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The advances in gas turbine technology in recent years
has focussed attention on problems associated with the attainment of
high work ontput. This led to the consideration of high work output
per blade, and thereby to the consideration of designing the blades
with large turning angles. |

A detailed step by step computational method is presented
for the design of two dimensional blades of total turning angles 140°,
128°-30', and 115° with a range of 1ift coefficients as defined by
Zweifel of .8, 1.0, and 1.2 for each blade. The blade profiles thus
obtained are based on the assumption of flow being irrotational,
compressible, steady and the fluid being invisid. The programme allows
the calculation of the pressure distribution over both.the suction and
pressure surfaces and at any point in the passage. Considerable

attention was given to the magnitude of the pressure gradient on the suction
surface so as %o reduce and where possible eliminate the possibility of separation

The blade's profile, pressure distribution, pressure gradients and
velocity triangles are drawn for each set of blades. The theoretical per-
formance of the blades has been examined over a range of incidence angles

from zero to nine degrees.
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Arabic Symbols Description Units
b Axial Chord ~inch
c Curvature 1/inch
¢ : Lift Coefficient "defined by Zweifel" (See Page 6)
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M Mach Number
m Mass/Volume _me/in3
th Mass Flow Rate Lbm/sec
n Distance along Orthogonal Line inch
o : Orthogonal Length inch
0 Throat Opening inch
p,P Pressure Lbf/in2
r Radius : inch
R Radius of Curvature inch
R Reynolds Number (Based on axial chord length)
R Gas Constant Lbf.ft/Lbm °R
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CHAPTER 1

INTRODUCTION

The problem of increasing the power developed per blade
involves the use of large deflection angle turbine blades. A large
turning angle introduces the problem of flow over a rapid convergence
of the contour of the annulus which has a pronounced effect upon the
design of blade shape and flow passage. The axial velocity at the
inlet section increases as the turning angle increases for symmetrical
blades which cause excessively high local velocities in the flow
passage. Experience has shown that the adverse pressure gradients occur
over the suction surface of all blades regardless of turning angle but
this problem becomes even more severe with Targe turning angle blades.
Present trends show that large turning angle blades can be operated at
high pressure ratios possibly as high as 6:1, but with the high pressure
ratio one obtains regions of high Mach numbers, the opportunity of
shock induced separation and the blade design,taking into account these

further effects,is much more difficult.
This study is an extension of the -potential flow analysis used

in the designfof small turning angle blades. It is understood that
to solve the problem fully the boundary layer development around
the blades needs to be taken into sccount. However, bécause of the
physical size of these blades the boundary'layer is assumed to be
thin and a very good approximation of the passage shape. can be

made by neglecting the boundary layer displacement thickness.
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The present programme allows the engineer to modify the
pressure distribution over the blade surface as to achieve significant
changes in both the magnitude and the fpaction of the chord exposed to
the adverse pressure gradient.

This thesis presents the theoretical design of turbine blades
all of which are basically of the same family with turning angles
140°, 128°-30' and 115° and in which the 1ift coefficients as defined

by Zweifel was varied from .8 to 1.2.



CHAPTER 2

LITERATURE SURVEY

In the beginning, turbines were designed on the assumption of
one-dimensional flow through the blade passages. The development of two-
dimensional flow theories started in the 1920's when axial compressor
blades began to be designed by considering each blade as an isolated airfoil.
Tyler [1] and Howell [2] described the application of airfoil theory to
propellers and fans and the development of theories of two-dimensional flow
through cascades or airfoil lattices.

Turbine blades are normally designed by selecting the spacing by
one or more of the empirical rules which have been evolved in the past, and
then the turbine channels are designed.

Stodola [3],as early as 1891, suggested that the best spacing is
given by g- Cos a, where r is the pressure side radius of curvature of
the blade and a is the blade turning angle. He utilized the fact that the
space or pitch/ axial chord = 0.5 in all his design work. His experimental
results showed that this pitch/axial chord ratio could be increased without
loss in performance.

Zweifel [4] observed that the losses from turbine blades were a
function of tangential force coefficient. The tangential force coefficient
(known also as blade loading coefficient or 1ift coefficient)was defined as
the ratio of the tangential force (Fy) to the theoretical tangential force

that could be achieved without adverse pressure gradient (fy max).



Fig. 2.1 indicates a typical pressure distribution around an isolated blade,
curves P and S corresponding to the pressure (or concave) side and suction

(or convex) side respectively. The pressures are projected parallel to the
blade front such that/ the area enclosed between curves S and P represent

the actual blade loading per unit height. With reference to Fig. 2.1 (c)

which represents the velocities at both inlet and outlet sections, Zweifell 4.

showed that tangential force (Fy) is given by the relation,

)

F, = n‘SCx (Cyz - Cy]

y

The conditions for the ideal load are fulfilled by Po acting over the entire
P surface and Py acting over the entire S surface. Zweifel obtained an

expression for ideal tangential force (Fy max) given by the relation

I -
Fy max = 7P w2 b

F
The ratio of these two forces Fr'%éﬁf is defined as the 1ift coefficient
y

and can be written as

F pSC, (Cyz - Cyy)
1 = y = X :
Lift Cvefficient T =
y '2"“’2 Pb

and using the trignometric relations as described by Zweifel it can be

shown that

o
[}

Wy Cos an

o
]

wz Sin 62

Wy Sin 01



Figure 2.1. Pressure Distribution and velocity
Representation.



.. Lift Coefficient = 2 %— Cos2 oy (tan a, - tan a])

or

G =2 S/b Cos® a, (tan a, - tan ay)

Ainley and Mathieson [5] provided curves for the loss coefficient
against pitch/chord ratio, fluid outlet angle and blade thickness/chord
ratio. The profile loss coefficient in this paper is defined as the loss
in stagnation pressure across the blade row, divided by the difference
between stagnation and static pressures at blade exit section. Their work
concluded that the loss coefficient for blades could also vary as the square
of the fluid inlet angle. The various pitch/chord ratios were calculated
by these authors from the experimental data obtained by a curve fitting
technique for a wide range of inlet and outlet angles.

A review of the literature shows that early designs relied
heavily on the use of experimental two-dimensional cascade results in which
profiles of different shapes such as circular, parabolic (separately or
in combination) or in fact modified NACA or ARC profiles were tested under
a variety of conditions including changes in pitch/chord ratio, stagger
angle and blade thickness. One might call this the phenomenological
development of turbine design. The second method is essentially concerned
with passage design in which an analysis is made of the potential flow
through a lattice of two-dimensional turbine blade shapes.

Stanitz [6] method is useful for the solution of indirect problems

which result in the accurate design of a blade cascade in compressible flow.



It consists of specifying the velocity distribution as a function of distance
along the two channel walls and specifying the difference in stream function
across the blade spacing. This is in effect a decision on the fluid flow
through the blade channel. Finally, Stantiz solves the nonlinear equations
by a relaxation technique, utilizing the boundary conditions far upstream
and downstream of the flow passage.

Stantiz [7] is responsible for the development of another more
rapid but approximate method. It represents the analysis generally for the
compressible fiow through turbomachines of varying annulus area, in which
the meridional streamlines may change their radial position. It is inter-
preted for the two-dimensional compressible design of a turbine blade as
follows: velocities on the blade suction and pressure surfaces are specified
as a function of the axial co-ordinate "x". Using the energy equation and
isentropic relations, the blade profile is fully developed as a first approxi-
mation using only the dependent variable "x".

In the second approximation it is assumed that the flow conditions
vary linearly across the channel in the y-direction. The pitch/chord ratio
is determined from the first approximation and streamlines are drawn. The
mean tangential velocity distribution is again determined and finally the
blade profile is developed by combining both the x and y soiutions.

George R. Costello, Robert L Cummings and John T Sipnette, Jr. [8]
have presented a method for computing blade profiles with prescribed velocity
distributions based on the assumption that the pressure volume relationship
is linear. The method uses the prescribed velocity distribution and compatible
free-stream conditions to determine a mapping function. This tranforms an

incompressible flow about the unit circlie into an exact compressible flow, with
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a linear pressure-volume relationship, about a cascade of blades having
the desired velocity distribution. In this method the relation between the
actual fluid and the fluid with the linear pressure volume relation must be
approximated so that the required velocity distribution and free stream
conditions for the second fluid may be determined.

Another report [9] by the same authors has been presented in which
the magnitude of the velocities in the two fluids are assumed to be proportional.
The constant of proportionality is determined by the continuity equation
using the same upstream and downstream flow angles for the two fluids. It
includes adjustment of the prescribed velocity distribution to satisfy
the restrictions on the mapping function.

A method which apparently offers a solution to both the direct
and indirect problems of compressible flow past 8 cascade of arbitrary airfoils
is presented by Chung-Hua Wu and Curtis A. Brown [10]. In both problems
calculation is first made for the flow along a particular streamline in the
channel formed by two neighbouring blades. (Preferably the mean streamline
which divides the mass flow in the channel into two equal parts.) Here the
close relationship between the shape of the bladecamber 1line and
the mean streamline of the passage and that between the variations in the
channel width and the specific mass flow are employed. The flow is then
extended in the pitch or "Y" direction by the use of Taylor series, where
successive tefms are obtained by the use of the equations of continuity
and momentum.

In irrotational, incompressible flow the method of conformal
transformation may be used to give soiutions to the flow equations Azw,

A 2¢ = 0, where ¢ is the potential function and ¥ is the stream function.

If the compiex potential W= ¢ + i¥ is known in a plane, the flow in the



physical plane can be determined if the transformation from the

given plane to the physical plane is known. This is the general

basis of all conformal transformations. Kraft [11] has also described
his development of the laminar airfoil type turbine blade for

impulse section using the conformal transformation technique. For

a conventional turbine blade, as with a standard aerofoil section there
is a pressure increase on the convex surface and a pressure decrease
on the concave surface. The boundary layer faces the adverse pressure
gradient over the rear part of the chord on the convex surface. For a
small turning angle, Kraft designed a blade shape to produce sub-
stantially constant pressure over the suction surface.

The method of vortex singularities is useful for solving the
indirect problem of incompressible flow through given sections of highly
cambered blades. The potential function describing the flow associated
with a distributed series of sources,sinks and vortices is found and
combined with the‘uniform stream flow to give the flow past the airfoil
shape. An eiegant solution of the cascade problem was developed by
Martensen [12] using vortex singularities. Vortices are distributed along
the blade surface and the method is not limited to low cambers only. He
formulated an integral equation of these sources, sinks and point vortices
which describes the distribution of velocity on the blade surfaces. This
equation was solved using a digital computer. In this method the problem
lies in the determination of sourcessink and vortex distributions.

F. Baumgartner and R. Amsler [13] have presentad a blade design
method which was used to determine the shape of stationary nozzles and

rotor blades for an axial flow type turbine. The main feature of the blade
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design method tonsists of selecting a suitable airfoil and shaping it into
a blade profile such that momentum requirements are satisfied, together
with its predetermined requirements of optimum blade load distribution,
flow rate and blade stress. However, the method is somewhat of a
trial and error method unless one has a strong feeling for the
proper blade proportions.

Horlock [14] describes a method to desfgn a blade shape to
give a specified velocity distribution. He describes the potential
function and a stream function to represent the flow. He then finds the
transformation function to describe the flow around the blade. The
mathematics involved is complicated but the solution gives good results
for the analysis of incompressible flow.

In the past, a free vortex flow pattern was in use for the
design of blade shape. This type of flow requires tﬁe least amount of
kinetic energy for a given flow rate and therefore represents the most
stable flow condition. In a free vortex the tangential velocity components
of the stream particles are inversely proportional to.their radial distance
from the centre line, the axial velocity components being constant across
the whole flow area. This type of flow delivers equal amounts of work
at any radial station. Analysis of turbine performance data based on
the free vortex design approach indicated that it was desirable to adjust
the airfoil deSigns at all radial stations in order to relieve the root
and tip flow conditions.

T. E. Dorman, H. Welna, and R. W. Lindauf [152 have developed a

design technique known as a controlled-vortex design system. The controlled
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vortex design system permits the designer to alter and optimize each
airfoil sertion designed by varying the main stream flow pattern. Controlled
vortex turbines have demonstrated performance superior to equivalent
free vortex turbines. The controlled-vortex design procedure has been
applied to raise the root reaction without raising the tip reaction and without
making significant changes in exit swirl distribution. Several experi-
mental tests have been done with controlled vortex turbine which showed
the efficiency requirements above those of free vortex turbines. It
is now recocnized that low root reaction is the fundamental cause of poor
root performance because it causes localized root losses. Raising the
reaction by means of controlled-vortex techniques can reduce these losses.
| The Titerature survey indicates that methods to design the

blade shape can be classified as follows:

(i) Direct Method

(ii) Indirect Method

Previous study shows that most of the blades are designed by
the direct method. In this method the blade is started from standard
airfoil shape and the performance is observed by conducting various

experiments. The results of these experiments are analyzed and the blade

shape is modified to get the desired output.lNis method is guite tedious,

laborious and not a methodical one. Some of the authors have done work
on the design of blades by the indirect method but encounter problems
while defining the velocity distribution, the transformation function,
the sources, sinks and vortices, etc. (which were very difficult to
define). In other words, the different design proceduresof all previous

studies did not conform to the same "State of the Art". Hence it is
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quite difficulf to design a blade shape and then predict the performance.

The study done in this thesis is an extension'of the free-vortex
design but differs in that the blade'!s curvature distribution for pressure,
suction surfaces and orthogonal lengths are defined properly as described
in Chapter 4, Finally, the pressure distributioh is computed by utilizing
the compressible equations, satisfying the continuity equation and

solving the momentum equations simultaneously at each and every station.



CHAPTER 3

PERFORMANCE AND DESIGN CONSIDERATIONS

3.1 Turbine Losses

The performance of a turbine is evaluated by the losses embodied
within it. The main types of 1o$ses in turbines can be classified under
the following headings:

(1) Skin friction losses.

(2) Profile losses associated with the effect of profile shape.

(3) Secondary losses.

(4) Separation losses.

Skin friction losses are directly due to shear_stresses acting
along the surface in the direction of the component of the fluid motion
which is parallel to the blade. These stresses in turn depend on the
local velocity conditions, and the nature of the surface of the blade
in contact with the fluid. The Zweifel criteria is one method of determin-
ing the optimUm pitch/chord ratio for keeping this loss to a minimum.

It is known that the gas passing through a stationary row of
blades experiences some average loss in stagnation pressure caused by
the blade wakes.v‘If the blades are moving, a relative stagnation pressure
can still be defined in terms of the pressure and relative velocity but
radial streamline movements cause an increase in this relative stagnation
pressure. The pressure loss may then be defined as thé difference between

the ideal frictionless relative stagnation pressure at the exit and the

13
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actual value. In the case of axial flow machinery, it is usual to apply
data from stationary blade tests to analyze rotating blade performance,
the justification being that energy addition relative to the rotating
row is small. Pfofile losses can be related to physical blade properties,
such as blade pitch, thickness and throat opening and to gas incidence.
They are also related more fundamentally to the form of velocity which
controls the nature of the boundary layers which form the blade wake.

The nature of the secondary flow is illustrated in Fig. 3.1.
Because of the turning of the stream, there is a pressure gradient across
the blade passage to balance the centrifugal forces. There isa relatively
high pressure on the lower surface and a low pressure on the upper surface
of the blade. Near the walls the velocities are small so that the required
pressure gradient is reduced, which gives, on the lower curface, a smaller
pressure near the wall than in the middle of the blade passage with.a resulting
flow in the form of circulatory or eddy flow between adjacent blades. This
. is generally called secondary flow. The losses occurring with such
type of flows are termed as secondary losses and are usually about the
same magnitude as the profile losses. This loss is related most closely
to mean acceleration of the gas in passing through the blades.

In the case of turbine blades, if the reaction blades or a
combination of feaction and impu]se'are used, the pressure decreases up
to the point of maximum curvature where velocity is also maximum and then
the pressure starts increasing (i.e., the pressure gradient is positive
in this region of the blade profile). Thus the fluid in the boundary
layer is further retarded and, if the adverse pressure gradient is too

severe, the fluid near the wall reverses its direction and separates from
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Figure 3.1. Representation of Losses.

the surface. The eddies and separation cause considerable loss of useful

energy which is termed as separation loss. This loss is mostly dependent
on the curvature distribution of the suction surface the pressure

surface and the passage width.

3.2 Preliminary Aspects of Design

The questions that face a designer may be summarized broadly
as follows:
(1) wWhat type of turbine, i.e., impulse or reaction turbine
Should be designed or combination of both?
(2) What are the advantages of turbines equipped with blading

of high or Tow deflection with varying degree of reaction?
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(3) uhat is the effect of blade profile form and pitch?

(4) what effects do fluid compressibility_ahd Reynolds numbers
have on the aerodynamic characteristics?

(5) ﬂhat are the effects due to such factors as tip clearance,
shrouding, axial spacing between blade rows, blade length/
chord ratio, blade_thickness from mechanical strength
aspects?

One needs to know the effect of each variable on the performance
of a turbine in order to design the blades to achieve the maximum attainable
efficiencies. Some of these problems can be tackled only by experiment,
unfortunately, the majority remain unsolved such as tip clearance, shroud-
ing, etc. The results,used in the design of blades,are obtained from a
tunne]lwhich refers to a two-dimensional flow through a row of blades and
are not necessar{ly immediately applicable to the vortex form of flow
that actually occurs within a turbine. Nevertheless, the results help a
designer to gain some idea of the merits and demerits of varying types
of blades, and to design blades producing the particular gas flows, and
deflexions thereof, which he requires.

D. G. Ainley [16] obtained the results from a typical test
on ‘an impulse section and on a high reaction section as shown
in Fig. 3.2. The range of incidencevover which both blades will operate
without excessive varfiation in loss is quite larée, but the reaction
blades have the greater working range of incidénce and the lowest loss.
When a large family of turbine blade sections is tested, it is found that
the minimum loss coefficient of a cascade invariably increases as the

reaction-of the blade is decreased (reaction in this sense is a qualitative
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expression, and refers to the acceleration imparted to the gas as it flows
 through the blades and the accompanying drop in the static pressure). He
also showed that the efficiencies of a reaction stage ave likely to be
considerably greater than those of an impulse turbine stage, particu]arly
if the work cutput of the impulse stage, or the gas deflexion in the rotor
blade is very high,

It is the shape of the blade which determines the form of the
flow pasages and the energy transferred from the fluid to the rotor is
dependent chiefly on the nature of the flow through these passages. Then,
clearly, it is important that careful attention be given to the development
of the correct passage shapes.

The flow passages must also provide sufficient annular area to
accommodate the entire flow of fluid. An adequate number of blades must
be provided to ensure well defined flow passages. Yet the use of too many
blades may increase unduly the resistance to flow. Special consideration
must be given to the stresses imposed on the turbine blades by the pressures,
temperatures, dynamic forces and rotational speeds encountered under all
conditions of operation.

The arrangement of the flow passage has a marked effect not only
on the efficiency of the turbine but on the manufacturing cost as well.
The best design is a harmonious compromise between operating efficiency,
size of unit and manufacturing cost. Although there is no reliable and
rigid rule in making such a compromise, a great deal of {information can be
obtained from existing design procedures to assist in the desired aspect. .

There is no rational method for laying out the profiles of such

conventional reaction blades. However, a few observations are of some
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value. The concave side may be nearly of constant radius, while the
convex side is usually formed by faired circles in a shape that provides
a passage which is always converging. It is of-particular importance that
the passage never becomes divergent in order to avoid eddy losses which
accompany a diverging passage. Normally supersonic velocities are avoided
in the flow passages to avoid shock losses, but occasionally it is necessary
to introduce them in order to reduce the overall length of the turbine
and to use them where high rotational speeds are acceptable.

The number of stages should be kept as small as possible because
of weightvconsideration but should not be so small as to affect markedly
the efficiency. Pressure ratios as high as 3:1 and 4:1 are used without
seriously lowering efficiency according to design practices. If the average
velocity leaving the passage does not exceed the sonic velocity by more
than 50%, the convergent passage may be retained with only a slight drop
in efficiency. If it is necessary to exceed these limits, then more

stages must be employed.

3.3 Blade Profile Shape

For any blade, the required blade angles are fixed, the profiie
shapes that will most efficiently operate at these angles must be developed.
As mentioned before. because of the requirements that dictate high turning
angles and Mach number limits for exit and inlet velocities, most blades
are of reaction or combination rather than fhe jmpulse type. Therefore,
the remarks to follow apply more ;pecificalIy to thé reaction type blade.

In addition, high turning angle blades with higher outlet blade angles

require correspondingly higher chord lengths in order to provide a
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sufficiently generous radius of curvature for the channel walls. The
so called radiué of curvature should ve maintained so that the average Mach
~ number over the passage width = does not exceed that occurring at the blade throat.
This is done in order to prevent local diffusion or:advérse pressure gradiént with
losses and possibly separation. The main velocity in the channel should
be constant or steadily increasing in order to avoid the possibility of
diffusion in the passage.
An axiom commonly accepted by the aerodynamist asserts that energy

losses asSociated with fluid flows in a curved passaée are considerably less
when an acceleration is imposed upon the flow than when the flow is accompanied
by diffusion. Any diffusion of the flow through the turbine blade rows is
particularly undesirable and must, at the design stage be avoided as far as po-
ssible.This is because the adverse pressure gradient (arising from the
flow diffusion) coupled with large amounts of fluid deflection (usual in
turbine blade rows), makes boundary layer separation more than merely
possible with the result that large scale losses arise.

The shape of the inner and outer contours of the annulus should
be such that a sﬁooth and gradual decrease of annular area is provided
in order to ensure against breakaway and excessive}boundary layer thickness.
The desired contour shape is obtained by minor adjustments of the curvatures
at various points. The rapid change of curvature of the contour of the
suctjon surface of the blade section reflects in the pressure distribution
in the form of a sudden change of pressure.

It is worth pondering a little upon the effect of space/chord
ratio in the turbine blade rows as this is a factor strongly affecting

the efficiency. Now if the spacing between the blades is made small, the
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fluid then tends to receive the maximum amount of guidance from the
blades, but the friction losses will be very large. On the other hand,
with the same blades spaced well apart, friction losses are small but,
because of poor fluid guidance, the losses resulting from the flow separa-
tion are high.

The basic variab]és in blade ring calculation observed by
Emmert [17] are shown in Fig.3.3. The data apply to both fixed or moving
blades, provided the velocity magnitudes and directions are taken relative
to the blade ring under consideration. The most important quantity required
in the blade ring analysis is the effective kinetic energy at the ring

outlet. Emmert [17] computed the energy from the following relation.

she, = o2(ans, + Ci o2 ahV;)

where,
¢§ - Expansion-energy coefficient
Ci - Incidence coefficient
¢5 - Kinetic energy coefficient
AhV1 - Kinetic energy at inlet

AhS2 Isentropic enthalpy drop

Ahe2 Effective kinetic energy at outlet

The primary loss resulting from turbulence and wall friction within the
blade passage is reflected by the expansion energy coefficient. It is

observed that tne effective energy obtained from a given amount of inlet
kinetic energy is supplied by pressure drop. Kinetic energy coefficient

is normally assumed to be equal to the expansion energy coefficient.
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H. D. Emmert [17] obtained the graph of Expansion Energy Coefficient

vs Design Deflebtion Angle as shown in Fig. 3.4. It can be concluded
from this figure that the optimum blade pitch/chord ratio has to be used.
When the fn]et velocity vector forms a definite incidence angle with f
reference to the blade leading edge, an additional loss occurs which is
evaluated by the Incidence coefficient. This coefficient is a function

of the blade nose design.
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Figure 3.5. Variation of Incidence Coefficient
with Incidence Angle (from Emmert [17]).
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H. D. Emmert [17] studied the effect of incidence coefficient
on the incidence angle as shown in Fig. 3.5 It can be concluded from the
Fig. 3.5 that a round nose blade has the greater inciderice coefficient than
the sharp nose b]ade. Hence the blade designed should have a round nose

to have less losses for equal incidence angles.
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Reynolds Number x 107

Figure 3.6, Variation of Profile Loss with
Reynolds Number (from Emmert [17]).

Figure 3.6 indicates the variation of profile loss coefficient
with respect to Reynolds number of the gas flow as obtained by
D. G. Ainley [16]. At a fixed incidence the losses in the turbine increase
rapidly as the Reynolds number is reduced below about 1.2 x 105. It shows
the proportional rate of increase of profile loss with reduced Reynolds

number and when the Reynolds number is less than about 1.2 x 105 the profile
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loss is approximately proportional to Re"5. At higher values of Reynolds

number, the losses vary at a much lower rate. Hence while designing the

blade the variation of losses with Reynolds number should be kept in mind.

3.4 Trailing Edge Thickness and Form

While designing a blade and passage we are faced with the problem of the
deviation of the air from the actual blade angles specially at the exit section.
To solve this deviation problem the flow pattern has to be analysed, but
still further, the corrections such as overturning 6f the blade for this
deviation,in order to be sure to get the work done,should be applied. However,
overturning reduces the physical throat area, and if the throat Mach numbers
are already close to one, a reduction in weight flow will be involved unless
the blade height is increased. This blade height change means a lower

axial velocity after the blade and thus affects the velocity diagram.
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Figure 3.7. Variation of Blade Loss
with Mach Number (from Ainley [16]).
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._As the outlet Mach number is increased the minimum profile

loss coefficﬁent varies only slightly until an outlet Mach number .7 to .8
is approached as studied by D. G. Ainley [16] and as shown in Fig. 3.7.
At this point a small local shock wave appearson the convex suvrface of the
blade 1inside the blade passage, causing a thickening of the boundary layers
and a slight consequent increase in loss. As the Mach number increases
further, the shock wawemoves toward the trailing gdge, with a corresponding
decrease of the length of the blade surface exposed to the thickened boundary
layer. |

In determining the trailing edge thickness of turbine blades
some compromise has to be made between the mechanical strength, reliability
and ease of manufacture on one hand, and efficiency on the other, Maximum
efficiency calls for as thin a trailing edge as possible, but too thin a
trailing edge 1$ particulariy undesirable in gas turbine work when high
loéal gas temperatures may easily burn away the very thin trailing edge.
Trailing edge thicknesses have to be consistent with the particular manu-
facturing process io be used and vary from approximately 1 to 10% of throat
opening, and leading edge thickness varies from 2 to 12% of pitch which is
the common practice in industry [18]. The radius of trailing edges
chosen in designing these blades is .011" and this is almost the minimum
possible. With a smaller radius it becomes very difficuit to hold for
machining and even casting becomes very difficult. Moreover, if the trail-
ing edge is too thin the blade trailing edge bends due to gas loads
thus giving a‘wrong outlet angle.

Finite trailing edge thickness may be expected to give rise to

pressure losses in much the same manner as a sudden enlargement of a pipe
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through which fluid is flowing. The work capacity is closely related to the
gas outlet angle and is usually correlated with the throat opening (0).
The following approximate relationship between blade geometry and gas outlet

angle - is often used as a guidance rule.

lap| ¥ Cos™! 3 (3.1)

where ay = gas flow outlet angle.

This relation is stated to be fairly accurate for most turbine blades

when the Mach number at the blade exit is near unity. However, at low

Mach numbers and large values of outlet angles this equation (3.1) represents
considerable error. The actual gas outlet angle is conveniently recorded

as a deviation ang]e (s) from geometrical outlet angle (Cos']O/S). Using

relation (3.1) and referring to Fig. 3.8

-1
5= [Cos! @ - |ay]

tan Gzl i
tan a3 = ——— (3.2)
€
(1-§)
and )
: 2 2
[ / (S - C') - 0
tan 02 = O (3.3)
Combining equations (3.2) and (3.3), the outlet angle cdn be
written

O - £92- (Y-
€'y 0
n-£3

tan a, =
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The deviation angle 8, defined by equation (3.1), then becomes

o

L [0-e79)2 - (92

-1 0
' (1-§) g

T - tan

(3.4)

A graph is plotted representing the effect of trailing edge thickness

on outlet deviation. It can be seen from this graph that for minimum
deviation (§), the ratio (g) should be minimum and the losses encountered
go oq reducing as the outlet angle is increased. The relationship given
by equation {3.4) is represented in the Fig. 3.9. Deviations are usually
greater than these values because surface boundary layer presents a
blockage to the flow which increases the effective trailing edge thi;kness
of the blading.

Trailing edge thickness losses are deduced in a similar manner to the

foregoing analysis.
- (©? Ref. 19)

where yp = Profile loss coefficient.

Early work has shown that loss increment due to trailing thickness is

as presented in Fig. 3.10 by Hawthorne [19]. In this study the loss coeffici-
ent for the blades which have been designed has been kept at a minimum.

It has been found in general, that there is nothing to be gairied

in a practical sense by decreasing the blade trailing edge thickness
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below 1.3% of the blade chord as concluded by J. H. Horlock [20].

While designing the trailing edge portion of the blade the
problem of controlling the radius of curvature is more severe.

J. H. Horlock [207 concluded in his study that the straight backed
blades show less efficiency than the blades with slight curvature.

This factor can be quite clearly understood from the work presented
by‘D. G. Ainley and G. C. R. Mathieson [21]. They presented a graph
indicating the variation of profile loss coefficient vefsus the
pitch/radius of éurvature ratio for various outlét Mach numbers as
shown in Fig. 3.11. It is found that the effect of curvature is more
predominant in the flows which have outlet Mach numbers more than

0.6 or 0.7.1t can be concluded that for outlet Mach numbers near unity
or slightly higher. that the pitch/radius of curvature ratio should lie
between 0 and .2 which indirectly means that the curvatures should be
quite small approaching zero. The present study shows that the
curvature should be slowly increasing in the direction from the trailing
edge towards the leading edge.

Another effect of the curvature variation at or near the
trailing edge concerns the actual gas path along the blade surface. -
This has to be}cérefu]ly controlled in order to avoid further flow
deviations from the surface in question. It might be expected, for
instance, that the influence of the trailing edge curvature on the
gas outlet angle is also strongly dependent on the outiet Mach number.
Flow deviations based on experimental data are shown in Fig. 3.12 as

suggested by Ainley and Mathieson [21] for low subsonic and sonic exit
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velocities. At other relative Mach numbers some interpolation is
necessary. dased on the above work the blade should have a Pitch/Radius

of curvature ratio between 0 and .2 to have minimum possible deviations.

3.5 Mechanical Design Aspects

The mechanical desigh considerations also have an important
effect on the.performance. The aerodynamic forces may excite blade
vibration and may also be responsible for some damping eifect. The
stresses produced due to blade vibrations cause fatigue failure at the
root of the blade. A knowledge of the frequencies of vibration is

required to properly analyze the root fittings. SunderRawtani [22]
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has investigated the effect of the aspect ratio, the amodnt
of pretwist, the speed of rotation, the disc radius and the setting angle
on the natural frequencies and on the mode shapes. The above analysis
helps in determining the relation of the blade thi;kne;s at the root
to the tip thickness. |

Tne upper limit of blade rotational speed is limited by root
stresses. The determination of the blade stresses is a critical factor
regardless of the type of blades being designed. Gas turbines blading
is particularly important from the stress stand-point because of the

high températures encountered.

Fe. = Centrifugal force

Fy = Axial force

F, = Bending force

Figure 3.13. Representation of Blade Forces.
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The severes* stresses are imposed by centrifugal force, fluid pressure
differences and vibration. Provision has to be made in the blade design
to withstand all these stresses encountered in the operation as shown
in Fig. 3.13. |

Turbine blades are also subjected to resonant vibrations
induced by irwregularities in the fluid flow path resulting from such
obstructions as struts,.the non-symmetry of the stationary passages,
disturbances due to the wake of earlier blade rows.
The frequency of vibration is seen to depend on the stiffness and mass

of the blade. References 23], [24] and [25] refer to recent work

on the vibration analysis of curved blades.

3.6 Materials for Turbine Blades

For a given preséure ratio the higher the operating tempera-
ture of a gas'tufbine the greater the power developed. Specially for
the airbourne field, weight consideration is very important. In
many applications it is important to develop the most:power for the
least amount of hardware thus, it is desirable to be able to operate
the gas turbines at high temperatures. This creates an important
problem from the stand-point of suitable materials. In all metals
the strength decreases and the creep rate increases with an increase
of temperature.

In addition to the fundamental requirements of strength at

“high temperatures and a low creep rate, the material should have several
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other important qualities such as adequate fatique strength, strong
resistance to corrosion, forgeability, weldability, and machinability.
Usually the materials used for turbine blades are S-816,

$-590, Vitailium; the cemented hardcarbides and ceramics. Carbides of
tungesten, zirconium, molybdenum, tantalum and titanium are available
with cobalt as the matrix. A particularly interesting cemented carbide
is that of titanium with cobalt. The most promising material is a
combination of ceramics and metals such as bonding alumina to steel for
turbine blades or silicon carbide with iron and sintered aluminum oxide

£261.



CHAPTER 4

THEORETICAL ANALYSIS AND BLADE PROFILE CONMSTRUCTION

4.1 Design Procedure

The main requirement of the blade design was to obtain high
pressure ratio and high output. The swirl was neglected and a low axial

velocity was also assumed. The'resulting design would therefore have a high
pressure ratio, high enthalpy drop and high deflection of the flow.

The classical method of design for turbines is the free vortex
design. Two assumptions are involved in thisdesign,

(i) The flow is assumed to be in radial equilibrium before

and after all blade rows . S0 that
w2

r r

d

(ii) The tangential velocity distribution is required to be
free vortex in which the product of tangential velocity

and radius is constant’that is(r VT)= constant.

The main question to be answered is in what manner does the
blade shape and setting vary along its height also when the velocltles
are high enough to introduce compressibility effects, the change of
density from root to tip will vary as the flow passes through the blades.

There will also be axial and radial velocites to be taken into account.

38
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Whitehead [27] assumed that between the blade rows of a turbine the

radial velocities and accelerations would quickly vanish and a condition

of radial equilibrium would be established. He showed that the axial
velocities would then be invariant with radius. Many turbines have

been designed by this method and the blades in these turbines are

termed free vortex blades. A disadvantage of the free vortex design is
that a high degree of twist in the rotating blades is needed to accommodate
the large changes in inlet and outlet angles. This leads to the problem
of precise instrumentation and manufacturing difficu]ties which adds to

the cost of the blade.

In other blade design methods, radial displacements of the
streamlines have been eliminated or reduced by making the product of
local density and axial velocity invariant with the radius. The resulting
constant specific mass flow design,intreduces radial variations of
circulation and therefore are of use especially when the turbine pressure
drop 1is sufficiently large.

Another method for the design of blades is based on more exact
theory. This tends to lead to numerical solutions in the design of blade
passage. The assumption of axially symmetric flow has accordingly been
made and is the basis for the theoretical work which forms a useful
improvement over the radial equilibrium theory. The theoretical calculations
are laborious, hoWever, and it has been found easier and more direct
to describe the profile shape over the required range of turning angles
and then designing the channel by varying the curvature at points on the

profile to obtain the most favourable pressure distribution around the blade.
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4.2 Method Jf Investigation in the Present Study

This method is an extension of the last method as described in Section
4.1 but differs in that the blades are designed for a specific lift
coefficient and therefore blade spacing. For comparison purposes the
inlet and outl=t angles are kept constant for each 1ift coefficient.
The axial chord is also a constant in the design.

Probably the most important consideration in the design of the
blade is the resultant pressure distribution around the blade. These
are described later in this chapter. It should be noted that the pressure

distribution is effected by every parameter of the blade.

4.3 Power Estimation from Velocity Triangles

In order to estimate the power available from the blade, one
first calculates the tangential force induced by the action of the
gas jet on the blade. The function of the blade is to change the
direction of motion of the jet in as smooth a manner as possible.
In changing its direction the jet experiences a change of momentum in
the original direction of motion. Now Newton's Second Law states that
when a body experiences a change of momentum, the rate of change of
momentum is proportional to the force which produces the change. Since
the blades cause a change in the momentum of the jet, they experience
a force which is proportional to the rate of change of momentum.

Since the functioning of the turbine depends entirely upon the

behaviour of the gas during its period of contact with the blades, it is
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necessary to determine the variations in the inlet and outlet velocity
of the gas. The velocity conditions can best be illustrated graphically
in the form of a velocity diagram, giving a clear picture of the changes

which take place.

(Il) Reaction velocity triangles

Figure 4.1. Blade Row and Velocity Triangles.



42

Figure 4.1 is a typical schematic diagram of a turbine blade

row on which the inlet and outlet velocity triangles have been drawn.

The notation is as follows.

velocity of gas relative to blades at inlet.
absolute velocity of gas at blade inlet.
velocity of gas relative to blades at outlet.
absolute velocity of gas at blade outlet.

peripheral  velocity of blades.

It is the common practice to represent both the inlet and

outlet triangles in a single diagram as shown in Fig. 4.1.(i1).

It is observed that when there is a reaction effect, the velocity at

the outlet is increased.

If there is a reaction effect the total thrust on the blades

is derived from two sources,

(i)

(i)

The impulse due to the change in momentum of the
gas stream, produced by the deflexion caused by the
curvature of the moving blades.

The reaction generated by the change in momentum of

“the gas stream due to contraction in the moving blade

passage.
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AB = Total Thrust
AC = Axial Thrust
BC = Tangential Thrust

Figure 4.2 Thrust Resolution.

Figure 4.2 represents the various thrusts coming into the

picture on the blade surface. The total thrust can be resolved into

two components. One parallel to the axis of the drum which is known

as axial thrust and the other tangential thrust. The latter one

provides the output power while the axial thurst has to be taken
up by a suitable bearing. Referring to the velocity triangle diagram
if the weight flow of the gas discharged over the blade per sec
is w Lb then

Tangential thrust = g-(BE' + BF )
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or the horsepower obtained from the blade is given by

, W U
torsepower = = (BE + BF ) gpy

4.4 Profile Construction

The following procedure is necessary to produce blade profiles for

compressible fiow which have a favourable pressure gradient over a large

percentage of the total blade area.

4.4.1 Selection of Pitch/Chord Ratio

Zweifel [4] as described in Chapter 2 suggested that

CL =2 ES)-COS2 ay (tan ay - tan a2) (4.1)

where CL is the 1ift coefficient.

According to Zweifel a reasonable degree of symmetry must be
observed for equation (4.1) to apply. In a study such as this it is
obviously easy to have both the inlet and outiet angles the same and
this simp]iffes the design. However, this equality is not a rigid
requirement and blades have been designed using Zweifel's technique
with differences in angles of the order of 15 - 20 degrees. In the work
to be presented the 1ift coefficients had been chosen in the range of

.8 to 1.2. Using these values in the equation, the corresponding values
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Trailing edge radius = zero.

Figure 4.3. Zweifel's Blade Nomenclature.

of g-are cajculated. Hence for some suitable value of Chord (b), the

pitch (S) can be calculated.

4.4.2. Blade Layout

Figure 4.4 shows the mechanical design features on the drafting
of a turbine blade.
(a) On a suitable scale (1" = 10" is usually satisfactory)
draw two lines parallel to each other at a distance
b + T.E.R. apart, representing the leading and trailing

lines of the cascade.
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(c)
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One then marks out the pitch distance (S) on the trail-
ing edge line and draws the trailing edge circles

for the two blades and ensures that the trailing edge
line is tangent to these circles.

The outlet throat (0) as shown in Figure 4.4 can be

calculated from the trignometric relation

%—= Cos ay

The next step is to draw an arc of radius O + trailing
edge radius with the centre located at the same point
as the trailing edge circle. (Note that either circle
can be chosen depending on the direction of motion of the

the blade, here it is chosen to the rignt)

‘One then draws a tangent to the other trailing edge circle,

at an angle g,¢ = Cos™! (%-- aCosg) where aCos g depends

on the exit plane Mach number (MZ)' The plot of exit

Mach number versus ACosB is given in Figure 4.5, It

should be recalled that the velocity diagram provides
information regarding the exit plane Mach number so that
once this is estimated the ACosB can be obtained. A
curve,effectively a straight line as a first approximation,
starting from the trailing edge is drawn to the throat
position. Blades having a straight line portion from the

trailing edge to the throat position are termed flat-back
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blades. In general a modification is usually presented to

provide for a small degree of curvature to this section.

In fact the small curvature in the vicinity of the throat

is necessary to complete the computer programme.

One now determines the angle BS] at.which the suction surface
intersects the leading edge line (as determined by a]).

If is to be noted that the nose radius provides the extra included
angle which has to be taken into consideration. Usually

the angle BS] varies from ay + 20° to ay + 157, 1.8.,

ay + 1 angle + nose angle/ 2.0.

0 to 5° and

where i angle

Nose angle = 20° (Reaction Blades)

2
angle made by the suction surface at the point B as shown

After finding BS] one then finds Bg,_ - The angle Bg is the
2

in Figure 4.4, Usually the angle Bg varies from ay = 10°
' 2

to a, - 5°. After knowing 8. ‘and B ; one calculates
2 S] S,

|Sin lel + |Sin Bg.|, also once the exit throat is drawn
2

‘the value of x/b at the throat (point A) is known. A

rectangle of area |Sin lel + |Sin BSZI is then erected
with the base value of x/b at the point B  and %;-
on the Y-axis as shown in Figure 4.6,

On the rectangle erected, superimpose a histogram of equal
area, with a peak value existing at some intermediate x/b

value. This redefinition of the area described is, so far,



= T

P pppep——

P —— e P A ———

o1 x

—_————— Histogram

— 777" Area of Rectangle

Figure 4.6 Plot of b/Rs.Versus-x/b

1.0

50



(3)

(k)

51

entirely optional but experience has shown that %%

maximum should take place within the range of 0.2 < g-< .55.
The main point to be noted here is that one is specifying
the curvature over the suction surface and while the
kistogram is discontinuous for ease of analysis, the
curvature cannot be.

Extend the radius of curvature line from point B as shown
in Fig. 4.4 and mark off the centre at a distancef%i taken
from the histogram. One then draws arcs of circles (with
common tangents at junctions) of radii gi- values

calculated from Fig. 4.6 which exist between the appropriate
values of x/ b as shown on the histogram. After drawing

all the arcs from the exit throat to the leading edge, the
suction profile is redrawn using a spline Titting technique.
Once the suction surface has been constructed one turnshis
attention to the development of the pressure surface. Since
the blade passage area ratio has to converge from its
entrance area as shown 1in Figure 4.7 to the throat location,
steps are taken to ensure that this convergence is
monotonically decreasing. Since both inlet and throat areas
are known,a curve similar to that shown in Figure 4.7 can

be drawn to provide the ratio of channel width/throat width
as a function of Rg/Rg throat ° Once these points have
been established, a smooth curve fitted through the points

establishes the pressure surface. The radius of curvature
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at each x/b on the pressure surface now have to be

calculated and care must be taken to ensure that all radii

of curvatures have the same sign.

Now one can draw in the two leading edge circles of

appropriate radii. A comment has already been made in

Chapter 3 regarding current practice with respect to leading

and trailing edge radii.

One then combines the pressure surface profile with the

suction surface profile to provide a complete blade outline

and one examines the resulting blade profile for general features
including the accuracy of inlet and outlet angles.

The next step is to draw in the equipotential lines across

the channel at various stations and assuming a linear

variation of either radius of curvature of suction surface (or of
the curvature of the suction surface ),one calculates

the surface pressure distribution on the suction and pressure

surfaces of the blade, utilizing the equipotential's length

at various stations, by simultaneously satisfying the

continuity equation and the momentum equations. It

is normal procedure to examine the pressure distribution

around the blade for regions of high adverse pressure

gradients. If these are found to exist then changes can

be made, starting with the histogram, to-alleviate such

conditions.
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(o) Finally, another factor which could influence the final
profile concerns the thickness of the blade, which should
be reasonable in order to withstand the various loads.

One would normally check the blade proportions, blade spacing

et;. for strength consideration and also ease of manufacture.

4.5 Pressure Distribution Analysis by the Method of Orthogonals

This is a method of analyzing flow through a passage which
is formed by two successive blades. An orthogonal is defined to be
any curve that intersects every streamline at 90 degrees between the
flow boundaries exactly once. . Fiqure 4.8 shows the three-dimensional
orthogonal surface. The streamlines and their normals are drawn to
establish a grid for the flow solution. The first stép in this method
is to obtain a two-dimensional solution on an assumed mean stream surface
between the blades. In cases where the distance between blades is great
and there is a large change in flow direction within the passage, the
normals vary considerably in length and direction. Therefore, it becomes
difficult to cbtain a direct solution of the flow passage without
resorting to intermediate steps. The use of normals makes it possible
to obtain a direct solution by the use of a set of arbitrary curves or
streamlines from one blade surface to the other blade surface. The
orthogonal remains fixed regardless of the number of streamlines used.

By using this technique, it is possible to obtain a computer solution
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ORTHOGONAL LENGTH

PRESSURE
SURFACE

SUCTION
SURFACE

Midchannel streamline —

-

Direction of Axis

ORTHOGONAL SURFACE

Figure 4.8 Three-Dimensional Orthogonal Surface
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to the two-dimensional problem which would be a numerical solution to
the general equation which allows the calculation of flow properties along
both the streamlines and orthogonals even with significant changes in
both area ratio and flow direction.
Assumptions:

(i) The fluid is considered inviscid but compressible.

(ii) Flow is steady.

(i1i) Flow has no radial component.

The continuity equation for the flow through any
orthogonal can be written as

o

m = fo o Vdn | (4.2)

while the momentum equation has the familiar form

where 6 is the deflection angle,

and %g-is by definition the curvature at a point on the streah-
line. Here o is the total Tlength of the orthogonal line between the
two boundaries. (i.e., the pressure surface and the suction surface).
While V is the velocity along the streamline.

Equations (4.2) and (4.3) can be numerically integrated along

one of the orthogonals by assuming a velocity at either surface and then
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calculating - the pressure, density and velocity at the neighbouring
point taking the assumed velocity for the initial calculations and using
the known value of radius of curvature at the point in guestion. The
procedure can be continued until the opposite sUrfacé is reached always
moving alona the orthogonal. Once the velocities and densities at
each and every point along the orthogonal are known, the total mass flow
rate can be calculated. This mass flow rate is then compared with the
design mass flow rate which of course is based on a unit height of the
blade. If a difference exists between these mass flow rates, the
assumed velocity is corrected to finally obtain the correct mass flow rate.

From the same set of equations the velocities and pressures
can be obtained provided that the curvatures of the streamlines at each
and every point is known. It is obvious that a major point in the
analysis remains the establishment of the radii of curvatures throughout
the flow field. As a preliminary estimation if is usually assumed that
either the curveture or radius of curvature varies linearly along the
orthogonal from the suction surface to the pressure surface.

A computer program which has been developed to perform the
above operations with the necessary assumptions is given in Appendix

D and is further developed in the remainder of this chapter.

4,6 The Construction of the Orthogonals

Later in this section the method of finding the pressure

distribution is described. The length and position of the orthogonal is
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one of the input data required for the evaluation of the pressure
distribution. |
An orthogonal surface is perpendicular to all the stream-
lines which include the suction and the pressure surfaces of the blade.
Very careful'judgement and experience is necessary in the construction of the
orthogonal lines and a sample of this construction is shown in Fig. 4.9 which
shows a blade passage and a typical orthogonal.
The suction surface of the blade is drawn using a series of
arcs of circles as defined by a histogram which in turn depends on the
blade turning angle. Thus all the centres of curvatures are known
of the suction surface. The orthogonal lines are not straight lines ingeneral,
To draw the orthogonal lines between the suction and pressure
surfaces, consider a point B on the suction surface, join BD, where
D is the centre of curvature of an infinitesimal length of arc near the
point B. A point C is chosen on the pressure surface and a:normal is
drawn tothe blade surface at the point in question. Produce it to
intersect DB at E, such that BE = CE. Then E lies on the mean stream-
line. A smooth curve is drawn which has to be perpendicular to both
surfaces as shown in Figure 4.9. [n a similar fashion other points on the
suction surface can be considered and the above procedure is repeated |

to construct orthogonal lines.
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4.7 Analytic Solution of Momentum Equations

Momentum equations in the n, S co-ordinates system are

given as
2
L ol .
1dp _, dV
- 3.35. =V (4.5)

In the soluticn of these equations further assumptions are made as
follows:

(i) The flow is isentropic.

(i1) Either the curvature of the streamlines varies linearly
along the orthogonal from the suction to the pressure
surface or alternatively the radius of curvature varies
linearly from the suction to the pressure surface.

(i) The mid-passage line is defined as a streamline and
is referred to in this thesis as the midstream.

Corresponding to the alternative conditions in item (ii) above,

there exist: two solutions which are given below.

From equation 4.5 at a point on a streamline

799, -vdy | (4.5a)
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Substituting the value of %ﬂﬁfrom equation 4.5a into 4.4 one obtains

the relation

vdv=_vz
an Ly
or
v _ v
dn~ "R
A TP (4.6)

or using the definition of curvature this equation can be written as

= cdn (4.7)

Since the curvature is assumed to vary linearly along the orthogona]

one can write

n

Where Cp and CS are curvatures at the pressure and suction surfaces
respectively, N, is the length of the orthogonal line between the two
surfaces, and n is the distance along the orthogonal measured from the
blade suction surface. |

Differentiating equation (4.8) one obtains

dn
dec = 0+ (€ - Ce) &8
P S o
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and substituting the value of dn into equation (4.7) one arrives at

the relation

or o c2

(4.9)

which defines the velocity at any point as a function of curvature.

The velocity at midstream is obtained as follows.

+C
S
Cmid) = ELZ_

2
) n, [(Cp+ CS) 4
. Z(Cp - CST 4 -
V(Mid) = ¢©
2
therefore n (C +Cq)
0 2 S
R
v
= e
V(Mid)

which defines the velocity at any streamline interms of V

(Mid)*
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Eliminating C from the above equation one obtains the final result in

the form

n, _ F e PG
- ﬂtp—:—c-s-)-[[cs + (Cp = CS) ;:)':] = —2—1'—]
\l
V(1nid)

= e

which can be recast as follows

no Cs(g = M) + 5 ¢, - 7 (G, - C) ()] (4.10)
.‘T_V__._ = @ ¢]
(11id)

Thus the velocity at any point is known in terms of midstream channel
velocity. The V(Mid) not only has to satisfy equation (4.10) but also
the equation of continuity simultaneously. For the particular case
when C_ = CS which may occur near the blade trailing edge , the blade

P
equation (4.1G)reduces to the form

1 n
V "0(2',,-_0“)05
= e
U(Mid) (4.10a)

If on the other hand, variation of the radius of curvature

is assumed linear from the suction to the pressure surface then

R= Betl'R = R} L
S p Sno
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dR = 0 +(Rp - Rg) g-g- (4.11)

Substitutina the value of dn from equation (4.11) into (4.6) d6ne can obtain

the following expression

dv -
T-- 2 e (4.12)

Integrating (4.12) one finds

n
log V = - p—2p Tog R (4.13)
p S

The radius of curvature at the midstream is given by

RS + R
Riwie) = — 25
n Re + R
. _ 0 S p

Dividing equation (4.13) by equation (4.14) it can be seen that

R - RS
R. + i I
n S 2
log ! = g x log [
Viid) R = Rs Rg + (Rp -Rg)-L
]
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when RS # Rpp the above equation reduces to

C. + (C.-C) [+
v _ s p’ Ng
=[2{ } ] (4.15)
V(Mid) Co * Cs |

4.8 Development of the Programme

The theoretical derivation of the relations between midchannel
streamline velocity and velo;ities at other streamlines across the same
orthogonal surféce are used in the computer programme developed in Red:jol
The first part of the programme deals with the calculation of the design
mass flow rate, calculation of relative stagnation temperature,
relative stagnation pressure and iterated mass flow rate. The second
part deals with calculations of static temperatures and pressures for
zero degrees angle of attack (or incidence), The mass flow rate/unit

height of the blade is given by

m =0 » VA 1 (4.8.1)

where
S is the pitch in inches

P is xhe density of the gas
Va is the axial velocity
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Density is given by the perfect gas law in the form

P1 X 144.0 8.5 5
°1=—R97]__ -8-2)
where
P] is the static pressure
Rg is the gas constant
and Il is the static temperature of the gas.
The static pressure is given by the isentropic relation
2
= Y-
R = Por/(Toy/ ) (4.8.3)

where
PO] is stagnation pressure at the inlet
TO] is stagnation temperature

and T is the static temperature at the inlet, given by the

1
relation,
"
T = Tpi = geiys
1770 " 297, (4.8.4)

where

V] is the resultant velocity at the inlet defined by the expression



67

The relative stagnation temperature at inlet is obtained from the

known total temperature and the blade speed in the following form

2
i

= (Toy = 2573 XA TR (4.8.5)

2
-

01re1

where

w] is the relative velocity at inlet.

Relative stagnation pressure at the inlet is obtained by the isentropic

relation
v/y -1
. Y
P =P (Tfﬁ—rel) (4.8.6)
01 01 *To o

To initiate the iteration process, a value of the midchannel
streamline velocity is assumed. The orthogonal line is tnen divided
into any number of equal parts the present program deals with eight
subdivisions and each correspond to a channel between two streamlines.
With the known value of suction and pressure surfaces curvatures and the

length of the orthogonal (gauging), using equations 4.10, (4.10a) and (4.15)
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the velociiies at 9 points along each orthogonal are obtained. Static
 temperature based on the absolute velocity <an be obtained from the
relative stagnation temperature by using the energy equation. The
static pressure is obtained by using the isentropic relation

(see equation (4.8.3)).

also the density at each streamline is calculated by using the equation

(4.8.1).

If Z(I) =p (1) x W(I), where Z(I) is the mass flow rate/unit area.

~ Since Z(1), 2(2), ==~c=ceua-- are known at all the 9 points, along the
orthogonal line, then the total mass flow through the channel is given

by the followiny [28].

m = {.03489(Z(1)+2(9)) + .20769(Z(2)+2(8)) - .03273(Z(3)+ (1))

+.37023 (2(4)+2(6)) - .16014(z(5))) * Hyoe

The assumed velocity of the midstream V(Mid) channel is
iterated to obtain a mass flow rate equal to the initially calculated
mass flow rate at the inlet section within the desired accuracy. For the
programme at hand the deviation was programmed to be of the'order of
0.01%. Once the stream tube mass.f]ow rate has been established then

the average velocity can be calculated using either of the two expressions
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which were arrived at on the assumption of a linear variation of either

the curvature or radius of curvature. (See equations (4.10, 4.10a, and 4.15)).
Finally, the Mach number at each and every station is cal-

culated based on the velocity as given above and the speed of sound

based on the static temperature at the point in question. Once the

correct value of midstream velocity is obtained the iteration stops

and the values of velocities, pressures and Mach numbers are printed at

9 points along the orthogonal. The output of the computer programme

was used to obtain the velocity triangle at the outlet section and to

plot a graph of pressure gradient (g%) versus arc length (s)

where
gB=Pi - Piv
$ . % " % 4
. _ th
ere Pi = Pressure at i point
while s; = Arc Tength from leading edge to it point.

If the input mass flow is greater than the choking mass flow, the programme
obtains the value of the  choking mass flow and prints out this

information.

4.9 Loss Distribution Along the Passage

It will be observed that the present programme does not take
into account any static pressure loss across the blade passage so that the

flow is always isentropic. Once the preliminary blade design has been
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obtained then additional work is required to survey the boundary layer
flow over the blades in order to determine the pressure losses across

the stage.



CHAPTER 5

RESULTS AND DISCUSSION

Figures (1, 2, and 3) show histograms, (i.e. history of
curvature of the suction surface) which are plots of ll;g versus g
for three different total turning angles (115°, 128°- 30', 140°) each
with 1ift coefficients of .8, 1.0 and 1.2. As the total turning angle
increases the area of rectangle formed between %—-and g-increases
and the same effect is observed by increasing theslift coefficient,

keeping the turning angle constant. The area of the rectangle is

given by
A = |Singe | + Sin|B¢ |
3 S,
where BS] = o + A a
and Be _ a Ao
15° = aay 220°
(These are arbitrary 1imits placed on the design)
< < °
-]0° - A(lz "5

It should be noted that the gelection of thé histogram is
entirely optional and that if one selects pvoorly, then losses
~ may increase while the work output and efficiency decrease. If a
histogram selected which has an area equivalent to the area

represented by .the
71
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basic rectangle (as described in Chapter 4), such that the peak value

of the diagram 1ies near the leading edge then the result will be a
sudden drop of pressure within a very short axial chord length. Moreover
the peak velocity point will also be very near the leading edge.

Because of this the design will also feature a very large region of
adverse pressure gradient and thereby might result in a severe loss in
efficiency due to separation.

On the other hand, if the histogram selected is such that the
peak of the diagram lies near the trailing edge then the pressure drop
will be smooth but near the trailing edge the adverse pressure gradient
will be quite severe, and the possibility of separation becomes
more pronounced.

The histogram selected with an eguivalent area should be such
that the curvature variation is not abrupt and is in small steps. It
should be observed that the peak velocity point is very near to the value of
F=7 - Figures 1, 2 and 3 show that an attempt has been made to
keep the %;- distribution reasonably symmetrical with each turning angle
and that while the number of steps are finite, one is in fact approxi-
mating a continuous distribution of curvature from the leading to the
trailing edge.

Figures 4(a, b, and ¢) show the profile shapes
obtained as a result of the procedure shown in Chapter 4. It can be
seen that the pitch (S) goes on increasing as the 1ift coefficient

increases. The pitch (S) is given by the relationship
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CL = 2 S—COSZ oy (tan o4y - tan az)

Moreover, k2eping the 1ift coefficient constant as the total turning angle
increases the pitch (S) also increases for symmetrical blades. Figures

5 and 6 show further theoretical profiles obtained for increased turning
angles. 'If we examine Figures 4(a), 5(a) and 6(a).in which the 1ift
coefficient is the same, it can be seen that as the total turning

angle increases the peak value of curvature also increases for symmetrical
blades. It also can be seen that the throat position with respect to

the blade moves forward as one increases the turning angle with the 1ift
coefficient held constant.

As the total turning angle increases, the area of inlet section
increases while the outlet throat area decreases keeping the 1ift
coefficient constant and the same effect is observed by varying the
1ift coefficient and keeping the total turning angle constant. It is
to be noted that as the outlet angle increases the throat area reduces
quite considerably, moreover, the inlet section area continues to increase
making the distribution of curvature very difficult. The blade profile
thickness is purely dependent on the curvature distribution given. The
éna]ysis will show regions of high velocity (greater than M = 1.0) on
some portion of the blade surface and significant pressure changes both
positive and negative. The length of the blade profile and length of
the trailing edge portion are directly proportional to the total turning

angle, the 1ift coefficient and the blade outlet angle.
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If the curvature distribution varies widely from point to
point, the profile obtained will likely be a discontinuous one; Good
design should ensure that the radii of curvatures of the pressure as well
as of the suction surface all have the same sign otherwise the flow

passage cannot be of the converging type. Present analysis provides

blade profiles see Figures4(a), (b) and (c), 5(a), (b) and (C) and 6(a), (b) and
which have very smooth variations in curvature on both surfaces.

It will also be observed that the curvatures given along the
trailing edge portion of the pressure surfaceare very small indeed.

In the final analysis it can be seen that the main area of blade design
involves the suction surface from the throat location to the leading
edge while the pressure surface is completely defined in the programme.
As one increases the 1ift coefficient and/or the turning angle, the
length of the suction surface under analysis becomes shorter. Great
cére must be taken in establishing theorthogonal 1lines, particularly
when dealing with high turning angles especially so if it envolves high
1ift coefficients,

Figures 7, 8 and 9 show plots of pressure distribution around
turbine blades as a function of the turning angle and 1ift coefficient.
In all the pressure distribution curves the point of minimum pressure
lies between .2 ° g-f .55 which as mentioned depends on the histogram
selected. The area énclosed by the suction and pressure surfaces goes
on increasing as the turning angle increases keeping the 1ift coefficient

constant and the same is true if one holds the turning angle constant

and increases the 1ift coefficient. On the suction surface the pressure
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drops very quickly over the first half of the blade chord and then

rises gently over the last half of the section. On the pressure surface
the pressure coefficient remains relatively constant over 70% of the
chord and is negative over the remaining 30%.

Since one of the boundary conditions dictate the exit plane
conditions, i.e., atmospheric pressure, then the pressure at the inlet
increases with both turning angle and 1ift coefficient. The main
point of the design is to keep the region of adverse pressure gradient
as small as possible consistent with having a value as low as possible.

It can be concluded that the theoretical losses associated
with these blades are small. The power output per blade goes on
increasing as the total turning angle and the 1ift coefficient are
increased. For instance, the increase in power per blade in the case
of 128°-30', CL = .8 is approximately 10% higher than the power output
for a blade with a turning angle of 115° and the same 1ift coefficient.

Figures 10, 11 and 12 show plots of the pressure gradient

(gg& versus profile length. It can be seen that there is a drastic

rate of decrease of pressure near the inlet section to the point of
minimum pressure. The slope of these curves goes on increasing for

a turning angle and increasing the 1ift coefficient. The slope of the
curve is very small once the point of minimum pressure is passed showing
that the adverse pressure gradient is almost negligible. Figure 10
shows that the point of minimum pressure appears at a lower value

of profile length (s) as the 1ift coefficient increases. The same can

be said for an increase in the turning angle for symmetrical blades.
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Finally, let us observe the effect of turning angle and
1ift coefficient on the velocity triangles. Fiqures 13, 14 and 15
show the velocity triangles at both the inlet and outlet sections.

The total change in tangential velocities continue to increase as the

1ift coefficient increases for a particular turning angle. Secondly,

the axial velocity at the outlet section continues to increase as the
outlet angle decreases. Moreover, the axial velocity at the outlet section
goes on increasing as the 1ift coefficient increases for a constant

turning angle blade. The rate of change of momentum centinues to

increase with 1ift coefficient constant and if one holds the 1ift
coefficient constant then the same is true for increase in the total
turning angle.

In practice the angle of attack can not be exactly zero
degrees. So while designing these blades any angle of attack from zero
to five degrees has been taken into account. Finally let us observe
the theoretical performance of these blades at other than zero degrees
angles of attack. Figures 16 (a), (b) and (c), 17 (a), (b), and (c)
and 18 (a), (b), and (c) show the pressure distribution for incidence
angles of 3° and 9°. The pressure at points on the suction surface
near the leading edge rises and then decreases causing the increase
in magnitude of, and the region of, adverse pressure gradient. The
pressure rises on the entire pressure surface by a very small amount.
There is a net loss in power developed which can be observed by noting
the net area under the curves of the pressure and the suction surface

of the .9° angle of attack.
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Figure 19 shows the plot of pressure distribution along
an orthogoﬁa] for a blade having a total turning angle of 115°
and a 1ift coefficient of .8. This curve clearly indicates that the
pressure rises very quickly up to the first three or four streamlines
position and then the rate of increase of pressure is much more

gradual over the remainder of the orthogonal length.



'CHAPTER 6
CONCLUSIONS

This study represents a set of nine blades designed for
three different total turning angles (i40°, 128?-30‘, 115°) each with
1ift coefficients as defined bv 7weifel of .8, 1.0, and 1.2. The angle
of incidence of the flow was varied in a. consistent mantier fnom zero to nine

degrees for each blade in order to observe the affect of such incidence

changes on the blade performance.

The results of the present study indicate that the power
developed increases with an increase of the total turning angle while
keeping the 1ift coefficient constant. The same is true when the total
turning angle is kept constant and the 1ift coefficient is increased
from .8 to 1.2. It was observed that the adverse pressure gradient
and the losses associated could be reduced considerably by developing
an improved profile. This was achieved by suitably defining the
curvature of the pressure surface, the curvature of the suction surface
and the orthogonal length to minimize the adverse pressure gradient.
The blades were designed without twist which will add to the ease of
manufacture particularly for cascade festing.

This analysis allows the conclusion that the blade efficiency

can be increased,

78
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(a) by using 1ift coefficients greater than .8.
(b) by increasing the toal turning angle.
(c) by using the respective profile developed as shown
in Figures 4, 5, 6,((a), (b) and (c)) for the correspond-

ing turning angles and 1ift coefficients.

The use of high turning angle blades will allow an overall reduction in

the number of bladés and therefore reduce both the weight and the cost

of a turbine of specified power.
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BLADE PROFILE
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ANGL.E=1IS

LER=022

TER= Ol
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Figure 4(b) Blade Profile of Turning Angle 115° and Lift Coefficient 1.0.
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Figure 4(c) Blade Profile of Turning Angle 115° and Lift Coefficient 1.2,
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Figure 5(a). Blade Profile of Turning Angle

128°-30' and Lift Coefficient .8.
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Figure 5(c). Blade Profile of Turning Angle 128°-30' ang Lift Coefficient 1.2,

6



‘o AXIAL CHORD

T10

T 20

- 30

1 40

- S50

60

- 70

" 80

[ 90

BLADE PROFILE
G-8
TOTAL TURNING

ANGLE=140

2 -4 o -6

'l b
T

-8

o
v

1O

LER=025

T.ER=0I25
PITCH=1-0"

I-2 -4

v

PITCH

Figure 6(a). Blade Profile of Turning Angle 140° and Lift Coefficient .8.
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Figure 6(c). Blade Profile of Turning Angle 140° and Lift Coefficient 1.2.
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 Figure 7 Pressure Distributions around turbine blades of turning angle 1159,
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Figure 13. Velocity Triangles of Blade Turning
. Angle 115°,
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Figure 15 Velocity Triangles of Blade Turning
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Figure 16(b) Pressure distributions around turbine blade of turning angle 1150,

as a function of incidence angle for constant 1ift coefficient.
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APPENDIX A

CURVATURE.DISTRIBUTION AS A FUNCTION OF BLADE ANGLES

X, yva_re the co-ordinate axis. |
Let R, be the radius of curvature at any point (x, y).

The area enclosed between the profile curvature (from A to B) and x-axis
is given by o

'Am-é -é-dx

>

o 23/2
c o [+ (dy/dx)]
as &'.'LF‘;‘/%H

Area = d yjdx - o dx R (A1)
"’-{'cn‘(dy/dx)’?" . R

M4



As

Putting dy/dx = tan 6 .°. dz,yldx2 = Sec2

Equation " (A.1) reduces to the following form

B B(s)
Area = ! Cos:6 do = |Sin o]
A A(e)

A (o) = BS1 and B(e) =-352

B
Area = I%— dx = [Sin Bg | + |Sin 8¢ |
Al 2

e de

115



APPENDIX B

DATA PERTINENT TO BLADES

Total Turning | Blade Inlet Blade Outlet Lift Coefficient Pitch Axial Chord
Angle (T.A) _Angle-(a]) Angle (az) (CL) (s) ~ (b)
degrees degrees degrees inches inches
115 50 65 .8 .671 1
115 50 65 1.0 .839 1
115 50 65 1.2 1.0 1
128-30' 64 64-30' .8 .520 1
128-30" 64 64-30' 1.0 .650 1
128-30' 64 64-30' 1.2 .780 1
140 65 75 .8 1.000 1
140 65 75 1.0 1.27 1
140 65 75 1.2 1.52 1

9Lt



APPENDIX C
SAMPLE CALCULATIONS |

For turning angle = 115°, Lift Coefficient = .8

Let a = 50°
az = §5°

As CL = 2 §-C052u2 (tan‘a] - tan az)

Putting values of CL. a1, @y in equation C.1 one obtains

S
1 = 671

Let b=1"

g.= Cos a, = .422"
0 = .422 x .671 = .284"

B G] + ]5°

$
= 50 + 15° = 65°

B. = a, - 10°
So 2

= 65° - 10° = 55°

|Sin ss1l + |Sin sszl = 1.7

17

c.1



APPENDIX D

THE COMPUTER PROGRAM FOR PRESSURE DISTRIBUTION

This program determines the pressure distribution along an
orthogonal line with the given values of gauging and radii of curvature
at pressure and suction surfaces. Any number of sections can be
fed along the blade surface and the values of pressure are obtained
at nine points along each orthogonal and at every section. The

program also gives the values of velocities and Mach numbers at ail

these points.
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APPENDIX D.1

LIST OF SYMBOLS USED

AMACH ' Mach Number

AMAS Design Mass Flow. Through the Channel.

AP Static Pressure,

AR Density.

AT Static Temperature.

AV Resultant Velocity.

ACC Allowable Difference between Design
and Calculated Mass Flow.

COR Correction for Iteration.

cp Curvature of Pressure Surface.

CS Curvature of Suction Surface.

D], Dz, D3, D4 Constants Containing gamma.

DELG Distance between Two Adjacent Streamlines.

DELP Pressure Loss through the Passage.

DIF Difference between Two Assumed
Velocities.

G : Gravitational Constant.

GAMMA Ratio of Specific Heats.

GASC , Gas Constant. _

GAUGE | Distance between Suction and Pressure
Surfaces along an Orthogonal.

GUESS Assumed value of Mid-channel Velocity

4 at the beginning of Iteration.
GESS Guess x Design Mass Flow/Calculated
: Mass Flow.
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JX

P00
POW

RATIO
RELTOP
RELTOT
RETOPI
RETOPO

RO
RPR
RT
RVTI
RVTO
SPACE
TMAS

TOO
VAX

VCOR
W(1-9)

WCR

120

An Input Index for the Choice of
Type of Solution Needed.

Total Inlet PreSSure

n(Cs (E-—)+ ¢,z (C,Cs) & )2
Design Mass Fiow/Calculated Mass Flow.
Relative Total Pressure.

Relative Total Temperature.

Relative Total Pressure at Entry.
Relative Total Pressure at Exit.
Density.

Static Pressure.

Static Temperature.

Tangential Velocity at Inlet.
Tangential Velocity at Exit.

Spacing

Calculated Mass Flow Rate in the
Channel.

Total Inlet Temperature.
Blade Speed

Inlet Axial Velocity.
Correction for Iteration.

Velocity of Fluid at Streamlines, along
the Orthogonal Line.

Velocity of Sound.
Density x Velocity.



APPENDIX D.2

FLOW CHART

Read Overall INFUT DATA

 J

Calculate Inlet Conditions

+ 4

Calculate Mass flow through
one channel/unit height

Y

Set Ratio = 1

}

[Calculate Counditions Relative

To Rotor

{

Calculate Qutlet Conditions
And Efficiency

P

)

Read Input Data Of
One Orthogonal

¥

Set corrcction to high
value and guess V-~
streaix

A

Option . e
2=TX = 1 , Lincar \ ar1atzon

/OTCurvatLire

121 , Y

Linear Variatio:._,
Of Radius Cf
Curvature

frw-




1

‘Ca."culate Pressures, Velocities
Mach No.'s along Orthogonal

122

1‘

Calculate Pressﬁres,
Velocities & Mach No.'s
Along Orthogongl

N

YES

Calculate M.aés Flow
Through Channel

Check
With
Correct Mass

ACCURACY

YES

Set New Value of
Guess Equal To Old
Valve x Ratio

Find Ratio

PRINT
RESULTS

Check for

A

CALL EXIT

Flow — Of Calculated
EQUAL % And Correct Mass
Flows And Set

Correclion Equal

To The Difference




HVW?2 o
PUM(S)

123

SETINDF,

PENICF o

1.6

10

14

15
16

17

6400 FND NF RFCORD _

PROGRAM TST (INPUTsNUTPUT s TAPES=TNPUT s TAPF4=0UTPUT)
TOTAL TURNING ANGLE= 115 DEGREESs LIFT COEFFICIENT= .8
DTMENSTON W{0)4RPR(D) 92 () s AMACH(O) sDRPR(O)
READ(G514) UsVAXsRVTI

PFARN(E41R) PNOSFPNNGNFLP 4 TNN

READ(Bs1A) GASCoGaRAMMASSPACE 5 X
RFAN(S417) ACT

PEAN(5410)  GAGF

FORMAT(F1041)

FORVMAT(5F8,42)

FORMAT(4F8,3)

FORMAT(4FBaty12)

FORVATI(F7.6)

PATM=14,AG

N1=2 ¢ ORGAMMAXGASCOHG

N3=GAMMA=],0

D4=GAMMA+] O

N2=)AMMA /D3

AV (VAXE#DP+PVT T ##2) %%, 5
AT=TNN=(AV*%2)%N3 /N1

ARP=DPCNA/(TON/ATY*¥ND
AR=144H JO*AP /{GASCHAT)
AMAS=ARRVAX#SPACF /12,0

WRITF (hs24) AMAS

RATTIO=1,0
RELTOT=TON= (2 0#RVTI*U~{Ux%2))#N3/D]
RFTOPT =POOX(RFILTOT/TOO)*%0?
RFTNAPO=RFTNRT=NFP

NO 248 J=1409

REAN(B43610) P4 SeOAUGF

rnn:aﬁ.ﬂi-

GUFSS=VAXH(OAVGE/OAGE)
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hR vVenpR=cNp
AFSS=hRlIFas
CUFIS=AFECAPATIO
w(s)=nliFac
&2 IF({IW(B)I®*%2)1%N2/NT) LTL(RFLTCTY) GO TO =1
GUFSS=GUFS5/240
W(6)=)UESS
GO TO 52
&1 COMNT INUF
nO23% I1=149
c=1
AFLA= (=140 ) ¥GAUCF /R0
TF(JX.FNel) 60 TN 56
TF{JXeFNGg2) GO TO K7 .
RA - POV=CAURER (CSE(RGN/RO=NM G/GAUGF )+ g 120 ¥CP =~ (8# (CP=CS Y% (NFLS

1/7GAUGFY%#%2 4,7

6o W(T) =W(B)*FXP(POW)
60 TO A0
&7 1F{CB-CS) RRyKROyER _ »
=a WIT)=WIE)%(2 0% (CP+(CS—CP)*NF[A/GAUGE )/ (CP4CS) )% (AAURTCS

1#CP/(CP=CS))

GO TO 60

XS] POW=GAUGF#*( o 5=DFLG/GAUGF ) #CS
GO TO 49

A0 RELTNAP=RFTNOPT

RT=RFILTOT=(W(T)**¥2)1%N3/N]
WeR= (N1 /042 RELTOT ) ** .5
AMACH(TY=zW({ T)/WwrR
RPRATI=RELTAP/{PFLTOT/RTY*#ND
NRPR(T)Y=RPR(TI/PATM
RO=144 JO#RPR(TY/ (GASCH#RT)

218 Z(Ty)y=ROXW(T)
TMAS =(oN2400%(7 (1147 (0))4+420TACK(Z(2)+7(R))1=402972%(7(2V+7 (7)) +

1e270223%(Z(N)4+7 (R) V=g 1ACTAXZ (RYY#CAUGF/12,7

COP =ARS(AMAS<TMAS)
RATIN =AMAS/TMAS
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TFICNR=V(CNR) A£596596A

AR VCOR=10,0
NTF=GUFSS-GFSS
Q0 RTMAS=TMAS

GFES=GLFSS
AUESS=AFSS+NTF/10,0
W(5)=)UFSS
an TFI((WIR)*##2)%#N3/D1) LT (RFLTOT)) GO TO 86K
GUFSS =GUFSG/2,0 ’
W(5)=GUFSS
GO TH R9
24 COMT TNUF
NN281  T1=1,40
c=1
NEL)=(C=-10)%GANGF/ N
TF{JUXeFNT) GO TO 46
IF(JUXeFNe2) GO TO 47
HA PONZCAUGE# (CS# (2,070, 0=NFLG/GAUGF Y4+ 128#CP - 8¥ {CP=CSY*(NFL G
1/GAUGE ) #%2,0)
B0 W(T) =W(R)*EXP(PAW)
an T 200
47 IF(CP=CS) 2R142071,5281
7o W(T)=W(=)*(7.0*(rn+(f%-cp)*nan/mAuar)/(rp+rsa)**(nﬁucr*ks
1%#CP/(CP=-CS)Y)
G0 TO 200
201 POW=RAUGF®#( ¢ 8=NFLG/GALIGFY®CS
GO TO 8N
200 RF| TAP=RFTNDT
PT=PFL.TOT— (W (T)y#x2)%Nn2/N]
WCER=(N1/n4*RELTOT)**.5
AMACH(TYy=W(T)/WER
PPR(T)=RFLTAP/(PELTOT/RT)#%ND
PRPRIT)=RPR(T)/PATM
RO=144 40%RPRIT)/(GASC*RT)
261 7(1)y=RNxw(T)

TMAS =(,Nannck (701147 (O V4420720 % (7 (7)) +7 (1) =402 (7 () +7 (7)) +



265

QA

a7

28

65

67
A1

S
245

24

27

50
240

20

AN
L?24721MNN
3430

«00020

o560

2,00

546000
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1e27228 (7 (1) +72 ()Y ) =a 1 AT/ X7 {S))XCAUGF /1?7 o0

CAP =ARS{AMAS=TMAS)

[F(COR=VCNR) RBsBE 96

VCOR=COR

GO TO 90 .
TF(ARS(RTMAS-TMAS) o LF.ACC) GO TO 97
a0 TN k6

CWRITF(6928)TMAS

nO 25 T=1+9 ‘
WRITF (Ae20) T4RPR(T)$AMACHIT)sW (1) sNDRPR(T)

GO TO 245

IF{COR-ACC) é196194g
VCOR=COR
WRITF(6427)TMAS
WRTITE (Ae30)

NO 26 T=14°

WRTITFE (As20) TePPR{T)$AMACHIT)YsW(T)sNPPR{T)

COMT TNUE

FORPMAT {111 540X s TTHAUTOUT DATA/40X 81 1Hemmmm e = m /7 *

TFLOW RATF =%#4F10,72)

FOPMAT (1H09RX9*CALCULATFD MASS FLOW RATE =%sF10,3)
FORMAT (THN sBX s *#CHNACK ING MASS FLOW RATE =#4F1047)
EAPMAT (THN 4T3 40X eFT1N,24RXsXsF 1N R al4XsFTNgR3AX 510,70

FARMAT(3F1C 40

FORMAT (1HNs% 1 RPR(T) AMACH(T)
PRPR(T)%*)
STnp
FND
K400 FND NF PFCORD
2604 N2 NA2 ]
28,00 .hon R1A N
29,20 1440 ehATIN 1
2440 580
2.0 620

DESTGM MASS

W)




holh
7434
Ae 00
LN
24 RA
1,00

o

7800
2480
7RO
740
1.60

TebD

2 1O0D
e420
LY
e290
«290

« 7873

o271

cnoTNT

N162,

127



	Malhotra_Ramesh_K_1971_03_master0001
	Malhotra_Ramesh_K_1971_03_master0002
	Malhotra_Ramesh_K_1971_03_master0003
	Malhotra_Ramesh_K_1971_03_master0004
	Malhotra_Ramesh_K_1971_03_master0005
	Malhotra_Ramesh_K_1971_03_master0006
	Malhotra_Ramesh_K_1971_03_master0007
	Malhotra_Ramesh_K_1971_03_master0008
	Malhotra_Ramesh_K_1971_03_master0009
	Malhotra_Ramesh_K_1971_03_master0010
	Malhotra_Ramesh_K_1971_03_master0011
	Malhotra_Ramesh_K_1971_03_master0012
	Malhotra_Ramesh_K_1971_03_master0013
	Malhotra_Ramesh_K_1971_03_master0014
	Malhotra_Ramesh_K_1971_03_master0015
	Malhotra_Ramesh_K_1971_03_master0016
	Malhotra_Ramesh_K_1971_03_master0017
	Malhotra_Ramesh_K_1971_03_master0018
	Malhotra_Ramesh_K_1971_03_master0019
	Malhotra_Ramesh_K_1971_03_master0020
	Malhotra_Ramesh_K_1971_03_master0021
	Malhotra_Ramesh_K_1971_03_master0022
	Malhotra_Ramesh_K_1971_03_master0023
	Malhotra_Ramesh_K_1971_03_master0024
	Malhotra_Ramesh_K_1971_03_master0025
	Malhotra_Ramesh_K_1971_03_master0026
	Malhotra_Ramesh_K_1971_03_master0027
	Malhotra_Ramesh_K_1971_03_master0028
	Malhotra_Ramesh_K_1971_03_master0029
	Malhotra_Ramesh_K_1971_03_master0030
	Malhotra_Ramesh_K_1971_03_master0031
	Malhotra_Ramesh_K_1971_03_master0032
	Malhotra_Ramesh_K_1971_03_master0033
	Malhotra_Ramesh_K_1971_03_master0034
	Malhotra_Ramesh_K_1971_03_master0035
	Malhotra_Ramesh_K_1971_03_master0036
	Malhotra_Ramesh_K_1971_03_master0037
	Malhotra_Ramesh_K_1971_03_master0038
	Malhotra_Ramesh_K_1971_03_master0039
	Malhotra_Ramesh_K_1971_03_master0040
	Malhotra_Ramesh_K_1971_03_master0041
	Malhotra_Ramesh_K_1971_03_master0042
	Malhotra_Ramesh_K_1971_03_master0043
	Malhotra_Ramesh_K_1971_03_master0044
	Malhotra_Ramesh_K_1971_03_master0045
	Malhotra_Ramesh_K_1971_03_master0046
	Malhotra_Ramesh_K_1971_03_master0047
	Malhotra_Ramesh_K_1971_03_master0048
	Malhotra_Ramesh_K_1971_03_master0049
	Malhotra_Ramesh_K_1971_03_master0050
	Malhotra_Ramesh_K_1971_03_master0051
	Malhotra_Ramesh_K_1971_03_master0052
	Malhotra_Ramesh_K_1971_03_master0053
	Malhotra_Ramesh_K_1971_03_master0054
	Malhotra_Ramesh_K_1971_03_master0055
	Malhotra_Ramesh_K_1971_03_master0056
	Malhotra_Ramesh_K_1971_03_master0057
	Malhotra_Ramesh_K_1971_03_master0058
	Malhotra_Ramesh_K_1971_03_master0059
	Malhotra_Ramesh_K_1971_03_master0060
	Malhotra_Ramesh_K_1971_03_master0061
	Malhotra_Ramesh_K_1971_03_master0062
	Malhotra_Ramesh_K_1971_03_master0063
	Malhotra_Ramesh_K_1971_03_master0064
	Malhotra_Ramesh_K_1971_03_master0065
	Malhotra_Ramesh_K_1971_03_master0066
	Malhotra_Ramesh_K_1971_03_master0067
	Malhotra_Ramesh_K_1971_03_master0068
	Malhotra_Ramesh_K_1971_03_master0069
	Malhotra_Ramesh_K_1971_03_master0070
	Malhotra_Ramesh_K_1971_03_master0071
	Malhotra_Ramesh_K_1971_03_master0072
	Malhotra_Ramesh_K_1971_03_master0073
	Malhotra_Ramesh_K_1971_03_master0074
	Malhotra_Ramesh_K_1971_03_master0075
	Malhotra_Ramesh_K_1971_03_master0076
	Malhotra_Ramesh_K_1971_03_master0077
	Malhotra_Ramesh_K_1971_03_master0078
	Malhotra_Ramesh_K_1971_03_master0079
	Malhotra_Ramesh_K_1971_03_master0080
	Malhotra_Ramesh_K_1971_03_master0081
	Malhotra_Ramesh_K_1971_03_master0082
	Malhotra_Ramesh_K_1971_03_master0083
	Malhotra_Ramesh_K_1971_03_master0084
	Malhotra_Ramesh_K_1971_03_master0085
	Malhotra_Ramesh_K_1971_03_master0086
	Malhotra_Ramesh_K_1971_03_master0087
	Malhotra_Ramesh_K_1971_03_master0088
	Malhotra_Ramesh_K_1971_03_master0089
	Malhotra_Ramesh_K_1971_03_master0090
	Malhotra_Ramesh_K_1971_03_master0091
	Malhotra_Ramesh_K_1971_03_master0092
	Malhotra_Ramesh_K_1971_03_master0093
	Malhotra_Ramesh_K_1971_03_master0094
	Malhotra_Ramesh_K_1971_03_master0095
	Malhotra_Ramesh_K_1971_03_master0096
	Malhotra_Ramesh_K_1971_03_master0097
	Malhotra_Ramesh_K_1971_03_master0098
	Malhotra_Ramesh_K_1971_03_master0099
	Malhotra_Ramesh_K_1971_03_master0100
	Malhotra_Ramesh_K_1971_03_master0101
	Malhotra_Ramesh_K_1971_03_master0102
	Malhotra_Ramesh_K_1971_03_master0103
	Malhotra_Ramesh_K_1971_03_master0104
	Malhotra_Ramesh_K_1971_03_master0105
	Malhotra_Ramesh_K_1971_03_master0106
	Malhotra_Ramesh_K_1971_03_master0107
	Malhotra_Ramesh_K_1971_03_master0108
	Malhotra_Ramesh_K_1971_03_master0109
	Malhotra_Ramesh_K_1971_03_master0110
	Malhotra_Ramesh_K_1971_03_master0111
	Malhotra_Ramesh_K_1971_03_master0112
	Malhotra_Ramesh_K_1971_03_master0113
	Malhotra_Ramesh_K_1971_03_master0114
	Malhotra_Ramesh_K_1971_03_master0115
	Malhotra_Ramesh_K_1971_03_master0116
	Malhotra_Ramesh_K_1971_03_master0117
	Malhotra_Ramesh_K_1971_03_master0118
	Malhotra_Ramesh_K_1971_03_master0119
	Malhotra_Ramesh_K_1971_03_master0120
	Malhotra_Ramesh_K_1971_03_master0121
	Malhotra_Ramesh_K_1971_03_master0122
	Malhotra_Ramesh_K_1971_03_master0123
	Malhotra_Ramesh_K_1971_03_master0124
	Malhotra_Ramesh_K_1971_03_master0125
	Malhotra_Ramesh_K_1971_03_master0126
	Malhotra_Ramesh_K_1971_03_master0127
	Malhotra_Ramesh_K_1971_03_master0128
	Malhotra_Ramesh_K_1971_03_master0129
	Malhotra_Ramesh_K_1971_03_master0130
	Malhotra_Ramesh_K_1971_03_master0131
	Malhotra_Ramesh_K_1971_03_master0132
	Malhotra_Ramesh_K_1971_03_master0133
	Malhotra_Ramesh_K_1971_03_master0134
	Malhotra_Ramesh_K_1971_03_master0135
	Malhotra_Ramesh_K_1971_03_master0136
	Malhotra_Ramesh_K_1971_03_master0137
	Malhotra_Ramesh_K_1971_03_master0138



