TEF TEXT EDITOR AND FORMATTER

TEF TEXT EDITOR AND FORMATTER

By
STEPHEN JAMES MAVEETY, B.Sc.

A Project
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Master of Science

McMaster University

February 1976

MASTER OF SCIENCE (1976) McMASTER UNIVERSITY

(Computation) _ Hamilton, Ontario
TITLE: TEF Text Editor and Forrﬁatter

AUTHOR: Stephen James Maveety, B.Sc. (McMaster)
SUPERVISORS: Professor R. Rink and Professor .D. Kenworthy
NUMBER OF PAGES: viii, 120

ik

ABSTRACT

A survey of the main features and characteristics
of text editors and formatters is given. An implementation
of a text editing and formatting system is discussed. The
Text Editor and Formatter (TEF) was designed to be easy to
learn and use and to allow extensions of the present version
with little modification to the existing system. TEF is a
content (or context) oriented editing system with line

organization and text formatting capabilities.

5 5

ACKNOWLEDGEMENTS

I wish to thank my supervisors Dr. R. Rink and
Dr. D. Kenworthy for their assistance during the work
on this project and for their invaluable assistance

during the preparation of this manuscript.

iv

CHAPTER 1 --

CHAPTER 2 --

TABLE o F CAONTE N-T. 8

DISCUSSION OF TEXT EDITORS AND
FORMATTERS

1.1 Introduction
1.2 Text editors and Formatters
1.2.1 Introduction to Text
Editors
1.2.2 Basic Characteristics of
Editors
3 Program Editors
4 Text Editors
5 Formatters
Outline of Further Chapters

Introduction
Considerations in the
Design of TEF
0 Data and File Structure
1 Random Access Files
2 The TEF Random Access File
3 Doubly Linked List
4
5

NN

- . L]

NN NN N =
°

Structure

TEF File Structure

Record Structure

‘Addition and Deletion of
Lines of Text

Input of Text

Record Allocation for
Input of Text

Deletions of Lines of
Text

Implementation of the
Substring Test Technigque

The Substring Test
Technique

N N NN N NN NN
. L . L] L] .
W =N w W w W NN
L .
w N =

N
L
L)
[

29
30

39
41

43
43
49

50
50

53
57
64

64

CHAPTER 3 --

CHAPTER 4 --

APPENDIX A --

APPENDIX B --

REFERENCES

2.4.2 Choosing Parameters for the
Substring Test

2.4.3 Probability of a False
Match

2.4.4 Implementation of the
Substring Test

TEXT FORMATTING

3.1 Introduction

3.2 Basic Formatting Concepts

3.3 The Formatting of Text

3.4 Reformatting of a Text File

CONCLUSIONS

4.1 Improvements and Additions
to TEF ‘

4.1.1 Text Buffer Areas

4,1.2 Text Compression

4.1.3 Additional Formatting

Features

Summary of Editing Commands

Summary of Format Codes

vi

68
70
72
80
80
81
85
104
106
107
108
108
110

113

116

118

LIST OF F.I.-GHU:RE 'S

Overview of an On-line Editor

File and Available Space List Structure
Record Structure

Insertion of a Line of Text into the File

Allocation of a Block of Records

Deletion of the Current Line in the File

Deletion of a Block of Lines
10-bit Hashed 2-signature
The Format Word

The Margin Delay Feature
Double Spaced Page of Output

Single Spacing Using the Margin Delay
Feature

Single Spaced Page of Output
Formatted and Non-Formatted Output
Single and Double Spaced Output
Margin and Line Width Changes
Margin and Line Width Changes

Page of Non-Formatted Output

vii

Page

48
48
56
58
62
63
66
81
91
96

97
28
99
100
101
102

103

LIST O.-.F T A B LBE:S

Performance of the Substring Test
Technique using 60-bit K-signatures

Performance of the Substring Test
Technique using 120-bit K-signatures

Performance of the TEF Implementation
of the Substring Test Technique

viii

73

77

CHAPTER 1

Discussion of Text Editors And Formatters

1.1 Introduction

Vast amounts of time and money are spent on the
collection, preparation and updating of text whether it be
computer programs, letters, manuals, user guides, books,
reports or manuscripts. Due to the vast amount of information
digital computers have become an ideal mechaniém to assist
in the gathering and manipulation of text. The production
of written material such as manuals or course notes, which
is subject to frequent change, has the advantage that revisions
are easily introduced and immediately available on access to
the computer. The production of copies of manuals, user guides,
notes, etc. on a high-speed printer is fast and economical.

In many areas, on-line creation and modification of
programs and their documentation has become widely accepted
as a productive and cost-effective use of the computer.

For manuscript composition, the most obvious advantage
offered by computer assisted editing is the tremendous reduction'
in time required to produce a final or alternate document."
Normal editing requires many cycles in which the text must

be read and reread, typed and retyped. Text stored

1

in the computer need never be retyped bﬁt only updated. This

reduces the possibility of typographical errors with less

need for proofreading. Intermediate drafts can be printed out
quickly and economically. However, only the final draft need

be printed, unless the user wishes to study different formats

for his text.

What follows is a description of the design and
implementation of an online interactive Text Editor and
Formatter (TEF) to facilitate the creation, modification and
formatting of text. TEF can manipulate various kinds of text
including computer programs and natural language text. TEF
can be executed either in time sharing or batch mode and is
implemented on a Control Data 6400 computer. At present,

TEF operates interactively under INTERCOM version 4.3 which
provides time sharing access to the computer.

One of the main objectives of this project was to
design a relatively machine independent editing system. This
required using a commonly accepted programming language. In
this case FORTRAN (FORTRAN Extended Version 4 &DC 7{]) was
employed.

An editing system must be convenient to use. This
requires a concise, mnemonic command language and a method of
text organization to allow the user the ability to work with
his text in terms of its structure rather than in a notation

dictated by the system.

TEF is a content (or context) ofiented text editor
with line organization. All text operated on in TEF is grouped
into lines. The advantage of content addressing is that it
allows the user the ability to select lines of text by their
content rather than by line number. Content searching is more
natural in addressing natural language text rather than spec-
ifying numbers which bear no relationship to the text to be
edited. The character strings in the file are not subject
to change by the system as relative line numbers are and
consequently content indentification provides a more stable
method of locating portions of a file.

Some of the major editing features include travelling
to the first occurrence of a user-specified pattern in the
file, occurring anywhere in a line or only in certain columns
of a line, uniform substitution of one pattern for another
wherever it occurs or from the current position in the file
to the end of the file, character by character editing of a
line of text, random accesé to a pre-defined subsection of
text in the file and formatting of the text.

For each line of his text the user may specify format
codes that determine margins, headings, running headings,
paragraphs, left and/or right margin justification (default),
indentations, centering, paging and spacing control and non-
formatted output.

Since changes are inevitable in computer software,

systems must be adaptable. TEF was deSigned to be flexible
and can easily be expanded to incorporate new functions,
commands or formatting features as required.

The casual user need only learn a few basic editing
commands and formatting codes to benefit from TEF's capability.
A more frequent and experienced user can obtain maximum power

by making use of the additional features of TEF.

1.2 Text Editors and Formatters

l.2.1 Introduction to Text Editors

Current text editors range from simple line editors
with changes accomplished only by replacing an entire line,
to versatile editors using content searching and string
replacement commands. Some of the more versatile editors
employ a macro level language @EN 72] for defining editing
functions in terms of existing commands.

A typical structure of a text editor is represented
in figure 1.1. The user is seated at a typewriter terminal
or a cathode-ray tube display console (CRT) on which is
displayed one or more lines of his file. The user enters
editing commands via the terminal keyboard to alter the displayed
text or advance to another portion of the file to be displayed.
The commands are passed by the Terminal Input Handler to the

Command Interpreter of the editing system. This routine

TERMINAL > INPUT % COMMAND
HANDLER INTERPRETER
A
¥
OuUTPUT DISPLAY £ EDITING AND
HANDLER GENERATOR TRAVELLING
ROUTINES
A
/—-\
HARD-COPY i
FORMATTER MAIN MEMORY
PAGING
¢——>{ ROUTINES |&e—3
L SR
AUXILIARY
STORAGE
A /4
HARD-COPY

PRINTER

Figure 1.1

Overview of an on-line editor

parses the requested command (e.g. insert, delete, substitute,
move, etc.) and the associated data. The associated data
refer to positioning information, possibly where in the text
to make an insertion, deletion or substitution, or character
string data such as the string to be inserted, or searched for.

The user can "travel" through the file'to display other
areas to be read or edited. The information in the command
input would indicate the number of lines to be advanced, or
the character string to advance to and the direction (forwards
or backwards).

The information extracted from the request is passed
to the appropriate editing or travelling routine that performs
the specified operation. When an edit is performed on a line
of text the internal form of the text is altered and the
updated text is reformatted by the Display Generator for
feedback to the user. When the files are large and travelling
or large edits are invoked, the relevant portion of the file
may not be resident in core. In this case, Paging or Mass
Storage I/O Routines must be called upon to bring in the data
requested from secondary storage.

Superimposed on an editor is usually a time sharing
system which supports multiple terminals and supervises sharing
of programs, CPU time and core among users, while protecting
each user's files from unauthorized access.

The Hard-Copy Formatter is used for free form natural

language text to convert the internal structure of the text

to formatted hard copy for output on typewriter terminals,
high-speed line printers or typesetting devices. The user

may specify formatting commands or codes that determine margins,
running headings, paragraphs, left and/or right margin
justification, indenﬁations, centering, underscores, type-

face changes, etc.

These codes can be stored in-line with the text
making them indistingﬁishable from text for editing purposes
-or formatting comménds can be interspersed between lines of
text.

Advanced features implemented on some editors or
formatters include foot-note generation [STA 74] , automatic
indexing and renumbering -of sections or references after changes
have been made, spelling checks, typesetting of mathematical
symbols [KER --] etc.

The major design goals of an editor from the user's
point of view are:

1) convenience for the user, which requires a simple and
mnemonic command language; |

2) fast response to a large numbér'of terminals;

3) powerful commands performing any functions on a piece of
text that can be performed manually;

4) text addressing features which allow the user to quickly

"zero in" on a specific piece of text to be edited;

5) hard copy formatted output.

Ideally these goals should be met using as little as
possible of such resources as money, implementation time, CPU
cycles, core, disk space, etc. However, trade-offs will exist
between increased power of the system, user convenience and
response time. Increased power in the instruction set implies
greater demand on resources and therefore slower response
time. Usually the complexity of the editing commands increases
for more sophisticated systems (i.e. more parameters, exceptions
and forms for each command), possibly reducing the convenience

of the system by introducing awkward constructions.

l1.2.2 Basic Characteristics of Editors

Generally, there are two types of text to be edited;
program text and natural language text. Program text refers
to the text of computer language programs while natural
language text refers to text such as English or other language -
text used for communication between people.

Although, any given editor can be used for either
natural language or program editing, the design objectives
and the resultant capabilities are usually specialized and
more convenient for one than the other. To distinguish
between these two types of editors, computer program language
editors will be called "program editors" while natural language

text editors will be called "text editors".

The type of editing performed is different for program
editors and text editoré. Editing computer programs involves
minor substitutions in an existing line of text such as
substituting one op-code, variable name or operand address
for another, inserting or changing a label, etc. Since many
programming languages are designed to be punched onto 80
column cards, it is quite reasonabie to store the text line
by line in 80 character card image format. Obviously, this
is not the most compact method of disk storage since most of
the line is normally left blank, but itvis certainly the
easiest method to implement.

For an editor oriented towards English or natural
language text manipulation, one wants to make insertions or
deletions of arbitrarily sized character strings at various
points in the text. 1In ordinary English language text each
successive line of text is essentially a continuation of the
previous line; therefore, the system must deal with line
overflowing and contracting from line to line. The unit of
storage may be a line or statement of several hundred characters
where the text may grow or shrink dynamically.

Any editing task for text stored in a computer requires
two inputs: the task to be performed and the identification
of the portion of text to which it applies. There are many
ways to identify the text to be edited. These include giving

a line number, typing an appropriate context string, giving

10

both a line number and a context string; directly pointing at
the desired text using a light pen or indirectly using a pointer
symbol or cursor driven by keys (up, down, left, right).

Most program editors use line numbers, either relative
to the begining of the file, or absolute line numbers, to
identify lines of text. Context searches are more popular for
natural language text editors.

Formatting capabilities can be present in both program
and text editors. For example, it is useful to be able to .
present block structure of a procedural language program by
suitable line skips and indentations or to format natural

language text into paragraphs, sections and pages.

1.2.3 Program Editors

Computer program editors have become increasingly
popular in time sharing environments, where a facility for
the online preparation and modification of programs is combined
with some form of remote job entry.

An online editing system that stores the programs on
disk or tape eliminates the need for hand-carrying card decks
to and from the machine and enables updates to be made quickly
and efficiently. The time required to write, debug and run
a program is greatly reduced.

Some program editors provide immediate syntax checking

of a language as the statements are entered. Syntax checking

11

can be an important function of a progfam editor. However,
many systems having this capability can support only a limited
number of languages since the syntax of the language is
incorporated within the system.

The following are outlines of some of the features

of a few of the most common editors.

1) Conversational Context-Directed Editor

The Conversational Context-Directed editor was developed
at the IBM Cambridge Scientific Center for the 360/67 CP/CMS
operating system and known widely as the CMS editor [IBM GQ] .

Although the CMS editor is often used to edit normal
text, the editing commands and the interactive teletypewriter
terminals are best suited for the simplified text of computer
programs.

Text is stored internally depending on the type of
text being edited. The text of computer programs is stored
in fixed-length 80 character records, corresponding one-for-
one with a standard card deck of source code. Files of normal
English text are stored as variable-length records (one line/
record, with a maximum of 130 characters per record). Variable
length records provide substantial savings in the disk space
required to store a large online data base.

The line are treated as fixed length in main memory
and padded to 130 characters with blanks. |

The text file cuntains lines connected in a two-way

12

linked list structure for travelling forward or backward in
the file. Since the editor was written for a virtual memory
machine, the entire file currently being edited is kept core-
resident. Response times are normally quite good since no
programmed I/0 to secdndary storage is done by the editing
program during editing. However, should the machine or
operating system fail as the user is editing, all his work
since he last saved the current file on disk will be lost.

In addition, the maximum size of a file is limited by the
memory size of the virtual machine.

Editing features include adding lines of text to the
file, deletion of lines and string replacement within a line.
Changes within a line are made by typing fhe incorrect
characters followed by the replacement string; inserts are
made by replacing a string of text with the original text
included with the text to be inserted. Deletes are done
by a null replacement for the string to be deleted. This
method of specifying editing changes is referred to as
content or context-directed editing.

CMS does not handle line overflows so that if a string
replacement causes the line to exceed the maximum length for
the particular type of file, the extra characters are truncated.
Therefore, a large insertion in the middle of a line must
be broken into separate lines to avoid this problem. This

is one of the reasons why CMS is not particularly suited for

13

English text editing.

The CMS editor is line oriented with the line being
currently created or modified (current line) in the program
determined by a "line pointer" that changes as travelling and
editing occur. The current line pointer may move forwards
or backwards by one or more lines by following the forwards
or backwards pointer chain to scroll through the file.

The user can search for a specified character string
occurring either ih a fixed line position ("find") or anywhere
in a line ("locate"). If a match is found, the lineApointer
is moved to the line located.

The CMS editor also provides flexible tabbing facilities,
useful for column dependent languages such as FORTRAN, or

for indenting block structured languages.

2) The WYLBUR Editing System

WYLBUR is a line-oriented text editor developed by
the Stanford Computation Centre for use on the IBM 2741
teletypewriter terminals to provide an online editing facility
to be used in conjunction with the online and batch services
of Stanford's IBM 360/67 [FAs 73] , [ALL 69] .

A WYLBUR file is divided into lines of text, each
containing from 0 to 133 characters. Normally a maximum of
72 characters is used for programs. Each line is stored as

an unpadded character string in a variable length record with

14

an associated length and line number. This method of storage
is more compact (usually most of the line is left blank) and |
each line is addressable. The WYLBUR system uses absolute
line numbers that do not change dynamically as editing is
performed as opposed to line numbers relative to the top of
the file. This provides stable reférence points. The line
numbers are in the form of decimal numbers which may range
from 0 to 9999.999 with at most three digits after the decimal
point.

Most of WYLBUR's commands operate on or address a group
or range of lines that possess the same distinguishing
characteristic. An éxplicit range is a list of line numbers.

A single line is specified by giving its number; a set of
contiguous lines by two line numbers separated by a slash (/).
Single lines and sets of lines may be specified in any
combination. The range of all existing lines may be referred
to by ALL, which is the default range for many WYLBUR commands.

Content addressing is accomplished>with the associative
range. An associative range consists of all lines containing
a given string of characters. Explicit and associative ranges
can also be combined.

‘ Tﬁo very useful and powerful intraline editing commands
are available: CHANGE and MODIFY. The CHANGE command allows
uniform changes or string replacements to a range of iines.

The MODIFY command permits a user to work directly on a copy

13

of the line, typing deletions,‘insertiéns and replacements
below. For example, he can delete part of a line by typing
a "D" under the first and last characters of the string to
be deleted; he can insert a string into a line by typing an
"I" under the character before which the insert is to go,
followed by the insertion string (total 1engtH cannot exceed
the maximum line length of the file); and he can replace a
same-length string by typing "R" followed by the replacement
characters. Replacing strings of different lengths can be
performed by using the "D" and "I" forms.

Batch jobs can be submitted from the WYLBUR terminal,
batch printed output can be retrieved, and inquiries may be

made about both system and job status.

3) Quick Editor (QED)

The original version of QED was implemented at the
University of California at Berkeley [bEU 67] and has been
revised extensively for commercial use by Com-Share [aRB 67]
and also by Bell Laboratories, Murray Hill, New Jersey'[kER 72].
An extremely powerful version is running on the Honeywell
6000 computer at Bell Laboratories. What follows is a discussion
of this version,

QED stores all the text it is working on in core giving
rapid access to all the text but restricting the amount of

text which can be edited at one time. Very large files must

16

be avoided since cost and response time increase with core
usage.

All text in QED is stored in buffers. At any time
there is a current buffer to which most commands implicitly
refer. In each buffer there is a current line which is chénged
by most editor commands. Text may be enﬁered into a buffer
through the terminal or from a file. Text is never filed .
away automatically, but must be written explicitly to a file.

QED provides a facility for creation and manipulation
of several buffers, which are often used to give temporary
storage of sets of lines as they are being copied or moved
from one part of the text to another. Multiple buffers
provide independent areas where text can be kept and operated
on conveniently. The pieces can be manipulated as units, or
normal editing can be performed on individual lines of any
one of them.

The text manipulation facilities approach those of
SNOBOLA4 [bRI 71] . Pattern matching is performed by regular
expressions which are patterns specifying a set of characterA
.strings. Regular expressions can be used for matching a
pattern at the end or begining of a line, matching any character
at a.point in the line, matching any of the characters in a
specified string and no others, matching any number (including
zero) of adjacent occurrences of text matched by regular

expressions, for alternate pattern matching (i.e. text which

17

matches either of two patterns) and othér text manipulations.
Regular expressions are used for specifying text replacements
and for searching for a particular piece of text.

Many features are available for addressing text.
Addressing lines of text in the current buffer can be by
current line number (relative to the begining of the buffer),
by absolute line number, by "." meaning current line, by "$"
meaning last line in the current buffer, by context using
regular expressions or by additive combinations of the above
(e.g. ".+1" meaning the line after the current line).

A useful feature of QED is the provision for executing
editing commands from a buffer allowing the execution of user-
defined and pre-existing macro command structures. Therefore,
a sequence of editing commands can be saved by the system as
a normal text file. This set of commands can be re-executed
‘at a later date to re-edit the text. The re-editing facility
makes it possible to maintain slightly different versions of
a file without having to duplicate the main file many times.
The text is stored only onée with alternate versions generated
by executing a sequence of commands previously saved on a file.
This is useful for testing.changes to an operational program
without actually modifying the original program until the

changes have been completely tested and debugged.

18

1.2.4 Text Editors

Normal manuscript composition and editing requires
many cycles where text must be read and reread, typed and
retyped. Compﬁter assisted editing provides a tremendous
reduction in the time required to produce a final, or
alternate document. Text stored in the computer is never
retyped but only updatea. As a result, the number of typo-
graphical errors is reduced requiring less proofreading.

Access to a common data base can be useful for a
group of researchers or documenters working in the same
area, or for common access to updated proﬁect or management
information.

Since all of a user's editing can be performed online
there is no need to request any intermediate printed copy.
However, the convenience and naturalness of hard copy is
still important to the "red pencil" school of editing where
changes are manually made to a printed éopy by a red pencil
or similar means and later made online to the corresponding
text file. The corrections are therefore performed twice.
Transition from hard copy to soft copy techniques will be
a gradual one as reliability, user convenience and system
availability increase.

The following are outlines of the main features of

a few text editors.

19

1) ASTROTYPE

The ASTROTYPE system [VAN 71]was designed by
Information Control Systems and consists of up to four IBM
Selectric typewriters and memory units connected to one control
unit (the DEC PDP-8). It was intended for preparing forms,
manuscripts and input for photo-composition devices.

The text is recorded on magnetic tape as it is typed
and can later be modified and printed in final form. Text
can be typed in an "unchangeable" mode where it is printed
exactly as it was typed, or in an "adjustable" mode, where
the control unit prints blocks of text (e.g. paragraphs)
according to the current width.

Text is stored in lines numbered sequentially from
the top of the file (i.e. relative line numbers). The basic
editing command is substitute. Substitutions within a line
are made by typing the line number, the old character string
plus any additional context text, and the new string including
the additional context used above, if applicable.

As in the CMS edifor, insertions and deletions within
a line are forms of substitution. Thus, to insert within a
line, one must specify context to the left or right of the
insertion point as the old string and repeat this context
plus the text to be inserted as the new string.

Individual lines may also be erésed and moved by

their line number. Verification is provided by a printout

20

of the line before the change is actually made.

Printing is done at the typewriter at an average
rate of 150 words/minute and various fonts and type sizes may
be used by changing the typing ball. The printing can be
programmed to stop at any point, so that additional input
may be entered manually, and then continue. This is useful

when changing a portion of a form letter.

2) System/360 Administrative Terminal System (ATS)

ATS was developed by the IBM Corporation [VAN 71]
utilizing the IBM 2741 typewriters as the interactive device. .
ATS is provided by IBM as a standard package on the 360/370
series computers.

Each time a line is typed in, an internal line is
created and a line number is assigned. The length of an
internal line may vary from 0 to 130 characters, and a text
file may contain up to 9999 internal lines in a linked-list
storage structure. The line»numbers are relative to the top
of the file and change dyﬂamically as lines are inserted or
deleted. This can cause problems aé with ASTROTYPE since
line numbers of text strings may no longer correspond to
those of the most recent printed copy. The designers of ATS
suggest that editing be performed from the bottom of the file
to the top; this eliminates the problem of changing line

numbers, but is very inconvenient for the user.

21

Text can be moved around but not copied. To insert
new lines in the middle of a file, the lines must first be
typed at the end of the file and then moved to the desired
position. Substitutions, deletions, and insertions within
a line are made as in.ASTROTYPE.

Text can be entered in "formatted" mode, in which
case the text can be arranged by the output program to satisfy
the specific page format (e.g. line justification), or in
"unformatted" mode, ih which text is saved and printed exactly
as it was typed. As in ASTROTYPE, an online printout can be
stopped in the middle, allowing the user to type in additional
text.

Because the editing functions are few and the data
structure is quite simple, the CPU usage is minimal. However,

ATS is far from ideal for general purpose editing.

3) The Hypertext Editing System (HES)

The Hypertext Edi;ing System EVAN 71] is a CRT-
based (IBM 2250) sYstem allowing full editing and formatting
capabilities. It is oriented toward "typeset" output using
a line printer as well as flexible input and online editing.
A light-pen and a set of"function keys", under program
control, are used to indicate to the system the nature of the
edit to be performed. The editing function is selected by

pressing the appropriately labeled function key. The portion

22

of text to which the function applies is then indicated by
pointing at the text with the light-pen.
HES provides maximum convenience for the user since
no command codes need be remembered and no extra typing is
required to indicate a context string.
To delete a portion of the text, the "delete"
function key is pressed, after which the two endpoints of
the text to be deleted are pointed at with the light-pen. The
text is then blanked out on the display for verification.
The deletion if correct can be accepted by pressing a control
key otherwise it may be cancelled, leaving the original text
unchanged. Editing functions include insert, delete, substitute,
rearrange and copy. Prompting messages by the system specify
the actions available at each step. A maximum of approximately
2500 characters may be deleted or rearranged at a time.
Formatting options are available so that text may be
formatted both for online display and hard copy printouts.
An off-line computer typesetting program is used for final hard-
copy printing on a computei line printer equipped with an
upper and lower case printer chain.

_ The data structure and the editing operations are
entirely independent of display or printout lines and pages.
Text-is externally segmented by the user into arbitrarily
long user-designated fragments called "text areas". Each

area is a continuous linear string of text, and might be a

23

chapter, an entire book, or a éhort fodﬁnote. These areas
may be interlinked and cross-referenced in any manner so-
as to form a directed graph of text segments (the vertices
of the graph) and their cross references (the edges).

Two types of cross references exist: "branches"”
and "links". Branches are unconditional jumps between two
fragments that the user may encounter in the text forcing
him to lightpen a choice in order to proceed. Links are
conditional jumps, where the reader may bypass or lightpen.
The link is similar to the manuscript footnote principle
that allows additional explanations and browsing.

The resultant mobile (i.e. text fragments linked by
user controlled jumps) is called a hypertext, "the combination
of natural language text with the computer's capacities for
interactive, branching, or dynamic display... a nonlinear
text... which cannot be printed conveniently... on a
conventional page " [NEL GZJ , A practical example of a
hypertext might be an on-line encyclopedia or a set of
programming and systems reference manuals, with each cross-
reference lightpen sensitive.

The fragments of text can be examined_by tracing linear
paths through the hypertext, either for on-line browsing
purposes or for printing. The system also remembers the

sequences of branches or links that the reader has taken,

24

and this allows him to reverse his traii. Random access to
any point in the text is provided by allowing the author to
assign "labels" anywhere in the text and later to "jump" to
any of them by lightpenning the appropriate one from a

list of choices.

Hypertext areas are stored internally as one or more
pairs of variable-sized "pages" (unrelated to a printed page),
each pair consisting of an "order code" page and a "text"
page. The order code page is an ordered sequence of text
pointers specifying displacements into the text page,
interspersed with formatting and structure codes. The text
page contains the actual text. To edit text, order
codes and their pointers are inserted, deleted, or updated
while the text strings remain intact. This type of structure
involves little character shuffling and recopying but "garbage"

strings are rapidly accumulated.

1.2.5. Formatters

Most text formatters are designed to execute in
conjunction with a text editor. The input to a formatter is
usually the output from a text editing system consisting of
text and formatting commands to specify the type of formatting
to be performed. The formatting commands can_be inserted into

the text file by the editor in two ways: each on a separate

25

line interspersed between lines of text as in the EDIT/HP 3000
Text File Formatter [MAC --] , or stored in-line with the

text as done in a Tzxt Formatter developed at the University
of Waterloo @TA 74] « In either case, a flag or escape
character is used by the formatting system to recognize
commands in a file of text.

Typical format commands determine margin widths,
headings, running headings, paragraphs, justification,
indentations, centerihg, underscores, type-face changes,
unformatted output, etc.

1) The EDIT/3000 Text File Formatter

The EDIT/3000 Text File Formatter is available for
the HP 3000 computer systems from Hewlett Packard. The text
formatter takes as input an unformatted text file, such as
those produced by the HP 3000 editor, formats the text and
writes the formatted text onto another file.

The text file is accessed sequentially and is
assumed to be a disk file with 80 byte (character) records.
The last eight bytes of each record are ignored and may
contain sequencing information. The output file is assumed
to consist of 72 byte records. The text file and output file
characteristic may be altered by system control cards before
compilation of the text formatter.

To distinguish commands from the rest of the text,

they must be placed on a separate line and the first character

26

of that line must be a pre-defined control character
(usually a period "."). More than one command may be placed‘
on a line éeparated by semicolons. |

Each line of text in the file is treated as a
continuation of the previous line until a command which
causes a "break" is encountered. At a break all words read
are printed with the next text line starting on a new line
of output.

The user can control the number of lines per page,
number of characters per line, width of margins, page
numbering, position of headings, justification, centering

text, spacing and paging control.

2) A Text Formatter

This text formatter was developed at the University
of Waterloo and is written in a language called SPITBOL [bEW’7iL
which is a fast compiler version of the SNOBOL4 language.

The input text to the formatter is a file created through
some file editing system, (e.g. WYLBUR) or by means of some
utility.

The input text consists of words and text commands.

A text command is a string of characters preceded by the
excape character "¢". As in the previously described editor
the last eight characters of an input record will always be
stripped off to avoid problems when using text editors which -

introduce line numbers in the records.

27

The formatter operates in two modes: formatted
and unformatted. In formatted mode right justification is
usually performed with words delimited by the end of card,
'delimiting text commands or one or more blanks. In the
unformatted mode words are delimited only by the end of card
and word delimiting commands. Only one word per line is
printed since embedded blanks are considered in the same way
as any other character.

There are over 40 formatting commands including such
features as special collection modes (e.g. string collection,
unformatted mode collection, figure and footnote collection),
insertion of a string into a word at the position of the
command occurrence (e.g. special print chain characters which
cannot be directly input from the terminal (Greek letters)
the current date, "¢", footnote reference), overprinting,
underscoring, and control of paging and page format.

Figure and footnote generation is an interesting
feature of this formatter. ‘

The footnote command automatically inserts the \
footnote reference marker into the text where the command
appeared. Figure and footnote text is given in the place
where they are supposed to occur in the output text. Figures
will be placed in the page where they fit. If the text for
a figure is too large for the remaining part of the page, it
is placed in a wéiting queue in order to be printed on 6ne

of the succeeding pages. The order in which figures occur

28

in the text is strictly obeyed in the output of text.

If a figure is too large to fit on a complete page,
it will be broken into several pages.

Footnotes which are too large are also broken. A
footnote must have 3 lines at least in order to be broken.
Furthermore, there must be at least as many lines in the
remainder of the page as needed to contain the line referring
to the footnote and two.lines of the footnote, since the
reference and footnote text must be on the same page. Footnotes
can continue over more than one page when broken.

This. formatter is very powerful. Unfortunately, the
large number of commands, the lack.of mnemonic text commands,
the lack of error checking of the text commands and the
structure of the commands make it a difficult system to learn

and use.

1.3 Outline of Further Chapters

The preceding discussion has outlined the basic
characteristics of program editors, text editors and formatters.
In Chapter 2 the text editing system TEF will be
described with respect to its design considerations, internal

structure and primary features.
Chapter 3 explains the operation of the TEF formatting

system and gives some formatting examples.

In Chapter 4 the conclusions and the results of this

investigation are discussed.

CHAPTER 2

TEF

2.1 Introduction

TEF is essentially a combination of a text editing
system and a text formatter. Editing and formatting can be
performed together or independently within the same system.

A formatter is a natural companion for a text editor since
hard-copy formatting is usually required for all types of
text at some time or another.

In combining the two systems the user need only learn
to use one system, one set of commands and one type of file
structure. All editing and formatting is performed using one
system designed for convenience for the user. In a combined
system the user does not have to match the characteristics of
the editor file to those of the input file for the formatter.
The user can cycle between editing and formatting of a file or
subsections of the text to experiment with_different for-
matting structures without leaving TEF.

Current editors range from simple and restrictive
systems to complex and powerful systems. TEF was an attempt
at a system easy and convenient to learn and use, yet pro-

viding adequate power for most editing purposes.

29

30

The command structure is simple, mnemonic and has

at most two alternate forms for a command. The alternate forms
usually differ only by the direction of operation (e.g. + for
forward, —.for backward). The user does not need to learn
complex addressing techniques as content addressing is pro-
vided as a stable method of text addressing. The commands
were chosen to provide features that appeared most useful in
the opinion of the author. Obviously, these commands may not

always be convenient for every user.

2.2 Considerations in the Design of TEF

The primary objective in the design of TEF was to pro-
vide both an editing and formatting system which is easy to
learn and use.

One of the most important characteristics for any editor
is that it is convenient to use. Therefore, the command struc-

ture of TEF was chosen such that the command words have an

English meaning which expresses their function. All commands
begin with a slash and can be abbreviated to their first three
characters. An experienced user would prefer to type as few
characters as possible to perform the desired functions. The
whole command word may be entered to aid in learning the com-
mand structure. The user is free to use any non-alphabetic
character or blank as a string.delimiter, providing it is not

contained in the enclosed string.

31

Error messages supply informatién about the type of
errors which have occurred and where they were located. A
three character program identification is included with each
message to indicate the subroutine that detected the error.

The user need only be concerned with the message while the.sourée
of the error is useful for tracking future program errors when
extensions are added or revisions made to the existing system.

When entering text or commands via the CRT, a mistake
can be corrected by backspacing and then typing the correct
characters. In addition, a complete input line can be de-
leted using the "control X" function on the CRT terminal.

TEF was designed to process both manuscripts and éom—
puter programs. The text editing and formatting systems within
TEF are interfaced through the éditing command which formats
the text file. This provides flexibility for the text editor
or formatter to be used separately within the TEF framework.

The method of text organization was chosen to make the
user's text easily accessible. One of the basic character-
istics of TEF is content addressing. Content addressing allows
the user to select lines of text by their content, rather than
by line number. In most sfstems using line numbers, they are
defined as displacements of lines relative to the top of the
file. Because of this, they are rather arbitrary since they

can change dynamically as the file is modified.

32

Content addressing is a more natural way of addressing
natural language text since the user need not be concerned
with resequencing of line numbers or'specifying numbers that
bear no relation to the text to be located or edited. The
user is free to addreés his text by his own labels attached
during the construction of the text rather than a fixed not-
ation internal to the system. Since the character strings
in the file are not subject to change by the system in the
way that line numbers are, content indentification provides
a more stable method for locating portions of a file.

The text in TEF is organized into lines containing
a maximum of 130 characters. The maximum length of a line
of text was chosen to fit easily within a print line file and
onto two consecutive lines on the CRT screen. The word size
on the CDC 6400 computer is 60 bits allowing the storage of
10 characters per word(with a six bit display code for each
character). The length of the lines of text are a multiple
of 10 so that the text can be conveniently packed into an
integral‘number of words.

The conéept of machine independency and portability
is an important consideration which led to programming TEF
in FORTRAN. However, machine dependent features exist due
to the implementation on the host computer. For example,

the mass storage I/O routines are machine dependent.

33

They provide the interface between FORTRAN and a mass storage
device. This does not present any real problem as most systems
have similar mechanisms for I/O with mass storage.

Machine independency was traded slightly for efficiency
on the host computer. The non-ANSI FORTRAN R-format was chos-
en for the input to TEF. Using the R-format characters aré
read and stored right justified in the word with zero fill.
This allows a character to be represented by an integer number -
equivalent to its display code (00-77 Octal). The decoding
of the instructions and the manipulation of the characters
‘with this method of storage is very convenient and efficient;
This feature does not impose any restriction on machine ind-
ependency since a routine can easily be written to convert
from left justified with blank £ill (standard A-format in
FORTRAN) to right justified with zero fill, if the machine
does nbt support this feature.

TEF is expandable. The command interpreter was designed
to allow addition or deletion of commands to suit the implem-=
entor. The interpreter is very simple. It is involved only
in deciding what type of command is to be executed. This is
performed using a linear scan and a table look-up procedure.
The interpreter invokes a subroutine to execute the command.
The subroutine in turn processes any parameters or associated

data particular to the command. The associated data is easily

34

processed in a linear scan since there are few alternatives
or command forms. To introduce new commands the existing
system needs little modification. The command table and the
associated branch mechanism need only be extended to include
the new function. »

TEF consists of 24 commands. The casual user editing
a small file can perform most of his desired editing with a
small subset of these commands (5 or 6). A frequent and more
experienced user can use the full power of the additional
features. ' , _ o

Movement through the file can be performed either
forward or backward from the current position in the file.
Methods for moving through the text file are available to suit
the particular type of editing required by the user. When
editing or formatting will be applied to mostllines of text
in the file or the user wishes to scroll through the file,
he can move through the file a line at a time with each line
displayed for editing. The user can advance to a line of text
contéining a particular sub-string of text, where only the
destination line is displayed for editing. This method is
useful for editing text lines which are scattered throughout
the file. Random access is provided to position the file at
a line of text which was pre-defined as the start of a sub-

section of text. This method is useful for editing large files

35

where most of the editing will be confined to a sub-section
of the whole text file. For exanple, when editing a large
file over a long period of time most editing will be confined
to the end of the text file where the létest text has been
added. This is also the fastest method for advancing to a
section of text in the file.

A text editor should allow input of text from sources
other than the CRT terminal. TEF can input text from a per-
manent disk file of card images at any time during editing.
The input disk file can be divided into sections separated by
a card image containing a slash(/) in column one. This allows
portions of the input file to be added to the text file at
any time or place during editing.

An editing system must be flexible enough to allow
editing in both batch and time-sharing modes. Not all types
of editing can be convenieﬁtly performed interactively. For
example, if in a large text file the user made many consistent
spelling errors of different words, he could specify commands
to position the file at the begining followed by the command
to replace every occurrence of one string of characters
(the error) by another (the correction) for each spelling error.
In interactive mode each line containing an error would be
displayed followed by the corrected line. If the response

time was slow and the user was not concernad with following

36

the sequence of corrections this method would be very un-
attractive to most users. An easier method would be to punch
the commands on cards or create a file of these commands and
run TEF in batch mode. No output is produced and the file is
corrected with minimum time and effort. TEF can be executed
in batch mode with the editing commands and text read from
the standard input device (card reader) or from a permanent
disk file. In batch mode the default for input is the card
reader, for output thé line printer, and for punched output
the card punch. |

The user can have replacements and deletions verifiedA
before they are made permanent. The lines to be deleted are
displayed followed by a prompt to confirm the above deletion
of lines. If the deletions are accepted they are deleted
permanently. Otherwise, the file remains unchanged. String
replacements within a line of text can also be verified. The
line is displayed with the replacement made followed by a
prompt to confirm or reject the replacement. If the replace-
ment is accepted the new line replaces the original line,
otherwise, the original line is unchanged. These prompts can
be turned off or on by the user upon entering TEF.

Two useful features in TEF are the ability to locate
a line of text in the file containing a specified string

(LOCATE) and the ability to replace all occurrences of one

37

string by another everywhere in the file (AREPLACE). The
latter is useful for consistent misspellers and for changing
the names of variables or labels within a computer program.
The LOCATE command is useful for selective editing of lines
of text scattered throughout the file. These two features
should be present in all editing systems. The problem was
how to efficiently implement them. Both features require the
editing system to search for a string of characters within
each line of the file. Obviously, searching each line of
text character by character could be employed. Unfortunately,
this is extremely slow and inefficient. The method chosen
is called the substring test technique [HAR 71] [Boo 73] .
For each line in the file there is a corresponding
hash code or 2-signature which reflects the sequence of two
character combinations contained in the line of text. The
2-signature code is computed for the string to search for and
compared to the 2-signature of each line. If the hash codes
match implying that every two character combination in the
string is also in the line of text, then it is possible that
this line contains the string. Only in the case of a 2-sig-
nature match is the line scanned character by character in
search of the string. This method rejects the majority of
the incorrect lines depending on the length of the string to

be found. However, if the string to be found is broken

38

between two lines, it will not be recognized by this
mechanism. For the lines whose 2-signatures do not match,
only one test is necessary to rejéct the line. This is a
considerable impfovement over the rigorous character by
character scan. A discussion of the sub-string test technique
will be given in more detail in section 2.4.

In TEF the format codes aré contained in a particular
section of the record for each line of text rather than
interspersed between lines of text or within the texﬁ. .There
is no need to search through the text to find the format
commands as they are displayed on the right of the CRT screen
for each iine. The text of a file which is being created for
input to most text formatters must be "cluttered" with
formatting commands or codes between lines of text or within
the text. This is”very distracting when working with the editor,
and are not concerned with the formatting information. 1In
TEF, the format codes are not within the text portion of the
file so that the structure of the file (i.e. number of lines)
does not change when format codes are added. The text of
the file may be written to another file to be used for other
purposes without having to remove the formatting commands.

,The text file is a random access file in the form of
a doubly-linked list structure allowing forward and back-

ward motion. The TEF records are of fixed length and consist

39

of 20 (60 bit) words.

TEF in conjunction with the SCOPE operating system
of the CDC 6400 allows each user complete file protection
from unauthorized access. The user can datalog a text file

with passwords to restrict access to the file.

2.2.0 Data and File Structure

2.2.1 Random Access Files

The text file is a random access file in the form of
a dbubly linked list structure. The FORTRAN mass storage
input/output subroutines provide the interface between
the TEF system and the mass storage deviée and control the
transfer of records between central memory and mass storage.
The mass storage I/0 subroutines allow opening (OPENMS)
and closing (CLOSMS) of the file, reading (READMS) records
from or writing (WRITMS) records into the file and changing

between master and sub-indexes (STINDX).

40

Each record in a random file is uniquely and permanent-
ly identified by a record key. The key is used by the mass
storage I/0 routines and is mapped onto a hardware disk address.
When a record is first written the key in the WRITMS call
becomes the permanent identifier for that record. The record
can be retrieved later by a READMS call that includes the same
key and can be updated by a WRITMS call with the same key.

When a random file is in active use the record key
information is kept in an array in the user's field length.
This array is the directory or index to the file contents.

The index is the logical link that enables the mass storage
subroutines to associate a user call key with the hardware
address of the required record.

If an existing file is reopened, the mass storage
subroutines will locate the master index in mass storage trans-
ferring it into the index array. When the file is closed, the
master index is written from the array to the mass storage
device. If a file is opened which does not already exist, its
master index is cleared to zero.

There are two types of index key: name and number.

The index used for TEF is a number index. This number key
must be a positive integer, greater than zero and less than
or equal to the length of the index array minus one. A number

key is more suitable for this type of application since the

41

pointers (which are keys) in the doubly linked list can be
simple integers. Execution time is faster for a number index
since it is not necessary to search the whole index for a
matching key entry as with a name key. It also requires less
central memory space for a number key.

The file structure of TEF contains a master index and
a sub-index. The mass storage routines use the sub-index just
as it uses the master index. The sub-index has its own index
array for the currently active index; the mass storage routine
STINDX allows switching between master and sub-index arrays to
access records. The sub-index is read from and written to the
file by the standard I/O routines since it is indistinguishable

from any other data record.

2.2.2 The TEF Random Access File

The present version of TEF has a master index array
of length 21 and a sub-index array length of 51. Since a
number key must be greater than zero and less than or equal
to the length of the index minus one the file contains 1000
records (i.e. 20 X 50).

By using sub-indexes central memory requirements are
reduced since the active index array length can be reduced.
For example, if a file of 1000 records was to be created with-
out sub-indexing the length of the master index would be 1001.

Additional levels of sub-indexing could be added, limited only

42

by the amount of central memory space évailable.

The 20 user accessible master index records are used
to store 20 sub-index arrays each capable of addressing 50
different text records. Therefore, each record is uniquely
identified by a master index key (integer value 1 to 20) and
a sub-index key (integer value 1 to 50).

For example, to read the third record indexed under
the second sub-index (i.e. master index 2) the following steps
are necessary:

1) make the currently active index the master index array
(if it is not already):;
2) read the second master index which contains the second
sub-index into the sub-index array by specifying 2 as
the master number key:;
3) change the currently active index to the sub-index array;
4) read the third record in this index by specifying 3 as the
number key.

Only step four is performed if the currently active
index is the master index for the required record. All the
steps will be performed only when the previous read used a
different master index. Therefore, it is important that the
length of the sub-index be greater than the length of the
master index. In this case, the master index would not have

to change so often, thus reducing the number of I/O calls.

43

2.2.3 Doubly Linked List Structure

In a doubly linked list each element of the list
(e.g. a line of text) is linked to the previous and following
element by backward and forward pointers, allqwing motion
in either direction in the list. This type of structure was
chosen for TEF to allow movement in both directions in the
text file. This feature is a necessity in any text editing
system to provide access to all of the user's text regardless
of the current position in the file. The begining and the
end of the file is marked with a zero pointer. That is,
the first line has zero for its last or previous line pointer

and the last line in the file has zero for its next line

pointer.

2.2.4 TEF File Structure

When entering TEF without an existing text file such

as in the initial creation run, a file is created with all
the records in the file linked together using the next line
(forward) pointers. There is a pointer to the begining of
this list (next available space pointer) and the last record

in the file (list) has a next line pointer of zero indicating
the end of the list. This is fhe available space list (initial-
ly all the records are available for use).

All the records in the file are written onto a random

44

access file and given a unique permanenﬁ key to identify
them. This method insures that the text file remains the
same size as far as the operating system is concerned when
text is added to the file. The operating system "sees" all
the records both allocated and available. The user only
"sees" the allocated records containing his text. If this
technique was not used a previously cataloged permanent text
file would have to be recataloged or extended each time text
was added to it. A text file in this form will occupy more
disk space since the presently unused records are stored along
with the text records, but the amount of user convenience
obtained with this method outweighs this disadvantage. This
method allows protection from an operating system failure.

If disk space was only allocated when text was added to the
file, the master and sub-indexes would change each time a
record was allocated. This means that the sub-indexes must
be written back onto the disk file each time they change.

In addition, the master must be written back onto the disk
file before closing the file. Failure to do this will result
in the loss of all text added since the file was opened, an
invalid available space pointer and the result that some of
the forward or backward pointers will be invalid. The user
may lose the whole file or may only be able to access a small

part of it. In any case, the file will be useless for further

45

editing. When an operating system failure or time limit occurs
the indexes are not written to the random file.

By using an available space list with all the records
allocated on disk, the user's file will be protected from a
system failure. Since the master and sub-indexes never change
throughout editing it is unnecessary that they be written back
tq the disk file before closing.

However, problems can occur if a system failure occurs
before the pointer manipulation required for an addition to
the file is completed. For example, the chain of forward oxr
backward pointers may be broken, thus restriéting access to
part of the text file. 1In most cases, the text of the file
and the formatting information can be recovered by using the
random access features of TEF and the output facilities to
form a new text file.

For the initial creation of a text file all records
are on the available space list except for two. The forward
pointer of each record indicates the next record to be used
and the last record has zero as its pointer.

The record with master index M and sub-index N will
be represented as (M,N). For example, the available space
list will initially be in the form:

NEXT AVAILABLE SPACE —(1,1)—(1,2)—(1,3)... (1,50)—(2,1)...

(10,1) —+{10,2) »¥10,3)... . (20,48)—>0 .

46

The records may be stored in any physiéal position on disk
and are not necessarily consecutive.

The last record in each sub-index will point to the
first record of the next sub-index (i.e. new master indéx).
For example, record (1,50) points to (2,1).

The last two records in the file are reserved for the
TEF system and cannot be accessed by the user. The last
record (e.g. (20,50)) is used to store the sub-section markers
so that when the file is reopened. any previously defined sub-
sections will be accessible to the user.

The second last record (i.e. (20,49)) is used to store
the pointer to the first line in the file since it is not
necessarily going to be the record (1,1). Also, the pointer
to the top of the available space list is stored in this record.
These two pointers are updated and written to the file each
time they change in case a system failure or time limit occurs
during editing. These two pointers must be known by the TEF
system when an existing text file is reopened. The pointer
to the first record in the file allows random access at any
time during editing to the first line of text in the file.

The user can therefore access 998 records with the
present implementation. For most purposes this will be suf-
ficient. However, it is a simple matter to increase the size

of the text file by increasing the size of the master and/or

47

sub-index arrays.

As text is added to the file, records are allocated
and removed from the available space list. When records of
text are deleted from the file, they are put back onto the
top of the list to be reused.

When TEF is entered with an existing text file the
pointers to the beginning of the file and to the top of the
available space list are accessed and the file is positioned
at the first line of text in the file.

During editing there is a current line at which the
file is positioned. This line is displayed on the CRT screen
after each command is completed and is the last line displayed
when several lines are listed on the screen. The current
line can be changed by moving or advancing forward or backward
in the file or by direct access to a line of text.. The
current line is stored in a line buffer on which all. the line
editing commands operate.

The text file and available space list structure is
shown in figure 2.1 . Externally, they can be represented
as sequential lists. However, the records can be in any
physical position on disk with available space records and

text file records intermixed.

48

FIRST ,‘\ " - ' J¢—NEXT AVAILABLE
LINE) ; SPACE PTR
PTR
A &
2 k& : 3

TEXT FILE AVAILABLE SPACE LIST

Figure 2.1 File and Available Space List Structure

1 WORD = 60 bits

l. - First word of Hashed 2-signature
2. - Second word of Hashed 2-signature
3. - Master index of Previous Record

: Last line pointer
4. - Sub-index of Previous Record
5. - Master index of Next Record in file

Next line pointer

6. — Sub-index of Next Record in file
7. - Format Code Word

8. - 20. - Text of the line_maximum 130 characters

Figure 2.2 Record Structure

49

2.2.5 Record Structure

Each record in the text file contains 20 words
(60 bits each) of information. The record structure is illustr-
ated in figure 2.2. The first two words (120 bits) contain
the hashed 2—signaturé of the characters of text in the record.
The 2-signature is used for content searches using the sub-.
string text method. This is to be discussed in section 2.4.
The third and fourth words contain a pointer to the previous
or last line in the file. Word three stores the master key
and word four contains the sub-index key of the previous
line. The fifth and sixth words contain‘a pointer to the
next line in the text file. The fifth word stores the master
key and the sixth word stores the sub-index key. The master
key has a value from 1 to 20 and the sub-index key has a
value from 1 to 50 when they point to a record in the file.
The first record in the file has zero as its last line
pointer. This is a special marker for the begining of the
file. The last record in the file will have zero for its
next line pointer to flag the end of the file.

Word seven contains the format word which stores
the formatting codes specified by the user to format the
text in the line.

The remaining thirteen words contain the characters

of text in the line. For program language text only the

50

first 80 characters are used. For natural language text

the line can contain a maximum of 130 characters of text.

2.3 Addition and Deletion of Lines of Text

2.,3.1 Input of Text

Text can be added to the text file from two sources
in two different modes. Text can be inputted from a file
containing card images (80 character records) or from the
CRT terminal. There are two modes of input: program text
and natural language text mode. The user selects the mode
of input when the file is opened for editing, depending on
the type of text to be edited.

In program text mode (i.e. computer programs) the text
is stored 80 characters per record or line, corresponding to
a card image or an input CRT line.

When editing in natural language text mode the user
has control over the maximum percentage (70 to 100 %) of each
record (130 characters maximum) to be filled with text from
the input source. The remaining space is filled with blanks
for future additions to thé line. Blanks shifted out of the
right end of a line due to additions within the line are
ignored. This provides a method to reduce the number of line

overflows for small additions to the line (e.g. spelling

51

corrections, word or small phrase additions). In addition,
it reduces the number of lines generated containing only a
few characters due to overflow of the previous line. If the
input text is likely to be edited or changed frequently the
extra space at the end of each line is quite useful. The
percentage to be filled can be chosen to suit the particular
type of editing to be performed.

Input text is packed into the current record being
filled until the maximum numbér of characters is packed or
until the user terminates the addition command. The addition
of text is performed such that a word is not split between
two lines of text except for the case when a word is longer
than the maximum number of characters to be packed per record.
This case could occur if the user wishes to enter a very long
string of consecutive non-blank characters. An unusual occur-
rence in most kinds of text.

If the number of characters (excluding trailing blanks)
in an input record is less than the maximum record size, all .
trailing blanks except for one are suppressed at the end of
the text and the next input line:ds added after this blank.
This allows the user to end the input card or line at any
convenient position, usually after the last word that totally
fits on the line, as he naturally would when reaching the end

of a typewriter line.

52

When the input record is full (i.e. no trailing blanks)
this is processed as a continuation to the next input line
and there are no blanks inserted between this line and the
next input line added to the record.

In natural language text mode blank lines on input
are ignored. The formatting features control the output of
blank lines. Therefore, it is unnecessary that they be stored.
Blank lines can be inputted if required by creating a line
containing one non-blank character and then delete the
character.

An additional method of entering natural langﬁage text
from a card image file is available for reéreating or dupli-
cating text lines. This feature uses a file containing punch-
ed output from TEF and recreates the punched lines of text
in their original form. Recreation of lines of text must be
exact in order for the format codes to operate on the same
text as the original. The punched output of TEF maps 130
characters (80 for program text) of each line of text onto
80 character card image records. The above method of enter-
ing text performs the reverse map and takes every 130
consecutive characters froﬁ a file of 80 character card images
and creatés a line of text.

This allows storage of a text file on cards or on

a sequential disk file (which requires less space) to be

53

used as a backup or sections of the tek£ file can be duplicated
and inserted at arbitrary places in the file. Only the text
of the file is recreated with this feature since when dupli-
cating sections or files the user may wish to experiment
with different formats for the output of his text. Experiment-
ing with the formatting can be done on a copy of the text
file, leaving the original text file intact.

The original formatting information can also be
recreated if desired in conjunction with the text. The

reformatting will be discussed in Chapter 3.

2.3.2 Record Allocation for input of Text

When text is input a record to store it must be
allocated from the available space list and linked onto thev
doubly linked list structure at the point of insertion. The
point of insertion is aiWays after the current line in the
file. If the file is empty, the text entered forms the first
line in the file. At any given moment there are pointers to
the begining of the file (zero if file is empty), top of the
available space list (zero if all space is exhausted), current
position or line in the file (zero if empty), backward or
preceding record or line from the current line (zero if file
is empty or positioned at the first line in the file) and

forward or succeeding record from the current position (zero

54

if the file is empty or is positioned at the last line in the

file).

The algorithm required to link a new line into the

text file is as follows:

1)

2)

3)

4)

5)

Save the current line's forward pointer in a temporary
location. This is the record following the point of
insertion. If the file is empty or the insertion is at
the end of the file the forward pointer will be zero.
Change the current line's forward pointer to point to
the next available record to be used. If the file is
empty, there is no current line (i.e. current position
pointer is zero) and. this step will be omitted.

Allocate a record from the available space list and
change its backward pointer to point to the current line.
If the file is empty the backward pointer is set to zero
flagginé the begining of the file and the pointer to the
begining of the file will be set to this record.

Update the current line pointer to point to the newly al-

‘located record. The current line is now the new line just

allocated. Pack the text into this record.

Update the next available space pointer to point to the

forward link of the record just allocated. That is, the
the next record in the available space chain will be the

next to be used.

55

6) Change the backward pointer of the fécord following the
point of insertion to point to the last allocated record.
If the file was empty or the file was positioned at the
end of the file, there is no following record therefore,
this step will be omitted.

7) Change the forward pointer in the last allocated record
to point to the record following the point of insertion.
If the file is empty or the file was positioned at the
end of the file, a zero will be iﬁserted to mark the end
of the file.

These steps can be better understood by the illustrations
in figure 2.3. Figure 2.3 shows the steps required to insert
a line (record) between record 2 and record 3. The pointer
manipulations are numbered with the corresponding step numbers.

Steps 1 and 2 link the inserted record(s) to any pre-
vious records. Steps 3 to 5 allocate a record(s) for the text
and steps 6 and 7 link the newly allocated record(s) to any
following lines in the file.

If more than one line of text is being added at the
same point in the file steps 1 and 2 need only be performed
once at the begining of the addition and steps 6 and 7 are
done only once at the end of the insertion. Steps 3, 4, and
5 provide the main input loop and are performed for each line

of text formed.

: 56
TEXT FILE AVAILABLE SPACE LIST

NEXT AVAILABLE
SPACE

-

Line

l/-\'l,/\t/-) °
N -

I_qurrent = 6

Before Insertion

)
Ty

0
Q ;
_‘\ 1 N
) * 2
\
Current Line
S 0. Je
o T
= 6 NEXT AVAILABLE
SPACE
N L‘
E \ 2 . 4
After Insertion 0 =
0

Figure 2.3 Insertion of a Line of Text into the File

57

A block of records can be taken from the available
space list making use of its pointer structure. When a block
of several records is being allocated, the forward poiunters
already point to the required record. For example, if two
records (e.g. 6 and 7 in figure 2.3) were to be allocated as
a block for input text, the forward pointer of record 6 al—
ready points to record 7. During addition of text steps
3 to 5 are repeated for each line inserted and steps 6 and 7
are used to complete the linkage of the block of records
to any records following the point of insertion.

This method avoids temporary pointer manipulations
when adding more than one line of text to the file. For a
large amount of input, such as text read from a permanent
file, considerable execution time wili be saved. The last
added line will become the current line when the addition is
complete.

Figure 2.4 illustrates a block of records allocated

for text and inserted into the..file after the current line.

2.3.3 Deletion of Lines of Teit

When a line or lines or text are deleted they must
be removed from the file, the file must be joined together
again and the deleted record or records added to the avail-

able space list. The starting point of a deletion is the

current line. peletions can be performedrstarting with the

TEXT FILE AVAILABLE SPACE LIST 58

0
\
N A d 4 ¥——NEXT AVAILABLE
C - 2 > SPACE
4
N 5 J&Current = 5 N
<) Line
) 3 5 . 6
0 - 7 4

Before Insertion

N 2 7
. Sl A 4)
& 5 ¥ €—-5
3(t .
N - "<"““5
> 6 f—¢~Current Line
3 ' _ ¢5—NEXT AVAILABLE
7 SPACE
) .
0
" N

After Insertion

0
Figure 2.4 Allocation of a Block of Records

59

current line and moving either forward>or backward any number
of lines in the file.

There are two types of deletions: backward moving
deletions and forward moving deletions. The backward moving
deletions start deleting lines with the current line and delete
lines moving backwards in the file, making the_line before
the point of the last deletion the new current line. If the '
begining of the file is reached during a backward moving
deletion the line following the first deleted line will become
the current line. 1If in addition, the deletion started at
the end of the file, the whole file is deleted and the file
will be empty.

The forward moving deletions start with the current
line and delete lines moving forward in the file, making the
- line after the last deleted line the new current line. If
the end of the file is reached on a forward moving deletion
the line before the first deleted line becomes the new
current line. If in addition, the deletion started from the
begining of the file the file will be empty, since all lines
will be deleted.

When a deletion causes the whole file to be deleted,
the available space list is reorganized.into consecutive
master and sub-index key order. Frequent additions and del-

etions to a large file may link together many records with

60

different master indexes. Changing froh one master to another
to read or write a record requires 4 mass storage I/0 roﬁtine
calls while only 1 routine call is required if the current
master is not changed. Therefore, the fewer times the master
must change the better. The ideal situation has each master
index and sub-index linked together in consecutive kéy order,
as in the initial file creation run.
Deletion of a line or lines of text requires the
following élgorithm when moving forward (backward):
1) Save the current position pointer, the backward and forward
line pointers. |
2) Move forward (backward) to the next (previous) line in the
file and make it the new current line. If at the end
(beginning) of the file, make the line before (after) the

first line deleted the current line. If at the end

(beginning) of the file and deletions started at the beginning

(end) then the text file is empty.

3) Set the forward pointer of the last (first) line deleted
to point to the top of the available space list.

4) Set the next available space pointer to point to first
(last) record deleted. The deleted record(s) are now
linked onto the top of the available space list.

5) Change the forward (backward) pointer of the line before

(after) the first line deleted to point to the current

61

line.
6) Change the backward (forward) pointer of the current
line to point to the line before (after) the first deletion.

The above steps are illustrated in figure 2.5 for
a forward deletion of the current line.

Conéecutive lines can be deleted in blocks. When more
than one line is being deleted, step 2 is repeated for each
deleted line and steps 3, 4, 5 and 6 are performed only once
at the completion of the deletion. Since the forward pointers
of the text file link each record together as in the available
space list, the whole block of several deleted records can
be put onto the available space list, wiﬁh only two pointer
changes. Steps 3 and 4 add the deleted record(s) to the
available space list. Steps 5 and 6 relink the file together
where the record(s) were removed.

Figure 2.6 illustrates the forward deletion of

several lines at one point.

<‘\ 1 j AVAILABLE SPACE LIST 62
N 2 Q) - 6 {$—NEXT AVAILABLE
<" > ; SPACE
14
N 3 E?_pgrrent < .
Line
) v’
B 4 N o 8
N 5 : [> o
e N N
TEXT FILE BEFORE :
DELETION 0
0 0
1 \>
N 2 \
_ 4—NEXT AVAILABLE
- 3) SPACE
3
2 6 ~
4 Y Current :
'z‘ ’j‘Z‘Line & - d
5 1 ,_>
s 8
/
After Deletion 0 X
L4
5 N J
\2

0

Figure 2.5 Deletion of the Current Line in the File

R

(

(

(

AVAILABLE SPACE LIST
<—NEXT AVAILABLE
S €—Current line |[1 6 _ SPACE

-‘j

3 Lines to K 7 N
be Deleted

4 " 8

P
5 L]

TEXT FILE BEFORE0

DELETION

) e

€4—NEXT AVAILABLE
v AL SPACE

2——>|- 4

s, 4
1

]S?Current Line h N 4
o b
, 0

After Deletion

Figure 2.6

Deletion of a Block of Lines (récords)
(Forward Deletion)

63

64

2.4 Implementation of the Substring Test Technique

A content oriented text editor involves a great deal
of character searching. Content addressing requires a fast
and efficient method of searching for a string of characters
within the lines of text in a file. This is extremely
important when dealing with large files. Searching each line
character by character for the specified string is obviously
very slow and inefficient. A method is needed which can
determine if one string (search string) is a sub-string of
another string (text iiné) without searching each line. This
requirement led to the implementation of the substring test
technique which considerably decreases the time required for

searching.

2.4.1 The Substring Test Technique

The substring test makes use of a hashing technique
and the ability to do operations on the bits of a computer
"word". When the same strings are being tested repeatedly,
and when the probability of finding the substring is small
the substring test technique becomes very useful. It is
especially suited to text editing since many lines of text
are searched for the occurrence of the same string.

If the search is likely to be unsuccessful, it can

- usefully be preceded by a computationally faster test for

65

necessary but not sufficientvconditions that the string be
found. In some applications, a comparison of the lengths of
the strings could be performed. However, this is a weak test
for a text editing system because the lines of text and the
string to be found will almost always be of different lengths.

A string can be represented by the set of its substrings,
and in particular by the set of its substringé of a specific
length. 1In general, such a representation is not unique, but
it does preserve the substring property invthe‘sense that,
if one string has another string as a substring, the set of
substrings of the first will include the set of substringsr
of the second. Of course, the reverse is not true; because
of the lack of uniqueness.

A set S can be represented by a binary string
b; by b3 ... by in which a value of one for b; indicates
that S contains at least one element of the set E;. 1In
general such a representation is not unique unless each E;
contains exactly one element and each possible element is
contained in some E;. However, it preserves the subset
property in the sense that, if set S is a subset of the set
S,, the binary string representing S; will have ones in all
posiﬁions where the string representing S; has ones. 1In
representing a string in this way a data-object is rep-

resented by a simpler data-object which contains less

66

information but which retains some of the properties of the
original.

A string S can be represented by a binary string
by by by ... b and is constructed as fdllows:
1) set all bits b; to zero
2) for each substring s of fixed length k compute i = HASH(s),

and set by = 1.

The hashing function HASH is assumed to give an
integer result in the range 1 to m. A subsequence of k
successive elements of a string is referred to as a k-sequence.
The resulting binary string, which contains a 1l-bit only in
positions which correspond to certain k-sequences(Ei5 and
zero otherwise, is called the hashed k-signature of the string

S. A hashed 2-signature is illustrated in the following figure.

Figure 2.7 10-bit Hashed 2-signature of the string C Cy...C

1 8

67

For any particular hashing funéﬁion a necessary
condition that string S, be a substring of string S, is that
the hashed k-signature of the string S; have ones wherever
the hashed k-signature of S, has ones. It is often convenient
to choose m such that the signature fits in a single machine
word. In this case the signature test can be implemented in
one or two machine instructions. The test can be performed
in FORTRAN by:

IF ((KSIGl .AND. (.NOT. KSIG2)) .NE. 0) GOTO 60

IF (.NOT. SUBSTR(S1,S2)) GOTO>60

where SUBSTR is the rigorous character by character search
of the line and control is transferred to statement 60 if
the substring is not found.

The .NOT. operator negates the signature making each
1 bit zero and each zero bit one. Therefore, the expression
(.NOT. KSIG2) has ones only in positions which were not set
to one by any k-sequence of the search string. The binary
string KSIGl contains ones in all positions which correspond
to certain k-sequences that are in the string to be found.

A bit by bit logical AND is performed on these two binary

strings. If KSIGl contains a one (k-sequence present) in

any position where (.NOT. KSIG2) has a.one (k-sequence not
present) the result will be non-zero and the text fails.

Everyplace KSIGl has a one bit, (.NOT. KSIG2) must have a

68

zero in order for the test to succeed, since the result of
the AND will be zero.

When implementing a signature test which consists of
more than one word (as in TEF) additional tests are required
to compare the corresponding word of each signature of the
strings. For a two word signature (TEF) the test can be
implemented in FORTRAN as:

IF ((ISIGl .AND. (.NOT. KHASH1)) .NE. 0) GOTO 60

IF ((ISIG2 .AND. (.NOT. KHASH2)) .NE. 0) GOTO 60

IF (.NOT. SUBSTR(S1,S2)) GOTO 60

where ISIGl and ISIG2 represent the two words of the signature
for the string to search for and KHASH1 and KHASHZ represent
the two words of the signature of the string to be searched
(i.e. line of text). The majority of cases would be rejected

by the first test on the first word of the signature.

2.4.2 Choosing Parameters for the Substring Test

Three parameters must be chosen to implement the
substring test technique: the length of the hashed signature
(m), the hashing function, and the length of the substrings
to be: taken (k).

While it is not necessary, it is convenient to choose
m such that it is a multiple of the number of bits in a machine

word. Using partial words will have no affect on the substring

69

test since the remaining bits will be set initially to zero
and will never change. Clearly the larger m is, the more
accurate the results will be since fewer strings will be
incorrectly identified as substrings by the signature test.
The more time required for the rigorous test, the more worth-
while an improvement in the signature test becomes. For

test editing applications where the length and number of lines
to search is large, this is an important consideration. 1In
addition, response time in an interactive editing system will
suffer considerably as the search time increases.

The amount of accuracy which is worth achieving also
depends on the probability that the string is not a substring.
It is not economical implementing a signature which makes
only 2 percent errors instead of 5 percent, if 30 percent
of the strings are in fact substrings. However, if only 1
percent of the strings are substrings, such an improvement
could well be beneficial. This probability'can only be
estimated since in a text editing system the text and search
strings can vary widely.

The hashing function should be random and generate
an integer result between 1 and m. A suitable random function
will spread the k-sequences being hashed evenly over the range
1l to m so that the probability of a particular bit being set

by a particular k-sequence is the same for each bit position.

70

The value of k can also be choéen. Clearly if k is
1, no information is included about the order of the characters.
Thus, k should be two or more. If there are N different
symbols in the alphabet, there are NK possible k-sequences.
Therefore, it does not make sense to choose k so small that
N® is less than m, since there are only Nk distinct substrings
of length k and bits in the signature will be wasted. For
text editing applications where N is relatively large (64 to
-256) this is not a problem. On the other hand, if k is chosen
too large, the number of bits in the signature can become too
small, and in fact will be zero if k is larger than the length
of the string. When searches for small stringé (e.g. 2 or 3
character strings) will be performed k should be chosen small
enough to allow a non-zero hashed k-signature. If there are
n symbols in the string, there will be n - k + 1, k-sequences.
Therefore, to be able to search for a string of 2 characters
k must be 2.

Maximum information content corresponds to having

about half the bits in the signature zero.

2.4.3 Probability of a False Match

It is possible to develop an expression for the
probability of a false match. That is, the probability that

a random string of length L; will be identified as a substring

71

of a string of length L, bybusing the signature test.

If we assume that the hashing function is random,
and we have random strings, the probability of a particular
bit in an m-bit hash signature being set by a particular
element of a set is 1/m. The probability that this bit is
not set is 1 - 1/m. The probability that this bit is not
set by any element of an n-element set is (1 - l/m)n;
Therefore, the probability that a particular bit is set is

| 1 - (1 -1/mn,

This is the density of ones in the hash signature which -
should be approximately 1/2 for maximum information content.

If we are testing to see if the string of characters
Si; is a substring of anothér string of characters S,, the
probability of the signature test giving an affirmative
answer can be estimated. If we assume that S; and S, are de-
composed into Lj and L, segments respectively, the probability
p(L;,L,,m) that each of the segments of S, will hash onto bits
already turned on in the hash signature of S; can be‘estimated
by

p(Ly,Lym) = (1 - (1 - 1/mb2)kl

As (1 - 1/m)™ 1/e, p(Ly,L,,m) can be approximated by
p(Ly,Ly,m) = (1 - e"L2/mI1,

Using this approximation Harrison's symmetry relation

2

[HAR 7i] , p(Ll,LZ,Zm) = p2(Ll/2,L2/2,ﬁ) shows the effect of
doubling the length of the hashed k-signature. This probabil-
ity is only an estimation since most text is not entirely
random and not all sets of possible substrings correspond to
strings (e.g. ;:, =), :., etc. are unlikely combinations in
any kind of text). A frequency analysis of different natural
language texts or computer languages will show very different
trends in the most common character sequences. |

The probability of a false match will increase for
search strings containing frequently occurring character
sequences. The length of the search string can be increased
to improve the performance for commonly occurring character

combinations.

2.4.4 Implementation of the Substring Test

The substring test is implemented to decrease the
search time for content searches in TEF. The first parameter
which must be chosen is the length of the hashed signature
(m). As the word size on the CDC 6400 computer is 60 bits,

a reasonable choice would be multiple of 60 bits. Clearly
the larger the value of m the more accurate the results.

The probability estimated in the previous section
is tabulated in table 2.1 for m = 60 and in table 2.2 for

m = 120. L; and L, are the number of segments into which

73

L,
192.0 .88563 .78434 .61518 .37845 .14322 .02051 .00042
96.0 .51355 .26374 .06956 .00484 .00002 .00000 .00000
48.0 .16975 .02881 .00083 .00000 .00000 .00000 .00000
24.0 .03657 .00134 .00000 .00000 .00000 .00000 .00000
12.0 .00609 .00004 .00000 .00000 .00000 .00000 .00000
6.0 .00088 .00000 .00000 .00000 .00000 .00000 .00000
3.0 .00012 .00000 .00000 .00000 .00000 .00000 .00000

3.0 6.0 12.0 24.0 48.0 96.0 192.0 L,

Table 2.1 The probability that a random string of length
Ly + K -1 will be identified as a substring of
a string of length L, + K - 1 using 60-bit K-signatures

192.0 .51095 .26107 .06816 .00465 .00002 .00000 .00000
96.0 .16836 .02834 .00080 .00000 .00000 .00000 .00000
48.0 .03620 .00131 .00000 .00000 .00000 .00000 .0OOOO
24,0 .00602 .00004 .00000 .00000 .00000 .00000 .000OO
12.0 .00087 .00000 .00000 .00000 .00000 .00000 .00000

6.0 .00012 .00000 .00000 .00000 .00000 .00000 .00000
3.0 .00002 .00000 .00000 .00000 .00000 .00000 .00000
3.0 6.0 12.0 24.0 48.0 96.0 192.0 L,
Table 2.2 The probability that a random string of length
Ly + K- 1 will be identified as a substring of

a string of length L, + K - 1 using 120-bit
K-signatures.

74

the strings S, and S, are decomposed.

Since a string of length n will contain n - k + 1,
k-sequences, the tables are the probability that a random
string of length L; + k - 1 will be identified as a substring
6f a string of length'Lz + k - 1. Comparing the results shows
that when Ll and L, are large there is not much difference
in the performance of the two values of m. When Ll is small
(e.g. 3 segments)and L, is large (e.g. 96 segments) the
results are considerably better for the larger hash signature
(i.e. m = 120).

For example, the probability that a 4-character string
being identified as a substring of a 97-character string is
about 17 percent for m = 120 and about 51 percent using m = 60
with 2-signatures being taken (k = 2). This implies that at
least 83 percent of non-substrings will be rejected by the
signature test for m = 120 and 49 percent will be rejected
for m = 60. An important consideration for TEF is that the
signature test function well for small strings (between 2
and 20 characters).

The user should be able to specify small seafch strings
and still obtain fast response time. In TEF the majority of
tests will occur with L; small (maximum 19) and L, large
(maximum 129), therefore m = 120 is a worthwhile»choice. The

two word hash signature “involves an additional test to test

75

both words of the signature. Most text lines will be rejected
by the first test of the first word of the signature.

The value for k in TEF is two. This allows search
strings as small as two characters and the corresponding hash
signatures to contain more information than for larger k.

The hashing function operates on the display code
for each character. Since each character is stored right
Jjustified with zero fill, each character can be treated as
an integer number equivalent to its display code (00 - 778).
The hashing function hashes every two consecutive characters
of the string into a bit position (1 - 120) numbered right
to left in the word.

The hashing function in FORTRAN is

KHASH (ICH1,ICH2,K) = MOD(ICH1*K + ICH2,120) + 1
where ICHl1 is the first character and ICH2 the second. K is
a constant equal to 9. The MOD function returns the remainder
when its first argument is divided by its second.

The hashing function returns an integer value in the
range 1 to 120. Different values of K were tested for all
possible two character combinations of the 26 letters of the
alphabet plus blank (729 2-sequences). K = 9 produced the
best and most random results mapping between 5 and 7 pairs
of characters onto each bit position. Other values for K

mapped as many as 26 character combinations onto one bit

76

position and many bit positions were wésted since no combin-
ations hashed to them.

Within each record of the TEF text file is stored
the two word hashed 2-signature corresponding to the text
contained in the line. Each time a line is added to the
file or altered the hashing function is applied to the text
in the line to compute its 2-signature. To decrease the
gxecution time and increase the efficiency the hashed 2-
signature is computed partly in assembly language.

Content searching in TEF allows the user to search
for a string of characters from 2 to 20 characters long in
a file containing lines of 130 characters maximum. The
probability that a string of length L; + 1 will be identified
as a substring of a string of length L, + 1 using 120 bit
2-signatures is tabulated in table 2.3. L, ranges from
1 to 19 which corresponds to strings of length 2 to 20
characters (a string of length n decomposes inton - 1, 2-
sequences) . L2 ranges from 9 to 129 elements which corresponds
to strings of length 10 to 130 characters.

Clearly as the length of L increases the more accurate
the results. Taking the extreme cases, the probability of a
20-character string being identified as a substring of a 130-
character string is less than .04 percent. This implies that

at least 99.96 percent of non-substrings will be rejected by

77

129.0 .66024 ,43591 .28780 .19002 .02384 .00299 .00038
109.0 .59834 .35801 .21421 .12817 .00983 .00075 .00006
89.0 .52516 .27579 .14483 .07606 .00304 .00012 .00000
69.0 .43865 .19241 .08440 .03702 .00060 .00001 .00000
49.0 .33638 .11315 .03806 .01280 .00006 .00000 .00000
29.0 .21548 .04643 .01000 .00216 .00000 .00000 .00000
9.0 .07255 .00526 .00038 .00003 .00000 .00000 .00000
1.0 2.0 3.0 4.0 9.0 14.0 19.0 Ll
Table 2.3 The probability that a random string of length
Ly + K - 1 will be identified as a substring of
a string of length L, + K - 1 using 120-bit
signatures. Lj represents the line length in TEF

{10 to 130 characters) and L, represents the length
of the string to be found (2 to 20 characters in TEF).

78

the signature test. On the other hand; the probability of

a 2-character string being identified as a substring of a
130-character string is about 66 percent. This indicates
that approximately 34 percent of non-substrings will be
rejected by the test. The performance of the substring test
will depend on the length of the search string and on the
frequency of its character combinatidns in the text.

When a string L; is to be searched in a line of text
L2, the hashed 2-signature for Ll is computed and compared
as outlined in section 2.4.1 with the signature of each line.
When the substring test succeeds the line is searched character
by character for the occurrence of Ly. If it is found search-
ing stops, otherwise the next line in the file is tested. If
the signature test fails, the next line will be tested. The
search will terminate when the required string is found or
when the end of the file is reached. The user may specify
which columns of each line to search.

This technique performs extremely well for this type
of application. There are clearly many other similar applic-
ations. The hashing function and the representation of an
ordered set by its set of k—sequences are information compression
functions which preserve as much of the relevant information
on a data-object as possible. Computers and man must process

increasingly large volumes of data: therefore, information

compression of this type is very imporﬁant in order to

save both computer execution time and user response time.

79

CHAPTER 3

TEXT FORMATTING

3.1 Introduction

The imaginative use of computers for on-line compos-
‘ition and extensive manipulation of natural language text
has expanded rapidly into the area of structuring and format-
ting of text.

Computer-assisted typesetting, printing and photo-
typesetting have become popular techniques for producing books,
manuals, reports, form letters, etc. quickly and economically.

The quality of the formatted output is limited only
by the available hardware devices that can be connected to
the computer. Computers can be employed to operate photo-
composition devices, typesetting machines [BAR 65] and
typewriters.

This chapter will discuss the operation of the TEF
formatter with examples of some of its features. At present,
the quality of output from TEF is limited due to the avail-
able hardware devices at McMaster University. At the time
of implementation only line printers were available for

output. The character set only supported upper case characters

80

81

thus, restricting TEF's use for formal documents requiring
upper and lower case alphabetic characters.

Output can be printed on a Versatec Electrostatic
printer using 8 1/2 X 11 inch pages or on a standard impact

line printer with 8 1/2 X 15 or 11 X 15 inch pages.

3.2 Basic Formatting Concepts

This section will describe the terminology used
throughout the chapter.

v The formatting information is inserted by the user
into the'"format word" of a line of text and the text file
can be formatted according to these specifications.

The format word consists of 10 character positions

(1 computer word) divided into 3 fields as follows:

1 2543 4 5 6 7 8 2 40

S——— A, S B N it
Field 1 . Field 2 Field 3

Figure 3.1 The Format Word

Fielas 2 and 3 are used for "format codes" and occupy the
right most 7 character positions of the format word. Field
1l is not used for formaéfing, but is used for sub-section -

markers. It serves as an indication to the user indicating

82

what lines of his text have been defined as the start of a
sub-section in the file.

Character positions 2 and 3 are unused at present and
may be used for future extensions to TEF. Each format code
consists of two letters. Some format codes are followed by
a maximum three digit integer number. Format codes requiring
a numeric quantity are inserted into field 2 (5 character pos-
itions) while field 3 (2 character positions) contains the
two letter codes.

When fields 2 and 3 both contain format codes, field
2 is processed before field 3. Therefore, each line of text
- can confaiﬁ two formatting operations to be performed.

The input to the formatter consists of text and format
codes. A format code is one of several well defined strings
which may be stored in the format word of a linevof text. The
format codes operate on the text in the line, select or turn
off a particular feature, or change formatting parameters.

A line which does not contain any formatting information is
defaulted to left and right justification since the majority
of natural language text will require justification upon
output.

The text consists of the lines of text in the file
to be formatted. Each line of text is composed of words.

Words are strings of characters delimited by one or more

83

blanks or by the end of the input record (line). The input
line may contain from 0 to 130 characters. A blank line is
considered as a line containing zero characters. Only the
format codes of a blank line are processed. This allows ‘the
specification of a format which cannot be achieved by using
only one format word.

The formatter within TEF may operate in either of
two modes: "formatted" and “hon-formatted". In formatted
mode words are delimited by the end of the text line and
one or more blanks. Words are shifted to fill the output
line as much as possible. Right justification is performed
by separating words by more than one blank. Additional blanks
added between words are spread symmetrically throughout the
line. This method avoids blank "streaks" in a page of text.

In non-formatted mode, a word is delimited by the
blank following the last non-blank character or the end of
the input record. In non-formatted mode blank characters
are considered in the same way as any other character. There-
fore, only one word is printed per line containing a maximum
of 130 characters. Non-formattéd mode is used when a format
is desired that cannot be achieved in formatted mode, or
when insertion of extra blanks will change the intended mean-
ing of the text (i.e. when embedded blanks are significant).

During formatting, output text lines are formed

starting at the "left margin". The left margin is the print

84

column position where the first character of the line is to
be placed. The width of the left margin is equal to the left
margin minus two. The first character position in an output
line is reserved for printer carriage control. A left margin
can be in the range 2 to 120. .

Each line of text in formatted mode will contain LINWD
characters after justification. LINWD is thé number of char-
acters to be placed in each line. The right margin is the
position where the last character of each line is placed. The
width of the right margin is determined by the left margin
width plus LINWD characters. The width of the right margin
is depeﬁdent upoen the size of the output page. The maximum
size of an output line is 130 characters including the blanks
in the left margin.

Each page of output contains a header which occupies
the first 7 lines of every page. The header consists of 3
blank lines, the header line, and 3 more blénk lines. ' The
header line may contain a running heading and/or a page number.
The running heading may be a maximum of 60 characters long.
Either the running heading and/or the page number may be omitted.
When both are omitted the header line is printed as a blank
line. The running heading is initially blank and page number-
ing is selected if desired before formatting begins.

The page numbering is controlled by the current page

85

number. It is initially one and is indiemented by one after
each page header is printed if page numbering is selected.

The user may change the value of the current page number and
the contents of the current running heading dynamically during
formatting.

Following the header is the "text body" which occupies
the remainder of the page. The text body consists of lines of
text printed in either formatted or non-formatted mode.

The spacing between lines is controlled by the spacing
' parameter. Single or double spacing may be selected before
formatting begins and can be changed dynamically during edit-
ing. Additional blank lines may be output using format codes.

The number of lines per page is controlled by the
page depth parameter (NLPAG). The page depth counts all lines
on the page including the seven header lines. Page depth is
selected before formatting begins and causes a new page to
be started after NLPAG lines have been printed on a page. A
large number chosen for NLPAG will effectively eliminate paging
control. The user may override this feature and start a

new page at any time during formatting.

3.3 The Formatting of Text

The input to the formatter within TEF consists of the

lines of text within the text file and their associated format

86

codes. The format codes are processed and applied to the line
(if applicable) with the formatted output lines written onto
an output file.

The default mode of output is the formatted mode
with left and right justification for each line. The format
codes allow the user the ability to alter the specifications
of this mode (e.g. margins, indentations, page format, etc.)
or to output a line in non-formatted mode.

In TEF there is an "output line buffer", from where
all output text, excluding the header and blank lines is
written to the output file. During formatting, the buffer
contains the current output line being formed. The source
of input to the line buffer is the "current input line". The
current input line is the line of the file currently being
processed. Depending upon its associated format code, text
from the input line will either be added to the current line
being formed, or the current line will be printed and the
input text will be used to form a new line. The current out-
put line is printed when it is full or when a format code is
encountered that causes the current line to be printed before
being processed. The line is printed according to the current
margins.

The length of the buffer is 131 characters. The first

character position is reserved for printer carriage control.

87

The value of the carriage control is determined by the spacing
parameter selected by the user. The length of the buffer allows
lines of up to 130 characters to be formed on output. The
left margin corresponds to a character position in this buffer
and the first character of an output line is placed in this
character position. The text can be shifted within the
buffer by adjusting the margin width.

In formatted mode, text is added to the buffer and
justified so that each line contains the required number of
~characters per line (LINWD). Each line of text is treated
as a continuation of the previous line separated by one blank.
Text is added to the current output line from the current
input line. The line is printed when it is filled or a "break”
occurs. Some format codes ("break codes") when encountered
in the input stream, terminate the addition of text to the
current output line. When a break occurs the current line
is written onto the output file before the format code is
executed. A new output line is then started, the format code
executed and the text of the line processed.

A line of text can _be output in non-formatted mode
by specifying the non-formatted code in :the format word for
the line. 1In this case, the current line (if any) is printed
and the input line of text is printed on the next line exactly

as it was read. A new output line is started after the non-

3

88

formatted line is printed. A group of lines to be output in
non-formatted mode must each contain the non-formatted code.

The following is a discussion of how the format codes
operate during formatting. All the format codes in field 2
of the format word are break codes, except for the print
blanks after processing the line‘code (Ba).

The format codes in field 2 are of the form XXNNN
where XX is a two letter format code and N is a numeric digit.
The codes in field 2 provide a means to adjust left and right
margins, print blank lines before or after a line of text,
start a new page, and change the current pége number.

‘The left margin may be moved left or right, thus
decreasing or increasing the left margin width. A shift of
fhe left margin to the left (LL) (right (LR)) code causes
the current line formed to be output and then the left margin
is moved left (right) NNN charactef positions. The text of
the line is then used to form an output line with the first
character placed in the character position of the new left
margin. The LL (LR) format code increases (decreases) the
length of the output line. These two format codes operate
in the same manner as adjusting the left margin on a typewriter.

During formatting the width of the right margin may
be changed by moving the right margin left or right. A shift

of the right margin left (RL) (right (RR)) code will cause the

89

current line to be printed and the righ£ margin moved left
(right) NNN character positions. When the right margin is
movéd left (right) the width of each line (i.e. the number
of characters per line) is decreased (increased) by NNN
characters, effectively increasing (decreasing) the width of
the right margin. The text is then processed. The RL and
RR format codes operate in the same way as adjusting the
right margin on a typewriter.

The LL, LR, RL and RR format codes allow the user the
ability to strictly and dynamically control the line width
and the margin widths of the output in a manner analogous to
manually adjusting the margins on a typewriter.

The output of blank lines is regulated by the format
éodes for printing blank lines before (BB) or after (BA)
processing the text in the line. The BB format code terminates
and prints the current line, prints NNN blank lines and then
processes the text in the line. The BA code processes and
outputs the line of text according to the current mode and
prints NNN blank lines after the line is output. These codes
may be used for block paragraphing, spacing for diagrams or
figures, or for separation of sections of text. They provide
a means to output blank lines without storing them in the file
and thus, wasting space that could be used for the user's text.

A useful feature of TEF is the margin delay code (MD).

90

Upon encountering an MD code the current line is printed and
a new line is started. The MD code delays moving of the left
margin right NNN charaéter positions until one output line
has been printed from the input line of text. For example, a
frequently used format is of the following form:
- MD code - After this line is printed the left margin is
moved right NNN character positions or spaces
(e.g. 10 spaces here).
Note that at this point after all the required text is
printed the left margin must be reset to its original position
(i.e. move the left margin left 10 spaces). AFigure 3
contains a page of output employing the MD feature.

The new page format code (NP) permits the user to
control the paging of his text. When the NP format code is
encountered the current output line is terminated and output
onto the current page and a new page is started. If the
number (NNN) following the NP code is non-zero the current page
number is set to this number. Else the current page number
is used. The header is printed on the top of the page and
may be blank. The text of the line issthen processed. The
user can strictly control the amount of text on each page by
overriding the page depth parameter with the NP code.

The NP code is also useful for reformatting selected

page numbers or for formatting sections of text with non-

TEF TEXT EDITOR @MD FORMATTER -

L¥x]
oot

EASIC TERMS aMD MOTATION USED

LIME OR RECORD - THESE TWO TERMS WILL BE USED IMTERCHAHGERELY
DURIHG THE DISCUSSION @ AS THEY CalK BE VIEWED
FROM THE USERS POINT. OF VIEW AS REPRESENTING

OHME ESTRING OF MAXIMUM LEMGTH 13286,
\

FORMAT WORD - THE WORD COMTAIMED IN.EQCH RECORD WHICH STORES THE
FORMATTING CODES TO SPECIFY THE ﬂESIéEH‘FDRMﬁTTIHG
FOR THAT LIME OF TEXT. IT COMSISTS OF 18 CHARACTERS
OF TEXT DIYIDED INTO 3 FIELDS. FIELD 1 CONSISTS OF
CHARACTER POSITION 1, FIELD 2 COHMSISTS OF CHARACTER

POSITIONS 4 - 8 " AND FIELD 3 COM

iy]

18T HARACTER

-
]

B

ul

iy

-POSITIONS & AMD 18, WHERE THE CHARACTERS IH THE

WORD mRE HUMBERED FROM LEFT TO RIGHT. CHARACTER

FOSITIONS 2 aMbDr 3 ARE UMUSED AT PRESEMT.

FORMAT OF DISPLAYED LIMES - WHEM A LIHME OF TEXT IS DISFLAYED OH
THE CRT SCREEN THE 138 CHARACTERS QF
TERT ARE SPLIT IMTO TWO LIMES WITH
FE CHARACTERS OH THE FIREST LIHEAQHD

& CHARACTERE B THE :

ol

ECOND.
FOLLOWING THE 68 CHARACTERS OH THE
SECOND LIME IS THE 18 CHARACTERS OF

THE FORMAT WORD BETWEEM TWO SLASHES.

Figqure 3.2 The Margin Delay Feature

consecutive page numbers.

Field 3 contains format codes consisting of 2 letters
without a numeric quantity associated with them. The break
codes in field 3 are the paragraph indentation code (IN), the
centre text code(CT), the non-formatted output code (NF) and
the spacing control codeé SS (single spacing) and DS (double
spacing).

The paragraph indentation code (IN) causes a new
paragraph to be started with the text in the line indented
five spaces from the left margin. When the IN code is encount-
ered the current output line is output and a new line of text
is started with the left margin moved right fi&e spaces for
the first output line formed. The left margin is reset after
this line is printed and before the remaining text in the line
is output.

Text can be centered between the left and right margins
for headings and titles. The centre text (CT) format code
writes the current output line onto the output file and then
processes the text to be centered. Leading and trailing
blanks are trimmed from the input line, the resulting text
is centered between the left and right margin and written
to the output file.

The -output of lines of text in non-formatted mode is

performed by the non-formatted output code (NF). When the NF

code is applied to an input line of text the current output
line is printed and the input line of text is printed in
non-formatted mode. The text is output exactly as it was
inputted with the first character of the output line starting
at the left margin. After printing the line a new output line
will be started with the text of the next input line read.
This feature is useful for rigidly formatted output such as
tables, lists, etc. or for output of character strings where
embedded blanks are significant.

Running headings may be defined, changed and cleared
dynamically during formatting. The running heading format
code (RH) allows the user the ability to define a string of
characters as the current running heading to be used in the
header line. The RH code trims off leading and trailing
blanks from the text of the line and the resulting text string
is used as the new running heading. The heading may be a
maximum of 60 characters long. The running heading is centred
between the left and right margin and is printed at the top
of each page.

The clear heading format code (CH) clears the current
heading to blanks, effectively deleting the running heading.

- Spacing is controlled by the single space (SS) and
the double space (DS) format codes. The SS code changes to

single spacing and the DS code changes to double spacing after

the current line is output. The text of the line is then
processed. Spacing will remain the same until changed by
another DS or SS format code. Before formatting begins the
user may specify either single or double spacing.

Page numbering is determined by the PO and PY format
codes. The PO code turns page numbering off so that page
numbers are not printed at the top of each successive pageQ
The PY code selects page numbering for each page and the
current page number is incremented by one after each page
is output. When page numbering is turned off the current
page number remains at the next consecutive page number to
be used and does not change until page numbering is turned
on again or the user changes it with a NP code. The page
number is printed above the right margin three lines
from the top of the page.

In the above discussion, I have outlined the operation
of each format code in field 2 and 3 acting alone on a line
of text. Format codes may be contained in both fields for a
line of text. 1In this case, field 2 is processed before
field 3 and then the text is processed.

The user should be aware of the order of execution
when specifying format codes. For example, when specifying
the new page code and the running heading code together, the
new page is started and the header printed before the current

heading is changed by the RH code.

95

The complete text file may be formatted or only
sections of it. Formatting will terminate at the end of the
file or when a line containing the number 999 in field 2 of
its format word is encountered. Formatting may begin at the
first line in the file or at the current line.

The remaining pages in this chapter contain examples
of formatted output produced by TEF and a section on the |

reformatting of a text file or sections of it.

TEF TEST EDITOR AMD FORMATTER i

L

EF USERS MaMUaL
INTRODBUCTION

TEFE - IS AN . INTERACTINME - TEXT EDITOR @HD FORMATTER FOR
CREATIHG, MOLDIFYIHG AMND FORMATTIHG TEWT USING BIRECTIVES PROVIDED
BY THE USEE AT A TERMIMAL. TEF IS IMPLEMEWMTED OM A COMTROL DATS
486 COMPUTER AMD BUNME INTERACTIVELY UMDER IMTERCOM VERSION 4. 3,

WHICH PROVIDES TfHE SHARING ACCESS TO THE COMPUTER, OR IT CaN BE

et

LY FORTRAN

i)

EXECUTED INM EBATCH MODE. THE SO0OURCE LQHGUQGE I3 MO
WITH A FEW COMPRES ASSEMBLY LANGUAGE ROUTINES.

TEF CAN MAMNIFULATE ?QEIUﬁS KIMDS OF TEXT IHMCLUDING
FROGREAMMING LANMGUAGE TERT ﬁHT HA TUFQL LHHhUHhE TEXT (E.G. ENGLISZH
TERTY. HOWEYER. IT WaAS DESIGHED PRIMARILY FOR THE HQQIPULQTIDH'DF
MATURAL LAMGUARGE TEXT. THE COMMAMD AMD FILE STRUCTURE WaS CHOSE
TO FACILITATE THIS TYPE OF TEXT MANIPULATIOHN.

THE PRIMARY DBJECTIVE OF THIS PROJECT W&S & TEXT EDITOR AND
FORMaATTER TO BE USED FOR THE PREPARATION aAND PRINTING OF REPDRTE,
iAHUALS, ROUGH DRAFTES OF MaANUSCRIFTS, AMD OTHER DOCUMENTS IH
WHICH Mady REVMISIOHNE ARE HECESSARY

OHE.. . OF > THE BASIC CHARARCTERISTICS OF TEF 1€ CONTENT
ADDRESSING. COMTENT mRDDRESSIMG ALLOWS THE USER TO SELECT LIHES OF
TEXT BY THEIR COMTEMT. RATHER THAM BY LIME NUMBER. THIS IS A MORE
MATURAL WaY OF ADDRESSING EWMGLISH TEXT AMD THE USER NEED HOT BE

COMCERMED WITH RESEQUENCING OF LIME MUMBERS, R “SPECIFYING

i

Figure 3.3 Double Spaced Page of Output

TEF TE®T ELITOR aAMD FORMATTER =8

BasIC TERME AMID HH ATION USED
+ - DEMOTES FORWARD MOTION IH THE TEXT FILE:

~ i~ DEHMOTES BACKWARD 'MOTION IM FHE TERT FILE, - :
* — REPRESENTS A STRING DELIMITER AND CAM BE AMY MON-ALPHREETIC

TR
CHARACTER HOT COMTAINMED IM THE STRING IT IS EHCLOSING. A
SLASH ¢~2:15 THE MOST -COMMOH DELIMITERGHSED:

[Ry] 1___:

STRIMG - IS A STRIMG OF CHARACTERS AVAILABLE IM THE CHARACTER SET
OF THE FaRTICULAR MACHIME BEIMG LUSED. :

MHM - & STRIMG OF FROM 1 - 3 MUMERIC DIGITS
L1 - OGPTIOHAL FORMAT OF COMMAHD.

CURRENT EINE. =% 18 I THE~ . LINE QECSTENTme i ToH - -THE FILE:..IS

' FOSITIOMED. THIS LIME IS DISPLAYED WHEMNEVER IT
CHAMGES DURING THE EXECUTION OF AM INSTRUCTION.
ALL TEST EDITIMG IS FERFORMED OH THE CURREMT
LINE.

WORD - IS A COHS ECUTI“E STRING OF HMOM-BLAHE CHAR&CTERS.

‘LIME OR RECORD - THESE TWO TERMS WILL BE USED IMTERCHAMGEARBLY
DURIMG THE DISCUSSION A% THEY CAM BE WIEWED
FROM THE USERS POINT OF WIEW AS REPRESENTING
OHE STRING OF MAXKIMUM LEMGTH 138,

FORMAT WORD - THE WORD COMTAIMED IW EACH RECORD WHICH STORES THE
FORMATTIMG CODES TO SPECIFY . THE DESIRED FORMATTIHG
FOR THAT LIMNE BF FEXT - G1T CDHaI*T OF 18 CHARRACTERS
OF TEXT DIVIDED INTO 3 FIELDS. FIELD 1 CONSISTS OF
CHARACTER POSITION 1., FIELD 2 COMSISTS OF CHARACTER

FOSITIONS 4 - 8 aMD FIELD 3 COMSISTS OF CHSRACTER
FPOSITIONS 3 AMD 18, WHERE THE CHARACTERS IHW THE
WORD ARE HUMBERED FROM LEFT T2 RIGHT. CHARACTER

CPOSITIONE 2 AMD 2 ARE UHUSED AT PRESEHNT.

FORMAT OF DISPLAYED LIMES - WHEM A LIME OF TEXT IS DISFLAYED OH
‘ THE CRT SCEEEM. THE 138 CHRRACTERS OF
TEXT ARE SPLIT IMTO TWO LIMES WITH
78 CHARACTERES OM THE FIRST LIME aHMD
=35 CHARACTERS . OH THE SECOND.
FOLLOWING THE &8 CHARARCTERS 0OH THE
SECOMD LIHE IS THE 168 CHARRCTERES OF
THE FORMAT WORD BETWEEN TWO SLASHES.

Figure 3.4 Single Spacing Using Margin Delay Feature

THE FORMATTING OF TEXT

SPECIFYING THE FORMATTING IMFORMATION DURING EDITING IS
FERFORMED USIMG THE ~FORMAT COMMAMD aMD THE TEST IS FORMATTED
ACCORDING TO THESE SPECIFICATIONS BY THE ~sFLIST COMMAND. IF &
LIME DOES MNOT COMT&IM &MY FORMATTIMG INMFORMATION IT IS DEFBULTED
TO RIGHT JUSTIFICATION SIHCE THE MAJORITY OF TERXT FORMATTING WILL
REGUIRE JUSTIFICATION OW OUTPUT. :

EACH LINE OF TEXT IS TREATED &% A COMTIHUATION OF THE
PREVIOUS LIHE SEPARATED - BY OHE BLAME UHLESS @& BREAK OCCURS.
CERTAIM FORMAT CODES CAUSE & BREAK TO OCCUR WHEM FILLIHG ad
QUTPUT LIME. WHEN A BREAK DCCURS THE CURREMT OUTPUT LIME BEIMG
FORMED IS EMDED AND OUTFUTTED BEFORE THE FORHMAT CODE IS ERECUTED
AMD A MEWM OUTPUT LIME IS5 STARTED WITH THIS HEW LIME OF TEXT. aLL
THE FORMAT CODES IM FIELD TWO OF THE FORMAT WORD ARE BREAK CODES
EXCEPT FOR THE PRIMT ELAMWKS AFTER THIS LIME CODE (BAX. FOR THE BA
CODE THE BREakK<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>