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An investigation of general Materials of Differential 

Type ~DT], and Motions With Constant Stretch History [MCSH] 

is presented. Rivlin-Ericksen tensors An are shown to result 

from a Taylor series expansion of the relative strain tensor 

Ct(T). Internal constraint in MDT is discussed. General 

Solutions of Motions of Differential Type are worked out. 

Dynamically possible stresses are found for certain irrota-

tional motions. Theorems regarding necessary and sufficient 

conditions for MCSH are proved. A class of MCSH is introduced, 

and an approximate MCSII is suggested. Necessary equations 

regarding gradients of a scalar-valued tensor function are 

derived. 
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NOTATION 

is a second order tensor considered as tensor 

product of vector spaces {Ar} and {Br} 

Transpose of tensor A 

Position vector of particle R in current 

configuration x at time t 

Position vector of Particle R in reference 

configuration K at time t 0 

Position vector of particle R in any con

figuration at time T < t 

Material element in current configuration. 

Material element in reference configuration. 

Curvilinear coordinates in current 

configuration 

Rectangular cartesian coordinates in current 

configuration 

Curvilinear coordinates in reference 

oonfiguration 

Rectangular cartesian coordinates in 

reference configuration 

Generalised curvilinear coordinates in any 

configuration at time T < t 

Matrix of second order tensor A 
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Deformation gradient tensor 
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Base vectors in current configuration 

Base vectors in reference configuration 

Components of metric tensor in current 
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m = J p_dv 
X(R) X 

MDT 

MCSH 

a non-negative measure known as ma~~ which 

is absolutely continuous in the body. [The 

integration is carried out over the con

figuration x (R) 1 
n nl 

Binomial Coefficient= <r> = r! (n-r)! 

Materials of Differential Type 

Motions with Constant Stretch History 

Repeated indices imply Einsteinian Summation co.nvention unless 

the indices are underlined in which case summation is 

suspended. 

In general, ten~o~ refers to a second order three dimensional 

tensor. 
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INTRODUCTION 

DEVELOPMENTS IN MATERIALS OF DIFFERENTIAL TYPE 

Rivlin and Ericksen's Work 

RIVLIN [21]* solved correctly a number of problems for 

large elastic deformations. ERICKSEN [4,5] set out to deter

mine all deformations possible in every isotropic incompressible 

perfectly elastic body. His list was not exhaustive, and 

additions have been made by FOSDICK [7], and by SINGH and 

PIPKIN [25]. A final list of six families of motions [one of 

homogeneous deformations] is shown to be the solutions of the 

4imple4t type possible by MULLER [12]. These families of 

motions have been generalised for simple materials by 

CARROLL [1], and by FOSDICK [6]. 

The first extensive work in Materials of Differential 

Type where the constitutive relations took into account all 

order time rates of the deformation tensor was put forward by 

RIVLIN and ERICKSEN [22]. The Rivlin-Ericksen tensors 

X (n = 1, 2 •••• ) were defined as time derivatives of the 
n 

strain history tensor C~(s) 

A <t> n (I.l) 

* Superscripts in brackets refer to references on page 129. 
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Representation Equations were proposed for symmetric isotropic 

tensors based on the algebraic principle of linear indepen

dence. In three dimensions, it was shown that stress was a 

function of the first two Rivlin-Ericksen tensors A1 and ~2 • 

An appropriate constitutive equation for stress was _suggested 

using a linear combination of any six linearly independent 

symmetric functions of xl and x2. 
While the Material of Differential Type (the Rivlin

Ericksen Fluid) was more general in nature than the simple 

fluid, it was not the most general since it still could not 

account for gradual stress relaxation phenomenon. But within 

this definition, if a class of flows could be found wh~rein 

effects associated with Jte.laxa.t..ion did not occur, it would serve 

as a very general flow. Such a flow was defined by COLEMAN [3]. 

Coleman and Noll's Analysis 

COLEMAN defined a Sub4.tant..ially S.tagnant Motion as one 

where strain history C~(s) of a particle P was merely rotated 

along the path of P for all t, - ~ < t < ~, and s, 0 < s < ~. 

Thus 

C~ (s) = ~ T(t) •Cg (s) •Q (t) (I. 2) 

for all orthogonal Q(t) such that 

Q(O) = I. 
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According to COLEMAN, for such flows, 11 The memory of a 

simple fluid, no matter how elaborate it may be, is left very 

little to remember". All known exact solutions for motions of 

simple fluids were included in Substantially Stagnant Motions. 

Viscometric Flows formed a class of Substantially Stagnant 

Motions. 

COLEMAN defined a Steady Helical Flow* as one where the 

velocity field v(r) had the contravariant components 

(I.3) 

This flow works out to be a general Viscometric Flow 

and includes couette Flow, Poiseuille Flow and other shear flows. 

The significance of Viscometric Flows is that many such 

motions could be non-homogeneou4 but eont~ollable for simple 

fluids. A list of such flows is given by PIPKIN [19) who 

opines that his list is not exhaustive. In Viscometric Flows, 

the rate of deformation gradient tensor t 1 is such that 

= 

due to which only three viscometric functions are sufficient to 

determine the general behaviour of the fluid [31]. Also, the 

* In a steady flow, the local time rate of change of velocity 

is zero everywhere~ i.e. ~~ = 0. 
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second rate of deformation gradient 

for all Viscometric Flows. It turns out that all Substantially 

Stagnant Motions other than Viscometric Flows are homogeneou~ 

[Section 9], and therefore, are controllable in every homogeneous 

incompressible material [34]. 

In the same paper, COLEMAN provides a representation 

for strain tensor ~~(s) in terms of the Rivlin-Ericksen tensors 

Xn. This has been shown to be a natural consequence in the 

present work [Section 4]. COLEMAN has also considered the 

inclusion of thermodynamic variables in constitutive equations 

for incompressible simple fluids. 

NOLL [16] has called Substantially Stagnant Motions 

Motion4 with Con4tant St~etch Hi~to~y, and provided a definition 

in terms of the deformation gradient, as 

Q(O) = I (I.4) 

where R is a constant tensor and Q(T) is an orthOgonal tensor 

function. 

Motions with Constant Stretch History [16] have been 

classified into three categories: 

1. MCSH I for which A2 = ~ 
2. MCSH II for which M2 ~ ~ but M3 = 3 

3. =n -MCSH III for which M # 0 for all n = 1,2,3 •••• 
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All Viscometric Flows fall into MCSH I. The generalised 

Viscometric Flow has been named Cu~vilineat Flow. An example 

of MCSH II is a flow with a velocity field given by 

v 1 = 0 

v2 = klxl (I.S) 

v3 = k2xl + k3x2 

where k1 , k2 and k3 are constants. 

All steady extensions [NOLL, 15] belong to MCSH III. NOLL [15] 

has shown controllability of steady extension of a box, and of 

a circular cylinder. 

WANG [27] has proved that for any MCSH, the first three 

Rivlin-Ericksen tensors - 11 , A2 and 13 determine the strain 

tensor C~(s) uniquely. Therefore, for any simple material in a 

MCSH, the stress tensor is a function of the first three Rivlin-

Ericksen tensors alone. 

According to WANG strain tensor Ct(T) becomes 

(I.6) 

where 

*Refer to equation 3.4 for relation between t(t) and A(t). 
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Huilgol's Analysis 

HUILGOL [8,9] has provided extensive insight into the 

study of MCSH. He has worked out generalised expressions for 

Viscornetric Flows, andobtainedMCSH II, and MCSH III by super

positions of MCSH I. Hence the names Voubly Supe~po~ed Vi~co

me~~ic Flow and T~iply Supe~po4ed Vi4comet~ic Flow~ for MCSH II 

and MCSH III respectively. 

It is to be noted that only homogeneous MCSH I may be 

superposed to obtain MCSH II and MCSH III. Hence, superposition 

of two homogeneous Viscometric Flows whose velocity fields are 

given by 

vl = 0 vl = 0 

v2 = 0 and v2 = klxl 

v3 = k2xl + k3x2 v3 = 0 

]f (I.7) 

leads to a MCSH II given by (I.S). 

It has already been stated that in general, Viscometric 

Flows could be non-homogeneous in which case no superposition 

would lead to MCSH II or MCSH III. 

In private communication, HUILGOL has proposed a non

homogeneous velocity field which, according to him, is an 

example of a Doubly Superposed Viscometric Flow. 

field is 

vl = 0 

v2 = f(x1 ) 

v3 = x2g(xl) 
} 

The velocity 

(I.8) 



for which, the rate of deformation tensor Ll works out to be 

0 0 0 

rf1 1 at ~ 0 0 = 
ax1 911 (1.9) 

x2 ~ ffi. 1 ffi. 0 g(x ) 
ax 911 922 

Since E1 is not a constant tensor, (I.8) does not 

represent a MCSH according to HUILGOL'S previous definition 

[8, (2.10)]. 

NOLL'S equation (2.4)[16] for a MCSH gives 

At T = t, we get 

(I.lO) 

where 

and 

7 
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- !.. z (t) = Q (t) •Q (t) 

by definition. Again, for MCSH, 

-T - - -T -T --so Ct)·M·O<t> -so <t>·R ·OCt) - e ..... ·e 

(I.ll) 

In the works of both WANG [27] and HUILGOL [8], MCSH has been 

defined as a motion for which 

~~(s) 
-sL1 (t) -sLi(t) 

= e •e 
(I.l2) 

From (I.lO), (I.ll) and (I.l2~ it is seen that WANG and 

HUILGOL have dealt with MCSH where Z(t) = 8. The conditions 

under which this is true is discussed in section 8 of the 

present work. 

ZAHORSKI [30] has shown that two Simple Shearing Steady 

Viscometric Flows can be superposed to provide a pure shearing 

flow belonging to MCSH III. 

The two Simple Shearing Flows are given by 

v (1) = klx2 v(2) = 0 1 1 
v (1) 

2 = 0 and v(2) 
2 = klxl 

v (1) 
3 = 0 v(2) 

3 = 0 
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where 

k1 = constant. 

Superposition of the two flows provides a pure shearing 

flow given by 

= 0 

where 

k 2 = constant. 

In case of an incompressible Reiner-Rivlin fluid, the 

determinate stress tensor for steady pure shearing flow is the 

arithmetic mean of determinate stress tensors in the two Simple 

Shearing flows if k 1 = 2k2 • Additional conditions have been· 

derived to generalise the flow to an incompressible simple 

fluid. 

The extensional flow considered by ZAHORSKI is the same 

as that due to NOLL [15]. 

Scope and content of Present Work 

The present investigation is intended to be expository 

in nature, and will serve much purpose if it helps in under

standing Motions of Differential Type and those with Constant 

Stretch History. 



The motivation to the investigation was due to the 

following realisations: 

10 

1. For Materials of Differential Type, there are many internal 

constraint functions each of which lead to a special form 

for dete~m~naze 4t~e~~ ad (only the condition of incompressi

bility leads to ad= a+ pl). 

2. Many steady Motions of Differential Type can be derived 

from a velocity field described as 

v. = a .. exj 
1 1J 

(1.13) 

where aij are constants. (I.l3) includes the known con

trollable motions as special cases. Investigation of flows 

is done in Sections 7, 10, and 11. 

3. Necessary and sufficient conditions are required to deter

mine MCSH. Two fundamental theorems have been proved in 

section 9 for this purpose. 

4. The class of Viscometric Flows is a first order MCSH. It 

includes non-homogeneous motions some of which are con-

trollable. The rest of steady MCSH are homogeneous motions. 

In the course of this investigation, certain interesting 

velocity fields have resulted. The motions resulting from such 

velocity fields are yet to be classified. 

The necessary tensor relations regarding convergence and 

gradients of tensor functions have been developed in Appendix A, 
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CHAPTER I 

MATERIALS AND MOTIONS 

1. Definition of Continuous Media 

By a continuous medium is meant a set of points called 

material points denoted by R, with a measure called mass m. 

At each time t, these points have positions 

r = x<R,t> (1.1) 

-in space, and occupy a certain region. The mapping x is 

assumed to be one to one. The mass m induces at each time t 

a measure which is assumed to be absolutely continuous in 

space and time. Therefore, it has a density 

p_ 
X 

= (1.2) 

-While r defines the current configuration of the body, 

the reference configuration is defined by 

(1.3) 

where t 0 is the time at which R occupies the reference configu-
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ration so that 

r = X(K-l(R) ,t) = x_(R,t) (1.4) 
K 

0 

FIGURE 1 

A body B is a smooth manifold of elements P,x,z •... 

called particles. The configurations of 8 are the elements of 

a set of one-to-one mappings of B into a three dimensional 

Euclidean point space E. 

The mappings of body configurations from the reference 

configuration for a fixed time t are called deformations. 

For each real time t, we may define 

X~(s) = x_(t-s) when s ~ 0 (1.5) 
K K 

and call it the hi~to~y o6 de6o4mation up to time t ~ 0. 

We have 

x:(o) = x_(t) (1.6) 
K K 
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x:(s) is undefined for s < o. 
K' 

A basic motivation to studies in Continuum Mechanics 

is provided by the following two questions: 

1. When a continuous medium is subjected to a specified 

system of forces, what would the resulting deformed 

configuration be like? 

2. What forces would be necessary to create a specified 

deformation configuration in a continuous medium? 

Before any attempt is made to answer the above 

questions, in every continuous medium a fundamental assumption 

is necessary in the form of a definite relationship between 

the stress components at a point of the body and some known 

function of the deformation components at that point of the 

body. Such a relationship is provided by a ~e~pon~e 6unctional 

or con~tltutlve nuncZlonal. Such constitutiverelations can be 

defined only for an ideal medium. Within specified ranges, it 

is possible to predict the behaviour of a natural medium. 

In the present work, whereeve-r necessary, appropriate 

constitutive relations are assumed since we are interested only 

in motions, and whenever possible, the stresses required to 

cause them. 

2. Material 

Definition of Body will apply to Mate~lal. Also, while 
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referring to Mate~ial, statements regarding its constitutive 

.property and the range of its applicability will be understood. 

At present, only mechanical properties are considered in the 

constitutive relation. 

a. Homogeneity and Isotropy: 

Two particles are mate~iatly i~omo~phie if and only if 

their response to deformation histories, described with respect 

to suitable reference configurations, is identical. A body B 

is called mate~iatly uni6o4m if all of its particles are 

materially isomorphic to each other. If it is possible to 

choose a single reference configuration R(•) = K for the whole 

body B so that the response functional is the same for all 

particles, the body is said to be homogeneouh. 

Therefore, a body is called homogeneou~ with respect 

to a reference state R = K(R,t0) if and only if its constitutive 

equation is invariant under transformations of the form 

R + R* = R + Y (2.1} 

Where Y is an arbitary vector [13]. 

A homogeneous material is called i~ot~opic with 

respect to its reference position R = K(R,~9 ) if and only if 

for any pointY and any rotation ft, the transformation ~(Y,R) 

defined by 

~:R + R* = y + (R-Y)·R (2.2) 
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leaves the constitutive equation invariant. 

A material which is not necessarily homogeneous is 

called isotropic if the invariance under V(Y,R) holds for each 

point Y in the limit R + Y. 
Unless otherwise stated, we shall assume isotropy and 

homogeneity in all materials considered. 

b. Simple Material 

A simple material is one in which the stress o(t) at 

any time t is completely determined by the history of its 

deformation gradient P(t) [34]. 

co 

a <t> = ~ <f <t> > (2. 3) 
s=O 

where ! is the constitutive functional obeying the Principle 

of Material Frame Indifference [13] 

~ ( pt ( s ) • 0 ( s ) ) (2. 4) 
s=O 

where o0 = Q(O) = orthogonal tensor function. 

A material is called Ela~tic if it is simple, and if 

the stress at time t depends only on the local configuration 

at time t, and not on the entire past history of motion. Thus, 

elastic materials are simple materials with a perfect memory 

of a very special and limited kind. 

For an elastic material, the constitutive relation is 
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of the form 

(2. 5) 

where g is the ~e~pon4e 6unction. 

c. Simple Fluid: 

A simple fluid is one in which the response functional 

r remains invariant under all changes of reference configura-

tion [14]. 

The constitutive equation is given as 

00 

a= -p(p)l + ~ (~(s),p) 
s=O 

(2.6) 

where p_ = p is the density of the fluid; and ~(s) = C(s) - I, 
X 

E being-the strain tensor. 

Response functional ! satisfies the isotropy relation 

00 

-T - - = 00 • 'S <G<s> ,p) ·o0 S=O 
(2. 7) 

= For a perfect fluid, the determinate stress ad is a 

zero tensor. 

= a + pi (2. 8) 

= All fluids where stress a is a function of the stretching 
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tensor Dare called Stoke~ian Fiuid4. A Newtonian Fluid 

corresponds to 

= (2.9) 

where 

l..l = constant 

and 

A1 = First Rivlin-Ericksen tensor. 

For a Reine~-Riviln Fluid, ad depends non-linearly 

on A1 • 

= { 2 .10) 

Where, for the incompressible case, y 1 and y 2 are scalar 

. - = 2 - - 3 funct~ons of I:A1 and 1:~2 , and y is determined by some 

normalisation convention such as !:ad = n. 

d. Materials of Grade n: 

A Material of Grade n is one for '>~hich the stress is 

a function of n gradients of deformation, so that the con-

stitutive equation may be written in the form 

~ - n a<t> = p (F (t-s) , r (t-s) I •• • F (t-s) (2.11} 
S=O 



where 
~ 
F(t-s) = ' 

subject to the isotropy condition 

=T = = Q •a(t)·Q 0 0 

where 

f*(t-s) 

= F*(t-s) 

I) 
F*(t-s) 

CD 

= 1; (F*(t-s), 
s=O 

= F'ct-s>·O s 

= F(t-s)•Q s 

Q = = F(t-s)•Q s 

'*(t-s), 

e. Materials of Differential TyPe: 

I! ... , F* (t-s)) 

Materials of Differential Type are those for which 

stress is a function of the first spatial gradients of 

velocity, acceleration, ••• , (n-l)th acceleration (when the 

nth acceleration is zero), so that the constitutive equation 

may be written in the form 

A1 , A2 , ••• ,An being the Rivlin-Ericksen tensors. The 

isotropy condition is given by 

18 



19 

. . . , K > ·o n = ... , 

-· RIVLIN and ERICKSEN [22] provide representation for G 

as a function of A1 and A2 alone as 

( 2 .13) 

In the incompressible case, a 1 , a 2 , ••• , a 8 are scalar 

functions of the eight mixed inv~riants i:(A1) 2 , i:CA1) 3 , 

f:cX2 >
3 , i:cA1 ·~2 >, i:ccX1>2 ·X2>, !:cX1 ·cX2>2> ana !:ccX1 >

2 ·cX2 >
2

> 

which form the 6unction ba4i4 [26]. 

f. Materials of Rate Type: 

Constitutive equation of a Material of Rate Type [34] 

is given as 

(p) -0 
=fica, 

:!: (p;l) 
a, .•• ,a 

.._ (D) 
p, p, ••• , P) (2.14) 

on the assumption that for each prescribed sufficiently smooth 

function F(t) and prescribed initial data 

(2.15) 



the differential equation (2.14) has a unique solution cr(t). 

NOLL'S Hyg~o~te~~c Mate4ial [13] is an example of 

Material of Rate Type of the first order. 

g. Differential Materials of Grade n : 

A Differential Material of Grade n may be defined 

by combining (2.11) and (2.12). The constitutive equation 

may be written as 

~ 

20 

cr<t> = T (F(t-s), '(t-s), 
s=O 

. . . ' . . . ' A > n (2.16) 

subject to the isotropy condition 

~ 

r <F<t-s>·o0 , 
s=O 

. . . , 

Materials of Rate Type and Differential Materials of 

Grade n are two broad categories of materials within the 

definitions of which all solids and fluids can be defined. 

h. Incompressibility: 

A material is incompressible if it is susceptible only 

to motions in which the density at each material point is 

constant in time. Incompressibility is a restrictive condition 

characterizing a certain material property. Therefore it is a 
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constitutive assumption. Forces are required to maintain such 

constraints within a material. It is a basic assumption of 

Mechanics that the forces maintaining a constraint do no work 

when the material is deformed by external forces. 

The Principle of Determinism [App. Bl] for incompressible 

simple materials yields that the stress is determined by the 

deformation history only to within a hydrostatic pressure p; 

hence 

= (2.17) 

where ad is known as the de~e~minate ~t~e~~. 

3. notion 

The time-sequence of mappings of reference configuration 

x_ (R,t) is called the motion of the body. 
K 

a. Rigid Body Motion: 

If, for all times t, the position vectors r(R) of all 

points in a material body remain fixed with respect to a frame 

of reference attached to the material, the motion is a ~~gid 

body mo.t-ion. 

With respect to a fixed reference configuration all 

material points undergo the same rotation and linear displace-

mcnt. 
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Euler's Laws of Motion are sufficient to determine the 

forces necessary to cause such motions. 

b. Homogeneous Motion: 

Consider a point R in a deforming material, whose 

position vector at present time t is r and at any time T < t, 

it is ~. 

By the Po4tulate on An6ine Connec~ion [33], 

d~ = (3.1) 

If the elements of the tensor = Ft(T) are independent of ar 
position ~ (they could be functions of time), then 

(3.2) 

where C(t) is a function of t only. 

All motions represented by (3.2) are known as 

homogeneou6 mo~ion4. Such motions are important as they can 

always be caused in simple materials by application of suitable 

surface tractions alone. 

Defining the spatial velocity gradient E1 (t) as 

= av 
ar = (3.3) 

where v(R,t) is the velocity at R at time t, it follows from 



(3.2) that for all homogeneous motions, 

or, 

nth acceleration 

= 

!. 
+ c 

c. Motions of Differential Type: 

23 

(3.4) 

All motions in which Jlt(T) is determined by t
1 
(t), 

t 2 (t) , ••• , L,_, (t) : a 

Differential type 

shall be referred to as Motions of 

. . . , 

Kinematic relations and examples of Motions of 

Differential Type have been worked out in sections 4, 5 and 7. 

Such motions may be homogeneous or non-homogeneous. 

d. t-totions with Constant Stretch History: 

Following NOLL [16], Motions with Constant Stretch 

History are such that 

= 
-sM 

e t (3.6) 



24 

MCSH is a homogeneous Motion [Section 9] of Differential 

Type, and a necessary and sufficient condition for MCSH subject 

to (8.15) is given by 

= n = (Ll (t)) , n = 1,2, •••• {3.7) 

But when Ln{t) = ~ = (t1 (t))n, the MCSH may not be homogeneous. 

Such an example is the first order MCSH, i.e., the Viscometric 

Flow where t 2 = 0 =Ctt2 • A general curvilineal flow [13,14] is 

viscometric but not necessarily homogeneous. 

Materials and Motions of Differential Type and MCSH will 

be fully developed in the course of this investigation. Other 

materials and motions, when mentioned, will follow the defini-

tions provided in this chapter. 



CHAPTER II 

~1ATERIALS OF DIFFERENTIAL TYPE 

4. Basic Kinematics 

The position vector of a typical point of a continuum 

referred to a fixed system of rectanqular cartesian axes, at 

time t , may be designated by 

z: = x_<R.,t> ( 4 .1) 
K 

The deformation gradient relative to the reference configuration 

K is given by 

p = ar 
aR 

-

(4.2) 

The function x which is a mapping function from the 

reference configuration K to the current configuration 

X <x:R + r) is such that no volume element in the reference 

configuration becomes zero or negative in the present configu-

ration. 

av 
av = ,~, > 0 (4.3) 

25 



The spatial velocity gradient = L(t) is defined by 

= av 
ar 

The Ra~e o6 Ve6o~mation tensor is given by 

f) (t) 

Spin or Vo~ticity tensor is defined as 

= ~<a~ _ v~> 
ar ar 

so that 

where D(t) is a symmetric tensor and R(t) is skew. 
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(4.4) 

( 4. 5) 

( 4. 6) 

If the current configuration is taken to be the 

reference configuration, one may refer the position of a 

particle at s time-units ago to the present configuration. 

R R 

r<R,t> 

FI'GURE 2 

= K(R,t0 > 

= xl-<R,t> 
K 

-= x- <R,t) 
IC 
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Let the position vector of particle P at time T = t-·s 

be ~. 

The relative deformation gradient Ft(T) is defined as 

= ~ t (t-s) = F~(s) = (4.7) 

Spatial velocity gradient L(t) is defined as the 

value of the time derivative of relative deformation gradient 

at T = t: 

t(t) 

since 

d 
aT() 

= = ·- ( 4. 8) 

d 
- as <> 

Denoting t(t) as f 1 Ct), the nth time derivative of Pt(T) at 

T = t can be calculated as 

d n _ <n> 
= (-l)n -F~(s)l = Ft(t) 

dsn s=O 

From (4.2), 

~Pet> = ct ar av = ar 
Ul;. Cit aR = 3R aR 

av - -- = p (t) •tl (t) ar 

Differentiating F(t) n times with respect to t, 

(4.9) 

( 4 .10) 
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(4.11) 

(4.11) results by differentiating 
dn-lF(t) = 
- F(t)·tn_1 (t) with 
dtn-1 

respect tot. Differentiating F(t)·Ln_1 (t) with respect tot and 

comparing with (4.11) leads to 

(4.12) 

Also, differentiating right hand and left hand sides of (4.10) 

separately with respect to t and equating the results, 

- - - :!: :.: <u-1> 
Ln {t) = n (Ll (t) I Ll (t) I tl (t) I ••• I Ll (t)) (4.13) 
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It is to be noted in (4.13) that L1 (t) = 0 leads to 

L <t> = ij. n 

.!.. 

But if E1 (t) = ~' all higher order material time 

derivatives of E1(t) would also be~. So that 

= (4.14) 

The invertible linear transformation Pt(T) has two 

unique product decompositions called pola~ deeompo~ition~ 

( 4 • 15) 

in which nt(T) is orthogonal, and Ut(T) and Vt(T) are symmetric 

and positive definite. 

Differentiating (4.15-l)with respect toT, 

( 4 .16) 

At s = 0, i.e. T = t 

From (4.16), 

= (4.17) 

N.B.! In [111, HUILGOL'S condition (4.2) is equivalent to the 
present equation (4.14). 



Also, since Rt(T) is orthogonal, 

so that 

. . . At T = t, 

..!. 

so that Rt(t) is a skew tensor. 

Comparison of (4.6) and (4.17) leads to 

D(t) 
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(4.18) 

Differentiating (4.16) with respect to T and calculating its 

value at T = t; 

n-1 (n=l) (jJ 
+ t ( ~) U • W = iSn ( t) + ~n ( t) 

i=l 1 
(4.19) 

Consider the effect of change of frame on deformation 



gradient F. The frame transformation is given as 

where 

t* = (t-a) 

and Q{t) is an orthogonal tensor. 

ar ar* ·-- = aR* ar 
a~ ·O<t> 
C)R* 

Keeping the reference configuration same for both frames, 

i . e • , R* < • > = R < • > 

~{) = 2_.() 

aR* aR 
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ar • Q(t) = F•Q(t) (4.20) 
aR. 

Consider the transformation of relative deformation gradient 

r t <-r > : 

F*t•(T*) ar at 
= ·-ar* ar 

(4.21) 

If 
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~· = C (T) + ~·O(T) 

a~· = Q(T) 
a~ 

also (4.22) 

a < > ar a <) 0T <t> • a:> = ·- = ar• ar• ar ar 

Combining (4.22) and (4.21), 

Any second order tensor T is defined to be frame-indifferent 

when 

Evidently, ~ is not frame indifferent; but Pt(T) is frame

indifferent only if the orthagonal tensor Q is not a function 

of time. Change of frame leads to 

-T ..~,T 
where Q (t)•Q (t) is a skew tensor. 
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. . iS* = QT(t) ·D·Q(t) } (4.24) 

~* = OT(t)·i·O(t) + OT<t>·O<t> 

Velocity gradient L1is .frame-indifferent only if Q is a constant . 
orthogonal tensor independent of timet. i.e., Q = 5 

U remains unchanged under a change of frame, whereas 

R changes to 

and V becomes 

Therefore, while stretching tensor U and rotation tensor R are 

not frame-indifferent, stretching tensor V is frame-indifferent. 

Strain Tensor and Rivlin-Ericksen Tensors 

Let (dS) 2 and (ds) 2 be the squared elements of the arc 

lengths associated with particle P at times t 0 and t respectively. 

(ds) 
2 

- (dS) 2 = 
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= dR dR: cc - I> 

where C is defined as the strain tensor given by 

- ar ra - -T c = --·-- = F·P (4.25} 
aR aR 

The above description also conforms to an element of 

arc dR at R deforming to an element of arc dr at r. 
Then, 6~~e~ch A in the direction of N is defined by 

CNl 

= final length of arc 
initial length of arc 

Differentiating (4.25) with respect to t, 

~t(T) = 

ar.av.ra + ar.va.ra 
an ar aR aR ar afi 

a~.~a = 
ar ar 

and differentiating it n times with respect to T 

ds 
dS 

(4.26) 

{4.27) 



<n> 
Ct(T) = 

35 

(4.28) 

<n> 
The value of Ct(T) at T =tis defined as the nth Rivlin-

Ericksen tensor [22] 

Physical Components of Deformation Gradient P 
By the Postulate of Affine Connection 

dr = dR·ar = dfi·P 
aft 

(4.29) 

(4.30) 

In a general curvilinear co-ordinate system, dr may 

be written as 

(4.31) 

where dxr are the contravariant components relative to the 

natural basis {gr}. 
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Similarly, dR may be written as 

(4.32) 

where dX0 are the contravariant components relative to the 

natural basis {G0 }. 

Applying (4.31) and (4.32) to (4.30), 

(4.33) 

since 

From (4.33), since G0 •GT = o~ [Kronecker delta]; 

(4.34) 

where 
axm m --- = F are the components of F. axu ;u 

Let en and Es be the dimensionless unit vectors parallel 

to gn and Gs respectively. 
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magnitude of gn is 

magnitude of G5 is (4.35) 

By definition, physical components of a vector at any 

point are the vector components parallel to the covariant unit 

base vectors. 

dx<r> = 

so that, 

az.: = 

and 

so that, 

Hence, physical components dx<r> of dr are 

dxr ~g t'CJrr 

<r>
dx er (4.36) 



From ( 4 • 3 4 ) and ( 4 • 3 6 ) , 

dxr;g- e = 
rr r 

or 

= 

or 

[dx<r> -

dX<U> 

~ 

/grr ] 
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= 0. 

Since{er}is a linearly independent set of base vectors, then 

dx<r> = 

( 4. 37) 

where 

are defined as the phy~~cal ccmponenz~ o6 the tenJo~ F. 
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If Rand r be referred to the same basis{gr}, then 

A Basic Equation in Thermodynamics [33] 

The The~modynamic Ene~gy-balance Field Equation or 

Fou~le~-Kl~~hho66-Neumann Equation is given by 

de - - a·il Ps - p dt + a:D - ---- 0 ar 

where s = body heating per unit mass 

e = internal. energy density 

h = density of surface heating flux 

The free energy density ljJ = e - at, 

Where 

e = temperature 

n = entropy density 

so that 

1jJ e en • = - - en 

(4.30) may also be written as 

de ps + 0-= 0- _ Cl·h 
p dt = 

ar 

(4. 38) 

(4.39) 

(4.40) 

(4.41) 



Clau~iu~ - Vuhem Inequality is given by 

also, 

-
epn ~- e a ·<~> + os ar 

a 
ar 

h = 1 a·h ae a h 1 a·h ae 
e e ar + ar • ae e = a ar - ar 

From (4.34) and (4.35) 

apn ~ 
_ a ·h 

+ ae h + -. ps 
ar ar a 

From (4.32), 

epr, = 
. . 

pe - pen - Plll 

Substituting for 
. 

from (4.33) in ( 4. 36) , pe 

. a:o a.fi 
p(~ + • pen = ps + --- - en> 

ar 

From (4.35) and (4.38), 

a ·ii a ·h ae + a:o p($ + en) ~ ps - --+ - -+ - ar ar ar 

or 

. 
en) o:o ae h - p(lJJ + + - a ~ 0 

ar 
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( 4. 42) 

-
h 

(8) 2 
(4.43) 

(4.44) 

(4.45) 

(4.46) 

-h + e ps 

(4.47) 
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(4.47) represents the Ene4gy P4oductlon Inequality 

5. Taylor Series Expansion of Strain Tensor 

Let d~ and dr be elements of arc lengths of a particle 

P in motion, at times T and t respectively so that 

t - 't = s 

If 

and 

(5 .1) 

for s close to zero, the difference between (ds
1

) 2 and (ds) 2 

may be expanded into a Taylor SeriP.s of the form 

+ •••• 

= (5. 2) 

For an expansion of the form (5.2) to exist, it is necessary 

that all time derivatives of the squared elements of arc length 

must exist at T = t. Such a regular function as (ds1 >
2 has only 
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one expansion in powers of s given by (5.2). 

R. ( ~) , the remainder after n terms, tends to zero as 
ft 

n + oo and/or s + 0. At present we consider R (~) to be zero. 
n 

- ai . - - - ai = dR·--·dr + dr•dr·-= 
aR ar 

(5.3) 

from (4.26) and ( 5. 3) , 

(ds) 2 = dR dR ..L c 
- - - - - - ( 5. 4) 
(i) 

(i) 
(ds) 2 = dR dR . c . 

Pre-multiplying equation (4.28) by F(t)•(Ft(T))-l and post

multiplying by (F~(t))~,T(t). 

(i) e = (5.5) 

from ( 5 • 2) , ( 5 • 4) and ( 5. 5) , 

n ( l)i i-1 . . 
= dR dR: E -, {'· (20. + 1: (1 )i>. •D ) .flT} (s) 1 (5.6) 

i=l 11 1 q=l q 1-q q 
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Also, 

( 5. 7) 

From (5.6) and (5.7), 

n (-l) i i -1 . . 
= I + E ~ (25. + E ( 1 )~i .fi ) (s) 1 

i=l 1 • 1 q=l q -q q 
( 5. 8) 

therefore, from (4.29) and (5.8), we get 

Ct(T) =I + ~ (-l)i(s)i A. (t) 
i=l 11 1 

( 5. 9) 

This proves the Coleman Lemma [3,(1.17)]. 

(5.9) serves as a definition for Motions of Differential Type. 

The limit s ~ 0 conforms to the definition of Materials of 

Differential Type. From (5.9), stresses in Materials of 

Differential Type can be determined from the n Rivlin-Ericksen 

tensors A • 
n 

From Appendix A.2, if E A* (T - t)n converges in a 
n=O n 

non-zero interval about t = T and hence represents a function, 

say Ct(T), in that interval then 

= I: 
n=O 

X• {T-t)" 
n 

(5.10) 
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Differentiating both sides of (5.10) k times and setting T = t, 

From (5.10) and (5.11), 

Let us define 

X <t> n 

00 

E 
n=O 

A (t) as 
n 

= 

From (5.12) and (5.13), 

E 
n=O 

(k = 0 1 1 1 2 1 • • •~ 

In expanding (5.14), the remainder after N terms is 

N 
~t (T) I 1 

T=T (T-t)N R.__(T) = -~---N N! 

Where T
1 is some point between T and t. 

( 5 .11) 

(5.12) 

( 5 .13) 

(5.14) 

(5.15) 

If it is postulated that~= 8, and A0 =I, from (5.14) and 

(5.15), 

N-1 n 
Ct(T) =I+ E <-1 ) X (t-T)n 

n=l nl n 
( 5. 16) 
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(5.16) and (5.9) lead to the same result. 

In defining Materials of Differential Type by equation 

(5.9) it is being said that while in a simple material stress 

a (t) is determined by' the values of strain ~~ (s) for all 

s ~ 0, for MDT only a very short part of the history of strain 

Ct(T) has an influence on the stress ass must be very near 

zero for equation (5.16) to be true. 

6. Internal Constraints in Materials of Differential Type 

The condition of incompressibility applies an internal 

constraint to the deforming body. A simple internal constraint 

is defined by a scalar valued function y(F) of a tensor 

variable F. A particle P in a body is subject to the constraint 

defined by y(F) if the possible motions of the body are 

restricted to those motions for which 

y{~(T)} = 0; - m < T < m (6 .1) 

A constraint (6.1) is a constitutive equation and hence is 

subject to the Principle of Material Frame Indifference. Thus 

(6.1) may .also be written as 

y{C(T)} = 0, ( 6. 2) 

Incompressibility demands that only isochoric rnotions 

be allowed. From (4.3), we get 



46 

and hence, 

I c (T) I = 1 

A constraint function for incompressibility is 

A<c> = lei - 1 (6.3) 

Forces causing deformation in a body do work. Hechanical 

power is defined by 

p = =o:o (6.4> 

In a body subject to an internal constraint, a certain 

force system is necessary to maintain the constraint. Con

ceivably infinitely many different systems of such forces may 

suffice to maintain any given constraint. Usually, a simpli

fying assumption is made that forces maintaining the constraints 

do no work. 

In equation (4.47), if thermodynamic variables are 

neglected, then 

cr:o ~ o ( 6. 5) 

Let N be such a tensor that 

N:iS = o ( 6. 6) 
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Addition of (6.6) to (6.5) does not change the energy

production or energy-balance inequalities if N has the units 

of stress. Since (6.6) means stress N does no work in defor

mation, it may,be assumed to be maintaining the internal con

straint which, in (6.3), is incompressibility. 

Since N is not a function of deformation of the body, 

i.e. 

it cannot be determined from the mechanical constitutive 

equations. Thus the P~lnclpLe o6 Vete~mlnl6m of stress for 

simple materials subject to internal constraints [34] is stated 

as in a simple body subject to internal constraints, stress 

cr(t) is determined by the history F(L) only to within a 

stress N that does no work in any motion satisfying the 

constraint. 

Incompressible simple materials are simpler than com

pressible simple materials in two ways: not only are all 

possible deformations isochoric but also the stress is deter

mined from the deformation only to within a hydrostatic pres

sure [34]. Thus the response of an incompressible material 

in a given isochoric deformation generally is not the same as 

that of a compressible material in precisely the same defor

~ation. For example, simple shear is a deformation which may 

be undergone by both incompressible and compressible simple 

bodies; but the stress system in the compressible bodies may 
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not be read off from the solution of the incompressible bodies 

where the arbitrary pressure makes possible greater variety 

in the solution. More over, various non-homogeneous isochoric 

deformations which may not be maintained as states of equili-

brium for arbitrary isotropic compressible simple bodies free 

from the action of body force, are amenable to exact solutions 

for all incompressible isotropic simple bodies subjected to 

suitable tractions applied on the boundary. [1,6,7,12]. 

Theorem 

The stress system N. (i = 1,2, ••• ,n) required to main-
1 

tain an internal constraint in a material of differential 

type obeys the relation 

n-1_ _ 
I: N. :A. +l = o 

i=O 1 1 

Where A. are Rivlin-Ericksen tensors. 
1 

Proof 

'I' he constraint is given as 

. <n> 
"- (C, c, ... , c ) = o, n = 

where 

(Q) ..!. (l) 
c = C , c = c , etc. 

0, 1, 2, .... 

( 6. 7) 

( 6. 8) 



Differentiating (6.8) with respect to time t 

••• + 
(n) 

ae:g = 
at n 

ac 
0 

Since c is assumed to have only n time derivatives; 

<n> de 
dt = o. 

Therefore, (6.9) may be written as 

n-1 (i;t1) 
I: c 

i=O 

a A 
TI> ac 

= 0 

From (5.5) and (6.10) 

or 

. . 

= 0 
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( 6. 9) 

( 6 .10) 
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n=l + ~ (i+l)~. 
I: <2fi·+1 ~ k u 1 k·Dkl : 

i=O 1 k=1 1 + -

( 6 .11) 

Let Ni be defined as 

(6.12) 

where q is a scalar constant. From (4.29, (6.11) and (6.12), 

= 0 Q.E.D. 

NB! 1. for n=O, ( 6 .11) yields 

i5 . N = 0; . 
and (6.12) is of the form 

N =T a.A F, = q F •--::- . 
ac 

which are true for simple materials. (A = I> 
0 

2. cr·o·rT> :T = cr·n·FT ·T> :I = I: ci!i·i5·FT ·!> = F:(l).pT ·T> 
- -T - - - -T - - - - - -T - -

= (D·F ·T) :F = CD·F ·T·F) :I= I: (iS.F' ·T·F) 

= D : ( FT • T • F) 

hence equation ffi.ll). 
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If the internal constraint is incompressibility, 

>- = 1c1 - 1 (6.13) 

Then equation (6.11) is of the form 

i5 N = o 

where 

N- =FT aA. =F = q ·-·· , ac 

the other derivatives of A being o. 
From (A. 1. 12) , 

a>. a <I c I 1) let {<c> -l} T = - = 
ac ac 

. N = q FT lcl·<PT>-l·<F>-l.p = q I . . ( 6 .14) 

since 

1c1 = 1. 

In incompressible Materials of Differential Type, stress 

is determined by the deformation history only to within an 

arbitrary pressure q. 

Consider another set of internal constraints given by 

A = I [F·{2D 
n n 

n-1 n = - =T 
+ L (.) D •. I).} ·F 1 I - K = 0 
i=l 1 n-1 1 n 

(6.15) 

n = 0,1,2 •••• 



where 

are constants. 

From (6.12), and (A.l.l2) 

= -=T N = q F • 
n 

Let 

n-1 n = = =T I aciCF·{2o + r (.)o .•o.}·F 1 - K > 
n i=l 1 n-1 1 n 

be constant. Since A is symmetric, 
n 

N }\-1 
n = Pn n 
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(6.16) 

(6.17} 

Therefore, for an internal constraint of the type(6.15)in a 

Material of Differential Type, the stress system ~i required 



53 

to maintain the internal constraint is given by(6.17). 

Further properties of the internal constraint described 

by {6.8) follow. 

A, as an explicit function of only C and its n time 

derivatives, satisfies the following conditions: 

= 0 

d aA = O 
dt ac 

d dA 
d t ~(n-=-=-1-) 

a c 

{6.18) 

= 0 

.... 
Then then time derivatives of A(C, ~, ... , <n> C) are given by 

{6.9) and the following: 

Differentiating (6.9) with respect to t, 

. . a A 
(n-2) = a c 

Applying {6.18) to (6.19), 

+ 

.... 
aA + de . ~ ~ + a! dt • dt ac 

(n-2) 
a e 
dt 

d 
dt 

. . . 

= -o {6.19) 



~' a2 c~ _a_/\ + 
ac dt2 ~+ 

ac 
• • • + 

The last three equations are 

n-2= 
d c d n-2c-.a. 

: ()A, + 

2 (n;;2) 
d c 
dt2 

.. dtn-2 ac dtn-2 
ac 

3).. 

ac 

dn-lc -.:. 
~+ ac dtn-l 

= 0 

a A 
--z = 0 ac 

(6.20) may also be written as 

(n) ClA 
E : - - o ac 

Since 

3A (n;l) 
- + c ac 

<n> de 
dt = O, 

= 0 
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= 0 (6.20) 

(6.21) 



integration with respect to t gives 

where K1 is a constant with respect to time, and 

dl az: a! ~ dt = at • = ar 

since, from RICCI Lemma [33 1 , a! <l. = ar 

Substituting (6.22) in (6.21-1), 

or, 

Also, 

d <n-1> 
dt [C 

= 0 

- 3:\ I : = o 
ac 

a~1 = 
ac 

= 

(n -:.1) 
d c 
dt 

<n> C : aA. 
ac 

3A. (J;l-1). d a:\ 
-::-+C --ac . dt ac 

(due to 6.18) 
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(6.22) 

(6.23) 

(6.24) 



From ( 6 • 2 2 ) , ( 6 • 2 3 ) and ( 6 • 2 4 ) , 

d 
(n-1) 

dt [ c 

' 

a~1 = o 
ac 

Integration of (6.25) gives 

where k 2 is a constant of time. 

From (6.21-2) and (6.26), 

0 

or 

()). 
--:r = ac 

Consider 

d (n;2) 
Q£[ c a~l 

ac = 
(n-2) 

d c ()). <n;2>. d aA 
-+ c ~-dt ac . ut ac 

From (6.18) and (6.28), 

(from 6.26). 
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(6.25) 

(6 .26) 

(6.27) 

(6.28) 



a A 
ac = 

where k 3 is another constant of time. 

Also, 

. . . <n-1) 
c 

<n> 
~] = c : ~ = - k 
ac ac 2 

(from 6.27) 
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(6.29) 

(6.30) 

Substitution of (6.22), (6.30) and (6.29) in (6.21-3) gives 

k3 + k4 + kll . 3A 0 . = 
00 

ac 

a A k3 + k4 
or I : -= - kl ac 

Generalising (6.23), (6.27) and (6.31), 

where 

I: a A 
(n) 
a~ 

= 
k* n 
kl 

(6 .31) 

(6.32) 



i ()). 
0 = ac 

and 

k* = constants, n = 1, 2, •••• n 

Equation (6.22) is a sufficient representation for 

the nth time derivative of strain tensor c. It is not a 
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necessary form; but by adopting such a form, one can fix the 

traces of partial derivatives of the internal constraint 
- ..!. 

function). with respect to its independent variables c, C, ... , 
<n> 
C by providing the constants of integration k~, ••• , k 1 

(constants of time t), with the help of equation (6.32). 

Subject to (6.18), (6.10) is a set of n equations of the form 

n-j-1 (i+j+l) 
1: C 

i=O 
{)). = O; Tr> ac 

j = 0, 1, 2, ••• , n-1 

For each equation of (6.10), (6.7) is satisfied as 

n-j-1 
1: 

i=O 
j = 0, 1, 2, ••• , n-1 

where N. is defined by (6.12). 
1 

Interpretation of (6.18): 

(6.33) 

(6.34) 

Consider the incompressible simple material for which 



. 
• . 

Since 

. . . 

Since 

. . . 

A. = let - 1 = 0 

a>. aiel = I c I (C-l) T -= = ac ac 

1c1 = 1 

d <a_:,= d <c-1> 0 (from dt dt = ac: 

= =-1 I, C·C = 

d = =-1 = d =-1 = at C•C + C•at C 

= d --1 
C·- C = dt 

d - =-1 
- C•C dt 

=-1 c 

6 .18) • 

= 0 

Pre-multiplying each side of (6.36) with C-l, 

d =-1 
dt c = =-1 d = =-1 

- C ·- C·C dt 
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(6.35) 

(6.35a) 

(6.36) 

(6.36a) 



from (6.35a) and (6.36a), 

o = o 
For the list of controllable deformations in incompressible 

Elastic Materials [12], the deformation gradient F is non-
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zero. Therefore, (6.18) implies that the constants associated 

with deformations from the reference configuration to the 

present configuration are independent of time, and that the 

deformation gradient F(t) has no time derivative. 

For Materials of Differential Type, consider a general 

set of internal constraint function in equation (6.15) written 

as 

n = 1, 2, 3, •••• 

3A a <n> n 
<I c I kn) · (n=i) = <n=i) -

a c a c 

<n> (n) 
a tc 

0 ~~l = (n=i) 
d c a c 

.!. 

Without much demand, it may be stated thadc, c, <n> 
•.• , c } 

(6 .37) 

form a functionally independent set, and therefore, terms like 

<n> () c 
(n-i) 
a ~ 

are all zero except when i = 0. 

The only non-zero derivatives in (6.37) are 



aA. 
~ 

. Ci> 
a c 

(~) (~) -1 T 
= I c I (C ) i=O,l, ••• ,n 

(no sum) 
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(6.38) 

Therefore, (6.18) would not be a natural set of assumptions 

for internal constraint functions (6.15) as time derivatives 

of (6.38) are non-zero. But (6.23) still holds, and in this 

case, it is the incompressibility condition. 

7. Certain Motions of Differential Type 

We will be concerned only with steady flows. The 

general approach in this chapter would be to describe a 

velocity field and then to calculate the deformation gradient 

tensor F and its time rates Ln by solving the necessary 

differential equations. 

The most general velocity field in a steady flow may 

have a functional form 

( 7 .1) 

Among the various forms of the function fi, one which would 

still be sufficiently general is 

a .. 
1) 

, (7.2) 

that is, 
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1 xl x2 3 
+ + X v = alle al2e al3e 

2 1 2 3 
X X 

+ a23e 
X 

(7.2a) v = a2le + a22e 

v3 = a3le 
xl 

+ a32e 
X 

2 3 
+ X 

a33e 

where a .. are constants. 

~i 
~J. 

If ~ then = x (t-s) , 

d~i i i so that ~i I s=o=~ ( 7. 2b) - ds = v (~ ,t-s); 

The differential equation of motion is written as 

E;j 
a .. e 

l.J (7.3) 

or 

(7.3a) 

Subject to the initial condition 

i = X ( 7. 4) 
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In (7.3), if a .. are symmetric, let them be the elements 
~J 

of a symmetric tensor A. 

Consider a change of frame so that 

where a is a constant orthogonal tensor • 

• •• From (7.3) 

--
= eY·O·A ( 7. 5) 

since 

for all orthogonal Q. 

(7.6) 

where 

If Q be so chosen that D is a diagonal tensor, (7.6) may be 

written as 

(7. 6a) 



where d .. are elements of matrix [D] of tensor D. 
11. 

Solution to (7.6) is considered in (7.34). 

In the equation (7.2a), r,i may be substituted as 

so that 

t"i 
y. = es 

1 

Therefore, (7.2a) becomes 

In Einsteinian convention, 

In the matrix form, (7.8) may be written as 
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(7.7) 

( 7. 8) 

(7.8a) 



0 0 

= 0 

0 

Let yi be substituted by yi so that 

= [b. '1 { y. } 
1] 1 

where [b .. ] is an upper-triangular matrix, 
l.J 

[b .. ] = 
1] 

0 

0 0 

Substituting (7.9) and (7.9a) in (7.8b), 

0 

0 
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(7.8b) 

(7.9) 

(7.9a) 
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0 0 

= 0 0 

0 0 b33y3 

0 (7.9b) 

0 0 

Let 

(b11Y1 + b12~2 + b13Y3)allbll = ell 



. . . (7.9b) may be written as 
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= [c .. ]{y.} 
l.J J 

(7.10) 

A solution to (7.10) may be found if [cij] is an upper

triangular matrix. This may be so under two conditions: 

1. 

2. 

bij are such that b11 = 0, and (a31b 12 + a 32b 22 > = 0 for 

all a ..• 
l.J 

If [a .. ] is an upper-triangular matrix to start with, i.e., 
l.J 

a21 = a31 = a32 = 0 • 

Condition (1) implies the following: 

when b 11 is 0, the first two equations of (7.10) are 
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= (b22Y2 + b23Y3)[(a21b12 + a22b22>Y2 + J 

+ (a2lbl3 + a22b23 + a23b23)y3] <7 • 11 ) 

The third equation yields 

(7.12} 

Solution of (7.12) subject to initial condition 

at s=O 

is 

(7.13) 

Also, from {7.11), 

(7.14) 



where k 1 and k
2 

are constants to be calculated from the 

initial condition. 
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Since y
3 

is determined from (7.13), (7.14) represents 

two equations in one unknown y
2

• Therefore, a unique solution 

exists for y
2 

only if one of the equations of (7.14) is a 

scalar multiple of the other. 

If suitable b .. 'scan be found to satisfy the above 
1] 

conditions, y. can be calculated from (7.9), and substitution 
1 

in (7.7) will yield ~i. 

Condition (2) calls for [aij] to be an upper triangular 

matrix, so that 

dt;l r.l E,:2 E3 
ds = alle"' + al2e + al3e"' (7.15a) 

dt;2 ~2 ~3 
- ds = a22e + a23e (7.15b) 

dt;3 
= 

E,:J 
ds a33e (7.15c) 

From (7.15c) and (7.4), 

= (7.16) 

Substitution of ~ 3 in (7.15b) leaves an equation in ~ 2 only 

which may be solved for c2 • Substituting t;
2 and ~J in (7.15a), 

1 an equation in ~ only may be obtained. 
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It may be noted that for the case (7.6a), using (7.4) 

y. = ln 
1 

=T where qjk are elements of the orthogonal tensor Q • 

A Particular Solution 

(7.17) 

Consider a solution to (7.2) subject to a special 

condition that while the point R moves along its path, its 

velcoity components along three orthogonal curvilinear coordi

nate axes are equal to each other. 

A solution to (7.3a-l) subject to (7.4) is 

~l = ln 

~ 2 = ln (7.18) 

~ 3 = ln 



1 
X Ca11e 
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(7 .19) 

Substitution of condition (7.19) in (7.18) shows that (7.18) 

satisfies both (7.2a-2) -and (7.2a-3). 

Therefore, a general solution of (7.2) subject to (7.4) and 

(7.19) is 

~i = ln e 
xi 

(7.20) 

(sa •. e 
x1 

+ 1) 1J 

from equation (7.20), 

= 
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111 112 113 
. [P t ( T) 1 [l] s 

121 122 1 23 
• . = 

xj 
saije + 1 

131 132 133 

where 

f9..1d)~ 
·~11 

&\! 
\933/ 

(7.21) 

(7. 22a) 



lL21 = 

= 

lL 1 n 

2a .. e 
xj 

l.J 

6(v) 2 rv 1 .Ltl 

111 

121 

131 

Steady Extensional Motions 
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112 113 

122 123 (7. 22b) 

132 133 

(7. 22c) 

(7. 22d) 

(7.22e) 

The flow represented by (7.6) is now considered in 

greater detail. 

Let the velocity vi at any point R in a body in motion 

be given by 

= 

Equation (7.23) ensures that the origin is stationary. 

are constants such that 

xi 
0 a.e = l. 

av i so that .___,... = 0 
ax1 

(7.23) 

a.'s 
l. 

(7.23a) 

(7.23b) 
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(7.23b) is the incompressibility criterion and (7.23a) is the 

condition of incompressibility. 

From (7.23a) and (7.23), 

= - l:a. 
1 

(7.23c) 

so that the sum of velocity components at any point in three 

orthogonal directions is a constant independent of the coordinates 

of the point. 

The differential equation of motion, following (7.2b) is 

i 
a.e~- - a 

1 i 

Subject to initial condition (7.4). 

Substituting ~i = ln yi in (7.24) 

= 

so that the differential equations of motion become 

(i = 1,2,3) 

Substituting 

(7.24) 

(7. 24a) 



y. = 
~ 

(7.25) becomes 

a.u. 
l. ~ 

0 

A general solution of (7.24b) is of the form 

so that 

{.) (.) a.s 
u1 = c1 ~ + c 2 ~ e 1 ~ (no sum with respect to i) 

Y· = ~ 

• . . ~i = ln y . 
J. 

Applying (7.4) to (7.25), 

c (i) 
2 ------; 

c (i) + c (i) 
1 2 

(i) hence,substituting for c 1 in (7.25), 
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(7.24b) 

(7.25) 



~i = ln 

a.s 
e !. 

X
1 a

1
• s 

(e- - -1 + e - ) 

Therefore, 

. . . 

From 

[L 1 
n 

(4 • 8) 1 

i 
[Ll 1 = (aiex-1 

= [A
1

] = 
i x-(2a1e ] 

[(ai)2 
xi i 

[L21 = e (2ex- 1)] 

[L3J = [ (ai) 3 
xi i i 

e -(6ex--6ex- + 1)] 

--------- ..... ~--~-~--~ 

n = n = n-1 = [nJCL1 ) + Cn-1)1 .r (n-i)a
1

CL
1

) + 
1=1 
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(7.25a) 

(7. 26) 

(7.26a) 

(7.26b) 

(7.26c) 

(7.26d) 
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n n-i 
+ (n-2) 1 I: (n-i) 1: (n-i-j) (ai) 2 (L

1
)n-2 + •• ,. + 

i=2 j=O 

(7.26e) 

From equation (4.29), then Rivlin-Ericksen tensors can be calcu

lated as power series in Ll. Since xl = 2Ll' a knowledge of Ll 

is sufficient to determine the Rivlin-Ericksen tensors. 

Calculation of Stress Tensor 

It is noted that since [Pt(T)] is a diagonal matrix, the 

velocity field describes a Steady Exten~ional Motion [15]. In 

this case, only incompressible fluids are dealt with. Since the 

n Rivlin-Ericksen tensors are also diagonal, from (2.12), it is 

inferred that the determinate stress matri~ [ad] will be in the 

diagonal form. Under these conditions, a representation for o 
is of the form [22, (29.15)]. 

a 
= 0 (7.27) 

where 

E = k 1€1 

for an arbitrary scalar multiplier k, and 
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- = 2 I: (A
1

) - = 3 I: (Al) 1:1\1 

[EJ - = 3 = I: (A
1

) = = 4 1: (Al) - = 2 I: (A
1

) (7.27a) 

I:l\1 
I = 2 : (Al) I:I 

i i 
4(a.)2e2x 8(a.)3e3x 0 

1 l. 

i i i 
= 8(a.)3e3x 16(a.) 4e 4x 4(a.)2e2x 

1 l. 1 

i 
0 4(ai)2e2x 3 

and 

where k is the same arbitrary scalar multiplier, and [Ei] are 

obtained by replacing the first, second and third colums of [E] 

respectively by the column {(o:X1> ,<a~tf> ,<o:I>l 
Let (7.27) be written in the form 

(7 .28) 

Substituting for A1 and X1
2 from (7.26b) 
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(7.29) 

Cauchy's Equations of Motion (15] are given by 

r a. . . PW'i = pt. (7.30) 
j l.),J 1 

where 

"0-i = 
a vi 

+ 1: v. . vj (7. 30a) at 
j l.,J 

Therefore, 

(all - P"') '1 = p(a1)2 e 2x1 

( 0 22- ptp),2 = p(a2)2 e 2x2 
(7.31) 

( 0 33- p11J),3 = p(a3)2 e 2x3 
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where w which is a sinqle valued potential of body force, is 

reqarded as specified in advance. 

Equations (7.29) and (7.31) constitute five equations in 

three unknowns a11 , a22 and a33 • In order that the Steady 

Extensional Motion be dynamically possible in a general incom~ 

pressible fluid of Differential Type, it is necessary and 

sufficient that (7.29) and (7.31) have a solution. 

A solution of the form 

(7.32) 

where f(t) is a function of time alone, is possible if a 1 and 

a 2 , as calculated from (7.27) and (7.27a), satisfy a further 

condition 

= (7.33) 

NB! According to (7.27), (7.27a) and (7.28), 



81 

a = -2 
(7.33a) 

Also, from (7.33), 

(7.33b) 

Equation (7.33b) provides auxiliary conditions to be satisfied 

by the scalar invariants of stress tensor'and the first Rivlin

Ericksen tensor l 1 and its powers, in the form 

= -
i xe (7. 33c) 

In the second Steady Extensional Motion to be considered, the 

velocity field is given by 

Differential equation of motion is 

i 
a.e~

J. 

(7.34) 

(7. 34a) 



subject to initial condition (7.4). 

Following the procedure adopted in the previous example, 

. . . 

i 
~i ={xi- ln(l + aisex-)} 

i -1 
[Ft(t)] = [1 + ai sex-] I 

x!. -2 
[Ct (t)] = [1 + a.se ] 

l. 

i 
[Ll] = [aiex-1 

= 

[t 1 = 
n 

[X ] can be calculated from (4.29) 
n 

i 11:: 1,2,3 
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(7.35) 

(7.35a) 

(7.35b) 

(7. 35c) 

(7.35d) 

(7. 35e) 
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Stress tensor as a function of Rivlin-Ericksen tensors A1 and 

A2 will be in the diagonal form since (A11 and (A21 are diagonal. 

Therefore, the representation theorem (7.27) will hold. 

The constitutive relation yields 

xl x2 2 2x1 2 
0 11 - 0 22 = 2a1 (a1e - a e ) + 6a2 (Ca1 ) e - (a2)2e2x ) 

2 

(7.36a) 

x2 3 
+ 6a ((a )2e2x2 -

3 
0 22 ~ 0 33 = 2a1 ca2e - a ex ) (a3)2e2x 

3 2 2 

From (7.34), (7. 30a) and (7 .30), the equations of motion yield 

p(al)2 
1 

(all - pllJ) '1 = e2x 

( 0 22 - pllJ) '2 = p(a2)2 e 2x2 

( 0 33 - p~) '3 = p(a3)2 e 2x3 

(7.36a) and (7.36b) represent five equations in the three 

unknowns a ..• 
11 

A solution to (7.36a) and (7.36b) is 

(7.36b) 

(7. 36c) 
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where f(t) is a known function of time alone, and 

+ 6a2 = ~ = constant (7. 36d) 

p being the density of the material. 

NB! The incompressibility condition for the above example is 

given as sum of the three components of the velocity at any 

point R in an orthogonal co-ordinate system :is zero, or, 

= 0 

Another example of Steady Extensional .Motion in incompres

sible Materials of Differential Type has the velocity field 

= 2a. (xi) 1/2 
l. 

Let ai be such that 

al a2 
+ a3 -

0 -r+ x2 x3 -
X 

. av1 
0 + the • • --- = 

ax l. 

{7 .37) 

(7 .37a) 

flow is incompressible (7.37b) 



Differential equation of motion is 

Subject to initial condition (7.4). 

The solution of (7.37c) is 

ret <T> 1 = [1 
ais 

- 12 -R-
a. 

[t11 
1, 

= [rx-rl 
x-

2a. 
rX1 1 = ~;tl 

2(ai)2 

[A21 = [ 
x1 

a.s 
1 

= [ 1 - r=rl I (i = 
I x=-

= All other Rivlin-Ericksen tensors, and L2 ~etc. are 0. 
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(7. 37c) 

(7.38) 

1,2,3) 

(7. 38a) 

(7. 3 8b) 

(7.38c) 

(7.38d) 

(7 .38e) 
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From (7.38b-e), 

[~t(l')) [l] - s[L1 + LlT] (s)2 = = T = + [Ll•Ll ] 

(7.38f) 

2 -
= [l] - s rX1 1 + (s) [I 1 

,.-- 2 

Therefore, from[3;(16)],it would appear (7.37) represents a 

Viscometric Flow. But from (7.38c), this is not so since 

£Lll2 # £U1. 

The flow represented by (7.37) is a special flow in 

which 

for n > 1, (7. 38g) 

but for n = 1,2, •••• 

For calculation of the stress tensor, constitutive 

relation (7.28) is valid. 

From (7.28) and (7.38d), 

(7. 39a) 
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From equations of motion (7.30), and (7.30a), 

(a 11 - PlP) , 1 = 2p(a1)2 

( 0 22 - pllJ) '2 = 2p(a2)2 (7.39b) 

(a33 - PlP) '3 = 2p{a3)2 

A solution to (7.39a) and (7.39b) is given by 

a .. = 
l.1 + f(t) (7. 40) 

where f(t) is a known function of time alone, and a
1 

and a
2 

are given by 

(7. 40a) 

where s1 and s2 are determined from (7.27a), (7.33a) and (7.40a). 

The fourth Steady Extension to be considered has its velocity 

field as 

. i 2 
v

1 = a. (x-) 
l. (7. 41) 



Incompressibility condition is given by 

i 2a.x = 0 
l. 

Differential equation of motion is 

subject to initial condition (7.4). 

Solution of (7.4lb) is 

So that 

[L 1 
n 

i = 4 [a. x-] 
l. 

(i = 1,2,3) 
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(7. 4la) 

(7. 4lb) 

(7.42) 

(7. 42a) 

(7.42b) 

(7.42c) 

(7.42d) 

(7. 42e) 
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rl 1 n = (n+3)! [{a.)n(xi)n] 
31 l. 

(7. 42f) 

The five equations to be solved to determine the components 

011' 022 and 033 of the diagonal stress tensor a are 

( 0 11 - ptlJ) '1 = p(al)2(xl)3 

7.43a) 

( 0 22 - pllJ) '2 = p(a2)2(x2)3 (7.43b) 

( 0 33 - pllJ) '3 = p(a )2(x3)3 
3 

A solution to (7.43a) and (7.43b) is 

where f(t) is a function of t only, and a1 and a 2 , in addition 

to satisfying (7.33a), are of the form 
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al = k (xlx2x3)-l 
1 

(7. 44a) 

a2 = k2(xlx2x3)-2 

where k1 and k2 are constants. 

A Particular Case of the velocity field (7.2) is now considered 

where the velocity components at a point R are linear functions 

of the coordinates of R. 

The velocity field is described as 

vl = a x 1 
1 + b x 2 

1 + c x 3 
1 + dl 

v2 = a x 1 
2 + b x 2 

2 + c x 3 
2 + d2 

v3 = a x 1 + b x 2 + c x 3 
+ d3 3 3 3 

where a., b., c. and d
1
. are constants. 

l. l. 1 

The differential equation of motion is given by 

l 

(7.45) 
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(7. 46) 

Subject to the initial condition (7.4). 

From ( 7 • 4 6 ) , 

- ds = = 

= (7.47) 

Let 

a ~1 
1 + b t 2 

1 + c t 3 
1 + dl = al 

a t 1 + b t 2 3 
+ d2 (7.47a) + c 2 t = a2 2 2 

a t 1 + b E;2 + c t 3 
+ d3 = a3 3 3 3 

From (7.47) and (7.47a) 
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- ds (7.47b) 

. • d~l = - a ds 1 

d~2 = - a ds (7.47c) 2 

d~3 = - a ds 
3 

Let 11 , 12 and 13 be some arbitrary constants. Multi

plying the three equations of (7.47c) by 11 , 12 and 13 
respectively and adding, 

- ds = (7.47d) 

let 11 , 12 and 13 be so chosen that 

(7.48) 
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Substitution of (7.47a} and (7.48} in (7.47d} leads to 

= 
d(ll~l + 12~2 + 13~3) 

8(11~1 + 12~2 + 13t3 + r) (7.49) 

Since (7.48) may be written as 



a 0 

= 0 B 

0 0 

0 

0 

s 

1 1 
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(7. so) 

the choice of 11 , 12 and 13 is possible if B is a root of the 

equation 

= 0 (7.50a) 

Let the roots of the equation (7.50a), supposed distinct, be 

1 1 
Al, X2' !_ and let the corresponding values of 1. and r be AJ' 1 

i 
11' 

i 
12, 

i 
13, ri (i :a 1 12 1 J) (7.50b) 

Then, 

- ds = 
A1 d(lt~l + lt~2 + li~3) 

(i = 1,2,3) (7.51) 
(li~1 + llt2 + lit3 + rl) 

1 2 3 



Integrating both sides of (7.51), 

Applying (7.4) to (7.Sla), 

(i = 1,2,3) 

The three equations of (7.Slb) may be solved to determine 

~i in terms of x1 • 
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(7. Sla) 

(7.Slb) 

It would then be possible to calculate [Pt(T)], [X1J, 

£X21 etc., and check the controllability of motion. 

A Special Case of (7.45) is 

(7. 52) 

where a, ••. , fare constants. 
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The differential equation of motion is 

(7.53) 

subject to initial condition (7.4). 

From (7.53-1), 

Differentiating again with respect to s, 



. . . d3~1 d~l 1 :-r-- (ac +be + fd) -as+ (ade + bfc)~ = 0 
ds 
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(7.53a) 

Similar third order equations may be constructed for ~ 2 and ~ 3 • 

A solution for (7.53a) is of the form 

(7.53b) 

where m1 , m2 and m3 are the roots of the cubic equation 

m3 - (ac + be + fd)m + (ade + bfc) = 0 

and from (7.4) and (7.53b); (7. 53 c) 

It would now be possible to calculate An,(n = 1, 2, •••• ) 

and check for controllability of motion. 



CHAPTER III 

MOTIONS WITH CONSTANT STRETCH HISTORY 

8. Preliminaries 

Consider any four positions r1 Ct1), r2 Ct2), r3 Ct3) and 

r4 (t4) of a point R in a deforming continuous media, such that 

the positive time intervals Ct2 - t 1 ) = (t4 - t 3 ) = s. The 

motion of point R is one with a Con~tant St~etch Hi~to~y if 

the strain tensors ct (tl) and et (t3) are related by an 
2 4 

equation of the form 

ct <t3> = ~TCt)·Ct Ct1 )•PCt) 
4 2 . 

or, 

_t4 
PTct4>·C:2 cs>·Pct4> (8.1) ct (s) = 

4 2 

where P(t4) is an orthogonal tensor. 

Equation (8.1) means for an observer moving with the 

material point R, magnitudes of the principal stretches and 

changes of direction of principal axes of strain are functions 

of time lapse s alone and not of present time t. 

Due to NOLL [16] , deformation gradient has the 

98 



99 

representation 

(8.2) 

where R is a constant tensor and Q(T) is an orthogonal tensor 

function. 

Let 

and 

(8.2a) 

so that 

tl(t) = M + t zct> (8.2b) 

Ft(T) = {F(t))-1 ·F(-r) = (etM•0(t))-1 •eTM.Q{T) 

= ~T(t)·e-tR•e-rR.O(T) 

= ~T(t)•e(T-t)M•Q(T) (8.3) 

etc1:> = f -T t<'>·rt<T> = ~T(t)•e(T-t)R.a(T)•0T(T) e{T-t)RT•Q(t) 
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n -T =T -sM -sR = = Q (t)•e •e •Q(t) (8.4) 

( 8. 4a) 

From (I.lO). 

(8.5) 

i(t) is a measure of rotation of the basis ek(t) relative to 

which Ct(T) has components independent of timet. 

Let the tensor defining the natural logarithm of M be N. 

• N = lnA 
(8.6a) 

. • 

. -T - - =T § 
•Q • . o ·M·O = Q •e 

-T - -
(8.6b) = 0 ·N·O e 

Taking natural logarithm of both sides, 



=T = = =T = = =T = = ln(Q •M•Q) = Q •N•Q = Q •lnM•Q 

In deriving equation (8.7) use was made of 

- -T n -
=T M = Q ·~·0 Q •e •Q = e • 

From (8.2), 

or, 

• . . 

. . . 

- tR -r 0 (t) = e •0 (t) 

1 = =T = t ln(F0 (t)•Q (t)) 

also, from NOLL [16, (2.15)], 

= e 
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(8.7) 

tMt 

(8. 8) 

(8. 9) 
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since 

F'0 <o> = o<o> =I 

If the initial values of rate of deformation gradient, 
.&. 

L(O) and Q(O) are given, then from (8.8) and (8.9), 

.I. 

t(O) + 0(0) 

or, 

0(t) (8.10) 

In [31 ~.6n, COLEMAN mentions that Q() is not uniquely 
- () determined by~() (s). All quantities necessary to determine 

Q() uniquely are shown in (8.10). 

=T If Mt and Mt commute, i.e., 

= (S.lla) 

then equation (8.4a) may be written as 

(8.llb) 

A sufficient condition for Mt and A~ to commute is that Mt be 

symmetric, since 



- 2 -T -(M ) = M ·R t t t 

Therefore, (8.llb) may be expanded to 

=t ct (s) 

N-1 . i 
= I + r c -1 > 1 < s > c 2Rt > i 

i=l """"il 

From (5.9) and (B.lld), 

In (4.29), if Ln(t), n = 1,2, •••• are symmetric, then 

A (t) 
n 
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(B.llc) 

(S.lld) 

(8.lle) 

(8.llf) 

(8.llg) 

A sufficient condition for equality of (S.llf) and (B.llg) is 



- n (L1 (.t) ) , n = 1, 2, •••• 

(B.llc) also holds good if 

1. Mt is skew, or 

2. Mt is orthogonal, since for (1) 

= 

and for (2) 

= 

- d~ ) 2 t 

= 

= 

From (8.13a-1), (S.lld) becomes 

= 

since 

= 

From (8.13a-2) and (8.3), Ft(T) is an orthogonal tensor • 

. . . = = 
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(8.12) 

(B.l3a) 
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Cases for which strain tensor C~ (s) is an idaat..i ty tensor 

are not considered here. 

From equations (8.3) and (8.2b) it is also noted that 

if Q is independent of t so that a = n, 

a -
aT Ft (t) f = <6T·R·e(T-t)M.Qlj 

t=t T=t 

or 

Similarly, 

(8.14) 

where 

(L1 (t)) n = (L1 (t)) • (L1 
(t) •• • (Ll (t)), (n terms) 

Therefore, equation (8.12) holds good in two cases: 

1. when the tensor M as defined in (8.2) is symmetric l (8.15) 

tensor Q 2. when the orthcqonal as defined in (8. 2) is 

independent of time. J 
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9. Necessary and Sufficient Conditions for MCSH 

Theorem 1 

A Motion with Constant Stretch History can always ·be 

found for a motion in which the (n-l)th acceleration gradient 

t (t) is equal to the nth power of the velocity gradient n 

t 1 (t), for n = 1,2, •••• 

Proof: 

The (n-l)th acceleration gradient is defined as 

= n = 1,2, •••• 

If Ln(t) is such that 

- n (L
1
(t)) , n = 1,2, •••• 

then, from (4.8) and (9.2), (9.1) is satisfied by 

= e 
-s[L

1
(t)] 

Also, from [16], considering an orthonormal basis 61 (t), 

b2 (t), 63 (t) which is attached to the material point and 

which rotates, as the point moves, according to the law 

( 9 .1) 

(9. 2) 

(9. 3) 

(9.4) 
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the definition of a MCSH from (8.3) t·akes the form 

= (9. 5) 

Therefore, (9.3) is a MCSH whenever 

(9. 6) 

Two such cases are noted in (8.15). From (9.6), deformation 

gradient is given as 

~o(T) (9. 7) 

Theorem 2 

All Steady Motions with Constant Stretch History 

obeying 

except viscometric flows where 

are homogeneous motions. 
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Proof: 

Consider a motion in which any position ~(R,T) of 

point R at time T is related to current position r(R,t) as 

~1 = 

= ( 9. 8) 

= 

The relative deformation gradient Pt(T) is given as 

(9. 9) 

By definition of MCSH, from equations (8.3) and (8.4) both 

relative deformation tensor Ft(T) and relative strain tensor 

Ct(T) are independent of position vector r so that each element 

af. 
l. 

ax. 
J 

of (9.9) is a constant with respect to X. • 
J 
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Therefore, (9.9) can be integrated to yield 

(9.10) 

where C(t) is a function of time. 

(9.10) represents a homogeneous motion. There are two 

non-homogeneous flows as exceptions to the integration (9.10): 

1. A flow in which one of the coordinates remains constant at 

all times: (planar flow) 

E;l = 

= (9 .11) 

E;3 = 

so that relative deformation gradient Ft(T) is given by 

1 0 0 

[Pt{T)] = df~ a;r gl1 
1 0 (9.12) 

aM !!r 9u 
0 1 

Since the x1 coordinate of all points in the flow remains 



110 

constant in time, f(x1 , s) and g(x1 , s) could be non-linear 

functions of x1 , but still yield a MCSH as 

0 0 0 

lL1 <t>J = [RtJ = d <at , 1 ~ as a;1 s=O gll 
0 0 (9.13} 

d <~)I fi!;. 
iiS ax s=~ gll 

0 0 

so that 

Also, if f and 9 are linear in s (steady flow) so that 

= 

then the general class of flows represented by (9.11) with a 

velocity field 

(9 .14) 
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is a viscometric flow·. [ 3, 16, 31, 34] • 

2. In a general rectilinear flow under a constant pressure 

gradient [17], the velocity field may be expressed as 

Integration of (9.15) subject to til =xi leads to 
s=O 

. . . 

F;l = 

= 

= 

1 

0 

3f jg33 
-s ;;r gll 

0 0 

l 0 

a£ f5i 
-s ax2j g22 

0 

( 9 .15) 

(9 .16) 

(9 .17) 
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0 0 0 

ri:1 <t>1 = 0 0 0 (9 .18) 

df :/lf a;r 911 
af ~ 
ax2 922 

0 

so that though f(x 1 , x2) may be a non-linear function in 1 
X 

and x 2 , (9 .18) obeys the relation 

= 

Therefore, the velocity field (9.15) is one of viscometric 

flow. 

N.B.! For non-steady Viscometric Flows, 

but [3] for n = 1, 2, 3, •••• 

These conditions are reversed in (7.38g) for the flow repre-

sented by equation (7.37). 
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Theorem 3 

If [t1 (t)] in its most general form is given by 

[t1 (t)] = [aij), ij = 1,2,3; aij are constants 

with 

in cartesian coordinates; then a MCSH can always be constructed 

from a velocity field given by 

:Jt. = a .. x. + k~ 
l. l.J J l. 

I 

acceleration field by 

2 x. = a.kak.x. + k. 
1 l. J J l. 

__ .._. ___ ,_,_~ ........... 

the (n-l)th acceleration field by 

a .x. + k~ 
qJ J 1 

1 2 n where k., k., ••• ,k. are constants. 
1 1 1. 



Proof: 

Since 

and if 

[L1 (t)] = 

then 

[L
2

(t)] = 

- - - -

rtn(t)] = 

Since [Ln(t)] is 

[L (t) 1 = n 

[a .. 1 , 
1J 

2 [a .. 1 = 
1J 

n = 1,2, •••• 

[aik8 kj1 

- - -

n (n times) 
aqj1 [a .. ] = [ 8 ik8 k 1· • • • • • • • • • • 1J 

defined as 

(n) n 
[F t (t) 1 = r < -1 > n L 'i < s > 1 I 

dsn s=O 
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(9 .19) 

from (9.19), [~t(T)1 may have the general form 

n (s)n (n times) 
+- •••• + (-1) :nr- [aik~l···••••••• aqj] +- •••• 

• 
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or 

-s [a .. 1 
= e l.J (9.20) 

integration of (9.20) leads to 

-sa .. 
~· = e l.J x. + f. (s) + c. 

1 J 1 1 
(9.21) 

where fi are functions of s alone and Ci are constants. 

Differentiating (9.21) with respect to s, and then substituting 

s = 0, 

x. = 
l. 

a .. x. + k~ 
1J J l. 

(9 .22} 

Q.E.D. 

N.B.! This proof suggests that (7.45) represents the velocity 

field of most general MCSH. 
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10 •. Special Solutions 

1. As a particular case of (7.52), let the components of the 

velocity at any point R be linear functions of any two 

coordinates; so that 

·1 2 3 x = ax + bx 

(10 .1) 

where a, ••• ,f are constants. 

This flow is amenable to an exact solution for the 

positions of point R when c = -c, f = c. The resulting 

differential equation of motion is 

(10.2) 

subject to the initial condition 
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Differentiating (10.2-2) and (10.2-3) with respect to s, 

- c 
d~2 d~ 3 2 3 2 3 ds + d -as= -c[ct - d; ) + d[-et - ct 1 

or 

a2 ~ 2 - 2 2 ~ ((c) + de) E; ds2- (10.2a) 

Similarly, 

(10.2b) 

Let 

((c) 2 +de) = (k) 2 

The solution to (10.2a) and (10.2b) is given as 

~2 = c eks 
1 

+ c e-ks 
2 

(10.3) 

t;3 ks -ks 
= c 3e + c4e 

where 



c1 , c 2 , c 3 , and c 4 are constants. 

The four initial conditions are given by 

d~3 
-I 
ds s=O 

= 

2 3 = - ex + dx 

= 

Substitution of (10.3a) in (10.3) gives 

~2 x2 cosh ks + cx2 dx3 
sinh ks = k 

~3 x3 ex2 + 3 
= cosh ks - k ex sinh ks 

Substituting for ~ 2 and ~ 3 in (10.2-1), 
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(10.3a) 

(10.4a) 

(10.4b) 

rl xl 2(a . h ks + ac- be h k ) 3( b . h ks + ~ = - X k- S1n COS S + X -k S1n 
{k) 2 

+ ad + be 
(k) 2 cosh ks) (10,4c) 
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f32. 

where 

a ac -be ~11 1, £ 12 = - (k sinh ks + cosh ks) ---
(k)2 9 22 

fl3 
b ' ad + be cosh ks) j 911

, £21 0 = (-- sinh ks + = k (k) 2 933 

(10 .Sa) 

£22 cosh ks + c . h ks; £23 = - ~ sinh /1;2 = k SJ.n ks -
33 

£31 0 , £32 e ftH cosh ks c . h ks = = - k sinh ks --- , f 33 = - k s1n 
922 

0 a/W; fi; b-
922 3 

£E1 <t> 1 = 0 -c ~ (lO.Sb) d 
33 

0 e ftf3 c 
922 



. . . 

Also, 

[L2 Ct)] 

0 

= 0 

0 

0 

0 

(be - ac) j 911 

922 

(k) 2 

0 

a(k) 2~ 
922 

-c(k) 2 

e(k) 2~ 
922 
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(ad +bc)}
911 

933 

0 = [Ll <t>12 

(k) 2 (lO.Sc) 

b(kl2/gn 
933 

d(k)
2 ~ = [Ll<t>13 

933 

c(k) 2 

(lO.Sd) 

Due to Theorem (3), the velocity field (10.2) describes MCSH. 

In (10.1), if x1 = O, the flow simplifies to 
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1 0 0 

[Pt(T)] = 0 (cosh ks + ~ sinh ks) d . h ks~ (10.6a) - k s1n 
933 

0 - ~sinh ks~ (cosh ks - ~ sinh ks) 
k 922 J 

0 o· 0 

[L1 (t)J = 0 -c d/fA 933 

0 e~ c 
922 

0 0 0 

0 0 

0 0 

__________ .__, _______ ...._. ___ _ 

(10.6b) 

Hence, the flow is MCSH. 
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From (lO.Sb) 

[A
1 

(t)] = [t
1 

(t) 1 + [L~<t>J = 

0 A11 §,; a - b-
22 33 

= a~ - 2c d~+ e~3 (10.7a) 
922 933 922 

;9u d/i;+ e/W; 2c b-
922 9 33 922 

t_ 

Also, from (lO.Sb) and (lO.Sc) 

= 

where 

2(a) 2 9 11 + (b) 2 gll, 922 f,;ll = a
12 

= { (be - 3ac) + 2bd - -
922 933 933 9 22 



all = {(ad + 3bc) + 2ae 
933}!11 , a = 
922 933 21 

{(be- 3ac) 
911 

+ 
922 

= 2{2(c) 2 + d(e + d 
922

)}, 
933 

933 {1;22 a 23 = 2c(d - e ---) ---
922 9 33 

= {(3bc +ad) 911 + 2ae 911}J' 9
33, 

933 922 911 

= 2{2(c) 2 + e(2d + e 
933

)} 
922 
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(10.7b) 

From [27], the determinate stress tensor may be calculated 

for this motion. 

N.B.! In (10.2), if (c) 2 + ef = 0, the flow is a Doubly 

Superposed Viscometric Flow. [8]. 
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An Approximate MCSH 

Consider an irrotational motion in which 

= i x- e (10.8) 

so that 

(10.8a) 

and at s = 0, 

(10.8b) 

The initial condition of the flow is the same as (7.37), but 

in the present case, 

From (10.8), 

e 

or 
(10.9) 



a . s 2a.i - (2a. I jx.) s I 
= [ ( -1) ( 1 + ~) (- ) e ~ ;_ 

rx~ rxi. s=O 

a. -2a. s/ ;;i I 
+ (-1) -t e !. ] 

x- s=O 

2a. a. 
=- [ ;;.+ -;x-+ 1 = 

a. [ ct] 
yX-

a.s 2a. 2 e- 2ais/ fici 
= [ (1 + _l;.,_) (- __.) v"' rx!. rx~ 

2a. 2 
1 

1 = [?] 

s=O v" 
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(10.9a) 

(10.9b) 

a.s 2a. 3 
= [ ( -1) ( 1 + ~. ) (- __.) 

-2ai s/ JX!-_ 2a. 3 
1 1 = [rx,.] {10.9c) 

y Xl. (X!. 
e -

x!. 
s=O 

(10.9d) 

= n For a MCSH, Ln(t) = [L1 (t)] • Due to the similarity 

of equation (10.9d) to this condition, the motion in (10.8) 

is being referred to as an approximate MCSH. 
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11. CONCLUSIONS 

In this thesis, an analysis of general Motions of 

Differential Type and those with constant Stretch History has 

been made. 

Since it ha~ been suggested that all controllable 

motions for elastic materials have been found [12], the 

attempt in the present work was to search for controllable 

motions in Materials of Differential Type. As a pre-requisite, 

certain kinematic, and internal constraint equations in MDT 

were worked out. An interpretation of Rivlin-Ericksen tensors 

An starting with a Taylor series expansion of relative strain 
=t -tensor Ct(s) was made. As long as L1 (t) was not nil-potent, 

and hence A1 (t) too was not nil-potent (considering non-skew 

L1 (t)),it would always be possible to expand Ct(T) as an 

infinite power series of A1 (t). It was proved that motions 

where [L1 (t)]n = [Ln(t)] + [A1 (t)]n = [An(t)] were Motions with 

Constant Stretch History. 

The general case of steady Motions of Differential 

Type was considered to have a velocity field described by 
i xj 

v = a .. e Some solutions could be found for special cases 
1J 

of this velocity field. Problems concerning irrotational 

(Steady Extensional) flows were described and solved for 

stresses. 

Motions with Constant Stretch History were introduced 
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as special cases of Motions of Differential Type. NOLL'S 

definition of MCSH [16] was used. Certain theorems regarding 

necessary and sufficient conditions for MCSH were proved. A 

class of MCSH was introduced, and an approximate MCSH was 

suggested. 

After COLEMAN and NOLL'S introduction of Motions with 

Constant Stretch History (3,15,16], HUILGOL [8,9] has done 

extensive research on the topic. He has worked out further 

examples of such motions, and has showed that many classes of 

MCSH are obtained by superposition of Viscometric Flows. It 

was observed in the present work that while certain non-

homogeneous motions could be classified as Viscometric Flows, 

the more general Motions with Constant Stretch History were 

homogeneous. Therefore, confusion could arise in classifying 

certain types of MCSH as Superposable Viscometric Flows. All 

examples of Viscometric Flows used by Dr. Huilgol to obtain 

MCSH on superposition are homogeneous motions. 

It is noted in (8.3.3) that for controllable motions, 

ai should not be subjected to any restrictions. In motions 

considered in the present work, the restrictions on ai in 

(7.27), (7.34), (7.37) and (7.41) have been stated. If a. 
1 

generally satisfy the conditions (7.33), (7.36d), (7.40a) 

and (7.44a) respectively, then the motions are controllable. 

At the end of Chapter II, physical components of 

deformation gradient tensor P are introduced. In subsequent 

solutions of problems, such physical components are considered. 



Some tensor relations regarding gradients of scalar valued 

tensor functions, are derived in Appendix A. Brief introduc

tions to constitutive equations, representation theorems and 

controllable motions are given in Appendix B. 

The question of discovering all possible controllable 

motions is not closed at present. 
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APPENDIX A 

TENSOR ANALYSIS 

A.l Gradients of a Scalar-valued Tensor Function 

In this section, only second order tensors are con

sidered. Second order tensors occupy a space L of dimension 

(n) 2 • Symmetric tensors/form a subspace S of L of dimension 

~(n+l). 
Any function whose arguments are tensors in L or S 

and whose values are scalars, vectors or tensors is called a 

tensor function. 

A scalar.valued isotropic tensor function E(B) of one 

variable is called an orthogonal invariant or briefly, 

invariant of B. 
Principal invariants Ik(B), k = 1,2, ••• ,n of the 

tensor B are defined as the coefficients of the following 

polynomial in A.: 

In particular, 

(A.l.l) 



In 3 dimensions (n = 3), 

= = 

where, for the matrix of the tensor B 

= III= B 

the first principal invariant IB is given by 

the second principal invariant IIB is given by 

bll bl2 b22 b23 b33 b31 
II= = + + 

B 
b21 b22 b32 b33 bl3 bll 

a.2 

(A.l.2) 

= 1 -~- -
21 B B:I 

N.B.! In Sections A.l and A.2, no difference is made between 

a tensor and its matrix. 



a.3 

and the third principal invariant IIIB is given by 

Another important invariant of B is defined by 

I~(B) = (A .1. 3) 

which are known as the moment.6 of !. 

The gradient of the scalar-valued tensor function f(B) 

is defined by 

aE 
oB 

= E== 
B 

Consider E to be another second order tensor. 

• . . d = -
ds f(B + sC) I 

s=O 

= {a (B + sc) • as • aE(B + s~)}l 
acB + se> 

= c~ + c + s ~) I 
s=O 

(A.l.4) 

s=O 

(A.l.S) 



a.4 

since B is not a function of s. 

This is another way of introducing the gradient of a 

scalar-valued tensor function. 
}1 

If B is invertible, then the following is true: 

Using the equation, (A.l.l) for ). 

r<s>-1 ·c1, we get 

or 

= 1 
s' and replacing [~] by 

Differentiating(A.l.S)with respect to s and putting s=O, 

From (A .1. 5) and (A .1. 9) , 

= arn(B) 
C:---aa = 

For any arbitrary C, 

(A.l.6) 

(A.l.9) 

(A .1.10) 



- - -1 -I: { (B) ·C} 

Therefore, (A.l.lO) becomes 

= 

Again since c is arbitrary, (A.l.ll) is always true if 

or 

Cli (B) 
n 

as 

ajsl = lsl{<s>-llT 
ai3 

Equation (A.l.l) may also be written as 

J[AI + B] I= 

where 

By (A.l.l2), we have 

a.S 

(A .1.11) 

(A.l.l2) 

(A.l.l3) 
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(A.l.l4) 

Pre-multiplying both sides of (A.l.l4) by {Al + B)T, 

{A.l.lS) 

since inversion and transpose are interchangeable matrix 

operations. Substituting {A.l.l3) in {A.l.lS), 

(A.l.l6) 

or 

{A.l.l7) 

Comparing the coefficients of the powers of A leads to 

, k = O,l, ••• ,n (A .1.18) 

where I 0 = 1 and In+l = O. 
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Thus, using induction, 

a a as (A.l.l9) 

(A.l.20) 
as as 

Premultiplying (A.l.20) by ftT and subtracting from (A.l.l9), 

aik+l<s> T 2 aik-lca> - - =T • I----- d3 ) • = Ik(!i) I - H •Ik-l(B) as as (A.l.21) 

Also, from induction, after (A.l.20), we get 

(A.l. 22) 

Pre-multiplying (A.l.22) with (DT) 2 and adding to (A.l.21), 

(A .1. 23) 

Generalisation of (A.l.23) yields 



a.a 

= 
k-1 . . T J E = J {.1: (-1) {Ik-'+l(H)}(B)} 
J=O J 

(A.l.24) 

Putting k = n+l, since In+l = 0, (A.l.24) yields the theorem 

of Hamilton and Cayley 

In three dimensions (n=J), (A.l.24) gives 

()I= 
B 

a a 

()II= 
B 

= 

--= as 
-I =T IB - B 

(A.l.25) 

(A.l.26) 

Gradients of moments 1~(6) as defined by (A.l.3), may be calcu

lated in a similar manner. Since 

(A.l.24) yields 



a(I:s> =I 
as 

A generalised formula, following [34] is 

A.2 Conver~ence 

a.9 

(A.l.27) 

(A.1.28) 

We deal with convergence of series containing second 

order tensors in three space. 

Let ~0 , X!, ••. ,X~ represent (n+l) second order tensors 

whose components are given by 

(with suitable conditions on the metric tensor; we are interested 

in the magnitudes of the components). 

An expression of the form 

co 
n= • • • n= A*+ (T-t)A* + ••• + (T-t) ~ + • = E (T-t) A* 

0 1 n=O n 
(A. 2 .1) 

represents nine equations in its components 

o + ( t) 1 + ••• + (•-t)nanik aik T- aik ' 
co 

(A. 2. 2) 



a.lO 

Equation (A.l.l) represents a power series and is defined as 

the limit 

N 
Lim ~ (T-t)n A-* (A 2 3) 
N+m n:o n • • 

for those values of T for which the limit exists. For such 

values ofT, the series is said to converge. Since we are 

dealing with the matrix of the tensor, and a (nxn) matrix is 

said to converge when all its n2 elements converge, then (A.l.J) 

will converge if 

Lim N n n 
r (T-t) aik N+m 

n=O 
(A. 2. 4) 

converges. 

Any standard test to determine the convergence of 

(A.2.4) for values of T may be employed. We show the ratio 

test. 

Lim 
n+oo 

where 

Let Bik be defined as 

n+l 

I a ik I I ( T-t) I = 
n 

aik 

Lim 
n+oo 

n+l 
laik I 

n 
aik 

(A. 2. 5) 



if this limit exists. 

It follows that (4.1.1) converges when 

and diverges when 

IT-t I > 1 
Lik 

a.ll 

(A.2.6) 

Therefore, when Lik exists and is finite, the intervals of 

convergence 

{ (t - -
1 -) 1 

Lik 
(A.2.7) 

are determined symmetrically about the point t such that inside 

the interval, the series (A.2.1) converges, and outside the 

interval, it diverges. 

The intervals of convergence may coincide for all 

elements if 

n+l 
Lim I aik I = L 
n+oo n 

aik 

is the same for all components aik• 

If any value of Lik is 0, or L = O, the intervals of 



convergence include all values of T. However, if Lik is 

infinite, or if more generally, 

a.l2 

is·unbounded, as n•~, the series converges only a~ the point 

T = t. In all other cases, namely, when Lik's exist and are 

finite, a finite interval of convergence is determined. 

A.3 Isotropy 

A scalar-valued tensor function f(B 1 , § 2 , •• vBn) is 

said to be isotropic if the relation 

(A.3.1) 

= holds for all orthOgonal tensors Q and all B in the domain n 
of definition of E. 

A tensor-valued function g(D1 , ~2 , •• ~n) is said to 

be isotropic if the relation 

is satisfied for all ortho.gonal tensors Q and all B in the n 
domain of definition of g. 
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Consider a point R in the reference configuration K 

undergoing deformation with r as the position vector in the 

present configuration. Referring the motion to a configuration 

iC1 where the position vector of the point is R1 , 

(A. 3. 3) 

changes the reference configuration from 
aR 

- -K tO Kl. 

If the response functionals of the point R be the same 

in both configurations K and K
1

, then 

where 

F ar: aR1 ar G·F1 = - = . --= 
aR aR aR1 

Law of Conservation o~ Mass states 

dv
Kl 

p_ = P_ dV-=
K Kl K 

(A.3.4) 

(A.3.4a) 



a.l4 

where 

, (A. 3. 5) 

-dvK
1 

and dVK being the volume elements in the configuration K1 

and the reference configuration K respectively. 

Isotropy ensures that 

p- = p-
K K'l 

dv-
• K'l 

1 r~1 (A.3 .6) . . dV- = = 
K' 

G belongs to a group called Unimodula~ Ten~o~~ to be 

denoted by {Hi}. 

The total set of H, Hr' Hr+l.fir etc. form the I~ot~opq 

GJtoup. 

A constitutive functional G defines a solid if its 

isotropy group is a subgroup of the orthogonal group, i.e., 

a solid is l~ot~opic if the isotropy group of its defining 

functional is the full orthogonal group. 

If there is a change of reference frame, 

(A. 3. 7) 
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Principle of Isotropy of space (from (A.3.4a))qives 

(A.3.8) 

From (A.3.7) and (A.3.8), 

(A. 3. 9) 

Principle of Material Frame-Indifference States 

(A.3.10) 

From (A.3.9) and (A.3.10) 

- -T - - -T - - -G(Q •F•Q) = Q ·~(F) •Q (A.3.11) 

All isotropic tensor-valued functions obey (A.3:11) for all 

orthogonal Q. 
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APPENDIX B 

B.l Constitutive Equations 

Any mechanical constitutive relation assumes the 

following fundamental postulates [14]. 

1. Principle of Determinism of Stress: 

Stress in a body is determined by the history of 

motion of that body. For a simple material. 

co 

o<t> = ~ <x8 > 
s=O 

2. Principle of Local Action: 

In determining the stress at a given point R, the 

motion outside an arbitrary neighbourhood of R may be 

disregarded. 

1 <x, R> = 1 <x · , R> 

3. Principle of Material Frame-Indifference: 

Constitutive equations must be invariant under changes 

of frame of reference. (Two observers in relative motion to 

each other observe the same stress in a given body). 
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If cr and a* be the stresses in two reference frames, 

=T = = cr* = Q ·cr·Q; for all orthogonal Q 

According to the Principle of Determinism, 

a<R,t> = - -t I <x , R, t) (B.l.l) 

Principle of Local Action imposes a further restriction in the 

form 

cr(R,t> - -t 1 1 = ft(X , (R,R ) , t) ; R £N(R, t-s) (B.l.2) 

where N is an arbitrary neighbourhood. 

For a change of frame given by 

(B.l.3) 

Principle of Material Frame Indifference [34] leads to 

oct> = icP<t>> 

where 

(B.l.4) 
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In the reduced form (4.15), (B.l.4-l) may be written as 

00 

cr(t) = RT(t)·~ (U(t-s))•ft 
s=O 

or (B.l.S) 

where 

00 

g (U* (t-s); U (t)) 
s=O t 

For a Material of Differential Type, stress is deter

mined by the n time derivatives of deformation gradient Pt(s} 

calculated at s=O. Equation (B.l.S) can be written for 

Materials of Differential Type as 

• (n) 
= 1i cut <t> , ut ct>, ••• , u~ <t>; oct>> (B.l.6) 

For 

.!. 

= Ut(t), and 
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(B.l.6) becomes 

(B.l.7) 

Defining (B.l.S) as 

where 

(B.l.7) becomes 

(B.l.S) 

Applying condition of Isotropy, (B.l.7) and (B.l.B) become 

= zco1 , 02 r • • • I 
i) U> (J = n' 

(B.l.9) 

(J = j(Al, ~2 I • • • I 
~ . 
n' ~) 

as the constitutive equations of Materials of Differential Type. 
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B.2 Representation Theorems: 

Representation theorems for isotropic tensors are 

considered. 

An isotropic function is a constitutive function 

subject to a definite objectivity - symmetry condition. A 

constitutive relation between any functional and the functions 

upon which it depends is given by a representation theorem. 

Let Al, ••• , ~; wl, ••• , WM; and vl, ••• , Vp denote N 

symmetric tensors, M anti-symmetric tensors and P vectors 

respectively. 

The functions 

E(A1 , A2, ••• , AN; wl, w2, ••• , WM; 
- - vp> vl' v2, ••• , 

6<X1 , A2, ••• , ~; wl, w2, ••• , WM; - - vp> vl, v2, ••• , 

RcX1 , A2, ••• , ~; wl, w2, ••• , WM; - - vp> vl, v 2, ••• , 

!cA.1 , A.2, ••• , ~; wl, w2, ••• , WM; 
- vp> vl' v2, •. •' 

are said to be scalar valued, vector valued, symmetric tensor 

valued, and skew tensor valued isotropic functions 

respectively if 

(B.2.1} 
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where 

E is the mapping 

(B.2.2) 

where S, A and V denote spaces of symmetric tensors, anti-

symmetric tensors and vectors respectively. 

where 6 is the mapping 

where H is the mapping 

- N M P R:S X A X v + s 

where 1 is the mapping 

- N M P Z:S X A X v + A 

-T - - - -Q •H(A., w I v )•Q 
1 p m 

(B.2.3) 

(B.2.4) 

(B.2.5) 

(B.2.6) 

(B.2.7) 

(B.2.8) 
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holds for all orthagonal Q. 

A__·, ... , -~ 
A function basis for isotropic invariants of A

1
, A2 , 

w1 , w2 , •• ~wM; v1 , v2 , ••• ,vp is a set of isotropic 

invariants 1 1 , .•• , Ir such that any isotropic invariant 

Ik(Ai' Wp' vrn) is a single valued function of r 1 , ••• , Ir [26]. 

RIVLIN and ERICKSEN [22] have determined such a function basis 

for isotropic invariants of two symmetric tensors. WANG (29] 

has employed a different approach to derive a function basis for 

the general case. His results have been shown to be either 

insufficient, or invalid in particular cases by SMITH [26] who 

has generalised RIVLIN and ERICKSEN's approach to derive a 

function basis for the general case. 

Among the generally known representations [29] are 

i. CAUCHY'S representation formula for (B.2.1) with N=O, M=O, 

P = arbitrary 

(B.2.9) 

ii. Representation formula for (B.2.1) with N=l, M=O, P=O 

E = E(I=, II=, III=) 
A A A 

(B.2 .. 10) 

where IA, IIA, and IIIA are the three principal invariants of 

Al. 
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iii. NOLL'S representation formula for (B.2.1) with N=l, M=O, 

P=l 

(B.2.11) 

iv. NOLL'S representation for (B.2.3) with N=l, M=O, P=l 

(B.2.12} 

where E0 , E1 and E2 are scalar valued isotropic functions 

of (A, v> 

v. RIVLIN-ERICKSEN'S representation formula for (B.2.5) with 

N=l, M=O I P=O 

(B.2.13) 

where E0 , E1 and E2 are scalar v.alued isotropic functions 

of A. 

vi. RIVLIN-ERICKSEN'S representationfformula for (B.2.1) with 

N=2, M=O, P=O. 

(B.2.14) 



where l= - is a set of ten basic invariants of A1 , A2 • 
Al' A2 

b.9 

In the original work, RIVLIN and ERICKSEN used !K2 l 
instead of 1~~3 . However, knowing the other nine invariants, 

IA2 1 determines I:~~ uniquely. 

vii. RIVLIN'S representation formula for (B.2.5) with N=2, 

M=O, P=O 

+ E { (A ) 2. (A ) 2 + (A2) 2. (Al) 2} 
8 1 2 (B.2.15) 

where E
0

, ••• , E
8 

are scalar valued isotropic functions of 

<A.1' K2 > • 

viii. WANG'S general representation theorem for a scalar valued 

isotropic function: For a three dimensional space, a 

complete and irreducible representation for any scalar 
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valued isotropic function E(Ai' wp, Vm) is given by 

E(A
1
., Wp' vm) = F(t= 

Al' • • •' wl, ••• , tM; (B.2.16) 

-where t= = - is formed by all invariants of A, W and v A., N , v 
l. p m 

based on any one, two, three or four variables in the argument 

<K., w, vm> to within a permutation of entries. 
l. p 

ix. WANG'S general representation theorem for vector valued 

Isotropic functions: for a three dimensional space, a complete 

and irreducible representation for any vector valued isotropic 

function 6<A
1
., W, v) is given by p m 

9k= --- -
1: 6 (A. , W , vm) 6k (Ai, W , Vrn) 

k=l 1 p p 
(B.2.17) 

where 1 6 , ••• , 69 are scalar valued isotropic functions and 

{61 , ••• , 6
9

} is a generating set formed by all generators based 

on all combinations of none, one, two or three variables in the 

argument (~., W , v ) to within a permutation of entries. 
l. p m 

x. WANG'S general representation theorem for symmetric tensor 

valued isotropic functions: for a three dimensional space, 

a complete and irreducible representation for any symmetric 

tensor valued isotropic function R[~., W , v 1 is given by 
l. p m 
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i ttk cA. , w , V ) Hk cl\
1
• 1 w 1 vm> 

k=l 1 P m P 
(B.2.18) 

where R1 , ••• , R~ are scalar-valued isotropic functions and 

where {R1 , ••• , R
9

} is a generating set formed by all generators 

based on all combinations of none, one, two or three variables 

in the argument eX., w I v) to within a permutation. 
l. P m 

xi. 'WANG • s general representation theorem for anti -symmetric 

tensor valued isotropic function: for a three dimensional 

where 

space, a complete and irreducible representation for any 

anti-symmetric tensor valued isotropic function 

l(A., w I vm) is given by 
l. p 

(B.2.19) 

1 z , ••• , z9 are scalar valued isotropic functions, and 

cz1 , ••• , !
9

) is a generating set formed by all generators based 

on all combinations of none, one, two or three variables in 

the argument (A., W, v) to within a permutation. 
l. P m 

As an example of (B.2.17), representation of a vector 

valued isotropic function 6, of two symmetric tensors~ and B, 

and a vector v may be written as 

(B.2.2C; 
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where a 1 , ••• , a7 are scalar valued isotropic functions of A, 

B and v. 

xir. SMITH'S representation for a vector valued isotropic 

function 6 of two symmetric tensors A, B and a vector 

v is given as 

(B.2.21) 

where s1 , ••• , e6 are scalar valued isotropic functions of A, 

B and ~~. 

B.3 Controllable Motions 

Representation theorems for isotropic tensors have been 

discus!;ed in (B. 2) • For motions of homogeneous isotropic 

Materictls of Differential Type, determinate stress ad may be 

repreSE!nted by a functional G of the form ( 2 .12) • 

From the first Cauchy Axiom of Motion for continua, 

a •a __ d+f= (B.3.1) 
ar 

where f is the external body force; p the density of the 



-continuum, and v, the velocity of motion. 

ar 

From (2.12) and (B.3.1), 

A2, ••• , A ) 
n + f dv = p dt 

b.l3 

(B.3.2) 

• If the external body force f is a known function of 

-r and t, (B.3.2) involves solving a differential equation with 

suitable initial and boundary conditions to determine the 

motion r = X (R,t). All solution of (R.3.2) are dynamically 

possible motions of the material under consideration. 

Assuming incompressibility, and the body force f to 

- ae be conservative, i.e., f = where e is single valued; from 
ar 

( 6. 14~) , ( 2 .13) and (B. 3. 2) , 

wherf:! q is an arbitrary pressure defined in (6 .14). 

dv 
= p dt 

(B.3.3) 

Assumption of body force f to be conservative does not 

make the solution of the incompressible material more difficult 
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since in (B.3.~), an adjustment in pressure q takes care of any 

changes in e so that (q+e) remains a constant. 

Given A1 and A2 , whether (B.3.3) is satisfied will 

depend in general, upon the functions a .• However, there are 
1 

certain forms of xl and A2 such that (B.3.3) is satisfied no 

matter what ai be. The motions with these forms of Rivlin

Ericksen tensors A1 and A2 can be affected in every homogeneous, 

incompressible, isotropic Material of Differential Type by 

application of surface tractions alone. The values of surface 

tractions and resulting interior stresses in a particular body 

will o·f course depend strongly upon the material properties. 

When t.he motion of a material is supported by surface traction 

alone, it has been referred to as a cont~ottabte motion by 

SINGH and PIPKIN [25]. In the present work, the phrase has been 

used in the same context. 
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APPENDIX C 

Calculations resulting in equations (7.26 b-e) are 

shown in this appendix. 

From ( 7 • 2 6 ) , 

i xi a.s + x _
1 = [1 - e + e 1 

] , i = 1,2,3 

1 
i a.s + xi 

2 
a.s + xi 

= [(-1) (-) (1- ex-+ e!. )- aie!. 1 

. . . 

. . . 

xi = [a. e ] 
1 

(C .1) 

i a.s + xi 
3 2 

2(a.s + x~) 
= [ 2 ( 1 - ex- + e !. ) - (a. ) e 1 

1 

i i i a.s + x- 2 2 a.s + x-
- ( 1 - ex- + e !. ) - (ai) e !. 1 

(C. 2) 



. . 

c.2 

i i xi a.s + x- _4 3 3(a.s + x-) 
= [ 6 ( 1 - e + e ~ ) (a. ) e ~ 

1 

i + 
i 2(a.s i a.s x- -3 (a.) 3 

+ x-
4(1 x- 1 1 ) - - e + e ) e 

1 

i e2(ais 
i a.s + x. 3 

(a.) 3 
+ x-) 

2(1 x- 1 l. -- - e + e -) 
l. 

i 
X~ a.s + x. 2 3 e2(a

1
.s + x-) 

+ (1- e + e ~ ~)- (a.) 
1 

i i 
xi ais + x- _4 3 e3(ais + x-) 

= [6(1- e + e- ) (a.) 
1 

i i i a.s + x- _3 3 2(a.s + x-) 
- 6 ( 1 - ex- + e !. ) (a . ) e !:. 

1 

i a. s + xi (a. s + x!.) 
+ ( 1 - ex- +e !. ) - 2 (ai) 3 e !. 1 

i 3 
=[(a.) 

1 

i xe 
i 

(6e2x- 6ex- + 1) 1 (C. 3) 
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xi a.s + xi 4 ( i 
[24(1 - e + e 1 )-5 (a.)4 e a~s + x-) 

l. 

. i x!. a . s + x- 3 ( i 
- 18 ( 1 - e + e !. ) -4 (a. ) 4 e a!. s + x-) 

l. 

. i x~ a.s + x- 3(a.s i 
- 18(1 - e + e ~ 1-4(ai)4 e ~ + x-l 

. i x!. a . s + x- 2 ( i 
+ 12(1 - e + e ~ )-3 (a.)4 e ais + x-) 

l. 

xi a.s + xi 2(a.s i 
+ 2(1 - e + e ~ )-3 (a.)4 e ~ + x-) 

1 

i a + i 1· 
- (1 - x- is x- -2 a.s + x-e + e- ) (a.)4 e!. 1 ] 

xi a.s + x~ 4(a.s i 
= [24(1- e + e ~ )-5 (a.)4 e ~ + x-) 

1 

x~ a.s + x. 3(a.s + x~) 
- 36(1- e + e ~ ~)-4(a.)4 e !. 

l. 

i i x- a.s + x- 2 ( + x-i) 
+ 14(1- e + e!. )-3(a.)4 e ais 

1 



i i i a.s + x- 2 4 a.s + x-
- ( 1 - ex- + e ~ ) - (a.) e 1 1 

l. 

i i 
36e2x- + 14ex-- 1)] 

i a.s + x~ 5 5 4(a.s +xi) 
- 144(1 -ex-+ e! )- (a.) e 1 

l. 

xi a 1s + x~ 4 5 J(a.s + x~) 
+ 108(1- e + e- )- (ai) e 1 

i i a.s + x- 4 5 + 42 ( 1 - ex- + e ~ ) - (a.) 
1 

i i a.s + x- 3 5 - 28(1- ex-+ e! )- (a
1

) 

e 

e 

i J(a.s + x-) 
]. 

i 2(a.s + x-) 
l. 

c.4 

4 i x(a.) e ] 
]. 

(C. 4) 



. . . 

i i a.s + x-
3 5 - 2 ( 1 - ex- + e ~ ) - (a. ) 

~ 
e 

i 2 (a. s + x-) 
1 

i i i a.s + x- 2 5 a.s + x-
+ (1 -ex-+ e ~ )- (ai) e 1 ] 

xi a.s +xi 5 5 e4(ais +xi) 
- 2 40 ( 1 - e + e !. ) - (ai) 

i i 
x!. a.s + x- 4 5 e3(ais + x-) 

+ 150 (1 - e + e !. ) - (a.) 
1 

i a.s + xi 3 5 - 30(1 -ex-+ e 1 )- (a.) 
~ 

e 

i 2(a.s + x-) 
1 

i 
a.s + x-

e 
1 1 

i 5x
e 

i Jxe 

c.s 



5 i 4x!. 3xi 2xi = [(a.) ex-(120 e - 240 e + 150 e 
l. 

i 
- 30 ex- + 1) 1 

Similarly, 

i i 
- 540 e 2x- + 62 ex-- 1)] 

The general formula for [L ] is n 

n n-1 
+ (n-2)1 Z: (n-i) l: (n-i-j)(a.) 2 ([L

1
])n-2 

i=2 j=O 1 

+ ••• 

From (7.26a), 

c.6 

(C. 5) 

(C. 6) 

(C. 7) 



. . . 

. . . 

i 
( [ 1 - ex 

i a.s + x _
2 + e 1 ]) 

. i 
x~ ais + x- -3 

= [2(1 - e + e- ) 

i x-

i a.s + x-
l. ] a. e -

1 

c.7 

= [ 2a. e 1 
l. 

(C. 8) 

i i i a.s + x- 4 2 2(a.s + x-) 
= [6(1-ex-+e!. )-(a.) e 1 

l. 

i a.s + x!. 
3 2 

a.s + xi 
- 2(1 -ex-+ e ~ )- (ai) e ~ 1 

= [6(a.) 2 
l. 

i 2xe X
i • 2 i i 

2 (a.) 2 e 1 = [2 (a.) ex-(3ex- - 1)] (C.9) 
l. l. 

i i x!. a.s + x- 5 3 3(a.s + x-) 
= [ 2 4 ( 1 - e + e !. ) - ( ai) e 1 

i i a.s + x-
4 3 - 18 ( 1 - ex- + e !. ) - (a. ) 

l. 
e 

i 2 (a. s + x-) 
1 

i i x!. a . s + x- 3 3 a . s + x-
+ 2(1 - e + e ~ )- (ai) e!. ] 



. 
• • 

. . . 

c.S 

(C.lO) 

i i a.s + x- 6 4 = [120(1- ex-+ e 1 )-(a.) 

i 
4 (ai s + x-) 

e 
l. 

i i a. s + x-
4 4 + 42(1- ex-+ e ~ )- (a.) 

i 
2 ( ai s + x-) 

l. 
e 

i i i a. s + x-
3 4 

a. s + x-
- 2 ( 1 - ex- + e !. ) - ( ai) e !. ] 

i 4xe 

i 
- 2 (a.) 4 ex-] 

l. 

i 3x-e + 
4 

42(ai) 
i 2x

e 

(C .11) 



c.9 

A general formula for [~ ] may be written by combining 
n 

( 4 • 2 9 ) and ( c • 7 ) • 




