 

established in this way for engineers to quickly estimate the implementabil­

ity of the real-time timing properties, without having to carry out the actual 

implementation or verification. 

74 



Chapter 5 

Implementing Held_For \Vith 

Tolerance 

In the previous chapters, we provided the definition of the H eld_For operator 

with tolerance and presented the implementability results for three different 

environmental assumptions. In this chapter, we present how to implement 

the Held_For operator with tolerance in the Perfect Clock environment. We 

will refine our model of time to a discrete time model that assumes arbitrarily 

small clock ticks, which allows us to apply a straightforward inductive proving 

approach to verify the implementation of the Held_For operator. 

In Section 5.1, we define the PVS type tick and refine the sample 

instances type based on this tick type. Section 5.2 presents the PVS func­

tions Held_For _I and Held_For _S which are used in intermediate "pseudo 

requirements" to allow an implementation defined at sample points to be ver­

ified against the arbitrarily fast clock tick model of the Software Requirement 

Specification (SRS) via a two step process dernonstrated in Section 2.2. Sec­

tion 5.3 presents an implementation roadmap which shows how the implemen­

tation work of Chapters 5 and 6 is connected. Section 5.4 will continue to 

verify Held_For _I based on the functional and performance timing require­

ments of the Held_For operator in Section 3.2. In Section 5.5 we show how to 

design a software component, Timer_I, that implements Held_For_I and how 

to verify it in PVS. This pre-verified Timer _I component can then be used to 

75 



PhD Thesis -X.- Y. Hu -McMaster- Computing and Software 

guide the design of more complex components and to decompose their design 

verifications into simple inductive proofs. Chapter 6 will demonstrate how to 

apply this pre-verified result to simplify the implementation and verification 

of timing requirements through two example applications. 

5.1 Refining Time 

5.1.1 Timing Model in Physical Domain 

Consider a discrete-time model in the physical domain, in which the time 

sequence is a set of "clock ticks" with the period Jt, denoted as 

tick:= {to, t1, t2, ... , tn, .. . } = {0, Jt, 28t, ... , n8t, .. . }. 

Here Jt is an arbitrarily small positive real number, representing the step 

between two consecutive clock ticks. As 8t approaches 0, the defined system 

approaches the continuous time model. 

Let t 0 = 0 and tn = n8t denote the initial and the ( n + 1 )th clock ticks, 

respectively. To identify the initial clock tick and thereby specify the initial 

system state, we define the predicate 

{ 
TRUE, 

init(tn) := 
FALSE, 

which is TRUE only at t0 . 

n=O 

otherwise 

By identifying the initial clock tick, we are able to define the system 

state at any clock tick value in terms of the system state at the previous tick 

value. To formalize the notion of "previous clock tick value", we define the 

rank of tn as rank : tick ~ N where tn f--+ n. This rank will be used in proving 

the termination properties of the recursive functions defined over tick. 

We also define the next and pre operators on the elements of tick as 

76 



~ 

PhD Thesis- X.- Y. Hu -McMaster-- Computing and Software 

follows. 

pre(tn) { tn-1 1 n?_1 
-

undefined, otherwise 

next(tn) ·- tn+l 

PVS requires that all functions are total (i.e., a function is defined at 

every value in its domain). To meet this requirement, we use the subtype 

noniniLelem := { tn E tickl-.init(tn)} 

as the pre() operator's domain. 

The way we introduce the tick definition is reproduced based on the 

Clock theory in [34]. However, there is a significant difference between our 

time model and the ones used in [5, 34]. We will discuss the difference in 

Section 5.1.3. 

5.1.2 PVS Theories Based on the Tick Type 

Overview of the PVS theories 

Now let us revisit the roadmap shown in Figure 4.1 which appeared in the 

previous chapter. The left part was introduced in Chapter 4. The right 

part provides the theory dependency tree from the basic tick type (in the 

ClockTick theory), up to the implementation and verification of two exam­

ples (in the SensorLock and DelayedTrip theories). The ClockTick theory 

defines the PVS type tick, for the tick type introduced in Section 5.1.1. 

The SampleinstanceOnTick theory defines a new type, SampleTick_Type, 

based on the tick and Sampleinstance theories. With these two fundamen­

tal theories, an intermediate operator Held_For _I for the Software Require­

rnent Specification (SRS) is defined in the Held_For theory (see Sections 5.2 

and 5.4). Then a software component Timer_I that implements Held_For_I 

is formalized in PVS and completely verified in the TimerGeneral theory (see 

Section 5.5). Finally, based on all these results, we are able to demonstrate two 

sample applications in the SensorLock and DelayedTrip theories, respectively 

(see Sections 6.1 and 6.2). 

Now we will review these theories one-by-one, following the roadmap. 

77 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

ClockTick Theory 

Figure 5.1 shows the PVS source code of the ClockTick theory. The ClockTick 

theory imports the Time theory, and defines the tick type as a subtype of the 

time type. PVS type tick corresponds to tick. Functions pre, next and rank 

are also defined. 

Note that delta_t is passed as a parameter to the theory, so that it 

can be instantiated when the theory is reused. For more information on pa­

rameterized PVS theories, the user can refer to PVS Language Reference [19]. 

ClockTick[delta_t: posreal]: THEORY 
BEGIN 

IMPORTING Time 

n: VAR nat 

tick: TYPE= {t: time I EXISTS (n: nat): t = n * delta_t} 

x: VAR tick 

init(x): bool = (x = 0) 

noninit_elem: TYPE = {x I NOT init(x)} 

y: VAR noninit_elem 

pre(y): tick= y- delta_t 

next(x): tick= x + delta_t 

rank(x): nat= xI delta_t 

time_induct: LEMMA 
FORALL (P: pred[tick]): 

(FORALL x, n: rank(x) = n IMPLIES P(x)) IMPLIES (FORALL x: P(x)) 

time_induction: PROPOSITION 
FORALL (P: pred[tick]): 

(FORALL (t: tick): init(t) IMPLIES P(t)) AND 
(FORALL (t: noninit_elem): P(pre(t)) IMPLIES P(t)) 
IMPLIES (FORALL (t: tick): P(t)) 

END ClockTick 

Figure 5.1: ClockTick Theory 

78 



PhD Thesis -X.- Y. Hu -McMaster - Computing and Software 

To help define the timing operators in the remaining sections, we define 

a set of tick predicates, denoted as pred( tick), to be the set of all boolean 

functions of tick. That is 

pred(tick) :={/if: tick----+ {TRUE, FALSE}}. 

The set pred( tick) is formalized as the pred [tick] type in PVS. 

The time_induction proposition is a simple statement allowing us to 

apply induction over tick values. It says that for a tick predicate P, if (i) 

P(to) is TRUE, and (ii) for any n > 0, P(tn_1) is TRUE implies that P(tn) 

is TRUE, then P(tn) is TRUE for all tn in tick. We will use this proposition 

to prove that an SRS function and an SDD function are equivalent at all tick 

values or sample instances or that they deviate within acceptable tolerances, 

in particular response allowance. 

SamplelnstanceOnTick Theory 

Since the time in the physical domain . is now being modeled as the discrete 

tick type in PVS, the sample instances should also be of tick type as well. 

Therefore, we define the PVS subtype Sample Tick_ Type, as a predicate sub­

type of the Sample_Type by requiring sample times to be of type tick. As 

a result, Figure 5.2 shows the SampleinstanceOnTick theory, which imports 

both the Sampleinstance and the ClockTick theories. 

5.1.3 Difference between Tick and Clock Types 

The definition of type tick appears similar to that of type clock in [13], 

however, they have different interpretations. The clock type represents the 

sample intervals without tolerance, while for the tick type the time between 

successive instances is arbitrarily smaller than the fixed sample intervals. 

The clock type in [9] considers a single clock frequency and each 

sample instance occurs at a clock value. This restriction means that the clock 

frequency and sample frequency must be the same as shown in Figure 5.3, 

and both the sample instances and the clock values form the same sequence: 

0, K, 2K, ... , nK. 

79 



PhD Thesis -X.- Y. Hu -McMaster- Computing and Software 

SampleinstanceOnTick[(IMPORTING Time) K: non_initial_time, TL, 
TR: {t: time I t < K}, 
delta_t: {tk: non_initial_time I tk < K - TL 

AND tk < TR + TL}]: THEORY 
BEGIN 

IMPORTING ClockTick[delta_t] 
IMPORTING Sampleinstance[K, TL, TR] 

t: VAR tick 

SampleTick_Type: TYPE+ = 
{S: Sample_Type I FORALL (n: nat): EXISTS (t: tick): S(n) = t} 

Sample: VAR SampleTick_Type 

END SampleinstanceOnTick 

Figure 5.2: SamplelnstanceOnTick Theory 

Our tick type considers the fact that in the real world the sampling 

frequency is usually different from the clock frequency. The clock tick value 

should be significantly smaller than the sample interval. Therefore, in the 

physical domain, the input signal has a timing resolution of 8t, which is an 

arbitrarily small clock tick (see Figure 5.4). In the software domain, the sample 

instances are of tick type, but occur at a (typically) much lower rate bounded 

by T~ax and T~in. The interval of any two consecutive sample points may be 

arbitrarily larger than 8t, i.e., Sample(n + 1)- Sample(n) >> 8t. 

5.2 Held_For operator in Physical and Soft­

ware Domains 

The Held_For operator defined in Figure 3.3 specifies the tolerance on the 

duration of the sustained window, and it leads to indeterminism in the imple­

mentation of the system. If the Condition has been sustained for the interval 

that is in the range [d- 8L, d + 8R), the behavior of the Held_For operator is 

then not deterministic. For example, if the event has only been sustained for 

300ms in Figure 3.2 (assuming d = 300ms and 8L = 8R = 50ms), it is possible 

80 



PhD Thesis- X.- Y. Hu- McMaster Computing and Software 

Figure 5.3: Time Model based on Clock Type 

I 

l ff[!!llllllllr .. 
ot t 

-- - SOFTWARE DOMAIN 
~ -- -/ -, ;-- / /J/ .......... 

.......... --~-...._ __... - .I I 
Sample(J) Sample(2) Sample(3) Sample(~) t 

....--rm~ 
~Tmin-.j 

Figure 5.4: Time Model based on Tick Type 

81 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

that the output is FALSE in one implementation, but TRUE in another im­

plementation with the same sample instances. However, both implementations 

are reasonable for this Held_For definition. 

Based on the first step in Section 2.2 , we can refine the requirements of 

the Held_For operator to a deterministic subset of the high level requirements. 

Our obj ective is first to define an intermediate operator , He ld_For _I , which 

is ready to be applied in the pseudo-requirements in PVS . There are some 

considerations here when we define this intermediate operator for the pseudo­

SRS. Since the pseudo-SRS has the same data flow as the SDD , we need to 

consider other timing requirements as well when producing this intermediate 

operator for the pseudo-SRS. In other words, Held_For _I should be verified 

based on all the FTRs and PTRs (including timing resolution and response 

allowance). This means that both the environmental assumpt ion and the 

interaction between the FTRs and PTRs need to be considered, as shown 

in Figure 5.5. Again it shows the importance of the feasibility analyses we 

have completed in Chapter 3. In Section 5.4, we present the verification of 

Held_For _I. 

Functional Timing 
Requirements (Held_For) 

Performance Timing 
Requirements (TR and 

RA) 

Timing Environment 

Figure 5.5: Relationship between Held_For.J and High Level SRS 

82 



PhD Thesis- X.- Y. Hu -McMaster- Computing and Software 

5.2.1 Definitions 

Based on the Perfect Clock environmental assumption, the implemented sys­

tem can only refresh its output at each sample point and it maintains the same 

output value until the next sample arrives. To model this, we have defined 

two operators in PVS, Held_For_S and Held_For_I. Held_For_S is the basic 

operator that calculates and produces an output at each sample point. How­

ever, it is not defined at any clock ticks which are not at the sample points. 

Held_For _I is similar to Held_For _S except that it is defined at the clock tick 

level. It is a lifting of the Held_For _S operator to the tick level that for a given 

sampling sequence updates its value at sample points and holds it constant in 

between. 

Before we can use the Held_For _I operator as an intermediate (pseudo­

requirement) to replace a requirement in the SRS using the H eld_For operator 

with tolerance, it is necessary to verify that Held_For _I is a refinement of 

Held_For and it meets the functional and performance requirements discussed 

in Section 3.2. Then we can use the Held_For_I operator in the pseudo-SRS 

as the intermediate step for the implementation verification. One may ask, for 

example, does the Held_For _I operator return TRUE if m_signal has been 

above the setpoint for longer than d- 8L? To verify this using PVS, we need 

to formalize the condition "if m_signal has been above the setpoint for longer 

than d - 8 L". For this purpose, we define the Held_For _p function which 

precisely returns the result of the sustained event in the physical domain. 

Figure 5.6 shows the comparison of the three operators, P, S, I, in the 

physical and software domains, respectively. The physical domain part shows 

the mapping from the input m_signal to the predicate P. In our example, we 

can define the tick predicate 

P(t: tick) : bool = m_signal(t) 2:: setpoint 

In the physical domain of Figure 5.6, Held_For _p with a sustained 

duration d- 8L will help us specify "m_signal has been above the setpoint for 

longer than d- bL". In the software domain, the Held_For _S operator with 

a sustained duration d- bL produces TRUE when the sample instances have 

all been TRUE for a period longer than d- 8£. However, Held_For_S is not 

83 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

PHYSICAL DOMAIN 

/ m_signal .......................... .. 

setpoint -+-; .... ', : " 
• ' I 

• ' I I •..,.., 

----------------------.... , ,---· 

-
P(t) 

TRUE 1--

F~E--~~~~~~~~~~~~~~~~~~~~~~~~~--. 

rnu 

~~N~~~E--~II ~I'I~II~"~'I~II~I'~II~"~I'~'I~II~I' ~II ~II ~III~IIWIIW11~11~1 1~1 1~11~1 1 ~11~11 ~11 ~11 ~11 WII 1WIIWI I~II~I'~II~I'il'l illl ll" lli' ~"~I' WI 1 1W1 1WII~II~I 1~11~1 1~1 1--. 
14------.d-oL-----~ 

SOFTWARE DOMAIN 

TRUE cZSSample Point's 

P(Sample(n)) 
F~E-~-~~-~--~-~-~--~-~--~-+--~--+ 

14------d-bL.----~ 

( 

Left Sample of Area2 
TRUE 

~~ I I ~ 
Persist the value 

S.ld_F"_I:: • • 1" • • • • • • • 1'' ''''''''' I'''''''''' I'''''''' I'''~~~ 1:~~:~.~~~~~:.' ) , " ' ,:2 ,I, ~, ~,~,::l~plo 
Area1 Area2 

Figure 5.6: Held_For Versions in Physical and Software Domains 

defined for any clock tick in-between two consecutive sample points. In some 

complicated industrial scenarios (e.g. the Delayed Trip example introduced 

later in Section 6.2), there are sit uations in which we need to model nested 

sustained events. In other words , the output of one Held_For _S operator will 

be the input of another Held_For _S operator. This is not achievable because 

t he range of Held_For _S is of pred [nat] type, while the function domain is 

of pred [tick] type. 

The solution to this problem is the Held_For _I operator. It produces 

the same output as Held_For _S right on any sample point. Based on that , 

it will maintain the output at any clock tick until the next sample point (as 

shown in Figure 5.6). Therefore, Held_For_I has the same behavior at sample 

points as Held_For _S but its range and domain allow us to specify the nested 

scenarios. 

As to the naming convention, Held_For _p stands for the Held_For op­

erator in the physical domain. In the software domain, Held_For _S is used 

because it produces output only at each sample point. Held_For _I means 

84 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

that this operator is defined as an intermediate operator which is ready to be 

used in the pseudo code version requirements in PVS, once it has been verified 

against the original functional and performance timing requirements specified 

in Section 3.2. 

Held_For_S 

Figure 5.7 shows the definition of the Held_For_S operator in PVS. The tick 

predicate Pis of type pred[tick] (as introduced in Section 5.1.2). The vari­

able duration is of non_initial_time type (as introduced in Section 4.2). 

Held_For _S takes the natural number ne as a parameter and returns TRUE 

if there exists a sample point Sample (nO) in the sample history, such that the 

condition 

Sample(ne)-Sample(nO)>=duration 

holds and the tick predicate P is always TRUE for all the sample points in 

between. 

Held_For_S(P, duration, Sample)(ne): bool = 
EXISTS (nO I Sample(ne)- Sample(nO) >=duration): 

FORALL (n: nat I nO<= nAND n <= ne): P(Sample(n)) 

Figure 5. 7: PVS Function Held_For_8 

Left_Sample function 

For any tick value t, there exists a natural number n, such that Sample (n) <=t 

and t<Sample (n+1). The TICK_BETWEEN_SAMPLE lemma shown in Figure 5.8 

verifies this result in PVS. 

TICK_BETWEEN_SAMPLE: LEMMA 
FORALL (t: tick): EXISTS (n: nat): Sample(n) <= t AND t < Sample(n + 1) 

Figure 5.8: PVS Lemma TICK_BETWEEN_SAMPLE 

In order to define the Held_For_I operator, we need to locate the 

natural number n that appears in the TICK_BETWEEN_SAMPLE lemma for the 

85 



PhD Thesis-- X.-Y. Hu- McMaster- Computing and Software 

clock tick t, which is the largest sequence number of the sample points that 

are on the left side oft in the timeline. For this purpose, we define the PVS 

function Left_Sample, shown in Figure 5.9. 

Left_Sample(Sample, t): {n: nat I Sample(n) <= t AND t < Sample(n + 1)} = 
sup(LAMBDA (n: nat): Sample(n) <= t) 

Figure 5.9: Left_Sample Definition in PVS 

The Left_Sample function takes the sample instances Sample and the 

time t as input parameters, and returns the index number of the sample 

immediately to the left of t. Let us revisit Figure 3.10 as an example. If 

t=80, then Left_Sample (Sample, t) =5, since Sample (5) =70 is the closest 

"left sample" in this scenario. The lemma Left_Sample_PROPERTY3 shown in 

Figure 5.10 verifies that Left_Sample (Sample, Sample (n)) =n. As a special 

case, Left_Sample(Sample,O)=O since Sample(O)=O. 

Left_Sample_PROPERTY3: LEMMA Left_Sample(Sample, Sample(n)) = n 

Figure 5.10: PVS Lemma Left...Sample_PROPERTY3 

PVS allows the definition of dependent types in functions. In other 

words, some components of a function may depend on the components defined 

earlier [19]. For example, the range of the function Left_Sample needs to be 

determined by the first and second parameters of the function. 

We also utilize the sup function in the NASA Langley PVS Libraries. 

The NASA Langley PVS Libraries [32] are powerful extensions to the PVS 

base libraries. The sup function returns the unique least upper bound of a 

set. In this case, it returns exactly the result we require for Left_Sample. 

Held_For_l 

The Held_For_I function is defined based on the sample output of the 

Held_For _S operator. It uses the Left_Sample function to align the out­

put of Held_For _I and Held_For _S at sample points and maintains the out­

put of Held_For _I at that value until the next sample point. Therefore, the 

86 



PhD Thesis- X.- Y. Hu- McMaster-- Computing and Software 

Held_For _I function can be considered as a "lift" of the Held_For _S function 

from the sample points level to the clock tick level. Figure 5.11 shows the PVS 

definition of Held_For _I. 

Held_For_I(P, duration, Sample)(t): bool = 
Held_For_S(P, duration, Sample)(Left_Sample(Sample, t)) 

Figure 5.11: PVS Function Held_For_l 

Held_For_p 

Figure 5.12 shows the definition of the PVS function Held_For_P. Let t_n 

and t_j be tick type variables, Held_For_P(P, duration) (t_n) is TRUE if 

and only if there exists a t_j such that the condition 

t_n-t_j>=duration 

holds and the tick predicate Pis always TRUE for all the ticks in between. 

Held_For_P(P, duration): pred[tick] = 
LAMBDA (t_n): 

EXISTS (t_j): 
(t_n - t_j >= duration) AND 

(FORALL (t: tick I t >= t_j & t <= t_n): P(t)) 

Figure 5.12: PVS Function Held_For_P 

5.2.2 Filtered Tick Predicate 

In this section we will introduce an important assumption on the input signal 

P. The scenario shown in Figure 5.13 provides us with the motivation for this 

assumption. Between two consecutive sample instances, there is a chance that 

the input signal P varies rapidly and creates a "spike" whose time duration 

is less than the relevant timing resolution. It is impossible to detect this 

kind of behavior in the software domain if it occurs in-between two sample 

instances. As highlighted in the figure, this will cause a difference between the 

Held_For _P and Held_For _I operators. 

87 



PhD Thesis - X.- Y. Hu - M eM aster - Computing and Software 

P(t) 
TRUE 

FALSE 

TRUE 
Held For P 

- - FALSE 

TRUE 
P(Sample(n)) 

FALSE 

TRUE 
Held For S 

- - FALSE 

TRUE 

Held For I I I 
- - FALSE "1111111111111111111111111111111111111111111111 11111111111111111 111 111111111 1111111111111111 • 

Figure 5.13: Demonstration of Filtered Tick Predicate 

Therefore, one way of implement ing the system is to filter out the 

"spike" in the input P (e.g. , by a low-pass filter). However, a low pass filter 

introduces a phase lag resulting in a time delay from filter input to output. 

Thus a low-pass filter can lead to additional delay for event detection. In this 

case, to meet specified response allowance , one needs to consider the delay 

introduced by the filter in addition to the sampling delay (the maximum time 

between samples). Together these times gives us the worst case scenario for the 

delay from time the event actually occurred in physical domain, until the event 

is detected in software domain. We then also have to consider the response 

time (the time from the sample detecting the event , until the value of the 

controlled variable is generated and crosses the application boundary into the 

physical domain). If domain experts predict "spikes" of duration less than the 

timing resolution that need to be considered as valid events, then the upper 

bound of the sample interval T max needs to be decreased to guarantee their 

capture. 

In this thesis , we will assume that the input signal can be filtered 

as discussed above and the associated delays have been taken into account 

in the response allowance requirements. As a result we simplify our model 

88 



PhD Thesis- X.-Y. Hu- McMaster- Computing and Software 

by using a filtered tick predicate. Figure 5.14 shows the definition of the 

Fil teredTickPred type in PVS. 

FilteredTickPred?(P: PRED[tick]): bool = 
(FORALL tO: 

P(tO) /= P(next(tO)) => 
(FORALL (t: tick[delta_t] I tO< t AND t <=tO+ Tmax): 

P(next(tO)) = P(t))) 
AND (FORALL (t: tick[delta_t] I t <= Tmax): P(t) = P(O)) 

FilteredTickPred: TYPE+ = (FilteredTickPred?) 

Pf: VAR FilteredTickPred 

Figure 5.14: Definition of FilteredTickPred 

The definition of Fil teredTickPred ensures that the spike scenario 

described in Figure 5.13 will not occur. It also restricts the input value so that 

it cannot change before the second sample point occurs, using the condition 

(FORALL(t:tick[delta_t] lt<=Tmax):P(t)=P(O)). 

In this way, it is guaranteed that during the implementation process, we can 

capture all the critical changes that occur in the physical domain, through the 

defined sample instances. The variable Pf, of type FilteredTickPred, will be 

used in verifying the Held_For _I operator. 

5.3 A more detailed Implementation Roadmap 

The rest of Chapter 5 and Chapter 6 cover the PVS theories Held_For, 

TimerGeneral, SensorLock and DelayedTrip in sequence. These PVS the­

ories contain over 200 lemmas, theorems and TCCs. Here we provide the 

readers with a roadmap which highlights the major theorems that connect the 

PVS theories in Figure 5.15. 

The lower part of the figure is covered by Sections 5.4 and 5.5. Sec­

tion 5.4 presents the Held_For theory which includes the theorems that verify 

Held_For_I against the high level requirements (FTRs and PTRs) presented 

89 



PhD Thesis - X. -Y. Hu - McMaster - Computing and Software 

SensorLock Theory DelayedTrip Theory 

I( Held_For_l 

~ 
: DelayedTrip_Biock 

\ Held_For_l t ( ) Senlock_Biock I Held_For_l r Pseudo-SRS 

! Pseudo-SRS ( ' .•. ~.Jc. .-~-·-·· ,_) 
TimerUpdate 

~ G-+~ -~,-
~. ,·, . ) . ~.:-·. 

TimerUpdate c :-r.;li.;:;·. ~;,·,-· c~Tlmw~ . ···,<c.-..;;- ;r. ·:~··-

lj',;-;-;-
_j_ ·'- --1 llockDiy_llmer J I T1mer1_1lmer I 11mer2_ Timer I "',• . .._, .,..,. J 

SOD ~ SOD 
.........._ .... 
~ 

Held_For_l -' Timer_ General_! l :C . l'lmer_l 
I .. 

I 
Held_For_S -' Timer_ Generai_S l I lfmer_s 

I I \. . 
···~-- I 

TimerUpdate 
TimerGeneral Theory 

I 
FTR and PTR 
THEOREMS I PerfectCiock_ALLCASES I J PerfectCiock_ CASE1 I 1- I 

Held_For Theory T .,. 
PerfedCiock_CASE2 I 

' PTRs and FTRs PerfectCiock_ CASE3 J 
High Level Requirements Feasibility Results Theory 

LEGEND 
Function Call (A calls B) 

.. ,.>~ "\. r.~<;~;,·, :~~ r Base Theorem J 7 '\:.•· :,, r~·. '"· ::·. 

\: .:.• 
Part of an implication relationship ~ General Theorem I 

( ) Reused Function 
Part of an IFF relationship I Target Theorem I 

Figure 5.15: A Detailed Roadmap of Implementation 

in Section 3.2. This ensures that we can apply the Held_For _I function in the 

"pseudo" version of the requirements for the two examples in PVS. Section 5.5 

presents a Timer _S function which implements Held_For _S . Based on the 

Timer _S function , the Timer _I function is defined to implement Held_For _I. 

Two important general theorems TimerGeneral_S and TimerGeneral_I which 

90 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

verify these implementation results are also provided. 

In the top part of Figure 5.15, we show the pseudo-SRS and SDD 

breakdown diagrams of the Sensor Lock and Delayed Trip examples. Both of 

them use the Held_For _I function to specify the timing requirements in the 

"pseudo" version of the SRS, and customize the Timer _I design by reusing 

the function TimerUpdate. In the Sensor Lock System example (shown in 

Section 6.1), we use the lLockDly _Timer theorem to show the equivalence 

between the customized timer design and the original Timer_I design. The 

pseudo-SRS of the Delayed Trip System in PVS (shown in Section 6.2) is spec­

ified with the nested Held_For _I functions, which requires two customized 

timers to implement the system. Therefore, two PVS theorems Timer!_ Timer 

and Timer2_ Timer are created to show their equivalence to the original Timer _I 

design. We use these theorems and the general theorem TimerGeneral_I 

to provide the linkage between the Held_For _I in the pseudo-SRS and cus­

tomized timer design in the SD D, which greatly reduces the effort for us to 

verify both of the examples. The effort required to verify the TimerGeneral_I 

theorem takes over 500 PVS commands to complete. This part of the work 

has been successfully reused in the verification of the target theorems 

SenLock_Block and DelayedTrip_Block of both examples. 

At this stage we provide only an overview of our major results. In the 

following sections, we will explain Figure 5.15 in detail, step by step. 

5.4 Verification of Held_For _1 Based on High 

Level Requirements 

Figure 5.15 shows high level requirements we introduced in Section 3.2 and the 

pseudo Software Requirement Specifications (SRS) of Sensor Lock and Delayed 

Trip Systems, in which we would like to apply the Held_For _I function as an 

intermediate step linking the our design and the requirements. In this section, 

we present the Held_For theory which contains the theorems that connect 

the Held_For _I function back to the high level requirements, based on the 

step one of the verification process in Section 2.2. To achieve this we have 

91 



PhD Thesis- X.-Y. Hu- McMaster- Computing and Software 

to verify that the Held_For_I function (with a sustained duration of d -

8 L) conforms to the functional timing requirements (FTRs) and performance 

timing requirements (PTRs). Let Pf denote a filter tick predicate variable and 

P denote a tick predicate variable, we go through the following propositions 

to verify Held_For _I. 

Proposition 5.4.1. (P/) Held.Yor(d, 8L, 8R) is TRUE, if and only if there 

exists a duration x (d- 8L ~ x ~ d + 8R), such that Pf is TRUE for x. 

Proposition 5.4.1 is trivial based on the functional timing require­

ments in Section 3.2, but it is critical to verify the Held_For _I operator 

against it. We create the PVS theorem shown in Figure 5.16, to specify that 

there should always be a duration x that is within the range of tolerance 

[d-del ta_L, d+del ta_R] , such that 

Held_For_I(Pf,d-delta_L,Sample)(t)=Held_For_P(Pf,x)(t)). 

Once again, the filtered tick predicate Pf needs to be applied here to prove 

Held_For_I (Pf, d, Sample) (t) IMPLIES Held_For_P(Pf, x) (t), as shown in 

Section 5.2.2. 

Held_For_I_VERIFY_TRO: THEOREM 
Tmax /= Tmin AND Feasible_PerfectClock(d) IMPLIES 

(FORALL (Sample: SampleTick_Type, t: tick): 
(EXISTS (x: time I x >= d- delta_L AND x <= d + delta_R): 

Held_For_I(Pf, d- delta_L, Sample)(t) = Held_For_P(Pf, x)(t)) 
OR 
(NOT Pf(t) AND 

Pf(Sample(Left_Sample(Sample, t))) AND 
Sample(Left_Sample(Sample, t)) >= t - Tmax)) 

Figure 5.16: PVS Theorem Held_For_LTRO 

There is one scenario shown in Figure 5.17 where Held_For_P(Pf, x) (t) 

and Held_For _I (Pf, d-del ta_L, Sample) ( t) do not agree. This only hap­

pens when t is not a sample point, Pf (t) is FALSE, and Held_For_I and 

Held_For_P are both TRUE at the last sample point. In this case, the input Pf 

has just changed since the last sample point Sample (Left_Sample (Sample, t)), 

92 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

P/(t) 
TRUE 

FALSE 

TRUE 
Held For P 

- - FALSE 

TRUE 
Pf(Sample(n)) 

FALSE 

TRUE 
Held For S 

- - FALSE 

TRUE 

Held For I 
- -FALSE 

I PHYSICAL DOMAIN 

I II I II I lr-1 -1 ,-11-1 1-1 -1 1-1 1-1 ,-, 1-1 -1 1-1 1-1 1-1 -1 1-1 1_11_11_1 -1 1-1 1-1 1-1 -1 1-1 1-1 1-1 1-1 -11-11--,1 I Ill I I Ill L II I I I I I I I I 
I 
I 
I 
I 

SOFTWARE DOMAIN 

Left Sample oft 

I t 
---+1 ~ 

<= Tma.,'c 

Figure 5.17: Response Allowance Scenario for PVS Theorem Held_For_LTRO 

and we can prove that the time elapsed is still within the Response Allowance, 

which is Tmax. 

Note that in the theorem we need to add Feasible_PerfectClock(d) 

as one of the premises in order to get this proposition proved in PVS. This 

means that only in the Perfect Clock environment assumption can we use 

Held_For _I (Pf, d-del ta_L, Sample) to specify the high level requirement 

(Pf) Held_For(d , t5L, t5R). During the course of the PVS verification work, 

it was also necessary to instantiate the feasibility result in Chapter 4, the gen­

eral theorem PerfectClock_ALLCASES. For the complete proof, readers are 

referred to the Held_For. prf file in the attached CD. 

Proposition 5.4.2. (P) Held_For (d , t5L , t5R) is TRUE, if the condition P has 

been TRUE for d + t5 R or longer. 

As shown 'in the example in Figure 3.1 , when the condition m_signal 2:: 
setpoint has been TRUE for d + t5 R , c_result must always trigger and equal 

TRUE. In PVS, we formalize the requirement as theorem 

Held_For_I_VERIFY_FTR4, as shown in Figure 5.18. It states that when the 

93 



PhD Thesis~ X.- Y. Hu- McMaster~ Computing and Software 

tick predicate P has been TRUE for a period of d+del ta_R, the Held_For _I 

operator must be TRUE. 

Held_For_I_VERIFY_FTR4: THEOREM 
Tmax /= Tmin AND Feasible_PerfectClock(d) IMPLIES 

(FORALL (Sample: SampleTick_Type, t: tick): 
(Held_For_P(P, d + delta_R)(t) IMPLIES 

(FORALL (t1: tick 
I t1 >= Sample(Left_Sample(Sample, t)) AND 

t1 < Sample(Left_Sample(Sample, t) + 1)): 
Held_For_I(P, d- delta_L, Sample)(t1)))) 

Figure 5.18: PVS Theorem Held__For.l_VERIFY __FTR4 

The timing condition "m_signal 2:: setpoint being TRUE for d+oR" is 

formalized as Held_For_P(P, d+del ta_R) (t) in PVS. The verified consequent 

is that the operator Held_For _I (P, d-del ta_L, Sample) produces a TRUE 

value at all the clock ticks between two sample points, 

Sample(Left_Sample(Sample,t)) andSample(Left_Sample(Sample,t)+1). 

Proposition 5.4.3. (P) Held_For (d, oL, oR) is FALSE, if the condition P 

has been TRUE for less than d-oL. 

Again, based on the Figure 5.18, this functional timing requirement 

specifies that at any sample point, if the predicate P has continuously been 

TRUE only for an interval less than the period d-oL, the Held_For_I oper­

ator must not produce TRUE. Figure 5.19 shows the corresponding theorem 

formalized in PVS. The timing condition "if the predicate P has continuously 

been TRUE only for an interval less than the period d-oL" is formalized as 

NOT Held_For _p (Pf, d-del ta_L) (Sample (n)) in PVS. 

Held_For_I_VERIFY_FTR2: THEOREM 
FORALL (Sample: SampleTick_Type, n: nat): 

(NOT Held_For_P(Pf, d- delta_L)(Sample(n)) IMPLIES 
(FORALL (t: tick It>= Sample(n) AND t < Sample(n + 1)): 

NOT Held_For_I(Pf, d- delta_L, Sample)(t))) 

Figure 5.19: PVS Theorem Held__For.l_VERIFY __FTR2 

As shown in Figure 5.13, the input signal P could potentially include 

a "spike" and the sample instances may miss this behavior and result in a 

94 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

difference between Held_For _p and Held_For _I. Therefore, it is important 

to use the filtered tick predicate variable Pf instead of an unrestricted tick 

predicate P. Based on this assumption, we have proved that the operator 

Held_For _I (Pf, d-del ta_L, Sample) is FALSE at all the clock ticks from 

that sample point, until the next one. 

Proposition 5.4.4. Once (P) Held_For (d, 6L, 8R) becomes TRUE, it must 

stay TRUE if the condition P stays TRUE. 

In PVS, we need to verify that if the Heid_For _I operator is TRUE 

at a certain clock tick, it must maintain the value TRUE at the next sample, 

provided the predicate P(t) is TRUE at that time. Correspondingly, we 

created and proved the PVS theorem Held_For_I_VERIFY_FTR3, as shown in 

Figure 5. 20. 

Held_For_I_VERIFY_FTR3: THEOREM 
Held_For_I(P, d- delta_L, Sample)(Sample(n)) AND P(Sample(n + 1)) 

IMPLIES 
(FORALL (t: tick I t >= Sample(n + 1) AND t < Sample(n + 2)): 

Held_For_I(P, d- delta_L, Sample)(t)) 

Figure 5.20: PVS Theorem Held_For _I_ VERIFY _FTR3 

The verification of the performance timing requirement Timing Reso­

lution becomes trivial based on the Sample definition that 

Yn: Sample(n + 1) - Sample(n) E [Tmin, Tmax]· 

This guarantees that Held_For _I is sampled within the Timing Resolution 

(Tmax)· The Response Allowance verification is covered by Held_For_I_TRO 

theorem. 

Summary 

In this section we have verified the Held_For _I operator based on the high 

level timing requirements. Most of our theorems can only be proved under the 

assumption Feasible_PerfectClock(d), which emphasizes the importance of 

the feasibility analyses we developed in the previous chapters. In other words, 

95 



PhD Thesis -X.- Y. Hu -McMaster- Computing and Software 

only when the environment satisfies the Perfect Clock feasible conditions, can 

we apply Held_For_I (with the duration d- tSL) as an intermediate operator 

in the "pseudo" requirements in PVS. 

5.5 Implementation of Held_For 

To implement and verify a real-time system is not an easy task. Usually, the 

whole process includes requirements gathering, formalization, design and im­

plementation. When both functional and performance timing requirements 

are involved, the requirements specification and design implementation will 

become more complicated. In [9], a modularized approach is introduced to 

specify and verify the timing behaviors of a real-time system. The approach 

is to first design a software component that implements the H eld_For opera­

tor without tolerance, and verify it in PVS. Then this pre-verified component 

can be used as a Implementation Template in both designing more complex 

components and decomposing their design verifications. 

In this section, we will present the TimerGeneral theory shown in the 

Figure 5.15. We first design a Timer_S to implement the Held_For_S func­

tion, both of them produce the results only at each sample points. As shown 

in the Figure 5.15, Timer _I is defined to implement the Held_For _I function. 

Both Timer _S and Timer _I are close to industrial practices and pseudo code 

language, which can be easily converted into implementation language (e.g., 

C++) [9]. Subsequently in Chapter 6, we will apply the Timer _I implemen­

tation in two more complicated examples: Sensor Lock and Delayed Trip. 

5.5.1 Timer Implementation of Held__For_l 

As a refinement of the Held_For operator with tolerance, the Held_For _I 

operator can only be considered as "implementation ready", but not as a 

true implementation. This is because to determine the value of Held_For_I 

requires the history of the sample instances of the input P ( t). If the duration 

d-del ta_L is infinitely large, infinitely large memory is required to store the 

sample history in order to calculate the value of Held_For _I at the current 

96 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

clock tick. Obviously this kind of implementation is not ideal. 

Timer _S and Timer Update Functions 

To implement the Held_For_I operator, we can first design a timer that up­

dates at every sample instance. In Figure 5.21, the Timer_S function updates 

the value through a TimerUpdate function, by passing the following informa­

tion: the condition at both the current and last sample instances, the pre-set 

timeout value, the previous value of the timer and the elapsed time since the 

last update of the timer. Then the TimerUpdate function will update the 

timer by returning the latest value. 

Timer_S(P, Sample, TimeOut)(ne): RECURSIVE tick= 
TABLE 

%--------+---------------------------------------------------------++ 
I ne = 0 I TimerUpdate(P(Sample(ne)), FALSE, TimeOut, 0, 0) I I 

%--------+---------------------------------------------------------++ 
I ne > 0 I TimerUpdate(P(Sample(ne)), P(Sample(ne- 1)), TimeOut, 

Timer_S(P, Sample, TimeOut)(ne- 1), 
Sample(ne) - Sample(ne - 1)) I I 

%--------+---------------------------------------------------------++ 
ENDTABLE 

MEASURE ne 

Figure 5.21: Timer_S Function 

TimerUpdate(CurrentP, PreviousP, TimeOut, PreviousTimerValue, step): tick= 
TABLE 

%+-----------------------------+------------------------------++ 
I [ PreviousTimerValue < TimeOut I PreviousTimerValue >=TimeOut] I 

%------------------------------+-----------------------------+------------------------------++ 
I CurrentP AND PreviousP I PreviousTimerValue + step I PreviousTimerValue I I 

%------------------------------+-----------------------------+------------------------------++ 
I NOT (CurrentP AND PreviousP) I 0 I 0 I I 
%------------------------------+-----------------------------+------------------------------++ 

END TABLE 

Figure 5.22: TimerUpdate Function 

In our design, the values of the clock predicate at the current and 

last sample instance, P(Sample(ne)) and P(Sample(ne-1)), are passed to 

TimerUpdate as the first and second parameters, CurrentP and PreviousP. 

The TimerUpdate function will reset the Timer to 0 when any of them 1s 

97 



PhD Thesis -X.- Y. Hu -McMaster- Computing and Software 

FALSE. When both of them are TRUE, TimerUpdate will update the Timer 

function by adding the elapsed time (step) to the previous Timer value. If the 

previous value has exceed the TimeOut value, the TimerUpdate function will 

do nothing but return the previous value to avoid an eventual overflow error. 

The Timer _S function determines the current timer step based on two 

different conditions and passes it to the TimerUpdate function. When ne=O 

we are at the first sample instance and the timer should be set as 0. Therefore, 

the timer step step=O is passed to TimerUpdate. When ne>O, the time that 

has elapsed between the current sample instance and previous one needs to 

be passed to TimerUpdate as the latest timer step. Then TimerUpdate will 

determine whether this step is a valid increment for the timer or not, based 

on the values of CurrentP and PreviousP. 

Timer _I Function 

The Timer_I function shown in Figure 5.23 returns a tick predicate type. It 

will take on the value of the Timer _S function at the sample point and keep 

the same output at any clock tick going forward until the next sample point. 

The definition is based on Timer _S in a way that is similar to how Held_For _I 

depends on Held_For_S. The Timer_S and Timer_I functions will implement 

Held_For_S and Held_For_I at the sample point and tick levels, respectively. 

Timer_I(P, Sample, TimeOut)(t): tick 
= Timer_S(P, Sample, TimeOut)(Left_Sample(Sample, t)) 

Figure 5. 23: Timer .l Function 

5.5.2 Verification of the Implementation of Held_For_S 

The verification is done by proving the TimerGeneral_S theorem shown in 

Figure 5.24. The theorem states that Held_For_S is TRUE at the current 

sample point if and only if the timer has timed out. Here timeout is of 

Duration type. 

98 



PhD Thesis- X.- Y. Hu -McMaster- Computing and Software 

TimerGeneral_S: THEOREM 
Held_For_S(P, timeout- delta_L, Sample)(n) IFF 

Timer_S(P, Sample, timeout- delta_L)(n) >=timeout- delta_L 

Figure 5.24: PVS Theorem TimerGeneraLS 

Proving this theorem is more complicated than the apparently similar 

theorem TimerGeneral [9] (which is the Timer implementation of the Held_For 

operator without tolerance). We have constructed over 16 lemmas and theo­

rems to support the proof of this theorem. Readers are referred to the complete 

proof code in the attached CD. 

5.5.3 Verification of the Implementation of Held__For_l 

The TimerGeneral_S theorem shown in Figure 5.24 proves that the outputs 

of the timer design Timer _S and the Held_For _S operator agree at the sample 

level. Based on this important result, it is not difficult to prove that the timer 

design Timer _I and the Held_For _I operator agree at the tick level. This 

result is shown in Figure 5.25. 

TimerGeneral_I: THEOREM 
Held_For_I(P, timeout- delta_L, Sample)(t) IFF 
Timer_I(P, Sample, timeout- delta_L)(t) >=timeout- delta_L 

Figure 5.25: PVS Theorem TimerGeneraLJ 

The proof work of this theorcrn is simplified after instantiating the 

TimerGeneral_S theorem plus two lemmas Timer_RELATIONSHIP1 and 

Held_For _RELATIONSHIP2A. The Timer _RELATIONSHIP1 lemma reveals the 

relationships between Timer_S and Timer_I. The Held_For_RELATIONSHIP2A 

lemma reveals the relationships between Held_For_S and Held_For_I. They 

are both available in the source code attached in the CD. 

99 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

5.6 Summary 

In this chapter, we demonstrated how to implement the real-time operator 

H eld_For with tolerance under the Perfect Clock environmental assumption. 

We defined the function Held_For _I as an intermediate operator that can 

be applied to the pseudo-requirements in PVS. This function is first veri­

fied based on the high level functional and performance timing requirements 

as defined in Section 3.2. Note that only under the feasibility conditions of 

the Perfect Clock environment can we prove that Held_For _I conforms to 

all the high level requirements we have specified for the H eld_For operator 

with tolerance. As the concluding theorem of the Perfect Clock environment, 

PerfectClock_ALLCASES is the fundamental theorem of the verification. This 

result shows the importance of our feasibility analyses in Chapter 3 and 4. 

We then presented the PVS function Timer_I as an implementation of 

the Held_For _I function and verified this result in PVS through the general 

theorem TimerGeneral_I. The Timer_I design yields a relatively easy imple­

mentation of the Held_For_I operator. Other equivalent implementations can 

be defined, and, in practice, there could be a lot of similar implementations 

using the same design pattern. Our objective here is not to create a strict for­

mula for software designers to follow, but to provide a generic design pattern 

like Timer _I, so that designers can customize the Timer _I design based on dif­

ferent situations. In the next chapter, we present two examples, both of which 

are not as obvious as one might first believe, and our designs vary from the 

original Timer _I design. By utilizing the general theorem TimerGeneral_I, a 

large amount of the verification work is saved by proving the equivalence of the 

customized timer implementation and the original Timer _I implementation. 

As a pre-verified result, the PVS general theorem TimerGeneral_I is reused 

in both examples to reduce the required verification effort. 

100 



Chapter 6 

Examples 

In this chapter, we provide two examples, Sensor Lock and Delayed Trip, to 

illustrate the application of the Held_For operator and the use of the timer 

design and general theorem in both implementation and verification. In the 

Sensor Lock example (shown in Section 6.1), we will experience the difference 

between the SRS and SDD because they update their outputs at tick and sam­

ple level respectively. This again emphasizes the importance of the filtered tick 

predicate as the implementation assumption. The Delayed Trip System (DTS) 

example is illustrated in Section 6.2, which provides us with a case where the 

requirements need to be specified in a more precise level than applying a single 

global tolerance. The SRS of this example is specified with nested Held_For 

operators with a different tolerance for each of them. The implementation and 

verification process demonstrates the flexibility of our approach to handle the 

tolerance precisely for each of the timing properties of the system, in contrast 

with the global timing tolerance approach. 

In both of the examples, the Timer _I design has been a pre-verified 

component to guide the implementation, and the general theorem 

TimerGeneral_I is instantiated to reduce the verification work. In Section 6.3, 

we provide the summary of the effort of these two examples and show that 

around 39% and 51% of the verification work has been saved, respectively, by 

the pre-verified general theorem. 

101 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

6.1 Example: Sensor Lock System 

The Sensor Lock System, also called SenLock System, appeared first in [15] as 

an industrial example for the PVS real-time (PVS-RT) method. The problem 

was redefined to be able to handle arbitrary values of a fixed sample interval 

in [9]. In both of the previous attempts, timing tolerance was not considered 

during the implementations. In this section, we will introduce the timing 

tolerance explicitly in the requirements and verify the design implementation. 

6.1.1 Overview of the System 

The SenLock System is a watchdog control system. As shown in Figure 6.1, 

it monitors the plant parameter Sensor and reacts to send the output "lock" 

to shutdown the system,· if anomalous behavior is observed for the parameter 

Sensor for an extended period of time [15, 34]. Once the system produces a 

"channel lock" output to force the shutdown of the plant, the channel will not 

be "unlocked" until the manual reset button is pushed. 

-Sensor -
-Sensor Lock - SenLock 

Reset .... R T controller -
Figure 6.1: Block diagram for real-time SenLock controller 

As shown in Figure 6.1, the SenLock real-time controller takes two 

boolean valued inputs, Sensor and Reset, and produces a single boolean valued 

output SenLock that is updated at every clock tick. When the value of Sensor 

is continuously TRUE for a number of time units or longer, the sensor is 

"locked" and SenLock is set to TRUE. Once the sensor is "locked", it stays 

locked until the system is manually reset by setting Reset =TRUE (15, 34]. 

The initial state of SenLock should be TRUE. 

102 



PhD Thesis ~X.- Y. Hu ~McMaster-- Computing and Software 

6.1.2 Software Requirement Specification (SRS) 

Figure 6.2 provides an upgraded version of the Software Requirement Speci­

fication (SRS) of the system. This formal tabular definition is based on [9], 

except that the H eld_For operator has been upgraded to the version with toler­

ance we have discussed in Section 3.2. The first row of the SRS table indicates 

that SenLock should be TRUE if sensor has been TRUE for ldelay units or 

longer. The remaining three rows indicate that only a manual reset in a safe 

sensor input situation can make SenLock FALSE. 

Result 
Condition SenLock 

(Sensor)Held_For (ldelay, bL, 8R) TRUE 
--, [(Sensor) Held_For Reset I -,Sensor FALSE 

(ldelay, 8£, bR)] I Sensor No Change 
-,Reset No Change 

Figure 6.2: The upgraded version SRS of SenLock System 

Figure 6.3 shows the SRS of the SenLock System in PVS. 

Sample: SampleTick_Type 
t: VAR tick 
ldelay: VAR Duration 
sensor, reset: VAR PRED[tick] 

SenLock_SRS(sensor, reset, ldelay)(t): RECURSIVE bool = 
IF init(t) THEN TRUE 
ELSE COND Held_For_I(sensor, ldelay- delta_L, Sample)(t) ->TRUE, 

NOT Held_For_I(sensor, ldelay- delta_L, Sample)(t) AND 
reset(t) AND sensor(t) 

END IF 

-> SenLock_SRS(sensor, reset, ldelay)(pre(t)), 
NOT Held_For_I(sensor, ldelay- delta_L, Sample)(t) AND 
reset(t) AND NOT sensor(t) 

-> FALSE, 
NOT Held_For_I(sensor, ldelay- delta_L, Sample)(t) AND 

NOT reset(t) 
-> SenLock_SRS(sensor, reset, ldelay)(pre(t)) 

ENDCOND 

MEASURE rank(t) 

Figure 6.3: PVS Definition of Sensor Lock SRS 

103 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

6.1.3 Software Design Description (SDD) 

In the SDD of the SenLock System, we define the PVS function ELOCK which 

customizes the Timer _I design. This function implements the timer design by 

calling the same TimerUpdate function. The output of the ELOCK function is 

defined as SDD_State record type, which contains three fields Elock, lLockDly 

and Previous Input. 

Lock_State: TYPE = {Good, Bad, Lock} 
SDD_State: TYPE = [# Elock: Lock_State, lLockDly: tick, Previousinput:bool #] 
S: VAR SDD_State 
sensor_now, reset_now: VAR bool 

ELOCK(sensor: PRED[tick], reset: PRED[tick], ldelay: non_initial_time) 
(t): RECURSIVE 
SDD_State = 

IF init(t) 
THEN (# Elock := Lock, lLockDly := 0, Previousinput := sensor(O) #) 

ELSE IF t = Sample(Left_Sample(Sample, t)) 

END IF 

THEN (# Elock 
:= ElockUpdate(sensor(t), 

reset(t), 

lLockDly 

ELOCK(sensor, reset, ldelay)(pre(t)), 
ldelay, 
t- Sample(Left_Sample(Sample, t) - 1)), 

:= TimerUpdate(sensor(t), 
Previous Input 
(ELOCK(sensor, reset, ldelay)(pre(t))), 
ldelay, 
lLockDly 
(ELOCK(sensor, reset, ldelay)(pre(t))), 
t- Sample(Left_Sample(Sample, t) - 1)), 

Previousinput := sensor(t) #) 

ELSE (# Elock := Elock(ELOCK(sensor, reset, ldelay)(pre(t))), 
lLockDly 

END IF 

:= lLockDly(ELOCK(sensor, reset, ldelay)(pre(t))), 
Previous Input 

:= Previousinput(ELOCK 
(sensor, reset, ldelay)(pre(t))) #) 

MEASURE rank(t) 

Figure 6.4: PVS Definition of Sensor Lock SDD 

As shown in Figure 6.4, our approach is to utilize the existing TimerUpdate 

function to update lLockDly and create the ElockUpdate function to update 

Elock. Previous Input is updated at each sample point, which stores the value 

of sensor. Thus this field can be used to represent the value of sensor at 

104 



PhD Thesis- X.-Y. Hu- McMaster- Computing and Software 

the previous sample point, which is passed to the PreviousP parameter of the 

TimerUpdate function to update the timer. This design consideration covers 

the fact that usually only the current sampled input sensor(t) is available 

for the implementation, while the previous sampled input has to be stored in 

the register. 

The ELOCK function's output is refined to three states: Good, Bad and 

Lock. Among them, the Lock state is expected to match the SRS output 

TRUE. Just as the TimerUpdate function handles the timing properties, the 

ElockUpdate function (shown in Figure 6.5) is used to update the output of 

the SenLock System. The ELOCK function updates its timer status and output 

by calling both TimerUpdate and ElockUpdate functions in a modularized 

and flexible way. Figure 5.15 also provide a high level graphic explanation of 

this design consideration. 

ElockUpdate(sensor_now: bool, reset_now: bool, S: SDD_State, 
ldelay: non_initial_time, step: time): 

Lock_State = 
TABLE 

%--------------------------------------------------------------------+----++ 
INOT sensor_now AND Elock(S) = Lock AND reset_now IGoodl I 
%--------------------------------------------------------------------+----++ 
INOT sensor_now AND Elock(S) = Lock AND NOT reset_now ILockl I 
%--------------------------------------------------------------------+----++ 
INOT sensor_now AND NOT Elock(S) = Lock IGoodl I 
'l.--------------------------------------------------------------------+----++ 
lsensor_now AND (NOT Elock(S) =Lock AND lLockDly(S) +step< ldelay)IBad I I 
%--------------------------------------------------------------------+----++ 
lsensor_now AND (Elock(S) = Lock OR lLockDly(S) + step >= ldelay) ILockl I 
%--------------------------------------------------------------------+----++ 

ENDTABLE 

Figure 6.5: PVS Definition of ElockUpdate 

6.1.4 Implementation Assumptions 

During the course of verifying the SenLock System, we have encountered un­

provable obligations. By debugging them in PVS, we have uncovered that 

the behaviors of the Reset and Sensor inputs can also cause an inconsistency 

between the SRS and the SDD. In order to implement the SenLock System, 

we have to make following implementation assumptions: 

105 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

Assumption 6.1.1. Consider -,Sensor 1\ Reset to be the combined input to 

the SenLock System. This input should not change its value before the second 

sample point. 

Figure 6.6 demonstrates the unprovable obligations that we have en­

countered in PVS, which can help us to understand the necessity of this as­

sumption. In the figure , the input Reset 1\ -,Sensor is TRUE starting from 

t = 0, and turns to FALSE before Sample(!). The SRS updates its status to 

be FALSE when t = <5t , right after it passes initial time. The SDD needs to 

wait till the next sample point Sample(!) to update its status. In this case, SRS 

and SDD disagree at Sample(!) , because the input Reset 1\ -,Sensor changes 

too early before SD D can respond in the software domain. 

TRUE 

Reset 
FALSE 

TRUE 

Sensor 
FALSE 

NOT Sensor TRUE 

&Reset FALSE 

/ 
Sample(O) 

TRUE 
SensorLock SRS 

- FALSE 

TRUE 
BLOCK 

PHYSICAL DOMAIN 

~~ 

Sample(l) Sample(2) 

SOFTWARE DOMAIN 

SOD is TRUE at second sample 

Figure 6.6: Example of disagreement on second sample point 

Therefore, it is necessary to assume that the input Reset 1\ -,Sensor 

106 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

should not change before the second sample point Sample(!) occurs. Consid­

ering Sample(O) = 0 and the condition Sample(!) - Sample(O) S Tmax, it is 

safe to assume that the input Reset 1\ -,Sensor does not change before Tmax· 

Assumption 6.1.2. Consider ~Sensor 1\ Reset to be the combined input to 

the SenLock System. This input should not produce aspike" behavior between 

any consecutive sample instances. 

To deal with the "spike" behavior, it was originally assumed that both 

the Reset and Sensor inputs should be of filtered tick predicate type. However, 

this assumption is not correct after we have discovered some PVS unprovable 

obligations. Figure 6. 7 shows an example of "spike" behavior of the input 

Reset/\ ~Sensor. In this example, we can easily identify that Reset and Sensor 

are both filtered tick predicate (by assuming both of them keep FALSE after 

changing their values), however, the input Reset 1\ ~Sensor creates a "spike" 

between Sample(!) and Sample(2). Because of it, the SRS is reset to FALSE 

immediately but the SDD "missed" it in the software domain. 

Summary of Implementation Assumptions 

Now we can conclude that in order to implement the SenLock System, the 

input Reset 1\ -,Sensor is required to be filtered tick predicate type. However, 

it is not mandatory that both inputs, Reset and Sensor, must be filtered tick 

predicate separately. So the Assumptions 6.1.1 and 6.1.2 can be summarized 

as: 

Assumption 6.1.3. Consider -,Sensor!\ Reset to be the combined input to the 

SenLock System. This input should be a filtered tick predicate for the SenLock 

System to be implemented correctly. 

In the next section, we will formalize this assumption 1n PVS and 

present the PVS theorem to verify the S enLock System. 

107 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

PHYSICAL DOMAIN 
TRUE 

Reset FALSE 

TRUE 

Sensor 
FALSE 

NOT Sensor TRUE 

&Reset 
Sample(l) Sample(2) 

Sample(O) 

Sample(J) Sample(2) 
Sample(O) 

SOFTWARE DOMAIN 
TRUE 

BLOCK 

Sample(O) 
Sam~(2) 

\ SOD is TRUE 

Figure 6. 7: Spike behavior between consecutive sample points 

6.1.5 Formal Verification of the SenLock System 

PVS Proof Obligation for the SenLock System 

For the SenLock System, we can consider a simplified discrete-time 4-variable 

model that represents a digital control system's periodic sampling of inputs and 

updating of output s. In this case, each of the four "variables", M , I , 0 , and C , 

is a set of "time series vectors" or datafiows. For example, with a series of sam­

ple instances Sample, the element m E M will be the dataflow of observations 

on the monitored variables at times t = Sample(O) , Sample(!) , Sample(2) , .. .. 

To ensure that the SDD implement s the SRS, we have to discharge the 

main block comparison theorem 

Abstc o REQ = SOFreq o AbstM 

108 



PhD Thesis - X.- Y. Hu - M eM aster - Computing and Software 

which is described in Section 2.2. This results in the following PVS theorem 

as shown in Figure 6.8. 

delay: VAR Duration 

SensorLock_Block: THEOREM 
FilteredTickPred?(LAMBDA (t: tick): reset(t) AND NOT sensor(t)) IMPLIES 

SenLock_SRS(sensor, reset, delay)(Sample(n)) = 
Lock?(Elock(ELOCK(sensor, reset, delay- delta_L)(Sample(n)))) 

Figure 6.8: SenLock System Proof Obligation 

The Assumption 6.1.3 that we concluded in the previous section is for­

malized to FilteredTickPred? (LAMBDA(t: tick): reset (t) AND NOT sensor(t)) 

in PVS, as the premise of the block comparison theorem. The theorem is ver­

ified in PVS and the source code is available in the attached CD. In the next 

section we will provide an overview of how we verify the SensorLock_Block 

theorem in PVS. 

Overview of the Verification Work · 

This section provides readers an overview of the major piece of the verification 

work, which will help the reader to understand the attached verification source 

code. Figure 6. 9 provides the insights of our verification approach, with main 

theorems and components listed. 

Figure 6.9 provides a more detailed view of the SenLock System, com­

pared to the implementation roadmap shown in Figure 5.15. We will take 4 

steps to introduce our work. 

1. Define SenLock_SRS_S Function The proof obligation of the SenLock 

System, SensorLock_Block, is to verify that the SenLock_SRS and ELOCK 

agree at each sample point. The two functions update their output in different 

frequencies: SenLock_SRS can refresh and change the output at any clock tick, 

while ELOCK can only update the output at each sample point. Therefore, it 

will be helpful to define another version of the SRS function SenLock_SRS_S, 

which has the same behavior as the SenLock_SRS at the sample points. The 

109 



PhD Thesis - X .- Y. Hu - McMaster - Computing and Software 

)y k_Biock l- __., 

( Held_For_l 
, ~ 

( ) ~ 
SenLock_SRS 

~ ( TimerUpdate ) 
I Senlock_Biock_S2 

* ( ) ( c.torntzad nnw DeSign) Held_For_l I Senlock_Biock_S6 L- __., 
l J . 

SenLock_SRS_S ELOCK ll 

SensorLock Theory 

[ llockDiy_ Timer ] 
j 

Held_For_l ' TimerGeneral_l I Tlmer_l ) I J - \. 

T 
Held_For_S I TimerGeneral_ S L..._ _.._r 

Tuner_s ~ , ~ ~ ~ \ 

TimerGeneral Theory ( TimerUpdate 

LEGEND Function Call (A ca lls B) 
Base Theorem 

Part of an implication relationship General Theorem 

Part of an IFF relationship 
Reused Function 

Target Theorem 

Figure 6.9: Theorems and Lemmas of the SensorLock Theory 

110 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

SenLock_SRS_S is shown in Figure 6.10. This function is only defined at each 

sample point, so we name it as SenLock_SRS_S. 

SenLock_SRS_S(sensor, reset, ldelay)(n): RECURSIVE bool 
IF n = 0 THEN TRUE 
ELSE COND Held_For_S(sensor, ldelay- delta_L, Sample)(n) ->TRUE, 

NOT Held_For_S(sensor, ldelay- delta_L, Sample)(n) AND 
reset(Sample(n)) AND sensor(Sample(n)) 

-> SenLock_SRS_S(sensor, reset, ldelay)(n- 1), 
NOT Held_For_S(sensor, ldelay- delta_L, Sample)(n) AND 
reset(Sample(n)) AND NOT sensor(Sample(n)) 

-> FALSE, 
NOT Held_For_S(sensor, ldelay- delta_L, Sample)(n) AND 

NOT reset(Sample(n)) 

ENDCOND 
END IF 

MEASURE n 

-> SenLock_SRS_S(sensor, reset, ldelay)(n- 1) 

Figure 6.10: SenLock_SRS_S Function 

2. Create and Verify Theorem SenLock_Block_S6 We create the PVS 

theorem SenLock_Block_S6 in order to verify the equivalence of SenLock_SRS_S 

and the SDD ELOCK at all the sample points. The verification of this theo­

rem is completed with ease, by instantiating theorems TimerGeneral_I and 

lLockDly _Timer. For the SenLock example, TimerGeneral_I is the reusable 

result in the TimerGeneral Theory. In this case, we only need to prove the 

lLockDly _Timer theorem, which shows the equivalence between the Timer _I 

design and the customized timer design in SenLock System. The design of 

these two components is close, so the verification of lLockDly _Timer takes 

much less effort than proving the equivalence between Held_For _I and cus­

tomized timer design from scratch. 

3. Create and Verify Theorem SenLock_Block_S2 We create the PVS 

theorem SenLock_Block_S2 in order to verify the equivalence of SenLock_SRS_S 

and the original SRS function SenLock_SRS. We mark this part of work as 

a significant piece of the whole SenLock System verification, because a lot 

111 



PhD Thesis -X.- Y. Hu -McMaster- Computing and Software 

SensorLock_Block_S6: THEOREM 
SenLock_SRS_S(sensor, reset, delay)(n) = 

Lock?(Elock(ELOCK(sensor, reset, delay- delta_L)(Sample(n)))) 

Figure 6.11: PVS Theorem SensorLock_Block_86 

of intersample behavior scenarios need to be verified one by one in PVS. In 

total, we have created 7 additional SRS_PROPERTY lemmas (containing over 

200 PVS commands) to verify theorem SenLock_Block_S2. The proof of 

SenLock_Block_S2 itself takes 332 PVS commands to complete. 

SensorLock_Block_S2: THEOREM 
FilteredTickPred?(LAMBDA (t: tick): reset(t) AND NOT sensor(t)) IMPLIES 

SenLock_SRS_S(sensor, reset, delay)(n) = 
SenLock_SRS(sensor, reset, delay)(Sample(n)) 

Figure 6.12: PVS Theorem SensorLock_Block_82 

4. Verify SenLock_Block Theorem ·Based on the result of step 2 and 

3, we can now easily use the results of theorems SenLock_Block_S6 and 

SenLock_Block_S2 to connect the SenLock_SRS and ELDCK together. The 

proof of the target theorem SenLock_Block only takes 7 PVS commands to 

complete, by just instantiating these two theorems. 

6.2 Example: Delayed Trip System 

The Delayed Trip System (DTS) has been introduced in Chapter 2. In this sec­

tion we will upgrade the requirement specification with the Held_For operator 

with tolerance, based on which we construct the pseudo version of the SRS in 

PVS. In the design and verification of the Delayed Trip System, the Timer_I 

design and the general theorem TimerGeneral_I are involved to simplify both 

the implementation and verification work. 

112 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

6.2.1 Software Requirement Specification (SRS) 

The upgraded Software Requirement Specification (SRS) for DTS is shown in 

Figure 6.13. In this version, the requirements are specified with the Held_For 

operators with tolerances. 

Result 
Condition relay 

(PP) Held_For( timeout1,5L1,6R1) TRUE 
(----. [(PP) Held_For (timeoutl, 5L1, 5R1)]) Held_For (timeout2, 6L2, 5R2) FALSE 

----. (PP) Held_For(timeout1,5L1,5R1) 1\ 

----. (----. [(PP) Held_For (timeoutl, 5L1, <SRi)]) Held_For (timeout2, 5L2, 5R2) No Change 

where P P(t) = Power(t) ;:::: PT 1\ Pressure(t) ;:::: DSP 

Figure 6.13: The Upgraded SRS for the Delayed Trip System 

If the condition PP holds longer than timeout1, the relay should keep 

the open status. When the power drops below PT or the pressure becomes 

lower than DSP, the relay should not close until after another time period 

of timeout2. Note that Held_For operator with the duration timeout1 has 

the tolerance settings 5L1 and 5R1 and another Held_For operator with the 

duration timeout2 has its own tolerance settings 5 L2 and 5 R2 defined. This 

will better fit the real-world engineering specification, where the timeout1 and 

timeout2 have huge difference and they are not possible to share a global 

tolerance. For example, timeout1 =30 seconds and timeout2 =2 seconds can 

lead to the tolerance settings 5L1 =5R1 =1 second and 5L2=r5R2=0.1 seconds. 

It also shows the H~ld_For operator with tolerance allows us to specify different 

tolerances for the each duration, respectively. 

PVS Pseudo-SRS 

Based on the formal Software Requirernent Specification (SRS) of the Delayed 

Trip System shown in Figure 6.13, we can construct the pseudo-SRS in PVS 

using Held_For_I function (as shown in Figure 6.14). The Held_For_I func­

tion returns a tick predicate and can be nested like in the SRS function. 

In the definition of DelayedTrip_SRS function, the tick predicate P is 

passed as a more generic condition type to handle the situation where "both 

113 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

DelayedTrip_SRS(P: Condition_Type, 

bool = 

timeout!: Duration[K, TL, TR, delta_Ll, delta_Rl], 
timeout2: Duration[K, TL, TR, delta_L2, delta_R2]) 

(t): RECURSIVE 

IF init(t) THEN FALSE 
ELSE TABLE 

%-----------------------------------------------------------+-------------++ 
I Held_For_I(P, timeout!- delta_Ll, Sample)(t) I TRUE I I 
%-----------------------------------------------------------+-------------++ 

Held_For_I(LAMBDA (t1: tick): 
NOT Held_For_I(P, timeout! - delta_Ll, Sample) 

(t1)' 
timeout2- delta_L2, Sample)(t) FALSE I I 

%-----------------------------------------------------------+-------------++ 
NOT Held_For_I(P, timeout!- delta_L1, Sample)(t) AND 

(NOT Held_For_I(LAMBDA (t1: tick): 
NOT Held_For_I 

(P, timeout! - delta_L1, Sample)(tl), 
timeout2 - delta_L2, Sample) 

(t)) I DelayedTrip_SRS(P, timeout!, timeout2)(pre(t)) I I 
%-----------------------------------------------------------+-------------++ 

ENDTABLE 
END IF 

MEASURE rank(t) 

Figure 6.14: PVS Pseudo-SRS of Delayed Trip System 

the power exceeds the Power Threshold ( PT) and the pressure exceeds the 

Delayed Trip Set Point ( D S P) simultaneously". In this way the implementer 

can instantiate P with any specific tick predicate type function. As shown 

in the figure, Held_For _I (P, timeout 1-del ta_L1, Sample) ( t) formalizes the 

situation where both the power exceeds the PT and the pressure exceeds the 

DSP simultaneously for the duration timeout1. In this case, the relay is 

opened for the next period timeout2. 

6.2.2 PVS Software Design Description (SDD) 

The Delayed Trip System is implemented based on the Timer_I design. We 

will use two timer variables, Timer1 and Timer2, to implement the first and 

second Held_For _I operators in the pseudo-SRS respectively. According to 

the SRS, if P has been TRUE for timeout1 (with a tolerance setting 8£1 and 

8R1), the relay will be open for the next timeout2 time units (with a tolerance 

setting 8£2 and 8 R2). So we will use one timer for measuring timeout 1, and 

114 



PhD Thesis- X.- Y. Hu- McMaster-- Computing and Software 

the other timer for measuring timeout2. 

We can define the system state as a record type which has a relay 

status field, two tin1er fields and two fields for storing the conditions at the 

previous sample (see Figure 6.15). Here the variable S is of type SDD_State 

and represents the system's previous state. Function RelayUpdate updates the 

current output of the relay, according to the previous values of Timerl and 

Timer2, and the current condition P. Previousinputl and Previousinput2 

are the fields defined to store the conditions of Timerl and Timer2 at the 

previous sample point, for a similar purpose that Previousinput is defined 

to be passed as the PreviousP parameter of TimerUpdate in the Sensor Lock 

example. 

SDD_State: TYPE = 
[# Relay: Relay_State, 

Timer!: tick, 
Tirner2: tick, 
Previous!nput1: bool, 
Previous!nput2: bool #] 

RelayUpdate(tirneout1, tirneout2, Current?, S, step): Relay_State = 
TABLE 
%----------------------------------------------------------------+--------++ 
I CurrentP&(Timer1(S)+step>=tirneout1) IOPEN I I 
%----------------------------------------------------------------+--------++ 
I NOT(CurrentP&Tirner1(S)+step>=timeout1)&Tirner2(S)+step>=tirneout2ICLOSED I I 
%----------------------------------------------------------------+--------++ 
I NOT(CurrentP&Tirner1(S)+step>=tirneout1)& 

NOT (Timer2(S)+step>=timeout2) IRelay(S)I I 
%----------------------------------------------------------------+--------++ 

ENDTABLE 

Figure 6.15: RelayUpdate Function 

Since the RelayUpdate function only updates the output Relay, we 

need a function to update the system's two timers. The function TimerUpdate 

defined in Section 5.5 can be used for this purpose. By using the TimerUpdate 

and RelayUpdate functions together, we can implement the SDD for the DTS 

block (as shown in Figure 6.16). 

We define the return type of the DelayedTrip_SDD function to be 

SDD State. It should only be able to refresh the output at the sample points. 

115 



PhD Thesis ~ X.- Y. Hu ~ McMaster ~ Computing and Software 

timeout!, timeout2: VAR non_initial_time 

DelayedTrip_SDD(P, timeout!, timeout2)(t): RECURSIVE SOD State 
IF t = Sample(O) 

THEN (# Relay :~ CLOSED, 
Timer! := 0, 
Timer2 := 0, 
Previousinputl := P(Sample(O)), 
Previousinput2 := TRUE #) 

ELSIF t = Sample(Left_Sample(Sample, t)) 
THEN (# Relay 

:= RelayUpdate(timeoutl, timeout2, P(t), 

Timer! 

DelayedTrip_SDD(P, timeout!, timeout2)(pre(t)), 
t- Sample(Left_Sample(Sample, t) - 1)), 

:= TimerUpdate(P(t), 
Previousinputl(DelayedTrip_SDD 

Timer2 

(P, timeout!, timeout2) 
(Sample 

(Left_Sample(Sample, t) - 1))), 

timeout!, 
Timerl(DelayedTrip_SDD 

(P, timeout!, timeout2)(pre(t))), 
t- Sample(Left_Sample(Sample, t) - 1)), 

:= TimerUpdate(NOT (P(t) 
&; 

Timer! 
(DelayedTrip_SDD 

(P, timeout!, timeout2) 
(Sample(Left_Sample(Sample, t) - 1))) 

+ t 

- Sample(Left_Sample(Sample, t) - 1) 

>=timeout!), 
Previousinput2(DelayedTrip_SDD 

(P, timeout!, timeout2) 
(Sample 

(Left_Sample(Sample, t) - 1))), 

timeout2, 
Timer2(DelayedTrip_SDD 

(P, timeout!, timeout2)(pre(t))), 
t- Sample(Left_Sample(Sample, t) - 1)), 

Previousinputl := P(t), 
Previousinput2 

NOT (P(t) &; 

Timerl(DelayedTrip_SDD(P, timeout!, timeout2) 
(Sample 

(Left_Sample(Sample, t) -1))) 

+ t - Sample(Left_Sample(Sample, t) - 1) >= timeout!) #) 
ELSE (#Relay := Relay(DelayedTrip_SDD(P, timeout!, timeout2)(pre(t))), 

END IF 

Timer! 
:= Timerl(DelayedTrip_SDD(P, timeout!, timeout2)(pre(t))), 

Timer2 
:= Timer2(DelayedTrip_SDD(P, timeout!, timeout2)(pre(t))), 

Previous Input! 
:= Previousinputl(DelayedTrip_SDD(P, timeout!, timeout2)(pre(t))), 

Previousinput2 
Previousinput2(DelayedTrip_SDD(P, timeout!, timeout2) 

(pre(t))) #) 

MEASURE rank(t) 

Figure 6.16: PVS Code for DTS SDD 

116 



PhD Thesis X.- Y. Hu- McMaster- Computing and Software 

Therefore, in the DelayedTrip_SDD function the condition 

t=Sample (LeftSample (Sample, t)) is used to check whether the current tick 

value is right on a sample point or not. The system will then update the 

related timer. If the current time t is not a sample point, the system should 

maintain the previous status (as shown in the last ELSE statement block of 

Figure 6.16). 

6.2.3 Formal Verification of the Delayed Trip Example 

PVS Proof Obligation for Delayed Trip System 

We follow the same approach of the SenLock System to create the PVS proof 

obligation for DTS, based on the 4-variable model. 

DelayedTrip_Block: THEOREM 

FORALL (timeout1: Duration[K, TL, TR, delta_L1, delta_R1], 

timeout2: Duration[K, TL, TR, delta_L2, delta_R2]): 

DelayedTrip_SRS(PP, timeout1, timeout2)(Sample(n)) = 

OPEN?(Relay(DelayedTrip_SDD(PP, timeout1 - delta_L1, 

timeout2- delta_L2)(Sample(n)))) 

We can define tick predicate PP in PVS as shown below: 

PP(t):bool=Power(t)>=PT AND Pressure(t)>=DSP 

Then we can instantiate this specific tick predicate PP in the final proof 

obligation of DTS. The theorem DelayedTri p_Block specifies that the SRS 

specification DelayedTrip_SRS should be TRUE if and only if the Relay field 

of the DelayedTrip_SDD is OPEN. 

Overview of the Verification Work 

We revisit Figure 5.15 to provide reader an overview of our verification strat­

egy. We will take 2 steps to introduce our work. 

117 



PhD Thesis- X.-Y. Hu- McMaster- Computing and Software 

1. Create and Verify the Timer_ Timer lemmas We create the PVS the­

orem Timer!_ Timer and Timer2_ Timer to show that the customized Timer! 

and Timer2 designs are equivalent to the general Timer _I design we present 

in Section 5.5. For example, Timer!_ Timer shown in the Figure 6.17 verifies 

the Timer! of the DelayedTrip_SDD function behave same as the Timer _I 

function. 

Timer1_Timer: LEMMA 
FORALL (timeout!, timeout2: non_initial_time): 

Timer_I(P, Sample, timeout1)(t) = 
Timer1(DelayedTrip_SDD(P, timeout!, timeout2)(t)) 

Figure 6.17: PVS Lemma Timer 1_ Timer 

2. Verify DelayedTrip....Block Theorem As shown in the Figure 5.15, we 

can show the equivalence between the two nested Held_For _I in the SRS and 

the two timers, based on the two Timer_Timer lemmas and TimerGeneral_I 

theorem. These results help us to simplify the proof work of the final theorem 

DelayedTrip_Block. 

We also developed another version of the pseudo-SRS in PVS, named 

as DelayedTrip_SRS1. Then we show the two SRS functions are equiva­

lent with the lemma DelayedTrip_EQUAL. Finally we can verify that our 

DelayedTrip_SDD function conforms to both of the SRS functions we have 

defined with ease. Interested reader can review these results in the complete 

source code. 

6.3 Summary 

In the previous sections of this chapter, we demonstrated how the pre-verified 

implementation template (e.g., Timer_I) and the general theorem 

(e.g., TimerGeneral_I) can be used to guide and simplify both the implemen­

tation and verification, through two examples: Sensor Lock and Delayed Trip. 

In both of the examples, customized timer designs have been created based 

118 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

on the guidance of the pre-verified Timer_I implementation (for the Held_For 

operator with tolerance). The general theorem TimerGeneral_ I that verifies 

the equivalence relationship between Held_For _I and Timer _I is instantiated 

in the verification of both of the examples, which significantly reduces the 

amount of repetitive work. 

The Sensor Lock example provides us a scenario where the SRS and 

SDD will not match when SRS function is changed due to an intersample 

behavior with "spike" in a logical combination of the system input signals, 

that the SDD function fails to observe it with the samples. This shows the 

importance and limitations of the filtered tick predicate assumption. Our 

analysis of the PVS verification results shows simply assuming each input 

variable to be filtered tick predicate might still not be sufficient to implement 

the system. 

The requirement specification of the Delayed Trip example is composed 

with two nested Held_For operators, with different durations and different 

timing tolerances for each of them. Thus this example provide us with a case 

where the requirements of the system do not fit into a global tolerance model 

(e.g., the reaction delay parameter .6. of the Almost ASAP semantics in [36] 

and the E-hypothesis in [10]) where in each timing component of the system 

specification the timing tolerances are different. The Delayed Trip example 

demonstrated the ability of our approach to specify and implement the timing 

requirements with tolerances of a system precisely, unrestricted by a global 

tolerance. For a system with multiple timing requirements, the intersection 

of the feasible condition sets might result in some implementations that are 

feasible even when a global tolerance would make us think they are not feasi­

ble. In this case, our approach, to replace a very conservative global tolerance 

by including tolerances on each individual timing requirement, may signifi­

cantly reduce unnecessary load on the target platform. Instead of performing 

a scheduling check in the final stage [8, 10], our approach can also determine 

whether further implementation effort is worth it or not as soon as the timing 

requirements have been specified (based on feasibility analyses). 

Table 6.1 shows a statistical analysis of the verification work performed 

in these two examples. 

119 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

Sensor Lock Delayed Trip 

TimerGeneraLJ ( 20) 624 39% TimerGeneraLI ( 20) 624 51% 
I delay_ Timer 69 4% Timer 1_ Timer( 1) 116 9% 
SensorLock_Block_S2(7) 706 44% Timer2_ Timer(2) 258 21% 
Sensor Lock_Block_S6 ( 2) 199 12% Other lemmas( 3) 24 2% 
SensorLock_Block 7 1% Delayed'Ihp_Block(l) 209 17% 
Total 1605 100% Total 1231 100% 

Table 6.1: Verification Effort Comparison of Two Examples 

For each of the examples shown in the figure, we list the main theo­

rems, number of PVS commands to complete the theorem, and the percentage 

of the total work required to complete each of the main theorems. The num­

ber in parentheses besides the theorem name indicates the total number of 

lemmas and theorems that help to verify the main theorem1
. For example: 

TimerGeneral_I takes 20 theorems and lemmas and 624 PVS commands to 

be proved. Theorems llockDly _Timer, Timer1_Timer and Timer2_Timer 

show the equivalence between the customized timers of the SDD functions 

and the general Timer_I design. They are the necessary effort in order to 

connect the timer components in the examples with the Held_For_I in the 

pseudo requirements. In most cases, this part of the work is relatively trivial. 

For example, lLockDly_Timer and Timer1_Timer take only 4% and 9% of 

the total work. However, to verify Timer2_Timer takes 258 PVS commands 

(21%) because of the complexity of nested functions. Both of the Sensor Lock 

and Delayed Trip examples reuse the general theorem TimerGeneral_I. This 

important pre-verified result helps us to save 39% and 51% of the verification 

work respectively. 

The results we have shown will not only benefit the domain expert, 

who will have great flexibility to specify real-world performance timing re­

quirements (e.g., timing resolution and response allowance), but also give a 

re-usable and reliable result for the designer and developer, allowing them to 

apply the implementation of this timing requirement to real-time systems cor-

1The statistics data does not include the effort of the lemmas, theorems and TCC proofs 
of imported theories, since they are one time cost that can be reused in any example. 

120 



PhD Thesis -X.- Y. Hu --McMaster Computing and Software 

rectly. Overall, we believe this implementation approach feasible and reusable, 

both in the design and verification phases. The next chapter presents a sum­

mary of the thesis, and describes possible future work in this area. 

121 



Chapter 7 

Sumrp.ary 

In this thesis, we investigated how to deal with timing properties of real­

time systems. Our approach results in precise definitions and analyses of how 

functional timing requirements interact with performance timing requirements, 

and covers most of the activities of the software engineering life-cycle of real­

time systems. 

Using three common functional timing requirements, Held_For, Peri­

odic, and Sync_Periodic, we demonstrated: 

• Formal Specifications: Tabular specifications of functional timing re­

quirements that include tolerances on the time durations. 

Using Held_For as an example, we also demonstrated: 

• Feasibility Analyses: Conditions under which such timing requirements 

can be implemented. 

• Implementation Templates: Pre-verified implementation templates for 

common pieces of the timing requirements that often appear in real­

time systems. These can be reused to guide the design and reduce the 

associated verification work. 

Table 7.1 highlights the contributions of this thesis to these three areas. 

122 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

l Areas 

Formal Specification 

Feasibility Analyses 

Contributions 

Based on the formal specifications that arose 
out of the Darlington Shutdown develop­
ment [31, 29]. The formalization of the def­
inition of Held_For in PVS is a contribution 
of this thesis. 
The manual analysis was presented in [29). 
The contribution in this thesis is its formal­
ization in PVS for three environmental as­
sumptions, the proof that the primary as­
pects of the manual analysis in [29] are true 
for practical environmental assumptions, and 
the interesting discovery of an additional 
mathematically feasible, but practically un­
likely case. Discovered the relationships be­
tween the environments and discussed the 
estimation approach for a new environment. 
Revealed the importance of the general theo­
rems to the verification work and conducted 
all the actual work. 

Implementation Templates This entire aspect is described for the first 
time in this thesis. The idea was suggested 
in [13, 29]. 

Table 7.1: Summary of Contributions 

Formal Specifications The functional behaviour of an application is typi­

cally specified in the system requirements in an "ideal" way within the ( contin­

uous) physical domain. To complete the description of the required behaviour, 

a requirements document must also specify the performance tolerances that 

are allowed in meeting functional timing requirements. We have presented the 

precise definitions of functional timing requirements (e.g., the Held_For oper­

ator with timing tolerances) and performance timing requirements (e.g., the 

upper and lower bound of sample intervals: T min and T max), which allow us 

to determine the implementability of real-time systems without incurring the 

complex implementation and verification work described in Chapter 3. 

In most industrial applications, tolerances are defined (or should be 

123 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software· 

defined) clearly on the major timing components of a real-time system. The 

definition we provided allows a domain specialist to specify the requirements 

very precisely and this sets the stage for the feasibility analyses and imple­

mentation templates summarized in the following sections. 

Feasibility Analyses We have provided the necessary and sufficient condi­

tions for the implementability of the Held_For operator with tolerance, which 

are determined by both the environmental assumptions and the interaction of 

the timing requirements. 

We also presented three environmental assumptions, Omniscient, Per­

fect Clock and No Clock, and the feasibility analyses show that in each of the 

environments, the implementability of the Held_For operator with tolerance 

varies. In each environment, the interaction between the functional timing re­

quirements (FTRs) and performance timing requirements (PTRs) determine 

whether the implementation is feasible or not. Timing tolerances are intro­

duced in both the FTRs (e.g., duration tolerances of the Held_For operator, 

8 L and 8 R) and PTRs (e.g., the intervals between the samples are bounded 

by [Tmin 1 Tmax]). 

For each environment, the feasibility of the implementation is discussed 

via three cases. Case 1 is when Tmax ~ (8L + 8R)/2. Comparing with the 

other two cases, the implementation condition is relatively simple. However, it 

is not correct to assume the H eld_For operator can always be implemented in 

this case. In the No Clock environment, the implementability of H eld_For is 

not always possible. This shows that sampling fast is not always the solution. 

Case 2 is when (8L + 8R)/2 < Tmax :::; (8L + 8R). We discovered that under 

certain conditions the Held_For operator with tolerance is still implementable, 

which provides an alternative solution to the designer of the real-time system, 

when facing the limitation of the hardware. Case 3 is when Tmax > (8L+8R). 

The implementation of the H eld_For operator does not exist (based on our 

analyses of this case in all three environments). Section 3.4 presented the 

table comparison of the results and detailed discussions. 

For each of the environments, we defined a feasible function which 

determines the implementability of the H eld_For in that environment. The 

124 



PhD Thesis X.- Y. Hu- McMaster Computing and Software 

function not only is a key factor in the feasibility analysis of each specific en­

vironment, but also helps us to connect the feasibility results across the three 

environments to create a more general view of the feasibility conditions. As 

an important result, Theorem 3.4.1 reveals the relationships between feasibil­

ity functions across the environmental assumptions. First, it contributes to 

our verification work of the feasibility results using the PVS theorem prov­

ing approach. The verification strategies (shown in Section 4.3) that we have 

created based on this theorem saved at least 40% of the total amount of the 

theorem proving work. Another contribution of this theorem (in different en­

vironments), is that it can help one to estimate (or even precisely predict) the 

feasibility of an implementation under a new environmental assumption. Our 

summary report shows the work to verify this general theorem itself in PVS 

takes less than 1% of the total verification effort. This shows that the trivial 

effort to verify this theorem first can possibly benefit the complex analysis and 

proof of the overall feasibility to a significant degree. 

Implementation Templates Based on the feasibility analyses, we selected 

the Perfect Clock environment to demonstrate how to reduce the work required 

to implement the real-time operator Held_For with tolerance. The proposed 

implementation uses a template approach as presented in a two step approach 

based on the verification process described in Section 2.2. 

The Held_For _I function is applied in the pseudo version of the re­

quirements (pseudo-SRS) in PVS. This function is first verified based on the 

high level functional and performance timing requirements through the PVS 

theorem proving methodology. The feasibility analyses provide essential guid­

ance during this verification work. Only under the feasible conditions of the 

Perfect Clock environment can we prove that Held_For_I (with a duration of 

d - 8 L) conforms to all the high level requirements we have specified for the 

H eld_For operator with tolerance. 

We then presented a timer design (the function Timer _I in PVS) as 

an implementation of Held_For _I and verified this result through the gen­

eral theorem TimerGeneral_I. Thus Timer _I can be used as a pre-verified 

template to implement the Held_For operator in a straight-forward manner. 

125 



PhD Thesis~. X.- Y. Hu- McMaster- Computing and Software 

It can be easily customized when dealing with different industrial examples. 

The general theorem TimerGeneral_I can be reused to reduce the amount of 

verification work in future implementations. To illustrate this approach, we 

provided two examples, Sensor Lock and Delayed Trip, to demonstrate our 

implementation strategy. 

The Sensor Lock example provides us a scenario where the SRS and 

SDD will not match when SRS function is changed due to an intersample be­

havior with "spike" in a logical combination of the system input signals, while 

the SDD function fails to observe it with the samples. This shows the impor­

tance and limitations of the filtered tick predicate assumption. Our analysis 

of the PVS verification results shows that simply assuming each input variable 

to be of filtered tick predicate type might still not be sufficient to implement 

the system. The design and implementation is guided by the general template 

Timer_I function, at a level that the designer does not need deep knowledge 

of our feasibility analyses. 

The requirement specification of the Delayed Trip example is a compo­

sition of two nested Held_For operators, with different durations and different 

timing tolerances for each of them. This provides an example in which the 

requirement of the system does not fit into a global tolerance model (e.g., 

the reaction delay parameter L). of the Almost ASAP semantics in [36] and 

E-hypothesis in [10]), because, in each timing component of the system speci­

fication the timing tolerances are different. For a system with multiple timing 

requirements, the intersection of the feasible condition sets might result in 

some implementations that are feasible even when a global tolerance would 

make us think they are not feasible. In this case, our approach, to replace a 

very conservative global tolerance by including tolerances in each individual 

timing requirement, may significantly reduce unnecessary load on the target 

·platform. Instead of performing a scheduling check in the final stage [8, 10], 

our approach can also determine whether further implementation is worth it 

or not as soon as the timing requirements have been specified (based on the 

feasibility analyses). 

The general theorem TimerGeneral_I takes over 16 lemmas and over 

600 PVS commands to complete. We have shown how to reuse this result 

126 



PhD Thesis -X.- Y. Hu -McMaster- Computing and Software 

to reduce the verification work of the customized timer components, in both 

of the examples. In the Sensor Lock example, the theorem llockDly _Timer 

verifies the equivalence between the customized design in the SDD function 

and the template Timer _I. In the Delayed Trip example, Timer1_ Timer and 

Timer2_Timer show that each customized timer behaves in the same way as 

does Timer_I. Together with the general theorem TimerGeneral_I, these the­

orems connect the timing requirements in the SRS and customized implemen­

tation components in the SDD, and verify the implementation of the system 

in a component based approach. Through this approach, 39% and 51% of the 

verification work was saved for Sensor Lock and Delayed Trip, respectively. 

7.1 Future Work 

The list below is suggested future work arising from this thesis. 

• It will be of interest to formalize the Imperfect Clock environmental as­

sumption and complete its feasibility analyses. Further formal analyses 

and verification of Case 1 can be completed to finalize the implementabil­

ity results of Imperfect Clock environment. 

• It should be possible to expand the idea of the PVS pre-verified imple­

mentation template for Held_For, to create a real-time operator library, 

which can cover all the common timing requirements that appear in real­

time systems. Each of the operators would then have an implementation 

template that is relatively easy for a designer to follow, and a general 

theorem (with a guideline) on how to reuse the template to reduce the 

effort required to implement and verify the specified timing behavior. 

127 



Appendix A 

Time Theory 

This appendix contains the PVS input files for Time theory of Chapter 4. The 

complete PVS dump files are available from the attached CD. 

Time: THEORY 
BEGIN 

time: TYPE+ = nonneg_real·-

non_initial_time: TYPE+ = posreal 
END Time 

128 



Appendix B 

Samplelnstance Theory 

This appendix contains the PVS input files for Sampleinstance theory of 
Chapter 4. The complete PVS durnp files are available from the attached CD. 

Sampleinstance[(IMPORTING Time) K: non_initial_time, TL, 
TR: {t: time I t < K}]: THEORY 

BEGIN 

n, n1, n2: VAR nat 

t, t1, t2: VAR time 

Tmin: posreal = K - TL 

Tmax: posreal = K + TR 

init(x: time): bool = (x = 0) 

Sample_Type: TYPE+ = 
{c: [nat -> time] 

c(O) = 0 AND 
(FORALL n: 

Tmin <= c(n + 1) - c(n) AND c(n + 1) - c(n) <= Tmax)} 

Sample: VAR Sample_Type 

Sample_PROPERTY1: LEMMA n2 > n1 IMPLIES Sample(n2) > Sample(n1) 

Sample_PROPERTY2: LEMMA n2 >= n1 IMPLIES Sample(n2) >= Sample(n1) 

Sample_PROPERTY3: LEMMA Sample(n2) > Sample(n1) IMPLIES n2 > n1 

Sample_PROPERTY4: THEOREM n2 > n1 IFF Sample(n2) > Sample(n1) 

Sample_PROPERTY5: LEMMA Sample(n) = 0 IFF n = 0 

129 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

Sample_Interval: LEMMA 
FORALL (n: nat, duration: time): 

Sample(n + floor(duration I Tmin) + 1) >= Sample(n) + duration 

Sample_Interval2: LEMMA 
FORALL (n: nat, m: nat): Sample(n + m) >= Sample(n) + m * Tmin 

Sample_Interval3: LEMMA 
FORALL (n: nat, m: nat): Sample(n + m) <= Sample(n) + m * Tmax 

Sample_Interval4: LEMMA 
FORALL (n, k: nat): 

FORALL (t: real): 
Sample(n) <= t AND Sample(n + 1) > t AND Sample(k) <= t IMPLIES 
k <= n 

Sample_Interval7: LEMMA 
FORALL (n: nat, k: nat I k >= 1): 

Sample(n) >= k * Tmax IMPLIES n >= k - 1 

Sample_Interval5: LEMMA 
FORALL (n: nat, k: nat I k >= 1): Sample(n) > k * Tmax IMPLIES n >= k 

Sample_Compare: LEMMA 
FORALL (n1, n2: nat): n2 >= n1 IMPLIES Sample(n2) >= Sample(n1) 

Sample_Compare1: LEMMA 
FORALL (n: nat, k: nat): Sample(n) >= Sample(k) IFF n >= k 

Sample_Sequence: LEMMA 
FORALL (n1, n2: nat): Sample(n1) = Sample(n2) IMPLIES n1 = n2 

Sample_Value_PROPERTY1: LEMMA Sample(n + 1) > 0 

TClock_2: LEMMA 
FORALL (t: time t > Tmax): 

EXISTS (n: nat, j: nat): Sample(n) <= t AND Sample(n + j) > t 

TClock_4: LEMMA 
FORALL (t: time t >= Sample(O)): 

EXISTS (n: nat, j: nat): Sample(n) <= t AND Sample(n + j) > t 

TClock_1: LEMMA 
FORALL (t: time It> Tmax): 

EXISTS (n: nat): Sample(n) <= t AND Sample(n + 1) > t 

TClock_3: LEMMA 
FORALL (t: time): EXISTS (n: nat): Sample(n) <= t AND Sample(n + 1) > t 

130 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

TIME_BETWEEN_SAMPLE: LEMMA 
FORALL (t: time): EXISTS (n: nat): Sample(n) <= t AND Sample(n + 1) > t 

END Samplelnstance 

131 



Appendix C 

Feasibility Results Theory 

This appendix contains the PVS input files for Feasibili tyResul ts theory 
of Chapter 4. The complete PVS dump files are available from the attached 
CD. 

FeasibilityResults[(IMPORTING Time) K: non_initial_time, TL, 
TR: {t: time I t < K}, delta_L, delta_R: time]: THEORY 

BEGIN 

IMPORTING Sampleinstance[K, TL, TR] 

P: VAR pred[time] 

Duration: TYPE = {du: time du > delta_R AND du - delta_L > Tmax} 

d, duration: VAR Duration 

n, nO: VAR nat 

t, t1, t2, t_now, t_n, t_j: VAR time 

t3: VAR posreal 

Sample: VAR Sample_Type 

Kmin(d): nat= floor((d- delta_L) I Tmax) 

Kmax(d): nat= floor((d- delta_L) I Tmin) 

Feasible_Omniscient(d): bool = 
FORALL Sample: 

FORALL nO: 
FORALL (t It> Sample(nO) AND t <= Sample(nO + 1)): 

EXISTS n: 
Sample(n) - t >= d - delta_L AND Sample(n) - t <= d + delta_R 

132 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

Feasible_PerfectClock(d): bool 
FORALL Sample: 

FORALL nO: 
EXISTS n: 

FORALL (t t > Sample(nO) AND t <= Sample(nO + 1)): 
Sample(n) - t >= d - delta_L AND Sample(n) - t <= d + delta_R 

Feasible_NoClock(d): bool 
EXISTS n: 

FORALL Sample: 
FORALL nO: 

FORALL (t It> Sample(nO) AND t <= Sample(nO + 1)): 
Sample(n + nO) - t >= d - delta_L AND 

Sample(n + nO) - t <= d + delta_R 

sampleExists: LEMMA 
t2 - t1 > Tmax => (EXISTS n: t1 < Sample(n) & Sample(n) < t2) 

Sample_Exists1: LEMMA 
FORALL (ns: nat Ins> 1): 

FORALL (t: time I t <= Tmax AND t >= Tmin): 
FORALL (tl: time I tl <= Tmax AND tl >= Tmin): 

EXISTS (Sample: Sample_Type): 
Sample(O) = 0 AND 

Sample(!) = Tmax AND 
(FORALL (n: nat In> 1 AND n <= ns): 

Sample(n) = (n - 1) * t + Tmax) 
AND 
Sample(ns + 1) = (ns - 1) * t + Tmax + tl AND 

(FORALL (n: nat In> ns + 1): 
(Sample(n) 

(ns - 1) * t + Tmax + tl + (n - ns - 1) * Tmax)) 

FLOOR_REAL1: LEMMA FORALL (a, b: time): a> b IMPLIES floor(a) >= floor(b) 

FLOOR_REAL2: LEMMA 
FORALL (a, b: time): floor(a) > floor(b) IMPLIES floor(a) >= b 

FLOOR_REAL3: LEMMA 
FORALL (a, c: posreal, b: time): a>= b I c IMPLIES b I a<= c 

FLOOR_REAL4: LEMMA 
FORALL (a, c: posreal, b: time): a<= b I c IMPLIES b I a>= c 

FLOOR_TRUTH: LEMMA floor((duration- delta_L) I Tmax) >= 0 

FLOOR_TRUTH1: LEMMA floor((duration- delta_L) I Tmin) >= 0 

133 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

FLOOR_TRUTH2: LEMMA 
(FORALL (t: time It<= Tmax AND t >= Tmin): 

floor((d- delta_L) I t) < (d - delta_L) I t) 
IMPLIES floor((d - delta_L) I Tmin) = floor((d- delta_L) I Tmax) 

FLOOR_COMMON: LEMMA 
FORALL (t: time I t <= Tmax AND t >= Tmin): 

floor((duration- delta_L) I t) > 0 AND 
floor((duration + delta_R) I t) > 0 

CEILING_COMMON: LEMMA 
FORALL (t: time I t <= Tmax AND t >= Tmin): 

ceiling((duration- delta_L) I t) > 0 AND 
ceiling((duration + delta_R) I t) > 0 

LT_LEQ_PROP: LEMMA 
(FORALL (x: {y: nnreal I y < Tmax}): t + x <= t1) => t + Tmax <= t1 

GT_LEQ_PROP1: LEMMA 
(FORALL (x: {y: real I y > 0 ANDy<= t3}): t- x <= t1) IMPLIES t <= t1 

Duration_PROPERTY: LEMMA (d - delta_L) I Tmin > 1 

TminAndKmax: THEOREM 
(Kmax(d) = Kmin(d) OR 

(Kmax(d) = Kmin(d) + 1 & Kmax(d) * Tmin = d - delta_L)) 
IFF Tmin >= (d - delta_L) I (Kmin(d) + 1) 

Feasible_PerfectClockAnddMinusDeltaL: LEMMA 
Feasible_PerfectClock(d) & 

(EXISTS n: d - delta_L = n * Tmax) & Tmin I= Tmax 
=> delta_L + delta_R >= 2 * Tmax 

PerfectClock_CASE2A_1: LEMMA 
(delta_L + delta_R) I 2 < Tmax & Tmax <= delta_L + delta_R IMPLIES 
(Feasible_PerfectClock(d) AND 

floor((d- delta_L)·I Tmin) * Tmin I= d- delta_L 
IMPLIES 
(FORALL (t: time I t <= Tmax AND t >= Tmin): 

floor((d - delta_L) I t) * t < d - delta_L)) 

PerfectClock_CASE2A_2: LEMMA 
(delta_L + delta_R) I 2 < Tmax & 
Tmax <= delta_L + delta_R AND 
floor((d - delta_L) I Tmin) * Tmin = d - delta_L AND Tmax I= Tmin 

IMPLIES (Feasible_PerfectClock(d) IMPLIES Kmax(d) = Kmin(d) + 1) 

PerfectClock_CASE2A: THEOREM 
(delta_L + delta_R) I 2 < Tmax & 

134 



PhD Thesis- X.- Y. Hu ~McMaster~ Computing and Software 

Tmax <= delta_L + delta_R AND Tmin I= Tmax 
IMPLIES 
(Feasible_PerfectClock(d) IMPLIES 

Tmin >= (d - delta_L) I (Kmin(d) + 1) AND 
(floor((d - delta_L) I Tmax) + 2) * Tmax <= d + delta_R) 

NoClock_CASE2B_1: LEMMA 
(delta_L + delta_R) I 2 <= Tmax & Tmax <= delta_L + delta_R IMPLIES 
(floor((d- delta_L) I Tmax) = floor((d - delta_L) I Tmin) AND 

(floor((d - delta_L) I Tmax) + 2) * Tmax <= d + delta_R 
IMPLIES Feasible_NoClock(d)) 

NoClock_CASE2B: THEOREM 
(delta_L + delta_R) I 2 < Tmax & 
Tmax <= delta_L + delta_R AND Tmin I= Tmax 
IMPLIES 
(Tmin >= (d - delta_L) I (Kmin(d) + 1) AND 

(floor((d - delta_L) I Tmax) + 2) * Tmax <= d + delta_R 
IMPLIES Feasible_NoClock(d)) 

PerfectClock_CASE1B: LEMMA 
Tmax <= (delta_L + delta_R) I 2 IMPLIES Feasible_PerfectClock(d) 

NoClock_Implies_PerfectClock: THEOREM 
Feasible_NoClock(d) IMPLIES Feasible_PerfectClock(d) 

PerfectClock_Implies_Omniscient: THEOREM 
Feasible_PerfectClock(d) IMPLIES Feasible_Omniscient(d) 

NoClock_CASE1: THEOREM 
Tmax <= (delta_L + delta_R) I 2 AND Tmin I= Tmax IMPLIES 
((ceiling((d- delta_L) I Tmin) + 1) * Tmax <= d + delta_R IFF 

Feasible_NoClock(d)) 

PerfectClock_CASE1: THEOREM 
Tmax <= (delta_L + delta_R) I 2 IMPLIES Feasible_PerfectClock(d) 

Omniscient_CASE1: THEOREM 
Tmax <= (delta_L + delta_R) I 2 IMPLIES Feasible_Omniscient(d) 

NoClock_CASE2: THEOREM 
(delta_L + delta_R) I 2 < Tmax & 
Tmax <= delta_L + delta_R AND Tmin I= Tmax 
IMPLIES 
(Tmin >= (d - delta_L) I (Kmin(d) + 1) AND 

(floor((d- delta_L) I Tmax) + 2) * Tmax <= d + delta_R 
IFF Feasible_NoClock(d)) 

PerfectClock_CASE2: THEOREM 

135 



PhD Thesis- X.- Y. Hu -McMaster- Computing and Software 

(delta_L + delta_R) I 2 < Tmax & 
Tmax <= delta_L + delta_R AND Tmin I= Tmax 
IMPLIES 
(Tmin >= (d - delta_L) I (Kmin(d) + 1) AND 

(floor((d - delta_L) I Tmax) + 2) * Tmax <= d + delta_R 
IFF Feasible_PerfectClock(d)) 

Omniscient_CASE2: THEOREM 
(delta_L + delta_R) I 2 < Tmax & 
Tmax <= delta_L + delta_R AND Tmin I= Tmax 
IMPLIES Feasible_Omniscient(d) 

Omniscient_CASE3: THEOREM 
Tmax > delta_L + delta_R IMPLIES NOT Feasible_Omniscient(d) 

PerfectClock_CASE3: THEOREM 
Tmax > delta_L + delta_R IMPLIES NOT Feasible_PerfectClock(d) 

NoClock_CASE3: THEOREM 
Tmax > delta_L + delta_R IMPLIES NOT Feasible_NoClock(d) 

FeasiblePoint(d): bool = 
FORALL (Sample: Sample_Type): 

FORALL (nO: nat): 
FORALL (t It> Sample(nO) AND t <= Sample(nO + 1)): 

Sample(Kmin(d) + 2 + nO) - t >= d - delta_L AND 
Sample(Kmin(d) + 2 + nO) - t <= d + delta_R 

FeasiblePoint_CASE2_1: LEMMA 
(delta_L + delta_R) I 2 <= Tmax & Tmax <= delta_L + delta_R IMPLIES 
(floor((d - delta_L) I Tmax) = floor((d - delta_L) I Tmin) AND 

(floor((d - delta_L) I Tmax) + 2) * Tmax <= d + delta_R 
IMPLIES FeasiblePoint(d)) 

FeasiblePoint_CASE2: LEMMA 
(delta_L + delta_R) I 2 < Tmax & 
Tmax <= delta_L + delta_R AND Tmin I= Tmax 
IMPLIES 
(Tmin >= (d - delta_L) I (Kmin(d) + 1) AND 

(floor((d - delta_L) I Tmax) + 2) * Tmax <= d + delta_R 
IMPLIES FeasiblePoint(d)) 

PerfectClock_ALLCASES: THEOREM 
Tmax I= Tmin IMPLIES 

((Tmax <= (delta_L + delta_R) I 2 OR 
((delta_L + delta_R) I 2 < Tmax AND 

Tmax <= (delta_L + delta_R) AND 
Tmin >= (d - delta_L) I (Kmin(d) + 1) AND 

(Kmin(d) + 2) * Tmax <= d + delta_R)) 

136 



PhD Thesis --X.- Y. Hu -McMaster - Computing and Software 

IFF Feasible_PerfectClock(d)) 
END FeasibilityResults 

137 



Appendix D 

ClockTick Theory 

This appendix contains the PVS input files for ClockTick theory of Sec­
tion 5.1.2. The complete PVS dump files are available from the attached 
CD. 

ClockTick[delta_t: posreal]: THEORY 
BEGIN 

IMPORTING Time 

n: VAR nat 

tick: TYPE= {t: time I EXISTS (n: nat): t = n * delta_t} 

x: VAR tick 

init(x): bool = (x = 0) 

noninit_elem: TYPE = {x I NOT init(x)} 

y: VAR noninit_elem 

pre(y): tick= y- delta_t 

next(x): tick= x + delta_t 

rank(x): nat= xI delta_t 

time_induct: LEMMA 
FORALL (P: pred[tick]): 

(FORALL x, n: rank(x) = n IMPLIES P(x)) IMPLIES (FORALL x: P(x)) 

time_induction: PROPOSITION 
FORALL (P: pred[tick]): 

(FORALL (t: tick): init(t) IMPLIES P(t)) AND 

138 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

(FORALL (t: noninit_elem): P(pre(t)) IMPLIES P(t)) 
IMPLIES (FORALL (t: tick): P(t)) 

tick_PROPERTYO: LEMMA 
FORALL (n1, n2: nat): 

n1 * delta_t > n2 * delta_t IFF n1 * delta_t - delta_t >= n2 * delta_t 

tick_PROPERTY1: LEMMA FORALL (t: tick I t > 0): t > x IFF pre(t) >= x 
END ClockTick 

139 



Appendix E 

SalllplelnstanceOnTick Theory 

This appendix contains the PVS input files for SampleinstanceOnTick theory 
of Section 5.1.2. The complete PVS dump files are available from the attached 
CD. 

SampleinstanceOnTick[(IMPORTING Time) K: non_initial_time, TL, 
TR: {t: time I t < K}, 
delta_t: {tk: non_initial_time 

tk < K - TL 
AND 
tk < TR + TL}]: THEORY 

BEGIN 

IMPORTING ClockTick[delta_t] 

IMPORTING Sampleinstance[K, TL, TR] 

t: VAR tick 

Delta_t_Tmax_Tmin: THEOREM Tmin <= floor(Tmax I delta_t) * delta_t 

SampleTick_Type: TYPE+ = 
{S: Sample_Type I FORALL (n: nat): EXISTS (t: tick): S(n) = t} 

Sample: VAR SampleTick_Type 

n: VAR nat 

SampleTick_PROPERTY1: LEMMA EXISTS (n1: nat): Sample(n) = n1 * delta_t 

SampleTick_PROPERTY2: LEMMA 
pre(Sample(n + 1)) > Sample(n) AND pre(Sample(n + 1)) < Sample(n + 1) 

SampleTick_PROPERTY3: LEMMA 
NOT init(t) IMPLIES (Sample(n) > pre(t) IFF Sample(n) >= t) 

140 



PhD Thesis- X.- Y. Hu- McMaster-- Computing and Software 

END SampleinstanceOnTick 

141 



Appendix F 

Held_For Theory 

This appendix contains the PVS input files for Held_For theory of Section 5.2. 
The complete PVS dump files are available from the attached CD. 

Held_For[(IMPORTING Time) K: non_initial_time, TL, TR: {t: time I t < K}, 
delta_t: {tk: posreal I tk < K - TL AND tk < TR + TL}, delta_L, 
delta_R: time] : THEORY 

BEGIN 

IMPORTING SampleinstanceOnTick[K, TL, TR, delta_t] 

IMPORTING FeasibilityResults[K, TL, TR, delta_L, delta_R] 

IMPORTING reals@bounded_reals 

Condition_Type: TYPE = pred[tick] 

P: VAR Condition_Type 

t, tO, t_n, t_j: VAR tick 

ne,_nO, n: VAR nat 

d: VAR Duration 

Sample: VAR SampleTick_Type 

duration: VAR non_initial_time 

Sup_FACT1: LEMMA 
sup(LAMBDA (n: nat): Sample(n) <= t) >= 0 AND 

integer?(sup(LAMBDA (n: nat): Sample(n) <= t)) 

Left_Sample(Sample, t): {n: nat I Sample(n) <= t AND t < Sample(n + 1)} 
sup(LAMBDA (n: nat): Sample(n) <= t) 

142 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

Held_For_P(P, duration): pred[tick] 
LAMBDA (t_n): 

EXISTS (t_j): 
(t_n - t_j >= duration) AND 

(FORALL (t: tick I t >= t_j & t <= t_n): P(t)) 

Held_For_S(P, duration~ Sample)(ne): bool = 
EXISTS (nO I Sample(ne)- Sample(nO) >=duration): 

FORALL (n: nat I nO<= nAND n <= ne): P(Sample(n)) 

Held_For_I(P, duration, Sample)(t): bool = 
Held_For_S(P, duration, Sample)(Left_Sample(Sample, t)) 

Held_For_S_OLD(P, d, Sample)(ne): bool = 
EXISTS (nO I Sample(ne)- Sample(nO) >= d- delta_L): 

FORALL (n: nat I nO<= nAND n <= ne): P(Sample(n)) 

Held_For_I_OLD(P, d, Sample)(t): bool = 
Held_For_S_OLD(P, d, Sample)(Left_Sample(Sample, t)) 

FilteredTickPred?(P: PRED[tick]): bool = 
(FORALL tO: 

P(tO) /= P(next(tO)) => 
(FORALL (t I tO< t AND t <=tO+ Tmax): P(next(tO)) P(t))) 

AND (FORALL (t I t <= Tmax): P(t) = P(O)) 

FilteredTickPred: TYPE+ (FilteredTickPred?) 

Pf: VAR FilteredTickPred 

Left_Sample_PROPERTYO: THEOREM 
t >= Sample(n) IMPLIES Left_Sample(Sample, t) >= n 

Left_Sample_PROPERTY1: THEOREM 
t >= Sample(O) IMPLIES Left_Sample(Sample, t) >= 0 

Left_Sample_PROPERTY2: THEOREM 
t >= Sample(1) IMPLIES Left_Sample(Sample, t) >= 1 

Left_Sample_PROPERTY3: THEOREM Left_Sample(Sample, Sample(n)) = n 

Left_Sample_PROPERTY4: THEOREM 
t < Sample(n + 1) AND t >= Sample(n) IMPLIES Left_Sample(Sample, t) = n 

Left_Sample_PROPERTY5: THEOREM 
t > 0 AND NOT t = Sample(Left_Sample(Sample, t)) IMPLIES 

Sample(Left_Sample(Sample, pre(t))) = Sample(Left_Sample(Sample, t)) 

143 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

Left_Sample_PROPERTY6: THEOREM t - Sample(Left_Sample(Sample, t)) < Tmax 

Left_Sample_PROPERTY7: THEOREM 
t >= Sample(O) AND n <= Left_Sample(Sample, t) IMPLIES Sample(n) <= t 

Left_Sample_PROPERTY8: THEOREM 
NOT t = Sample(Left_Sample(Sample, t)) IMPLIES 

Sample(Left_Sample(Sample, pre(t))) = Sample(Left_Sample(Sample, t)) 

Left_Sample_PROPERTY9: THEOREM Left_Sample(Sample, 0) = 0 

Left_Sample_PROPERTY10: THEOREM 
t = Sample(Left_Sample(Sample, t)) AND NOT t = Sample(O) IMPLIES 

Left_Sample(Sample, t) - 1 >= 0 

Held_For_S_PROPERTY1: THEOREM 
Held_For_S(P, duration, Sample)(n) IMPLIES P(Sample(n)) 

Held_For_RELATIONSHIP5: THEOREM 
Held_For_S(P, d, Sample)(n) IMPLIES 

(FORALL (t: tick I Sample(n) <= t AND t < Sample(n + 1)): 
Held_For_I(P, d, Sample)(t)) 

Held_For_RELATIONSHIP6: THEOREM 
FORALL (t: tick I Sample(n) <= t AND t < Sample(n + 1)): 

Held_For_I(P, duration, Sample)(t) = 
Held_For_S(P, duration, Sample)(n) 

FILTER_TRUTH1: LEMMA 
Pf(Sample(n)) = Pf(Sample(n + 1)) IMPLIES 

(FORALL (t I t > Sample(n) AND t < Sample(n + 1)): 
Pf(t) = Pf(Sample(n))) 

FILTER_TRUTH2: LEMMA 
FORALL (t: tick I Sample(n) < t AND t < Sample(n + 1)): 

NOT Pf(Sample(n)) = Pf(t) IMPLIES Pf(t) = Pf(Sample(n + 1)) 

FILTER_TRUTH3: LEMMA 
(FORALL (ne I ne >=nO AND ne <=nO+ n): Pf(Sample(ne))) IMPLIES 

(FORALL (tIt>= Sample(nO) AND t <= Sample(nO + n)): 
Pf(t) = Pf(Sample(nO))) 

FILTER_TRUTH4: LEMMA FORALL (t: tick It<= Tmax): Pf(t) = Pf(O) 

FILTER_TRUTH5: LEMMA 
FORALL (t: tick I t >= Sample(O)): 

Pf(t) = Pf(Sample(Left_Sample(Sample, t))) IMPLIES 
(FORALL (tl: tick 

I tl <= t AND t1 >= Sample(Left_Sample(Sample, t))): 

144 



PhD Thesis -X.- Y. Hu -McMaster- Computing and Software 

Pf(t1) = Pf(t)) 

Held_For_RELATIONSHIP1: THEOREM 
Held_For_I(P, d- delta_L, Sample)(t) = Held_For_I_OLD(P, d, Sample)(t) 

Held_For_RELATIONSHIP2A: THEOREM 
Held_For_I(P, duration, Sample)(t) 

Held_For_S(P, duration, Sample)(Left_Sample(Sample, t)) 

Held_For_RELATIONSHIP2C: THEOREM 
t < Sample(1) IMPLIES NOT Held_For_I(P, duration, Sample)(t) 

Held_For_RELATIONSHIP3: THEOREM 
FORALL (n: nat): 

Held_For_I(P, duration, Sample)(Sample(n)) 
Held_For_S(P, duration, Sample)(n) 

Held_For_RELATIONSHIP4: THEOREM 
t >= Sample(1) AND NOT t = Sample(Left_Sample(Sample, t)) IMPLIES 

Held_For_I(P, duration, Sample)(pre(t)) 
Held_For_I(P, duration, Sample)(t) 

Held_For_RELATIONSHIP7: THEOREM 
t > Sample(O) AND NOT t = Sample(Left_Sample(Sample, t)) IMPLIES 
Held_For_I(P, duration, Sample)(pre(t)) 

Held_For_I(P, duration, Sample)(t) 

Held_For_I_PROPERTY1: THEOREM 
FORALL (t: tick I Sample(n) <= t AND t < Sample(n + 1)): 

Held_For_I(P, duration, Sample)(t) = 
Held_For_I(P, duration, Sample)(Sample(n)) 

ceiling_delta_t: LEMMA 
FORALL (t: time): ceiling(t I delta_t) * delta_t >= t 

ceiling_tick: LEMMA 
FORALL (tk: tick): 

FORALL (t: time): tk < ceiling(t I delta_t) * delta_t IMPLIES tk <= t 

TICK_BETWEEN_SAMPLE: LEMMA 
FORALL (t: tick): EXISTS (n: nat): Sample(n) <= t AND t < Sample(n + 1) 

EXISTS_SAMPLE_BETWEEN_TIME: LEMMA 
FORALL (t: time): 

EXISTS (n: nat): Sample(n) < t AND Sample(n + 1) >=tOR Sample(O) t 

Held_For_S_VERIFY_FTR1: THEOREM 
Tmax I= Tmin AND 

(Tmax <= (delta_L + delta_R) I 2 OR 

145 



PhD Thesis - X.- Y. Hu - McMaster - Computing and Software 

((delta_L + delta_R) I 2 < Tmax AND 
Tmax <= (delta_L + delta_R) AND 

Tmin >= (d - delta_L) I (Kmin(d) + 1) AND 
(Kmin(d) + 2) * Tmax <= d + delta_R)) 

IMPLIES 
(FORALL (Sample: SampleTick_Type, t: tick): 

(Held_For_P(P, d + delta_R)(t) IMPLIES 
Held_For_S(P, d- delta_L, Sample)(Left_Sample(Sample, t)))) 

Held_For_S~VERIFY_FTR2: THEOREM 
FORALL (Sample: SampleTick_Type, n: nat): 

(NOT Held_For_P(Pf, d- delta_L)(Sample(n)) IMPLIES 
NOT Held_For_S(Pf, d- delta_L, Sample)(n)) 

Held_For_S_VERIFY_FTR3: THEOREM 
Held_For_S(P, duration, Sample)(n) AND P(Sample(n + 1)) IMPLIES 

Held_For_S(P, duration, Sample)(n + 1) 

Held_For_S_VERIFY_PTR2: THEOREM 
FORALL (Sample: SampleTick_Type, n: nat, 

t: tick It>= Sample(n) AND t <= Sample(n + 1)): 
Held_For_S(Pf, duration, Sample)(n) AND NOT Pf(t) IMPLIES 

NOT Held_For_S(Pf, duration, Sample)(n + 1) 

Held_For_S_VERIFY_PTR3: THEOREM 
FORALL (Sample: SampleTick_Type): 

NOT Pf(t) IMPLIES 
NOT Held_For_S(Pf, d, Sample)(Left_Sample(Sample, t) + 1) 

Held_For_S_VERIFY_PTR4: THEOREM 
FORALL (Sample: SampleTick_Type): 

t >= Sample(O) IMPLIES Sample(Left_Sample(Sample, t) + 1) <= t + Tmax 

Held_For_I_VERIFY_FTR1: THEOREM 
Tmax I= Tmin AND 

(Tmax <= (delta_L + delta_R) I 2 OR 
((delta_L + delta_R) I 2 < Tmax AND 

Tmax <= (delta_L + delta_R) AND 
Tmin >= (d - delta_L) I (Kmin(d) + 1) AND 

(Kmin(d) + 2) * Tmax <= d + delta_R)) 
IMPLIES 
(FORALL (Sample: SampleTick_Type, t: tick): 

(Held_For_P(P, d + delta_R)(t) IMPLIES 
(FORALL (t1: tick 

I t1 >= Sample(Left_Sample(Sample, t)) AND 
t1 < Sample(Left_Sample(Sample, t) + 1)): 

Held_For_I(P, d- delta_L, Sample)(t1)))) 

Held_For_I_VERIFY_FTR2: THEOREM 

146 



PhD Thesis -X.- Y. Hu -McMaster - Computing and Software 

FORALL (Sample: SampleTick_Type, n: nat): 
(NOT Held_For_P(Pf, d- delta_L)(Sample(n)) IMPLIES 

(FORALL (t: tick I t >= Sample(n) AND t < Sample(n + 1)): 
NOT Held_For_I(Pf, d- delta_L, Sample)(t))) 

Held_For_I_VERIFY_FTR3: THEOREM 
Held_For_I(P, d- delta_L, Sample)(Sample(n)) AND P(Sample(n + 1)) 

IMPLIES 
(FORALL (t: tick It>= Sample(n + 1) AND t < Sample(n + 2)): 

Held_For_I(P, d- delta_L, Sample)(t)) 

Held_For_I_VERIFY_FTR4: THEOREM 
Tmax /= Tmin AND Feasible_PerfectClock(d) IMPLIES 

(FORALL (Sample: SampleTick_Type, t: tick): 
(Held_For_P(P, d + delta_R)(t) IMPLIES 

(FORALL (t1: tick 
I t1 >= Sample(Left_Sample(Sample, t)) AND 

t1 < Sample(Left_Sample(Sample, t) + 1)): 
Held_For_I(P, d- delta_L, Sample)(t1)))) 

Held_For_I_VERIFY_TRO: THEOREM 
Tmax /= Tmin AND Feasible_PerfectClock(d) IMPLIES 

(FORALL (Sample: SampleTick_Type, t: tick): 
(EXISTS (x: time I x >= d- delta_L AND x <= d + delta_R): 

Held_For_I(Pf, d- delta_L, Sample)(t) = Held_For_P(Pf, x)(t)) 
OR 
(NOT Pf(t) AND 

Pf(Sample(Left_Sample(Sample, t))) AND 
Sample(Left_Sample(Sample, t)) >= t - Tmax)) 

END Held_For 

147 



Appendix G 

TiinerGeneral Theory 

This appendix contains the PVS input files for TimerGeneral theory of Sec­
tion 5.5. The complete PVS dump files are available from the attached CD. 

TimerGeneral[(IMPORTING Time) K: non_initial_time, TL, 
TR: {t: time I t < K}, 
delta_t: {tk: non_initial_time I tk < K - TL AND tk < TR + TL}, 
delta_L, delta_R: time]: THEORY 

BEGIN 

IMPORTING Held_For[K, TL, TR, delta_t, delta_L, delta_R] 

P: VAR Condition_Type 

t, PreviousTimerValue: VAR tick 

Sample: VAR SampleTick_Type 

timeout: VAR Duration 

TimeOut: VAR non_initial_time 

CurrentP, PreviousP: VAR bool 

ne, nO, n: VAR nat 

step: VAR tick 

TimerUpdate(CurrentP, PreviousP, TimeOut, PreviousTimerValue, step): tick= 
TABLE 

%+-----------------------------+------------------------------++ 
I [ PreviousTimerValue <TimeOut I PreviousTimerValue >=TimeOut] I 

%------------------------------+-----------------------------+------------------------------++ 
I CurrentP AND PreviousP I PreviousTimerValue + step I PreviousTimerValue I I 

%------------------------------+-----------------------------+------------------------------++ 
I NOT (CurrentP AND PreviousP) I 0 I 0 I I 

%------------------------------+-----------------------------+------------------------------++ 
ENDTABLE 

Timer_S(P, Sample, TimeOut)(ne): RECURSIVE tick= 
TABLE 
%--------+---------------------------------------------------------++ 
I ne = 0 I TimerUpdate(P(Sample(ne)), FALSE, TimeOut, 0, 0) I I 

148 



PhD Thesis --- X.-Y. Hu- McMaster- Computing and Software 

%--------+---------------------------------------------------------++ 
I ne > 0 I TimerUpdate(P(Sample(ne)), P(Sample(ne- 1)), TimeOut, 

Timer_S(P, Sample, TimeOut)(ne- 1), 
Sample(ne) - Sample(ne - 1)) I I 

%--------+---------------------------------------------------------++ 
ENDTABLE 
MEASURE ne 

Timer_I(P, Sample, TimeOut)(t): tick= 
Timer_S(P, Sample, TimeOut)(Left_Sample(Sample, t)) 

Timer_S_PROPERTY1: LEMMA 
NOT P(Sample(n)) IMPLIES Timer_S(P, Sample, TimeOut)(n) 0 

Timer_RELATIONSHIP1: THEOREM 
Timer_S(P, Sample, TimeOut)(n) Timer_I(P, Sample, TimeOut)(Sample(n)) 

Timer_RELATIONSHIP4: THEOREM 
t >= Sample(!) AND t = Sample(Left_Sample(Sample, t)) IMPLIES 
Timer_I(P, Sample, TimeOut)(Sample(Left_Sample(Sample, t) - 1)) 

Timer_I(P, Sample, TimeOut)(pre(t)) 

Timer_RELATIONSHIP2: THEOREM 
t >= Sample(!) AND t = Sample(Left_Sample(Sample, t)) IMPLIES 

Timer_S(P, Sample, TimeOut)(Left_Sample(Sample, t) - 1) = 
Timer_I(P, Sample, TimeOut)(pre(t)) 

Timer_RELATIONSHIP2A: THEOREM 
FORALL (t: tick I t >=Sample(!)): 

t = Sample(Left_Sample(Sample, t)) IMPLIES 
Timer_S(P, Sample, TimeOut)(Left_Sample(Sample, t) - 1) 
Timer_I(P, Sample, TimeOut)(pre(t)) 

Timer_RELATIONSHIP2B: THEOREM 
FORALL (t: tick): 

NOT t = Sample(Left_Sample(Sample, t)) IMPLIES 
Timer_S(P, Sample, TimeOut)(Left_Sample(Sample, t)) 
Timer_I(P, Sample, TimeOut)(pre(t)) 

Timer_I_PROPERTY1: LEMMA 
FORALL (t: tick I t > Sample(n) AND t < Sample(n + 1)): 

Timer_I(P, Sample, TimeOut)(t) = 
Timer_I(P, Sample, TimeOut)(Sample(n)) 

Timer_Lemma2: LEMMA 
Timer_S(P, Sample, TimeOut)(ne) > 0 IMPLIES P(Sample(ne)) 

Timer_Lemma3: LEMMA Timer_S(P, Sample, timeout)(ne) >= 0 

Timer_Lemma4: LEMMA 
Timer_S(P, Sample, TimeOut)(ne) = 0 IMPLIES 

Timer_S(P, Sample, TimeOut)(ne + n) <= Sample(ne + n) - Sample(ne) 

Timer_Lemma6: LEMMA 
Sample(nO + n) - Sample(nO) > 0 IMPLIES 

Timer_S(P, Sample, TimeOut)(nO + n) >= Sample(nO + n) - Sample(nO) 
IMPLIES (FORALL (ne: nat I nO<= ne AND ne <= n +nO): P(Sample(ne))) 

Timer_Lemma7: LEMMA 
Timer_S(P, Sample, TimeOut)(n) <= Sample(n) - Sample(O) 

Timer_Lemma8: LEMMA 

149 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

FORALL (TimeOut: time I TimeOut> Tmax): 
Timer_S(P, Sample, TimeOut)(n) > 0 IMPLIES 

Timer_S(P, Sample, TimeOut)(n) >= Sample(n) - Sample(n - 1) 

TimerGeneral_S1: THEOREM 
FORALL (TimeOut: time I TimeOut> Tmax): 

Held_For_S(P, TimeOut, Sample)(n) IMPLIES 
Timer_S(P, Sample, TimeOut)(n) >= TimeOut 

TimerGeneral_S11: THEOREM 
FORALL (TimeOut: time I TimeOut> Tmax): 

Held_For_S(P, TimeOut, Sample)(n) IMPLIES 
Timer_S(P, Sample, TimeOut)(n) >=TimeOut 

TimerGeneral_S2: THEOREM 
FORALL (TimeOut: time I TimeOut> Tmax): 

Timer_S(P, Sample, TimeOut)(n) >=TimeOut IMPLIES 
Held_For_S(P, TimeOut, Sample)(n) 

TimerGeneral_SC: THEOREM 
FORALL (TimeOut: time I TimeOut> Tmax): 

Held_For_S(P, TimeOut, Sample)(n) IFF 
Timer_S(P, Sample, TimeOut)(n) >= TimeOut 

TimerGeneral_S: THEOREM 
Held_For_S(P, timeout - delta_L, Sample)(n) IFF 

Timer_S(P, Sample, timeout - delta_L)(n) >= timeout - delta_L 

Timer_S_Eqv: THEOREM 
Timer_S(P, Sample, timeout- delta_L)(n + 1) >=timeout- delta_L IFF 

(Timer_S(P, Sample, timeout- delta_L)(n) + Sample(n + 1) - Sample(n) 
>= timeout - delta_L 
AND P(Sample(n + 1))) 

TimerGeneral_IC: THEOREM 
FORALL (TimeOut: time I TimeOut> Tmax): 

Held_For_I(P, TimeOut, Sample)(t) IFF 
Timer_I(P, Sample, TimeOut)(t) >=TimeOut 

TimerGeneral_I: THEOREM 
Held_For_I(P, timeout - delta_L, Sample)(t) IFF 
Timer_I(P, Sample, timeout- delta_L)(t) >=timeout- delta_L 

Timer_S_Eqv1: THEOREM 
FORALL (TimeOut: time I TimeOut> Tmax): 

Timer_S(P, Sample, TimeOut)(n + 1) >=TimeOut IFF 
(Timer_S(P, Sample, TimeOut)(n) + Sample(n + 1) - Sample(n) >= 

TimeOut 
AND P(Sample(n + 1))) 

Timer_I_Eqv: THEOREM 
FORALL (TimeOut: time I TimeOut> Tmax): 

Timer_I(P, Sample, TimeOut)(Sample(n + 1)) >=TimeOut IFF 
(Timer_I(P, Sample, TimeOut)(Sample(n)) + Sample(n + 1) - Sample(n) 

>= TimeOut 
AND P(Sample(n + 1))) 

END TimerGeneral 

150 



Appendix H 

Sensor Lock Theory 

This appendix contains the PVS input files for SensorLock theory of Sec­
tion 6.1. The complete PVS dump files are available from the attached CD. 

SensorLock[(IMPORTING Time) K: non_initial_time, TL, TR: {t: time I t < K}, 
delta_t: {tk: non_initial_time I tk < K - TL AND tk < TR + TL}, 
delta_L, delta_R: time]: THEORY 

BEGIN 

IMPORTING TimerGeneral[K, TL, TR, delta_t, delta_L, delta_R] 

t: VAR tick 

ldelay, step: VAR Duration 

sensor: VAR PRED[tick] 

b: VAR FilteredTickPred 

reset: VAR PRED[tick] 

Sample: SampleTick_Type 

ne, nO, n: VAR nat 

delay: VAR Duration 

SenLock_SRS(sensor, reset, ldelay)(t): RECURSIVE bool = 

IF init(t) THEN TRUE 
ELSE COND Held_For_I(sensor, ldelay- delta_L, Sample)(t) ->TRUE, 

NOT Held_For_I(sensor, ldelay- delta_L, Sample)(t) AND 
reset(t) AND sensor(t) 

-> SenLock_SRS(sensor, reset, ldelay)(pre(t)), 
NOT Held_For_I(sensor, ldelay- delta_L, Sample)(t) AND 
reset(t) AND NOT sensor(t) 

151 



PhD Thesis- X.-Y. Hu- McMaster- Computing and Software 

-> FALSE, 
NOT Held_For_I(sensor, ldelay- delta_L, Sample)(t) AND 

NOT reset(t) 
-> SenLock_SRS(sensor, reset, ldelay)(pre(t)) 

ENDCOND 
END IF 

MEASURE rank(t) 

SenLock_SRS_S(sensor, reset, ldelay)(n): RECURSIVE bool = 
IF n = 0 THEN TRUE 
ELSE COND Held_For_S(sensor, ldelay- delta_L, Sample)(n) ->TRUE, 

NOT Held_For_S(sensor, ldelay- delta_L, Sample)(n) AND 
reset(Sample(n)) AND sensor(Sample(n)) 

-> SenLock_SRS_S(sensor, reset, ldelay)(n- 1), 
NOT Held_For_S(sensor, ldelay- delta_L, Sample)(n) AND 
reset(Sample(n)) AND NOT sensor(Sample(n)) 

-> FALSE, 
NOT Held_For_S(sensor, ldelay- delta_L, Sample)(n) AND 

NOT reset(Sample(n)) 
-> SenLock_SRS_S(sensor, reset, ldelay)(n- 1) 

ENDCOND 
END IF 

MEASURE n 

SRS_PROPERTYO: LEMMA 
NOT SenLock_SRS(sensor, reset, delay)(Sample(n)) IMPLIES 

NOT Held_For_I(sensor, delay- delta_L, Sample)(Sample(n)) 

SRS_PROPERTY7: LEMMA 
Held_For_I(sensor, delay- delta_L, Sample)(Sample(n)) IMPLIES 

(FORALL (t: tick I t >= Sample(n) AND t < Sample(n + 1)): 
SenLock_SRS(sensor, reset, delay)(Sample(n)) 

SenLock_SRS(sensor, reset, delay)(t)) 

SRS_PROPERTY2: LEMMA 
NOT SenLock_SRS(sensor, reset, delay)(Sample(n)) AND 

NOT Held_For_I(sensor, delay- delta_L, Sample)(Sample(n + 1)) 
IMPLIES NOT SenLock_SRS(sensor, reset, delay)(Sample(n + 1)) 

SRS_PROPERTY3: LEMMA 
FilteredTickPred?(LAMBDA (t: tick): reset(t) AND NOT sensor(t)) AND 

SenLock_SRS(sensor, reset, delay)(Sample(n)) AND 
NOT Held_For_I(sensor, delay- delta_L, Sample)(Sample(n)) AND 

NOT Held_For_I(sensor, delay- delta_L, Sample)(Sample(n + 1)) AND 
(EXISTS (t: tick I Sample(n) < t AND t < Sample(n + 1)): 

(reset(t) AND NOT sensor(t))) 
IMPLIES NOT SenLock_SRS(sensor, reset, delay)(Sample(n + 1)) 

SRS_PROPERTY4: LEMMA 

152 



PhD Thesis --X.- Y. Hu ~McMaster~ Computing and Software 

FilteredTickPred?(LAMBDA (t: tick): reset(t) AND NOT sensor(t)) IMPLIES 
SenLock_SRS(sensor, reset, delay)(Sample(O)) 

SenLock_SRS_S(sensor, reset, delay)(O) 

SRS_PROPERTY5: LEMMA 
NOT SenLock_SRS(sensor, reset, delay)(Sample(n)) AND 

NOT Held_For_I(sensor, delay- delta_L, Sample)(Sample(n + 1)) 
IMPLIES NOT SenLock_SRS(sensor, reset, delay)(Sample(n + 1)) 

SRS_PROPERTY6: LEMMA 
(FORALL (t: tick I t > Sample(n) AND t <= Sample(n + 1)): 

NOT (reset(t) AND NOT sensor(t))) 
AND NOT Held_For_I(sensor, delay- delta_L, Sample)(Sample(n + 1)) 
IMPLIES 
SenLock_SRS(sensor, reset, delay)(Sample(n + 1)) 

SenLock_SRS(sensor, reset, delay)(Sample(n)) 

Lock_State: TYPE= {Good, Bad, Lock} 

SDD_State: TYPE 
[# Elock: Lock_State, lLockDly: tick, Previousinput: bool #] 

sensor_now, reset_now: VAR bool 

ElockUpdate(sensor_now: bool, reset_now: bool, S: SDD_State, 
ldelay: non_initial_time, step: time): 

Lock_State = 
TABLE 

%--------------------------------------------------------------------+----++ 
INOT sensor_now AND Elock(S) = Lock AND reset_now IGoodl I 
%--------------------------------------------------------------------+----++ 
INOT sensor_now AND Elock(S) = Lock AND NOT reset_now ILockl I 
%--------------------------------------------------------------------+----++ 
INOT sensor_now AND NOT Elock(S) = Lock IGoodl I 
%--------------------------------------------------------------------+----++ 
lsensor_now AND (NOT Elock(S) =Lock AND lLockDly(S) +step< ldelay)IBad I I 
%--------------------------------------------------------------------+----++ 
lsensor_now AND (Elock(S) = Lock OR lLockDly(S) + step >= ldelay) ILockl I 
%--------------------------------------------------------------------+----++ 

ENDTABLE 

S: VAR SDD State 

ELOCK(sensor: PRED[tick], reset: PRED[tick], ldelay: non_initial_time) 
(t): RECURSIVE 
SDD_State = 

IF init(t) 
THEN (# Elock := Lock, lLockDly := 0, Previousinput ·= sensor(O) #) 

ELSE IF t = Sample(Left_Sample(Sample, t)) 

153 



PhD Thesis -X.- Y. Hu -McMaster- Computing and Software 

THEN (# Elock 
:= ElockUpdate(sensor(t), 

reset(t), 

lLockDly 

ELOCK(sensor, reset, ldelay)(pre(t)), 
ldelay, 
t 

Sample(Left_Sample(Sample, t) - 1)), 

:= TimerUpdate(sensor(t), 
Previous Input 
(ELOCK(sensor, reset, ldelay)(pre(t))), 
ldelay, 
lLockDly 
(ELOCK(sensor, reset, ldelay)(pre(t))), 
t 

Sample(Left_Sample(Sample, t) - 1)), 
Previousinput := sensor(t) #) 

ELSE(# Elock := Elock(ELOCK(sensor, reset, ldelay)(pre(t))), 
lLockDly 

:= lLockDly(ELOCK(sensor, reset, ldelay)(pre(t))), 
Previousinput 

Previousinput(ELOCK 

END IF 
END IF 

MEASURE rank ( t) 

ELOCK_PROPERTY1: LEMMA 

(sensor, reset, ldelay)(pre(t))) #) 

FORALL (t: tick I t > Sample(n) AND t < Sample(n + 1), 
ldelay: non_initial_time): 

ELOCK(sensor, reset, ldelay)(Sample(n)) 
ELOCK(sensor, reset, ldelay)(t) 

ELOCK_PROPERTY2: LEMMA 
FORALL (t: tick I t > Sample(n) AND t < Sample(n + 1), 

ldelay: non_initial_time): 
Previousinput(ELOCK(sensor, reset, ldelay)(t)) = sensor(Sample(n)) 

lLockDly_Timer: THEOREM 
FORALL (ldelay: non_initial_time): 

lLockDly(ELOCK(sensor, reset, ldelay)(t)) 
Timer_I(sensor, Sample, ldelay)(t) 

SensorLock_Block_S2: THEOREM 
FilteredTickPred?(LAMBDA (t: tick): reset(t) AND NOT sensor(t)) IMPLIES 

SenLock_SRS_S(sensor, reset, delay)(n) = 

SenLock_SRS(sensor, reset, delay)(Sample(n)) 

154 



PhD Thesis - X.- Y. Hu- McMaster- Computing and Software 

SensorLock_Block_S6: THEOREM 
SenLock_SRS_S(sensor, reset, delay)(n) = 

Lock?(Elock(ELOCK(sensor, reset, delay- delta_L)(Sample(n)))) 

SensorLock_Block: THEOREM 
FilteredTickPred?(LAMBDA (t: tick): reset(t) AND NOT sensor(t)) IMPLIES 

SenLock_SRS(sensor, reset, delay)(Sample(n)) = 
Lock?(Elock(ELOCK(sensor, reset, delay- delta_L)(Sample(n)))) 

END SensorLock 

155 



Appendix I 

DelayedTrip Theory 

This appendix contains the PVS input files for DelayedTrip theory of Sec­
tion 6.2. The complete PVS dump files are available from the attached CD. 

DelayedTrip[(IMPORTING Time) K: non_initial_time, TL, 
TR: {t: time I t < K}, 
delta_t: {tk: non_initial_time I tk < K - TL AND tk < TR + TL}, 
delta_Ll, delta_L2, delta_R1, delta_R2: time]: THEORY 

BEGIN 

IMPORTING TimerGeneral[K, TL, TR, delta_t, delta_L1, delta_R1] 

IMPORTING FeasibilityResults[K, TL, TR, delta_L2, delta_R2] 

timed_real: TYPE = [time -> real] 

Relay_State: TYPE = {OPEN, CLOSED} 

SDD_State: TYPE = 
[# Relay: Relay_State, 

Timer!: tick, 
Timer2: tick, 
Previousinput1: boo!, 
Previousinput2: boo! #] 

n: VAR nat 

t: VAR tick 

timeout!, timeout2: VAR non_initial_time 

step: VAR time 

P: VAR pred[tick] 

Power, Pressure: timed_real 

PT, DSP: posreal 

CurrentP, previous!, previous2: VAR boo! 

previous: VAR time 

156 



PhD Thesis - X.- Y. Hu -McMaster-- Computing and Software 

PP(t): bool = Power(t) >= PT AND Pressure(t) >= DSP 

Sample: SampleTick_Type 

DelayedTrip_SRS(P: Condition_Type, 
timeoutl: Duration[K, TL, TR, delta_Ll, delta_Rl], 
timeout2: Duration[K, TL, TR, delta_L2, delta_R2]) 

(t): RECURSIVE 
bool = 

IF init(t) THEN FALSE 
ELSE TABLE 

END IF 

%-----------------------------------------------------------+-------------++ 
I Held_For_I(P, timeoutl- delta_Ll, Sample)(t) I TRUE II 

%-----------------------------------------------------------+-------------++ 
I Held_For_I(LAMBDA (tl: tick): 

NOT Held_For_I(P, timeoutl - delta_Ll, Sample) 
(tl)' 

timeout2- delta_L2, Sample)(t) FALSE I I 
%-----------------------------------------------------------+-------------++ 
I NOT Held_For_I(P, timeoutl- delta_Ll, Sample)(t) AND 

(NOT Held_For_I(LAMBDA (tl: tick): 
NOT Held_For_I 

(P, timeoutl - delta_Ll, Sample)(tl), 
timeout2 - delta_L2, Sample) 

(t)) I DelayedTrip_SRS(P, timeoutl, timeout2)(pre(t)) I I 

%-----------------------------------------------------------+-------------++ 
END TABLE 

MEASURE rank(t) 

NOT_Held_For_I(P: Condition_Type, d: non_initial_time, 
Sample: SampleTick_Type) 

(t): 

bool =NOT Held_For_I(P, d, Sample)(t) 

DelayedTrip_SRSl(P: Condition_Type, 
timeoutl: Duration[K, TL, TR, delta_Ll, delta_Rl], 
timeout2: Duration[K, TL, TR, delta_L2, delta_R2]) 

(t): RECURSIVE 
bool = 

IF init(t) THEN FALSE 
ELSE TABLE 

END TABLE 
END IF 

%----------------------------------------------------------+------------++ 
I Held_For_I(P, timeoutl - delta_Ll, Sample)(t) I TRUE I I 

%----------------------------------------------------------+------------++ 
I Held_For_I(NDT_Held_For_I(P, timeoutl- delta_Ll, Sample), 

timeout2- delta_L2, Sample)(t) I FALSE I I 

%----------------------------------------------------------+------------++ 
I else I DelayedTrip_SRSl(P, timeoutl, timeout2)(pre(t)) I I 

%----------------------------------------------------------+------------++ 

MEASURE rank(t) 

DelayedTrip_EQUAL: LEMMA 
FDRALL (timeoutl: Duration[K, TL, TR, delta_Ll, delta_Rl], 

timeout2: Duration[K, TL, TR, delta_L2, delta_R2]): 
DelayedTrip_SRS(P, timeoutl, timeout2)(t) = 

DelayedTrip_SRSl(P, timeoutl, timeout2)(t) 

S: VAR SDD_State 

157 



PhD Thesis- X.-Y. Hu- McMaster- Computing and Software 

RelayUpdate(timeout1, timeout2, CurrentP, S, step): Relay_State = 
TABLE 
%-----------------------------~----------------------------------+--------++ 

I CurrentP&(Timer1(S)+step>=timeout1) I OPEN I I 
%----------------------------------------------------------------+--------++ 
I NOT(CurrentP&Timer1(S)+step>=timeout1)&Timer2(S)+step>=timeout2ICLOSED I I 
'l.----------------------------------------------------------------+--------++ 
I NOT(CurrentP&Timer1(S)+step>=timeout1)& 

NOT (Timer2(S)+step>=timeout2) IRelay(S)I I 
'l.----------------------------------------------------------------+--------++ 

ENDTABLE 

DelayedTrip_SDD(P, timeout!, timeout2)(t): RECURSIVE SDD_State 
IF t = Sample (0) 

THEN (# Relay := CLOSED, 
Timer! := 0, 
Timer2 := 0, 
Previouslnput1 := P(Sample(O)), 
Previouslnput2 := TRUE #) 

ELSIF t = Sample(Left_Sample(Sample, t)) 
THEN (# Relay 

:= RelayUpdate(timeoutl, timeout2, P(t), 
DelayedTrip_SDD(P, timeout!, timeout2) 

(pre(t)), 
t- Sample(Left_Sample(Sample, t) - 1)), 

Timer! 
:= TimerUpdate(P{t), 

Previousinput1{DelayedTrip_SDD 

Timer2 

(P, timeout!, timeout2) 
(Sample 

{Left_Sample(Sample, t) 

1))). 

timeout!, 
Timerl(DelayedTrip_SDD 

(P, timeout!, timeout2)(pre(t))), 
t- Sample(Left_Sample{Sample, t) - 1)), 

:= TimerUpdate(NOT {P(t) 
& 
Timer! 
(DelayedTrip_SDD 

+ 
t 

(P, timeout!, timeout2) 
{Sample(Left_Sample(Sample, t) - 1))) 

Sample{Left_Sample(Sample, t) - 1) 

>= 
timeout!), 

Previouslnput2(DelayedTrip_SDD 
(P, timeout!, timeout2) 
(Sample 

(Left_Sample(Sample, t) 

1))), 

timeout2, 
Timer2(DelayedTrip_SDD 

(P, timeout!, timeout2)(pre(t))), 
t- Sample(Left_Sample(Sample, t) - 1)), 

Previous!nput1 := P{t), 
Previous!nput2 

158 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

.- NOT (P(t) & 
Timerl(DelayedTrip_SDD(P, timeout!, timeout2) 

(Sample 
(Left_Sample(Sample, t) 

1))) 

+ t 

- Sample(Left_Sample(Sample, t) - 1) 
>= timeout!) #) 

ELSE (#Relay := Relay(DelayedTrip_SDD(P, timeout!, timeout2)(pre(t))), 
Timer! 

END IF 

:= Timerl(DelayedTrip_SDD(P, timeout!, timeout2)(pre(t))), 
Timer2 

:= Timer2(DelayedTrip_SDD(P, timeout!, timeout2)(pre(t))), 
Previous Input! 

:= Previousinputl(DelayedTrip_SDD(P, timeout!, timeout2) 
(pre(t))), 

Previousinput2 
.- Previousinput2(DelayedTrip_SDD(P, timeout!, timeout2) 

(pre(t))) #) 

MEASURE rank(t) 

SRS1_PROPERTY: LEMMA 
FORALL (timeout!: Duration[K, TL, TR, delta_Li, delta_Rl], 

timeout2: Duration[K, TL, TR, delta_L2, delta_R2]): 
t > Sample(O) AND NOT t = Sample(Left_Sample(Sample, t)) IMPLIES 

DelayedTrip_SRSl(P, timeout!, timeout2)(pre(t)) 
DelayedTrip_SRSl(P, timeout!, timeout2)(t) 

SRS1_PRDPERTY1: LEMMA 
FORALL (timeout!: Duration[K, TL, TR, delta_Ll, delta_R1], 

timeout2: Duration[K, TL, TR, delta_L2, delta_R2]): 
t > Sample(O) AND NOT t = Sample(Left_Sample(Sample, t)) IMPLIES 

DelayedTrip_SRS1(P, timeout!, timeout2)(pre(t)) 
DelayedTrip_SRSl(P, timeout!, timeout2)(t) 

SDD_PROPERTY1: LEMMA 
FDRALL (timeout!, timeout2: non_initial_time): 

P(Sample(n)) = 
Previousinputl(DelayedTrip_SDD(P, timeout!, timeout2)(Sample(n))) 

Timer2_PROPERTY1: LEMMA 
t > Sample(O) AND t = Sample(Left_Sample(Sample, t)) IMPLIES 
Timer2(DelayedTrip_SDD(P, timeout!, timeout2)(pre(t))) = 

Timer2(DelayedTrip_SDD(P, timeout!, timeout2) 
(Sample(Left_Sample(Sample, t) - 1))) 

Timerl_Timer: LEMMA 
FORALL (timeout!, timeout2: non_initial_time): 

Timer_I(P, Sample, timeoutl)(t) = 
Timerl(DelayedTrip_SDD(P, timeout!, timeout2)(t)) 

SDD_PROPERTY2: LEMMA 
FORALL (timeout!: Duration[K, TL, TR, delta_L1, delta_R1], 

timeout2: Duration[K, TL, TR, delta_L2, delta_R2]): 
Previousinput2(DelayedTrip_SDD(P, 

timeout! - delta_Li, 
timeout2 - delta_L2) 

(Sample (n))) 
NOT_Held_For_I(P, timeout!- delta_Ll, Sample)(Sample(n)) 

159 



PhD Thesis- X.-Y. Hu- McMaster- Computing and Software 

SDD_PROPERTY3: LEMMA 
FORALL (timeout!: Duration[K, TL, TR, delta_L1, delta_R1], 

timeout2: Duration[K, TL, TR, delta_L2, delta_R2]): 
Previousinput2(DelayedTrip_SDD(P, 

timeout! - delta_L1, 
timeout2 - delta_L2) 

(Sample(n))) 
= NOT_Held_For_I(P, timeout! - delta_L1, Sample)(Sample(n)) 

Timer2_Timer: LEMMA 
FORALL (timeout!: Duration[K, TL, TR, delta_L1, delta_R1], 

timeout2: Duration[K, TL, TR, delta_L2, delta_R2]): 
Timer_I(NOT_Held_For_I(P, timeout!- delta_L1, Sample), Sample, 

timeout2 - delta_L2) 
(t) 

Timer2(DelayedTrip_SDD(P, timeout! - delta_L1, timeout2 - delta_L2) 
(t)) 

DelayedTrip_Block1: THEOREM 
FORALL (timeout!: Duration[K, TL, TR, delta_L1, delta_R1], 

timeout2: Duration[K, TL, TR, delta_L2, delta_R2]): 
DelayedTrip_SRS1(P, timeout!, timeout2)(t) = 

OPEN?(Relay(DelayedTrip_SDD(P, timeout! - delta_Ll, 
timeout2 - delta_L2) 

(t))) 

DelayedTrip_Block_Tick: THEOREM 
FORALL (timeout!: Duration[K, TL, TR, delta_L1, delta_R1], 

timeout2: Duration[K, TL, TR, delta_L2, delta_R2]): 
DelayedTrip_SRS(PP, timeout!, timeout2)(t) = 

OPEN?(Relay(DelayedTrip_SDD(PP, timeout! - delta_L1, 
timeout2 - delta_L2) 

(t))) 

DelayedTrip_Block: THEOREM 
FORALL (timeout!: Duration[K, TL, TR, delta_L1, delta_R1], 

timeout2: Duration[K, TL, TR, delta_L2, delta_R2]): 
DelayedTrip_SRS(PP, timeout!, timeout2)(Sample(n)) = 

OPEN?(Relay(DelayedTrip_SDD(PP, timeout! - delta_L1, 
timeout2 - delta_L2) 

(Sample(n)))) 
END DelayedTrip 

160 



Bibliography 

[1) Parosh Aziz Abdulla and Aletta Nylen. Timed petri nets and bqos. In 
ICATPN '01: Proceedings of the 22nd International Conference on Ap­
plication and Theory of Petri Nets, pages 53-70, London, UK, Springer­
Verlag, 200 1. 

[2] Rajeev Alur. Timed automata. In Computer Aided Verification, pages 
8--22, 1999. 

[3] Edmund l\1. Clarke and E. Allen Emerson. Design and synthesis of syn­
chronization skeletons using branching-time temporal logic. In Logic of 
Programs, Workshop, pages 52-71, London, UK, Springer-Verlag, 1982. 

[4] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Check­
ing. The MIT Press, 2000. 

[5] Bruno Dutertre and Victoria Stavridou. Formal requirements analysis of 
an avionics control system. IEEE Transactions on Software Engineering, 
23(5):267-278, May 1997. 

[6] Oana Florescu, Jeroen Voeten, Jinfeng Huang, and Henk corporaal. Error 
estimation in model-driven development for real-time software. In Forum 
on specification and Design Languages, pages 228 -239, 2004. 

[7] Richard Gerber and Insup Lee. A layered approach to automating the 
verification of real-time systems. IEEE Transactions on Software Engi­
neering, 18(9):768 -784, September 1992. 

[8} Thomas A. Henzinger, Christoph M. Kirsch, Marco A.A. Sanvido, and 
Wolfgang Pree. From control models to real-time code using giotto. In 
Proceedings of the Second International Workshop on Embedded Software. 
Lecture Notes in Computer Science, Springer-Verlag, 2002. 

(9} Xiayong Hu. Proving real-time properties of embedded software systems. 
M.sc., Dept. of Computing and .Software, McMaster University, Hamilton, 
ON, Canada, September 2002. 

161 



PhD Thesis -X.- Y. Hu -McMaster- Computing and Software 

[10] Jinfeng Huang, Jeroen Voeten, Oana Florescu, Piet VanDer Putten, and 
Henk Corporaal. Predictability in real-time system development. In Ad­
vances in Design and Specification Languages for SaCs, pages 123-139. 
Kluwer Academic Publishers, 2005. 

[11] Ryszard Janicki and Ridha Khedri. On a formal semantics of tabular 
expressions. Science of Computer Programming, 39(2-3):189-213, 2001. 

[12] Kim G. Larsen, Marius Mikucionis, and Brian Nielsen. Online testing of 
real-time systems using uppaal: Status and future work. In Ed Brinksma, 
Wolfgang Grieskamp, and Jan Tretmans, editors, Perspectives of Model­
Based Testing, number 04371 in Dagstuhl Seminar Proceedings. Interna­
tionales Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, 
Germany, 2005. 

[13] Mark Lawford and Xiayong Hu. Right on time: Pre-verified software 
components for constructuion of real-time systems. Technical Report 8, 
Software Quality Research Lab, McMaster University, Hamilton, ON, 
Canada, 2002. 

[14] Mark Lawford and Murray Wonham. Equivalence preserving transforma­
tions of timed transition models. 40:1167-1179, July 1995. 

[15] Mark Lawford and HongYu Wu. Verification of real-time control software 
using pvs. In P. Ramadge and S. Verdu, editors, Proceedings of the 2000 
Conference on Information Sciences and Systems, volume 2, pages TPl-
13-TPl-17, Princeton, NJ, March 2000. Dept. of Electrical Engineering, 
Princeton University. 

[16] Mark Lawford. Lecture notes of course real-time system verification. 
http:/ /www.cas.mcmaster.ca/-lawford. 

[17] Mark Lawford, Jeff McDougall, Peter Froebel, and Greg Mourn. Practi­
cal application of functional and relational methods for the specification 
and verification of safety critical software. In Teodor Rus, editor, Alge­
braic Methodology and Software Technology, AMAST 2000, volume 1816 
of Lecture Notes in Computer Science, pages 73-88, Iowa City, IA, May 
2000. Springer-Verlag. 

[18] Marius Mikucionis, Brian Nielsen and Kim G. Larsen. Real-time system 
testing on-the-fly. In the 15th Nordic Workshop on Programming Theory, 
number 34 in B, pages 36-38, Turku, Finland, October 29-31 2003. Abo 
Akademi, Department of Computer Science, Finland. Abstracts. 

162 



PhD Thesis- X.- Y. Hu- McMaster- Computing and Software 

[19] Sam Owre, Natarajan Shankar, John Rushby, and David Stringer-Calvert. 
PVS Language Reference. Computer Science Laboratory, SRI Interna­
tional, Menlo Park, CA, September 1999. 

[20] David Lorge Parnas and Jan Madey. Functional documents for computer 
systems. Science of Computer Programming, 25(1):41-61, October 1995. 

[21] George M. Reed and Bill Roscoe. A timed model for communicating 
sequential processes. In ICALP '86: Proceedings of the 13th International 
Colloquium on Automata, Languages and Programming, pages 314-323, 
London, UK, 1986. Springer-Verlag. 

[22] John Rushby. Formal methods for dependable real-time systems. In Inter­
national Symposium on Real- Time Embedded Processing for Space A ppli­
cations, pages 355--366, Les Saintes-Maries-de-la-Mer, France, November 
1992. CNES, the French Space Agency. Published by Cepadues-Editions, 
Toulouse, France. 

[23] Natarajan Shankar, Sam Owre, and John Rushby. A tutorial on specifi­
cation and verification using PVS. Technical report, 1993. 

[24] Natarajan Shankar, Sam Owre, John Rushby, and David Stringer-Calvert. 
PVS Prover Guide. Computer Science Laboratory, SRI International, 
Menlo Park, CA, September 1999. 

[25] N atarajan Shankar. Verification of real-time systems using PVS. In Costas 
Courcoubetis, editor, Computer-Aided Verification, CAV '93, volume 697 
of Lecture Notes in Computer Science, pages 280-291, Elounda, Greece, 
June/ July 1993. Springer-Verlag. 

[26] Jens U. Skakkebrek and Natarajan Shankar. Towards a Duration Cal­
culus proof assistant in PVS. In H. Langmaack, W.-P. de Roever, and 
J. Vytopil, editors, Formal Techniques in Real- Time and Fault- Tolerant 
Systems, volume 863 of Lecture Notes in Computer Science, pages 660-
679, Lubeck, Germany, September 1994. Springer-Verlag. 

[27] Jan Springintveld, Frits Vaandrager, and Pedro R. D'Argenio. Testing 
timed automata. Theoretical Computer Science, 254(1-2):225-257, 2001. 

[28] Farn Wang. Formal verification of timed systems: A survey and perspec­
tive. Proceedings of the IEEE, 92(8):1283 -- 1307, August 2004. 

[29] Alan Wassyng, Mark Lawford, and Xiayong Hu. Timing tolerances in 
safety-critical software. In J. Fitzgerald, I.J. Hayes, and A. Tarlecki, 

163 



PhD Thesis- X.-Y. Hu- McMaster-- Computing and Software 

editors, FM 2005: Formal Methods: International Symposium of Formal 
Methods Europe Proceedings, volume 3582 of LNCS, pages 157 - 172, 
Newcastle, UK, July 2005. Springer-Verlag. 

[30] Alan Wassyng and Ryszard Janicki. Using tabular expressions. In Pro­
ceedings of International Conference on Software and Systems Engineer­
ing and their Applications, volume 4, pages 1 - 17, Paris, December 2003. 

[31] Alan Wassyng and Mark Lawford. Lessons learned from a successful 
implementation of formal methods in an industrial project. InK. Araki, 
S. Gnesi, and D. Mandrioli, editors, FME 2003: International Symposium 
of Formal Methods Europe Proceedings, volume 2805 of Lecture Notes in 
Computer Science, pages 133-153, Pisa, Italy, August 2003. Springer­
Verlag. 

[32] NASA Langley PVS Libraries Official Website. 
http:/ /shemesh.larc. nasa.gov/fm/ftp/larc/PVS-libraryjpvslib.html. 

[33] PVS Official Website. http://pvs.csl.sri.com. 

[34] HongYu Wu. Formal verification of real-time software. Master's thesis, 
McMaster University, February 2001. 

[35] Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-Franois 
Raskin. Robustness and implementability of timed automata. In Proc. of 
FORMATS04, volume 3253 of Lecture Notes in Computer Science, pages 
152-166, Grenoble, 2004. 

[36] Martin DeWulf, Laurent Doyen, and Jean-Francais Raskin. Almost asap 
semantics: From timed models to timed implementations. In Proc. of 
HSCC04, volume 2993 of Lecture Notes in Computer Science, pages 296 
- 310, 2004. 

164 



p 
CJ5l9 25 




