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The approximation is carried out in the time

domain. Least squares and least pth criteria
are used, and almost minimax results are ob-
tained for large values of p. Values of p up

12

to 10"~ are successfully used. The results are

compared with other minimax type algbrithms.
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CHAPTER 1
INTRODUCTION

The purpose of obtaining linear low-order models of high-
order complex systems is to simplify the preliminary design and op-
timization of such systems. For on-line operation of a complex slowly
varying system, it would often be more desirable to obtain a linear
low-qrder hode] and perform the computation for an optimal control on
that que]. Although this will give a sub-optimal control for the real
system, the result will be considerable economies in computing time and
equipment. We are looking, therefore, for models which-are computation-
ally and analytically simple, and still provide sufficient information

about the system for them to be useful.

In chapter 2 a réview is given of existfng modelling methods.
The most promising of these methods is selected and, as the method is
based on minimizing a function, three of the most efficient minimization
techniques are applied to solve the problem. These techniques are all
gradient methods and are described in chapter 3. Their rapid rate of

convergence makes gradient methods suitable for this type of prob]em.

The modelling method with the optimization techniques is app-

lied to a test problem, which is described in chapter 4, and the results
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are shown in chapter 5. Firstly, a least squares criterion is used
and, secondly, an effective minimax criterion is used. The minimax
result is achieved by minimizing the pth norm of the absolute errors,

where p takes very large values - up to 10]2

has been successfully
used. For many nonlinear approximation prob1ehs, a minimax result
does not necessarily imply an equiripple answer in the Chebyshev
sense. That is,not all the extrema are necessarily equal and the

number of ripples is not necessarily n+l, where n is the number of

variables.

The purpose of this work has been to improve modelling tech-
nfques so that on-line control of slowly varying complex systems can
be simplified. At the same time a thorough exaﬁination is conducted
of two recent optimization techniques, by comparing them to one which
~ has been widely used. Parts of this work have been published, and

appear in references [1-3].



CHAPTER 2
MODELLING METHODS

The need for low-order approximations of complex high-order
systems has resd]ted in several model derivation techniques. These
techniques can be divided into two main groups. fﬁn one group a
model is obtained by neglecting modes of the original system which
contribute Tittle to the overall response of the system. A number
of variations based on this approach have been proposed by Davison
[4], Chidambara [5], Mitra [6] and Marshall [7]. The other main
approach is to search in some way for the coefficients of a set of
differential or difference equations of specified order, the response
of which is approximated as closely as possible to that of the system,
when both are driven by the same inputs. Anderson's method [8] comes
under this category, as.do the approaches of Sinha and Pille [9] and
Sinha and Bereznai [10]. Other methods, such as that of Chen and |
Shieh [11] and that of Kokotovic and Sannuti [12] do not seem to fit

into either of these general groups.

Davison's method is based on the principle that one may neglect
those'eigenvalues of the original system which are farthest from the
Jjw-axis in the s-plane. The retention of the dominant eigenvalues
makes the response of the reduced model approximate that of the system,

since the eigenvalues neglected make a very insignificant contribution
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to the response, except at the beginning. Relationships from the
time-solution of the vector differential equation of the original
model are used to develop a reduced model which maintains both the
correct proportion of the eigenvectors and the desired eigenvalues.
Although the method is‘intuitively appealing, it may be relevant to
ask if a greater choice of the eigenvalues in the reduced model could

produce a better approximation.

Anderson [8] has proposed a method which does not depend on
‘the computation of the high-order system matrix. In this method an
attempt is made tq determine a low-order model, the response of which
abproaches that of the system, so that the mean-square error between
the two responses, over a given finite 1nterva1, is minimized. This
is accomplished by using the orthogonal projection theorem in the

theory of linear vector spaces.

The methdd due to Sinha and Pille [9] is similar to Anderson in
that it minimizes the sum of the squares of the errors between the re-
.sponse of the system and that of the mode{h It is based on the iterat-
ive application of the matrix pseudoinverse algorithm and it was shown
that the method was easy to apply, especially as no matrix inversions
are required. The main drawback, however, of this method is that the
objective function can only have the form of the sum of the squares of
the errors. In many practical situations it may be more desirable to
use other criteria for obtaining low-order models; innthese cases the

matrix pseudoinverse cannot be used.
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Sinha and Bereznai [10] developed an approach which can provide
a low-order model with respect to any specified criterion. The method
is based on the pattern search algorithm of Hooke and Jeeves [13]
Although this method provides flexibility in the choice of criteria, it
will, in general, require so much computer time as to make it unsuit-

able for on-1ine applications.

The present work is based on the above approach with the use of
efficient minimization techniques, These techniques, known as gradient
methods because they utilize gradient information, show a rapid rate
of convergence and an investigation of these hethods is considered use-
ful. For this pufpose, a comparative study is made between three of the

most efficient techniques which are described in the next chapter.



CHAPTER 3
OPTIMIZATION TECHNIQUES

In order to describe the optimization techniques it is
necessary to give some definitions. It is desired to minimize

a function F(é) called the objective function, where

X1
X2

called the parameter vector. It is assumed there are no constraints
present, If constraints are imposed, however, then the problem
can be transformed to an unconstrained one by use of appropriate

transformations.

Let

g(x) 4 : | (2)




called the gradient vector and
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is the corresponding Hessian matrix. H denotes the inverse Hessian,
g’l,'which will be approximated by different formulae in each of the

gradient techniques.

Let

>

(4)

Pa=2)

called the increment. In all minimization methods $ is chosen so that

F(x +8) < F(x) (5)



Another n-dimenstional vector g will denote the direction in which $
is taken. For brevity in some expressions in the following sections,

F will be used for F(&) and g for g(§).

Algorithms terminate after one or more of the following
criteria are satisfied: |
(a) if the change in the objective function becomes less
than ¢;,a small positive number.
(b) if the absolute values of the elements of the increment
vector become smaller than e;, a small positive number.
(c) dif the norm of the gradient vector becomes less than
€3, another small positive number.
As a safeguard the algorithm should go through h iterations, where n
is the number of variables, after the terminating criterion is satisfied,

~ before the program terminates.

3.1 The Fletcher-Powell Method

The main feature of the Fletcher-Powell method [14] is that the

increment § is taken along the direction 3 where

2=-kg (6)
That is |
§e% | (7)

where o is that value of A which minimizes F(é + A i) along the direction



of S. The method of obtaining the minimum along the Tine is not central
to the theory, however, cubic interpolation has been found simple and

satisfactory.

The inverse Hessian o\ is updated at eath iteration from infor-

mation presently available using the formula

T T
| . 28 By XX 14
Hisn = K * A - m (8)
where
§ = - o Hi9y (9)
and
Y= Sin " % (10)

~and the subscript i denotes the value at the ith iteration? It can be
shown [14] that the process is stable, that is, formula (8) has the
following property of positive definiteness: If Hi is positive definite
then Hin is also positive definite. Since ui'is initially chosen as

the didentity matrix then all H

Hisr will be positive definite. It can also

be shown that if the objective function is in the quadratic form the pro-
cedure terminates in n iterations. This property of quadratic convergence
depends on accurate location of the minimum along each direction of search,

and this is the main disadvantage of the methpd.



3.2 The Fletcher Method

The Fletcher method [15] is basically similar to the Fletcher-
Powell method in that both methods consider quadratic objective func-
tions and the increment § depends on the gradient and the updating
matrix H. The difference between the methods is that the Fletcher
method dispenses with the problem of linear search which is time con-
suming. But, as méntioned in the previous section, quadratic conver-
gence depends on accurate Tocation of the minimum along each direction
using linear search. Therefore the property of quadratic convergence
is replaced by a property which requires, for quadratic functions,
that the eigenvalues of the matrix {i tend monotonically towards those

-1 . .
of G °, the exact inverse Hessian.

The abandonment of linear searches requires that something is
done to force a sufficiently large decrease in F at each itération to
guarantee ultimate convergence. The change AF in F on an iteration
would be expected by Taylor's series to be approximately gTQ for small
8 but much less than ng when the position of the minimum along the
line is overestimated. Therefore the change in F(K) relative to gTQ

cannot become arbitrarily small if

AF
- > (11)
38

where o<p<<l, a pre-assigned small quantity set at 0.0001.

10.
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If corrections are determined by

§=-2xH g | (12)

2 3
then trying values of A =1, w, w , w, .... for w= 0.1 will even-

taully produce a § that satisfies inequality (11).

Although the above tests can be simply included in the Fletcher-
Powell program, } can become ill-conditioned and a new formula for up-
dating ﬂ is needed. It is necessary for the new formula to possess the
properties of positive definiteness and eigenvalue convergence. The

new formula derived by Fletcher is

T, T T
W S Kixe YRy R4
Bivn = 85 - — - —r R LI ¥ (13)
S v [ S Y S Y
VoA L VoA VoA

Where Y and ¢ are defined in (9) and (10). It caﬁ be shown that formula
(13) possésses the above mentioned properties. The use of formula (13)
alone might, however, cause i to become unbounded. For this reason a
choice is made between the two updating formulae by the following test.
If

, T T,
| Sy >y Hiy (14)

~ then formula (13) is used; otherwise formula (8) is used.
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3.3 The Jacobson-0Oksman Method

The Jacobson-Oksman method [16] differs from the previous two
in that it is not based on quadratic functions, but on homogeneous
functions. Consider the homogeneous function
)T

FO) =5 (- X7 gty + FG) (15)

where 6 is the degree of homogeneity and 2 is the location of the mini-
mum. The quadratic function considered earlier can be expressed as

1 vWT

FlO) =3 (- 070 (x - % + FY (16)

- where (Q is a constant positive definite matrix. By comparing equations

(15) and (16) it can be seen that (16) is é special case of (15).

The basis of this method is the following. By rearranging equat-

" jon (15) we have

.
X gx) + o F(x) - o F(X) = §T 9(x) (17)
Let
v AT g
y Sl F) AT | -~ (18)
g 20X 6 o T
where
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and g and X are (n+2)-vectors, with g containing the unknowns. For

some point X equation (17) now becomes
Yi & = VY4 (19)

If v and v are evaluated at n+2 distinct points . e .
y P X1s X2 Rn+2, . s0

that the y; are linearly independent, we have
4"

- _
Xl Vi 1
.
2 V2
% A - (20)
T
In+2 Vnt2
. - . .

Y=y | (21)

Since the y; are linearly independent, the matrix Y is non-singular giving
N

g =X ¥ (22)

Matrix inversion is avoided by using a recursive formula as new e and Vj
are evaluated. Starting with Py = I, an (n+2) x (n+2) identity matrix

and Yo = %o» @n arbitrary initial guess, successive estimates of the vector
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¢ are given by

T ,
Ri &in1 Viw = Yin %9

4 * (23)

Ri+1
nl :
Yinn Ri Rin

where €.y s @ unit (i+1)-vector having unity as the (i+1)th element

+1
and zero e]sewheke, and where 21 are obtained successively from the form-

ula
T T
Ri  &iv1 Qier By - Eitp) (28)
Rivn = Ry - T
Yinn ki Rin

It can be shown that, for homogeneous functions, the algorithm finds the
minimum X, the degree of homogeneity 6, and the value of the minimum

F(%) after n+2 iterations.



CHAPTER 4
THE TEST PROBLEM

In order to compare the various optimization techniques on
modelling, a realistic and valid system is selected. The system is
one of the designs studied for a supersonic transport aircraft [17]
Some variables are given values, consistent with design description
and maintaining stability, so as to obtain a transfer function with
poles distributed over the entire left half s-plane. The reason is
- that if the poles are close to the origin there is bias in favour

of Davison's method.

The transfer function obtained is

(s 375000(s + 0.0833)

RUS)  <7483.6450+40075°+703425%+85370353+28142715°+33108755+281250  (25)

Since in most realistic slowly varying dynamic systems a trans-
fer function would not be available, the above transfer function is used
to obtain the response of the system to a specified input. A step is
a widely used input, therefore the step response of the system is cal-
culated at discrete intervals of time. This iﬁ reality would correspond
to direct meésurements at the output of the system, at discrete instants.
This means that a knowledge of the system trahsfer function is not required
in the derivation of the model, an advantage only a few of the'mode111ng

methods described in chapter 2 possess.

-15-
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The main features of the response are:

10% to 90% rise time = 1 second

Steady-state value = 0.11111
Initial slope = 0

Time to reach first peak = 2.9 seconds
Response at maximum overshoot = 0.12069
Maximum overshoot = 8.62%

Figure 1 shows the response of the system to a unit step. Second-order

and ‘third-order models of the above mentioned system can have the following

“forms .
bo
MI(S) = > (26)
s+ a;8* ag
bis + by
My(s) = — | (27)
s + a;s + ag
S + axs + a;s + ag
bis + bg
My (s) = (29)
S +axs + a;s + ag
) b252 + bys + by :
Ms(s) = (30)

3 2
s +azxs +a;s t+ ag

From the above models Mi(s), Ma(s) and Ms(s) were selected to approximate
the system, the most useful being M;(s) since this is the simplest and by

the use of the matrix Ricatti equation an optimal control can be derived
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easily [22]. The other two models M, and M5 were also included to

test the methods as the number of variables increased.

A steady state constraint can be imposed by use of the final

value theorem, however, this is further discussed in the next chapter.



CHAPTER 5
RESULTS

Computational Information

The computer used for all the problems was a CDC6400. The ap-
proximation was made over 0 to 8 seconds, with 21 uniformly spaced points
for the least squares case and 101 uniformly spaced points for the least

pth approximation.

The terminating criterion for the Fletcher-Powell method, was

set at 1.0 x 10'6

and the algorithm terminated if the change in the ob-
jective function or parameters was less than that number. The termin-
ating criterion for the Fletcher method was also set at 1.0 x 10'6 and .

" the algorithm terhinated if the change in parameters was less than this
number. In the Jacobson-Oksman algorithm there is the facility that the
algorithm terminates when the change in the objective function is less
‘than a number, set at 1.0 x 10 6, and also when the norm of the gradient

-9

becomes smaller than a number set at 1.0 x 10 Listings of the pro-

grams for the least pth approximation case is given in Appendix B.

<'5a] Least Squares Models
3 As mentioned in chapter 4 three model transfer functions were se-
lected to approximate the system inAa certain sense. For least squares

models, the objective function to be minimized is

-19-
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F) = > ey (31)

where ei(é) is the error between the model and the system response to a
unit step and I is an index set relating to the sampled points at equal
intervals of time. The sampling does not have to be done at equal inter-
vals, however, as no prior information about the error function is assumed,

there is no justification to vary the sampling rate.

Having decided on a uniform sampling rate, the next question is
how many sample points should be taken. If the number of sample points
is too large, then computational time will be wasted. If the number is
too small, then there will be insufficient information about the error
function included in the objective function. The number of sample points
used for least squares approximation was 21 over an intefva1 of 0 to 8

- seconds;with one exception this number was found satisfactory.

The gradients defined in chapter 3, can be shown to have the form

) =2 5 eglp) 1oy | (32)

iel

where ei(ﬁ) is real. Since ei(§) is the difference between the response

of the’system and the response of the model and since the system response
is independent of the model parameters, Xei(é) is the gradient of the mode1
response. Gradients for the responses are given in the appendix. Although
the gradients are given in the Laplace form, the inverses can be found in

any book of Laplace tables [23].



21,

5.1.1. Unconstrained Least Squares Approximation

First the transfer function given by expression (26) was used
to model the system using a least squares error criterion. The res-
ponse of the model to a unit step input was derived ana1ytica11y, by
considering separately the real and complex conjugate roots of

q(s) = 52 + ais + ag (33)

The objective function shown in expression (31) ﬁad been formulated
.and'gradients‘corresponding to that objective function, had been ana-
lyticdlly derived. A simple perturbation test was done to ensure that
the expressions for the gradients were correct. Since-this was the
first of the modelling problems to be tackled and little experience
had at thi§ stage been gained with the new minimization methods, the

technique used was Fletcher-Powell.

The program was run from several arbitrary starting points. Al-
though the algorithm appeared to converge, the terminating point point
was not unique. For the purpose of this work, a point was considered
unique if there was agreementlto within four significant figures amongst
the corresponding elements. Spme of the terminating points are shown
in table 1, with the corresponding objective function values. The dif-
ference in the objective function values appeared to be small, but even
so the algorithm should have proceeded further. A close examination of
the terminating points indicated that a linear dependence existed amongst

the terminating points. This is shawn in the Tower half of table 1.



4 4
Fx10 bg x 10 ag a bo/ag
3.9149 3.8127 3.2945 2.5584 | 0.1157
3.8708 3.9621 3.4213 2.6581 0.1158
3.8719 3.9817 3.4381 2.6709 | 0.1158
3.8790 4.0238 3.4743 2.6990 | 0.1158
Ratio
of Row 2
to Row:. »
1 1.0392 1.0385 1.0390
3 0.9951 0.9951 0.9952
4 0.9847 0.9847 0.9848

- TABLE 1. Terminating points for the least squares

linear dependence between points.

unconstrained problem and indication of

22.
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When using gradient techniques with Newton-type termination, where
information about the inverse Hessian is utilized, singularities in

the Hessian are very critical. Some contours of the objective function
were drawn in the area where the algorithm terminated. ‘The contours
are shown in Figures 2 a-b. Figure 2a ' shows the contours of the ob-
jective function when holding a; constant and vary ag and by . The
terminating points seem to 1ie on a straight line through the origin,
with a slope of 0.11580. By applying the final value‘theorem to the
model transfer function, for a unit step input, we can see that bg/ag

is the steady-state value of the model.

‘ The linear relationship between the terminating points is due
to the linear relationship between ap and bg. There are many inter-
pretations to this, however, the simplest is that by = E ag define a
plahe through the origin in the three diménsioﬁa] space and the points
in table 1 lie in that plane.

:/’V

5.1.2>/ Constrained Least Squares Approximation

If a comparison between minimization techniques on the modelling
problem was to be made, a uniaue solution was desirable. A steady-
state constraint, therefore, was considered necessary for our purpose.
Since the equality constraint was in a very simple linear form, a sub-

stitution was made of by by E ap.

The steady state value, E, for .the model to a step input can be

found either from the transfer function of the system, which in our
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problem will be 0.11111 or, if the transfer function of the system is not
available, then the final sample point of the system response can be

useds which in our problem will be 0.11706.

With the steady state constraint imposed the second-order with-

out zeros model shown by equation (26) now becomes

Eag

My(s) = (34)

s + ajs + ag

with E = 0.11111, _ Here, as in all the following problems, real and com-
plex conjugate roots were considered separately. At least three dif-
ferent starting points were tried for each of the three minimization

techniques and the algorithms ultimately converged to the same unique

. parameters

3.19591
2.28106

ag
i

with the value of the objective function 7.50758 X 10"” and the components
of the gradient less than 1.0 x 1072, Figure 3 shows the corresponding
response. Table 2 compares the number of function evaluations required
to reach the objective function value of 7.50759 x 107" this value being
1.0 x 1072 higher than the solution ultimately obtained. In the table

it is shown that both the Fletcher method and the Jacobson-Oksman method



STARTING FLETCHER JACOBSON- FLETCHER-
POINT OKSMAN POWELL
0.5 22 19 © 49

0.5

3.0 21 21 29
2.0 ‘
1.0 19 14 32
1.0 | '

TABLE 2. Number of function evaluations required to
reach the objective function value 7.50759 x 107
for the two-parameter least squares approximation '

problem.
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performed better than the Fletcher-Powell method.

With E = 0.11706, the value of the system response at 8 seconds,

the optimum parametersobtained were

3.47571
2.76681

ag
a

giving an optimum objective function value of 4.75016 x 10'5. Figures

4da ahd 4b show the corresponding response and the error curve, respectively,

If the steady-state constraint is imposed on the model based on

expression (27) then the transfer function is’

bis + Eag

Ma(s) = (35)

2 ' .
s + a;s + ap

resulting in a three-parameter problem. With E = 0.11111 three different
starting points were tried. In each case the algorithms converged to

the same optimum parameters

1.99740
1.66066
4.37072 x 1072

Q
o
n

ai
b1
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giving an optimum objective function value of 1.58222 x 107" and gradient
components less than 1.0 x 10’9. Figure 5 shows the corresponding
response. Table 3 compares the number of function evaluations required’
by each method to reach the objective function value of 1.58225 x 10'4.
Here again it is seen that the Fletcher method and the Jacobson;Oksman
method are superior torthe Fletcher-Powell method. There was one casé

not shown in the table, however, when the Jacobson-Oksman method failed,

With E = 0.11706 the 3-parameter problem converged to the opti-

mum values of

= 3.9753]
= 3.03900
by =-2.08787 x 1072

[a TR o ]
—t [an]
L} !

_5
giving an objective function value of 2.26148 x 10 . Figure 6a shows
the corresponding response and Figure 6b shows the error curve for that

response.

For a third-crcder model the transfer function in expressicn (30)
was used having two zeros. For ease of computation the model transfer

function was put in the form



STARTING FLETCHER JACOBSON- FLETCHER-
POINT OKSMAN POWELL
1.0
1.0 27 39 60
1.0
0.5
2.0 76 39 274
4.0
1.0
0.5 35 29 58
0.1
TABLE 3. Number of function evaluations required to

reach the objective function value 1.58223 x 107

for the three-parameter least squares approximation

problem.
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b252 + bys + Ex; X3
Ms(s) = ' (36)
(s + x3) (s° + xp s + x3)

where E, the steady state constraint was set at 0.11706. A number of
starting points were considered in an effoft to get convergence with
the Jacobson-OkSman method, but with the exception of one case, it
always failed. The Fletcher method in every case converged to the same

optimum parameters, which were

x; = 1.02741
X; = 2.85536
x3 = 2.30125
x, = 6.62057 x 107}
Xs = -7.6045 x 1072

giving an objective function value of 1.02741 x 10'6. Figures 7a and 7b
show the corresponding response and error curve, respectively. The
Fletcher-Powell method appeared to be much slower and converged to the
optimum in aonly one of the cases'tried, while in the ofher cases the time
limit of 64 seconds was reached. The results of this problem are shown

in Table 4,

The error curve would indicate that for this problem 21 sample

points was insufficient and as a result there was a large initial error.
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STARTING

i FLETCHER JACOBSON- FLETCHER-
OKSMAN POWELL
g'g 535 1.027952 x 10°° o
0.7 48 seconds 12 seconds 22 seconds
-0.1
5.0
4,5 140 280
3.5 failed 1.528774 x 107
4.0 16 seconds *
2.0
3.2
0.8 465 245
33 failed 8.449308 x 107°
-2.6 45 seconds *
2.1
1.0¢
1.5 298
3.0 failed failed
4.0 30 seconds
5.0
2.5
1.5 132
: . 800
3.5 failed -6
0.1 15 seconds 1.02883 x 10
31.0
TABLE 4,

Number of function evaluations required to reach

the objective function va]de of 1.027406 x 10

-6

and central processor time if it is less'than the

time limit of 64 seconds, or the objective function

value reached in that time.
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For this reason a larger number (101) of sample points were taken and the

program repeated. The otpimum parameters were

x; = 1.34731
X, = 2.84002
Xs = 2.23786
X, = 6.38527 x 107"
xs = -6.48648 x 107

The error curve is shown in Figure 7c. It can be seen that by using 101

points the maximum error is reduced by approximately 20% of the maximum

error with 21 sample points.

Figures 8a and 8b show some convergence curves for the twoépara-
meter problem, while Figure 8c shows a convergence curve for the threé-
parameter problem. The curves show the difference of the osjective func-
tion from tﬁe assumed optimum, on a logarithmic scale versustfhe number

of function evaluations.
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5.2 Least'pth Approximation

Aithough a least squares criterion can give us an acceptable
model, in many cases ft may be desirable to derive a model, where the
maximuﬁ error between the system and the model response is minimized.
This model will givé a near minimax error and the response ulti-
mately obtained, should be a closer approximation to the response of

the system.

In attempting this problem one would be tempted in simply de-
fining as an objective function the maximum absoldte error and mini-
mizing it. This will rarely work. The reason is that as fwo of thé
extrema approach each other, by considering only the larger extremum,
in absolute value, a parameter change that givés a decrease in that
extremum, might cause the other one to increase. This could resultv

in oscillations and often false local optima.

An alternative approach would be in defining a least pth objective
function _
1
. pipP
F(x) Z l e; (x) l p>1 (37)
iel
where ei(§) represents the error between the system and the model re-
sponses at some sample point i of a finite set I, relating to all the

sampled points. It is assumed that e;(x) is continuous with continuous

partial derivatives for all 1.
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It is desirable to increase the value of p as much as possible,
since the larger the value of p the nearer to minimax should the solution
be. There are two computational Timitations,however. One is that if

le1(§)] >1, when using large va]ueg of p, the numbers tend to become
" too large for the computer to handle. The other one is that if [e.(x)] <1
when raised to a large power, the numbers tend to zero and most of the

information is lost.

A normalization proposed by Bandler and Charalambous [18], per-

mitted the use of extremely large values of p. The objective function used

is
F(x) = M(;g) Zle i) P | (38)
jel '
where
M(x) A max ei(ﬁ)‘ ;. (39)
iel . .
where ei(§) and I are defined above. Values of p up to 10]2 have been

used,

In the objective function in (38), if I is replaced by J, an
index set relating to the extrema of the error function, considerable
economies in computing time will result at a slightly greater risk of
creating false optima. Moreover, as can be seen from the expression of

the gradient
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LU
wF(x) = Z ‘e (&)* P Z ;{%jp-z ;ﬁ%)_v e, (é) (40)
iel iel

the coefficients of Zei(ﬁ) will, for most points and large enough p, be
very small, thus contributing very little to the gradient. Analytical

expressions for zei(é) appear in the appendix A.

Having formulated the objective function, the question now is
what value of p should be used to obtain a minimax or near minimax ap-
proximation? With p = 2 we have a least squares type 6f formulation,
Obviously, the higher value of p the more emphasis will be given to those
deviations which are largest. So, since the requirement is to concentrate
more on minfmizing the maximum error, a sufficiently large value of p-

must be chosen. The basis of such a formulation [19] is the fact that

Mx) = Tim F(g) | (41)
p—)w

So the value of p should be preferably as large as possible. The

following values of p have been used 10, 102, 5 x 102, 103, 10“, 106,

]09, 101§ and it was found that although agreement in significant figures
increased as p increased, the central processing time increased consider-
ably for values of p above 10%. Thus for comparison of the minimization
techniques p = 10° was considered suitable. In addition to the compari-

son of the three gradient techniques, a comparison is made in the tables,
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with a more direct minimax technique called the grazor search technique
[20]. This method solves a linear programming problem by using the
gradient information of one or more largest extrema in the error function
to produce a downhill direction. A linear search is carried out in this

direction to find a minimum of M(%).

For the two-parameter problem, corresponding to the model given
by equation (34), the steady-state value E was set at 0.11706, corresponding
to the response of the system at the final sample point. The optimum

parameters obtained, for p = 1000, were

3.06549
‘ ~a; = 2.38414 ;
giving an objective function value of 3.76618 x 10° . Figure 9a shows the

ap

corresponding response and Figure 9b shows the error curve corresponding
to the response. There are 4 extrema and the largest in magnitude is

=3
3.76510 x 10 .

Table 5 shows the number of function evaluations.required to reach
the objective function value of 3.76619 x 10'3.x It is shown that the
Fletcher method gives consistently good results. The Jacobson-Oksman
method only onée converged faster than the Fletcher method. Both the
Fletcher and Jacobson-Oksman methods were found more efficient than the
Fletcher-Powell method, however, from one starting point the Jacobson-
Oksman a]gdrithm diverged. The least pth approach with the Fletcher
method performed better than the grazor technique. The values of the

3
extrema with p = 10 were.



STARTING MINIMIZATION OF F(X) MINIMIZATION
POINT OF M(x)
JACOBSON- | FLETCHER-
FLETCHER OKSHAN POMELL GRAZOR
00
47 46 73 107
‘0
1.0 82 127 346 130
1.0
.0 .
98 failed 725 165
4.0 -
4.0 72 45 false 129
1.0 optimum
TABLE 5. Number of function evaluations required to

reach the objective function value 3.76619 x 10~°

for the two-parameter problem.
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-3.7651 x 1073
3.7594 x 107>
-3.7569 x 107
2.5518 x 1072

which show agreement to almost three significant figures amongst three
of the extrema. For the same prob]eﬁ and with p = 106, the values of

the extrema were

-3.7635 x 107>
3.7635 x 107
-3.7635 x 107>
2.5524 x 107>

which show agreement to five significant figures amongst three of the

extrema. Figure 9c shows the corresponding error curve.

For the three-parameter problem represented by equation (33) -

the optimum parameters were

ap = 3.83592
a; = 3.00605
by = -1.77277 x 1072

N

giving an objective function value of 2.488186 x 1053 Figure 10a shows
the corresponding response and Figure 10b shows the error curve corresponding

that response. The error curve is shown to have five extrema, three of



MINIMIZATION OF F(§) MINIMIZATION
OF M(x)
STARTING
POINT '
JACOBSON- FLETCHER-
FLETCHER OKSMAN POWELL GRAZOR

2.5 +

2.0 367 339 630 149
-2.0

1.0 +

1.0 378 137 653 368
-1.0

4.0

3.0 247 260 264 165
0.01

3.5

1.5 290 failed 432 358
1.0

5.0

1.0 +
-1.0 197 failed 624 325
5.0 +

1.0 247 failed 638 406
3.0

TABLE 6. Number of function evaluations required to

for the 3-parameter problem.

reach the objective function value 2.488187 x 1073
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which tend to be equal with values

-2.4805 x 1073
2.4808 x 10°°
2.4879 x 10~°

Table 6 shows the number of function evaluations required to
reach the objective function value 2.488187 x 1073, The Jacobson-
Oksman method failed in 50% of the cases tried, while the Fletcher-
Powell method only twice reached that value of the objective function
in the time available. It should be noted however that the Fletcher-
Powell method proceeded towards the optimum and did not diverge. The
Fletcher method reached the optimum in all cases and on the basis of
reliability and function evaluations appeared to be the most efficient.
Table 5 also shows the number of function evaluations required by the

grazor search technique to reach the corresponding value of maximum error.

For the five-parameter problem, represented by equation (34),

the optimum parameters obtained using the Fletcher method were

X1 = 4,34682

X = 3.36738 ,
X3 = 9.96086 x 10°
Xy = 5.14728 x 107,
x5 = 3.56154 x 10”

giving an objective function value of 1.02134 x 1073+ Figures 11a and

11b show the corresponding response and error curves, respectively.



MINIMIZATION OF F(é) MINIMIZATION OF M (%)
STARTING
POINT FLETCHER GRAZOR
N M x 103 N M x 103
3.0
3.0 -
1.5 530 1.0207 437 1.2139
0.5
-0.1
1.5
3.0
2.5 - 768 1.0207 782 1.2473
1.0
0.1
4.0
3.0 :
0.1 177 1.0207 489 1.0206
0.5
-0.03
3.0
5.0 )
0.2. 862 1.0207 634 1.1720
0.3
-0.1
5.0
4.0 -
0.5 484 1.0207 817 1.0337
1.0
-0.5
LEAST
SQUARES 799 1.0206 537 1.2472
OPTIMUM
TABLE 7. Number of function evaluations required

for the Fletcher method to reach the

objective function value corresponding

to the shown maximum error.

59.



system response

o T ey e

model response

T e e e

0.10

0.05

¥ v LJ L T L] L] 1 L] ¥ L L i L] L] L] v L] 1 Ll v Bl

3 4 5 6 7 8
: time (seconds)

Fig. 1la. Response for five-parameter least pth problem (p = 1000)

AN
o



error x 10

1N 2 3 4 5 6 7 8
time (seconds)

Fig. 11b. Error curve for five-parameter least pth problem (p = 1000)

-1.0164

19



62.

For this five-parameter problem the error curve has six extrema the values

of which are

-3

1.0206 x 10
-1.0201 x 10°°

1.0198 x 1073
-1.0176 x 10°°

1.0165 x 107°
-1.0164 x 107°

Some runs with the Fletcher-Powell method indicated that the
method was slow and since this was already established in the previous
prob]ems; further runs of the Fletcher-Powell method were considered un-
necessary. The Jacobson-Oksman method failed from each starting point.
The Fletcher method converged to a unique solution all the times, with
the above given optimum parameters. Table 7 compares the least hth ap-
proximation using the Fletcher method with the grazor search technique.
While the Fletcher method reached the same optimum at all times the grazof
search technique reached this solution only once. The grazor search tech-
nique gave a five equirihp]e answer. To further investigate the reason
for which the grazor method gave a five-extrema optimum, the Fletcher
method was started from this optimum. It was noticed that although the
least pth objective function decreased, there was a temporary increase
in the maximum error value. This brought us to the conjecture that the
least pth objective function formulation seems.to have the attractive
property of overcoming local optima that would appear in the maximum error

type of objective function formulation.
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For each of the miﬁimax resuits obtained the conditions for a
minimax optimum [21] were satisfied, although as can be seen from the

error curves all the extrema were not equal.



CHAPTER 6
CONCLUSIONS

Optimum second-order and third-order models of a high-order
system have been obtained using Teast squares and least pth objective
functions in conjunction with efficient gradient minimization techniques.
Analytical expressions for the gradients, were not difficult to derive.
Since the expressions of the objective function and gradients are depend-
ent only on the parameters of the model used, and they are independent
of the high-order system; the expressions can be stored and used when-

ever any high-order system is to be modelled.

In general the use of gradient techniques have been found ef-
ficient in deriving models. In cases of dependence between some of the
parameters a unique solution can not be found, however, for most prac-

tical purposes any of the solutions obtained might be acceptable.

The contours of the problem with 1inear dependence between two
parameters, shown in Figure 2a, if plotted over a large range are found
to be roughly ellipsoidal. The question, therefore, is: can an easier
solution be obtained by making the contours more spherical? This‘can be
achieved for ellipsoids by rotation of the appropriate coordinates and

proper scaling. An interpretation of this dependence can be givén in

-64-
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terms of the model response. If an infinite number of sample points are
taken, then the contours shown in Figure 2a should be parallel, and in
three dimensions the contours should have the form of concentric cylinders.
This is because the weight associated with the transient portion of the
response is negligible. Now as the interval of approximation is reduced
the contours should become more spherical. A point will be reached,
however, when the model becomes unstable or the steady-state error be-

comes unacceptably large.

An attempt has not been madelto answer the question of whether
the optima obtained are the global optima. If the algorithm converged
to a unique point, starting from n arbitrary starting points, where n
is 'the dimension of the parameter vector, then this point was considered
an optimum. In addition, in the case of the least pth approximation,

the conditions for a minimax optimum had to be satisfied, for the point

to be considered an otpimum.

Constraints relating to the steady-state value can be applied by
substitution, as shown in chapter 5. In general any such substitution
which reduces the dimensionality of the problem is desirable since it
increases the rate of convergence. In addition, constraints relating to
the energy of the model can also be imposed in the form of equality con-
Straints, but this would require a slightly different formulation of
the objective function and of course the gradients. Constraints relat-

ing to the stability of the model, such as forcing all the poles to lie
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in the left-half of the s-plane, can easily be imposed if it is found

necessary.

The normalised least pth approximation is shown to be a simple
and effective approach to the minimax problem. The value of p. in general
would depend on the problem, the number of significant figufes the ex-
trema should be equal to and the computer size and time available. For
the problems described and for central processing times of less than
64 seconds, p = 1000 was found suitable. This value of p appeared to
have the tendency of overcoming any local minima that might appear in a

6
more direct minimax approach or when using pz10 .

The number of sample points was not considered critical in the
least squares cases, although a sufficient number should be taken so
that the objective function is a reasonable representation of the error.
In the Teast pth approximation accurate location of the extrema was
considered important, therefore a large enough number of sample points
should be taken to include points close to the actual extrema. A linear
search could be made between the sample points, in which case a smaller
number of points would be required initially; however, it is doubtful if

this will give an increase in the efficiency of the method.

From the minimization techniques used, Fletcher-Powell was
found to be reliable in the sense that the algorithm never diverged.

This was to be expected since the method has been widely used since it
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was originally proposed. The method, however, was found to be slow
by comparison to the method proposed by Fletcher and the one by

Jacobson and Oksman.

The method proposed by Fletcher was found the most efficient
of the methods used. That is, in mo§t of the cases, it required the
Teast number of function evaluations to reach the optimum. Since com-
puting effort is, for these type of problems, measured in terms of func-
tion evaluations, the method required the least amount of computing.
The choice of values of some of the constants in the algorithm, such
as u and w, do not seem to have any real justification. It might, there-
fore, be pertinent fo ask if a different choice of these constants would
result in a better performance for the method. This would depend on
the objective function under consideration and any changes made, wou]q
have been to suit our particular objective function. That means adapting
algorithm to our particular problem, rather than use the problem aé a

test case to test the efficiency of the algorithm.

The Jacobson-Oksman method by considering homogeneous functions
covers a larger c]ass of problems, and on general functions seems to have
a fast rate of éonvergence. This has been shown in the cases where the
algorithm converged, as shown in the two-parameter problems. The method
was found to be unstable as the number of parameters increased. That in-
stability was due to step sizes becoming very large and consequently the
objective function value exceeded the kange of the computer. In an

effort to control the step sizes, a 1imit was set on it. However this
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reduced the rate of convergence to a rate slower than the Fletcher-
Powell method. It was decided, therefore, to leave the algorithm in

the form in which it was originally proposed. It was also found that
the Jacobson-Oksman method had the tendency to restart several times

" during a run, by setting the inversé matrix to unity. This means losing
all the information that has been obFained in the previous iterations.
Therefore, an alternative way of updating the inverse matrix might im-

prove efficiency and perhaps contribute to the stability of the algorithm.

To conclude, the method proposed by Fletcher was found efficient
in deriving optimum low-order models and can be considered as a significant

improvement over other gradient methods such as Fletcher-Powell.
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APPENDIX A
1. The Two-Parameter Problem
Ea ,
C(s) 0
My (s) “R(sT © , (A-1)
R{s s% + a;s + ag ,
For step input, R(s) = %-- (A-2)
Hence,
Eag £ E(s + a;)
e(s) = — -E. 5 (A-3)
s(s” + ays + ag) s + ajs + ag
+
oc(s) B ) (A-4)
B0 (s + ays + ap)?
aC(s) . a0 (A-5)
@1 (s® + ays + ap)?

ac(t)
ddg

the inverse Laplace transforms of equations (A-4) and (A-5). These can

The sensitivity functions can now be evaluated by taking

be easily obtained from standard tables. For example, if the poles of

the transform function are complex i.e.,

2 2 2
s +as+ag=(s+a) +8 (A-6)



then from equations (A-4) and (A-5) we have

-at
3

ac(t) _ Ee

2 .
[(a + B t) singt - aBt cosst]

-at
Eag e
ac(t) . (singt - Bt cosBt)
2. The Three-Parameter Problem
b,s + Eag
M;(s) =

52 + a;s + ag

c _ b;s + Eag _E E(S + 31)-b1
(s) = — T s
s(s“ + a;s + ag) 2 4 ars + ag

BC(S) - E(S + a]_)-bl

ddg (52 + aps + ao)z
GC(S) _ bIS + Eap

0d) (SZ +ags + ao)Z
aC(s) _ 1

obl SZ +a;s + ag

71,

(A-7)

(A-8)

(A-9)

(A-10)

(A-11)

(A-12)

(A-13)

The sensitivities in the time domain are again obtained by taking

inverse Laplace transforms.
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Thé Five-Parameter Problem

2
X5S™ + XyuSs + Ejx X3

(s + x ) (s7+ xp5 + x1)
2
Xss + xu8 + E X1 X3
C(s) = 5
s(s + x3) (s™ + x5 + X3)
2
g Els + (x2 +x3)s + x1 + %2 x3)] - xs5 - Xy
C R — 5 - (A']S)
S (s + x3) (s” + xp5 + x3)
+ - E +. '
BC(S) _ XsS Xy X3(S Xz) '(A-]G)
4ax1 (s + x3) (s* + XS + x1)2
2
+ + E
SC(S) _ Xs5S Xy S X1 X3 (A_]7)
%2 (s + x3) (s + xp8 + x;)?
' +xy - E
aC(s) . _ _ XsS T X " rK (A-18)
9X3 (s + x3)% (s% + xps + xl)
oXy, (s + x3) (% + X5 + X;)
X5 :

(s + x3) (s* + xa5 + 1)
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APPENDIX B ' 73.
TWO-PARAMETER PROBLEM

PROGRAM TST(INPUTsQUTPUT s TAPES=INPUT+» TAPE6=0UTPUT)
LOGICAL CONVSUNITH

DIMENSION C7(501)

DIMENSION X(3)s G(3)s H(15)s EPS(3)
COMMON /COM1/ C7

COMMON /COM2/ FO

COMMON /COM3/ KNT

READ (542) NsSMAXFN

READ (5+3) (X(I)sI=1sN)

READ (E5s4) (C7(I)sI=1+501)

DO 1 I=1sN

EPS(I)=1.0E-9

CONTINUE

FEST=0.0

KNT=0

FO=100.

UNITH=,TRUE.

IPRINT=1

CALL VMMO1l (NsXsFeGsHsUNITHsFESTSEPSsMAXFNs IPRINTSIEXIT)
WRITE (695) IEXIT

STOP

FORMAT (215)

FORMAT (8F10,5)

FORMAT (10F8.5)

FORMAT (2Xs%* INFORMATION OF CONVERGENCE *s14)
END '

SUBROUTINE FUNCT (NesXsFsG)

INTEGER P

DIMENSICON ER(201)s AER(201)s INST(201)
DIMENSION G(5)s GR{(5)

DIMENSION X(5)s C2(501)s C7(501)

COMMON /COM1/s C7

COMMON /COM2/ FO

COMMON /COM3/ KNT

SECOND ORDER MODEL WITH SS CONSTRAINT AND NO ZERO
P=1000

KNT=KNT+1

5S5=0.11706

WRITE (699) (X(I)sI=152)

F=0e

G(1)=0,

G(2)=0,

Y=X{2)%¥X(2)/4e-X(1)

IF (YeGTW40s) GO TO 3

YN=X(1)-X{(2)*X(2)/4,

W=SQRT(YN)

2=X(2)/2

DO 1 I=1520142

T=0.04%FLOAT(I~-1)
C2(1)=SS*(14—(COSIWHT)+Z%SIN(WX*T)/WI/EXP(Z%T))

ER(IN=C7(I)=C2(1)
AER(I)N=ABS(ERI(I))

" CONTINUE
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M=201

CALL PEAKS (MsAERSINSTsNPKSsK)

F=AER(K)

DO 2 I=1sNPKS

L=INST({I)

T=0,04%FLOAT(L~-1)

SIGMA=(AER(L)/F)**(P-2)*(ER(L)/F)
GR(1)=SS*(T*SIN(W*T)—(Z/(W*W))*(T*W*COS(W*T)~SIN(W*T)))/(EXP(Z*T)*
124 %W)

GR(2)==SS*¥X (1) % (SIN(W*T)-W#T*COS{WH*T) )/ {EXP(Z%#T) %2 %WHW*W)
G(1)=G(1)~-SIGMA*GR(1)

G(2)=G(2)-SIGMA*GR(2)

CONTINUE

GO TO 6

Al==X{2)/2.+SQRT(Y)
A2==~X{2)/2.-SQRT(Y)

B=2«%SQRT(Y)

Q1=S5S

Q2=55*X(1)/(A1%B)
Q3==X{1)/(A2*B)*SS
V1==X{1)/(X{1)%X(2))%¥((A1*AT+A2%A2)/(B¥B)~1,)%*5SS
V2=(5S%#{1e~A1¥A1/(B*B))~V1¥AL)I*#X (1)
V3=-Vv1 '

Vo= (X (1) #SS-V2¥A2¥A2)/ (A1*AL)

DO 4 1=1s201+2

T=0,04%FLOAT(I-1) .
C2(1)=Q1+Q2%¥EXP(AL*T)I+Q3*EXP(A2%T)
ER(IN)=C7(1)-C2(1)

AER(I1)=ABS(ER(1))

CONTINUE

M=201

CALL PEAKS (MsAERSINST s NPKSsK)
F=AER (K)

DO 5 I=1sNPKS

L=INST(I)

T=0.04%FLOAT (L-1)

SIGMA=(AER{L) /F)*¥(P=-2 )% (ER(L)/F)
GR(1)=(((X(z)+A1)*T~(A1+A2+2.*X(2))/B)*EXP(Al*T)+((X(2)+A2)*T+(A1+
1A2424#X(2))/B)Y*EXP(A2%T)) /(B*B)
GR(2)=V1*((V2/V1+A1)*¥T+1 ) *¥EXP(ALI*T)+V3*¥((V4/V3+A2)¥T+1 e ) ¥EXP(A2*T
1)

GR(2)==GR(2)

G(2)=G(2)Yy~-SIGMA*GR(2)
G(1)=G(1)-SIGMA*GRI(1)

CONTINUE

CONTINUE

AUX].:OQO

DO 7 I=14NPKS

L=INST(I)

AUX1=AUX1+(AER(L)/F)**pP

CONTINUE

RP=1,0/FLOAT(P)

F=F#*( AUX1%*%#RP)

IF (FoeGE.FQO) RETURN

BO=X(1)*SS

WRITE (6210) X(1)eG(1)sFsX(2)sG(2)sBO
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11
12

FO=F
IF (FelT«0.0037662) GO TO 8
RETURN

WRITE (6511)

CALL SECOND (T1)

WRITE (6s12) T1

RETURN

FORMAT (86Xs3F10.5)
FORMAT (2X+6E1546)
FORMAT (3Xs*VALUE REACHED¥*)

FORMAT (///2UXs*¥TIME TAKEN¥sF1045)

END :

SUBROUTINE PEAKS (MsAERSINSTsNPKSsK)

DIMENSION AER(1)s INST(1)
ML=M-2

J=0

AER(1)=0,0

AER(M) =040

DO 1 I=3sMLs2

IF (AER(I-2) eGTeAER(I)eORAER{I+2)GT«AER(I))

J=J+1
INST(J)=1
NPKS=J
CONTINUE

TO FIND THE MAX ERROR
BIG=AER(1)

DO 2 I=1sNPKS

L=INST(I) .

IF (AER(L)eLESBIG) GO TO 2
RIG=AERI(L)

K=L

CONTINUE

RETURN

END

cD TOT

0152

GO TO 1
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THREE-PARAMETER PROBLEM 76.

PROGRAM TST(INPUTsOUTPUTs TAPES=INPUT s TAPE6=0QUTPUT)
LOGICAL CONVsSUNITH

DIMENSION C7(501)

DIMENSION X{(3)s G(3)s H(15)s EPS(3)
COMMON /COM1l/ C7

COMMON /COM2/ FO

COMMON /COM3/ KNT

READ (5s4) NsMAXFN

READ (5+5) (X(I)sI=1sN)

READ (5s6) (C7(1)s1=1+501)

DO 1 I=14N '
EPS{I)=140E-9

CONTINUE

FEST=0.0

FO=100.

KNT=0

UNITH=eTRUE

IPRINT=1

CONTINUE

CALL VMMO1 (NsXsFsGosHsUNITHSFESTsEPSsMAXFNs IPRINTSIEXIT)
WRITE (6s7) IEXIT

IF (IEXITeNE.4) STOP

DO 3 I=1sN

XtI)=X(1)+0.1

CONTINUE

WRITE (64+8)

Go T0 2

FORMAT (215)

FORMAT (8F10.5)

FORMAT (10F8.5)

FORMAT (2Xs* INFORMATION OF CONVERGENCE *s514)
FORMAT (3Xs*A RESTART HAS OCCURED#*) '
END :

SUBROUTINE FUNCT (NsXsFsG)

INTEGER P

DIMENSION ER(201)s AER(201)s INST(201)
DIMENSION X{1)s G(1)

DIMENSION GR(3)s C2(501)s C7(501)
COMMON /COM1/ C7

COMMON /COM2/ FO

COMMON /COM3/ KNT

P=1000

KNT=KNT+1

F=Oo

G(1)=0,

G(Z)=Oo

G(3)=0,

$5=0,11706

E=0.11706

B=X(2)~X{(3)/E

C=E*X(1)/X(3)

Y=X(1)=X(2)%X(2) /4,

IF (YoLToeOW) GO TO 3

W=SQRT(Y)
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2=X{2)1%#0,5

DO 1 I=15201,2

T=0,04%FLOAT(I~1)
C2(1)=X{3)%SIN(W*T)/(WHEXP(Z*¥T))4(1e~(Z*¥SIN(W*T)/W+COS(WxT))/EXPI
1%7) ) *E

ER(IN)=C7(1)-C2(1])

AER(T))=ABS(ER{I))

CONTINUE

M=201

CALL PEAKS (MsAERSINSTsNPKSsK)

F=AER(K)

DO 2 I=1sNPKS

L=INST(I)

T=0.04%FLOAT(L-1)

SIGMA=(AER(L) /F)#x{(P-2)*(ER(L)/F)
GR(1)=E*((B—Z+WHAWXT)XSIN(WH¥T)+(Z-BI*WXTHCOS(W*T) )/ (EXP(Z%#T) %2, %WH
1¥W)
GR(z):-X(3)*((C-Z+W*W*T)*SIN(W%T)+(Z—C)*W*T*COS(W*T))/(Zo*W*W*W*E
IP(Z%#T))

GR(Z)=SIN(WXT) /{EXP(Z*T)*W)

G(1)1=G(1)-SIGMA*GR (1)

G(2)=G(2)~-SIGMA#GR(2)

G(3)=G(3)-SIGMA*GR(3)

CONTINUE

GO 70 6

CONTINUE

YN=-Y

W=SQRT(YN)

IN=-X(2)%045

Al=ZN+W

A2=ZN-W

DO 4 1=1,5201,2

T=0.04%FLOAT(I-1)

C2{D=X{3)*{C/(A1*¥A2)+ (A1+CI*EXP(A1I*T)/ L (A1-A2)*A1 Y+ (A2+C) *EXP (A2
1TYy/L(A2=-A1)Y®A2))

ER(IN=C7(I)-C2(1)

AER(I)=ABS(ER(I))

CONTINUE

M=201

CALL PEAKS (MsAERSINSTsNPKSsK)

F=AER(K)

DO 5 I=1sNPKS

L=INSTI(I)

T=0404%FLOAT(L~1) :
SIGMA=(AER(L)/F)#*%(P-~-2)*(ER(L)/F)
GRUTY=E*(((B+A2IXT—(A1+A2+2*¥B} /(A2-AL Y I*EXPLA2¥*¥TI+{(B+ALI®T~-(A1+
12+2%B) /7 (A1=-A2) ) *EXP(AI*¥T )}/ ((A1-A2)%*(A1-A2))
GRI2)==X(3)#F({{CHA2 ) *¥T-(A1+A2+42e%C)/ (A2-ALY I HEXP(A2%*¥T)/ ({A2—A1) %1
12=-A1) )+ ((CHAL IR T={AL+A2+2e ¥C}/LALI-A2) ) *¥EXPATI*T )/ ((A1-A2)*{A1-A2)
2)

GRI3)I=(EXP(A1I*¥T)-EXP(A2*¥T))/(A1-A2)

G(1)=G(1)-SIGMA*GR(1)

G(2)=G(2)-SIGMA%*GR(2)

G(3)=G(3)-SIGMA*GR(3)

CONTINUE

CONTINUE

AUX1=0,0




9
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" CONTINUE

78.
DO 7 I=1sNPKS

L=INST(I) :
AUX1=AUX1+(AER(L)/F)**p

RP=1,0/FLOAT(P)

F=F% (AUX1%¥RP)
SCALAR=(140/AUX1)*%(140-RP)
G(1)=G(1)*SCALAR

G(2)=G(2)*SCALAR

G(3)=G(3)*SCALAR

IF (FeGEJFO) RETURN

FO=F

IF (FelTe2.488187E-3) STOP

IF (FelTe2+488187E-3) GO TO 8

RETURN

CONTINUE

WRITE (659) :
WRITE (6510) X(1)9G(1)sFaX(2)9sG(2)sX(3)9G(3)
RETURN

FORMAT (//#% REQUIRED VALUE REACHED %)
FORMAT (/1X»>*A0=%5E1446515Xs*GRADIENT=%5E14,6510Xs*0BJ. FUNCTIONS
19E14e65/1Xs%¥A1=%sE1406924X9E14063/1Xs¥Bla¥3E14e6324XsE14e6)
END

SUBROUTINE PEAKS (MsAER»sINSTsNPKSsK)

DIMENSION AER(1)s INST(1)

ML=M=2

J=0

AER(1)=0,0

AER(M)=0,0

DO 1 I=3sML»2 _ o

IF (AER(I=2)«GTeAER(I)+ORSAER(I+2)+GT4AER(I)) GO TO 1
J=J+1

INST(J)=1

NPKS=J

CONTINUE

TO FIND THE MAX ERROR
BIG=AER(1) ' :

DO 2 I=1sNPKS

L=INST(I)

IF (AER(L)«LE«BIG) GO TO 2
BIG=AER(L)

K=L

CONTINUE

RETURN

END

ch TOT 0162
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FIVE-PARAMETER PROBLEM : 79.

PROGRAM TST(INPUTsQUTPUT s TAPES=INPUT s TAPE6=0QUTPUT)
LOGICAL CONVSUNITH

DIMENSION C7(501)

DIMENSION X{6)s G(6)s H(39)s EPS(6)
COMMON /COM1/ C7

COMMON /COM2/ FO

COMMON /COM3/ KNT

COMMON /COM12/ P

pP=1000

555555555585 CONSTRAINT LEAST PTH NORM 3$55$35%9%
READ {(597) NsMAXFN

READ (5+8) (X{I)sI=19sN)

READ (549) (CT7(I)sI=1s501)

DO 1 I=1sN

EPS(I)1=1.0E-6

CONTINUE

IK=0

FEST=0,0

FO=100.

KNT=0

UNITH=4TRUE .

IPRINT=10 '

IPRINT=1

CALL CHECGR(NsX)

CONTINUE

CALL VMMO] (NsXsFsGsHsUNITHIFESTsEPSsMAXFNs IPRINTSIEXIT)
WRITE (6s10) IEXIT

IF (IEXITeNE«4) GO TO 4

WRITE (6+11)

GO TO 3

IK=IK+1

IF (FeLTeleOE-03) GO TO 5

IF (IK.LE.N) GO TO 3

KNT==5 :

CALL FUNCTI(NsXsFsG)

IF (P.GT.1000000000000}) GO TO 6
pP=pP%p

GO TO 2

CONTINUE

STOP

FORMAT (215)

FORMAT (5F1045)

FORMAT (10F8.5)

FORMAT (2Xs* INFORMATION OF CONVERGENCE *s14)
FORMAT (//3Xs*A RESTART HAS OCCUREDH)
END _
SUBROUTINE FUNCT (NsXYsFsG)

INTEGER P

DIMENSION ER(201)s AER(201)s INST(201)
DIMENSION C7(1)

DIMENSION GR(6)s C3(201)

DIMENSION X{(6)s G(6)s XY(6)

COMMON /COM1/ C7

COMMON /COM2/ FO
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80.

COMMON /COM3/ KNT

COMMON /COMB8/ INST

COMMON /COMT7/ NPKS

COMMON /COM6&6/ ER

COMMON /COM12/ P

KNT=KNT+1

F‘—"Oo

E=0011706

X(1)=XY (1}

X(2)=XY(2)

X(3)=XY{(3)

X(4)=g%xXY{1)%¥XY(3)

X(5)=XY(4)

X{6)=XY(5)

DO 1 1I=1sN

G(1)=0,0

CONTINUE

Y=X(1)=X{2)%X{(2)*¥0,25

Al=X(5)/X{6)

AO=X(4)7X(6)

CA==X(4)/{(X(1)*X{1)*®X(3))
AUXI=X(3)#*X(3)=X{(2)1*X(3})+X(1)
CB=(X{4)=X{3)%#X(5)4+X(3)%X(3)%X{6))/{X{3)*AUXI*¥AUX])
CC=-CA-CB

CD2CCH24%X{(2)~CA%X(3)~CC*¥X(3)
CE=CCH*¥(2#¥X{1}14X(2)V%¥X(2))-2. *CA*X(Z)*X(B)—CD*X(3)
CE=CCH*24¥X{2)%X(1)=X{6)=(2%¥X{1)4+X(2)%X(2))*#CA¥X(3)~-CE*X(3)
AXC=CF/CC

AX1=CE/CC

AX2=CD/CC
DB=(X(5)1%¥X(3)=X{4)-X(6)#¥X(3)%¥X(3))/(AUXI*¥AUX]1)
DC=-DB

DD=DCH#(2.#¥X{(2)~X{(3))})
DE==DD*¥X{3)~DB*#{(2.#X(1)+X(2)%¥X(2))=X{(6)
DF==2%X(2)%¥X{(1)*DB-DE*X(3)=X(5)

AYO=DF/DC

AY1=DE/DC

AY2=DD/sDC

FA==X{4)/{X{1)*¥X{(3)%X(3))
EB1=X(6)%¥X(3)%¥X(3)=2%¥X(5)*¥X{(3)=X(1)%¥X(6)+X(2)*¥X(5)+3.%X(4)
EB2=(X{1)%¥X{4)=24%¥X{(2)%X(4)%X(3))/{(X(3)%X(3))
EB=(EB1+EB2)/ (AUX1*AUX1)
EC=(X{3)*(X(3)%X(6)=-X(5))+X{(4))/(X(3)*AUX1)
ED=~EB~EA

EE==(X{S5)+EC*X (1) +(EB+2+*EAI*X{1)*¥X(3))/(X{3)%#X(3))~EA*X(2)
IF (YelLTeUe) GO TO 5 , o
Z=X(2)1%045 e -
W=SQRT(Y)

GM1=Z-X(3)

GM2=W* (24%#Z~Al)

GM3=(Z%#Z-WH*W+AO0-A1%2)

PHI=ATANZ(Ws2)

PH2=ATANZ2{WsGM1)

PH3=ATANZ2(GM2 syGM3)

PHX=PH]+PH2-PH3

Y1=A0/(X(1)%#X(3))
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Y2=(A1#¥X(3)=A0=X(2)#X(3))/(X(B3)¥((Z=-X(3))#(Z=X(3))+W*W})
RT1=((Y*(X(2)=AL)I¥(X(2) =AY ) +(Z2¥Z2-Y~AL1*Z+AQ) #(Z*Z-Y—-AL*¥Z+A0) )/ (X(1
1#((Z2=X(3))*(Z-X(3))+Y)))

RT1=SQRT(RT1)

DO 2 1=1520142

T=0.04%#FLOAT(I-1}

C3(I)—X(@)*(Y1+Y2/EXP(X(3)*T)+RT1*SIN(W*T+PHX)/(W*EXP(Z*T)))
ER(IV=CT(I)~C3(I)

AER(T1)=ABS(ERI(I))
CONTINUE

M=201
CALL PEAKS (MsAERSINSTsNPKSsK)

F=AER(K)

X10=((sz-Z)*X(l)—Z*(Ax1+2.*w*W)+Ax0)/(2.*W*W*W)

Y11= (B HZHZ—WHW=2 ¢ #¥AX2¥Z4+AX1) /(2 %W)
Y12=(AXO=AX1¥Z+AX2¥ (27 ~WH*W)+Z# (34 HWHW=L%Z) ) /{2 ¢ ¥WX*W)
Y13={ (AY2~2Z)*¥X(1)=Z#(AY1+2 « *¥WH*W) +AYO) /(2 o XWHWXW)

Y14={3 J*Z*Z—WHkW=2 ¢ ¥AY2¥Z+AY1) /(24 %*W)
Y15=(AYO=-AY1#Z+AY2 K (ZHZ~-WHW)+Z ¥ {3 HWHKW-Z%Z )} )/ (2 %WHW)
RTZ=SQRT(1e+(EE/ED~Z)}*(EE/ED-Z)/ (W¥XW))

GM6=EE/ED=-Z

PH6=ATANZ (WsGM6)

Y3=1e/(X(3)%X(1))
Y=14/(X(3)#((Z=X(3))*{Z2-X(3))+W*W))

YS=W*SQRT (X (1) #((Z=-X(3) )% (Z2=-X(3) ) +W*W))

PHY=PH1+PH2

PH4=ATANZ2 (Ws-GM1)

Yé=1e/ (WEW+(X(3)=2)%(X(3)~-2))
YT7=WxSQRT((X{3)=Z)%(X{3)=2)+WHW)

PH5=ATAN2(Ws=2)

PHZ=PH5~-PH4 '

Y8==X{3)/{{X(3)=Z)#(X(3)=Z)+WXW)
YO=SQRT(X(1)/(WX¥WH+(X{(3)})=2)%(X(3)=Z)))/W

DO 4 I=1sNPKS

L=INST(I)

T=0,04%FLOAT(L-1)

SIGMA=(AER(L)Y/F)*#(P=-2)%*(ER(L)/F)
GR(1)=CA+CB/EXP{X(3)%¥T)+CC*(SIN(WxT)*(YIO0+Y11%¥T)+(1e~Y12%T)*COS(
1TY)/EXP{Z*T)
GR(2)=DB/EXP(X(3)*#T)+DCH(SIN(W*T)*{(Y134+Y14%*¥T)+COS(W*T)*#(1e-Y15%T)
1/7EXP(Z*T)
GR{3)=FA+(EB+ECH*TI/EXP(X(3)*¥T)+ED*RTZ*SIN(W#T+PH6)/EXP(Z%T)
GR{4)=Y3=Y4/EXPIX(3)*¥T)+SIN(W*¥T+PHY) /(YSHEXP(L*T))
GR(5)=YB/EXP(X(3)%XT)+SIN(W*XT—PH4) /(YTHEXP(Z%T))
GR(6)=Y8/EXP(X(3)*T)+YOHSIN(W*¥T+PHZ} /JEXP(Z*T)

STEADY STATE COSTRe IMPOSED

GR(I1)=GR{1)+E*¥XY(3)*GR(4)

GRI{3)=GR(3)+E*XY(1)%#GR(4)

GR(4)=GR(5)

GR(5)=GR{6)

DO 3 J=1sN

G(J)I=G(J)Y-SIGMA*GR(J)

CONTINUE

CONTINUE

GO TO 9




82.
CONTINUE
YN==Y"
B1=X(2)3#045+SQRT(YN)
B2=X(2)1#0,5-SQRT({YN)
B3=B1-82
BB3=B3%B3
BBB3=B3%*B3%#B3
R1=A0/(X(1)%X(3))
R2=(B1#B1~-A1*B1+A0)/(B1#B3%¥(X(3)-B1))
R3=(B2*B2~A1%¥B2+A0)/(B2%*¥B3%{(B2~-X(3)))
Ra=(X(3)#X{3)=A1*¥X(3)+A0)/(X(3)*(B81-X(3))*¥(X(3)-B2))
DO 6 1=1s20142
T=0,04%FLOAT(I-1)
C3{I1)=X{6)*¥(R14R2/EXP(BI*#T)I+R3/EXP(B2¥T)+R4/EXP(X(3)*T))
ER(I)=CT7{I)~-C3(1)
AER(I)=ABS(ER(I))
CONTINUE
M=201
CALL PEAKS (MsAERsINSTsNPKS»K)
F=AER(K)
Re={AXO-AX1*¥B1+AX2%B1*B1~-B1%*B1%*B1)/(BB3)
Re=(B1¥*¥B1¥*(3%¥B2=B1)=2.#AX2¥X{1)+AX1*¥X(2)-2,.,%AX0)/{BBB3)
R7=(AX0O-AX1#B2+AX2%B2%*B2~-B2*B2#B2)/(BB3)
R8=(B2%¥B2%¥ (3 #¥B1-B2)~2+¥AX2*¥X(1)+AX1%#X(2)-2,%¥AX0)/(BBB3)
RO=(AYO=~AY1*¥B1+AY2*B1¥B1-B1¥*B1*¥B1)/{(BB3)
R10=(B1*B1¥(34%B2~B1)=2+%AY2%¥X(1)+AY1¥X(2)-2.%AY0)/(BBB3)
R11=(AYU=-AY1%*B2+AY2#B2%¥B2-B2%B2%#B2)/(EB3)
R12=(B2#B2%* (3 %B1~B2) =2 ¥AY2¥X{1)+AY1%¥X(2)=-2.%AY0)/(BBB3)
R13=1.0/(X(1)*X(3))
R14=1.0/7{X{3)*(B1-X{3))*(B2-X(3)))
R15=1.0/(B2%¥B3%(X(3)-B2))
R16=1./(B1%(B2-B1)*(X(3)~B81))
R17=R16%*B1
R18=R15%B2
R19=R14%X(3)
R20=B1/7(B3#{X(3)~-B1))
R21=B2/{E3%(B2-X(3)))
R22=X{(3)/((B1=-X(3))*(X(3)-B2})
DO 8 I=1sNPKS
L=INST(])
T=0,04%FLOAT(L-1)
SIGMA=(AER(L)/F)1**(P-2 )% (ER(L)/F)
GR(1)=CA+CB/EXP(X(3)#T)+CCH*{(R5*T~ Ré)/EXP(B1*T)+(R7*T+R8)/EXP(BZ*
1))
GR{Z2)=DB/EXP(X(3)*T)+DC*{ (RY#T=R10I/EXP(B1I*T)+(R11¥T+R12)}/EXP(B2%*
1))
GR(3)=FA+(EB+ECH*T)I/EXP(X(3)*T)~ED*({EE/ED-B1)/EXP(B1#T)+(B2—-EE/ED
1/EXP(B2%#T))/B3
GR(4)=R13- R14/EXP(X(3)*T)—R15/EXP(BZ*T)-Rlé/EXP(Bl*T)
GR(5)=R17/EXPI(B1*T)+R18/EXP(B2*¥T)+R19/EXP(X(3)*T)
GR(6)=R20/EXP{(B1I*#T)+R21/EXP(R2*¥T)+R22/EXP(X(3)*T7)
STEADY STATE COSTRe. IMPOSED
GR{1)=GRI1)+E*¥XY{3)*GR(4)
GR(3)=GR(31+EXXY (1) *GR(4)
GR(4)=GR(5)
GR{5)=GR(6)
‘DO 7 J=1sN




O 0 ~3

10

11

[aNa N

G(J)=G(J)-SIGMAXGR(J)
CONTINUE

CONTINUE

CONTINUE

AUX1=0,0

DO 10 I=1sNPKS
L=INST(I)
AUX1=AUX1+(AER(L)/F)*%P
CONTINUE
RP=1,U/FLOAT(P)
F=F#*(AUX1**RP)

SCALAR=(1.0/AUX1)*%¥(1,0-RP)

DO 11 J=1»sN

G(J)=G(J)*SCALAR

CONTINUE

IF (KNT«GT«U) RETURN

WRITE (6912) (ER(I)s1=1+20152)
RETURN

FORMAT (/3Xs5E1646)
END

SUBRQUTINE PEAKS (MsAERsINSTsNPKSsK)

DIMENSION AER(1)s INST(1)

ML=M=2

J=0
AER(1)=0.0
AER(M)=0.0

DO 1 I=3sMLs2

IF (AER(I=2)eGT4AER(I)eORGAER(I+2)GT.AER(I))

J=J+1
INST(JU)=1
NPKS=J
CONTINUE

TO FIND THE MAX ERROR
BIG=AER(1)

DO 2 I=1,NPKS

L=INST(I)

IF (AER(L)«LE.BIG) GO TO 2
BIG=AER(L)

K=L

CONTINUE

RETURN

END

cb 10T

0274

GO 70 1
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