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o f d etermining ext rema of univariable and multivari able ~1own or unknown 
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gat ed when such extrema lie either in the interior or on t he boundary 
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No s uch design orientat ed survey seems to ha ve ever been taken. Comments, 

regarding the applicability of these techniques t o va rious design situa-
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1 

INT~DUCT..LCN 

1.1 l-1eanine of Optimiz&tion 

Optimization is the p rocess of ooarcring for th e bes t und er 

certain prescribed conditions. It may be f or maximizing a certain 

p:Jra'!later or minimidng yet another. Frorr. this it is c l t: Ct !" r.httt the 

word optimization is not ne\" t o man. At ever~./ stel• .J. m·~r. ~r1 b to make 

a de.::i s ion c:Jnd by nature i nclined t u m e one whic h is beat . Howeve r , 

t.e is not free to do v.ho.t he likes ; forcee. of nature , customs of society 

in which he lives , his own skill and c.bilitiec all force hi rn to think 

several times , analyz e the \Jhole prollem and 3pply his pnst e xperienc e 

and kno wledge to moulct the circumstances in such a faslu.on ttl at h e rna~· 

a rri vc at a rnost fa vour~:~ble d ecisicr . 'rhis process of ' eterr i ning t h e 

conditions which ultimate~ r e sult in arriving ut a beat oolJ tion i ~ 

the process of optirnization and the decision thu s arrived "l't is known 

us an o~timum decision. 

Tools v1hich can be used in arriving et such a decision are many 

and varied. All aspects of a prob lem ::~ ,· e first to be st!.ldied carefullyi 

every possible effort should be mude in collecting nec e ss.-.. ry inf orr..f. tion 

about. the problem ; analysis of the s aid cat a in the :ii gh" o f ~t~ st 

experience ; prea iction of future a nd it s iflll;licatio :-. s , a ll '1Uut b o 

studied minutely before taki~, a f i nal decision. 

Thi.s probler1 o f deci s ion m0kinK hns led man to t.: vo"'.. V•"' t he 

b r anch of kilo ..,. lec.6e which i :: pr ... r.t>ntl · i< uc~m es "m<... tl.d n ;tic s · • 

1 
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In the process of evo l ution he nas formul a t d oany theori e s and tri ed 

various met} od s which , i n the ad vent of time , he h a s either abandont•d 

in f a vour of ·...,h Rt eeernF to be better or p er ma n ently adopt ad. Hoveve r, 

time and Hgain , h e has to look back and a ccer tain whet her he c a n utilise 

the methods wLic h h e has once discarded, c ons i dering the knowledge he 

has acquired i n t he mean time. And many a ti~£ he found tha t methods 

once c onsidered of little value proved to be t h e :uoat us ~;f ul tools i n 

the future . 

One such mathematic a l tool is a p rocedure knoWn. as " a lgo r ithm" 

bea ri ng th e nam o f the celebra t ed Muslim mathe maticia n o f t he 9th 

century, Alk.'nve !'t hi r.1j • , 11who may be r P.g:arded perhaps as th;; f ollnd e r of 

modern a lgebra - t:•e Ut11'le it e] f c om~ fro r>, hi m" . 
2 

Deal:i ng with the 

origin o f t he \oiOrd aJgori thm , Oystez Ore :tritee , "the mo st infl uential 

work in t h is period is due to Mohammed i bn Musa Alkhowarzimi who lived 

in the beginning of t h e 9 t h c t-nt ury . Hi c books on ari th'lletic and algebra 

wer e widely spread through trans la tiont-1 , but by t he c onfusion of the 

translators the a utho r 's name was corrupted into the word al orithm~ 

origina lly used to denote calculations in Hi.ndu-Ar abic numbers and 

still used in modern times to denote a repeatoo mPthod of p rocedure . " 

By this method , "to solve an e quation" , writes Cajorie5, "f(x)=v, 

a s sume for the moment , two values of x , e .g ., x = a , a nd x = b. Then 

from f(a) = A and f(b) = B, d etermine the error v- A = B and v-B = ~ 
~-d a 

a b . lly 1 . t. , t 
Ea-~ ~s genera a c ose appronma ~on, ou then the r equired x = 

absolutely accurate whene ve r f (x) is a linear function of x " . The 

iterative nature o f the method made it mo s t suitable for c omputer 

applications. After undergoing s everal changes , at present , the word 

•Abu Abdullah tiohammed Ibn- e- Musa Alkhwarthirni
1

• 

is 
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algorithm is used to signify auy i.terativ(; mathematical procedur~ and 

Bcveral such p.:-ocodureEJ are presently knc ·.r.1 and are extensively used 

in t le solution of problems of optimiznticn . T!·e mai.n dif-ference 

betwer:>r. tile convcnt1onnl : .... 'l:he."'"tical t;::cJ..ni ·uu. and t.l.e o~timization 

tcc• .niques is th;)t tl.e solution of the former is always unique Hh re3s 

t J-.at of th_ latter i.s never uo. Several feasible f'lclutions are usually 

oossiole. The valu".) of the c rit crion at *:he optir;t.:m oint ciffera 

VP.:-:,· little from tl e vnlt.c at a point clo~:;c to optimum and hence close 

At vrescnt manJ mathe:"latico.l tecLni~uec are kno~n hich have 

been c .:: ara being us ed for c ,ti 11i:., · tion of V.:Iriou.s type nroblems , az:d 

it is verJ difficult to sny •. hi~h is preferable . In this connection 

Leitm .. nn7 write!;; , "d ~ot!'ing tl1e pa3t decade there ha~ been a remarkable 

growth of interest in probler:1s of Fyste optimi:o:ition and optiMal 

comrol. And with t Lis interest has come an increaf~ing need of method_s 

useful for rendering a system optimum . One may expect t.h.Jt a narticular 

met:;od i::; superior to others for the solution of some p roblems , rarely 

for all proble"1S' 1
• 

Almost all mathemtltical toolo pr sel::t:y used for o :, timi~al~icn 

are ap{~ roximate; ut ' lity and not precision i- the criteria , and as 

Irw::tn
8 

writes , ·•a model is neither true nor false . The standard for 

.:ompcring ( mathem:Jtic'll) rnc:'iels is tberofore dependent or t. e situation 

in which it is used; it is not int ri ·13ic 11
• 

~,ome o. the relat: ve ly ·:or<; U3Jful tooL in the field of 

ordinary theory of n'9.xir.a .:irtd 'l i. n:~r:t. , v~naL. ,"";~. al c2lc lus , 11~thematic al 

prcgra:-1ming a nd :;tat L3tics arc dea~t · i t h in c; "cti.on 2 . AppL.cat.ions 
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of these methods in Engineering Desi5n nrc described in :;ectior. 3. The 

author is not aware of any 1 revious comp l Jt e survey o f optimization 

techniques from the point of view of engineering d esign . Even the 

te xts on optimiz, >. tion by opo~ atj.o·1;;; escarc hers are surprisingly inc om-

plete . iJome of the a.;plic· tj J.1s 0~v , u .1erP. 9re original w. th t ho outhor. 

1.2 

Attac h•'( c.. eac h optiruiz aticn pr-ob lem is the ut ilit., c r iteria 

and l.enc e it is neccssu.ry t0 und:r. t~md \Jhat i t conveys to one who is 

interested in th,~ :1roblem of o:r titd .... a ti or. , 

U tilit , wo rd, or vaLle i s a rel< ti ve term and O.e en~:s on 

various facto rs. On account o f t. e co~lcx na~ure of a deeisn , a plan 

or a decision , \ tilit y is 6 tally me· c..u red on t he basis of the most 

important ¥ari ab le und~r ccr~ i~ u;ct~1ptions . It is the st:ategy of 

this variable that gi V.:!S a valu~ t0 an lte:n under consideration . However , 

a5 soon as circun~r t;; , ;}Ce r; unc'e r \ rhic h t L> value ha.s been determined vnry , 

th e worth or va lue of the item also c hanges , No true mea '·u r e of worth 

is there:ore po s sible . Certain a . s~mptions must be made and a few 

allowanc es must be given if any reasonatle r.1easur e of \tCrth is dcsir(:d . 

In r.ieali ne with the prcblomo of opt ~iza.tion in design it is therefore 

customar t o fine out the mo st inJt.or to.nt variable. This varL•ble is 

known as pRy-o ff functi on9, ob · ecti ve f unc t ion
10 

1 utility f unction
11

, 

t . 1 t' f t' 12 f t' 13 't . 14 
op ~lil za ~on unc ~on , reopon~•e unc l.on or cr~ erl.on • In 

mechanical deoign problems th ~ criter ion may ba l ife, efficiency , 

\:Ieight , or remissible error. In reduction design it mn. be cost or 

pr fit and in aeros:;ace it may be either weight or fuel co nsumption . 
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In each case this criterion is either to be maximized or mini!:lizcdo 

Usually equipment designs are supposed to satisfy certain 

prescribed conditions, e.g~, speciflcations, etc., laid C.o, .. m by the 

users. The u-cility of an equipment in such cases increases very rapidly 

t th t \ ' ld ~ . f . t. 15 a or near e nres~o or spec1 1ca 1ons • On both sides of this 

point the rate of iY"tcrease in utility is comparatively very slov1. At 

the zero va:ue of the variable the utility is also zero a~~ it does not 
., /" 

reach infinity at any point. i?fanzac;l-
0 

has suggested that this situa-

tion could be represented by the function 

where A, :J and E are cor:stc:.r:ts. The chc:.:::-c:cter·istic curve for such a 

situatio~ can be represented by the curve shown in fig. 1.2. The otcer 

i~portant design variables are stren~~h, weight, life, serviceability, 

etc. 

n.c-;-;ua].ly the variables of this type are rr.any and hence the 

s:-.ape of t.he u-:i2..ity curve enco..:.r~tercd is ahJays different.. Tb.e method 

o.:: r.ackling the problcps are also not ah·ays the sZ!::e. As for assump-

tions •.Jhich are next -co be consi<iere"- 1 i·c is usually ::.ssu:!led that the 

C.cper-.dent variables have a:-1 int:..~insic \·;or-ch \·Jhich can easily be identi-

fied .. 

If minutely studied, wo!'th a::1d t:tility are r::.ot the sa.r:~e•·. Ho\·!-

ever, since this differe::ce does not affect the pro~lem unde:::- considera-

~ion, utility can be defined in a concise though not in a rigorous 

H h ' . h - d t. f . • 18
1! A d. t S. ' ' 1111 

menner as t at vmJ..c vJou..!.. sa lS y des1re • 1cccor 1ne o lc.aa_ 

'lin sor:.e 'l:ay it is a mc&s:.-.!'C of hovJ \vell satisfied the users o f' a design are 11
• 

----· ''7 
···';,.:._i~y is sc:::etirn~s d.::fined as value or •.•!O:rth o! Ls~- -.-.rhercas 

vz.lue is a : .. ore general cone epc., including utility, aesthetic va2.ue 7 

spiri-cual \:Lue, etc. 
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1.3 O~ti~ization in Desig~ 

Usually there arc t\"o C:istinct ty-pe of design problems in the 

field of optimization. One deals wi-ch a whole sys-cem or a corr:plete 

n:acr:ir..e and the other deals v;itb s-:.1b-syste:ns, sub-asser.:blies of a 

machine or even the elements of the sub- systems and sub- assemblies. 

The r'irst type of problem is '-- ess~:-r:.ce the t:At.<e op:imizat.~or.. p::-oblem 

and is usually called as pri::1ar·7· op-ci:::iz:..tior- probler.1. ':.'he se:ccnd 

type of proolem is often c&:led a s~b-o~"Ci~iza"tion proble~ although 

terms such as secor:.dary a~Ci t ertiarJ opt,i:::ization are not uncorr.~::on. 

A sub-optimizatior: desib~1 problem is obviously simpler tha..11. a 

pri:nary optimiz::nion problc.:,;. Sine e t...he basic techniQue is the su.1ne 

it is usual tc cor..sider su~-op:imiza-cion problem :or explainir.g the 

principles ir.volv...;d. ~los·c o: ":he pcooleL!S used in section 2 as vJell 

as in section ~ are sLt-optit.izatio n nroble~s. However using digital 

compu;:ers r,ho sarr:e methods .:1c..y be applied for complet primary optimi-

zation proble::1s. 

1.4 ::?orrr:ulation of ?roblt::!"! 

Each design us~ally !:as to satisfy three basic reqt:.irer:Jents. 

First, a design must meet constraints (snocifications, etc.) imposed 

on the systeT~? :nachine or corr:ponent to be produced . Second, it shou~d 

satisfy certain limiting conditions. ':'hird, it mus-e at the sc.r..e -cime 

be optir.n:m wit:h resp0c1: to so1;;e criterion. Aathematicelly these 

:--equi re::.en7-s cc..:-: be eA1Jresseo. as t""ollov.'s: 

Cric erion U = u x ) c.. f~r..~tion to be 
n 
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Or U = U [yCx)) c. functional to be r:1aximizcd or minimized . 

Constraining equation¢ i = ;Z1 i Cx
1

9 x
2

, Q ~ i = l, 2~ • ' f!1 

T .... ,.t. p/-.'.c )/13 
~lr.11.t:::..ng concl lons -j-.-'J x1 , :.:2 . • • ? X

11 
= j 

The fcr~Jlatio~ of the op~~mization prcblcr:1 in design is setting up 

the above mentioned functior:.s) c;quatio~1s 7 u..:::d i::.equalities using 

pb.ysical la\·Js governing -che: ue::.:·ormc.c-~cc~ properties of :r.aterials used, 

and geor.1etric configuration of ~te 0quip~ent. 

Fror.i the above it i..:: c::.t.ar t.:-:~-..t dcsicn i::..rcere~:.:ly is an opti-

mization problem. Each ciesi,::!er tries to produce a dcsi;n '.·.::.:.c!:: is the 

best. ~O\·Jever, in non.1al circu.:-. .=;tc:.:!CG.:: the factors t·:hich ::.nflucnce 

design c..re so :nar.:.y that ::.t is alrr:ost impossible· for any designer to 

calculate all possible so.!.u-;:;ions and selec-c the oc.s:. 'rhe only alter-

native left for !:im is to cr.ocse a fel·! typic.:::.l :i2s:L,:;ns \·:~ic:'l experience 

intuitively. This design c&~ th8refore be far frc~ o~:imum in true 

sens..::. But, sir:c e the c;or. o-.....t e~-s ha.ve el1·.: ered the field, the situation 

. 1 h h 19. 20, 21 ls <LtogeL.er c 2.:1ged. · .. A designer, using this pm-1erful -cool 

can search hur..dreds and tLousc:nds of fec:...sib:ie soll. ... tions before arriving 

at the best or optimum sol-..:.-:ior... Houever prcsc.!J:C ·.:...:chniq_ues still 

lir.iit him to the use of one criterion function or dominant design 

variableo 



2.1 Grapr.ical Methods 

2 

MATHEN~TICd, 'l'OOLS 

Graphical methods are the simplest of all presently known 

mathematical optimization techniques . However , these mPthods are 

applicuble to comparatively elementary problems. ':.'he ease .,., .... th which 

they can be applied has made them popular in the past ; and even when 

more rigo ous and :JOphisticatea r:1etl ods are known , grapt.ical methods 

are frequently used. 

The most important aspect of graphical methods i ~ the formu

lation of t he problem. ~1en formulation is estab ished , the re~t of 

the problem is very simple and involves sir:tple algebra-graphical 

principles of elementary r.JBt.herontics . 1he results are tten read directly 

from gra_~.hs . 

A graphical m ~thod can therefore be described as a problem of 

fonnulation of one or ~re equati ons based upon physical laws affecting 

design , properties of materi~ls or geo~atry of the part to be designed . 

By varying an 1ndependent variable , a graph indicating the rel~tion of 

t he dependent and independent variable c;an be drawn. If there is only 

one dependent var~able and bence only one equation involv a, the problem 

is the simple~t tj~e and the extremum (m ximum or minimum) can be read 

from the graph directly as the hi,~hest or the lowest point on the graph. 



10 

I f there are two equations and hence two curves involved an 

extremum would occur either ut the point of intersection of the two 

curves or when the tangents to the two curves become parallel. A 

special case of this occu s when the t~ tangents coincide; the common 

tangent gives the extrema~. 

Simple two-dimensional problems of linear programming and 

problema of break- even analysis of economics and production manage-

ment fall under ttti<> category . Lat ta has applied the method of 

purallel tangents for det cnnining optimum tool life or optimum cutting 

speed by minimizing cost. u~nkle23 has sed th e method of intersection 

of curves for design of machines for optimum speed consideration. By 

similar approncr the method of selection of most efficient machines 

for a pa!·ticular production Dre desc ri bed by various authors . A co mmon 

24 
tanGeat method of finding extremum is used by Faulkner for solving 

optimum th rust problem fo r roc kets and for optimum fuel c onsumption 

problem for trajectories. A t wo-dimensionnl l inear programming problem 

f or optimum manufacturing schedule for maximum profit will be described 

under linear programmin r. 

Many simple problems involving only on~ curve are described 

by Hinkle23 using graphical and graphical cum analytical method s . Ha1125 

has dealt ldth a problem of synthesis of four-bar mechanism for optimum 

transmieaion anglet and ' ennburg26 a problem of determination of minimum 

cost or maximum production either for optimum tool life or optimum 

cutting speed. Maier27 has used this technique for designing compression 

springs for optimum load; and Bowman and Fettor28 utilis ed it for 

solution of optimum lot order size and re-order point. 
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Problem:;.; invol ing more than two equations such as multi-

dimensional lim:<lr programmi ng probl-.ms , etc. , e di ficult t sclve 

by this technique. In spite of this difficulty , such probl mn are 

frequently solved by this technique by slight varia tions . By using 

gT"a hical met hods in ,onjunction with analytical me thods , ch · ~ts can 

be prepared which are then used for O£ltio um design and t :. ese can be 

h andled by le13e '-{Ualified d esigner::;~ thus reducing tr.c cost of aesign 

an well. 

A synthesis of four-bar mechanism for op t imum force t r ansmission 

113 described by Jenson and Volmer29 using t h is approach and ~'i illi u30 

has dealt \-.lith a problem of light '.<eight gear design by the same method. 

2 . 2 I ndirect Methods of Ordinary Theory of J.~axi:na an(. Ml.nim& 

Indirect ffi fJthod a , also known aa classical o r analyticul meth ods , 

are met hods of arriving at the extrell'!um b' means o f a necessary condition 

for t !:l e xtremum . T.hiG npproach given comparatively more accurate 

solution than any other approach. However the method is more co:npli

cute and is not easy to apply in eac h c ase. In spite of this dis

advantage , it is frequently uBed by the designers because of it s 

ooc uracy , and becauso it provides n .:;eneral oolution of a gro up of 

prob~ om'' rather than a siugle problem, as t ... e case wi t h the easier 

O.irect methods . 

In the following three sections three cases of this met hod are 

dealt wi t h separ3tely. 

1. n variables without any constraining equations 

2. n variable s witb m constrainir~ equations 
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Hetl od of Lagrange's Hultipliers 

Hov1e v er, before p:::-oce eding ft..rt h~r it is necessary to get a clear con-

cert of tl 1 ~ various terms used in the ordinary theory of maxima and 

mini me ~· incc b •!i:ter un( er'itandin.; of the problem is possible through 

gra~hic int erpretati on , this approach will be used more often. To 

start w· th, a case o f L ,.rc- d.::.r." ,'nsional p t·oblem G will be considered where 

func i )n c nn be represent )d a .s a c c ntour map shown in f i,~ _ 2. 2 where 

each co ttnu:: line r~1 resentn ':h e va.2.ue of the dependent va ri able y 

and the c hain li "le r • ·pres .~'1t s the: canst r <J ini ng e<1uat ion '/ . = v u 

1 

A foint SJC h as A, B and D as shown in fig 2 o2 1 which is 

hi g1H'r t hn n any o t her poin t i n i t s vicinity is kncwn as a local ma ximum. 

The hiejhest C·f t hese roints is point D which is th ·~ rcfore known a o the 

absolut e maximum po i nt . Cn the sar:1e reasoning points E? J 1 G, F and H 

which are l O\.,tcr than any oU1er point in their vi c.:..nity are called local 

minimum pointse Togetht~r all these points are knovm as local extrema o 

Ttus a local cxtrer:tu rn is a point which is extreme either in the interior 

or o n the bol.lndc,ry o f a suitably defined domai n" A !JOint C, which is 

highest ;1oint on t ,e pa.th b e tween ridges in fiK • 2 o2 , is neither a maximum 

nor a minimum since in its i mmediate neighbourl'lood both higher and 

lowe r points cxis:. alo ng the ridges. All poir.ts such as point C are 

known as saJd le :poir.t s , 

1\.t point B, the der i v·1ti ve of y with respect to both x
1 

and x
2 

vanishes and hence point B i G called a stationary point. A stationary 

point can therefore be d ~ : f ined as a point where all first order pa rtial 

derivatives of a function with respect to independent variableo vanish . A 



J 

~I 
I 

FIG. 2 · 2 
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saddle point is aleo a stationary point, however, it is not an extremum. 

In the general problem limit equations may also occur. In 

fig. 2.2 they could be thought of as fences which cannot be crossede 

The basic analytical method of maxima. and minima does not handle con-

straints. It can be extended to handle constraints, as shown in 

section 2.22 and 2.2}; to handle limits as shown in section 2.25; and 

to handie both simultaneously as shown in section 2.26. 

2.21 Case of n Variables Without Any Constraining Equations 

The problem of finding an extremum can be described as the 

problem of finding all local extrema in the interior and on the boundary 

of a suitably defined region, and the comparison of such extrema for 

arriving at an absolute extremum. The theorem of Weierstrass, which 

states, "Every function which is continuous in a closed region possesses 

a largest and a sraallest value either in the interior or on the boundary 

of the region", 34 guarantees the existence of a solution. M:>cation of 

the extremum can then be found by the theorem of ordinary calculus which 

states, "A continuous function U Cx
1

, x
2

, X,• • e xn) of n independent 

• o x attains a maximum or minimum in the interior 
n 

of a region R only at the values of the variables x for which the n 

partial deri vati vee U xl, U x2 • • U xn either vanish simultaneously 

(a stationary point) or at which one or more derivatives cease to 

exist (are discontinuous) n32
• This means that the total different~al 

of the function will also be zero for any arbitrary differential dis-

placements of n variables, i.e., 
au au 

dU 2 ~1 dx1 +aU dx2 + ••• o •• • +ox 
ax

2 
n 

dx 
n = 0 ( 1) 



necese:~ry c .mdi!:~on.3 u.f ox.istcnce 'Jf au e tr"mwr' , e.ui' icier.cy c o'!Jitio ns 

Gu~ • e axt ; ~~ o csd in :cr~3 o f l~itrna~n'u33 notatio. in th! fullowi.1g 

!)i < J fo~· ~ = 1 , 5 (i. e . , oud) - "' ' 
<.in:l Di ) c f or 2 , I· r (i . e . , OVCl1) - t ' ~) • . • 

fl. d fo.:- '=., lC ::;t ,.,t "!..'J'l~L'j P'Ji ~~ ~ to :J t ') D. lc~.al ·l!.i.nitt . ..L 

~i'lCl'~t 

Di> 

D. = 
~ 

c f'Jr ;:= 1 , c. , 7. 
II ' !l .... ' . • • 

J T' lj 

xl·l x .1x I 'l<h ) l( :d 

'J u I 
xr: x.3 • • x2xi ~ r J. )< _ ·._c 

. . . . . . . . . . . • • • 0 • • 

• • • • 0 • • • • • • • • • • • • & • 

. . . . . . . . . . . . . . . . . . . 
"U 

xi x 5 
• IJ 

xi xi 

.for l i'l"ld erendf-nt V<.~~"''" -'ltJle (i. -:: ., ::.. = L , U x ~ 

D. = U l < 0 
~ xl x 

and uouli be mir.J · • r, "hen 

t e 3 ~ ::1::.:i ":lit!!\ wl":en 

t~Lich is t he f >J .r. >n t al r esult of the elementa ry C'llc t...lua. 

t rotl('os tal i ne; urv~er the c ; dN:;cribed above ar<:: many and 

are ..: su .lly ~eult "'· t .. in a ..... -no •t all bc:.oks of calculLts . ;\ , rnble:n of 

OiJtimum desit;n of 1.1 . r<>y for ~1axi. um cap&cit. ~s dealt w:t.tl> 1.n detail 

by Johnson3
4 

and a sir:1il~,r p 1 ·ool~rr. cf an ob.Li-iue sheet metn.l tray ic. 



dealt with by Soko l nikorr32 • A f'roblern of ,1aximizing po~er obtainable 

f 'th d i ·• db - .3la rom e1 . er a . c . or an a . ::: . s ourc e s c.escrl.ue y LOV.l. • 

2. o22 Case of n Varinbles \·d t h m Constraining .l!:quations 

This is a partic ular c ase of t he problem dealt with in the 

preceding sec t ion and hence equa t ion ( l) will still held . Howc;ve-r , 

const raining equations f1 i = '~ . (x1 , x 2 , ~ ••• xn) for i = 1 , 2 • • • n 

imply that the d.l.ff erential displ·lcem r.ts wi l l not be arbit rnry · ny more . 

E~nce differenti~t.ting t he m constrainiD£: equations we can write 

d¢ 1 

. . . . . . . . . . . . . . . . . 

d~ 
m 

. . . 
ori , m 

= oxl dx + •••••• 

ojl$ 

___!! dx = 0 ox 
n 

Thus , m-1 linear homogeneous equations in the n differenti ~ ls dx 

rilust be satisfied. The condition for a <>tationnrJ point wo ~lo no'</ be 

that the Jacobian d etermin::mt must vnni tih 1 i.e. , or.e Jacobiun 'eter-

crl.mmt for ench n-m independent Vi:.lri.:lbles 

= 0 

• 0 (2a) 

• • • • • 0 0 • • • • • 

. . . . . . . . . . . . 



where 
aA.l 

• • o ot 
n 

• • • 
3A? 

at 
n 

&A aA 
n _.....!! 

17 

at 1 • • • at1 
where 'i nd t 1 ar"" any de errlent ard indepeonclent vari bles reApectiveJ.y~5 

For graphical interpretation we may refer back to fig. 2.2 and use 

the two-din.encional p oblem y = U (x
1

, x
2
). The maximum of this function 

satisfying the constraining equat ion ¢ ( x
1

, x
2

) = 0 would be at point 

I where slope of U ( x
1

, x
2

) = constant and ¢ (x1 , x
2
)= 0 coincide , 

i.e ., au;ax1 a¢; a,_ 
- au/ax

2 
= - a¢./ax

2 

i . e. , o¢/o~ au;a~ 
= 0 a¢/ox2 

+ au/ax
2 

~0 ~ 2![ 0 ~ = 0 ox
1 

ax
2 

ox
2 

a,_ or 

which is a special case of equation ( 2) where n = 2 , ro = 1 . As an 

example the design of a circular base cylindrical fuel tank to have a 

maximum volume fo r a given surface area is explained here . -
\ 

If r and b denote base radius and altitude of the tank 

respectively , U ( r , h) 2 
and <f>< r . h) 

2 Hence = rcr h = 2rcr + 2rcr h. 

using equation ( 2a) n 2hr Jo solving this we get h = 2r . 

4t+2h 

2 . 23 Lagra e ' s Method of Undetermined ~iultipliers 

Sine e the derivation as Hell as solution of the equations is 



18 

compurati vely diff"".c .1lt with t 1e roctho J. c.ler>cribed in the preceding 

section , the ro-.thnd of Lagral'lge ' ~ multipl::. e r·s to be described in this 

section is co~monly us Tltc method is thus an altern3ti vc technique 

fnr n variable-s :..lith m constrainin~ equ "~ '- ~ ns. 

In th p··cc x:li g section for "l tvJC',- .iner .. or.al robl .... Lhe 

au 
ox I 

2 

If this ratio · r. , 3SURIJd t be e u ~ to BOil •t' ,l :u.! ·J.: tt -11. the G >olfe 

relation can be re-.vritt us 

~u , 011 ox+ A ox .= o 
1 _ a 

und 

':'his constant A. is k'lom as ,agra~e's mul . 'pEer unci associuted with 

thil5 i s the wel - ...nown theorem of · .:. lcul s which state....: "If U ( x , y) 

and ¢ (x , y) be di-ferer.tiable in a naigh our ood N ( a , b) of (a , b) 

rud it is assumed that U has a r 1. tive extremu~n there , Gubjcct to a 

constraint on x , nd y of the form ¢< x, y) = k which defines y as a 

differ ntiable funci 0n ¢ (x) of x in , neig~tbonrhood of x = a nnd that 

_.r a , ) I 0 t 1~n thtJre t'lus t t>xi t a co nstar:t }, such that 
32 

u1 (a,b) .t~¢1{a,b): u2 {a,b) +AJz.{a,b) ~ 0 11 

This can ow be ~ xtend d further to the ene· al ase of n variables 

and r.1 c unatraints , i.e ., to the existence of n constants "-J. • A.
2 

•• "-n 

such that 

••••••••• 

0 ••••••• 



•••••••••••••••••••••••••• • ••••••••••••••• 
ou 
0~ 

+A~ 1ox_ n 

i.e., i n su ~e tion no t jon 

+ + 

Uxj + t Ai 0 ix" = 0. 
i =l u 

!or j: 1, z, .. . J:l 

For t he .urpose of illustrution , a t ransmi nsion line design problem 

3' solvod by \s imow using Jacobian detormiru ts \.'ill be solved here 

using Lagrange's multipliers. 

Example 
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Elect r ical energy iu to be t r ansmitted to a dis trib tion station 

200 ooil~6 froM t he ge er~ tiflb s tation. ' e three-phase a . c . transminsion 

li.e to be desien d in to havP n most economical ransmi Fsion voltage 

'L ', line current 'I' and conJuctan..;e 'G'. ...'he constant power generated 

at the generating end 1P ' = 50 meg awatt s , tl' e value of power delivered 

k1 = . 01/kwhr or S87.~/kwl r ., cost of conductor for the whole length 

of transnission line k2 = Sl3 x 106/rnho. In~remental cost per kilo

volt or the transmission voltage '"'3 = , 1000/kv., and rat~ of ~mputed 

charges usc r ibed to invested capital i = .1/ yr/ f 
Assuming that all effects except resistance and corona losses 

are negligible and that the line drop compared to line voltage is t oo 

small to be considered we can write 

Power loss in the 3 cor~uctor 3 phase line = 3 x 10- 3I2a- l kw 

ValuH of this lo s s = 3 x 10- 3I%- 1k
1 

1/year 

Depreciation at the rate i of the value of conductors 

Imputed charges ascribed to invested capital in incre ental cost 

/year 



For arri V:.ng ut the most C(~onor;,ir: tronsmi11ci.on :.inc d, Ji~;n U aLould he 

r · n:..mized. P.oweifer , total power th(;,t can ~H~ tr-ansmitted im1>oues the 

constrain1n.:; eq 1atir.m 

Further , b eyond a critical volt ,,.ge E coron<- lo ~;o t>econP.s a; p rr:x.:iab le c 

thu.s im or;;:i.ng a Hmit.ing ccl.diti.on 

~- F.: - E ~0 
'I' - c -

;~ 
But sinc e E = 67 S IJ< (18 . 52 - ln G) ;,;e can write c ...... . _ 

t ' .... 

¢ = 63 . 5 G ~ (18 . 52 - ln U) - E-~ 0 ( )) 

Usin_s Lugrar ;:-e ' a Hultipliu '1 we ca.n n " \,rite t !.c augment e·.: functions 

and hence the relation 

0 ' 0 

diffwrenti<.Jting ectuatio ( 3) wi th r. ~r-; "Ct t o I , 1'. , <.Uld G ·~c· r. ,:_: 

sirnilarly di ffcn:1t i nting equ::~.tion ( 4) v;ith respect to I , 

IC get 

,;ub s tituting t hese values in the e.bove equntions we get 
- 3 

6 • 10 k
1 

I 
-1 

G tV3 
1 k 3 +).'f) I 

- 3 - 2 
- 3 • 10 I k1 G +f3 1 k2 

E = 0 

': 0 

=o 
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These equations along with the constraining equation provide a set of 

4 equations in 4 unknowns A, I, E and G. Solving these we get 

G: ~3E 
2 

E - 6F(k2 • kl)t I k3(3.103)! it 
Substituting numerical values at this stage we get 

E•242kv., I•l20A, G•0·03llmho, U=484000i, 
These are the same as obtained by Asimow. 

-
¢=3·76) 0 



2.24 Zener, Fein and :C •..tffin 1 s Method 

The optimization function in design problems can often be 

expressed by a polynomial f unction 
n 

U = > E
1 

to be minimized l:r 
where Ei can be expressed as an eJ<Ponential 

m 
pij 

Ei ., n "l."-l • l • ai X~ _._ 

j=l w 

subject to the ccndition that 

o <xj <OJ 
Here a1 and pij are positive constants. 

(?) 

function 

. . n (8) 

Solution of this type of problems can be obtained by the 

methods described in the preceding sections. Zener37 has recently 

shown that ouch problems can be solved by a compnrativel.y simple 
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method whereby the extremum can be found directly without solving for 

the independent varinbles provided n = m + 1. 

Knowing the values of U the first step would be to find n 
n a. 

terms product II Ej J = K, where a j and K are certain constants and 
jal 

can be determined as follows. By comparison with the given function U, 

values of ~ij can be determined. 

the transformation equation 
n 

Values of a. can then be found by 
J 

L ai~ij = 0 
i=l 

for each j , j=l , • .• • m (9) 

and the normalization condition 
n 

so that 

L ai = l 
i=l 

u opt 
=__!L_ a rr n (a ) i 

i·l 1 

(10) 

(11) 

The problem thus reduces to the relative~ simple one of solving n 



simultaneous linear algebraic equations. This is further illustrated 

through an example at the end of this section. A rigorous proof of the 

validity of the above procedure is given by Fein38 • Later, Duffin39 

has shown that the restriction imposed by Zener, n = m + 1, can be 

removed. This he has proved by using a dunl progrumme, and thus 

reduced the method to a more general form. 4o Adopting this approach Zener 

has further extended thi. method t o a more general case of minimizing 

as well as maximizing by using perturbation technique. In December 

1963 Zener41 presented yet another extension of his method for opti-

mization of systems in terms of sub- systems. Thi s could be described as 

follows: 

For a system consisting of N overlapping sub-systems having 

an overlap of not nore than one element, if the sub-system is optimized 

for minimum co s t for independent operation, then the common element 

will hc.ve t he same \-Teighting exponent in all sub-systems. Calling 

this exponent as o and the minimum cost of independent operation of 

the jth sub-system as mj, the minimum cost of complete system M can 

be expressed as 

1 
14 1 - 0' 

N : I. ·m-.,..1-1=-~o:=-
. j 
J:l 

(12) 

If we let ~jk be the weighting exponent of the jth term in the kth 

sub-system when it is optimized for independent operation, the weight-

ing exponent of the jth term of ~he kth sub-system would be 

_L 

m 

when the''whole system is optimized{Ll 

1-o 

1-0 
m 

_LJ t) jk 



Example 

Aosuming that the cost function of' a design problem can be 

expressed as 

U(xl,x2)= alxl +~ + a3 x22 
XJ.X2 

and that this is to be minimized• w~ can proceed as follows: 

Since 

U:: ~ E 1 : a 1 x.. + ...!2 
1:1 ·,: x1 x2 

and El • a1( x19,1 .x2s1, E2: 

U:a1 (x{i1• x,fll.)+s.2 (x~1. 

2 +a 3 x2 (13) 

a2( x,iz1.x?z.>, E3: a3 ( xti • 
x~2) +a 3 ( x/.31 . x~ ( 14) 

By comparing equation (13) and (14) we get 

i2 -12--12 : 1, 4 =/3 -0, !2. - 2 
p 11 -'22 .,..._,21 ~ 12 31 - fV 32 -

Now using the transfonnation equation we get 
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= 0 I 12 a +!2. cL +a a - 0 
1;12 1 ~22 2 ~32 3 

Then applying the normalization condition gives 

Solving the above two sets of equations we get 

a. = a : 2/5 1 a. = 1/5 
1 2 3 

From this 
2/5 2/5 2 1/5 

K= (a1 x1) ( -!..2 ) (a3 x2 ) . 
2x1x2 2 1/5 2 2 1/5 

U t• ia1 • a7 · a~ ~ = 5(a1 • a~ • a;.._l 
op 

42 
( 2/ 5 )215 ( 2 ..) ) Z/5 ( 1 5) r 5 A/6 

Sherwood has used this method for the solution of a gae 

Giving 

line design problem and by solving the same problem with the classical 

method has shown how considerable labour and time can be saved by 

using this method. 

*From reference 37 with simplification where:•• r n ededo 
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2.25 Charnes and Cooper's Extension o! Zener's Method to Design Under 

Inequality Constraints 

Zener's method, though provides a very strong tool for opti-

mization de '· ign problema, does not mention anything about constraint s. 

In actual practice unconstrained design problems are but ra1·e. Charnes 

and Cooper•a43 extension of the method to inequality constraints is 

therefore a most welcome step. 

In this method the independent variable xj is replaced by 

an exponential term euj, i.e., 

xj = • ln xj = 8 uj (15) 

By substituting this in equation (?) we get 

(16) 

This indicates t hat the criterion is a convex function•. Now consid-

ering limits or inequality constraints of tbg type C 

(17) 

Where ~k indicates the lower bound and Bk the upper bound on t he 

design respectively. Taking natural logarithms these can be conver ted 

to the following linear form 
m 

ln 12k L Lrkj uJ 
- j:l 

Our minimization problem is thus reduced tomminimize 

subjemt to the constraint 

j~ r kj Uj - Kk ~ 0 

n 
u :z L: 

i=l 

L: ~.j u . 
j=l 1 J 

ai e 

(18) 

(19) 

•For the definition of convex function see Section 2. 5. 



This can :further be simplified to the following 

minimize 

subject to the ooMtrainte 
m 

- j~ plJ • Uj + :"1: 0 ' 

( 20) 

These functions can now be handled by the mathematical progralllllling 

methods to be described in section 2.5. 

ka!!!ple 

A :fly wheel for a emall light regenerative vehicle is to be 

designed. The fly wheel absorbs energy by coasting of the v~hiole 

and feeds it back to the drive when power is required. 
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The dependent variable .to be opti~ized is the amount of stored 

energy. Constraints on the problem aret 

i. Weight must not exceed 150 lbs. 

ii. Diameter must not exceed 36 inohes. 

iii. The speed of rotation must be acceptable to 

Design A - a belt-pulley system 

Design B - a chain-sprocket system. {

with smallest 

or sprocket o 

driver pulley 

Assuming a solid disc type fly wheel we can write the follo'Wing: 

Energy U = wk d
4

s n2ft4.ll744) to be aaximized 

4 2 = A1 .d .n 

Subject to 

lt d2 4 w 

dL3 

2 s £: 150 or A2d L v 2 

or d L v
3 



( s tre s s e s are ass umed to be well b e low s a f e limi t ) 

V = 6000 fpm for belt drive 

= 1000 fpm for chain drive 

where d is the diameter of the fly wheel, n the rpm of the fly wheel, 

w the width of t he f ly wheel, s specific gravity of the material of 

the fly wheel, v the rim velocity, k the velocity fluctuation factor, 

and D the diameter of t he driver pulley or sprocket. 

By using equations (15) and (16) this can be expressed as 

2 ln d b. a where a = ln l50 • 4 
n.w.s 

ln d ~ b where b = 

ln n L. c where c = 
Assuming u1 = ln d and u~ = ln n 

maximize U = A 
~+2u2 

e = 
subject to ¢ = u - 4u - 2u = 0 3 1 2 

ln 3 

ln vl 

the problem 

A e 
u3 

2u
1

.£:. a, u
1

f= b, u
2
Lc 

would resolve into 

Introducing slack va r i ables u4, u
5 

and u6 we can convert the inequali

ties into equalities so that 

2~ + u4 = a, u1 + u5 = b and u2 + u6 = c 

the problem is now reduced to maximizing a convex function under 

linear equality constraints and can be solved by using the convex 

programming methods described under section 2.54. 
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2.26 Extension of Lagrange's Method to Inequality Constraints 

In section 2.23 we have seen that the method of undetermined 

multipliers can solve the extremization problem if the constraints 

* are equalities. Valentine, Pennisi and Klein have shown that in cas$ 

of functions as well as functionals to be maximized or minimized Ullder 

inequality constraints, the inequality constraints can be tranelormed 

into equalities by transforming the given indepeDdent variable into a 

new independent variable and introducing another new variable simul-

taneously. Applying the Lagrange' a technique at this stage, the con-

strained problem is transformed into an unconstrained problem. Mathe-

matically we can express this as follows: 

Let U = U(x1 , x
2

, x
3 

, • , xn) to be maximized 

subject to the inequality constraints 

¢i = ¢i ("!., x2 , x3• o o xn) ·~0 

2 
Replacing xi with h1 and ¢i (xj) with ,i (hj) 

iJ: U(hj) 1- r:~[¢i (hj) - ki
2

] 
1•1 J= 

2 = ki we can write 

to be maximized 
1, •••••• , n for each 1 

Using the results of the section 2.23 we can write the necessary 

condition for the extreme value as 

The method is particularly suited to nonlinear design problems when 

independent variables involved are few. The fly wheel energy maxi-

mization problem of section 2.25 will be used here to further illustrate 

the method. 

In section 2.25 we have formulated the problem as 

4 2 U = A1d n to be maximized ------
* aee ref. 43a,43b & 43c• 



subject to n ~v1 
2 

A
2
d ~ v

2 

d.::::::::v
3 

Writing d = h2 and 2 n = g the constraints can be expressed as 

2 2 4 2 2 2 
g - v1 - kl = 0, A2h - v2 - k2 = o, h - v3 - k3 = 0 

Introducing Lagrange's multipliers A
1 

we can write the augmented 

function 

u = 

for this to be maximum 

-
~ = 4 Alh8g3 + 2Alh2g : 0 

v -2 

* = h
2 

- v3 - k~ = 0 
3 

lo Assuming Al c A2 = A3 = O, 
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either h = 0 or g = o. Since we are interested in positive definite 



values of h and g this solution is trivial. 

2. Assuming Al = A2 = 0 and A
3 
~ 0 

h = 0 which is again t r ivial. 

3o Assuming Al = A
3 

= 0 and A2 ~ 0 

h = 0 t his is also trivial. 

4. Assuming A2 = A3 = 0 and Al ~ 0 

g = 0 this too is trivial. 

5. Assuming Al ~ 0, A2 ~ 0 and A
3 

= 0 

we get ~ = o, k2 = o, g 2 4 
= v

1
, h 

A2 
4 4 

= ·2Alh g / A2. 

6. Assuming Al ~ 0, A
3 

p 0 and A2 = 0 

= v;A2, Al 
8 = -2Alh vl' 

we get ~ = 0, k
3 

= O, g 2 2 
a v

3
, A

2 
6 4 

Al • 
8 

• v1, h :: -4A
1
h g , -2h vl 

7· As suming A2 p 0 , A
3 
~ 0 and Al = 0 

k2 = o, k3 "' o, 4 2 A
2
h = v

2
, h .. v3' 

This means that 2 A
2

v
3 

.. v2 which is incompatible. 

8. Assuming that Al ~ 0, A
2 

p 0 and A
3 

p 0 

2 4 2 
k1 = k2 = ~ = 0 and g = v1 , A2h = v2, h a v

3
• 

The results are the same as case 7. 

From above it is ·clear that only feasible solutions are 5 and 6. 

Solution 6 gives d = v
3

, which is the limiting value, hence 5 is the re~~tcea 

solution. Assuming cast iron to be the material of choice s = 451 lb s/oft. 

If the width w of flywheel is chosen to be 3 inches and the diameter of 

the driverpulley 4Y.! inches for belting and diamet er of spro.c ket 3/4" 

for chain we get the following optimum design parameter s: 

Case A-d = 1.3 ft. and n = 5090 r.p . m. weight = 128 lba. 

Case B-d = 1.3 !t. and n = 5090 r . p . m. weight = 128 lbs. 
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Since our assumption of a solid di ~ c type flywh eel i s against practice, 

the web width can be slightly changed to accommodate the effect of 

arms and hub; since weight depends on d and c annot be changed without 

altering optimum conditions. ( H . P . L:_~4) 
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2.30 Indirect Hethods of Variational Calculus 

A vaat majority of optimization problems in engineering do 

not fall under ordinary theory of maxima and minima. In aerospace 

operations minimizing the gross weight of an n stage missile, in 

control theory minimizing error or maximizing capacity of sensory 

devices, in production engineering maximizing productivity or mini-

mizing cost are problems having quantities which depend on a variable 

running through a set of functions which are determined by a definite 

choice of these variable functions. Such quantities are known aa 

functionals44 • 45• 46 and the branch of mathematics which deals with 

finding of maxima and minima of these quantities is known as calculus 

of variations. :F'or one who is interested in the study of optimization 

techniques in deeign, it is therefore necessary to have some back-

ground of the theory of calculus of varistions. A few important 

termG in this field will be considered in this section. 

A variable U is called a functional depending on a function 

y(x) such that U = U ~( x) J, if to each function y(x), fro!! a certain 

class of functions, there corresponds a certain value U. 

Variation6 y of argument y(x) of a functional uty(x)] is the 

difference of two functions y(x) - y
0

(x). 

A functional U [y{ x) J is said to be continuous along y = y( x) 

in the sense of closeness of order k, if for any arbitrary positive 

number ~ there exists a quantity f> )0 such that 

ju fy(x)l -
J y ( x) -

U [Y 0 (x)J I<:.~ 
Yo(x)j (b 

whenever 

. . 
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••••••••••••••••• 0 

( k) (k) 
Y ( x) Yo (x) 

Two curves y = y(x) andy= y
1

(x) are close in the sense of closeness 

of order k, if the absolute value of difference 

, I (k) (k} 
y(x) -y1 (x), y(x) -y

1
(x), •••••• ,y (x) -y1 (x) 

are small. 

A functional u[y(x)] ia called a linear functional, if it 

satisfies the condition 

u[9y(x)] = CU~(x)] o.nd u~ 1 (x) .+ y 2 (x)J= u[Y1 (x)] + U[Y 2 (x)j 

where C is a constant. 

If an increment t.U = U ~( x) + 6 y J - U [y( x)] of a functional 

is of the form t.U = u [y(x),by] + a.[!(x), hy] max.jb:Y/ • where 

u~(x),oyJ is a linear functional in y and max.j~yl is the maximum 

value of by 1 a..l'l.d a[y( x), ~ y] tends to zero whenever max.j6 y / tends 

to zero, then the part of this increment which is linear in6y, e.g., 

u (!< x), 6 yJ 1 is known as the variation of the functional and is 

desi-gnated by ~ U. 

The variation of a functional u[y(x)J is usually expressed 

as 

If variation of a functional U &<x~ eldsts, and if U becomes 

m9ximum or minimum along curve y .. y (x), then~ U vanishes along 
0 

curve y = y (x). 
0 



2.31 Case of a Functional With Fixed mod Points and Without Constrain-

ing Equations 

For finding the extrema of a !1metional t •. 

u(y~(~)] -.jxF[x,y(x) ,y(x~ dx (21) 
:Xo 

it is assumed that the end points of the curves y
0 

= y(x
0

) and y
1 

• y(xl) 

-~ } are fixed. Various curves y(x) between these fixed ends would 

give different values of U[y(x~ • It is therefore the intention to 

find that curve y( x) for which U [y(x)] has an extremum. For this the 

following assumptions are firet to be madel 

1. That F[x, y(x), ;<xD viewed as a function of its argUIIIent 

I 
x, y, y has continuous partial derivatives of seoond order. 

2. That there is a curve y • y(x) with continousl.y turning 

tangent that minimizes or maximizes U f!<x>] • Taking any admissible 

curve y =y(x) clo e toy= y(x) a sin.gle parameter family of curves 

y(x,n) = y(x) + et [!<x) ~ y(x~ Cllll be set up. Calling j(x) - y(x) 

as t\_ (x) • the above equation can be written aa 

y(x 9a) ,.. y(x) +a t\,(x) .. Y 

where~ (x~ = 0 and ~x1) = o. 

Substituting these values in equation (21) we can write 

u[y(x,cx)]: ¢{ex) = jx• F[{x,y(x)-cxt\Sx) ,f(x)tct{~x}) dx (22) 

I 1)(' I Xolx'f-2F f\ bF I ] 
,0{ <X.)= F{ x, ¥• y }dx : l'OY · \ {x) +"OYd\..( x) dx (23) 

)(
0 

I [)(' r.OF ;o OF I :1 
and hence ¢{0)= L'OY 't (x) + bY' t\_(x~ dx (24) 

Xo 
For the function U [y(x,a)] to have an extremum the necessary condition 

/ 
is th~t variation b U • ¢(0) should 'Yanish. 
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1 jx1 OF OF , 
bu = ¢ ( 0) = by'\. ( x) + oyd\ ( x) dx :: 0 

Xo 

Since \Cx
0

) = ~(~) = 0 the first term drops out on integration. 

Hence 

Therefore, integrating second terms by parts we c an write 
x, x

1 j oF . bF n ( x) r x ' d ( oF 
;<.pi \ ( x)a 'a:=oyt \. - J r\ ( x) dx oy) dx 

and hence x
0 

)(
0 

I X I 

bu = ¢ ( 0) = j [OF ~ ( x) - .£__ ( 01<' ~ n ( x) dx 
Xt by dx oy'~ '-

= (X•~x) [ bF - £...( Oi'') dx = 0 
J:-< o - Cy dx Oy1 

Sincet\, (x) = y(x) - y(x) is arbitrary and vanishes at the fixed end 

points the above can only be true if 

OF $.-- ( Of' ) ::. 0 
by - a.x , Oy 

or in subscript notation 

Fy - d F / - 0 
dx 

y - ( 25) 

This is the fruaous Euler equat ion and is the necessary though not the 

sufficient condition for an ext remum. 

The integral curves y = y(x, c1 , c 2) of t he ~~ler's equation 

are known as extrcmals. 

Generalizing the above procedure it can be shown that for a 

functio nal 
I ~ (k) 

¢ ( Y ) = F ( X, Y , Y , 'j , • • • • • • • • , ~· ) dx ( 26) 

Euler's equation would be 

2 
F - d F 1 + d 

Y dx Y dx2 

and further for a double i ntegral 

¢(v) =JJ F{x,y,v, vn, vy)dx dy 

Euler equation can be written as 

( 28) 

(29) 

( 27) 
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Exemple 

In designing a rocket tail it i s required t o determine a 

curve with given end point s , such th at by revo lving this curve around 

the x- axis a surface of minimum area can be generated•. 

Since the area of the surface of revolution generated by 

the rot at ion of the c urve y = y(x) about 
.x2. 

A y (x) = 2~£ y)l+y' 2 dx 
)'I 

x- axis is 

I 
and since the integrand depend s only on y and y , t he F.:uler equation 

has the first i ntegra l 

hence 

i. e ., 

I 

F - y F' I : K y 

separa t ing variable3, we can write 

dx = Kdy /J y 2
- K

2 

i .e. , 

X+Kl : K l n ( y+/y~ - K2 ) 

This is the Game as 

y: K cos h(x ~ [ 1 ) 

or 

Since this is the equation of a catenary passing through the given end 

points the required curve is a catenary giving the catenoid aa the 

surface of the required rocket tail. Values of K and K
1 

can be found 

by applying end conditions. 

• Adopted from Hefcrence 46. 



A functional of t he type discussed in precedinG s ction is 

some times asoociat ed viitr, some sort of a c onstraint . I n •.h :~t is 

c alled the isoperimetric problems o f t he variational calculuA it is 

us ually r equired t o m:.u d.mize or r:~iniraize a f uncti onal 

U =J X
1

b'(x,y,y)dx subject to the condition (30) 
)(0 

¢ ;. (x"' 1 G ( X, y , y ) dx 
Using Lat, /.'lnge ' s method of undet e rmined multipli 0r \ve c an \J-i t ...... 

x, 
U + A ¢ = j [F (X, y, y) + G (X, y, y)] dx 

Xo 
The necessary condition f o r extrema c an then be expressed by Euler 's 

equat ion 

d 0 ( F+ .,_ G) _ o 
dx by' -

( ~1) 

']'he cons tants of integration and Lagr anee' G multipliers c an nov; be 

det ermined using end conditions and the constraint ¢~o 



2.33 Case of a Functional With Variabl! End Conditions 

After dealing with the case of a functional with fixed end 

points in the preceding sections we will now conaider a more general 

case where ends are not fixed but terminate on a prescribed curve. 

Taking the familiar functional 
x1 

U y(x) ~f F(x,y 9;) dx 
X . 

and choosing arbitrarily t't_ ( :x) 

such that rL_ (~0) ~ 0 and rl_ (x
1

) ~ 0 

~admissible curve y(x,a) = y(x) + ~ ~(x) close to y(x) can be 

chosen. Now substituting y(x,a) into the functional we can write 

J
x1 I 

)t (ex) • x F [x,y( x 9a) ,y( x,ex) J dx 
0 

Using Leibniz' formula, when limite are functions of the variable of 

differentiation, we can write 

¢1
(ex) = F ~i(a) - F dxo (ex) 

1 da c da 

Integrating the last term by parte 

Jx1 (a) oF {1 (a) [oF o 
- dx = - o ~ + 

X (a) Oa X (a) oy Oa 

oF dx 
oa 

0 

-~~(a ) [ 1 ] oF 11 (x) + oF 11(x) dx 
x (a) OJ oy' ~ 

(32) 

o +Jx1 (ex) (-a"'~ _ "' oF ft (x) f xl u 
oy ., XO X (a) .f 

:xoF/oy ]~x) dx 

0 J 

and since y(x
1

,a) = p(~) +a(~) , the above can be written as 

£:!1 
da 

• • ... .... - 'c;. 

+a ( d rt_ ) o dx1 (a) 
dx 1 ·~) 
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substituting these values in equation (32) gives 

a(el),.( F ) dx1 (el)_(p) ~) +(FI) (2zl -( ') dx~ - (F') [£zo -(y) dx ] 
1' lda Odel y c:x y ldel LJ y O del a dcx. 0 

Rearranging and using subscript notation 

1 dx 1 dx d d jxl(el) 
(F -yFI'--1-(F - yFt ) --o+ (F;) £11-(F;) ~+ 

y y ldel y y odcx. y ldel y od« x (el) 
0 

and this is possible only if both 

1 dx 1 dx dv dv 
(F -yF1) -1- (F -yF ') -o+ (F 1 ) --=--1- (F) =--d,.,o = 0 (33) 

y y do. y y 0 dcx. y 1 del y 0 ""' 

and 

F 
y 

d --FI 
dx y 

• 0 

)~(x)dx :::0 

The first of the above equations ie known as the Transversility Con-

dition, whereas the second is the familiar Euler equation. For the 

existence of an extremum both of theee t\'tO equations must be satisfied. 

A problem of trajectory optimization for small changes in the orbital 

elements for electric propulsion devices is described by Edelbaum47 

and a problem of optimum proportioning of two propellante to obtain 

48 maximum burnt velocity is dealt with by Holds using this methodo 
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2.34 Problema of Lagrange, Hayer and Bolza 

In dealing with calculus of variation problems one encounters 

three distinct problema which can be laid down as follows : 

i. U = [a (x, y1>]: i = 1,2,3 ••• n to be minimized or 

maximized 

subject to the constraints 

n ( 311> 

and sat isfying boundary or end conditions, defined by 

the functions 

~k (x, yi)J: = 0 

l
Xb 1 

11. U = H (x ~ y . 1 yk) dx to be minimized or maximized 
Xa, l. 

subject to the c onstraints 

¢j (x, yi, yi) = 0 (35) 

and the boundary conditions 

~k (x, yi)]: • 0 

iii. U • ( bH ( X, y i 1 y i) dx + [ G ( X 1 y 1) 1 : 
x. 'J 

subject to constraints 

¢j (x, y
1

, y
1

) • 0 (36) 

and satisfying boundary conoitions 

~k (x, yi)]: • 0 

First of these three is known as Mayer's problem and is by far the 

most 00111mon in engineering and particularly in design. The second one 

is the Lagrange' a problem and the third one is the Bolza 's problem. 

Bolza' s problem ie basically the more general pr blem and is the 

combination of Mayer and Lagrange's problems. 

In each oase using Lagrange's multipliers an augmented function 



n 

F == H + L A.j ~ c an be f ormul ated . 
j:::l 

41 

This, then along with boundary conditions, the Euler equation and the 

transversility conditions allows one to solve for n + m unknowns 

Aj(x) and yi(x). 

A problem of determining the two dimensional wing having minimum pre-

saure drag in supersonic flow with given profile area or given moment 

of inertia of the profile area is dealt with by Miele
49. 
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2.35 Some Recent Developments 

On account of the importance of the variatioll8.l calculus in 

the field of aerospace and aerodynamics both in U.s.s.R. and u.s.A., 

extensive researches are under way to find better methods of eolving 

such problems. Ae a result of this two Yery important methods have 

recently been added in this field. One of these is the American 

mathematician Bellman's Dynamic ProgrammingSO, and the other is the 

Rueeian Profeseor Pontryagin' s Maximum Principle51 • Dynamic program-

riling will be dealt 'ldth in section 2.5 under Mathematical Programming 

where as the t-taximum Principle will be briefly dealt with in this 

section. 

The Maximum Principle can be stated as follows: 

I! U • [u< t), t
0

, t
1

, ••• xJ be an admissible control 

process, and i! X( t) be the corresponding integral curve of the a;yatem 

dxi · dt = fL (x, u) {1 • 0,1,2, ••• n) passing through the point 

n , 
••• x ) for t • o, and satist1iag the conditione 

0 

l{ ) l D { ) D 
X t 1 • ~ t o o o X t 1 ., ~ 

where x1 indicates the first derivative 

n x indicates the nth der1Yative, etc. 

for t .., t
1

• Then if the control process U is optimal, there exists a 

continuous vector ftmetion¢ (t) • ¢
0
(t), ¢; 1<t), • • • ¢ n(t) 

euch that 

1. the ftmetion ¢ ( t) satisfies the system 

n a 
& ~1 = L 6 r a'itu) ¢a (i = 0,1,2, •• e n) (37) 

a-o 
for x • x(t), u • u{t). 



2. For all tin (t
0

, t 1), the function II( ¢ , x, u) • 

attains its maximum for u = u(t), i.e. 

n (¢<t) , x(t), u(t~ = K ¢ (t), x(t) 

where K (¢ , x) = Sup r1( ¢ , x, u) 
UE .n. 

where Sup denotes supremum or least upper bound. 

3. The relation 

¢ 0 [<t 1) ~ 0, K ( .fltt
1
), u(t

1
>] =0 

n 
}:¢ cx.fo. (x,u) 

ct:aO 

(40) 

hold at time t 1 • 

41 Pontryagin et.al have described in detail the application of the maxi• 

mum principle to the solution of some time optimum s,yntheais problems of 

control systems. 
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2. 40 Direc t or Numer ical t1ethods 

The met~ode of optimization, described in the preceding sections 

usually end up in differ ential equations which quite fre uently are 

very difficult to solve. To overc ome this difficulty, direct methode 

have been evolved. A direct method can be defined as one wherein 

values of a function at two or more points are compared to reach an 

extremum. All such methods are appro~lmate and do not give precise 

results. However , simplicity and t he ease wit h which solutions can be 

obtained by usi ng these methods has mDde them very popular and explains 

thei r wide use. 

Direct ~ethods are not new; their existance would be traced 

to the time of F.uler and Ri tz end, i f solutions of equations are con

sidered, to t he t ime of Aleorithm. 1
• 2•3•4•5•6 However, since the 

appearance of computers in the last decade, their importance suddenly 

increased multifold and more attent ion is being paid to such methods 

during the present time than ever before. 

Many suoh methods are at present available, such as direct 

methods of variational calculus, analytical cum numerical methods, 

deterministic methods of direct search, and atohastic methods of 

direct search. All these will be dealt with separately in the 

following sections. 



2. Ln Direct Methods of Va ri Lltionnl Calculus 

Quite a few methods are available which can be del3cribed under 

tltis heading. I!ow1ever, four i mportant ones are Euler ' s method of 

finite differences, Ritz methocl., Kantrovic ' s 45 metllod and the method 

of . l inear integral52• 

The basic idea behind the so-called Euler' s met hod is that a 

functional of the type U y(x) can be considered as a sum of a finite 

set of variublea so th at for a pur t icular functional 

I 
F (x, y, y)dx, y(x ) = a 

0 

u[y(x)J turns into a func tion¢ (y1 , y 2, ••• yn-l) of ordinates 

. . v fo r a polygonal curve divided into n line segments • "n-1 

x
0 

+ 6x , x
0 

+ 26x , ••• x
0 

+ (n-1) 6x. Ordinates y1 , y 2, ••• yn-l 

are so chosen that the function has an extremum. Referring back to 

theory of maxima and minima 

b0:o, e0 =o •.....• ~0 •0 DY1 ey2 ' FYn-l 
The next step to this is to pass the li!llit with n- OJ. Thus 

U [y(x)J: jx'F (x, y, y) dx~¢ (y
1

, y
2

, • • • 
X.o n-1 

~ y . - 1. 
and¢ (yl, Y2 • • • Yn-1) :a ~ F (xi' yi, ~.;~6 .. . ·1) 6x 

~=0 X 

Sine e only the i th and ( i-1) th terms in the above equa ti.on depend on Yi 
~ a 0 for i = 1,2,3, ••• n-1 
ayi 

can be of the form 

( y -y y -y i=lL 6x 
F xi' yi' 1+1 i) 6x + F1 (x1 ,y1 , i+1 i) Ax 

Y 6x Y 6x 

+ y, (x
1

_
1

, y
1

_
1

, yi-1i-1) (Jl) Ax .0 
Y Ax 6x 

for . = 1,2,3 ••• n-l 



i~Yc -xi .,. y 1 v 6.Y"!.itJ.x.) ~. FY(x1 1Y1 9'yi / t. x) - FY( xi-l 9Yi_1 ,tJ.yi_ 1/llx) • o 

or F (xi' Yia 6yi/6x) - t::.Fy!t. x = 0 
oF 

<Jhere - = F oy Y 

oF 
ol= Fi 

Now when n-oo this becomes 
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d . 
F --- F ~ = 0 (which ie Euler's equation derived in preceding 

y dx y 

sect i ons and mus t be sati sfi ed by the function y(x) for an extremum. 

In case ~pproximations are sought these can be determined from 

equations 3¢/oy,i = 0, i = 1,2,3, ••• n-1 without applying the limi-

tation process. 

The other important method ie Ritz's Method45 • In this method 

a f unctional is considered as a linear functional combination. Thus a 

functional U = U [y(x) J. 
can be written as Un = ~ [yn(x~ 

where y (x) = ~ a W.(x) 
n i=l 1 

(42) 

coefficients a1, a
2

, a
3 

••• a n are constants which are adjusted to 

yield the desired extremum. 

gi ven bound ary condition. 

W. (x) ar e functions of~ satisfying 
l. 

Thus with these linear combinations, 

f unctional U fr<x~ becomes a function ¢ ( a 1 , a
2

, a:
3 

••• a:n) of 

a • For an extremum the coefficients 
n 

can then be determined by t he system of equations 

~ = 0 for i=l,2, 3, •• , n, 
oa:i 

~ 

I n the end applying the limits, e.g., n - oo, limit function 
co 

y = L a:iWi(x) 
i::zl 
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is obt ained . If t his c onvar:;e s , un.l rJ-:- ;;e~t'Jin :10i3Umi.Jtion." :1hout t he 

funct i onal U [~( x~ and \/ .( x ) t his ;.;i ll .~i ve an w(nc t sol11tion. 
1. 

If 

is obtain~d . 

The so-c nlled method of Kantrovic 45 i8 n s encruliz a"'.;ion of 

th e ~it z ' s mct1od . In t '1i.s method coeffic i ents c1
1

, ct
2

, Cl
3 

• • • a. 
n 

are no lof1Ger c onst~nt s ; ins tead th·-:;~; arc fun~t i. on3 of th e i ndependent 

vari ab l es. Thc3e f 1mctions are t o be so c hosen tl1at th ~ functio nal 

U y(x) hau an extremun. The Russl~n ~a t .Y:atici ans cla i m that by 

using t hi& r.Je t hod, approxima te solutions obt aj ned a ra usually bett er 

than those obt ained by Hitz 's method. 

In t he l inear integr al met ho1 52 certain new vari ables are 

introd uc ed, and by i r.tegrating by r3rts, certain for~ul3 8 arc obt J ined 

v1hich are commonly known as Green ' s Formula. 8reen ' G formu l a is then 

simplified by using certain multipliers so that depend ent variables 

drop out. This simplifi ed int egral i s then maximi zed us ing a theorem 

which Faulkner52 calls the maximum princip l e . 

Elsgolc 45 h a s used the first t hree ethod s for so lving various 

52 design problems and Faulkner has used the l ast me t hod for determining 

optimum trajectories on digitnl comput ers. 
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2.42 Numerical cum Analytical Methods 

It is mentioned in section 2 . 4 that the differential equations 

obtained by the methods of previous sections are not always eaey to 

solve. Similarly the s~t of ai~ultaneous constraining· equations are 

very often difficult to solve. Therefore, in certain cas s it is 

customary to solve tbese cquut·Gns by using various approximate 

numerical metho s such ~s Aleoritr~'s method, Newton-Ra~hson's method 

and the so called method of finite Jifferences. 
53,54* 

I n ,·,l~;crithm's :t,ethod vf Errors {:.1-Hisab- 1-Kh£~t yn) 

if a r r ot x of U(:A)=O can 0e is lated betwf-'erl two points x
0 

onu. ~ 

in the interval x0 and~· the ~raph of Ya:U(x) would be aa shown in 

Figure 2.42 . If the point 110 and A
1 

in Fi0ure 2. 'r2 are joined by a 

straight lino. this line will cut the x-axis at a po :4 nt say x2 which is 

close to the root x 

X&,- X 0 _ X 1 - x. •· e. 
u (X0 )--U ( x , ) Xo u (x • ) - x,u { Xo) 

x 0 U {xh) - x,u ( X 0 ) X :: • 2. . . x= u (x,) - u (xo) .,., 
u (x") - u ( Xo) 

•ro get a closer oppr ximation to the root x another straL;ht line 

closer to the CurVe Cart be drO.itln , and by repeating this pr0ce~s a 

series of values x2 , x
3

, x4, . •••• • • ..• , x
0 

can be obtained which in 

the end converge to the real root x. 
ThiB method , althoue;h it t;ivos the root, is slow in convercence , 

and hence Newton-Raphs·:n' s method in usually preferred. Hoo,.tever, in 
I 

case f (x)::O or close to zero, J·i ewton - Jiaphson ' methods fails. 

Jl. l gorithi:n ' s method is found to be of value in such cases. 

• Translated in .Latin as Hegula Falsi 
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FIG. 2-.4 2 

FIG.2 .. 43u 



In the I\ ewton-Ha.phson' s method the r oot of the equation 

U(x)=O is found by the formula 
/ 

X .. = X"'-U ( X 11 ) / U ( X ~ ) 
.. +1 

n=l, 2 , ••••• • ••• ,etc • 

and convergence is comparatively faster . The f ormula is derived by the 

us e of 'l'ayl or's expansion. The above expression can also be written as 

This is similar t o matrix form; suggest i ng that a s et of 

silmul taneous equations can be s olved by this method. The possibility 

of t his can be investigated in the f ollowing manner: 

that ~- is a vector consisting of a set of functions 

Le t us e:tssume 

¢,¢ , ••.•. ,¢ 
' 2. n 

and that xo i s an initial starting vector. Ac.ding a small increment 6X 

t o this vector we arrive at a point where 

x -x- + .c..x 
,- 0 

vector 

Sirnilc. rly f or the rth vector "X and r+l th vector X we ct..n wr:ite 
r r+l 

X :X +AX 
r-r1 t' 

(43) 

Now c onsiderinl.!, tha t somehow we have arrived at rth approximation X 
r 

and that a t this point ¢ has a value ¢1" . ·,. e can new expand ¢ using 

Tayl or'sreries expansion s o that 

/ 

~ : ~ ... + 6 X • ~r + • • ••• • • ••• •. 
1"+ 1 

Neclectinc higher ter ms this can be written as 
/ 

~ ... ~~ .. + .c..x • ~~--
' +1 

To reach close t o the solution ~c in t we equate ¢ t o zero s o t hut 

Now multi f,l ying both siues by the inverse matr ix 
/ -1 

6 X • I : - W.,. • Wr 

"-1 
~r we get 

(44) 



~here I is the unit vector and hence we can further reduce this to 
/ -1 
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AX : - ~ ~... (45) 

Substituting (45 ) in ( 43 ) we get 
, -1 

X : - ~t • ~r 1' X r 
t-tl. 

This eq..tation can very easily be han led by cor:lputers36 and hence even 

lengthy and difficul t sets of nonlinear algebraic equations can be 

dealt ith by this method. 

For s olution of cer tain differential equations the eo cnlleu 

method of finite differences57,58 i s foun to be ver y useful. This can 

be explained by usin~ t he first order differential equat ion 

d y I d X : u (X' y ) = y' 

with initial eondi ti ons y=y 
0 

for xc:x
0 

when x ) x
0

. 

For the solution, atarting witl -t he kno~~ ordinti te and calculating 

ordinates successively, we can write 

~: y(X 0 +h) 

1
2 
= ~ (X 0 +2h) ~ 1 (x1 -+h) 

• • • • • • • • • • • • •••••• 

wh~re h is a f inite increment . 

Using Taylor ' s s ries expansion we can write 

•••••••• 

I 
Using t runcated approximation up to y 

Starti ng with n:rO values of ordin<..~tes at n=l, 2 , 3 , . ... • can be 

(46) 

(47) 

calcula ted and the process is repeat ed so that a step-by-step method 



of fin i nb t he solution is obtained. 

The above equation oan a lso be written as 
I 

Y :(Yn -Yn-1)/n. 
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(48) 

Similarly values of second and third der ivatives can also be calculated. 

This fac i lita tes synthesis of kinemat i c mechanisms wher e y, /, f etc. 

a r e needed to represent velocity, acceler~tion , etc . Due t o t r uncation 

this metho is not accurate and hence certain modifi ed versionn such 

as Heun' s me thod and the mid point methods57•58 are conu.1only used. 

For a specia l case when criterion as well as cons traints 

happen to be hornot;eneous, Bedford, 1.'iillis an d Dodson59 have shown that 

a method which they call the "Infinitisimal per-unit increment " method 

can e~sily be a pplied and has the pr oper ty that t he des igner is kept in 

touch with the elements of design . 

This method can be described as foll ows 

UcU(x1 , x2, x
3

, 

and t he constraint 

... . . .... .. ,x ) 
n 

¢ = ¢ ( X 1 , X 2. 1 X 3 , • • • • • • I Xh ) 

(49) 

are both homogeneous . By using the definit i on of homogeneity
60 

we 

can \vrite x •A,x,for n::l,2,. • • ••• • 

s o t hat t he above equations t ake t he f orm 

~~ ( ) U - "'... .. U x 1 , x 2 , ••• • • ••• , xl'l ( 50 ) 

und ¢ • f! • ¢ ( .x1., x2, • • • • •• • • , xh) 

where 0: and ~ a r e the degree of homogeneity of U and ~ respec t i vely. 

At this atage using Euler's Homogeneity Helation we can write 

~ ~1 dx1 + ~ ~ dx1. + ...... .,. ~ ~. dxn: tt U (51) 

(52) 
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o. U 
Multiplying ( 52) \vi t h - and subtracting from (51) wo get 

13¢ 

d, xi( ~ Ux1 ~ ~ • ~ ¢x 1) + • • • • • • + dx ( b U - a U • ~) (53) 
f6J v tl b x 11 ~ b Xn 

whic h i mply that 

b U CX U ~ {21 
'5""X;~. ox= 0 

for al l n=l, 2, •.••.. . •. . 

This can now be ~Titten as 

~u o:u o!21 
o-x:~·1iXI'\ 

Usi n _:- t he fi llite · ncrement 

i.e. l~U • "O_U/"C Xn =:;!: 
r¢ • 'fJW-o Xn (3 

a fproxirout i ons t h i s can be expressed 

(54 ) 

as 

.c.u /6¢ a:. (55) 
u/ w-=~ 

The procedure of aLtack for s ol ution of a problem of this type would 

be t G start Hi t h any arbitrary values of the design parameter and 

cal c ulate the rati o as s ho'<m in t he riGht side o f the last equation. 

This can t hen be c hec ke d '<Ji t h the ratio of t he degrees of homogeneity 

5 , und if it h<.qpens to be t Le same, the o;·timurn i::; reached ; {3 . 
otherwise, one of the design parameters is chunced (increas~d or decreased 

depending on wheth0r t hG r 3 tio happens t o be smaller .or l arger than the 

ratio of deGree of hor.10beneity) an-i the method i s repea ted till these 

two rt~tios tally. Thi s method can t herefore be stu.tcd n s foll ows; 

If any device he.s optimum shape , the r~' tic between the 

resulting per-unit increments in optimizin~ characteristics is 

equal to the r u tio between degrees of homogeneity of these 

characteristics. 

For i · l ustra tion o f t hi s mc• thod we will uo0 the ex.:...:nple of the de s i gn 

cf u. cylin t.lricul f uel Ll.nk to have m<:;l_ximum volume for a given surfc.tce 

urea which hc.. s been used in se~..; t ion 2 • .::2. 



Using the relations mentioned under section 2.22 we can write 

The degree of homogeneity of q is 3 and that of ¢ is 2 so that the 

ratio ~ • 3/2•1.5 
/?> 

Using the equation derived above we can write 

AU • l~U _ ... r:!-l S 
Aja ~ l , -13- • 

Assuming ra2 and ha2 as our first guess, then if llh "" 2K 
h 

AU/U : · b/U • OU/oh • Ah/h : l/11::r 2 • n.r2/l • 2K/l : 2K 

t:::.¢1¢ ~ b/¢ • b¢/bh • .O.h/h -= l/2nr • b/r+h • 21\r( 2K) /1 ::.K 

This gives a ratio of 2 .0, which is too large, eo that h, which seems 

to be too small, should be increased. Using h•3 as our next step, 

we get the ratio 1.8 which is Etill too large. 'l'rying h•4 gives the 

ratio equal to 1.5 which is exactly the same as tha required ratio. 

Hence the optimum shape of the fuel tank would have a relation h=2r, 

which is the same as the one obtained in section 2.22. 

Aeimo~ has solved a bearing problem by using Newton-Raphson's 

method extended to simultaneous equations along with the method of 

Lagrange's undetermined m~tipliera. A problem of transformer design 

for optimum geometric configuration is solved by Jackson6 y using 

the method of finite differences as applied to homogeneous rtial 

differential equatiorut, and a problem of synthesis of kinematic 

mechanisms by using metho4 of finite differences is dealt with by 

62 34 . 
Shaffer and Kr~se. Johnson has also used this method for solving 

various optimum design problema of machine laments. 
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2.43 Deterministic Methods of Direct Search 

Direct search is a method of arriving at an optimum by 

continuous searching through experi~t~tion. A dete~inistic problem 

is one which does not depend on any random factors. A deterministic 

method of direct search oan therefore be defined as a method of 

search for an optimum of an unknown function having no random factors. 63 

Deterministic problems can be divided into two main types, e.g., uni-

variable and multi-variable problems. By univariable problems we 

mean a problem having not more than one independent variable. Similarly 

a multivariable problem is one which contains more than one independent 

variable. 1~e techniques applieable for solution of univariable 

problems are relatively simple but unfortunately these are not applicable 

to multivariable problem solutions. 

Search methods are usually either sequential or simultaneous 

type . In sequential methods co-ordinates are examined one after the 

other, whe r eas, in simultaneous methods co-ordinates are examined 

simultaneously. A sequential method takes more time than a simultaneous 

method; howe~er, sequential methods are more effective since errors 

involved are usually less than the simultaneous methods. 

The experimental search of optimum is a atatisti~ technique 

and Hotelling64 may be called the enunciator of efforts in this 

direction. Later G. E. P. Box65 applied these me thods for solving 

optimization problems of chemical process systems . 

we will discuss these methods briefly in this and the 

following section . 



56 

Univariable Methods: 

There are sever al rigor ous ma thematical techniques which 

could be a pplied f or the search of optimum for the so ca lled univariable 

unimodal pr oblems . Ho\~ever, the bes t one is a sequential method 

due to Ki efer . 66 This can be des cribed as follows: 

h. function u=f(x) i r; tJiid to be unimodal i f ther e exi s ts a 

s peci fi c value x
0 

of x such t hat u either i ncreases f>r x~ x
0 

and 

decr eeo.ses for x > x
0 

or i ncreases for x 4Cx
0 

an ti als n incre ·J.ses for 

x~ x
0

. I f such a function is prescribed i n a given intervul C' x ( 1
0 

and if U is t he supremum of a l l L sucl t ha t t he maxi mum of u on a n n 

s ubi nterval of unit length can always be locuted by calcul ating 

n values of the function t hen 

U = U 1 + U 2 where n ' 2• 
n n - n - ? 

and u0 = u1 = 1 

This i ndica tes that U will a Hsume values 
n 

U0=1 , U1=1, U2=2 , u3=3 , U4=5, u5: 8, U6=13, u7: 21 , Ua=34, 

U9=55, ulo=89, .• ••• ••. • .•• •• •• • ••• • 

(56) 

so tha t u20 > 10000. Thi~ ; s imply means that a maximum can always be 

loca ted t o t he a ccura cy of .0001 of t he ori ginal interval length 

\tithin 2V calcul a tions . 

which i s a continue f raction and its limiting val ue is 

= / 2 

a e;ood pr ocedure for s tart i ng t he s cur ch of t hi s type is to use two 

• For proof see Ref. 63 , 66 , 67 
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v.:..l ues of x such th<:i.t 

L-x1 = L/ Rl = .618 L 

and X '"> = L/ : 1 = .613 L \>Jh c re L is t he ori;:;in.:::t l given interval 
c... 

'rhe i nterval of uncertain ty woulJ reduce to . 618 L after first t rial 

and would lie either between 0 and x
2 

or x
1 

and L de pending on whethe r 

(see Fi ['; • 2.43 

• I 
The neH 1.ntervnl L can then be treated in the same manner and t he 

procedure i 13 r epe .::t ted till a point very close to optimur.1 (wi t h a 

n egligible intervu.l of uncertainty) is attained. 

Hult i v.:..riabl e 1-lethods 

~lultivuria blc sea1·c h methods can be described <:ts Met.hods 

of local ex ;.1l oration for finclinr:; the location of the surfaces of 

higher response and then of makin~ a dec ision \-Jhic h 11.•ay to move, so tha t 

t h e criterion mc.ty be improved most effectively . The sea rch c a n be 

63 divided into three phases. I n the first phase exploration at the 

base is confined to a s uito.bly s elected s mall region and lineu.r 

a~1proxlmo tiona are used f or ex1•lorations. In the s e cond phase 

explorations ure very infrefJ uent U..!1d the procrec s is usually by jumps 

a nd for mon t of t his area linear a 1,proxi •Jations will do. In the 

thirti c...nd the last phase explor ... tions ohould be mor e c :..:.refully organizeu 

ninc e we a re in the vicinity of the peak . If large steps arc taken 

the re is ris k of miBsing the .. a ximum ; i1ence, quadrat i c or higher 

a pproximations of non-linearitie s :...tre needed. Usual ly the multivariable 

functions a r e first retiuced to unin'Jc-·da l response surfaces by us i ng 

parametric repr esentations . In search problems of this type genera lly 



h1o basic approac hes are used -- the eliminu tion o.pproach anu. t he 

climb approach . 

In the eli~ination approach, which ismmetimes cal led the 

contour tangent elimin· tion a pproach, 63•68 a contour tangent is 

first aetermined a t some arbi tr<~ry point. Us i m: this contour tangent 

which divides the given area into two sections, the lower section 

which is less litJ.ble to have a !l extremum is elimina ted. 'l'his procedu, 

is t :1en repeated in the oth~r section which is conside re as the feasJ 

area . In U is way the feasi bility arc~a i r; aucce.ssively -reduced by re. 

sea rches, so that i n the end t his c ~nverges to the required peak or 

what we call a n optimum . 'l'his is illustrated in f i g . 2.43m whic h i s 

self-explanatory • 

.Sinc e this me thod is b<.~.sed on a decicd on rega rdin_; the 

proba bility of the extremum lyin,.; .. n c.. section of the exper imentation 

area, there is a possibility that it miGht end in a failure due to 

an incorrect decision . For the strongly unimodal funct i ons which a re 

defined a s fW1ctions \"hose sumrni t 1 s 1 c oulu. be joined t n any point 1 J- 1 

in the rec.ion of experi mentation b:, a line ps which is <>. lways a r:i s int; 

path, this me thod ah:ays leads to the summit . 

67 
'rhe cl i mb or ascent m(~ t hods , ;; also known u.s gradient 

methods, are the methods of sea rch a lonr; the gra dient or the direction 

per pendicula r to the contour t i.lngcnt. Since the dir ect i cn of the 

c r a dient is the direction of the maximum r a te of chan1;c of criterion 

for each :i n ui vidual step taken, these methods converge to the peak 

q uicker than any other methou ~nd are less liable to error. 
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FIG 2 ·43 m 



Acceleration i~e tho...:.s 

c ert u.in corr;p;tre t ivel ;y nevi :rc t hoc.s a r e o f ten use d since they in" rea se 

t h e r .1 tc; of c onv e rgenc e a nd hence :J.re generally known <>.~> :..:ccc l c r <:<tion 

me thot..ts . ::>orne of t hese a re t he part an or par a l l el tan ... ~en t me t no<.l of 

69 Shah, Buch l er ;.._nJ Kc m}Jh t h or nc, pa ttern s earch method cf Hooke an 

70 71 J _, e ves , poor man ' s optimizer of !,lu.r~ele , a nu rot:.'. tin _; coordina t<! 

iK t hod of o:..· enbrock . 72 The pur a lle l t <:,n gent me thoa, .1hich ifl oft en 

used. \lith t he gr .. dient me t hod by th~ name of t he acc e ler a t ed gr<.• ' ient 

method , i s f ound t o b e ver y u ::;eful in a.e sign opt i mi zat i on pr oblem-s and 

hence \vill be df)Sc r i beJ he r e . 

Th e par allel tan . ~cnt me t hod. is b.,sed on t he fac t t h · t t he 

a l t c r na t e puths i n gr. ,iien t r11e t hoJ.s <.<r·e us u lly u1.~J ;rr xim,, t ely p •. ru1lel 

t o t :ne r cs,t>ec tivc c on Lour tan t;er,t . Th,~refore t h is propert y can be 

used t o r e duce t 11e rcum'ber of ste ps in the f inc::. l 1;hase of the Gr adien t 

m·:.: t h o<l . •t~hic h , re sJa.lly r.or c t ha n tlh' nw.!~:>er o f steps ne.:.. r tbe 

BtL ... r t . In t bc c...c celorateJ aocen t or acce l erL.t e ti gr .• dicn t :" ethoC.:. , t he 

fi r st h JO stepo u.cc take n alonr:- Lf:c r;r o.d.ietJ t an.J t hen t h-.: L .. ndl ::>t e p 

is t aken al on e; tbe li.nc j oiniu t; the L. rst ,'
0

) .H\ci t i,ir d ( P
2

) pci nt, 

<.ls s h own in .l i ·~ure 2 . 43o. . In a t;Em e ral caoe o f n i nuopenJent vo.ria bl e s , 

if t he r e s 1 onse hyper surfac e c ont our s ~w ppen t c b e c ·~)ncen t ric 

ellipsoids , the peak i s a ttai ne d a f t e r exactly n-1 s t eps . 

l ·ther mouifi ca tions or ex tensions o f the bas i c r;r "'dicnt 
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will be such tha t in the limit of la.r!-e n, x converges to x. , n 

.Lu r i utA.c:?6 0t. al. have & i_ l. ·lie d t hi~> procedure t o pr ocess performance 

optimiza tion u.."lJ Bertrarr? 7 a pplied. it to c ontrol systems . Chane;78 

i n his b0ok on controJ. sys t ems c ptimum synthea is has allotted one full 

cha f.ter to stochast i c proce sses and nt-tinwr. :iesit,"TI o f a da r-- tive c ontrol . 
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2 .50 r~athematical rrogrammi ng 

.·:nthematical ~ Jro.:;ra:n 1ing can be (.._efined as the method of 

plruming of v::1r.ious activities in such a .,m.nner t hut the objective 

of opt i mization is achieveu. These metho.ic are com~Jarativoly recent 

and are said to have initially been evolved during \·:orld ·;,ar II for 

'1' t -' . t '1.. l 79 h 1' 1 t ' tl f . t f th r.u :L ary purposes. Ill C:1ccc<. per aps ormu . .:t ea 1e ~rs o e 

\Tarious tecl'miques in t!: ~ field; e . g., the f , rmul:..:. tion of the 

trc..lnsport ,tion problem fer minimum coBt c..i f'O tribution which he submitted 

. 191 1 I 101 7 t . 30 t 't h' I . d ~n f • n /+ J~n ZlS c~~e ou w~ d 16 ~mcus s1~plex metho 

wnico solved the e,;ener·21.l linear .~;-r c1;ro. t~lmint__ problem. r:e llman Ml 

ovolvcu the rr.ore ::;ophisticated tect.nique, .vLi Cl' he ca: l<:d Dynamic 

£'rogrrumn:inc, in 1955. ln the meantime cot:.pt..tcrs eJltcred in the f"eld 

of research Wld proved to be the stronge-st tool of r eseurch man ~ver 

haa. The ease with \vhich progranrLi n ._: ;..r oblcm~> c ;m be hanuled by the 

computerJ r.'J.ue them very .t'o:·ul:..tr a.rncn -.:; l1ro t~r . . nlilcrB, c~.nJ soon new and 

better r:wtho~s of _pr o;_;r<mmin<; und :n::my refincr:1ents of the oluer 

programmin;:,; methoG.s were evolved anJ c.trE' beinG e volved every du.y . 

Initi.:.lly s..tch r.1ethods \'/e j 'O confine( t' the so culled linear 

problems; i.e ., p,cblems deal i n c; with o. linec.r criterion or optinization 

f unct ion c.tnJ linc .... r C('TifJtr· into. do\;cver, ver:; soon it was realized 

that many practical problems do not fall unJ.er this co.tegory. Hence 

ne\1 r .. cthoc.s fe;r h<::.w.ilin ; non-line;.:<r r('bl0ms were soon introJuce • 

In the following sections \'le will th erefor€ cunsj der both 

line.'.r as well as non-linear pro,~rammin ~ metho<:.s. The first '"; ction 

\vi ll denl wit h co.~. ,_#rutively si. iiile }J!'L blems; e . g ., the Trarnportation 
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Problem and its refi nEuents . In the next sect ion t he simplex and 

v ... riation. in the simplex met hod \-Jill be dealt with . The last two 

sections \'lill cover dynamic prograrrunin!~ and various versions of the so-

called Gradient Method which solved several nonlinear many 

variable problems c Before considering any mathematical programming 

:ncthoJ we will have to fa . Jiliarize ourzel ves •ii th t he following terms 

ana theoroms which c ommonly occur in mathematical progrt-.'!llning proble1:!5."' 

1. , n n d.~ro ensional Euclici~an 3p.."lce is a set of vectors with the 

property that there exists n linearly inJeyendent vectors for every 

set of n+l linearly de pend3nt v-ectors. 

2 . 11 convex set is a cor:1l i natiou of points s1..;.ch that if any two points 

lyinr; in the set a r c joined, the line j oinine; these points will 

also lie wholl y in the set. 

3. A vertex , often c~lled an extreme point, is a corner of the convex 

flet . 

4. A basis for an n dimensional Euclidean Space is a set of' n linearly 

indep0ndent vectors. 

5 . A basic solution for a line ar lJI'Ogrammin.t_; problem is the solution of 

the conntrainin ·~ equati cns with n-m v->.ria bles set equal to zero. 

6. A feasible solution is a vector which satisfies both the constrailil~ng 

equations and the non-negr:. t :;_vity con ·ition, but not the optimization 

equation. 

7 . !1 basic feasible solution is a feasible solution with not more than 

m positive independent variublen where m ~ n. (m is the number of 

constraining e 4uations) The remai ning variables are set equal to 

zero o 

• For proof see Ref. 82, ~ 3, 84, 85 
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8 . A non-degenerate basi.-: fe a ::;i Jle soJ. 1tion i~o u bw~ic f easi ble s olution 

~lith exactly m pouitive in<ie ;)wnae~1.t vt:·ri u.bl cs. 

9 . An or;till1Urn bUGiC fcas i b:i.o ::; ::.l...<tion .:.o u b<:,:::.; ic feasible sol ution 

\·Jhich optimizes the cri tericn fun<: tlcn. 

10. t.ll feasible solutions to tte lir~e£-r progr< ..... ming problem c onstitute 

a convex set . (Theorem) 

11 . If a linee~.r progr amming probleJ:J has a f eu3iLle solution it r:1ust also 

have a basic feasible solution . (Theorem) 

12 . If an optimizution function has a finite extremum, then it is a 

basic fe~sible solution . (Theorem) 



d<'''i<>PJ f.:.>r tl-,e uoluti on or ,t ~.\ rihn:.i cn ;J.r .. hle:"1E' . It fnlls t.Ul<ler 
I 
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t 11e cases c - ,,} .the 1<ltl ::~.:.1 l ro ~rawming calle?<.l linear· pro,::rarr.r.limj bee<:> use 

t he cr ib:.-rirn ·,-, n..~..l ,.;~.c t1 e c<,ru-,tra-Lnts involveJ i 11 t r is type of 

applicable only i T' speci :,l cases . On t he ott.or hanC: 1'1e so - c ... lled 

simplex metJ:,o-::. ... ,hicn will be Ciesc ibed ir. the nex t section cc..tn sol ve 

tran por t <.... t ion probl ems ar well as many other types of problcns "''hic h 

can no t Le solved by !:he t ransr:ortution :itf'bJO{., . In s11i te of this, en 

account of it fJ simplicity a.n· be t ter effi.;iency c ompare to the cimplex 

me t hod , the tr: .. nsr·ortut:Lor, :·1ethod h.::...:; been retained ami is Gxpccted 

to retain its position in t.ne so:!.ution of o. certain cateGory of linear 

pror:r ...... runin_; probler1s . Over ond above the fu.--:- ous distr.i b:.1.tion roblem 

this r3e t hod has been s uccess full ' utilized f or the solutivn of many 

d · t-· J -· bl · B? I t , . - ' +- ' l t. an [>rO t...tiC ~on r.;.es~en pro en,s. can il-.'30 OC USC•Q tor "' l C cO U l.On 

of certain as~embly desi ;n probler1s and for t h::. s purt;osc a simpl e 

exru.1ple, which i s develope d during this study , is i llustrated a t t he 

end of t !, i s sec tion . 

The Tranol'ort ati on I'robl e 'L can be state in t he follow) n -., 

manner ; St;.ppose t here are n sources S. whore cert aitl products are 
l. 

manufa c tured and t here are m destinat ions D,j l'l'here t he se products are 

to be shipped for s t orage prior t o the i r f inal di spos a l. At eacL source 
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s 1 , pi products can be produce cl and at each dt•stination D j, kj products 

can be stored. If the number of products shipped from a source s
1 

to a destination Dj can be called xij and t he shipping cost from a 

source S. to a destination Dj can be called C .. the requirement in to 
~ ~J 

minimize total shipping cost . Expressing this mathematically we can write 
n 

j~ Xi j = Pi fori= l, 2, ......... . m 

m 
) x 1j: kj 

1:Yn m 
for j = 1, 2, ••••••••• n 

and U = ~ L:: Cij xi. is to be minimized subject to the consistency 
.J!). 1:.1 J 

conditionLPl: L k and non- negative condition xij ~ 0 for all values 
l=l j :t j 

of i and j. However , in certain cases the consistency condition may 

not be satisfied and hence we will be dealing with inequalities instead 

of equalities. In order to overcome this tii fficulty a so-called 

slack variable v is added so that the inequality is finally converted 

into an equality and hence satisfies the required consistency condition. 

For illustration , see the example at the end of this section . A theorem 

of the transportation problem tells us that it has a triangular basis; 

i.e., the system of linear equations associated with transportation 

problems can be given such a form tha t there exists at least one equation 

that contains only one unknown and when this is evaluated its deletion 

will evolve a new set which once again will have a t least one equation 

that contains only one unknown. Proceeding in this way unknowns can 

be evaluated. For example a11~ + a12x2 + a
13

x
3 

• P1 

a22x2 + 6 23x3 • p2 

a33x3 • P3 

is a set having a triangular basis . 



A trans.t·ortation probleM can be solved by an algorithm consisting 

of five .steps: 

1. Formulation of the transportation array -- In this the given data 

can be arranged in the form of an array similar to the one shown 

in Table 1. 

2. Determination of an initial solution -- Hany different methods 

for arriving at an initial solution are presently available; 

83 84 85 88 however, the so-called North \11eat Corner method ' ' ' (also 
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called stepping stone method) is the simplest and easiest for computer 

ap~lications. The other important methous are Inspection method, 

Nutually Preferred method and Vagal ' s a :p!Jroximate method. 88 These 

methods reduce the computation time by reducing the number of iteration 

for arrivins at an optimum but they can not be applied so easily to 

the computers as the north west corner method. 

In the nortl'l \-iest corner method, as its name suggests, 

the north west corner oell is first selected and the maximum number 

of products, without violating the capacity restrictions, are 

shipped to this cell; i.e., from s
1 

to D
1

. The triangular basis 

of the problem permits us to delete either a column or a row where 

the capacity restraints are satisfied thus leaving a new smaller 

array which can then be dealt with in exactly the same manner . The 

procedure is repeated till all capacity restraints are fully 

satisfied. For illustration see Table 2. 

3. Evaluation of empty cells -- hfter determining the initial solution 

each empty cell is evaluated term by term for possible movement in 



closed circuits to bring about a possible reduction in cost. All 

such evaluations are then compared to choose the one which can 

bring the maximum reduction. 

4. Altering the solution -- The initial solution is now altered by 

shifting a maximum number of products without violating the capacity 

restraints accor ding to the circuit of maximum reduction found in 

Step 4. 

ll 

5. Evaluation of the altered solution -- The altered solution is evaluated 

in the same manner as Step 3. There could be three possibilities 

at this stage; e.g., i. there could be a possibility of further 

reduction in cost in which case the procedure is to repeat Step 4. 

ii. there could be no possibility of further 

reduction in cost but a circuit exists which is indifferent, indicating 

that the optimum is reached but a~ alternate solution is also 

available. 

iii. there is no possibility of further 

reduction and there is no indifferent circuit available indic ~ting 

that optimum is reached and that no other alternate optimum solution 

is available. 

Every transportation solution, says a transportation theorem, 

must have m+n-l variables. If at any stage of iterations the number of 

variables happen to be less than this number the solution is said to 

have degenerated. Further evaluation of a degenerated solution is either 

not possible or very difficult to handle. Therefore, to overcome this 

difficulty an infinitisimally small quantity E is introduced. This 



quantity can then be handled as any other variable but having a 

negligible value. 

For proof of the authenticity of this procedure, References 

82 , 83 , 84, 85 and 87 can be consulted. 

Example 
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A product consists of 4 components D
1

, D2 , n
3 

and D4• In 

each product 8 components of D1 , 5 components of D2 , and 17 components 

of n
3 

are to be mounted on a frame n4• For the assembly of component 

n1 either five screws or five rivets are needed. Similarly for mounting 

each n2 five screws or five rivets are again required. For the 

assembly of n
3 

either two screws or two rivets are needed . The cost 

of screwing, including the cost of the screw itself, is $.15 for D1 , 

$ . 25 fo~ D2 and $ .15 for n
3

• Similarly for rivetting this cost is 

$ .10 for D1 , ~ .15 for D2 , and $ .15 for n
3

. One hundred product s are 

to be assembled daily and the capacity o~ both screwing and r ivett ing 

sections is 5000 screws or 5000 rivets a day. It is required to find 

the components where rivets are to be used and the components where 

screws are to be used so that the total cost be a minimum. 

Step 1. Formulation of the array 

xll + xl2 + xl3 = P1 

xll + x21 = kl 

xl2 + x22 = k2 

xl3 + x23 • k3 

x21 + x22 + x23 = P2 
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where x11 , x12 and x
13 

are number of screws required for fastening 

D1 , D2 and n
3 

on the frame n4 respectively. Similarly x21 , x22 and x
23 

are number of rivets required for fastening n1 , n2 and n
3 

respecti vely. 

c11 , c12 and c
13 

are the costs of screwing x11 , x12 and x
13

• Similarly 

c21 , c22 and c
23 

are costs of rivetting x21 , x22 and x
23

• 

The total capacity of screw section is p
1 

= 5000 

The total capacity of rivet ~ection is p2 = 5000 

Each component n
1 

requires a total of 5 screws or rivets, hence the 

total requirements of screws or rivets for component D1 for one hunared 

products to be manufactured would be 

kl = 100. 8 .5 = 4000 

In a s imilar manner, total number of screws or rivets required for 

the manufacture of component n2 for one hundred products would be 

k2 = 100.5.5 = 2500 

Similarly for the component n
3 

this would be 

k3 = 100.17.2 = 3400 

Now to convert the above inequalities into equalities we include 

slack variables v1 and v2 corresponding to fictitious product Ds. 

Here v
1 

and v
2 

actually represent the idle capac i ties of the screw 

and rivet sections. Doing this we can formulate our problem as follows: 

subject to the condition 

Xll+Xl2+Xl3+Vl = pl =5000 

xll+X21 = kl = 4000 

xl2+x22 = k2 = 2500 



= 

= 3400 

p = 500~ 

una xij = 0 for i = 1, 2 , 3 and j .:· .1, 2, 3 ~/here cl :z: c2 "' 0. 
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The data can now be arranged in t he t <bulur form as shown in Tc..tble I . 

The last column is the fastening capacity of each section , whereDs 

the last row represents the nwnber of fasteners required. Column 1 

is the component n1 column wher eas row 1 is the screw section row so that 

x11 represents the number of scr ews required for fastening component 

D1 and c11 represents the cost of using one screw f or fast3ning a 

component D1 • Similarly x33 represents number of rivets requir ed to 

fasten component o3 and c33, the coat of using one rivet for fastening 

a component D-z • 
;; 

TABLE I 

Dl D2 D3 D_ 
r~ a 

81 xll .15 xl2 . 25 xl3 .15 vl .oo 5000 

62 ),.2l. .10 x22 .15 x23 .15 v2 . 00 5000 

kj 4000 2500 3400 100 1()()()(;: 
' 
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Step 2. Initial Solution using North-west Corner Method 

TABLJI; II 

I 

Dl D2 D3 D,. pi 

4000 .15 1000: ~25 €£1 . 15 0 .00 5000 sl El & 
@ e 

82 0 E£l . 10 15008 .15 3400 .15 100 ~ .00 5000 - .. 
k. 4000 2500 3400 100 10000 

J 

Step 3. Evalua tion of Empty Cella 

!sing circuit 1-J a s shown i n Table II possible recuction 

i n cos t - .25 - .15 + .15 + .15 = -.10 

Using circuit 2 -0 reduction ~l cost +. 25 + .10 - .15 - .15 • +.05 

Using c i rcuit 3·~ reduction i n cost -. 25 - . 00 + .15 + .00 • -.10 

Thus the largest possible reduction can be obta ined by using 

circuit 1 

.3 tep 4. i.lterati on of t he Initial Sol uti on 

Hl.BLE III 

Dl D2 D3 D pi 6 

s 4000 8 .15 & 0 .25 ~ 1000 ~ EJ .15 0 m.oo 5000 

s oe .10 ~2500 .15 &. 24oo e l±l.15 100 G.OO 5000 

kj 4000 2500 .)400 100 10000 
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Step 5. Evaluation of the Altered Solution 

Possible reduc tion by using circuit 1-() -.15-.15 + .10+.15 = -.05 

Possible reduction by usi ng circuit 2-0 - .15- .00 + .15+.00 = ... oo 

Possible reduction using circuit 3-~ +.25+.15 - .15- .15 = +.05 

Largest reduction is possible by using circuit 1. 

Step 6. Repetition of Step 4. 

TABLE IV 

Dl D2 03 D pi 6 

s1 
~ lB 16oo 6 .15 0 It) . 25 831100 .15 0 &..oo 5000 

& b.OO 62 B 2400 ® .10 2500 8 .15 @ 0 .15 100 5000 

ko 4000 2500 3400 100 10000 

Step 7• Repetition of St ep 5. 

r o sibl e reduc t ion usinc circuit l-() +.25+.10 - .15-.15 = +. 05 

ossible reduction using circuit 2- 0 +.15+.15 - . 10- .15 = +.05 

Possible reduc tion usine; circuit - 6 -.15-.00 + . 10+ . 00 = -.05 

Largest possible reduction is possible through circuit 3. 

Step 8. Hepet ltion of Step 4. 

TABLE V 

Dl I D;> D3 D pi s 
£ 

sl ltJ 1500 9 .15 0~ . 25 83400 .15 100 A .00 5000 

8 
82 EJ 2500 ,±) .10 2500G . 15 

ffi 
0 .15 0& .oo 5000 

kj 4000 2500 3400 100 10000 
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Step 9. l<epet i tion of .S tep 5. 

Possible reduction using circuit 1 - () +.25+.10 - .15-.15 = +.05 

Possible reduction using circuit 2 - Cl +.15+.15 

Possible reduction using circuit 3 -~ +.15+.00 

.15-.10 • +.05 

.10-.00 = +.05 

No reduction in cost is possible; therefore, the a bove solution is an 

optimum solut i on. No indiffe r ent situation is possible since there is 

no zero reduction and hence no other alternate optimum solution is 

possible. 

By the so-called inspection method this result could be obtained 

in just two iterations as s hown below: 

Tf,BLE VI 

D1 D2 D3 Ds pi 

sl + 0 .15 1500 .25 3400 .15 100 .oo 5000 -

52 4000 .10 + 1000 .15 0 .15 0 .oo 5000 -

k j L1QOO 2500 3400 100 10000 

On evaluation o · this i:1 i tial s olut ion it is found that the circuit 

shown i n Table VI can bring about a reduction in cost of ~ .05 for the 

movement of a unit to cell rm thus giving t he altered solution as 

shO\vn in Table VII which on evaluation is found to be optimal solution. 

Comparing with the Table V i t can be seen tha t Table V and Table VII 

are exactly the same. 
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TABLE VII 

Dl D2 n, Ds P; 

sl 1500 .15 0 .25 3400 .15 100 .oo 5000 

62 2500 .10 2500 .15 0 .15 0 .00 5000 

kj 4000 2500 3400 .15 100 10000 

The optimum programme obtai ned from Table V or VII i s as follows: 

3400 screws are to be used for mounting components D, i.e., 
3 

3400 • 1 or all 17 components n
3

are to be screwed • 
1100 • 2 

2500 rivets are to be used f or mount ing components DZ that ie 

2500 • 1 
100 • 5 

or all of t he 5 components of D are to be rivetted. e. 

1500 screws are to be used for mounting components D that is 
l 

1500 . 1 
1 5 or 3 of the 8 components of D:I.are to be screwed. 00 .. 

2500 rivets ar e to be used for mounting the remaining 5 components on 

each of the 100 parts t o be assembled. 

The t otal cost for this optimum solution would be 

U= .15xl500+.25x0+.15x3400+.lOx2500+.15x2500+.15xO+.OOxlOO 

c:: $1360.00 

Bowman
87 

has described various production design problems and Dennis86 

electric net-work uesign problems that could be solved by this method . 

A varia tion of the trans portation problem is the so-ca lled 

lti 1 ' t 84,B5 bl d t th i t k t• mu p e ass1gnmen pro em an ye ano er s an er rou 1ng 

problem,
84 

but since they do not a t present apply to design problems these 

are not consiuered here . 
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Computer program cod~s for various transportation problems are 

available for the 7o4 , 709 and many other high speed digital computers. 

The sources of information are referred to in Gass 's paper on "Recent 

Advances in Linear Programming" . B8 ,89 
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2.52 Simplex and its Varia tions 

Si mplex is defined as an n-dimensiona l convex polyhydron 

having n+l verti ces. 82 As ha s been mentioned in the preceding section, 

a problem of minimizing (or maximizing) a function 
n 

U = L cixi 
i=l. 

sub j ect to t he conditions 

¢= 
h 

L ai .xi 
. 1 J :1=-

for j = 1 , 2 , ••••••••••••••• , m 

and xi~ 0 fori= 1, 2, •••••••••••••• n 

constitutes a l i near programming problem. However, geometrically these 

conditions represent an n-dimensional polyhydron defined above as a 

simplex. Hence euch linear progra~ming problem is also a simplex 

problem. Dantzig was the first to notice this and came out with a new 

iterative method of solution called the simplex method. 82 

From above it is clear that every simplex problem also has a 

graphical solution. For n~ 3 the graphical solution becomes too 

involved and is very difficult to handle. Simplex on the other hand, 

though lengthy, can easily be handled; particularly so on computers. 

But, since the simplex requires quite a few algebraic manipulations and 

is somewhat difficult to understand, it is customary to start with a 

simple graphical solution which facilitates the understanding of the 

algebraic simplex. 

f or example, let us cons i. der the following two-dimensional case 

study of a small manufacturi ng concern producing two different models of 

iron-clad mains switches f or home us e. The concern consists of a sheet 
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r;· et al stampin .. ~ division, a parts p: oduc tion di visio . , assembly division 

f or model I kind a s sc ... mbly c. ivi s ion ''or :tJod e l II. It is assumed t hat caw 

materials, labour, and o~her i n uto are av&i l able at constant prices 

>..ithin t h demand r <mge o f t h e: c oncern. The p roduc tion capacities of 

various di vi oi ons is as follo w5 : 

Netal St <H~1 ! •ings 25000 Model I o r 35000 Hodel II ;J er month 

Parts .Pro duc tion 3:~333 ' ' 16667 ' ' ' ' t t 

l'lod e l I Assembly 2~~500 ;1e r mo nth 

Mod e l II Assembly 1 5(;00 per month 
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The sal es value of Model I is great er t han th e total co ~;ts of i.; Urcha ~:;ed 

matorinls, .~.abour cmrl other di J ·~.::ct co :....t s attri butable to its manufactur·e 

by a n amount equnl to $ 3 . 00 . Mod e l II in th :..: same .~ ay yi (~lds $ 2 . 50. An 

optimum r: oductiu n prot;ramJe is to be found 11hich \rill maximi~ e th e 

tot a l cont r ibution to .. ·ards ;,r·o fit . 

According t o the above data the:r·e ure four conscrainL. which affect the 

l. Stamping c o nsL r <(ints , c o nbinations o l' Hodel I a nd I I in th e ~,tamping 

division arc de f ined by th (! follo 1.Jing equa lic> n : 

25000 

2 . Pat· t r~ Prod uction c on, >trCJin t ~ , cor.tbi natious o f Model I and II in the 

purt::; p rod uc ti o n di vi1:ion ure d P.f'i tL J by the follo wing equation: 

16667 

3. Hode l I 1\.sr;embly const r ai nb; can be exproDr.>ed by the follo \~ing relation: 

x
1 

L 22500 

4. Model I I /,~ ;sembly conRtroints c an be expresse by the re l a tion 
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The v~:~riable:3 x
1

and x
2 

are the qua nt itie s of Hodels I and II respectivel.l 

Th~ graph of the constraining relations is as sho• .. n in fig, 2.52. From 

the curves as well as from the relations it is cloar that the slope of 

curve 1 i s - 1.4 

curve 2 is - 1.5 

curve 3 is a> 

curve 4 is - 0.0 

Each of thes e cur ves is a straight line (henc e linear programming problem), 

first two are drooping, rest of the two are parallel to x
2 

- axis and 

~ - axis resp ectively. These togethe r f orm a feasibility area A B C D E 

along 'fli th origin 0 which has 5 vertices . 

The crite r ion 

is the total contribution to \,;ards p 'ofit and hence is to be maximiz ed . The 

curve representing this rela tion is also a st ·aight line giving a slope of 

- 1.2. All points on one such line will bring the ··orne contribution towards 

., refits and hence this line is known as an iso-revenue line. However, as the 

profit is not fixed this line too is not fixed. Actually it represont s a 

family of lines having a constant slop e of - 1.2. The iso-revenue line which 

will be closest to the origin will bring the minimum profit, where as t~e 

one which t"ill be the farthest from the pr i gin will give the maximum profit. 

Now comparing the slopes of the const r aint lines it can be r eadily seen t hat 

maximum profit iso-revenue line will be closer t o the - 1.4 slope line and 

would lie between this line and the - 0 .5 s lope line. This indicates that 

these two liner. e. g . the stamping line and th e parts production line are the 



doClinating constraints and hence point C, the point of inter ;ection of 

these t wo lines will be th e optimum po i nt . Any iso-revenue li ne passing 

through this point doe s not cro .>s t he fe ncibility area except at this 

;·oint. Any o the ioo- revenue line lying to ·•a :-d s the oriein will c r oss 

the feasibility area at t wo point s rather than one. Similar ly every iso-

revenue line away from t h e origin does not p a &s t hrough the feastbility 

area at all . Tt ia confirmt~ that the point C is the optimum !JOint giving 

maximum c ont ributi n towaJ'ds p t·ofits. As s uch tha O.J timum pr oduction 

programme would be 

/ 

20400 unitG of Model I per month 

and 6400 units o f Mod e l II per month 

The total contributio n to ~;n.rds profit ~vould tbercfor e be 

u = 3.0 20400 + 2.5 • 6500 

= .07745 million dollors pe:· month 

It is worth while t o men t ion at t lis st ur;e that if returns from either of 

the t wo mod el H change , t he s lope o f the iso- revenue line would also change 

end hence the optimul point would ohift to oome othe r vertex of the fea-

oibility are a . 

In n t hree d i me n !3iona l pr ob lem eoc h line o f fig. 2 . 52 .vould be 

rep lac ~d by a pl ane <m d t he graphic solution, though po .,sible, is difficult 

to handle • .For more thun three dimens iona l p r oblems even phy sicul vieuali-

zation of the p roblem is difficult. 

Aft er s tudying the linear p rogramming p r oblem by graphic inter-

pret vtiono \~e are no ·., ready t o considej· the alg ebraic simplex. For this 

l .et us c ons ider the follo wing numerical e xamp le. 

Example: A small manufacturing conc e i·n is pres ently manufacturing 
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t wo p roduc to ' A' a nd ' B'. Bac h produc t i .. , proc e~-; sed on t wo machines 

m1 a nd m2 • Produc t 'A' t ake s 3 min. on machine m1 and th en 6 min. on 

machi ne m
2 

• Similarly product ' B' t a kes 5 min. on m<:ic h i ne m
1 

and 3 min. 

on mac hine m
2 

• By sellint:; each p roduct 'A ' the conc ern get s a prof it of 

$ 3.0 by a s i milar measur e produc t ' B' earns a pr ofi t of $ 4 .0 . The weekly 

machi ne capac it i es are 4200 min. f o r each machine. It i s des ir·ed t o f ind 

t he manufactu r ing po licy f o r which the profit can be ext.ectcd t o at t ain a 

ma xi mum va lue. 

Th e solution pr oc edure in t lJ i s c a s e vJoul d b e s imilar to the one used f o r 

t ransport at ion i• r oblem . 1'his c an be d e r:c r ibed a s f o l lows : 

l. Formulation o f the problem . 

2. Det erminatio n o f a n i nitia l s ol ution . 

3. Evaluation o f an i niti a l so lution. 

l.; . Determination of t he va r i able to be replaced. 

5. Alteration of t h e ~3olution accordi ng to 3 and ~~ to maximiz e profit. 

6. Repetition o f s t eps 3 to ~ till no fa vourable alternative can be 

evaluat ed . (Thi s so l ut i on would then be t he opt i mum soluti on.) 

Proc eeding in thi s way we can solve t he problem a s depict ed below. 

Step l. A~; suming x
1 

and x
2 

to be t h e nwnber of products o f 'A' and 'B' 

respective ly which we woul d produc e a
11

a nd a
12 

to be t he time of manufact

ure of part 1A' on machine m
1 

and machine m
2 

respectively, a nd a
12

and a
22 

the t i me of manuf actu r e of part 'B' on mac hi ne s m1 a nd m2 respective~, we 

can write 

all xl + al2 x2 - bl =4200 

8 21 x
1 

+ 8
22 

x
2 

_ b
2 

:4200 

Where bi 'e ur e cnp aci t y res t r ic tiono . 

Now a s suming c
1 

to be th e pro f it earne~ by t he sal e o f eac h product 'A' and 



c"") by each pr oduct ' B' , 'J , t- h e t o tal pro f it e<.~rnea .1oulu be 
<:.. 

Since no neJ;ati ve '!lunufacture is po s sible \1..:: r.lU Gt ir:;;'o SL the non-net;ati vi-

ty c o ndi ticn~ 

In the ubove fo t mule t i c n Lh c capac ity r e trj ct_ cn. lu,vr re~•ulL•' in cons-

t r a ining ineyu c... li tic rat11er than e ·:u v. li Li... s . In order to c o nv ert t heoe 

the into equal i ties .. o 1·1i.ll have to .... nt co~uc c~ t::;l C~ck v. ri -1ble :.; x
3 

and x4, 

numb er of llypoLh t..ical p1on uct :::; 1\ and tvi
2

• Thes e hy pothetical .ro tl ucts 

wil l be s uch that ~ach H
1 

can b e }H'Oduc e in one mi nut e o n ·na ·..: hinc m
1 

and 

eoch H
2 

c a n be rr od uc ed e n . achine m
2 

in one minut e . Yurther , v•e ·.:ill 

a l no aGGU~1o tbnt no ~'\ can be p l'OJuc ed v n .ucli ine .,
2 

and :;i mila ly H
2 

can not be !· r oduc ed on r~achine m
1

• lt/ith th , oe u .· Gumrtione ~; e are a ble to 

const r uct the set 

'l'he value of a
13 

and a 24 is on(.' a nd t hat o f a14 and a
23 

is zero. \dth 

these c o-o ' ficient o the fo :' m of the et is knc ~,o;n c.s c a nonical f orm. The 

total pro f it U can now b e -v1ritten as 

to be muximized. 

This ne\v system is kno wn as au5ment . .:d syst E.:m. I t should b e not ed bore 

that o ur interpretatio n of the hy r.o t h e tic a l product is idle tirne of !lk'lChi-

nes. The above re · .ult:.; c a n novl be 15et i n t he form of a table a & s ho 1m. 
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TABLE 

cj cl c2 03 c 4 

Basis Value xl x2 x3 XL~ 

x3 bl 8
11 

8
12 

8
13 

8
14 

x4 b2 a21 a22 8
23 a~4 

The f i rst st ep of fo rmulation o f t he problem i s no w coll'lp lete . 

Step 2 . Our a ~:;E;umptions under s tep 1 t hat the hy pothetical p roducts M
1 

and 

M
2 

are idle t ime c gives us an op1 a r tunity to start \dth an initial solution 

when only H
1 

and M
2 

are p :·od uc ed i. e . a s ituation '"hen both machines are 

kept idle. This is equiva lent in the grv. hic a l s olution to sta r ting at the 

o r igin, b efore pushing the iso-revenue li nes as f.ar as possible in the 

feasibility area. This situation is usua lly possible and any problem can be 

s tar ted in this manner. How·ever, in case it i s not po :.,s ible, oimple trans

f o T·mat ion techniqu()s c an be u sed t o convert the r;et into canonical formR
4

• 

With this initial solution we c a n ;1rit e 

Our a r,sumpt i ons re,;arding a
13

,a
14

,a
23

,a
24 

have led us to an arti f icial 

initial solution and hence this s e t is knO \•n as as arti f i cial basis. 

St ep 3. Now we •fi ll have to evaluate the :ini tial solution f o r any probable 

imp rov f~ments in !Jro f it. This we will do by calculating the variatio n in 

pro f it by introducinb first one 'A' and then one ' B ' --one at a time. 

This means t l .at f or each case \v e \vill have t o cal<: ulate t-rofit variation 

I 
u = c j (for minimi:t.at ion t.• rob em u == - c j) 



/ n+m 
'll.hore cJ. = \ a c + c '- . . . j 

i=n+l ~J ~ 
Here n is the numbe r· of variableo in the ac tunl ba :-;i s and m in the arti-

ficial ba:;is. (in our cAse n=2 and m=2) 

Itrom the above 

I 

c2 = 

/ 

03 = 
/ 

c4 = 

formula each c j \vill be 

-( 8 31 °3 + 8 41 °4) + 0 1 

-( 
8 32 °3 + 8 42 °4) + c2 

-( 8 33 c3 + a43 °4) + c3 

-(a34 °3 + 8 44 °4) + c4 

Sub r:; tituting numeric al values we get 

/ 
At thi o stage we will int 1·od uce a ro ~1 cj 

step 1 a nd Bub s tituting nume r ic a l va lues 

as t ableau No. 1. 

TABLEAU tlod 1 

c. 3 4 0 
J 

Basis Value xl x2 x3 

x3 4200 3 5 1 

x4 4200 6 3 0 

; 

oj 3 4 0 

in t h e :,able const ructed in 

obtain a t able generally known 

0 

x4 

0 

1 

0 

1 / . 1 4 Amo 05 a 1 c j , J = , 2 , 3 , , c
2 

is the largest i.e. if a product corres-

pending to thi s i n brout.ht into tho solution the maximum improvements can 

be expected. We ma.y encounb~r three por;,,ibilities at this stage ; the 

" larged c. may be z r o, less than zero, or more t han z ero. In case it 
J 

hapvens to be either 7. oro or le s s t han zc r·oit is clear that no i mprove-

ment in pro fit e<.irnings c ould be b r oue;bt about and hence th e solution 



88 

under COD;Gid e rati n ·Jill b e t h e bes t pqssible , or 1r1hat ..,,e •,;oul d pr efer to 

call an op timum so lution. On t he other haru.l, ii it h a!nJ enG t o be more tban 

zero it simply means that further improvements a r e po ssible by introducing 

x. corresponding to c. (i.e. for i = j). In our c1.:1s e we have seen that j =2; 
~ d = - • -

hence ~ = 2 and x
2 

will be th e va r iable to be int r oduced i. e . product 'B' 

wi 11 be p roduced • 

Step 3. After finding out wh ich va r i able is t o be introduc ed we will have 

to det e rmine t h e variable hich i s t o be rep l aced . This c an easily be do ne 

by finding the r atio b./a . j i.e. by finc.ing maximum number of p.coducts or 
~ ~ 

the variables to be introduced. But here we are bounded by the capacity rest-

ictions and therefore c a n not select /j,ny r<J .. :i.o . In" t ead we ac tua lly have 

to select the sma llest one. i'or our numeric a l example \~ e have decided that 

we will int r oduce product ' B '. For d·.)irlij this we C.:ln eit her p !'oduce 4200/5 

i. e . 840 produc t.,s or 4200/3 i.e. 1400 product s . Howe ver , each product which 

is t o be m~mufoc Lured ha s to be p ·oc ': oed on both m
1 

and m
2

• If we decide to 

pi'Oduc e 1400 prod uc t a we will not be ab le t o .lroce t:~ • t hem on muchine m
1 

since 

it can not produc e or p roc ,·ss r.~ore t han q40 :~ arts. The dominent com;traint i 

therefore , is that o f machine m
1 

ond we ho ve no other choic e except t o pro

duce ~40 parts . A gene r a l rule t hat '' e have d educ ed from the a bo ve is that 

·.-. e should calculat e the roL i o b./a.j and choose the one wh ich is 
~ ]. 

the smallest. 

By rl oing t Hi ~; ••e have used the full c ap acity of m
1 

·whereas m
2 

is uned only 

part ly. It s idle capacity would be 

4200 - 3 • 840 :: 16~ 

The ne •• solution would ther e fore be 

and 

Thus we can wri t e 



x . = b . / a .. , 
~ ~ l. J 

All other x. = b . - x. a .. 
l. l. ~ J.J_ 

'l'o facilitate und e r:. tunding Lhe problem, t. hese va lue :_; are shO\• O on the 

righ t :>i de of f!UC h tab l eau. In thi ~ - tep e tw ve determined that M
1 

prod uc ts , or the idle capacity o f machine m
1

, is t o be r eplac ed . 

Step 5. The solution is no w altt~r ed by introducing x
2 

for x
3 

und b
1

="' 

and b = 1680. Since 
2 

A ne•• table, tableau 2 \·Jill no w be constructed . 

Step 6. The conr;truction of the table 1:d.ll be c omplet ed by repeating steps 

3 to 5. 

TABLEAU No . 2 

c. 3 4 0 0 
J 

Ba nis Vulue xl x2 x3 x4 bi/aij b. - x . a . . 
l. 1. l.J 

X:> 81+0 3/5 1 1/ 5 1 840 • ~ 840-400 • 1/5 
(;. 

3 
x4 1680 21/5 0 - 3/ 5 0 168o • 2 

21 
I 

3/ 5 0 - 4/ 5 0 c . 
J 

Repeat ing the r;ar.Je i>roc edure we c a n con:.:;t . uct tableau 3 
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· TABLt;AU No. 3 

cj 3 4 0 0 

B(l !iiS Value xl x2 x7 x4 b./a . . bi - xi aiJ. ;J ~ ~J 

x2 600 0 1 2/7 -l/7 

xl 4oo 1 0 -1/ 7 5/21 

/ 
0 0 -5/7 -1/7 c . 

J 

" In tabl e& u 3 t he valuea o f c ' s dre ~it her· zcrosor negati ve numbers. Thi s 
j 

ind i c at e s t lo.::J. t no f urt J. er imp r ov ement in profit c ont r ibution is possible 

ano henc P Lhe o t i mum , olution is 

x l ::: 4oo a nd X :0:: 600 
or t o~t 

Z.l11ximum profit 

u ::: xl cl + x2 0 2 
opt opt 

= t) 3600 / week 

Checking for nny ro und off error W !~ c-t~n c a l c ulat e c apaity r ·"strictions 

bl = all xl + al2 x2 = 6 400 + 3 • (J)O = 

b2 = a 21 xl + a 22 x 2 = 3 400 + 5 • (J)O = 4200 

This ind icet.te :~ that our nolution i s exac t. 

J~OvJ ~1 e ure in upo s i !; iun to \vri t e do .m e generalized simplex a l go r ithm (als o 

1. Formulat e t he ~roblem. 

;_ . St..u t with c.tn artifi cia l ba .,is. 

I I 
3. ! elec t th e l<ll'i ;rn_;t c . and call it c . 

J J 
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4. a. If cj ~0 we helVe t he optimum so lution. 
- . 

b. If c~ > o choose tho r;e n , . 's >'lhich an~ mor· e t han :era . 
J l J 

c. If a l l D . . 's Dre leGs t~wn o r e U<Jl t o z.~ ro t here v1ould be no fi nite 
l J 

solution. 

d. If t here are c ertain a .. ' s t h<~t are more t ha n ze r o calculate t he ratio 
l. J 

b
1
/a .• 

J. J 

5. Choose the smulle !· t rat i o b
1
/aij and r on<Jmc the co rro ,;ponding xi as x

1
• 

This is th e vu .·i nble .. hich i s to be J'epluc ed by x. 
l. = 

6. Sub~titut e x. , new b . ' .-; , ne ·,J 
J. 1. 

a . . 1 s so O b to 
l.J 

c onGtruct a new t Hbleau. 

7. Repeat all Gt ps f rom step 2 Lo step 6 ti ll 
,I ' 

c. L o • 
J -

Fr om t he above \ve come to the concluE>ivn t hut th e si mp l e x i~> an 

i te r ative method of ncekillt r, optimum by mo ving f r om one baGic f eadble 

solution (an extreme • oint or th e ve rtex of a simplex) to :m adj·,c (mt 

basic f oa~:ible solution having hi ,,;: .er va lue of c :·i t erion ( lo . er value for 

minimi zatio n probiem). 

Over a nd above the algorithm de:;;c r ibed in the ;n· ·-=c e in[~ paragraphs , 

three other nlgorithrnn a 1·e a l oo in common unc . To diff ,~rentiate ar.:o.!6 ti.em , 

and to oxanine their com:lDJ·tiv .~ rnc :·its , ·.-•e can n.csm e them in tlw fol l o wing 

manner. 

1. l>unt:.-.;ig ' s Ba , •ic 3ir:Jplex Al.·;o i thm. 

<;0 
2 . Dantzig ' s Inve r·se Fo ··m Revised Al gori thm, commonly called the 

r evi sc..>d s implex. 

3. DanL.ig and Hay's 91 Produc t .Form hevised Al gorithm . 

4. Zoutendijk ' s Product FoL'Hl ~J.evi sed Algorithm. 

}'or compHr:.ti vcly smaller comp ut er a nd for s~aller linear iJl'Ot>;r awming 
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p1·oblems btwic alcorithm i s the bA ... t. or.c s inct? it ~> coae is th simplest 

although it ent :.iL: rounrl off e: 1·ors . For meC:: ium ci ze computers the 

inver :>e form revi ~Jcii al,_~orithm i s to b e ·~ refered s ine.: ·· it g{~ ne rally 

re4uire f ewer multip lic&tions a nd it.e code i s alGO not ve ry di ffi .: ult. 

Its round off e 1 -ror ir, smaller t h ~n t:hc ba:.;ic algo r ithm, t.ho ugh not c om-

J.;UJ'able to th <.i. of 1.1 roduct f o r m a l -;o •·ithm. For large com;;uters Zout un.Ji jk 's 

~roduct fo r m nlgorilhm is pccfer:.<blesinc e it n ee,, s fe \. er computation a than 

nny o t her a l gorithm , r equ u·e5 fe vwr tap e t :·ans fers, be t te r r c:-;t ..-;r t pro pe r·-

t ies and can •,Jork out re-inver (jion .~ wi thout appl·eciable increa c;c in com

puting time92 • 

In the numeri c Al example solve'1 tn t he p rece-t i~; pages , on the 

I 
ri r,ht side of Lh c lust t able in Lh o column of c . , net evaluativnt=l of -517 

J 

a nd -1/7 appe<.r. 'l'he s i ,nificanc e o f t h cce e v~· lun ti nG c a n be c ons idered 

a:> f ollow::>. 

The variable xL+ ta1~eu a n evctluetion of - 517 which mea ns that ,if a 

unit of t : .i:..; variuble is intron uc ed i n t o the solution at t Li s stage , it 

\vould rcd ucf; Lhe c n tedon ( p~··o fit in t l1h 1 C<w e) by $ 517. This i :> e •(ui -

vc. l ·~ nt to Gaying t hat had th e c.ipocity o f m
1 

been l uni t L .r! er than its 

r.re .>ent val ue ( f 4200 , thP. opL imum solution .w ulcl h a ve a c r iter i o n of 

':;/7 .more. In other words , wo rth o r valuo o f the mc.rg in::l unit o f the 

c apacity of m
1 

is expre sed by t iJ e:w evalu ~:.tions . Dwelling Uf.< On thi s idea 

we can s :1y tllut t he tot v. l .. ort l. of the mEJchine m1 is 4200 • 5 I 7 or a3000. 

Similor·ly tlJe \:ortlJ of mac hine m,> i s 4200 • 1 I '? o·r $ 600. The total 
c.. 

worth of the cone ern \;oulu th erefore be ~ ~>600. Thio va lue is exactly same 



as the maximum p ro f it vnlue obtained by t.h c c r iterio n functi on. 'l'hus v e 

havo come t: o tha conclus ion t l: at t he values imput ed to thQ vm ·i uble5 not 

in the solutio n ba is eq ,lals the value of t~J e c r iter i on. This suggents 

t he existence o f' a dual in linear progr amming. 

Every simplex problem has a ssoci a t ed with it a dual problem. 

writing t h e p revious c 1u a tions and interc h ,.n'lg ing columns and ro v1s , we 

get 

4200 :r1 + 420o y 
2 

:: rr 
subject to 

3yl + 6y = 3 + 2 

5Y1 + 3Y 
2 

.. 4 

to be minimiz ed 

If t his p roblem ~--1ould have been solved instead o f aolving the o r i ginal 

93 

problem, the dual c r iterion would have the same value o f 36o0 as explained 

earlier. On account of t his, some problems \v.h ere the nur11ber of constraints 

in ·the dual is lees t han the number of constraints in primal (the o r igina l 

p roblem is called the pri mal), it is prefe r able to conve rt t he problem to 

dual and solve it as dua l rather t Jt an p r i mal. Ho .· ever , the ba rctic simplex 

will not evaluate the o :·i ginal x va : i abl e s . 

In the simp lex solution, a ::; in t he transportation solution, occasion-

nlly th e tot a l nu•·,be l o f variable '; in th•! no lution fall short o f wha t they 

should be. This result s in difficulty in further evaluation of tho so lution 

and some time take s the form o f \~h at i s k.no vm as cycling (cycling is the 

proce t.; s of r e petition of one of the prec eding ba s es in the new solution 

having the same va lue of the criterionl This is kno ;,. n a s degeneracy and to 

resolve this, s i milar to the trans po r tation method, a very small quantity 



i s i ntro cl uC<! d into t r. e :-;olution . T is and vc; rious other tec h niques o f 

rlwolvi ng det;cner ocy ore de ~ cribed in detail i n re fer enc e s P2, S3 and 85. 

Si nc e t h e problem of thi s tYJ e do es no t occur too o f t en we s ., a ll not 

cuns i der i t here. 

I t .:.f.l ;lOGBible to apply l inear : r ogr umming t o r•• rametric and 

stoc hasti c situ•J t ions a nd ref e r enc es 83 a nd P5 clE.!Il l with the ee s ubject s 

i n deL,i l. Simi l c r ly scn ui t ivity analysi: and vn ·i ou other t opics a re 

al1;o deal t with i n t he ne ubove qou ted r efe renc e s . 

So f a r as desi gn p r oblems are cone ern eu t he so c alled light 

wei ght l imit desi t;n h as been de:Jlt \~ith by sever a l aut hors ( s ee biblio

graphy under nee tion :_ . 7) • Hay s93 has gi v •n an exampl e A l east co s t 

optimum veJ iic l e perfo rmanc e by usine; linear programming and Evans94 has 

94 

solved <:.tn electronic miniaturized pac kage deGi gn J·roblem by using a tec h

niqu e -.1h ic h is bas t·d on linear r, rograrnmi ng . Or den 95 haG gi ven a n examp l e 

96 of op tic a l filt er desi 1;;n, Kue hn a nd t·o rter i n proc ess cont rol sy ot em 

(,7 
de <>i gn nnd Fanshel and Lynes " hav•.) giv en an example o f economic }lOWe r 

g~neration --a ll by u s ing linear progrrunming . 

Ana logue comput Cltiom; f o r linear TTO ramming problem::; a r e d iscussed 

by Pyne98 • 
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2.53 Dynamic Programmina 

In deuling with c erLain optimization problems pertuinin,_; to system 

engineerill.tj de ni f: n, cont rol engineer ing de ~ ign, aerospace t t:cltnology a nd 

mechanical engineeri ng one often encount ers the r roblem of maximi~at ion or 

minimi:; ation of a function 

G(x
1

,x
2

, ••••••••• ,xn) = g(x
1

) + g(x
2

) + • •••••••••• + g(xn) 

under the const raint G 

and subject to the condition 

X ~ 0 n -

ThiG type o f problem is usua lly very dif f icult to handlcsince extrema ot 

bounduriea can not be locat ed by the present kno wn method ,; of calculus99 

and t he so c alled direct 0em·c h mct..hode; require t oo many c <.~lculations 

which ar·e very difficult to hand l e even on computers . 

Such problems can eani ly be handled by using the so c a lled principl e 

of optimality rec ently developed by Bellrnan 50 • Regarding its development 

Bellman.50 \vrites "The principle of optimality is actually a particular 

application of what we hnve called 1 the principle of invariant imbedding. 1 

• 
A apeci ;Jl form of the invariance principle wan used by Ambarzumian 'On the 

Scattering of Light by Diffuse Medium,' C.R. Doklady, Sci. U. H. S . S . 38 
~ /.1. 

(1943), pp. 237 and extensively developed by s . Chanderasek.har , ' Radiative 

TranBfe r· , 1 Oxford, 19.50." 

• Rusdan Scienti Rt Indian Scientist 
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The princ ip l e o f optima lity c a n be s t a ted u~ f o llowB 

"An optimal po l i cy i •a :. t he property that '<lhat ever the i nitial s t ate and 

and initial deci :;ion are, the re::wining dec ision must c ons titute an op timal 

policy with regard t o the :>t a t e re :ult ing from the fi rst d eci s ion. <J9 " 

Th o type o : p .. ·oblems f a lling unde r th e pe rview o f t h e abo ve des-

c .· ib ed principl e of optimality a r e the so called multi-st age 1 , roc E' ~a>es . 

Thi s is u proc ,:sG compo sed of s equ cnC ()S of op erHtion s in wh ic h the out come 

of the preceding s L 1g1" may be used f o r the dec ision . rega rd ing the course 

of action to b e tak~>n for th e s ucceeding opcrationo. Info r mation, dat a or 

mat er ial s 1>~hich are fed i nto an operution as i nput are u s ually known as 

f E~ ed, and t he out put f r om the operatio n as t he r et ur ns . ', If tbe r eturns 
I 

c~n be deter mined the p roc e ss '<<il l be deterrr.inistic ; other wise , on account 

o f the pre ~:cnc e of ran,lom f ncton; , th e proc efic wil l be s toc hantic . Each 

~>t a.!":<'! of !JUch a proc uGs i s connect ed ••i th certain cour·scs u f act ion and 

henc e these staL;es are kno •·• n a s act i vit ies . An n stage process wi ll 

therefore !.ave n ac ti vities a s::;oc iated .. Jth i t . 

!' 'or solution o f :;uc h a problom f irs t of all a qu untity (f t1ed) is 

a ssigned to t h e nth ac tivity, then to the n-1 th activity . .,_md s o on. This 

gives it the t im e like pro}Jerty and L enc o t he wo rd dynamic progr:Jmming is 

coi n ed to desc r ibe and to emph af3iZe t his ~ro t-' erty. Thi s method i s t hcrefoce 

i deally suited to the time d e;. endon~ p r oblem::;, but it s app lications are 

not confined to such r•r oblems a lone . Sevc r <J l de t e rmini stic a s ~Je ll as sto-

chastic problems of ordi nary and va r iationa l c ~dculus have been s uccessful-

ly solved by t hi s meLhod a nd many mor~ are ex r• ect~> to be A>lved. The de!'iig n 

pr oblem sL ate·1 abo ve iA j ust. one exam pl E:: of the ma ny problems that can· be 

handled by this method. 
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We can no\;r formulate our problem in t he follo wing manner . 

Let us call 

x = x1 + x2 + ••••••••••••• + xn 

as t ot a l f eed where x
1

,x
2

, ••••••• ,xn are the feeds f o r activiti es 1, 2 , ••• 

••• ,n res pectively. As suming G to be returns fro m t his totnl f eed x, and 

tho.t G c an be repr ~J -.ented by t he s um of g' a which aru rA.turns from feed 

corres ponding to each activity we can write 

We c a n impose the r entriction x
1 

_ 0 i f we do not ;..ant any negative feed 

to be consider ed . 

From the above it i s clear tha t the ext r emum o f returns depend s 

on total feed x and activities n only • . Hence we can int roduc e a sequenc e 

of functions U (x) such that 
n 

Un(x) =max. G(x1,x2, ••••••• ,xn) 

'l'his functi o n U (x) would then represent thu O! timum reLurns for feed 
n 

quantities x to ac t ivities n. Now, sinc e t here coul d be no returns if 

there would be no feed, we can write 

provided t hat 

U (0) = 0 f o r n = i,2, 3, •••••••• ,n. 
n 

g ( 0) = 0 f or e ach value of n. 
n 

l"or tl1e first activity the feed ttuant ity \-vould b e x and h ence w~ c an wr i t e 

subject to the condition that 

If it is assumed t},a t t he maximum ,·eturns r esult w!'1en f e ed in x, we c an 

write 
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No\'< assuming any <{Uantity x connect eJ. ~o;i r.h the nt h ncti vi ty such tha t 
n 

the remaining f r; cd qu unt ity x - x regardless of the value o f x , can b e 
n n 

used to ge t the extrem um r-cturnr; from the ref;t n-1 activities . 

Thus the o _.timum returnB U ( x -x ) for n-1 activi ties , a long 
n-1 n 

't.i.th initial allocation of x to the nth act).vity, result in total returns 

e (x) + u l(x -x ) 
n n- n 

This will be maximum o r minimum for a n optimal c hoic ·- of x • Henc e 
n 

U (x) = mux . g (x ) + U 
1

Cx -x ) 
n n n n- n 

for n = 2,3, •••• , 

a nd x ~ x ~ 0 
- n-

The c ane o f n = 1 i :, omit t ed since u
1 

( x ) i s a l ready determined . This recur

sive relationship permitB u s t o dcte1·mine t he op t imUJ!! retur n f rom t he nth 

s t a ., e problem ii · e know it for t he n-1 th s tage. 

'rhis wo uld no \J be further illuotrated by solving a simp l e example 

87 ni milar to economic roodeh> treat ed by Bo\.man and Fet t er • 

Exar.~p le: It is re ~iui r t.l t o de s ign a c h:mfje speed e;cor box for a to 

tool room milling rnacr. ino by incorporating as many speed c hanl~ es an pa s s-

ible. Four standard gear sy a tcros En·e avai l ab le which can be used in comb-

ination. The oetn cun not b o f ractj_oned a nd must be used as whole sets i.e . 

1, 2 , 3 etc. • The total funds a vai lable for purc ltase of the sets are limited 

to !~ 1000 . The speci ··i c. ations of net s are as follo ~-1 s : 

Cost i n S No. of Speed Changes 

Set I 700 9 

Set II 500 4 

Set III 400 3 
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Set IV 300 2 

This is a s imple multi-stat~ e a lloc ation problem in which allocation of 

funds for purc hase of ge<>r sy stems are feed o r resourc cs , available speed 

changes are retur ns and selection o f s ets are the ac tivities . Th e problem 

can no : be f ormulated as fo l lows: 

subject t o 

x ~ c 1 x1 + c
2 

x2 + c
3 

x
3 

+ c 4 x4 

x ~ 0 for n,. 1,2, ••••• , 
n-and 

where g (x ) = v x 
n n n n for n = 1,2, ••••••••• 

Note that the return functions ,g(x ) are nonlinear ste · functions. 
n n 

In the above formulation , x 's are the number of whole gea r sets , x is the 
n 

total available f unds in dollars, v 1 s are the speed changes and c ' s are 
n n 

the co ~Jt of s ets. Substituting numerical va lues we obtain 

u
1 

(x} = 9 x1 
for 1000/700 ~ xl ~0 

u
2

(x) = max . 4x - U (x -2 l 
500x

2
) for 1000/500 ~ x2 ~0 

u
3

Cx) = max. 3x
3 

+ u
2
(x- 400x~) for 1000/400 ~ x

3 
~ 0 

~ 

u4 (x) 
2x4 + u

3
<x - 300x4) f or 1000/300 ~ x4 ~ 0 

= 111ax. 

Calculations for e ac h 1:1<: l ivity are per formed and the re cult s are tabula ted 

aG shown below. 
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First Ac t ivity Feed 0-1000 v1ith an increme nt of $ 100 

TABLE I 

Allocation Units ReLurns Marimum Het urns 

X 1 ~ x1~ 0 9 x1 u 1 (x) 

0 0 9 0 = 0 0 

100 0 9 0 = 0 0 

200 0 9 0 = 0 0 

300 0 9 0 ::: 0 0 

4oo 0 9 0 = 0 0 

500 0 9 0 = 0 0 

6oo 0 9 0 = 0 0 

700 0 9 0 = 0 

1 9 1 = 9 9 

8bo e 9 0 = 0 

1 9 l = 9 9 

900 0 9 "' 0 = 0 

l 9 1 = 9 9 

1000 0 9 0 = 0 

l 9 1 = 9 9 

Maximum Returns - 9 Sp eed Change s at an optimum feed of $ 700 
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Second Activity Feed 0-1000 with an increment of $ 100 

TABLE II 

Allocation Units Returns Maximum Returns 

X 1 ~ X~ 0 4 • x
2 

+ U 
1 

( x - 500x) u
2

(x) 

0 0 4 0 + u
1 
< o ) = 0 0 

100 0 4 • 0 + u
1 

(100) = 0 0 

200 0 4 • 0 +U
1

(200) = 0 0 

300 0 4 0 + u
1 

(3Qo) = 0 0 

400 0 4 0 + u
1 

(4oo) = 0 0 

500 0 4 0 + ul (500) = 0 

1 4 l + u
1 
< o ) = 4 4 

' 
600 0 4 0 + u

1
(600) = 0 

1 4 l + u
1 

(100) = 4 4 

700 0 4 0 + u
1 

C700) = 9 9 

1 4 1 + u
1 

(200) = 4 

Boo 0 4 0 +U
1

(8oO) = 9 9 

1 4 1 + u
1 

<300) = 4 4 

900 0 4 0 + u
1 

(900) = 9 9 

1 4 1 + u
1

(400) = 4 

1000 0 4 0 + u
1 

C1ooo) = 9 9 

1 4 l + u
1 

(5QO) = 4 

2 4 2 + u
1 

( o ) = 8 

Maximum Returns - 9 Speed Changes at an optimum Feed of 5 700 
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Third Activity Feed 0-1000 'A'ith an increment of S 100 

TABLE III 

Allocation Units Returns Maximum Returns 

X 2 ~ x3 ~ 0 3 • x
3 

+ u
2

(x - 4oox
3

) u
3

(x) 

0 0 3 6 + u 2( 0 ) = 0 0 

100 0 3 0 + u
2

(100) = 0 0 

200 0 3 0 + U
2

(200) = 0 0 

300 0 3 • 0 + U
2

(300) • 0 0 

400 0 3 0 + u
2

(400) = 0 

1 3 1 + u
2

( 0 ) = 3 3 

500 0 3 0 +U2(50Q) = 4 4 

1 3 1 + u 2(100) = 3 

600 0 3 0 0 + u 2( 6.00) = 4 4 

1 3 • 1 + U/200) = 3 

700 0 3 0 0 + u 2(700) = 9 9 

1 3 1 + u
2

(300) = 3 

Boo 0 3 0 + U 
2

(8oO) = 9 9 

1 3 1 + u
2

(400) = 3 

2 3 2 + u
2

( o ) = 6 

900 0 ' • 0 + u 2(900) • 9 9 

1 1 3 • 1 + u 2(.500) = 7 

2 3 2 + U/100) = 6 

1000 c 3 • 0 + u 2( 1000): 9 9 

1 3 1 + u 2(600) = 7 

2 3 2 ++U 
2

( 200) = 6 

Maximum Returns - 9 Speed Change fi a t an op timum f eed of 
.. .. 700 
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Fourth Activity Feed 0-1000 with an increment of $ 100 

TABLE IV 

Allocation Units Returns Maximum Returns 

X 3:::::,. x4 ~ 0 
2 • x 4 + u

3
<x - 300x4) u4 (x) 

0 0 2 • 0 + u
3

( 0 ) = 0 0 

100 0 2 • 0 + u
3

( 100) :: 0 0 

~0 0 2 • 0 + u
3

(200) :: 0 0 

300 0 2 • 0 + u
3

(3QO) = 0 

1 2 0 1 + u
3

( 0 ) = 2 2 

400 0 2 • 0 + u
3

(Ltoo) = 3 3 

1 2 1 + u
3

(100) :::; 2 

500 0 2 0 0 + u
3

( 500) ;:;: 4 4 

1 2 1 + u
3

(200) = 2 

600 0 2 0 + U3(6oo) ::;: 4 4 

1 2 1 + u
3

(300) = 2 

2 2 2 + u
3

( 0 ) = 4 

700 0 2 • 0 + u
3

(700) = 9 9 

1 2 1 + U 7 ~400) :: 5 
/ 

2 2 2 + u
3

(100) = ~~ 

Boo 0 2 0 + u
3

(8oO) = 9 9 

1 2 1 + u
3

(500) = 6 

2 2 2 + u
3

(200) = 4 

900 0 2 • 0 + u
3

(900) = 9 9 

1 2 1 + u
3

(600) = 6 

2 2 2 + u
3

(300) = 4 

3 2 3 + u
3

( 0 ) = 6 
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1000 0 2 • 0 + u

3
( 1000)= 9 

l 2 1 + u
3

(700) = 11 11 

2 2 2 + u
3

(4oO) :: 7 

3 2 3 + u
3

(100) = 6 

Maximum Returns - 11 Sp eed Chang es at a n o p timum Feed of $ 1000 

Optimum Re Lu l'ns fr·om lrth ac ti vi ty are obtained when one set IV and optimum 

ret urns from 3rd activity are used. 

Optimum re urns from 3rd uc~ivity are optimum returns from 2nd acti vity. 

Optimum Return s from 2nd Hctivity ar _ o otimum r eturns from l st ac tivi ty. 

Optimum returnG from first ac ti vi ty are obtained vv:1en one set I is used. 

Optimum combination wou~d therefore be 

one set I + one s et IV 

By solving this example we ha ve s ·•en that the dynamic programming 

method c an be s uccer;sfully utili sed f o r the solution o f s uch problems . 

However, \>Je ha ve n l no noted that the solut ion is lengthy and involves many 

computations. ln the other hand , in the sit ua tion where too many variable s 

are involved , it i s a lmost imposs ible Lo solve the problem by a ny other 

method excep t this technique • . Further, Sinc e comput e rs c a n ea s ily be used 

for s imple calculations like LLL ; , number of compu tations is no longer a 

lir.1itation. Thi s is the reas on why , inspit •· of some of it a inhe r•'nt dis-

ad vantage s , thi s method is :_;o po pular \·, ith de s i gners and many process 

system desisns and mecL<, nic<.~l sy :>t :m d e.' i tj ns have bee n s uccessfully d ealt 

~ith by thi s method . The r roblem formula ~ ion, howeve r , is different in 

each case. for applications of this method t o deHi g n problems see section 

3. 



2.54 Nonlinearities and Gradient Methoda 

In the precedin~ sections under mathematical progra ming we 

have examined ·the tr nsportation method and simplex method , both of 
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them dealing with linear criterion and linear cons traints . Unfortunately 

most of the des ign problems as well as other optimization problems do 

not fall under this class of f unctions . r~ny linear programming 

examples are actually a.pproxima ti·:)ns and not truly linear . Several 

attempts have be -·n msde in t he past :u1d ar e still under I:JiiY to find 

reasonably accurate aud yet efficient metho ,• s of solving nonlinear 

problema . However , the results of .:>uc . e frorts have not be~n too 

fruitful as yet . ~ossibly some sig1uficant proJ ress has been made in 

the last year or two . Co rn ,enting ou this situation Wolfe~21awri.tea , 

"there is no lack of inforrna.ti n us t0 how nonl inear programming 

mi~~t be done , hu t on the other hand there is almoat no infora~tion 

as to how nonl inear programming should be done . 11 iJ nder a situation 

like t his it is very difficult to handle desien problems wh i ch ure 

nonlineur . In spite c f n.ll these difficulties , persons like J.: rown, 101 

')ickinson102 and a few others have oolved some de •J ign problell'IS; and t here 

is a likelyhood t hat many more problems will be t ackled and come to 

ligh t since a reasonably s:~ tisfactory number of eff icient rr.ethods have 

qui te recently become av':ii l::J.ble. 

Konlinear problems c~n be cl3ssified into three distinct 

ca tegories e . g . 100 

1. Nonlinear criterion and linear constraints 

2. Nonlinear cons traints and linear criterion. 

3. z~oulinear criterion and nonlinear constraints . 



All nonlinear pro :~rar..ming method£ will s olve problems h3.ving canst-

r aints t at may be e qua l ities , ilsequalitie~ or combiMtions of both. 

The first two of t hese methods are com par:, ti vel:; eenier than the t .1ird: 

t he fi r s t one beint, tl:1e ~ impleat. Severa.l methods of solving these 

problems h G>ve been de ::ccribed in the literature and mos t of t hem use 

t he gru.die r.t of t h e f unction <:ts gui de to rea ch t he opti~um ~nd hence 

are clansified un:ie1 the common nr.une of the gradient methods . ..5uch 

methods when t he criterion f unct ion is unknmm or only .t>artia.lly known 

have been dealt wit.h under sec . 2 . 43 . In t his s ection we are concerned 

wl t h t he probl em of known cri t er ion . 

Early :. ttempts of usint; gr adient method for the loc.3.t i on or 

optima~ were confined tc t he classical approa ch of converting a con-

str ained extremizing pro blem into an unconstra ined extremizing ~roblem . 

C 103 B 101 Ll • 104 ' 113 Di ki 102 A imo ~6 urry , rown , . arr~s , ~arro , c nson , s ~ 

105 & 106 . 
Br yan et . al . and seve "al others have used t h J.a approach, 

however the r esults were no t very satisfactory. Hence new and better 

methods were inves tigated and some of them successfully utilized for 

optimizat ion prcble!11s o f economics . A few important me thods of this 

class will be described in the following pages . 

On the bas i s of the comments made a bove , it is but natural 

to start with the simplest case -- case 1 -- of nonlinear criterion 

emd linear constr a i n ts. :!"our methods of solving specifically linear 

107 cons tra ined probler.1s are preseHted here . :Se pa r able progrrur.ming 

methods can also solve thea.:! roblems by s eparu ting a nonlinear f\mction 

into a sum of r eg i onul or lo cal lin~ar combinat i ons; hence the nonlinear 

106 



programming problem i.e converted into a l i near pro~ramming problem and 

can es eUy be handled by the simplex method. However separable 

programming is not covered since it does not fall into the preview 

of the so called gradient me t hods . n1ese four methods are: 

1. 

2 . 

4. 

~olfe's Reduced Gradient Method108• 

Rosen' a 'radient .)rojection Method r109. 

\'olfe' s Accelerated Gradient .MethodllO. 

al's Simplex Me thod for ~uadratic Programming
111

• 

(A slightly different method under the same title 

is due to Wolfe112
. ) 
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Wolfe's reduced gradient method can be considered as the extension 

of Dantzig's simplex method, since it can provide solutions other than 

vertices of the constraint set and its computational basis i s the same 

as that of aimplex method. By t his method, after the formulation of the 

problem U ( x) a nonlinear criterion subject t o the linear constraints 
n 

¢. = L a .. x . = bJ· for each i, i = 1,2, ••• .• • 
l . l lJ J 

J= 
The problem can be solved by using the following algorith .m o 

Step 1 . Assuming that a simplex basis and a feasible point 

is known, and using th~:: f ao t t ha t t ho c ! 5 of t he simplex method are but 
J 

the gradient o! the criterion, the c ~ s for this case can be determined. 
n J 

In simplex reduced coats /. ~c . -L a . . c l. , in the same way the reduced 
J J i= l lJ 

I 
coste c j can be expressed by 

~ r. 
c

1
. = ~U( xk) J. - E a .. LV U(xk)]. 
J J i =l lJ 2 

!or the non-baBic variable - . 



Step 2. Since a gradient vector of a function can be defined as a 

direction in which th directional derivative of the funct i on is 

maximum i . s . a vactor b. x maximizing 

ou 
6 U(x) = aii A~+ •• • •••••••• 

such that £ X :: ( 6.~ t ••••• •• • • • • Ux ) n t 

and 6x = + • • • • • • • • • • • • • • • • • • + b.x n 

then all of its components, except the jth one , must be zero \lhere 

partial derivative of U with respect to x. is the maximum of e.ll partial 
J 

derivat i ves and t.xj is the direction of (60 ) This can also be sta ted ax • 
j 

as bxj c cj if xj>O or cj>O otherwise b.xj = 0 for non-~asio variables . 

Since the ba.eic vari ebles b.x can be defined so that L b. .x. vanishes, 
-j ~1 J J 
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ther efore i f b.x = 0 the problem is solved, otherwise we have to proceed t o 

the next step. 

St ep 3. St ep length can be determined by calculating x where it is defined 
m 

by n = max. n (x + nxx) O) where n is a coJ~tant det0rm~ning the step length, 
m 

the x will th•n be replaced by x + b.x • w 
m 

St ep 4. Except in the case where all basic variables of new x ' s are 

positive , a simple pivot step of interchanging the vanishing basic 

variabl e with a non- vanishinG ~on-basic variable is performed , and stepe 

1 to 4 are r epeated. If on the other hand all basic variables happ n to 

be positive a direc t return to step 1 is taken. The Method is said to 

converge to a eolution i f th e critericn is bounded anrl if the cons t raints 

are non- degenerate . 

'l'h d . t j ti • d r109 . l..so kn th 1 e gra l.en pro ec on f.le ... .. o Ul a own as . e arge 

step method or walking method s ince for reach ins the ~ak, it allows 

one to take larger steps. witho,. t the pessibility of leaving the constraint 

set . The method will be il lus t rated by using a t•~ dimensional example 
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of a non-linear function U(~ , x2) t o be maximi zed subject to tho linear 

constraints JL).~O, x/-0, x2~~ +b1~, x2s. a2-b2~ and x2~a3-b3'1: This results 

in the ~ituation shown in fig . 2. 54. : traight lines are the constrau1ts 

and the contour lines ary., the criterion lines depicting the value of the 

criterion function . ' t artine with an initial feasible point p in the 

interior. of the cons traint set, gradient (~U (x)) is cslculated; this is 

obviously perpendicula r to the associated contour line . A largest 

possible step in this dir ection without leaving the constraint set , 

unless the criterion r eached an optimum for a shorter step, is then taken, 

so that point p
1

, a point on the boundary of the constraint s t, is 

reached. A gradient [vU(x) ]
1

, is no~B calculated at this point. The 

projection of this gradient on t he constraint line associated with p
1 

is calcula t ed . Since this is ror e than zero, a ray from p
1 

is extended 

in the direction of this projection to thd farthes t point on t he r ay but 

lying within the constraint set . The !srthest point thuo obtained is p2• 

Tho value of the f'..mction at points p
1 

and p2 are calculr .. ted. Since U · 

haa a larger value at p2 than at p
1

, (from fig . 2. 54) this cycle is complete . 

The gradient at p
2 

ie now calcula ted and the procedure is repeated so t hat 

we r eoch at point p
3

• 3i.nce value of the criterion is improved at this 

point as well thia cycle is also completed . Again calculating the 

gradient , its projection and the irection of the projection we move 

along t i ..is directi on to the farthest point p4 of the ray l ying in the 

constraint set . Calcula ting the vul ue of the ~1etion a t this point we 

find that t he criterion has r educed . This means that the optimum might 

be some where between points p
3 

a.I~.d p4• ~.;hoosing a point p on t his 
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no 

eec;r.~ent nc"r1 C!., t t!1~ criterion .i.s maximized aft er s eve ral t r ials , we 

r e<,ch •. :1e ~oint p
5 

~omer <.l th~ pro jec t ion of the gr adient a t t ha t voint 

v~:wishes . - ~e r:ct. x rnaxir.~i~es t h •.' cri t erion anti no f urther interpolat i on 

i :::; nec es ;.;;e.u-J . l:n t:. r·tulti - d.itne n.sional hyper - space t h i s would not be 

suff i c ient · rJ !1enco we hs ve t o ~.dd c ertain other condi tio ne . E.xcep t 

1.'or tJl i a , .... 11 cl:;,wr s teJ.JS Cc:II. b~ .:.enera.lize d fo r ~ J number o f vari ables. 

1he rd cc~ro :o; forrr.u l for t l1is me<hod would be 
k+l 

X. "" X . 
l l 

c) tJ 
n ,. 

A.. - ' + 
X 

j=l J 
l 

~) f::.. O ox. 
l 

de t a ile d des -

c riut .l.O 1 oi t.te . € : o<i :md ti l'~ co 1, ,tt a ticna l a l go r i t hm P.r e ;,iven by 

rtosen 
10·;· 1 "..1) 

- r ' 1 , · f t ' t t · 1 th d110 
0.1 e s ac .. e er.lteL vc: l e n c a c t. 1ng p :..we me c 

113 i s a q ec i .l. c.,.<5e t~ f Eelley ' a (Ju t t i llg ; l a ne Ulethod a.nd c an beu t be 

ex;->l .. dneJ. ;ftcr ce tl in.; with t ha t method . .;e , t he r ·fot'E- , pos t po nE.- our 

c ~t1c, i lt:_ ·_ t1.·, n u i t ' . i_, n'"' :-.d ti ll that ti:=~e . 

!'he liet -dls o f Jeul ' s 111 me t hod of qua dra tic programmi.ne; we r e 

t.ot avaiLl!l ~ .:1t t~H' t ::irne o f t his e t udy "" nd therefore not included here . 

:'he second c ) sc , ,.,~· icl1 1 "' maximizin~ or minimi z i ng linear 

criteri(;fl t;ll\H~r no:J- • i :1 ·nr c ot o trai n t s , can beGt be expl ained by using 

t t . 1 . . d - t t.· 11 113 -L cu t~n.; lJ- t'l10 •.:a :·:,o a ue u " e ey • 7he r equirenent for the method 

i s t .1:1. t t-:e non- ll let.Lr cons t r ints be convex. The cono traint s a r e first 

lineari t;EH.i b~: us i nc; T~J.;y lor' s f i rst order approximations . .3 t ort ing 

·~i th a h.noW'n initia l 5vh~ t:i.on, t h(; value of tb e criterion and tha t of 

cons tr :.< i nts l.t ':~ c olculc.ted a t thi s poin t . I f thE: original constra i n t s 

orP S8.t i .sfi el.i t .; l c v&h:e u f criterion i s the r equir ed so l u t i .on . 



e:~rlier, J-j.!) Hp~Jro xi~'JE<ticn oquat i un of t il(' co..1s tr:dnts ;;t th<J initial 

solu tion point is calcul ~ t cc1 . Thi::: \d21 he th e \.qu -~.t ion of .;~c hyper plane 

cuttinr-·· the probl em syac e , hence t 11e ne t~. o t: i·3 :.r.c ::;·, D . .J cutting pl a ne 

the orig inal constr<lint s , t his solut i on L; al t "'cd . Th L-.. , :•t t he initial 

and .altering t his one . At e a ch s t age , sine, t1-c pr e vio l1S proced1~re , 

the valu e of the criterion and the orip; ina l c oJ,I.> tr.':lin t s o.re C<-llcul;; ted . 

If , as has b e e n ment i one d befor e , the con <:;tr.:;ir. t <.> a r e .o:;;, tis fiod t be value 

of tht- cd terion will be t li e extrerJe val ·. e oth0rwh se tll~ .· recedin~t steps 

.:::. r c r _,peCJ t ad. i,n€) proce 'ure , ir1 the e nd , cc r.ve r ,c.'3 to tr· •. ~ r equired 

.solution . 

F'or the ill1.~.st rn tion of t he ·:ethori .:e Hi .::.l consider .:ellcy' s 

that we ·.-~ill rea ch the .solu.tioa in fewer iter ,, tions t hMl he d i cl . 

a minimum subject to the condition 

-, ~ 
¢ ::: - .?Y1_ - 2;c . .. x .... ~ X . - 1 f. ) 

..1. -:: 

The =-> bovA constra int b~mndary is an ell i p .• ~· r- .nC: he -C~ t he C<i nu:tr<:J.ints 

are convex . ·rhe convexity requ1 rement i.•; the r8 fc r- ' f\tl f i J.led . 

Lineariz ing the cons t r .:1ints by ut~ ing Ta;;lor ' s fin,•, o r ·'ler or: ,rc :~dm..~.tivn 

W9 can write th~ tra nsfor med vor ston of the problem a. s 

roinimi:;;e D= ~ - x2 

sub,joct to ¢ ;;:: ¢ ( xk) + U ( xk) . Cx - xk) 0 

where k 
(xl' x2) U ( xk) <ou }U 

) 
X = 11 nJ = ox .., oxl 

'· 
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Suppose w - c:. ,~nd x 
( 
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The value of critPrior. 1t t h i. s }>Oir..t i::; ~nd tL •t of c.r' cor.str:J.int 

is 23. S ince 23 it'! 1;;.:-ger t.han O, th~ con~trn.int.s :.?J..::e not .:><:.. tL .. fied . 

Now keeping the valt...e of x . = 2 ncme ~s before v1e can fi1.6 I •• ~ ;: _:Je 
'-

of x by uainE, the line :;.riz t:d. s.pproY.i:n3 t ion o f t:~.:- ccr ;:;tr-. t: .. t l ~t 

we can r epeat the ;;r~c.;~<lir1,: •>t~ps; several suo'_ .steps :..r e t3. >tll·-tod 

as shown below. 

~ I J. "'2 u ¢ 

p -16 . 00000~ 
,., . ' v'OC.-:: _;:: •• 00000 - 2 . 00;)00 C. . O.JIJ _,-G -~~ • ~ ·:..Ol'C.. '- ~ • 00~'00 +"' . 

~ - 7. 3''500x1 
+ ~ . l;:~ _ Ox _, - P. . 1 ')9€'? - 0 . 5;.;25 2 • i../)v.J.J - c . • :.;E.c: :;o ( .19922 

' 

- -2 . 331 5~· x1 +3 . , 1 J -.A.-A __ - 4.11958 +~ . 2.7807 :: . J ,)CuO - 1. '21}) .:: . 11978 -
i 

[3 -0 °~9'"'0 + . 0919~x-. ~ r r xl 
•' 

- -- •. : !;. ·;?5 +0 . 27807 1.3/406 - l.-lf59 . ! . 24373 

~ -l. ·S054~ +.::. . J9.Jl4 
C' - · .1..:;2s1 +0.05243 l.lOOJO - 1. - ,.,;-7 0 .10290 

5 -1. 965~ +2 . t..v);c:.<._., - 2. ::-.:J574 +0 . 01000 l . -)127t. - 1 . Cu>', o 0 . 00}72 
L 

~ +C. uJOll 1 . 00000 -J. /) ,'" - 0 . 0 ' )()21 

t he r t>-quired vector is x = (0 , 1 ) ::.md th ~ minimurr. v •1 l UE· cf \ = -l. 

i. e ·.;ut tin!~ ;:l <:> .. n e r; ·tLc ~- it. not c on fine d to l in<J'lr crltcrie:n only; ...ny 

genera l non-.~.inear pro bl'lrr. cous i !'tine of bo t h non- liw ;;.r cr' t"!ricn ;:,r.d 

non- linear const r <.ir. ts c~ r: be hancUed b:t t h i · et!'lo d . 

After cc.nsiderinv r:e_._ ley ' s cut t inG pl 'Jne ·r·et •oti v.~: ~~~ :10'N in a 

position to consider 'olfc ' s :1ccelDr •t ed v0.r·sion108 whic 'l i<- ·1 .ljc;:_,>,le 

to t he l ine or co Hs · r';'nt<> o n . y . ;<'o r this , .9 t every ot~l· r , t·~~~ ,, :. . ..,i11t 
K 

x is defined such t 'J-. t X '- L 
Y.= l 

k 
u • X 

k 



k 
t he co nstr a ints 6 e;ner _, t d r r _,;r. x • 
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1., n.:ga rC.s tf, _ .;en~r ti c~:...e of non- lie, c...r cr · r i u:; :...r!d nor. - lin r'c1.r 

successf ully be used f_,r ti i s purpo ;e if co ~~.ctraint6 .;:~~· .::: '.;..:. ; vex . 1'wo 

other methods , the separable ;:rop;ra::w ir:CJ me t . oJ :1: d t _ · •i.; cor::tpositia.1 

Ho wever , since these methods do not t- 3a gra diZ:nt tec~w i ..~ e , the:;; w:iJJ no t 

b d . d R I , . t . t . ' h . ~ ll '~ . d. f. d e 1.scusse he:-e . osen s t;:r al•l.Cn pr oJeC ... ~1 1 1 mE:.., ou. i..l ~s a · o 1. H t 

vers ion of method I , di s c ussed t:n · er linear con. tr . i r t _, ro ._;r ;c:~.in ·_; ~ ... 1o c ·~ n 

handle enel~al ncn-lines.r pro gr amr.i . .'1 (; probl t!r:LS :::.; .w ·!r-; ,; u J 1 ,'1 • /.outemlijk 

has propo sed sever;ti variants o f t h i s me t hod; and i t z~;·•1l1 5 h::. ·> shown 

t hat Frisch 1 s
116 

multipl ex me t hod , Lemk~ ' G)l 7 con.,; trai1• ut ;radic •1t r:.d hcd 

a nd '·(o F;en 1 a ·~r:;.dient l.)rc jec t :i.on metho d:: D.re cill variar t .'5 o i one bP..sic 

scheme . '1'1J.e only cla:3:::: of :netho cls ".!';.ic h i.3 not dea lt ~!it. .... s yo t h :. the 

so culled differential gradient nethods fa~Jil;-; , n part i cuL:.r ~ t,>c cf this 

has been studied b r:~D.ny u.nder t~.e na.me of Gr:..dier<t .. e L;.od . 

The bnsic i dea. behind. ~ r.e di fferentia:!. 3ru ... ti .,:,n L ·ue t hod is t aht 

the direction o f the g::-adi ont of th(: crit erion .i. e; t he ~ t· ~cti..on of t rJ": 

steepest a::.cent and hence if on~ ·.:oulJ like t ... r .. acl -. ,., •Jtmj. , one 

me .··ely h ·o to foll0 \11 thin rilrect ion by tckiLt: ont:: step .-=' t ~ t ~:t.e sc ets 

alHays to increRsc:· on.e ' ::.> a ltitude till oue e ncou; t ·'d" ::; res t aint . r.-rom 

then onwar d, one h '3. 5 to move alon •_. the r~ strf.int ~;o 1ong 'l S one i :::; c xpr~ ble 

o f 00ing hicher . By usin;; twc diff erent appr c. aches for enforcin~-; the 

constr aints , two different metho d:;~ cf solvir.3 tnu r·ro~ le'l ::;;re pro · osecl 
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e . g . the direct differential gradient ruethod and the Lagrangian differential 

gradient methodlOO, 118, 119, 120 • 

It we follow the above procedure and at any s tage find that the 

conetraint ¢ .(x) ~- 0 is violated it simply means that the value of x is 
1 

such that ¢. (x) ie too big. ' e would, therefore, like to reduce this 
1 

function . As we have eeen in the preceding paragraph, the gradients of 

a function is the direction of increase of the function, the direction 

of the negative gradient w·Juld be the direction of decrease of a function. 

Using this idea we can ineorpor te the negative of th : gradient of 

constraint in our s earch plan so that if ther J is any tendency to~ards 

violation of the constraint, this neg.~tive gradient -.'ill kick back the 

variable inside th constraint set . Hathematically we can express this as 

foll ows: 

where 

n 
dx .. , 1J u < x ) - C a. < x) q' ¢. < x) 
dt i=l 1 1 

'\ = 0 if ¢ i ( x) 6 0 and '\ = K if ~\ ( x) ~ 0 

is chosen larger than the maximum orl v u(x) \ ;lv¢i (x) l for any x Here K 

lying on the bounda.ry of ::he constraints . Thi· method is known as the 

direct differential gradient method. Curry, Brown• narris , Carrol , Dickinson 

and several others h - ve tried this method, t hough not in the same form for 

solutions of cert~1 design problema. However the method is very inefficient 

and hence acceleration techniques ouch aa t hQt of ~bah's (descr ibed under 

section i::.'La 3) and Forsythe' s h..n ve been used to imi ro~e the e f'ficiency. 

~ 1~ 1~ . Pyne , Deland and Abl ow have t r ie-d th1s :r ethod by analogue 

computation rather than digital computa t ions . All of these attempts we : e 

for finding efficient methods of syste~ design and equipment design. 
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In the Lagran~ian differential gradient method, using the 

classical approach dealt with under section 2. 23 the following augmented 

function 
n 

U (x,A) = U (x) + Z: Ai ¢i(x) 
i=l 

is first derived. Now a necessary condition tbst x solves the programming 

problem, U(x) to be mint.ized (or maximized) subject to the constraints 

¢(x)f:Obrfd(x)'s0 is that (x, A ) solvee the probl em Min Maxo U (x,A) 
x ~O A 0 

If the criterion U(x) happens to b convex the necessary condition also 

becomes the sufficient condition. This implieG that a.ey non-negative 

x that minimi.zes U(x) subject to ¢ =0 or ¢ q must satisfy th conditions 

au 0 -:: ox 
or au ax= 0 

120c Yet another approach due to Courant is the so called penalty 

f notion method. In this method for minimizing (or maximizing) a fUnction 

U(x) subject to the condition ¢(x) ~ 0 , un augmented function 

u ( x~ a u (x) + h (¢ (x) )
2 

is formed. 'lhis new unconatrained function is then minimiz.ed for 

succeeeiYely increasing values of h . Courant has proved that as h 

goes to infinity the solution of the problem approaches the solution of 

the original problea. 

In the preoed1n8 pages we have studied several nonlinear 

progrMnl!ing methods . Most of these are limited to the solution of convex 

criterion problems. However, thr" of these• e . g. reduced gr dient 

method, gradient proj«H;tion method and the Beparable progr&llUDing method 

are not so restricted. The reduced gra.tlient method seams to be more 

efficient but no computational evidence to this effect is yet known. 



116 

7he gradient projecticn method i s said t o have been coded !or the 

114 1 21 IBM 704 and 709 by Rosen and Merril and computational experience 

has been reported . 1'he separ ble programming is limited t o the f unctions 

that could be easily separated i. e . could be xpreased as the sum of 

separate functions of the independent variables xj. This method is 

said to have been coded for the IBM 709 and is in t~e by the S~~dard 

. 12la Cil Company of Cel~fornia • For general convex programming, computat-

. 12lb ional experience with Kelley's cutting plane me thod is reported by Dornhoim , 

and by Gr iffith and Stewart1210 and for Lagrangian differential gr adient 

th d b • 122e.. d b Mar h kl22b me o y l'l8.IUle an y so ac • However , t hi s method ls said 

t o be very s low and does not seem to be promising. As regord/3 the direct 

differential gradient method, it has already been mentioned that considerable 

experimentation has been undertaken but the ~thod, although it works 

well with some particular small problems , does not seem to be promising. 

Soroe aerospace ~roblems are said to have been deal t with by Kelley
120c 

usi ng the penalty function method, b~t sufficient information r egarding 

its usefulness is not presently available. ... ... uadratic programming methods 

of i3eale
111 

and of 'lolfe112 have both been cornputationaly tried and are 

said to be reasonably efficient in handlillf, quadratic programming problema. 
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2. 61 Johnson's Hethod 

For the design of mechanical eleme nts Johnson has suggested a 

method based on the classical approach of converting a constrained 

extremizing problem i nto an unconstrai ned extremizing problem. He 

di vides t he optimum design problem into three di fferent cases which he 

calls 

1. Design Under Norr:w l Specific a tions 

2. Design Under Redundant Specific at ions 

3. Design Under Incompatible Sp ecific ations, 

In case 1 , it is possible to combine constraining equat i ons or inequal-

ities i nto the criterion (l rimary Desi c.~n Equation, according to Johnson) 

in such a manner that the limiting conditions apply to the independent 

variables existing in the newly developed cri terion. A curve indicating 

t he relation between the criterion and the independent parameter can 

then be drawn for each feasi ble material a nd, applying the limit, the 

optimum parameters and extreme c rit erion can be found. Of all these 

t he parameterG corresponding to the material which gives the minimum 

(or maximum) criterion can then be selected, 

In case 2 the above procedure cannot be adopted on account of 

t he existince of constraints in excess numbers. The procedure then is 

to ignore suc h constraints temporarily and handle the problem exactly 

in the saroe manner as case l is dealt with. Curves c an then be drawn 

with different independent parameters as abscissa . These s ~ps are 

taken sequentially BO that the results of application of limits for 

one independent parameter are carried to the next consecutive case. 

Thus th e parameters obtained by the last curve would be the optimum 
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parameters. Usually the transformed criterion is nonlinear and diffi

cult to handle, hence logarithimized criterion rather than the actual 

criterion is used. This linearization simplifies the problem and 

mathematical manipulation becomes easier. 

Case 3 is a spec i al case of case 2 and can be handled in 

exactly t he same manner. However, though it does not provide any 

feasible solution, it gi ves a clue to how an incompatible problem can 

be converted into a compatible problem by varying certain limits or 

by using other materials. Hence when all other methods fail this 

method can provide data for altering the specifications to convert an 

incompatible design situation into a compatible design situation. 

Although Johnson's approach is an ingenious technique for 

design of mechanical elements, it seems that it is incapable of hand

ling inequality constraints which are functions and it cannot be 

applied to a general problem of a set of large number of equations and 

inequalities. Klein's method described in section 2.26 may generally 

take care of the first difficulty whereas the nonlinear programming 

methods described in section 2.54 can handle the second one. 

For th e application of this method to design of mechanical 

elements Johnson's book Optimum Design of Mechanical Elements (ref. 34) 

can be referred to. 



2.62 Other ~et i ods 

Aftcl r d eDling with several mathematical tools of optimization 

we woul d c onsi ct er in t his section t h e tools \-lhich involve little or 

no mathemat ic s . Se veral at temp t s have been made to f ind the bes t or 

optimum co ndi t i ons when it is very d ifficult or very exp ens ive t o 

f ormu l a te a ma t h ematic al mod el by theo r etic a l or exp e rimentatio n 

met hods . A few impo r t ant tec h niques of t his type are Simula t i on, 

St c; tistic al Cont rol .2rocedur e s , Si mpli f ic ation Met hods , Standardi -

z a t i on l 'r actic es and t h e Met hod Ti me Meaeurement Tec h ni ques. 

I n simul · t ior. , a r ea l sy E, te -:J i s duplic ated in s o me sense so 

tha t by using t :1i s app ro ximate mod e l sufficient d at a c an b e collec ted 

f o r making a dec i s i on. /, npecia l simula tion method whi c h t akes into 

c o ns i d e r a tion t he stoc has tic o r r ando m f ac t ors, i. e ., a method of 

simulation under risk o r uncer t ainty , i s ' the so-cal l ed Mon t e Carlo 

123 Met hod . The subj ec t i s dealt with in d et ail by Mo rge r:th a ler • 

124 
Applic a t ions to produc t d eoign problems are d e alt with by Starr 

86 
and p roduc t ion dedgn I' r oblems by Bo wman and Fet ter • 

Sta t i stical control ~roc edures can be u sed to o ptimi z e 

prod uct d e sign by d e t e rmini ng t he op timum or the so-called na tura l 

t o l eranc es. :, meUod of determining tolerance by t hi s met hod i s dealt 

wi t h i n d e tai l by Mir125. E' 126 h ad . . 1 t " d f "a ry as us a s~m1 ur me !10 or 

f i nding t he be st coo lant for a machining operation. 

Simp lific atio n me t hods are attempts to reduce the co s t of a 

prod uct by s i mpli f ying design fro m the point of view of manufacture, 

use a nd maintenanc e . Severa l exam ples of this method are described 

1n . 128 by May narad ~nd var1ous other authors • 

119 
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''t d 1' . . 127- 128 . t t . th ,, an an~ •t~on pn.ctJ..c es ore very ~mpor an J.n e 

search o f finding new mean~ ror reducing t he cost of an over-all 

design of an equipment ; t hese may be conside r ed as sub-optimization 

at t empts whi ch coul d be ut ilized l ater f or r-ri rr.ary optimi zation . 

The metLod t ime measurement tec hnique , though comparatively 

new , have been widely us ed f or opt i mizing manufac turing met hodsl27 , lZ9. 

Similat'ly, for scheduling prob lems the PERT system129 of evaluation 

(Program Ev lua~ ion Re~earch Task) i ni tially developed for the U. S, 

navy has been found to be very valuable, and since Lhen has been 

ext ended to resource incorporation, perform<mc e incorporation and 

programme bulancingo 



3 

'I'he die t ionar y rr.ea:'1int c r t he word :ne :h-.n::cc:1 :. .• ' ccncer ned 

with machi nes ur pertaining to tnAChines . I::1 COl!ltr.on -usa1~e the :rord 

machine is ~sed to s i gni fy mac h ine t ool s; thi~ iJ i ncorrect. f rom 

technical poin t of view, a ma chine i s defined as a devic£- \ihic h used 

power t o ac compl ish '" physical effec t. 
74 

/lccordi rte tc ,To"'nson~ , a 

m:>.chine ca n be de fined as a roe chcmico.J. s trtlcture ~hich is c ::...r ac t erized 

b;,r rnechr.mice.l elemen t s hnvin1: r el a tive motion c1nd ~enerelly capa ble 

of transmi t tinr:, or uissip~ tirl£ s i gnifican t .-.~.mount o f eneq~y . The 

above definitions i nc ludt"J muchine tool "" C.ti ...,eJ 1 ar;; t3everal other 

et!uipmente such as erJ.t: ines , t urbi nes , mo t ors , ~reo.:->u:d .!1;:; devices , he a t 

t rliiL'::lfer e qui pment s e tc . t- e e1 ing thi s i n view, ~,~e 1 ,·;:;: cn.1"ti ned t hi s 

section ' 'Desi~n o f He chanicul Elements" end we intend to cover the 

appl i c a tio ns of opt i.mi ?..ation ~ echnL~,uen tc the de!.>ign of va rious r.nernbers 

o f all such t ype s o f equj pr1ent. 

Al t huugh t he use o f op t -:i.r' i z ing t e c .tmi q u.es in this field is 

not older tha n a decade or t wo , s ubst antial wor k has heen done and 

quit~ a few 0 }1 t inmr.; de s i gn prol.l err.s !~ez.ve been solveC:. by usi ne; s uch 

techniques . Hos t of t ne earlier 'r>'o r k vas con fine d. t o t5r aphica l a n d 

graphi cal ct:m anal ytical methods . If any analytica l approach was 

a p pl ied at all , it was mo s tly conc e-r ned with uncon~trainen design . 

It is only during l Hst few years t hat t ile probl em of design o f such 

121 
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under equality and inequality constraint s and limit or boundary conditions 

was extensivel y studied. Several methods cf solving problems falling 

under the linear progranm1ing class have bee n discussed and attempts 

have been made to solve nonl inear problems by using linear approxima tions . 

A bibliography of appli cat ions is Given below. 

Bibl ioff.raph: of Af)plicationa to Design of liechanica.l ~laments 

1. Johnson, R. c., see refer ence 34 . 

2. Hinkle , R. T., see reference 23 . 

3. Johnson, G. I ., "Computers Help Design Valve ;·r a ins , " S. A. E. Jour . 

March , 1963, P•P• 30-33. 

4. Nourse , J . H., Dennis, R. c., and <~'ood, ·fl . ~~ • • "Designing an optimum 

Cam, u S . A. E .• Jour., Nov., 196o, PP• 92-94. 

5· Hoffman , a. A. t ''Minimum \Ieight Proportions of Pressure Vessel heads, II 

A, S. M. E. Trans., Vol. 29, Ser. ' D' , 1962, PP • 662- 6?4 . 

6. Erisman , R. J ., "Optimum Design o f Helical Compression Springs , " 

A. S. M. E. Trans . , Vol. 83, 3er. ' 0 ', 1961, PP• 227- 234 . 

?. Plunkett , R., and Schenecta dy , N. Y. , "'!'he Calculations of Optimum 

Concentrated uamping for Continuous . ystem.s , II A. S . H. E. Trans.' 

Vol . 2 , Ser. ' E' , pp. 219- 221t . 

B. rinis, L. D., and Hutenlocker, H., "Optimization of Inertial Locker 

'liheels for Space Cr a ft Slewing and .Altitude Control, " 

I . E. E. E. Trans. , Vol. AS- 2, 1962, PP • 44- L•51 . 
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9. Swanson, B. w., and ;;x,mers , E. v., "A Design Oriented Optimization of 

Si mple Tapered Radiat ing Fins , " A. S. M. E. Trans ., Vol . 3, .;)er. ' C' 

1963, PP• 193-202. 

10. f illipi, ~· . J., and Levenetz , B., "Optimum Joint L>esign for High 

Temperat ure Honeycomb Panels, If s.A.E. Trans •• Vol . 68, 1960. 

11. olladay, J. c., "Computer Des ign of Optical Leruse System (I ~H 704) , " 

pplications S.Yft'lp., Proc. of the 19&o , pp. 112-127. 

12. Marble , F. E., "Nozzle Contours fo r Hinimum Part icl e- Lag Loss , ~r A. I . A. A. 

~·• Vol . 1 , 1963, PP• 2793- 2801 . 

15. Holis t er , G. s ., ''Cyclic Stress Reduction within Pin- Loaded Lugs 

Resulting from Cptimum Int er ference F'i t s , " t;acptl . Mech ., 

Vol . 3, 1963, PP• 222- 224 . 

14. Jaro t~di , R., and Heard, D. E., 110ptimura Geometric Factors for Semi-

Circular Fins in Radiation Cooled Nozzl es, " A. I . A. A. Jour., 

Vol. 1 , 1963, PP• 146-147. 

15. Vogt, ·; ., "Developing Cam System Charts for Optimum Performance, " 

!2ol Engineer, March 1960, PP• 115-124. 

16. Mackl in, M. , "Optit11um Desir;n of Compact He £• t 'E:xchangers, " /J'.achine Des i cm, 

April 12, 1962 , PP• 132- 137. 

17. Hirschhorn, J . , "Cam Design for Finir~JUm Press t.re Ane;1e and Hinlmum 

Base Radiue. " Ibid., Sept . 13, 1962, 

18. Hertrich, F. R. , "How to Balance !Ugh Speed t4echanisms with Ninimum 

Inertia Counter Weights , Ibid., ~~rch 14, 1963, 

19. Saleman, B., "Cptimum sections of TubuJ.ar Columns , " Ibid., Se p t . 3, 

1959, PP• 161- 163. 

20 . --------, and Rubir., A. E., "Designing t.(inimum Section Columns. " 

I bid., Oct . 26, 1961, PP• 167-169. 
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21. Fleck, J. J ., ''Optimum Cam for Vulcan Gun. '' G.E.., Technical Informatiol'l 

series No o R56 A 01039 April 2, v 1956., ~ ·-~, · , 
I 

22. Carlson, J. A., 11~'rinciplee and Practices of Constant Load Cam Design 

for Hi gh Speed 0per a t ions," see ·ref. 11 under s ec. 3 .2 " 

23 . Wilkins, J . E., ''Mi.nimum ~iasa Thin Fins and Constant Temperatur e 

Gr adient, " J. Soc . Ind . Appl . Math ., Vol. 10, 1962, PP• 62- 73. 

24 . ---------, "Hinimum Mass Thin Fins which Tranafer Heat only by 

Radiation, " Ibid. Vol . 8, 1960, PP• 630- 639. 

Also see ref. 11 1 2?, 30, 36. 
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1 •1 1"1 
u ernvm k ir:em.sticiunc s uch 3S De i . r · , Rcsenaeur - etc . !wve 9 

mec :m.ist"'l.J b t;s in ' the previous ,yorlts of ,; erman and f.ue:-;i an kinernaticians 

131 1,, 
such as r~ermeiste .:;..nd •'chebycheff L . ' ith the migra tion o f s ch persons 

into ljnited ,) bte<> JnrinL th•, f ifties , the r esearch iT' kinematics i n t ~1 is 

country r eceived !"< new impetus . f'ersorJB like Freudenstein, Harten bert; , 

Rothb3.rt , ~iall , Hirschhorn etc . have, sir1ce then , furthe r extended this 

work by using 'l'ch e '>ycheff ' s iXIlynomi <)l a _:->proximatious , the method of 

f1.11ite differences and co rnrle~c notation . ::tforts have been m~de to 

synthesize four b $-l.r ruechf.mis!llc for best tr&nsr'lission properties and function 

l.';ener ., tcrs witi1 minil.lL<r.• e rror'3 b.' :...s ine l1i~h s.;>oed dig itcti corurmters . 

''ro bl ems of high s;ieed cam desisn and intermittent motion gener.:..;. tors 

ha ve also been s t udied. Some of tho import: ... nt 1-rorl:...s iu the connection 

ctrc referred to below . 

Siblio5raphy of Applicatio ns to Synth esis of t·.echanisc:~s 

1 . l oth , H., Fr eude nstein, !''., and 0u.ndor , G. N., ''.:>ynthesis of Four 

ink Path- •ener< tir1g , . echc:mL>:Jl~J · 'i th Opti n·um Tr s. nsmissi on 

Gh.:~.ra c teri J tic" , ·r r ans . of t!te .:>eventh Conferenc e of :·iechanisms , 

~t~due University , Cct., 1962 , ~P · 44- 48 . 

2 . Jenson , r • .. • , ":~ow to , roportion tl.e :.···al l est ~P..m for Given Pr:~ ssure 

,ngle , " Ibid., J. P• 202- 212 . 



4. Keller , R. E., "Mechanism Design by Electronic Analogue Computers, " 

Ibid., PP• 11-17 • 

.5. Dunk, A. c., and iamilton, c. L., "ix Bar Linkages, " Sixth, 

196o, P.P • 139-142. 
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6. Eumurian, c., 11 Designing Cams for Analogue Computers , '' Ibid., pp • .5.5-66. 

7. Polukhin, V. .P . , non a ~4eans of Relieving Hec til in ear Gui des in 

Hinged Me chanisms (in Russian), 1' Na.uch. Trudi Mosk. Tekhnol. 

ln-t Legkoi Prom-~ti Pt . 20, 1961, PP • 169-183. 

8. Epshtein, Yu . v., "Some Problems of the .Synthesis of Copying Mech

anisms (in Russian) • 11 Trudi In-ta ~lachinoved., Aka.d . ~auk 

s.s . s.R., Seminar Po Teorii ~1a.sh . i r~ekh . 22 , 85/86, 1961, 

PP• 137-153. 

9· Bogden, R. c., "Pe1ecudi, c., and ~almacivc , L., "On Spherical Curves 

and Mechanisms to Generate Them (in German)," Rev . Xecan. Appl. 

7, 2, 1962, PP• 307- 321. 

10. Freudenstein, F., "Four liar function Genera tor' s Common F~... nction 

Generator s with Least Error, 11 1'rans. of the Fifth Conf. on 

Mechanisms, Oct . 19,58 . Purdoo University, Ha.chine Design, 

PP• 104-107. 

11. Rain, K., 11How to pply Drag link .echanisma in the System of Mechanisms, " 

Trans. of the Fourth Conf . on t-1echanisms , PurdueUnivereit y, 

Oct. 1957, Hachine :lesig1, 1958. 

12. Tesar, D., and '4'olford, J . c., "Five Point Exact Four Bar Straight Line 

Mechanism, " Trans . of the Seventh Conf. on Mechanisms, Purdue 

University , Oct . 1962 , t>lachine :Jesign, PP• 30-38. 

Also see ref. 1, 2, 4, 15, 17, 18, 21 , 22 under Bib. Sec. 3.1 

and ret. 25, 29, 23 under general references. 
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3.3 Design of Machines 

A problem of desi ••n of a. machine is a primary optimization 

pro.blem. Hence it is compar a tively more di f ficult than the sub

optimization problem of design of mechanical elements . 'ft1e situation 

further deteriorates when nonlinearitie.::. are encountered. On a ccount of 

these diftioultiea work in t hic; field h s not been extended to gener.::~l 

design of machines. However, sever al examples of desi&n of s t andard 

machines are re:tJorted to i1a ve be~n practica lly handled r~y ut3ing opti

mization techniques . Extensive use of such techniques i s reported in the 

field of rotating machine des i gn only . J:.;xamples of machine design 

problems where only a fe•ri constraints and not more than two or three 

variables occur in fairl~ good numbers . Some of the references 

available to the author are given in the bibliography that follows . 

Bibliography of ApElicationr; to Desir;n of Machines 

1. Zener, c., "An Bxar.:lple of Uasien o f 1-, inimum ·rotal Cost, Counter 
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nov Heat Exchanger , II I . E. E. E. 7r 1ns.' on lUl. t~lec .' Vol . hii,..8 , 

A.pr H , 1964, PP• 63-66. 

2. Nicholson, H. • "Dynamic Optimization of a Boiler , n l'roc . of tht. lust . 

of r:lec. Eng., Vol. III , Aug . 1964, pp . 1479-1499. 

3. Gan.gr..sth, R. B., and V.ih ite , "" · H., ''Optimum Hydr aulic Accumulator 

Design, " 0 . A, E. Jour., Vol . 71 , -~US •, 1963 , PP • 68- 70 . 

4. !<i!eare , c. M. 1 and Peterson, R. L., ' 'tr!echanization of Finimum Energy 

Automatic Lunar Soft Landing Synter. s , ,. :..: . ;. • £. ran3., Vol. 71, 

1963, PP • 563-,95• 
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5. \-ialker, G., tr0ptimiz.a.tion of the Principle Design Parameters of 

.J t erli ng Cycle Machines , '' J . of :•iech . Eng. 3ci., Vol. 4, 1962, 

PP • 226-240. 

6. Chiantore , G., Bor ges , D., Baldo, F. , and Potter, J . H., "Optimizing 

Regenerative .S team Turbine Cycle , " A. S . J.t . E. Tra na., Se r ies ' A', 

Vol . 83, 1961, PP• 433-44) . 

7. Lof, G. o. G., D.nd Duffie , J . A., "Cptirnization of :F'ocussing Solar 

Collector De s i en , " A. :., . il . E. Trans ., Series ' t~ ', Vol. e5, 

1963, H . 221- 22t: . 

8. Bryan, V. 0 ., and Darwent, T. T., "The .Shortest Route to Optimum 

Design , " Engineering Jour ., June 1961, pp . 86o- 861 . 

9. -----------, and -------------, ''flow utomatic Gp timization is Applied, " 

Ibi • J uly , 1961 , PP • 14-15. 

10 • .Stuner, F • .• • , "Desigtli ng Dynwnic Test vets for Use Optimization," 

S . A. E. 1'rans., Vol. 67 , 1959, ?P• 9- 15. 

11. .Szepe and Levenepiel, P., "vptimization of Backmix Rea ctors in Series 

for a Singl e !"'eact i on ," I . ~ I: . C. Frocess Desig-n and Develon

~. Vol . 3, 1964, PP• 214- 217 . 

12 . Aris , R., "The Optimal Design o f Chomica.l Reactors , " Academic Press , 

N. Y., 1961. 

13 . Gar g , A., and i-li.llirtan , , "The Air Gr--ift Progress ~urve f·lodified 

for Design Changes , "J . of tae I11dus . Eng., Vol. >.II , 1961, PI> • 

14. ~wanson, B. ".if ., and SQ;r.er~ , S. V. , "C·ptimization of a Conventional Fuel 

r·ired Thermo-Uectric GenerA t or , '' A. S . M. E. 'l.'rans ., Ser. ' G', 

Vol . 81 , 1959 , PP • 245-24e . 
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1.:;. . Hitte:n , L. C., ~nd ;;emh.ew>er , G. L., ' 'i-lultist age Optimizat ion , '' ~he:?J . 

Eng . Prog .·, vel. 5'1 , 1 9 , r•P • 52.- &::· . 

16 . Kahlr , c. N., " Hul ti1)l e Objective :.:. i n l·ta thernatical Programming , " 

Over a tions .ie seard , 'ifc>l. f. , 1S'5c , ~ P• 849- 855. 

Al s o s e e r-ef . 1 '-l , 2J. , ?.J , 42 . Cl , 105 under general References 
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~ . t :.: ,. . tern Desirsn 

.\ system may b~ d .__ fined o.o & co r.'birwtion of s ever:.;. l parts and 

act~vic .i..e s usualJy with one lx.tsic oLjec t ive . It :i.o this basic oi..j ective 

cf ~:in,.;l~:meos of :pur !'ose which gives a t.n ique cr.ar Rcter:istic to a sy~; tem . 

.ft en, change in o ne of t he many vurinbles c f a e.;ys t em re:sults in 

co · t nding change;:, in :. ny o t her VJ.riables. :'h·Js 11.:. can s ... y t l:e t 

6~rv ' a r e usually complex . 

Fro:u t he above disoussio, it is cle c r t ha t the ) rcblem of system 

de:3j ;r , .... ike t he problem of machine design, is a primo.ry optimizat i on 

r r o"ll m. Hos t of the difficulties encountered in th~ o ptimum design of 

na c 1.n =- :; are also exverienced in t.lle oy t hesis of O ~)tir.:wn systems . ln-

s · it~ ): all t hese difficulties t ha probl er~ of o timun design of systems 

ha=> r :..c ived t he ... t n:oc t a ttention of t he research e s. It is perhaps 

dt:• tc tne fuct that t he sy~tems are usually co m1)lPx , no :alternative 

a ,, r a c h is presently nown and that r.;ere gueso ·,.;ork cannot be tolerated 

f"ir. · ~ nay lead i;o disast.r0ua .si tun t :?..or.s . t;tC~ tist i c c.l methods, dynamic 

progr~~ ,, dr<t; , .simula tion techniqueG etc. h ... v.a nll 'J-:! Cl- EJIJPli:ld at ..;;o;~e time 

o r 1e other for t he synthesis of di f f ere::1 t t yre of systems . These rese.:..rches 

httve r ecently c ulminated :i.slto what i~ .r-' r ese 't tly Jr.nown as adap t ive or s€lf-

o p "U.Zing s ys tem. A self optimizine; or adaptive .system is one whi ch 

'ledrns a bout its e!lVi ronments and adjus t s itoelf to expected performance 

i 1 h continual proceos of measuring .:..nd t"djur: ting 78 " · !1.any of t he tec hniques 

developed in Operntic•£ 1\esec1rcn tnve been a:-Jplied to system o:)t imi wtion . 

A biblioc;rD.phy of applications of op timi zation techniques 

t v > s tern desi gn fol::..o;rc . 
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.~erospace Desigp 

The t\lo world war s , t he pr esent armament r ace between United 

;t3tes and Union of voviet oci ulist Republic and t he e l ong desire 

of man to conquer outer space have all worked for the developments i n the 

aerospace design field . Since a single failure cos ts millions of dollars , 

an aerospace engineer must be very careful an - instead of relyin~ on cut and 

try methods he must use more sophis ticated techniques . The problem of 

f uel consumption, problem of long life power supply units, the e~qct nature 

of tra jectories , tr3nsfer of rocke t s and satellites fro~ one orbit t o 

.another , reliabi l ity of sys tem performance, a tta i nmen t of required speeds 

in a given intervril of time and capability of exert ing the required thr .• st 

.ar e questions which can be handled b~ optimizat i on techniques i n a better 

way than by any other techni q1.;e5 . Al oost all opti mizat ion t echniques 

described in the preceding sections have been trie(.\ and in several cases 

mor e sophisticated me t hods particularly sui ted to t he individual probl ems 

have been devised. ?ne ·ut hor has not extensively studied aerospace 

design; however , to be comprehenoive , a bibliography o f some Jelected 

applications are included. 
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Systet'!S,' ( Leitmann ed . ) Academic Press Inc ., ' . "i ., 1962, 
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3. 6 Tool ins: 

Tooling and pr ocessing design is the most neglected braneh 

or engineering design fiel d. 'l'his ma:y be due t o the f ct that the so 

called cut and try methods usually work and because a single failure , 

even if it occurs , does not cost too much . However, with the rapid 

growth of technologies it ie felt that this status should not be allowed 

to continue . Rationalizing the rules of thumb, either by standard 

practices or by developing relevent theories is more common these days . 

The knowledge of existence of optimum parameters in tooling 

is not nl!\" • hotvever due to lack of theor etical corelat .::..on with practical 

results , it is usually difficult· to arrive at any precise value of euoh 

parameters . A few exampl es of such parameters are the half angle of the 

wire drawing die , the r adius of t he punch nose ir. deep drawing dies , 

the cutting angle in the Bingle point cutting tools etc . w~ere 

theoretical corelation exists it is easy to calculate such optimum 

parameters mathemat ically by using elementary procedures qf sec . 2. 2. 

An example of wir e drawing die half angle will be il1ustrated here . 

Us ing t he fo l lo\'ting rel a t ion from Ford 132 

P/ A2 = q (1- ~ cota) ·r/(1- r) 
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wher~ P is drawing force , A
2 

the area of the drawn wir e , A
1 

the area of wire 

before drawing, q the normal die pressure , ~ the coefficient of friction , 

~ the half angle o! the die and r,ratio eq~~l to 

we can proceed as follows; 

r = ( 1 - A.~~) = 1 - D~i 
where D

1 
and D2 are the diameter of the wire at the entry 3nd exit respectively. 
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From t :1e geometry of the die we cc.n write 

D2 = D1 - L tl:.lll a. whe re ' L' is the e ffective lel".gth of the die. 

Substituting this in the b!l.Sie rellltiotJ w~~ ge t 

p .9.h ( 2D
1 

tan ex - L tan 2 
u. - 2 }1. D

1 
- il L tan a. ) Az= Dl 

i . e . ~ ( k2 tan a. - k~ tan 
2 

- .k4) = :I. 

Different i a tin5 the str ess ~/A2 and eq $ting to zero we ge t 

tan :t. or a. c 
- 1 tan 

- 1 = tan 201 - il L 

2 L 

for a '1 ' inch effective leni~th carbide die ()J. = . 04) with an entry diameter 

of 1/ 8 inch the o~timum value of the half angle 

-1 
a. = tan .2._~·--~·-1·2~5 __ -__ ._04 __ ~·--1 

2 • 1 

- 1 = ten .105 

which i s the val ue commonly used . 

Similarly, in processing, the maximum height of draw, the opti~1m bl ank 

for deep drawing, the optimum machining tol er ance , the best coolant 

for roaching can be determined . Jome r elevont exam le~ <ire referred 

in t he bib1io gra.phy t hat fcllo~tl • 
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3.7 .S tructural Design 

In dealinc?,; ~o~ith prol'·lercs of structur al design one often 

encounters the problem of choice of member par ameters to meet a 

certain criterion. In such c~~es t~1 e problem becomes extr emely difficul t 

if t e s tructure is assume to be perfectly elastic . On the other hand, 

by assumine; the structure as ri0id and perfectly pl astic, it i s )Osaihle 

t o handl e such cases in a fairly sim~Jle manner. The determina tion of 

optiroUI:l design of struc tur~s t!lcJ t are just a ble to carry a specifie d 

load on the above a sdumpticns i~ usually call e d the method of l imit 

desi gn . The problem can then be so reduced that the criterion, 

usual ly •,.reight, can be minimized subject to certc-;in linear inequality 

constraints . Cften such probl ems can easily be r educed to linear for · 

and hence linear progra wming proced1..t.res cA.r: be applied • 

.Several str .,ct ll r al design problems h:.ve been handled bJ 

this technique . :lome of t?:e ir.r c rtant _·cf-;;:rence t> are r;iver. in the 

Hiblio~raphy th.!l. t follows • 

.Gibliogra;phy of Aj· plic :, tio~ to .:itructural L-esip,11 
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3.8 El ectrical Design 

In electrical design the problems of synthesis of ne tworks, 

design of ro t a ting machines, design of elect r ical apparatus, trans

mi s sion and distribution systems des i gn and synt hesis of control 

systems have all been dealt with by using optimizing tec hni~ues. 

Transportation method and its variations ha ve b een applied for network 

synthesis, linear programming for electronic package assemblies and 

distribution system design, dynamic progr amming for the control system 

design and various analytical and analytical cum graphical methods for 

the electrical rotat-ing machines and non-rot ating or statiomu"J appara

tus design . Ac tually the pioneering work regarding the application of 

optimization techniques in engineering desie,'1l was done in this sector. 

Even a t present time most of the res earch regarding application of 

optimization tec hniques is being handled by organizations like I. B. iV: ., 

G. E. and vJest inghouse, all of whom a re p rima rily interested in the 

manufacture of electri cal apparatus. 

Since control systems have already been dealt wi t h under 

sy s tem desi gn , in the bibliography of t he applicotions of optimization 

tec ltni ,lues tu electrical design which follows, these referenc es are 

not repeated. Th ey are merely referred back. 
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3.9 1- reduction Design 

Production design problems such as that of machine scheduling, 

inve nt o ry control, product c:t,oice, purchase planning , quality control, 

s t andardiz at i on, method improvements , work simplifications, investment 

a nnlys i s, et c . , a re problem F wh ere one or the other optimization tech

ni que i s sut:c e osf ully applied. It would not be an exageration to say 

that p:::-od uc ~ion d e sign is t .'l n on l br anch of engineering where opti

mi zation t ec nni .ues h& ve been c x:e s ively applied and a l most every 

time witrcut ony failure. Son.e of t n e more impo r t ant applications 

are p;iven in t h e following bi uliogr aphy. They are clo sely related to 

Opera tions Hesearch. 
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Summary 

The method of finding extrema of multivariable functions 

by using ordinary theory of maximum and minimum has been presented. 

The problem ie simple if the function is differentiable with respect 

to its independent variables and has an extremum in t he allo\otable r ange 

of its variables. However , in case the function contains transcendental 

terms the method i~ almost impossible to apply. 

When t he func tion has to satisfy certain equality constraints 

the method of undeter ined ~ultipliers can usually be applied. If 

constraints ha11pen to be inequalities r a ther than equalities , an approach 

due to Valentine , Klein and others can be used to transform them to 

equality constraints. The undetermined multipliers method is limited to 

t he functions which allow the value and the location of t he extremum to 

be expressed in terms of t he newly introduced variable , the undetermined 

multiplier. If the function to be handled in this way happens to be a 

polynomial of its independent variables Zener's method permits one to 

eval a te the extremum wit~out dete~mining th ~ independent variables. It 

reduces t h e computational time by transforming a probleJ!'I of solvins a 

set of nonlinear equations into the problem of solving a small set of 

r el ativel y simple linear equat i ons . 

In certa in cases when the criterion function i e convex the non-
4 

linear inequality constr a i nt s can be reduced to linear inequality constraints 

by uas~ Cb.arnes and Cooper ' s technique and convex programming 
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can be used to determine the extremum. 

/ Several practical problema require the determinat i on of an 

extremum of a functional r a ther than a function. If the end conditions 

are fixed and the functional i s not constrained the extremum can readily 

be found by using t he simple variational calculus procedures. If the 

problem happens to be isoperimetric, undetermined multipliers can be 

introduced and the augmented function can ue used in a similar manner 
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to the preceding case, ··nd constrained functional extrema can be determined. 

If the end conditioned are not fixed the problem cannot be handled so 

easily. Euler equation as well as transversility conditions must 

be satisfied. If the problem happens to be r~yer or Lagrange's type, 

which is generally the case in the design field, it can be handled by 

an approach similar to the two cases discussed above. 

In practical design situations most of the analytical methods 

are to be applied on a high speed digital computer. F'or this, a problem 

must often be solved by using numerical iter ative techniques. For the 

variational calculus problems_, Et:ler's Method of finite differences 

reducee the nonlinear functional problem into r~lygonal function problem 

which can then be ap,plied to computers. If the nonlinear functional 

can be approximated by the sum of linear functionala Ritz method can be 

applied. If more accurate results are required Kantrovic's method can 

be used. For multistage multivariable functional dynamic programming 

or Pont~agin's Maximum Principle c•n often be applied suoceea!ully. 

If the set of constraining equations is difficult to solve, 

Newton-Raphson's approximations can be used provided t e firat derivati ve 



does not vanish . In case the first derivativ<-· vanishes Al gorithm's 

method of e~-rors (regula frtiai ) can be used . 
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In s e veral i nstances t he extremizing problems end up in 

diffez-ential equations which are very difficult to solve. For solution 

of such equativns , the finite dif ferencee approach can generally be used 

with success . If trte criterion as well as cons trn.ints happen to be 

homogeneous Bedford ' · f inite increment technique can successfully be 

used . Since par ameters are c hanged one by one for reaching the extremum, 

t he designer is kept aware of the inside pict ure of the des i gn situation. 

If the criterion function is unknown or only partially known, 

t he s tatistical e:>-'1 eriment a tion technique of s earch can be used. F'or 

t he univariable unimodal determinist ic model , Kiefer's method very 

quickly rea ches the extr emum . i''or multivaria.ble strongly unimodal 

functions the contour tangent s e limination technique is very valuable . 

Other cases can generally be handled by various versions o 1 gradient 

methods . Gradient methods are not very eff icient and hence acceleration 

t~chniq1Aes are usually appl ied to impr ve efficiency. If constraints 

are involved pattern search technique i s of considerabl e value. For 

stochn.stic s ituations Kiefer's approximations y,ermits easy handling of th e 

error problem. Dvoretzky 's me thod ~ives still better results . 

lf t he extremu h ppe ns to be on t h e bouncw ry rather than in the 

interior of t he pres cribed region, programming methods can be of very 

grea t value . Line~ case subjected to both equality and inequality 

constraints can easily be handled by linear programming method$ . I f 

the basis of t he problem happens to be triangular the sim .. le trs.ns

porta tion method is tl.e best to ap:pl ,~ , o therwise t he s implex method may 



be tried. Simplex is a c.trong opt ir:.iL.at i n tool ai.d can be a. ;plied to 

several des ign situations . 
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For multistage ncnlinea.r functions , par ametr ic or otherwise , 

dyns.mic programmint; often solves the problem by reducine t he multi

variable probl em into a series of sequential singl e vari(:jble problems . 

The calculations are usually lengthly <:U,d hence computer rneroory increases 

exponentially with the number of variables . Tho method, however , is 

reliabl e and car. be applied in both ordinary and v~riational problems. 

Pontryae;in ' s maximum principle in its special di~itized form ca n be 

succ~ssfully l'tilised to reduce the dynrun'lc progr: .. r.:ming defect of 

rise in computer memory capacity. However , this sives ris e to a 

cumulative error which in ordinary c ircumstances is very difficult to 

deter mine . 

The problem of optimization of quadratic f unc tions subjected to 

linear equality or inequality constraints c~~ be handled by Beal ' s 

extension of the simplex method. For linea r equality or inequality 

constraints and nonlinear cri t .rion ,/olfe' s rcth .. c~d. t;r a dient method, 

Hosen • s gradient projec tion method I and. l\ell ey ' s cutting plane method 

seem to be promisin~~ · Economic models are s<?.id to have been suc •. ess

fu l ly nandled by these methods 1,u t t !le cor.1pututions £'t e rot avai lab le 

fo r common use . 

Hosen ' a r;radient 1;roJection met.nod. ar.d Kelley's c t:. tting plane 

me thou a l ong with the separabl e rrogrotcJi inr.:; :nethod nd decoraposi tion 

method a re a pplicable t o problems \llhcre til " critoricn as ~1ell as 

constr :iiuts ( e o.uo.litie& or ineq\.lalities) ::trt! n, t...l i. ·.e..lc . Rosen's l<ethod 



seems more s uited s ince it does not dep~nd on the pro p ert ies of the 

criterion oth er tha n smoothness and computational exp er:Lence is 

avnilable . 

Cone lusio ns 
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Choice of a part icular methJd varies with the type of problem 

and h ence it i..s ve ry difficult to s ugge s t one I'art icula r technique. 

However, a s soon as the p roblem is formulated, the nature of the 

criterion and the constraints suggests a method to be preferred. Exp

erience is limited in many of the ne •,;er techniques , making it diffi

cult to give fi r m recommendations on choic P of method. 

For the sub-optimiz ation problemr; such as t he design of mech

anical elements, syntheHis of mechanisms, uesi6n of s Lructures or 

m<.~chine scheduling problems of p roduction de sign, if t .>Je criterion a nd 

the const r<J ints happen to be linear, simplex can be selected. Since it 

is generally sufficient to know the how's of it rather tha n th e why's 

of it, one c.: an handle simplex by knowing just eleMentary mat '1ematical 

principles. Eany sub-o~t imiz nt ion problem[; do not fall under linear 

programming case. In such cas es, sub-optimization problems can usually 

be s olved by Lagrange 's method of undet ermined multipliers with Klein's 

extension and Ne wton-Raphson' s e .1u c.1 tion solution proc cdure. For fairly 

l a rge number of van .ables z~ner' s Method along with Ch arnes and Cooper' s 

cxtenio n and convex programming seem to be }J romising p!'ovided it sati ~;

ries Zener's method' s requirement s . An alternative c ho ic e is Johnson's 

a pp roac h which is more or l ess a graphical app r oximation techni que and 

is particularly Uoeful when the design problem involves a choic e of 

material~ . Certain multivariable problems of de~ign can be handled by 
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dynamic programming methods. 

}or the p rimary optimi~ ation problems such as the problem of 

dec;i gn of a machinE>, synthesis of systems, synthe :=:is of electrical 

networks and p rocess equipment de s ign problems, p rogramming methods 

are bett er. If such problems happen to be non-stochastic and criterion 

can not easily be determined, which is generally the case with the 

process sy s t em de ~>ign, particularly with c n emical ;) rocess systems, 

direct s earch methods can b e u sed . If the problems are not error free, 

such as c ontrol sys tem design ; roblems , U .ese cun be handles by Kiefer 

or Dvoretz ky 's method. Certain control syc.·tem design problems can be 

<,olved by dynamic rrogramming or the digitiz ed maximum principle. Some 

of tbe electrical a t:paratus such as t r ansformers or reactors can be 

!.andled by Bed ford c 's finite increment technique IJhere as electrical 

network problems can generally be solved by the t ransportation method 

or the convex progrurnming methods. For a special typ e of problem which 

may occur in pr ocess o~~ign Zener's me Lhod of minimizing system cost 

in t e rms of sub-system cost can be used to reach the optimum with fewer 

computations . When reliabili t y is of paramount importance, such as in 

aerospace de s ign, certain c ontrol system designs a nd some o f the process 

des ign problems, s imula tion techniques are the only choic e for deter

mining the behaviour of the system bef ore it is actually designed and 

manufactured. 

Some of the nonlinear proe;ramming method s such as gradient proj

ection met hod can l andle the problem of finding the extremum whether it 

lies in the int erior or on the boundary of the given region. However, 

generally such problems can first be tri ed by simpler method of ordin-
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a ry c a lculus . If these methods f ail, it is at onc e known that the e xtremum 

does not lie in the interior of t~e region and hence the p rogramming met hod s 

can be a pplied for the location of t be extremum at t he boundary . 

Ce r tain fields in engineering d e s ign are more or less neg lected 

so far and depend mostly on cut and try methods; rationalization of such 

method s by using standardization proc edures and various st a tistical 

techni ,lues such as s tatistical control method and regre s sion methods seems 

advisable. 

Since no experience with nonlinear programming in the design fi e ld 

is so f ar reported , it would be worth while if further res e a rch were done 

in t his field. It would seem to be more appropriate to conduct such research 

in one of the few promis ing nonlinear programming techniques • .. ith the 

intension of evo lving a simple code that could be handled by less experiencec 

designers engaged in practical fields, rather than in re s e a rc h. This th es is 

i s prepared with the point of view of t h e des i gners a nd though some of t h e 

recent t echniq ue s s uch as search methods, s imulation, dynamic programming 9 

maximum principle a nd nonlinea r programming are includeu , s imulation and 

search techniques are just touched, dynamic programming and maximum princ i p l E 

are covered only in part, and nonlinear progr amming method s are dea lt with 

very briefly. On account of the r apid pace of development t h e se days it is 

very difficult to call any work comprehens ive and up to d a t e . Ho we ver , it 

is an at temp t to provide an exten<>i ve up to date s urvey of optimiz a tion 

t ec tmi ques a nd their applications. 

For t he guide of the designers a compara tive c hart of various 

methods is included at the e11d o "!' t h i :-.; section. 
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