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SCOPE AND CONTENTS: 

An adaptive signal processing technique for improved reception 

of pulse amplitude-modulated (PAM) communication signals in the presence 

of intersymbol interference and additive noise has been introduced. A 

mechanism, consisting of a carrier regeneration scheme and a coherent 

phase acquisition decision logic, for the synchronous demodulation of 

AM signals has been proposed and its feasibility demonstrated. An 

adaptive signal processor, designed to combat the simultaneous effects 

of intersymbol interference and additive noise, has been developed using 

an adaptive recursive filter and an adaptive recursive equalizer 

connected in cascade. 

A capability for the adaptive equalizer to track its own frame 

of reference has been introduced. Computer simulation has indicated 

that the latter feature permits stable operation of the adaptive 

recursive equalizer in the absence of any stability constraint, thereby 

providing faster convergence than presently known equalizers. 
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ABSTRACT 

The problem of communication would have been trivial if the 

channel through which the signal must propagate were ideal, that is, 

an all pass system with a linear phase response. In practice, channels 

are non-ideal; imperfections in the physical channel, such as time

dispersion and frequency-dispersion, are the results of signal 

dependent distortions. In addition, upon reception the signal is 

further corrupted by the inevitable presence of addi~ive random noise. 

Time dispersion causes successive pulses to overlap, therepy creating a 

phenonemon which has been termed 'intersymbol interference'. Frequency 

d.is pt.:r:s.iun causes the received signal spectrum to vary both in ampli t:ude 

and phase. Unless these channel imperfections are taken into account 

in the design of the communication system, the rate of data transmission 

can be limited by the physical channel. Also, the presence of additive 

noise poses further limitations on the ultimate performance of the 

system. 

This thesis is concerned with adaptive signal processing 

techniques for digital communication through dispersive unknown channels. 

The research undertaken has been principally aimed at the analytical 

derivations of an adaptive recursive filter and an adaptive recursive 

equalizer, and the simulations of overall binary communication systems, 

taking into account dispersive effects as well as random noise. 

Computer simulation tests have indicated that the new adaptive 

equalizer exhibits a much more robust operation capability and improved 
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system performance than the conventional adaptive equalizer. This study 

has indicated that adaptive signal processing is a viable technique 

upon which a reliable communications system may be designed. 

iv 



ACKNOWLEDGEMENTS 

The author especially wishes to thank Dr. S. S. Haykim for 

his helpful advice and encouragement, and for the many useful sugges

tions received during the course of this work. He is also grateful 

to Dr. G. Field and Dr. A. s. Gladwin, the other two members of his 

Ph.D. Supervisory Committee, and to Mr. D. Taylor, who have helped 

considerably by way of valuable and stimulating discussions. 

The author is grateful for the generous financial support 

of the National Research Council through the award of a PIER Fellow

ship. 

Finally, the authors's special thanks go to his wife Betty, 

whose patience and understanding permitted the completion of this 

work with the minimum of stress. 

v 



TABLE OF CONTENTS 

ABSTRACf 

ACKNO\\'LEDGEMENTS 

CHAPTER 1 - INTRODUCTION 

1.1 Outline of the Problem 
1.2 History of the Problem 
1.3 Scope of the Thesis 

CHAPTER 2 - DIGITAL COMMUNICATION TECHNIQUES 

2.1 Introduction 
2.2 Signal Representation 
2.3 Probability of Error 
2.4 Synchronous Demodulation 
2.5 Computer Simulation Results 
2.6 Summary 

CHAPTER 3 - COMMUNICATION OVER DISPERSIVE CHANNELS 

3.1 
3.2 
3.3 
3.4 
3.5 

CHAPTER 4 -

4.1 
4.2 
4.3 

4.4 
. 4.5 

4.6 

Channel Characterization 
Channel Distortion Characteristics 
Problem Formulation 
Signal-To-Interference Ratio 
SlDllmary 

DERIVATION OF AN ADAPTIVE FILTER 

Introduction 
Objective and Criterion 
Derivation of a Recursive Filter 

4.3.1 .Performance of the Recursive Filter 

Adaptive Implementation of the Recursive Filter 
Reception of Bandpass Signals 
Summary 

Page 

iii 

v 

1 

1 
6 

11 

12 

12 
15 
23 
29 
38 
39 

45 

45 
56 
58 
61 
67 

68 

68 
69 
70 

76 

80 
91 
94 

CHAPTER 5 - A GENERAL FORMULATION OF THE ADAPTIVE EQUALIZER 95 

5.1 Introduction 95 
5.2 Statement of the Equalization Problem 96 
5.3 Derivation of the Non-recursive Adaptive Equalizer 98 
5.4 Recursive Algorithm for the Weighting Functions 104 

vi 



TABLE OF CONTENTS (cont'd) Page 

5.5 Recursive Equalization 106 

5.5.1 Constrained Optimization 106. 
5.5;2 Recursive Formula for the Reference Tap Gain 

of the Complete Equalizer 116 
5.5.3 Unconstrained Optimization 119 

5.6 Summary 

CHAPTER 6 - PERFORr-1ANCE OF THE ADAPTIVE RECEIVER 

6.1 Introduction 
6.2 Performance of the Adaptive Recursive Filter 
6.3 Performance of the Adaptive Equalizer 
6.4 Performance of the Adaptive Signal Processor 
"6.5 Summary 

CHAPTER 7 - CONCLUSIONS AND FUTURE STUDIES 

7.1 Conclusions 
7.2 Future Studies 

APPENDIX A - MATCHED FILTER RECEPTION OF AN ISOLATED PULSE IN \'/BITE 

119 

122 

122 
125 
133 
144 
165 

172 

172 
173 

GAUSSIAN NOISE 174 

APPENDIX B -- CHANNEL MODEL 177 

APPENDIX C - ABSTRACT VECTOR SPACE 186 

APPENDIX D - DERIVATION OF THE GAIN MATRIX G(n,n) 189 

APPENDIX E - POSITIVE DEFINITENESS OF THE COVARIANCE MATRIX 194 

APPENDIX F - CONVERGENCE PROPERTIES OF THE RECURSIVE ALGORITHM 196 

APPENDIX G - STABILITY CONDITION FOR THE RECURSIVE EQUALIZER 207 

APPENDIX H - MONTE CARLO SIMULATIONS 210 

BIBLIOGRAPHY 223 

vii 



Figure 

1.1 

1.2 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

2.10 

2.11 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

4.1 

4.2 

LIST OF ILLUSTRATIONS 

Title 

A Digital Communications Link 

Error Probabilities for Matched Filter Receiver 

Communication Over A Non-dispersive Channel 

Waveform Generation 

Pulses and Their Autocorrelation Functions 

Techniques for Combining the Quadrature Signals 

A Decision Logic For Combining the Quadrature 
Signals 

Carrier Regeneration Scheme 

Synchronous Demodulation Scheme For AM Systems 

Binary Antipodal Signaling Waveforms 

Synchronous Demodulation Waveforms (•14 dB SNR) 

Synchronous Demodulation Waveforms (+6 dB SNR) 

Synchronous Demodulation Waveforms (-3.5 dB SNR) 

Graphical Representation of the Scattering Function 

Tapped-delay Line Model 

Symbolic Representation of Complex Channel Response 

A First Order Selectively-Fading Channel Model 

Illustration of Time Spread 

Proposed Channel Model 

The Recursive Filter 

Reception of a Scalar Quantity by Recursive 
Filtering 

viii 

2 

5 

14 

16 

20 

34 

35 

37 

39 

41 

42 

43 

44 

46 

48 

48 

52 

52 

62 

77 

83 



LIST OF ILLUSTRATIONS (cont'd) 

Figure 

4.3 

4.4 

4.5 

4.6 

5.1 

5.2 

5.3 

5.4 

5.5 

5.6 

6.1 

6.2 

6.3 

6.4 

6.5 

6.6 

Title Page 

Decision Directed Implementation of the Adaptive 
Recursive Filter 89 

An Alternative Form of the Adaptive Recursive Filter 90 

Recursive Filter for Bandpass Signals 
(A Demodulator-Estimator Device) 92 

Possible Mechanization of the Demodulator-Estimator 
Receiver 93 

A Simple Illustration of Time Dispersion 97 

The Modified Non-recursive Adaptive Equalizer 107 

A Complete Adaptive Equalizer 109 

A Convolution Map for Two Sequences 112 

The Constrained Adaptive Equalizer 118 

The Unconstrained Adaptive Equalizer 120 

Mat.ched Filter and Recursive Filter Detection of 
A Raised Cosine Pulse in 2 dB Gaussian Noise 127 

Matched Filter and Recursive Filter Detection of 
an RC Response Pulse in 2 dB Gaussian Noise 128 

Matched Filter and Recursive Filter Detection of 
an RC Response Pulse in 6 dB Gaussian Noise 129 

Output Signal-to-noise Ratio for Reception of a 
Raised Cosine Pulse in Gaussian Noise 
(19 sample approximation) 130 

Output Signal-to-noise Ratio for Reception of a 
Raised Cosine Pulse in Gaussian Noise 
(9 sample approximation) 131 

Output Signal-to-noise Ratio for Reception of a 
Raised Cosine Pulse in Gaussian Noise 
(5 sample approximation) 132 

ix 



LIST OF ILLUSTRATIONS (cont'd) 

Figure 

6.7 

6.8 

6.9 

6.10 

6.11 

6.13 

6.14 

6.15 

6.16 

6.17 

6.18 

6.19 

6.20 

Title 

Equaliz~tion of Non-overlapping pulse with 20% 
Threshold - (random sidelobe channel) 

Equalization of Non-overlapping Pulse with 20% 
Threshold - (all positive sidelobe channel) 

Comparison of Convergence of Conventional Non
recursive, Modified Non-recursive and Recursive 
Equalizers 

Comparison of Convergence of Conventional Non
recursive, Modified Non-recursive and the 
Recursive Equalizers 

Comparison of Convergence of Conventional Non
recursive, Modified Non-recursive and the 
Recursive Equalizers 

Comparison of Con-vergei1Ce of ti1e Recursive 
Equalizer (unconstrained) for Different Types 
of Channel Impulse Responses 

Reception of a 127-Digit Binary M-sequence, 
SNR=l.O dB 

Reception of a 127-Digit Binary M-sequence, 
SNR=-3.0 dB 

Output Signal-to-interference Ratio for Correlation 
Decoding of a 127-Digit Periodic Binary M-sequence 

Probability of Error of Recursive and Non-recursive 
Equalizers for Channel Impulse Response shown 

Probability of Error of Recursive and Non-recursive 
Equalizers for Channel Impulse Response shown 

Probability of Error of Recursive and Non-recursive 
Equalizers for Channel Impulse Response shown 

Probability of Error of 15-tap Recursive Equalizer 
for Different Channel Impulse Responses 

·Probability of Error of Non-recursive Equali;er 
for Different Channel Impulse Responses 

X 

134 

135 

140 

141 

142 

143 

146 

152 

160 

167 

168 

169, 

110 

171 



LIST OF ILLUSTRATIONS (cont'd) 

Figure 

G.l 

H.l 

H.2 

H.3 

H.4 

H.S 

Table No. 

Table II-1 

Table VI-1 

Title 

Stability Condition 

Channel Model for Simulation 

Hierarchy of Subroutines for System Simulations 

Gross Flow Chart for Signal Simulator 

Gross Flow Chart for Adaptive Equalizer 

Gross Flow Chart for Error Rate Computer 

LIST OF TABLES 

Title 

Probability of Error for Matched Filter 
Receivers 

Range of Gradient Constants for Best 
Convergence 

xi 

Page 

209 

217 

218 

219 

220 

222 

28 

139 



Symbol 

* 

c 

t 

+ 

u 

E{·} 

{a.} 
1 

N 

a(t) 

T 

c( T, F;) 

L 

B 

NOMENCLATURE 

Definition 

superscript, scalar estimate 

superscript, complex conjugate 

superscript, matrix transpose 

superscript, complex conjugate transpose 

overhead, estimate in orthogonal projection 

overhead, error in orthogonal projection 

overhead, error in scalar estimate 

overbar, ensemble average 

underbar~ a vector quantity 

statistical expectation 

information sequence 

length of sequence 

modulating signal 

baud length (digit duration) 

pulse separation 

duration of one sequence 

transmitted signal 

channel matrix 

channel impulse response 

(hal f) time spread 

(half) frequency spread 

carrier frequency 

xii 



NOMENCLATURE (cont'd) 

Symbol 

m 

n 

d 

r 

m -r 

a* n 

n 

Definition 

de~ay rate 

doppler frequency 

channel output vector 

additive noise vector 

subscript, determinstic component 

subscript, random component 

deterministic channel output 

random channel output 

estimate of a 
n 

subscript, iteration ~!.--'-.&.111~ 

G gain matrix of recursive filter 

W weight vector in the non-recursive equalizer -. 
{W • (a)} the· set of weights in estimation loop n,1 

{W .(x)} the set of weights in learning loop n,1 

{b . } the set of weights in recursive equalizer n,1 

K(i,j) second-order moment matrix 

P(nli) covariance matrix of error in orthogonal projection 

a gradient constant for reference tap 

B gradient constant for learning loop 

y gradient constant for recursive loop 

Pe or P(eldn) probability of error per binary symbol 

SNRin input signal-to-noise ratio 

xiii 



NOMENCLATURE (cont'd) 

Symbol 

SNR 
0 

Definition 

output signal-to-noise ratio 

signal-to-interference rat.io at output of 
correlation decoder 

xiv 



1.1 Outline of the Problem 

CHAPTER 1 

INTRODUCTION 

Communication theory deals with the study of systems for trans

mitting information or data from one point to another. Examples of 

point-to-point communications which we may mention are the telephone 

line, the ionospheric links and the tropospheric scatters, etc., while 

examples of two-way communications are active radar and sonar systems. 

Except for some fundamental differences in the transmission media, such 

as the frequency and phase characteristics, the theory and techniques 

behind the design of a reliable communications system for all above 

mentioned situations are essentially the same. A general block diagram 

for visualizing the behaviour of a communications system is given in 

Figure 1.1. Neither the physical channel nor the background noise is 

at the system designer's disposal. The 'Black Box' denoted 'Signal 

Processor', however, is to be optimized in order to combat background 

noise as well as distortions arising from imperfections in the physical 

channel, such that the input to the channel decoder is a 'good' estimate 

of the.output of the channel encoder. 

Communication systems usually employ some type of signal 

modulation, e.g.; A.M., F.M., P.M., etc. That is, a low frequency wave

form, which contains the information, is modulated onto a high frequency 

carrier, which serves to carry the signal energy to distant points. In 

digital communication systems pulse modulation is normally employed, 

1 
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that is, the transmitted waveforms may be amplitude, frequency, phase, 

duration or position modulated by the information. The resulting systems 

are known as Pulse Amplitude Modulation (PAM), Pulse Frequency Modulation 

(PFM), Pulse Phase Modulation (PPM), Pulse Duration Modulation (PDM), or 

Pulse Position Modulation (PPM). 

Physical channels are essentially bandlimited or time-limited, 

both of which distort the transmitted signals. A channel which is 

essentially band-limited possesses a finite response time, so that when 

a signal is transmitted through such a channel, it increases the duration 

of the signal. This characteristic is commonly referred to as 'multipath 

spread' or 'time dispersion'. The time-limiting effect is fundamentally 

a time variation in the frequency spectrum of the signal, that is, an 

aging effect in beth aTaplitudc ~•d phase characteristics. This 

phenomenon is commonly referred to as 'Doppler spread' or 'frequency 

dispersion'. The combined effect of these two forms of distortion may 

be considered as slow fading. A third ill-effect is characterized by 

the so-called 'random channel scattering', in which the signal is almost 

-totally mutilatedt. The output of a 'random scattered channel', as the 

term implies, is random and has a form of wide-band noise which is signal 

dependent. In a practical situation the received signals are further 

corrupted by a signal independent random additive noise, so that the 

problem of accurate reception is further compounded. 

tin this thesis 'random channel scattering' is defined to 
constitute rapid fading or highly dispersive effects both in time and 
in frequency. 
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A consequence of time dispersion is that successive pulses which 

have become lengthened by the channel tend to overlap if the transmission 

rate is high enough, causing what is termed 'intersymbol interference'. 

At high data rates such that the guard spaces between adjacent pulses 

are short compared to the response time of the channel, intersymbol 

interference becomes a limiting factor on the performance of the system. 

An obvious approach to combat the effect of intersymbol interference is 

to transmit data at such a rate that the guard spaces between adjacent 

pulses are comparable to or longer than the finite response time of the 

channel. However, such an approach will severely limit the efficiency 

of the transmitter. 

A consequence of frequency dispersion is that, in order to 

achieve 'good' performance, the receiver is required to be a time-varying 

system. That is, the impulse response of the receiver needs to be 

adjusted periodically, hence the term 'adaptive' is used. 

In general the limiting factors on the performance of a communi

cations system are intersymbol interference, time-variational effects, 

random channel scattering effects, and background noise. The first 

three types of distortions are signal dependent, while the last one is 

signal independent. Because of the inherent signal dependent character

istics in the distortions, the performance of a cummunications system 

cannot be improved by an increase in transmitter power. The limiting 

effects of signal dependent distortions may be appreciated by examining 

Figure 1.2 which shows a plot of probability of error vs signal-to

(additive) noise ratiotin a digital communication system. Figure 1.2 

t 
See pages 27 and 125 for definition 
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was plotted using data from TABLE II-1. This diagram clearly indicates 

that the performance of the system cannot be improved merely by increasing 

the signal strength. 

1.2 History of the Problem 

The perturbations which arise from the transmission media are 

inherently statistical in nature, i.e., the perturbing mechanisms, noise 

and distortions, are usually random. Recognition of the inherently 

statistical nature of communication sources and channels has led to the 

evolution of a mathematical theory of communications. One approach is 

based on information theoretic concepts as introduced by Shannon (1948); 

the other approach is statistical communication theory as introduced by 

Wiener (1942). Information theory deals only with mathematical models 

and not with physical sources or physical channels. The theory places 

emphasis on probability and algebraic theories; it is primarily con

cerned with the encoder and the decoder. Thus information theory is 

concerned with coding sequence of symbols produced by a discrete source 

so that the sequence may be recognized and accurately reproduced at the 

decoder even though the information has been transmitted through a 

noisy channel. Shannon has shown that, as long as the rate of data 

transmission is less than channel capacity, there is no limit to the 

reliability with which information may be transmitted over a communication 

channel. On the other hand, statistical communication theory deals with 

physical sources and physical channels. It is concerned with the problem 

of how to extract the transmitted signal from the noisy received signal, 
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in an optimum fashion, in some statistical sense; Thus, both information 

theory and statistical communication theory are complementary and vital 

to the design of reliable communication systems. 

Ideally, the signal or data arriving at the destination should 

be identical to that leaving the source. This would only be possible if 

the physical channel were an all-pass system with a linear phase response, 

and the background noise is identically zero, conditions which are never 

realized in practice. If the physical channel were ideal and the back

ground noise were white Gaussian, then from an information theory view-

point, for transmission rates smaller than channel capacity, the 

probability of error upon reception can be made arbitrarily small by 

appropriate signal encoding. On the other hand, from the statistical 

communication thee~' viewpoint, fer such a ~~~~nel the matched filter 

would be the optimum receiver (North, 1943). 

Noise or distortion may be grossly defined as that which masks 

the identity of the signal. If Pe represents the probability that an 

error occurs, then (1 - Pe) represents the probability of correct 

reception. In digital communications, with all code symbols equally 

likely, the optimum system is that which minimizes the probability of 

error,. Pe' or equivalently, maximizes the probability of correct 

reception, (1- Pe). The quantity (1 - Pe) is known as the a posteriori 

probability of a.transmitted symbol, a, given {xla} has been received. 

Thus, a minimum probability of error criterion is equivalent to a 

maximum a posteriori criterion. On the other hand, when a priori know

ledge is lacking the criterion to be used is a maximum likelihood one. 
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As mentioned above, when additive noise is the only limiting 

factor in a communications system, matched filtering is optimum. The 

matched filter is identical with a correlation receiver in that they are 

mathematically the same. A simple derivation of the matched filter is 

given in Appendix A. It is shown there that, in the case of white 

Gaussian noise, with p(t) denoting the transmitted pulse, c(t) the 

channel impulse response, and q(t) the channel output, we find that the 

impulse response of the matched filter is given by 

(1.1) 

With Ep denoting the transmitted signal energy, N
0 

the one-sided noise 

spectral density, and c2 the power gain of a non-distorting channel, the 

signal-to-noise ratio at the output is given by 

2E c2 
(S/N) = p 

o N
0 

(1.2) 

independent of the input pulse shape. A matched filter is thus a linear 

receiver that maximizes the signal-to-noise ratio; it gives optimum 

performance provided the random processes are stationary and the channel 

is non-distorting. In the presence of channel distortion and non-

stationary noise (such as the signal dependent random channel scattered 

noise) the matched filter is no longer the optimum receiver. 

In the presence of nonstationary noise and time-varying 

dispersive effects, for optimum reception it is mandatory that the 

receiver should possess time-varying properties in order to maintain 

'good' performance. The receiver should be capable of simultaneously 



rejecting wide-band noise (or extracting the desired signal) and 

compensating for time-dispersion of the transmitted signal (i.e., com

batting intersymbol interference). A process which enables the 

extraction of a signal from noise is termed 'filtering'; that which is 

designed to combat intersyTibol interference is termed 'equalizerion'. 

9 

The design of optimum filters can be attained via either a 

frequency-domain optimization (Wiener, 1942; Zadeh and Ragazzini, 1950, 

1952) or a time-domain optimization approach (Kalman, 1960; Kalman and 

Bucy, 1961). A Wiener filter derived using a frequency-domain approach 

if often optimized with respect to a particular set of parameter values 

and is, therefore, a non-iterative device. In the presence of non

stationary disturbances, such a filter may not be optimum for all 

situations. On the other hand, the Kalman-Bucy filter is iterative in 

nature; it seeks to minimize the covariance matrix of the errors 

inherent in the estimation process. In so doing it lacks dynamic range, 

i.e., the Kalman-Bucy filter is not capable of tracking a time-varying 

signal. 

When there is no noise present and the channel is linear, then 

a network whose transfer function is the inverse of that of the physical 

channel will provide an overall system that has an all-pass transfer 

function. Under this condition the system is said to be exactly equal

ized and the network is called an equalizer. Thus, an equalizer has a 

frequency response which is such that, when connected in cascade with 



the physical channel, the overall amplitude response over the frequency 

range is constant, and the phase response is linear over the frequency 

band of interest. 

10 

Intersymbol interference' can be caused by (1) the presence of 

multiple paths (multipath effects), (2) the differential delays existing 

at different frequencies, and (3) the finite bandwidth of the physical 

channel. Equalization and intersymbol interference reduction has been 

an active area of research for many years. One approach used has been 

the construction of 'inverse' networks (Di Toro, 1964, 1965, 1968). 

Another approach has been referred to as 'time-domain equalization' 

(Gorog, 1965; Lucky, 1965, 1966; Gersho, 1969). While the 'inverse' 

channel approach relies upon a knowledge of the frequency spectrum, the 

latter approach relics upon a knowledge of the received signal waveform. 

A third approach, which is closely related to 'time-domain equalization', 

has been referred to as 'sampled-data compensation' (Coll, 1966; Coll and 

George, 1965; George, 1965; George and Coll, 1965). 

Mostly, studies on intersymbol interference reduction have been 

made in the absence of noise or with restrictive assumptions and con

straints. (Aein and Hancock, 1963; Di Toro, 1964, 1965, ·1968; Lucky, 

1965, 1966.) The problem of receiving time-dispersed pulses in station

ary noise has also received much attention. (Co11, 1966; Coll and George, 

1965; George, 1965; George and Col1, 1965; Tufts, 1961, 1962, 1963, 1965.) 
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1.3 Scope of the Thesis 

This thesis is concerned with improved techniques for the 

reception of amplitude or biphase modulated pulse communications signals 

in the presence of intersymbol interference, time-variational distortion, 

random channel scattered wide-band noise, and random additive noise. 

From an information theory viewpoint the subsystems connected in cascade 

between the encoder and the decoder (see Figure 1.1), that is, the pulse 

shaping network, the physical channel and the signal processor, may be 

treated as the 'communications channel'. The objective of this research 

is to make the 'communications channel' approximate to an ideal one, 

that is, an all-pass system with a linear phase response. This ideal 

condition is to be approached by forcing the signal processor, which is 

a cascade connection of a filter and an equalizer, to approximate an 

inverse transfer function to that of the physical channel. This is to 

be done adaptively, that is, each subsystem treats all others in cascade 

connection preceding it as the unknown environment and attempts to adapt 

itself to any environmental changes. The physical channel is assumed to 

be linear. Alsofthe signal processor shall be maintained a 

linear one. The performance of the overall adaptive system is evaluated 

by digital computer simulations. 



CHAPTER 2 

DIGITAL COMMUNICATION TECHNIQUES 

2.1 Introduction 

Generally speaking the design of a reliable communication system 

can be divided into the following categories: the transmitter design, 

the channel characterization, and the receiver design. A communications 

system is functionally depicted in Figure 1.1. While the design parameters 

for a transmitter and those for a receiver are often at the designer's 

disposal, the characteristics of the physical channel are controlled by 

nature. The design problem of reliable communication systems as defined 

in section 1.1 is, therefore, a game of war between man and nature. In 

order to achieve any degree of success it is necessary to have a clear 

understanding of the characteristics of the channel. Failing this the 

system designer often resorts to mathematical modelling of the channel 

behaviour and the communications problem becomes a guessing game. That 

is, the channel characteristics are random variables which can be approx-

.imated only in some statistical sense. 

Channel modelling has been an area of active studies for many 

years; yet there have been no results available which are general enough 

such that the system designer can use the information directly. Thus, 

channel characterization for a particular application necessarily takes 

into consideration physical insights. The channel characterization 

appropriate for this research is considered in the next Chapter. The 

remaining Chapters of this thesis are concerned with making the 

12 



'communication channel' to approximate an ideal system, as defined in 

section 1.2. At this juncture we assume that intersymbol interference, 

i.e., dispersive effects, is absent and centre our discussions on the 

factors influencing the design of a reliable communication system under 

such conditions. In this respect we shall not concentrate any effort 

on designing signals capable of combatting dispersive effects. Suffice 

it to say that a non-dispersive channel and white gaussian background 

13 

noise with a one-sided spectral density of N
0 

watts/Hz are assumed. The 

communications system of Figure 1.1 then reduces to that given in 

Figure 2.1, where the channel is now characterized by a fading parameter, 

( ) d d 1 . d . -jwdT y t,T , an a opp er parameter, wd, conta1ne 1n e • The 

communications problem now reduces to the one analyzed by Mark (1968). 

There, the main ccnccrn in the design of a reliable co~~unications system 

was to develop techniques to cope with the fading parameter and the 

doppler frequency, wd. An approximate scheme was developed to track the 

input carrier. In this Chapter we derive a mechanism for tracking the 

input carrier to permit synchronous demodulation. 

In the case of point-to-point communications, one wishes to 

recover the transmitted data with little or no distortion. In this 

situation, a criterion to be used may be one of minimizing the 

probability of error. The properties inherent in the codes can be 

utilized to devise suitable decoders to permit minimization of the 

probability of error. In the case of signal detection, the objective is 

to recognize whether or not a target is present and to obtain information 

with respect to its velocity and its relative location. In this case 



I oom~ I ·I mronER I • C PULSE 
>HAPING MODULATOR 
~ETWORK 

NON-DISPERSIVE 

FADING CHANNEL 

Y(t,T) 

+ 

2 
+ 

I D~TINMIOO I· I DECOOER f. [ 
t 

ETECTOR DEMODULATOR 

Figure 2.1 Communication Over A. Non-dispersive Channel 

n . . 

.... 
.j:o. 



15 

the probability of error is still a suitable criterion for system design; 

however, the properties of the codes may be utilized such that the signal-

to-noise _ratio may be defined over the entire signal duration. This is 

the so-called pulse compression technique commonly employed in the design 

of active radar and sonar systems. For the present we are mainly con-

cerned with waveform generation and waveform processing. 

2.2 Waveform Representation 

Signal representation is well described in the literature (see, 

for example, Balakrishnan, 1968). As stated in section 1.1 the trans-

mission of a signal to distant points requires modulation of the low-

pass information waveform onto a high frequency carrier. Reception of 

a signal, in turn, requires demodulation to recover the-low-pass 

information waveform. Thus, the basic components of a transmitter are a 

pulse shaping network and a modulator; those of a receiver are a de-

modulator and a detector, as depicted in Figure 2.1. The pulse shaping 

network is basically a mechanism which transforms the discrete symbols 

_at the encoder output into L2 functions, that 

functions such as a(t) for which J!a(t)l 2 dt 

is, finite energy 

< ~ (Vulikh, 1963) 

In this thesis we consider only PAM systems. The discussion is 

also applicable to a biphase modulated system which is mathematically 

equivalent to a double sideband suppressed carrier amplitude modulated 

system. Without loss of generality, let {a.} be a set of m-ary symbols 
1 . 

at the output of the encoder, as depicted in Figure 2.2. The binary 

information sequence enters the encoder at a rate of R bits/sec while 



BINARY 
INFORMATION 

SEQU 
{~ 

SEQUENCES: 

ENCODER 

m-ary 
MESSAGE 

SEQUENCE 
{ai} 

INFORMATION AT ENCODER INPUT 

ENCODER OUTPUT 

PULSE SHAPING NETWORK OUTPUT 

MODULATOR OUTPUT 

m-ary 
L2 FUNCTIONS 

PULSE 
Sl[}.PING MODULATOR 
NETWORK 
f(t) 

1-- -~--

~1' ~2' ••• ~i .. (0,1) R BITS PER SEC. 

a1 , a2, • • • ai • (1, 2, ••• , m) r SYMBOLS PER SEC. 

1 2 
a1(t), ~(t- r)' a3(t- r)' ••• 

1 2 
sl(t, al), s2(t- r' a2), s3(t- r' a3)' ••• 

Figure 2.2 Waveform Generation 

TRANSMITTED 
SIGNAL 
~-

s (t, {ai}) 

1-' 
0\ 



. 17 

the m-ary sequence leaves the encoder at a rate of r symbols/sec. The 

rate of inflow equals that of out-going information when 

or 

r = R/log2m • (2.1) 

The encoder will introduce redundancy when r > R/log2m~ We note that 

each ai is a function of L information bits, where L is often called the 

constraint length, in information bits, of the encoder. For binary 

signaling, when no redundancy has been introduced, m = 2 and r = R. 

r and L are primarily the design parameters for the encoder. 

Assuming the set {a.} to be statistically independent, that is, 
1 

E{a.a.} = o .. , where o .. is the Kronecker delta, we may represent the 
1 J 1J 1J 

output of the pulse shaping network corresponding to the ith symbol by 

(2 .2) 

where f(t) is the impulse response of the pulse shaping network, and 

Ts is the pulse separation, so that the rate is r = l/T
5

• The impulse 

response of the pulse shaping network is assumed to have an effective 

memory of T0 seconds. The signal representation of equation (2.2) has 

the following interpretation: The pulse corresponding to the ith symbol 

has its centre of gravity located at the time iTs and has a finite value 

lasting for a nominal duration of T0 seconds. The overall output of the 

pulse shaping network can then be represented by 

N 
a(t) ~ E ai f(t - iTs) 

i=l 
(2. 3) 
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where N is the code length given by N ~ L/log2m. Obviously, L should 

be chosen to be much greater than log2m. 

Whether the transmitted signal a(t) retains the statistical 

independence of the set {a.} depends on the function f(t). This condition 
1 

is maintained if 

(i) f(t) _ 0 for t lying outside the interval [0, T
0

] 

and 

(ii) T
0 

~ Ts • 

Typical examples for the function f(t) and its autocorrelation function 

cf> f(t) are the follo\~ing (Papoulis, 1962): 

(1) The rectangular pulse: 

-T /2 ~ t ~ T /2 
0 0 

f(t) 

ltl > T /2 
0 

ltl ~ T 
0 

ltl > T 
0 

(2) The raised cosine pulse: 

f(t) 

3 

1ft 
cos r>, 

0 

2T -t 
0 

-T f. t ~ T 
0 0 

ltl > T 
0 

={ 
- T [{ 4 0 3T Hl 1 1ft } 

+ 2 cos r 1 . 1ft ] 
+ 21Ts1nT , 

cf>f(t) 
0 0 0 

0 I 

(2.4) 

(2 .5) 

(2 .6) 

It I 2T ~ 
0 

-(2. 7) 

It I > 2T 
0 
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(3) The Gaussian Pulse: 

f(t) 
. -Bt 2 

= e (2. 8) 

(2.9) 

(4) The RC filtered rectangular pulse: 

{ 1 - e -Bt • 0 ~ t ~ T 
0 

f(t) = BTo -BT 
(e - l)e , T

0 
~ t 

(2 .10) 

{ t e -BTo ( Bt -Bt) 
-8t e T T [1 - T + 28T e -e --sr-J. t ~ 

0 
0 0 o· 0 

'f(t) 
1 -8t (e8To + e -8To - 2) t > T, -e • 28 0 

(2 .11) 

~~d (5) The exponential pulse: 

t ~ 0 

(2.12) 

t < 0 

~ (t) _ !_ -Bitl 
vf - 28 e ' (2 .13) 

where 8 is the effective bandwidth of the pulse shaping network and T 
0 

is 

the time constant of the RC filter. 

The autocorrelation functions given by equations (2.5), (2.7), 

(2.9), (2.11) and (2.13) are in essence the coh~rent components of the 

outputs of matched filter receivers, as given in Appendix A. The wave-

forms and their autocorrelation functions for the above examples are 

sketched in Figure 2.3. It is noted that the exponential pulse, and, 
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to some degree, the RC filtered rectangular pulse, is all 'tails'. There-

fore, if the impulse response of the pulse shaping network is prescribed 

by eithe~ (4) or (5) above, the resulting waveform, a(t), will contain 

intersymbol interference at transmission time. An appropriate choice 

for the function f(t) is then either a rectangular response, a raised 

cosine response, or a Gaussian response. If the encoder output sequence 

is binary, that is, m = 2, we may maintain the a.'s to be equally likely. 
l. 

Moreover, for maximum transmitter efficiency, we require that 

for all i, where Eb is the bit energy. That is, the signals are equi

probable equal energy signals. Maintaining the statistical independence 

inherent in the set {a.} implies that the functions a. (t) are orthogonal, 
l. l. 

i.e., 

(2 .15) 

For non-orthogonal functions, we have 

(2.16) 

again assuming equal-energy signals. Here p is the correlation 

coefficient between the signals a.(t) and a.(t). 
l. J 

The basic reception problem is to find the optimum way to 

distinguish between either of two waveforms a.(t) and a.(t), each 
l. J 

defined over the bit interval T sec in length. The same interval is 
0 

used for processing at the receiver. 
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To deal with the reception problem in terms of error probabilities, 

it is necessary to transform the L2 functions into discrete symbols. 

Since the signals are defined over the interval 0 ~ t ~ T , we can expand 
0 

each in terms of an orthonormal series: 

00 

d.(t) = t ~1. ~k(t), 
1 k=l K 

with the coefficients given by 

T 

i = 1, 2, ••• , m 

( 0 
~i = J di(t) ~k(t) dt , 

0 

i = 1, 2, ••• , m 

and orthonormality implying 

T 

J o ~k(t) ~j(t) = okj , 
0 

(2 .17) 

(2 .18) 

(2 .19) 

where okj is the Kronecker delta. Likewise, the noise n(t) c~& also be 

expanded in terms of an orthonormal series: 

with 

00 

n(t) = E nk ~k(t) dt 
k=l 

T 

nk = f 0 

n(t) ~k(t) dt • 
0 

(2 .20) 

(2 .21) 

For n(t) Gaussian, the coefficients, nk are also Gaussian. For white 

Gaussian noise with a one-sided spectral density of N
0 

watts/Hz, the 

probability density of each coefficient is given by 

(2.22) 
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2. 3 Probability of Error 

Using matched filter reception the decision rule when a1(t) is 

transmitted can be shown to be (see, for example, Schwartz, Bennett and 

Stein, 1966) 

T 

J o r(t) 
0 

T 

a1(t) dt + b1 > J 
0 

r(t) aj(t) dt + bj 
0 

(2.23) 

for j = 2, , m. Here r(t) is the received signal and b. is a constant 
J 

bias given by 

N
0 

E . 
. b j = 2 lnP j - f 

with Ej = JTo a~(t)dt, the energy in the jth signal, and 
0 

P. = the a priori probability of the jth signal. 
J 

(2 .24) 

For equal-energy signaling, Ej = Eb for all j; the probability of correct 

decision is given by 

1 fao e-y2/2 ~ m-1 
=- [1 - QCJ---Fc--

0 
+ y)] dy , 

hlf -ao 
where 

Q(d) ~ 1 

n:; 

ao 

I 
2/2 e-y dy 

d 

Now, following Nuttall (1962), we note that 

m 
E a.(t)] 2 dt ~ 0 4 .. 1 1 1= 

(2.25) 

(2.26) 
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Expanding, we get 

T 

J 
m m m 

0 

[ l: a..(t)][ l: a..(t)] dt = mEb + m( l: 
'1 1 'lJ '2 1= J= J= 

= mEb + m(m-l)p~ ~ 0. (2 .27) 

From th'e above we get 

1 
1 ~p ~- 1 m -

The probability of error is given by 

For binary signaling with equal-energy signals 

and 

p = __!_ J' C[i; 

00 

-oo 

2 __ _. hEb(l-p) 
e
-y 12 - , .. 

ll - QlJ No + y))dy 

p = Q( ~) = Q( 1'·2(1-p) ) 
e J~ 2 

.where a2 = 2Eb/N
0 

is the signal-to-noise power ratio. 

(2 .28) 

(2 .29) 

(2. 30) 

Q(d) and, therefore, 

·Pe is a monotonically decreasing function of the argument d. We note that 

the function Q(d) is related to the error function erf(d) by 

1 Q(d) = 2[1- erf(d/2)], 

where 

erf(d) 2 =-.r; 
d 2 

J -x e dx • 
0 
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In the case of receiving a signal with a random phase, the 

probability of error is then a function of both the amplitude and the 

phase. The joint probability density function is given by (see, for 

example, Helstrom, 1968) 

where 

1 2 2 q(a,r) = r exp[- 2 (r + a)] I
0

(ar) 

21T 

Io(x) ~ 1 J ex cose de 
21T 

0 

(2. 31) 

(2. 32) 

is the zero-order modified Bessel function of the first kind. The function 

represented by equation (2.31) is called the 'non-central Rayleigh' or the 

'Rician' density function. It describes the distribution of the distance 

from a point in a plane to the origin when the Cartesian coordinates of 

the point are independent Gaussian random variables of unit variance and 

expected values equal to acose and asine, where e is an arbitrary angle. 

The complementary cumulative distribution 

= 

00 

f q(a,r)dr 
.B 

J
oo 1 2 2 

r exp[- 2 (r +a )]I
0

(ar)dr 
B 

(2. 33) 

is known as Marcum's Q-function (Marcum, 1960) of two arguments. It is 

readily seen that 

2 Q{O,B) = exp(-13 /2), 

Q(a,O) = 1 • 
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The probability of detection is effectively given by the Q-function of 

equation (2.33), where e is the threshold and a is the signal-to-noise 

voltage ratio. For equiprobable equal energy m-ary signals the 

probability of error can be shown to be (Reiger, 1958) 

00 

pe = 1 - I r(l - e-r2/2)m-l e-(r2+a2)/2 Io(ar)dr 

0 

=! ~ (-l)k(m)e-(k-l)a
2
/2k 

m k=2 k 
(2. 34a) 

Replacing a2 by a2(1-p), where pis the correlation coefficient given by 

the inequality (2.28), we may rewrite (2.34a) as: 

1 p =e m 
m 
r 

k=2 

For binary signaling, that is, m = 2, the above probability of error 

expression reduces to 

with 

a
2 (1-p) 

4 

-1 ~ p ~ 1 • 

(2.34b) 

(2. 35) 

Equation (2.35) states that for binary signaling, the maximum value of 

Pe is~· This occurs when p = 1, i.e., when the signals are completely 

correlated. Thus, this observation is intuitively satisfying. 

In Chapter 3 we will derive an expression for the signal-to-

interference ratio. At this juncture we may define the signal-to-

interference ratio as follows: 



27 

(sf ) signal power 1 = distortion + mean square noise power 

where distortion is signal dependent. Symbolically, S/1 may be written 

(S/1) -
s2 

= 
d2 2 

+ a n 

where 

s 2/o 2 
2Es/N

0 
= S/N is the signa~-to-additive noise ratio, = n 

and 

is the distortion-to-additive noise ratio. 

Then we may rewrite S/1 as 

s 1 
(S/I) = ( N ) [ D/N + 1 ] · 

The factor inside the square brackets 1s always less then waity. An 

increase in signal strength will increase (S/N); but, by the same token 

(D/N) will also be increased. Assuming the distortion has a Gaussian 

distribution, we may replace a2 by (S/I) in the probability of error 

expressions given in this section. The probabilities of error for 

matched filter reception of binary antipodal signals are calculated and 

tabulated in TABLE II-1. The results of TABLE Il-l have been plotted 

in Figure 1 • 2 • 

as 
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TABLE II-1 Probability of Error vs SNR with S/D as Parameter for a 

Matched Filter Receiver 

Probability of Error, P e 

No Distortion S/D = 20 S/D = 10 S/D = 5 

1.587 X 10-1 1.636 X 10-1 1.685 X 10-1 1.814 X 10-1 

I 

7.899 X 10 -2 8.815 X 10 -2 9.681 X 10 -2 1.293 X 10 -1 

2.276 X 10-2 3.438 X 10 -2 4.457 X 10 -2 6.813 X 10 -2 

6.039 X 10-3 1.427 X 10 -2 2.386 X 10 -2 4.846 X 10 -2 

. 7.906 X 10 -4 4.940 X 10 -3 1.321 X 10 -2 3.399 X 10 -2 

3.289 x 10-5 1.490 X 10 -3 5.087 X 10 -3 2.559 X 10 -2 

1.218 X 10 -4 2.118 X 10 -3 1. 765 X 10 -2 

1.028 X 10-S 1. 309 X 10 -3 1.463 X 10 -2 

-~- ~--- --- -- ~--

N 
00 
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2.4 Synchronous Demodulation 

The motion of scatters in the propagation paths introduces, among 

other things, a discrete frequency drift termed the doppler frequency. 

Consider the reception of an amplitude modulated signal that has 

propagated through such a channel. In the absence of noise we may 

represent the received signal by 

where 

r(t) = 2 a(t - t(t)) cos[w (t - t(t)) + '] 
0 

a(t) is the low frequency modulating signal, 

w
0 

is the transmitted carrier frequency, 

' is the phase deviation, and 

t(t) is the ra~ge delay. 

The range delay may be written as 

where 

t(t) = t + ot 
0 

t
0 

= nominal delay, and 

o = the delay rate. 

The product of delay rate and carrier frequency gives rise to the 

doppler frequency, i.e., 

wd = ow
0 

• 

(2.36) 

Since the nominal delay, t
0

, is merely a time translation, we may re

write equation (2.36) as follows: 

r(t) = 2a(t - ot) cos[(w
0 

- ow
0
)t + '] 

= 2a(t - ot) cos[(w
0 

- wd)t + '] (2.37) 



The objective is to recover the modulating signal, a.(t), which is 

possible if the demoJulation is conducted synchronously. The 

following analysis leads to a synchronous demodulation scheme which 

is based on the quadrature demodulation technique. 

Consider first multiplying the received signal by 2cos(wt+8) 

and applying low-pass filtering; thus 

where 

uc(t) = a.(t - ot)[cos(~ - e)cos(w - w)t r, 

- sin(~ - e)sin(wr - w)t] 

Inspection of equation (2.38) shows that 

(i) If w = wr, i.e., frequency synchronization is attained, 

equation (2.38) reduces to 

uc(t) = a.(t - ot)cos(~ - e) 

30 

(2. 38) 

(2. 39) 

(ii) If e = ~, i.e., phase synchronization is attained, then 

(2.38) reduces to 

uc(t) = a.(t - ot)cos(wr - w)t 

(iii) If w = w and e = ~, i.e., both frequency and phase r 

synchronizations are attained, then (2.38) becomes 

u (t) = a.(t - ot) • c 

(2.40) 

(2.41) 

Equation (2.41) represents an optimum coherent recovery of the modulating 

signal. To achieve this we propose to acquire frequency and phase 

synchronizations separately. 



Suppose next we multiply the received signal, r(t), by 

2sin(wt + e) and apply low-pass filtering; we thus get 

·us(t) = a(t - ot)[sin(~ - e)cos(wr- w)t 

- cos(~ - e)sin(w - w)t] r . • 

When we have frequency synchronization, equation (2.42) reduces to 
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(2. 42) 

us(t) = a(t - cSt)sin(~ -.e) • (2.43) 

The signals uc(t) and us(t) represented,respectively, by equations (2.39) 

and (2.43) are projections of a vector with amplitude a(t - ot) and 

phase angle (~ - e) onto orthogonal axes. Detection based on either 

uc(t) or u~(t) is known as non-coherent detection. To attain the 

performance of coherent detection both u (t) and u (t) are needed. In c s 

other words, the detected signal should be independent of the phase 

difference. Since uc(t) and us(t) are quadrature signals, we may apply 

the following decision rules: 

Decision Rule 1: Squaring and summing the signals uc(t) and us(t), we 

get 

This decision rule is nonlinear. However, as we normally desire to 

maintain system linearity, decision rule (1) is not appropriate. For 

instance, if a(t) were a coded signal, application of the above 

decision rule would destroy the properties of the code. 

Decision Rule 2: Assuming a(t) to be positive, the quadrature signals 

uc(t) and us (t) may be combined as follows: 
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(a) If sgn[u (t)] = sgn[u (t)] = a positive quantity, the c s 

phase difference (~ - e) lies in the first quadrant, then 

u(t) = u (t) + u (t) c s 

= a(t)[cos(~- e) +sin(~- e)] . (2.44) 

(b) If sgn[uc(t)] is negative and sgn[us(t)] is positive, then 

(~ - e) lies in the 2nd quadrant and 

= a(t - ot)[sin(~ - e) + cos(~- e)] • 

(c) If sgn[uc(t)] = sgn[us(t)] = a negative quantity, the 

phase difference ($ - e) lies in the ~hird quadrant, then 

= a(t)[+cos(~ - e) t sin(~- e)] • 

(d) If sgn[uc(t)] is positive and sgn[uc(t)] is negative, 

(~ - e) lies in the 4th quadrant, then 

= a(t- ot)[cos(~ - e) t sin(~- e)] . 

Consider the case (¢ - e) lying in the first quadrant; we have 

(i) as (~ - e) + 0, cos(¢ - e) + 1 and sin(~ - e) + o, 

(2.45) 

(2.46) 

(2.47) 

(ii) as (~ - e) + 90°, cos(~ - e) + o and sin(~ - e) + 1, and 



(iii) the algebraic sum of cos(~ - e) + sin(~ - e) reaches a 

maximum value of 12 at (~ - e) = 45°. 
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Likewise, the bracketed quantities of equations (2.45), (2.46) and (2.47)_ 

are always positive lying in the interval [1, J2], as illustrated graph-

ically in Figure 2.4. An implementation of decision rule 2 is shown 

diagrammatically in Figure 2.5. We note that the output, u(t), of the 

decision circuit of Figure 2.5 differs from a(t - ot) by at most a constant 

multiplier k, where 1 ~ k ~ /2 . 

. Having outlined a detection procedure that is independent of the 

phase difference, (~-e), we turn our attention to devising a means of 

tracking the carrier frequency. Assuming the information inherent in 

the received signal has been removed by means of a band-pass (hard) 

limiter, a bandpass squarer, and a frequency divider connected in cascade 

(Mark, 1968), then we may represent the signal component of the output 

of the frequency divider by 

where 

r' (t) = 2Acos(w t + ljl) 
r 

A is a constant, and 

1jJ is phase deviation. 

(2 .48) 

Multiplying r'(t) by cos wt and sin wt separately and applying low-pass 

filtering to each product, we get, respectively, 

(2.49) 

and 

(2.50) 
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Figure 2.4 Techniques for Combining the Quadrature Signals 
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Multiplying vc(t) and vs(t) together and applying low-pass filtering, 

we get 
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A2 
V(t) = 2 sin[2(wr - w)t + 21jJ) . (2. 51) 

V(t) can be used as a control signal to actuate a VCO in a manner similar 

to that used by Costas (1956). The output of the VCO is a sinusoidal 

wave at frequency w. In addition, the VCO output can be used again to 

heterodyne with the quadrature signals, vc(t) and vs(t), to regenerate 

the signal component as follows: 

vc(t) coswt - v
5

(t) sinwt = A{cos[(wr - w)t + ~]coswt 

-sirt[(wr- w)t + ljJ)sinwt} 

= A cos (w t + ljJj 
r 

= v(t) • 

The double heterodyning process is functionally given in Figure 2.6. 

At first sight this exercise of double heterodyning appears to be futile 

as the output appears to be a reproduction of the input. However, the 

double heterodyning system behaves as a narrow band-pass filter which 

rejects noise, so that the regenerated signal is much cleaner than that 

at the input. 

The bandpass limiter and the bandpass squarer mentioned above 

can be shown to have the following properties: 

(i) The bandpass limiter (Davenport, 1953) 

.a ~ 2a. 
0 1 

for a. -+ 0 
1 

for a. -+ .., 
1 
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(ii) 
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The bandpass squarer (Davenport and Root, 1958; Mark, 1968) 

2 
a~ « ai for a. + 0 

1 

for a. + ~ 
1 

where a. and a are, respectively, the input and output signal-to-noise 
1 0 

ratio. 

The overall synchronous demodulation system is obtained by 

combining the carrier regeneration scheme (Figure 2.6) with the coherent 

phase decision logic (Figure 2.5) as depicted in Figure 2.7. 

2.5 Computer Simulation Results 

Monte Carlo simulation of the adaptive communications system is 

given in Appendix H. Here we present a demonstration of the synchronous 

demodulation scheme described in the preceding section. The waveforms 

shown in Figures 2.8 through 2.11 are for the case of binary antipodal 

signaling through a dispersive channel with impulse response shown in 

Figure 2.9a. Figure 2.8 shows the biphase modulation process; Figure 

2.9 shows the case of +14 dB signal-to-additive noise ratio; Figure 

2.10 shows the case of +6 dB signal-to-additive noise ratio; while 

Figure 2.11 shows the case of -3.5 dB signal-to-additive noise ratio. 

At this juncture we have anticipated the use of the recursive adaptive 

filter to be derived in Chapter 4. The results of Figures 2.9 through 

2.11 clearly demonstrate the feasibility of the synchronous demodulation 

scheme described in the preceding section. 
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2.6 SlDllmary 

In this chapter we have presented some relevant techniques for 

digital c9mmunications over non-dispersive, non-fading channels. We 

considered the problem of signal representation and system performance 

analysis in terms of probability of error at the receiver. In addition, 

we have proposed and demonstrated the feasibility of a synchronous 

demodulation scheme to facilitate coherent reception. 



I 101 I 0 [ 101 I 0 · 
.....___. '---' ~ '--"' 

(a) 31-DIGIT BINARY M-SEQUE~CE MODULATING WAVEFORM 

llllilllllllliiiiiiiiiiRIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllll/Jil~M-a~t-lllllllllllllllllllllllllllliliHW 

(b) HIGH FREQUENCY CARRIER 

(c) PHASE REVERSAL MODULATED SIGNAL 

Figure 2.8 Binary Antipc·dal Signaling Waveforms ~ .... 



_.._______.__ _! J ~ I 
r------~--------~------,-------------- (a) CHANNEL IMPULSE RESPONSE 

~~\\WJM·~lJM~·-%w·.-.~l·y,Ni\~~.wMIMM!Aw.. .M!AII..U/) ... \-YMIIMU!!IMAAii!.w.t 

(b) RECEIVED SIGNAL AT +14 dB SIGNAL-TO-ADDITIVE NOISE RATIO 

~ • .JIAIMWAAAI~!!!II!!IIIIIIIUIIII!IIMI!IIIM!!UIMI~!IIIIIIMII!I!IUMIUIIMII!I.IIIII!I!IIIIUIIIIIIIIMI!I!I!! 

(c) REGENERATED CARRIER 

I - -~ lj 0... - 6,./"'"\. M ~ .. ·- ""-· ... 
0 \/C) •<rv . ~:rr ~ *C? =VJ ~ or \ 

(d) DECISION :LOGIC OUTPUT 

I ~ "' A (\_ --C'>. ~ C> f'-..- . 
.. :;;;>" 'CJ ..... \} ~-'-T""'-'J ~ =::> ~<c> 

(e) RECURSIVE PILTER OUTPUT 

Figure 2.9 Synchronous Demodulation Waveforms (+14 dB SNR) 

~ 
N 



. I I I I 

~··r~r~ (a) CHANNEL IMPULSE RESPONSE 

~Al4.~j,~!~WJw.-AA~!MU!h.WAl4.r~~tA1~M~MU~~A!~U.~!~Jiilli!AAA!MMIA 

(b) RECEIVED SIGNAL AT +6 dB SIGNAL-TO-ADDITIVE NOISE.RATIO 

Ww.'f.wAM!WWIMIMMMIIMWJMWMWMMMIM~~WNN,WIA~WMWm!WM\\,YAY,Wi\WHIHNii 
(c) REGENERATED CARRIER 

I ~ -- {\. . ('.;... "' f"v, -A"L, "' 'Ni.iliJI'"' w ~ ... - ~ . . 
""' ¥~"' .rq v.r._CJ"'J- . o• -V"~ vvv\ 

(d) DECISION LOGIC OUTPUT 

I ,. ..,. 6.. • f\.L:::, c. = • ~ 
......... 'cP 'CJ v . '-=:::::::? ~ \.7' 4 '"""" ~o= 

(e) RECURSIVE FILTER OUTPUT 

Figure 2.10 Synchronous Demodulation Waveforms (+6 dB SNR) 

~ 
~ 



.~~~~firt;,livk~Ji~M~"~d.t3~AJ~.J.l~~~M,\MMJM 

(a) RECEIVED SIGNAL AT -3.5 dB SIGNAL-TO-ADDITIVE NOISE RATIO 

~'~~~~~~~~~AA~~~~l~~~~~~~~~~~i!~~~~~~~~~~~~~~~~~~~~~~~!~~~~~~!~~~~!~~~~~~~!~l!~~~~~~!!~l~~~!!~!!~~~!~!~~~~!!~!~l~~l!!!!l~ 

(b) REGENERATED CARRIER 

lo-1\AA...= ,../\ .~vA.. 1'\M..,.t,f"IH _ AKA.f'V\....P\_x z.l\ Ax iP.AI\_ i'c /'-l·u·"'"'""AJ.. .. ~.\rA 

(c) DECISION LOGIC OUTPUT 

I"" 0 ~ ,-,... A C>. [\ 1\ ·~& (\ -A ..... ,., /"--\ J 

V ""' v~\..J vv VV 'v LJVQVV "V VC' 

(d) RECURSIVE FILTER OUTPUT 

Figure 2.11 Synchronous Demodulation Waveforms (-3.5 dB SNR) 

~ 
~ 



CHAPTER 3 

COMMUNICATION OVER DISPERSIVE CHANNELS 

3.1 Channel Characterization 

As stated in section 2.1 knowledge of the channel characteristics 

is vital to the design of a reliable communication system. In general, 

the communication channel is uncontrollable. There has been a tremendous 

interest in channel modelling; the most fervent researchers in this field 

have been Bello, Kailath, Pierce, Price and Turin (see bibliography). 

The work of these investigators in the field has recently been collated 

and published by Kennedy (1969). 

A statistical model of the channel is given in Appendix B, 

where the macroscopic effect of the channel is described in terms of a 

'channel scattering function', o(T,f). Time and frequency variations 

may be studied by considering the delay scattering function, o(T), and 

the doppler scattering function, o(f), separately, wheret 

O(T) = f O(T,f)df, 

and 

O(f) = f O(T,f)dT. 

The scattering functions o(T,f), o(T) and o(f) are depicted in Figure 3.1. 

tUnless otherwise indicated all integrations are from -~to +~ • 

45 
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0' ( T, f) 

T 

(a) 

a(t,O) 0' (0' f) 

T f 

(b) (c) 

Figure 3.1 Graphical Representation of the Scatte'ring Function 
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Since the scattering function is an average power gain repre-

sentation, however, it is not a flexible model for the studies of 

adaptive systems. A more appropriate model is the delay line model with 

the channel impulse response represented by c(t,~)o(t-iT ), where s 

c(t,~) is a continuum, o(t-iTs) is a unit sampling pulse, Ts is the samp-

ling interval, and ~ is the time delay due to random multipaths. The 

rate of change of ~ gives a measure of the frequency instability. We 

note that as i + oo and Ts + 0 simultaneously, c(t,~)o(t-iTs) + c(t,~). 

The delay line model is depicted in Figure 3.2. 

Consider exciting the complex channel by a real bandpass signal 

as illustrated in Figure 3. 3, where a.(t) is the modulating signal and 

c(t,~) is the time-varying complex impulse response of the channel. The 

channel output is then given by the convolution integral: 

z(t) = 2Re[a.(t-E;)e 0 ]c(t,~)e 0 dE; I 
jw (t-~) jw E; 

= I 
jw (t-E;) jw ~ 

2Re[a.(t-E;)e 0 ]Re[c(t,~)e 0 ]dE; 

I 
jw (t-E;) jw ~ 

+ j 2Re[a.(t-~)e 0 }Im[c(t,~)e 0 ]d~ 

Using equations (B.l) and (8.3) in (3.1), we get 

f 
jw (t-2E;) 

z(t) = Re[a.(t-~)cc(t,E;)e 0 ]dE; 

jw t 
Re[a.(t-E;)c(t,E;)e 0 ]dE; 

jw t 
0 Im[a.(t,t;)c(t,f;)e ]dE; 

(3.1) 



jw t 
2Re{a(t}e 0 

} TAPPED-DELAY LINE 
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PART OF 

Figure 3.2 Tapped-delay Line Model 

jw
0

t 
s(t} = 2Re{a(t)e } jw ~ 

0 
C(t,~}e 

z(t} 

Figure 3.3 Symbolic Representation of Complex Channel Response 
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z(t) = 
-jw (t-2~) 

a(t-~)c(t,~)e 0 d~ 

where the superscript c denotes complex conjugate. Carrying out the 

integration the second term on the right-hand-side of equation (3.2) 

vanishes, leaving 

where 

jw t 
= u(t) e 0 

u(t) = f a(t-~)c(t,~)dt 

is the complex envelope of the channel output. That is to say, the 

complex envelope of the channel output is obtained by convolving the 

modulating signal with the complex channel impulse response. By 
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(3.2) 

(3. 3) 

affecting the transformation ~ ~ T + T , where t is the 'mean' multi-o 0 

path delay, the channel output may be written as 

u(t) = .f a(t-T -T)C(t,T+T )dT 
0 0 

(3.5) 

. dn 
If a(t) is deterministic, then the nth order derivative --- a(t) exists. 

dtn 
A series expansion of a(t-t -t) about the 'mean' multipath delay, t , 

0 0 

may be made to yield 

.,., 1 dn n 
E -; - a(t-t )( -t) 

n=O r.. dtn ° (3.6) 



so 

Substituting (3.6) in (3.5), we get 

n 
~ f d a.(t-t

0
) 

u(t) E.!_ n = (-t) c(t,t
0
+t)dT 

n=O n! dtn 
(3. 7) 

or n 
~ d a.(t-t

0
) 

u(t) E ~! rn(t) = ' n=O dtn 
(3. 8) 

where 

(3.9) 

The degree of selective fading is then given by the terms in equation 

(3.8), i.e., 

r 
0

(t) a.(t-t
0

) ~ flat fading, 

d a.(t-t
0

) 

r 1(t) dt ~ linear or deep fading, 

etc. 

A selective fading channel can thus be modelled by superposing terms 

·expressed by equation (3.8), i.e., many branches connected in parallel 

preceded by the 'mean' multipath delay. Considering only the first two 

terms in the series expansion of equation (3.8), a time-variant select-

ively fading channel model may be depicted as shown in Figure 3.4. 

The integral, rn(t), of equation (3.9) represents the channel 

behaviour. The 'mean' multipath delay may be optimized by minimizing 

the energy contribution from the linear fading branch of Figure 3.4 as 

follows: From equation (3.8) the mean squared value of the flat fading 

term is given by 

If 
= JJ (3.10) 
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where R (T,~) is the correlation function of the ·channel impulse response, 
c 

and the over bar denotes ensemble average. The mean square value of the 

linear fading term is given by 

(3.11) 

The cross-talk between the flat and the linear fading branches is given 

by 

(3.12) 

Our objective is to minimize lr11
2 with respect to the 'mean' multipath 

delay~ T
0

, as follows: 

= 0 ' 

from which we obtain 

(3.13) 

The second order derivative is given by 

> 0 

since Rc(T,~) is a positive definite covariance kernel. 



d 
dt 

r (t) 
0 

+ 

+ 

Figure 3.4 A First Order Selectively-Fading Channel Model 

T 
0 

Figure 3.5 Illustration of Time Spread 

T 
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u(t) 



Thus, the first derivative of lr112 with respect to T
0

, in fact, yields 

a minimum. For the particular value of T
0 

chosen we have 
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(3.14) 

The denominator of the right member of equation (3.13) is just the mean 

square value of the flat fading term given by equation (3.10). If 

Rc(T,~) is viewed as a mass with respect to the T-axis, then, T
0

, as 

given by equation (3.13), is the centre of mass (the first moment). The 

radius of gyration (the second moment) about the centre of mass is then 

given by 

(3.15j 

.where L' is a measure of (half) time spread as illustrated in Figure 3.5. 

We introduce a two dimensional Fourier transform to describe the power 

spectrum in tenns of two frequency variables by 

~ (f, v) 
c = IJ (3.16) 

Taking into account the time and frequency duality, it can be shown that 

the centre of mass with respect to the f-axis is given by 

- 1 J f f ~ c (f' v) df d v 

f = ------------------------
2 ff ~ c ( f, v) df dv 

(3.17) 



and the radius of gyration is given by 

B' = 
ff (f+v-£)

2 
4lc{f,v)df dv 

ff ~ c(f, v) df dv 

1 
2 

. 54 

(3.18) 

B' is a measure of the (half) doppler spread. If the channel impulse 

response is a bandwidth restricted time-invariant system, then equation 

{3.15) is an adequate representation for time spread. In this case the 

second argument in R (T, ~) is superfluous. c 

The time-variant transfer function of the channel is given by the 

Fourier transform of the channel impulse response: 

C(v,t) = f c(t,~)e-j 2 '1Tv~ d~ . (3.19) 

A time-frequency correlation function may thus be defined as (Bello, 1969) 

R(T,f) = c C (v,t)C(v+f, t+T) 

(3.20) 

The time-frequency correlation function defined by equation (3.20) is 

both conceptually and practically pleasing from a linear. systems analysis 

viewpoint. R(T,f) exhibits similar properties as the scattering function, 

o(T,f)~ derived on a statistical basis in Appendix B. Corresponding to 

the delay scattering function we may define a delay correlation function 

by 

R(T) ~ f R(T, f) df (3.21) 

and a doppler correlation function by 
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R(f) ~ f R(t, f) dt • (3.22) 

Replacing Rc(t ,~) by R(t) and 41c(f,v) by R(f) in equations (3.15) and 

(3.18), we get, respectively, 

and 

_where 

and 

f (r-ro)2 R(t)dt 

L = 

f R(t) dt 

f (f-fJ
2 

R(f) df 

B = 

f R(f) df 

f T 

-, 
R(t) dt 

1 
T o=2 

J R(t) dt 

f f R(f) df 

I R(f) df 

1 
2 

(3.23) 

1 
2 

, (3.24) 

The parameter L is a measure of the (half) time spread; it is equivalent 

to L'. The parameter B is a measure of the (half) doppler spread; it is 

equivalent to B'. 
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3.2 Channel Distortion Characteristics 

Suppose the transmitted signal, as suggested in Figure 3.3, is 

jw t 
s(t) = 2Re{a(t)e 0 

} , (3.25) 

where the envelope function a(t) has a baud length T
0

, or an effective 

bandwidth W=l/T
0

• As suggested in section 2.2, the signal duration is 

given by T=NT
0

, where N is the code length, i.e., the number of 

information symbols contained in a(t). A measure of time dispersion, 

which we call the dispersion number, is given either by 

(i) forT < T 
0 s 

where T is the pulse separation, or s 

(ii) L 
n2 = T = WL , 

0 

If measurements made at the sampling instants suffice, then the dispersion 

number becomes 

or 

n2 = ~~o l · fwL l (3.26) 

where r:l denotes the largest integer of. We use the largest integer 

because L is the radius of gyration and the tail ends of the channel 

impulse response may also cause distortion. From the transmitter 

efficiency point of view the transmitted intelligence, a(t), will at 
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least have T
0 

= Ts. Henceforth, wherever we refer to time dispersion we 

mean n as represented by equation (3.26). Distortions, termed inter

symbol interference, will arise when n ~ 1. Intersymbol interference 

becomes increasingly pronounced as n becomes large. For n > N, the code 

length, the distortion becomes so severe that the entire signal may have 

been dispersed or mutilated. From the frequency domain point of view, 

when Lis large compared to the signal duration T, the spectral band

width of the channel, given by 1/L, is so narrow compared to the signal 

bandwidth, that very little signal energy passes through. If the signal 

processor has a transfer function which is inverse tb the physical 

channel transfer function, then the physical channel and the signal 

processor connected in cascade will behave as an 'equalized channel' or 

a&& all pass filter. The derivation of such a mechanism is the topic of 

Chapter 5. 

In section 3.l,the doppler spread, as derived from the time

frequency duality principle, has been termed frequency dispersion. The 

aging process, both in amplitude and phase of the channel impulse 

response, may selectively alter certain time segments of the transmitted 

signal. This phenomenon is actually the manifestation of frequency 

dispersion. In what follows, the effect of doppler will be considered 

as primarily a discrete shift on the carrier frequency. The doppler 

spread will be considered as the manifestation of phase aging. The 

gross effect of frequency dispersion will be compensated for by making 

the impulse response of the signal processor a time-varying one. 
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3.3 Problem Formulation 

Thus far, we have characterized the channel in terms of time

dispersion (source of intersymbol interference) and frequency dispersion 

(slow time variations). In addition, if the channel exhibits very 

rapid fluctuations (compared to the data rate), then the output signal 

from such a branch of the channel may be totally mutilated such that any 

possibility for the recovery of the signal may not exist. Our channel 

model will have three parallel branches: a rapid fluctuating random 

branch which almost completely mutilates the transmitted signal; a time

invariant branch, and a slow fluctuation branch. The random as well as 

the slow fluctuation branches have amplitude and phase distributions 

given by equations (B.20) and (8.21), respectively. The difference 

between these two components lies in their rate of fluctuation. Rapid 

fluctuations give rise to an effective doppler spread much wider than 

the signal bandwidth, i.e., B>>W, so that the output from the.random 

branch has high harmonic contents (hence the term wide-band signal 

dependent noise). On the other hand, slow fluctuations are such that 

over the observation interval the phase and amplitude characteristics 

have not changed very much, i.e., B<l/T, so that any changes on the 

signal are tractable. In our model, then, both the time-invariant and 

the slow-fluctuation components of the channel impulse response have 

finite memories whereas the random component has essentially zero 

memory (as compared to the baud length). Since signals propagating 

through both the time-invariant and the slow-fluctuation branches are 

subject to similar distortions, we lump these together to reduce the 
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channel model to two branches in parallel, that is, a deterministic and 

a random branch. The composite channel has been termed a Rician channel 

which rna~ be described by the probability density functions given by 

equations (8.23), (8.24) and (8.25). 

For reasons of compactness in presentation, we will formulate 

our communications problem in Hilbert space notations (see Appendix C). 

Specifically we let the channel be excited by a (baseband) signal vector 

a, where a is given by the linear mapping 

where 

a = Fa 

a is an s dimension information column vector, 

F is an sxs pulse shaping matrix, and 

a is an s dimensional signal column vector. 

~he channel response at the nth instant may be written as 

where 

m(n) = Cc(n) a(n) 

m is an s dimensional column vector, and 

C is an sxs channel matrix. 

(3.27) 

(3.28) 

We assume that the channel matrix C is decomposable into a deterministic 

and a random component as follows: 

(3.29) 
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where Cd is deterministic and Cr is random. Substituting equation (3.29) 

in (3.28), we get 

Substituting equation (3.27) in (3.30), we get 

where 

and 

= !!Jd(n) 

+ H (n)a(n) 
r -

+ m (n) -r 

is a deterministic linear mapping 

Hr(n) = C~(n)F(n) is a stochastic linear mapping. 

(3.30) 

(3.31) 

The information inherent in the output of the deterministic component 

may be recovered accurately whereas that which is implicit in the 

random component is not recoverable accurately. The output of the 

channel is further corrupted by an additive noise vector, ~~ so that 

the received signal is given by 

~(n) = D(n)[~(n) + ~(n)] (3. 32) 

where D is a linear mapping. 

Thus far in this section, all signal vectors employed have been 

baseband signals. In practice the baseband signal is modulated onto a 
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carrier before transmission. From the analytical viewpoint, it serves 

our purpose better by modulating the overall channel output vector onto 

a carrier prior to reception as follows: 

c 
~(n) = Re{V (n) ~(n)} (3.33) 

where V(n) is a linear mapping. We contend that provided ~(n) implicitly 

contains noise as well as time and frequency distortions, there is no 

loss of generality in employing the above treatment of signal modulation. 

As an example we consider functions in the L2 space and let 

v(t) 
= ejwot 

so that we have, corresponding to equation (3.33), 

jw
0

t 
x(t) = Re[u(t) e ] (3.34) 

We note that 

£vCtJr 1 (3.35) 

Our communication model represented by the set of equations (3.28) to 

(3.33) is depicted in Figure 3.6, where the double lines denote signal 

flow of vector valued quantities. 

3.4 Signal-To-Interference Ratio 

The problem of receiving signals emerging from fading dispersive 

channels will be centred around the communication model characterized in 

the preceding section. 'fhe receiver design problem is divided into four 



{ai}~~ 

Tx I II II 

c 
r 

cd 

m. -r 

n 

+ 

·~ II 

!!d 

PHYSIGJU. CHANNEL 

Figure 3.6 Propoe:ed Channel Model 

u 
D 

I 

I 
I" 

I 
I 
I 

I 

X 

v RX 

0\ 
N 



63 

sub-sections (see Figure 1.1), namely, 

(1) synchronous demodulation, 

(2) filtering of wide-band noise, 
. 

(3) equalization of time and frequency dispersions, and 

(4) signal decoding. 

If the first three of the above are optimized such that the input to the 

decoder is a 'good' estimate of the encoder output, then decoding 

becomes a trivial problem. In this thesis our main interest lies in 

evolving a synchronous receiver for the reception of PAM signals. The 

synchronous receiver includes primarily a synchronotis demodulator, an 

adaptive filter and an adaptive equalizer. The synchronous demodulator 

has been derived in section 2.5; the adaptive filter and the adaptive 

equalizer will be derived in Chapters 4 and S,respectively. In this 

section we demonstrate the need for signal processing. 

Using equation (3.31) in (3.32), we get 

~(n) = D(n) Hd(n) ~(n) + D(n) Hr(n) ~(n) + n(n) 

= ~d(n) + u (n) -r (3.36) 

where 

~d(n) ~ D(n) Hd(n) ~(n) 

and 

u (n) = D(n) H (n) -r r ~(n) + n(n) . 

The observed vector would be mainly distorted by dispersive effects if 



the covariance matrix, Cov[u ] = E[u ut] is a null matrix. Our first -r -r-r 

objective in optimizing signal acquisition is, therefore, to minimize 

Cov[u ]. With respect to the deterministic and the random components -r 

of the channel output we make the following assumptions: 

(i) Since the channel is assumed to be linear, ~d is given 

by a superposition of deterministic quantities (as defined in section 

3.3). Hence, ~d may be treated as a deterministic quantity as opposed 

to the random component u • -r 

(ii) In the space U where the inner products are defined by 
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E[u1 u2], u1, u2 e: U, !:ld and !:lr are uncorrelated under the expectation 

operator E[·]. Since E[~r] = Q, ~d and ~r. are statistically independent. 

On the basis that superposition applies we may consider the 

tr~1smission of an isolated pulse. Let the energy of ~he inpu~ taken at 

the sampling instant be given by Ea = E[a2] = a2• The energy contribution 

from the deterministic component is given by 

Ed = sums of elements along all diagonals of E[~d~~] 

= trace of E[~d~~] + sums of elements of all off principal 

diagonals of E[~d~~]. 

In expanded form, 

Ed = E E E[ud . ud .] 
i j - ,1 - ,J 

= E E hd . hd . E[a. a.] 
i . ,1 ,J 1 J 

J 

= E h2 
+ E E hd . hd . E[a. a.] (3. 37) a d,o . . ,1 ,J 1 J 

1 J 
j=i#O. 



where 

hd .= E fJ. cd,i-J .• 
.. ~ je:.J 
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Since we are considering the transmission of an isolated pulse, each 

sample of the channel impulse response is excited by the same information 

symbol a. Thus the factor E{a.a.} in the second term of equation (3.37) 
~ J 

2 may be taken to be E[a ] = Ea, so that we may express Ed as the sum of 

the coherent signal energy and intersyrnbol interference as shown by 

2 
E hd + E E E hd .hd . a ,o a . . ,1 ,J 

~ J 
i=j#O 

The energy contribution from the random component is given by 

where 

E :;; sums of all diagonals of E[u u ] r -r-r 

= I: E E [ (h . a. + n. )(h . a. + n . ) ] . . r,~ ~ ~ r.,J J J 
1 ) 

= E E E[h .h .a.a. + h .a.n. + h .a.n. + n.n.] 
r,~ r,J ~ J r,1 1 J r,J J ~ 1 J i j 

h . = r f.c .. 
r,1 j J r,~-J 

(3. 38) 

For zero mean {ni} which is statistically independent of {ai} the above 

reduces to 

E = I: r E[h .h .a.a. + n.n.] r i j r,~r,J1J ~J 

= r r E[h .h .a.a.] + r E E[n.n.] (3. 39) 
i j r,~ r,J 1 J i . ~ J 

J 



_ (mean square energy of ) 
- signal dependent noise (

mean square energy of ) 
+ signal independent noise 
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The signal-to-interference ratio at the observation point is then given 

by 

(S/I)ob 
= coherent signal energy 

Total Interferences (3.40) 

where total interferences include energy due to intersymbol interference, 

signal dependent noise and signal independent additive noise. Using 

equations (3.38) and (3.39) in (3.40) and assuming {h .} and {a.} are r,1 1 

statistically independent, we get 

(S/I)ob = E ~ ~ h h , d . d . .... . . '1 , J 
l,J 

i=j;'O 

2 
hd,oEa 

+ E, ~ ~ E[h .h .] .... . . r,1 r,J 
l J 

+ E ~ E[n.n.] 
i j l J 

? h-
= -=-~ -=E,-:-h d-...... h-d-.-+...,~~E..;..d E~' [r..h--=. h--. ],...--+--.,.,..E .....,E,......,.E .... (n-.-n-....... ] /=E=--a ( 3• 41 ) 

i,j ,1 ,J i j r,1 r,J i j 1 J 
i=j;'O 

For hd normalized to unity equation (3.41) becomes ,o 

(S/I) ob 
1 

= E E hd .hd . + E E E[h .h .] + E E E[n.n.)/Ea 
i,j ,1 ,J i j r,1 r,J i j. 1 J 

i=j;'O 

(3.42) 

If we further assume the {h .} and the {n.} are themselves statistically 
r,1 . 1 

independent, then equation (3.42) reduces to 

1 
(S/I)ob = ------~---=--

E E h h + o2 + o2/E . . d,i d,j r n a 
1 J 

(3.43) 

i=j#O 
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where 

2 
1: E(h2 .] CJ = r i r,1 

and 

2 
E E[ni] CJ = n i 

3.5 Summary 

In this chapter we have derived mathematical expressions for 

a measure of time as well as frequency spread. The time spread, L, and 

the frequency spread, B, provide a conceptual feel for the amount of 

distortions arising from the fading dispersive channels. 

The characterization of the 1 conununications channel' in tenns 

of a deterministic and a random component paves the way to the deri-

vations of an adaptive filter and an adaptive equalizer in Chapters 4 

and 5, respectively. The signal-to-interference ratio given by equation 

(3.42) or (3.43) clearly demonstrates the need for filtration and 

equalization. 



CHAPTER 4 

DERIVATION OF AN ADAPTIVE FILTER 

4.1 Introduction 

In section 3.3 we characterized the physical channel in terms of 

a deterministic and a random branch. The output of the deterministic 

branch contains the recoverable signal, which has been perturbed mainly 

by distortions. The output of the random branch is essentially wide-

band signal dependent noise. In addition, the channel output is further 

corrupted by additive Gaussian noise. Accurate recovery of the trans

mitted signal requires firstly, the extraction of the deterministic branch 

output from the received signal and secondly, compensations for 

signal distortions. In this Chapter we are mainly concerned with the 

signal extraction or filtering problem. 

In keeping with the channel model formulation of section 3.3, the 

derivation in this Chapter is carried out in the abstract Vector Space 

concept as defined in Appendix C. The projection theorem and the de

composition theorem given in this Appendix are the main tools employed 

in the derivation of the recursive filter. The recursive filter is made 

to operate adaptively via the incorporation of a gradient technique. It 

is shown that for certain types of signaling (modulation) the adaptive 

filter behaves as a synchronous demodulator-estimator device. In this 

case the demodulation action is characteristically similar to a phase

locked loop. 
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4.2 Objective and Criterion 

Our objective is to find a best linear estimate of the 

vector lEd· By the projection theorem the optimal linear estimate 

is just the projection of JEd(n) onto a linear manifold of dimension n. 

The error is given by the component of ~d(n) which is orthogonal to the 

linear manifold u E: U. We then have, by the projection theorem, 
-n 

~d(n) = ~(n) + ~(n) (4 .1) 

where ~ is an estimate of ~d' and 

- - -+ m with covariance matrix E{m m } defines the error in the estimate. 

Based on the projection theorem the optimal estimate is just the condition-

al mean: 

(4.2) 

Using the conditional notations, equation (4.1) may be re-arranged as 

(4. 3) 

where ~Cjli) is shorthand for the jth instant and in ani dimensional 

linear manifold. In words, ~Cjli) represents the best estimate of the 

state vector ~d(j) at the discrete time j given all the available 

observables u
1

, ••• ,u., up to time i. The quantity m_-(jji) defines the 
- -1 

error in the best linear estimate ~(jji) at the discrete time j. Thus, 

by the projection theorem 

~d(n) = ~Cnln-1) + ~Cnln-1) (4.4) 
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Definition: 

The covariance matrix which reflects the uncertainty of the best 

estimate ~(njn) is defined as: 

PCnln) = E{~(nln) ~·cnln)} (4.5) 

where the superscript + denotes the complex conjugate transpose. With 

the exception of the principal diagonal, all other .elements of the 

covariance matrix are, in general, complex quantities. In our optimiza-

tion problem, we use the 

Criterion: 

An optimal estimate, which is the conditional mean, can be found 

by minimizing the trace of the covariance matrix (the mean square energy) 

C + n-••"+-i ,.._ 
.L '"''1.UU. ... .LU.II 

Identity: 

(4 .5). The trace operator offers the following 

If u and v are two vectors and A is a matrix, then 

t t u Av = tr{y·~ A} (4.6) 

where tr{·} denotes the trace operation of a matrix, i.e., sum of the 

principal diagonal elements of the matrix, and t denotes the matrix 

transpose. 

4.3 Derivation of a Recursive Filter 

We stated in section 4.2 that the best linear estimate is given 

by the conditional mean. Application of the conditional expectation 

operator E{ ·1~1' ... '~n} to equation (4. 4) yields the ~ollowing: 
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( 4. 7) 

Again applying the operator E{·l~1 , ••• ,~n-l} to both sides of equation 

(4 .4), we get 

(4. 8) 

From equation (4.8) we get the identity 

(4.9) 

Let G(n,i) be a gain matrix which contains past statistics of the 

observables up to time (i- 2). It is then permissible to write 

where the superscript c denotes the complex conjugate. Through the 

introduction of the gain matrix G(n,i), we can state that past statistics 

.are not being abandoned but are being propagated. This statement will be 

·substantiated subsequently when we make the computation of G(n,n) adaptive. 

The conditional estimate at time n conditioned on the observables up to 

time (n-1) is obtained by summing equation (4.10) over all i up to i=n-1: 

n-1 
E{~dCnln-l)l~1 , .•• ,~n-l} = E E{~d(nli-l)l~1 , ••• ,~i-l} 

i=l 

n-1 
• E Gc(n,i) ~(ili-1) 

i=l 
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By the projection theorem, we have 

E{~dCnln-l)l~1 , ••. ,~n-l} = E{[~Cnln-1) + ~Cnln-l)ll~ 1 , ••• ,~n-l} 

••• (4.12) 
and 

~Cili-1) = ~Cili-1) + ~Cili-1) ( 4 .13) 

Using (4.12) and (4.13) in (4.11), we get 

n-1 
E{[~Cnln-1) + ~Cnln-l)]l~l' ... '~n-l} = .t

1 
Gc(n,i)[~(ili-1) + ~Cili-1)] 

1= 
••• (4.14) 

Application of the decomposition theorem to equation (4.14) yields 

n-1 

and 

E{~Cnln-l)l~ 1 , .•• ,~n-l} =I: Gc(n,i) ~Cili-1) 
i=l 

n-1 
E{~Cnln-l)l~1 , .•. ,~n-l} =I: Gc(n,i) ~Cili-1) 

i=l 

From equations (4.9) and (4.16) it therefore follows that 

n-1 
t Gc(n,i) iCili-1) = 0 • 

i=l - -

( 4 .15) 

(4.16) 

( 4.17) 

Consider advancing the time one step so that the observable under 

consideration is x at time n and the latest estimate is m_ACnln-1) based -n 

on the.observation up to time (n-1). The conditional error arising from 

the latest estimate, given x as the observation vector, is -n 

n 
= I: Gc(n,i) x(ili-1) 

i=l 
(4 .18) 

Since equation (4.17) must hold for all ~ 1 , ••• ,~n-l and since ~Cili-1)~0, 
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for all i, we have G(n,i)=O for i < n. Equation (4.18) becomes 

(4.19) 

Equation (4.19) holds because G(n,n) has been declared to contain past 

information. Substituting equation (4.19) in (4.7), we get the recursive 

form 

~Cnln) = ~Cnln-1) + Gc(n,n) ~Cnln-1) ( 4. 20) 

But 

~Cnln) = ~d(n) - ~Cnln) (4 .21) 

and 

~Cnln-1) = ~d(n) .. ~Cnln-1) (4.22) 

Using fA ?1 'I 
\. "T • .. .~.J 

~Cnln) = ~Cnln-1) - Gc(n,n) ~Cnln-1) 

c c ~ 

= m(nln-1) - G (n,n) V (n) ~Cnln-1) ( 4. 23) 

where (from section 3. 3) 

Also, 

~(n) = D(n) [l}!d(n) + l.!r(n) + !!(n)] • 

Applying the projection and the decomposition theorems to the above, 

we have 

~Cnln-1) = D(n)[~Cnln-1) + l.!rCnln-1) + !!Cnln-~)] , (4.24) 



where ~Cnln-1) is the error associated with the estimation process, 

m (n I n-1) is the random component of the channel output, and -r 

n(nln-1) is the additive noise vector • ... 
To facilitate the derivation in the sequel, we make the following 

assunption: 
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m, m and n are zero mean random vectors which are statistically - -r 

independent of each other. 

Substituting equation (4.24) in (4.23), we get 

·[~Cnln-1) + ~rCnln-1) + ~Cnln-1)] (4.25) 

Substituting equation (4.25) into the definition of covariance matrix 

(4.5) and using the above assumption, we get 

+ ~rCnln-1) + ~Cnln-l)]]·[~Cnln-1) 

which simplifies to 

- P(nln-1) [G(n,n) V(n) D(n)]t 

+ Gc(n,n) Vc(n) Dc(n) [PCnln-1) + K~Cnln-1) + KnCnln-1)] 

•[G(n,n) V(n) D(n)]t (4 .26) 



where Km(nln-1) = E{m Cnln-l)·m•Cnln-1)}, and -r -r 

The covariance matrices appearing in equation (4.26) are: 

(i) 

(ii) 

(iii) 

PCnln-1), due to error in the estimate. 

K Cnln-1), due to multiplicative noise. m 

K Cnln-1), due to additive noise. 
n 
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The covariance equation (4.26) may be re-arranged to assume a recursive 

fonn: 

P(nln) = [I - G(n,n) V(n) D(n)]c PCnln-1) 

·[I- G(n,n) V(n) D(n)]t 

+[G(n,n)V(n)D(n)]c[K Cnln-lj + K Cnin-ljj[G(n,n)V(n)U(n)jt m n 
••• (4.27) 

The gain matrix, G(n,n), is derived in Appendix D with the principal 

result given by equation (0.15), which is repeated below as equation 

(4.28): 

G(n,n)=PCnln-l)[V(n)D(n)[PCnln-1) + K Cnln-1) + K Cnln-1)]]-l m n 

••• (4.28) 

By the .projection theorem 

~Cnln-1) = ~(n) - ~Cnln-1) 

But, 

~Cnln-1) = Vc(n) ~Cnln-1) 

c c A I = V (n) D (n) ~(n n-1) 
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Therefore, 

~ c c A I ~(nln-1) = ~(n) - V (n) D (n) ~(n n-1) (4.29) 

Substituting equation (4.29) in (4.20), we get 

~Cnln) = ~Cnln-1) + Gc(n,n)[~(n) - Vc(n)Dc(n) ~Cnln-1)] , (4.30) 

Equation (4.30) is a recursive formula for the conditional estimate, 

which has the appearance of the Kalman-Bucy filter (Kalman, 1960; Kalman 

and Bucy, 1961). In the Kalman-Bucy filter the gain matrix is computed 

from the formula given by an equation of the form of (4.28), where the 

covariance matrices K Cnln-1) and K (njn-1) are assumed known quantities. m n . 

In other words, the derivation of the Kalman-Bucy filter is facilitated 

through the assumption that the process is Gauss-Markov. In our 

derivation we did not make such an assumption, but assert that the gain 

matrix, G(n,n), takes account of past statistics. G(n,n) will not be 

computed from equation (4.28) but rather, (4.28) will be modified so 

that the gain matrix is adjusted adaptively. The recursive algorithm of 

equation (4.30) is depicted in Figure 4.1 where the double lines denote 

vector valued quantities. 

4. 3.1 Performance of the (Non-adaptive) Recursive Algorithm 

The set of equations (4.30), (4.28) and (4.27) which form the 

recursive conditional estimator relies on the fact that the covariance 

matrices K and K are known. To start the iteration an initial value m n 

of the estimate, ~(ljO), together with the associated covariance matrix, 
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PCliO), are assumed. Consider the vectors ~d and ~CliO) as points 

belonging to a signal space n. Since the covariance matrix P(liO) 

reflects the uncertainty about the estimate ~CliO), letS be a hyper

sphere with radius equal to /tr[PCliO)] which encloses the point ~CliO). 

As the estimate ~Cnln) moves closer to the true value ~d the radius of 

the hypersphere shrinks. We assert that 

Lemma 1: 

The estimate ~Cnln) will converge to the true value ~d with 

probability 1 if and only if ~d E S throughout the range of n. 

Proof: 

By the projection theorem 

... -
m ~m+m,,, ·.::d ... 

By the triangle inequality 

But 

ltr[PCn ln-1) J = II~ II 

Therefore, ~d is always an interior point of S. In the limit as 

Suppose we define the subspace S as a feasible 

region. Convergence is assured if and only if the true value ~d is 

interior to the feasible region. 

To examine the convergence properties of the (non-adaptive) 

recursive algorithm,we consider a one dimensional baseband case, where 



we have advanced one step in time. Let 

(i) p(ljO) be the initial value of the covariance, 

(ii) p(ljl) be the next covariance to be estimated, 
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(iii) k be the total eovariance• of multiplicative and additive 

noise, 

(iv) g(l,l) be the gain factor, and 

(v) v(l) = 1 (for the received signal to be at baseband). 

From equation (4.28) we have 

·g(l,l) = p(ljO) 
p(ljO) + k 

From equation (4.27) we have 

p(lll) = p(ljO)(l 

Simplifying, we get 

p(ljl) = p(ljO)k 

pCliO)+k 

n{JiO] .2 f nfliOl 
....-.·~-..--)- + \. r,-,-, 

p(ljO)+k p(ljO)+k 

< p(l!O) 

Thus, the covariance is decreasing with time. With the covariance k being 

constant, the gain factor also decreases with time. Provided Lemma 1 is 

satisfied, the estimate approaches the true value so that the updating 

component of the recursive algorithm becomes less important after each 

iteration. Eventually when P(nln) ~ 0, the estimate ~Cnln) ~ ~d· 

Although it is satisfying to note that the recursive algorithm 

converges with probability 1, under favourable conditions governed by 

Lemma 1, its application is feasible only if ~d remains time-invariant 
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throughout the observation interval. For a train of rectangular pulses 

free from intersymbol interference, ~d remains constant only within a 

duration T , where T is the information symbol duration. It is 
-0 0 

imperative, therefore, that convergence should be attained within a 

fraction of T
0 

seconds. In order for the estimator to track ~d' every 

time ~d assumes a new value the estimation process must be restarted 

such that ~dis an interior point to a hypersphere with radius /rt_r_[_P_(n~ln---1-)-], 

at the instant of time n. That is, the covariance matrix P(njn) cannot 

be a strictly monotonically decreasing function throughout the observation 

interval, otherwise the recursive estimation process will diverge. In 

section 4.4 we propose an adaptive realization of the recursive filter 

to permit tracking of a time-variant signal. 

4.4 Adaptive Implementation of the Recursive Filter 

As stated in the preceding section the recursive filter re-

presented by equations (4.30), (4.28) and (4.27) requires a knowledge 

of the covariance matrices K Cnln-1) and K Cnln-1). Moreover, this . m n 

_recursive filter has absolute convergent property. If the signal is 

time varying, the filter as it stands, cannot track the time-varying 

signal. That is, in the presence of time varying signals the recursive 

algorithm diverges. To make the filter a tracking one we must sacrifice 

absolute convergence, at the same time we have to compute the covariance 

matrices K , K and P(njn) during each iteration cycle, or at least m n 

every L iteration cycles,where L is the updating period. Computation 

of covariance matrices is diffucult if not impossible. It becomes 
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necessary to devise techniques whereby the necessity to compute 

covariance matrices is avoided. 

In this section we assume the received signal has been success-

fully demodulated (by means of synchronous demodulation, section 2.5), 

i.e., the input signal is at baseband. Then in equation (4 .30) the 

matrix V(n) becomes an identity matrix and the signal vector~ becomes 

the baseband signal vector u. To simplify notation, we assurne further 

that the input signal is real. This assumption entails no loss of 

generality since a complex variable is equivalent to two real variables 

in quadrature. The estimator represented by equation (4.30) becomes 

~Cnln) = ~Cnln-1) + G(n,n)[~(n) - D(n) ~Cnln-1)] (4.31) 

where 

G(n,n) = PCnln-l)[D(n)[PCnln-1) + KmCnln-1) + KnCnln-1)]]-~ (4.32) 

Let 

~Cnln-1) = G(n,n)[~(n) - D(n) ~Cnln-1)] 

be a vector. Then the corresponding time function b(t) is given by 

~(t) = J g(t,t)[~(t) - J d(y) ~(t-y)dy]dt 
r r . 

(4. 33) 

where r is specified by the reciprocal of the signal bandwidth. 

Substituting equation (4.33) into (4.31) we have 

m (t) = m 1(t) + I g (t,t)[u (t) - I d(y) ~n-l(t-y)dy]dt (4.34) -n -n- r n -n r 

where the subscript n denotes the iteration cycle. In discrete form 

( 4. 34) becomes 



where 

... 
m . n,J 

... M M ... 

= m(n-l),j .+ i!l gn ,ij (un,i -k!l dkm(n-l),ki) 

j=l, ••• ,M 

Ts = the sampling period, and 

r·l denotes integer part of. 
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(4. 35) 

Consider the case where the observed signal is a scalar. The channel 

model and its dual is depicted in Figure 4.2. We then have 

. u -+ u, D -+ d and G -+ g , 

where 

Equation (4.35) reduces to 

M 
m . = m(n-l),J' + g .(u - ~ d.m( 1) .) n,J n,J n i=l 1 n- ,1 

Also, we have 

where 

t ... ~ 

= ~ (~ + J!) 

v 
= m* + m , 

t ... 
m* = d m 

n 

(4.36) 

( 4. 37) 
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= 
M 
l: 

i=l 

"' d.m . 
1 n,1 

M 
= m~-l + r d. g .(u - m~_ 1) j=l J n,J n 

is the scalar estimate, and 

v t -
m = d m 
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( 4. 38) 

(4.39) 

is the error in making the estimate. The recursive filter given by 

equations (4.31) and (4.32) may then be optimized by minimizing the mean 

square error defined by 

nhc:ro m ---1 -* lid Q.JIU Uln are _.: ··-- 'L... , A ..,.,, 
~.L VCU U 1 \. .. • .;J I) 

__ _, 
auu respectively. 

(4.38) and (4.39) in (4.40), we get 

2 2 * [m~]2 e = md - mcfln + 

2 
= md- 2md[mn*-l + l: d.g .(u - mn*- 1)] j J n,J n 

+ [mn*-1 + r. d.g .(u -m* 1)]
2 

J J n,J n n-

----------------
= md2 - 2mdm•- 1 - 2Ed.g .(md-m* 1)(u -m* 1) n- . J n,J n- n n

J 

+[m~-1]2 + ~ idjdign,jgn,i(un-m~-l)j(un-m~-l)i 

where the over bar denotes ensemble average. We note that 

m* 
II 

u - = m + m + n , n n-1 n-1 r 

- m* 
v 

md = m ' n-1 n-1 

(4.40) 

r- __ t... _...,!. ..._ __ .... .! ---
.:>UU::> LJ. LULJ.U~ 

( 4. 41) 



v ' 
and that m 1, m , and n are zero mean statistically independent n- r 
random variables. Using the above information in equation (4.41), the 

mean square error is given by 

2 
e = md- 2mdmn*-l- 2Ed.g .p(j,i) 

j J n,J 
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+[m* 1]2 .+I: I: d.d.r! .g .. [p(j,i + k (j,i) + kn(j,i)] 
n- j i J l~,J n,1 m 

(4.42) 

where 

v v 
p(j,i) = E{m(n•l),j m(n-l),i} is the error covariance, 

= E{m . m .} is the covariance of the random component 
rJ r1 

of the channel output, and 

k_(j,i) = E{n. n.} ~s the covariance of the additive noise. 
u J l 

The mean square error represented by equation (4.42) is a minimum when 

and 

ae 
ag . 

n ,J 
= 0 

ag . ag . n,J n,1 
> 0 

Taking the first pratial derivative, we get 

ae 
ag . n,J 

= -2d .p(j ,i) +2td.d. g . [p(j ,i) + km(j ,i) + kn(j ,i)] . (4.43) 
3 i 3 1 n,1 

Equating the right member of (4.43) to zero, we get 

p(j,i) = E d.g . [p(j,i) + km(j,i) + kn(j,i)] i 1 n,1 

In vector notation (4.44) becomes 

(4.44) 
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(4.45) 

Now, if the observed signal is a vector valued quantity, then 

g -+ G and ~ -+ D , 

and (4.45) becomes 

G(n,n) = P(nln-l)[D(n) [P(nln-1) + K Cnln-1) + K Cnln-1)]]-l m n , 

which is equation (4.32). We thus have demonstrated that the optimality 

of the recursive filter given by equations (4.31) and (4.32) is main-

tained, yet the gain function may be optimized through application of the 

minimum mean.square error criterion. Taking the second order partial 

derivative yields 

a2 . ag . 
'1l,J n,1 

= 2d.d.[p(j,i) + k (j,i) + k (j,i)] > 0 
J 1 m n , 

since the covariance matrices are positive definite, as shown in 

Appendix E. The gradient of the mean square error, e, with respect 

to the filter gain is given by equation (4.43). In terms of scalar 

variables, (4.43) becomes 

ae 
ag . 

n,J 

v M 2 
= -2 d.[E{m(u -m* 1)}- E d.g .E{(u ~- m* 1) }] 

) n n- . 1 1 n,1 n n-
1= 

= -2d.[E{(md-m*)(u -m* 1)}] 
J n n n-

u = -2d.[E{m (u -m* 1)}] 
J n n n-

(4 .46) 
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where 

v * m = md ... m . 

Equation (4.46) is the gradient of the error surface as a function of the 

gain vector g. Because of the quadratic fonn of the error, the error 

surface is convex and hence has a unique minimum. The gain, g ., may n,J 

then be approximated by an iterative fonnula of the fonn 

ex' ae 
gn+l,j = gn,j +-2 a~. ,J 

- a' 
u - m* ) } = gn,j d.E{m (u 

J n n n-1 . 
J 

= g . - ex. E{v (u -m* ) } 
n,J ) mn n n-1 j . ( 4. 4 7) 

The adaptive filter as represented by equations (4.38) and (4.47) is 
+ 

shown in Figure 4.3,' where ex. is taken to be constant for all j and the 
J 

ensemble average has been approximated by a time average. In the case 

of passive detection where one does not know what decision to make, we 

may modify (4.47) through application of the following linear estimation 

procedures (Wilks, 1962): 

(1) m* is a linear combination of the set {~j} '. i.e., 

for a finite population of size M. 

(2) m* is a sample mean of the set {m.} if 
J 

t Throughout this thesis the symbol ~ denotes accwnulation. 
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(3) 
v Since m has zero mean value, m* is also an unbiased 

estimator of the true value, md. The variance of the unbiased estimate 

has a unique minimum which occurs for 

d1 = d2 - ••• = 9M = 1/M 

(4) The random variable m. is an unbiased estimate of the 
J 

sample mean m*, i.e., E{m.} = E{m*}. Hence· m. is an unbiased estimate 
J J 

u of m. 

(5) Using procedures (1) to (4), we may make the approximation 

m . .;. m* - m. 
J J 

(6) 

(7) 

We replace M in equation (4.47) by its unbiased estimate m •• 

The d.'s are now constants of equal value; we incorporate 
J 

these into the scalar constant a' and write a= a'd .• 
J 

(8) Since the time average is an unbiased estimate of the 
1 n 

ensemble average, we replace E{·} by -K E (·) .• 
• K 1 l=n-

Procedures (1) to (8) enable (4.47) to be written as 

J 

1 n -
g - g - a - r· [m . (u - m* ) ] n+l,j - n,j K ~- K n,J n n-1 3· i (4.48) 

.a.-n-

The recursive formula of equation (4.38) together with (4.48) form the 

adaptive filter which is depicted in Figure 4.4. The convergence 

properties of the gain formula are described in Appendix F.l. 



u 

+ 
' I ., T I I • --·-t I I ITERMINATION 

g2 --- I~J-- ~ 

2: ~ -
~2: 

a 

Figure 4. 3 Decision Dire<:ted Implementation of the 

Adaptive Recursive Filter with d1 = ••• • '\t = ~ 

m* 

~ 



u 
I I .. 1 T I I --- --4 T 

I 1 I TERMINATION 

gl 

2: 
a a a 

+ L---4------'----\ + I .. 1 ~ L 

Figure 4.4 An Alternative Form of the Adaptive Recursive Filter 

m* 

~ 
0 



91 

4.5 Reception of Bandpass Signals 

Consider the reception of a scalar bandpass signal, x(t). The 

recursive formula of (4.30) becomes 

,.. I A I c + A I m(n n) = m(n n-1) + g(n,n)[x(n) - v (n) d (n) m(n n-1)] - - - - - ( 4. 49) 

The gain formula of_ (4.28) may be modified to become 

g (n ,n) = vc(n)[P(njn-l)[P(nln-1) + K Cnln-1) + K Cnln-l)]-1]d m -n -

(4 .SO) 

where v(n) is a scalar quantity which contains the carrier frequency 

(see section 3.3), and 

gain vector of the low-pass network. 

From section 3.3 we have 

c + A c 
x(n) = v (n)~ (n)~(n) = v (n)m*(n) • 

Therefore 
,.. 

c 
v (n) 

ax(n) = -=-a -m~*~(,....n~) (4.51) 

The receiver represented by equations (4.49), (4.50) and (4.51) is 

depicted in Figure 4.5 in terms of complex valued quantities. A 

practical realization, suggested by the technique employed in section 

2.4, is depicted in Figure 4.6. The receiver described in this section 

has the remnants of a synchronous demodulator-estimator device, where 

the demodulation action is characteristically similar ~o a phase-locked 
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loop. The mechanization of the low-pass network has been described in 

the preceding section. 

4. 6 .Summary 

The adaptive filter derived in this Chapter has the following 

properties: 

(1) The filter is optimum in that l. t is a linear conditional 

estimator. 
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(2) The gains are functions of the second order moment 

statistics of the observed process. In this way statistical information 

is built into the gain function. 

(3) The adaptive filter seeks to unscramble the mean value. If 

intersymbol interference corrupting the pulse is completely random, then 

the adaptive filter can smooth out certain intersymbol interference 

effects. However, the problem of combatting intersymbol interference 

is the subject of the next Chapter. 



CHAPTER 5 

- A GENERAL FORMULATION OF THE ADAPTIVE EQUALIZER 

5.1 Introduction 

Intersymbol interference resulting from time-dispersion may 

be minimized by means of time-domain equalization. The various forms 

of non-recursive adaptive equalizers that have been proposed (Lucky, 

1966; Proakis and Miller, 1969) thus far for digital communication 

systems have been formulated with an assumed frame of reference (e.g., 

the centre tap denoting present time in the transversal filter implemen

tation). The equalizer itself does not, however, know that such a frame 

of reference exists. In the formulation described in this Chapter a 

means of tracking the frame of reference is explicitly built into the 

non-recursive adaptive equalizer. 

A recursive adaptive equalizer is derived through the application 

of a sufficient stability constraint. The best adaptive equalizer is 

shown to be a cascade connection of a non-recursive section and a recursive 

·section. An unconstrained recursive equalizer is also proposed. The 

unconstrained recursive adaptive equalizer is simpler to implement than 

the constrained one. It is shown in Chapter 6 that because of the 

capability for the complete equalizer to track its own frame of reference, 

instability may not be a problem. Moreover, the unconstrained recursive 

equalizer offers faster convergence. 

In the usual operation of a digital communications receiver the 

output of the adaptive filter derived in Chapter 4 is the input to the 

95 
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adaptive equalizer formulated in this Chapter. In Chapter 4 we used the 

symbol m* to represent the adaptive filter output, where the asterisk 

denotes the estimate. In this Chapter we also employ the asterisk to 

denote the estimate. To avoid any confusion which may arise in reading 

this Chapter we let x represent the input to the equalizer, while bearing 

in mind that when the adaptive filter and the equalizer are connected in 

cascade, m* and x represent the same physical quantity at the input to 

the equalizer. The use of x to represent the equalizer input serves the 

following purpose: The equalizer may be viewed as a system by itself, 

not necessarily as a member of a chain of subsystems·. This Chapter may 

be read without reference to the preceding Chapters. In what follows 

the terms 'weights' and 'tap gains' are being used synonymously. 

5.2 Statement of the Equalization Problem 

Consider a real time series {xjja}, where the {xj} is the set 

of observables and a is the desired parameter to be estimated. The 

objective is to operate on {x.} in order to produce an estimate, a*, such 
J 

that the mean square error between the desired parameter and the estimate 

is a minimum. 

Suppose now a dispersive channel is excited by a unit impulse. 

The normalized channel response is a train of pulses, with x0 = 1, as 

illustrated in Figure 5.1. The subset {x.}, j f. 0, 
J . 

constitutes the source 

of intersymbol interference. If the set {x. } spans the entire space X, 
J 

then the total energy in the space X is constant. Conservation of energy 

imposes the requirement that any attempt to operate on the set {x.} to 
J 
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recover a
0 

is merely an attempt to re-allocate the energy distribution. 

The objective is to redistribute the energy in the received signal such 

that the _sample at the reference point in the estimate, a~, is maximized 

in favour of all others. This process is known as equalization. The 

values of the smeared sidelobes at the equalizer output, {a*}, n ; 0, 
n 

approach zero as the memory of the equalizer approaches infinity in both 

positive and negative directions with respect to the frame of reference. 

If, therefore, the equalizer has finite memory, it cannot be expected 

to exactly reproduce the desired parameter, a0• In designing the 

equalizer the objective is to minimize the error between the desired 

parameter, a0 , and its estimate, a~. 

When the channel is time-varying, as often is the case in 

practice, it is desirable for the equalizer to be time-varying too, 

that is, adaptive. However, in making the equalizer adaptive a frame of 

reference needs to be identified and tracked at all times in order to 

maintain synchronization. The adaptive equalization algorithm to be 

described in section 5.3 incorporates such a feature. 

5.3 Derivation of the Non-recursive Adaptive Equalizer 

Before proceeding to derive the structure of the equalizer, we 

wish to make two definitions: 

(1) A process which permits the extraction of a parameter implicit in 

the set of observables shall be referred to as an estimation 

process. For example, an operation on a time series {x.ja}, 
J 

where {x.} is the set of observables and a is the parameter to 
J 
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be estimated, is an estimation process. 

(2) A process which permits a member of a set to be approximated 

by a linear combination of all other members in the same set 

is referred to as a linear learning process. 

Suppose the equalizer has a finite memory of 2M + 1 cells with 

a set of weights {W.(a)}, j = -M, ••• , -1, 0, 1, ... , M. The point j = 0 
J 

is to be chosen as frame of reference, normally referred to as the 

'present time'. The set {an} implicit in the observables are the desired 

parameters. In accordance with definition (1) the set {W.(a)} are, 
J 

therefore, weights in an estimation process. An est1mate of an at the 

nth iteration is given by a linear combination of the set of observables 

{x.}, that is, 
J 

*' ~ = 
M 
E W .(a)x . 

._ M n,J n-J J--
(5.1) 

where * denotes estimate and the prime is used to distinguish the estimate 

given by equation (5.1) from an augmented estimate to be introduced later. 

Equation (5.1) is a truncated form of the convolution sum, 

which constitutes the basis of a conventional equalizer. The error at 

the nth iteration cycle is defined as: 

An optimum set of weights {W.(a)} is to be foun~ by minimizing the mean 
J 

square error: 

(5.2) 



Substituting equation (5.1) in (5.2), we obtain 

where 

and 

M 
E { e2 } = E { a2 

} - 2 ... W ( ) K ( ) ~. . a x ., an 
n n . M n,J n-J J=-

M M 
+ I: I: W . (a) W .(a) K(x ., x .) 

. M n,1 n,J n-J n-1 i=-M J=-

K(x ., an) - E(x . a) n-J n-J n 

K(x ., X .) : E(x . X .) 
n-J n-1 n-J n-1 

100 

(5. 3) 

are second-order moments. The mean square error is a quadratic function 

of the weights {W.(a)} and hence possesses· a global minimum. From 
J 

calculus of variations,. it is knvwu tl1at a minimum will be -··-!--..J --1---Q.\,. \.. c:L.LJ&.:;;U WJICJ.I 

the following conditions are simultaneously satisfied: 

(i) aw . (a) 
n ,J 

(ii) aw .(a) aw . (a) n,J n,1 

Taking the first partial derivative yields 

M 

aw . (a) = 2 I: W .(a) K(x ., x .) - 2K(x ., a) n,1 · n-J n-1 n-J n n,J i=-M 

Using condition (i) yields ••• (5.4) 

K(x . , a ) = 
n-J n 

M 
I: W .(a) K(x ., x .), j=-M, ••• ,-l,O,l, ••• ,M 

. M n,1 n-J n-1 
1=-

• • • (5 .5) 

McMASTER UNIVERSI1Y L.lt:U<AKl 



Equation (5.5) is recognized to be a Wiener-Hop£ like equation. The 

stationary point thus reached is indeed a minimum, since the second 

partial derivative has the value 

aw .(a) w . (a) 
n,J n,1 

E{en2} = 2K(x ., x .) > 0 n-J n-1 

and since the second-order moment matrix, [K(x ., x .)],is positive n-J n-1 

definite (see Appendix E). 

The conventional equalizer based on equation (5.1) is non-
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optimum in that it lacks the ability to track its own frame of reference. 

To overcome this limitation, we introduce an augmented estimate of the 

form: 
*' * = a + f(x , x ) n n n (5.6) 

where f(x , x*) is an auxiliary function, xn is the chosen frame of n n 

reference and x~ is an approximation of xn as obtained by a learning 

process (see definition (2)). Let 

* f(x , x ) = n n 

M 
1: 

j=-M 
ow . (a) 

n,J X . 
n-J 

(5. 7) 

.that is, we allow the auxiliary function to be a linear combination of 

the input data such that the coefficients are increments, oW. (a), in; the 
J 

weights of the conventional equalizer. Using equation (5.7) in (5.6) 

the augmented estimate becomes 

M M M 
a~= 1: · W • (a) x . + 1: W • (a) x . = 

. M n,J n-J . M n,J n-J J=- J=-
1: W 1 .(a) x . 

i=-M n+ ,J n-J 

. . . (5. 8) 
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Equation (5.8) represents a non-causal system in that, at the nth 

iteration, it requires a knowledge of the weights belonging to the (n+l)th 

iteration. In the sequel, we attempt to overcome the non-causal 

difficulty by incorporating a learning feature in the structure of the 

equalizer. It thus turns out that the learning algorithm provides a self-

synchronizing capability for the overall equalizer structure. 

Following a procedure similar to that used in deriving equation 

(5.5),the set of weights, {W 1 .(a)}, can be shown to be optimum if they n+ ,J 

are solutions of the set of 2M + 1 equations: 

K(x . , a ) = n-J n 

M 
I: W l . (a) K(x ., x .), j=-M, ••• ,-1,0,1, •.• ,M 

·- M n+ ,1 n-J n-1 1--

••• (5.9) 

Equating the right-hand-sides of equa~ions (5.5) and (5.9): we have 

M M 
E W . (a) K(x ., X .) = 

. M n,1 n-J n-1 1=-
E W l .(a) K(x ., x .) n+ ,1 n-J n-1 • i=-M 

••• (5.10) 

Re-arranging equation (5.10), we have 

or 

oW 0 (a) K(x ., x) = n, n-J n 

M 

M 
E K(x . , 

n-J i=-M 
i;EO 

x . )(W . (a) - \'I 
1 

. (a)) n-1 n,1 n+ ,1 

K(x . , X ) = n-J n 
E K(x ., 

. u n-J 
1=-1•1 

w . (a) - W 
1 

• (a) n,1 n+ ,1 
xn-i) oW 

0 
(a) 

n, 
i;EO 

j=-M, •• ;,-l,l, ••• ,M (5 .11) 

The left-hand-side of equation (5.11) is a second-order moment, or a 

correlation, of the input data set with the reference sample. Thus, 
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equation (5.11) indicates that in order to realize the augmented estimate 

of equation (5.6), the system requires an approximation of x by a learnn 

ing process as described earlier (see definition 2). Let {W .(xn)}, n,J 

j = -L, ••• ,-1, 1,: •• , L be a set of weights. For L = M, x* is represen
n 

table by 
M 
E W .(x ) . _ M. n,J n 

)--

j#O 

X . 
n-J 

(5.12) 

The weights {W .(x )} are optimum if they are solution of the set 
n,J n 

M 
K (x . , x ) = l: K (x . , x . ) W . (x ) , j =-M, •• , , -1,1, ••• ,M 

n-J n i=-M n-J n-1 n,1 n 
i#O • (5 .13) 

Equating the right-hand-,sides of equations· (5.11) and (5.3), we get 

wn,i (a) - wn+l,i (a) 
= -'--~cSW:-:---0..,.;( a;.:..,)~,;;;;._

n, 
i=-ivi, ••• ,-i, i, . .. ,M (5. i4) 

Equation (5 .14) may be re-arranged to yield 

w 
1 

. (a) • w . (a) +oW 0 (a) w .(x) = o n+ ,1 n,1 n, n,1 n (5 .!Sa) 

or 

W +l .(a)= W . (a) -oW 0 (a) W .(x ), i=-M, ••• ,-l,l, ••• ,M n ,1 n,1 n, n,1 n 

• • • (5 .lSb) 

Substituting equation (S.lSb) into equation~.~, the augmented estimate 

becomes 
M 
E w . (a) x . + ow 0 (a) xn - oW 0 (a) . M n,J n-J n, n, J=-

M 
E W • (x )x . 

._ •t n,J n n-J )--1• 

j#O 

.•• (5.16) 
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The summation in the last term on the right-hand-side of equation (5.16) 

is recognized to the right-hand-side of equation (5.12). Therefore, we 

may write 

M 
a~= * L w .(a)x. + oW oCa) (x 0 -X 0) . M n,J J n, . n, n, J=-

(5 .17) 

Equation (5.17) together with equations (5.12) and (5.15) constitute the 

basis of the new equalization algorithm. Although equation (5.17) 

represents the optimum structure, oW 0 (a) is not available, since, in n, 

a causal system, output must follow input. To make the structure of 

(5.17) realizable, we use oW _1 0
(a) in lieu of oW 0 (a), thereby n , n, 

relinquishing a certain degree of optimality. 

FrOm equation (5.15) we see that 

o''l .(a)= -ow 0 (a) w .(x), i=-M, ... ,-1, l, ... ,M n,1 n, n,1 n . 

That is, the increments in the weights {W .(a)}, i;o, are direct n,1 

(5 .18) 

functions of the increment in W 
0

(a) and the weights of the learning n, 

loop. It is in this way that the overall equalizer structure is provided 

with a self-synchronizing capability. 

5.4 Recursive Algorithm for the Weighting Functions 

The Wiener-Hopf like equations (5.5) and (5.13) are rather 

difficult to solve. An alternative approach is to use the iterative 

formula: 

8 
~n+l = ~n + 2 fn (5 .19) 

where 8 is a (small) scalar constant chosen to escalate the optimization 
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process, and p is a direction (gradient) vector. With appropriate _n 

designation for a weight vector, a recursive formula for the set of 

weights in the learning loop may be written as: 

e W 1 .(x) = W .(x) + -2 p .. J·=-M .•••. -l,l, ••• ,M n+ ,J n n,J n n,J' · • (5.20) 

where 
a 2 

nn 
-2E(n X .) Pn,j = aw . (x ) = 

n,J n n n-J , (5.21) 

* nn = X - X n n . 
Substituting equation (5.21) in (5~20), we get 

Similarly, an iterative formula for the weight at the reference point in 

the estimation loop is given by 

Wn+l,O (a) 

where 

~,0 = -2E(e X ) n n 

M 
t w .(a)x. + oW 0(a)n ) 

. M n,J J n, n · J=-

Use of equation (5.24) in (5.23) gives 

W l 0 (a) = W 0 (a) - aE(e X ) n+ , n, n n 

(5. 2 3) 

(5.24) 

(5.24a) 

(5 .25) 

The recursive formulae of equations (5.22) and (5.25) together with equation 
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(5.15) provide the adaptive structure for the equalizer as represented 

by equation (5.17). The recursive algorithms of equations (5.22) and 

(5.25) require expectation computations explicitly. This poses some 
-

diffi.culty in a physical implementation. However a sample mean may be 

used as an unbiased estimate of the expected value. Hence, for the 

purpose of implementation, equations (5.22) and (5.25) may be modified, 

respectively, as follows: 

"'' ,.,.., = 1d ,~, 

"n+l,O'-""J "n,o'-""J 

n ~ K, 

j = ~M, ..• ,-l,l, ••• ,M (5.26) 

n 
- a~ r 

" k=n-K 

n ~ K (5.27) 

A functional block diagram of the modified non-recursive adaptive equalizer, 

as prescribed by equations (5.17), (5.12), (5.15), (5.26) and (5.27), is 

shown in Figure 5.2. The convergence properties of the new equalizer is 

described in Appendix F. 

5.5 Recursive Equalization 

5.5.1 Constrained Optimization 

The unit-impulse response of a dispersive channel may be 

represented, in z-transforrn notation, as 

·I (z) = 
N 
E 

i=-N 

-i x. z 
1 

(5.28) 
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or, equivalently, 

N N 
I(z) = Z

i -1 
E X . + x0 + E x

1
. Z 

i=l - 1 i=l 
(5.29) 

where i = 0 is chosen as the frame 
N 

maximum dispersion. 
N . 

-1 E x.z represents 
i=l 1 

The term E 
i=l 

future data. 

of reference with x0 = 1, and N is the 

x . zi represents the past data, while 
-1 N . 

To equalize the effect of Ex .z1 we 
i=l - 1 

are required to use a non-recursive section, while to equalize·the effect 
N -i 

of E x.z we may use a recursive section with a finite number of 
i=l 1 

elements, (which is equivalent to a non-recursive section of infinite 

memory). Thus, the discrete transfer function of the desired equalizer 

may, in general, be written in the form: 

-i E W.z 
. - 1 

H ( z) "' __ 1e:_l ___ --:-
b.z-j 

J 
1 + E 

je:J 

(5. 30) 

where I + J = 2M+ 1, that is, the number of memory cells in the overall 

equalizer is precisely the same as before. We may rewrite equation (5.30) 

as 

H(z) = ( E 
i£1 

(5. 31) 

that is, we may realize the H(z) as a cascade of a non-recursive, H1(z), 

and a recursive, H2(z), section, as depicted in Figure 5.3a. In Figure 

5.3b we have shown an implementation of the overall structure using 

tapped delay lines. 

Austin (1967) has used a similar idea, but with an entirely 

different interpretation. The present formulation differs from Austin's 
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work in at least two respects: 

(i) Austin deals with known channels and his system is non-adaptive. 

In our case the channel is unknown and the resultant equalizer 

is adaptive. 

(ii) Austin makes a decision on the equalized output and feeds back 

the decision in his recursive loop, assuming the decision made 

is correct; in so doing he incorporates a nonlinearity in the 

recursive loop. In our case we do not require the use of a 

nonlinear element within the recursive loop; stability of the 

system is assured through application of an appropriate 

constraint. 

The non-recursive component of the overall equalizer of Figure 

5.3 has been dealt with in section 5.3. There, we introduce a learning 

feature so that the structure of the equalizer is provided with a 

capability for tracking its own frame of reference. The frame of 

reference, that is, the i = 0 tap, is always contained in the non-

recursive section. Assuming the system has attained adaptation, we may 

~onsider the output of the non-recursive section as given effectively by 

the first term of equation (5.17). We may, therefore, consider the 

non-recursive section as having, effectively, a discrete transfer function 

given by 

r 
i£1 

-i W.z 
1 

(5. 32) 

The z-transform of the output sequence of the non-recursive section is · 

obtained by multiplying equations (5.29) and (5.32): 
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Y(z) = I (z) H1 (z) 

K N 
y .zj y.z-j = r + Yo + r (5. 33) 
-J J j=l j=l 

where 

K + N + 1 = 2M + 1, 

or 

K = 2M - N, 

and 

Yo = 1. 

The convolution of an input sequence with the system impulse response is 

illustrated in Figure 5.4, where the frame of reference has been chosen 

to be that tap which is nearest the recursive section. From Figure 5,4~ 

we see that the y . 1 s, j positive, are small, while the y. 1 s, j positive, 
-J J 

are essentially the same as the initial dispersions x., i positive. 
1 

The output of the non-recursive section is further equalized 

by the recursive section, which is designed to minimize the effect of 
N 
r y.z-j. To do this the recursive section only needs N elements, so 

j=l J 
that the non-recursive section can be allotted 2M - N degrees of freedom 

for equalizing past data, that is, data preceding the i = 0 point. 

From Appendix G, a sufficient but not necessary condition for 

the recursive section, represented by 

1 = N 
b .z-j 1 + r 

(5. 34) 

j=l J 

to be stable is that the following inequality constraint be satisfied: 
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N 
I: 

j=l 
lb -I < 1 

J 

N 
For optimum equalization of the term E 

j=l 

or 

If 
N 
E 

j=l 

1 = N 
1 + E 

j=l 

IY -I < 1, 
J 

y.z 
J 

-i 
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(5. 35) 

-i y.z , we require that 
J 

(5. 36) 

then clearly the system can provide exact equalization and yet be stable. 

If, however, the condition (5.36) is not satisfied~ the system represented 

by equation (5.34) will operate in a sub-optimum manner. However, through 

appropriate selection for the frame of reference, one could make 

N 
E 

j=l 
IY -I < 1 

J 

The output of the recursive section is given by 

y -n 

N 
E 

i=l 
b. a.* . 1 n-1 (5. 37) 

In. the absence of a reference sequence, we will use a decision directed 

approach to implement the adaptive algorithm. Letting the decisions be 

{a.n}' the error at the nth iteration cycle is 

N 
en = a.n - a.* = a. - y + E b.a.* . 

n n n i=l 1 n-1 • 

The criterion for optimization is one of minimizing the mean square error 
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subject to the constraint of inequality (5.35). The objective function 

is thus 

lb ·I n,1 (5. 38) 

where A is the Lagrange multiplier, and 

E{e2 } = 
n 

N 
E{(an- yn) 2

}+ 2 E b .E{(a - y )a*.} 
i=l n,1 n n n-1 

N 
+ E E 

i,j=l 
b . b .E{a* . a* . } • 
n,1 n,J n-1 n-J (5. 39) 

For a minimum to occur, we must satisfY conditions (~) and (ii) of 

section 5.3. Taking the first partial derivative of G with respect to 

b . , we obtain n,1 

(I(; 
=--- = ZE{(a 
ab . n n,1 

y )a* . } + 2 E b . E(a* . a* .) + ASgnb . 
n n-1 j n,J n-1 n-J n,J 

(5 .40) 
N 

We will choose A so that E{e2} is a minimum and E lb. I < 1. Equating n . 
1 

1 
1= 

the right-hand-side of equation (5.40) to zero and using the result in 

equation (5.39), we obtain 

· N N 
= E{(an - y ) 2

}+{ E b .E(a - y )a* .}"- 2A E lb .1 
n j=l n,J n n n-J j=l n,J 

(5 .41) 

In the absence of the constraint of inequality (5.35) the minimum mean 

square error is given by the first two terms on·the right-hand-side of 

equation (5.41). 

A N 
2 E 

j=l 

We choose a A such that 

lb .1 > o , n,J 



ll5 

so that the constrained minimum is smaller than the unconstrained minimum. 

This can be done by introducing a slack variable r, 0 < r < 1, such that 

the foll~wing identity holds: 

2 N A N 
E{(a - y) } + E E{(a - y )a* .} -- r jb .1 n n . 1 n n n-J 2 . 1 n,J 

J= J= 

2 N * - r[E{(a - y) } + r b .E{(a - y )a .}] 
n n j=l n,J n n n-J · 

The above equation can be re-arranged to yield 

A N 2 N * 
- E lb .1 = (1 - r)[E{(a - y) } + E b .E{(a - y )a .}] 
2 j=l n,J n n j=l n,J n n n-J 

••• (5.42) 

With respect to equation (5.42), we make the following interesting 

observations: 

(i) (1 - r) < 1, since 0 < r < 1 

.(ii) 

(iii) 

N 
r 

j=l 
lb .1 < 1, n,J 

inequality (5.35) 

N 
choose A for which r jb .1 = (1 - r). 

j=l n,J 

Observation (iii) enables equation (5.42) to be written explicitly as 

2 N 
A = 2[E(a - y ) + r b .E{(a - y )a* .}] 

n n j=l n,J n n n-J 

Using equation (5.43) in (5.40) and noting that 

(i) * E{e a .} n n-1 

(ii) E{v e } , 
n n 

(5.43) 



where v = a - y , we obtain n n n 

aG 
ab • n,1 

= 2{E(e a* .) + E(v e) Sgn b .} n n-1 n n n,1 

Let the coefficients b. be computed from the iterative formula 
1 

b 1 . n+ ,1 
aG 

= b · + Y2 .,..a~b.;___ n,1 . n,1 
i = 1, ••• , N 
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(5. 44) 

(5.45) 

Then, using equation (5.44) in (5.45), we obtain the recursive algorithm 

b . = b . + y[E(e a* .) + E(v e ) Sgn b .] n+l,1 n,1 n n-1 n n . n,1 · (5.46) 

The convergence properties of the recursive algorithm of equation (5.46) 

are given in Appendix F.4. It is shown there that y is negative lying 

in the range 

-2 
0 > y > -A--

max 

where A is the maximum eigenvalue of the matrix with entries max 

(E(a* . a* .) + E(v a* .) Sgn b .). n-1 n-J n n-1 n,1 

5.5.2 Recursive Formula for the Reference Tap Gain of the Complete 

Equalizer 

Replacing a* by y in equation (5.17), the output of the non-
n n 

recursive section is given by 

M 
y = E w .(a) x. + 6W 0 (a)n 
n j=-M n,J J n, n 

(5. 4 7) 

The mean square error of the complete equalizer is given by equation (5.39). 



Substituting (5.47) in (5.39) and taking the first partial derivative 

with respect toW .(a), we get n,J 

aE{e2 } M 

117 

n 
= aw . (a-) 

-2E{x. a}+ 2 E w .(a) E(x. x.) + 2oW 0 (a)E{n·x.} 
J n i=-M n,1 1 J n, n J n,J 

N 
- 2 E b . E{x. a* .} 

i=l n,1 J n-1 
(5. 48) 

Factoring out xj, we may rewrite (5.48) as 

e n = a n 

= a n 

M N * 
-2E{(a - r w . (a)x. -oW 0 (a) n + E b .a .)x.} 

n i=-M n,1 1 n, n i=l n,1 n-1 J 

= -2E{e x.} 
n J 

M 
-( I: W . (a)x. 

. M n,1 1 1=-

N 
-(y - E b n i=l n,i 

(5.49) 

N 
ow 0(a)n - b * + I: . a ) n, n i=l n,1 . n-1 

* a .) n-1 

* = a - a (5.50) 
n n 

Equation (5.49) evaluated at j=O is identical to equation (5.24) with the 

exception that the error is given by (5.50) rather than by (5.24a). 

Except for the above modification the iterative formula for the reference 

weight is, therefore, given by equation (5.25), as in the non-recursive 

equalizer case. The iterative formula for the weights in the learning 

loop remains the same, as given by equation (5.22). Using unbiased 

estimates in the manner shown in equations (5.26) and ·(5.27), a tapped 
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delay line implementation of the constrained recursive equalizer is 

shown in Figure.5.5. 

. 
5.5.3 Unconstrained Optimization 

When no stability constraint is imposed in the optimization of 

the recursive equalizer, the.objective function is simply given by the 

mean square error: 

The gradient with respect to b n,i is then given by 

aG = 2E{e a.* 1} ab n,i n n-

so that the iterative formula for t:he recursive tap gains is given by 

b - b . + yE{e a.* .} n+l,i - n,~ n n-1 (5.51) 

Equation (4.51) is simply (5.46) with the constraining component, 

yE{v e } Sgn b . , suppressed. The unconstrained recursive equalizer n n n,1 

is depicted in Figure 5.6. It is seen that the unconstrained recursive 

equalizer is much simpler to implement than the constrained one. 

5.6 Stunmary 

It has·been shown that the complete adaptive equalizer consists 

of a non-recursive and a recursive section in cascade. The principal 

results of this Chapter are: 

(i) There is provision for the non-recursive section to track its 
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own frame of reference. 

(ii) An adaptive algorithm for the recursive section of the equalizer, 

with system linearity maintained, has been derived. 

(iii) The learning loop of the equalizer helps speed up the conver-

gence during the adaptation mode. 

Without the self-synchronizing capability every tap in the non

recursive equalizer, in its random walk during the adaptation mode, is 

equally likely to be a frame of reference. If all the tap gains were 

set to zero initially (Proakis and Miller, 1969) it is possible that 

the system may exhibit the behaviour of a filter rather than that of an 

equalizer. 



CHAPTER 6 

PERFORMfu~CE EVALUATION OF THE ADAPTIVE SYSTEM 

6.1 Introduction 

In Chapters 2 through 5 we introduced the structure of an 

adaptive receiver for PAM signaling through ~ading dispersive channels. 

The feasibility of the synchronous demodulation scheme has been demon-

strated with some results given in section 2.5. In this Chapter we 

shall discuss the significance and the implications of the adaptive 

signal processor (i.e., the adaptive recursive filter and the adaptive 

equalizer connected in cascade) and evaluate its performance by means 

of Monte Carlo Simulationst. In this thesis we are mainly concerned 

with a single reception problem. Although extension to diversity 

reception is easily done, diversity reception is not discussed. Never-

theless we do recognize the fact that diversity reception can improve 

the system performance. 

The overall communications system is simulated and its perfor-

mance evaluated in a CDC 6400 digital computer. As a test signal we 

chose a binary M-sequence for the following reasons: 

. (1) It can be generated rather easily, both in the computer 

and in the laboratory. 

(2) It is a deterministic periodic code and hence it offers 

the possibility of correlation decoding. 

tMonte-Carlo simulations of the overall communications system 
are described in Appendix H. 
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The binary M-sequence is used to effect phase reversal modulation, which 

is equivalent to a double sideband suppressed carrier amplitude modula

tion. Since both side bands are transmitted, this type of modulation 

provides the transmitter with maximum efficiency. The transmitted 

waveform is a train of pulses the form of which is determined by a 

pulse shaping network. The pulses are either positive or negative as 

governed by the binary M-sequence. The binary signals are antipolarity, 

hence the term antipodal signals. The correlation coefficient, p, 

given by expression (2.28), is equal to -1. 

Although we centre our discussions' on digital communications, in 

actual fact the transmitted and received signals are continuous. The 

·observed continuous \oJaveform is often digitized by means of sampling as 

governed by the Sampling Theorem introduced by Nyquist (1928). The 

Sampling Theorem states that, in order to recover the information, the 

sampling rate must at least be twice the highest frequency content of 

the signal. Provided the Sampling Theorem is satisfied and the system 

is properly synchronized, it suffices to consider discrete data at the 

sampling instants. For a properly synchronized digital communication 

system, it is necessary and sufficient to sample the received signal 

once per baud. If synchronization is lacking, that is, the arrival 

time is unknown, it then becomes necessary to develop a synchronization 

scheme. A rather simple technique for searching the signal is to sample 

the incoming signal at a much higher rate, i.e., many samples per baud. 

An analysis of average power loss as a function of the number of samples 

per baud for the type of signaling under consideration has been described 



elsewhere (Mark and Hic~s, 1966). If sis the number of samples per 

baud, the signal processing device, e.g., the equalizer, will require 
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s times as many memory cells as that which is needed for a properly 

synchronized system. However, the amount of control circuitry remains 

the same, but the logics are required to operate s times faster. On 

the other hand, if analog tapped-delay lines were employed, exactly 

the same amount of components is required for both, except that the 

logics for the latter case have to be s times as fast. Thus, over

sampling the input waveform provides a means forsearching the signal. A 

price to be paid is the requirement of faster logics and more (digital) 

memory for storage. In this chapter we assume the arrival time is 

known and consider sampling the received waveform once per baud only. 

In a discrete communication system the probability that an 

estimate a* equals the true value a approaches unity as the system 

performance improves. Hence, the probability of error, Pe, may be used 

as a measure of 'goodness' in system performance. On the other hand, 

.in the continuous case the probability of a*(t)=a(t) is, in general, 

· zero, since any small deviations in a* (t) may not correspond to small 

deviations in a(t). Also, simulations using a digital computer 

n~cessarily restrict all signals to assume a discrete form, whether or 

not quantization has been applied. Thus, error probabilities are a 

meaningful measure of goodness in the performance of a digital communi

cation system. In what follows we assume demodulation has taken place 

so that the input to the Signal Processor is a baseband signal. 
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6.2 Performance of the Adaptive Recursive Filter 

To refresh our memory, briefly, the structure of the Recursive 

Filter derived in Chapter 4 was obtained through repeated application 

of the projection and decomposition theorems. A formula for the filter 

gain, as a function of covariances, was obtained through minimization 

of the mean square error, where the mean square error, as a function of 

the filter gains, is convex and hence possesses a unique minimum. 

Because of the convexity property, the unique minimum may be approached 

by a steepest descent method. Thus, the filter gains were approximated 

by an iterative formula with the updating term given by a gradient 

function of the mean square error with respect to the filter gains. 

The performance of the adaptive recursive filter was examined by 

comparing it with that of a matched filter. We employed a raised 

cosine pulse and a pulse given by an RC response to a rectangular pulse 

(here after referred to as the RC response pulse) as test signals. The 

raised cosine pulse was approximated by 19 samples while the RC response 

pulse was approximated by 20 samples. These pulses were separately 

imbedded in Gaussian noise (500 samples) and subsequently detected by 

(19-tap and 20-tap) matched filtering and (5-tap) recursive filtering. 

Typical traces for a 2 dB signal-to-noise ratio are shown in Figures 

6.1 and 6.2, where input signal-to-noise is defined as: 

SNR. 
1n 

6 Average Signal Power 
Noise Variance (6.1) 

It is readily observed that the raised cosine pulse has better immunity 

against noise than the RC response pulse. As a further comparison 



waveforms showing the detection of an RC response pulse in 6 dB signal-

to-noise ratio are given in Figure 6.3. While the detection of the 

RC response pulse in 2 dB signal-to-noise is only marginal, the 6 dB 

case gives a clear indication of the noise rejection capability of the 

·recursive filter. 

The output signal-to-noise ratio is defined as 

SNR ~ [Peak Value - Noise Mean Value]
2 

o Noise Variance (6.2) 

Plots o~ output signal-to-noise ratio vs input signal-to-noise ratio 

for a 19-sample approximation, a 9-sarnple approximation and a 5-sample 

approximation of the raised cosine pulse are shown in Figures 6.4, 6.5 

and 6.6,respectively. Each family of curves is upper bounded by the 

calculated curve for matched filter detection, with the assumption of 

zero mean white Gaussian noise. The computed curves are obtained by 
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computing the sample means and the sample variances over a population of 

500 noise samples and substituting in the output signal-to-noise ratio 

definition of equation (6.2). In Figures 6.4 to 6.6, the symbol MF 

refers to Matched Filter and RF refers to Recursive Filter. Examination 

of Figures 6.1 through 6.6 affords the following observations: 

(i) Noise immunity for a particular pulse is a monotonic 

function of the pulse energy. In discrete systems this implies that 

the more samples per pulse are taken the better is the noise immunity. 

This phenomenon is conceptually pleasing. 

(ii) The recursive filter has a large effective memory (or 

time constant) or, equivalently, a narrow bandwidth; it is a function 
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of the number of elements (memory cells) used. If the number of elements 

is too large the effective bandwidth may be so narrow that it rejects 

signal as well as noise. For example, when the raised cosine pulse is 

approximated by 19 samples, the 5-tap recursive filter offers the best 

performance. 

(iii) The performance of an optimized recursive filter is 

only a fraction of a dB worse than that of the matched filter. In an 

unknown situation where one has no knowledge of the received signal 

shape so that matched filtering is not practical, the adaptive recursive 

filter becomes a more practical alternative. In fact, since the recur

sive filter was derived without any assumption as to the noise distribu

tion, it is better equipped to cope with nonstationary noise than the 

matched filter. 

6.3 Performance of the Adaptive Equalizer 

The new equalizer derived in Chapter 5 was tested by trans

_mitting rectangular pulses with guard spacing equal to the memory of 

· the channel impulse response. A 20% threshold is applied to the 

equalizer output, that is, if the absolute value of the equalizer output 

is less than 0.2 (since the signal is normalized to unit height) the 

decision is zero, otherwise the decision is either +1 or -1. The 

input/output waveforms of the decision directed unconstrained equalizer 

(Figure 5.6) for two different channel impulse responses are shown in 

Figures 6.7 and 6.8. It is observed that it is much easier to equalize 

a channel with impulse response given by Figure 6.7(a) than that of 
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Figure 6.8(a). This is conceptually satisfying, since the sidelobes 

of Figure 6.7(a) are much more random. In both cases the equalizer 

starts at its quiescent value, i.e., the reference tap gain equals 1 

while all others equal zero. Under the conditions specified above, 
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for the channel impulse response of Figure 6.7(a), the equalizer attains 

convergence in approximately 45 samples. For the channel impulse 

response given by Figure 6.8(a) and under similar conditions, conver

gence is approached only after receiving 550 samples. This is so 

because the initial errors in the latter case are non-random. The 

adjustment of the equalizer tap gains favours a random error (hence the 

term random walk). As the equalizer tap gains acquire finite values, 

randomness is gradually forced into the error function. Corresponding 

cases for the non-recursive equalizer are not shown because the 

convergence of the non-recursive equalizer is extremely slow compared 

to the recursive one. 

To evaluate the convergence properties of the various equalizer 

. structures for different types of channels, repeated transmission of a 

127-digit periodic binary M-sequence is used as a test signal. The 

.digit duration is taken to be the same as the pulse separation, that is, 

~0 = Ts. Convergence curves (averaged over 10 runs) for the various 

equalizers are shown in Figures 6.9 through 6.12, where MS denotes the 

mean square error gradient algorithm and HYB denotes the hybrid mean 

square error gradient algorithm. The latter is obtained using the 

sign of the error rather than the true error. From the implementation 

point of view the hybrid algorithm is simpler, since multiplications 
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are reduced to sign switching (or chopping) operations. The non

recursive equalizer, with a capability for tracking its own frame of 

reference, has been referred to as the modified non-recursive equalizer. 

We note that the liYB algorithm converges somewhat slower than the MS 

algorithm, but it converges to approximately the same minimum value of 

error. In this thesis our main interest lies in introducing a better 

equalizer than the state-of-the-art. Discussions on the implementation 

techniques of various convergence algorithms are available in the 

literature (see, for example, Hirsch and Wolf, 1970; Gersho, 1969). 

With this remark we employ the MS algorithm in all subsequent perfor

mance evaluations. Inspection of Figures 6.9 to 6.12 reveals the 

following points: 

(i) The unconstrained recursive equalizer offers the fastest 

convergence. The conventional non-recursive equalizer has the slowest 

convergence. 

(ii) In the case of the unconstrained recursive equalizer, the 

binary eye was open after having received less than 200 samples (see 

Figure 6.12). 

(iii) As was revealed by Figures 6.7 and 6.8, the channel 

impulse response with the most random sidelobe structure is the easiest 

to equalize. 

(iv) AS expected the recursive equalizer is much more superior 

to the non-recursive equalizer. 

Also, during the course of conducting the computer simulations the 

following points were observed: 



(v) Provided the frame of reference is maintained, the uncon

strained recursive equalizer will operate in a stable mode. 

(vi) The recursive equalizer is more robust than the non

recursive equalizer in that it can withstand much larger gradient 

constants, i.e., a, a andy. Range of values of a, a andy used are 

tabulated in TABLE VI-1. 

(vii) The constraining action of the constrained recursive 

equalizer accounts for its slow convergence (as compared to the uncon

strain~d one). 
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(viii) In the case of the recursive equalizer it is immaterial 

whether or not a reference signal is used., as the decision directed mode 

·is just as good as the one with an ideal reference. The non-recursive 

equalizer, on the other hand, requires an ideal reference, at least to 

open the binary eye. The curves for the non-recursive equalizers were 

obtained using an ideal reference. 

(ix) The non-recursive equalizer, especially the conventional 

one, is very sensitive to changes in the values of the gradient constants. 

If the gradient constant, a, is slightly too small, the convergence is 

extremely slow; if it is slightly too large, for the periodic adjustment 

case, the tap gains may walk past the optim~ values and the system 

starts to degenerate. 

(x) The robust operation of the recursive equalizer implies 

that it has a much better noise immunity than the non-recursive equalizer; 

this may be explained by recognizing that the recursive structure exhibits 

negative feedback properties. 
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Figure 6.11 Comparison of Convergence of Conventional Non-recursive 
Modified Non-recursive and Recursive Equalizers 
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Figure 6. 12 Comparison of Convergence of the Recursive Equalizer(unconstr.) 
for different types of Channel Impulse Responses 
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6.4 Performance of the Adaptive Signal Processor 

The equalizer is quite sensitive to impulsive noise. For 

best performance it is necessary to filter the received signal before 

applying equalization. The optimum filter is that which is matched to 

the channel output (George, 1965). Since we are concerned with unknown 

channels, we employ the adaptive recursive filter derived in Chapter 4. 

A cascade connection of the filter and the equalizer is referred to as 

the signal processor. In this section we discuss the performance of 

the si~al processor by displaying typical input/output waveforms and 

probability of error curvest. l~e concentrate our effort in evaluating 

the performances of the unconstrained recursive equalizer (here after 

-referred to simply as the recursive equalizer) and the modified non-

recursive equalizer (here after referred to simply as the non-recursive 

equalizer). 

The transmitted signal is a succession of the 127-digit periodic 

binary M-sequence. The pulse shaping network is assumed to have a 

rectangular impulse response. Each binary symbol is approximated by 

5 samples on transmission. The three different types of channel impulse 

responses mentioned in the preceding section are being tested. The 

Signal Simulator (see Appendix H) is equipped with the capability for 

changing the channel impulse response. For the cases under consideration, 

the deterministic channel impulse response is aged randomly by 5% both 

in amplitude and in phase at the end of one period of the M-sequence. 

tThe results obtained by Monte-Carlo simulation are in actual 
fact error rates that are dependent on when the counting starts. 
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With reference to Appendix H, briefly, the signal flow is as 

follows: The output of the Signal Simulator is the received perturbed 

signal, which is passed through a 3-tap adaptive recursive filter, the 

output of which is sampled once per baud and then applied to the adaptive 

equalizer. A decision is then made on the equalizer output. The 

'Decision Box' (see Figure 5.6) is a zero crossing detector, so that 

the final output is a sequence of +l's and -l's. Typical input/output 

waveforms for a decision directed recursive equalization system, which 

corresponds to the channel with impulse response shown in Figure 6.13 

a(i), are displayed in Figures 6.13 and 6.14. In each case one period 

of the 127-digit M-sequence is plotted after having received 635 

(5 x 127) samples, 1270 (10 x 127) samples and 2540 (20 x 127) samples. 

Figures 6.13 a, b and c are good indications of the convergence 

properties of the decision directed recursive equalization system. 

The autocorrelation function of a periodic 127-digit binary 

M-sequence is a train of periodic pulses of 127 units in height occur

_ing at a periodicity of 127 digits and -1 unit everywhere else. (See, 

·for example, Golomb et al, 1964.) Correlation decoding is the process 

of cross-correlating the decisions with an ideal reference sequence. 

When there are no errors in the decisions, the cross-correlation 

process becomes an autocorrelation operation. Thus, the correlation 

decoder output provides a measure of the degree of accuracy in the 

decisions. We know that exact decisions have been made when the 

correlation decoder output is identical to the autocorrelation function 

of the periodic M-sequence, as is shown in Figure 6.13 c(vi). The wave-
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forms of Figure 6.13 correspond to the case of 1.0 dB signal-to-noise 

ratio, while those of Figure 6.14 correspond to -3.0 dB signal-to-

noise ratio. It is observed that for small variations (5%) in the 

channel and at moderate signal-to-noise ratio, e.g., 1.0 dB or higher, the 

decision directed recursive equalizer can acquire and track the channel 

status to yield very accurate decisions after having received approx-

imately 2540 samples. At low signal-to-noise ratios, e.g., -3.0 dB, 

the error is rather high, as shown by Figures 6.14 a, b and c. For 

small channel variations and given sufficient time, it is conceivable 

that, even at -3.0 dB signal-to-noise ratio, reasonable accuracy is 

achievable. 

It is difficult to compute output signal-to-noise ratio on 

a per symbol basis. We therefore resort to computing signal-to-

interference ratios at the correlation decoder output. Since the 

receiver is linear, we may define the correlation decoder output 

signal-to-interference ratio by 

where 

2 6 (peak value - mean] 
SIRed = 1 + sample variance 

mean = 1 + sample mean. 

(6. 3) 

The sample mean and sample variance are computed from one period of the 

correlation decoder output, excluding the peak value. When the decisions 

are exact, the peak value of the correlation decoder output equals 127 

units, the sample mean equals -1 and the sample variance equals zero. 

The signal-to-interference ratio in dB, therefore, becomes 
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SIRed 10 1 .[(127) 2] = oglO 1 

= 42 dB (6.4) 

Thus~ an upper bound for the SIRed is approximately 42 dB. Signal-to

interference ratio as a function of input signal-to-noise ratio has been 

computed in accordance with equation (6.3) and plotted in Figure 6.15. 

The results of Figure 6.15 were obtained after having received 2540 

samples. Suppose data are transmitted at a rate of 3600 symbols per 

second; then the instant of time under consideration is approximately 

2/3 of a second from the quiescent condition. In this particular 

situation the signal processing gain of the recursi'.'e equalizer is 

approximately 6.5 dB. Conceivably, this can improve with time, that 

is to say, as the 'communication channel' approaches an all pass 

condition, the output of the equalizer approaches a replica of the 

transmitted sequence. 

Thus far in this section, we have presented results for a 

recursive equalization system only. At the instant of time under 

consideration (i.e., approximately 2540 samples from quiescent condition) 

similar results obtained for a non-recursive equalization system are 

not very meaningful, because the non-recursive equalizer is still in 

a transient state. This can be appreciated readily by examining the 

convergence curves of Figures 6.9, 6.10 and 6.11. 
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As stipulated at·the end of section 6.1, the probability of 

error provides a quantitative measure for system performance. In 

the remainder of this section we .present system performance in terms 

of probabilities of error. Although all results on error probabilities 

have been obtained by Monte-Carlo simulation on a digital computer, 

in what follows we first discuss the analytical aspect of error 

probability. Through tedious algebraic manipulations, the equalizer 

output, a~, as given by equation (5.17) or equation (5.37), may be 

expressed as a function of the transmitted data, the.channel impulse 

response, the additive noise and the equalizer tap gains. For our 

purpose, however, it is convenient to represent the equalizer output by 
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a* = a - d - n n n n n (6.5) 

where 

an = the true symbol, 

dn = the residual distortion, and 

nn = the noise component at. the equalizer output. 

The probability of error for a binary symbol is given by 

We may assign a decision boundary by equating the right member of (6.5) 

to zero: 
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(6 .6) 

2 Since nn is Gaussian distributed with variance an' the error probability 

for a binary symbol is describable by the conditional probability: 

(cf. equation (2.30) for p = -1) 

... 

a. -d n n 
an 

x2 
exp(- 2 )dx (6. 7) 

with th.e proviso < I a. I . n 
The average probability of error 

is obtained by averaging the conditional probabilities over all possible 

symbols: 

p = -e r 
ne:I 

where I represents the set of binary symbols and P(a.n)' the probability 

of occurrence for the symbol an. For statistically independent, equally 

likely binary information symbols, P(a.) = 2-1• 
n 

Consider transmission of an isolated positive valued symbol, a.0 , 

so that in the absence of additive noise the equalizer output is a 

. * * * * * tra1n of pulses (a._L' a.-L+1 , ... ,a.0 , ••• ,~_ 1 , a.L ). If the 'communications 

channel' attains the status of an all pass system, we have 

for i = 0 

for i 'I 0 

For serial transmission of data, the set {a.~} will interfere with the 
1 

symbols which occur before and after the i = 0 instan~. If we define 



the distortion to be 

L I 

r I a~ I 
. L ~ 
~=-

where the prime denotes the absence of the i = 0 term, the probability 

of error is upper bounded by 

P(eld ) n 
1 

<--
/2rr 

foo a -d I 
0 0 
on 

2 
X exp(- 2 )dx 

provided a.0 > d~ • An upper bound of the form 

where 

d I : 
0 

do" = r 
i¢K 

la~l is the larger distortion, and 
~ . 

la.~1 2 is the smaller distortion, 
~ 

has been published by Saltzberg (1968). If the set K is taken to 

(6. 8) 

contain the entire distortion, the Saltzberg upper bound becomes a 

·boundary value of inequality (6.8). 
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The error probability formulae, such as equation (6.7), provide 

~ analytical feel for system performance only. Unless separate measure-

ments of dn and on can be made, the probability of error cannot be 

evaluated explicitly. The probability of error curves given in Figures 

6.16 through 6.20 have been obtained by Monte-Carlo simulation on the · 

CDC 6400 digital computer. The no intersymbol interference lower bound 

is also shown in each case. The transmitted binary stream is again 



164 

repetitions of a 127-di~it binary M-sequence with a 100% duty cycle. 

The curves for the recursive equalizer were obtained using a decision

directed mode; those for the non-recursive equalizer have been obtained 

using, initially, 7 periods (889 samples) of the transmitted sequence 

as reference. For the recursive equalization system, the error count 

started at the 382nd (after 3 periods) sample from quiescent condition; 

that for the non-recursive equalization system started at the 127lst 

(after 10 periods) sample from quiescent condition. During the course 

of simulation the following points have been observed: 

(i) A 21-tap recursive equalizer offers no noticeable improve

ment over a 15-tap recursive equalizer. On the other hand, increasing 

the number of taps from 15 to 21 in the .non-recursive equalizer definitely 

gives an improvement in system performance, as is indicated by Figure 

6.20. 

(ii) The curves for the recursive equalizer have been obtained 

using one typical set of values for the gradient constants (i.e., a=-0.002, 

e=-0.025 and y=-0.003); those for the non-recursive equalizer were 

obtained by optimizing the gradient constants corresponding to the 

particular signal-to-noise ratio and a particular channel impulse 

response. Needless to say, obtaining error probability curves for the 

recursive equalization system was relatively easy compared to getting 

the non-recursive equalization curves. 

(iii) Any subjective comparison between the performances of 

the recursive and the non-recursive equalization systems, as shown by 

Figures 6.16 through 6.19, should be made only after taking into account 



the conditions under which measurements were made and the comments of 

(ii). 
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(iv) The curves of Figures 6.16 to 6.20 again indicate that 

the channel impulse response with all positive sidelobes is the hardest 

to cope with. This is especially so for the non-recursive equalizer 

case, as the curves corresponding to the all positive sidelobe channel 

exhibit a bottoming effect (Figure 6.20) 

(v) Even if a comparison between the results of the recursive and 

the non-recursive equalization receivers were taken at their face values, 

as shown by Figures 6.16 to 6.18, the recursive equalizer case is about 

4.0 dB superior to the non-recursive equalizer case at high signal-to-

·noise ratios (e.g., 12 dB). 

6.5 Summary 

A quantitative and subjective performance evaluation of the 

adaptive recursive filter, of the adaptive equalizer and of the complete 

adaptive receiver has been made by means of ~1onte-Carlo simulation 

on the CDC 6400 digital computer. The adaptive recursive filter has 

been shown to be only a fraction of a dB worse than the matched filter, 

yet the recursive filter requires fewer elements (taps). 

A receiver with a recursive equalizer not only converges much 

faster and yields better results than one with a non-recursive equalizer, 

but also offers a much more robust operating capability in a purely 

decision directed mode. This latter feature is really important since 

it enables the adaptive receiver to operate under a wider range of 



channel conditions. The same number of taps (or memory cells) can be 

assigned to both the recursive and the non-recursive equalizers, so 
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that, from an implementation viewpoint, no extra expenditure is incurred. 

The modified non-recursive equalizer, with a capability for tracking its 

own frame of reference, does not require extra memory, but more multipliers 

are needed. Thus, the new recursive equalizer would cost slightly more 

to implement than the conventional non-recursive equalizer, but it 

appears that the improvement offered by the former far outweighs the 

additional complexity. 
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7.1 Conclusions 

CHAPTER 7 

CONCLUSIONS AND FUTURE STUDIES 

A general adaptive recursive filter and an adaptive recursive 

equalizer, for use in digital communications over dispersive unknown 

channels, have been derived. The major contribution of this research 

effort has been the introduction of an improved adaptive signal process

ing technique that should lead to improved digital communications in 

the future. Performance evaluations for the adaptive system have been 

undertaken by means of Monte-Carlo simulations on a digital computer. 

The following contributions to the field of digital communi-

cations have been made by the research described in this thesis: 

(1) A synchronous demodulation scheme to facilitate coherent 

reception of AM signals has been proposed and its feasibility demonstrated. 

(2) An adaptive recursive filter exhibiting a performance only 

a fraction of a dB worse than that of a matched filter has been derived 

using a combination of Hilbert Space method and a mean square error 

minimization technique. The adaptive recursive filter is capable of 

tracking a time-variant signal in stationary or non-stationary noise. 

(3) The conventional non-recursive equalizer has been modified 

by the introduction of an auxiliary function. The final form of the 

modified non-recursive equalizer contains a learning loop in addition 

to the conventional non-recursive equalizer structure. This learning 

loop provides the modified non-recursive equalizer with a capability 
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to track its own frame of reference. Also, the presence of the learning 

loop enables the adaptive equalizer to take on larger values for the 

gradient constants, thereby helping to speed the convergence. 

(4) The adaptive equalizer has been realized as the cascade 

connection of a non-recursive and a recursive structure. Because of 

the feedback properties of the recursive structure, the recursive 

equalizer could become unstable during operation. Through the intro

duction of a sufficient but not necessary stability condition, a 

constrained recursive equalizer has been derived. Computer simulations 

have indicated that, under identical conditions, the constrained 

recursive equalizer converges much slo\ier than an unconstrained one. 

(5) The recursive equalizer has been shown to have a superior 

performance to the non-recursive equalizer. 

7.2 Future Studies 

The design of a reliable communication system normally consists 

of three phases; namely, the theoretical study, the feasibility evaluation 

via simulations on a digital computer, and the experimental verification 

of the results. The research effort undertaken in this thesis has demon

strate4 the viability of the first two. A carefully controlled imple

mentation of the adaptive receiver would provide confirmation for the 

theoretical and computed results reported in thi.s thesis. 

The demodulator-estimator aspect of the adaptive recursive 

filter, briefly discussed in section 4.5, warrants further studies both 

theoretically and experimentally. 



APPENDIX A 

MATCHED FILTER RECEPTION OF AN ISOLATED PULSE IN 

WHITE GAUSSIAN NOISE 

Let p(t) be the transmitted pulse, 0 ~ t ~ T, 

c(t) be the channel impulse response, 0 ~ t ~ T',. 

q(t) be the channel output in response to the excitation p(t). 

Then 

q(t) = p(t) 0 c(t), 0 ~ t ~ T" = T + T'. (A.l) 

where 0 denotes convolution. The received signal is given by 

where 

n(t) is white Gaussian noise with one-sided spectral density 

N
0 

watts per Hz. 

The signal energy is given by 

T 

Ep = f p
2

(t)dt. 
0 

(A. 3) 

Consider operating on the observed signal with a linear time-

invariant operator, h (t). The output due to the signal at time T" is a 

deterministic function: 

T" 
p

0
(T") = f h(t)n(T"-t)dt, 

0 

and that due to noise is a random variable: 
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(A.4) 



T" 
n

0
(T") = J h(t)n(T"-t)dt. 

0 
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(A.S) 

Our criterion for signal detectability is the output signal-to-noise ratio 

defined as: 

p2 (T") 

(S/N) o t:. -E-{:-=2,--(T-,-,)-} 
0 

T" [J h(t)q(T"-t)dt] 2 

0 = ----~~------------~~-------------T" T" 
J h(t)n(T"-t)dt · J h(y)n(T"-y)dy} 

0 0 

E{ 

By interchanging the order of expectation and integration, we get for the 

output signal-to-noise ratio: 

(S/N)
0 

= 
J
T" 

[ 

0 

h(t)q(T"-t)dt] 2 

I
T" 

N
0
/2[ h (t)dt] 2 

0 

(A.6) 

To find an optimum operator h (t) , we maximize the output signal-to-noise 
0 

ratio by taking the first partial derivative of equation (A.6) with 

respect to h(t) and equating the result to zero: 

a 
ah(t) (S/N)o = 

T" 2 T" T" T" T" T" 
N

0
[f h(t)dtJJ h(t)q(T"-t)dtJ q(T"-t)dt-[J h(t)q(T"-t)dt]

2
N

0
f h(t)dt}J dt 

0 0 0 0 0 0 

T" 
[~o[f h(t)dt]2]2 

0 

= 0 



176 

Simplifying, we get 

(A. 7) 

Equation (A.7) is an identity if, and only if, 

h
0

(t) = q(T"-t). (A. 8) 

Equation (A.8) is a mathematical representation of a matched filter, 

i.e., matched in characteristic to the signal component of the received 

signal. The output signal-to-noise ratio of the matched filter is 

obtained by substituting equation (A.8) in (A.6): 

(S/N)
0 

= I
T" 

q2(T"-t)dt 
0 

N /2 
0 

If the channel is non-time-dispersive with a constant gain C, then 

equation (A.9) reduces to 

2E c2 

(S/N) o = ....,N...,.:-

and the matched filter, within an arbitrary gain factor, is given by 

h
0

(t) = p(T-t). 

(A.9) 

(A.lO) 

(A.ll) 



APPENDIX 8 

CHANNEL tv10DEL 

This appendix is intended to provide a summary of the work that 

has appeared in the literature on channel modelling. In dealing with 

the analytical modelling of the channel it is convenient to use complex 

variable representations. As a preparation we introduce the following 

mathematical preliminaries: 

·e ·e 
Let A= eJ a and 8 = eJ b be two complex valued quantities. 

We than have 

Using the 

Re{A} = cos ea 

Im{A} = sin e a 

Re{8} = cos eb 

Im{8} = sin Eb· 
above, we have 

Re {A} • Re{8} = cos ea cos eb 

= ~[cos(ea-eb) + cos(ea+eb)] 

= ~[Re{A8c} + Re{A8}] 

Im{A} · Im{8} = ~[Re{A8c} - Re{AB}] 

Re{A} · Im{8} = ~[-Im{ABC} + Im{A8}] 

Im{A} • Re{8} = ~[Im{ABC} + Im{A8}] 

(8.1) 

(8.2) 

(B. 3) 

(8.4) 

where the superscript c denotes complex conjugate. From (8.1) and (8.2) 

we have 

Re{A} · Re{8} + Im{A} · Im{B} = Re{ABC} (B.S) 
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Equation (B.S) indicates that in order to make full utilization of the 

complex signal, we need to transmit two real signals in quadrature. 

_ Consider the transmitted signal impinging on the ith scatterer 

in the propagation path. The motion of the ith scatterer gives rise to 

an uncertainty in range as well as in frequency. Since time delay is 

proportional to range, a range uncertainty may be viewed as a delay 

uncertainty. We shall define a delay rate denoted by oi. The range 

of the ith scatterer may be represented by 

where r. = nominal range, and 
1 

r.t = range uncertainty. 
1 

In terms of delay, we then have 

where 

T.(T) = t. + O.t 
1 1 1 

r. =nominal delay, and 
1 

oit = delay uncertainty • 

(B.6) 

(B. 7) 

. The nominal delay is seldom known precisely; we may, therefore, express 

it in terms of a 'mean' value plus an increment by 

T. = T. + e. /w , (B. 8) 
1 10 1 0 

where w
0 

is the carrier frequency of the transmitted signal. That is, 

imprecise knowledge of the delay variable may be considered as a phas~ 

uncertainty, e., lying in the interval -~~e. ~ n. We thus have a 
1 1 

delay uncertainty due to the motion of the scatterer and a phase 
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uncertainty due to impr~cise knowledge of its range. It can be shown 

that the delay rate about the nominal delay, Ti' is given by (Mark, 1968) 

~./c 
l. o. = ----

]. 

1 + r. /c 
l. 

where c is the velocity of propagation. 

We note that for lei > > lr. I, lo. I < < 1. 
l. l. 

Let 
jw

0
t 

s(t, a(t)) = Re{a(t)e } 

(8.9) 

(B .10) 

be the transmitted signal, where a(t) is the modulating signal and w
0 

is the carrier frequency. For narrow-band signaling, the bandwidth of 

where 

and 

w • c The received signal is then g.iven by 

z.(t) = s(t- T.(t), y.) 
l. ~ l. 

- T. - 0. t) J} 
l. l. 

= Re{y. a(t - T. - e./w - o.t) 
l. l.O l. 0 l. 

•expj((w
0

- O.W )t- W T. - 8.]} 
l. 0 0 l.O l. 

-jei 
y. e is the complex strength of the i th scatterer, 

l. 

o.w is the doppler frequency due to the ith scatterer, 
l. () 

(B .11) 

o.t represents a compression or expansion on the envelope 
l. 

of the signal. 

For variations in o.t and 8./w much less than the reciprocal of the 
l. l. 0 
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bandwidth of a(t), we may make the following approximation 

a(t - T. - e./w - o.t) ~ a(t - T. ) 
10 1 0 1 10 

(8.12) 

Then equation (8.11) may be rewritten as 

z.(t) = Re{y.a(t-T. )expj[(w -o.w )(t-T. )-e.]} 
1 1 10 0 1 0 10 1 

(8.13) 

The received signal, given by the total contribution of all scatterers, 

is obtained by summing over all i: 

z (t) = E z. (t) 
i£1 1 

= Re{ y.a(t--r. )expj[(w -o.w )t-w T. -e.]} 
1 10 0 1 0 0 10 1 . 

Imprecise knowledge about any parameter implies that parameter is a 

(8.14) 

random variable. That is, y., e. and o. are random variables. As such 
1 1 1 

the received signal as represented by equation (8.14) is also a random 

process, which only can be described statistically. That is, we may 

attach to each of the above random variables a probability density such 

as p.(y.), p.(e
1
.) and p.(o.). The received signal, z(t), can then be 

1 1 1 1 1 

described in terms of probability moments: 

(1) The first moment of z(t) is given by 

E [ z (t)] = Re { E 
iE.I 

E[p.]a(t--r. )expj[w -o.w )t-w T. ]} 
1 10 0 1 0 0 10 

Y.e-j ei 1. s where pi = 
1 

the complex strength of the ith scatterer. 

(8.15) 
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(2) The second-order moment, or the correlation function, is 

given by 

Rz(t,T) = E{z(t) z(y)} 

= ~[Re{z(t)zc(y)} + Re{z(t)z(y)}] 

Using equation (B.l4) in the above and taking into consideration the 

properties of the autocorrelation function together with the comment 

given to equation (B.S), we may write 

= ~Re{E E E(p.pkc]a(t-T. )ac(y-Tk ) 
i k ~ ~0 0 

•expj[(w -o.w )t-(w -okw )y-w (T. -•k )-(e.-ek)]} 
0 ~ 0 0 0 0 ~0 0 ~ 

••• (8.16) 

Assumptions: 

(i) If y., e. and o. are statistically independent of each other, then 
1 ~ ~ 

(ii) If the parameters yi' ei and oi are themselves statistically 

independent, then 

for i = k 

for i .,. k 

Then equations (8.15) and (8.16) reduce, respectively, to 

E [ z ( t) ] = Re { E E (y . ] a ( t- • . ) ex p j( ( w - o . w ) t - w • . - e . ]} , 
~ ~0 0 ~ 0 0 10 ~ i 

and 

= ~Re{ r E[y~]a(t-T. )ac(y-T. )expj[(w -o.w )(t-y)]} . 
1 ~0 10 0 1 0 i 

(8 .17) 

(8.18) 
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(iii) Let 

y. cose. - jy. sine. 
~ ~ ~ ~ 

Then, if 

E[z(t)] = 0 . (8.19) 

Channels whose responses are completely described by equations (8.18) and 

(8.19) are called wide-sense stationary uncorrelated, or Gaussian, 

channels. The amplitude has a Rayleigh density function given by 
..., 

y~ 
·~ 

yi -2----:2 
e 0. 

-2- l ' 
(J. 

1 

p.(y.)={ 
~ ~ 0 

0 < y. <"" 
1 

elsewhere 
(8.20) 

The phaseis uniformly distributed with a probability density given by: 

1 
P· (e.) = -2 
~ 1 lT 

-1r < e. ~ 1r ... ~ ' 

The statistical mean and variance of yi can be shown to be 

E(y.] = J""y. p.(y.)dy. 
1 ~ ~ ~ ~ 

0 

=b/ 
and 

2 2 E[y.) = o. 
~ ~ 

(8.21) 
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Channels whose responses are partially described by equations (B.lS) 

and (8.16) are extremely complex; higher moments are necessary to give 

a reasonable description. 

If the-complex strength of the scatterer has a nonzero mean 

value, then the first moment is given by equation (8.17). The complex 

strength is then expressible by 

-je. -H. -j1jl. 
1 1 B.e 1 (B.22) y.e = a.e + 

1 1 1 

where 
-H. 

1 a deterministic component, and a.e = 
1 

-j1jJ. 
1 a random component. e.e = 

1 

Both $i and 1/Ji are uniformly distributed over the interval [-n,n] and 

B. is Rayleigh distributed with a density function of the form (B.20). 
1 

It can be shown that the joint probability density of y. and e. is 
1 1 

given by 

P· (y. ,e.) = 
1 1 1 

y. 
1 --2 exp( -

2na. 
•1 

o, 

2 2 y. + a. - 2y.a. cos(e.-~.) 
1 1 1 1 1 1 

-----...,2~..;:;;_--~___;:;__ ) , 0 <y i <co 
2a. 

1 

elsewhere 

The amplitude density function is given by 

2 2 
yi y. + a. a.y. 

{ 
1 1 

)Io( -2:._!_ ) 0 2 exp(- < y. < co 2 2 , 1 a. 2a. a. 
p. (y.) 1 1 1 

= 
1 1 

0, elsewhere 

(8. 2 3) 

(8.24) 
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where I (x) is the zeroth order modified Bessel function of the first 
0 . 

kind given by equation (2.32). The phase density function is given by 

P· ca.) 
~ ~ 

(B.25) 

A plot of the phase density function of equation (B.25) can be found in 

Van Trees (1968, p. 363). It is noted that as a.~ 0, p.(a.) approaches 
~ ~ ~ 

a uniform distribution. 

Thus far, the channel model has been described in terms of a 

discrete or point function. In actual fact only the gross or macro-

scopic effect of all the scatterers that matters. To this end we 

introduce a density function, o (•, f) d• df, associated with a pair of 

delay and doppler frequency variables through the transformations 

. and 

•• ~ "C , 
~0 

o.w /2Tr ~ f 
~ 0 

2 -
1: E[y.] ~ o(<,f). . ~ 
~ 

Using the above density function,equation (8.18) may be rewritten as 

where 

00 

Rz(t,y) = !zRe{ JJ ;(,,f)a(t-<)a*(y-•) 

w = 2Trf • 

-oo 

• expj[(w -w)(t-y)]d• df} 
0 

(lL26) 
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The quantity o ( T, f) describes the average power or, in radar tenninology, 

the average cross section, attributed to all the scatterers. A normalized 

quantity, termed the 'channel scattering function' (Bello, 1963, 1969; 

Kailath, 1962, 1963) is defined as 

o(T,f) ll 
co 

(B. 2 7) 

ff ~(T,f)dT df 

The channel scattering function is reminiscent of Woodward's ambiguity 

function and the energy enclosed is unity, i.e., 

co 

JJ o(T,f)dT df = 1 



APPENDIX C 

ABSTRACT VECTOR SPACE 

The purpose of this appendix is to state concisely the properties 

governing the Hilbert Space Theory. More thorough and rigorous treatment 

of this subject can be found elsewhere (see! for example, Vulikh, 1963). 

Except for notational differences the complex Hilbert space has similar 

concepts as the real Hilbert space. For the sake of simplified notations 

we define the real Hilbert space in the following: 

Definitions 

(i) Let S be a linear system. S is a linear vector space if and only if 

for w&y vectors ~ w&d y ill S, aJ&d real J&wuber c, there exist vectur5 

x + r and ~ respectively which satisfy the usual properties of addition 

and multiplication. There must also exist in S a null vector 0. 

(ii) S is an inner product space if and only if to every pair of vectors 

x and r inS there corresponds a real number, denoted (~,r), which is 

called the inner product of ~ and r· The inner product must possess the 

following properties: for all~~ r, z € s and real number c, 

(~ c~,rJ = (~,~); 
(b) c~ + r, !) = (~,:) + cr,:J;· 
(~ c~~rJ = c(~,r); 
(d) (~,~) ~ 0 for any X ~ - S, moreover 

(~,~) = 0 if and only if ~ = Q· 

(iii) The norm of a vector~~ denoted I 1~1 I, in an inner produce space 

186 
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S is defined as follows: 

(iv) S is a complete metric space (under the norm of (iii)) if and only 

if for any sequence of vectors {x } in S ·such that llx - x II + 0 as -n -m -n -

m, n + ""i then there exists a vector x E: S such that II x - x 11
2 

+ 0 as -n -

n +"",i.e., {x } is a Cauchy sequence. 
-n 

(v) S is an abstract Hilbert space if and only if it possesses properties 

(i) to (iv). 

(vi) The inner product in a Hilbert space is defined as follows: for 

all random variables (vector valued) ~, r € s 

where E{·} is the expectation operator and t denotes transposition. 

Projection Theorem 
A 

Let n be a vector space, S be a vector subspace of n, and x be 

a vector in S. A necessary and sufficient condition that ~ is the unique 

vector in S satisfying the minimization property 

A 2 2 
II x - x II = min II x - vII 

- - v~s - -

is that, for all y € S, 

,. 
(~ - ~, y) = Q, 

,. 
which is the orthogonality property. The vector x is called the perpen-

dicular projection of x onto S. 
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Decomposition Theorem 

Let S and r be two subspaces of a Hilbert space n such that 

every vector inS is orthogonal to every vector in r. Let x and r be 

vectors in the Hilbert space n and their projections onto the subspace 
,.. ,.. 

S be x and l• respectively. By the projection theorem 

,.. 
X = X - X 

and 

r = r - r 

are vectors in the subspace r. If 

then 
,.. ,.. 
X + X = l + l 
,.. ,.. -
X - l = l - X 

But (~ r)E s and Ci - ~)E r' and since s 1 r' the above equality holds if 

"' - -X - l = r - X - 0 

which implies 

"' "' and X = l r = X 



APPENDIX D 

DERIVATION OF THE GAIN MATRIX G(n,n) 

The gain matrix G(n,n) is derived in this Appendix by 

minimizing the trace of the covariance matrix incurred due to errors 

in making the best estimate. Our starting point is the covariance 

matrix given by equation (4.26) repeated below: 

P(njn) = P(njn-1) - [G(njn)V(n)D(n)]cPCnln-1) - P(njn-l)[G(n,n)V(n)D(n)]t 

Let 

+ [G(n,n)V(n)D(n)]c[P(njn-1) + K Cnln-1) + K (njn-1)] m n 

t [G(n,n)V(n)D(n)] 

K(njn-1) = P(njn-1) + K (njn-1) + K (njn-1) m n 

(4.26) 

(D.l) 

Since PCnln-1), K Cnln-1) and K Cnln-1) are Hermitian matrices, it follows m n 

that K(njn-1) is also Hermitian. Let Q be a unity matrix. Then a linear 

unitary transformation of K(njn-1) yields a diagonal matrix. We have 

= Q+ K(njn-1) Q • 

Hence 

(D.2) 
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Substituting equation (D.1) into (4.26) and making the orthogonal 

transformation indicated in equation (D.2), we have 

PCnln) = -PCnln-1) - [G(n,n)V(n)D(n)]cPCnln-1) 

- PCnln-1) [G(n,n)V(n)D(n)]t 

c + t + [G(n,n)V(n)D(n)] QAKQ [G(n,n)V(n)D(n)] 

= PCnln-1)-[G(n,n)V(n)D(n)]cPCnln-1)-PCnln-l)[G(n,n)V(n)D(n)]t 

(D. 3) 

To isolate the gain matrix G(n,n), complete the square of the right-hand-

side of equation (D.3): 

c ~ c ~ 1 + 
P(njn) = P(nln-1) + [[G(n,n)V(n)D(n)Q AK] -PCnln-l)[[QAKr ] ] 

• [[G(n,n)V(n)D(n)QcAi]c-P(nln-1)[[QA~]- 1]+]+ 

- [P(nln-1)[[QAi]- 1 ]+][P(njn-1)[[QA~]- 1 ]+]+ , (D.4) 

.where we have used the fact that P(nln-1) is Hermitian, i.e., 

PCnln-1) = [PCnln-1)]+. 

To simplify notation let 

(D. 5) 

and 

(0.6) 



Then equation (D.4) may be written as 

P(nln) = P(nln-1) + [B - A][B - A]+ - AA+ 

The PCn!n) is Hermitian. Let M be a normalizing unitary matrix such 

that [Mc]-l = M+. We then have the unitary transformation 

Using the above unitary transformation in equation (D.7), we get 

Let '! be w a-fil vector, 
i.e., 

" -l i J 

191 

(D. 7) 

(D. 8) 

Premultiplying both sides of equation (D.8) by ~t and postmultiplying 

by ~, we have 

t t + I ~ AP(n!n)~ = ~ M P(n n-1) MW 

+ ~t [M+ (B-A)] [f\1+ (B-A)] + ~ 

(D.9) 
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Now, [~1M+(B-A) and [~1M+A] are row vectors and [M~] is a column vector. 

Let 

and 
ll = M~ , 

then equation (0.9) becomes 

(0.10) 

Using the trace identity of equation (4.6) we obtain' 

t + I tr[~ ~ AP(njn)]= tr[~ ~ P(n n-1)] 

• • + R R - J J (0 .11) 

But 

since W is a unit vector. Therefore equation (0.11) becomes 

tr[P(n!n)] = tr[~ ll+ P(njn-1)] + R+ R - J+ J (0.12) 

From equation (0.12) we note that 

(1) tr[P(nln)] is real and positive unless §Cnln) - Q, in which 

case tr[PCnln)] = 0. 

(2) Both R+ R and J+ J are real quantities ~ 0. 

(3) Properties (1) and (2) above imply that tr[~ ~+PCnln-1)] is 

also real ~ 0. 
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(4) The Gain matrix G(n,n) appears only in the vector R. 

With the above observations we maintain that tr[PCnln)] attains its 

minimum when R+ R vanishes. This requires 

from which we get 

B = A • 

Using the defining equations (0.5) and (0.6) we have 

(0.13) 

_But, 

Postmultiplying both sides of (0.13) by [QA~]+ yields 

[G(n,n)V(n)O(n)]cQA~ A~ Q+ = PCnln-1) 

or 

G(n,n) = P(nln-1) [V(n)O(n)K(nln-1)]-l. (0.14) 

Recalling 

K(njn-1) = QAKQ+ 

= P(nln-1) + K Cnln-1) + K Cnln-1) m n 
, 

our final result is 

G(n,n) = P(nln-1) [V(n)O(n)[P(njn-1) + K (njn-1) + K (nln-1)]]-l m n. (0.15) 



APPENDIX E 

POSITIVE DEFINITENESS OF THE COVARIANCE MATRIX 

Consider the correlation matrix K = [k(x., x.)] where the 
J 1 

k(x., x.)'s are finite. Let {c.} be a set of arbitrary real positive 
J 1 J 

ff . . t Th coe 1c1ents . en 

I: 
j,i 

c. k(x.,x.)c. = 
J J 1 1 

I: 
j,i 

c. E(x. •x.)c. 
J J 1 1 

(E.l) 

Since E(x.x.) is finite it is permissible to interchange the order of 
J 1 

summation and expectation. Thus, equation (E.l) becomes 

Now let 

where 

E c. k(x. ,x. )c. = E[ E 
j ,i J J 1 1 j,i 

• I 

= Ei_! 

x. = X + y. 
J J 

x = mean value of x . , 
J 

y. has zero mean • 
J 

r. 
j 

c. c. X. •X.] 
J 1 J 1 

,7_ 
c. X. ,-! 

J J I 

·Substituting equation (E.3) into equation (E.2) we have 

E c. k(x.,x.)c. = E{j E c. X+ I: c. y. j2} 
. . J J 1 1 J" J J" J J J,l. 

fP.?) "- ... -, 

(E. 3) 

(E.4) 

t 
If {c.} were complex, complex conjugation must be used through-

out the analysis~ 
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-Now, for x f: 0 

- 12} E{l E C.•X > 0 
j J 

(E .5) 

and 

(E.6) 

Therefore the correlation matrix [k(xj,Xi)] is positive definite unless 

{x.} contains no coherent component. Even then, equality in equation 
J 

(E.6) holds only if E c.y. = 0. 
j J J 



APPENDIX F 

CONVERGENCE PROPERTIES OF THE RECURSIVE ALGORITHM 

This Appendix describes the convergence properties of the tap 

gain recursive formulae used in the adaptive implementation of the 

signal processor. Section F.l is concerned with the adaptive filter 

derived in Chapter 4 while Sections F.2 to F.4 are devoted to the 

convergence analyses of the adaptive equalizer derived in Chapter 5. 

F.l The Adaptive Filter 

The gain formula for the adaptive filter is given by equation 

(4 .4 7) 

where 

v 
m n 

Yn,j 

= 

= 

md - m~ 

(u - m* 1) . is the differential signal between the 
n n- J 

the observables and the estimates. 

Equation (4.47) may be expanded to yield 

M 
gn+ 1. J. = g . + (! ~ d. E {m . ·Y • } - a E {md y . } 

• n,J i=l 1 n,1 n,J n,J 

M 
= gn.J· + a ~ di ~ . E{y . Y .} • i=l '11,1 n,1 n,J 

M 
+ a ~ d. E{m* 1 . y .} - a E{md y .} 

i=l 1 n- ,1 n,J ~,J 

196 

(4.47) 

(F.l) 
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For the purpose of anal~zing the stability of the gain function, g ., 
n, J 

the last two tenns in (F.l) may be ignored. For this purpose (F.l) may 

be rewritten, in vector notation, as 

where 

&n+ 1 = [ I - aK. . ] g 
l,J n 

(F.2) 

K .. =the second order moment matrix with entries E{y . y .}, 
l,J n,1 n,J 

that is, the correlations of the differential signal 

between the observables and the estimates, 

di has been chosen to be 1/M and incorporated in the constant a, 

and I is an identity matrix. 

·The system of Equation (F.2) will be stable if a is positive lying in the 

range 

2 
0 < Cl < -).-- (F. 3) 

max 

where ). is the maximum eigenvalue of the matrix K. . (see Section max l,J 

F.2 for a more elaborate treatment). If the gain function is given by 

Equation (4.48): 

(4.48) 

where 

m. = m* - m.' 
J J 

it can be shown that a is negative lying in the range 

-2 0 > Cl > -).-- (F.4) 
max 
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F.2 The Non-recursive Equalizer 

From Section 5.4 the recursive algorithm for the reference 

weight, at i = 0, of the estimation loop is given by equation (5.25) 

repeated below: 

w 1 oCa) n+ , (5.25) 

where 

M 
= -[ E W .(a) K(x . , x .) +oW 0(a) K(n ,x .) ._ M n,1 n-1 n-J n, n n-J 

1--

-K(a, x .) ] 1 
n-J j=O 

Equation (5 .-25) above may be extended to cover the range -M ~ j ~ M. 

Consequently: in vector notatjon; the recm·sive algo!'ithm has the 

following form: 

= ~n (a) - o~n (a) 

where 

P_n = -(K .. ]W (a) - oW(a) K + K , 1J -n -n -a 

(F.5) 

(F.6) 

[K .. ] =second order moment matrix with entries K(x .,x .) 
1J n-1 n-J ' 

K -n 

K 
-a 

j,i 

= a column vector with elements K(nn' xn-j), 

= a column vector with elements K(an, xn-j)) 

= -M, .•• , -1, 0, 1, ... , M. 



From equation (F.S) we ~et 

= -a(K .. ]W (a) - aoW 0(a) K + aK_a . 1J -n n, -n 

or 

(oW_n(a) + aoW 
0

(a) K ]= -a(K .. ] W (a) + aK n, -n 1J -n -a • 

The identity 

ow 
0 

(a) K = [K(n ., n, -n n-1 

holds if 

that is 

[K(n . , X .)] = n-1 n-J 

{ 

nn , i=O 

11n-i = 
0 , . i;l 0. 

r~ 
I 

0 

X • ) ) 
n-J 

ow (a) 
-n 

• • • 0 K ( nn, 

••• 0 K(nn' 

Using identity (F.8) in equation (F.7) we have 

xn+M) 0 

xn) 0 

0 
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(F. 7) 

(F. 8) 

0 l 
I 

0 

0 

[I + a(K(n . , X .)]] oW (a) = -a[K .. ] w (a) + aK (F.9) n-1 n-J -n 1J -n -a 

With respect to equation (F.9) we make the following observations: 

(i) 

(ii) 

The identity matrix I is positive definite. 

The second order moment matrix [K(n . ,x .)] is positive semi
n-1 n-J 

definite. 
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(iii) Properties (i) and (ii) assure the existence of an inverse for 

the sum matrix [I+ a[K(n .,x .)]]. n-1 n-J 

(iv) The last term on the right-hand-side of (F.9) has no influence. 

on the stability of the recursive algorithm. Therefore, for 

stability considerations the last term of (F.9) may be 

neglected to simplify the algebra. 

Observations (i) to (iv) enable us to rewrite equation (F.9) as 

where 

ow (a) 
-n 

-1 . 
= -a[I + a[K(n .,x .)]] [K .. ) W (a) n-1 n-J lJ -n 

= -a[R .. ] W (a) 
l.J -n 

-1 
[R;.;] =[I+ a(K(n ... _ _.,x ... _.;]]. [K~.:l 

... J •• .... .... J .I..J 

Substituting equation (F.lO) into (F.S) we have 

w 
1 

(a) = W (a) + a[R .. ] W (a) = [I + a[R .. ]] W (a) 
-n+ -n lJ -n l.J -n 

The system of equation (F.l2) will be stable if 

II+ a[R .. ]j < 1 
l.J 

(F.lO) 

(F.ll) 

(F.l2) 

Let [Q] be a normalized model matrix. Then the following hold (Pierre, 

1966) 

and 

[ R .. ] = [ Q] T [A] [ Q], 
lJ (F.l3) 
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where [A] is a diagonal matrix, the non-zero elements of which are the 

eigenvalues of the matrix [R .. ]. The Cfu~onical linear orthogonal 
1J 

transformation of equation (F.l3) holds whether or not the eigenvalues 

are distinct. If there are multiple eigenvalues, [A] is a Jordan 

canonical_ form. Using the canonical transformation of equation (F.l3) 

in (F.l2) we obtain 

or 

Writing 

and 

~n+l (a) = [Q]T [I+ a[A]] [Q] \\' (a) 
-n 

[Q] ~n+l (a) = [I + a[A]] [Q] ~n (a) • 

~t,n+l (a) = [Q] ~n+l(a) 

equation (F.l4) becomes 

~t,n+l(a) = [I+ a[A] ~t,n(a) . 

The stability condition then becomes 

I I + a[A] I < 1 

or 

I I + QAj I < 1 • 

By virtue of observations (i) to (iii) above and, 

(v) [K .. ] is positive definite 
1J 

(F.l4) 

(F.lS) 

(F.l6) 
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[R .. ] is positive definite too. Hence, A. > 0. In order that inequality l.J . J 

(F.l6) holds a must be negative lying in the range 

0 >a>~ 
A max 

(F.17a) 

But A <~A.= trace of [R .. ], the bound of (F.l7a) may be tightened max J l.J 

by 

-2 O>a>---
tr[R .. ] 

l.J 

F.3 The Learning Loop 

The quantity E(n x .) has the following expansion: n n-J 

E(n X .) 
n n-J 

= E(x - x .) - ~ W .(x) E(x .x .) n n-J i n,J. n n-1. n-J 

Using the above in equation (5.22), we get 

(F.l7b) 

W 
1

.(x)=W .(x)+S~W .(x)E(xx .)-8E(xx .) (F.l8) n+ ,J n n,J n i n,J. n n n,J n n,J 

In vector notation (F.l8) becomes 

= w (x ) + SK .. w (x ) - 8K
0 

. , -n n l.J -n n - ,J (F.l9) 

where 

K .. = [E(x .x .)] , l.J n-1. n-J 

KO . = E(x x .) - ,J n n-J 



The last term in equation (F.l9) does not depend on W(x ), hence has 
.- n 

no influence on the stability of the recursive equation for ~(xn) and 

may, therefore, be ignored in evaluating the stability condition. We 

rewrite (F .19) as -

= W (x ) + 8 K .. W (x ) -n n lJ -n n 

= (I + 8 K .. ) W (x ) 
lJ -n n 

Using the same procedure as in (F.l3) through (F.lS), we find that 8 

must lie· in the range 

-2 
0>8>x--

or 
max 

-2 O>B>----
tr(K .. j 

lJ 

where A is the maximum eigenvalue of the matrix K ••• max l,J 

F.4 The Recursive Equalizer 

F.4.1. The Constrained Case 

The quantity [E(e a* . ) + E(v e )Sgn(b .)] has the following n n-1 n n n,1 

expansion: 

E(en a* .) + E(v e )Sgn b . n-1 n n n,1 

= E{(v + E b .a* .)a* . }+E{v [ v +E b .a* .]}:Sgn b .. 
n j n,J n-J n-1 n n j n,J n-J · n,1 

= E{v a* .} + E b . E(a* .a* .) 
n n-1 n,J n-J n-1 j 

+[E[v2] + E b . E(v a* .)} Sgn b .. 
n j n,J n n-J n,1 
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Substituting the above in equation (5.46), we get 

b 1 . n+ ,1 
= b . + y E b .E(a* .a* .)+ySgn b . E b .E(v a* .) 

n,1 n,J n-J n-1. n,1 n,J n n-J j j 

Writing the above in vector notation and ignoring the last two terms, 

which do not depend on ~, we have 

where 

~n+l = ~n + yKa* ~n + Y Sgn ~ ~~a* ~n 

Ka* = [E(a* . a* .)) , n-1 n-J 

K = E( - a* .) -va* vn n-J 

We know that Ka* is a positive definite matrix (see Appendix E), but 

we are not sure about the matrix 8 = [Sgn(b)Kta*]. We consider the 
- v 

following cases: 

(1) If B is positive definite, then, using the procedure (F.l3) 

through (F.lS), we find y lies in the range 

-2 
0 > y > -A--

max 

0 > y > -2 

tr[Ka* + B) 

where A is the maximum eigenvalue of the sum matrix [Ka* +B). 
max 

(F.20a) 

(F.20b) 
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(2) If B is negative definite, then the sum matrix [Ka*+B] 

may be positive or negative definite. If [Ka*+B] is positive definite, 

then (F.20) is satisfactory. If, on the other hand, [Ka*+B] is 

negative definite, then y should be positive lying in the range 

or 

2 
O<y<A. 

max 

2 
O<y<-----

tr[Ka* + B] 

We note that the trace operator is linear: 

tr[Ka* + B] = tr[Ka*] + tr[B] 

= I: A_.... + L A •• 
u.·· J OJ 

j j 

(F. 21 a) 

(F.2lb) 

If B is negative definite, all A.b.'s are negative and hence~ A.b.=tr[B] 
J j J 

is also negative. If we let the magnitude of y be upper bounded by 

IYI < tr[K:.+B] , for B positive definite, we may make the simple test 

of comparing the trace of Ka* with that of B and decide whether (F.20b) 

or (F.2lb) is to be used. In this case we only need to change the sign 

of y. 

F.4.2. The Unconstrained Case 

For the unconstrained recursive equalizer the gain formula of 

the recursive section is given by equation (5.51): 

b 1 . = b . + y E{e a* .} n+ ,1 n,1 n n-1 (5.51) 
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In vector notation (5.51) may be written as 

b =[I+ y K .Jb + yE(v a.*.) (F.22) -n+l a. -n n n-1 

-
where. the last term of (F.22) does not depend on ~· It can easily be 

shown that the system of (F.22) will be stable if y is negative lying 

in the range 

or 

-2 0 > y >-
\nax 

-2 "O>y>----

tr[Ka.*] 

where A is the maximum eigenvalue of the matrix Ka.* • max 

(F .23a) 

(F.23b) 
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APPENDIX G 

STABILITY CONDITION FOR THE RECURSIVE EQUALIZER 

In z-transform notation an Nth_order normalized recursive 

equalizer may be expressed as 

1 
= N -i 1 + 1: bi z 

i=l 

The output is then 

or 
N _-i, -* r-" r, + '<" L ;; 

__ ,._ .... 
CL \."'J L ,~; t... U.; ... J '\."') 

i=l ... 

where y(z) is the excitation. The inverse transform of (G.2) is the 

following difference equation: 

or 

* a + 
n 

N 
1: 

i=l 
b . n,1 a* . = y n-1 n 

N 
* an = y - 1: b . 

n i=l n,1 
* a . n-1 

(G.l) 

(G. 3) 

The system of (G.l) will be stable if a* is upper bounded for a unit step 
n 

excitation, i.e., y. = 1 for all j. Using the triangle inequality we 
J 

note that the magnitude of a~ is upper bounded by 

N 
I a*l IYnl I b * I ~ + 1: n,i a . n i=l n-1 (G.4) 

Also. 
N N N 

b * I lb . * I Ibn illa:_il 1: n,i a . < 1: a . = 1: n-1 .... n,1 n-1 i=l i=l i=l , (G.S) 
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where 

(G.6) 

etc. 

N 
Let k = E lb . I lie in the range 0 < k < 1. Then, for a unit step 

n i=l n,1 ' n 
excitation, using (G.5) and (G.6) in (G.4) and expanding, we have 

la*l < 1 + k + k k 1 + k k k 
2 

+ 
n ' n n n- n n-1 n-

Let the maximum value of {k.} be k where 0 < k < 1. Then I an* I is 
J max ' max 

upper bounded by the geometric sum 

1 
c: -=---~--
' 1 - 1r ··max 

+ • • • 

Therefore, the system of (G.l) will be stable subject to the constraint 

N 
k = E lb.!< 1 • 

. 1 1 1= 
(5. 35) 

The inequality constraint of (5.35) is a sufficient but not necessary 

stability condition; the poles of H2(z) will be restricted to lie within 

an ellipse, which is a subset of the unit circle in the z-plane. This 

is sketched in Figure (G.l). 
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y 

UNIT CIRCLE 

X 

ELLIPSE WITH CONSTRAINT 

N 

Figure G.1 Stability Condition (z-plane) 
for Recursive Equalizer 

1: lb. I < 1 
. 1 1 1= 



APPENDIX H 

~10NTE CARLO SIMULATIONS 

The channel model to be simulated is that which is depicted 

in Figure 3.6. To probe the channel we transmit two real signals that 

are the Hilbert transforms of each other. Let the complex (analytic) 

signal be represented by 

N j(w t+6) 
s(t) = E a. f(t - iT )e 0 

. 1 1 s 1= 

(H.l) 

where 

{a.}. 
1 

is a binary M-sequence, 

T is the 'n111 c::.a. ~.O.n"'l~'l~.;n.n ...... ..:~ 
s r-·-- ...,_.1"'_,._ ...... _ .... , ..... ~ 
N is the code length. 

Each symbol ai has an effective duration of T
0 

sec. The total signal 

duration is T = NTs. We simulate the random and the deterministic 

branches of the channel separately. The complex signal, s(t), may be 

decomposed into a real and an imaginary part as follows: 

A 

s(t) = ~(t) + j ~(t) (H. 2) 

A 

where ~(t) is real function and Ht) is the Hilbert transform of ~(t). 

That is, co 

~(t) H[~(t)] 
1 

I 
~(T) dT (H. 3) = =-

'II" t-T 
-co 

Suppose 

~(t) = cos wt • 
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Then 
"" 

" 1 I COS Wl" f; (t) = d-r 
1T t - 1" _.., 

1 r cos[wt-w(t--r)] d-r = 
1T t - 1" 

_.., 

"" "" 
cos wt J co~ w(t--r) d-r + 

sin wt 
J 

sin w(t--r) d-r = 
1T - 1" 1T t - T 

-co _.., 

The first integral is zero since its integrand is odd about -r=t; the 

second integral is 1r if w > 0, which we can asstune since cosine is 

an even function, and we have sinwt as the Hilbert transform of coswt. 

Thus, Hilbert transformation corresponds to a 90° phase shift, i.e., 

" 
l"f+'\ = """' r ... + ~ onO, 
.., \. ... J ""'"'"'"' \. \N"' J v J 

= sinwt • 

Similarly, if 

f;(t) = Re{s (t)} 

N 
= }; a. f(t-iT )cos(w t 

i=l 1 s 0 

= Re{a(t)ej(wot+e)} , 

then 
N 

+ a) 

f;(t) = E a. f(t-iT ) sin(w t + e) , 
i=l 1 s 0 

both of which are real functions. Transmitting the real part of a 

complex signal is equivalent to transmitting half of the signal energy. 
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Thus, to make full utilization of the transmitter efficiency, we transmit 



two real signals so that the total energy is given by 

Et = Ec + E 
5 

00_ 00 

= [ J [f;(t)]
2
dt + J [~(t)] 2 dt] 

-oo -oo 

00 

= I [ i~l a. f(t - iT )] 2dt 
1 s 

-oo 

= J a2
(t)dt 

The per digit energy is given by 

The Random Branch 

0 ~ t·~ T 

. O~t~T 
0 

The memory of the random branch is assumed to be essentially 
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zero compared to the baud length, T
0

• The impulse response of the random 

branch is characterized by 

where 

f3i(t) is 

ljli(t) is 

I is 

- jljli (t) 
I: f3i(t)e 

i€1 

the amplitude of the 

the phase of the i th 

(H.4) 

.th scatterer, 1 

scatterer, and 

a set representing the total number of scatterers. 

As described in Appendix B, B(t) has a Rayleigh density function and 

ljl(t) is uniformly distributed in the primary interval [~~,~]. Let r(t) 

represent the real part of cr(t). Then, equation (H.4) may be written as 



A 

cr(t) = r(t) + j·r(t) 

= E B.(t) cos •. (t) + j E B.(t) sin •
1
.(t). .

1
1 1 .

1
1 

1£ 1£ 

The random branch acting on the transmitted signal produces as output 

a superposition of a myriad of point target echoes. The output of the 

random branch may be written as 

A 
A 

zr(t) = t; (t) . r(t) + t;(t) . r(t) 

N 
= E a. f(t-iT )cos(w t+8)E B. (t) cos •. (t) 

i=l 1 s 0 . J J J 

N 
+ E a. f(t-iT )sin(w t+8)E s.(t) sin •. (t) 

i=l 1 s 0 . J J J 

N 
= E a. f(t-iT )E s. (t) cos(w t + e - •. (t)) , (H.S) 

i=l 1 s . J 0 J 
J 

which is a real signal. 

The Deterministic Branch 

Let the time dispersion be L and the frequency dispersion be 

B, as given by equations (3.23) and (3.24), respectively. The mean 

value of the doppler dispersion shall be taken to be the effective 
-

discrete doppler shift, i.e., fd = f, as given by equation (3.17). Then 

we may represent the impulse response of the deterministic branch by 

where 

L -j[wdt + $i(t)] 
cd(t) = E a(t-iT )e 

. L s 1=-

-2trB < dcpi (t) 
... dt 



We write 

cd(t) = d(t) + j d(t) 

L 
= E a(t-iT )cos[wdt + $.(t)] 

i=-L s 1 

L 
+ j E a(t-iT )sin[wdt + $(t)] 

. L s 1=-

The deterministic branch acting on the transmitted signal produces as 

output a dispersed signal given by 

zd(t) = ~(t) o d(t) + ~(t) o d(t) 

N 
= E ai f(t-iT

5
)cos(w

0
t+e). 

i=l 

L 
o E a(t-jT )cos(wdt+~.(t)) 

j=-L s J 

N 
+ E a. f(t-iTs)sin(w

0
t+e) 

. 1 1 1= 

L 
o E a(t-jT )sin(w t+e) 

. L s o J=-

N L 
E a. f(t-iT

5
) E a(t-jT ) 

. 1 1 . L s 1= J=-
= 

(Ho6) 

The overall channel output is obtained by summing equations (H.S) and 

(H. 6) : 
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z(t) = zd(t) + z- (t) r 

N L 
= r a.. f(t-iT ) r a(t-jT )cos[w t + a - wdt - •j(t)] 

. 1 1 s . L s o 1= J=-

N 
+ r a.. f(t-iT ) I: S. (t) cos[w t +a- ~.(t)] . (H. 7) 

. 1 1 s j J 0 J 1= 

The channel output represented by equation (H.7) is further corrupted 

by an additive noise, so that the received signal is given by 

x(t) = z(t) + n(t) 

N L 
I: a.. f(t-iT

5
) I: a(t-jT )cos(w t + a- wdt- .J.(t)] 

i=l 1 j=-L s . o 
= 

N 
+ I: a.. f(t-iT )I: B.(t) cos[w t + a-~. (t)] 

i=l 1 s j J 0 J 

+ n(t) (H.S) 

The received signal as represented by (H.S) is functionally depicted in 

Figure H.l. For the case of testing the signal processor alone, we let 

w
0

, and hence wd, equal zero, and the signal x(t) becomes a baseband 

signal. 

Simulation Procedures 
.... 

(1) The random channel impulse response, r(n) and r(n), are 

first generated and stored in memory. The amplitudes {B.} are obtained 
1 

from a Gaussian sequence generator and the phase{~.} are obtained from 
1 

a random number generator which has been normalized to 2~. 
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(2) The impulse response of the deterministic branch is set 

to some initial values which are then allowed to vary slowly by modifying 

the magnitudes and phase in accordance with perturbations obtained from 

the Gaussian sequence generator and the normalized (to 2~) random 

number generator, respectively. 

(3) The additive noise is obtained from the Gaussian sequence 

generator. 

(4) The Gaussian sequence generator and the random number 

generator are library routines provided by the McMaster Computer Centre. 

These are called RANGAU and F~~DN, respectively. 

The entire communication system is simulated in subroutine form, with 

a main routine controlling the central command. as shown in Figl!!~ H,2, 

Gross flow-charts for the signal simulator, the adaptive equalizer and 

the error rate computer are given in Figures H.3, H.4 and H.S, respectively.· 
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