EXTERNAL ROUNDARY LAYERS IN AOUEOUS POLYMER
SOLUTION FLOWS

AN EXPERIMENTAL STIJDY OF THE BOUNDARY LAYER FORMED ON A FLAT PLATE IN A DILUTE HOMOGENEOUS POLYMER SOLUTION

By

J. Mrthur Middleton, B.Enq.
A ThesisSubmitted to the Faculty of Graduate Studiesin Partial Fulfilment of the Requirements
for the Deqree
Master of Enaineering
McMaster UniversityJune 1969

```
MASTER OF ENGINEERING (1969)
(Mechanical Enqineering)
```

McMASTER UNIVERSITY
Hamilton, Ontario

TITLE: An Experimental Study of the Boundary Layer Formed on a Flat Plate in a Dilute Homogeneous Polymer Solution

AITHOR: J. Arthur Middieton, B.Eng. (McMaster University)
SUPERVISOR: Dr. B. Latto
NIMBER OF PAGFS: vii, 84
SCOPE AND CONTENTS:
This thesis describes an experimental study of external houndary layers formed on a flat plate model immersed in dilute homogeneous polymer solutions.

The model was subjecter to flows of homogeneous aqueous nolvacrylamide solutions with a free stream velocity of 2.21 feet per second.

Variations in the drag force with respsct to solution concentration were assessed from extensive velocity profile data and direct drad measurements. For the flow conditions a maximum reduction in total drac of 33 ner cent occurred for a concentration of 50 wom. Profile drag, as well as viscous draq, is annarently reduced in dilute nolvmer solutions. For the nolymer used, a critical wall shear stress of $0.01116 \mathrm{f} / \mathrm{ft}^{2}$. was found below which no reduction in viscous draa occurs.

ACKNOWLEDGEMENTS

The author wishes to thank Dr. B. Latto, under whose quidance this research was carried out, for his understanding, encouragement and assistance during the course of this program.

Thanks are also extended to Mr. T. Kowalski whose examnle and advice have been invaluable to the author.

The author would also like to express his gratitude to Mr. P. Zachar for his assistance in computations.

Polymer samples, sunplied by Stein-Hall Limited of
Westhill, Ontario, free of charge, are gratefully acknowledged.
This research was supported financially by the Defence Research Board of Canada, under grant number, 9550-25.

TABLE OF CONTENTS

TEXT PAGE
I INTRODUCTION 1
II LITERATURE SURVEY 3
III EXPFRIMENTAL APPARATUS 14

1. The flow System 74
2. The Tilting Flume 14
3. The Flat Plate Model 15
4. Auxiliary Instrumentation 17
IV EXPERIMENTAL PROCEDURE 18
5. System Preparation 18
6. Solution Prenaration 18
7. Probe Calibration 19
8. Drag Transducer Calibration 20
9. Test Procedure 21
V PROCESSING THE EXPERIMENTAL DATA 23
VI dISCUSSION OF RESULTS 26
10. Polymer 25
11. Degradation 27
12. Velocity Profiles 27
13. Momentum Thickness and Dran 31
14. Critical Wall Shear Stress 33

Table of Contents Cont'd

TEXT PAGE
VII CONCLUSIONS 37
VIII RECOMMENDATIONS 38
REFERENCES 39
FIGIIRES 41
APPENOIX
Error Analysis 61
APPENDIX II
Statistical Analvsis of Results 64
APPENIIX III
Moisture Content of Polymer Samnle 65
ADPFNDIX IV
Calibration Curves 66
APPENDIX Y
nata Tables 69

A

U
k
L.

N
Rex
u
U_{1}
U_{∞}
U*
U_{C}^{*} u^{+}
x
${ }^{W} \mathrm{C}$

Numerical constant in the universal logarithmic velocity profile for turbulent flow.

Numerical constant in the universal logarithmic velocity profile for turbulent flow.

Local coefficient of skin friction

$$
=\left(\frac{T_{0}}{\left(o u^{2} / 2\right)}\right)
$$

Drag force
Prandtl's mixing length constant
Length of flat plate model
Exponent in shear stress correlation Reynolds number $=\left(\frac{x U 1}{v}\right)$

Average velocity in direction of mean flow at a point

Average velocity at edge of boundary layer at a plane in the direction of flow

Free stream velocity
ft/sec.
Friction velocity $=\left(\tau_{0} / \rho\right)^{1 / 2}$
Critical friction velocity

$$
=\left(\tau_{o_{C}} / \rho\right)^{1 / 2}
$$

$f t / s e c$.
Non-dimensional velocity

$$
=\left(u / U^{*}\right)
$$

Distance along plate from leading edge ft.
Critical wave number $\quad U_{c}^{*} / v$
$1 / f t$.

y	Distance normal to plate surface	Non-dimensional distance $=\left(\frac{y U^{*}}{v}\right)$

Abbreviations

CHAPTER I

I NTRODUCTION:

The effect on viscous drag due to the presence of certain additives in aqueous solutions has been known for some time. Most of the information oresently available is concerned with internal flows, such as bine flow. This nath has been followed mainly for reasons of convenience. However, recently more emphasis has been nlaced on the effects of additives, for examnle long-chain nolyners on external flows, such as that of liquids over a flat plate, or around blunt or streamlined bodies, as for example the case of shin hulls.

Several investigators have observed, in the laboratory, reductions in viscous drag of up to 50 percent but as yet are still unable to determine the exact mechanism by which the drag is reduced. This phenomena of drag reduction has been observed for concentrations of poiymer solutions which were sufficiently low (between 10 to 100 weight parts ner million parts of water) so that the solution for all practical purnoses retains the pronerties of the solvent. This, to some extent, denends on the nolvmer tyne since some exhibit non-Newtonian characteristics at even 1 wppm, whereas, others have only slight pronerty changes at low concentrations.

At present, low concentration polymer solutions are being used to reduce the drag in the pumping over long distances of oils, water, and other liquids.

Further, it is honed that, when better analytic or exnerimental methods are available to predict the effects of long chain polymers on boundary layer flow, nolymer solutions will nrove to be a feasible way to reduce the drag on submarines or surface vessels. For merchant vessels this feasibility would entail a lowering of the transport costs, whereas for naval craft it could mean a higher maximum speed and/or larger cruising distances.

This thesis is one of a continuing set of investigations being conducted in this laboratory into the field of liauid boundary layer phenomena and presents the results of an experimental study of the boundary layer formed on a flat nlate situated in a free surface water channel. The flat nlate was subjected to flows of homogeneous nolvacrylamide solutions with concentrations from n to 75 narts ner million by weight.

Velocity profiles were obtained at a large number of nositions alona the nlate in order to determine the effect of nolymer additives on the velocity distribution, growth and other houndary layer narameters, and also to correlate the drag predicted using the velocity distribution with direct draq measurements.

CHAPTER I I

LITERATURE SURVEY:

The use of long-chain nolymers to reduce the viscous drag on bodies has been under investigation for the last twenty vears.

In 1948, Toms (1)* ohserved that the flow rates in turbulent nine flow of monochlorbenzene could be qreatly increased hy dissolving in the monochlorbenzene small accounts of nolymethylmethaccylate. He attributed these results to the wall effects nut forvard by 07drovd (2), who suqqested that in the immediate neinhbourhood of a solid wall, a preferred direction could be introduced into a normallv isotronic fluid and in the case of these nolymers, an abnormally mobile laminar sublayer might exist and nroduce an annarent velocity of slin and hence an increase in the flow rate. During his exneriments, Toms found that un to a 5 ? nercent reduction in turbulent viscous drag could be achieved.

Numerous subsequent measurements have confirmed Toms' discovery and have generalized it to include the neculiar behavior observer in the turbulent flow of all high molecular weight nolvmer solutions past walls.

A thorough theoretical analysis of the turbulent flow of non-elastic, time indenendent, power law fluids was given by Dodge and Metzner (3). They nerformed experiments using Carbonol,

[^0]sodium carboxymethy cellulose (CMC), slurries of attasol and attanulgite clay which verified the original analysis. It can be fairly well concluded that the general flow phenomena of the nseudonlastic, time indenendent, nurely viscous fluids have been solved. However, in their experiments, Dodqe et al. noticed that the friction factor obtained from the solutions of CMC did not agree with their theory. They attributed this deviation to the fact that the CMC nossessed visco-elastic properties while the other solutions tested were truly viscous liquids.

White (4), in 1962, found from nine flow exneriments with Guar qum solutions in various concentrations, that drag reduction occurs only above a certain threshold Reynolds number which devends on the pipe diameter. Below this critical value of Reynolds number the fluid exhibits normal Newtonian behavior.

Elata and Tirosh (5) nut forward another correlation based on the results of their drag reduction experiments using dilute aqueous quar qum solutions. For various concentrations, their data, when plotted on a granh of $1 / C_{f}$ versus $\ln \left(R e_{d} C_{f}\right)$, qave a family of straight lines, and since the slone of such a straight line for a Newtonian liquid is sunposed to be inversely nronortional to Prandtl's mixing lenqth constant " k ", they concluded that " k " was no longer a universal constant. Meyer (6) re-evaluated their work and pointed out that the constant " k " had not changed and that the variation in the slopes was due to a thickening of the laminar and buffer layers near the wall.

Hershey (7) explained the drag reduction nhenomena by the concent of relaxation times of the nolymer solutions. When a Newtonian nolvmer solution is flowing turbulently, a typical Newtonian friction factor behavior would be observed, nrovided the relaxation times of the major nortion of the nolymer molecules are small comnared with a time scale characteristic of the flow. If the latter value was smaller, high frequency eddies would transform into low frequency eddies before relaxation could occur. The energv dissinated would then be lower and thus cause turbulence suppression and drag reduction.

Furthermore, Pruit and Crawford (8) found that for turbulent flow in nines, increased molecular weight, within any homoloqous nolymer series, increases the drag reducing efficiency of the nolymer.

Love (9) conducted an exnerimental investigation into the effects of iniecting non-Newtonian fluids into the turbulent houndary layer formed on a flat nlate. The drag on the plate was obtained by comnuting a momentum balance across a nlane in the make, normal to the free stream flow direction, using a velocity nrofile at that nlane. The ejection of weakly visco-elastic solutions of a macromolecular nolymer at the leading edge of the nlate decreased its drag coefficient by as much as 50 nercent. It was found that, for a given ejection rate and free stream velocity, there was a solution concentration for which the drag coefficient was a minimum. He conjectured that the relatively shard loss of
effectiveness for high concentrations may have heen due to insufficient mixing of the additive into the turbulent boundary layer.

Love showed that ejection of neutrally bouyant snherical narticles, anoroximately the size of the macromolecules, had no effect on the drap of the plate, thus indicating that the draq reduction is nrobahlv associated with the visco-elastic pronerties of the solutions studied.

Emerson (1n) tested shin models in a towing tank. having a dilute aqueous nolymer solution in it. He renorted suhstantial viscous drag reduction with concentrations between In and 100 parts ner million.
nove (11), in 1965, tested a ship model with injection through 90° slots in the sides of the model and confirmed that dran reductions can be obtained when the additive is injected directly into the boundary layer.

Kovalski (12) tested the effect of injecting additives on the frictional resistance of a flat plate, and also two shin models. Polymer solutions were injected into the boundary layers of a tornedo shaned body and a 19 foot motor boat. A drag reduction of 30 nercent was observed for the former while the latter exnerienced at 17 nercent decrease in drag.

Meyer (6), in 1966, obtained an equation which satisfactorily correlated existing data for the frictional characteristics of the turbulent flow of a dilute, visco-elastic non-Newtonian fluid in a pipe. The equation included two parameters
which were characteristic of the visco-elastic fluid, one of which was strongly denendent on both nolymer solute and concentration and the other anpeared to be constant, and independent of the nolymer solutes which were used for the research recorded in the report.

Meyer found that the data could be presented in the form of a universal logarithmic velocity profile, the turbulent nortion of which could be expressed mathematically in the form,

$$
\frac{u}{\|^{\star}}=A \log \left(\frac{v\left(\|^{*}\right.}{v}\right)+B
$$

which for Hewtonian fluids was given as

$$
\begin{aligned}
A & =2.303 / k=5.77 \\
\text { and } \quad B & =5.5
\end{aligned}
$$

The effect of non-Newtonian additives was found only to change the value of B. This lead Meyer to assume that the laminar sublayer had been made less sensitive to disturbances in the fluid above it and thus it becomes thicker.

Sniallman (13) nerformed exneriments on a disc rotating in aqueous polymer solutions. He found that drag reduction caused by increasing concentrations of polymer reaches a maximum, and reported that for polyacrylamides MRL-159 and MRL-295* this point is reached when the concentration is between 100 to 200

[^1]narts per million, and he observed that at these concentrations even the most precise viscometer (onerating in the laminar regime) fails to indicate any significant change in viscosity as compared to that for water.

On the basis of his work, Smallman felt that the theory which best exnlained the drag reduction phenomena was the Turbulence Sunpression Theory which may be stated as:
"in any flow pattern taking nlace in a fluid to which has been added certain nolymers in trace quantities, the flow characteristics of the fluid will be unchanged in the laminar flow regime, but the eddies occurring in the turbulent flow regime will tend to be sunpressed. The flow in the turbulent regime will therefore tend to dissipate less energy than was the case before the addition of the nolymers."

Sherman (14) correlated data on drag reduction in a nipe flow influenced by four tynes of polyethylene oxide and two tynes of polyacrylamide. He found that the draa reduction could be predicted knowing the molecular weight, the molecular structure, and the concentration of the solution. He also found that, at a given Revnolds number, the drag reducing effect increases with concentration to a maximum and decreases for higher concentrations. The concentration required for the maximum effect was nronortional to the nolymer molecular weight. He found that a generalized curve could be obtained by plotting fractional drag aqainst the nroduct of concentration and the effective molecular length to diameter ratio.

Kowalski (15), in a second naner, investigated the nractical use of so-called non-Newtonian additives in reducing
draq on full size shins with the aim of reducing the quantities of additives which were nreviously thought necessary. He nerformed tests on the effect of the angle of injection, the effect of nulsing the injection, and on the effect of the nolymers on the microscale of turbulence. The character of the turbulence was observed to change from a small amplitude (high wave number) to larger amnlitude (low wave number) turbulent velocity fluctuations, with the introduction of nolymer.

Kowalski sugqested that the change in turbulent viscous drag was due to a shift from high freauency dissinative eddies to lower frequency oredominately energy conserving eddies and due to an increase in the viscous sublayer thickness causing a reduction in velocity gradient at the wall and thereby a lower shear stress at the boundary. He also noted a nersistence effect in which the effect of the nolvmer on the flow lasted a considerable length of time after injection ceased. An injection of one second duration followed by a ten second pause was almost as effective as continuous injection. He hynothesized that if the boundary is saturated with nolymer, the time required for the nolymer to he washed off the surface would account for the nersistence effect and slin may occur which also reduces the draq. Furthermore, injecting the polymer almost parallel to the surface was found to be about 10 times as effective as injecting normal to the wall.

On the basis of his research Kowalski felt that by combining narallel injection and a nulsing technique, 195 pounds
ner hour of nolymer could reduce the drag on a submarine by a very significant amount.

Goren and Norbury (16) correlated information, between 1964 and 1967, on the frictional drag, velocity distribution, and concentration distribution based on Reynolds number and polymer concentration level for fully developed turbulent flow in a 2 inch diameter nine.

They obtained a maximum drag reduction of 71 percent at a Reynolds number of 1.5×10^{5} for solutions having a nolymer concentration of 10 weight parts ner million. For higher concentrations the drag reduction was found to be smaller. The drag reduction effect occurred only above some "critical" Revnolds number which was indenendent of concentration. They also found that the nolymer additives influenced the flow, as shown by altered velocity nrofiles, only in the neighbourhood of a solid wall.

White (17) pronosed a correlation for flat plates hased on Meyer's (6) work for nines. White assumed that Meyer's equation in the form

$$
\frac{u}{U *}=\frac{1}{k} \ln \left(\frac{v U^{*}}{v}\right)+5.5+\alpha \ln \left(\frac{U *}{U_{0}^{*}}\right)
$$

(where the subscrint o represents the Newtonian case) holds for the boundary layer on a flat plate. When $\alpha=0$ the profile is that of a Newtonian fluid. From his analysis Uhite gives the interoretation that the local skin friction coefficient on a flat plate with nolymer additive is equal to the Newtonian skin
friction coefficient evaluated at an effective Peynolds number R_{N} given by,

$$
R_{N}=\operatorname{Re}\left(\frac{U^{*}}{U_{0}^{*}}\right)^{k \alpha}
$$

This same relation was also found to hold for nipe flow. However, in annlying this "effective Reynolds number" concent, external flows hehave differently to internal flows hecause of the different manner in which U^{*} varies with the Reynolds number. For flow in a nine, U^{*} increases with Reynolds number, so that the nolymer causes a skin friction reduction at large Revnolds numbers. On the other hand, for flow over a flat nlate U^{*} decreases with Re_{x}, since U_{1} remains annroximately constant, hence the polymer reduces plate friction only at low turhulent Reynolds numbers and the effect will not be noticed ahove some threshold Re ${ }_{x}$.

Kowalski (18) presented a review of his work in lanuary
1069 and qave the following conclusions on turbulence within
the boundary layer region. He stated that; "When a nolymer is
injected i) the eneray spectra shifts towards lower freauencies, away from the dissinative end and towards the conservative end of the snectrum.
ii) microscale turbulent eddies are sunnressed and large eddies are enhanced. Since small eddies are responsible for conversion of energy into heat losses, dissipation of energy into heat is reduced.
iii) transnort of turbulent momentum is reduced cutting down on the energy loss from the boundary.
iv) velocity nrofiles become less steen at the boundary resulting in a lower wall shear stress."

Latto (19) on further analysis of the work of Shen (20), also found that the velocity profiles on a flat nlate with nolvmer
injection obey the universal logarithmic profile law in the form,

$$
\frac{u}{U^{\star}}=A \log \left(\frac{y U *}{v}\right)+B
$$

with the effect of the polymer beina to increase the value of B, thereby appearing to show an increase in the thickness of the buffer and/or viscous suhlayer. They also concluded that the iniection anale and injection velocity play an important role in the effectiveness of a given polymer solution.

Virk et al (21) examined the phenomena of onset of drac reduction in nine flow and found that there appears to be a critical wall shear stress below which a polymer solution behaves essentially as a Newtonian fluid and drad reduction is not ohserved. They embodied this finding into the form of a critical wave number, $V_{c}=\| \hbar / \nu$, which they evaluated as 470 and $530-\frac{1}{\mathrm{~cm}}$, for two different sets of nipe flow data for aqueous solutions of a nolvacrylamide with a molecular weioht of about $2.5 \quad 10^{6}$. It was found that within any homologous series of a polymer the critical wave number varies as the inverse of the sqare root of the molecular weight.

White (22) nronosed a method of determining the critical wall shear stress by plotting the wall shear stress of a polymer solution against the wall shear stress for the solvent alone, where both values are evaluated for equal boundary layer thicknesses. A logarithmic plot of these values results in two regimes which are both described by a straight line. Relow the critical
wall shear stress τ_{0}, the wall shear for the polymer solution is equal to that of the solvent. Above this critical value the results may be described by an eqation of the form,

$$
\frac{{ }^{\tau_{0}}{ }_{D}}{{ }^{{ }^{{ }_{0}}} C}=\left(\frac{{ }^{\tau_{0}} S}{{ }^{\tau_{0}} \mathrm{C}}\right)^{N}
$$

where \because is an exponent which depends on the nolymer, type of solvent and concentration.

CHAPTER III

EXPEPIMENTAL APPARATUS:

1. The Flow System

The flow conditions were set up in a tilting flume which was part of a recirculating flow system (Fig. 1). A huilt-in concrete reservoir beneath floor level served as a sumn. The maximum canacity of this reservoir is ahout 1900 cubic feet. A single stage centrifugal numn*, driven by a three-nhase, a.c. motor ${ }^{+}$is used to oump the water from the sumn to a constant head tank located about 10 feet above the flume. A mesh screen serves as a filter to stop foreign matter from entering the flume from the head tank. At the entrance to the channel a honeycomb filter was used to align the flow, and as far as nossible, reduce the free stream turbulence in the test section. After discharging through the flume, the water is returned to the sump via a drainage channel built into the floor. Another filter was incorporated into this channel to prevent debris from entering the sump.
2. The Tilting Flume

The flume itself is 30 feet long with a rectangular cross-section 12 inches wide and a maximum allowable fluid denth of 18 inches (Fig. 2). It has a 10 foot convergent section

[^2]unstream of the flume which receives water from the constant head tank. The flume is hinged at the unstream end and is sunported mid way along its length by an adjustable jack which allows the flume to be tilted with resnect to horizontal.

The side walls of the channel are made of $1 / 4$ inch thick glass to allow visual observation of, and ontical measurements on the flow in the channel. Two accurately aligned rails are nrovided on top of the side walls for instrumentation carriages. The floor of the channel, which is solid metal, has threaded holes at one foot intervals along its centre line for insertion of measuring probes.

A vaive between the head tank and receiving section of the flume controls the volumetric flow rate into the channel, while a tail gate at the downstream end of the flume controls the fluid derth.

3. The Flat Plate Model

A flat plate model (Fiq. 3 \& 4) was desioned for this exneriment which consisted of two main sections, the sunporting structure and the working surfaces.

The sunporting structure was constructed of nlexiglass and was suspended from a pair of carriages above the flume. Two guard nlates were nrovided, one on each side of the channel, to which the flat plate model was fastened, and which served to minimize the effect on the model of the channel side wall boundary layer (Fig. 5).

The moving part of the model was constructed of brass structural members with nlexiglass surfaces. The cross-section was 6 inches by $3 / 4$ inches and the flat ton and bottom surfaces were 52 inches in length. A three inch long wedge nose niece and a 1 1/2 inch wedqe tail niece were provided to minimize the offects nf form drag (Fiq. 6).

The model was sunnorted in the quard nlates by beryliumconner leaf spring stock with the largest moment of area in the vertical nlane so as to nrovide sunport for the weight of the model (Fig. 7). However the main nurnose of these "snrings" was to allow movement in the longitudinal direction while acting as snrings in this direction. A Schaevitz Engineering Comnany, limited differential variable transformer (LDVT) was installed between the tail section and the solid sunporting structure to measure disnlacoments of the model with resnect to the sunnort in the longitudinal direction. The combination of this disnlacement transducer and the snring effect of the berylium-conner sunnort system nrovided an absolute nethod of measuring drac. At 2 inch intervals along the centre line of the nottom of the nlate 28 nressure tans were drilled which were connected by vinyl tubing to a nressure sensing annaratus.

The angle of inclination of the nlate could be adjusted at the noint where the structural members were connected to the travelling carriages. The Dlate was normally located about five inches from the bottom of the channel with its leading edge
between 11 and 15 feet from the beginning of the flume.

4. Auxiliary Instrumentation

Velocity nrofiles were measured using the hot-film anemometer techniaue. The velocity sensitive nrobes used were manufactured by Thermo-Systems Inc., U. S. A. A constant temnerature anemometer, Disa, Constant Temnerature Anemometer, model 55A01, was used as a controlling unit. The outnut of the anemometer was fed into a Honewwell model 630S, digital voltmeter having a five figure numerical readout.

The hot-film prohes were mounted through one of the threaded holes in the bottom of the channel on a vertical traversing mechanism which allowed measurements of movement in the vertical direction of 0.001 inches.

The eneraizing and output readout system for the drag transducer was a Schaevitz model TR-100, Carrier Amnlifier Indicator. The outnut from this control unit was fed into a Honeywell Two-Pen Electronic 19 Lab Pecorder.

The tubes from the pressure tanpings were fed into a Scani-Valve Comn. $48 P_{3}-453,48$ nort valve. The chosen port was routed to a Scani-Valve ComD. PDCR $4, \pm 0.2$ PSID pressure transducer. The above mentioned Honeywell 2-nen recorder was also utilized for port identification. The readout of the nressure transducer was obtained by a Scani-Valve Comn. POCA3, P-Ducer OSC-Carrier AMP, and displayed on the previously mentioned Honeywell digital voltmeter.

CHAPTER IV

EXPERIMENTAL PROCEDURE:

1. System Prenaration

It was initially necessary to comnletely clean the water circulation system before using it, as any contamination could affect the results. The water was drained off and then starting at the highest noint all of the walls of the tanks were scrubbed with a coarse brush and then hosed down. The walls of the channel were cleaned to remove any accumulated grime. The sumn was then filled with mains water which was circulated through the system for a short neriod. This water was then drained off to avoid the nossibility of dirt, which had settled in the mains while not in use, from affecting the tests. All the surfaces of the storage tanks and channel were again washed down to insure the absence of contaminants. Finally the sumn reservoir was filled anain with untreated mains water.

If, at any time during the ensuing experimental work it was felt that the fluid nroperties could have been changed due to the nresence of foreign matter or degraded nolymers the above nrocedure was reneated.

2. Solution Prenaration

The exnerimental work was performed using the flow of a homogeneous aqueous nolymer solution through the circulating system. The nolymer used was a non-ionic, high molecular weight nolyacrylamide sunnlied by Stein-Hall Limited under the trade
name Poly Hall MRL-402, and was sunnlied in a fine oranular form. The moisture content of the samnle was determined by weighing a small quantity orior and after baking it. The baking oneration consisted of olacing a samnle in a refractory furnace for two hours at a temnerature of 220 degrees fahrenheit, the time and temnerature as recommended by the manufacturer.

> Knowing the base area of the sumn tank, the volume contained, and therefore the weiaht of water could be assessed from the denth of the fluid. To this water was added a weight of nolvmer which would, after the effect of moisture content was determined, yield a homngeneous solution of desired concentration. The final concentrations used were 0, 25 and 50 narts of nolymer ner million narts of water fy wight.

It was found that, annarently, the most effective method of dissolving the nolymer was to finely snrinkle the nowder into the wator cascading from the end of the flume as it was being recirculated through the svstem. This anneared to eliminate the fioculation effect that was observed when the nolvmer was added to a oulescent or even an aerated solvent which was being aqitated. 3. Probe Calibration

The hot-film nrobes used were tyne :\%. 1212-60w general nurnose probes manufactured by Thermo-Systems Inc. Since the Disa anemometer mas not well matched to the nower requirements for the TSI nrobes, an overheating ratio was chosen so that at a maximum water velocity of three feet per second the anemometer voltage outnut was approximately 20 volts.

It was found that variations in the water temnerature had a nronounced effect on the nrobe characteristics which could not be comnensated for, due to the fact that the Disa anemometer had only a three decade resistance variation. This nroblem was overcome by installing an auxiliary continuously variable notentiometer in series with the lowest decade.

The probes were calibrated in the working solution by establishing a velocity in the channel and comnaring the output of the anemometer with the velocity determined by a combination of nitot nrobe and visual observations of the velocity of neutral density narticles.

For low velocities (less than about $1.5 \mathrm{ft} / \mathrm{sec}$) the velocity was obtained by determining the time required for neutrallv houyant particles to travel a given distance with the water flow. For higher velocities a nitot probe was used to determine the velocity. For velocities between 1 and 2 feet ner second, there was close agreement between the calibration methods.

It was found that, after a neriod of use in the homogeneous solution, the hot-film sensor outnut decreased, which was annarently due to a build uo of polymer molecules on the probe. However, creating a disturbance unstream in the flow, or brushing the film with a soft brush appeared to remove the molecules and the probe resumed its normal operating characteristic.
4. Drag Transducer Calibration

The drag measurement set up was calibrated while the

Dlate was submerged in quiescent water to negate any houyancy effect.

The draq measurement system was calibrated by anplying weights to a fine thread which was nassed over a frictionless nullev at the tail gate and attached to the rear end of the plate, and noting the relative displacement. This nrocedure was employed before and after any drag measurements were made to ensure renroducibility of the measurement system.

5. Test Procedure

By adjusting the solution flow rate and denth of solution in the channel, a free stream velocity of $2.21 \pm 0.01 \mathrm{ft} / \mathrm{sec}$ was achieved in the test section.

The flat plate model was then located with its leading edge over the hot-film robe which was mounted through the bottom of the channel and a velocity nrofile traverse was made nernendicular to the nlate. The model was then moved forward along the rails and another velocitv traverse was made. The plate was moved forward a total of 34 increments of $11 / 2$ inches for each solution concentration yielding data for 35 velocity orofiles for each set of flow conditions. Meanhile, the outnut from the disnlacement transducer was continually observed in order to ensure that no change had taken nlace in drag, which would have indicated a change in the effect of the flow media.

Initially, the nressure distribution along the plate was observed but was found to be smaller than the accuracy of the
associated measuring equinment and was therefore neglected.
Normally, the temnerature of the solutions varied
retmeen $70^{\circ} \mathrm{F}$ and $82^{\circ} \mathrm{F}$ during the tests. A variation of temnerature inside this range had no noticeable effect on the instrumentation but if a variation outside this range occurred no results were taken.

Finally, the variation of drag with concentration and time was dotemined over a neriod of 3 days for concentrations of 7, 25, 50 and 75 wpmm.

Initially, the draq with zero concentration was detemined using untreated mains water. The concentration was then increased to 25 winn and the drag was recorded over a 24 hour neriod. The tests were reneated using concentrations of 50 wnom and 75 wnom. These concentrations were obtained by addina more nolymer to the nrevious solution.

CHAPTER V

PROCESSING THE EXPERIMENTAL DATA:

This discussion is limited to the methods employed to correlate the raw experimental data into a form which would show the effects of nolymer on boundary layer flow.

For each value of distance x along the flat plate model a non-dimensional velocity profile, u / U_{1} versus y, was drawn using the calibration curve for the hot-film probes and the output voltages from the anemometer. Typical profiles are shown in Fig. (8, 9, 10) where the station number corresponds to one of the 35 profiles taken along the plate for a given concentration.

Values of U / U_{7}, for 35 predetermined values of y, were Dunched onto Fortran compatable computer cards using a BensonLehner Oscar analogue to digital converter. This converter divides a preset span, in either coordinate direction, into a thousand intervals and when the axes of the instrument is nlaced over a noint the coordinates of that point in either or both directions may be read onto a nunched card. To simplify calculations and increase accuracy, predetemined values of y were chosen prior to using the converter.

Using this data, the function $\left(\frac{u}{U_{1}}-\left(\frac{u}{U_{1}}\right)^{2}\right)$ was evaluated for the chosen values of y and numerically integrated from $\frac{u}{11}=0$ to $\frac{u}{1_{1}}=n .99$ usina a trapezoidal annroximation method to yield the momentum thickness. These determinations were performed on a computor
for all stations alone the plate, so that the output enabled a plot of θ versus x to be drawn. A correlation between θ and x was obtainer in the form of a nolynomial by making use of a least squares curve fitting subroutine on the IBM 7040 computer. Points Which lay significantly further than two standard deviations from the fitted curve were discarded as being suspect and the remaining points were fitted with a polynomial. This derived function for θ is shown in Figures $(3,9,10,11,12$, and 13).

For a boundary layer with zero pressure gradient and U_{1} is a constant, we may write the Yon Karman Momentum Integral equation in the form
and since

$$
\begin{aligned}
& \tau_{0} / p=U_{T}^{2} \frac{d \theta}{d x} \\
& c_{f}=\frac{\tau_{0}}{0 U_{1}^{2} / 2}
\end{aligned}
$$

then

$$
r_{f}=2 \frac{d \theta}{d x}
$$

and therefore the local coefficient of friction may be determined from the momentum thickness growth nrofiles for any value of x.

The friction velocity !!* may he expressed as

$$
\begin{aligned}
\| *^{2} & =2 \tau_{0} / \rho \\
& =\frac{2 \tau_{0}}{\rho_{U_{1}}^{2}} \times U_{1}^{2} \\
\| * & =\left(C_{f}\right)^{1 / 2} \times U_{1} .
\end{aligned}
$$

or

Then, the data for $u / U_{1}, y, U_{1}, x$ and θ were entered, together with a final computer program which was used to evaluate the parameters U^{+}and Y^{+}in the Universal Logarithmic Velocity Profile:
where

$$
\begin{aligned}
& U^{+}=A \ln Y^{+}+B \\
& U^{+}=\frac{U}{U^{\star}} .
\end{aligned}
$$

U^{+}is evaluated from the equation,

$$
\begin{aligned}
& \frac{u}{U^{*}}=\frac{u}{U_{1}} \times U_{1} \times \frac{1}{U^{*}} \\
& y^{+}=\frac{y U^{*}}{v}
\end{aligned}
$$

These logarithmic profiles are shown in Figures (14, 15, 16).
This program was also used to determine the Reynolds number $\left(\operatorname{Re}_{x}\right)$, and using the trapezoidal approximation, the frictional drag of the nlate was evaluated. The drag was calculated from the expression

$$
D=\frac{\rho}{2} \int_{0}^{L} c_{f} U_{1}^{2} d x
$$

The variation of C_{f} with $R e_{x}$ for the three concentrations used is shown in Figure (17) while the variation in drag with polymer concentration is shown in Figure (18).

CHAPTER VI

DISCUSSION OF RESULTS:

It is difficult to compare the results of the experimental work reported here with that of previous researchers, since at this embryonic stage of development, very little information is available on the effects of aqueous polymer solutions on the boundary layer phenomena in external flows. Most of the published information on Dolymer solution flow is general and since in the majority of cases the Darticular conditions under which previous research was carried out are unavailable, only qualitative comparisons can be made.

1. Polymer

Some workers in this field of endeavour have made use of different types of polymers which cover a large range of molecular weights and properties. This research was nerformed using a nolyacrylamide Polyhall MRL-402 (a non-ionic, high molecular weight polyacrylamide, supplied by Stein-Hall Limited), since it combined the advantages of high molecular weight (of the order of 6 to 7×10^{6}), relative stability and a comparatively large solubility in water. This type of polymer was also chosen in consideration of future research since it is felt that the polyacrylamides are one of the few types of polymer presently available which may be analysed by gel nermiation chromotographic or electron microscopic techniques and whose properties and molecular distribution may be reproducible from one batch to another.

2. Degradation

At the beginning of the research it was feared that degradation of the nolymer solution may present a definite problem. Very little is known about degradation of polymers at present but researchers have felt that any or all of the following factors may nromote degradation; aging, mechanical shear, or chemical or bacterial action. There was no reasonably simple method of simulating the effects of degradation equivalent to the degrading forces in the flow system. However, it is felt that no appreciable degradation occurred during each test. One solution was used over a neriod of one week and the data taken at the end of the week agreed well with the results taken five days earlier. Since this was the longest period over which a solution was used before the tanks were cleaned and a new solution made, it may be safely assumed that degradation was not an important factor. Also in the tests in which drag readings were continuously recorded over a 24 hour period, the directly measured drag did not chanae a noticeable amount.

3. Velocity Profiles

The major analysis of this reoort is based on the velocity profiles taken in the boundary layer and therefore, measurement of the hot-film probe position and anemometer output were of the utmost importance.

The output of the anemometer was fed to a Honeywell 5 figure display, digital integrating voltmeter which was set to integrate over a one second period. The variation in this voltage reading was
observed until the output could be evaluated to the fourth figure. This output was always greater than ten volts with an uncertainty of the order of 0.05 volts and this would infer a maximum error of $\pm_{1 / 2 \%}$ in the voltage. In converting this voltage to velocity by using the calibration curve for the probe the maximum error in the velocity would not exceed 1.5%. There was also difficulty in determining the position of the hot film sensor. The sensor supports could be made to just touch the flat plate surface by observing the mirror image of the orobe, which resulted in a small gap between the sensor element and the plate. This small but finite distance was estimated using the sensor diameter (0.006 inches) as a comparison and anpeared to be approximately 0.002 inches which meant that the hot-film centre line was about a minimum of 0.005 inches from the plate. However, due to the effect of the solid surface at this close nroximity to the plate, the velocity determination could not be ascertained with any accuracy and therefore a large error in the profile in the viscous sublayer could have been incurred. At larger distances from the nlate the solid surface was assumed to have a neqligible effect on the performance of the hot film probe.

Typical developing velocity profiles for the three concentrations 0,25 and 50 wpm are shown in Figures $(8,9,10)$. It is noticed that the profiles for a polymer solution have a larger boundary layer thickness and a lower velocity gradient at the wall than for nure water which would suggest a lower skin friction coefficient.

It is generally agreed that the constant A in the logarithmic law equation, $U^{+}=A \ln Y^{+}+B$, is reasonably universal at a value of about 2.50. However values for the constant B have been reported varying between 3.7 and 5.5 for pure water. The value for B obtained in this research is 3.43 (Fig. 14). For a 25 wpom polymer solution, the value of B is increased to 4.55 , Fig. (15).

The variation in the values of B for pure water may reflect on the water used in the determination as any foreign matter would tend to change the flow structure. Since a standard procedure has been used in this experimental work and the water used is from one source, it may be assumed that the change in the value of B is due solely to the effects of the polymer on the flow phenomena.

Comparing the universal logarithmic profiles for pure water and the 25 wnom aqueous nolymer solution, the qualitative results are as expected. The value of A is approximately 2.50 in both cases and the increase of the value of B with the addition of polymer to the water appears to indicate an increase in the thickness of the laminar sublayer. This is in agreement with the deductions of previous investigators such as Meyer (6), White (17) and Latto (19). However, when the logarithmic profile for the 50 wppm solution is examined, a marked deviation from what might be expected occurs, Fig. (16). A single curve is no longer sufficient to describe the profile. It appears that for each value of x it may be possible to draw a straight line through the data. From the graph, it is abparent that the slopes of any of these lines
are much areater than the slone obtained for untreated water or the 25 womm nolvmer solution. It also apnears that the further along the plate in direction of flow (station 1 is at the leading edge, 35 at the trailing edge) the larger the value of B for the 50 wnom aqueous nolvmer solution.

Kowalski (23) observed a similar behavior for high concentration injected flows. His experiments consisted of ejecting nolymer solution from the nose piece of a flat plate into the boundary layer. He exnlained the difference in the profiles as being the result of diffusion of the nolymer solution into the free sifesm. For the injection of large concentration solutions, the solution would diffuse into the free stream and thus concentration gradients would be established both normal and Darallel to the main flow. Therefore, each orofile would be representative of different concentrations and concentration qradients and would not be exnected to give a universal nrofile. The data of Latto (19) shows this same tendency for high concentration injected flows.

The data for this research was taken for a homodeneous aqueous nolvmer solution and consequently, this arqument would not annear to annly. The nersistance effect which Kowalski (15) nostulated mav nossibly exnlain some of the results of this renort. That is, if the nolymer was attracted to the nlate surface a larger concentration of nolymer may accumulate near the plate which would lead to a nolymer concentration qradient near the surface. This attraction may nossibly he due to electrostatic charges on the flat plate model and a nolarizing tenden y of the polymer molecule. This electrostatic attraction could well describe the nersistance effect

reported by Kowalski.

4. Momentum Thickness and Drag

The arowth in the momentum thickness is shown in Figures (9 to 13). The momentum thickness for the 25 wpm polymer solution when compared to that for water is larger for low values of x but the arowth curves cross at some value of x. The momentum thickness for the 50 wppm solution, however, is always greater than for pure water. This ohenomena was also observed by Latto (19) in his report on injected flows. He noticed the tendency for the momentum thickness to he larger at low values of x than for pure water and that the greater the amount of polymer iniected the larger the momentum thickness. These momentum arowth profiles for the polymer solution nevar crossed each other but all had a tendency to cross the curve for pure water at some larqe value of x.

The data for the 25 wpm solution are not significantly different, in a statistical sense, from that of water, having between a 10 and 75% chance of the difference between the two being due to random errors (see Anpendix II). However, the data for the 50 wpm solution are found to be significantly different from that of water.

Of more imnortance, however, is the slope of the momentum thickness profile which is directly pronortional to the local coefficient of drag. The relationship between C_{f} and $R e_{x}$ is shown in Figure (17). It can be seen that the local coefficient of skin friction for the 25 wpom solution is predominantly lower than that for water hut converges as $P e_{x}$ is increased. This is in agreement
with the work of others who have noticed that there is a critical Reynolds number above which no drag reduction is felt.

The C_{f} curve for the 50 wppm solution is different from what might be expected; the values for this concentration being predominantly larger than the case for untreated water. The measurements for this particular concentration were repeated using a different type of hot film probe and the results of both runs were in agreement. It must therefore be assumed that the results indicate the actual characteristics of the flow. An explanation of this will be attempted in a later paragraph.

The directly measured total drag as a function of concentration is shown in Figure (18) and the form of the curve is as expected; the drag reduces as the concentration of the polymer is increased until a limit of drag reduction is reached and thereafter the drag increases above the minimum value, as the amount of polymer in solution is increased. The drag due to viscous shear, as calculated from the skin friction curves (Figure 17) is compared to the total drag in the following table.

CONCENTRATION (wPPm)	SKIN FRICTION DRAG $^{\left(1 \mathrm{~b}_{\mathrm{f}}\right)}$	DIRECTLY MEASURED TOTAL $^{\text {DRAG }}$ $\left(1 \mathrm{~b}_{\mathrm{f}}\right)$	APPARENT PROFILE DRAG $\left(1 \mathrm{~b}_{\mathrm{f}}\right)$
0	0.082	0.110	0.028
25	0.083	0.088	0.006
50	0.114	0.072	-0.042

The drag variation with concentration obtained from the velocity profiles does not show the same behaviour as that obtained by direct measurement. As the concentration is increased, the viscous drag calculated from the velocity profile data becomes a larger portion of the total drag, and at 50 wppm the calculated viscous drag is larger than the directly measured drag.

From the ahove, it can be seen that the measured total drag relationshin annears to he in complete aqreement with that ohtained by previous researchers. However, the variation of the velocity orofiles and their dependent alqebraic narameters, the momentum thickness, the skin friction coefficient and intearated drag io not hehave as wnuld he expected, but no other data are anparently available to make comnarisons with.

All bodies of finite thickness exnerience eddy sheddina when suhiected to the flow of a real fluid which results in profile drad on the hody. The introduction of nolymer into the fluid apmarently tends to decrease the loss of energy in turbulent eddies. Thus, if the energy lost due to eddy shedding is reduced by the nresence of nolymer in the flow a net reduction in profile dran will result. This phenomena most likely accounts for the reduction in the total drag that has heen observed.
5. Critical Wall Shear Stress

A logarithmic plot of wall shear stress for the 25 wpom nolvmer solution versus the wall shear stress for the solvent alone, as nut forward by White (22) is shown in Figure (19). It is seen that the curve has two regions. At low values of wall shear the value for the nolymer solution is identical to the value for the solvent. Ahove the so-called critical wall shear stress ${ }^{\tau}{ }_{0}$, the value of the shear stress for the polymer solution is lower than that for the solvent. The division between the two reqions for this solution was found to occur at a wall shear stress of ${ }^{1} 0_{\mathrm{c}}=0.0111 \mathrm{1b} / \mathrm{ft}^{2}$. For
shear stresses above ${ }^{\tau}{ }_{0}$, the curve can be fitted with a rolationshin of the form,
and for the nolyacrylamide solution of concentration $25 \mathrm{wpm}, \mathrm{N}$ is found to have a value of $N=0.9 n 6$.

Peferring to Fiqure (17), the value of C_{f} at which the 0 and 25 wom curves cross is 0.0022 which corresponds to a critical wall shear stress of $0.01057 \mathrm{hf}_{\mathrm{f}} / \mathrm{ft}^{2}$, or a critical friction velocity of $0.0735 \mathrm{ft} / \mathrm{sec}$. Fxpressing this friction velocity in the form of a wave number, $H_{c}=7670 \frac{1}{\mathrm{ft}}=252 \frac{1}{\mathrm{~cm}}$. Assumina that the critical wave number, within any homologous nolymer series, varies inversely as the square root of the nolymer molecular weioht, as pronosed by Virk, the pquivalent critical wave number corrected for a molecular weight of 2.50×10^{6} from 10^{7} has a value of $W_{c}=504 \frac{1}{c m}$. This agrees favourahly with the values obtainet by Virk for a nolyacrylamide of molecular weight 2.5×10^{5}, that is, 470 and $53 \cap \frac{1}{\mathrm{~cm}}$ for two different sets of pipe flow data.

The analysis of this thesis is based on the assumntion that since the polymers are added to the water in very minute quantities the behavior of the resultina solution will be essentially that of the solvent. That is, themo-physical properties of the solution are not appreciably different from those of pure water, and since the mass ratio of polymer to water is of the order of 5×10^{-5}, it would appear that this is a plausible assumntion. It is known that aqueous polymer solutions can he visco-elastic,
however the degree of visco-elasticity is somewhat dependent on the concentration. The degree of divergence from Newtonian fluid behavior and the criterion for determining the concentration at which the solution can be considered anoreciably non-Newtonian are vague. Some nolymers anpear to exhibit visco-elastic effects in concentrations as low as 1 wopm while other polymers do not have an anpreciable effect on the viscosity of the solution when dissolved in higher concentrations. Although there is no data at nresent available on the visco-elastic pronerties or the themonhysical nronerties of aqueous nolyacrylamide solutions, it is felt that, in light of the data obtained in this work, changes in these nroperties may be the kev to the mechanism of drag reduction.

Since there is no evidence to the contrary, and the results of this research anpear to be renroducible, the assum,tion that the ohysical nronerties of the solution are not significantly different from those of the solvent must be at fault. This may exnlain the annarent contradiction that the viscous drag, calculated from the velocity profile data, for the 50 wpm solution is larger than the total drag measured directly as well as the deviation of the log-law nrofiles, from the universal form that has been observed by other exnerimenters and is also confirmed by the 25 wonm solution. It is felt that much more research needs to be carried out on the thermo-nhysical properties of aqueous nolvmer solutions.

The results of this experimental work appear to indicate that much more work needs to be carried out in the area of reducing draq by using nolymers but much promise is given for future anplications. It seems that, at this stage, it is important that the microsconic behavior of the boundary layer in polymer solution flows be examined more thoroughly to gain an insight into the mechanism of drag reduction. From the experimental data, it would appear that, even though the nolymer is dissolved in the water in minute quantities, it may considerably affect some of the thermo-physical nronerties of the solution. Unfortunately, at the time of the research there were no simple methods available for determining these nroperties.

Since this is apparently the first attempt at assessing the effect of polymers on external boundary layer phenomena throuach extensive velocity nrofile data, a nositive contribution has been made. It has boen shown that there is a critical wall shear stress which must be exceeded before nolymers have any effect on viscous drag and is analogous to the onset criterion for pipe flow. At present this criterion can he determined experimentally only by the analysis of extensive data on external flows. A comparison has heen nais between direct total drag measurements and indirect viscous drag calculations which has inferred that the introduction of polymers into the flow effects not only the viscous drag but also the profile dras.

CHAPTER VII

CONCLIISINNS:
As a summary to the previous discussion, the following conclusions may be drawn:

1) Drag reduction was observed as expected. The maximun dran reduction was of the order of 33%, which occurred for a 50 wpm concentration of nolyacrylamide with a length Reynolds number of about 1.25×10^{5}.
2) A critical wall shear stress, analogous to the onset shear stress in nipe flow work, was observed. For the polyacrylamide of molecular weinht 10^{7}, this critical shear stress was determined to have a maqnitude of $0.011 \mathrm{1b} / \mathrm{ft}^{2}$. For wall shear stresses below this value, the presence of polymer has no effect on the viscous drag.
3) A critical wave number was determined which had a value of $252 \frac{1}{\mathrm{~cm}}$ for the nolyacrylamide used. When corrected for the molecular weight effect, this value aqreed with the values ir a polyacrylamide determined by lirk (20).
4) Profile draq is apparently reduced when nolymer is added to external flows due to the reduction of eneray losses caused by eddy shedding.
5) The thickness of the viscous sublayer of the boundary layer is annarently increased by the addition of nolymer to the flow.
6) The momentum growth profiles for aqueous polymer solutions form a family of non-intersecting curves, which intercect the solvent curve at increasind distances along the plate as the concentration is increased.

CHAPTER VIII

RECOMMENDATIONS:
One of the most noticeable observations of this experimental work is the lack of available data on the effects of the controlling variables on the results, for example temperature, nolymer deqradation, contamination, injection techniques, electrostatic effects, etc. Therefore, before more research of the nresent nature is carried out, methods of determining the thermonhvsical properties of the solution and the effects of the external variables on the solution should be examined. It would be extremely useful if simple methods were available for determining the coricentration of the nolymer, the absolute viscosity and molecular weight distribution of a given sample so that useful correlations could be made.

If more research is to be carried out, similar to this work, the author would advise the investigation of different methods of measuring velocity nrofiles, such as the use of laser anemometers or at least the use of different smaller hot-film nrobes which should yield better results in the sublayer. Also, methods of determining the local viscous shear on the surface of the nlate would yield data which could be correlated with the skin friction coefficient calculated from the velocity profiles. Finally, means of attaining higher Reynolds numbers would allow a better internretation of the data.

REFERENCES

1. Toms, R. A., Some Observations on the Flow of Linear Polymer Solutions through Straight Tubes at Large Reynolds Numbers, Proc. Int. Rheological Conaress II, PP135-41, Schreveninger, Netherlands, 1948.
2. Oldroyd, J. G., ibid.
3. Shaver, P. G. and Merrill, E. W., Turbulent Flow of Pseudo Plastic Polymer Solutions in Straight Cylinder Tubes, A.I.Ch.E. Journal, Vol. 5, No. 2, June 1959, nn. 181.
4. White, A., Turbulent Draq Reduction with Polymer Additives, Journal of Mechanical Engineering Science, Vol. 3, No. 4, 1962, P. 452.
5. Elata, C. and Tirosh, J., Frictional Drag Reduction, Israel Journal of Technoloqv, Vol. 3, No. 1, 1965, P. 1.
6. Meyer, Varren, A., A Correlation of the Frictvonal Characteristics of Turbulent-Flow of Dilute Viscoelastic Non-Newtonian Fluids in Pines, A.I.Ch.E. Journal, Vol. 12, No. 3, May 1966, PP. 522-525.
7. Hershey, H. C., Draq Reduction in Newtonian Polymer Solutions, Ph.D. Thesis, University of !lissouri at Rolla, 1965.
8. Pruit, F. T. and Crawford, H. R., Effect of Molecular Weight and Segmented Construction on the Drag Reduction of Water Soluble Polymers, The Western Connd, Pesearch Division, Penort No. DTMB-1, Anril 1965.
9. Love, Richard H., The Effect of Ejected Polymer Solutions on the Resistance and Wake of a Flat Plate in a Water Flow, Hydronautics Incornorated, Technical Renort 353-2, June 1965.
10. Emerson, A., Model Exneriments Using Dilute Polymer Solutions instead of Water, Transactions N.E. Inst. Enq. Shinbuilders, 1965, 81 (Pt7, May).
11. Dove, H. L., The Effect on Resistance of Polymer Additives Injected Into the Boundary Layer of a Frigate Model, A.E.W. Note, Feb. 1966.
12. Kowalski, T., Reduction of Frictional Drag by Non-Newtonian Additives, Naval Enqineers Journal, April 1966.
13. Smallman, John R., The Influence on Hydrodynamic Drac of High Molecular Height Comnounds in the Turbuient Boundary Layer, M.Eng. Thesis, McMaster liniversity, May 1967.
14. Sherman, Beryl A., Effect of Concentration and Molecular Structure on the Drag Reduction of Dilute Polymer Solutions, A.U.H.E. Tech. Note, 246/67, July 1967.
15. Kowalski, T., Turbulence Supnression and Viscous Drag Peduction by Mon-Newtonian Additives, M12(1967), The Royal Institution of llaval Architects, London, [ngland.
16. Goren, Y. and Norbury, J. F., Turbulent Flow of Dilute Aqueous Polymer Solutions, Transactions of A.S.IA.E., Dec. 1967, Iournal of Rasic Engineering.
17. 'hite, Frank M., Limitations on the Brag Reduction of External Podies ty Polymer Additives, A.I. A. A. Sth Aerospace Sciences Meeting, Mew York, January 1968, "o. 68-127.
18. Kowalski, T., Higher Shin Sneeds Due to Injection of MonNevtonian Additives, Fastern Canadian Section of the Society of Naval Architects and Marine Engineers, presonted in Montreal, January 9, 1253.
1). Latto, R., Private Comunication.

2n. Shen, Chi-Hund, An ExDerimental Study of the Effects of noueous Polymer Solutions on a Liouid Poundary Laver, ". Fng. Thesis, "c"aster University, "fay 1969.
21. Virk. P. S. and merrill, E. W., The Onset of Dilute Polymer Solution Phenomena, Proceedinas of the Symnosium on Viscous Drad Deduction, held at the LTV Research Centre, nallas, Texas, September, 1959.
22. White, ก. A., The Flow of a Dilute Polymer Solution in a Turbulent Boundary Laver on a Flat Plate, Proceedinas of the Symnosium on Viscous Drag Reduction, held at the LTV Research Centre, Dallas, Texas, September, 1968.
23. Kowalski, T., Private Communication.
FIGURES

FIGURE 4 MODEL WORKING SECTION

FIGUR E 5 GUARD PLATES (working section removed)

station
8
FIGURE 8 DATA FOR PURE WATER
$V_{\infty}=2.21 / \mathrm{sec} . \longrightarrow$

FIGURE II

FIGURE 16

APPENDIX 1

Error Analysis

The error analysis shown here does not attempt to show the magnitude of all the errors but attempts to indicate the relative significance of each of the errors. This is because the calculations involved tend to be statistical in nature and the errors are difficult to evaluate.

1. Calibration of Hot-film Probes.

Using the nitot probe at a velocity of about $21 / \mathrm{sec}$, the manometer reading is about $2.0 \pm 0.001 \mathrm{~cm}$ difference, and the anemometer output is about 17.40 ± 0.05 volts, then, since the velocity varies as the square root of the manometer reading, that is

$$
\left(v=(2 g h)^{1 / 2}\right)
$$

the ner cent error in velocity is $\quad \frac{1}{2}\left(\frac{.001}{2.00}\right) \times 100 \%=0.025 \%$.
Using the neutrally houyant particle calihration method for low velocities, at 1 foot ner second $\left(V=\frac{\Delta x}{\Delta t}\right)$

$$
\begin{aligned}
& \Delta x \text { is about } 18 \pm 1 / 12 \mathrm{ft} . \\
& \Delta t \text { is about } 18 \pm 0.1 \text { second. } \\
& \text { The nercentage error in velocity is then } 1 \% \text {. }
\end{aligned}
$$

The anemometer voltage reading at a fluid velocity of about 2.2 feet ner second was about 18.0 ± 0.05 volts. The largest error would be encountered at higher velocities, since the velocity varies most ranidly with voltage in this range of the calibration curve. Taking into account the error in the calibration curve, the maximum error
that would be experienced in the velocity is 1.5%.
2. Momentum Thickness.

From the above analysis it can be seen that the maximum error in calculating $\frac{u}{U_{1}}$ is about 3%. Because of the way the momentum thickness varies with position along the plate it is difficult to give one analysis which satisfies all profiles. It is felt that the maximum error in evaluating the momentum thickness is of the order of 0.001 inches. In fitting a least squares curve through the data the error in the resulting curve is estimated to be reduced to 0.0001 inches which would represent a maximum error of about 10% for $10 w$ values of x and about 2% for large values of x.
3. Skin Friction and Drag Reduction.

It is assumed that the error in any parameter deduced from the momentum thickness profile will have an error aboroximately the same as the error in the momentum thickness. That is, the uncertainty in the local skin friction coefficient will be about 10% for low values of x and 2% for high values of x as will be the case for the friction velocity.

The evaluation of the uncertainty in the calculated total drag is difficult to evaluate since it will involve a statistical formulation.

The error in the directly measured drag consists of the uncertainty in the calibration of the displacement transducer and the error in the instrument reading. This uncertainty is of the order of 1%.
4. Universal Logarithmic Velocity Profile.

The errors in the parameters for this plot are dependent on the errors discussed so far. Since most of the profiles nlotted are for large values of x uncertainties due to errors in the momentum thickness will be of the order of 2%.

Then the maximum uncertainty in the parameter U* will be 6% while the uncertainty in Y^{+}will be of the order of 3%.

APPEMDIX II

Statistical Analysis of Results

This analysis is hased on the difference between the various data noints for the momentum thickness and the best fit curve for the pure water data. That is, the results roe nure water are taken as the narent family to which comnarisons are made.

For the data for Dure water the average weiahted residual is 5×10^{-10} feet with a standard deviation of 0.000373 feet.

Since the hest fit curves for the momentum thickness for nure water and hte 25 wnpm solution cross near mid-way along the Dlate, the data were analysed in two sections.

For the first section of the curve, the average of the residuals of the data for the 25 wopm solution is 0.000103 feet. making the hypothesis that the data for the 25 wpm solution is the same as for pure water and apnlying Student's "t" test, the value $t=1.130$ is ohtained. For this value of t and 17 deorees of freedom, it is found that there is a 15% probability that the difference between the data could he due to chance which is qenerally taken to mean that the data are not statistically siqnificantly different.

For the second section of the curve, a value of $t=1.53$ is obtained, which for 14 degrees of freedom yields a 10% probability level which is considered not greatly sianificant.

Performing the same calculations for all the 50 wpm solution data, the average residual is 0.00108 feet and the value of t is 15.6. This value of t corresponds to a significance level much smaller than 0.1% which is interpreted as being hiahly sianificant.

APDENDIX III

Moisture Content of Polvmer Samnle

The nolvmer used was a Stein-Hall nolyacrvlamide, Polvhall 402. The method used is as outlined in Chapter IV-2.

Height of dry crucihle	23.56195 qm.
Neight of crucible nlus moist samnle	37.13810 gm.
Height of crucible nlus dried samnle	36.95420 gm.
Moisture content	$0.2839 n \mathrm{am}$.
Weight of dried nolmer	3.29225 qm.
Per cent moisture in samnle	3.313%

APPENDIX IV

Calibration Curves

Calibration curves for the hot-film nrobes used are shown in figure (20). The overheating ratio for the cylindrical orobe was 0.0057 . For the conical probe the overheating ratio was 0.100.

The calibration for the drag measuring system is shown in Fiqure (21).

FIGURE 21

APPENDIX V

Data Tables

The experimental data for the three concentrations, 0 , 25 and 50 wopm are shown in Tables 1, 2 and 3 respectively.

In each table the upner three numbers are the coefficients of the polynomial, $\theta=x 1 x^{2}+x 2 x+x 3$. The number on the second line renresents the number of velocity nrofiles for the narticular concentration. For each nrofile the first ouantity is the corresnonding value for x, the second is the calculated momentum thickness and the third is the velocity at the edge of the outer boundary layer. The subsequent 35 numbers (left to right) represent the magnitudes of the velocity ratios u / U_{1} for the values of y qenerated by the computer program.

Tables 4, 5 and 6 show the values of the derived parameters for the concentrations 0,25 and 50 wppm respectively. The first column of numbers is the station number along the nlate which annears in Figures $(8,9,10,14,15,16)$.

```
        -7.\cup7U54E-U7 1.664856E-04
    35
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 3.342 & \(3.8313 \mathrm{E}-04\) & 2. 221 & & & & & & \\
\hline 0.676 & 0.839 U.931 & \(\cup .969 \cup .989\) & 0.9990 .997 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 \\
\hline U.999 & \(0.999 \sim .979\) & U.999 0.999 & 0.9990 .799 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 \\
\hline 0.999 & \[
\begin{gathered}
0.999 \quad \cup .999 \\
4.243
\end{gathered}
\] & \[
\begin{array}{r}
0.999 \quad 0.999 \\
7.3021 E-04
\end{array}
\] & \[
\begin{array}{r}
0.9990 .999 \\
2.205
\end{array}
\] & U.994 & 0.999 & & & & \\
\hline 0.519 & 0.706 U.8.4 & 0.8810 .929 & 0.9570 .974 & 0.985 & 0.991 & 0.999 & 0.998 & 0.999 & 0.999 \\
\hline 0.999 & 0.9990 .999 & U.9990.999 & \(\cup .994\) 0.994 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 \\
\hline 0.999 & \[
\begin{gathered}
0.9990 .999 \\
5.440
\end{gathered}
\] & \[
\begin{array}{r}
0.9990 .999 \\
7.2988 E-04
\end{array}
\] & \[
\begin{array}{r}
0.9990 .999 \\
2.221
\end{array}
\] & 0.999 & 0.999 & & & & \\
\hline 0.604 & \(0.768 \quad 0.847\) & U.890 0.719 & 0.9450 .959 & 0.973 & 0.981 & 0.991 & 0.997 & 0.999 & 0.999 \\
\hline 0.999 & 0.999 U.999 & ט.999 0.999 & 0.9990 .999 & U. 999 & C. 999 & 0.999 & 0.998 & 0.999 & 0.999 \\
\hline 0.999 & \[
\begin{gathered}
0.999 \bigcup .999 \\
6.475
\end{gathered}
\] & \[
\begin{array}{r}
\cup .999 \quad .999 \\
2.1006[-03
\end{array}
\] & \[
\begin{array}{r}
0.9990 .999 \\
2.221
\end{array}
\] & U.999 & 0.999 & & & & \\
\hline 0.381 & 0.5960 .652 & 0.6910 .721 & 0.7460 .768 & 0.787 & 0.804 & 0.823 & 0.873 & \(0.9<5\) & 0.945 \\
\hline 0.987 & 0.9990 .959 & 0.9990 .999 & 0.9990 .999 & 0.999 & 0.999 & 0.999 & 0.999 & 0.998 & 0.999 \\
\hline 0.999 & \[
\begin{gathered}
0.9990 .999 \\
7.701
\end{gathered}
\] & \[
\begin{array}{r}
U .9990 .999 \\
1.7813 E-03
\end{array}
\] & \[
\begin{array}{r}
0.9990 .999 \\
2.320
\end{array}
\] & 0.999 & 0.999 & & & & \\
\hline 0.430 & 0.6890 .768 & 0.8070 .834 & 0.8550 .869 & 0.881 & 0.893 & 0.902 & 0.915 & 0.927 & 0.941 \\
\hline C. 953 & 0.9670 .978 & U.987 0.995 & 0.9990 .999 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 \\
\hline 0.999 & \[
\begin{aligned}
& 0.9990 .999 \\
& 9.180
\end{aligned}
\] & \[
\begin{array}{r}
4.999 \quad 0.999 \\
2.1969 E-03
\end{array}
\] & \[
\begin{array}{r}
0.9990 .999 \\
2.215
\end{array}
\] & U.999 & 0.999 & & & & \\
\hline 0.559 & 0.673 U.731 & 0.7700 .807 & 0.831 C.854 & U. 870 & 0.882 & 0.893 & 0.912 & 0.922 & 0.935 \\
\hline 0.940 & \(0.946 \quad .955\) & 0.9610 .967 & 0.973 Ј.980 & 0.991 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 \\
\hline 0.999 & \[
\begin{gathered}
0.9990 .999 \\
10.466
\end{gathered}
\] & \[
\begin{array}{r}
0.9990 .999 \\
2.3516 E-03
\end{array}
\] & \[
\begin{array}{r}
0.9990 .999 \\
2.221
\end{array}
\] & 0.799 & 0.999 & & & & \\
\hline 0.487 & 0.707 . 785 & \(\cup .8250 .855\) & 0.8750 .893 & 0.904 & 0.913 & 0.917 & 0.927 & 0.935 & 0.940 \\
\hline 0.949 & 0.9510 .953 & 0.9550 .958 & 0.9620 .764 & 0.958 & 0.974 & 0.980 & 0.985 & 0.990 & 0.995 \\
\hline 0.997 & \[
\begin{aligned}
& \cup .999 \quad \cup .994 \\
& 12.052
\end{aligned}
\] & \[
\begin{array}{r}
0.9990 .999 \\
2.0674 \mathrm{E}-03
\end{array}
\] & \[
\begin{array}{r}
0.999 ~ \\
2.921
\end{array}
\] & 0.979 & 0.999 & & & & \\
\hline 0.465 & 0.661 U.729 & 0.767 U.793 & 0.8130 .831 & 0.847 & 0.861 & 0.875 & . 897 & 0.915 & 0.931 \\
\hline 0.945 & \(0.958 \quad 0.971\) & U.982 0.991 & -.999 0.999 & U.999 & 0.999 & 0.999 & 0.998 & 0.999 & 0.999 \\
\hline 0.999 & 0.999 U.999 & . 69990.999 & -.999 U. 799 & U. 999 & 0.999 & & & & \\
\hline
\end{tabular}
```

	13.565	$2.5391 E-03$	$2 \cdot 221$						
0.500	0.643 U.7.6	U.741 0.769	0.7930 .817	0.833	0.849	0.865	0.890	0.910	0.921
C. 938	0.947 U.953	0.961 U.967	ט.971 -.977	0.98 C	0.988	0.992	0.797	0.999	0.949
$\checkmark .999$	0.999 U.999	U.995 - 999	ט.999 ט.999	0.999	0.999				
	15.108	$2.3002 E-03$	2.221						
C. 474	0.677 l .730	U.759 0.791	ט.811 0.829	0.041	0.857	0.868	0.891	0.909	0.924
0.939	0.951 U.962	0.9700 .978	0.9830 .988	0.994	0.997	0.992	0.997	0.999	0.999
0.999	$0.999 \quad .999$	0.9990 .999	0.9790 .999	0.999	0.999				
	16.556	$4.7852 \mathrm{E}-03$	2.221						
$\cup .377$	$0.587 \quad .641$	0.6750 .704	0.7270 .747	0.769	0.786	0.795	0.815	0.831	0.849
0.862	0.8690 .876	0.8840 .890	0.8980 .904	0.917	0.931	C. 939	0.953	0.967	0.979
0.991	0.9990 .999	0.9990 .999	0.9490 .999	0.999	0.999				
	18.046	3.0979E-03	2.275						
0.256	0.4070 .480	0.5560 .612	0.6550 .701	0.733	C. 764	0.791	0.837	0.877	0.908
0.931	0.9470 .959	0.9650 .971	0.9740 .977	0.980	0.982	0.985	0.990	0.994	0.998
U.999	0.9990 .999	0.9990 .999	0.9990 .999	0.999	0.999				
	19.608	$3.5967 E-03$	2.645						
0.389	C.605 U.68u	0.7050 .723	0.7510 .775	0.787	0.797	0.807	0.833	0.856	0.875
0.891	0.9050 .919	0.9250 .937	0.9420 .951	0.959	0.968	0.975	0.985	0.990	0.995
0.997	0.999 J .999	0.9990 .999	0.9990 .999	0.999	0.999				
	20.995	$3.2802 E-03$	2.680						
0.369	0.6060 .685	U.7270.759	0.7820 .799	0.811	0.821	0.831	0.849	0.865	0.880
0.895	0.9070 .917	U.925 0.937	0.945 U.953	0.967	0.977	0.985	0.793	0.997	0.999
$0 \cdot 999$	0.9980 .999	0.9990 .999	0.9990 .999	0.999	0.999				
	22.400	3.7U97E-03	2.750						
0.367	0.601 U.677	0.7170 .740	0.751 U.765	0.775	0.785	0.795	0.812	0.833	0.851
0.867	0.883 U.897	0.9130 .927	0.9370 .947	0.962	0.973	0.983	0.991	0.996	0.997
0.999	0.999 U.999	0.9990 .999	0.9970 .999	0.999	0.999				
	23.952	3.6707 ヒ-03	2.675						
0.269	0.5580 .643	0.6930 .719	0.7330 .749	0.760	0.770	0.787	0.806	0.825	0.842
0.863	0.880 .896	0.9090 .922	0.935 U.947	0.965	0.981	0.995	0.998	0.999	0.999
0.999	$0.999 \quad 0.999$ 25.553	$\begin{array}{r} 4.9990 .999 \\ 4.2699-03 \end{array}$	$\begin{array}{r} 0.9990 .999 \\ 2.670 \end{array}$	0.899	0.999				
U. 329	0.5730 .657	U.7U7-.733	0.751 U.763	0.773	C. 783	0.793	0.811	0.829	0.839
0.857	0.8690 .881	0.8910 .903	0.9130 .923	0.439	0.955	0.968	0.977	0.983	0.990
ט.991	0.999 U.999	0.9990 .999	$0.999 \sim .999$	U.490	0.999				

Table 1 continued

	5	$8 \mathrm{E}-63$	2.						
463	0.641 ． 662	U．620 2.706	$0.721-737$	0.194	68	c．785	09	0.837	0.857
$\cup .871$	0.887 －．703	U．917 0．730	－．941 0.953	0.971	0.983	0.991	0.997	0．949	0.948
U．999	0.998 － 0.89	． 789.989	ソ．タオ゙ U．99y		リーフブ				
	29．065	4．2290E－03	2.335						
U．405	0.606 U．659	$\cup .7000 .719$	$0.729 \quad .747$	0.763	0.781	0.797	0.807	0.821	835
$\cup .849$	$0.865 \quad .871$	－．885－．898	－． 911 U．917	U． 936	0.755	0.959	0.984	C．タッら	－9yy
0.999	$0.999 \mathrm{L.995}$	0.999 U．999	－•9y9－－99y	\checkmark 。					
	30.348	4．1293E－03	2.430						
0.407	0.625 U．681	$0.716 \quad .741$	$0.761-.779$	0.793	0.806	819	43	0.861	879
0.893	0.903 －．917	0.9230 .931	0.9370 .943	0.953	0.957	0.962	0.967	0.971	C．975
0.981	0.9870 .989	$0.993 \quad 0.993$	0.995 U．997	0.999	0.999				
	31.941	4.5465 E－U3	2.365						
0.363	0.6190 .689	U．719 U．738	0.7590 .774	U．789	0.799	0.811	0.829	0.845	859
0.873	$0.883 \quad 0.894$	$0.903 \mathrm{C.910}$	0.9170 .923	0.933	0.943	0.951	0.957	0.965	73
0.982	$0.991 \quad .9 .991$	0.9970 .997	0.9970 .997	0.997	0.999				
	33.455	4．8910E－03	2.365						
0.362	0.6210 .679	0.7130 .729	0.7430 .759	0.769	0.777	0.785	0.801	0.819	0.833
0.844	0.856 ． 869	0.8790 .891	0.9010 .911	0.923	0.937	0.951	0.961	0.971	75
0.982	$\begin{aligned} & 0.989 \quad 0.993 \\ & 35.015 \end{aligned}$	$\begin{array}{r} 0.997 \quad 0.997 \\ 5.5430 t-03 \end{array}$	$\begin{array}{r} 0.997 \quad 0.997 \\ 2.405 \end{array}$	0.999	0.999				
0.323	0.5910 .643	0.6770 .699	$0.715 \quad .733$	0.745	0.	0.773	0.789	． 805	． 819
0.832	0.844 U．85	$\checkmark .867$－． 378	0.8870 .897	U．		0.933	0.945	36	0.966
0.975	$\begin{aligned} & 0.985 \quad .987 \\ & 38.000 \end{aligned}$	$\begin{array}{r} 0.9910 .993 \\ 5.8284 E-03 \end{array}$	$\begin{array}{r} 0.9940 .994 \\ 2.420 \end{array}$	0.997	0.998				
0.398	0.5990 .666	$\cup .7030 .723$	$0.737 \quad .744$	0.753	0.761	0.767	0.781	0.797	． 807
0.821	0.8330 .841	U．853 0.867	0.8770 .884	0.905	0.921	0.937	0.949	0.957	． 96
$\cup .977$	$\begin{aligned} & 0.980 \quad 0.983 \\ & 39.532 \end{aligned}$	$0.983 \quad 0.984$ 5．U250E－U3	$0.9850 .990$	0.992	0.995				
0.393	0.6610 .694	$\cup .7060 .717$	0.7280 .739	0.743	0.755	0.767	0.789	0.803	0.819
0.837	$0.851-.357$	$\cup .867 \quad 0.877$	0.888 J．846	$0 \cdot \pm 11$	0.729	0.941	0.957	0.968	983
c． 0.992	0.9970 .997	0.9990 .999	0.999 U．999	0.999	0.999				
	41.068	$4.7126 E-03$	2.490						
0.447	$0.586 \quad .641$	0.691 U .11	0.728 U．740	0.154	0.770	0.79.	0.809	0.824	0.837
0.850	0.8610 .872	0.8810 .891	0.9000 .919	0.931	0.945	0.953	0.961	0.972	0.980
． 989	$0.953 \quad .997$	ט．999 U．999	－．9990．999	－メタy	0.999				

Table 1 continued

	2．553	5．5237ご－3	2．こu」						
0.338	0．53： 0.636	0.663 －．683	0 － $0.71 \pm$	0.721	0.730	0.741	0.762	0.701	0.799
$\cup .818$	$\checkmark .833 \quad .84$	$0.861 \quad .873$	－¢03 -8.8	－．t11	－ 020	$0 \cdot 942$	0.953	96	72
U．980	$\begin{aligned} & 0.985 \\ & 44.105 \end{aligned}$	$\begin{array}{r} 0.993 .996 \\ 6.1730 E-03 \end{array}$	$\begin{array}{r} 0.999 .997 \\ 2.785 \end{array}$	0.993	0.999				
－ 282	$0.533 \quad .621$	$\checkmark .667$－．693	0.711 U．723	0.734	6.745	0.753	0.171	0.787	300
$\checkmark .815$	$0.831 \quad .843$	0.8570 .869	0.8830 .891	0.913	0.929	0.941	0.949	0.952	0.955
0.959	U．964 U．969	$\cup .973$ U．976	$0.983 \quad .987$	0.791	0．99b				
	45.608	6．85u2E－03	2.765						
303	0.527 U．515	0.6450 .664	0.6770 .687	0.696	1.704	0.711	． 730	0.749	0.771
0.789	し．8ט9 0．819	U．830 0.841	0.851 －．860	0.879	0.895	0.910	0.926	0.940	0.957
$\checkmark .969$	$\begin{aligned} & 0.971 \text { U.972 } \\ & 47.125 \end{aligned}$	$\begin{array}{rr} U .975 & 0.979 \\ 6.6670 E-03 \end{array}$	$\begin{array}{r} 0.985 \text { U.98y } \\ 2.67 u \end{array}$	$\cup .992$	0.996				
0.399	0.5430 .609	0.6390 .653	0.667 U．681	0.693	0.700	0.712	0.731	0.750	0.765
0.781	0.797 U．809	0.8230 .835	U．845 0.855	0.075	0.890	0.907	0.921	0.931	45
0.963	0.977 U．991	0.9990 .999	0.9990 .994	0.999	0.999				
	48.638	7．00635－03	2.690						
0.296	0.559 .0 .629	0.6670 .687	0.6990 .713	0.722	0.732	0.743	0.757	0.771	0.783
0.793	0.801 C .810	0.817 0．826	0.8370 .845	0.864	0.885	0.902	0.913	0.925	0.941
0.955	0.9540 .976	U．987 U．987	0.9910 .991	0.991	0.936				
	50.611	$6.4710 E-C 3$	2.590						
0.411	0.5410 .598	0.629 U．559	$0.685 \quad 0.715$	0.727	0.733	0.741	0.153	0.767	0.775
0.783	0.791 U．799	0.8090 .817	0.825 －．834	0.855	0.879	0.902	0.925	0.947	0.967
0.981	0.989 U．997	$\checkmark .9990 .999$	$0.979 \quad 0.999$	0.999	0.999				
	52.736	7．3246E－03	2.690						
0.429	0.567 U．62b	0.6610 .687	0.7050 .720	0.731	0.743	0.755	0.767	0.779	0.786
0.793	0.799 C .801	0.8070 .811	0.819 ． 828	0.848	0.878	0.901	0.923	0.939	． 948
0.959	0.9650 .969	0.9710 .973	0.9750 .977	0.985	0.993				
	54.538	6．6457t－03	2.705						
0.473	$0.523-.565$	0.6980 .720	$0.731 \quad .743$	0.755	0.761	0.765	0.774	0.785	0.793
0.799	0.812 U．819	0.8310 .841	0.849 U．859	0.871	0.887	0.897	0.913	0.929	0.945
0.957	0.970 .981	0.9860 .993	0.9960 .995	0.995	0.995				
	55.721	$4.7130 E-$ U 3	． 625						
0.528	0.653 U．7u3	$0.740 \quad 0.763$	0.7840 .801	0.817	C． 831	0.839	0.857	0.871	0.879
0.885	$0.893 \quad .899$	0.9050 .909	0.9110 .917	0.927	0.933	0.943	0.952	0.957	0.965
0.971	0.973	0.9930 .993							

Table 1 continued

```
    -6.v6697E-U7 1.57164E-v4 3.430yt-v4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 3.379 & 1．ひりすuだー03 & 2.540 & & & & & & \\
\hline 0.518 & \(0.784 \quad .834\) & U．870 0．899 & 0.9180 .931 & 0.940 & 0.949 & 0.958 & 0.97 & 0.979 & 0.984 \\
\hline 0.988 & U．989 U．995 & 0.997 U．998 & \(0.998 \quad .997\) & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 \\
\hline 0.999 & \(0.998 \quad 0.999\)
\[
4.859
\] & \[
\begin{array}{r}
\cup 999 \cup .598 \\
1.1221 E-03
\end{array}
\] & \[
\begin{array}{r}
\cup .9990 .798 \\
2.625
\end{array}
\] & 0.999 & 0.999 & & & & \\
\hline 0.443 & 0.7600 .829 & 0.8690 .898 & 0.9160 .927 & 0.939 & 0.948 & 0.957 & 0.965 & 0.973 & 0.979 \\
\hline 0.987 & 0.989 U．990 & 0.9910 .995 & 0.9990 .999 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 \\
\hline 0.998 & \[
\begin{aligned}
& 0.998 \quad .998 \\
& 6.354
\end{aligned}
\] & \[
\begin{aligned}
& 0.9980 .998 \\
& 1.10305-03
\end{aligned}
\] & \[
\begin{array}{r}
0.9980 .998 \\
2.385
\end{array}
\] & 0.798 & 0.999 & & & & \\
\hline 0.605 & U．733 U．79 & U．838 0．866 & \(0.88 y\) U．911 & U． 927 & 0.940 & ． 953 & 0.974 & 0.985 & 0.993 \\
\hline 0.996 & 0．999．0．999 & 0.9990 .999 & 0.9990 .999 & 0.999 & 0.998 & 0.998 & 0.998 & 0.999 & 0.998 \\
\hline C． 999 & \[
\begin{gathered}
0.998 ~ \\
7.811
\end{gathered}
\] & \[
\begin{array}{r}
U .999 \\
1.1286 E-09
\end{array}
\] & \[
\begin{array}{r}
0.9990 .999 \\
2.455
\end{array}
\] & 0.998 & 0.999 & & & & \\
\hline 0.446 & 0.672 U．762 & U．818 0.863 & 0.8900 .911 & 0.929 & 0.944 & 0.959 & 0.976 & 0.991 & 0.994 \\
\hline 0.998 & 0.9990 .998 & 0.9990 .999 & 0.9990 .999 & 0.999 & 0.998 & 0.999 & 0.999 & 0.997 & 0.999 \\
\hline U．999 & \[
\begin{aligned}
& 0.999 \cup .999 \\
& 9.354
\end{aligned}
\] & \[
\begin{array}{r}
0.9990 .999 \\
1.7295 E-03
\end{array}
\] & \[
\begin{array}{r}
0.999 \quad 0.999 \\
2.455
\end{array}
\] & 0.999 & 0.999 & & & & \\
\hline 0.469 & 0.649 U．725 & 0.7690 .801 & 0.828 .851 & 0.872 & 0.889 & 0.901 & 0.923 & 0.943 & 0.959 \\
\hline 0.371 & 0.9830 .991 & 0.994 C .999 & U．949 0．999 & 0.599 & 0.999 & 0.999 & 0.998 & 0.999 & 0.399 \\
\hline 0.998 & \[
\begin{aligned}
& 0.998 \cup .998 \\
& 10.793
\end{aligned}
\] & \[
\begin{array}{r}
U .9990 .998 \\
2.0800 E-03
\end{array}
\] & \[
\begin{array}{r}
0.9990 .999 \\
2.500
\end{array}
\] & 0.999 & 0.998 & & & & \\
\hline 0.301 & 0.601 .0 .703 & U．754 0．790 & 0.8080 .825 & 0.345 & 0.855 & 0.869 & 0.895 & 0.918 & 0.935 \\
\hline 0.949 & 0.961 U．973 & 0.9810 .991 & 0.9950 .997 & ． 0.999 & 0.999 & 0.999 & 0.998 & 0.999 & 0.999 \\
\hline 0.998 & \[
\begin{gathered}
0.998 \quad 0.998 \\
12.321
\end{gathered}
\] & \[
\begin{array}{r}
u .998 \quad 0.998 \\
2.2822 E-03
\end{array}
\] & \[
\begin{array}{r}
0.9980 .998 \\
2.360
\end{array}
\] & 0.999 & 0.998 & & & & \\
\hline 0.567 & 0.7130 .767 & 0.7950 .815 & 0.8330 .851 & 0.863 & 0.875 & 0.884 & 0.895 & 0.913 & 0.923 \\
\hline 0.937 & 0.9450 .955 & U．963 U．971 & 0.9770 .979 & 0.286 & 0.991 & 0.996 & 0.998 & 0.998 & 0.999 \\
\hline 0.999 & \[
\begin{aligned}
& 0.998 \quad 0.999 \\
& 13.880
\end{aligned}
\] & \[
\begin{array}{r}
\cup .999 \quad .299 \\
2.61 \text { U6E-U3 }
\end{array}
\] & \[
\begin{array}{r}
6.9990 .999 \\
2.355
\end{array}
\] & 0.999 & 0.999 & & & & \\
\hline 0.391 & 0.621 U．7U8 & U．750 0．784 & 0.816 .331 & 0.848 & 0.863 & 0.878 & 0.889 & 0．： 25 & 0.929 \\
\hline \(\cup .936\) & 0.941 U．949 & \(0.958 \quad 0.964\) & \(0.968 \quad .970\) & U． 978 & 0.981 & 0.986 & 0.991 & \(0.9 y 6\) & 0.998 \\
\hline 0.999 & 0.999 v．999 & U．999 U．999 & 0.9990 .997 & 0.999 & 0.994 & & & & \\
\hline
\end{tabular}
```

	15.402	2．66u6t－v3	2．30u						
0.471	0.693 －73i	． 6.797 －．329	－．847 0.861	0.875	0.883	O．691	0.903	0.915	0.923
U．931	139－リ3y	．947－ 951	く．も34 ¢．960	－¢ 71	0.473	－－¢7ッ	0．98＝	0.891	0.959
U．995	$\begin{aligned} & \cdot 39=\quad .347 \\ & 17 \cdot v 2 v \end{aligned}$	$\begin{array}{r} 4.999 \\ 2.68910-63 \end{array}$	$\begin{array}{r} 6.998 \quad u .975 \\ 2.335 \end{array}$	0.999	0.998				
0.383	0.635 ． 715	ט．758 ט．793	0.807 －．821	0.837	． 648	0.857	0.874	0.888	0.899
0.914	0.923 －933	v．944 0．953	0.963 －．971	0.589	0.993	0.998	0.999	0.999	0.997
U．998	$\begin{aligned} & \cup .995 \quad \cup .999 \\ & 18.528 \end{aligned}$	$\begin{array}{r} 0.9990 .999 \\ 3.1263 E-03 \end{array}$	$\begin{array}{r} 0.9990 .999 \\ 2.625 \end{array}$	0.398	0.907				
0.473	0.659 .720	v．751 U．775	0.7930 .808	0.317	0.829	0.834	0.854	0.868	0.881
0.893	0.905 －． 917	U． 9270.939	0.9480 .955	0.969	0.481	0.994	0.997	0.999	0.998
0.998	$\begin{aligned} & 0.999 \quad .999 \\ & 20.024 \end{aligned}$	$\begin{array}{r} 6.9990 .999 \\ 3.1164 E-03 \end{array}$	$\begin{array}{r} 0.9990 .999 \\ 2.555 \end{array}$	0.999	0.999				
0.503	$0.663 \quad 0.7 \cup 2$	0.7330 .757	0.7750 .793	0.804	C．815	0.826	0.847	0.865	0.883
0.899	U．913 ט．926	0.9350 .943	0.9540 .950	0.974	0.985	0.991	0.998	0.999	0.999
0.999	$\begin{aligned} & 0.9970 .999 \\ & 21.536 \end{aligned}$	$\begin{array}{r} 0.9990 .999 \\ 3.3336 E-03 \end{array}$	$\begin{array}{r} 0.9990 .999 \\ 2.600 \end{array}$	0.999	0.999				
0.367	$0.635 \mathrm{C.719}$	U．751 U．777	0.7370 .811	1	41	$0 \cdot 852$	0.873	0.891	0.907
0.918	U．929 U．936	U．945 U．949	$0.959 \cup .962$	0.974	0.975	0.978	0.980	0.982	0.984
0.986	$\begin{aligned} & .988 \text { U.99u } \\ & 23.125 \end{aligned}$	$\begin{array}{r} 0.9920 .994 \\ 3.3120 E-03 \end{array}$	$\begin{array}{r} 0.996 \quad 0.997 \\ 2.625 \end{array}$	0.998	0.999				
0.509	0.655 －709	$\cup .7390 .765$	0.785 －．800	0.812	0.825	0.831	0.852	0.567	0.877
U． 887	0.899 0 912	0.921 し．934	0.9400 .948	－． 964	0.975	0.989	0.995	0.998	0.998
0.999	$\begin{aligned} & 0.999 .999 \\ & 24.552 \end{aligned}$	$\begin{array}{r} \because .9990 .999 \\ 3.8769 \mathrm{c}-03 \end{array}$	$\begin{array}{r} 0.9990 .999 \\ 2.625 \end{array}$	0.999	0.999				
0.445	0.6530 .715	0.7490 .771	0.7870 .799						
0.877	0.8870 .898	$0.908 \quad .917$	0.9270 .935	0.953	0.968	0.977	0.982	0.984	0.863 0.988
0.991	$\begin{aligned} & 0.991 \quad .993 \\ & 26.079 \end{aligned}$	$\begin{array}{r} 0.995 \text { U.998 } \\ 4.2637 E-03 \end{array}$	$\begin{array}{r} .998 \quad .999 \\ 2.530 \end{array}$	0.999	0.999	－$\cdot 7$	－${ }^{\text {c }}$	－． 984	－．988
0.429	v．6U9 v．579	0.717 0．745	0.7640 .783	0.797	0.807	0.322	0.837	0.851	
0.873	0.879 －．889	U．8970．901	0.9090 .918	0.929	0.942	0.956	0.965	0.977	
U．996	$\begin{aligned} & 0.999 ~ U .999 \\ & 27.598 \end{aligned}$	$\begin{array}{r} 0.999 \quad 6.999 \\ 4.5385 E-03 \end{array}$	$\begin{array}{r} 0.899 \quad \cup .99 y \\ 2.530 \end{array}$	0.799	0.999			$0 \cdot 977$	05
0.511	U．6́＜ 6.673	U．699 U．719	$0.734 \cup .751$	J．760	0.769	0.779	0.790		0.031
0.851	0.862 .877	U．889 0.900	0.911 U．921	U． 932	0.448	0.957	0.966	0．975	0.987
0.995	0.9976 .998	v．999 0．997	0.9980 .999	0.999	0.999	－．	－． 966	U－975	－ 28

Table 2 continued

	29.124	$4.5151 \mathrm{E}-3$	$2.64 v$						
3．501	$0.5956 .54 i$	$\cup .6790 .7030$	0.725 －．743	0.78	0.773	0.787	0.802	0.819	0.830
U． 843	U．84y U．861	U．872 J．885 u	0．847 U．907	U．72y	0.948	－．96\％	0.974	0.969	0.976
0.999	$\begin{aligned} & . .999 .0 .999 \\ & 30.630 \end{aligned}$	$\begin{array}{r} u .9996 .999 \\ 4.9945 t-03 \end{array}$	$\begin{array}{r} 0.999 \quad .999 \\ 2.600 \end{array}$	U．フ99	0.999				
U．271	U．55u u．63u	U．695 0．724 J	743 U．757	0.161	0.777	0.784	0.799	0.813	0.829
0.846	0.856 6．867	0.8790 .8890	0.903 U．909 0	0.925	0.937	0.949	0.959	0.964	0.968
0.976	$\begin{aligned} & 0.983 \quad 0.992 \\ & 32.168 \end{aligned}$	$\begin{array}{r} U .994 \quad .999 \\ 4.3765 E-03 \end{array}$	$\begin{array}{r} \because .949 .999 \\ 2.590 \end{array}$	0.999	0.999				
0.409	0.579 v．65u	0.6890 .7110	0.731 U .746 J	0.763	0.771	0.784	0.805	0.824	0.849
0.869	U．886 U．901	U．913 0．921 0	0.9290 .937 U	U．943	0.951	0.959	0.961	0.971	0.979
U．987	$\begin{aligned} & 0.995 \quad .998 \\ & 33.664 \end{aligned}$	$\begin{array}{r} 0.999 \quad 0.999 \\ 5.4313 t-03 \end{array}$	$\begin{array}{r} 0.9990 .954 \\ 2.595 \end{array}$	0.499	0.999				
0.342	0.5550 .634	0.6860 .7210	0.7410 .7610	0.776	0.789	0.800	0.819	0.834	0.846
0.857	U．868 U．875	$\cup .8840 .890$	0.8960 .9030	0.913	0.922	0.931	0.934	0.950	0.959
0.969	$\begin{aligned} & 0.976 \quad 0.980 \\ & 35.136 \end{aligned}$	$\begin{array}{r} 0.9840 .9890 \\ 4.8145 E-03 \end{array}$	$\begin{array}{r} 0.9910 .996 \\ 2.375 \end{array}$	0.999	0．999				
0.524	0.6490 .695	U．722 U．744 U	0.7620 .773	0.787	0.795	0.802	0.017	0.828	0.838
0.851	0.859 U．872	0.883 U．889 0	0.8990 .9090	0.923	0.939	0.952	0.961	0.969	0.977
U．983	$\begin{aligned} & 0.989 \quad 0.991 \\ & 36.664 \end{aligned}$	$\begin{array}{r} 0.993 \quad \cup .995 \\ 4.4592 E-03 \end{array}$	$\begin{array}{r} 0.995 \quad 0.999 \\ 2.380 \end{array}$	0.999	0.999				
0.316	0.570 .661	0.6910 .7140	0.7300 .7440	0.757	0.768	0.778	0.795	0.811	0.826
0.840	0.855 U．869	0.8810 .894	.9090 .9190	0.939	0.954	0.769	0.976	0.981	0.988
0.993	$\begin{aligned} & 0.9990 .999 \\ & 38.232 \end{aligned}$	$\begin{array}{r} 0.999 \quad 0.999 \\ 4.6571 E-03 \end{array}$	$\begin{array}{r} 0.9990 .999 \\ 2.320 \end{array}$	0.999	0.999				
0.335	$0.604 \cup .674$	0.7100 .7340	0.7530 .768 U	0.779	0.790	0.800	0.816	0.830	0.843
0.854	0.8650 .876	0.8870 .8950	0.9060 .9160	0.931	0.949	0.959	0.966	0.970	0.979
0.987	$\begin{aligned} & 0.990 \quad .991 \\ & 39.728 \end{aligned}$	$\begin{aligned} & \cup .993 \quad 0.994 \\ & 5.8333 E-03 \end{aligned}$	$\begin{array}{r} 0.9 y 60.398 \\ 2.370 \end{array}$	0.999	0.999				
0.335	$0.566 \quad \cup .629$	$\cup .649$ U．671	$\cup .688$ U．7uv	0.712	0.722	0.732	0.751	0.768	0.781
0.797	$0.812 \quad 0.829$	$\cup .8390 .853$	0.8650 .879 U	0.899	0.920	0.939	0.949	0.960	0.971
0.980	$\begin{aligned} & 0.987 \quad .992 \\ & 41.259 \end{aligned}$	$\begin{array}{r} U .9950 .996 \\ 5.7489 E-03 \end{array}$	$\begin{array}{r} .9970 .998 \\ 2.385 \end{array}$	0.998	0.999				
0.340	0.615 v．677	$\cup .7060 .7340$	U． 749 U．760	0.772	0.781	$0 \cdot 78$	－$\cdot 802$	0.816	0.829
0.839	0.850 .86	0.8690 .578	0.8890 .8970	0.911	0.923	0.936	0.945	0.952	0.960
0.964	U．969 U． 973	$\checkmark .9770 .981$	$\cup .985$ U．99u	－ 995	0.999				

Table 2 continued

	42.822	$5.8662=-03$	2.395						
0.313	6.580 .675	U.713 U.741	- 757 - 760	U.175	1.783	6.785	6.797	couz	69
0.817	0.8230 .829	-.839 . 848	0.858 U. 069	0.883	6.904	0.917	0.731	0.947	0.950
0.969	0.981 J .968	-.993 0.990	6.5970 .299	6.399	0.999				
	44.339	5.7259E-03	$2 \cdot 375$						
0.528	$0.653 \quad .733$	U.7710.791	0.7990 .806	4.813	0.819	0.817	0.819	0.824	0.831
0.836	0.841 U.846	$\cup .8530 .859$	C.868 -. 873	0.889	0.899	0.913	0.928	0.938	0.955
U.968	0.977 U.983	U.991 U.991	0.994 U .999	0.998	0.998				
	45.855	5.9894E-03	2.430						
0.426	0.623 v.666	0.6940 .719	0.731 U.745	U. 157	0.765	0.773	0.787	0.798	0.8044
0.811	0.819 U.822	0.8280 .837	0.8450 .854	U.870	0.893	0.914	U.93u	0.951	0.969
0.979	0.989 U.993	v.998 U.997	U.999	0	0.998				
	47.370	5.82UUE-03	$2.46 v$						
0.344	0.589 U.668	0.6960 .717	0.7280 .739	0.749	0.758	0.766	0.779	0.790	0.804
0.813	0.8220 .832	0.8410 .850	0.860 J. 669	0.887	0.904	0.925	0.939	0.951	0.967
0.979	U.987 U.991	$\cup .9540 .997$	0.9980 .999	0.999	0.999				
	48.839	$7.1678 \mathrm{E}-03$	2.785						
0.430	0.5690 .621	0.6530 .677	0.6990 .709	0.723	0.735	0.743	0.759	0.772	0.782
0.791	0.7990 .845	0.8130 .821	0.8270 .835	0.851	0.869	0.885	0.301	0.918	0.939
0.955	$0.9690 .979$ $5 u \cdot 342$	$0.9880 .989$ $7.265 \cup E-03$	0.9930 .995 $2.50 u$	0.997	0.999				
U. 529	0.630 U.68u	0.7130 .743	0.7600 .775	0.788	0.799	0.804	0.818	0.829	0.835
0.839	0.8430 .848	0.8510 .850	0.859 .864	0.875	0.885	0.896	0.905	0.912	0.920
U.929	0.938 U.944	0.950 0.959	U.965 U.978	0.986	0.999				
	51.987	6.9186E-03	2.545						
0.539	0.620 U.66u	0.6870 .708	0.721 U.735	0.746	0.753	0.762	0.773	0.784	0.795
0.803	$0.813 \quad .823$	0.8330 .840	0.8480 .855	0.871	0.884	0.897	0.909	0.923	0.938
0.951	0.9620 .971	$v .9770 .982$	ᄂ.989 U.992	0.999	0.999				
	53.739	$5.72<6 E-U 3$	2.525						
0.315	U.598 U.534	U.686 6.711	$\cup .727$ U. 743	0.757	0.770	0.781	0.795	0.012	0.826
0.839	0.849 .861	0.8690 .879	v.884 U.898	0.910	0.522	0.933	0.944	0.956	0.963
0.971	$0.973 \cup .978$	0.9810 .983	0.9850 .990	0.993	0.995				
	55.702	$6.127 \cup E-U 3$	2.595						
0.569	0.671 - 05	0.7260 .743	0.7590 .764	9.773	0.782	0.791	0.805	0.813	0.817
O.829	0.8350 .843	0.8510 .861	0.8680 .875	0.894	0.909	0.922	0.934	0.944	0.951
-.959	0.969 .973	U.980 0.983	0.986 - 097	0.993	0.997				

Table 2 continued

```
    -1.54795t-v6 <.4827UE-v4 -2.379U1t-04
    35
        3.640 9.9791E-04 2.400
u.3uv v.66u v.81y U.862 U.899 0.917 v.933 0.745 0.959 0.967 0.978 0.987 0.991
0.994 U.994 u.997 u.995 0.999 0.978 v.997 u.797 0.799 0.9940.99y 0.9990.999
0.999 0.999 U.999 0.999 0.997 0.999 נ.999 u.999 0.999
    5.688 1.U8U3t-03
U.271 U.498 v.637 v.749 U.834
u.998 u.999 u.y`l v.49y u.999
U.997 ט.997 U.999 U.998 u.999
    7.125 1.1175ヶ-U3
0.175 U.348 v.515 v.677 U.77j
0.9990.999 0.999 U.999 0.999
0.9990.999 0.998 ט.999 0.999
            8.625 1.7856E-03
0.448 0.571 0.647 0.707 0.747 0.795 0.821 0.855 0.853 0.901 0.9340.959 0.974
0.985 0.990 0.995 6.997 0.996 0.997 0.999 0.999 0.999 0.999 0.999 0.999 0.999
U.999 U.999 v.999 v.999 0.999
            1v.094 2.0412E-U3
U.319 U.474 U.598 U.675 0.731
0.9570.977 0.985 0.989 0.997 0.4480.9940.499 0.449 0.999 0.9990.9990.999
0.999 0.999 0.999 6.999 0.999
            11.563 2.4657E-U3
0.3650.51u v.0uy v.080 0.716 0.753 u.784 u.804 0.3<4 0.847 0.8780.909 0.934
0.951 0.962 0.971 0.980 0.984 0.987 0.984 0.991 0.991 0.997 0.997 0.9970.999
0.999 u.999 U.994 0.999 0.999 ט.999 u.999 u.499 0.999
            13.094 4.5936E-U3 2.482
0.389 U.544 v.616 v.661 v.696 0.723 v.746 v.766 0.782 0.799 0.822 0.843 0.8861
0.8790.89u U.yUz U.911 0.92U U.927 U.931 0.941 0.950 0.755 0.960 0.967 0.9973
0.979 0.981 0.987 U.991 0.995
    14.563 4.4877E-03
0.364 0.499 0.58u v.63U .671 U.7v7 0.731 v.757 0.777 0.797 0.825.0.8490.871
0.889 U.901 v.916 v.925 v.935 v.940 0.945 u.954 0.928 0.755 0.968 0.971 0.977
\cup.980 u.984 v.984 v.985 0.987 U.987 0.9y1 0.9940.987
```

	16.063	3．5359EーU3	2.515						
0.444	U．344 v． 397	0.637 U．660	$0.697-.71 y$	0.745	0.764	0.784	0.817	0.848	C．874
ง． 897	0.911 J．927	U．935 0．947	ט．955 U．965	U． 977	0． 781	6．967	1）．989	0.994	0.984
0.997	0.9976 .999	0.9990 .999	0.9990 .999	0.999	0.998				
	17.548	3．4459E－03	2.485						
0.396	0.582 .659	0.7050 .737	0.7650 .790	0.803	0.819	0.832	0.853	0.870	0.887
U．9U1	6.913 U．920	0.9290 .936	U．942 0.949	0.760	0.969	0.979	0.989	0.993	0.997
U．999	0.999 U．999	U．997 U．799	U．yサy U．99y	U．9y9	0.992				
	19.000	3．7848t－03	$2.54 v$						
U． 280	U．464 U． 582	v．655 U．700	－．734 U．761	U． 784	0.802	0.816	0.840	0.860	0.875
0．00u	$\checkmark .900$ U．912	ט．920 0．927	－．935 v．942	0.957	－．359	0.977	$2 \cdot 983$	0.989	0.991
0.994	$\begin{aligned} & 0.996 \ldots \\ & 20.563 \end{aligned}$	$\begin{aligned} & \cup .998 \quad 0.999 \\ & 40-22 E-03 \end{aligned}$	$\begin{array}{r} 0.9990 .999 \\ 2.546 \end{array}$	0.599	0.999				
0.191	0.3740 .557	0.6360 .575	$\therefore 70.727$	0.747	0.766	O．78u	0.804	0.819	0.836
0.851	0.8670 .881	0.8940 .906	0.9170 .92	－ 746	0.958	0.971	0.977	0.985	0.991
0.994	し．995 v．997	0.9970 .997	0.9980 .998	0.994					
	22．U31	4．2279E－03	2．5り3						
U．337	0.4840 .569	0.6250 .658	0.6850 .707	6.727	0.744	0.758	0.785	0.81	0.821
0.840	0.8610 .879	0.9040 .921	0.9370 .949	0.969	0.977	0.984	0.984	0.987	0.980
0.994	$\begin{aligned} & 0.996 \quad 1.897 \\ & 23.563 \end{aligned}$	$\begin{array}{r} 0.9970 .997 \\ 4.7206 E-03 \end{array}$	$\begin{array}{r} 0.998 \quad 0.999 \\ 2.555 \end{array}$	0.599	0.998				
U． 267	0.4370 .565	$\cup .6190 .661$	U．691 U．711	0.730	0.747	0.759	0.78 u	0.799	0.815
0.829	0.847 U．864	0.8800 .900	0.9150 .729	0.949	0.961	0.764	0.977	0.979	0.984
U．985	U．986 6．99w	v．974 U．898	U．989－．994	0.999	6.979				
0.324	0．44963．534	$5017135-03$ 0.5920629	0.6592 .56047	0.714	0.734	0.750	0.775	0.799	0.814
0.825	0.837 U．849	0.8640 .879	0.891 0．907	0.931	0.951	0.961	0.977	0.981	0.984
0.985	$\begin{aligned} & 0.987 \\ & 26.563 \end{aligned}$	$\begin{array}{r} 0.9890 .990 \\ 5.7 \cup 73 E-03 \end{array}$	$\begin{array}{r} 0.9940 .995 \\ 2.564 \end{array}$	0.999	0.999				
U． 329	U．464 0．547	0.5970 .629	0.637 U．684	0.700	0.715	0.728	0.751	0.770	0.787
U．805	0.817 U．829	U．841 0.857	0.6690 .885	0.909	0.928	$0 \cdot 945$	0.959	0.969	0.977
0.984	U．984 U．989	U．994 0．994	0.997 U．99y	ט．ソタッ	0.999				
	28.265	5．5888E－U3	3.045						
0.372	0.527 U．610	U．659 0．680	$0.694 \quad .706$	0.717	0.728	0.733	0.752	0.766	0.784
0.799	0.8170 .831	U．348 0．851	0.876 0．889	0.613	$0 \cdot 731$	$0 \cdot 248$	0.960	0.965	0.975
ن．981	0.987 U ．990	U．994 U．938	0.9890 .998	0.709	ก．793			．	

Table 3 continued

	18	3	$3 \cdot 155$						
0.384	0.551 -.615	- 65.60667	ט.686 - 699	. 0.709	0.715	0.720	0.734	0.745	0.762
v. 776	ט. 796 v.0u7	- .825 U.841	U.859 0.87i	0.896	21	0.94	0.955	0.964	0.983
U. 990	$0.999 \quad .999$	$\begin{array}{r} u .999 \quad .999 \\ 6.07525-03 \end{array}$	$\begin{array}{r} 0.999 . .799 \\ 2.575 \end{array}$	- シ9\%	0.399				
0.359	$0.471 \quad .547$	0.5930 .629	0.6570 .685	0.704	0.719	0.736	0.764	0.789	0.805
0.820	$0.834 \quad .844$	0.851 U.861	0.869 U.877	0.088	0.905	0.919	0.938	0.955	0.971
U.981	$\begin{aligned} & 0.987 \mathrm{u} .987 \\ & 32.500 \end{aligned}$	$\begin{array}{r} u .989 \quad .391 \\ 5.42 u 4 E-03 \end{array}$	$\begin{array}{r} 0.9910 .991 \\ 2.579 \end{array}$	0.994	0.995				
0.247	ט.419 ن. $5 \cup 7$	บ. 569 ט. 607	0.637 U .671	-695	0.715	0.731	,	85	0.804
$\cup .820$	0.830 -.838	U. 5590.869	0.879 U.896	0.719	0.941	0.961	0.970	0.976	80
0.985	$\begin{aligned} & 0.989 \cup .990 \\ & 34.000 \end{aligned}$	$\begin{array}{r} \cup .991 \quad 0.992 \\ 6.1435 E-U 3 \end{array}$	$\begin{array}{r} 0.993 \quad .0994 \\ 2.585 \end{array}$	U. 995	0.995				
0.287	0.4470 .529	U.5870.628	0.6590 .687	0.705	. $\cdot 721$	$0 \cdot 737$	$0 \cdot 76$	0.789	0.805
0.819	0.8310 .841	0.851 U.864.	0.8710 .885	0.897	0.910	0.924	0.938	0.951	0.961
U.971	$\begin{aligned} & 0.977 \text { U.986 } \\ & 35.563 \end{aligned}$	$\begin{array}{r} 0.987 \text { U.987 } \\ 6.6369 E-03 \end{array}$	$\begin{array}{r} 0.9890 .991 \\ 2.588 \end{array}$	0.995	0.999				
0.380	-.507 ט. 557	$\cup .6050 .634$	0.6570 .677	0.696	0.711	$0 \cdot 123$	0.749	0.769	0.785
0.804	0.8170 .829	0.841 C .856	0.8660 .877	0.895	0.909	0.927	0.937	0.944	0.954
U. 964	0.967 U.971	0.9770 .980	U.984 0.985	0.989	0.999				
	27.494	$7.36 \cup 9 E-03$	2.593						
0.194	0.376 U.495	0.574 U.605	0.6390 .665	. 685	0.703	0.717	0.741	0.760	0.779
0.795	0.809 C .821	U.835 0. 46	U.859 U.869	0.894	0.898	0.901	0.910	0.919	0.928
0.938	$\begin{aligned} & 0.948 \cup .958 \\ & 38.500 \end{aligned}$	$\begin{array}{r} \cup .968 \quad 0.974 \\ 6.8029 E-03 \end{array}$	$\begin{gathered} \cup .98 u \quad-.984 \\ 2.595 \end{gathered}$	0.987	0.990				
0.377	0.5000 .559	$\cup .5970 .625$	U.647 U.667	0.685	0.699	$\cdot 709$. 73	0.755	74
0.788	$0.801 \quad .814$	U.827 0.838	$0.84 y 0.809$	0.887	0.705	0.917	0.9.	0.949	0.959
0.969	$\begin{aligned} & 0.976 \quad .98 u \\ & 4 \cup .063 \end{aligned}$	U.980 6.985 $8.0734 E-03$	$\begin{array}{r} 0.987 U .987 \\ 2.598 \end{array}$	C.789	0.999				
0.361	0.4970 .545	U.584 0.612	0.6300 .651	0.665	0.679	0.690	0.711	0.734	0.747
0.764	0.7760 .790	U.8v1 U.809	0.8240 .834	0.854	0.876	$0 \cdot 884$	0.897	0.911	0.924
0.934	$\begin{aligned} & 0.945 \text { U.955 } \\ & 41.500 \end{aligned}$	$\begin{array}{r} \cup .964 \quad 0.973 \\ 7.3638 E-03 \end{array}$	$\begin{array}{r} 0.9820 .989 \\ 2.600 \end{array}$	0.992	0.998				
0.225	0.419 U.5ט9	ט.5710.611	0.6390 .604	0.652	0.698	0.710	0.732	0.745	0.755
0.763	0.772 U.78U	6.7900 .804	0.8170 .830	0.859	0.884	0.308	0.919	0.937	0.949
U. 960	0.968 ט.977	U.981 -. 985	0.985 0.981	0.790	0.997				

Table 3 continued

	42.875	7.4394t-03							
. 339	U.407 U.534	$\checkmark .597$-.629	$0.654 \cup .677$	- 0.694	0.707	c.719	0.741	0.759	0.771
0.787	0.799 -347	$\checkmark .819 .327$	0.839 0.547	0.365	0.887	0.916	$0 \cdot 327$	0.937	0.945
-. 955	$0.959 \cup .964$	$\cdots .9670 .969$	$0.97 \cup$ U.977	0.981	0.994				
	44.553	8.1256E-03	2.603						
0.351	0.467 U.53u	$\cup .569 \quad 0.601$	$0.620-6.644$	0.651	0.675	0.687	0.709	0.731	44
0.761	$0.775 \quad .789$	0.8000 .809	0.8200 .831	0.855	C. 871	0.889	0.902	0.919	31
0.944	0.955 -.957	0.9640 .769	0.9740 .979	0.985	0.990				
	46.125	8.1428E-03	2.604						
0.217	0.4190 .524	0.5770 .614	0.639 U.661	. 67.9	697	. 709	.731	. 75	767
0.785	0.799 0.8ut	0.821 -.831	0.8410 .854	0.867	84	95	5	. 91	25
0.934	$\begin{aligned} & \cup .939 \quad \cup .947 \\ & 47.563 \end{aligned}$	$\begin{array}{r} .957 \quad 0.967 \\ 7.9129-03 \end{array}$	$\begin{array}{r} 0.9750 .981 \\ 2.605 \end{array}$	0.986	0.990				
0.229	0.407 0.5u7	0.5750 .607	$0.634 \quad 0.655$	0.672	0.685	0.699	0.721	0.739	0.755
0.769	0.7840 .797	$0.8 \cup 70.816$	0.8270 .837	0.854	0.871	0.887	0.899	0.914	29
0.940	0.951 U.959	0.9690 .975	$0.977 \quad 0.984$	0.988	0.991				
	49.000	8.5119E-03	2.606						
0.368	$0.484 \quad 0.538$	0.5710 .595	$0.617 \quad 0.635$	0.652	0.669	0.682	0.709	0.733	0.751
0.768	0.779 U.792	0.8020 .810	0.8190 .828	0.842	0.858	0.872	0.887	0.899	0.916
0.929	0.940 U.949	$0.960 \quad 0.967$	0.9740 .979	0.984	0.990				
\%	50.500	8.0651E-03	2.606						
0.190	0.352 -.499	0.5690 .615	$0.645 \quad 0.667$	0.691	0.707	0.719	0.74	0.769	84
0.799	$0.805 \quad 0.815$	0.8250 .831	$0.836 \quad 0.845$	0.856	0.868	0.884	0.89	0.907	17
10.931	0.941 U.948	$\checkmark .3590 .966$	0.9750 .981	0.985					
	52.000	$8.6167 \mathrm{E}-03$	2.607						
0.306	0.4550 .525	6.5730 .600	0.6290 .646	0.665	c. 684	0.695	0.719	0.737	0.754
0.767	$0.774 \quad 0.784$	0.7910 .799	0.8060 .814	0.027	0.844	0.859	0.880	0.897	0.915
0.934	0.9470 .957	0.9640 .969	0.9740 .979	0.985	0.990				
	54.063	8.4866E-03	2.607						
0.259	$0.444 \quad 0.527$	0.5770 .605	$0.631 \quad 0.647$	0.664	0.675	0.685	0.701	$0.7<1$	0.736
0.750	$0.761 \quad .774$	$\checkmark .7910 .800$	$0.816 \quad \cup .831$	0.865	0.888	0.901	0.916	0.925	0.928
0.937	0.9410 .947	0.9510 .955	$0.958 \quad 0.959$	0.761	0.966				
	55.938	6.4122E-03	2.608						
0.467	0.5740 .627	$\cup .6670 .685$	0.7050 .722	0.735	0.747	0.759	0.779	0.799	0.811
0.827	0.837 v.021	$\cup .365$-. 375	U. 885 U.891	- 0.707	0.917	0.929	0.934	0.939	0.947
. 954	0.961 U.967	U.977 U.976	-.981 -.985	U. 985	0.986				

NR.	$\times(10)$	THFTA (FT)	THETAC	C.F	(i* (FT/S)	11	Pt	
1	3.34	C-00038	0.00670	0.003882	0.097653	2.22	6.4432 F	O_{1}
2	4.24	0.00073	0.00045	0.003852	C. 096763	$2 \cdot 21$	b.1214E	04
3	$5 \cdot 44$	0.00073	C.00104	0.003811	0.096952	$2 \cdot 22$	1.0488E	05
4	6.4.	0.00210	0.00120	C.003776	0.096504	2.22	1.2483E	05
5	7.7\%	().00178	0.00139	$C=003734$	$C=100248$	2-32	$1.5509 E$	05
6	9.18	0.00220	0.00162	0.003684	$0.03506 t$	2.22	1.7esle	05
7	10.47	0.00235	0.00182	0.003640	(1. 1) 94757	$2 \cdot 22$	2.0178 E	05
8	$12.0{ }^{3}$	C.0C207	0.90206	C.003587	(.094054	2.22	$2.3236 E$	05
9	13.57	(1) 00254	0.00228	0.003535	$0=033378$	$2 \cdot 22$	$2.6153 E$	05
10	$15 \cdot 11$	0.00230	0.00231	$0 \cdot 003483$	0.092684	$2 \cdot 22$	$2.9127 E$	05
11	16.56	0.00479	0.60271	C.003434	0.092028	$2 \cdot 22$	3.1919 E	05
12	18.05	0.00310	C.00293	0.003383	0.093569	$2 \cdot 28$	$3.5638 E$	05
13	19.61	0.00360	0.00314	0.003330	0.107931	2.65	$4.5020 E$	05
14	20.90	0.00328	0.00334	0.003283	0.108583	2.68	$4.8843 E$	05
15	22.40	0.00371	0.00353	C.003235	0.110607	2.75	$5 \cdot 3472 E$	05
16	23.95	0.00367	0.00373	0.003183	0.106711	2.68	$5 \cdot 5618 E$	05
17	25.59	0.00427	0.00394	0.003128	0.105599	$2 \cdot 67$	$3.9224 E$	05
18	27.93	0.00360	0.01425	$0 \cdot \operatorname{co3} 44$	0.095434	2.44	$5.9321 E$	05
19	29.67	0.00423	0.00439	0.003009	0.090573	$2 \cdot 34$	5.8912 L	05
20	30.35	0.00413	0.00455	0.002966	0.043574	$2 \cdot 43$	$6.4015 E$	05
21	$31 \cdot 94$	0.00455	0.00475	0.002912	0.090237	2.37	$6.5573 E$	05
22	33.45	(1)00489	0.66493	0.002360	0.089437	$2 \cdot 37$	6.8681E	05
23	35.01	C-00554	0.00511	0.002807	0.090104	$2 \cdot 41$	7.3100 L	05
24	38.0 C	0.00383	0.00346	0.002706	0.0189015	$2 \cdot 42$	1.9826E	05
25	39.53	0.00303	0.00563	0.002654	0.096516	$2-38$	8. 15 COE	05
26	41.07	0.00471	0.00580	0.002602	0.059810	2.49	$8.8767 E$	05
27	42.55	0.00552	O.003 36	0.002551	0.1189234	2.50	9.2346 E	05
28	$44 \cdot 11$	0.00617	0.00612	0.002499	0.098441^{\prime}	2.78	1.0663E	06
29	$45 \cdot 61$	0.00685	- 0.0067	C.002443	0.096731	2.76	1.0447E	06
30	$47 \cdot 13$	C.006b7	0.00643	d.002396	0.092420	$2 \cdot 67$	1.0922 E	06
31	48.64	0.00701	0.00658	0.002345	0.002109	2.69	$1.1357 E$	06
2	50.61	$0.00+47$	$0.10 k 77$	0.002278	0.090755	2.69	$1.1818 \mathrm{E}$	06
33	52.74	0.00732	0.03697	C.002206	0.689336	2.69	1.2314E	06
34	54.54	0.00665	0.00713	0.002145	0.088580	2.71	$1.2806 t$	00
35	55.72	0.00471	0.00723	0.002105	$0.03515 ?$	$2.6 \frac{1}{3}$	1.26975	06

Ne.	(iA)	IFETA (FI)	IHETAC	CF	L* (FY/S)	$\cup 1$	'E	
$\frac{1}{2}$	3.38	CClo	c.cccat	C. $\cos 3674$	C. 10	2.54	E	04
2	4.6		C.00169	C.CO3630	C. 111189	2.63	1.1072 E	
3	t. 25	c.ccilc	c.00132	C. CC 3587	C.1010c 3	2.38	1.3155E	
4.	7.91	C.CCl13	0.00153	C. $\cos 354$	C. 1 c3 350	2.46	$1.6646 E$	5
5	9.35	.00173	c.coll 6	C.co35co	C. 102693	2.46	1.9934 E	
t	1 C .75	Cozcz	C.CCl97	C.cc3458	C. 103948	2.50	2.3422 E	5
7	12.22	CC228	0.00219	C.CC3413	C. $C 97493$	$2.3 t$	2.5241 E	5
8	13.88	C.ccet	C. 00241	C. 003368	C. 096637	2.35	2.8374 E	05
9	15.4 C	cozte	$\begin{gathered} c \cdot c o z 62 \\ C O=4 \end{gathered}$	$\mathrm{C} \cdot \mathrm{CC} 3323$	$\text { C. } 093757$	2.3 C	3.0751 E	05
10	$\begin{aligned} & 17.02 \\ & 18.53 \end{aligned}$	$\mathrm{CC} 26 \mathrm{~S}$	$\begin{gathered} C .00284 \\ \hline .00355 \end{gathered}$	$\begin{array}{r} C C 3276 \\ \\ C O 3 \end{array}$	$\begin{aligned} & 0.094507 \\ & 0.10530 \end{aligned}$	2.34 2.63	3.4498E	5
11	$\begin{aligned} & 18.53 \\ & 20 . C 2 \end{aligned}$	$\begin{gathered} 0613 \\ 00312 \end{gathered}$	$\begin{aligned} & 0.00365 \\ & 0.00325 \end{aligned}$	$\mathrm{C} \cdot \mathrm{CO} 232$	$0-105530$ $\mathrm{C} .102021$	2.63 2.56	4.2219 E	5
13	21.54	CC33	C.00345	C.CC3145	C. 103039	2.6C	4.8tCGE	5
14	23.13	CC3 31	0.00365	c. 0 - 3099	C. 103321	2.t3	$5.2654 E$	
15	24.55	CO388	0.00384	C. 003057	C. 102626	2.63	$5.5945 E$	05
16	26.c8	00426	C. 004 C 3	0.003012	0.098190	2.53	5.7274 E	05
17	27.6¢	OC454	0.00422	C. Cr. 2968	C. 097466	2.53.	t.0610E	
18	29.12	CC452	0.00441	C. CC 2924	C. 100940	$2.64{ }^{\circ}$	6.6742 E	05
19	30.63	CC495	C. 0.0459	C.CO2880	C. 096862	2.60	6.9130 E	05
20	32.17		$\mathrm{C} . \mathrm{CC4} 77$	$\text { C.CO2E } 35$	$C . C 97515$	2.59	7.2322F	05
21	$33.6 t$	$.00543$	0.00493	$\mathrm{C} \cdot \mathrm{CO} 2792$	$\begin{gathered} C=09650 \\ 0 \end{gathered}$	2.59	7.58325	5
22	35.14 36.66	$0 C 481$ 06447	6.00512 0.00529	C.00274	$C .098647$ 6087515	2.38	7.2437E	5
24	38.23	-004to	C.CC547	C.00265	C.084586	2.32	7.69551	05
25	39.73	CC583	C. Co5t3	C.CO2t15		2.37	$E \cdot 1732 \mathrm{E}$	
26	41.2ϵ	CC575	¢.CC590	C. 002570	C.095507	2.38	\%.541.9E	05
27	42.62	00587	G.C0596	C. CO2523	C.08509?		8.9027 F	
28	44.34	$\text { CC5 } 73$	$0.00 \cos$	$\mathrm{C} \cdot \mathrm{CO} 2481$	$c=09645$	2.38	$9.1411 E$	05
29 30	45.86	$\begin{aligned} & 599 \\ & 582 \end{aligned}$	0.00627	$C .002437$	0.084217	2.43 2.46	G.t. 1.0125 E	05
31	4 c . 84	$\bigcirc \cdot 0 \cdot 617$	c. 00657	$\bigcirc \cdot \operatorname{coz} 350$	C.09545.	2.78	1.18C7E	0.6
32	5 C .34	C.Cc727	C.C0t 72	C. 002306	C.Cs488.	2.50	$1.6525 E$	06
33	51.5	C.cces 2	C.ccter	C. Cr. 2258	C. 0.95513	2.54	.1485E	06
34	53.74	C572	C.C07C4	¢.CC2207	C.033877	2.53	1.1779 E	06
35.	55.70	. ©col3	C.00722	C.CO2150	C.095c79	2.57	1.2547 E	

TABLE 5

ND.	$X(I N)$	THETA (FT)	THETAC	CF	U* (FT/S)	$U 1$	RE	
1	3.65	0.00100	0.00065	0.005687	C. 127984	2.40	7.6000E	04
2	5.69	0.00108	0.00112	0.005536	0.127740	2.43	1.1988E	05
3	7.13	0.00112	0.00145	0.005429	0.127075	$2 \cdot 44$	1.5085E	05
4	8.63	0.00179	0.00179	0.005318	0.225970	$2 \cdot 44$	1.8291E	05
5	10.09	0.00204	0.00211	0.005208	0.125181	2.45	$2.1494 E$	05
6	11.56	0.00247	0.00243	0.005099	0.124418	2.46	$2.4732 E$	05
7	13.09	0.00459	0.00275	0.004986	0.123921	2.48	$2.8211 E$	05
8	14.56	0.00449	0.00305	0.004876	0. 123248	2.50	3. $1553 E$	05
9	16.06	0.00354	0.00335	0.004765	0.122759	2.51	3.5068E	05
10	17.55	0.00341	0.00364	0.004655	0.19882	2.49	$3.7853 E$	05
11	19.00	0.00378	0.00392	0.004547	0.121107	2.54	4.1892E	05
12	20.56	0.00434	0.00421	0.004431	0.119833	2.55	$4 \cdot 5446 E$	05
13	22.03	0.00423	0.00448	0.004322	0.118674	2.55	$4 \cdot 8824 E$	05
14	23.56	0.00472	0.00475	0.004208	0.117192	2.56	5.2260E	05
15	25.06	0.00537	0.00501	0.004096	0.15856	$2 \cdot 56$	$5.5696 E$	05
16	26.56	0.00571	0.00526	0.003985	0. 114448	2.56	$5.9121 E$	05
17	28.27	0.00559	0.00554	0.003858	0.133744	3.04	$7.4711 E$	05
18	29.82	0.00574	0.00579	0.003743	0. 136487	3.16	8. 16635	05
49	31.00	0.00608	0.00597	0.003655	0. 110081	2.57	6.9293E	05
20	32.50	0.00542	0.00620	0.003544	0. 108559	2.58	7.2758E	05
21	34.00	0.00614	0.00641	0.003432	0.107086	2.59	7.6293E	05
22	35.56	0.00664	0.00663	0.003316	O-105381	2.59	7.9893E	05
23	37.09	0-00736	0.00684	0.003202	$0=103758$	2.59	8. 3494 E	05
24	38.50	0.00680	0.00703	0.003098	0.102130	2.59	$8.6725 E$	05
25	40.06	0.00807	0.00722	0.002982	$0=100314$	2.60	9.0350E	05
26	41.50	0.00730	0.00740	0.002875	0.098577	2.60	9.3663E	05
27	42.88	0.00744	0.00756	0.002773	0.096884	2.60	9.684 1E	05
28	$44-56$	0.00813	0.00775	0.002647	0.094704	2.60	1.0069E	06
29	46.13	0.00814	0.00792	0.002531	$0=092640$	2.60	1.0426E	06
30	47.56	0.00791	0.00807	0.002424	0.090699	2.60	$1.0755 E$	06
31	49.00	0.00851	0.00821	0.002318	0.088713	2.61	1. $1085 E$	06
32	50.50	0.00807	0.00835	0.002206	0.086554	2.61	1.1424E	06
33	52.00	0.00862	0.00849	0.002095	0.084372	2.61	1. 1768 E	06
34	54.06	0.00849	0.00866	0.001942	0.081226			06
35	$55 \cdot 94$	0.00641	0.00881	0.001802	0.078288	2.61	1. 2664 E	06

[^0]: * (Numbers indicate references in reference list).

[^1]: * (Manufactured by Stein-Hall Limited).

[^2]: * Canada Pumns Ltd. 1400 U.S. gal/min., 1150 r.D.m., 20 ft. head, 10 H.P.
 + Robbins and Meyers Co. $3 \phi, 55 \mathrm{~V}, 11 \mathrm{~A}, 1140$ r.n.m. 10 H.P. continuous duty.

