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ABSTRACT 

Codes with a tree structure find wide use in data 

compression and error correction. It is generally 

impractical to view and weigh all the branches 1n a code 

tree, so a search algorithm is employed which considers some 

but not others in a predetermined fashion. Traditionally, 

the efficiency of code tree search algorithms has been 

measured by the number of tree branches visited for a given 

level of performance. This measure does not indicate the 

true consumption of resources. Cost functions are defined 

based on the number of code tree paths retained, S, the 

length of the paths, L, and the number of code tree branches 

searched per branch released as output, E(C]. Using these 

cost functions, most of the existing algorithms as well as 

some new algorithms proposed here are compared. 

These new algorithms include three metric-first 

algorithms. The first one, the merge algorithm, uses, in 

addition to the main list used by the stack algorithm, an 

auxiliary list to store paths. The merge algorithm reduces 

2 
the dependence on S for the product resource cost from O(S ) 

for the stack algorithm to O(S 4/ 3 ) for the merge algorithm. 

A generalization of this algorithm reduces- the product cost 

iii 



to O(S log S). The second algorithm uses a class of 

height-balanced trees, known as AVL trees, to store code 

tree paths, resulting in an alternate method to the merge 

algorithm achieving O(S logS) cost. 

The third algorithm, using the concepts of dynamic 

hashing and trie searching, provides important modifications 

to the Jelinek bucket algorithm by incorporating dynamic 

splitting and merging of buckets. This strategy provides a 

balanced data structure and reduces the product cost still 

further compared to the first two algorithms. 

We next turn to analysis of the number of nodes 

visited during a search. Using the theory of multitype 

branching processes in random environments an equation for 

node computation is derived for asymmetric source coding by 

the single stack algorithm. This equation is shown to be 

the stochastic analog of an equation for symmetric sources. 

Simulation results, obtained by encoding the Hamming source 

by the single stack algorithm, are used to optimize the 

performance of the algorithm with respect to the bias 

factor, stack length, and limit on computation. A modi­

fication to the algorithm that raises the barrier during 

forward motion provides a better distortion performance. 

The metric-first stack algorithm is used to encode a 

voiced speech sound. From experimental evidence, it is 

iv 



shown how to optimize the algorithm's SNR performance with 

respect to the algorithm's storage, execution time, and node 

computation. For each of these, the optimal parameterizing 

of the algorithm differs markedly. Similarities are pointed 

out between the results for speech and earlier theoretical 

results for the binary i.i.d. source with Hamming distortion 

measure. It is shown that metric-first algorithms may 

per form better with 11 real 1 i fe 11 sources 1 ike speech than 

they do with artificial sources, and in view of this the 

algorithms proposed here take on added significance. 
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CHAP'rER 1 

INTRODUCTION 

There is an ever increasing demand to transmit 

information rapidly. Shannon 1 s paper [ 1] , which laid the 

foundation for active research in information theory, showed 

that reliable communication with arbitrarily low probability 

of error was possible at rates below channel capacity. 

Conversely, at all rates exceeding capacity, the error 

probability will approach unity with increasing code word 

length. Excellent references [2]- [6] are available, giving 

both theoretical codes satisfying Shannon 1 s existence 

theorem, and practical and instr umen table codes. We beg in 

by discussing codes and code tree search algorithms used in 

source encoding and channel decoding, and, as a prelude, a 

digital communication system model. 

1.1 A Digital Communication System Model 

Figure 1.1 shows, in block diagram form, all the 

relevant functions performed in the transmission of 

information. The source produces outputs xt' at time t, 

chosen according to a given probability distribution from 

the space X of possible source outputs. The entropy of the 
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source H(X) is greater than C, the channel capacity. 

into 

where 

The source encoder transforms the 

an approximation xt such that the 

X is the reproducer alphabet. 

source output 

entropy H (X) < 

Equivalently, the 

source encoder can be viewed as a device that partitions the 

space 

and 

of possible 

informs the 

source outputs into equivalence classes 

channel encoder which of these the 

particular source output belongs to. The source encoder is 

a complex device that performs a many-to-one mapping. Its 

complexity depends on how stringent the requirements on the 

mapping are. 

The channel encoder receives the output of the source 

encoder and by means of a sui table encoding transforms it 

into a form suitable for efficient transmission over the 

channel. This is a relatively simple device that performs a 

one-to-one mapping. 

The signal received by the channel decoder at the 

other end of the channel is corrupted by noise introduced in 

transmission through the channel and the function of the 

decoder is to determine from the sequence of received 

symbols over an appropriate period of time which of the mes­

sages was sent. Like the source encoder, the channel de­

coder is a complex device performing a many-to-one mapping. 

Upon receiving the estimate ~'t of the channel 

decoder, the source decoder performs a one-to-one mapping 
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and presents its estimate yt of the source output xt to the 

user. Like the channel encoder, the source decoder performs 

a relatively simple task. 

The above discussion brings out the similarities 

between source encoders and channel decoders and also 

between channel encoders and source decoders. However, the 

channel decoder is required to find the best estimate 

whereas the source encoder finds an estimate of the source 

output that meets a certain distortion criterion. Usually, 

there exist several estimates that meet the criterion. 

1.2 History of Source Coding and Sequential Decoding 

Algorithms 

Huffman's codes [7] are examples of optimal variable-

length, uniquely decodable, noiseless source codes. These 

codes are difficult to implement and they almost always 

involve encoder buffer overflow [8], no matter how large the 

buffer is. We are concerned here not with noiseless coding, 

but with coding with respect to a fidelity criterion: that 

is, with determining the least rate at which information 

must be transmitted in order that the total distortion does 

not exceed some given distortion D. Coding with a fidelity 

criterion was first proposed by Shannon in [9] , where he 

defined the rate distortion function of an information 

source. Berger's book [10] is devoted entirely to these 
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rate versus distortion trade off functions R(D) for various 

sources. Jelinek [4] and Gallager [5] devote a chapter each 

to this problem while a chapter in [6] concerns itself with 

trellis source coding using convolutional codes and the 

Viterbi algorithm. 

Source coding is a two-fold design problem consisting 

of 1) the design of good codes that guarantee performance 

arbitrarily close to R(D), and 2) the design of efficient 

algorithms that explore among the code words in order to 

find one with the given distortion performance. Only ten 

years after the birth of rate distortion theory did the 

first paper [11] specifically on codes appear. In [11], 

Jelinek showed the existence of a class of codes with a 

perfectly regular tree structure (henceforth known as tree 

codes) that achieved performance arbitrarily close to R(D), 

thus giving attention to the first design facet of source 

coding. Viterbi and Omura [21] have shown the existence of 

time-varying trellis codes that achieve the rate distortion 

bound. It is the popular belief that fixed convolutional 

codes will achieve the limit predicted by rate distortion 

theory, but this remains an open problem. 

The second facet of source coding was considered by 

Jelinek and Anderson [12] when they proposed their (M, L) 

algorithm to encode the binary i.i.d. source. Later it was 

applied to speech as well [13]-[15]. Now there exist 
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several other algorithms [16]-[18] that have been proven to 

achieve performance arbitrarily close to R (D) . All these 

algorithms search tree codes, hence the name code tree 

search algorithms. An algorithm utilizing convolutional 

codes is the Viterbi algorithm [19],[20]. 

The developments in the sequential decoding area led 

by almost a decade those in the field of source coding. So, 

the wealth of information and analysis techniques 

accumulated in the sequential decoding field were often 

exploited to advantage in the source coding area. We 

briefly trace the development in sequential decoding. 

For sequential decoding algorithms, the counterpart 

of the distortion criterion for source coding is the 

probability of error due to incorrectly decoding a received 

symbol. Wozencraft [22], [23] devised the earliest 

sequential decoding method that achieved arbitrarily small 

error probability at non-zero rates. Fano [24] introduced 

modifications to it that made the algorithm analytically 

tractable. Massey [25] has shown that the Fano metric (see 

sec. 1. 3 for its definition) proposed in [24] is optimum in 

that it enables the algorithm to minimize the probability of 

error. He further shows that the algorithm due to 

Zigangirov [26], and invented independently by Jelinek [27], 

follows naturally as a consequence of this interpretation of 

the Fano metric (this algorithm tries to maximize the 
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probability that the next step taken is along the correct 

path; that is, the node with the best metric is extended at 

any time) • R e c en t 1 y , two o the r a 1 go r i t hm s [ 2 8 ] , [ 2 9 ] have 

been proposed, but these are variations of the Zigangirov-

Jelinek stack algorithm. 

1.3 Tree Codes and Convolutional Codes 

By a tree code is meant a code whose words may be 

graphed on a perfectly regular tree structure with b 

branches out of each node and a symbols on each branch. 

Such a code is said to have a rate 

log 2 b 
R = ---

13
-- bits/source symbol. (1 0 1) 

A tree code has a d i sting ui shed node called the root node 

from which all code words begin. Each code word corresponds 

to a path starting from the root node and consisting of a 

chain of code tree branches. 

Figure 1.2 shows a rate 1/2 binary tree code with b = 

s = 2. A path through the tree code has a path map 

associated with it. The upward branch out of a node has 
I 

associated with it the path map symbol 0 and the downward 

branch the symbol 1. For example, a path with path map 1 0 

1 1 is shown dotted in Fig. 1.2. 

The tree has four levels, one corresponding to each 

branch along a path of the code tree. Sometimes it is 
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convenient to associate levels with nodes in which case we 

make the convention that the root node is at level 0, all 

descendents of root node are at level 1, all descendents of 

the level 1 nodes at level 2, and so on. Theoretically, a 

tree code can have infinitely many levels, but any useable 

and instrumentable code has a trellis structure requiring 

only finite storage. 

Assume that a binary source is to be transmitted over 

the channel. A channel encoder using the tree code of Fig. 

1.2 will follow the upward branch from the current node at 

which the encoder is stationed if a 0 is to be transmitted 

and the downward branch if a 1 is to be transmitted, and 

will transmit the reproducer symbols on the branch followed. 

·rhus, for a message sequence of 1 U 1 1, the reproducer 

sequence is 11 10 00 01. 

A source encoder using the tree compares the source 

letter at a given level with the code word letters at that 

level and assigns a metric to code tree paths based on a 

distortion criterion. Define the metric 1.t(g.ta) of a code 

tree path x.ta of R.l3 code word letters (or R. code tree 

branches) by 

( 1. 2) 

where ~.ta is a sequence of .ta source letters, d(.,.) is the 

distortion between ~R.I3 and xR.I3 and D* is a bias factor. For 

additive single letter fidelity criterion 



and, 

where 

consequently, 

s x . 
.. 1 

u(~ta) 

and 

d(x2- 8 , ;2-s) 

R. "s = E u(~i) 
i=l 

are groups 

10 

R. s ;~) = E d(~i' 
i=l ... 1 ( 1. 3) 

( 1. 4) 

of s source and code word 

letters, respectively, at level i. By encoding a source we 

mean finding a path through the code tree so that the per-

letter distortion of the 

d . . . d R.S 1stort1on D; 1.e., (~ , 

encoded path 

~R.S)/R.S < D. 

is within a given 

For the Hamming 

distortion criterion, i.e., d(x, x) = o "', where o is the· x,x 

Kronecker delta, the best (the least distortion) code tree 

path corresponding to the source letters ~ 8 = 01 11 10 11 is 

shown by the thick line in Fig. 1.2. 

For sequential decoding, we define the metric of a 

code tree path ~R.S as 

where 

R. 
E 

i=1 

"s u(x.) 
-1 

s "a p(x.jx.) 
[ 

... 1 ... 1 ] 

p{x~) 
... 1 

( 1. 5) 

- SR ( 1. 6) 

and x and x are code word letters and channel output letters 

(received symbols) to the decoder, respectively; p{xilxi) is 

the distribution of the channel output conditioned on its 

input and 



= E q(x
1
.) p(x.jx.) 

1 1 }{. 
1 

11 

( 1. 7) 

where q(xi) is the distribution of the received symbols. 

Here the channel is assumed to be memoryless. 

The metric defined in (1.6) and (1.7) was first 

introduced by Fano [24] and is known as the Fano metric. It 

has the property that its average per- symbol metric 

increment is always positive along a correct path provided R 

is less than C, the channel capacity, while along an 

incorrect path it is always negative [24]. This enabled 

Fa no to postulate an algorithm based on these heuristic 

considerations, wherein, sooner or later, any incorrect path 

being pursued fell below a threshold, while the correct path 

eventually remained above it. 

We now briefly consider convolutional codes and their 

trellis structure. A general rate R = \} /8 convolutional 

code is genera ted by a 1 inear sequential c ire ui t with \l 

inputs and 8 outputs. For simplicity, we consider rate 1/8 

convolutional codes. 

Figure 1.3(a) shows a shift register circuit that 

generates a rate 1/2 convolutional code of order 2 and Fig. 

1.3(b) its state diagram. By state of the encoder we mean 

the tuple (yi-l' yi_ 2), the immediate two past inputs to the 

shift register. If Y· 1 
is the present input, a 

transformation of the state from (yi-l' yi_ 2) to (yi, Yi-l) 
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decode a given sequence of symbols [20]. If code state 

transitions branch out without remerging, the tree code of 

Fig. 1.2 results and the Viterbi algorithm may not be used. 

1.4 Expected Node Computation for Code Tree Search 

Algorithms 

Define the node computation performed by an algorithm 

as the average number of code tree branches that the 

algorithm must scrutinize in order to release an output 

symbol, for a given level of source encoder fidelity or 

decoder probability of error. 

The stack, M-, and 2-cycle algorithms (see Chapter 2 

for a survey} for source coding obey the asymptotic formula 

as D + !l [30] 

-a.C 2 
E[C]"' c1 exp[(D-!l} ] ( 1. 8} 

where E[C] is the expected node computation, c1 and c 2 are 

constants depending on the source and rate of the code, a. is 

1/2 or 3/4 depending on the algorithm used, Dis the per-

source-digit average distortion achieved by the algorithm, 

and !l (•} is the inverse rate distortion function. For. the 

binary i.i.d. source) the rate distortion function is given 

by R(D} = Hb(p} - Hb(D}, where p is the probability of a 0 

and H ( • } 
b is the binary entropy function. The values of a. 

for various algorithms and sources were given in Anderson 



16 

[ 3 0] • 

The single stack algorithm's node computation is 

bounded from above by (1.8) with a= 1/2 [18]. Viterbi and 

Omura [21] demonstrate the relation 

for trellis source coding using the Viterbi algorithm. From 

experimental work for the M-algorithm, a highly truncated 

Viterbi algorithm, Anderson [30] conjectures a y ~ 4/3. 

For sequential decoding, asymptotic results show that 

the average number of computations required to decode a 

received symbol is Pareto distributed (see Savage [31]), 

i . e. , 

P{E[C] ~ N} ~ AN-p (1.10) 

where A is a constant and p, called the Pareto exponent, is 

a function of the rate and channel. 

There exists a rate R , called the computational comp 

limit, above which the expected node computation increases 

exponentially with the number of levels in the code tree and 

below which it is bounded by a constant. R is a comp 

function of the channel probabilities and exceeds C/2 for 

binary symmetric channels (BSC), for which it is given by 

[3, p. 399] 

Rcomp = 1- log 2 [1 + 2 lp{l-p)]. (1.11) 
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1.5 Applications of Code Tree Search Algorithms 

Tree codes find wide use in source coding and 

sequential decoding. Algorithms to explore the code words 

exist and their use is well known (see [12], [16]- [18] for 

source coding and [20], [24], [26]- [29] for sequential 

decoding). They also find applications in speech and text 

recognition, and Forney [32] has applied the Viterbi 

algorithm to the intersymbol interference reduction problem. 

Use of this algorithm in syntactic pattern recognition [47] 

has also been proposed. 

Recently code searching schemes have been extensively 

used in speech encoding [13]-[15], [33], [34]. The 

M-algorithm encoded speech yields 4-8 dB improvement in 

mean-square error over ordinary single-path searched DPCM 

[13]. This is a surprizing result in view of the only 1 to 

1. 5 dB predicted by theory for Gaussian-d istr ibu ted analog 

sources [10, Sec. 5.1]. Wilson [15], using adaptive tree 

encoding, concludes that the performance of his system at 8K 

bits/s is as good as a non-adaptively encoded system ~t 16 K 

bi ts/s. Tests with a hardware tree speech encoder of rate 

16 K bi ts/s have yielded telephone quality speech with an 

SNR of 18 dB and a high of 22-24 dB for voiced sounds [51]. 

Code searching schemes are finding increasing 

applications in source coding and processing pictures as 

well [35]-[38]. Using theM-algorithm to encode synthetic 
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2-D- autoregressive random images, Modestine et al. [36] 

demonstrate that the algorithm achieves performance close to 

the rate-distortion bound. The single stack algorithm has 

been used to encode 2-D binary sources similar to facsimile 

images [37]. An issue here is whether to utilize 

2-dimensional code searching; Stuller and Kurz [38] show 

that the use of 2-D code searching gains 1.2 to 2.7 bits per 

picture element {pixel) over the corresponding 1-D 

independent coding of line scans. Aside from source coding, 

the Zigangirov-Jelinek stack algorithm has recently been 

applied to the contour extraction problem [35]. 

Sequential decoding algorithms have found 

applications primarily in satellite and space communications 

[39]-[41]. Use of sequential decoding results in a coding 

gain of up to 7 dB [42]. Sequential decoding has also been 

successfully applied to low frequency (about 75 bits/s) and 

low SNR submarine communication [43]. 

Several other transmission-related applications have 

been reported in the literature. Code distance properties 

of convolutional codes, such as the minimum free distance 

dfree and column distance functions, have been analyzed 

using sequent i a 1 decoding a 1 go r i t hm s [ 4 4 ] [ 4 5 ] . 

Similarities between the maximum-likelihood Viterbi decoding 

and dynamic programming and also between the Viterbi 

decoding and shortest path problems of graph theory are well 
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known [20]. Recently, tree coding algorithms have also been 

formulated as mathematical programming problems and 

similarities have been pointed out between them and the 

branch and bound problems [46]. These applications point to 

their use not only in source coding and sequential decoding 

but also in a wide variety of other fields. 

1.6 An Overview of the Thesis 

This thesis is motivated by the increasing 

application of code tree search algorithms and the need to 

devise eff ic ien t methods. Chapter 2 surveys some existing 

algorithms. In Chapter 3 the inadequacy of node computation 

as a measure of sequential coding efficiency is pointed out 

and a cost measure based on the size of and number of 

accesses to storage is proposed. 

In Chapters 4, 5, and 6 three new code tree search 

algorithms are proposed; the first uses multiple side lists 

and efficient merge techniques, the second uses a height­

balanced tree data structure, and the third uses dynamic 

hashing concepts that provide modifications to the Jelinek 

bucket algorithm. Resource costs derived for these 

algorithms point to their cost effectiveness. 

Chapter 7 analyzes an existing algorithm, the single 

stack algorithm, using the theory of multi type branching 

processes in random environments and derives an equation for 
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node computation. Chapters 8 and 9 report simulation 

results for both theoretical and "real life" sources and 

bring out the similarities between the results. Simulation 

results are used to optimize the performance of algorithms 

with respect to storage, execution time, and node 

computation. 



CHAPTER 2 

A SURVEY OF EXISTING CODE TREE SEARCH ALGORITHMS 

2.1 Introduction 

Code searching schemes may be classified as sorting 

or non-sorting, and as depth-first, breadth-first, or 

metric-first, where the "metric" is some measure of fidelity 

or likelihood. A number of schemes are summarized in Table 

2.1. Among algorithms which sort, the well-known stack 

algorithm (see [26] or [27] for channel decoding or [17] for 

source encoding) extends code tree paths in a purely 

metric-first manner, meaning that the next path extended is 

always the one with the best metric. Sorting is used to 

single out the best path. The usual method is an ordering 

procedure. A purely breadth-first algorithm that sorts is 

the M-algorithm. This algorithm views all branches at once 

that it will ever view at a given depth, then sorts out and 

drops paths ending in certain branches before continuing on. 

Another sorting scheme is the bucket algorithm [27]. 

A second class of algorithms does not sort; that is, 

paths are never compared with one another. The simplest 

such method is the single stack algorithm, a purely 

depth-first method suggested by Gallager [18]. This scheme 

21 
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'rable 2.1: Search Rationales for Certain Selective Search 

Sorting 

Non-Sorting 

Algorithms 

Metric-First 

Stack Alg. 

Bucket Alg. 
(roughly) 

Merge Alg.* 

Generalized* 
Merge Alg. 

AVL-Based Alg.* 

Dynamic Bucket 
Alg. * (roughly) 

Breadth-First Depth-First 

M-Alg. 

Haccoun's Alg. (both) --

x~---- Multi. Stack Alg. --XX 

Single Stack 
Alg. 

Fano Alg. 
-- 2-Cycle Alg. (both) --

The asteiisks indicate algorithms proposed in this thesis. 
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simply pursues a path until its metric falls below a discard 

criterion, and at any one time it stores the identity of 

only one path. A direct implementation is a single 

push-down stack. (It should be mentioned that the more 

widely known "stack algorithm" cited above in fact contains 

no stack, but only a list.) A familiar variation of the 

single stack method is the Fano algorithm; the peculiar 

character of this search stems from its method of computing 

the discard criterion. A more sophisticated non-sorting 

procedure is to set aside certain good paths for later 

attention as they appear in the depth-first search. This 

method stores a number of paths, but they are known to be 

good ones; an example is the 2-cycle algorithm [16]. 

All of the above methods are selective search 

algorithms, which leave some, and usually most, paths 

unviewed. The Viterbi algorithm [19] is an exhaustive 

search, which considers all possibilities inherent in the 

code by exhibiting all the states of the code generation 

structure; its cost is simply a constant times the number of 

generator states. Uddenfeldt and Zetterberg [48] have 

discussed a depth-limited exhaustive search. Here, we shall 

treat only selective search algorithms. 
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2.2 Basic Features of Searching Algorithms 

It will be convenient first to define features which 

are common to all algorithms. 

The aim of a source encoder search is to find a path 

with distortion as close as possible to Shannon's 

distortion-rate function ~(R), where R = log 2b/B is the rate 

of the code tree with b branches out of each node and B 

symbols on each branch. Searching begins at a root node and 

continues until some path reaches depth L. The algorithm 

then decides once and for all which first branch to release 

as output; the end node of this branch becomes the new root 

node. Searching resumes until some path again reaches total 

length L branches. The procedure continues indefinitely in 

this "sliding block" fashion, releasing some branch at depth 

R. and accepting a new data group at depth HL. (Such a 

sliding block search should not be confused with a sliding 

block code.) An older attitude toward searching is the 

"block" search, in which an L-branch path is released all at 

once and the search begins anew at the path's end node. We 

give no separate analysis for this alternative, although 

most of our conclusions apply. 

Paths are described by path maps made up of b-ary 

symbols, { 0 , . . .. ' b-1}, one for each branch. The code word 

letters on a path's terminal branch are somehow computable 

from its path map. Associated with each map is a metric ~, 
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either a likelihood of the path or a measure of its 

distortion, and sometimes an indication of the path's length 

or pointers to other storage locations. The metric is 

defined in (1.2) for source coding and in (1.5) to (1.7) for 

sequential decoding. 

The following pr imi ti ve functions are performed by 

all algorithms and will be enclosed throughout within angle 

brackets. 

<Ex tend Path>: The algorithm extends a path one branch 

forward, "viewing" the branch. Viewing includes calculating 

the code word symbols on the branch, fetching the input data 

group corresponding to its depth (source symbols to be 

encoded or channel symbols to be decoded) , calculating the 

metric increment for the branch, and forming the new metric 

total for the path. Branches are viewed either singly or in 

groups of b, depending on the algorithm. In the former 

case, only a single branch, say the 0-th, is viewed during 

the first visit to the original path's end node; if there is 

a later visit, the 1-st will be viewed, and so on until all 

b branches are viewed. Other algorithms <Extend b Paths>, 

and view all b at once. 

<Ambiguity Check>: The algorithm checks all eldest path map 

symbols to determine if they are consistent with the symbol 

released as output. If a symbol is not, the path must be 

deleted. Ambiguity checks are necesary for two reasons. If 
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a path fails to check but is kept in storage, it may later 

be released as output even though its antecedent does not 

match earlier output. The encoder and decoder will then not 

develop the same path. Ambiguity checks also prevent the 

accidental storage of two paths with the same symbols. If 

two path maps once differ (as they do initially), they can 

become identical only when the differing symbols are 

deleted, and this is forewarned by the check. A separate 

ambiguity check is unnecessary in non-sorting algorithms, 

which store only a single path. 

<Delete Path>: The algorithm deletes an entire path map. A 

deletion must occur whenever the number of paths stored 

exceeds s, and whenever a path fails an ambiguity check. 

<Release Output Symbol>: The algorithm releases as output 

the earliest symbol of the best path map it has. In sorting 

algorithms, this triggers an ambiguity check to make certain 

that all path maps have the same symbol at this depth. 

In non-sorting algorithms, the possibility exists 

that no path satisfies the constraints of the algorithm, an 

event we call <algorithm failure>. The cost of recovering 

from this event is small. The easiest method is to move one 

branch forward of the root node, declare the branch 1 s end 

node to be the new root node, and start again; another 

method leading to better performance is to save the longest 

path ever viewed, and declare its end node to be the new 
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root node. 

In describing the algorithms here and throughout, we 

use a structured language similar to that found in [49]. A 

procedure has the following format. 

Procedure <name of procedure> 

begin 

statements 

end 

end <name of procedure> 

A statement may be a simple assignment statement such as i + 

j (i is assigned the value of variable j) or any one of the 

following four control statements. 

1) If condition 

then statement a 

else statement b 

end if 

2) for i = initial value to final value 

in steps of increment do 

statement 

end for 

3) while condition do 

statement 

end while 

4) do until condition 

statement 
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end do until 

In 1), statement a is executed if the condition is 

true and statement b if it is false. 2) is similar to the 

DO statement of FORTRAN. In 3), the statement following do 

is executed so long as the condition remains true. In 4) , 

the statement is first executed and the condition evaluated. 

So long as the condition is 

repeatedly executed. Several 

false, the statement is 

statements may be enclosed 

between begin and end in order to avoid ambiguity. 

feature also facilitates nesting of statements. 

This 

2.3 Non-Sorting Algorithms 

The distinguishing feature of non-sorting schemes is 

that they store only a single path, extending or 

backtracking along the path in response to the value of the 

path metric. 

The Single Stack Algorithm 

This algorithm [18] proceeds depth-first directly 

through the code tree until the path metric falls below a 

discard criterion B; the search then backtracks to the first 

untried branch and proceeds depth-first again. The symbols 

of the path map are stored in a push-down stack, and in the 

steady-state operatiotr of the algorithm, an output path map 

symbol is forced out the bottom whenever a depth is visited 
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for the first time. 

By convention we assume that on first visiting a 

node, branch 0 out of the node is viewed, on the second 

visit branch 1, and so on until all branches are viewed, at 

which time the search must backtrack. An example of this 

routine appears in Fig. 2.1 for b = 2; X's indicate a path 

that has fallen below the discard criterion. It is more 

straightforward to think of the discard criterion B as a 

constant, although Davis and Hellman [50] show that B 

probably must be a function of the input data. For these 

cases, a constant B may increase the node computation or 

prevent the scheme from quite achieving the distortion-rate 

function. 

Using a single push-down stack and a comparison to a 

discard criterion, the single stack algorithm is the 

simplest of all search algorithms. 

Procedure <SS> 

begin 

i + metric (root node) + 0; 

STACK +empty stack; 

STACK <= (metric (root node), path map of root node) 

While not all sour·ce symbols are encoded do 

begin 

While length of path in the stack < L do 
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begin 

end 

<extend path> whose map is in the stack, 
viewing branch i out of its 
end node; update ~, the 
metric of the path in the 
stack; 

if ~ > B then STACK <= ( ~, i) ' i + 0 

else do until i < (b-1) 

if STACK not empty 

then ( ~' i) <= STACK 

else declare <algorithm 
failure> 

end if 

end do until 

i + i+l 

end if 

end while 

<Release output symbol> 

end while 

end 

end <SS> 

In the above procedure the statement STACK <= (~, i) 

is used to indicate that the tuple (~, i) is pushed onto the 

stack; (~, i) <=STACK denotes popping of the stack. 
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The 2-Cycle Algorithm 

Algorithms similar to the single stack procedure 

search depth-first, backtracking only when the path falls 

below the discard criterion. Another method which uses the 

same stack structure is to search all paths lying above the 

criterion and having length i < L. Of these, only a much 

smaller set of "good" paths, say those with metric J.1 ~A, 

are saved for later attention. ·rhis procedure has been 

called the 2-cycle algorithm [16]. 

In viewing all paths for which B < J.1 < A, the search 

(the "barrier cycle") may proceed either depth or 

breadth-first, but only a depth-first search uses the simple 

push-down stack structure. Whenever the path in the stack 

does penetrate the save criterion A, it is copied into a 

second "save" list. When the present barrier cycle search 

terminates, a new cycle begins from the end node of the top 

path in the save list. In doing so, the algorithm seeks to 

concatenate another good path onto an old one, and form in a 

depth-first manner a long chain of good paths. 

, The logical ordering of the save list is last-in 

first-out, so that this list too is a push-down stack, with 

entire path maps of up to L symbols as entries. The entries 

must be properly linked together; this can be done by 

pointers, but a simpler way is to identify the generation 

number of each path. A path in gener~tion g is at the end 
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of a chain of g good paths, produced by g barrier cycles. 

The push-down storage regime will create a generation 

ordering 1 ike that shown in Fig. 2. 2; a moment's thought 

will show that the generation 19 paths must all stem from 

the last saved path at generation 18, and that all the 18's 

stem from the single path at 17. In case barrier cycles 

forward of all the 19's fail to produce good paths, the top 

18-th generation path must be deleted, and new 19-th 

generation paths attempted from the second 18-th. 

If the save stack is finite with Lpd entries, each 

stacked path forces another out the bottom once the stack is 

full. The bottom path is discarded unless it is the last of 

a generation, in which case it is released as output. 

Procedure <2-Cycle> 

begin 

Barrier stack +Save stack +empty stack; 

i + 0, g + 1; 

Barrier stack <= (metric (root node), path map of root 
node) 

While not all source samples are encoded do 

begin 

While length of path in the barrier stack < L do 

begin 

<extend path> whose map is in the barrier stack, 
viewing branch iOUt of its end node; update ~; 

i f A > ~ > B then ba r r i e r stack < = ( ~ , i ) i + 0 
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else if J.1 ~ A 

then 

begin copy barrier stack path into save 
stack with generation g 

do until i < (b-1) 

begin 

if barrier stack not empty 

then ( J.l,i) <=barrier stack 

else while save stack not empty 
and barrier stack 
empty do 

begin 

if generation =g 

then 

Barrier Stack <= 
save stack 

g + g+l' i + 0 

else <delete path> 

g + g-1 

end if 

end 

end while 

if barrier stack empty 

then declare 
<algorithm failure> 

end if 

end if 

end 



end if 

end 

end while 

end 

end if 

end do until 

i + i+l 

<Release output symbol> 

end 

end while 

end 

end <2-Cycle> 

2.4 Sorting Algorithms 
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Sorting schemes compare paths on the basis of metric 

in order to decide which to extend and which to delete. 

These algorithms view fewer branches than non-sorting 

algorithms, but the cost of sorting is often very high. 

The Stack Algorithm 

As mentioned previously, the stack algorithm is based 

not on a stack, but on a list of code tree paths. The usual 

view is that this is an ordered list; the next path extended 

is always the best in terms of ~, and sufficient worst paths 

are deleted to keep the list at length S paths. An 

alternate view is that new paths are simply appended, and 
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that the list is probed for its best entry prior to each 

extension and for its worst entry prior to each deletion. 

The cost is similar in either case, and we shall take as the 

defining attributes for the stack algorithm simply a single 

list and metric-first extensions and deletions. 

Since a path's metric indicates the likelihood that 

the best path in the code tree lies ahead of it, it comes as 

no surprise that this metric-first procedure appears to find 

a path at a given metric level with the least node 

computation of any scheme (see [17] or [27]). Despite this, 

the space-time cost of the stack algorithm seems to exceed 

that of any other scheme for binary sources; we shall see 

that the metric-first procedures proposed in Chapters 4, 5, 

and 6 have a much lower cost. 

In the stack algorithm's list, paths vary in length. 

Once the algorithm reaches a steady state, an ambiguity 

check must be performed whenever the length of a path in 

storage exceeds L. One can show that this occurs whenever a 

tree depth is reached for the first time. Fig. 2.3 shows a 

list data structure in which each entry consists of three 

subwords, a path metric, an indication of path length, and a 

path map. The path maps are left justified, and to find an 

end node, the length subword must be consul ted. All paths 

end on the left a·t a point L branches before the deepest 

tree penetration; during an ambiguity check all these 
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earliest branch symbols must be checked to see if they agree 

with the symbol released as output. 

1 
s 

Figure 2.3 

,,..,.. ___ L 
log u-p-; 

Example of Stack Algorithm List, Showing 
Paths, Length Indicators, and Metrics. The 
Top Path is About to Penetrate a New Depth, 
Causing an Ambiguity Check; the Fourth Path 
will be Deleted if its Earliest Symbol does 
not Pass 
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Procedure <Stack> 

begin 

list +path map of root node; 

metric (root node) + 0; 

While not all source symbols are encoded do 

begin 

While length of top path in the list < L do 

begin 

<extend b paths> from the end node of the 
topmost path in the list; 

<Delete> this path; 

<Order> into the list the b new paths; 

end 

end while 

Perform <ambiguity check> 

<Release output symbol> 

end 

end while 

end 

end <Stack> 

The M-Algorithm 

We conclude with a breadth-first sorting algorithm. 

In general, such a procedure views all branches at depth R. 

that it will ever view, deletes paths according to some 

criterion, and then moves on to the next depth. The 
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M-algorithm [12] deletes all paths except a fixed number M. 

Breadth-first searches are synchronous (that is, all paths 

have the same length) and they are effective at low 

intensities of searching; they are thus good candidates for 

practical application [51], [15]. 

In its specific operation, the M-algorithm moves 

forward by extending the M paths it has retained to form bM 

new paths. All the terminal branches are compared to the 

input data cor responding to this depth, metr ics computed, 

and the (b-l)M poorest paths deleted. 

Procedure <M-Alg> 

begin 

Obtain root node; 

metric (root node) + 0; 

While not all source symbols are encoded do 

begin 

While length of the retained paths < L do 

begin 

end 

<Extend b paths> from each retained path; 
save these in the list; 

<order> the list to find the best M paths; 

<Delete> the remaining paths; 

end while 

Perform <ambiguity check> 



end 

<Release output symbol> 

end 

end while 

end <M-Alg> 

2.5 Conclusions 
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We have surveyed three pure form algorithms (single 

stack, stack, and M-) and one (2-cycle) that combines 

breadth-first and depth-first techniques. The bucket 

algorithm is described in Chapter 6. The algorithms of 

Chevillat and Costello [29] and Haccoun and Ferguson [28] 

are used for decoding convolutional codes and are not 

surveyed here. Ng et al. [52] have described another 

sequential decoding algorithm. 



CHAPTER 3 

A COST FUNCTION FOR CODE TREE SEARCH ALGORITHMS 

3.1 Introduction 

The usual measure of efficiency for code searching 

algorithms has been the node com2utation, the number of 

branches visited during the progress of the scheme divided 

by the branches released as output, for a given level of 

source encoder fidelity or decoder probability of error. As 

the algorithms have come into more use, however, it has 

become clear that this is not a sufficient measure. Several 

authors ([53], [54]) have found that stack algorithm source 

encoding is exceptionally time consuming, even though it has 

the least node computation of any known method. Experience 

with M-algorithm hardware speech encoders [51] shows that 

this method is efficient despite a poor node computation. 

In sequential channel decoding and in sequence estimation, 

the situation is similarly confused. The Viterbi algorithm 

finds wide use despite its exhaustive nature. The 

selectively searching algorithms which should be more 

efficient suffer erasures brought on by computation 

overload, and find only occasional use in applications like 

deep space communication. What seems to be missing here is 

41 
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a factor to account for the size and complexity of the 

required information structures, 

intensity of their use. Here we 

in addition to the 

develop a systematic 

measure of cost for code tree search algorithms, and use it 

to compare them. 

3.2 A Definition of Algorithm Cost 

A more real is tic measure of algorithm cost can be 

based on the number of storage elements in a scheme and the 

number of accesses to them. The space complexity of an 

algorithm is the size of resources that must be reserved for 

its use, while the time complexity counts the number of 

accesses to this resource. We shall consider the product of 

these two, the space-time complexity, as our primary measure 

of a scheme's total cost. 

A space-time product cost measure assumes that 

storage blocks "wear out" after a certain number of accesses 

and that the cost of blocks is proportional to their speed, 

assumptions that are roughly true for physical devices. 

Parallel processing is of no benefit under this measure, 

since there is no gain in trading space for time. A second 

measure of cost, more suited to software implementations, is 

the space + time complexity. The sum of space and time, 

this measure stresses more the opportunity cost forgone by 

assigning resources to a user. Different constants are 
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often placed before the two components, but these will have 

no asymptotic significance. We shall list results for both 

measures. 

A perhaps more traditional measure of complexity for 

sorting methods is the number of comparisons, but this 

measure does not account for both space and time, and as 

mentioned previously, not all code searching algorithms 

sort. 

Other measures of coding algorithm cost could be 

proposed than the space and time cost of storage blocks, but 

this kind of measure relates closely to the nature of such 

algorithms. Code search algorithms basically move in and 

out of storage data about code tree paths. Other tasks, 

such as computing metr ics, checking for ambiguous output 

symbols, and generating code word letters, form a constant 

multiplier on the cost of storage access. The major 

determinants of cost remain the storage size and the pattern 

of accesses called for by the steps of the algorithm. 

A simple building block for algorithm storage (and 

thus for algorithms) is the random-access memory (RAM) , but 

it is interesting to observe that a simpler structure, the 

push-down stack, can generally be used. Many algorithms 

relate more directly to push-down stacks, and all but one 

(the M-algorithm) have the same asymptotic complexity based 

on them as on RAM's. We shall thus base our discussion in 
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the first instance on push-down stacks. 

Three variables dominate the asymptotic cost of the 

algorithms we analyze, the length of path an algorithm can 

retain, L, the number of paths it can retain, S, and the 

expected node computation already defined, E [C]. We assume 

that L and S are finite and fixed in value. It is important 

to realize that algorithms differ significantly when these 

are so constrained; when the number of paths exceeds S, for 

instance, some mechanism must delete excess paths, and 

whenever a path exceeds length L, its oldest branch must be 

checked to insure that it is consistent with other paths 

kept to this depth. These routines may change the 

asymptotic cost. 

3.3 A Cost Analysis of Algorithms 

We turn now to a space and time cost analysis of the 

algorithms surveyed in Chapter 2. For clarity, we emphasize 

sequential source encoding schemes throughout, although the 

analysis applies as well to channel decoding and sequence 

estimation. The algorithms chosen for exposition are those 

which differ from each other in fundamental ways, or which 

demonstrate a principle in pure form. Often, a variation or 

a scheme combining several principles will be most effective 

in applications. 
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The Single Stack Algorithm 

The space cost of the single stack algorithm is L 

b-ary symbols (plus a small overhead for side registers and 

code letter generation) • The time cost is upperbounded by 2 

accesses/branch viewed, since the algorithm scrutinizes a 

branch once during forward motion in the code tree and at 

most once when backtracking. The space-time product cost is 

thus 

access-symbols/output branch ( 3 • 1) 

where Css denotes the node computation of the single stack 

algorithm, and here and throughout f(x) = O(g(x)) means that 

jf(x)/g(x) I remains bounded (we say that f(x) grows no 

faster than g(x), or that f(x) 

asymptotically) • 

is "big oh of" g(x), 

The Fano algorithm is a variant of the single stack 

procedure in which the discard criterion varies up and down 

as a function of the path metric. Searching proceeds 

depth-first until a path falls below 8, but 8 is raised in 

increments whenever possible during visits to new nodes, and 

is lowered when necessary during returns to previously 

visited nodes. The cost of the Fano algorithm is again 0 (L 

E [CFA]), but it is not clear which of CFA and CSS is the 

larger. 

the set 

The opportunistic changing of 8 undoubtedly reduces 

o f node s v i s i ted , but the a 1 go r i t hm m a y v i s i t 

certain of the nodes many times. Nonetheless, if CFA can be 
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measured, then the form (3.1) gives the total cost. 

The 2-Cycle Algorithm 

In this algorithm, costs stem from two sources. In 

the barrier stack, we have as in the single stack algorithm 

time cost: about 2 E[C 2CJ accesses/branch released 
( 3. 2) 

space cost: 

In the save stack, 

time cost: 

space cost: 

L b-ary symbols 

NA + 1 accesses/barrier cycle 

Lpd (L + log Lpd) b-ary symbols 
( 3 • 3) 

where NA is the number of paths that have l.l ~ A during a 

barrier cycle. In the parameterization of the 2-cycle 

algorithm, ENA is set near 1, so that the space-time cost 

incurred in the save stack will be smaller than that 

incurred in the barrier cycles if the expected number of 

branches viewed in a barrier cycle is less than Lpd· 

far, experiments (see [16]) indicate this to be true. 

Thus 

The space-time cost of the 2-cycle algorithm is then 

still 

O(L E [C 2cl) access-symbols/branch released ( 3. 4) 

as it was for the single stack and Fano algorithms. 
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The Stack Algorithm 

Most of the cost of this algorithm resides in the 

ordering procedure (see Chapter 2). Assume the list is 

instrumented with two push down stacks, the first containing 

the ordered list, and the second functioning as a scratch 

pad. To insert a path in order, the first stack is poured 

into the scratch stack until the location of the new path 

appears; then the new path is stacked in the first stack, 

and the scratch stack poured back. During the pour-back, 

excess paths are automatically deleted out the bottom of the 

first stack. For this ordering, 

time cost: 

space cost: 

(average) S accesses/branch viewed 

2S (L + log L + p) b-ary symbols 
( 3. 5) 

where log L and p are the storage required for length and 

metric information of paths, respectively. Other steps of 

the algorithm form a constant overhead except for the 

ambiguity check, which can be combined with the deletion 

procedure. In other implementations it cannot, but since 

the check occurs with each depth penetration rather than 

each path extension, while still having cost similar to 

(3.5), its cost is of lower order and can be neglected. 

Total space-time complexity is thus about 2S 2 (L + log 

L + p)E[CSA], or (since p is small) O(LS
2

E[CSA]) asymptoti­

cally, where CSA is the node computation of the stack 
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algorithm. We have continued the use of push-down storage 

in the implementation for consistency with the other 

algorithms, but a RAM-based cost estimate is similar. 

Unless E [C
8

A] is very small, the added s 2 
factor 

will make this cost much larger than that of the non-sorting 

algorithms. (We shall consider the experimental evidence in 

Chapter 10 and see that this is indeed so.) All research 

studies on the stack algorithm have reported computational 

difficulties in its use. J e 1 in e k [ 2 7 ] suggests a c h a in e d 

storage scheme for the path maps but it is doubtful this 

w i 11 change the as ym p tot i c cost • He also suggests 

alternative algorithms, a combining of the Fano and stack 

algorithms ([27], pp. 682-ff), and a bucket algorithm. The 

latter is a basically new scheme to which we return in 

Chapter 6. 

The M-Algorithm 

The cost of the M-algorithm is (set S = M) 

time cost: k"S log S accesses/branch released 
( 3. 6) 

space cost: (k' + L + p)bS b-ary symbols 

0 (S log S) is the number of comparisons done by RAM-based 

sorting methods such as Mergesort and Heapsort ([55], Chap. 

5). Here, k' and k" are small overheads to account for 

sophistications required in procedures like Mergesort. 

Implemented in push-down stacks the algorithm has space and 
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time cost 2 (L + p) S and bs 2 . In either case there is no 

separate term for node computation, since this is 

automatically bM. Asymptotically, the total cost is 0 (LS 2 

log S) access symbols/branch released for RAM storage. 

3.4 Conclusions 

Results are summarized in Table 3.1. It is clear 

that there are drama tic differences among the algorithms; 

all depend linearly on L, but some, like the single stack 

algorithm, have no dependence on S, while others range as 

high as s 2 log S. As has been shown in earlier work, there 

are also wide variations in E [C], and the M-algorithm in 

particular has no separate dependence on this factor. 

It was not our intention to optimize over the choice 

of the three major cost factors, or over the many lesser 

factors and parameter settings, but only to establish the 

cost functions. An accurate optimization would require much 

further work. The experimental work thus far available does 

allow certain speculations about an "optimal" alg9r i thm, 

however, and these appear in Chapter 10. A survey of 

existing code search algorithms and their resource costs 

were reported in [56], [78]. 
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Table 3.1: Asymptotic Cost of Certain Algorithms in the 
Limit of Intensive Searching, per Output Symbol 
Released. Space in b-ary Symbols, Time in 
Accesses to Storage. C = Branches Visited/ 
Output Symbol Released, L = Length of Retained 
Paths, S = Number of Retained Paths. 

Algorithm 

Single Stack 

Fa no 

2-Cycle 

Stack 

M-

Bucket 

Merge* 

Generalized 
Merge* 

AVL-Based* 

Dynamic Bucket* 

(Space) (Time) 

0 (LE [CSS] ) 

O(LE[CFA]) 

O(LE[C 2CJ) 

O(LS
2

E[CSA]) 

0 (LS 2 Log S) 

O{L(SE[CSA]+S
2

} 
+ HJ 

O{L[s
413 

E[CSA]J} 
+ O(S 2 ) 

n n 
L[{O(S2 /(2 -1) 

+ (n-l)S} E[CSA] 

+ s 2 + L:r: A~J 
1=2 1 

O(LS logS E[CSA]) 

+ O(LS 2 ) 

O(LSE[CSA]) 

(Space)+(Time) 

O(L+E[CSS]) 

O(L+E[CFA]) 

0 ( LLpd+E [C 2CJ ) 

0 (LS+SE [CSA]) 

O(LS + Slog S) 

O(LS)+O(S+E[CSA]) 
+ HJ 

S + 0 { (LS) l/2 

( 1 + E [ CSA] ) } 

0[ (L+l) (n-1)/n 

Sl/2] E [CSA] 

n 
+ S + L:i=2 Ai 

0 (LS) + E [CSA] 

O(log S) 

O(LS) + O(E[CSA]) 

The asterisks indicate algorithms proposed in this thesis 



CHAPTER 4 

THE MERGE ALGORITHM 

4.1 Introduction 

We propose here a new algorithm, called the merge 

algorithm, that has a greatly reduced resource cost compared 

to the stack algorithm. The merge algorithm uses in 

addition to a main list of size S, which serves the same 

purpose as in the case of the stack algorithm, an auxiliary 

list of size T to store paths. Both lists are of width L 

symbols. Sorting the much longer main list has made the 

metric-first stack algorithm so expensive to implement. By 

using a shorter auxiliary list to order paths and merging it 

periodically with the main list, the merge algorithm reduces 

the resource cost of the stack algorithm. 

In this chapter, by merging we refer to the following 

process. Let there be two sorted arrays x1 ~ x 2 ~ x 3 ~ ... 

< x and y 1 < y 2 < • • • < y . m - - - n The merging process-merges 

these two arrays into a single sorted array z 1 ~ z 2 ~ ... ~ 

zm+n· A simple algorithm to perform the above operation is 

as follows. 

51 
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Procedure <Straight Merge> 

xm+l + Yn+l + (X) 

i + j + 1 

for k = 1 to m+n do 

if x. < y. 
l. J 

then zk + xi' i + i+l 

else zk + y.' 
J 

j + j+l 

end if 

end for 

end <Straight Merge> 

The above procedure requires m+n comparisons. 

Another merging algorithm known as binary merging [55, pp. 

20 5-20 6] requires at most rag (m+n)l + min ( m' n) ' where the m 

notation rxl denotes the smallest integer N such that N ~ X. 

We assume the use of straight merge algorithm in computing 

the costs of the merge and the generalized merge algorithms. 

We describe the merge algorithm for code tree 

searching below and in the succeeding sections derive its 

resource cost. The generalized merge algorithm fs then 

described followed by its cost derivations. 

4.2 The Merge Algorithm 

Procedure merge 

[initialize] 

Assign root node to the main list; 
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metric (root node) + 0; 

[encode] 

While not all source samples are encoded do 

begin 

While the auxiliary list can take in b more 
paths do 

begin 

end 

If the lengths of the top paths in the main 
ITst and the auxiliary list < L, the width of 
the list 

then 

begin 

end 

If the metric of the top path in the 
main list < the metric of the top 
path in the auxiliary list 

then <extend> the 
--the main list 

top path from 
and <delete> 

this path 

else <extend> the top path 
the auxiliary list 
<delete> this path 

end if 

from 
and 

<Order> the newly extended paths 
into the auxiliary list 

else perform <ambiguity check> and 
<release ouput symbol>; 

end if 

end while 
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Merge the auxiliary list with the main list; {the 
auxiliary list is now empty and a new merge cycle 
starts all over again} 

end while 

end <merge> 

The above procedure extends, at each time instant, 

either the top path from the main list or that from the 

auxiliary list, whichever has the largest metric. This 

makes the algorithm strictly metric-first. All the extended 

paths are reordered into the auxiliary list. Once the 

auxiliary list is full, it is merged with the main list. 

After merging, only the best S of the S+A paths remain in 

the main list and the worst A are dropped. The auxiliary 

list is now empty and is ready to take in the next set of A 

paths. 

4.3 Cost of the Merge Algorithm 

Expressions for the different cost measures, proposed 

in Chapter 3, are now derived for the merge algoritfim. It 

will be shown that the optimal size of the auxiliary list is 

influenced by the cost criterion chosen for minimization. 

In the following, symbols S and A refer to the sizes of the 

main and auxiliary lists respectively; L is the width of the 

1 ists. Expressions for the comparisons-based and product 

cost measures of the merge algorithm appeared in Anderson 
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and Mohan [56]. 

Comparisons-Based Cost Measure 

Define first a merge cycle as the operations done in 

extending paths from the main and auxiliary lists, filling 

the auxiliary list, and merging it with the main list. The 

total number of comparisons done in a merge cycle is then 

computed as follows. 

involves about A2;2 

Ordering paths into the auxiliary list 

comparisons. 

requires another S+A comparisons. 

Merging the two lists 

Comparing the two top 

paths in order to make the search metric-first requires 

another A comparisons. Thus a total of S + 2A + A2 /2 

comparisons are done in a merge cycle. Note that at least A 

branches are viewed in a merge cycle. More than A may have 

been viewed since paths from the auxiliary list may also be 

extended. Dividing the expression for the total number of 

comparisons by A gives a tight upperbound of S/A + 2 + A/2 

comparisons per branch viewed. Minimizing the above 

expression with respect to A yields A "' I2S for an optimal 

auxiliary list size. 

Substituting the optimum A into the expression S/A + 

2 + A/2 yeilds I2S + 2 comparisons per branch viewed for the 

merge algorithm compared to the S required for the stack 

algorithm. ·The increase in storage is 12S/S, an 

asymptotically insignificant factor. Introducing the term 
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for ambiguity check yields a total cost of approximately 

(/2S + 2) E[CSA] + S Comparisons/branch 
released 

( 4. l) 

The reason for the significant reduction in the 

number of comparisons lies in the ability of the merge 

algorithm to take advantage of the already order'ed main 

list. Note that reordering the extended paths directly into 

the much 1 onge r rna in list would dramatically increase the 

cost, since S accesses would be required for every branch 

ex tended. On the other hand, the merging strategy requires 

a cost of "'2S for every 12S branches viewed or a cost of 

:=/2S for every branch viewed. 

Space-Time Product Cost Measure 

In a merge cycle there are A2/2 accesses in ordering 

a size LA storage. Finding the best path to extend next by 

comparing the two top paths in the main list and the 

auxiliary list requires A accesses to a size LS storage, and 

A accesses to a size LA storage. Merging the two lists 

requires S accesses to LS, A to LA, and (S+A) accesses to 

L(S+A). The total space-time product cost for a merge cycle 

is 
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Dividing the above expression by A yields LA 2/2 + 3LS + 3LA 

+ 2LS 2/A as the product cost per branch viewed. Minimizing 

the above expression with respect to A yields A ~ (12 s) 21 3 

for an optimum auxiliary list size. Minimized product cost 

is about (2.38) Ls 413 per branch viewed. 

Note that the ambiguity check is performed each time 

a symbol is released as output. Cost of performing this 

Inserting this term 

and accounting for the storage of p and log L bits taken up 

by the metric and length arrays, respectively, yield a 

product cost of about 

(L + log L + p) [(2.38)s 413 E[C ] + s 2 + (/2s) 4/ 3 ] SA 

which is asymptotically 

L[2.38 s
413 

E[C 8A] + s
2

] access-symbols per 
branch released, 

( 4. 2) 

where E [CSA] is the expected number of tree branches viewed 

per source symbol encoded by the stack algorithm. Since 

both the stack and the merge algorithms are strictly metric-

first, E[C] is the same in both cases. 

Space-Time Sum Cost Measure 

The total space plus time cost in a merge cycle is LS 

+ LA+ 2S + 4A + A2/2. The cost per branch,viewed is LS/A + 

L + 2S/A + 4 + A/2. Minimizing the above expression yields 

an optimal A ~ (2LS) 112 . Substituting for A into the cost 
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expression, we get 

12LS + L + 128/L + 4 

which is 

"' ( 2 LS ) l I 2 , i f S > > L 

or "' (2LS) 1 1 2 E[C8 A] per branch (4.3) 
released as output 

Adding the term for the ambiguity check yields a sum cost 

per branch released of 

"' {S + (2LS) l/
2 

(1 + E [C
8

A])} ( 4 • 4) 

In order to compare the above three cost measures 

consider an example. Suppose S = 100. In order to minimize 

the number of comparisons, the product cost, and the sum 

cost one requires optimal auxiliary list sizes of 14, 27, 

and 71, ·respectively. Of the three methods of opt imi za-

tions, the comparisons-based one demands the smallest sized 

auxiliary list and the sum cost the largest. The minimized 

costs are 14 E[C 8 A], L[llOO E[CSAJ + 10,000], and {100 + 14 

L
112 

E[C8 A] }, respectively. The corresponding costs for the 

stack algorithm are, respectively, 100 E[C
8

AJ, 20,000 L 

E[C8 AJ' and 100 L + 200 E[C8 A]. But with any measure, it is 

clear from the comparisons that the merge algorithm greatly 

reduces the asymptotic costs. 
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4.4 The Generalized Merge Algorithm 

Next we generalize the 2-list merge algorithm (MA) of 

section 4. 2 as follows. Recall that the MA used a side 

list, the auxiliary list, in order to fill the main list by 

periodically merging the auxiliary list with the main list. 

Next we ask if the resource costs of the MA can be further 

reduced by providing a third list which will be periodically 

merged with the second list. When the second list becomes 

full, it is merged with the main list. This provision of 

successive side lists when carried to its limit emerges as 

the generalized merge algorithm (GMA). 

The GMA uses n lists; list 1 of size S is the main 

list and list i of size A·, i = 
l 

2 1 3, ... , n, are 

successively smaller auxiliary lists. A merge cycle of the 

GMA is defined as the operations required to fill list 2 and 

merge it with list 1. For reasons that will become apparent 

as we proceed, we call this the outer merge cycle (OMC). An 

OMC contains several inner merge cycles (IMC' s). In order 

to fill list 2, list 3 is first filled and then merg~d with 

list 2. The operations carried out in so doing constitute 

an inner merge cycle (IMC 3) from list 3. We require ~21~ 

IMc 3 •s in order to fill all but at most (A3 - 1) locations 

of 1 ist 2. (The notation LXJ denotes the largest integer N 

such that N is less than or equal to x.) In general, if an 

inner merge cycle i ( IMC i) is defined as the operations 
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required to fill all but at most Ai+l - 1 locations of list 

i and merge it with list (i-1), then IMCi-l contains~i-1/A~ 

IMCi's. By definition, the OMC is the same as IMC 2 . 

Initially, the algorithm starts by extending the root 

node and ordering the newly extended paths by their metrics 

into list n. When list n is full, it is merged with list 

(n-1). Now list n is empty again, and the above operations 

are repeated until list (n-1) fills or is unable to 

accommodate another set of An paths. List (n-1) is then 

merged with list (n-2), which empties list (n-1). By 

repeatedly filling list (n-1) and merging it with list 

(n-2), all but at most An-l - 1 locations of list (n-2) are 

now occupied by code tree paths. Then list (n-2) is merged 

with list (n-3), and so on until all but at most A3 - 1 

locations of A2 are filled. List 2 is then merged with list 

1, thus completing an OMC. 

again. 

A new OMC then starts all over 

The GMA extends, at any time, the best of the n top 

paths residing in the n lists. This makes the al9orithm 

strictly metric-first. Selecting the best path requires at 

most (n-1) comparisons. For the GMA to be meaningful, n 

must be of order less than S. Before extending the best 

path a check is made to ensure that it is less than L 

branches in length; otherwise the eldest symbol of the best 

path is released and an ambiguity check is performed on all 



61 

the paths residing in the n lists. 

A recursive version of the GMA is given below. This 

can easily be converted into an iterative version. 

Procedure <GMA> 

begin 

end 

main list + root node; 

metric (root node) + 0; 

while not .all source samples are encoded do 

{fill list 2 and merge it with list 1; i.e., carry 
out an OMC, same as IMC 2} 

perform <IMC 2> 

end while 

end <GMA> 

Procedure <IMCi> 

begin 

{Procedure valid for i = 2, 3, ... , n only} 

if i = n 

then 

begin 

while list n can take b 
select the best of 
residing in the lists; 

more new paths do 
the n top paths 

if the length of the best path < L 

then begin 

<extend> the best path and 
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<delete> this path; 

<reorder> the extended paths into 
list n; 

end 

else begin 

perform <ambiguity check>; 

<release> output symbol; 

end 

end if 

end while 

{merge list n with list (n-1)} 

perform <merge (n-1, n)> 

else begin 

end 

end if 

while list i can take in si+l more paths do 

perform <IMCi+l> 

end while 

perform <merge (i-1, i)> 

Procedure <merge (i, i+l)> 

begin 

if i = 1 
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then merge list 2 into list 1, the main list 

else 

if 

{This is straight merging; excess paths are 
dropped off the bottom of the main list; list 
2 becomes empty} 

list i can take in Ai+l more paths 

then merge list i+l into list i 

{no paths are dropped; list i+l becomes 
empty} 

else {try to merge list i into list (i-1)} 

perform <merge (i-1), i)> 

end if 

end if 

end <merge> 

4.5 Resource Costs of the GMA 

Comparison-Based Cost Measure 

The total number of comparisons done in an OMC may be 

arrived at as follows. Finding the best path for extension, 

which requires at most (n-1) comparisons, will be accounted 

for later. 

Total number of 
comparisons in = 
an OMC 

comparisons done in merging 
lists 1 and 2 + comparisons 
done in filling list 2 

= S + A2 +t!-21~ x (comparisons done in IMC 3) 

= S + A2 + ~2/A_jJ (A2 + A3 + ~3/A.Al x (comparisons 
done in IMC 4)) 



= S + A 2 + ~ 2; A_J.] ( A2 + A 3 + ~ 3 / ~ ( A3 + A 4 + 

~4/~ X ( • • • + ~-2/An-1] (An-1 + An-2 + 

jAn_ 1 /Anl x (comparisons done in IMCn)) .~.))) 

= s + A2 + IA2/A31 (A2 + A3 + IA3/~ (A3 + A4 + 

~~~ x ( • • • + IAn-2/An.::.ll (An-1 + An-2 + 
2 

[An-1/Anj (An-1 +An+ An/2)) ••• ))) 
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( 4. 5) 

Removing the floor signs L J from the above expression and 

dividing it by A
2 

yields an upperbound to the number of 

comparisons per branch viewed, which is 

l/A
2 

(S + A
2 

+ A
2
/A

3 
(A

2 
+ A

3 
+ A

3
/A

4 
(A

3 
+ A

4 
+ 

A4/A5 ( ••• + An-2/An-1 (An-2 + An-1 + An-1/An (An-1 + 

2 An + An/2) ) ••• ) ) ) ) ( 4. 6) 

Minimizing the above expression with respect to An we get 

An = ( 2A ) l/2 
n-1 (4.7) 

Note that if n = 2, the GMA reduces to the 2-list MA and 

that the results from section 4.3.1 agree with (4.7). 

Substituting the expression for optimal A from (4. 7) into 
n 

( 4. 6) we get 

Again, minimizing the above expression with respect to An-l 

we get 

A = 2 1/3 A2/3 
n-1 n-2 

( 4 • 9) 

s im i 1 a r 1 y , 



A n-2 = 21/4 A3/4 
n-3 

A = 21/5 A4/5 
n-3 n-4 

A . n-1 = 21/i+2 Ai+l/i+2 
n-i-1 . . 

A3 = 21/n-1 n-2/n-1 
A2 

A2 = 21/n sn-1/n 

Using the a-notation and expressing the auxiliary 

in terms of S, we get 

A2 = 0 (Sn-1/n) 

A3 = 0 (Sn-2/n) 

A. = O(Sn-i+l/n) 
1 
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(4.10) 

list sizes 

(4.11) 

Substituting the optimal values for A2 , A3 , ... , An from 

(4.11) into (4.6) and adding (n-1) to the resulting 

expressions to account for the number of comparisons done in 

selecting the best path for extension, we get 

O(Sl/n) + 2 (n-1) (4.12) 

for an upper bound to the number of comparisons done per 

branch viewed. Since the smallest list~ list n, must be at 

least of size b, the number of branches out of a node in the 

code tree, we have 



or 

An= O(Sl/n) ~ b 

n < O(logb S) 

Substituting the bound on n into (4.12), we obtain 

O(Sl/n) + O(logbS) comparisons/branch viewed 
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(4.13) 

(4.14) 

Introducing the term for ambiguity check, the above equation 

becomes 

n 
[O(Sl/n) + O(logbS)] E[CSA] + S + .E 

1=2 

comparisons per branch viewed. 

A· 1 
(4.15) 

Table 4.1 gives the list sizes for a main list size 

of 1000 and for n = 2, 3, ... , 5. It is seen that for fixed 

S the number of side lists chosen depends on the value. of 

E[C5A]. For example, if E[C5A] lies between 5 and 12, n = 3 

minimizes the number of comparisons per branch viewed while 

for all values of E[C5A] between 12 and 347, n = 4, and for 

E [CSA] above 34 7, n = 5 are the optimum values, respec­

tively. For a given range of E[C5A] there exists ann that 

minimizes the number of comparisons per branch released. 

The equations (4.11) and (4.15) therefore present a-useful 

set of design criteria for arriving at an optimum n if S and 

E[C5A] are given. 
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Table 4.1 Estimated Comparisons-Based Cost Measure and List 
Size of GMA for S = 1000; Ai's are Calculated 
from (4.7), (4.9) and (4.10) 

Comparisons/ 
n s A2 A3 A4 As branch released 

(from (4.5)) 

2 1000 44 46 E[CSA] + 1044 

3 1000 125 15 27 E [CSA] + 1140 

4 1000 211 44 9 17 E[CSA] + 1264 

5 1000 288 83 23 7 16 E[CSA] + 1401 

Product Cost of the GMA 

Merging list (i-1) with list i requires A. 1 accesses 
1-

to a storage of size LA. 1 , A. accesses to a storage of size 
1- 1 

LA., and (A. 1 +A.) accesses to a storage of size L(A. 1 + 
1 1- 1 1-

Ai). If i = n, in addition to the above mentioned accesses, 

A~/2 accesses to a storage of size LAn are required in 

filling the list. The total product cost in an OMC is then 

calculated as follows. 

Product cost in an OMC 

= L(S 2 + A2 + (S + A ) 2 +~/~ 2 2 
(A2 

2 
+ A2 

3 + (A2 + A ) 2 
3 

+b/~ (A2 
3 

+ A2 
4 + (A3 + A ) 2 

4 

+ ••• 

+ !An-2/An-1/ 
2 + A2 + (An-2 + A ) 2 (An-2 n-1 n-1 
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On dividing (4.16) by A2 , removing the floor signs to obtain 

an upperbound, and minimizing successively with respect to 

A 
n 

A n-1 

A n-2 

A . 
n-1 

= O(A6/7) 
n-2 

= O(Al4/l5) 
n-3 

(2i+2_2)/{2i+2_1) 
= O(A n-i-1 ) 

n n 
A2 = O(S(2 -2)/(2 -1)) 

The constants within the O's of 

(4.17) 

(4.17) for 

calculating up to four auxiliary list sizes are given below. 

For higher values of n the constant is close to 0.5. 

A 
n 

= 1 26 A2/ 3 
· n-1 

0 58 A30/3l 
An-3 = • n-4 

On expressing list sizes in terms of S, we have 

{4.17a) 



n n 
A2 = O(S(2 -2)/(2 -1)) 

n-1 n 
A3 = 0(82(2 -2)/(2 -1)) 

n-2 n 
A4 = 0(82(2 -2)/(2 -1)) 

A. 
2(i-2) (2n-i+2_2)/(2n-l) 

= O(S 
1 

n-1 n 
A = O(S2 /(2 -1)) 

n 

From the above set of equations 

Lim A2 = 0 (S) 
n 

Lim An = O(Sl/2). 
n 

All the other lists are of order between /Sand S. 

Asymptotically, the product cost is 

n n 
L[{O(S 2 /( 2 -l)) + (n-l)S} E[C ] + s 2 + . SA 

n 
l: 

i=2 
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) 

( 4. 18) 

A?] 
1 

(4 .19) 

where L[S 2 + r7= 2 Af] is the cost of ambiguity checks. It 

is no longer clear if this cost can be neglected except when 

the side lists are few. The factor LS(n-1) in (4.19) 

accounts for the cost of selecting the best path. 

Consider the example in Table 4.2. As in the 

comparisons-based example of Table 4.1, the optimum value of 

n depends on the value of E[C5A]. Given n and S, the 

auxiliary list sizes are greater f'or the product cost 
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Table 4.2 Estimated Product Cost Measure and List Sizes of 
GMA for S = 1000; Auxiliary List Sizes are 
Calculated Using (4.17a) 

n s 

2 1000 126 

3 1000 305 57 

4 1000 536 179 

5 1000 680 37 4 

32 

131 26 

Estimated Product Cost 
per Branch Released 
(from (4.17a) and 
(4.16)) 

L [27063 E[CSA] + 10
6

] 

L [16411 E[CSA] 

+ 1.09 X 10 6 ] 

L [11506 E [CSA] 

+ 1.18 X 10 6 ] 

L [11751 E [CSA] 

+ 1.26 X 10 6 J 

measure than for the comparisons-based cost measure. For 

larger n 1 the term corresponding to ambiguity checks in 

(4.19) increases enormously. 

Sum Cost of the GMA 

The space plus time cost in an OMC is 

[LS + LA2 + A1 + A2 + ~~~ (LA2 + LA3 + A2 + A3 + 

+ ~31 ~ (LA 3 + LA 4 + A 3 + A 4 + (4.20) 

+ ~n-1/~ (LAn-1 + LAn + An-1 + An 
2 + An/2) .•• ) ) ] • 

On dividing (4.20) by A2 1 removing the floor signs to obtain 

an upperbound 1 minimizing the resulting equation 

successively with respect to A 1 A 1 1 A 
2

1 n n- n- ••• 1 A2 1 one 

gets the following set of equations for optimal list sizes. 



A2 = 0 ( (L+l) l/n s(n-1)/n) 

A3 = 0 ( (L+l) 2/n s(n-2)/n) 

A. = 0 ( (L+l) (i-1) /n S (n-i+l) /n) 
1 

An= 0( (L+l) (n-1)/n Sl/n). 

It can easily be shown that 

A·= 2 (i-l)/n (L+l) (i-1)/n 8 (n-i+l)/n 
1 

Asymptotically, the sum cost is 
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(4.2la) 

(4.2lb) 

0[ (L+l) (n-l)/n Sl/n] E [C ] + (n-1) 
SA 

n 
(L+2) E[CSA] + S + E A. 

. 2 1 1= 

(4.22) 

where ( n-1) E [CSA] is the cost of selecting the best path 

n and S + Ei= 2 Ai is the cost of performing ambiguity checks. 

Again, as for the product cost, the cost of ambiguity check 

may not be negligible compared to the other two terms in 

(4.22) except for small values of n. 

Table 4.3 gives an example to illustrate the 

significance of the equation for the sum cost measure of the 

GMA given in (4.22). Conclusions cited before regarding the 

optimum value of n for a given range of values of E [CSA] 

hold good here also. 
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Table 4.3 Estimated Sum Cost and List Sizes of GMA for 
s = 1000 and L = 25; A. Is are Calculated from 
(4.2lb) 1 

Estimated sum cost per 
n s A2 A3 A4 branch released (from 

(4.20)) 

2 1000 224 255 E [CSA] + 1224 

3 1000 37 3 139 220 E[CSA] + 1512 

4 1000 477 228 108 221 E[CSA] + 1813 

4.6 Summary 

Expressions for the different cost measures were 

derived for the MA and GMA. It was shown that the MA 

reduces the cost of the stack algorithm. Generalizing the 

merge algorithm yields further cost advantages. Table 4.4 

summarizes the results. 

The GMA is a generalized metric-first encoding 

algorithm. A scheme utilizing multiple side lists proposed 

in the literature is the multiple stack algorihm due to 

Chevillat and Costello [29]. The i r a 1 go r i t hm i s no t a 

strictly metric-first search and does not use merging. 

Another algorithm due to Haccoun and Ferguson [28] maintains 

a list of paths and extends at each time the top M best 

paths. This algorithm is again not strictly metric-first, 

but a combination of metric-first and breadth-first 

techniques; it also does not use merging. Merging to 

minimize the resource cost was first proposed by Mohan and 



Anderson in [54]. 

Table 4.4 Resource Costs of the Stack, 2-List Merge and 
Generalized Merge Algorithms 

Algorithm 

Resource Cost/branch released 

Comparisons- Product 
Based 

Sum 
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Stack O(LS)+O(SE[CSA]) 

2-List Merge O(IS E[CSA]) LO(S 4/ 3 S+O{ (LS) l/2 

(l+E[CSAJ)} 

Generalized 

+O(logbS)] 

E[CSAJ + S 

n 
+ Li=2 Ai 

n n 
L[{O(S2 /(2 -1) O[(L+l)(n-1)/n 

+(n-l)S}E[CSA] Sl/n] E[CSA] 

+ S2 + S + L7=2 Ai 

+ L7=2 AfJ 



CHAPTER 5 

A CODE TREE SEARCH ALGORITHM USING 

A BALANCED TREE DATA STRUCTURE 

5.1 Introduction 

This chapter explores avenues for further reduction 

in the resource cost of an algorithm through the use of 

balanced trees to store code tree paths. We now have two 

types of trees, the code tree used in encoding the source or 

decoding the received symbols and the data tree to store the 

identities or path maps of paths encoded or decoded .by the 

algorithm. A class of balanced trees known as height­

balanced trees (also known as AVL trees) are introduced. 

The use of such trees to store paths reduces the search, 

deletion, and insertion times of paths to O(log S) and 

results in an alternative method to the GMA, achieving 

reduced costs. 

5.2 Binary Trees - Preliminaries 

As a prelude to the topic of balanced trees, a few 

definitions are in order. The definitions here closely 

follow those in [57, Sec. 2.3] and [58, Sec. 2.3]. 

A binary tree is one in which every node has at most 
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two sons. It is defined recursively as follows. A binary 

tree T is either empty or consists of a distinguished node 

called the root node whose left and right subtrees, Tl and 

Tr' are in turn binary trees. 

A binary tree is said to be in symmetric order if all 

names in the left subtree of any node x. 
1 

precede x. 
1 

in 

natural order and a 11 names in the r i g h t s ub t r e e o f x. 
1 

follow x. 
1 

in natural order. Lexicographic ordering is 

synonymous with natural ordering. 

Figure 5.1 shows four different binary trees over the 

names A, B, C, and D with A < B < C < D as their natural 

order. The trees are in symmetric order. 

An extended binary tree (see Fig. 5.2(b)) is formed 

by adding external nodes to the binary tree of Fig. 5.2(a). 

The external nodes are also called leaves. All other nodes 

are called internal nodes. A binary tree with n internal 

nodes has (n+l) external nodes. 

The height hb(T) of a tree Tis defined to be the 

length of the longest path from the root node to an external 

node. 

A binary search tree over names x
1

, x 2 , is an 

ex tended binary tree in which the names ace ur in symmetric 

order. If • • • I y n represent the (n+l) external 

names, then node y 
0 

corresponds to all names that precede 

x 1 , node yi (i = 1, .•• , n=-1) to all names following xi but 



A 

B 

c 

D 

(a} 

Figure 5.1 

(a) 

Figure 5.2 

76 

D 
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8 D A c A 

A 
D 8 

(b) (c) (d) 

Four Binary Trees Over Names A, B, C, and D in 
Symmetric Order 

(b) 

A Binary Tree and Its Extension 
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preceding xi+l, and yn to all names that follow xn. The 

external nodes correspond to 'holes' or 'gaps' in the binary 

search tree. 

Algorithm to Search for a Name in a Binary Search Tree 

A b i n a r y sea r c h t r e e i s sea r c he d f o r a n am e z a s 

follows. 

1) If the tree is empty (i.e. no root node exists), z 

does not exist in the tree. 

unsuccessfully. 

The search terminates 

2) If z precedes the name of the root node, the left 

subtree is searched. 

3) If z follows the name of the root node, the right 

subtree is searched. 

4) If z equals the name of the root node, the search 

terminates successfully. 

The search terminates unsucessfully whenever an external 

node is reached during the search. 

Algorithm to Insert a Name into a Binary Search Tree 

A node is considered a triple (LLINK, NAME, RLINK), 

where the NAME field contains the name associated with a 

node, LLINK a pointer to the left son of that node, and 

RLINK a pointer to the right son. A new name is inserted 

into a binary search tree by the following recursive 
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algorithm. 

1) If the tree is empty, NAME of root node ~ z and LLINK 

(root node) ~ RLINK (root node) ~ A, where A is an 

empty pointer. The algorithm terminates. 

2) If z equals the name of the root node, z already 

exists in the tree. The algorithm terminates. 

3) If the name z precedes the name of the root node, 

follow this algorithm to insert z into the left 

subtree. 

4) If the name z follows the name of the root node, 

follow this algorithm to insert z into the right 

subtree. 

Note that the new node so inserted becomes an end node of 

the tree. 

Algorithm to Delete a Name from a Binary Search Tree 

Figure 5.3 illustrates the deletion algorithm. If 

the name to be deleted z has no son, the link of z's father 

that points to z is replaced by A, the null pointeJ;: (Fig. 

5.3(a)). If z has one son, the link field of the father of 

z that points to z is replaced by the link field of z that 

points to z's son (Fig. 5.3(b)). If z has two sons, then 

the procedure is slightly complicated. Note that the 

predecessor of z by the natural order is the right-most node 

in the left subtree (node yin Fig. 5.3(c)) and that it has 
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Deletion Algorithm; a) z has no Son, b) z has 
One Son, c) z has Two Sons 
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at most one son. Now replace name z by name y and delete 

the node that contained y (z may equally well be replaced by 

the name that follows it in natural order) . 

Some more definitions follow. 

Define a ~~~El~~~_E2~~~X_!~~~ as one 

external nodes on levels q and q+l for some 

complete binary tree with n internal nodes 

q = log 2 (n+l). 

having all 

q. For a 

(5.1) 

The external path length E of a tree is defined to be 

the sum - taken over all external nodes - of the lengths of 

the paths from the root to each external node. 

The internal path length I is the sum - taken over 

all internal nodes - of the lengths of the paths from the 

root to each internal node. 

For a complete binary tree (see [57], [58]) 

E = I + 2n. (5.2) 

Equation (5.1) implies that a name in a complete binary tree 

can be searched for in O(log n) time. A much more complex 

problem is the optimal organization of names with a given 

set of frequencies. Note that Huffman's procedure [57, Sec. 

2.3.4.5] for constructing trees with minimum weighted path 

length will not, in general, produce a tree arranged in 

symmetric order. This problem of constructing optimal 

binary search trees is studied in detail in references [55] , 

[58], [49]. 
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While n random names can be inserted into or deleted 

from a binary search tree in 0 (nlogn) time, the worst-case 

time is O(n 2 ). The quadratic time behaviour is due to the 

tendency o£ the tree to get skewed when names are non-

random. In the degenerate case the tree may just be a 

sequential list requiring linear rather than logarithmic 

time for a single insertion or deletion operation. In order 

to prevent the tree from getting skewed, it needs to be 

rebalanced so that it deviates from a completely balanced 

tree as 1 i ttle as possible. Consider the example in Fig. 

5.4, where a new node is added to the tree on the left. The 

tree is restructured as shown at right. The insertion of 

the new node has affected all the nodes, requiring work 

proportional to n. The height-balanced trees achieve such 

insertions and deletions by carrying out a succession of 

local changes along a single path from the root node to a 

leaf in only O(logn) time. This we study next. 

E 

D 

c G 8 

A D F A c E 

8 

Fig. 5.4 Rebalancing Requires Work Proportional ton 

G 
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5.3 Height-Balanced Binary Trees 

The subject of height-balanced trees for data or file 

organization has been amply treated in the literature (see 

[58, Sec. 6.4], [49, Sec. 4.9], and [55, Sec. 6.2.3]). They 

first appeared in Adelson-Velskii and Landis [59] and hence 

height-balanced trees are also known as AVL trees. A survey 

of different strategies for file searching and organization 

is provided in [60]. The definitions and algorithms in this 

section closely follow [58]. 

Definition: A binary tree T is height-balanced if and only 

if the two subtrees of the root, T and T , satisfy 
R. r 

1) < 1, where h ( • ) 
b denotes 

2) TR. and Tr are height-balanced. 

Figure 5. 5 shows some examples of height-balanced 

binary trees and one that is not. The height constraint 

forces the height-balanced binary trees to differ as little 

as possible from completely balanced binary trees. The 

balanced trees in Fig. 5.5 are in fact the most-skewed 

height-balanced binary trees of height 1, 2, and 3, 

respectively. 

Empirical evidence [55, pp. 440] suggests that the 

number of comparisons needed to insert the Nth item into a 

balanced tree is approximately log 2N + 0. 25 for large N. 

This differs from the average search or insertion time for a 



(a ) 

( b ) 

Figure 5.5 

A 

Figure 5.6 

__ ?ei<1:ht Condition 
7iolated 
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Examples of a) Height-Balanced and b) Non­
Height-Balanced Trees 

E 

A Height-Balanced Tree Showing Balance Factors 
of Nodes 



84 

completely balanced binary tree only by a constant. In fact 

the following theorem ([59], [55, pp. 453]) shows that the 

average search time need never be more than 45% above the 

optimum. 

Theorem: The height of a balanced tree with N 

internal nodes always lies between log 2 (N+l) and 1. 44 

log 2 (N+2) - 0.328. 

Proof: Ref. [55]. 

Figure 5. 6 shows a height balanced tree in which 

balance factors are associated with nodes to indicate their 

height conditions. If hb(T£) and hb(Tr) denote the heights 

of left and right subtrees of a node, respectively, then the 

balance factor associated with that node is \, = or I 

a~cording as hb(Tr) - hb(T
2

) = 1, 0, or -1, respectively. 

Two tree transformations called rotation and double 

rotation are used to restore the balance of a tree after an 

insertion or deletion of a node. In Fig. 5.7(a) a new node 

NEW added to the right subtree of node B changes the balance 

factor of B and makes the right subtree 'too heavy' 

(Subtrees are indica ted by large triangles) . After the 

transformation, as shown on the right side of Fig. 5. 7 (a) , 

the tree is rebalanced and balance factors are changed as 

indicated. This transformation is known as rotation. 

Figure 5. 7 (b) shows a situation, where the new node 

added makes the left subtree of C and right subtree of A 
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(a ) 

A 

c 

( b ) 

Figure 5.7 Examples to Illustrate the Tree 
Transformations: a) Rotation, and 
b) Double Rotation 
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'too heavy'. A transformation known as double rotation (so 

called because of two rotations performed, one around A and 

another around C) restores the balance of the tree. This 

affects the balance factors as shown at right. Note that 

both the transformations, rotation and double rotation, 

preserve the symmetric order of the tree. 

Algorithm for Inserting a New Node into a Balanced Tree 

Using first the algorithm for insertion of a new node 

into a binary tree given in Sec. 5.2, the new node is 

inserted into the balanced tree. Note that this algorithm 

makes the new node a terminal node or a leaf. Consequently 

we need only consider the effect of adding a leaf to the 

balanced tree. The path from the newly inserted leaf to the 

root node is traced upwards incorporating changes to the 

tree depending at most on the two immediately preceding 

transformations on the upward path. The algorithm works as 

follows. 

1) If the current node's balance factor is = it is 

changed to \ if the last step originated from the 

right son and to I if it originated from the left 

son. If the current node is the root node, the 

algorithm terminates; otherwise it continues upwards. 

2) If the current node's balance factor is I or \, it is 

changed to = if the last step or ig ina ted from the 
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shorter of the two subtrees of the current node. The 

algorithm then terminates. 

3) If the current node's balance factor is 1 or \, and 

the last step originated from the taller of the two 

subtrees of the current node, then 

a) if the last two steps originated in the same 

direction, i.e., both from right sons or both 

from left sons, then perform an appropriate 

rotation and terminate the algorithm. Or, 

b) if the last two steps or ig ina ted in the opposite 

directions, perform an appropriate double 

rotation and terminate the algorithm. 

Algorithm for Deleting a Node from a Balanced Tree 

First, using the deletion algorithm of Sec. 5.2 

delete the given node from the balanced tree. As was 

already mentioned in Sec. 5.2, the effect of this algorithm 

was to delete a leaf. Consequently, we need only consider 

the effect of deletion of a leaf on the balanced tree. The 

algorithm traverses the tree upwards from the deleted leaf 

to the root node passing along the message that the subtree 

rooted at the cur rent node has been shortened. In the 

following figures, dotted lines are appended to the subtree 

that has been shortened. 

follows. 

The deletion algorithm works as 
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1) If the current node's balance factor is =, change it 

to I if the right subtree was shortened and to \ if 

the left subtree was shortened. Terminate the 

algorithm. 

2) If the current node's balance factor is I or \, 

change it to = if the taller of the two subtrees of 

the current node was shortened; continue upwards 

passing along the message that the subtree rooted at 

the current node has been shortened. 

3) If the current node's balance factor is I or \ and 

the shorter of the two subtrees was shortened, then 

'too heavy' condition exists at the current node. 

The following subcases exist depending on the balance 

factor of the current node's son. Mirror images of 

the following cases are similarly dealt with. 

a) 

A 8 

A 

Perform an appropriate rotation that restores the 

balance without altering the height of the 
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subtree rooted at the current node and terminate 

the algorithm. 

b) 

Perform an appropriate rotation that shortens the 

subtree rooted at the current node and continue 

upwards. 

c) A 8 

I \ L ____ -:. 

I 

L_ - -- ----
Perform an appropriate double rotation that 

reduces the height of the subtree rooted at the 

current node and continue the algorithm upwards. 

The balance factors of A and C after the 

transformation depehd on the balance factor of B 

prior to the transformation. 

\ 
- ...1 
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Whereas the insertion algorithm requires at most one 

transformation, the deletion algorithm requires as many as 

[h/2] transformations, where h is the height of the tree. 

However, in most cases the algorithm requires a constant 

number of transformations that is independent of the height 

of the tree. 

An astute reader would have by now recognized our 

motivations in describing in detail the concepts of height­

balanced binary trees. If we maintain a height-balanced 

tree data structure whose nodes are code tree paths, with 

tree symmetrically ordered by path metric, then we can carry 

out deletion or insertion of a path in O(logS) time. Though 

the algorithms for insertion and deletion seems complicated 

at first glance, with a suitable data structure, they can 

easily be translated into a language of list manipulation. 

We describe next a metric-first code tree search algorithm 

that uses height-balanced tree data structure to store 

paths. 

5.4 A Code Tree Search Algorithm with Balanced Tree Data 

Structure 

~et a cell consist of the following: path map, S("), 

length of the path, L{"), metric of the Path, J..l("}, a 

pointer to the left s-on, LLINK(•), and a pointer to the 

right son, RLINK ("). Figure 5.8 shows the cell structure. 



Figure 5.8 

s ( . ) !L(·) jJJ(·) 

LL INK I RL INK 

Cell Structure: S (.)-Path Map, 
ll (.)-Metric, LLINK (.)- Pointer 
RLINK(.)- Pointer to Right Son 
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L(.)-Length, 
to Left Son, 

All the available cells are initially linked together and 

maintained in a pool called the available space. Cells are 

drawn from it whenever a path is extended. Deleted cells 

are returned to the available space. 

Initially, the data tree consists of just the root 

node of the code tree. The root node is then extended and 

the b newly extended paths are inserted into the data tree 

using the insertion algorithm of Sec. 5.4. The old best 

path (initially the root node of the code tree) is deleted 

using the deletion algorithm of Sec. 5. 4. At any time 

instant, the best path corresponding to the right most node 

of the data tree is extended and this node is deleted. The 

b new paths are inserted into the data tree by using cells 

drawn from the available space. If the available space 

becomes empty, the worst path corresponding to the left most 

node of the tree is deleted if the metric of the new path is 

greater than that of the worst path and the deleted cell 

used for the new path. If the available space is empty and 
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the new path is 1 poorer 1 than the worst path, it is dropped 

from contention. This provision assures that only the S 

best paths are retained after a path extension. Also, 

extending the right most node of the data tree makes the 

algorithm strictly metric-first. 

Let B point to the node containing the best path and 

W to that containing the worst. In the algorithm that 

follows, by DT we mean the data tree and by CT the code 

tree. 

Procedure <metric-first-balanced-tree> 

begin 

{Initialize data tree, i.e., create its root node} 

S (root node of DT) + path map corresponding to the 
root node of CT; 

RLINK (root node of DT) + LLINK (root node of DT) + A 

~ (root node of DT) + 0; 

B + W + address of root node of DT; 

While not all source samples are encoded do 

begin 

If L(B) < the allowed maximum length of paths, 
L, 

then 

begin 

<extend> the path in B; 

<delete> the cell B; 

<insert> new paths into DT; 
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update B and W; 

end 

else 

begin 

<traverse> the tree in symmetric order; 

perform <ambiguity check>; 

<release output symbol>; 

end 

end if 

end 

end while 

end 

end <metric-first-balanced-tree> 

The resource cost of the above algorithm is 

space cost: LS + S log L + pS + 2 S 1ogb S 

path length 
storage storage 

metric 
storage 

links 
storage 

= S (L + log L + p + 2 1ogb S) 

b-ary symbols ( 5. 3) 

time cost: O(logS) accesses/branch viewed, for deletion and 
insertion of paths, plus 

O(S) access/branch released, for ambiguity 
check (5. 4) 

The total space-time product cost is 

O(L SlogS E[CSA]) + O(LS 2 ) access-symbols/ 
branch released (5.5) 
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In (5.5) we have deleted the logbS term from (5.3) on the 

assumption that L dominates it. Comparing (5.5) with the 

O(S
2

E [C 8A)] product cost of the stack algorithm clearly 

points to the cost reductions obtainable by the balanced-

tree code tree searching scheme. This yields cost 

advantages over the 2-list merge algorithm as well. 

One improvement to the algorithm proposed here is to 

assign a set of paths instead of a single path to a node of 

the data tree . All the paths assigned to a node may have 

metrics J.l(•) lying within M. < J.l(•) < M. + flM, where M. is 
1 - 1 1 

some sui table. number within the allowed metric values for 

paths and f!M a suitable metric increment. Such groups of 

paths are referred to as buckets. This strategy moves the 

algorithm away from being metric-first and forms the subject 

of the next chapter. 



CHAPTER 6 

A DYNAMIC BUCKET ALGORITHM 

6.1 Introduction 

It was shown in Chapter 4 that the dependence on S 

for the product cost of the stack algorithm, s 2 , could be 

reduced to s413 for the 2-list merge algorithm. In Chapter 

5, the use of balanced binary trees to store paths was shown 

to further reduce the dependence on S to SLogS. It is of 

interest to explore other strategies to see if the 

dependence on S can be further reduced. It is shown here 

that relaxing the stringent requirement of always extending 

the best path accomplishes such a reduction in cost. Still 

unanswered is whether we must relax the requirement in order 

to get this cost. 

The algorithms described here make use of the concept 

of equivalence classes known as buckets. A bucket contains 

a set of paths whose metrics fall within a metric range 

assigned to that bucket. Paths are not sorted within a 

bucket, but there is an implicit ordering of buckets. Paths 

chosen from the best bucket are extended and, when storage 

is limited, paths are continually deleted from the worst 

bucket. Since a path from the best bucket, considered for 

extension, need not have the best metric, algorithms using 

95 
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buckets are not strictly metric-first; but they become 

roughly so when buckets are assigned successively finer 

metric ranges. 

The concept of buckets, well known to computer 

scientists in the field of sorting and searching [55, Sec. 

6.4], was first proposed by Jelinek [27] in the context of 

sequential decoding. Dick [53] used this concept for 

encoding Gaussian sources. Data structures for the 

implementation of the bucket algorithm are proposed in [56]. 

Motivated primarily by the concepts of hashing, dynamic 

hasing, and trie searching [61], [55, Sees. 6.3 and 6.4], we 

propose here a new bucket-type code tree search algorithm 

and data structures for its implementation. Before 

describing these, we briefly outline Jelinek's scheme. 

6.2 Jelinek's Bucket Algorithm 

In Jelinek's bucket algorithm [27], two paths belong 

to the same bucket if they satisfy a certain equivalence 

relation defined on their metrics such as, for example, the 

requirement that the integral parts of their metrics be 

equal. Two sets of storage locations are assigned; one is 

the available space and the other the header list* referred 

* Jelinek refers to them as the stack and the auxiliary 
stack respectively. However, we have used the terms 
available, space and headers drawn from 1 ist processing 
languages terminology. 
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to respectively by indices g e {1, 2, •.. , S} and .t e {-K, 

-K+l, .•. , -1, 0, 1, ••. , J}. The range -K to J of the 

header list index .t is so chosen that the path metrics lie 

between -K and J with a sufficiently high probabil iy. A 

location .t of the header list is a pointer G(.t) to the 

bucket .t containing paths, the integral parts of whose 

metrics are equal to .t. A cell g in a bucket consists of 

three types of information, the path information or identiy 

S(g), the metric of the path ~(g), and a pointer P(g) to the 

next entry in the same bucket. The last entry in the 

bucket, or an entry that is the only item in a bucket, will 

have its P(g) value set to 0. The storage information is 

depicted in Fig. 6.1. 

Initially, all the cells in the available space are 

linked together through their pointer fields using the 

procedure <initialize available space>. New cells are drawn 

from it using the <get new cell> procedure. NEWCELL is a 

pointer to the first free cell in the available space. All 

the cells within a bucket are linked together using their 

P( •) fields. There are pointers B and w pointing to the 

best and worst buckets, respectively. A deleted cell is 

returned to the available space and appropriately linked to 

the rest of the cells. 

We now redefine several of the operations such as 

extend, add path, delete path, etc., in terms of the data 
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Header List Available Space 

Pointer to an Location Path Metric Pointer 
Location entry in the g Info. ]l (g) to next 

R. available space s (g) entry 
G ( R.) p (g) 

1 000 -1 1/4 2 

2 1 -1 3/4 0 

3 0100 -2 4 

-3 5 4 001 -1 1/4 1 

-2 3 5 011 -2 1/4 0 

-1 0 6 0110 0 0 

0 6 

1 

2 

Fig. 6.1 The Storage Information at an Intermediate Stage 

During Searching of a Code Tree, h ( ll) = LllJ. 

structures defined in the two preceding paragraphs. 

Procedure <extend> {a path from the best bucket B} 

begin 

g + G (B) 

Compute the cumulative metrics of the b new paths by 
ex tending the path at location g to its b vear est 
neighbours; 

<delete> the path at location g; 

for p = 1 to b do 

begin 

<get new cell>; 

<add path> p at location pointed to by NEWCELL; 
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end 

end for 

end 

end <extend> 

Procedure <add path> {at location p} 

begin 

{let t be the integral part of the metric ~(.) of the 
new path} 

{link the path to the top of bucket t} 

P(p) + G(t); 

G(t) + p; 

{update pointers to best and worst buckets} 

If B < t then B + t; 

If W > t then W + t; 

end 

end <add path> 

Procedure <delete> {path at location p} 

begin 

t + integral part of ~(p); 

if G ( t) = p 

then {cell to be deleted is the first one in bucket 
t} 

G(t) + P(p) 

else {let cell q be the predecessor of p; 
link the successor of p to predecessor of p} 

P(q) + P(p) 



end 
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end if 

{link cell p to available space} 

P(p) + NEWCELL 

NEWCELL + p 

{If the bucket R. happens to be the best bucket B, B 
may have become empty if the deleted path were the 
only one in the bucket; update B} 

while G(B) = 0 do B + B-1; 

{similarly update W} 

while G(W) = 0 do W + W-1; 

end <delete> 

Procedure <get newcell> 

begin 

end 

If available space is not empty 

then return the address of the top cell from the 
available space in NEWCELL 

else <delete> top path from the worst bucket W and 
return this address in NEWCELL; 
Make the worst bucket W the available space 

end if 

Link the available space header to next-to-top cell in 
the available space 

end <get new cell> 

Procedure <ambiguity check> 

begin 

examine each path; 
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<delete> ambiguous paths; 

end 

end <ambiguity check> 

Using the above procedures the bucket algorithm is described 

below. 

Procedure <bucket> 

begin 

<initialize available space>; 

<get new cell>; 

Assign root node to it; metric of root node is 0; 

W + 0; B + 0; 

While not all source s9-mples are encoded do 

begin 

If length of top path in B < L 

then 

begin 

end 

else 

<extend> top path in B; 

{delete this path and add new paths 
into buckets} 

begin 

perform <ambiguity check>; 

<release output symbol>; 

end 



end 

end if 

end 

end while 

end <bucket> 

The cost of the bucket algorithm is 

time cost: K' accesses/branch viewed and 
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K" S accesses/branch released, for ambiguity 

check 

space cost: S (L + log L + p + 1ogb S) b-ary symbols ( 0. 1) 

Here K' and K" are constantsbeing determined by the precise 

sequence of reads and writes in procedures <extend>, <add 

path>, <delete>, etc. The logbS term accounts for the 

storage taken up by the link field P(•). 

the product cost is 

Asymptotically, 

~ LS{E[C 5A] + S} + H access symbols/branch released 

( 6. 2) 

It is assumed here that the node comptuation is close to 

that of the stack algorithm. The factor H accounts for the 

cost of mapping the metric of a path onto one of the 

buckets. The term logbS is omitted under the assumption 

that L dominates it. 

The bucket procedure described above, while retaining 

the essential features of Jelinek's algorithm, is sl igh tl y 

simplified. Further it is presented in the algorithmic 
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language that we use throughout this thesis. Jelinek's 

original 

storage 

scheme permitted paths to be extended as long as 

was available, i.e., there was no explicit 

constraint Lon the path length like we have here. 

6.3 Later Bucket Algorithm Developments 

Ander son and 

bucket algorithm in 

Mohan propose data structures 

[56]. They propose that the 

for the 

bucket 

procedure be viewed as hashed search. In this scheme paths 

are hashed onto one of the Q buckets by a function h(ll), 

called hashing function, that operates on the metrics of 

paths. There is no separate header list as in Jelinek's 

scheme; instead, the first Q locations in the memory form 

headers of ·buckets. Initially bucket 1 is the best bucket 

and bucket Q the worst. The available storage is chained to 

Q. New paths are stored in cells drawn from the worst 

bucket, i.e., the available space. At any intermediate 

point in time, bucket t is the best bucket if t is not empty 

and buckets 1, 2, ... , t-1 are empty. Similarly m is the 

best bucket if m is not empty and buckets m+l, m+2, ... , Q 

are all empty. Buckets are constructed as shown in Fig. 

6. 2. 

Let B refer to the best bucket and w to the worst. 

The primitives <extend path>, <add path>, etc., as defined 

in [56] are as follows. 



II II 
Next empty cell 

Next path extended 

Path 

to 8 

Best Bucket 

Figure 6.2 

to 8+1 toW 

next Bucket Worst Bucket 

Chained Storage of Buckets for Bucket 
Algorithm. W Points to worst Bucket and B to 
Best Bucket 

~ 
0 
.p.. 
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Procedure <extend path> 

begin 

Access bucket B, the best bucket; 

Remove top path, extend it to its nearest neighbours 
and <add paths> to buckets; 

e~ 

Link cell B to next-to-top cell; 

Return the removed cell containing the path just 
extended to the available space, i.e., to bucket W; 

If B is empty update B; 

{while B is empty do B + B+l endwhile} 

end <extend path> 

Procedure <add path> 

begin 

end 

Compute h(~); if h(~) > W then W + h end if 

if h(~) < B then B + h end if 

<get new cell>; 

Link h(~) to point to NEWCELL; 

Place new path in NEWCELL; 

Link NEWCELL to old top cell; 

end <add path> 

Procedure <get new cell> 

begin 

Access bucket W; 



end 

While W is empty do W + W-1 end while; 

Return topcell address pointed to by W in NEWCELL; 

Link W to next-to-top cell; 

end <get new cell> 
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With the primitives defined as given above, the 

bucket procedure described in [56] takes on the same form as 

in section 6. 2. The resource cost formula also takes on 

essentially the same form as in equation (6.2), where H is 

now the hashing function cost. 

In both these schemes, buckets may grow arbitrarily 

large giving rise to imbalancing. Imbalancing is the result 

of a poor choice of hashing function. This gives rise to 

high insertion and deletion times for paths. As both these 

schemes do not have a provision for modifying the hashing 

function while the algorithm is in progress, such an 

imbalancing may occur with a high probabiliy. It is not 

clear what is the choice of optimal hashing function h ( ·) . 

It is unlikely that it is uniform especially as S grows very 

large. It is desirable to redefine h from time to time 

[56], but it is not clear how this is to be done. In order 

to overcome these difficulties, we propose next an algorithm 

that uses buckets that split and merge dynamically according 

to certain criteria. Appropriately, we have named this 

algorithm the dynamic bucket algorithm. Since, during 
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bucket splits and merges, the metric ranges assigned to 

buckets change dynamically, we can view the hashing function 

h(•) as a self-modifying hashing function. This results in 

a more balanced data structure. Larson [61] has proposed a 

dynamic hashing concept that is applicable here. 

6.4 A Dynamic Bucket Algorithm 

Here, there are initially Q root nodes that are 

pointers to Q empty buckets. These root nodes will form the 

root nodes of the data structure to be described and should 

be differentiated from the root node of the code tree. 

Unlike in Jelinek's scheme, here buckets are of fixed 

storage capacity K. 

Initially, root node 1 is the pointer to the best 

bucket and root node Q to the worst. Paths are hashed onto 

one of the Q root nodes by a function h(") acting on their 

metrics. If a path is hashed onto a root node pointing to a 

partially filled bucket, the path is assigned to a free 

location in the bucket. If a bucket is not yet assigned to 

the root node, a new bucket is drawn from the available 

space of buckets and the path is assigned to an empty 

location in the bucket. 

If the bucket is full, the following actions take 

place. Two new nodes are drawn from the available space of 

nodes and they form the left and right sons of the node -onto 
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which the path was hashed. Each of these two newly created 

nodes will now point to a bucket; the left node will point 

to an empty bucket drawn from the available space of buckets 

and the right node to the bucket that is full. These two 

buckets in the same level in the data structure are called 

brother buckets. Approximately half the number of paths 

from the full bucket are then transferred to the newly 

created brother bucket. The new path is assigned to one of 

these buckets depending on its metric. This situation of a 

bucket being full and a new bucket being created is 

illustrated in Fig. 6.3. In graph-theoretic terminology the 

data structure of Fig. 6.3 corresponds to a forest of binary 

trees. 

The reverse situation to bucket splits, i.e., bucket 

merging, takes place when deleting a path; if two brother 

buckets together have less than K paths these two buckets 

are merged to form a single bucket. The father of the two 

nodes that were pointing to the two buckets before merger 

now points to the bucket that contains the merged paths. 

Two nodes and a bucket are returned to the space of 

available nodes and buckets respectively. For example~, if 

in Fig. b.3(c) the buckets pointed to by nodes 100 and 101 

together have less than or equal to K paths, these two 

buckets are merged, and the data structure shown in Fig. 

6 . 3 ( b) w i 11 emerge • The nodes 100 and 101 and the bucket 
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{a) 

Figure 6.3(a) Bucket 1 is Full; a New Path is to be Entered 
into Bucket 1; Q = 2 

{ b ) 
2 

Figure 6.3(b) Two New Nodes 10 and 11, Successors to node 1, 
are Created; These Point to Two Buckets 

(c) 

Figure 6.3(c) Further Splits May Occur to Modify the Data 
Structure 
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pointed to by 100 are returned to the available space. 

Different strategies could be adopted during a bucket 

split. One is simply to transfer half the number of paths 

(say the top K/2 paths) to the new bucket. Another strategy 

is to transfer only the best K/2 paths to the new brother 

bucket. The later strategy is in conformity with the rule 

of keeping the leftmost bucket as the best bucket; as one 

traverses from left to right the buckets get progressively 

worse, with the rightmost bucket the worst. The later 

strategy is preferable in an actual implementation as it 

provides a compensation for a poor initial choice of the 

hashing function h( •) by dynamically providing for finer 

refinements of the path metrics assigned to buckets. 

However, it does not guarantee that a binary tree starting 

at a root node will not grow unduly large. A binary tree, 

however, lends itself to rebalancing as has already been 

seen in the previous chapter. A combination scheme 

incorporating rebalancing may thus profitably be used. 

During a bucket split, the strategy of transferring 

the best K/2 paths to a new bucket requires that the paths 

within the bucket to be split be sorted on their metrics. 

We can avoid sorting by using the following procedure. 

Assume that the metric distribution within a bucket is 

roughly uniform, a reasonable 

ranges are assigned to buckets. 

assumption if finer metric 

When a bucket with a metric 



range [ j.l • ' 1 
j.l • ) 

J 
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is to be split, paths with metric falling 

within [J.li' J.l· + 
1 

( j.l • - j.l • ) /2] 
J 1 

are assigned to a new bucket; 

the rest of the paths remain in the old bucket. If it so 

happens that all the K+l paths (K paths in the bucket and 

one new path) go either to the left or to the right bucket, 

further splits occur until the buckets have fewer than K 

paths. 

Consider the example in Fig. 6. 4. When a path is 

hashed onto node i with metric range [1,5), bucket i is 

found to be full. The root node is then assigned two sons 

iO and il. Bucket i is split and assigned to two buckets iO 

and il. il is empty and so iO is split again into iOO and 

iOl. Again, as iOO is empty, iOl is split into buckets iOlO 

and iOll. As none of the buckets are now empty, further 

splitting stops and the new path is assigned to one of the 

buckets iOlO or iOll. 

Assuming that paths go either to the 1 eft or to the 

right with equal probability, 

P {a bucket is full} = (l/2)K (6.3) 

P {y bucket splits} = (1/2) (y-l)K {1 - (l/2)K} (6.4) 

E {no. of bucket splits} = E y (1/2) (y-l)K {1 - (l/2)K} 

= l/(l-(l/2)K) (6.5) 

Multiple bucket splits are very rare. If K = 5, 

multiple splits occur once every 32 splits, if K = 10 once 

every 1000 splits, and if K = 20 once every 10 6 splits. 
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Figure 6.4 Bucket Splitting Strategy 
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Though the assumption that paths go either to the left or to 

the right bucket with equal probability and the independence 

assumption are not valid due to the nature of the code tree 

structure, the above analysis gives an indication of the 

nature of multiple splits. Due to the rarity of multiple 

split,s, we can expect the data structure to be reasonably 

balanced. 

Data structures required to implement the dynamic 

bucket algorithm will now be described. Two types of 

available spaces are maintained, the available space of 

nodes and the available space of buckets. A node has the 

structure illustrated in Fig. 6.5. A node can be either an 

internal node (circular nodes in Fig. 6. 3) or an external 

node (square nodes in Fig. 6. 3) . A link field of an 

internal node may either point to another internal node or 

to an external node while that of an external node points to 

a bucket if one is assigned to it or, if no bucket is 

assigned to it, contains 0. The tag field of a node is 

either 0 or l. 0 indicates an internal node and l an 

external node. The PRED field of a node points to its 

predecessor. If there is no predecessor, as in the case of 

a root node, PRED field contains 0. LLINK and RLINK of an 

internal node point to the left and right sons respectively. 

An external node has instead BLINK and RECS in their places. 

BLINK links to a bucket and RECS indicates the number of 



114 

records in that bucket. A bucket may be implemented either 

as a linked list as in Fig. 6.2, or it may simply be K 

contiguous storage locations. In the later case, each 

location has a one bit field set aside to indicate whether 

or not a path resides in that location. When a bucket 

becomes empty, the whole block of K locations is returned to 

the available space of buckets. Again we redefine basic 

operations such as add path and delete path using the data 

structures described here. 

Procedure <add path> 

begin 

{Let m be the metric of the path to be added} 

R + h(m) {Hashing function h(•) hashes the path onto 
one of the Q root nodes R} 

{Let [~., ~.) be the metric range assigned to the root 
node 1 R. Jonce R is given, this range is easily 
computable from a predetermined formula} 

i + R; 

while TAG(i) = 0 do 

if m e: [ ~ . , ~· + ( ~ • - ]l • ) /2 ) 
1 1 J 1 

then begin i + RLINK ( i) ; ).1· + J.l· + ( ~ . - ~.) /2 end 
J 1 J 1 

else begin i + LLINK(i); ~· + J.l· + ( ).1. -~.) /2 .end 
1 1 J 1 

end if 

end while 

if RECS(i) < K 

then begin if BLINK(i) = 0 then 
BLINK(i) + NEWBUCKET end if 



end 

assign path to a free location in 
bucket BLINK ( i) 
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else {Bucket BLINK(i) must be split as the new 
path cannot be entered into it} 

begin 

j + NEWBUCKET {a new bucket is fetched 
from the avaiable space of 
buckets} 

while RECS(i) = K do 

begin 

LRECS + 0; RRECS + 0; 

for p = 1 to K do 

if metric of path p in bucket 
BLINK(i) € [lli + (llj-lli)/2, llj) 

then begin remove path p from 
bucket BLINK(i) and 
assign it to a free 
location in bucket 
Ji LRECS + LRECS+l; 

RRECS + RRECS-1; 

end 

end if 

end for 

{Fetch new nodes from the avaiable 
space of nodes and link them to node 
i} 

LNODE + NEWNODE; RNODE + NEWNODE; 

TAG(LNODE) + TAG(RNODE) + 1; 

RECS(LNODE) + LRECS; 

RECS(RNODE) + RRECS; 



end 

PRED(LNODE) + PRED(RNODE) + i; 

If LRECS = K {all paths into the 
left bucket} 

then begin 

BLINK(LNODE) + j; 

BLINK(RNODE) + 0; 

j + BLINK(i); i + LNODE; 

J.l· + ].l· + (J.l·-J.l·)/2; 
1 1 J 1 

end 
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else if RRECS = K {all paths into 
the right 
bucket} 

end if 

then begin 

end if 

BLINK(RNODE) + 

BLINK ( i); 

BLINK(LNODE) + 0; 

i + RNODE; 
].l • + ].l • + ( ].l • - ].l • ) /2; 

J 1 J 1 

end 

LLINK(PRED(LNODE)) + LNODE; 

RLINK(PRED(RNODE)) + RNODE; 

end while 

I f rn e: [ J.l • , 1.1 • + ( 1.1 • -1.1 • ) /2 ) 
- 1 1 J 1 

then add new path to BLINK (RNODE) 

else add new path to BLINK (LNODE) 
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end if 

end 

end if 

end 

end <add path> 

Procedure <delete path> 

begin 

end 

{Let i be the node pointing to the bucket in which 
resides the path to be deleted. Let its brother node 
be j. After removing the path from the bucket pointed 
to by i, it is merged with its brother bucket if the 
two have together < K paths. This is carried onto 
higher levels if necessary.} 

Remove the path from bucket BLINK(i); 

RECS(i) + RECS(i)-1; 

While RECS(i) + RECS(j) < K do 

begin 

end 

Merge the buckets i and j into i; link bucket i 
to the predecessor of nodes i and j; 

if the new merged bucket has a brother bucket 
then j +brother bucket's address 

end if 

end while 

end procedure 

Using these two procedures, the dynamic bucket algorithm 

will take on essentially the same form as the procedure 
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<bucket> in Sec. 6.2. 

6.5 Analysis Using Tries 

Turning attention now to the analysis of the dynamic 

bucket algorithm, we first note that the data structure, 

forest of binary trees, genera ted by the algorithm can be 

considered as Q binary tries (see Knuth [55, Sec. 6.3] for a 

discussion on tries). The name trie from the middle letters 

of the word retrieval was first proposed in [ 62]. Knuth 

defines a tr ie as "essentially an M-ary tree, whose nodes 

are M-place vectors with components corresponding to digits 

or characters. Each node on level t represents the set of 

all keys that begin with a certain sequence of ! characters; 

the node specifies an M-ary branch, depending on the (t+l)st 

character". 

The following example from [58] illustrates trie 

searching. The trie shown in Fig. 6.6 stores decimal 

digits. Each node h~s associated with it a ten-place vector 

or index. In order to locate the name 2718, branch 2 of the 

root node is taken. This branch leads to another node whose 

pointer at location 7 leads to the name 18. Adding the 

prefix 27, the path map of the path that leads to the node 

containing name 18 from the root node, to 18 yields the name 

2718. If the name to be searched is 573, following the 

above procedure, we find the address in location 5 of the 



Figure 6.6 
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root node. Since this is A, the null pointer, name 573 does 

not exist in the trie. More than one name may be assigned 

to an index of a node. A new name 2720 is assigned as shown 

by the dotted slot in Fig. 6.6 if the trie permits assigning 

two names to an index of a node. 

In the dynamic bucket algorithm, each node represents 

a range of metric [~i' ~j). Depending on whether the metric 

of a path falls in the upper or the lower half of the metric 

range, the node specifies a two-way branch, the left branch 

or the right branch. This being true at each and every 

internal node of the Q binary trees, these are essentially 

binary tries. 

From Knuth [55, Sec. 6.3], the number of nodes needed 

to store N random keys in an M-ary tr ie, with the tr i e 

branching terminated for subfiles of < s keys, is 

approximately 

N/(s £n M) + N g(N) + 0(1) ( 6. 6) 

In (6.6), g(N) is a complica~ed function whose value is 

-6 always less than 10 ; hence it can be neglected. Equation 

(6.6) then reduces to 

N/(s £n M) (6. 7) 

In our case s = K, the bucket size, and M = 2, the number of 

branches out of an internal node. Let ni' i = 1, 2, ••. , Q 

be the number 'of paths stored in the ith of the Q binary 
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tries. Since there are a total of S paths stored in the Q 

binary tries, we have 

Q 
1: 

i=l 
n. = S 

l 
( 6. 8) 

Applying (6.7) to each of the Q binary tries and summing up, 

we get 

E {number of internal nodes} 
Q ni S 

~ 1: = ----~ 
i=l K in 2 K in 2 

( 6. 9) 

In a binary tree, there are n+l external nodes and n 

internal nodes. So, 

E {no. external nodes} 
Q n. + 1 s + Q 

~ 1: l = 
i=l K in 2 K in 2 

(6.10) 

Adding (6.9) and (6.10), we have 

1 2 s 
E {total number of nodes}~ Kin 2 [2S + Q] ~Kin 2 (6.11) 

Since there are three link fields associated with each node, 

total link storage is approximately 

6 S Logb s 
K in 2 b-ary digits (6.12) 

For a related algorithm, Larson [61] shows that about 

96% of the rando~ records (in our case 96% of the paths) are 

located on levels 2 and 3 of the tr ie. This further 

confirms the conclusion that multiple splits are very rare, 

as was already argued. Also, to insert paths into buckets 

one need not traverse arbitrarily long chain of buckets. 
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·rhus the number of accesses to storage required in order to 

insert or delete paths is bounded by a constant most of the 

time. The cost of the dynamic bucket algorithm is 

Time Cost: c 1 accesses/branch viewed 

c 2 S accesses/branch released, for ambiguity 

check 

6 1ogb s 
Space Cost: S (C 3 L + K tn 2 + log L + p) . (6.13) 

Since the buckets may only be partially filled most of the 

time, in order to store S paths, a storage greater than S is 

necessary. The constant c 3 in (6.13) accounts for this 

extra storage. c3 is likely to be about 1.4 [61]. 

total product cost is 

O(LSE[CSA]) + 0(LS
2

) + Hd access-symbols/ 
branch released 

The 

(6.14) 

where Hd is the cost of hashing, splitting, and merging. It 

is assumed that K ~ 6/tn2 and that L dominates logbS. 

The sum cost of the algorithm is 

O(LS) + O(S) + O(E[CSA]) + Hd. (6.15) 

The precise number of comparisons is difficult to estimate 

but it is of O(S) + 0 (E [CSA]) · 

It is likely that Hd in (6.14) is greater than the H 

factor in (6.2) for the bucket algorithm. But, due to its 

dynamic nature, the dynamic bucket algorithm comes closer to 

being metric-first than does the bucket algorithm. It is 

well known that of all the known algorithms the metric-first 
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ones have the least node computation [30]. We can thus 

expect the E[C] for the dynamic bucket algorithm to be less 

than the E[C] for the bucket algorithm. This may more than 

compensate for the slight increase in Hd over H. The 

dynamic bucket algorithm again establishes an order of 

dependence on S for the product cost which is just S, the 

lowest for the metric-first algorithms so far considered. A 

summary of the results of Chapters 4, 5, and 6 appeared in 

Mohan and Anderson [63]. 



CHAP'rER 7 

BRANCHING PROCESS METHODS FOR THE SINGLE 

STACK ENCODING ALGORITHM 

7.1 Introduction 

Initially, interest in rate-distortion theory 

centered around developing rate-distortion functions for 

different sources. Only ten years after the birth of the 

theory was attention given to one of the two facets of 

practical source coding, the design of codes for sources, by 

Jelinek [11], who proved the existence of tree codes that 

achieve the rate-distortion bound. Jelinek's proof was 

valid only for symmetric sources, and it remained for Davis 

and Hellman [50], making use of the theory of branching 

processes in random environments (BPRE) [64], to prove that 

for any i.i.d. source, tree codes exist whose performance is 

as close to the R(D) curve as desired. Tan [65], again 

using the BPRE theory [68], showed that such tree codes 

exist for stationary block-ergodic sources. Vi terbi and 

Omura [21] have shown the existence of time-varying trellis 

codes that achieve R(D). A recent paper by Johannessen [66] 

uses the theory of multi type Gal ton-Watson branching 

processes to generate the computational distribution for 

124 
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sequential decoding using the stack algorithm. Since the 

paper by Jelinek [ll] appeared in the literature, attention 

has also centered around the second facet of source coding, 

the design and analysis of source coding algorithms (see 

Anderson [17], Anderson and Jelinek [16], and Gallager 

[ 18] ) • While these papers consider only symmetric sources, 

our interest here is in applying the BPRE theory to the 

single stack encoding algorithm applied to asymmetric 

sources, with the aim of deriving an expression for the 

number of tree branches visited. This expression is shown 

to be the stochastic analog of an expression given by 

Gallager for the case of symmetric sources. Some intriguing 

simulation results for the algorithm and its variants, which 

cast light on the possible range of solutions to our 

equations, are presented. 

7.2 Preliminaries 

Rate-Distortion Theory 

Let a discrete memoryless source (i.i.d. source) have 

a probability distribution P(x) defined on elements of a 

source alphabet X. Let an additive single letter distortion 

measure d(x,y) be defined on elements of source and 

reproduction alphabets, X and Y. Let Q ( y I x) be a 

conditional probability assignment and I (X;Y) the mutual 

information between X and Y. 
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Definition: The rate-distortion function R (D) is the 

minimum rate necessary to encode the information source with 

additive single letter distortion measure so that the 

average distortion does not exceed some distortion D; it is 

given by 

where 

and 

R(D) ~ inf I(X;Y) 
Qe:QD 

Q = { QD ( y I X) : ~ p (X) Q ( y I X) d (X' y) .s. D} 

I(X;Y) = ~ 

x,y 

x,y 

P(x) Q(ylx) .tn P(x) Q(yjx) 
P(x) Q(y) 

Haskell [67] has shown that 

( 7. 1) 

( 7. 2a) 

(7.2b) 

R(D) =max min 
p2_0 Q (y) 

- E P(x) .tn {E Q(y) exp (-p(d(x,y)-D)]} 
X y (7.3) 

where Q (y) is a probability density defined on the repro­

duction alphabet given by 

Q(y) = ~ P(x} Q(yjx) 
X 

( 7 • 4) 

Let p
0 

and Q
0

(y) optimize the expression in (7.3). ~hen we 

have the following equations [10, pp. 34-37]. 

Qo(yjx) = Qo (y) exp [-p
0 

d(x,y)] A (X) ( 7 • 5) 

A (X) = {~ Qo(y) exp [-po d(x,y)] }-1 ( 7. 6) 
y 

Qo (y) = ~ P ( x) Qo(yjx) ( 7 • 7) 
X 



R(D) = -p
0

D + L P(x) R.n A.(x) 
X 

Branching Processes with Random Environments 
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( 7 • 8) 

We will find in Sec. 7. 3 that branching processes 

with random environments (BPRE), formulated by Smith and 

Wilkinson [64] and extended by Athreya and Karlin [68], are 

an appropriate tool for analyzing the single stack encoding 

algorithm. So we briefly describe the working of a BPRE. 

Harris [69] and Athreya and Ney [70] are excellent sources 

on the theory of branching processes. The book by Mode [71] 

is especially devoted to multi type branching processes and 

that by Jagers [72] to biological applications of branching 

processes. Refer to Feller [73, pp. 293-301] for 

introductory material on simple Galton-Walson branching 

processes. 

Suppose we have Z
0 

particles at time n = 0 (or 

generation 0). Each of these Z
0 

particles creates further 

particles so that the population size at the first 

generation is 

( 7 • 9) 

where Xli' i = 1, 2, ... , z
0 

are independent and identically 

distributed random variables with probability generating 

function (p.g.f.) 4>r,; 0 (~). Here 



00 

E p(jjr;;
0

) sj 
j=O 

128 

(7.10) 

where p ( j jr;;
0

) is the probability that a zeroth generation 

particle gives rise to j first generation particles, given 

environment r;;
0

• The z1 first generation particles then give 

rise to second generation particles according to p.g.f. 

Continuing in this way, the (n+l) th generation 

population is the cumulative sons or progenies of the Z nth n 

generation particles, each reproducing according to p.g.f. 

4> n(s). 
l;; -

process. 

{r;;n' n = O, 1, 2, ••• } is called the environmental 

In the. case of an i. i .d. environmental process, 

{4>r;;n(~)} are all identical, {r;;n} are i.i.d., and Zn' n = 0, 

1 I 2 I is a branching process developing in an i. i .d. 

random environment. We can visualize the Zn process as one 

developing in a stochastically changing environment that 

affects the reproductive behaviour of the process. 

Allowing for generalization, we now stipulate that a 

particle may be any one of a number of types, say m types. 

Thus, starting from a zeroth generation particle of type i, 

we have at the first generation r 1 particles of type 1, r 2 

of type 2, ••• , Ym of type m produced according to p.g.f~ 

4>(i) (s) = 4>(~jr;;o' zo = i) 
z;o - (7.11) 

(yl,y2' • · • Yml z;o) 
yl y2 Ym 

= E P· sl 52 s 
l m 

yl,y2, ... ym 



where s = 
~ 

..• , sm) , 0 < s. _< 1, 
- 1 

i = 1, 
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••• ' rn • 

Again a type j particle at the first generation reproduces 

according to p.g.f. q,~r) (~), and so on. Thus we have a 

vector process defined by Z = e. = (0, 0, •.. , 1, ... , 0), 
~o -1 

a vector with 1 in the ith place and O's elsewhere, and ~l = 

(Z 1 (i,l), z1 (i,2), •.. , z1 (i,m)) etc, where z1 (i,y) is the 

number of first generation particles of type y from a zeroth 

generation particle of type i. 

z (i,2), 
n 

. . . , 
In general, 

then the 

if z = 
-n 

(n+l)th 

generation population vector Zn+l is the sum of Zn(i,l) + 

+ zn ( i ,m) independent random vee tors, where 

each of the zn ( i, k) , k = 1, 2, ... ' m, independent random 

vectors is produced according to the probability assignment 

PK ( Y I r,;n) where y is an m vector. Ag a in , w he n { r,; n } i s 

i.i.d., ~n' n = 0, 1, . . , is a multitype (m-type) branching 

process in random environment. 

The above process is said to be extinguished if z = -n 

9 for some n, where Q = (0, 0, ••• , 0) is an m vector. If 

the extinction probability qi of the process, starting from 

an initial particle of type i, is defined as 

q. ~ P[Z = 0 for some n I Z =e.], 
1 -n -o 1 

(7~12) 

then we can associate a probability vector q with the 

process, given by q = (ql' q2, ... , qffi) • If r,; = ( r,; 0 , r,;l, 

• • • ) I then from [ 5] q ( r,;) = (gl(~), g2 ( ~) ~m ( ~) ) , the - -
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extinction probability vector conditioned on the environment 

z' satisfies the functional equation 

(7.13) 

( 7. 14) 

where Tis the shift operator and T~ = (~;;1, ~;;2, .•. ) and the 

(1) (m) 
vector <P_ is given by <Pr (s) = (<P (s), .•• , <P (s)). q_, 

-,y - l;;y - l;;y -

the unconditional probability of extinction, is then q = 

E[q(~;;)]. - -
While the papers [64] and [68] deal with conditions 

for cer-tain and noncertain extinction and with proving 

certain limit theorems, our interest here is to model the 

single stack encoding algorithm as a multi-type BPRE and to 

derive an expression for the number of branches visited. 

Random Tree Codes 

Consider random tree codes with b branches out of 

each node and 8 symbols on each branch. The symbols are 

chosen from reproduction alphabet Y. according to the 

distribution Q
0

(y) given in (7.7). 

tree code is given by 

The rate R of such a 

bits/symbol. (7.15) 

If D
0 

is the desired average distortion at the end of 

encoding, then R is chosen to satisfy R ~ R(D
0
), where R(•) 
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is defined in (7.8). Given any E > 0, the object of 

encoding a given source is to find a path through the code 

tree that has an average distortion D ~ D
0 

+ E. Associated 

with a path y'J. of 9./a branches is a quantity called the 

metric of the path defined by 

(7.16) 

where D(x'J.) is defined as 

(7.17) 

Here ~9. and y'J. refer to length 9. source and reproduction 

symbols respectively. Also, if 

'}., 

~ = (xll' xl2' ···' xla' x21' ···' x2a' ···' 

and y'J. is similarly defined, then -

and 

Thus 

9. 9. 9./a a a 
d(x , y ) = E d(x., y.) 

- - i=l -1 -1 

'}., 
ll ( y ) 

- (7.18) 

(7~19) 

(7.20) 
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Here the a d (X. , y ~) 's and branch distortion 
-l -l 

values and branch metric increments, respectively. 

In defining the metric of a code tree path, we have 

used the D ( ~t) criterion instead of the traditional one 

using D
0

• This criterion was first suggested by Berger [10, 

p. 220]; Dick et al. [53] used it to encode Gaussian 

sources, while Davis and Hellman [5()] proved it sufficient 

for asymmetric sources and distortion measures. 

Next, in order to model the algorithm as a multitype 

BPRE, we quantize the metric values of paths. Where no 

confusion will arise, we will still call the quantized 

metric as metric only and denote it by the same symbol \l. 

Thus, redefining the metric, we have 

t 
1 jc t t ¥!)] ll(Y ) = - D(x ) - d(x , Y_t) 

- E; - -
(7.21) 

where ral is 'the smallest integer N such that a < N and t,; is 

an arbitrary small positive number. Still, 

t 
ll(Y ) = 

7.3 Analysis of the Single Stack Encoding Algorithm 

The single stack algorithm (see Chapter 2) is 

essentially a depth-first search procedure, trying to 

explore along the depth of the code tree a path that 

satisfies a discard criterion. When the path falls below a 

lower barrier B, the algorithm backtracks along the path to 



another node from where the 

depth-first fashion. For 

search again 

the purposes 

proceeds in 

of analysis 
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a 

we 

introduce an upper barrier A and consider only paths that 

lie within the barriers B and A. Because of the definition 

in (7.21), is now 

lying 

values. 

between B and 

We denote 

allowed to 

There 

take only integer 

are (A-B+l) such A. 

the set of allowed metric 

values 

metric 

N(B,A). Introduction of upper barrier A 

values 

will 

as 

not 

appreciably alter the behaviour of the algorithm if A is 

considered to be very large. We assume further that the 

algorithm works successively on source blocks of t symbols. 

Now we turn to a BPRE model of the algorithm. At any 

stage during encoding we can consider code tree paths as 

particles and their metr ics as the particle types. Thus we 

have an m = (A-B+l) type process. For the symmetric source 

case, all source blocks of length t correspond to the same 

environment. In the case of asymmetric sources this is no 

longer true. If a block of length t source sequence is an 

atypical one (i.e. a hostile environment) it pay be 

particularly difficult to find a code tree path of length 

t/e branches that lies within the barriers. In such a case 

the algorithm may explore a large number of code tree 

branches. If one were to consider paths of length t/S 

branches whose metrics belong to the set N(B,A) as offspring 

of the root node, then it is clear that the distribution of 
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offspring varies from generation to generation (i.e. from 

one t-block to another t-block). Hence the behaviour of the 

algorithm within a block is dependent on the source sequence 

xt corresponding to that block. The "environment" within a 

block can be identified with ~t, and successive environments 

· · · d · xt • s · · d vary 1n an 1.1 •. manner, s1nce are 1.1 •• Thus we 

have an m = (A-B+l) type BPRE. 

Equivalently, note that, for asymmetric sources, the 

metrics of successors of a single node at a given level in 

the code tree are dependent on the source letter present at 

that level. If the vertical axis represents metrics of code 

tree paths and the horizontal axis time or code tree levels, 

a node extension maps its successors on the vertical axis 

depending on their metr ics. Such a process is called a 

branching random walk (BRW) for the symmetric case and 

branching random walk in random environments (BRWRE) for the 

asymmetric case. We can identify the type with the metric 

of nodes and convert the BRWRE into a multitype BPRE. 

Results based on the t-block environment approach appeared 

in Mohan and Anderson [74]. Here, we use the BRWRE 

approach, where environment is identified with e source 

letters, i.e. , r;t = Both approaches yield similar 

results. 

The single-type BPRE formulation of Jelink's tree 

coding process was first given by Davis and Hellman [50], 
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and we have analysed a new coding process, the single stack 

algorithm, in a similar manner, but as a multi-type BPRE. 

Our asymmetric case analysis is similar in form to the one 

employed by Gallager [18] for the symmetric case, and we 

have used several of his results. 

Equation for the Probability Generating Function of a BRWRE 

Let P(j-ij~;) ~ P {an immediate descendent of a node 

with metric i has metric j, given 

environment ~;} 

Let z(i,j) ~the number of the b descendents of a 

node with metric i that have metric j. 

Let Xi(i,j) = 1, if the ith descendent of a node with 

metric i has metric j 

= 0, otherwise. 

From (7.11), the probability generating function, 

<P(i)(s) 
m 

z(i,j) l ] = E [ 'If s. 1; 
1; - j=l J 

(7.22) 

m 
1: Xi(i,j) m i=l = E [ 'If s. l 1; ] 

j=l J 
( 7. 23) 

m b Xi(i,j) 
= E [ 'If 'If S· I ' l j=l i=l J 

(7.24) 

b m Xi(i,j) 
= 'If E [ 'If sj I~;] 

i=l j=l 
(7.25) 
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In (7.22), we have assumed, without loss of generality, 

that there are m types, i.e., N(B,A) = {1, 2, .•. , m}. In 

(7.25), we have made use of the fact that, when conditioned 

on the environment, different descendents move independently 

of each other. 

When conditioned on the environment, 

probability P(j-iJ~;;). The R.th descendent 

barriers with probability 

rn 
1 - 1: P(j-ij~;;) 

j=l 

i.e., XR. (i ,j) = 0 with probability 

rn 
1- 1: P(j-ij~;;), 

j=l 

is 

XR.(i,j) = 1 with 

absorbed by the 

when cond i tiond on the environment. If XR.(i,j) = 1, the 

product 

rn 
1T 

j=l 

inside the expectation in (7. 25) is 

it is l. Hence, 

rn XR.(i,j) rn 
E [ 1T sj J~;;] = 1 - 1: 

j=l j=l 

rn 
+ 1: 

j=l 

s. ' J 
and if X R. ( i, j) = 0, 

P(j-ijl;;) 

P(j-iJ~;;) S· 
J. 

(7.26) 



Combining (7.25) and (7.26), we have 

q, (i) (s) = 
r,; -

m 
[1- E P(j-ilr,;) 

j=l 
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(7.27) 

Equation (7.27) will form the basis of the branching process 

in random environments generated by the algorithm. 

The Moment Generating Function of the Metric of a Branch 

Define the moment generating function of the metric 

of a branch conditioned on environment r,; as follows: 

m 
E P (j I r,;) exp(rj) 

j=l 
(7.28) 

= E [exp( rj) I r,;] (7. 29) 

Using the definition of metric of a branch from (7.21), we 

have 

(7.30) 

(7.31) 

On taking logarithms on both sides of (7.31) and finding the 

expectation of log gr,; (r) over all possible enviroments ~ 13 , 

we get 

E [ 1 og g r,; ( r) ] > E 13 P ( ~ 13 ) R. n E 13 Q 0 ( ¥13 ) 
X y 

(7.32) 
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r 
.E P(~a) D(?5a) + .E P(?5a) R.n .E Qo(¥a) = 

f; xl3 xl3 Ya 

(- r d(~a, la) ) (7. 33) . exp 
f; 

Substituting aD
0 

for 

.E P ( x a) D (X l3) 
xa - -

and p
0 

for r/t; in (7.33) and making use of (7.6) and (7.8), 

we get 

E [ R. n g ~; ( r) ] = - 13 R (D 
0

) 

= - 13 [ Rn - y] 

(7.34) 

(7.35) 

where Rn = (R.n b)/13 = R R.n 2 and y = Rn- R(D
0

) > 0. 

In (7.34), we have made use of the fact, proven by Gallager 

[18], that p
0 

= r/t; optimizes (7.3). Rearranging (7.35), 

one gets 

E [ R. n bg ~; ( r) ] ~ a y > 0 ( 7 . 3 6 ) 

Gallager [18] has shown that bg(r) > 1 for the 

symmetric case. He further shows that the condition b g(r) 

> 1 is a necessary condition for the branching process 

generated by the algorithm to have a probability of 

extinction strictly less than 1. In (7.36) we have derived 

an analogous condition for the asymmetric case. While we 

have not yet proved so , we . can hope that the condition 

E[R.n bg (r)] > 0 is necessary for the BPRE generated by the 
I; 

algorithm to have an extinction probability strictly less 

than 1. With q < 1 it can be shown that the algorithm 



139 

achieves R (D) . 

Equation for Node Computation by the Single Stack Algorithm 

A node is said to be visited by the algorithm when it 

is pushed down onto the stack during forward motion in the 

code tree. Define the node computation as the total number 

of nodes visited. A branch may be traversed either in the 

forward direction when a node is pushed onto the stack, or 

in the reverse direction when a node is popped up from the 

stack. Any branch may at most be traversed twice. Since 

there are b branches out of a node, the total number of 

branches visited is upperbounded by 2b times the node 

computation. 

Theorem: Let Ci(fn) be the node computation forward 

of a node with metric i needed to encode (n+l) a source 

a a 
1 e t t e r s , g i v en en v ironment £ n = ( r; 0 , r; 1 , · · · ' r; n ) = ( ~ o ' :lf 1 ' 

... ' 

where 

Then, for n ~ 2, 

2 b-1 + U. (r; ) {p. (r; ) } + ... + u. (r; ) {p
1
. (_r;n)} (7.37) 

1 -n 1 -n 1 -n 

m 
E P(j-ilr;

0
) cJ.(Tfn), 

j=l 
(7.38) 



m 
=1- z P(j-ijz;

0
) {1-qJ.('r!n)}, 

j=l 

and T is the shift operator given by 

= 8 8 
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(7.39) 

T £n = ( z; 1 ' z; 2 ' • • • I ( :l£1' :li2 ' ... ' 
Proof: The first descendent of the root node, 

conditioned on the environment z;
0 

= x 8 , has metric j with 
~o 

probability P(j-ijz;
0
), where i is the metric of the root 

node. Since the environment forward of the first descendent 

is T~n ( z; 1' z; n) 
e 8 X 8) the node = z;2' • • • I = (:l£1' :l£2' ... ' ~n ' 

computation forward of it is cj (T£n) . Since the first 

descendent can have any one of m allowed metric values, the 

unconditional node computation forward of it is 

m 
E 

j=l 
P(j-ijz;) C.(Tz; ), 

~n J -n 

the second term in (7.37), where we have summed out the 

conditioning on its metric. Assuming, for the time being, 

that n is constant, the algorithm searches forward of the 

second descendent of the root node only if the BPRE forward 

of the first descendent extinguishes itself before level 

(n+l) forward of the root node at level 0. The probability 

of this happening, given that the first descendent has 

metric j, is qj(T~n). Removing the conditioning on the 

metric of the first descendent, the unconditioned 

probability of extinction is 
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The BPRE forward of the first descendent is never 

started if the first descendent is absorbed by the barriers. 

This happens with probability 

m 
1- E P(j-ijc;

0
). 

j=l 

Thus the ~robability that the algorithm fails to find a path 

of length n forward of the first descendent is 

Pi ( ~n) = 1 -
m 
E P(j-ijc;

0
) {1-qJ.(T~n)}, 

j=l 

which is also the probability that the algorithm searches 

forward of the second descendent. 

Given that the algorithm has failed to find a path of 

length n forward of the first descendent, the node 

computation forward of the second descendent is Ui ( £n) by 

similar arguments. Unconditionally the node computation 

forward of the second node is ui ( ~n) pi ( !n) , the thiFd term 

in (7.37). Since the third descendent is searched if both 

the BPRE's forward of the first and second descendents fail 

and this happens with probability {pi(~n) }
2

, we see that the 

fourth term in (7.37) is the unconditional node computation 

forward of the third descendent. The last term in (7.37) is 

the node computation forward of the bth descendent of the 
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root node. Accounting for the root node (1 in (7.37)), the 

theorem follows. 

From [68] q. (~,;) > q. (~,; ) for n = 1, 2, •••. 
1 - - 1 -n 

Using this in (7.39), we have 

Using 

But 

m 
Pi(~n) < 1- >:: P(j-ij~,; 0 ) {1- qJ.(T~)} 

j=l 

(7.40) 

ci < ~n) 

\) • ( 1,; ) 
1 -

~v.(l,;) 
l -

in (7.37), we get 

b-1 
k < 1 + u. ( 1,; ) l: {vi(~)} - 1 -n k=O 

[1 b - {v. (~,;)} 
1 + u. ( 1,; ) 1 -= 

1 -n [1 - v.(~,;)] 
l -

m 
= 1- >:: P(j-ij~,;0 ) {1- qJ.(Tf)} 

j=l 

(7.40) 

(7.41) 

(7.42) 

(7. 43) 

(7. 44) 

Equation (7.43) follows from (7.27) and (7.44) from (7.14). 

Combining equations (7.38), (7.42), and (7.44), we get 

P(j-ij~,;) C.(T~,;) (1- q.(l,;)) 
o 1 -n 1 -

m 
(7.45) 

l: P(k-ij~,;) {1-qk(Tl;_)} 
k=l 0 



Let B(i,j) = (i,j)th element of matrix B 

= 

Let 

m 
E P(k-ij~; 0 ) {l- qk(T~)} 

k=l 

Then, from (7.45)-(7.47), we have 
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(7.46) 

(7.47) 

(7.48) 

where [B(~)] is the matrix defined in (7.46) and 1 = (1, 1, 

• • • I 1) is an all 1 m vector. 

Gallager derives the equation ~n ~ ! + [B] ~n-l for 

the symmetric case. Here we have derived the stochastic 

analog of this equation for the asymmetric case. Heretofore 

only symmetric sources have been considered in the 

literature. Though a closed form solution to (7.48) is not 

yet known, we strongly believe that the behaviour of code 

tree search algorithms with asymmetric sources can be 

analyzed using the BPRE methods presented here. Next we 

present some simulation results in which the single stack 

algorithm uses the D(~ 1 ) discard criterion. 

7.4 Asymmetric Source Simulations 

For the purpose of simulation, we have used the 

binary i. i .d. source and Hamming distortion measure. The 

algorithm worked on the ensemble of rate-1/2 tree codes (b = 
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s = 2) with code words chosen i.i.d. according to the output 

probability distribution [10, p. 37] 

Q
0

(0) = (P(O) - D
0
)/(l 2D

0
) 

Q
0

(1) = (P{l) - D
0
)/(l - 2D

0
) 

where D
0 

is given by the distortion-rate function ~(R). The 

algorithm was parameterized by the lower barrier B and the 

depth limit or block length L. In all our simulation 

examples, the algorithm encoded a few thousand source 

samples and used a depth limit of 200 to 1000 tree branches. 

Table 7.1 lists simulation results which cast some 

light on the possible range of solutions to our equations 

for node computation derived in Sec. 7.3. Result obtained 

using the binary symmetric source is also given for 

comparison. The computation in the asymmetric case is much 

smaller than that for the symmetric case. However, the 

algorithm attained a high distortion of 39% above ~(R) while 

encoding the source P(O) = 0.2 and P(l) = 0.8. Conversely, 

for this source, the algorithm will require a large node 

computation in order to achieve distortions close to ~(R). 

While the algorithm seems to have a complicated 

dependence on various parameters, the following question 

arises. Asymptotically, does the algorithm behave quite 

differently when used with asymmetric sources? While we 

have not yet proved so, we can hope that the algorithm's 
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behaviour is not much different when used with asymmetric 

sources and that the node computation E [C] , as is the case 

with many different algorithms used with symmetric sources 

[ 17] ' [16] and 
-a [18], is of the form E[C] = exp[c(D-D

0
) ] , 

where c and a are constants, . D
0 

= I:J. (R), and D is the 

expected distortion per output symbol for the encoded path. 

Table 7.1 Simulation Results for the Single Stack Encoding 
Algorithm. Binary i.i.d. Source with Hamming 
Distortion, R = 1/2, L = 200 - 1000. 

p (0) p ( 1) B Branches Viewed % above I:J. (R) 

0.5 0.5 -5.5 1500 15.0 

-1.5 355 8.1 
0.3 0.7 -3.5 368 4.5 

-7.5 176 9.2 

0.2 0.8 -2.5 707 39.0 



CHAPTER 8 

ENCODING THE BINARY IID SOURCE WITH HAMMING DISTORTION 

USING THE SINGLE STACK ALGORITHM 

8.1 Introduction 

Simulation results obtained by encoding the binary 

i.i.d. source with Hamming distortion using the single stack 

algorithm are reported here. We study the behaviour of the 

bias factor or target distortion, D*, stack length, L, level 

of the lower barrier, B, and number of branches searched per 

source ·symbol encoded, E [Cssl, on the final distortion 

at ta ine·d by the encoder, DF. Defining stack configuration 

as the triple (D*, B, L), we find by simulation the optimum 

stack configuration that minimizes E[c 88 ] for a given final 

distortion attained. Two variants of the algorithm, 

incorporating dynamic raising and lowering of the absorbing 

lower barrier, are proposed. The e f f e c t s o f D * , L , and 

E[c 88 ] on the distortion performance of the variants are 

studied. 

Denote by SSAO, the basic single stack algorithm with 

the lower barrier fixed at level B, and by SSAl and SSA2, 

the algorithm with modifications 1 and 2, respectively, as 

given below. Let B be the initial level of the lower 
'-
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barrier and t the relative level of the top most node of the 

code tree path that resides in the stack. 

Modification 1: Whenever, during encoding, the 

metric of the end node of the path in the stack exceeds the 

previous maximum attained by a portion of the path residing 
"',t "'' 

in the stack (i.e.,~(~ s) > ~(~ 1 (3) fori= 0, 1, ... , t-1), 

the lower barrier is raised to ~(~1 S) B; also, when 

backtracking to the first node of the code tree path in the 

stack with an unsearched branch, after the path had fallen 

below the lower barrier, the barrier is lowered to ~m-B' 

where ~m =max ~(~ja), where j < t. This modification 

dynamically raises the lower barrier during forward motion 

in the code tree and lowers it while backtracking along a 

code tree path, in a simple version of Fano's algorithm. 

Modification 2: Here the barrier may only be raised, 

i.e. , 
"t 

whenever ~ ( ~ f3) for i = 0, 1, • • • I t-1 I the 

"ts 
lower barrier is raised to~(~ ) -B. Modifications 1 and 

2 were reported in [75]. 

The barrier movements, with and without the 

modifications to the algorithm, are shown in Fig. 8. 1. In 

Fig. 8.l(a), the numbers on the branches indicate the order 

in which the algorithm traverses the code tree branches. In 

Figures 8.l(b) and (c), the barrier levels, generated at 

different time instants by modifications 1 and 2, 

respectively, are shown. The effects of such barrier 
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movements on the distortion performance of the algorithm are 

also investigated. 

8.2 Simulation Results - Effects of Len~!h_Limi!~_B 

Barrier, and Target Distortion 

The source chosen for encoding here is an 

equiprobable binary source. The Hamming distance is used as 

the distortion criterion, i.e., d(x,x) = a ", where x is x,x 

the source bit, x the reproducer bit, a the Kronecker delta, 

and d (.,.) the distortion between the source and reproducer 

bits. R (D) = 1 - H (D) for this source, where H (.) is the 

binary entropy function. Such a source belongs to the class 

of symmetric sources and the branching process genera ted by 

the algorithm is a simple Gal ton-Watson branching process. 

Branching process concepts introduced in Chapter 7 are 

useful in explaining the simulation results. 

The code tree branches were populated by a random 

number generator of the "linear congruential" type that 

produced O's and l's with equal probability. In what 

follows, D* and DF will denote the target distortion and the 

final distortion actually attained by the algorithm, 

respectively. Simulated codes have rate 1/2, at which 

6(1/2) = 0.110 is the value of the inverse rate-distortion 

function. 

The remainder of this section shows the effect of the 
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three basic parameters L, B, and D* on the total distortion 

performance of the basic single stack algorithm. 

Effect of Lower Barrier B on the Distortion Performance of 

SSAO 

The branching process generated by the single stack 

algorithm (BPSSA) has a greater chance of survival when the 

barrier is lowered and moved away from the zero level than 

when it is closer. Consequently, the algorithm scrutinizes 

more code tree branches as the barrier is lowered and, 

hence, achieves a better distortion performance. These 

conclusions are verified to be true from Figs. 8.2(a)-(e), 

which show the distortion performance of SSAO versus E[c55 l 

for a fixed D* and for different L. 

to -7.5 along each of these curves. 

B decreases from -0.5 

Lowering B below a critical value may not improve the 

distortion performance. This is due to the fact that the 

probability of survival of the BPSSA increases and the 

algorithm is content more often with a poorer path. This is 

apparent from the curves. 

Effect of L on the Distortion Performance of SSAO 

The longest code tree path searched by the algorithm 

and lying above the lower barrier is limited by two 

parameters: 1) the barrier at level B and 2) the length of 
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the stack, L. If B is close to the zero level, the BPSSA 

may get extinguished before a path of length L is found. 

For a lower B, L dominates the distortion performance of the 

algorithm. Assuming that a path above the lower barrier and 

equal to L in length has been found, we have 

( ~L S) = LSD* d(x LS "'LS 
> - ' X ) 

or 

d(x 
LS "'LS 

-8 LSD* ' X ) < + 

Dividing both sides of (8.2) by LS, we get 

Distortion/source symbol encoded < D* + f~l 

B ( 8 0 1) 

(8 0 2) 

( 8 0 3) 

Equation (8.2) shows that, providing the branching 

process survives, as L increases the average distortion per 

source symbol encoded decreases and tends towards D*. This 

behaviour is clear in Fig. 8.2(a), which plots (DF-L1) versus 

E [c
88

J for several L. For example, when L = 100, the 

minimum DF achieved is 18% above D*, whereas for L = 1000, 

it is only 3.5% above D*. 

It can also be seen from the figure that, for a fixed 

D*, a given distortion performance can be attained by 

different (B,L) stack configurations, but only one of them 

attains it with the least number of computations. For 

example, for a DF of 18%, 12%, and 3.5% above D*, L = 100, 

300, and 1000 are the optimum stack lengths, respectively, 



154 

minimizing the computation E [c 55 J. For a fixed D*, the 

envelope of the curves in Fig. 8.2(a) represents the optimum 

(B,L) stack configurations that minimize the number of 

branches searched per source symbol encoded. The above 

conclusions are apparent in Figs. 8.2(b)-(e) as well. 

E!!ec!_O!_Ta£~et_Di~tO£!iO~L_D*L_on_!h~_Di~!~£!iO~ 

Performance of SSAO 

Figures 8. 2 (a)- (e) show the effect of varying D* on 

the distortion performance of SSAO. The envelopes of curves 

in Figs. 8.2(a)-(e) are shown in Fig. 8.3. Each curve of 

Fig. 8.3 specifies the optimum (B,L) stack configurations 

for a given D*. The envelope of curves in Fig. 8. 3 will 

then represent the optimum (D*, B, L) stack configurations 

that minimize E[c 55 ], given DF. Since D* is the target 

distortion the smaller the value of D*, the more stringent 

are the requirements on the distortion performance of the 

algorithm. Consequently, as D* decreases, the total number 

of branches generated by the BPSSA and, hence,_ E[C 55 J 

increase and the algorithm attains distortions closer to ~. 

These conclusions are verified from Fig. 8. 3. Table . 8. l 

gives a set of optimum stack configurations obtained from 

Fig. 8.3. 
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Table 8.1 Optimum (D*' B, L) Stack Configurations from 
Fig. 8.7 Minimizing E [c55 ] (B Vlaues, not shown 
in the figure, are from simulation results). 

(DF-l!.) D* B L Minimized E[c55 J 

0.04 0.143 -4.5 300 27 

0.022 0.13 -6.5 1000 150 

0.018 0.125 -9.5 1000 350 

0.016 0.12 -4.5 800 700 

8.3 Effect of B and D* on the Distortion Performances of 

SSAl and SSA2 

Figures 8.4 and 8.5 show the distortion performances 

versus branches visited for SSAl and SSA2, respectively, 

where B decreases along each curve. We have dispensed with 

L as a free parameter, since its effect is relatively 

slight; L is set to 1000. 

As B is lowered, E [c 55 ] increases and better 

distortion performance is achieved, but B may not be lowered 

below a critical level. Figures 8.4 and 8.5 also reveal the 

existence of optimum (D*, B) stack configurations of SSAl 

and SSA2, respectively, that minimize E[c55 ]. The envelopes 

of Figs. 8.4 and 8.5 represent these configurations. Most 

of the conclusions regarding the effect of the parameters 

D*, B, and L on the distortion performance of SSAO carry 

over to SSAl and SSA2 as well. 

The envelopes of curves in Figs. 8.3, 8.4, and 8.5 
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a r e shown in Fig . 8 . 6 . SSAl achieves a better distortion 

performance than SSAO for values of E[C55 ] in the range 5 to 

150, while for larger E[C 55 J there is not much difference in 

the distortion performances. For low E[C55 ] values (between 

5 and 30) SSAl performs better than SSA2, while for larger 

E[C 55 J values, SSA2 performs better than both SSAO and SSAl. 

With E [C 55 ] about 2000 and D* = 0.1176, SSAl and SSA2 

achieved final distortion performances of 13% and 10%, 

respectively, above ~, compared to 15% for SSAO. This shows 

that some sort of adaptation of B is desirable. 

8.4 Effects of Limiting Computations on the Distortion 

Performance of SSAl and SSA2 

Since SSAl and SSA2 perform better than SSAO and any 

algorithm must be limited dynamically, the effects of 

limiting the total number of computations (CT) are 

investigated for SSAl and SSA2. 

Figures 8.7(a)-(c) show the effect of limiting CT on 

the distortion performance of SSAl. 

digits encoded was allowed to vary. 

The number of source -

Thus, on any of the 

curves of Figs. 8. 7 (a)- (c), the number of source digits 

encoded times the number of code tree branches visited per 

source symbol encoded is a constant equal to CT. B 

decreases along each of these curves and L is fixed at 1000. 
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The parameters B and D* can be seen to affect the 

performance of SSAl similarly to the case without the 

computational limit. The envelopes of the curves of Figs. 

8.7(a)-(c), representing the optimal (CT' B) stack 

configurations, are shown in Fig. 8. 8. The envelope of 

curves in Fig. 8.8, in turn, represents the optimum (D*, CT' 

B) stack configurations. 

The effect of computational limit CT on the 

distortion performance of SSA2 are shown in Figs. 8.9(a)-(c) 

and their envelopes in Fig. 8 .10. Unlike in the previous 

cases, the envelope of the set of curves in Fig. 8.9(a) is 

identical to the outermost curve corresponding to the 

largest CT limit. This is true of Figs. 8.9(b) and (c) as 

well. Recall that SSA2 only raises the barrier during 

forward motion and does not lower it while backtracking. 

Assume that, with a limit on computation equal to CT'' the 

algorithm has found a path of length L1 < L with an average 

distortion equal to il 1 . Let the barrier stand at B1 . Let 

the computational limit be raised to CT" > CT,. Let the 

algorithm SSA2 now search forward of the code tree path of 

length L, alieady in storage and find a path of legnth L2 ~ 

L1 . Let the barrier now stand at B2 . Since the barrier 

cannot be lowered, barrier B2 must now be at least as high 

as B1 , i.e., B2 ~ B1 . Consequently, the average distortion 

il 2 cannot be worse than il 1 . This implies that the 
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distortion performance curve corresponding to CT" must lie 

below that of CT', just as the simulation results indicate. 

The envelopes of curves in Fig. 8. 8 and Fig. 8. 10, 

giving the optimal (D*, CT, B) stack configurations, are 

shown in Fig. 8 .11. For a given E [Css], SSA2 achieves a 

lower distortion per source symbol than SSAl. 

8.5 Summary 

We have suggested improvements to the single stack 

algorithm that modify the barrier 

encoding. These are alternatives to 

dynamically 

i 
the D(~ ) 

during 

discard 

criterion suggested elsewhere [10, p. 220], [53], [SO]. The 

dynamic discard criteria used in our simulations have not 

yet been mathematically analyzed. Simulation results favour 

the discard criterion that raises the barrier during forward 

motion in the code tree together with a computational limit. 

The simulations exhibit optimal stack configurations 

that minimize the average number of code tree branches 

searched by the algorithm to encode each source _::;ymbol. 

Anderson's [17] theoretical work has shown the existence of 

such optimal curves for the stack algorithm. We show next 

that such curves exist even for "real" sources like speech. 
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CHAPTER 9 

SPEECH ENCODING BY THE STACK ALGORITHM 

9.1 Introduction· 

We report here experiments in which the stack 

algorithm is used to encode a voiced speech sound. We show 

how the algorithm can be optimized with respect to its free 

parameters, the number of paths stored S and length of paths 

stored L, and the target distortion D* and with respect to 

derived quanti ties such as the expected node computation 

E [C] (the number of tree nodes visited per symbol released 

as output), the total storage that the algorithm uses, and 

the execution time T needed to carry out the processing. 

Each of this latter group is optimized by a different 

parameter combination. 

Our results for speech are compared with earlier 

theoretical results obtained by Anderson [17] for the stack 

algorithm encoded binary i.i.d. source with Hamming 

distortion measure and similarities between the two results 

are pointed out. 

Several authors have used the breadth-first (M,L) 

algorithm to encode speech [13]-[15], [33], and they haye 

reported significant gains over single path search methods. 

168 
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Anderson and Bodie [13] and Jayant and Christensen [14] have 

cons ide red the effects of finite M (the number of paths 

stored), and finite L (the length of paths) on the 

performance of the (M,L) algorithm. However, in the case of 

metric-first algorithms, such as the stack algorithm, the 

effects of these two as well as a new parameter, the target 

distortion, have yet to be considered. Moreover, 

metric-first algorithms, being powerful procedures, are 

expected to yield significant SNR gains over other methods. 

Our simulation results confirm this, but it is still not 

clear which type of algorithm is cheaper to use for a fixed, 

moderate SNR. We invoke theoretical cost functions proposed 

in Chapter 3 in order to compare the stack algorithm 

performance with that of the (M,L) algorithm. Reference 

[76] reports the results presented in this chapter. A 

summary of the results appeared in [54]. 

9.2 Example and Instrumentation of the Stack Algorithm 

Instead of using the stack algorithm (Chapter_2), we 

have used the merge algorithm, a metric-first algorithm that 

exactly mimics the stack algorithm. This enables the use of 

a computationally more efficient sort and merge procedure .. 

The merge algorithm was described in detail in Chapter 4. 

The speech tree code of Anderson and Law [77], used 

in our simulations, is given in Fig. 9.1. This code is 
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defined by the relation xt = 1 q_ qt-i, where the qi are 

quantizer outputs and xt are reproducer letters [13], [77]. 

The rate 2 tree code shown has four branches out of each 

node (b=4) and one symbol per branch (B=l). Here the 

numbers on branches correspond to normalized amplitude 

levels. This code is generated by the transversal filter of 

Fig. 9.2. The filter, of constraint length v, in fact 

generates a convolutional code over real numbers, but we 

view it as a tree code for encoding purposes. Instead of 

calculating the sum z . 
l 

c. 
l 

every time a node is 

extended, a more efficient table look-up scheme is used: 

All the possible 2R.(v+l) code words are stored in a table, 

and when a node is to be extended, v past path map digits 

plus the current one are used as an address to retrieve the 

code word from the table. 

Figure 9.3 illustrates the working of the stack 

algorithm. Associated with each branch are two numbers. 

The first one is the branch metric. Squared error 

distortion criterion (i.e., d(x,x) A 2 
= ( x-x) ) and D* = 0.01 

are used in computing the metrics. The second number 

corresponds to the cumulative metric of the path leading up 

to the end node of the branch from the root node. Nodes are 

numbered N. . ' 
l, J 

where i corresponds to the level number of 

the node and j correspopnds to the number of that node in 

level i. Node NO,l corresponds to the root node at level 0. 
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It is assumed in this example that the list size S=l2, and 

the list width L=4. 

Node NO,l is extended to the four nearest nodes. As 

N1 , 4 is the best in the list so far, it is extended next. 

Next N1 , 3 is extended, as the cumulative metrics of all the 

newly extended paths from N1 , 4 fall below that of N1 , 3 . As 

N2 , 9 becomes the best node, it is extended next. There are 

now a total of 13 paths and as the list can accommodate only 

12 paths, the worst one, leading to N2 , 16 , is deleted 

(indicated in Fig. 9.3 by x1). Next N3 , 36 is extended and 

three more paths N2 , 12 , N2 , 14 , and N2 , 15 are deleted 

(indicated by x2 in Fig. 9.3). As the length of the best 

path in the list N4 , 144 equals 4, the width of the list, the 

encoder must now release the earliest symbol of N4 , 144 

corresponding to the branch N0 , 1 , N1 , 3 . After performing 

ambiguity check, the encoder purges paths Nl,l' N1 , 2 , and 

N2 , 13 . The search then proceeds forward of N4 , 144 . 

9.3 Results of Tests - Effects of Free Parameters 

The stack algorithm operated on the rate 2 speech 

tree code of Fig. 9.1. A speech record of the word "speed", 

sampled at 8 KHz (a bit rate of 16 Kbits/sec) was used for 

encoding purposes. List size varied from 3 to 48 path map 

entries. Width of the list varied from 8 bits to 48 bits 

corresponding to 4 to 24 source samples or tree branches. 
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Definition: Define signal to noise ratio (SNR) in 

decibels of the encoded speech as 

where 

SNR 

E 2 xi 
i = 10 log 10 2 

E (x.-x.) 
. 1 1 
1 

dB 

x. is the source signal amplitude, 
1 

xi' the corresponding reproducer letter, and 

xi-xi is the error due to encoding. 

Effect of Bias Factor D* on Node Computation E[C] 

Referring to the definition of metric of a path, it 

is clear that a path with metric close to zero will have a 

per letter distortion close to D*. However, D* is really a 

free parameter, not necessarily related to the end distor-

tion, and its main function is to control the search 

pattern. A large D* rewards forward motion in the code tree 

search, reduces node computation, and thus causes the search 

to be satisfied with a poorer path. Conversely, a small D* 

does not reward forward motion, causing intense searching 

among code tree branches and consequently better perfor-

mance. Referring to nodes visited per branch released as 

output E[C] versus D* curves (Fig. 9.4), we see the above 

observations are indeed true. As D* decreases the search 

activity increases, but for large enough D*, E [C] is close 

to 1. The algorithm then behaves almost like a single-path 
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encoder. 

Effect of Bias Factor D* on SNR 

Figure 9.5 shows the effect of bias factor D* on SNR. 

SNR versus D* curves exhibit three different reg ions. In 

the first region, corresponding to large D*, search 

activity, as we have already noted in the preceding 

paragraph, remains near 1 and consequently SNR remains 

almost constant. In the second region, D* has decreased to 

the point where it begins to intensify the search, r~sulting 

in a corresponding incr~ase in SNR. The finiteness of the 

1 ist imposes a 1 imi t on the intensity of searching, and 

consequently decreasing D* below a critical value D * does c 

not result in any further increase in E[C]. The SNR then 

remains constant or tends to decrease slightly in this third 

"saturation" region. Consequently, this region should never 

be used and only biases in the second region are of 

interest. 

The larger the list size, the smaller is the critical 

value D * associated with that list. c Hence larger lists 

achieve a better SNR performance. It is also clear from the 

curves of Fig. 9.5 that, as the list size increases, the 

performance curves tend to converge to a 1 imi ting curve. 

There is little to be gained by using very large lists, as 

E[C] increases enormously for little SNR gain. 
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Effect of Bias Factor D* on Execution Time T 

The execution time must increase if E [C] increases. 

Thus D* has a similar effect on T as it has on E [C] (see 

Fig. 9.6). However, at low D* values, a larger sized list 

consumes more time than a smaller one. Since at low D* 

values the algorithm behaves like a single path encoder, it 

is inefficient to employ large lists; the T versus D* curves 

indicate this. 

Effect of List Width L on SNR 

Figure 9.7 shows the effect of list width Lon SNR. 

The stacks operated near the critical bias. 

L curves exhibit two different regions. 

r e g i on , the r e i s a s.i g n i f i c a n t i n c r e a s e 

The SNR versus 

In the first 

in SNR as L 

increases. For example, for a size 12 list, the increase in 

SNR is as much as 1.1 db as L increases from 8 bits to 16 

bits. There is little to be gained by employing an L 

greater than the knee apparent in the envelope of Fig. 9.7; 

for the rate 2 encoder of Fig. 9.7, saturation occurs at 32 

bits. 

9.4 Results of Tests -Optimization of SNR 

Now, we separately minimize E[C], execution time, and 

storage, using SNR performance as an objective function. 

The minimization is over the three free parameters in the 
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stack algorithm design, list size, list width, and D*. 

Optimal SNR Performance Curves with respect to E[C] 

Figure 9. 8 plots SNR versus E [C] for different list 

sizes; D* decreases along each curve and we have fixed the L 

at 48. These curves overlap and intersect in a complicated 

way. It can be inferred from the curves, that a given SNR 

performance can be achieved by different list 

configurations, and, sometimes, by the same list for 

different bias factors. But in each of these cases E [C] is 

different. The best E [C] at a given SNR lies near the 

envelope of the curves; the best list size and D* are 

indica ted by which curve is closest to the envelope. For 

example, an SNR of 23.3 dB can be achieved by list sizes of 

3,6, and 24 with E[C] equal to 1.5, 1.3, and 1.85, respec­

tively. If minimum node computation is the criterion in 

choosing the list size and bias factor, then for a 

performance of 23.3 dB a size 6 list should be used. For a 

given SNR performance, there exists a unique best list and 

bias combination that minimizes E [C] • The dashed 1 ine in 

Fig. 9.8 represents this. 
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Optimal SNR Performance with respect to Execution Time, and 

Storage Capacity 

Figure 9. 9 shows SNR performance with respect to 

execution time T, and Fig. 9.10 shows the same with respect 

to storage. Dashed lines in these figures represent the 

optimal E[C] and Tat each SNR. 

Comparing Figs. 9.8, 9.9 and 9.10, it is seen that a 

list configuration and D* that achieve the optimal E[C] do 

not do so for execution time or storage. Table 9.1 gives 

the list size and D* combinations minimizing E (C], T, and 

storage for different SNRs. It is seen that no two can be 

simultaneously optimized. 

Anderson's [17] theoretical investigation, 

stack algorithm-encoded binary i. i. d. source with 

distortion measure revealed the same conflict ln 

for the 

Hamming 

optimal 

performance curves with respect to storage and node 

computation. Here we have shown that such curves exist even 

for speech. That the stack algorithm should behave 

similarly with such widely different sources as the binary 

i.i.d. source and speech is indeed surprising. We have 

noticed as well that another algorithm, the single stack 

algorithm, exhibited similar characteristics for the binary 

source (see Chapter 8). 

Selecting the free parameters D*, L, and S thus 

depends on which quantity E [C], T,· or storage, one wishes to 
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Table 9.1: Optimum List Configurations with respect to 
E[C], T, and Storage. L fixed at 48 for Node 
Computation and Execution Time Minimizations. 
D* fixed at Critical Value for Storage 
Minimization. 

D* and list size D* and list size List width and 
SNR minimizing E [C] minimizing T size minimizing 
dB storage 

D* dB s D* dB s L s 

23.4 -28.5 6 -34.5 3 8 6 

24.0 -30.9 12 -33.0 6 16 6 

24.4 -33.0 24 -36.0 12 32 12 
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optimize. 

choose. 

There is some debate over which quantity to 

Traditionally, it has been 

computation that was used to measure 

the expected node 

sequential coding 

efficiency. But the discussions in the preceding paragraphs 

point to its inadequacy. We have proposed several cost 

functions suited to hardware and software implementations of 

sequential coding algorithms. From algorithmic consider a-

t i on s , the a s ym p to t i c t i me co s t s for the s t a c k and 

M-algor i thms are as given below. (The time cost of an 

algorithm is the number of basic operations it performs.) 

Stack algorithm time cost= c 1SE[C], 

M-algorithm time cost 

where c1 and c2 are proportionality constants - 1. 

Using these time cost formulas, we can compare the 

stack and M-algor i thms. Considering first the stack 

algorithm, the time-optimizing combination D* = -30 dB and S 

= 3 achieved an SNR performance of about 23 db. The time 

cost for this combination is 4.5 c 1 . Another combination D* 

= -26 dB and S = 6 yielded the same performance with a time 

cost of 7.8 c1 . Experimentally measured T curves in Fig. 

9. 9 show that the second combination indeed consumed more 

time. The second however has a lower node computation, 1.3 

instead of 1. 5. The M-algorithm with M = 4 achieves 23 db 

with cost equal to 8 c 2• Thus with the right list size and 

bias combination, the stack algorithm is only one-half to 
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two-thirds as costly as the M-algorithm. Whether or not the 

cost formulas are useful except asymptotically is open to 

question. However we have the following results concerning 

program running times. While the M-algorithm with M=8 

required 16.4 seconds of central processor time, the stack 

algorithm required only 12 seconds to achieve the same 

performance. 

9.5 Conclusions 

We have shown, using a software encoder for speech, 

how the algorithm's performance s::an be optimized with 

respect to the expected node computation, execution time, 

and storage. Since no two of these can be simultaneously 

minimized, execution time in a software environment was 

chosen for minimization. The stack algorithm is found to be 

1 es s time cons urn ing than the M-al go r i thm far speech. 

Several conflicting optimal curves, previously shown to 

exist for theoretical sources, are shown here to exist for 

speech as well. 

Successful application of the Vi terbi algorithm to 

speech encoding depends on whether short enough 

convolutional codes are available for speech. Good speech 

codes have been shown to have between 256 to 1, 024 code 

states [77]. While experimental evidence shows that only 4 

to 8 code states need to be searched [14], [77], the Viterbi 
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algorithm must search all the code states. Thus, the 

Viterbi algorithm may prove to be quite expensive. Metric­

first algorithms lack the synchronism of the M-, or the 

Vi terbi algorithm, but as a compensation seem to be much 

cheaper. In applications where synchronism is not a crucial 

factor, such as in stored voice answer-back, metric-first 

algorithms provide an attractive alternative. 



CHAPTER 10 

CONCLUSIONS 

This thesis is motivated by the increasing 

applications of code search algorithms and the need to 

devise efficient methods. We started in Chapter 2 by 

classifying the algorithms into three main classes, breadth­

first, metric-first, and depth-first techniques. The 

metric-first algorithms, like the stack algorithm, have the 

least node computation of all the schemes, but they require 

large storage space. On the other hand, the depth-first 

procedures, like the single stack and the Fano algorithms, 

require the least amount of storage, but they search a large 

number of code tree branches. Breadth-first algorithms, 

like the M-algorithm, follow a middle course between these 

two extremes and require moderate storage and computation. 

In order to compare these different schemes, we 

proposed in Chapter 3 several cost functions based -on the 

size of and number of accesses to storage and the number of 

comparisons done by the algorithms. Resource costs of many 

existing algorithms were derived. 

Since the metric-first algorithms are efficient in 

terms of node computation, we inquired if it was possible to 

191 
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design efficient algorithms having reduced cost compared to 

the stack algorithm. The merge and the generalized merge 

algorithms of Chapter 4, the AVL tree-based algorithm of 

Chapter 5, and the dynamic bucket algorithm of Chapter 6 

provided the answer. While the generalized merge and AVL­

based algorithms reduced the search times to O{log S) from 

0 {S) for the s.tack algorithm, the "roughly" metric-first 

dynamic bucket algorithm provided a constant search time. 

These are as optimum as they can possibly be. In the 

process of devising these algorithms, we also discovered 

efficient data structures. The merge and the AVL-based 

schemes used efficient in-core {internal storage) data 

structures, while the dynamic bucket algorithm would be 

efficient with large external storages in which the buckets 

could be stored and retrieved in blocks. Consequently, the 

merge, AVL-based, and the dynamic bucket algorithms are 

likely to be optimal for small, medium, and large storage 

sizes, respectively. Thus the dynamic bucket algorithm is 

not a universal panacea even though it has the least order 

of dependence on S of any "roughly" metric-first schemes. 

One of the factors that affects the resource costs of 

an algorithm is the expected node computation E[C], and we 

have dealt at some length with this. The asymptotic 

behaviour of E [C] is known for different algor''i thms used 

with symmetric sources. However, there exists little 
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know 1 edge o f i t s be h a v i our w i t h r ega r d to a s ym me t r i c 

sources. Chapter 7 analyzed asymmetric source encoding by 

the single stack algorithm and derived an equation for node 

computation that is the stochastic analog of the equation 

for the symmetric case. The branching process method used 

here opens up further avenues for research, for example, in 

encoding sources with memory. 

To choose the best algorithm for a given situation, 

one must determine the combination of L, S, and E [C] that 

optimizes some objective function, perhaps the cost function 

for the desired enpoding distortion or an error probability. 

This is a most difficult task, for in addition to 

constructing and testing the algorithms, one must optimize 

over many lesser parameters such as the discard criterion, 

threshold increments, list width, and the like. However, in 

Chapters 8 and 9, we presented simulation results for the 

single stack algorithm-encoded binary i.i.d. source and 

stack algorithm-encoded speech, respectively, and used them 

to optimize the performance of the algorithms over a number 

of parameters. The configurations that optimize storage, 

time, or E[C] were all different and no two of these could 

be simultaneously minimized. Similar studies should be made 

for oth~r code searching schemes. 

From studies that have been made here or elsewhere, 

some conclusions may be drawn. First consider sequential 
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distortion measure. 

simulations for the 

binary 

Table 

stack, 
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i.i.d. sources with Hamming 

10.1 (from [56]) reproduces 

M-, 2-Cycle, and single stack 

algorithms used with random tree codes. The encoder rate is 

1/2 output bit/source bit, and all the algorithms achieve an 

average distortion per bit of about 0.125, 15% above the 

distortion-rate function. The cost formulas from Chapter 3 

are used to evaluate cost, and because of the asymptotic 

nature of these and uncertainties with simulations only 

orders of magnitude are significant in the results. Still, 

it is clear the two non-sorting algorithms have greatly 

reduced cost compared to the stack or M-algor i thms under 

either the space-time or space-plus-time cost evaluation. 

Even the merge and the bucket algorithm (borrowing the same 

L, S, and E[C] as the stack algorithm) fall well short, and 

in fact perform only as well as the M-algorithm. 

However, speech encoding using the M- and the stack 

algorithms points to the superiority of metric-first 

procedures. Our simulation results in Chapter 9 have shown 

that the stack algorithm is only one-half to two-thirds as 

costly as the M-algorithm. Typical time cost per branch. for 

the stack algorithm (to achieve SNR = 23 dB using S = 3 and 

E[C 5AJ = 1.5) turns out to be 4.5 K, where K is a constant 

==1. For the single stack algorithm, however, the time cost 

== E[C 55 J; the single stack algorithm is yet to be used to 



195 

Table 10.1: Evaluation of Cost for Certain Algorithms, taken 
from Ex per imen tal Data. Binary i. i. d. Source 
with Hamming Distortion, R = l/2, Encoded 
Distortion 0.125 (Shannon Limit = 0.110). 

Branches 
Viewed 

E[C] 

Stack 200 

M- 500 

2-Cycle 1000 

-single 1500 
Stack 

Paths 
Stored 

s 

>500 

250 

1* 

1 

Space.Time 
Cost 

200K 

3UOK 

L = 200-300, all cases (200 used for cost). 

Space+Time 
Cost 

200K 

51K 

8500 

1700 

* About 150 paths of average length 50 were kept in the save 
stack. 

8 . h . 7 10 7 . ** 2xl0 Wlt Merge Alg.; X +H Wlth Bucket Alg. 
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encode speech, but judging from its behaviour with other 

sources, it is expected to have an E [c88 ] much larger than 

that of the stack algorithm. Thus the stack algorithm may 

be superior for "real" sources like speech. For longer list 

sizes and higher SNR performances, the more efficient merge 

algorithm would replace the stack algorithm. 

The stack algorithm's space-time and space-plus-time 

costs are 54 and 16. 5, respectively, under similar 

conditions as in the preceding paragraph. The corresponding 

costs for the M-algorithm (using M = 4 and L = 4) are 128 

and 24, respectively. Thus the stack algorithm outperforms 

the M-algor i thm by a factor of 1. 5 to 2 under any cost 

measure. For the single stack algorithm· these costs are 

Assuming a moderate L of 50 symbols 

we see that the stack algorithm outperforms the single stack 

algorithm as well. In view of the superiority of the 

metric-first schemes over others, the new metric-first 

algorithms proposed 

significance. 

in this thesis take on added 

In many sequential decoding algorithms, erasure of 

output data by noise-induced computational overload can 

occur, and thwarting this problem is a factor in their 

design. The different cost measures make no explicit 

mention of erasures, but to the extent that erasures stem 

from cost overflow, that is, from exhaustion of resources, 
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the estimates of cost presented here indicate susceptibility 

to erasures. 

Research into the applications of search procedures 

to the intersymbol interference problem has only just begun. 

There should be interesting results here, since the Viterbi 

algorithm estimator would seem to have limited applicability 

to severely band limited channels. 

The practice and theory of both source coding and 

channel coding are 

Transmission of digital 

assuming greater significance. 

voice signals and teleconferencing 

using compressed pictures are becoming increasingly common. 

Great improvements in information transmission can result by 

the use of efficient code search procedures for data 

compression and for channel transmission. We hope that this 

thesis has helped the understanding of this many faceted 

problem of code searching, by presenting the right blend of 

art, engineering, and theory. 
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