
TEF TEXT EDITOR AND FORMATTER

TEF · TEXT EDITOR AND FORMATTER

By

STEPHEN JAMES MAVEETY, B.Sc.

A Project

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science ·

Mcclaster University

February 1976

MASTER OF SCIENCE (1976)
(Computation)

t-1cMASTER UNIVERSITY
Hamilton, Ontario

· TITLE: TEF Text Editor and Formatter

AUTHOR: Stephen James Maveety, B.Sc. (McMaster)

SUPERVISORS: Professor R. Rink and Professor D. Kenworthy

NUMBER OF PAGES: viii, 120

ii

ABSTRACT

A survey of the main features and characteristics

of text editors and formatters is given • . An implementation

of a text editing and formatting system is discussed. The

Text Editor and Formatter (TEF) was designed to be easy to

learn and use and to allow extensions ·of the present version

\vith little modification to the existing· system.. TEF is a

content (or context) oriented editing system with line

organization and text formatting capabilities.

iii

ACKNOWLEDGEMENTS

I wish to thank my supervisors Dr. R. Rink and

Dr. D. Kenworthy for their assistance during the work

on this project and for their invaluable assistance

· during the preparation of this manuscript.

iv

TABLE · OF C 0 N T .E NT S

CHAPTER 1 -- DISCUSSION OF TEXT EDITORS AND
FORMATTERS

1.1
1.2
1.2.1

1.2.2

1.2.3
1.2.4
1.2.5
1.3

CHAPTER 2 -- · TEF

2.1
2.2

2.2.0
2.2.1
2.2.2
2.2.3

2.2.4
2.2.5
2.3

2.3.1
2.3.2

2.3.3

2.4

2.4.1

Introduction
Text editors and Formatters
Introduction to Text

Editors·
Basic Characteristics of

Editors
·Program Editors
Text Editors
Formatters ·
Outline of Further Chapters

Introduction
Considerations in the

Desiqn of TEF
Data and File Structure
Random Access Files
The TEF Random Access File
Doubly Linked List

Structure
TEF File Structure
Record Structure

'Addition and Deletion of
Lines of Text

Input of Text
Record Allocation for

Input of Text
Deletions of Lines of

Text
Implementation of the

Substring Test Technique
The Substring Test

Technique ·

v

Page

1

1
4

4

8 .
10
18
24
28

29

29

30
39
39
41

43
43
49

50
so

53

57

2.4.2 Choosing Parameters for the
Substring Test 68

2.4.3 Probability of a False
Match 70

2.4.4 Implementation of the
Substring Test 72

CHAPTER 3 -- TEXT FORMATTING . 80

3.1
3.2
3.3
3.4

Introduction
Basic Formatting Concepts
The Formattinq of Text
Reformatting of a Text File

CHAPTER 4 -- CONCLUSIONS

APPENDIX A --

APPENDIX B --

REFERENCES

4.1

4.1.1
4.1.2
4.1.3

Improvements and Additions
to TEF

Text Buffei Areas
Text Compression
Additional Formatting

Features

Summary of Editing Commands

Summary of Format Codes

vi

80
81
85

104

106

107
108
108

110

113

116

118

L I S T 0 F F I G U R E S

Page

1.1 Overview of an On-line Editor 5

2.1· File and Available Space List Structure 48

2.2 Record Structure 48

2.3 Insertion of a Line of Text into the File 56

. 2.4 Allocation of a Block of Records 58

2.5 Deletion of the Current Line in the File 62

2. 6 Deletion of a Blo.ck of Lines · 6 3

2.7 10-bit Hashed 2-signature 66

3.1 The Format Word 81

3.2 The Margin Delay Feature 91

3.3 Double Spaced Page of Outp~t 96

3.4 Single Spacing Using the Margin Delay
Feature 97

3.5 Single Spaced Page of Output 98

3.6 Formatted and Non-Formatted Output 99

3.7 Single and Double Spaced Output 100

3.8 Margin and Line Width Changes 101

3.9 Margin and Line Width Changes 102

3.10 Page of Non-Formatted Ou~put 103

vii

2.1

2.2

2.3

L I S T 0 F T A B L E S

Performance of the Substring Test
Technique using 60-bit K-signatures

Performance of the Substring Tes.t
Technique using 120-bit K-signatures

Performance of the TEF Implementation
of the Substring Test Technique

viii

Page

73

73

77

.CHAPTER 1 ·

Discussion of Text Editors And Formatte·rs

1.1 Introduction

Vast amounts of time and money are spent on the

collection, preparation and updating of text whether it be

computer programs, letters, manuals, user guides, books,

reports or manuscripts. Due to the vast amount of information

digital computers have become an ideal mechanism to assist

in the gathering and manipulation of text. The production

of written material such as manuals or course notes, which

is subject to frequent change, has the advantage that revisions

are easily introduced and immediately available on access to

the computer. The production of copies of manuals, user guides,

notes, etc. on a high-speed printer is fast and economical.

In many areas, on-line creation and modification of

programs andtheir documentation has become widely accepted

as a productive and cost-effective use of the computer.

For manuscript composition, the mo.st obvious advantage

offered by computer assisted editing is the tremendous reduction

in time required to produce a final or alternate document.·

Normal editing requires many cycles in which the . text must

be read and reread, typed and retyped. Text stored

1

2

in the computer need never be retyped but only updated. This

reduces the possibility of typographical errors with less

need for proofreading. · Intermediate drafts can be printed out

quickly and economically. However, only the final draft need

be printed, unless the user wishes to study different formats

for his text.

What follows is a description of the design and

implementation of an online interactive Text Editor and

Formatter (TEF) to facilitate the creation, modification and

formatting of text~ · TEF can manipulate various kinds of text .

including computer programs and natural .language text. TEF ·

can be executed either in time sharing or batch mode. and is

implemented on a Control Data 6400 computer. At present,

TEF operates interactively under INTERCOM version 4.3 which

provides time sharing access to the computer.

One of the main objectives of this project was to

design a relatively machine independent editing system. This

required using a commonly accepted programming language. In

this case FORTRAN (FORTRAN Extended Version 4 E;oc 74]) was

employed.

An editing system must be convenient to use. · This

requires a concise, mnemonic command language and a method of

text organization to allow the user the ability to work with

his text in terms of its structure rather than in a notation

dictated by the system.

3

TEF is a content (or context) oriented text editor

with line organization. All text operated on in .TEF is grouped

into lines. The advantage of content addressing is that it

allows the user the abiiity to select lines of text by their

content rather than by line number. Content searching _is more

natural in addressing natural language text rather than spec- ·

ifying numbers which bear no relationship to the text to be

edited. The character strings in the file are not subject

-to change by the system as relative line numbers are and

consequently content indentification provides a more stable ·

method of locating portions of a file.

Some of the major editing features include travelling

to the first occurrence of a user-specified pattern in the

file, occurring anywhere in a line or · only in certain ' columns

of a line, uniform substitution of one pattern for another

wherever it occurs or from the current position in the file

· to the end of the file, character by character editing of a

line of text, random access to a pre-defined subse9tion of

text in the file and formatting -of the text.

For each line of his text the user may specify format

codes that determine margins, headings, running headings,

paragraphs, left and/or rightmargin justification (default),

indentations, centering, paging and spacing control and non­

formatted output.

Since changes are inevitable in computer software ·,

systems must be adaptable. TEF was designed to be flexible

and can easily be expanded to incorporate new functions,

commands or formatting features as required.

4

The casual user need only learn a few basic editing

commands and formatting codes to benefit from TEF's capability.

A more frequent and experienced user can obtain maximum power

by making use of the additional features of TEF.

1.2 Text Editors and Formatters

1.2.1 Introduction to Text Editors

Current text editors range from simple line editors ·

with changes accomplished only by replacing an entire line,

to versatile editors using content searching and string

replacement commands. Some of the more versatile editors

employ a macro level language @EN 72] for defining editing

functions in terms of existing commands.

A typical structure of a text editor is represented

in figure 1.1. The user is seated at a typewriter terminal

or a cathode-ray tube display console (CRT) on which is

displayed one or more lines of his file. The user enters

editing commands via the terminal keyboard to alter the displayed

text or advance to another portion of the file to be displayed.

The commands are passed by the Terminal _Input Handler to the

Command Interpreter of the editing system. This routine

5

TERMINAL ' INPUT COMMAND ,
~" r

HANDLER INTERPRETER

~~ ,,

OUTPUT ~ DISPLAY I EDITING AND ...
HANDLER GENERATOR TRAVELLING

ROUTINES

"'

...........

HARD-COPY J. ...
FORMATTER MAIN MEMORY j

PAGING
~ '\. ROUTINES L ' '

., ,

AUXILIARY
STORAGE

. W

HARD-COPY
Figure ·1.1 · Overview of an on-line editor . PRINTER

6

parses the requested command (e.g. insert, delete, substitute,

move, · etc.} and the associated data. The associated data

refer to positioning information, possibly where in the text

to make an insertion, deletion or substitution, or character

string data such as the string to be inserted, or searched for.

The user can "travel 11 through the file to display other

areas to be read or edited. The information in the command

· input would indicate the number of lines to be· advanced, or

the character string to advance to and the direction (forwards

or backwards).

The information extracted from the request is passed

to the appropriate editing or travelling ro~tine that performs

the specified operation. When an edit is performed on a line

of text the internal form of the text is altered and the

updated text is reformatted by the Display Gene.rator for

feedback to the user. When the files ·are large and travelling

or large edits are invoked, the relevant portion of the file

may not be resident in core. In this case, Paging or Mass

Storage I/0 Routines must be called upon to bring in the data

requested from secondary storage.

Superimposed on an editor is usually a time sharing

system which supports multiple terminals and supervises sharing

of programs, CPU time and core among users, while protecting

each user's files from unauthorized access~

The Hard-Copy Formatter is used for free form natural

language text to convert the internal structure of the text

to formatted hard copy for output on typewriter terminals,

high-speed line printers or typesetting devices. The user

·7

.may specify formatting commands or codes that determine margins,

running headings, paragraphs, left and/or right margin

justification, indentations, centering, underscores, type-

face changes, etc.

These codes can be stored in-line .with the tex.t.

making them indistinguishable from text for editing purposes

·Or formatting commands can be interspersed between lines of

text.

Advanced features implemented ~ on some editors or

formatters include foot-note generation ~TA 7{1 , automatic

indexing and renumbering -of sections or references after changes

have been made, spelling checks, typesetting -of mathematical

symbols [i<ER --] . etc.

The major design goals of an editor from the user's

point of view are:

1) convenience for the user, which requires a simple and

mnemonic command language;

2) fast response to a large number· of terminals;

3) powerful commands performing any functions on a piece of

text that can be performed manually;

4) text addressing features which ailow the user to quickly

"zero in" on ~ specific piece of text to be edited;

8

5} hard copy formatted output.

Ideally these goals should be met using as little as

· possible of such resources as money, implementation time, CPU

cycles, core, disk space, etc. However, · trade-offs will exist

. between increased power of the system, user convenience and

response time. Increased power in the instruction set implies

greater demand on resources and therefore slower response

time. Usually the complexity of the editing commands increases

for more sophisticated systems (i.e. more parameters, exceptions

and forms for each command), possibly. reducing the convenience

of the system by introducing awkward constructions.

1.2.2 Basic Characteristics of Editors

Generally, there are two types of text to be edited;

program text and natural language text. Program text refers

·to the text of computer language programs while natural

language text refers to text such as English or other language

text used for communication between people.

Although, any given editor can be used for either

natural language or program editing, the design objectives

and the resultant capabilities are usually specialized and

more convenient for one than the other. To distinguish

between these two types of editors, computer program language

editors will be called "program editors" while natural language

text editors will be called "text editors".

9

The type of editing performed is different for program

editors and text editors. Editing computer programs involves .

minor substitutions in an existing line of text such as

substituting one op-code, variable name or operand address

for another, inserting or changing a label, etc. Since many

programming languages are designed to be punched onto 80

column cards, it is quite reasonable to store the text line

by line in 80 character card image format. Obviously, this

is not the most compact method of disk storage since most of

the line is normally le.ft blank, but it is certainly the

easiest method to implement.

For an editor oriented towards E.nglish or natural

language text manipulation, one wants to make insertions or

deletions of arbitrarily sized character strings at various

points in the text. In ordinary English language text each

successive line of text is essentially a continuation of the

previous line; therefore, the system must deal with line

overflowing and contracting from line to line. The unit of

storage may be a line or statement of several hundred characters

where the text may grow or shrink dynamically.

Any editing task for text stored in a computer requires·

two inputs: the task to be performed and the identification

of the portion of text to ~hich it applies. There are many

ways to identify the text to be edited. These include giving

a line number, typing an appropriate context string, giving

10

both a line number and a context string, directly pointing at

the desired text using a light pen _or indirectly using a pointer

symbol or cursor driven by keys {up, down, left, right).

Most program editors use line numbers, either relative

to the begin·ing of the file, or absolute line numbers, to

~dentify lines of text. Context searches are more popular for

natural language text editors.

Formatting capabilit~es can be present in both program

and text editors. For example, it is useful to be able to

present block structure of a procedural language program by

suitable line skips and indentations or to format natural

language text into paragraphs, sections and pages. ·

1.2.3 Program Editors

Computer program editors have become increasingly

popular in · time sharing environments, where a facility for

the online preparation and modification of programs is combined

with some form of remote job entry.

An online editing system that stores the programs on

disk or tape eliminates the need for hand-carrying card decks

to and from the machine and enables updates to be made quickly

and efficiently. The time required to ·write, debug and run

a program is greatly reduced.

Some program editors provide immediate syntax checking

of a language as the statements are entered. Syntax checking

11

can be an important function of a program editor. . Ho\"lever,

many systems having this capability can support only a limited

number of languages since the syntax of the language is

incorporated within the ~ystem.

The following are outlines of some of the features

of a few of the most common editors.

1) Conversational Context-Directed Editor

The Conversational Context-Directed editor was developed

at the IBM Cambridge Scientific Center for the 360/67 CP/CMS

operating system and known widely as the CMS editor [IBM 69] . •

Although the CMS editor is often used to edit normal

text, the editing commands and the interactive teletypewriter

terminals are best suited for the simplified text of computer

programs.

Text is stored internally depending on the type of

text being edited. The text of computer programs is stored

in fixed-length 80 characte·r records, corresponding one-for­

one with a standard card deck of source code. Files of normal

English text are stored as variable-length records (one line/

record, with a maximum of 130 characters per record). Variable

length records provide substantial savings in the disk space

required to store a large online data base.

The line are treated as fixed length in main memory

and padded to 130 characters with blanks.

The text file cuntains lines connected in a two-way

12.

linked list structure for travelling forward or backward in

the file. Since the editor was written for · a virtual memory

machine, the entire file currently being edited is kept core­

resident. Response times are normally quite good since no

programmed I/O to secondary storage is done by the editing

program during editing. However, should the machine or

operating system fail as the user is editing, all his work

since he last saved the current file on disk will be lost.

In addition, the maximum size of a file is limited by the

memory size of the virtual machine.

Editing features include adding lines of text to the

file, deletion of lines and string rep~acement within a line.

Changes within a line are made by typing·._,the incorrect

characters followed by the replacement string; inserts are

made by replacing a string of text with the original text

included with the text to be inserted. Deletes are done

by a null replacement for the string to be deleted. This

method of specifying editing changes is referred to as

content or context-directed editing.

CMS does not handle line overflows so that if a string

repl_acement causes the line to exceed the maximum length for

. the particular type of file, the extra characters are truncated.

There£ore, a large insertion in the middle of a line must

be broken into separ~te lines to avoid this problem. This

is one of the reasons why CMS is not particularly suited for

13

English text editing.

The CMS editor is line oriented with the line being

currently created or modified (current line) in the program

determined by a "line pointer" that changes as travelling and

editing 09cur. The current line pointer may move forwards

or backwards by one or more lines by following the forwards

or backw~rds pointer chain to scroll through the file.

The user can search for a specified character string

occurring either in a !ixed line position ("find") or anywhere

in a line ("locate"). If a match is found, the line pointer

is moved to the line located.

The CMS editor also provides flexible tabbing facilities,

useful for column dependent languages such as FORTRAN, or

for indenting block structured languages • .

2) The WYLBUR Editing System

WYLBUR is a line-oriented text editor developed by

the Stanford Computation Centre for use on the IBM 2741

teletypewriter terminals to provide an online editing facility

to be used in conjunction with the online and batch services

of Stanford's IBM 360/67 [fAJ 73] , . [ALL 69] •

A WYLBUR file is divided into lines of text, each

containing from 0 to 133 characters. · Normally a maximum of

72 characters is used for programs. Each line is stored as

an unpadded character string in a variable length record with

14

an associated length and line number • . This method of storage

is more compact (usually most of the line is left blank) and

each line is addressable. The WYLBUR system uses absolute

line numbers that do not change dynamically _as editing is

performed as opposed to line nUmbers relative to the top of

the file. This provides stable reference points. The line

numbers are in the for.m of decimal numbers which may range

from 0 to 9999.999 with at most three digits after the decimal

point.

Most of WYLBUR's commands operate on or address a group

or range of lines that possess the same distinguishing

characteristic. An explicit range. is a list of line numbers.

A single line is specified by_ giving ·its nUmber; a set of

contiguous lines by two line numbers separated by a slash (/).

Single lines and sets of lines may be specified in any

combination. The range of all existing lines may be referred

to by ALL, which is the default range for many WYLBUR commands·.

Content addressing is accomplished with the associative

range. An associative range consists of all lines containing

a given string of characters. Explicit and associative ranges

can also be combined.

Two very useful and powerful intraline editing commands

are available: CHANGE and MODIFY. The CHANGE command allows

uniform changes or string replacements to a range of lines.

The MODIFY command permits a user to work directly on a copy

of the line, typing deletions, insertions and replacements

below. For example, he can delete part _of a line by typing

. a "D" under the first and last characters of the string to

be deleted; he can insert a string into a line by typing an

"I" under the character before which the insert is to go,

followed by the insertion string (total length cannot exceed

the maximum line length of the file); and he can replace a

same-length string by typing "R" followed by the replacement

characters. Replacing strings of different lengths can be

performed by using the "D" and "I" forms.

15

Batch jobs can be submitted from the WYLBUR terminal,

batch printed output can be retrieved, and inquiries may be

made about both system and job status.

3) Quick Editor (QED)

The original version of QED was implemented at the

University of California at Berkeley [DEU 67] and has been

revised extensively f?r commercial use by Com-Share [ARB 6~

and also by Bell Laboratories, Murray Hill, New Jersey. [KER 72].

An extremely powerful version is running on the Honeywell

6000 computer at Bell Laboratories. What follows is a discussion

of this version.

QED stores all the text it is working on in core giving

rapid access to all the text but restricting the amount of

text which can be edited at one time. Very large files must

be avoided since cost and response time increase with core

usage.

16

·. All text in QED is stored in buffers. At any time

there is a current buffer to which most commands implicitly

refer. In each buffer there is a current line which is changed

by most editor commands. Text may be entered into a buffer

through the terminal or from a file. Text is never filed .

away automatically, but must be written explicitly to a file.

QED provides a facility for creation and manipulation

of several buffers, which are often used to give temporary

storage of sets of lines as they are being copied or moved

· from one part of the text to another. Multiple buffers

provide independent areas where text can be kept and operated

on conveniently. The pieces can be manipulated as units, or

normal editing can be performed on individual lines of any

one of them.

The text manipulation facilities approach those of

SNOBOL4 [GRI 71] • Pattern matching is performed by regular

expressions which are patterns specifying a set of ·character

. strings. Regular expressions can be used for matching a

pattern at the end or b~gining of a line, matching any character

at a point in the line, matching any of the characters in a

specified string and no others, matching any number (including

zero) of adjacent occurrences of .text· matched by regular

expressions, for alternate pattern matching (i.e. text which

17

matches either of two patterns) and other text manipulations.

Regular expressions are used for specifying text replacements

and for searching for a particular piece of text.

Many features are available for addressing text.

Addressing lines of text in the current buffer can be by

current line number (relative to the begining o.f the buffer) ,

by absolute line number, by "." meaning current line, by "$"

· meaning last line in the current buffer,. by context using

regular expressions or by additive combinations of the above

(e.g. ".+1" meaning the line after the current line).

A useful feature of QED is the provision . for executing

editing. commands from a buffer allowing the execution of user­

defined and pre-existing macro command structures. Therefore,

a sequence of editing commands can be saved by the system as

a normal text file. This set of commands can be re-executed

·at a later date to re-edit th~ text. The re-editi~g £acility

makes it possible to maintain sl~ghtly different versions of

a file without having to duplicate the main file many times.

The text is stored only once with alternate versions generated

by executing a sequence of commands previously saved on a file.

This is useful for testing changes to an operational program

without actually modifying the original program until the

changes have been completely tes ·ted and debugged.

1.2.4 Text Editors

Normal manuscript composition and editing requires

many cycles where text must be read and reread, typed and

retyped. Computer assisted editing provides a tremendous

reduction in the time required to produce a final, or

alternate document. Text stored in the computer is never

retyped but only updated. As a result, the number of typo­

graphical errors is reduced requiring less proofreading.

Access to a common data base can be useful for a "f ·--

group of researchers or documenters working in the same

area, or for common access to updated project or management

information.

18

Since all of a user's editing can be performed online

there is no need to request any intermediate ·printed copy.

However, the convenience and naturalness of hard copy is

still important to the "red pencil" school of editing where

changes are manually made to a printed copy by a red pencil

or similar means and later made online to the corresponding

text file. The corrections are therefore performed twice.

Transition from hard copy to soft copy techniques will be

a gr~dual one as reliability, user convenience and system

availability increase • .

The following are outlines of the main features of

a few text editors.

19

1) ASTROTYPE

The ASTROTYPE system [vAN ?fjwas designed by

Information Control Systems and consists of up to four IBM

Selectric typewriters and memory units connected to one control

unit (the DEC PDP-8). It was intended forpreparing forms,

manuscripts and input for photo-composition devices.

The text is recorded on magnetic tape as it is typed

and can later be modified and printed in final form. Text

can be typed in an "unchangeable" mode where it is . printed

exactly as it was typed, or in an "adjustable .. mode, where

the control unit prints blocks . of text (e.g. paragraphs)

according to the current width.

Text is stored in lines numbered sequentially from

the top of the file (i.e. relative line numbers). The basic

editing command is substitute. Substitutions within a line

are made by typing the line number, the old character string

plus any additional context text, and the new string including

the additional context used above, if applicable.

As in the CMS editor, insertions and deletions within

a line are forms of substitution. Thus, to insert within a

line, one must specify context to the left or right of the

insertion point as the old string and repeat this context

plus the text to .be inserted as the new string.

Individual lines may also be erased and moved by

their ·line . number. Verification is provided by a printout

20

of the line before the change is actually made.

Printing is done at the typewriter at an average

rate of 150 words/minute and various fonts and type sizes may

be used by changing the typing ball. The printing can be

programmed to stop at any point, so that additional input

may be entered manually, and then continue. This is useful

when changing a portion of a form letter.

2) System/360 Administrative Terminal System (ATS)

ATS was developed by the IBM Corporation [VAN 71]

utilizing the IBt-1 2741 typewriters as the interactive device.

ATS is provided by rm1 as a standard package on the 360/370

series computers.

Each time a line is typed in, an internal line is

created and a line number is assigned. The length of an

internal line may vary from 0 to 130 characters, and a text

file may contain up to 9999 internal lines in a linked-list

storage structure. The line numbers are relative to the top

· of the file and change dynamically as lines are inserted or

deleted. This can cause problems as with ASTROTYPE since

line numbers of text strings may no longer correspond to

those of the most recent printed copy. The designers of ATS

suggest that editing b~ performed from the bottom of the file

to the top; this eliminates the problem of changing line

numbers, but is very inconvenient for the user.

Text· can be moved around but not copied. To insert

new lines in the middle of a file, the lines must first be

typed at the end of the file and then moved to the desired

position. Substitutions, deletions, and insertions within

a line are made as in ASTROTYPE.

Text can be entered in "formatted" mode, in which

21

case the text can be arranged by the output program to satisfy

the specific page format ·(e.g. line justification), or in

"unformatted" mode, in which text is saved and printed exactly

as it was typed. As in ASTROTYPE, an online printout can be

stopped in the middle, allowing the user to type in additional

text.

Because the editing functions are few and the data

structure ~s quite simple, the CPU usage is . minimal. However,

ATS is far from ideal for general purpose edi"ting.

3) The Hypertext Editing System {HES)

The Hypertext Edi~ing System [VAN 71] is a CRT-

based (Im~ 2250) system allowing full editing and formatting

capabilities. It is oriented toward "typeset" output using

a line printer as well as flexible input and online editing.

A light-pen and a set of"function keys", under program

control, are used to indicate to the system the nature of the

edit to be performed. The editing function is selected by

pressing the appropriately labeled function key. The portion

of text to which the function applies is then -indicated by

pointing at the text with the light-pen.

HES provides maximum convenience for the user since

no command codes need be remembered and no extra typing is

r~quired to indicate a context string.

To delete a portion of the text, the "delete"

function key is pressed, after which the two endpoints of

22

the text to be deleted .are pointed at with the light-pen. The

text is then blanked out on the display for verification.

The deletion if correct can be accepted by pressing a control

key otherwise it may be cancelled, leaving the original text

unchanged. Editing functions include insert, delete, substi tu·te,

rearrange and copy. Prompting messages by the system specify

the actions available at each step. A maximum of approximately

2500 characters may be deleted or rearranged at a time.

Formatting options are available so that text may be

formatted both for online display and hard copy printouts.

An off-line computer typesetti~g pr~gram is used for final hard­

copy printing on a computer line printer equipped with an

upper and lower case printer chain.

The data structure and the editing operations are

entirely independent of display or printout lines and pages.

Text.··. is externally segmented by the user i~to arbitrarily

long user-designated fragments called "text areas... Each

area is a continuous linear string of text, and might be a

chapter, an entire book, or a short footnote. These areas

may be interlinked and cross-referenced in any manner SO ·

as to form a directed graph of text segments (the vertices

of the graph) and their cross refe.rences (the edges).

Two types of cross references exist: "branches"

and "links". Branches are unconditional jumps between two

fragments that the user may encounter in the text. forcing

him to lightpen a choice in order to proceed. Links are

·conditional jumps, where the reader may bypass or l~ghtpen • .

The link is similar to the manuscript footnote principle

that allows additional explanations and browsing.

23

The resultant mobile (i.e. text fragme nts linked by

user controlled jumps) is called a hypertext, "the combination

of natural language text with the computer's capacities for

interacti.ve, branching, or dynamic display ••• a nonlinear

te~t ••• whi9h cannot be printed conveniently ••• on a

conventional page " [NEL 67] , · A practical example o f a

hypertext might be an on-line encyclopedia or a set of

programming and systems reference manuals, with each cross-

reference lightpen sensitive.

The fragments of text can. be examined by tracing linear
- .

paths through the hypertext, either for on-linebrowsing

purposes or for printing. The system also remembers the

sequences of branches or links that the reader has taken,

and this a1lows him to reverse his ·trail. Random access to

any point in the text is provided by allowing the author to

assign "labels" anywhere in the text and later to "jump" to

any of them by lightpenning the appropriate _one from a

list of choices.

24

Hypertext areas are st·ored internally as one or more

pairs of variable-sized "pages 11 (unrelated to a ' printed page),

each pair consisting of an "order code" page and a 11 text"

page. The order code page is an ordered sequence of text

pointers specifying displacements into the text page,

interspersed with formatting and structure codes. The text

p~ge contains the actual text. To edit text, order

codes and their point·ers -are inserted·, deleted, or updated

while the text strings remain intact. This type of structure

involves little characte.r shuffling and recopying but "garbage"

strings are rapidly accumulated.

1.2.5. Formatters

Most text formatters are designed to execute in

conjunction with a text editor. The input to a formatter is

usually the output from a text editing system consisting of

text and formatting commands to .specify the type of formatting

to be performed. The formatting commands can .~ be inserted into

the text file by the edi tot:' in two ways: .· each on a separate

25

line interspersed between lines of text as in the EDIT/HP 3000

Text File Formatter [MAC --] , or stored in-line with the

text as done in a TeXt Formatter developed at the University

of Waterloo ~TA 74] • In either case, a flag or escape

character is. used by the formatting system to recognize

commands in a file of text.

Typical format commands determine margin widths,

headings, running headi~gs, paragraphs, justification,

indentations, centering, · underscores, type-face changes,

unformatted output, etc.

1) The EDIT/3000 Text Fi"l"e Formatter

The EDIT/3000 Text File Formatter is available for

the HP 3000 computer systems from Hewlett Packard. The text ·

formatter takes as input an unformatted text file, such as

those produced by the HP 3000 editor, formats the text and

writes the formatted text onto ·another file.

The text file is accessed sequentially and is

assumed to be a disk file with 80 byte {character) records.

The last eight bytes of each record are ignored and may

contain sequencing information.

to consist of 72 byte records.

The output file is assumed

The text file and output file

characteristic may be altered by system control cards before

compilation of the text formatter.

To distinguish commands from the rest of the text,

they must be placed on a separate line and the first character ·

of that line must be a pre-defined control character

(usually a period II ") . . More than one command may be placed

on a line separated by semicolons.

Epch line of text in the file is treated as- a

continuation of the previous line until a command which

causes a "break" is encountered. At a break all words read

are printed with. the next text line starting on a new line

of output.

The user can ·control the number of lines per page,

number of characters per line, width of margins, page

numbering, position of headings, justification, centering

text, spacing and paging control.

2) A Text Fo:pna·tter

This tex.t formatter was developed at the Universi·ty

26

of Waterloo and is written in a language called SPITBOL [DEW 7iL

which is a fast compiler version of the SNOBOL4 language.

The input text to the formatter is a file created through

some file editing system, (e.g. WYLBUR) or by means of some

utility.

The input text consists of words and text commands.

A text command is a string of characters preceded by the

excape character "¢". As in the previously described editor

the last eight characters of an input record will always be

stripped off to avoid problems when using text editors which

introduce line numbers in the records.

The formatter operates in two modes: · formatted

and unformatted. In formatted mode right justification is

usually performed with words delimited by the end of card,

delimiting text commands or one or more blanks. In the

unformatted mode words are delimited only by the end of card

and word delimiting commands. Only one word per line is

printed since embedded blanks are considered in the s.ame T.Jlay

as any other character.

27

There are over 40 formatting commands including such

features as special collection modes · (e.g. string collection,

unformatted mode collection, figure and footnote collection),

insertion of a string into a word at the position of the

command occurrence (e.g. special print chain characters which

cannot be directly input from the terminal (Greek letters)

the current date, "¢", footnote .reference), overprinting,

underscoring, and control of paging and page format.

Figure and footnote generation is an interesting

feature of this formatter.

The footnote command automatically inserts the .

footnote reference marker into the . text where the command

appeared. Figure and footnote text is given in the place

where they are supposed to occur in the output text. Figures

will be placed in the page where they fit. If the text for

a :.:>figure is too large for the remaining part of the page, it

is placed in a waiting queue in order to be printed on one

of the ·succeeding pages. The order in which figures occur

in the text is strictly -obeyed in the output of text.

If a figure is too large to fit on a complete page,

it will be broken into several pages.

28

Footnotes which are too large are also broken. A

footnote must have. 3 lines at least in order to be ·broken.

Furthermore, there must be at least as many lines in the

remainder of the page as needed to contain the line referring

to the footnote and two lines of the footnote, since the

reference and footnote text must be on the same page. ·Footnotes

can continue over more than one page when broken.

This ._formatter is very powerful. Unfortunately, the

large number of commands, the · lack of mnemonic text commands,

the lack of error checking of the text commands and the

structure of the cormnands make it a difficult system to learn

and use.

1.3 Outline of Further Chapters

The preceding discussion has outlined the basic .

characteristics of program editors, text editors and formatters.

In Chapter 2 the text editing system TEF will be

described with respect to it~ design considerations, internal ·

structure ~nd primary features.

Chapter 3 explains the operation of the TEF formatting

system and gives some formatting examples.

In Chapter 4 the conclusions and the results of this

investigation are discussed.

CHAPTER 2

TEF

2.1 Introduction

TEF is essentially a combination of a text editing

system and a text formatter • . Editing and formatt.ing can be

performed together or .independently within. the same system.

A formatter is a natural companion for a text editor since

hard-copy formatting is usually required for all types of

text at some time or another.

In combining the two systems the user ·need only learn

to use one system, one set of commands and one type of file

structure. All editing and formatting is performed using one

system designed . for convenience for the user. In a combined

system the user does not have to match the characteristics of

the editor file to those of the input file for the formatter.

The user can cycle between edit~~g and formatting of a file or

subsections of the text to experiment with different for,_

matting structures without leaving TEF.

Current editors range from simple and restrictive

systems to complex and powerful systems. TEF was an attempt

at a system easy and convenient to learn and use, yet pro-

. viding adequate power for most editing purposes.

29

30

The command structure is simple, . mnemonic and has

at most two alternate forms for a command. The alternate forms

usually differ only by the direction of operation (e.g. + for

forward, -for backward). Th~ user doe~ not need to learn

complex addressing techniques as content addressing is pro­

vided as a stable method of text addressing. The commands

were chosen to provide features that appeared most·.,~,useful in

the opinion on the author. Obviously, these commands may not

always be convenient for every user.

2.2 Considerations in the Design of TEF

The primary objective in the design of TEF was to pro­

vide both an editing and formatting system which is easy to

learn and use.

One of the most important characteristics for any editor

is that it is convenient to use. Therefore, the command struc·­

ture of TEF was chosen such that the command words have an

English meaning which expresses their function. All commands

begin with a slash and can be abbreviated to their first three

.· characters(.' An experienced user would prefer to :type as few

char~cters · as possible to perform the desired functions. The

whole command word -may be entered to aid in le~rning the com­

mand structure. The user is free to use any non-alphabetic

character or blank as a ~J.J.mi....t . . providing · it is not

contained in the enclosed string.

31

Error· messages supply information about the type of

errors which have occurred and where they were located. ·A

three character program identification is included with each

message to indicate the subroutine that detected the error • .

The ·user need . only be concerned with the message while the .. : source

of the error is useful for tracking future program errors when

extensions are added or revisions made to the existing system.

When entering text or commands via the CRT, a mistake

can be corrected by backspacing and then typing the correct

characters. In addition, a complete input line can be de­

leted using the "control X" function on the CRT· terminal.

TEF was de~igned to process both manuscripts and com-

puter programs. The text editing and· formatting systems within

TEF are interfaced thro~gh the editi~g command which formats

the text file. This provides flexibility for the text editor

or formatter to be used separately within the TEF framework.

The method of text organization was chosen to make the

user's text easily accessible. One of the basic character-

istics of TEF is content addressing. Content addressing allows

the user to select lines of text by their content, rather than

by line number. In most systems using . line numbers, they are

defined as displacements of lines relative to the top of the

file. Because of this, they are rather arbitrary since they

can change dynamically as the file is modified.

Content addressing is a more natural way of addressing

natural language text since the user need not be concerned

with resequencing of line numbers or specifying numbers that

bear no relation to the text to be located or edited. The

user is free to address his text by his own labels attached

during the construction of the text rather than a fixed not­

ation internal to the system. Since the character strings

.in the file are not subject to change by the system in the

way that line numbers are, content indentification provides

a more stable method for locating portions of a file.

The text in TEF is organized into .lines containirig

a maximum of 130 characters. The maximum length of a line

32

of text was chosen to fit ea~ily within a prin~ line file and

onto two consecutive lines on the CRT screen. The word size

on the CDC 6400 computer is 60 bits allowing the storage of

10 characters per word(with a six bit display code for each

character). The length of the lines of text are a multiple

of 10 so that the text can be conveniently packed into an

integral number of words.

The concept of machine independency and . portability

is an important consideration which led to programming TEF

in FORTRAN. However, machine dependent features exist due

to the implementation on the host computer. For example,

the mass storage I/O routines are machine dependent.

33

They provide the interface between FORTRAN and a mass storage

device. This does not present any real problem as most systems

have si~ilar mechanisms for I/0 with mass storage.

Machfne independency was traded slightly for efficiency

on the host computer. The non-ANSI FORTRAN R-format was chos­

en for the input to TEF. Using the R-format characters are

read and stored right justified in the word with zero fill.

This allows a character to be represented by an integer number ·

equivalent to its display code (00-77 Octal). The decoding

of the instructions and the manipulation of the characters

· with this method of storage is very convenient and efficient.

This feature does not impose any restriction on machine ind­

ependency since a routine can easily be written to convert

from left j ·ustified with blank fill (standard A-format in

FORTRAN) to right justifie~ with zero fill, if the machine

does not support this feature.

TEF is expandable. The command interpreter was designed

to allow addition or deletion of commands to suit the implem~

enter. The interpreter is very ·simple. It is Involved only

in deciding what type of command is to be executed. This is

performed using a linear scan and a table look-up procedure.

The interpreter invokes a subroutine to execute the command • .

The subroutine in turn processes any parameters or as.sociated

data particular to the command. The associated data is easily

processed in a linear scan since there are few alternatives

or command forms. To introduce new commands the existing

system needs little modification. The command table and the

associated branch mechanism need only be extended to include

the new function.

34

TEF consists of 24 commands. The casual user editing

a small file can perform most of his desired editing with a

small subset of these commands (5 or 6). A frequent and more

experienced user can use the full power of the additional

features.

Movement through the file can be performed either

forward or backward from the current position in the file .

Methods for moving through the · text f "ile are available to suit

the particular type of editing required by the user • . When

editing or formatting will be applied to most lines of text

in the file or the user wishes to scroll. through the ·file,

he can move through the file a line at a time with each line

displayed for editing. The user can advance to a line of text

containing a particular sub-string of text, where only the

destination line is displayed for editing. This method is

useful for editing text lines which are scattered throughout

the file. Random access is provided to positioti the file a~

a line of text which was pre-defined as the start of a sub­

se.ction of text. This method is useful for. editing large files

35

where most of the editing will be confined to a sub-section

of the whole text file. For exanple, when editing a large

file over a long period of time most editi~g will be confined

to the end of the text file where the latest text has been

added. This is also the fastest method for advancing to a

section of text in the file.

A text editor should allow input of text from sources

other than the CRT terminal. TEF can input text from a per­

manent disk file of card images at any time during edi.ting.

The input disk file can be divided into sections separated by

a card image containing a slas-h(/) in column one. This allows

portions of the input file to be added to the text file at

any time or place during editin~.

An editing system must be flexible enough to allow

editing in both batch and time-sharing modes. Not all types

of editing can be conveniently performed interactively. ~For

example, if in a large text file the user made many consistent

spelling errors of different words, he could specify commands

to position the file at the begining followed by the command

to replace every occurrence of one string of characters

(the . error) by another (the correction) for each spelling error.

In interactive mode each line containing an error would be

displayed followed by the corrected line. If the re,ponse

time was slow and the user was not concerned with following

36

the sequence of corrections this method would be very un­

attractive to most users. An easier method would be to punch

the commands on cards or create a file of these commands and ·

run TEF in batch mode. No output is produced and the file is

corrected with minimum time and effort. TEF can be executed

in batch mode with the editing commands and text read from

the standard input device (card reader) or from a permanent

disk £ile. In batch mode the default for ·input is the card

reader, for output the line printer, and for punched output .

the card punch.

The user can have replacements and ·deletions verified

before they are made permanent. The lines to be de·leted are

displayed followed by a prompt to confirm the above deletion

of lines. If the deletions are accepted they are deleted

permanently. Otherwise, the file remains unchanged. String

replacements within a line of text can also be verified. The

line is displayed with the replacement made followed by a

prompt to confirm or reject the replacement. If the replace­

ment is accepted the new line replaces the original line,

otherwise, the original line is unchanged. These prompts can

be turned off or on by the user upon entering TEF.

Two useful features in TEF are the ability to locate

a line of text in the file containing a ~pacified string

(LOCATE) and the ability to replace all occurrences of one

37

string by another everywhere in the file (AREPLACE). The

la~ter is useful for consistent misspellers and for changing

the names of variables or labels within a computer program.

The LOCATE command is useful for select.ive editing of lines

of text scattered throughout the file • . These two features

should be present in all editing systems. The problem was

how to efficiently implement them. Both features require the

editing system to search for a string of characters within

each line of the file. Obviously, searching each line of

text characte,r by character could be employed. Unfortunately,

this is extremely slow and inefficient. The method chosen

is called the substring te:st technique [HAR . 71] [Boo· 7 3] •

For each line in the file there is a corresponding

hash code or 2-signature which reflects the sequence of two

character combinations contained in the line of text • . The

2-signature code is computed for the string to search for .and

compared to the 2-signature of each line. If the hash codes

match implying that every two character combination in the

string is also in the line of text, then it is possible that

this line contains the string. Only in the case of a 2-sig­

nature match is the line scanned character by .character in

search of the string. This method rejects the majority of

the incorrect lines depending on the length of the string to

be found. However, if the string to be found is broken

38

between t~o lines, it will not be recognized by this

mechanism. For the lines whose 2-signatures do not match,

only one test is nece~sary to reject the line. This is a

considerable improvement over the rigorous character by

character scan. A discussion of the sub-string test technique ·

will be given in more detail in section 2.4.

In TEF the format codes are contained in a particular

section of the record for each line of text rather than

interspersed between lines of text or within the text. There

is no need to search through the text to find the format

commands as they are displayed on the right of the CRT screen

for each line. The text of a file which is being created for

input to most text formatters must be "cluttered" with

formatting commands or codes between lines of text or within

the text. This is very distracting when working with the editor,

and are not concerned with the formatting information. In

TEF, the format codes are not within the text portion of the

file so that the structure of the file (i.e. number of lines)

does not change when format codes are added. The text of

the file may be written to another file to be used for other

purposes without having to remove the formatting commands.

(The text file is a random access file in the form of

a doubly-linked list structure allowing forward and back­

ward motion. The TEF records are of fixed length and consist

of 20 (60 bit) words.

TEF in conjunction with the SCOPE operating system

of the CDC 6400 allows each user complete file protection

from ·unau1;horized access. The user can . catalog a text file

with passwords to restrict access to the file.

2.2.0 Data and File Structure

2.2.1 Random Access Files

39

The text file is a random access file in the form of

a doubly linked list structure. The FORTRAN mass storage

input/output subroutines provide the interface between

the TEF system and the mass storage device and control the

transfer of records between central memory and mass storage.

The mass storaqe I/O subroutines allow ·opening · (OPEN?-15) ·

and closing (CLOSMS) of the file, reading (READMS) records

from or writing (WRITMS) . records . into the file and changing

bet\-leen master and sub-indexes (STINDX). ·

40

Each record in a random file is uniquely and permanent­

ly identified by a record key. The key is used by the mass

storage I/0. routines and is mapped onto a hardware disk address.

When a record is first written the key in the WRITMS call

becomes the permanent identifier for that record. The record

can be retrieved later by a READMS call that includes the same

key and can be updated by a WRITMS call with the same key.

When a random file is in active use the record key

information is kept in an array in the user's field length.

This array is the directory or index to the file ·contents.

The index is _the logical link that enables the mass storage

subroutines to associate a user call key with the hardware

address of the required record.

·If an existing file is reopened, the mass storage

subroutines will locate the master index in mass storage trans­

ferring it into the index array. When the file is closed, the

master index is written from the array to the mass storage

device. If a file is opened which does not already exist, its

master index is cleared to zero.

There are two types of index key: name and number.

The index used for TEF is a number index. This number key

must be a positive integer, _greater than zero and less than

or equal to the length of the _index array minus one. A number

key is more suitable for this type of application since the

41

pointers (which are keys) in the doubly linked list can be

simple integers. Execution time is faster for a number index

since it is not necessary to search the whole index for a

matching key entry as with a name key. It also requires less

central memory space for a number key.

The file structur~ of TEF contains a master index and

a sub-index. The mass storage routines use the sub-index just

as it uses the master index. The sub-index has its O\V'n index

array for the currently active iridex; the mass storage routine

STINDX allows switching between master and sub-index arrays to

access records. The sub-index is read from and written to the

file by the standard I/0 routines since it is indistingu.ishable

from any other data record.

2.2.2 The TEF Random Access File

The present ver~ion of TEF has a master index array

of length 21 and a sub~index array length of 51. Since a

number key must be greater than zero and less than or equal

to the length of the index minus one the file contains 1000

records (i.e. 20 X 50).

By using sub-inde~es central memory requirements are

reduced since the active index array length can be reduced.

For example, if a file of 1000 records ·was to be created with­

out sub-indexing the length of the master index would be 1001.

Additional levels of -sub-indexing could be added, limited only

42

by the amount of central memory space available.

The 20 user accessible master index records are used

to store 20 sub-index arrays each capable of addressing SO ·

different text records. Therefore, each record is uniquely

identified by a master index key (int~ger value 1 to 20) and

a sub-index key (integer value 1 to SO).

For example, to read the third record indexed under

the second sub-index (i.e. master index 2) the following steps

are necessary:

1) make the currently active index the master index array

(if it is not already);

2) read the second master index which contains the second

sub-index into the sub-index array· by specifying 2 as

the master number key;

3) change the currently active .index to the sub-index array;

4) read the third record in this index by specifying 3 as the

number key.

Only step four is performed if the currently active

index is the master index for the required record. All the

steps will be performed only when the previous read used a

different master index. Therefore, it is important that the

length of the sub-index be greater .than the length of the

master index. In this case, the_ master index would not have

to change so often, thus reducing the number of I/O calls.

43

2.2.3 Doubly Linked List Structure

In a doubly linked list each element of the list

(e.g. a line of text) is linked to the previous and following

element by backward and forward pointers, allowing motion

in either direction in the list. This type of structure was

chosen for TEF to allow movement in both directions in the

text file. This feature is a necessity in any text editing

system to provide access to all of the user's text regardless

of the current position in the file. The begining and the

end of the·': file is marked with a zero pointer. That is,

the first line has zero for its last ·or previous line pointer

and the last line in the file has zero for its next line

pointer.

2.2.4 TEF File Structure

When entering TEF without an existing text file such

as in the initial creation run, a . file is .created with all

the records in the file linked together using the next line

(forward) pointers. There is a pointer to the begining of

this list (next available space pointer) and the last record

in t}J.e file ·(list) has a next line pointer of . zero indicating

the end of the list. This is the available space list (initial~

.lY all the records . are available for use).

All the records in the file are written onto a random

44

access file and given a unique permanent key to identify

them. This method insures that the text file remains the

same size as far as the operating system is concerned when

text is added to the file. The operating system "sees" all

the records both allocated and available. The user only

"sees" the allocated records containing his text. If this

technique was not used a previously cataloged permanent text

file would have to be recataloged or extended each time text

was added to it. A text file in this form will occupy more

disk space since the presently unused records are stored along

with the text records, but the amount of user convenience

obtained with this method outweighs. this disadvantage . This

method allows protection from an operating system failure.

If disk space was only allocated when text was added to the

file, the master and sub-indexes would change each time a

record was allocated. Th.is means that the sub-indexes must

be written back onto the disk file each time they change.

In addition, the master must be written back onto the disk

file before closing the file. Failure to do this. will result

in the loss of all text added since the file was opened, an

invalid available space pointer and the result that some of

the forward or backward pointers will be invalid. The user

may lose the whole file or may only be able to access a small

part of it. In any case, the file will be useless for further

45

editing. When an operating system failure or time limit occurs

the indexes are not written to the random file.

By using an available space list with all the records

allocated on disk, the user's file will be protected from a

system failure. Since· the master and sub-indexes never change

throughout editing it is unnecessary that they be written back

to the disk file before closing.

However, problems can. occur if a system failure occurs

before the pointer manipulation required for an addition to

the file is completed. For example, the chain of forward or

backward pointers may be broken, thus re~tricti~g access to

part of the text file. In most cases, the text of the file

and the formatting information can be · recovered by using the

random access features of TEF and the. output facilities to

form a new text file.

For the initial creation of a text file all records

are on the available space list except for· two. The forward

pointer of each record indicates the next record to be used

and the last record has zero as its pointer.

The record with master index M and sub-index N will

be represented as (M,N). For example, the available space

list will initially be in the form:

NEXT AVAILABLE SPACE ~(1,1) ~(1, 2) ~(1, 3)... (1, 50)~(2, 1) •••

,(10,1) ~(10,2) -t(l0,3) ••• {20,48)--70 •

The records may be stored in any physical position on disk

and are not necessarily consecutive • .

The last record in each sub~index will point to the

first record of the next sub-index (i.e. n~w master index).

For example, record (1,50) points to (2,1).

46

The last two records in the file are reserved for the

TEF system and cannot be accessed by the user. The last

record (e.g. (20,50)) is used to store the sub-section markers

so that when the file is reopened~·_any previously defined sub­

sections will be accessible to the user.

The second last record (i.e. · (20,49)) is used to store

the pointer to the first line in the file since it is not

necessarily going to be the record (1,1). Also, the pointer

to the top of the available space list is stored in this record.

These two pointers are updated and written to the file each

time they change in case a system failure or time limit. occurs

during editing. These two pointers must be known by the TE'F

system when an existing text file is reopened. The pointer

to the first record in the file . allows random access at any

time during editing to the first line·· of text in the file.

The user can therefore access 998 records with the

present -implementation. _ For most purposes this will be suf­

ficient. However, it is a simple matter to increase the size

of the text file by increasing the size of the master and/or

sub-index arrays.

As text is added to the file, records are allocated

and removed from the available space list. When records of

text are deleted from the file, they are put back onto the

top of the list to be reused~

When TEF is entered with an existing text file the

pointers to the beginning of the file and to the top of the

available space list are accessed and the file is positionad

at the first line of text in the file.

47

·ouring editing there is a current line at which the

file is positioned. This line is displayed on the CRT screen

after each command is completed and is the last line displayed

when several lines are listed on the screen. The current

line can be changed by moving or advancing forward or backward

in the file or by direct access to a line of text.. The

current line is stored in a line buffer on which all. the line

editing commands operate•

The text file and available space list structure is

shown in figure 2.1 Externally, they can be represented

as sequential lists. However, the records .can be in any

phys~cal position on disk with available space records and

text file records intermixed.

48

- ~NEXT AVAILABLE
SP]\CE PTR

- ~r-

- j~

H '1 0

0

TEXT FILE AVAILABLE SPACE· LIST

Figure 2. 1 File and Available sp·ac·e· List Structure ·

1 WORD = 60 bits
J,

1. - First word of Hashed 2-signature

2. - Second word of Hashed 2-signature

3~ - Master index of Previous Record

4. - Sub-index of Previous Record
} Last line pointer

5. -Master index of Next Record in file}
. . Next line pointer

6. - Sub-index of Next Record in file

7. - Format Code Word

8. - 20. - Text of the line maximum 130 characters

Figure 2.2 Record Structure

49

2.2.5 Record Structure

Each record in the text file contains 20 words

(60 bits each) of information. The record structure is illustr­

ated in figure 2.2. The first two words (120 bits) contain

the hashed 2-signature of the characters of text in the record.

The 2-signature is used for content searches using the sub- .

string text method. This is to be discussed in section 2.4.

The third and fourth words contain a pointer to the previous

or las.t line in the file. iiord three stores the master key

and word four contains the · sub~index key of the previous

line. The fifth and sixth words contain a pointer to the

next line in the text file. The fifth word stores the master

key and the sixth word stores the sub-index key. The master ·

key has a value from 1 to 20 and the sub-index key· has a

value from 1 to 50 when they point to a record in the file.

The first record in the file has zero as its last line

pointer. This is a special marker for the begining of the

file. The last record in the file wil.l have zero for its

next line pointer to flag the end of the file.

Word seven contains the format word which stores

the formatting codes specified by the user to format the

text in the line.

The remaining thirteen words contain the characters

of text in the line. For program language t~xt only the

first 80 characters are used. For natural language text

the line can contain a maximum of 130 characters of text.

2.3 Addition and Deletion of Lines of Text .

2.3.1 Input of Text

Text can be added to the text file from two sources

in two different modes. Text can be inputted from a file

containing card images (80 character records) or from the

CRT terminal. There are two modes of input: program text

and natural language text mode. The use·r selects the mode

of input when the file is opened for editing, depending on

the type of text to be edited~"

50

In program text mode (i.e. computer programs) the text

is stored 80 characters per record or line, corresponding to

a card image or an input CRT line.

When editing in natural language text mode the user

has control over the maximum percentage (70 to 100 %) of each

record (130 characters maximum) to be filled with text from

the input source. The remaining space is filled with blanks

for future additions to the line. Blanks shifted out of the

right end of a line due to additions within the line are

ignored. This provides a method to reduce the .number of line

overflows for small additions to the line (e.g. sp~lling'

corrections, word or small phrase additions). In addition,

it reduces the number of lines generated containing only a

few characters due to overflow of the previous line. If the

input text is likely to be edited- ." or changed frequently the

extra space at the end of each line is quite useful. The

percentage to be filled can be chosen to suit the particular

type of editing to be performed.

51

Input text is packed into the current record being

filled until the maximum number of characters is packed or

until the user terminates the addition command. The addition

of text is performed such that a word is not split between

two lines of text except for the case when a word is longer

than the maximum number of characters- to be packed per record.

This case could occur if the user wishes to enter a very long

string of consecutive non-blank characters. An unusual occur~

renee in most kinds of text.

If the number of characters {excluding trailing blanks)

in an input record is less than the -maximum record size, all

trailing blanks except for one are suppres-sed at the end -of

the text and the next input linel-(is added after this blank.

This allows the user to end the input card or line at any

convenient position, usually after the last word that totally

fits on the line, -as he naturally would when reaching the end

of a typewriter line.

52

When the input record is full (i.e. no trailing blanks)

this is processed as a continuation to the next input line

and there are no blanks inserted between this line and the

next input line -added to the record.

In natural language text mode blank lines on input

are ignored. The formatting features control the output of

blank lines. Therefore, it is unnecessary that they be stored.

Blank lines can be inputted if required by creating a line

containing one non-blank character and then delet~ the

character -.

An additional method of entering natural language text

from a card image file is available for recreating or dupli­

cating text lines. This feature uses· a file containing punch­

ed output from TEF and recreates the punched lines of text

in their original form. Recreation of lines of text must be

exact in order for the format codes to operate on the same

text as the original. The punched output of TEF maps 130

characters (80 for program text) of each line of text onto

80 character card image records. _The above method of enter­

ing text performs the reverse map and takes every 130

consecutive characters from a file of 80 character card images

and creates a line of text.

This allows storage of a text file on cards or on

a sequential disk file (which requires less space) _to be

53

used as a backup or sections of the text file can be duplicated

and inserted at arbitrary places in the file. Only the text

of the file is recreated with this feature since when dupli­

cating sections or files the user may wish to experime.nt

with different formats for the output of his text. Experiment­

ing with the formatting can be done on a copy of the text

file, leaving the original text file intact.

The original formatting information can also be

recreated if desired in conjunction with the text. The

reformatting will be discussed in Chapter 3.

2.3.2 Record Allocation for input of Text

When text is input a record to store it must be

allocated from the available space list and linked onto the

doubly linked list structure at the point of insertion. The

point of insertion is always after the current line in the

file. If the file is empty, the text entered forms the first

line in the file. At any given moment there are pointers to

the begining of the file (zero if file is empty), top of the

available space list (zero if all space is exhausted), current

position or line in the -file (zero if empty), backward or

preceding record or line from the current line (zero if file

is empty or positioned at the first line in the file) · and

forward or succeeding record from the current position (zero

54

if the file is empty or is positioned at the last line in the

file).

The algorithm required to .link a new line into the

text file is as follows:

1) Save the curre~t linel: s forward pointer in a temporary

location. This is the record following the point of

insertion. If the file is empty or the insertion is at

the end of the .file the forward pointer will be zero.

2) Change the current line's forward pointer to point to

the next available record to · be used. If the file is

empty, there is no current line (i.e. current position

pointer is zero) and\~ this step will be omitted.

3) Allocate a record from the available space list and

change its backward pointer to point .:·~ to · the current line.

If the file is empty the backward pointer is set to zero

flagging the begining of the file and the ~ointer to the

begining of the file will be set to this record.

4) Update the current line pointer to point to the newly al­

~ located record. The current line is now the new line just

allocated. Pack the text into this record.

5) Update the next available space pointer to point to the

forward link of the record just allocated. That is, the

the next record in the available space chain will be the

next to be used.

6) Change the backward pointer of the record following the

point of insertion to point to the last allocated record.

If the file was empty or the file was positioned at the

end of the file, there is no following record therefore,

this step will be omitted.

7) Change the forward pointer in the last allocated record

to point to the record following the point of insertion.

If the file is empty or the file was positioned at the

end of the file, . a zero will be inserted to · mark the end

of the file.

55

These steps can be better understood by the illustrations

in figure 2.3. Figure 2.3 shows the steps ·required to insert

a line (record) between record 2 and record ·3. The pointer

manipulations are numbered with the corresponding step numbers.

Steps 1 and 2 link the inserted record(s) to any pre­

vious records. Steps 3 to 5 allocate a record(s) for the text

and steps 6 and 7 link the newly allocated record(s) to any

following lines in the file~

If more than one line of text is being added at the

same point in the file steps 1 and 2 need only be performed

once at the begining of the addition and steps 6 and 7 are

done only once at the end of the . insertion. Steps 3, . 4, and

5 provide the main input loop and are performed for each line

of text formed.

0
TEXT FILE

1

2

3

4

Before Insertion
0

4

After Insertion 0

Figure 2.3 Insertion

-

-

-

0

1-1

of a Line

56
AVAILABLE SPACE LIST

5

6

7

.

N

of Text into

~ ~ NEXT AVAILABLE
SPACE

~

t ..

NEXT AVAILABLE
SPACE

I~
0

the File

57

A block of records can be taken from the available

space list making use of its pointer structure. When a block

of several records is h~ing allocat.ed 1 the for\,TarJ po i n ters

already point to the required record. For example, if t\'TO

records (e.g. 6 and 7 in figure 2.3) were to be allocated as

a block for input text, the forward pointer of record 6 al­

ready points to record 7. During addition of text steps ·

3 to 5 are repeated for each line inserted and steps 6 and 7

are used to complete the linkage of the block of records

_to any records following the point of insertion • .

This method avoids temporary pointer manipulations

when adding more than one line of text to the file. For a

large amount of input, such as text read from a permanent

file, considerable execution time will be saved. The last

added line will become the current line when the addition is

complete.

Figure 2.4 illustrates a block of r~cords allocated

for text and inserted into the_-:file after the current line.

2.3.3 Deletion of Lines of Text

When a line or lines or text-are deleted they must

be removed from the file, the file must be joined together

again and the deleted record or records added to the avail­

able space list. The starting· point of a deletion is the

current line. Deletions can be performed starting with the

TEXT FILE AVAILABLE SPACE LIST 58

1 4 -.K---NEXT AVAILABLE
SPACE

2 5

3 6.

0
7

Before Insertion •

•

0 N

1
0

2

Current Line

3 I-I ltrNEXT AVAILABLE
7 SPACE

\?'"

0

1-l '1 N
After Insertion

0
Figure 2.4 Allocation of a Block of ·Records

59

current line and moving either forward or backward any number

of lines in the file.

There are two types of deletions: ·backward moving

deletions and forward moving deletions. The backward moving

deletions start deleting lines ~ith the current line and delete

lines moving backwards in the file, making the line before

the point of the last deletion the new current line. If the

begining of the file is reached during a backward moving

deletion the line following the first _deleted line will become

the current line. If in addition, the deletion started at

the end of the file, the whole file is. deleted and the file

will be empty.

The forward moving deletions start with the current

line and delete lines moving forward in the file, making the

line after the last deleted line the new current line. If

the end of the file is reached on a forward moving deletion

the line before the first deleted line becomes the new

current line. If in addition, the deletion started from the

begining of the file the file will be empty, since all iines

will be deleted.

When a deletion causes the whole file to be. deleted,

the available space list is redrganized ~ into consecutive

master and sub-index key order. Frequent additions and del~

etions to a large file may link together many records with .

60

different master indexes. Changing from one master to another

. to read or write a record requires 4 mass storage I/O routine

calls while only 1 routine call is required if the current

master is not changed.

must change .,~ the better.

Therefore~ the fewer times the master

The ideal situation has each master

index and sub-index linked together in consecutive key orderr

as in the initial file creation run.

Deletion of a line or lines of text requires the

following algorithm when moving forward (backward): · .

1) Save the current position pointer, the backward and forward

line pointers.

2) Move forward (backward) to the next (previous) line in the

file and make it the new current line. If at the end

(beginning) of the file, make the line before (after) the

first line deleted the current line. If at the end

(beginnin~of the file and deletions started .at the beginning

(end) then the text file is empty.

· . 3) Set the forward pointer of the last (first) line deleted

to point to the top of the available space list.

4) Set the next available space pointer to point to first

(last) record deleted. The deleted recordis) are now

linked onto the top of the available space list.

5) Change the forward (backward) po~nter of the line before

(after) the first line deleted to point to the current

61

line.

6) Change the backward (forward) pointer of the current

line to point t6 the line before (after) the first deletion.

The above steps are illustrated in figure 2.5 for

a forward deletion of the current line.

Consecutive lines can be deleted in blocks. When more

than one line is being deleted, step 2 is repeated for each

deleted line and steps 3, 4, s. and 6 are performed only once

at the completion of the deletion. Since the forward pointers

of the text file link each· record together as in the available

space list, the whole block of several deleted records can

be put onto the available space list, with only two pointer

changes. Steps 3 and 4 add the deleted record{s) to the

available space list. Steps 5 and 6 relink the file together

where the record{s) were removed.

Figure 2.6 illustrates the forward deletion of

several lines at one point.

1 AVAILABLE SPACE LIST 62

2
~-NEXT AVAILABLE

SPACE
6

3 ~C':lrrent _
~------------~~ L~ne ~--------------

7

4 8

5

TEXT FILE BEFORE
DELETION 0

0

1

2

f¢-NEXT AVAILABLE
3 SPACE

3

6

4

7

5
8

After Deletion 0

I_.__-1 ·. ·_N ___ I)

0

Figure 2.5 Deletion of the Current Line in the File ·

0

1
AVAILABLE SPACE LIST

"--NEXT AVAILABLE
2 line 6 SPACE

3
Lines to 7

be Deleted

4 8

5

0 ~ N I~ TEXT FILE BEFORE
DELETION

0
0

1 ~NEXT AVAILABLE
2 SPACE

2--~- 3

4

6

~~~~ N-~~ 5 urrent Line 

0 
0 

After Deletion 

Figure 2. 6 Deletion of a Block o·f Lines (records) 
(Forward Deletion) 

63 



64 

2.4 Implementation of the Substring Test Technique 

A content oriented text editor involves a great deal 

of character searching. Content addressing requires a fast 

and efficient method of searching for a string of characters 

within the lines of text in a file. This is extremely 

important when dealing with large files. Searching each line 

character by character for the specified string is obviously 

very slow and inefficient. A method is needed which can 

determine if one string (search string) is a sub-string of 

another string (text line) ·without searching each line. This 

requirement led to the implementation of the substring test 

techrtique which considerably decreases the time required for 

searching. 

2.4.1 The Substring Test Technique 

The substring test makes use of a hash~ng technique 

and the ability to do operations on the bits of a computer 

"word". When the s ·ame strings are being tested repeatedly, 

and when the probability of finding the substring is small 

the substring test technique becomes very useful. It is 

especially suited to text editing since many lines of text 

are searched for the occurrence of the same string. 

If the search is likely to be unsuccessful, it can 

usefully be preceded by a computationally faster test for 



65 

necessary but not sufficient conditions that the string be 

found. In some applications, a comparison of the lengths of 

the strings could be performed. However, this is a weak test 

for a text editing system because the lines of text and the 

string to be found will almost always be of different lengths. 

A string can be represented by the set of its substrings, 

and in particular by the set of its substrings of a specific 

length. In general, such a representation is not unique, but 

it does preserve the substring property in the .sense that, 

if one string has another string as a substring, the set of 

substrings of the first will include the set of substrings 

of the second. ·Of course, the reverse is not true, because 

of the lack of uniqueness. 

A set S can be represented by a binary string 

b1 b 2 b 3 ••• bm in which a value of one for bi indicates 

that S contains at least one element of the set Ei. In 

genera.! such a representation is· not unique unless each Ei 

contains exactly one element and each possible element is 

contained in some Ei. However, it preserves the subset 

property in the sense that, if s~t s1 is a subset of the set 

s 2 , the binary stiing representing s2 will h~ve ones in all 

positions where· the string representing Si has ones. In 

representing a string in this way a data-object is rep­

resented by a simpler data-object which contains less 



information but which retains some of the properties of the 

original. 

A string s can be represented by a binary string 

b1 b 2 b 3 ••• bm and is constructed as follows: 

1) set all bits b. to ·zero 
~ 

66 

2) for each substrings of fixed length k compute i = HASH(s), 

and set b· = 1. 
~ 

The hashing function HASH is assumed to give an 

integer result in the ·range 1 tom. A subsequence of k 

successive elements of a string is referred · to as a k-sequence. 

The resulting binary string, which contains a 1-bit only in 

positions which correspond to certain k-sequences(Ei) and 

zero otherwise, is called the hashed k-signature of the string 

s. A hashed 2-signature is i1luS'trated in the following figure. 

1 0 1 0 1 0 0 1 1 0 

Figure 2.7 10-bit Hashed Z-signature of the string c
1
c2 ••• c

8 



For any particular hashing function a necessary 

condition that string s1 be a substring of string s2 is that 

the hashed k-signature of the string s2 have ones wherever 

67 

the hashed k-signature of s1 has ones. It is often convenient 

to choose m such that the signature fits in a single machine 

word. In this case the signature test can be implemented in 

one or two machine instructions. The test can be performed 

in FORTRAN by: 

IF ((KSIGl .AND. (.NOT. KSIG2)) .NE. 0) GOTO 60 

IF (.NOT. SUBSTR(Sl,S2)) GOT0 ' 60 

where SUBSTR is the rigorous character by character search 

of the line and control is transferred to statement 60 if 

the substring is not found. 

The .NOT. operator negates the signature making each 

1 bit zero and each zero bit one. Therefore, the expression 

(.NOT. KSIG2) has ones only in positions which were not set 

to one by any k-sequence of the search string. The binary 

string KSIGl contains ones in all positions which correspond 

to certain k-sequences that are .in the string to be found. 

A bit by bit logical AND is performed on these two binary 

strings. If KSIGl contains a one (k-sequence present) in 

any position where (.NOT. KSIG2) has a~~ one (k-sequence not 

present) the result will be non-zero and the text fails. 

Everyplace KSIGl has a one bit, (.NOT. KSIG2) must have a 



zero in order for the test to succeed, since the result of 

the AND will be zero. 

68 

When implementing a signature test which consists of 

more than one word (as in TEF) additional tests are required 

to compare the corresponding word of each signature of the 

strings. For a two ·word signature (TEF) the test can be 

implemented in FORTRAN as: 

IF ( (ISIGl .AND. (.NOT. KHASHl)) . • NE. 0) GOTO 60 

IF ((ISIG2 .AND. (.NOT. KHASH2)) .NE. 0) GOTO 60 

IF (.NOT. SUBSTR(Sl~S2)) GOTO 60 

where .ISIGl and ISIG2 represent the two words of the signature 

for the string to search for and KHASHl and KHASH2 represent 

the two words of the signature of the string to be searched 

(i.e. line of text). The majority of cases ~auld be rejected 

by the first test on the first word of the signature. 

2. 4. 2 Choosing Parameters f ·or the· Substring· Test 

Three parameters must be chosen to implement the 

substring test technique: the length of the hashed signature 

(m), the hashing function, and the length of the substrings 

to be ·: .taken (k). 

\Vhile it is not necessary, it is convenient to choose 

m such that it is a multiple of the number of bits in a machine 

word. Using partial words will have no affect on . the substring 



69 

test since the remaining bits will be set initially to ~ero 

and will never change. Clearly the larger m is, the more 

accurate the results will be since fewer strings will be 

incorrectly identified as substrings by the .signature test. 

The more time required -for the rigorous test, the more worth­

while an improvement in th.e signature test becomes. For 

test editing applications where the length and number of lines 

to search is large, this is an important consideration. In 

addition, response time in an interactive editing system will 

suffer considerably as the search time increases. 

The amount of accuracy which is worth achieving also 

depends on the probability that the string is not a substring. 

It is not economical implementing a signature which makes 

only 2 percent errors instead of 5 percent, if 30 percent 

of the strings are in fact substrings. However, if only l 

percent of the strings are substrings, such an improvement 

could well b~ beneficial. This probability can only be 

estimated since in a text editing system the text and search 

strings can vary widely. 

The hashing function should be random and generate 

an integer result between 1 and m~ - A suitable random function 

will spread the k-sequences being hashed evenly over the range 

1 to m so that the probability of a particular bit being set 

by a particular k-sequence is the same for each bit position. 



70 

The value of k can also be chosen. Clearly if k is 

1, no information is included about the order of the characters. 

Thus, k should be two or more. If there are N different 

symbols in the alphabet, there are Nk possible k-sequences. 

Thereforei it does not make sense to chriose k so small that 

Nk is less than m, since there are only Nk distinct substrings 

of length k and bits in the signature will be wasted. For 

text editing applications where N is relatively large (64 to 

256) this is not a problem. On the other hand, if k is chosen 

too large, the number of bits in the signature can become too 

small, and in ·fact will be zero if k is larger than the length 

of the string. When searches for small strings (e.g. 2 or 3 

character strings) will be performed k should be chosen small 

enough to allow a non-zero hashed k-signature. If there are 

n symbols in the string, there· will be n - ·k + 1, k-sequences. 

Therefore, to be able to search for a string of 2 characters 

k must be 2. 

Maximum information content corresponds to having 

about half the bits in the signature zero • 

. 2.4.3 Probability of a False Match 

It is possible to develop an expression for the 

probability of a false match. That is, the probability that 

a random string of length L1 will be identified as a substring 



of a string of length L2 by using the signature test. 

If \ve assume that the hashing function is random, 

and we have random strings, the probability of a particular 

bit in an m-bit hash signature being set by a particular 

element of a set is 1/m. The probability that this bi.t is 

not set is 1 - 1/m. The probability that this bit is not 

. n set by any e~ement of an n-element set is (1 - 1/m) • 

Therefore, the probability that a particular bit is set is 

1 - (1 - 1/m)n. 

This is the density of ones in the hash signature which -

should be approximately 1/2 for maximum information. content~ 

If we are testing to see if the string of characters 

S1 is a substring ·of another string o·f characters s2 , the 

probability of the signature test giv.ing an affirmative 

71 

answer can be estimated. If we assum~ that s1 and s2 are de­

composed into L1 and L2 segments respectively, the probability 

p(L1 ,L2 ,m) that each of the segments of s1 will hash onto bits 

already turned on in the hash signature of s2 can be estimat.ed . 

by 

As (1 - 1/m)m 1/e, p(L1 ,L2 ,m) can be approximated by . 

Using this approximation Harrison's symmetry relation 



72 

[HAR 71] , p(Ll,L2 ,2m) = p 2 (LI/2,L2/2,rn) sho~>~s the effect of 

. doubling the length 6f the hashed k-signature. This probabil­

ity is only an estimation since most text is not entirely 

random and not all sets of possible substrings correspond to 

strings (e.g. ;:, =), :., etc. are unlikely combinations in 

any kind of text). A frequency analysis of different natural 

language texts or computer languages will show very different 

trends in the most common character sequences. 

The probability of a fa·lse match will increase for 

search strings containing frequently occurring character 

sequences. The length of the search string can be increased 

. to improve the performance for commonly occurring character 

combinations. 

2.4.4 Implementation of the Substring Test 

The substring test is implemented to decrease the 

search time ·for content searches in TEF. The first parameter 

which must be chosen i .s the length of the hashed signature 

(m). As the word size on the CDC 6400 computer is 60 bits, 

. a reasonable choice would be multiple of 60 bits!" ·:·.Clearly · 

the larger the value of m the more accurate the results. 

The probability estimated in the previous section 

is tabulated in table 2.1 for m = 60 and in table 2.2 for 

m = 120. L1 and L2 are the number of segments into which 



73 

L2 

192.0 .88563 .78434 .61518 .37845 .14322 .02051 .00042 

96.0 . .51355 .26374 .06956 .00484 . • 00002 .00000 .00000 

48.0 .16975 .02881 .00083 .00000 .00000 .00000 .00000 

24.0 .03657 .00134 .00000 .00000 .00000 .00000 .00000 

12.0 .00609 .00004 .00000 .00000 .00000 .00000 .00000 

6.0 .00088 ·• 00000 .00000 .00000 .00000 .00000 .00000 

3.0 .00012 .00000 .00000 .00000 •. 00000 .00000 .00000 

3.0 6.0 12.0 24.0 48.0 96.0 192~0 Ll 

Table 2.1 The probability that a random string of length 
Ll + K - 1 will be identified as a substring of 
a string· of length L2 + K - 1 using 60-bit K-signatures 

.L2 

192.0 .51095 .26107 .06816 .00465 .00002 • 00000 .00000 . 

96.0 .16'8 36 .02834 .00080 .·ooooo .00000 .00000 .00000 

48.0 .03620 .00131 .00000 .00000 .00000 .00000 .OOOO.Q 

24.0 .00602 .00004 .00000 .00000 .00000 .00000 .00000 

12.0 .00087 .00000 .00000 .00000 .00000 .00000 .00000 

6.0 .00012 .00000 .00000 .00000 .00000 .00000 .00000 

3.0 .00002 .00000 .00000 .00000 .00000 .00000 .00000 

3.0 6.0 12.0 24.0 48.0 96.0 192.0 Ll 

Table 2.2 The probability .that a random string of length 
L1 + K - 1 will be identified· as a substring of 
a ·string of length L2 + K ~ 1 using 120-bit 
K-signatures. 



74 

the strings s1 and s2 are decomposed. 

Since a string of length n will contain n - k + 1, 

k-sequences, the tables are the probability that a random 

string of length L1 + k - 1 will be identified as a substring 

of a string of length L2 + k - 1. Comparing the results shows 

that when L1 and L2 are large there is not much .difference 

in the performance of the two values of m. When L1 is small 

.(e.g. 3 segments)and L 2 is large (e.g. 96 segments) the 

results are considerably better for the larger hash signature 

(i .. e. m = 120). 

For example, the probability that a 4-character string 

being identified as a substring of a 97-character string is 

about 17 percent for m = 120 and about 51 percent using m = 60 

with 2-signatures being taken (k = 2). This implies that at 

least 83 percent of non-substrings will be rejected by the 

signature test for m = 120 and 49 percent will be rejected 

for m = ·60. An important consideration for TEF is that the 

signature test function well for small strings (between 2 

and 20 characters). 

The user should be able to specify small search strings 

and $till obtain fast response time. In TEF the majority of 

tests will occur with L1 small (maximum 19) and L2 large 

(maximum 129), therefore m = 120 is a worthwhile choice. The 

two word hash signature~involves an additional test to test 



75 

both words of the signature. Most text lines will be rejected 

by the first test of the first word of the signature. 

The value for k in TEF is two. · This allows search 

strings as small as two characters and the corresponding hash 

· signatures to contain more information than for larger k. 

The hashing function operates on the display code 

for each character. Since each character is stored right 

justified with zero fill, each character can be treated as 

an integer number equivalent to i ·ts display code (00 - 77 8 ). 

The hashing function hashes every two consecutive characters 

of the string into a bit position (1 - 120) numbered right 

to left in the word. 

· The hashing function in FORTRAN is 

KHASH(ICHl,ICH2,K) = MOD(ICHl*K + ICH2,120) + 1 

where ICHl is the first character and ICH2 the second. K is 

a constant equal to 9. The MOD function returns the remainder 

when its first argument is divided by its second. 

The hashing function returns an integer value in the 

range 1 to 120. Different values of K were tested for all 

possible two character combinations of the 26 letters of the 

alphabet plus blank (729 2-sequences). K = 9 produced the 

best and most random results mapping between 5 and 7 pairs 

of characters onto each bit ·position. Other values for K 

mapped as many as 26 character combinations onto one bit 



76 

position and many bit positions were wasted since no combin­

ations hashed to them. 

Within each record of the TEF text file is stored 

the two word hashed 2-signature corresponding to the text 

contained in the line. Each time a line is added to the 

file or altered the hashing function is applied to the text 

in the line to compute its 2-signature. To decrease the 

execution time and increase the efficiency the hashed 2-

signature is computed partly in assembly language. 

Content searching in TEF allows the user to search 

for a string of characters from 2 to 20 characters long in 

a file containing lines of 130 characters maximum. The 

probability that a string of length L1 + 1 will ~e identified 

as a substring of a string of length L2 + 1 using 120 bit 

2-signatures is tabulated in table 2.3. L1 ranges from 

1 to 19 which corresponds to strings of length 2 to 20 

characters (a string of length n decomposes into n - l, 2-

sequences). L2 ranges from 9 to 129 elements which corresponds 

to .strings of length 10 to 130 characters. 

Clearly as the length of L1 ·increases the more accurate 

the results. Taking the extreme cases, the probability of a 

20-character string being identified as a substring of a 130-

character string is less than .04 percent. This implies that 

at least 99.96 percent cif non-substrings will be rejected by 



L2 

129.0 

109.0 

89.0 

69.0 

49.0 

29.0 

9.0 

77 

.66024 .43591 .28780 .19002 .02384 .00299 .00038 

.59834 .35801 .21421 .12817 .00983 .00075 .00006 . 

.52516 .27579 .14483 .07606 .00304 .00012 .00000 

.43865 .19241 .08440 .03702 .00060 .00001 .00000 

.33638 .11315 .03806 .01280 .00006 .00000 .00000 · 

.21548 .04643 .01000 .00216 .00000 .00000 .00000 

.07255 .00526 .00038 .00003 .00000 .00000 .00000 

1.0 2.0 3.0 4.0 9.0 14.0 

Table 2.3 The probability that a random string of length 
L1 +. K - 1 will be identified as a substring of 
a string of length L2 + K - 1 using 120-bit 
signatures. L2 represents the line length in TEF 
;(lO .. to .- 130 characters) and L1 represents the length 
of the string to be found (2 to 20 characters in TEF). 



the signature test. On the other hand, the probability of 

a 2~character string being identified as a substring of a 

130-character string is about 66 percent. This indicates 

that approximately 34 percent of non-substrings will be 

rejected by the test. The performance of the substring test 

will depend on the length of the search string and on the 

frequency of its character combinations in the text. 

When a string L1 is to be searched in a line of text 

L2 , the hashed 2-signature for L1 is computed and compared . 

78 

as outlined in section 2.4.1 with the signatUre of each line. 

When· the substring test succeeds the line is searched character 

by character for the occurrence of L1 • If it is found search- . 

ing stops, otherwise. the next line in the file is tested. If 

the signature test fails, the next line will be tested. The 

search will terminate when the required string is found or 

when the end of the file is reached. The user may specify 

which columns of each line to search. 

This technique performs extremely well for this type 

of application. There are clearly many other similar applic­

ations. The hashing function and the representation of an 

ordered set by its set of k-sequences are information compression 

functions which preserve as much of the relevant information 

on a data-object as possible. Computers and man must process 

increasingly large volumes of data: therefore, information 



compression of this type is very important in order to 

save both computer execution time and user response time. 

79 



CHAPTER 3 

TEXT FORMATTING 

3.1 Introduction 

The imaginative use of computers for on-line compos­

ition arid extensive manipulation of natural language text 

has expanded rapidly into the area of structuring and format~ 

ting of text. 

Computer-assisted typesetting, printing and photo­

typesetting have become popular ·techniques for producing books, 

manuals, reports, form letters, etc • . quickly and economically. 

The quality of the formatted output is limited only 

by the available hardware devices that can be connected to 

the computer. Computers can be employed to operate photo­

composition devices, typesetting machines [BAR 69] and 

typewriters. 

This chapter will discuss the operation of the TEF 

formatter with examples of some of its features. At present, 

the quality of output from TEF is limited due to the avail­

able hardware devices at McMaster University. At the time 

of implementation only line printers were available for 

output. The character set only supported upper case characters 

80 



thus, restricting TEF's use for formal documents requiring 

upper and lower case alphabetic characters. · 

Output can be printed on a Ve~satec Electrostatic 

printer using 8 1/2 X 11 inch pages or on a standard impact 

line printer with 8 1/2 X 15 or 11 X 15 inch pages. 

3.2 Basic Formattinq Concepts 

This section will describe the terminology used 

throughout the chapter. 

The formatting information is inserted by the user 

into the .,format word" of a line of text and the text· file 

can be formatted according to these specifications . 

The format .word consists of 10 character positions 

(1 computer word) divided into 3 fields as follows: · 

1 2 3 4 5 6 7 8 9 . 10 

0 I t I I I I Jll 
Field 1 Field 2 Field 3 

Figure 3.1 The· Format Word 

Fields . 2 and 3 ·are used ·. for "format codes" and occupy the 

right most 7 character.::: positions of the ~ormat word. Field 

1 is not used :for formatting, but is used for sub-section --. 

markers. It serves as an indication to the user indicating 

81 



what lines of his text have been defined as the start of a 

sub-section in the file. 

82 

Character positions 2 and 3 are unused at present and 

may · be used for future extensions to . TEF. Each format code 

consists of two letters. Some format codes are followed by 

a maximum three digit integer number. Format codes requirin9 

a numeric quantity are inserted into field 2 (5 character pos­

itions) while field 3 (2 character positions) _contains the 

two letter codes. 

When fields 2 and 3 both contain format codes, field 

2 is processed before field 3. Therefore, each line o1 text 

can contain two formatting operations. to be ·performed. 

The inpu~ to the formatter consists of text and format 

codes. A format code is one of several well defined s~rings 

which may be stored in the -format word of a line of text. The 

format codes operate on the text in the line, select or turn 

off a particular feature, or change formatting parameters. 

A line which does not contain any formatting information is 

defaulted to left and right justification since the majority 

of natural language text will require jus-tification upon 

output. 

The text consists of the lines of text in the file 

to -be formatted. Each line of text is composed of. words. 

Words are strings of characters delimited by one or· more 



blanks or by the end of the input reco~d {line). The input 

line may contain from 0 to 130 characters. A blank line is 

considered as a line containing zero characters. Only the 

format codes of a blank line are processed. This allows ~the 

specification of a format which cannot be achieved by using 

only one format word. 

The formatter within TEF may ope~ate in either of 

two modes: "formatted" and "non-formatted". In formatted 

mode words are delimited by the end of the text line and 

one or more blanks. Words are shifted to fill the output 

83 

line as much as possible. Right justification is performed 

by separating words by more than one blank. Add±tional blanks 

added between words are spread symmetrically throughout the 

line. This method avoids blank "streaks" in a page of text. 

In non-formatted mode, a word _is delimited by the 

blank following the . last non-blank character or the end of 

the input record. In non-formatted mode blank characters 

are considered in the same way as any other character. There­

fore, only one word is .printed per line containing a maximum 

of 130 characters. Non-formatted mode is · .used when a format 

is desired that cannot be achieved in. formatted mode, or 

when insertion of extra blanks will change the intended mean~ 

ing of the text (i.e. when embedded blank_s are significant). 

During formatting, output text lines are formed 

starting at the "left margin". The. left margin is the print 

• 



84 

column position where the first character of the line is to 

be placed. The width of the left margin is equal to the left ·· 
I 

margin minus two. The first character position in an output 

line is reserved for printer ·carriage control. A left margin 

can be in · the range 2 to 120. 

Each line of text in formatted mode will contain LINWD 

characters after justification. LINWD is the number of char-

acters to be placed in each line. The right margin is the 

position where the last character of each line is placed. The 

width of the right ·margin is determined by the left margin 

width plus LINWD characters. The width of the right margin 

is dependent upGn the size of the output page. The maximum 

size of an output line is 130 charact·ers . including the blanks 

in the left margin. 

Each page of output contains a header which occupies 

the first 7 lines of every page. The header .consists of 3 

blank lines, the header line, and 3 more blank lines. · The 

header line may contain a running heading and/or a page number. 

The running heading may be a maximum of 60 characters long. 

Either the running heading and/or the page number may be omitted. 

When. both are omitted the header line is printed as a blank 

line. The running heading is initially blank and page number­

ing is s.elected if desired before · formatting begj,.ns • 

. The page numbering is controlled by the current page 



·, 

number. It is initially one and is incremented by one after 

each page header is printed if page numbering is selected. 

85 

The user may change the value of the current page number and 

the contents of the current running heading dynamically during 

formatting. 

Following the header is the "text body" which occupies 

the remainder of the page. ~he text body consists of lines of 

text printed in either formatted or non-formatted mode. 

The spacing between lines is controlled by the spacing 

· parameter. Single ·· or double spacing may be selected be.fore . 

· formatting begins and can be changed .dynamically during edit­

ing. Additiona~ blank lines may be output using format codes. 

The number of lines per page is controlled by the 

page depth parameter (NLPAG). The page depth counts all lines 

on the page including the seven header lines. Page depth is 

selected before formatting begins and · causes a new page to 

be started after NLPAG lines have been printed on a page. A 

large number chosen for NLPAG will effectively eliminate paging 

control. The user may override .this feature and start a 

new page at any time during formatting. 

3.3 The Formatting of Text 

The input to the formatter within TEF con~ists of the 

lines of t~xt within the text file and their associated format 



86 

codes. The format codes are processed and applied to the line 

(if applicable) with the formatted output lines written onto 

an output file. 

The default mode of output is the formatted mode 

with left and right justification for each line. The format 

codes allow the user the ability to alter the specifications 

of this mode (e.g. margins, indentations, page format, etc.) 

or to output a line in non-formatted mode. 

In TEF there is an "output line buffer", from where 

all output text, excluding the header and blank lines is 

written to the output file. During formatti~g, the buffer 

contains the current output line being formed. The source 

of input to the line buffer is the "current input line". The 

current input line is the line of the file currently being 

processed. Depend~ng upon its associated format code, text 

·from the input line will either be added to the current line 

bei~g formed·, · or the current line will be printed and · the 

input text will be used to form a new line. The current out­

put lin~ is printed when it is full or when a format code is 

encountered that causes the current line to be printed before 

being processed. The line is printed according to the current 

margins. 

The length_ of the buffer is 131 characters. The first 

character position is reserved for printer carriage cont~ol. 



87 

The value of the carriage control is determined by the spacing 

parameter selected by the user. The length of the buffer allows 

lines of up to 130 characters to be formed on output. The 

left m.argin corresponds to a character position in this buffer 

and the first character of an output line is placed in this 

character position. The text can be shifted within the 

buffer by adjusting the margin width. 

In formatted mode, text is added to the buffer and 

justified · so that each line contains the required number of 

. characters per line (LINWD). Each line of text is treated 

as a continuation of the previo~s line separated by one blank. 

Text is .added to the current output line from the current 

input line. The line is printed when. it is filled or a "break.~~ 

occurs. Some format codes ("break codes") when encountered 

in the input stream, terminate the addition of text to the 

current output line. When a break occurs the current line 

is written onto the· output file before the format code is 

executed. A new output line is then started, the format code 

executed and the ,text of the line processed. 

A line of text can .. .,be output in non-formatted mode 

by specifying the non-formatted · code in =the format word for 

the line. In this case, the current line (if any) is~ ·printed 

and the .input line of text is · printed on the next line exactly 

as it was read. · A new output line is started after the non-



formatted line is printed. A group of lines to be output in 

non-formatted mode must each contain the non-formatted code. 

88 

The following is a discussion of how the format codes 

operate during formatting. All the format codes in field 2 

. of the .format word are break codes, except for the print 

blanks after processing the line code (BA). 

· The format codes in field 2 are of the form XXNNN 

where XX is a two letter format code and N is a numeric digit. 

· The codes in field 2 provide a means to ·adjust left and right 

margins, print blank lines before or after a line of text, 

start a new page, and change the current page number. 

·The left margin may be moved left or right, thus 

decre~sing or increasing the left margin width. A shift of 

the left margin to the left (LL) (right (LR)) code causes 

the current iine formed _to be output and then the left margin 

is moved left (right) NNN character positions. The text of 

the line is then used to form an output line with the first 

character placed in the character position of the new left 

margin. The LL (LR) format code increases (decreases) the 

length of the output line. These two format codes operate 

in the same manner as adjusting the left margin on a typewriter. 

During formatting the wi4th of the right margin .may 

be changed by moving the right margin left or right. A shift 

of the right margin left (RL) (right (RR)) code will cause the 



current line to be printed and the right margin moved left 

(right) NNN character positions. When the right margin is 

moved left (right) the width of each line (i.e. the number 

of characters per line) is decreased (increased) by NNN 

characters, effectively increasing (decreasing) the width of 

the right margin. The text is then processed. The RL and 

RR format codes operate in the same way as adjusting the 

right margin an a typewriter. 

89 

The LL, LR, RL and · RR format codes allow the user the 

ability to strictly and dynamically control the line width 

and the margin widths of the output in a manner analogous to 

manually adjusting the margins ort a typewriter. 

The output of ~lank:. __ lines is regulated by the format 

codes for printing blank lines before (BB) or after (BA) 

processing the text in the line. The BB format code terminates 

and prints the current line, prints NNN blank lines and then 

processes the text in the line. The BA code processes and 

outputs the line of text according to the current mode and 

prints NNN blank lines after the line is output. These codes 

may be used for block paragraphi~g, spacing for diagrams or 

figures, or for separation .of sections of text. They provide 

a means to output blank lines without storing them in the file 

and thus, wasting space that could be used for the user's text. 

A useful feature of TEF is the margin delay code (MD). 



90 

Upon encountering an MD code the current line is printed and 

a new line is started.. The MD code delays moving of the left 

margin right NNN character positions until one output line 

has been printed from the input line of text. For example, a 

frequently used format is of the following form: 

MD code - After this line is printed the left margin is 

moved right NNN character positions or spaces 

(e.g. 10 spaces . here). 

Note that at this poirit after all the required text is 

printed the left margin ~ust be reset to its original position 

(i.e. move the left margin left 10 spaces). Figure 3.2 

contains a page of output employing the MD feature. 

The new page format code (NP) . permits the user to 

control the paging of his text. When the NP format code is 

encountered the current output line is terminated and output 

onto the current page and a new page is started. If the 

number (NNN) following the NP code is non-zero the current page 

number is set to this number. Else the current page number 

is used. · .The header is printed on the top of the page and 

may be blank. The text of the line is then processed. The 

user can strictly control the amount of text on each page by 

overriding the page depth parameter with the NP code. 

The NP code is also useful for reformatting selected 

page numbers or for formatting sections of text with non- . 



TEF TEXT EDITOR AND FORMATT~R ~91-

BASIC TERMS AND NOTATION USED 

LINE OR RECORD - THESE TWO TERMS WILL BE USED INTERCHANG~ABLY 

DURING THE DISCUSSION AS THEY CAN BE V-IEWED 

FROM THE USERS POINT . or VIEW AS REPRESENTING 

ONE STRING OF MAXIMUM LENGTH 130. · 

FORMAT WORD - THE WORD CONTAINED IN EACH RECORD WHICH STOR~S THE 

FORMATTING CODES TO SPECIFY THE DESIRED FORMATTING 

FOR THAT LINE OF TEXT. IT CONSISTS . OF 10 CHARACTERS 

OF TEXT DIVIDED INTO 3 FIELDS~ FIELD 1 CONSISTS OF 

CHARACTER POSITION l1 FIELD 2 CONSISTS OF CHARACTER 

POSIT!O~S 4 - 8 AND FIELD 3 CONSISTS OF CHARACTER 

· POSITIONS 9 AND 10} WHERE THE CHARACTERS IN THE 

WORD ARE NUMBERED FROM LEFT TO RIGHT. CHARACTER 

POSITIONS 2 AND. 3 ARE UNUSED AT PRESENT. · 

FORMAT OF DISPLAYED LINES- WHEN A LINE OF . TEXT IS DISPLAYED ON 
. . 

THE CRT SCREEN THE 130 CHARACTERS OF 

TEXT ARE SPLIT INTO TWO LINES WITH 

70 CHARACT~RS ON THE FIRST LINE AND 

60 CHARACTERS ON THE SECOND. 

FOLLOWING THE 60 CHA~ACTERS ON THE 

SECOND LINE IS THE 10 -CHARACTERS OF 

THE FORMAT WORD BETWE~N TWO SLASHES. 

Figure 3.2 The Margin Delay Feature 



. 92 

consecutive page numbers. 

Field 3 contains format codes consisting of 2 letters 

without a numeric quantity associated with them. The break 

codes in field 3 are the paragraph indenta~ion code(IN), the 

centre text code(CT), the non-formatted output code(NF) and 

the spacing control codes SS (single spacing) and DS (double 

spacing). 

The paragraph indentation code (IN) ·causes a new 

paragraph to be started with the text in the line indented 

five spaces from the left margin. When the IN code is encount­

ered the current output line is output and a new line of text 

is started with the left margin moved right five spaces for 

the first output line formed. The le·ft margin ·is reset after 

this line is printed .and before the remaining text in the line 

is output. 

Text can be centered between the left and right margins 

for headings and titles. The centre text (CT) format code 

writes the current output line onto the output file and then 

processes the text to be centered. Leading and t~ailing 

blanks are trimmed from the input line, the resulting text 

is centered between the left and right margin and written 

to the outp.ut file. 

The ·output of lines of text in non-formatted mode is 

performed by the non-formatted output code (NF). When the NF 



93 

code is applied to an input line of text the current output 

line is printed and the input line of text is printed in 

non-formatted mode. The text is output exactly as it was 

inputted with the first character of the output line starting 

at -the left margin. After printing the line a new output line 

will be started with the text of the next input line read. 

This feature is useful for rigidly formatted output such as 

tables, lists, etc. or for output of character strings where 

embedded blanks are significant. 

Running headings may be defined, changed and cleared 

dynamically during formatting. The running heading format 

code (RH) allows the user the ability to define a string o-f 

characters as the current running heading to be used in the 

header line. The RH code trims off leading and trailing 

blanks from the text of the line and the resulting text string · 

is used as the new running heading. The heading may be a 

maximum of 60 characters long. The running heading is centred 

between the left and right margin and is printed at the top 

of each page. 

The ciear heading format code (CH) clears the current 

heading to blanks, effectively deleting the running heading. 

Spacing is controlled by the single space -(SS) and- _ 

the double space (DS) format codes. The SS code changes to 

single spacing and the DS code changes to double spacing after 



the current line is output. The text of the line is then 

processed. Spacing will remain the same until changed by 

another DS or SS format code. Before formatting begins the 

user may specify either single or double spacing. 

Page numbering is determined by the PO and PY format 

codes. The PO code turns page numbering off so that page 

numbers are not printed at the top of each successive page. 

The PY code selects page numbering f .or each page and the· 

current page number is incremented by one after each page 

is output. When page numbering is turned off the current 

page number remains at the next consecutive page number to 

be used and does not change until . page numbering is . turned 

on again or the user changes it with a NP code. The page 

number is printed above the right margin three lines 

· from the top of the page. 

94 

In the above discussion, I have outlined the operation 

of each format code in field 2 and 3 acting alone on a line 

of text. Format codes may be contained in both fields for a 

line of text. In this case, field 2 is processed before 

field 3 and then the text . is processed. 

The user should be ·aware of the order of execution 

when specifying format codes. For example, when specifying 

the new page code and the running heading code together, the 

new page is started and the header printed before the current 

heading is changed by the RH code. 



The complete text file may be formatted or only 

· sections of it • . Formatting will terminate at the end of the 

file or when a line containing the number 999 in field 2 of 

its format word is encountered. Formatting may begin at the 

first line in the fil~ or at the current line. 

The remaining pages in this chapter contain examples 

of formatted output produced by TEF and a section on the 

reformatting of a text file or sections of it. 

95 



TEF TEXT EDITOR AND FORMATTER -96-

TEF USERS MANUAL 

INTRODUCTION 

TEF IS AN INTERACTIVE TEXT EDITOR AND FORMATTER FOR 

CREATING, MODIFYING A~D FORMATTING TEXT USING DIRECTIVES PROVIDED 

BY T8E USER AT A TERMINAL. TEF IS IMPLEMENTED ON A CONTROL DATA 

6400 COMPUTER AND RUNS INTERACTIVELY UNDER I~TERCOM VERSION 4.3, 

. WHICH PROVIDES TIME SHARING ACCESS TO THE COMPUTER, OR IT CAN BE 

EXECUTED IN BATCH . MODE. THE SOURCE · LANGUAGE IS MOSTLY FORTRAN 

WITH A FEW COMPASS ASSEMBLY LANGUAGE ROUTINES. 

TEF CAN MANIPULATE VARIOUS KINDS OF TEXT INCLUDING 

PROGRAMMING LANGUAGE TEXT AND NATURAL LANGUAGE TEXT <E.G~ ENGLISH 

.TEXT). HOWEVER, IT WAS DESIGNED PRIMARILY FOR THE MANIPULATION OF 

NATURAL LANGUAGE TEXT. THE COMMAND AND FILE STRUCTURE WAS CHOSEN 

TO FACIL.ITATE THIS TYPE OF TEXT MANIPULATION. 

THE PRIMARY OBJECTIVE OF THIS PROJECT WAS A TEXT EDITOR ANti 

FORMATTER TO BE USED FOR THE PREPARATION AND PRINTING OF REPORTS~ 

MANUALS, ROUGH DRAFTS OF MANUSCRIPTS~ AND OTHER DOCUMENTS IN 

WHICH MANY REVISIONS ARE NECESSARY. 

ONE OF THE BASIC CHARACTERISTICS OF TEF CONTENT 

ADDRESSING. CONTENT ADDRESSING ALLOWS THE ·usER TO SELECT LINES OF 
' 

TEXT BY THEIR CONTENT, RATH~R THAN BY LINE NUMBER. THIS IS A .MORE 

NATURAL WAY OF ADDRESSING ENGLISH TEXT AND THE USER NEED NO T BE 

CONCERNED WITH RESEQUENCING OF LINE NUMBERS, · OR SPECIFY1NG 

Figure 3.3 Double Spaced Page of Output 



TEF TEXT EDITOR AND FORMATTER 

BASIC TERMS AND NOTATION USED 
+ - DENOTES FORWARD MOTION IN THE TEXT FILE. ,. 

- - DENOTES BACKWARD MOTION IN THE TEXT FILE. 

* - REPRESENTS A STRING DELIMI'TER AND CAN PE ANY NON-ALPHABETIC 
CHAF.~~~CTEF.: HOT COt·ITA It·~ ED IN THE ~::TR It·4G IT IS EHCLOS I t·~G. A 
SLASH (/) IS THE MOST COMMON DELIMITER USED. 

STRING- IS A STRING . OF CHARACTERS AVAILABLE IN THE CHARACTER SET 
OF THE PARTICULAR MACHINE BEING USED. 

NNN ~ A STRING OF FROM 1 - 3 NUMERIC DIGITS. 

[ J - 0 P T I 0 t·i A L F Ct R t·1 A T 0 F C 0 t·H·i A ~·HI . 

. CUF.:F.:Et·.JT L I t·iE IS THE LINE OF TEXT AT WHICH THE FILE IS 
POSIT I Ot·~ED. TH u:: LI t·~E IS D I SPLAVED hJHEt·~E'···'EF.: IT 
CHANGES DURING THE . EXECUTION OF AN INSTRUCTION. 
ALL TEXT EDITING IS PERFORMED ON THE CURRENT 
LINE. 

WORD - IS A CONSECUTIVE STRING OF NON-BLANK CHARACTERS. 

:- : LINE OR RECORD - THESE TWO TERMS WILL BE . USED INTERCHANGEABLY 
DURING THE DISCUSSION AS THEY CAN BE VIEWED 
FROM THE USERS POINT · oF VIEW AS REPRESENTING 
ONE STRING OF MAXIMUM LENGTH 130. 

FORMAT WORD - THE WORD CONTAINED IN EACH RECORD WHICH STORES THE 
FORMATTING CODES TO SPECIFY THE DESIRED FORMATTING 
FOR THAT LINE OF TEXT. IT CONSISTS OF 10 CHARACTERS 
OF TEXT DIVIDED INTO 3 FIELDS. FIELD 1 CONSISTS OF 
CHARACTER POSITION 1~ FIELD 2 CONSISTS OF CHARACTER 
POSITIONS 4 ~ 8 AND FIELD 3 CO NSISTS OF CHARACTER 
POSITIONS 9 AND 10J WHERE THE CHARACTERS IN THE 
WORD ARE NUMBERED FROM LEFT TO RIGHT. CHARACTER 
POSITIDNS 2 AND 3 ARE UNUSED AT PRESENT : 

FORMAT OF DISPLAYED LI NES ' WHEN A LINE OF TEXT IS DISPLAYED ON 
THE CRT SCREEN THE 130 CHARACTERS OF 
TEXT ARE SPLIT INTO TWO LINES ~ITH 
70 CHARACTERS ON THE FIRST LINE AND 
60 CHARACTERS ON THE SECOND. 
FOLLOWING THE 60 CHARACTERS ON THE 
SECOND LINE IS THE 10 CHARACTERS OF 
THE FORMAT WORD BETWEEN TWO SLASHES. 

Figure 3.4 Sinale Spacing Using Margin Delay Feature 



THE FORMATTING OF TEXT 
/ 

SPECIFYING THE FORMATTING INF6RMATION DURING EDITING IS 
PERFORMED USING THE /FORMAT COMMAND AND THE TEXT IS FORMATTED 
ACCORDING TO THESE SPECIFICATIONS BY THE /FLIST COMMAND. IF A 
LINE DOES NOT CONTAIN ANY FORMATTING INFORMATION IT iS DEFAULTED 
TO RIGHT JUSTIFICATION SINCE THE MAJORITY OF TEXT FORMATTING WILL 
REQUIRE JUSTIFICATION ON OUTPUT. 

EACH LINE OF TEXT · IS TREATED AS A CONTINUATION OF THE 
PREVIOUS LINE SEPARATED BY ONE BLANK UNLESS A BREAK OCCURS. 
CERTAIN FORMAT CODES CAUSE A BREAK TO OCCUR WHEN FILLING AN 
OUTPUT LINE. WHEN A BREAK OCCURS THE CURRENT OUTPUT LINE BEING 
FORMED IS ENDED AND OUTPUTTED BEFORE THE FORMAT CODE IS EXECUTED 
AND A NEW OUTPUT LINE IS STARTED WITH THIS NEW ~INE OF TEXT. ALL 
THE FORMAT CODES IN FIELD TWO OF THE FORMAT WORD ARE BREAK CODES 

. EXCEPT FOR THE PRINT BLANKS AFTER THIS LINE CODE <BA). FOR THE BA 
CODE THE BREAK OCCURS AFTER PROCESSING THE LINE THAT CONTAINS IT: 

THE FORMAT CODES IN ·FIELD 3 OF THE FORMAT WORD WHICH CAUSE A 
' . 8 F.: E A K A R E PAR A G F.: A PH I t~ II E H TAT I 0 t·~ < I t·D .• C E t·~ T R E T E >:: T ( C T ) .. P F.: I NT THE 

LINE NON-FORMATTED (NF)J AND THE SPACING CONTROL CODES SS <SINGLE 
· sPACING) AND DS <DOUBLE SPACING). THE REMAINING FORMAT CODES DO 

t·iOT Cr~lU::;E A BF.:EAt::: C Or·~T I t·~UE THE PF.:E '·.•' IOU::; LINE OF TE:=<T·. 
FiELD 1 IS NOT USED FOR FORMATTING INFORMATION BUT IS USED 

FOR SUB-SECTION MAR~ERSJ AS AN IDENTIFICATION TO THE USER AS TO 
· WHAT LINES OF · TEXT ARE DEFINED AS THE START OF A SUB-SECTION IN · 

THE TE>=:T FILE. 
THE FORMAT CODES IN FIELD 2 ARE FOLLOWED BY A MAXIMUM OF 3 

NUMERIC DIGITS IN THE FORM XXNNN, WHERE XX IS A FORMAT CODE AND N 
IS A NUMERIC DIGIT. THESE £ODES PRbVIDE A MEANS TO ADJUST LEFT 
AND RIGHT MARGINS DURING FORMATTING, PRINT BLANK LIHES BEFORE OR 
AFTER A LIN~ OF TEXT, TO START A NEW PAGE AND TO CHANGE THE 
CURRENT PAGE NUMBER. 

WHEN THE LEFT MARGIN IS SHIFTED LEFT CLL) (RIGHT (LR)) THE 
TE::·=:T IH EACH L It-~E IS :::HI FTED LEFT ( R I CiHT) Hr·H·~ SPACES IN THE 
OUTPUT LINE. WHEN THE RIGHT MARGIN IS SHIFTED LEFT CRL) (RIGHT 

. ( RF.:)) THE 1.•.1 I DTH OF E~1CH L It·iE (E. I. HUt1BEP OF C!-ff::rRf~CTEF.:S PER L It·-IE) · 
IS DECREASED (INCREASED> BY NNN CHARACTERS, EFFECTIVELY 
I t·i C F.~ E A !:: I t·~ G ( D E C F-:~ E ;:::1 ~; I r··l G ) T H E h.! I D T H 0 F T H E F.: I G H T t··i 1=4 F.: G I t·~ . 

THE MARGIN DELAY CODE (MD) DELAYS MOVING OF THE LEFT MARGIN 
F.: I G H T U r·~ T I L 0 t··l E 0 U T F' U T L I t·~ E I ::;; P F.: I t·~ TED F F.: 0 t'1 T H I S L I r·i E 0 F T E >=: T . 
THIS IS USEFUL FOR FORMATTING TEXT OF THE FORM, 

MD CODE - AFTER THIS FIRST LINE IS PRINTED THE LEFT - MARGIN IS 
MOVED THE SPECIFIED NUMBER OF SPACES RIGHT. (E.G. 11 
~:;PACE~:; HERE) 

NOTE THAT AT T~IS POINT AFTER ALL THE REQUIRED TEXT IS PRINTED 
THE LEFT MARGIN MUST BE RESET TO ITS ORIGINAL POSITION (I.E. MOVE 
LEFT MARGIN LEFT 11 SPACES). 

Figure 3~5 Single Spaced Page of Output 



TEF HEADER L I t·~E -99-

5 ) 1·1 0 'v' E C 0 t·1 r·1 A l··~ D 

PUF.:POSE : TO t'10VE FORI.r.!A'F.:D OR E:ACKI.r.IAF.:D FORH THE CUF.:~:Et·iT L I I··{E I H 

THE FILE. 

F0f.H'1AT 1 

·DI::::;cp I F'T I Clt·i : FOF.:NAT 1 OF THE . t·10'.,.'E INSTRUCT I OH I.,J ILL t·10'·lE FORI.~IARD 

.(OR BACKWARD) IN THE TEXT FILE FROM THE CURRENT LINE TO A LINE OF 

THERE IS NO LINE · IN THE FILE WHICH MATCHES THIS STRING THE END 

<OR E:EGINING) OF THE TEXT FILE WILL BE REACHED AND A MESSAGE WILL 

. BE OUTPUT. CARE SHOULD BE TAKEN IN SPECIFYING THE STRING EXACTLY 

~ INCLUDING EMBEDDED BLANKS OTHERWISE THE WHOLE FIL~ WILL BE 

SEARCHED AND DISPLAYED WITH NO SUCCESS AND CONSIDERABLE EXECUTibN 

. ... ·· t·1 0 \·' E + .···· T H I :;:; 
\ 

F 0 F.: E ::-:; A t·1 P L E .. I F T H E C 0 t·H1 A N D 

I c , . .. _. .. 

WAS ENTERED AND THE FILE CONTAINED .THE. LINES~ 

T H E C U F.: F.: E r{ T L It·i E 

THI::3 ISH T IT. 

THI::; IS IT . 

. THE FI~E WILL BE POSITIONED AT THE THIRD LINE AND DISPLAY IT. 

NOTE THAT IF THE COMMAND WAS /MOVE+/THIS IS/ THE FILE WOULD BE 

POSITIONED AT THE SECOND LINE. 

·Figure 3.6 Formatted and ·Non-Formatted Output 



-1('!.1)-

THE INPUT OF TEXT 

TEXT CAN BE ENTERED INTO THE TEXT FILE FROM TWO SOURCES IN 

TWO DIFFERENT MODES. TEXT CAN BE INPUT FROM A FILE CONTAINING 

CARD IMAGES (80 CHARACTER RECORDS) 0~ FROM THE C~T TERMINAL. A 

FILE CONTAINING CARD IMAGES CAN BE CREATED AND USED AS INPUT BY 

• UTILIZING THE /TEXTFILE COMMAND OR TEXT CAN BE ENTERED FROM THE 

CRT TERMINAL USING THE /ADD COMMAND. THERE ARE TWO MODES OF INPUT 

. : PROGRAM TEXT MODE AND ENGLISH .TEXT MODE. PROGRAM MODE REFERS TO 

~ · THE TEXT OF COMPUTER LANGUAGE PROGRAMS) WHILE ENGLISH TEXT REFERS 

· TO ANY NATURAL LA~··IC~UAGE TE>=:T REPORTS~ M~NUALS, 

MANUSCRIPTS ETC. THE CHOICE OF THESE TWO MODES IS MADE WHEN THE 

,FILE IS FIRST OPENED FOR EDITING. THE USER IS PROMPTED TO SELECT 

THE TYPE DF TEXT TO EDIT BY THE LINE~ 

--TYPE OF TEXT TO EDIT~ ENTER N - NATURAL LANGUAGE TEXT 

ENTER P - PROGRAMMING L~NGUAGE TEXT 

THE USER SELECTS PROGRAM TEXT MODE BY ENTERING THE LETTER P AND 
ENGLISH MODE BY ENTERING THE LETTER N <NATURAL LANGUAGE TEXT). 
WHEN TEXT IS ENTERED IN PROGRAM MODE~ THE TEXT IS STORED 80 
CHARACTERS PER RECORD OR LINE .. WHEN USING THE /TEXTFILE COMMAND 

· EACH CARD IMAGE READ IN OCCUPIES ONE LINE(OR RECORD) OF TEXT . 
. WHEN ENTERING TEXT FROM THE CRT THE MAXIMUM NUMBER OF CHARACTERS 

E r·i T E F.: ED P E F~ L I HE I S 7 2 . T H ERE F 0 R E } T HE L ~~ ::; T B CHAR A C T E F.: S I t·i THE . 
RECORD WILL BE BLANKS. 

WHEN ENGLISH TEXT MODE IS SELECTED~ THE USER HAS CONTROL 
. 0 '•,•' E F.: T HE P E F.: C E t·-l T A G E. 0;. E t:4 C H F.: E C 0 F.: D T 0 E: E . F I L LED ( 7 ~3 - 1 [10 ~·~ 0 F 

130 CH ::~RACTEP::: t·1A::-:; I t··IUI·1). THE P · !~:01··1PT .. 
--ENTER PERCENTAGE OF RECORD TO BE FILLED ... 

IS DISPLAYED TO SELECT THE PERCENTAGE TO BE FILLED. THE REMAINING 
SPACE IS FILLED WITH BLANKS FOR FUTURE ~DDITIONS TO 

Figure 3.7 Single and Double Spaced Output 



-101-

INTRA-LINE EDIT _ING COMMANDS 

THE I NTRA-LINE EDITING COMMANDS ~LLOW 

CHARACTER BY CHARACTER EDITING OF A -LINE. 

T l_;c~ .. • 
_ I 71- I HEI.r.l LINE 

FROM PARTS OF AN EXISTING LINE ALONG WITH 

INSERTIONS OF NEW TEXT. THESE COMMANDS CAUSE 

CHARACTERS TO BE COPIED FROM THE OLD LIN E 

INTO A NEW ONE BEING FORMED, SKIPPED OVER IN 

THE OLD LINE WITHOUT 

INSERTED INTO THE NEW LINE. WHEN THE EDIT IS 

FINISHED THE NEW LINE REPLACES .THE OLD ONE 

AND ADDITIONAL NEW LINES ARE GENERAT~D WHERE 

NECESSARY IF OVERFLOW OF THE OLD LINE OCCU RS . 

EACH INTRA-LINE EDIT TO BE STORED MUST BE 

TERMINATED BY THE /FINISH COMMAND. IF WHILE 

At·i I t-~ T F.: 1~ - L I t·~ E EDIT .. 

NON-INTRA-LINE EDIT CO MMAN D IS ENTERE D THE 

EDIT IN PROGRESS IS CANCELLED AND THE OLD 

LINE IS NOT CHANGED : 

THE CURRENT POSITION IN THE OLD AND THE 

r~Ehl L I t·~E E•'··' 'I 

F' E F.: F 0 FU·1 ED . THE C U F.: F.: E t·l T P 0 S I T I 0 I··~ _ It·~ E I THE F:: 

LINE IS -THE NEXT CHARACTER TO BE PROCESSED. 

A COP'r' THE CURF::ENT 

Figure J.g Margin and Line Width Changes, line width of 45 
characters, left rnarg1n w1dth of 15 spaces. 

101 



-1 f:i2-
102 

INTRA-LINE EDITING COMMANDS 

EDITING COMMANDS 

ALLOW CHARACTER BY CHARACTER EDITING OF 

A LINE. THEY PROVIDE A MEANS OF FORMING 

A NEW LINE FROM PARTS OF AN EXISTING 

LINE ALONG WITH INSERTIONS OF NEW TEXT. 

THESE COMMANDS CAUSE CHARACTERS TO BE 

COPIED FROM THE OLD LINE INTO A NEW ONE 

BEING FORMEDJ SKIPPED OVER IN THE OLD 

L I t·~ E l .• J I T H 0 U T 8 E I t·H~ C 0 P I ED .• A r·i D 1 t·.t !:;; E R TED 

INTO TH~ NEW LINE. WHEN THE EDIT IS . 

FINISHED THE NEW LINE REPLACES THE OLD 

f~DD IT I Ot·4AL t·~EI ... I 

GENERATED WHERE NECESSARY IF OVERFLOW OF 

THE OLD LINE OCCURS. EACH INTRA-LINE 

EDIT TO BE STORED MUST BE TERMINATED BY 

THE /FINISH COMMAND. IF WHILE PERFORMING 

AN INTRA-LINE EDIT) A NON-INTRA-LINE 

EDIT COMMAND IS ENTERED . THE EDIT IN 

PROGRESS IS CANCELLED AND THE OLD LINE 

IS t·iOT CHAt·H;;ED. 

THE CURRENT POSITION· IN THE OLD AND 

THE t··! E l.t.l L I I··~ E I ·=· ·-· DETERMINED BY THE 

COMMANDS PERFORMED. THE CURRENT POSITION 

Figure 3. 9 t-1arain and Line Width Changes, line width of 40 
· characters, left ·marain width of 20 spaces. 



TABLE OF CONTENTS 
103 . 

· - PAGE NO. 

I t·iTPODUCT I Ot-i .. .. ....... · .............. : .... , ......... ·_ ....... 1 

THE 
I 

IHPUT OF TE:=<T . . .. ... .. . . .. , ................. ~ .... _ ....... 3 

T E F C 0 1·1 t·1 A H D S . . . . . . . . . . . • . . . · . . . . . . . · . . . . . . . . . . ~ . . . . · . . . . . . ·. . . . . . 6 

8t=1SIC TEF.:t·t:: AND HOTATIOJ~ U:::ED ............ ~ ... ·- ............... 7. 

TE:=·~TF I LE COt·1i·1At·~D ..... : ................ · .......... -. ...... ....... 9 

ADD COt·1t·1At·HI .................. · ....................... _: .... ; . 1 f1 

PEtF.:EATE COi•1l.·1At·iD .... : ...................... -....... .... • •.. ... 13 

E: E G I N C 0 N t·1 i~ r·~ D . . . . . . . . . . . . . . . . . . . . . . . . . . . · . ~ . ~ . . . . . . . .. . . . . . . . . 1 5 

t·10VE COt··lt·1AHD ...... . .. -....... . ...........•.................. 16 
. . . . . 

. LOCl~·rE COI'1t·1AHD ....... ...... . . -... ... . .. . -.. - •... _ ............. ; .. 1:3 

CURREt·~T L I HE PEPLACEt·1EHT COt·H·Hit-~D ........... · ............. _ ... 19 · .. 

ALL REPLACEt·1Et·iT CONt·h~t-~D .... · ................... • ............ 20 

DEL E T E C 0 t·1t'1 A H D . . . . . . . . . . . . . . ~ . . . . . . . . . . . . . . . . . . . . . . . • . . -. . . . . 2 t 

SECT I Ot·~ COt·1NA t·~D ................ -..... .... , .... : . · .. : ... : . ..... 24 

L I :::T C0i"lf·1At·iD ........... ...............• ... : .................. 25 

PUHCH COt·11"1Ar--ID .... ..... . ................. ..• ...........•..... 26 

:::c~:A T CH COI·H•iA t·-iD ....... . ........... _: .. -... · .. -..... - ............ 27 

r· n t·' T '!' t·' II' r· nt·i t·~ 1::i t·' D · · · . . · . ·:· c· .. • .. 1 l 1 .. C. .. • - , ; 1 1 , 0 , o , , o 0 0 0 , 0 , , 0 0 , , , 0 , , , 0 , • , . , , • , 0 , 0 , 0 , , , , , , 0 , , 0:... I.J 

It-4 T F.: A- L I t-4 E ED I T I ~~ G C 0 I·H·1 At·-! D S . . . . . . . . . . . . . . . . . . . . · . . . . . . . . . . . . 2 St 

~<OP'r' t=4t·HI :=<KOP'..-' COt·H·1At·HIS ...... ~ ............ -.. . .... ... . ...... 3 0 

:::l< I P "AND >=::::KIP COt·H•1f)r·HIS ... ........... . .......•........ .. .... 31 
. .. 

I t·~:::EPT COt·1t·1A h D ..................... ...... .......... · ... . . · ..... 3 ~:: 

F I t·~ I ::: H C 0 r·1 t·1 A t·i D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . · . . . . . . . . . . . . . . . 3 3 

Figure 3.10 Page· of Non-Formatted Output 



104 

3.4 Reformatting of a Text file 

The text of a file inay be punched on cards or stored 

as card images on a permanent file. Storage of a text file 

as a sequential file requires much less storage than if it 

is stored as a random access file. A text file that is used 

only occasionally can be stored more compactly as a sequential 

card image file and the text file ·can be formed when needed 

from this text. For example, a user's manual can be stored 

as a sequential file and a random access file need only be 

formed when extra copies are required or for updates. The 

TEF punch command produces two output files. One contains 

the actual text of the file and the other contains the 

commands necessary to insert the originai formatting infor­

mation into the newly created text file. Therefore, a text 

file .or any part of it can be recreated when nee.ded using 

these two files. The text lines are recreated by reading from 

a file containing the punched text. The formatting infor­

mation is inserted by using TEF in batch mode with the input 

commands read from the file containing the reformatting 

commands. The user may recreate just the lines of text and 

add new formatting information if desired. 

Several different formatted versions of a text file 

can be maintained and only one copy of the text need be stored. 

The different versions correspond to different formatting 



. 105 

command files. ·The user recreates the text of ·the file and 

then uses the ~pecific formatting command file for the version 

required. This can be usefu~ when deciding ·On a suitable 

format for a section of text or for output on devices requiring 

different page formats. Alternate formatted versions can be 

easily produced and compared. 



CHAPTER 4 

CONCLUSIONS. 

In Chapters 2 and 3, I have discussed the TEF text 

editing and formatting system. In pursuing this project, I 

have achieved the following initial objectives: to produce 

a flexible text editor and formatting system which is -easy to 

access, learn and use. 

The command structure is very simple and hopefully 

will be convenient for most editing purposes. I have invest­

igated a number of text editors and formatters and decided 

upon a set of commands which would be helpful in editing the 

user's text. 

A simple and natural addressing scheme is used. 

Addressing lines of text by the·ir content is a concept which 

all users can easily understand. 

The majority of the formatting features are very 

primitive. This allows the user to achieve almost any format 

for his text by using combinations of these basic commands. 

Many formatting features are analogous to the operations of 

a typewriter. 

TEF requires about 37K words of central memory storage. 

106 



Additions will require little modification of the existing 

system. TEF is written in a commonly accepted language 

(FORTRAN) and is relatively machine independent. 

107 

Response times vary widely depending on the system 

load of the computer and on the type of instructions being 

executed. For example, a typical response time for advancing 

in the ·file one line is less than a second or two, while 

formatting of a large file may take 2 or 3 minutes. 

The CPU time required to format an 8 1/2 X 11 inch 

page double spaced with 65 characters per line and 58 lines 

per page is about .12 seconds. The TEF users manual consists 

· of about 700 text file lines. The formatting .of this file 

takes about 5.5 CPU seconds and produces 51 pages of output 

(8 1/2 X 11 inch pages). 

In summary, I have implemented and tested a text 

editing and formatting system which is a useful tool for the 

preparation of written material subject to frequent revisions. 

4.1 Improvements and Additions to TEF 

This section will discuss some features which could 

prove to be useful extensions to TEF. Because of time 

restrictions they were not implemented in the present version 

of TEF and will be discussed only· briefly here •. 



108 

4.1.1 Text Buffer Areas 

A useful feature of some text editors allows the 

storing of text in a text buffer an~ this buffer of text can 

then be inserted at any place in the file and as many times 

as req~ired. This feature is useful for programming language 

editors when placing common documentation into many subroutines 

or for frequently changing structures such as common blocks 

or dimensioning in FORTRAN. 

·Another use for the text buffer areas is in macro 

definitions [KER 72] • The editor can be directed to take 

its editing commands from a buffer instead of from the CRT. 

The creation of a complex editing procedure in a buffer, and 

then repeated application of the buffer to some text, would 

permit a great saving in effort. Having multiple buffers with 

names associated with them or the .ability to define a macro 

by a name would allow execution of a long sequence of commands 

by specifying the name of the buffer or macro. 

4.1.2 Text Compression 

The "information exp-losion" noted in recent years 

makes it essential that storage requirements be kept to a 

·minimum. Large· text files can be compressed into a more 

compact and condensed form to greatly reduce .. the storage 

requirements. Other advantages of text compression are reduced 



109 

data transmission time and the security of the encoded compr- . 

essed text. 

Most data compression methods exploit the non-random­

ness of useful information at the character level, by storing 

the more frequent combinations of characters iri ·condensed 

form. The searching processes of information retrieval can 

be carried out on the compressed text, involving fewer match­

ing operations. 

Mayne lt1AY 75] and Marron [MAR 67] discuss automatic 

data compression techniques which choose codes based on the 

commonest sequences of characters in a _given piece of text. 

Some methods scan all of the original data ·to discover the 

most frequent character sequences or strings while others 

scan a small sample of the text. 

Lesk ~ES 70] investigates several algorithms for 

compressing English and FORTRAN text. · 

In one typical method the characters which occur most 

frequently are receded so that fewer bits are needed to 

represent them than in the original. Similarily, the less 

frequent. characters may require more bits to be represented 

than in the standard machine represe~tation. 

Another method involves the receding of common 

character strings. A sequence of chara6ters forming a 

group of frequent occurrence is receded as a single entity. 



Clearly, if a number of different sequences of several 

characters occur frequently in the text, there is the 

possibility of a considerable compression by receding such 

strings. 

For large text files a compression scheme could be 

valuable for a text editing system. 

4.1.3 Additional Formatting Features 

110 

Figure and ·footnote commands would be useful additions 

to TEF. Many authors rely heavily on footnote references. TEF 

could be extended to generate a footnote and a . footnote 

reference marker at specific places in a user•s text. The 

figure command would collect text for a . figure and "fit" it 

onto a page or split it over several pages when necessary. 

The length of the running heading could be altered 

to allow a running heading of several lines. 

The specification of where the page number is to be 

printed could prove useful. Some users might prefer the 

page number either at the bottom of the page or centered at 

the top of the page. 

·Additional printer chains could ·provide special 

characters, underscores, lower case characters and indexing 

notation. 



Automatic indexing and renu.Ttlbering of sections or 

references after changes have been made to a file would also 

be a valuable addition. 

111 



Notation for Appendices 

STRING - a string of characters with or without embedded 
blanks. 

+ - denotes forward motion in the file •. 

- denotes backward motion in the file. 

NNN or MMM - a maximum three digit integer number. 

[] - optional part of command. 

CH - a single character. 

112 

d - a delimiter, any non-alphabetic character including 
blank. 



Command 

1) /TEXTFILE 

2) /ADD 

3) /RECREATE 

4) /BEGIN 

5) /MOVE±dSTRINGd 

/HOVE[!NNNJ 

113 

APPENDIX A 

Summary of Editing Commands 

Description 

Adds text to the text file· from 
a card image file. 

Adds text to the text file from 
the CRT input. 

Reads input from a card image 
file of TEF punched output and 
recreates the oriqinal lines 
which were punched. · 

Positions the text file at its 
first line of text. 

Move forward(+) or backward(-) 
from the current line in the file 
to a line whose begining non-blank 
characters match STRING. 

Move forward(+) or backward(-) 
in the text file NNN lines from 
the current line. If ±NNN is 
omitted move ahead one line. 

6) /LOCATE±dSTRINGd [NNN ,MMMJ Locate a line of text in the file 
moving forward(+) or backward(-) 
from the current line that contains 
STRING between character positions 
NNN and l~.. If NNN, MMM is omitted 
·locate STRING anywhere in a line 
of :text • 

. 7) /CREPLACEdSTRINGldSTRING2d Replace the first occurrence of 
STRING! by STRING2 in the current 
line. 



. , 

114 

8) /AREPLACEdSTRINGldSTRING2d Replace every occurrence of STRINGl 
by STRING2 starting with the current 
line and moving forward in the file. 

9) /DELETE±dSTRINGd 

/DELETE [±NNN) 

10) /SECTIONdCHd 

·11) /LIST [dNNNd] 

12) /PUNCH (dNNNd] 

13) /SCRATCH 

14) /CONTINUE 

Startinq with the current line 
move forward(+) or backward(-) 
in the file and delete lines until 
a line is reached whose begining 
non-blank characters match STRING. 

Delete NNN lines of text startinq 
with the current line and moving­
forwa.rd ( +) or backward (-) in the 
text file. If ±NNN is omitted 
the current line is deleted. 

Position the file at the pre-defined 
sub-section CH. 

List NNN lines of text starting 
with the current line with their­
corresponding format codes on the 
printe·r. If dNNNd is omitted the 
whole file is listed. 

Punch NNN lines of the text file 
starting with the current line 
and generate the commands necessary 
to recreate the formatting 
information they contain • . If dNNNd 
is omitted the whole file is 
punched. 

·scratch any output from TEF 
accumulated so far. (TEF Output File) 

Repeat the previously entered 
command. 

15) Intra-line Editing Commands 

a) /KOPYdCHd and /XKOPYdCHd Copy characters from the old line 
to the new line being formed up 
to and including(KOPY) or excluding 
(XKOPY) the next occurrence of 
the character CH. 



b) /SKIPdCHd and /XSKIPdCHd 

c) /INSERTdSTRINGd 

d) /FINISH 

16) /ENDFILE 

17) /EXIT 

'18) /FORMATdFORMAT CODEd 

19) /FLIST [dcd] . 

115 

Skip eharacters in the old line 
up to and including(SKIP) or 
excluding(XSKIP) the riext 
occurrence of the character CH. 

Insert STRING into the new line 
being formed • . 

Copy the· rest. of the old line 
into the new line being formed . 
and replace ·the old l .ine by 
the new one in the text file. 

Make the current line in the file 
the last line in the file. 

Exit from TEF and return -to 
INTERCOM control. 

Add th~ FORMAT CODE into the 
format word of the current 
line. . If the FORMAT CODE is a. 
sinale letter A - J mark the 
cur~ent line as · the start of a 
sub-section in the file. 
If the FORMAT CODE is an X . cle·ar 
out all the formatting information 
to the default right justification. 
See APPENDIX B for the FORMAT 
CODES. 

Format the text file starting 
at the. current line using the 
formatting inforn1ation in the 
format words of the lines of 
text. If dCd is omitted format 

· the whole file. 



Format Code 

1) .LLNNN 

2) LRNNN 

3) RLNNN 

4) RRNNN 

5) MDNNN 

6) BBNNN 

7) BANNN 

8) NPNNN 

9) IN 

10) CT 

11) NF 

12) RH 

APPENDIX B 

Summary of Format Codes . 

Description 

Move the left marqin left. NNN 
character positio~s. 

116 

Move the left margin right NNN 
charac~er positions. 

Move the right margin left NNN 
character positions. 

Move the right margin right NNN 
character positions. 

Delay the moving of the left 
margin right NNN character 
p6sitions until orie line of 
text is output from this line. 

Print NNN blank lines before this 
line of text. . 

Print NNN blank lines after this 
line of text. 

Start a. ·new page, If NNN is. .non­
zero set current page number 
to NNN. 

Paragraph indentation of ·S spaces 
from the left margin. 

Centre the text in this line and 
print it. 

Print this line exactly as it was 
input. 

Use this text as the current 
running heading. · 



117 

13) CH Clear the running heading 
to blanks. 

14) ss Change the inter-line spacing 
to single spacing. 

15) DS Change the inter-line spacing 
to double spacing. 

16) PO Turn page numbering off. 

17) py Turn page numbering on. 

Blank is default right justification. 



[ALL 69] 

~RB 67] 

{!3AR 65] 

~EN 72] 

REFERENCES 

Allen, L., Borgelt, J., Fajman, · R. et al., 
WYLBUR Reference Manual, 
Third Edition 1969, 
Stanford Computation Center. 

Arbor, Ann, 
QED Reference Manual, 
Com-Share, Mich~gan, 
Reference No. 9004-4, Jan. 1967. 

Barnett, Michael P., 

118 

Computer Typesetting, Experiments and Prospects, 
The M.I.T. Press, 
Cambridge, Massachusetts. 

Benjamin, Arthur J., 
"An Extensible Editor for a Small Machine with 
Disk Storage", 
Comm. · ACM, 15,8, (AUG.· 1972), 742-747. 

(!3oo 73] . Bookstein, Abraham, 

[coc 74] · 

~EU 67] 

[pEw 71] 

[FAJ 73] 

[GRI 71] 

"On Harrison's Substring Testing Technique", 
Comm. ACM, _16, 3, (March 1973), 180-181. 

Control Data Corporation, 
6000 Computer Systems, 
FORTRAN Extended Version 4 Reference Manual, 
Sunnyvale, California 94086. 

Deutsch, L. Peter and Butler W. Lampson, 
"An Online Editor .. , 
Comm. ACM, 10, . 12, (Dec. 1967), 793-799. 

Dewar, Robert B. K., 
"SPITBOL Version 2.0", 
SNOBOL4 Project Document S4D23, 
Illinois Institute of Technology, 
Chicago, Ill. February 1971. 

Fajman, Roger and John Borgelt, 
"WYLBUR: An Interact ive Text Editing and Remo~e 
Job Entry System", 
Comm. AC~-1, 16, 5, (May 197 3), 314-322 • . 

Griswold, R.E., Poage, J.F., Polonsky, I.P., 
The SNOBOL4 Programming Language, 2nd ed., 
Bell Telephone Laboratories, Inc. 
Prentice-Hall, Inc. 



~AR 71] 

(IBM 69] 

~ER --] 

[KER 72] 

~ES 70] 

(MAC --] 

(MAR 67] 

(}1AY 75] 

[NEL 67] 

(STA 74] 

119 

Harrison, Malcolm C., 
"Implementation of the Substring Test by Hashing", 
Cornrn. AC~1, 14, 12, (Dec. 1971) , . 777-779. 

IB.M Cambridge Scientific Center Report, 
"A Conversational Context-Directed E~itor", 
Form No. 320-2041, 
Cambridge, Mass. ·' March 1969. 

Kernighan, B. W. and L. L. Cherry, 
"A System for Typesetting Mathematics", . 
Computing Science Technical Report No. 17, 
Bell Laboratories, Murray Hill, N.J. 

Kernighan, B. W. , . D. t-1. Ritchie and K. L •. Thompson, 
"QED Text Editor", 
Computing Science Technical Report. No. 5, 
Bell Laboratories, Murray Hill, N.J. 

Le sk , l-1 • E • , 
"Text Compression", 
Bell Laboratories, Murray Hill, N.J., 
November 1970. 

MacDonald, Jack, 
Proqram Documentation for the EDIT/3000 Text 
File Formatter, 
Hewlett-Packard, Data Systems. 

Marron, B. A. and P. A. D. De Maine, 
"Automatic Data Compression", 
Comm. ACM, 10, 11, (Nov. 1967), 711-715. 

Mayne, A. and E. B. James, 
"Information Compression by Factorising 
Common· Strings", 
The. Computer Journal, 18, 2, (May 1975), 157-160. 

Nelson, Theodor H., 
"Getting it out of our System", 
In Information Retrieval: ·critical View, 
George Schecter (Ed.), Thompson Books, 
Washington, .n.c., 1967. 

Staa, Arndt von, 
"A Text Formatter", 
:- ·Research Report CS-74-21, 

Department of Computer Science, 
University of Waterloo, Nov. 1974. 



(VAN 71] Van Dam, Andries and David E. Rice, 
"On-line Text Editing: A Survey", 
Computinq Surveys, 3, 3, ' <sept. 1971), 
93-114. 

120 




