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CHAPTER I 

PHONON FREQUENCY DISTRIBUTIONS 

1.1 General Theory 

In this Chapter we discuss the problem of lattice 

dynamics and the sources of data about the phonons. The 

numerical methods used to construct weighted phonon 

frequency distributions are considered and the Chapter 

concludes with a detailed discussion of the computer 

programme used to calculate isotropic weighted phonon 

frequency distributions. 

The calculations are empirically based in that 

information concerning the phonons is gained from inelastic 

neutron scattering. Dispersion curves are established in 

this way for high symmetry directions in the first 

Brillouin zone (FBZ) • It is then possible to fit a set of 

force constants for several nearest neighbour shells using 

the Born-von Karman model. This is done in such a way that 

the fitted force constants can be used to obtain the phonon 

modes, to a high degree of accuracy, for both the high 

symmetry and off symmetry directions throughout the FBZ. 

Using the harmonic approximation the classical 

equation of motion for the tth ion is, 

1 
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- Mu ( £) = L: ip af3 (£I£ I ) '!s (£I ) ( 1.1) 
-a S£1 

where u (£) _a is the ath component of the excursion from 

equilibrium of the £th ion and il>aB(£,£ 1) gives the force on 

the £th ion in the ath direction due to a unit displacement 

of the £ 1th ion in the s direction. The Hamiltonian is 

written with the potential energy expanded in a Taylor 

series to second order (harmonic approximation) , 

H = VO + 1 l: M'Cl2 ( £) + !_ 
2 £a -a 2 

and the derivatives are evaluated with all atoms at their 

equilibrium positions ~~· This expression allows us to 

conveniently define the force constants as the second 

partial derivative of the effective ion-ion potential, 

( 1. 3) 

where ~(£) = ~~ + u(£) and it must be remembered that R(£) 

and ~(£) have a time dependence which will become explicit 

shortly. From equation (1.3) and considerations of symmetry 

we have for a perfect lattice, 

(1.4) 

where m = £- £ 1 . 
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Clearly the motion of the ~th ion described by 

equation (1.1) is coupled to the displacement of all other 

ions. We assume a solution of the following form, 

i[k.R0 - w(k;A)t] 
u(~,t) = l: ! e:(k;A)e - -~ 

k,A 
1 ( 1. 5) 

where the time dependence appears explicitly and ~ is any 

point in the FBZ. The vector ~(~;A) is the phonon polariza­

tion vector (eigenfunction) and w(k,A) is the corresponding 

normal mode (eigenfrequency) at the point ~ in the FBZ. This 

solution effectively decouples equation (1.1). By inserting 

equation (1.5) into (1.1), using equations (1.4), and 
-ik.Ro 

multiplying each side of the result by e - -~ we are able 

to write, 

2 w (k;A)e: (k;A) 
- -a -

i~-~~· 
~aS(m;O)e ]~S(~;A) . 

( 1. 6) 

The expression in square brackets in this equation does not 

depend on ~ and ~· but rather on m and k. We, therefore, 

define the quantity 

-ik.R0 
1 - -m = - l: e 
M m 

~aS (m;O) 1 (1.7) 

which is a function of k in the FBZ and is called the 

dynamical matrix. It can be readily calculated in terms of 

force constants which, as has been pointed out, are 
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obtainable using the Born-von Karman model. Combining 

equations (1.6) and (1.7), we have, 

( 1. 8) 

In the alkalis this equation reduces to the simple eigen-

value problem of diagonalizing the 3x3 hermitian matrix 

D 0 {k) at n points kin the FBZ. This procedure yields the 
a~ - -

eigenvalues w(k;A) and eigenfunctions £(k;A) that we have 

previously introduced. 

We now wish to consider the electron phonon 

interaction. Following Carbotte and Dynes (1968) the 

potential energy of an electron at the point r an a lattice -
can be written, 

W(r) = 2: w (r - R ) 
.R, _.R, 

( 1. 9) 

where w is the electron-ion pseudopotential. The one 

orthogonal plane wave (OPW) approximation is assumed, 

(justification is offered in Chapter II) , and the scattering 

of an electron from state I~> to I~+~> is described by the 

matrix element, 

(1.10) 

where V is the total crystal volume. Following the treatment 
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of Trofimenkoff (1969) we define a static structure factor, 

s (q) -
1 -iq.R(t) - N 2: e - -

.Q, ' (1.11) 

and then rewrite equation (1.10) in the more convenient form 

(1.12) 

where, 

1 = no J 
-i(k+q).r () ik.r d3 

e - - - w r e - - r , 

(1.13) 

is the pseudopotential form factor. Since in the one OPW 

approximation we only consider scattering on the Fermi 

surface, the matrix element is only a function of momentum 

transfer. The maximum momentum transfer allowed is, 

therefore, 2kF, the diameter of the Fermi sphere. 

For small displacements the structure factor can be 

expanded to first order to obtain the electron phonon 

contribution to the hamiltonian, 

s (q) = 1 2: 
N .Q, 

. Ro 
1 -l.q. n 

"' 2: e - _x,{l 
"' N .Q, 

where the abbreviated notation ~.Q, has been adopted in place 

of u(t). It is convenient at this point to introduce the 

electron-ion hamiltonian in second quantized notation, 
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H 1 . e -J.on = (1.15) 

where ckt+ and c are the electron creation and q;cr k;cr 

annihilation operators, respectively, which describe 

transition from state I~> to I~+~> with spin cr. Equations 

(1.12) and (1.14) are now substituted into equation (1.15) 

to yield, 

Hel-ph = L: 
q,k,cr - -
x ct c 

k+q;cr k;cr (1.16) 

where the contribution of the first term of equation (1.14), 

(which leads to the equilibrium energy), has been dropped. 

We are left with the hamiltonian for the electron phonon 

interaction. 

To further reduce the expression for H 1 h we e -p 

expand the excursions from equilibrium ~~ in terms of normal 

coordinates Q(k';A), -

1 E 
/MN'k';A 

ik' .R0 

Q(k';A)E(k';A)e- -~ (1.17) 

where the sum over k' extends over the FBZ and M is the ion 

mass. It is important at this point to appreciate the 

importance of the expression, 



-i(q-k') .R0 
1 L e - - -~ = 
N ~ 

6 k'-q,K 
- - -n 

where K is a reciprocal lattice vector. As the sum over 
-n 

~· is performed in equation (1.17) and k' sweeps the FBZ, 

7 

(1.18) 

the Kronecker delta will be non-zero for only one value of 

k': the value for which K + q = k' is in the FBZ. We can, 
- -n 

therefore, formally replace ~· by q since the phonons are 

completely described in the FBZ and g is read as reduced to 

the FBZ. This applies to the arguments of both the normal 

coordinates Q(q,A) and the polarization vectors :<~;A). 

By expanding the normal coordinates in terms of 

phonon creation and annihilation operators, 

Q (k; A) I (1.19) 

and using equations (1.16), (1.17) and (1.18) we can write 

the electron phonon interaction hamiltonian as, 

Hel-ph = (1.20) 

where the electron phonon coupling constant is defined by, 

gk+q,k;A _ -i[ t ]112 q.E:(q;A}<k+qlw(r) lk> 
2MNw(q;A} - - - - - - -

(1.21) 

From equation (1.20) it is clear that g is the scattering 

amplitude for phonon mediated scattering of electrons from 



state I~> to state I~+~> on the Fermi surface. 

We have thus far considered the theory of phonons 

and the electron phonon interaction. We now apply this 

information to construct phonon frequency distributions. 

These weighted frequency distributions will be useful in 

the calculations of transport properties in the alkalis. 

Following Carbotte and Dynes (1968) the phonon 

density of states can be written, 

F (w) 1 = N" L: 
>.. I 

d
3

q o(w- w(q;>..)) 
(2'1T) 3 

I 

where the integral is restricted to the FBZ. From a 

knowledge of the w(q;>..) gained by diagonalizing the 

dynamical matrix throughout the FBZ, we can construct a 

histogram of phonon frequencies and thus obtain an 

approximate phonon frequency distribution or density of 

phonon states. 

A distribution arising in superconductivity which 

is closely related to the phonon density of states can be 

defined as, 

2 
lgk,k';>..l 

8 

(1.22) 

(2'1T)3 VF 
o (w-w(k-k' ;>..)) 

a
2

(w)F(w) = 

(1.23) 



where vF is the Fermi velocity and the integrals are over 

the Fermi surface. Since it is assumed that the Fermi 

9 

surface is spherical and that the coupling constant g depends 

only on momentum transfer, we can reduce the two surface 

integrals to a three-dimensional integral over momentum 

transfer, ~· The expression can, therefore, be written in 

the more convenient form, 

= 1 2: 
N A. 

I· 

(1.24} 

where the integral extends throughout a sphere of radius 

2kF and the weighting factor is given by, 

( 1. 25} 

In equation (1.25} m is the electron mass and M is the 

ionic mass. The similarity between equations (1.22} and 

(1.24} suggests that the two distributions can be calculated 

in a similar manner. This is in fact the case although in 

equation (1.24} the integration must be performed throughout 

a sphere of radius 2kF rather than simply throughout the 

FBZ. The weighting factor, equation (1.25}, can be calculated 

readily since we obtain both the eigenfrequencies w(~;A.} and 

the eigenfunctions ~(~;A.} from the diagonalization of the 

dynamical matrix within the FBZ or in the case of equation 

(1.24}, throughout a sphere of radius 2kF. 



From calculations of transport properties we can 

define another phonon frequency distribution, 

1 
N r 

A I 
d3q _.s:. ---=-

3 2 L, (q) 8 (w - w (q; A)) 
(2iT} 2k 1\ -

F 

2 2 It contains the additional weighting factor q /2kF 

corresponding to (1 - cose}. The contribution of this 

factor is apparent when one considers the importance of 

large angle scattering in transport properties such as 

resistivity. In a manner similar to F(w) and a 2 (w)F(w) 

this distribution can be readily calculated on the basis 

of the theory considered in this section. 

10 

(1.26) 
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1.2 Numerical Techniques 

Now that the theory has been considered we turn our 

attention to the numerical techniques employed to calculate 

phonon frequency distribution functions. Gilat and Dolling 

(1964) and Gilat and Raubenheimer (1966) have developed a 

computer programme which calculates the phonon density of 

states F(w). They employ a numerical extrapolation 

technique which greatly increases the sampling size and 

hence the frequency resolution without unduely increasing 

the computation time. Their technique which applies to the 

FBZ for F{w) has been generalized by Carbotte and Dynes 

{1968) to sample beyond the FBZ to a radius of 2kF and to 

include a weighting factor proportional to the electron 

phonon coupling constant. This allows calculation of 

a 2 {w)F(w) and other frequency distributions to a high degree 

of accuracy. 

The computer programme itself is described in some 

detail in Appendix A. The discussion which follows in this 

Section will, therefore, be concerned with the theory behind 

the numerical methods. 

For cubic crystals, symmetry considerations allow us 

to restrict our attention to a 1/48 irreducible sector of 

the FBZ. This in itself affords great saving in computation, 

for in essence our task is that of solving the dynamical 
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matrix DaS(~) at all points gin the FBZ. At least this is 

the case for F(w). In calculating a 2 (w)F(w) and similar 

distributions, it can be seen from equation (1.25) that the 

weighting factor has a significant q dependence. Since we -
wish to consider umklapp processes we must extend our 

sampling of g in the Brillouin Zone (BZ) to include all 

points within a sphere of radius 2kF. Dynes (1968) achieves 

this end by recognizing the repeatability of the dispersion 

curves in the second zone and beyond. He constructs a set 

of coordinate transformations which define points g in an 

extension of the 1/48 irreducible sector beyond the FBZ 

boundary and less than 2kF' in terms of points in the 

corresponding FBZ. Hence it is possible to obtain solutions 

for DaS(g) to radius 2kF in the BZ by solving the DaS(g) 

only within the 1/48 irreducible sector of the FBZ and 

carrying out the relevant transformations. This transforma-

tion technique contributes to a considerable reduction in 

calculation time since matrix diagonalization is the slowest 

part of the computation. 

We are left then with the problem of diagonalizing 

the DaS(~) in the 1/48 irreducible sector of the FBZ. This 

is accomplished very efficiently using the extrapolation 

method which effectively extracts "all" frequencies and 

requires only a minimum number of diagonalizations. 

Previously we have demonstrated that the dynamical 

matrix D~S(g) can be obtained from a knowledge of the force 



constants, equation (1.7). Using a slightly modified 

notation we write the corresponding secular equation, 

Diagonalization of D~S(g) results in a diagonal matrix 

0 
AAA(g) satisfying 

where 

and U(q) is a unitary matrix which diagonalizes n°(q). 

Extrapolation is carried out by solving for eigenvalues 

w0 (g;A) at evenly spaced points in the FBZ and then 

establishing other eigenvalues by taylor expanding about 

13 

(1.27) 

(1.28) 

(1.29) 

these intermediate points. The g's are chosen sufficiently 

close together that linear extrapolation is a good 

approximation. 

The expansion is obtained by calculating the 

gradient of phonon frequency w(g;A) and this is accomplished 

in the following way. First, we establish modified dynami­

cal matrices nY(q + e oq) where e is a unit vector along y y y 

the yth cartesian axis and oqy is a small increment in the 

same direction. The difference matrix is formed, 
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(1.30) 

and perturbation theory is employed to obtain ni = 6(w~(~;A), 
the change in the Ath eigenvalue of n°(q). We have 

where 

n
y '\., 
A "' 

(1.31) 

Gilat and Dolling (1964) point out that higher order terms 

are small so only the first term in equation (1.31) is 

retained. Using this fact and the definition of ni, we 

can write, 

['V w(q;A)] 
-q - y 

!:J. ,y (q) 
AA -
oq 

y 

so we now have a convenient method of calculating the 

gradient of w(~;A). The phonon frequencies at these 

intermediate points will, therefore, be 

The extrapolation method is actually applied by 

considering the FBZ divided into a uniform simple cubic 

(1. 32) 

(1.33) 

mesh of points q , separated by a constant distance. Each 
-c 



q is considered to be at the center of a small cube 
-c 

throughout which extrapolation is carried out at a finite 

15 

number of points. The cubes are small enough that linear-

ity is a reasonable assumption. 

It is possible to consider a constant frequency 

surface associated with each intermediate point g in the 

cube. The number of frequencies between w
0

(q ;\) and 
-C 

w0 (q ;A) + dw is, therefore, proportional to the volume 
-C 

element contained between the two constant frequency 

surfaces. The contribution of all frequencies w(q;A) is, 

therefore, taken into consideration in constructing the 

frequency histogram. 

In practice the mesh of points gc is divided up into 

five regions and the spacing decreases from region to region 

as one approaches the origin. This is necessary since a 

finer mesh is required to adequately represent the acoustic 

modes near q = 0. Some of the cubes will lie on the 

boundary of the 1/48 irreducible sector. They are, there-

fore, weighted somewhat differently from those cubes which 

lie in the middle of the sector. In establishing suitable 

mesh spacings Dynes and Carbotte (1968) systematically 

reduced the spacing until stable results for a resistivity 

calculation were obtained. 

The basic techniques described in this Chapter have 

been rigorously tested in the earlier F(w) programme of 

Gilat and Raubenheimer (1966), and their results agree 



closely with experiment. A further indication of the 

validity of the methods is that Van Hove singularities 

16 

in the frequency distributions are clearly resolved. This 

can be seen in Fig. 1.1 where phonon frequency distributions 

for potassium are displayed. 



Fig. 1.1 Frequency distributions for Potassium 

F(V) 

2 
a.tr(v)F(v) 

a. 2 (v)F(v) 

Note: a.~r(v)F(v) and a. 2 (v)F(v) have been 

scaled up by a factor of 10. 
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CHAPTER II 

SCREENING THE ASHCROFT PSEUDOPOTENTIAL 

2.1 General Theory 

For the alkalis it is possible to consider the 

electrons in two groups; those in nonlocal conduction 

states and those localized in core states. The two 

separate states are orthogonal by the exclusion principle. 

Because electrons in the alkalis can be considered in this 

way we are able to apply pseudopotential theory to describe 

the interaction of electrons with the lattice. 

In essence, use of the pseudopotential method allows 

us to transform the problem of electrons in conduction 

states interacting with ions so that the mathematical 

treatment is simpler. Instead of dealing with real 

conduction electron wave functions in a real interionic 

potential, we make a transformation and solve instead an 

equivalent but simpler problem. We consider pseudoelectron 

wave functions of orthogonal plane waves (OPW) in a 

pseudopotential. The result is applicable to our original 

and mathematically more complicated problem. 

One can express this orthogonalization between core 

and conduction electron states as an extra repulsive term 

adde d to the original attractive electron ion potential. 

18 
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Both t~rms act on the pseudoelectron wave function and the 

resulting cancellation between attractive and repulsive 

-- terms yields a weak pseudopotential. The pseudoelectron 

wave function may, therefore, be expanded in a small number 

of OPWs. This justifies the assumption that a one OPW 

approximation is adequate for the alkalis. 

From pseudopotential theory we are able to derive 

the matrix element for scattering from state !~> to state 

I~+~> and we can write, 

(2.1) 

Here we have employed the local approximation so that the 

bare pseudopotential w0 (q) is a function of momentum trans-

fer only. Equation (2.1) describes the bare pseudopotential 

associated with each ion. 

For the purpose of this discussion we restrict 

ourselves to the Ashcroft pseudopotential as it has been 

found to give a satisfactory description of the properties 

of the alkalis, Hayman and Carbotte (1971). It can be 

written as an effective potential, 

r > R c 

r < R c 

(2.2) 
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The parameter R is adjustable and is expected to be close 
c 

to the usual ionic radius. In the region r < R the core 
c 

states are orthogonal to the plane wave like conduction 

electron states and the net effect is a cancellation leaving 

the weak pseudopotential. In momentum representation we 

employ the analytic form, 

cos(q R a) 
c 

( 2. 3) 

where n° is the ionic volume and a is the lattice parameter. 

The adjustable parameter R is established by fitting to c 

electrical resistivity data at lOOK. 

In practice the pseudopotential seen by a conduction 

electron in an OPW state is modified or screened by the 

presence of other conduction electrons. This effect is 

described by a dielectric function E*(g) which is not to be 

confused with the phonon polarization vector. The screened 

pseudopotential is written, 

w(q) = ( 2. 4) 

We now concentrate on the dielectric function 

although consideration is limited to two types. In general, 

the dielectric function can be written, 
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2 
(~ E ) -1 e: * ( q) 1 + [1 - f (q) ] 4TIZe F (q) = 

noq 
2 3 F 

( 2 0 5) 

where 
4k2 - 2 

1 F q 
12kF + :I F(q) = 2 + _Q,n 2kF 8kFq 

(2.6) 

The factor f(q) is an adjustable function which 

accounts for exchange and correlation effects. We consider 

two cases. The first of these ignores many body effects 

and we obtain the Hartree or Lindhard dielectric function 

by setting f(q) = 0. 

Recently, Singwi et al. (1970), have constructed a 

factor by a self consistent method, which considers 

exchange and includes Coulomb correlation effects. The 

factor is incorporated in the dielectric function by making 

the substitution, 

f(q) 

2 
-B(q/kF) 

= A(l - e ) (2.7) 

In this equation the constants A and B are weakly dependent 

on the density parameter r
8

, which is defined by, 

where a 0 is the Bohr radius. Parameters relevant to 

pseudopotential calculations are tabulated in Table (2.1), 

following Price et al. (1970). When the factor defined in 
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TABLE 2.1 

PSEUDOPOTENTIAL PARAMETERS 

Li Na K Rb 

a Hayman 3.4853 4.2268 5.2275 5.5855 

asingwi 3.478 4.225 5.225 5.585 

rs 3.236 3.931 4.862 5.197 

A 0.999 0.995 1. 007 1. 008 

B 0.258 0.2625 0.249 0.247 

R 1.000353 0.8282 1.0353 1.0422 c Hayman 

R 0.959 0.878 1.105 1.119 
cMason 
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equation (2.7) is included in the dielectric function, the 

result will be referred to as the Singwi dielectric function. 
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2.2 Calculations and Results 

Calculations of both Hartree and Singwi screened 

Ashcroft pseudopotentials have been made in order to assess 

the importance of including correlation and exchange. 

Figures (2.1) to (2.4) show the result of inclusion of many 

body effects in the dielectric functions of several alkalis. 

For the same value of R 1 the shape of the pseudopotential c 

is changed significantly. 

The value s of R for the Hartree dielectric function c 

were established by fitting to the electrical resistivity. 

When we fit the Singwi R in the same way the node is shifted. c 

This is significant since transport properties are very much 

dependent on the position of the first node of the 

pseudopotential. If the node is less than 2kFI then 

significant contribution from urnklapp processes is present. 

This is the case with lithium. 

In Table (2.2) we compare electrical resistivities 

calculated using the different dielectric functions. It can 

be seen that for the same values of R 1 a change in the c 

screening can have as much as a 40% effect on the resistivity. 

Clearly the inclusion of correlation and exchange 

has a significant effect on the pseudopotential. It should 

be remembered, however, that the Ashcroft pseudopotent ial 

itself is very crude. Before complicated screening can be 



Fig. 2.1 Ashcroft pseudopotentials for Lithium 

Hartree Screening 

R = 1.000353 a = 3.4853 
c 

Singwi Screening . . . 
R = 1.000353 a = 3.4853 

c 

Singwi Screening - - -

R = 0.959 a = 3.478 
c 

Note: a is the lattice parameter. 



(X) 

0 

0 

1.{') 

0 

0 

0 

0 

1.{') 

0 

. ·~ 
-~ . 

"\. 
·~ 

(so.IaqpX~) (b) l"l 

N 
1.{') 

N 

25 

N 

0 

(X) 

0 

0 

N 

0 

0 

0 



Fig. 2.2 Ashcroft pseudopotentials for Potassium 

Hartree Screening 

R 
c 

= 1.0353 a = 5.2275 

Singwi Screening . . . 
R c = 1.0353 a = 5.2275 

Singwi Screening - - -

R = 1.105 a = 5.225 c 

Note: a is the lattice parameter. 
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Fig. 2.3 Ashcroft pseudopotentials for Sodium 

Hartree Screening 

R = 0.8282 a = 4.2268 c 

Singwi Screening . . . 
R = 0.8282 a = 4.2268 c 

Singwi Screening - - -

R = 0.878 a = 4.225 c 

Note: a is the lattice parameter. 
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Fig. 2.4 Ashcroft pseudopotentials for Rubidium 

Hartree Screening 

R = 1.0422 a = 5.5855 
c 

Singwi Screening . . . 
R = 1. 0422 a = 5.5855 c 

Singwi Screening - - -

R = 1.119 a = 5.585 . c 

Note: a is the lattice parameter. 
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TABLE 2.2 

ELECTRICAL RESISTIVITY p(T) FOR SODIUM (~n-cm) 

CALCULATED EXPERIMENTAL 

Hartree Singwi Singwi* Cook ·et al. 

T Screening Screening Screeni~'g 0.:972~ 

(Kl) 0 0 '0 

R = 0.8282 A R = 0.8282 A R = '0 .rs i7:8 A c c c 
0 0 · C!) 

a = 4.2268 A a = 4.2268 A a = 4.225 A 

10 0.00146 0.00210 0.00094 

20 0.0275 0.0409 0.0220 

30 0.104 0.156 0.0942 

40 0.223 0.337 0.215 0.176 

50 0.365 0.551 0. 361 0.316 

60 0.514 0.777 0.518 0.472 

70 0.666 l. 007 0.678 0.637 

80 0.816 l. 234 0.836 0.805 

90 0.965 l. 459 0.993 0.975 

100 1.111 1.681 1.148 1.145 

120 l. 399 2.117 l. 451 l. 486 

140 1.681 2.544 1. 748 1.830 

160 1. 959 2.964 2.040 2.176 t-.) 

1.0 

180 2.233 3.380 2.329 2.529 



TABLE 2.2 - continued 

ELECTRICAL RESISTIVITY p(T) FOR SODIUM (~n-crn) 

CALCULATED EXPERIMENTAL 

Hartree Singwi Singwi* Cook et al. 

T Screening Screening Screening (1972) 
0 0 0 

(K) R = 0.8282 A c R = 0.8282 A c Rc = 0.878 A 
0 0 0 

a = 4.2268 A a = 4.2268 A a = 4.225 A 

200 2.506 3.792 2.615 2.892 

260 3.312 5.013 3.462 4.051 

300 3.845 5.819 4.021 4.910 

*Note: R in this case was established by fitting to the resistivity 
c 

at lOOK. 

w 
0 
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included it is first necessary to establish a more reliable 

pseudopotential. For this reason the simpler Hartree 

dielectric function is used with the Ashcroft pseudopotential 

in the other calculations in this thesis. 



3.1 Introduction 

CHAPTER III 

IMPURITY CALCULATIONS 

Employing the isotropic effective phonon 

distributions of Hayman and Carbotte (1971) it is now 

possible to extend their techniques to calculate the 

electrical and thermal resistivity of some alkalis where 

alkali impurities are included. We consider the case of a 

dilute alloy by constructing a lattice with one impurity 

at the origin, and then multiply the final result by the 

impurity concentration. The calculation ignores the 

interaction between impurities and the results are valid 

for the region of up to 1% concentration. 

It should be noted that the effect described is of 

considerably larger magnitude than that discussed by Ekin 

and Bender (1973) and by Kus and Carbotte (1973). In the 

latter paper anisotropic frequency distributions are used 

to investigate systems with very low impurity concentrations 

relative to the 1% of interest here. They find a washing 

out of the scattering time anisotropy at their lower 

concentration. 

Although in the present case the calculation is 

restricted to the alkalis, it bears similarity to the 

32 
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theoretical treatments of Kagan and Zhernov (1966) and 

Bhatia and Gupta (1969). However, in the present 

calculation, a more realistic treatment of the phonons is 

included and detailed numerical results are provided. 

Disagreement with the Bhatia-Gupta paper will be discussed 

in Section 3.4 which deals with the results of the 

calculation. 



34 

3.2 Transport Theory 

The theory in this section is based on the work of 

Ashcroft and Langreth (1967) in liquid metals which was 

extended by Dynes and Carbotte (1968) and Hayman and 

Carbotte (1971) . In this last paper effective phonon 

frequency distributions were employed to calculate transport 

properties in the alkalis. 

In extending this work to calculate impurity 

resistivity, we first assume harmonic phonon theory as 

.discussed in detail in Chapter I. The phonons are empiric-

ally determined by inelastic neutron scattering experiments 

and both the eigenfrequencies and phonon polarization vectors 

can be calculated using the numerical techniques we have 

previously considered. Both the eigenfrequencies and 

polarization vectors will be required when we construct 

weighted phonon frequency distribution functions. 

The interaction of the conduction electrons with the 

phonons is important in establishing the weighting for 

transport distribution functions. In the case of the 

alkalis, we assume that the Fermi surface is spherical and 

that the conduction electron states are properly described 

in the single OPW approximation. Using second quantized 

notation, the electron phonon interaction Hamiltonian is, 

Hel-ph = 
(3 .1) 



where the operators operate on electrons in states I~+~> 

and jk>, and phonons transfer momentum q. The electron - -
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phonon coupling constant, which appears in equation (3.1), 

can be written, 

· gk+q,k; A. = - i[2w(q;A.)MN]-l/ 2q·e: (q;A.)<k+qjw(r) jk> 
~ - - - - - - -- - -

(3. 2) 

It contains the pseudopotential and phonon polarization 

vector. Clearly it is the scattering amplitude for electron 

; phonon scattering. 

Hayman and Carbotte (1971) demonstrated the 

usefulness of using the Ashcroft pseudopotential to 

calculate transport properties of the alkalis. They employ 

Hartree screening in the dielectric function and thus 

ignore many body corrections. The screened electron-ion 

pseudopotential is written, 

w<so = , ( 3. 3) 

where £*(q) is the electron-ion dielectric function. For 

Hartree screening, f(g) = 0 in equation (2.5) and that 

equation then reduces to the more conventional form, 

e:*(g) = 1 + 2v(q)Q(q) , {3. 4) 

where, 



36 

4TIZe 2 
v (g) = 

2 (3. 5) 
q 

and 

Q (q) 
4kF 

= - F(q) 
Tiao -

( 3. 6) 

The function F(q) was defined in equation (2.6) and a
0 

is the 

Bohr radius. 

Before considering the effect of adding impurities 

. to the calculation of electrical and thermal resistivity we 

state the results for the ideal case. Following Dynes and 

Carbotte (1968) electrical resistivity can be written in the 

form, 

p(T) = ( 3. 7) 

where, 

C' = B = ' 

and, 1 n0 = N (the volume per ion) • In equation (3.7) the 

integration over momentum transfer q extends over a sphere 

of radius 2kF and terms similar to the electron phonon 

coupling constant can be seen in the numerator. 

Following Hayman and Carbotte (1971) an additional 

integration over all phonon frequencies w is introduced 
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and, using the properties of the delta function, equation 

(3.7) becomes, 

p (T) C' Joo dw L: 
J 

d3qqlw<g> 1 2 1g·~(g;A.) ! 2 So(w-w(~pA.)) 
= 

0 
A. 

<2kF 
(eSw (g; A.) -l) (l-e-Sw Cg; A.)) 

( 3. 8) 

p(T) = C' r~ Bdw 
(eSw (g; A.) -l) (l-e -Bw <g; X)) 

0 

I 
d3q 

2 
!w(g) 1 2 lg·~(g;A.) 12o(w-w(g;A.) X l: __g_ 

A. 2k 2 
<2kF F ( 3. 9) 

p (T) (3.10) 

where, 

c = 

2 The transport phonon frequency distribution, atr(w)F(w), is 

defined by equation (3.11), 

2 
atr(w)F(w) 

qlw<g> 1 2 lg·~(g;A.) ! 2o(w-w(g;A.)) 

2w(q;A.) 
(3.11) 

This distribution is more conventional than the a2 (w)F(w) 

distribution used by Hayman and Carbotte (1971) and has the 

added advantage of being dimensionless. It has been used 
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extensively to describe transport properties of the HCP 

metals, Truant (1972). 

Following Baym (1964), the thermal resistivity can 

be written, 

W(T) .1:_ c I I: f 
d3qlw<~:) 1 2 s l~r~<g;A) 1

2 

= 
(eSw (g; A) -l) (l-e - Sw (g; A)) LOT A 

<2kF 

2 Sw(q;A) 2 3kF 
- Sl)] X [q + ( ~ ) (- (3.12) 

'IT q 2 

where the constant C' is as defined above. Using the 

familiar a 2 (w)F( w) and a~r(w)F(w) distributions, the thermal 

resistivity can eventually be expressed in a more useful 

form, 

W(T) = 
(eSw (g; A) -l) (l-e - Bw <g; A)) 

The term - __ w __ is small and is, therefore, ignored in 
VFkF 

( 3 .13) 

further calculations. The constant C is defined as above. 
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3.3 Impurity Calculations 

The next step is to generalize the re~istivity 

calculation by considering the interaction of electrons with 

the lattice vibrations when an impurity ion is included at 

the origin. The Hamiltonian for the electron-ion interaction 

is modified by the inclusion of an additional perturbation 

term, 

H' = I W(r - R ) + nW(r - R ) 
t -t -0 ' (3.14} 

where, 

and the subscripts refer to impurity and host pseudopotentials, 

respectively. 

The calculation proceeds by considering the 

transition probability for electron scattering. This takes 

place from plane wave states I~> to I~'> with momentum 

transfer q and energy transfer w such that~=~-~·· The 

Fermi golden rule at finite temperature gives the probability 

for such a transition, 

-sw. 
2TI 

1 2 
= -t.. 2 I e Z I <¢f - I H' I¢. >I o (w-wf.) 

u if ,p q 1 rP 1 

(3.15) 
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where wfi = wf - wi is the lattice energy change. In 

equation (3.15) J¢. >and <¢f I are eigenstates of the 1p ,p-q 

lattice Hamiltonian with eigenvalues twi and bwf. The 

system partition function also occurs in equation (3.15) and 

is defined by equation {3.16) thus, 

-Sw. 
Z = L: e 1 

i 

Expanding equation (3.15) we have, 

J 
entire 

crystal 

(3.16) 

-i(p-q) ·r 
e - - -

ip·r 3 
X [W(:-~t)+6W(:-~0 ))e- -d :J¢i> 

After cancelling factors and recognizing that, 

V = ND = total volume 
0 

(3.17) 

(3.18) 

the simple change of variables ¥ = r - ~t and d 3¥ = d 3r 

allows us to write, 

1 
iq•R 

f 
iq·y W(y)d3yj¢.> <¢f IH'J¢. > L: <¢fl - -t = ND 0 

e e - -,p-q 1,p t - - 1 

1 
iq·u 

J 
iq·y 3 I + <¢fl - -0 

NDO 
e e - -~W(y)d y ¢ .> 

- - 1 
(3.19) 



We have also made use of the fact that ~O = ~O since 

~£ = ~~ + ~£ and ~~ = 0. The Fourier transform, 

w(q) 1 = 
1""20 . f 

entire 
crystal 

41 

(3.20) 

and similarly for t.w(q)' allows us to rewrite equation (3.19) 

as, 

(3.21) 

Now that the matrix element for electron scattering has been 

simplified, the entire transition probability can be written, 

P(gw) 

-Sw. 
= 2'1T " e 

1 
;: ( ) --2 w u w-wf

1
. 

N fi Z 

{3.22) 
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The well known Van Hove technique is now employed 

to convert from the SchrBdinger to the Heisenberg 

representation. In general, we can write, 

iw.t -iw t -iq•R 
~ f I - _£1~ e e <cpi e ~f> 

(3.23) 

Employing equations (3.23) we can now write the first term 

of equation (3.22), 

P (1) (gw) 

We now introduce the convenient notation, 

S (l) (gw) 

-sw. 
~ 

= L: _e--:::--
fi z 

(3.24) 

X }_; 

££' 
-iq•R (t) iq•R , 

<¢ile - _ £ lct>f><ct>fle - _ £ l ct>i> 

( 3. 25) 
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which allows us to construct the Fourier transform pair, 

' 
{3.26) 

Using this new convenient notation, the entire transition 

probability expression becomes, 

P {qw) 

+ w{g) llw(g) S ( 3 ) Cgw) + lllw(g) !2s (~) (gw)} 

(3.27) 

We now direct our attention to factors of the form 

defined in equation (3.25). The Fourier transform of this 

equation is written, 

s (l) Cgt) = 1 Joo dwe -iwt L: 
21T 

-oo fi 

-Bw. 
e 1 

z 

-iq·R (t) iq·R I 

<~ile - -~ ~~f><~fle- -~ ~~i> 

(3.28) 

Noting that, 

d f1 f 
-i (w-w . ) t 

we 

and (3.29) 

' 
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equation (3.28) can be rewritten as, 

s {l) (qt) = _l_L: 
2TI . 

l. 

-Sw. 
e J. 

z 
-iq·R {t) iq•R , 

<¢. le ~ ~~ e ~ ~~ I¢.> 
l. l. 

form, 

In general, a thermal average is expressed in the 

<A>T 

-Sw. 
l. 

= L: -'-e-=-z i 
<¢.!AI¢.> 

l. l. 

Clearly we can now write equation (3.30) as a thermal 

average, 

s (l) Cgt> 
-iq·R (t) iq·R , 

1 - -~ - -~ = 2TI L: <e e >T 
~~· 

(3.30) 

(3.31) 

(3 .32) 

.The other Fourier transform terms then follow analogously, 

s (2 ) (qt) 1 
-iq•R {t) iq•u 

l: - -~ - -0 = 2TI <e e >T ' ~ 

s (3 ) (gt) 1 
-iq·u (t) iq·R 

l: - -0 - -~ = 2TI <e e > 
~ 

. T 

s ( 4 ) (qt) 1 -iq·u (t) iq·u 
<e - -0 - -0 = 2TI e >T 

If we consider only the S(l) Cgt) term, expand the 

exponentials to lowest order, and retain only the dynamic 

time dependent parts, we have, 

(3.33) 
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-iq·R (t) 
- _Q, e (3.34) 

Similar expansions can be made for the other expressions in 

equation (3.33). Applying the result of equation (3.34) to 

s(l) (qt) we have the result, 

s (l) (gt) = 1 l: 
2n ££' e 

(3.35) 

' 
If we consider the product for which we take the thermal 

average times the remainder of the expression, it can be 

seen that the first term gives the Bragg peak and the second 

and third terms are zero since, <~Q,(t)>T = 0. We are left 

with, 

s (l) (gt) = 

(3.36) 

Following Dynes and Carbotte (1968) we can express 

the displacements, ~ Q, (t), in terms of phonon creation and 

annihilation operators, 

-iq·£ 
l: e - -(-i)~·~£(t) = 
Q, 

l: { N } 1/2 
2Mw(q;w) A 

x (-i)q·e:(q;>.)[at ,(t)+a ,(t)], 
- - - -qA q A 

(3.37) 
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where q is to be read as reduced to the FBZ when labelling 

the phonon operators. For an harmonic system the thermal 

averaged product of phonon operators can be expressed as, 

= (3.38) 

which is the Bose Einstein population. We now combine 

equations (3.36), (3.37) and (3.38) and Fourier transform 

to get, 

S (l) (qw) 

+ n[w(g;A)]o(w+w(g;A))} (3.39) 

The time dependence of the phonon operators, (explicit in 

equation (3.37)), is contained in exponential factors which 

disappear when we Fourier transform. 

We now examine the other three factors which can be 

treated in an exactly analogous manner. It can readily be 

shown that, 

S (2 ) (qw) = S (3 ) (qw) 

x {(n[w(2;A}]+l)o(w-w(2;A}) + n[w(g;A)]o(w+w(g;A))} , 

(3.40) 



and, s ( 4 ) ( gw} = L: 
k, A. 

I ~r ~ <~ ~ A> I 2 

2MNw (k; X) 

47 

x {(n[w(k;A)]+l)o(w-w(k;A)) + n[w(k;.A)]o(w+w(k~A))} . 

(3.41) 

The significant difference between these factors is 

the contribution of factors of N from the sums over£ and£'. 

Since the last factor, s< 4 > (gw}, does not involve a sum over 

~ or £' we are left with a single Brillouin Zone sum over k. 

At this point we can see immediately how to apply 

the formulation thus far developed. A very general expression 

for the electrical resistivity includes the transition 

probability explicitly, 

p (T} di SN 
== M27T 

d3qq L: 
A 

dwwP (gw) 

' 

where C is left arbitrary for the present. In the simple 

pure case we employ only the first term on the right hand 

side of equation (3.27) to get, 

p (T} dis 
== MN 

dwwS(l) (qw) 

(eSw Cg; A) -l) 

(3.42} 

(3.43) 

It can be seen readily that this equation (which was used by 

Dynes and Carbotte (1968)) immediately leads to equation 

(3. 7) • 

In constructing equation (3.10) we have introduced 

an additional integration over the delta function which a llows 
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us to isolate a phonon frequency distribution, (equations 

(1.24), (1.26) and (3.11)), from the temperature dependence 

of the resistivity expression. When we deal with the new 

contributions from P(q;w) it is convenient to introduce two 

auxiliary phonon frequency distribution functions, 

2 2 a' (w)F(w) and a~r(w)F(w). These distributions arise 

through the substitution of w(g)6w(g)s( 2 , 3 ) (g;w) for the 

usual lw(g) 1
2s(l) (g;w). We write down the auxiliary 

distribution functions so that we can use them later in 

calculations of impurity modified resistivities. 

2 
at_r(w)F(w) = 

The second distribution function occurs only in the 

cal culation of thermal resistivity, 

a' 2 (w)F(wl = 
lw(g) 6w(g) I 

qw(q;A} 

x I g·~ (g; A) !2o (w-w (g; A)) 

We now consider the contribution of the final 

str ucture factor arising from P(q;w), namely s< 4 ) (g;w). 

We substitute it into equation (3.42), 

(3.44) 

(3.45) 
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p(4) (T) = chS I 
MN 2 

4 

f
. dwwS. (g;w) 

{esw Cg; A) -l) 

{3. 4 6) 

After performing the angular integration and appropriately 

collecting terms we are left with, 

p {4) {T) chSx 4rr = ~3 J 
<2kF 

dw F(w) 
(eSw (g; A) -l) (l-e-Sw (g; A)) 

, (3.47) 

~here the right hand side of the equation has been scaled so 

that p is in terms of impurity concentration x. 

We can now quote the results, for both the 

electr ical and thermal cases, of the addition of impurities 

to the resistivity. First we state the electrical case with 

the equation scaled in terms of impurity concentration, 

PrMP{T) =CpS 

+ CpSx 

dw F (w) 
(eSw (g; A) -l) (l-e - Sw (g; A)) 

(3.48) 

wher e Cp = 
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In an exactly analogous manner we can write the result for 

the thermal case, 

f
oo dw 

0 
(eSw {g; A) -l) (l-e-Sw (g; A)) 

c~ 4rr { Joo 
+ L

0
TN 3 

0 

5 12 dqq lllw(q) 

X I dw F ( w) ( 8 - 8 3 w 2 ) 
(eSw(g;A)_l) (1-e-Sw(g;A.)) 2rr 2 

<2kF 

+ Joo dqq 3 111w(q) 12 J dw 

0 <2kF 

F (w) 3 2 
X (3 s w ) 

(eSw (g; A.) -1) (1-e- Sw (~;A.)) 2rr 2 

(3.49) 

where, cw = 12rr3s 
2 2 

e vFkFm 

At this point it is worth noting the expression for 

the residual electrical resistivity. It is similar to the 

final term in equation (3.48), and can be expressed as, 

Po = 

2kF 

J dqq
3

111w(q) 1
2 

0 

(3.50) 



In general the total resistivity is related to the 

residual resistivity by, 

PTOTAL(T) = p(T) +Po ' 

where p(T) is the resistivity of the pure metal and 

corresponds to p(T) of equations (3.10) and (3.43). 
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(3.51) 

Impurity concentration is assumed small and Po is independent 

of temperature. Equation (3.51) is essentially a statement 

of 'Matthiessen's Rule', MR. According to the equation the 

addition of impurities adds a constant component to the total 

resistivity leaving the temperature dependent component 

unchanged. 

For some time, however, it has been known that 

deviations to this rule exist. A more appropriate equation 

is then, 

PIMP(x,T) = p(T) + p 0 (x) + ~ (x,T) , (3.52) 

where~ is the 'Deviation from Matthiessen's Rule', and the 

~quation now contains an explicit impurity concentration 

dependence. It should be noted that the second term on the 

right of equation (3.48) contributes a deviation from MR as 

does the phonon frequency contribution of the third term. 
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3.4 Results 

Calculations have been made of electrical and 

thermal impurity resistivity for several alkali - alkali 

systems. The results are displayed in graphical form and 

we will discuss them in groups of impurity-host combination. 

Several assumptions should be emphasized at this 

point. First pseudopotentials have been calculated using 

the Hartree dielectric function, so clearly many body 

effects are ignored. Also mass change effects are not 

'considered. Because of this we have ignored systems where 

the mass difference is very large, although it should be 

emphasized that in all cases the difference is generally 

at least a factor of two. 

Another important limitation which has been 

mentioned before, but bears repeating, is that the 

calculation ignores the interaction between impurities in 

the dilute alloy systems. 

From the calculations several important 

characteristics of impurity systems have become apparent. 

First and most important, is the sensitivity of impurity 

dependent properties on the difference between the host 

and impurity pseudopotential. If the difference is small, 

the result of adding impurities is negligible. The 

resulting impurity electrical and thermal resistivities 

are essentially the same as those calculated for the pure 

case. 
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A second important characteristic is a dependence 

of impurity properties on the relative magnitudes of host 

and impurity pseudopotentials. If the impurity 

pseudopotential is greater than that of the host then the 

contributions of the w{g)~w{g) terms will be negative. In 

this case the auxiliary distributions will also be negative 

and the contribution of impurities to the electrical and 

thermal resistivity will be relatively smaller than in the 

case of positive contributions from the w(g)~w(g) terms. 

We now consider in detail three systems which 

display the properties I have described. The first system 

is that of potassium with a lithium impurity. The 

pseudopotential difference in this case, Figure (3.1), is 

insignificant so the effect of adding impurities is 

negligible. In the electrical case, Figure (3.2), and 

the thermal case, Figure (3.3), the contributions from the 

w(g}~w(g} and l~w(g) 1
2 terms are roughly equal and small, 

relative to the pure resistivities. The residual resistivity 

in this case is also small since it is dependent on the 

l~w(g) 1
2 

factor. 

The next system under consideration is potassium 

with a sodium impurity. In this system the pseudopotential 

difference becomes significant at 2kF as can be seen in 

Figure (3.4). Also it should be noted that w(g}HOST is 

greater than w(g)IMPURITY so the contribution from 

w(g)~w(g) terms will be positive. The resulting distribution 



Fig. 3.1 Hartree screened Ashcroft pseudopotentials for 

the system of potassium with a lithium impurity 
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Fig. 3.2 Impurity term contributions to the electrical 

·\ 

resistivity for potassium with a lithium 

impurity 
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Fig. 3.3 Impurity term contributions to the thermal 

resistivity for potassium with a lithium 

impurity 
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Fig. 3.4 Hartree screened Ashcroft pseudopotentials for 

the system of potassium with a sodium 

impurity 

Potassium 

R = 1.0353 c 

Sodium 

R = 0.8282 c 

a = 5.2275 

a = 5.2275 
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functions and auxiliary distribution functions are plotted 

in Figures (3.5) and (3.6). As one would expect, the 

auxiliary distributions are positive and bear great 

2 similarity to the principle distributions atr{w)F{w) and 

a 2 
(w) F (w) • 

In Figure (3.7) the w{g)6w(g) and j 6w(g) 1
2 

contributions to the electrical resistivity are plotted and 

it can be seen in Figure (3.8) that these terms make a 

contribution to the total resistivity which is roughly 

equal to that of the residual resistivity for higher 

temperatures. The importance of Figure (3.8) is that it 

shows a significant deviation from Matthiessen's Rule at 

temperatures as low as 40 degrees. 

In Figure (3.9) the contributions to the thermal 

resistivity of the w(g)~w(g) term are positive as we would 

expect. As in the electrical case, the l~w(g) 1
2 

term is 

signi ficant relative to the pure thermal resistivity. This 

can be seen in Figure (3.10). 

We now turn our attention to the reverse situation 

where the host is sodium and the impurity potassium. In 

Figure (3.11) it is clear that the host-impurity 

pseudopotential difference is significant. The interesting 

fact in this case is that the impurity pseudopotential is 

. greater than that of the host. This leads to negative 

contributions from w(g) ~w(g) terms with interesting 

consequences as we shall see. 



Fig. 3.5 Frequency distributions for potassium with a 

sodium impurity. 

Hartree screened Ashcroft pseudopotential 

R = 1.0353 c 

F(v) 

a~r(v)F(v) 

a 2 (v)F(v) 

a = 5.2275 
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Fig. 3.6 Auxiliary frequency distributions for potassium 

with a sodium impurity 

Hartree screened Ashcroft pseudopotential 

F {v) 

2 
at_r{v)F(v) 

a' 2 (v)F{v) 

Note: 2 2 a tr (v) F (v) and a ' (v) F (v) have been 

scaled up by a factor of 10. 
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Fig. 3.7 Impurity term contributions to the electrical 

resistivity for potassium with a sodium 

impurity 
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Fig. 3.8 Residual and impurity contributions to the 

electrical resistivity of potassium with a 

sodium impurity 

Ppure 

Ppure + Presidual 

Ppure + Presidual + Pimpurity 

Note: pimpurity = Pwt:.w + P 2 
t:.w 
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Fig. 3.9 Impurity term contributions to the thermal 

resistivity for potassium with a sodium 

impurity 
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Fig. 3.10 Impurity contribution to the thermal 

resistivity for potassium with a sodium 

impurity 

w 
pure 

w pure 

Note: 

+ w. . • . • 1.mpur1.ty 

W, • = w A + w 2 1.mpur1.ty wuw /1w 
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Fig. 3.11 Hartree screened Ashcroft pseudopotentia1s for 

the system of sodium with a potassium impurity 

Sodium 

R = 0.8282 c 

Potassium 

R = 1.0353 c 

a= 4.2268 

a= 4.2268 
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Comparing Figures (3.12) and (3.13) we notice 

immediately that the auxiliary distributions are negative 

as a consequence of the negative pseudopotential 

difference term. This leads, in Figure (3.14), to a 

negative contribution of the w(g)t::,w(g) term to the 

electrical resistivity. Once again, however, the 
2 . 

contribution of the lt::,w(g) I term is large. In Figure 

(3.15) it is clear that the net effect of impurities is 

66 

that these two terms contribute significantly to the total 

electrical resistivity. As in the case of the potassium 

host we have a significant deviation from Matthiessen's 

Rule which is apparent even at low temperatures. 

An analogous situation exists with the thermal 

resistivity as can be seen in Figures (3.16) and (3.17). 

Here again the lt::,w(g) 1
2 term contribution is of the order 

of the contribution of the pure thermal resistivity term. 

The calcula tions of this section are an improvement 

over previous work, notably Kagan and Zhernov (1966) and 

Bhatia and Gupta (1969) in that detailed numerical 

evaluation of w(g)t::,w(g) and !t::,w(g) 1
2 terms has been 

included. In particular, disagreement with Bhatia and 

Gupta (1969) arises where we find a significant contribution 

to the electrical resistivity of the lt::,w(g) 1
2 term in, for 

example, the potassium host-sodium impurity system. 



Fig. 3.12 Frequency distributions for sodium with a 

potassium impurity 

Hartree screened Ashcroft pseudopotential 

R = 0.8282 a = 4.2268 c 

F (v) 

2 
atr(v)F(v) . . . 
a 2 (v)F(v) - - -

Note: 2 
atr(v)F{v) and 2 a (v)F(v) hav·e been 

scaled up by a factor of 10. 
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Fig. 3.13 Auxiliary frequency distributions for sodium 

with a potassium impurity 

Hartree screened Ashcroft pseudopotential 

F (v) 

at;(v)F(v) 

a' 2 (v)F(v) 

Note: at;(v)F(v) and a' 2 (v)F(v) have been 

scaled up by a factor of 10. 
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Fig. 3.14 Impurity term contributions to the electrical 

resistivity for sodium with a potassium 

impurity 

p 2 
/;,w 
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Fig. 3.15 Residual and impurity contributions to the 

electrical resistivity of sodium with a 

potassium impurity 

Ppure + Presidual 

Ppure + Presidual + Pimpurity 

Note: Pimpurity = Pw~w + P 2 
6.w 
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Fig. 3.16 Impurity term contributions to the thermal 

resistivity for sodium with a potassium 

impurity 
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Fig. 3.17 Impurity contribution to the thermal 

resistivity for sodium with a potassium 

impurity 

w pure 

w + w. 't pure 1mpur1 y 

Note: 
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In conclusion it should be emphasized that the 

calculation shows unambigously that the change in the 

electron phonon interaction due to the addition of 

impurities leads to significant and measurable deviations 

from Matthiessen's Rule at the 1% concentration level and 

these deviations should be measurable. It is hoped that 

the results will stimulate further experiment. 
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APPENDIX A 

COMPUTER PROGRAMME FOR COMPUTING 

PHONON FREQUENCY DISTRIBUTIONS 

A.l General 

The computer programme described in this appendix 

calculates weighted isotropic effective phonon frequency 

distributions. It is based on programme GNU which was 

, originally written by L. J. Raubenheimer and G. Gilat to 

calculate the phonon density of states for cubic crystals. 

The material in this appendix applies specifically to a 

BCC version held by the Theoretical Physics Group at 

McMaster University. Several other similar versions exist 

for different crystal structures including: 

body centred cubic BCC 

face centred cubic FCC 

simple cubic hexagonal close packed HCP 

These versions all assume only one atom per unit 

cell, and that the Born-von Karman force constant model is 

~sed. As has been pointed out by Gilat and Raubenheimer 

(1966) , the programme can be readily generalized for more 

complicated systems. 

In its present form the programme reflects the 

philosophy that separate parts of the calculation should 
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exist as separate subroutines, called in the appropriate 

sequence by the main programme. This allows the logical 

subdividions of the calculation to become apparent and 

facilitates understanding of the operation of the 

programme. It also adds flexibility to the programme in 

that modifications may be made to particular parts of the 

calculation simply by removing and adding subroutines. 

The programme is written in Fortran IV and is 

operational on the McMaster CDC 6400. Although some non-

.standard CDC Fortran is used, the code could be made to 
' 
run on other machines with only minor modifications. 



A.2 Programme Description 

Main Programme PHNFRQD 

The main programme serves the principle function 

of controlling the sequence of the calculation by calling 

subroutines in the order required. Other functions are 

listed as follows: 

1. Definition and calculation of constants used 

in the subroutines. 

2. Input of data and output of intermediate 

results such as frequency distributions and 

pseudopotentials. 

Function ASPVDF 

This function calculates screened Ashcroft 

pseudopotentials and allows for a variable dielectric 

function. The type of screening is controlled by the 

parameters which appear on the pseudopotential data card 

read by the main programme. The function returns the 

pseudopotential in Rydbergs and will accept values of q, 

momentum transfer, between 0 and 2kF. Of the dielectric 

functions considered, the Lindhart (simple screening) and 

the Singwi (addition of terms for many body effects), 

appear to be the most interesting. 
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Subroutine CALCUL 

This subroutine performs the bulk of the 

calculation. Its principle functions are listed as follows: 

1. CALCUL subdivides reciprocal space into a mesh 

of small cubes. The dynamical matrix is then 

diagonalized everywhere in each cube by a 

linear extrapolation technique. (This 

diagonalization is carried out by Subroutine 

FREQ and the subroutines it calls.) In 

calculating F(v), diagonalization is necessary 

only within the FBZ. In order to include 

umklapp processes when calculating distribution 

functions this process must be carried out to a 

radius of 2kF. This is accomplished using a 

series of geometrical transformations which are 

different for each crystal structure and which 

are contained in Subroutine CALCUL. It should 

be noted that running indices IMIN and IMAX are 

used so that a finer mesh spacing can be 

achieved closer to the origin where the 

extrapolation technique is less accurate. 

2. Different weights are assigned to cubes in the 

mesh depending on whether or not they lie 

entirely or only partly with the FBZ e x tended 

to 2kF. This is necessary for the linear 

extrapolation technique. 
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3. Pseudopotential factors and other frequency 

distribution weighting factors are calculated. 

The frequency distributions are multiplied by 

weighting factors after the frequency 

histograms are constructed by Subroutine SWEEP. 

Subroutine ORGDTA 

This subroutine acts on the distribution functions 

by doing the following: 

1. When the distributions are constructed the first 

50 channels are for negative frequencies. These 

first 50 channels of the frequency distribution 

which will become a 2 (v)F(v), are then printed 

out by Subroutine ORGDTA as a check on the 

validity of the calculation. They should 

obviously all be zero or nearly zero. The 

subroutine then shifts all of the distributions 

so that the first positive frequency is channel 

one. 

2. Subroutine ORGDTA then calculates the 

normalization factor and normalizes all of the 

distributions. The normalization factor is 

calculated using equation (A.l), 

J F(v)dv = 3 (A.l) 
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where the integration is performed over all 

channels of the distribution. The total number 

of channels in the distributions in a given 

calculation is determined by the factor 

SM/DVA + 1. 

3. Depending on the value of parameter NRNORM, 

Subroutine ORGDTA will renormalize the first 

NRNORM channels of the distribution. 

Subroutine ALPHA 

Using the distribution functions calculated 

elsewhere in the programme this subroutine calculates and 

prints out the following results: 

where the integral is performed over the total number of 

channels in the distribution. 
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Subroutine WRT 

This subroutine serves the sole purpose of 

tabulating frequency distributions, and other functions in 

a convenient format for output on the line printer. 

Subroutine CONST 

The main purpose of this subroutine is to prevent 

unnecessary repetition of calculations in Subroutine ELEM. 

In particular, the force constants PX(I) often appear wi t h 

the same numerical factors in the elements of the 

dynamical matrix. These numerical factors are incorporated 

into the force constants in CONST. The subroutine also 

calculates some additional constants which are used 

elsewhere in the programme. 

Subroutine FREQ 

This subroutine, together with Subroutines ELEM, 

DIAG3 and GRAD performs the procedure described by equations 

(1.27) to (1.32) in Section 1.2 on numerical techniques. 

For a given g [Q] FREQ calls ELEM to establish the 

dynamical matrix n~ 6 (g) [A], where the parameter used in 

the programme is included in square brackets for clarity. 

Subroutine DIAG3 diagonalizes n° 6 (q) and stores the 
a -

eigenvalues in [V] and the eigenvectors in [EV] . FREQ then 



calls ELEM to obtain the modified dynamical matrix 

oY {q + ~ oq ) [AA] and then the change in the dynamical aS - y y 

matrix 6Y 0 (q) which is stored as array [DA]. Subroutine 
a~ -
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GRAD is then called to calculate successively each of the 

three cartesian components of the gradient of frequency 

[GDl, GD2, GD3] using the method shown by equations (1.30) 

to (1.32). The frequencies [V] which these gradients are 

used to calculate, are used in SWEEP (called from CALCUL) 

to construct the frequency histograms. They are also 

employed as weighting functions for some of the 

distributions in CALCUL. 

Subroutine ELEM 

This subroutine calculates the elements of the 

dynamical matrix o0
0 (q) [A). If other than the Born-von 

a~ -

Karman theory were used, this subroutine and part of CONST 

would have to be changed. 

Subroutine DIAG3 

This subroutine finds the eigenvalues and · 

eigenvectors of a real symmetric 3x3 matrix. 
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Subroutine GRAD 

This subroutine calculates one cartesian component 

of the gradient of each of the eigenfrequencies. The 

method is that of equations (1.30) to (1.32) of Section 1.2. 

The eigenvector matrix U(q) and the change in the dynamical 

matrix ~Ya(q) are given in the subroutine by EV and A 
a~ -

respectively. 

Subroutine SWEEP 

Subroutine SWEEP uses the eigenfrequencies and 

gradients obtained at the centre of each small cube and 

performs a linear extrapolation throughout the cube. The 

method is illustrated by equation (1.33). SWEEP then sorts 

the frequencies into a histogram which, when multiplied by 

appropriate weighting factors in CALCUL and ORGDTA, becomes 

a frequency distribution function. 

It should be noted at this point that new 

frequency distribution functions can readily be added to 

the programme. The additions would be required in SWEEP, 

CALCUL and ORGDTA and are obvious from the context of these 

subroutines. 
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R~sistivity Subroutines 

In this section we want to consider subroutines, 

such as those for calculating electrical and thermal 

resistivity, which use the frequency distribution functions 

calculated elsewhere in the programme. 

Often the property calculated is temperature 

dependent and this is usually included by placing most of 

the subroutine within a loop and incrementing the 

temperature. Factors used in these subroutines are best 

~calculated as separate functions such as function RESRES 

for the residual resistivity. The gaussian integration 

Subroutine QG32Dl is employed when functions are integrated. 

It should be emphasized that including separate c~lculations 

as separate subroutines in the way described above allows 

for the greatest flexibility when it becomes necessary to 

modify or change the calculations. 

Plotting Subroutines 

Subroutines PLOTLP and PLOTOP allow for the 

plotting of distributions, pseudopotentials and other 

functions on the line printer and offline plotter 

respectively. By defining appropriate arrays and 

parameters in the programme, graphical output can be 

produced by simply inserting a call statement for the 

relevant plotting subroutine. 



A.3 Input Parameters 

The following is a detailed description of the 

input parameters, all of which are read in by the main 

programme PHNFRQD. If graph plotting Subroutines PLOTOP 

and PLOTLP are used with the programme, then title cards 

are read when these subroutines are entered. 

1st Data Card 

Title for the output (16A5 format) 

2nd Data Card 

NSFB (crystal structure parameter) 

= 1 simple cubic 

= 2 face centred cubic 

= 3 body centred cubic v( 

Note: This parameter controls the establishment 
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of running conditions over the appropriate 1/48 

irreducible sector of the FBZ, (hereafter called 

the irreducible zone or IZ), which are different 

for the different crystal structures. NSFB has the 

above effect in Subroutine CALCUL and also causes 

special action in Subroutines CONST and ELEM. 
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NNN = dimension of dynamical matrix 

= 3 x (number of atoms per unit cell). 

NFC = number of force constants to be read 

on the fourth data card(s). 

KK = a number which determines the "fineness" 

of the mesh dividing the IZ. The mesh 

number or number of slices into which 

qx is initially divided is JIMAX in the 

programme and is weighted as follows: 

JIMAX = KK 

4KK 

2KK 

simple cubic 

FCC 

BCC 

KK has a significant influence on the 

resolution of the distribution and hence 

on the computation time. 

KG This parameter controls special print 

output from the programme. 

KG = positive - no special output 

= negative or zero - special output as 

follows from Subroutine CALCUL (once 

for each time through the subrou t ine 

loop) 



NS = mesh point sequence number 

I = loop index on !MIN, !MAX (IZ) loop 

K = loop index on I, J (IZ) loop 
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U(l}, U(2), U(3) =weighting factor for 3 

components of F(w} 

QA, QB, QC = original ~ components in FBZ 

(before transformations) 

V(l}, V(2}, V(3) = three components of the 

frequency w(~;A) 

from Subroutine SWEEP (once for each time 

through the subroutine loop on I, 

I = 1, 3) 

V(I) = ith components of the frequency 

w(~;A) 

GRD = absolute value of gradient 

frequencies 

AL(l}, AL(2), AL(3) =direction cosines of 

gradient vector 

DELW = thickness of slice into which 

cubes are divided 

Wl (jWlj is the distance from cube centre 

to the first corner) 

if Wl > 0 

Wl < 0 

6 sided case 

4 sided case 



IMIN 

IMAX 

NRNORM 
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VOLUME = correct volume of the cube 

DIFF = error made in finding the volume 

by adding all volume elements 

together 

NDEL = the number of frequency channels 

to which this extrapolation 

contributes. 

= iteration lower bound usually set to zero 

and calculated by programme - controls 

looping in Subroutine CALCUL. 

= iteration upper bound usually set to zero 

and calculated by programme - controls 

looping in Subroutine CALCUL. 

= parameter controlling distribution 

renormalization in Subroutine ORGDTA. 

NRNORM = 0 no renormalization 

NRNORM > 0 the first NRNORM channels of 

distribution will be 

renormalized 

Note: The renormalization is only employed 

in the FCC version of the programme and in 

this version applies only to a 2 (v)F( v ) and 

2 
atr (v) F (v) . 
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DVA = channel width of histogram in units of 

10
12 

Hz. 

XM = maximum frequency of histogram in units 

of 1012Hz. 

DQ = ~q for computing Vv - usually taken to 

be 0.0001. 

Note: The numerical process employed here 

is described in Chapter I, see equation 

(1.33). 

3rd Data Card 

AMAS(l) =atomic mass in AMU, and later redefined 

as variable ATMA. 

Note: The other three variables, AMAS(I), 

are retained from an earlier version of 

the programme and are not used. They are 

entered on the data card as zeros. 

4th Data Card 

PX(I), I= 1, NFC These data cards contain the 

force constants, four to a card. 

The number of entries is 



5th Data Card 

ALATC 

ZCH 

6th Data Card 
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controlled by NFC which was read 

in on the 2nd Data Card. 

= lattice constant in angstroms. 

= charge number. 

Pseudopotential parameters are read in on this card(s). 

Statements suitable for reading in Shaw or Heine­

Abarenkov pseudopotential parameters may be included 

using the variables PSEUD(I) or PSEUD2(I). In 

Subroutine CALCUL pseudopotential weighting factors 

may be calculated using these variables. The 

Ashcroft pseudopotential may also be constructed 

using the following variables which are read in on 

this card(s). 

ISP = this parameter determines the type of 

RCORE 

screening used with the Ashcroft 

pseudopotential. 

= core radius of the Ashcroft 

pseudopotential. 



RS 

A, B 

RCIMP 
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= density of states parameter characteristic 

of Singwi parameters A and B. In this 

version of Function ASPVDF it is not used 

in the calculation. 

(RS = 0 when ISP ":f 5) • 

Singwi parameters used when Singwi 

screening is applied to the Ashcroft 

pseudopotential (ISP = 5). 

(A = B = 0 when ISP ":f 5). 

= core radius of impurity atom Ashcroft 

pseudopotential. 

Note: 1. If other than the Ashcroft 

pseudopotential is employed, the pseudopotential is 

calculated in Subroutine CALCUL. If the Ashcroft 

pseudopotential is used, it is calculated with 

appropriate screening by Function ASPVDF. 

2. If host-impurity calculations are 

performed by the programme, then RCIMP applies to 

the impurity and all other parameters apply to the 

host, including RCORE. 
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7th Data Card 

Additional cards may be read in containing titles for 

plotted output. Subroutines PLOTLP and PLOTOP have 

been used to plot distribution functions and 

pseudopotentials on the line printer and offline 

plotter respectively. 
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