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SCOPE AND CONTEMTS:

This thesis describes an experimental study of external
houndary lavers formed on a flat rlate model immersed in dilute
homoaeneous polvmer solutions.

The model was subjected to flows of homogeneous aaqueous
polvacrylamide solutions with a free stream velocity of 2.21 feet per
second.

Variations in the drag force with respsct to solution
concentration were assessed from extensive velocity profile data and
direct draa measurements. For the flow conditions a maximum reduction
in total draa of 33 ner cent occurred for a concentration of 50 wopm.
Profile drag, as well as viscous draqg, is apnarently reduced in dilute
nolymer solutions. For the nolvmer used, a critical wall shear stress
of 0.011 1bf/ft? was found below which no reduction in viscous draq

occurs.
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DESCRIPTICH

Numerical constant in the universal
logarithmic velocity profile for
turbulent flow.

Numerica1tconstant in the universal
logarithmic velocity profile for
turbulent flow.

Local coefficient of skin friction

"o

(0U%/2)

Draq force

Prandtl®s mixing length constant
Length of flat plate model

Exponent in shear stress correlation

Revnolds number = (——)
Vv

Average velocity in direction of
mean flow at a point

fveradge velocitvy at edge of boundarv
layer at a plane in the direction of
filow
Free stream velocity
R . _ 172
Friction velocity = (To/p)
Critical friction velocity
1/2
= A, fol /
c

Non-dimensional velocity

= (u/U*)

Distance along plate from leading edage

Critical wave number U:/v
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UNITS
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ft/sec.
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SYMBOL DESCRIPTION UNITS

v Distance normal to pnlate surface ft.
vt Non-dimensional distance = (X%i) ft.
g Momentum thickness
Q- g-]-) -g-]- dy ft.
v Kinematic viscosity of fluid ftz/sec.
L Wall shear stress
u(%%)yzo lbf/ft2
. all shear stress of solvent at some
’s boundarv laver thickness 1bf/ft2
L3 Wall shear stress of polvmer sclution
’ at some boundaryv laver 1bf/ft2
TOC Critical wall shear stress lbf/ft2
; Density of fluid b/ ft
Abbreviations

wnpm weight parts per million weight parts of water



CHAPTER 1

INTRODUCTION

The effect on viscous drag due to the nresence of certain
additives in aqueous solutions has been known for some time. Most
of the information nresently available is concerned with internal
flows, such as nine flow. This nath has been followed mainly for
reasons of convenience. However, recently more emnhasis has been
nlaced on the effects of additives, for example long-chain nolyvmers
on external flows, such as that of Tiquids over a flat plate, or
around blunt or streamlined bodies, as for examnle the case of shin
hulls.

Several investigators have observed, in the laboratory,
reductions in viscous drag of up to 57 nercent hut as yet are
still unahle to determine the exact mechanism by which the drag
is reduced. This nhenomena of drag reduction has bheen observed
for concentrations of nolymer solutions which were sufficiently
Tow (between 10 to 100 weight parts oer million parts of water) so
that the solution for all practical purposes retains the nronerties
of the solvent. This, to some extent, denends on the nolvmer
tvne since some exhihit non-Newtonian characteristics at even
1 wnpm, whereas, others have only slight nrooerty changes at low
concentrations.

At nresent, low concentration polymer solutions are
being used to reduce the drag in the pumping over long distances

of oils, water, and other liquids.



Further, it is honed that, when better analytic or
exnerimental methods are available to nredict the effects of long
chain nolymers on boundary layer flow, polymer solutions will
nrove to be a feasible wav to reduce the drag on submarines or
surface vessels. For merchant vessels this feasibility would
entail a lTowering of the transport costs, whereas for naval craft
it could mean a higher maximum sneed and/or larger cruising
distances.

This thesis is one of a continuing set of investiqations
being conducted in this laboratory into the field of liquid
boundary laver phenomena and presents the results of an experi-
mental study of the boundary layer formed on a flat nlate situated
in a free surface water channel. The flat nlate was subjected to
flows of homogeneous nolvacrylamide solutions with concentrations
from N to 75 pnarts ner million by weiqght.

Velocity profiles were obtained at a large number of
nositions along the nlate in order to determine the effect of
nolvmer additives on the velocity distribution, growth and other
houndary laver parameters, and also to correlate the draa nredicted

using the velocity distribution with direct drag measurements.



CHAPTER 11
LITEPATURE SURVEY:

The use of long-chain no]ymers to reduce the viscous
drag on bodies has been under investigation for the last twenty
vears.

In 1048, Toms {1)* observed that the flow rates in
turbulent nine flow of monochlorbenzene could be qreatly increased
hy dissolving in the monochlorbenzene small accounts of nolymethyl-
methaccylate. He attributed theses results to the wall effects
nut forward by 0Oldrovd (2),who suqgested that in the immediate
neiahhourhood of & solid wall, a nrefarred direction could he
introduced into a normally isotronic fluid and in the case of
these nolymers, an abnormally mobile laminar sublayer might exist
and nroduce an annarent velocity of slin and hence an increase
in the flow rate. Quring his exneriments, Toms found that un
to a 57 nercent reduction in turbulent viscous drag could be
achieved.

Numerous subsequent measurements have confirmed Toms'
discovery and have qgeneralized it to include the neculiar behavior
observed in the turbulent flow of all high molecular weight
nolvmer solutions nast walls.

A thorough theoretical analysis of the turbulent flow
of non-elastic, time independent, power law fluids was given by

Dodge and Metzner (3). They nerformed experiments using Carbonol,

* (Numbers indicate references in reference list).



sodium carboxymethy cellulose (CMC), slurries of attasol and
attanulgite clay which verified the original analysis. It can

be fairly well concluded that the general flow phenomena of the
nseudonlastic, time indenendent, nurely viscous fluids have been
solved. However, in their experiments, Dodge et al. noticed

that the friction factor obtained from the solutions of CMC did
not agree with their theory. They attributed this deviation

to the fact that the CMC possessed viscn-elastic properties while
the other solutions tested were truly viscous liquids.

White (4), in 1962, found from pipe flow experiments
with Guar qum solutions in various concentrations, that drag
reduction occurs only above a certain threshold Reynolds number
which denends on the nipe diameter. Below this critical value
of Reynolds number the fluid exhihits normal Mewtonian behavior.

Flata and Tirosh (5) nut forward another correlation
hased on the results of their drag reduction exneriments using
dilute aqueous auar aum solutions. For various concentrations,
their data, when plotted on a granh of 1/ Cf versus ln(Red Cf),
gave a family of straight lines, and since the slone of such a
straight line for a Mewtonian liquid is sunposed to be inversely
nronortional to Prandtl's mixing lenath constant "k", they
concluded that "k" was no longer a universal constant. Meyer (6)
re-evaluated their work and pointed out that the constant "k"
had not changed and that the variation in the slopes was due to

a thickening of the laminar and buffer layers near the wall.



Hershey (7) exrlained the drag reduction nhenomena by
the concept of relaxation times of the nolymer solutions. When
a Newtonian polymer solution is flowing turbulently, a tvnical
Mewtonian friction factor behavior would be observed, nrovided
the relaxation times of the major nortion of the nolvmer molecules
are small comnared with a time scale characteristic of the flow.
If the latter value was smaller, high frequency eddies would
transform into low frequency eddies bhefore relaxation could
occur. The enerqv dissinated would then he lower and thus cause
turbulence sunpression and drag reduction.

Furthermore, Pruit and Crawford (8) found that for
turbulent flow in nipes, increased molecular weiaht, within any
homolonous nolymer series, increases the draa reducing efficiency
of the nolvmer.

Love (9) conducted an exnerimental investiaation into
the effects of injecting non-Newtonian fluids into the turbulent
houndary laver formed on a flat nlate. The drag on the plate was
ohtained hy computing a momentum balance acrnss a nlane in the
wake, normal tn the free stream flow directinn, usina a velocity
nrofile at that nlane. The ajection of weakly visco-elastic
solutions of a macromolecular nolymer at the leading edge of the
nlate decreased its draq coefficient by as much as 50 percent. It
was found that, for a given ejection rate and free stream velocity,
there was a solution concentration for which the drag coefficient

was a minimum. He conjectured that the relatively sharn loss of



effectiveness for high concentrations may have heen due to
insufficient mixing of the additive into the turbulent boundary
layer.

Love showed that ejection of neutrally bouyant snherical
narticles, annroximately the size of the macromolecules, had no
effect on the draa of the nlate, thus indicating that the draq
reduction is nrobahly associated with the visco-elastic nronerties
of the solutions studied.

Fmerson (17) tested shin models in a towina tank
having a dilute aaueous polymer solution in it. He renorted
suhstantial viscous drag reduction with concentrations between
17 and 100 parts ner millicn.

Dove (11), in 1966, tested a ship model with injection
throuah 99° slots in the sides of tte model and confirmed that
draa reductions can be obtainad when the additive is injected
directly into the boundary layer.

Kowalski (12) tested the effect of injecting additives
on the frictional resistance of a flat plate, and also two shin
models. Polvmer solutions were injected into the boundary lavers
of a tornedo shaned body and a 19 foot motor boat. A drag reduction
of 30 nercent was observed for the former while the latter
exnerienced at 110 percent decrease in dragq.

Meyer (6), in 1966, obtained an eauation which
satisfactorily correlated existing data for the frictional
characteristics of the turbulent flow of a dilute, visco-elastic

non-Newtonian fluid in a pipe. The equation included two parameters



which were characteristic of the visco-elastic fluid, one of which
was strongly denendent on both nolymer solute and concentration
and the other anneared to be constant, and indenendent of the
nolymer solutes which were used for the research recorded in
the report.

Meyer found that the data could be presented in the
form of a universal logarithmic velocity nrofile, the turbulent
nortion of which could be expressed mathematically in the form,

vu*

%— = A log (b;—) + B

which for Hewtonian fluids was given as

T
"

2.303/k = 5.77
and B = 5.5

The effect of non-Newtonian additives was found only to change
the value of B, This lead Meyer to assume that the laminar
sublayer had been made less sensitive to disturbances in the
fluid above it and thus it becomes thicker.

Smallman (13) nerformed exneriments on a disc rotating
in aqueous polymer solutions. He found that drag reduction
caused by increasing concentrations of polymer reaches a maximum,
and reported that for polyacrylamides MRL-159 and MRL-295* this

point is reached when the concentration is between 100 to 200

* (Manufactured by Stein-Hall Limited).



narts per million, and he observed that at these concentrations
even the most precise viscometer (operating in the laminar regime)
fails to indicate any significant change in viscosity as compared
to that for water.

On the basis of his work, Smallman felt that the theory
which best exnlained the drag reduction phenomena was the
Turbulence Sunnression Theory which may be stated as:

“in any flow nattern taking nlace in a fluid

to which has been added certain nolymers in trace

quantities, the flow characteristics of the fluid

will be unchanged in the laminar flow regime, but

the eddies occurring in the turbulent flow reqime

will tend to he sunpressed. The flow in the

turbulent reqgime will therefore tend to dissipate

less enerqy than was the case before the addition

of the nolymers."

Sherman (14) correlated data on drag reduction in a
nipe flow influenced by four tynes of polyethylene oxide and two
tynes of polyacrylamide. He found that the draa reduction could
be nredicted knowing the molecular weight, the molecular structure,
and the concentration of the solution. He also found that, at
a aiven Revnolds number, the draq reducing effect increases
with concentration to a maximum and decreases for higher concentra-
tions. The concentration reaquired for the maximum effect was
nronortional to the nolymer molecular weight. He found that a
generalized curve could be obtained by plotting fractional drag
against the nroduct of concentration and the effective molecular
lenqth to diameter ratio.

Kowalski (15), in a second paner, investigated the

nractical use of so-called non-Newtonian additives in reducing



draq on full size shins with the aim of reducing the quantities
of additives which were nreviously thought necessary. He performed
tests on the effect of the angle of injection, the effect of
nulsing the injection, and on the affect of the polymers on the
microscale of turbulence. The character of the turbulence was
observed to change from a small amnlitude (high wave number) to
larqer amnlitude (low wave number) turbulent velocitv fluctuations,
with the introduction of nolymer.

Kowalski suqaested that the change in turbulent viscous
draq was due to a shift from high freaquency dissinative eddies
to lower frequency nredominately enerqy conservinq eddies and due
to an increase in the viscous sublaver thickness causing a
reduction in velocity gradient at the wall and thereby a lower
shear stress at the boundary. He also noted a nersistence
effect in which the effect of the nolvmer on the flow lasted
a considerable length of time after injection ceased. An
iniection of one second duration followed by a ten second pause
was almost as effective as continuous injection. He hynothesized
that if the boundary is saturated with nolymer, the time reauired
for the nolvmer to be washed off the surface would account for
the nersistence effect and slin may occur which also reduces the
drag. Furthermore, injecting the polymer almost parallel to the
surface was found to be ahout 10 times as effective as injecting
normal to the wall.

On the basis of his research Kowalski felt that by

combining narallel injection and a pulsing technique, 195 pounds
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ner hour of polymer could reduce the drag on a submarine by a
very siagnificant amount.

Goren and Norbury (16) correlatedbinformation, between
1964 and 1967, on the frictional draq, velocity distribution, and
concentration distribution based on Reynolds number and polymer
concentration level for fully developed turbulent flow in a
2 inch diameter nine.

They obtained a maximum draq reduction of 71 percent
at a Reynolds number of 1.5 x ]05 for solutions having a nolymer
concentration of 10 weight narts ner million. For higher concentra-
tions the drag reduction was found to be smaller. The drag reduction
effect occurred only above some "critical" Revnolds number which
was indenendent of concentration. 'They also found that the
nolymer additives influenced the flow, as shown bv altered velocity
nrofiles, only in the neighbourhood of a solid wall.

White (17) nronosed a correlation for flat nlates
based on Meyer's (6) work for nines. U“hite assumed that Meyer's

equation in the form

* 1*
b= e () 4 55 + an (‘t_’?)

(where the subscrint o renresents the Newtonian case) holds for
the boundary layer on a flat plate. When o = 0 the orofile is
that of a Newtonian fluid. From his analysis !thite gives the
interoretation that the local skin friction coefficient on a

flat nlate with nolymer additive is equal to the MNewtonian skin
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friction coefficient evaluated at an effective Peynolds number

R sqiven by,
N ka

" u*
RN = Re (U—o;-)

This same relation was also found to hold for nipe
flow. However, in aonlying this "effective Reynolds number"
concent, external flows hehave differently to internal flows
because of the different manner in which U* varies with the
Reynolds number. For flow in a nine, U* increases with Reynolds
number, so that the nolymer causes a skin friction reduction at
larae Revnolds numbers., On the other hand, for flow over a
flat nlate U* decreases with Rex, since U] remains anproximately
constant, hence the polvmer reduces plate friction only at low
turbulent Reynolds numbers and the effect will not be noticed
ahove some threshold Rex.
Kowalski (18) presented a review of his work in January
1062 and qave the following conclusions on turbulence within
the houndary layer reqion, He stated that: "When a nolymer is
injected 1) the eneray spectra shifts towards lower freauencies,
awav from the dissinative end and towards the conserva-
tive end of the spectrum.
ii) microscale turbulent eddies are supnressed and large
eddies are enhanced. Since small eddies are respnonsible
for conversion of eneray into heat losses, dissipation
of enerqy into heat is reduced.
iii) transnort of turbulent momentum is reduced cutting
down on the eneragy loss from the boundary.
iv) velocity nrofiles become less steen at the
houndary resulting in a lower wall shear stress.”
Latto (19) on further analysis of the work of Shen (20),

also found that the velocity profiles on a flat nlate with nolvmer

e
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injection obey the universal logarithmic profile law in the form,
%;— = A log (X%:) + B

with the effect of the polymer beina to increase the value of R,
thereby anpearing to show an increase in the thickness of the
huffer and/or viscous sublayer. They also concluded that the
injection anale and injection velocity play an important role
in the effectiveness of a given polvmer solution.

Virk et al (21) examined the phenomena of onset of draa
recuction in nine flow and found that there appears to be a
critical wall shear stress below which a polymer solution behaves
essentially as a Mewtonian fluid and drag reduction is not

ohserved. They embodied this findina into the form of a critical

1
cm?

wave number, HC = Hé/v, which they evaluated as 470 and 530
for two different sets of nipe flow data for aqueous solutions of
a nolvacrvlamide with a molecular weiaht of about 2.5 106. It
was found that within any homologous series of a polvmer the
critical wave number varies as the inverse of the sqgare root of
the molecular weight.

White (22) nronosed a method nf determining the critical
wall shear stress by plotting the wall shear stress of a polymer
solution against the wall shear stress for the solvent alone,
where both values are evaluated for equal boUndary layer thick-

nesses. A logarithmic plot of these values results in two regimes

which are both described by a straight line. Relow the critical
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wall shear stress ' ¢, , the wall shear for the polymer solution
is eaual to that of the solvent. Above this critical value the
results may be rdescribed by an eaation of the form,
Top ) (TOS)N
T0¢ T0e
where ' is an expnnent which depends on the nolymer, type of solvent

and concentration.
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CHAPTER II1

e o s e S

EXPERIMENTAL APPARATUS:

1. The Flow System

The flow conditions were set up in a tilting flume
which was nart of a recirculating flow system (Fig., 1 ). A
huilt-in concrete reservoir bheneath floor level served as a
sumn, The maximum canacity of this reservoir is ahout 1900
cuhic feet. A single stage centrifugal numn*, driven hv a
three-phase, a.c. motor’ is used to numn'the water from the
sumn to a constant head tank located about 10 feet ahove the flume.
A mesh screen serves as a filter to stop foreiqn matter from
entering the flume from the head tank. At the entrance to the
channel a honeycombh filter was used to align the flow, and as
far as vossible, reduce the free stream turbulence in the test
section. After discharaging through the flume, the water is
returned to the sump via a drainage channel built into the floor.
Another filter was incorporated into fhis channel to nrevent
debris from entering the sump.

2. The Tilting Flume

The flume itself is 3N feet long with a rectangular
cross-section 12 inches wide and a maximum allowable fluid denth

of 18 inches ( Fig. 2 ). It has a 10 foot convergent section

* (Canada Pumns Ltd. 1400 U.S. gal/min., 1150 r.o.m., 20 ft. head,
10 H.P,

Robbins and Mevers Co. 3¢, 55V, 11A, 1140 r.p.m. 10 H.P,
continuous duty.
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unstream of the flume which receives water from the constant
head tank. The flume is hinged at the upstream end and is
sunported mid way along its length bv an adjustable jack which
allows the flume to be tilted with resnect to horizontal.

The side walls of the channel are made of 1/4 inch
thick qlass to allow visual observation of, and ontical
measurements on the flow in the channel. Two accurately aligned
rai1$ are orovided on top of the side walls for instrumentation
carriages. The floor of the channel, which is solid metal, has
threaded holes at one foot intervals along its centre line for
insertion of measuring probes.

A valve between the head tank and receiving section of
the flume controls the volumetric flow rate into the channel,
while a tail gate at the downstream end of the flume controls
the fluid denth.

3. The Flat Plate Model

A flat plate model (Fia.3 % 4 ) was desianed for this
exneriment which consisted of two main sections, the supporting
structure and the working surfaces.

The sunporting structure was constructed of nlexiqlass
and was susnended from a pair of carriages above the flume. Two
quard nlates were provided, one on each side of the channel, to
which the flat plate model was fastened, and which served to
minimize the effect on the model of the channel side wall boundary

layer (Fig. 5).
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The moving part of the model was constructed of brass
structural members with nlexiglass surfaces. The cross-section
was 6 inches by 3/4 inches and the flat top and bottom surfaces
vere 52 inches in length. A three inch long wedge nose niece
and a 1 1/2 inch wedage tail niece were provided to minimize the
effacts of form drag (Fig. 6 ).

The model was sunnorted in the auard nlates by berylium-
conner Teaf spring stock with the largest moment of area in the
vertical nlane so as to nrovide sunrort for the weiqht of the model
(Fia. 7 ). However the main nurnose of these "snrings" was to
allow movement in the lonqgitudinal direction while acting as
snrings in this direction. A Schaevitz [ngineering Comnany,
limited differential variable transformer (LDVT) was installed
hatween the tail section and the solid sunporting structure to
measurs disnlacements of the model with respect to the sunnort
in the lonaitudinal direction. The combination of this disnlace-
mant transducer and th~ snring effect of the berylium-conner
sunnort system nrovided an absolute method of measuring draq,

At 2 inch intervals alona the centre line of the
hottom of tha nlate 28 nressure tans were drilled which were
connected by vinyl tubina to a nressure sensing annaratus.

The angle of inclination of the nlate could be adjusted
at the noint where the structural memhers were connected to the
travelling carriages. The nlate was normally located about five

inches from the bottom of the channel with its leading edge
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hetween 11 and 15 feet from the beginning of the flume.

4, Auxiliary Instrumentation

Velocitv nrofiles were measured using the hot-film
anemometer techniaue. The velocity sensitive nrobes used were
manufactured by Thermo-Systems Inc., U. S. A. A constant
temnerature anemometer, Disa, Constant Temnerature Anemometer,
model 55AN1, was used as a controlling unit. The output of the
anemometer vas fed into a Honevwell model 630S, digital volt-
meter having a five fiqure numerical readout.

The hot-film prohes were mounted through one of the
threaded holes in the hottom of the channel on a vertical
traversing mechanism which allowed measurements of movement in
the vertical direction of 0.001 inches.

The eneraizing and output readout svstem for the drag
transducer was a Schaevitz model TR-100, Carrier Amnlifier
Indicator. The outnut from this control unit was fed into a
Honeywell Two-Pen Electronic 19 Lab Pecorder,

The tubes from the pressure tannings were fed into a
Scani-VYalve Comn, 48P3 - 453, 48 nort valve. The chosen port
was routed to a Scani-Valve Comn. PDCR4, ¥ 0.2 PSID pressure
transducer. The above mentioned Honeywell 2-nen recorder was
also utilized for port identification. The readout of the
nressure transducer was obtained by a Scani-Valve Comn, POCA3,
P-Ducer NSC-Carrier AMP, and displayed on the previously mentioned

Honeywell digital voltmeter.



CHAPTER IV
EXPERIMENTAL PROCEDURE:

1. System Prenaration

It was initially necessary to comnletely clean the water
circulation system before using it, as any contamination could
affect the results. The water was drained off and then starting
at the highest point all of the walls of the tanks were scrubbed
with a coarse brush and then hosed down. The walls of the channel
were cleaned to remove any accumulated grime. The sump was then
filled with mains water which was circulated through the system
for a short neriod. This water was then drained off to avoid
the nossihility of dirt, which had settled in the mains while
not in use, from affecting the tests. All the surfaces of the
storage tanks and channel were aqgain washed down to insure the
absence of contaminants. Finally the sumn reservoir was filled
anain with untreated mains water.

[f, at any time during the ensuing exnerimental work
it was felt that the fluid nroperties could have been chanaed
due to the nresence of foreiqn matter or degraded nolymers the
above nrocedure was reneated,

?. Solution Prenaration

The experimental work was nerformed using the flow of
a homogeneous aaqueous nolymer solution through the circulating
system. The nolymer used was a non-ionic, high molecular weight

nolyacrylamide sunnlied hy Stein-Hall Limited under the trade
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name Poly Hall MRL-402, and was sunnlied in a fine granular form,

The moisture content of the samnle was determined by
weighing a small quantity nrior and after baking it. The bakina
oneration consisted of nlacing a samnle in a refractory furnace
for two hours at a temnerature of 220 dearees fahrenheit, the
time and temnerature as recommended by tha manufacturer.

Ynowina the base area of the sumn tank, the volume
contained, and therefore the weiaht of water could be assessed
from the denth of the fluid. To this water was added a weight of
noivmer which would, after the effect of moisture content was
determinad, yield a homogeneous solution of desired concentration.
The final concentrations used were 00, 25 and 50 narts of nolvmer
ner million narts of water by weiaht,

It was found that, annarentiv, the most effective method
of dissolvina the nolvmer was to finelv snrinkle the nowder into
the water cascading from the end of the flume as it was heing
recivculated throuah the svstem. This anneared to o2liminate the
finculation effect that was observed when the nolvmer was added
tno a oniescent or even an aerated solvent which was bheina aaitated.

3. Prohe Calibration

The hot-film nrobes used were tyne Mo, 1212-6M general
nurnose nrobes maﬁufactured by Thermo-Systems Inc. Since the Disa
anemometer was not well matched to the nower requirements for the
TSI probes, an overheatina ratio was chosen so that at a maximum
water velocity of three feet per second the anemometer voltage

outnut was approximately 20 volts.
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It was found that variations in the water temnerature
had a nronounced effect on the nrobe characteristics which could
not be comnensated for, due to the fact that the Disa anemometer
had only a three decade resistance variation. This nroblem was
overcome bv installing an auxiliary continuously variable
notentiometer in series with the lowest decade.

The nrohes were calibrated in the working solution by
establishing a velocity in the channel and comnaring the output
of the anemometer with the velocity determined hy a combination
of nitot nrobe and visual observations of the velocity of neutral
density narticles.

For low velocities (less than about 1.5 ft/sec) the
velocity was ohtained by determining the time reauired for
neutrallv bouyant particles to travel a given distance with the
water flow. For higher velocities a nitot nrobe was used to
determine the velocity. For velncities between 1 and 2 feet ner
second, there was close agreement hetween the calibration methods.

It was found that, after a period of use in the homo-
qeneous solution, the hot-film sensor outnut decreased, which was
annarently due to a huild un of polvmer molecules on the nrobe,
However, creating a disturbance upstream in the flow, or brushing
the film with a soft brush appeared to remove the molecules and
the orobe resumed its normal operating characteristic.

4. Drag Transducer Calibration

The draa measurement set up was calibrated while the
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nlate was submerged in quiescent water to negate any houyancy
effect,

The draq measurement system was calibrated by anplying
weights to a fine thread which was nassed over a frictionless
nullev at the tail gate and attached to the rear end of the plate,
and noting the relative displacement. This procedure was employed
before and after any drag measurements were made to ensure
renroducibility of the measurement svstem,

5. Test Procedure

By adjusting the solution flow rate and denth of solution
in the channel, a free stream velocity of 2.21 + 0.01 ft/sec was
achieved in the test section.

The flat nlate model was then located with its leading
edge over the hot-film nrobe which was mounted through the bottom
of the channel and a velocity nrofile traverse was made nernendicular
to the nlate. The model was then moved forward alonqg the rails and
another velocity traverse was made. The plate was moved forward
a total of 34 increments of 1 1/2 inches for each solution
concentration yieldinag data for 35 velocity nrofiles for each set
of flow conditions. ™eanwhile, the output from the disnlacement
transducer was continually observed in order to ensure that no
change had taken nlace in drag, which would have indicated a
change in the effect of tha flow media.

Initiallyv, the nressure distribution alona the nlate

was observed but was found to be smaller than the accuracy of the
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1ssociated measuring eauinment and was therefore neqlected.

Mormallv, the temnerature of the solutions varied
hbotwaen 79°F and 82°F during the tests. A variation of temnerature
inside this ranae had no noticeahle effect on the instrumentation
but if a variation outside this ranae occurred no results were
taken,

Finally, the variation of drag with concentration and
time was determined over a neriod of 3 davs for concentrations of
1, 25, 50 and 75 wpom,

Tnitiallv, the drag with zero concentration was determined
usina untreated mains water. The concentration was then increased
to 25 winom and the draa was recorded over a 24 hour neriod. The
tests were reneated using concentrations of 50 wnom and 75 wnnm,

These concentrations were obtained bv addina more nolymer to the

nrevious solution.
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CHAPTER V

PROCESSING THE EXPERIMENTAL DATA:

This discussion is 1imited to the methods emnloyed to
correlate the raw experimental data into a form which would show
the effects of polymer on boundary layer flow.

For each value of distance x along the flat nlate model
a non-dimensional velocity profile, u/U] versus y, was drawn using
the calibration curve for the hot-film probes and the output voltages
from the anemometer. Typical profiles are shown in Fig. (8, 9, 10)
where the station number corresponds to one of the 35 profiles
taken along the nlate for a given concentration.

Values of u/U], for 35 predetermined values of y, were
punched onto Fortran compatable computer cards using a Benson-

‘Lehner Nscar analogue to digital converter. This converter divides
a preset span, in either coordinate direction, into a thousand
intervals and when the axes of the instrument is nlaced over a
point the coordinates of that point in either or both directions
may be read onte a nunched card. To simplify calculations and
increase accuracy, predetermined values of y were chosen prior to
using the converter.

Using this data, the function (5;—- (%7)2) was evaluated
for the chosen values of y and numerically integrated from %;—= 0

u

to 77— = N.99 ysina a trapezoidal annroximation method to vield the

1
momentum thickness. These determinations were performed on a computor
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for all stations alona the plate, so that the output enabled a plot
of 0 versus x to be drawn. A correlation hetween 8 and x was
obtained in the form of a nolynomial hy makina use of a least
squares curve fitting subroutine on the ‘IBM 7040 computor. Points
which lay sianificantly further than two standard deviations from
the fitted curve were discarded as heing suspect and the remaining
points were fitted with a polynomial. This derived function for 6
is shown in Fiqures (2, 9, 10, 11, 12, and 13).

For a houndary laver with zero pressure gradient and U1
is a constant, we may write the VYon Karman Momentum Intearal

equation in the form

2 de
- = (b A
“o/p "1 dx
To
and since Cg = 5
' pliy /2
1
; _ de
then Cf = 2 0

and therefore the local coefficient of friction may be determined
from the momentum thickness orowth nrofiles for any value of x.

The friction velocity !"* mav he exnressed as

H*2

2 To/O

?,TO
— !
OU]Z X l_.l

2

or * = (Cf)1/2 X U]
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Then, the data for u/U], Y, U1, x and @ were entered,
together with a final computer program which was used to evaluate

the parameters U+ and y* in the Universal Logarithmic Velocity

Profile:
vt = Ayt o+ B
where TR %;
U+ is evaluated from the equation,
u u ]
U—;\.—f--UTXU-'XD—;
*
and Y+ « B2

These logarithmic profiles are shown in Figures (14, 15, 16).

This program was also used to determine the Reynolds
number (Rex), and using the trapezoidal approximation, the frictional
drag of the nlate was evaluated. The drag was calculated from the
expression

o) L 2
D = 5 fo Cf U] dx.
The variation of Cf with Rex for the three concentrations

used is shown in Figure (17 ) while the variation in drag with

polymer concentration is shown in Figure (18 ).
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CHAPTER VI

DISCUSSION OF RESULTS:

It is difficult to compare the results of the experimental
work reported here with that of previous researchers, since at this
embryonic stage of development, very little information is available
on the effects of aqueous polymer solutions on the boundary layer
phenomena in external flows. Most of the published information
on polymer solution flow is general and since in the majority of
cases the narticular conditions under which previous research was
carried out are unavailable, only qualitative comparisons can be
made.

1.  Polymer

Some workers in this field of endeavour have made use of
different types of polymers which cover a large range of molecular
weights and prooerties. This research was performed using a nroly-
acrylamide Polyhall MRL-402 (a non-ionic, high molecular weight
polyacrylamide, supnlied by Stein-Hall Limited), since it combined
the advantages of high molecular weight (of the order of 6 to
7 x 106), relative stability and a comparatively large solubility
in water. This type of polymer was also chosen in consideration
of future research since it is felt that the polyacrylamides are
one of the few tynes of polymer presently available which may be
analysed by gel permiation chromotographic or electron microscopic
techniques and whose properties and molecular distribution may

be reproducible from one batch to another.
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2 Degradation

At the beginning of the research it was feared that
deqradation of the polymer solution may present a definite problem.
Very little is known about degradation of polymers at present but
researchers have felt that any or all of the following factors may
nromote degradation;aging, mechanical shear, or chemical or
hacterial action. There was no reasonably simple method of simulating
the effects of degradation equivalent to the degrading forces in
the flow system. However, it is felt that no appreciable degradation
occurred during each test. One solution was used over a neriod of one
week and the data taken at the end of the week agreed well with the
results taken five days earlier. Since this was the longest period
over which a solution was used before the tanks were cleaned and a
new solution made, it may be safely assumed that degradation was
not an imoortant factor. Also in the tests in which drag readings
were continuously recorded over a 24 hour period, the directly
measured drag did not chance a noticeable amount.

3. Velocity Profiles

The major analysis of this renort is based on the velocity
profiles taken in the boundary layer and therefore, measurement of
the hot-film probe position and anemometer output were of the utmost
importance.

The output of the anemometer was fed to a Honeywell 5
figure display,digital integrating voltmeter which was set to integrate

over a one second period. The variation in this voltage reading was
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observed until the output could be evaluated to the fourth figure.
This output was always greater than ten volts with an uncertainty

of the order of 0.05 volts and this would infer a maximum error of
i'1/2% in the voltage. In converting this voltage to velocity by
using the calibration curve for the probe the maximum error in the
velocity would not exceed 1.5%. There was also difficulty in
determining the position of the hot film sensor. The sensor supports
could be made to just touch the flat olate surface by observing

the mirror image of the probe, which resulted in a small gap between
the sensor element and the plate. This small but finite distance

was estimated using the sensor diameter (0.006 inches) as a comparison
and anpeared to be aporoximately 0.002 inches which meant that the
hot-film centre line was about a minimum of 0.005 inches from the
plate. However, due to the effect of the solid surface at this

close nroximity to the nlate, the velocity determination could not

be ascertained with any accuracv and therefore a large error in the
profile in the viscous sublayer could have been incurred. At larger
distances from the nlate the solid surface was assumed to have a
neqligible effect on the performance of the hot film probe.

Tynical develoning velocity profiles for the three
concentrations 0, 25 and 50 wppm are shown in Figures ( 8, 9, 10).
It is noticed that the profiles for a polymer solution have a
larger boundary layer thickness and a lower velocity gradient at
the wall than for pure water which would suggest a lower skin

friction coefficient.
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It is generally agreed that the constant A in the logarithmic
law equation, U+ = A 1n Y©o+ B,is reasonably universal at a value
of about 2.50. However values for the constant B have been reported
varying between 3.7 and 5.5 for pure water. The value for B obtained
in this research is 3.43 (Fig. 14). For a 25 wnom polymer solution,
the value of B is increased to 4.55, Fig. ( 15).

The variation in the values of B for pure water may reflect
on the water used in the determination as any foreign matter would
tend to change the flow structure. Since a standard pnrocedure has
heen used in this experimental work and the water used is from one
source, it may be assumed that the change in the value of B is due
solely to the effects of the pnolymer on the flow phenomena.

Comparing the universal logarithmic profiles for pure
water and the 25 wnpm aaueous polymer solution, the qualitative
results are as expected. The value of A is approximately 2.50 in
both cases and the increase of the value of B with the addition
of nolymer to the water aopears to indicate an increase in the
thickness of the laminar sublayer. This is in agreement with the
deductions of previous investigators such as Meyer (6), White (17)
and Latto (19). However, when the logarithmic profile for the
50 wppm solution is examined, a marked deviation from what might
be expected occurs, Fig. (16 ). A single curve is no longer
sufficient to describe the profile. It appears that for each value
of x it may be possible to draw a straight line through the data.

From the graph, it is aoparent that the slopes of any of these lines
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are much areater than the slone obtained for untreated water or
the 25 wnom nolvmer solution. It also annears that the further
along the nlate in direction of flow (station 1 is at the leading
edge, 35 at the trailing edge) the larger the value of B for the
50 wnnm aqueous nolvmer solution.

Kowalski (23) observed a similar behavior for high
concentration injected flows. His experiments consisted of ejecting
nolymer solution from the nose niece of a flat plate into the boundary
layer. He exnlained the difference in the profiles as beina the
result of diffusion of the polymer solution into the free siicom.

For the injection of large concentration solutions, the solution
would diffuse into the free stream and thus concentration gradients
would be established both normal and parallel to the main flow.
Therefore, each nrofile would be representative of different concent-
rations and concentration qradients and would not be exnected to

qgive a universal nrofile. The data of Latto (19) shows this same
tendency for high concentration iniected flows.

The data for this research was taken for a homoaeneous
aaueous nolvmer solution and consequentiv, this arqument would not
annear to annly. The nersistance effect which Kowalski !15) nostulated
mav nossibly exnlain some of the results of this report. That is,
if the nolymer was attracted to the nlate surface a larqger concentration
of nolymer mav accumulate near the plate which would lead to a
nolymer concentration gradient near the surface. This attraction
mav nossibly be due to electristatic charges on the flat nlate
model and a nolarizing tenden.v of the polymer molecule. This

electrostatic attraction could well describe the nersistance effect
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reported hy Kowalski.

4.  Momentum Thickness and Drag

The growth in the momentum thickness is shown in Figures
( 8 to 13 ). The momentum thickness for the 25 wprm polymer solution
when compared to that for water is larger for low values of x but
the growth curves cross at some value of x. The momentum thickness for
the 50 wppm solution, however, is always greater than for pure water.
This phenomena was also observed bv Latto (19) in his report on
injected flows. He noticed the tendencv for the momentum thickness
to he larger at low values of x than for pure water and that the greater
the amount of polymer iniected the laraer the momentum thickness.
These momentum arowth profiles for the nolymer solution nev~r crossed
each other but all had a tendency to cross the curve for nure vater
at some larage value of x.

The data for the 25 wpnm solution are not significantly
different, in a statistical sense, from that of water, having hetween
a 10 and 15% chance of the difference hetween the two beina due to
random errors (see Anpendix 11). However, the data for the 50 wppm
solution are found to bhe significantly different from that of water.

Nf more imnortance, however, is the slope of the momentum
thickness nrofile which is directly pronortional to the local
coefficient of drag. The relationship hetween Cf and Rex is shown in
Figure ( 17). It can be seen that the local coefficient of skin
friction for the 25 wppm solution is predominantly Tower than that

for water hut converaes as Rex is increased. This is in agreement
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with the work of others who have noticed that there is a critical
Reynolds number above which no drag reduction is felt.

The Cf curve for the 50 wppm solution is different from what
might be expected; the values for this concentration being
predominantly larger than the case for untreated water. The
measurements for this particular concentration were repeated using
a different type of hot film probe and the results of both runs were
in agreement. It must therefore be assumed that the results indicate
the actual characteristics of the flow. An explanation of this will
be attempted in a later paragraph.

The directly measured total drag as a function of concentration
is shown in Figure (18) and the form of the curve is as expected;
the drag reduces as the concentration of the polymer is increased
until a limit of drag reduction is reached and thereafter the drag
increases above the minimum value, as the amount of polymer in solution
is increased. The drag due to viscous shear, as calculated from the
skin friction curves (Figure 17) is compared to the total drag in the

following table.

CONCENTRAT ION SKIN FRICTION | . DIRECTLY APPARENT PROFILE
(wppm) DRAG MEASURED DRAG
(1bg) TOTAL DRAG (1bg)
(1bg)
0 0.082 0.110 0.028
25 0.083 0.088 0.006
50 0.114 0.072 -0.042

The drag variation with concentration obtained from the velocity
profiles does not show the same behaviour as that obtained by direct
measurement. As the concentration is increased, the viscous drag
calculated from the velocity profile data becomes a larger portion of
the total drag, and at 50 wppm the calculated viscous drag is larger

than the directly measured drag.
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From the ahove, it can be seen that the measured total draq
relationshin appears to he in complete aaqreement with that obtained
hv nrevious researchers. However, the variation of the velocity
nrofiles and their dependent alaebraic parameters, the momentum
thickness, the skin friction coefficient and intearated draa <o not
hehave as wnuld he expected, but no other data are apnarently
available to make comnarisons with.

A11 bodies of finite thickness exnerience eddy sheddina
when suhiected to the flow of a real fluid which results in profile
draa on the hodv. The introduction of nolymer into the fluid
annarently tends to decrease the 1oss of enerav in turbulent ecddies.
Thus, if the enerav lost due to eddy sheddinag is reduced by the
nresence of nolymer in the flow a net reduction in profile draa will
result. This phenomena most likely accounts for the reduction in the
total draq that has heen observed.

B Critical Wall Shear Stress

A logarithmic nlot of wall shear stress for the 25 wpnm
nolvmer solution versus the wall shear stress for the solvent alone,
as nut forward hy Vhite (?2) is shown in Figure (19). It is seen
that the curve has two reaions. Mt low values of wall shear the value
for the nolvmer solution is identical tn the value for the solvent.
Ahove the so-called critical wall shear stress Toes the value of the
shear stress for the polymer solution is Tower than that for the
solvent. The division hetween the two reqions for this sclution was

found to occur at a wall shear stress of Ty = n.nM1M1 1bf/ft2 . For
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shear stresses above Toe» the curve can be fitted with a relationship

of the form,

and for the nolyacrylamide solution of concentration 25 wopm, ™ is
found to have a value of N = 0,0n6 |,

Peferring to Fiqure (17), the value of Cf at which the 0
and 25 wnpm curves cross is N.0N22 which corresponds to a critical
wall shear stress of 0.N1NK 1hf/ft2, or a critical friction velocity
of N.0736 ft/sec. FExpressino this friction velocity in the form of a

1

1 . 3o
wave number, VC = 7870 ?f = 252 g Assumine that the critical

vave numher, within any homolooous polvmer series, varies inversely
as the sauare root of the polvmer molecular weiaht, as pronosed by

Yirk, the eauivalent critical wave number corrected for a molecular

1
cm’®

weight of 2.50 x 106 from 107 has a value of HC = fna This
aarees favourably with the values obtained hy Virk for a
nolvacrvliamide of molecular weight 2.5 x 1ﬂ5, that is, 4797 and
£3n %ﬁ' for two different sets of nipe flow data.

The analysis of this thesis is based on the assumntion
that since the polymers are added to the water in very minute
quantities the behavior of the resultino solution will he essentially
that of the solvent. That is, thermo-physical properties of the
solution are not appreciably different from those of nure water,
and since the mass ratio of polymer to water is of the order of
5 x 10'5, it would anpear that this is a plausible assumntion.

It is known that aqueous polymer solutions can he visco-elastic,
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however the degree of visco-elasticity is somewhat dependent on
the concentration. The degree of divergence from Newtonian fluid
behavior and the criterion for determining the concentration at
which the solution can be considered anpreciably non-Newtonian
are vague. Some nolymers anpear to exhibit visco-elastic effects
in concentrations as low as 1 wopm while other polymers do not
have an annreciable effect on the viscosity of the solution when
dissolved in higher concentrations. Although there is no data at
nresent available on the visco-elastic nronerties or the thermo-
nhysical nroperties of aaueous nolyacrviamide solutions, it is
felt that, in light of the data obtained in this work, changes

in these nronerties may be the kev to the mechanism of drag
reduction.

Since there is no evidence to the contrary, and the
results of this research anpear to be renroducible, the assuii:*ion
that the ohysical oronerties of the solution are not significantly
different from those of the solvent must be at fault. This may exnlain
the annarent contradiction that the viscous drag, calculated from
the velocity nrofile data, for the 50 wppm solution is larger
than the total drag measured directly as well as the deviation
of the log-law nrofiles, from the universal form that has been
observed by other exnerimenters and is also confirmed by the 25
wnpm solution. It is felt that much more research needs to be
carried out on the thermo-nhysical oroperties of aqueous nolvmer

solutions.
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The results of this experimental work anpear tc in‘icate
that much more work needs to be carried out in the area of reducing
draq by using polymers but much promise is given for future anplica-
tions. It seems that, at this stage, it is important that the
microsconic behavior of the boundary layer in polymer solution flows
be examined more thoroughly to gain an insight into the mechanism
of drag reduction. From the experimental data, it would appear
that, even though the nolymer is dissolved in the water in minute
auantities, it may considerably affect some of the thermo-physical
nronerties of the solution. Unfortunately, at the time of the
research there were no simnle methods available for determining
these nroperties.

Since this is apparently the first attemnt at assessinn the
effect of nolymers on external boundary layer nhenomena throuah
extensive velocity nrofile data, a nositive contribution has been
made, Tt has hear shown that there is a critical wall shear stress
which must be exceeded bhefore nolymers have any effect on viscous
draq and is analogous to the onset criterion for pire flow. At present
this criterion can he determined exnerimentally only by the analysis
of extensive data on external f]ows._ A comparison has heern :&'»
between diract total drag measurements and indirect viscous draa
calculations which has inferred that the introduction of polymers
into the flow effects not only the viscous drag but also the profile

draa.



CHAPTER VII

CONCLUSTINNS :

As a summary to the previous discussion, the following
conclusinns may he drawn:

1) Drag reduction was observed as expected. The maximun
draa recduction was of the order of 33%, which occurred for a 57 wppm
concentration of nolyacrylamide with a lenqgth RPeynolds number of
about 1.75 x 106.

2) P critical wall shear stress, analogous to the onset
shear stress in nipe flow work, was ohserved. For the polyacrylamide
of molecular weiaht 107, this critical shear stress was determined to

have a maanitude of 0.011 1bF/ft2. For wall shear stresses helow

aF

this value, the oresence of polymer has no effect on the viscous draq.

3) A critical wave number was determined which had a value
of 252 %5- for the nolyacrvlamide used. Vhen corrected for the
molecular weight effect, this value agreed with the values rr a
nnlyacrylamide determined by Virk (20).

) Profile draqg is apparently reduced when pelymer is
added to external flows due to the reduction of eneray lnsses caused
hy eddy sheddina.

5) The thickness of the viscous sublayer of the boundary
layer is anprarently increased by the addition of nolymer to the flow.

f) The momentum growth profiles for aaueous polymer
solutions form a family of non-intersectina curves, which intercect
the solvent curve at increasino distances along the plate as the

concentration is increased.
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CHAPTER VIII

RECOMMENDATIONS :

One of the most noticeable observations of this experi-
mental work is the lack of available data on the effects of the
controlling variables on the results, for examnle temperature,
nolymer deqradation, contamination, injection techniques,
electrostatic effects, etc. Therefore, before more research of
the nresent nature is carried out, methods of determining the thermo-
nhvsical nroperties of the solution and the effects of the external
variables on the solution should be examined. It would be extremely
useful if simnle methods were available for determining the coricentra-
tion of the nolymer, the absolute viscosity and molecular weight
distribution of a given samnle so that useful correlations could he
made.

If more research is to be carried out, similar to this
work, the author would advise the investigation of different methods
of measuring velocity nrofiles, such as the use of laser anemometers
or at least the use of different smaller hot-film nrobes which
should yield better results in the sublaver. Also, methods of
determining the local viscous shear on the surface of the nlate
would yield data which could be correlated with the skin friction
coefficient calculated from the velocity nrofiles. Finally, means
of attaining higher Reynolds numbers would allow a better inter-

nretation of the data.
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APPENDIX 1

Error Analysis

The error analysis shown here does not attemnt to show the
magnitude of all the errors but attempts to indicate the relative
significance of each of the errors. This is because the calculations
involved tend to be statistical in nature and the errors are
difficult to evaluate.

1. Calibration of Hot-film Probes.

Using the pitot probe at a velocity of about
2'/sec, the manometer reading is about 2.0 £ 0.001 cm difference, and
the anemometer output is about 17.40 1o.05 volts,then, since the

velocity varies as the sauare root of the manometer readina, that is

(v = (2gn)1/?)

. ¢ : 1 ,.00 .
the ner cent error in velocity is 5-(2755) x 100% = 0.025%.

Using the neutrallv bouyant particle calibration

method for low velocities, at 1 foot ner second (V = %%-

Ax is about 18 - 1/12 ft.

U

at is about 18 0.1 second.
The nercentage error in velocity is then 1%.
The anemometer voltage reading at a fluid velocity of about 2.2
feet ner second was about 18.0 t0.05 volts. The largest error would
be encountered at higher velocities, since the velocity varies most

ranidly with voltage in this range of the calibration curve. Taking

into account the error in the calibration curve, the maximum error



that would be exnerienced in the velocity is 1.5%.
2. Momentum Thickness.

From the above analysis it can be seen that the
maximum error in calculating %;’ is about 3%. Because of the way
the momentum thickness varies with position along the nlate it
is difficult to give one analysis which satisfies all orofiles.

It is felt that the maximum error in evaluating the momentum
thickness is of the order of 0.001 inches. In fitting a least
squares curve through the data the error in the resulting curve
is estimated to be reduced to 0.0001 inches which would reoresent
a maximum error of about 10% for low values of x and about 2% for
large values of x.

3. Skin Friction and Drag Reduction.

It is assumed that the error in any parameter
deduced from the momentum thickness profile will have an error
approximately the same as the error in the momentum thickness.
That is, the uncertainty in the local skin friction coefficient
will be about 10% for low values of x and 2% for high values of
x as will be the case for the friction velocity.

The evaluation of the uncertainty in the
calculated total drag is difficult to evaluate since it will involve
a statistical formulation.

The error in the directly measured drag consists
of the uncertainty in the calibration of the displacement transducer

and the error in the instrument reading. This uncertainty is of

the order of 1%.
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4, Universal Logarithmic Velocity Profile.

The errors in the narameters for this plot are
dependent on the errors discussed so far. Since most of the profiles
plotted are for large values of x uncertainties due to errors in
the momentum thickness will be of the order of 2%.

Then the maximum uncertainty in the pnarameter
U* will be 6% while the uncertainty in Y* will be of the order of

3%.
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APPEMNDIX II

Statistical Analysis of Results

This analvsis is based on the difference between the various
data noints for the momentum thickness and the best fit curve for the
pure water data. That is, the results roe nure water are taken as
the narent family to which comparisons are made,.

For the data for nure water the averaae weiaghted residual

is &x 10”10

feet with a standard deviation of 0.000373 feet,

Since the hest fit curves for the momentum thickness for
nure water and hte 25 wppm solution cross near mid-way along the
nlate, the data were analysed in two sections.

For the first section of the curve, the averaae of the
residuals of the data for the 25 wnpm solution is 0.000103 feet.
making the hypothesis that the data for the 25 wppm solution is the
same as for pure water and apnlying Student's "t" test, the value
t = 1.139 is obtained. For this value of t and 17 dearees of freedom,
it is found that there is a 15% pnrobability that the difference
between the data could be due to chance which is generally taken to
mean that the data are not statistically significantly different.

For the second section of the curve, a value of t = 1,59 is
obtained, which for 14 deqrees of freedom vields a 107 orobatility
level which is considered not greatly sianificant.

Performing the same calculations for all the 50 wppm
solution data, the average residual is 0.00108 feet and the value of
t is 15.6. This value of t corresponds to a significance level much

smaller than 0.1% which is interpreted as beina hiahly sianificant.



APPENDIX III

Moisture Content of Polvmer Samnle

The nolvmer used was a Stein-Hall nolvacrvlamide, Polvhall

The method used is as outlined in Chanter IV-2.

UYeight of drv crucihle 23.56195 gm.

Weight of crucihle nlus moist samnle 37.13810 am,

Height of crucible nlus dried samnle 36.85420 qm,
Moistiure content n.2839N am,
Weight of dried nolvmer 3.29225 qm.

Per cent moisture in samnle 3.313 %



APPENDIX IV

Calibration Curves

Calibration curves for the hot-film orobes used are
shown in Fiqure (20). The overheatina ratio for the cvlindrical
nrobe was 0.0057. For the conical orobe the overheating ratio
was N.100,

The calibration for the drag measuring system is shown

in Fiqure (21).
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APPENDIX V
Data Tables

The experimental data for the three concentrations, 0,
25 and 50 wopm are shown in Tables 1, 2 and 3 respectively.

In each table the upner three numbers are the coefficients
of the nolynomial, & = X'Ix2 + X2x + X3. The number on the second
line renresents the number of velocity nrofiles for the pnarticular
concentration. For each nrofile the first auantity is the
corresnonding value for x, the second is the calculated momentum
thickness and the third is the velocity at the edge of the outer
boundary laver. The subsequent 35 numbers (left to right) reoresent
the magnitudes of.the velocity ratios u/U1 for the values of y
qenerated hy the computer program.

Tahles 4, 5 and 6 show the values of the derived parameters
for the concentrations 0, 25 and 50 wppm respectively. The first

column of numbers is the station number along the nlate which

annears in Figures (8, 9, 10, 14, 15, 16).
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