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Abstract 

In this thesis, we focus on the rationing polices for the hotel room inventory 

control problems. Our study begins with a brief overview of revenue management 

in hotel industry, emphasizing the importance of room inventory control in revenue 

management problems. Mathematical models for controlling the room inventory in 

the literature are then reviewed along with recently developed game theoretic applica­

tions in revenue management. In game theoretic context, we establish three types of 

models to solve the hotel room inventory control problem in three different situations: 

1) two-player two-fare-class static single-period game with complete information; 2) 

two-player two-fare-class dynamic multiple-period game with complete information; 

and 3) two-player two-fare-class single-period game with incomplete information. 

In the first situation, we find the existence of unique Nash equilibrium and 

Stackelberg equilibrium in the non-cooperative case. We provide the exact forms for 

these equilibria and corresponding conditions. Next, under the dynamic game set­

tings, we provide the sufficient conditions for the unique Nash equilibrium. In the 

last situation, we consider the static single-period games with incomplete information 

and discuss the optimal strategies for the uninformed case, secret information case, 

private information case and public information case. The unique Bayesian Nash 

equilibrium in each case is found. We then analyze the values of different types of in­

formation and study their relations in different situations. Under each game theoretic 

setting, we present the managerial implications of our solutions along with the nu­

merical examples. The thesis is concluded by a discussion of how game theory can is 

useful in hotel industry, and its relationship to other topics in revenue management. 
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Chapter 1 
Introduction 

DeGroote School of Business 

This chapter provides an introduction to the topic of revenue management 

(RM) and game theoretic applications. We start with an explanation of RM and 

its history. We then briefly describe the industry profiles of hotels which make the 

RM practices distinct from the applications in other industries and the objective of 

hotel RM. Next, we highlight the importance of combining ideas from RM and game 

theory. Finally, we conclude by giving an outline of the remaining chapters in this 

thesis. 

1.1 Revenue Management and Its History 

Revenue management (RM) first appeared in the airline industry in the late 

1970s when the deregulated industry attempted to maximize profit by ensuring all 

seats were occupied before take-off and offering varied prices to the customers. Rlvl 

marries operations research/management science, statistics, economics, and software 

development to manage demand for a firm's inventory with the goal of maximizing 

revenue. Practitioners usually find that it is easier to define the objective of revenue 

management rather than explain what it actually is-the outcomes are easier to un-

derstand than the process. Revenue management is about marketing mix, cost/price 

relationships and product distribution, which allows a business to "sell the right prod­

uct, to the right customer, at the right time, at the right price" (Smith et al. [45]). It 

is a suite of components that, when working in harmony, will present the best oppor-
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tunity to maximize revenue. In 1992, Weatherford and Bodily [50] proposed to replace 

the term revenue management with a new, more appropriate term, Perishable-Asset 

Revenue Management (PARM). The element that links the industries implementing 

revenue management is that all of their inventories are perishable. Once the plane 

takes off, there is nothing one can do about trying to sell any of the seats on the 

plane. Similarly, when a room is empty overnight, the opportunity for revenue is lost 

forever. 

Today, revenue management has also spread out to other industries such as 

hotels, retailers, car rental agencies, Internet service providers (ISP), railways, cruise 

lines, electric power supply and restaurants. Basically, these industry sectors all share 

certain characteristics that make them particularly suited for revenue management. 

These characteristics have been identified by Kimes [26] as: relatively fixed capacity; 

ability to segment markets; perishable inventory; product sold in advance; fluctuating 

demand and low marginal sales cost and high marginal capacity change costs. Al­

though similar in these respects, there are still some explicit differences when different 

industries are subject to different combinations of duration control and variable pric­

ing. Kimes and Chase [27] demonstrate such differences with a pricing and duration 

positioning table; see Table 1. 

Comparatively, airlines, hotels and car-rental firms are more able to apply 

variable pricing for a product which has a more predictable duration. They conclude 

that successful revenue management applications generally occur in these industries 

(Quadrant 2), because they can manage both price and capacity more effectively. 

2 
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Price • 

Fixed Variable 

Quadrant 1: Quadrant 2: 

Movies Hotel Rooms 

Predictable Stadiums/ Arenas Airline Seats 

Rental Cars 

Duration 

Quadrant 3: Quadrant 4: 

Restaurants Continuing Care 

Unpredictable Golf Courses Hospitals 

Internet Service Providers 

Table 1. Pricing and duration positioning table for various industries. 

However, there are still a wide variety of complications when firms implement RM 

techniques because every firm possesses its own industry-specific characteristics such 

as technology standards, consumer behavior, pricing policies etc. Carrol and Grimes 

[10] summarize the impact of these factors on three industries: airline, hotels and car 

rental firms. Nair and Bapna [35] use Weatherford and Bodily's taxonomy [50] to 

compare the Internet Service Provider (ISP) problem with hotel and airline revenue 

management problems. Several review papers describing the theory and applications 

of revenue management in the airline industry have been published in recent years 

(see Bitran and Caldentey [5], Kevin and Piersma [25], McGill and van Ryzin [33], 

and Weatherford and Bodily [50]). 
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1.2 Hotel Revenue Management 

The hotel industry began to apply the concept of revenue management m 

late 1980s when the industry faced excess capacities, competitive markets, liquidity 

problems and recession; all of which affected operations and resulted in lower revenue 

(See Hansen and Eringa [21]). Hotels can be classified as business, resorts, extended­

stay, or a mix of business and leisure and also by size and location. Some hotels 

manage only individual properties, while large hotel chains can own hundreds of 

properties. A hotel, typically, offers rooms for many day-to-day lodgings of various 

types of customers. Despite some of the similarity with the airline customer types, 

the segmentation used in hotel RM are different. For example, advance-purchase 

discounts, a prominent segmentation mechanism of airlines, are not commonly used 

by hotels. Since hotels also generate significant revenues from other sources such as 

food, entertainment, and function space, the value of a customer is hard to determine 

exactly. However, these additional sources of revenue are usually not considered in 

hotel RM applications. 

There are many different room types, such as standard rooms, deluxe rooms, 

executive rooms, rooms with a view, single or double bed rooms, smoking and non­

smoking rooms, etc. They can be grouped together into three or four categories for 

capacity control purposes. Hotels typically aggregate both the room rate and the cus­

tomer types, leading to about 3 to 10 rate bands for RM purposes. The room rates are 

usually adjusted only once or twice a year. Normally, a hotel room booking is made 

directly with the hotel (walk-in, through Internet, or by call). However, in a large 
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hotel, approximately 20 to 40 percent of bookings come from Global Distribution Sys­

tems (GDS). The Plation of a booking happens not only when the customer cancels 

the booking before the date for accommodation, but also when the customer decides 

to check out early. Therefore, the future capacity of the hotel is often uncertain and 

overbooking is widely practiced in the hotel industry. 

Hotel RM mainly focuses on selling rooms in a way that maxmuzes total 

room revenue, rather than trying to sell all available rooms. For example, hotels 

sometimes make the customer "walk" (i.e., send elsewhere) a less valuable customer 

even when a room is available, to avoid walking a more valuable customer who is 

arriving later. This strategy may be risky since the arrivals of high-revenue customers 

in the future are not guaranteed. However, it is a systemized occupancy-price strategy 

for controlling the room rates and occupancies to maximize the total revenue. Some 

recent studies perceive revenue management as a managerial tool for maximizing 

profits, rather than revenue. For example, Donaghy et al. [13] and Griffin [20] point 

out that the total income calculations should include cost considerations and revenue 

management should move from a revenue- to a profit-generating tool. However, due 

to the high capital investments but low variable costs of hotel operations, increasing 

revenue essentially results in an increase in operating profits. 

1.3 Game Theory and Revenue Management 

Game theory concerns itself with the analysis of competition and cooperation 

situations. It has found applications in diverse areas such as anthropology, auctions, 

biology, business, economics, management-labour arbitration, philosophy, politics, 

5 
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sports and warfare. During the 1950s and the 1960s, academic researchers began to 

apply game theory in operations research/management science area. Several reviews 

focussing on the application of game theory in economics or management science have 

appeared in the last five decades. An early survey of game theoretic applications in 

management science was given by Shubik [43]. Feichtinger and J¢rgensen [14] pub­

lished a review that was restricted to differential game applications in management 

science and operations research. A review of applications of differential games in ad­

vertising was given by J¢rgensen [22]. Wang and Parlar [49] presented a survey of the 

static game theory applications in management science problems. In addition, sev­

eral books (e.g., Chatterjee and Samuelson [11], Gautschi [17], and Sheth et al. [42]) 

partially reviewed some specific game-related topics in management science. More 

recently, Leng and Parlar [29] present a review of the existing supply chain game 

models, under a topic classification of five areas: (i) Inventory control, (ii) production 

and pricing competition, (iii) service and product quality competition, (iv) sharing 

issues in supply chain management, and (v) strategic competition in marketing. 

To the best of our knowledge, there are currently no detailed survey papers 

on game theoretic models in RM problems and there are very few published works 

directly concerning such problems. Most studies assume that the company handling 

perishable products (such as airline, hotel, restaurant, etc.) exists as a distinct en­

tity. In reality, there are usually more than one company dealing with "substitutable" 

products in a specific geographical market. In this situation, one company's decisions 

on inventory rationing, pricing, or both might be affected by the decisions of other 

compames. Therefore, more significant and interesting topics arising from revenue 

6 
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management allow us to address the following questions: How do they set the book­

ing limits or protection levels of multiple classes products? Is there an equilibrium in 

inventory allocations? Is it more beneficial to be the "leader" in a Stackelberg game? 

How to find the optimal rationing policies when one firm has an incomplete infor­

mation of the others? How much can RM increase the overall revenue if the firms 

cooperate? As a result, a prime methodological tool for dealing with these problems is 

game theory that focuses on the simultaneous or sequential decision-making of multi­

players under complete or incomplete information in a competitive or cooperative 

context. 

1.4 Organization of the Thesis 

The rest of this thesis is organized as follows. 

Chapter 2 presents a comprehensive discussion of the existing mathematical 

models which can be applied to hotel room inventory control problems. We then look 

at several game models which can be applied to hotel revenue management. 

Chapter 3 addresses a single-period two-player two-fare-class hotel room ra­

tioning game. First, we investigate the best response functions of both players and 

corresponding properties. A unique Nash equilibrium of booking limit decisions is 

found in the competitive situation. Next, we assume that one hotel acts as the 

"leader" and the other as the "follower"; under this scenario we examine the Stack­

elberg equilibrium. For this case, we identify a situation in which the Stackelberg 

game is equivalent to the Nash game. This result shows that if one player's booking 

limit is reached, i.e., if he always rejects low-fare customers, neither of the two play-

7 
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ers prefers to be the "leader" in the game. Finally, we examine the cooperative case 

where the hotels "cooperate" to maximize a system-wide objective function and find 

that the profit loss is substantial if there is a lack of cooperation between two players. 

In Chapter 4, we study a multi-period hotel room rationing problem. This 

problem is formulated as a dynamic programming model. First, we find that each 

player's optimal expected future revenue is a non-decreasing function of its own room 

inventory level and a non-increasing function of the other hotel's room inventory at 

any time. Second, we provide the sufficient conditions for the unique Nash equilib­

rium of dynamic accept/reject decisions and identify the situations in which the game 

admits multiple Nash equilibria (MNE). Finally, by defining expected marginal val­

ues of the hotels' rooms, we simplify the optimal accept/reject decision into sets of 

critical values. We also provide some numerical examples along with the managerial 

implications for our solutions of the competitive and cooperative games. 

In Chapters 3 and 4, we assume that the games are played under complete 

information, i.e., each player knows the booking arrival patterns, transfer rates and 

rejection costs of both players. In Chapter 5, we relax this assumption and examine 

the static game problem under incomplete information. More specifically, we assume 

one player's rejection cost and transfer rate of low-fare class customer as the incom­

plete information. By employing the different types of information (secret, private 

and public information), we discuss the game theoretic solution for the incomplete 

information game, which is known as Bayesian Nash equilibrium. Another goal of 

the study in this chapter is to evaluate the different information types. Accordingly, 

we first analyze the conditions in which the value of information is positive (or nega-
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tive). Then, we compare the values of different information to see which type is most 

valuable for one player, and under what conditions the information value benefits the 

player most and in what content. 

Chapter 6 summarizes the concluding remarks of this thesis and provides some 

potential research directions for future studies. 

9 
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Literature Review 
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One of the fundamental questions of perishable asset inventory control that 

must be answered each time a demand arrives is whether to accept it or to reserve the 

unit of inventory for possible sales later to a potentially higher-paying customer [34]. 

Before reviewing room inventory control solutions in the literature, some vocabulary 

should be introduced first. Booking limit and protection level are the two important 

concepts used for the room inventory control problem. Netessine and Shumsky [36] 

define a booking limit to be the maximum number of rooms that may be sold at the 

discount price, and protection level is the number of rooms which will be protected for 

full-price customers. If the optimal values of these two variables can be determined, 

it will be easy to decide whether to accept the low-revenue booking or to reserve the 

room to a potentially higher fare class customer later on. 

Consider the arrival of a booking request that requires one or more rooms 

starting on a specified date, at a given price. One of the basic revenue management 

decisions is whether or not to accept or reject this request in order to maximize 

the total expected revenue. These types of problems are known as room inventory 

control problems faced by hotel management. The point is that at a certain time it 

is more profitable to reject a lower-revenue customer in order to be able to accept 

a higher-revenue customer at a later time. Clearly, if the hotel waits too long for 

higher-revenue customers to appear, at the end of the selling horizon, there might be 

10 
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some unsold rooms that could have been sold to lower revenue customers at an earlier 

time. 

Revenue and Cost Factors 

Cancellation penalties 

Denied lodging cost 

Lost of goodwill cost 

Demand Factors 

Demand dependencies between booking classes 

Length of customer stay 

Demand for future arrival dates 

Demand for future room types 

Competing hotels' effect on future demand 

Room Inventory Control 

Booking lead-time 

Overbooking up-limit 

Table 2. Significant factors which affect hotel RM. 

Based on the discussion in McGill and van Ryzin [33] and Upchurch et al. 

[48], we identify the elements in Table 2 which can be used to model a generic hotel 

revenue management problem. In the rest of this chapter, we review some RM models 

that incorporate these elements. 

2.1 Static Models for Hotel Room Allocations 

Static RM models have been used frequently in recent years. They are typically 

formulated assuming that demand is segmented in predetermined fare classes. Instead 

of a distinct control mechanism, they assume a nested booking limit system (See 

11 
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-------f-
Protection level for class 0 

----..-- - - - :t: - - - - - -,- -
q1 Protection level for class 1 

-~ ______ 1:__ 

------f-
Protection level for class i 

... ~ 

Figure 1. Nested booking limits and protection levels. 

Belobaba [4]). This approach sets booking limits that are nested from above, e.g., 

the full-price class has a booking limit up to the total capacity of the hotel. Most 

of the earlier works only consider two price classes: full price and discount price. 

However, the nested booking limit method can be applied to any number of price 

classes. Bodily and Weatherford [50] define a 'bucket', Qi, i = 0, 1, 2, ... ,I, as the 

booking limit for price 1ri class; these buckets are nested as in Figure 1. 

The total capacity is equal to q0 , which is only available to those willing to pay 

the highest price. An amount Qi is available for the ith highest price class, with the 

difference, qi- qi+1 , protected for sale to ith class customer from those in lower price 

classes. For the two fare classes problem, ·the earliest model for inventory control 
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problem is due to Littlewood (32]. He assumes that there are x units of capacity 

remaining and there is a booking request from discount price class. Therefore, if such 

request is accepted, the company collects a revenue of 1r2 • If the request is rejected, 

the company will sell unit x at 1r1 if and only if demand for full price class is x units 

or higher. Demand for class j is denoted by Dj, and its distribution is denoted by Fj. 

Littlewood's Rule: There is an optimal protection level, denoted by yj, such that 

we accept the discount price class if the remaining capacity exceeds yj and reject it 

otherwise. Such yj must satisfy 

If one can use a continuous distribution F1 (x) to model demand, then yj can 

be given by a simpler expression Yi = F1-
1 (1 - 1r2/1r1). See Liang [31] for an analysis 

of similar continuous-time version of a dynamic model. In general, the lower the ratio 

1r2/1r1 , the more capacity the company should reserve for full price class. This makes 

sense since the company would be always willing to accept a low price only when the 

chances of selling at a high price are lower. 

Brumelle et al. [9] propose another decision rule to obtain the optimal booking 

limit for the discount class. 

Brumelle's Rule 1: Booking limit of discounted class is 

q* = m:x { 0 ~ q ~ Q : Pr [Y > Q - q J B 2: q] < ~~ } (1) 

13 
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where Q is the total capacity, Y the number of full-fare customers (random variable}, 

B the number of discount customers (random variable}, q the booking limit of discount 

customers and P the price subscripted for a given fare class. .. 

This stopping rule is developed under the assumption that discount demand 

occurs earlier than the full-fare demand occurs and a booking class will not be re-

opened once it has been closed. In addition, this model assumes that there is no cost 

involved when rejecting a reservation. Bodily and Weatherford [7] present a similar 

model: 

Weatherford and Bodily's Rule 1: Reserve an additional space for a discount 

customer if 

(2) 

where q0 is total capacity, q1 the booking limit for discount class (decision variable}, 

X the number of full-fare customers (random variable} and Ro and R1 represent the 

revenue of full-fare class and discount class, respectively. .. 

Brumelle et al. [9] generalize their model by assuming a cost (loss of good-

will) is involved when turning away further requests once current reservations reach 

capacity. It is a modification of their previous rule (see (1)) where the value of lost 

of goodwill, Pc, is added to the full price to give the rule that the optimal booking 
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limit, 

q* = m;x { 0 :S q :S Q : Pr [Y > Q - q I B ~ q] < Py ~ Pa} . 

They also present a decision rule which incorporates the compensation of customers 

if overbooking occurs. 

We note that all the above rules assume that the discount class customers only 

accept the discount price and full-fare customers only pay full price. In hotel business, 

the business travellers (full-fare class) may also want to pay the discount price and 

as the discounts class is closed the leisure travelers (discount class) may accept the 

full price. This is defined as diversion by Pfeifer [41] who provides the following rule 

to determine the booking limit of discounted class customers. 

Pfeifer's Rule: Reserve an additional discount customer if 

Pv 
P1P2 < 1-­

Pp 

where p 1 is the probability that the ( q + 1) st customer will only accept discounted price 

and p 2 the probability that Q - q - 1 ( Q being the total capacity) full price units will 

satisfy all subsequent demands from those who would pay the full price and those who 

would prefer the discount but if unavailable would accept the full price. .t. 

Considering the probability 'Y of an upgrade if a discounted class customer is 

rejected, Brumelle et al. [9] develop a different model which is similar to Pfeifer's 

rule. 
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Brumelle et al. 's Rule 2: Booking limit of discounted class is 

{ ~-~} q* = m:X 0:::; q:::; Q: Pr [Y + U (q) > Q- q I B 2:: q] < (1 _ 'Y) Py 

where U ( q) is the number who will upgrade if discounted class is closed at q. • 

Another model by Belobaba [4] considers the probability that a discounted 

customer may upgrade vertically to full-fare class. 

Belobaba's Rule: Booking limit of discount-class is 

where C is the total available capacity and ( Si + 1121 ) the total protection level for 

discounted class from full-fare class. The quantity ( Si + 1121 ) is determined by 

EMSR1 (Si + Vl) [1- Pz (v)] + fiPz (v) = /2 

where E!v!SR1 is the expected marginal seat revenue for full-fare class when the num­

ber of seats available to the class is increased by one; P2 ( v) the probability that a re­

fused discount-class customer will accept a booking in full-fare class; and /1 and fz 

the average fare level of full-fare class and discounted class, respectively. • 

All of these three rules mentioned above solve the diversion problem by in-

traducing probabilities of 'upgrade' of discounted class customer. These probabilities 

increase as the booking limits increase because the lower the inventory level the more 

likely a discounted customer will buy up. However, in reality, estimating these prob-
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abilities is still not easy. 

The decision rules described above just concern two-fare classes problem. In 

practice, a hotel manager might often face three or more fare classes for a single 

type of rooms. Based on the solution for two fare classes problem, Weatherford 

and Bodily [7] extend the decision analysis to a more general case considering any 

number of fare classes. In order to establish the general decision rules for each of 

the booking limit, some other definitions and notations are defined first. For each 

class (i = 0, 1, 2, ... !), It;_ is defined as the contribution from a unit sold to a class i 

customer (Ro > R1 > R2 > ... > R1 ); Xi as a random variable for class i; Yi as a 

random variable representing the demand for units in all price classes ~ i subsequent 

to the arrival of the (qi+l + 1)st customer; f3i as the probability that the next customer 

requesting a reservation is in class i; Pi as probability that Yi ~ qo - ( qi+l + 1). 

Weatherford and Bodily's Rule 2: Accept an additional class i (i = 1, 2, ... ,I-

1) customer if 

f3iPi-1 R,__l - It;_ . >----t f3k R,__l 
k=O 

and accept an additional class I customer if 

For the first time, this decision rule provides an approach to solve the diversion 

problem with any number of price classes. Bodily and Weatherford [7] also evaluate 

the revenue improvement by simulation using the actual airline data for demand. The 
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results indicate that the revenue gains are between 3.6% and 5.35% when considering 

seven fare classes. But its weakness also resides in the difficulty of estimating (3i and 

Pi· And besides, this model just considers the 'neighboring diversion effect' (upgrade 

from one fare class to its immediately higher class), it does not consider the diversion 

from one class to all possible higher fare classes. 

In the next section, we will discuss the models concerning the rationing policies 

in a dynamic situation (multiple periods). 

2.2 Dynamic Models for Hotel Room Allocations 

Gerchak et al. 's model [18] is one of the first dynamic models dealing with 

concurrent demand problem in revenue management applications. The authors were 

motivated from a real situation observed at a delicatessen store where the manager felt 

that it might be more profitable if he refuses the request from a low-revenue customer 

in order to offer a food item (i.e., a bagel) to a high-revenue customer later. In the 

case of hotel business, this policy can be used to decide the optimal booking limit for 

lower fare class customers. The authors assume that the time horizon is divided into 

discrete intervals. In each interval, the arrival rates of the full-fare and discounted 

class customers are assumed known as A1 and A2 , respectively. And the time interval 

is short enough to make the probability of more than one customer arriving in any 

interval negligible. The high-revenue customers generate a unit revenue of p1 and 

the low-revenue customers generate p2 revenue per unit (p1 > p2 ). Each customer 

requests a single unit each time. In the basic model, the authors also assume that 

there is no salvage value for unsold units and there is no loss of goodwill when rejecting 
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a low-fare customer. 

Gerchak et al.'s Rule: The maximum expected future total revenue V(n, t) is 

V(n, t) = (1- AI- A2)V(n, t- 1) +AI [PI+ V(n- 1, t- 1)] (3) 

{ 

p2 + V ( n - 1, t - 1) : Accept 
+A2max 

V(n, t- 1) : Reject 

with V(n, 0) = 0, for all n; V(O, t) = 0, for all t E {0, 1, ... , T}; and n denotes units 

on hand, t time intervals remaining until the end of time horizon and T the number of 

intervals in the planning period. If n ~ t, we shall never reject a customer no matter 

which class he/she belongs to. If n < t, and if we reject a discounted customer at 

(n, t),he/she should also be rejected at (n- 1, t) and (n, t + 1). And, if we accept a 

discounted customer at (n, t),shejhe should also be accepted at (n+ 1, t) and (n, t-1). 

Clearly, the decisions of "reject" and "accept" depend on the values of (n, t) 

in case n < t. The decision should be made based on two state variables (i) available 

rooms (n) and (ii) number of remaining time intervals (t). According to the policy, 

at any given t, there must exist an n* (booking limit) which the decision should be 

"reject" if the number of available rooms is less than n*, and "accept" otherwise. 

On the other hand, for any given n, there also exists a t* which our decision should 

be "reject" if the time remaining until the end of the time horizon is before that 

point and "accept" otherwise. So by linking all such (n, t*) and (n*, t) together, a 

rejection-acceptance curve can be formed. 
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Next, the authors extend the basic model to a more complicated situation in 

which loss of goodwill is involved. Denote the loss of goodwill per rejected customer 

by g, the only change required is to alter V(n, t- 1) to V(n, t -1)- g. In addition, if 

the per unit revenues for the K types of customers are p1 > p2 > . . . > p K, and their 

arrival rates are A-1 > A-2 > ... > AK respectively (E~1 Ai < 1), then the problem can 

be formulated with the similar way just simply substituting A-1 + A2 by E~1 Ai, p2 by 

Pi and A2 by E~2 Ai in (3). 

Lee and Hersh [28] consider a general case in which there are more than 2 

booking classes and each request may be for more than one unit of product. Using 

the same discrete-time scheme as that in Gerchak et al.'s paper, they denote Gim as 

the probability that a booking from class i in decision period n is for m products, 

m = 1, 2, ... , Mi, where Mi is the maximum number of products allowed for each 

booking. 

Lee and Hersh's Rule: A booking from fare class i (i = 1, 2, ... , k) will be ac­

cepted only if mFi + f':~~ ~ r;--1 . The recursive function of f':, the optimal expected 

revenue generated for next n period given booking capacity s, is: 

n { (1- t ~n) r:-l + E Pt I: Gim max { mFi + t:~~' r:-1
} for n > 0, s > 0 

fs = ~=1 ~=1 m=l 

0, otherwise, 

where Fi denotes the value of accepting a booking request in fare class i and Pt the 

probability that a request in class i will arrive during a decision period n. -" 

This model implies that for a given request size, booking limit, and decision 
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period, there exists a critical discount class; for a given request size, discount class 

and booking limit, there exist a critical decision period. But for a given request size, 

decision period and discount class, the critical booking limits may NOT apply. It is 

because the expected marginal value for reducing the available rooms of size s by m 

simultaneously (as a group) in period n, 8m (n, s), is not necessarily non-increasing 

(See Lee and Hersh [28]). 

You [51] generalizes Gerchak et al.'s model by relaxing the assumption that 

the rejected customers are lost sales. He assumes that at any given decision period, a 

discounted class £ customer may upgrade to the next higher class, £ + n, if his initial 

booking request and subsequent upgrade requests to classes£+ 1,£ + 2, ... , £ + n- 1 

are rejected. You denotes r~ as the probability of such event. 

You's Rule: Accept a booking from fare class £ (£ = 1, 2, ... , L) if and only if 

Vt_1(i- 1) + xe 2: uf (i, 1). The maximum total expected revenue, Vt(i), with i units 

available stock with t periods to go is given by 

>.~vt-1(i) + >.f [xL + Vt-1(i)] 
L-1 

Vt(i) = + L: >.: max { uf ( i, 1) , xe + Vt-1 ( i - 1)} , i 2: 1, t 2: 1 
l=1 

0, otherwise 

where >.: denotes the probability of a booking request from fare class £ ( £ = 1, 2, .. . L) in 

period t; >.~ the probability of no arrival; xe the fare charged for class £ (£ = 1, 2, ... L ). 

The maximum total expected revenue, uf ( i, n), with i units available stock with t 

periods to go under the condition that the fare class £ customer's initial request and 
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subsequent upgrade requests f + 1, f + 2, ... , f + n- 1 are rejected, is given by 

{ 

r~max { u: (i, n + 1), xl+n + Vt_1(i- 1)} + (1- r~) Vt_1(i), if n < L- £, 

rf_e [xL + Vt-l(i- 1)] + (1- rf_e) Vt-l(i), if n = L- £. 

The dynamic models discussed above can be characterized as follows: the 

rationing policy can be controlled using either a set of critical inventory levels or a 

set of critical decision periods. For a hotel, a booking request from a discounted class 

in a decision period is accepted if the remaining decision periods is less than or equal 

to the critical decision period for the current available rooms and rejected otherwise. 

On the other hand, in a decision period, a booking request from a discounted class 

is accepted if the nun1ber of current available rooms is greater than or equal to the 

critical booking limit for that period and rejected otherwise. Similar research on 

this kind of policy has also been done by Banerjee and Viswanathan [1], Bitran and 

Gilbert [6], You [52], and Zhao and Zheng [53]. 

One of the shortcomings of these models is the assun1ption that the arrival 

rates of customers do not vary in time which can be unrealistic in some real appli-

cations. Slyke and Young [44] model the random nun1ber of arrivals in [0, t], as a 

time-dependent Poisson process N (t) with >..k (t) as the Poisson arrival rate of the 

kth type of requests as a function of time. 

Slyke and Young's Rule: Accept a request from fare class k (k = 1, 2, ... , K) 

if and only if bk + J(y- 1, t)- J(y, t) > 0. Here, bk is the positive real valued benefit 
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of a type k request and f(y, t) the maximum total expected sum of the benefits of the 

accepted requests given that y units of inventory (0 ::::; y ::::; W) and t time (0 ::::; t ::::; T) 

remain. This function is given as: 

t K 

f(y,t) = 1 A(s)e-f:>.(r) drLpk{s)max{bk+f(y-1,s) -f(y,s),O} ds 
0 k=l 

with f(y, 0) = 0, for all y; y(O, t) = 0, for all t E [0, T], and A (s) = 'E~=l Ak (s), 

Pk ( s) = Ak { s) /A ( s) is the probability that, given one request arrived, it belongs to 

class k . • 

Slyke and Young [44] prove that if f(y, t) is absolutely continuous in t and 

Ak (t) > 0 for all k and t, then f(y, t) is strictly monotone increasing in t. This implies 

that there exist a critical time (threshold point) t* for a given inventory level and a 

fare class k, where the optimal policy is to reject that request before t* and accept 

otherwise. This solution is very similar to the policies in discrete time we described 

above. In the two-price model, Feng and Gallego [15] give the exact solution for such 

threshold point for any given inventory level. Feng and Xiao [16] extend the results 

obtained by Feng and Gallego to a more general situation which considers multiple 

fare classes. 

Feng and Xiao's Rule: For a request in fare class Pk (1::::; k::::; K), with inven­

tory level n ( 1 ::::; n ::::; M), we accept the request until the threshold is reached. Such 

threshold, x~, is determined recursively by 

x~ = inf { 0 ~ t ~ T: iT Lk (s, n) e~>.k{s=t) ds > 0} 
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where 

avk+l (t, n) [- ] 
Lk(t, n) = at + Ak Vk(t, n) + Pk , 

Vk(t, n) = Jt ' ' n 
_ { rT Lk (s n) e->..k(s-t)ds if t > xk 

0, Otherwise. 

Here, Vk (t, n) represents the maximum expected revenue over the interval [t, T] given 

the inventory level n(t) = n, which is achieved by keeping the current price Pk until 

k -
xn, and vk (t, n) = vk (t, n)- vk+l (t, n). .. 

Brumelle and Walczak [8) present a model with a continuous-time, multi-

period arrival process with multiple demands following a Markov process, and where 

decisions are made at the end of each period. They consider the situation that 

a customer can request more than one unit of product and that request may be 

splittable, i.e., the requests can be partially satisfied. 

For many hotels, booking requests are only recorded when the customer ac-

cepts the price hotel offers. No purchase decision can be observed from the available 

stored data. Thus, it is sometimes difficult to distinguish between periods with no 

arrival and periods in which there was an arrival and his/her booking request was 

rejected. Talluri and van Ryzin [47) overcome this incomplete data problem by ap­

plying the expectation-maximization (EM) method to solve the discrete-time revenue 

management problem. They assume in each period that there is at most one ar-

rival with probability of A. There are n fare classes and N = { 1, 2, ... , n} denotes the 

entire set of fare classes where each fare class j E N has a,n associated revenue rj. 

Hence, in each equal-length period t, a subset S ~ N of fare classes must be decided 
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to open. When the fares S are offered, the probability that a customer chooses fare 

class product j E Sis Pj (S) where Po (S) denotes the no-purchase probability. 

Talluri and Van Ryzin's Rule: At any given time t (0 ~ t ~ T), one set of 

fare classes S should be opened and such a set should satisfy 

S = arg max { >. ( R( S) - Q ( S) ~ vt-1 ( x))} 
S<;N 

where Q (S) = EjES Pj (S) = 1- Po (S) is the total probability of purchase, R(S) = 

EjES Pj (S) rj is the total expected revenue from offering set S and ~vt-l (x) = 

· vt-1 (x)- vt-1 (x- 1) the marginal cost of capacity. The maximum expected revenue, 

vt ( x), obtained from period t, t - 1, ... , 0, given that there are x inventory units 

remaining at time t is 

V. (x) = T~~ {~ AP; (S) (r;- ~V.-1 (x))} + V,_1 (x) 

vt (x) = maxs~N { EjES >.Pj (S) (ri- ~vt-1 (x))} + vt-1 (x)with vt (0) = 0, 

t = 1, 2, ... , T and Vo (x) = 0, x = 1, 2, ... ,C. tit 

The most significant characteristic of this model is that the optimal sets of 

fare classes are only those efficient sets. In many cases, this observation reduces the 

number of sets we have to consider. Moreover, it shows that these efficient sets can 

be sequenced in a natural way and that the more capacity we have, the higher the set 

we should select. But the limitation of this model is in its difficulty of estimating the 

probability of Pi (S). There are many potential strategic behaviors which can affect 
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customer's choice, e.g., a customer's choice may depend on the strategies of other 

customers; or his or her past choices or past events in the system, etc. 

2.3 Game Theoretic Models for Hotel Room Allocations 

As we discussed in Section 1.3, game theory should be applied for the simulta-

neous or sequential decision-making if one hotel's revenue is affected by the rationing 

policies of another hotel's rooms. To the best of our knowledge, there is no related 

literature addressing the room inventory control problem using game theoretic tools 

even though game theory has found frequent use in problems involving competition 

in supply chains. For example, in one of the earliest papers in this field, Parlar 

[40] has modelled the substitutable product inventory problem with two newsvendors 

whose profits are determined as a function of both players' order quantities u and v. 

The newsvendors attempt to maximize their expected profits JI ( u, v) and J2 ( u, v), 

respectively, where the first retailer's objective is given as 

JI(u, v) = (si +PI) [1u xf(x)dx + u 100 

J(x)dx] - PIE(X) + qi 1u (u- x)J(x)dx 

+(si- qi) 1u [1B b(y- v)g(y)dy + ioo (u- x)g(y)dy] f(x)dx- ciu, 

with J(x) and g(y) as the demand densities faced by each retailer, a and b (0:::; a, b:::; 

1) are the substitution rates of the retailer's products when they are sold out; si, ci, 

qi and PI are the unit selling price, purchase cost, salvage value and shortage penalty 

cost for first player's product, and B = [(u- x)jb] + v and A= [(v- y)ja] + u. For 

this model Parlar proved the existence and uniqueness of the Nash equilibrium and 

showed that cooperation between two players can increase their profits. 
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The importance of this work is that it establishes the existence of a unique 

Nash equilibrium. The essential differences between the RM games and newsvendor 

games reside in the capacity and variation of price: the former accounts for a fixed 

capacity and offers different prices for the same product (i.e., airline seat, hotel room), 

which are seldom considered by the latter. 

More recently, Netessine and Shumsky [37) presented a seat inventory control 

problem in which two airlines compete for passengers on the same flight leg. Their 

model cannot guarantee an equilibrium, because they assume the airline's demand 

depends on the booking limit, which makes the problem more complicated than any 

newsvendor game problem presented in the literature. 

PLAYER 1 PLAYER2 

c I High-fare overflow from 1 to 2 c 2 

DHt High-fare DH2 
class High-fare overflow from 2 to 1 

High-fare 
Bt class 

Bz 

DLI Low-fare Low-fare overflow from 1 to 2 
class 

Low-fare Du 
Low-fare overflow from 2 to 1 class 

Figure 2. Overflow process of two-player two-fare class game. 

In general, such a problem can be summarized as two-player two-fare class 

non-zero-sum game problem. Each player i has capacity Ci and there are two fare 
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classes available for the customers: low fare and high fare. If either type of customer 

is denied by one player, the customer will attempt to purchase a substitutable product 

from another player. Figure 2 shows the overflow processes. 

The total revenue for player i is 

where Dii = DLi + (DLj- Bit, total demand for low-fare demands for player i, 

i,j = 1, 2 and i =I j; ~ = C -min (Dii, Bi), the number of seats available for 

high-fare class customers for player i, i = 1, 2 and D'};i = DHi + (DHj - Ri)+ which is 

the total demand from high-fare class. Netessine and Shumsky [37] provide sufficient 

conditions for a pure-strategy Nash equilibrium and also present the results for a 

cooperative situation. Even though they evaluated both the direction and magnitude 

of revenue losses due to competition, they do not clearly take into account the cost 

savings in a cooperative situation and their effects on the decisions. In addition, their 

model assumes that the customers who are rejected by one player will transfer to 

the other one (transfer rate is equal to 1). In the next chapter, we will also study a 

single-period static game model. However, our model will relax the assumption on the 

transfer rate (it can be any number between 0 and 1). Moreover, we will analyze the 

cost savings in the cooperative situation and discuss the effects of some parameters 

(e.g., rejection cost) on the optimal rationing policies. 

28 



Jingpu Song DeGroote School of Business 

Chapter 3 
Static Game Model for Hotel Room Al­
locations 

In this Section, we study a two-player, two-fare class room inventory control 

problem arising in hotel business. The booking requests for a given date from each 

fare class in each hotel are assumed to be random and independent. Each hotel is 

assumed to have complete information of the prices, booking request distributions, 

costs, and all other parameter values related to the rooms of both hotels. In order 

to maximize the total expected revenue (objective), each hotel has to decide the 

maximum level of rooms (booking limit [36]) to be sold at a lower price. Such a 

decision complements the minimum level (protection level) which should be reserved 

for high-fare customers who prefer better quality rooms. If either type of customer 

is rejected at one hotel, a fraction of these customers will attempt to book a room 

from the other hotel. We define these customers as transfer customers. However, the 

rest of the rejected customers are totally lost to both hotels. Since the booking limits 

decided by both hotels affect their respective objectives, the hotel RM problem we 

are considering should be modeled using a game-theoretic framework. 

3.1 The Model 

Before we present the objective functions for the two hotels, it would be help-

ful to summarize the underlying assumptions. Two hotels dealing with substitutable 

rooms are assumed as the two players which are denoted by Pi, i = 1, 2. Two fare 
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classes (L: Low and H: High) have been set a priori. Booking requests for different 

fare classes are assumed to be independent random variables with continuous proba­

bility distribution functions. If one hotel has excess capacity, the excess rooms will be 

filled partly or fully by the other hotel according to the transfer rate. Furthermore, it 

is assumed that there are neither no-shows nor cancellations by accepted customers 

(obviating the need for overbooking). Finally, in order to simplify our model further 

we also assume that there are no buy-ups to the high-fare class by rejected low-fare 

customers. 

We use the following notations (i = 1, 2, K = H, L): 

• Ci: capacity of Pi, 

• biL: booking limit chosen by Pi (our decision variables), 

• biH: protection level chosen by Pi, 

• XiK: random booking request from fare class K customers for a given date accom­

modation in Pi, with probability density function (p.d.f.) fiK ( XiK), cumulative 

distribution function ( c.d.f.) FiK ( XiK) = J;iK fiK ( tiK) dtiK and complementary 

c.d.f. FiK (xiK) = 1- FiK (xiK ), 

• riK: fare paid per night by Pi's K-fare class customer, 

• qiK: rejection penalty cost perK-fare class customer incurred on Pi, 

• uiK: the fraction of Pi's rejected K-fare class booking requests which switch to 

the other hotel, 

• lli (blL, b2L): random revenue for Pi, with Ji = E (ITi)· 

We note that since the hotel's capacity is fixed, protection level and booking 
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limit complement each other, that is, the sum of these levels equals the hotel's 

capacity. Thus, we choose one of these the decision variable and express the other 

one in terms of the chosen decision variable and the fixed capacity. In our study, we 

use booking limit as our decision variable, so that protection level can be expressed as 

Ci- biL· However, in some cases, it is more convenient to use both of them to make 

the expressions more compact and simpler. Therefore, we define protection level for 

Pi to be biH (i = 1, 2). 

Because of the existence of transfer customers, each player's revenue function 

will depend on not only its own booking limit but also on the other player's booking 

limit. Thus, game theory should be used for analyzing the optimal booking decisions 

for both players. 

3.1.1 Objective Functions 

We denote JiK as Pi's expected revenue from K-fare class customers, where 

z - 1, 2, K = H, L. We begin by analyzing P1 's expected revenue generated by 

low-fare customers. For any given blL and b2L, there are four mutually exclusive cases 

in which transfer happens between P1 and P2. Therefore, P1 's revenue function in 

each case can be expressed by the following: 

(1) XI£ ~ blL, X2£ ~ b2L : 1r~L = T1£X1L 

(2) Xl£ ~ blL, X2£ ~ b2L : 

rriL = rlLxlL + rlL min [u2L (x2L - b2L) , blL - xlL] 

-qlL max [0, U2£ (x2L- b2L)- (blL- xiL)] 
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In this case, Pl has excess rooms and P2 is in shortage. Pl will then accept 

any transfer customer from P2 until its booking limit is reached. Hence, the 

revenue and penalty cost of transfer customers from P2 are expressed with the 

second and third terms respectively. 

Here, there are no transfer customers from P2 to Pl, and Pl's low-fare class 

has been closed. Hence, the excess booking requests, XIL- b1L, will be penalized 

with QlL per room. 

(4) XIL ~ blL, X2L ~ b2L : 1rfL = rlLblL- QlL (xiL- biL)- U2£QIL (x2L- b2L) Since 

the low-fare classes in both hotels have been closed, all of Pl's own low-fare 

customers and transfer customers from P2 to Pl must be rejected which cost 

QlL (xiL - b1L) and U2£QIL (x2L - b2L), respectively. 

The expected revenue from Pl's low-fare customers can be obtained by inte-

grating the four revenue expressions above over their respective regions. Using a sim-

ilar procedure as discussed above, we can also obtain the expected revenue from Pl 's 

high-fare customers. Thus, the total expected revenue of Pl is given as J1 = JIL +JIH· 

Analogously, we can obtain P2's objective 12 . After some simplifications, the total 

expected revenue of Pi, i = 1, 2, is found as follows: 
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+1
8

iK1oo [riKbiK- QiK (xiK- MiK)] fiKJiK dxiK dxjK 
bjK b;K 

+roo roo hKbiK- QiK (xiK- MiK)] fiKfjK dxiK dXjK (4) 
}BjKlo 

+100 

[riKbiK- QiK (xiK- biK )] FjK (bjK) fiK dxiK} 
b;K 

for i, j = 1, 2 and i =/= j. 

3.1.2 Best Response (BR) Functions 

With each player's objective function given by (4), we now examine the optimal 

decision (i.e., best response) of each player in response to an arbitrary decision by the 

other one. For instance, suppose P2 announces her low-fare booking limit b2L. Given 

this, P1 can determine his best response b{i(b2L) to maximize his objective function. 

These results will be helpful when we consider different solution concepts using Nash, 

leader-follower Stackelberg, and cooperative strategies. 

Let us first examine the properties of Ji, i = 1, 2 for further information. 

Lemma 1 Pi's objective function is strictly concave in biL for i = 1, 2. 

Proof. By differentiating 11 (b1L, b2L) with respect to blL, after some simplification 

we find 
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:~~ = Vi(biL, b2L) = (rlL + QIL) [1biL L: !IL!2L dx2L dxlL + PlL (biL)] 

- ( TlH + QlH) [1''" i~H flH /2H dx2H dXtH + plH (bw) l , 
(5) 

where N2K = b2K + (b1K- x1K) fu2K· Next, we obtain the second derivative of J1 

with respect to blL as 

a2J1 [ rblK 1 ] 
fJb2 = - L (rlK + QIK) Jo u 2KhKhK (N2K) dx1K + !IK (biK) F2K (b2K) . 

lL K=L,H 0 

(6) 

It is not difficult to see that 82Jtf8biL < 0 for any blL E [0, C1]. Similarly, we can 

show that 8 2 Jd 8b~L < 0 for any b2L E [0, C2]. Thus, Ji is strictly concave in Pi's 

own decision variable biL, i = 1, 2. • 

Let us define SiK (i = 1, 2 and K = L, H) to be the probability of "spill" 

(an event that unsatisfied booking request occurs; see, McGill and van Ryzin [33]). 

It is not difficult to see that Pi's K-fare class customers will spill in two cases: 1) 

xiK > biK; and 2) xiK + UjK(XjK- bjK) > biK with xiK:::; biK· Thus, the spill rate 

of Pi's K-fare customers can be expressed as: 

Integrating over the two respective regions, we obtain 

(7) 
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where NiK = biK + (biK- XiK) lujK, i,j = 1, 2, K = L, Hand if j. Thus, the first 

order partial derivative, i.e. \li can be expressed in terms of SiK as 

(8) 

Lemma 2 Vi(blL, b2L) = 0, i = 1, 2, is a strictly decreasing curve in the (blL, b2L) 

plane. 

Proof. Note that it is impossible to express b2L as an explicit function of b1£. 

However, we can use implicit differentiation to obtain the derivative of V1 = 0 with 

respect to blL, which we denote by b~. We immediately observe, using chain rule, 

that 

since 

a~ 
-

ab2L 

b~ = _ ( av1 ) 1 ( a~ ) < 0 
ablL ab2L 

and a~ o --< 
ablL 

from (6). Thus,~ = 0 is a strictly decreasing curve in the (blL, b2L) plane. Similarly, 

defining b~ as the derivative of v2 = 0 with respect to blL, implicit differentiation 

gives 

b~ = - ( aV2 ) I ( aV2 ) < o 
ablL ab2L 

since, from symmetry, 
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Thus, 112 = 0 is also a strictly decreasing curve in the (b1L, b2L) plane. This proves 

the lemma. • 

We now want to determine whether Pi's best response to Pj's decision, i.e., 

bfi (biL) (where biLE [0, Ci], i,j = 1, 2 and i =/= j), can always be obtained by solving 

Vi = 0. By Lemma 1, we note that Pi's objective function is strictly concave in his/her 

own decision variable for any given biL· However, mathematically, for a given biL, 

Ji may be either strictly increasing concave or decreasing concave in biL· Therefore, 

the optimal solution of biL which maximizes Ji can be found on the boundary if such 

cases occur. The optimal solution resides in (0, Ci) only when Ji is not monotone in 

biL· Then the best response of Pi can be obtained by solving Vi = 0. 

The following theorem provides the exact form of the best response (BR) 

functions. 

Theorem 1 Pi's best response bfi (bjL) {i, j = 1, 2 and i =/= j) is given by 

where 

if f.jL ~ bjL ~ Cj; 

if 0 ~ bjL ~ f.jL· 

biL-axis intercept of Vi = 0, if Vi = 0 intersects with biL-axis; 

if Vi = 0 intersects with biL = GiL; 

if Vi < 0 for any biL E [0, CiJ, 

and b:L can be obtained by solving Vi= 0. 
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Proof. From (7), we find that siH (Ci,bjL) = 1. Therefore, it is not difficult 

to see Vi (Ci, biL) = (riL + QiL) SiL (biL, Cj)- riH- QiH < 0, which means for any bjL, 

Ji is not increasing in biL at Ci. However, Ji may be a strictly decreasing concave 

function (Vi < 0) for any biL· In this case, the best response b{i (bjL) should always 

be zero [see Scenario (a) in Figure 3]. On the other hand, if {jL > 0 [Scenarios (b) 

and (c) in Figure 3], due to the strictly decreasing property of Vi= 0 in the (biL, b2L) 

plane, the optimal solution for any bjL E [o, ejL] can be obtained by solving Vi = 0. 

In other words, for any bjL E [o, ejL]' we can use the curve of Vi = 0 as Pi's BR 

curve. As for biL E [{iL' Ci], Vi is always less than zero. Therefore, the best response 

to any bjL belonging to this region should be zero too. • 

Referring to (8), we recall that Vi (i = 1, 2) can be expressed in terms of the 

spill rates siL and siH of the two fare class customers of Pi. Since Pi's best response 

to an announcement of P j is determined in terms of Vi, this implies that the spill 

rates play an important role in determining the best response of a player. 

Remark 1 We note that the BR curve is non-increasing in the (b1L, b2L) plane. 

It is optimal for one player to decrease the booking limit if the other one increases 

the booking limit, and vice versa. We see in Figure 3 that e!L, the upper bound of 

best response of Pi, is always less than ci. (In this figure, 8~L denotes the biL­

axis intercept of Pi's BR curve.) Therefore, in practice, the hotel manager should 

always set a booking limit less than the capacity. This is reasonable since a high-fare 

customer always generates more revenue if accepted, ana incurs more cost if rejected. 
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Therefore, the hotel should always reserve some rooms for high-fare customers if there 

is any possibility of booking requests from them. <J 

cj ................. . 

(b) v; = 0 intersects 

with b jL -axis 

0 

(c) v; = 0 intersects 

with bjL =Cj 

Figure 3. Best response curves in three scenarios where 15~£ is the biL -axis intercept 
of Pi's BR curve, i = 1, 2. Also, ~~L is the smallest value of bjL for which biL assumes 
the smallest value. 

Example 1 Our goal in this example is to demonstrate the structure of the BR curve 

for one of the hotels, say, Pl. We assume C1 = 40 and C2 = 45, as the capacities of 

hotels P1 and P2, respectively. The room rates, penalty costs, and transfer rates of 

K -fare class customers in Pi ( K = L, H and i = 1, 2) are given in Table 3. 

Low-fare (K = L) High-fare (K =H) 

TiL qiL Ui£ TiH qiH UiH 

P1 $99 $30 0.6 $159 $70 0.8 
P2 $105 $35 0.65 $165 $75 0.8 

Table 3. Prices, rejectipn costs, and transfer rates of P1 and P2 
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P1 P2 

AIL A1H >.2L A2H 

Scenario 1 35 50 35 50 

Scenario 2 35 20 35 50 

Scenario 3 35 5 35 50 

Table 4. Booking request expectations in three scenarios 

The random booking requests of K -fare class customers for Pi's rooms are 

represented by the exponential r. V. XiK With density hK = >.~K exp(-~) 1 i = 1, 2 

and K = L, H (and mean AiK)· In order to show the different BR functions as given 

in Theorem 1, we generate three scenarios where we vary only >.1H and fix all other 

parameters. Table 4 provides the booking request expectation ( AiK) of each fare class 

of the two players. 

We obtain the BR function of P1 in each scenario according to Theorem 1. 

As depicted in Figure 4(a) of Scenario 1, if >..w = 50, then P1 's best response is 

always blL = 0 which implies that b1H = C1 = 40; that is, every room in hotel 1 is 

protected for high-fare customers. From Figure 4(b) of Scenario 2, we see that when 

>.1H = 20, a moderate level, then P1 's best response of blL will be between 0 and 

10 as long as P2 decides to choose a booking limit of b2L E [0, 40). If b2L > 40, 

then blL = 0. Finally, if >.w = 5, a low value, Figure 4(c) of Scenario 3 show that 

regardless of which value b2L is chosen by P2, it is always optimal for P1 to reserve 

some rooms (between 6 and 23) for the low-fare customers. + 

From the above example, we note that if all other parameters are fixed in our 

basic model, changing >-w affects the structure of P1 's BR curve. We will pfe8eilt a 
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C2 =45 

c, =40 

(a)Scenario 1: 

~~L =0 

C2 =45 

40 

10 

(b) Scenario 2: 

0 <~~L <C2 

C2 =45 

6 23 c, =40 hu 
(c) Scenario 3: 

~~L =C2 =45 

Figure 4. Pl's BR curves in three scenarios: (a) >..1H =50; (b) >..1H = 20; (c) >..1H = 5. 

sensitivity analysis to show the major factors affecting the structure of BR functions 

in Section 3.5. In this chapter, we use Maple 10 to carry out the results for all of the 

numerical computations. 

3.2 Nash Equilibrium 

In a non-cooperative environment, two players make decisions simultaneously. 

In this situation, players are assumed to be "rational", i.e., that one would not lower 

his/her objective functions for the sole purpose of inflicting damage on the opponent. 

Thus, in such situations the solution concept that is used is known as the Nash 

strategy. Mathematically, it is a pair (b]l, bf£) such that 

JI(bfL, brjL) ~ J1(b1L, brjL), for all blL 

J2(bl(L, brjL) ~ J2(bl(L, b2L), for all b2£. 
(11) 

This strategy leads to what is known as the Nash equilibrium, as it ensures that Pi 

(i = 1, 2) receives at least Ji(bfL, brjL) if he uses (bfL, brjL) and he will not receive more 
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than this amount if he deviates from it unilaterally. The best response curves of 

both players were found by Theorem 1. Therefore, the Nash equilibrium exists if and 

only if these two response curves intersect in the (biL, b2L) plane where biL E [0, Ci]· 

According to Nikaido and Isora [39], we know that if each player's objective function 

is continuous in all decision variables and concave in its own decision variable, the 

game is convex and admits at least one Nash equilibrium. These conditions obviously 

hold for our problem (see Lemma 1). Hence, in order to see whether there is only one 

Nash equilibrium, let us examine the properties of Vi= 0 further. 

Lemma 3 The derivative of VI = 0 with respect to blL is always less than the 

derivative of V2 = 0 with respect to blL. 

Proof. Referring to Lemma 2, the implicit derivative of V1 = 0 with respect to blL 

is 

(12) 

and the derivative of V2 = 0 with respect to blL is, 

where i,j = 1,2, if. j and K = L,H. It is easy to see that bi < -1 and b~ > -1. 
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Therefore, b~ is always less than b~. • 

Lemma 3 has a useful interpretation: In order to maximize the expected rev­

enue, Pl should decrease blL by more than one unit if P2 increases her low-fare 

booking limit by one unit, and vice versa. Lemma 3 is crucial because it is an impor­

tant sufficient condition for existence of unique Nash equilibrium. 

Theorem 2 The game admits a unique Nash equilibrium which can be expressed as 

(0, t5~L), if ~~L ~ t5~L 

( t5~L' 0) ' if ~~L > t5~L and t5~L ~ ~iL 

(brL, b2L), if ~~L > t5~L and t5iL < ~iL, 

(14) 

where (brL, bi£) can be obtained by solving Vl (brL, b2L) = 0 and \12(brL, b2L) = 0 (see 

Figure 5 which corresponds to this case where ~~L > t5~L and t5iL < ~iLJ. 

c2 ······································ 

Figure 5. Nash equilibrium in Scenario 3: ~~L > t5~L and t5iL < ~iL· 

Proof. From Lemma 2 and Lemma 3, we find that Vi = 0 and V2 = 0 are monotone-
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decreasing curves and the implicit derivative b~ is strictly less than b~. We also know 

that the derivative of b{1 = 0 (a vertical line) with respect to blL is infinite [from 

Figure 3(a)] and the derivative of bf£ = 0 (a horizontal line) with respect to blL is 

zero [from Figure 3(b)]. Thus, the implicit derivative of P1's best response function 

with respect to blL is also strictly smaller than that of P1 's best response function. In 

addition, Pi's best response to any bjL (i,j = 1, 2 and i-=/= j) is unique and continuous 

over (0, Cj] (see Theorem 1). Accordingly, the best response curves of the two players 

intersect only once in (biL, b2L) plane. It indicates that the game admits a unique 

Nash equilibrium. 

As depicted in Figure 3, there are three types of best response curves for each 

player. Hence, there is a total of nine situations in which we can combine different 

best response curves of the two players. It is not difficult to show that the two best 

response curves intersect either on the biL axis or inside the first quadrant. The biL­

and b2L-coordinates of the intersection of two curves, which is the Nash equilibrium, 

are determined by the relations between eJL and 8IL· (Note here that, as we see in 

Figure 3, eiL is the smallest value of bjL for which biL assumes the smallest value.) 

For example, if e~L > 8~L and 8~£ < eiL' then vl = 0 and V2 = 0 will admit a unique 

intersection point, (biL, b2L). Similarly, we can obtain the same results of the other 

cases shown in (14). • 

Example 2 Here, we use the same values as in Table 3 of Example 1 for prices, costs, 

and transfer rates. The goal in this example is to demonstrate the Nash equilibrium 

in aifferent situations. Since each player's BR junction could be one of the three types 
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as given by Theorem 1, there is a total of nine situations in which the two BR curves 

intersect in (b1L, b2L) plane. In this example, we only present three of them and point 

out that in all cases, the Nash equilibrium must be one of the three types as given by 

Theorem 2. 

(AIL, AIH) (..\2L, A2H) (bf"L, bfL) (Jl (bf"L, bfL), J2(b{"L, bfL)) 

Scenario 1 (35,20) (10,80) (6.73,0) (1208.61,1296.64) 

Scenario 2 (25,80) (25,25) (0,7.62) ( 422.55,1643.07) 

Scenario 3 (80,40) (85,45) (6.81,11.94) (2893.45,3631.97) 

Table 5. Nash equilibria and profits in three scenarios 

We use three different sets of A's as in Table 5 and compute the resulting 

Nash equilibria. The Nash solution and the corresponding expected revenues for each 

scenario is summarized in Table 5 and displayed in Figure 6. 

In Scenario 1 {Figure 6(a)J, since the two BR curves only intersect at (bfL, b~) = 

( 6. 73, 0), P2 only accepts high-fare class customers. Similarly, in Scenario 2 {Fig­

ure 6(b)j, the two BR curves only intersect at (bfL, b~L) = (0, 7.62). In this case, 

since Al£ = 25 (a low value), and AlH = 80 (a high value), P1 does not reserve any 

low-fare rooms but keeps them all for high fare customers. Finally, the two BR curves 

intersect at (bfL, b~L) = (6.81, 11.94) which is obtained by solving V1 = 0 and V2 = 0 . 

• 
3.3 Stackelberg Equilibrium 

When the decision makers choose their strategies simultaneously as was the 

case in the previous section, then the proper solution concept that should be used 
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C2 = 45 
40 

30 

20 

10 

C2 = 45 
40 

30 

20 

10 

0 1 0 20 30 Cl = 40 b.L 
(a) Scenario 1 

C2 = 45 
40 

30 

20 

10 

10 20 30 C1 =40 blL 0 

(b) Scenario 2 

(~,b:;. )= (6.81,~1.94) 

10 20 30 Cl = 40 blL 

(c) Scenario 3 

Figure 6. Nash equilibria in three scenarios. 

in a non-cooperative game is the Nash equilibrium. However, in some cases, one 

player may assume the role of the "leader" (perhaps because he/she can act before 

the other one) and the other is the "follower." Here, the leader announces his strategy 

first and the follower must make a decision to optimize his objective function after 

observing the leader's decision. Thus, the leader is able to not only determine the 

follower's response, but also optimize his objective accordingly. This strategy was 

first introduced by von Stackelberg [46] in 1934. For a rigorous treatment of the 

Stackelberg strategy, see Ba§ar and Olsder [2]. 

Without loss of generality, we assume Pl as the leader and P2 as the follower 

in our game theoretical framework. Thus, Pl announces his booking limit blL, and P2 

chooses an optimal booking limit b~L as a function of blL that maximizes her expected 

revenue J2 (b1L, b2L)· Since Pl can identify P2's best response b!i£ for each blL, the 

Stackelberg equilibrium (bfL, b~L) can always be obtained by solving the following 
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nonlinear programming problem (NLP): 

max J1 (blL, b2L), 

s.t. b2L = b:L(blL), 

blL E (0, Ct] . 

DeGroote School of Business 

(15) 

Unfortunately, the objective function J1(blL,bfL(biL)) may not be a concave function 

in b1L after the substitution b2L = b:L(blL)· Let us examine the optimal solution 

(Stackelberg equilibrium) of the above NLP according to the different types of b:L as 

given by (9). 

The following proposition determines the Stackelberg equilibrium when bf£ = 

0 for VbtL E [0, Ct]· 

Proposition 1 If bf£ (blL) = 0 for VblL E (0, ClL], then the Stackelberg equilibrium 

is identical to the Nash equilibrium, i. e., 

Proof. If P1 always sets his booking limit as 0, i.e., blL = 0, then P2's best response 

to P1's decision is bf£ (0) = 8~L· [This can be seen in parts (b) and (c) in Figure 3 

with j = 1 and i = 2.] This implies that the Stackelberg equilibrium solution which 

maximizes 11 is (0, 8~L). Clearly, it is identical to the Nash equilibrium as given by 

Theorem 2 with ~~L ::; 8~L· • 

Remark 2 From Proposition 1, we find that the "Stackelberg game" ~s equwa-
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lent to "Nash game" if ~~L = 0 ({:::? blL = 0). In fact, the Stackelberg equilibrium 

is identical to the Nash equilibrium as long as J1 is only maximized at ( bfr., b~J. 

This could happen in many situations. For example, if J1 (0, b2L) is strictly con­

cave in b2L and blL = 0 for 'Vb2L E [0, C2L], then the Stackelberg equilibrium is also 

identical to the Nash equilibrium since for any point (biL, b2L) on P2 's BR curve 

J1 (0, d'~L) ~ J1 (0, b2L) ~ J1 (biL, b2L) always holds. Therefore, in this situation J1 

is always maximized at (0, d'~L) which is the Nash equilibrium. However, in general, 

J1 (bfL, b~L) should be no less than J1 (bf"L, b:fL) because Pl can, at worst, play the 

strategy corresponding to the most favorable (from the leader's point of view) Nash 

equilibrium. <J 

We note that if ~iL =elL, then P2's BR function is V2 = 0 for 'VblL E [0, GIL]· 

Therefore, in this situation, the objective function J1 (blL, bfL(biL)) may not be a 

concave function. It can be seen that the second order derivatives of J1 with respect 

to blL 

8
2 
Jl b' 8

2 
Jl (b' )2 8

2 
Jl b" 8Jl 

8biL + 
2 2 8b1L8b2L + 2 8b~L + 2 8b2L 

where b~ = db~/ dblL, involves the probability density functions of the booking requests 

whose monotonicities and concavities are unknown. In fact, we find that the concavity 

of J1 ( blL, bfL ( blL)) with respect to blL still can not be guaranteed even if assuming 

the probability densities as functions with the monotone and concave properties. This 

fact makes the solution of the Stackelberg game more complicated than that of the 

Nash game. 
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Example 3 We again use the same data as in Example 2 and the same A values 

as in Table 5 for each of the three scenarios to examine the Stackelberg equilibrium. 

In order to compare the results in different leadership structures, we also calculate 

the Stackelberg equilibrium solution by assigning P2 as the leader. These results are 

presented in Table 6. 

P1 leader, P2 follower P2 leader, P1 as follower 

(brL,b~d (Jf,Jf) (btL, b~L) (Jf,Jf) 
Scenario 1 (6.73,0) (1208.61,1296.64) (6.73,0) (1208.61,1296.64) 

Scenario 2 (0,7.17) ( 422.55,1643.07) (0,7.17) ( 422.55,1643.07) 

Scenario 3 (1. 77,13.92) (2910.28,3555.63) (8.64,7.258) (2819.67,3646.64) 

Table 6. Stackelberg equilibria and profits in three scenarios 

As expected, Stackelberg equilibria are identical to Nash equilibria in Scenar-

ios 1 and 2. However, in Scenario 3 where neither of the two players' BR is 0 at 

all the time, the Stackelberg solution is not identical to the Nash equilibrium. We 

also observe that the follower's Stackelberg revenue is less than her Nash revenue in 

this scenario. Therefore, the follower could prefer to play "Nash game" instead of 

"Stackelberg game", if such an option is open. t 

3.4 Cooperative Solution 

We shall now discuss the case of cooperation between the two players. When 

cooperating with each other, one player does not incur a rejection cost if a book-

ing request is satisfied by its cooperative player. Hence the cooperative player whose 

booking limit or capacity has been reached should switch its unsatisfied bookings, if 

48 



Jingpu Song DeGroote School of Business 

any, to the other player with excess inventory so that the previous player can save in 

rejection penalty costs. In addition, we also assume that there are no transfer cus­

tomers between Pl and P2 when both players' booking limits or capacities have been 

reached. Thus, they save rejection costs incurred by transfer customers. This is rea­

sonable since when two players act as one player, a rejected customer will be noticed 

that both players are fully filled and therefore avoid the transfer from happening. Let 

us denote Jc to be the joint expected revenue of Pl and P2 when they cooperate. 

Intuitively, Jc is expected to be higher than the sum of two expected revenue under 

any other strategy. We will prove it with the following theorem. 

Proof. Let us consider the rejection cost savings generated by low-fare transfer 

customers first. There are three mutually exclusive cases in which these can take 

place. 

(1) X1L ~ blL, X2£ ;:::: b2L : 

For Pl, the cost savings are 

since there will be no transfer customers from P2 to Pl when Pl 's booking limit is 

reached. And for P2, the transfer customers who are satisfied by Pl will not incur 
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penalty costs, therefore P2 saves 

q2L min [u2L (x2L - b2L) , blL - xlL]· 

(2) X1L ~ b1L, X2£ ~ b2L : 

The cost savings for Pl and P2 are 

QlL min [ulL (xlL- blL), b2L- x2L] 

and 

Q2L max[O, U1L (xlL- blL)- (b2L- X2L)], 

respectively. 

(3) X1L ~ blL, X2£ ~ b2L : 

In this case, both players's booking limits have been reached. There are no 

transfer customers between them. Therefore, the penalty cost savings for Pl and P2 

are u2LQ1L (x2L - b2L) and u 1LQ2L (xlL - b1L) respectively. 

Integrating these three cost savings over the respective regions, we can obtain 

the total expected cost savings by low-fare customers for both players. Similarly, 

we can also obtain the expected cost savings by high-fare customers. After some 
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simplifications, the expected joint revenue is found as 

Jc = 11 + 12 + I: I: 
i=1,2 K=L,H 

Clearly, we have Jc ~ J1 + J2 which means that the expected revenue under coopera­

tion would be higher than the sum of two expected revenues under any other strategy . 

• 
The optimal solution for the cooperative game can be obtained by solving the 

following nonlinear programming problem: 

max Jc (blL, b2L), 

Subject to blL ~ Cr, b2L ~ C2 

blL, b2L ~ 0. 

For the existence of unique optimal solution of above problem, one must show that 

Jc is a strictly concave function of blL and b2£. This is not pursued in our study since 

it deviates from the general game theoretic theme. 

Example 4 We still use the same values for all parameters in Example 2 and the 
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same >. values as in Table 5 for each of the three scenarios to examine the optimal 

booking limits of both players and corresponding joint revenue in cooperative situation. 

The results for three scenarios are shown in Table 7 where lei, i = 1, 2 is Pi 's expected 

revenue when the two players cooperate. 

(biL, b2L) (J;l, J;2) J* c 

Scenario 1 (11.77,0) (3454.82,2357.14) 5811.96 

Scenario 2 (0,12.87) (1342.02,4433.45) 5775.47 

Scenario 3 (20.81,25.83) (3026.63,3916.40) 6943.03 

Table 7. Cooperative solutions in three scenarios 

Comparing to the results with Nash strategy and Stackelberg strategy (see Ta-

ble 5 and Table 6}, each player's expected revenue has increased in the cooperative 

situation. We note that such improvement is more than 100 percent for each player 

in scenario 1 and 2. This indicates that cooperation becomes useful when one player 

has a high booking rate of high-fare customers. + 

3.5 Sensitivity Analysis 

From our previous discussion, we see that solutions using different strategies 

depend very much on the position of the BR function of each player. Referring to 

Example 1, we note that the position of one player's best response varies with the 

booking request expectations. On the other hand, the position of each player's BR 

function is also sensitive to the values of transfer rates and rejection costs of each 

fare class. Thus, in this section we discuss sensitivity analyses according to these 
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important parameters and present their effects on optimal decisions and corresponding 

objectives when adopting different strategies. 

In our analyses, we use all parameters in Example 2 as the base parameters, 

and unless otherwise indicated, the solutions are computed with these parameters. 

Then, we vary parameters Al£, A1H, ulL, u1H, QlL, and q1H one-at-a-time and re-solve 

the problem to find the solutions with different strategies. In order to make each of 

these parameters cover a large range, we (i) vary the values of two demand-related 

parameters Al£ and A1H by progressively halving or doubling the base value; (ii) vary 

the values of transfer rates as u1K = 0.2(0.2)1, K = L, H, and (iii) vary the values of 

rejection costs as QlL = 10(10)50 and Q1H = 30(20)110. The sensitivity analysis results 

with Nash, Stackelberg and cooperative strategy are presented in Table 8, Table 9 

and Table 10 respectively, where the base values and the corresponding solutions are 

indicated in bold. 

First, we examine the effect of changing parameter values on the Nash solution 

and expected Nash revenue of each player. 

Changes in AlL· Referring to the results in Table 8, we observe that for 

increased values of AlL, the Nash equilibrium moves in the northeast direction in 

the (blL, b2L) plane. We also find that when AlL -+ oo, the best responses of both 

players b{i and b~L approach 27 and 33, respectively, which indicates that there exists 

a minimum protection level for high-fare customers in each hotel. This should be 

expected since in lower traffic season hotels should raise booking limits if the amount 

of booking requests of low-fare customers increases. However, hotels still have to 

keep some rooms for "more valuable" customers even though the booking rate of 
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Varying parameters Nash strategy 

.AlL AtH Ut£ UtH qlL qlH (bf"L, bfL) (J{", J:) 
6.25 (13.00, 22.93) (2600.80, 2940.40) 

12.5 (16.37, 23.14) (2669.56, 2988.26) 
25 (19.86, 24.17) (2591.72, 3013.19) 

50 (22. 75, 26.05) (2125.11, 2843.89) 

100 (24.70, 28.21) (845.47, 2136.26) 

3.75 (30.67, 25.97) (2283.48, 2918.21) 
7.5 (26.20, 25.58) (2456.04, 2965.32) 
15 (19.86, 24.17) (2591.72, 3013.19) 
30 (11.66, 21.28) (2446.96, 2913.55) 

60 (1.67, 17.03) (1436.20, 2233.90) 

0.2 (20.28, 22.55) (2582.46, 3038. 76) 
0.4 (20.04, 23.48) (2587.49, 3041.10) 
0.6 (19.86, 24.17) (2591. 72, 3013.19) 
0.8 (19. 73, 24.68) (2595.12, 2968.72) 
1.0 (19.62, 25.07) (2597.85, 2914.22) 

0.2 (19.25, 26.40) (2608.35, 2989.95) 
0.4 (19.48, 25.59) (2601.74, 3018.77) 

0.6 (19.69, 24.83) (2596.14, 3023.98) 
0.8 (19.86, 24.17) (2591.72, 3013.19) 

1.0 (20.01, 23.61) (2588.26, 2991.62) 

10 (17. 76, 24. 73) (2966.98, 3004.66) 

20 (18.86, 24.44) (2776.44, 3008.54) 
30 (19.86, 24.17) (2591.72, 3013.19) 
40 (20. 79, 23.91) (2412.13, 3018.49) 
50 (21.66, 23.66) (2237.15, 3024.30) 

30 (22.26, 23.48) (2825.54, 3028.86) 
50 (21.00, 23.85) (2704.93, 3019.82) 

70 (19.86, 24.17) (2591.72, 3013.19) 
90 (18.82, 24.45) (2484.89, 3008.40) 
110 (17.86, 24.71) (2383.57, 3004.95) 

Table 8. Sensitivity analysis for Nash equilibrium and profits 
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Varying Stackelberg strategy 
parameters P1 leader, and P2 follower P2 leader, and P1 follower 

AlL (bfL, bqL) (Jf,Jf) (bfL, b~L) (Jf,Jn 
6.25 (12.75, 22.97) (2600.97, 2939.56) (13.06, 22.74) (2599.02, 2940.47) 
12.5 (16.09, 23.20) (2669.83, 2987.35) (16.42, 22.96) (2668.31, 2988.34) 
25 (19.55, 24.25) (2592.04, 3011.64) (19.92, 23.93) (2590.20, 3013.35) 
50 (22.42, 26.15) (2125.38, 2841.38) (22.85, 25.69) (2123.07, 2844.23) 
100 (24.39, 28.31) (845.706, 2133.13) (24.83, 27. 73) (843.157, 2136.90) 

AlH 
3.75 (30. 72, 25.97) (2283.48, 2918.35) (30.74, 25.78) (2284.02, 2918.32) 
7.5 (26.13, 25.59) (2456.05, 2964.98) (26.28, 25.29) (2455.45, 2965.56) 
15 (19.55, 24.25) (2592.04, 3011.64) (19.92, 23.93) (2590.20, 3013.35) 
30 (10.91, 21.56) (2448.27, 2912.02) (11.68, 21.18) (2446.00, 2913.55) 
60 (0.13, 17.80) (1440.91, 2235.980) (1.66, 17.04) (1436.36, 2233.90) 

Ul£ 

0.2 (20.09, 22.59) (2582.57, 3037.41) (20.36, 22.24) (2580.91, 3039.06) 
0.4 (19. 79, 23.54) (2587. 72,3039. 76) (20.10, 23.23) (2586.12, 3041.28) 
0.6 (19.55, 24.25) (2592.04, 3011.64) (19.92, 23.93) (2590.20, 3013.35) 
0.8 (19.36, 24.79) (2595.47, 2966.63) (19.80, 24.40) (2593.25, 2968.92) 

1.0 (19.21, 25.20) (2598.32, 2911.38) (19.72, 24.71) (2595.36, 2914.57) 

UlH 
0.2 (19.07, 26.43) (2608.43, 2989.89) (19.26, 26.39) (2608.24, 2989.97) 
0.4 (19.24, 25.63) (2601.94, 3018.03) (19.52, 25.45) (2600.65, 3018.85) 
0.6 (19.41, 24.89) (2596.33, 3022.68) (19.74, 24.61) (2594. 70, 3024.09) 
0.8 (19.55, 24.25) (2592.04, 3011.64) (19.92, 23.93) (2590.20, 3013.35) 

1.0 (19.67, 23.71) (2588.60, 2990.05) (20.07, 23.37) (2586.91, 2991.77) 

qlL 
10 (17.47, 24.81) (2967.16, 3003.80) (17.80, 24.59) (2966.12, 3004.70) 

20 (18.56, 24.52) (2776. 70, 3007.35) (18.91, 24.25) (2775.31, 3008.66) 

30 (19.55, 24.25) (2592.04, 3011.64) (19.92, 23.93) (2590.20, 3013.35) 

40 (20.46, 24.00) (2412.45, 3016.51) (20.87, 23.62) (2410.20, 3018. 75) 

50 (21.31, 23. 76) (2237.51, 3021.88) (21.74, 23.33) (2234. 70, 3024.64) 

qlH 
30 (21.88, 23.59) (2825.91, 3025.94) (22.35, 23.12) (2823.22, 3029.24) 

50 (20.66, 23.94) (2705.26, 3017. 71) (21.08, 23.55) (2703.03, 3020.09) 

70 (19.55, 24.25) (2592.04, 3011.64) (19.92, 23.93) (2590.20, 3013.35) 

90 (18.53, 24.53) (2485.12, 3007.27) (18.87, 24.26) (2483. 71, 3008.49) 

110 (17.60, 24. 78) (2383.77, 3004.13) (17.90, 24.56) (2382. 70, 3005.00) 

Table 9. Sensitivity analysis for Stackelberg equilibrium and profits 
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Varying Cooperative Cooperation 

parameters strategy vs. Nash 

AlL (biL, b;d (J;l,J;2) J* c D.Ji D.J;, 
6.25 (14.28, 24. 75) (2906.29, 3188.32) 6094.61 11.75% 8.43% 

12.5 (17.38, 24. 77) (3022.29, 3268.31) 6290.60 13.21% 9.37% 
25 (20.81, 25.83) (3026.63, 3416.40) 6443.03 16.78% 13.38% 

50 (23.83, 27.91) (2674.35, 3612.25) 6286.60 25.85% 27.02% 
100 (25.97, 30.25) (1521.02, 3805.90) 5326.92 79.90% 78.16% 

AtH 

3.75 (32.00, 25.38) (2629.33, 3187.59) 5816.91 15.15% 9.23% 
7.5 (27.80, 25.76) (2822.39, 3274.63) 6097.02 14.92% 10.43% 
15 (20.81, 25.83) (3026.63, 3416.40) 6443.03 16.78% 13.38% 
30 (11.80, 24.35) (3003.80, 3681.60) 6685.40 22.76% 26.36% 
60 (0.00, 22.56) (2159.15, 4087.55) 6246.71 50.34% 82.98% 

UJ£ 

0.2 (24.10, 22.07) (2939.23, 3392.86) 6332.10 13.82% 11.65% 
0.4 (22.52, 23.91) (2985.86, 3415.66) 6401.52 15.40% 12.32% 
0.6 (20.81, 25.83) (3026.63, 3416.40) 6443.03 16.78% 13.38% 
0.8 (19.94, 26.82) (3051.79, 3437.74) 6489.53 17.60% 15.80% 
1.0 (18.83, 28.01) (3077.40, 3443.49) 6520.90 18.46% 18.16% 

UJH 
0.2 (17.14, 29.70) (3066.30, 3261. 73) 6328.03 17.56% 9.09% 
0.4 (18.51, 28.29) (3053. 79, 3324.02) 6377.81 17.37% 10.11% 
0.6 (19.82, 26.89) (3039.12, 3378.17) 6417.28 17.06% 11.71% 
0.8 (20.81, 25.83) (3026.63, 3416.40) 6443.03 16.78% 13.38% 
1.0 (22.61, 23.94) (3000.09, 3482.30) 6482.39 15.91% 16.40% 

QlL 
10 (18.30, 27.07) (3211.29, 3395.35) 6606.64 8.23% 13.00% 
20 (19.74, 26.30) (3114.90, 3410.95) 6525.84 12.19% 13.38% 
30 (20.81, 25.83) (3026.63, 3416.40) 6443.03 16.78% 13.38% 
40 (22.57, 24.59) (2932.51, 3450.05) 6382.55 21.57% 14.30% 

50 (24.02, 23.63) (2846.05, 3474.17) 6320.22 27.22% 14.88% 

QlH 
30 (26.14, 22.27) (3135.50, 3514.88) 6650.38 10.97% 16.05% 
50 (23.27, 24.13) (3081.25, 3461.35) 6542.60 13.91% 14.62% 
70 (20.81, 25.83) (3026.63, 3416.40) 6443.03 16.78% 13.38% 
90 (19.46, 26.52) (2963.66, 3406.88) 6370.55 19.27% 13.25% 
110 (18.04, 27.38) (2907.52, 3390.32) 6297.84 21.98% 12.82% 

Table 10. Sensitivity analysis for cooperative solution 
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"less valuable" customers is very high. This actually follows the principle of Revenue 

Management. 

Changes in AlH· Increasing the value of >..lH has an opposite effect on Nash 

equilibrium comparing to the situation for AI£. This is due to the shifting of each 

player's BR curve to a lower position, thus resulting in decreased values of b{'f. 

Changes in UI£. Note that as soon as the value of ulL increases, the Nash 

equilibrium moves in the northwest direction, resulting in a decrease in blL and an 

increase in b2L. 

Changes in u1H. In this case, the direction of movement of the Nash equi­

librium is exactly opposite to the situation for UI£: increasing the value of u1H raises 

blL and reduces b2L. 

Changes in QlL· As the value of QIL increases, the Nash equilibrium moves 

in the southeast direction, resulting in an increase in blL and a decrease in b2L. 

Changes in q1H. Referring to Table 8, we note that the direction of movement 

of the Nash equilibrium is exactly opposite to the situation for ulL: increasing the 

value of q1H reduces blL and raises b2L· 

The sensitivity analysis of Stackelberg equilibrium is summarized in Table 9 

which reveals that the movements of the Stackelberg solution pair (bfL, b~L) parallel 

those of Nash equilibrium as presented in Table 8. 

However, we observe that in the cooperative situation the booking limit b2L 

does not monotonically decrease when >..lH is increasing (see Table 10). In fact, the 

optimal booking limit of each player might not monotonically decrease or increase 

at all times. This is expected since when the two players act as one player and try 
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to maximize the joint revenue, it is always optimal for the two players to keep the 

"most valuable" customers in the system. After then, they should satisfy the low­

fare customers as many as they can. Therefore, when the booking rates of high-fare 

customers in both players are very low, a small increase of high-fare booking request 

expectation of one player will not generate high-fare transfer customers if the player 

decreases the booking limit. However, the low-fare transfer customers will increase 

due to the decrease of booking limit of the hotel with increased high-fare class booking 

rate. Hence, it might be optimal for the other hotel to increase its booking limit based 

on the condition that all high-fare customers are still in the system. 
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Chapter 4 
Dynamic Game Model for Hotel Room 
Allocations 

In this Chapter, we consider a situation in which the booking requests from 

different fare classes arrive concurrently and two hotels compete with each other. One 

hotel's accept/reject decision of a booking request depends on the time at which the 

request arrives, as well as on the available rooms of both hotels at that point in time. 

One hotel's available room(s) at a specific time might affect another hotel's decision 

because of the existence of transferred customers. A discrete-time dynamic game is 

presented to obtain an optimal policy for making accept/reject decisions. This model 

differs from Chen et al.'s [12] model in that our model is used in the context of hotel 

business where the capacity is fixed and each player has his own booking requests from 

two fare classes. Moreover, our model assumes that the probability of a transferred 

customer who is rejected by one hotel (transfer rate) can be between zero and one. 

In addition, the rejection costs are incurred when a customer is rejected by a hotel. 

These assumptions make our model more general in practice. 

4.1 The Dynamic Model of Best Response Policies 

We assume that there are only two hotels serving a specific geographical mar­

ket. These two hotels are assumed to be two players (Pl and P2), each with certain 

units of rooms to sell within a specified time period [0, T]. The customers are clas­

sified as low-fare class (L) customers and high-fare class (H) customers, who are 
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charged discounted price and full price, respectively. The booking period is divided 

into equal time intervals which is short enough to make the probability of more than 

one customer arriving in each interval negligible. In order to simplify the analysis, 

we make the following assumptions: 

(1) The customer arrival patterns are known to both players. 

(2) The room rates of the two fare classes in both hotels are constant and known. 

(3) There is no buy-up when a low-fare customer is rejected. 

( 4) Each customer asks for a single unit of room. 

(5) There are no cancellations allowed for any customer and no overbookings in 

both hotels. 

(6) A rejection cost is only incurred by one hotel's own customers and it is only 

incurred when one player still has available rooms. 

The objective of each hotel is to maximize the expected future revenue by 

finding an optimal accept/reject policy for any combination of the rooms and time 

remaining. We use the following notation with i, j = 1, 2, K = L, H and i =f. j: 

• AiK : probability of arrival (in any given interval) of a Pi's own K-fare class 

customer, 

• TiK : revenue per room from a Pi's K-fare class customer, 

• CiK : rejection cost perK-fare class customer of Pi, 

• f-LiK : probability of transfer if a K-fare class customer is rejected by Pi 

• ni : available rooms of Pi at time t. 
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Figure 7. Customer flows in the model. 

Referring to Figure 7, we note that in each time interval, only one player 

can receive a booking request. If he rejects it, the rejected customer may become a 

transferred customer who will seek accommodation with another hotel, or choose to 

leave the system. Therefore, in each period, the players have to make decisions on 

whether to accept or to reject the booking request upon its arrival. Obviously, one 

player will not reject any high-fare customer unless he does not have available rooms. 

However, he may reject a low-fare customer in case his room can be sold to a more 

revenueable customer in later periods. Thus, the decisions . of each player at period t 
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are 

and 

Pi accepts his own low-fare customer, if any, 
XiL = { 

1
' 

0, Pi rejects his own low-fare customer, if any, 

{ 

1, Pi accepts a transferred low-fare customer, if any, 
YiL = 

0, Pi rejects a transferred low-fare customer, if any, 

fori= 1, 2. Now defining Vi (t, ni, nj) as the maximum expected future total revenue 

of Pi when Pi and Pj start with ni and nj room(s), respectively, and there are t 

time intervals remaining until the end of the booking period, our problem can be 

formulated under two situations: (i) only one player has available rooms in period t; 

and (ii) both players have available rooms in period t. 

4.1.1 Case 1: Only One Player Has Available Rooms in Period t 

Without loss of generality, let us assume that P1 has n 1 > 0 rooms at time 

t while P2 has sold out all of his rooms (i.e., n2 = 0). In this case, P2 has to 

reject all his booking requests due to empty inventory, and P1 's decisions will have 

no effects on P2's expected revenue. In this case, P2's expected future total revenue 

is~ (t, n 1 , 0) = 0 for all n 1 and t E {0, 1, 2, ... , T}. 

Due to the possibilities of transferred high-fare class customers from P2 to P1, 

there are five different situations in which P1 has to make decisions on XIL and YlL· 

Figure 8 presents P1 's expected revenues under different sequential situations. Thus, 

Pl's expectedfuturetotal revenue will be 
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Expected revenue 

No arrivals 

CD : {I-A,L -A,H -A2LJ.l2L -A.znJ.lzn )V. {t-I,~,O) 

PI's low-

fare: A,L Yes 
: A,LXIL [rlL + v. (t -I,~ -I, 0)] 0 (xiL =I) 

No 
: A,L {I-xiL)[V. (t-1,~,0)-ciL J 0 (~L = o) 

Booking PI's high-

requests fare: A,8 P1: 
: A,8 ['in+ V. {t-I,~ -I,O)] 0 Accept 

Transfered 

low-fare: Au.J.ln. Yes 
: AzLJ.lZLYIL ['iL + V. (t -I,~ -I, 0) J 0 (YIL =I) 

No 
: AZLJ.lZL {1-YIL)V. (t -I,~. 0) 0 (ylL =0) 

Transfered high 

-fare: AwJ.lm P1: :A.zn.Uzn['in +V. (t-1,~ -1,0)] 0 Accept 

Figure 8. P1 's expected revenue when P2's rooms are all sold out. 

+ (AIH + A2Ht£2H) [riH + V1 (t- 1, ni - 1, 0)] 

+AILXIL [riL +VI (t- 1, ni - 1, 0)] 

+AIL (1- XI£) (VI (t- 1, ni, 0) - CI£] 

+A2LI-£2LYIL [riL + Vl (t- 1, ni - 1, 0)] 

+Ani-£2L (1- YlL) [Vi {t -1, n1,B)]} 
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with V1 (0, n1, 0) = 0 for all n 1 . After some simplifications, we generalize Pi's expected 

future total revenue when n 1 > 0 and n 2 = 0 as follows (i,j = 1, 2 and i =I= j): 

(17) 

with Vi (0, ni, 0) = 0 for all ni. In order to investigate the decision rule of Pi and the 

properties of Vi (t, ni, 0), we now introduce three important concepts. 

Definition 1 We define 

n1, n2 = 1, 2, .. , as Pi's expected marginal value of having an extra room in period t 

given that Pi and Pj have booking capacities of ni and nj, respectively. 

Definition 2 We define 

n1, n2 = 1, 2, .. , as Pi's expected marginal value arising from Pj having an extra room 

in period t given Pi and Pj have booking capacities of ni and nj respectively. 

Definition 3 We define 
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n 1, n2 = 1, 2, .. , as Pi's expected opportunity cost of holding ni rooms from period t to 

t- 1. 

Referring to the terms involving the decision variables in (17), the decision 

rules of Pi can be found as follows. 

Proposition 2 VVhen Pj has no rooms available (ni = 0} but Pi has ni > 0 rooms 

at the beginning of period t, Pi should, 

(1) accept any low-fare class booking request if 6i (t- 1, ni, 0) < riL, 

(2) accept his own low-fare class booking request and reject the transferred low-fare 

booking request if riL ::; bi (t- 1, ni, 0) < riL + ciL, and 

(3) reject any low-fare class booking request if riL + CiL ::; bi (t- 1, ni, 0). 

Proof. Referring to Figure 8, the results claimed in Proposition 2 are not difficult 

to obtain. For example, when P1 's own low-fare customer arrives, comparing the 

expected revenues of accepting and rejecting AlL which are provided by the second 

and third expression in Figure 8, we note that it is optimal for P1 to accept his own 

low-fare booking request if rlL +Vi (t, n 1 - 1, 0) > V1 (t, n1 , 0)- elL (or, equivalently, 

61 (t- 1, n 1 , 0) < rlL + cl£). Similarly, we obtain the results in other situations in 

which different booking requests arrive to Pl. Thus, after some simplifications, the 

conclusions can be shown in three cases as described above. • 

From Definition 1, we note that bi (t, ni, 0) is a function of the decision period 
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(t), and booking capacity (ni)· By fixing the value oft, Pi's expected marginal value 

in ni can be expressed as 

6i(t, ni, 0) = Vi (t, ni, 0) -Vi (t, ni - 1, 0) 

(1 - AiH - AjH/-LjH -AiL - AjL/-LjL)6i (t- 1, ni, 0) 

+(AiH + AjH/-LjH )8i (t- 1, ni - 1, 0) 

-AiL{max [riL +GiL- 8i (t- 1, ni, 0), OJ 

+max hL +GiL, 8i (t- 1, ni- 1, 0)]} 

-AjL/-LjL {max hL- 8i (t- 1, ni, 0), OJ+ max hL, 8i (t- 1, ni- 1, 0)]} 
(18) 

for ni > 1, t > 1. Using the relations between 8i (t- 1, ni, 0) and the values of TiL and 

TiL+ ciL in (18), we will show that 8i (t, ni, 0) is non-increasing in ni for a fixed t, and 

non-decreasing in t for a fixed ni· By these monotonic properties of 8i (t, ni, 0), we 

are able to simplify the optimal accept/reject policy to sets of critical values, which 

can be used to control the booking process. 

Theorem 4 For a given t, 8i (t, ni, 0) is non-increasing in ni; and for a given ni, 

8i (t, ni, 0) is non-decreasing in t. 

Proof. We will prove this theorem by induction. In last period, i.e., t = 1, 

8i (1, ni, 0) = (AiH + \Hf-LjH )riH + (AiL + AjL/-LjL)riL· Clearly, 8i (1, ni, 0) is non­

increasing in ni. Now, we assume that 8i (t- 1, ni, 0) is non-increasing in ni. Referring 

to (18), we find that 8i (t, ni, 0) is a non-negative combination of 8i (t- 1, ni- 1, 0) 

and 8i (t- 1, ni, 0). This indicates that 8i (t, ni, 0) can always be expressed as a non-

negative and linear combination of items which are non-increasing in ni· Therefore, 
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by induction, 8i (t, ni, 0) is non-increasing in ni for a given t. 

Rearranging (18), we obtain 

8 i ( t, ni, 0) - 8 i ( t, ni - 1, 0) = 

(>.iH + AjH/-LjH) [8i (t- 1, ni- 1, 0)- 8i (t- 1, ni -1, 0)] 

(19) 

Since we know that 8i (t, ni, 0) is non-increasing in ni for a given t, the RHS of (19) is 

non-negative. Thus, 8i (t, ni, 0) is non-decreasing in t for a given ni. This completes 

the proof. • 

The monotonicity of 8i (t, ni, 0) has the following managerial implications: 

• In a booking period t' there exists two critical booking capacities' nH t) and nr ( t) ' 
for Pi, (with ni(t) ~ nr(t)), such that (i) any low-fare booking request is accepted 

for nr(t) < ni; (ii) a booking request from Pi's own low-fare class is accepted while 

a transferred low-fare booking request is rejected for n!(t) < ni < nr(t); and (iii) 

any low-fare booking request is rejected for ni ~ n}(t). 

• Given the booking capacity ni for Pi, there exists two critical booking periods, 

i}(ni) and f;(ni), (with ~(ni) ~ i;(ni)), such that (i) any low-fare booking request 

is accepted for t < ti(ni); (ii) a booking request from Pi's own low-fare class is 

accepted while a transferred low-fare booking request is rejected for ti(ni) ~ t < 

i;(ni); and (iii) any low-fare booking request is rejected for i;(ni) ~ t. 
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Example 5 We now present a numerical example for the case where only one 

player has available rooms in period t. We assume that each hotel has a capacity of 

30 rooms. The room rate, penalty cost, and transfer rate of K -fare class customers 

in Pi ( K = L, H and i = 1, 2) are given in Table 11 

Low-fare (K = L) High-fare (K =H) 

TiL CiL AiL J.LiL TiH CiH )..iH J.LiH 

P1 $99 $10 0.35 0.8 $159 $20 0.15 0.6 

P2 $105 $12 0.25 0.75 $165 $25 0.10 0.65 

Table 11. Prices, rejection costs, arrival and transfer rates of P1 and P2. 

0 10 20 30 40 

Figure 9. Dynamic optimal decisions of P1 when P2's rooms are sold out. In region 
R1 , Pl accepts both his low-fare customer and P2's transfer customer; in region 
R2, he accepts only his low fare customer and in region R3 he rejects any low-fare 
customer. 

Let us assume that P2 has sold out all his rooms, and P1 is attempting to 

determine his optimal accept/reject decisions. For the data given in Table 11, Figure 
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9 has three regions: In region R1 , Pl accepts both his low-fare customer and P2 's 

transfer customer. In region R2, Pl accepts only his low fare customer and in region 

R3 rejects any low-fare customer. The figure shows that the cutoff levels for the 

acceptance/rejection regions are non-decreasing in time t. When there are only a Jew 

time periods left, and there is sufficient inventory, Pl accepts almost all low fare and 

transfer customers. On the other hand, when the time remaining is quite long, Pl 

rejects low fare and transfer customers if his inventory is low. t 

For all of the numerical examples in the chapter, we use Excel VBA to calculate 

the optimal solutions. 

4.1.2 Case 2: Both Players Have Available Rooms in Period t 

In this case, n1 , n2 > 0 at the beginning of period t, there will not be any 

transfer of high-fare customers between the two players. Hence, each player will have 

to decide whether to accept his own low-fare customer if such an arrival occurs. On 

the other hand, if a low-fare customer is rejected by one player, such a customer will 

probably seek accommodation with another player. Hence, each player also faces the 

choice of accepting or rejecting the booking request of a transferred customer. 

Again, let us consider the situation faced by Pl whose expected revenues under 

different decisions in period t are presented in Figure 10. Here, Pl's total expected 

revenue can be obtained by adding all these expressions on the right in Figure 10 

and P2's total expected revenue can be obtained similarly. Therefore, after some 
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Expected revenue 

No arrivals 
:(1-Au -Au, -A,L -Au, )V, (t-!,"',n,) 0 

PI's low-fare Yes: (Xu. =I) 
: Au-'lt [riL +V, (t-1,"' -l,n,)] 0 (Au) 

Yes: (y2L =I) 
: Au,Llu (i-.>;L)y2L [v, (t-1,"''"' -1)-<u] 0 

No: (y2L =0) 
: Au.UU (1- Xu.)(!- y2L )[V, (t -1,"',n,)- elL J 0 No 

: A,L (1- .uu)(l-x.J[V, (t-l,"',n,)-c,LJ 0 
PI's high-fare 

:Au, [riH +V, (t-1,"' -1,n2)] 0 (Au,) 

P2's low-fare Yes: (x2L =I) 
: A,LX2Lv, (t-1,"''"' -1) 0 (~) 

Yes: (yiL =I) 
: A,LJ12L (I- x2L )Yu ['iL + V, (t-1,"' -l,n,)J 0 

No: (y1L =0) : A,LJiu (!-Xu.)(!- YIL )V, (t-i,"',n,) 0 No 

: ~ (1- J~u)(t-x,L)V, (t-t,"',n2) ® 
: A,HV, (t -1.1\,n, -1) @ 

Figure 10. P1's expected revenue when both players have available room(s) at the 
beginning of period t. 

simplifications, Pi's total expected revenue is obtained as follows. 

Vi (t, ni, ni) = max 
XiLoYiL 

+ [AiLXiL + AiH + AjL/-ljL (1 - XjL) YiL] [Vi (t- 1, ni- 1, ni) -Vi (t- 1, ni, ni )] 

+ [AjLXjL + AjH + AiLJ-liL (1- XiL) YiL] [Vi (t- 1, ni, ni- 1)- Vi (t- 1, ni, ni)]} 

(20) 
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with Vi (0, ni, nj) = 0 for all ni, nj > 0 (i,j =I, 2 while i =/= j). 

According to Figure 10, when a transferred low-fare booking request occurs 

with PI, his expected revenue is A2Lf.l-2L [rlL +Vi (t- I, nl- I, n 2)] if he accepts such 

a request. On the other hand, if PI rejects such a request, his expected revenue is 

A2LJ1-2L Vl (t- I, nl, n2). We can now express PI's optimal accept/reject decision for 

a transferred low-fare customer from P2 (i.e., YlL = I or 0) in terms of the expected 

marginal value, 8l (t- I, nt, n2): 

{ 

YlL =I, 

YlL = 0, 

if 81 ( t - I, n1 , n2) < rlL; 

if 81 (t- I, n1, n2) 2:: rlL. 
(2I) 

Next, we consider the situation in which PI's own low-fare booking request 

occurs. This is more complicated since PI's accept/reject decisions of his own low-fare 

customers, (i.e., xlL = I or 0) have to be made upon P2's decisions on transferred 

customers. If P2 decides to reject a transferred customer from PI, the optimal 

accept/reject decision for PI's own low-fare customer can be presented as: 

{ 

xlL = I, if 81 (t- I, n 1 , n2 ) < rlL + Cl£ (and P2 rejects) 

x 1L = 0, if 81 (t- I, n 1 , n2 ) 2:: rlL + Cl£ (and P2 rejects). 
(22) 

On the other hand, if P2 decides to accept a transferred customer, the optimal ac-

cept/reject decision for PI's own low-fare customer will be 

where a 1 (t- I, n1, n2) = p, 1L~ 1 (t- I, n1, n2) + rlL +elL. Similarly, we can obtain 

the optimal decisions for P2. 
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We note that, for Pi (i = 1, 2), there are four possible combinations of strategy 

mix (xiL, YiL). To simplify the expression, we denote Ml as (1, 1), Ml (0, 1), Mf (1, 0), 

and Mi4 (0, 0) respectively. Referring to (21), (22) and (23), we find that the optimal 

solution pair is determined in terms of 8i (t- 1, ni, ni) and the relations among the 

three critical values of riL, a 1 (t- 1, n 11 n2), and TiL+ CiL· In order to identify the 

optimal strategy mix in the different situations, we now examine the properties of 

Theorem 5 For any t E [1, T], Vi (t, ni, ni) {i,j = 1, 2 and i =J j) has the following 

properties: 

(1) Vi (t, ni, ni) is non-decreasing in ni, and non-increasing in ni; 

(2) 8i (t, ni, nj) is non-increasing in ni and nj; 

(3) 8i (t, ni, nj)- 'Yf.i (t, ni, nj), with 0 ~ 'Y ~ 1, is non-increasing in ni and nj. 
(24) 

Proof. Again, we shall use induction to prove this theorem. First, let us verify 

these properties for the last period ( t = 1). We see that the player has to accept 

any low-fare booking request in last period as long as he has unsold rooms on hand. 

Then, from (20), we obtain Vi (1, ni, ni) = AiHTiH + AiLTiL for any ni, ni > 0. Thus, 

all properties in (24) hold. 

Next, assuming that for any ni, ni > 0, these properties hold in period t- 1, 
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Pfs decisions 

XjL =yjL =0 

XjL = !,yjL = 0 

x1L = O,y1L =I 

xJL = YJL = 1 

0 

Ml 
I 

Pfs decisions 

xJL = YJL = 0 

XjL = !,yjL = 0 

x 1L=0,y1L=! 

Ml 
I 

XjL =yjL =} 

DeGroote School of Business 

M3 
I 

M4 
I 

riL a It-! n n ) ciL +rL 
i ~ ' i' j I 

M3 
I 

M2 
M4 

I 
I 

Figure 11. Pi's complete optimal strategy mixes corresponding to Pj's decisions in 
period t. 

we wish to prove that the properties hold for period t. Actually, properties (1) and (2) 

indicate that Vi (t, ni, ni) is non-decreasing quasi-concave in ni, and non-increasing 

quasi-concave in ni. We also note that ~i (t- 1, ni, ni) ~ 0 since Vi (t- 1, ni, ni) is 

non-increasing in ni. Thus, ai (t- 1, ni, ni) ~ TiL + CiL· According to (21), (22) 

and (23), we describe Pi's optimal strategy corresponding to Pj's decisions in Figure 

11. In any situation, Pi should choose the corresponding strategy mix in order to 

maximize his expected revenue. For instance, if Pj's decisions in period tare XjL = 0 

and YiL = 0, Pi's expected revenue will be 
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Vi (t, ni, ni) = (1- AiH- AiL- AjL)Vi (t- 1, ni, n1) + AjL (1 -~-£1L) Vi (t- 1, ni, nj) 

+AiL max [Vi (t- 1, ni- 1, ni) +TiL, Vi (t- 1, ni, ni)- ciL] 

+AjL/-LjL max [Vi (t- 1, ni- 1, nj) +TiL, Vi (t- 1, ni, nj)] 

+AiH[Vi (t- 1, ni- 1, nj) + TiH]· 
(25) 

By assumption, we find that the RHS of (25) is a combination of terms that is non­

decreasing quasi-concave in ni, and non-increasing quasi-concave in n1. Thus, in this 

situation, properties (1) and (2) hold. It is not difficult to validate that in other 

situations, Vi (t, ni, n1) can also be expressed as a combination of terms which satisfy 

properties (1) and (2). analogous to the above procedure, we can also prove that 

c5i (t, ni, nj) - 'Y~i (t, ni, n1) (0 :S 1 :S 1) is non-increasing in ni and n1, Hence, by 

induction, all of the properties can be propagated to the other t values. • 

The properties shown in Theorem 5 are intuitive with the following managerial 

implications: 

• In a booking period t, there exists a critical booking capacity, ni(t), for Pi, such 

that any transferred low-fare booking request should be accepted for ni > ni(t), 

and any transferred low-fare booking request should be rejected for ni :S iii(t). 

• The non-decreasing property of Vi(t, ni, n1) shows that Pi will be better off if Pj 

has few rooms unsold in period t. This is so, since each player is more likely 

to reject a low-fare customer when the number of his unsold rooriis is lower and 
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there are still many periods left. 

• The non-increasing property of 6i ( t, ni, ni) well fits the classical "marginal revenue 

decreasing" law in economics. 

0 

0 

2 4 6 8 10 "' 

(i) t=10 

2 4 6 8 10 "' 

(iii) t = 30 

0 

0 

2 4 6 810"' 

(ii) t = 20 

2 4 6 8 10 "' 
(iv) t=40 

Figure 12. Dynamic best responses of Pl when both hotels have rooms and P2 follows 
a non-optimal policy. In region R1, Pl accepts both his low-fare customer and P2's 
transfer customer; in region R2 , he accepts only his low fare customer and in region 
R3 he rejects any low-fare customer. 

Example 6 Now let us examine the optimal decisions of one playe1, say, Pl, m 
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case both players have available rooms. We use the same data as in Table 11. In 

this case, P2 chooses an arbitrary (non-optimal} dynamic policy and Pl determines 

his best response after observing P2 's decision in each period. We assume that P2 

always adopts a first-come-first-served (FCFS} policy where X2L = Y2L = 1; that is, 

P2 accepts both her own low-fare customer and the transferred customer from Pl. 

Faced with this policy, Pl determines his best response from (20} for each period. 

In Figure 12, we present the acceptance/rejection regions for P1 at four different 

time points; t = 10, 20, 30 and 40 (periods-to-go) with 10 rooms remaining in each 

hotel. As in Example 5, in region R1 , P1 accepts both his low-fare customer and 

P2 's transfer customer. In region R 2 , P1 accepts only his low fare customer and in 

region R 3 , he rejects any low-fare customer. It is worth noting that when t = 40, i.e., 

when 40 time periods are left, P1 almost always rejects any low fare customer, but 

when t = 10, he accepts both his low-fare customers and P2 's transfers provided that 

both hotels have sufficient number of rooms left. t 

4.2 Non-cooperative Solution 

In this section we shall examine Nash and Stackelberg equilibria in a non­

cooperative framework by using the results obtained in Section 4.1. When the players 

make their decisions simultaneously in each period, the Nash equilibrium applies. On 

the other hand, when one of the players can act before the other one, we obtains the 

Stackelberg equilibrium. 
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4.2.1 Nash Equilibrium 

We assume in this section that the two players make their accept/reject deci-

sions simultaneously in each period. We also make the standard assumption that the 

two players are "rational", i.e., one would not lower his objective function for the sole 

purpose of inflicting damage on the opponent. Thus, the best strategy they should 

adopt will give rise to the Nash equilibrium. Since we assume that both players are 

rational, some optimal strategy mixes shown in Figure 11 may not apply. For exam-

ple, if P1 always accepts his own low-fare customer (xiL = 1) in period t, there will 

be no transferred low-fare customer from P1 to P2. Thus, Vi (t, n 1 , n2 ) (n~, n2 > 0) 

is the same for XIL = 1, YIL = 1 and XIL = 1, YIL = 0 if x2L = 1. For the game 

problem in this section, we define the possible strategies of Pi as follows: 

(1) Ul. 
t . accept any low-fare customer; 

(2) U2. 
t • accept only transferred low-fare customer, 

(3) u3. 
t • accept only own low-fare customer, and 

(4) u~. t • reject any low-fare customer. 

Note that the third strategy "accept only own low-fare customer" means that 

either the transferred low-fare customers from other player should be rejected, or 

there are no such customers. Thus, we describe Pi's best response corresponding to 

Pj's decisions in Figure 13. In any situation, Pi should choose the corresponding 

strategy mix in order to maximize his expected revenue. 
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Pj's decisions 
~~ 

ut 
I I 

u3 ut I I u4 
I I 

0 

Pj's decisions 

ut 
i J 

u3 
I 

ut uz I M4 
I I I 

u3 
I 

Figure 13. Pi's best response corresponding to Pj's decisions in period t. 

Mathematically, the Nash strategy is a pair (Uf, U.f) where Uf E {Ul, Ul, Ul, 

U{}, i = 1, 2, such that each player's total expected revenue with this mix is always 

better than those with other strategy mixes. This strategy results in a equilibrium 

as it enBllies that Pi (i = 1, 2) will not receive mer~ than Vi (t, ni, ni) with (Uf, Uf) 
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if he deviates from it unilaterally. Before examining the Nash strategy, let us first 

investigate the optimal strategies of one player in response to the chosen strategies 

of the other player which are the best responses. According to the optimal strategy 

mixes shown in Figure 13, we find that there are five mutually exclusive cases in 

which Pi's best response exhibits a unique form: 

. . R _ { Ul, if uj = uJ, uj; 
(1) Ji < mm(riL, ai) . Ui (Uj)-

Ul, if Ui = UJ, Uj. 

Ul, if Ui = U1· 
J ' 

Ul, if U· = U~· 
J J ' 

Ul, if U· = U~· 
J J ' 

Ui4, if Ui = UJ. 

if Ui = Uj, Uj; 
; and 

if Ui = UJ, UJ. 

(5) riL + ciL :S Ji : UiR(Uj) = Ui\ where Ji and ai are for state (t- 1, ni, nj), 

i,j = 1,2, and i =j;j. 

Therefore, there are twenty-five different combinations of the best responses of 

two players in (U1 , U2 ) plane. Due to the symmetrical property of these combinations, 

we will show only fifteen of them in the following figures. In practice, we use the cells 

filled by vertical lines to present Pl's best responses corresponding to P2's strategies. 

On the other hand, the cells filled by horizontal lines are presented as P2's best 

responses corresponding to Pl 's strategies. Thus, the cells which are filled by both 
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vertical and horizontal lines are the Nash equilibria. 

Theorem 6 In each period, the optimal rational behavior of the two players has 

a unique Nash equilibrium (ur, ut) for \:It E [1, T] and \:lni, nJ > 0, i, j = 1, 2 for 

i =f. j as follows. 

(Ul, Uj), if 8i < riL and rJL + CjL s; 8J; 

(Ui4 , UJ), if riL + CiL s; 8i and 8J < rJL; 

(Ul, Uj), if riL s; 8i < riL + CiL and riL + CJL s; 8J; 

(u!" u!'l) = 
t ' J 

(Ul, UJ), if 

8i < ai and 8J < aj, or 

riL s; 8i < riL + CiL and rjL s; 8j < rjL + CjL, Or 

min (riL, ai) < 8i < ai and min (rjL, aJ) < 8J < rJL; 

(26) 

In addition, the game admits multiple Nash equilibria {MNE} in other situations. The 

multiple Nash equilibria and corresponding conditions can be expressed as: 

(Ul, Uj) or (Ul, UJ), 

(Ul, Uj), (Ui4 , U}) 

(Ul, Uj) or (Ul, UJ), 

8i < riL and max (rjL, aJ) s; 8J E rJL + CjL, or 

8i < ai and aJ s; 8J <max (rJL, aJ); 

max (riL, ai) s; 8i < riL + CiL and 8J <, rJL, or 

ai s; 8i <max (riL, ai) and 8J < aJ; 

(27) 
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in which t5i and ai are for state ( t - 1, ni, ni). 

Proof. Referring to Figure 14 - 17, we notice that if both players make the 

decisions optimally, the game admits either a unique Nash equilibrium or multiple 

Nash equilibria. Accordingly, we build three matrices to show the Nash equilibria 

in different situations (see Figure 18). Simply categorizing areas with same Nash 

equilibrium, we obtain (Ut, Uj") for each situation. 

We see that there are two Nash equilibria in (c), (d) of Figure 14 and (k) of 

Figure 17, which are (UJ, Ui) and (Uf, UD for all three cases. Comparing the two 

players' expected revenue with them, we obtain 

and 

V2 lcut,ui) -V2 lcu~,u~)= ..\2L(62(t- 1, n2, n1)- a2(t- 1, n2, n1)]. (29) 

It is not difficult to find that V2 lcuf,u{) -\12 lcup,u~)~ 0 since 62(t- 1, n2, n1) ~ 

a2(t- 1, n2, n1) for any case. • 

Thus, the equilibrium (UJ, Ui) is better than (Uf, UD for P2. He would more 

likely choose Ui hoping P1 choose UJ. Unfortunately, vl lcuf,Ui) -VI lcuf,u~)~ 0 can 

not be guaranteed. It implies vl lcuf,ui)might be less than vl lcu~,U~)in some situations 

by which the possible strategy combination of the two players would be (Uf, Ui). Such 

deviation from the Nash equilibrium is dangerous since both players' revenue could 

be badly decreased. However, if both players have noticed this "danger" , they might 

not choose the strategies which lead to (Uf, Ui). Thus, the two players are more 
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,....,.....,....,....,...., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................. . 

(a) P1's Case 1 vs P2's Case 1: 

cu~ ,u:) = cu: ,u;) 

,....,.....,....,....,...., . . . . . . . . . . . . .................... . 

f-'-...L...L--L.J .......... . . . . . . . . . . . . 

··········· 

u3 
I 

u4 
I 

(c) Pl's Case 1 vs P2's Case 3: 

(U~,u:> =(Ui,Ui) or (U:,u;) 

u3 
2 

u2 
2 

Ul 
2 

f-'-...L....l.--L.J ........... ;.....,-..,....,..-,-; .......... . 

(b) P1's Case 1 vs P2's Case 2: 

cu~,un =cu:,u;) 

..... .......-r--r-1r-----, ....................... . 

1--T-.......-r-,--i ........... L.-.1......_......_.__ _ ___, 

f-'-...L....l.--L.J ........... i-r-.......-r-,-i ........... . 

ul 
I 

(d) Pl's Case 1 vs P2's Case 4: 

(U~,u:) =(Ui,Ui) or (U:,u;) 

Figure 14. Nash equilibria in the situations where Pl's case 1 vs P2's cases 1-4. 
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u4 
2 

u3 
2 

u2 
2 

ul 
2 

u4 
2 

u3 
2 

u2 
2 

ul 
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.. . .. .. .. .. .. ......... r-r--r-r--r-t .......... .. 

1--r-..,-,-..-i ........... 1-.J-..L.....L-'--l ......... .. 

1--'-....._.__.__. ........... i-r--r-r-r-i . . . . .. . .. . . . .... ' .... '- ......... .. 

(e) PI's Case 1 vs P2's Case 5: 

(U{", u~) = (u:, u;) 

. . . . . . . . . . . r-r--r-r--r-1 ......... .. 

........... 1--+-+-+-+-1 ......... .. 

ul 
2 

(f) PI's Case 2 vs P2's Case 2: 

(U{" ,U~) = (U: ,Ui) 

..-------"T""1-r-'T-r.., .......... .. 

........... r----r++-t--t-i . . . . . . . . . . . . .. ' ...... " ... ' ...... ·1-++-t-+-t-----' 

··········· 

ul 
I 

u2 
I 

u3 
I 

(g) PI's Case 2 vs P2's Case 3: 

(U1N, u~) = (u:, u;) 

u2 
2 

ul 
2 

........................ 

(h) PI's Case 2 vs P2's Case 4: 

(U{" .u~) = (u: ,u;) 

Figure 15. Nash equilibria in the situations where P1's case 1 vs P2's case 5, and 
P1 's case 2 vs P2's cases 2·~·:-4. 
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(i) Pl's Case 2 vs P2's Case 5: 
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,.....,....,...,.~····································· 

1--'-.J......I.-l.....J ........... ~"'I'"'"T--r-1 ........... . 

~.....-T-r-1--'-....L....I.-'--' .......... . 

. . . . . . . . . . .......................... _._. .......... . 

u~ 
I 

(j) Pl's Case 3 vs P2's Case 3: 

cu~,u:>=cu:,u;), cu:,u;) 
(U: ,U~), or (U{,U~) 

U 4 
2 r+~-rr-------------~ 

Ul 
2 

U3 
r++-t-Hf----1 2 
r++-t-Hf----1 

........... i-r..,....,.-.-f--1-...L....I.....l-.l..------l 

• • • • • • • • • • • .L.....J.......r......L....I.......J ••••••••••• i--r--r--T-.--i 

ul 
I 

(k) Pl's Case 3 vs P2's Case 4: 

(U~,u:) =(U:,u;) or (U:,u~) 

Ul 
2 

........... ,.....,.....,.-,.-.-!-'-............................... . 

••••••••••• .L.....J.......1-L....1......1 ••••••••••• i--r--r--T-.--i 

Ul 
I 

(l) Pl's Case 3 vs P2's Case 5: 

(U1N, u:) = (U1
1
, u;) 

Figure 16. Nash equilibria in the situations where Pl's case 2 vs P2's case 5, and 
Pl 's case 3 vs P2's cases 3-5. 
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(m) PI's Case 4 vs P2's Case 4: 
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........... ~ ........... : .......... . 

(o) PI's Case 5 vs P2's Case 5: 

(Ut,u:) =(u:,u;) 

U' 2 
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. . . . . . . . . . . . .......... L-1.-'--L..L.-+--.~~.....; 

··········· ······················· 

(n) PI's Case 4 vs P2's Case 5: 

(ut,u:) =(u:,u;) 

Figure 17. Nash equilibria in the situations where Pl's case 4 vs P2's cases 4-5, and 
Pl's case 5 vs P2's case 5. 
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0 

0 

U1
1 :Accepts any low-fare customer u; :Accepts only own low-fare customer 

U,Z :Accepts only transferred low-fare customer U1
4 :Rejects any low-fare, i = 1, 2 

~ ~ 

(u,•, u;) (u;, u;) (u,•, u;j 
MNE1 

(u;, u:) (u,•, u~) 

I MNE2 (u,•, u~ 

(u,•, u;) (u,3
, u;j (u,•, u;) 

8, 
0 

(u,•, u;) (u3 u•~ 
I' J ~ 

MNE1 

(u,3
, u:) 

I MNE2 

a, 

MNE1 :(U,1,U1
4

) and (U;,u:) 
MNE2 : (U,4 , u,•) and (u;, u;) 

(u,•, u;) 

(u• U3 ~ 
I ' J ~ 

(u,•, uU 

MNE1 (u;, u:) 
MNE3 

(u,3, u:) MNE2 

(u• U
3

' I ' j 

(u,•, u~) 

MNE3 :(U1
1,U1

4
), (U,4 ,U1

1
), (U,2 ,U1

2
) and (U1

3 ,U,3 ) 

8, and a, are for ~!_ate (t-1,n,.n1) where 

8, i,j = 1,2 while i ¢ j. 

Figure 18. Nash Equilibrium in period t, for Vn1 , n 2 > 0. 

likely to make their decisions by negotiation (e.g., they may choose the equilibrium 

which maximizes their joint revenue). However, this might cause another problem: 

how do they share those 'extra' revenue by such negotiation? 

In addition, there are four Nash equilibria in case (j) of Figure 16: (Uf, Ui), 

(U[, U:i), (U{, Ui) and (Ut, Ui). Referring to Pi's objective function, we have 
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and 

-AiHoi(t- 1, ni, n1)- (>.jL + AjH + AiLI-LiL)f.i(t- 1, ni, n1). 

Comparing Pi's expected revenue when using these equilibria, we obtain 

and 

> 0. 

Thus, (Ui, Ui) is superior to the other three equilibria P1; on the other hand, (Uf, Ui) 

is the best equilibrium for P2. Again, in this case, we can not choose an equilibrium 

for the two players. The following example will show this four Nash equilibria case. 

Example 7 In order to show the four Nash equilibria situation, we use the following 

values{see Table 12} for the room rftt-e, penalty cost, and transfer rote of H~f~re class 
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customers in Pi ( K = L, H and i = 1, 2}. 

Low-fare (K = L) High-fare (K =H) 

TiL CiL AiL 11-iL riH CiH >..iH 11-iH 

P1 $99 $2 0.10 1 $159 $5 0.45 1 

P2 $105 $3 0.35 1 $165 $6 0.05 1 

Table 12. Prices, rejection costs, arrival and transfer rates of P1 and P2 for the four 
Nash equilibrium case. 

We assume there is only 2 periods left and each player has only one room 

unsold. We then calculate the total expected revenue of the two player with each 

possible strategy mixes combination. The results are shown in Table 13. 

Ui 
u? 

P2: Ui, 

UJ 

(126.38,121.03) 

N/A 

N/A 

N/A 

Uf 

(124.42,112.88) 

N/A 

(128.68,118.52) 

N/A 

U[ 
P1: 

(120.23,92.52) (118.28,84.37) 

(135.14,112.96) (133.19,104.81) 

N/A (122.54,90.01) 

N/A (137.45,110.45) 

Uf ut 

Table 13. The total expected revenue of the two players with different strategy mixes. 

We see that there are four Nash equilibria, which are (U{, Ui), (Ul, Ui), 

(Uf, U~), and (U{, Ui). Comparing the revenue obtained by these equilibria, none 

of them can be the best for both players. Specifically, the equilibrium (U{, Ui) is the 

best for P1, and (Uf, Ui) is the best for P2. + 
From Example 7, we verify our statement, which says, in the MNE case there 

is not an optimal decision rule for _the two players. Then, we can not calculate one 

player's total expected revenue in that period. As a result, the optimal strategies for 
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the all former periods are also uncertain. However, our numerical experiments show 

that in most cases, the game admits only one equilibrium. We will use the following 

example to illustrate the unique Nash equilibrium cases. 

Example 8 Here, we again use the same values as in Table 11 of Example 5 

for the room rates, penalty costs, and transfer rates for both hotels. The goal in this 

example is to demonstrate the unique Nash equilibrium arising from equation {26} in 

Theorem 6. As in Example 6, we consider four time periods {to-go), i.e., 10, 20, 30 

and 40. Referring to Figure 19, we have up to six different regions which are defined 

as follows: Region R1 corresponds to (U[, Ui), that is, both players accept only their 

low-fare customers. In region R 2 , we have (Ut, Ui) which corresponds to Pl reject 

any low-fare customer and P2accepting only her own low-fare customer. Similarly, 

in region R3 we have (Uf, Ui), in R 4 , we have (Ut, Ui). Finally, in R 5 , the policy 

is (Uf, Ui) and in~' we have (Ut, Ui). 

According to Figure 19, we note that when t = 40 (periods-to-go), both hotels 

reject any low fare customer-hoping that high-fare customers will arrive in later 

periods. However, at t = 10, for a large combination of high (n1. n 2 ) values, both 

players accept any low-fare customer, which is intuitive. At t = 10, when only a few 

rooms remain, the hotels can be more "choosy" and can reject low-fare customers. 

We have also compared the total expected revenues for both players under two 

scenarios: Scenario 1: P2 uses an arbitrary dynamic policy {i.e., FCFS) and P1 

responds optimally to P2 's decisions (as presenf£d in Section 4.1.2, and ScenarifJ 2-: 
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0 

0 

2 4 6 8 10 n1 

(i) t = 10 

2 4 6 8 10 n1 

(iii) t = 30 

0 

0 

DeGroote School of Business 

2 4 6 

(ii) t = 20 

2 4 6 

(iv) t = 40 

8 10 ~ 

8 10 ~ 

Fi~e 19. Nash equilibrium for both players. Here, region R1 corresponds to 
(U1 , Ui), that is, both players accept only their low-fare customers. In region R2, 
we have (Ut, Ui) which correponds to Pl rejecting any low-fare customer and P2 ac­
cepting only her own low-fare customer. Similarly, in region R3 we have (Uf, Ui), 
in R4, we have (Ut, Ui). Finally, in R5 , the policy is (Uf, Ui) and in Ha, we have 
(Ut, Ui). 
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t: Time-to-go 

15 20 25 30 35 40 45 50 

Scenario 1: Pl acts optimally and P2 uses FCFS rule with x2L = Y2L = 1 

v·· 1. 826.17 1050.06 1119.59 1141.57 1163.36 1185.40 1211.93 1239.25 

V2: 801.89 1086.06 1169.73 1163.70 1157.29 1151.32 1142.94 1133.54 

Scenario 2: Nash strategies 
vN. I . 826.17 1050.06 1111.81 1120.00 1125.88 1131.11 1136.14 1141.16 
vN. 2 . 801.89 1086.06 1175.37 1184.52 1188.75 1191.92 1194.96 1198.37 

revenue variations (%) as players move from Scenario 1 to Scenario 2: 

Pl: 0 0 -0.70 -1.93 -3.33 -4.80 -6.67 -8.60 

P2: 0 0 0.48 1.76 2.65 3.41 4.35 5.41 

Table 14. The expected profits of the two players in two Scenarios: P1 acts optimally; 
P2 use FCFS VS. Nash game. 

Both P1 and P2 implement the Nash strategies as discussed in this section. Referring 

to Table 14, we observe that as players move from Scenario 1 (where P2 acts in a non-

optimal fashion) to Scenario 2 (where both adopt the Nash strategy), Pl 's expected 

revenues decreases and P2' expected revenue increases. + 

4.2.2 Stackelberg Equilibrium 

In the previous section, the players used the Nash strategy under the as-

sumption that they make their decisions simultaneously. Now we consider another 

non-cooperative situation which is leader-follower Stackelberg game. Without loss of 

generality, in this section we assume Pl as the leader and P2 as the follower in our 

game theoretical framework. In each period t, P1 announces his strategy mix, U1 , 

first, and P2 chooses an optimal accept/reject decision as a function of U1 to max-
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imize his expected revenue. Recall the best response from Section 4.2.1, we obtain 

P2's best response for acceptance/rejection of transferred low-fare customer in period 

t (t 2::: 1) for 'Vni, ni > 0, i,j = 1, 2 and i =f j as, 

O, if { 82 (t- 1, n2, nl) 2::: r2L and x 1L = 0, or 

Xl£ = 1; (30) 

1, if 82 (t- 1, n2, nl) < r2L and XIL = 0; 

Similarly, P2's best response for acceptance/rejection of his own low-fare customer 

in period t, x~L(U1 ) can be derived as 

{ 

82 (t- 1, n2, n1) < r2L + c2L and YIL = 0, or 
1, if 

82 (t- 1, n2, n 1) < o2(t- 1, n2, nl) and YIL = 1; 

0, if { 
82 (t- 1, n2, n1) 2::: T2£ + C2£ and YlL = 0, or 

82 (t- 1, n2, n1) 2::: o2 (t- 1, n2, ni) and YlL = 1. 

(31) 

Proposition 3 When both players have available rooms (n1 , n2 > 0) at the beginning 

of period t, the Stackelberg equilibria and corresponding conditions can be expressed 

as follows. 

(Uf,Uf) = 

(U{, Ui), if { 81 < TIL and C2£ + T2£ ~ 82, OT 

81 < Tl£ + ed /-L2L and 02 ~ 82 < C2L + T2£; 

(U{, Ui), if rlL ~ 81 < Cl£ + Tl£ and c2L + r2L ~ 82; 

(Ut, U:}), if 01 ~ 81 and 82 < r2L; 

(Ut, U~), if clL + rlL ~ 81 and r2L ~ 82 < c2L + r2L; 

(Ut, Ui), if c1L + rlL ~ 81 and c2L + r2L ~ 82; 

(U{, U~), otherwise. 
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Proof. We use the exhaustive enumeration method to prove this proposition 

by examining each case listed in Figure 14 - 17. For example, if a 2 ~ r2L and 

Checking each combination of (U1 , U&(U1 )), we find that P1 could obtain maximum 

expected revenue if he announce Uf to P2 who will choose U~ as the strategy to 

response Uf. Then the optimal strategy combination of the two players, which is 

the Stackelberg equilibrium, is (Uf, UD. Similarly, we can also analyze the optimal 

strategies of P1 in all other cases of Figure 14- 17. Finally, we obtain (Uf, Uf) for 

each situation as described above (see (32)). • 

It can be seen when (Uf, Uf) = (U[", Uf), the corresponding condition in (26) 

is tighter than that in (32). It implies that the if the game admits a unique Nash 

equilibrium in state (t, n1, n2 ) and the all lower states, the leader-follower stackelberg 

game is identical to the Nash game. Based on the data given in Example 8, we 

calculate the Stackelberg equilibrium and corresponding revenue for both players ( P1 

is assumed as leader). We obtain the same results as shown in Table 14. Actually, 

comparing the Stackelberg equilibria in (32) with the MNE in (27), we also find that 

the Stackelberg equilibrium is still one of the multiple Nash equilibria. For example, 
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in four Nash equilibria case the Stackelberg equilibrium is (U{, U:J) which is still a 

Nash equilibrium. We can verify this results by Example 7. Thus, P1 can only benefit 

by his leadership in state (t, n1 , n2) if and only if there are multiple Nash equilibria 

in that state or lower states. 

4.3 Cooperative Solution 

We shall now study the situation of cooperation between the two players. 

Here, we assume that under cooperation, a player does not incur a rejection cost if a 

booking request is satisfied by its cooperative partner. In addition, we also assume 

that the transfer rate between two players is one when one player's rejected customer 

is acceptable by another player. This is reasonable since when two players cooperate, 

each player should would encourage an unsatisfied customer to transfer to the other 

(cooperative) hotel. Under this situation, both players make decisions jointly on 

which hotel should accept/reject the arriving customer dynamically according to their 

inventory levels and time-to-go. Since the total revenue of two players is possibly 

increased at the cost of losing some revenue on one player, the optimal strategy mixes 

may be different from those under the competitive situation. 

We denote V (t, n1, n2 ) as the maximum total expected revenue of two players 

in state ( t, n 1 , n 2 ). In the last period, i.e., t = 1, two players should accept any booking 

request as long as there are some unsold rooms. However, the booking request should 

be given to the player whose unit revenue per room is higher. Hence, the maximum 

total expected revenue in state (1, n1. n2 ) can be expressed as 
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0, 

L (>.IK + A2K) r1K, 
K=L,H 

L (>.IK + A2K) r2K, 
K=L,H 

if n1 = n2 = 0; 

if n1 > 0 and n2 = 0; 

if n1 = 0 and n2 > 0; 

L (>.IK + A2K) max (rlK, r2K), if n1 > 0 and n2 > 0. 
K=L,H 

(33) 

If one player (i.e., Pi, i = 1, 2) has sold out all of his rooms before the end of 

booking period, the maximum total expected revenue can be obtained from (17) and 

the optimal decisions would be the same as those shown in Proposition 2. 

Next, we will focus on the situation in which both players have unsold rooms. 

It is possible that a player whose unit revenue of a high-fare customer is lower than 

that of another player may reject his own high-fare customer in order to maximize 

the total revenue of two players. Thus, we introduce an additional decision variable 

for such a player; without loss of generality, we that assume that P1 is this player. 

Let us now denote x 1H as the decision of P1 on his high-fare booking request, i.e., 

{ 

1, P1 accepts his own high-fare customer, if any 
XIH = 

0, P1 rejects his own high-fare customer, if any. 

Taking into account all other decisions, we present the expected revenue with any 

possible combination of decisions in period t (See Figure 20). 

Then, we have, 
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PI's low-fare 

(~) 

PI's high-fare 

(~) 

P2's low-fare 

(Au_) 

No arrivals 

PI accepts: (X.L =I) 

PI rejects and P2 accepts 

: (X.L =0 andyu =I) 

Both PI and P2 re'ect 

: (~ =0 andyu =0) 

PI accepts: (.t,n =I) 

PI rejects and P2 accepts: (.t,n = 0) 

P2 accepts: (xn =I) 

P2 rejects and PI accepts 

: (x,L = 0 andyiL =I) 

Both PI and P2 re. ect 

:(xu =0 andyiL =0) 

DeGroote School of Business 

Expected revenue 
... 

:(1-A,L -A,H -Au_ -Au, )V(t-I,n.,n,) 0 
:~~ [riL +V(t-J,n. -l,n,)J 0 
: A,L (1-x,L)Yn [r,L +V(t-l,n.,n, -I)] 0 
:A,L (1-X.L)(l- Yu)[V(t-I,n.,n,)-c,LJ 0 
: A,H.t,n ['iH +V(t-l,n. -l,n,)] 0 
: A,H (1-xlH )[r,H +V(t-l,n.,n, -1)] 0 
:Au_Xu[r,L +V(t-I,n.,n,-1)] 0 

: A,L (1-~)YIL [riL + V(t-l,n. -l,n,)] 0 
: .:I,L (I-x2L)(I- y1J[V(t-l,n.,n,)-c2L] 0 

: A,H [r2H + v(t-1.n..n, -I)] @ 

Figure 20. The expected revenue of two players under cooperation (n1 , n2 > 0). 

V (t, n~, n2) = max {V (t- 1, n~, n2) 
X!L ,X!H oYlL ,X2L ,Y2L 

+..\1H (1- XIH) (V (t- 1, n~, n2- 1)- V (t- 1, n1 - 1, n2) + r2H- rlH] 

+ Li=l,
2 

{riL [>.jL (1 - XjL) YiL + Ai£XiL] -AiL (1 - XiL) (1 - YjL) CiL + AiHTiH} 

+ [>.ILxlL + AIH + A2L (1- x2L) YIL] [V (t- 1, n1- 1, n2)- V (t- 1, n1, n2)] 

(34) 
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with V (0, n 1, n2) = 0, n1, n2 > 0 and i,j = 1, 2 (i # j). 

According to the cases shown in Figure 20, the optimal accept/reject decisions 

of the two players in under cooperation is given in the following Proposition. 

Proposition 4 Under cooperative situation, if the two players have available rooms 

{ ni, nj > 0, i, j = 1, 2 while i # j} at the beginning of period t and rlH < r2H, then 

the accept/reject decision rules are as follows: 

(1) P1 accepts his own high-fare customer, if (31 > r2H- riH, and rejects, other-

w~se; 

(2) Pi accepts his own low-fare customer, if (3i > rjL - riL and 8i < riL + CiL; 

(3) Pi rejects his own low-fare customer, but Pj accepts his own low-fare customer, 

~f f3· < rL- r·L and 8· < r·L + c·L· t- J t J J t' 

( 4) both Pi and Pj reject their own low-fare customer, if 8i > riL + Ci£ and 

where (31 = -(32 = V (t- 1, n1- 1, n2)- V (t- 1, n1, n2- 1), and 8i denotes to the 

marginal revenue of a Pi's room, i.e., 81 = V (t- 1, n1, n2 )-V (t- 1, n 1 - 1, n2 ) ( (3i 

and 8i are for state (t- 1, n1, n 2)). 

Proof. Referring to Figure 20, we find the accept/reject decision on P1's high-fare 

booking request by comparing the fifth and sixth expressions, i.e., P1 should accept 

his own high-fare customer if (31 (t- 1, n1 , n2 ) > r2H- rlH. Similarly, we can obtain 

other accept/reject decisions when different booking requests occur. This completes 
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From Proposition 4, we note that in cooperative situations it might be optimal 

for P1 to reject his own high-fare class customer if such action can improve the total 

expected revenue of the two players. 

Example 9 Prom Example 7, we note in the multiple Nash equilibria situation, 

the optimal solutions for the two players are uncertain and they most likely choose 

cooperation in order to avoid the danger of the deviation from the Nash equilibria. In 

this example, we use the same parameter values as those in Example 7. According 

to the decision rules provided by Proposition 4, we find the optimal solutions are 

xiH = xiL = Y~L = 0 and x2L = Y2L = 1. With this strategy, we obtain the expected 

revenue of the two players for the state (2, 1, 1) as: \~;.* = 104.25 and "V;* = 194.18. 

Comparing these solutions with the two players' expected revenue in Table 13, we 

see that even though P1 's expected revenue is decreased, the expected revenue of P2 

is dramatically increased. As a result, the total expected revenue of the two players 

is increased more than $50 on average, which account for about 17% of the total 

revenue in the non-cooperative situation. Thus, if there is an appropriate agreement 

on the compensation between the two players, such improvement indicates that the 

cooperation is strongly recommended. + 

We will next investigate the structural properties of V (t, n 1 , n 2). 
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Theorem 7 Under cooperation, for any state (t, n 1 , n2) (t E [1, T] and n1. n2 >.,OJ, 

-the objective function V (t, n 1 , n2) exhibits the following structural properties: 

(i) V (t, n 1 , n2 ) is non-decreasing quasi-concave in n1 and n2 ; 

(ii) V ( t, n1. n 2 ) - V ( t - 1, n 1 , n 2 ) is non-decreasing in t and non-decreasing in ni. 

Proof. We will prove this Theorem by induction. First, let us prove the property (i). 

From (33), it is easy to verify that property (i) is satisfied by for any state (1, n 1 , n 2 ). 

Now, let us assume that property (i) is also valid for any n 1 and n2 in period t-1 with 

the hope that such properties can be extended to period t. Referring to expressions 

shown in Figure 20, the total expected revenue can also be written as 

rlL + V (t- 1, n1- 1, n2) 

+.XlL max r2L + V (t- 1, n1, n2- 1) 

V (t- 1, n 1 , n2 )- Cl£ 

r2L + V (t- 1, n1, n2- 1) 

+.X2Lmax r 1L + V (t -1, n 1 -1, n2) 

V (t- 1, n 1 , n 2)- C2£ 

(35) 

It is not difficult to find that V (t, n 1 , n2 ) is always a positive and linear combination of 
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five non-decreasing quasi-concave functions (by assumption). Hence, we can conclude 

that V (t, n1. n 2) for 'Vn1, n 2 > 0 is also non-decreasing quasi-concave in n1 and n2. 

By induction, the proof of property (i) is finished. 

Next, we shall prove the property (ii) as stated above. In terms of the marginal 

expected revenue of Pi's one room, we can transform equation (35) as 

(36) 

We note that each item on the RHS of (36) is non-decreasing in n 1 and n 2 

since oi for state (t- 1, n 1, n2 ) is always non-increasing in n 1 and n 2. Hence, the 

LHS, V (t, n1, n 2) - V (t- 1, n1. n2) is also non-decreasing in n 1 and n2. In other 

words, V (t, n 1, n 2) is sub-modular in (t, n 1) and (t, n 2). Meanwhile, according to 

such sub-modularity of V (t, n 1, n 2), we can see that oi (t- 1, n 1, n 2) is also non-

increasing in t which implies that the LHS of (36) is non-decreasing in t. Therefore, 

V (t, nt, n 2)- V (t- 1, n 1, n 2) is non-decreasing in t and ni, i = 1, 2. This completes 

the proof. • 

Similar to the Theorem 5, the properties shown in the Theorem 7 implies the 

existences of some critical booking capacities and booking periods. 
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• For an given t and n2, there always exist a critical booking capacity, n1K(t, n 2) 

(K .• -. L, H ), bJ which it js always optimal to 'assign' the K-fare class customer 

to P2 for nl < nlK; and P1 should accept it for nl ;::: nlK. 

• For an given n1 and n2, there always exist a critical booking period, t1K(n~, n2) 

(K = L, H ), by which it is always optimal to 'assign' the K-fare class customer 

to P2 for t < i1K; and P1 should accept it for t ;::: i1K. 

• There exists a critical state (i, n1 , n2 ) by which for any "upper" state ((t, n 1 , n2 ) > 

(i, nl, n2)) the low-fare booking request should be rejected by both players. 

Referring to the optimal decision rules described in Proposition 4, there are 

sixteen different combinations of the five decision variables in the cooperative situ-

ation. The optimal solution can be any of them. However, we can use the critical 

values in a specific state to summarize each of these five decisions, e.g., for the give 

state variables, t and n2 , the decision on P1's high-fare class booking request can be 

expressed as 

{ 

1 (accept), 
xlH (t,nl,n2) = 

0 (reject), otherwise, 

condition for X 1H (t, n1 , n2 ) in Proposition 4, this expression looks nicer and more 

understandable. In addition, our numerical experiments show that using these crit-

ical values significantly decreases the computing time when calculating the optimal 

solutions on the computer. 
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Chapter 5 
Static Game Model with Incomplete In­
formation 

Note that a very important assumption in the models established in Chapter 3 

and Chapter 4 is complete information. One hotel knows all the necessary information 

(e.g., transfer rate, rejection cost, etc.) of both hotels except for the other hotel's 

decision on the booking limit. In other words, the two players' objective functions 

are common knowledge. Obviously, this is not always applicable in practice. Hence, 

we are going to relax this assumption and study single-period games with incomplete 

information. Under these game theoretic settings, the expected revenues of the two 

players are determined by a "chance move", about which the players are partially 

informed. In this context, we investigate the consequences for the players' expected 

revenues by varying the states of information on the outcome of the chance move. In 

general, the value of information for the player refers to the difference of his optimal 

payoffs with and without the information. In this chapter, we are going to study 

the value of different information. Specifically, we debate the following questions: 

1) Is the value of information always positive in our games? and 2) what type of 

information is more valuable? 

Information value theory is a rather well known subject in classical decision 

theory. The basic result for a zero-sum Bayesian game indicates that the information 

is always valuable (see Ponssard (23]). Gilboa and Lehrer (19} characterized the 
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functions that measure the value of information in optimization problems. However, 

for the non-zero-sum games, some studies indicate that the value of information may 

become negative in some special cases. Kamien et. al. [24] showed an instance where 

players might prefer dropping some payoff-relevant information in order to improve 

their equilibrium payoff. Neyman [38] investigated the reasons why a player might 

prefer a 'no information' game instead of a game with private information. Bassan et. 

al. [3] present the conditions under which having more information always improves 

all players' payoffs. According to the definitions of different types of information, 

we will examine their values when the chance move is incurred by the incomplete 

information of a specific parameter. In practice, we identify two parameters for our 

study. They are the rejection cost and transfer rate respectively. From our problem 

in Chapter 3, we see that the existence of transferred customers leads to competition 

between the two players. Therefore, transfer rates significantly affects one player's 

revenue especially when the booking requests in one hotel are 'rich' and the booking 

requests in the other one are 'poor'. In addition, we know that the transfer rate is 

a customer side parameter. Hotels can not totally control it by all means. Then, it 

is reasonable to assume there is incomplete information about the transfer rate. On 

the other hand, we note the rejection cost is another suitable parameter since it is 

normally incurred by loss of goodwill in hotel business. Therefore, it is also on the 

customers' side and it is important for the player's expected revenue. Our study, 

in this chapter, will assume these two parameters as the incomplete information to 

generate the chance move for the game of the two players. 

Before analyzing our game model and optimal rationing policies, it is necessary 
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for us to introduce the preliminary considerations of information types. According 

to Levine and Ponssard [30], there are three distinct types of information that one 

player may acquire in the incomplete information game. 

Type 1: Secret information One player acquires the information, but the other 

players are ignorant of this fact and will not modify their strategies. This assump­

tion is actually unreasonable if it is a dynamic game and there exists a unique Nash 

equilibrium in the 'no information' game. It is because the uninformed players might 

soon realize that they are playing a different game. 

Type 2: Private information One player acquires the information and, though 

he is the only one informed, this fact is known to the other players. This type of 

information may have several effects on all player's optimal decisions. First, the 

acquisition of information may give the opportunity to the informed player to use it 

against the uninformed players. Second, the uninformed players might also modify 

their own decisions and it may or may not benefit the informed player. 

Type 3: Public information All players acquire the information and it is known 

to all players. 

At first sight, we might expect that secret information would be more valuable 

than private information, which in turn, would be more valuable than public informa­

tion. Next, we will examine the Bayesian Nash equilibrium in each type of games by 

assuming the rejection cost q1L and transfer rate u1L as the incomplete information 

respectively. 
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5.1 The Value of Information when qlL is unknown 

As discussed in Chapter 3, in a static game of complete information, a strategy 

for Pi is his low-fare booking limit, biL· We shall use the same assumptions and 

notations presented in Chapter 3 for our static incomplete information games in 

this chapter. The normal-form representation of this two-player game of complete 

information can be written as G = {biL, b2L; 11 , 12}. We now want to develop the 

normal-form representation of the static incomplete information (Bayesian) game. 

Let us assume that Pi's objective function is Ji(biL, b2L; ti), where ti is Pi's type and 

belongs to the type space Ti. To simplify the problem, we assume that Pl's rejection 

cost of his low-fare class customer is the only incomplete information which can be 

qi£ with probability O! and qrL with probability of 0~ for O! + 0~ = 1 and q}L < qrL· 

Let us first discuss the case when both players are uninformed. 

5.1.1 Uninformed Game: Both Players are Uninformed of qlL 

We note that if both players are uninformed on the rejection cost of Pl, then 

each player has only one type which is T1 = {tq1} and T2 = {tq2}· Referring to (4), 

Pl 's expected revenue obtained from the low-fare class customers is 
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+ roo roo [rlLblL- E(qlL) (xlL- MIL)] !IL!2L dxiL dx2L 
JB2LJo 

+1oo [rlLblL- E(qiL) (xlL- biL)] F2L (b2L) !IL dxlL 
b1L 

(37) 

where MIL = biL- u2L (x2L- b2L), E(qiL) = O!qi£ + O~qiL, and B2L = b2L + (blL­

xiL)/u2L· We find that Pl's expected revenue obtained from the high-fare class 

customers is same as that in the complete information game, which is 

1B2n1blH 
+ rlH (xiH + biH - MlH) !IH !2H dx1H dx2H 

b2H 0 

1B2n1oo + [riHblH + QlH ( x1H - M1H)] !IH hH dxlH dx2H 
~H b1H 

+ roo roo [riHblH + QlH (xlH - MlH )] !IH hH dxlH dx2H 
JB2nJo 

+1oo [riHblH- QlH (xiH- biH)] F2H (b2H) !IH dxlH, 
b1H 

(38) 

where MlH = blH- u2H (x2H- b2H ), and B2H = b2H + (biH- XIH )/u2H· Note that 

P2's objective function does not involve QlL, we then obtain P2's expected revenue 
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1B1Klb2K 
+ r2K ( x2K + b2K - M2K) hK !IK dx2K dx1K 

b1K 0 

1B1Kl00 
+ [r2Kb2K - Q2K (x2K - M2K )] hK !IK dx2K dx1K 

b1K b2K 

+ roo roo [r2Kb2K- Q2K (x2K- M2K)] hK!IK dx2K dx1K 
JB1KJ0 

+100 

[r2Kb2K- Q2K (x2K- b2K )] F1K (biK) hK dx2K} 
b2K 

(39) 

where i = 1, 2, b2H = c2- b2L, M2K = b2K- U1K (x1K- b1K ), and B1K = b1K + 

( b2K - x2K) / u1K. Then, the total expected revenue of P1 in this situation is 

(40) 

Meanwhile, the total expected revenue of P2 is 

(41) 

Naturally, we will turn to find the Nash equilibrium in this Bayesian game (Bayesian 

Nash equilibrium). Referring to (5), we obtain 

- (rw + qw) [1b1H i~H fw hH dx2H dxw + Fw (biH)] , 

(42) 

where N2K = b2K + (biK- XIK) /u2K (K = L, H) and E(qlL) = O!qiL + o;q?L· As for 
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P2, the first order partial derivative of J2 with respect to b2L is exactly same as that 

in the complete information game, which is 

a.J [lb2Ll00 

J 8b 
2 = v2 = (r2L + q2L) f1Lf2L dx2L dxlL + p2L (b2L) 

2L 0 NIL 
(43) 

where N1K = b1K + (b2K- x2K) ju1K (K = L, H). 

We see that V1 is also exactly same as that in the complete information game by 

substituting E(q1L) with ql£. The uninformed game in this situation is not equivalent 

to the complete information game by assuming qlL in (4) as E(ql£). According 

to Lemmas 1, 2 and 3, we know each player's objective function has the following 

structural properties: 

(1) Pi's objective function is strictly concave in biL fori= 1, 2. (by Lemma 1) 

(2) Vi = 0, i = 1, 2, is a strictly decreasing curve in the (blL, b2L) plane. (by 

Lemma 2) 

(3) The implicit derivative of V1 = 0 with respect to blL is always less than the 

implicit derivative of V2 = 0 with respect to blL. (by Lemma 3) 

All of these properties of the objective functions will lead to the existence of 

unique Bayesian Nash equilibrium in the uninformed game. 

Theorem 8 When each of the two players has an incomplete information of qlL, 

the game admits a unique Nash equilibrium. 
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Proof. Referring to the properties of Ji, we find that one player's best response 

function has the same structural properties as that in the complete information game. 

It implies that, in (biL, b2L) plane, the two best response curves of the two players 

intersects and only intersects once. In other words, the Bayesian game admits a 

unique Nash equilibrium. • 

From Theorem 8, we know that if the two players are both uninformed, they 

will play a Nash game in order to maximize their total expected revenue. We denote 

(biL, b2L) as the Nash equilibrium and Jt the maximum expected revenue in this 

"uninformed" game. We see that the Nash solution pair is the intersection of Vi = 0 

and V2 = 0 in the (biL, b2L) plane. We now attempt to find the moving direction of 

(biL, b2L) in the (biL, b2L) plane as E(qlL) varies. Also, we will examine the variation 

of the optimal expected revenue, Jt, on E(qlL)· These findings will help us analyze 

the conditions by which the value of information is positive (or negative). 

Proposition 5 If the two players are both uninformed of qlL and the Nash solution 

of each player is greater than 0 {b;L > 0, i = 1,2), then biL decreases and b2L 

increases as E(qiL) decreases; and vice versa. 

Proof. If biL, b2L > 0, then they must satisfy (42) and (43). The derivative of vl 
with respect to E(qiL) is 
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=0, 

and the derivative of V2 with respect to E(qiL) is 

-db2L/dE(qiL) 2: (r2K + Q2K) !2K (b2K) F1K (biK) = 0. 
K=L,H 

We then obtain dbiddE(qiL) and db2ddE(qiL) by solving the two equations above. 

It is not difficult to find that dbiddE(qiL) > 0 and db2.£/dE(qiL) < 0. These imply 

that as E(qiL) increases, biL increases and b2L decrease; and vice versa. • 

Remark 3 From Proposition 5, we note as QlL increases, the Nash solution pair 

move in the southeast direction in the ( blL, b2L) plane, which is identical to the result 

in the sensitivity analysis in Chapter 3. However, we find the total derivative of J1 

with respect to E ( QlL), which is (after some simplifications) 

dJifdqlL = u2L [(riL + E(qiL)) (SIL- FlL (biL) F2L (b2L))] db2L/dE(qiL) 

-u2H [(r1H + QIH) (SIH- FIH (biH) F2H (b2H))] db2L/dE(qiL) 

- r= 100 

(xlL- MIL) !IL!2L dxlL dx2L 
JB2L 0 
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is too complicated to analyze the structural properties of J1 with respect to E(qiL)· 

The mono tonicity and concavity (or convexity) of optimal J1 with respect to qlL is 

ambiguous. Similarly, we can also find that the structural properties of optimal J2 on 

QIL is uncertain. <l 

Pl 's information Objective functions Value of 

on qlL Type t!i Type t~i information 

Secret information ( i = 1) J1(bll b* ·tll) J1 (b21 b* . t21) 1 
1 1L> 2£> q1 1 1L> 2L> q1 wq1 

Private information (i = 2) J2 (bl2 b2 . tl2) J2(bl2 b2 . t22) 2 
1 1£> 2£> q1 1 1£> 2£> q1 wq1 

Public information ( i = 3) J3(b13 b13. t13) J3(b23 b23. t23) 3 
1 1£> 2£> q1 1 1£> 2L> q1 wq1 

Table 15. P1 's objective function and corresponding strategies when P1 receives 
different information. 

We will next examine the optimal decisions of one player when he receives 

the information of QIL· We then analyze the value of information of different types. 

We denote P1 's types, relevant objective functions, and value of information when 

acquiring different information with the notations in Table 15. analogous to these 

notations, one might obtain P2's types, relevant objective functions, and value of 

information. First, let us assume P1 received the information secretly. In this case, 

P2's strategy remains b2L since he assume the game is still a Nash game. However, 
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P1 might choose different booking limit in the two types against bzL· We denote 

P1's booking limit in type ~i as b{~, j = 1, 2. Second, let assume P1 received 

private information. According to the definition, P2 might choose a strategy which is 

different with bzL, however, he will use the same strategy for both type of games. We 

denote the booking limit of P2 in this situation as b~L· On the other hand, P1 knows 

the chance move of the game, then he should adopt different strategies for the two 

types of games. We use b{~ to present the booking limit of P1 in type ~i, j = 1, 2. 

At last, when both players knows the chance move of the game (public information 

case), we use IJ11 to present the booking limit of Pi ( i = 1, 2) in type ~~ (j = 1, 2). 

5.1.2 Secret Information Game : One Player Acquires q1L Secretly 

Now, we will examine value of secret information by examining the one player's 

objective functions and corresponding strategies. 

Proposition 6 The value of secret information of qlL is always positive for P1 if 

biL > 0, and it is always zero for P2. 

Proof. When P1 receives the secret information of qlL, he will make a decision on 

the booking limit against bi£ according to his best response function in both types of 

games. Then, the total expected revenue is 

(44) 

We see that the optimal booking limit for P1 in type t~i (j = 1, 2), b{~*, can be 
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obtained according to the best response function (in this case the BR function is 

Vi = 0 since biL > 0). Referring to Proposition 5, we also know that bil* > biL and 

bil* < biL, since qi£ > E(qiL) > qrL· Thus, it turns out 

for j = 1, 2, which indicates the value of secret information of qlL for Pl 

1 Jh J* 0 Wq1 = 1 - 1 > · 

Then the value of the secret information of q1L for Pl is always positive. 

As for P2, we know that qlL does not play a role on expected revenue. When 

receiving secret information, his objective functions in the two types exhibit exactly 

the same form. It implies that the game (P2 acquires secret information of qiL) is 

equivalent to the uninformed game in each type. Thus, 

b11* b21* b* 
2£ = 2£ = 2£, 

which indicates the value of secret information of qlL for P2, 

1 J.1* J.* wq2 = 2 - 2' 

is always zero. • 

5.1.3 Private Information Game: One Player Receives Private 
Information of qlL 

Next, we consider the case when one player acquires the private information on 

qlL. Let us first assume Pl acquires the private information of q11,. In this situation, 
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PI's type space is T1 = {t!~, t~i} and P2's type space is T2 = {t~2 }. PI's expected 

revenue from low-fare customers in type ~i (j = I, 2) is 

Bi2 oo +1 2

L r [r1Lb{i - q{L ( Xl£ - Mfi)] !IL!2L dxlL dx2L 
b2L JbiL 

+ roo roo [r1Lb{i- q{L (xlL- Mfi)] !IL!2L dxlL dx2L 
ls~~Jo 

+ roo [r1Lb{i - q{L ( Xl£ - b{i)] F2L (~i) ilL dxlL ( 45) 
JbiL 

where Mfz = b{i - u2L (x2L- b~L), and B~~ = b~L + (b{i - xiL)/u2£. Referring 

to (38), we can obtain PI's expected revenue from high-fare customers in type t~i 

(j = 1, 2): 
.2 

JfH(b{~,b~H;t~i) = 1bfu r1HX1HF2H (~H) fiH dxlH 

(46) 
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.2 .2 ( .2 ) .2 .2 .2 .2 
whereMiH = b{H-u2H x2H- ~H 1 b{H = C1-b{L1 andB~H = b~H+(b{H-x1H)/u2H. 

To sum up the two expression of (45) and (46)1 we obtain PI's objective function in 

type t{i (j = 11 2): 

2 ( Li2 b2 . .Li2) - J2 ( Li2 b2 . .Li2) J2 ( Li2 b2 . j2) Jl if1L1 2L' ~ql - lL iflL' 2£1 ~ql + lH iflH' 2H' tql · (47) 

We see that Pl 's objective function in each type is exactly identical with that in the 

complete information game. Thus, the properties described in Lemmas 1, 2 hold. 

However, P2 has only one possible objective function: 

J. (b12 b22 b2 . t2 ) -2 lL' lL' 2£1 q2 - z=o~ L 
j=1,2 K=L,H 

+ r= r= [r2Kb~K- Q2K (x2K- Mt~)] hK!lK dx2K dxlK 
JB{;)o 

+ {
2

00 

[ r2K b~K - Q2K ( X2K - b~K)] F1K ( b{~) !2K dx2K} 
Jb~K 

(48) 

h b2 - C b2 Mi2 - b2 ( Li2 ) d Bi2 W ere 2H - 2 - 2L' 2K - 2K - UlK XlK- iflK 1 an lK 
.2 2 

b{K + (b2K-

x 2K) / u 1K. Differentiating J 2 with respect to b~L, we obtain 
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1
b~L roo 

V2(bi1_, b~'i, b~L; t~2 ) = (r2L + Q2L) L 0{[ J" i
2 
!ILf2Ldx2LdxlL + P2L (b2L)] 

j=l,2 . o 1b~:1Lfoo 
- (r2H + Q2H) L [0{ }"i

2 
!IHhHdx2Hdx1H + F2H (b2H)], 

j=l,2 O NlH 

where N{i = b{~ + (b~K- X2K) /ulK (K = L, H) and b~H = c2- b~L· Differentiating 

V2(b~'i, bi'i, b~L; t~2 ) with respect to b~L' we obtain the second order derivative of J2 

with respect to b~L, which is 

b2 

- L 8{ L (r2K + Q2K) [1 2

K ~2 hK!IK (N4~) dx1K + hK (b~K) F1K (bi~)] < 0. 
j=1,2 K =L,H 0 

(49) 

Therefore, J2 ( bii, b~i, b~L; t~2 ) is strictly concave in b~L. Furthermore, we find the 

implicit derivative of V2 = 0 with respect to b{i is 

and -1 < b~ < 0. ( 49) and (50) imply that the properties described in Lemmas 1, 2 

also hold for P2 in this situation. Comparing b~ with the implicit derivative of V1 = 0 

in each type, we find that b~ is always greater than the derivative of vl = 0 with 

'2 • '2 . 
respect to lliL m type ~1 (J = 1, 2). 

All of the results obtained above lead to the existence of a unique Bayesian 

Nash equilibrium. 
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Theorem 9 When P1 has the complete information of P2 and himself, and P2 

knows only that P1 's rejection cost of low-fare class customer is qtL with probability 

O! and qrL with probability of 0~ for O! + 0~ = 1 and qrL > qh, the game admits 

a unique Bayesian Nash equilibrium (bii*, bii* 1 b~£). In addition, bii* ~ bii* and 

J2* (b12* b2* . t12) > J2* (b22* b2* . t22) 1 1£ 1 2£1 q1 1 1£ 1 2£1 q1 

Proof. Referring to the results we discussed above, we find that P1 's best response 

function in each type has the same structural properties as those in complete infor-

mation game. On the other hand, P2's best response function to P1 's strategy in 

one type given the strategy in the other type is known also has the same properties 

as those in the complete information game. Therefore, in (b{i, b~L) (j = 1, 2) plane, 

the two best response curves of the two players intersects and only intersects once. It 

implies that the Bayesian game admits a unique Nash equilibrium (bii*, bi1,*, b~£). 

According to (8), we see that if b2L is given, i.e., b2L = b~£, and blL = ba* > 0, 

then bii* and b~£ must satisfy 

Moreover, we know that the spill rate of a low-fare customer, S1L, decreases as blL 

increases, and vice versa. Thus, as qlL increases from qh to qrL, SlL should decrease 

while S1H should increase. It leads to the increase of the optimal booking limit: 

bi1,* > ba*. However, we know that the optimal booking limit, bii., is zero if 
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In this case, as qiL decreases from qrL to qtL, \tl(O, b2L; t!i) is still less than zero. It 

implies that b~i* = bn* = o. Thus, in general, bn* ~ b~i*. 

Differentiating J1 with respect to qiL, we obtain 

dJifdqlL = [(riL + qiL)SIL- (rlH + q1H)S1H) dbiL/dqlL 

- r= r= (xiL- MIL) !IL!2L dxlL dx2L 
JB2LJo 

(51) 

where b2L is assumed to be constant. Referring to Proposition 5, we know dbiL/ dq1L > 

0. Then the first item on the RHS of (51) is less than or equal to zero since V1 ~ 0. 

Thus, dJd dqiL < 0, which indicates that the maximum expected revenue decreases 

. . J2*(b12• b2*. t12) > J2*(b22• b2*. t22) • as qlL mcreases. 1 1L , zL, q1 1 1L ' zL, ql · 

We note that the Bayesian Nash equilibrium (bti*, bn*, b~£) can be obtained 

by solving the BR functions of Pl in the two types and P2's BR function. Thus, the 

value of private information of qiL for Pl can be expressed as 

2 - (}1J2*(b12• b2*. t12) + (}2J2*(b22• b2*. t22) J*(b* b* . t2 ) 
Wq1 - q 1 1L' 2L' q1 q 1 1L' 2L' q1 - 1 IL' 2L' q1 · (52) 

Figure 21 depicts the respective positions of the total expected revenue in 

the (qiL, JI) plane. Consequently, the value of private information is always positive 

if the two points, ( q{L, Jf*( bii*, b~£; t!~)) and \ qiL, Jf* ( b~i*, ~1; t~)), are both above 
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Value of private 

information of %L 

Figure 21. Value of private information of qlL for Pl. 

PI's optimal 
revenue with 

different q JL 

the curve J 1 ( biL ( qlL), b2L ( q1L)). However, the value of private information is always 

negative if (q}L, J'f_*(bii*, b~£; t!i)) and (qiL, Jf*(bi1,*, b~£; t~i)) are both below the curve 

J1(biL(q1L),b2L(qiL)). In addition, it is also possible that (q}L,Jf*(bi1,*,b~£;t!i)) is 

above J 1 and ( q~L, Jf* ( b~1,*, b~£; t~i)) is below J 1 . In this situation, O! (or 0~) plays a 

role on the value of private information. It is not difficult to find that the value of 

private information is positive if ( E ( qlL), Jf*) is above J 1 ( biL ( qlL), b2L ( qlL)); and it 

is negative if (E(qiL), Jf*) is below Jl(biL(qiL), b2L(qiL)). 

Next, we will in turn discuss the case when P2 receives the private information. 

In this situation, P2's type space is T2 = {t!~, t~n and Pl's type space is T1 = {t~1 }. 

P2's objective function in type ~; (j = 1, 2) is 
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+ 100 100 

[r2K~~ - Q2K ( X2K - M4~)) hK f1Kdx2Kdx1K 
BrK 0 

+17 [r2K~~ - Q2K ( x2K - ~~)) F1K ( bfK) hK dx2K} . 
~K 

Note that Ji(bfL, ~i; t~;) is identical to the objective function in the uninformed 

game. It is because QlL does not play a role on P2's objective function, he then will 

use the same strategy in the two types to against bfL· It indicates that 

Thus, Pl's objective function is also identical to that in the uninformed case (see 

(40)). Accordingly, we conclude that the game when P2 acquires the private infor-

mation of QlL is identical to the uninformed game and the value of private information 

of QlL for P2, w;2 , is always zero. 

5.1.4 Public Information Game: QlL is Known to Both Players 

At last, we are going to discuss the case in which the two players receive public 
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information of qlL. Each player has two types. The type spaces of Pl and P2 are 

Tf = {t!f, t~H and Tl = { t!~, t~H respectively. In this situation, both players have 

two objective functions. Note that in each type, one player has complete information 

of both players. Thus, one player's objective function in each type is identical to ( 4). 

Then, we have the following conclusions. 

Theorem 10 U'hen the two player receive the public information of qlL, there exist 

a unique Nash equilibrium in each type of games, which is (bii*, b~i*) when qlL = qtL; 

and ( bii*, b~i*) when qlL = qiL. In addition, if qtL < qiL, then bii* ::; bii* and 

b~i* ::; b~i*. 

Proof. When the two players receive public information, in each chance move, the 

two players play a complete information game. Referring to Theorem 2, the game 

admits a unique Nash equilibrium. Furthermore, we have known that the optimal 

booking limit of blL is non-decreasing and b2L is non-increasing as q1L increases (see 

Proposition 5). Accordingly, we have bii* ::; bii* and b~i* ::; b~i* if qiL < qiL. • 

Due to the existence of the Nash equilibrium, we can calculate the optimal 

booking limits of the two players in each chance move. Thus, the value of public 

information of qlL for Pl can be expressed as 

3 ()1J3*(b13• b13•. t13) + ()2J3*(b23• b23•. t23) J*(b* b* . t ) 
Wq1 = q 1 1£ ' 2L ' q1 q 1 1£ ' 2£ ' q1 - 1 1£' 2£' q1 ' (53) 

and the value of public information of qlL for Pl can be expressed as 

3 - ()1 ].3* (bl3• b13*. t13) + 92 J.3* (b23• b23•. t23) J.* (b* b* . t ) 
Wq1 - q 2 1£ ' 2L ' q2 q 2 1£ ' 2£ ' q2 - 2 1£' 2£, q2 ' (54) 
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Value ofprivate 

information of q1L 

Figure 22. Value of public information of qlL for Pl. 
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Remark 4 From Figure 22, we see that the sign of the value of public information for 

Pl depends on the position of the point ( E( q1L), Jf*). The value of public information 

for Pl is positive if the point is above the curve J;; and it is negative if the point 

is below Ji. Note that (}~ (or 0~) also affects the value of public information. As 

0~ varies from 0 to 1, E(qiL) increases from qh to qiL· Then, the corresponding 

total expected revenue o1 Pl will decreases from J 3* (b13* b13* · t12 ) to ] 3* (b23* b23* · t23 ) 1 1£ ' 2£ ' ql 1 1£ ' 2£ ' ql 

along the line. Consequently, it is possible that the value of public information is 

negative for some ranges of B~ and it is positive for other ranges of (}~. <l 

We have seen the secret and private information of q1L are not valuable for 

P2. However, it is interesting to see that the public information might benefit P2 
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in some situations. Even though the relationship between J:; and QIL is uncertain 

(see Remark 3}; we know that the value of public information for P2 is positive if 

(}1J.3*(b13• b13•.t13)+02J3*(b23• b23•.t23). t th J.*(b* b* ·t ) I dd·t· q 2 1£ ' 2£ ' q2 q 2 1£ ' 2L ' q2 IS grea er an 2 IL• 2£, q2 • n a I IOn, 

the role of O! on the sign of w~2 is similar to the case for P1 (see Remark 4). 

Next, we will provide a numerical example to demonstrate the important re-

suits obtained in this section. 

Example 10 In this example, we use the same values as in Table 3 of Example 

1 in Chapter 3 for prices and transfer rates. In this case, we assume qtL = 10 with 

probability of 0. 5 and qrL = 60 with probability of 0. 5. First, we attempt to examine 

the values of the different information and their relations. We set the booking request 

expectation of K -fare class in each hotel to be a lower value number ( 10 for low­

fare class, and 5 for high-fare class) and a high number (60 for low-fare class, and 

35 for high-fare class). We then generate 16 scenarios, by which we calculate the 

optimal solutions when the two players acquires different information on q1L. The 

relationships among the values of different information for P1 is shown in Figure 23. 

It can be seen that the values of secret and private information dominate the value of 

public information in most cases (region R 1 and R 2). However, we find that when 

AIL and A2H are high while A2£ and AlH are low (region R 3), the value of public 

information dominates the value of private information. In addition, when AIL is 

high while A2L, AlH and A2H are low (region R4), the value of public information 

dominates the values of both secret and private information. Next, we examine the 

value of different information of QIL for P2. As expected, the values of secret and 
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A,L : 10; A,H :35 

A,L : 60; A,H :35 

A,L :10; A,H :5 

~L :10 

DeGroote School of Business 

~L :60 ~L :60 

Figure 23. Relations of value of different information of qlL for Pl. In region R 11 
2 1 3 · · R 1 2 3 · · R 1 3 r d. wq1 > wq1 > wq1; m regiOn 2 , wq1 > wq1 > wq1; m regiOn 3 , wq1 > wq1 > wq1 an m 

· R 3 2 1 regwn 4 , wq1 > wq1 > wql· 

private information for P2 are always zero in any scenarws. We then calculate 

the values of public information in each scenario and the findings are summarized 

in Figure 24. Note that when P2 's booking request expectation of high-fare class 

customer is lower (region D2), P2 is more likely benefit from the public information 

of qlL. On the other hand, when his booking request expectations of the two fare 

class customers are both high (region D1), the value of public information of qlL is 

negative. We also find that in some scenarios, the sign of w!2 change if we vary O!. 
For example, when we set AIH = >..2H = 10 and AIH = >..2H = 35, if O! is changed 

from 0.5 to 0.8, w!2 will change from w:2 < 0 to w:2 > 0. This verifies our conclusion 

presented in Remark 4. + 

5.2 The Value of Information when UIL is unknown 

Note that we have analyzed the value of information of qiL for the two play-

ers in pervious section. Now, we will assume another important parameter as the 
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~L : 1 0; ~H : 3 5 

~L :60; ~H :35 

~L :10; ~H :5 

DeGroote School of Business 

Figure 24. Value of public information of qlL for P2. In region D1 , w~2 < 0 and in 
region D2 , w~2 > 0. 

incomplete information, i.e., the transfer rate. Clearly, in each information case, the 

game model will be different since one player's transfer rate only plays a role in the 

other player's objective function. Again, we assume Pl 's transfer rate of his low-fare 

class customer is the only incomplete information which can be u~L with probability 

0~ and u~L with probability of 0~ for 0~ + 0~ = 1. Let us begin from the uninformed 

case. 

5.2.1 Uninformed Game: Both Players are Uninformed of u1L 

When both players are uninformed of ulL, each player has only one type which 

is T1 = { tu1 } and T2 = { tu2 }. We see that Ul£ does not affect the expected revenue 

of Pl in any fare class (see (4)). Thus, the objective function in this case is exactly 

identical to ( 4) of the complete information game. However, ulL plays a role on the 
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expected revenue of P2. Thus, we have P2's objective function as 

rb2L 
+ Jo r2Lx2LFIL (biL) f2L dx2L 

+ rX) roo [r2Hb2H- q2H (x2H- M2H)] hH!lH dx2H dxlH 
lslHJo 

1B1H1oo 
+ [r2Hb2H- q2H (x2H- M2H )] hH!IH dx2H dxlH 

b1H b2H 

+ roo roo [r2Hb2H- q2H (x2H - M2H )] hH !IH dx2H dxlH 
lslHJo 

(55) 

where b2H = c2 - b2L, M~L = b2L - u{L (xiL- biL), M2H = b2H - UIH (xlH- blH ), 

BiL = blL + (b2L - x2L)/u{L and BIH = blH + (b2H - x2H )/uiH for j = 1, 2. Simi-

lar to the uninformed case in previous section, we will attempt to find whether this 

game has a Nash strategy. Since P1's objective function is identical to that of com-

126 



Jingpu Song DeGroote School of Business 

plete information game. Therefore, his objective function has the same structural 

properties as described 3. We then focus on the P2's objective function. Partially 

differentiating J2 with respect to b2L, we obtain 

(56) 

where NfL = biL+(b2L- x2L) /u{L (j = 1,2) and NIH= b1H+(b2H- X2H) /uiH· We 

find the second order derivative of J 2 with respect to b2L, 

- (r2H + Q2H) [1b2

H hH fiH (NIH) dxiH + fiH (biH) F2H (b2H)] , 

is always less than zero, which implies J2 is strictly concave in b2L. With further 

investigation, we find that V2(biL, b2L; tu2) = 0 is a strictly decreasing curve in the 

(biL, b2L) plane, and the implicit derivative of V1(biL, b2L; tu1) = 0 with respect to blL 

is always less than the implicit derivative of Y;(biL, b2L; tu2) = 0 with respect to b1L· 

All of these results obtained above lead to the existence of a unique Nash equilibrium 

in the uninformed game. 

Theorem 11 lVhen each of the two players has an incomplete information of UIL, 

the game admits a unique Nash equilibrium. 
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Proof. Analogous to the proof of Theorem 8. • 

Due to the existence of the unique Nash equilibrium in the uninformed game, 

the two players will more likely play the Nash strategy in this case. Note that the 

uninformed game in this case is not equivalent to the complete information game by 

assuming u1L in (4) as E(uiL), which is applicable when q1L is uninformed. This 

will make the analysis of the value of information even more difficult. We will next 

discuss the optimal strategy and the corresponding expected revenue when one player 

acquires the information of Ul£. 

5.2.2 Secret Information Game: One Player Acquires ulL Secretly 

We start our analysis of the value of information by assuming one player 

receives the secret information of Ul£. 

Proposition 7 The value of secret information of Ul£ is always zero for Pl; and 

it is always non-negative for P2. Specially, the value of secret information of Ul£ is 

always positive for P2 if b2L > 0. 

Proof. When Pl acquires secret information of u1L, his objective function in 

each type is totally identical to that of uninformed game since ulL has no effect on 

his expected revenue in any fare class. And, we also know that P2's booking limit 

remains b2L. Thus, it is optimal for Pl to adopt biL in each chance move to against 

b2L· It indicates that the value of secret information of Ul£ is meaningless for Pl. On 
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the other hand, if P2 receives the secret information of UI£, he will choose ~l in type 

~1 (j = 1, 2), which is probably different to b2L· It is because the first order derivative 

of J 2 in each type is different with that of uninformed game (see 56). Meanwhile, we 

note that if there exist a feasible solution of b2L (b2L > 0) which satisfied V2 = 0, 

the optimal booking limit in each type, ~~*, must be different with biL· It incurs an 

higher expected revenue than J2. Thus, the total expected revenue of P2 with secret 

information is 

nl Jl*(b* blh. tl ) + nl Jh(b* b21•. t2 ) 
uu 2 lL' 2L' u2 Uu 2 lL' 2L' u2 ' 

which is greater than J2(br_L, b2L; tu2 ). It indicates that the value of secret information 

of UI£ is positive for P2 in this situation. In general, we have w;.2 ;:::: 0. • 

Similar to the secret information case, the objective functions of P1 with 

private information of UI£ are same as ( 4) in each type. Then, the games in the two 

types are played as if both players are uninformed. Thus, P1 also can not benefit 

from the private information of u1£. 

5.2.3 Private Information Game: One Player Receives Private 
Information of u1L 

In this situation, P2's objective functions in the two types are different when 

acquiring private information of UI£. We can obtain P2's objective function in each 

type by simply substituting UI£ with u{L (j = 1, 2) and b2L with ~i in (4). As for 
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+ r)O roo [rlKbiK - QlK (xlK - Mf~)] hK !IK dx2K dxlK 
JB~~Jo 

+ {
2

00 

[r1KbiK- QIK (xiK- biK)] F2K (~~) !IK dx1K}, 
JbiK 

(57) 

"2 "2 "2 "2 ) "2 
where ~H = c2- ~L' biH = cl- biL, MfK = biK- U2K (xlK- ~K ' and B~K = 

b2K + (biK- x 1K )ju2K for j = I, 2 and K = L, H. Similarly, we in turn investigate 

the first and second order derivatives of J 1 with respect to bi£, the monotonic prop-

erty of V1 = 0 in the (biL, b2L) plane. We then find the structural properties of the 

objective function described in Lemmas I, 2 also hold for PI in this case. Further­

more, Comparing the implicit derivative of V1 = 0 with respect to blL to that of of 

V2 = 0 in each type, we find that in each type of game, the property shown in Lemma 

3 holds. 

Theorem 12 When P2 has the complete information of PI and himself, and PI 

knows that his transfer rate of low-fare class customer is U~L with probability (}~ and 

uiL with probability of (}~for (}~ + (}~ = I and uiL < uiL, the game admits a unique 
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Bayesian Nash equilibrium (bi£, bn:, b~l*). In addition, b~l* ~ b~l*. 

Proof. The proof of the existence of the unique Bayesian Nash equilibrium is 

analogous to the proof of Theorem 8, and is thereby omitted here. Now, let us prove 

bU* ~ b~l*. We know that if 

then it is always optimal for P2 to set his booking limit as zero for any UJL. It implies 

that 

b12• - b22• - 0 
2£ - 2£ - . 

However, in type t~~' if b2L = b~l* > 0, then it must satisfies 

Differentiating both sides of the above equation with respect to UJL ( blL is constant), 

we obtain 

Since arb::2)2 < o, we know that ;:~~ must be positive, which indicates b2L increases 

as UI£ increases. On the other words, b~l* is always less than b~l* if b~l* > 0. Thus, 

in general, b~l* ~ b~l*. • 

We might also compare the optimal expected revenue of P2 in each type. 

Differentiating J2 with respect to UI£ (biL is constant), we obtain 
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+ (8J?/8b2L) (db2L/duiL). 

Unfortunately, the relationship between 12(bi£, b~1_*; t~~) and 12(bi£, b~i*; t~~) is un-

certain since the sign of dl2/du1L in (58) can not be determined. However, the value 

of private information of u1L for P2 can be obtain by the following expression: 

2 _ (}1 ].2• (b2* b12•. t12) + (}2 r2• (b2* b22•. t22) T* (b* b* . t ) Wu2 - u 2 1£' 2L ' u2 uJ2 1L' 2L ' u2 - J2 1L' 2L' u2 · 

5.2.4 Public Information Game: u1L is Known to Both Players 

\Vhen the two players receive public information of UI£, the type spaces of 

Pl and P2 are T1 = { t~t t~U and T2 = { t~~, t~U respectively. Similar to the public 

information case in Section 5.1, one player' objective function in each type is identical 

to (4). 

Theorem 13 When the two players receive the public information of ulL, there exists 

a unique Nash equilibrium in each type of game, which is (bU,*, b~i*) when u1L = u~v· 

d (b23• b23•) h 2 } dd "t. b13• < b23• d b23• < b13• f 1 < 2 an 1L , 2L w en u1L = ulL. n a z wn, 1L _ 1£ an 2L _ 2L z ulL ulL. 
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Proof. The proof of the existence of the unique Nash equilibrium in each type is 

analogous to the proof of Theorem 10, and the proof the relations between bil* and 

brl* (i = 1, 2) is analogous to the proof of Proposition 5. Then, we thereby omit the 

proof of Theorem 13. • 

Even though we know that as UI£ increases the Nash equilibrium moves in 

the northwest direction in (biL, b2L) plane, which leads to a decrease in blL and an 

increase in b2L, we could not generalize the specific situation(s) in which the value 

of public information of ulL for one player is positive or negative. This is due to 

the uncertainty of the objective function with respect to u 1L in both uninformed and 

public information games. In general, the value of public information of UI£ for P1 

can be expressed as 

3 ll1 j3*(b13• b13•. t13) + n2 J3*(b23• b23•. t23) J*(b* b* . t ) 
Wu1 = 17u 1 1£ ' 2£ ' u1 17u 1 1£ ' 2£ ' u1 - 1 1L' 2£> u1 ' 

and the value of public information of UI£ for P2 is 

3 - l}1 ].3* (b13• b13•. t13) + ll2 ].3* (b23• b23•. t23) J.* (b* b* . t ) 
Wu2 - 17u 2 1£' 2£' u2 17 u 2 1£' 2£' u2 - 2 1L> 2L1 u2 · 

We are going to use the following numerical example to demonstrate the value 

of different information of ulL and some important results shown in this section. 

Example 11 In this example, we examine the value of different information of 

ulL for each player and their relationships in different situation. The procedures to 

attain this goal are very similar to Example 10. Specifically, we fix QlL as 30 and 

u~L = 0.2 with probability of 0.5 and uiL = 0.9 with probability of 0.5. probability 
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of 0. 5. Again, we vary the booking request expectations to generate 16 scenarios, by 

which we examine the relationships among the values of different information for the 

two players. As expected, the value of public information of ulL is dominated by the 

values of secret and private information in most cases {see Figure 25). Comparing to 

Example 10, the relationships among the values of different information of UIL exhibit 

an additional form, which is w~2 > w~2 > w~2 . In addition, we find that w~2 < 0 in 

any scenario in which the booking request expectations of the two fare classes of P2 

is high. As for Pl, the situations in which the value of public information of ulL 

A,L : 1 0; A,H : 5 

A,L :10; A,H :35 

A,L : 60; A,H : 5 

A,L : 60; A,H :35 

~L :60 ~L :10 

Figure 25. Relations of value of different information of ulL for P2. In region Rb 
2 1 3· · R 1 2 3· · R 1 3 2· 

wu2 > wu2 > wu2; m regiOn 2, wu2 > wu2 > wu2; m regiOn 3, wu2 > wu2 > wu2; m 
· R 3 2 1 d' · R 3 1 2 region 4, wu2 > wu2 > wu2 an m region 5, wu2 > wu2 > wu2· 

is positive or negative can be seen from Figure 26. In most cases, Pl can benefit 

from the public information of ulL. Similarly, we also find in some scenarios the 

relationships between the values of different information of ulL for P2 and the sign 

of the value of public information for Pl change as we vary 0~. In addition, we find 

that in the scenario when the booking requests expectations of Pl are high and the 

booking requests expectations of P2 are low, the value of any type of information for 
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A,L ; 1 0; A,H : 5 

A,L :10; A,H :35 

A,L ; 60; A,H : 5 

DeGroote School of Business 

~L ;lQ ~L;60 

Figure 26. Value of public information of ulL for P2. In region D1 , w~1 < 0 and in 
region D 2 , w~1 > 0. 

P2 is $55+ which account for 3% of his total expected revenue. + 
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Chapter 6 
Thesis Summary and Concluding Remarks 

As discussed in Chapter 1, game theory is a quantitative approach used in the 

study of two or more decision makers' interactive behaviors in competitive or coop-

erative situations. In Section 1.3, we indicated that game theory can be applied in 

revenue management to deal with single-period multiple-class games with complete 

information, and with multiple-period multiple-class games with complete informa-

tion, etc. In Chapter 3, we established a two-player two-fare-class (high-fare and 

low-fare) static game model to solve the hotel room inventory control problem. Un­

der this game theoretic setting, we obtained the optimal rationing policies for the 

two hotels under competitive and cooperative situations. We also characterized the 

structural properties of the corresponding objective functions and analyzed the equi-

libria of competitive and cooperative games, respectively. Our study indicates some 

important managerial implications on this revenue management problem: First, our 

game model indicates that as a best response, one hotel should always decrease its 

booking limit for low-fare customer by more than one unit if another hotel increases 

the low-fare booking limit by one unit, and vice versa. Secondly, when the hotels 

compete, we have proved the existence and uniqueness of Nash equilibrium and have 

presented the structural properties of these equilibria in different situations. Also, we 

identify the situation in which Stackelberg game is equivalent to Nash game. This re-

sult shows that if one player's booking limit is reached, i.e., he always rejects low-fare 

136 



Jingpu Song DeGroote School of Business 

customers, neither of the two players would like to "lead" the game. Finally, we find 

that the revenue loss is substantial if there is a lack of cooperation between two play­

ers. Our numerical experiments suggest that such loss can be more than 10% in most 

cases. 

In Chapter 4, we formulated a two-player two-fare-class dynamic game model. 

In this situation, the problem becomes more complicated since one hotel's accept/reject 

decisions in each period are not only affected by the decisions of the other hotel, but 

also affected by room inventory levels of both players at the beginning of the period. 

Analogous to the analysis in Chapter 3, we examine our model using Nash, Stackel­

berg and cooperative strategies. The main contributions can be presented as follows. 

First, each hotel's optimal future revenue is a non-decreasing function of its own room 

inventory and a non-increasing function of the other hotel's room inventory at any 

time. Secondly, we establish the unique Nash equilibrium of dynamic accept/reject 

decisions for the two hotels under competitive situation. Finally, by defining expected 

marginal value of hotels' room, we simplify the optimal accept/reject decision into 

sets of critical values. 

In Chapter 5, we studied the two-player two-fare-class static game with incom­

plete information. We first clarified the various definitions of information value in our 

games. Then we assume the rejection cost and transfer rate of one player as part of 

incomplete information and examine the optimal booking policies of each player with 

different information structures. We find that in the uninformed game, there exist a 

unique Nash equilibrium for the two players. Specially, as the rejection cost of one 

player is uninformed, the game is equivalent to the complete information game by 
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using the rejection cost expectation as the real rejection cost. We also proved the ex­

istence of a unique Bayesian Nash equilibrium in the game when one player receives 

the private information of rejection cost or transfer rate. Furthermore, we provided 

the formulations of the value of different information. We see that the value of secret 

information is always non-negative for both players. We also evaluated the values 

of private and public information for one player and we provided the conditions by 

which one player might use or drop the information of rejection cost and transfer rate. 

Finally, we presented experimental results corroborating our theoretical analysis of 

the value of different information. 

The research discussed in this paper could be extended in several directions 

One natural extension should be to consider the incomplete information game in 

the dynamic context. Again, we can examine the existence of Nash equilibrium 

(perfect Bayesian Nash equilibrium) and the uniqueness. Second, under each game­

theoretic setting, static or dynamic, complete or incomplete information, we can 

consider three or more players. For example, under the static game with complete 

information, one possibility is to analyze a competitive/cooperative game in which 

at least two or more players cooperate to increase their total expected revenue at the 

expense of the other players. Another possibility is to assume that they all compete 

in which case Nash strategy can be used to by all players as before. However, we 

suspect that it will be more difficult to prove the existence and/ or uniqueness of Nash 

equilibrium since the two-way transfers of low-fare bookings would greatly complicate 

the substitution structure of the model. A third possible extension would be to 

consider a game with the consideration of the overbooking by relaxing the assumption 
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of no cancellations of booked customer. This situation is fairly common in practice 

and many RM researchers have worked on different aspects of this problem in recent 

years. Generally, within game-theoretic context, we might progressively relax the one 

or more assumptions in our problems to make the games 'richer' and rule out the 

booking policies and plausible equilibrium for them. 
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