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original with the author. An extensive survey of applications of
optimization techniques to several design situations is also included.

No such design orientated survey seems to have ever been taken. Comments,
regarding the applicability of these techniques to various design situa-

tions and suggestions for further research are made.

(11)



ACKNOWLEDGEMLENTS

It is the author's pleasure to acknowledge the encouragement,
help and valuable advice from Professor J. N. Siddall and the arrange-
ment of financial assistance from Dr. D. G. Huber. The author is also
indebted to the Mills Memorial Library, National Research Council and

Rand Corporation for their coopefation in furnishing valuable infor-

mation.

(111)



1.1
102

13

1.4

243

2.26

e S

2.32

CONTENTS

Acknowledgements
Introduction

Meaning of Optimization
Concept of Utility
Optimization in Deuign

Formulation of Problem
Mathematical Tools

Graphical Methods

Indirect Methods of Ordinary Theory of Maxima and Minima
Case of n Variables Without any Constraining Equations
Case of n Variables With m Constraining Bguations
Lagrange's Method of Undetermined Multipliers

Zener, Fein and Duffin's Method

Charnes and Cooper's Extension of Zener's Method to
Design Under Inequality Constraints

Extension of Lagrange's Method to Ineguality Constraints

Indirect Methods of Variational Calculus
Case of a Functional With Fixed End Points and Without
Constraints

Case of a Functional With Fixed End Points and With

vonsirainis

iv

iid

BE

14
16

17

22

25

2

3

8

2

3l

L
~J



3.

2.4

2.6

2.33

2434

2.41
2.42
2.43

2.4k

2al
2.52
2.53
2.54

2.61

2.62

Case of a Functional With Variable End Conditions
Problems of Mayer, Lagrange and Bolza

Some itecent Advances

Direct or Numerical Methods

Direct liethods of Variétional Calculus
Numerical Cum Analytical Methods
Deterministic Methods of Direct Search

Stochastic Methods of Pirect Search

Mathematical Programming
Transportation Method
Simplex Method

Dynamic Programming

Non~linearities and Gradient Methods

Miscellaneous Methods
Johnson's Method

Other Methods

Applications

Design of Mechanical Elements
Synthesis of Mechanisms
Design of Machines

System Design

Aerospace Design

Tooling and Processing pesign

Structural Besign

38

L2

LYy
45
48

55
62

65
68

95

105

117
117

119

120

120
125
127
130
134
136

139



Comment s

References

e T v,




i

INTRODUCTLON

1.1 HMeaning of Cptimization

Optimization is the process of searching for the best under
certain prescribed conditions. It mey be for maxiwizing a certain
parameter or minimizing yet anmother. From this it is clear that the
word optimization is not new to man., At every step a mzn has to make
a decision and by nature inclined to make one which is best. However,
ke is not free to do what he likes; forces of nature, customs of society
in which he lives, his own skill and abilities all force him to think
several times, analyze the whole protlem and spply his past experience
and knowledge to mould the circumstances in such a fashion that he may
arrive at a most favourable decisicn. This process of determining the
conditions which ultimately result in arriving at = best sclution is
the process of optimization and the decision thus arrived at is known
ae an optimum decision.

Tools which can be used in arriving et such a decision are many
and varied. All aspects of a problem are first to be studied carefully;
every possible effort should be made in collecting necessary information
about the problem; analysis of the said data in the light of past
experience; prediction of future and its implicationz, all nust be
studied minutely before taking a final decision.

This problem of decision making has led man to evolve the
branch of knowledge which is presently known as "mathematics'.

-
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In the process of evolution he has formulated many theories and tried
various methods which, in the advent of time, he has either abandoned

in favour of what seems to be better or permanently adopted., However,
time and again, he has to look back and accertain whether he can utilise
the methods which he has once discarded, considering the knowledge he
has acquired in the mean time. And many a time he found that methods
once considered of little value proved to be the most useful tocls in
the future.

One such mathematical tocl is a procedure known as "algorithm"
bearing the name of the celebrated Muslim mathematician of the 9th
century, Alkhwerthimi®, '""who may be regarded perhaps as the founder of
modern algebra - the nsme iteelf ceome from him".2 Dealing with the
origin of the word algorithm, Oyster Ore-irites, “the most influential
work in this period is due to Mohammed ibn Musa Alkhowarzimi who lived
in the beginning of the Sth century. HKis books on arithmetic and algebra
were widely spread through translations, but by the confusion of the
translators the author's name was corrupted into the word algorithm&
originally used to denote calculations in Hindu~Arabic numbers and
still used in modern times to denote a repeated method of procedure."
8y this method, 'to solve an cguation', writes Cajorie5. nf(x)=v,
assume for the moment, two values of x, €.g+y x = &, and x = b, Then
from f(a) = A and f(b) = B, determine the error v-i = B, end v-B = Eb
then the required x = Egsgﬁr- is generally a close approximation, but is
absolutely accurate whenzvei f(x) is a linear function of x". The
iterative nature of the method made it most suitable for computer
applications. After undergoing several changes, at present, the word

*Abu Abdullah Mohammed Ibne-e-Musa Alkhwarthimil.




algorithm is used to signify auy iterative mathemstical procedurgﬁand
several such procedures are presently knowm and are extensively used
in the solution of problems of coptimization. The main difference
between the conventionzl mathernstical technisues snd the optimization
techniques is that tlie solution cf the former is alwaye unique ulereas
that of the latter is never so. CSeveral feasible sclutions are usually
possible. The value of the criterion at the optimum point differs
very little from the value at a point close to optimum and hence close
approximations are always acceptable,

At present many mathematical techniquees are known which have
been cr are being used for cptimization of various type problems, and
it is very difficult to say which is preferable. In this connection

7

Leitmunn® writes, "during the past decade there has been a remarkable
growth of interest in problems of system optimization and optimal
control. And with this interest hac come an increasing need of methods
useful for rendering a gystem optimum. One may expect tkat a particular
method is superior to others for the solution of some problems, rarely
for all problems',

Almost all mathematical tools presently used for optimization
are approximate; utility and not precision i=s the criteria, and as
Irwin8 writes, "a model is neither true nor false. The standard for
compering (mathematicnal) mcdels is therefore dependent on the situation
in which it is used; it is net intrinsic'.

some of the relatively more useful tools in the field of
ordinary thecry of maxima and minirme, variaticrnal calculus, mathematical

programming and statistics are dealt with in section 2. Applications



of these methods in Engineering Design are described in section 3. The
author is not aware of any previous compleste survey of optimization
techniques from the point of view of engineering design. Even the
texts on optimization by operations researchers are surprisingly incom=-

pletea, Jome of the applications given here are original with the author.

1.2 Concept of Utility

Attached tu each optimization problem is the utility criterie
and hence it 1s necessary toc understand what it conveys to one who is
interested in the problem of optimization.

Utility, worth or value is a relative term and depends on
various factors. On account of the complex nature of a design, a plan
or a decision, utility is usually measured on the basis of the most
important variable under certlain acsumpiions. It is the strategy of

his variable that gives a value to an item under consideration. However,
as soon as circunstances under vhich tiils value has been determined vary,
the worth or value of the item also changes. No true measure of worth

is therelore possible, Certain assumptions must be made and a few
allowances must be given if any reascnable measure of worth is desired.
In dealing with the prcblems of optimization in design it is therefore
customary to find out the most important variable. This variable is

9 objective fupstiont {ratiity Punction r,

13

known as pay~off function
ol J ” 1k

optimization function™, response function™ or criterion” . In

mechanical design problems the criterion may be life, efficiency,

weight, or premissible error. In production design it may be cost or

profit and in aerospace it may be either weight or fuel consumpticn,
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In each case this criterion is either to be maximized or minimized.
Usually equipment designs are supposed to satisfy certain

prescribed conditionsy; e.g., specifications, etc., laid down by the

users. The utility of an equipment in such cases increases very rapidly
: - s ot 5 i 1§ .

at or near the threshold of specifications ™. On both sides of this

point the rate of increase in utility is comparatively very slow. At

the zero value of the variable the utility is also zero and it does not

. . .16
reach infinity at any point. Pfanzegl

has suggested that this situa-
tion could be represented by the function

U=AD*+B
where A, D and B are constants. The characteristic curve for such a

situation can be represented by the curve shown in fig. l.2. The other

important design variables are strength, weight, life, serviceability,

Actually the variables of this type are many and hence the

f the utility curve encountered is always different. The method

w0
s
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g
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of tackling the problems are also not always the same. As for assump-
tions which are next to be considered, it is usually assumed that the
dependent variables have an intrinsic worth which can easily be identi-
fieds

If minutely studied, worth and utility are not the same*, How-
every since this différence does not affect the problem under considera-
tion, utility can be defined in a concise though not in a rigorous

18y 1l

manner as ‘‘that which would satisfy desire™ "+ According to Siddall

'in some way it is a measure of how well satisfied the users of a design are'.

— . ; . 17

*Utility is sometimes defined as value or worth of use, whereas
value is a more general concept, including utility, aesthetic value,
spiritual value, etce.



1.3 Optimization in Design

Usually there are two distinct type of design problems in the
field of optimization. One deals with a whole system or a complete
machine and the other deals with sub-systems, sub-assemblies of a
machine or even the elements of the sub-~systems and sub-assemblies.
The Tirst type of problem is in essence the true optimization problem
and is usually called as primary optimization problem. The second
type of problem is often czlled a sub-optimization problem although
terms such as secondary and tertiary optimization are not uncommon.

A sub-optimization design problem is obviously simpler than a
primary optimization problem. Since the basic technicgue is the same
it is usual tc consider sub-optimization problem for explaining the
principles involved. Most of the problems used in sectionIZ as well
as in section 3 are sub-optimization problems. However using digital
computers the same methods may be applied for complet primary optimi-

zation problems.

l.4 Formulation of Problem

Each design usually has to satisfy three basic requirements.
First, a design must meet constraints (specifications, etc.) imposed
on the system, machine or component to be produced. Second, it should
satisfy certain limiting conditions. Third, it must at the same time
be optimum with respect to some criterion. Mathematically these
requirements can be expressed as follows:

Criterion U = U (x,, X.4 X, « « 5 X ) & function to be
1 2 % n

maximized or minimized.
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OrU =10 [y(x)] functional to be maximized or minimized.

ConStI‘aininf" equation ﬁ . = 3 (X-. 9 X, 9 ° @ g X ) = O i = l, 2, « 9 m
i 1, i 8 2
G e o Ty e = "
Limiting conditions B.=Z 4. (x e x ) B, = Qg 24 k
& X == r’j 1* ¥*a20 vy Xe= 3 Jd s <3 9

The formulation of the optimization problem in design is setting up
the above mentioned fgnctions, equations, and inequalities using
physical laws governing the performance, properties of materials used,
and geometric configuration of the equipment.

From the above it is clear that design inherently is an opti-
mization problem. ZEach designer tries to produce a design which is the
best. However, in normal circumstances the factors which influence
design are so many that it is almost impossible.for any designer to
calculate all possible solutions and select the best. The only alter-
native left for him is to choose a few typical designs which experience
has shown him to be of representative character, and choose the best
intuitively. This design can therefore be far from optimum in true
sense. But, since the computers have entered the field, the situation
is altogether changed}g’ e Elw A designer, using this powerful tool
can search hundreds and thousands of feasible solutions before arriving
at the best or optimum solution.. However present technigues still

limit him to the use of one criterion function or dominant design

variable,
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MATHEMATICAL TOOLS

-

2.1 Graphical Methods

Graphical methods are the simplest of all presently known
mathematical optimization techniques. However, these methods are
applicable to comparatively elementary vproblems. The ease with which
they can be applied has made them popular in the past; and even when
more rigorous and sophisticated methods are known, graphical methods
are frequently used.

The most importent aspect of graphical methods is the formue
lation of the problem. Wwhen formulation is established, the rest of
the problem is very simple and involves simple algebro-graphical
principles of elementary mathematics., The results are then read directly
from graphs,

A graphical method can therefore be described as a problem of
formulation of one or more equations based upon physical lawe affecting
design, properties of materizls or geometry of the part to be designed.
By varying an independent variable, a graph indicating the relation of
the dependent and independent variable can be drawn. If there is only
one dependent variable and hence only one equation involved, the problem
is the simplest type and the extremum (maximum or minimum) can be read

from the graph directly as the highest or the lowest point on the grapn.
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If there are two equations and hence twe curves involved an
extremum would occur either at the point of intersection of the two
curves or when the tangents to the two curves become parallel. A
special case of this occurs when the two tangents coincide; the common
tangent gives the extremum.

Simple two~-dimensional problems of linear programming and
problens of breask-even analysis of economics and production manage~
ment fall under this categoery. Latta hae applied the method of
parallel tangents for determining optimum tool life or optimum cutting

2>

speed by minimizing cost. Hinkle = has used the method of intersection
of curves for design of machines for optiwum speed consideration. By
similar approach the method of selecticn of most efficient machines
for a particular production sre described by various suthors, A common
tangent method of finding extremum is used by I'“aulkneral+ for solving
optimum thrust problem for rockets and for optimum fuel consumption
problem for trajectories. A two-dimensional linear programming problem
for optimum menufacturing schedule for maximum profit will be described
under linear programming.

Many simple problems involving only one curve are described
by Hinkleaj ueing graphical snd graphical cum analytical methods. Hall25
has dealt with a problem of synthesis of four-bar mechanism for optimum
transmicsion angle; and ’dennburg26 a problem of determination of minimum
cost or maximum production either for optimum tool life or optimum
cutting speed. Maier27 has used this technique for designing compression

springs for optimum loadj and Bowman and Fetter28 utilised it for

solution of optimum lot order size and re-order point.



Problems involving more than two equations such as multi-
dimensional linear programmirg problecms, etc., are difficult to sclve
by this technique. 1In spite of this difficulty, such problems are
frequently solved by this technique by slight variations. By using
graphical methods in ~onjunction with analytical methods, charts can
be prepared which are then used for optimum design and these can be
handled by less gqualified designers, thus reducing the cost of design
as well.

A synthesis of four~bar mechaniem for optimum force transmicsion

29 £ 500

is described by Jenson and Volmer ™  using this approach amd wWillis

has dealt with a problem of light weight gear design by the same method.

2.2 Indirect Hethods of Ordinary Theory of Maxima and Minime

Indirect methods, also known as ¢lassical or analytical methods,
are methods of arriving at the extremum by means cf a necessary condition
for the extremum., This approach gives comparatively more accurate
solution than any other approach. However the method is more compli-
cated and is not easy to apply in each case. In spite of this dis-
advantage, it is frequently used by the designers because of its
accuracy, and because it provides a general solution of a group of
problems rather than a single problem, as tle case with the easier
direct methods.

In the following three sections three cases of this method are
cdealt with separately.

l. n variables without any constraining equations

2. n variables with m constraining equations
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3., Metlod of Lagrange’s Multipliers
However, before proceeding further it is necessary to get a clear con-
cept of the various terms used in the ordinary theory of maxima and
minimz. C{ince better understanding of the problem is possible through
graphic interpretation, this approach will be used more often. To
start with, a case of Lwo-dimensional problems will be considered where
the dependent varinble y can be exjressed as: y = U .bﬁa xe). This
function can be representzd as a contour map shown in fipg., 2.2 where
each contour line represents the value of the dependent variable y
and the chain line represents the constraining equation ?i =0

A point such as A, B and D as shown in fig. 2.2, which is
higher than any other point in its vicinity is kncwn as a local maximum,
The highest of these points is point D which is therefore known as the
absclute maximum point. On the same reasoning points E, J, G, F and H
which are lower than any other point in their vicinity are called local
minimum points. Together all these points are known as local extrema.
Thus a local extremum is a point which is extreme either in the interior
or on the boundary of a suitably defined domain., A point C, which is
highest point on the path between ridges in fig. 2.2, is neither a maximum
nor a minimum since in its immediate neighbourhood both higher and
lower points exist along the ridges. All points such as point C are
known as saddle points,

At point B, the derivative of y with respect to beth Xy and X,
vanishes and hence point B is called a stationary point. A stationary

point can therefore be d{fined as a point where all first order partial

derivatives of a function with respect to independent variables vanish. A
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saddle point is also a stationary point, however, it is not an extremum,
In the general problem limit equations may also occur. In

fig. 2.2 they could be thought of as fences which cannot be crossed.

The basic analytical method of maxime aend minima does not handle con=-

straints. It can be extended to handle constraints, as shown in

section 2.22 and 2.234 to handle limits as shown in section 2.25; and

to handle both simultanecusly as shown in section 2.26,

2.21 Case of n Variables Without Any Constraining Equations

The problem of finding an extremum can be described as the
problem of finding all local extrema in the interior and on the boundary
of a suitably defined region, and the comparison of such extrema for
arriving at an absolute extremum. The theorem of Weierstrass, which
states, "Every function which is continuous in a closed region possesses
a largest and a smallest value either in the interior or on the boundary

34

of the region",” guarantees the existence of a solution. location of
the extremum can then be found by the theorem of ordinary calculus which
states, "A continuous function U (xl. Xpr Xys o o xn) of n independent
variables Xyv Xo9 x3,
of a region R only at the values of the variables x for which the n

- xn attains a maximum or minimum in the interior

partial derivatives U - u SR ) either vanish simultaneously

> N

(a stationary point) or at which one or more derivatives cease to
exist (are diecontinuoua)"Bz. This means that the total differential
of the function will also be zero for any arbitrary differential dis-

placements of n variables, i.e.,

duaa_lj' dx +aU dx + .oocon.+2'q dx =O (l)
ox s —_— 2 ox n
1 ox n

2



The general  formuletion lezdsz to n simultaneous non-linear algsbraic
2guations to be solved., Techuiques of solution of comparitively diffi-
cult equations cf this type are discussed in 2.42., After satlsfying
necesssry conditions of existence of an extremum, sufficiency conditions

23

cuu be expressed in terms of Leitmann's”” notation in the following

manner: for a staticnary point to be a local maxcirmum

Qi<:~9 ford & 1, %, G v w CLils, odd)
and Di:> 0 for i = 2,8y 6 4 « s {deesy even)
and for the stationary point to be a local minimuu
Di>G for 1@ 13 .85 5 ly s « o8
where
Yottt Tma N SRS
. x ¢ vl " x2 %2 xz2x3 ° ) XE xi
. L] ° ° . L] . . o . ° . ° L] . L e o .
Di = 2 T i TR e e e e e e e e TRl (z)
L e A S e e 8 e
: U U . .
xd x4 xi x’ xix 3 xixi

For L independent variable (i.c., L = 1), U(x) «ill be a maximum when

D, = U <o

3 x1lxl

and would be minimum when

el x1x1>0
which is the fundumental result of the elementary calculus.

broblems falling under the czse described above are many and
are usuilly dealt with in almost all books of calculus. A problem of
optimum design of a ‘ray for maximum capscity is dealt with in detail

34

by Johnson” and a similar problem of an oblijue sheet metal tray is
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dealt with by oOleElﬁOIfB . 4 problem of maximizing power obteinable

o . T W
from either a d.c. Or an a.c. source is described by hav13 .

2022 Case of n Variables with m Constraining Pquations

This is a particular case of the problem dealt with in the
preceding section and hence equation (1) will still held. However,
constraining equaticns “;1 =¢L (xl, X5 x3 . e xn) far A =1y 2 s s ol
imply that the differential displacements will not be arbitrary any more.

Hlence differentigting the m constraining equations we can write

4
i
2
»
+
L
.
.
(o8
b
n
o

wm Mm
dﬂm = E’;’ QX * o & » e o 'é‘;- dx = O
1 n

Thus, m=l linear homogeneous equations in the n differentials dx
must be satisfied. The condition for a stationary point would now be
that the Jacobian determinant must vanish, i.e., one Jacobian deter-

minant for each n-m independent variables
S [0ty . - S,

xl,ngx}o . o ,xm,xn+1

L g

J U'g}-'&'g}' . ﬁ‘-—’-’-‘-’-{’! .0 (2a)

bxloxa, e o e @ xn' xn+2J

< L] L] L ° o o L ° * . L

=0

U’¢1.¢2.¢3' e o 9 M= 'g
xl,xa,)(} » o o0 g xm,xn

= 0
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where

Wl
atl atn
AL N Rkt e W A aA
J l't.t t " 'St'giig
fyataety = o 2 by 1 n
A A

-!--o
atl btl

where Ai and ti are any dependent and independent variables respectively§5
For graphical interpretation we may refer back te fig. 2.2 and use

the two-dimencional problem y = U (xl, x2)° The maximum of this function
satisefying the constraining equation @ (xl, x2) = O would be at point

I where slope of U (xl. xa) = constant and (xl' x2)= O coincide,
OU/Bxl a¢/ax1
o "au?axa g 'aWaxa

a¢/axl aﬂ/bxl

(ST

ile.. e 4 .3 . 0
3@/0x.. = 8U/ox
2 b
or Y o 22 - Eg. 0. .3.2 =0

axl & 6:2 axa axl

which is a special case of equation (2) where n = 2, m = 1. As an
example the design of a circular base c¢ylindrical fuel tank to have a
maximum volume for a given surface area is explained here.

If r and h denote base radius and altitude of the taqk

2

respectively, U (r, h) = anh and ¢>(r, h) = 2ur® + 2irn. Hence

2
2hr 'jzo solving this we get h = 2r.

using equation (2a) =
| 4r+2h

2.23 Lagrange's Method of Undetermined Multipliers

Since the derivation as well as solution of the equations is



comparatively difficult with the method described in the preceding
section, the method of Lagrange'e multipliers to be described in this
section is commonly used. The method is thus an alternative technique
for n variables with m constraining equations,

In the precading section for a {wo=-dimensional problem the
following relation was derived.

EI;E p axl / 6.7‘1 ... 6x2 / x

2
If this ratio is assumed to be equal to some constant -A the shove

relation can be re-written as

%%1"' l%gi: 2 " TS'JE * )‘g

This constant A is known as Lagrange's mulﬁip]:.er and associated with
this is the well~known theorem of calculus which states: "If U (x; y)
and @(x, y) be differentiable in a neighbourhood N (a, b) of (a, b)
and it is assumed that U has a relative extremum there, subject to a
constraint on x and y of the form @(x, y) = k which defines y as a
differentiable functicn ¢(x) of x in a neighbonurhood of x = a and that

fa, ) £ O tnen there must exist a constant A such that

32

Uy (a,b) +AB(a,b)= U,(a,b) +Ad(a,b)
This can now be extended further to the general case 61‘ n variables
and m constraints, i.e., to the existence of m constants 7\1, )&2 s o A

n

such that

ox]. '&ox]‘ +%gﬁ;§ + teeo0 et +xm Xl =0
)
‘0%2 +Esﬂ;; +§%§g+ Ry +)l‘ xz:o
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.
Al AL RSl T LR TR B S A saEmeNsde e e
L BN B J

oU )

+7\3—1 + A 922 + %y -
ox, 18 2 doxp & bxn'o
i.e.y in sunmation notation ij * o | Ai % ix} -

lorj=1,2,...n

For the purpose of illustration, a transmission line design problem
solved by .isimow36 using Jacobian determinents will be solved here
using Lagrange's multipliers.
bxample
Electrical energy is to be transmitted to a distribution station
200 wiles from the generzting stetion. The three-phase a.c. transmission
line to be designed is to have a most economical transmiesion voltage
‘L', line curreat 'I' and conductance 'G', The constant power generated
at the generating end 'P; = 50 megawatts, the value of power delivered
Ky = § .01/kwhr or $87.5/kwhr., cost of conductor for the whole length
of transmission line k2 = §1% % 106/mho. Incremental cost per kilo-
volt of the transmission voltage kB = ,1000/kv., and rate of imputed
charges ascribed to invested capital i = §.1/ yr/*
Assuming that all effects except resistance and corona losses
are negligible and that the line drop compared to line voltage is too
small to be considered we can write
Power loss in the 3 conductor 3 phase line = 3 x 10-312b.1 kw
Value of this loss = 3 x lO-BIaG.lk1 %/year
Depreciation at the rate i of the value of conductors
= 3 szi $/year

Imputed charges ascribed te invested capital in incremental cost

= Ek.j’t. §#/year



n " -3.2.=1 .
Total cperating cost U = 3 x 10 “IG "k, + 33 k. 1 + B k.3 (3)
1 e 2
For arriving at the most economic transmission line deusign U should be
minimized. However, total power that can he transmitted imposes the
constraining equation

" R CR RS LS (L)

Further, beyond a critical voltsge Ec corona loss becomes appreciable
L}
thus imposing a limiting ccndition
# =k -850 (%)

£

. 72 Q = 5 ;
But since Ec = 62,5 & (18,52 « 1n G) we can write
P =63.5G° (18.52 - 1nG) « B=20 (5

Using lagrange's Multipliers we can now write the augmented functions

and hence the relation

%% +9\§% =0 > %%-+?\§g =0 %% +J\%g =0
differentiating equation (3) with reepect to I, B, and G we pot
vy . -1 & e -3.2 -2

similarly differentiating equation (&) with respect to I, I and G

we get

AR SR

substituting thiese values in the zbove equations we get

- -1
5 « 1O kI 6 ¢t Y3 E =0

1 k3 N2 I =0
-’ -2
o
“7 + 10 Ikjg 31 ky, =0



These equations along with the constraining equation provide a set of

4 equations in 4 unknowns A, I, E and G. Solving these we get

- =1k
A 3_,:3
I:Ez (1030 léE
6 (k, K1)
=k
= =3
67k,

E = 6P(K2 . kl)% / k3(3.103)% 1%
Substituting numerical values at this stage we get

E®=242kv., IS120A, G=0.03llmho, U=484000§, @=3.76>0
These are the same as obtained by Asimow,.



2
cc

2.24 Zener, Fein and Duffin's Method

The optimization function in design problems can often be

expressed by a polynomial function

n
U= E, to be minimized ()
15T 1
where Ei can be expressed as an exponential function
nfel
B,ewa IT x '  for each i, o 0 TSRS
- | i a1 &

subject to the ccndition that

g <X j< @

Here a, and ﬂij are positive constants.

Solution of this type of problems can be obtained by the
methods described in the preceding sections. Zener37 has recently
shown that such problems can be solved by a comparatively simple
method whereby the extremum can be found directly without solving for
the independent variables provided n=m + 1,

Knowing the values of U the first step would be to find n

n o
terms product II E‘1 = K, where aJ and K are certain constants and
j=1

can be determined as follows. By comparison with the given function U,
values of Sij can be determined. Values of uj can then be found by

the transformation equation
n

igl aiaij ot for each j! j=l,....m (9)

and the normalization condition
n

> a =1 (10)
i=1
K
11)
so that Uopt =I'In (cx )ai (
j=1- 1

The problem thus reduces to the relatively simple one of solving n



simultaneous linear algebraic equations., This is further illustrated
through an example at the end of this section. A rigorous proof of the
validity of the above procedure is given by Fein38. Later, Duffin39
has shown that the restriction imposed by Zener, n = m + 1, can be
removed. This he has proved by using a dual programme, and thus
reduced the method to a more general form. Adopting this approach Zener“o
has further extended this method to a more general case of minimizing
as well as maximizing by using perturbation technique. In December
1963 Zenerul presented yet another extension of his method for opti=-
mization of systems in terms of sub-systems. This could be described as
follows:

For a system consisting of N overlapping sub-systems having
an overlap of not more than one element, if the sube-system is optimized
for minimum cost for independent operation, then the common element
will have the same weighting exponent in all sub-systems. Calling
this exponent as ¢ and the minimum cost of independent operation of

the jth sub-system as m,, the minimum cost of complete system M can

J

be expressed as
a2 il
= = PN Sl B
IRl St P! (12)
=1
If we let Bjk be the weighting exponent of the jth term in the kth
sub-system when it is optimized for independent operation, the weight-

ing exponent of the jth term of “he kth sub-system would be

o1l
l-0

S

m
N o L
when the whole system is optimized é;; 3




24

Example
Assuming that the cost function of a design problem can be

expressed as

2
U(xp,Xp)= a1X + 83 + a5 X,
X1Xp
and that this is to be minimized® we can proceed as follows:

Since

U= 1§ E; = 84 xl +--l-22 ‘ez X 22 (13)
and Ej = a,l(xl 1.x2 13, E2_ ag(xf.xgzz) n.3_ a (x . xgz?-)

-al(xlu. x211)+a2(x121 . X5 Z)m (xlal. X5 (1&)

By comparing equation (13) and (14) we get

'611:25-'/621 =l’/812='851:0' ’632-

Now using the transformation equation we get

=0 & +08 | & + ad =-o
’8111 ﬂ313 " ig5f 222 32 3

Then applying the normalization condition gives

aFa QA

Solving the above two sets of equations we get
= - 2/5 s l/
ol A e ?
From this
2/5 2/5 » 1/5
(a1 x3) ( _ap) (ax x57)

Giving  Ugpt=

f:'merwoocll‘2 has used this method for the solution of a gas
line design problem and by solving the same problem with the classical
method has shown how considerable labour and time can be saved by

using this method.

*From reference 37 with simplification where’ r needed.
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2.25 Charnes and Cooper's Extension of Zener's Method to Design Under

Inequality Constraints

Zener's method, though provides a very strong tool for opti-
mization de“ign problems, does not mention anything about constraints.

In actual practice unconstreined design problems are but rare. Charnes

&3

and Cooper's “ extension of the method to inequality constraints is

therefore a most welcome step.
In this method the independent wvariable xj
uj i

an exponential term e ¥, i.e.,

is replaced by

Ry = el Xj - @4 (15)
By substituting this in equation (7) we get
m m
n 3 n Z
Uz a ehigjln X = a egzn'eﬁ'uj
;LI 1 12; 1 50 (16

This indicates that the criterion is & convex function*., Now consid-

ering limits or inequality constraints of the type C

m % 5
Be £ B %S LB (?)
Where §k indicates the lower bound and _ﬁk the upper bound on the
design respectively. Taking natural logarithms these can be converted

to the following linear form

m
1n 'B'kéjgrkj U é__ln Ek (18)
Our minimization problem is thus reduced topminimize
Z Blos, Wi
n S Ly
; =)
U zizl 8 o) (19)

aubjeﬁt to the constraint
2; rkJ Uy = Kg l 0
J-‘- —

*For the definition of convex function see Section 2.5.
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This can further be simplified to the following

Wi

n
minimize ; a; o (20)
=1

subject to the constraints : m
m
-Jgﬁljbuji-Wi:O ’ -ZrKJ.uJ‘Kk __}O for k=1,..,

J=
These functions can now be handled by the mathematical programming
methods to be described in section 2.5.
Example
A fly wheel for a small light regenerative vehicle is to be
designed. The fly wheel absorbs energy by coasting of the vehicle
and feeds it back to the drive when power is required.
The dependent variable to be optimized is the amount of stored
energy. Constraints on the problem aret
i. Weight must not exceed 150 lbs.,
ii. Diameter must not exceed 36 inches.
iii. The speed of rotation must be acceptable to
Design A - a belt-pulley system with smallest driver pulley
Design B - a chain-sprocket system. |or sprocket.
Assuming a solid disc type fly wheel we can write the following:

Energy U = wk dus nz/(lo.ll?hh) to be maximized

b 2
= Alod o
Subject to
R L& 2
T ves<£llorhd Lo,
Aa<L3 or d _A_VB

nnD<Lv ornévl



(stresses are assumed to be well below safe limit)
v = 6000 fpm for belt drive
= 1000 fpm for chain drive
where d is the diameter of the fly wheel, n the rpm of the fly wheel,
w the width of the fly wheel, s specific gravity of the material of
the fly wheel, Vv the rim velocity, k the velocity fluctuation factor,
and D the diameter of the driver pulley or sprocket.

By using equations (15) and (16) this can be expressed as
2lnd £La where a 1n-]‘2—=-—l-t

MoeWeS
lInd £b where b = 1ln 3
lnn &¢ where ¢ = 1ln vl

Assuming u, = In d and u, = 1n n the problem would resolve into
6u1+2u2 u3
maximize U = A e = A ¢

subject to @ = u -Ltu1-2u2=0

>
2u11_: a, ul_é b, uaé—_c
Introducing slack variables Uy, u5 and ue we can convert the inequali-

ties into equalities so that

2u1+u,+=a, u1+u5=b andu2+u6=c
the problem is now reduced to maximizing a convex function under
linear equality constraints and can be solved by using the convex

programming methods described under section 2.54.
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2.26 kxtension of Lagrange's Method to Inequality Constraints

In section 2.23 we have seen that the method of undetermined
multipliers can solve the extremization problem if the constraints
are equalities. Valentine, Pennisi and Klein*have shown that in case
of functions as well as functionals to be maximized or minimized under
inequality constraints, the inequality constraints can be transformed
into equalities by transforming the given independent variable into a
new independent variable and introducing another new variable simul-
taneously. Applying the Lagrange's technique at this stage, the con-
strained problem is transformed into an unconstrained problem. Mathe-
matically we can express this as follows:

Let U = U(xl, Xoe X35 o s xn) to be maximized
subject to the inequality constraints

¢i = ¢i (xl' x2' x}. o © xn) <=0

2 2
Replacing X with hi and ﬂi (xj) with ﬂi (hj) = ki we can write

n
U = u(nj) + zz)u[ﬁi (nj) - k12] to be maximized
1=1 Jz lsececeegn fOr each 1

Using the results of the section 2.23 we can write the necessary
condition for the extreme value as

d U /0 Be Dy § ﬁ/b Ki =0, 0 ﬁ/ b%l =0
The method is particularly suited to nonlinear design problems when
independent variables involved are few. The fly wheel energy maxi-
mization problem of section 2.25 will be used here to further illustrate
the method.

In section 2.25 we have formulated the problem as

b 2

U= Ald n to be maximized

» see ref. 43,43b & 43c.




subject to n vl

2
Azd = v2
d
< v,
Writing d = hz and n = 32 the constraints can be expressed as

2 2 L 2 2 2
& =y k1 = 0, Aeh il = ka =0, h™ = v3 - k3 = 0

Introducing Lagrange's multipliers A, we can write the augmented

i
function

= 8 &4 2 2 L 2
UaAlhg +A1(g -vl-k1)+h2(A2h -vz-ka)

2 2
+ AB (h° - v3 - k3)

for this to be maximum

OU

-84 h7g + BAA n + 2hsh = 0

B el A1h833 + 20

2
as hg:o

&

T, Tk =0

B T AR, =D

AU 2 2
X =h -vs—ksao

1. Assuming kl = Aa = AS = 0,

either h = O or g = O, Since we are interested in positive definite



values of h and g this solution is trivial.

2. Assuming A Xz = 0 and AB £0C

l=
h = O which is again trivial.

3. Assuming Al = AB =0 and A, #0

h = O this is also trivial.

L, Assuming Aa = AB = 0 and Al £0

g = O this too is trivial.

5. Assuming Xl £0, Aa £ O and AB = 0
wve get k1 = 0, k2 = 0, 82 = Vi hu = VE/AZ' Al = -2A1h8vl.

Ay = =2 h /A

6. Assuming Al £0, AB # 0 and Aa =0
we get k1 = 0, k3 = 0, ga -V, h2 = 73. ka = -4A1h6g“, Al = --2h8v1

7. Assuming Aa £ 0, AB Z£0 and A, = C

3t
b4 2
k2 = 0, k3 = 0, A2h = V5 h™ = vB.
This means that sz3 =V, which is incompatible.,

8. Assuming that kl # 0, Aa # 0 and AB £ O

kl = k2 = k3 = O and 32 o sy Aahu = Vo h2 = v3.

The results are the same as case 7.
From above it is clear that only feasible solutions are 5 and 6.
Solution 6 gives d = Vs which is the limiting value, hence 5 is the Tequiced
solution. Assuming cast iron to be the material of choice s = 451 lbs/cft.
If the width w of flywheel is chosen to be 3 inches and the diameter of
the driverpulley 4% inches for belting and diameter of sprocket 3/4"
for chain we get the following optimum design parameters:

Case A—d = 1.3 ft. and n = 5090 r.p.m. weight = 128 1lbs.

Case B—d = 1.3 ft. and n = 5090 r.p.m. weight = 128 1lbs,



&l

Since our assumption of a solid di=c type flywheel is against practice,
the web width cén be slightly changed to accommodate the effect of
arms and hub; since weight depends on d and cannot be changed without

altering optimum conditions. (H.P./_1/4)
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2.3 Indirect Methods of Variational Calculus

A vast majority of optimization problems in engineering do
not fall under ordinary theory of maxima and minima. In aerospace
operations minimizing the gross weight of an n stage missile, in
control theory minimizing error or maximizing capacity of sensory
devices, in production engineering maximizing productivity or mini-
mizing cost are problems having quantities which depend on a variable
running through a set of functions which are determined by a definite
choice of these variable functions., Such quantities are known as

My 45 46 and the branch of mathematics which deals with

functionals
finding of maxima and minima of these quantities is known as calculus
of variations. For one who is interested in the study of optimization
techniques in design, it is therefore necessary to have some back=-
ground of the theory of calculus of variastions. A few important
terms in this field will be considered in this section.

A variable U is called a functional depending on a function
y(x) such that U = U [}(x{]. if to each function y(x), from a certain
class of functions, there corresponds a certain value U.

Variationd y of argument y(x) of a functional U{y(x)] is the
difference of two functions y(x) = yo(x).

A functional U [?(x)] is said to be continuous along y = y(x)

in the sense of closeness of order k, if for any arbitrary positive

number i there exists a quantity & DO such that

,U [y(x)] - ulyo(x)]

[y - o= s

42 whenever



/

¥(x) - Yolx)| £ 8

® % 00 *00 00000 00000

(k) (k)
et A} oo, BRI S

Two curves y = y(x) and y = yl(x) are close in the sense of closeness

of order k, if the absolute value of difference

/ / (k) (k)
y(x) =y (x), ¥(x) =yy(X)yeenvee,y (%) =yp(x)

are small,

A functional u[y(x)] is called a linear functional, if it
satisfies the condition

uloy(x)] z cUfy(x)] end Ufyy(x) + yp(x)]= UfFy(x)] + U[¥a(x)]

where C is a constant. ’

If an increment AU = U [q(x) +6y] -U [y(x)] of a functional
is of the form AU = u [y(x).éy] + a@(x).é y] max. Ié}y’. vhere
u[y(x).éy] ie a linear functional in y and max.'éy' is the maximum
value of &y, and a[y(x).éyj tends to zero whenever max. ‘6 y, teﬁda
to zero, then the part of this increment which is linear in Sy. €efoy
u[y(x).éy], is known a&s the variation of the functional and is
designated by Svu.

The variation of a functional UI_—y(x)] is usually expressed
as

;_2(_ U[y(x)+cz§y] %

If variation of a functional U Br( xﬂ exists, and if U becomes

maximum or minimum along curve y = yo(x) , thenS U vanishes along

curve y = yo(x).
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2.31 Case of a Functional With Fixed Ind Points and Without Constrain-

iE Euations

For finding the extrema of a functional |
U [7«( I)J ‘_[ F[xsy(x) 1y(18 dx (21)

it is aamed that the end poimts of the eurves y = y(x ) and Y = y(x1)

./ are fixed. Various curves y(x) between these fixed ends would
give different values of U[y(x)] « It is therefore the intention to
find that curve y(x) for which U[y(x)] has an extremum. For this the
following assumptions are first to be made:

1, That F[x. y(x), y’(x)] viewed as a function of its argument
Xy Yo y/ has continuous partial derivatives of second order,

2. That there is a curve y = y(x) with continously turning
tangent that minimizes or maximizes Ufy(x)] . Taking any admiseible
curve y = y(x) close to ¥ = y(x) a single parameter family of curves
y(x,2) = y(x) + a[i(x) - y(xﬂ can be set up. Calling F(x) - y(x)
as Y\(x). the above equation can be written as

y(x0) = y(x) +af(x) =¥
where r\(xz = 0 and ?L(xl) = O,

Substituting these values in equation (21) we can write

X, /
oy (x ] - B() = jF[(x.ym-arux).s{(x)chx)}dx(22)

¢fa)=f (X,!,X)dx ft%"\(x)i-'&" (x)] dx (2B

N "
l
and hence ¢(0)-/ '\(x) + ’5": "\(x] ax (2k)
For the function U[y(x,a)] to have an extremum the necessary condition

/
is that variationdU = @#(0) should vanish.



: X S
8U=¢(O) :]x F'\ +5_’tk(x dx = O

Q
Since'\(xo) ='\(x1) = O the first term drops out on integration.

Hence

mhereforp. integrating second terms by parts we can write

] \x et [ d_ ¢ OF |
E“f(xﬁx'EW _j Q(x ai(s?“dx
and hence X5 X
Su = g(o bF -
¢( )j[ T\(x a (b_'j'\(x) dax

f"'(x)[éb‘-d(bn ax = 0

Sincef{(x)==i(x) - y(x) is arbitrary and vanishes at the fixed end
points the above can only be true if

L £) =

oy ax T
or in subscript notation

B~ 8  Ff=20 (25)

y i J
This is the fawous Luler equation and is the necessary though not the

sufficient condition for an extremum,
The integral curves y = y(x, y c2) of the Fuler's equation
are known as extremals,
Generalizing the above procedure it can be shown that for a
functional
P (K)
B(y)= F(X0¥oYs¥seooeeenna,y )dx  (26)

Euler's equation would be

2 kK k
F - d F’ + d i‘ ‘e 69 0 00 —l d ‘K)..
y TSN Tty ( )_&?{Fy =0 (27)

and further for a double integral
B(v) =jf F(X,¥,V, Vp, vy)dx dy (28)

Euler equation can be written as

F_- OF -0F 0
v -S-}EV” Biv.l (29)
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Example

In designing a rocket tail it is required to determine a
curve with given end points, such that by revolving this curve around
the x~axis a surface of minimum area can be generated®.

S5ince the area of the surface of revolution generated by
the rotation of the curve y = y(x) about x-axis is

X SR

2 =
Ay(x) = 21‘f wWiley’ ¢ ax
X)
and since the integrand depends only on y and j, the Tuler equation

has the first integral

/
F = Fs =K
e
hence
y }l+yl2 o . 42=K or y=K l_y2
+y’
p (- P
/ 2
yyz Ly f(é K

separating variables, we can write

dx = Kdy /q/y2- Ké

X#K, = K ln( l+y§§—:‘gg )
K

This is the same as

lne-,

=K sh
y co (E_I%_él)

Since this is the equation of a catenary passing through the given end

peints the required curve is 2 catenary giving the catenoid as the

surface of the required rocket tail. Values of K and Ki can be found

—

by applying end conditions.

*Adopted from Heference 46,
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2.32 Case of a Functional With Fixed End Points and With Constraints

A functional of the type discussed in preceding section is
some times associated with some sort of a constraint. In whaut is
called the isoperimetric problems of the variational calculus it is

usually required to maximize or mininize a functional

X; ’
U =f FlX,y,y)dx subject to the condition (320)
X

[} = (% G(x /
i »¥,Yy)dx

Using Lagrange's method of undetermined multiplier we can write
X, E
/
U +AZ :/ [F(x,y.y) + G(X.y.y)] dx
X
The necessary condition for extrema can then be expressed by Fuler's

equation

O(F+AG) d O(Ferg) - (1)
e et Mo

The constants of integration and Lagrange's multipliers can now be

determined using end conditions and the constraint g
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2.33 Case of a Functional With Variable End Conditions

After dealing with the case of a functional with fixed end
points in the preceding sections we will now consider a more general
case where ends are not fixed but terminate on a prescribed curve.

Taking the familiar functional
X

1
J ; |
U y(x) =) F(x,y,y) dx and choosing arbitrarily ‘l(x)
such that rL(xﬂ) £ 0 and rL(xl) A0
any admissible curve y(x,a) = y(x) + « 'L(x) close to y(x) can be
chosen. Now su}tgstituting y(x,a) into the functional we can write

i /
# () ’jx F [x,y(x,cx),y(x,a)] dx
(o]
Using Leibniz' formula, when limits are functions of the variable of

differentiation, we can write (a)
/

Integrating the last term by parts

x, (a) (a) /
(37 E e[ {_z—zg.gxd
xo(a) by X 4

[ol' o+ ;’,'i(x)] ax

L X, a)
- SF (x)' 1 +J [%E - g—g-gzay]ft(x) dx
%o x (a) *%

and since y(xl,a.) = y(xl) +a (xl). the above can be written as

dry (8 @60 g ra (Eh O

-(’ ‘)—l+'\(x)

- (y)ld—gl +Y\\x,) ies ‘\(xl) -ll - (y)l d:l

ok

) /
similarly '\(xo) =2, Ly,

o da
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substituting these values in equation (32) gives

/
3 dx, (a) dx (a) . d dx.{- (F ’) [ -(y) d ]
gu):(F)la—;% (F) o~ + (M [-11 ~( )m:] ac® Y d:o

Rearranging and using subscript notation

x (a) d Fr
(F -yF/i—-l—(F -yF/) +(F ) —'Y-l-(F /) -lo+f a-;y—)rl(x)dx =0

and this is possible only if both

/ dx / dx d d
F -vF L2 e ltoE) i) aitls o SY o
( e §) T (Fy yFy)o e (Fy)l e (Fy)O oo =0 (33)
and
d
y T dx F§ i

The first of the above equations is known as the Transversility Con-
dition, whereas the second is the familiar Euler equation. For the
existence of an extremum both of these two equations must be satisfied.
A problem of trajectory optimization for small changes in the orbital
elements for electric propulsion devices is described by Edelbanm“7

and a problem of optimum proportioning of two propellants to obtain

maximum burnt velocity is dealt with by Holcls"8 using this method.

‘



2.34 Problems of Lagrange, Mayer and Bolza
In dealing with calculus of variation problems one encounters
three distinct problems which can be laid down as follows:
b
i. U = [; (x, yi)]a i=21,2,3. 4 4 n to be minimized or
maximized
subject to the constraints
¢3(x. Yyo yi) o0 $o)28scad 8 AW
and satisfying boundary or end conditions, defined by
the functions
oot b
l?k (x, yi)]a e
Xb }
ii. U =[ i (x, ¥, ¥) dx to be minimized or maximized
Xa *
subject to the constraints
7/
¢J (x, Ty yi) =0 (35)
and the boundary conditions
- b
b /
i1, U = L: H (x, yg0 v,) dx + [G (x, yi)]a

subject to constraints

QG (x, Ty yi) =0 (36)

and aatisfyi:g boundary conditions

[Ek (x, yi)]‘ =0
First of these three is known as Mayer's problem and is by far the
most common in engineering and particularly in design. The second one
is the Lagrange's problem and the third one is the Bolza's problem,
Bolza's problem is basically the more general pr blem and is the
combination of Mayer and Lagrange's problems.

In each ease using Lagrange's multipliers an augmented function



n

F=H+ Z )\J ¢ can be formulated,
j=1 .

This, then along with boundary conditions, the Euler equation and the

transversility conditions allows one to solve for n + m unknowns

kj(x) and yi(x) .

A problem of determining the two dimensional wing having minimum pre-

ssure drag in supersonic flow with given profile area or given moment

of inertia of the profile area is dealt with by Mieleug.
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2.35 Some Recent Developments

On account of the importance of the variational calculus in
the field of aerospace and aerodynami¢s both in U.5.S.R. and U.S.A.,
extensive researches are under way to find better methods of solving
such problems. As a result of this two very important methods have
recently been added in this field. One of these is the American
mathematician Bellman's Dynamic Programinsso s and the other is the
Russian Professor Pontryagin's Maximum Primiplesl. Dynamic program—
ming will be dealt with in section 2.5 under Mathematical Prograuping
where as the Maximum Principle will be briefly dealt with in thial
section,

The Maximum Principle can be stated as follows:

IfU = [u(t). tos tye oo o on be an admissible control

2
process, and if X(t) be the corresponding integral curve of the system

a
dt

(0, x;‘. ++ «x) for t = 0, and satisfying the conditions

e (xy w) (4 = 0,1,2, « « « n) passing through the point

1 1 n n
X(tl)ﬂxl....x(tl)i!xl
where xl indicates the first derivative
xn indicates the nth derivative, etc.
for t = tl. Then if the control process U is optimal, there exists a
continuous vector functiond (t) = ¢°(t). Ql(t). o i ¢n(t)
such that

1. the function@(t) satisfies the system

n o

d o r

E—%i - Z '_-F('%gl ¢a (1 B 0'1‘2' e e o n) (37)
=0

for x = x(t), u = u(t),



b3

n
o
2. For all t in (t_, t,), the function II (g, x, w = Og;d o (xow)
attains its maximum for u = u(t), i.e.

I [A),  xw,uw) =k, K6 , (8
where K (@ , x) = sup IX &, x, w (39)
U€ n.

where Sup denotes supremum or least upper bound.
3. The relation
¢o[(t1)é0. K ( e, u(tl)] =0 (40)

hold at time tl.

Pontryagin et.all‘l have described in detail the application of the maxi=
mum principle to the solution of some time optimum synthesis problems of

control systems.
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2.4C Direct or Numerical Methods

The methods of optimization, described in the preceding sections
usually end up in differential equations which quite frequently are
very difficult to solve. To overcome this difficulty, direct methods
have been evolved. A direct method can be defined as one wherein
values of a function at two or more points are compared to reach an
extremum., All such methods are approximate and do not give precise
results. However, simplicity and the ease with which solutions can be
obtained by using these methods has made them very popular and explains
their wide use.

Direct methods are not newj their existance would be traced
to the time of Tuler and Ritz end, if solutions of equations are con-

sidered, to the time of Algorithm.l'z’}'k's'6

However, since the
appearance of computers in the last decade, their importance suddenly
increased multifold and more attention is being paid to such methods
during the present time than ever before,

Many such methods are at present available, such as direct
methods of variational calculus, analytical cum numerical methods,
deterministic methods of direct search, and stohastic methods of

direct search. All these will be dealt with separately in the

following sections.
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2.41 Direct Methods of Varistional Calculus

Quite a few methods are available which can be described under
this heading. lowever, four important ones are Euler's method of

45 method and the method

finite differences, Ritz method, Kantroviec's
of linear integralsz.

The basic idea behind the so-called Euler's method is that a
functional of the type U y(x) can be considered as a sum of a finite
set of variubles so that for a particular functional

U [y(x)] = F (x, y, ¥ax, y(xo) = 8 and y(xl) =
U[y(x)] turns into a function @ (yl. Yor o o o yn-l) of ordinates
AUR ZIEEERER I A for a polygonal curve divided into n line segments
x, + Ax, x, + PAR. % % » Xy * (n~1l) Ax. Ordinates UR FURIEIRE MY
are so chosen that the function has an extremum. Referring back to
theory of ﬁaxina and minima

%_ﬂ-o, %—-gg:o, Vo 3 %-%n_l-o

The nex& step to this is to pass the limit with n 5. Thus
U y(x)} j F (x, y, y) dx ~ ¢ (yl. Yor o o yn-l)
andﬁ(yl. yz...ynl E F(xi' yi._}; i) ax  (41)

i=o0
Since only the ith and (i-1)th terms in the above equa tion depend on ¥i

92 aOfori=1.2.3. -..n-l
ayi

can be of the form
¥ ("1' Ty .3_}__.) Bx + Folxy 03y "’1+1 Y4) —-5— "

Z_;____;;_l_) (1)Ax.o

+ F/ (x
y Ax Ax

11" V4.1’

for L = 1’2‘3 e o o n-l



i.eq

¥ by 4bx) - F Sy Jad S ,
y(xiyyi? yiKAX/ fy(xisyjy yj/ %) E&(xi-l°yi-1’A3i-1/AX) = O
or F (xi, Iy Ayi/Ax) - AF;/Lx = 0

where = = F

oy y
oF
sy
Now when n-—-oo this becomes
Fy - é& Fi = O (which is Euler's equation derived in preceding

sections and must be satisfied by the function y(x) for an extremum.
In case approximations are sought these can be determined from
equations bﬂ/dy,i =0, 1=1,2,3, «+ « « n=1 without applying the limi-
tation process.
The other important method is Ritz's l*iet‘.l’u.'idl+5 « In this method
a functional is con.si;dered as a linear functional combination. Thus a
fumtiox;al U=10 [y(x)]
can be written as U = U [yn(x)]

where y (x) = i ok () (42)
i=1

coefficients @y & a are constants which are adjusted to

2' 0.3 s o
yield the desired extremum. Wi(x) are functions of X satisfying

given boundary condition. Thus with these linear combinations,
functional U E'(x)] becomes a function @ (al, Uge Gy oo v e an) of

coefficients o e an. For an extremum the coefficients

il Pl
can then be determined by the system of equations

% = O for i=l.2|3’ s o o Do

i
In the end applying the limits, e.g., n — o0, limit function
o) ,
y = Z:. aiwi(x)

i=l
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is obtained. If this converges, ualer ce-tain assumptions asbout the
functional U [?(xﬂ and Ui(x) this will sive an exact solution. If
the limiting process is not applied, an n term approximate solution
is obtained,

b5

The so-called method of Xantrovic © is a generalization of

the Ritz's method. In this method coefficients Apr o 33 « s n B
are no longer constants; instead they arc functions of the independent
variables. These functions are to be so0 chosen that the functional

U y(x) has an extremum, The Russian mathsriaticians clsim that by
using thisg method, approximate solutions obtained are usually better
than those obtained by Ritz's method.
52

In the linear integral method” certain new variables are
introduced, and by integrating by parts, certain formulse are obtained
which are commonly known as Green's Formula. Green's formula is then
simplified by using certain multipliers so that dependent variables
drop out. This simplified integral is then maximized using = theorem

which Faulkner52

calls the maximum principle.
Elsgolcb’5 has used the first three methods for solving various
1 =
design problems and Faulkner)z has used the last method for determining

optimum trajectories on digital computers,



2.42 Numerical cum Analytical Methods

It is mentioned in section 2.4 that the differential equations
obtained by the methods of previous sections are not always easy to
solve, Similarly the set of sinultaneous constraining equations are
very often difficult to solve. Therefore, in certain cases it is
customary to solve thkese equaticns by using various approximate
numerical methods such as Algorithm's method, Newton-Rephscon's method
and the so called method of finite differences.

53,5k

In Algerithm's Method c¢f Errors (/Al-Hisab-ul-Khataayn)
if a reot x of U(x)=0 ean be isclated between two points X, and xy
in the interval x, and x,, the graph of Y=U(x) would be as shown in
Figure 2.42. If the point Ay end Ay in Figure 2.42 are joined by a
straight line, this line will cut the x-axis at a point say X, which is
close to the root x. Therefore using similar triangles x.A.x. and

0072
X, A, x, it can be shown that

1312
Roo B X = X% e,
U (x,)"-U (x,) 4 o 0 (%) =1 x,U (x,)
Xl (x.) = %0 (%;) x,=
.. X“'f' U (xl) = U (xo)
U (Xh) oAl | (xo)

To get a closer appr ximation to the root x another straight line

closer to the curve can be drawn, and by repeating this process a
series of values xz, x3, x#............ X, caen be obtained which in
the end converge to the real root X.
This method, although it gives the root, is slow in converpgence,
and hence Newtbn-Raphson's method is usually preferred. However, in
2

cage [ (x)=0 or close tc zero, lewton-iaphson's methods fails.

Algorithim's method is found to be of value in such cases.

* Translated in Latin as Regula Falssy
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FIG.2+42
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55,56
In the Newton-Raphson's method the root of the equation
U(x)=0 is found by the formula
S
X”fl xh-U(x,,)/ U(xh) n= 1,2’000000 ooo,etco

and convergence is comparatively faster. The formula is derived by the
use of Taylor's expansion. The above expression can also be written as
X, 5 X,~U(x,) - 6'L(xh)

This is similar to matrix form; suggesting that a set of
silmultaneous equations can be solved by this method. The possibility
of this can be investigated in the following manner: Let us assume
that @ is a vector consisting of o set of functions ﬂn’dz S ’¢n
and that fb is an initial starting vector. Acding a small increment oY
to this vector we arrive at a point where

vector '}'{.:}_{04. A%
a1 Mo oan write

X =X +aX ; (43)
e ¥
liow considering that somehow we have arrived at rth approximation Xr

similerly for the rth vector X, and r4lth vector ir

end that at this point @ has a value Br. we can now expand @ using
Taylor's eeries expansion sc that

7
¢r+':gr "’AX . a" $ cccestvsee e

Nepglecting higher terms this can be written as

zyﬁ'ﬁy *Ai . a',

To reach close to the soluticn jcint we equate @ to zero so that

Ai'¢p=“¢r 1

Now multiplying both sides by the inverse matrix ﬁ’r we get
/ -l
AKX eTz2-8, 0 B (k)

r



p: 3 8

where I is the unit vector and hence we can further reduce this to
/-l
sXz-8. B (45)
Substituting (45 ) in ( 43 ) we get
-
-5 v X
xr?l gr zr r

36 and hence even

This equation can very easily be handled by computers
lengthy and difficult sets of nonlinear algebraic equations can be
dealt with byithis method.

For solution of certain differential equations the so called

57,58

method of finite differences is found to be very useful. This can

be explained by using the first order differential equation
’
ad y/a x z U(x,y) =¥ (46)

with initiel conditions ¥=Yo for x=x. when x)xo.

¢
For the solution, starting with the known ordinate and calculating
ordinates successively, we can write

y = y(x +h)

3 = ¥(x,#2h) = y(x, +n)

Q0 dve te0v e L N

Yp= y(x +08) = y(x, 40)
where h is a finite increment.

Using Taylor's series expansion we can write
o

M- Y(Xn-Ih) = y(xh_l 4 hy'* %?"y + ceseesee
Using truncated approximation up to y’ .

Ip= y(xha)ﬁ-n y/ or yn; Ingt h y, (47)
Starting with n=0 values of ordinates at n=1, 2, 3, ...., can be

calculated and the process is repeated so that a step-by-step method
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of finding the solution is obtained.
The above equation can also be written as

; =(yn =yna)/B (48)
Similarly values of second and third derivatives can alsc be calculated.
This facilitates synthesis of kinematic mechanisms where y, yﬂ f'etc.
are needed to repregent velocity, acceleration, etc. Due to truncation
this method is not accurate and hence certain modified versions such
as Heun's method and the mid point methods5?‘58 are comuonly used.

For a special case when criterion as well as constraints
happen to be homogeneous, Bedford, Willis and Dodson59 have shown that
a method which they call the "Infinitisimal per-unit increment'" method
can eusily be applied and has the property that the designer is kept in
touch with the elements of design.

This method can be described as follows

UnU(xl, X510 X0 ..........,xn) (49)
and the constraint

B =@ (X 9X,9Xgp00000pXy)

-

are both homogeneous. By using the definition of homogeneitybo we
can write X =}X,fOr n=l,2,¢ccecee
so that the above equations take the form

U = A: © U(X yX p00000000,X,) (50)
sl Badly o Bx 0z 00encnien,xy)
where (X &and ﬁ are the degree of homogeneity of U and ¢ respectively.
At this stage using Euler's lomogeneity Relation we can write

d d O u - (51)
3"?[.‘“'*3'! Axy# ceeeet By, dx,z U 5
(52)

> 5 > -
a—g' dx, + g‘gadxz*""“ .S Tghdx“ B¢
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aU

Multiplying (52) with and subtracting from (51) we get

U _aU .dd DU oy dg (55
(5%, g7 Ox1)+ * Angie -ﬁ,ﬂ'bxl

which imply that

dU ou o 0
O Xpl AP "X *

This can now be written as

dU_&xUy, o4 i.e. léu .'ouébx e 8% (5%)
S x, BP Xn . © g/° ;:: B g

Usin;r the finite increment approximations this can be expressed as

Ay /o o (55)
e T

The procedure of attack for sclution of & probliem of this type would

Tor alilnel. 24 iaicvissves

be to start with any arbitrary values of the design parameter and
calculate the ratic a&s shown in the right side of the last equation.
This can then be checked with the ratic of the degrees of homogeneity
A | and if it ha;pens to be the same, the optimum is reached;
otherwise, one of the design parameters is cheansed (increased or decreased
depending on whether the ratio happens to be smailer or larger than the
ratio of degree of homogeneity) and the method is repeated till these
two ratios tally. This method can therefore be stuted as follows:
If any device has optimws shape;-the ratio between the

resulting per-unit increments in c¢ptimizing characteristics is

equal to the ratioc between degrees of homogeneity cf these

characteristics.
For i’ lustration oi this meothod we will use the exumple of the design
cf a cylindrical fuel tank to have meximum volume for a given surface

area which has been used in section 2.22.
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Using the relations mentioned under section 2.22 we can write
Usnr’h  and #( % r°+ 7rh)
The degree of homogeneity of U is 3 and that of @ is 2 so that the
ratio .g.. = 3/2=1.5

Using the equation derived above we can write

AU « 1/0 _&_
IS R,
Assuming r=2 and h=2 as our first guess, then if %1.‘. = 2K

AU/U ="B/U o 3U/dh « &h/h = 1/xr? o« nre/1 . 2K/1 = 2K
Ag/8 = b/« /¥ . Ah/n

1/27'(1' ° h/r+h B 2”(2K)/l =K

This gives a ratio of 2.0, which is too large, so that h, which seems
to be too small, should be increased. Using h=3 as our next step,

we get the ratio 1.8 which is &ill too large. Trying h=k gives the
ratio equal to 1.5 which is exactly the‘ same as the required ratio.
Hence the optimum shape of the fuel tank would have a relation h=2r,
which is the same as the one obtained in section 2.22.

Aaimon}e has solved a bearing problem by using Newton-Raphson's
method extended to simultaneous equations along with the method of
Lagrange's undetermined multipliers. A problem of transformer design
for optimum geometric configuration is solvgd by Jacksonaf by using
the method of finite differences as applied to homogeneou;s partial
differential equations, and a problem of synthesis of kinematic
mechanisns by using method of finite differences is dealt with by

62

Shaffer and Krause. Johmon}“ has also used this niethod for solving

various optimum design problems of machine elements.
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2.43 Deterministic Methods of Direct Search

Direct search is a method of arriving at an optimum by
continuous searching through experimentation. A deterministic problem
is one which does not depend on any random factors. A deterministic
method of direct search can therefore be defined as a method of
search for an optimum of an unknown function having no ramndom factors.63
Deterministic problems can be divided into two main types, e.g., uni=-
variable and multi-variable problems. By univariable problems we
mean a problem having not more than one independent variable. Similarly
a multivariable problem is one which contains more than one independent
variable. The techniques applicable for solution of univariable
problems are relatively simple but unfortunately these are not applicable
to multivariable problem solutions.

Search methods are usually either sequential or simultaneous
type . In sequential methods co-ordinates are examined one after the
other, whereas, in simultaneous methods co-ordinates are examined
simultaneously. A sequential method takes more time than a simultaneous
method; however, sequential methods are more effective since errors
involved are usually less than the simultanecus methods.

The experimental search of optimum is a statistical technique
and Hotellingsh may be called the enunciator of efforts in this
direction. Later G. E. P. Box65 applied these methods for solving
optimization problems of chemical process systems.

we will discuss these methods brie¥ly in this and the

following section.
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Univariable lMethods:

There are several rigorous mathematical techniques which
could be applied for the search of optimum for the so called univariable

unimodal problems. However, the best one is a sequential method

66

due to Kiefer. This can be described as follows:
i function u=f(x) is mid to be unimodal if there exists a

specific value x, of x such that u either increases Pr xL Xq and

0

decrezses for x>x. or increases for xx,. and alsc increases for

0] 0
X3 X If such a function is prescribed in a given interval nggLn
and if Un is the supremum of all Ln such that the maximum of u on a
subinterval of unit length can always be located by calculating

n values of the function then

U = U

" LS Un-2 where n>2‘ (56)

and UO = Ul = 1

This indicates that Un will assume values

anl, U1=l, U =2] , Usz}h,

2:2. U3=3, Uh=5, U5=8, U6=l§, U

7
U9=55, U10=89, csesbassesssessEe s
so that U20 :>10000. This simply means that a maximum can always be
located to the accuracy of .0001l of the original interval length
within 20U calculations.
Since the ratio R = Uny/Up = 14 Unay/Un =1+ /14 Una/Ups_
which is a continued fraction and its limiting value is
Ry = o#1 /2

a good procedure for starting the search of this type is to use two

* For proof see Ref. 63, 66, 67
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values of x such that
L-Xl = JT.J Rl = n618 L

and X, = L/‘;1 = .618 L where L is the original given interval

The interval of uncertainty would reduce to .618 L after first trial

and would lie either between O and X, or X, and L depending on whether
US>, u2:> uy (see Fig., 2.43

The new interval L can then be treated in the same manner and the

procedure is repeated till a peoint very close to optimum (with a

negligible interval of uncertainty) is attained.

Multivariable Methods

Multivariable search methods can be described as methods
of local exploration for finding the location of the surfaces of
higher response and then of making a decision which way to move, so that
the criterion may be improved most effectively. The search can be

63

divided into three phases.“ In the first phase exploration at the

base is confined to a suitably selected small region and linear
approximations are used for expiorations, In the second phase
explorations are very infrequent and the progress is usually by jumps
and for most of this area linear approximations will do. In the

third and the last phase explorutions should be more curefully organized
since we are in the vicinity of the peak. If large steps are taken
there is risk of missing the maximum§ hence, quadratic or higher
approximations of non-linearities ure needed. Usually the multivariable

functions are first reduced to unimecdal response surfaces by using

parametric representations. In search problems of this type generally



two basic approaches are used -- the eliminution approach and the
climb approach.
In the elimination approcach, which is sometimes called the

63,68

contour tangent elimination approach, a contour tangent is

first determined at some arbitrary point. Using this contour tangent,
wihich divides the given area into two sections, the lower section
which is less liable to have an extremum is eliminated. This procedu:
is then repeated in the other secticn which is considered as the feasi
area. In this way the feasibility area is successively reduced by re.
searches, so that in the end this converges to the required peak or
what we call an optimum. This is illustrated in fig. 2.43m which is
self-explanatory.

5ince this meothod is bused on a decision regardings the
probability of the extremum lying ‘n a section of the experimentation
area, thore is a possibility that it might end in a failure due to
an incorrect decision. For the strongly unimodal functions which are
defined as functions whose summit 's' coulu be joined to any point 'p'
in the regicn of experimentation by a line ps which is always a rising
path, this method always leads tc the summit.

The climb or ascent methoda,63 alsco known as gradient
methods, are the methods of search alons the grudient or the direction
perpendicular to the contour tangent. Since the directicn of the
cradient is the direction of the maximum rate of change of criterion
for each individual step taken, these methods converge to the peak

quicker than any other method and are less liable to errocr.
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FIG 2-43m
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Acceleration ilethous

Along with the methoas described in the preceding paragraph,
certain comparatively new methods are often used since they increase
the rate of convergence and hence are generally known as acceleration
metheds. Some of these are the partan or parallel tangent method cf
69 |

Shah, Buehler wund Kemphthorne, pattern search method of Hooke and

Jseves,7o poor man's coptimizer of Huggele.'?l ani rotating coordinate
method of hosegbrock.72 The parallel tangent method, which is often
used with the gr.dient method by the name of the accelerated gradient
method, is found to be very useful in design optimization problems and
hence will be described here.

The parallel tancent method is bused on the fact that the
alternate paths in gridient methods ure usually approximutely purallel
to the respective contour tangent. Therefore this property can be
used to reduce the number of steps in the final phase of the gradient
method, which ure usually more then the number of steps near the
gtart., In the accelerated ascent or accelerated grudient method, the
first two steps are taken along the gradient and then the final step

is taken along the line joining the first (wo) and third (P2) point,

)

us shown in Figure 2.43%a. In general case of n inuependent variables,
if the res onse hyper surface contours happen tc be concentric
ellipscids, the pecak is attained after exactly n-1 steps.

Gther modifications or extensions of the basic gradient

<

method ure A180 discussed in section 2.54.
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will be such that in the limit of large n, X, converges to x.

Lapidus et. al. have apu.lied this procedure to precess performance
s et 1 i, ol o T s e, 78

optimization and Bertram' ' applied it to control systems. Chang

in his book on control systems optimum synthesis has allotted one full

chapter to stochastic processes and optimum design of adagtive control.
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2.50 Mathematical Programming

Yathematical preogramming can be defined as the method of
planning of various activities in such a manner that the objective
of optimization is achieved. These methods are comparatively recent
and are said to have initially been evolved during World war II for
military purposes. Hitchcock79 pverhaps formulated the first of the
various techniques in the {ieldj e.g., the foermulution of the
trunsport.tion problem fcr minimum cost distribution which he submitted

: 0] e, :
in 1941, 1In 1947 Dantzig =~ came out witih his fumous simplex method

cQ

-

wnich solved the general linear programming problem. Bellmandl
evolveu the more sophisticated technigque, which he called Dynamic
Programning, in 1955. In the meantime computers entered in the field
of research and proved to be the strongest tool of research man ever
had. The ease with which programming problems can be hanaled by the
computers maue them very popular ameng programmers, and soon new and
better methods of programming and many refinements of the older
programming methods were evolved and are being evolved every day.

Initially such methods were confined to the so called linear
problems; i.e., problems dealing with a linear criterion or optimization
function and lineur constraints. However, very soon it was realized
that many practical problems do not fall under this category. Hence
new nethods fcor handlin: non-linear problems were soon introduced.

In the following sections we will therefore consider both
linear as well as non-linear programming methods. The first section

will deal with comparatively siriple prublems; e.g., the Trarsportation
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Problem and its refinements. In the next section the simplex and

variations in the simplex method will be dealt with. The last two

sections will cover dynamic programming and various versions of the so-

called Gradient Method which solved several nonlinear many -

variable problems. Before considering any mathematical programming

method we will have to familiarize ourselves with the following terms

and theorems which commonly occur in mathematical programming problems.*

l. in n dimensional Euclidean Space is a set of vectors with the
property that there exists n linearly independent vectors for every
set of n+l linearly dependant vectors.

2, A convex set is & combination of pointe such that if any twe points
lying in the set are joined, the line joining these points will
also lie wholly in the set.

3. A vertex, often called an extreme point, is & corner of the convex
set,

4., A basis for an n dimensional Euclidean Space is & set of n linearly
independent vectors.

5. A basic solution for a linear programming problem is the sclution of
the constraining equaticns with n-m variables set equal to zero. :

6. A feasible soclution is a vector which satisfies both the constraimjng
equations and the non~-negetivity condition, but not the optimization
equation.

7. 4 basic feasible solution is a feasible solution with not more fhﬂn
m positive independent variables where m£n. (m is the number of
conatrainihg equations) The remaining variables are set equal-to

Zero g
* For proof sce Ref. 82, &3, 84, 85
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()n

10.

11.
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A non~degenerate basic feasible solution is o basic feasible solution
with exactly m positive independent varisbles.

An optimum basic feasible sclution is a2 basic feasible sclution

which optimizes the critericn function.

All feasible sclutions to the linesar programming problem constitute;‘
a convex set. (Theorem)

If a linear programming problem has & feusilLle sclulion it uust also
have & basic feasible sclution. (Theorem)

If an optimization function has a finite extremum, then it is a

basic feasible soluticn. (Theorem)
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2.51 Transportation Methcd

Ls the name implies, the truznspertation methou was originally
devised for the solution of distribution preoblems. It falls under

|
the cage8¢f m.thematical programming called linear programming because

b -}

the critericn &s well as the constraints involved in this type of
proﬁlem have & linear relationship. The trans:sortation nicthed is
simpler than many other line. r programming mothods. However, it is
applicable only in special cases. On the other hand the so-called
simplex methoc which will be described in the next secticn can solve
transportation problems as well as many other types of problems which
can not be solved by the tramsportation method. In spite of this, on
account of its simplicity and better eflficiency compared tec the simplex
method, the trunsportation method hzs been retained and is expected

to retain its position in the sclution of a certain category of linear
procrumming problesms. Cver and above the famous distribution problem
this method has been successfully utilized for the solution of many

85 BE

electrical network design problems

)

: 5 c
rmultiple assignment problems,

-y

ey
and production design problems.87 It can also be used for the solution
of certain ascembly design problems and for this purpose a simple
example, which is developed during this study, is illustrated at the
end of this section.

The Transportation Problen cean be stated in the following
manner: Suppose there are n sources Si where certaid products are
manufactured and there are m destinations D, where these products are

J

to be shipped for storage vrior to their final disposal., At each source
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8,, p. products can be produced and at each destination D,, k. products
: Sl o 5|

j\

can be stored. If the number of products shipped from a source §

A
to a destination Dj can be called xij and the shipping cost from a
source Si to a destination Dj can be called Cij the requirement is to
minimizentotal shipping cost. Expressing this mathematically we can write
Jg le = pi for i = l, 2. veseescneell
S for j«1, 2
X - k or = ’ y eesesssse-Il
o =
and U = g;;cij xij s to be minimized subject to the consistency
condition Py= 2:3 K and non-negative condition xijéé 0 for all values
=1 3

of i and jt How;;er, in certain cases the consistency condition may
not be satisfied and hence we will be dealing with inequalities instead
of equalities. In order to overcome this difficulty a so-called
slack variable v is added so that the inequality is finally converted
into an equality and hence satisfies the required consistency condition.
For illustration, see the example at the end of this section. A theorem
of the transportation problem tells us that it has a triangular basisj
i.e., the system of linear equations associated with transportation
problems can be given such a form that there exists at least one equation
that contains only one unknown and when this is evaluated its deletion
will evolve a new set which once again will have at least one equation
that contains only one unknown. Proceeding in this way unknowns can
be evaluated. For example a19%; * 8%, + a1313 = Pl

Ksd%p * Rag¥em B

®33%3 = F3

is a set having a triangular basis.
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A transportation problem can be solved by an algorithm consisting

of five steps:

1. Formulation of the transportation array -~ In this the given data
can be arranged in the form of an array similar to the one shown
in Table 1.

2. Determination of an initial solution ~- lMany different methods
for arriving at an initial solution are presently available;

83,84,85,88

however, the so-called North YWest Cormer method (also
called stepping stone method) is the simplest and easiest for computer
applications. The other important methois are Inspection method,
Hutually Preferred method and Vogal's approximate method.88 These
methods reduce the computation time by reducing the number of iteration
for arriving at an optimum but they can not be applied so easily to
the computers as the north west corner method.

In the north west corner method, as its name suggests,
the north west corner cell is first selected and the maximum number
of products, without violating the capacity restrictions, are

shipped to this cell; i.e., from S, to D,. The triangular basis

1 i
of the problem permits us to delete either a column or a row where
the capacity restraints are satisfied thus leaving a new smaller
array which can then be dealt with in exactly the same manner, The
procedure is repeated till all capacity restraints are fully
satisfied. For illustration see Table 2.

3. Evaluation of empty cells -- After determining the initial solution

each empty cell is evaluated term by term for possible movement in
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closed circuits to bring about a possible reduction in cost. All
such evaluations are then compared to choose the one which can
bring the maximum reduction.

4, Altering the sclution ~- The initial solution is now altered by
shifting a maximum number of products without violating the capacity
restraints according to the circuit of maximum reduction found in
Step 4.

5. Evaluation of the altered solution -- The altered solution is evaluated
in the same manner as Step 3. There could be three possibilities
at this stage; e.g., i. there could be a possibility of further
reduction in cost in which case the procedure is to repeat Step 4.

ii. there could be no possibility of further
reduction in cost but a circuit exists which is indifferent, indicating
that the optimum is reached but an alternate solution is also
available.

iii. there is no possibility of further
reduction and there is no indifferent circuit available indicating
that optimum is reached and that no other alternate optimum solution
is available.

Every transportation solution, says a transportation theorem,
must have m+n-1 variables. If at any stage of iterations the number of
variables happen to be less than this number the solution is said to
have degenerated. Further evaluation of a degenerated solution is either
not possible or very difficult to handle. Therefore, to overcome this

difficulty an infinitisimally small quantity € is introduced. This
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quantity can then be handled as any other variable but having a
negligible value.
For proof of the authenticity of this procedure, References

82, 83, 84, 85 and 87 can be consulted.

Example
A product consists of 4 components Dl’ D2. D3 and Dh‘ In

each product 8 components of Dl' 5 components of D2, and 17 components

of D, are to be mounted on a frame Dh’ For the assembly of component

3

D1 either five screws or five rivets are needed. Similarly for mounting

each D2 five screws or five rivets are again required. For the

assembly of D, either two screws or two rivets are needed. The cost

3

of screwing, including the cost of the screw itself, is §$.15 for Dl'

$.25 for D, and $.15 for D Similarly for rivetting this cost is

2 3’

and $.15 for D One hundred products are

$.10 for D $.15. for D

- 2" B
to be assembled daily and the capacity of both screwing and rivetting
sections is 5000 screws or 5000 rivets a day. It is required to find
the components where rivets are to be used and the components where

screws are to be used so that the total cost be a minimum,

Step 1. Formulation of the array

S33 * R WY 08
e R By
%ip t %o o
xl3 + x23 = k3
p

gy F Xas Ry WS
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where x and x,, are number of screws required for fastening

11 %2 13

Dl’ D2 and D3 on the frame D# respectively. Similarly x21, X555 and x23

are number of rivets required for fastening Dl‘ D2 and D3 respectively.

and C are the costs of screwing X11° ¥y2 and xl}' Similarly

C33 Cyp

13
CZl‘ 022 and 023

The total capacity of screw section is Py = 5000

are costs of rivetting X510 X5 and x23.

The total capacity of rivet gection is p, = 5000

Each component Dl requires a total of 5 screws or rivets, hence the
total requirements of screws or rivets for component D1 for one hunared
products to be manufactured would be

k, = 100.8.5 = 4000

3

In a similar manner, total number of screws or rivets required for
the manufacture of component D2 for one hundred products would be
k2 = 100.5.5 = 2500

Similarly for the component D3 this would be

k3 = 100.17.2 = 3400

Now to convert the above inequalities into equalities we include

slack variables vy and v, corresponding to fictitious product Ds'

Here v, and v, actually represent the idle capacities of the screw

:

and rivet sections. Doing this we can formulate our problem as follows:
U = c1lxll+clax12+c13x13+c21x21+c22x22+c23x23+c1vl+c2v2 to be minimized.

subject to the condition

xll+x12+x13+v1 = pl = 5000
X) 1%, = kl = 4000
x12+x22 = kz = 2500
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x13+x23 = 3400
x21+x22+x25+v2 = p = 5UOQ¢

ana xij =0 fori=1l, 2, 3and j=»' .1, 2, 3 where C. = C_ = O.

1 =

The data can now be arranged in the tabular form as shown in Table 1.

The last column is the fastening capacity of each section, whereas

the last row represents the number of fasteners required. Column 1

is the component Dl column whereas row 1 is the screw section row so that
%14 represents the number of screws required for fastening component

Dl and Cyy represents the cost of using one screw for fastening &
component :1‘ Similarly ij represents number of rivets required to

fasten component D3 and c33, the cost of using one rivet for fastening

a component D

3.
TABLE I
D1 D2 D3 Da P,
81 xl1 ol xl2 25 x13 o vl .00 5000
s, Xay 10 X350 .15 X5 .15 v, .00 5000
kj L4000 2500 3400 100 1000G:




Step 2. Initial Solution using North-west Corner Method

75

TABLE II
Dy b o ] Py
B8 4000 45 1000 e o ® s 15 O .00 5000
Al = ==Y 2N
0 10 i ¢ OOGa X Gghoo g 100 000
8, @ 5 EBAALB .15 A .00 5
kj LOoO 2500 3400 100 10000

Step 3. Evaluation of Empty Cells

Using circuit 1-Q as shown in Table II possible recuction

in cost 25 =« ,15 ¢ .15 + .15 & =.10

Using circuit 2-0 reduction in cost +.25 + .10 - .15 =~ .15 = +.05

Using circuit 3-Areduction in cost

Thus the largest possible reduction can be obtained by using

cireuit 1

Step 4. Alteration of the Initial Solution

25 -~ .00 ¢+ .15 + .00 = ~.10

TABLE IIX
1)1 D2 D3 DB Py
§ | k000 151 4, O .25 | A1000 B.15 0 (.00 5000
5 0@ -10] 42500 .15 | 42400 © @-15 100 .00 5000
k, | 4000 2500 2400 100 10000




Step 5.

Largest reduction is possible by using circuit 1,

Possible reduction by using circuit 1-0

Evaluation of the Altered Solution

76

~e15-.15 + .10+4.15 = -.05

Possible reduction by using circuit 2-[Q -.15-.00 + .15+.00 = «,00

Possible reduction using circuit

5—A +025*-15 - 015-015 = *005

Step 6. Repetition of Step 4.
TABLE IV
Dy X Da °3 Ps Py
8 &y 160(2-@ «15 0 @ «25 E3400 2D 0 &.OO 5000
21+OOA 10 2500 25 0 3 100 A\.00 5000
82 [q~ @ * o 12 B 15 »
ko 4000 2500 3400 100 10000
Step 7. Repetition of Step 5.
Possible reduction using circuit 1-O +.25+.10 - .15-.15 = +.05
Possible reduction using circuit 2-01 #e15+.15 = ,10-.15 = +.05
Possible reduction using circuit -,15-.00 4+ .10+4.00 = -,05
Largest possible reduction is possible through circuit 3.
Step 8. Repetition of Step 4,
TABLE V
D1 D2 D3 Ds pi
1500 .15 0 25| 3400 15 100 A 00 5000
s . . . Ll
1 (& S < 8
A
kj 4000 2500 3400 100 10000




Step 9.

Repetition of Step 5.

i &

Péssible reduction using circuit 1-0 +.25+.10 =« .15-.15 = +.05

Possible reduction using circuit 2-0 +.15+.15 -~ .15-.10 = +.05

Possible reduction using circuit 3-A +.154.00 - .10-.00 = +.05

No reduction in cost is possiblej therefore, the above solution is an

optimum solution.

no zero reduction and hence no other alternate optimum solution is

possible.

No indifferent situation is possible since there is

By the so-called inspection method this result could be obtained

in just two iterations as shown below:

TABLE VI
Dy D, Dy Dg Py
s, {4+ O .15|_ 1500 .25 3400 .15 100 .00 | 5000
s, | _ 4000 .10|, 1000 .15 0 .15 0 .00| 5000
ky 4000 2500 3400 100 10000

UCn evaluation o this initial solution it is found that the circuit

shown in Table VI can bring about a reduction in cost of §.05 for the

movement of a unit to cell 5D thus giving the altered solution as

shown in Table VII which on evaluation is found to be optimal solution.

Comparing with the Table V it can be seen that Table V and Table VII

\

are exactly the same,
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TABLE VII
D1 D2 Di DB P,
Sy A500 .15 0 25| 3400 15 100 .00 5000
s, 2500 & 10 2500 .15 o .15 0 .00 5000
kj 4000 2500 3400 15 100 10000

The optimum programme obtained from Table V or VII is as follows:
2400 screws are to be used for mounting components %, i.e.,

3500 . 1 or all 17 components I are to be screwed.
1700 . 2 3
2500 rivets are to be used for mounting components %1that is

2500 . 1 or all of the 5 components of %iare to be rivetted.
400 L5

1500 screws are to be used for mounting components Qlthat is
1500 .1
Yoo , 5 °r 3 of the & components of Dlare to be screwed.
2500 rivets are to be used for mounting the remaining 5 compenents on
each of the 100 parts to be assembled.
The total cost for this optimum solution would be
U= .15%x1500+.25%0+ . 15% 34004 . L0x25004 « 15x2500+ . 15x0+ . 00x1 00
= $1%60.00
87 86

Bowman™" has described various production design problems and Dennis

electric net-work design problems that could be solved by this method.
A variation of the transportation problem is the so-called

k,85

multiple assignment8 t problem and yet ancther is tanker routing

problem,&+ but since they do not at present apply to design problems these

are not considered here.
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Computer program codes for various transportation problems are
available for the 704, 709 and many other high speed digital computers.
The sources c¢f information are referred to in Gass's paper on "Recent

88,89

Advances in Linear Programming''.
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2.52 BSimplex and its Variations

Simplex is defined as an n~dimensional convex polyhydron
having n+l vertices.82 As has been mentioned in the preceding section,

a problem of minimizing (or maximizing) a function
n

U= Z Xy

=1

subject to the conditions

n
¢= }: aijxi for § = 1, 2, scovverasnibhne, B
1=1

and xigé G 2ard w ), 2, sevivvasnissoill

constitutes a linear programming problem. However, geometrically these
conditions represent an n-dimensional polyhydron defined above as a
simplex. Hence each linear programming problem is also a simplex
problem., Dantzig was the first to notice this and came out with a new
iterative method of solution called the simplex method.82

From above it is clear that every simplex-problem also has a
graphical solution. For n > 3 the graphical solution becomes too
involved and is very difficult to handle. Simplex on the other hand,
though lengthy, can easily be handled; particularly so on computers.
But, since the simplex requires quite a few algebraic manipulations and
is somewhat difficult to understand, it is customary to start with a
simple graphical soclution which facilitates the understanding of the
algebraic simﬁlex.

For example, let us consider the following two-dimensional case
study of a small manufacturing concern producing two different models of

iron-clad mains switches for home use. The concern consists of a sheet
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wetal stampins division, a parts ;:oduction divisio., assembly division
for model I and assembly «ivision ‘or model II. It is assumed that raw
materials, labour, and oiher in uts are available at constant prices
«ithin th: demand runge of th¢ concern. The production capacities of
various divicions is as follows:

Metal Stumpings 25000 Model I or 35000 Nodel II per month
Parts Production 3%333 ,, 16667 "o TREET
Model I Assembly 22500 ner month
Model II Assembly 15000  per month
The sales value of Model I is greater than the total costs of purchased
materials, iabour and other direct costs attributable to its manufacture
by an amount equal to § 3.00. Model II in the same way yields % 2.%0. An
optimum production prograrme is to be found which will maximize the
total contribution tovards ;rofit.
According to the above data there are four constraints which affect the
economic programminge. These are
l. Stamping consilraints, combinations o! Model I and 1I in the stamping
division are defined by the following equation:
35000 x, + 25000 x, L 3550 . 25000
2. Parts Production construints, combinations of Model I and II in the
parts production dividion are definc. by the following eguation:
33333 x, ¢ 16667 %, & 33323 . 16667
3. Model I Assembly constraints can be expressed by the following relation:
Xy L 22500

L, Model II Assembly constraints can be expresse by the relation

X, L 15000
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The variables xland x, are the quantitiecs of Models I and II respectively
The graph of the constraining relations is as shown in fig. 2.52. From
the curves as well as from the relations it is clear that the slope of

curve 1 is - l.4

curve 2 is = 1.5

curve 3 is @

curve 4 is ~ 0.0
BEach of these curves is a straight line (hence lincar programming problem),
first two are drooping, rest of the two are parallel to X5 - axis and
Xy = axis respectively. These together form & feasibility arca A BC D E
along with origin O which has 5 vertices.

The criterion

Us 30 x. ¢+ 2.5 x2

1
is the total contribution towards profit and hence is to be maximized. The
curve representing this relation is also a straight line giving a slope of

-~ 1l.2. All points on one such line will bring the -ame contribution towards
profits and hence this line is known as an iso~revenue line., However, as the
profit is not fixed this line too is not fixed. Actually it represents a
family of lines having a constant slope of - 1.2, The iso-revenue line which
will be closest to the origin will bring the minimum profit, where as t@e
one which will be the farthest from the prigin will give the maximum profit.
Now comparing the slopes of the constraint lines it can be readily seen that
maximum profit iso~-revenue line will be closer to the - 1.4 slope line and
would lie between this line and the -0.5 slope line. This indicates that

these two lines e.g. the stamping line and the parts production line are the
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dominating constraints and hence point C, the point of intersection of
these two lines will be the optimum point. Any iso~revenue line passing
through this point does not cross the feacibility area except at this
roint. Any othe iso-revenue line lying towards the origin will cross
the feasibility area at two points rather than one. Similarly every iso-
revenue line away from the origin does not pass through the feasibility
area at all. This confirms that the point C is the optimum point giving
maximum contribution towards profits., As such the outimum production
programme would be

20400 units of Model I per month

and 6400 units of Model II per month
The total contribution towards profit would thercofore be
U=30 . 20400 + 2,5 . 650

= L,07745 million dollaurs per month
It is worth while to mention at this stage that if returns from either of
the two models change, the slope of the iso-revenue line would also change
end hence the optimal point would shift to some other vertex of the fea-
sibility area.

In a three dimensional problem esch line of fig. 2.52 w~ould be
replaced by a plane and the graphic solution, though possible, is difficult
to handle. For more than three dimensional problems even physicul visuali=-
zation of the problem is difficult.

After studying the linear programming problem by graphic inter-
pretutions we are now ready to considesr the algebraic simplex. For this
let us consider the following numerical example.

Example: A small manufacturing concein is presently manufacturing
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two products 'A' and 'B'. Bach product is processed on two machines

my and m_, . Product 'A' takes 3 min. on machine m, and then 6 min. on

2 1
machine m, . Similarly product 'B' takes 5 min. on machine my and 3 min.
on machine m, ., By sellings each product 'A' the concern gets a profit of

2

$ 3.0 by a similar measure product 'B' earns a profit of § 4,0. The Qeekly
machine capacities are 4200 min. for each machine. It is desired to find
the manufacturing policy for which the profit can be expected to attain a
maximum value.

The solution procedure in this case would be similar to the one used for
transportation problem. This can be described as follows:

1, Formulation of the problem,

2. Determination of an initial solution,

3, Bvaluation of an initial solution.

i, Determination of the variable to be replaced.

S« Alteration of the colution aébording to 3 and 4 to maximize profit. .
6. Repetition of steps 3 to 5 till no favourable alternative can be
evaluated. (This solution would then be the optimum solution.)

Proceeding in this way we can solve the problem as depicted below,

and x_. to be the nusber of products of 'A' and 'B'

3 2
respectively which we would produce alland 845 to be the time of manufact-

Step 1. Assuming x

Al ) .
ure of part 'A' on machine my and machine m2 respectively, and alaand 322

the time of manufacture of part 'B' on machines my and m_ respectively, ve

2

can write

ayjq X * 8y, X, _ b, =h200

i 1 12 e

3 ¢ o Xy B A0

Where bi'a are capacity restrictions.

Now assuming c

a21 X, + a

1 to be the profit earned by the sale of each product 'A' and
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¢, by each product °'B' , U, the total profit earned would be
[ &4

U = cl xl + c2 x2

Since no nepative manufacture is poscible we must impose the non-negativi-
ty conditicns

% 50 et ox. 50

1-¢ 2.—
In the above formulaticn ths capacity restrictions have resultod in cons-
training inequalitic: rather than equalities. In order to convert these

into equalities we will have to introduce slack viriablesz x, and X, the
]

>

number of hypothetical products Ml and Mz . These hypothetical products

will be such that cach Ml can be produce in one minute on machine my and

each M_ can be produced cn machine m, in one minute. Further, we will
o

2

also assume that no Ml can be produced ¢n machine m

can not be produced on machine m

5 and simila ly “2

1 With these acsumptions we are able to

construct the set
e e T -t e | B B T T
Boy By TR N Y N WE Mg T Ry
X g i Wi
The value of 313 and aah is one and that of alh and a23 is zero ith

these co-o ficients the fo:rm of the et is known as canonical form. The

(|
o

total profit U can now be written as
e + - x to be maximized.
U= ©5 Xz C) X, *Cy X *+C, X, 1
This new system is known as augmented system, It should be noted here
that our interpretation of the hypothetical product is idle time of machi-

nes. The above reuults can now be set in the form of a table as shoun,
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TABLE
c:j cl c2 05 cy
Basis Value xl x2 x3 xh
x} b a a a a
1 i & 12 13 14
Xy, b2 a21 a22 323 agu

The first step of formulation of the problem is now complete,
Step 2. Our assumptions under step 1 that the hypothetical products Ml and

M2 are idle times gives us an oppartunity to start with an initial solution

when ohly Hl and M2 are produced i.e, a situation vhen both machines are
kept idle. This is equivalent in the gre hical solution to starting at the
origin, before pushing the iso-revenue lines as far as possible in the
feasibility area. This situation is usually possible and any problem can be
started in this manner. However, in case it is not pousible, simple trans-
formation techniques can be used to convert the set into canconical formih.
With this initial sclution we can write

)(3 = 4200

x, = %4200
COur assumptions reg arding al}'alh'azj'azk have led us to an artificial
initial solution and hence this se¢t is known as as artificisl basis.
Step 3. Now we will have Lo evaluate the initial solution for any probable
improvements in profit. This we will do by calculating the variation in
profit by introducing first one 'A' and then one 'D' -- one at a time.

This means tlat for each case we will have to calculate profit variation

/ s =
u = e, (for minimization problem u = = c_)

J
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7 n+m

where ¢, = a ., €C, +¢
femel 9 30

Here n is the number of variables in the actual basis and m in the arti-
ficial basis. (in our case n=2 and m=2)

From the above formula each ¢, will be

J
e -(a31 c3 + 8y, cu) + ey
+ a8, c“) +cC

o]

= =(

o

832 O 2

= =(

Q
E AW NN N

a33 c3 > ah} cu) + 33

= ~lay, ey +a,¢) +c,

Substituting numerical values we get

(2]

/ / -4

#
Cl=3,02=4.c3=0.c‘+=0
At this stuge we will introduce a row c3 in the Lable constructed in

step 1 and substituting numerical values obtain a tuble generally known

as tableau No, 1.
TABLEAU Nos 1

(::j 3 b o) 0

Basis Value Xy X, x3 X,

x3 4200 3 5 1 0

), 4200 6 3 0] 1

c; 2 4 0 0

Among all g v J = 1,2,3,4, c. is the largest i.e. if a product corres=

3 2
ponding to this is brought into the solution the maximum improvements can
be expected. We may encounter three poscibilities at this stagej the

g

J

happens to be either zero or less than zeroit is clear that no improve--

largest ¢ may be zoro, less than zero, or more than zero. In case it

ment in profit earnings could be brought about and hence the solution
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under congsideration will be the best possible,or what we would prefer to
call an optimum solution. On the other hand, if it happens to be more than
zero it simply means that further improvements are possible by introducing
X, corresponding to ¢

i J
hence 1 = 2 and x

(i.e. for i = j) In our case we have secen that j =23

> will be the variable to be iniroduced i.e, product 'B'
will be produced.
Step 3. After finding out which variable is to be introduced we will have

to determine the variable .hich is to be replaced. This can easily be done

by finding the ratio bi/aij i.e. by finding maximum number of products or

the variables to be introduced. But here we are bounded by the capacity rest-
rictions and therefore can not select any ra.io. Instead we actually have

to select the smallest one. For our numerical example we have decided that

we will introduce product 'B'. For doing this we can either produce 4200/5
i.e. 840 products or 4200/3 i.e. 1400 products. However, each product which
is to be manufactured has to be proc«: sed on both my and me If we decide to
produce 1400 products we will not be able to proces:s them on machine my since
it can not produce or proc:ss more than “40 parts. The dominent constraintg
therefore, is that of machine ml and we have no other choice except to pro=-
duce %40 parts. A general rule that we have deduced from the sbove is that

we should calculate the ralio bi/ai and choose the one which is the smallest.

J

By doing tnic we have used the full capacity of my whereas m, is used only
partly. Its idle capacity would be

L20O - 3 . 840 = 1680
The new solution would thercfore be

x, = 840 and X),= 1680

Thus we can write



xl = bi/aij -
Al) other %, = b, - %X, a. .

i 1 - |
To facilitate understanding the problem, Lhese values are shown on the
right side of ecach tableau. In this step we have determined that Ml
products, or the idle capacity of machine ml, is to be replaced.
Step 5. The solution is now altered by introducing X5 for x3 and blz 40
and b2= 1680, Since

- = 3
x2—5 X5 ¥ 3 %, and x= 3 X, + 6 x),
we get
%= x2/5 -3 xl/S and X, = 3 xz/S + 21 xw/5

A new table, tableau 2 will now be constructed.

Step 6. The construction of the table will be completed by repeating steps

A to B

TABLEAU No. 2
cj 3 L 0 0]
Basis Value Xy X, Xy x), bi/aij b, - x 8,
x, 840 3/5 1 /5 1 §_1&2_3_._2' 840-400 . 1/5
x), 1680 ars o -3/5 0 168(;1. 5
¢ 7 S T S

Repeating the same procedure we can constiuct tableau 3



"TABLEAU No. 3

o 3 4 0 0

Busis Value Xy x,, X, x), b /aij bi - x- ail
X, 600 0 1 /7  =1/7

X 400 1 0 -1/7 5/21

< 0 0 -5/7 =17

/
In tableau * the values of cj's are either zeros or negative numbers. This
indicates that no further improvement in profit contribution is possible

an¢ hence the o timum =olution is

X, = Loo and x., = 600
opt ogt

Maximum profit

Uiz @ + X c
oft *  oft *
= § 3600 /week .

Checking for any round off error we cun calculate capaity rostrictions

b, = a X, + 8,. X =6.2+00+3.w0=4m0

3 13 N 12 2
b2 =8, X +8, X, = 3 . WO +5 , 600 = 4200

This indicates that our solution is exact.

ow we are in aposition to write down a generalized simplex algorithm (also
known as Dantzig's Basic Algorithm)

1. Formulate the vroblem.

2+ Start with an artificial bauis,.

/ i
%. Yelect the lariest cj and call it cj
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L, a, If cf'éao we have the optimum solution.
b, If ci‘>>Cfchoose those aij's which are more than .ero.
s If azl a:j's are less th;; or e ual to zero there would be no finite
solution.‘

deo If there are certain aij's that are more than zero calculate the ratio
bi/aJj .

5. Choose the smallect ratio bi/ai and rename the correcponding x, as X,

! 2

This is the vaioble vhich is to be replaced by x,

-

6. Substitute x., new bi'n. new a,

ij
7. Repeat all st ps from step 2 Lo step 6 till c;{_-_O s

's so as to construct a new tableau,

e

From the above we come to the conclusiun that the simplex is an
iterative method of seeking optimum by moving from one basic feasible
solution (an extreme :oint or the vertex of a simplex) to an adj.cent
basic feacible solution‘having'hi;;er value of criterion (lo.er value for
minimization yrobiem).

Uver and above the algorithm described in the prece ing paragraphs,
three other algorithms are also in common use, To differentiate among tliem,
and to examine their compartive merits, we can name them in the following
manner.

l. Dantzig's Basic Simplex Algorithm.

2. Dantzig's » Inverse Form Revised Algorithm, commonly called the

revised simpleX.

2 Product Form Levised Algorithm,

3. Dant:ig and Hay's
L. Zoutendijk 's Product Form Revised Algorithm.

For compar:tively smaller computer: and for smaller linear programming
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problems basic algorithm is the best one since its code is the simplest

although it ent:ils reound off eirors. For mecium size computers the
inverse form revised aljgorithm is Lo be urefered since it generally
require . fewer multiplications and its code is also not very difficult,

Its round off error is smaller than the basic algorithm, though not come
parable to that of product form algorithme for large computers Zoutendijk's
product form algorithm is prefer:iblesince it neeus fewer computatiocns than
sny other algorithm, reguires fewer tape transfers, better restart proper-
ties and can work out re-inversions without appreciable increasec in com-
puting timega.

‘In the numerical example solved in the preceding pages, on the
right side of the last table in Lhe column of cg, net evaluations of =5/7
and =1/7 appeur. The si nificance of these evuluati ns cun be considered
as follows,

The variable X, take: an evalueticn of ~5/7 which means that,if a
unit of thisz varisble is introduced into the solution at this stage, it
would reduce the criterion (profit in this case) by ¥ 5/7. This is equi-

valent to saying that had the capacity of m, been 1 unit l:ir;er than its

i)
cresent value of 4200, the optimum solution would have a criterion of

5/7 more. In other words, worth or value of the merginel unit of the
capacity of my is expre sed by tiese evsluations. Dwelling upon this idea
we can say that the total .orth of the machine m, is 4200 o 5 / 7 or $3000.
Similarly the worth of machine m, is hotO , 1/ 7 or & 600, The total

worth of the concern would therefore be # %600. This value is exactly same
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as the maximum profit value obtained by the criteriuvn function. Thus we
have come Lo the conclusion that the values imputed to the varisbles not
in the solution ba:is equals the value of the criterion. This suggests
the existence of a dual in linear programming.

Every simplex problem has associated with it a dual problem.
writing the previous éguutions and interchanging columns and rows, we
get

4200 yl + l"‘m yZ = 'ﬁ' to be minimized

subject to -

Wyt by, =3

Sy, + 3y, = b
If this problem would have been solved instead of solving the original
problem, the dual criterion would have the same value oi %600 as explained
earlier. On account of this, some problems where the number of constraints
in the dual is less than the number of constraints in primal (the original
problem is called the primal), it is preferable to convert the problem to
dual and solve it as dual rather than primal, lo.ever, the basic simplex
will not evaluate the original x variables,.

In the simplex solution, as in the transportation solution, occasion-
ally the total nusber of variables in the solution fall short of what they
should be. This results in difficulty in further evaluation of the sclution
and some time takes the form of what is known as cycling (cycling is the
praoceuss of repetition of one of the preceding bases in the new sclution
having the same value of the criterion) This is kno.n as degeneracy and to

resolve this, similar to the tramsportation method, a very small quantity



ok

is introduced into tre solutione. T is and various other techniques of
resolving degeneracy are deccribed in detail in references £2,%3 and 85.
Since the problem of this type does not occur too often we sthall not
consider it here.

It is possible to apply linear srogramming to parametric and
stochastic situutions and references 83 and 5 denl with these subjects
in det.il. Similarly sensitivity analysio and vaiiou other topics are
also dealt with in these above qouted references.

So far as design problems are concerned the o called light
weight limit design has been dealt with by several authors (see biblio-
graphy under section 7.7). Hay593 has given an example of least cost
optimum venicle performance by using linear programming and Evansgh has
solved an electronic miniaturized package design yroblem by using a tech-

95

nique vhich is based on linear programming. Orden has given an example

of optical filter design, Kuchn and rorter96 in process control syotem

?

(&)
design and Fanshel and Lynes ‘ have given an example of economic power
generation --all by using linear programming.

Analogue computations for linear rro ramming problems are discussed

by Pynegs.
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2¢53% Dynamic Progromming

In dealing with certain optimization problems pertaining; to system
engineering desiyn, control engineering decsign, aerospace technology and
mechanical engineering one often encounters the problem of maximization or
minimization of a function

G(xl.xa...........xn) = g(xl) - g(xz) BTN R g(xn)
under the constraints

X = X X teecossessssennseetX
and subject to the condition

xngg 0
This type of problem is usually very difficult to handlesince extrema at
boundaries can not be located by the present known method. of calculu599
and the so called direct cearch methods require too many calculations
which are very difficult to handle even on computers.

Such problems cen easily be handled by using the so called principle

50. Regarding its development

of optimality recently developed by Bellman
Bellman50 writes "The principle of optimality is actually a particular
application of what we have called 'the principle of invariant imbedding.'
A speciul form of the invariance principle was used by-Ambarzumian‘ 'On the
Scattering of Light by Diffuse Medium,' C.R. Doklady, Sci. U.R.5.5. 38
(1943), pp. 237 and extensively developed by S. Chan&erasekharﬁ, 'Radiative

Transfer,' Oxford, 1950."

. Russian Scientist A Indisn Scientist
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The principle of optimality can be stated as follows

"An optimal policy hLa: the property that what ever the initial state and
and initial decision are, the remsining decision must constitute an optimal
policy with regard to the state re:ulting from the first decis:’mn.{')9 &

The type of problems falling under the perview of the above des=
c.ibed principle of optimality are the so called multi-stage procecses,
This is a process composed of seguences of operations in which the out come
of the preceding stoge may be used for the decision regarding the course
of action to be taken for the succeeding operations. Information, data or
materials which are fed into an operation as input are usually known as
feed, and the out put from the cperation as the returns. If the returns
can be determined the process will be deterministicy otherwise, on account
of the precence of random factors, the process will be stochastic. Each
stage of such a process is connected with certain courses of action and
ience these stages are known as activities, An n stage process will
therefore lLiave n activities associated with it.

For sclution of such a problem first of all a quantity (faed) is
assigned to the nth activity, then to the n-1 th activity und so on. This
gives it the time like property and tLence the word dynamic programming is
coined to describe and to emphasize this property. This method is therefore
ideally suited to the time dejendent problems, but its applications are
not confined to such problems alone, Severzl deterministic as well as sto-
chastic problems of ordinary and variational calculus have been successful-
ly solved by this method and many mors are expected to be colved. The design
problem statei above is jusi one example of the many problems that can be

handled by this method.
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We can now formulate our problem in the following manner.

Let us call

X = xl + x2 teoesecssceccset xn

as total feed where X 9X peneneeayX are the feeds for activities 1,2,
eesyn resvectively. Assuming G to be returns from this total feed x, and
that G can be represented by the =zum of g's which arc returns from feed
corresponding to each activity we can write

G(xl.xz...............xn) = gl(xl) +52(x2) R, AR +gn(xn)
We can impose the restriction Ky e O if we do not want any negutive feed
to be considered.

From the above it is clear that theAextremum of returns depends
on total feed x and activities n only. Hence we can introduce a sequence
of functions Un(x) such that

Un(x) = max. G(xl.xa.........xn)
This function Un(x) would then represent the optimum returns for feed
gquantities x to activities n. Now, since there could be no returns if
there would be no feed, we can write
Un(O) 8 0 for a e 142 50s0nsnssighis
provided that
gn(O) = O for each value of n.
For the first activity the feed guantity would be x and hence we can write
Ul(x) = max. g(xl)
subject to the condition that
0L x & X
If it is assumed that the maximum returns result when feed is x, we can

write
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Ul(x) = gl(x)
Now assuming any quantity X connected with the nth sctivity such that
0 x £ x
the remaining feed qguantity x = X, regardless of the value of X can be
used to get the extremum returns from the rest n-1 activities,

Thus the o;timum returns U1 (x -xn) for n-1 activities, along
with initial allocation of x to the nth activity, result in total returns

gn(x) + Un_l(x -xn)
This will be maximum or minimum for an optimal choic« of X, Hence

Un(x) = max. gn(xn) + Un_l(x ~xn) for @ w 2¢30e00s
and X D xn=;g,0
The case of n = 1 ic omitted since Ul(x) is already determined. This recur=
sive relationship permits us to determine the optimum return from the nth
sta e problem i/ e kggw it for the n-1 th stage.

This would now be further illuslrated by solving a simple example
similar to economic models treated by Bowman and Fetter87.

Example: It is reyuir 4 to design a change speed gear box for a to
tool room milling machine by incorporating ss many speed changes as posSs-
ible. Four standard gear systems are avallable which can be used in comb=-
ination. The sets can not be fractioned and must be used as whole sets i.e.
1,2,3 etc. « The total funds available for purchase of the sets are limited

to % 1000, The speci‘ications of cets are as follows:

Cost in § No, of Speed Changes
Set I 700 9
Set 11 500 L

Set III Loo 3
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Set IV 300 2
This is a simple multi-stage allocation problem in which allocation of
funds for purchuse of gear systems are feed or resources, available speed
changes are returns snd selection of sets are the activities. The ﬁroblem
can now be formulated as follows:

G = gl(xl) + gz(xa) + EE(X ) + gh(xh)

3

subject to
x__}_clxl+c2x2+c3x3+ckxu

and xné_o for‘n'-'-'l.a,...-..

whisbe gn(xn) £ vn xn forns= 1.2,.-0.0-..-

Note that the return functions,ggxn) are nonlinear step functions.

In the sbove formulation, xn'a are the number of whole gear sets, x is the

total available funds in dollars, vn's are the speed changes and cn's are

the cost of sets. Substituting numerical values we obtain
G=9xl+4x2+3x3+2x,*

and gl(xl) =9 x; K ga(xa) = b X, 4 BB(XB) 5% 4 gu(xh) =2 x,

1000 é;t 700 X, + 500 x, + OO x, = 300 ),

U (0 =9 x for 1000/700 N x; 0

U,(x) = max. hx, - U,(x - 500x) for 1000/500 = x, 0
U3(x) = max. 3x3 + Ua(x - hOOxg) for  1000/400 523 %5 £E= 0
U, () = max, 2% * Uslx - 300x,) for  1000/300 = x, = ©

Calculations for each activity are performed and the results are tabulated

as shown below,
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First Activity Feed 0-1000 with an increment of § 100
TABLE I
Allocation Units Returns Maximum Returns
x 1_A_xlé 0 .9 x Ul(x)
0 0 9 .0 =0 0
100 0 9 e Q=0 0
200 o 9 %@ =0 0
300 0 Qs 0 =0 0
Loo 0] 9 s O =0 0
500 o) 9 .0=0 0
600 0 9. 0= 0 0]
7200 o 9 .0=0
1 9 +.1=9 9
800 5] 9 s 0 =0
1 91l =9 9
900 (¢ D = 0=
i GF 3 R0 9
1000 0 G s =l
1 9 .1=9 9

Maximum Returns - 9 Speed Changes at an optimum feed of § 700
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-

Second Activity Feed 0-1000 with an increment of § 100
TABLE II
Allocaticn Units Returns Maximum Returns
x b .. 3 xz_.}_ 0 L. x, + U (x - 500x2) Uz(x)
0 0 L ., 0 + Ul( 0) = 0 0
100 0 L ., 0 + 01(100) = 0 0
200 0 L .0 + ul(zoo) = 0 0
200 0 4.0 +1U,(300 = 0 0
Loo 0 L .0 + Ul(hoo) = 0 0
500 0 L , 0 + Ul(soo) = 0
1 b1 sU0) = 4 b
600 0 L , 0 + 01(600) = 0
1 h o 1 + ul<1oo) = k4 i
700 0 H oy QB 01(700) = 9 9
1 L .1 + Ul(aoo) = bk
800 0 L ,0 + u1(800) = 9 9
1 L .1 + 01(300) = 4 N
900 0 L .0 + 01(900) = 9 9
i b o 3o Ul(uoo) = 4
1000 0 L .0 + Ul(lOOO) = 9 9
6 L .1 + U1(500) = 4
2 4 a2 W Ul( 0) = 8

Maximum Returns - 9 Speed Changes at an optimum Feed of $ 700



Third Activity

Allocation
X
0
100
200

300
400

500

700

800

900

1000

2
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Feed 0-1000 with an increment of § 100

W ORa N N W N o o Rl b A Aol b ol ot o X o e e A

TABLE

III
Returns
= x3 + Uz(x - hOOx3
6 + UZ( 0 ) = 0
P 0 02(100) = 0
s ) + 02(200) = 0
N 02(300) = 0
s 1 Ua( 0 ) = 3
> O + Uz(wO) = 4
= 02(100) = -5
s 0+ uz(ﬁoo) = &
id P U2(200) =5
o O % U2(7OO) = 9
PR 02(300) =
A0 U2(800) = 9
G L Uz(uOO) & 3
PR UZ( 0)= 6
. 0 + UZ(WO) - 9
e N UZ(SOO) = P
. 2 + UZ(IOO) = 6
o O U2(1000)= 9
e R U2(6OO) s 7
. 2 ++U2(2OO) = 6

)

Maximum Returns
U_(x)
&
(0]
(0]

0

Maximum Returns - 9 Speed Changes at an optimum Feed of & 700



Fourth Activity

Allocation

X

0

100

300

400

700

900

3

Units
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Feed 0-1000 with an increment of § 100

éxhéo

TABLE IV

Returns
2 e L} Uj(x - 300)(4)
O UB( 0) 0
2.0 » 03(100) 0
2.0 +U_(200) 0

P

2.0 » u3(3oo) 0
g e ¥ UB( 0) 2
2 <0 » Ui(hOO) 3

e T 3(100) 2

T s T (500) L

3

- A 3(zoo) 2
2.0 » U%(600) L
2.1 % U3(3Oo) 2
- I 03( 6 N
- ST A 03(700) 9
. e T u,(uoo) 5
v TP I 3(100) Ly
3.0 % 3(800) 9
o JEPRT, [ 3(500) 6
2.2 * 3(200) L
2.0 % 3(900) 9
- A 3(600) 6
2 3(300) L
p IR 3( 0 ) 6

Maximum Returns

UH(X)
0
0

0
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1000 0 20+ U3(1000)= 9
1 2.1 +U,(700) = 11 11
2 2o Z UB(MOO) = 7
3 25 » Uj(lOO) = 6

Maximum Returns - 11 Speed Changes at an optimum Feed of § 1000

Optimum Returns from 4th activity are obt;ined when one set IV and optimﬁm
returns from 3rd activity are used.

Optimum reiurns from 3rd activity are optimum returns from 2nd activity,
Optimum Returns from 2nd activity ar: optimum returns from 1st activity.
Optimum returns from first activity are obtained when one set I is used.

Optimum combination would thereforc be

one set I + one set IV

By solving this example we have scen that the dynamic programming
method can be successfully utilised for the solution of such problems.
However, we have also noted that the solution is lengthy and involves many
computations. Cn the other hand, in the situation where too many variables
are involved, it is almost impossible to solve the problem by any other
method except this technique. further, Since computers can easily be used
for simple calculations like this, number of computations is no longer a
limitation. This is the reason why, inspite of some of itse inhercnt dis-
advantages, this method is so popular with designers and many process
system designs and mechunical systom designs have been successfully dealt
with by this method. The ;roblem formulation, however, is different in
ecach case. For applications of this method to design problems see section

3.
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2.5% DNonlinearities and Gradient Methods

In the preceding sections under mathematical progra ming we
have examined the transportation method and simplex method, both of
them dealing with linear criterion and linear constraints. Unfortunately
most of the design problems as well as other optimization problems do
not fall under this class cf functions. Hany linear programming
examples are actually approximaticns and not truly linear. Several
attempts have be.n made in the past and are still under way to find
reasonably accurate and yet efficient methous of solving nonlinear
problems, lowever, the results of suc: efforts nave not been too
fruitful as yet. Prossibly some significant vrogress has been made in
the last yesr or two. Comienting on this situation WOlfeIZlahritoa,
"there is no lack of informatiorn as te how nonlinear programming
might be done, but on the other hand there is almost no inforumation
as to how nonlinear programrming shculd be done.'" Under a situation
like this it iz very difficult to handle design problems which are

nonlinear. In spite c¢f 2ll these difficulties, vpersons like l‘:rown,101

')ickinsonlo2 and a few others have solved some design problems; and there
is a likelyhood that many more problems will be tackled and come to
light since a reasonably satisfactory number of efficient methods have
quite recently become avuilable.
Nonlinear problems can be classified into three distinct
categories e.ge. 100
1, HNonlinear criterion and linear constraints

2. Honlinear constraints and linear criterion.

3¢ lwonlinear criterion and nonlinear constraints.



All nonlinear pro;ramming methods will solve problems having const-
raints that may be egualities, inequalities or combinstions of both,
The first two of these methods are comparstively easier than the third:
the first one heing the simplest. OSeveral methods of solviag these
problems huve been des=cribed in the literature and most of them use
the gradient of the function as a guide to reach the optimum and hence
are classified under the common name of the gradient methods. Juch
methods when the criterion function is unkncwn or only partially known
have been dealt with under sec. 2.43. In this section we are concerned
with the problem of known criterion.

Barly attempts of using gradient method for the location of
optimum were confined tc the classical approach of converting a cone
strained extremizing problem into an unconstrained extrsmizing problem.

CurryloB, Brown101, ﬂarrileb, &arroll3. Dickinaonloa. Asimow56

Bryen et, al. 00 & 106

and several others have used this approach,
however the results were not very satisfactory. Hence new and better
metho&s were investigated and some of them successfully utilized for
optimization prcblems of economics. A few important methods of this
clas: will be described in the following pages.

Un the basis of the comments made above, it is but natural
to start with the simplest case -- case 1 -= of nonlinear criterion
and linear constraints. Four methods of solving specifically linear

constrained problems are preseuted here. OGeparzble programminglo?

methods can also solve these problems by separating a nonlinear function

intc a sum of regionsl or local linear combinations; hence the nonlinear

106
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programning problem is converted into a linear programming problem and
can easily be handled by the simplex method. However separable
programming is not covered since it does not fall into the preview

of the s0 c¢slled gradient methods. These four methods are:

l, volfe's Reduced Gradient Hethcdlog.
2. Rosen's Gradient I'rojection Method 1109.
3., wolfe's Accelerated Gradient Mcthodllo.

4. Beal's Simplex Method for quadratic Prosramminglll.

(A slightly difierent method under the same title
is due to Wolfe 1Z,)

Wolfe's reduced gradient method can be considered as the extension
of Dantzig's simplex method, since it cén provide solutions other than
vertices of the constraint set and its computational basis is the same
as that of simplex method. DBy this method, after the formulation of the

problem U (x) a nonlinear criterion subject tc the linear constraints
B Sl
i3 4

The problem can be solved by using the following algoritham.

* e bj for each iy i = 132, secsss

Step 1. Assuming that a simplex basis and a feasible point
is known, and using the fact that the cJ!'s'of the simplex method are but

the gradient of the criterion, thocgesfor this case can be determined.

n
/
In simplex reduced coatscj=cj-§: aij Ci v in the same way the reduced
i=1
/
coaescj can be expressed by
n

/ k . k
o] v ITERS ]j - Z;l ajj[VU(x )]i

.

for the non-basic variables.
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Step 2. OSince a gradient vector of a function can be defined as a
direction in which the directional derivative of the function is

maximum i.e. a vector 4 x maximizing

U au
A U(X) = A ¥ eevovscssese ¥ ox
5§i o §§n n
such that Ax = (Axl' evssencssngy L‘lxn) .
and oX = Axl ¥+ sovvevsssecccccsess + Axn

then all of its components, except the jth one, must be zero where

partial derivative of U with respect to x, is the maximum of all partial

J

derivatives and ij is the direction of (%g). This can also be stated
3
as ij = cj if xj>0 or °j>0 otherwise ij = 0 for non-basic veriables,
n

Since the basic varisbles Ax can be defined go that 3 & y
J=1
therefore if 4x = O the problem is solved, ctherwise we have to proceed to

xj vanishes,

the next step.

Step 3. OStep length can be determined by calculating L where it is de{ined
by n_ = max. n(x + 4xx)0) where n is a constant detcrmining the step length,
the x will then be replaced by x + 4X o L

Step 4. [Ixcept in the case where all basic variables of new x's are
positive, a simple pivot step of interchanging the vanishing basic

variable with a non-vanishing aon-basic variable is performed, and steps

1 to 4 are repeated. If on the other hand all basic variables happen to

be positive a direct return to step 1 is taken. The method is said to
converge to a solution if the critericn is bounded and if the constraints
are non-degenerate.

The gradient projection met.od 1109

is also known as the large
step method or walking method since for reaching the peask, it allows
one to take larger ateps, without the possibility of leaving the constraint

set. The method will be illustrated by using a two dimensional example
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of a non-linear function U(xl. xz) to be maximized subject to the linear
constraints 1120, xézo, x2§31+blxl, xésaa-ble and xéiaB-bjxl. This results
in the pituation shown in fig. 2.54. GStraight lines are the constraints
and the contour lines ars the criterion lines depicting the value of the
criterion function., Starting with ar initial feasible point p in the
interior of the constraint set, gradieat (YU(x)) is cslculated; this is
obviously perpendicular to the associated contour line., A largest
possible step in this direction without leaving the constraint set,

unless the criterion reached an optimum for a shorter step, iz then taken,
so that point Pys @ peint on the boundary of the constraint set, is
reached. A gradient [VU(x)]l. is now calculated at this point. The
projection of this gradient on the constraint line associated with Py

is calculated. Since this is more than zero, a ray from Py is extended
in the direction of this projection to the farthest point on the ray but
lying within the constraint set. The farthest point thus obtained is Pye
The value of the function at points Py and p, are calculsteds Since U
has & larger value at p, than at p,, (from fig. 2.54) this cycle is complete,
The gradient at P, is now calculated and the procedure is repeated so that
we reoch at point p3. Since value of the criteripn is improved at this
point as well this cycle is also completed., Again calculating the
gradient, its projection and the direction of the projection we move
along tiis direction tc the farthest point Py of the ray lying in the
constraint set, Calculating the velue of the function at this point we
find that the criterion has reduced. This means that the optimum might

be some where between points p3 and Pye Choosing a point p on this
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B
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sepment such that the criterion is maximized after several trials, we
reach ihe point Py where the projection of the gradient at that point
vanishes. ience x maximizes the criterion and no further interpolation
is hecesuarj. in & multi-dimensional hyper-space this would not be
sufficient and hence we have to «dd certain cther ceonditions. Except

tor this, all cother steps can be generalized fcr any anumber of variables,.

Ihe recursion formuls for this meihod woulédé be

1 ] . 3y LT 3
x.k+"- & X.L - | 3— - 15 &, '5% ) AC
. : ST = i
winere (0 is step size and Kjlagrange'b multipliers, - detailed des-

crivtion of the rethod and the comgutaticnal algorithm are <iven by
. 106 » 199
rosen .

-
oife's accelerated version cf the cutting plane methodlLo

115

is a gpecial cuse of helley's Gutting rlane wethod and can best be
explained sfter de.ling with that method. Wwe, ther=fore, postpone our
consideration of this method till that tinme.
The details of Seal'slll method of guadratic programming were
not available at the time of this etudy 2nd therefore not included here.
The second case, which is mwaximizing or minimizing linear
critericn under non-iinear coustraints, can best be explained by using
the cutting plane method due to Kelleyllj. The reguiremnent for the method
is that the non-linear constraints be convexe. The constraints are first
linearized by using Taylor's first order approximstions. Starting
with a known initisl sclution, the value of the criterion ané that of

constraints are calculated at this point. If the original constraints

are satisfied tils value of criterion is the required sclution.
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If it is not so, by using th Taylors first order approximaticn obtained
earlier, sn approximaticn equation of the constraints at the initial
solution point is calculzted., Thiz will be the equation of a hyper plane
cutting the problem scace, hence the metliod 15 known s cubting plane
nmethods Now, sincs tic initial seclution, as te.ted above, does not satisfy
the original constraints, this solution is altsred. 'This, st the initial
stage, can be done by keeping all of the vari bles except one as constant
and altering this one. At each stage, .sing lie previous procedure,
the value of the criterion and the original coustraints are calculated,
If, as has beep mentioned before, the constrairts are sstisfied the value
of the criterion will be the extreme value otherwise the _receding steps
are rezpeated, The procedure, in the end, converges to the required
solution.

For the illustration of the method we will consider ielley's
two cdimensional example with ccmperatively better trials than his so
that we will reach the czolution in fewer iterations than he did.
kxample. Find a vector xz(xl, xg) such that the criterion qul - X, is
a minimum subject to the condition

» =
N AL TP RE e,
1

The =2bove constraint boundary is an ellijpse and hence the constraints
are convex. The convexity requirement is therefeors fulfilled,
Linearizing the constraints by uvsing Taylor's first order approximation

we can write ths transformed version of the problem as

minimize U= X =¥,
[

subject to " ¢(xk) T SO O B
. k 3 AU
where ol (xl’ XZ) and Ulx") = (3; ¢ .

1



Suppose we have at hand an initial solutien X, = ~2 and xi\= O
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The value of criterion at this peint is ~L and that of crisinal constraint
is 2%, Since 23 is larger than O, ths constraints sre not satisfied.
same 25 before we can {ind the lue

Now keeping the value of x. = 2

of x by using the linezrized approximation ¢f the ccnstraint at
x u(yZ, 2) « This value is found to be «0,56250, “ith thi. lition

we can repeat the sreceding steps; several such steps are tabulsted

as shown belcow,
K / "1 2 U 7
0 -16.00000x1 +8.0U000X ., =25.00000 |[=2,00000 [2,0003C |~4,00000 |.7%.00000
il =7.37500%; +2.125.0x,, 8419922 | =0.5625 - | 2,00000 [-2,56250 | €.19922
= -E.BBIS?xl +3.2hj;cA: ~4,11958 | +0.27807 |2.00000 |-1.72135 | 2.11978
B | -0.97970x, +7.09090%., =2,25875 | +40.27807 |1.32406 |=1.04590 Yo 24373
-1.88542x1 +;.u991hx2 - 10291 |+0,05243 }1.10000 |=-1,04757 | 0.10290
5 -l.9é520x1 +24L0056x ~2.00574 | +0,01000 [1.0127€ |=1.C0276 | 0.00572
+0,00011 |1.00000 |=0.52055 |«0,00021

the

The

general non-iinear problem consisting of both non-linear cr:

The solutior

igs
L31E

reguired vector is x

Cutting plane method

s between

= (0O, 1) ard the minimum value cf U= =l

& and is close to

Lo

is not confined to linear critericn only; any

non-linear constraints can be handled by this

ietihod,

tericn snd

After ccnsidering Kelley's cutting plsne metiod we ure now in a
position to consider “olfe's accelersted version which ie a . .licable
to the linear cons‘raints oniy. For this, at every othor step & woint

x

is defined such

that

X =




3

where J(is the sum of the values of the duzl varizbles z-=socialed with
3 - . k
the constraints generutead {rom x .

\s regards the general cmce of non-lincar criferiorn and non-linear
constraints, we have alre:dy seen that the cuilting plane method can
successfully be used for this purpose if coastraints are convexe Two
other methods, the separable grogramwing method and t:- dscompositicn
method, are also used for ncnlincaer programming of the gerneral type.
However, since these methods do not use gradient techni ue, they will not

. & " Y
) ] ; " S HTE | | T -
be discussed here., Rosen's gradient projection melhod ii is a wodified

vergion of method I, discussed uncer linear constr.int programming uad csn

handle general ncon-linear programming problems cuc =2s83fully. Zoutendijk

" s 2 e |
has proposed sever:xl variants of this method; and uitzgsdl 15 s shown
: P 1S ’ D : 5 -
that Frisch's multiplex method, lemks's coenstrained sradient methed

and Rosen's gzradient prcjection methods are all variants of one basic
scheme. The only class of methods which 15 not dealt with as yet ieg the
80 called differential gradient wethods family, a particulur case of this
has been studied b many under the neme of Gradient setiiod.

The basic idea behind the differential gradient wethod is taht
the direction of the gradient of the critericn is the (irection of ths
steepest ascent and hence if one would like tc reach the peak, one
merely hos to follow this dlrection by teking one step st 4 time sc as
always to increass one's altitude till cune encourters z restraint. From
then onward, cone has to move alom, the restrzint so long as one is capable
of going higher. By using twe different apprcaches for enforcing the

constraints, two different methodz of solving the prollen are pro-osed
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@eZe the direct difierential gradient method and the Lagrangian differentiszl
gradient nothod;oo' 118, 119, 120.

If we follow the above procedure and at any stage find that the
constraint ¢§x)4r0 is ;1olated it simply means that the value of x is
such that g, (x) is too big. we would, therefore, like to reduce this
function. As we have seen in the preceding paragraph, the gradients of
a function is the directicn of increase of the function, the direction
of the negative gradient would be the direction of decrease of a functicn.
Using this idea we can incorporate the negative of the gradient of
constraint in our s=zarch plan so that if there is any tendency towards

violation of the constraint, this negative gradient will kick back the

variable inside the constraint set. Hathematically we can express this as

follows:
n
dx = ‘
o =X7U(%) -1E1 ai(x)¢¢.(x)
ey 6:01f ¢(x)40 and ai=K1f¢(x)>O
Here K is chosen larger than the maximum oflVU(X)‘/hvg (x| for any x

lying on the boundary of the constraints., This method is known as the

direct differential gradient method. Curry, bBrown, Harris, Carrol, Dickinson
and several others have tried this method, though not in the same form for
solutions of certain design problems. !However the method is very inefficient
and hence acceleration technigues such as that of Shah's (described under
sectionz'43) and Forsythe's have becn used to im rove the efficiency.

Pynega, Delandlzoa and Ab10w120b have tried this nethod by analogue

computation rather than digital computations. All of these attempts were

for finding efficient methods of syster design and equipment design.
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In the Lagransian differential gradient method, using the
classical approach dealt with under section 2.23 the following augmented
function -

U (x,A) =U (%) + Z Ay ¢i(x)
i=1
is first derived. Now a necessary condition that x solves the programming
problem, U(x) to be minimized (or maximized) subject to the constraints
F(x)L0or@(x)=0 is that (x,\ ) solves the problem ii;oM;xa U (x,A)
If the criterion U(x) happens to be convex the necessary condition also
becomes the sufficient condition., This implies that any nonenegative

x that minimizes U(x) subject to ¢ =0 or ¥ O must satisfy the conditions

OU 0 or —a-q = O
" 3%
120¢
Yet another approach due to Courant is the s0 called penalty

function method. In this method for minimizing (or maximizing) a function

U(x) subject to the condition @(x)=20, an augmented function
o 2
T(x) =0 (0 +h[g (0]
is formed. This new unconstrained function is then minimized for

successively increasing values of h. Courant has proved that as h
goes to infinity the solution of the problem approaches the solution of
the original problem.

In the preceding pages we have studied several nonlinear
programming methods. Most of these are limited to the solution of convex
criterion problems. However, three of these, e.g. reduced gradient
method, gradient projection method and the separable programming method
are not so restricted. The reduced gradient method secms to be more

efficient but no computational evidence to this effect iz yet known.
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The gradient projecticn method is said to have been coded for the

114

IBM 704 snd 709 by Rosen and Merrillfl and computaticnal experience

has been reported. The separable programming is limited tc the functions
that could be easily separated i.e. gould be expressed as the sum of
separate functions of the independent variables xj. This method is

said to have besn coded for the IBM 709 snd is in use by the Standard

Cil Company of Lalifornialdla. For general convex programming, computat-

ional experience with Kelley's cutting plane method is reported by Dornhoimlalb,

and by Griffith and Stewartlalc and for lagrangian differential gradient

method by hannolaaa and by Harschacklaab. However, this method is said

toc Le very slow and does not seem to be promising. As regnrds the direct
differential gradient method, it has already been mentioned that considerable
experimentation has been undertaken but the method, although it works

well with some particulsr small problems, does not seem to be promising.

Scome aerospace problems are said to have been dealt with by Kelloylzoc
using the penalty function method, but sufficient information regarding
its usefulness is not presently available, 4uadratic prograrmming methods
of Bealell1 and of ﬁolfella have both been computationaly tried and are

said to be reasonably efficient in handling quadratic programming problems.
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2.61 Johnson's Method

For the design of mechanical elements Johnson has suggested a
method based on the classical approach of converting a constrained
extremizing problem into an unconstrained extremizing problem. He
divides the optimum design problem into three different cases which he
calls

1. Design Under Normal Specifications

2. Design Under Redundant Specifications

3. Design Under Incompatible Specifications.,

In case 1, it is possible to combine constraining equations or inequal-
ities into the criterion (I'rimary Design Equation, according to Johnson)
in such a manner that the limiting conditions apply to the independent
variables existing in the newly developed critericn. A curve indicating
the relation between the criterion and the independent parameter can
then be drawn for each feasible materizl and, applying the limit, the
optimum parameters and extreme criterion can be found. Of all these

the parameters corresponding to the material which gives the minimum

(or maximum) criterion can then be selected.

In case 2 the above procedure cannot be adopted on account of
the existince of constraints in excess numbers. The procedure then is
to ignore such constraints temporarily and handle the problem exactly
in the same manner as case 1 is dealt with. Curves can then be drawn
with different independent parameters as abscissa. These steps are
taken sequentially so that the results of application of limits for
one independent parameter are carried to the next consecutive case.

Thus the parameters obtained by the last curve would be the optimum
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parameters., Usually the transformed criterion is nonlinear and diffi-
cult to handle, hence logarithimized criterion rather than the actual
criterion is used. This linearization simplifies the problem and
mathematical manipulation becomes easier.

Case 3 is a special case of case 2 and can be handled in
exactly the same manner. However, though it does not provide any
feasible solution, it gives a clue to how an incompatible problem can
be converted into a compatible problem by varying certain limits or
by using other materials. Hence when all other methods fail this
method can provide data for altering the specifications to convert an
incompatible design situation into a compatible design situation.

Although Johnson's approach is an ingenious technique for
design of mechanical elements, it seems that it is incapable of hand=-
ling inequality constraints which are functions and it cannot be
applied to a general problem of a set of large number of equations and
inequalities. Klein's method described in section 2.26 may generally
take care of the first difficulty whereas the nonlinear programming
methods described in section 2.54 can handle the second one.

For the application of this method to design of mechanical
elements Johnson's book Optimum Design of Mechanical Elements (ref. 34)

can be referred to.
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2.62 Other Methods

After dealing with several mathematical tools of optimization
we would consider in this section the tools which involve little or
no mathematics. OSeveral attempts have been made to find the best or
optimun conditions when it is very difficult or very expensive to
formulate a mathematical model by theoretical or experimentation
methcds. A few important techniques of this type are Simulation,
Statistical Control Frocecdures, Simplificaticn Methods, Standardi-
zation tractices and the Method Time Measurement Techniques.

In simulation, & real systens is duplicated in some sense so
that by using this approximate model sufficient data can be collected
for making a decision. /A special simulation method which takes into
consideration the stochastic or random factors, i.e., a method of
simulation under risk or uncertainty, is the so-called Monte Carlo

Method. The subject is dealt with in detail by MorgenthalerlZB.

Applications to product design problems are dealt with by Starrlal+

and production design problems by Bowman and Fetter86.

Statistical control procedures can be used to optimize
product design by determining the optimum or the so-called natural
tolerances. / method of determining tolerance by this method is dealt
with in detail by Mirlas. Eary126 has used a similar method for
finding the best coolant for a machining operation.

Simplification methods are attempts to reduce the cost of a
product by simplifying design from the point of view of manufacture,

use and maintenance. Several examples of this method are described

>
by Mza\ynamadl"7 and various other authorslzs.
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127-128

Standardization practices are very important in the
search of finding new meane for reducing the cosg of an over-all
design of an equipment; these may be considered as sub-optimization
attempts which could be utilized later for primary optimization.
The method time measurement technique, though comparatively

new, have been widely used for optimizing manufacturing method5127'129.

129

Similarly, for scheduling problems the PERT system of evaluation
(Program Evaluation Research Task) initially developed for the U.S.
navy has becn found to be very valuable, and since then has been

extended to resource incorporation, performance incorporation and

programme balancing.
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AZTLICATICORE

3.1 [lesiyn of lechanical Elemente

The dictionary meaning of the word mechanical iz 'concerned
with machines or pertaining to machines. In comson usape the word
machine is used to sigrify machine tools; this ic incorrect. From
technical point of view, a machine is defined as a device which used
power to accomplish = physical effect. \According to Johnson}h. a
machine can be defined as a mechanical structure which is characterized
by mechanical elements having relative moticn and generslly capable
of transmitting or dissipating significant amount of energy. The
above definitions include machine tools as well as several other
equipments such as engines, turbines, motors, measuring devices, heat
transfer equipments etc. Reeping this in view, we biuve captioned this
section "Design of Fechanical Elements" znd we intend to cover the
appiieationa cf optimization technijues tc the design of various menbers
cf all such types of eguipment,

Although the use of optimizing techniques in this field is
not older than a decade or two, substantial work has been done and
gquite a few ontimum design protlems have been solved by using such
techniques. fiost of the earlisr work was confined to graphical and
graphical cum analytical methods. 1f any analytical approach was
applied at all, it was mostly concerned with unconstrained design.

It is only during lsast few yeérs that the problem of design of such

131
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under equality and inequality constraints and limit or boundary conditions

was extensively studied. Several wethods c¢f sclving problems falling

under the linear programming class have been discussed and attempts

have been made to solve nonlinear problems by using linear approximuations.

A bibliography of applications is given below.

Bibliography of Applications to Design of llechanical Zlements

1.

e

3

Se

6.

7

8.

Johnson, K C., see reference 3h.

Hinkle, R. T., see reference 23.

Johnson, G, I., "Computers ielp Design Valve ‘rains," S,A.E, Jour.
Karch, 1963, pe.p. 30=33.

Nourse, J. H., Dennis, R. C., and wood, #. M., "Designing an optimum
Cam," SeA.E. Jour., Nov.; 1960, pp. 22-0h4,

Hoffuwan, G. Ae¢y, "Minimum Weight Froportions of Pressure Vessel Heads,"

A(SoM.E, Trans., Vol. 29, Ser. 'D', 1962, pp. 662-€74,

Erisman, R. J., "Optimum Design of Helical Compression Springs,"

AeS.MsEs Trans., Vol. 83, Ser. 'B!, 1961, pp. 227-234.

Plunkett, R., and Schenectady, N, Y., "The Calculations of Uptimum
Concentrated Lamping for Continuous Systems,' A.S.MeF. Trang.,
Vol. 2, Ser. 'E', pp. 215=22h,

Marinis, L. D., and Hutenlocker, He., "Uptimization of Inertial Locker
wheels for Space Craft Slewing and Altitude Contrcl,”

I,E4E.E, Trans., Vol. AS=2, 1962, pp. 44=451.
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Simple Tapered Radiating Fins," A.S.M.E, Trans., Vol. 3, Ser., 'C'
1963, ppe 193-202.

Fillipi, ¥. Js¢ and Levenetz, B., "Uptimum Joint Design for High
Temperature Honeycomb Penels," S,A.E, Trans., Vol. 60, 1960,

Heolladay, J. C., "Computer Design of Uptical lLense System (ILM 70k),"
Applications Symp., Proc. of the 1960, pp. 112-127.

Marble, F. E., "Nozzle Contours for Minimum Particle-lag lLoss,'" Asl.A.A.
Jour., Vol. 1, 1963, pp. 2793-2801.

flolister, G, 5., '"Cyclic Stresas Reduction within Pin-Loaded Lugs
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Jaroudi, R., and lHeard, D. E., "Optimum Geometric Factors for Semi-
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Vol. 1, 1963, pp. 146-147.

Vogt, Y., "Developing Cam System Charts for Uptimum Performance,"
Tool Engineer, March 1960, ppe. 115-12k4,

Macklin, M., "Optiwum Design of Compact Heat Exchangers," Machine Desipm,
April 12, 1962, ppe. 132=137.

Hirschhorn, J., ''Cam Design for Hinimum Pressure Angle and Minimum
Base Radius,’ Ibid., Sept. 13, 1962,

Hertrich, ¥. R., "How to Balance High Speed Mechanisms with Minimum
Inertia Counter Weights, Ibid., Msrch 14, 1963, .

Saleman, B., "Optimum sections of Tubular Columns,'' Ibid., Sept. 3,

1959, pp. 16l-l63.
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y and Rubin, A, E., "Designing Minimum Section Columns,"”

Ibido. Oct. 26' 1961. PPe 167"1690
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Fleck, J. J., "Optimum Cam for Vulcan Gun," G.E. Technical Informatiém

series' No. R56 A 0103, April 2,,19%6, = ", ST ‘ :
Carlson, J. A., "‘rinciples and Practices of Constant load Cam Design

for High Speed Uperations," seé ref. 1l under sec. 3.2.
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o "Minimum Mass Thin Fins which Transfer Heat only by
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Also see ref. 11, 27, 30, 36.
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-

" i)
German kinematicians such as Beyer ', Rcsenzeur -~ etc. have,

in the recent past, tried to ratiunalize tho methods of syntresis of

mec anisms b usins the previocus works of German and hussian k'neméticians
such as Permeiste lﬁlaud Pchebycheffljz. :1th the migration of.Such persons
into United states during the fifties, the regearch in kinematics in this
country received = new impetus. Fersons like Frsudenstein, ilartenberg,
Rothbsrt, lall, Hirschhorn etc. have, since then, further extended this

work by using Tchebycheff's polynomial a-proximations, the methed of

finite differences and complex notation, Ifforts have been made to
syuthesize four bar mechanisms for best trunsmission properties and function
generstors with: minimum errors by using high speed digital conpulters.
Hroblems of high speed cam design and intermittent motion generstors

have alsc been studied. Some of the important works in the connection

are referred tc helow.

Dibliopraphy of Applications to Synthesis of lechanisms

1. Roth, B., Freudenstein, ¥., and cander, G. N., ""Synthesis of Four
Link Pathe-eneroting rechanisns “ith Optirum Transmission

Uharacteristic”, Trans. of the Seventh Conference of lMechanisus,

PurdueUniversity, Cet., 1562, op. bh<i8,
2e Jenson, Fe. ~e., "iow to iroportion the Jmallest Cam for Given Fressure

sngle," 1bide., pp. 202-212,

o
.

Lewis, Ue We, "Kinematic Synthesie,” Ibid., pp. 57-60
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Keller, R. E., "Mechanism Design by Flectronic Analogue Computers,"
Ibid., pp. 11-17,
Dunk, A, C., and lamilton, C. L., "Six Bar Linkages,' Sixth,
1960, pp. 139-142,
Eumurian, C., "Designing Cams for Analogue Computers,' Ibide., pp. 55=66.
Polukhin, V, P., '"Cn a Heans of Relieving Rectilinear Guides in

Hinged Mechanisms (in Russian),' Nauch, Trudi Mosk, Tekhnol.

In-t Legikoi From=sti Pt. 20, 1961, pp. 165-183.
Epshtein, Yu. V., "Some Froblems of the Synthesis of Copying Mech=-

anisms (in Russian),"” Trudi In-ta Machinoved., Akad. Nauk

S545.3.R., Senminar Po Teorii Mash. i Mekh., 22, 85/8€, 1961,
Ppe 137-153.
Bogden, Re C., "Pelecudi, C., and “aslmacivc, L., "On Spherical Curves

and Mechanisms to Generate Them (in German)," Rev. Mecan. Appl.

?. 2. 1962’ PPe 307—321.
Freudenstein, F., "Four Bar Function Generator's Cocmmon Function

Uenerators with lLeast irror," ITrans. of the Fifth Conf. on

Mechanisms, Cct. 1958, PurdueUniversity, Machine Design,
FPe 1010-107.
Hain, K., "How to Apply Drsg link Mechanisms in the System of Mechanisms,"

Irans, of the Fourth Conf, on Mechanisms, PurdueUniversity,

Octe 1957, Machine Design, 1953,
Tesar, D., and ¥Wclford, J. C,, "Five Point Exact Four Bar Straight line

Heghanism,'" Trans., of the Seventh Conf. on Mechanisms, Purdue

University, Uct. 1962, Machine Uesign, ppe 30-38.
Also see ref. 1, 2, 4, 15, 17, 18, 21, 22 under Bib., Sec. 3.1

and ref. 25, 29, 25 under general references.
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53 Design of Machines

A problem of design of a machine is a primary optimization
problem, Hence it is comparatively more difficult than the sub-
optimization problem of design of mechanical elements. The situation
further deteriorates wihen nonlinearities are encountered, Cn account of
these difficulties work in this field has not been extended to general
design of machines. liowever, several examples of design of standard
machines are reported to nave been practically handled Ly using opti-
mization technigues. Extensiv§ use of such techniques is reported in the
field of rotating machine design only. Examples of machine design
problems whers only a few constraints and not more than two or three
variables occur in fairly good numbers. Some of the references

available to the author are given in the bibliography that follows,

Bibliography of Applications to Design of Machines
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Aris, R., "The Optimal Design of lhemical Resctors," Academic Press,
NeYo, 1561,
Garg, A., and Hilliman, y ""The Air Craft Progress Curve Modified
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Zet System Design

A system may be defined as a combination of seversl parts and
activities usually with one basic objective. It is this basic cbjective
of singleness of purpose which gives a unigue characteristic to a system.,
Ufteny, a change in one of the many variables o¢f a system results in
correspending changes in many other varisbles. Thus we can szy that

are usually complex.

]

F'rom the sbove discussion it is clesr that the problem of system
desisn, like the problem of machine design, is a primary optimization
problem, Most of the difficulties encountered in the optimum design of
machines are also experienced in the synthesis cf optimum systems, In-
spite of all these difficulties the problem of outimun design of systems
has received the utmest attention of the researcheis. It is perhaps
due to the fact that the systems are usually complex, no alternative
a;roach is presently 'nown and that mere guessz work cannot be tolerated
gince 1t may lead to disastrous situations, Statisticel methods, dynamic
prograwming, simulation techiniques etc. huve all beer zpplisd at some time
cr the other for the synthesis of different type of systems. Thess researches
have recently culminated iato what is presently known as adaptive or self-
optimizing systems A self optimizing or adaptive system is one which
learns about ite environments and adjusts itself to expected performance
ir & continual process of measuring and cdjuﬂting'78". Hany of the techniques
developed in Operaticns Kesearch have been applied to system optimization.

A bibliopraphy of applications of optimization techniques

to system design followus,
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serospace Design

The two world wars, the present armament rsce between United
states and Union of Soviet Socialist Republic and the age long desire
of man to conguer outer space have all werked for the developments in the
aerospace design field., Since s single failure costs milllions of dollars,
an aerospace engineer must be very careful and instead of relying on cut and
try methods he must use more sophisticated techniques. The problem of
fuel consumption, problem of long life power supply units, the exact nature
of trajectories, transfer of rockets and satellites from one orbit to
.another, reliability of system performance, attainment of required speeds
in a given interval of time and capability of exerting the required thrust
are questions which can bz handled by optimization techniques in a better
way than by any other technigues. Almost all optimizaticn techniques
described in the preceding sections have been tried and in several cases
more sophisticated methods particularly suited to the individual problems
have been devised. The author has not extensively studied aerospace
design; however, to be comprehensive, a bibliography of some selected

applications are included.
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3,6 Tooling snd Processing Design

Tooling and processing design is the most neglected branch
of engineering design field. This mwsy be due to the fact that the so
called cut and try methods usually work and because a single failure,
even if it occurs, does not cost too much, However, with the rapid
growth of technclogies it is felt that this status should not be allowed
to continue, Rationalizing the rules of thumb, either by standard
practices or by developing relevent theories is mors common these days.

The knowledge of existence of optimum parameters in tooling
is not new, however due to lack of theoretical corelat on with practical
results, it is usually difficult to arrive at any precisc value of such
parameters. A few examples of such perameters are the half angle of the
wire drawing die, the radius of the punch nose in deep drawing dies,
the cutting angle in the single point cutting tools etc. where
theoretical corelat;on exists it is easy to calculate such optimum
parameters mathematically by using elementary procedures of sec. 2.2,

An example of wire drawing die half angle will be illiustrated here.

Using the following relation from Ford 132

P/A2 = q (1= u cota) «r/(l-r)

where P is drawing force, A_ the area of the drawn wire, Al the area of wire

2
before drawing, q the normal die pressure, u the coefficient of friction,
a the half angle of the die and r,ratio equal to (1 - AQ/Al)'

we can proceed as follows:

rn(l-Ae/Al)al-Dg/Di

where D1 and D2 are the diameter of the wire at the entry and exit respectively.
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From the geometry of the die we can write

D2 = Dl - L tan a where 'L' is the eftective length of the die.

Subatituting this in the basic relation we get

>
P = ?ﬁ (2D, tan @ = L tan“ @« « 2 3 D, = p L tan )
A2 Jl 3 X
isee. = kl (RZ tan @ - RB tan2 s "kh)

where k, = q L /B, ky = 2D) =n Ly ky =T and k, =2 D

e i

Differentiating the stress :"/A2 and eguating to zero we zet

s

k2 = 2 hi tan @ or a = tan'l k2/2k3

= tan’l 2D1 -3 L

2%

for a '1' inch effective length carbide die (p = .O4) with an entry diameter
of 1/8 inch the optimum value of the half angle
X = tan_l 2 . -125 s QM > X
e

. tan.,205

= 6°
which is the value commonly used.
Similarly, in processing, the maximum height of draw, the optimum blank
for deep drawing, the optimum machining tolerance, the best coolant
for maching can be determined. dJome relevant examples are referred

in the bibliography that fcllows,.
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3.7 Structural Design

In dealing with probvlems of structural design one often
encounters the problem of choice of member parametersz to meet a
certain criterion. In such coses the problem becomes extremely difficult
if the structure is assumed to be perfectly elastic. Un the other hand,
by assuming the structure as rigid and perfectly plastic, it is possible
to handle such cases in a fairly simple manner. The determination of
optimum design of structures thet are just able to carry a specified
load on the above assumptions is usually cslled the method of limit
design. The problem can then be sc reduced that the criterion,
usually weight, can be minimized subject to certain linear inequality
constraints. Cften such problems can easily be reduced to linear for
and hence linear prograwmming procedures can be applied.

beveral structural design probiems huave been handled b
this technique. Some of the impcrtant references are given in the

Bibliography that follows.
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2.8 Electrical Design

In electrical design the problems of synthesis of networks,
design of rotating machines, design of electrical apparatus, trans-
mission and distribution systems design and synthesis of control
systems have all been dealt with by using optimizing teclinijues.
Transportation method and its variations have bLeen applied for network
synthesis, linear programming for electronic package assemblies and
distribution system design, dynamic programming for the control system
design and various analytical and analytical cum graphical methods for
the electrical rotating machines and non-rotating or stationary appara-
tus design. Actually the pioneering work regarding the application of
optimization techniques in engineering design was done in this sector.
Even at present time most of the research regarding application of
optimization techniques is being handled by organizations like I.B.M.,
G.E. and Westinghouse, all of whom are primerily interested in the
manufacture of electrical apparatus.

Since control systems have already been dealt with under
system design, in the bibliography of the applications of optimization
techinijues to electrical design which follows, these references are

not repeated. They are merely referred back.
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2.9 Froduction Design

Production design problems such as that of machine scheduling,
inventory control, product choice, purchase planning, quality control,
standardization, method improvements, work simplifications, investment
anslysis, etc., are problems where one or the other optimization tech-
nique is successfully applied. It would not be an exageration to say
that production design is tae only branch of engineering where opti-
mization techni ues have been extensively applied and almost every
time without any failure. Scme of the more important applications
are given in the following bivliography. They are closely related to

Operations Research,
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COMMENTS

Summarz

The method of finding extrema of multivariable functions

by using ordinary theory of maximum and minimum has been presented.

The problem is simple if the function is differentiable with respect

to its independent varisbles and has an extremum in the allowable range
of its variables, However, in case the function contains transcendental
terms the method is almost impossible to apply.

When the function has to satisfy certain equality constraints
the method of undetermined rultipliers cam usually be §pplied. If
conastraints happen to be inequalities‘rather than equalities, an approach
due to Valentine, Klein and others can be used to transform them to
equality constraints. The undetermined multipliers method is limited to
the functions which allow the velue and the location of the extremum to
be expressed in terms of the newly introduced variable, the undetermined
multiplier., If the function to be handled in this way happens to be a
polynomial of its independent variables Zener's method permits one to
evaluate the extremunm without determining the independent variables, It
reduces the computaticnal time by transforming a problem of sclving a
set of nonlinaar.equations into the problem of solving a small set of
relatively'aimple linear egquations,

In certain cases when the critericn function is convex the non-
linear inoqualiﬁ& constraints can be reduced to linear inegquality constraints
by using Charnes and Cooper's technigue and convex programming

148
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can be used to determine the extremum,

Several practical problems require the determination of an
extremum of a functional rather than a function. If the end conditions
are fixed and the functional is not constrained the extremum can readily
be found by using the simple variational calculus procedures, If the
problem happens to be isoperimetric, undetermined multipliers can be
introduced and the augmented function can Le used in a similar wanner
to the preceding case, nd constrained functicnal extrema can be determined.
If the end conditioned are not fixed the problem cannot be handled so
easily. Euler eguation as well as transversility conditions must
be satisfied, If the problem happens to be Mayer or Lagrange's type,
which is generally the case in the design field, it can be handled by
an approach similar to the two cases discussed above.

In practical design situations most of the analytical methods
are to be applied on a high speed digital computer. For this, a problem
must often be solved by using numerical iterative techniques. For the
variational calculus problems,Euler's Method of finite differences
reduces the nonlinear functional problem into polygonal function problem
which can then be applied to computers, If the nonlinear funotional
can be approximated by the sum of linear functionals Ritz method can be
applied, If more accurate results are required Kantrovic's method can
be useds, For multistage multivariable functional dymamic programming
or Pontryagin's Maximum Principle can often be applied successfully.

If the set of constraining equations is difficult to solve,

Newton-Raphson's approximations can be used provided the first derivative
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does not vanish. In case the first derivativ: vanishes Algorithm's

method of errors (reguls falsi) can be used.

In several instances the extremizing problems end up in
differential equations which are very difficult to solve. TFor solution
of such equatiuns, the finite differences epproach can generally be used
with success. If the criterion as well as cons&raints happen to be
homogeneous Bedford's f{inite increment technigque can successfully be
used. 5Since parameters are changed one by one for reaching the extremum,
the designer is kept aware of the inside picture of the design situation.

If the criterion function is unkhown or only partially known,
the statistical exjerimentation technique of search can be used. For
the univariable unimodal deterministic model, Kiefer's method very
quickly reaches the extremum. For multivariable strongly urimodal
functions the contour tangents elimination technique is very valuable.
Other cases can generally be handled by various versions oi gradient
methods, Gradient methods are not very efficient and hence acceleration
techniques are u=ually applied to improve efficiency. 1If constraints
afe inveolved pattern search technique is of considerable value. For
, stochastic situations Kiefer's approximations permits easy handling of the
error problem, Dvoretzky's method gives still better results,

If the extremum happens to be on the boundary rather than in the
intericr of the prescribed region, programming methods can be of very
great valuve, Linesr cases éubjected to both equality and inequality
constraints can easily be handled by linear programming methods., If
the basis of the problem happens to be triangular the sim le transe

portation method is the best to appl;, otherwise the simplex method may
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be tried. OSimplex is a strong optimization tool and can be applied to
several design situations.

For multistage ncnlinear functions, parametric or otherwlse,
dynamic programming often solves the problem by reducing the multi-
variable problem into a series of sequential single variable problems,
The calculations are usually lengthly znd hence computer memory increases
exponentially with the number of variables. The method, however, is
reliable and car be applied in both ordinary and variational problems.
Pontryagin's maximum principle in its special digitized form can be
successfully utilised to reduce the dynamic progracming defect of
rise in computer memory capacity. Uowever, this gives rise to a
cumulative error which in ordinary circumstances is very difficult to
determine,

The problem ofi optimization of guadratic functions subjected to
linear equality or inequality constraints can be handled by Seal's
extension of the simplex method. For linear equality or inequality
constraints and nonlinear critericn dJolfe's reduced pradient method,
Rosen's gradient projection method I and Kelley's cutting plane method
seem to be promising. FHconomic models are seid to have been suc .ess-
fully nandled by these methods but tne-ccmputations are not available
for common use.

Rosen's gradient projection method and Kelley's cutting plane
method along with the separable progromaming method and decomposition
method are applicable to problems where thie critericn as well as

constraints (ecualities or inequalities) arc ninlitnesr. Rosen's hethod

L
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seems more suited since it does not depend on the properties of the
criterion other than smoothness and computational experience is

available,

Conclusions

Choice of a particular method varies with the type of problem
and. hence it is very difficult to suggest one particular technique.
However, as soon as the problem is formulated, the nature of the
criterion and the constraints suggests a method to be preferred. Exp-
erience is limited in many of the newer techniques, making it diffi-
cult to give firm recommendations on choice of method.

For the sub-optimization problems such as the design of mech-
anical elements, synthesis of mechanisms, design of structures or
machine scheduling problems of production design, if the criterion and
the constraints happen to be linear, simplex can be selected. Since it
is generally sufficient to know the how's of it rather than the why's
of it, one can handle simplex by knowing just elementary matiaematical
principles. Many sub-optimization problems do not fall under linear
programming case. ln such cases, sub-optimizaticn problems can usually
be solved by Lagrange's method of undetermined multipliers with Klein's
extension and Newton-Raphson's ejuation solution procedure. For fairly
large number of variables Zcner's Method along with Charnes and Ccoper's
extenion and convex programming seem to be pfomising provided it satis-
“ies Zener's method's requirements. An alternative choice is Johnson's
approach which is more or less a graphical approximaticn technigue and

is particularly useful when the design problem involves a choice of

materials. Certain multivariable problems of decign can be handled by
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dynamic programming methods.

for the primary optimization problems such as the problem of
design of a machine, synthesis of systems, synthesis of electrical
networks and process equipment design problems, programming methods
are better. If such problems happen to be non-stochastic and criterion
can not easily be determined, which is generally the case with the
process system design, particularly with chemical process systems,
direct search methods can be used. If the problems are not error free,
such as control system design ;roblems, these can be handles by Kiefer
or Dvoretzky's method. Certain control system design problems can be
solved by dynamic programming or the digitized maximum principle. Some

of the electrical apparatus such as transformers or reactors can be

tiandled by Bedfords's finite increment technique where as electrical
network problems can generally be solved by the transportation method
or the convex progrumming methods. For a special type of problem which
may occur in process design Zener's method of minimizing system cost
in terms of sub-system cost can be used to reach the optimum with fewer
computations. When reliability is of paramount importance, such as in
. aerospace design, certain control system designs and some of the process
design problems, simulation techniques are the only choice for deter-
mining the behaviour of the system before it is actually designed and
manufactured.

Some of the nonlinear programming methods such as gradient proj-
ection method can handle the problem of finding the extremum whether it
lies in the interior or on the boundary of the given region. However,

generally such problems can first be tried by simpler method of ordin-
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ary calculus. If these methods fail, it is at once known that the extremum
does not lie in the interior of the region and hence the programming methods
can be applied for the location of the extremum at the boundary.

Certain fields in engineering design are more or less neglected
so far and depend mostly on cut and try methods; rationalization of such
methods by using standardization procedures and various statistical
techniiues such as statistical control method and_regression methods seems
advisable.

Since no experience with nonlinear programming in the design field
is so far reported, it would be worth while if further research were done
in this field. It would seem to be more appropriate to conduct such research
in one of the few promising nonlinear programming techniques with the
intension of evolving a simple code that could be handled by less experienceg
designers engaged in practical fields, rather than in research. This thesis
is prepared with the point of view of the designers and though some of the
recent techniques such as search methods, simulation, dynamic programming,
maximum principle and nonlinear programming are included, simulation and
search techniques are just touched, dynamic programming and maximum principls
are covered only in part, and nonlinear programming methods are dealt with
very briefly. On account of the rapid pace of development these days it is
very difficult to call any work comprehensive and up to date. However, it
is an attempt to provide an extensive up to date survey of optimization
tectiniques and their applications,

For the guide of the designers a comparative chart of various

methods is included at the end of this section.
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Lagrange's Method of Undetermined Mul.ipliers
Klein's Extension of Lagrange's Method

Zener's Method

Charnes and Cooper's Extension of Zencr's Meth.d
Isoperimetric Problem

Mayer's Problem

Pontryagin's Maximum FPriniciple
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Linear or Nonlinear
Nonlinear( Convex)
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Accelerated Gradient Method (
Hooke and Yeeves Method(determinicsiic)
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Experimental
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t

Solution of differential equations--- Method of finite differemces

ln the use chart of methods following abreviations are USQéﬁhi

i, Const. Constraints »?_
ii. Eq. Equations f“
jii. Comp. “xp. Computational Experience with Computers

iv. Comp. ¥rog. Computer Programme (nature of)

v. Prog. Programming

vi, Con. ineg. Convertable to eguality type ine uzlity
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