THE UNSYMMETRIC TWO IMPACTS PER CYCLE STEADY

STATE MOTION OF THE IMPACT DAMPER

By

MOHAMMED ADEL ALI MOHAMMED B.Sc.(Eng.), Cairo University

A Thesis

Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements For the Degree Master of Engineering

> McMaster University September 1969

MASTER OF ENGINEERING (1969) (Mechanical Engineering) McMASTER UNIVERSITY Hamilton, Ontario

TITLE: The Unsymmetric Two Impacts Per Cycle Steady State Motion of the Impact Damper

AUTHOR: Mohammed Adel Ali Mohammed, B.Sc.(Eng)(Cairo University)

SUPERVISOR: Dr. M. A. Dokainish

NUMBER OF PAGES: viii . 183

SCOPE AND CONTENTS:

Steady state response of a single degree of freedom system provided with an impact damper assuming two unsymmetric impacts per cycle motion, and its asymptotic stability criterion are derived analytically. Stability regions are also determined for a wide range of parameters of impact damper by using a digital computer.

An experimental study is also made to verify the assumptions taken in the analytical solution and to obtain a general response of the system for a wide range of parameters of the impact damper.

(ii)

ABSTRACT

Steady state response of a single degree of freedom system with impact damper, with the main emphasis of two impacts (symmetric or unsymmetric)/cycle motion, and its asymptotic stability criterion are derived analytically. Stability regions are determined for wide range of parameters of the impact damper by using digital computer.

Experimental study is also made to verify the assumptions taken in the analytical solution and to obtain general response of the system for wide range of parameters of the impact damper.

As a result, it is found that unsymmetric two impacts per cycle motion exists and is stable for a wide range of parameters of the impact damper.

Also, it is found that three and four impacts/cycle motions exist and are stable.

Stability boundaries are found to be a complicated function of the impact damper parameters.

ACKNOWLEDGMENTS

The author wishes to express his sincere gratitude to his supervisor, Dr. M.A. Dokainish, for his constant assistance, guidance and encouragement during this investigation.

The author is indebted to the Department of Mechanical Engineering for the permission to make use of the research facilities provided in the Dynamics Laboratory of the University and for the award of the scholarship and assistantship.

Thanks are due to Miss Suzanne Chatland for her expert typing.

The study was supported by National Research Grant, No. A-2726 and the author gratefully acknowledges the receipt of the same.

TABLE OF CONTENTS

Part	Title	Page
1	INTRODUCTION	
	1.1 Historical Review of Impact Damp	per 1
	1.2 Objective	4
2	STEADY STATE SOLUTION	б
	2.1 Introduction	6
	2.2 Unequally-Spaced-Two-Impacts/Cyc	:le 6
	Solution	
	2.3 Special Case	24
3	STABILITY	27
	3.1 Theoretical Considerations	27
	3.2 Determination of P ₁	34
	3.3 Determination of P ₂	44
	3.4 Stability Boundaries	57
4	EXPERIMENTAL STUDIES	59
	4.1 Introduction	59
. •	4.2 Experimental Model	59
	4.3 Electronic Measurement	60
	4.4 Experimental Results	60
	4.5 Digital Computer Studies	86
5	DISCUSSION AND CONCLUSIONS	104
	5.1 Discussion of Theoretical Result	s 104
	5.2 Discussion of Experimental Resul	ts 134
	5.3 Discussion of the Results Obtair	ned
	by "Sadek"	137
	5.4 Conclusions	138
	REFERENCES	139

APPENDICES

I	Key for the Symbols Used in Part 2	142
II	Derivation of Equation of Motion of	
	the Mass Particle	148
III	A Method of Determining Coefficient	
	of Restitution	149
IV	Experimental Determination of the	
	Structural Damping Factor	151
.ν.	Key for Symbols used in the "Special	
	Case" of Part 2	152
VI	Key for Symbols used in the "Special	
	Case" of Part 3	153
VII	Key for Symbols used in "Computer	
	Programs" and "Computer Output"	156
VIII	Experimental Equipment	160
IX	Computer Programs	162

NOMENCLATURE

A	displacement of the primary system in the absence of the	
	impact damper	
c	damping constant	
d	clearance in which the particle is free to oscillate	
e	coefficient of restitution	
Fo	maximum force of excitation	
k	spring constant	
М	mass of primary system	
m	mass of particle	
Р	perturbation matrix	
R	remainder term	
n	ratio of smaller time taken by the particle to travel from	
	one end of the container to the other to the total time	
	of the cycle $\left(\frac{2\pi}{n}\right) \left[0 \le n \le 1\right]$	
N	n/2	
W	natural frequency, $\sqrt{K/M}$	
-A_	forcing frequency	
r	ratio, forcing frequency/natural frequency	
t	time	
۷	absolute velocity of the particle $(0_+ \leq t \leq \frac{n\pi}{n})$	
v ₂	absolute velocity of the particle $(\frac{n\pi}{2} \leq t \leq \frac{2\pi}{2})$	
x	displacement of M	
×a	displacement immediately after impact(at t = 0)	
×'n	displacement immediately after impact (at $t = \frac{n\pi}{\Omega}$)	
× _b	displacement immediately before impact (at t = 0)	

xq	displacement immediately before impact (at $t = \frac{n\pi}{\Omega}$)
y	displacement of particle
y	relative displacement of particle with respect to M
~	phase angle (initially unknown)
ઠ	ratio of critical damping
д	mass ratio, m/M
ų	perturbation vector
p	ratio d/A
ψ	phase angle (due to damping)
τ	phase angle, $\gamma = \alpha - \psi$

1. INTRODUCTION

1.1. Historical Review of Impact Damper

The impact damper is a device for reducing the vibration amplitude of a mechanical system through the mechanism of momentum transfer by collision and conversion of mechanical energy into heat.

Paget (1)^{*} was the pioneer in making qualitative study of this damper.

The idea of reducing the vibration of a mechanical system by attaching to it a container in which a solid particle is constrained to oscillate was conceived and investigated in 1944 by Lieber and Jensen (2).

In that investigation, the authors assumed that the motion of a undamped single degree of freedom oscillator with an operating damper (referred to as an "acceleration damper") was still simple harmonic; that the impact of the primary system with the particle was completely plastic (i.e. no rebound); and that during a period of the sinusoidal forcing function two impacts occur at equal time intervals and at opposite sides of the container (i.e. symmetric two impacts per cycle motion). As a result, they determined that for maximum energy dissipation per cycle, the clearance of the particle should be TT times the amplitude of response.

Grupin (3), in his investigation of this device, assumed the existence of symmetric two impacts/cycle motion (henceforth, unless otherwise specified, the motion will be assumed to be symmetric) and he determined the behaviour of the viscously damped primary

* Numbers in parenthesis designate references at the end of the thesis.

system, by adding the effects of many impacts. It was shown that these assumptions result in two possible solutions, but it could not be shown which one of these prevails without solving the problem by a more exact but longer numerical impact to impact method.

By introducing an unknown phase angle into the applied harmonic force and assuming steady state of two equispaced impacts per cycle and neglecting the inherent damping in the system, Arnold (4) analysed the problem. His experimental evidence did not agree with the theory.

A considerably simpler method for deriving the solution for two impacts/cycle motion, which requires only the consideration of two successive impacts, was suggested by Warburton (5), and he used it to obtain the solution for the special case of an undamped primary system forced at resonance.

Kaper (6) investigated the influence of impact vibration absorber (referred to as "discontinuous dynamic vibration absorber") on the motion of a vertical vibrating system. Attention was paid to the effectiveness in the case of free vibrations and of vibrations due to sinusoidal excitations, where structural damping was also taken into account. For certain configurations numerical results were given.

Sadek (7) obtained steady state solution, assuming two unsymmetric impacts per cycle. The impact force-time curve is assumed to be of rectangular shape and of infinitismal duration. He used Fourier series to represent impact cycle.

Periodic symmetric two impacts per cycle were sought and their asymptotic stability boundaries were determined analytically be Masri (8). The stability analysis involved a perturbation of the phase space trajectory of the motion, and it is indicated that the solution was stable if the modulus of all eigenvalues of a certain matrix is less than unity. This matrix continuously related the perturbations immediately after each of the two consecutive impacts. Results of the anaylsis were verified by: (a) numerical step-by-step construction of solutions for all types of motion, (b) experiments with an electric analog computer (c) experiments with a mechanical model.

The effectiveness of the impact damper on nonlinear systems is to be found in a recent work by Dokainish and Jha (9).

A very simple stability criterion for these solutions, neglecting the inherent damping in the system, was developed by Egle (10), and was used to determine the dependence of the stability boundaries on the parameters of the system.

Steady state response of a system of two degrees of freedom with impact damper and its asymptotic stability criterion are derived analytically, numerically and experimentally as was investigated by Dokainish and Agrawal (11).

Dampers containing two particles in a single container and the effect of filling the container with a fluid were investigated by Dokainish and Shah (12).

On the experimental side, the feasibility of using impact damping to reduce the vibrations of such diverse systems as ship hulls, cantilever beams, single degree of freedom systems, and turbine buckets was investigated by McGoldrick (13), Lieber and Tripp (14), Sankey (15), and Duckwald (16), respectively. Estabrook and Plunkett (17) made an analytical study of impact damping in turbine buckets.

Also, this type of damping was employed in reducing the vibrations of telephone switching relays.

All the previous investigators have reported excessive noise level while the impact damper is in operation.

1.2. Objective

The objective of the present study is to investigate the behaviour of a single degree of freedom system provided with an impact damper, when the system is subjected to a sinusoidal excitation, and to study the effects of parameters variations on the response and stability of the primary system. It is assumed that two unsymmetric impacts occur per cycle.

The theoretical soluti is derived in Chapter 2, and its stability boundaries are determined in Chapter 3. The experimental studies that were conducted in the course of this investigation with a mechanical model, supplemented by numerical studies with a digital computer, are described in Chapter 4. The experimental results as well as

theoretical results are discussed in Chapter 5. The conclusions drawn from this research work and recommendations for future work are also stated in Chapter 5.

The digital computer programs to obtain the steady state solution and stability region are given in Appendix $\pi\pi$

ĩ

2. STEADY STATE SOLUTION WITH TWO

UNEQUALLY SPACED IMPACTS PER CYCLE

2.1. Introduction

Experimentally, it was observed that a single degree of freedom system, provided with an impact damper, may exhibit a steady state motion with nonsymmetric two impacts per cycle. This type of motion exists for certain combinations of the parameters of the system. Hence, analytical model is constructed which allows for two nonsymmetric impacts per cycle. The smaller time interval = $\frac{n\pi}{2}$, and the other interval = $\frac{(2 - n)\pi}{2}$, where $0 \le n \le 1$, figure 2.2.

2.2. Unequally-spaced-two-impacts/cycle solution

A model of the system under discussion is shown in figure 2.1. The free mass m is essentially a frictionless solid particle constrained to oscillate with clearance d in a container attached to the primary mass. The equation of motion of the primary mass M, between impacts, is

$$M\ddot{x}_{+}c\dot{x}_{+}kx = F_{sin}t$$
 (2.1)

Following the method suggested by Warburton (5), assume the disturbing force to be Fo sin $(\alpha t + \alpha)$ where α is an unknown phase angle.

Equation (2.1) now becomes

$$M \overset{*}{x} \star c \overset{*}{x} \star k x = F \sin(\Omega t + \alpha) \qquad (2.2)$$

Fig.(2.1) Model of system

The complete solution of equation (2.2) is

$$-\delta \omega t$$

$$x = e \quad (B_1 \sin(\eta \omega t) + B_2 \cos(\eta \omega t)) +$$

$$A \sin(\Omega t + \tau) \qquad (2.3)$$

where

 $\delta = c/c_{cr}$ $c_{cr} = 2\sqrt{KM}$ $\omega = \sqrt{K/M}$ $\eta = \sqrt{1-\delta^{2}}$ $r = -\alpha/\omega$

$$A = \frac{F_{o}/K}{\sqrt{(1-r^{2})^{2}+(2\delta r)^{2}}}$$

$$\mathcal{T} = \alpha - \Psi$$

$$\Psi = \tan^{1}\frac{2\delta r}{1-r^{2}} \qquad 0 < \Psi < \pi$$

For steady state motion with two unequally spaced impacts per cycle, if one impact is assumed to occur at time t = 0, then the next impact will occur at $t = \frac{n\pi}{\Omega}$, where $0 \le n \le 1$, and the following impact at $t = \frac{2\pi}{\Omega}$. In the case of equally spaced impacts, n would be equal to 1. Then as shown in figure 2.2, immediately

)

Fig. (2.2) Wave form of unsymmetric 2 impacts / cycle

ဖ

Fig. (2.3) Unsymmetric motion of the impact damper

preceding the impact at t = 0, $(t_{denotes})$ the time immediately preceding the impact and $t_{denotes}$ the time immediately following the impact), $x = x_b$, $\dot{x} = \dot{x_b}$, $y = \frac{d}{2}$ and the absolute velocity of the particle = v_2 .

The duration of the impact is very small compared to the natural frequency of the primary system, hence it is reasonable to assume that at $t = 0_1$, the position of M and m remain unchanged, i.e.

$$x_{a} = x_{b}$$
 (2.4)

11

while their respective absolute velocities are discontinuously changed to \dot{x}_a and v_1 , respectively.

Similarly at $t = (\frac{n\pi}{2})_{-}$; $x = x_g$, $\dot{x} = \dot{x}_g$, and $y = -\frac{d}{2}$. After the impact, at $t = (\frac{n\pi}{2})_{+}$, $x = x_h$, $\dot{x} = \dot{x}_h$ and $y = -\frac{d}{2}$. In this case, also

$$X_{g} = X_{h}$$
 (2.5)

To summarize, the system should satisfy the following conditions:

at
$$t = 0$$
, $x = x_b$, $y = \frac{d}{2}$, $\dot{x} = \dot{x}_b$, $v = V_2$
 $t = 0$, $x = x_a$, $y = \frac{d}{2}$, $\dot{x} = \dot{x}_a$, $v = V_1$
 $t = (\frac{n\pi}{\Omega})_-$, $x = x_g$, $y = -\frac{d}{2}$, $\dot{x} = \dot{x}_g$, $v = V_1$
 $t = (\frac{n\pi}{\Omega})_+$, $x = x_h$, $y = -\frac{d}{2}$, $\dot{x} = \dot{x}_h$, $v = V_2$

The equation of motion of M from $t = 0_{+}$ to $t = (\frac{n\pi}{\Omega})_{-}$ is

$$\sum_{k=0}^{\infty} \delta \omega t \\ K = e \qquad (B_1 \sin(\eta \omega t) + B_2 \cos(\eta \omega t)) + \\ A \sin(\alpha t + \tau) \qquad (2.6)$$

and the equation of motion of M from $t = (\frac{n\pi}{r})_+$ to $t = (\frac{2\pi}{r})_-$ is

$$x = e^{-\omega(t - \frac{n\pi}{\Delta})} \left[\dot{B}_{1} \sin(\eta \omega(t - \frac{n\pi}{\Delta})) + \dot{B}_{2} \cos(\eta \omega(t - \frac{n\pi}{\Delta})) \right]_{+} A \sin(\omega t + \tau) (2.7)$$

From equation (2.6), at $t = 0_+$

$$x(0_{1}) = x_{a} = B_{2} + A \sin \tau$$
 (2.8)

and at t = $(\frac{n\pi}{n})$

$$x(\frac{n\pi}{\Omega}) = x_{g} = e^{-\frac{\delta w n\pi}{\Omega}} (B_{1} \sin(\frac{\eta w n\pi}{\Omega}) + B_{2} \cos(\frac{\eta w n\pi}{\Omega})) + A \sin(n\pi + \tau)$$
(2.9)

An expression describing the velocity of M (from $t = (0)_{+}$ to $t = (\frac{n\pi}{n})$) can be obtained by differentiating equation (2.6) with respect to t, thus

 $= \delta \omega t$ $\dot{x} = e \quad (B_1 \eta \omega \cos(\eta \omega t) - B_2 \eta \omega \sin(\eta \omega t))_{-1}$

$$\delta w = (B_1 \sin(\eta wt) + B_2 \cos(\eta wt)) + A_1 \cos(\eta t + \tau)$$

(2.10)

Equations (2.6) and (2.10) describe the displacement and velocity of M during the time interval $0_{+} \leq t \leq (\frac{n\pi}{2})_{-}$.

From equation (2.10) we get

$$\dot{x}(O_{+}) = \dot{x}_{a} = -\delta \omega B_{2} + \eta \omega B_{1} + A \Omega \cos \tau$$

$$(2.11)$$

$$\dot{x}(\underline{n\pi}) = \dot{x}_{g} = -\delta \omega e^{-\frac{\delta \omega n\pi}{\Omega}} (B_{1} \sin(\eta \omega \underline{n\pi})) + B_{2} \cos(\eta \omega \underline{n\pi})) + \eta \omega e^{-\frac{\delta \omega n\pi}{\Omega}} (B_{1}$$

$$\cos(\eta \omega \underline{n\pi}) - B_{2} \sin(\eta \omega \underline{n\pi})) + A\alpha \cos(n\pi + \tau)$$

$$(2.12)$$

Similiarly, an expression describing the velocity of M for t = $(\frac{n\pi}{2})_+$ to t = $(\frac{2\pi}{2})_-$ can be obtained by differentiating equation (2.7) with respect to time, thus

$$\dot{\mathbf{x}} = \eta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \cos(\eta \boldsymbol{w}(\mathbf{t} - \frac{\mathbf{n} \boldsymbol{\pi}}{\mathbf{n}})) - \mathbf{B}_{2}^{*} \\ -\delta \boldsymbol{w}(\mathbf{t} - \frac{\mathbf{n} \boldsymbol{\pi}}{\mathbf{n}}) \end{bmatrix} - \delta \boldsymbol{w} \boldsymbol{e} \qquad \delta \boldsymbol{w}(\mathbf{t} - \frac{\mathbf{n} \boldsymbol{\pi}}{\mathbf{n}}) \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{1}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{1}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{2}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{2}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{2}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{2}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{2}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{2}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{2}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{2}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{2}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{2}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{2}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{2}^{*} \\ \mathbf{B}_{2}^{*} \end{bmatrix} = \delta \boldsymbol{w} \boldsymbol{e} \qquad \begin{bmatrix} \mathbf{B}_{$$

so, at t = $\left(\frac{n\pi}{n}\right)_{+}$

$$x(\frac{n\pi}{n}) = x_{h} = B_{2} + A \sin(n\pi_{+}\tau)$$
 (2.14)

$$\dot{\mathbf{x}}\left(\frac{\mathbf{n}}{\mathbf{n}}\right) = \dot{\mathbf{x}}_{\mathbf{h}} = \dot{\mathbf{B}}_{1} \eta \omega - \dot{\mathbf{B}} \delta \omega + A - \mathbf{n} \cos(\mathbf{n} \mathbf{n} + \mathbf{\tau}) \quad (2.15)$$

and at t = $\left(\frac{2\pi}{2}\right)$

$$x(\underline{2\pi}) = x_{b} = e \qquad \begin{bmatrix} B \sin(\eta \omega (\underline{2\pi} - n\pi)) \\ B \sin(\eta \omega (\underline{2\pi} - n\pi)) \\ B \cos(\eta \omega (\underline{2\pi} - n\pi)) \end{bmatrix} + A \sin \mathcal{C} \cdot (2.16)$$

$$= \delta \omega (\underline{2\pi} - n\pi) \\ S \sin(\eta \omega (\underline{2\pi} - n\pi)) \\ B \sin(\eta \omega (\underline{2\pi} - n\pi)) \end{bmatrix} = \delta \omega e^{-\delta \omega (\underline{2\pi} - n\pi)}$$

$$= B \sin(\eta \omega (\underline{2\pi} - n\pi)) \\ B \sin(\eta \omega (\underline{2\pi} - n\pi)) \\ B \sin(\eta \omega (\underline{2\pi} - n\pi)) \\ S \cos(\eta \omega (\underline{2\pi} - n\pi$$

Since the motion of the system during impact must satisfy the momentum equation, then

$$M\dot{x}_{+}mv = M\dot{x}_{+}mv$$
 (2.18)

and from the definition of the coefficient of restitution

(2,19)

e,

From equations (2.18) and (2.19) the following relations that will be useful later on are obtained:

$$\dot{x}_{+} = \frac{(1 - \mu e)\dot{x}_{-} + \mu(1 + e)v_{-}}{(1 + \mu)} \qquad (2.20)$$

$$v_{-} = \frac{(1 + e)\dot{x}_{-} + (\mu - e)v_{-}}{(1 + \mu)} \qquad (2.21)$$

$$\dot{x}_{-} = \frac{(e - \mu)v_{-} + (1 + \mu)v_{+}}{(1 + e)} \qquad (2.22)$$

$$\dot{x}_{+} = \frac{e(1+\mu)v_{+}*(1-\mu e)v_{+}}{(1+e)}$$
(2.23)

Also, from equations (2.18) and (2.19) we get

$$\dot{x}_{a} - \dot{x}_{b} = \mu (V_{2} - V_{1})$$
 (2.24)

$$\dot{x}_{h} = \dot{x}_{g} = \mu(V = V)$$
 (2.25)

$$\dot{x}_{a} - V_{1} = -e(\dot{x}_{b} - V_{c})$$
(2.26)
$$\dot{x}_{h} - V_{2} = -e(\dot{x}_{g} - V_{c})$$
(2.27)

In the steady state motion, the absolute velocity of the particle is constant, and it is equal to:

$$V_{1} = -\frac{\Omega}{n\pi} \left(d + x_{a} - x_{g} \right) \quad O_{\downarrow} \leqslant t \leqslant \frac{n\pi}{\Omega} \qquad (2.28)$$

$$V_{2} = \frac{\Omega}{(2 - n)\pi} (d + x_{a} - x_{g}) \frac{n\pi \langle t \langle 2\pi \rangle}{\Omega_{+}}$$
(2.29)

Thus,

$$V_2 = -\frac{n}{(2-n)}V_1$$

From (2.24)

$$\dot{x}_{a} = \dot{x}_{b} + \mu \left(V_{2} - V_{1} \right)$$
$$= \dot{x}_{b} - \mu V_{1} \frac{2}{(2 - n)}$$

(2.31)

(2.30)

Substituting for (2.26) in (2.31), we get

$$\dot{x}_{b} - \mu \frac{\sqrt{2}}{(2-n)} - V_{1} = -e\dot{x}_{b} - \frac{en}{(2-n)} V_{1}$$

Thus

$$x_{b}(1+e) = V\left[\frac{2\mu}{1(2-n)} + 1 - \frac{en}{(2-n)}\right]$$

or

$$\dot{x}_{b} = V_{1} \frac{(2)u + 2 - n - en}{(2 - n)(1 + e)}$$
(2.32)

Substituting from (2.32) in (2.26) we get

$$\dot{x}_{a} = V_{1} \left[\frac{(2\mu + 2 - n - en)}{(2 - n)(1 + e)} - \frac{2\mu}{(2 - n)} \right]$$

Thus

$$\dot{x}_{a} = V_{1} \frac{(2 - n_{-}en_{-}2\mu e)}{(2 - n)(1 + e)}$$
 (2.33)

Similarly from (2.25)

$$\dot{X}_{h} = \dot{X}_{g} + \mu (V_{1} - V_{2})$$

$$\dot{x}_{h} = \dot{x}_{g} + \mu V_{1} \left[1 + \frac{n}{(2 - n)} \right]$$
$$= \dot{x}_{g} + \mu V_{1} \frac{2}{(2 - n)}$$

and from (2.27)

$$\dot{x}_{h} = V_{2} - e(\dot{x}_{g} - V_{1})$$

Substituting from (2.35) in (2.34) we get

$$\dot{x}_{g} + \mu V \frac{2}{1(2 - n)} = - V \frac{n}{1(2 - n)} = e (\dot{x} - V)$$

Or

$$\dot{x}_{g}^{(1+e)} = V_{1} \left[-\frac{2\mu}{(2-n)} - \frac{n}{(2-n)} + e \right]$$

Thus

$$\dot{x}_{g} = V_{1} \frac{(-2\mu - n + 2e - ne)}{(1 + e)(2 - n)}$$
(2.36)

Substituting from (2.36) in (2.35), we get

$$\dot{x}_{h} = V_{1} \frac{(-2\mu - n + 2e - ne)}{(1+e)(2-n)} + \mu V_{1} \left[1 + \frac{n}{(2-n)} \right]$$

Thus

$$\dot{x}_{h} = V_{1} \frac{(-n+2e-ne+2\mu e)}{(1+e)(2-n)}$$
 (2.37)

17

(2,35)

(2.34)

Equations (2.8), (2.11), (2.9), (2.12), ((2.14),
(2.15), (2.16), (2.17), (2.4), (2.5), (2.33), (2	2.32),
(2.36), (2.37), (2.28) can be written as* x _a = B ₂ + A sinで	(2.38)
$\dot{x}_{a} = B_{1}G_{1} - B_{2}G_{2} + A n \cos \tau$	(2.39)
$x_g = G_3(B_1 \sin G_4 + B_2 \cos G_4) + AG_5 \cos G_4$	5 T + ·
AG ₆ sin ~	(2.40)
$\dot{x}_{g} = G_{3}G_{1}(B_{1}\cos G_{4} - B_{2}\sin G_{4}) - G_{2}G_{2}$	$_{3}(B_{1}sinG_{4})$
$B_2 \cos G_4$ + A $\Omega(G_6 \cos \tau - G_5 \sin \tau)$	(2.41)
$x_{h} = \dot{B}_{2} + AG_{5} \sin \tau + AG_{5} \cos \tau$	(2.42)
$\dot{x}_{h} = \dot{B}_{1}G_{1} - \dot{B}_{2}G_{2} + A - G_{6}COST - A - G_{5}$	sinで (2,43)
$x_{b} = G_{7} (B_{1} \sin G_{8} + B_{2} \cos G_{8}) + A \sin \tau$	(2.44)
$\dot{x}_{b} = G G (B \cos G_{a} - B \sin G_{a}) - G G (B \cos G_{a} - B \sin G_{a}) - G G (B \cos G_{a}) - G (B \cos G_{a}) -$	B`sinG ₄
$B_2 \cos G_8$) + An cos τ	(2.45)
$X_a = X_b$	(2.46)
$X_g = X_h$	(2.47)
$\dot{X}_{a} = G_{9} V_{1}$	(2.48)
$\dot{x}_{b} = G_{10}V_{1}$	(2.49)

* The values of $G_{1}, \ldots G_{87}$ are given in Appendix 1.

$$\dot{x}_{g} = G V (2.50)$$

$$\dot{x}_{h} = G V (2.51)$$

$$- d = V_{1} \frac{n\pi}{2} + x_{a} - x_{g} (2.52)$$

Equations (2.38) to (2.52) are 15 equations in the 15 unknowns: x_a , \dot{x}_a , x_g , \dot{x}_g , x_h , \dot{x}_h , x_b , \dot{x}_b , B_1 , B_2 , B_1 , B_2 , n, τ , V_1 .

By a series of substitutions from each equation into some of the others, they finally could be reduced to two equations in τ and n.

Substituting from equations (2.46), (2.47) into (2.42), (2.44) and from (2.48) into (2.49), (2.50), (2.51) and (2.52) we get:

$$\begin{aligned} x_{g} &= B_{1} G_{21}^{+} B_{2} G_{22}^{+} A G_{5} \cos \tau + A G_{6} \sin \tau \quad (2.53) \\ \dot{x}_{g} &= B_{1} G_{23}^{-} - B_{2} G_{24}^{-} - B_{1} G_{25}^{-} - B_{2} G_{26}^{-} + A G_{17} \cos \tau - \\ &A G_{18} \sin \tau \qquad (2.54) \\ x_{g} &= B_{2}^{+} A G_{6} \sin \tau + A G_{5} \cos \tau \qquad (2.55) \\ \dot{x}_{h} &= B_{1}^{+} G_{1}^{-} - B_{2}^{+} G_{2}^{+} + A G_{17} \cos \tau - A G_{18} \sin \tau \quad (2.56) \\ x_{a} &= B_{1}^{+} G_{27}^{+} B_{2}^{+} G_{28}^{+} A \sin \tau \qquad (2.57) \end{aligned}$$

$$\dot{x}_{b} = \dot{B}_{1}G_{29} - \dot{B}_{2}G_{30} - \dot{B}_{1}G_{31} - \dot{B}_{2}G_{32} + A_{\Omega}\cos\tau (2.58)$$

$$\dot{x}_{b} = G_{33}\dot{x}_{a} \qquad (2.59)$$

$$\dot{x}_{g} = G_{34}\dot{x}_{a} \qquad (2.60)$$

$$\dot{x}_{h} = G_{35}\dot{x}_{a} \qquad (2.61)$$

$$- d = G_{20}\dot{x}_{2} + \dot{x}_{2} - \dot{x}_{a} \qquad (2.62)$$

Substituting from equations (2.59), (2.60), (2.61) in (2.54), (2.56), (2.58) we get

$$\dot{x}_{a} = B_{1}G_{52} - B_{2}G_{53} + AG_{41}\cos\tau - AG_{42}\sin\tau(2.63)$$
$$\dot{x}_{a} = B_{1}G_{43} - B_{2}G_{44} + AG_{45}\cos\tau - AG_{46}\sin\tau(2.64)$$
$$\dot{x}_{a} = B_{1}G_{54} - B_{2}G_{55} + AG_{51}\cos\tau \qquad (2.65)$$

Substituting from equations (2.38), (2.39), (2.55), in (2.53), (2.63), (2.64), (2.65), (2.57), (2.62), we get

$$\dot{B}_{2} = B_{1}G_{21} + B_{2}G_{22} \qquad (2.66)$$

$$B_{1}G_{59} - B_{2}G_{60} + AG_{61}\cos\tau + AG_{42}\sin\tau = 0 \qquad (2.67)$$

$$B_{1}G_{1} - B_{2}G_{2} + AG_{62}\cos\tau - B_{1}G_{43} + B_{2}G_{44} + AG_{46}\sin\tau = 0 \qquad (2.68)$$

$$B_{2} = B_{1}G_{27} + B_{2}G_{28} \qquad (2.69)$$

$$B_{1}G_{1} - B_{2}G_{2} + AG_{63}\cos\tau - B_{1}G_{4} - B_{2}G_{5} = 0$$

$$= d = B_{1}G_{56} - B_{3}G_{64} - B_{2}^{2} + AG_{65}\cos\tau + AG_{5}\sin\tau$$

$$= d = B_{1}G_{56} - B_{2}G_{64} - B_{2}^{2} + AG_{65}\cos\tau + AG_{5}\sin\tau$$

$$= (2.71)$$

Substituting from (2.66) into (2.69) we get

$$B_{2} = B_{1}G_{27} + G_{28}(B_{1}G_{21} + B_{2}G_{22})$$

Thus

$$B_{2} = B_{1}G_{67} + B_{1}G_{68} \qquad (2.72)$$

Substituting from (2.72) into (2.66) we get

$$B_{2}^{2} = B_{1}G_{21} + G_{22}(B_{1}G_{67} + B_{1}G_{68})$$

Thus

$$B_{2} = B_{69} + B_{169} + G_{70}$$
 (2.73)

Substituting from (2.72) and (2.73) into (2.66), (2.67), (2.70), (2.71), we get $B_{1}G_{71} - B_{1}G_{72} + A(G_{c0}COST + G_{42}SinT) = 0(2.74)$ $B_{1}G_{73} + B_{1}G_{74} + A(G_{c2}COST + G_{46}SinT) = 0(2.75)$ $B_{1}G_{75} + B_{1}G_{76} + AG_{c3}COST = 0$ $B_{1}G_{77} + B_{1}G_{76} + A(G_{c5}COST + G_{c6}SinT) = -d(2.77)$ Equations (2.74), (2.75), (2.76), (2.77) are four equations in four unknowns B_1 , B_1' , \mathcal{T} , and n. From (2.74) and (2.75) we get

$$B_{1} = -A(G_{80}\cos\tau_{+}G_{81}\sin\tau) \qquad (2.78)$$

$$\dot{B}_{1} = -A(G_{82}\cos \tau + G_{83}\sin \tau)$$
 (2.79)

Substituting from (2.78) and (2.79) in (2.76) and (2.77) we get

$$G_{g_{4}} \cos \tau_{+} G_{g_{5}} \sin \tau = 0$$
 (2.80)

$$G_{g_{6}} \cos \tau_{+} G_{g_{7}} \sin \tau = -\rho$$
 (2.81)

Equations (2.80) and (2.81) are two equations in two unknowns (T, n).

Solution of equation (2.81) for τ results in

$$\sin \tau = \frac{-\rho G_{87}^{2} \pm \sqrt{\rho^{2} G_{87}^{2} - (G_{86}^{2} + G_{87}^{2})(\rho^{2} - G_{86}^{2})}}{2 (G_{86}^{2} + G_{87}^{2})}$$

and

$$\cos \tau = \frac{-\rho G_{g_{6}} \mp \sqrt{\rho^{2} G_{g_{6}}^{2} - (G_{g_{6}}^{2} + G_{g_{7}}^{2})(\rho^{2} - G_{g_{7}}^{2})}}{2(G_{g_{6}}^{2} + G_{g_{7}}^{2})}$$

Thus

$$\mathcal{T} = \tan \frac{-1}{-\rho G_{87}^{-1} + \sqrt{\rho^2 G_{87}^2 - (G_{86}^2 + G_{87}^2)(\rho^2 - G_{86}^2)}}{-\rho G_{86}^{-1} + \sqrt{\rho^2 G_{86}^2 - (G_{86}^2 + G_{87}^2)(\rho^2 - G_{86}^2)}}$$
(2.82)

The solutions of (2.81) satisfying equation (2.80) are the required solutions.

In order to have real values for $\sin \tau$ and $\cos \tau$ the clearance d cannot be arbitrarily large, it should satisfy the relation

 $\rho^{2} \leq (G_{86}^{2} + G_{87}^{2})$

The physical interpretation of this restriction is that for d exceeding this limit, the actual system will not have a two-impact-per-cycle (equally spaced or not) steady state motion.

The two sets of signs appearing in equation (2.82) correspond to two distinct steady state solutions.

Since the conditions that were used to obtain equation (2.82) are the <u>exact</u> conditions that <u>must</u> be met by the system if it is in the steady state motion with two impacts per cycle, then, as seen from equation (2.82), there are two possible steady state solutions. The analytical criteria of deciding which solution will be valid, if any, will be furnished by the stability analysis of the solutions. Such an analysis is carried out in Chapter 3.

With the values of γ and n determined from (2.80) and (2.82), B_1 , B_1' , B_2 and B_2' can be found from (2.78), (2,79), (2.72) and (2.73). Since

$$x = e \qquad (B_1 \sin(\eta wt) + B_2 \cos(\eta wt)) + A \sin(\alpha t + \tau) \qquad O_1 \leq t \leq (\frac{n\pi}{\Omega})$$

and

$$\sum_{n=0}^{\infty} \delta w(t_{n} n\pi) = \sum_{n=0}^{\infty} \left[\hat{B}_{1} \sin(\eta w(t_{n} n\pi)) + \hat{B}_{2} \cos(\eta w(t_{n} n\pi)) \right] + A \sin(\alpha t_{n} + \tau) = \sum_{n=0}^{\infty} \left(\frac{n\pi}{n} \right) \leq t \leq \left(\frac{2\pi}{n} \right)$$

then the motion of the primary system is determined.

2,3. Special Case;

For the special case of n = 1 (symmetric two

impact-cycle motion), the steady state solution (8)

is considerably simpler. In this case,

$$\dot{x}_{a} = \dot{x}_{b} = -\dot{x}_{g} = -\dot{x}_{h}$$
, $\dot{x}_{h} = -\dot{x}_{a}$, $\dot{x}_{g} = -\dot{x}_{b}$,
 $\dot{B}_{1} = -\dot{B}_{1}$, $\dot{B}_{2} = -\dot{B}_{2}$

The relation between x_b , x_b , x_a , B_1 , B_2 , A and τ

can be put in the matrix form

$$\begin{bmatrix} 1 & 0 & 0 & 0 & -1 & -S \\ 0 & 0 & 1 & -\eta \omega & \delta \omega & -C \\ 1 & 0 & 0 & h_1 & h_2 & -S \\ 0 & 1 & 0 & \theta_1 & \theta_2 & -C \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & \sigma_2 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_b \\ \dot{x}_b \\ \dot{x}_a \\ \dot{x}_a$$

From the solution of (2.83), expressions for A, $B_{1'}$ B₂, in terms of the known parameters can be obtained. Thus,

$$A = \frac{N(\Delta)}{\Delta}$$
(2.84)

$$B_{1} = \frac{N(B_{1})}{\Delta}$$
(2.85)

$$B_{2} = \frac{N(B_{2})}{\Delta}$$
(2.86)

where

$$N(A) = \frac{d}{2} \left[h_1(\sigma_1 \theta_2 - \sigma_2 \omega \delta) - (\sigma_1 \theta_1 + \eta_2 \sigma_2 \omega)(1 + h_2) \right]$$

$$N(B_1) = \frac{d}{2} (1 + h_1)(\sigma_2 - \sigma_1) C$$

$$N(B_2) = \frac{d}{2} h_1(\sigma_1 - \sigma_2) C$$

Symbols in (2.83) are given in Appendix ${f Y}$.

$$\Delta = h_1 \left[C(e_2 - e_1) - (S + Ce_2) e_1 + (S + Ce_1) \delta w e_2 \right]$$

$$+ (1 + h_2) \left[(S + Ce_2) e_1 + (S + Ce_1) \eta w e_2 \right]$$

Equation (2.84) can be put in the form

$$2\sin\gamma + H\cos\gamma = \rho \qquad (2.87)$$

where

$$H = 2 - \Omega \left[\frac{\left(\begin{pmatrix} e_{1} & e_{1} \end{pmatrix} + e_{1} & e_{2} \end{pmatrix} \left(\delta w - e_{1} \right) \right) h_{1} + \left(e_{1} & e_{2} \end{pmatrix} \left(e_{1} + \eta w \right) \right) \left(1 + h_{2} \right)}{\left(\delta e_{2} w - e_{1} & e_{2} \end{pmatrix} h_{1} + \left(e_{1} & e_{1} + \eta e_{2} w \right) \left(1 + h_{2} \right)} \right]$$

solution of Equation (2.87) for τ results in:

$$\sin \tau = \frac{-2\rho \pm H \sqrt{H^{2} + 4 - \rho^{2}}}{H^{2} + 4}$$

$$\cos \tau = \frac{-\rho H \neq 2\sqrt{H^{2} + 4 - \rho^{2}}}{H^{2} + 4}$$

$$\tau = \tan \left[\frac{-2\rho \pm H \sqrt{H^2 + 4 - \rho^2}}{-\rho H \mp 2\sqrt{H^2 + 4 - \rho^2}} \right]$$
(2.88)

Again, in order to have real values of sin τ and cos τ , the clearance d cannot be arbitrarily large; it should satisfy the relation $\rho^2 \leq H^2 + 4$.

CHAPTER 3

3. STABILITY

3.1. Theoretical considerations :

Now that we have a particular steady state solution for the system under consideration, we can proceed to investigate the stability of this solution. The type of stability that we are concerned with in this case is asymptotic stability.

Let the differential equation of motion of our system be expressed in the form

$$\dot{\vec{Z}} = \vec{F}(Z_1, \dots, Z_4, t)$$
 (3.1)

and let a particular solution of (3.1) be

$$\vec{z} = \vec{s}(t)$$
 (3.2)

If this solution is perturbed slightly, so that

$$\vec{Z}_{p} = \vec{S}(t) + \vec{z}(t)$$
 (3.3)

the solution is said to be asymptotically stable if

$$\lim_{t \to \infty} |\xi(t)| = 0 \quad \text{for } i=1,...,4 \quad (3.4)$$

So we perturb our solution immediately after one impact, and then determine the deviation of the resulting solution from the steady state conditions immediately after the following impact. By repeating this process over and over again, we can determine the propagation (similar to change with time) of the initial perturbations in the solution. The stability or instability of the solution is determined by whether or not the deviations from the steady state solution decay or grow, as the number of impacts is increased indefinitely (i.e. $t + \infty$).

The differential equations of motion of our system, between impacts

can be put in the form

$$\frac{d\vec{x}}{dt} = \vec{f}(\vec{x},t)$$

where

$$\vec{\mathbf{x}} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{pmatrix} , \vec{\mathbf{f}}(\vec{\mathbf{x}},t) = \begin{pmatrix} f_1(\mathbf{x},t) \\ f_1(\mathbf{x},t) \\ f_2(\mathbf{x},t) \\ f_3(\mathbf{x},t) \\ f_4(\mathbf{x},t) \end{pmatrix}$$

and

$$X_{1} = X \qquad f_{1} = X_{2}$$

$$X_{2} = \dot{X} \qquad f_{2} = -\omega^{2}X_{1} - 2\delta\omega X_{2} + \frac{F_{0}}{M} \text{ sinct}$$

$$X_{3} = \dot{y}_{1} \qquad f_{3} = X_{4}$$

$$X_{4} = \dot{y}_{1} \qquad f_{4} = 0$$

(3.5)
The first partial derivatives of the four functions $f_i(\vec{x},t)$ i = 1,...,4 with respect to their five variables, $x_1, \ldots x_4$, t, exist and are continuous (8) and if the initial conditions are specified then the solution exists and is unique.

This type of motion can be represented in the phase plane by a periodic process as shown in Fig. 3.1. On the analytic trajectories AB and CD, the motion of the system is governed by equation (3.5). On the stretches BC and DA, where the small impact time is idealized to be infinitesimally small, equation (3.5) does not apply, but the motion of the system is determined by the impact conditions, equations (2.18) and (2.19). These equations relate the conditions at C and A to those at B and D, respectively.

Now let the solution curve be perturbed slightly right after an impact, e.g. at A, then the perturbations at point A are continuously related to the perturbations at point C.

If at $\mathfrak{At} = (\Delta t_0)_+$ the steady state solution is perturbed by a small amount $\overline{\xi}$ (0), then the time of the next impact, $\mathfrak{At} = n\pi + \Delta t_0'$ is determined by a relation of the form

$$\Delta \dot{t}_{a} = g(\vec{S}, \vec{z}, A \dot{t}_{a})$$

29

$$G(\vec{s}, \vec{\xi}, \Delta t_{o}) = 0 \qquad (3.6)$$

The deviation of the solution from the steady state at $n = (n\pi + \Delta t_0)_+$ can be put in the form

$$\vec{k}_{(1)} = P_1 \vec{k}_{(0)} + \vec{R}(\vec{k})$$

The deviation of the solution from steady state at $\Delta t = (2\pi + \Delta t_0^*)_+$ can be put in the form

$$\vec{F}_{(2)} = P_{2} \vec{F}_{(1)} + R_{2} (\vec{F}_{(1)})$$
$$= P_{2} P_{1} \vec{F}_{(1)} + R' (\vec{F}_{(1)})$$
$$= P_{2} P_{1} \vec{F}_{(0)} + R' (\vec{F}_{(0)})$$

where P_1 and P_2 are constant matrices, and \overline{R}_1 , \overline{R}_2 contain all terms of $\frac{1}{2}$ i higher than the first power.

Since the two impacts per cycle solution repeats itself after intervals of $\Omega t = 2\pi$, the perturbation at $t = (4\pi + \Delta t_0^{"})$ will be

$$\vec{\xi}_{(4)} = \Pr_{2} \Pr_{1} \vec{\xi}_{(2)} + \vec{R} (\vec{\xi}_{(0)})$$

By following the perturbed solution from one impact to the next one, we obtain the continuous transformation

$$\vec{\xi} = P P \vec{\xi} + R (\vec{\xi})$$
(3.7)
(2n+2) (2n) (2n)

or

$$= (P_{21})^{n+1} \vec{\xi}_{(0)} + \vec{R} (\vec{\xi}_{(0)})$$
(3.8)

It is worth noting that if the sign of P did change after each impact, the net effect would be to multiply P in (3.7) by $(-1)^{n+1}$. This has no effect on the stability criteria, which depends on (8)the modulus of the eigenvalues of P. ($P_=P_P_P$)

Consider the linear part of equation (3.8), i.e.

$$\vec{k}_{(2n+2)} = \left(\begin{array}{c} P & P \\ 2 & 1 \end{array} \right)^{n+1} \vec{k}_{(0)}$$
(3.9)

Equation (3.9) will be asymptotically stable if $\lim_{n \to \infty} P^{n} = 0$ The requirement that

 $\lim_{n \to \infty} P^n = 0$

is satisfied if and only if (8) all the eigenvalues of P have modulus less than unity, i.e. if

$$\left|\lambda_{i}\right| < 1 \qquad (i=1,\ldots,4)$$

Thus, our problem is to determine P and to examine its eigenvalues.

Since our system has two degrees of freedom, $\frac{2}{5}$ should be 4-component vector. A proper choice of the components can be the two displacements and the two velocities. However, it is more natural for this system

if the phase angle between the motion of the particle and M is used as one of the components, instead of the displacement of the particle. In other words, the initial perturbation will consist of small variation of the steady state value of x, \dot{x}, v and τ .

The conditions that we have are:

Steady State

Perturbed

At	Ωt = 0 ₊	At $\Delta t = (0 + \Delta t_{o})_{+}$	
·	× = × _{ao}	$X = X_{a_0} + \Delta X_{a_0}$	
	$y = \frac{d}{2}$	$y = \frac{d}{2}$	
	× = × _{ao}	$\dot{X} = \dot{X}_{a_0} + \Delta \dot{X}_{a_0}$	
1	$V = -V_{1_{o}}$	$\vee = - (\vee_{1_0} + \Delta \vee_{1_0})$	
	$\tau = \tau_{o}$	$\mathcal{T} = \mathcal{T}_{+} \Delta \mathcal{T}_{0}$	

At

$$at = (n\pi)_{+} \qquad At$$

$$x = -x_{h_{o}}$$

$$y = -\frac{d}{2}$$

$$\dot{x} = -\dot{x}_{h_{o}}$$

$$v = V_{2_{o}}$$

$$\Delta t = (n\pi + \Delta t_{o})^{+}$$

$$X = -(X_{h_{o}} + \Delta X_{h_{o}})^{+}$$

$$Y = -\frac{d}{2}$$

$$\dot{X} = -(\dot{X}_{h_{o}} + \Delta \dot{X}_{h_{o}})^{+}$$

$$V = V_{2_{o}} + \Delta V_{2_{o}}$$

33

 $\tau = \tau_{+} \Delta \tau_{0}$

3.2. Determination of P₁

At

Without any loss of generality, ω and $\frac{F_0}{k}$ can each be taken as unity. Then for the general case $(\Omega \neq 1, \delta \neq 0)$

$$x = e \qquad (B_{1} \sin \eta t + B_{2} \cos \eta t) + A \sin(\Delta t + \tau)
0 \leq t \leq \underline{n\pi}
(3.10)
= \delta t
x = e \qquad (-6 \sin \eta t + \eta \cos \eta t) B_{1} + e \qquad (-6 \cos \eta t) - \delta t
\eta \sin \eta t) B_{2} + A \alpha \cos(\Delta t + \tau) \qquad 0 \leq t \leq \underline{n\pi} \\
(3.11)$$

Now

$$x(0_{+}) = x_{a_{0}} = B_{2_{0}} + A \sin \tau_{0}$$
 (3.12)

$$\dot{x}(O_{+}) = \dot{x}_{a} = \eta B_{1} - \delta B_{2} + A \alpha \cos \zeta$$
 (3.13)

where the 0 subscript refers to the unperturbed conditions (i.e., $x_{oa} = x_a$, $\dot{x}_{oa} = \dot{x}_a$, etc.)

From (3.12) and (3.13)

$$B_{2_{o}} = X_{a_{o}} - A \sin \tau_{a_{o}}$$
 (3.14)

and

$$B_{10} = \frac{1}{1} (\dot{x}_{1} + \delta B_{2} - A_{\Omega} \cos \tau) \qquad (3.15)$$

In finding the perturbed values of B and B the quantities with 0 subscript in the above equations should be replaced by their perturbed values. Thus,

$$B_{2}(O + \Delta t_{o}) = (x_{a} + \Delta x_{a}) - A \sin(\tau + \Delta \tau) \quad (3.16)$$

and

$$B_{1}(0+\Delta t_{o}) = \frac{1}{\eta} \left[(\dot{x}_{a}+\Delta \dot{x}_{a}) + \delta B_{2}(0+\Delta t_{o}) - A_{\Omega}\cos(\tau + \Delta \tau) \right]$$
(3.17)

Since $\ensuremath{\scriptscriptstyle\Delta} \ensuremath{\mathcal{T}}_{_{\!\!\!\!\!\!\!\!\!}}$ is a small quantity of order $\ensuremath{\in}$, then to

first order approximation.

$$B_{2}(0+\Delta t_{o}) = B_{2} + \Delta X_{a} - A \Delta T_{o} \cos \tau \qquad (3.18)$$

and

$$B_{1}(0+\Delta t_{o}) = B_{1_{o}} + \frac{\delta}{\eta} \Delta x_{a} + \frac{1}{\eta} \Delta \dot{x}_{a} + a \Delta \tilde{\zeta} (3.19)$$

where

$$a = \frac{A}{\eta} (a \sin \tau - 6 \cos \tau)$$

Equation (3.10) describes the motion of the primary system immediately after $t = \frac{0 + \Delta t_o}{-\Omega}$ to immediately prior to $t = \frac{n \pi \cdot \Delta t_o}{-\Omega}$. Thus, the time during which equation (3.10) is applicable is $\pi t_{\pm} n\pi + \Delta T$ where $\Delta T = (\Delta t_{\pm} - \Delta t_{\pm})$. Hence,

$$= \left(\begin{array}{c} \left(\begin{array}{c} n\pi + \Delta T \\ n_{\circ} \end{array}\right) \\ = e \\ \left(\begin{array}{c} \left(n\pi + \Delta T \\ n_{\circ} \end{array}\right) \\ = e \\ \sin\left(\eta \left(\frac{n\pi + \Delta T}{2} \right) \right) \\ + B_{2}(0 + \Delta t_{\circ}) \\ \cos\left(\eta \left(\frac{n\pi + \Delta T}{2} \right) \right) \\ + A \sin\left(n\pi + \Delta T + \tau_{\circ} + \Delta \tau_{\circ} \right) \\ = C_{\circ} + C_{\Delta} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \\ \Delta T \\ + C_{\circ} \end{array}\right) \\ = C_{\circ} + C_{\Delta} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \\ \Delta T \\ + C_{\circ} \end{array}\right) \\ = C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \\ \Delta T \\ + C_{\circ} \end{array}\right) \\ = C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \\ \Delta T \\ + C_{\circ} \end{array}\right) \\ = C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \\ \Delta T \\ + C_{\circ} \end{array}\right) \\ = C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \\ \Delta T \\ + C_{\circ} \end{array}\right) \\ = C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \\ \Delta T \\ + C_{\circ} \end{array}\right) \\ = C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \\ \Delta T \\ + C_{\circ} \end{array}\right) \\ = C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \\ \Delta T \\ + C_{\circ} \end{array}\right) \\ = C_{\circ} \left(C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \\ \Delta x_{\circ} \end{array}\right) \\ = C_{\circ} \left(C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{\Delta} \\ \Delta x_{\circ} \end{array}\right) \\ = C_{\circ} \left(C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{0} \\ \Delta x_{\circ} \end{array}\right) \\ = C_{\circ} \left(C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{0} \end{array}\right) \\ = C_{\circ} \left(C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{0} \end{array}\right) \\ = C_{\circ} \left(C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{0} \end{array}\right) \\ = C_{\circ} \left(C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{0} \end{array}\right) \\ = C_{\circ} \left(C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{0} \end{array}\right) \\ = C_{\circ} \left(C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{0} \end{array}\right) \\ = C_{\circ} \left(C_{\circ} + C_{0} \begin{array}{c} \Delta x_{\circ} + C_{0} \end{array}\right) \\ = C_{\circ} \left(C_{\circ} + C_{0} \end{array}\right)$$

where

$$C_{o} = e^{-\frac{\delta n \pi}{\Delta}} (B_{1} \sin(\frac{n \pi}{\Delta} \eta) + B_{2} \cos(\frac{n \pi}{\Delta} \eta)) + A \sin(n \pi + \tau)$$

$$A \sin(n \pi + \tau)$$

$$C_{1} = e^{-\frac{\delta n \pi}{\Delta}} (\frac{\delta}{\eta} \sin(\frac{n \pi}{\Delta} \eta) + \cos(\frac{n \pi}{\Delta} \eta))$$

$$C_{2} = e^{-\frac{\delta n \pi}{\Delta}} (\frac{1}{\eta} \sin(\frac{n \pi}{\Delta} \eta))$$

$$C_{3} = b_{3} + (b_{1} + b_{2})e^{-\frac{\delta n \pi}{\Delta}} + A \cos(n \pi + \tau)$$

$$C_{4} = e^{-\frac{\delta n \pi}{\Delta}} (a \sin(\frac{n \pi}{\Delta} \eta) - A \cos\tau \cos(\frac{n \pi}{\Delta} \eta)) + A \cos(n \pi + \tau)$$

$$b_{1} = B_{1} \frac{\eta}{\Delta} \cos(\frac{n \pi}{\Delta} \eta)$$

$$b_{2} = -B_{2} \frac{\eta}{\Delta} \sin(\frac{n \pi}{\Delta} \eta)$$

$$b_{3} = (-\frac{\delta}{\Delta} - e^{-\frac{\delta n \pi}{\Delta}}) (B_{1} \sin(\frac{n \pi}{\Delta} \eta) + B_{2} \cos(\frac{n \pi}{\Delta} \eta))$$

Since

$$C_{o} = x(\frac{n\pi}{r}) = -x_{h_{o}}$$

equation (3.20) reduces to

$$\Delta X_{h_{o}} = -C_{1} \Delta X_{a_{o}} - C_{2} \Delta \dot{X}_{a_{o}} - C_{3} \Delta T - C_{4} \Delta \mathcal{T}_{o} \qquad (3.21)$$

The time required by the particle to travel from one end of the container (where $y = \frac{d}{2}$) to the other end (where $y = -\frac{d}{2}$) is the absolute distance travelled divided by the absolute velocity. Hence,

$$\frac{(n\pi + \Delta \dot{t}_{o}) - \Delta \dot{t}_{o}}{y(n\pi + \Delta \dot{t}_{o}) + x(n\pi + \Delta \dot{t}_{o}) - (y(\Delta t_{o}) + x(\Delta t_{o}))}{-(V_{o} + \Delta V_{o})}$$

$$-(V_{o} + \Delta V_{o})$$

$$(3.22)$$

substituting for the values of the quantities on the left hand side of (3.22) then

$$\Delta T = -\frac{n \pi}{V_{10}} \Delta V_{10} + \frac{n}{V_{10}} \Delta X_{10} + \frac{n}{V_{10}} \Delta X_{a}$$
(3.23)

Replacing ΔT in (3.21) by its value form (3.23) we obtain

$$\Delta X_{h_{o}} = d_{5} \Delta X_{a_{o}} + \frac{V_{1_{o}}}{\Omega_{o}} d_{2} \Delta \dot{X}_{a_{o}} - C_{3} d_{3} \Delta V_{1_{o}} + \frac{V_{1_{o}}}{\Omega_{o}} d_{4} \Delta \tilde{C}_{a_{o}}$$
(3.24)

where

4

$$d_{5} = -\frac{-\Omega C_{3} + C_{1} V_{10}}{V_{10} + \Omega C_{3}}$$
$$d_{2} = -\frac{-\Omega C_{2}}{V_{10} + \Omega C_{3}}$$

$$d_{3} = -\frac{n\pi}{V_{10} + \Omega C_{3}}$$
$$d_{4} = -\frac{\Omega C_{4}}{V_{10} + \Omega C_{3}}$$

If (3.24) is now substituted in (3.23), then

$$\Delta T = d \Delta x \rightarrow d \Delta \dot{x} + d \Delta V + d \Delta \tilde{\tau}, \qquad (3.25)$$

where

$$d_{1} = \frac{f_{1}(1 - C_{1})}{V_{1} + f_{2}C_{3}}$$

since

$$\Delta T = \Delta T, \Delta T$$

Then by using (3.25)

$$\Delta \tilde{\zeta} = d_{\Delta X} + d_{\Delta X} + d_{\Delta V} + (1 + d_{1}) \Delta \tilde{\zeta} \quad (3.26)$$

Using equation (3.11) to find the velocity at

$$t = (\frac{n \pi + \Delta t'_{\circ}}{2}), \text{ then}$$

$$\dot{x}\left(\frac{n\pi+\Delta t}{\Omega}\right) = e \begin{bmatrix} -6\left(\frac{n\pi+\Delta T}{\Omega}\right) \\ -6\sin\left(\frac{n\pi+\Delta T}{\Omega}\right) \end{bmatrix} + e \begin{bmatrix} -6\sin\left(\frac{n\pi+\Delta T}{\Omega}\right) \end{bmatrix}$$

$$\eta \cos(\eta(\frac{n\pi + \Delta T}{2})) \Big] B_1(0 + \Delta t_0) +$$

$$e^{-\delta(\underline{n\pi}+\underline{nT})} \left[-\delta\cos(\eta(\underline{n\pi}+\underline{nT})) - \eta\sin(\eta(\underline{n\pi}+\underline{nT})) \right] B_{2}(0 + \Delta t_{0}) + A_{\Omega}\cos(n\pi + \Delta T + \tau_{*} \Delta \tau_{0})$$

$$= p_{0} + p_{0} \Delta x_{0} + p_{0} \Delta \dot{x}_{0} + p_{0} \Delta \tau_{0} + p_{0} \Delta \tau_{0}$$

$$= p_{0} + p_{0} \Delta x_{0} + p_{0} \Delta \dot{x}_{0} + p_{0} \Delta \tau_{0} + q_{0} \Delta \tau_{0}$$

$$= p_{0} + p_{0} \Delta x_{0} + p_{0} \Delta \dot{x}_{0} + p_{0} \Delta \tau_{0} + q_{0} \Delta \tau_{0}$$

$$P_{1} \equiv g_{0} e^{-\delta \underline{n\pi}} + A_{\Omega}\cos(n\pi + \tau_{0})$$

$$P_{1} \equiv g_{1} e^{-\delta \underline{n\pi}} + f_{0} \Delta \alpha \sin(n\pi + \tau_{0})$$

$$P_{1} \equiv g_{1} e^{-\delta \underline{n\pi}} + g_{1} e^{-\delta \underline{n\pi}} + f_{0} \Delta \alpha \sin(n\pi + \tau_{0})$$

$$P_{4} \equiv g_{4} e^{-\delta \underline{n\pi}} - A_{\Omega} \sin(n\pi + \tau_{0})$$

$$g_{0} \equiv -(f_{1} - B_{1} + f_{2} - B_{2})$$

$$g_{1} \equiv -(f_{1} - \frac{\delta}{\eta} + f_{2})$$

$$g_{2} \equiv -\frac{f_{1}}{\eta}$$

$$g_{3} \equiv \frac{\eta_{1}}{\Omega} (f_{1} - B_{2} - f_{2} - B_{1})$$

where

40

$$g_{4} = \int_{2}^{fA} \cos \zeta_{-a} f_{1}$$

$$f_{1} = \delta \sin \left(\frac{\eta \pi \pi}{s^{2}} \right) - \eta \cos \left(\frac{\eta \pi \pi}{s^{2}} \right)$$

$$f_{2} = \delta \cos \left(\eta \frac{\eta \pi}{s^{2}} \right) + \eta \sin \left(\eta \frac{\eta \pi}{s^{2}} \right)$$

From equations (2.18) and (2.19)

$$\dot{x}_{+} = (k_{1} \dot{x}_{-}) + (k_{2} \sqrt{2})$$

and

$$\dot{V}_{+} = (k \dot{X}_{+})_{+} (k \dot{X}_{+})_{+}$$

where

$$k_{1} \equiv \frac{(1 - \mu e)}{(1 + \mu)}$$

$$k_{2} \equiv \frac{\mu(1 + e)}{(1 + \mu)}$$

$$k_{3} \equiv \frac{(1 + e)}{(1 + \mu)}$$

$$k_{4} \equiv \frac{(\mu - e)}{(1 + \mu)}$$

Hence,

$$\dot{\mathbf{x}} \left(\underbrace{\mathbf{n} \mathbf{T} \mathbf{T} \cdot \mathbf{A} \mathbf{\dot{t}}_{o}}_{\mathbf{\Omega}} \right)_{+} = - \dot{\mathbf{x}}_{h_{o}} - \underline{\mathbf{A}} \dot{\mathbf{x}}_{h_{o}}$$
$$= k_{1} \left(p \underline{\mathbf{A}} \mathbf{x}_{a} + p \underline{\mathbf{A}} \dot{\mathbf{x}}_{a} + p \underline{\mathbf{A}} \mathbf{T}_{a} + p \underline{\mathbf{A}} \mathbf{T}_{a} \right)$$
$$- k \underline{\mathbf{A}} \mathbf{V}_{a} + k_{1} p \underline{\mathbf{A}}_{a} - k_{2} \mathbf{V}_{a}$$

Also,

$$V\left(\frac{n_{TT} + t_{0}}{2}\right) = V_{2} + \Delta V_{2}$$

= $k\left(p_{\Delta} \times p_{\Delta} + p_{\Delta} \times p_{\Delta} + p_{\Delta} T + p_{\Delta} T\right)$
= $k\left(p_{\Delta} \times p_{\Delta} + p_{\Delta} \times p_{\Delta} + p_{\Delta} T + p_{\Delta} T\right)$
= $k_{\Delta} V_{1} + k_{3} p_{0} - k_{4} V_{1}$

noting that

$$k_{1} p - k_{2} V = k_{1} \dot{x} (\underline{n} T T) + k_{2} (-V) = -\dot{x}_{h}$$

anđ

$$k_{\Omega} - k_{V} = k_{X} \left(\frac{n\pi}{\Omega} \right) + k \left(V \left(\frac{n\pi}{\Omega} \right) \right) = V_{2}$$

and replacing *st* by its value from (3.25), then

$$\Delta \dot{x} = -k (p + pd) \Delta x - k(p + pd) \Delta \dot{x} + \frac{1}{1} + \frac{3}{1} + \frac{1}{2} + \frac{1}{2}$$

and

$$\Delta V = k (p + pd) \Delta X + k(p + pd) \Delta \dot{X} + (p + pd) \Delta \dot{X} + k(p + pd) \Delta \dot{X} + (p + pd) \Delta \dot{X} + (p$$

Equations (3.24),(3.28), (3.29) and (3.26) can be expressed in a matrix form as:

∆×_{h₀} d₅ ∆×_a d 2 Δ×_{h₀} Δ[∨]₂₀ ۵ż _ k(p + (p + (p + pd) 1 4 3 4 pd) 32 kpd 133 d ĸ = k (p + ∆V 1. pd) 34 р з к (з p_+ d) d k р p k р ·з 3 2 2 3 З d, ۵۲. Δζ, + d 4 d₂ 1 d 3

(3.30)

For the general case

$$x = e \qquad \left[B_{1} \sin\left(\eta \left(t - \frac{n\pi}{\Delta}\right)\right) + B_{2} \right]$$

$$\cos\left(\eta \left(t - \frac{n\pi}{\Delta}\right)\right) + A \sin\left(\alpha t + \tau\right) \qquad (3.31)$$

$$\frac{-\delta\left(t - \frac{n\pi}{\Delta}\right)}{2} \left[-\delta \sin\left(\eta \left(t - \frac{n\pi}{\Delta}\right)\right) + \eta \cos\left(n\left(t - \frac{n\pi}{\Delta}\right)\right) \right]$$

$$B_{1} + e \qquad \left[-\delta \cos\left(\eta \left(t - \frac{n\pi}{\Delta}\right)\right) - \eta \sin\left(\eta \left(t - \frac{n\pi}{\Delta}\right)\right) \right]$$

$$B_{2} + A \cos\left(\alpha t + \tau\right) \qquad (3.32)$$

Now

$$x_{(n\pi_{1})} = -x_{h_{0}} = B_{2_{0}} + A \sin(h\pi_{1}+\gamma_{0})$$
 (3.33)

and

$$\dot{x}_{(n\pi_{1})} = -\dot{x}_{h_{0}} = \eta \dot{B}_{1_{0}} - \delta \dot{B}_{2_{1}} + Aacos(n\pi_{1}+\tau_{0})(3.34)$$

From (3.33) and (3.34) we get

$$B_{2} = -X_{n_{o}} - A \sin(n\pi + \tau_{o})$$
 (3.35)

and

$$\dot{B}_{1} = \frac{1}{\eta} \left(- \dot{X}_{1} + \delta \dot{B}_{2} - A_{n}\cos(n\pi_{+}\tau) \right) \quad (3.36)$$

In finding the perturbed values of B_{1_0} and B_{2_0} the quantities with 0 subscripts in the above equation should be replaced by their perturbed values. Thus,

$$B_{2}(n\pi + \Delta t) = -(x + \Delta x) - A \sin(n\pi + \tau + \Delta t)$$

$$B_{2}(n\pi + \Delta t) = -(x + \Delta x) - A \sin(n\pi + \tau + \Delta t)$$

$$(3.37)$$

and

$$\dot{B}_{1}(n\pi+\Delta \dot{t}) = \frac{1}{\eta} \begin{bmatrix} -(\dot{x}_{+}\Delta \dot{x}) + \delta B_{2}(n\pi+\Delta \dot{t}) \\ h_{0} & h_{0} & 2(n\pi+\Delta \dot{t}) \end{bmatrix}$$

$$Aacos(n\pi+\tau+\tau+\Delta \dot{\tau}) \end{bmatrix} (3.38)$$

since $\[Delta T_i]$ is a small quantity of order $\[Delta C_i]$, then to first order approximation,

$$B_{2}^{h}(n\pi+\Delta t) = B_{2}^{h} - \Delta x - A \Delta \tau \cos(n\pi+\tau) (3.39)$$

and

$$B_{1}(n\pi + \Delta t) = B_{10} - \frac{\delta}{\eta} \Delta x_{h0} - \frac{1}{\eta} \Delta \dot{x}_{h0} + \dot{a} \Delta \tau_{0}$$
(3.40)

where

$$\dot{a} = \frac{A}{\eta} \left[- \delta \cos(n\pi + \tau) + \Omega \sin(n\pi + \tau) \right]$$

Equation (3.31) describes the motion of the primary system immediately after $t = \frac{n\pi + \delta t_{o}}{\rho}$ to immediately prior

to $t = \frac{2\pi + \Delta t_{o}}{\Omega}$. Thus, the time during which equation (3.31) is applicable is $\Delta t = (2\pi - n\pi) + \Delta T$ where $\Delta T = (\Delta t_{o} - \Delta t_{o})$

From equation (3.31) we get

$$S(2\pi - n\pi + \Delta T)$$

$$S_{a_{o}}^{*} \Delta X_{a_{o}}^{*} = e \qquad \left[\begin{array}{c} B \\ 1(n\pi + \Delta t_{o}) \end{array} \right]$$

$$Sin(\eta(\frac{2\pi - n\pi + \Delta T}{2})) + B \\ 2(n\pi + \Delta t_{o}) \end{array}$$

$$Cos(\eta(\frac{2\pi - n\pi + \Delta T}{2})) = A Sin(2\pi + \Delta T + \tau_{o}^{*} + \Delta \tau_{o}^{*})$$

$$= C_{o}^{*} + C_{\Delta} X_{o}^{*} + C_{\Delta} X_{o}^{*} + C_{\Delta} T_{o}^{*} + C_{\Delta} T_{o}^{*} \qquad (3.41)$$

where

2

$$\dot{C}_{a} = e^{\int \left(\frac{2\pi - n\pi}{n}\right)} \left[\dot{B}_{1a}\sin\left(\eta\left(\frac{2\pi - n\pi}{n}\right)\right)\right]$$

$$\dot{B}_{2a}\cos\left(\eta\left(\frac{2\pi - n\pi}{n}\right)\right) + A\sin\tau_{a}$$

$$\dot{C}_{1} = e^{-\frac{\delta(2\pi - n\pi)}{2}} \left[-\frac{\delta}{\eta} \sin(\eta(\frac{2\pi - n\pi}{2})) - \cos(\eta(\frac{2\pi - n\pi}{2})) \right]$$

$$\dot{C}_{2} = e^{-\frac{\delta(2\pi - n\pi)}{2}} \left[-\frac{1}{\eta} \sin(\eta(\frac{2\pi - n\pi}{2})) \right]$$

$$\dot{C}_{3} = -\left[e^{-\frac{\delta(2\pi - n\pi)}{2}} + \frac{\delta(2\pi - n\pi)}{2} +$$

$$\dot{C}_{4} = e^{-\frac{\delta(2\Pi - \Pi\Pi)}{\Omega}} (\dot{a} \sin(\eta(2\Pi - \Pi\Pi))) - A\cos(\Pi\Pi + \tau_{o})\cos(\eta(2\Pi - \Pi\Pi))) + A\cos\tau$$

$$\dot{B}_{1} = \dot{B}_{1,o} \frac{\eta}{\Omega} \cos(2\Pi - \Pi\Pi)$$

$$\dot{B}_{2} = -\dot{B}_{2,o} \frac{\eta}{\Omega} \sin(2\Pi - \Pi\Pi) - \frac{\delta(2\Pi - \Pi\Pi)}{\Omega}$$

$$\dot{B}_{3} = -\frac{\delta}{\Omega} e^{-\frac{\delta}{\Omega}} B_{1,o} \sin(\eta(2\Pi - \Pi\Pi)) + B_{2,o} \cos(\eta(2\Pi - \Pi\Pi)))$$

Since

$$C_{a} = X \left(\frac{2\pi}{2} \right)_{a} = X_{a}$$

equation (3.41) reduces to

$$\Delta \dot{x}_{a} = -\dot{C}_{1} \Delta \dot{x}_{h} - \dot{C}_{2} \Delta \dot{x}_{h} - \dot{C}_{3} \Delta T - \dot{C}_{1} \Delta T$$
(3.42)

The time required by the particle to travel from one end of the container (where $y = -\frac{d}{2}$) to the other end (where $y = \frac{d}{2}$) equals the absolute distance travelled, divided by the absolute velocity. Hence,

$$\frac{(2\pi\pi - n\pi + \Delta t_{\circ}) - \Delta t_{\circ}}{P_{\circ}} = \frac{[Y(2\pi + \Delta t_{\circ}) + X(2\pi + \Delta t_{\circ})] - [Y(n\pi + \Delta t_{\circ}) + X(n\pi + \Delta t_{\circ})]}{V_{2\circ} + \Delta V_{2\circ}}$$

Thus,

$$\frac{2\pi - n\pi + \Delta T'}{2} = \frac{d + X_{a_o} \Delta X_{a_o} - (-X_{h_o} \Delta X_{h_o})}{V_{a_o} + \Delta V_{a_o}}$$
(3.43)

substituting for the values of the quantities on the left hand side of (3.43), then

$$\Delta T = \frac{\Omega}{V_{2_0}} \Delta X_{a} + \frac{\Omega}{V_{a_0}} \Delta X_{b_0} - \frac{2 T T - N T T}{V_{2_0}} \Delta V_{2_0} \quad (3.44)$$

Replacing ΔT in (3.42) by its value from (3.44), we obtain

$$\Delta \dot{x}_{a} = \dot{d}_{5} \Delta \dot{x}_{h} + \frac{V_{2}}{2} \dot{d}_{2} \dot{\Delta} \dot{x}_{h} - \dot{C}_{3} \dot{d}_{3} V_{2} + \frac{V_{2}}{2} \dot{d}_{4} \Delta \vec{\tau} (3.45)$$

where

$$\dot{d}_{5} = - \frac{\dot{C}_{1} V_{2} + \dot{C}_{3} - \Omega}{V_{2} + \Omega \dot{C}_{3}}$$

$$\dot{d}_{2} = - \frac{\Omega \dot{C}_{2}}{V_{2} + \Omega \dot{C}_{3}}$$

$$\dot{d}_{3} = - \frac{2 \pi - n \pi}{V_{2} + \Omega \dot{C}_{3}}$$

$$\dot{d}_{4} = - \frac{\dot{C}_{4}}{V_{2} + \Omega \dot{C}_{3}}$$

If (3.45) is now substituted in (3.44), then

$$\Delta T = d_{1} \Delta X_{h_{0}} + d_{2} \Delta X_{h_{0}} + d_{3} \Delta V_{2} + d_{4} \Delta T_{0}$$
(3.46)

where

$$d_1 = \frac{\Omega (1 - C_1)}{V_2 + \Omega C_3}$$

Since

$$\Delta \mathcal{T}_{0}^{"} = \Delta \mathcal{T}_{0}^{"} + \Delta \mathcal{T}^{"}$$

then by using (3.46)

,

$$\Delta \tau_{b}^{*} = d_{1} \Delta x_{+} d_{2} \Delta \dot{x}_{+} d_{0} \nabla + (1 + d_{1}) \Delta \tau_{0}^{*} (3.47)$$

Using equation (3.32) to find the velocity at
$$2\pi + 4t_{1}^{*}$$

$$t = \left(\frac{2\pi + \Delta t_{o}}{\Delta}\right)_{-}, \text{ then}$$

$$\dot{x} \left(\frac{2\pi + \Delta t_{o}}{\Delta}\right)_{-} = e^{-\frac{\delta\left(\frac{2\pi - n\pi + \Delta T}{\Delta}\right)}{\Delta}} \left[-\frac{\delta \sin\left(\eta\left(\frac{2\pi - n\pi + \Delta T}{\Delta}\right)\right)}{\Omega}\right]_{+} \eta \cos\left(\eta\left(\frac{2\pi - n\pi + \Delta T}{\Delta}\right)\right)_{-} B^{+}_{-} \left[-\frac{\delta \cos\left(\eta\left(\frac{2\pi - n\pi + \Delta T}{\Delta}\right)\right)}{\Omega}\right]_{-} B^{+}_{-} \left[-\frac{\delta \cos\left(\eta\left(\frac{2\pi - n\pi + \Delta T}{\Delta}\right)\right)}{\Omega}\right]_{-} \theta^{+}_{-} \frac{\delta (2\pi - n\pi + \Delta T)}{\Delta}\right]_{-} B^{+}_{-} \left[-\frac{\delta \cos\left(\eta\left(\frac{2\pi - n\pi + \Delta T}{\Delta}\right)\right)}{\Omega}\right]_{-} B^{+}_{-} \eta \sin\left(\eta\left(\frac{2\pi - n\pi + \Delta T}{\Delta}\right)\right)_{-} B^{+}_{-} \left[-\frac{\delta \cos\left(\eta\left(\frac{2\pi - n\pi + \Delta T}{\Delta}\right)\right)}{\Omega}\right]_{-} B^{+}_{-} \left[-\frac{\delta \cos\left(\eta\left(\frac{2\pi - n\pi + \Delta T}{\Delta}\right)\right]_{-} \left[-\frac{\delta \cos\left(\eta\left(\frac{2\pi - n\pi + \Delta T}{\Delta}\right)\right]_{-} \left[-\frac{\delta \cos\left(\eta\left(\frac{2\pi - n\pi + \Delta T}{\Delta}\right)\right)}{\Omega}\right]_{-} \left[-\frac{\delta \cos\left(\eta\left(\frac{2\pi - n\pi + \Delta T}{\Delta}\right)\right)}{\Omega}\right]_{-} \left[-\frac{\delta \cos\left(\eta\left(\frac{2\pi - n\pi + \Delta T}{\Delta}\right)\right]_{-} \left[-\frac{\delta \cos\left(\eta\left(\frac{2\pi$$

where

$$\begin{split} \hat{\rho}_{1} &= e^{-\frac{\delta(2\pi-n\pi)}{2}} \\ \hat{\rho}_{1} &= e^{-\frac{\delta(2\pi-n\pi)}{2}} \\ \hat{\rho}_{1}^{2} &= e^{-\frac{\delta(2\pi-n\pi)}{2}} \\ \hat{\rho}_{2}^{2} &= e^{-\frac{\delta(2\pi-n\pi)}{2}} \\ \hat{\rho}_{3}^{2} &= e^{-\frac{\delta(2\pi-n\pi)}{2}} \\ \hat{\rho}_{3}^{2} &= e^{-\frac{\delta(2\pi-n\pi)}{2}} \\ \hat{\rho}_{4}^{2} &= e^{-\frac{\delta(2\pi-n\pi)}{2}} \\ \hat{\rho}_{4}^{2} &= e^{-\frac{\delta(2\pi-n\pi)}{2}} \\ \hat{\rho}_{4}^{2} &= e^{-\frac{\delta(2\pi-n\pi)}{2}} \\ \hat{\rho}_{4}^{2} &= -\frac{\hat{h}_{1}}{2} \\ \hat{\rho}_{2}^{2} &= -\hat{h}_{1} \\ \hat{\rho}_{1} &= \hat{h}_{2} \\ \hat{\rho}_{2}^{2} &= \hat{h}_{1} \\ \hat{\rho}_{1} &= \hat{h}_{2} \\ \hat{\rho}_{2}^{2} &= -\hat{h}_{1} \\ \hat{\rho}_{1} &= \hat{h}_{2} \\ \hat{\rho}_{2}^{2} &= -\hat{h}_{1} \\ \hat{\rho}_{1} &= \hat{h}_{1} \\ \hat{\rho}_{1} &= \hat{h}_{2} \\ \hat{\rho}_{2}^{2} &= -\hat{h}_{1} \\ \hat{\rho}_{1} &= \hat{h}_{2} \\ \hat{\rho}_{2}^{2} &= -\hat{h}_{1} \\ \hat{\rho}_{1} &= \hat{h}_{2} \\ \hat{\rho}_{2} &= \hat{h}_{1} \\ \hat{\rho}_{1} &= \hat{h}_{1} \\ \hat{\rho}_{2} &= \hat{h}_{1} \\ \hat{\rho}_{2} &= \hat{h}_{1} \\ \hat{\rho}_{1} &= \hat{h}_{1} \\ \hat{\rho}_{2} &= \hat{h}_{1} \\ \hat{\rho}_{1} &= \hat{h}_{1} \\ \hat{\rho}_{2} &= \hat{h}_{1} \\ \hat{\rho}_{1} &= \hat{h}_{1} \\ \hat{\rho}_{2} &= \hat{h}_{1} \\ \hat{\rho}_{1}$$

and

$$V_{+} = k_{3} \dot{X}_{+} + k_{4} V_{-}$$

Hence,

$$\dot{x} \frac{(2\pi + \Delta t)}{2} = \dot{x}_{a} + \Delta \dot{x}_{a}$$
$$= k_1 (\dot{\rho} \Delta x + \dot{\rho} \Delta \dot{x} + \dot{\rho} \dot{x} + \dot{\rho$$

and

$$V \frac{(2TT + \Delta t)}{\Omega} = - (V_{10} + \Delta V_{10})$$

$$= \frac{k(\dot{\rho}_{10} \Delta x_{10} + \dot{\rho}_{2} \Delta \dot{x}_{10} + \dot{\rho}_{3} \Delta t + \dot{\rho}_{3} \Delta$$

Noting that

$$k_1 \rho_{1} + k_2 V_{2} = k_1 \dot{x} (\frac{2\pi}{2}) + k_2 V_{2} = \dot{x}_{a_0}$$

and

$$k_{3}\dot{\rho} + k_{4} V_{2} = k_{3} \dot{x} \left(\frac{2 \pi}{\Omega}\right) + k_{4} V \left(\frac{2 \pi}{\Omega}\right) = -V_{1}$$

and replacing ΔT by its value from (3.46), then

$$\Delta \dot{x}_{a_{o}} = k_{1} (\dot{p}_{1} + \dot{p}_{3} \dot{d}_{1}) \Delta x_{h_{o}} + k_{1} (\dot{p}_{1} + \dot{p}_{3} \dot{d}_{2}) \Delta \dot{x}_{h_{o}} + k_{1} (\dot{p}_{2} + \dot{p}_{3} \dot{d}_{2}) \Delta \dot{x}_{h_{o}} + k_{1} (\dot{p}_{4} + \dot{p}_{3} \dot{d}_{2}) \Delta \dot{x}_{o} + k_{1} (\dot{p}_{4} + \dot{p}_{3} \dot{d}_{2}) \Delta \dot{x}_{o}$$
(3.49)

and

2,

$$-\Delta V_{1} = k_{3}(\dot{\rho}_{1} + \dot{\rho}_{3}\dot{d}_{1}) \Delta X_{h} + k_{3}(\dot{\rho}_{2} + \dot{\rho}_{3}\dot{d}_{2}) \Delta \dot{X}_{h} + (k_{3}\dot{\rho}_{3}\dot{d}_{3} + k_{4}) \Delta V_{2} + k_{3}(\dot{\rho}_{4} + \dot{\rho}_{3}\dot{d}_{4}) \Delta \dot{V}_{2} (3.50)$$

Equations (3.45), (3.49), (3.50) and (3.47) can be expressed in a matrix form as:

 $\begin{aligned} \Delta \dot{x}_{a_{0}} \\ \Delta \dot{x}_{a_{0}} \\ \Delta \dot{v}_{i_{0}} \\ \Delta \dot{v}_{i_{0}} \end{aligned} = \begin{bmatrix} \dot{d}_{5} \\ k_{1}(\dot{\rho}_{1} + \dot{\rho}_{3}d_{1}) \\ -k_{3}(\dot{\rho}_{1} + \dot{\rho}_{3}d_{1}) \\ -k_{3}(\dot{\rho}_{1} + \dot{\rho}_{3}d_{1}) \\ d\dot{1} \end{aligned}$ ∆ ×_{h₀} ∣ $\frac{V_{20}}{1}$ d $\frac{V_2}{2}$ d C_{d_3} $\begin{array}{c|c} & & \\ &$ $k_{1}(\dot{p}_{2} + \dot{p}_{3}\dot{d})$ $(k_{2} + k_{1} \dot{p}_{3} \dot{d}_{3})$ $- k_{3}(\dot{\rho}_{2} + \dot{\rho}_{3} \dot{d}_{2})$ $-k \dot{p} \dot{d} = k_4$ ۵٢ d $1 + d_{4} \qquad \Delta \tau_{e}$ d d

(3.51)

(330) and (351) we g

 $\begin{bmatrix} \Delta x_{a}^{\lambda} \\ \Delta x_{a}^{\lambda}$

OR

С 4

Special Case

In the special case of symmetric two impacts/cycle motion (i.e. n = 1), let the perturbations at $t = 0_{+}$ be $\Delta X_{0}, \Delta X_{0}, \Delta V_{0}, \Delta \tau_{0}$ and the resulting perturbations at $t = (\frac{TT}{n})_{+}$ be $\Delta X_{0}^{2}, \Delta X_{0}^{2}, \Delta V_{0}^{2}, \Delta \dot{\tau}_{0}$.

In this case, the stability matrix will be (8):

 $\begin{cases} \Delta \dot{x}_{o} \\ \end{pmatrix} = \begin{bmatrix} d_{5} & \frac{V_{o}}{2} d_{2} \\ -k_{1}(\rho_{1} + \rho_{3} d_{1}) & -k_{1}(\rho_{2} + \rho_{3} d_{2}) \\ -k_{1}(\rho_{2} + \rho_{3} d_{2}) \\ k_{3}(\rho_{1} + \rho_{3} d_{1}) & k_{3}(\rho_{2} + \rho_{3} d_{2}) \\ k_{3}(\rho_{1} + \rho_{3} d_{1}) & k_{3}(\rho_{2} + \rho_{3} d_{2}) \\ d_{1} & d_{2} \end{bmatrix}$

- C₃ d₃ $k_{2} - k_{1} k_{3} d_{3}$ k p d kd 3

Symbols are given in Appendix VI

3.4. Stability Boundaries

The stability boundaries are the curves on which the modulus of the largest eigenvalue (\$) equals unity.

The characteristic polynomial of the matrix P

is

P ₁₁ -λ	P 12	P 13	P 14	
P	Ρ-λ	P	P	<u>-</u> 0(3.53)
21	22	23	24	
P	P	Ρ-λ	P	
31	32	33	34	
P	P	P	Ρ-λ	
41	42	43	44	

which can be put in the form

$$\varphi(\lambda) = \lambda^{4} - a_{1}\lambda^{3} + a_{2}\lambda^{2} - a_{3}\lambda + a_{4} = 0$$
 (3.54)

from the theory of matrices, it is known that if the eigenvalues of P are

$$\begin{array}{c} a_{1} = \lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4} \\ a_{2} = \lambda_{1} (\lambda_{2} + \lambda_{3} + \lambda_{4}) + \lambda_{2} (\lambda_{3} + \lambda_{4}) + \lambda_{3} \lambda_{4} \\ a_{3} = \lambda_{1} (\lambda_{2} \lambda_{3} + \lambda_{2} \lambda_{4} + \lambda_{3} \lambda_{4}) + \lambda_{2} \lambda_{3} \lambda_{4} \end{array}$$

$$\begin{array}{c} (3.55) \\ a_{4} = \lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4} \end{array}$$

Guided by some knowledge about the behaviour of the eigenvalues of P, we will assume that on the boundary,

57

one of two cases occurs:

a)
$$|\lambda_1| = 1$$

b) $|\lambda_1| = |\lambda_2| = 1$; $\lambda_1 = \overline{\lambda}_2$

Case a):

If one of the eigenvalues (e.g., λ) is real and equal to ± 1 , then from (3.54) and (3.55)

$$\frac{1 + a_2 + a_4}{a_1 + a_3} = \lambda_1 = \pm 1$$

(3.56)

Case b):

$$\lambda_1 = a_{a_1} + ib_{a_2}, \lambda_2 = a_{a_2} - ib_{a_2}, a_{a_2}^2 + b_{a_2}^2 = 1$$

By using (3.54) and (3.55), it is found that

$$(a_2 - 1 - a_4)(a_4 - 1)^2 = (a_3 - a_1)(a_1 a_4 - a_3)$$
 (3.57)

CHAPTER 4

EXPERIMENTAL STUDIES

4.1. Introduction

The objectives of the present experimental study are:

(a) to show the existence of two unsymmetric impacts per cycle motion.

(b) to study the variation of the value of (N) due to variations of μ , r, $\frac{d}{E/k}$.

(c) to show the existence of motions, other than two impacts per cycle motion

(d) to study the general response of the system for a wide range of parameters of the impact damper

(e) to verify the assumptions made in determining steady state solutions.

In order to obtain some information relevant to these matters, the following experiments and studies were conducted as described below:

1 - experiments with a mechanical model

2 - numerical studies involving a digital computer

4.2. Experimental Model

A schematic diagram of the experimental model is shown in Figure (2.1). The photographs of the test rig and actual model are shown in Figures (4.1) and (4.3), respectively.

UP SET EXPERIMENTAL ЧO VIEW Fig. (4.1) GENERAL

Fig. (4.2) FRONT VIEW OF THE MECHANICAL MODEL

MECHANICAL MODEL THE VIEW OF Fig. (4.3) TOP The primary mass is a simple rectangular box with rigid stops at the ends to constrain the movement of the frictionless solid particle (m) to oscillate horizontally within a certain clearance (d). The particle is a hardened steel ball that is usually used in ball bearings. The stops upon which the ball made collision were made of mild steel but had been case hardened so as to obtain high coefficient of restitution. Two springs are used, the first is a leaf spring which supports the primary mass and produce restoring force and the other one is a helical spring.

4.3. Electronic Measurement

A capacitance pick-up,with associated electronic equipment, is used to find the displacement of the primary mass. Velocity and acceleration of the primary mass are obtained by integrating with respect to time the output of an accelerometer attached to the primary mass. This integration is accomplished by using an integrating network in conjunction with an operation amplifier. A force gauge is used to keep F_0 constant.

4.4. Experimental Results

 (a) characteristic of the system without impact damper.

The equivalent characteristic constants of the system are:

$M = 4.5 \, lb$

 $K = 24 \ 1b/in$

 $\omega = 7.4$ cycles/sec

 $\delta = 0.029$

(b) Characteristic of the System with Impact Damper in Action:

The effect of various parameters of impact damper namely mass ratio and gap ratio on the system responses is investigated.'

Six free mass ratios ranging from $\mu = 0.0136$ to $\mu = 0.084$ are used. The free mass strokes are varied from d = 0.0625 inch to d = 0.1875 inch.

The ratio of vibration amplitude (with the impact damper in action) to A_r which is the maximum amplitude obtained (with impact damper removed) is plotted versus frequency ratio. The results are shown in Figures (4.6) to (4.14).

The variation of the unsymmetry ratio N is plotted also against the frequency ratio. The results are shown in Figures (4.15) to (4.21).

The velocities, displacements and accelerations of the primary system, with the impact damper in action are shown in Figures (4.4-a) to (4.4-f).

The displacement of the primary mass versus its velocity, with impact damper in it, is shown in Figures (4.4-h). Determination of δ is shown in Appendix IV.

(a)

(b)

Fig. (4.4) (a), (b) Displacement and velocity curves for different parameters

(C)

(d)

Fig. (4.4)(c),(d) Displacement and acceleration

curves for different narameters

(f)

Fig.(4.4) Displacement and acceleration curves for(e)3 impacts/cycle (f)multiple impacts/cycle

-

Fig. (4, 4) (g) Displacement curve; effect of

the impact damper

Fig.(4.4)(h) $x = \dot{x}$ curve for the impact damper

Fig (4.9) Response Curves

4.5. DIGITAL COMPUTER STUDIES

An alternative approach to the above analytical studies is the direct step-by-step solution of the basic equation of motion on a digital computer. The disadvantages of this digital computer approach are the difficulty of exhibiting the results in a general form and certain computational problems in the investigation of marginal stability regions. The advantage is the fact that at least for specific cases, a complete picture of system response can be obtained to any desired degree of accuracy.

The equation of motion of the mathematical model Fig. (1.1), between impacts, is

$$\begin{array}{c} M \ddot{x} + c \ddot{x} + k \ddot{x} = F \sin(\mathbf{n}t) \\ \ddot{y} = -\ddot{x} \end{array}$$

$$(4.1)$$

If immediately after the ith impact at t = t;

$$x(t_i) = x_i$$

 $y(t_i) = y_i$

$$\dot{x}(t_i) = \dot{x}_i$$

$$y(t_i) = y_i$$

Then the motion of M and m is described during the time interval from t_i to the time immediately preceeding the next impact, $t_{(i+1)}$ by

$$\sum_{i=1}^{2} \delta w (t - t_{i}) + \sum_{i=1}^{2} (D_{i} \sin \eta w (t - t_{i}) + i) + \sum_{i=1}^{2} \cos \eta w (t - t_{i}) + A \sin(\Delta t - \Psi)$$

$$Y = -X + (X_{i} + Y_{i}) + (X_{i} + Y_{i})(t - t_{i}) + \sum_{i=1}^{2} (1 - t$$

where

$$E_{i} = X_{i} - A \sin(\Delta t_{i} - \psi)$$

$$D_{i} = \frac{1}{\eta} (\delta E_{i} + \frac{X_{i}}{w} - Ar\cos(\Delta t_{i} - \psi))$$

From the impact conditions at t (i+1) +

$$x(t_{(i+1)}) = x(t_{(i+1)})$$

$$y(t_{(i+1)}) = y(t_{(i+1)}) \qquad i|y| = \frac{d}{2}$$

$$\dot{x}(t_{(i+1)_{+}}) = \dot{x}(t_{(i+1)_{-}}) + k_{2}\dot{y}(t_{(i+1)_{-}})$$

$$\dot{y}(t_{(i+1)_{+}}) = -e \dot{y}(t_{(i+1)_{-}})$$
(4.3)

Conditions (4.3) can now be used as new initial conditions in equations (4.2) for the time interval $t_{(i+1)}$ to $t_{(i+2)}$. This process can be repeated over and over again so as to obtain the time behaviour of the model.

A digital computer program to find the "exact" sequence of initial conditions and the resulting motion according to (4.2), for any given set of parameters and "initial" initial conditions was written in FORTRAN IV language, and executed by means of the CDC 6400 computer, in the Computing Center of McMaster University.

Besides furnishing further checks on the validity of the data obtained from the theoretical 2 impacts/cycle solution, it provides also (by propagation of round off errors) convenient means of simulating the actual propagation of small perturbations in the steady state solution.

Among the basic features of this program were the following ones:

(a) the R.H.S. of equation (4.2) was evaluated at t = (t_i + j x Δ t) repeatedly (with j increasing by unity each time) until the quantity $(\frac{d}{2} - |y|)$ becomes negative. Then the Newton-Raphson method was used to find t_{i+1} for which

 $\left|\frac{\mathrm{d}}{2} - |\mathsf{Y}|\right| \leq \epsilon.$

where \in was usually chosen to be 0 (10⁻⁶).

(b) In the case of equally spaced impacts, when a periodic solution would pass the test designed to determine if it had reached steady state conditions, the program would then discontinue that solution and start constructing a new one corresponding to a new set of the parameters ω , r, $\frac{Fo}{k}$, μ , δ , e and $\frac{d}{Fo/k}$.

Solutions that did not pass the unequally spaced two impacts-per-cycle steady state test (including the equally spaced two-impacts per cycle steady state) were terminated after reaching a specified number of impacts.

(c) Single precision arithmetic was employed throughout the program which required, for $\Delta t = \frac{2\pi}{60\Omega}$ an execution time of approximately 1 sec/100 impacts.

Table (4.1) shows a typical digital computer output.

TABLE 4.1 (a)

DIGITAL COMPUTER OUTPUT

CASE(1) SYMMETRIC 2 IMPACTS/CYCLE

D=.1	F0/K=1.00	E=•2	WN=1.00
W=1.25	R=1.25	D0=3.00	U=•4
T=6.28	A=1.62		

Y

×

max

A

۲ י

(i)
same, second spins same and

	5. S.					
1	4.28	-1.5000	1.50	8160	8578	9246
. 2	6.52	3079	-1.50	1.0210	.6468	-1.0500
3	8.93	.7.072	1.50	3582	6165	.7856
4	12.27	• 4467	-1.50	. 5965	.4782	5437
5	14.33	3433	1.50	5449	4929	• 1+ 1+ 1+1+
5	16.92	.2044	-1.50	. 5949	4969	5026
7	19.18	0778	1.50	6011	5152	.5511
8	21.74	.0674	-1.50	.5839	.5175	5437
9	24.29	1226	• 1.50	5691	5084	.5125
10	26.81	.1665	-1.50	.5703	. 5015	4970
11	29.30	1617	1.50	5791	5024	.5045
12	31.80	.1355	-1.50	.5825	.5065	5166
13	34.32	1237	1.50	5809	5083	.5197
14	36.84	.1297	-1.50	.5778	• 5073	5153
15	39.35	1394	1.50	5768	5085	.5111
16	41.87	.1422	-1.50	.5780	• 5054	5108
17	44.38	1386	1.50	5791	5060	5129
18	46.89	.1351	-1.50	.5792	• 5065	5143
10	49.40	1349	1.50	5786	5065	.5140
20	.51.92	.1366	-1.50	. 5783	• 5063	5131
21	54.43	1377	1.50	5783	5061	. 5127
22	56.94	.1375	-1.50	.5786	• 5061	5130
23	59.46	1368	1.50	5787	5062	.5133
24	61.97	.1365	-1.50	.5786	• 5063	5134
25	64.48	1367	1.50	5785	5062	.5133
26	67.00	.1370	-1.50	.5785	• 5062	5133
27	69.51	1370	1.50	5785	5062	.5131
28	72.02	.1369	-1.50	. 5786	.5062	5132
29	74.54	1368	1.50	5786	5062	• 5132

30	77.05	.1368	-1.50	.5785	.5062	5132
31	79.56	1369	1.50	5785	5062	•5132
0	•	•	•	•	•	•
•	•	•		•	•	•
	e	•	•			•
•		•	· · · · · ·	•	•	•
•		•	6	•	•	•
92	232.87	.1369	-1.50	.5785	.5062	5132
•	•	•	•		٠	•
6	•	•		•	•	•
	e	6	•	•	•	•
	•	•			•	•

TABLE 4.1 (b)

DIGITAL COMPUTER OUTPUT

CASE(2) UNSYMMETRIC 2 IMPACTS/CYCLE

Ι

D=0	.10	F0/K=1.	00	E=0•8	30	WN=1.00
W = 1	.00	R=1.	00	D0=10.	.00	Ú=0.10
T = 6	.28	A=5.	00			
МРАСТ	T i	×	Y i	× i+	Ý i+	X max
<u>(i)</u>	-			-	-	A _
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	86 3.78 5.84 8.26 10.15 12.94 15.46 17.54 19.63 21.69 23.71 25.94 28.34 30.38 32.52 34.49 36.98 39.01 40.77 46.15 47.72 50.08 51.92 54.48 56.62	- 3.5658 -7852 -3.7604 2.9412 2.5096 -3.7535 3.8058 -1092 -3.4858 2.8638 1.2471 -3.5544 3.2692 .1066 -2.9081 2.5158 -1.0310 -2.2227 2.3053 .8004 2.9027 -2.4520 -1.5158 2.7069 -2.7504	5.00 5.00 -5.00 5.00 -5.00 5.00 -5.00 5.00 -5.00 5.00 -5.00 5.00 -5.00 5.00 -5.00 5.00 -5.00 5.00 -5.00 5.00 -5.00 5.00 -5.00 5.00 -5.00 5.00 -5.00 5.00 -5.00 5.00 -5.00 5.00 -5.00 5.00 -5.00 -5.00 5.00 -5	4.1288 -3.9426 .4597 3.2653 -3.0902 .7182 2.4531 -4.1944 .9333 3.4829 -3.7904 .3241 2.6298 -3.8697 1.0240 3.0995 -3.5179 1.5250 2.9487 2.9120 .4583 -2.9216 3.0834 9846 -2.4890	$\begin{array}{c} -5.6160\\ -2.3487\\ 6.4575\\ -3.4932\\ -2.7378\\ 6.2617\\ -4.3301\\ -2.2166\\ 7.0250\\ -4.2808\\ -2.8624\\ 6.6736\\ -4.1780\\ -2.2206\\ 6.8049\\ -4.5238\\ -2.0025\\ 6.7391\\ -5.0844\\ 4.8282\\ -6.9653\\ 3.4295\\ 2.4636\\ -6.2475\\ 4.5369\end{array}$	- 7915 1.1139 - 8491 - 7208 .8957 - 8485 .7848 .8959 - 8325 - 6441 .8713 - 7800 .7087 .8150 - 7346 - 5267 .7575 - 7001 .4766 - 7293 .6069 .5864 - 7317 .6856 - 5684
25 26 27 28 29 30 31 32	62.07 63.59 65.57 67.80 70.06 72.29 74.81	-2.7504 -2.5990 -2.7338 1.9327 .7464 -2.8650 2.7817 -1.6320	-5.00 5.00 5.00 5.00 -5.00 5.00 5.00	-2.4890 -2.7343 .2098 3.3462 -3.3343 .6559 2.5460 -3.2704	-4.5742 7.1914 -3.8787 -2.6799 6.3800 -4.2947 -1.4556	5004 .7371 6329 5249 .7347 6789 .6050 .7261
33	76.90	-1.5133	-5.00	2.0878	6.5176	7044

34	78.53	2.4695	5.00	2.6054	-5.7391	.5353
35	83.11	-1.8982	-5.00	2.2304	5.1309	7199
36	85.14	3.0795	5.00	1.5972	-5,5135	.6211
37	20 16	-2 6345	-5.00	1 4002	5 1800	7087
20	07.10	2 1099	-5.00	1 2701	-5 0782	6414
20	91.05	2.0000	5.00	1.0715	- 10102	7005
39	95.65	-2.0993	2.00	1.9715	2.4321	1099
40	97.69	2.9586	5.00	1.8391	-5.3231	.6071
41	101.97	-1.9726	-5.00	2.0605	5.3035	/044
42	104.00	2.9598	5.00	1.7154	-5.4030	.6028
43	108.14	-2.2971	-5.00	1.7562	5.2071	6955
44	110.34	3.0373	5.00	1.5372	-5.1902	.6124
45	114.49	-2.1138	-5.00	1.8928	5.3047	6919
46	116.58	2.9575	5.00	1.6821	-5.2756	.6004
47	120.77	-2.1006	-5.00	1.9009	5.2555	6916
48	122.88	2.9645	5.00	1.6318	-5.2845	.6002
49	127.02	-2.1833	-5.00	1.8204	5.2352	6888
50	129.17	2.9838	5.00	1.5889	-5.2290	.6001
51	132 22	-2 1310	-5.00	1.8600	5.2609	6878
52	135.44	2.9629	5.00	1.6267	-5.2553	.5992
52	130.61	-2.1356	-5.00	1.8559	5.2460	6881
51	1/1 72	2 0673	5.00	1 6008	-5.2533	-5995
54	141.70	2.9013	-5.00	1 8283	5 2/35	- 6873
55	140.00	-2.1352	- 00	1.6024	6 2412	5006
56	148.02	2.9710	5.00	1.0024	-202412	• 5950
57	152.17	-2.1392	-5.00	1.8494	5.2459	0012
58	154.30	2.9659	5.00	1.0117	-2.2487	. 0771
59	158.45	-2.1424	-5.00	1.8468	5.2453	6813
60	160.58	2.9676	5.00	1.6065	-5.2471	.5993
61	164.73	-2.1458	-5.00	1.8433	5.2454	68/1
62	166.87	2.9681	5.00	1.6057	-5.2446	.5993
63	171.02	-2.1422	-5.00	1.8463	5.2467	6871
64	173.15	2.9669	5.00	1.6079	-5.2467	.5992
65	177.30	-2.1434	-5.00	1.8452	5.2466	6871
66	179.43	2.9675	5.00	1.6064	-5.460	.5992
67	183.58	-2.1440	-5.00	1.8446	5.2458	6871
68	185.72	2.9675	5.00	1.6064	-5.2456	.5992
69	189.87	-2.431	-5.00	1.8454	5.2461	6871
70	192.00	2.9672	5.00	1.6069	-5.2461	.5992
71	106 15	-2 1/35	-5.00	1.8450	5.2458	6871
72	198.28	2.9674	5.00	1.6065	-5.2458	.5992
72	202 42	2.1436	-5.00	1 8450	5.2459	6871
15	202043	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-5.00	1.6066	-5 2459	5002
14	204.51	2.9674	5.00	1.0000	-2.420	• > > > > 2
75	208.72	-2.1434	-5.00	1.8451	5.2459	5871
76	210.85	2.96/3	5.00	1.6067.	-5.2459.	.5992
77	215.00	-2.1435	-5.00	1.8450	, 5.2458	68/1
78	217.13	2.9674	5.00	1.6066	-5.2458	.5992
19	221.28	-2.1435	-5.00	1.8450	5.2459	6871
80	223.41	2.9674	5.00	1.6066	-5.2458	• 5992
81	227.57	-2.1434	-5.00	1.8451	5.2495	6871
82	229.70	2.9674	5.00	1.6066	-5.2458	•5992
83	233.85	-2.1435	-5.00	1.8450	5.2458	6871

84	235:98	2.9674	5.00	1.6066	-5.2459	.5992
85	240.13	-2.1435	-5.00	1.8450	5.2459	6871
86	242.26	2.9674	5.00	1.6066	-5.2459	.5992
87	246.42	-2.1435	-5.00	1.8450	5.2459	6871
88	248.55	2.9674	5.00	1.6066	-5.2459	.5992
89	252.70	-2.1435	-5.00	1.8450	5.2459	6871
90	254.83	2.9674	5.00	1.6066	-5.2459	.5992
91	258.98	-2.1435	-5.00	1.8450	5.2459	6871
92	261.11	2.9674	5.00	1.6066	-5.2459	.5992
93	265.27	-2.1435	-5.00	1.8450	5.2459	6871
•		•				•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	
•	•	•	•	•	•	•
•	•	•	•	•	1	•
•	•	•		•	•	•
199	598.27	-2.1435	-5.00	1.8450	5.2459	6871
200	600.41	2.9674	5.00	1.6066	-5.2459	.5992
•	9	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•

TABLE 4.1 (C)

00400

DIGITAL COMPUTER OUTPUT

CASE(3) 3 IMPACTS/CYCLE

D=.1	F0/K=1.	E=•8	WN=1.
W=1.	R=1.	D0=8.	U=•1
T=6.28	A=5.		

IMPACT	т _і	×	Y i	×	Ý i+	max
					철생한 모양 것이	A
(1)	-		-	- •	-	
٦	.71	3.0898	4.00	4.53	-5.2294	.6784
2	3.29	1.2896	4.00	-3.20	-3.0629	1.1161
3	5.22	-4.1454	-4.00	-1.46	5.2607	- 8328
4	9.46	3.9488	-4.00	.97	-4.5575	8870
5	12.40	-4.3122	-4.00	- 05	4.3753	- 8617
6	16.73	2.5020	4.00	-2.67	-5.8298	.9121
7	18.31	-2.9292	-4.00	-3.58	4.7062	- 5960
8	20.60	- 3483	-4.00	4.10	2.8386	9064
0	22.38	4.0482	4.00		-6-1059	.8206
10	25.29	-4.0722	-4.00	-1.71	3.6768	- 8290
11	26.98	7523	-4.00	4.10	2.0452	8756
12	29.01	3.7715	4.00	26	-6.1300	.8045
13	31.36	-3.2574	-4.00	-2.87	3.3659	.7265
14	22.29	-2.5021	-4.00	2.03	2.4770	- 8425
15	35.42	3.5676	4.00	- 43	-5.7280	.7737
16	37.84	-3.3380	-4.00	-2.34	3.6450	7124
17	39.59	-1.0674	-4.00	3.63	2.2310	- 7938
18	41.71	3.3618	4.00	- 24	-5.8394	.7236
19	44.08	-3.0386	-4.00	-2.50	3.4288	.6466
20	45.77	-1.4624	-4.00	3.31	2.2749	7614
21	48.03	3.2058	4.00	33	-5.6634	.6961
22	50.40	-2.0049	-4.00	-2.33	3.5055	.6123
23	52.20	- 88.75	-4.00	3.42	2.1489	7355
24	54.35	3.0623	4.00	- 41	-5.7194	.6775
25	56.60	-2.7699	-4.00	-2.54	3.4385	- 5999
26	58.39	-1.1517	-4.00	3.25	2.2474	7223
27	60.61	3.0421	4.00	37	-5.6106	.6703
28	62.94	-2.8610	-4.00	-2.34	3.4747	5945
29	64.77	7855	-4.00	3.35	2.1269	7154
30	66.92	2.9730	4.00	46	-5.6815	.6634

÷				1.87 · 32.9015		
31	69.15	-2.7077	-4.00	-2.54	3.4462	5950
32	70.97	-1.0471	-4.00	3.25	2.2363	7128
33	73.17	3.0088	4.00	38	-5.6048	•6651
34	75.49	-2.8337	-4.00	-2.36	3.4646	5926
35	77.33	8009	-4.00	3.34	2.1345	7130
36	79.48	2.9717	4.00	46	-5.6691	.6632
37	81.71	-2.7216	-4.00	-2.52	3.4476	5952
38	83.54	-1.0256	-4.00	3.26	2.2280	7133
39	85.74	3.0109	4.00	38	-5.6110	.6659
40	88.05	-2.8311	-4.00	-2.37	3.4620	5935
41	89.88	8329	-4.00	3.33	2.1453	7142
42	92.04	2.9830	4.00	44	-5.6644	.6649
43	94.29	-2.7405	-4.00	-2.50	3.4481	5957
44	96.11	-1.0174	-4.00	3.27	2.2211	7146
45	98.30	3.0138	4.00	39	-5.6170	.6668
46	100.61	-2.8281	-4.00	-2.38	.3.4609	5942
47	102.44	8558	-4.00	3.33	2.1533	7150
48	104.60	2.9895	4.00	44	-5.6610	.6657
49	106.86	-2.7520	-4.00	-2.49	3.4487	5958
50	108.68	-1.0074	-4.00	3.27	2.2153	7151
51	110.87	3.0134	4.00	39	-5.6213	.6671
52	113.17	-2.8229	-4.00	-2.39	3.4598	5945
53	115.00	8711	-4.00	3.32	2.1590	7153
54	117.17	2.9924	4.00	43	-5.6576	.6660
55	119.43	-2.7589	-4.00	-2.48	3.4495	5957
56	121.25	9967	-4.00	3.28	2.2104	7152
57	123.44	3.0117	4.00	39	-5.6244	.6671
58	125.74	-2.8175	-4.00	-2.40	3.4588	5946
59	127.57	- 8825	-4.00	3.32	2.1635	7153
60	129.73	2.9940	4.00	43	-5.6546	.6661
61	132.00	-2.7640	-4.00	-2.48	3.4501	5956
62	133.82	9870	-4.00	3.28	2.2063	7152
63	136.01	3.0100	4.00	40	-5.6269	.6670
64	138.30	-2.8128	-4.00	-2.41	3.4579	5946
65	140.13	8918	-4.00	3.32	2.1673	7152
66	142.29	2.9953	4.00	43	-5.6521	.6662
67	144.56	-2.7683	-4.00	-2.47	3.4507	5955
68	146.39	9789	-4.00	3.28	. 2.2029	7152
69	148.57	3.0087	4.00	40	-5.6290	.6669
70	150.87	-2.8089	-4.00	-2.41	3.4572	5947
71	152.70	8996	-4.00	3.31	2.1704	7152
72	154.87	2.9964	4.00	42	-5.6500	.6663
73	157.13	-2.7719	-4.00	-2.47	3.4512	5954
74	158.96	9721	-4.00	3.29	2.2001	7152
75	161.14	3.0076	4.00	40	-5.6308	.6669
76	163.43	-2.8058	-4.00	-2.42	3.4566	5948
77	165.26	9061	-4.00	3.31	2.1730	7152
78	167.43	2.9974	4.00	42	-5.6483	.6663
79	169.70	-2.7749	-4.00	-2.46	3.4516	5953
80	171.53	9665	-4.00	3.29	2.1978	7152
				+		

			•			
81	173.71	3.0067	4.00	- 40	-5.6323	.6668
82	176.00	-2.8031	-4.00	-2.42	3.4562	5948
83	177.82	9114	-4.00	3.31	2.1752	7152
84	180.00	2.0982	4.00	47	-5.6469	.6664
85	182.27	-2.7774	-4.00	-2.46	3.4520	- 5953
86	184.09	- 9618	-4.00	3.29	2.1958	7152
87	186.28	3.0060	4.00	40	-5.6336	• 6668
88	188.56	-2.8009	-4.00	-2.42	3.4558	5948
89	190.39	9159	-4.00	3.31	2.1770	7152
90	192.56	2.9989	4.00	42	-5.6457	.6664
91	194.83	-2.7795	-4.00	-2.45	3.4523	5953
.92	196.66	9579	-4.00	3.29	2.1942	7152
03	198.84	3.0054	. 4.00	41	-5.6346	.6668
94	201.13	-2.7991	-4.00	-2.43	3.4555	5949
95	202.96	9196	-4.00	3.31	2.1785	7152
96	205.13	2.9995	4.00	42	-5.6447	.6665
97	207.40	-2.7812	-4.00	-2.45	3.4525	5952
98	209.23	9546	-4:00.	3.29	2.1928	7152
99	211.41	3.0049	4.00	41	-5.6355	.6667
100	213.69	-2.7975	-4.00	-2.43	3.4552	5949
101	215.52	9227	-4.00	3,30	2.1707	7152
•	•			•	•	•
0	8	•	•	•	0	٥
•	•		•	¢.	•	
	•	•	•		0	•
•	(10 7(1°00	•	5 6401	6666
198	418.76	3.0022	4.00	- • + 1 - • + 1	2 4529	- 5051
199	421.03.	-2.1894	-4.00	-2.44	2 1863	-,7152
200	422.00	~• ~>>>		5.50	2.0100	• • • • • • •
e	•		6			•
6	٠	•	•	•	•	
•	•	•	•	•		
٠	•	•	۰	•		
			-		-	

TAPLE 4.1 (d) ----

DIGITAL COMPUTER OUTPUT

•	С	Δ	S	1	(4)		4	I	M	P	Д	C	Т	S	/	С	Y	C	L	E		
		-				-	_	 		 		-	-	-	-		-	-	-		-	-		

D=.1	F0/K=1.	E=•8	WN=1.
W=1.	R=1.	D0=3•1	U=•1
T=6.28	A=5.		

IMPACT

PACT	T,	Х	Y	X	Y	X
//	i i	i	i	i,	i,	ma
						А
(1)	-	- :	-		-	_
						0740
-1	•30	1.4291	1.55	5.4653	-4.3662	• 3763
2	2.58	3.8669	1.55	-2.6747	-3.5810	1.1070
3	3.78	5863	-1.55	-4.3429	1.8296	.6557
4	5.37	-4.5770	-1.55	3194	2.0985	9151
5	6.55	-2.4833	-1.55	3.2324	1.3901	9128
6	8.66	4.1597	1.55	1.5170	-2.9704	.8456
7	10.21	1.8959	1.55	-3.5017	-1.9593	.8906
8	11.81	-3.7070	-1.55	-2.6088	2.7281	7440
9	13.13	-3.5497	-1.55	.2.3966	2.1783	9120
10	15.55	4.4356	1.55	1.2432	-3.1869	.8942
11	17-02-	1.5755	1.55	-3.9986	-1.9656	.9184
12	18.44	-3.8053	-1.55	-2.8116	3.0154	8266
13	19.76	-3.5373	-1.55	2:6729	2.3618	9391
14	21.94	4.3179	1.55	1.8701	-3.0270	.8693
15	23.21	2.8477	1.55	-3.3927	-2.1387	.9359
16	25.01	-4.0116	-1.55	-2.4748	2.9238	8598
18	28.39	4.2840	1.55	1.6861	-3.1710	.8628
17	26.23	-3.4644	-1.55	2.7757	2.2255	9283
19	29.74	2.2877	1.55	-306929	-2.1121	C9133
20	31.30	-3.6980	-1.55	-2.7589	2.9136	7542
21	32.54	-3.5061	-1.55	-2.5321	2.2741	9059
22	34.79	4.1953	1.55	1.4606	-3.2002	.8529
23	36.20	1.7485	1.55	-3.8397	-2.0088	. 8783
24	37.64	-2.5670	-1.55	-2.6954	3.0169	-,7700
25	38.95	-3,1437	-1.55	2.7320	2.3048	8757
26	40.96	3.8712	1,55	2.0117	-2.8935	.8127
27	42.22	2.7628	1.55	-3.0576	-2.0812	.8614
28	44.10	-3.7895	-1.55	-2.0631	2.9419	- 7872
29	45.30	-2.6525	-1.55	3,0912	2.1066	- 8503
30	47.21	3.6876	1.55	2.1752	-2.8816	7811
				to the total	201010	• • • • • • •

max

32	48.49	2.7855	1.55	-2.9108	-2.1086	.8403
23	50.41	-3.7417	-1.55	-1,9705	2.9163	7680
21	53.40	2.6180	1.55	2.1670	-2.8738	.7285
25	54.79	2.7048	1.55	-2.9013	-2.0991	.8268
26	66.68	-3.6821	-1.55	-1.9790	2.8899	7606
37	57.99	-2.4923	-1:55	3.0588	2.0546	8238
38	58.79	3.6017	1.55	2.1121	-2.8708	.7209
20	61.09	2.6138	1.55	-2.8347	-2.0814	.8165
40	62.95	-3.6357	-1.55	-2.0127	2.8728	7583
1.1	64.26	-2-5118	-1.55	3,0089	2.0553	8180
42	66 08	3.6017	1.55	2.0651	-2.8697	.7604
42	67-39	2.5512	1.55	-2.9646	-2,670	.8159
1.1.	60.23	-3.6062	-1.55	-2.0354	2.8659	7577
45	70.54	-2.5235	-1.55	2,9819	2.0579	8150
46	72.37	3.6019	1.55	2.0432	-2.8663	.7580
40	73.67	2.5241	1.55	-2.9767	-2.0599	.8142
1.8	75.51	-3,5000	_1.55	-2.0423	2.8641	7575
40	76.82	-2.5242	-1,55	2.9741	2.0587	8138
50	78.65	3.6007	1,55	2.0380	-2.8646	.7573.
51	79.96	2.5179	1.55	-2.9779	-2.0578	.8136
52	81.70	-2.5083	-1.55	-2.0417	2.8638	7573
52	83 10	-2.5217	-1.55	2.9741	2.0585	8135
54	84.93	3.5008	1,55	2.0385	-2.8639	.7572
55	86 24	2.5186	1,55	-2.9766	-2.0577	.8135
56	88 07	-2.5001	-1.55	-2.0403	2.2630	- 7572
57	00 20	-2.5203	-1.55	2.0753	2.0581	9135
5.0	. 07.00. 01.21	3.5008	1.55	2.0394	-2.8638	.7573
50	02.52	2.5200	1.55	-2.9759	-2.0580	.8136
60	04.35	-3.6000	-1.55	-2.0397	2.8639	7574
61	95-66	-2.5202	-1,55	2.9759	2.0591	8136
62	97.50	3.6003	1.55	2:0399	-2.8639	.7574
63	98.81	2.5210	1.55	-2.9758	-2.0582	.8137
64	100.64	-3.6006	-1.55	-2.0398	2.8640	- 7575
65	101.95	-2.5211	-1.55	2,9760	2.0582	8138
66	103.78	3.6003	1.55	2.0400	-2.8641	. 7575
67	105,09	2.5216	1.55	-2.9759	-2.0583	.8138
68	106.92	-3.6011	-1.55	-2.0400	2.8641	7576
69	108.23	-2.5217	-1.55	2.9761	2.0583	8139
70	110.06	3.6012	1.55	2.0401	-2.8642	.7576
71	111.37	2.5220	1.55	-2.7761	-2.0584	.8139
72	112.20	-3.6013	-1.55	-2.0401	2.8642	7576
72	114.51	-2.5221	-1.55	2.9761	2.0584	8139
74	116.35	3.6014	1.55	2.0401	-2.8652	.7576
75	117.65	2.5222	1.55	-2.9761	-2.0585	.8139
76	119.49	-3.6015	-1.55	-2.0402	2.8642	7576
77	120.80	-2.5223	-1.55	2.9761	2.0585	8140
78	122.63	3.6015	1.55	2.0402	-2.8643	.7576
79	123.94	2.5224	1.55	-2.9762	-2.0585	.8140
80	125.77	-3.6016	-1.55	-2.0402	2.8643	7576
81	127.08	-2.5224	-1.55	2.9762	2.0585	8140

82	128.91	3.6016	1.55	2.0402	-2.8643	.7576
83	130.22	2.5224	1.55	-2.9762	-2.0585	.8140
84	132.05	-3.6016	-1.55	-2.0402	2.8643	7576
85.	133.36	-2.5224	-1.55	2.9762	2.0585	9140
86	135.19	3.6016	1.55	2.0402	-2.8643	.7576
87	136.50	2.5224	1.55	-2.9762	-2.0585	.8140
88	133.34	-3.6016	-1.55	-2.0402	2.8643	7576
•					•	
0		•			•	•
4	•		•			•
•	٠	•	0			
0	•	6			•	e
197	309.29	-2.5224	-1.55	2.9762	2.0585	8140
198	311.12	3.6016	1.55	2.0402	-2.8643	.7576
199	312.43	2.5224	1.55	-2.9762	-2.0585	.8140
200	314.27	-3.6016 .	-1.55	-2.0404	2.8643	7576
	•	.0			•	•
•	•	•	•	•	•	•
	•	•		•	•	•
	e	•		•	•	٠
		TABLE 4.	2(2)	101		
---	--	---	--	-----------------	--	--
	-	THEORETICAL RESULTS				
	CASE	1) SYMMETRIC	2 IMPACTS/CYC	LE		
	generation and a second s	n an ann an an ann an an ann an ann an Ann an Annaich	n an	*		
	D=•1	F0/K=1.	E=•2	WN=1.		
	W=1.25	R=1.25	D0=3.	U=.1		
an a tha a chuir a chuir a tha an an ann an ann an ann an ann an ann an a	T=6.28	A=1.62				
A) FIRST	THEORETICAL S	DEUTION (STA	BLE)			
	Z1=-7.10	Z1=-7.10543E-15		Z2=-1.25865E-14		
	N= 5.00	0000E-01	THET= 2.	48175E+00		
	B1= 9.1	B1= 9.17221E-01		B2=-1.13270E+00		
	B11=-9.1	7221E-01	B21= 1.	13270E+00		
	XA=-1.3	XA=-1.36862E-01		XG= 1.36862E-01		
	DXA=-5.7	8534E-01	DXB=-1.44633E+00			
	DXG= 1.4	4633E+00	DXH= 5.	78534E-01		
	V1=-1.0	8475E+00	V2= 1.	08475E+00		
	XMAXA1=-5.1	3211E-01	XMAX1=-8.	31380E-01		
	XMAXA2= 5.1	3211E-01	XMAX2= 8.	31380E-01		

B) SECOND THEORETICAL SOLUTION (UNSTABLE)

Z3= 7.10543E-15

Z4= 1.60804E-14

D0E-01	THET=-1.53175E+00
35E-02	B2= 5.59650E-02
35E-02	B21=-5.59650E-02
35E+00	XG= 1.56735E+00
45E-02	DXB= 7.14612E-02
12E-02	DXH=-2.85845E-02
59E-02	V2=-5.35959E-02
D2E-01	XMAX3=-1.46395E+00
02E-01	XMAX4= 1.46395E+00

N= 5.00000E-01 B1=-4.53185E-02 B11= 4.53185E-02 XA=-1.56735E+00 DXA= 2.85845E-02 DXG=-7.14612E-02 V1= 5.35959E-02 XMAXA3=-9.65402E-01 XMAXA4= 9.65402E-01 THEORETICAL RESULTS

CASE(2) UNSYMMETRIC 2 IMPACTS/CYCLE

	•	· · · · · · · · ·		
D=.1	F0/K=1.	E=•8	WN=1•	
W=1•.	R=1.	D0=10.	U=.1	
T=6.28	A=5•			

A) FIRST THEORETICAL SOLUTION (STABLE)

Z1= 1.56319E-13

N= 3.39162E-01 THET= 2.94365E+00 B1= 3.18933E+00 · B2= 1.16020E+00 B11=-3.22397E+00 B21= 1.70810E+00 XG= 2.96736E+00 DXB= 2.91806E+00 DXH= 1.60660E+00 V2=-3.63926E+00 XMAX1=-3.43550E+00 XMAX2= 2.99502E+00

XA=-2.14346E+00 DXA= 1.84505E+00 DXG= 5.33583E-01 V1= 7.09090E+00 XMAXA1=-6.87111E-01 XMAXA2= 5.99201E-01

B) SECOND THEORETICAL SOLUTION

Z3= 2.84217E-14

Z4=-5.25548E-01

Z2=-1.8133UE-11

THUS SECOND THEORETICAL SOLUTION DOES NOT EXIST

)

٦)

 $\overline{}$

٦)

7

 \bigcirc

)

~)

5. DISCUSSIONS AND CONCLUSIONS

5.1. Discussion of Theoretical Results

The theoretical two impacts per cycle solution derived in Chapter 2 is compared in Fig.(5.1) with the results obtained through digital computer.

In regard to Fig.(5.1) the following remarks can be made:

(a) in the case of symmetric two impacts per cycle motion (which is a special case of unequally spaced two impacts per cycle with N = 0.5), we get the two distinct curves, abe and eca, corresponding to the two theoretical solutions obtained from equation (2.81) by using for the value of τ in one case

$$\tau_{=}\tau_{1} = \tan^{-1} \frac{-\rho G_{87} + \sqrt{\rho^{2} G_{87}^{2} - (G_{86}^{2} + G_{87}^{2})(\rho^{2} - G_{86}^{2})}{-\rho G_{86} - \sqrt{\rho^{2} G_{86}^{2} - (G_{86}^{2} + G_{87}^{2})(\rho^{2} - G_{86}^{2})}$$

and in the other

and

$$\begin{aligned} & \mathcal{T}_{=} \, \mathcal{T}_{=} \, \tan^{-1} \, \underbrace{+ \rho \, G_{37}^{-} \sqrt{\rho^2 G_{37}^2 - (G_{36}^2 + G_{37}^2) (\rho^2 - G_{36}^2)}}_{- \rho \, G_{36}^{-} + \sqrt{\rho^2 G_{37}^2 - (G_{36}^2 + G_{37}^2) (\rho^2 - G_{36}^2)}} \\ & \text{both solutions satisfied equation } (2.80). \end{aligned}$$

(b) in the case of unequally spaced two impacts per cycle, we get the curve cd, corresponding to the one theoretical solution of equation (2.81) for τ which satisfied equation (2.80). The other solution for τ did not satisfy equation (2.80). It should be noted that the value of N varies gradually from 0.5 (at c) to 0.312 (at d).

(c) the ratio $\frac{x_{max}}{A} = (\frac{x}{A})_{max}$ was found by evaluating $(\frac{x}{A})$ from

$$\frac{x}{A} = \frac{e}{A} \left[B_1 \sin(\eta wt) + B_2 \cos(\eta wt) \right] + \sin(\alpha t + \tau)$$

$$0 \le t \le \frac{n\pi}{2}$$

at $\Delta t = j \times \Delta t$, (j = 0, 1, 2, ...), with $\Delta t = 0.01$ up to $\Delta t = n II$ and by evaluating $(\frac{x}{A})$ from

$$\frac{x}{A} = \frac{e}{A} \left[\frac{B}{A} \sin \eta \omega (t - \frac{n\pi}{a})_{+} \frac{B}{B} \cos \eta \omega (t - \frac{n\pi}{a})_{+} \sin(\alpha t + \tau) \right]_{+} \sin(\alpha t + \tau)$$

at $\Delta t = n\pi + j_{x} \Delta t$, $(j = 0, 1, 2, ...)$, with $\Delta t = 0.01$ up to

st = 2T.

(d) in the case of symmetric two impacts per cycle, the two solutions corresponding to τ_1 and τ_2 coalesce at the extremes d = 0 for which

 $\begin{aligned} &\mathcal{T}_1 = \mathcal{T}_2 = \tan^{-1} \left(-\frac{H}{2} \right) \\ \text{and at } \frac{d}{Fo/k} = 23.197 \text{ (where } H^2 + 4 - \rho^2 = 0) \text{, since then} \\ &\mathcal{T}_1 = \mathcal{T}_2 = \tan^{-1} \left(\frac{2}{H} \right) \\ &\text{For } \frac{d}{Fo/k} > 23.197 \text{, } \tau \text{ is complex; consequently our} \end{aligned}$

two impacts per cycle solution does not exist.

(e) at d = 0, the same value for $(\frac{X}{A})_{max}$ will be found as if the system is treated as a single degree-offreedom oscillator with a natural frequence $\omega' = \frac{\omega}{\sqrt{1 + \mu}}$

(f) the stability analysis indicates that the τ_2 curve is entirely unstable, the τ_1 curve is only partly stable and the curve cd is completely stable.

The stability boundaries were determined by the method described in Chapter 3.

(g) stable solutions obtained through the digital computer agreed with the theoretical solution and the stability analysis. Also, no two impacts per cycle solutions (symmetric or not) were found outside the stable region.

(h) outside the stable region, the digital computer results show that for $\frac{d}{Fo/k}$ 22.25, the resulting motion is irregular.

(i) it is obvious from Figures (5.2), (5.3),
 (5.4) and (5.5) that for some parameters for which two impacts/cycle motion was not stable, stable periodic solutions with multiple impacts/cycle could be shown to exist.

Even for cases in which no stable periodic motions were established, the impact damper was often effective in reducing vibration amplitudes. On the other hand, for some stable periodic solutions, the impact damper resulted in an increase of vibration amplitude instead of a decrease. Stability alone is not the critical parameter deciding the effectiveness of the impact damper.

(j) when the free mass is locked to the vibrating system, the number of impacts/cycle will be infinite.

As the gap (d) is increased slightly, the impact damper begins to operate and a reduction in the amplitude of vibration occurs. The number of impacts/ cycle starts to decrease from infinity to a large value. Generally, these impacts will be distributed at random over the cycle.

This state of affairs continues until an optimum condition is reached, after which this random distribution stops and a new state of a few impacts/ cycle starts. The number of impacts continues to decrease until the steady state of two impacts/cycle prevails.

(k) it is obvious from Figure (5.6) that the increase in the mass ratio (μ) caused a decrease in $(x/A)_{max}$ (i.e. caused an increase in the efficiency of the impact damper), for the same gap (d). This is to be expected since increasing the free mass weight will cause higher dissipation of energy from the vibrating system in order to traverse the free mass through the

specific gap (d). However, there exists an upper limit of the gap, for each mass ratio, which eventually leads to the ceasing of the state of two impacts/cycle motion and the start of irregular motion.

(1) Figures (5.6) and (5.7) show the stable two impacts/cycle motion for different parameters. It is noted that the unsymmetric two impacts/cycle does not necessarily appear in all the responses for different parameters. Actually, in Figure (5.7) the case (2) does not have any two impacts/cycle motion.

(m) Figures (5.8), (5.9) and (5.10) show the variation of the different parameters. The value of (N) is constant and equal to 0.5 in the case of symmetric two impacts/cycle motion, then N decreases gradually in the range of unsymmetric two impacts/cycle. The minimum value of N obtained during this work is 0.28.

From Figure (5.9) it is clear that for certain parameters, the unsymmetric two impacts/cycle motion does not exist and the motion is only symmetric two impacts/cycle.

Also, from Figures (5.11), (5.12), (5.13) and (5.14) it is obvious that a small change in mass ratio, damping factor, coefficient of restitution or frequency ratio does not affect the value of N appreciably.

Actually, the value of N is very sensitive to small changes in the gap factor.

Figures (5.15), (5.16) and (5.17) show the effect of frequency ratio on the value of N for different gap factors. It is observed that for the same gap factor the curve is not continuous due to the existence of multiple impacts/cycle motion.

(n) Figures (5.18), (5.19) and (5.20) show the stable-solution curves indicating regions of symmetric and unsymmetric 2 impacts/cycle motion, for different values of damping factor, mass ratio and coefficient of restitution.

(o) from Figure (5.21) it is obvious that the impact damper becomes most efficient (i.e. the amplitude ratio $(x/A)_{max}$ becomes minimum) at a certain gap factor (d/Fo/k). At this gap factor, the velocities of both primary mass and free mass are maximum, thus causing maximum dissipation of energy from the vibrating system.

(p) Figures (5.22) and (5.23) show good agreement between theoretical and experimental results.

(q) strictly speaking, if the mathematical model of Figure (2.1) is started from a state of rest with the particle in the middle of its container, the impact impact damper will not operate if the ratio of the container clearance to the original amplitude of the primary system is less than two. In actual situations, this condition will be remedied by the inevitable presence of friction between the particle and the primary mass or the initial displacement of the particle from the center of its container.

(r) The dependence of the stability boundaries, for any given set of the parameters, on the frequency ratio is complicated. In the immediate vicinity of resonance (where the impact damper would be normally used) the stability boundaries enclose within them a sufficient range of system parameters to make the two impacts/cycle motion practically realizable.

(s) the theoretical solutions and stability analysis for periodic motions with a different number of impacts/cycle, or with a different period than the one treated in this thesis, may be obtained, with some effort, by extending the methods used here.

(t) since in practical applications the resulting amplitude rather than the existence of stable periodic motions is of prime concern, the impact damper fulfilled its role even when its motion was not steady.

Ξ Ξ Ξ

Coeff. of restitution, e

Fig (5.7) Stable two impacts/cycle motion

Fig. (5.14) Effect of frequency ratio on unsymmetry ratio, N

า กับ บ

5.2. Discussion of Experimental Work

(a) The excessive (as measured by the human ear) noise level in the vicinity of an operating system resulting from the impacts, especially when the colliding surfaces are hardened, is such an intensity as to require muffling, if the damper is to function over an extended period.

(b) In some cases, even though the two impacts/ cycle motion is not stable in the strict mathematical sense, the amplitude of the response is nearly constant and appreciably less than the resulting amplitude when the damper is removed.

Figure (4.4) shows the effect of setting $\mu = 0$ (by removing the particle from its container) while M is vibrating. Obviously, the increased response equals that attained by an equivalent single degree of freedom system subjected to the same excitation.

As soon as μ is returned to its former value, the motion of M resumes its former state.

(c) The actual wave of the response is approximately sinusoidal, and the assumption that the velocity changes discontinuously is justifiable, as shown in Figure (4.4)
 (a), (b).

(d) Figures (4.6) to (4.14) indicate that the motion of the impact damper is

two symmetric impacts/cycle

or two unsymmetric impacts/cycle

or multiple impacts/cycle

They also indicate that the two unsymmetric impacts/cycle motion exists and is stable.

It is obvious that the efficiency of the impact damper increases as the mass ratio increases. There exists, however, an optimum mass ratio, after which erratic behaviour of the damper starts and the efficiency decreases. This erratic behaviour can be attributed to the fact that energy imparted to the free mass is inadequate to force it to the opposite side of the container. Thus, the free mass starts to oscillate and the amplitude of the vibrating system builds up and subsequently impact occurs between container and the free mass. Due to the impact, the vibrational amplitude decreases, resulting in a vibration wave form that resembles that of the beating phenomena.

It may be also noted that if no compensation is made for the increase in the primary mass due to the addition of the free mass (as in our system), then the natural frequency decreases with impact damper in action. It is also evident that the impact damper is most efficient at resonance.

From Figures (4,4)(a) to (f), it is clear that the velocity of the primary mass which is under impact, changes at impact discontinuously, while the displacement does not change due to impact. Also, there is a sudden large increase in the acceleration at the moment of impact. (e) Figures (4.15) to (4.21) indicate that the value of N is not constant. For low frequency ratios N = 0.5, i.e. symmetric two impacts/cycle motion. As the frequency ratio increases, the value of N decreases gradually to about 0.3, i.e. range of unsymmetric two impacts/cycle, As the frequency ratio increases, a state of multiple impacts/ Increasing the frequency ratio again, the cycle exists. the unsymmetric two impacts/cycle appears again with N increasing gradually. Finally, a state of symmetric two impacts/cycle starts. It should be noted that sometimes the multiple impacts/cycle motion does not exist.
5.3 Discussion of the Results Obtained by "Sadek".

(a) Fourier series was used to solve the problem, theoretically, which is an approximate method. As a matter of fact, the only other author who used Fourier series, Arnold (4) his experimental results did not agree completely with his theoretical results.

(b) His experimental model is <u>vertical</u>, while his theoretical analysis is for a <u>horizontal</u> model.

(c) No experimental work was done to get the values of N.

(d) Figure 6(a), in his paper, shows the theoretical response curve without impact damper, which is not correct.
(e) He stated that "equally spaced impacts hardly ever occur for reasonably efficient behaviour of the damper" which is not correct.

(f) The value of δ for the experimental model was taken as 0.004 which is very low compared with values of δ for experimental models taken by all other authors, as follow:

Author	8 -
Masri	0.1
Grupin	0.1
Shah	0.045

5.4 CONCLUSIONS

`;

(1) The unsymmetric two impacts/cycle motion exists, for a wide range of parameters of the impact damper. and is stable.

(2) The value of unsymmetry ratio N, varies from 0.5 to about 0.3.

(3) Stability boundaries of the steady state solutions are a complicated function of the parameters of the impact damper and the system.

(4) The results obtained by Sadek (7) are not correct.

Some of the main advantages of impact damper would be the relative simplicity of installation, maintenance and facility of variation of damper parameters.

With more investigation and development, the future of the impact damper appears guite promising. For further studies, it would be worth considering the effect of using multiple particles, instead of one or two, in the container and the effect of various soft materials as impacting surfaces and the effectiveness of the impact damper with random and impulse-like excitation.

REFERENCES

- Paget, A., "The Acceleration Damper", Engineering 1934, 557.
- Lieber, P. and Jensen, D.P., "An Acceleration Damper: Development, Design and Some Applications", Tran. ASME, Vol. 67, (1945), pp. 523-530.
- Grubin, C., "On the Theory of the Acceleration Damper", Journal of Applied Mechanics, Vol. 23, Trans. ASME, Vol. 78, (1956), pp. 373-378.
- Arnold, R.N., "Response of an Impact Vibration Absorber to Forced Vibrations", Ninth International Congress of Applied Mechanics (1956).
- Warburton, G.B., Discussion of "On the Theory of the Acceleration Damper", Journal of Applied Mechanics, Vol. 24, Trans. ASME, Vol. 79, (1957), pp. 322-324.
- 6. Kaper, H.G., "The Behaviour of a Mass Spring System Provided with a Discontinuous Dynamic Vibration Absorber", Applied Science Research, Section A, Vol. 10, (1961), pp. 369-383.
- 7. Sadek, M.M., "The Behaviour of the Impact Damper", The Institution of Mechanical Engineers, Proceedings 1965-66, Vol. 180, Part 1.
- Masri, S.F., Caughey, T.K., "On the Stability of the Impact Damper", Journal of Applied Mechanics, Trans. ASME, Sept. 1966, pp. 586-592.

- 9. Jha, S.K., "Steady State Response of a Non-linear Mechanical System Provided with an Impact Vibration Absorber", M.Eng. Thesis, McMaster University, 1966.
- Egle, D.M., "An Investigation of An Impact Vibration Absorber", ASME Paper No. 67, Vib. 10.
- 11. Agrawal, B.N., "Steady State Response and Stability Analysis of the Two Degree of Freedom System with an Impact Damper", M.Eng. Thesis, McMaster University, 1968.
- Shah, B.E., "The Effect of Impact Damper on Forced Vibrations", M.Eng. Thesis, McMaster University, 1968.
- McGoldrick, R.T., "Experiments with an Impact Vibration Damper", David Taylor Model Basin No. 816.
- 14. Lieber, P. and Tripp, F., "Experimental Results on the Acceleration Damper", Rensselaer Polytechnic Institute Aeronautical Laboratory, Report No. TR AE 5401 (1954).
- 15. Sankey, G.O., "Some Experiments on a Particle or 'shot' Damper", Memorandum, Westinghouse Research Labs (1954).
- 16. Duckwold, C.S., "Impact Damping for Turbine Buckets", General Engineering Laboratory, General Electric, Report No. R 55GL108 (1955).
- 17. Estabrook, L.H. and Plunkett, R., "Design Parameters for Impact Dampers", General Engineering Laboratory, General Electric, Report No. R 55GL250 (1955).

140

(18) William T. Thomson, "Vibration Theory and Application". Prentice Hall, 1965.

$$G_{1} = \eta \omega$$

$$G_{2} = \delta \omega$$

$$-(\delta \omega n \pi / \Delta)$$

$$G_{3} = e$$

$$G_{4} = \eta \omega n \pi / \Delta$$

$$G_{5} = \sin (n \pi)$$

$$G_{6} = \cos (n \pi)$$

$$-\delta \omega (2\pi - n \pi) / \Delta$$

$$G_{7} = e$$

$$G_{8} = \eta \omega (2\pi - n \pi) / \Delta$$

$$G_{9} = \frac{(2 - n - en - 2\mu e)}{(2 - n)(1 + e)}$$

$$G_{10} = \frac{(2\mu + 2 - n - en)}{(2 - n)(1 + e)}$$

$$G_{11} = \frac{(2e - n - 2\mu - ne)}{(2 - n)(1 + e)}$$

$$G_{12} = \frac{(2e - n - ne + 2\mu e)}{(2 - n)(1 + e)}$$

$$G_{13} = n \pi / \Delta$$

$$G_{14} = -n / (2 - n)$$

$$G_{15} = G_{3} \cdot G_{1}$$

G	=	G G	
G ₁₇	. =	G. Ge	
G 18	=	-A G	
G ₁₉	=	G ₇ . G ₁	
G 20	=	G ₇ .G ₂	
G	Ξ	G ₃ .sin	G 4
G 22	Ξ	G .cos	G ₄
G_23	=	G cos	G ₄
G	=	G.sin	G 4
G 25	Ξ	G sin	G_4
G 26	=	G .cos	G ₄
G 27	=	G ₇ .sin	G 8
G 28	=	G ₇ .cos	G a
G ₂₉	=	Gcos	G a
G	=	G sin	G 8
G 31∶	. =	G sin 20	G g
G 32	=	G cos	G _.

G 33 ⁰	= .	G ₁₀	/ G
G 34	=	G ₁₁	/ G ₉
G 35	Ξ	G	I Gʻ
G	=	G 13	/ G
G	=	G 23	/ G 34
G 38	=	G 24	/ G
G 39	=	G 25	/ G 34
G	=	G źc	/ G 34
G	=	G 17	/ G 34
G 42	=	G 18	/ G 34
G _{4,3}	=	G _t	/ G
G ₄₄ .,	=	G ₂	/ G 35
G_45	=	G	/ G 35
G_4 6	=	G 1,8,:	/ G
G ₄₇	=	G 29	/ G
G_48	=	G 30	/ G 33
G_49	=	G 31	/ G

144

.

G _{ão}	Ξ.	G / G 33
G 51	=	ـ۹ـ / G
G_52	=	G - G
G	Ξ	G + G 38 + 40
G 54	2	G G49
G 55	=	G ₄₈ + G ₅₀
G 5 c	=	G ₃₆ . G ₁
G 57		G G
G 58	=	G . A
G 5.9	=	G - G 52
G _{୍ପେ}	=	G _ G _ 53
G ₆₁	Ξ	ے۔ - G
G ₆₂	=	-n - G 45
G 63	4	-~ - G 5.1
G 64	=	G1
G 65	=	G _ G
G 6	=	1 _ G

$$\begin{array}{rcl} G_{67} &=& G_{27} / (1 - G_{22} \cdot G_{28}) \\ G_{68} &=& G_{28} \cdot G_{21} / (1 - G_{22} \cdot G_{28}) \\ G_{69} &=& G_{21} + G_{22} \cdot G_{68} \\ G_{70} &=& G_{22} \cdot G_{67} \\ G_{71} &=& G_{59} - G_{60} \cdot G_{68} \\ G_{72} &=& G_{60} \cdot G_{67} \\ G_{73} &=& G_{1} - G_{2} \cdot G_{68} + G_{44} \cdot G_{69} \\ G_{74} &=& G_{70} \cdot G_{44} - G_{2} \cdot G_{67} - G_{43} \\ G_{75} &=& G_{1} - G_{2} \cdot G_{68} + G_{55} \cdot G_{69} \\ G_{76} &=& G_{55} \cdot G_{70} - G_{2} \cdot G_{67} - G_{54} \\ G_{77} &=& G_{56} - G_{64} \cdot G_{68} - G_{69} \\ G_{78} &=& -G_{67} \cdot G_{64} - G_{70} \\ G_{79} &=& G_{61} \cdot G_{74} + G_{72} \cdot G_{73} \\ G_{80} &=& G_{61} \cdot G_{74} + G_{62} \cdot G_{72} / G_{79} \\ G_{81} &=& G_{62} \cdot G_{71} - G_{61} \cdot G_{73} / G_{79} \\ G_{83} &=& G_{46} \cdot G_{71} - G_{42} \cdot G_{73} / G_{79} \\ \end{array}$$

,

.

.

$$G_{84} = G_{63} - G_{80} G_{75} - G_{76} G_{82}$$

$$G_{85} = -G_{81} \cdot G_{75} - G_{83} \cdot G_{76}$$

$$G_{86} = G_{65} - G_{80} \cdot G_{77} - G_{82} \cdot G_{78}$$

$$G_{87} = G_{66} - G_{81} \cdot G_{77} - G_{83} \cdot G_{78}$$

APPENDIX II

Derivation of Equation of Motion of the Mass Particle

The equation of motion of the mass particle can be obtained by using Lagrange's equation (18), which states

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}}\right) - \frac{\partial T}{\partial q} + \frac{\partial V}{\partial q} = Q \quad (r=1,2,...,n) \quad (\Pi.1)$$

where T = kinetic energy of the system

V = potential energy of the system

Now, kinetic energy of the particle is given by

 $T = \frac{1}{2} m \dot{y}_{1}^{2}$ $\frac{\partial T}{\partial \dot{y}_{1}} = m \dot{y}_{1}, \qquad \frac{\partial T}{\partial y_{1}} = 0 \qquad \frac{\partial V}{\partial y_{1}} = 0$ $\frac{\partial (\partial T}{\partial \dot{y}_{1}}) = m \ddot{y}_{1} = m (\ddot{y} + \ddot{x})$ $\frac{\partial (\partial T}{\partial \dot{y}_{1}}) = m \ddot{y}_{1} = m (\ddot{y} + \ddot{x})$ $\frac{\partial (\partial T}{\partial \dot{y}_{1}}) = m \ddot{y}_{1} = m (\ddot{y} + \ddot{x})$

since $y_1 = y + x$ (see Fig. 1)

Since Q = 0 for the present case, then substituting proper values into equation (II.1) gives

APPENDIX III

A Method of Determining Coefficient of Restitution

The steady state velocity of the mass particle (in the case of symmetric 2 impacts/cycle motion) can be said to be constant and is given by:

$$V = (d_{o} + 2 \times b) \frac{\omega}{\pi} \qquad (III.1)$$

If at t = 0_, the absolute velocity of the mass particle is represented by $v_{-} = V$ then at t = 0₊, $v_{+} = V$.

Now recalling

$$\dot{X}_{=} = \dot{X}_{b} , \quad \dot{X}_{+} = \dot{X}_{a}$$

$$V_{=} = V , \quad V_{+} = -V$$

and substituting the appropriate values in equation (2.22) gives:

$$\dot{x}_{b} = \frac{v(e_{-1} - 2\mu)}{(1 + e)}$$
 (III.2)

substituting equation (III.1) into (III.2) ultimately gives

$$x_{b} + \frac{\pi}{2\omega} \left[\frac{1+e}{1-e+2\mu} \right] \dot{x}_{b} = -\frac{d_{o}}{2} \qquad (III.3)$$

Similarly from (2.23), \dot{x}_{a} is given be

$$\dot{x}_{a} = \frac{V(e_{-1+2}\mu e)}{(1+e)}$$
 (III.4)

and substituting for V from equation (III.1) into equation (III.4) ultimately gives

$$x_{b} + \frac{\pi}{2w} \left[\frac{1+e}{1-e-2\mu e} \right] \dot{x}_{a} = -\frac{d_{o}}{2}$$
 (III.5)

If equation (III.5) be substracted from (III.3) it would give

$$(1 - e - 2\mu e)\dot{x}_{b} = (1 - e + 2\mu)\dot{x}_{a}$$

on simplification, this gives

$$e = \frac{1 - (1 + 2\mu) \frac{\dot{x}_{a}}{\dot{x}_{b}}}{(1 + 2\mu) - \frac{\dot{x}_{a}}{\dot{x}_{b}}} \qquad (\Pi . 6)$$

from which e can be evaluated provided $\frac{x_a}{\dot{x}_b}$ is known. The velocity ratio $(\frac{\dot{x}_a}{\dot{x}_b})$ in equation (III.6) can be obtained by integrating with respect to time the output of an accelerometer attached to the primary mass M.

But since the value of e for hardened steel to hardened steel is known with quite a good degree of accuracy, and is equal to 0.8, this value of e (0.8) was taken for all theoretical calculations without actually determining it experimentally.

APPENDIX IV

EXPERIMENTAL DETERMINATION OF THE STRUCTURAL DAMPING FACTOR

This was determined by measuring the peak amplitudes of free vibration of the system.

The free vibrations trace of the system is shown in Figure (IV.1). The peak amplitude for each cycle was measured. The value of the damping factor was obtained by using the formula (18)

$$p = \frac{1}{k} \log_e \frac{r_1}{r_2} = \frac{2\pi\delta}{\sqrt{1-\delta^2}}$$

where k = number of oscillations between two points 1 and

2 corresponding to maxima r₁ = maximum amplitude at point 1

 r_2 = maximum amplitude at point 2

Fig. (1.1)

The average value of δ was found to be 0.029

APPENDIX V

$$S = \sin \tau$$

$$C = \alpha \cos \tau$$

$$h_{1} = e^{-\frac{\delta \alpha \pi}{\omega}} \sin \left(\eta \frac{\pi \alpha}{\omega} \right)$$

$$h_{2} = e^{-\frac{\delta \alpha \pi}{\omega}} \cos \left(\eta \frac{\pi \alpha}{\omega} \right)$$

$$e_{1}^{\prime} = \frac{\pi}{2\alpha} \frac{1 + e}{1 - e + 2\mu}$$

$$e_{2}^{\prime} = \frac{\pi}{2\alpha} \frac{1 + e}{1 - e - 2\mu e}$$

$$e_{1} = \omega e^{-\frac{\delta \alpha \pi}{\omega}} \left[-\delta \sin \left(\eta \frac{\pi \alpha}{\omega} \right) + \eta \cos \left(\eta \frac{\pi \alpha}{\omega} \right) \right]$$

$$e_{2} = \omega e^{-\frac{\delta \alpha \pi}{\omega}} \left[-\delta \cos \left(\eta \frac{\pi \alpha}{\omega} \right) - \eta \sin \left(\eta \frac{\pi \alpha}{\omega} \right) \right]$$

APPENDIX VI

$$C_{\circ} = e^{-\frac{\delta \pi}{\Omega}} (B_{1} \sin \frac{\eta \pi}{\Omega} + B_{2} \cos \frac{\eta \pi}{\Omega}) - A \sin \tau_{\circ}$$

$$C_{1} = e^{-\frac{\delta \pi}{\Omega}} (\frac{\delta}{\Omega} \sin \frac{\eta \pi}{\Omega} + \cos \frac{\eta \pi}{\Omega})$$

$$C_{2} = e^{-\frac{\delta \pi}{\Omega}} (\frac{1}{\eta} \sin \frac{\eta \pi}{\Omega})$$

$$b_{1} = (\frac{\eta}{\Omega} \cos \frac{\eta \pi}{\Omega}) B_{1}$$

$$b_{2} = -(\frac{\eta}{\Omega} \sin \frac{\eta \pi}{\Omega}) B_{2}$$

$$b_{3} = -(\frac{\delta}{\Omega} e^{-\frac{\delta \pi}{\Omega}})((\sin \frac{\eta \pi}{\Omega})B_{1} + (\cos \frac{\eta \pi}{\Omega})B_{2})$$

$$C_{3} = b_{3} + e^{-\frac{\delta \pi}{\Omega}} (b_{1} + b_{2}) - A \cos \tau_{\circ}$$

$$C_{4} = e^{-\frac{\delta \pi}{\Omega}} (a \sin \frac{\eta \pi}{\Omega} - (A \cos \tau) \cos \frac{\eta \pi}{\Omega}) - A \cos \tau_{\circ}$$

$$d_{1} = -\frac{\Omega (1 - C_{1})}{V_{0} + \Omega C_{3}}$$

$$d_{3} = -\frac{\pi}{V_{o} + \Omega C_{3}}$$

$$d_{4} = -\frac{\Omega C_{4}}{V_{o} + \Omega C_{3}}$$

$$d_{5} = -\frac{(\Omega C_{3} + C_{1} V_{o})}{V_{o} + \Omega C_{3}}$$

$$g_{o} = -(f_{1} B_{1o} + f_{2} B_{2o})$$

$$g_{1} = -(f_{1} \frac{\delta}{\eta} + f_{2})$$

$$g_{2} = -\frac{f_{1}}{\eta}$$

$$g_{3} = -\frac{\eta}{\Omega}(f_{1} B_{2o} - f_{2} B_{1o})$$

$$g_{4} = f_{2} A \cos \tau - a f_{1o}$$

$$\rho_{0} = g_{0} e^{-\frac{\delta \pi}{\Omega}} - A \cos \tau$$

$$\rho_{1} = g_{1} e^{-\frac{\delta \pi}{\Omega}}$$

$$\rho_{2} = g_{2} e^{-\frac{\delta \pi}{\Omega}}$$

$$p_{3} \equiv (g_{3} - \frac{\delta}{\Omega}g_{0}) e^{-\frac{\delta}{\Omega}} + A \Omega \sin \tau_{0}$$

$$p_{4} \equiv g_{4} e^{-\frac{\delta}{\Omega}} + A \Omega \sin \tau_{0}$$

$$f_{1} \equiv \delta \sin \frac{\eta}{\Omega} - \eta \cos \frac{\eta}{\Omega}$$

$$f_{2} \equiv \delta \cos \frac{\eta}{\Omega} + \eta \sin \frac{\eta}{\Omega}$$

$$a_{1} = A (\Omega \sin \tau_{0} + \Omega \cos \tau_{0})$$

η

APPENDIX VII

KEY FOR COMPUTER

PROGRAMS SYMBOLS

Fortran Symbols

Program for digital computer method		All other programs	Actual symbol used in mathematical model	
	А	A ,V	А	
	D	D	8	
	U	AM	JU	
		N,AN	n	
2	FF	FF	F,/k	
	R	R	r	
	E	E	e	
	WN	W	ω	
	W	W 1	_ L	
	PI	PI	Π	
	DØ	DØ	d	
	TIM	TIM	$T(=\frac{2\pi}{\Omega})$	

Cont.

PSI Ψ ЕТА η ΤI t_{i+} ΧI ×_{i+} . ΥI У_{і.} Х x Y У DX ż ×_i, DXI DYI ý, ΕI E; DI D, X1 (×/A) max ТНЕТ THET 7 B1 B₁ B₂ Β2

Cont.

B, B11 B₂ B21 XА x_a XG ×g ΧВ Хb ХН X h х́а DXA DXG ×_g DXB х́ь DX H × h V1 V₁ V_2 V 2 RO ρ Solution $\begin{cases} XMAXA1 \\ XMAX1 \\ XMAX1 \\ XMAX2 \\$ First Theoretical

Cont.

APPENDIX VIII

List of Equipment Used in Experimental Studies

- 1, amplifier unit, 250 VA Amplifier type 119567, Philips.
- 2. 1, ammeter
- 3. 1, vibration generator (exciter), moving coil vibration generator, model 790, Goodmans Industries Ltd., Wimbley, England.
- 4. 1, capacitance transducer, type 51D05-3 (co-axial) with a tuning plug type 51E03-4, DISA Elektronic, Herley, Denmark.
- 5. 1, oscillator, type 51E02-555, DISA Elektronik.
- 6. 1, reactance converter, type 51E01, DISA Elektronik.
- 7. 1, cathode ray oscilloscope, type 564 storage oscilloscope, Tektronix Inc., S.W. Millikan Way, Beaverton, Oregon, U.S.A.
- 1, vibration pick-up pre-amplifier, type 1606, BRUEL and KJAER, Denmark.
- 9. 1, microphone anplifier, type 2604, BRUEL and KJAER, Denmark.
- 10. 1, 'accelerometer, type 4332, BRUEL and KJAER, Denmark.
- 11. 1, force gauge, model 2103-500, Enderco Corporation, Pasadena, California.
- 12. 1, frequency generator, model 103, Wavetak, San Diego, California.
- 13. 1, paper recorder, model 7702, Hewlett, Packard.

14. 1, oscilloscope camera, model C-12, Tektronix, Inc., Portland, Oregon, U.S.A.

. ·

APPENDIX IX

.

A4460 RUN(F SETIN	6. ADEL M. P) NDF.	
REDUC LGO• 7 C C C C C	CE. 6400 END RECORD PROGRAM TST (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT DIGITA COMPUTER METHOD TO GET THE -EXACT- MOTION OF A SINGLE DEGREE OF FREEDOM SYSTEM WITH AN DAMPER	Γ)
C	TO DETERMINE THE FOLLOWING .	
	<pre>1) TIME AT WHICH IMPACT OCCURS 2) DISPLACEMENT OF (M) AT IMPACT 3) RELATIVE DISPLACEMENT OF (m) W.R.T. (M) AT IMPACT 4) VELOCITY OF (M) AT IMPACT 5) RELATIVE VELOCITY OF (m) W.R.T. (M) AFTER IMPACT 6) RATIO (X/A)MAX WRITE (6,470) WRITE (6,471) WRITE (6,473) WRITING DATA PI=4.*ATAN(1.) WN=1. FF=1. E=0.8 U=0.1 DO=15.</pre>	
1000 C C C C	W=1. D=0.1 FR=W/(2.*PI) R=W/WN TIM=2.*PI/W IF(R.EQ.1.0)GO TO 6 CALCULATING THE PHASE ANGLE PSI PSI=ATAN(2.*D*R/(1R*R)) GO TO 8 PSI=1.57	

С CALCULATING THE AMPLITUDE OF MOTION WITHOUT č IMPACT DAMPER С A=FF/SQRT((1.-R*R)**2+(2.*D*R)**2) 8 С WRITE(6,23)D, FE, E, WN WRITE(6,24)W,R,DO,U WRITE(6,25)TIM,A WRITE(6, 27)WRITE(6.9) С FTA=SQRT(1 - D*D)JKL = 0С C INITIAL CONDITIONS С TI = 0.0XI = 0.0YI = 0.0DXI=0.0DYI=0.0T=TI XX=0.0MM=Ŭ YY = D0/2. DO 60 I=1,60 JKJK=0AK=0.2 $X1 = 0 \cdot 0$ Ç .c c SOLUTION BETWEEN CONSECUTIVE IMPACTS EI=XI-A*SIN(W*TI-PSI) $DI = (D \times EI + D \times I / W N - A \times R \times COS(W \times TI - PSI)) / ETA$ N=C5 T = TI + AKX = EXP(-D*WN*(T-TI))*(DI*SIN(FTA*WN*(T-TI))+EI*COS1 (ETA*WN*(T-TI)))+A*SIN(W*T-PSI)Y = -X + XI + YI + (DXI + DYI) * (T - TI)C C C CHECKING IF THE NEXT IMPACT IS REACHED ARG=D0/2.-ABS(Y) IF(ABS(X1).GT.ABS(X))GO TO 7 X1 = X7 IF(ARG.LT.0.0)GO TO 10 AK=AK+0.2 N=N+1GO TO 5 10 IF(Y.GT.0.0)GO TO 11

YY = -DO/2. GO TO 12 YY=D0/2. 11 12 CONTINUE K = 0C С NEWTON-RAPHSON METHOD FOR SOLVING TRANSCDENTIAL C EQUATIONS C 14 $T_2 = T$ M = O15 T3=T-TI WNT = WN + T3DWNT=-D*WNT IF(ABS(DWNT),GT.85.0)GO TO 60 EX=EXP(DWNT) EW=ETA*WNT SI = SIN(FW)CO=COS(EW)FT = -YY - FX + (DI + SI + EI + CO) - A + SIN(W + T - PSI) + XI + YI + (DXI + CO) - A + SIN(W + T - PSI) + XI + YI + (DXI + CO) + A + SIN(W + T - PSI) + XI + YI + (DXI + CO) + A + SIN(W + T - PSI) + XI + YI + (DXI + CO) + A + SIN(W + T - PSI) + XI + YI + (DXI + CO) + A + SIN(W + T - PSI) + XI + YI + (DXI + CO) + A + SIN(W + T - PSI) + XI + YI + (DXI + CO) + A + SIN(W + T - PSI) + XI + YI + (DXI + CO) + A + SIN(W + T - PSI) + XI + YI + (DXI + CO) + A + SIN(W + T - PSI) + A + S1 DYI * T3DX=EX*(ETA*WN*(DI*CO-EI*SI)-D*WN*(DI*SI+EI*CO))+A* $1 W \times COS(W \times T - PSI)$ EDET = -DX + DXI + DYIT1=FT/FDFT T = T - T 1IF(ABS(T1).LT.0.002)GO TO 21 IF(M.EQ.100)GO TO 22 M=M+1GO TO 15 · 22 WRITE(6,2) 51 GO TO 48 21 YI = YYIF(T.LT.TI)GO TO 49 C Ĉ COMPUTING THE CONDITIONS AT IMPACT С 20 XI = EXP(-D*WN*(T-TI))*(DI*SIN(ETA*WN*(T-TI))+EI*COS $1 \quad (ETA*WN*(T-TI))) + A*SIN(W*T-PSI)$ DX=EXP(-D*WN*(T-TI))*(ETA*WN*(DI*COS(ETA*WN*(T-TI)) 1 -EI*SIN(ETA*WN*(T-TI)))-D*WN*(DI*SIN(ETA*WN*(T-TI)) $1 + EI \times COS(ETA \times WN \times (T - TI))) + A \times W \times COS(W \times T - PSI)$ EDET = -DX + DXI + DYIDXI=DX+U*(1+E)/(1+U)*FDFTDYI = -E * FDFTT = TX1 = X1/A

16.4

IE((ABS(XX)-ABS(X1)), IT, 0, 00001)60 TO 70 XX = X1GO TO 71 C 71 WRITE(7,1) I, TI, XI, YI, DXI, DYI, XI 52 GO TO 60 49 JKI = JKI + 1IF(JKL.GT.5)GO TO 60 WRITE(6,4)70 MM = MM + 148 T = T2 + 4. K = K + 1IF(K.GT.15)GO TO 60 GO TO 14 6U CONTINUE 50 CONTINUE FORMAT(20X, 15, F9, 2, F9, 4, F9, 2, 3F9, 4) 1 27 FORMAT(20X,6HIMPACT,4X,1HT,9X,1HX,8X,1HY,6X,1HX,8X, 1 1HY, 10X, 1HX//)9 FORMAT(20X,6H-----,4X,1H-,9X,1H-,8X,1H-,6X,1H-, 1 8X,1H-,10X,1H-///) FORMAT(25X,20H NO CONVERGENC 2 ۱ 4 FORMAT(25X,20HT FOUND LESS THAN TI) 23 D=,E5,2,6X,5HEO/K=,E5,2,9X,2HE=,FORMAT(21X,6H 1 $F5 \cdot 2 \cdot 7X \cdot 3HWN = \cdot F5 \cdot 2/$ 24 $W = F_{5} \cdot 2,9X,2HR = F_{5} \cdot 2,8X,3HDO = F_{5} \cdot 2,8X$ FORMAT(21X,6H F5.2,8X,2HU=,F5.2/) 1 25 T=,F5.2,9X,2HA=,F5.2///) FORMAT(21X,6H 470 FORMAT(48X,10HTABLE 4.2) 471 FORMAT(48X,10H-----//) FORMAT(41X,23HDIGITAL COMPUTER OUTPUT) 472 FORMAT(41X,23H-----//) 473 300 STOP END 6400 END RECORD 6400 END FILE

C

7

8

16.5

A4466 PLINTO	•	AUEL M.
SETIN	, DF• F•	
LGO.		
1	PROGRAM_TST_(INPUT;OUTPUT;TAPE5=INPUT	,TAPE6=OUTPUT)
C C	TO DETERMINE THEORETICALLY	
c		
C C	1) THE VALUE OF 2) The value of	N THET
C	3) THE VALUE OF	B1
C	5) THE VALUE OF	82 811
C	6) THE VALUE OF	321 XA
C	8) THE VALUE OF	XG
C C	9) THE VALUE OF 10) THE VALUE OF	DXA DX
C C	11) THE VALUE OF	DXH
Č	13) THE VALUE OF	V1
C C	14) THE VALUE OF	V2
	WRITE(6,470)	
	WRITE(6,472)	
с	WRITE(6,473)	·
C C	WRITING DATA	
	PI=4.*ATAN(1.)	
	FF=1	
	AM=0.1 E=0.8	
	DO=15.	
	$W = 1 \cdot W = $	
С	TIM-2.*0I/W1	
	DEL=D	
	EI=1D**2 ETA=SQRT(ET)	
C	R = W 1 / W	
	CALCULATING THE AMPLITUDE OF MOTIO IMPACT DAMPER	N WITHOUT

C

C

(

A = FF/SORT((1 - R*R)**2 + (2 + D*D)**2)

RO=DO/A WRITE(6,23)D, FE, E, W WRITE(6,24) W1,R,D0,AM WRITE(6,25) TIM,A AN=1C = AN/2. G1 = FTA * WG2=DEL*W G3=1./EXP(DEL*W*AN*PI/W1) G4 = ETA * W * AN * PI/W1G5=SIN(AN*PI) G6=COS(AN*PI)G99=DEL*W*(2.*PI-AN*PI)/W1 G7=1.07EXP(G99)G8=ETA*W*PI*(2 → AN)/W1 G9=(1•/((1•+E)*(2•-AN)))*(2•-AN-E*AN-2•*A两*E) G10=(1./((1.+E)*(2.-AN)))*(2.*AM+2.-AN-E*AN) G11=(1./((1.+E)*(2.-AN)))*(-2.*AM-AN+2.*E-AN*E) G12=(1./((1.+E)*(2.-AN)))*(-AN+2.*E-AN*E+2.*AM*E) G13=AN*PI/W1 G14 = -AN/(2 - AN)G15=G3*G1 G16=G3*G2 G17 = W1 * G6G18 = W1 * G5G19 = G7 * G1G20=G7*G2 G21=G3*SIN(G4) G22=G3*COS(G4)G23 = G15 * COS(G4)G24 = G15 * SIN(G4)G25=G16*SIN(G4)G26=G16*COS(G4) G27 = G7 * SIN(G8) $G_{28}=G_{7}*COS(G_{8})$ $G29 = G19 \times COS(G8)$ G30=G19*SIN(G8) $G31 = G20 \times SIN(G8)$ G32=G20*COS(G8)G33 = G10/G9G34=G11/G9 G35=G12/G9 G36=G13/G9 G37=G23/G34 G38=G24/G34 G39=G25/G34

G40=G26/G34G41 = G17/G34G42 = G18/G34G43=G1 /G35 G44=G2 /G35 G45 = G17/G35G46 = G18/G35. 647 = 629/633G48 = G30/G33G49 = G31/G33G50=G32/G33 G51=W1 /G33 G52 = G37 - G39G53 = G38 + G40G54 = G47 - G49G55=G48+G50 G56=G36*G1 $G57 = G36 \times G2$ G58=G36*W1 G59=G1-G52 G60 = G2 - G53G61 = W1 - G41. G62 = W1 - G45G63 = W1 - G51G64=G57-1. G65=G58-G5 G66=1.-G6 G67 = G27 / (1 - G22 + G28) $G68 = (G28 \times G21) / (1 - G22 \times G28)$ G69=G21+G22*G68 G70=G22*G67 $G71 = G59 - G60 \times G68$ $G72 = G60 \times G67$ G73=G1-G2*G68+G44*G69 G74=-G2*G67-G43+G70*G44 G75=G1-G2*G68+G55*G69 G76=-G2*G67+G55*G70-G54 G77=G56-G64*G68-G69 G78=-G67*G64-G70 G79=G71*G74+G72*G73 G80=(G61*G74+G62*G72)/G79 G81=(G42*G74+G46*G72)/G79 G82 = (G62 * G71 - G61 * G73) / G79G83=(G46*G71-G42*G73)/G79 G84=-G80*G75-G76*G82+G63 G85=-G81*G75-G76*G83 G86=-G80*G77-G82*G78+G65 G87=-G81*G77-G83*G78+G66 TT=-G84/G85

С С CHECKING THE VALUE OF (THET) , REAL OR С IMAGINARY Ċ $S1 = (R0 \times G87) \times 2 - (G86 \times 2 + G87 \times 2) \times (R0 \times 2 - G86 \times 2)$ IF(S1+LT+0+0)GO TO 5 S1 = SORT(S1)S2=(R0*G86)**2-(G86**2+G87**2)*(R0**2-G87**2) IF(S2.LT.0.C)GO TO 5 S2 = SORT(S2)502 $T_3 = (-RO \times G87 + S1) / (-RO \times G86 - S2)$ С C FIRST THEORETICAL C SOLUTION С С Č С CALCULATING THE VALUE OF (THET) C THET = ATAN(T3)P5 = -R0 + G87 + S1 $P6 = -R0 \times G86 - S2$ IF(P5.GT.C.O.AND.P6.LT.O.O)THET=THET+PI IF (P5.LT.0.0.AND.P6.LT.0.0) THET=THET+PI SN = SIN(THET)CN = COS(THET)C С CALCULATING Z1,Z2 $Z1 = G86 \times CN + G87 \times SN + RO$ Z2=G84*CN+G85*SN WRITE(6,450)Z1,Z2 WRITE(6,451)AN, THET IF Z1=0.0 $Z_{2}=0.0$ AND • THEN THE FOLLOWING VALUES OF N, THET, B1, B2, 311, B21, XA, XG, DXA, DXB, DXG, DXH, V1, V2, XMAXA, XMAX ARE A THEORETICAL RESULT CALCULATING B1,B2,B11,B21 B1 = -A * (G80 * CN + G81 * SN) $B11 = -A \times (G82 \times CN + G83 \times SN)$ B2=B11*G67+B1*G68B21=B1*G69+B11*G70 WRITE(6,452)B1,B2 WRITE(6,453)B11,B21

C C C С С С С Ċ С Ċ С

C CALCULATING XA3XG
C
XA=B2+A*SIN(THET) XG=B21+A*SIN(AN*PI+THET)
WRITE(6,454)XA,XG
C CALCULATING DXA,DXB,DXG,GXH
DXA=B1*ETA*W-D*W*B2+A*W1*COS(THET)
DXH=G35*DXA
WRITE(6,455)DXA,DXB
C
C CACULATING V1.V2
$V_{1}=DXA/G9$
V2 = G14 * V1
WRITE(6,457)V1,V2
C. C. C. A.
C CALCULATING XMAXA AND XMAX
C = X X = C = 0
$T = 0 \cdot 0$
505 X=(1./A)*EXP(-D*W*T)*(B1*SIN(ETA*W*T)+B2*COS(ETA*W*
$I = (ABS(X)) \cdot GT \cdot (ABS(XX)) XX = X$
$T = T + C \cdot 2$
IF(T.GT.(AN*PI/W1))GO TO 506 GO TO 505
506 XMAXA1=XX
XMAX1 = XX * A
507 S = T - (AN + PI/W1)
X=(1•/A)*EXP(-D*W*S)*(B11*SIN(ETA*W*S)+B21*COS(ETA*
$1 \qquad W*S))+SIN(W1*T+THET)$ $1F((ABS(X))-GT_{*}(ABS(XX)))XX=X$
$T=T+G \cdot 2$
IF(T.GT.(2.*PI/√1))GO TO 508
508 XMAXA2=XX
XMAX2=XX*A
WRIIEI6,458)XMAXA1,XMAXI WRIIE(6,459)XMAXA2,XMAX2
C
$C = T_{A-1} = C_{A-1} = $
JUJ 14-1-RUAGDI-SI//(-RUAGG6+SZ/

170

•

•

CALCULATING THE VALUE OF (THET)

THET=ATAN(T4) P7=-RO*G87-S1 P8=-RO*G86+S2 IF(P7.GT.0.0.AND.P8.LT.0.0)THET=THET+PI IF(P7.LT.0.0.AND.P8.LT.0.0)THET=THET+PI SN=SIN(THET) CN=COS(THET)

C C C

> C C C

С

C C

C C

C C

C C

CCCCC

Č

CALCULATING Z1,Z2

-

Z1=G86*CN+G87*SN+RO Z2=G84*CN+G85*SN WRITE(6,450)Z1,Z2 WRITE(6,451)AN,THET

> IF Z1=0.0 AND Z2=0.0 , THEN THE FOLLOWING VALUES OF N,THET,B1,B2,B11,B21,XA, XG,DXA,DXB,DXG,DXH,V1,V2,XMAXA,XMAX ARE A THEORETICAL RESULT

CALCULATING B1,82,811,821

B1=-A*(G80*CN+G81*SN) B11=-A*(G82*CN+G83*SN) B2=B11*G67+B1*G68 B21=B1*G69+B11*G70 WRITE(6,452)B1,B2 WRITE(6,453)B11,B21

CALCULATING XA+XG

XA=B2+A*SIN(THET) XG=B21+A*SIN(AN*PI+THET) WRITE(6,454)XA,XG

C C C

C C

С

CALCULATING DXA, DXB, DXG, GXH

DXA=B1*ETA*W-D*W*B2+A*W1*COS(THET) DXB=G33*DXA DXG=G34*DXA DXH=G35*DXA

WRITE(6,455)DXA,DXB WRITE(6,456)DXG,DXH С С CALCULATING V1,V2 С V1 = DXA/G9V2 = G14 * V1C WRITE(6,457)V1,V2 С C C CALCULATING XMAX XMAXA AND C $XX = 0 \cdot 0$ $T = 0 \cdot 0$ 509 $X = (1 \cdot A) \times EXP(-D \times W \times T) \times (B1 \times SIN(FTA \times W \times T) + B2 \times COS(ETA \times W \times T))$ T))+SIN($W1 \times T + THET$) 1 IF((ABS(X)),GT,(ABS(XX)))XX=X $T = T + 0 \cdot 2$ IF(T.GT.(AN*PI/W1))GO TO 510 GO TO 509 510 XMAXA3 = XXXMAX3=XX*A T = AN * PI / W1511 S=T-(AN*PI/W1)X=(1./A)*EXP(-D*W*S)*(B11*SIN(ETA*W*S)+B21*COS(ETA* W*S))+SIN(W1*T+THET) 1 IE((ABS(X)), GT, (ABS(XX)))XX=XT = T + 0.2IF(T.GT.(2.*PI/W1))GO TO 512 GO TO 511 512 XMAXA4=XXXMAX4=XX*AWRITE(6,461)XMAXA3,XMAX3 WRITE(6,462)XMAXA4,XMAX4 С 5 CONTINUE 6 CONTINUE С C C С 23 FORMAT(21X,6H D=,F5.2,6X,5HFO/K=,F5.2,9X,2HE=, 1 F5.2, 7X,3HWN=,F5.2/) 24 FORMAT(21X,6H W=,F5.2,9X,2HR=,F5.2,8X,3HDO=, F5.2,8X,2HU=,F5.2/) 1 25 FORMAT(21X,6H T=,F5.2,9X,2HA=,F5.2//) 450 FORMAT(28X,7H Z1=,E12.5,10X,7H Z2=,E12.5/)451 FORMAT(28X,7H N=,E12.5,10X,7H THET=,E12.5/) 452 FORMAT(28X,7H B1=,E12.5,10X,7H 82=,E12.5/) 453 FORMAT(28X,7H B11=,E12.5,10X,7H B21=,E12.5/) 454 FORMAT(28X,7H XA=,E12.5,10X,7H XG=,E12.5/)
455	FORMAT(28X,7H DXA=,E12.5,10X,7H DXB=,E12.5/)
456	FORMAT(28X,7H DXG=,E12.5,/0X,7H DXH=,E12.5/)
457	FORMAT(28X,7H V1=,E12.5,10X,7H V2=,E12.5/)
462	FORMAT(28X,7HXMAXA4=,E12.5,10X,7H XMAX4=,E12.5/)
458	FORMAT(28X,7HXMAXA1=,E12.5,10X,7H XMAX1=,E12.5/)
459	FORMAT(28X,7HXMAXA2=,E12.5,10X,7H XMAX2=,E12.5/)
461	FORMAT(28X,7HXMAXA3=,E12.5,10X,7H XMAX3=,E12.5/)
470	FORMAT(48X,10HTABLE 4.1)
471	FORMAT(48X,10H/)
472	FORMAT(41X,23H THEORETICAL RESULTS)
473	FORMAT(41X,23H)
	STOP
	END
7	6400 END RECORD
8	6400 END FILE

-

. •

8

•

1 · ·

.

A44 RUN SET RED	66. (P) INDF. UCE.	ADEL M.	
LGO 7	• 6400 END RECORD PROGRAM TST (INPUT,OUTPUT,TAP	E5=INPUT,TAPE6=OUT	PUT)
	STABILITY DETERMINATION FO UNSYMMETRIC 2 IMPACTS/CY	R THE CASE OF CLE	
	DIMENSION A(4,4),B(4,4),C(4,4),X(4),Y(4)	
	WRITING DATA		
Ļ	PI=4.*ATAN(1.) D=0.1	•	
	$ETA=SQRT(1 \cdot -D*D)$ $E=0 \cdot 8$		
	$AM=0 \cdot 1$ $W=1 \cdot $ $W = 1 \cdot $		an a
. a.	DO=3. V=5.	en e	•
	AN=2.*0.3391019009 THET=2.94365 B1=3.18933 B2=1.16020		
	B11=-3.22397 B21=1.70810 V1=-7.09090 V2=3.63926		
C C	CALCULATING C1,C2,C3,C4		
<u> </u>	AZ =(V/ETA)*(W1*SIN(THET)-D*CO Z1=SIN(AN*PI/ETA) Z2=COS(AN*PI/ETA) ZX=1•/EXP(D*AN*PI/W1) C1=ZX*((D/ETA)*Z1+Z2) C2=ZX*Z1*(1•/cTA)	S(THET))	
•	BB2=-B2*Z1*(ETA/W1) BB3=-ZX*(D/W1)*(B1*Z1+B2*Z2) C3=BB3+(BB1+ C3=BB3+(BB1+BB2)*ZX+V*COS(AN*P	I+THET)	
C C	CALCULATING D1,D2,D3,D4,D	5	

ZZZ=V10+W1*C3 D1=W1*(1.-C1)/ZZZ D2=-W1* C2/ZZZ

•

.

		and a second s
		$D_{3} = -P_{1}/Z_{2}$
		$D4 = -W1 \times C4 / 222$ $D5 = -(W1 \times C3 + V1 0 \times C1) / 777$
	c	D)==(W1xC)+V10xC1//222
	Č	CALCHLATING F1.F2
	C	F1=D*71-FTA*72
		$[1-0] \times [1-0] \times [1-0$
	c	
	Ċ	CALCULATING 60.61.62.63.64
		CALCOLATING COSCISCIONS
		C()/E1*B1+E2*B2)
		$G_{}(E_{+}) = C_{+} = C_{+}$
		$G_{2} = -E_{1} / E_{1}$
		$G_2 = (F_1 / U_1) * (F_1 * B_2 - F_2 * B_1)$
		$C_{A} = C_{A} + C_{A$
	C	
		CALCHEATING AK1.AK2.AK3.AK4
		CALCOLATING
		$\Delta K_{1} = (1 - \Delta M \times E) / (1 - \Delta M)$
		AK2 = AM*(1 + E)/(1 + AM)
		$AK_{3} = (1 + F) / (1 + AM)$
		AK4=(AM-F)/(1+AM)
	C ·	
	C ·	CALCULATING ROO, RO1, RO2, RO3, RO4
	c	CALCOLATING
	C	ROO = GO * 7X + V * W1 * COS(AN * PI + THET)
		R01=G1*7X
		R02=62*7X
		RO3=7X*(G3-(D/W1)*G0)-V*W1*SIN(AN*PI+THET)
		RO4=G4*7X-V*W1*SIN (AN*PI+THFT)
	C	
	c	CALCULATING THE ELEMENTS OF THE MATRIX P1
	c	
•		B(1,1)=05
	.	$B(1 \cdot 2) = V10 \times D2/W1$
		B(1,2) = -(3*D2)
		B(1,4) = V10 * D4 / W1
		B(2,1) = -4K1*(RO1+RO3*D1)
		B(2,2) = -AK1*(RO2+RO3*D2)
		B(2,3) = AK2 - AK1 * RO3 * D3
		B(2,4) = -AK1*(RO4+RO3*D4)
		B(3,1) = AK3*(RO1+RO3*D1)
		B(3,2) = AK3*(RO2+RO3*D2)
		B(3,3)=AK3*R03*D3-AK4
		B(3,4) = AK3*(RO4+RO3*D4)
		$B(4 \cdot 1) = D1$
		B(4,2)=D2
		B(4,3)=D3
		B(4,4) = 1 + D4
	С	
	C	CALCULATING C11, C21, C31, C41

175

č

.

Z11=SIN (ETA*(2.*PI-AN*PI)/W1)

С

C C

С

c c

С

C C

С

C(3,1) = -AK3*(RO1+RO3*D11) $((3,2) = -AK3 \times (RO21 + RO31 \times D21))$ C(3,3)=-AK3*RO31*D31-AK4 C(3,4) = -AK3*(RO41+RO31*D41)C(4,1)=D11 C(4,2) = D21C(4,3) = D31C(4,4) = D41 + 1. С С CALCULATING THE ELEMENTS OF THE STABILITY MATRIX C DO 110 I=1,4 DO 110 J=1,4 $A(I_{J})=0.0$ DO 110 K=1.4 A(I,J) = A(I,J) + C(I,K) + B(K,J)110 CONTINUE C C CALCULATING THE EIGEN-VALUES OF THE STABILITY С MATRIX C N=4NC=4EPS=0.0001 CALL RUTI(A,N,NC,X,Y,EPS) С С CHECKING THE ABSOLUTE VALUES OF THE EIGEN VALUES С DO 603 I=1,4 ABSEIG=SQRT(X(I)*X(I)+Y(I)*Y(I))IF (ABSEIG.GT.1.)GO TO 604 603 CONTINUE WRITE(6,702) GO TO 500 604 WRITE(6,701) С 701 FORMAT(1X,22H SYSTEM IS NOT STABLE/) 702 FORMAT(1X,18H SYSTEM IS STABLE/) 500 STOP END

ADEL M. A4466. RUN(P) SETINDE. **REDUCE**. LGO. 7 6400 END RECORD PROGRAM TST (INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT) С DIMENSION Z(4,4),Y(4)С С DETERMINATION OF THE STEADY STATE MOTION OF С A SINGLE DEGREE OF FREEDOM SYSTEM WITH AN С IMPACT DAMPER IN THE SPECIAL CASE OF С 2 SYMMETRIC IMPACTS/CYCLE MOTION ē C WRITING DATA $PI=4 \cdot *ATAN(1 \cdot)$ Ď=0.1 F=0.2 AM=0.4 FF=1. ETA=SQRT(1.-D*D) DO=3W = 1. W1=1.25 C С CALCULATING S,C,H1,H2,SEG1,SEG2,TH1,TH2 C 1000 S=SIN(THET) C=W1*COS(THET) $H1=(1 \cdot / EXP(D*PI*W1/W))*SIN(ETA*PI*W1/W)$ $H2=(1 \cdot / EXP(D*PI*W1/W))*COS(ETA*PI*W1/W)$ SEG1=(PI/2.*W1))*((1.+E)/(1.-E+2.*AM)) SEG2=(PI/2.*W1))*((1.+E)/(1.-E-2.*AM*E)) $TH1=W*(1 \bullet / EXP(D*PI*W1/W))*(-D*SIN(ETA*PI*W1/W)+$ 1 ETA*COS(ETA*PI*W1/W)) TH2=W*(1./EXP(D*PI*W1/W))*(-D*COS(ETA*PI*W1/W)-1 ETA*SIN(ETA*PI*W1/W)) С С CALCULATING H3,H4,H5,H6,H,HH1,HH2,HH3,HH4 С H3=(SEG2-SEG1)+SEG1*SEG2*(D*W-TH2) H4=SEG1*SEG2*(TH1+ETA*W) H5=D*SEG2*W-SEGU*TH2 H6=SEG1*TH1+ETA*SEG2*W H=2.*W*(H3*H1+H4*(1.+H2))/(H5*H1+H6*(1.+H2)) $HH1 = (-2 \cdot RO + H \cdot SQRT(H \cdot H + 4 - RO \cdot RO)) / (H \cdot H + 4)$ $HH2=(-2 \cdot RO-H \cdot SQRT(H \cdot H + 4 - RO \cdot RO))/(H \cdot H + 4)$

HH3=(-H*R0+2.*SQRT(H*H+4-R0*R0))/(H*H+4) HH4=(-H*R0-2.*SQRT(H*H+4-RO*RO))/(H*H+4) THET CALCULATING THET=ATAN(HH1/HH4) CALCULATING THE ELEMENTS OF THE STEADY STATE MOTION MATRIX NA=6DO 10 I=1,6 DO 10 J=1,6 $Z(I_{J})=0.0$ CONTINUE Z(1,1)=1,0Z(1,5) = -1.0Z(1,6) = -SZ(2,3)=1.Z(2,4) = -ETA*WZ(2,5)=D*W Z(2,6) = -C

10

N=6

Z(3,1)=1.0Z(3,4)=H1Z(3,5)=H2Z(3,6) = -SZ(4,2)=1.0Z(4,4) = TH1Z(4,5) = TH2Z(4,6)=-C Z(5,1)=1.0Z(5,2) = SEG1Z(6,2)=1.0Z(6,3) = SEG2 $Y(1) = 0 \cdot 0$ Y(2) = 0.0Y(3) = 0.0Y(4) = 0.0 $Y(5) = -D0/2 \cdot 0$ $Y(6) = -D0/2 \cdot 0$

C

С

С

C C C

C...

С C C

SOLVING THE SET OF LINEAR EQUATIONS .

SOLVE(Z,Y,ID,N,NA) CALL

С

C	CALCULATING XB,DXB,DXA,B1,B2
	XB=Y(1) DXB=Y(2) DXA=Y(3) B1=Y(4) B2=Y(5)
C	•
	WRITING THE FIRST THEORETICAL SOLTION
C	WRITE(6,320)THET
	WRITE(6,321)XB
	WRITE(6,322)DXB
	WRITE(6,323)DXA
	WRIIE(6,324)B1
c	WRITE(0)JZJJDZ
C C	REPEATING THE SAME CALCULATIONS FOR THE OTHER VALUE OF THET
C	ZA= ZA+1.
	GO TO (701,40),LZA
701	THET=ATAN(HH2/HH3)
	GO TO 1000
40	CONTINUE
C C	WRITING THE SECOND THEORETICAL SOLTION
~	WRITE(6,320)THET

C .	
	WRITE(6,320)THET
	WRITE(6,321)XB
	WRITE(6,322)DXB
	WRITE(6,323)DXA
	WRITE(6,324)B1
	WRITE(6,325)B2
С	
320	FORMAT(10X,5HTHET=,E20.10/)
321	FORMAT(10X,5HXB =,E20.10/)
322	FORMAT(10X,5HDXB =,E20,10/)
323	FORMAT(10X, 5HDXA = E20.10/)
324	FORMAT(10X,5HB1 =,E20.10/)
325	FORMAT(10X,5HB2 =,E20.10/)

STOP END

A4466 RUN (F	ADEL M.
REDUC	
LGO. 7	6400 END RECORD PROGRAM TST (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)
C	DIMENSION A(4,4),X(4),Y(4)
C C C	STABILITY DETERMINATION FOR THE SPECIAL CASE OF SYMMETRIC 2 IMPACTS/CYCLE
C C	WRITING DATA
	D=0.1 ETA=SQRT(1D*D)
	W=1. W1=1.25
•	E=0.2 PI=4.*ATAN(1.) B1=0.91722131767
	B2=-1.0847507256 V=1.6245538642
C	THET=2.4817503658
c	(ALCULATING CI)(2)(3)(4)
1	$AZ = (V/ETA) * (WI*SIN(THET) - D*COS(THET))$ $C1 = (1 \cdot / EXP(D*PI/W1)) * ((D/ETA)*SIN(ETA*PI*W1/W))$ $+ COS(ETA*PI(W1))$
1	C2=(1•/EXP(D*PI/W1))*((1•/ETA)*SIN(ETA*PI/W1)) BB1=B1*(FTA/W1)*COS(FTA*PI/W1)
	BB2=-B2*(ETA/W1)*SIN(ETA*PI/W1) BB3=-(D/W1)*(1•/EXP(D*PI/W1)*(SIN(ETA*PI/W1)*B1+
1	C3=BB3+(1./EXP(D*PI/W1))*(BB1+BB2)-V*COS(THET) COS(ETA*PI/W1)*B2)
1	C4=1./EXP(D*PI/W1)*(AZ*SIN(ETA*PI/W1)-A*COS(THET) *COS(ETA*PI/W1))-A*COS(THET)
C C	CALCULATING D1,D2,D3,D4,D5
•• ,	D1=W1*(1C1)/(V10+W1*C3) D2=-W1*C2/(V10+W1*C3)
	D3 = -PI/(V10+W1*C3) D4 = -W1*C4/(V10+W1*C3)
C C	$D_{2} = (w_{1} \times C_{3} + v_{10} \times C_{11} / (v_{10} + w_{1} \times C_{3})$
C	$F_1=D*SIN(FTA*PI/W1)-FTA*COS(FTA*PI/W1)$
	F2=D*COS(ETA*PI/W1)+ETA*SIN(ETA*PI/W1)

.

.

- **.**

GO=-(F1*B1+F2*B2) G1=-(F1*(D/ETA)+F2) G2=-F1/ETA G3=(ETA/W1)*(F1*B2-F2*B1) G4=F2*A*COS(THET)-AZ*F1

CALCULATING AK1, AK2, AK3, AK4

AK1=(1.-AM*E)/(1.+AM) AK2=AM*(1.+E)/(1.+AM) AK3=(1.+E)/(1.+AM) AK4=(AM-E)/(1.+AM)

CALCULATING ROO, RO1, RO2, RO3, RO4

```
ROO=GU*(1./EXP(D*PI/W1))-A*W1*COS(THET)
RO1=G1*(1./EXP(D*PI/W1))
RO2=G2*(1./EXP(D*PI/W1))
RO3=(1./EXP(D*PI/W1))*(G3-(D/W1)*G0)+A*W1*COS(THET)
RO4=G4*(1./EXP(D*PI/W1))+A*W1*SIN(THET)
```

CALCULATING THE ELEMENTS OF THE STABILITY MATRIX

A(1,1)=D5A(1,2) = V10 * D2/W1 $A(1,3) = -C3 \times D3$ A(1,4) = V10 * D4/W1A(2,1) = -AK1 * (RO1 + RO3 * D1)A(2,2)=-AK1*(RO2+RO3*D2) A(2,3)=AK2-AK1*RO3*D3 A(2,4) = -AK1*(RO4+RO3*D4)A(3,1) = AK3*(RO1+RO3*D1)A(3,2) = AK3*(RO2+RO3*D2) $A(3,3) = AK3 \times RO3 \times D3 - AK4$ A(3,4)=AK3*(RO4+RO3*D4) A(4,1)=D1A(4,2) = D2A(4,3)=D3A(4,4) = 1 + D4

> CALCULATING THE EIGEN-VALUES OF THE STABILITY MATRIX

N=4 NC=4 EPS=0.0001 CALL RUTI(A,N,NC,X,Y,EPS) 182

C C C C C

C C

С

C C

С

С

C C

C

C C

C C C	CHECKING T	HE ABSOLUTE	VALUES OF	THE EIGEN	VALUES
-	DO 603 I=1,4				
	ABSEIG=SQRT(X(I) * X (I) + Y (I)*Y(I))	ayaana ahaa ka k	
	IF (ABSEIG.GT.	1.)GO TO 60	4		
603	CONTINUE .				
	WRITE(6,702)		•		
104	GO TO 500				
604	WRITE(5,701)				
C	CODVET/1X DOLL				
701	FORMATCIX,22H	SYSIEM IS	NOT STABLE	/)	
702	FORMAT(1X,18H	SYSTEM IS	STABLE /)		د
500	STOP		•		
	END				
· · · · · · ·	an a	and the second	••••••••••••••••••••••••••••••••••••••		10 I I I I I I I I I I I I I I I I I I I

18,3

<u>)</u>

•