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Abstract

MATHEMATICAL models applied to epidemiology are useful tools that help
understand how infectious diseases spread in populations, and hence sup-

port public-health decisions. Over the last 250 years, these modelling tools have
have developed at an increasing rate, both on the theoretical and computational
sides.

This thesis explores various modelling techniques to address debated or unan-
swered questions about the transmission dynamics of infectious diseases, in par-
ticular sexually transmitted ones.

The role of sero-discordant couples (when only one partner is infected) in the HIV
epidemic in Sub-Saharan Africa is controversial. Their importance compared to
other sexual transmission routes is critical when designing intervention policies.
In chapter 2, I used a compartmental model with an original partnership process
to show that infection of uncoupled individuals is usually the predominant route,
while transmission within discordant couples is also important, but to a lesser
extent.

Despite the availability of inexpensive antimicrobial treatment, syphilis remains
prevalent worldwide, affecting millions of individuals. Development of a syphilis
vaccine would be a potentially promising step towards control, but the value of
dedicating resources to vaccine development should be evaluated in the context
of the anticipated benefits. In chapter 3, I explored the potential impact of a hy-
pothetical syphilis vaccine on morbidity from both syphilis and HIV using an
agent-based model. My results suggest that an efficacious vaccine has the poten-
tial to sharply reduce syphilis under a wide range of scenarios, while expanded
treatment interventions are likely to be substantially less effective.

General concepts in epidemic modelling, that could be applied to any disease,
are still debated. In particular, a rigorous definition and analysis of the genera-
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tion interval – the interval between the time that an individual is infected by an
infector and the time this infector was infected – needed clarification. Indeed, the
generation interval is a fundamental quantity when modelling and forecasting
epidemics. Chapter 4 clarifies its theoretical framework, explains how its distri-
bution changes as an epidemic progresses and discuss how empirical generation-
interval data can be used to correctly inform mathematical models.
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Chapter 1

Introduction

Historical background

THE use of mathematical models to understand, and eventually control, the
spread of infectious diseases is more than 250 years old and started with

what could be anachronistically labelled a “public health assessment for smallpox
vaccination”.

Before being eradicated in 1977, smallpox decimated human populations for cen-
turies. As early as the 10th century, the Chinese were aware that smallpox inoc-
ulation could protect individuals against a more lethal form of this disease. This
technique consisted in exposing intentionally the skin of susceptible (not natu-
rally infected yet) individuals to secretions from naturally infected persons. The
inoculated individual was still exposed to the virus, but symptoms would typi-
cally be less severe, resulting in a significantly reduced mortality rate (less than
2% versus about 30% when naturally infected). However, there could be cases
where inoculation would still trigger severe symptoms that could potentially lead
to death.

Smallpox inoculation being the only tool against the disease, it was introduced
and promoted in Western Europe by Theodore Tronchin in 1756, a Swiss medical
doctor. However, the “variolation”, as it was also called, was very controversial
and met with resistance. Daniel Bernoulli, a Swiss scientist, laid down in 1760
a mathematical model to assess the potential benefits of vaccinating a popula-
tion against smallpox on life expectancy [10]. This is considered to be the first
documented attempt to address a public health issue using the rigour of mathe-
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matics.

Although it is not clear what the impact of this mathematical argument was in in-
troducing variolation to European populations, its goal was the same as what epi-
demiological modellers do today: short of epidemiological experiments, careful
reasoning is used in designing mathematical models representing the real world
in order to understand and assess strategies to control the trajectory of an epi-
demic.

Interestingly, aside from Bernoulli’s mathematical model, mathematical epidemi-
ology did not develop further for roughly 150 years. It was only in 1910 that
Ronald Ross conceptualized the transmission dynamics of malaria with differ-
ence equations ( [85, 151-164]). This mathematical model highlighted that malaria
could theoretically be eradicated without necessarily eliminating all mosquitos
(the vectors transmitting malaria to humans). In other words, Ross’ mathemati-
cal model enabled to keep the mosquito-control option (that, today, we know is
effective) as one of the possible public-health policies, whereas it would probably
have been ignored (and hence losing an effective tool) if policy makers believed
in the necessity to wipe out entire mosquito populations.

In the 1920s, Kermack and McKendrick formalized the dynamics of infectious
diseases transmission with a system of deterministic differential equations [70].
This type of model is still widely used today in mathematical epidemiology.

Epidemics of infectious diseases are based on contacts between individuals, which
are essentially random events. Modern probabilistic approaches in demography
and bacterial growth were developed from the 1940s, in particular by Kendall
[67]. Bartlett and Bailey capitalized on these advances to propose epidemiolog-
ical models involving stochastic processes (for example [5, 7]). The increasing
power and availability of computers encouraged the development of more so-
phisticated epidemiological models. For example, Bartlett used “the Manchester
electronic computer” (at the time, one of the most advanced computers) to sim-
ulate a spatial epidemic in a population of about 5,000 individuals dispersed in
36 geographical locations with a stochastic model [7]. So, thanks to this unprece-
dented computing power, mathematical tractability, although desirable, was not
a blocking point any more in the design of models that aimed to better represent
real epidemics (or what we think they are).

The technological revolution of personal computers starting in the early 1980s
opened a new phase in mathematical epidemiology. Modellers could not only

2
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design ever more sophisticated models, but could also start to embrace epidemi-
ological data and calibrate the values of model parameters to it. For example,
Rvachev and Longini [88] built a model to forecast the worldwide spread of pan-
demic flu across 52 cities, fitting on air transportation data). Another example
could be Earn et al. who managed to explain the complex and puzzling dynami-
cal transitions of measles epidemics that occurred in the UK and USA during the
second half of the twentieth century [40]. Such models would then start to be
closer to reality, or at least to the reality represented by the epidemiological data
set considered, and potentially give more credibility to the inferences made from
these models.

Calibrating models to data can become rapidly challenging numerically because
of the high-dimensionality of the epidemiological problem. It certainly became
rapidly out of reach for pre-2000 personal computers, so modellers tried to find a
balance between analytical and numerical tractability. For example, this is well il-
lustrated by the approach taken in Anderson and May in their landmark book [2]
where data is present as long as mathematical tractability is not too compro-
mised. In particular, there is no chapter dedicated to fitting mathematical models
to data.

A new era began about 10 years ago with both the affordable access to high per-
formance computers and the harvest of immense amount of data. Sophisticated
epidemiological models can now embrace large quantities of data from differ-
ent fields, such as social media, meteorology and mobile phones ( [57, 103, 108]).
In order to cope with models’ complexity and the quantity of data used to fit
them, these mathematical models heavily rely on state-of-the-art statistical meth-
ods. Indeed, the non-linearity and high dimensionality of the models involved
have promoted the use of techniques that are often used for mathematical mod-
els applied to epidemiology, such as Markov chains Monte Carlo, approximate
Bayesian computation [97] and iterative filtering [60].

This brief historical review of mathematical models applied to epidemiology shows
the tremendous evolution these models have undergone over the past two and
a half centuries (Table 1.1). Along with these developments, one important goal
has been to better understand the spread of pathogens in human populations in
order to support public health decision-makers. The development of a versatile
toolbox of models have undoubtedly increased our understanding and ability to
respond to epidemics. This toolbox was especially helpful to fight burdensome
epidemics like the sexually transmitted ones, and particularly the current HIV

3
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(human immunodeficiency virus) pandemic that started in the early 1980s.

Sexually-transmitted infections

Among all infectious diseases, sexually transmitted ones were studied relatively
early with “modern” mathematical models. For example in 1973, Cooke and
York [31] considered one of the first mathematical models of gonorrhea trans-
mission.

Today, the burden of sexually transmitted infections (STIs) on humankind is enor-
mous: the World Health Organization (WHO) estimated that nearly 500 million
new cases of curable STIs (e.g., chlamydia, gonorrhea, syphilis and trichomonia-
sis) occurred during 2008 alone [105]. Although there is no more recent study, it is
reasonable to think these numbers are still reasonably accurate. Some of these in-
fections can lead to severe outcomes for the infected individuals and, in the case
of pregnant women congenital syphilis. Congenital syphilis causes destructive
infection in newborns, and can result in long term neurological damage, as well
as an unusual appearance. Most curable STIs have a relatively cheap treatment,
but depending on the setting, access to care or identifying infected patients may
be challenging, hindering the epidemic control. Moreover, these infections are
believed to facilitate HIV transmission by increasing both HIV susceptibility and
infectiousness [12, 25, 62, 79, 86, 87, 107].

Tremendous efforts have managed to slow down the HIV pandemic using vari-
ous interventions like “treatment as prevention” (giving antiretrovirals as soon as
possible and not only when immuno-competency starts to decay), voluntary male
circumcision (which only provides partial protection to the risk of male HIV ac-
quisition), promoting condom use and behavioural campaigns to limit the num-
ber of sexual partners. But the HIV pandemic is far from over: approximately 35
million people are living with HIV (and many are not aware of being infected), 2
million new HIV infections and 1.5 million AIDS-related deaths occur every sin-
gle year [99]. In addition to social and political hurdles there are other practical
issues that hamper the control of the HIV pandemic. For example, antiretroviral
therapy dramatically reduces the risk of HIV transmission, but only as long as
the patient is on treatment, so adherence and availability of the drugs are critical.
Availability may be challenging in resource-limited settings. Even in countries
with strong financial and public health capabilities, the ratio of HIV-infected pa-
tients who are effectively virologically suppressed to the total prevalence (the
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“HIV care cascade”) is surprisingly low, typically between 30 and 60% [76].

The epidemiological landscape for STIs begs for mathematical modelling. As
briefly described above, there is a relatively broad range of possible interventions
to control their spread. But given the high prevalences, the resulting large scale
of their implementation forces us to carefully assess their effectiveness. Unfortu-
nately, modelling STIs is challenging: partnerships and demographic dynamics,
as well as the natural history of the disease can play important epidemiological
roles. For example, demographics are important because of long infectiousness
period (e.g., HIV, herpes simplex virus type 2) or trans-generational partnership
formation. Concurrency – having simultaneous sexual partnerships – can also be
critical in the transmission dynamics [78]. Many of these features are potentially
important to include in mathematical models of sexually transmitted infections,
making its tractability challenging.

About this thesis

This thesis explores practical epidemiological issues in order to incrementally fill
some knowledge gaps that would help better understand, and thus better man-
age epidemics. As such, a variety of modelling tools are used to this end, from
relatively simple models (chapter 4) to agent-based models that require high-
performance computers (chapter 3).

The HIV pandemic is principally affecting the general population of Sub-Saharan
Africa: this region accounts for about three quarters of the worldwide incidence,
prevalence and AIDS-related deaths [99]. As outlined earlier in this introduction,
various interventions are implemented and others contemplated to control the
epidemic trajectory. Serodiscordant couples – when only one partner is infected
with HIV – have received particular attention because of their suspected impor-
tant role in spreading the disease, but previous studies found inconsistent re-
sults [28, 39]. Chapter 2 analyzes the importance of serodiscordant couples to the
HIV transmission dynamics in the general population. It explored, using a com-
partmental model with parameters based on estimates from Sub-Saharan Africa,
how mechanistic factors – like partnership dynamics and rates of extra-couple
transmission – affect various routes of transmission. We found that infection
of uncoupled individuals is usually the predominant route while transmission
within discordant couples is also important, but rarely represented the major-
ity of transmissions. We also gave some insights regarding correlations between
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HIV prevalence, contact rate of uncoupled individuals, within-couple transmis-
sion and discordance proportion.

No vaccines exist for most sexually transmitted infections (Human papillomavirus,
hepatitis A and B being the only exceptions). However, important advances have
been made in basic sciences such that vaccine development for some STIs can be
contemplated [14]. In particular, a vaccine against syphilis is especially appealing
given the failure of current treatment options to control this epidemic, the exis-
tence of a relevant animal model [16] and WHO’s goal of eliminating its congen-
ital form [106]. In chapter 3, a mathematical model – that simulates individuals’
behaviour and the natural history of STIs – was used to explore the potential im-
pact of rolling out a hypothetical syphilis vaccine on morbidity from both syphilis
and HIV. The epidemiological impact from vaccination was compared to the im-
pact of expanded “screen and treat” programs using existing treatments. Our
results suggested that an efficacious vaccine has the potential to sharply reduce
syphilis under a wide range of scenarios, while expanded treatment interventions
are likely to be substantially less effective.

The distribution of the “generation interval” – interval between the time that an
individual is infected by an infector and the time this infector was infected – plays
a central role in the disease transmission dynamics: its distribution underpins es-
timates of the reproductive number (number of cases generated on average by a
single case over the course of its infectious period, in a fully susceptible popu-
lation) and hence informs public health strategies. Empirical generation-interval
distributions are often derived from contact-tracing data, but linking observed
generation intervals to the underlying generation interval required for modeling
purposes is surprisingly not straightforward, and misspecifications can lead to
incorrect estimates of the reproductive number, with the potential to misguide
interventions. Chapter 4 extended previous approaches [66, 81, 89, 95] by clarify-
ing the theoretical framework for three conceptually different generation-interval
distributions: the “intrinsic” one typically used in mathematical models and the
“forward” and “backward” ones typically observed from contact tracing data,
looking respectively forward or backward in time. We explained how the re-
lationship between these distributions changes as an epidemic progresses and
discussed how empirical generation-interval data can be used to correctly inform
mathematical models.
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Table 1.1. History of mathematical models applied to epidemiology. The remarkable
studies are subjectively chosen. The figure in the last row is a stylized representation of
the order of magnitude for the maximum size of data handled by epidemiological
models.

Period 1760-1910 1910-1950 1950-1980 1980-2000 2000 onwards

Remarkable
studies Bernoulli

[10]
Ross [85], Kermack
and
McKendrick [69]

Bartlett [7], Bailey [5] Anderson and
May [2], Diekmann
et al. [36]

time will tell

Epidemic
Model n/a

- Compartmental
deterministic

- Renewal equation

- Compartmental deter-
ministic and stochastic

- Renewal equation

- Complex compart-
mental

- Renewal equation
- Agent-based model

- Complex compartmental
- Renewal equation
- Agent-based model
- Statistical models

Mathematical
Tools Arithmetics

- Basic probablities
and stats

- ODE / Dynamical
systems

- Modern probabilities
- Dynamical systems
- Basic stats

- Modern probabilities
- Dynamical systems
- Advanced stats

- Modern probabilities
- Dynamical systems
- Advanced stats
- Computer sciences

Computational
Tools Brain Brain - Large room computers

- Brain
- Personal computer
- Brain

- High-performance computers
- Personal computer
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Chapter 2

HIV sexual transmission is
predominantly driven by single
individuals rather than discordant
couples: a model-based approach

Champredon D, Bellan S, Dushoff J. PLoS ONE 2013; 8: e82906.

DOI: 10.1371/journal.pone.0082906

2.1 Abstract

Understanding the relative contribution to HIV transmission from different so-
cial groups is important for public-health policy. Information about the impor-
tance of stable serodiscordant couples (when one partner is infected but not the
other) relative to contacts outside of stable partnerships in spreading disease can
aid in designing and targeting interventions. However, the overall importance
of within-couple transmission, and the determinants and correlates of this im-
portance, are not well understood. Here, we explore how mechanistic factors –
like partnership dynamics and rates of extra-couple transmission – affect vari-
ous routes of transmission, using a compartmental model with parameters based
on estimates from Sub-Saharan Africa. Under our assumptions, when sampling
model parameters within a realistic range, we find that infection of uncoupled
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individuals is usually the predominant route (median 0.62, 2.5%-97.5% quantiles:
0.26-0.88), while transmission within discordant couples is usually important, but
rarely represents the majority of transmissions (median 0.33, 2.5%-97.5% quan-
tiles: 0.10-0.67). We find a strong correlation between long-term HIV prevalence
and the contact rate of uncoupled individuals, implying that this rate may be a
key driver of HIV prevalence. For a given level of prevalence, we find a negative
correlation between the proportion of discordant couples and the within-couple
transmission rate, indicating that low discordance in a population may reflect a
relatively high rate of within-couple transmission. Transmission within or out-
side couples and among uncoupled individuals are all likely to be important in
sustaining heterosexual HIV transmission in Sub-Saharan Africa. Hence, inter-
vention policies should be broadly targeted when practical.

2.2 Introduction

Diseases spread by sexual intercourse can be transmitted through a wide vari-
ety of social routes: within a stable, monogamous relationship; within a stable,
non-monogamous relationship; or in casual encounters between people who may
or may not also be involved in stable relationships. Understanding the impor-
tance of these routes for disease spread is important for making predictions and
designing public-health interventions. Recent debates about HIV control have
involved discussion of the importance of stable, “serodiscordant” partnerships
(partnerships where one partner is infected and the other is not) to disease trans-
mission [8, 26, 27, 29, 34, 39, 61, 75, 84, 92].

Serodiscordant couples can arise from extra-couple transmission, or from new
pairings involving a person who was infected either while single, while in a pre-
vious relationship or, more rarely in Sub-Saharan Africa, via non-sexual transmis-
sion (e.g. injection drug use, blood transfusions, or vertical transmission). Simi-
larly, serodiscordant couples can be “lost” through couple dissolution, infection
of the seronegative partner via either within-couple or extra-couple transmission,
or the death of a partner via AIDS-related or unrelated causes. Serodiscordant
couples represent a clear example of an individual at risk for transmission, and
a valuable lens through which to study transmission risk and evaluate interven-
tions [13]. If most transmission occurs within stable, serodiscordant couples, then
couple-based intervention is a promising route for cost-effective interventions.
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However, if a lot of transmission is occurring outside of couples, population-
based interventions will be necessary.

The relationship between the number of serodiscordant couples in a population
and their role in transmission is complicated. Looking forward in time, the pres-
ence of serodiscordant couples implies potential risk of within-couple transmis-
sion in those very couples. Conversely, looking backward in time, the presence of
serodiscordant couples implies that the infected individual was infected by some-
body other than the current partner, and thus implies an increased importance of
non-couple routes of transmission or of partner switching.

Dunkle et al. [39] used a “forward” approach to suggest that transmission be-
tween partners in serodiscordant couples contributed to the majority of all new
HIV infections. In a follow-up study, Coburn et al. [29] used a similar forward
approach to argue that transmission within stable serodiscordant couples can be
an important driver of the HIV epidemic when the proportion of coupled indi-
viduals in a population is large. Importantly, such “forward” modelling directly
considers the potential contributions of serodiscordant couples to new HIV inci-
dence, but not their origin.

In the “backward” approach, inference is based instead on the origin of serodis-
cordance. A high level of serodiscordance is thus seen as evidence of outside
infection. Such studies ( [34, 49, 75, 92]) have concluded that within-couple trans-
mission plays a smaller role in contributing to HIV incidence than Dunkle et
al. [39]. For example, Lurie et al. [75] investigated serodiscordance through a
specific group of migrant populations in rural South-Africa and estimated that
a migrant man living in a stable couple was 26 times more likely to be infected
outside this partnership rather than within. More recently, Bellan et al. [8] fit-
ted a mechanistic model to Demographic and Health Surveys (DHS) data from
several countries in Sub-Saharan Africa that combined both the “forward” and
“backward” approaches and concluded that within-couple, pre-couple and extra-
couple transmission are all important in most of the countries considered.

Some studies have looked specifically at within- versus extra-couple transmission
within serodiscordant couples [26, 34, 47]. For example, Chemaitelly et al. [26]
concluded that extra-couple infections contribute “minimally” to HIV incidence
within serodiscordant couples in Sub-Saharan Africa, especially in countries with
low overall HIV prevalence. Extra-couple transmissions has also been suspected
to drive the number of serodiscordant couples [34]. Serodiscordant couple cohort
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studies have additionally found that 13-32% of seroconversions in seronegative
partners were not virologically linked to their partner’s virus and thus due to
extra-couple infection [23, 38, 41, 80, 98]. However, couples in cohorts may not be
representative of the general population, are HIV serostatus-aware, and heavily
counselled with resulting effects on their behavior [80].

The epidemiological role of serodiscordant couples changes throughout the course
of an epidemic [13, 84, 92], and its evolution over time is complex. Robinson et
al. [84] used individual-based simulations fitted to data from rural Uganda to
conclude that within-couple transmission was the main route of infection once
the HIV epidemic reaches an endemic phase. Johnson et al. [61], on the other
hand, fitted a Bayesian model to prevalence and sexual-behaviour data in South-
Africa, and concluded that HIV incidence continues to result predominantly from
transmission outside of stable relationships.

The studies discussed above all focus on the amount of transmission that occurs
directly through various routes. Direct transmission is clearly relevant, but is not
the only factor determining the importance of a route. Some routes of transmis-
sion may be disproportionately important in spreading infection throughout the
population. To take an extreme example, the amount of direct transmission of im-
munodeficiency viruses from non-humans to humans is negligible; but without
early transmission through that route, there would have been no HIV epidemic.
Here we take a complementary approach to earlier studies that focus on routes
of transmission by using a simple dynamic model that allows us to ask not only
what factors affect the amount of transmission through various routes, but also
how changing transmission rates along various routes is expected to affect long-
term disease prevalence.

We construct a partnership-based model specifically aimed at comparing the ef-
fects of transmission within stable couples, transmission to and from uncoupled
individuals, and “extra-couple” transmission to and from coupled individuals.
Partnership-based models have previously been used to study various aspects of
sexually transmitted infections (STI) (see [17] for a recent review). Many of these
trace back to the work of Dietz and Haldeler [37], who used a simple model to
gain analytic insight into a model with sequential partnerships. Although previ-
ous dynamical models involving pair formation have been used to study various
issues associated with the spread of STIs, no dynamical model has focused specif-
ically on the contribution of transmission within serodiscordant couples to HIV
incidence and prevalence. We explore the behaviour of our model across a range
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of parameters representative of HIV in Sub-Saharan Africa using latin hypercube
sampling.

2.3 Materials and Methods

2.3.1 Model formulation

Many of the parameters involved in modelling both couple formation and dis-
ease transmission are difficult to estimate, since they relate to private behaviours
associated with strong social expectations. We therefore made this model as sim-
ple as seemed reasonable in order to disentangle and interpret the fundamen-
tal mechanisms involved. Our model explores the role of serodiscordance and
within-couple transmission in HIV spread. In particular, we do not model gen-
ders separately. Including gender in the model would add a lot of complexity
(and parameters), and is not necessary for addressing our question, since evi-
dence suggests that the gender-specific proportion of index cases [8,42] and prob-
abilities of transmission [12] are at least roughly similar. Nor do we account for
stages of HIV infectiousness, circumcision, co-infections or condom use.

We do include individual heterogeneous infection risk by phenomenologically re-
ducing the contact rate as disease prevalence increases. This is a common method
for introducing heterogeneity into transmission models without substantially in-
creasing model complexity [55]. In particular, it allows the model to capture the
early rapid rise in prevalence with realistic parameters and long-term behaviour.
While we allow for extra-couple transmission by coupled individuals (i.e. once-
off contacts while in a stable relationship), we do not keep track of more than
one stable partnership per individual – a form of “concurrency” that is potentially
important to HIV spread [78].

Model structure

We model uncoupled individuals and couples, classified by HIV status. Uncou-
pled susceptible individuals are denoted X and uncoupled infectious individuals
are denoted Y. Couples are classified asN (concordant negative) when both part-
ners are susceptible; P (concordant positive) when both partners are infectious;
and D (serodiscordant) when only one partner is infectious. The total number of
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individuals at any given time is T = X + Y + 2(N + D + P) and the total num-
ber of infectious individuals is I = Y + D + 2P. See Figure 2.1 for a graphical
representation.

We assume that individuals die naturally at rate µ and that new individuals are
recruited into the sexually active population as uncoupled susceptibles (compart-
ment X) at rate µT ∗ (thus, T ∗ is the equilibrium population size in the absence of
disease). Uncoupled individuals form couples at rate m and couples dissolve at
rate δ. Infected individuals die of AIDS at rate α. Marital parametersm and δ do
not depend on infectious status.

Extra-couple intercourse is modelled by allowing both individuals in stable cou-
ples and uncoupled individuals to interact in a general mixing pool. Coupled and
uncoupled individuals participate in this abstract pool at different rates, but they
mix freely and proportionally in the pool. This allows us to keep the model sim-
ple and the number of parameters limited, while allowing for both partnership
dynamics and the effects of extra-couple transmission on epidemic dynamics.
Note that we formally model the short-term relationships as “one offs”, but our
interpretation is intended to cover all but the main partnership. This is a substan-
tial simplification, but not at all rare: in fact, many influential models implicitly
treat all relationships as one off [17].

Couple formation and dissolution

The size of the uncoupled population is (X + Y), so partnerships are formed at
total rate m(X + Y). Since we assume that individual behaviour towards couple
formation or dissolution is unaffected by infection status, the proportion of new
couples for each type will follow a binomial distribution (see Appendix A for
more details):

• X+ X→ N: X2

(X+Y)2

• X+ Y → D: 2XY
(X+Y)2

• Y + Y → P: Y2

(X+Y)2

Each of these proportions is multiplied by the total ratem(X+ Y).

The dissolution dynamics for coupled individuals is straightforward: N ′ = −2δN,
P ′ = −2δP and D ′ = −2δD. After dissolution, only the susceptible partner of D
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moves to X and both partners of N moves to X, hence X ′ = 2(δD + 2δN). Simi-
larly, only the infected partner of D moves to Y and both partners of P moves to
Y: Y ′ = 2(δD+ 2δP).

Thus, we can write the effects of only couple formation and dissolution on the
dynamics: 

X ′ = −2mX+ 2(δD+ 2δN)

Y ′ = −2mY + 2(δD+ 2δP)

N ′ = mX2/(X+ Y) − 2δN

P ′ = mY2/(X+ Y) − 2δP

D ′ = 2mXY/(X+ Y) − 2δD

T ′ = 0

(2.1)

Transmission

Susceptible individuals in serodiscordant couples become infected at the within-
couple effective mixing rate cw (individuals in seroconcordant couples are implic-
itly assumed to experience the same mixing rate, but do not transmit infection
to each other). We also assume that coupled individuals mix with individuals
outside the relationship with an extra-couple effective mixing rate ce, and thus
become infected (if susceptible) at rate ceλ, where λ is the proportion of their con-
tacts that are infectious. Similarly, uncoupled individuals are exposed at rate cu
and become infected at rate cuλ.

The “effective mixing rates” c thus represent the rate at which individuals become
infected through various routes, conditional on their partners being infectious.
All of our mixing rates are best considered as effective mixing rates that combine
frequency of contact and rate of partner change (for cu and ce only). They im-
plicitly aggregate all other effects important for transmission (like condom use,
circumcision, STI co-infections, etc.)

We also include phenomenological heterogeneity in the effective mixing rates to
account for behavioural change as the epidemic progresses. We set cu = c ′ue

−φP

and ce = c ′ee
−φP where c ′ is the baseline effective mixing rate and φ the strength

of the behavioural response [50]. The range of values for the phenomenological
parameter φ (Table 2.1) were chosen after fitting both prevalence trajectories and
observed behaviour changes (for the latter, we assumed change in reported con-
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dom usage from DHS data was a fair proxy for behaviour change) for sub-Sahara
African countries where such data were available.

We assume that individuals mix homogeneously when interacting with individ-
uals other than their stable partners; thus λ is given by the proportion of mixing
in the non-couple pool that is accounted for by infectious individuals:

λ =
cuY + ce(D+ 2P)

cu(X+ Y) + 2ce(N+D+ P)
(2.2)

Within-couple transmission also has an implicit prevalence term: within-couple
prevalence is 0 for concordant negative couples, and 1 for the susceptible indi-
vidual in a serodiscordant couple.

The dynamical terms for disease transmission can now be calculated. The flow of
singles from X to Y is λcuX. A concordant negative couple (N) moves toD if either
partner is infected, so this flow is 2λceN. Couples move from D to P when the
susceptible partner is infected from the mixing pool or by the infectious partner,
that is a flow of (λce + cw)D.

Recruitment and death

A couple is dissolved when either partner dies. This happens at rate µ for sus-
ceptible individuals and at rate µ + α for infectious individuals. Thus, concor-
dant couples are dissolved by death at rate 2µN and 2(µ + α)P, respectively,
while serodiscordant are dissolved at rate (2µ + α)D. Surviving individuals are
distributed to X and Y. X experiences a recruitment rate of µT ∗ and a death
rate µ. X also increases when either partner of a sero-negative couple dies, or
when the infected partner of a serodiscordant couple (D) dies. Hence, X ′ =

µT ∗ − µX+ 2µN+ (µ+ α)D. Similarly, Y ′ = −(µ+ α)Y + µD+ 2(µ+ α)P.

Combined dynamics

Adding all the components above, the population dynamics are given by:
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

X ′ = µT ∗ − (2m+ λcu + µ)X+ 2(µ+ 2δ)N+ (2δ+ µ+ α)D

Y ′ = −(2m+ µ+ α)Y + λcuX+ (2δ+ µ)D+ 2(µ+ α+ 2δ)P

N ′ = mX2/(X+ Y) − 2(δ+ λce + µ)N

D ′ = 2mXY/(X+ Y) − (2δ+ 2µ+ α+ cw + λce)D+ 2λceN

P ′ = mY2/(X+ Y) + (λce + cw)D− 2(µ+ α+ δ)P

T ′ = T ∗ − µT − αI.

(2.3)

The global incidence is G = cwD + λ(cuX + ce(2N +D)), the first term being the
incidence from within serodiscordant couples.

Relative incidences

The main outcomes studied here are the relative contribution of transmission to
the global incidence from either uncoupled individuals or serodiscordant cou-
ples. We call υ the proportion of global incidence due to transmission to uncou-
pled individuals andω the proportion due to within-couple transmission. Hence,
using the model notation, we have:

υ = λcuX/G (2.4)

ω = cwD/G (2.5)

The importance of within-couple transmission has been measured in several dif-
ferent ways. For example [29, 39] estimated what we call ω – the proportion
of all infections that are due to within-couple transmission. Another study [8]
considered all transmissions to couples that were infected by each of the three
routes: pre-couple formation and within or outside couple transmission. Here,
we use another ratio which is more appropriate to our model and define ωC =

cwD/(cwD + λce(2N + D)) as the proportion of these infections that are due to
within-couple transmission when only coupled individuals are accounted for.
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Finally, the model in [26] was restricted to the proportion of infections transmitted
within serodiscordant couples only; we call this quantity ωD = cw/(cw + λce).
Figure 2.2 illustrates the difference between these ratios.

We measure all ωs and υ at the time horizon of our simulations, set at 40 years.
Numerical simulations indicate that results are not sensitive to this choice as
these ratios tend to converge quickly to their equilibrium values (see Appendix
A).

Serodiscordance statistic

We also create a unitless measure of serodiscordance to compare with the pro-
portion ω. If no transmission happened in couples (or if dissolution dynamics
were very fast), we would expect the proportion of all couples that are serodis-
cordant to be d̂ = 2ic(1 − ic), where ic = (2P + D)/C is the proportion of all
coupled individuals who are infectious and C = 2(P + D + N) is the number of
individuals living in a stable couple. We can then compare this expectation to the
observed proportion of serodiscordant couples d = D/C, and define a unitless
serodiscordance statistic

D = d/d̂ (2.6)

that measures how serodiscordant the population is compared to this null model.

2.3.2 Numerical Simulations

Unfortunately, even this simplified model does not provide simple analytic in-
sights when both partnership dynamics and HIV-induced mortality are included.
We therefore used numerical simulations to explore a broad range of plausible
parameters.

Latin hypercube sampling

We perform latin hypercube sampling on the model parameters and examine
how measures of prevalence, discordance and within-couple transmission are
distributed, and how they are correlated with parameters. Every parameter z
was assigned a range between zmin and zmax and n values are equally spaced on
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the log scale from zmin to zmax (i.e. the ratio between successive values is the same,
see Appendix A for more details)

Parameter ranges

Table 2.1 summarizes the ranges used for all model parameters. The parameter
ranges are chosen to reflect demography and heterosexual HIV transmission in
Sub-Saharan Africa; details are described in Appendix A.

The natural death rate µwas chosen to reflect the range of life expectancies found
in Sub-Saharan Africa and also the fact we are considering sexually active indi-
viduals (assumed over 15 years old, see Appendix A).

The disease-induced death rate is relatively well documented and we chose a
range consistent with published studies (see Appendix A).

Couple formation and dissolution rates (m and δ) are uncertain. However, our
model gives an analytical relationship between the coupled population at the
disease-free equilibrium (DFE) and the parameters µ, δ and m (see Appendix A
for details). Hence, we chose to calibrate δ and m to the DHS data of proportion
of coupled individuals while also yielding realistic distributions of relationship
durations (see Appendix A).

The susceptible groups X0 and N0 are set at the DFE of our model. A small
amount of infectious individuals is introduced to start the epidemic (see Ap-
pendix A for details).

The hazard of within-couple transmission cw has been estimated by numerous
serodiscordant couple cohort studies (see for example [12, 13, 38, 48, 59, 90]) and
our range was chosen to reflect these findings. Little information is available
about the pool mixing rates, cu and ce. We decided to use the same range for cu
as for cw – in other words, we explore the same ranges of sexual contact rates
for uncoupled individuals mixing with uncoupled individuals as for individuals
with their stable partners. We assumed the effective extra-couple contact rate ce
is less than the within-couple rate cw (also recall that effective contact rates are
multiplied by prevalence to yield transmission hazards). We therefore allowed
the ratio ρ = ce/cw to vary between 0.01 and 1.
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Sensitivity analysis

In order to conveniently assess the main drivers of HIV incidence as well as
discordance in our model, a sensitivity analysis was performed. Details of the
methodology are given in Appendix A.

2.4 Results

Simulations shown hereafter were run with 10,000 samples. The time horizon for
the simulations was set at 40 years.

2.4.1 Relative incidences

Figure 3 shows various measures of the importance of singles and serodiscordant
couples to HIV incidence at the time horizon of our simulations. These quantities
come to equilibrium relatively quickly in our model, and so the values here will
be very close to equilibrium values.

In the parameter space explored in Table 2.1, Figure 3 panel A shows that at equi-
librium HIV incidence is in most cases primarily driven by cases due to transmis-
sions between singles, our simulations giving a median value of υ at 0.62 (95% of
all simulations fall between 0.26 and 0.88).

Panel B shows that ω, the equilibrium contribution from transmission within
serodiscordant couples at the whole population level, is mostly constrained to rel-
atively low levels (median is 0.33 and 95% of all simulations fall between 0.10
and 0.67) as shown in Figure 3 panel B. In other words, it is unlikely for mature
epidemics to be driven primarily by transmission within stable couples.

Importantly, low importance of within-couple transmission in the whole popula-
tion (low values of ω) is consistent with high values among coupled individuals
(ωC, panel C) and particularly among serodiscordant couples (ωD, panel D). In
particular, our relatively low values forω are consistent with the country-specific
estimates ofωD from [26].
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Table 2.1. Ranges of model parameters. These ranges, used in the latin hypercube
sampling, are to represent realistic values for Sub-Saharan Africa. Unit of all rates is per
year.

Parameter Range Source
Death rate µ 1/60 – 1/40 UN
Disease-induced death rate α 1/16 – 1/4 [3, 96]
Couple formation ratem 1/20 – 1/5 Inferred from DHS
Couple dissolution rate δ 1/30 – 1/10 Inferred from DHS
Effective uncoupled contact rate cu 0.05 – 0.25 Assumption
Effective within-couple contact rate
within serodiscordant cw

0.05 – 0.25 [12, 13, 38, 48, 59, 90]

Relative contact rate extra-couple
ce/cw

0.01− 1 Assumption

Phenomenological decay φ 2− 7 Inferred from DHS

2.4.2 Long-term Effects of Transmission Routes

We further elucidate the “importance” of different routes of transmission by ask-
ing what would happen to long-term (i.e. equilibrium) HIV prevalence if mixing
rates were to change. Figure 2.4, panel A shows that a proportional change in the
mixing rate of uncoupled individuals cu is expected to have a much larger effect
on the epidemic than the same proportional change in either ce or cw.

The reasons why the other two mixing rates have less proportional effect on
prevalence are different for ce and cw. In the case of extra-couple contact ce, panel
B shows that if we consider absolute changes in mixing rate, the effects of changes
in ce and cu are similar. Thus, the relatively low proportional effect of ce is due to
our assumptions: we always assume that ce < cw, and over most of our parame-
ter range it is much less, while we let cw and cu vary over the same range. When
ce is small, proportional changes in ce will have relatively little effect.

In contrast, even absolute changes in the within-couple effective contact rate cw
have a relatively small effect on prevalence. This is due to the fact that the serodis-
cordant population to which cw applies (D) is much smaller than the uncoupled
(X) and coupled (D + 2N) susceptible individuals. Our model initially fits the
proportion of coupled individuals (infected or not) to actual demographic data
(Appendix A), and the proportion of discordant couples that emerges from our
model remains relatively low throughout our simulations. This in turn has two
causes: relatively few people are infected with HIV most of the time; and peo-

20



Ph.D. Thesis - David Champredon McMaster University - CSE

ple with HIV-infected partners are relatively less likely to be susceptible, because
they are likely to have been infected by their partners already.

Hence, our result on the importance of uncoupled mixing rates in driving preva-
lence is underpinned by uncoupled individuals constituting a large proportion
of the sexually active population (fitted to actual data), an extra-couple mixing
rate (ce) up to 2 orders of magnitude lower than the one of uncoupled (cu) and
a proportion of discordant couples that remain low throughout our simulations
(Appendix A).

2.4.3 Serodiscordance statistic and backward interpretation

Another interesting result from the model is the negative relationship between
the level of serodiscordance in the whole population (D) and the contribution
of within-couple transmission to global incidence (ω) as illustrated in Figure
2.5. Hence, at a given prevalence, a high observed discordance is associated
with a relatively low contribution of within-couple transmission to the total inci-
dence.

Furthermore, results in Figure 2.6 show this same level of discordance (D) ex-
hibits a strong negative correlation with the within-couple transmission rate (cw).

These results give more support to the “backward” interpretation, where – for a
given prevalence – high observed serodiscordance is likely to be a signature of
non-couple routes of transmission and their interactions with the partner switch-
ing dynamics.

2.5 Discussion

Identifying the main factors that drive transmission of a sexually transmissible
disease is key to designing effective interventions and, in the context presented
here, to allocating resources between couple-based and population-based inter-
ventions.

The importance of non-couple versus couple-based transmission, and more specif-
ically the role of serodiscordant couples in HIV transmission remains controver-
sial [8, 26, 29, 39, 61, 75, 84, 92]. Using a simple dynamical model, we explored
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a plausible parameter space for HIV transmission in Sub-Saharan Africa, and
found that prevalence was mainly driven by the mixing rate of uncoupled in-
dividuals. Furthermore, within-couple transmission had low to moderate impor-
tance at the whole population level in transmitting HIV under all combinations
of our parameters (Figure 3). Simultaneously, we found that within-couple trans-
mission contributed to the majority of secondary infections within serodiscordant
couples. Thus, estimates of a high importance of within-couple transmission at
the level of the sub-population of serodiscordant couples [26] are consistent with
estimates of relatively low importance of this route of transmission in the whole
population [8, 29, 61, 92].

Our model also sheds light on what inferences can be made from measured lev-
els of serodiscordance. We introduced a unitless index of discordance (the pro-
portion of couples which are discordant, relative to a random expectation), and
found negative correlations between discordance and both the within-couple trans-
mission effective mixing rate cw and the proportion of total HIV incidence due
to within-couple transmission, ω. This lends credence to what we have called
the “backward” interpretation – that for a given prevalence higher levels of dis-
cordance suggest a greater role of non-couple routes of transmission and their
interactions with the partner switching dynamics.

To efficiently explore a poorly understood parameter space, our model made a
large number of simplifying assumptions. We did not include gender asymme-
tries – however, there is evidence that these are not very strong [8, 12, 42]. We
model a form of concurrency by allowing partners to have outside relationships,
but do not explicitly model concurrent, stable relationships, which may also be
an important factor.

We also assume that the transmission rate is constant throughout the natural his-
tory of disease; in particular, we do not model the acute phase of increased HIV
infectiousness 6 to 8 weeks after HIV acquisition [30]. This effect could either in-
crease within-couple transmission (when one member of a susceptible couple is
infected via extra-couple contact) or decrease it (when infection occurs well before
couple formation). To some extent, these two effects should balance out.

Our model also assumes that all mixing between non-stable partners only occurs
as one-off interactions rather than as longer sustained interactions. This simpli-
fication is commonly used in models of sexually-transmitted diseases. Allowing
non-stable interactions to involve multiple contacts would primarily affect model
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dynamics by causing some individuals to spend more time with infected individ-
uals and others to spend more time with uninfected individuals, thereby creating
a more heterogeneous distribution of risk.

Future work should investigate the robustness of our conclusions when more
types of heterogeneity – such as the greater infectiousness of the acute phase,
gender asymmetries, super-spreader groups, etc – are included. We note that
our analysis provides a simple framework from which to analyze the fundamen-
tal forces driving incidence among coupled and uncoupled individuals, and that
analyses of more complex models will require great care in order to clearly dis-
entangle the causal dynamical processes.

In conclusion, our results provide further evidence that transmission within cou-
ples, extra-couple transmission and transmission to uncoupled individuals are
all likely to be important in sustaining heterosexual HIV transmission in Sub-
Saharan Africa. Infections of uncoupled individuals, in particular, were identi-
fied in our model as a key driver of long-term HIV prevalence and thus should
be appropriately targeted by interventions.
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Figure 2.1. Model diagram. The top panel describes all possible movements between
compartments. The bottom panel shows the infection pathways for each group. The
mixing pool is an abstract representation of where all extra-couple sexual contacts occur.
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Figure 2.2. Incidence proportions. Different measures of the proportion of
within-couple transmission have been used in the past, this figure illustrates the
measures discussed here. Each panel graphically represents how the incidence
proportion is calculated: dark shaded compartment divided by all non-white
compartments. Each compartment represent a transmission route. The proportion of
new HIV infections due to uncoupled individuals (υ) is illustrated in the left panel. The
next three panels show the different definitions of the proportion of within-couple
transmission calculated as a fraction of other transmission components: global
transmission (ω, all compartments, middle left panel); transmission to coupled
individuals (ωC, middle right panel); or transmission within serodiscordant couples,
(ωD, right panel).
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Figure 2.3. Simulated incidence proportions. Histograms of the transmissions
proportions occurring in uncoupled and serodiscordant couples at maturity from 10,000
latin hypercube samplings. Ranges are specified in Table 2.1. When compared to the
total incidence at the whole population level, transmission to singles accounts for a large
proportion of all cases (panel A) whereas within-couple transmission accounts for a low
to moderate proportion (panel B). But when compared to the incidence occurring only
among all coupled individuals (discordant or not), the share of within-couple
transmissions is much higher (panels C and D). Hence a low importance of
within-couple transmission at the whole population level is consistent with high
importance of this route of transmission limited to the coupled population.
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Figure 2.4. Prevalence sensitivities Left panel shows the elasticities (unitless) of overall
HIV prevalence to the three effective mixing rates (proportional change of prevalence
for a given proportional change of c, that is (dPr/Pr)/(dc/c), with Pr the prevalence).
Right panel shows the sensitivities (absolute change of prevalence for a given absolute
change of c, that is dPr/dc. Units in years). See main text for interpretations.
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Figure 2.5. Discordant statistic and within-couple transmission contribution. The
discordance statistic D as a function of the contribution of within-couple transmission to
the global incidence (ω). Our 10,000 simulations run with parameters sampled from
realistic ranges (Table 1) show a negative relationship, suggesting that for a given HIV
prevalence in the whole population, the observed discordance (measured with D) may
be a signature of the importance of within-couple transmission.
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Figure 2.6. Discordant statistic elasticities. Elasticities of the discordance statistic D to
all model parameters. The relatively large negative elasticity of the mixing rate within
discordant couples, cw, shows its negative relationship with D.
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Appendix A

A.1 Couple formation

The way couples form is assumed to follow a binomial distribution. If z ∈ {0, 1, 2}

is the number of susceptible individual(s) just before a couple formation, then we
assume z ∼ Binom(2, ps) with ps = X/(X + Y) the probability that an uncoupled
individual is susceptible. Thus

p(z = k) =

(
2

k

)
pks(1− ps)

2−k (A.1)

Hence, we have the following proportions:

• Proportion of couple formation within X is X2

(X+Y)2

• Proportion of couple formation within Y is Y2

(X+Y)2

• Proportion of couple formation between X and Y is 2XY
(X+Y)2

A.2 Equilibrium in simulations

In order to check that our simulations are reasonably close to the equilibrium, we
monitor the derivative of prevalence at the horizon of the simulation (set at 40
years). As shown in Figure A.1, for 10,000 simulations where the parameters have
the same constraints as the LHS, the mean value of the normalized derivatives
(dX/X/dt) for all group is small, comforting we are close to an equilibrium in
most of our simulations.
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Figure A.1. Prevalence and incidence proportion at time horizon. Sampled prevalence
time series and its normalized derivatives at time horizon (year−1) from 10,000
simulations. For both total prevalence and the proportion of global incidence due to
within-couple transmission (ω), most of the simulated values at time horizon have
reached an equilibrium.
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A.3 Disease free equilibrium

At the disease free equilibrium we have Y = D = P = 0 and X ′ = N ′ = 0. The
system (2.3) becomes{

X ′ = µT ∗ − (2m+ µ)X+ 2(µ+ 2δ)N

N ′ = mX− 2(δ+ µ)N
(A.2)

which can easily be solved, giving the proportion of uncoupled and coupled in-
dividuals

2N∗ = µT ∗ [(2m+ µ)(δ+ µ)/m− (µ+ 2δ)]−1

X∗ =
(δ+ µ)

m
2N∗

Because T ∗ = X∗ + 2N∗ we can substitute,

X∗ = σT ∗ (A.3)

2N∗ = (1− σ)T ∗ (A.4)

with
σ =

µ+ δ

µ+ δ+m
(A.5)

being the proportion of single at DFE when the recruitment rate balances the
death rate.

A.4 Initial infectious individuals

If U0 (resp. C0) is the initial uncoupled (resp. coupled) population, we introduce
a small amount ε of infectious individuals such that Y0 = εU and X0 = (1− ε)U0.
Similarly, P0 = ε2C0, N0 = (1 − ε)2C0 and D0 = 2ε(1 − ε)C0. The value for ε
does not affect significantly our results as long as it is sufficiently small. We chose
ε = 0.01.
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A.5 Latin hypercube sampling

Every parameter zwas attributed a range between zmin and zmax. Then, this range
is partitioned log-proportionally

zi = exp
(

log(zmin) + [log(zmax) − log(zmin)]
i− 1

n− 1

)
(A.6)

with n the total number of samplings and i = 1, .., n. The (ordered) partition
[z1, ..., zn] is then randomly shuffled, independently for each parameter, leading
to a permuted vector of values [ζ0, ζ1, ..., ζn]. Assuming there are K model pa-
rameters to be sampled, we have a n × K sampling matrix, noted (ζki )i=1..n, k=1..K.
The ith row ζi of this matrix represents the ith simulation run with the set of K
parameters randomly assigned from the partitions.

A.6 Discordance Statistic

Figure A.2 shows the distribution of the discordance statistic D from the 10,000
samples of the LHS.

A.7 Sensitivity Analysis

The methodology to calculate the elasticity of a response variable (e.g. prevalence)
Z to the model parameters is the following. Let p be a parameter on which the
elasticities will be calculated. The latin hypercube sampling (LHS) range for p is
partitioned in n values: p1, p2, ..., pn. For the first LHS run, p will be fixed at p1
and all other parameters will be sampled in their respective predefined ranges.
For the first LHS run, the average of all Z (defined as 〈Z〉1) is calculated. The
LHS run is repeated n times and we calculate ep,i, the elasticity of parameter p
between values pi−1 and pi, as

ep,i =
log〈Z〉i − log〈Z〉i−1
log(pi) − log(pi−1)

(A.7)
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Distribution of the Discordance Statistic D

Figure A.2. Distribution of the discordance statistic. Distribution of the discordance
statistic D from the 10,000 simulations with parameters sampled in the range of Table 1
(main text).

For a given parameter p, there are (n − 1) such sensitivities. Then, we define
ep = (

∑
i ep,i)/(n−1), the averaged value of these elasticities. This is this quantity

that is reported in the main text. A positive (resp. negative) elasticity on Zmeans
increasing the parameter moves the distribution of Z to larger (resp. smaller)
values.

For the sensitivities, we apply the same methodology, except that now, the sensi-
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tivity formula for the parameter p between values pi−1 and pi is

sp,i =
〈Z〉i − 〈Z〉i−1
pi − pi−1

(A.8)

Elasticity of prevalence with respect to all parameters

Figure A.3 shows the elasticity of the overall HIV prevalence with respect to all
model parameters.

Sensitivity ofωC andωD

Before calculating the sensitivity, let us recall the formula defining the proportion
of incidence due to within couple transmission:

ωC =
cw

cw + λce(1+ 2N/D)
and ωD =

cw

cw + λce

Note also that increasing cw decreases D and increases P (the discordant state
is more transient) and prevalence –in particular the one in the mixing pool λ –
increases too. So we can expect two offsetting effects on ω when increasing cw,
and this is what we can observe in Figure A.4 where the sensitivities (dω/dc) to
the effective contact rates are plotted. These plots are comparable with the plot in
Figure 4 in the main text, right panel.

A.8 Vital rates

Life expectancies at birth from all countries in sub-Saharan Africa were down-
loaded from the UN website (http://esa.un.org/unpd/wpp/Excel-Data/mortality.htm
accessed Nov 1st, 2012). French territories, Mayotte and Reunion, were not taken
into account. Figure A.5 illustrates this data set.
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A.9 HIV induced mortality rate

The HIV induced mortality rate range used in our study was based on mainly two
previous studies [3, 96] before ART introduction. The latest [96] studied low and
middle income countries, which are more similar to our sub-Saharan countries.
than those in the older study [3], which focused on high-income countries. The
findings of these two studies are summarized in Figure A.6 where the 95% confi-
dence intervals of the median survival time are shown for different cohorts.

A.10 Coupled population

We used the DHS data to assess the proportion of the population coupled. We
gathered in the coupled category the individuals answering they were living as
“Married” or “Living together”. The remaining answers (“Never married”, “Di-
vorced”, “Widowed”, “Not living together” and “Missing”) were categorized as
uncoupled. We looked at all countries from sub-Saharan Africa over all the years
the DHS surveys were available as of November 1st, 2012. Results are plotted in
Figure A.7.

The values from the disease free equilibrium (DFE) formulas (see section A.3 be-
low) were compared to actual data from sub-Saharan Africa countries in the DHS
database. We sampled 1,000 values using the latin hypercube method and chose
values for δ,m to fit reasonably well the distribution of 2N∗ with the distribution
of DHS data. As shown in Figure A.8, we obtained a fair match.
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Figure A.5. Life expectancies. Histogram of life expectancies at birth for both sexes
from countries in sub-Saharan Africa. Source: UN.
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High income countries, young (Babiker et al.)

High income countries, old (Babiker et al.)
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Figure A.6. HIV survival. Survival times after HIV infection from [3, 96]. See text in
section A.9 for more details.
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Figure A.7. Coupled population. Percentage of the population living in coupled
(source: DHS - http://www.measuredhs.com). If there is only one DHS survey for a
given country, then the box plot is reduced a point. The large box plot on the right hand
side agglomerates all values.
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Figure A.8. Simulated demographics. Top left panel: Proportions of populations at the
time horizon of our 10,000 simulations by couple status and HIV serostatus. Top right
panel: Proportions of population at the time horizon of our 10,000 simulations by couple
status only and compared with DHS data of coupled individuals. Bottom left panel:
Comparison of densities of coupled individuals between DHS data and the model
simulations. Parameters range for couple dissolution and formation (δ andm) were
chosen such that the model distribution of coupled individuals is similar to DHS data.
Bottom right panel: initial distribution (from our 10,000 simulations) of the proportion
of uncoupled individuals (X0).

41



Chapter 3

Epidemiological impact of a syphilis
vaccine: a simulation study

David Champredon , Caroline Cameron, Marek Smieja, Jonathan Dushoff

3.1 Abstract

Despite the availability of inexpensive antimicrobial treatment, syphilis remains
prevalent worldwide, affecting millions of individuals. Furthermore, syphilis in-
fection is suspected of increasing both susceptibility to, and tendency to trans-
mit, HIV. Development of a syphilis vaccine would be a potentially promising
step towards control, but the value of dedicating resources to vaccine develop-
ment should be evaluated in the context of the anticipated benefits. Here, we
use a realistic mathematical model to explore the potential impact of rolling out
a hypothetical syphilis vaccine on morbidity from both syphilis and HIV and
compare it to the impact of expanded “screen and treat” programs using exist-
ing treatments. Our results suggest that an efficacious vaccine has the potential
to sharply reduce syphilis prevalence under a wide range of scenarios, while ex-
panded treatment interventions are likely to be substantially less effective. Our
modeled interventions in our simulated study populations are expected to have
little effect on HIV, and in some scenarios lead to small increases in HIV incidence,
suggesting that interventions against syphilis should be accompanied with inter-
ventions against other sexually transmitted infections to prevent the possibility
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that lower morbidity or lower perceived risk from syphilis could lead to increases
in other diseases.

3.2 Introduction

Syphilis is a sexually transmitted infection (STI) caused by the bacterium Tre-
ponema pallidum, which affects 36 million individuals worldwide. Every year, it is
estimated that 11 million new syphilis infections occur worldwide and 1.5 million
pregnancies are affected, putting their children at risk of congenital syphilis; in
2008, congenital syphilis caused about 500,000 birth-related adverse outcomes,
more than half of them fatal [106]. The vast majority of syphilis cases occur
in developing countries where the disease is either widespread in the general
population or concentrated in high-risk groups (including sex workers, and men
who have sex with men (MSM)). After being relatively well controlled in higher-
resource countries, syphilis infections have been rebounding since the early 2000s,
mostly in high-risk groups.

The primary stage of syphilis manifests as a chancre at the infection site. This
typically occurs at the site of sexual contact and is highly infectious. Weeks to
months later, secondary syphilis causes fevers, swollen lymph nodes, and rash;
this is the stage when most people present for treatment. Left untreated, or inad-
equately treated, syphilis can progress to tertiary disease, which can involve the
brain, heart, or other organs. Although the incidence of tertiary syphilis has been
sharply reduced by treatment, cases of tertiary syphilis are still observed world-
wide. Co-infections involving syphilis and other sexually transmitted pathogens
are frequent [63]. Moreover, it has been reported that infection with most STIs
(including syphilis) increases the risks of both acquiring and transmitting HIV
[12, 24, 62, 86, 87]. Given its worldwide prevalence and its shared transmission
routes with HIV, syphilis infections may increase HIV incidence [45, 83] either
because of an increased susceptibility to HIV or increased HIV-infectiousness,
although a recent study concluded that the effects of syphilis on incidence via
the latter route were small [4]. Although there is little data for the interaction
between syphilis and STIs other than HIV, it is plausible that there also exists a
similar epidemiological synergy. Penicillin has been the main antibiotic used to
treat syphilis over the last 70 years. It is inexpensive, readily available in most
regions of the world, effective when administered as a single dose during pri-
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mary, secondary and early latent infection, and Treponema pallidum has thus far
not developed resistance against this antibiotic [72]. In contrast, no vaccine is
yet available for syphilis [16]. The technical challenges associated with T. pal-
lidum experimentation, including an unusual, fragile membrane structure which
makes genetic manipulation difficult, combined with the relative dearth of T. pal-
lidum basic science researchers, has impeded the field of T. pallidum vaccine re-
search [16,72]. Sterile protection against challenge with a homologous T. pallidum
strain has been achieved [77], demonstrating proof-of-concept, but the imprac-
tical vaccination regimen used in this study precluded further development as a
viable vaccine candidate. Further factors hindering syphilis vaccine development
include the high costs associated with bench-to-bedside vaccine development
studies (between $200 and $900 million), the prolonged timeline associated with
vaccine development (typically more than 10 years) and, particular to syphilis,
the unresolved issues of the target populations, marketability and profitability of
a vaccine [16]. However, intensive syphilis-targeted public health control initia-
tives, including the CDC’s National Plan to Eliminate Syphilis from the US [20,21]
and the WHO’s Initiative for the Global Elimination of Congenital Syphilis [104],
have not achieved the goal of syphilis elimination, suggesting symptomatic an-
tibiotic treatment alone will not successfully eradicate the disease.

Several factors contribute to the difficulty of eliminating syphilis using antibiotic
treatment: early infection is difficult to diagnose; varied clinical symptoms lead
to mis-diagnoses; diagnostic assays are technically difficult to perform and inter-
pret; an effective and prolonged patient follow-up is required between diagnosis
and treatment; and antenatal care may not be available in some settings. These
factors lead to missed syphilis diagnoses during the early stage of infection, the
highest risk period for transmission and acquisition of additional STIs and con-
genital syphilis [16]. The continuing high rates of syphilis worldwide, despite
the low cost, effectiveness and availability of penicillin treatment, combined with
the dire consequences associated with T. pallidum infection, especially mother-
to-child transmission (MTCT), suggest that alternative means must be used to
combat this infection.

The worldwide morbidity caused by syphilis is high, but because eradication
through vaccine development will take time and a significant investment of fi-
nancial and human resources, a careful assessment of the costs and benefits of
this option is needed. Indeed, the World Health Organization’s 2013 Workshop
on “Global Action Plan and Roadmap for STI Vaccine Development and Intro-
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duction” highlighted the necessity of mathematical modeling studies to thor-
oughly compare the costs and benefits of syphilis vaccine development to those
of enhanced, targeted screening and treatment programs [14]. Thus, the primary
question that we address in this study is the epidemiological impact of a poten-
tial syphilis vaccine on sexual and vertical transmission of both syphilis and HIV
and compare it against a “screen and treat” program. We consider heterosexual
populations in resource-poor settings using simulations from a realistic epidemi-
ological model.

3.3 Methods

Epidemiological dynamics of STIs are challenging to fathom: they involve de-
mographics (birth and death rates), sexual behaviour (partnership formation and
dissolutions), natural history of disease and potential interactions with other dis-
eases, and population stratification (risk groups, gender). We developed an agent-
based model for this purpose. We hypothesized that syphilis vaccination may
have indirect effects on the epidemiology of other STIs, so we chose to model
HIV spread along with syphilis because of its high morbidity and co-infection
data availability compared to other STIs. In this section, we highlight the main
features of the agent-based model. The full technical description of the agent-
based model is available in appendix B. Our agent-based model simulates the
partnerships and disease-transmission dynamics of a heterosexual population,
along with the natural history of both syphilis and HIV, and their interactions.
Individuals enter the modelled population at age 12. The general population is
stratified, for life, into three sexual risk groups (low, medium and high risk); addi-
tionally, females can move in and out of a commercial sex work (CSW) group. The
contact pattern for STI transmission is driven by partnership formation and dis-
solution and a rate of sex acts. Individuals can have multiple concurrent partners,
and some partnerships are identified as “spousal” (more stable). The decision to
form or dissolve any partnership is based on age, age gap with the partner, cur-
rent number of partners, symptomatic status of potential STI infections and risk
group. Partnerships and sex acts rates can change at each time step. The number
and type (with or without condom, low or high transmission risk) of sex acts are
distributed randomly, with rates based on age, spousal status, number of concur-
rent partners, symptomatic status and risk group.
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Probabilities of transmission per sex act are specified for both syphilis and HIV,
and depend on the age of infection in the infected partner. Individuals with one
STI may be more susceptible to acquiring the other, and co-infected individuals
may have increased infectiousness of one or both diseases. Infected individuals
can be treated; their adherence to treatment depends on their risk group and
probability of success is pre-specified for each STI.

We construct, in our agent-based model, three synthetic populations intended to
match representative scenarios of syphilis and HIV prevalence in sub-Saharan
Africa (Figure 3.1); we do not attempt to represent any specific country. The syn-
thetic populations are exclusively heterosexual and the female-to-male ratio is
close to one.

Figure 3.1. Solid circles are HIV and syphilis prevalence for various countries in
sub-Saharan Africa. (Source: WHO; prevalence was averaged over available reports
ranging between 2001 and 2013). Grey squares are the prevalence chosen for synthetic
populations A, B and C.

Demographic and behavioural characteristics of synthetic populations are based
on data from the Demographic Health Surveys across sub-Saharan Africa. STI
prevalence and incidence at the population level are fitted by adjusting the base-
line treatment rate for each STI, partnership rates and risk-group proportions.
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For each synthetic population, we run 30 Monte Carlo iterations to evaluate the
epidemiological impact of a hypothetical syphilis vaccination program compared
to symptomatic treatment only. Starting from an initial population of 1250 indi-
viduals, the model is run without any STI for 50 years with a coarse time step
of 30 days in order to reach equilibrium with the partnerships dynamics. By the
end of this “partnership calibration” phase, the synthetic population has a size of
3000 individuals. Then, both syphilis and HIV are introduced at a different level
for each risk group, and the model is run for 30 more years with a time step of 5
days (the “disease calibration” phase).

After the calibration phases, the model is run for an additional 20 years with no
changes to provide a “baseline” scenario. We check the calibration steps by con-
firming that prevalence of syphilis and HIV remain relatively stable throughout
this time period. Intervention scenarios are run in exactly the same way as the
baseline scenario, except that interventions (increased treatment and/or vaccina-
tion programs) are introduced after 30 years. Hence, intervention scenarios and
baseline only differ between year 30 and 50 (Figure 3.2).

We assume that susceptibility to HIV is increased about 2.5 times during syphilis
infection [45, 87, 91]. To our knowledge, there is little evidence regarding the epi-
demiological effect of HIV infection on syphilis susceptibility [87]; we assume a
1.5 times increase in our main simulations (sensitivity analysis explored values
of 1.0 and 2.5). We assume that HIV infectiousness increases up to 50% of its
maximum possible level (reached during the acute phase) during a syphilis co-
infection [15, 62]. Since evidence that HIV can increase syphilis infectiousness is
weak, our model does not change syphilis infectiousness when there is a HIV
co-infection. Mother-to-child transmission of syphilis depends on the timing of
pregnancy during syphilis infection, highest when pregnancy occurs early post-
infection. We model syphilis MTCT probability with a logistic shape starting at
90% and decreasing to 0 as the duration of syphilis infection increases (appendix
B). The probability of vertical HIV transmission is assumed constant throughout
HIV infection and is set at 25%. Baseline treatment intervention for both HIV
and syphilis in simulated population A (respectively B; C) is defined by treating
HIV infections at a rate of 25% (respectively 15%, 10%) per year and symptomatic
syphilis infections at a rate 25% (respectively 1%, 60%) per year. We consider four
syphilis intervention scenarios (Table 3.1). The first (labelled “TrMass”) increases
the baseline treatment level: every year, on top of the baseline value, an addi-
tional 30% proportion of individuals infected with syphilis, symptomatic or not,
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Figure 3.2. Simulation steps. The model is first run with no STI for 50 years in order to
reach a steady state in partnership dynamics. Then STIs are introduced and prevalences
reach stable values after running the simulation for 30 years. Finally, interventions are
introduced and evaluated over a 20-year period.
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are treated. The three other interventions involve a vaccine that is provided to:
i) the whole population at a coverage rate of 10% per annum (“VaxMass”), ii)
high-risk group individuals and sex worker only at a coverage of 20% per annum
(“VaxHiRisk”) and iii) women younger than 18 years-old only, at a coverage rate
of 80% per annum (“VaxYoung”).

Table 3.1. Modelled syphilis intervention

Intervention Label Description
Increased Mass Treatment TrMass Increase baseline mass

treatment for syphilis by
an additional 30% per
annum

Vaccination Mass VaxMass All sexually active individ-
uals are vaccinated at a
rate of 10% per annum

Vaccination High-Risk Group VaxHiRisk Individuals in the highest
risk group are vaccinated
at a rate of 20% per annum

Vaccination Young Women VaxYoung Women 18 years old and
younger are vaccinated at
a rate of 80% per annum

We assume that the failure probability of our hypothetical vaccine is 20% (so that
80% of the population is perfectly protected right after vaccination); values of 0%
and 50% were considered in a sensitivity analysis. Vaccine efficacy can wane over
time [100], so we assume the modelled syphilis vaccine effectiveness wanes expo-
nentially at a rate of 5% per year (corresponding to 50% loss of effectiveness after
14 years). A sensitivity analysis explored a non-waning vaccine and a rapidly
waning one (rate at 70% per year). In the baseline scenario, the vaccine does not
provide any infectiousness reduction, but a sensitivity analysis was performed
assuming a 50% infectiousness reduction when vaccinated.

We measure the impact of the intervention scenarios described above on both
prevalence and the vertical transmission of HIV and syphilis, during the 20 years
of intervention.
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3.4 Results

Within each of the three synthetic populations (A, B and C), the five scenarios
(baseline and four additional interventions) were run and compared. The results
for final STI prevalences and MTCT rates are summarized in Figure 3.3.

Figure 3.3. Comparing intervention scenarios. The solid shape represents the median
value and the vertical segment the 10-90% quantile range. Panels on the left-hand side
show final prevalence of HIV and syphilis for all modeled interventions in the three
synthetic populations. Prevalence is calculated after 20 years of intervention.
Right-hand side panels show the relative difference of cumulative mother-to-child
syphilis transmission compared to the baseline scenario (horizontal dashed line at 0).

Overall, for all synthetic populations, the most successful intervention to reduce
syphilis prevalence is mass vaccination (“VaxMass”): all simulations show ex-
tremely low levels of prevalence after 20 years. Indeed, in this intervention sce-
nario, the median syphilis prevalence is reduced to less than 0.01% in all three
synthetic populations. Vaccinating the high-risk population (“VaxHiRisk”) and

50



Ph.D. Thesis - David Champredon McMaster University - CSE

targeting young females only (“VaxYoung”) also leads to significant reduction
in overall syphilis prevalence. Increasing coverage for syphilis treatment (“Tr-
Mass”) reduces overall syphilis prevalence much less (Figure 3.3 and appendix
C). MTCT of syphilis is also reduced significantly over the 20 years intervention
period especially with the mass and high-risk vaccination strategies (Figure 3.3
and appendix C).

HIV prevalence is not affected in populations A and C, and slightly increases in
population B during the vaccination interventions targeting the general popu-
lation (“VaxMass”) and high risk groups (“HiRisk”). The changes in HIV ver-
tical transmission mirror the ones observed for the prevalence (Figure 3.3 and
appendix C).

The results from the sensitivity analysis (described in the Methods section) do not
substantially change the qualitative conclusion drawn from the central scenarios
(see suppl. file 3).

3.5 Discussion

The effect of a hypothetical syphilis vaccine on the burden of syphilis disease, in
particular its congenital form, is expected to be large. The potential effect on HIV
is less straightforward. We used an agent-based model to simulate the horizontal
and vertical spread of both syphilis and HIV in various syphilis vaccination sce-
narios 20 years after their introduction. We modelled synthetic populations rep-
resentative of settings found in sub-Saharan Africa. As expected, we found that a
hypothetical syphilis vaccine could eliminate or dramatically reduce incidence of
congenital and sexually acquired syphilis when vaccination strategies target the
whole population (mass vaccination) or focused on high-risk groups. We found
that targeting young females was much less effective over the studied time hori-
zon of 20 years, because the older cohorts that are not eligible for vaccination
continue to spread infections over many years. Given that both syphilis and HIV
are suspected to increase the transmission of the other through various mecha-
nisms, we hypothesized that a syphilis vaccine might indirectly reduce HIV in-
cidence. However, in our modelling framework, we found that HIV was largely
unaffected by syphilis vaccination, except that in the high syphilis-prevalence
population (B) experienced a small increase in HIV transmission. This is because
symptomatic syphilis infections in our model are associated with reduced sexual
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activity: thus, reducing syphilis will lead to an increase in sexual activity, partic-
ularly among high-risk groups. This effect is noticeable when a large proportion
of individuals are involved in risky sexual behaviour and syphilis prevalence is
high.

This predicted effect from our simulations is similar to an observed phenomenon,
with syphilis and HIV exchanging roles. Syphilis and other STIs have increased
in many populations since an effective HIV antiretroviral therapy became avail-
able early 2000s (documented especially among MSM in western countries, see
[22] for example). A possible cause for this increase could be a lower perceived
risk of HIV leading to increased sexual exposure. Hence, if a syphilis vaccine is
developed, vaccination programs should be accompanied with intensified inter-
ventions on transmission of other STIs.

Another real life example that can relate to our simulation results is the impact of
the HIV epidemic on various large clinical trials targeting curable STIs. Most of
these trials did not show a significant reduction in HIV incidence in the treated
arm. General and trial-specific interpretations to these unexpected outcomes
have been proposed [51]. Here, our study suggests another possible mecha-
nism: if intensity of sexual activity is affected by (symptomatic) STI episodes,
curing some STIs could increase sexual activity, and thus increase incidence of
non-treated STIs.

Our simulations also suggest that high HIV prevalence does not hamper syphilis
vaccination programs at the population level. This result is robust to vaccine fail-
ure at 50% (see sensitivity analysis in suppl. file 3). Because of a lack of data quan-
tifying a potential effect, we did not explicitly model the possibility that HIV in-
fection increases syphilis vaccine failure. Our study has several limitations. Our
results are based on synthetic populations, so their practical translation to real
communities may not be straightforward. However, we chose the demographic
and behavioural characteristics of the three synthetic populations to be similar
to what can be found across sub-Saharan Africa, so we expect some relevance
when applied to real communities in resource-limited countries. Our model does
not account for birth control or abortion, which may not be realistic especially in
high-risk groups. This can have the effect of skewing overall STI vertical trans-
mission to larger values. We therefore chose to present vertical transmission in
relative rather than absolute terms in Figure 3.3. In summary, our results suggest
that a syphilis vaccine has the potential, over a 20 years horizon, to eradicate hor-
izontal and vertical transmission of this disease in populations with various lev-
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els of baseline syphilis and HIV prevalence and risk behaviours, while expanded
treatment interventions are likely to be substantially less effective. Vaccination
programs targeting the whole population and/or high-risk groups achieve sig-
nificantly better incidence reduction than when targeted at young women only.
Our results also highlight that syphilis vaccination programs should be accom-
panied with intensified interventions on other STIs in order to prevent possible
incidence rebounds caused by decreased symptoms, or lower perceived risk, fol-
lowing syphilis vaccination.
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Appendix B

B.1 Introduction and Summary

This documentation describes the implementation of a stochastic individual based
epidemiological model that studies specifically sexually transmitted infections
(STIs). A particular aim of this model is its ability to simulate epidemics of sev-
eral concomitant STIs. This section gives an overview of the main features of the
model, without giving any technical details.

This model attempts to represent fairly realistically three dynamics:

• Demography: Some sexually transmitted infections (e.g., HIV, HSV2, Syphilis)
have an infectious period that lasts years if not decades. So, unlike other dis-
eases (e.g., influenza) where the demographic changes over the epidemic
period could be neglected, here it is important to have a good representa-
tion of the ageing processes of the population (growth rates but also age
distribution). Individuals are simulated from the age of sexual debut (for
example 12 years old) to an age where sexual activity is very unlikely (‘max-
imum age’, for example 80 years old). The ‘birth’ process is a consequence
of sexual activity. Death can occur naturally or can be disease induced (both
distributed as Weibull). When an individual reaches the maximum age (80
years), death is provoked.

• Sexual activity: The contact pattern for STI transmission is driven by part-
nership formation/dissolution and the rate of sex acts. Individuals can
have multiple concurrent partners. Spousal partnerships are also mod-
elled: they are a non-negligible fraction of all partnerships and their for-
mation/dissolution process is distinctive from casual ones. The decision
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to form or dissolve any partnership is based on stochastic events follow-
ing rules based on age, current number of partners, symptomatic status of
potential STI infections and risk group. There are three risk groups for the
general population: low, medium and high-risk. Individuals belonging to
a given risk group will be assigned representative parameter values asso-
ciated with their risk behavior (e.g., use of condom, number of concurrent
partners, partner switch rates, etc.). High activity commercial sex work-
ers (engaging with multiple partners in a very short period of time) form
a fourth distinct risk group with a specific partnership formation process.
The rate and type of sex acts are distributed randomly based on several
variables (e.g.,, age, spousal status, number of concurrent partners, symp-
tomatic status, etc.).

• Disease transmission: Once the network of partnership is built following
the demographic and partnerships processes, diseases can spread through
the population. STIs have very different infectious features: probability of
transmission per sex act, infectious period and recurrence frequency can
vary of orders of magnitudes. Hence, each STI is represented with its own
infectivity curve (probability of transmission with respect to time). There
are adjusting coefficients on the level of the infectivity curve simulating a
potential increase in infectiousness from an individual infected with an-
other STIs. Likewise, susceptibility to STIs varies with potential co-infections.

The simulations are run in three steps. First, a simulation starts from an ini-
tial population with no partnerships and the model runs for a long enough time
(typically 50 years with a coarse time step of a month) to match target levels on
demography (for example growth rate and age distribution) and partnerships
(fraction of single individuals, fraction of spousal partnerships). This is the pre-
epidemic era where the model should reach its equilibrium values.

The second step introduces STIs in the population. The model is run for a long
enough with a fine time step (typically of the order of a day), in order to have a
good fit with target prevalences of the epidemic era.

The third step is the analysis and/or prediction. Simulations are run with inter-
vention strategies and/or introduction of a new STI.

There is no migration in or out the population (apart from recruitment of com-
mercial sex workers).
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The model is implemented in C++ and wrapped in a R library. Computing power
is critical when the population is large and the time horizon long (typically more
than 10,000 individuals for more than 10 years with a time step shorter than a
week), so a basic parallel implementation is used.

For the reader interested in looking into the C++ and R computer codes, it is
available here: https://github.com/davidchampredon/stiagent.

B.2 Individuals, Population and STI objects

It is important to note there are three main classes of C++ objects: Individual,
Population and STI. In this individual-based model, a distinction is made be-
tween attributes at the ‘atomic’ individual (i.e., age) and the ones that belong to
the population (i.e., maximum partnership formation rate).

An individual is mainly characterized by biological and social features (this is not
an exhaustive list):

• biological: gender, age, STI infections, ...

• social: risk group, number of partnerships, marital status, ...

A population is characterized by a vector of individuals, a vector of STIs and
other scalar parameters (like, for example, the maximum rate of partnership for-
mation).

STIs objects describe the key features of the natural history of the infection. It is
independent of individuals or populations.

B.3 Demographics

B.3.1 Birth

After every sexual contact, the chance a female gets pregnant is determined by
a Bernoulli random variable and its probability (becoming pregnant per sex act)
is a model parameter. All new borns and their potential acquired infection are

56

https://github.com/davidchampredon/stiagent


Ph.D. Thesis - David Champredon McMaster University - CSE

recorded (so that we can keep track of MTCT incidence in a simulation). Chil-
dren between birth and minimum age of sexual activity are not modelled. Young
individuals just turning the minimum age of sexual activity enter randomly the
population. The expected rate of arrival is

α = birthRate× (1−minfant)(1−mchild)
4(1−mchild/2)

nmin−5

with minfant the mortality rate of infant (< 1 year-old), mchild the mortality rate of
children< 5 years-old and nmin the minimum age of sexual activity (it is assumed
the mortality rate for children between 5 and nmin is half).

Then, the numberN of youth (aged nmin years-old) arrivals during a given period
of time dt, for a population of size T , is:

N ∼ Poisson(αT dt)

B.3.2 Death

The classical methodology of survival analysis is applied here. The probability of
dying between this time step and the previous one is assessed for every individ-
ual, at every time step. The probability driving this process is based on

Pr(t < Tdeath < t+ dt | Tdeath ≥ t) =
F(t+ dt) − F(t)

1− F(t)

where Tdeath is the time of death and F its cumulative distribution function. It is
assumed that the survival time is Weibull distributed, so the associated hazard
function h is given by

h(t) = lim
dt→0Pr(t < Tdeath < t+ dt | Tdeath ≥ t)/dt (B.1)

= kλ(λt)k−1 (B.2)

for k > 0 and λ > 0 the standard Weibull shape and scale parameters, and t the
age of the individual.

If tHIV is the time when the individual was infected with HIV, the hazard function
changes and is now parameterized with new shape and scale parameters, and
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duration since infection instead of age:

hHIV(t) = k
′λ ′(λ ′(t− tHIV))

k ′−1

This probability has to be evaluated at every time step, for every individuals (for
example, if HIV treatment is initiated, the associated hazard will decrease). An
example of a plot of this hazard function is illustrated in Figure B.1.
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Figure B.1. Death hazard. The red dot represents the age of HIV acquisition. Vertical
dashed lines are set at 5, 7 and 10 years after HIV acquisition.

58



Ph.D. Thesis - David Champredon McMaster University - CSE

B.4 Partnerships

B.4.1 Partnerships formation

Let’s define r∗ the maximum annual rate of consideration to form partnership
and F (resp. M) the population size of females (resp. males) with a partnership
deficit. A partnership deficit is defined, for a given individual, as the maximum
possible partnerships minus the number of concurrent partnerships. The unit of
r∗ is time−1.

Females and males who do not have a partnership deficit are - by definition - not
available to form new partnerships, hence are ignored right from the start of the
formation process.

It is assumed that the maximum number of partnership formations during a unit
time period is given by [37]

P∗ = r∗
FM

F+M

For sake of clarity, if we assume that every consideration will lead to a partnership
formation and note P the total number of partnerships, we have:

dF

dt
= −r∗

FM

F+M
= −

(
r∗

M

F+M

)
F = −r∗fF

dM

dt
= −r∗

FM

F+M
= −

(
r∗

F

F+M

)
M = −r∗mM

dP

dt
=

1

2
2r∗

FM

F+M
= r∗

FM

F+M

Hence, r∗f is interpreted as the rate of partnership formation when female domi-
nance is assumed. The formulation is symmetrical if male dominance is assumed,
so we’ll assume female dominance.

Formation algorithm

The partnership formation process is stochastic and driven by the algorithm be-
low.
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1. Calculate F∗ ∼ Binomial(r∗f dt, F), the maximum number of females candi-
date for partnership formation during the period dt

2. Pick randomly F∗ females among the F available females. Collect and store
their positions in the population in the set Sf.

3. For each female in Sf, pick randomly an available male

4. Draw the binary random variable Φ that determines if this pair will form a
partnership (Φ = 1 means formation success). See B.4.1 for the distribution
of Φ.

5. If formation success on this pair (Φ = 1), then form partnership1. Else, do
nothing.

6. This female is removed from the pool of partnership candidates (whether
formation was successful or not): update Sf accordingly by deleting her
position.

7. If |Sf| > 0, go to step 3; else stop.

Formation success random variable (Φ)

Given two candidate individuals, Im (male) and If (female), the success of forma-
tion is determined by the binary random variableΦ ∼ Bernoulli(p). WhenΦ = 1,
the two candidates do form a partnership.

The probability of success to form the partnership depends on several tests on
variables from both individuals (age, risk group, etc). Hence, it is assumed the
probability of a successful partnership formation between the two candidates is
given by

Pr(Φ = 1) = fage frisk fdeficit fSTI (B.3)

where all functions f are valued in the interval [0; 1] and are defined hereafter.

• Age. The age A of an individual determines its attractiveness to the oppo-
site sex. The age gap between the candidate male and female is defined as
G = Am − Af. Then, the age component of the rate of couple formation is
assumed to depend on the age and marital status of the female, and the age
gap with the candidate male:

1Population.formPartnership(i,j) is called
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fage = ϕ(Af, G)

The function ϕ describes the joint distribution of the female age (a) and age
gap (g):

ϕ(a, g) = e−sageXTM−1X

with X = (a − ā, g − ḡ)T the (centred) vector for female age and age gap,
ā (resp. ḡ) the average age (resp. age gap) at partnership formation, sage a
shape parameter, andM the covariance matrix

M =

(
σ2a ρσaσg

ρσaσg σ2g

)
Parameters σ represents the variance of the ad-hoc variable and ρ the cor-
relation between female age and age gap, and can be calibrated on DHS
data.

• Risk group. Both candidate individuals belong to a risk group, rm and rf ∈
{0, 1, ..., r∗}, where r∗ is the highest risk group. The candidate couple’s risk
score is rf + rm. The probability component regarding the risk group is

frisk(rf, rm) = e
−srisk
0 (2r∗−(rf+rm))−srisk

1 (rf−rm)2

where srisk
0 and srisk

1 are shape parameters that should be fitted globally (no
specific data). Note that when both partner belong to highest risk group
(rf = rm = r∗), then frisk = 1 and when both belong to the lowest frisk =

e−2r
∗srisk
0 .

• Partnerships deficit. Definenf as the number of concurrent partnerships for
the candidate female considered, n∗f her maximum number of partnerships,
df = n

∗
f −nf the deficit number of partnerships and deficit ratioDf = df/n

∗
f .

Same notations for males. The probability component regarding the part-
nership deficit is

fdeficit(nf, n
∗
f , nm, n

∗
m) = (DfDm)

q

with q ≥ 1 a parameter to calibrate globally.

• STI infection. If an individual has a symptomatic STI infection, the likeli-
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hood to form a partnership is reduced. Symptoms can be painful, reduc-
ing the willingness to engage in a sexual contact. Symptoms can be visible
(especially in males), reducing the attractiveness of a sexual contact. De-
fine sf ∈ {0, 1} the variable signalling a symptomatic infection with any STI
within the candidate female partner, and asympt,f the relative reduction of
the probability that a partnership can be formed in the presence of these
symptoms. Same notations for males. Values for parameters asympt will
have to be assumed (not calibrated).

Note: Repulsion of STI symptoms may not be the same for all STIs in reality. This
feature can be considered for a future development.

The probability component regarding the STI infection is

fSTI(sf, sm) =
(
asympt,f1sf=1 + 1sf=0

) (
asympt,m1sm=1 + 1sm=0

)
where the product is over all STIs modelled.

B.4.2 Spousal union

A spousal union is defined as a partnership that has been celebrated under the
civil or religious law. The reason to model this special partnership is to reflect
the facts that such a relationship is likely to have a higher sexual intercourses
frequency and is more difficult to dissolve because of social pressures.

Determinants

It is assumed that all partnerships starts as casual relationships that can evolve
as a spousal union. At every time steps, based on several parameters (described
hereafter) all the partnerships a male has are re-assessed to become a spousal
union2.

The spousal progression rate is assumed to be driven by the age of the female
(Af), her age gap G with the potential husband, her current marital status m, the
number n of existing wives the male already has, the difference between the age

2This can be a limitation in the context of arranged marriage where the partnership starts as
a spousal one right from the start (no prenuptial period). To mitigate this limitation, the rate of
spousal union can be very high such that spousal determination occurs almost instantaneously.
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gap G and the ones of existing wives (if any), and finally the duration of this
casual partnership.

The rate of spousal union formation, noted S, is assumed to have the following
functional form:

S(Af, G, τ,m) = B.
[
1n=0 + K11≤n<nmax

]
. d(τ).sp∗ (B.4)

With sp∗ the maximum rate of spousal progression. Functions B, K and τ are
define hereafter.

Age and age gap
Function B represents the probability the spousal transition is successful based
on the female’s age, age gap and her current marital statusm:

B = s(Af, G)

s(Af, G) = N (Af, Āf, σAf)N (G, Ḡ, σG)

where Āf (resp. Ḡ) is the average age (resp. age gap) of a female entering her first
union, andN (x,m, σ) = exp(−(x−m)2/2σ2) If the female is already in a spousal
union, then she cannot be considered to be a spouse of another man (polygynous
population).

Note: Future development will consider other shapes for N , as DHS data do not fully
support the one chosen.

Gaps with other spouses
Function K reflects the fact that if a female enters an existing polygynous union,
the age gap with the new comer (G) is more likely to be larger than with existing
wives (G1, ..., Gn):

K = K(G1, ..., Gn, G) = e
−(∆−∆̄)2/2σ2∆

∆ = min(G1, ..., Gn) −G

Duration of partnership
It is assumed the rate of progression to a spousal union changes with the duration
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of this partnership τ, and is represented by the function d:

d(τ) = N (τ, k1, k2)

with k1 (average partnership duration when spousal progression occurs) and k2
(variance) constants to be fitted globally.

Summary of all spousal progression parameters:

• n the number of existing spouse(s) this male currently has, and nmax the
maximum number of spouses this male can ever have

• τ the duration of this partnership

• d(τ) represents the probability of spousal conversion with respect to dura-
tion of this partnership

• m the current marital status (“never coupled (nc)”, “uncoupled separated
(us)”) of the female

• ∆ = min(G1, ..., Gn) − G the difference of age gaps between the youngest
existing wife and the candidate wife; its mean is noted ∆̄ and its variance
σ∆. Both can be calibrated on DHS data

Algorithm

At each time steps:

1. Select one male with at least one casual partnership

2. Loop on all casual partnerships

3. Calculate Si, the rate of spousal progression of the ith casual partnership,
using Equation (B.4)

4. Draw the Bernoulli random variable S with rate Si. If S = 1, then upgrade
this casual partnership to a spousal union; else do nothing

5. Go to step 1 until all males with at least one casual partnership have been
scanned
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B.4.3 Partnerships dissolution

Dissolutions of partnerships follows the same idea as their formation. A maxi-
mum annual rate of dissolution per partnership, δ∗ (unit is time−1), is assumed
for the whole population. The total number of partnerships is noted P. This gives
a maximum number of candidate partnerships for dissolution. If all dissolution
considered would actually dissolve the partnerships, the evolution of the number
of partnerships would be given by P ′ = −δ∗P. However, the success of dissolu-
tion will be determined by the characteristics of both individuals forming this
partnership.

Dissolution algorithm

The dissolution process is described by the following stochastic algorithm.

1. Calculate P∗ ∼ Binom(δ∗dt, P) the maximum number of partnerships con-
sidered for dissolution during the period dt

2. For each partnership, draw the binary random variable Ψ that determines if
this partnership will be successfully terminated. See B.4.3 for the distribu-
tion of Ψ.

3. If dissolution is successful (Ψ = 1), then dissolve this partnership. Else do
nothing.

4. If at least one partnership candidate for dissolution remains, go to step 2;
else stop.

Dissolution success random variable (Ψ)

Given a candidate partnership composed of two individuals, Im (male) and If
(female), the success of dissolution is determined by the binary random variable
Ψ ∈ {0, 1}. When Ψ = 1, this candidate partnership is dissolved. The Bernoulli
probability for Ψ is function of several variables, described below.

• Spouse. Dissolving a spousal partnership is less likely because of social
pressures. Define the binary variable s indicating if this partnership is a
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spousal one. The probability component regarding spousal relationship is

gspouse(s) = ε1s=1 + 1s=0

with 0 < ε < 1 a parameter to calibrate globally.

• Relationship duration. Define d the duration of the candidate partnership.
It is assumed that short partnerships are more likely to dissolve than the
ones that have survived for a longer time. The probability component re-
garding relationship duration is

gduration(d) = dur1 + dur2 e−dur3 d

with 0 < dur1,dur2 < 1 and dur3 > 0 parameters to be fitted globally.
Note dur1 + dur2 is the probability of dissolution just after a time unit (e.g.
one day), hence this models a “one-off” contact.

• Partnerships deficit The probability this partnership dissolves is assumed
to be decreasing as the partnership deficit of both members increases. De-
fine nf as the number of concurrent partnerships for the female, n∗f her max-
imum number of partnerships, df = n∗f − nf the deficit number of partner-
ships and deficit ratio Df = df/n

∗
f . Same notations for males. The probabil-

ity component regarding the partnership deficit is

gdeficit(nf, n
∗
f , nm, n

∗
m) = qmin + (1− qmin)((1−Df)(1−Dm))

q

with q ≥ 1 a shape parameter and qmin the minimum contribution of this
component.

• Risk group. Both candidate individuals belong to a risk group, rm and rf ∈
{0, 1, ..., r∗}, where r∗ is the highest risk group. The candidate couple’s risk
score is rf + rm. The probability component regarding the risk group is

grisk(rf, rm) = e
(rm+rf−2r

∗)drsk1

with drsk1. This parameter should be fitted globally (no specific data).

• Age. Define Af and Am the age of the female and male in the partnership
candidate for dissolution. The probability to dissolve the couple is assumed
to decrease with the “couple age”Af+Am and also depends on the age gap.
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The probability component regarding ages in this relationship is

gage(Af, Am) = e
−(Af+Am−dage1)

2/dage2

with dage
1

is the average couple age where dissolution risk is maximum
and dage

2
its variation. These parameters are fitted globally.

• STI symptoms. If one of the member of the candidate partnership has a
symptomatic STI, this can increase the risk of terminating this partnership.
Define s ∈ {0, 1} the variable signalling a symptomatic infection in a given
partnership and 0 < dsympt < 1 the relative reduction of the probability
to dissolve in the abscence of these symptoms. The probability component
regarding the STI infection is

gSTI(s) = 1s=1 + dsympt1s=0

Note: Some STIs may exhibit more ‘repulsive’ symptoms, but for now treat all STIs
the same way.

Similarly as with the formation process, putting everything together, the proba-
bility of a successful partnership dissolution is

Pr(Ψ = 1) = gspouse gage grisk gduration gdeficit gSTI (B.5)

B.4.4 Number of concurrent partners

The maximum number of concurrent partners, n, is determined for each individ-
ual, based on its risk group. It is assumed to have a geometric distribution:

n ∼ Geom(p)

p = c1e
−c2r

with c1 and c2 gender-dependant shape parameters, and r the risk group of the
individual.
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B.5 Sexual intercourses

The rate of sexual intercourses in a partnership is assumed to be driven by the
male. Although females can have some negotiating power regarding partnership
formation and continuation, they seem less able to control sexual practices once
in a partnership [74].

Following how partnerships are modelled, there are three categories of sex part-
ners:

• Spouses

• Casual partners

• Sex workers

Three types of sex acts are modelled here:

• sex act with condom

• sex act without condom, “low risk” practices (i.e. vaginal) that do not in-
crease the risk of HIV or STI transmission

• sex act without condom, “high risk” practices (i.e. anal, dry-sex) that in-
crease the risk of HIV or STI transmission

A male will have a specified number of sex acts during a period of time. The
model will distribute these sex acts between all different partners and assign
them the type of sex act, based on binomial distributions. This is described here-
after.

B.5.1 Total number of sex acts

A male has a rate of sexual intercourses with any partners (spousal, casual or sex
worker) noted Rsex and the actual total number of intercourses performed by this
male, N, during a period dt is distributed with a Poisson distribution:

N ∼ Poisson(Rsex dt)

The rate Rsex is set at a starting value, Rmaxsex , the maximum rate of sexual inter-
courses for any male (think of it as a biological limit). Then, this rate is reduced
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Figure B.2. Distribution of number and type of sex acts among partners

by a factor RM depending on the male’s features and another factor RF depending
on his partners’ features:

Rsex = R
max
sex × RM × RF

Factor RM depends on the male’s age Am, his risk group r, if he has symptoms of
any STI (binary variable s = 0 if no symptoms), the total number of partners n.
The functional form is defined as:

RM = hage(Am)hrisk(r)hSTI(s)hnPartn(n)

Similarly, RF is defined as

RF = hage(Āf)hrisk(r̄)hSTI(s̄)

where Āf is the average age of all male’s partners, and similar notation for other
variables.
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Then, we define each function h corresponding to the associated determinant.

hage(a) = exp
(
−

(
a− apeak
σage

)q)
with apeak the mean age of peak sexual activity (at the population level) and σage
and q shape parameters. These parameter may have to be assumed if no relevant
data set found.

hrisk(r) = (1− εrisk)
r

r∗
+ εrisk

with r∗ the maximum risk group and εrisk representing the fraction of sex acts a
male in the lowest risk group has compared to the highest one.

hSTI(s) =

{
εSTI if s = 1

1 if s = 0

with εSTI representing the fraction of sex acts performed when individuals have
STI symptoms. To reflect the unbalanced bargaining power between male and
female in a relationship (males tend to dictate), this function is segregated by
gender, with εSTI,female > εSTI,male.

We also model a saturation of sexual acts based on the number of concurrent
partners. This is to avoid that an individual with many concurrent partners has
an unrealistic rate of sex acts.

hnPartn(n) =
2

1+ e−c n
− 1

with c a saturation parameter.

B.5.2 Distribution of sex acts among partner types

Among these N sex acts, Ns, Nc and Nw were made with the male’s spouse(s),
casual partner(s) and sex worker (N = Ns +Nc +Nw). The distribution between
these three categories is assumed to follow a multinomial law:

(Ns, Nc, Nw) ∼ Multinom(N,p)

70



Ph.D. Thesis - David Champredon McMaster University - CSE

with p = (ps, pc, pw) the probability vector defining the probabilities that a sex
act will be with a spouse, a casual partner or a sex worker. The constraint is:
ps + pc + pw = 1.

The probability to engage with sex worker, it is based on the male’s risk group
r:

pw = w1e
−w2(r

∗−r)

with r∗ the highest risk group, w1 and w2 shape parameters.

The probability to have a sex act with a spouse is set to:

ps = αs
ns

ns + nc
1nc>0 + (1− pw)1nc=0

with ns (resp. nc) the total number of spouses (resp. casual partners); parameter
α a weighting factor depending on the average ages, average STI/HIV infections
and average number of children among spouses and casual partnerships.

A constraint on αs is 0 < αs < (# spouses/total # partnerships) such that 0 ≤ ps ≤
1.

Finally, we have implicitly
pc = 1− ps − pw

The parameters of these probabilities will be calibrated on published data and
surveys (DHS).

B.5.3 Distributing the number of sex acts between partners

Assume the male has ks spouses. We distribute Ns acts between ks females re-
cursively with a binomial law. IfN(i)

s is the number of sex acts allocated to the ith

spouse, for i ∈ {1, ..., ks}:

(
N(1)
s , ..., N

(ks)
s

)
∼ Multinom

(
Ns,

1

ks

)
Hence, there is no preference among spouses.

Similarly, the Nc sex acts with kc casual partners are distributed with the same
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recursive formula, for i ∈ {1, ..., kc}:

(
N(1)
c , ..., N

(kc)
c

)
∼ Multinom

(
Nc,

1

kc

)

B.5.4 Distributing sex acts types

Once the number of sex acts are allocated to each partner, the type of sex act must
be specified. Sex act types allocation is first described for spouses, casual partners
and sex workers will have the same methodology.

The N(i)
s sexual intercourses with his ith spouse are distributed among the three

sex act types (with condom, no condom low risk, no condom high risk). The
number of sex acts performed with a condom is N(i)

s,0, without condom and low
risk practices N(i)

s,1 and without condom and high risk practices N(i)
s,2(

N
(i)
s,0, N

(i)
s,1, N

(i)
s,2

)
∼ Multinom(N(i)

s ; ps)

with ps = (ps,0 , ps,1 , ps,2) the vector of probabilities to engage in the respective
sex act types.

The following functional forms are assumed for the probabilities:

ps,0 = ps,0(rm, rf) = t1e
−t2(rm+rf)/r

∗

with t1, t2 shape parameters, rf (resp. rm) the risk group of the female (resp. male)
and r∗ the maximum risk group.

It is assumed that among those sex acts that are not performed with a condom, a
fixed proportion βs of the remaining will engage in medium-risk practices with-
out condoms:

ps,1 = βs(1− ps,0)

Finally, implicitly we have:

ps,2 = 1− ps,0 − ps,1

Similarly, we have for casual partners:(
N

(i)
c,0, N

(i)
c,1, N

(i)
c,2

)
∼ Multinom(N(i)

c ; pc)
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with pc calculated the same way as ps.

B.5.5 Limits on the number of sex acts for females

Because the number of sex acts (within partnerships) is driven by males, there is
a risk a female has a total number of sex acts, noted Nf here, unrealistically high
if she has several partnerships.

Hence, a maximum rate of sexual intercourses for females is assumed, and noted
Rmax,fsex . For a given period dt, if the number of sex acts allocated to a female is
higher than Rmax,fsex dt, then the following corrective algorithm is applied to the
number of sex acts for both female and male (noted Nm here) in this partner-
ship:

If Nf > R
max,f
sex dt then :

1. Nf ← min
(
Nf ; int[Rmax,fsex dt]

)
2. Nm ← max

(
Nm − (Nold

f −Nnew
f ); 0

)
where int[x] denotes the integer part of any real number x.

Note: This algorithm will be improved in a future version.

B.5.6 Sex acts of males with no partnership

Males with no partnership are simulated with a slightly different process as their
sexual acts can only be with sexual workers, hence the distribution of sex acts
between different partners is not relevant.

The number of sex acts is still assumed to follow a Poisson distribution

N ∼ Poisson(Rsinglesex dt)

But, the factors determining the effective rate from the maximum rate are differ-
ent.

Rsinglesex = Rmaxsex × R
single
M × Rcost

with
RsingleM = hage(Am)hrisk(r)hSTI(s)hHIV(τ)
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Compared to RM for males in partnerships, the factor related to the number of
partners is removed, as the male is assumed to have access to an ever-sufficient
services from sex workers (economic costs aside).

A new factor representing the transaction cost of sex work services is introduced,
Rcost. For simplicity, it is set to a constant. Its aim is to limit the number of visits
to CSW.

B.6 Commercial sex workers

B.6.1 Recruitment

It is assumed commercial sex workers (CSW) are recruited in the population at a
rate proportional to the population size. If R?

csw is the maximum rate of recruit-
ment and N the total population size, the number of CSW recruited during the
period of time dt is distributed with a Poisson distribution:

Nnew
csw ∼ Poisson (RcswNdt)

with

Rcsw =
1+ e−ab

1+ ea(x−b)
R?
csw

where x is the proportion of the number of CSW to the total population and a
and b two constants. The multiplicative logistic term is introduced to translate
a saturation of the demand for CSW: recruitment tends to 0 as the proportion of
CSW in the population grows.

The age of the newly recruited CSW is uniformly distributed between a pre-
specified age range (e.g. 15 to 40 years old).

The infection status with respect to each STI is also set stochastically. We de-
note As the number of a newly recruited CSW infected with STI s. We assume
that

As ∼ Binomial(Nnew
csw , ps)

where ps is the current population prevalence of the associated STI (s). The As
individuals are picked randomly among the new Nnew

csw CSWs. A new CSWs who
has been (stochastically) infected, is assumed to have just contracted the infection
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(STI duration is set to 1 day).

Previous number of partner is arbitrarily set to Poisson((age-minsexage)/2) and
the widow prevalence is set at the same level as the general population.

B.6.2 Cessation

Among all the current CSW in the population (Ncsw), we assume the rate of in-
dividuals dropping out of commercial sex (qcsw) is proportional to their num-
ber.

Nquit
csw ∼ Binomial (qcsw dt,Ncsw)

The risk group of the quitting CSWs is assigned randomly (multinomial among
all risk groups). Note that only the risk group (set at a distinctive high value)
identifies a CSW from the rest of the population.

B.7 Disease transmission

The transmission of STI will be determined by the probability of transmission
per sex act. This probability is calculated from an infectivity curve associated
to the infected partner and a susceptibility factor associated to the susceptible
partner.

B.7.1 Infectivity curve and susceptibility factor

Infectivity curve

Individuals infected with an STI have an infectivity curve associated to this in-
fection, noted IC. The infectivity curve is normalized such that the peak(s) of
infectiousness is 1. At time t = 0, the pathogen invade the individual and by
definition IC(0) = 0.

The shape of this curve depends on the disease. A proxy for the shape of the infec-
tivity curve is the viral load in genital secretions. Other features from the infected
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individual (age, co-infections, etc) can impact the shape of this curve. Detailed
formulation of the infectivity curves for each STI is described in B.7.3.

Susceptibility factor

The susceptible individual who is at risk of transmission during the sex act con-
sidered, has a specific susceptibility factor to a given STI, noted SF. Susceptibility
is maximal when SF = 1. Let’s assume the STI considered is the ith in the list of
all STIs modelled. This factor is reduced with respect to circumcision status (for
male only):

SFi = SF
circum
i

where SFcircum
i ≤ 1 are estimated from the literature.

Note: Other features than circumcision may be added in future developments.

B.7.2 Probability of transmission

For one given sexual intercourse, the probability of transmission, PT , is calcu-
lated from both the infectivity curve and the susceptibility factor of the pair of
individuals considered.

The type of sex act (with or without condom, low or high risk) also impacts the
probability and is represented in a functional form with a range between 0 and 1,
noted SAT(type) for Sex Act Type. Because only 3 sex act types are considered,
the domain of this function is {0, 1, 2} with 2 representing high-risk sex (anal, dry-
sex), 1 standard sex act and 0 sex act with condom. We have SAT(2) = 1 as no risk
reduction is allowed when the riskiest sex act is performed, and SAT(0) should
be a tiny number to reflect the dramatic reduction of transmission risk when a
condom is used. Because of the difference between STIs, the value of SAT(1) is
STI-specific.

It is also assumed there is a maximum probability of transmission per sex act
for a given STI s, and is noted PT ∗0,s. This probability assumes no other STI co-
infection.

Hence, the formula defining the probability of transmission for a given STI s,
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without any other STI co-infections is:

PT0,s(t, I1, I2, type) = ICs(t, I1)× SFs(I2)× SATs(type)× PT ∗0,s

with t the duration since infection of the infected partner, I1 (resp. I2) vector
of relevant features (e.g. age, circumcision status, etc) of the infectious (resp.
susceptible) individual, and type the sex act type.

If the susceptible partner is already infected with another STI, then the transmis-
sion probability is increased. Given an odds-ratio Cij for increased susceptibil-
ity to STI i when already infected with STI j, we assume the overall odds-ratio
is

Ri = max
j

(Cij)

The susceptibility factor due to STI co-infections is assumed constant for a given
pair of STIs and represented by a matrix C, where the columns represent the
STI already infecting the individual (j) and the row the STI the individual is still
susceptible to. Entries of the matrix C can be calibrated on published literature
(as it is likely that co-infection increases susceptibility we have 1 ≤ Cij).

Hence, the transmission probability taking into account any other STI co-infection
is:

PTs(t, I1, I2, type) =
Rs PT0,s

1+ (Rs − 1)PT0,s

(formula implied from the odds-ratio definition OR = p/(1−p)
p ′/(1−p ′)

)

For a pair of individuals who has ny sex acts of type y during a given period, the
probability of transmission of a given STI s after these multiple sex acts is noted
MPT and is given by the following formula:

MPTs(t, I1, I2) = 1−

2∏
y=0

[1− PTs(t, I1, I2, y)]
ny

B.7.3 Probabilities of transmission for every STI

Here, the infectivity curves and susceptible factors are defined for every STI mod-
elled.
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HIV

The infectivity curve of HIV is defined by pieces to represent the different stages
of the natural history of HIV. The parameters used for its definition are summa-
rized in Table B.1

Table B.1. Parameters for the infectivity curve of HIV

Notation Interpretation
Tvl∗HIV Time after initial infection when viral load peaks
qHIV Shape parameter of acute infection
σHIV Dispersion of the duration of acute phase

VLchronic Fraction of peak viral load when chronic stage starts
Dchronic Duration (in years) of the chronic infectious stage
rchronic Rate of viral load progression during the chronic stage
DAIDS Duration (in years) of AIDS (death as end-point)

The infectiousness during the acute period following initial infection is repre-
sented by (the subscript HIV is dropped for readability):

ICHIV,acute(t) = exp
(
−
(t− Tvl∗)2q

σ2q

)
with 0 < t < Tc the time since initial infection and Tc = σ(− ln(VLchronic))1/2q +
Tvl∗, the time after initial infection when the chronic stage starts.

For the chronic phase for Tc ≤ t < Tc +Dchronic

ICHIV,chronic(t) = VLchronic e
(t−Tc)rchronic

And finally for the AIDS stage, for t ≥ TAIDS = Tc +Dchronic

ICHIV,AIDS(t) = ICHIV,chronic(TAIDS)e
−(t−TAIDS) ln(VLchronic)/DAIDS

The end-point being death, and it is assumed the infectivity level is back at its
peak value at this time.

The infectivity curve of HIV without any other co-infections is given by putting
together the three stages:

ICHIVonly(t) = ICHIV,acute(t) + ICHIV,chronic(t) + ICHIV,AIDS(t)
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When the infected individual is co-infected with another STI, the HIV infectious-
ness is assumed to increase and mirror the other STI infectiousness, up to a given
ratio.

ICHIV,coSTI(t) =

(∑
s

RIcoSTI(s)ICs(t)

)
ICHIVonly(t)

with s summing on all STI modelled and RIcoSTI(s) is the rebound of HIV infec-
tivity due to co-infection with STI s.

Finally, the full infectivity curve for HIV is

ICHIV(t) = ICHIVonly(t) + ICHIV,coSTI(t)

Practically, the value is capped at one, that is ICHIV(t) = min(1, ICHIVonly(t) +
ICHIV,coSTI(t)).

It is implicitly assumed that co-infections cannot increase HIV infectivity beyond
the peak infectivity when only infected with HIV. It is also assumed that the
increase of HIV infectivity mirrors the pattern of infectivity of the co-occurring
STI.
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Figure B.3. Infectivity curves for HIV.
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Syphilis (Treponema pallidum, Tp)

Primary syphilis: After initial exposure, a primary chancre develops at the site of
entry (usually genital) after 3-90 days (average 3 weeks) [56, 68]. It takes about
4-6 weeks for spontaneous resolution (without treatment) of the primary chan-
cre.

Secondary syphilis: Up to 85% of cases will progress to generalized lesions [56],
within 4-10 weeks after the appearance of the initial chancre [56, 68]. A small
proportion of cases, 10% [56] 5-22% [68], will develop highly infectious chancres
(condylomata lata). Spontaneaous resolution occurs within less than 3 months
[56] or several weeks [68].

Early latent syphilis: About 25% of cases experiences a recurrence of secondary
syphilis symptoms during a window period of about 6 months

Syphilis (untreated) is expected to be sexually transmissible during 2 years after
initial infection [56]. Late latent and tertiary phases are not infectious. Tertiary
phase occurs 15-30 years later and is associated with increased mortality in some
cases.

Co-infection with HIV might be associated with a higher Tp virulence, but syphilis
treatment is the same as HIV-uninfected patients [68]. The infectivity curve is de-
fined with respect to the syphilitic stages.

Primary syphilis infectivity curve is represented with the pseudo-beta function
defined in appendix B.11.1:

ICTp.1(t) = vTp.1 × B
(
(t− LTp.1)

+

DTp.1

, aTp.1, bTp.1

)
with aTp.1 and bTp.1 shape parameters, LTp.1 the latent period before being infec-
tious (suggested 30 days), DTp.1 the infectiousness duration of primary syphilis
(suggested 5 weeks) and vTp.1 the relative virulence of this primary stage (sug-
gested 0.7) compared to peak infectivity (when the value of the infectivity curve
is 1).

Secondary syphilis is defined similarly, but with two possibilities for the infectiv-
ity curve reflecting the fact that some cases will develop highly infectious condy-
lomata lata.
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In the absence of condylomata:

ICno condyTp.2 (t) = vTp.2 × B
(
(t− LTp.2)

+

DTp.2

, a2, b2

)
when condylomata develop:

ICcondyTp.2 (t) = vcondyTp.2 × B

(
(t− LTp.2)

+

Dcondy
Tp.2

, acondy2 , bcondy2

)

with a2 and b2 shape parameters, LTp.2 the latent period from infection before sec-
ondary syphilis is triggered(suggested LTp plus 7 weeks), DTp.2 the infectiousness
duration of secondary syphilis (suggested 8 weeks) and vTp.2 the relative virulence
of this secondary stage (suggested 0.7) compared to peak infectivity.

The parameters with the superscript condy apply to the case when condylomata
develop. In this case, the parameters are assumed to be different.

The probability that condolymata develop is represented by the binary random
variable κcondy that takes value 1 with probability pcondy (suggested 0.15), else is
0.

Hence, for secondary syphilis we have:

ICTp.2(t) = κcondyIC
condy
Tp.2 (t) + (1− κcondy)IC

no condy
Tp.2 (t)

Early latent syphilis is considered as a repeat of symptoms that occurred during
secondary syphilis, hence it is defined similarly:

ICTp.el(t) = vTp.el × B
(
(t− LTp.el)

+

DTp.el

, ael, b1el

)
with ael and bel shape parameters, LTp.el the latent period before earl latent stage
is triggered (suggested LTp plus 12 months), DTp.1 the infectiousness duration of
primary syphilis (suggested 5 weeks) and vTp.el the relative virulence of this pri-
mary stage compared to peak infectivity.

Finally, the total infectivity curve for syphilis is:

ICTp.el(t) = ICTp.1(t) + κTp.2ICTp.2(t) + κTp.elICTp.el(t)
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with κTp.2 (resp. κTp.el ) the binary random variable taking value 1 with probability
pTp.2 (resp. κTp.el) representing the probability to develop secondary (resp. early
latent) syphilis. (suggested: pTp.2 = 0.85 and κTp.el = 0.20)

A graphical representation is given in Figure B.4
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Infectivity Curve of Syphilis
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 s
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PrimarySecondary Early Latent

Figure B.4. Infectivity curve for Syphilis. The thin curve in the secondary syphilis stage
represents the case when highly infectious condolymata develop.

B.7.4 Mother-to-child (vertical) transmission

When a female is both pregnant and infected with a STI, transmission of the
pathogen to the children is modeled as a stochastic event. For all STI except
syphilis, the probability of mother-to-child transmission is assumed constant (it
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does not depend on pregnancy stage and duration of infection):

pMTCT = constant

For syphilis, there is some evidence [64, 65] that risk of vertical transmission
is higher during the early stages of syphilis infection. Hence, a decreasing lo-
gistic shape is assumed for the probability of syphilis mother-to-child transmis-
sion:

pTpMTCT =
a

1+ eb(τ−c)

with τ the duration of syphilis infection and a, b, c shape parameters.

For every pregnant female infected with an STI, the vertical transmission to the
new born is decided by drawing a random variable from a Bernoulli distribution
with probability pMTCT .

B.8 Treatment and vaccination

B.8.1 Treatment implementation

When an individual is infected with an STI, receiving a treatment will affect
(most likely reduce) her/his infectiousness, symptomatic status and increase the
chances of being cleared from the pathogen, if the STI is curable.

An individual starting a treatment will go through several steps before poten-
tially having a positive outcome.

Treatment microbiological failure

There is a risk of failure with any treatment. An individual may poorly respond
to prescribed drugs, or be infected with a drug-resistant strain of the pathogen
(adherence is treated separately hereafter).

For a given STI, let TMS be the random variable representing microbiological
treatment success (conditional on full adherence) and pfail the probability of treat-
ment failure. It is assumed that TMS has a Bernoulli distribution (TMS = 1 is
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successful treatment):
TMS ∼ Bern(1− pfail)

Adherence

Right from treatment inception, adherence is determined based on the individ-
ual’s risk group and symptomatic status. A non-adherent behaviour will reduce
the amount of drug intake. If adherence A is measured as the fraction of the
optimal drug intake (0 ≤ A ≤ 1, with A = 1 being full adherence), then it is
assumed

A = a0e
−a1ra2

with r the risk group of the individual, a0 the maximum adherence, a2 a reduc-
ing factor when the infection is asymptomatic (it is assumed that a symptomatic
infection motivates more to adhere to treatment).

Treatment reduction effect

Treatment is affecting the infectivity curve, with the aim of reducing it to either 0
for curable STI or a very small value for non-curable STIs (e.g. HIV).

We assume there is an hypothetical treatment reduction effect (TRE∗) conditional
on microbiological success and full adherence. Duration of treatment has an op-
timal length note TD∗. TRE is a function of treatment duration τ and we have
TRE∗(0) = 1 (no reduction of infectiousness at the very start of treatment) and
TRE∗(TD∗) = 0 or ε (treatment has cured [when STI is curable] or heavily sup-
pressed [when non-curable] the pathogen). The actual treatment reduction effect
TRE is given by

TRE(A, TMS, τ) = [A× TRE∗(τ) + (1−A)] TMS+ (1− TMS)

Function TRE∗ will be defined specifically for each STI.

The infectivity curve before treatment (IC) is thus modified into an infectivity
curve during treatment (ICtreat):

ICtreat(t, τ) = IC(t)× TRE(A, TMS, τ)
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Figure B.5. Treatment reduction effect.

For curable STIs, cure is achieved by assessing the value of a random variable
with a Bernoulli distribution

Cure ∼ Bern(TRE(TD∗))

If Cure = 1, the STI is cured. If Cure = 0 the infectivity curve is set back, as if
TRE = 1.

B.8.2 Vaccine implementation

The individuals eligible for vaccination are selected according to pre-defined cri-
teria defined at the simulation level (for example age). Given an individual re-
ceives a vaccine injection, his/her immunity to the STI is instantaneously set to
100% with probability 1 − pfail, with pfail the failure probability of the vaccine.
The immunity decreases at the exponential rate w, such that immunity t time
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units after (successful) vaccination is:

immunity(t) = e−wt

The susceptibility factor to that STI at time t, SF(t), is updated every time step:

SF(t) = SF(t− 1)(1− immunity(t))

A vaccinated individual can acquire the associated STI if the vaccine effectiveness
has waned sufficiently. In that cases, the model gives the possibility to simulate
a reduction of infectiousness provided by the previous vaccination. Put simply,
the vaccine is not strong enough to protect the individual from infection, but if
infection happens, the individual will be less infectious. The vaccine reduction
effect (VRE) on infectiousness is simply modelled as a constant multiplicative
factor applied to the infectivity curve.

B.9 Calibration

This agent-based model has many model parameters, that are all summarized
in Tables B.2, B.5, B.6, B.7, B.8 and B.9. They can be classified in groups that
specifically affect:

• demographics

• partnerships dynamics

• sexual behaviour

• diseases natural history

• treatments

Only the parameters in the “diseases natural history” and “treatments” were not
calibrated to data. Fixed values were assumed either based on the literature or
arbitrarily set (Tables B.7, B.8, B.9).

The fitting procedure consist in fitting groups of parameters sequentially. Many
“feedback loops” exist: for example, demographics can affect indirectly STI preva-
lence (for example, a lack of young individuals could force disease transmission
to stay in older cohorts, limiting te prevalence), but STI prevalence can also af-
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fect demographics (e.g. HIV-induced deaths). Hence, given the large number
of parameters, a practical way to identify parameters is to fit them sequentially
by groups. The order of this sequence is arbitrary and justified as follows. De-
mographic processes are considered the most fundamental, hence they should be
fitted first. Then partnership dynamics and sexual behaviour are fitted to relevant
data.

Demographic parameters were first fitted. Not all parameters were fitted: crude
birth rate and children mortalities were directly inputed from the literature. Only
the deaths hazard were fitted and the fitting procedure was relatively straight-
forward (simply matching a pre-specified life expectancy with or without HIV).
These demographic parameters remained unchanged during the next fitting steps.
See Table B.2.

The partnerships parameters were i) set to a fixed value taken either from the
literature or arbitrarily, ii) fitted to the DHS database, or iii) fitted to prespecified
STI prevalences (Table B.5). Similarly, sexual behaviour parameters were i) set to
a fixed value or ii) fitted to prespecified STI prevalences (Table B.6).

The calibration method used is an Approximate Bayesian Approximation (ABC).
The summary statistic F is simply the sum of squared differences to the target
data. STI prevalences are fitted by risk groups and ages. We have:

F(X) = (PartnerRatio(X)/targetPR − 1)
2

+(MedAgeMar(X)/targetMAM − 1)2

+
∑
s

(STIRiskGrpPrevs(X)/targetRGP,s − 1)
2

+
∑
a,s

(STIAgePreva,s(X)/targetAP,a,s − 1)
2

with targetx the target values from the data, PartnerRatio the proportion of in-
dividuals in partnerships from the simulation (fitted on DHS), MedAgeMar the
median age at marriage for women (fitted on DHS), STIRiskGrpPrevs the preva-
lence of each STI by risk group (no data, scenario assumptions) and STIAgePrevs
the STI prevalence by age (shape for HIV fitted on DHS, levels are scenario as-
sumptions).
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B.10 Simulations

Below is the high-level algorithm used to perform epidemiological analyses.

1. start with initial population, no partnerships, no STI

2. run simulation long enough such that the partnership dynamics are in a
steady state. Fit of equilibrium values to target demographic and partner-
ship data should be performed at that step

3. introduce STIs into the population and run long enough such that preva-
lence and incidence of all STIs reach their steady state

4. determine a date after the prevalence and incidence steady states are reached
to implement an intervention (e.g., vaccine)

5. set a horizon where the baseline (i.e. no intervention) and intervention sim-
ulations are compared

B.11 Appendix

B.11.1 Pseudo-beta shape function

For infectivity curves associated with STIs of limited duration, the shape func-
tion was inspired from the beta distribution density (because it has a bounded
support).

B(x, a, b) = xa−1(1− x)b−1/C

where C is the normalizing constant such that the maximum value of B is 1 on
the interval [0;1]:

C =

(
a− 1

a+ b− 2

)a−1(
b− 1

a+ b− 2

)b−1
It is assumed that for any a, b > 1 and x < 0 and x > 1 we have B(x, a, b) = 0.
The maximum of B is reached at xmax = (a− 1)/(a+ b− 2).

B.11.2 Tables of all parameters
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Appendix C

Table C.1. Mother to child transmission results. Relative to baseline scenario.

Scenario STI median 10% quantile 90% quantile population
TrMass HIV -0.010 -0.848 0.118 A
VaxMass HIV -0.017 -0.181 0.082 A
VaxYoung HIV -0.093 -0.289 0.150 A
VaxHiRisk HIV -0.039 -0.988 0.199 A
TrMass Tp -0.047 -0.229 0.181 A
VaxMass Tp -0.684 -0.794 -0.560 A
VaxYoung Tp -0.199 -0.353 -0.002 A
VaxHiRisk Tp -0.523 -0.712 -0.388 A
TrMass HIV 0.033 -0.031 0.105 B
VaxMass HIV 0.098 0.039 0.153 B
VaxYoung HIV 0.001 -0.053 0.069 B
VaxHiRisk HIV 0.089 0.015 0.154 B
TrMass Tp -0.098 -0.169 -0.021 B
VaxMass Tp -0.716 -0.737 -0.671 B
VaxYoung Tp -0.253 -0.314 -0.170 B
VaxHiRisk Tp -0.406 -0.497 -0.335 B
TrMass HIV 0.001 -0.062 0.064 C
VaxMass HIV 0.001 -0.098 0.073 C
VaxYoung HIV -0.031 -0.134 0.053 C
VaxHiRisk HIV -0.001 -0.086 0.092 C
TrMass Tp -0.030 -0.176 0.158 C
VaxMass Tp -0.717 -0.804 -0.645 C
VaxYoung Tp -0.239 -0.411 -0.100 C
VaxHiRisk Tp -0.462 -0.666 -0.303 C
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Table C.2. Final prevalences of HIV and syphilis

Scenario STI median 10% quantile 90% quantile population
baseline HIV 0.01531 0.013 0.01894 A
TrMass HIV 0.01411 0.00015 0.01873 A
VaxHiRisk HIV 0.01498 0 0.01954 A
VaxMass HIV 0.01492 0.0132 0.0182 A
VaxYoung HIV 0.01482 0.01252 0.01904 A
baseline Tp 0.02325 0.01794 0.03069 A
TrMass Tp 0.01948 0.01397 0.0251 A
VaxHiRisk Tp 0.00303 0 0.00969 A
VaxMass Tp 0.00022 0 0.00027 A
VaxYoung Tp 0.01257 0.00807 0.01887 A
baseline HIV 0.09907 0.08892 0.10648 B
TrMass HIV 0.10308 0.09615 0.11017 B
VaxHiRisk HIV 0.11403 0.1083 0.12132 B
VaxMass HIV 0.11737 0.10988 0.12534 B
VaxYoung HIV 0.10038 0.0948 0.10499 B
baseline Tp 0.10162 0.09061 0.11566 B
TrMass Tp 0.08011 0.07297 0.0901 B
VaxHiRisk Tp 0.04022 0.03035 0.0519 B
VaxMass Tp 0.00517 0.00167 0.00784 B
VaxYoung Tp 0.04282 0.03673 0.05172 B
baseline HIV 0.14502 0.13191 0.15833 C
TrMass HIV 0.14589 0.12835 0.16019 C
VaxHiRisk HIV 0.14873 0.1369 0.16015 C
VaxMass HIV 0.14956 0.13791 0.1596 C
VaxYoung HIV 0.14376 0.13323 0.15845 C
baseline Tp 0.04423 0.03291 0.05574 C
TrMass Tp 0.03692 0.02867 0.04589 C
VaxHiRisk Tp 0.00988 0.0029 0.01587 C
VaxMass Tp 0.00115 0 0.00437 C
VaxYoung Tp 0.01689 0.01305 0.02194 C

97



Chapter 4

Intrinsic and realized generation
intervals in infectious-disease
transmission

Champredon D, Dushoff J. Proceedings of the Royal Society B: Biological Sciences
2015; 282: 20152026.

DOI: 10.1098/rspb.2015.2026

4.1 Abstract

The generation interval is the interval between the time that an individual is in-
fected by an infector and the time this infector was infected. Its distribution un-
derpins estimates of the reproductive number and hence informs public health
strategies. Empirical generation-interval distributions are often derived from
contact-tracing data. But linking observed generation intervals to the underlying
generation interval required for modeling purposes is surprisingly not straight-
forward, and misspecifications can lead to incorrect estimates of the reproduc-
tive number, with the potential to misguide interventions to stop or slow an epi-
demic. Here, we clarify the theoretical framework for three conceptually different
generation-interval distributions: the “intrinsic” one typically used in mathemat-
ical models and the “forward” and “backward” ones typically observed from
contact tracing data, looking respectively forward or backward in time. We ex-
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plain how the relationship between these distributions changes as an epidemic
progresses and discuss how empirical generation-interval data can be used to
correctly inform mathematical models.

4.2 Introduction

Much infectious disease modeling focuses on estimating the reproductive num-
ber – the number of new cases caused on average by each case. In the specific case
where the case is introduced in a fully susceptible population, we talk about the
basic reproductive number R0. The reproductive number provides information
about the disease’s potential for spread and the difficulty of control. It is often
thought of a single number: an average [2] or an appropriate sort of weighted
average [35]. But the reproductive number can also be thought of as a distribu-
tion across the population of possible infectors: different hosts may have different
tendencies to transmit disease.

The reproductive number provides information about how a disease spreads, on
the scale of disease generations. It does not, however, contain information about
the population-level rate of spread (e.g. how disease incidence increases through
time, which can be critical for public health interventions). Hence, another im-
portant quantity is the population-level rate of spread. In disease outbreaks, the
rate of spread is often inferred from case-incidence reports and used to estimate
the reproductive number.

The reproductive number and the rate of spread are linked by the generation in-
terval – the interval between the time that an individual is infected by an infector,
and the time that the infector was infected [95].

Whereas the rate of spread measures the speed of the disease at the population
level, the generation interval measures speed at the individual level. It is typically
inferred from contact tracing, sometimes in combination with clinical data. Like
the reproductive number, the generation interval can be thought of as a single
number (typically its mean), or as a distribution.

Several previous studies have investigated aspects of the generation interval.
Svensson [95] made one of the earliest attempts to define a mathematical frame-
work for the generation interval. Several authors [66, 95] described a decrease in
the generation interval over the course of an epidemic and it was argued this phe-

99



Ph.D. Thesis - David Champredon McMaster University - CSE

nomenon could be caused by competition between infectors [66]. Nishiura [81]
explained, in the context of a specific epidemiological model (compartmental
Susceptible-Infected-Recovered), how observed mean generation intervals are
expected to change through time and the bias this can introduce in estimating
the basic reproductive number.

Generation intervals and mean generation time have also been studied in other
fields, including human demography [71], bacterial population growth [67] and
population genetics [43]. To our knowledge, the question of how observed gen-
eration intervals change with population dynamics has not been studied outside
of epidemiology, however, possibly because other fields are relatively more in-
terested in relatively stable populations, and less interested in outbreaks, where
such changes are likely to be important.

Here we develop a new framework to discuss generation-interval distributions
and to evaluate how they change as an epidemic develops. We define an intrinsic
generation interval whose distribution depends only on the average infectious-
ness of an individual at a given time after infection, and which we assume does
not change as the epidemic progresses. We then investigate how this and other
factors shape the distribution of realized generation distributions – which can ei-
ther be measured forward, by studying who is infected by the cohort that acquires
infection at a given time, or backward, by studying who infected a given cohort
(Figure 4.1).

Our work extends previous approaches by giving a general explanation of the
temporal evolution of the full distribution of the generation interval and by con-
firming our theoretical results with detailed numerical simulations.

4.3 Results

4.3.1 Model formulation

We consider a simple and general model framework that covers a wide range of
epidemiological model structures [52]. We define S(t) as the proportion of sus-
ceptible individuals in the population at time t, i(t) as the incidence rate – the rate
at which new cases occur at time t – and K(τ) as the rate of secondary infections
caused by an individual infected τ time units ago. (Note that the notation I(t)
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● ●

●

●

t0 t1 t2 t3

G1

G2

G3

Primary case
 (infector)

Secondary case
 (infectee) #1

Secondary case
 (infectee) #2

Secondary case
 (infectee) #3

Infection time
of the infectee

Backward
generation interval

t1 t2 t3

G1

G2

G3

Infection time
of the infector

Forward
generation interval

t0

G1

G2

G3

Figure 4.1. Illustration of backward and forward generation intervals. Top panel
illustrates the example of a primary case (solid circle), infected at time t0 then infecting
three other individuals (open circle), respectively at times t1, t2 and t3. The generation
intervals are defined as Gi = ti − t0 for i = 1, 2, 3. The middle panel plots the backward
generation intervals (black squares), that is from the infectees’ point of view. There is
only one backward generation interval per infectee. The bottom panel plots the forward
generation intervals (black squares) for the primary case. The x-axis represents the
infection time of the infector, hence the three forward generation intervals are all
defined at time t0.
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is traditionally used for disease prevalence, hence our use of lower-case i for the
incidence rate). We can conceptually separate K into two components and write
K(τ) = F(τ)λ(τ), where F(τ) is the probability that an individual is infectious τ
time units after being infected and λ(τ) is the mean infectiousness τ time units af-
ter an individual was infected, given that the individual is infectious at that time.
Most compartmental models effectively assume that λ(τ) is a constant, but many
factors could in theory affect mean infectiousness, including disease titers, how
the disease spreads through the body and how active individuals are at various
stages of the disease.

The number of infections occurring at time t caused by infectors who were them-
selves infected at time s (before t) is modeled as

is(t) = K(t− s)i(s)S(t), (4.1)

The incidence at time t is then given by integrating over infections caused by
infectors infected at different times:

i(t) =

∫ t
0

is(t)ds = S(t)

∫ t
0

K(t− s)i(s)ds (4.2)

This formulation is known as the renewal equation.

In this model, the intrinsic infectiousness of a given infector, and thus the intrinsic
generation interval, is described by K(τ). As we explain below, actual generation
intervals that are observed (or estimated) as a disease spreads through a popula-
tion do not necessarily correspond to the intrinsic generation interval.

Like several previous studies [81, 89, 95], we distinguish between taking the in-
fector’s point of view (looking forward in time to when secondary infections oc-
cur) or taking the infectee’s (looking backward in time to when the infector was
infected) – we call these forward and backward generation intervals, respectively
(Figure 4.1). Hence, we define fs(τ) as the distribution (over τ) of forward gener-
ation intervals for infections caused by individuals infected at time s and trans-
mitting at time s + τ. Similarly, bt(τ) is the distribution of backward generation
intervals for infections of individuals infected at time t by an infector infected τ
time units ago.

Since every generation interval has an infector and infectee, and thus a forward
and backward interpretation, it is not immediately obvious why these distribu-
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tions should differ. As we will see below, the distinction is due to the way realized
generation intervals change over time.

4.3.2 Intrinsic generation interval

From equation (4.1), we see that the intrinsic infectiousness of a given infector is
simply described by K(τ). The basic reproductive number, which is the expected
number infected by a single infectious individual in a totally susceptible popula-
tion [2], is thus:

R0
def
=

∫∞
0

K(τ)dτ (4.3)

The intrinsic generation-interval distribution is then obtained by normalizing the
intrinsic infectiousness kernel:

g(τ)
def
= K(τ)/R0 (4.4)

The distribution g is what should be estimated in order to calculateR0 or to sim-
ulate disease spread. It is conceptually equivalent to the “basic” generation time
introduced by Nishiura [81].

We can thus rewrite the renewal equation (4.2) in terms ofR0 and g(t):

i(t) = R0 S(t)
∫ t
0

g(t− s)i(s)ds (4.5)

4.3.3 Forward generation interval

To calculate the forward generation-interval distribution, we start with the in-
stantaneous incidence (4.1) and condition on the time swhen the infector became
infected. Thus we replace twith τ = t− s:

is(s+ τ) = R0 i(s)g(τ)S(s+ τ) (4.6)

The expected number of secondary infections that will be generated per infector
(i(s) = 1) is thus: ∫∞

0

R0 g(τ)S(s+ τ)dτ (4.7)
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Since R0 i(s) is assumed to be constant through time (R0 is a constant and we
conditioned on time s), the forward generation-interval distribution for infectors
infected at time s, fs, is proportional to g(τ)S(s + τ). So, its definition is simply
obtained by normalizing:

fs(τ)
def
=

g(τ)S(s+ τ)∫∞
0
g(x)S(s+ x)dx

(4.8)

4.3.4 Backward generation interval

Again, using the instantaneous incidence (4.1) but now conditioning on t, the
time when the infectee becomes infected, we have:

is(t) = R0 i(t− τ)g(τ)S(t) (4.9)

The force of infection on each susceptible individual is thus given by:∫∞
0

R0 i(t− τ)g(τ)dτ (4.10)

Similarly to the forward case, we see that backward generation interval is propor-
tional to g(τ) i(t− τ), so its distribution is simply defined by normalizing:

bt(τ)
def
=

g(τ) i(t− τ)∫∞
0
g(x) i(t− x)dx

(4.11)

Finally, in the particular case where mean infectiousness λ is assumed constant
over time, K(τ) is proportional to the probability F(τ), and we can write the three
generation intervals directly in terms of F, the probability that a person is infec-
tious at time τ after becoming infected:

g(τ) =
F(τ)∫∞

0
F(x)dx

(4.12)

fs(τ) =
F(τ)S(s+ τ)∫∞

0
F(x)S(s+ x)dx

(4.13)
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bt(τ) =
F(τ) i(t− τ)∫∞

0
F(x) i(t− x)dx

(4.14)

4.3.5 Example

In this section, we illustrate the temporal evolution of the three generation-interval
(intrinsic, backward and forward) distributions described by equations (4.4), (4.11)
and (4.8) with a simple epidemiological model.

In Figures 4.2 and 4.3, we use the well-known SEIR compartmental model (Susceptible-
Exposed-Infectious-Recovered) where we include n

E
(resp. n

I
) exposed (resp.

infectious) compartments in order to model realistic duration of latency and in-
fectiousness with Erlang distributions (Gamma distributions with integer shape
parameter) [102]. We will refer to this model as an Erlang SEIR and details of this
model are given in the Methods section below. This model was run with param-
eters: n

E
= n

I
= 3, R0 = 4.0, mean duration of latency and infectiousness both

equal to 5 days.

Figure 4.2 shows how temporal variation in force of infection affects the back-
ward generation interval bt. Left, center and right columns represent calendar
time points 20, 48 and 70 days after the start of the epidemic, respectively.

The first row shows g, the intrinsic generation-interval distribution. This does
not change over the course of the epidemic, so the three figures on the first row
are the same. The vertical dashed line at 8.3 days represents the mean of the
distribution.

The second row shows the incidence curve i. The dotted curve is the incidence
over the course of the whole epidemic. The open circle shows the current calen-
dar time. The bold curve and the shaded area illustrate that we look backward
to multiply the intrinsic generation distribution by the incidence curve shown
to obtain the backward distribution (the width of the shaded area matches the
width of the curve shown in the first row). The grey arrow shows the direction of
integration, here looking backward from the current time. The third row depicts
the backward generation-interval distribution (bold curve, with mean shown by
a vertical bold line) resulting from Equation (4.11), which is the product of bold
curves from the first (intrinsic generation interval) and second row (time-reversed
incidence). The intrinsic generation interval (grey curve, mean shown by a ver-
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tical grey line) is shown for comparison. Finally, the last row illustrates how the
mean backward generation interval changes through time throughout the epi-
demic. The horizontal dashed line represents the mean intrinsic generation in-
terval. The three circles represent the calendar time points (20, 48 and 70 days)
chosen for the illustrations in the second and third rows.

Similarly, Figure 4.3 shows how temporal variation in the susceptible population
affects forward generation interval fs. Just as changes in the backward generation
interval are explained by patterns of change in incidence, changes in the forward
generation interval are explained by patterns of change in the proportion suscep-
tible. Calendar time points were chosen to be 10, 38 and 50 days in this case.
An animated version of Figures 4.2 and 4.3 is provided as file movie GI.gif in
http://dx.doi.org/10.5061/dryad.4dd3s.

The backward generation-interval distribution differs significantly from the in-
trinsic one, its mean increasing monotonically from 0 to values much larger than
the mean intrinsic generation interval. The backward generation time is seen
from the point of view of a susceptible: who is likely to infect them? Early in the
epidemic, when the number of infectious individuals is increasing, the backward
generation time tends to be short, because relatively more currently infectious
individuals were infected recently. Similarly, when the epidemic is declining,
there will be relatively fewer infectious individuals infected recently, tending to
increase the backward generation time.

The forward generation interval is seen from the point of view of the infector:
when are they likely to infect somebody? Since the number of susceptibles de-
creases throughout a single epidemic outbreak, there will always be relatively
more susceptibles available soon after infection than later, so the mean forward
generation time will always be less than the intrinsic generation time. Early and
late in the epidemic, however, the number of susceptibles changes slowly, so the
forward generation time is approximately the same as the intrinsic generation in-
terval (Figure 4.3). The shorter generation interval in the middle of the epidemic
may seem counter-intuitive: why do infections happen faster when susceptibles
are being depleted rapidly? The answer is that we calculate the generation-
interval distribution conditional on an infection occurring. As the number of sus-
ceptibles decreases the number of infections per infectious individual goes down,
but the infections that do happen tend to happen faster, because the relative num-
ber of susceptibles is higher in the near future than later on. See middle panel of
Figure 4.3.
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Figure 4.2. Mean backward generation interval. See main text (section 4.3.5) for
explanations.
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Figure 4.3. Mean forward generation interval. See main text (section 4.3.5) for
explanations
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Our example above is constructed with a particular value of R0. In Figure 4.4,
we show how the mean generation intervals change through time for a range of
R0 values. All else being equal, higher R0 leads to faster epidemics, and sharper
deviations of both forward and backward generation intervals from the intrinsic
generation-interval distribution g. Note that this figure is very similar to Figure
3 in [81], but with the important difference that here, we explicitly mark the epi-
demic end-points (solid circles in Figure 4.4) to illustrate the actual deviations
that can be experienced in practice.
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Figure 4.4. Temporal evolution of mean backward and forward generation intervals for
different values ofR0. Curves were integrated until the time of last incident case (solid
circle) and the value ofR0 is indicated at this end-point (grey numbers). The horizontal
dashed line is the mean intrinsic generation interval.

4.3.6 Comparison with simulations

We compare the analytical formulations of both forward (4.13) and backward
(4.14) generation intervals with stochastic simulations in the Erlang SEIR frame-
work, assuming a constant infectiousness λ.

Figure 4.5 shows good agreement of the mean generation intervals (both forward
and backward) between the stochastic simulations (using a Gillespie algorithm
[46], see Methods section) and the numerical solutions of Equations (4.13) and
(4.14).

109



Ph.D. Thesis - David Champredon McMaster University - CSE

0 10 20 30 40 50 60 70

6

7

8

9

10

11

12

Mean forward GI: theory vs. simulations

Calendar time

●
●

●
● ● ● ● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ●

● ●
●

● ●
●

●

●

●

●
●

●

●

●

Forward GI empirical and 
 theoretical distributions 

 at calendar time t=5

Time since infection (days)

0 5 10 15 20 25 30

Forward GI empirical and 
 theoretical distributions 

 at calendar time t=40

Time since infection (days)

0 5 10 15 20 25 30

Forward GI empirical and 
 theoretical distributions 

 at calendar time t=60

Time since infection (days)

0 5 10 15

0 20 40 60 80

0

5

10

15

Mean backward GI: theory vs. simulations

Calendar time

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

● ● ● ●
● ●

● ● ●
●

●

●

●

Backward GI empirical and 
 theoretical distributions 

 at calendar time t=5

Time since infection (days)

0 1 2 3 4 5 6

Backward GI empirical and 
 theoretical distributions 

 at calendar time t=40

Time since infection (days)

0 5 10 15 20 25 30

Backward GI empirical and 
 theoretical distributions 

 at calendar time t=60

Time since infection (days)

0 5 10 15 20 25 30

Figure 4.5. Mean generation intervals: theory v.s. simulations. Numerical validation of
forward and backward generation-interval distributions. Top panel: the thick line is the
mean of the forward generation interval obtained by integrating equation (4.13). The
open circles represent the mean of the forward generation intervals from stochastic
simulations. The horizontal dashed line depicts the mean intrinsic generation interval.
The three squares show the calendar times chosen for the distribution in the second
panel. Second panel: empirical (gray histogram) and theoretical (black line) forward
generation-interval distribution at calendar times 5, 40 and 60 days. Third and fourth
panels represent the same quantities as the first and second panels, but for the backward
generation interval using equation (4.14). Model parameters: R0 = 4; nE = n

I
= 3; mean

latency and mean infectious duration both equal 5 days; Monte-Carlo iterations = 30;
population size= 25,000.

110



Ph.D. Thesis - David Champredon McMaster University - CSE

S E1 E2 EnE I1 I2 InI R
σ σ γ γ

Figure 4.6. Erlang SEIR model.

4.4 Methods

4.4.1 Compartmental model

To estimate generation-interval distributions for our examples, we used numer-
ical simulations with a flexible compartmental model: a classical SEIR model
(Susceptible-Exposed-Infectious-Recovered) withn

E
(resp. n

I
) sub-compartments

for the exposed (resp. infectious) state [1, 5] (Figure 4.6). This modelling frame-
work implicitly specifies Erlang-distributed (i.e. Gamma distribution with inte-
ger shape parameter) duration of latency and infectiousness which can reason-
ably approximate real epidemiological observations [102]. A deterministic for-
mulation of this model is given by a system of differential equations. Let S be the
proportion of susceptible individuals in the whole population; Ek the proportion
of individuals in the kth compartment of latency (i.e., infected but not infectious
yet); Ik the proportion of individuals in the kth compartment of infectiousness;
β the constant effective contact rate; σ the average rate of progression from one
latency stage to the next; γ the average rate of progression from one infectious
stage to the next. The model is given by the system of equations (4.15):

S ′(t) = −βS(t)

n
I∑

k=1

Ik(t) (4.15a)

E ′1(t) = βS(t)

n
I∑

k=1

Ik − σE1(t) (4.15b)

E ′m(t) = σ(Em−1(t) − Em(t)) for m = 2, ..., n
E

(4.15c)

I ′1(t) = σEnE (t) − γI1(t) (4.15d)

I ′n(t) = γ(In−1(t) − In(t)) for n = 2, ..., n
I

(4.15e)

Similarly, a system of differential equations defines the probability of residency
in a given latent or infectious state for individuals infected at a fixed time s. We
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define Lk(τ) as the probability that an individual infected τ time units ago is in
the kth latent stage Ek; Fk(τ) as the probability that an individual infected τ time
units ago is in the kth infectious stage Ik. We have:

L ′1(τ) = −σL1(τ) (4.16a)

L ′m(τ) = σ(Lm−1(τ) − Lm(τ)) for m = 2, ..., n
E

(4.16b)

F ′1(τ) = σLnE (τ) − γF1(τ) (4.16c)

F ′n(τ) = γ(Fn−1(τ) − Fn(τ)) for n = 2, ..., n
I

(4.16d)

with the initial conditions L1(0) = 1, Lk(0) = 0 for all k = 2, ..., n
E

and Fk(0) = 0

for all k = 2, ..., n
I
.

We solved both systems (4.15) and (4.16) numerically using the lsoda method
from the R [82] package deSolve [94] version 1.11.

4.4.2 Stochastic simulations

We validated the results from our deterministic model (4.15), by implementing
a discrete-state stochastic version of this model using an exact Gillespie algo-
rithm [46]. Briefly, this algorithm simulates exponentially distributed event times
for progression from one state to the next one (e.g. from susceptible (S) to exposed
(E)). Both the intensity and event type frequency depend on the rates defined in
(4.15). We extend the classical Gillespie algorithm by identifying every individ-
ual in the simulation. Hence we can keep track of the generation intervals at
pre-specified times both from the infector (forward) and the infectee (backward)
view points. The outputs of interest from a simulation are pairs of generation
interval (forward or backward) and calendar time (time elapsed since the start
of the epidemic). Simulated generation intervals are aggregated and averaged in
one-day time buckets. A detailed description of this algorithm is given in Algo-
rithm 1. The full code to replicate all results and figures of this study is available
at http://dx.doi.org/10.5061/dryad.4dd3s.
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Algorithm 1: Simplified Gillespie algorithm for the Erlang SEIR model

Input: Time horizon T , contact rate β, number of I (resp. E) compartments n
I

(resp. n
E
), mean residency time in any I compartments 1/γ, mean

residency time in any E compartments 1/σ, initial number of infectious
individuals i0, total population N.

1 t← 0

2 S[0]← N− i0
3 Ek[0]← 0 for all k > 0
4 I1[0]← i0
5 Ik[0]← 0 for all k > 1

6 while t < T do
/* Draw the next event time τ */

7 λS ← βS[t]
∑n

I

k=1 Ik[t]/N

8 λE ← σ
n
E

∑n
E

k=1 Ek[t]

9 λI ← γ
n
I

∑n
I

k=1 Ik[t]

10 λ← λS + λE + λI
11 τ ∼ Exp(λ)

/* Draw the next event type */

12 u ∼ Uniform(0, λ)

13 if u < λS then
/* event type is new infection */

14 Pick randomly a new infectee among S[t]: individual a
15 Set infection time for individual a at t+ τ
16 Pick randomly its infector among I1[t], ..., In

I
[t]: individual c

/* calculate generation interval */

17 G← t+ τ− time.acquisition(c)
/* backward generation interval for individual a (infectee) */

18 b(a)← G

/* forward generation interval for individual c (infector) */

19 f(c)← vector(f(c), G)
20 else

/* event type is not infection */

21 Pick randomly individual in ad hoc compartment (based on u value)
22 Move this individual to the next compartment
23 end
24

25 t← t+ τ

26 end
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4.5 Practical implication

During the early phase of a pathogen outbreak, generation interval information
is strongly “censored”, since a relatively large proportion of infections are still
ongoing. This information cannot be used to reliably estimate forward gener-
ation intervals, but can estimate backward generation intervals (or it may sim-
ply be lumped, which has a similar effect as using backward intervals). A naive
– but common – approach is to use the mean (and sometimes the variance) of
this data to inform the intrinsic generation interval distribution g of a mathe-
matical model (e.g., used for forecasting). This method will lead to a systematic
bias: since shorter generation intervals are more likely to have concluded (and
thus be observed), the mean generation interval will be systematically underes-
timated [81]. An alternative approach is to fit the backward generation interval
distribution b of the model (obtained with (4.11)) to the backward contact tracing
data at each available calendar time. As an approximation to fitting the whole
distribution, one can aim to fit both the mean and variance of the backward gen-
eration interval distribution to the data.

The backward generation interval fit to the mean and variance is illustrated in
Figure 4.7, where contact tracing data was simulated from an Erlang SEIR model.
The potential pitfalls of naively fitting, without recognizing the difference be-
tween the intrinsic generation interval distribution g and the observed backward
interval b is also shown (dashed lines): the resulting mean and variance of ob-
served intervals are a noticeably poorer match to the data.

Note that, depending on the model complexity, the minimization problem can be
high dimensional and there might be identifiability issues between parameters.
Also, when the number of data points is small (very first days of the outbreak),
fitting may be challenging because the mean of the backward generation interval
distribution b is very insensitive to model parameters (see left panel of Figure
4.4).

This example serves as a simple illustration for an important point: data from
contact-tracing can provide misleading information about a pathogen’s under-
lying intrinsic generation interval g. The factors that underlie how the realized
forward and backward generation intervals change through time should be taken
into account when evaluating observed intervals. Future work on constructing
a more elaborate and robust statistical framework to perform such fit is war-
ranted.
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Figure 4.7. Comparison between fitting the backward (b) or intrinsic (g) generation
interval distribution of an Erlang SEIR model to synthetic data. Model parameters used
to generate the data wereR0 = 4; nE = n

I
= 3; mean latency and mean infectious

duration both equal to 5 days; population size at 25,000. Left panel: Fit to the mean of
the backward generation interval distribution. Solid black circles are the simulated
backward generation intervals data. The red solid thick curve is the fitted mean
backward generation interval b from the Erlang SEIR model to the mean backward
generation intervals data. The red dashed thick curve is the fitted mean backward
generation interval bwhen fitting (naively) the intrinsic distribution g from the same
Erlang SEIR model to the backward generation intervals data. The thin grey curve is b
when using the “true” parameter values that generated the simulated data. Right panel:
Fit to the variance of the backward generation interval distribution. Open circles
represent the simulated data. The red thick solid line is the variance of the fitted
distribution bwhen fitting b to the simulated backward generation intervals data. The
red thick dashed line represents the variance of the fitted distribution bwhen (naively)
fitting the intrinsic distribution g to the simulated backward generation intervals data.
Only the points to the left of the vertical dashed line (at calendar time 50) were used in
both fits. An approximate Bayesian Computation method with 1000 iterations was
performed for both fits.
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4.6 Discussion

Conceptually, there are three generation-interval distributions (Table 4.1). We
called the first “intrinsic” generation-interval distribution, which defines theo-
retically the disease transmission process. This is the distribution typically used
in mathematical models, such as in the well-known renewal equation (4.2), and
is often assumed invariant with respect to time. Variation in intrinsic generation
interval, if it occurs, is driven by changes in the biological or social processes
underlying disease transmission, e.g. quarantines or social-distancing practices,
but not by the spread of disease per se. The other two generation-interval dis-
tributions are typically obtained by observing the actual infection time differences
between the infector and its infectee. If the point of view is from the infectee, then
there is only one interval to consider and this defines the so-called “backward”
generation interval. If we take the infector’s viewpoint, then there are poten-
tially several generation intervals (because the infector could have infected sev-
eral individuals) and this defines the “forward” generation interval (Figure 4.1).
In other words, if we believe generation intervals are drawn from their respective
distribution (i.e., b and fwith our notations), then the backward generation inter-
val we get in the first place is a single draw, whereas the latter represents several
draws.

Table 4.1. The three generation-interval distributions

Generation-interval
distribution type

Notation Usage Defining
Equation

Intrinsic g Mathematical modelling (4.4)

Backward b Observed when a cohort
is investigated by looking
backward in time to see who
infected each individual.

(4.11)

Forward f Observed when a cohort is
tracked forward in time to
see who individuals infect.

(4.8)

We have developed a theoretical framework that explains the temporal variation
of both backward and forward generation-interval distributions. We confirm the
findings from Nishiura [81] that were derived for mean generation intervals in the
context of exponential growth of incidence. We extend their interpretability to the
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whole generation-interval distribution (not the mean only) in a general modelling
framework (no exponential growth assumption). In particular, our interpretation
does not involve the concept of competition between infectors [66].

Our theoretical results were confirmed with numerical simulations, using an Er-
lang SEIR compartmental model. Note that other sorts of models should work
equally well, as long as it is possible to derive analytically or numerically the
proportion of susceptible individuals S, the incidence i and the probability F to
be infectious τ time units after being infected.

As noted by previous studies [66,81,89,95], the temporal shape of the mean back-
ward generation interval in Figure 4.2 has important modelling consequences.
Indeed, the mean backward generation interval can remain significantly below
(resp. above) the mean intrinsic generation interval early (resp. late) in the
epidemic. So, estimates of the generation intervals obtained by contact tracing
can underestimate (when observed too early) or overestimate (when observed
too late) the mean intrinsic generation interval. This is related to the problem
of “length-biased sampling” [93]. Put simply, generation intervals measured
through contact-tracing may be a biased estimate of the intrinsic generation in-
terval. In particular, if estimates of b are used to estimate g early in an epidemic,
the length of the generation interval is likely to be underestimated. This effect is
more pronounced when the reproductive number of the epidemic considered is
large (Figure 4.4).

An important application of generation intervals is the estimation of the basic re-
productive numberR0, which is in turn used for various public health decisions.
The intrinsic generation-interval distribution g is the link between the observed
growth rate (incidence data) and R0 [101]. If g is systematically underestimated,
as discussed above, R0 is likely to be underestimated as well (see [81] for an ex-
ample illustrating this issue on Dutch influenza data).

Our work suggests a possible methodology to correct for these potential pit-
falls: if it is possible to derive (analytically or numerically) from the mathematical
model either the intrinsic generation-interval distribution g or the probability F
to be infectious after a given duration from the infection time, then modellers can
derive the backward (or forward) generation-interval distribution from equations
(4.11) and (4.14), and fit this distribution (and not g) to the relevant contact tracing
data.

There are some limitations to our work. First, while we consider generation inter-
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vals, in practice serial intervals (the interval between symptom onset in the infector
and symptom onset in the infectee) are easier to observe for many diseases. Se-
rial intervals are less tractable theoretically and in general do not have the same
distribution as generation intervals. However, in some settings their distribu-
tion can be strongly correlated or even identical [44, 95]. Second, our theoretical
framework relies on the assumption of homogeneous mixing. Although this is a
common assumption, heterogeneity is often very important in practice (see [73]
for example), and could affect the patterns found here. Third, we do not account
for the possibility that mixing rates or the course of infection change through
time, for example due to seasonality, awareness of the epidemic, or medical in-
tervention. Like earlier authors, we focus on the intrinsic dynamics of the disease
system. Fourth, a robust, statistically based method to infer model parameters
associated to generation intervals from observable data available early in an epi-
demic is still needed. Statistical methods have been proposed to estimate intrinsic
generation intervals (see for example [18, 32, 54]), but further work is necessary
to extend these methods to our framework, for example constructing estimation
methods directly using the backward generation interval distribution in the con-
text of missing data. Establishing a link between our framework and the serial
interval (the most likely observable quantity) is also warranted.

Informing the generation-interval distribution of a mathematical model from con-
tact tracing data is not straightforward, and a naive approach can lead to spurious
epidemiological projections from the model. Extending previous work, our study
provides a clear and coherent theoretical framework to understand and assess the
differences between three conceptually distinct generation-interval distributions.
Future work should consider building statistical tools leveraging our study on
real contact tracing data.

Data Availibility

The computer code that was used to generate the numerical results and figures in
this study is available on Dryad at http://dx.doi.org/10.5061/dryad.4dd3s.
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Chapter 5

Conclusion

PUBLIC health can benefit from mathematical models to inform and support its
decisions to control the spread of infectious diseases. Thanks to the grow-

ing amount of epidemiological data and computing power available, it is now
possible to model epidemics relatively realistically. But data is not a necessary
ingredient for a mathematical model to be relevant. Just the activity of modelling
can raise questions that would never have been asked otherwise. Moreover, the
analysis of complex mechanisms through the lens of mathematical models can
bring unique and highly relevant insights. Indeed, non-linear effects resulting
from the transmission process and potential interventions are difficult to com-
prehend without them. This is what this thesis explored: understand various
complex epidemiological mechanisms and incorporate existing data in order to
inform public health issues.

In chapter 2, we investigated the importance of within-couple transmission com-
pared to other sexual transmission routes. Assessing their respective contribu-
tion to the HIV epidemic is critical to design effective intervention strategies. A
deterministic compartmental model with an innovative, yet simple, design for
partnership dynamics was developed. Using Demographic and Health Surveys
from Sub-Sahara African countries to inform model parameters, we found this
route rarely represents the majority of transmissions. This study was also the
first to carefully define the contribution to each sexual transmission route (Figure
2.2), and shed some light on the correlation between the proportion of serodis-
cordant couples in a given population and the intensity of within-couple trans-
mission (discordance statistic D, equation (2.6)). This model and the mechanistic
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understandings derived are relevant to other sexually transmitted infection epi-
demics.

The impact of a hypothetical vaccine against syphilis was analyzed in chapter 3.
In contrast to the HIV serodiscordant couples study, a relatively complex “agent-
based” mathematical model was used. This type of model was a natural can-
didate because demographic, partnership and biological dynamics had all to be
taken into account, in a relatively realistic way (e.g., risk behaviour heterogeneity,
gender-specific, co-infections effects, etc.). Our results suggest that an efficacious
vaccine has the potential to sharply reduce syphilis under a wide range of sce-
narios. Because of the epidemiological synergy between HIV and syphilis (it is
suspected that they promote transmission and acquisition of each other), the im-
pact of the syphilis vaccine on HIV morbidity was also considered. Surprisingly,
even by accounting for the HIV/syphilis co-infection interactions, the decrease in
syphilis prevalence following vaccination had little effect on the HIV epidemic.
Another unexpected effect was the small increase of HIV incidence in settings
with a large proportion of high risk behaviour. This study is the first to inves-
tigate the morbidity impact of a hypothetical syphilis vaccine. The modelling
framework developed here can readily be used to investigate similar immuniza-
tion questions regarding other sexually transmitted infections.

Beyond specific pathogens, chapter 4 revisited a fundamental quantity in math-
ematical models applied to epidemiology: the generation interval distribution.
Despite earlier work, there was no satisfactory framework that defined the differ-
ent forms of generation interval (i.e., intrinsic, forward and backward), explained
how their distribution changes as the epidemic unfolds, or linked them to contact-
tracing data. Our study clarified these concepts and suggested a new methodol-
ogy to correctly inform mathematical models from observed generation-interval
data.

There are many limitations to the findings presented in this thesis and many of
them were discussed in each chapter. The overarching limitation for the STIs
studies (chapters 2 and 3), is the limited quantity and quality of data regarding
partnerships and sexual behaviours. These studies mostly relied on surveys, the
reliability of which have been questioned, for example by [53]. Hence, results
from our analyses may be calibrated on data that are not representative of real-
ity.

For the more theoretical investigation about the generation interval (chapter 4),
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the limitation is again associated with data. Infection times – which define the
generation interval – are rarely observable, whereas symptoms onset are. This
limits the practical applications, although it could be argued that these distri-
butions are the same for pathogens for which infectiousness begins only after
symptoms appear. Moreover, building the transmission tree that informs our
mathematical model may not be fully reliable because the epidemiological field
work of contact-tracing is also error-prone.

Although the limitations about behavioural data cannot be overcome at a large
scale today, they have already been directly addressed in various studies, thanks
to molecular sequencing. Because of the exponentially decreasing cost of se-
quencing, it is now possible to reconstruct the phylogeny of pathogens infecting a
given population and then, infer the most likely transmission tree. The advantage
of this method is that it does not rely on individuals’ memory or honesty to recon-
struct the transmission tree. Such phylogenetic reconstruction with mathematical
modelling in mind has already been made ( [11]). This is definitely an avenue to
explore for transmission trees in general (benefiting the work in chapter 4), but
especially for STI models.

As mentioned in the Introduction of this thesis, thanks to increasing comput-
ing power, mathematical models are getting more complex in order to include
numerous epidemiological mechanisms and/or embrace diverse data sets. This
often results in models with a large number of parameters, making the interpreta-
tion of results difficult. Sensitivity analyses of model parameters could be a sim-
ple way to assess the robustness of interpretations, but they may not be feasible
because the computing time needed would be an order of magnitude higher (for
example, performing a full sensitivity analysis on the agent-based model in chap-
ter 3 would take months with the computing power available today). Technolog-
ical breakthroughs, like quantum computers, may allow computational models
to reach this next level.

To conclude, as illustrated by the studies presented in this thesis, a broad range of
mathematical and computational tools are available to support and inform public
health issues. At one end of the spectrum, theoretical studies help define concepts
and understand mechanisms. At the other end, computational models help to
bridge the theoretical world with observed epidemiological data.
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Mathématiques et Physiques de l’Académie Royale des Sciences, (1766).

[11] D. BEZEMER, A. CORI, O. RATMANN, A. VAN SIGHEM, H. S. HERMANIDES, B. E.
DUTILH, L. GRAS, N. RODRIGUES FARIA, R. VAN DEN HENGEL, A. J. DUITS,
P. REISS, F. DE WOLF, C. FRASER, AND ATHENA OBSERVATIONAL COHORT, Dis-
persion of the HIV-1 Epidemic in Men Who Have Sex with Men in the Netherlands: A
Combined Mathematical Model and Phylogenetic Analysis, PLoS Medicine, 12 (2015),
p. e1001898.

[12] M.-C. BOILY, R. F. BAGGALEY, L. WANG, B. MASSE, R. G. WHITE, R. J. HAYES,
AND M. ALARY, Heterosexual risk of HIV-1 infection per sexual act: systematic review
and meta-analysis of observational studies, The Lancet Infectious Diseases, 9 (2009),
pp. 118–129.

[13] BRANDON L. GUTHRIE, GUY DE BRUYN, AND CAREY FARQUHAR, HIV-1-
Discordant Couples in Sub-Saharan Africa: Explanations and Implications for High Rates
of Discordancy, Current HIV Research, 5 (2007), pp. 416–429.

[14] N. BROUTET, U. FRUTH, C. DEAL, S. L. GOTTLIEB, H. REES, AND O. B. O. P. O.
T. . S. V. T. CONSULTATION, Vaccines against sexually transmitted infections: The way
forward, Vaccine, 32 (2014), pp. 1630–1637.

[15] K. BUCHACZ, P. PATEL, M. TAYLOR, P. R. KERNDT, R. H. BYERS, S. D. HOLM-
BERG, AND J. D. KLAUSNER, Syphilis increases HIV viral load and decreases CD4 cell
counts in HIV-infected patients with new syphilis infections, AIDS (London, England),
18 (2004), pp. 2075–2079.

[16] C. E. CAMERON AND S. A. LUKEHART, Current status of syphilis vaccine development:
Need, challenges, prospects, Vaccine, 32 (2014), pp. 1602–1609.

[17] S. CASSELS, S. CLARK, AND M. MORRIS, Mathematical models for HIV transmission
dynamics: tools for social and behavioral science research, JAIDS Journal of Acquired
Immune Deficiency Syndromes, 47 (2008), p. S34.
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