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SCOPE AND CONTENTS: 

The advances in gas turbine technoloqy in recent years 

has focussed attention on problems associated with the attainment of 

high work 011tput. This led to the consideration of high work output 

per blade, and thereby to the consideration of designing the blades 

with large turning angles. 

A detailed step by step computational method is presented 

for the design of two dimensional bl ades of total turnfng angles 140°, 

128°-30', and 115° with a range of l ift coefficients as defined by 

Zweifel of .B, 1 .0, and 1.2 for each blade. The blade profiles thus 

obtained are ba3ed on the assumption of flow being irrotational, 

compressible, steady and the fluid being invisid. The progranme allows 

the calculation of the pressure distribution over both the suction and 

pressure surfaces and at any poi nt in the passage. Considerable 

attention was given to the magnitude of the pressure gradient on the suction 

surface so as to reduce and where possible eliminate the possibility of separation . 

The blade's profile, pressure di stribution, pressure gradients and 

velocity triangles are drawn for each set of blades. The theoretical per

fonnance of the blades has been examined over a range of incidence angles 

from zero to nine degrees. 
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NOMENCLATURE 

Arabic Symbols Descri~tion Units 

b Axial Chord inch 

c Curvature 1/inch 

CL Lift Coefficient "defined by ZWeifel" {See Page 6) 

Cp Specific Heat at Constant B. T. u. / 0 R Lb. 
Pressure 

Fa Axt al force Lbf 

Fb Bending force Lbf 

Fe Centifugal force. Lbf 

g Gravitational Constant ft/sec2 

i Incidence, Attack degrees 

J Mechanical Equivalent of Heat Lbf/B.T.U. 

L.E.R. Leading Edge Radius inch 

M Mach Number 

m Mass/Volume Lbm/in3 

ltt Mass Flow Rate Lbm/sec 

n Distance along Orthogonal Line inch 

no Orthogonal Length foch 

0 Throat Opening inch 

p,P Pressure Lbf /in2 

r Radius inch 

R Radius of Curvature inch 

Re Reynolds Number(Based on axial chord 1 ength) 

Rg Gas Constant Lbf .ft/Lbm OR 

(v) 



s Distance along Streamline inch 

s Pitch inch 

T Temperature OR 

T.A. Turning Angle degrees 

T.E.R. Trailing Edge Radius inch 

u Blade Speed ft/sec 

v Resultant Velocity ft/sec 

VA, ex Axial Velocity ft/sec 

Vp Cy Tangential Velocity ft/sec 

w Relative Velocity ft/sec 

iii Weight Flow Rate Lbf /sec 

x, y Rectangular Co-ordinate Axis 

VP Profile Loss Coefficient 

z Mass Flow Rate/Unit Area Lbm/sec ft 2 

Greek Slmbols 

£ Trailing Edge Thickness inch 

p Density Lbm/ft3 

e Angular Position degrees 

a Blade Angle degrees 

y Ratio of Specific Heats, '1'=1.40. 

0 Deviation Angle degrees 

~ Potential Function 

'I' Stream Function 
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Subscri~ts 

1 Inlet Section 

2 Outlet Section 

s Suction Surface 

p Pressure Surface 

0 Stagnation 

mid Midstream 

rel Relative 

atm Atmosphere 
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CHAPTER 1 

INTRODUCTION 

The problem of increasing the power developed per blade 

involves the use of large deflection angle turbine blades. A large 

turning angle introduces the problem of flow over a rapid convergence 

of the contour of the annulus which has a pronounced effect upon the 

design of bldde shape and flow passage. The axial velocity at the 

inlet secti~n increases as the turning angle increases for S.Y111T1etrical 

blades which cause excessively high local velocities in the flow 

passage. Experience has shown that the adverse pressure gradients occur 

over the suction surface of all blades regardless of turning angle but 

this problem becomes even more severe with large turning angle blades. 

Present trends show that large turning angle blades can be operated at 

high pressure ratios possibly as high as 6:1, but with the high pressure 

ratio one obtains regions of high Mach numbers, the opportunity of 

shock induced separation and the blade design, taking into account these 

further effectr..is much more difficult. 

This study is an extension of the ·potential .flow analysis used 

in the design. ·of small turning angle blades. It is understood that 

to solve the problem fully the boundary layer development around 

the blades needs to be taken'· into account.· Howev-er~: ·because: of the 

physical size of these blades the boundary layer is assumed to be 

thin. and a very good approximati-On of ·the passage shape. can be 

made by neglecting the boundary layer displacement thickness. 

l 



2 

The present programme allows the engineer to modify the 

pressure distribution over the blade surface as to achieve significant 

changes in both the magnitude and the fraction of the chord exposed to 

the adverse pressure gradient. 

This thesis presents the theoretical design of turbine blades 

al l of whicb are basically of the same family with turning angles 

140°, 128°-30 1 and 115° and in which the lift coefficients as defined 

by Zweifel was varied from .8 to 1.2. 



CHAPTER 2 

LITERATURE SURVEY 

In the beginning, turbines were designed on the assumption of 

one-dimensional flow through the blade passages. The de~elopment of two

dimensional flow theories started in the l920's when axial compressor 

blades began to be designed by considering each blade as an isolated airfoil. 

Tyler [1] and HllWell [2] described the application of airfoil theory to 

propellers and fans and the development of theories of two-dimensional flow 

through cascades or airfoil lattices. 

Turbine blades are nonnally designed by selecting the spacing by 

one or more of the empirical rules which have been evolved in the past, and 

then the turbine channels are designed. 

Stodola [3J.as early as 1891, suggested that the best spacing is 

given by f Cos 3, where r is the pressure side radius of curvature of 

the blade and a is the blade turning angle. He utilized the fact that the 

space or pitch/ axial chord = 0.5 in all his design work. His experimental 

results showed that this pitch/axial chord ratio could be increased without 

loss in perfonnance. 

Zweifel [4] observed that the losses from turbine blades were a 

function of tan~ential force coefficient. The tangential force coefficient 

(known also as blade loading coefficient or lift coefficient)was defined as 

the ratio of the tangential force (Fy) to the theoretical tangential force 

that could be achieved without adverse pressure gradient (F max). y 

3 
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Fig. 2.1 indicates a typical pressure distribution around an isolated blade, 

curves P and S corresponding to the pr~ssure (or concave) side and suction 

(or convex) side respectively. The pressures are projected parallel to the 

blade front su~h that' the area enclosed between curves Sand P represent 

the actual blade loading per unit height. With reference to Fig. 2.1 (c) 

which represents the velocities at both inlet and outlet sections; Zweifel[ 4j 

showed that tangenthl force (Fy) is given by the relation, 

The conditions for the ideal load are fulfilled by p
0 

acting over the entire 

P surface and p2 acting over the entire S surface. Zweifel obtained an 

expression for ideal tangential force (FY max) given by the relation 

1 2 
FY max. = "2" P w 

2 
b 

The ratio of these two forces FY is defined as the lift coefficient FY max 
and can be written as 

FY P sex ( Cy2 :... cy1 ) 
Li ft C.<Jeffi c1 ent = - = -.-..... ----FY max l 2 

"2" w2 P b 

and using the trignometric relations as described by Zweifel it can be 

shown that 

Cy
2 

= w2 Sin m
2 

CYl = w1 Sin al 



I 1(1 

'c I X 
I 

(b) 

-- - - - --- - -~---'--··- - -
(C) 

Figure 2.1. Pressure Distribution and Velocity 
Representation . . 
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•. Lift Coefficient= 2 ~ Cos2 
a 2 (tan a 2 - tan a1} 

or 

Ainley and Mathieson [SJ provided curves for the loss coefficient 

against pitch/chord ratio, fluid outlet angle and blade thickness/chord 

ratio. The profile loss coefficient in this paper is defined as the loss 

in stagnation pressure across the blade row, divided by the difference 

between stagnation and static pressures at blade exit section. Their work 

concl uded that the loss coefficient for blades could also vary as the square 

of the fluid inlet angle. The various pitch/chord ratios were calculated 

by these authors from the experimental data obtained by a curve fitting 

technique for a.wide range of inlet and outlet angles. 

A r~view of the literature shows that early designs relied 

heavil y on the use of experimental two-dimensional cascade results in which 

profi l es of different shapes such as circul ar, parabolic (separately or 

in combination} or in fact modified NACA or ARC profiles were tested under 

a variety of conditions including changes in pitch/chord ratio, stagger 

angl e and blade thickness. One might call this the phenomenological 

development of turbine design. The second method is essentially concerned 

with passage de$ign in which an analysis is made of the potential flow 

through a latti ce of two-dimensional turbine blade shapes. 

Stanitz [6] method is useful for the sol ution of indirect problems 

which result in the accurate design of a blade cascade in compressible flow. 
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It consists of specifying the velocity distribution as a function of distance 

along the two channel wa11s and specifying the difference in stream function 

across the blarla spacing. This is in effect a decision on the fluid flow 

through the blade channel. Finally, stantiz solves the nonlinear equations 

by a relaxation technique, utilizing the boundary conditions for upstream 

and downstream of the flow passage. 

Stantiz [7] is responsible for the development of another more 

rapid but approximate method. It represents the analysis generally for the 

compressible flow through turbomachines of varying annulus area, in which 

the meridional streamlines may change their radial position. It is inter

preted for the two-dimensional compressible design of a turbine blade as 

follows: veloc~ties on the blade suction and pressure surfaces are specified 

as a function of the axial co-ordinate 11 x11
• Using the energy equation and 

isentropic relat.ions, the blade profile is fully developed as a first approxi

mation using only the dependent variable 11 x11
• 

In the second approximation it is assumed that the flow conditions 

vary linearly across the channel in they-direction. The pitch/chord ratio 

is determined fro~ the first approximation and streamlines are drawn. The 

mean tangential ~elocity distribution is again determined and finally the 

blade profile is developed by combining both the x and y soiutions. 

George R. Costello, Robert L Cumming~ and John ~ Sinnette, Jr. [8] 

have presented a method for computing blade profiles with prescribed velocity 

distributions based on the assumption that the pressure volume relationship 

is linear. The method uses the prescribed velocity distribution and compatible 

free-stream conditions to determine a mapping function • . This tranforms an 

incompressible flow about the unit circle into an exact compressible flow,with 
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a linear pressure-volume relationship, about a cascade of blades having 

the desired v~locity distribution. In this method the relation between the 

actual fluid and the fluid with the linear pressure volume relation must be 

approximated so that the required velocity distribution and free stream 

conditions for the second fluid may be determined. 

Another report [9] by the same authors has been presented in which 

the magnitude of the velocities in the two fluids are assumed to be proportional. 

The constant csf proportionality is determined by the continuity equation 

using the same upstream and downstream flow angles for the two fluids. It 

includes adjustment of the prescribed velocity distribution to satisfy 

the restrictions on the mapping function. 

A method which apparently offers a soluti on to both the direct 

and indirect problems of compressible flow past i -cascade of arbitrary airfoils 

is presented by Chung-Hua Wu and Curtis A. Brown [10]. ln both problems 

calculation is first made for the flow along a particular streamline in the 

channel fanned by two neighbouring blades. (Preferably the mean streamline 

which divides the mass flow in the channel into two equal parts.) Here the 

close relationship between the shape of the bladecamber line and 

the mean streamline of the passage and that between the variations in the 

channel width and the specific mass flow are employed. The flow is then 

extended in the pitch or "Y" direction by the use of Taylor series, where 

successive terms are obtained by the use of the equations of continuity 

and momentum. 

In irrotational, incompressible flow the method of conformal 

transformation may be used to give solutions to the flow eq•Jations 6
2

vt, 

6 2
4> = 0, where 4> is the potential function and 'f is the stream function. 

If the complex potential W = 4> + i'f is known in a plane, the flow in the 



physical plane can be detennined if the transfonnation from the 

given plane to the physical plane is known. This is the general 

9 

basis of all confonnal transformations. Kraft [11] has also described 

his development of the laminar airfoil type turbine blade for 

impulse section using the confonnal transfonnation technique. For 

a conventional turbine blade, as with a standard aerofoil section there 

is a press~re increase on the convex surface and a pressure decrease 

on the concave surface. The boundary layer faces the adverse pressure 

gradient over the rear part of the chord on the convex surface. For a 

small turning angle, Kraft designed a blade shape to produce sub

stantially constant pressure over the suction surface. 

The method of vortex singularities is useful for solvi.ng the 

indirect problem of incompressible flow through given sections of highly 

cambered blades. The potential function describing the flow associated 

with a distributed series of sources,sinks and vortices is found and 

combined with the unifonn stream flow to give the flow past the airfoil 

shape. An elegant solution of the cascade problem was developed by 

Martensen [12] using vortex singularities. Vortices ar2 distributed along 

the blade surface and the method is not limited to low cambers only. He 

fonnulated an integral equation of these sources, sinks and point vortices 

which describes the distribution of velocity on the blade surfaces. This 

equation was solved using a digital computer. In this method the problem 

lies in the cetennination of sources, sink and vortex distributions. 

F. Baumgartner and R. Amsler [13] have presented a blade design 

method which was used to detennine the shape of stationary nozzles and 

rotor blades for an axial flow type turbine. The main feature of the blade 
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design method consists of selecting a suitable airfoil and shaping it into 

a blade profile such that momentum requirements are satisfied, together 

with its predetennined requirements of optimum blade load distribution, 

flow rate and blade stress. However, the method ·is somewhat of a 

trial and error method unless one has a.- strong feeling for the 

proper blade proportions. 

Horlock [14] describes a method to design a blade shape to 

give a specified velocity distribution. He describes the potential 

function and a stream function to represent the flow. He then finds the 

transfonnat1on function to describe the flow around the blade. The 

mathematics involved is complicated but the solution gives good results 

for the analysis of incompressible flow. 

In the past, a free vortex flow pattern was in use for the 

design of blade shape. This type of flow requires the least amount of 

kinetic energy for a given flow rate and therefore represents the most 

stable flow condition. In a free vortex the tangential velocity components 

of the strea~ particles are inversely proportional to their radial distance 

from the centre line, the axial velocity components being constant across 

the whole flow area. This type of flow delivers equal amounts of work 

at any radial station. Analysis of turbine perfonnance data based on 

the free vorte.x design approach indicated that it was desirable to adjust 

the airfoil designs at all radial stations in order to relieve the root 

and tip flow conditions. 

T. E. Donnan, H. Welna, and R. W. L1ndauf [15::! have developed a 

desfgn technique known as a controlled-vortex design system. The controlled 



11 

vortex design system permits the designer to alter and optimize each 

airfoil ser:tion designed by varying the main stream flow pattern. Controlled 

vortex turbines have demonstrated performance superior to equivalent 

free vortex turbines. The controlled-vortex design procedure has been 

applied to raise the root reaction without raising the tip reaction and without 

making significant changes in exit swirl distribution. Several experi-

mental tests have been done with controlled vortex turbine which showed 

the effici~ncy requirements above those of free vortex turbines. It 

is now reco~nized that low root reaction is the fundamental cause of poor 

root performance because it causes localized root losses. Raising the 

reaction by means of controlled-vortex techniques can reduce these losses. 

The literature survey indicates that methods to design the 

blade shape can be classified as follows: 

(i) Direct Method 

(ii) Indirect Method 

Previous study shows that most of the blades are designed by 

the direct method. In this method the bl ade is started from standard 

airfoil shape and the performance is observed by conducting various 

experiments. The results of these experiments are analyzed and the blade 

shape is modified to get . the desired output.Thi s method is quite tedious, 

laborious an~ not a methodical one. Some of the authors have done work 

on the design of blades by the indirect method but encounter problems 

while defining the velocity distribution, the transformation function, 

the sources, sinks and vortices, etc. (which were very difficult to 

define). In other words, the different design proceduretof all previous 

studies did not conform to the same "State of the Art 11
• Hence it is 



12 

quite difficult to design a blade shape and then predict the perfonnance. 

The study done in this thesis is an extension of the free-vortex 

design but differs in that the blade's curvature distribution for pressure, 

suction surfaces and orthogonal lengths are defined properly as described 

in Chapter 4. Finally, the pressure distribution is computed by utilizing 

the compressible equations, satisfying the continuity equation and 

solving the momentum equations simultaneously at each and every station • 

.. 



CHAPTER 3 

PERFORMANCE AND DESIGN CONSIDERATIONS 

3.1 Turbine Losses 

The perfonnance of a turbine is evaluated by the losses embodied 

within it. The main types of losses in turbines can be classified under 

the following h~adings: 

(1) Skin friction losses. 

(2) Profile losses associated with the effect of profile shape. 

(3) Secondary losses. 

(4) Separation losses. 

Skin friction losses are directly due to shear stresses acting 

along the surface in the direction of the component of the fluid motion 

which is parallel to the blade. These stresses in turn depend on the 

local velocity conditions, and the nature of the surface of the blade 

in contact with the fluid. The Zweifel criteria is one method of determin

ing the optimum p·itch/chord ratio for keeping this loss to a minimum. 

It is known that the gas passing through a stationary row of 

blades experiences some average loss in stagnation pressure caused by 

the blade wakes. If the blades are moving, a relative stagnation pressure 

can still be defined in terms of the pressure and relative velocity but 

radial streamline movements cause an increase in this relative stagnation 

pressure. The pressure loss may then be defined as the difference between 

the ideal frictionless relative stagnation pressure at the exit and the 

13 
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actual value. In the case of axial flow machinery, it is usual to apply 

data from stationary blade tests to analyze rotating blade perfonnance, 

the justification being that energy addition relative to the rotating 

row is small. Profile losses can be related to physical blade properties, 

such as blade pitch, thickness and throat opening and to gas incidence. 

They are also related more fundamentally to the fonn of velocity which 

controls the nature of the boundary layers which fonn the blade wake. 

The nature of the secondary flow is illustrated in Fig. 3.1. 

Because of the turning of the stream, there is a pressure gradient across 

the blade passage to balance the centrifugal forces. There isa relatively 

high pressure on the lower surface and a low pressure on the upper surface 

of the blade. Near the walls the velocities are small so that the required 

pressure gradient is reduced, which gives, on the lower surface, a smaller 

pressure near the wall than in the middle of the blade passage with a resulting 

flow in the fonn of circulatory or eddy flow between adjacent blades. This 

is generally called secondary flow. The losses occurring with such 

type of flows are termed as secondary losses and are usually about the 

same magnitud~ as the profile losses. This loss is related most closely 

to mean acceleration of the gas in passing through the blades. 

In the case of turbine blades, if the reaction blades or a 

combination of reaction and impulse are used, the pressure decreases up 

to the point of maximum curvature where velocity is also maximum and then 

the pressure starts increasing (i.e., the pressure gradient is positive 

in this region of the blade profile). Thus the fluid in the boundary 

layer is further retarded and, if the adverse pressure gradient is too 

severe, the fluid near the wall reverses its direction and separates from 
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-..._ -...:::--- ---- - - - --- ---

(a) Secondary Loss (b) Profile Loss 

Figure 3.1. Representation of Losses. 

the surface. The eddies and separation cause considerable loss of useful 

energy which is termed as separation loss. This loss is mostly dependent 

on the curvature dis tri bu ti on of the suction surface the pressure 

surface and the passage width. 

3.2 Preliminary Aspects of Design 

The questions that face a designer may be summarized broadly 

as follows: 

(1) What type of turbine, i.e., impulse or reaction turbine 

should be designed or combination of both? 

(2) What are the advantages of turbines equip~ed with blading 

of high or low deflection with varying degree of reaction? 
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(3) What is the effect of blade profile fonn and pitch? . 
(4) What effects do fluid ~ompressibility an~ Reynolds numbers 

have on the aerodynamic characteristics? 

(5} What are the effects due to such factors as tip clearance, 

shrouding, axial spacing between blade rows, blade length/ 

chord ratio, blade thickness from mechanical strength 

aspects? 

One needs to know the effect of each variable on the performance 

of a turbine in order to design the blades to achieve the maximum attainable 

efficiencies. Some of these problems can be tackled only by experiment, 

unfortunately, the majority remain unsolved such as tip clearance, shroud

ing, etc. The results, used in the design of blades,are obtained from a 

tunnel which refers to a two-dimensional flow through a row of blades and 

are not necessarily i11111ediately applicable to the vortex form of flow 

that actually occurs within a turbine. Nevertheless, the results help a 

designer to gain some idea of the merits and demetits of varying types 

of blades, and to design blades producing the particular gas flows, and 

deflexions thereof, which he requires. 

D. G. Ainley [16] obtained the results from a typical test 

on an impulse section and on a high reaction section as shown 

in Fig. 3.2. The range of incidence over which both blades w111 operate 

without excessive variation in loss is quite large, but the reaction 

blades have the greater working range of incidence and the lowest loss. 

When a large family of turbine blade sections is tested, it is found that 

tne minimum loss coefficient of a cascade invariably increases as the 

reaction·-of the blade is decreased (reaction in this sense is a qualitative 
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expression, and refers to the acceleration imparted to the gas as it flows 

through the blades and the accompanyirYJ drop in the static pressure}. He 

also showed that the efficiencies of a reaction stage are likely to be 

considerably greater than those of an impulse turbine stage, particularly 

if the work output of the impulse stage, or the gas deflexion in the rotor 

blade is very high. 

It is the shape of the blade which determines the form of the 

flow pasages and the energy transferred from the fluid to the rotor is 

dependent chiefly on the nature of the flow through these passages. Then, 

clearly, it is important that careful attention be given to the development 

of the correct passage shapes. 

The flow passages must also provide sufficient annular area to 

acco1T111odate the entire flow of fluid. An adequate number of blades must 

be provided to ensure well defined flow passages. Yet the use of too many 

blades may increase unduly the resistance to flow. Special consideration 

must be given to the stresses imposed on the turbine blades by the pressures, 

temperatures~ dynamic forces and rotational speeds encountered under all 

conditions of operation. 

The arrangement of the flow passage has a marked effect not only 

on the efficiency of the turbine but on the manufacturing cost as well. 

The best design is a harmonious compromise between operating efficiency, 

size of unit and manufacturing cost. Although there is no reliable and 

rigid rule in making such a compromise, a great deal of information can be 

obtained from existing design procedures to assist in the desired aspect. 

There is no rational method for laying out the profiles of such 

conventional reaction blades. However, a few observations are of some 
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value. The concave side may be nearly of constant radi;Js, while the 

convex side is usually fonned by faired circles in a shape that provides 

a passage which is always converging. It is of particular importance that 

the passage never becomes divergent in order to avoid eddy losses which 

accompany a diverging passage. Normally supersonic velocities are avoided 

in the flow passages to avoid shock losses, but occasionally it is necessary 

to introduce them in order to reduce the overall length of the turbine 

and to use them where high rotational speeds are acceptable. 

The number of stages should be kept as small as possible because 

of weight consideration but should not be so small as to affect markedly 

the efficien~y. Pressure ratios as high as 3:1 and 4:1 are used without 

seriously lowering efficiency according to design practices. If the average 

velocity leaving the passage does not exceed the sonic velocity by more 

than 50%, the convergent passage may be retained with only a slight drop 

in efficiency. If it is necessary to exceed these limits, then more 

stages must be employed. 

3.3 Blade Profile Shape 

For any blade, the required blade angles are fixed, the profile 

shapes that will most efficiently operate at these angles must be developed. 

As mentioned before, because of the requirements that dictate high turning 

angles and Mach number limits for exit and inlet velocities, most blades 

are of reaction or combination rather than the impulse type. Therefore, 

the remarks to follow apply more specifically to the reaction type blade. 

In additi~n, high turning angle blades with higher outlet blade angles 

require correspondingly higher chord lengths in order to provide a 
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sufficiently generous radius of curvature for the channel walls~ The 

so called radius of curvature should ue maintained so th~t the average Mach 

number over the passage width ·· does not exceed that occurring at the blade throat. 

This is done in order to prevent local diffusion or adverse pressure gradient w;th 

losses and possibly separation. The main velocity in the channel should 

be constant ~r steadily increasing in order to avoid the possibility of 

diffusion in the passage. 

An axiom co111110nly accepted by the aerodynamist asserts that energy 

losses associated with fluid flows 1n a curved passage are considerably less 

when an acceleration is imposed upon the flow than when the flow is accompanied 

by diffusion. Any diffusion of the flow through the turbine blade rows is 

particularly 'Jndesirable and must, at the design stage ·be avoided _as far as po

ssible. This is because the adverse pressure gradient (arising from the 

flow diffusion) coupled with large amounts of fluid deflection (usual in 

turbine blade rows). makes boundary layer separation more than merely 

possible with t.he result that large scale losses arise. 

The shape of the inner and outer contours of the annulus should 

be such that a smooth and gradual decrease of annular area is provided 

in order to en~ure against breakaway and excessive boundary layer thickness. 

The desired contour shape is obtained by minor adjustments of the curvatures 

at various points~ The rapid change of curvature of the contour of the 

suction surface of the blade section reflects in the pressure distribution 

in the fonn of a sudden change of pressure. 

It is worth pondering a little upon the effect of space/chord 

ratio in the turbine blade rows as this 1s a factor strongly itffecting 

the efficiency. Now if the spacing between the blades is.made small. the 
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fluid then tends to receive the maximum amount of guidance from the 

blades, but the friction losses will be very large. On the other hand, 

with the same blades spaced well apart, friction losses are small but, 

because of poor fluid guidance, the losses resulting from the flow separa

tion are high. 

The basic variables in blade ring calculation observed by 

Errvnert [17] are shown i n Fig.3.3. The data apply to both fixed or moving 

blades, provided the velocity magnitudes and directions are taken relative 

to the blade ring under consideration. The most important quantity required 

in the blade ring analysis is the effective kinetic energy at the ring 

outlet. Errmert [17] computed the energy from the following relation. 

where, 

~2 Expansion-energy coefficient 
e: 

Ci Incidence coefficient 

~2 Kinetic energy coefficient 
\) 

6hV1 - Kinetic energy at inlet 

6hS2 Isentropic enthalpy drop 

6he2 - Effective kinetic energy at outlet 

The primary loss resulting from turbulence and wall friction within the 

blade passage is reflected by the expansion energy coefficient. It is 

observed that the effective energy obtained from a given amount of inlet 

kinetic energy is supplied by pressure drop. Kinetic energy coefficient 

is normally assumed to be equal to the expansion energy coefficient. 
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Figure 3.4 Variation of Expansion-Energy ·coefficient 
with Design Deflection Angle (from Enmert [17]). 

H. D. Enmert [17] obtained the graph of Expansion Energy Coefficient 

vs Design Deflection Angle as shown in Fig. 3.4. It can be concluded 

from this figure that the optimum blade pitch/chord ratio has to be used. 

When the inlet velocity vector forms a definite incidence angle with 

reference to the blade leading edge, an additional loss occurs which is 

evaluated by the lncidence coefficient. This coefficient is a function 

of the .blade nose design. 
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with Incidence Angle (from Enmert Cl7J). 
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H. D. E11111ert [17] studied the effect of incidence coefficient 

on the incidence angle as shown in Fig. 3.5 It can be concluded from the 

Fig. 3.5 that a round nose blade has the greater incidence coefficient than 

the sharp nose blade. Hence the blade designed should have a round nose 

to have less losses for equal incidence angles • 

• 14 
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(i) Impulse Blade 

+ 

0 .z .4 .6 .8 1.0 2.0 

Reynolds Number x lo-5 

Figure 3.6. Variation of Profile Loss with 
Reynolds Number (from E11111ert [17]). 

Reaction Blade 

Figure 3.6 indicates the variation of profile loss coefficient 

with respect to Reynolds number of the gas flow as obtained by 

D. G. Ainley [16]. At a fixed incidence the losses in the turbine increase 

rapidly as the Reynolds number is reduced below about 1.2 x 105• It shows 

the proportional rate of increase of profile loss with reduced Reynolds 

number and when the Reynolds number is less than about.1.2 x 105 the profile 
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loss is approximately proportional to Re-· 5. At higher values of Reynolds 

numbers the losses vary at a much lower rate. Hence while designing the 

blade the variation of losses with Reynolds number should be kept in mind. 

3.4 Trailing Edge Thickness and Form 

While designing a blade and passage we are faced with the probleM of the 

9eviation of the air from the actual blade angles specially at the exit section. 

To solve this deviation problem the flow pattern has to be analyseds but 

still furthers the corrections such as overturn i ng of the blade for this 

deviation,in order to be sure to get the work done,should be applied. However, 

overturning reduces the physicai throat areas and if the throat Mach numbers 

are already close to ones a reduction in weight flow will be invohed unless 

the blade height is increased. This blade height change means a lower 

axial velocity. after the blade and thus affects the velocity diagram. 

0.15 

::: . 0.10 © Impulse Blade 
cu 
0 

u 
Ill 
Ill 
0 _, 0.05 
cu -.,... 
~ 
0 
S-

o.. 0 

0 

Reaction Blade 

.2 .4 .6 .8 1.0 

Outlet Mach Number 
Figure 3. 7. Variation of Blade Loss 

with Mach Number (from Ainley [16]). 
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As the outlet Mach number is increased the minimum profile 

loss coefficient varies only slightly ~ntil an outlet Mach number .7 to .8 

is approached as studied by D. G. Ainley [16] and as shown in Fig. 3.7. 

At this point a small local shock wave appeatson the ~onvex surface of the 

blade inside the blade passage, causing a thickening of the boundary layers 

and a slight consequent increase in loss.. As the Mach number increases 

further, the shock wa\emoves toward the trailing edge, with a corresponding 

decrease of the length of the blade surface exposed to the thickened boundary 

layer. 

In detennining the trailing edge thickness of turbine blades 

some compromise has to be made between the mechanical strength, reliability 

and ease of manufacture on one hand, and efficiency on the other. Maximum 

efficiency calls for as thin a trailing edge as possible. but too thin a 

trailing edge is part1cular1y undesirable in gas turbine work when high 

local gas temperatures may easily burn away the very thin trailing edge. 

Trailing edge thicknesses have to be consistent with the particular manu

facturing process to be used and vary from approximately 1 to 10% of throat 

opening, and leading edge thickness varies from 2 to 12% of pitch which is 

the conman practice in industry [18]. The radius of trailing edges 

chosen in designing these blades is .011
11 

and this is almost the min1mum 

possible. With a smaller radius it becomes very difficult to hold for 

machining and ~ven casting becomes very difficult. Moreover, if the trail

ing edge is too thin the blade trailing edge bends due to gas loads 

thus giving a wrong outlet angle. 

Finite trailing edge thickness may be expected to give rise to 

pressure losses in much the same manner as a sudden enlargement of a pipe 
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through which fluid is flowing. The work capacity is closely related to the 

gas outlet angle and is usually correlated with the throat opening (0). 

The following approximate relationship between blade geometry and gas outlet 

angle is often used as a guidance rule. 

I I -1 0 
a2 ~ Cos 'S" 

where a2 = gas flow outlet angle. 

( 3. l ) 

This relation is stated to be fairly accurate for most turbine blades 

when the Mach number at the blade exit is near unity. However, at low 

Math numbers and large values of outlet angles this equation (3.1) represents 

considerable error. The actual gas outlet angle is conveniently recorded 

as a deviation angle (o) from geometrical outlet angle (Cos-10/S). Using 

relation (3.1) and referring to Fig. 3.8 

and 

written 

tan a2• 
tan a.2 = ---.-

(1 .. ~ ) 

/ (S - EI )2 - 02 
= --------------

(3.2) 

(3.3) 

Combining equations (3.2) and (3.3), the outlet angle can be 
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The deviation angle ~, defined by equation {3.1), then becomes 

{3.4) 

A graph is plotted representing the effect of trailing edge thickness 

ori outlet deviation. It can be seen from this graph that for minimum 

deviation {&), the ratio <!> should be minimum and the losses encountered 

go on reducing as the outlet angle is increased. The relationship given 
1 

by equation {3.4) is represented in the Fig. 3.9. Deviations are usually 

greater than these values because surface boundary layer presents a 

blockage to the flow which increases the effective trailing edge thickness 

of the blading. 

Trailing edge thickness losses are deduced in a similar manner to the 

foregoing analysis. 

Yp = <t> 2 {Ref. 19) 

where yp = Proffle loss coefficient. 

Early work has shown that loss increment due to trailing thickness is 

as presented in Fig. 3·.10 by Hawthorne [19]. In this study the loss coeffici

ent for the blades which have been designed has been kept at a minimum. 

It has been found in general, that there is nothing to be gained 

in a practical sense by decreasing the blade trailing edge thickness 
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below 1.3% of the blade chord as concluded by J. H. Horlock [20]. 

While designing the trailing edge portion of the blade the 

problem of controlling the radius of curvature is more severe. 

J. H. Horlock [20] concluded in his study that the straight backed 

blades show less efficiency than the blades with slight curvature. 

This factor can be quite clearly understood from the work presented 

by 0. G. Ainley and G. C. R. Mathieson [21]. They presented a graph 

indicating the variation of profile loss coefficient versus the 

pitch/radius of curvature ratio for various outlet Mach numbers as 

shown in Fig. 3.11. It is found that the effect of curvature is more 

predominant in the flows which have outlet Mach numbers more than 

0.6 or 0 .• 7. Jt can be concluded that for outlet Mach numbers near unity 

or slightly higher, that the pitch/radius of curvature ratio should lie 

between 0 and .2 which indirectly means that the curvatures should be 

quite small approaching zero. The present study shows that the 

curvature should be slowly increasing in the direction from the trailing 

edge towards the leading edge. 

Another effect of the curvature variation at or near the 

trailing edge concerns the actual gas path along the blade surface. 

This has to be carefully controlled in order to avoid further flow 

deviations from the surface in question. It might be expected, for 

instance, that the influence of the trailing edge curvature on the 

gas outlet anqle is also strongly dependent on the outlet Mach number. 

Flow deviations based on experimental data are shown in Fig. 3.12 as 

suggested by Ainley and Mathieson [21] for low subsonic and sonic exit 



4 + / 
" / 

LO . 
\.. 

II 

"" N 2 -... :::: / .~ , ,,...... 
~ _,,....... --· 
~ ------· - --- - -.-::.::::-~· - - - - - ---

&..----~ 

0 
I _I _)_ _J_ 

'T T --. -r 

0 0.2 0.4 0.6 0.8 1. 0 

Pitch/Radius of Curvature ( S/ f<) 

Figure 3.11. Effect of Trailing Edge Curvature 
on Profile Loss (from Ainley and Mathieson [21J). 

----- M2 = 

-·-·-·- M2 = 

-- --- - --- M2 = 

M2 = 

1.0 

.8 

.7 

.6 

w 
w 



Vl ....... 
0 -I 
c .... 
Vl 
....... --l':S 

I 
en ....... 
0 -I 

0.2 

0.1 

0 

8 .1 - 0 0.2 0.4 0.6 0.8 

Pitch/Radius of Curvature (S/R) 

Relative Outlet Mach Number M2 = 1.0 

34 

1.0 

Fi.gure 3.12. Effect of Trai 1 ing Edge Curvature on 
Deviation (from Ainley and Mathieson [21J}. 

velocities. At other relative Mach numbers some interpolation is 

necessary. aased on the above work the blade should have a Pitch/Radius 

of curvature ratio between O and .2 to have minimum possible deviations. 

3.5 Mechanical Design Aspects 

The mechanical design considerations also have an important 

effect on the performance. The aerodynamic forces may excite blade 

vibration and may also be responsible for some damping effect. The 

stresses produced due to blade vibrations cause fatigue failure at the 

root of the blade •. A knowledge of the frequencies of vibration is 

required to properly analyze the root fittings. SundErRawtani [22] 
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has investigated the effect of the aspect ratio, the aillOunt 

of pretwist, the speed of rotation, the disc radius and the setting angle 

on the natural frequencies and on the mode shapes. The above analysis 

helps in detet'lllining the relation of the blade thickness at the root 

to the tip thickness. 

Tne upper limit of blade rotational speed is limited by root 

stresses. The determination of the blade stresses is a critical factor 

regardless of the type of blades being designed. Gas turbines blading 

is particularly important from the stress stand-point because of the 

high temperatures encountered. 

Fe • Centrifugal force 

F
1 

• Axial force 

Fb • Bending force 

Figure 3.13. Representation of Blade Forces. 
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The severes~ stresses are imposed by centrifugal force, fluid pressure 

differences and vibration. Provision has to be made in the blade design 

to withstand all these stresses encountered in the operation as shown 

in Fig. 3.13. 

Turbine blades are also subjected to resonant vibrations 

induced by ir:--egularities in the fluid flow path resulting from such 

obstructions as -struts,.the non-symmetry of the stationary passages, 

disturbances aue to the wake of earlier blade rows. 

The frequency of vibration is seen to depend on the stiffness and mass 

of the blade. References [23], [24] and [25] refer to recent work 

on the vibration analysis of curved blades. 

3.6 Materials for Turbine Blades 

For a given pressure ratio the higher the operating tempera

ture of a gas turbine the greater the power developed. Specially for 

the airbourne field, weight consideration is very important. In 

many applications it is important to develop the m.ost~power fot the 

least amount of hardware thus, it is desirable to be able to operate 

the gas turbines at high temperatures. This creates an important 

problem from the stand-point of suitable materials. In all metals 

the strength d~creases and the creep rate increases with an increase 

of temperature. 

In addition to the fundamental requirements of strength at 

high temperatures and a low creep rate, the material should have several 
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other important qualities such as adequate fatigue strenqth, strong 

resistance to corrosion, forgeability, weldability, and machinability. 

Usually the materials used for turbine blades are S-816, 

S-590, Vita1lium, the cemented hardcarbides and ceramics. Carbides of 

tuhgesten, zirconium, molybdenum, tantalum and titanium are available 

with cobalt as the matrix. A particularly interesting cemented carbide 

is that of titanium with cobalt. The most promising material is a 

combination of ceramics and metals such as bonding alumina to steel for 

turbine blades or silicon carbide with iron and sintered aluminum oxide 

[26]. 



CHAPTER 4 

THEORETICAL ANALYSIS AND BLADE PROFILE CO~!STRUCTION 

4.1 Design Procedure 

The main requirement of the blade design was to obtain high 

pressure ratio and high output. The swirl was neglected and a low axial 

·velocity was also assumed. The resulting design would therefore have a high 

pressure ratio, high enthalpy drop and high deflection of the flow. 

The classical method of design for turbines is the free vortex 

design. Two assumptions are involved in thisdesign, 

(i) The flow is assumed to be in radial equilibrium before 

and after all blade rows . so that 
2 

d mvT 
~=-r 

(ii) The tangential velocity distribution is required to be 

free vortex in which the product of tangential velocity 

and radius is constant that is (r VT)= constant. 

The main question to be answered is in what manner does the 

blade shape and setting vary along 1 ts height also when the velocities 

are high enough to introduce compressibility effects, the change of 

density from root to tip will vary as the flow passes through the blades. 

There will also be axial and radial velocites to be taken into account. 

38 
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Whitehead [27] assumed that between the blade rows of a turbine the 

radhl velocities and accelerations would quickly vanish and a condition 

of radial equilibrium would be established. He showed that the axial 

velocities would then be invariant with radius. Many turbines have 

been designed by this method and the blades in these turbines are 

termed free vo~tex blades. A disadvantage of the free vortex design is 

that a high d~gree of twist in the rotating blades is needed to accommodate 

the large changes in inlet and outlet angles. This leads to the problem 

of precise instrumentation and manufacturing difficulties which adds to 

the cost of the blade. 

In other blade design methods, radial displacements of the 

streamlines have been eliminated or reduced by making the product of 

local density and axial velocity invariant with the radius. The resulting 

constant specific mass flow design, introduces radial variations of 

circulation and therefore are of use especially when the tu.rbine pressure 

drop is .sufficiently large. 

Another method for the design of blades is based on more exact 

theory. This tends to lead to numerical solutions in the design of blade 

passage. The assumption of axially symmetric flow has accordingly been 

made and is the· basis for the theoretical work which fonns a useful 

improvement over the radial equilibrium theory. The theoretical calculations 

are laborious, however, and it has been found easier and more direct 

to describe the profile shape over the required range of turning angles 

and then designing the channel by varying the curvature at points on the 

profile to obtain the most favourable pressure distribution around the blade. 
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4 • 2 Method Q'f Investigation in the Present Study 

This method is an extension of the last method as described in Section 

4.1 but differs in that the blades are designed for a specific lift 

coefficient and therefore blade spacing. For comparison purposes the 

inlet and outl~t angles are kept constant for each lift coefficient. 

The axial chord is also a constant in the design. 

Probably the most important consideration in the design of the 

blade is the resultant pressure distribution around the blade. These 

are described later in this chapter. It should be noted that the pressure 

distribution is effected by every parameter of the blade. 

4.3 Power Estimation from Velocity Triangl es 

In order to estimate the power available from the blade, one 

first calculates the tangential force induced by the action of the 

gas jet on the blade. The function of the blade is to change the 

direction of motion of the jet in as smooth a manner as possible. 

In changing its direction the jet experiences a change of momentum in 

the original direction of motion. Now Newton's Second Luw states that 

when a body experiences a change of momentum, t he rate of change of 

momentum is proportional to the force which produces the change. Since 

the blades cause a change in the momentum of the jet, they experience 

a force which is proportional to the rate of change of momentum . . 

Since the functioning of the turbine depends .entirely upon the 

behaviour of the gas during its period of contact with th~ blades, it is 
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necessary to detennine the variations in the inlet and outlet velocity 

of the gas. The velocity conditions can best be illustrated graphically 

in the form of a velocity diagram, giving a clear picture of the changes 

which tak~_ place • 
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Figure 4.1. Blade Row and Velocity Triangles. 
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Figure 4.1 is a typical schematic diagram of a turbine b1ade 

row on which the inlet and outlet velocity triangles have been drawn. 

The notation is as follows. 

wl = velocity of gas relative to blades at inlet. 

vl = absolute velocity of gas at blade inlet. 

~2 = velocity of gas relative to blades at outlet. 

V2 = absolute velocity of gas at blade outlet. 

u = peripheral ve1ocity of blades. 

It is the common practice to represent both the inlet and 

outlet triangles in a single diagram as shown i n Fig. 4.1.(ii). 

It is observed that when there is a reaction ef fect, the velocity at 

the outlet is increased. 

If there is a reaction effect the to t al thrust on the blades 

is derived from two sources, 

(i) The impulse due to the change i n momentum of the 

gas stream, produced by the deflexion caused by the 

curvature of the moving blades. 

(ii) The reaction generated by the change in momentum of 

· the gas stream due to contraction ih the moving blade 

passage. 



AB = Total Thrust 

AC = Axial Thrust 

BC • Tangential Thrust 

Figure 4.2 Thrust Resolution. 
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Figure 4.2 represents the various thrusts coming into the 

picture on the blade surface. The total thrust can be resolved into 

two components. · One parallel to the axis of the drum which is known 

as axial thrust and the other tangential thrust. The latter one 

provides the output power while the axial thurst has to be taken 

up by a suitable bearing. Referring to the velocity trhngle diagram 

if the weight flc;>w of the gas discharged over the blade per sec 

is w Lb then 

. 
Tangential thrust = ij- (BE · +BF ) 



or the horsepower obtained from the blade is given by 

~:orsepower 

. 
=~(BE 

g 

4.4 Profile Construction 

+ BF ) -s¥o 
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The following procedure is necessary to produce blade profiles for 

compressible f~ow which have a favourable pressure gradient over a large 

percentage of the total blade area. 

4.4.1 Selection of Pitch/~hord Ratio 

Zweifel [4] as described in Chapter 2 suggested that 

(4.1) 

where CL is the lift coefficient. 

According to Zweifel a reasonable degree of symmetry must be 

observed for equation (4.1) to apply. In a study such as this it is 

obviously easy to have both the inlet and outlet angles the same and 

this simplif"ies the design. However, this equality is not a rigid 

requirement and blades have been designed using Zweifel 1 s technique 

with differences .in angles of the order of 15 - 20 degrePs. In the work 

to be presented the lift coefficients had been chosen in the range of 

.8 to 1.2. Using these values in the equation, the corresponding values 
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b 

Trailing edge radius = zero. 

Figure 4.3. Zweifel 1 s Blade Nomenclature. 

of~ are ca1culated. Hence for some suitable value of Chord (b}, the 

pitch (S} can be calculated. 

4.4.2. Blade Layout 

Figure 4.4 shows the mechanical design features on the drafting 

of a turbine blade. 

(a) On a suitable scale (1 11 = 1011 is usually satisfactory) 

draw two lines parallel to each other at a distance 

b + T.E.R. apart, representing the leading and trailing 

lines of the cascade. 



46 

(b) One then marks out the pitch distance (S) on the trail-

ing edge line and draws the trailing edge circles 

for the two blades and ensures that the trailing edge 

line is tangent to these circles. 

(c) The outlet throat (0) as shown in Figure 4.4 can be 

calculated from the trignometric relation 

0 S" = Cos (l2 

The next step is to draw an arc of radius O + trailing 

edge radius with the centre located at the same point 

as the trailing edge circ l e. (Note that either circle 

can be chosen depending on the direction of motion of the 

the blade, here it is chosen to the right) 

(d) One then draws a tanqent to the other trailing edge circle, 

-1 (o ) at an angle ~ 25 =Cos S - ACos~ where ~Coss depends 

on the exit plane Mach number (M2). The plot of exit 

Mach number versus ~Cos a is given in Figure 4. 5. It 

should be recalled that the velocity diagram provides 

information regarding the exit pl ane Mach number so that 

once this is estimated the ACosB can be obtained. A 

curve,effectively a straight line as a first approximation, 

starting from the trailing edge i s drawn to the throat 

position. Blades having a straight line rortion from the 

trailing edge to the throat position are termed flat-back 
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blades. In general a modification is usually presented to 

provide for a small degree of curvature to this section. 

_In fact the small curvature in the vicinity of the throat 

ts necessary to complete the computer progranvne. 

(e) One now detennines the angle Bs at which the suction surface 
1 

intersects the leading edge line (as detennined by a 1). 

It is to be noted that the nose radius provides the extra included 

angle which has to be taken into consideration. Usually 

the angle a5 varies from a1 + 20° to a1 + 15°, i.e., 
l 

a1 + i angle + nose angle/ 2.0. 

where i angle = 0 to 5° and 

Nose angle ~ 20~ (Reaction Blades} 

(f) After finding e5 one then finds Bs . The angle s5 is the 
1 2 2 

angle made by the suction surface at the point Bas shown 

in Figure 4.4. Usually the angle 8s varies from a2 - 10° 
2 . 

to a2 - 5°. After knowing 8s ·and s5 , one calculates 
l 2 

ISin s5 I + !Sin s5, I, also once the exit throat is drawn 
1 2 

the value of x/b at the throat (point A.) is known. A 

rectangle of area !Sin 8s I + !Sin Bs I is then erected 
1 . 2 b 

with the base value of x/b at the point B and 'RS" 

on the Y-axis as shown in Figure 4.6. 

(g) On the rectangle erected, superimpose a histogram of equal 

area, with a peak value existing at some intennediate x/b 

value. This redefinition of the area described is, so far, 
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entirely optional but experience has shown that ~s 

maximum should take place within the range of 0.2 < ~ < .55. 

The main point to be noted here is that one is specifying 

the curvature over the suction surface and while the 

histogram is discontinuous for ease of analysis, the 

curvature cannot be. 

(j) Extend the radius of curvature line from point B as shown 
R 

in Fig. 4.4 and mark off the centre at a distance-f taken 

from the histogram. One then draws arcs of circles (with 

common tangents at junctions) of radii } values 

calculated from Fig. 4.6 which exi st between the appropriate 

values of x/ b as shown on the histogram. After drawing 

all the arcs from the exit throat to the leading edge, the 

suction profile is redrawn using a spline fitting technique. 

(k) Once the suction surface has been constructed one turnshis 

attention to the development of the pressure surface. Since 

the blade passage area ratio has to converge from its 

entrance area as shown in Figure 4.7 to the throat location, 

steps are taken to ensure that th i s convergence is 

monotonically decreasing. Since both inlet and throat areas 

are known,a curve similar to that shown in Figure 4.7 can 

be drawn to provide the ratio of channel width/throat width 

as a function of Rs/Rs throat . Once these points have 

been es tab 1 i shed, a smooth curve fitted through the points 

establishes the pressure surface. The radius of curvature 
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at each x/b on the pressure surf ace now have to be 

calculated and care must be taken to ensure that all radii 

of curvatures have the same sign. 

(1) Now one can draw in the two leading edge circles of 

.:ippropriate radii. A comment has already been made in 

Chapter 3 regarding current practice with respect to leading 

and trailing edge radii. 

(m) One then combines the pressure surface profile with the 

suction surface profile to provide a complete blade outline 

and one examines the resulting blade profile for general features 

·including the accuracy of inlet and outlet angles. 

(n) The next step is to draw in the equipotential lines across 

the channel at various stations and assuming a linear 

variation of either radius of curvature of suction surface (or of 

the curvature of the suction surface ),one calculates 

the surface pressure distribution on the suction and pressure 

surfaces of the blade, utilizing the equipotential's length 

at various stations, by simultaneously satisfying the 

continuity equation and the momentum equations. It 

is normal procedure to examine the pressure distribution 

around the blade for regions of high adverse pressure 

gradients. If these are found to exist then changes can 

be made, starting with the histogram, to 'alleviate such 

conditions. 

• 
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(o) Finally, another factor which could influence the final 

profile concerns the thickness of the blade, which should 

be reasonable in order to withstand the various loads. 

One would nonnally check the blade proportions, blade spacing 

etc. for strength consideration and also ease of manufacture. 

4.5 Pressure Distribution Analysis by the Method of Orthog.Qnals 

This is a method of analyzing flow through a passage which 

is formed by two successive blades. An orthogonal is defined to be 

any curve that intersects every streamline at 90 degrees between the 

flow boundaries exactly once. Figure 4.8 shows the three-dimensional 

orthogonal surface. The streamlines and their nonna1s are drawn to 

establish a grid for the flow solution. The first step i~ this method 

is to obtain a two-dimensional solution on an assumed mean stream surface 

between the blad~s. In cases where the distance between blades i s great 

and there is a large change in flow direction within the passage, the 

nonnals vary considerably in length and direction. Therefore, it becomes 

difficult to cbtain a direct solution of the flow passage without 

resorting to intennediate steps . The use of nonnals makes it possible 

to obtain a direct solution by the use of a set of arbitrary curves or 

streamlines from one blade surface to the other blade surfnce. The 

orthogonal remain~ fixed regardless of the number of streamlines used. 

By using this technique, it is possible to obtain a computer solution 
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to the two-dimensional problem which would be a numerical solution to 

the general equation which allows the calculation of flow properties along 

both the streamlines and orthogonals even with significlnt changes in 

both area ratio and flow direction. 

Assumptions: 

(i) The fluid is considered inviscid but compressible. 

( i'i ) Fl ow is steady. 

(iii) Flow has no radial component. 

The continuity equation for the flow through any 

orthogonal can be written as 

. no 
m = f p V dn 

0 

while the momentum equation has the familiar fonn 

ae ao p_i!_ 
p. v .. v. as-= an-= -ir-

where e is th~ deflection angle~ 

(4.2) 

(4.3) 

and fS- is by definition the curvature at a point on the stream-

1 i ne. Here n
0 

is the total 1 ength of the orthogonal line between the 

two boundaries. (i.e., the pressure surface and the suction surface). 

While V is the velocity along the streamline. 

Equations (4.2) and (4.3) can be numerically integrated along 

one of the orthogonals by assuming a velocity at either surface and then 
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calculating the pressure, density and. velocity at the neighbouring 

point taking the assumed velocity for the initial calculations and using 

the known value of radius of curvature at the point in question. The 

procedure can be continueduntil the opposite surface is reached always 

moving along the orthogonal. Once the velocities and densities at 

each and every point along the orthogonal are known, the total mass flow 

rate can be calculated. This mass flow rate is then compared with the 

design mass flow rate which of course is based on a unit height of the 

blade. If a difference exists between these mass flow rates, the 

assumed velocity is corrected to finally obtain the correct mass flow rate. 

From the same set of equations the velocities and pressures 

can be obtained provided that the curvatures of the streamlines at each 

and every point is known. It is obvious that a major point in the 

analysis remains the establishment of the radii of curvatures throughout 

the flow field. As a preliminary estimation if is usually assumed that 

either the curveture or radius of curvature varies linearly along the 

orthogonal from the suction surface to the pressure surf~ce. 

A c::>mputer program which has been developed to perfonn the 

above operations with the necessary assumptions is given in Appendix 

o and is further developed in the remainder of this chqpter. 

4.6 The Construction of the Orthogonals 

Later in this section the method of finding the pressure 

distribution is described. The length and position of th~ orthogonal is 



one of the input data required for th~ evaluation of th~ pressure 

distribution. 
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An orthogonal surface 1s perpendicular to a11 the stream-

1 iries which include the suction and the pressure surfaces of the blade. 

Very careful judgement and experience is necessary in the construction of the 

orthogonal lines and a sample of this construction is shown in Fig. 4.9 which 

shows a blade passage and a typical orthogonal. 

The suction surface of the blade is drawn using a series of 

arcs of circles as defined by a histogram which in turn depends on the 

blade turning angle. Thus all the centres of curvatures are known 

of the suction surface. The orthogonal 1 ines are not straight 1 ines in general. 

To draw the orthogonal lines between the suction and pressure 

surfaces, consider a point B on the suction surface, joi~ BO, where 

D is the centre of curvature of an infinitesimal length of arc near the 

point B. A point C is chosen on the pressure surface and a :nonnal is 

drawn to the blade surface at the point in question. Produce it to 

intersect DB at E, such that BE =CE. Then E lies on the mean stream

line. A smooth curve is drawn which has to be perpendicular to both 

surfaces as shown in Figure 4.9. In a similar fashion other points on the 

suction surface can be considered and the above procedure is repeated 

to construct orthogonal lines. 
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4. 7 Analytic Solution of Momentum Equations_ 

Momentum equations in the n, S co-ordinates system are 

given as 

l d v2 

·p-rn= - tr (4.4) 

(4.5) 

In the solutfon of these equations further assumptions are made as 

follows: 

(i) the flow is isentropic. 

(ii) ·Either the curvature of the streamlines laries li.near,ly 

along the orthogonal from the suction to the pressure 

surface or alternatively the radius of curvature varies 

linearly from the suction to the pressure surface. 

(iii} The mid-passage line is defined as a streamline and 

is referred to in this thesis as the midstream. 

Corresponding to the alternative conditions in item (ii) above, 

there exist '. two solutions which are given below. 

From equat1.on 4.5 at a point on a streamline 

JJp=-VdV 
p (4.Sa) 
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Substituting the value of -®.from equation 4.•Sa into 4.4 one obtains 
p 

the relation 

or 

dV V 
On= - 1< 

dV _ dn 
y- - l< (4.6) 

or using the definition of curvature this equation can be written as 

dV 
V = - C dn (4. 7) 

Since the curv~ture is assumed to vary linearly along the orthogonal 

one can write 

c = cs + ( c P - cs) ~o (4.8) 

Where C and Cs are curvatures at the pressure and suction surfaces 
p 

respectively, n
0 

is the length of the orthogonal line between the two 

surfaces, and n is the distance along the orthogonal measured from the 

blade suction surface. 

Differentiating equation (4.8) one obtains 

de = O + <c - C ) dn 
. P s no 
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and substituting the value of dn into equ~tion (4.7) one arrives at 

the relation 

- "o c2 
1 og v = cp - Cs x T 

or no . c2 
- 2(c - Cs) 

V = e P 

(4.9) 

which defines the velocity at any point as a function of curvature. 

The velocity at midstream is obtained as follows. 

v(Mid) = e 

therefore 

v = e 

no 
2 

2 ( C + CS) 
[C - p 4 ] 

which defines the velocity at any streaml 1ne interms of V (Mid). 
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Eliminating C from the above equation one obtains the final result in 

the form 

v = e 

which can be recast as follows 

(4.10) 

v = e 
V(r.1; d) 

Thus the velocity at any point is known in terms of midstream channel 

velocity. The V(Mid) not only has to satisfy equation (tl.10) but also 

the equation of continuity simultaneously. For the particular case 

when C P = Cs which may occur near the blade trai 1 i ng edge , the b 1 ade 

equation (4.10)reduces to the form 

v 
V(Mid) 

n (} - ..n. ) Cs 
o no 

= e 
(4. 1 Oa) 

If on the other hand, variation of the radius of curvature 

is assumed linear from the suction to the pressure surface then 
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(4.11) 

Substituting the value of dn from equation (4.11) into (4.6) one can obtain 

the following expression 

dV · "o dR 
V- = - RP - Rs lf 

Integrating (4.12) one finds 

nJ 
log V = - log R 

RP - RS 

The radius of curvature at the midstream is given by 

. . . 

Rs + R 
R(Mid) = 2 p 

n Rs + R 
log V(Mid) = R ~ R log ( 2 p 

p s 

Dividing equatic~ (4.13) by equation (4.14) it can be seen that 

n 
log v - o 

v(Mid) - RP - Rs 

R - Rs 
Rs + ....... P___,,_2 -

x log [------ J 
Re- + ( Rp .;,Rs )-'l 
~ no 

(4.12) 

(4.13) 

(4.14) 
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when Rs I- RP- the above equation reduces to 

"o cP. Cs 
C + (C - C ) ..n... 

v = [ 2 {-b s p no } 
v(Mid) cP + cs 

c;·-:cs 
J (4.15) 

4.8 Development of the Programme 

The theoretical derivation of the relations between midchannel 

streamline velocity and velocities at other stre~mlines across the same 
' ' ' 

orthogonal surfc!.ce are used in the computer prograillDl.e developed in Rerf)o]. 

The first part of the ·progralll!le deals with the calculation of the design 

mass flow rate, calculation of relative stagnation temperature, 

relative stagnation pressure and iterated mass flow rate. The second 

part deals with calculations of static temperatures and pressures for 

zero degrees angle of attack(or incidence). The mass flow rate/unit 

height of the blade is given by 

where 

* v * s m = Pl A IT 

S is the pitch in inches 

pl is ~h~ density of the gas 

VA 's the axial velocity 

(4.8. l) 



Density is given by the perfect gas law in the fonn 

P1 x 144. 0 
pl = R

9
T1 

where 

pl is the static pressure 

Rg is the gas constant 

and Tl is the static temperature of the gas. 

The static pressure is given by the isentropic relation 

where 

and 

where 

Pal is stagnation pressure at the i nlet 

TOl is stagnation temperature 

T is the static temperature at the inlet , 
1 

rel at ion, 

v 2 
1 

T1 = T 01 - 2g J c~ 
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(4.8.2) 

(4.8.3) 

given by the 

{4.8.4) 

vl is the resultant velocity at the inlet defined by the expression 
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The relativ~ stagnation temperature at inlet is obtained from the 

known total temperature and the blade speed in the following form 

(4.8.5) 

where 

w1 is the relative velocity at inlet. 

Relative stagnation pressure at the inlet is obtained by the isentropic 

relation 
y/y-1 

T 
01 rel . 

(,.-;::- ) 
01 

(4.8.6) 

Thus the relative total pressure at t he outlet is given by 

:: P01 -
1
P1oss 

re 

To initiate the iteration process, a va l ue of the midchannel 

streamline velocity is assumed. The orthogonal line is tnen divided 

into any number of equal parts the present program deals with eight 

subdivisions and each correspond to a channel between two streamlines. 

With the known value of suction and pressure surfaces curvatures and the 

length of the orthogonal (gauging), using equations 4.10, {4.lOa) and (4.15} 
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the velocities at 9 points along each orthogonal are obtained. Static 

temperature based on the absolute velocity tan be obtained from the 

relative stagnation temperature by using the energy equation. The 

static pressure is obtained by using the isentropic relation 

{see equation (4.8.3)). 

also the density at each streamline is calculated by using the equation 

{4.8.1). 

If Z(I) =p .( I) x W(I), where Z{I) is the mass flow rate/unit area. 

Since Z(l), Z(2), -----------are known at all the 9 points, along the 

orthogonal line, then the total mass flow through the channel is given 

by the followiny [28]. 

m = {.03489(Z(l)+Z(9)) + .20769(Z(2)+Z(8)) - .03273(Z(3}+ Z(l}) 

+ .37023 (Z{4)+Z(6)) - .16014(Z{5))} * G12:0 
The assumed velocity of the midstream V(Mid) channel is 

iterated to obtain a mass flow rate equal to the initially calculated 

mass flow rate at the inlet section within the desired accuracy. For the 

progranme at hand the deviation was programmed to be of the order of 

0.01%. Once the stream tube mass flow rate has been established then 

the average velocity can be calculated using either of the two expressions 
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which were arrived at on the assumption of a linear variation of either 

the curvature or radius of curvature. (See equations (4.10, 4.ioa, and 4.15)). 

Finally, the Mach number at each and every station is cal

culated based on the velocity as given above and the speed of sound 

based on the static temperature at the point in question. Once the 

correct value of midstream velocity is obtained the iteration stops 

and the values of velocities, pressures and Mach numbers are printed at 

9 points along the orthogonal. The output of the computer progranme 

was used to obtdin the velocity triangle at the outlet section and to 
d plot a graph of pressure gradient (*) versus arc length (s) 

where 

*= 
P; - p. 1 1+ 
s - s; + 1 1 

here pi ;: Pressure at ;th point 

while s· = Arc length from leading edge to i th point. , 
If the input mass flow is greater than the choking mass flow, the programme 

obtains the value of the choking mass flow and prints out this 

infonnation. 

4.9 Loss Distribution Along the Passage 

It will be observed that the present programme does not take 

into account any static press~re loss across the blade passage so that the 

·flow is always isentropic. Once the preliminary blade design has been 
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obtained then additional work is required to survey the boundary layer 

fl ow over the blades in order to determine the pressure lasses across 

the stage. 



CHAPTER 5 

RESULTS ANO DISCUSSION 

F·igures (1, 2, and 3} show histograms, (Le. history of 
b x . curvature of the suction surface} which are plots of ~- versus b 

for three different total turning angles (115°, 128°- 30', 140°} each 

with lift coefficients of .8, 1.0 and 1.2. As the total turning angle 

increases the area of rectangle fonned between ~ and ~ increases 
s 

and the same effect is observed by increasing the lift coefficient, 

keeping the turning angle constant. The area of the rectangle is 

given by 

A= I Sina5 I + Sinle5 I 
1 2 

where B = 
sl 

al + ll al 

and 85 - a + lJ. a2 2 - 2 

15° ~ < tia1 - 20° 
(These are arbitrary limits placed on the design) 

100 < < 50 
- - bc.&2 - -

It should be noted that the $~lect:lon of the histogram is 

entirely optional ·and . that if one selects p~orly,then losses· 

may increase while the work output and efficiency decrease. · If a 

histogram selected which has an area equivalent to the area 

represented by .·the 

71 
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basic rectangle (as described in Chapter 4), such that the peak value 

of the diagram lies near the leading edge then the result will be a 

sudden drop of pressure within a very short axial chord length. Moreover 

the peak velocity point will also be very near the leading edge. 

Because of this the design will also feature a very large region of 

adverse pressure gradient and thereby might result in a severe loss in 

efficiency due to separation. 

On the other hand, if the histogram selected is such that the 

peak of the diagram lies near the trailing edge then the pressure drop 

will be smooth but near the trailing edge the adverse pressure gradient 

will be quite severe, and the possibility of separation becomes 

more pronounced. 

The histogram selected with an equivalent area should be such 

that the curvature variation is not abrupt and is in small steps. It 

should be observed that the peak velocity point is very near to the value of 

~ = ~. Figures 1, 2 and 3 show that an attempt has been made to 

keep the -~- distribution reasonably symmetrical with each turning angle 
s 

and that while the number of steps are finite, one is in fact approxi-

mating a continuous distribution of curvature from the leading to the 

trailing edge. 

Figures 4(a, b, and c) show the profile shapes 

obtained as a result of the procedure shown in Chapter 4. It can be 

seen that the pitch (S) goes on increasing as the lift coefficient 

increases. The pitch (S) is given by the relationshi_p 
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Moreover, k~eping the lift coefficient constant as the total turning angle 

increases the pitch (S) also increases for symmetrical blades. Figures 

5 and 6 sh.ow : further theoretical profiles obtained for increased turning 

angles. ·rf we examine Figures 4(a), 5(a) and 6(a) , in which the lift 

coefficient is the same, it can be seen that as the total turning 

angle increase~ the peak value of curvature also increases for symmetrical 

blades. It also can be seen that the throat position with respect to 

the blade moves forward as one increases the turning angle with the lift 

coefficient held constant. 

As the total turning angle increases, the arec of inlet section 

increases while the outlet throat area decreases keeping the lift 

coefficient constant and the same effect is observed by varying the 

lift coefficient and keeping the total turning angle constant. It is 

to be noted that as the outlet angle increases the throat area reduces 

quite considerably,moreove~ the inlet section area continues to increase 

making the distribution of curvature very difficult. The blade profile 

thickn.ess is pure1y dependent on the curvature distribution given. The 

analysis will show regions of high velocity (greater than M = 1.0) on 

some portion of the blade surface and significant pressure changes both 

positive and negative. The length of the blade profile and length of 

the trailing edge portion are directly proportional to the total turning 

angle, the lift coefficient and the blade outlet angle. 
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If the curvature distribution varies widely from point to 

point, the profile obtained will likely be a discontinuous one. Good 

design should ensure that the radii of curvatures of the pressure as well 

as of the suction surface all have the same sign otherwise the flow 

passage cannot be of the converging type. Present analysis provides 

blade profiles see Figures4(a), {b) an·d (c), 5(a), (b) and (C) .and 6{ai (b) and 
which have very smooth variations in curvature on both surfaces. 

It will also be observed that the curvatures given along the 

trailing edge portion of the pressure surfac:eare very small indeed. 

In the final analysis it can be seen that the main area of blade design 

involves the suction surface from the throat location to the leading 

edge while the pressure surface is completely defined in the progranme. 

As one increases the lift coefficient and/or the turnin9 angle, the 

length of the suction surface under analysis becomes shorter. Great 

care must be taken in establishing theorthogonal lines, particularly 

when dealing with high turning angles especially so if it envolves high 

lift coefficients. 

Figures 7, 8 and 9 shm-1 plots of pressure distribution around 

turbine blades as a function of the turning angle and lift coefficient. 

ln all the pressu;"e distribution curves the point of minimum pressure 

lies between .2 ~ ~ ~ .55 which as mentioned depends on the histogram 

selected. The area enclosed by the suction and pressure surfaces goes 

on increasing as the turning angle increases keeping the lift coefficient 

constant and the same is true if one holds the turning angle constant 

and increases the lift coefficient. On the suction surface the pressure 
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drops very quickly over the first half of the blade chord and then 

rises gently over the last half of the section. On the pressure surface 

the pressur~ coefficient remains relatively constant over 70% of the 

chord and is negative over the remaining 30%. 

Since one of the boundary conditions dictate the exit plane 

conditions, i.e., atinospheric pressure, then the pr~ssure at the inlet 

increases with both turning angle and lift coefficient. The main 

point of the design is to keep the region of adverse pressure gradient 

as small as possible consistent with having a value as low as possible. 

It can be concluded that the theoretical losses associated 

with these blades are small. The power output per blade goes on 

increasing as the total turning angle and the lift coefficient are 

increased. For instance, the increase in power per blade in the case 

of 128°-30', CL = .8 is approximately 10% higher than the power output 

for a blade with a turning angle of 115° and the same lift coefficient. 

Figures 10, 11 and 12 show plots of the pressure gradient 

(~) versus profile length. It can be seen that there is a drastic 

rate of decrease of pressure near the inlet section to the point of 

minimum pressure. The slope of these curves goes on increasing for 

a turning angle and increasing the lift coefficient. The slope of the 

curve is very small once the point of minimum pressure is passed showing 

that the adverse pressure gradient is almost negligible. Figure 10 

shows that the point of minimum pressure appears at a lower value 

of profile length (s) as the lift coefficient increase~. The same can 

be said for an increase in the turning angle for symmetrical blades. 
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Finally, let us observe the effect of turning angle and 

lift coefficient on the velocity triangles. Figures 13, 14 and 15 

show the velocity triangles at both the inlet and outlet sections. 

The total change in tangential velocities continue to increase as the 

lift coefficient increases for a particular turning angle. Secondly, 

the axial velocity at the outlet section continues to increase as the 

outlet angle decreases. Moreover, the axial velocity at the outlet section 

goes on increasing as the lift coefficient increases for a constant 

turning angle blade. The rate of change of momentum continues to 

increase with lift coefficient constant and if one holds the lift 

coefficient constant then the same is true for increase in the total 

turning angle. 

In practice the angle of attack can not be exactly zero 

degrees. So while designing these blades any angle of attack from zero 

to five degrees has been taken into account. Finally let us observe 

the theoretical performance of these blades at other than zero degrees 

angles of attack. Figures 16 (a), {b) and (c), 17 (a), (b), and (c) 

and 18 (a), (b), and (c) show the pressure distribution for incidence 

angles of 3° and 9°. The pressure at points on the suction surface 

near the leading edge rises and then decreases causing the increase 

in magnitude of, and the region of, adverse pressure gradient. The 

pressure rises on the entire pressure surface by a very small amount. 

There is a net 103s in power developed which can be observed by noting 

the net area under the curves of the pressure and the suction surface 

of the .9° angle of attack. 
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Figure 19 shows the plot of pressure distribution along 

an orthogonal for a blade having a total turning angle of 115° 

and a lift coefficient of .8. This curve clearly indicates that the 

pressure rises very quickly up to the first three or four streamlines 

position and then the rate of increase of pressure is much more 

gradual over the remainder of the orthogonal length. 



CHAPTER 6 

CONCLUSIONS 

This study represents a set of nine blades designed for 

three different total turning angles (140°, 128°-30 1
, 115°} each with 

lift coefficients as defined bv 7wP.ifel of .8, 1.0, and 1.2. The angle 

of incidence of the flow was varied in a . consistent manher fnom zero to nine 

degrees for each blade in order to observe the affect of such incidence 

changes on the blade perfonnance. 

The results of the present study indicate that the power 

developed increases with an increase of the total turning angle while 

keeping the lift coefficient constant. The same is true when the total 

turning angle is kept constant and the lift coefficient is increased 

from .8 to 1.2. It was observed that the adverse pressure gradient 

and the losses associated could be reduced considerably by developing 

an improved profile. This was achieved by suitably deflning the 

curvature of the pressure surface, the curvature of the suction surface 

and the orthogonal length to minimize the adverse pressure gradient. 

The blades were designed without twist. which will add to the ease of 

manufacture partic;ularly for cascade testing. 

This analysis allows the conclusion that the blade efficiency 

can be increased, 
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(a) by using lift coefficients greater than .8. 

(b) by increasing the toal turning angle. 

(c) by using the respective profile developed as shown 
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in Figures 4, 5, 6,((a}, (b} and (c}) for the correspond

ing turning angles and lift coefficients. 

The use of hig~ turning angle blades will allow an overall reduction in 

the number of blades and therefore reduce both the weight and the cost 

of a turbine of specified power. 
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APPENDIX A 

CURVATURE DISTRIBUTION AS A FUNCTION OF BLADE ANGLES 

x 

........ 
.... 

......... 

x. y are the co-ordinate axis. 

Let Rs be· the t-adtus of curvature at any point·(x1 y). 

The area enclosed between the profile curvature (froil A to B) and x-axis 

is given by 

II 

• • • 

B 

Area·• f ~ dx 
A 

(A.1) 
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Putting dy/dx = tan e . . . 

• . . Equatfan · (A.1) reduces to the following fonn 

Area • 

B 

j Cosie de • ISin el 
A(e) 

B(e) 

A 

As A (e) = Bs and B(e) =-s5 1 2 

B 

••• Area • .r ~ dx. ISin asll + IS1n as21 
A 
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APPENDIX B 

DATA PERTINENT TO BLADES 

Total Turning Blade Inlet Blade Outlet Lift Coefficient Pitch Axial Chord 
Angle (T.A) Angle (a1) Angle (a2) (Cl) (s) (b) 

degrees degrees degrees inches inches 

115 50 65 .8 .671 1 

115 50 65 1.0 .839 1 

115 50 65 1.2 1.0 l 

128-30' 64 64-30 1 .8 .520 1 

128-30' 64 64-30 1 1.0 .650 l 

128-30 1 64 64-30' 1.2 .780 l 

140 65 75 .8 1.000 1 

140 65 75 1.0 1.27 1 

140 65 75 1.2 1.52 1 



APPENDIX C 

SAMPLE CALCULATIONS 

For turning angle = 115°, Lift Coefficient = .a 

Let a1 • 50° 

••• a2 • 65° 

Putting values of CL, a1, a2 in equation C.l one obtains 

~ •• 671 

Let 

• . . 

. . . 

b = 1 11 

s •. 671 

0 c .422 11 S° = OS a2 = 
0 = .422 x .671 = .284 11 

B = al + 15° sl 

a SO+ 15° • 65° 

B = a2 - 10° 
s2 

= 65° - 10° = 55° 

••• ISin Bs I+ ISin Bs I = 1.7 
1 2 
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APPENDIX D 

THE COMPUTER PROGRAM FOR PRESSURE DISTRIBUTION 

This program determines the pressure distribution along an 

orthogonal line with the given values of gauging and radii of curvature 

at pressure and suction surfaces. Any number of sections can be 

fed along the blade surface and the values of pressure are obtained 

at nine points along each orthogonal and at every section. The 

program also gives the values of velocities and Mach numbers at all 

these points. 
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A MACH 

AMAS 

AP 

AR 

AT 

AV 

ACC 

COR 

CP 

cs 

Dl' D2' DJ' D4 

DELG 

DELP 

DIF 

G 

GAMMA 

GASC 

GAUGE 

GUESS 

GESS 

APPENDIX D .1 

LIST OF SYMBOLS USED 

119 

Mach Number 

Design Mass Flow Through the Channel. 

Static Pressure. 

Density. 

Static Temperature. 

Resultant Velocity. 

Allowable Difference between Design 
and Calculated Mass Flow. 

Correction for Iteration. 

Curvature of Pressure Surface. 

Curvature of Suction Surface. 

Constants Containing gamma. 

Distance between Two Adjacent Streamlines. 

Pressure Loss through the Passage. 

Difference between Two Assumed 
Velocities. 

Gravf tatfonal Constant. 

Ratfo of Specific Heats. 

Gas Constant. 

Distance between Suction and Pressure 
Surfaces along an Orthogonal. 

Assumed value of Mid-channel Velocity 
at the begf nnfng of Iteration. 

Guess x Design Mass Flow/Calculated 
Mass Flow. 



JX 

POO 

POW 

RATIO 

REL TOP 

REL TOT 

RETOPI 

RETOPO 

RO 

RPR 

RT 

RVTI 

RVTO 

SPACE 

TMAS 

TOO 

u 

VAX 

VCOR 

W(l-9) 

WCR 

z 

120 

An Input Index for the Choice of 
Type of Solution Needed. 

Total Inlet Pressure. 

( (3 n ) 1 1 c· ) n )2 no Cs 'S' - n + 'S' cP~ cp-cs n 
0 0 

Design Mass Flow/Calculated Mass Flow. 

Relative Total Pressure. 

Relative Total Temperature. 

Relative Total Pressure at Entry. 

Relative Total Pressure at Ex;t. 

Density. 

Static Pressure. 

Static Temperature. 

Tangential Velocity at Inlet. 

Tangential Velocity at Exit. 

Spacing 

Calculated Mass Flow Rate in the 
Channel. 

Total Inlet Temperature. 

Blade Speed 

Inlet Axial Velocity. 

Correction for Iteration. 

Velocity of Fluid at Streamlines, along 
the Orthogonal Line. 

Velocity of Sound. 

Density' x Velocity. 



APPENDIX D.2 

FLOW CHART 

DAT-:·-]. 
.------=--c 
[ Calculate Inict Conditions I 

i -
!calculate :Mass flow through I 
L. one chan~1el/unit hei~!___J 

__ T=-~-·-J 
Set Ratio = 1 

I _____ 1 
ulate Conditions Relative 

To Rotor 

Read Overall INPUT 

Calculate Outlet Conditions 
And Eff iciertcy 

Read Input Data Of I 
--0-n~Togon~l J 

et correction to high] 
va.lue and guess v-

.. !.lr_e.am ---

Linenr Vnriation. --------
Of Radius Cf 
Curvature 

Linear Variation 

Of cUrVature I 
121 ! 

I 
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l 
. J_ __________ _ ____ J __ _ 

Caiculate Pressures, Velocities t_ Mach No. 's along Orthogonal 

Calculate Pressures, 
Velocities & Mach No. 's 

Calculate Mass Flow· 
Through Channel 

Correct Mass 
Flow 

EQUAL:!: 
ACCUAACY 

YES 
v 

PRINT _J 
RESULTS ...._____,.._ 

CAJ...L EXIT' 

NO 

------·---·---
et New Value or" 

Guess Eq·.lal To Old 
Valve x Ratio ..__ _________ _ 

L 
Find ~io--l 

Of Calculated 1 

And Correct Mass I 

6 
Flows And Set J 

Correction ~qual 
To The Difference -------·----
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