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SCOPE AND CONTENTS:

A conditionally biased maximum a posteriori criterion has
been used to derive an optimal estimator-demodulator for the extraction
of a signal propagated through a randomly fading medium, Practical
realization of the estimator -demodulator takes the form of a self-
synchronized (or tracking) receiver with amplitude estimation
performed at baseband,

A combination of self-synchronized demodulation-estimation-
correlation detection is conjectured to be optimum for the pseudo-
random signalling employed;

Signal processing gain and dynamic range have been used as
criteria of signal detectability, An analytical formula for signal process-
ing gain, taking into account the code self-noise, has been derived,
System performances have been evaluated by simulating the overall

tracking echo ranging system in the IBM 7040 computer,
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ABSTRACT

A self-synchronized echo ranging system with optimum
utilization of signal estimation and detection strategies has been
designed and simulated, A binary convolution code has been utilized
to modulate the transmitter signal, The random medium is modelled
by a vector sum of a fixed and a random component; the medium fading
process has a Rician distribution density. A channel estimator has

been derived using a maximum a posteriori probability criterion, The

estimator is an adaptive processor whereby the variance of the medium
fading process is recomputed during each updating cycle, The estimator
attempts to provide a coherent input to the correlator, An optimum
processor for the signalling described is an ordered serial estimator-
correlator combination; It is conjectured that the estimator offers an
improvement in signal processing gain of approximately 5 dB over

and above the non-optimized system, Accompanying this is an improve-
ment in peak-to-sidelobe ratio and in false alarm probability, A 3 bit

(8 level) quantized system is conjectured to be a 'good' trade-off between
degradation in system performance and simplification in system imple-

mentation,
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NOMENCLAT URE

s(t, {a(to)}) - transmitted signal
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w, - Angular carrier frequency
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T - signal duration

£(t) - reverberation

Y(t) - complex channel fading process

(1) - random phase of fading process

bt - complex target strength

o) - delay rate

X(t,6,v(t), by, {a(to)}) - target echo

n(t) - Additive noise

m(t) - Corrupted intelligence

m*(t) - Conditional biased estimate of m(t)

¢YY(t’ V) - Covariance function of channel fading random
process

®nn - Covariance function of Additive noise

(Jn2 - Variance of Additive noise

e (t) - Incoherent fluctuation after demodulation stage
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CHAPTER 1I

INTRODUCTION

Fundamental to the design of an optimum detection system
is an understanding of the statistics of the random variates that make
up the propagation medium. These random variates, generally known
as noise in information theory, can be signal dependent or signal
independent. In any echo ranging situation both signal dependent and
signal independent noises may be present. The signal independent
noise, generally assumed to be gaussianly distributed and both spa-
tially and temporally white, is easy to handle both mathematically
and practically.

The ambiguity function analysis introduced by Woodward [1]
has been the motivating force behind modern detection system designs.
Though the approach to the problems pertaining to specific issues may
differ, the fundamental theory of signal design [1 ] remains useful,
The detection problem is tractable when the corrupting influence is
mainly additive noise [2], [3]. Schwartz [8] and Van Trees [9]
have made significant contributions towards communication through
randomly fading media.

The theme of the present thesis is to design and to simulate
a one-shot statistical detection system to operate in a randomly
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fading environment. Attempts will be made to combine pure theore-
tical design philosophy with practical intuition as regards the statis-
tics of the random medium. Though the theory presented is equally
applicable to radar and ionospheric signalling, the sonar situation
will be assumed tacitly in the sequel.

The signal detection system is sectioned into three major
parts: the transmitter, the medium, and the receiver. The medium
also includes the target or targets. In the sequel each of these parts
are dealt with in detail, first presenting the theory and mathematical
models, and then the system simulations on the IBM 7040 digital
computer,

A detailed analysis on the detection of a stationary point
target in white, gaussian noise has been made by Mark & Hicks [11].
In this thesis an extension to the detection of moving target or targets
in a randomly fading environment, where the fading noise may be non-
stationary but time-invariant over the observation interval under
consideration, is carried out.

Our criteria for signal detectability are output signal-to-
noise ratio, signal resolution, and dynamic range as specified by
the peak-to-sidelobe ratio together with a false alarm probability.

Strictly from the view point of signal resolution and energy
content, the wide-band pseudo-random encoding is chosen. Unless

the demodulation high frequency carrier is derived from the



observable the pseudo-random modulation employed is very sensitive
to doppler shift. To cope with moving target(s) self-synchronized
demodulation is improvised in this thesis.

A non-realizable optimum estimator -demodulator is derived
in Chapter V using a conditionally biased maximum a posteriori criter-
ion. Practical realization of the estimator is made in Chapter VI,

Since the receiver under consideration is one-shot, signal
estimation takes the form of channel estimation. The objective here
is to apply interpolation or smoothing on the noise processes for as
long a duration as the transmission band permits. This kind of chan-
nel estimation is inherently sub-optimum as there is insufficient time
available for signal adaptation.

System implementation and signal-to-noise ratio computa-
tion, together with computer simulation results, are detailed in
Chapter VII, Auxiliary mathematical analyses are described in
Appendices I, II, and III. Computer simulation programs are

explained in detail in Appendix IV,



CHAPTER II

SIGNAL DETECTION PHILOSOPHY

The fundamental theory of statistical signal detection has
been well documented [1], [6], [ 7]. None of the basic theory will
be repeated in this thesis; the interested readers are referred to the
references provided,

Bearing in mind that the fundamental principles of signal
detection are still the springboard for every system design, a system
is considered to be '"good" only because of added features, namely,
optimization techniques. It is well known that the detectability and
resolvability of a detection system is directly proportional to the
time-bandwidth product. The outstanding feature of a large time-
bandwidth product signal is its compressibility, that is, a long dura-
tion signal may be compressed to enhance signal resolution, hence
the name pulse compression systems.

The ambiguity function analysis first advanced by Woodward
[1]is a good criterion for the discrimination against stationary
point targets in respect to time delay and frequency shift, Complex
targets may be thought of as made up of many point targets, associ-
ated with which are target strengths, target phases, and target sep-
arations with respect to some reference point. The complex target
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possesses a finite intrinsic bandwidth as viewed by the receiver. If
the maximum separation between point targets is less than the reci-
procal of the effective signal bandwidth, the point targets are non-
resolvable, Therefore, if the effective signal bandwidth is W, point
targets situated inside a range patch< 1/W are treated as a single
target,

In the case of wideband pseudo-random modulation waveforms,
the signal bandwidth is given by 1/ty, where tp is the subpulse dura-
tion of the modulation waveform. For a modulation waveform having
N subpulses the total signal duration is T = Ntg. Such a modulation
waveform offers a doppler resolution of 1/T and a time delay resolu-
tion of 1/W, N = WT is the time-bandwidth product, also known as
the compression ratio, of the pseudo-random modulation waveform.
High signal resolution can be achieved by maximizing the time-
bandwidth product. To illustrate this point a sketch of a typical
ambiguity diagram for a truncated (aperiodic) pseudo-random modu-

lation waveform is shown in Figure 1.
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Figure 1 - Typical Two-Dimensional Ambiguity Diagram

for Aperiodic Pseudo-random Waveforms

The ambiguity function is given by the envelope of the convolution
integral between the incoming and the reference bandpass signals,
In mathematical form the ambiguity function is represented by
equation (1):
w -
x(T,v) = fuk(t) v( T -t)e-iemVt 4t (1)
o0
where u(t) is the complex envelope of the received signal

v(t) is the complex envelope of the reference signal

v

Doppler frequency

T time delay
The ambiguity surface is a probabilistic plot, As such the
energy under it can only be re-distributed but not eliminated, Con-

sequently, to achieve the desired form of ambiguity surface, one can

only optimize the modulation waveform in such a manner that a



greater percentage of the energy is centrally located within a narrow

region, such that the off-centre lobes are very small in comparison

with the central peak. It is well known that a random waveform pos-
sesses such a property, However, to be of use in signal encoding,
the waveform must be deterministic, that is, it must be reproducible.

The so called codes manufactured from basic algebraic structures

are deterministic. At the same time these codes possess the random

property. Reproducible codes which possess the random property
are known as pseudo-random codes.

The design of an echo ranging system should constitute the
following steps:-

(1) Select a suitable modulation waveform.

(2) Design a receiver which is optimum for the particular mod-
ulation waveform chosen.

(3) Take into account the noise statistics of the corrupting
influences and tailor the receiver design accordingly.

(4) Select a time-bandwidth product which is most suitable for
the environment involved and which satisfies the transducer
or antenna transmittability requirement.

If the system is to be simulated, one adds

(5) Simulation of a statistical model of the propagation medium,

including the target(s).



The tracking echo ranging system analyzed in this thesis, also
referred to as a self-synchronized detection system, is shown in
the functional block diagram of Figure 2. Each of the major parts,

transmitter, medium, and receiver, will be analyzed in detail in

subsequent chapters.

n(t)
Transmitter s(t) ProPagation x(t) z_(L Receiver
Medium

T A
! |
|

I |
e o o e _

Figure 2 - Functional Block Diagram of a Detection System



CHAPTER III

SIGNAL ENCODING WITH BINARY CODES

The fundamental principle of binary sequence derivation and
generation has been dealt with elsewhere [14], and will not be
described in this thesis. For the sake of completeness, however, a
short analysis of the basic coding with algebraic structures is given in
Appendix I,

The binary M-sequencesdiscussed in Appendix I have lengths
given by the formula 2P-1, Sequences with lengths different from these,.
possessing similar statistical properties, may be obtained by convolv-
ing two or more sequences, as noted in Appendix I. Since coding is a
tool employed in this thesis, the analysis in the sequel will mainly be
concerned with signal modulation using a time function of the binary
sequence. In particular the (23-1) * (24-1) or 105 digit convolution
code is used for computer simulation of the overall system., Where
computer memory becomes a limitation the component (24—1) or 15
digit M-sequence is employed.

The modulation process shown in Figure 3 may be thought of
as phase reversal modulation or double sideband suppressed carrier

amplitude modulation, The transmitted signal may be represented



mathematically by*:-

(i) Phase reversal modulation:

s(t, a(to)} ) = Sin[ Wot + 0 +5 {altol} 1 (22)

(ii) Double sideband suppressed carrier amplitude modulation:

s(t, {a(to)} ) = {a(to)} Cos(Wot + 85)

(2b)

where {a} is the binary code with £1 amplitude,

Wy = the carrier frequency

Modulator

initial carrier phase (will be ignored in the analysis)

Modulated Signal
s(t, {alto)})

{atto)}

90 =
Sinusoidal
Carrier
. at 0.)0
Oscillator
{ai}
Code
Generator o

Encoder

Figure 3 - Block Diagram for Signal Modulation

* Both notations will be used in subsequent chapters,
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A pictorial representation of the modulation process is illustrated in
Figure 4.

For the purpose of echo ranging in a sonar situation where
the same transducer is employed for transmission and reception, it
is desirable to use an aperiodic code. The binary sequences discussed
in Appendix I are periodic in nature. To satisfy our requirement we
truncate one period of the convolution code in effecting the modulation
process. The truncation results in a finite signal duration but also

introduces self-noise, As a result the autocorrelation function will

not possess the desirable property ofN-l_—1 normalized off-centre lobes

as noted in Appendix I, Therefore, in the absence of external inter -

ferences the fundamental limitation on dynamic range is the self-noise.
Consider, in the absence of fading and multipath effects,

representing the received signal vector by

z=s+1n

where s = the signal vector

the additive noise vector,

n
Assumptions: -

s and n are statistically independent and E[ n l=0
To enhance signal detectability the optimum procedure is to operate
on the observable by a known reference signal [11]. The cross-
moment matrix between the received vector z and the reference vec-

tor s is given by
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Cp o= Bz o'}
- E{s- 5"} + Efn- 5T}
:Ci+ CEE (4a)

The superscript T denotes matrix transposition, The coherent com-
ponent Cg is the signal second moment matrix and the incoherent
component C, ¢ is the cross-moment matrix between the noise vector,
n, and the reference signal vector, s. In the one-dimensional case,
the equivalent to equation (4a) is usually designated by

B, (D=0, (T +6, (D (4b)

where ¢z s (7Y = the cross-correlation function of the observable,

z(t), and the signal, s(t),

the signal auto-correlation function,

b s (D
by s (7)

the cross-correlation function of the noise, n(t),
and the signal, s(t).

Aside from the self-noise inherent in the signal moment matrix, CE’
the limiting factor on signal detectability is the additive noise. This

is apparent by considering the mean and the covariance of C, 4:-

B{c, o} = B {Cs+ Casl s e
and Cov{C, s} = B{[Cp s - E{Cs s} )" [Css - E{Cs s}l Ty
=E{C, " Cp '} (5b)

With the assumption that signal and noise are statistically independent

and that the noise process has zero mean, the off-diagonal elements
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of Cov {C } vanish. Since the covariance matrix represent pertur-

zs
bation on signal detectability, minimization of the perturbation amounts
to minimizing the trace of Cov {C_z_ i} It can be shown, by expansion
of the covariance matrix of equation (5b), that

tr COV{C_Z_E} = EE . 022
where EE = signal energy

OEZ = noise variance,
For a given signal, the amount of perturbation is a direct function of
the noise variance associated with the observable, If the noise vari-
ance is large in comparison to the variance of the self-noise of the
signal, the environmental noise simply swamps out the self-noise.
In the situation under consideration the environment is relatively
noisy. Moreover,‘ the self-noise by itself impose a negligibly small
masking effect on signal detectability, Therefore, the self-noise
effect will be ignored in the signal detection optimization analysis in
the sequel., Vector notation offers compactness of representation;
wherever feasible vector notation will be used. The signals under

consideration are fundamentally scalar-valued, however, Therefore,

the notation of equation (4b) will be used mostly in this thesis,



CHAPTER IV

STATISTICAL MODEL OF FADING MEDIUM

With the exception of the transmitted signal all interferences
are random processes. Assuming a knowledge of probability theory,
we define a random or stochastic process simply as a process, x(t),
for which repetitive observations yield a set of relations between x and
its argument, t, only in a probabilistic sense, that is, describable only
by the probability moments.

In our terminology the medium includes the target(s). The
channel will, therefore, be composed of a randomly fading component
acting on the sum of target echo plus multipath returns, and an
additive noise. The additive noise is assumed to be statistically inde-
pendent from the other components. Also, each component may have a
different intrinsic bandwidth. The following sections describe in detail
the various components that make up the random channel.

4.1 Additive Noise

We shall assume that the additive noise is statistically
independent of the randomly fading noise and of the multipath
noise. It is assumed to be statistically stationary, Gaussian
and spatially and temporally white. It is assumed to have a

constant power-density, N, (watts/Hz), over some constant

15
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bandwidth, W_, which at least spans the transmission band.

n’
The additive noise is assumed to have a zero mean and its

. o 2 iy :
variance is given by 0 , = W, N,. The additive, gaussian

noise is thus characterized by the probability density function

1
P = o exp - Zn"ﬁ ] (6)

Correspondingly the complex time function n(t) of duration T

may be represented by the probability density function

T 2
1 1 n“(t)dt 1 (7)
P [n(9)] = exp [- =— S
[n(8)] [20 W, No] TVn 2N, © ]

4.2 The Random Medium

Excluding the target itself the random medium is
made up of a fading noise and a ﬁlultipath noise, the latter is
called reverberation in sonar¥* Fading is the result of scatter-
ing encountered in the propagation space between the sonar
system and the desired target; reverberation is the result of
scattering at the same relative locality as the desired target.
The propagation phenomenon is illustrated pictorially in

Figure 5.

ot
b

We note that reverberation imposes a threat to signal detectability
only at observation time,



17

Desired
Target

Tx & Rx. -
Platform =

Reverberation
Patch

Fading Space

Figure 5 - A Sketch of Signal Propagation
(forward and return paths may be identical)

2.1 Nature of Random Medium

The propagation space is made up of an infinite number
of particles of various sizes and shapes. KEach of these particles
poses as a scatterer in a microscopic sense. In our analysis
we are only concerned with the macroscopic phenomenon, that
is, the total effect of many of these tiny particles acting
collectively. We shall consider a cluster of many particles
as a scatterer in a macroscopic sense.

The scatterers as defined above may have motions.
Also, their reflectivity properties may change with time. The
scatterers are thus random variates. As such they are descri-

bable only by a set of statistics. Depending on the rapidity of
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the motions of the scatterers and the rate at which their
reflectivities change, the random variates may be stationary,
non- stationary, time-varying, or time-invariant. A time-
varying channel implies very rapid change in statistics with
respect to time. In this thesis the random channel is .assumed
to be time-invariant, though it may be stationary or non-
stationary. That is, the random channel statistics are assumed
to remain invariant at least for some duration longer than the
time required for their computation.

Since time is a relative quantity a differentiation
between the duration which describes the time-variant vs
time-invariant aspect and that which describes the stationary
and non-stationary aspects of the random process is in order.
In dealing with the concept of stationarity we refer to some
duration which is at least an order of magnitude longer than
that implied in analyzing the time-variant vs time-invariant
aspect. Having said this, we say a random process is
stationary if it remains invariant with respect to time. That
is, the statistics of the random process are determinable
independent of the time origin. If the statistics depend on the
origin, we say the process is non-stationary. The concept of
stationarity is thus time dependent. A strictly stationary

process is defined as one whose probability moments are
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function only of the difference in time. A process is said to

be wide-sense stationary if it is covariance stationary. An
important class of processes which need only be wide-sense
stationary are the normalor Gaussian processes. The Gaussian
process is completely determined by its first and second
moments. In the real world, strictly stationary processes

are most likely nonexistent. At best we would have wide-sense
stationary processes. If the invariant period is short com-
pared to the observation interval, the random process is said
to be non=stationary. The non-stationary phenomenon may be
due to rapid motion of the scatterers or due to truncations of a
stationary process.

The stationary time-invariant channel is easy to
analyze, since the channel statistics need only be computed
once when estimating the signal. In a non-stationary situation
the channel statistics need to be up-dated at regular intervals.
In other words the system must be capable of adapting itself
to the channel statistics.

Multipath Medium Characterization

In the previous section we have assumed that multipath
and fading structures exist because of reflections from scat-
terers situated randomly in the propagation space. To

characterize the fading and multipath structures mathematically
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we translate our observation point to the vicinity of the multi-
path source. In so doing we neglect the nominal range delay.
This is plausible since the nominal delay contributes no useful
information to our analysis.

When the signal represented by equation (2b) is trans-
mitted the signal reflected from the kth scatterer may be

written as

ri(t) = by s(t - ty)

bk {alto)} Cos [ wolt - ty)- ¢ ] (8)
where by = Kkth target strength

tx ='the time delay of the Kkth path with respect to the

observation point

$1 = the k'™ target phase
Equation (8) is merely the transmitted signal weighted by the
multipath or fading effect, by IOk , Where 0 = Wty + ¢k‘
The fading or multipath effect may be separated into two com-

ponents, one fixed and one random. Then equation (8) becomes

n(® = Re { {alte)) - 9 [y Pran P} o)

where vk IOk jg the fixed component,

-iBx

Ny € is the random component.

A pictorial representation of the random variates resulting

Kth

from scattering by the scatterer is illustrated in Figure 6.
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Figure 6 - Pictorial Representation of the kth Random Path

The random variates represented by equation (9) are Rician in
distribution. That is, the random variates are made up of a
specular component and a random component. The specular
component is given by the expectation of the random process;
the random component is representable by two zero mean
gaussian processes at quadrature. The envelope of the random
component has a Rayleigh probability density function with
mean square, Of, , and its phase is uniformly distributed over
the prime interval 0 - 2r. Mathematically the probability
density of the random component may be represented as

follows:-
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e
2
r

Pl (t)] =

TO » 20, 0= Bks 2w (10)

Although the phase, Bk, is uniformly distributed over the prime
interval 02w, the variation in phase during an observation
interval is assumed to be small in a time—inva;'iant channel.
In other words we assume that the channel does not completely
scintillate the code.

The parameters which describe the random variates
as a result of scattering are the amplitude, by, the phase,
0k, and the differential delay, Tx. As such the Kkth path may
be completely described by their joint first-order probability
density function P, [ by, 6k, Tk ] = Po(tK) Prlby, ek/Tk)‘
Applying the cosine law to the triangle of Figure 6 we obtain:

nkzzbk2+vk2- 2 by vy Cos (0 - &) (11)
The envelope of the random component is thus expressible in
terms of by, Vie O and oy, accounting for the specular com-
ponent. Using equation (11),equation (10) may be modified to
yield an expression which describes the joint density function
of amplitude and phase of the sum of a fixed vector and a vector
with Rayleigh distributed amplitude and completely random
phase:

bk b2 +v2_2b, v, Cos(6, o)
P, b 6/mc]=g 2z exp[- Kk "k k- &
k c. 2

k
0 = byx<owo, -TSOk - AR <™ (12)

]
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The probability density representation of equation (12) is due
originally to Rice [4] The overall fading effect isi given by
the product of contributions from scatterers in the propagation
space. The gross multipath structure is given by the sum of
contributions from paths in the vicinity of the desired target.
If there are L scatterers in the propagation space the overall

fading effect is given by

L .
Y() = I c;e i
=1

(13)

i
We assume the random variates causing fading are non-time-
dispersive. As such the fading effect may be thought of as a
multiplicative noise. The gross multipath effect is represen-
table by

M

E(t) by o 1% (14)

=2
k=1
where M is the number of multipaths.
If the probing signal is s(t), the total multipath reflec-

tion will be

r(t) = E(t) s(t -7)
M .
= 2 bk st -Tk) e—J¢k
k=1
M
=3 b {a(to)} Cos[ wy(t - Tp) - ¢y ]
k=1
M
=3 o (Y (15)

k=1
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where ri(t) is given by equation (8).

The fading effect represented by equation (13) and the
multipath effect by equation (14) are present only when the
signal is present, Because the multipath effect is represented
in the manner by equation (15) the corrupting interference
imposed by it is known as signal dependent noise, or rever-
beration in sonar terminology. The effect of fading is to reduce
the target echo amplitude and may be to scintillate the target
echo, The integrability of the code at observation time is
entirely dependent on the degree of fading,
Assumption: The ensemble correlation of the fading process, for
a stationary interval, obeys the following equation:

E [v(z) . v*(M)] = p(q) o(z-2),
where E[ ] is the ensemble expectation, & (-) is a delta func-
tion, and p(t) is the correlation coefficient of the fading process,
The Target

The target echo may be viewed as the (M + 1)th multi-
path, It differs from the other multipaths only in target strength,
phase and separation, If a target is complex, it may be made up
of more‘than one high-light, The coefficient of reflection of the
target or its high-lights may be considerably larger than those
of the undesired multipaths, though the total multipath effect of

M undesired scatterers may be significant.
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Figure 7 - Target [llumination of Tx-Rx Beams
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The target illumination by the Tx-Rx beams is
illustrated in Figure 7, The multipath effect, including the

target, may be represented by:-

£t = |be| {alte)} Coslwg(t-Ty - ¢ ]

g

+ 3 by {a(to)} Cos [wolt -Tk) - ¢ Kk ] (16)
where I btl = the desired target strength (magnitude)*

bt = the desired target phase

Ty = target differential delay

* the complex target strength is represented by by = ,bt I e’jqst
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All other parameters are as previously defined. Equation (16)
is in turn weighted by the medium fading, so that the observed
signal is representable by:-

z (1) =v(t) - & (t) + n(t)

=x(® |b | {alty)} cos [wolt -7y - ¢,]
M

+ kz: 1 by {a(to)} cos [w_(t- T) -9, ]

+ n(t) (17)
where n(t) is the additive white gaussian noise discussed in
section 4. 1.

The effect of reverberation is most significant when
the target is either stationary or is moving at the same speed
as the reverberation patch. When the target speed is much
greater than that of the reverberation patch, the reverberation
effect is minimal. Let 0 represent the delay rate due to the

target and 8 ', the delay rate due the reverberation patch.

then equation (17) may be written as:-

20 =v(0 by | {alty)} Cos [(1-8) t-¢, ]

g

+

noM

by a(t_ )} Cos [wo(l-@')t-qs ]
o k

k=1

+ n(t) (18)
The desired target moves out of the reverberation influence

when 0 >> &', as the energy concentration of the target and the
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reverberation patch occur at different frequency bands.

Although the individual multipaths obey a Rayleigh
or Rician distribution, the distribution of reverberation
depends largely on the population density of the scatterers
that make up the gross reverberation structure. If the
multipaths are sparingly populated, i.e. M not very large,
the distribution density of reverberation may be described
by a Poisson probability density function. In the limit as M
becomes infinitely large reverberation takes the form of a
Gaussian process.

Unless the sonar system is operating at Homing ranges,
reverberation does not appear to be a limiting factor in system
performance. If anything which limits the system perfor-
mance at all, in the author's opinion, it is the fading effect
¥(t). For this reason the reverberation aspect will not be
dealt with thoroughly in this thesis. The intere‘zsted readers
are referred to the references cited [2], [3]. When rever-
beration is insignificant, equation (18) reduces to:-

z(t) =¥(t) b, {a(to)} Cos [q, (1-8)t]+n(t)

= m(t) Cos [w (1 -8)t] +n(t) (19a)
where we have let m(t) = ¥(t) by {a(to)} to be the corrupted
intelligence. Y (t) and by are complex functions. In the nota-

tion of equation (2a) we may alternatively represent the
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received signal by:-

z(t) = Sin [wg(1 -8 )t +ZTm(t)] (19b)
O in equations (19) is the delay rate* due to target motion,
Any envelope compression or stretching due to O have been

ignored,

* A treatise of the moving target is described in Appendix II;



CHAPTER V

SIGNAL ESTIMATION PHILOSOPHY

General Discussion

In Chapters II and III we have discussed the signal
detection aspect, where the optimum detection strategies
depend on the properties of the signal and noise. Estimation
shall be defined as the problem of measuring the parameters
of a target echo (signal) embedded in noise. As such it is
related to the problem of detecting a signal in noise. We
can expect then the optimum estimation strategies to depend
on the characteristics of the signal and the noise in much
the same way as the optimum detection strategies.

The discussion of signal parameter estimation in
the sequel will adhere to the following conotations: An esti-
mator is the operation (decision rule) which yields estimates
from the observables, an estimate is a value or result of
the estimation process.

Random processes, as the name indicates, can only
be described in terms of probability moments, That is to
say, we cannot say with certainty what the random process

is at any particular instant of time, but we can say probably

29
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what is it over some duration of time., We therefore expect
estimation to depend on time. The longer the interval
available for signal estimation the better will be the esti-
mates., Ideally we should like to have an infinite duration
for making the\ estimates. Practically, however, the maxi-
mum time available for updating a signal estimation process
is the duration in which the statistics of the process remains
invariant. This duration varies depending on the stationarity
of the process. At any rate, if the receiver is a one-shot
receiver, as is in the present analysis, the time available
for estimation may be limited by the reciprocal of the effec-
tive signal bandwidth, This is especially true since the sys-
tem analyzed in this thesis is a wide-band system. The feas-
ible form of estimation will, at best, be suboptimum, as
there will be insufficient time to permit parameter adaptiv-
ity. On the other hand, if the system is continuous, the
estimates obtained in the previous instant may be utilized

to update computations at the present instant. We shall
refer to the former as short-term estimation and the latter
as long-term estimation. The former system is designed
for target acquistion and is the main concern of this thesis,

The latter is suitable for tracking the trajectory of the target
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once it has been acquired. We therefore have in estimation
theory a fundamental tool for the design of adaptive systems,

Channel Estimation

Channel Estimation Defined

Channel estimation, in our analysis, may be cate-
gorized into two aspects; namely, amplitude and epoch esti-
mation, Epoch estimation involves the measurement of any
change of signal characteristics in the time and frequency
domains. It also takes into account intersymbol interfer -
ences, This aspect of estimation will not be dealt with in
this thesis. Our main concern will be amplitude estimation.

Consider the simple system shown in Figure 8.

n(t)
I
| :
| Z(t) P:‘:
__, |L's(t)+n(t) Amplitud
T mplitude I——
| @ Estimator

|

Transmitterr Channel ' Estimator Part of Receiver

Figure 8 - A Signal-Amplitude Estimator
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The channel is assumed to be a stationary time-invariant
process such that ' may be treated as an unknown constant,
The task of the estimator is to provide a measurement of
the unknown channel gainI'. We shall call this measured
value the estimate, I' *,

The channel output is of the form

z(t) =T s(t) + n(t) (20a)
where I' is an unknown scalar. In vector notation

z=1Ts +n (20Db)
where s is the probing signal vector

nis the additive gaussian noise vector,

The Simple Amplitude Estimator

We define the signal energy by Eg = _s_T3 s. We know

the observed vector, 2z to contain as one of its components,
the signal vector, g. Since we know with certainty what the
signal vector s is, the natural approach is to operate on the
observed vector with the known reference signal vector.

Doing this, we have

s=(Tg)T-s+nl s (21)

T
z

Since[ is a scalar quantity, equation (21) may be written as:-

zT.i =T ET.£+ ET'_S_ (22)
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Recognizing that the first term on the left hand side of equa-

tion (22) is the signal energy weighted by the unknown channel

gain , we normalize equation (22) to obtain the estimate, I'*:
T
px=p+ 28
Es
=T+A (23)
nl. s . .
where A = = is the perturbation on the determination of T,
s

If n and s are statistically independent and if E {n} =0, we

have

E {A} - E {Ei'si}= 0 (24)

and

= {ot) - e {12207)

s
_ 0p2
Eg (25)
where onz = E {ET. E} =,/'2_6('\:)de 22 is the variance of the

additive noise, Since n is a gaussian vector, 4 is also a
gaussian random variable with mean and variance given by
equations (24) and (25), respectively., Hence, the estimate I'*

is a random variable with probability-density function given by

1

2
(T'* -T)

P(I*f1)=—ou exp [ - 1 (26)
IZWOnZ/ES ZOn ;Es
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We note that, OnZ/ES , the variance of the perturbation
component, i , represents the noise-to-signal ratio at the
input of the receiver, Aso,2/Eg—~0, 't =L,

I can thus be estimated precisely if it were a constant gain.
The amplitude estimator has the configuration shown in

Figure 9,

z(t)=Ts(t)+n(t) ~/)Z\ T*
s(t)/Eg

Figure 9 - The Simple Amplitude Estimator

In the sonar situation we are dealing with in this
thesis, the channel gain is a random variable. As in Chapter
IV, we denote the channel gain byy(t). The random variable,
Y(t), may have stationary or non-stationary statistics. Y(t)
is the random variate which corrupts the coherency of the
intelligence {a ,(to)} .

Random Amplitude Estimation

The randomly fading phenomenon in a non-dispersive

channel, as stated in Chapter IV, may be considered as
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multiplicative noise. The statistics of this multiplicative
noise may be represented by a Rayleigh or Rician probability
density function.

In the absence of reverberation we may represent
the observable by equations (19)

z(t, &, y(t), by, {a(to)} )=m(t)Cos wo(t-Othn(t) (19a)
or z(t,8, v(t) , b, {a(to)} )=Cos[ wo(t-0t)+m(t) ]+n(t) (19b)
where m(t) W.(t)bt{a(to)}is an explicit function of the intelligence
{a(to)} , as defined in equations (2)

Let z(t) = x(t) + n(t) (27)

Our objective is to extract from z(t) an estimate of the
intelligence, m*(ty) . As stated previously, to derive a set
of optimum estimation strategies we need a knowledge of the
characteristics of the signal and noise., This means that we
need a knowledge of the probability distribution of a(tg) .
Therefore, an estimator is optimum only for a particular
modulation waveform . Over the duration tg; our intelligence
is uniformly distributed. Also the target strength, bt, in all
cases, will be an unknown constant., We therefore conclude
that the variance of m(t) is in effect the variance ofY (t). We

have, in effect

E{m(t)} = Lim a(tg) - bt - E{Y(t)}
to—= 00
and Pram(t1,t2) = E{[m(t) - E[m(6]]12} =gy (t1,t2)
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where ¢'Y'Y (t1, tp) is the covariance function of the multipli-
cative noise. Since in the real world the invariant period

is finite, the limit given ty is unnecessary. If tg is too short,
at most it will cause the otherwise stationary process to be
nonstationary. In which case the variance of multiplicative
noise needs to be recomputed during each updating interval,
Since¥y (t), whether it is a Rayleigh or Rician process, is
representable by two orthogonal gaussian processes, m(t)
may be viewed as a result of gaussianization of a(ty) by the
channel,

Our criterion for the derivation of an optimal esti-
mator will be a conditionally biased maximum likelihood
estimate., For reason of compactness of representation we
shall use vector notation for the analysis in the remainder of
this chapter.

If m* is the estimate, we have

E{IB*} =mo € (28)
where the composition, is either + or -

We note that if the estimate is unbiased e = 0.
Writing equation (28) as

e=m -E {m¥ (29)

and assuming the cost of making an error is unimodal, e may

be given a multinormal probability density function. The
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mean and covariance of e are then

and Cov [E] :(I)e e:E {[(m_uzk)_(p_&*)] . [(I_T_I_-H*)—(}.L-_}_L_*)] T}

= Cov[m] (31)

where M= E{E} and p* = E{g*} - Our primary objective is
to put a bias on the channel perturbation, Y(t). For ease of
representation we let:- Dy = ®m = Cov [ﬂ]
Assumption: -

The vector m, being an implicit function of the
observable z, does not depend on the estimate m?*,

With the above assumption we have

P(m /m*) = P(m)
Also P(e) = P(m/m%*) = P(m)
Hence P(m) = P(e) = kle‘l/z[(ﬂ‘&), ‘I’ﬁ (m-p) ] (32)
In vector notation equation (27) becomes

z=xtn

or n=-z-x where m is implicit in x

Since n is a gaussian vector we have

P(z/m) =P(z/x)=P(n)=k,e~1/2[ (z-x), ®_1(z-x)] (33)
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From Decision Theory the Bayes' rule is:-

P(z/m) P(m)
P(z)

P(m/z) (34)

where P(E/E) the a posteriori probability of m given z
has been observed,

P(z/m) = the likelihood or forward probability of
observing z given m contains the intelli-
gence,

P(IB) and P(z) are the marginal probabilities of m

and z respectively,
Our task is to find an operator which transforms the obser-
vable z into m*, This operator will be optimum if

—=_ P(m/z) =0 (35)

Sm =

That is, the a posteriori probability is the criterion for the
optimum estimator and equation (35) is the condition for

optimization, Using the condition of equation (35) on the Bayes!'

rule of equation (34), we have the alternate condition

1l __2 [P(z/m): P(m)] =0
P sm 2= Tl ’
ax —=_[P(z/m) - Pm)] =0, (36)
2m — = =
since 1 # 0. Since the logarithm operation possesses

P(z)
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monotonic properties, it is appropriate to take logarithms

and then partial derivatives, Doing this we have

ln[P(z/m) P(m)] -ElnP(z/m)+1nP(m)] =0 (37)

The m* which satisfies the above partial derivative is the
optimum operator we are seeking. Using equations (32) and
(33) in equation (37) we have

In P(m)=ln ky-1/2[(m-p), <I> (m W],

2 = 0o m -
o In P(lll) Yy(l’}_} E), (38)
and In P(z/m) = ln k) —1/2[(5 - %), @;1}1(5 - E)]’
-1
—2 P(z/m) = ® (2 - x) 2=, (39)

and finally

- 1(z -X)EE— @YY(m - =0

or m* = p+ @I'nllcbw(_z_ - _)z_;‘l_r (40)

Let g = CP'l (z - x). The one-dimensional equivalent
is g(y) =S50 @0 (a(t) - x(0) at.

Then Ill* = W +®YYZr§nr

As a function of time (the one-dimensional case),

()= Efm(e} 4 e, 2XLIHO)_ g(y) ay

-1
But  gly) =S50 &y (2(t) - x(t)) at
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\

Hence m*(t) =E {m(t)} + J':;O ® v) ax(y, m*(t))

t,
& T
to x-1
TS S [zt - x(t)] dat] ay (41)
We note that for white gaussian noise with spectral density
Ny/2s we get

fNo/z oty - tp)

2
= NO/Z :011

Hence, for this case

2(t) = 2 t L m(t -
m*(t) = {m(t)} o Bty 2L 020 [aty)-=tyl dy

...(413)

But x(y) is a high frequency sinusoid, so that

SX(Y, m*(t) )
Sm*(t)

x(y) becomes a double carrier frequency

signal, which integrates to zero over the duration t,. Equa-

tion (41) then reduces to

-1 sk
m*(t) =g {m(t)} +o, S f)ocpw(t, y) a§ﬁ>§lt;(t) ) a(y) dy

... (42)
The second term in equation (42) manifests a demodulation
process. In equation (42) we have an estimator -demodulator,
Realization of equation (42) requires an initial knowledge of
the expectation of the corrupted intelligence, m(t) and thé
covariance functions of the fading random variates and the

additive, white, gaussian noise,
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Since neither m(t) nor n(t) is an explicit function,
we can neither computeE {m(t)} nor ¢ ., readily from the
observable z(t). Equation (42) therefore represents a non-
realizable optimum estimator-demodulator. This optimum
estimator -demodulator has the configuration shown in Figure
10, A practical realization of the optimum estimator should
take the form of first demodulation and then estimation.

This aspect will be the subject of the next Chapter,

COj{.} - \;E ) ‘E{.}

m(t)

—+

=
PN
——

m*(t)

e

<

Rate
' Changer
2x(y, m*(t) ) (VCO)
> m*(t)
Figure 10

Optimum Non-Realizable
Estimator -Demodulator



CHAPTER VI

SIGNAL DECODING FOR ECHO RANGING IN A FADING ENVIRONMENT

6.1 Introduction

Thus far we have described the signalling techniques,
the mathematical model of the randomly fading medium, and
the signal detection and estimation strategies. In this chap-
ter we analyze a practical design of an optimal echo ranging
receiver for the encoded signal and the randomly fading med-
ium described in Chapters III and IV, respectively. The
theoretical aspects of signal detection and signal estimation
strategies described in Chapters II and V, respectively, will
be tailored to fit the practical design problem.

The receiver described in the sequel derives its
demodulation frequency from the observable, z(t). For this
reason the receiver shall be termed a self-synchronized or
tracking receiver., The receiver is theoretically capable of
acquiring a moving target at any speed. However, to accom-
modate a large doppler frequency a correspondingly wide
tracking loop bandwidth is required. It follows that more
noise will be allowed to penetrate into the system, thereby

deteriorating the system performance. In a practical design

42
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the loop bandwidth will normally be just sufficiently big to
accommodate the largest doppler shift anticipated.

The optimum self-synchronized pulse compression
receiver for the signalling described in Chapter III is shown
in Figure 11. If the information bandwidth and the largest
doppler frequency anticipated are identical, one bandpass
filter at the front end of the receiver suffices for both paths
(1) and (2). The analysis of the bandpass squarer in path 1
is described in Appendix III. The second zonal filter at the
carrier frequency W, is effected by an ordered heterodyning-
averaging-translating process.

The Tracking One-Shot Receiver

As discussed in Chapter IV, reverberation has the
same characteristics as the target echo. Since path 2 of the
tracking receiver is maintained linear until the decision
stage, superposition applies up to and including the correla-
tor stage. Reverberation, if large in comparison to the
desired target echo, may falsify signal detecfion. As in
Chapter IV, we will assume reverberation to impose negli-
gible threat on signal detection. As such we will ignore
réverberation; the interferences encountered will mainly be
random fading and additive, white, gaussian noise, In this

respect the received signal is representable by equation (27)
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repeated below: -

z(t)

x(t) + n(t) (27)

where  x(t) = v(t) by {a(to)} Cos W,(t -01t)
is the desired target echo, as indicated in section 5, 3.
Path 1

Path 1 in Figure 11 is a carrier frequency regener -
ation process. The pertinent outputs from this path are a
sinusoidal waveform at the input frequency and a doppler
frequency to indicate the speed of moving target(s) if any.
The sinusoidal waveform is utilized to effect quadrature
demodulation at path 2 while the doppler frequency serves as
a measure of target speed. Since we employ phase reversal
modulation, a bandpass squarer is required to remove the
modulation. As indicated in Appendix III the bandpass squarer
exhibits weak signal suppression property. It is to be recog-
nized then, for a high signal-to-noise ratio input the system
will surely function properly., Our main concern, therfore,
will be the low input signal-to-noise ratio cases. It is noted
in Appendix III that the output signal-to-noise ratio exceeds
unity when the input signal-to-noise ratio is approximately
6 db. We shall therefore concern ourselves with input signal-

to-noise ratio below this figure. The especially interesting

cases are the negative db input signal-to-noise ratio cases.
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Zonal Filter 2

The function of this zomnal filter is to limit the noise
content so as to provide a relatively clean sinusoid for demod-
ulation and, at the same time, to yield the doppler frequency,
if any. * The bandwidth of the zonal filter will be sufficiently
wide to accommodate the maximum anticipated doppler shift,
To effect this zonal filter we employ a heterodyning-averaging-
translating scheme. The filter is implemented by a two
channel system at quadratures. The input to this zonal filter
is given by equation (III-14).

c'(t) = mz(t)/ZCoswo(t - Ot)

+ m(t) vc(t) Coswy(t -Ot) - m(t) v (t)Sinw,(t - Ot)
+1/2(ve®() - v 2(t))Cos ayt - t)
- ve(t) © vV (H)Sinw(t - 6t) (III-14)

The zonal filter implementation is illustrated by the config-

uration of Figure 12,

* Frequency estimation, which is not dealt with in this thesis,
may be introduced to optimize the carrier regeneration and
Doppler determination.
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Figure 12 - Zonal Filter 2 Configuration

From Figure 12 we have, for the mixing stage:

2
c'(t) CosWyt = IE?(t—)-ccs [w(t -6t)]Coswyt

+m(t)ve () Cos[w (t - 8t) ]+ Cosayt

- m(t)v 4(t)SinWy(t - Ot) CoswW,t

+ 1/2(ve A1) - v 2(8)) CoswytCoswt

- vdt) -

vs(t)Sinwo(t - Ot)Cosupt

(43)
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and c'(t)sinwgt = 1/2m?(t) CosW,(t - Ot)Sinw,t
+ m(t) v(t) Cosw (t - Ot)Sinw,t
- m(t) vg(t)Sinwy(t - 6t)Sinwot
+1/2(ve %(t) ) Cosawy(t - d)Sinapt
- velt) © vg(t)Sinu(t -0t) © Sinwgt

(44)
Upon averaging over some duration of time T,, we have, for

the in phase channel

aclt) = E {mi(t) Cosbw,t}
{m(t)v c(t) Cos éwot}

{ m(t)vel(t) Sinbwt}
2
{ S2(t) 2 sz(t)

oséwot}
+E {- vl - vs(t)sméwot} (45)

where the high frequency components have been averaged

Similarly, we get, for the quadrature channel:

ag(t) = E{mzis inbuy,t)

out.

E{wsméubt}

{ m(t) © vg(t)
) 2

+ E Coséwot}

E{VCZ(t) - vsz(t)

. S indw,t)

+ E {- l/ZvC(t) . vs(t)Cos é%t} (46)
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Implicit in the derivation of equations (45) and (46) is the
assumption that T >>1/2@, and To<—WI .

o}
Remembering that v(t) and vg(t) are zero mean gaussian
processes and assuming T, to be sufficiently long for these
random gaussian processes to average out, that is,

1,71, .. . 1 pT :
T—./'00 ve(t)at :"r-ofo %v (t)dt = 0,

(o]

we get, for the in phase channel:

2
qclt) = E{r£4_(t>_} Cos bu,t

L et - v

0 T } Cos bw,t (47)
and for the quadrature channel:
‘)
qg(t) = E{m4 }Sinbwot
2 2
D - v () y
+ E{V — }S1né(%t (48)

In equations (47) and (48) we have the expected values
of the random functions residing at the frequency 0w,.
Depending on the averaging duration T and the randomness
of the functions mz(t), v(t) and vy(t), the fluctuations may
average out, Equations (47) and (48) may be illustrated by

the vectorial representation shown in Figure 13,
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Quadrature

28(t)

In Phase

Figure 13 - Vectorial Representation For
The Averaged Random Functions

The resultant vector shown in Figure 13 rotates at
a rate of 8wy, which is the doppler frequency., Therefore, the
doppler frequency may be obtained by passing the waveforms
represented by either of equation (47) or (48) through a frequency
detector‘,‘ As indicated in Figure 12 the high frequency sinusoid
required for signal demodulation is obtained by combining the
two quadrature channels after frequency translation, Translat-

ing the frequency and combining, we have



g (t) = qc(t)Cosupt + g (t)Sinwt

mz(t)

51

vel(t) - vg2(t)

= {220} cosbu,tCosu,t + B -

-Cos GwotCo sW _t

mz(t) ch(t) - Vsz(t)

+ E{ y }SinéwotSin%t + E{ v

Sinduyt - Sinwgt

vcz( t) - vg(t)

- E{En—z(i} Cosw(t -01) + E{ .
- Cosw,(t - Ot)
(49)
The quadrature channel reference carrier is obtained by

shifting equation (46) by m/2 radians:

2
g (t) = E{n-‘4—(t)-} Sinw (t - ot)

2 2
t) - t
s E{VC (t) _ Vg ()}Sinwo(t -0t) (50)
2 L ’Zt _ Zt
Letting A(D = E{l_m%t_)i_} ana 579 = B{S () v (8 },

we rewrite equations (49) and (50) as

g.(t) = A(tCos[w,(t -61t) - 2¢(t) ]
+ B(t)Cosw_(t -5 t) (51)
g.(t) = A(t)Sin[w@(t - ot - 24(t) ]

+B(t)Sinw,(t - 6t) (52)

}

;

J
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In going from equation (III-14) to equations (51) and (52) we
have subjected the incoherent fluctuations to statistical
averaging, thereby smoothing out the random fluctuations
resulting from bandpass squaring. Because of the finite
duration, Ty, any fluctuation with period greater than T,
will remain untouched, The derived sinusoidal waveforms
g (t) and gg(t) will, therefore, still be suffering from very
slow random fluctuation. However, g.(t) and g4(t) are
expected to be recognizable sinusoids; the averaged slow
fluctuation should impose no detrimental effect on the demod-
ulation process at path 2. In retrospect we note that the
averaging duration, T, restricts the doppler range to the
bound

2
, éwolmax. < T—TT

o]

Path 2

The delay introduced in path 2 is designed to allow
computation time for carrier regeneration in path 1. The
signals arriving at the set of multipliers in path 2 are derived
from the same observable, with those from path 1 having
undergone a carrier regeneration transformation. Carrying

out the multiplication indicated in path 2, Figure 11, we have



fle(t) =
and fg'(t) =
Using equations

we have

£ (1)
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z(t) - gc(t), (53)
z(t) - gs(t) (54)

(27), (51) and (52) and letting P(t) = Env {m(t)} ,

[ p(t)Cos[ ap(t-6t)- At)]+ v (t)Cos Wo(t-Ot) -
v (1) Sinw, (t- 6t) ]

- [A() Cos[ wy(t-0t) - 2(t) J+B(t) Cos u, (t-t)]
1/2 p(t) A(t) {cOs[zwo(t-ét) (1) - 29(t) ]

+Cos (26(1-$(t1}
+1/2 P(t) B(t) {Cos[Zwo(t-Gt)—Wt) ]+Cos¢(t)}
+1/2v () A(t) [Cos [20,(t-6t) -28(t) ] +Cos 2¢(t)]
+1/2v () B(t) {COS 2w, (t-8t)+Cos [o]}
-12v (D A(Y) {Sin[26(t) ]+ Sin[ 2w6(t-5t)-26(t) ]}

—1/2vs(t)g(t) {Sin [o] +Sin Zwo(t-ét)}

After low-pass filtering we get

£(t) = 12 {p () A(t)Cos [26(8)- 48 ]+ p(H) B( Cosd(t)

Coherent Component

+1/2 {v () A(8Cos [28(t) ]+ (BB - v () A()Sin 26(1)} .

Incoherent Component (55)

Similarly, f5(t)=12{- P(OA(®)Sin[26(t)-$(t)] + P(t) BOSind() }

Coherent Component

-12{v () A(t)Sin[2g(1)] - v5( A(1)Cos [2@(1)] -

v(t) E(t)} . Incoherent Component

(56)
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It is of interest to note that by further assuming

T 2
Loy Gy ar=LrTony a
c T o

T o .
1 .y 2 1 Ty 2.
=—/[tov_(t) at= —S t) dt
T /aov, 0 @ =S o n(y
=y - 1 TO 2 1 To 2 .
we have B(t) = 1/4{17(:1'0 ve (8 dt=— S0 v (0 aty =0
o]

With this latter assumption equations (55) and (56) reduce to

the simpler forms:-

£.(t) = 1/2p(t)A(t)Cos[2¢(t) - ¢ (1)]
+ 1/2vc(t)K(t)cOs[z?b(t)]-1/zvs(t)K(t)Sin [2é(t) ]
= 1/2A(1) {p(t) Cos [2Ht) -(t) ]
+v (t)Cos [28(t) ]-v (1) Sin[zat)]}' (57)
and £.(t) = 1/2K(t){p(t)sm[¢(t)-z$(t)]

- v (t)sin [28(t) 1-v4(t) Cos[281)]} (58)
Implicit in the coefficient P(t) of the coherent components
in equations (57) and (58) is the randomly fading envelope,
Env {Y(t)} » the complex target strength b;, and the intelligence
{a(to)} . It is noted that equations (55) and (56), or (57) and
(58), are baseband waveforms, that is, there is . no fre-
guency content. other than that implicit in the intelligence
{a(to)} . The perturbations which mask the intelligence are
all wide-band random processes which are subject to statis-

tical averaging. To enhance the comprehension of the
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intelligence {a(to)} , we estimate the random function P(t),
hopefully, to average out the incoherent fluctuations. and
the perturbations inherent in the fading factor, v(t). We
shall tai'lor' the theoretical optimum estimator derived in
Chapter V to a practically realizable configuration for the
system under consideration. The optimization process
presented in the sequel will, therefore, necessarily be sub-
optimum. We shall assume the analysis up to equations (57)
and (58) holds. Therefore, equations (57) and (58) are the
signals we wish to estimate.

The Channel Estimator

The necessity for signal estimation, as stated in
Chapter V, arises from the fact that the processes corrupting
the signal intelligence are random in nature. Since the code,
{ai(to)}i =1,2,..., N’ itself is random, it is not feasible to
estimate the whole code., We therefore resort to estimate
the digits. Partitioning the code into individual digits, we
represent the corrupted intelligence, on a digit basis, by

p(t) = Env{m(t)} = Env {x(t bt}- a(t,) (59)
where a(t,) is a single digit or subpulse of duration t,. Since
the in phase and the quadrature channels have similar sta-

tistics it suffices to implement identical estimators in both
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channels, We will, therefore, concern ourselves with the
in phase channel only in analyzing the practical channel
estimator.

Using equation (59) in equation (57), we have

fo(t) = 1/2A(1) {Envl (e} by a(t,) Cos [26(t) -8(1)]

+v (1) Cos[Za(t)] - Vs(t)Sin [Z¢(t)]}

a(t) +€ (1) (60)

1/2A(t) Envly(t)]* by a(ty)Cos [2¢(t) (1) ]

where  qft)
is the corrupted intelligence,

e(t) = 1/2A(t) [v (t)Cos[26(t) ] -v ()Sin[24(t)]]
is the incoherent noise. The mean and variance of the

incoherent noise are
E{e(t)} =1/2A(t) Cos [28(1) ]E{vc(t)} _1/2A(t)Sin[ 2§(t) ]
-E{vs(t)} -0

and o =E{ef0} = (A0 {cos? [B(n]E[v, (0 ]
+Sin2[26(t)]E[vsz(t) ]}
= 2
A(t 2
:[%] On

since

2
E[v (9] = E[vs (0] = o’

is the noise variance at the system input. Thus the variance,

2

(o] e of the incoherent additive noise at the demodulation stage
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is simply the additive noise variance at the input weighted by
a constant scalar, But the same weighting is also applied

to the signal term. Therefore the signal-to-noise ratio at
the demodulation stage, from the mathematical viewpoint, is
the same as that at the system input. We note also that
since n(t) is Gaussianly distributed &(t) is also,

Except for a translation in frequency equation (60)
is similar to equation (27). Therefore the analysis in
Chapter V subsequent to equation (27) holds. By substituting
f.(t) for z(t), «(t) for x(t), and &(t) for n(t) in the optimal
estimator of equation (41a), we get the following optimal

estimator for the system under consideration:-

o #(t) E{a(t)} t1/o if? oof(t,y)[ f(y) - ax(y)] ady

, 1 to 2
E{a(t) + =,/ ° oyt Nl e(y)-a *(y) lay
Ko, ©
(61)
where 02 = K 2 ando 2(t ) =¢  (t,y)
> % a Y T
The estimate, o *(t), is thus obtained by updating the expect-

ation of m(t). We have

E {0}

E{a (t)} - E {s(t)}

E{a(w}_ (62)
It is thus mathematically satisfying to obtain E{Ot.(t)} .

Taking second moment of £ _(t), we have
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{0} = 2 av +e0]%)
E{Aa 2(t)}+ E{s Z(t)}

E{fcz(t)} [EfJof ©= E{ (0} - [E a(y) 12

+ E {40}
g 2 2
=0,%+ 0
2 2
= OY+ 08
2 2
= oy+ Ko, (63)

Using equations (62) and (63) in equation (61) we get the
optimal estimator configuration shown in Figure 14,
In regard to the optimal adaptive estimator of equa-

tion (61) we make the following interesting observations:-

(1) OYz(t, y) is the variance of the fading random variates.
If the channel has stationary statistics, oi(t, y)= 05.

If the channel has non-stationary statistics, O?(t, V)
depends on the time origin and needs to be computed
for each updating process.

(i1) The ratio Oi(t, y) /an represents a multiplicative
noise-to-additive noise power ratio. The updating
components is more significant when Oi(t, y)>c511

(iii) Neither @ (t) nor €(t) is an observable; therefore
explicit computations for E {on.(t)} , Oj(t, y) and Oi

impose some difficulty.
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(iv)
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To implement the optimal adaptive estimator of
Figure 14, we need only a knowledge of Og, Real
channels usually have stationary time invariant add-
itive noise; C%, therefore, can be measured before
hand. The optimal adaptive estimator can, there-
fore, be realized; the optimality is dependent on the

estimation duration t,, however,

The Correlator

The correlator may be derived using a maximum

likelihood criterion, The derivation and realization of the

cross-correlator has been described elsewhere [1 1] and will

not be repeated in this thesis, The following comments as

regards the correlator, however, are in order,

(1)

(2)

(3)

The derivation of the correlator is based on the
maximum likelihood criterionv.’v As such its imple-
mentation bears a direct relationship to the code
chosen for signal encoding in Chapter III,

The correlator output signal-to-noise ratio, signal
resolution, and dynamic range are detectability
criteria of system performance,

The correlator is representable by the equation

e
3

N N
R

a*a = Z Z aJ (to) ¢ ai(to) (63)
j=1 i=1
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where {a; (to)} = is the overall estimator output for an
interval T = Nty

{ai(to)} = is the reference sequence.

Equation (63) is simply illustrated in Figure 15a.

{ (x;: (to)} N R axg

Accumulator
iai(to)}

Figure 15a - The Cross-Correlator

Identical correlators are employed for the in-phase and the
quadrature channels. The final system output is a combination

of these:

. 2 . 2 1/2
v={lrRe* .1 + [Re*,1} (64)

The above equation is illustrated in Figure 15b,



62

Accumulator ()

.5

v®——~ Accumulator ( )2

Figure 15b- Correlation Detector

Summary

The averaging operator, E{ } , employed for the
derivations in this Chapter yields a true average only in the
limit when the time is infinite. However, if the random processes
are very wide-band, E{ } , will be approximately true even for
a finite integration time. This may especially be true in the
additive, white, gaussian noise case. In deriving a demodula-
tion reference from the observable we accept a loss factor
Z(t) =K {@41:} . Since K(t) is computable under the
assumptions made, it may be re-introduced for compensation

further down in the receiver.



CHAPTER VII

IMPLEMENTATION, COMPUTER SIMU LATION

AND DISCUSSION OF RESULTS

Thus far we have presented in Chapter II through Chapter VI
a theoretical design of an optimal echo ranging system to operate in a
randomly fading environment, The system design is optimized with
respect to both signal detection and estimation strategies, The system
employs a pseudo-random binary code for signal encoding., The random
variates in the propagation medium are modelled by either a Rayleigh
or a Rician amplitude distribution, The former has an associated
uniform phase distribution while the latter has an associated complex
phase distribution, The joint amplitude and phase probability density
functions for the Rayleigh and Rician processes are given respectively
by equations (10) and (12.); The receiver is a self-synchronized
demodulator-estimator-correlator combination, A maximum a
posteriori probability criterion has been used to derive the optimum
estimator and correlator,r The overall system can either be imple-
mented or computer simulatedb,v The procedure for system imple-
mentation are outlined in the next section; System perforfnances
are evaluated by digital computer simulation using the IBM 7040, A

program listing of the overall computer simulation is given in Appendix

63



64

IV. The programming aspect and the level of subroutine calling are
described there.

7.1 Implementation Procedures

The statistical averager employed in the design of
zonal filter 2 and the estimator may be implemented by tapped-
delay lines. A first order statistical averager, assuming

x(t) is an Ergodic process, is given by the equation

1 T
E{x(9} =Lim 7/ x(ta
o
T=co
1 M
M- oo i=1
Equation (65) can be implemented by a tapped-delay line as
shown in Figure 16.
= T |
——-—’X(t) = = = . -
I I I I Tapped-Delay Line Termination
/M 7 ) »
¢ ‘F p
B {0}

Figure 16 - Implementation for a First Order Statistical Averager

The first order statistical averager shown in Figure 16 can be
utilized to implement the zonal filter of Figure 12 and the adaptive

estimator of Figure 14. These are shown in Figures 17 and 18.
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Figure 17 - Zonal Filter 2 Implementation
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Signal Encoding and Decoding By Computer Simulation

Since signal coding is an inexhaustible topic in
itself, it is not a subject of this thesis. Nevertheless, a 105
digit binary convolution code discussed in Chapter III and
Appendix I is utilized for signal encoding.

The computer simulation, a program listing of which
is given in Appendix IV, encompasses the entirety of bandpass
modulation, channel fading, self-synchronized demodulation
and baseband estimation and correlation detection. The
overall system functional block diagrams shown in Figures
2, 3, and 11 should be followed closely while reading the
discussions in the remainder of this chapter. The waveforms
presented in Figure 19 through Figure 33 are plotted by the
Benson-Lehner digital X-Y plotter. Because of computer
memory limitation, each carrier cycle of the bandpass signal
is created by eight samples. The simulated system, therefore,
unavoidably suffers a sampling error. All waveforms are
plotted on a normalized amplitude basis.

Figure 19(a) is a 105 digit binary convolution code,
where the digits have been simply joined by the X-Y plotter.
A binary 1 has been mapped into a -1 amplitude level while a
binary 0 has been mapped into a +1 amplitude level. Figure

19(b) shows a pure sinusoid, where a frequency drift with
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respect to the transmitter oscillator frequency has been
injected. This particular sinusoid is used to effect the carrier
regeneration process. The ripples shown are due to insuf-
ficient samples used in creating the carrier cycle. The
frequency drift is designed to simulate a moving target
situation. It is injected at this point for convenience; the
frequency drift could equally well be injected during signal
propagation. The transmitted waveform is shown in Figure
19(c). The propagation medium is made up of a multiplica-
tive and an additive noise. The multiplicative noise is simulated
by a sum of fixed and random components. The random com-
ponent is a Rayleigh process with uniform phase distribution
in the primary interval (0, 2w). This is simulated by two
orthogonal Gaussian processes. The additive noise is
simulated by a Gaussian process. Since the Rayleigh process
can be represented by two orthogonal Gaussian processes, the
multiplicative noise and the additive noise differ only in
spectrum or in rapidity of fluctuation with time. The target
has been given a unity amplitude with an approximately 45
degree phase. The medium output is a perturbed signal shown
in Figure 20(a). Figure 21(a) shows the frequency drift
(Doppler shift frequency) extracted from operations on the

received noisy signal. Figures 20(b) and 21(b) show,
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respectively, the derived in-phase and quadrature reference
carriers for self-synchronized demodulation. These waveforms
together with the Doppler frequency signal of Figure 21(a) are
the pertinent outputs from path 1 of Figure 11. The rippling
phenomenon exhibited in the waveforms of Figures 20(b) and
21(b) is a direct result of finite averaging time employed in
effecting Zonal Filter 2. That is, any noise component with
periodicity greater than the averaging time will remain
untouched. The demodulated baseband signals are shown in
Figures 20(c) and 21(c); an infinitely clipped version of which
is shown, respectively, in Figures 20(c), 20(d), 21(c) and
21(d) have been sampled at a rate of 5 samples per baud. In
the absence of channel perturbation the baseband waveforms
should be similar in shape before and after infinite clipping.

Computer Simulated Signal Estimation and Correlation

Detection

As discussed in Chapter V the estimation process is
designed to operate on random processes. If the input to the
estimator is a noiseless deterministic function the estimator
offers no enhancement. Moreover, anytime a decision is made
one can expect to introduce error. Since an estimator makes
a decision at the end of each estimation period, it introduces

an error of its own, however small this error may be.
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Figures 22 and 23 show the system final outputs for the cases
without and with the estimator, respectively. In these cases
the channel has been made noise free. Since, in the absence
of channel perturbation, the time compressed waveforms are
only limited by self-noise® , a comparison between Figures
22(c) and 23(c) does not shed much light on the adverse effect
of the estimator. A comparison between the uncompressed
waveforms of Figures 22(a) and 23(a), however, shows that
the estimated waveform suffers from decision error.
Fortunately, real channels are noisy; therefore, signal estima-
tion is a necessary process in most signal processing analyses.
The carrier phase at the input to the receiver has
been chosen to be approximately 45 degrees. The in-phase
and the quadrature channels, therefore, have approximately
equal signal captivity. It is sufficient, therefore, to show one
of the two quadrature channel waveforms along with the
combined output for visual observations. Similar presentation
persists throughout figures 24 to 33 inclusive. The effects of
quantization on noisy input signals are discussed in the next

section.

% See Section 7.5. 2
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Quantization

Signal quantization and sampling are two schemes
commonly employed to simplify system implementation. Since
both schemes introduce imperfections their utilization will
have to be based on an optimum trade-off between degrada-
tion in system performance and simplification of system
implementation. The sampling aspect for systems similar to
the one under consideration has been described by Mark and
Hicks [ 11] and will not be repeated here. No detailed.quantiza-
tion analysis will be presented here either. We note, however,
that the extreme cases are (1) coarse or two level quantization
and (2) fine or n (n large) level quantization. Coarse quantiza-
tion results in an approximately 3 dB signal-to-noise ratio
degradation [11]. The quantization noise resulting from fine
quantization may be assumed to have a uniform distribution.

In this case the quantization noise may be shown to be AZ/IZ,
where A is the quantization gap. To examine the effects of
quantization on system performance a series of time compressed
waveforms are presented in Figure 24 through Figure 33.

These waveforms have been obtained with a -6.9 dB signal-to-
noise ratio at the input to the receiver. The improvement
offered by the estimator can be observed visually by comparing

the output waveforms presented in Figures 24 to 33.
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System Performance

Performance Criteria

As stated earlier our system performance criteria

are signal processing gain and dynamic range together with a
false alarm probability for a given threshold. Dynamic range,
in our terminology, is measured by the peak-to-sidelobe ratio,
i. e. the ratio of the central peak of the output waveform to the
maximum off-centre lobe. The false alarm probability is
obtained by counting the number of samples exceeding the
threshold during an observation interval. The signal process-

ing gain is defined as:-

é(S/N)o I
C(S/N); g

where (S/N)o is the output signal-to-noise power ratio

To

(S/N)i

r; is the input signal-to-noise power ratio

Signal-to-Noise Ratio Consideration

Consider the estimator-correlator combination of the
overall receiver configuration of Figure 11, which is depicted

in Figure 33a,
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{0}
= {:CX( to)} + {8( to)} Estimator {a *(to)} Correlator Y(t)
(S/N); Se

Te Tc

Figure 33a - Estimator-Correlator Combination

Our transmitted intelligence is {a(to)} . Let the estimate
be
fata} = {ato) +fo )
that is, our estimate is not exactly the transmitted intelligence.
At the input, m(t,) is the corrupted intelligence. We write
a(to) = {E(to) alto))
to signify that the intelligence is perturbed by a multiplicative
random noise. The variance of £ (t,) is exactly the variance
of the fading Y (ty). In the absence of the estimator the output
is:-
N
y(t) = .21 [Eto) alto) +8(to) 1 altodipie » k=0, %1, .., &N-1
a (67)

where {a(to)} i is the reference signal.
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N N

Then, y(t) = 3 [&(ty) alto) 1, alt)isi + 2 ilto) ajpk (to)
i=1 i=1

If E(to) were a constant over the domain (1, 2, ..., N) then,

denoting this constant by K,

N N
y(t) =K 2 a5 (to) aj4c (to) + 2 €4(tg) a5 4k (to)
i=1 i=1
= K Ryyp () + Ry (K) (68)

It is thus intuitively satisfying to require, at least,

K="Te [E(to) ],
where T, is the estimation operator. Moreover, we expect
the estimator to smooth the additive noise, €(ty), so that the
effect imposed by the additive noise component is minimized
at the estimator output. If K is unity, our estimate is exact.
In the normal situation K<1l. Moreover, K will not be the same
throughout the domain (1, 2,..., N).

To evaluate output signal-to-noise ratio we ignore
for the moment the multiplicative noise and derive the signal
processing gain with the estimator absent. Equation (68) is
then a correct representation of the correlator output. For
simplicity, we let K = 1 and rewrite equation (68) as follows:

y(t) = Royp (0) + Roya M) [k o + Ry, (0 (69)

signal self-noise additive noise

Since our intelligence is an equiprobable equal energy signal,
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the average power is given by
P, = az(to).

The peak signal at the correlator output is then

Roxa(0) = N Pa
An estimate of the self-noise contribution is obtained by
computing the variance for k = 1,2,...,N-1. Since N is odd,
the number of self-noise samples to one side of the central

peak in the correlation function is even. Assuming

R xa(k) lk#O = 0, the variance of self-noise is given by

02 = [Raxa(k) lk#O ]2

self-noise
An upper bound and a lower bound for the self-noise variance
may be established by considering two cases of periodic binary
sequences:
(i) Upper bound; the binary sequence {ai} is completely

random (i. e., the ai's occur by chance).

N
2 2
o =[ 2 ajmitk] pq ]
self-noise, periodic i=1

N
2,25 4133

R T R B RS LA N

i=1 izj

1
M

2 PaPa+Z 2 ai a4k aj aj+k
i=1 i#j

2
NP~ +0

H
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(ii) Lower bound; the binary sequence {ai} is a pseudo-
random (pn) code (the modulation code used in this
thesis). A special property of the periodic pseudo-
random sequence is that the off-centre lobes are all

equal to -1. Thus

N 2 N N-1 N
- 2 5,
[ 2 ai] = 2 a; + 2 a; a;
i=1 i=1 k=1 i=1
N-1
NP+ 3 Ry | g
k=1

N P, - (N-1) P,

= Pa
Therefore
; N
2 = [12: 1 Raxa(k) Ik:ﬁo ]
selfi-noise periodic
= P,

The variance of the aperiodic {or truncated) binary pseudo-

random code lies in between these two bounds. That is,

2 2
>0 Lo
self-noise, periodic random self-noise, .aperiodic pn

2
> 0self—noise, periodic pn

or

2 2
NP >02 >Pa

self-noise, aperiodic pn
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The computed self-noise variance of the 105 digit binary

convolution code is

2 _ 2
o = 1L 3P,

self-noise, 105 pn

The additive noise variance at the correlator output is

2
02 = [Rgxa(W]

N

2 2
. € i (to) ai+k(t0) + 33 Sj_(to) aj_-{-k(to) € j(to) € j+k(to)
i= i#]j

- N 2
-l\OBPa+0

The output signal-to-noise power ratio is, by definition,

peak signal squared

(S/N), = ry = total noise variances
B (Pea.k)2
o 2 self-noise to 2
(N P,)2
Then, r_ = 2 2
o
11. 3P, + No, P,
P N?
_ _a
2 Pa
Og 11.3—> + N
O¢
N2
= T
1 11.3r +N (71)
Pa
where r; = is the input signal-to-noise power ratio.
o



93

The signal processing gain is then given by

1‘0 NZ
G= " 1L3r+N (72)
For low input signal-to-noise ratio, i.e., r; —=0, G—N.
For N = 105, the gain of the correlator is
10 logjg 105 = 20 dB (73)

In the absence of additive noise, i. e., r;=o, the output is
limited by self-noise alone. The output signal-to-self-noise

ratio is given by

- N2 Paz - N2
o = — = ———
11. 3 Py 11.3
105) 2
or 10 logyg ro = 10 logjp '(_11% = 30 dB

The presence of medium fading accentuates self-noise at the
expense of the central peak. That is, the self-noise increases
as the code deteriorates. In the absence of medium fading the
signal processing gain of the correlator should fall to zero when
the input signal-to-noise ratio is approximately 30 dB. The
signal processing gain vs input signal-to-noise ratio graph,
therefore, drops as rj increases.

Since explicit evaluation of the signal processing gain
for the estimator is extremely difficult, if not impossible, its

performance is measured by comparing overall system signal
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processing gains for the cases with and without the estimator.

7.5.3 Discussion of Results

The actual peak at the output of the correlator is
- . 1/2
S0 = Ryxa(0) + [ second moment of noise]

Therefore, the power at the output is

Py = so2 = Raxg(o) + second moment of noise

+ 2 Raxa(0) [second moment of noise ] 1/2

(74)
In computing the output signal-to-noise ratio and the signal
processing gain presented in the graphs of Figures 34, 35, 37
and 39, P, rather than Raxg(o) has been utilized. Since the
actual output peak provides an indication of target presence,
the method used imposes no loss in generality; we merely
redefine output signal-to-noise ratio. For this reason the
computed signal processing gains are higher than that
indicated by equation (72) by an amount contributed by the last
two terms in equation (74).

The graphs presented in Figures 34 to 40 are the
results of an ensemble average of 12 sample curves, with

Gaussian statistics obtained from different sections of the

computer simulated Gaussian process*, These graphs, together

als
"

Generated by the RANGAU subroutine, see Appendix IV.
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with the false alarm probability curves of Figure 41 define
signal detectability. The type of modulation, medium,
sampling rate, and quantization level are indicated in the
Figures. Figures 34 and 35 are alternate presentations of
the system performance. The conjectured signal processing
gain of the estimator is approximately 5 dB. Accompanying
with this signal processing gain is an improvement in peak-to-
sidelobe ratio of an approximately equal amount and a much
smaller probability of false alarm. It is concluded then,
that we have in the estimator an effective noise smoothing
device. It is further conjectured that an 8 level quantized
system is a best trade-off between degradation in performance
and simplification in implementation. The false alarm probability
curves shown in Figure 41 are obtained with the assumption of
certainty of probability of detection. The thresholds are
computed based on the peak amplitude at the output, the
occurrence of which is known a priori.

The effects of medium fading are presented in
Figures 37 and 38. For a given multiplicative noise variance,
the fading effect is observable when the additive noise is
comparable to or less than the multiplicative noise. Two
different decisions functions used in combining the two

quadrature channels of the overall receiver are as follows:
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I

(i) d(X;, X)) {R: Xlz + XZZ > ROZ}

and (ii) (X1, X2) {z: Max (X7, X2) >zo}
These aspects are discussed at length elsewhere [11]. Typical
results of the present analysis are presented in Figures 39 and
40.

Because of the high resolution capability, the echo
ranging system analyzed offers '"good' discrimination in a
multitarget situation. Three targets separated by distances
less than the length are distinguishable as individual targets.
This situation is presented in Figure 42.
Summary

The discrepancy between the theoretical output
signal-to-noise ratios predicted by equation (72) and those
computed by the simulation program is accounted for by a

difference in definition. The definition used in computing

the output signal-to-noise ratio is

2
_ (peak signal + noise)
total noise variances

(S/N),

(cf. equation (70) )
The conjectured results from this Chapter are
(1) The estimator offers a gain of approximately 5 dB,
a peak-to-sidelobe ratio improvement of approximately

5 dB and a much smaller false alarm probability.



(ii)

(iii)
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The improvement offered by the estimator permits
simplification in overall receiver implementation.

An 8 level (3 bit) quantized system is a best trade-
off between degradation in system performance and

simplification in system implementation.
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CHAPTER VIII

CONCLUSIONS AND FUTURE RECOMMENDATIONS

An optimum self-synchronized echo ranging system has been
designed and simulated, The overall echo ranging system design has
been categorized into three major parts, namely, the transmitter, the
propagation medium, and the receiver, The receiver design carries
more than 80% of the weight in this thesis,

Modern coding techniques together with Woodward's ambiguity
function analysis have been employed as a basis for signal encoding at
the transmitter end, The propagation medium has been modelled by a
Rayleigh amplitude fading with or without a specular component, A
maximum a posteriori probability criterion has been utilized to derive
the estimator and a maximum likelihood criterion for the correlator in
the receiver proper; In particular the estimator derived is a condition-
ally biased maximum a posteriori estimator, The estimator together
with the correlator forms an optimum active detection receiver for the
coding employed,

The orthogonal projection approach introduced by Kalman in
1960 was considered initially for the derivation of an optimal estima-
tor [15 ] However, the Kalman estimator involved too many iterations;

it took too long to compute the iterative processes in the IBM 7040
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computer, Moreover practical implementation difficulty was apparent.
For this reason the Kalman approach was abandoned in the early part
of this research.

The estimator provides approximately 5 to 6 db improvement
in signal processing gain over and above the non-optimized system.
From the results it has been conjectured that this improvement is
more than sufficient to compensate for any loss due to hard limiting.
It is concluded then that an optimized hard limited system yields
better performance than a non-optimized linear system. The overall
receiver implementation can thus be simplified by the introduction of
the derived estimator. The gain offered by the estimator permits the
system to operate further down in noise, It has been further conjec-
tured from the simulation results that a 3 bit (8 level) quantized sys-
tem is a good trade-off between system performance and system
simplification.

Since optimum detection and estimation strategies depend on
the characteristics of the signal and noise, the estimator derived in
this thesis cannot be utilized in a passive detection receiver without
modification. A similar approach can be used to derive an adaptive
estimator for passive detection for whatever signal and noise charac-
teristics known a priori. Frequency estimation can be introduced in
the zonal filter 2 design in the overall receiver configuration (figure

11) to optimize carrier regeneration and Doppler determination.



APPENDIX I

BINARY CODES

This Appendix is a precis of a technical note by the author
[14]. Other references are provided [12], [13].

Binary sequences {(codes) are derived from the Finite Galois
Field whose characteristics are 0 and 1. In Group Theory a cyclic
group is generated from one element. Likewise a cyclic binary
sequence may be generated from a primitive‘ polynomial; the cyclic
length is 2™, One of the 2™ elements in the cyclic sequence is an
all-zero element. In terms of physical implementation the all-zero
element is a trap element which must be excluded. Thus, the maximum
length of a binary cyclic sequence (or binary periodic code) is 201,
These are invariably called binary M-sequences. The primitive
polynomial (or generating function) has as coefficients the characteris-
tics of the Finite Galois Field. That is, a primitive polynomial has

the form

2+aix+1

anp XD+ ... taxK+ ., +apx
where a; =0or 1, i=1, ,,, , n,

which may be implemented by the configuration shown in Figure I-1.
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Two binary sequences {ui} and {v} have covariance function given by

J

N N
R(u;, vj) = 3 2 u; £
i=1 j=1
R(ui, Vj) i7:£ j 0 if the sequences are orthogonal.

The autocovariance function of a sequence {ui} is given by

N
Ry(k) = & vy w4y , k=0, %1, ..., #N-1)
i=1

Digit synchronization occurs when k = 0, that is,

N
R,(0) = 2
i=1

(I-1)

(I-2)

The off-synchronization autocovariance shall be called the imbalance

Dys that is,
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N
D, =Ry(k) = 2 ujujpx, k==#1, £2, ..., N-1)
i=1
The imbalance of a periodic binary sequence is lDuI =1 - IDul =0
if the code is orthogonal; l DU_' = 1 if it is simplex. A truncated sequence

would have imbalances of any magnitude less than Ry(o). The criterion
for choosing an optimum code is to minimize the maximum imbalance

That is, the criterion is

|D, |-

Min. Max. Ry(k)
Arg. k# o
Thus, to maximize the dynamic range is equivalent to maximizing the

ratio

Ru( 0)

max
k Z“ o Rll(k)

Convolution Code

Two or more short binary sequences may be convoluted to
yield one long sequence. If two sequences {a } and {b} have periods p
and q, respectively, the convoluted sequence {c} = {a} o {b} will have

period pq. The (unnormalized) correlation of {c} is

pa-1
Re(k) = °n nik
n=o
pa-1
Re(k) = 2 ap * antk © Pn bnik
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Setting n =1+ jpand ogi <p, we have

p-1 q-1
Re(k) = 2 2 3i4jp - aitjptk © Pitjp * Pitjprk
1 =0 = 0

T e

Summing over i first and recognizing that i + jp runs through all
residues modulo q, we have

1 q
aj 3i+k
0 i

p
Re(k) =
i

© bitk

g !
Mo
[on
-

= R,(K) © Rp(k)
The autocorrelation function of the convolution code is thus given by the
product of the autocorrelation functions of the individual codes. The
convolution code is a term-wise combination. A 105 digit convolution
code is obtained by convoluting a 7 digit M-sequence with a 15 digit
M-sequence. The convolution code generator is shown in Figure I-2.

The two primitive polynomials used are:

x4 + x3 +1
and
x3 +x +1
SUM
Mod 2 |-
1 2 3 4 3
SUM {CE
Mod 2
1 2 3 ¥
SUM
Mod 2

Figure I-2. 105 Digit Convolution Code Generator



APPENDIX II

MOVING TARGET REPRESENTATION

When a target is in motion there exists an uncertainty in range.

Since time delay is proportional to range, a delay uncertainty is pro-

portional to a range uncertainty. The delay uncertainty is an incre-

mental change of time denoted by 0. & is called the delay rate.

The range may be represented by the equation

r(t)

Equivalently

T (t)

It

ro+i't

nominal range + range uncertainty
the delay is given by
=T, +0t

= nominal delay + delay uncertainty

For two way communications

T(t) = E_r_(t) , where c is velocity of propagation

Hence To

r is target velocity

:Zro/c Zi'/c
1+/c 1+t /c

- Zro/C
1+r/c

_ 2r/c
1+r/c

113



114

If s(t) = Re {a(t) el wot} is the transmitted signal, where a(t) is the
intelligence and Re {ej wot} is the energy carrier, the received signal,

in the absence of fading, is given by

x(t) = s(t - T(t) )

Re{a(t S T(t) ) eiWo (¢ "“(t))}

Since the nominal delay T, does not effect the signal, we may rewrite

the above equation as

x(t)

Re {a(t - Ot) ej Wo(t - 61:)}

11

Re {a(t -61t) ej(wo_éwo)t}

The delay rate results in an epoch uncertainty on the envelope of the
intelligence a(t) by an amount &t and a frequency uncertainty on the
carrier by an amount 50)0. The delay uncertainty Ot will be neglected
in the system analysis in the main text while the frequency uncertainty

will be taken to be a translation in carrier frequency.



APPENDIX III

THE BANDPASS SQUARER

The analysis of power-law devices has well been documented
in the literature [5]. The bandpass squarer described in this Appendix
is for the sake of completeness. The bandpass squarer analysis includes

the zonal filter following it.

Bandpass Signal

z(t) at wg
Bandwidth B| Bandpass y(t) Zomal |y 2:1 c'(t)
Squarer Filter Frequency -
at 2wq Divider

Figure III-1. Bandpass Squaring

As in the text we represent the observed waveform by

z(t) = n(t) when signal is absent (11I-1)

and z(t)

x(t) + n(t) when signal is present (11I-2)

where  x(t) = y(t) by {a(to)} Cos w,(t - 6t). The various components
are as defined in section 5. 3. We analyze the cases with and without

signal in the following:-
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Case 1 - Signal Absent

When the signal is absent the observable is just the additive,
white, Gaussian noise:-
z(t) = n(t), with E {n(t)} = 0 and variance (JIZ1

The probability density function is given by:-

2 2
-z%/20
€ n (I1I-3)

1
P(Z) = J—é;r- on

Assuming the squarer to have unity again, the waveform at the output
is given by
2
y(t) = z(t) (1II-4)
The autocorrelation function of y(t) is
— .7 .z 2 . R
Ryft) = y1yz2 =27 z5; =2 R, (1) + R,y(0) (III-5)
since z(t) is a Gaussian process.
The power spectral density is given by the Fourier transform of
RY(T). By Parseval's theorem
L2 Ry(T) Ry(T) Cos wid7T =L G1(V) Gp(f -v) dv
We then have

_ o0
Gy(f) —_/'_OORY('II) Cos wtdT

o _ 2 2
2 7 Ry (%) Cos wtdt +j_‘_’:° R, (0) 8(T) Cos wtd<T

4

22 G, () G (f -ty at +0_*o( (I11-6)
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Let the bandwidth of the zonal filter be 2B. The signal spectral

density at the output of the zonal filter is then

| _2fo+B
Glf) = 2 f_sz_B Gy(f)) G, (f - £1) arl

2f+B

1y . 1 1
+f2fo‘B Gy(fh) + G (f-£%) df (III-7)

The low frequency components is removed by the zonal filter. For
noise with constant spectral density across the bandwidth B, the spec-

trum of the signal c(t) may be illustrated as in Figure III-2,

G (D)

2A%(B -f-ZfOI ) 2A%(B-| f-Zfol )

0 s
26, 21,
2B

Figure III-2, Noise Spectrum At Output of Zonal Filter

2B
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Case 2 - Signal Present

z(t) = x(t) + n(t)
y(t) = z2(t)
RY("L‘) = (x1 + nl)2 ©(xp + nz)2

1

xlz . XZZ + xlz n22 + 4 x1xp niny + xzz an + n12 n22

+ lez-xz ©np t2xg- Xzz- ny + lenlnz2 + sznlznz,

where xj = x(t) , nj = n(t)
xp = x(t+7T), np = n(t +7T)

Assumptions:- n=o0 and x & n are statistically independent.

Therefore RV(T) = XIZXZZ + Xlznzz + 4 x1x3n105 + Xzznlz + n12n22
..... (III-8)

or RY( T) = R (T) + Ryn(T) + Rpn(T)

where R, (T) é X12X22

ne>

Ryn(T) =4 Ry (T) - Rp(T) + 2 Ry(o) Ry(o)

Rpn(® = n12 n22

2Rp? () + Ry%(0)

The corresponding power spectral density is
G (f) = Gex(f) + Gyplf) + Gpnlf)
The power spectral density of the squared function, y(t), thus consists

of three components. The coherent part is the signal x signal term.



119

The incoherent part is made up of a noise x noise term and a signal
X noise term, the latter being the additional noise as a result of the
nonlinear operation of the squarer.

The noise x noise component is given by equation (III-6)
repeated below:-

Gon(D = 2/2 Gp(f)) Gu(f - £1) atl +a & 6(f) (I11-6)

Since the signal, from equation (19a), is
x(t) =y (t) - by {a(to)} Cos W(t - Ot)
= m(t) - Coswy(t -8t),
we have
R (7) = 1/2 [m(t) 1% Cos w, (1 - 8)7
Hence Gy(f) =1/4 mAt) [S(£+£,(1-86) )+ 6(f-£,(1-8)) ]* (II1-9)
The signal x signal component:-
R, (T)=m#*(t) [1/4+1/8Cos [ 2w, (1-8)7] ]

and
Gyx(f)=1/4 m¥(t) 6£+1/16 m*(t) [ §f+2£,(1-8)) +O(£-2£,(1-0) ) ].

(11I-10)
The signal x noise component:-
Graen() = mZ(8) [ Gp(f +2£,(1-8) ) +Gp (£ - 2£5(1-6) ) ]
+ m2(t) o 6(1). (1II1-11)

&

* The symbol,is used here to denote the Dirac Delta function as well as
the delay rate. The respective meaning is clear in context.
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The zonal filter removes the low-frequency components. The spectral
density at the zonal filter output is then given by:-
Ge(f) =1/16 m*(t) [O(f +2£(1-0)) +8(f-2f (1-06))]

+ m2(t) [ Gu(f +2£0(1-8)) +Gnlf - 2f5(1-6) )]

-2f5+B 1 I el L pt2fot+B 1 1 1}
+2{ o f1y. G (f-flyarsl + oBa (£l). g (£-flyarf
I o D Gnte) Gn(e-ehaed + 7 20T R Gy (e]): Gy(e-1)

e (III-12)
With a constant input noise spectral density A over the narrow band B,

we have
m#%(t)/16 , for ,fl = 2f5 (1 - 0)
Gelf)=< +m2()A , for 2f (1-8) -B/2 < l£] <2£5(1-8) +B/2

+2A2(B -1 - 2, (1-6) ), for 2£4(1-0)-B <[] <2f,(1-8)+B

~

... (III-13)

Equation (III- 13) is illustrated graphically in Figure III-3.

G(9)

2A%(B-|f-265(10) )

Figure III-3, Spectral Density At Output of Zonal Filter



The coherent power = 2(m%/16) = m%/8

The incoherent or fluctuation power = 2(2A2B2+m2AB)

2AB(2AB + m?)

1
3

oo
~
8]

Now, the signal power at the input to the squarer

and the noise power at the input = 2AB

The input signal-to-noise ratio is rj = an—- /| 2AB = ———

The output signal-to-noise ratio is:-

. - m4/B _ m4/l6A2B‘ riz
© " 2AB(2AB + m?2)

2+ m2/AB  2(1+2r})

2

We note that, as r; > o, ro & rj

as r{ - o, rg O Tj
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A plot of ry vs r; for the bandpass squarer is shown in Figure

I111-4. Equation (III-13) is the power spectral density of the signal c(t).

The signal c(t) may be derived in the following manner:-

H

z(t) = x(t) + n(t)

where we have represented the narrow band gaussian noise by two

random functions at quadrature:
vlt) = n(t) Cos ¢n(t)

vs(t) = n(t) Sin ¢p(t)
-1 vg(t)

Hence ¢ ,(t) = tan —r

and n(t) = [ ve2(t) + ve2(t) 11/2

m(t) Cos wo(1 -8)t+ ve(t) Cos wy(1-8)t - v4(t) Sinwy(1 - O)t,



In the above representation we have E {Vc(t)} = E {Vs(t)} =0

2 2 2
Also Ovyc = Oyg =0

Then  y(t) = z2(t)
= m2(t) Cos? wy(1-8)t+2m(t) Cos w, (1-6)t
L vty Cosw  (1-8)t- vy(t) Sin @ (1-8)t]
+ [ve(t) Cos wy(1 - 6)t- v 4(t) Sin wy(1-6)t ]2
and c(t) = 1/2 m2(t) Cos [2w (1 - &)t ]
+ m(t) ve (t) Cos [2wg (1 - 8)t]
- m(t) vg(t) Sin [2w, (1 -8) t]

2(t) - v.2
p Yef(t) - Vet 2w,(1 - )t

- Ve(t) Vg(t) Sin 2 Wy (1 -0)¢t

After frequency division we have

' > coherent
c'(t) = 1/2 m4(t) Cos wy(1 - 8)t component
+ m(t) v.(t) Coswe{l-8)t "
-m(t) vg(t)Sinwgy (1 - )t incoherent

2 s component
F1/2(ve2(t) - v4“(t)) Coswg(l - 0)t

-Ve(t): Vg(t)- Sinwg(1-06)t
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APPENDIX IV

COMPUTER SIMULATION PROGR AMS

The overall computer simulation for the echo ranging system
described in the main text is briefly described in this Appendix. A
listing of the computer simulation programs used for system evalua-
tion is given at the end of this Appendix., The components which make
up the overall echo ranging system are simulated in subroutine forms.
A main routine called ADAPT monitors the signal flow of the overall
system by calling upon the subroutines to perform their functions at
appropriate points.

All ‘routines are Writtven in FORTRAN IV for the IBM 7040
computer. All waveforms presented in Chapter VII are plotted by a
Benson-Lehner digital X-Y plotter. Except for a subroutine called
RANGAU, which is a McMaster Computer Centre Gaussian noise gen-
erator, all other subroutines are system component simulation pro-
grams written by the author. All subroutines communicate with the
main routine ADAPT in the manner depicted in Figure IV-1, Detailed
flow charts, which would amount to a minimum of 1 to 2 pages per
subroutine, are not included, since the central theme of this thesis
is not an exposition on computer programming. However, an exposition

on computer programming with detailed flow charts for problems of
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similar complexity can be found in reference [16]. A list of the vari-

ous subroutines accompanied by a short description is given below:

Subroutine Name

Description

CCGEN

CGEN

BPSIG

FADING

RANGAU

BPSQFT

BPFTR

MIXER

VARCE

INSNR

A convolution code generator; this subroutine
calls on another subroutine, CGEN, to generate
the component M-sequence.

A binary M-sequence generator,

A pure sinusoidal signal generator and/or band-
pass signal encoder.

A channel fading model, simulated by a sum of
fixed and random components.

A Gaussian noise generator (McMaster Library
program).

A bandpass squarer, tuner and frequency
divider,

A bandpass zonal filter which regenerates the
carrier and extracts the Doppler shift frequency.
A quadrature demodulator,

A subroutine to compute the mean and variance
of any random process.

A subroutine to compute input signal-to-noise
ratio when the observable is signalt+noise,

This subroutine calls INVAR.,



Subroutine Name

INVAR

ESTMR

QUANTR

RECVR

FMAX

SNR

PROBAN

C GRAPH

GRAPH
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Description

Computes the variance of noise, excluding

the signal occupancy.

A baseband signal estimator.

An n level quantizer, n even,

A cross-correlator which yields a time com-
pressed output waveform at each of the quad-
rature channels and the combined channel.
Locates the peak value of the compressed wave-
form and identifies its location.

Computes the output signal-to-noise ratio and/
or the peak-to-sidelobe ratio,

Computes the false alarm rate.

Sets up the plot parameters and calls GRAPH
to do the actual plotting.

Plots data on the Benson-Lehner digital X-Y

plotter,

The level of subroutine calling by the main routine ADAPT is typified

in the gross flow chart of Figure IV -2,

A second main routine called ADAPT2 simulates a multiple

target situation.

The main routine ADAPT2 calls upon the appropriate

subroutines listed above and the following additional subroutines.
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Subroutine Name Description

MULTGT A subroutine to simulate multiple targets and/
or reverbefation.

M NOISE A subroutine to simulate multiplicative noise
at complex low-pass.

A gross flow chart for the multiple target simulation is shown in

Figure IV-3.



GRAPH

INVAR

RANGAU
CGEN
1 A
BPSIG FADING M NOISE
CCGEN \ / BPSQFT
.| C GRAPH
T~ BPFTR
MULTGT -
ADAPT MIXER
PROBAN
SNR INSNR
] \
FMAX ’
RECVR QUANTR ESTMR VARCE
Figure IV-1. Hierarchy of Subroutines for System Simulation

L21



( ADAPT >

y

Initialization

CALL CCGEN
(To Generate Code)

-

CALL BPSIG
{Modulation)

(Plot Waveforms)

N TN

CALL FADING
Multiplicative Noise)

CALL CGRAPH >

=

CALL RANGAU
(Additive Noise)

CALL BPSQFT
Bandpass Squaring)

CALL BPFTR
(Zonal Filtering)

CALL MIXER

(Demodulation)

Y CY Y Y
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CALL CGRAPH
(Plot Waveforms)

CALL INSNR
(Input SNR)

CALL ESTMR

(Estimator)

CALL QUANTR

(Quantizer)

CALL RECVR

(Correlator)

CALL CGRAPH
(Plot Waveforms)

CALL FMAX
(Determine Peak)

CALL SNR
(Output SNR)

CALL PROBAN
(False alarm rate)

e N e NS U N e U N S

)
)
)
)
)
)
N
)
)

oo )

Figure IV-2, Sequence of Subroutine Calling by ADAPT
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a

Initialization

ADAPT 2 >

CALL CCGEN
(To Generate Code)

CALL MNOISE
(Multiplicative Noise)

.

CALL MULTGT
(Multitarget)

1

CALL RANGAU

SN YN Ny Y

(Additive Noise)

All Targets?

CALL ESTMR

" (Estimator)

CALL RECVR
{Correlator)

CALL CGRAPH
(Plot Waveforms)

/\/\/\

C STOP )

Figure IV-3., Sequence of Subroutine Calling for Multitarget Simulation




$J0B 003506 JWMARK 100 010 030
SPAUSE PLEASE MOUNT 300 FT MINI REEL ON 1C2 FOR B-L PLOTTERs 130
$1B8408B DECK

SIBFTC ADAPT NODECK

C

SELF-SYNCHRONYZED ADAPTIVE DETECTION SYSTEM

DIMENSION SHRG (4) s ATAPS(3) 9 TAPS(4)sSTIG1(15)9SIG2(7)sBUFF1(105) sBUF
1F2{105)sBUFF4(420)

DIMENSION AVC(1681)sAUTOP(1681)sAUTOQ(1681) +sPSIG(1681)+QSIG(1681)
1SIGP(1681)sSI1GGQ(1681)4AVCLG(1681)

DIMENSION AVC1(1681)sAUTOP1(1681)sAUTOQ1(1681)sAVCLG1(1681)
DIMENSION X(1681)sY(420)+2(1681)

DIMENSION PNSG(420)sQNSG(420)sCSIG(1681)9S5SIG(1681)4CRSIG(1681),
1SRSIG(1681)sCTSIG(1681)4STSIG(1681)

EQUIVALENCE (PSIGsCRSIG) s (QSIGISRSIG) s (SIGPsCTSIG) s (SIGQSTSIGsZ)
1{BUFF49PNSG) s (Y9sQNSG)

EQUIVALENCE (AUTOP1sAUTOPsCSIG) s (AUTOQ1sAUIOCQSSIG) 9 tAvClesAvCsAVCL
1G1ls AVCLGs X)

DIMENSION PLVL(1)sANLVLI(1)

DIMENSION T(5)

DATA T7/=0e859=0e309~06459=0e609~0e75/

DATA LBTWO/4/9L/1/sPMAX/0e0/

DATA TAPS/OOO’OOO’l.O’l.O/

DATA ATAPS/1e090409140/

DATA TCDLTHsMCDLTHsLLOML/ 79159394/

DATA STReSD/0e0904001/

DATA STN/Qe0Q/

DATA FCTRsTHETASISAMP/14090e8s4/

DATA STA9STQ9eSTD/1150Ce030640U91e75/

DATA ISWCHsJSWCHIMSWCH/190s1/

MM=MCDLTH*ICDLTH

MN=1SAMP*MM

DATA ICYCLESNDIVR/2+4/

DATA PHIR/0e0/

PI=341415926

PHIC=PI/340

KM=4*¥NDIVR*ICYCLE

ILENTH=ICYCLE*MM

NN=2#NDIVR#*#I CYCLE¥*MM+1

DRIF=PI/3240

ACYCLE=ICYCLE

ACDLTH=MM

DIVR=NDIVR

DOPPLR=(DRIF *ACYCLE*ACDLTH*¥DIVR)/PI1

WRITE(657)DOPPLR

FORMAT(1HO 94 2HDOPPLER SHIFT FOR ONE CODE LENGTH IN CPS =4F12e6)
CALL CCGEN(SIG1+SIG2eMCDLTHICDLTHsBUFF1 sBUFF2eMMy ISWCHy JSWCHBUFF
149MNsFCTRs TAPSsMLIATAPSyLL 9 SHRGs ISAMP)

CALL BPSIG(CSIGeSTSIGeNNsNDIVRsICYCLESPHICsPHIRSBUFF19MM9s09s0sDRIF)
CALL LETTER(249599090e091eCs24HJeWe MARK/105 DIGIT CODE)

CALL PLOT(3409140s~3)

YDISP=040

XDISP=0.0

XINCH=94,0

YINCH=1e25

CALL CGRAPH(NNsCSIGsXsXDISPsYDISPsXINCHsYINCHs1)

YDISP=240

CALL CGRAPH(NNsSTSIGsXsXDISPsYDISPsXINCHsYINCHs1)

CALL CGRAPH(MMsBUFF19XsXDISPsYDISPeXINCHsYINCHs1)

CALL LETTER(149230944090060914H105 DIGIT CODE)
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CALL LETTER(17929094409=2e¢0917HSINUSOIDAL SIGNAL)
CALL LETTER(149290s4e0s~4e0s14HENCODED SIGNAL)
CALL PLOT(13¢09s~4404-3)

PHIR=PHIR+PI/240

CALL BPSIG(CSIGsSTSIGsNNSNDIVRsICYCLE sPHICsPHIRsBUFF1sMMs19s0sDRIF)
DATA MMRY/10/+sSLOW/Ce0/

DATA PMEAN/0«Q/sVAR/0e0/sPHI/0e0/sDPHI/ 04001/

CALL FADING(XsNNsMMRY 9STRsSDsPMEANSVARSPHI s DPHI s SLOW)
DO 11 I=1sNN

CSIG(IN=CSIG(I)*X(I)

CALL RANGAU(XsNNsSTNsSTD)

DO 12 I=1sNN

CSIG(IN=CSIG(I)+X(1)

CALL BPSQFT(CSIGsCRSIGISRSIGINNsNDIVRsILENTHsPHIC)
CALL BPFTR(NNsSCRSIGsSRSIGsCTSIGsSTSIGsKMsNDIVRsSSIG)
CALL MIXER(CSIGsCRSIG9SRSIGsCTSIGsSTSIGsNNsPNSGesQNSGs ISAMPsNDIVR s
1ICYCLE#+MN)

CALL LETTER(1993990504051e0519HQCHANNEL STATISTICS)
CALL PLOT(3e4090e0s-3)

YDISP=0.,0

CALL CGRAPH(MNsQNSGs XsXDISPsYDISPsXINCHsYINCHs1)
YDISP=240

CALL CGRAPH(NNsSRSIGsXsXDISPsYDISPsXINCHsYINCHs1)
CALL CGRAPHINNsCSIG9XsXDISPsYDISPsXINCHsYINCHs1)
CALL LETTER(12929094409 0e0s12HNOISY SIGNAL)

CALL LETTER(25929093¢59-2e00925HDERIVED REFERENCE CARRIER)
CALL LETTER(17929094409-4400917HLOW=-PASS WAVEFORM)
CALL PLOT(13409-44009-3)

CALL LETTER(1993990504091e¢C9s19HPCHANNEL STATISTICS)
CALL PLOT(3e405060s=3)

YDISP=0e0

CALL CGRAPHIMNSPNSGs X9XDISPsYDISPsXINCHs YINCHs1)
YDISP=240

CALL CGRAPH(NNSCRSIGsXsXDISPsYDISPsXINCHsYINCHs1)
CALL CGRAPH(NNsSSIGsXsXDISPsYDISPsXINCHsYINCHs1)
CALL LETTER(15929094e0s 0e0s15HFREQUENCY DRIFI)

CALL LETTER(25933093e59~2e¢0925HDERIVED REFERENCE CARRIER)
CALL LETTER(17939094e¢09~4e0917HLOW=PASS WAVEFORM)
CALL PLOT(13e09-4e¢09-3)

DATA ANOPsANOQsPVARIQVAR/ 0409060304004 0/

DATA AMEANSAVAR/0e0s040/

INTL=MN

IFNL=2%MN-1

I1DMM=3 #MN

IDMN=IDMM-1SAMP

CALL RANGAU(PSIGsIDMMsSTASSTD)

CALL RANGAU(QSIGsIDMMsSTQsSTD)

CALL AVRG(PSIGsIDMMsPSIGs IDMNsISAMP)

CALL AVRG(QSIGsIDMMsQSIGs IDMNsISAMP)

CALL VARCE(PSIGsIDMMsANOPSPVARSs1)

CALL VARCE(QSIGsIDMMsANOQIQVARSs1)
PSNR=10e0*ALOG10(PMEAN*%2/PVAR)

WRITE(699)PSNR

FORMAT(1HOs21H INPUT SNR IN DBS =3E15410)

DO 8 I=INTLsIFNL

J=I=INTL+1

QSIG(I1=040

PSIG(I)=040
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QSIG(I)=QSIG(I)+QNSG(J)

8 PSIG(I)=PSIG(I)+PNSG(J)

LM=23#MN
CALL ESTMR(PSIG,IDMMsSIGP s IDMNsISAMP 4PVAR)
CALL ESTMR(QSIGsIDMMsSIGQs IDMN I SAMP 3QVAR)
CALL QUANTRI(PSIGsIDMMePLVL 9yANLVL s LBTWOsCMAX L)
CALL QUANTR(QSIGsyIDMM4PLVL ¢ ANLVL s LBTWOsSMAXsL)
CALL QUANTR(SIGP s IDMNSsPLVLsANLVL s LBTWOsCMAX L)
CALL QUANTRIISIGQsIDMNosPLVL 4sANLVL s LBTWOsSMAX oL)
DATA FARATEsIOBNT/0e0s5/
WRITE(6+108)

108 FORMAT(1H~964HTHE FOLLOWING ARE OUTPUT STATISTICS FOR SYSTEM WITHO
1UT ESTIMATOR)
DATA PEAKsIPOSNesTRNGsSNR19SNR2sVARISWINNTesICNTLsISIDE/0e03090e030
109040906091 409420910910/
CALL RECVR(AVCsAUTOPsAUTOQsBUFF1 s IDMNIMMeSIGP sSIGQs ISAMPsLMeMSWCH s
1AVCLG)
CALL FMAX(AVCesMMsPEAK s IPOSN)
CALL SNRAVC oMM9sSNR19SNR2IPEAKsIPOSNsVARISWINNT s ICNIL s ISIDESIFLAG
1)
DO 20 JL=1s4
THOLD=PEAK#*10e0%*#T (JL)
WRITE(622)LBTWOs THOLD

22 FORMAT(1H s25HHALF QUANTIZATION LEVEL =9I13911HTHRESHOLD =9F1245)
CALL PROBAN(AVCsMMsTHOLDSPEAKsFARATE sIOBNT s IPOSN)

20 CONTINUE
DO 10 I=INTLsIFNL
J=I=-INTL+1

10 Y(J)=SIGP(I)
CALL LETTER{1495990906091e¢0914HSYSTEM QUTPUTS)
CALL PLOT(34090e09~3)
XDISP=040
XINCH=1040
YINCH=34,0
YDISP=0.0

IF DIVISION MARKS ARE REQUIRED PUT NDIV = 0

CALL CGRAPH(LMsAVCs ZsXDISPsYDISPsXINCHsYINCHs0U)

YDISP=340
CALL CGRAPH(LMsAUTOPs Z¢XDISPosYDISPsXINCHsYINCHs1)
YINCH=1e25
CALL CGRAPH(MNsYs ZyXDISPsYDISPsXINCHs YINCHs1)

WRITE(69107)
107 FORMAT(1H~961HTHE FOLLOWING ARE QUTPUT STATISIICS FOR SYSIEM WIIH
1ESTIMATOR)
CALL RECVR(AVC1sAUTOP19AUTOQ1sBUFF1 9 IDMMsMMPSIGsQOIGs I SAMPsLMeMSW
1CHsAVCLG1)
CALL FMAX(AVC1sMMsPEAK»IPOSN)
CALL SNR(AVC1sMMsSNR19sSNR2sPEAKSIPOSNsVARSSWeNNT o ICNTLs ISIDESIFLAG
1)
DO 25 JUH=1s4
THOLD=PEAK*1040%*T(JH)
WRITE(6922)LBTWOs THOLD
CALL PROBAN(AVCyMMsTHOLD s PEAKsFARATE s IOBNT s IPOSN)
25 CONTINUE
DO 19 I=INTLsIFNL
J=I=INTL+1
19 Y(J)=PSIGI(I)
CALL PLOT(13e09-6409-3)
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YINCH=3,0
YDISP=040
CALL CGRAPH(LMsAVC1lsZsXDISPsYDISPsXINCHsYINCH,0)
YDISP=3,0
CALL CGRAPH(LMsAUTOP1sZsXDISPsYDISPsXINCHsYINCHs 1)
YINCH=1+25
CALL CGRAPH(MNsY ZsXDISPsYDISPoaXINCHsYINCHs1)
CALL PLOT(13405s=6405-3)
CALL LETTER(179599090e091e¢0s17HFINISHED PLOTTING)
CALL PLOT(0e030409999)

STOP

END
$IBFTC CCGEN DECK
C IF ISWCH=0sONLY M-SEQUENCE IS GENERAIED
C IF USWCH=0s SIGNAL IS TO BE SAMPLED ONCE

SUBROUTINE CCGEN(SIG1SIG2sMCDLTHs ICDLTHsBUFF1sBUFF2sNNsISWCHsJSWC
1HsBUFF4 sMNsFCTRe TAPS oML +ATAPSsLL s SHRGSISAMP)
DIMENSION SIGI1(MCDLTH) 9SIG2(ICDLTH) sBUFF1{(NN) +sBUFF2(NN) sBUFF4(MN) »
1TAPS{ML) s SHRG(ML ) s ATAPS(LL)
CALL CGEN(SIGI sMCDLTHsTAPSsML 9 SHRG)
IF(ISWCHeEQe0G)IGO TO 81
CALL CGENI(SIG2sICDLTHsATAPS slLL s SHRG)
M=0
1 DO 4 I=14MCDLTH
J=1+M
4 BUFF1(U)=SIG1(I)
M=M+MCDLTH
IF(MeLTeNN)GO TO 1
M=0
2 DO 5 I=1sICDLTH
J=1+M
5 BUFF2(J)=S1G2(1)
M=M+ICDLTH
IF(MelLTeNNIGO TO 2
DO 6 I=1e¢NN
SUM=BUFF1(1)+BUFF2(1)
BUFF1(I)=AMOD(SUMs240)
DO 7 J=1sNN
IF(BUFF1(J)eEQeOe0)BUFF1(J)==140C
7 CONTINUE
WRITE(6917)(BUFF1{I)sI=1sNN)
17 FORMAT(1HO 1 THCOMBINATION CODEes/7(1H $25F541))
IF(JSWCHWAEQeO)GO TO 9
M=1
K=ISAMP
DO 31 I=1sNN
DO 32 J=MsK
32 BUFF4(J)=BUFF1(I)%FCTR
M=M+]ISAMP
K=K+ SAMP
31 CONTINUE
S RETURN
81 DO 82 I=1sMCDLTH
82 BUFF1(1)=SIG1(1I)
GO TO 8
END
$IBFTC CGEN DECK
C GENERAL CODE GENERATORs INCLUDING SINGLE PULSE

® O
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H

C CMSEQ = M-SEQUENCEs ICDLTH LENGIH OF M=SEQUENCF
- C ATAPS = FEEDBACK TAPSs LL = NQOe OF SHIFT REGISTER STAGES
SUBROUTINE CGEN(CMSENsICDLTHoATAPS 3L L s SHRG)
DIMENSION CWSEQ(ICDLTH);ATAPQ(LL)9SHRG(LL)
SUM = 040
DO 1 I=1,LL
1 SHRG(I)=140
NN = Lt-=1
DO 2 J=1+ICDLTH
CMSEQ(J)Y=SHRG(LL)
SUM = 060
DO 4 I = 1elL
4 SUM=SUM+SHRG(TII*ATAPSI(I1)
DO 3 I =1sNN
K=LL-1
N=K+1
3 SHRG(N)=SHRG(K)
2 SHRG(1)=AMOD(SUMs240)
WRITE(6s17)(CMSEQ(T)sI=1sICDLTH)
17 FORMAT(1HOs15HREFERENCE CODEes/(1H 925F541))
RETURN
END
$IBFTC BPSIG DECK
SUBROUTINE BPSIG(CSIGsRSIGeNNsNDIVRSICYCLEsPHICsPHIRSCODESICDLTHSI
1SWe JUSWDRIFT)

C THIS SUBROUTINE GENERATES A BINARY CODED SIGNAL AND/OR A PURE
C SINUSOIDAL WAVEFORM

C IF ISW = OsBINARY ENCODED SIGNAL IS REQUIRED

C IF JUSW = CsPURE SINUSOIDAL SIGNAL IS REQUIRED

C ICYCLE=NUMBER OF CYCLES PER BAUD

C NDIVR=NUMBER OF SAMPLES PER HALF CYCLE OF CARRIER FREQUENCY
C KM=NUMBER OF SAMPLES PER BAUD

C =2#NDIVR*ICYCLE

C NN=KM*TICDLTH+1

C CSIG = CODED SIGNAL ARRAY

C RSIG = SINUSOIDAL CARRIER

C CODE = MODULATION CODE

DIMENSION CSIG(NN) sRSIG(NN}) sCODE(ICDLTH)
PI=341415926
DIVR=NDIVR
DTHETA=PI/DIVR
KM=2#NDIVR*#ICYCLE
KCT=1
K=1
KK=KM
IF(ISWeNELO)IGO TO 6
THETA=0.C
3 DO 2 J=KsKK
CSIG(U)=SIN(PHIC+THETA)
THETA=THETA+DTHETA
KCT=KCT+1
IF(KCT«GT«ICDLTHIGO TO 5
KK=KK+KM
K=K+KM
IF(CODE(KCT) «EQeCODE(KCT~1))GO 10 4
THETA=THETA+DTHETA+PI
GO 70 3
4 THETA=THETA+DTHETA

N
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GO T0O 3
5 THETA=THETA+DTHETA
CSIGINN)=SIN(PHIC+THETA)
IF(JUSWeNED)GO TO 7
6 THETA=0.0
DTHETA=DTHETA+DRIFT
DO 1 I=1eNN
RSIG(I)=SIN(PHIR+THETA)
1 THETA=THETA+DTHETA
7 RETURN
END
$IBFTC BPFTR DECK
SUBROUTINE BPFTR(NNsCRSIGSRSIGsCTSIGsSTSIGsKMsNDIVRIFDSIG)
THIS SUBROUTINE PERFORMS BANDPASS FILTERING FOR BANDWIDTHS
SPECIFIED BY 'KM' SWHERE KM IS THE FILTER MEMORY
IF THE BANDWIDTH IS THE SAME AS THE SIGNAL BANDWIDTHsTHEN
KM=2%NDIVR*ICYCLE
DIMENSION CTSIG(NN) oSTSIG(NN)sCRSIG(NN) 9SRSIG(NN) ¢FDSIG{NN)
MM=NN=~KM+1
C MULTIPLY THE TWO SIGNALS
DO 1 I=1sNN
CRSIG(I)=CRSIG(II*CTSIG(I)
1 SRSIG(I)=SRSIG(I)*STSIG(1)
C PERFORM STATISTICAL AVERAGING
DO 2 I=1sNN
AKM=KM
TEMPC=040
TEMPS=040
IFNL=14+KM-1
DO 3 J=IsIFNL
TEMPC=TEMPC+CRSIG{J)
3 TEMPS=TEMPS+SRSIG(J)
IF(IeLTeMM)IGO TO 5
KM=KM=-1
5 CRSIG(I)=TEMPC/AKM
SRSIG{I)=TEMPS/AKM
FDSIG(I)=SRSIG(I)
2 CONTINUE
C PERFORM MODULATION AND SUM THE TWO CHANNELS ALGEBRIACALLY TO YIELD
C A BANDPASS SIGNAL
DO 4 J=14NN
CRSIG(J)=CRSIG(JI*#CTSIG(J)
SRSIG(J)=SRSIG(JI*STSIG(J)
4 CRSIG(J)=CRSIGIJI+SRSIG( )
C SHIFT THE SIGNAL BY 90 DEGREES
ISHIFT=NDIVR/2
TEND=NN=~ISHIFT
DO 8 I=1sISHIFT
J=TEND+I
8 SRSIG(JU)=CRSIGI(I)
IGBN=ISHIFT+1
DO 6 I=IBGNsNN

OO N

J=I=-1ISHIFT

6 SRSIG(J)=CRSIG(I)
RETURN
END

$IBFTC BPSQFT DECK
SUBROUTINE BPSQFT(SIGINsCRSIGsSRSIGsNNsNDIVRsILENIHsPHIC)
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C THIS SUBROUTINE PERFORMS SQUARING + RETUNING OF A BANDPASS SIGNAL
DIMENSION SIGIN(NN),CRSIG(NN)gsRSIG(NN)
PI=341415926
DIVR=NDIVR
DTHETA=PI/DIVR
DO 1 I=14NN
1 CRSIG(I)=SIGIN{(I)**D
ANUM=PHIC/DTHETA
NUM=ANUM
K=2#NDIVR
IF(ANUMeGTele0)GO TO 5
INTL=NDIVR+1
IFNL=K
KCT=1
DO 2 I=INTLsIFNL
2 CRSIG(I)==CRSIGI(I)
KCT=KCT+1
IF(KCTeGTSILENTHIGO TO 4
INTL=INTL+K
IFNL=IFNL+K
GO TO 3
5 INTL=NDIVR+1-NUM
IFNL=K=NUM
KCT=1
GO TO 3
4 ISHIFT=NDIVR/2
TEND=NN=ISHIFT
DO 8 I=14ISHIFT
J=TEND+I
8 SRSIG(U)I=CRSIGI(I)
IBGN=ISHIFT+1
DO 6 I=IBGNsNN

w

J=I-ISHIFT

6 SRSIG(JU)=CRSIG(I)
RETURN
END

$IBFTC MIXER DECK
SUBROUTINE MIXER(SIGINsCRSIGsSRSIGsCTSIGsSTSIGsNNsPSIGyQSIGsISAMP,
INDIVRs ICYCLE sMN)
THIS SUBROUTINE PERFORMS DEMODULATION AT QUADRATURES
THE SIGNALS IN ARRAYS PSIG AND QSIG ARE LOW-PASS WAVEFCORMS SAMPLED
AT A RATE OF ISAMP SAMPLES PER BAUD
ALL SIGNALS INPUT TO THE SUBROUTINE ARE PRESERVED
DIMENSION CRSIG(NN) 9SRSIG{(NN) sSIGIN(NN) sPSIGIMN) sQSIGIMN)
DIMENSION CTSIG(NN)sSTSIG(NN)
DO 1 I=1sNN
CTSIG(I)=SIGIN(I)*CRSIG(I)
1 STSIG(I)=SIGIN(I)*SRSIG(I)
KM=NDIVR#2#ICYCLE
KN=KM
MM=NN-KM +1
DO 2 I=1sNN
AKM=KM
TEMPC=040
TEMPS=040
IFNL=T4KM=~1
DO 3 J=TIsIFNL
TEMPC=TEMPC+CTSIG(J)

O NON
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3 TEMPS=TEMPS+STSIG(J)
IF(T«LTeMM)IGO TO 5
KM=KM~-1
5 CTSIG(I)=TEMPC/AKM
STSIG(I)=TEMPS/AKM
2 CONTINUE
NJ=NN-1
IRATE=KN/ISAMP
DO 4 I=1sNJsIRATE
J=(I+IRATE~-1)/IRATE
PSIG(J)=CTSIG(1])
4 QSIG(UI=STSIGI(I)
RETURN
END
$IBFTC FADE DECK
SUBROUTINE FADING(ALPHASMNsMMRY 9 STR9SDsPMEANSVARSPHI sDPHI s SLOW)
DIMENSION ALPHA(MN)
MM=MN~MMRY
CALL RANGAU(ALPHASMNsSTRsSD)
DO 12 I=1sMN
PHI=PHI+DPHI
12 ALPHA(I)=SQRT(ALPHA(I)*x%2)
IF(SLOWeNESOe0O)GO TO 5
AMRY =MMRY
DO 1 I=1sMN
KK=1+MMRY~1
SUM=040
DO 2 J=1+KK
SUM=SUM+ALPHA(J)
2 ALPHA(1)=SUM/AMRY
IF(IeLTeMM)GO TO 1
MMRY=MMRY -1
AMRY=MMRY
CONTINUE
5 CALL VARCE(ALPHAsMNsPMEANSVARs1)
IF(PMEANCLTe1e0)GO TO 14
DCSH=0,4,0
GO T0 13
14 DCSH=1.0~-PMEAN
13 DO 3 I=1sMN
3 ALPHA(I)=DCSH+ALPHA(I)
CALL VARCE(ALPHASMNsPMEANSIVARS1)
WRITE(6995)PMEANSVAR
95 FORMAT (1HOs40HMEAN VALUE OF RANDOMLY FADING VARIATES =9E15e8/38HVA
1RIANCE OF RANDOMLY FADING VARIATES =y El5e8)
RETURN
END
$IBFTC INSNR DECK
SUBROUTINE INSNR{SIGPsIDMNSINTLsIFNL)
DIMENSION SIGP(IDMN)
DATA PMEANsSPSMTsPVARSPWRIANSNR/04090e0306090403040/
CALL INVAR(SIGPsIDMNsINTL s IFNLsPMEANSPSMTsPVAR)
55Q=060
ANORM=TFNL~-INTL
DO 1 I=INTLsIFNL
1 SSQ=SSQ+SIGP () #%2
PWR=S5Q/ANORM~PSMT
ANSNR=1040*ALOG10(PWR/PVAR)

-
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WRITE(698)PWRsANSNR

8 FORMAT(1HO»37HSIGNAL POWER AT OUTPUT OF ESTIMATOR =9E15¢10/1H0s53H

1SIGNAL-TO-NOISE RATIO AT OUTPUT OF ESTIMATOR IN DBS =yE15610)

RETURN
END

$SIBFTC INVAR DECK

SUBROUTINE INVAR(SIGPsIDMNsINTLs IFNL9sPMEANSPSMT sPVAR)
DIMENSION SIGP(IDMN)

SUM=0,0

55Q=040
ANORM=IDMN-1FNL+INTL
IFNLP=IFNL+1

DO 1 I=1sINTL
SUM=SUM+SIGP (1)
SSQ=SSQ+SIGP () *%2
DO 2 I=IFNLPsIDMN
SUM=SUM+SIGP (1)
SSQ=SSQ+SIGP (1) *%#2
PMEAN=SUM/ANORM
PSMT=SSQ/ANORM
PVAR=PSMT=PMEAN#*#2
WRITE(699)PMEANSPVAR

9 FORMAT(1HOs44HMEAN VALUE OF NOISE AT OUTPUT OF ESTIMAIOR =3E15410/

11HO939HNOISE VARIANCE AT OUTPUT OF ESTIMATOR =+E15410)

RETURN
END

$I1BFTC VARCE DECK
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10

11
5

SUBROUTINE TO COMPUTE MEAN AND VARIANCE OF RANDOM PROCESSES
IF ONLY THE MEAN VALUE IS DESIRED SET ISWCH=0e FOR ISWCH EQUAL
TO ANY OTHER VALUE BOTH MEAN AND VARIANCE WILL BE COMPUTED.,.
ARAY = BUFFER FOR RANDOM PROCESS TO BE ANALYSED

1SS = SAMPLE SIZE OF THE RANDOM PROCESS

AMEAN = MEAN OF RANDOM PROCESS

VAR = VARIANCE OF RANDOM PROCESS

SUBROUTINE VARCE(ARAY sISSsAMEANSVARs ISWCH)

DIMENSION ARAY(ISS)

AMEAN = 040

SMONT = 00

DO 2 I=1+1S5S

AMEAN=AMEAN+ARAY (1)

SS=1S5S

AMEAN=AMEAN/SS

WRITE(6910)AMEAN

FORMAT (1H-928HTHE MEAN VALUE OF THE DATA =+4E14.9)
IF(ISWCHeEQeQ1IGO TO 5

DO 3 I=191S5S

SMONT = SMONT+ARAY(1)#%*2

SMONT = SMONT/SS

VAR = SMONT = AMEAN*¥2

WRITE(6s11)VAR

FORMAT (1HO»26HTHE VARIANCE OF THE DATA =4E1449)

RETURN

END

$IBFTC ESTMR DECK

SUBROUTINE ESTMR(PSIGsIDMMsSIGPs IDMN s ISAMP s VARN)
DIMENSION PSIG(IDMM) sSIGP(IDMN)

SAMP=1SAMP

K=2
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2 SUM1=0,0

SQ=0eC
IFNL=ISAMP+K

DO 1 I=KsIFNL
SUM1=SUM1+PSIG(I)

1 SQ=SQ+PSIG(I)#*%2
SUM1=SUM1/SAMP
COVF=5Q/SAMP=SUM1#%2~VARN
DIFF=PSIG(K)=SIGP(K=-1)

UPDATE=DIFF*COVF/VARN
SIGP(K)=5UM1+UPDATE
[IF(KeEQeIDMN) GO TO 3
GO TO 2

3 RETURN

END
$IBFTC QUANTR DECK
SUBROUTINE QUANTR(ARRAY s IDMNsPLVLsANLVL s LBTWOsPMAXsL)
DIMENSION ARRAY(IDMN)sPLVL(LBTWO) s ANLVL (LBTWO)
AN=LBTWO
IF{LeEQe0)GO TO 2
PMAX=00
PMIN=0,40
DO 1 I=15IDMN
PMAX=AMAX1 (PMAX s ARRAY (1))
1 PMIN=AMINI1(PMINsARRAY (1))
IF(ABS(PMAX) « GE«ABS(PMIN)IGO TO 2
AINCR=ABS(PMIN) /AN
GO TO 3
2 AINCR=ABS(PMAX) /AN
3 PLVL{1)=AINCR
ANLVL (1) =-AINCR
IF(LBTWOeLE«1)GO TO 5
DO 4 I=24LBTWO
PLVL(TI)=PLVL(I~1)+AINCR
ANLVL(I)=ANLVL(I=1)-AINCR
DO 6 I=1s1DMN
IF(ARRAY(I)elLEeOe0)GO TO 7
DO 8 J=1,LBTWO
DIFF=ARRAY(1)=PLVLI(J)
IF(DIFFelLE«0e0)GO TO 9

8 CONTINUE

9 ARRAY(1)=PLVL(J)

GO TO 6

7 DO 10 U=1+LBTWO
DIFF=ARRAY{I)-ANLVL(J)

IF(DIFFeGE«040)GO TO 11

10 CONTINUE

11 ARRAY(I)=ANLVL(J)

6 CONTINUE
RETURN
END

$IBFTC RECVR DECK

SUBROUTINE RECVRAVCsAUTOP s AUTOQ9CMSEQs ISSes ICDLTHPSIGeQSIGs ISAMP »
1MM)

GENERAL RECEIVER SUBROUTINE

AVC = AUTOCOVARIANCE COMBINED QUTPUT (MAGNITUDE ONLY)

AUTOP PCHANNEL AUTOCORRELATION FUNCTION (MAGNITUDE AND SIGN)
AUTOQ QCHANNEL AUTOCORRELATION FUNCTION (MAGNITUDE AND SIGN)

o

NN O N
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C 'CMSEQY = THE REFERENCE SEQUENCES

C ISS = SAMPLE SIZE (= 'IQBY2!')

C ICDLTH = CODE LENGTH

C PSIG = PCHANNEL SIGNAL TO BE CORRELATED
C QSIG = QCHANNEL SIGNAL TO BE CORRELATED

DIMENSION AVCIMM )sAUTOP(MM )sAUTOQ(MM ) sCMSEQ(ICDLTH) 4PSIG(ISS)Q

1SIG(ISS)

DO 2 K=1lsMM
AUTOP (K} = 040
AUTOQ(K) = 0.0

JJ=ISAMP* (ICDLTH=-1)+K

DO 2 I=KsJJsISAMP

L = (I+ISAMP=K)/ISAMP

AUTOP (K)=AUTOP (K)+CMSEQ(L)*¥PSIG(1)
2 AUTOQ(K)=AUTOQ(K)+CMSEQ(L)I*QSIG(I)

DO 3 I=1sMM

3 AVC(I) = SQRT(AUTOP(I) #%2 + AUTOQ(I) *#%2)
RETURN
END
$IBFTC FMAX DECK
C A SUBROUTINE TO FIND MAXIMUM VALUE AND TO IDENTIFY LOCATION

SUBROUTINE FMAX(AUTOsIDMMsPEAKSIPOSN)
DIMENSION AUTO(IDMM)
PEAK=040
DO 2 I=151DMM
2 PEAK=AMAX1(PEAKsABS{AUTO(I) )
DO 3 I=1,1DMM
3 IF(PEAK«EQeABS(AUTO(INIIGO TO 4
4 IPOSN=I
WRITE(6916)PEAKs IPOSN
16 FORMAT(1HOs6HPEAK =9F10e49/1H0s10HLOCATION =514)

RETURN
END
$IBFTC SNR DECK
SUBROUTINE SNR{AUTOsMMsSNR1sSNR2sPEAKs IPOSNsVARSSWeNNT s ICNTLSISIDE
19 IFLAG)

SUBROUTINE 7O COMPUTE SIGNAL-TO-NOISE RATIO

AUTO = AUTOCORRELATION FUNCTIONs MM = SIZE OF AUTOCORRELATION
FUNCTION (=1SS-ICDLTH) SNR1 = PEAK SIGNAL-TO-SIDELOBE

RATIO IN DB SNR2 = PEAK SIGNAL POWER-TO-AVERAGE NOISE

POWER RATIO IN DB VAR = VARIANCE OF COMPRESSED

WAVEFORMs EXCLUDING THE PEAK NNT = INTERVAL ON

EITHER SIDE OF CENTRAL PEAK IN THE AUTOCORRELATION

FUNCTION FOR WHICH THE VARIANCE OF CORRELATION NOISE

IS TO BE COMPUTED.

ISIDE = NOe OF SAMPLE ON EITHER SIDE OF CENTRAL PEAK THAT ARE
EXCLUDED FOR PURPOSE OF OUTPUT MEAN SQUARE NOISE CALCULATION.
ICNTL = DISTANCE AwAY FROM CENTRAL PEAK AT WHICH SEARCH FOR
MAXIMUM OFF-CENTRE PEAK STARTS.

IPOSN = LOCATION OF CENTRAL PEAK RELATIVE TO THE 1ST SAMPLE OF THE
YAUTO' ARRAY

SW = SWITCH TO SIGNIFY WHETHER PEAK~TO-SIDELOBE RATIO IS
DESIRED

SW = C SIGNIFIES THAT PEAK~TO-SIDELOBE RATIO IS NOT

DESIRED ANYTHING ELSE WOULD INDICATE A YES ANSWER

DIMENSION AUTO(MM)

IF (SWeEQe0Ge0O) GO TO 8

IF(IPOSNSLE«NNT)IGO TO 6

a¥a NN NANSIoNANAN N NANANANANARANA NS
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NN = TPOSN-NNT
GO T0 4

5 NN = 1

4 NM = IPOSN+NNT

IF(NMeGTeMM) NM = MM
ILEAD = IPOSN-ICNTL
IF(ILEAD«LESD)GO TO 21
SMAX = 060
DO 5 I=NNsILEAD
5 SMAX = AMAX1 (SMAXsABS(AUTOI(I)))
ITRAIL = IPOSN+ICNTL
IF{ITRAIL«GE«NMIGO TO 21
DO 7 I=ITRAILSsNM
7 SMAX = AMAX1 (SMAXsABS(AUTO(I)))
WRITE(6930)SMAX
30 FORMAT (1H-918HMAXIMUM SIDELOBE =3E1548)
SNR1=100*%ALOG10((PEAK/SMAX ) %¥%2)
WRITE(6528)5NR1
28 FORMAT(1H +31HPEAK~TO-SIDELOBE RATIO IN DBS =+E1548)
8 SUM = 0.0
SSQRT = 0.0
ILEAD IPOSN-ISIDE
IF(ILEAD«LEO)GO TO 21
ITRAIL = IPOSN+ISIDE
IF({IPOSNeGT«NNTIGO TO 9
K =1
NM = TPOSN+NNT
IF(NMeGT e MM) NM=MM
IF(ITRAILGE«NMIGO TO 21
IRANGE = NM=(2%ISIDE-1)
GO TO 11
9 K = IPOSN - NNT
NM = IPOSN + NNT
IF(NM.GT.MM)NM‘-‘MM
IRANGE = NM=K-2%({ISIDE-1)
11 DO 10 I=KsILEAD
SUM=SUM+AUTO( 1)
1C SSQRT = SSQRTHAUTO(I)*x*2
DO 12 I=1TRAILNM
SUM SUM+AUTO(T)
12 SSQRT = SSQRT+AUTO(T)*%2
RANGE = TRANGE
SUM SUM/RANGE
SSQRT = SSQRT/RANGE
SQRTM = SUM*%2
VAR = SSQRT = SQRTM
WRITE(6+27)VAR
27 FORMAT(1HO»22HOUTPUT NOISE VARIANCE=9FE15.8)
SNRZ2 = 10eU*ALOGIO(PEAK*%*2/VAR)
WRITE(6929)SNR2
29 FORMAT(1H »59HPEAK SIGNAL POWER-TO-MEAN SQUARE NOISE POWER RATIO I
IN DBS =4E1548)
23 RETURN
21 IFLAG=1
WRITE(6+22)
22 FORMAT(1HO»57H**%#¥*INVALID TARGET LOCATIONs FALSE ALARM DECLARED B
1Y SNR)
GO TO 23

i
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END

$IBFTC PROBAN DECK

aYeNeXaNANaNAKANANS

SUBROUTINE PROBAN(OUTP9MM91HOLDaPtAK;FAHAIt9IUbNI’IPUbN)
SUBROUTINE TO COMPUTE FALSE ALARM RATE

OUTP = COMPRESSED WAVEFORMs MM = DIMENSION OF COMPRESSED
WAVEFORM

THOLD = THRESHOLDs A PRIOR KNOWLEDGE OF EXPECTED PEAK VALUE
OF CORRELATION FUNCTION ASSUMEDe PEAK = MAXIMUM VALUE

OF COMPRESSED WAVEFORMe FARATE = FALSE ALARM RATE ON

A THOUSAND BASIS,

IPOSN = THE POSITION IN ARRAY QUTP WHERE THE PEAK OCCURSe

IOBNT=OBSERVATION INTERVAL ON EITHER SIDE OF THE CENTRAL PEAK
OUTSIDE OF WHICH FALSE ALARMS ARE SEARCHED FORe
DIMENSION OUTP(MM)

ILEAD=IPOSN=IOBNT

ITRAIL=IPOSN+IOBNT

FALSE = Q&0

IF{ PEAKeLE«THOLD) GO TO 4

DO 3 I=1.ILEAD

IF(ABS(OUTP(I))eLEeTHOLDIGO TO 3

FALSE = FALSE + 1.0

CONTINUE

DO 5 I=ITRAIL MM

IF(ABS(OUTP (1)) eLE«THOLD)IGO TO 5
FALSE=FALSE+1.0

CONTINUE

AMM=MM~2%TOBNT

FARATE = (FALSE/AMM)%*1000.0
WRITE(6s17)THOLDsFARATE

17 FORMAT(1H=-911HTHRESHOLD =9sF8e4s/1H 928HFALSE ALARM RATE IN 1000TH
1=9E15.5)

RETURN

4 WRITE(659)

CALL EXIT

9 FORMAT(1HOs53HPEAK VALUE IS SMALLER THAN THRESHOLDs EXIT IS CALLED
le)

END

$IBFTC MULTGT DECK

SUBROUTINE MULTGT(PFMEMyQFMEMePSIGsQSIGsNNsMI s IDLAYSTGT)
DIMENSION PFMEM(MI) sQFMEM(MI)sPSIG(NN) 9QSIG(NN)

DO 3 I=1sNN

J=IDLAY+I

PFMEM{J)Y=PFMEM(J}+PSIG(I)*TGT

QFMEM(J) =QFMEM{J)Y+QSIG(IY*TGT

RETURN

END

$IBFTC MNOISE DECK

SUBROUTINE MNOISE(ALPHAsPCHANIQCHANSMNsSTRsSDsPMEANsQMEAN s VARP s VAR

1Qs IFIRST9THETASTGT)

DIMENSION ALPHA(MN) s PCHAN(MN) s QCHAN (MN)
AMEAN=0.0

AVAR=0,4,0

IF(IFIRSTeNE«1)GO TO 13

CALL RANGAU(ALPHA9ZMNsSTRsSD)

DO 12 TI=1sMN

ALPHACT) =ALPHA (1) *x2

CALL VARCE(ALPHASMNsAMEANSAVARS1)
DCSH=1+0~-AMEAN
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IF(AMEANGE«140)GO TO 13

DO 4 I=1yMN

ALPHA(I)=DCSH+ALPHA(I)
PFACE=COS(THETA)*TGT

QFACE=SIN{(THETA)*TGT

DO 3 I=1sMN

PCHAN(I)=ALPHA(I)*¥PFACE
QCHAN(I)=ALPHA(T)*QFACE

WRITE(6+95)

FORMAT (1HO» 2 7THPCHANNEL M=NOISE STATISTICS)
CALL VARCE(PCHANsSMNsPMEANSVARPs1)
WRITE(64+94)

FORMAT (1HO 92 THQCHANNEL M=NOISE STATISTICS)
CALL VARCE(QCHANSMNsQMEANSVARQs 1)

RETURN

END

$IBFTC CGRAPH DECK

C

IF DIVISION MARKS ARE REQUIRED PUT NDIV = 0
SUBROUTINE CGRAPH(NNsYsXsXDISPsYDISPsXINCHs YINCHsNDIV)
DIMENSION Y(NN)¢X(NN)

X(1)=04,0

DO 1 I=2sNN

X(I)=X(1-1)+140

YMAX=Y(1)

YMIN=Y (1)

DO 2 I=2sNN

YMAX=AMAX1(YMAXsY (1))
YMIN=AMINI(YMINsY(I))
YINCR=(YMAX~YMIN)/({YINCH=~0e5)/0e25)
XINCR=(X{NN)=X(1))/((XINCH=045)/0e25)
CALL PLOT{(XDISPsYDISP4=-3)

CALL GRAFF(NN9sXsYsXINCRsYINCRsXINCHsYINCHsNDIV)
RETURN

END

$IBFTC GRAPH DECK

SUBROUTINE GRAPH(NNsXsY s XINCRsYINCRsXINCHsYINCHINDIV)
DIMENSTION X(NN) oY (NN)

LOGICAL XAXISsYAXIS

XP=040

YP=0e0

XMARG=045

YMARG=0e5

XMAX=060

YMAX=040

XMIN=0,40

YMIN=040

XAXIS=eTRUE

YAXIS=eTRUE

ALMT=(XINCH=XMARG) /04005+140

LMT=ALLMT

[F(NNeGT ¢ LMT )NN=LMT

INITIALIZE PLOT

CALL FACTOR(NNsXsYsXINCHsYINCHsXMARGS YMARG)
DETERMINE MAXe AND MINe VALUES OF X AND Y
DO 1 I=1sNN

XMAX=AMAX]1 [ XMAXsX (1))
YMAX=AMAXI{(YMAXsY (1))
XMIN=AMIN1(XMINsX(I))
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1 YMIN=AMINLI(YMIN,Y(I))
WRITE(6970)YMAX s YMINSXMAX s XMIN
70 FORMAT (1HO96HYMAX =9FE1541093Xs 6HYMIN =9E1541093Xs6HXMAX =3E156103
I1Xes6HXMIN =3FE15,10)
YSCALE={YMAX=YMIN) /(Y INCH=-YMARG)
XSCALE=(XMAX=XMIN) /(X INCH=XMARG)
WRITE(6971)YSCALESXSCALE
71 FORMAT(1HO98HYSCALE =3E126919HDATA UNITS PER INCH/1HOs8HXSCALE =,
1E126919HDATA UNITS PER INCH)
IF(XMAXeLTe0e0eOReXMINeGTe0e0)XAXIS=eFALSF
IF(YMAXeLTe0eO0eOReYMINGGTe0e0) YAXIS=oFALSE
IF(«NOTeYAXISIGO TO 20
CALL PLTLN(QOaQCsYMINSO4O9sYMAX)
20 1F(«NOTeXAXISIGO TO 21
CALL PLTLN(X{1)90e0sX(NN)s0e0O)
21 IFI(NDIVeNE«O)IGO TO 23
IF(XINCReEQeUe0eOReYINCReEQeOe0IGO TO 23
AM=(YMAX=-YMIN)/YINCR+1e0
M=AM
IF(MeGT&4201)GO TO 53
IF(YMAXelL.Te0e0eOReYMINGGTe0e0)GO TO 22
AMP=YMAX/YINCR

MP=AMP
AMN=ABS(YMIN)/YINCR
MN=AMN

IF(MPelLTe1)GO TO 101
YIN=YINCR

DO 2 I=14MP
CALL UNITTO(OeCsYINsXPsYP)

CALL PLOT{XP=04059YPs3)
CALL PLOT(XP+04059YPs2)
2 YIN=YIN+YINCR

101 IF(MNeLT«1)GO TO 51
YIN==YINCR
DO 22 I=1sMN
CALL UNITTO(0eOsYINeXPsYP)
CALL PLOT(XP=04059YPs3)
CALL PLOT(XP+0405sYPs2)

22 YIN=YIN=-YINCR

51 AN=(X(NN)=X{1))/XINCR+140
N=AN
IF(NeGTe201)G0O TO 24
IF(XMAXeLTe0e0eOReXMINeGT«0e0)GO TO 23
AMP=X{NN)/XINCR

MP=AMP
AMN=ABS(X(1))/XINCR
MN=AMN

IF(MP«LT41)GO TO 102
XIN=XINCR

DO 3 I=1.MP
CALL UNITTO(XINsOeCsXPsYP)
CALL PLOT(XP sYP=040543)
CALL PLOT(XP sYP+0e0542)

3. XIN=XIN+XINCR

102 IF(MN.LT41)GO TO 23

XIN==-XINCR
DO 33 I=1sMN
CALL UNITTO(XINsOeOsXPsYP)
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CALL PLOT(XP sYP=040543)

CALL PLCOT(XP #YP+0e0542)
33 XIN=XIN=XINCR
22 CALL UNITTO(X(1)sY(1)eXPsYP)

CALL PLOT(XPsYPs3)

DO 6 I=2sNN

CALL UNITTOUX(I)sY{I)sXPsYP)

CALL PLOT(XPsYPs2)
6 CONTINUE

RETURN
53 WRITE(6552)
52 FORMAT (1HOs 70HCALLS FOR MORE THAN 200 DIVISIONSsY=-AXIS DIVISION MA

1RKS ARE SUPPRESSED)

GO 70 51
24 WRITE(6525)
25 FORMAT(1HO» 7O0HMCALLS FOR MORE THAN 200 DIVISIONSsX-AXIS DIVISION MA

1RKS ARE SUPPRESSED)

GO TO 23

END

CD TOT7T 0890
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$J08 003506 JWMARK

$PAUSE PLEASE MOUNT 300 FT MINI REEL ON TC2 FOR B=-L PLOTTER
$IBJOR

$IBFTC ADAPT2 NODECK

C A SELF-SYNCHRONYZED ADAPTIVE SYSTEM FOR THE DETECTION OF MULTIPLE
C TARGETS IN A RANDOMLY FADING ENVIRONMENT

98

109

40

41

DIMENSION SHRG(4)sATAPS(3)sTAPS(4)9SIG1(15)9SI1G2(7)sBUFF1(15),sBUFF

12(105)sBUFF3{105) ¢BUFF4(75)

DIMENSION X(366)

DIMENSION AVC1(366)sAUTOP1(366)9sAUTOQL(366)sPSIG(540)+QSIG(540)
DIMENSION PFMEM(291) sQFMEM(291) s IDLY(6)sTGTST(6) s TGTPH(6) sPMNI(&) s

1QMN(6) s VRP(6) s VRQ(6)

DIMENSION PCHAN(75)sQCHAN(T75) s ALPHA(75)

DATA TAPS/0e09040814091,0/

DATA ATAPS/1e030409140/

DATA FCTRsISAMP/14095/

DATA STA9STQsSTD/0e090e0906751/

DATA TISWCHs JSWCH/0s1/

DATA TCDLTHsMCDLTHeLLML/ 19159394/

NN=MCDLTH*ICDLTH

MN=TSAMP*NN

CALL CCGEN(SIG1sSIG2sMCDLTHICDLTHsBUFF19BUFF2sNNsISWCHsJSWCHsBUFF
14 sMNesFCTRoaTAPSsMLsATAPSsLL9SHRGs ISAMP)

DATA STRsSD/0e0s0e001/

DATA PMEANQMEANsVARPsVARQ/06e090600
DATA ANOPsANCQsPVARIQVAR/0403060390,0>
DATA AMEANSAVAR/0e¢0s04,0/

DATA IASPCT/180/

DATA MTGTsIDLY/69095498499291425180/
DATA TGTST/0e549067030e57914003064890461/

DATA TGTPH/1e051¢091¢031e0916035160/

CALL LETTER(10s59909Ce0s1e¢0910HJe We MARK)

CALL PLOT(3e¢090e09=3)

MDLAY=IDLY(MTGT)

MI=MN+MDLAY

DSTD=0425

DO 301 JUKM=1ls4

DO 41 II=1eMTGT

THETA=TGTPHI(II)

IDLAY=IDLY(II)

TGT=TGTST(II)

WRITE(64+98)11

FORMAT (1HO»42HTHE FOLLOWING ARE STATISTICS OF TARGET NOesI3)

CALL MNOISE (ALPHA»PCHANsQCHANSMNSSTR9SDsPMEANIQMEAN s VARPsSVARQs 11T

s

1HETASTGT)

WRITE(6+109)11+TGTsTHETASIDLAY
FORMAT(1HO»10HTARGET NOesI3/1HOs17HTARGET STRENGTH =9F10e5/1H0s25H

1TARGET PHASE IN RADIANS =9F10e5/1H0965HDIFFERENTIAL TARGET DELAY W
2eReTe FIRST TARGET IN NOes OF SAMPLES =914)

PMN(IT)=PMEAN

QMN(11)=QMEAN

VRP(IT}=VARP

VRQ(II)=VARQ

DO 40 UN=1sMN

PCHANCJUN) =PCHAN(JN) *BUFF4 ( UN)

QCHAN (UN) =QCHAN (L UN)*BUFF 4 ( UN)

CALL MULTGT(PFMEMsQFMEMsPCHANSQCHANSMNsMI s IDLAY s140)
CONTINUE

INTL=MN



147
IFNL=2%MN-1+MDLAY
IDMM=3*MN+MDLAY
IDMN=1DMM~-ISAMP
CALL RANGAU(PSIGsIDMMsSTASSTD)
CALL RANGAU(QSIGsIDMMsSTQsSTD)
CALL VARCE(PSIGsIDMMsANOPsPVARSs 1)
CALL VARCE(QSIGsIDMMsANOQ»QVARS1)
DO 42 UM=1sMTGT
WRITE(6+98) UM
PNSNR=104,0*¥ALOG1O(PMN(JIM)*%2/(VRP (JUM)+PVAR))
QNSNR=10,0*ALOGI0(QMN(IM) *%2/ (VRQ(IM)+QVARY) )
WRITE(6910)PNSNRsQNSNR
10 FORMAT(1HO921HPCHANNEL SIR IN DBS =9E15410/1H0s21HQCHANNEL SIR 1IN
1DBS =9E15410)
CNSNR=1040¥ALOGIO(PMN(IM)*%2/ (VRP (UM)+PVAR)+QMN{UM)%%2/ (VRQ (IM)+QV
1AR))
WRITE(6921)CNSNR
21 FORMAT(1HOs21HCOMBINED SIR IN DBS =3E15410)
PSNR=10e40*ALOG1O0(PMN (UM} *%2/PVAR)
QSNR=10e0*ALOGIO(QMN (UMY %%2/QVAR)
CSNR=1040%¥ALOG1O (PMN (JM)3#%2/PVAR+QNN(JIM) *%2 /QVAR)
WRITE(639)PSNRsQSNR s CSNR
9 FORMAT(1HO»21HPCHANNEL SNR IN DBS =3E15610/1H0s21HQCHANNEL SNR IN
1DBS =9E15¢10/1H0921HCOMBINED SNR IN DBS =4E15410)
PMTAN=1040%ALOG10(VRP(JUM) /PVAR)
QMTAN=1040%ALOG10(VRQ(JIM)/QVAR)
WRITE(69s11)PMTANSQMTAN
11 FORMAT(1HO»62HPCHANNEL MULTIPLICATIVE NOISE TO ADDITIVE NOISE RATI
10 IN DBS =9E1046/1H0962HQCHANNEL MULTIPLICATIVE NOISE TO ADDITIVE
2NOISE RATIO IN DBS =3E1046)
42 CONTINUE
DO 8 I=INTLsIFNL
J=I=-INTL+1
QSIG(I)=QSIG(I)+QFMEM(J)
8 PSIG(I)=PSIG(I)+PFMEM(U)
MM=2*MN+MDLAY
WRITE(6+108) IASPCT
108 FORMAT(1H-s14915H DEGREE ASPECT)
DATA PEAKSIPOSNs TRNGsSNR19SNR2sVARsISWINNT s ICNTLsISIDE/0e09030e030 e
10906090409140987930930/
CALL RECVR(AVC1sAUTOP1sAUTOQ19BUFF19IDMMsNNsPSIGsQSIGsISAMP 4MM)
XDISP=040
YDISP=040
XINCH=3,0
YINCH=240
CALL CGRAPH(MMsAVC19XsXDISPsYDISPsXINCHsYINCHs1)
YDISP=245
CALL CGRAPH(MMsAUTOQ1sXsXDISPsYDISPsXINCHsYINCHs1)
CALL CGRAPH(MMsAUTOP1sXsXDISPsYDISPsXINCHsYINCHs1)
CALL PLOT(9e09=5409-3)
STD=STD=-DSTD
301 CONTINUE
CALL PLOT(0e090409999)
STOP
END

CD TOT 0114



REFERENCES

Woodward, P. M.

"Probability and Information Theory with Applications to Radar"
McGraw-Hill, New York, 1953,

Turin, L.

"Communication Through Noisy, Random-Multipath Channels"
1956 IRE Convention Record, Pt. 4, PP, 154-166.

Stewart, J. L., and Westerfield, E. C.

"Theory of Active Sonar Detection'

Proc. IRE, Vol. 47, PP. 872-881, May 1959,

Rice, S.O.

"Mathematical Analysis of Random Noise'

Bell System Technical Journal, 24:46 (1945), Section 3. 10,
Davenport, W.B., and W. L. Root

"An Introduction to the Theory of Random Signals and Noise"
McGraw-Hill, 1958,

Helstrom, Carl W,

""Statistical Theory of Signal Detection'

Pergamon Press, 1960,

148



10,

11,

12.

149

Middleton, David

"An Introduction to Statistical Communication Theory"
McGraw-Hill, 1960,

Schwartz, M,

"Abstract Vector Spaces Applied to Problems in Detection and
Estimation Theory"'

IEEE Trans. On Information Theory - July 1966, Vol, IT-12,
PP. 327-336.

Van Trees, H. L.

"Analog Communication Over Randomly-Time-Varying Channels"
IEEE Trans. On Information Theory, Jan. 1966, Vol, IT-12,
PP, 51-63.

Wozencraft, J. M., and I. M, Jacobs

"Principles of Communication Engineering"

Wiley, 1965,

Mark, J.W., and G.J.G. Hicks

"On the Detection of A Coded Signal in A Gaussian Environment'
Presented at the IEEE 4th Canadian Symposium on Communications,
Montreal, Canada, October 13, 1966. (Canadian Westinghouse)
Peterson, W. W,

"Error Correcting Codes"

MIT Press, Wiley, 1961.



13.

14,

15,

16.

150

Titsworth, R. C.

"Correlation Properties of Cyclic Sequences'

Technical Report No. 32-388, JPL, 1963,

Mark, J. W,

""Signal Coding with Binary Sequences"

Canadian Westinghouse Company Technical Note No. 3444, June
1966.

Mark, J. W,

"Optimal Adaptive Filtering for Sampled Systems with Random
and Deterministic Excitations"

Canadian Westinghouse Company Technical Note No., 3476, May
1967.

Mark, J. W. and G.J. G. Hicks

"A Generalized Computer Program for Data Reduction"
Canadian Westinghouse Company Technical Note No. 3481, June

1967.





