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In this thesis, a high-speed inverse Walsh transform apparatus
was designed and built which sums over the sixteen most dominant co-
efficients in the time base period. The transform includes a maximum
of 64 terms. The Walsh function generator used works with a clock rate
up ‘to 10 MHz to produce 64 different sequency terms with accurate timing
_and hazard free operation. A synchronizing pulse is produced by the
éircuit to determine the beginning of the Walsh transform period. The
final adder stage limits the speed of the apparatus to a 1 MHz square wave.
An application of the instrument was made to reconstruct one line of an

actual video signal.
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CHAPTER T

" "INTRODUCTION

Retently, a set of orthogonal functions known as the Walsh
’ ' | o1dl-9

functions has received great interest in the commuhications field
¥

Since they are a two level set, they are directly compatible with

digital circuitry and digital computers. They appear to be as ideal

for linear, time variable circuits, if based on binary digital com-

ponents, as the system of tfigonometric functions is for linear, time-

invariant circuits, based on resistors, capacitors and coils. Their

practical application, however, will require considerable progress in

the development of large scale integrated circuits.

In this thesis, the idea of transmitting the information contént
of a wide band signal by the Walsh-Fourier transform is used. This may
lead to a bandwidth reduction for image transmission in digital communi-
cation systems. At the transmitter, the Walsh transform of the signal
could be obtained, quantized, and coded for transmission. At the receiver,
the information must go through an inverse transform to obtain the re-
constructed signal. This double transformation, once at the transmitter
and once at the receiver, will be discussed throughout this report as the
double Walsh transform.

A high speed inverse Walsh transform instrument has been implemen-

ted for this work, which consists of Walsh function generators, multipliers

and a summer. This transform design proceeds in parallel and in analog

1)
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form to obtain high speed operation. A similar instrument by BrowJ uses
digital circuitry and serial arithmetic to perform the inverse transform.
The Walsh function generator is able to generate up to 64 different
sequency terms in the unit period of time chosen as a time base for the
Walsh functions. The function is generated according to a standard
binary code for the Walsh number. A synchronizing pulse is produced at
the beginning of the time period. This circuit is hazard free with no
timing error. By the use of high speed logic the circuit worked up to

10 Miz. The additional circuit is analog in nature using IC analog multi-
pliers. The summation is made over a set of 16 coefficients of the trans-
form using a standard operational amplifier adder. This adder limits the
speed of the apparatus to about a 1 MHz square wave.

An application of the designed instrument was made on an actual
video signal. A Walsh transform was obtained for the signal by computer
simulation. The sixteen most dominant coefficients were fed to the
inverse Walsh transform apparatus. The output from the apparatus gave
the double Walsh transformed signal within certain error.

The next chapter clarifies the mathematical basics of the work
in this thesis. The Walsh functions and associated properties are
defined. The conversion of a time series to a Walsh series is shown
and a fast Walsh transform for the conversion is explained.

In Chapter III the inverse Walsh transform instrument design
is described. The instrument is tested for reconstruction of some known
signals. The following chapter describes the application of the apparatus
on the video signal. The reconstructed signal is shown for different

time base periods of the transform.



The errors of the circuit design are discussed in Chapter V. The final
chapter is a conclusion about the work done and future research in this

subject,



CHAPTER 11

MATHEMATICAL BASICS

Data compression techniques have been used in many areas of
“communications, such as voice, video and telemetry transmission to
redﬁce the bandwidth needed to transmit a given amount of information in
a given time. Such compressions must be accomplished without sacrificing
the information requirements of the user. The reduction in the bandwidth
required for any signal transmission is achieved by reducing signal
redundancy. Shannon has defined the redundancy as 'that fraction of a
message or datum which is unnecessary and hence repetitive in the sense
that if it were missing, the message would still be essentially complete
or at least could be completed'ilol

Data compressionAtechniques are classified into many categories.
One classification is known as the transformation compression techniquehll
This is defined as any compression technique which transforms either
analog or digital data by a linear or nonlinear transformation. An in-
verse transform must be performed at the receiving end to reconstruct the
original data. Signal conditioners, filters, limiters/clippers and
spectrum analysers are examples of transformation compression.

The type of transformation compression considered in this work is
the Walsh Fourier transform and its application to video signals.
The Walsh transform is a square array of plus and minus ones whose rows

and colums are orthogonal to one another, The time required to obtain the

(4)



Walsh transform of a signal is drasticélly reduced by'using the fast Walsh
transform method. This is a high speed algorithm similar to the fast
Fourier transform, but is a faéter operation since only real number
additions and subtractions are required for a Walsh transformation rather

than a complex multiplication as in the fast Fourier transform case.

2.1 THE WALSH FUNCTIONS:

The Walsh functions have received comsiderable interest in the

1-9]

communications field lately They are a set of functions that

are périodic and orthognal. The complete set can be defined by Wal(i,8)
és given by Harmuth[ﬂ where‘i represents the number of sign changes of
the function in the unit period of 6. The Walsh functions can also be
represented by a constant.Wal(0, 6), even functions Cal(i, ) and odd

functions Sal(i, 6) in analogy to the even and odd trigonometric functions

cos 6 and sin 6, such as:

Cal(i, 6) = Wal(2i, )
(1)
Sal(i, ©)

1

Wal(2i-1, 6)

Figure 1 shows the first 16 functions of Wal(i, ©) in the normalized
interval 8 = 1, where 6 = t/T and T is the time baée for the Walsh function.
These functions are switching between two values, +1 and -1, all having

the value +1 at 6 = 0. Also, Wal(0, 6) is a constant with value +1. The
functions are arranged in the order of their sequency which is defined as
"1/2 the average number of zero crossing per unit interval of timéis]for-
which the abbreviation 'ZPS' is used; This is an order principle which

maintains the analogy to the frequency of circular functions.
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Another way of defining the Waish functions is by using Radmacher
functions Rn(e)[4], which are a subgroup of the compléte Walsh set, such

that:

R (6) = wa1 (2" 1, o) n=1,2,... 2)

-~

The Radmacher functions are square waves. The_first'four Rn(e) are shown

in Figure 2, and they are defined as follows :

R (6) = 1
R(8) = 1 ° if zg-s o < LZE_%_ll
2 2
e (3)
= ono el rl) o4 (Zkr2)

Al A

pA Z
k = 0,1, 2, , 2l

The Walsh functions can be produced by all the possible Bodean products
of the Radmacher functions. From the first n Radmacher functions, N Walsh
functions can be generated (where N = Zn), This produces a complete and

orthcgonal set of functions. Therefore:

Wal(0, 6) = 1
Wal(n, ) = R, R ., ..... R .1
1 2
—-- (8)
n n n .
n o= 214224 . +2 7
where n, > ... > n 20

1 T
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" 'FIGURE 2: Radmacher Functions Rn(e')



However, this definition does not lead to the set of Walsh functions

ordered by their sequency. The correct Radmacher functions to multiply
together to obtain a specified Walsh function can be determined by reference
to a reflected binary code (Gray code). This method is shown in Table I

up ton = 2. The rows correspond to the Wi and the colums numbered from
right to left to Rf’ The 1's in any row indicate the Rj whose direct

product is the Wi on that row.

Rs R R
W(0, 8) 000
W(l, o) 001 1
W(2, 8) 010 1 1
W(3, 8) 011 1
W(4, ) 100 | 1 1
W(s, 8) 110 | 1 1 1
Ws, e) 110 | 1 1
W(7, 8) 111 | 1

TABLE I: The Ordered Walh Functions as
Product of Radmacher Functions

The main property of the set of Walsh functions is the multiplication

property, which states that: the product of two Walsh functions yields

another Walsh functioésl
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Wal(i, 6).Wak, 6) = Wal(i ® k, 6) 5)

where @ stands for addition modulo 2 in binary representation, i.e.,
0 ®1 =1@®0 = 1,0® 0 = 1 ® 1=0. This property is the
way for the conversion from Radmacher function to the ordered Walsh
functidn as given in Table I, since Equation (5) can be written as:

W = | ' ‘ (6)
g Rh Zn-l-g

M-l Rl

where g
and g = 1,2, ..., n

This implies that for the first 2" rows of a matrix of Walsh functions,
any Wg in the lower half of that set of rows is different from the one

symmetrically located in the upper half with respect to a horizontal

centre line (i.e., W h ) only by the presence of Rh. This is precisely
2°-1-¢g
a description of the reflected binary code of n variables,
(71

Another property of the Walsh function set Wal(i,®) is that it
is symmetrical with respect to the argument i, 6 . By interchanging
these two variables the same system will give the values of all the orders

of Walsh functions at a given time. This property is written as:
Wal(i, 6) = Wal(e, i) ' (7)

This property shows the symmetry of the Walsh matrix.
The orthogonality of the Walsh functions in the normalized inter-

val 0 £ 6 < 1 is given by the following condition:



1
I'wWal(i, 8) Wal(j, 6)de = §.. - (8)
Jo . , i

Gij =1 for i=3j i §..=0 for i#j

1)

This condition can be proved directly from the multiplication property

(5) noting that:

Wal(i, ©) Wal(i, 8) Wal(0, 6)

Wal(i, 6) Wal(0, 8) = Wal(i, 6)

There is a simple way to determine the Walsh function of any
order at sight,without using a previously computed function,by symmetry
‘ considerationS!p]For any Walsh function Wal(i, 6) where i corresponds to

the number of zero crossings in the unit interval of 6, i can be written

in binary form as:

i = 2" + ak_1 2 + ... + 312 + ab

where aj is either 0 or 1. Wal(i, 6) is symmetric or skew symmetric about
.9 = 1/2 according to ao = 0 or 1. This gives the even and odd Walsh
functions Cal(i, 8), and Sal(i, 8). This symmetry consideration can be
’extended to determine Wal(i, 6) completely. By dividing the interval

8 = 1 into K+l subintervals of length 2-(k+1), then Wal(i, ) is
symmetric or skew symmetric about § = 1/2j+l according as aj =0 or 1 for
j =k, k-1, ..., 1, 0. Letting Wal(i, 8) = 1 in the first interval

(0 ¢ 8 < 2-k+1), the Walsh function Wal(i, 6) can be determined by

knowing the sequence i only. A demonstration for determining the first 8

Walsh functions using this method is given in Table II.
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TABLE II: Walsh Function Determination by Knowing
the Sequence

2.2 SERIES EXPANSION BY WALSH FUNCTIONS:

Any periodic time function f(t) quadratically integrable in the

+T

interval to < t< to + T for which y fz(t)dt < o, can be expanded in a
t

series of the orthonormal system of W81sh functions Wal(i, 6) in the
interval of orthogonality 0 < 6 < 1, where 6 = (t - to)/T. The expansion
of f(t) will be given as:

£(6) =
1

Ho~18

a, Wal(i, o) (9)
0 1
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~The coefficients a; of the series ekpansion can be obtained by multiplying
Equation (9) by Wal(j, ) and integrating the result over the period of
.orthogonality 0 £ 8 < 1 using the orthogmlity relation (8). Therefore,
1 ,
a, = J f£(6) Wal(i, o)de (10)
0 - .
The series eipansion of £(6) can be eipressed in terms of the even and

odd Walsh functions Cal(i, 9), Sal(i, 8) as:

£(0) = a, + ) [a; Cal(i,8) + b, Sal(i,e)] (11)
i=1 1
: - 1
where a, = J f(e)de

0
1

a, = J £(0) Cal(i,0)ds (12)
t 0

o
n

1
J £(6) Sal(i,6)de
0

A Walsh transform for the signal f(8) can be obtained as with the Fourier
transform by stretching the interval ¢, and éonsidering £(8) to be zero

outside the original period of orthogonality. In the limit as 6 +~ * ®

the Walsh transform will be given by:

aﬁ = Jm £(8) Wal(u,6)de

and ‘ , (13

£(8) = a  Wal(u,6)du
u=0 ¥
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2.3 AMPLITUDE SAMPLING AND WALSH FOURIER ANALYSIS:

The samPling'fheorem aé applied to Fourier analysis.statesvthgt
a signal, band limited to B Hz is completely determined by 2B amplitude
samples per second. This theory holds true too for the Walsh Fourier
~analysis. A»simple proof is shown in the followingvparagraph.

Let a signal f(t) Band limited to BHz be repreéented by amplitude
samples taken at a rate of 2B samples»fer Second; If we take.a period T

MaN equal to the

as a time base for a Walsh function such that 2BT = 2
number of samples in this time interval, and making 6 = t/T, then the

expansion of the signal £(t) in the normalized Walsh series will be:

1

) a, Wal(i,e) 0sp<l (14)
i=0

£(8)
The coefficients a, are given by Equation (10) (repeated here) as:

a, = Jl f(e) Wal(i,e)de (15)
0 : .
Frqm the skew symmetry property of Walsh functions as demonstrated in
Table II for n = 3, the Walsh Fourier coefficients a; for i > N will
vanish, since each sample will be eliminated by itself, providing that
the square wave representation is precisely as accurate as the

sampled data. As an example, consider the case when N = 4, There are
then four ;amples in the interval 0 £ 6 < 1. Let them be labelled Sl’
2 SS’ and S4. Then the coefficient for Wal(6, 6) would be obtained
from (15) as:

S

1 .
3 = g [(578)) + (5,-5,) - (85-5;) - (5,-5,)] = 0
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Similarly all the coefficients from a4'to a_ will be zero.

This means that the maximum sequency contained in the signal f(t) in the
interval T is (2BT - 1) = (N - 1). This will be the upper limit in the
- summation of (14) instead of ®. Hence
N-1
£(8) = ) a, Wal(i,o) 056c<1 (16)
i=0
In other words, the maxi mum sequency of the signal f(t) is B zps.

By representing £(6) by N samP1e$ in the interval 0 < 6 <'1, the
integration of Equation (15) can be changed to a summation by dividing
the period & into N subintervals of length 1/N. The coefficients a; are
giVen by:

N-1
©

a = l‘ )
i N e;‘ 0

2.4 FAST WALSH FOURIER TRANSFORM:

The fast Walsh transform, quite similar to the fast Fourier
transform[7], is a highly efficient procedure for computing the Walsh
transform of a time series. It takes advantages of the fact that the
calculations of the coefficients of the Walsh transform can be carried
out iteratively, which results in a considerable saving of computer time.
The computation of the Walsh transform of a signal f(8) as given by Eq. (17)
in the straighforward method requires N2 operations, where an operation
is defined to be either an addition or subtraction. Using the fast Walsh
transform algorithﬁ, this reduces to N 1og2N operations.

Figure 3 illustrates the computation sequence performed by the

fast Walsh transform with eight data samples. The samples are arranged
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= SUMMATION

........ = SUBTRACTION

FIGURE 3: Computation of the Walsh Transform
' for Eight Data Points
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in a colum and then summed (or subtrécted) by pairs to produce an inter-
mediate result. The procedure continues until the eight Walsh coefficients
are obtained after three stages. A dotted line linking two nodes indicates
that the sample point forms the subtrahénd of a subtraction operation,
There are two operations performed at each node in the three stages
Ayielding a total of 8 1og2 8 = 24 operations compared to 8 x (8-1) = 56
‘operations in the straightforward way.

A fast Walsh transform algorithm was used to obtain the Walsh

transform of several signals used in this thesis.



CHAPTER III

CIRCUIT DESIGN FOR AN INVERSE WALSH
TRANSFORM INSTRUMENT

The block diagram for a generalized transform coding syétem is
shown in Figure 4. Iﬁ this system, a transform is performed on the
samples of the signall The transform samples are then quantized and
coded for transmission over a digital link, At the receiver, the
received data is decoded and an inverse transform is performed to re-
construct the original signal.

The Walsh Fourier transform is applied in this work for wide
band signal transmission system. If N = 2" is the number of samples re-
presenting the signal f(t) in the period T, then the Walsh transform of

f(t) and its inverse are given by Equations (16) and (17) as:

N-1 |
£(0) = ] a Wal(i, ) 0g8<1 (16)
i=0
1 N-1
a, = = ) f£(8) Wal(i, 8) i=0,1,...,N-1 (17)
t N 620 |

where 6 = t/T, and T is the time base for the Walsh function.
The Walsh transform a; of f(t) was performed by a digital computer simu-
lation using the fast Walsh transform technique. A circuit was designed

to do the inverse Walsh transform on the computed data providing an analog

(18)
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Signal

Samples. .

\\(Errors
Coder Channet
Inverse
> Decoder | Transf - m—
ransrorm Reconstructed
Signal.

FIGURE 4: Transform Coding System
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output signal %(t), which is the double Walsh transformed signal within
certain error.

Figure 5 illustrates the block diagram of the circuit for the inverse
transform as given by Equation (16). The input coefficient data (ai)
was converted to an analog voltage by a D/A converter, then multiplied
with the correéponding Walsh function Wal(i, ©) generated from a Walsh
function generator. Finally, the outputs from the multipliers (M) are
summed together using the resistance R and the operational amplifier to
fbrm the signal %(6). The errors in this assumption for the double Walsh
transformed signal are due to quantization for coding.

In the designed circuit, the inverse Walsh transform is performed
by summing over only the 16 most dominant coefficients of the Walsh

transform. The apparatus constructed uses an analog signal source

for the coefficient a; instead of a digital to analog converter. The
maximum absolute value for the input coefficients was limited by the

multipliers used in the circuit to % 1.2 volts maximum.

The Walsh function generator is able to produce 64 different
sequencies according to a standard binary code for the input sequence.
In general, the input data are changing with every new period of the Walshn
transform. A synchronizing pulse is produced to determine the beginning
of the period 6. The multiplier that was used was an IC circuit which
actually functions as a modulator. A d-c signal correspondihg to the
coefficient is placed on one ferminal, while the Walsh function generator
drives the other. The output in effect is the Walsh function amplitude
woldulated by the input coefficient. Ordinary resistances R and an

operational amplifier are used in a standard summing stage.
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3.1 THE WALSH FUNCTION GENERATOR:

The Walsh functions are binary in nature, and can be represénted
by pulses switching between the two voltége values corresponding to +1
and -1. The generation for the Walsh set can be implemented using digital
circuits, representing the value +1 by a logical 1, and the value -1 by
a logical 0.

The Walsh function can be generated in several ways. The simplest
and straightforward one is to form the direct product of the correct
Radmacher functiongsﬁﬂ. An n Radmacher function as defined by Equation
(3) can be simply generated as the outputs from a synchronous n bit binafy
counter. The complete group of Walsh functions up to 2"-1 sequence can be
formed by using the multiplication property as given by Equation (5).
Figure 6bshows the basic circuit for generating the set of Walsh functions
as a product of Radmacher functions, (where_:;j::::::>— stands for the
'EXCLUSIVE ORoperation). The main disadvantage of this circuit is that
the generation of higher sequency terms depends on the generation of
lower sequency terms. This yields different time delay for generating
different sequencies, which increase rapidly as more bits are added to
the binary counter, thereby limiting the speed of the generated Walsh
set. Also, this timing error becomes critical when attempting to re-
produce time varying functions from the Walsh domain, particularly at
high frequencies which is the case in this work. |

The Walsh function generator designed here has accurate timing
of the zero crossings during the period 6 for any generated Walsh sequences

from 0 up to 64, and there are no '"hazards" in the output. Any one
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function can be generated according to the input of a standard binary
code for the Walsh number. A "Sync'" pulse is produced to determine the
beginning of the time period 6.

A use of the rate ﬁultiplierllz’ls] is made here to generate this
Walsh set. . The rate multiplier is so called because it gives a pulse
train (or rate) that is the product of two inputs. It is an assembly of
flip-flops and gates as shown in Figure 7. There are two inputs, the
pulse’frequency f which is the rate input, and a parallel number X in the
range 0 £ X < 1. The output of the rate multiplier is a variable frequency
pulse train equal to X times f.

Consider the binary counter in Figure 7 with n bits Bl’ BZ’ ey
Bn' The flip-flop used toggles at the falling edge of its input, and the
clock rate of the counter has frequency f. Let the input to the AND

tes Gy G e G . 5y
gates Gy» %5 » b, be represented as: fB, ., fBle, v fBlB2
Bn_1§£, respectively. The output from the AND gates will be such that

G, will have a pulse train of frequency f/2, G, a pulse train of frequency

1 2
f/4, ..., and Gn having a pulse train of frequency f/2n. No pulse of any of
the trains ever coincides with a pulse of another train (this is the key
for the operation of the rate multiplier). This allows ORing two or
more of the pulse train together to obtain an output with é‘frequency that
is the simple algebraic sum of the input frequencies. (This would be
impossible if coincidence ever occurred) Now by placing a number X, (X=

(XIXZ ces Xn) is its binary representation with X, the most significant

1
bit having a weight of 2—1,_since 0§ X<1), on the gates GG, ... G
respectively, then the output of any gate Gi will occur or not occur

according to whether the corresponding bit Xi is 0 or 1. Therefore the
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output frequency of the gate will be Xi(f/21). Since the frequency out

of the OR gate, fo, will be the sum .of the input frequencies, then

£ £ £
fo = XI(EJ ¥ XZ(ZD ¥ aes # Xn(;EJ
X X X
= 1 2 n
= f("2—+4—‘+ 5 +—H')
2
= fX

The waveforms at each stage of the rate multiplier are shown in Figure 8
for n = 3. The number of binary stages is spoken of as the size of the

rate multiplier. This determines the least fraction of the input fre-

All the possible output pulse trains from the rate multiplier
coincide with the zero crossingsof the Walsh functions. If the output
from an n bit rate multiplier is taken to toggle a flip-flop preset at
the 1 state, then any Walsh function up to @"-1) can be generated for a
given value of the X input. Figure 9 shows the rateAmultiplier output
for n = 3 ordered such that each row differs by only one pulse from the
preceeding row. The Walsh functions are shown too up to Wal(7,6) as
described before. The corresponding number X is listed which is found
to be equal to the sequency of the Walsh function to be generated.

The schematic diagram for the designed Walsh function generator
is shown in Figure 10. The size of the generator is 6 bits; this means
that up to 26 = 64 different sequency terms can be generated from it by

setting a standard binary code for the sequency as shown. The generator
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FIGURE 8: The Output States of the Rate Multiplier
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consists of a 6 bit synchronous up counter using J-K flip-flops,
associated with the ﬁAND and INVERTER logic gétes using the standard 74H
series modules. The circuit can work with a clock rate up to 10 MHz
which is limited by the transition time required for the counter states
to change. Higher speeds can be obtained by using a fully synchronous
design. A manual preset to all 1's for the counter‘is necessary initially
to ensure that the counter is in a correcf starting state. A synchronizing
pulse. is produced to determine the beginning of the Walsh function
generated, this pulse having a period equal to the time base of the Walsh
function generated. The "Sync".pulse is used to preset the output flip-
flop as shown, More Walsh functions could have been added by simply in-
cluding one more flip-flop to the binary counter for every dbubling of
the number ;f functions required. However, this doesicut down the speed
of operation of the generator as designeq.

The Walsh function generator described in Figure 10 can be
divided into two stages, the first stage producing the pulse trains ex-
plained earlier (Figure 8). Let each tnﬁh be called Oys Ony wevy O
Then in the second stage, each pulse train o is fed to a separate AND
gate with the associated Walsh data input. - This process is shown in
Figure 11. In this way more than one Walsh function can be generated at
the same time using the same binary counter and gates G, since the output
a's are the same for any Walsh function to be generated. The gates that
deliver the a's can be chosen to be high current buffers to drive a large
number of generators.

The output from the last gate G6 in Figure 10, corresponding to

o in Figure 11 differentiates between the even and odd Walsh functions
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Cal(i,d) and Sal(i,®). This is the pulse which makes the change iﬁ the
function at the middle of its time base. Thus by eliminating this output
from the OR gate we get only the even functions Cal(i,8). By feeding
this output constantly to the OR gate we produce always the odd functions
Sal(i,6). This process was used in the final design.

The sequency data input to the Walsh function generator must be
able to change with every new period, since, in general, new information
will be arriving each period. To do this, the sequency data is fed to
the circuit through two D-type flip-flop registers as shown in Figure 11.
The register A is clocked by the synchronizing pulse of the Walsh
generator circuit and hence the input‘data is up-dated every period 6 by
accessing the data stored in register B. Register B can be loaded by a
computer during the time interval 6, without disturbing the output of
the generator.

The inverse Walsh transform instrument was designed to sum over
16 coefficients. Sixteen programmable Walsh function generators were
built, 8 producing the even functions and 8 the odd functions. The final
circuit used 2 basic binary counters clocked from the same master clock,
each counter being used to generate 8 functions; four Cal(i,®) and four
Sal(i,0). One "Sync'" pulse wés used to control the whole circuit. All
8 basic generators were mounted on one circuit board. The schematic
diagram for the board containing the 8 Walsh function generators is shown
in Figure 12. The input-output terminals are labelled with the appropriate
numbex enclosed in a circle. They are identical for the two boards
eicept for the "Sync'" terminal which is taken as an output from one board

and used as an input to the other. On Figure 12, the logic functions are
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labelled with numbers enclosed in squéres. The same numbers appear in

Figure B-1 (Appendix B) to show their location on the circuit board.

3.2 THE MULTIPLIER:

The second step in the inverse Walsh transformation is to multiply
each coeff&cient input (ai) with the corresponding Walsh funétion Wal(i,o).
-This must be done for the 16 coefficients; therefore 16 multipliers were
.needed. This type of multiplication multiplies a voltage V1 having

that can assume two values only. V. is

arbitrary value with a voltage V 1

2

the coefficient a; which is constant during one period of the transform.

V?‘is the Walsh‘funcﬁion Wal(i,6) switching between the two values +1 and

-1. (In the generated Walsh function +1 was represented by a logical
1(+5V) and -1 by a logical 0(0V).)
Figure 13 shows an actual cifcuit used for .analog multi-

plication by *1, where V. may have any value within the voltage range of

1
the operational amplifier. This circuit works as follows: If the FET is
fully conducting, then the non inverting terminal (+) of the amplifier

is grounded. V

must equal -V. to bring the inverting input terminal (-)

0 1

also to ground potential. For FET non-conducting, the non-inverting
terminal is at vV, and the inverting terminal is also at Vl.v This makes

V0 equal to V This is a simple and ideal circuit for this type of

1
multiplication, but with the operational amplifier available at a

reasonable price it would only work with square waves up to 500 KHz.
The actual multiplier used in this design was a new integrated

circuit (MC1496) designed to function originally as a modulator. The
schematic diagram for the IC circuit is shown in Figure 14(a). In the

final circuit (Figure 14(b)) the IC is connected as a modulator. The
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output will be the carrier signal (VC) amplitude modulated with the
signal,(vs). For linear operation, the input signal must be below a

critical value determined by Ré and the bias current I5 as:

A Vo & IR, | , (18)
_where
.V -9 i} S
R S, $ = 0.75V at T, = +25°C (19)
5 15 A

AV = .\_,9_ = —-L r = __2..6_m_v.._. (20)
S vs 'Re ¥ 2re © ;S(mA)

In the actual design, the coefficient a; is placed at the VS terminal as
a d-c signal, while the Walsh function drives the carrier terminal VC'
The output for unity gain will give the Walsh functipn modulated with

the coefficient magnitude. The output gain depends on the values RL’ Re

and R5 as given by Equation (20). It was found that the best values for

the resistances for almost unity gain were:

R = 820Q, R = 680Q, and R, = 4.7Ka.
L _ € 5

The input coefficients had to be limited to #1.2 volts for linear operation
with accuracy of the circuit output less than 1%, This multiplier cir-
cuit worked up to 4 Miz. The d-c at the output terminal was suppressed
"by using a large capacitor of 10uF and 1 Mo resistor.

The coefficient a; was an analog voltage which was édjustable

. between the values +1.2V. A high B transistor, resistor and potentio-
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meter as shown in Figure 15 was built for each coefficient to produce a
low output impedance voltage source for the coefficient. Two transistors
in a Darlington configuration were required for better stability. Also,

two potentiometers were used to give course and fine variations of a,.

A

3.3 THE ADDER:

The adder was the final stage in the inverse Walsh transform
design. This adder consists of a standard operational amplifier and
resistors. The summation waé made in two steps. The first one added four
outputs from four multipliers t;gether. Then the four outputs from the
‘fifst adders were summed together to give the final output signal from
the inverse transform circuit. The circuit diagram for the adder stage
is showﬁ in Figure 16. A high slew rate operational émplifier was used
(NE531V). It was compensated with only one capacitor. The use of a
2N3819 FET in a feedback loop allowed the circuit to add 1 MHz square waves
An amplification of about 3 could be made in the second stage adder by
changing R and C to 15KQ and 10pf, respectively.

All -eight multipliers were mounted on one Vector board to work
with the outputs from one board of the Walsh function generator. The
associated two adders were mounted on the same board, one to sum over
the four even terms and the other over the odd terms. One of the boards
contained the final adder. The circuit diagram for each board is shown
in Figure 17.

The connections for the multipliers as well as the adders are
_identical and hence only the connections for one multiplier and one adder
are shown on the circuit diagram. The input output terminals are labelled

with the appropriate number or letter enclosed in a circle. The IC's are
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labelled with numbers enclosed in squares which are used to show their

locations on the boards as in Figures B-2 and B-3 (Appendix B).

3.4 TESTING OF THE INSTRUMENT:

The inverse Walsh transform circuit has been tested for re-
construction of some known signals such as sinusoidal, ramp and tri angle
waveforms, using a limited number of the Walsh transform coefficients,

The forward transform was obtained for these signals by computer

simulation. The full set of transform coefficients are given in
Appendix A. A selection of the dominant coefficients was made for the
following three cases:

(i) Sinusoid: £(8) = sine = ) b, Sal(i,o)
i=o '

The most domlnant coefficients used for reconstruction of sin © were:.

b, = 0.637 b, = -0.053
b, = -0.264 by = -0.031
b, = t0.127 b5 = -0.026
bjg = -0.063 b,g = -0.013
(ii) Ramp: f£(8) = 3.2x6 = ) b, Sal(i,e)
i=0

The most dominant terms used for reconstruction of f£(8) were:

b1 = -0.8 b8 = -0.1
b2 = -0.4 b16 = -0.05
b, = -0.2 - b,, = -0.025

4 ‘ 32
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] =

(iii) Triangle: f£(6)

4 050 <5= izo a, Cal(i,o)

4(1-8) <0 <1

The most dominant terms used for reconstruction of f(6) were:

ai = -1 a15 = -0.,125
a3 = -0.5 331 = -0.0625
a7 = -0.25

These results were entered into the apparatus for each case and the
resulting waveforms are shown in Figure 18; These test waveforms
verified the design of the apparatus in that dominant term synthesis
of high frequency-periodic waveforms could be produced. The next
chapter relates to the use of the apparatus for synthesizing video

waveforms.,



CHAPTER IV

INSTRUMENT APPLICATION ON A VIDEO SIGNAL

Due to the many inherent advantages of digital communication
systems, research is being conducted by several investigators[l’s’lo] in
the field of image transmission in digital instead of analog form.

Since images generally contain a large amount of information, the common
problem in digital transmission is that high capacity channels are re-
quired to handle the data flow. Many studies have been made to reduce
this capacity requirement. What makes this reduction possible is
thé examination and reduction of image redundancy, either statistically
or psychovisually, since image points which are spatially closc to each
other tend to have nearly equal brightness levels,

Redundancy reduction can be made on an actual signal or aﬁy linear
transformation. The redundancy of images appears in the Walsh domain
such that the energy distribution will not be uniform, as in the spatial
time domain, but rather only a few predominant coefficients contains
most of the energy. Such distributions have been demonstrated for some
scenes by H., C. Andrews and W. K. Pratéll

This chapter presents the results of using the inverse Walsh

transform apparatus to reconstruct a video signal.

(44)
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4.1 THE VIDEO SIGNAL:

A typical composite video signal for black and white television
according to the United States standards, with reference to Television
Engineering by Find141 is shown in Figure 19. The amplitudevversus time
graph gives a measure for the brightness of the picture elements with
respect to time along a horizontal line of a picture from left to right.
This is done by scanning an electron beam horizontally along this line of
the picture. At the same time a vertical motion is given to the electron
beam by a vertical sweep signal having a much slower velocity than the .
horizontal signal, but both are uniform. During the horizontal flyback
time, the beam moves back to the left and then starts scanning a new line.
This method is repeated to scan the whble picture, and this is done in
1/20 ¢f =2 seccond. This methed ic known as "unifeorm linear scanning"
which is universally used in television transmission. The highest
frequency present in the video signal depends on the resolution of the
picture elements, which determines the ability of producing the picture
detail. In the American Standard Television System a 4,25 MHz bandﬁidth
is reserved for transmitting the video information. This corresponds to
450 picture elements in the active time period of one line scan, and 525

lines are scanned per frame.

4.2 A WALSH TRANSFORM FOR THE VIDEO SIGNAL:

Consider the video signal £(t) in Figure 19, Since it is band

. limited to BHz, say, then its maximum sequency is 2B zps as explained in
Chapter II. A Walsh transform can be obtained for any period of the sig-
nal f(t), where this period will be the time base for the Walsh functions.

Consider a period of f£(t) as T such that 2BT = 2n, where n is an integer,
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then the expansion of f(t) into a Walsh series is,

N-1
£(8) = )} a, Wal(i,e) 8 =0,1,...,N-1 (16)
j=0 C ‘
where
; N1 o
a, = = ) f£(8) Wal(i,e) i = 0,1,...,N-1 (17)
i N ,
0=0
n
8 =t/T, 0<6<1 N = 2" = 2BT.

N in this case is exactly the number of picture elements to be scanned in
the period T, which corresponds to the horizontal resolution of the image.
The zero sequency term is a measure of the average brightness of the

signal in the period T and is given by

£(6) - | @)

o
o

1
Z|—
I o~11

The maximum value of a, will not exceed the maximum value of the signal
f(t). Let this maximum value equal A as shown in Figure 19 which is the
difference between the white level and the black level. All the other

Walsh coefficients will range between *A/2,

‘The conservation of energy property exists between the time

domain and the Walsh domain. The relation is such that

1 N-1 2 N-1 :
5 L lE@|° = I a (22)
8=0 : i=0

This is analogous to Parseval's relationship for the Fourier analysis.
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The errors produced due to Waléh domain quantization can be
measured by tﬁe mean square error criteria. Let the qﬁantized.value of
the coefficient a; be referred to as aiq; then the mean square error éf
the signal f(6) from its representation in a normalized period 0 < 6 < 1

is given by:

, (1 © N-1 5
e = J [£(8) - ) a, Wal(i,e)]°de
0 i=0 L
) 1 N-1 N-1 ; 5
e = [ [ Z a. Wal(i,e) - z a, Wal(i,e)]"de
Jo i=0 * o i=0 M
, (1 N1 )
= . - a. 1(i,0)]"de
e Jo'[izo (a; - a;,) Wal(i,0)]
, N1
= . - a, )2 ’ 23
° iZO ! alq) (23)

4.3 THE INSTRUMENT APPLICATION:

Figure 20(a) is an image scene and Figure 20(b) is the scanned
signal along the horizontal line appearing on the scene. 256 sample

points were taken in the period T shown (T % the period of one line scan).
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The perlod T was d1v1ded into four intervals and the Walsh
}transform obtalned for each 64 succe551ve samples belng taken in each
1nterva1. The~resu1ts are on pp. 63,64_1n Appendix A.

A reconstructioh for each of these four.intérvals waé obtained
-using‘the,invérse Walsh transform.instrument. ‘Ohly.the~16 most dominant
coefficiénts were used for signal reconstfuction.  The‘outputs were com-
pared_with.the original signals as given in Figﬁre 21.

A serious‘degradation is shown in the'fourth interval. The 15t
‘and 4th intervals weré subdiﬁided to two periods 6f 32 samples. A~re—'
construction of each ?¢riod containing the 32 saméles wés”made‘as shown
in Figure 22. 1In the first half of thé lst interval, 15 coefficients
wére.used for signal reconstiuction, but only two terms were needed to
reconstruct the other half. 16 coefficients were used for‘éach_sub¥
interval of the 4th interval which shows great improvement in the re-

constructed signals.

4.4 THE TWO DIMENSIONAL WALSH FOURIER TRANSFORM:

The Walsh transform can be made on a two dimension sample of the

image f(x,y). The chances for B.W. reduction may be greater in this
. case sinqé each image point will tend to have the same brightness level
as the-surrounding points. However, the Eircuitry will be more complicated.

The two dimensional Walsh transform is given as:

CE(x,y) = _20 ) a5 Wal(i,x) Wal(j,y) | (24)
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and the coefficients can be determined from:

N-1 M-1
= W ) ) £(x,y) Wal(i,x) Wal(j,y) (25)

a,
J x=0 y=0

N and M represents the resolution in the two dimension x, y. A scanner
transforms this two dimensional array into a one dimensional sequence

ready for transmission over the channel.

53



CHAPTER V

CIRCUIT DESIGN ERRORS AND LIMITATIONS

The errors produced in the inverse Walsh transform instrument
are mainly due to two aspects. The first one is the mathematical approxi-
mation involved in the design, by using a finite number of terms of the
transform to reconstruct the original signal. The second one is due to
errors produced in the built circuit. Both types of error are discussed

throughout this chapter.

5.1 MATHEMATICAL ERROR:

There are N Walsh Fourier coefficients for N samples representing
any band limited signal f(8) in the normalized period 0 £ 6 < 1, The
Walsh transform for the signal f(6) and its inverse are given by Equations
(16) and (17).

In the designed instrument the inverse Walsh transform is per-
formed over a limited number of coefficients which is 16 terms, out of
the total number N that can reach up to 64. Theoretically, an exéct
reconstruction of the sigﬂal f(6) can be obtained for N = 16 (except for
circuitry error). There are three choices for N in this design, 16, 32
or 64. (Note that the design is flexible to period variations according
to the Walsh function property given by Equation (7).)

Measuring this error by the mean square error criteria, then the
mathematical design error over the period 0 < 6 <1 referred to Equation

(23) will be given by:

(54)



e’ - ) a2 . (26)
over(N-16) terms

where 16 represents the 16 terms out of the total number N, used for

signal reconstruction.

5.2 CIRCUITRY ERROR:

There are three stages in the designed instrument;vthe Walsh
function generator, the multipliers and the summer. In the Walsh function
generator stage there are no errors since the generator has accurate
timing for any sequency term to be generated. The circuit error prbduced

only .in the multiplier and summer will be discussed.

(a) Multiplier Error: The input coefficients to the multipliers are

s of & 1.2V, with an

for lincar operation to an absolute valu
error of less than 0.01V. This error actually allows for up to 128
quantization levels to be used for the Walsh transform coefficient.
Another error is produced in the multiplier due to the main
function of the circuit. The MC 1496 function originally as a modulator,
the carrier suppression is achieved by changing the d-c level at the
signal terminal. Since we placed the d-c coefficient value at the signal
terminal to modulate the Walsh function feeding the carrier terminal,
therefore the reading at the signal input for zero carrier output must be
taken into account when feeding the coefficients to the inverse Walsh
instrument by subtracting it from the input coefficient.
(b) Adder Error: The errors produced in the multiplier are partially

added in the final stage. This error increases as the number of terms

included in the inverse transform increase. For the total of 16 coefficients,
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the output reading for zero inputs is about 0.05Y. This error limits the
number of quéntization levels of the transform to 32.' Using only 8 terms
of the Walsh coefficients, the number of quantization levels can be
increased to 64.

The effect of circuitry error is actually in limiting the number
of quantization levels used for the transform. The errors would be the
same as that due to quantization as given by Equation (23). A comparison
must be made between the number of quantization levels and the number of
terms included in the Walsh transform, since increasing the number of -
quantization levels for better signal reproduction will increase the
number of terms in the inverse transform which leads to greater error.

It is obvious that the number of terms included in the inverse transform

wiil be smailer for smailer periods of the transform.



CHAPTER VI

‘CONCLUSIONS

The instrument designed in this work for the inverse Walsh
transform restricts the absolute amplitude of the coefficienté to
@ 1.2V. This allows up to 64 quantization levels for the transform if
the sum is made over 8 terms and 32 quantization levels for 16 terms
included in the inverse transform. The maximum sequency term the apparatus
can reach is up to 64 in one period. The instrument will only reconstruct a
1 MHz square wave, being limited by the adder in the final stage. A recon-
struction of some known signals such as sinusoid, ramp and triangle were
obtaiﬁed by using as few as five coefficients which gave a very good

reconstructed signal,

Analysis of a video signal was made and the results were used in
the inverse Walsh transform instrument to reconstruct the signal by using
a 1imited number of the Walsh coefficients. The results were shéwn, but
the effect of approximation can be made only by observing the whole
picture. The errors are discussed following the mean square error
criteria which is mathematically traétable. However, for images, the
quality is defined in subjective terms and can only be measured in terms
of observer response which is very difficult to measure. Future study on
this subject should probably be in the area of statistical research for

the effect of Walsh transform coding on the reproduced image scenes.

G7)
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The Walsh Transform for Specific Signals
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A-1 The Walsh Transform of a Sinudoidal Signal

Walsh no.

04 -.0000 6366 .0000 ©-.0000 -.0000

59 -.2637 .0000 ~.0000 -.0000  -.0525
10 » 14 - 0000 .0000 -.0000 - 1266 ~.0000
15 + 19 -.0000 .0000 -.0125  -,0000  .0000
20 ~ 24 .0000 .0052 .0000 .0000 .0000
25 > 29 -.0260 -.0000 0000 0000 -.0627
30 » 34 .0000 -.0000 .0000 -.0031 0000
35 > 39 -.0000 .0000 .0013 -.0000 .0000
40 > 44 0000 0005 -.0000 0000  .0000
45 > 49 .0006 .0000 -.0000 0000 -.0062
50 + 54 -.0000 -.0000 -.0000 o026 ~.0000
55 > 59 .0000 -.0000 -.0130 © 0.0000 . .0000
60 + 63 -.0000 -.0313 0.0000  -.0000 :
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Walsh no.

0

5
10
15
20
25
30
35
40
45
50
55
60

Walsh no.

0

5
10
15
20
25
30
35
40
45
50
55
60

4
9

14
19
24
29
34
39
44
49
54
59
+ 63

L0 25 20 2 2 S 2 2 2N 2N

+

+ 4

+ 9

+ 14
+ 19
-+ 24
»> 29
> 34
+ 39
+ 44
49
54
59
63

+ ¥ ¥4

.50000
0.00000
0.00000
-.03125
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

.50000
0.00000
0.00000
0.00000
0.00000
0.00000
-.03125
0.00000
0.00000
0.00000
0.00000
0.00000
0.00600

The Walsh Transform of a Ramp Signal

-.25000
0.00000
0.00000
0.00000
0.00000
0.00000
-.01563
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.00000
-.06250
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

-.12500
0.00000
0.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-.00781

OO OO0 OOO

The Walsh Trunsform of a Triangle

0.00000
-.12500
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

-.25000

- 0.00000

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
-.01563

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
0.00000

OO0 OOOOO

0.00000
0.00000
-.06250
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

19



A Typical Video Signal

A-4

(Fig. 20-b, 256 samples in the period T)

Sample no.

62

nvnvnv9uq/.4,b RvRvszqoboaa4,b 4.4.4.1‘zu‘4.b 4.4.2v7.7~7.7.nv1.4.
O 0o - 2,4.7.4.4.7.7.7.7~ MNN NN

00087668884228604404440363302122

666 1 2434422222 ) 42222

00028668884226664404462394442222

6661 - 1434422222 22222

00058768884222664404328204162242

. . . . . . . . . . . .

6663 —t 1434422222 1 ~— 2212

00088767884228622404327214148202
¢3r)—).) 1 434422222 1 1 1212

00098756883324680403444202632280

. . . . . - LI 4 . - . .

6665 [l 434422222 - o~ o~

00008746882622644422563382423280

. - . . . . ¢ .

6666 1 433442222 2 o~

00008746888222664442543352328281

. . . . . . . . . . e o .

6666 —t 342442222 2212

0+ 7
8 + 15
16 + 23
24 + 31
56 + 63
120 + 127
248 + 255



A-5 The Walsh Transform for 64 Successive Samples

of the Video Signal

1. The First 64 Samples

Walsh no.

04 3.05156 2.38594 .26094 .30156 -.24219

5+9 -.32031 .28594 .27656 -.27344 -.27031
10 + 14 .27969 .26406 -.24219 -.30156 .27969
15+ 19 .26406 -.05781 -.02969 .04531 .05219
20 + 24 -.03906 -.04844 .04531 .04219 -.05781
25 + 29 -.04844 .05156 .05469 -.03906 -.06719
30 + 34 . .05156 .05469 .03594 ,03281 -.02969
35 + 39 -.03906 .03594 .03281 -.03594 -.03281
40 > 44 . 03594 .03906 -.03594 -.03906 .03594
45 + 49 . 03906 -.04219 -.03281 -.04219 -.02656
50 » 54 . 03594 .03281 -.02969 ~.03906 .02969
55 + 59 . 03906 -.04219 -.03281 .04219 A .03281
60 + 63 -.02969 -.04531 .03594 .03906

2. The Second 64 Samples
Walsh no.

04 1.58594 -.77031 .79531 -.81094 -.37656

S-+9 .15469 .12031 .10156 .02344 -.09531
10 +~ 14 -.12969 .20156 -.14531 .12344 . 10156
15 » 19 -.07969 .01719 -.00156 -.07344 .05781
20 » 24 -.00156 .06719 .00781 -.07344 ~-.02656
25 »+ 29 -.03281 -.09219 .15156 -.10156 .07969
30 » 34 . 04531 -.02344 -.00781 .01094 . ~-.02344
35 > 39 .02031 .02344 .00469 .00781 -.03594
40 » 44 -.05156 .02969 -,01719 .03906 - -.00156
45 » 49 -.00781 -.00469 .01406 - .01094 - ~-.00781
50 + 54 -.00469 .00156 .04844 -.00781 _ .02031
55 + 59 -.06094 -.05156 .01719 -.05469 ' .08906
60 -~

63 -.04531 .03594 .00156 .00781
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A-5 (Continued)

3. The Third 64 Samples

Walsh no.

0+ 4 2.55781 . 75781 .13281 - .72656 . T =,32031
5=+9 .14219 -,25781 .21094 -.06094 -.02031
10 »~ 14 -.09531 -.17031 -.14844 -.09219 - -,02969
15 > 19 : . 04531 -.00156 .06094 "~ -.15781 ) -.05156
20 » 24 ~-.06094 -.17344 .09531 -.01094 06406
25 + 29 .00781 -.07344 -.14844 -.12656 ~ -.08281
30 > 34 -.01406 .07344 -.03594 ,02031 ' -.01094
35 +~ 39 -.02344 .00469 -.03906 -.00781 -.00781
40 » 44 . 00469 -.03281 .01094 . -.03281 . =.,03594
45 » 49 .00156 -.02969 .01406 -.04531 .01094
50 > 54 -.06406 .02344 .01406 -.06719 .03281
55 » 59 -.05469 .02031 ~.05469 .00781 - =,04844
60 »> 63 -.05156 .01094 -.03906 .00469

4. The Fourth 64 Samples

Walsh no.

04 1.32813 -.57187 -.13750 : -.08750 .19375
5->9 .14375 .08437 -.17813 ' ©.05625 .26875
10 » 14 -.11562 -.15313 .15313 .12812 , - -.01250
15 » 19 -.25000 .03125 -.04375 - -,05312 - -.07813
20 » 24 .07188 .07188 -.15625 X -.06875 : - .09062
25 + 29 .05313 -.07500 -.06250 " ,10000 ..05000
30 » 34 -.08437 -.04688 .04688 -.10312 - -,03125
35 + 39 . 06875 . 00625 -.13125 -.01563 - .10938
40 » 44 .04375 -.14375 .00938 .07188 -.00313
45 » 49 -.06562 -.05625 .14375 .01250 -.06250
50 -+ 54 .00312 -.02188 .02187 .03437 -.08125
55 =+ 59 -.00625 .04063 .00312 -.02500 -.01250
60 » 63 .03125 -.00625 -.02812 -.00313 -
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1. The First 32 Samples

Walsh no.

0-+14 5.43750
5-+9 .54375
10 - 14 -.08750
15 »+ 19 .10625
20 + 24 .07500
25 =+ 29 . 06875
30 » 31 -.07500

2. The Second 32 Samples

Walsh no.

0~ 4 .66563
S+9 -.01562
10 + 14 .00937
15 » 19 .00312
20 + 24 -.00313
25 » 29 -.00312
30 + 31 .01562

A-6  The Walsh Transform for 32 Samples

of the Video Signal

«56250
-.54375
.08750
.06875
-.07500
-.06875
.07500

.04062
. 05937
-.00313
.00312
-.00313
.00938
.00313

-.56250
.54375
-.10625
-.06875
.07500
.06875

.07813
-.01563
-.00938
-.00938
-.00312

.00937

«56250
-.08750
. 10625
.06875
-.07500
-.07500

-.00937
-.02812
.00313
.00312
.00938
-.00938

-.54375
.08750
-.10625
-.06875
-.06875
.07500

-.00313
-.00313
.02812
.00313
~.01563
-.00937
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A-6 {Continued)

3. The Seventh 32 Samples

Walsh no.

0+ 4 . 75625 -.22500
5+9 -.26875 +28125
10 - 14 .14375 -.22500
15 + 19 -.13125 -.05625
20 » 24 -.10000 08125
25 + 29 -.01875 .05625
30 + 31 .02500 -.03125

4. The Eighth 32 Samples

Walsh no.

0-+4 1.90000 .05000
5-+9 -.03750 .02500
10 » 14 0.00000 .08750
15 » 19 .03750 .15000
20 + 24 .18750 .06250
25 + 29 ~-.02500 ~-.01250
30 +~ 31 .03750 .02500

. 33750
-.26250
.14375
.03750
-.06875
-.08750

.05000
-.23750
.03750
. 10000
.06250
.07500

-.09375
-.01250
-.13750
-.12500
.08750
.04375

-.26250
.07500
.01250

.13750

.20000
.03750

.32500
-.13125
.15000
.09375
-.05000
-.03750

-.21250
-.02500
.05000
.12500
.07500
.01250
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APPENDIX B

LAYOUT OF CIRCUIT BOARDS

The following diagrams show the layout of the integrated circuit
ships of the two boards of the Walsh function g&herator and the two ”
boards of the multipliers and summer. Each of the integrated circuits
are labelled with the appropriate number used in the schematic diagrams
of Figures 12 and 17. The integrated circuit layouts are shown on-

Figure B-4.

(67)
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Input—Output asgwaWFMWWWAg
Terminals : PORBY B
SNZHZN || SNZHZN || SNTHZIN || SNZHZN. || SNZHZN | SN74HIOBN ]
SNZZHOON || SNZZHOON || SNZAHOON | SNZGHZON || SN74H3ON || SNZHIOBN
(2] (1] [12]
SNZEHZN J| SNZZHZN || SNZHZN || GNZLHZN || SNZHZIN || SNZLHON. || SNZ4HOON |
B )| 7 ) el ] G
SAHOON || SKZHOON |[ SZHOOR || SNZ4#120k || SNZ&HION || SNZZHIOBN |
| 7 25 |
SNZHZN || SNZHZN || SNZHZN || SNZHZN || SNZHZN | SNZHIOGN |
q 4 q < 9
kel
SNZLHOON || SNZZHOON || SNZLHOON || SNZZH30N || SNZZHZON || SNZZHIOBN
.
SNZHZN || SNZHZN || SNZHZN || SNZHZN || SNZLHZN || SNZZHIOGN
| SNZHOON || SNZHOON || SNZAHOON || SN7ZZH3ON || SNZLH3ON || SN7ZZHOON || SNZH2ON |
4 |
| SNZHOAN | | SN7ZLHZON | | SN74HIO6N
SNZH30N | | GNZH3ON | | SNZH30N |
B4 |
T100225

FIGURE B-1

Card Surface Showing Number and Locatlon
of Integrated Circuits -

The Walsh Function Generator Card 1 or Card 2




MC1496L MC1436L MCl496L
3 : 51 9 il

MG1496L | | MC14g 6L

NE531V} NES5314 NES3V
1191013091 9

3 7 5]

 mc1496L] [ mcis96L EMCMQGL

MOX@LEIPOO@EIOXETDOEOOE®

EREREREEPEEE @ VRYPODYES

Vector | 36 77SER |

Tuput. Output

Terminels.

Card Surface Showing Number and Location of the Integrated Cicuit

FIGURE B-2: The Multipliers and Summer Card-1
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- |NE531 VINES3{V MC1496L - MCMQGL
" 10] 7 [9 >[4 Sk

MCl496 L | Ml496L MC 1446 L
D g 5 P 2

>Mcu&%L >MC1g‘36L )MCI?%‘L

Vector . 838WE

FIGURE B-3: The Multipliers and Summer Card-2

Input-Output Terminals are the Same
as in Card-1
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% 131211109 § 161514 1321110 g
| o o | e oo . | g | i

F'TF'TF‘?F‘WF‘1F‘7F'TF—1
) T
:) | , i " dijf

[ T s

L_J L__Jl__lL_JL_) _ﬁjﬁf CIT I IC T
56 7 T 2345678
Quadruple 2 input NAND-. Dual J-K Flip Flop
SN74HOON SN74H106N
14 13121110 9 8 1413 12 1 1098
l_ll_'ll_‘ll'_‘il'_ll_lr‘r

- S S
ﬂﬁfl& ‘ uuuf&
123456 7 1234567
Hex Inverter Dual 4 Input NAND
SN74HO4N ' SN74H20N
1413121110 9 § 14131211109 8
Vi e A
B‘Vcc | ............ \"_—:1 i‘?ag !{‘LI- Dpfi“'QJJ
| { ) —————“:'—"._/ ' > ﬂ%rqea(:: :,‘]‘Et L CC‘ [22 r'a
AR R
BN | N J SO A A | O | S AN | U U £ N ) N | S | S
1234567 1234567
8 Input NAND Dual D-type Flip-Flop
SN74H30N SN74H74
14131211109 8 8 76 5
LA rarar— frec. r-1r-:r-1r—1
J l H G Comp v
) D
ABCDEF LT v
LU U AL JL_JU JL_ ‘ T*)l ) -
1 234567 - ' 23 4
MC1496 NES531

FIGURE B-4: Integrated Circuit
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