
ANALYSES AND COST EVALUATION OF

CODE TREE SEARCH ALGORITHMS

ANALYSES AND COST EVALUATION OF

CODE TREE SEARCH ALGORITHMS

By

SESHADRI MOHAN, B.E. (HONS), M.Tech.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University

September 1979

DOCTOR OF PHILOSOPHY (1979)
(Electrical Engineering)

McMASTER UNIVERSITY
Hamilton, Ontario

TITLE:

AUTHOR:

SUPERVISOR:

Analyses and Cost Evaluation of Code Tree
Search Algorithms

Seshadri Mohan, B.E. (HONS) (Univ. of Madras)
M.Tech. (Indian Institute of

Technology, Kanpur)

Professor J.B. Anderson

NUMBER OF PAGES: xiv, 204

ii

ABSTRACT

Codes with a tree structure find wide use in data

compression and error correction. It is generally

impractical to view and weigh all the branches 1n a code

tree, so a search algorithm is employed which considers some

but not others in a predetermined fashion. Traditionally,

the efficiency of code tree search algorithms has been

measured by the number of tree branches visited for a given

level of performance. This measure does not indicate the

true consumption of resources. Cost functions are defined

based on the number of code tree paths retained, S, the

length of the paths, L, and the number of code tree branches

searched per branch released as output, E(C]. Using these

cost functions, most of the existing algorithms as well as

some new algorithms proposed here are compared.

These new algorithms include three metric-first

algorithms. The first one, the merge algorithm, uses, in

addition to the main list used by the stack algorithm, an

auxiliary list to store paths. The merge algorithm reduces

2
the dependence on S for the product resource cost from O(S)

for the stack algorithm to O(S 4/ 3) for the merge algorithm.

A generalization of this algorithm reduces- the product cost

iii

to O(S log S). The second algorithm uses a class of

height-balanced trees, known as AVL trees, to store code

tree paths, resulting in an alternate method to the merge

algorithm achieving O(S logS) cost.

The third algorithm, using the concepts of dynamic

hashing and trie searching, provides important modifications

to the Jelinek bucket algorithm by incorporating dynamic

splitting and merging of buckets. This strategy provides a

balanced data structure and reduces the product cost still

further compared to the first two algorithms.

We next turn to analysis of the number of nodes

visited during a search. Using the theory of multitype

branching processes in random environments an equation for

node computation is derived for asymmetric source coding by

the single stack algorithm. This equation is shown to be

the stochastic analog of an equation for symmetric sources.

Simulation results, obtained by encoding the Hamming source

by the single stack algorithm, are used to optimize the

performance of the algorithm with respect to the bias

factor, stack length, and limit on computation. A modi­

fication to the algorithm that raises the barrier during

forward motion provides a better distortion performance.

The metric-first stack algorithm is used to encode a

voiced speech sound. From experimental evidence, it is

iv

shown how to optimize the algorithm's SNR performance with

respect to the algorithm's storage, execution time, and node

computation. For each of these, the optimal parameterizing

of the algorithm differs markedly. Similarities are pointed

out between the results for speech and earlier theoretical

results for the binary i.i.d. source with Hamming distortion

measure. It is shown that metric-first algorithms may

per form better with 11 real 1 i fe 11 sources 1 ike speech than

they do with artificial sources, and in view of this the

algorithms proposed here take on added significance.

v

ACKNOWLEDGEMENTS

I am deeply indebted to my supervisor, Dr. John B.

Anderson, for his constant encouragement, invaluable

support, and continuing guidance throughout the course of

this research. My association with Dr. Anderson has been a

singularly rewarding experience.

I would like to thank Dr. D.P. Taylor and Dr. D. Wood

for serving as members of my supervisory committee. I would

also like to express my deep appreciation to McMaster

University for supporting this research with a Dalley

Fellowship.

The cheerful and excellent typing services of t•'liss

Pat Dillon of the Word Processing Centre are gratefully

acknowledged. Thanks are also due to Mr. G. Kappel for his

excellent drawings.

vi

TABLE OF CONTENTS

Page

ABSTRACT iii

ACKNOWLEDGEMENTS vi

LIST OF FIGURES X

LIST OF TABLES xiv

CHAPTER 1 INTRODUCTION 1

1.1 A Digital Communication System Model 1

1.2 History of Source Coding and Sequential
Decoding Algorithms 4

1.3 Tree Codes and Convolutional Codes 7

1.4 Expected Node Computation for Code Tree
Search Algorithms 15

1.5 Applications of Code Tree Search Algorithms 17

1.6 An Overview of the Thesis 19

CHAPTER 2 A SURVEY OF EXISTING CODE TREE SEARCH
ALGORITHMS 21

2.1 Introduction 21

2.2 Basic Features of Searching Algorithms 24

2.3 Non-Sorting Algorithms 28

2.4 Sorting Algorithms 35

2.5 Conclusions 40

CHAPTER 3 A COST FUNCTION FOR CODE TREE SEARCH
ALGORITHMS 41

3.1 Introduction 41

vii

TABLE OF CONTENTS (continued)

Page

3.2 A Definition of Algorithm Cost 42

3.3 A Cost Analysis of Algorithms 44

3.4 Conclusions 49

CHAPTER 4 THE MERGE ALGORITHM 51

4.1 Introduction 51

4.2 The Merge Algorithm 52

4.3 Cost of the Merge Algorithm 54

4.4 The Generalized Merge Algorithm 59

4.5 Resource Costs of the GMA 63

4.6 Summary 72

CHAPTER 5 A CODE TREE SEARCH ALGORITHM USING A
BALANCED TREE DATA STRUCTURE 74

5.1 Introduction 74

5.2 Binary Trees - Preliminaries 74

5.3 Height-Balanced Binary Trees 82

5.4 A Code Tree Search Algorithm with Balanced
Tree Data Structure 9u

CHAPTER 6 A DYNAMIC BUCKET ALGORITHM 95

6.1 Introduction 95

6.2 Jelinek's Bucket Algorithm 96

6.3 Later Bucket Algorithm Developments 103

6.4 A Dynamic Bucket Algorithm 107

6.5 Analysis Using Tries 118

viii

TABLE OF CONTENTS (continued)
Page

CHAPTER 7 BRANCHING PROCESS METHODS FOR THE
SINGLE STACK ENCODING ALGORITHM 124

7.1 Tntroduction 124

7.2 Preliminaries 125

7.3 Analysis of the Single Stack Encoding
Algorithm 132

7.4 Asymmetric Source Simulations 143

CHAPTER 8 ENCODING THE BINARY IID SOURCE WITH HAMMING
DISTORTION USING TilE SINGLE STACK ALGORITHM 146

8.1 Introduction 146

8.2 Simulation Results - Effects of Length
Limit, B Barrier, and Target Distortion 149

8.3 Effect of Band D* on the Distortion
Performances of SSAl and SSA2 156

8.4 Effects of Limiting Computations on the
Distortion Performance of SSAl and SSA2 159

8.5 Summary 166

CHAPTER 9 SPEECH ENCODING BY THE STACK ALGORITHM 168

9.1 Introduction 168

9.2 Example and Instrumentation of the
Stack Algorithm 169

9.3 Results of Tests- Effects of Free
Parameters 174

9.4 Results of Tests -Optimization of SNR 179

9.5 Conclusions 189

CHAPTER 10 CONCLUSIONS 191

REFERENCES 198

ix

Figure

1.1

1.2

1.3(a)

1.3(b)

1.4

2.1

2.2

LIST OF FIGURES

Caption

A Digital Communication System Model

A Rate 1/2 Binary Tree Code, b = 8 = 2

A Rate 1/2 Convolutional Encoder of Order 2

State Diagram of the Encoder of Fig. 1.3(a)

·rrellis Structure of the Convolutional
Encoder of Fig. 1.3(a)

Push-Down Stack Search, b = 2. Downward
Branch (0-th) Taken First, Then Upward Branch
(1-st); Numbers Show Order of Visiting, x
Means Path Metric Hits Discard Criterion

Save Stack Showing Generation Numbers

2.3 Example of Stack Algorithm List, Showing
Paths, Length Indicators, and Metrics. The
Top Path is About to Penetrate a New Depth,
Causing an Ambiguity Check; the Fourth Path
will be Deleted if its Earliest Symbol does
not Pass

5.1

5.2

5.3

5.4

5.5

5.6

Four Binary Trees Over Names A, B, C, and
D in Symmetric Order

A Binary Tree and Its Extension

Deletion Algorithm; a) z has no Son, b) z has
One Son, c) z has Two Sons

Rebalancing Requires Work Proportional to n

Examples of a) Height-Balanced and b) Non­
Height-Balanced Trees

A Height-Balanced Tree Showing Balance
Factors of Nodes

X

Page

2

8

12

12

14

30

30

37

76

76

79

81

83

83

Figure

5.7

5.8

6.1

6.2

6.3(a)

6.3(b)

6.3(c)

6.4

6.5

6.6

8.l(a)

8.l(b)

8.l(c)

8.2
(a)-(c)

8.2
(d),(e)

LIST OF FIGURES (continued)

Caption

Examples to Illustrate the Tree Transforma­
tions; a) Rotation, and b) Double Rotation

Cell Structure; S(.)-Path Map, L(.)-Length,
~(.)-Metric, LLINK(.)-a Pointer to Left Son,
RLINK(.)-a Pointer to Right Son

The Storage Information at an Intermediate
Stage During the Searching of a Code Tree

Chained Storage of Buckets for Bucket
Algorithm. W Points to Worst Bucket and
B to Best Bucket

Bucket 1 is Full; a New Path is to be
Entered into Bucket 1; Q = 2

Two New Nodes 10 and 11, Successors to node
1, are Created; These Point to Two Buckets

Further Splits May Occur to Modify the
Data Structure

Bucket Splitting Strategy

Node Structure. a) Internal Node and
b) External Node

An Example to Illustrate Trie Searching
and Organization

Push-Down Stack Search, b = 2

Barrier Movement with Modification 1

Barrier Movement with Modification 2

Distortion Performance Curves of SSAO
((DF-~) Versus Branches Visited per Source

Symbol Encoded) with Length Limit for
Different D*

Distortion Performance Curves of SSAO
((DF-~) Versus Branches Visited per Source

Symbol Encoded) with Length Limit for
Different D*

xi

Page

85

91

98

104

109

109

109

112

112

119

148

148

148

151

152

Figure

8.3

8.4

8.5

8.6

8.7
(a)-(c)

8.8

8.9
(a)-(c)

8.10

8.11

9.1

9.2

LIST OF FIGURES (continued)

Caption Figure

Envelopes of Distortion Performance Curves
of SSAO with Length Limit for Different D*;
L Increases Along Each Curve 155

Distortion Performance Curves of SSAl for
Different D* with L = 1000 157

Distortion Performance Curves of SSA2 for
Different D* with L = 1000 158

Envelopes of Performance Curves of SSAO,
SSAl, and SSA2 with Length Limit; D*
Decreases Along Each Curve 160

Distortion Performance Curves of SSAl with
Computational Limit for Different D* with
L = 1000 161

Envelopes of Distortion Performance Curves
of SSAl with Computational Limit; CT
Increases Along Each Curve; L=lOOO 162

Distortion Performance Curves of SSAl with
Computational Limit for Different D* with 164
L = 1000

Envelopes of Distortion Performance Curves
of SSA2; CT Increases Along Each Curve;
L = 1000 166

Envelopes of Distortion Performance Curves
of SSAl and SSA2 with Limit on Computation;
D* Decreases Along Each Curve; L = 1000 167

Rate 2 Speech Tree Code Generated by the
Constraint 4 Real-Number Convolutional Code
Generator with Coefficients c0 = 0.7704,

c1 = 1.5154, c2 = 1.6332, c3 = 1.2054,

and c4 = 0.4962 170

Transversal Filter Realization of the Tree
Code Generator of Fig. 9.1 (From [13]) 172

xii

Figure

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

LIST OF FIGURES (continued)

Caption Page

working of the Stack Algorithm with D* =
0.01, List Size S = 12, and List Width L = 4;

4 -Source Sequence ~ - 0.51, 0.60, 0.25, -0.11 173

Effect of Bias Factor D* on Nodes Visited Per
Branch Released as Output E[C]; 10 log10 D*
is the value of D* in decibels 176

Effect of D* on SNR 178

Effect of D* on Execution Time T 180

Effect of List Width L on SNR; D* Fixed at
Critical Value 181

Optimal SNR Performance Curves with Respect
to E[C]; D* Decreases Along Each Curve From
0 dB to -51 dB; Only Magnitudes Shown; L=48 183

Optimal SNR Performance Curves with Respect
to Execution Time T: D* Decreases Along
Each Curve; L = 48 185

Optimal SNR Performance Curves with Respect
to Storage Capacity; L Increases Along Each
Curve from 8 bits to 48 bits; D* Fixed at
Critical Value 186

xiii

Table

2.1

3.1

4.1

4.2

4.3

4.4

7.1

8.1

9.1

10.1

LIST OF TABLES

Caption Page

Search Rationales for Certain Selective
Search Algorithms 22

Asymptotic Cost of Certain Algorithms in
the Limit of Intensive Searching, per Output
Symbol Released 50

·Estimated Comparisons-Based Cost Measure
and List Size of GMA for S = 1000 67

Estimated Product Cost Measure and List
Sizes of GMA for s = 1000 70

Estimated Sum Cost and List Sizes of GMA
for S = 1000 72

Resource Costs of the Stack, 2-List Merge,
and Generalized Merge Algorithms 73

Simulation Results for the Single Stack
Encoding Algorithm. Binary i.i.d. Source
with Hamming Distortion, R=l/2, L=200-1000 145

Optimum (D*,B,L) Stack Configurations from
Fig. 8.7 Minimizing E[Cssl 156

Optimum List Configurations with Respect to
E[C], T, and Storage; L fixed at 48 for Node
Computation and Execution Time Minimizationsj
D* Fixed at Critical Value for Storage
Minimization 187

Evaluation of Cost for Certain Algorithms,
taken from Experimental Data. Binary i.i.d.
Source with Hamming Distortion, R = 1/2,
Encoded Distortion 0.125 (Shannon Limit
= 0.110) 195

xiv

CHAP'rER 1

INTRODUCTION

There is an ever increasing demand to transmit

information rapidly. Shannon 1 s paper [1] , which laid the

foundation for active research in information theory, showed

that reliable communication with arbitrarily low probability

of error was possible at rates below channel capacity.

Conversely, at all rates exceeding capacity, the error

probability will approach unity with increasing code word

length. Excellent references [2]- [6] are available, giving

both theoretical codes satisfying Shannon 1 s existence

theorem, and practical and instr umen table codes. We beg in

by discussing codes and code tree search algorithms used in

source encoding and channel decoding, and, as a prelude, a

digital communication system model.

1.1 A Digital Communication System Model

Figure 1.1 shows, in block diagram form, all the

relevant functions performed in the transmission of

information. The source produces outputs xt' at time t,

chosen according to a given probability distribution from

the space X of possible source outputs. The entropy of the

1

SOURCE

USER -

r-­
I

-----, r- ----,
I I

I

I
X SOURCE

I ENCODER

I

I
I
I

SOURCE CODING

I

I

I

I
SOURCE y

I DECODER

I

I

L----

I

I I
" I X I

I I
I I
I I
I

I I

I

I
I

I I

I
I
I ... I y

-
I I

I
I I

I I
--l l-

I

I
CHANNEL Yl
ENCODER I

I

I
I

C HANN EL COOl NG

I
I

I

CHANNEL ~ I y

DECODER -I

I

_ _j

-- MODULATOR

D EMOD ULA TOR

Figure 1.1 A Digital Communication System Model

z

CHANNEL

... z

N

3

source H(X) is greater than C, the channel capacity.

into

where

The source encoder transforms the

an approximation xt such that the

X is the reproducer alphabet.

source output

entropy H (X) <

Equivalently, the

source encoder can be viewed as a device that partitions the

space

and

of possible

informs the

source outputs into equivalence classes

channel encoder which of these the

particular source output belongs to. The source encoder is

a complex device that performs a many-to-one mapping. Its

complexity depends on how stringent the requirements on the

mapping are.

The channel encoder receives the output of the source

encoder and by means of a sui table encoding transforms it

into a form suitable for efficient transmission over the

channel. This is a relatively simple device that performs a

one-to-one mapping.

The signal received by the channel decoder at the

other end of the channel is corrupted by noise introduced in

transmission through the channel and the function of the

decoder is to determine from the sequence of received

symbols over an appropriate period of time which of the mes­

sages was sent. Like the source encoder, the channel de­

coder is a complex device performing a many-to-one mapping.

Upon receiving the estimate ~'t of the channel

decoder, the source decoder performs a one-to-one mapping

4

and presents its estimate yt of the source output xt to the

user. Like the channel encoder, the source decoder performs

a relatively simple task.

The above discussion brings out the similarities

between source encoders and channel decoders and also

between channel encoders and source decoders. However, the

channel decoder is required to find the best estimate

whereas the source encoder finds an estimate of the source

output that meets a certain distortion criterion. Usually,

there exist several estimates that meet the criterion.

1.2 History of Source Coding and Sequential Decoding

Algorithms

Huffman's codes [7] are examples of optimal variable-

length, uniquely decodable, noiseless source codes. These

codes are difficult to implement and they almost always

involve encoder buffer overflow [8], no matter how large the

buffer is. We are concerned here not with noiseless coding,

but with coding with respect to a fidelity criterion: that

is, with determining the least rate at which information

must be transmitted in order that the total distortion does

not exceed some given distortion D. Coding with a fidelity

criterion was first proposed by Shannon in [9] , where he

defined the rate distortion function of an information

source. Berger's book [10] is devoted entirely to these

5

rate versus distortion trade off functions R(D) for various

sources. Jelinek [4] and Gallager [5] devote a chapter each

to this problem while a chapter in [6] concerns itself with

trellis source coding using convolutional codes and the

Viterbi algorithm.

Source coding is a two-fold design problem consisting

of 1) the design of good codes that guarantee performance

arbitrarily close to R(D), and 2) the design of efficient

algorithms that explore among the code words in order to

find one with the given distortion performance. Only ten

years after the birth of rate distortion theory did the

first paper [11] specifically on codes appear. In [11],

Jelinek showed the existence of a class of codes with a

perfectly regular tree structure (henceforth known as tree

codes) that achieved performance arbitrarily close to R(D),

thus giving attention to the first design facet of source

coding. Viterbi and Omura [21] have shown the existence of

time-varying trellis codes that achieve the rate distortion

bound. It is the popular belief that fixed convolutional

codes will achieve the limit predicted by rate distortion

theory, but this remains an open problem.

The second facet of source coding was considered by

Jelinek and Anderson [12] when they proposed their (M, L)

algorithm to encode the binary i.i.d. source. Later it was

applied to speech as well [13]-[15]. Now there exist

6

several other algorithms [16]-[18] that have been proven to

achieve performance arbitrarily close to R (D) . All these

algorithms search tree codes, hence the name code tree

search algorithms. An algorithm utilizing convolutional

codes is the Viterbi algorithm [19],[20].

The developments in the sequential decoding area led

by almost a decade those in the field of source coding. So,

the wealth of information and analysis techniques

accumulated in the sequential decoding field were often

exploited to advantage in the source coding area. We

briefly trace the development in sequential decoding.

For sequential decoding algorithms, the counterpart

of the distortion criterion for source coding is the

probability of error due to incorrectly decoding a received

symbol. Wozencraft [22], [23] devised the earliest

sequential decoding method that achieved arbitrarily small

error probability at non-zero rates. Fano [24] introduced

modifications to it that made the algorithm analytically

tractable. Massey [25] has shown that the Fano metric (see

sec. 1. 3 for its definition) proposed in [24] is optimum in

that it enables the algorithm to minimize the probability of

error. He further shows that the algorithm due to

Zigangirov [26], and invented independently by Jelinek [27],

follows naturally as a consequence of this interpretation of

the Fano metric (this algorithm tries to maximize the

7

probability that the next step taken is along the correct

path; that is, the node with the best metric is extended at

any time) • R e c en t 1 y , two o the r a 1 go r i t hm s [2 8] , [2 9] have

been proposed, but these are variations of the Zigangirov-

Jelinek stack algorithm.

1.3 Tree Codes and Convolutional Codes

By a tree code is meant a code whose words may be

graphed on a perfectly regular tree structure with b

branches out of each node and a symbols on each branch.

Such a code is said to have a rate

log 2 b
R = ---

13
-- bits/source symbol. (1 0 1)

A tree code has a d i sting ui shed node called the root node

from which all code words begin. Each code word corresponds

to a path starting from the root node and consisting of a

chain of code tree branches.

Figure 1.2 shows a rate 1/2 binary tree code with b =

s = 2. A path through the tree code has a path map

associated with it. The upward branch out of a node has
I

associated with it the path map symbol 0 and the downward

branch the symbol 1. For example, a path with path map 1 0

1 1 is shown dotted in Fig. 1.2.

The tree has four levels, one corresponding to each

branch along a path of the code tree. Sometimes it is

8

00
~

00

11

00
10

11

0 00 01

' 11

10
00

~

11

01

01

10

ROOT
NODE I

I
00

I 11

I 11
~

I 10
I r .,

I 10
I I I

I I I 00
W:

I I
I 01 I

I I -
11

tl -
1

.....
1 1

01

00

01

01

10

10

Figure 1.2 A Rate 1/2 Binary Tree Code, b = 8 = 2

9

convenient to associate levels with nodes in which case we

make the convention that the root node is at level 0, all

descendents of root node are at level 1, all descendents of

the level 1 nodes at level 2, and so on. Theoretically, a

tree code can have infinitely many levels, but any useable

and instrumentable code has a trellis structure requiring

only finite storage.

Assume that a binary source is to be transmitted over

the channel. A channel encoder using the tree code of Fig.

1.2 will follow the upward branch from the current node at

which the encoder is stationed if a 0 is to be transmitted

and the downward branch if a 1 is to be transmitted, and

will transmit the reproducer symbols on the branch followed.

·rhus, for a message sequence of 1 U 1 1, the reproducer

sequence is 11 10 00 01.

A source encoder using the tree compares the source

letter at a given level with the code word letters at that

level and assigns a metric to code tree paths based on a

distortion criterion. Define the metric 1.t(g.ta) of a code

tree path x.ta of R.l3 code word letters (or R. code tree

branches) by

(1. 2)

where ~.ta is a sequence of .ta source letters, d(.,.) is the

distortion between ~R.I3 and xR.I3 and D* is a bias factor. For

additive single letter fidelity criterion

and,

where

consequently,

s x .
.. 1

u(~ta)

and

d(x2- 8 , ;2-s)

R. "s = E u(~i)
i=l

are groups

10

R. s ;~) = E d(~i'
i=l ... 1 (1. 3)

(1. 4)

of s source and code word

letters, respectively, at level i. By encoding a source we

mean finding a path through the code tree so that the per-

letter distortion of the

d . . . d R.S 1stort1on D; 1.e., (~ ,

encoded path

~R.S)/R.S < D.

is within a given

For the Hamming

distortion criterion, i.e., d(x, x) = o "', where o is the· x,x

Kronecker delta, the best (the least distortion) code tree

path corresponding to the source letters ~ 8 = 01 11 10 11 is

shown by the thick line in Fig. 1.2.

For sequential decoding, we define the metric of a

code tree path ~R.S as

where

R.
E

i=1

"s u(x.)
-1

s "a p(x.jx.)
[

... 1 ... 1]

p{x~)
... 1

(1. 5)

- SR (1. 6)

and x and x are code word letters and channel output letters

(received symbols) to the decoder, respectively; p{xilxi) is

the distribution of the channel output conditioned on its

input and

= E q(x
1
.) p(x.jx.)

1 1 }{.
1

11

(1. 7)

where q(xi) is the distribution of the received symbols.

Here the channel is assumed to be memoryless.

The metric defined in (1.6) and (1.7) was first

introduced by Fano [24] and is known as the Fano metric. It

has the property that its average per- symbol metric

increment is always positive along a correct path provided R

is less than C, the channel capacity, while along an

incorrect path it is always negative [24]. This enabled

Fa no to postulate an algorithm based on these heuristic

considerations, wherein, sooner or later, any incorrect path

being pursued fell below a threshold, while the correct path

eventually remained above it.

We now briefly consider convolutional codes and their

trellis structure. A general rate R = \} /8 convolutional

code is genera ted by a 1 inear sequential c ire ui t with \l

inputs and 8 outputs. For simplicity, we consider rate 1/8

convolutional codes.

Figure 1.3(a) shows a shift register circuit that

generates a rate 1/2 convolutional code of order 2 and Fig.

1.3(b) its state diagram. By state of the encoder we mean

the tuple (yi-l' yi_ 2), the immediate two past inputs to the

shift register. If Y· 1
is the present input, a

transformation of the state from (yi-l' yi_ 2) to (yi, Yi-l)

a}

b)

y.--+--t
I

,..
r------------t- Xi 1

0/00

/

Y. 1 1-

0/11 / 1/11
/ 0/10 ------

'\.

" 0/01 '\..
1/00

1/10

-
1/01

Y. 2 ,_

Figure 1.3(a) A Rate 1/2 Convolutional Encoder of Order 2

Figure 1.3(b) State Diagram of the Encoder of Fig. 1.3(a)

12

STATE

00
00

11

01

10

1 1

Figure 1. 4

00

11

00 00 00 00

11

Trellis Structure of the Convolutional Encoder
of Fig. 1.3(a)

I-'
~

15

decode a given sequence of symbols [20]. If code state

transitions branch out without remerging, the tree code of

Fig. 1.2 results and the Viterbi algorithm may not be used.

1.4 Expected Node Computation for Code Tree Search

Algorithms

Define the node computation performed by an algorithm

as the average number of code tree branches that the

algorithm must scrutinize in order to release an output

symbol, for a given level of source encoder fidelity or

decoder probability of error.

The stack, M-, and 2-cycle algorithms (see Chapter 2

for a survey} for source coding obey the asymptotic formula

as D + !l [30]

-a.C 2
E[C]"' c1 exp[(D-!l}] (1. 8}

where E[C] is the expected node computation, c1 and c 2 are

constants depending on the source and rate of the code, a. is

1/2 or 3/4 depending on the algorithm used, Dis the per-

source-digit average distortion achieved by the algorithm,

and !l (•} is the inverse rate distortion function. For. the

binary i.i.d. source) the rate distortion function is given

by R(D} = Hb(p} - Hb(D}, where p is the probability of a 0

and H (• }
b is the binary entropy function. The values of a.

for various algorithms and sources were given in Anderson

16

[3 0] •

The single stack algorithm's node computation is

bounded from above by (1.8) with a= 1/2 [18]. Viterbi and

Omura [21] demonstrate the relation

for trellis source coding using the Viterbi algorithm. From

experimental work for the M-algorithm, a highly truncated

Viterbi algorithm, Anderson [30] conjectures a y ~ 4/3.

For sequential decoding, asymptotic results show that

the average number of computations required to decode a

received symbol is Pareto distributed (see Savage [31]),

i . e. ,

P{E[C] ~ N} ~ AN-p (1.10)

where A is a constant and p, called the Pareto exponent, is

a function of the rate and channel.

There exists a rate R , called the computational comp

limit, above which the expected node computation increases

exponentially with the number of levels in the code tree and

below which it is bounded by a constant. R is a comp

function of the channel probabilities and exceeds C/2 for

binary symmetric channels (BSC), for which it is given by

[3, p. 399]

Rcomp = 1- log 2 [1 + 2 lp{l-p)]. (1.11)

17

1.5 Applications of Code Tree Search Algorithms

Tree codes find wide use in source coding and

sequential decoding. Algorithms to explore the code words

exist and their use is well known (see [12], [16]- [18] for

source coding and [20], [24], [26]- [29] for sequential

decoding). They also find applications in speech and text

recognition, and Forney [32] has applied the Viterbi

algorithm to the intersymbol interference reduction problem.

Use of this algorithm in syntactic pattern recognition [47]

has also been proposed.

Recently code searching schemes have been extensively

used in speech encoding [13]-[15], [33], [34]. The

M-algorithm encoded speech yields 4-8 dB improvement in

mean-square error over ordinary single-path searched DPCM

[13]. This is a surprizing result in view of the only 1 to

1. 5 dB predicted by theory for Gaussian-d istr ibu ted analog

sources [10, Sec. 5.1]. Wilson [15], using adaptive tree

encoding, concludes that the performance of his system at 8K

bits/s is as good as a non-adaptively encoded system ~t 16 K

bi ts/s. Tests with a hardware tree speech encoder of rate

16 K bi ts/s have yielded telephone quality speech with an

SNR of 18 dB and a high of 22-24 dB for voiced sounds [51].

Code searching schemes are finding increasing

applications in source coding and processing pictures as

well [35]-[38]. Using theM-algorithm to encode synthetic

18

2-D- autoregressive random images, Modestine et al. [36]

demonstrate that the algorithm achieves performance close to

the rate-distortion bound. The single stack algorithm has

been used to encode 2-D binary sources similar to facsimile

images [37]. An issue here is whether to utilize

2-dimensional code searching; Stuller and Kurz [38] show

that the use of 2-D code searching gains 1.2 to 2.7 bits per

picture element {pixel) over the corresponding 1-D

independent coding of line scans. Aside from source coding,

the Zigangirov-Jelinek stack algorithm has recently been

applied to the contour extraction problem [35].

Sequential decoding algorithms have found

applications primarily in satellite and space communications

[39]-[41]. Use of sequential decoding results in a coding

gain of up to 7 dB [42]. Sequential decoding has also been

successfully applied to low frequency (about 75 bits/s) and

low SNR submarine communication [43].

Several other transmission-related applications have

been reported in the literature. Code distance properties

of convolutional codes, such as the minimum free distance

dfree and column distance functions, have been analyzed

using sequent i a 1 decoding a 1 go r i t hm s [4 4] [4 5] .

Similarities between the maximum-likelihood Viterbi decoding

and dynamic programming and also between the Viterbi

decoding and shortest path problems of graph theory are well

19

known [20]. Recently, tree coding algorithms have also been

formulated as mathematical programming problems and

similarities have been pointed out between them and the

branch and bound problems [46]. These applications point to

their use not only in source coding and sequential decoding

but also in a wide variety of other fields.

1.6 An Overview of the Thesis

This thesis is motivated by the increasing

application of code tree search algorithms and the need to

devise eff ic ien t methods. Chapter 2 surveys some existing

algorithms. In Chapter 3 the inadequacy of node computation

as a measure of sequential coding efficiency is pointed out

and a cost measure based on the size of and number of

accesses to storage is proposed.

In Chapters 4, 5, and 6 three new code tree search

algorithms are proposed; the first uses multiple side lists

and efficient merge techniques, the second uses a height­

balanced tree data structure, and the third uses dynamic

hashing concepts that provide modifications to the Jelinek

bucket algorithm. Resource costs derived for these

algorithms point to their cost effectiveness.

Chapter 7 analyzes an existing algorithm, the single

stack algorithm, using the theory of multi type branching

processes in random environments and derives an equation for

2()

node computation. Chapters 8 and 9 report simulation

results for both theoretical and "real life" sources and

bring out the similarities between the results. Simulation

results are used to optimize the performance of algorithms

with respect to storage, execution time, and node

computation.

CHAPTER 2

A SURVEY OF EXISTING CODE TREE SEARCH ALGORITHMS

2.1 Introduction

Code searching schemes may be classified as sorting

or non-sorting, and as depth-first, breadth-first, or

metric-first, where the "metric" is some measure of fidelity

or likelihood. A number of schemes are summarized in Table

2.1. Among algorithms which sort, the well-known stack

algorithm (see [26] or [27] for channel decoding or [17] for

source encoding) extends code tree paths in a purely

metric-first manner, meaning that the next path extended is

always the one with the best metric. Sorting is used to

single out the best path. The usual method is an ordering

procedure. A purely breadth-first algorithm that sorts is

the M-algorithm. This algorithm views all branches at once

that it will ever view at a given depth, then sorts out and

drops paths ending in certain branches before continuing on.

Another sorting scheme is the bucket algorithm [27].

A second class of algorithms does not sort; that is,

paths are never compared with one another. The simplest

such method is the single stack algorithm, a purely

depth-first method suggested by Gallager [18]. This scheme

21

22

'rable 2.1: Search Rationales for Certain Selective Search

Sorting

Non-Sorting

Algorithms

Metric-First

Stack Alg.

Bucket Alg.
(roughly)

Merge Alg.*

Generalized*
Merge Alg.

AVL-Based Alg.*

Dynamic Bucket
Alg. * (roughly)

Breadth-First Depth-First

M-Alg.

Haccoun's Alg. (both) --

x~---- Multi. Stack Alg. --XX

Single Stack
Alg.

Fano Alg.
-- 2-Cycle Alg. (both) --

The asteiisks indicate algorithms proposed in this thesis.

23

simply pursues a path until its metric falls below a discard

criterion, and at any one time it stores the identity of

only one path. A direct implementation is a single

push-down stack. (It should be mentioned that the more

widely known "stack algorithm" cited above in fact contains

no stack, but only a list.) A familiar variation of the

single stack method is the Fano algorithm; the peculiar

character of this search stems from its method of computing

the discard criterion. A more sophisticated non-sorting

procedure is to set aside certain good paths for later

attention as they appear in the depth-first search. This

method stores a number of paths, but they are known to be

good ones; an example is the 2-cycle algorithm [16].

All of the above methods are selective search

algorithms, which leave some, and usually most, paths

unviewed. The Viterbi algorithm [19] is an exhaustive

search, which considers all possibilities inherent in the

code by exhibiting all the states of the code generation

structure; its cost is simply a constant times the number of

generator states. Uddenfeldt and Zetterberg [48] have

discussed a depth-limited exhaustive search. Here, we shall

treat only selective search algorithms.

24

2.2 Basic Features of Searching Algorithms

It will be convenient first to define features which

are common to all algorithms.

The aim of a source encoder search is to find a path

with distortion as close as possible to Shannon's

distortion-rate function ~(R), where R = log 2b/B is the rate

of the code tree with b branches out of each node and B

symbols on each branch. Searching begins at a root node and

continues until some path reaches depth L. The algorithm

then decides once and for all which first branch to release

as output; the end node of this branch becomes the new root

node. Searching resumes until some path again reaches total

length L branches. The procedure continues indefinitely in

this "sliding block" fashion, releasing some branch at depth

R. and accepting a new data group at depth HL. (Such a

sliding block search should not be confused with a sliding

block code.) An older attitude toward searching is the

"block" search, in which an L-branch path is released all at

once and the search begins anew at the path's end node. We

give no separate analysis for this alternative, although

most of our conclusions apply.

Paths are described by path maps made up of b-ary

symbols, { 0 , ' b-1}, one for each branch. The code word

letters on a path's terminal branch are somehow computable

from its path map. Associated with each map is a metric ~,

25

either a likelihood of the path or a measure of its

distortion, and sometimes an indication of the path's length

or pointers to other storage locations. The metric is

defined in (1.2) for source coding and in (1.5) to (1.7) for

sequential decoding.

The following pr imi ti ve functions are performed by

all algorithms and will be enclosed throughout within angle

brackets.

<Ex tend Path>: The algorithm extends a path one branch

forward, "viewing" the branch. Viewing includes calculating

the code word symbols on the branch, fetching the input data

group corresponding to its depth (source symbols to be

encoded or channel symbols to be decoded) , calculating the

metric increment for the branch, and forming the new metric

total for the path. Branches are viewed either singly or in

groups of b, depending on the algorithm. In the former

case, only a single branch, say the 0-th, is viewed during

the first visit to the original path's end node; if there is

a later visit, the 1-st will be viewed, and so on until all

b branches are viewed. Other algorithms <Extend b Paths>,

and view all b at once.

<Ambiguity Check>: The algorithm checks all eldest path map

symbols to determine if they are consistent with the symbol

released as output. If a symbol is not, the path must be

deleted. Ambiguity checks are necesary for two reasons. If

26

a path fails to check but is kept in storage, it may later

be released as output even though its antecedent does not

match earlier output. The encoder and decoder will then not

develop the same path. Ambiguity checks also prevent the

accidental storage of two paths with the same symbols. If

two path maps once differ (as they do initially), they can

become identical only when the differing symbols are

deleted, and this is forewarned by the check. A separate

ambiguity check is unnecessary in non-sorting algorithms,

which store only a single path.

<Delete Path>: The algorithm deletes an entire path map. A

deletion must occur whenever the number of paths stored

exceeds s, and whenever a path fails an ambiguity check.

<Release Output Symbol>: The algorithm releases as output

the earliest symbol of the best path map it has. In sorting

algorithms, this triggers an ambiguity check to make certain

that all path maps have the same symbol at this depth.

In non-sorting algorithms, the possibility exists

that no path satisfies the constraints of the algorithm, an

event we call <algorithm failure>. The cost of recovering

from this event is small. The easiest method is to move one

branch forward of the root node, declare the branch 1 s end

node to be the new root node, and start again; another

method leading to better performance is to save the longest

path ever viewed, and declare its end node to be the new

27

root node.

In describing the algorithms here and throughout, we

use a structured language similar to that found in [49]. A

procedure has the following format.

Procedure <name of procedure>

begin

statements

end

end <name of procedure>

A statement may be a simple assignment statement such as i +

j (i is assigned the value of variable j) or any one of the

following four control statements.

1) If condition

then statement a

else statement b

end if

2) for i = initial value to final value

in steps of increment do

statement

end for

3) while condition do

statement

end while

4) do until condition

statement

28

end do until

In 1), statement a is executed if the condition is

true and statement b if it is false. 2) is similar to the

DO statement of FORTRAN. In 3), the statement following do

is executed so long as the condition remains true. In 4) ,

the statement is first executed and the condition evaluated.

So long as the condition is

repeatedly executed. Several

false, the statement is

statements may be enclosed

between begin and end in order to avoid ambiguity.

feature also facilitates nesting of statements.

This

2.3 Non-Sorting Algorithms

The distinguishing feature of non-sorting schemes is

that they store only a single path, extending or

backtracking along the path in response to the value of the

path metric.

The Single Stack Algorithm

This algorithm [18] proceeds depth-first directly

through the code tree until the path metric falls below a

discard criterion B; the search then backtracks to the first

untried branch and proceeds depth-first again. The symbols

of the path map are stored in a push-down stack, and in the

steady-state operatiotr of the algorithm, an output path map

symbol is forced out the bottom whenever a depth is visited

29

for the first time.

By convention we assume that on first visiting a

node, branch 0 out of the node is viewed, on the second

visit branch 1, and so on until all branches are viewed, at

which time the search must backtrack. An example of this

routine appears in Fig. 2.1 for b = 2; X's indicate a path

that has fallen below the discard criterion. It is more

straightforward to think of the discard criterion B as a

constant, although Davis and Hellman [50] show that B

probably must be a function of the input data. For these

cases, a constant B may increase the node computation or

prevent the scheme from quite achieving the distortion-rate

function.

Using a single push-down stack and a comparison to a

discard criterion, the single stack algorithm is the

simplest of all search algorithms.

Procedure <SS>

begin

i + metric (root node) + 0;

STACK +empty stack;

STACK <= (metric (root node), path map of root node)

While not all sour·ce symbols are encoded do

begin

While length of path in the stack < L do

Figure 2.1

Figure 2.2

30

17

16 -------------

X
X

,---hit discard criterion

Push-Down Stack Search, b = 2. Downward
Branch (0-th) Taken First, Then Upward Branch
(1-st); Numbers Show Order of Visiting, x
Means Path Metric Hits Discard Criterion

Lpd

1

~~-.19~
~~~~~~~ 

-------------------------------!2~ ----------------------; :n 
......... ""'- "'- /\.... """- /\... ""- ,/'\/ -- ....._ ,....... 17 ~ 

--------- 16~ 

L 

Save Stack Showing Generation Numbers 



end 

31 

begin 

end 

<extend path> whose map is in the stack, 
viewing branch i out of its 
end node; update ~, the 
metric of the path in the 
stack; 

if ~ > B then STACK <= ( ~, i) ' i + 0 

else do until i < (b-1) 

if STACK not empty 

then ( ~' i) <= STACK 

else declare <algorithm 
failure> 

end if 

end do until 

i + i+l 

end if 

end while 

<Release output symbol> 

end while 

end 

end <SS> 

In the above procedure the statement STACK <= (~, i) 

is used to indicate that the tuple (~, i) is pushed onto the 

stack; (~, i) <=STACK denotes popping of the stack. 



32 

The 2-Cycle Algorithm 

Algorithms similar to the single stack procedure 

search depth-first, backtracking only when the path falls 

below the discard criterion. Another method which uses the 

same stack structure is to search all paths lying above the 

criterion and having length i < L. Of these, only a much 

smaller set of "good" paths, say those with metric J.1 ~A, 

are saved for later attention. ·rhis procedure has been 

called the 2-cycle algorithm [16]. 

In viewing all paths for which B < J.1 < A, the search 

(the "barrier cycle") may proceed either depth or 

breadth-first, but only a depth-first search uses the simple 

push-down stack structure. Whenever the path in the stack 

does penetrate the save criterion A, it is copied into a 

second "save" list. When the present barrier cycle search 

terminates, a new cycle begins from the end node of the top 

path in the save list. In doing so, the algorithm seeks to 

concatenate another good path onto an old one, and form in a 

depth-first manner a long chain of good paths. 

, The logical ordering of the save list is last-in 

first-out, so that this list too is a push-down stack, with 

entire path maps of up to L symbols as entries. The entries 

must be properly linked together; this can be done by 

pointers, but a simpler way is to identify the generation 

number of each path. A path in gener~tion g is at the end 



33 

of a chain of g good paths, produced by g barrier cycles. 

The push-down storage regime will create a generation 

ordering 1 ike that shown in Fig. 2. 2; a moment's thought 

will show that the generation 19 paths must all stem from 

the last saved path at generation 18, and that all the 18's 

stem from the single path at 17. In case barrier cycles 

forward of all the 19's fail to produce good paths, the top 

18-th generation path must be deleted, and new 19-th 

generation paths attempted from the second 18-th. 

If the save stack is finite with Lpd entries, each 

stacked path forces another out the bottom once the stack is 

full. The bottom path is discarded unless it is the last of 

a generation, in which case it is released as output. 

Procedure <2-Cycle> 

begin 

Barrier stack +Save stack +empty stack; 

i + 0, g + 1; 

Barrier stack <= (metric (root node), path map of root 
node) 

While not all source samples are encoded do 

begin 

While length of path in the barrier stack < L do 

begin 

<extend path> whose map is in the barrier stack, 
viewing branch iOUt of its end node; update ~; 

i f A > ~ > B then ba r r i e r stack < = ( ~ , i ) i + 0 



34 

else if J.1 ~ A 

then 

begin copy barrier stack path into save 
stack with generation g 

do until i < (b-1) 

begin 

if barrier stack not empty 

then ( J.l,i) <=barrier stack 

else while save stack not empty 
and barrier stack 
empty do 

begin 

if generation =g 

then 

Barrier Stack <= 
save stack 

g + g+l' i + 0 

else <delete path> 

g + g-1 

end if 

end 

end while 

if barrier stack empty 

then declare 
<algorithm failure> 

end if 

end if 

end 



end if 

end 

end while 

end 

end if 

end do until 

i + i+l 

<Release output symbol> 

end 

end while 

end 

end <2-Cycle> 

2.4 Sorting Algorithms 

35 

Sorting schemes compare paths on the basis of metric 

in order to decide which to extend and which to delete. 

These algorithms view fewer branches than non-sorting 

algorithms, but the cost of sorting is often very high. 

The Stack Algorithm 

As mentioned previously, the stack algorithm is based 

not on a stack, but on a list of code tree paths. The usual 

view is that this is an ordered list; the next path extended 

is always the best in terms of ~, and sufficient worst paths 

are deleted to keep the list at length S paths. An 

alternate view is that new paths are simply appended, and 



36 

that the list is probed for its best entry prior to each 

extension and for its worst entry prior to each deletion. 

The cost is similar in either case, and we shall take as the 

defining attributes for the stack algorithm simply a single 

list and metric-first extensions and deletions. 

Since a path's metric indicates the likelihood that 

the best path in the code tree lies ahead of it, it comes as 

no surprise that this metric-first procedure appears to find 

a path at a given metric level with the least node 

computation of any scheme (see [17] or [27]). Despite this, 

the space-time cost of the stack algorithm seems to exceed 

that of any other scheme for binary sources; we shall see 

that the metric-first procedures proposed in Chapters 4, 5, 

and 6 have a much lower cost. 

In the stack algorithm's list, paths vary in length. 

Once the algorithm reaches a steady state, an ambiguity 

check must be performed whenever the length of a path in 

storage exceeds L. One can show that this occurs whenever a 

tree depth is reached for the first time. Fig. 2.3 shows a 

list data structure in which each entry consists of three 

subwords, a path metric, an indication of path length, and a 

path map. The path maps are left justified, and to find an 

end node, the length subword must be consul ted. All paths 

end on the left a·t a point L branches before the deepest 

tree penetration; during an ambiguity check all these 



37 

earliest branch symbols must be checked to see if they agree 

with the symbol released as output. 

1 
s 

Figure 2.3 

,,..,.. ___ L 
log u-p-; 

Example of Stack Algorithm List, Showing 
Paths, Length Indicators, and Metrics. The 
Top Path is About to Penetrate a New Depth, 
Causing an Ambiguity Check; the Fourth Path 
will be Deleted if its Earliest Symbol does 
not Pass 



38 

Procedure <Stack> 

begin 

list +path map of root node; 

metric (root node) + 0; 

While not all source symbols are encoded do 

begin 

While length of top path in the list < L do 

begin 

<extend b paths> from the end node of the 
topmost path in the list; 

<Delete> this path; 

<Order> into the list the b new paths; 

end 

end while 

Perform <ambiguity check> 

<Release output symbol> 

end 

end while 

end 

end <Stack> 

The M-Algorithm 

We conclude with a breadth-first sorting algorithm. 

In general, such a procedure views all branches at depth R. 

that it will ever view, deletes paths according to some 

criterion, and then moves on to the next depth. The 



39 

M-algorithm [12] deletes all paths except a fixed number M. 

Breadth-first searches are synchronous (that is, all paths 

have the same length) and they are effective at low 

intensities of searching; they are thus good candidates for 

practical application [51], [15]. 

In its specific operation, the M-algorithm moves 

forward by extending the M paths it has retained to form bM 

new paths. All the terminal branches are compared to the 

input data cor responding to this depth, metr ics computed, 

and the (b-l)M poorest paths deleted. 

Procedure <M-Alg> 

begin 

Obtain root node; 

metric (root node) + 0; 

While not all source symbols are encoded do 

begin 

While length of the retained paths < L do 

begin 

end 

<Extend b paths> from each retained path; 
save these in the list; 

<order> the list to find the best M paths; 

<Delete> the remaining paths; 

end while 

Perform <ambiguity check> 



end 

<Release output symbol> 

end 

end while 

end <M-Alg> 

2.5 Conclusions 

40 

We have surveyed three pure form algorithms (single 

stack, stack, and M-) and one (2-cycle) that combines 

breadth-first and depth-first techniques. The bucket 

algorithm is described in Chapter 6. The algorithms of 

Chevillat and Costello [29] and Haccoun and Ferguson [28] 

are used for decoding convolutional codes and are not 

surveyed here. Ng et al. [52] have described another 

sequential decoding algorithm. 



CHAPTER 3 

A COST FUNCTION FOR CODE TREE SEARCH ALGORITHMS 

3.1 Introduction 

The usual measure of efficiency for code searching 

algorithms has been the node com2utation, the number of 

branches visited during the progress of the scheme divided 

by the branches released as output, for a given level of 

source encoder fidelity or decoder probability of error. As 

the algorithms have come into more use, however, it has 

become clear that this is not a sufficient measure. Several 

authors ([53], [54]) have found that stack algorithm source 

encoding is exceptionally time consuming, even though it has 

the least node computation of any known method. Experience 

with M-algorithm hardware speech encoders [51] shows that 

this method is efficient despite a poor node computation. 

In sequential channel decoding and in sequence estimation, 

the situation is similarly confused. The Viterbi algorithm 

finds wide use despite its exhaustive nature. The 

selectively searching algorithms which should be more 

efficient suffer erasures brought on by computation 

overload, and find only occasional use in applications like 

deep space communication. What seems to be missing here is 

41 



42 

a factor to account for the size and complexity of the 

required information structures, 

intensity of their use. Here we 

in addition to the 

develop a systematic 

measure of cost for code tree search algorithms, and use it 

to compare them. 

3.2 A Definition of Algorithm Cost 

A more real is tic measure of algorithm cost can be 

based on the number of storage elements in a scheme and the 

number of accesses to them. The space complexity of an 

algorithm is the size of resources that must be reserved for 

its use, while the time complexity counts the number of 

accesses to this resource. We shall consider the product of 

these two, the space-time complexity, as our primary measure 

of a scheme's total cost. 

A space-time product cost measure assumes that 

storage blocks "wear out" after a certain number of accesses 

and that the cost of blocks is proportional to their speed, 

assumptions that are roughly true for physical devices. 

Parallel processing is of no benefit under this measure, 

since there is no gain in trading space for time. A second 

measure of cost, more suited to software implementations, is 

the space + time complexity. The sum of space and time, 

this measure stresses more the opportunity cost forgone by 

assigning resources to a user. Different constants are 



43 

often placed before the two components, but these will have 

no asymptotic significance. We shall list results for both 

measures. 

A perhaps more traditional measure of complexity for 

sorting methods is the number of comparisons, but this 

measure does not account for both space and time, and as 

mentioned previously, not all code searching algorithms 

sort. 

Other measures of coding algorithm cost could be 

proposed than the space and time cost of storage blocks, but 

this kind of measure relates closely to the nature of such 

algorithms. Code search algorithms basically move in and 

out of storage data about code tree paths. Other tasks, 

such as computing metr ics, checking for ambiguous output 

symbols, and generating code word letters, form a constant 

multiplier on the cost of storage access. The major 

determinants of cost remain the storage size and the pattern 

of accesses called for by the steps of the algorithm. 

A simple building block for algorithm storage (and 

thus for algorithms) is the random-access memory (RAM) , but 

it is interesting to observe that a simpler structure, the 

push-down stack, can generally be used. Many algorithms 

relate more directly to push-down stacks, and all but one 

(the M-algorithm) have the same asymptotic complexity based 

on them as on RAM's. We shall thus base our discussion in 



44 

the first instance on push-down stacks. 

Three variables dominate the asymptotic cost of the 

algorithms we analyze, the length of path an algorithm can 

retain, L, the number of paths it can retain, S, and the 

expected node computation already defined, E [C]. We assume 

that L and S are finite and fixed in value. It is important 

to realize that algorithms differ significantly when these 

are so constrained; when the number of paths exceeds S, for 

instance, some mechanism must delete excess paths, and 

whenever a path exceeds length L, its oldest branch must be 

checked to insure that it is consistent with other paths 

kept to this depth. These routines may change the 

asymptotic cost. 

3.3 A Cost Analysis of Algorithms 

We turn now to a space and time cost analysis of the 

algorithms surveyed in Chapter 2. For clarity, we emphasize 

sequential source encoding schemes throughout, although the 

analysis applies as well to channel decoding and sequence 

estimation. The algorithms chosen for exposition are those 

which differ from each other in fundamental ways, or which 

demonstrate a principle in pure form. Often, a variation or 

a scheme combining several principles will be most effective 

in applications. 



45 

The Single Stack Algorithm 

The space cost of the single stack algorithm is L 

b-ary symbols (plus a small overhead for side registers and 

code letter generation) • The time cost is upperbounded by 2 

accesses/branch viewed, since the algorithm scrutinizes a 

branch once during forward motion in the code tree and at 

most once when backtracking. The space-time product cost is 

thus 

access-symbols/output branch ( 3 • 1) 

where Css denotes the node computation of the single stack 

algorithm, and here and throughout f(x) = O(g(x)) means that 

jf(x)/g(x) I remains bounded (we say that f(x) grows no 

faster than g(x), or that f(x) 

asymptotically) • 

is "big oh of" g(x), 

The Fano algorithm is a variant of the single stack 

procedure in which the discard criterion varies up and down 

as a function of the path metric. Searching proceeds 

depth-first until a path falls below 8, but 8 is raised in 

increments whenever possible during visits to new nodes, and 

is lowered when necessary during returns to previously 

visited nodes. The cost of the Fano algorithm is again 0 (L 

E [CFA]), but it is not clear which of CFA and CSS is the 

larger. 

the set 

The opportunistic changing of 8 undoubtedly reduces 

o f node s v i s i ted , but the a 1 go r i t hm m a y v i s i t 

certain of the nodes many times. Nonetheless, if CFA can be 



46 

measured, then the form (3.1) gives the total cost. 

The 2-Cycle Algorithm 

In this algorithm, costs stem from two sources. In 

the barrier stack, we have as in the single stack algorithm 

time cost: about 2 E[C 2CJ accesses/branch released 
( 3. 2) 

space cost: 

In the save stack, 

time cost: 

space cost: 

L b-ary symbols 

NA + 1 accesses/barrier cycle 

Lpd (L + log Lpd) b-ary symbols 
( 3 • 3) 

where NA is the number of paths that have l.l ~ A during a 

barrier cycle. In the parameterization of the 2-cycle 

algorithm, ENA is set near 1, so that the space-time cost 

incurred in the save stack will be smaller than that 

incurred in the barrier cycles if the expected number of 

branches viewed in a barrier cycle is less than Lpd· 

far, experiments (see [16]) indicate this to be true. 

Thus 

The space-time cost of the 2-cycle algorithm is then 

still 

O(L E [C 2cl) access-symbols/branch released ( 3. 4) 

as it was for the single stack and Fano algorithms. 



47 

The Stack Algorithm 

Most of the cost of this algorithm resides in the 

ordering procedure (see Chapter 2). Assume the list is 

instrumented with two push down stacks, the first containing 

the ordered list, and the second functioning as a scratch 

pad. To insert a path in order, the first stack is poured 

into the scratch stack until the location of the new path 

appears; then the new path is stacked in the first stack, 

and the scratch stack poured back. During the pour-back, 

excess paths are automatically deleted out the bottom of the 

first stack. For this ordering, 

time cost: 

space cost: 

(average) S accesses/branch viewed 

2S (L + log L + p) b-ary symbols 
( 3. 5) 

where log L and p are the storage required for length and 

metric information of paths, respectively. Other steps of 

the algorithm form a constant overhead except for the 

ambiguity check, which can be combined with the deletion 

procedure. In other implementations it cannot, but since 

the check occurs with each depth penetration rather than 

each path extension, while still having cost similar to 

(3.5), its cost is of lower order and can be neglected. 

Total space-time complexity is thus about 2S 2 (L + log 

L + p)E[CSA], or (since p is small) O(LS
2

E[CSA]) asymptoti­

cally, where CSA is the node computation of the stack 



48 

algorithm. We have continued the use of push-down storage 

in the implementation for consistency with the other 

algorithms, but a RAM-based cost estimate is similar. 

Unless E [C
8

A] is very small, the added s 2 
factor 

will make this cost much larger than that of the non-sorting 

algorithms. (We shall consider the experimental evidence in 

Chapter 10 and see that this is indeed so.) All research 

studies on the stack algorithm have reported computational 

difficulties in its use. J e 1 in e k [ 2 7 ] suggests a c h a in e d 

storage scheme for the path maps but it is doubtful this 

w i 11 change the as ym p tot i c cost • He also suggests 

alternative algorithms, a combining of the Fano and stack 

algorithms ([27], pp. 682-ff), and a bucket algorithm. The 

latter is a basically new scheme to which we return in 

Chapter 6. 

The M-Algorithm 

The cost of the M-algorithm is (set S = M) 

time cost: k"S log S accesses/branch released 
( 3. 6) 

space cost: (k' + L + p)bS b-ary symbols 

0 (S log S) is the number of comparisons done by RAM-based 

sorting methods such as Mergesort and Heapsort ([55], Chap. 

5). Here, k' and k" are small overheads to account for 

sophistications required in procedures like Mergesort. 

Implemented in push-down stacks the algorithm has space and 



49 

time cost 2 (L + p) S and bs 2 . In either case there is no 

separate term for node computation, since this is 

automatically bM. Asymptotically, the total cost is 0 (LS 2 

log S) access symbols/branch released for RAM storage. 

3.4 Conclusions 

Results are summarized in Table 3.1. It is clear 

that there are drama tic differences among the algorithms; 

all depend linearly on L, but some, like the single stack 

algorithm, have no dependence on S, while others range as 

high as s 2 log S. As has been shown in earlier work, there 

are also wide variations in E [C], and the M-algorithm in 

particular has no separate dependence on this factor. 

It was not our intention to optimize over the choice 

of the three major cost factors, or over the many lesser 

factors and parameter settings, but only to establish the 

cost functions. An accurate optimization would require much 

further work. The experimental work thus far available does 

allow certain speculations about an "optimal" alg9r i thm, 

however, and these appear in Chapter 10. A survey of 

existing code search algorithms and their resource costs 

were reported in [56], [78]. 



50 

Table 3.1: Asymptotic Cost of Certain Algorithms in the 
Limit of Intensive Searching, per Output Symbol 
Released. Space in b-ary Symbols, Time in 
Accesses to Storage. C = Branches Visited/ 
Output Symbol Released, L = Length of Retained 
Paths, S = Number of Retained Paths. 

Algorithm 

Single Stack 

Fa no 

2-Cycle 

Stack 

M-

Bucket 

Merge* 

Generalized 
Merge* 

AVL-Based* 

Dynamic Bucket* 

(Space) (Time) 

0 (LE [CSS] ) 

O(LE[CFA]) 

O(LE[C 2CJ) 

O(LS
2

E[CSA]) 

0 (LS 2 Log S) 

O{L(SE[CSA]+S
2

} 
+ HJ 

O{L[s
413 

E[CSA]J} 
+ O(S 2 ) 

n n 
L[{O(S2 /(2 -1) 

+ (n-l)S} E[CSA] 

+ s 2 + L:r: A~J 
1=2 1 

O(LS logS E[CSA]) 

+ O(LS 2 ) 

O(LSE[CSA]) 

(Space)+(Time) 

O(L+E[CSS]) 

O(L+E[CFA]) 

0 ( LLpd+E [C 2CJ ) 

0 (LS+SE [CSA]) 

O(LS + Slog S) 

O(LS)+O(S+E[CSA]) 
+ HJ 

S + 0 { (LS) l/2 

( 1 + E [ CSA] ) } 

0[ (L+l) (n-1)/n 

Sl/2] E [CSA] 

n 
+ S + L:i=2 Ai 

0 (LS) + E [CSA] 

O(log S) 

O(LS) + O(E[CSA]) 

The asterisks indicate algorithms proposed in this thesis 



CHAPTER 4 

THE MERGE ALGORITHM 

4.1 Introduction 

We propose here a new algorithm, called the merge 

algorithm, that has a greatly reduced resource cost compared 

to the stack algorithm. The merge algorithm uses in 

addition to a main list of size S, which serves the same 

purpose as in the case of the stack algorithm, an auxiliary 

list of size T to store paths. Both lists are of width L 

symbols. Sorting the much longer main list has made the 

metric-first stack algorithm so expensive to implement. By 

using a shorter auxiliary list to order paths and merging it 

periodically with the main list, the merge algorithm reduces 

the resource cost of the stack algorithm. 

In this chapter, by merging we refer to the following 

process. Let there be two sorted arrays x1 ~ x 2 ~ x 3 ~ ... 

< x and y 1 < y 2 < • • • < y . m - - - n The merging process-merges 

these two arrays into a single sorted array z 1 ~ z 2 ~ ... ~ 

zm+n· A simple algorithm to perform the above operation is 

as follows. 

51 



52 

Procedure <Straight Merge> 

xm+l + Yn+l + (X) 

i + j + 1 

for k = 1 to m+n do 

if x. < y. 
l. J 

then zk + xi' i + i+l 

else zk + y.' 
J 

j + j+l 

end if 

end for 

end <Straight Merge> 

The above procedure requires m+n comparisons. 

Another merging algorithm known as binary merging [55, pp. 

20 5-20 6] requires at most rag (m+n)l + min ( m' n) ' where the m 

notation rxl denotes the smallest integer N such that N ~ X. 

We assume the use of straight merge algorithm in computing 

the costs of the merge and the generalized merge algorithms. 

We describe the merge algorithm for code tree 

searching below and in the succeeding sections derive its 

resource cost. The generalized merge algorithm fs then 

described followed by its cost derivations. 

4.2 The Merge Algorithm 

Procedure merge 

[initialize] 

Assign root node to the main list; 



53 

metric (root node) + 0; 

[encode] 

While not all source samples are encoded do 

begin 

While the auxiliary list can take in b more 
paths do 

begin 

end 

If the lengths of the top paths in the main 
ITst and the auxiliary list < L, the width of 
the list 

then 

begin 

end 

If the metric of the top path in the 
main list < the metric of the top 
path in the auxiliary list 

then <extend> the 
--the main list 

top path from 
and <delete> 

this path 

else <extend> the top path 
the auxiliary list 
<delete> this path 

end if 

from 
and 

<Order> the newly extended paths 
into the auxiliary list 

else perform <ambiguity check> and 
<release ouput symbol>; 

end if 

end while 



end 

54 

Merge the auxiliary list with the main list; {the 
auxiliary list is now empty and a new merge cycle 
starts all over again} 

end while 

end <merge> 

The above procedure extends, at each time instant, 

either the top path from the main list or that from the 

auxiliary list, whichever has the largest metric. This 

makes the algorithm strictly metric-first. All the extended 

paths are reordered into the auxiliary list. Once the 

auxiliary list is full, it is merged with the main list. 

After merging, only the best S of the S+A paths remain in 

the main list and the worst A are dropped. The auxiliary 

list is now empty and is ready to take in the next set of A 

paths. 

4.3 Cost of the Merge Algorithm 

Expressions for the different cost measures, proposed 

in Chapter 3, are now derived for the merge algoritfim. It 

will be shown that the optimal size of the auxiliary list is 

influenced by the cost criterion chosen for minimization. 

In the following, symbols S and A refer to the sizes of the 

main and auxiliary lists respectively; L is the width of the 

1 ists. Expressions for the comparisons-based and product 

cost measures of the merge algorithm appeared in Anderson 



55 

and Mohan [56]. 

Comparisons-Based Cost Measure 

Define first a merge cycle as the operations done in 

extending paths from the main and auxiliary lists, filling 

the auxiliary list, and merging it with the main list. The 

total number of comparisons done in a merge cycle is then 

computed as follows. 

involves about A2;2 

Ordering paths into the auxiliary list 

comparisons. 

requires another S+A comparisons. 

Merging the two lists 

Comparing the two top 

paths in order to make the search metric-first requires 

another A comparisons. Thus a total of S + 2A + A2 /2 

comparisons are done in a merge cycle. Note that at least A 

branches are viewed in a merge cycle. More than A may have 

been viewed since paths from the auxiliary list may also be 

extended. Dividing the expression for the total number of 

comparisons by A gives a tight upperbound of S/A + 2 + A/2 

comparisons per branch viewed. Minimizing the above 

expression with respect to A yields A "' I2S for an optimal 

auxiliary list size. 

Substituting the optimum A into the expression S/A + 

2 + A/2 yeilds I2S + 2 comparisons per branch viewed for the 

merge algorithm compared to the S required for the stack 

algorithm. ·The increase in storage is 12S/S, an 

asymptotically insignificant factor. Introducing the term 



56 

for ambiguity check yields a total cost of approximately 

(/2S + 2) E[CSA] + S Comparisons/branch 
released 

( 4. l) 

The reason for the significant reduction in the 

number of comparisons lies in the ability of the merge 

algorithm to take advantage of the already order'ed main 

list. Note that reordering the extended paths directly into 

the much 1 onge r rna in list would dramatically increase the 

cost, since S accesses would be required for every branch 

ex tended. On the other hand, the merging strategy requires 

a cost of "'2S for every 12S branches viewed or a cost of 

:=/2S for every branch viewed. 

Space-Time Product Cost Measure 

In a merge cycle there are A2/2 accesses in ordering 

a size LA storage. Finding the best path to extend next by 

comparing the two top paths in the main list and the 

auxiliary list requires A accesses to a size LS storage, and 

A accesses to a size LA storage. Merging the two lists 

requires S accesses to LS, A to LA, and (S+A) accesses to 

L(S+A). The total space-time product cost for a merge cycle 

is 



57 

Dividing the above expression by A yields LA 2/2 + 3LS + 3LA 

+ 2LS 2/A as the product cost per branch viewed. Minimizing 

the above expression with respect to A yields A ~ (12 s) 21 3 

for an optimum auxiliary list size. Minimized product cost 

is about (2.38) Ls 413 per branch viewed. 

Note that the ambiguity check is performed each time 

a symbol is released as output. Cost of performing this 

Inserting this term 

and accounting for the storage of p and log L bits taken up 

by the metric and length arrays, respectively, yield a 

product cost of about 

(L + log L + p) [(2.38)s 413 E[C ] + s 2 + (/2s) 4/ 3 ] SA 

which is asymptotically 

L[2.38 s
413 

E[C 8A] + s
2

] access-symbols per 
branch released, 

( 4. 2) 

where E [CSA] is the expected number of tree branches viewed 

per source symbol encoded by the stack algorithm. Since 

both the stack and the merge algorithms are strictly metric-

first, E[C] is the same in both cases. 

Space-Time Sum Cost Measure 

The total space plus time cost in a merge cycle is LS 

+ LA+ 2S + 4A + A2/2. The cost per branch,viewed is LS/A + 

L + 2S/A + 4 + A/2. Minimizing the above expression yields 

an optimal A ~ (2LS) 112 . Substituting for A into the cost 



58 

expression, we get 

12LS + L + 128/L + 4 

which is 

"' ( 2 LS ) l I 2 , i f S > > L 

or "' (2LS) 1 1 2 E[C8 A] per branch (4.3) 
released as output 

Adding the term for the ambiguity check yields a sum cost 

per branch released of 

"' {S + (2LS) l/
2 

(1 + E [C
8

A])} ( 4 • 4) 

In order to compare the above three cost measures 

consider an example. Suppose S = 100. In order to minimize 

the number of comparisons, the product cost, and the sum 

cost one requires optimal auxiliary list sizes of 14, 27, 

and 71, ·respectively. Of the three methods of opt imi za-

tions, the comparisons-based one demands the smallest sized 

auxiliary list and the sum cost the largest. The minimized 

costs are 14 E[C 8 A], L[llOO E[CSAJ + 10,000], and {100 + 14 

L
112 

E[C8 A] }, respectively. The corresponding costs for the 

stack algorithm are, respectively, 100 E[C
8

AJ, 20,000 L 

E[C8 AJ' and 100 L + 200 E[C8 A]. But with any measure, it is 

clear from the comparisons that the merge algorithm greatly 

reduces the asymptotic costs. 



59 

4.4 The Generalized Merge Algorithm 

Next we generalize the 2-list merge algorithm (MA) of 

section 4. 2 as follows. Recall that the MA used a side 

list, the auxiliary list, in order to fill the main list by 

periodically merging the auxiliary list with the main list. 

Next we ask if the resource costs of the MA can be further 

reduced by providing a third list which will be periodically 

merged with the second list. When the second list becomes 

full, it is merged with the main list. This provision of 

successive side lists when carried to its limit emerges as 

the generalized merge algorithm (GMA). 

The GMA uses n lists; list 1 of size S is the main 

list and list i of size A·, i = 
l 

2 1 3, ... , n, are 

successively smaller auxiliary lists. A merge cycle of the 

GMA is defined as the operations required to fill list 2 and 

merge it with list 1. For reasons that will become apparent 

as we proceed, we call this the outer merge cycle (OMC). An 

OMC contains several inner merge cycles (IMC' s). In order 

to fill list 2, list 3 is first filled and then merg~d with 

list 2. The operations carried out in so doing constitute 

an inner merge cycle (IMC 3) from list 3. We require ~21~ 

IMc 3 •s in order to fill all but at most (A3 - 1) locations 

of 1 ist 2. (The notation LXJ denotes the largest integer N 

such that N is less than or equal to x.) In general, if an 

inner merge cycle i ( IMC i) is defined as the operations 



60 

required to fill all but at most Ai+l - 1 locations of list 

i and merge it with list (i-1), then IMCi-l contains~i-1/A~ 

IMCi's. By definition, the OMC is the same as IMC 2 . 

Initially, the algorithm starts by extending the root 

node and ordering the newly extended paths by their metrics 

into list n. When list n is full, it is merged with list 

(n-1). Now list n is empty again, and the above operations 

are repeated until list (n-1) fills or is unable to 

accommodate another set of An paths. List (n-1) is then 

merged with list (n-2), which empties list (n-1). By 

repeatedly filling list (n-1) and merging it with list 

(n-2), all but at most An-l - 1 locations of list (n-2) are 

now occupied by code tree paths. Then list (n-2) is merged 

with list (n-3), and so on until all but at most A3 - 1 

locations of A2 are filled. List 2 is then merged with list 

1, thus completing an OMC. 

again. 

A new OMC then starts all over 

The GMA extends, at any time, the best of the n top 

paths residing in the n lists. This makes the al9orithm 

strictly metric-first. Selecting the best path requires at 

most (n-1) comparisons. For the GMA to be meaningful, n 

must be of order less than S. Before extending the best 

path a check is made to ensure that it is less than L 

branches in length; otherwise the eldest symbol of the best 

path is released and an ambiguity check is performed on all 



61 

the paths residing in the n lists. 

A recursive version of the GMA is given below. This 

can easily be converted into an iterative version. 

Procedure <GMA> 

begin 

end 

main list + root node; 

metric (root node) + 0; 

while not .all source samples are encoded do 

{fill list 2 and merge it with list 1; i.e., carry 
out an OMC, same as IMC 2} 

perform <IMC 2> 

end while 

end <GMA> 

Procedure <IMCi> 

begin 

{Procedure valid for i = 2, 3, ... , n only} 

if i = n 

then 

begin 

while list n can take b 
select the best of 
residing in the lists; 

more new paths do 
the n top paths 

if the length of the best path < L 

then begin 

<extend> the best path and 



end 

end 

62 

<delete> this path; 

<reorder> the extended paths into 
list n; 

end 

else begin 

perform <ambiguity check>; 

<release> output symbol; 

end 

end if 

end while 

{merge list n with list (n-1)} 

perform <merge (n-1, n)> 

else begin 

end 

end if 

while list i can take in si+l more paths do 

perform <IMCi+l> 

end while 

perform <merge (i-1, i)> 

Procedure <merge (i, i+l)> 

begin 

if i = 1 



end 

63 

then merge list 2 into list 1, the main list 

else 

if 

{This is straight merging; excess paths are 
dropped off the bottom of the main list; list 
2 becomes empty} 

list i can take in Ai+l more paths 

then merge list i+l into list i 

{no paths are dropped; list i+l becomes 
empty} 

else {try to merge list i into list (i-1)} 

perform <merge (i-1), i)> 

end if 

end if 

end <merge> 

4.5 Resource Costs of the GMA 

Comparison-Based Cost Measure 

The total number of comparisons done in an OMC may be 

arrived at as follows. Finding the best path for extension, 

which requires at most (n-1) comparisons, will be accounted 

for later. 

Total number of 
comparisons in = 
an OMC 

comparisons done in merging 
lists 1 and 2 + comparisons 
done in filling list 2 

= S + A2 +t!-21~ x (comparisons done in IMC 3) 

= S + A2 + ~2/A_jJ (A2 + A3 + ~3/A.Al x (comparisons 
done in IMC 4)) 



= S + A 2 + ~ 2; A_J.] ( A2 + A 3 + ~ 3 / ~ ( A3 + A 4 + 

~4/~ X ( • • • + ~-2/An-1] (An-1 + An-2 + 

jAn_ 1 /Anl x (comparisons done in IMCn)) .~.))) 

= s + A2 + IA2/A31 (A2 + A3 + IA3/~ (A3 + A4 + 

~~~ x ( • • • + IAn-2/An.::.ll (An-1 + An-2 + 
2

[An-1/Anj (An-1 +An+ An/2)) •••)))

64

(4. 5)

Removing the floor signs L J from the above expression and

dividing it by A
2

yields an upperbound to the number of

comparisons per branch viewed, which is

l/A
2

(S + A
2

+ A
2
/A

3
(A

2
+ A

3
+ A

3
/A

4
(A

3
+ A

4
+

A4/A5 (••• + An-2/An-1 (An-2 + An-1 + An-1/An (An-1 +

2 An + An/2)) •••)))) (4. 6)

Minimizing the above expression with respect to An we get

An = (2A) l/2
n-1 (4.7)

Note that if n = 2, the GMA reduces to the 2-list MA and

that the results from section 4.3.1 agree with (4.7).

Substituting the expression for optimal A from (4. 7) into
n

(4. 6) we get

Again, minimizing the above expression with respect to An-l

we get

A = 2 1/3 A2/3
n-1 n-2

(4 • 9)

s im i 1 a r 1 y ,

A n-2 = 21/4 A3/4
n-3

A = 21/5 A4/5
n-3 n-4

A . n-1 = 21/i+2 Ai+l/i+2
n-i-1 . .

A3 = 21/n-1 n-2/n-1
A2

A2 = 21/n sn-1/n

Using the a-notation and expressing the auxiliary

in terms of S, we get

A2 = 0 (Sn-1/n)

A3 = 0 (Sn-2/n)

A. = O(Sn-i+l/n)
1

65

(4.10)

list sizes

(4.11)

Substituting the optimal values for A2 , A3 , ... , An from

(4.11) into (4.6) and adding (n-1) to the resulting

expressions to account for the number of comparisons done in

selecting the best path for extension, we get

O(Sl/n) + 2 (n-1) (4.12)

for an upper bound to the number of comparisons done per

branch viewed. Since the smallest list~ list n, must be at

least of size b, the number of branches out of a node in the

code tree, we have

or

An= O(Sl/n) ~ b

n < O(logb S)

Substituting the bound on n into (4.12), we obtain

O(Sl/n) + O(logbS) comparisons/branch viewed

66

(4.13)

(4.14)

Introducing the term for ambiguity check, the above equation

becomes

n
[O(Sl/n) + O(logbS)] E[CSA] + S + .E

1=2

comparisons per branch viewed.

A· 1
(4.15)

Table 4.1 gives the list sizes for a main list size

of 1000 and for n = 2, 3, ... , 5. It is seen that for fixed

S the number of side lists chosen depends on the value. of

E[C5A]. For example, if E[C5A] lies between 5 and 12, n = 3

minimizes the number of comparisons per branch viewed while

for all values of E[C5A] between 12 and 347, n = 4, and for

E [CSA] above 34 7, n = 5 are the optimum values, respec­

tively. For a given range of E[C5A] there exists ann that

minimizes the number of comparisons per branch released.

The equations (4.11) and (4.15) therefore present a-useful

set of design criteria for arriving at an optimum n if S and

E[C5A] are given.

67

Table 4.1 Estimated Comparisons-Based Cost Measure and List
Size of GMA for S = 1000; Ai's are Calculated
from (4.7), (4.9) and (4.10)

Comparisons/
n s A2 A3 A4 As branch released

(from (4.5))

2 1000 44 46 E[CSA] + 1044

3 1000 125 15 27 E [CSA] + 1140

4 1000 211 44 9 17 E[CSA] + 1264

5 1000 288 83 23 7 16 E[CSA] + 1401

Product Cost of the GMA

Merging list (i-1) with list i requires A. 1 accesses
1-

to a storage of size LA. 1 , A. accesses to a storage of size
1- 1

LA., and (A. 1 +A.) accesses to a storage of size L(A. 1 +
1 1- 1 1-

Ai). If i = n, in addition to the above mentioned accesses,

A~/2 accesses to a storage of size LAn are required in

filling the list. The total product cost in an OMC is then

calculated as follows.

Product cost in an OMC

= L(S 2 + A2 + (S + A) 2 +~/~ 2 2
(A2

2
+ A2

3 + (A2 + A) 2
3

+b/~ (A2
3

+ A2
4 + (A3 + A) 2

4

+ •••

+ !An-2/An-1/
2 + A2 + (An-2 + A) 2 (An-2 n-1 n-1

68

On dividing (4.16) by A2 , removing the floor signs to obtain

an upperbound, and minimizing successively with respect to

A
n

A n-1

A n-2

A .
n-1

= O(A6/7)
n-2

= O(Al4/l5)
n-3

(2i+2_2)/{2i+2_1)
= O(A n-i-1)

n n
A2 = O(S(2 -2)/(2 -1))

The constants within the O's of

(4.17)

(4.17) for

calculating up to four auxiliary list sizes are given below.

For higher values of n the constant is close to 0.5.

A
n

= 1 26 A2/ 3
· n-1

0 58 A30/3l
An-3 = • n-4

On expressing list sizes in terms of S, we have

{4.17a)

n n
A2 = O(S(2 -2)/(2 -1))

n-1 n
A3 = 0(82(2 -2)/(2 -1))

n-2 n
A4 = 0(82(2 -2)/(2 -1))

A.
2(i-2) (2n-i+2_2)/(2n-l)

= O(S
1

n-1 n
A = O(S2 /(2 -1))

n

From the above set of equations

Lim A2 = 0 (S)
n

Lim An = O(Sl/2).
n

All the other lists are of order between /Sand S.

Asymptotically, the product cost is

n n
L[{O(S 2 /(2 -l)) + (n-l)S} E[C] + s 2 + . SA

n
l:

i=2

69

)

(4. 18)

A?]
1

(4 .19)

where L[S 2 + r7= 2 Af] is the cost of ambiguity checks. It

is no longer clear if this cost can be neglected except when

the side lists are few. The factor LS(n-1) in (4.19)

accounts for the cost of selecting the best path.

Consider the example in Table 4.2. As in the

comparisons-based example of Table 4.1, the optimum value of

n depends on the value of E[C5A]. Given n and S, the

auxiliary list sizes are greater f'or the product cost

70

Table 4.2 Estimated Product Cost Measure and List Sizes of
GMA for S = 1000; Auxiliary List Sizes are
Calculated Using (4.17a)

n s

2 1000 126

3 1000 305 57

4 1000 536 179

5 1000 680 37 4

32

131 26

Estimated Product Cost
per Branch Released
(from (4.17a) and
(4.16))

L [27063 E[CSA] + 10
6

]

L [16411 E[CSA]

+ 1.09 X 10 6]

L [11506 E [CSA]

+ 1.18 X 10 6]

L [11751 E [CSA]

+ 1.26 X 10 6 J

measure than for the comparisons-based cost measure. For

larger n 1 the term corresponding to ambiguity checks in

(4.19) increases enormously.

Sum Cost of the GMA

The space plus time cost in an OMC is

[LS + LA2 + A1 + A2 + ~~~ (LA2 + LA3 + A2 + A3 +

+ ~31 ~ (LA 3 + LA 4 + A 3 + A 4 + (4.20)

+ ~n-1/~ (LAn-1 + LAn + An-1 + An
2 + An/2) .••))] •

On dividing (4.20) by A2 1 removing the floor signs to obtain

an upperbound 1 minimizing the resulting equation

successively with respect to A 1 A 1 1 A
2

1 n n- n- ••• 1 A2 1 one

gets the following set of equations for optimal list sizes.

A2 = 0 ((L+l) l/n s(n-1)/n)

A3 = 0 ((L+l) 2/n s(n-2)/n)

A. = 0 ((L+l) (i-1) /n S (n-i+l) /n)
1

An= 0((L+l) (n-1)/n Sl/n).

It can easily be shown that

A·= 2 (i-l)/n (L+l) (i-1)/n 8 (n-i+l)/n
1

Asymptotically, the sum cost is

71

(4.2la)

(4.2lb)

0[(L+l) (n-l)/n Sl/n] E [C] + (n-1)
SA

n
(L+2) E[CSA] + S + E A.

. 2 1 1=

(4.22)

where (n-1) E [CSA] is the cost of selecting the best path

n and S + Ei= 2 Ai is the cost of performing ambiguity checks.

Again, as for the product cost, the cost of ambiguity check

may not be negligible compared to the other two terms in

(4.22) except for small values of n.

Table 4.3 gives an example to illustrate the

significance of the equation for the sum cost measure of the

GMA given in (4.22). Conclusions cited before regarding the

optimum value of n for a given range of values of E [CSA]

hold good here also.

72

Table 4.3 Estimated Sum Cost and List Sizes of GMA for
s = 1000 and L = 25; A. Is are Calculated from
(4.2lb) 1

Estimated sum cost per
n s A2 A3 A4 branch released (from

(4.20))

2 1000 224 255 E [CSA] + 1224

3 1000 37 3 139 220 E[CSA] + 1512

4 1000 477 228 108 221 E[CSA] + 1813

4.6 Summary

Expressions for the different cost measures were

derived for the MA and GMA. It was shown that the MA

reduces the cost of the stack algorithm. Generalizing the

merge algorithm yields further cost advantages. Table 4.4

summarizes the results.

The GMA is a generalized metric-first encoding

algorithm. A scheme utilizing multiple side lists proposed

in the literature is the multiple stack algorihm due to

Chevillat and Costello [29]. The i r a 1 go r i t hm i s no t a

strictly metric-first search and does not use merging.

Another algorithm due to Haccoun and Ferguson [28] maintains

a list of paths and extends at each time the top M best

paths. This algorithm is again not strictly metric-first,

but a combination of metric-first and breadth-first

techniques; it also does not use merging. Merging to

minimize the resource cost was first proposed by Mohan and

Anderson in [54].

Table 4.4 Resource Costs of the Stack, 2-List Merge and
Generalized Merge Algorithms

Algorithm

Resource Cost/branch released

Comparisons- Product
Based

Sum

73

Stack O(LS)+O(SE[CSA])

2-List Merge O(IS E[CSA]) LO(S 4/ 3 S+O{ (LS) l/2

(l+E[CSAJ)}

Generalized

+O(logbS)]

E[CSAJ + S

n
+ Li=2 Ai

n n
L[{O(S2 /(2 -1) O[(L+l)(n-1)/n

+(n-l)S}E[CSA] Sl/n] E[CSA]

+ S2 + S + L7=2 Ai

+ L7=2 AfJ

CHAPTER 5

A CODE TREE SEARCH ALGORITHM USING

A BALANCED TREE DATA STRUCTURE

5.1 Introduction

This chapter explores avenues for further reduction

in the resource cost of an algorithm through the use of

balanced trees to store code tree paths. We now have two

types of trees, the code tree used in encoding the source or

decoding the received symbols and the data tree to store the

identities or path maps of paths encoded or decoded .by the

algorithm. A class of balanced trees known as height­

balanced trees (also known as AVL trees) are introduced.

The use of such trees to store paths reduces the search,

deletion, and insertion times of paths to O(log S) and

results in an alternative method to the GMA, achieving

reduced costs.

5.2 Binary Trees - Preliminaries

As a prelude to the topic of balanced trees, a few

definitions are in order. The definitions here closely

follow those in [57, Sec. 2.3] and [58, Sec. 2.3].

A binary tree is one in which every node has at most

74

75

two sons. It is defined recursively as follows. A binary

tree T is either empty or consists of a distinguished node

called the root node whose left and right subtrees, Tl and

Tr' are in turn binary trees.

A binary tree is said to be in symmetric order if all

names in the left subtree of any node x.
1

precede x.
1

in

natural order and a 11 names in the r i g h t s ub t r e e o f x.
1

follow x.
1

in natural order. Lexicographic ordering is

synonymous with natural ordering.

Figure 5.1 shows four different binary trees over the

names A, B, C, and D with A < B < C < D as their natural

order. The trees are in symmetric order.

An extended binary tree (see Fig. 5.2(b)) is formed

by adding external nodes to the binary tree of Fig. 5.2(a).

The external nodes are also called leaves. All other nodes

are called internal nodes. A binary tree with n internal

nodes has (n+l) external nodes.

The height hb(T) of a tree Tis defined to be the

length of the longest path from the root node to an external

node.

A binary search tree over names x
1

, x 2 , is an

ex tended binary tree in which the names ace ur in symmetric

order. If • • • I y n represent the (n+l) external

names, then node y
0

corresponds to all names that precede

x 1 , node yi (i = 1, .•• , n=-1) to all names following xi but

A

B

c

D

(a}

Figure 5.1

(a)

Figure 5.2

76

D

c 8 c

8 D A c A

A
D 8

(b) (c) (d)

Four Binary Trees Over Names A, B, C, and D in
Symmetric Order

(b)

A Binary Tree and Its Extension

77

preceding xi+l, and yn to all names that follow xn. The

external nodes correspond to 'holes' or 'gaps' in the binary

search tree.

Algorithm to Search for a Name in a Binary Search Tree

A b i n a r y sea r c h t r e e i s sea r c he d f o r a n am e z a s

follows.

1) If the tree is empty (i.e. no root node exists), z

does not exist in the tree.

unsuccessfully.

The search terminates

2) If z precedes the name of the root node, the left

subtree is searched.

3) If z follows the name of the root node, the right

subtree is searched.

4) If z equals the name of the root node, the search

terminates successfully.

The search terminates unsucessfully whenever an external

node is reached during the search.

Algorithm to Insert a Name into a Binary Search Tree

A node is considered a triple (LLINK, NAME, RLINK),

where the NAME field contains the name associated with a

node, LLINK a pointer to the left son of that node, and

RLINK a pointer to the right son. A new name is inserted

into a binary search tree by the following recursive

78

algorithm.

1) If the tree is empty, NAME of root node ~ z and LLINK

(root node) ~ RLINK (root node) ~ A, where A is an

empty pointer. The algorithm terminates.

2) If z equals the name of the root node, z already

exists in the tree. The algorithm terminates.

3) If the name z precedes the name of the root node,

follow this algorithm to insert z into the left

subtree.

4) If the name z follows the name of the root node,

follow this algorithm to insert z into the right

subtree.

Note that the new node so inserted becomes an end node of

the tree.

Algorithm to Delete a Name from a Binary Search Tree

Figure 5.3 illustrates the deletion algorithm. If

the name to be deleted z has no son, the link of z's father

that points to z is replaced by A, the null pointeJ;: (Fig.

5.3(a)). If z has one son, the link field of the father of

z that points to z is replaced by the link field of z that

points to z's son (Fig. 5.3(b)). If z has two sons, then

the procedure is slightly complicated. Note that the

predecessor of z by the natural order is the right-most node

in the left subtree (node yin Fig. 5.3(c)) and that it has

(a)

(b)

I I X
I

I
I

(c)

At

Figure 5.3

\i
\

!_ I z I
I

I

\
\
\

\

I

I
\
\

>

> /'-I r-l__,__x____._~\r, j

I

I

I

>

I
I

!

I
I

I;
I

[~~
I

A

I

f..

f..

A

I

X I
I i

I

I
I

I
I
I

!
!
I

I
L

y I

y
\
I

I

\

l \\

"

79

Deletion Algorithm; a) z has no Son, b) z has
One Son, c) z has Two Sons

80

at most one son. Now replace name z by name y and delete

the node that contained y (z may equally well be replaced by

the name that follows it in natural order) .

Some more definitions follow.

Define a ~~~El~~~_E2~~~X_!~~~ as one

external nodes on levels q and q+l for some

complete binary tree with n internal nodes

q = log 2 (n+l).

having all

q. For a

(5.1)

The external path length E of a tree is defined to be

the sum - taken over all external nodes - of the lengths of

the paths from the root to each external node.

The internal path length I is the sum - taken over

all internal nodes - of the lengths of the paths from the

root to each internal node.

For a complete binary tree (see [57], [58])

E = I + 2n. (5.2)

Equation (5.1) implies that a name in a complete binary tree

can be searched for in O(log n) time. A much more complex

problem is the optimal organization of names with a given

set of frequencies. Note that Huffman's procedure [57, Sec.

2.3.4.5] for constructing trees with minimum weighted path

length will not, in general, produce a tree arranged in

symmetric order. This problem of constructing optimal

binary search trees is studied in detail in references [55] ,

[58], [49].

81

While n random names can be inserted into or deleted

from a binary search tree in 0 (nlogn) time, the worst-case

time is O(n 2). The quadratic time behaviour is due to the

tendency o£ the tree to get skewed when names are non-

random. In the degenerate case the tree may just be a

sequential list requiring linear rather than logarithmic

time for a single insertion or deletion operation. In order

to prevent the tree from getting skewed, it needs to be

rebalanced so that it deviates from a completely balanced

tree as 1 i ttle as possible. Consider the example in Fig.

5.4, where a new node is added to the tree on the left. The

tree is restructured as shown at right. The insertion of

the new node has affected all the nodes, requiring work

proportional to n. The height-balanced trees achieve such

insertions and deletions by carrying out a succession of

local changes along a single path from the root node to a

leaf in only O(logn) time. This we study next.

E

D

c G 8

A D F A c E

8

Fig. 5.4 Rebalancing Requires Work Proportional ton

G

82

5.3 Height-Balanced Binary Trees

The subject of height-balanced trees for data or file

organization has been amply treated in the literature (see

[58, Sec. 6.4], [49, Sec. 4.9], and [55, Sec. 6.2.3]). They

first appeared in Adelson-Velskii and Landis [59] and hence

height-balanced trees are also known as AVL trees. A survey

of different strategies for file searching and organization

is provided in [60]. The definitions and algorithms in this

section closely follow [58].

Definition: A binary tree T is height-balanced if and only

if the two subtrees of the root, T and T , satisfy
R. r

1) < 1, where h (•)
b denotes

2) TR. and Tr are height-balanced.

Figure 5. 5 shows some examples of height-balanced

binary trees and one that is not. The height constraint

forces the height-balanced binary trees to differ as little

as possible from completely balanced binary trees. The

balanced trees in Fig. 5.5 are in fact the most-skewed

height-balanced binary trees of height 1, 2, and 3,

respectively.

Empirical evidence [55, pp. 440] suggests that the

number of comparisons needed to insert the Nth item into a

balanced tree is approximately log 2N + 0. 25 for large N.

This differs from the average search or insertion time for a

(a)

(b)

Figure 5.5

A

Figure 5.6

__ ?ei<1:ht Condition
7iolated

83

Examples of a) Height-Balanced and b) Non­
Height-Balanced Trees

E

A Height-Balanced Tree Showing Balance Factors
of Nodes

84

completely balanced binary tree only by a constant. In fact

the following theorem ([59], [55, pp. 453]) shows that the

average search time need never be more than 45% above the

optimum.

Theorem: The height of a balanced tree with N

internal nodes always lies between log 2 (N+l) and 1. 44

log 2 (N+2) - 0.328.

Proof: Ref. [55].

Figure 5. 6 shows a height balanced tree in which

balance factors are associated with nodes to indicate their

height conditions. If hb(T£) and hb(Tr) denote the heights

of left and right subtrees of a node, respectively, then the

balance factor associated with that node is \, = or I

a~cording as hb(Tr) - hb(T
2

) = 1, 0, or -1, respectively.

Two tree transformations called rotation and double

rotation are used to restore the balance of a tree after an

insertion or deletion of a node. In Fig. 5.7(a) a new node

NEW added to the right subtree of node B changes the balance

factor of B and makes the right subtree 'too heavy'

(Subtrees are indica ted by large triangles) . After the

transformation, as shown on the right side of Fig. 5. 7 (a) ,

the tree is rebalanced and balance factors are changed as

indicated. This transformation is known as rotation.

Figure 5. 7 (b) shows a situation, where the new node

added makes the left subtree of C and right subtree of A

8

(a)

A

c

(b)

Figure 5.7 Examples to Illustrate the Tree
Transformations: a) Rotation, and
b) Double Rotation

85

8

86

'too heavy'. A transformation known as double rotation (so

called because of two rotations performed, one around A and

another around C) restores the balance of the tree. This

affects the balance factors as shown at right. Note that

both the transformations, rotation and double rotation,

preserve the symmetric order of the tree.

Algorithm for Inserting a New Node into a Balanced Tree

Using first the algorithm for insertion of a new node

into a binary tree given in Sec. 5.2, the new node is

inserted into the balanced tree. Note that this algorithm

makes the new node a terminal node or a leaf. Consequently

we need only consider the effect of adding a leaf to the

balanced tree. The path from the newly inserted leaf to the

root node is traced upwards incorporating changes to the

tree depending at most on the two immediately preceding

transformations on the upward path. The algorithm works as

follows.

1) If the current node's balance factor is = it is

changed to \ if the last step originated from the

right son and to I if it originated from the left

son. If the current node is the root node, the

algorithm terminates; otherwise it continues upwards.

2) If the current node's balance factor is I or \, it is

changed to = if the last step or ig ina ted from the

87

shorter of the two subtrees of the current node. The

algorithm then terminates.

3) If the current node's balance factor is 1 or \, and

the last step originated from the taller of the two

subtrees of the current node, then

a) if the last two steps originated in the same

direction, i.e., both from right sons or both

from left sons, then perform an appropriate

rotation and terminate the algorithm. Or,

b) if the last two steps or ig ina ted in the opposite

directions, perform an appropriate double

rotation and terminate the algorithm.

Algorithm for Deleting a Node from a Balanced Tree

First, using the deletion algorithm of Sec. 5.2

delete the given node from the balanced tree. As was

already mentioned in Sec. 5.2, the effect of this algorithm

was to delete a leaf. Consequently, we need only consider

the effect of deletion of a leaf on the balanced tree. The

algorithm traverses the tree upwards from the deleted leaf

to the root node passing along the message that the subtree

rooted at the cur rent node has been shortened. In the

following figures, dotted lines are appended to the subtree

that has been shortened.

follows.

The deletion algorithm works as

88

1) If the current node's balance factor is =, change it

to I if the right subtree was shortened and to \ if

the left subtree was shortened. Terminate the

algorithm.

2) If the current node's balance factor is I or \,

change it to = if the taller of the two subtrees of

the current node was shortened; continue upwards

passing along the message that the subtree rooted at

the current node has been shortened.

3) If the current node's balance factor is I or \ and

the shorter of the two subtrees was shortened, then

'too heavy' condition exists at the current node.

The following subcases exist depending on the balance

factor of the current node's son. Mirror images of

the following cases are similarly dealt with.

a)

A 8

A

Perform an appropriate rotation that restores the

balance without altering the height of the

89

subtree rooted at the current node and terminate

the algorithm.

b)

Perform an appropriate rotation that shortens the

subtree rooted at the current node and continue

upwards.

c) A 8

I \ L ____ -:.

I

L_ - -- ----
Perform an appropriate double rotation that

reduces the height of the subtree rooted at the

current node and continue the algorithm upwards.

The balance factors of A and C after the

transformation depehd on the balance factor of B

prior to the transformation.

\
- ...1

90

Whereas the insertion algorithm requires at most one

transformation, the deletion algorithm requires as many as

[h/2] transformations, where h is the height of the tree.

However, in most cases the algorithm requires a constant

number of transformations that is independent of the height

of the tree.

An astute reader would have by now recognized our

motivations in describing in detail the concepts of height­

balanced binary trees. If we maintain a height-balanced

tree data structure whose nodes are code tree paths, with

tree symmetrically ordered by path metric, then we can carry

out deletion or insertion of a path in O(logS) time. Though

the algorithms for insertion and deletion seems complicated

at first glance, with a suitable data structure, they can

easily be translated into a language of list manipulation.

We describe next a metric-first code tree search algorithm

that uses height-balanced tree data structure to store

paths.

5.4 A Code Tree Search Algorithm with Balanced Tree Data

Structure

~et a cell consist of the following: path map, S("),

length of the path, L{"), metric of the Path, J..l("}, a

pointer to the left s-on, LLINK(•), and a pointer to the

right son, RLINK ("). Figure 5.8 shows the cell structure.

Figure 5.8

s (.) !L(·) jJJ(·)

LL INK I RL INK

Cell Structure: S (.)-Path Map,
ll (.)-Metric, LLINK (.)- Pointer
RLINK(.)- Pointer to Right Son

91

L(.)-Length,
to Left Son,

All the available cells are initially linked together and

maintained in a pool called the available space. Cells are

drawn from it whenever a path is extended. Deleted cells

are returned to the available space.

Initially, the data tree consists of just the root

node of the code tree. The root node is then extended and

the b newly extended paths are inserted into the data tree

using the insertion algorithm of Sec. 5.4. The old best

path (initially the root node of the code tree) is deleted

using the deletion algorithm of Sec. 5. 4. At any time

instant, the best path corresponding to the right most node

of the data tree is extended and this node is deleted. The

b new paths are inserted into the data tree by using cells

drawn from the available space. If the available space

becomes empty, the worst path corresponding to the left most

node of the tree is deleted if the metric of the new path is

greater than that of the worst path and the deleted cell

used for the new path. If the available space is empty and

92

the new path is 1 poorer 1 than the worst path, it is dropped

from contention. This provision assures that only the S

best paths are retained after a path extension. Also,

extending the right most node of the data tree makes the

algorithm strictly metric-first.

Let B point to the node containing the best path and

W to that containing the worst. In the algorithm that

follows, by DT we mean the data tree and by CT the code

tree.

Procedure <metric-first-balanced-tree>

begin

{Initialize data tree, i.e., create its root node}

S (root node of DT) + path map corresponding to the
root node of CT;

RLINK (root node of DT) + LLINK (root node of DT) + A

~ (root node of DT) + 0;

B + W + address of root node of DT;

While not all source samples are encoded do

begin

If L(B) < the allowed maximum length of paths,
L,

then

begin

<extend> the path in B;

<delete> the cell B;

<insert> new paths into DT;

93

update B and W;

end

else

begin

<traverse> the tree in symmetric order;

perform <ambiguity check>;

<release output symbol>;

end

end if

end

end while

end

end <metric-first-balanced-tree>

The resource cost of the above algorithm is

space cost: LS + S log L + pS + 2 S 1ogb S

path length
storage storage

metric
storage

links
storage

= S (L + log L + p + 2 1ogb S)

b-ary symbols (5. 3)

time cost: O(logS) accesses/branch viewed, for deletion and
insertion of paths, plus

O(S) access/branch released, for ambiguity
check (5. 4)

The total space-time product cost is

O(L SlogS E[CSA]) + O(LS 2) access-symbols/
branch released (5.5)

94

In (5.5) we have deleted the logbS term from (5.3) on the

assumption that L dominates it. Comparing (5.5) with the

O(S
2

E [C 8A)] product cost of the stack algorithm clearly

points to the cost reductions obtainable by the balanced-

tree code tree searching scheme. This yields cost

advantages over the 2-list merge algorithm as well.

One improvement to the algorithm proposed here is to

assign a set of paths instead of a single path to a node of

the data tree . All the paths assigned to a node may have

metrics J.l(•) lying within M. < J.l(•) < M. + flM, where M. is
1 - 1 1

some sui table. number within the allowed metric values for

paths and f!M a suitable metric increment. Such groups of

paths are referred to as buckets. This strategy moves the

algorithm away from being metric-first and forms the subject

of the next chapter.

CHAPTER 6

A DYNAMIC BUCKET ALGORITHM

6.1 Introduction

It was shown in Chapter 4 that the dependence on S

for the product cost of the stack algorithm, s 2 , could be

reduced to s413 for the 2-list merge algorithm. In Chapter

5, the use of balanced binary trees to store paths was shown

to further reduce the dependence on S to SLogS. It is of

interest to explore other strategies to see if the

dependence on S can be further reduced. It is shown here

that relaxing the stringent requirement of always extending

the best path accomplishes such a reduction in cost. Still

unanswered is whether we must relax the requirement in order

to get this cost.

The algorithms described here make use of the concept

of equivalence classes known as buckets. A bucket contains

a set of paths whose metrics fall within a metric range

assigned to that bucket. Paths are not sorted within a

bucket, but there is an implicit ordering of buckets. Paths

chosen from the best bucket are extended and, when storage

is limited, paths are continually deleted from the worst

bucket. Since a path from the best bucket, considered for

extension, need not have the best metric, algorithms using

95

96

buckets are not strictly metric-first; but they become

roughly so when buckets are assigned successively finer

metric ranges.

The concept of buckets, well known to computer

scientists in the field of sorting and searching [55, Sec.

6.4], was first proposed by Jelinek [27] in the context of

sequential decoding. Dick [53] used this concept for

encoding Gaussian sources. Data structures for the

implementation of the bucket algorithm are proposed in [56].

Motivated primarily by the concepts of hashing, dynamic

hasing, and trie searching [61], [55, Sees. 6.3 and 6.4], we

propose here a new bucket-type code tree search algorithm

and data structures for its implementation. Before

describing these, we briefly outline Jelinek's scheme.

6.2 Jelinek's Bucket Algorithm

In Jelinek's bucket algorithm [27], two paths belong

to the same bucket if they satisfy a certain equivalence

relation defined on their metrics such as, for example, the

requirement that the integral parts of their metrics be

equal. Two sets of storage locations are assigned; one is

the available space and the other the header list* referred

* Jelinek refers to them as the stack and the auxiliary
stack respectively. However, we have used the terms
available, space and headers drawn from 1 ist processing
languages terminology.

97

to respectively by indices g e {1, 2, •.. , S} and .t e {-K,

-K+l, .•. , -1, 0, 1, ••. , J}. The range -K to J of the

header list index .t is so chosen that the path metrics lie

between -K and J with a sufficiently high probabil iy. A

location .t of the header list is a pointer G(.t) to the

bucket .t containing paths, the integral parts of whose

metrics are equal to .t. A cell g in a bucket consists of

three types of information, the path information or identiy

S(g), the metric of the path ~(g), and a pointer P(g) to the

next entry in the same bucket. The last entry in the

bucket, or an entry that is the only item in a bucket, will

have its P(g) value set to 0. The storage information is

depicted in Fig. 6.1.

Initially, all the cells in the available space are

linked together through their pointer fields using the

procedure <initialize available space>. New cells are drawn

from it using the <get new cell> procedure. NEWCELL is a

pointer to the first free cell in the available space. All

the cells within a bucket are linked together using their

P(•) fields. There are pointers B and w pointing to the

best and worst buckets, respectively. A deleted cell is

returned to the available space and appropriately linked to

the rest of the cells.

We now redefine several of the operations such as

extend, add path, delete path, etc., in terms of the data

98

Header List Available Space

Pointer to an Location Path Metric Pointer
Location entry in the g Info.]l (g) to next

R. available space s (g) entry
G (R.) p (g)

1 000 -1 1/4 2

2 1 -1 3/4 0

3 0100 -2 4

-3 5 4 001 -1 1/4 1

-2 3 5 011 -2 1/4 0

-1 0 6 0110 0 0

0 6

1

2

Fig. 6.1 The Storage Information at an Intermediate Stage

During Searching of a Code Tree, h (ll) = LllJ.

structures defined in the two preceding paragraphs.

Procedure <extend> {a path from the best bucket B}

begin

g + G (B)

Compute the cumulative metrics of the b new paths by
ex tending the path at location g to its b vear est
neighbours;

<delete> the path at location g;

for p = 1 to b do

begin

<get new cell>;

<add path> p at location pointed to by NEWCELL;

99

end

end for

end

end <extend>

Procedure <add path> {at location p}

begin

{let t be the integral part of the metric ~(.) of the
new path}

{link the path to the top of bucket t}

P(p) + G(t);

G(t) + p;

{update pointers to best and worst buckets}

If B < t then B + t;

If W > t then W + t;

end

end <add path>

Procedure <delete> {path at location p}

begin

t + integral part of ~(p);

if G (t) = p

then {cell to be deleted is the first one in bucket
t}

G(t) + P(p)

else {let cell q be the predecessor of p;
link the successor of p to predecessor of p}

P(q) + P(p)

end

100

end if

{link cell p to available space}

P(p) + NEWCELL

NEWCELL + p

{If the bucket R. happens to be the best bucket B, B
may have become empty if the deleted path were the
only one in the bucket; update B}

while G(B) = 0 do B + B-1;

{similarly update W}

while G(W) = 0 do W + W-1;

end <delete>

Procedure <get newcell>

begin

end

If available space is not empty

then return the address of the top cell from the
available space in NEWCELL

else <delete> top path from the worst bucket W and
return this address in NEWCELL;
Make the worst bucket W the available space

end if

Link the available space header to next-to-top cell in
the available space

end <get new cell>

Procedure <ambiguity check>

begin

examine each path;

101

<delete> ambiguous paths;

end

end <ambiguity check>

Using the above procedures the bucket algorithm is described

below.

Procedure <bucket>

begin

<initialize available space>;

<get new cell>;

Assign root node to it; metric of root node is 0;

W + 0; B + 0;

While not all source s9-mples are encoded do

begin

If length of top path in B < L

then

begin

end

else

<extend> top path in B;

{delete this path and add new paths
into buckets}

begin

perform <ambiguity check>;

<release output symbol>;

end

end

end if

end

end while

end <bucket>

The cost of the bucket algorithm is

time cost: K' accesses/branch viewed and

102

K" S accesses/branch released, for ambiguity

check

space cost: S (L + log L + p + 1ogb S) b-ary symbols (0. 1)

Here K' and K" are constantsbeing determined by the precise

sequence of reads and writes in procedures <extend>, <add

path>, <delete>, etc. The logbS term accounts for the

storage taken up by the link field P(•).

the product cost is

Asymptotically,

~ LS{E[C 5A] + S} + H access symbols/branch released

(6. 2)

It is assumed here that the node comptuation is close to

that of the stack algorithm. The factor H accounts for the

cost of mapping the metric of a path onto one of the

buckets. The term logbS is omitted under the assumption

that L dominates it.

The bucket procedure described above, while retaining

the essential features of Jelinek's algorithm, is sl igh tl y

simplified. Further it is presented in the algorithmic

103

language that we use throughout this thesis. Jelinek's

original

storage

scheme permitted paths to be extended as long as

was available, i.e., there was no explicit

constraint Lon the path length like we have here.

6.3 Later Bucket Algorithm Developments

Ander son and

bucket algorithm in

Mohan propose data structures

[56]. They propose that the

for the

bucket

procedure be viewed as hashed search. In this scheme paths

are hashed onto one of the Q buckets by a function h(ll),

called hashing function, that operates on the metrics of

paths. There is no separate header list as in Jelinek's

scheme; instead, the first Q locations in the memory form

headers of ·buckets. Initially bucket 1 is the best bucket

and bucket Q the worst. The available storage is chained to

Q. New paths are stored in cells drawn from the worst

bucket, i.e., the available space. At any intermediate

point in time, bucket t is the best bucket if t is not empty

and buckets 1, 2, ... , t-1 are empty. Similarly m is the

best bucket if m is not empty and buckets m+l, m+2, ... , Q

are all empty. Buckets are constructed as shown in Fig.

6. 2.

Let B refer to the best bucket and w to the worst.

The primitives <extend path>, <add path>, etc., as defined

in [56] are as follows.

II II
Next empty cell

Next path extended

Path

to 8

Best Bucket

Figure 6.2

to 8+1 toW

next Bucket Worst Bucket

Chained Storage of Buckets for Bucket
Algorithm. W Points to worst Bucket and B to
Best Bucket

~
0
.p..

105

Procedure <extend path>

begin

Access bucket B, the best bucket;

Remove top path, extend it to its nearest neighbours
and <add paths> to buckets;

e~

Link cell B to next-to-top cell;

Return the removed cell containing the path just
extended to the available space, i.e., to bucket W;

If B is empty update B;

{while B is empty do B + B+l endwhile}

end <extend path>

Procedure <add path>

begin

end

Compute h(~); if h(~) > W then W + h end if

if h(~) < B then B + h end if

<get new cell>;

Link h(~) to point to NEWCELL;

Place new path in NEWCELL;

Link NEWCELL to old top cell;

end <add path>

Procedure <get new cell>

begin

Access bucket W;

end

While W is empty do W + W-1 end while;

Return topcell address pointed to by W in NEWCELL;

Link W to next-to-top cell;

end <get new cell>

106

With the primitives defined as given above, the

bucket procedure described in [56] takes on the same form as

in section 6. 2. The resource cost formula also takes on

essentially the same form as in equation (6.2), where H is

now the hashing function cost.

In both these schemes, buckets may grow arbitrarily

large giving rise to imbalancing. Imbalancing is the result

of a poor choice of hashing function. This gives rise to

high insertion and deletion times for paths. As both these

schemes do not have a provision for modifying the hashing

function while the algorithm is in progress, such an

imbalancing may occur with a high probabiliy. It is not

clear what is the choice of optimal hashing function h (·) .

It is unlikely that it is uniform especially as S grows very

large. It is desirable to redefine h from time to time

[56], but it is not clear how this is to be done. In order

to overcome these difficulties, we propose next an algorithm

that uses buckets that split and merge dynamically according

to certain criteria. Appropriately, we have named this

algorithm the dynamic bucket algorithm. Since, during

107

bucket splits and merges, the metric ranges assigned to

buckets change dynamically, we can view the hashing function

h(•) as a self-modifying hashing function. This results in

a more balanced data structure. Larson [61] has proposed a

dynamic hashing concept that is applicable here.

6.4 A Dynamic Bucket Algorithm

Here, there are initially Q root nodes that are

pointers to Q empty buckets. These root nodes will form the

root nodes of the data structure to be described and should

be differentiated from the root node of the code tree.

Unlike in Jelinek's scheme, here buckets are of fixed

storage capacity K.

Initially, root node 1 is the pointer to the best

bucket and root node Q to the worst. Paths are hashed onto

one of the Q root nodes by a function h(") acting on their

metrics. If a path is hashed onto a root node pointing to a

partially filled bucket, the path is assigned to a free

location in the bucket. If a bucket is not yet assigned to

the root node, a new bucket is drawn from the available

space of buckets and the path is assigned to an empty

location in the bucket.

If the bucket is full, the following actions take

place. Two new nodes are drawn from the available space of

nodes and they form the left and right sons of the node -onto

108

which the path was hashed. Each of these two newly created

nodes will now point to a bucket; the left node will point

to an empty bucket drawn from the available space of buckets

and the right node to the bucket that is full. These two

buckets in the same level in the data structure are called

brother buckets. Approximately half the number of paths

from the full bucket are then transferred to the newly

created brother bucket. The new path is assigned to one of

these buckets depending on its metric. This situation of a

bucket being full and a new bucket being created is

illustrated in Fig. 6.3. In graph-theoretic terminology the

data structure of Fig. 6.3 corresponds to a forest of binary

trees.

The reverse situation to bucket splits, i.e., bucket

merging, takes place when deleting a path; if two brother

buckets together have less than K paths these two buckets

are merged to form a single bucket. The father of the two

nodes that were pointing to the two buckets before merger

now points to the bucket that contains the merged paths.

Two nodes and a bucket are returned to the space of

available nodes and buckets respectively. For example~, if

in Fig. b.3(c) the buckets pointed to by nodes 100 and 101

together have less than or equal to K paths, these two

buckets are merged, and the data structure shown in Fig.

6 . 3 (b) w i 11 emerge • The nodes 100 and 101 and the bucket

109

{a)

Figure 6.3(a) Bucket 1 is Full; a New Path is to be Entered
into Bucket 1; Q = 2

{ b)
2

Figure 6.3(b) Two New Nodes 10 and 11, Successors to node 1,
are Created; These Point to Two Buckets

(c)

Figure 6.3(c) Further Splits May Occur to Modify the Data
Structure

110

pointed to by 100 are returned to the available space.

Different strategies could be adopted during a bucket

split. One is simply to transfer half the number of paths

(say the top K/2 paths) to the new bucket. Another strategy

is to transfer only the best K/2 paths to the new brother

bucket. The later strategy is in conformity with the rule

of keeping the leftmost bucket as the best bucket; as one

traverses from left to right the buckets get progressively

worse, with the rightmost bucket the worst. The later

strategy is preferable in an actual implementation as it

provides a compensation for a poor initial choice of the

hashing function h(•) by dynamically providing for finer

refinements of the path metrics assigned to buckets.

However, it does not guarantee that a binary tree starting

at a root node will not grow unduly large. A binary tree,

however, lends itself to rebalancing as has already been

seen in the previous chapter. A combination scheme

incorporating rebalancing may thus profitably be used.

During a bucket split, the strategy of transferring

the best K/2 paths to a new bucket requires that the paths

within the bucket to be split be sorted on their metrics.

We can avoid sorting by using the following procedure.

Assume that the metric distribution within a bucket is

roughly uniform, a reasonable

ranges are assigned to buckets.

assumption if finer metric

When a bucket with a metric

range [j.l • ' 1
j.l •)

J

111

is to be split, paths with metric falling

within [J.li' J.l· +
1

(j.l • - j.l •) /2]
J 1

are assigned to a new bucket;

the rest of the paths remain in the old bucket. If it so

happens that all the K+l paths (K paths in the bucket and

one new path) go either to the left or to the right bucket,

further splits occur until the buckets have fewer than K

paths.

Consider the example in Fig. 6. 4. When a path is

hashed onto node i with metric range [1,5), bucket i is

found to be full. The root node is then assigned two sons

iO and il. Bucket i is split and assigned to two buckets iO

and il. il is empty and so iO is split again into iOO and

iOl. Again, as iOO is empty, iOl is split into buckets iOlO

and iOll. As none of the buckets are now empty, further

splitting stops and the new path is assigned to one of the

buckets iOlO or iOll.

Assuming that paths go either to the 1 eft or to the

right with equal probability,

P {a bucket is full} = (l/2)K (6.3)

P {y bucket splits} = (1/2) (y-l)K {1 - (l/2)K} (6.4)

E {no. of bucket splits} = E y (1/2) (y-l)K {1 - (l/2)K}

= l/(l-(l/2)K) (6.5)

Multiple bucket splits are very rare. If K = 5,

multiple splits occur once every 32 splits, if K = 10 once

every 1000 splits, and if K = 20 once every 10 6 splits.

[3. 5)

empty

i010
[3.5.4}

[1 ,5)

empty

i011
(3,3.5)

Figure 6.4 Bucket Splitting Strategy

TAG= 0 I
LLINK l

(a)

Figure 6.5

PRED

RLINK

Node Structure.
External Node

TAG= 1 l PRED

RECS I BLINK

(b)

a) Internal Node and b)

112

113

Though the assumption that paths go either to the left or to

the right bucket with equal probability and the independence

assumption are not valid due to the nature of the code tree

structure, the above analysis gives an indication of the

nature of multiple splits. Due to the rarity of multiple

split,s, we can expect the data structure to be reasonably

balanced.

Data structures required to implement the dynamic

bucket algorithm will now be described. Two types of

available spaces are maintained, the available space of

nodes and the available space of buckets. A node has the

structure illustrated in Fig. 6.5. A node can be either an

internal node (circular nodes in Fig. 6. 3) or an external

node (square nodes in Fig. 6. 3) . A link field of an

internal node may either point to another internal node or

to an external node while that of an external node points to

a bucket if one is assigned to it or, if no bucket is

assigned to it, contains 0. The tag field of a node is

either 0 or l. 0 indicates an internal node and l an

external node. The PRED field of a node points to its

predecessor. If there is no predecessor, as in the case of

a root node, PRED field contains 0. LLINK and RLINK of an

internal node point to the left and right sons respectively.

An external node has instead BLINK and RECS in their places.

BLINK links to a bucket and RECS indicates the number of

114

records in that bucket. A bucket may be implemented either

as a linked list as in Fig. 6.2, or it may simply be K

contiguous storage locations. In the later case, each

location has a one bit field set aside to indicate whether

or not a path resides in that location. When a bucket

becomes empty, the whole block of K locations is returned to

the available space of buckets. Again we redefine basic

operations such as add path and delete path using the data

structures described here.

Procedure <add path>

begin

{Let m be the metric of the path to be added}

R + h(m) {Hashing function h(•) hashes the path onto
one of the Q root nodes R}

{Let [~., ~.) be the metric range assigned to the root
node 1 R. Jonce R is given, this range is easily
computable from a predetermined formula}

i + R;

while TAG(i) = 0 do

if m e: [~ . , ~· + (~ • -]l •) /2)
1 1 J 1

then begin i + RLINK (i) ;).1· + J.l· + (~ . - ~.) /2 end
J 1 J 1

else begin i + LLINK(i); ~· + J.l· + ().1. -~.) /2 .end
1 1 J 1

end if

end while

if RECS(i) < K

then begin if BLINK(i) = 0 then
BLINK(i) + NEWBUCKET end if

end

assign path to a free location in
bucket BLINK (i)

115

else {Bucket BLINK(i) must be split as the new
path cannot be entered into it}

begin

j + NEWBUCKET {a new bucket is fetched
from the avaiable space of
buckets}

while RECS(i) = K do

begin

LRECS + 0; RRECS + 0;

for p = 1 to K do

if metric of path p in bucket
BLINK(i) € [lli + (llj-lli)/2, llj)

then begin remove path p from
bucket BLINK(i) and
assign it to a free
location in bucket
Ji LRECS + LRECS+l;

RRECS + RRECS-1;

end

end if

end for

{Fetch new nodes from the avaiable
space of nodes and link them to node
i}

LNODE + NEWNODE; RNODE + NEWNODE;

TAG(LNODE) + TAG(RNODE) + 1;

RECS(LNODE) + LRECS;

RECS(RNODE) + RRECS;

end

PRED(LNODE) + PRED(RNODE) + i;

If LRECS = K {all paths into the
left bucket}

then begin

BLINK(LNODE) + j;

BLINK(RNODE) + 0;

j + BLINK(i); i + LNODE;

J.l· +].l· + (J.l·-J.l·)/2;
1 1 J 1

end

116

else if RRECS = K {all paths into
the right
bucket}

end if

then begin

end if

BLINK(RNODE) +

BLINK (i);

BLINK(LNODE) + 0;

i + RNODE;
].l • +].l • + (].l • -].l •) /2;

J 1 J 1

end

LLINK(PRED(LNODE)) + LNODE;

RLINK(PRED(RNODE)) + RNODE;

end while

I f rn e: [J.l • , 1.1 • + (1.1 • -1.1 •) /2)
- 1 1 J 1

then add new path to BLINK (RNODE)

else add new path to BLINK (LNODE)

117

end if

end

end if

end

end <add path>

Procedure <delete path>

begin

end

{Let i be the node pointing to the bucket in which
resides the path to be deleted. Let its brother node
be j. After removing the path from the bucket pointed
to by i, it is merged with its brother bucket if the
two have together < K paths. This is carried onto
higher levels if necessary.}

Remove the path from bucket BLINK(i);

RECS(i) + RECS(i)-1;

While RECS(i) + RECS(j) < K do

begin

end

Merge the buckets i and j into i; link bucket i
to the predecessor of nodes i and j;

if the new merged bucket has a brother bucket
then j +brother bucket's address

end if

end while

end procedure

Using these two procedures, the dynamic bucket algorithm

will take on essentially the same form as the procedure

118

<bucket> in Sec. 6.2.

6.5 Analysis Using Tries

Turning attention now to the analysis of the dynamic

bucket algorithm, we first note that the data structure,

forest of binary trees, genera ted by the algorithm can be

considered as Q binary tries (see Knuth [55, Sec. 6.3] for a

discussion on tries). The name trie from the middle letters

of the word retrieval was first proposed in [62]. Knuth

defines a tr ie as "essentially an M-ary tree, whose nodes

are M-place vectors with components corresponding to digits

or characters. Each node on level t represents the set of

all keys that begin with a certain sequence of ! characters;

the node specifies an M-ary branch, depending on the (t+l)st

character".

The following example from [58] illustrates trie

searching. The trie shown in Fig. 6.6 stores decimal

digits. Each node h~s associated with it a ten-place vector

or index. In order to locate the name 2718, branch 2 of the

root node is taken. This branch leads to another node whose

pointer at location 7 leads to the name 18. Adding the

prefix 27, the path map of the path that leads to the node

containing name 18 from the root node, to 18 yields the name

2718. If the name to be searched is 573, following the

above procedure, we find the address in location 5 of the

Figure 6.6

0 2 3 6 7 s 9

0 1 3 4 6 1

27! 20
1------1-

An Example to Illustrate •rr ie Searching and
Organization

1--'
1--'
\.0

120

root node. Since this is A, the null pointer, name 573 does

not exist in the trie. More than one name may be assigned

to an index of a node. A new name 2720 is assigned as shown

by the dotted slot in Fig. 6.6 if the trie permits assigning

two names to an index of a node.

In the dynamic bucket algorithm, each node represents

a range of metric [~i' ~j). Depending on whether the metric

of a path falls in the upper or the lower half of the metric

range, the node specifies a two-way branch, the left branch

or the right branch. This being true at each and every

internal node of the Q binary trees, these are essentially

binary tries.

From Knuth [55, Sec. 6.3], the number of nodes needed

to store N random keys in an M-ary tr ie, with the tr i e

branching terminated for subfiles of < s keys, is

approximately

N/(s £n M) + N g(N) + 0(1) (6. 6)

In (6.6), g(N) is a complica~ed function whose value is

-6 always less than 10 ; hence it can be neglected. Equation

(6.6) then reduces to

N/(s £n M) (6. 7)

In our case s = K, the bucket size, and M = 2, the number of

branches out of an internal node. Let ni' i = 1, 2, ••. , Q

be the number 'of paths stored in the ith of the Q binary

121

tries. Since there are a total of S paths stored in the Q

binary tries, we have

Q
1:

i=l
n. = S

l
(6. 8)

Applying (6.7) to each of the Q binary tries and summing up,

we get

E {number of internal nodes}
Q ni S

~ 1: = ----~
i=l K in 2 K in 2

(6. 9)

In a binary tree, there are n+l external nodes and n

internal nodes. So,

E {no. external nodes}
Q n. + 1 s + Q

~ 1: l =
i=l K in 2 K in 2

(6.10)

Adding (6.9) and (6.10), we have

1 2 s
E {total number of nodes}~ Kin 2 [2S + Q] ~Kin 2 (6.11)

Since there are three link fields associated with each node,

total link storage is approximately

6 S Logb s
K in 2 b-ary digits (6.12)

For a related algorithm, Larson [61] shows that about

96% of the rando~ records (in our case 96% of the paths) are

located on levels 2 and 3 of the tr ie. This further

confirms the conclusion that multiple splits are very rare,

as was already argued. Also, to insert paths into buckets

one need not traverse arbitrarily long chain of buckets.

122

·rhus the number of accesses to storage required in order to

insert or delete paths is bounded by a constant most of the

time. The cost of the dynamic bucket algorithm is

Time Cost: c 1 accesses/branch viewed

c 2 S accesses/branch released, for ambiguity

check

6 1ogb s
Space Cost: S (C 3 L + K tn 2 + log L + p) . (6.13)

Since the buckets may only be partially filled most of the

time, in order to store S paths, a storage greater than S is

necessary. The constant c 3 in (6.13) accounts for this

extra storage. c3 is likely to be about 1.4 [61].

total product cost is

O(LSE[CSA]) + 0(LS
2

) + Hd access-symbols/
branch released

The

(6.14)

where Hd is the cost of hashing, splitting, and merging. It

is assumed that K ~ 6/tn2 and that L dominates logbS.

The sum cost of the algorithm is

O(LS) + O(S) + O(E[CSA]) + Hd. (6.15)

The precise number of comparisons is difficult to estimate

but it is of O(S) + 0 (E [CSA]) ·

It is likely that Hd in (6.14) is greater than the H

factor in (6.2) for the bucket algorithm. But, due to its

dynamic nature, the dynamic bucket algorithm comes closer to

being metric-first than does the bucket algorithm. It is

well known that of all the known algorithms the metric-first

123

ones have the least node computation [30]. We can thus

expect the E[C] for the dynamic bucket algorithm to be less

than the E[C] for the bucket algorithm. This may more than

compensate for the slight increase in Hd over H. The

dynamic bucket algorithm again establishes an order of

dependence on S for the product cost which is just S, the

lowest for the metric-first algorithms so far considered. A

summary of the results of Chapters 4, 5, and 6 appeared in

Mohan and Anderson [63].

CHAP'rER 7

BRANCHING PROCESS METHODS FOR THE SINGLE

STACK ENCODING ALGORITHM

7.1 Introduction

Initially, interest in rate-distortion theory

centered around developing rate-distortion functions for

different sources. Only ten years after the birth of the

theory was attention given to one of the two facets of

practical source coding, the design of codes for sources, by

Jelinek [11], who proved the existence of tree codes that

achieve the rate-distortion bound. Jelinek's proof was

valid only for symmetric sources, and it remained for Davis

and Hellman [50], making use of the theory of branching

processes in random environments (BPRE) [64], to prove that

for any i.i.d. source, tree codes exist whose performance is

as close to the R(D) curve as desired. Tan [65], again

using the BPRE theory [68], showed that such tree codes

exist for stationary block-ergodic sources. Vi terbi and

Omura [21] have shown the existence of time-varying trellis

codes that achieve R(D). A recent paper by Johannessen [66]

uses the theory of multi type Gal ton-Watson branching

processes to generate the computational distribution for

124

125

sequential decoding using the stack algorithm. Since the

paper by Jelinek [ll] appeared in the literature, attention

has also centered around the second facet of source coding,

the design and analysis of source coding algorithms (see

Anderson [17], Anderson and Jelinek [16], and Gallager

[18]) • While these papers consider only symmetric sources,

our interest here is in applying the BPRE theory to the

single stack encoding algorithm applied to asymmetric

sources, with the aim of deriving an expression for the

number of tree branches visited. This expression is shown

to be the stochastic analog of an expression given by

Gallager for the case of symmetric sources. Some intriguing

simulation results for the algorithm and its variants, which

cast light on the possible range of solutions to our

equations, are presented.

7.2 Preliminaries

Rate-Distortion Theory

Let a discrete memoryless source (i.i.d. source) have

a probability distribution P(x) defined on elements of a

source alphabet X. Let an additive single letter distortion

measure d(x,y) be defined on elements of source and

reproduction alphabets, X and Y. Let Q (y I x) be a

conditional probability assignment and I (X;Y) the mutual

information between X and Y.

126

Definition: The rate-distortion function R (D) is the

minimum rate necessary to encode the information source with

additive single letter distortion measure so that the

average distortion does not exceed some distortion D; it is

given by

where

and

R(D) ~ inf I(X;Y)
Qe:QD

Q = { QD (y I X) : ~ p (X) Q (y I X) d (X' y) .s. D}

I(X;Y) = ~

x,y

x,y

P(x) Q(ylx) .tn P(x) Q(yjx)
P(x) Q(y)

Haskell [67] has shown that

(7. 1)

(7. 2a)

(7.2b)

R(D) =max min
p2_0 Q (y)

- E P(x) .tn {E Q(y) exp (-p(d(x,y)-D)]}
X y (7.3)

where Q (y) is a probability density defined on the repro­

duction alphabet given by

Q(y) = ~ P(x} Q(yjx)
X

(7 • 4)

Let p
0

and Q
0

(y) optimize the expression in (7.3). ~hen we

have the following equations [10, pp. 34-37].

Qo(yjx) = Qo (y) exp [-p
0

d(x,y)] A (X) (7 • 5)

A (X) = {~ Qo(y) exp [-po d(x,y)] }-1 (7. 6)
y

Qo (y) = ~ P (x) Qo(yjx) (7 • 7)
X

R(D) = -p
0

D + L P(x) R.n A.(x)
X

Branching Processes with Random Environments

127

(7 • 8)

We will find in Sec. 7. 3 that branching processes

with random environments (BPRE), formulated by Smith and

Wilkinson [64] and extended by Athreya and Karlin [68], are

an appropriate tool for analyzing the single stack encoding

algorithm. So we briefly describe the working of a BPRE.

Harris [69] and Athreya and Ney [70] are excellent sources

on the theory of branching processes. The book by Mode [71]

is especially devoted to multi type branching processes and

that by Jagers [72] to biological applications of branching

processes. Refer to Feller [73, pp. 293-301] for

introductory material on simple Galton-Walson branching

processes.

Suppose we have Z
0

particles at time n = 0 (or

generation 0). Each of these Z
0

particles creates further

particles so that the population size at the first

generation is

(7 • 9)

where Xli' i = 1, 2, ... , z
0

are independent and identically

distributed random variables with probability generating

function (p.g.f.) 4>r,; 0 (~). Here

00

E p(jjr;;
0

) sj
j=O

128

(7.10)

where p (j jr;;
0

) is the probability that a zeroth generation

particle gives rise to j first generation particles, given

environment r;;
0

• The z1 first generation particles then give

rise to second generation particles according to p.g.f.

Continuing in this way, the (n+l) th generation

population is the cumulative sons or progenies of the Z nth n

generation particles, each reproducing according to p.g.f.

4> n(s).
l;; -

process.

{r;;n' n = O, 1, 2, ••• } is called the environmental

In the. case of an i. i .d. environmental process,

{4>r;;n(~)} are all identical, {r;;n} are i.i.d., and Zn' n = 0,

1 I 2 I is a branching process developing in an i. i .d.

random environment. We can visualize the Zn process as one

developing in a stochastically changing environment that

affects the reproductive behaviour of the process.

Allowing for generalization, we now stipulate that a

particle may be any one of a number of types, say m types.

Thus, starting from a zeroth generation particle of type i,

we have at the first generation r 1 particles of type 1, r 2

of type 2, ••• , Ym of type m produced according to p.g.f~

4>(i) (s) = 4>(~jr;;o' zo = i)
z;o - (7.11)

(yl,y2' • · • Yml z;o)
yl y2 Ym

= E P· sl 52 s
l m

yl,y2, ... ym

where s =
~

..• , sm) , 0 < s. _< 1,
- 1

i = 1,

129

••• ' rn •

Again a type j particle at the first generation reproduces

according to p.g.f. q,~r) (~), and so on. Thus we have a

vector process defined by Z = e. = (0, 0, •.. , 1, ... , 0),
~o -1

a vector with 1 in the ith place and O's elsewhere, and ~l =

(Z 1 (i,l), z1 (i,2), •.. , z1 (i,m)) etc, where z1 (i,y) is the

number of first generation particles of type y from a zeroth

generation particle of type i.

z (i,2),
n

. . . ,
In general,

then the

if z =
-n

(n+l)th

generation population vector Zn+l is the sum of Zn(i,l) +

+ zn (i ,m) independent random vee tors, where

each of the zn (i, k) , k = 1, 2, ... ' m, independent random

vectors is produced according to the probability assignment

PK (Y I r,;n) where y is an m vector. Ag a in , w he n { r,; n } i s

i.i.d., ~n' n = 0, 1, . . , is a multitype (m-type) branching

process in random environment.

The above process is said to be extinguished if z = -n

9 for some n, where Q = (0, 0, ••• , 0) is an m vector. If

the extinction probability qi of the process, starting from

an initial particle of type i, is defined as

q. ~ P[Z = 0 for some n I Z =e.],
1 -n -o 1

(7~12)

then we can associate a probability vector q with the

process, given by q = (ql' q2, ... , qffi) • If r,; = (r,; 0 , r,;l,

• • •) I then from [5] q (r,;) = (gl(~), g2 (~) ~m (~)) , the - -

130

extinction probability vector conditioned on the environment

z' satisfies the functional equation

(7.13)

(7. 14)

where Tis the shift operator and T~ = (~;;1, ~;;2, .•.) and the

(1) (m)
vector <P_ is given by <Pr (s) = (<P (s), .•• , <P (s)). q_,

-,y - l;;y - l;;y -

the unconditional probability of extinction, is then q =

E[q(~;;)]. - -
While the papers [64] and [68] deal with conditions

for cer-tain and noncertain extinction and with proving

certain limit theorems, our interest here is to model the

single stack encoding algorithm as a multi-type BPRE and to

derive an expression for the number of branches visited.

Random Tree Codes

Consider random tree codes with b branches out of

each node and 8 symbols on each branch. The symbols are

chosen from reproduction alphabet Y. according to the

distribution Q
0

(y) given in (7.7).

tree code is given by

The rate R of such a

bits/symbol. (7.15)

If D
0

is the desired average distortion at the end of

encoding, then R is chosen to satisfy R ~ R(D
0
), where R(•)

131

is defined in (7.8). Given any E > 0, the object of

encoding a given source is to find a path through the code

tree that has an average distortion D ~ D
0

+ E. Associated

with a path y'J. of 9./a branches is a quantity called the

metric of the path defined by

(7.16)

where D(x'J.) is defined as

(7.17)

Here ~9. and y'J. refer to length 9. source and reproduction

symbols respectively. Also, if

'}.,

~ = (xll' xl2' ···' xla' x21' ···' x2a' ···'

and y'J. is similarly defined, then -

and

Thus

9. 9. 9./a a a
d(x , y) = E d(x., y.)

- - i=l -1 -1

'}.,
ll (y)

- (7.18)

(7~19)

(7.20)

132

Here the a d (X. , y ~) 's and branch distortion
-l -l

values and branch metric increments, respectively.

In defining the metric of a code tree path, we have

used the D (~t) criterion instead of the traditional one

using D
0

• This criterion was first suggested by Berger [10,

p. 220]; Dick et al. [53] used it to encode Gaussian

sources, while Davis and Hellman [5()] proved it sufficient

for asymmetric sources and distortion measures.

Next, in order to model the algorithm as a multitype

BPRE, we quantize the metric values of paths. Where no

confusion will arise, we will still call the quantized

metric as metric only and denote it by the same symbol \l.

Thus, redefining the metric, we have

t
1 jc t t ¥!)] ll(Y) = - D(x) - d(x , Y_t)

- E; - -
(7.21)

where ral is 'the smallest integer N such that a < N and t,; is

an arbitrary small positive number. Still,

t
ll(Y) =

7.3 Analysis of the Single Stack Encoding Algorithm

The single stack algorithm (see Chapter 2) is

essentially a depth-first search procedure, trying to

explore along the depth of the code tree a path that

satisfies a discard criterion. When the path falls below a

lower barrier B, the algorithm backtracks along the path to

another node from where the

depth-first fashion. For

search again

the purposes

proceeds in

of analysis

133

a

we

introduce an upper barrier A and consider only paths that

lie within the barriers B and A. Because of the definition

in (7.21), is now

lying

values.

between B and

We denote

allowed to

There

take only integer

are (A-B+l) such A.

the set of allowed metric

values

metric

N(B,A). Introduction of upper barrier A

values

will

as

not

appreciably alter the behaviour of the algorithm if A is

considered to be very large. We assume further that the

algorithm works successively on source blocks of t symbols.

Now we turn to a BPRE model of the algorithm. At any

stage during encoding we can consider code tree paths as

particles and their metr ics as the particle types. Thus we

have an m = (A-B+l) type process. For the symmetric source

case, all source blocks of length t correspond to the same

environment. In the case of asymmetric sources this is no

longer true. If a block of length t source sequence is an

atypical one (i.e. a hostile environment) it pay be

particularly difficult to find a code tree path of length

t/e branches that lies within the barriers. In such a case

the algorithm may explore a large number of code tree

branches. If one were to consider paths of length t/S

branches whose metrics belong to the set N(B,A) as offspring

of the root node, then it is clear that the distribution of

134

offspring varies from generation to generation (i.e. from

one t-block to another t-block). Hence the behaviour of the

algorithm within a block is dependent on the source sequence

xt corresponding to that block. The "environment" within a

block can be identified with ~t, and successive environments

· · · d · xt • s · · d vary 1n an 1.1 •. manner, s1nce are 1.1 •• Thus we

have an m = (A-B+l) type BPRE.

Equivalently, note that, for asymmetric sources, the

metrics of successors of a single node at a given level in

the code tree are dependent on the source letter present at

that level. If the vertical axis represents metrics of code

tree paths and the horizontal axis time or code tree levels,

a node extension maps its successors on the vertical axis

depending on their metr ics. Such a process is called a

branching random walk (BRW) for the symmetric case and

branching random walk in random environments (BRWRE) for the

asymmetric case. We can identify the type with the metric

of nodes and convert the BRWRE into a multitype BPRE.

Results based on the t-block environment approach appeared

in Mohan and Anderson [74]. Here, we use the BRWRE

approach, where environment is identified with e source

letters, i.e. , r;t = Both approaches yield similar

results.

The single-type BPRE formulation of Jelink's tree

coding process was first given by Davis and Hellman [50],

135

and we have analysed a new coding process, the single stack

algorithm, in a similar manner, but as a multi-type BPRE.

Our asymmetric case analysis is similar in form to the one

employed by Gallager [18] for the symmetric case, and we

have used several of his results.

Equation for the Probability Generating Function of a BRWRE

Let P(j-ij~;) ~ P {an immediate descendent of a node

with metric i has metric j, given

environment ~;}

Let z(i,j) ~the number of the b descendents of a

node with metric i that have metric j.

Let Xi(i,j) = 1, if the ith descendent of a node with

metric i has metric j

= 0, otherwise.

From (7.11), the probability generating function,

<P(i)(s)
m

z(i,j) l] = E ['If s. 1;
1; - j=l J

(7.22)

m
1: Xi(i,j) m i=l = E ['If s. l 1;]

j=l J
(7. 23)

m b Xi(i,j)
= E ['If 'If S· I ' l j=l i=l J

(7.24)

b m Xi(i,j)
= 'If E ['If sj I~;]

i=l j=l
(7.25)

136

In (7.22), we have assumed, without loss of generality,

that there are m types, i.e., N(B,A) = {1, 2, .•. , m}. In

(7.25), we have made use of the fact that, when conditioned

on the environment, different descendents move independently

of each other.

When conditioned on the environment,

probability P(j-iJ~;;). The R.th descendent

barriers with probability

rn
1 - 1: P(j-ij~;;)

j=l

i.e., XR. (i ,j) = 0 with probability

rn
1- 1: P(j-ij~;;),

j=l

is

XR.(i,j) = 1 with

absorbed by the

when cond i tiond on the environment. If XR.(i,j) = 1, the

product

rn
1T

j=l

inside the expectation in (7. 25) is

it is l. Hence,

rn XR.(i,j) rn
E [1T sj J~;;] = 1 - 1:

j=l j=l

rn
+ 1:

j=l

s. ' J
and if X R. (i, j) = 0,

P(j-ijl;;)

P(j-iJ~;;) S·
J.

(7.26)

Combining (7.25) and (7.26), we have

q, (i) (s) =
r,; -

m
[1- E P(j-ilr,;)

j=l

137

(7.27)

Equation (7.27) will form the basis of the branching process

in random environments generated by the algorithm.

The Moment Generating Function of the Metric of a Branch

Define the moment generating function of the metric

of a branch conditioned on environment r,; as follows:

m
E P (j I r,;) exp(rj)

j=l
(7.28)

= E [exp(rj) I r,;] (7. 29)

Using the definition of metric of a branch from (7.21), we

have

(7.30)

(7.31)

On taking logarithms on both sides of (7.31) and finding the

expectation of log gr,; (r) over all possible enviroments ~ 13 ,

we get

E [1 og g r,; (r)] > E 13 P (~ 13) R. n E 13 Q 0 (¥13)
X y

(7.32)

138

r
.E P(~a) D(?5a) + .E P(?5a) R.n .E Qo(¥a) =

f; xl3 xl3 Ya

(- r d(~a, la)) (7. 33) . exp
f;

Substituting aD
0

for

.E P (x a) D (X l3)
xa - -

and p
0

for r/t; in (7.33) and making use of (7.6) and (7.8),

we get

E [R. n g ~; (r)] = - 13 R (D
0

)

= - 13 [Rn - y]

(7.34)

(7.35)

where Rn = (R.n b)/13 = R R.n 2 and y = Rn- R(D
0

) > 0.

In (7.34), we have made use of the fact, proven by Gallager

[18], that p
0

= r/t; optimizes (7.3). Rearranging (7.35),

one gets

E [R. n bg ~; (r)] ~ a y > 0 (7 . 3 6)

Gallager [18] has shown that bg(r) > 1 for the

symmetric case. He further shows that the condition b g(r)

> 1 is a necessary condition for the branching process

generated by the algorithm to have a probability of

extinction strictly less than 1. In (7.36) we have derived

an analogous condition for the asymmetric case. While we

have not yet proved so , we . can hope that the condition

E[R.n bg (r)] > 0 is necessary for the BPRE generated by the
I;

algorithm to have an extinction probability strictly less

than 1. With q < 1 it can be shown that the algorithm

139

achieves R (D) .

Equation for Node Computation by the Single Stack Algorithm

A node is said to be visited by the algorithm when it

is pushed down onto the stack during forward motion in the

code tree. Define the node computation as the total number

of nodes visited. A branch may be traversed either in the

forward direction when a node is pushed onto the stack, or

in the reverse direction when a node is popped up from the

stack. Any branch may at most be traversed twice. Since

there are b branches out of a node, the total number of

branches visited is upperbounded by 2b times the node

computation.

Theorem: Let Ci(fn) be the node computation forward

of a node with metric i needed to encode (n+l) a source

a a
1 e t t e r s , g i v en en v ironment £ n = (r; 0 , r; 1 , · · · ' r; n) = (~ o ' :lf 1 '

... '

where

Then, for n ~ 2,

2 b-1 + U. (r;) {p. (r;) } + ... + u. (r;) {p
1
. (_r;n)} (7.37)

1 -n 1 -n 1 -n

m
E P(j-ilr;

0
) cJ.(Tfn),

j=l
(7.38)

m
=1- z P(j-ijz;

0
) {1-qJ.('r!n)},

j=l

and T is the shift operator given by

= 8 8

140

(7.39)

T £n = (z; 1 ' z; 2 ' • • • I (:l£1' :li2 ' ... '
Proof: The first descendent of the root node,

conditioned on the environment z;
0

= x 8 , has metric j with
~o

probability P(j-ijz;
0
), where i is the metric of the root

node. Since the environment forward of the first descendent

is T~n (z; 1' z; n)
e 8 X 8) the node = z;2' • • • I = (:l£1' :l£2' ... ' ~n '

computation forward of it is cj (T£n) . Since the first

descendent can have any one of m allowed metric values, the

unconditional node computation forward of it is

m
E

j=l
P(j-ijz;) C.(Tz;),

~n J -n

the second term in (7.37), where we have summed out the

conditioning on its metric. Assuming, for the time being,

that n is constant, the algorithm searches forward of the

second descendent of the root node only if the BPRE forward

of the first descendent extinguishes itself before level

(n+l) forward of the root node at level 0. The probability

of this happening, given that the first descendent has

metric j, is qj(T~n). Removing the conditioning on the

metric of the first descendent, the unconditioned

probability of extinction is

141

The BPRE forward of the first descendent is never

started if the first descendent is absorbed by the barriers.

This happens with probability

m
1- E P(j-ijc;

0
).

j=l

Thus the ~robability that the algorithm fails to find a path

of length n forward of the first descendent is

Pi (~n) = 1 -
m
E P(j-ijc;

0
) {1-qJ.(T~n)},

j=l

which is also the probability that the algorithm searches

forward of the second descendent.

Given that the algorithm has failed to find a path of

length n forward of the first descendent, the node

computation forward of the second descendent is Ui (£n) by

similar arguments. Unconditionally the node computation

forward of the second node is ui (~n) pi (!n) , the thiFd term

in (7.37). Since the third descendent is searched if both

the BPRE's forward of the first and second descendents fail

and this happens with probability {pi(~n) }
2

, we see that the

fourth term in (7.37) is the unconditional node computation

forward of the third descendent. The last term in (7.37) is

the node computation forward of the bth descendent of the

14 2

root node. Accounting for the root node (1 in (7.37)), the

theorem follows.

From [68] q. (~,;) > q. (~,;) for n = 1, 2, •••.
1 - - 1 -n

Using this in (7.39), we have

Using

But

m
Pi(~n) < 1- >:: P(j-ij~,; 0) {1- qJ.(T~)}

j=l

(7.40)

ci < ~n)

\) • (1,;)
1 -

~v.(l,;)
l -

in (7.37), we get

b-1
k < 1 + u. (1,;) l: {vi(~)} - 1 -n k=O

[1 b - {v. (~,;)}
1 + u. (1,;) 1 -=

1 -n [1 - v.(~,;)]
l -

m
= 1- >:: P(j-ij~,;0) {1- qJ.(Tf)}

j=l

(7.40)

(7.41)

(7.42)

(7. 43)

(7. 44)

Equation (7.43) follows from (7.27) and (7.44) from (7.14).

Combining equations (7.38), (7.42), and (7.44), we get

P(j-ij~,;) C.(T~,;) (1- q.(l,;))
o 1 -n 1 -

m
(7.45)

l: P(k-ij~,;) {1-qk(Tl;_)}
k=l 0

Let B(i,j) = (i,j)th element of matrix B

=

Let

m
E P(k-ij~; 0) {l- qk(T~)}

k=l

Then, from (7.45)-(7.47), we have

143

(7.46)

(7.47)

(7.48)

where [B(~)] is the matrix defined in (7.46) and 1 = (1, 1,

• • • I 1) is an all 1 m vector.

Gallager derives the equation ~n ~ ! + [B] ~n-l for

the symmetric case. Here we have derived the stochastic

analog of this equation for the asymmetric case. Heretofore

only symmetric sources have been considered in the

literature. Though a closed form solution to (7.48) is not

yet known, we strongly believe that the behaviour of code

tree search algorithms with asymmetric sources can be

analyzed using the BPRE methods presented here. Next we

present some simulation results in which the single stack

algorithm uses the D(~ 1) discard criterion.

7.4 Asymmetric Source Simulations

For the purpose of simulation, we have used the

binary i. i .d. source and Hamming distortion measure. The

algorithm worked on the ensemble of rate-1/2 tree codes (b =

144

s = 2) with code words chosen i.i.d. according to the output

probability distribution [10, p. 37]

Q
0

(0) = (P(O) - D
0
)/(l 2D

0
)

Q
0

(1) = (P{l) - D
0
)/(l - 2D

0
)

where D
0

is given by the distortion-rate function ~(R). The

algorithm was parameterized by the lower barrier B and the

depth limit or block length L. In all our simulation

examples, the algorithm encoded a few thousand source

samples and used a depth limit of 200 to 1000 tree branches.

Table 7.1 lists simulation results which cast some

light on the possible range of solutions to our equations

for node computation derived in Sec. 7.3. Result obtained

using the binary symmetric source is also given for

comparison. The computation in the asymmetric case is much

smaller than that for the symmetric case. However, the

algorithm attained a high distortion of 39% above ~(R) while

encoding the source P(O) = 0.2 and P(l) = 0.8. Conversely,

for this source, the algorithm will require a large node

computation in order to achieve distortions close to ~(R).

While the algorithm seems to have a complicated

dependence on various parameters, the following question

arises. Asymptotically, does the algorithm behave quite

differently when used with asymmetric sources? While we

have not yet proved so, we can hope that the algorithm's

145

behaviour is not much different when used with asymmetric

sources and that the node computation E [C] , as is the case

with many different algorithms used with symmetric sources

[17] ' [16] and
-a [18], is of the form E[C] = exp[c(D-D

0
)] ,

where c and a are constants, . D
0

= I:J. (R), and D is the

expected distortion per output symbol for the encoded path.

Table 7.1 Simulation Results for the Single Stack Encoding
Algorithm. Binary i.i.d. Source with Hamming
Distortion, R = 1/2, L = 200 - 1000.

p (0) p (1) B Branches Viewed % above I:J. (R)

0.5 0.5 -5.5 1500 15.0

-1.5 355 8.1
0.3 0.7 -3.5 368 4.5

-7.5 176 9.2

0.2 0.8 -2.5 707 39.0

CHAPTER 8

ENCODING THE BINARY IID SOURCE WITH HAMMING DISTORTION

USING THE SINGLE STACK ALGORITHM

8.1 Introduction

Simulation results obtained by encoding the binary

i.i.d. source with Hamming distortion using the single stack

algorithm are reported here. We study the behaviour of the

bias factor or target distortion, D*, stack length, L, level

of the lower barrier, B, and number of branches searched per

source ·symbol encoded, E [Cssl, on the final distortion

at ta ine·d by the encoder, DF. Defining stack configuration

as the triple (D*, B, L), we find by simulation the optimum

stack configuration that minimizes E[c 88] for a given final

distortion attained. Two variants of the algorithm,

incorporating dynamic raising and lowering of the absorbing

lower barrier, are proposed. The e f f e c t s o f D * , L , and

E[c 88] on the distortion performance of the variants are

studied.

Denote by SSAO, the basic single stack algorithm with

the lower barrier fixed at level B, and by SSAl and SSA2,

the algorithm with modifications 1 and 2, respectively, as

given below. Let B be the initial level of the lower
'-

146

147

barrier and t the relative level of the top most node of the

code tree path that resides in the stack.

Modification 1: Whenever, during encoding, the

metric of the end node of the path in the stack exceeds the

previous maximum attained by a portion of the path residing
"',t "''

in the stack (i.e.,~(~ s) > ~(~ 1 (3) fori= 0, 1, ... , t-1),

the lower barrier is raised to ~(~1 S) B; also, when

backtracking to the first node of the code tree path in the

stack with an unsearched branch, after the path had fallen

below the lower barrier, the barrier is lowered to ~m-B'

where ~m =max ~(~ja), where j < t. This modification

dynamically raises the lower barrier during forward motion

in the code tree and lowers it while backtracking along a

code tree path, in a simple version of Fano's algorithm.

Modification 2: Here the barrier may only be raised,

i.e. ,
"t

whenever ~ (~ f3) for i = 0, 1, • • • I t-1 I the

"ts
lower barrier is raised to~(~) -B. Modifications 1 and

2 were reported in [75].

The barrier movements, with and without the

modifications to the algorithm, are shown in Fig. 8. 1. In

Fig. 8.l(a), the numbers on the branches indicate the order

in which the algorithm traverses the code tree branches. In

Figures 8.l(b) and (c), the barrier levels, generated at

different time instants by modifications 1 and 2,

respectively, are shown. The effects of such barrier

~
__ 17

16 ---
~----

14
15

2 X

---hit discard criterion

Figure 8.l(a) Push-Down Stack Search, b = 2

8 5 6 T
fJ123 T I • I

I I

~12_8 T 3,8. 4,7,9 J 10,11 j

12 • 13,14 15,16 1 7
•

I

- 8 -~----=2=---_.J

Figure 8.l(b) Barrier Movement with Modification 1

12 13,14 15,16 1-7

fJ123- 8 • a 4,7,9 5,6 I

' . ..
3 I 10,11

1-112 -8 r ~

-8 2

Figure 8.l(c) Barrier Movement with Modification 2

148

149

movements on the distortion performance of the algorithm are

also investigated.

8.2 Simulation Results - Effects of Len~!h_Limi!~_B

Barrier, and Target Distortion

The source chosen for encoding here is an

equiprobable binary source. The Hamming distance is used as

the distortion criterion, i.e., d(x,x) = a ", where x is x,x

the source bit, x the reproducer bit, a the Kronecker delta,

and d (.,.) the distortion between the source and reproducer

bits. R (D) = 1 - H (D) for this source, where H (.) is the

binary entropy function. Such a source belongs to the class

of symmetric sources and the branching process genera ted by

the algorithm is a simple Gal ton-Watson branching process.

Branching process concepts introduced in Chapter 7 are

useful in explaining the simulation results.

The code tree branches were populated by a random

number generator of the "linear congruential" type that

produced O's and l's with equal probability. In what

follows, D* and DF will denote the target distortion and the

final distortion actually attained by the algorithm,

respectively. Simulated codes have rate 1/2, at which

6(1/2) = 0.110 is the value of the inverse rate-distortion

function.

The remainder of this section shows the effect of the

150

three basic parameters L, B, and D* on the total distortion

performance of the basic single stack algorithm.

Effect of Lower Barrier B on the Distortion Performance of

SSAO

The branching process generated by the single stack

algorithm (BPSSA) has a greater chance of survival when the

barrier is lowered and moved away from the zero level than

when it is closer. Consequently, the algorithm scrutinizes

more code tree branches as the barrier is lowered and,

hence, achieves a better distortion performance. These

conclusions are verified to be true from Figs. 8.2(a)-(e),

which show the distortion performance of SSAO versus E[c55 l

for a fixed D* and for different L.

to -7.5 along each of these curves.

B decreases from -0.5

Lowering B below a critical value may not improve the

distortion performance. This is due to the fact that the

probability of survival of the BPSSA increases and the

algorithm is content more often with a poorer path. This is

apparent from the curves.

Effect of L on the Distortion Performance of SSAO

The longest code tree path searched by the algorithm

and lying above the lower barrier is limited by two

parameters: 1) the barrier at level B and 2) the length of

151

(a)

.2~ tC

0 : 0.14 3

.I -<J j I
11.

.051 0 - L=IOOO

J
.021

.01
I 2 5 10 20 50 100 200 500 lOOO

(b)
.2-, •

I 0 : 0 . 1 3

- .I j <J
I
11.

0 .051
L=400

.021

.01 I

I 2 5 10 20 50 100 200 500 1000

o• = o . 12 s

.05

.02

.01+-~~TO~~---.~~-.OT~----r-.-~~~

2

Figure 8.2

10 100 1000
Branches visited/ Source Symbol encoded

Distortion Performance Curves of SSAu ((DF-ll)
Versus Branches Visited per Source Symbol
Encoded) with Length Limit for Different D*

.2
(OF-t:.)

.I

.05

.02

152

•
D = 0 .12

.01+-~~~~~--.-~~~~~---.~~~~n

2 10 100 1000

.5

.I

.05

.02

Figure 8.2

Branches visited/Source Symbol encoded

(d)

tC

D = 0.11 76

10 100

Branches visited/Source Symbol encoded

(e)

1000

Distortion Performance Curves of SSAO ((DF- t.)
Versus Branches Visited per Source Symbol
Encoded) with Length Limit for Different D*

153

the stack, L. If B is close to the zero level, the BPSSA

may get extinguished before a path of length L is found.

For a lower B, L dominates the distortion performance of the

algorithm. Assuming that a path above the lower barrier and

equal to L in length has been found, we have

(~L S) = LSD* d(x LS "'LS
> - ' X)

or

d(x
LS "'LS

-8 LSD* ' X) < +

Dividing both sides of (8.2) by LS, we get

Distortion/source symbol encoded < D* + f~l

B (8 0 1)

(8 0 2)

(8 0 3)

Equation (8.2) shows that, providing the branching

process survives, as L increases the average distortion per

source symbol encoded decreases and tends towards D*. This

behaviour is clear in Fig. 8.2(a), which plots (DF-L1) versus

E [c
88

J for several L. For example, when L = 100, the

minimum DF achieved is 18% above D*, whereas for L = 1000,

it is only 3.5% above D*.

It can also be seen from the figure that, for a fixed

D*, a given distortion performance can be attained by

different (B,L) stack configurations, but only one of them

attains it with the least number of computations. For

example, for a DF of 18%, 12%, and 3.5% above D*, L = 100,

300, and 1000 are the optimum stack lengths, respectively,

154

minimizing the computation E [c 55 J. For a fixed D*, the

envelope of the curves in Fig. 8.2(a) represents the optimum

(B,L) stack configurations that minimize the number of

branches searched per source symbol encoded. The above

conclusions are apparent in Figs. 8.2(b)-(e) as well.

E!!ec!_O!_Ta£~et_Di~tO£!iO~L_D*L_on_!h~_Di~!~£!iO~

Performance of SSAO

Figures 8. 2 (a)- (e) show the effect of varying D* on

the distortion performance of SSAO. The envelopes of curves

in Figs. 8.2(a)-(e) are shown in Fig. 8.3. Each curve of

Fig. 8.3 specifies the optimum (B,L) stack configurations

for a given D*. The envelope of curves in Fig. 8. 3 will

then represent the optimum (D*, B, L) stack configurations

that minimize E[c 55], given DF. Since D* is the target

distortion the smaller the value of D*, the more stringent

are the requirements on the distortion performance of the

algorithm. Consequently, as D* decreases, the total number

of branches generated by the BPSSA and, hence,_ E[C 55 J

increase and the algorithm attains distortions closer to ~.

These conclusions are verified from Fig. 8. 3. Table . 8. l

gives a set of optimum stack configurations obtained from

Fig. 8.3.

-<J
I
LL

0 -

1.0

.5

.2

.I

.05

.02

I I I 1'''11 I I I I .01 I I I I I I I I I I I I I I I I I I I 500 1000 5000
2 10 20 5 50 100 200

Figure 8!3

Branches visited/Source Symbol encoded

Envelopes of Distortion Performance Curves of
SSAO with Length Limit for Different D*; L
Increases Along Each Curve ...

V1
V1

156

Table 8.1 Optimum (D*' B, L) Stack Configurations from
Fig. 8.7 Minimizing E [c55] (B Vlaues, not shown
in the figure, are from simulation results).

(DF-l!.) D* B L Minimized E[c55 J

0.04 0.143 -4.5 300 27

0.022 0.13 -6.5 1000 150

0.018 0.125 -9.5 1000 350

0.016 0.12 -4.5 800 700

8.3 Effect of B and D* on the Distortion Performances of

SSAl and SSA2

Figures 8.4 and 8.5 show the distortion performances

versus branches visited for SSAl and SSA2, respectively,

where B decreases along each curve. We have dispensed with

L as a free parameter, since its effect is relatively

slight; L is set to 1000.

As B is lowered, E [c 55] increases and better

distortion performance is achieved, but B may not be lowered

below a critical level. Figures 8.4 and 8.5 also reveal the

existence of optimum (D*, B) stack configurations of SSAl

and SSA2, respectively, that minimize E[c55]. The envelopes

of Figs. 8.4 and 8.5 represent these configurations. Most

of the conclusions regarding the effect of the parameters

D*, B, and L on the distortion performance of SSAO carry

over to SSAl and SSA2 as well.

The envelopes of curves in Figs. 8.3, 8.4, and 8.5

-<3
I
LL

0 -

.2

.I

.05

.02

.011 I I I I I I I 'I I I I I I II 'I I I I I I I ' 'I

I 2 5 10 20 50 100 200 500 1000 2000

Figure 8'.4

Branches visited I Source Symbol encoded

Distortion Performance Curves of SSAl for
Different D* with L = 1000

1-'
Vl
........

-<l
I

L&..
c -

.5

.2

.I

.05

.02

.011 I I I I I I I 'I I I I I I I I 'I I

I 2 5 10 20 50 100 200 500 1000 2000

I

Figure 8.5

Branches visited I Source Symbol encoded

Distortion Performance Curves of SSA2 for
Different D* with L = 1000 1-'

V1
00

159

a r e shown in Fig . 8 . 6 . SSAl achieves a better distortion

performance than SSAO for values of E[C55] in the range 5 to

150, while for larger E[C 55 J there is not much difference in

the distortion performances. For low E[C55] values (between

5 and 30) SSAl performs better than SSA2, while for larger

E[C 55 J values, SSA2 performs better than both SSAO and SSAl.

With E [C 55] about 2000 and D* = 0.1176, SSAl and SSA2

achieved final distortion performances of 13% and 10%,

respectively, above ~, compared to 15% for SSAO. This shows

that some sort of adaptation of B is desirable.

8.4 Effects of Limiting Computations on the Distortion

Performance of SSAl and SSA2

Since SSAl and SSA2 perform better than SSAO and any

algorithm must be limited dynamically, the effects of

limiting the total number of computations (CT) are

investigated for SSAl and SSA2.

Figures 8.7(a)-(c) show the effect of limiting CT on

the distortion performance of SSAl.

digits encoded was allowed to vary.

The number of source -

Thus, on any of the

curves of Figs. 8. 7 (a)- (c), the number of source digits

encoded times the number of code tree branches visited per

source symbol encoded is a constant equal to CT. B

decreases along each of these curves and L is fixed at 1000.

.5

(DF-~)

.2

.I

.05

.02

.01+---~~~~~--~~~~~--~--~~~~--~~~

Figure 8.6

10 100 1000

Branches visited I Source Symbol encoded

Envelopes of Performance Curves of SSAO, SSAl,
and SSA2 with Length Limit: D* Decreases Along
Each Curve

......
0"1
0

(b)

.02

ole

0::0.13

'"""-- CT= 10
4

CT= 105

CT= 106

.OIT---~.-~~TIT--~~~~~~--.-~~~~

I 10 100 1000

..
0 : 0.12

.05 I

~
.02 j
.01+-~~rr•~•n•••i----,-,-.,-,, ~~~~·~~---,--.-~~~~~~~~~~~1 --~,

2 10 100 1000 2000

161

(c) 2 ~
. I D .. = 0.1176

(OF-~) I
.11

.05]
.021

i
.01 r.~~~~~---.-.-.,.-~~--.--.~~~~~

2

Figure 8.7

10 100 1000 2000

Branches visited /Source Symbol encoded

Distortion Performance Curves of SSAl with
Computational Limit for Different D* with
L=luOO

(OF-a)

.2

.I

.05

.02

.01 I I I ' 'I I I I I I ' ''I I I I I
I 10 100 1000 5000

Figure 8.8

Branches visited I Source Symbol encoded

Envelopes of Distortion Performance Curves of
SSAl with Computational Limit; CT Increases
Along Each Curve; L:lOOJ

1--'
0'\
N

163

The parameters B and D* can be seen to affect the

performance of SSAl similarly to the case without the

computational limit. The envelopes of the curves of Figs.

8.7(a)-(c), representing the optimal (CT' B) stack

configurations, are shown in Fig. 8. 8. The envelope of

curves in Fig. 8.8, in turn, represents the optimum (D*, CT'

B) stack configurations.

The effect of computational limit CT on the

distortion performance of SSA2 are shown in Figs. 8.9(a)-(c)

and their envelopes in Fig. 8 .10. Unlike in the previous

cases, the envelope of the set of curves in Fig. 8.9(a) is

identical to the outermost curve corresponding to the

largest CT limit. This is true of Figs. 8.9(b) and (c) as

well. Recall that SSA2 only raises the barrier during

forward motion and does not lower it while backtracking.

Assume that, with a limit on computation equal to CT'' the

algorithm has found a path of length L1 < L with an average

distortion equal to il 1 . Let the barrier stand at B1 . Let

the computational limit be raised to CT" > CT,. Let the

algorithm SSA2 now search forward of the code tree path of

length L, alieady in storage and find a path of legnth L2 ~

L1 . Let the barrier now stand at B2 . Since the barrier

cannot be lowered, barrier B2 must now be at least as high

as B1 , i.e., B2 ~ B1 . Consequently, the average distortion

il 2 cannot be worse than il 1 . This implies that the

164

(a)
.3

{0F-l1) o« = o . 13

.I

.05

.02
Cr=105

Cr=106

.01 ~
10 100 1000

(b)
.3

o·=0.12
{OF -l1)

.I

.05

100 1000

• 0:0.1176

.I

.05

.02-ll

. Cr=10
6

.01~--~~~.i-·~·~·~·•J--~--~~· ~~~·~·~·~·~r---~~~~~n---~• ~.~.~~
I 10 100 1000 5000

Figure 8.9

Branches visited I Source Symbol encoded

Distortion Performance Curves of SSAl with
Computational Limit for Different D* with
L=lOOO

.5

(OF-~)

.2

.I

.05

.02

~

I I II I -, .01 I I I I I I I I I I I I I I I I I I I 5000
10 100

Figure 8.10
I

Branches visited I Source Symbol encoded

Envelopes of Distortion Performance Curves of
SSA2; CT Increases Along Each Curve; L=lOOO

.......
0\
V1

166

distortion performance curve corresponding to CT" must lie

below that of CT', just as the simulation results indicate.

The envelopes of curves in Fig. 8. 8 and Fig. 8. 10,

giving the optimal (D*, CT, B) stack configurations, are

shown in Fig. 8 .11. For a given E [Css], SSA2 achieves a

lower distortion per source symbol than SSAl.

8.5 Summary

We have suggested improvements to the single stack

algorithm that modify the barrier

encoding. These are alternatives to

dynamically

i
the D(~)

during

discard

criterion suggested elsewhere [10, p. 220], [53], [SO]. The

dynamic discard criteria used in our simulations have not

yet been mathematically analyzed. Simulation results favour

the discard criterion that raises the barrier during forward

motion in the code tree together with a computational limit.

The simulations exhibit optimal stack configurations

that minimize the average number of code tree branches

searched by the algorithm to encode each source _::;ymbol.

Anderson's [17] theoretical work has shown the existence of

such optimal curves for the stack algorithm. We show next

that such curves exist even for "real" sources like speech.

(OF -a)

.5

.2

.I

.05

.02

.01 I I I I 1 I I. I

10 100 1000

Branches visited I Source Symbol encoded

Figure 8.11 Envelopes of Distortion Performance Curves of
SSAl and SSA2 with Limit on Computation; D*
Decreases Along Each Curve; L=lOOO

5000

.....
0\
-....!

CHAPTER 9

SPEECH ENCODING BY THE STACK ALGORITHM

9.1 Introduction·

We report here experiments in which the stack

algorithm is used to encode a voiced speech sound. We show

how the algorithm can be optimized with respect to its free

parameters, the number of paths stored S and length of paths

stored L, and the target distortion D* and with respect to

derived quanti ties such as the expected node computation

E [C] (the number of tree nodes visited per symbol released

as output), the total storage that the algorithm uses, and

the execution time T needed to carry out the processing.

Each of this latter group is optimized by a different

parameter combination.

Our results for speech are compared with earlier

theoretical results obtained by Anderson [17] for the stack

algorithm encoded binary i.i.d. source with Hamming

distortion measure and similarities between the two results

are pointed out.

Several authors have used the breadth-first (M,L)

algorithm to encode speech [13]-[15], [33], and they haye

reported significant gains over single path search methods.

168

169

Anderson and Bodie [13] and Jayant and Christensen [14] have

cons ide red the effects of finite M (the number of paths

stored), and finite L (the length of paths) on the

performance of the (M,L) algorithm. However, in the case of

metric-first algorithms, such as the stack algorithm, the

effects of these two as well as a new parameter, the target

distortion, have yet to be considered. Moreover,

metric-first algorithms, being powerful procedures, are

expected to yield significant SNR gains over other methods.

Our simulation results confirm this, but it is still not

clear which type of algorithm is cheaper to use for a fixed,

moderate SNR. We invoke theoretical cost functions proposed

in Chapter 3 in order to compare the stack algorithm

performance with that of the (M,L) algorithm. Reference

[76] reports the results presented in this chapter. A

summary of the results appeared in [54].

9.2 Example and Instrumentation of the Stack Algorithm

Instead of using the stack algorithm (Chapter_2), we

have used the merge algorithm, a metric-first algorithm that

exactly mimics the stack algorithm. This enables the use of

a computationally more efficient sort and merge procedure ..

The merge algorithm was described in detail in Chapter 4.

The speech tree code of Anderson and Law [77], used

in our simulations, is given in Fig. 9.1. This code is

00

01

10

ll

Figure 9.1

170

{0.81-
0,73-

0.81
0,68-

0.59-

{0.64-
0.56-

0.73
0.51-

0.52-
. 0.42-

0.44-
0.54 0.16-

0,39- Path 'lap
0.46- 0,07-

10 llO 11 11 00
0.41- 0.02-

-0.24- 10 00 ll 11 01
0.32- -0.06

-0.29- 10 ()l) ll 11 10

-0.37- 10 00 11 11 11
0.29- -0.09-

{ 0.37- {-0.01-
0.59 ~-0.10 0.24- -0.15-

-0.18-
0.15 -0.23-

-0,23-

-0.32-

Rate 2 Speech Tree Code Generated by the

Constraint 4 Real-Number Convolutional Code

Generator with Coefficients c0 = 0.7704, c1 =
1.5154, c2 = 1.6332, c 3 = 1.2054, and c 4 =
0.4962

171

defined by the relation xt = 1 q_ qt-i, where the qi are

quantizer outputs and xt are reproducer letters [13], [77].

The rate 2 tree code shown has four branches out of each

node (b=4) and one symbol per branch (B=l). Here the

numbers on branches correspond to normalized amplitude

levels. This code is generated by the transversal filter of

Fig. 9.2. The filter, of constraint length v, in fact

generates a convolutional code over real numbers, but we

view it as a tree code for encoding purposes. Instead of

calculating the sum z .
l

c.
l

every time a node is

extended, a more efficient table look-up scheme is used:

All the possible 2R.(v+l) code words are stored in a table,

and when a node is to be extended, v past path map digits

plus the current one are used as an address to retrieve the

code word from the table.

Figure 9.3 illustrates the working of the stack

algorithm. Associated with each branch are two numbers.

The first one is the branch metric. Squared error

distortion criterion (i.e., d(x,x) A 2
= (x-x)) and D* = 0.01

are used in computing the metrics. The second number

corresponds to the cumulative metric of the path leading up

to the end node of the branch from the root node. Nodes are

numbered N. . '
l, J

where i corresponds to the level number of

the node and j correspopnds to the number of that node in

level i. Node NO,l corresponds to the root node at level 0.

Distortion Calculation

xt d(Xt,Xtl
Analogue

Transv.

Filter

11
Fixed Component

11

Definitely
Decided
Digits

q t->..-,------+---1
Encoder out

Search Algorithm

11
Yariable Component

11

Storage

Store r Path maps

Error totals

172

P. bits
in

Figure 9.2 Transversal Filter Realization of the Tree
Code Generator of Fig. 9.1 (From (13])

-. 08; -. 08

L- -.038;-.038

Root N
Node 0,1 --

-.019;-.019

Branch I
released

0.004;0.004

Figure 9.3
I

Nl,l
p -

Branch metric

Nl,2 I I'
Cumulative metric

N

N

... P
-,063; -.076 N 3 33

0.006;-.013 N, -,026;-.0~9 N3 34
-,9 -

..
a-..-:.: 010;-. 029 N'

1- -.Ol0;-.023 N -.063;-.068

1,3
-, l 0

3, ~~5

- N ...

-.026;-.045 N? L.2: OOH;-. 005
-.022;-.027

-,11
3,36 - -.007;-.012

N ...

I -.068;-.087 2,12 - x, I 0.008;ll.00:5

-.043;-.039 N? -,13 -
~---.086;-.082

N

1,4
2,14

L-- .120;- .116
N

...
2, IS

-.193;-.189 N
2,16 -

Working of the Stack Algorithm with D* = 0.01,

List SizeS.= 12, and List Width L = 4; Source

Sequence ~ 4
= 0.51, 0.60, 0.25, -U.ll

N

N

N

N

l , 1 ,,1 -
4,112
~

4, j.:L) ...
:1, l ,,,,, -

r--
1
t---

-l
t---
1 L __

ist.

ck .

......
-..,)

w

174

It is assumed in this example that the list size S=l2, and

the list width L=4.

Node NO,l is extended to the four nearest nodes. As

N1 , 4 is the best in the list so far, it is extended next.

Next N1 , 3 is extended, as the cumulative metrics of all the

newly extended paths from N1 , 4 fall below that of N1 , 3 . As

N2 , 9 becomes the best node, it is extended next. There are

now a total of 13 paths and as the list can accommodate only

12 paths, the worst one, leading to N2 , 16 , is deleted

(indicated in Fig. 9.3 by x1). Next N3 , 36 is extended and

three more paths N2 , 12 , N2 , 14 , and N2 , 15 are deleted

(indicated by x2 in Fig. 9.3). As the length of the best

path in the list N4 , 144 equals 4, the width of the list, the

encoder must now release the earliest symbol of N4 , 144

corresponding to the branch N0 , 1 , N1 , 3 . After performing

ambiguity check, the encoder purges paths Nl,l' N1 , 2 , and

N2 , 13 . The search then proceeds forward of N4 , 144 .

9.3 Results of Tests - Effects of Free Parameters

The stack algorithm operated on the rate 2 speech

tree code of Fig. 9.1. A speech record of the word "speed",

sampled at 8 KHz (a bit rate of 16 Kbits/sec) was used for

encoding purposes. List size varied from 3 to 48 path map

entries. Width of the list varied from 8 bits to 48 bits

corresponding to 4 to 24 source samples or tree branches.

175

Definition: Define signal to noise ratio (SNR) in

decibels of the encoded speech as

where

SNR

E 2 xi
i = 10 log 10 2

E (x.-x.)
. 1 1
1

dB

x. is the source signal amplitude,
1

xi' the corresponding reproducer letter, and

xi-xi is the error due to encoding.

Effect of Bias Factor D* on Node Computation E[C]

Referring to the definition of metric of a path, it

is clear that a path with metric close to zero will have a

per letter distortion close to D*. However, D* is really a

free parameter, not necessarily related to the end distor-

tion, and its main function is to control the search

pattern. A large D* rewards forward motion in the code tree

search, reduces node computation, and thus causes the search

to be satisfied with a poorer path. Conversely, a small D*

does not reward forward motion, causing intense searching

among code tree branches and consequently better perfor-

mance. Referring to nodes visited per branch released as

output E[C] versus D* curves (Fig. 9.4), we see the above

observations are indeed true. As D* decreases the search

activity increases, but for large enough D*, E [C] is close

to 1. The algorithm then behaves almost like a single-path

5=48

5=24~ .,
\

5=12----·........._ ~\
·. \

5=6"-·-~--.,...... \\
....... .

0"· \~ 5 =3 ~ · ·~ · ... ""-: ·· ~ .. ·:-----.~ .. -=-::·~=----------..__j
-60 -50 -40 -30 -20 -10

o*, dB

Figure 9.4 Effect of Bias Factor D* on Nodes Visited Per
Branch Released as Output E[C]: lO log10 D* fs
the value of D* in decibels

176

19

15

"'C
Q)

10 -tJ) ·->
tJ)
Q)

"'C
0
z

5

177

encoder.

Effect of Bias Factor D* on SNR

Figure 9.5 shows the effect of bias factor D* on SNR.

SNR versus D* curves exhibit three different reg ions. In

the first region, corresponding to large D*, search

activity, as we have already noted in the preceding

paragraph, remains near 1 and consequently SNR remains

almost constant. In the second region, D* has decreased to

the point where it begins to intensify the search, r~sulting

in a corresponding incr~ase in SNR. The finiteness of the

1 ist imposes a 1 imi t on the intensity of searching, and

consequently decreasing D* below a critical value D * does c

not result in any further increase in E[C]. The SNR then

remains constant or tends to decrease slightly in this third

"saturation" region. Consequently, this region should never

be used and only biases in the second region are of

interest.

The larger the list size, the smaller is the critical

value D * associated with that list. c Hence larger lists

achieve a better SNR performance. It is also clear from the

curves of Fig. 9.5 that, as the list size increases, the

performance curves tend to converge to a 1 imi ting curve.

There is little to be gained by using very large lists, as

E[C] increases enormously for little SNR gain.

•

'fritical o*

o .ci
0

·.

~ ~ ... ~ ... ?. ·········
0 0 0

·a.
·. '?

·.

L--------'----------'------l.... --·-··----

0.

-60 -50 -40 -30 -20
o* dB •

Figure 9.5 Effect of D* on SNR

S=48
S=24
s = 12
s = 6

s = 3

25

24

23
m
'"0

22 0: z
en

21

20

1. __ _ -I 0 ----- ____ j 19
0

.......
o...J
00

179

Effect of Bias Factor D* on Execution Time T

The execution time must increase if E [C] increases.

Thus D* has a similar effect on T as it has on E [C] (see

Fig. 9.6). However, at low D* values, a larger sized list

consumes more time than a smaller one. Since at low D*

values the algorithm behaves like a single path encoder, it

is inefficient to employ large lists; the T versus D* curves

indicate this.

Effect of List Width L on SNR

Figure 9.7 shows the effect of list width Lon SNR.

The stacks operated near the critical bias.

L curves exhibit two different regions.

r e g i on , the r e i s a s.i g n i f i c a n t i n c r e a s e

The SNR versus

In the first

in SNR as L

increases. For example, for a size 12 list, the increase in

SNR is as much as 1.1 db as L increases from 8 bits to 16

bits. There is little to be gained by employing an L

greater than the knee apparent in the envelope of Fig. 9.7;

for the rate 2 encoder of Fig. 9.7, saturation occurs at 32

bits.

9.4 Results of Tests -Optimization of SNR

Now, we separately minimize E[C], execution time, and

storage, using SNR performance as an objective function.

The minimization is over the three free parameters in the

5=48

5=24--..

'""' \
\

110

100

90

80

70

60 u
CD
fll -I-

50

40

-------l30

5=12- .. ---.. \

""'""
20

---·----·---·---·
5=6-·-·-·--·-·- ""-

~. . 10

5=3""'""""""'"'"""' "···>>>~:=·.:.=.;,=~=~-·-=: ..
-50

Figure 9.6

-40 -30
o*, dB

-20 -10 0 0

Effect of D* on Execution Time T

180

m
"'0

a::
z
en

25

24

230

y-·~ /1/ / ·-0 ·-·-o-..........

6
/j-··-'fr··-··--· ."

/?Lfr· ·----L -- <;>-- -~
/1 1;. / ' ·-------.

I ' -.

/I/ -- ----- --- Envelope
~

c{'' :

I
I

------ 5=48
------ ·--- - s = 24

j

8

Figure 9.7

--- - · · -- S = I 2
----··-----· s = 6

D*= critical Value

'------------'--·------------·- L ______ -----------------

16 24 32 40 48

Stack Width L (bits)

Effect of List Width L on SNR; D* Fixed at
Critical Value

56

1-"
co
1-"

182

stack algorithm design, list size, list width, and D*.

Optimal SNR Performance Curves with respect to E[C]

Figure 9. 8 plots SNR versus E [C] for different list

sizes; D* decreases along each curve and we have fixed the L

at 48. These curves overlap and intersect in a complicated

way. It can be inferred from the curves, that a given SNR

performance can be achieved by different list

configurations, and, sometimes, by the same list for

different bias factors. But in each of these cases E [C] is

different. The best E [C] at a given SNR lies near the

envelope of the curves; the best list size and D* are

indica ted by which curve is closest to the envelope. For

example, an SNR of 23.3 dB can be achieved by list sizes of

3,6, and 24 with E[C] equal to 1.5, 1.3, and 1.85, respec­

tively. If minimum node computation is the criterion in

choosing the list size and bias factor, then for a

performance of 23.3 dB a size 6 list should be used. For a

given SNR performance, there exists a unique best list and

bias combination that minimizes E [C] • The dashed 1 ine in

Fig. 9.8 represents this.

m
"C

n:
z
(f)

25

33
30 ~ ~-. --=~;:;~~:::--:-=~~

C
30 ~~:~31.5 33 ;..-~~3 = -----.. ~

30" / / /'>< 345 3~ 45 45

.c: 285 345 //
3

0 '• 45

,, .-· _ .. r-·····--~// 51

36 36

t· •33 ·· ...

;('31.5 II . \
f4 •.

p

23

--Envelope
---5=48

II
wf/4

-~

o (D*)

191

Figure 9.8

2

-·-S=24 •
51

---- S= 12
-·-·-·-· S= 6
................ S= 3

All D * values are
negative

5 10 20

Nodes visited, E [c]
Optimal SNR Performance Curves with Respect to
E[C]; D* Decreases Along Each Curve From 0 dB
to -51 dB; Only Magnitudes Shown; L=48

......
00
w

184

Optimal SNR Performance with respect to Execution Time, and

Storage Capacity

Figure 9. 9 shows SNR performance with respect to

execution time T, and Fig. 9.10 shows the same with respect

to storage. Dashed lines in these figures represent the

optimal E[C] and Tat each SNR.

Comparing Figs. 9.8, 9.9 and 9.10, it is seen that a

list configuration and D* that achieve the optimal E[C] do

not do so for execution time or storage. Table 9.1 gives

the list size and D* combinations minimizing E (C], T, and

storage for different SNRs. It is seen that no two can be

simultaneously optimized.

Anderson's [17] theoretical investigation,

stack algorithm-encoded binary i. i. d. source with

distortion measure revealed the same conflict ln

for the

Hamming

optimal

performance curves with respect to storage and node

computation. Here we have shown that such curves exist even

for speech. That the stack algorithm should behave

similarly with such widely different sources as the binary

i.i.d. source and speech is indeed surprising. We have

noticed as well that another algorithm, the single stack

algorithm, exhibited similar characteristics for the binary

source (see Chapter 8).

Selecting the free parameters D*, L, and S thus

depends on which quantity E [C], T,· or storage, one wishes to

~ ..
a::
z
en

25--

23~-

21

193

34.5 ___ _;:;::P____. ---=:-;: ~ 9 ,,c-.c:--/33 341>'~6 /33 36 F4.5 --------=--
/ 33 ;· . .r51 31.5 39 46

/; '/ 30 \,49·5 ~0
/,::34.5 1;7 /~8.5

l~ \ { I
,27 I ' ' 124
. I . I ~
i ' ~I ' I

~o lo (D*} 0

5 10

I

I
I
I
t

T, sec

21

0

20

--Envelope
---5=48
-·-5=24
-··- 5= 12
-·-·-·- 5 = 6
················· 5 =

All D* values are
negative

50

3

Figure 9.~ Optimal SNR Performance Curves with Respect to
Execution Time T: D* Decreases Along Each
Curve; L=48

100
I-'
00
V1

m
-c ..

25

0:: 24
z
CJ)

L=81

---- _y--:=-· \--::;-:.-.::::-- .. T
40

// .

. ~~~---.Z_.___ I
/J-- . 1 48 I

//. I ~
I/ I ___-/ a----

1

--Envelope
---5=48

16
-·-5=24
-··-S= 12
-·-·-·- S= 6

23
20 50 ~o 200 5oo 1ooo 2000 50oo

Figure 9.10

Storage in bits

Optimal SNR Performance Curves with Respect to
Storage Capacity; L Increases Along Each Curve
from 8 bits to 48 bits; D* Fixed at Critical
Value

I-'
co
(j\

Table 9.1: Optimum List Configurations with respect to
E[C], T, and Storage. L fixed at 48 for Node
Computation and Execution Time Minimizations.
D* fixed at Critical Value for Storage
Minimization.

D* and list size D* and list size List width and
SNR minimizing E [C] minimizing T size minimizing
dB storage

D* dB s D* dB s L s

23.4 -28.5 6 -34.5 3 8 6

24.0 -30.9 12 -33.0 6 16 6

24.4 -33.0 24 -36.0 12 32 12

187

188

optimize.

choose.

There is some debate over which quantity to

Traditionally, it has been

computation that was used to measure

the expected node

sequential coding

efficiency. But the discussions in the preceding paragraphs

point to its inadequacy. We have proposed several cost

functions suited to hardware and software implementations of

sequential coding algorithms. From algorithmic consider a-

t i on s , the a s ym p to t i c t i me co s t s for the s t a c k and

M-algor i thms are as given below. (The time cost of an

algorithm is the number of basic operations it performs.)

Stack algorithm time cost= c 1SE[C],

M-algorithm time cost

where c1 and c2 are proportionality constants - 1.

Using these time cost formulas, we can compare the

stack and M-algor i thms. Considering first the stack

algorithm, the time-optimizing combination D* = -30 dB and S

= 3 achieved an SNR performance of about 23 db. The time

cost for this combination is 4.5 c 1 . Another combination D*

= -26 dB and S = 6 yielded the same performance with a time

cost of 7.8 c1 . Experimentally measured T curves in Fig.

9. 9 show that the second combination indeed consumed more

time. The second however has a lower node computation, 1.3

instead of 1. 5. The M-algorithm with M = 4 achieves 23 db

with cost equal to 8 c 2• Thus with the right list size and

bias combination, the stack algorithm is only one-half to

189

two-thirds as costly as the M-algorithm. Whether or not the

cost formulas are useful except asymptotically is open to

question. However we have the following results concerning

program running times. While the M-algorithm with M=8

required 16.4 seconds of central processor time, the stack

algorithm required only 12 seconds to achieve the same

performance.

9.5 Conclusions

We have shown, using a software encoder for speech,

how the algorithm's performance s::an be optimized with

respect to the expected node computation, execution time,

and storage. Since no two of these can be simultaneously

minimized, execution time in a software environment was

chosen for minimization. The stack algorithm is found to be

1 es s time cons urn ing than the M-al go r i thm far speech.

Several conflicting optimal curves, previously shown to

exist for theoretical sources, are shown here to exist for

speech as well.

Successful application of the Vi terbi algorithm to

speech encoding depends on whether short enough

convolutional codes are available for speech. Good speech

codes have been shown to have between 256 to 1, 024 code

states [77]. While experimental evidence shows that only 4

to 8 code states need to be searched [14], [77], the Viterbi

190

algorithm must search all the code states. Thus, the

Viterbi algorithm may prove to be quite expensive. Metric­

first algorithms lack the synchronism of the M-, or the

Vi terbi algorithm, but as a compensation seem to be much

cheaper. In applications where synchronism is not a crucial

factor, such as in stored voice answer-back, metric-first

algorithms provide an attractive alternative.

CHAPTER 10

CONCLUSIONS

This thesis is motivated by the increasing

applications of code search algorithms and the need to

devise efficient methods. We started in Chapter 2 by

classifying the algorithms into three main classes, breadth­

first, metric-first, and depth-first techniques. The

metric-first algorithms, like the stack algorithm, have the

least node computation of all the schemes, but they require

large storage space. On the other hand, the depth-first

procedures, like the single stack and the Fano algorithms,

require the least amount of storage, but they search a large

number of code tree branches. Breadth-first algorithms,

like the M-algorithm, follow a middle course between these

two extremes and require moderate storage and computation.

In order to compare these different schemes, we

proposed in Chapter 3 several cost functions based -on the

size of and number of accesses to storage and the number of

comparisons done by the algorithms. Resource costs of many

existing algorithms were derived.

Since the metric-first algorithms are efficient in

terms of node computation, we inquired if it was possible to

191

192

design efficient algorithms having reduced cost compared to

the stack algorithm. The merge and the generalized merge

algorithms of Chapter 4, the AVL tree-based algorithm of

Chapter 5, and the dynamic bucket algorithm of Chapter 6

provided the answer. While the generalized merge and AVL­

based algorithms reduced the search times to O{log S) from

0 {S) for the s.tack algorithm, the "roughly" metric-first

dynamic bucket algorithm provided a constant search time.

These are as optimum as they can possibly be. In the

process of devising these algorithms, we also discovered

efficient data structures. The merge and the AVL-based

schemes used efficient in-core {internal storage) data

structures, while the dynamic bucket algorithm would be

efficient with large external storages in which the buckets

could be stored and retrieved in blocks. Consequently, the

merge, AVL-based, and the dynamic bucket algorithms are

likely to be optimal for small, medium, and large storage

sizes, respectively. Thus the dynamic bucket algorithm is

not a universal panacea even though it has the least order

of dependence on S of any "roughly" metric-first schemes.

One of the factors that affects the resource costs of

an algorithm is the expected node computation E[C], and we

have dealt at some length with this. The asymptotic

behaviour of E [C] is known for different algor''i thms used

with symmetric sources. However, there exists little

193

know 1 edge o f i t s be h a v i our w i t h r ega r d to a s ym me t r i c

sources. Chapter 7 analyzed asymmetric source encoding by

the single stack algorithm and derived an equation for node

computation that is the stochastic analog of the equation

for the symmetric case. The branching process method used

here opens up further avenues for research, for example, in

encoding sources with memory.

To choose the best algorithm for a given situation,

one must determine the combination of L, S, and E [C] that

optimizes some objective function, perhaps the cost function

for the desired enpoding distortion or an error probability.

This is a most difficult task, for in addition to

constructing and testing the algorithms, one must optimize

over many lesser parameters such as the discard criterion,

threshold increments, list width, and the like. However, in

Chapters 8 and 9, we presented simulation results for the

single stack algorithm-encoded binary i.i.d. source and

stack algorithm-encoded speech, respectively, and used them

to optimize the performance of the algorithms over a number

of parameters. The configurations that optimize storage,

time, or E[C] were all different and no two of these could

be simultaneously minimized. Similar studies should be made

for oth~r code searching schemes.

From studies that have been made here or elsewhere,

some conclusions may be drawn. First consider sequential

source encoding of

distortion measure.

simulations for the

binary

Table

stack,

194

i.i.d. sources with Hamming

10.1 (from [56]) reproduces

M-, 2-Cycle, and single stack

algorithms used with random tree codes. The encoder rate is

1/2 output bit/source bit, and all the algorithms achieve an

average distortion per bit of about 0.125, 15% above the

distortion-rate function. The cost formulas from Chapter 3

are used to evaluate cost, and because of the asymptotic

nature of these and uncertainties with simulations only

orders of magnitude are significant in the results. Still,

it is clear the two non-sorting algorithms have greatly

reduced cost compared to the stack or M-algor i thms under

either the space-time or space-plus-time cost evaluation.

Even the merge and the bucket algorithm (borrowing the same

L, S, and E[C] as the stack algorithm) fall well short, and

in fact perform only as well as the M-algorithm.

However, speech encoding using the M- and the stack

algorithms points to the superiority of metric-first

procedures. Our simulation results in Chapter 9 have shown

that the stack algorithm is only one-half to two-thirds as

costly as the M-algorithm. Typical time cost per branch. for

the stack algorithm (to achieve SNR = 23 dB using S = 3 and

E[C 5AJ = 1.5) turns out to be 4.5 K, where K is a constant

==1. For the single stack algorithm, however, the time cost

== E[C 55 J; the single stack algorithm is yet to be used to

195

Table 10.1: Evaluation of Cost for Certain Algorithms, taken
from Ex per imen tal Data. Binary i. i. d. Source
with Hamming Distortion, R = l/2, Encoded
Distortion 0.125 (Shannon Limit = 0.110).

Branches
Viewed

E[C]

Stack 200

M- 500

2-Cycle 1000

-single 1500
Stack

Paths
Stored

s

>500

250

1*

1

Space.Time
Cost

200K

3UOK

L = 200-300, all cases (200 used for cost).

Space+Time
Cost

200K

51K

8500

1700

* About 150 paths of average length 50 were kept in the save
stack.

8 . h . 7 10 7 . ** 2xl0 Wlt Merge Alg.; X +H Wlth Bucket Alg.

196

encode speech, but judging from its behaviour with other

sources, it is expected to have an E [c88] much larger than

that of the stack algorithm. Thus the stack algorithm may

be superior for "real" sources like speech. For longer list

sizes and higher SNR performances, the more efficient merge

algorithm would replace the stack algorithm.

The stack algorithm's space-time and space-plus-time

costs are 54 and 16. 5, respectively, under similar

conditions as in the preceding paragraph. The corresponding

costs for the M-algorithm (using M = 4 and L = 4) are 128

and 24, respectively. Thus the stack algorithm outperforms

the M-algor i thm by a factor of 1. 5 to 2 under any cost

measure. For the single stack algorithm· these costs are

Assuming a moderate L of 50 symbols

we see that the stack algorithm outperforms the single stack

algorithm as well. In view of the superiority of the

metric-first schemes over others, the new metric-first

algorithms proposed

significance.

in this thesis take on added

In many sequential decoding algorithms, erasure of

output data by noise-induced computational overload can

occur, and thwarting this problem is a factor in their

design. The different cost measures make no explicit

mention of erasures, but to the extent that erasures stem

from cost overflow, that is, from exhaustion of resources,

197

the estimates of cost presented here indicate susceptibility

to erasures.

Research into the applications of search procedures

to the intersymbol interference problem has only just begun.

There should be interesting results here, since the Viterbi

algorithm estimator would seem to have limited applicability

to severely band limited channels.

The practice and theory of both source coding and

channel coding are

Transmission of digital

assuming greater significance.

voice signals and teleconferencing

using compressed pictures are becoming increasingly common.

Great improvements in information transmission can result by

the use of efficient code search procedures for data

compression and for channel transmission. We hope that this

thesis has helped the understanding of this many faceted

problem of code searching, by presenting the right blend of

art, engineering, and theory.

[1]

REFERENCES

C.E. Shannon, "A mathematical theory
communication", Bell Syst. Tech. J., Vol. 27,
1948, pp. 379-423.

of
July

[2] W.W. Peterson and E.J. Weldon, Error-Correcting Codes,
2nd ed., The MIT Press, Cambridge, MA, 1972.

[3] J .M. Wozencraft and I.M. Jacobs, Principles of
Communication Engineering, John Wiley, New York, 1965.

[4] F. Jelinek, Probabilistic Information Theory, McGraw­
Hill, New York, 1968.

[5] R.G. Gallager, Information Theory and Reliable
Communication, John Wiley, New York, 1968.

[6] A.J. Viterbi and J.K. Omura, Principles of Digital
Communication and Coding, McGraw-Hill, New York, 1979.

[7] D.A. Huffman, "A method for the construction of
minimum redundancy codes", Proc. IRE, Vol. 40, No. 10,
Sept. 1952, p. 1098.

[8] F. Jelinek, "Buffer overflow in variable length coding
of fixed rate sources", IEEE Trans. Inform. Theory,
Vol. IT-14, No. 3, May 1968, pp. 490-501.

[9] C.E. Shannon, "Coding theorems for a discrete source
with a fidelity criterion", IRE Nat. Conv. Rec., part
4, 1959, pp. 142-163.

[1 0] T . Be r g e r , Ra t e D i s to r t i on T he o r y , P r e n t i c e- H a 11 ,
Inc., Englewood Cliffs, N.J., 1971.

[11] F. Jelinek, "Tree encoding of memoryless time-discrete
sources with a fidelity criterion", IEEE Trans.
Inform. Theory, Vol. IT-15, Sept. 1969, pp. 584-590.

[12] F. Jelinek and J.B. Anderson, "Instrumentable tree
encoding of information sources", IEEE Trans. Inform.
Theory, Vol. IT-17, June 1971, pp. 118-119.

[13] J.B. Anderson and J.B. Bodie, "Tree encoding of
speech", IEEE Trans. Inform. Theory, Vol. IT-21, July
1975, pp. 379-387.

198

199

[14] N.S. Jayant and S.A. Christensen, "Tree encoding of
speech using the (M,L)-algorithm and adaptive
quantization", IEEE Trans. Communications, Vol.
COM-26, Sept. 1978~-pp~-137-6~1379~-----------

[15] S.G. Wilson and s. Hussain, "Adaptive tree encoding of
speech at 8000 bits/s with a frequency-weighted
fidelity criterion", IEEE Trans. Communications, Vol.
COM-27, Jan. 1979, pp. 165-170.

[16] J.B. Anderson and F. Jelinek, "A 2-cycle algorithm for
source coding with a fidelity criterion", IEEE Trans.
Inform. Theory, Vol. IT-19, Jan. 1973, pp. 77-92.

[17] J • B • And e r son , " A s t a c k a 1 go r i t hm f o r so u r c e cod i n g
with a fidelity criterion", IEEE Trans. Inform.
Theory, Vol. IT-20, March 1974, pp~211~226~---------

[18] R.G. Gallager, "Tree encoding for symmetric sources
with a distortion measure", IEEE Trans. Inform.
Theory, Vol. IT-20, Jan. 1974, pp~65~~------------

[19] A.J. Viterbi, "Error bounds for convolutional codes
and an asymptotically optimal decoding algorithm",
IEEE Trans. Inform. Theory, Vol. IT-13, April 1967,
pp. 260-269.

[20] G.D. Forney, "The Viterbi algorithm", Proc. IEEE, Vol.
61, No. 3, March 1973, pp. 268-278.

[21]

[2 2]

A • J • vi t e r b i and J • K • Om u r a , " T r e 11 i s
memoryless discrete-time sources with
criterion", IEEE Trans. Inform. Theory,
1974, pp. 325-331.

encoding of
a fidelity

Vol. IT-20,

J.M. Wozencraft, "Sequential decoding for
communication", Nat. IRE Conv. Rec., Vol. 5,
19571 PP• 11-25.

reliable
part 2,

[23] J.M. Wozencraft and B. Rieffen, Sequential Decoding,
The MIT Press, Cambridge, MA, 1961.

[24] R.M. Fano, "A heuristic discussion of probabilistic
decoding", IEEE Trans. Inform. Theory, Vol. IT-9,
April 1963, pp~64-74~-----------------

[25] J.L. Massey, "Variable-length codes and the Fano
metric", IEEE Trans. Inform. Theory, Vol. IT-18, No.
1, Jan. 1972, pp. 196-198.

[2 6]

[2 7]

K.Sh. Zigangirov, "Some sequential
procedures", Probl. Peredach. Inform., Vol.
1966, pp. 13-25.

F. Jelinek, "A fast sequential decoding
using a stack", IBM J. Res. Develop., Vol.
1969, pp. 675-685.

200

decoding
2, No. 4,

algorithm
13, Nov.

[28] D. Haccoun and M.J. Ferguson, "Generalized stack
algorithms for decoding convolutional codes", IEEE
.T r a n s . I n f o r m . T he o r y , V o 1 . I T- 2 1 , No v . 1 9 7 5 , p p .
638-651.

[29] P.R. Chevillat and D.J. Costello, "A multiple stack
algorithm for erasure free decoding of convolutional
codes", IEEE Trans. Communications, Vol. COM-25, Dec.
1977, pp. 1460-1470.

[30] J .B. Anderson, "Asymptotic computation for certain
sequential algorithms for source coding with a
fidelity criterion", IEEE Trans. Inform. Theory, Vo 1.
IT-22, Jan. 1976, pp. 82-83.

[31] J .E. Savage, "Sequential decoding - ·rhe computation
problem", Bell Syst. Tech. J., Vol. 45, Jan. 1966, pp.
149-175.

[32] G.D. Forney, Jr., "Maximum-likelihood sequence
estimation in the presence of intersymbol
interference", IEEE Trans. Inform. Theory, Vol. IT-18,
May 1972, pp. 363-378.

[3 3] J. Uddenfeld t, "A performance bound for tree search
coding of speech with minimum phase codes", Conf.
Record, 1978 International Conf. on Communications,
Toronto, Canada, June 1978, pp. 34.2.1-34.2.5.

[34] J.D. Gibson and A.C. Goris, "Incremental and variable­
length tree coding of speech", Conf. Record, 1979
International Conf. on Communications, Boston, MA,
June 10-14, 1979, pp. 8.5.1-8.5.5.

[35] G.P. Ashkar and J .W. Modestine, "·rhe Contour
extraction problem with biomedical applications",
Computer Graphics and Image Processing, Vol. 7, 1978,
pp. 331-355.

[36] J.W Modestine, V. Bhaskaran, and J.B. Anderson, "Tree
encoding of images in the presence of channel errors",
in submission, Aug. 1979.

[37]

201

S.G. Wilson and J.R. Troxel, "Facsimile coding:
distortion measures, code generation, and tree
encoding", Conf. Record, 1979 International Conf. on
Communications, Boston, MA, June 10-14, 1979, pp.
8.4.1-8.4.5.

[38] J.A. Stuller and B. Kurz, "Intraframe sequential
picture coding", IEEE Trans. on Communications, Vol.
COM-25, No. 5, May 1977, pp. 485-495.

[39] J.A. Heller and I.M. Jacobs, "Viterbi decoding for
satellite and space communication", IEEE Trans.
Commun. Technol., Vol. COM-19, Oct. 1971, pp~835-847~

[40] I.M. Jacobs, "Sequential decoding for efficient
communication from deep space", IEEE Trans. Commun.
Technol., Vol. COM-15, Aug. 1967, pp. 492-501.

[41] J.L. Massey and D.J. Costello, "Nonsystematic
convolutional codes for sequential decoding in space
applications", IEEE Trans. Commun. Technol., Vol.
COM-19, Oct. 1971~-pp~:So6~8lJ~-------------

[42] I.M. Jacobs, "Practical applications of coding", IEEE
Trans. Inform. Theory, Vol. IT-20, No. 3, May 1974,
pp • 3 0 5-3 1 0 •

[43] S.L. Bernstein, D.A. McNeill, and J. Richer, "A
signalling scheme and experimental receiver for
ex tr em ely low frequency communications" , IEEE Trans.
on Communications, Vol. COM-22, April 1974, pp.
sos-528~---------

[44] G.D. Forney, Jr., "Use of a sequential decoder to
analyze convolutional code structure", IEEE Trans.
Inform. Theory, Vol. IT-16, Nov. 1970, pp. 793-795.

[45] P.R. Chevillat, "Fast sequential decoding and a new
complete decoding algorithm", Tech. Rep. EE7606-32-0l,
Dept. Elec. Eng., Illinois Inst. Tech., Chicago,
Illinois, June 1976.

[46] G.P. Ashkar and J.W. Modestino, "A mathematical pro­
gramming approach to sequential decoding strategies",
unpublished.

[47] F.P. Preparata and S.R. Ray, "An approach to artifical
non-symbolic cognition", Inform. Sci., Vol. 4, Jan.
1972, pp. 65-86.

202

[48] J. Uddenfeldt and L.H. Zetterberg, "Algorithms for
delayed encoding in delta modulation with speech-like
signals", IEEE Trans. on Communications, Vol. COM-24,
June 1976, pp. 652-658; see also "Adaptive delta
modulation with delayed decision", IEEE Trans.
commun., Vol. COM-22, sept. 1974, pp. 1195:1198--(sarne
authors) •

[49] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design
and Analysis of Computer Algorithms, Addison-Wesley,
Reading, MA,, 1974.

[50] C.R. Davis and M.E. Hellman, "On tree coding with a
fidelity criterion", IEEE Trans. Inform. Theory, Vol.
IT-21, July 1973, pp. 373-378.

[51] J.B. Anderson and C.-W.P.
construction of a hardware
speech", IEEE Trans. Commun.,
pp. 703-707.

Ho, "Architecture and
sequential encoder for
Vol. COM-25, July 1977,

[52] W.H. Ng and R.M.F. Goodman, "An efficient minimum­
distance decoding algorithm for convolutional error­
correcting codes", Proc.IEE, Vol. 125, No. 2, Feb.
197 8.

[53] R.J. Dick, "Tree encoding for Gaussian sources", Ph.D.
dissertation, Sch. Elec. Eng., Cornell Univ., Ithaca,
N.Y., May 1973; see also R.J. Dick, T. Berger, and F'.
Jelinek, "Tree encoding of Gaussian sources", IEEE
Trans. Inform. Theory, Vol. IT-20, May 1974.

[54] S. Mohan and J.B. Anderson, "Stack algorithm speech
e n c o d i n g " , 1 9 7 7 I E E E I n t e r n a t i o n a 1 S y m p o s i urn o n
Information Theory, Ithaca, NY, 10-14 October 1977.

[55] D.E. Knuth, The Art of Computer Programming, Vol. III:
Sorting and Searching, Addison-Wesley, Reading, MA,
197 3.

[56] J.B. Anderson and S. Mohan, "A systematic analysis of
cost for sequential coding algorithm", Communications
Res. Lab., McMaster Univ., Hamilton, Ont., CRL Report
#56, July 1978.

[57] D • E • K n u t h , The A r t o f Compute r P r o g r a mm i n g : V o 1 • I :
Fundamental Algorithms, Addison-Wesley, Reading, MA,
1968.

203

[58] E.M. Reingold, J. Nivergelt, and N. Deo, Combinatorial

[59]

Algorithms: Theory and Practice, Prentice-Hall,
Englewood Cliffs, NJ, 1977.

G.M. Adelson-Velskii and YE.M. Landis,
for the organisation of information",
Dokl., Vol. 3, 1962, pp. 1259-1262.

"An algorithm
Soviet Math.

[60] J. Nivergelt, "Binary search trees and file
organization", Computing Surveys, Vol. 6, No. 3, Sept.
1974, pp. 195-207.

[61] P. Larson, "Dynamic hashing", BIT, Vol. 18, 1978, pp.
184-201.

[62] E. Fredkin, "Trie memory", Comm. ACM, Vol. 3, 1960,
pp. 490-500.

[63] S. Mohan and J.B. Anderson, "Data structures and
complexity measures for new source coding algorithms",
1979 IEEE International Symposium on Information
Theory, Grignano, Italy, June 25-29, 1979.

[64] w. Smith and W. Wilkinson, "On branching processes in
random environments", Ann. Math. Statist., Vol. 40,
1969, pp. 814-827.

[65] H.H. Tan, "Tree coding of discrete time abstract
alphabet stationary block-ergodic sources with a
fide! i ty cr i.ter ion", IEEE Trans. Inform. Theory, Vo 1.
IT-22, No. 6, Nov. 1976, pp. 671-681.

[66] R. Johannes son, "On the distribution of
for sequential decoding using the stack
IEEE Trans. Inform. Theory, Vol. IT-25,
1979, pp. 323-331.

computation
algorithm",

No. 3, May

[67] B. Haskell, "The computation and bounding of rate­
distortion functions", IEEE Trans. Inform. Theory,
Vol. IT-15, Sept. 1969, pp. 525-531.

[68] K.B. Athreya and s. Karlin, "On branching processes
with random environments: I Extinction proba­
bilities", Ann. Math. Statist., Vol. 42, 1971, pp.
1499-1520.

[69] T.E. Harris, The Theory of Branching Processes,
Springer-Verlag, NY, 1972.

204

[70] K.B. Athreya and P.E. Ney, Branching Processes,
Springer-Verlag, NY, 1972.

[71] C.J. Mode, Multitype Branching Processes: Theory and
Applications, American Elsevier, NY, 1971.

[72] P. Jagers, Branching Processes with Biological
Applications, Wiley, NY, 1975.

[73] W. Feller, An Introduction to Probability Theory and
Its Applications, Vol. 1, 3rd ed., John Wiley, NY,
1968.

[74] s. Mohan and J.B. Anderson, "Branching process methods
for the single stack encoding algorithm", Proceedings,
Sixteenth .Annual Allerton Conference on
Communications, Control, and Computing, Monticello,
Illinois, Oct. 4-6, 1978, pp. 961-970.

[75] J.B. Anderson and S. Mohan, "A push-down stack measure
of encoding algorithm ~omplexity", Conf. Rec.,
International Conference on Communications, Tor on to,
Canada, June 4-7, 1978.

[76] S. Mohan and J.B.
stack algorithm",
CRL Rep. #64, May
Commun.

Anderson, "Speech encoding by the
Commun. Res. Lab., McMaster Univ.,
1979; also, to appear, IEEE Trans.

[77] J.B. Anderson and C.-W. Law, "Real-number convolu­
tional codes for speech-like quasi-stationary
sources", IEEE Trans. Inform. Theory, Vol. IT-23, Nov.
1977, pp. 778-782.

[78] J.B. Anderson and S. Mohan, "A cost function for
sequential coding", Proceedings, Sixteenth Annual
Allerton Conference on Communications, Control, and
Computing, Monticello, Illinois, Oct. 4-6, 19"18, pp.
725-734.

