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A study of gradient optimization techniques, in 

particu·lar as applied to system modelling problems, 

is made. Three efficient techniques are used to 

derive optimum second-order and third-order models 

for a seventh-order system. The optimization tech­

niques are the Fletcher-Powell method, a more 

recent method proposed by Fletcher and a method 

based on a more general objective function pro­

posed by Jacobson and Oksman. 
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The approximation is carried out in the time 

domain~ Least squares and least pth criteria 

are used, and almost minimax results are ob­

tained for large values of p. Values of p up 

to 1012 are successfully used. The results are 

compared with other minimax type algorithms. 

. ' 
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CHAPTER l 

INTRODUCTION 

The purpose of obtaining linear low-order·mbdels of high-

order complex systems is to simplify the preliminary design and op­

timization of such systems. For on-line operation of a complex slowly 

varying system, it would often be more desirable to obtain a linear 

low-order model and perfonn the computation for an optimal control on 

that model. Although this will give a sub-optimal control for the real 

system, the result will be considerable economies in computing time and 

equipment. We are looking, therefore, for models which are computation­

ally and analytically simple, and still provide sufficient infonnation 

about the system for them to be useful. 

In chapter 2 a review is given of existing modelling methods. 

The most promising of these methods is selected and, as the method is 

based on minimizing a function, three of the most efficient minimization 

techniques are applied to sol~e the problem. These techniques are all 

gradient methods and are described in chapter 3. Their rapid rate of 

convergence makes gradient methods suitable for this type of problem. 

The modelling method with the optimization techniques is app­

lied to a test problem, which is described in chapter 4, and the results 
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are shown in chapter 5. Firstly, a least squares criterion is used 

and, secondly, an effective minimax criterion is used. The minimax 

result is achieved by minimizing the pth norm of the absolute errors, 

where p takes very large values - up to 1012 has been successfully 

used. For many nonlinear approximation problems, a minimax result 

does not necessarily imply an equiripple answer in the Chebyshev 

sense. That is,not all the extrema are necessarily equal and the 

number of ripples is not necessarily n+l, where n is the number of 

variables. 

The purpos~ of this work has been to improve modelling tech­

niques so that on-line control of slowly varying complex systems can 

be simplified. At the same time a thorough examination is conducted 

of two recent optimization techniques, by comparing them to one which 

has been widely used. Parts of this work have been published, and 

appear in references [l-3]. 
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CHAPTER 2 

MODELLING METHODS 

The need for low-order approximations of complex high-order 

systems has resulted in several model derivation techniques. These 

techniques can be divided into two main groups. /In one group a 

model is obtained by neglecting modes of the original system which 

contribute little to the overall response of the system. A number 

of variations based on this approach have been proposed by Davison 

[4], Chidambara [5], Mitra [6] and Marshall [7]. The other main 

approach is to search in some way for the coefficients of a set of 

differential or difference equations of specified order, the response 

of which is approximated as closely as possible to that of the system, 

when both are driven by the same inputs. Anderson's method [8] comes 

under this category, as do the approaches of Sinha and Pille [9] and 

Sinha and Bereznai [10]. Other methods, such as that of Chen and 

Shieh [11] and that of Kokotovic.and Sannuti [12] do not seem to fit 

into either of these general groups. 

Davison's method is based on the principle that one may neglect 

those eigenvalues of the original system which are farthest from the 

jw-axis in the s-plane. The retention of the dominant eigenvalues 

makes the response of the reduced model approximate that of the system, 

since the eigenvalues neglected make a very insignificant contribution 
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to the response, except at the beginning. Relationships from the 

time-solution of the vector differential equation of the original 

model are used to develop a reduced model which maintains both the 

correct proportion of the eigenvectors and the desired eigenvalues. 

Although the method is intuitively appealing, it may be relevant to 

ask if a greater choice of the eigenvalues in the reduced model could 

produce a better approximation. 

Anderson [8] has proposed a method which does not depend on 

the computation of the high-order system matrix. In this method an 

attempt is made to determine: a low-order model, the response of which 

approaches that of the system, so that the mean-square error between 

the two responses, over a given finite interval, is minimized. This 

is accomplished by using the orthogonal projection theorem in the 

theory of linear vector spaces. 

The method due to Sinha and Pille [9] is similar to Anderson in 

that it minimizes the sum of the squares of the errors between the re­

sponse of the system and that of the model~ It is based on the iterat­

ive application of the matrix pseudoinverse algorithm and it was shown 

that the method was easy to apply, especially as no matrix inversions 

are required. The main drawback, however, of this method is th~t the 

objective function can only have the form of the sum of the squares of 

the errors. In many practical situations it may be more desirable to 

use other criteria for obtaining low-order models; in these cases the 

matrix pseudoinverse cannot be used. 
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Sinha and Bereznai [10] developed an approach which can provide 

a low-order model with respect to any specified criterion. The method 

is based on the pattern search algorithm of Hooke and Jeeves [13] 

Although this method provides flexibility in the choice of criteria, it 

will, in general, require so much computer time as to make it unsuit­

able for on-line applications. 

The present work is based on the above approach with the use of 

efficient minimization techniques, These techniques, known as gradient 

methods because they utilize gradient information, show a rapid rate 

of convergence and an investigation of these methods is considered use­

ful. For this purpose, a comparative study is made between three of the 

most efficient techniques which are described in the next chapter. 



CHAPTER 3 

OPTIMIZATION TECHNIQUES 

In order to describe the optimization techniques it is 

necessary to give some definitions. It is desired to minimize 

a function F(~) called the objective function, where 

(1) 

cailed the parameter vector. It is assumed there are no constraints 

present. If constraints are imposed, however, then the problem 

can be transformed to an unconstrained one by use of appropriate 

transformations. 

Let 

aF 
ax 1 

aF 
ax2 

(2).~(~) ~ aF 
axn 
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called the gradient vector and 

2 
a F 

2
a F 

2 
a F 

--z­
0X1 
a 
2
F 

0X10X2 
2

a F 

ax1_axn 
2 

a F 
0X20X1 ax~ 0X20Xn 

~ A 
(3) 

2 2 ·2 
a F a F a F 

-raxnax1 axnax2 axn 

is the corresponding Hessian matrix. ~ denotes the inverse Hessian, 

~-1, which will be approximated by different formulae tn each of the 

gradient techniques. 

Let 

{4} 

called the increment. In all minimization methods ~ is chosen so that 

F(~ + ~) < F(~) (5) 
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Another n-dimenstional vector ~will denote the direction in which ~ 

is taken. For brevity in some expressions in the following sections, 

F will be used for F(~) and~ for~(~). 

Algorithms terminate after one or more of the following 

criteria are satisfied: 

(a) if the change in the objective function becomes less 

than E1,a small positive number. 

(b) if the absolute values of the elements of the increment 

vector become sma 11 er than E2 , a _sma 11 positive number. 

(c) if th~ norm of the gradient vector becomes less than 

€ 3 , another small positive number. 

As a safeguard the algorithm should go through n iterations, where n 

is the number of variables, after the terminating criterion is satisfied, 

before ~he program terminates. 

3.1 The Fletcher-Powell Method 

The main feature of the Fletcher-Powell method [14] is that the 

increment~ is taken along the direction i where 

(6) 


That is 

(7) 

where a is that value of A which minimizes F{~ + A ~) along the direction 



9. 

of s. The method of obtaining the minimum along the line is not central 
"' 

to the theory, however, cubic interpolation has been found simple and 

satisfactory. 

The inverse Hessian ~ is updated at each iteration from infor­

mation presently available using the formula 

T~ ~T H. Y Y H. 
1\:1 "' "'1 

= ~i + - - t\, 	 {8)~i+l ~T ;( 	 yT H. y 

"' ~1 "' 


where 

(9)~ = - a ~i~i 

and 

{ = ~i+I - ~i 	 (10) 

and the .subscript i denotes the value at the ith iteration. It can be 

shown [14] that the process is stable, that is, formula (8) has the 

following property of positive definiteness: If ~i is positive definite 

then ~i+l is also positive definite. Since ~i is initially chosen as 

the identity matrix then all ~i+l will be positive definite. It can also 

be shown that if the objective function is in the quadratic form the pro­

cedure terminates in n iterations. This property of quadratic convergence 

depends on accurate location of the minimum along each direction of search, 

and this is the main disadvantage of the method. 
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3.2 The Fletcher Method 

The Flet~her method [15] is basically similar to the Fletcher-

Powell method in that both methods consider quadratic objective func­

tions and the increment ~ depends on the gradient and the updating 

matrix ~· The difference between the methods is that the Fletcher 

method dispenses with the problem of linear search which is time con­

suming. But, as mentioned in the previous section, quadratic conver­

gence depends on accurate location of the minimum along each direction 

using linear search. Therefore the property of quadratic convergence 

is replaced by a property which requires, for quadratic functions, 

that the eigenvalues of the matrix~ tend monotonically towards those 

of ~-l, the exact inverse Hessian. 

The abandonment of linear searches requires that something is 

done to force a sufficiently large decrease in F at each iteration to 

guarantee ultimate convergence. The change ~F in F on an iteration 

would be expected by Taylor's series to be approximately ~T~ for small 

o, but much less than gTo when the position of the minimum along the 
~ ~~ 

line is overestimated. Therefore· the change in F(~) relative to ~T~ 

cannot become arbitrarily small if 

{11) 


where o<µ<<l, a pre-assigned small quantity set at 0.0001. 
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If corrections are determined by 

(12) 

2 3 
then trying values of A= l, w, w, w, •••• for w = 0.1 will even­

taully produce a~ that satisfies inequality (11). 

Although the above tests can be simply included in the Fletcher­

Powel l program, ~ can become ill-conditioned and a new formula for up­

dating ~ is needed. It is necessary for the new formula to possess the 

properties of positive definiteness and eigenvalue convergence. The 

new formula derived by Fletcher is 

1-1. y cS 
~ l "' "' ~i+l = ~i -

T 

. -\-~-T (13)
~f r ) cS . y 

"' "'"' 

where y and cS are defined in {9) and (10). It can be shown that form~la 
"' "' 

(13) possesses the above mentioned properties. The use of formula (13) 

alone might, however, cause H to become unbounded. For this reason a"' . . 

choice is made between the two updating formulae by the following test. 

If . 

(14) 

then formula (13) is used; otherwise formula (8) is used. 
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3.3 The Jacobson-Oksman Method 

The Jacobson-Oksman method [16] differs from the previous two 

in that it is not based on quadratic functions, but on homogeneous 

functions. Consider the homogeneous function 

(15) 


where e is the degree of homogeneity and ~ is the location of the mini­

mum. The quadratic function considered earlier can be expressed as 

(16) 


where Qis a constant positive definite matrix. By comparing equations 

(15) and (16) it can be seen that (16) is a special case of (15). 

The basis of this method is the following. By rearranging equat­

ion (15) we have 

T 
~ g(~) + e F(~) - e F(~) = ~T g (~) (17) 

"'"' 
Let 

v /J,. ~T st(~) 

/J,. 
[ ~T(~) F(~) -1 ]T ( 18) 

it 

/J,. [ ~T e 4> ]T
SC "' 

where 
v 

4> = e F(~)
" 
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and ~and~ are {n+2)-vectors, with~ containing the unknowns. For 

some point ~i equation (17) now becomes 

y! (19) 
"'1 

If v and y are evaluated at n+2 distinct points ~1' ~2' .•• ~n+2 ,,so 
"' that the yi are linearly independent, we have 
"' 


YT 
"'1 

~I 

. 

T 

~n+2 

or, in the matrix form 

-· it 

V1 

V2 
(20) 

vn+2 

(21) 


Since the ~i are linearly independent, the matrix t is non-singular giving 

(22) 

Matrix inversion is avoided by ·using a recursive formula as new ~i and vi 

are evaluated. Starting with ~o = ,i, an (n+2) x (n+2} identity matrix 

and ~o = ~0 , an arbitrary initial guess, successive estimates of the vector 
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~ are given by 

~i+l = It; + t; ~i+l (v;+1 -
T 

~i+l It;) (23) 

T 
~i+1 ~; ~i+l 

where ~i+i is a unit (i+l)-vector having unity as the (i+1)th element 

and zero elsewhere, and where e; are obtained successively from the form­

ula 

T T 
~; ~i+l (~i+I ~i - ~i+1) 

{24)=e;+1 e; - T 
Y;+1 e; ~i+lI\, 

It can be shown that, for homogeneous functions, the algorithm finds the 

minimum~' the degree of homogeneity e, and the value of the minimum 

F(~) after n+2 iterations. 



CHAPTER 4 

THE TEST PROBLEM 

In order to compare the various optimization techniques on 

modelling, a realistic and valid system is selected. The system is 

one of the designs studied for a supersonic transport aircraft [17] 

Some variables are given values, consistent with design description 

and maintaining stability, so as to obtain a transfer function with 

poles distributed over the entire.left half s-plane. The reason is 

that if the poles.are close to the origin there is bias in favour 

of Davison's method. 

The transfer function obtained is 

iltl_s = .....,,..---=-----=.---3_7_5o.....,,o_o___ 3).____..,....______( s_+ _o_.o.,,....8_3__ 
R\ST s7+83.64s6+4097s5+70342s4+853703s3+281427ls2+3310875s+281250 (25) 

Since in most realistic slowly varying dynamic systems a trans­

fer function would not be available, the above transfer function is used 

to obtain the response of the system to a specified input. A step is 

a widely used input, therefore the step response of the system is cal­

culated at discrete intervals of time. This in reality would correspond 

to direct measurements at the output of the system, at discrete instants. 

This means that a knowledge of the system transfer function is not required 

in the derivation of the model, an advantage only a few of the modelling 

methods described in chapter 2 possess. 
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The main features of the response are: 

10% to 90% rise time = 1 second 


Steady-state value = 0.11111 


Initial slope = 0 


Time to reach first peak = 2.9 seconds 


Response at maximum overshoot = 0.12069 


Maximum overshoot = 8.62% 


Figure l shows the response of the system to~ unit step. Second-order 

and ·third-order models of the above mentioned system can have the following 

forms .. 

bo 
Mi{s) = (26)2s + ais + a0 

bis + bo 
M2(s) = {27) 

s + ais + ao 

bo 
M3(s) = (28)2s3 + a2s + ais + ao 

(29) 


b2s 
2 

+ bis + b0Ms (s) = _,___2____ {30) 
s + a2s + ais + ao 

From the above models Mi(s), M2 (s) and M5 (s) were selected to approximate 

the system, the most useful being M1 (s) since this is the simplest and by 

the use of the matrix Ricatti equation an optimal control can be derived 
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easily [22]. The other two models M2 and M5 were also included to 

test the methods as the number of variables increased. 

A steady state constraint can be imposed by use of the final 

value theorem, however, this is further discussed in the next chapter. 



CHAPTER 5 

RESULTS 

ComputatiOnal Information 

The computer used for all the problems was a CDC6400. The ap­

proximation was made over O to 8 seconds, with 21 uniformly spaced points 

for the least squares case and 101 uniformly ~paced points for the least 

pth approximation. 

The terminating criterion for the Fletcher-Powell method, was 

set at 1.0 x 10-6 and the algorithm terminated if the change in the ob­

jective function or· parameters was less than that number. The termin­

ating criterion for the Fletcher method was also set at 1.-0 x 10-6 and . 

the algorithm terminated if the change in parameters was less than this 

number. In the Jacobson-Oksman algorithm there is the facility that the 

algorithm terminates when the change in the objective functfon is less 

than a numbe~, set at 1.0 x 10-6, and also when the norm of the gradient 

becomes smaller than a number set at 1.0 x lo-9. Listings of the pro­

grams for the least pth approximation case is given in Appendix B. 

S~l least Squares Models 

As mentioned in chapter 4 three model· transfer functions were se­

lected to approximate the system in a certain sense. For least squares 

models, the objective function to be minimized is 

-19­
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(31) 

where ei(~) is the error between the model and the system response to a 

unit step and I is an index set relating to the sampled points at equal 

intervals of time. The sampling does not have to be done at equal inter­

vals, however, as no prior information about the error function is assumed, 

there is no justification to vary the sampling rate. 

Having decided on a uniform sampling rate, the next question is 

how many sample points should be taken. If the number of sample points 

is too large, then computational time will be wasted. If the number is 

too small, then there will be insufficient information about the error 

function included in the objective function. The number of sample points 

used for least squares approximation was 21 over an interval of 0 to 8 

seconds;with one exception this number was found satisfactory. 

The gradients defined in chapter 3, can be shown to have the form 

ZF(~) = 2 	 ~ ei(~) zei(~) (32) 

i€1 

where ei(~) is real. Since ei(~) is the difference between the response 

of the system and the response of the model and since the system response 

is independent of the model parameters, zei(~) is the gradient of the model 

response. Gradients for the responses are given in the appendix. Although 

the gradients are given in the Laplace form, the inverses can be found in 

any book of Laplace tables [23]. 
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q(s) 

5.1.1. Unconstrained Least Squares Approximation 

First the transfer function given by expression (26) was used 

to model the system using a least squares error criterion. The res­

ponse of the model to a unit step input was derived analytically, by 

considering separately the real and complex conjugate roots of 

(33) 

The objective function shown in expression (31) had been formulated 

and.gradients corresponding to that objective function~ had been ana­

lytically derived. A simple perturbation test was done to ensure that 

the expressions for the gradients were correct. Since-this was the 

first of the modelling problems to be tackled and little experience 

had at this stage been gained with the new minimization methods, the 

technique used was Fletcher-Powell. 

The program was run from several arbitrary starting points. Al­

though the algorithm appeared to converge, the tenninating point point 

was not unique. For the purpose of this work, a point was considered 

unique if there was agreement to within four significant figures amongst 

the corresponding elements. Some of the terminating points are shown 

in table l, with the corresponding objective function values. The dif­

ference in the objective function values appeared to be small, but even 

so the algorithm should have proceeded further. A close examination of 

the terminating points indicated that a linear dependence existed amongst 

the terminating points. This is shown in the lower half of table 1. 
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4 
F x 10 b0 x 10 ao ai bo/ao 

1 3.9149 3.8127 3.2945 2.5584 0. 1157 

2 3.8708 3. 9621 3.4213 2.6581 0.1158 

3 3.8719 3.9817 3.4381 2.6709 0. 1158 

4 3.8790 4.0238 3.4743 2.6990 0. 1158 

Ratio 
of Row 2 

to Row:. 
l 1.0392 1.0385 l .0390 

3 0.9951 0. 9951 0.9952 

4 0.9847 0.9847 0.9848 

TABLE 1. 	 Terminating points for the least squares 

unconstrained problem and indication of 

linear dependence between points. 
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Fig. 2a. Contours of the unconstrained objective function ( a1 =2.70382) 
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Fig. 2b. Contours of the unconstrained objective function ( bo= 0.39261) 
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When using gradient techniques with Newton-type tennination, where 

information about the inverse Hessian is utilized, singularities in 

the Hessian are very critical. Some contours of the objective function 

were drawn in the area where the algorithm terminated. The contours 

are shown in Figures 2 a-b. Figure 2a shows the contours of the ob­

jective function when holding ai constant and vary a0 and b0 • The 

terminating points seem to lie on a straight line through the origin, 

with a slope of 0.11580. By applying the final value theorem to the 

model tra~sfer function, for a unit step input, we can see that b0/a 0 

is the steady-state value of the model. 

The linear relationship between the terminating points is due 

to the linear relationship between a0 and b0 • There are many inter­

pretations to this, however, the simplest is that b0 = E a0 define a 

plane through the origin in the three dimensional space and the points 

in table l lie in that plane. 

5.1.2. Constrained Least Squares Approximation 

If a comparison between minimization techniques on the modelling 

problem was to be made, a unique solution was desirable. A steady­

state constraint, therefore, was considered necessary for our purpose. 

Since the equality constraint was in a very simple linear form, a sub­

stitution was made of b0 by E a0 • 

The steady state value, E, for the model to a step input can be 

found either from the transfer function of the system, which in our 
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problem will be 0.11111 or, if the transfer function of the system is not 

available, then the final sample point of the system response can be 

used. which in our problem will be 0.11706. 

With the steady state constraint imposed the second-order with­

out zeros model shown by equation (26) now becomes 

Ea 0 
M1 (s) = -

2
---­ (34) 

s + a1 s + ao 

with E = 0.11111 .. Here, as in all the following problems, real and com­

plex conjugate roots were considered separately. At least three dif­

ferent starting poi.nts were tried for each of the three minimization 

techniques and the algorithms ultimately converged to the same unique 

paramet~rs 

= 3.19591a0 

a1 = 2.28106 

with the value of the objective function 7.50758 x 10-4 and the components 

of the gradient less than 1.0 x 10-9 
• Figure 3 shows the corresponding 

response. Table 2 compares the number of function evaluations required 

to reach the objective function value of 7.50759 x 10-4 this value being 

1.0 x 10-9 higher than the solution ultimately obtain~d. In the table 

it is shown that both the Fletcher method and the Jacobson-Oksman method 
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STARTING FLETCHER 
POINT 

0.5 22 
0.5 

" 

3.0 21 
2.0 

1.0 19 
1.0 

JACOBSON­
OKSMAN 


19 


21 


14 


FLETCHER­
POWELL 


. 49 

29 

32 

TABLE 2. 	 Number of function evaluations required to 

reach the objective function value 7.50759 x lo-4 

for the two-parameter least squares approximation 

problem. 
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perfonned better than the F.l etcher-Powell method. 

With E = 0.11706, the value of the system response at 8 seconds, 

the optimum parametersobtained were 

= 3.47571a0 

a1 = 2. 76681 

giving an.optimum objective function value of 4.75016 x 10-5 
• Figures 

.4a and 4b show the corresponding response and the error curve, respectively. 

If the steady-state constraint is imposed on the model based on 


expression (27) then the transfer function is 


b1s + Ea 0 
M2(s) = . (35)2 

s + a1s + ao 

resulting in a three-parameter problem. With E = 0.11111 three different 


starting points were tried. 1n each case the algorithms converged to 


the same optimum parameters 


a = 1.997400 

ai = 1.66066 
-2

b1 = 4.37072 x 10 
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giving an optimum objective function value of 1.58222 x 10-4 and gradient 

components less than 1.0 x 10-9 . Figure 5 shows the corresponding 

response. Table 3 compares the number of function evaluations required· 

by each method to reach the objective function value of 1.58225 x 10
_4 

. 

Here again it is seen that the Fletcher method and the Jacobson-Oksman 

method are superior to the Fletcher-Powell method. There was one case 

not shown in the table, however, when the Jacobson-Oksman method failed. 

With E = 0.11706 the 3-parameter problem converged to the opti­

mum values of 

= 3.97531a0 

=3.03900a1 

bi =-2.08787 x 10-2 

giving an objecti\e function value of 2.26148 x 10-
5 

Figure 6a shows 

the corresponding response and Figure 6b shows the error curve for that 

response. 

For a third-order model the transfer function in expression (30) 

was used having two zeros. For ease of computation the model transfer 

function \·tas put in the form 



33. 


STARTING 
POINT 

FLETCHER JACOBSON­
OKSMAN 

FLETCHER­
POWELL 

1.0 
1.0 
1.0 

27 39 60 

0.5 
2.0 
4.0 

76 39 274 

1.0 
0.5 
0. 1 

35 29 58 

TABLE 3. 	 Number of function evaluations required to 

re~ch the objective function value 1.58223 x 10-4 

for the three-parameter least squares approximation 

problem. 
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b2s 2 + b1s + Ex 1 x3 
Ms{s) = -------­ (36)

{s + x3 ) {s2 + x2 s + x1 ) 

where E, the steady state constraint was set at 0.11706. A number of 

starting points were considered in an effort to get convergence with 

the Jacobson-Oksman method, but with the exception of one case, it 

always failed. The Fletcher method in every case converged to the same 

optimum parameters, which were 

X1 = 1.02741 

X2 = 2.85536 

X3 = 2.30125 

X4 = 6.62057 x 10-1 

X5 = -7.6045 x 10-2 

giving an objective function value of l .02741 x 10-6 
• Figures 7a and 7b 

show the corresponding response and error curve, respectively. The 

Fletcher-Powell method appeared to be much slower and converged to the 

optimum in only one of the cases tried, while in the other cases the time 

limit of 64 seconds was reached. The results of this problem' are shown 

in Table 4. 

The error curve would indicate that for this problem 21 sample 

points was insufficient and as a result there was a large initial error. 
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STARTING 
POINT FLETCHER JACOBSON­

OKSMAN 
FLETCHER­

POWELL 

1.25 
2.8 
2.3 
0.7 

-0.1 

535 

48 seconds 

88 
1.027952 x 10-6 

12 seconds 
225 

22 seconds 

5.0 
4.5 
3.5 
4.0 
2.0 

140 

16 seconds 
failed· 

780 
1.528774 x 10-6 

3.2 
0.8 
5.3 

-2.6 
2. 1 

465 

45 seconds 
failed 

745 
8.449308 x 10-6 

1.0. 
1.5 
3.0 
4.0 
5.0 

298 

30 seconds 
failed fai 1 ed 

2.5 
1.5 
3.5 
o. 1 

31.0 

132 

15 seconds 
failed 800 

1.02883 x 10-6 

TABLE 4. 	 Number of function evaluations required to reach 

the objective function value of 1.027406 x lo-6 

and central processor time if it is less 'than the 

time limit of 64 seconds, or the objective function 

value reached in that time. 
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For this reason a larger number (101) of sample points were taken and the 

program repeated. The otpimum parameters were 

X1 = 1..34731 

X2 = 2.84002 

X3 = 2.23786 

X4 = 6.38527 x 10- 1 

X5 = -6.48648 x 10-2 

The error curve is shown in Figure 7c. It can be seen that by using 101 

points the maximum error is reduced by approximately 20% of the maximum 

error with 21 sample points. 

FiQures 8a and 8b show some convergence curves for the two-para­

meter problem, while Figure 8c shows a convergence curve for the three-

parameter problem. The curves show the difference of the objective func­

tion from the assumed optimum, on a logarithmic scale versus the number 

of function evaluations. 
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5.2 least pth Approximation 

Although a least squares criterion can give us an acceptable 

model, in many cases it may be desirable to derive a model, where the 

maximum error between the system and the model response is minimized. 

This model will give a near minimax error and the response ulti­

mately obtained, should be a closer approximation to the response of 

the system. 

In attempting this problem one would be tempted in simply de­

fining as an objective function the maximum absolute error and mini­

mizing it. This will rarely work. The reason is that as two of the 

extrema approach each other, by considering only the larger extremum, 

in absolute value, a parameter change that gives a decrease in that 

extremum, might cause the other one to increase. This could result 

in oscillations and often false local optima. 

An alternative approach would be in defining a least pth objective 

function 

p>l (37) 

where ei(~) represents the error between the system and the model re­

sponses at some sample point i of a finite set I, relating to all the 

sampled points. It is assumed that ei(~) is continuous with continuous 

partial derivatives for all i. 
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It is desirable to increase the value of p as much as possible, 

since the larger the value of p the nearer to minimax should the solution 

be. There are two computational limitations,however. One is that if 

!e (~)1 >l, when using large values of p, the numbers tend to become 

too large for the computer to handle. The other one is that if le;(~)! <l 

when raised to a large power, the numbers tend to zero and most of the 
I 

information is lost. 

A normalization proposed by Sandler and Charalambous [18], per­

mitted the use of extremely large values of p. The objective function used 

is 

~ lei<~) Ip)~
( L M(~) (38) 

i e:I 

where 

(39)max 
i e:I 

where ei(~) and I are defined above. Values of p up to 1012 have been 

used. 

In the objective function in (38), if I is replaced by J, an 

index set relating to the extrema of the error function, considerable 

economies in computing time will result at a slightly greater risk of 

creating false optima. Moreover, as can be seen from the expression of 

the gradient 
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\7F(x)
I\: I\, (40) 

the coefficients of ze;(~) will, for most points and large enough p, be 

very small, thus contributing very little to the gradient. Analytical 

expressions for ze;(~) appear in the appendix A. 

Having formulated the objective function, the question now is 

what value of p should be used to obtain a minimax or near minimax ap­

proximation? With p = 2 we have a least squares type of formulation. 

Obvious1y, the higher value of p the more emphasis wil l be given to those 

deviations which are largest. So, since the requirement is to concentrate 

more on minimizing the maximum error, a sufficiently large value of p· 

must be chosen. The basis of such a formulation [19] is the fact that 

M(~) = 1im F(~) (41) 
p-+<x> 

So the value of p should be preferably as large as possible. The 
2 2 3 4 6following values of p have been used 10, 10 , 5 x 10 , 10 , 10 , 10 , 

109
, 101

; and it was found that although agreement in significant figures 

increased as p increased, the central processing time increased consider­

ably for values of p above 103 
• Thus for comparison of the minimization 

techniques p = 103 was considered suitable. In addition to the compari­

son of the three gradient techniques, a comparison is made in the tables, 
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with a more direct minimax technique called the grazor search technique 

[20]. This method solves a linear programming problem by using the 

gradient information of one or more largest extrema in the error function 

to produce a downhill direction. A linear search is carried out in this 

direction to find a minimum of M(~). 

For the two-parameter problem, corresponding to the model given 

by equation (34), the steady-state value E was set at 0.11706, corresponding 

to the response of the system at the final sample point. The optimum 

parameters obtained, for p = 1000, were 

a0 = 3.06549 
. a1 = 2.38414 

3
giving an objective function value of 3.76618 x 10- Figure 9a shows the 

corresponding response and Figure 9b shows the error curve corresponding 

to the response. There are 4 extrema and the largest in magnitude is 
_3

3.76510 x 10 • 

Table 5 shows the number of function evaluations. required to reach 
. _3

the objective function value of 3.76619 x 10 .x It is shown that the 

Fletcher method gives consistently good results. The Jacobson-Oksman 

method only once converged faster than the Fletcher method. Both the 

Fletcher and Jacobson-Oksman methods were found more efficient than the 

Fletcher-Powell method, however, from one starting point the Jacobson­

Oksman algorithm diverged. The least pth approach with the Fletcher 

method performed better than the grazer technique. The values of the 
3 

extrema with p = 10 were. 
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STARTING MINIMIZATION OF F(~) MINIMIZATION 
POINT OF M(~) 

FLETCHER JACOBSON­
OKSMAN 

FLETCHER­
POWELL GRAZOR 

3.0 47 46 73 107 
2.0 

1.0 82 127 346 130 
1.0 

, 1.0 
98 failed 725 165 

4.0 

4.0 72 45 false 12~ 
1.0 optimum 

TABLE 5. 	 Number of function evaluations required to 

reach the objective function value 3.76619 x 10-3 

for the two-parameter problem. 
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-3. 7651 x 10-3 

3.7594 x 10-3 

-3-3.7569 x lO 
2.5518 x 10-3 

which show agreement to almost three significant figures amongst three 

of the extrema. For the same problem ' and with p = 106 , the values of 

the extrema were 

-3-3.7635 x 10 . 
3. 7635 x lO -3 

-3.7635 	x lO-3 

2.5524 x 10-3 

which show agreement to five significant figures amongst three of the 

extrema. Figure 9c shows the corresponding error curve. 

For the. three-parameter problem represented by equation (33} 

the optimum parameters were 

ao = 3.83592 

ai = 3.00605 
bi = -1. 77277 x 10-2 

' 

giving an objective function value of 2.488186 x 10-3 Figure lOa shows 

the corresponding response and Figure lOb shows the error curve corresponding . 

that response. The error curve is shown to have five extrema, three of 
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STARTING 
POINT 

MINIMIZATION OF F(~) MINIMIZATION 
OF M(~) 

FLETCHER JACOBSON­
OKSMAN 

FLETCHER­
POWELL GRAZOR 

2.5 
2.0 

-2.0 
367 339 630t 149 

1.0 
1.0 

-1.0 
378 137 653t 368 

4.0 
3.0 
0.01 

247 260 264 165 

3.5 
1.5 
1.0 

290 failed 432 358 

5.0 
1.0 

-1.0 197 failed 624t 325 

5.0 
1.0 
3.0 

247 failed 638t 406 

TABLE 6. 	 Number of function evaluations required to 

reach the objective function value 2.488187 x 10-3 

for the 3-parameter problem. 
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which tend to be equal with values 

-2.4805 x 10-3 

2.4808 x 10-3 

2.4879 x 10-3 

Table 6 shows the number of function evaluations required to 

reach the objective function value 2.488187 x 10-3
• The Jacobson­

Oksman method failed in 50% 1of the cases tried, while the Fletcher­

Powell method only twice reached that value of the objective function 

in the time available. It should be noted however that the Fletcher-

Powell method proceeded towards.the optimum and did not diverge. The 

Fletcher method reached the optimum in all cases and on the basis of 

reliability and function evaluations appeared to be the most efficient. 

Table 5 also shows the number of function evaluations required by the 

grazer search technique to reach the corresponding value of maximum error. 

For the. five-parameter problem, represented by equation {34), 

the optimum parameters obtained using the Fletcher method were 

Xl = 4.34682 
X2 = 3.36738 

X3 = 9.96086 
2 

x 10­

X4 = 5.14728 x 10-~ 
X5 = 3.56154 x 10­

giving an objective function value of 1.02134 x l0- 3 
: Figures lla and 

llb show the corresponding response and error curves, respectively. 
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MINIMIZATION OF F(~) 

STARTING 
POINT FLETCHER 

N 

3.0 
3.0 
1.5 530 

0.5 


-0.1 


1.5 
3.0 

. 768
2.5 
1.0 
0. 1 


4.0 
3.0 

177
0. l 
0.5 


-0.03 


3.0 
5.0 

0.2, 
 862 

0.3 


-0. l 


5.0 
4.0 . 

484
0.5 
1.0 


-0.5 


LEAST 
SQUARES 799 

OPTIMUM 


M x 103 


' 

1.0207 

1.0207 

1.0207 

1.0207 

1.0207 

1.0206 

MINIMIZATION OF M(~) 


GRAZOR 


N 


437 


782 


489 


634 


817 


537 


M x 103 


1 . 2139 


1.2473 


1.0206 

l . 1720 . 


1.0337 

1.2472 

TABLE 7. 	 Number of function evaluations required 

for the Fletcher method to reach the 

objective function value corresponding 

to the shown maximum error. 
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For this five-parameter problem the error curve has six extrema the values 

of which are 

1.0206 x 10-3 

-1.0201 x 10-3 

1.0198 x 10-3 

-3-1.0176 x 10 
1.0165 x 10-3 

-1.0164 x 10-3 

Some runs with the Fletcher-Powell method indicated that the 

method was slow and since this was already established in the previous 

problems, further runs of the Fletcher-Powell method were considered un­

necessary. The Jacobson-Oksman method failed from each starting point. 

The Fletcher method converged to a unique solution all the times, with 

the above given optimum parameters. Table 7 compares the least pth ap­

proximation using the Fletcher method with the grazor search technique. 

While the Fletcher method reached the same optimum at all times the grazor 

search technique reached this solution only once. The grazer search tech­

nique gave a five equiripple answer. To further investigate the reason 

for which the grazor method gave a five-extrema optimum, the Fletcher 

method was started from this optimum. It was noticed that although the 

least pth objective function decreased, there was a temporary increase 

in the maximum error value. This brought us to the conjecture that the 

least pth objective function formulation seems to have the attractive 

property of overcoming local optima that would appear in the maximum error 

type of objective function formulation. 
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For each of the minimax results obtained the conditions for a 

minimax optimum [21] were satisfied, although as can be seen from the 

error curves all the extrema were not equal. 



CHAPTER 6 

CONCLUSIONS 

Optimum second-order and third-order models of a high-order 

system have been obtained using least squares and least pth objective 

functions in conjunction with efficient gradient minimization techniques. 

Analytical expressions for the gradients, were not difficult to derive. 

Since the expressions of the objective function and gradients are depend­

ent only on the parameters of the model used, and they are independent 

of the high-order system, the expressions can be stored and used when­

ever any high-order system is to be modelled. 

In general the use of gradient techniques have been found ef- · 

ficient in deriving models. In cases of dependence between some of the 

parameters a unique solution can not be found, however, for most prac­

tical purposes any of the solutions obtained might be acceptable. 

The contours of the problem with linear dependence between two 

parameters, shown in Figure 2a, if plotted over a large range are found 

to be roughly ellipsoidal. The question, therefore, is: can an easier 

solution be obtained by making the contours more spherical? This can be 

achieved for ellipsoids by rotation of the appropriate coordinates and 

proper scaling. An interpretation of this dependence can be given in 

-64­
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terms of the model response. If an infinite number of sample points are 

taken, then the contours shown in Figure 2a should be parallel, and in 

three dimensions the contours should have the form of concentric cylinders. 

This is because the weight associated with the transient portion of the 

response is negligible. Now as the interval of approximation is reduced 

the contours should become more spherical. A point will be reached, 

however, when the model becomes unstable or the steady-state error be­

comes unacceptably large. 

An attempt has not been made to answer the question of whether 
I 

the optima obtained are the global optima. If the algorithm converged 

to a unique point, starting from n arbitrary starting points, where n 

is ~he dimension of the parameter vector, then this point was considered 

an optimum. In addition, in the case of the least pth approximation, 

the conditions for a minimax optimum had to be satisfied, for the point 

to be considered an otpimum. 

Constraints relating to the steady-state value can be applied by 

substitution, as shown in chapter 5. In general any such substitution 

which reduces the dimensionality of the problem is desirable since it 

increases the rate of convergence. In addition, constraints relating to 

the energy of the model can also be imposed in the form of equality con­

straints, but this would require a slightly different formulation of 

the objective function and of course the gradients. Constraints relat­

ing to the stability of the model, such as forcing all the poles to lie 
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in the left-half of the s-plane, can easily be imoosed if it is found 

necessary. 

The normalised least pth approximation is shown to be a simple 

and effective approach to the minimax problem. The value of p. in general 

would depend on the problem, the number of significant figures the ex­

trema should be equal to and the·computer size and time available. For 

the problems described and for central processing times of less than 

64 seconds, p = 1000 was found suitable. This value of p appeared to 

have the tendency of overcoming any local minima that might appear in a 
6 

more direct minimax approach or when using p~lO . 

The number of sample points was not considered critical in the 

least squares cases, although a sufficient number should be taken so 

that the objective function is a reasonable representation of the error. 

In the least pth approximation accurate location of the extrema was 

considered important, therefore a large enough number of sample points 

should be taken to include points close to the actual extrema. A linear 

search could be made between the sample points, in which case a smaller 

number of points would be required initially; however, it is doubtful if 

this will give an increase in the efficiency of the method. 

From the minimization techniques used, Fletcher-Powell was 

found to be reliable in the sense that the algorithm never diverged. 

This was to be expected since the method has been widely used since it 
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was originally proposed. The method, however, was found to be slow 

by comparison to the method proposed by Fletcher and the one by 

Jacobson and Oksman. 

The method proposed by Fletcher was found the most efficient 

of the methods used. That is, in mo~t of the cases, it required the 

least number of function evaluations to reach the optimum. Since com­

puting effort is, for these type of problems, measured in terms of func­

tion evaluations, the method required the least amount of computing. 

The choice of values of some of the constants in the algorithm, such 

as µ and w, do not seem to have any real justification~ It might, there­

fore, be pertinent to ask if a different choice of these constants would 

result in a better performance for the method. This would depend on 

the objectfve function under consideration and any changes made, would 

have been to suit our particular objective function. That means adapting 

algorithm to our particular problem, rather than use the probl~m as a 

test case to test the efficiency of the algorithm. 

The Jacobson-Oksman method by considering homogeneous functions 

covers a larger class of problems, and on general functions seems to have 

a fast rate of convergence. This has been shown in the cases where the 

algorithm converged, as shown in the two-parameter problems. The method 

was found to be unstable as the number of parameters increased. That in­

stability was due to step sizes becoming very large and consequently the 

objective function value exceeded the range of the computer. In an 

effort to control the step sizes, a limit was set on it. However this 
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reduced the rate of convergence to a rate slower than the Fletcher-

Powel l method. It was decided, therefore, to leave the algorithm in 

the form in which it was originally proposed. It was also found that 

the Jacobson-Oksman method had the tendency to restart several times 

during a run, by setting the inverse matrix to unity. This means losing 

all the information that has been obtained in the previous iterations. 

Therefore, an alternative way of updating the inverse matrix might im­

prove efficiency and perhaps contribute to the stability of the algorithm. 

To conclude, the method proposed by Fletcher was found efficient 

in deriving optimum low-order models and can be considered as a significant 

improvement over other gradient methods such as Fletcher-Powell. 
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APPENDIX A 

1. 	 The Two-Parameter Problem 

Eao( )
Mi(s) =~ =----	 (A-1)R\s 1 s2 + a1 s + a0 

lFor step input, R(s) - -. 	 (A-2)s 

Hence, 
Ea 0 	 E(s + ai)EC(s) = 	 (A-3)2 	 s 2s(s + ais + ao) s + ais + ao 

E(s + ai)aC(s) = 	 (A-4)aa 0 (s2 2+ a1s + a0 ) 

(A-5) 


The sensitivity functions a~~~) can now be evaluated by taking 

the inverse Laplace transforms of equations {A-4) and (A-5). These can 

be easily obtained from standard tables. For example, if the poles of 

the transform function are complex i.e., 

2 2 	 2 
s . + a1s + a0 = (s + a) + 	$ (A-6) 
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then from equations (A-4) and (A-5) we have 

E -at( ) 2 ac t = e [(a + s t) sinst - a8t cosst] (A-7) 
aao 283 

Eao e-at 
ac(t) = (sinst - st cosst) (A-8)
aai 283 

2. The Three-Parameter Problem 

bis + Ea 0 
Mi(s) = (A-9)

2s + ais + ao 


bis + Eao 
 E E(s + ai)-biC(s) = - - ­s 
2 

(A-10)s(s2 + ais + ao) s + a1s + ao 

E(s + ai)-bi
2I{_tl_ = (A-11)aa 0 (s 2 + a1s + ao) 2 

bis + Ea 0 
- ------- (A-12)

{s2 + ais + ao) 2 

aC(s) = ___1__ {A-13)ab1 

The sensitivities in the time domain are again obtained by taking 

inverse Laplace transforms. 
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3. The Five-Parameter Problem 

2
X5S · + X4S + E1X X3 

Ms(s) = (A-14)2
(s + x ) (s + X2S + X1) 

"2 
X5S + X4S + E X1 X3 


C(s) = ----~---­
2
s(s + X3) (s + X2S + X1) 

2 
E[s + (x2 + X3)S + X1 + X2 X3)] - X5S - X4 

- -E - (A-15)s 2
(s + X3) (s + X2S + X1) 

·(A-16) 

X5S 
2 + X4S + E X1 X3 

- - ------:'."""------::- (A-17)2 2(s + X3) (s + X2S + X1) 

x5s + X4 - Ex1 
- - ------:::------ (A-18)2

(s" + X3) 2 (s + X2S + X ) 
1 

aC(s) = ____1_____ 
(A-19) 

ax4 (s + x3) (s 2 + x2s + x1) 

aC(s) = ----~s____ (A-20)2 axs (s + x3) (s + x2s + x1) 
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TWO-PARAMETER PROBLEM 

PROGRAM TSTCINPUT,OUTPUT,TAPE5=INPUT,TAPE6=0UTPUT) 
LOGICAL CONV,UNITH 
DIMENSION C7(501l 
DIMENSION X(3), G(3lt Hl15), EPS(3) 
COM~ON /COMl/ C7 
COMMON /COM2/ FO 
COMMON /COM3/ KNT 
READ (5,2l N,MAXFN 
READ (5,3) CXCil,I=l,Nl 
READ (5,4) CC7CI),J=lt501) 
DO 1 I=ltN 
EPSCI>=leOE-9 
CONTINUE 
FEST=O.O 
KNT=O 
FO=lOO. 
UNITH=.TRUE. 
IPRINT=l 
CALL VMMOl (N,XtFtGtHtUNITHtFESTtEPS,MAXFNtIPRINT,JEXIT) 
WRITE (6,5) !EXIT 
STOP 

FORMAT <2I5l 
FOR~AT C8Fl0.5) 
FORMAT (10F8.5) 
FORMAT <zX,* INFORMATION OF CONVERGENCE *tl4) 
END 
SUBROUTINE FUNCT <NtX,FtG) 

INTEGER P 

DIMENSION ERC20llt AER<201), INST(201> 

DIMENSION G(5)t GR<5l 

DIMENSION X(5)t C2(501), C7(501) 

COMMON /COMl/ C7 

COMMON /COM2/ FO 

COMMON /COM3/ KNT 

SECOND bRDER MODEL WITH SS CONSTRAINT AND NO ZERO 

P=lOOO 

KNT=KNT+l 

SS=0.11706 

WRITE (6t9.l <X<I>,I=l,2> 

F=O• 

Glll=O. 

GC2>=0. 

Y=X(2)*XC2l/4.-XC1) 

IF CY.GT.O.) GO TO 3 

YN=X(l)-XC2)*X<2>14. 

W=SQRTCYN> 

Z=Xl2l/2. 

DO 1 I=l,201t2 

T~0.04*FLOATCI-ll 
C2(Il=SS*<l.-<COSCW*T>+Z*SIN(W*Tl/Wl/EXP<Z*T)) 

ER<Il=C7lll-C2CI> 
AER< I l =ABSCERC Ill 
CONTINUE 



2 
c 

3 

4 

5 
6 

7 

74. 
M=201 
CALL PEAKS (M,AER,INST,NPKS,K> 
F=AER<K> 
DO 2 I=l,NPKS 
L=INST<Il 
T=0.04*FLOATCL-l) 
SIGMA=<AERCL)/F)**CP-2>*<ER(L)/F) 
GR<1>=SS*<T*SJN(W*T>-!Z/CW*W))*(T*W*COS(W*T>-SINCW*T))}/(EXPCZ*T>* 

12.*W) 
GR(2l:-SS*X<l>*<SIN<W*T>-W*T*COS<W*Tll/CEXP<Z*T>*2e*W*W*Wl 

G(l>=G<l>-SIGMA*GR<l> 

GC2l=GC2>-SIGMA*GR(2) 

CONTINUE 


GO TO 6 
Al=-X<2>12.+SQRT<Y> 
A2=-X(2)/2.-SQRT<Yl 
8=2.*SORTCY> 
Ql=SS 
Q2=SS*X(ll/(Al*B) 
Q3=-X(l)/CA2*B>*SS 
V1=-X<1>t<X<1>*X(2)l*CCAl*Al+A2*A2)/(B*Bl-l.l*SS 
V2=!5S*CI.-Al*Al/(6*Bl)-Vl*Al>*X(ll 
V3=-Vl 
V4=<X<l>*SS-V2*A2*A2l/(Al*Al) 
DO 4 !=1,201,2 
T=0.04*FLOATCI-l> 
C2(l)=Ql+02*EXPCAl*Tl+03*EXPCA2*Tl 
ER( I l=C7C I l-C2C I) 
AER< I l=ABSCER< I>) 
CONTINUE 
M=201 
CALL PEAKS (M,AER,INST,NPKS,K) 
F=AERCK> 
DO 5 I=l,NPKS 
L=INSTCil 
T=0.04*FLOATCL-l) 
SIGMA=CAERCLl/Fl**(P-2l*CERCL)/F) 
GR<ll=((CX!2l+All*T-CA1+A2+2.*XC2ll/6l*EXP(Al*Tl+C(X(2)+A2l*T+CA1+ 

1A2+2.*X(2Jl/Bl*EXPCA2*T)J/CB*Bl 
GR(2l=Vl*<<V2/Vl+All*T+l.l*EXP<Al*Tl+V3*<CV4/V3+A2l*T+l•l*EXPCA2*T 

1 ) 
GRC2l=-GRC2> 
GC2l=G<2l-SIGMA*GRC2> 
GCl>=GCll-SIGMA*GRCl) 
CONTINUE 
CONTINUE 
AUXl=O.O 
DO 7 I=l,NPKS 
L=INSTCI> 
AUXl=AUXl+<AER<Ll/F)**P 
CONTINUE 
RP=l.O/FLOAT<P> 
F=F*CAUXl**RP> 
IF <F.GE.FO> RETURN 
BO=X<l>*SS 
WRITE (6,10) XC1),G(l),F,XC2l,G(2l,BO 
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FO=F 
IF (F.LT.0.0037662) GO TO 8 
RETURN . 

8 WRITE (6,lll 
CALL SECOND CTll 
WRITE (6d2l Tl 
RETURN 

c 
9 FORMAT C86X,3Fl0.5) 
10 FORMAT C2X,6El5.6) 
11 FORMAT (3X,*VALUE REACHED*l 
12 FORMAT C///2UX,*TIME TAKEN*,Fl0.5) 

END 
SUBROUTINE PEAKS !M,AERt!NST,NPKS,Kl 
DIMENSION AER!l), INST<ll 
ML=M-2 
J=O 
AER<ll=O.O 
AER(MJ=O.O 
DO 1 !=3,ML,2 
IF CAERCI-2>.GT.AERCil.OR.AERII+2leGT.AER(l)) GO TO 1 
J=J+l 
INST!Jl=I 
NPKS=J 

1 CONTINUE 
c 
C TO FIND THE MAX ERROR 

BIG=AERCll 
DO 2 I=l,NPKS 
L=INSTCI> 
IF IAERCLl.LE.BIGl GO TO 2 
BIG=AERCLl 
K=L 

2 CONTINUE 
RETURN 
END 

CD TOT 0152 



76.THREE-PARAMETER PROBLEM 

PROGRAM TST(INPUT,OUTPUT,TAPE5=JNPUT,TAPE6=0UTPUTl 
LOGICAL CONV,UNITH 
DIMENSION (7(501) 
DIMENSION X(3), G(3)t H(l5)t EPS(3) 
COMMON /COMl/ C7 
COMMON /COM2/ FO 
COMMON /COM3/ KNT 
R~AD (5,4) N,MAXFN 
READ (5,5) (X(l)tI=ltNl 
READ (5,6) (C7(I),I=lt501l 
DO 1, I= 1, N 
EPS<Il=l.OE-9 

1 	 CONTINUE 
FEST=O.O 
FO=lOO. 
KNT=O 
UNI TH=. TRUE• 
IPRINT=l . 

2 	 CONTINUE 
CALL VMMOl (N,XtF,GtHtUNITHtFESTtEPStMAXFNt!PRINTtIEXITl 
WRITE (6,7l IEXIT 
IF (IEXIT.NE.4l STOP 
DO 3 I= 1, N 
X(l)=X(l)+O.l 

3 CONTINUE 
WRITE. (6t8l 
GO TO 2 

4 FORMAT (2I5l 
5 FORMAT (8Fl0.5) 

6 FORMAT <lOF8.5) 

7 FORMAT (2X'* INFORMATION OF CONVERGENCE *'14) 

8 FORMAT (3X,*A RESTART HAS OCCURED*l 


END 

SUBROUTINE FUNCT (N,XtFtGl 

I NTEGE.R P 

DIMENSION ER(20l)t AER(20l)t INSTC201) 

DIMENSION X(l)t G(l) 

DIMENSION GR!3lt C2(50llt C7(501l 

COMMON /COMl/ C7 

COMMON /COM2/ FO 

COMMON /COM3/ KNT 

P=lOOO 

KNT=KNT+l 

F=O. 

G(l)=O. 

G(2l=O.

G(3)=0. 

SS=0.11706 

E=0.11706 

B=X(2l-X(3)/E 

C=E*X(l)/X(3) 
Y=X(l)-X(2l*X(2)/4. 

IF (Y.LT.O.) GO TO 3 

W=SQRT<Yl 


http:IEXIT.NE.4l
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Z=X<2)*0•5 
DO 1 I=1,201,2 
T=0.04*FLOAT<I-ll 
C2(Il=X<3l*SINCW*T)/(W*EXP<Z*T>l+<1.-<Z*SIN<W*T)/W+COS<W*Tl l/EXP< 

l*T»*E 
ERCI>=C7CI>-C2<I> 
AER< I l =ABS< ER< I)) 
CONTINUE 
M=201 
CALL PEAKS CM,AER,INST,NPKS,K) 
F=AERCKl 
DO 2 I=l,NPKS 

.L =I NS T < I l 

T=0.04*FLOATCL-ll 

SIGMA=CAERCLl/Fl**(P-2l*CERCLl/Fl 

GR(Il=E*((B-Z+W*W*Tl*SIN(W*Tl+IZ-Bl*W*T*COS!W*T))/CEXP!Z•Tl*2•*W* 

l*W> 
GR<2>=-X<3l*<<c-Z+W*W*T>•SIN(W*Tl+CZ-Cl*W*T*COS!W*T))/(2.*W*W*W*E

lPCZ*T)) ' 

GRC3J=SIN(W*T)/{EXPCZ*Tl*W) 

G(ll=G!ll-SIGMA*GR<ll 

GC2l=G!2l-SIGMA*GRC2l 

G!3l=G(3l-SIGMA*GR(3l 


2 	 CONTINUE 
GO TO 6 

3 	 CONTINUE 
YN=-Y 
W=SQRTCYN> 
ZN=-X(2)*0.5 
Al=ZN+W 
A2=ZN-W 
DO 4 I= 1, 201 , 2 
T=0.04*FLOATCI-ll 
C2<I>=X(3l*(C/CAI*A2)+(Al+Cl*EXP(Al*Tl/{(Al-A2>*Al)+(A2+Cl*EXPCA2 

1Tl/CCA2-All*A2)) 

ER (I l =C7 (I l -C2 CI l 

AER CI l =ABS (ER C I ) ) 


4 	 CONTINUE 
M=201 
CALL PEAKS CM,AER,INST,NPKS,K) 
F=AER<K> 
DO 5 I=l,NPKS 
L=INST<I> 
T=0.04*FLOAT<L-1) 
SIGMA=<AERCLJ/FJ**IP-2l*(ERCL>IFl 
GR<ll=E*<C<B+A2>*T-<Al+A2+2.*B)/CA2-All l*EXP<A2*Tl+CCB+All*T-(Al+ 

12+2.*Bl/(Al-A2l l*EXP(,A.J*Tl }/( (Al-A2l*CA1-A2) l 
GR(2l=-X<3l*(((C+A2l*T-(Al+A2+2.*Cl/(A2-All l*EXPIA2*Tl/((A2-All*{ 

12-Alll+((C+Al:*T-CAl+A2+2.*Cl/(Al-A2ll*EXP(Al*Tl/C!Al-A2l*(Al-A2l 
2 ) 

GRC3l=<EXP(Al*Tl-EXP(A2*T)l/(Al-A2> 

G<ll=G(l)-SIGMA*GR(ll 

G(2l=G(2J-SIGMA*GR<2l 

G(3l=G(3)-SIGMA*GRC3) 


5 CONTINUE 
6 CONTINUE 

AUXl='O.O 



7 

8 

9 
10 

1 
c 
C 
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78. 
DO 7 I=l•NPKS 
L=INS.T!Il 
AUXI=AUXl+(AER!Ll/Fl**P 
CONTINUE 
RP=l.0/FLOAT(Pl 
F=F*<AUXl**RP> 
SCALAR=(l.O/AUXll**(l.O-RP) 
G<ll=G(ll*SCALAR 
G(2l=G(2l*SCALAR 
G<3l=G(3l*SCl\LAR 
IF <F.GE.FOl RETURN 
FO=F 
IF !F.LT.2.488187E-3> STOP 
IF <F.LT.2.488187E-3) GO TO 8 
RETURN 
CONTINUE 
WRITE (6,9) 
WRITE (6.JU) X<lhG(l),F,X<2J.G(2),X(3l•G<3l 
RETURN 
FORMAT C//* REQUIRED VALUE REACHED *l · 
FORMAT (/1X,*A0=*,El4.6,15X,*GRADIENT=*•El4.6,lOX,*OBJ. FUNCTION 

ltE14.6,/lX•*Al=*•El4.6•24X,El4.6•/lX,*Bl=*•El4.6t24X,El4.6) 
END 
SUBROUTINE PEAKS <M,AER•INSTtNPKStKl 
DIMENSION AER<llt INST<ll 
ML=M-2 
J=O 
AER<ll=O.O 
AER!M)=O.O 
DO 1 I=3~Mlt2 . 

IF <AER<I-2l.GT.AER<Il.OR.AER(I+2J.GT.AER(l)) GO TO 1 

J=J+l 

INST<J>=I 

NPKS=J 

CONTINUE 


TO FIND THE MAX ERROR 

BIG=AER(l) 

DO 2 I=l,NPKS 

L=INST<Il 

IF <AER(LJ.LE.BIGl GO TO 2 

BIG=AER<Ll 

K=L 

CONTINUE 

RETURN 

END 


CD TOT 0162 



C 

FIVE-PARAMETER PROBLEM 

PROGRAM TST<INPUT,OUTPUT,TAPE5=INPUT,TAPE6=0UTPUT) 
LOGICAL CONV,UNITH 
DIMENSION C7(50ll 
DIMENSION X(6), G(6lt H<39)' EPSC6l 

79. 


COMMON /COMl/ 
COMMON /COM2/ 
COMMON /COM3/ 
COMMON /COM12/ 
P=lOOO 
$$$$$$$$$$$$$ 

C7 
FO 
KNT 

P 

CONSTRAINT LEAST PTH NORM $$$$$$$$ 

READ C5,7) N•MAXFN 

READ (5,3) CXCJl,I=l,Nl 

READ <5t9l (C7(Il,I=lt50ll 

DO 1 I=ltN 

EPSCil=l.OE-6 


1 	 CONTINUE 
2 	 IK=O 

FEST=O.O 
FO=lOO. 
KNT=O 

UNI TH=. TRUE. 

IPRINT=lO 

IPRINT=l 


C CALL CHECGRCN,Xl 
3 CONTINUE 

CALL VMMOl <N,Xtf,G,HtUNITHtFEST,EPStMAXFN,IPRINT,1EXITl 
WRITE' (6'10) !EXIT 
IF (JEXIT.NE.4l GO TO 4 
WRITE (6,11> 
GO TO 3 

4 	 IK=IK+l 
IF (F.LT.l.OE-03) GO TO 
IF CIK.LE.Nl GO TO 3 

5 	 KNT=-5 
C 	 CALL FUNCT(N,x,F,Gl 

IF (P.GT.1000000000000) 
P=P*P 
GO TO 2 

6 	 CONTINUE 
STOP 

c 
7 FORMAT C2I5) 
8 FORMAT C5F10.5) 
9 FORMAT (10F8.5> 
10 FORMAT C2X'* INFORMATION 
11 FORMAT (//3Xt*A RESTART 

5 

GO TO 	 6 

OF CONVERGENCE *'14) 
HAS OCCURED*l 

END 
SUBROUTINE 
INTEGER P 
DIMENSION 
DIMENSION 
DIMENSION 
DIMENSION 

FUNCT 	 CN,XYtF,G) 

ER(20llt AERC20ll' INSTC201) 

C7Cll 

GRC6), C3(201) 

XC6lt GC6lt XYC6) 


COMMON /COMl/ C7 
COMMON /COM2/ FO 

http:CIK.LE.Nl
http:JEXIT.NE.4l


80. 
COMMON /COM3/ KNT 

COMMON /COM8/ INST 

COMMON /COM7/ NPKS 

COMMON /COM6/ ER 

COMMON /COM12/ P 

KNT=KNT+l 

F=O• 

E=0.11706 

X ( 1 l =XY <1 l 

X(2l=XY(2) 

X(3l=XY(3) 

X(4l=E*XY(ll*XY(3) 

·x < s i =xv <4 l 

X(6l=XYC5l 

DO 1 -I= l t N 

G( I )=0.0 


1 	 CONTINUE 
Y=X(ll-XC2l*XC2l*0.25 
Al=XC5)/X(6) 
A0=X(4)/X(6) 
CA=-X(4)/(X!ll*X!ll*X(3)) 
AUXl=X(3)*X(3l-XC2l*X(3l+X<ll 
CB=<XC4l-XC3l*X(5l+XC3l*XC3l*X(6))/(X(3l*AUXl*AUXll 
CC=-CA-CB 
CD=CC*2•*X<2l-CA*XC3l-CC*XC3l 
CE=CC*C2.*X(ll+XC2l*X!Zll-2.*CA*X(2l*X(3J-CD*X(3) 
CF=CC*2•*X<2l*X(ll-XC6l-<2.*X(ll+X(2l*X(2ll*CA*X(3J-CE*X(3l 
AXO=CF/CC 
AXl=CE/CC 
AX2=CD/CC 
DB=(X(5l*X(3J-X(4l-XC6l*X(3l*XC3))/(AUXl*AUXll 
DC=-DB 
DD=DC*<2.*XC2J-XC3ll 
DE=-DD*XC3l-DB*<2.*X<ll+XC2l*XC2ll-X(6) 
DF=-2•*XC2l*X<ll*DB-DE*X(3l-X(5) 
AYO=DF/DC 
AYl=DE/DC 
AY2=DD/DC 
EA=-X(4l/CXCll*X{3l*XC3)) 
EBl=X<6l*X(3l*X(3l-2.*X(5l*X(3l-X(l)*X(6J+XC2l*X(5)+3.*X(4) 
EB2=<X<ll*X(4)-2.*X(2l*XC4l*X(3)l/(X{3)*XC3)) 
EB=<EBl+EB2l/(AUXl*AUXll 
EC=!XC3l*{X(3l*X(6)-X(5)l+XC4))/(X(3)*AUX1l 
ED=-EB-EA 
EE=-(X(5l+EC*X<ll+!EB+2e*EAl*X<l>*X(3))/CXC3l*XC3ll-EA*X(2) 
IF !Y.LT.O.l GO TO 5 
Z=XC2l*Oe5 
W=SQRT(Yl 
GMl=Z-XC3) 
GM2=W*(2.*Z-All 
GM3=(Z*Z-W*W+AO-Al*Zl 
PHl=ATAN2(W,Z> 
PH2=ATAN2!WtGMll 
PH3=ATAN2!GM2tGM3) 
PHX=PHl+PH2-PH3 

c 
Yl=A0/{X(ll*X(3)) 

http:Y=X(ll-XC2l*XC2l*0.25


2 

C 

3 
4 
c 

c 

81. 
YZ=<Al*X(3)-A0-X(3l*X(3l)/(X(3)*( CZ-X(3))*(Z-X(3))+W*Wl) 
RTl=((Y*(X{2l-All*(X{2l-All+(Z*Z-Y-Al*Z+A0l*(Z*Z-Y-Al*Z+AOl )/(X{l 

1*( <Z-X(3l l*CZ-XC3l l+Yl >) 
RTl=SQRTCRTll 
DO 2 I=1'201 t2 
T=0.04*FLOAT(l-ll 
C3<Il=X<6l*(YI+Y2/EXPCX(3l*Tl+RTl*SIN(W*T+PHXl/(W*EXPCZ*Tll l 
ER(ll=C7!IJ-C3(1) 
AER (I >=ABS (ER ( I) ) 

CONTINUE 

M=201 

~ALL PEAKS (M,AER,INST,NPKS,K> 

F=AER<Kl 

YI0:((AX2-Zl*X<ll-Z*CAX1+2.*W*Wl+AX0)/(2.*W*W*W) 

Y11=cj.*Z*Z-W*W-Z.*AXZ*Z+Ax1i1c2.*Wl 

Yl2=<AX0-AX1*Z+AX2*CZ*Z-W*Wl+Z*<3.*W*W-Z*Zll/(2•*W*W) 

Yl3=<<AY2-Zl*X(ll-Z*CAY1+2.*W*Wl+AY0l/C2.*W*W*Wl 

Yl4=C3.*Z*Z-W*W-2.*AY2*Z+AY1)/(2.*Wl 

Y15=<AY0-AYl*Z+AY2*(Z*Z-W*Wl+Z*C3.*W*W-Z*Zll/{2.*W*W) 

RTZ=SQRT(l.+(EE/ED-Zl*(EEIED-Zl/CW*Wl) 

GM6=EE/ED-Z 

PH6=ATAN2(W,GM6) 

Y3=1./CX(3l*X(l)) 

Y4=1./(X(3)*( (Z-XC3) l*CZ-XC3l )+W*W)) 

Y5=W*SQRT(X(ll*C(Z-X(3))*(Z-XC3))+W*W>> 

PHY=PHl+PH2 

PH4=ATAN2(W,-GM1> 

Y6=1./(W*W+(X(3)-Z)*(X(3l-Z)) 

Y7=W*SQRT({X(3l-Zl*(X(3)-Z)+W*Wl 

PH5=ATAN2(W,-Z) 

PHZ=PH5-PH4 

Y8=-X(3}/{(X(3)-Zl*(X(3)-Z)+W*W) 

Y9=SQRT(X(l)/(W*W+(X(3l-Zl*(X(3)-Zlll/W 

DO 4 I=l,NPKS 

L=INST< I> 

T=0.04*FLOATCL-l) 

SIGMA=(AER<Ll/Fl**<P-2l*CER(l)/Fl 

GR(ll=CA+CBIEXP(X(3l*Tl+CC*(SIN(W*Tl*<Y10+Yll*Tl+(l.-Y12*Tl*COSC 


IT> l/EXPCZ*Tl 
GR(2l=DB/EXPCX(3l*T>+DC*CSINCW*Tl*(Yl3+Yl4*Tl+COSCW*Tl*Cle-Yl5*T) 

l/EXP C Z*Tl 
GRC3l=EA+(EB+EC*Tl/EXP(XC3l*Tl+ED*RTZ*SINCW*T+PH6l/EXPCZ*T> 
GR(4l=Y3-Y4/EXPCXC3l*Tl+SlN(W*T+PHYl/{Y5*EXPCZ*T)) 
GR!5l=Y6/EXPCX(3l*Tl+SIN(W*T-PH4)/(Y7*EXP<Z*T)) 
GR(6l=Y8/EXP(X(3l*Tl+Y9*SIN(W*T+PHZl/EXP(Z*T> 
STEADY STATE COSTR. IMPOSED 
GR(ll=GRCll+E*XY(3l*GRC4) 

GR<3>=GR(3)+E*XY<l>*GRC4> 

GR<4l=GR(5) 

GRC5>=GRC6) 

DO 3 J=ltN 

G!Jl=G(J)-SIGMA*GR(J) 

CONTINUE 

CONTINUE 


GO TO 9 



5 
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82. 
CONTINUE 

YN=-Y· 

Bl=X<2)*0.5+SQRT(YNJ 

B2=X<2>*0.5-SQRT<YN) 

B3=Bl-B2 

BB3=B3*B3 

BBB3=B3*B3*B3 

Rl=A0/(X<l>*X(3Jl 

R2=(8l*Bl-Al*Bl+A0)/(Bl*B3*(X(3)-Bll) 

R3=(B2*B2-Al*B2+A0)/(B2*B3*CB2-X(3))) 

R4=(X(3l*X(3)-Al*X(3l+A0)/(XC3)*CB1-X(3))*CX(3)-B2)) 

DO 6 I=1,201,2 

T=0.04*FLOAT<I-ll 

C3(Il=X<6l*CRl+R21EXP(Bl*Tl+R3/EXPCB2*Tl+R4/EXPCX<3l*T)l 

ER< I ) =C7 CI> -C3 ( I l 

AERC I l=ABSCER< I) l 

CONTINUE 

M=201 

CALL PEAKS CMtAER,INSTtNPKStK) 

F=.A.ER ( K > 


R5=CAX0-AXl*Bl+AX2*Bl*Bl-Bl*Bl*Bl)/(B83) 

R6=(Bl*Bl*(3.*B2-Bll-2.*AX2*X<ll+AXl*X<2l-2.*AX0)/(BBB3) 

R7=(~X0-AX1*62+AX2*B2*B2-B2*B2*B2)/(683) 
R8=CB2*B2*(3.*Bl-82)-2.*AX2*X(l)+AXl*X(2)-2.*AX0)/(BBB3l 

R9=CAY0-AYl*Bl+AY2*Bl*Bl-Bl*Bl*Bll/CBB3l 

Rl0=(Bl*Bl*!3.*B2-Bll-2e*AY2*XCll+AYl*X(2)-2.*AY0l/CBBB3) 

Rll=(AYU-AYl*B2+AY2*B2*B2-B2*B2*B2)/(883) 

Rl2=CB2*B2*(3.*Bl-B2l-2.*AY2*XCll+AYl*X(2)-2•*AY0)/CBB83) 

R13=1.0/CXCll*X(3)) 

Rl4=1.0/(XC3l*CB1-XC3ll*CB2-X(3))) 

R15=1.0/(82*B3*(X(3l-82)) 

Rl6=1./CBl*CB2-Bll*CXC3l-Bl)) 

Rl7=Rl6*Bl 

Rl8=Rl5*B2 

R19=Rl4*X(3) 

R20=Bl/CB3*(X(3l-BlJ) 

R2l=B2/CB3*(82-X(3)J) 

R22=XC3)/((81-X(3))*(X(3)-82)) 

DO 8 I=l•NPKS 

L=INST(I) 

T=0.04*FLOAT<L-1) 

SIGMA=<AER!Ll/Fl**CP-2l*(ERCLl/Fl 

GR<l>=CA+CB/EXP<X<3l*Tl+CC*<<R5*T-R6)/EXP<Bl*T)+CR7*T+R8l/EXP<B2* 


1)) 

GR<2l=DB/EXPCX<3l*Tl+DC*< CR9*T-RlOl/EXP(Bl*Tl+CRll*T+Rl2>1EXP<B2* 
1)) 

GR<3>=EA+(EB+EC*Tl/EXP(X(3)*T>-ED*C<EE/ED-B1>IEXP!Bl*Tl+!B2-EE/ED 
l/EXP<B2*T))/B3 
GRC4)=R13-Rl4/EXP(X(3l*Tl-R15/EXP!B2*Tl-Rl6/EXP<Bl*T) 
GR(5l=Rl7/EXP<Bl*Tl+R18/EXP(B2*Tl+R19/EXP(X(3)*T> 
GR!6)=R20/EXP<Bl*Tl+R21/EXP<B2*Tl+R22/EXP(X(3l*T> 
STEADY STATE COSTR. IMPOSED 
GR(ll=GR(ll+E*XYC3l*GR(4) 
GR!3l=GRC3l+E*XY(ll*GRC4> 
GR(4)=GR(5) 
GRC5l=GRC6) 
DO 7 J=l,N 
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GIJ>=G!J>-SIGMA*GR(J) 

7 CONTINUE 
8 CONTINUE 
9 CONTINUE 

AUXl=O.O 
DO 10 I=ltNPKS 
L=INST<I> 
AUXl=AUXl+!AER!L)/F)**P 

10 CONTINUE 
RP=l.0/FLOAT<P> 
F=F*IAUXl**RP> 
.SCALAR=<l.0/AUXl>**<l.0-RPl 
DO 11 J=ltN 
G{Jl=G<J>*SCALAR 

11 CONTINUE 
IF CKNT.GT.0) RETURN 
WRITE l6tl2l <ER!Iltl=lt20lt2l 
RETURN 

c 
12 FORMAT (/3Xt5El6.6) 

END 
SUBROUTINE PEAKS CMtAERtINSTtNPKStKl 
DIMENSION AER!llt INST·(l) 
ML=M-2 
J=O 
AER(l >=O.O 
AER!Ml=O.O 
DO 1 I=3tMLt2 
IF lAER<I-2>.GT.AERIIl.OR.AERll+2l.GT.AERll)) GO TO 1 
j=J+l 
INST<Jl=I 
NPKS=J 

1 CONTINUE 
c 
C TO FIND THE MAX ERROR 

BIG;,,AER<l> 
DO 2 I=ltNPKS 
L=INST<I> 
IF !AER<L>.LE.BIG> GO TO 2 
BIG=AER(L) 
K=L 

2 CONTINUE 
RETURN 
END 

CD TOT 0274 
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