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INTRODUCTION

The presence of collective effects in the spectra of
certain nuclei has been recognized for many years. Most
non-spherical, heavy nuclei have low-energy spectra which
can be attributed to a rotation of part of their nuclear
matter, while many nuclei near closed shells, and possessing
a spherical equilibrium shape, exhibit spectra which can be
attributed to a vibration of the surface. Volume excita-
tions are possible, but because of the high degree of incom-
pressibility of nuclear matter, such modes will occur at
energies that are much higher than the range observed for
surface vibrations.

The present work is concerned chiefly with a study
of the spectra of even-even spherical nuclei. Such nuclei
show signific&nt regularities (S-55). The first excited
level nearly always has spin and parity 2% ana possesses an
E2 transition rate to the ground state that is enhanced over
the single particle value. The energy of this level varies
more or less reqgularly from isotope to isotope, and increases
as a closed shell is approached. In most cases the next ex-
cited level lies at roughly twice the energy of the first,

and has spin and parity 2+, 4t or, occasionally, 0+.

1



In particular, this work treats the even isotopes of lead.
These isotopes are appropriate for a quantitative study
since the single particle energies needed in the calcula-
tion are well known from studies on the one-hole nucleus
Pb207.

The present work is a microscopic approach to the
problem in which an attempt is made to fit the experiment-
ally observed energies and E2 transition rates by consi-
dering shell model particles and allowing them to inter~
act by means of a residual two-body force.

The treatment is reasonably exact insofar as the
force chosen for the residual interaction is a gcod ap~-
proximation to the actual residual interaction. Exchange
terms in the interaction, which have been ignored in all
“pairing-model” calculations, as well as in many other
treatments, are here treated exgctly. Their effect is in
no way negligible but their inclusion does complicate the
calculations to a considerable degree.

The main purpose of this work is to find out whe-
ther or not the pairing force, along with a quadrupole
force, is capable of yielding quantitative results in the
calculation of nuclear spectra, and at the same time, to

investigate the nature of the states which combine coher-

ently to produce the observed collective excitations.



CHAPTER 1

METHODS OF TREATING COLLECTIVE VIBRATIONS

OF SPHERICAIL NUCLEIX

The rapidly growing body of experimental data being
accumulated on both collective and non-collective excita-
tions has motivated the introduction of many nuclear models.

The success of the shell model in predicting many
of the ground state spins and magnetic moments as well as
the discontinuities associated with the magic numbers has
shown that the main part of the two-nucleon interaction can
be assumed to produce a spherically symmetric, static po-
tential (E-57).

The unified model developed by Bohr, Mottelson, and
others, is based on the assumption that from the remaining
part of the interaction it is possible to extract an addi-
tional self-consistent field which is non-spherical and
time dependent (B-55).

However, the real two-nucleon interaction can not
be completely reduced to a self-consistent field, and some
residual interaction will always remain. While this latter

3



4
interaction can be neglected in the calculation of many nu-
clear properties, especially those that depend on gross
features, there are other phenomena in which the residual
interaction plays a crucial role (B-55), (K-60), (B-59).

It is responsible, for example, for the shift of the intrin-
sic observed levels from the independent particle prediction;
éor the stability of the spherical shape near closed shell
nuclei, and the sharp transition to the deformed shape away
from the closed shells; for the reduction of the moment of
inertia from the rigid body value; and for the energy gap
observed in the spectra of some even-even nuclei.

Let us now discuss, in more detail, some of the

above concepts as they apply to collective phenomena.

1., Liquid Drop Model

One of the first models that was introduced in an
attempt to discuss specifically collective effects was the
liquid drop model (M-57). In this model, the wavefunction
contains no explicit reference to individual nucleons but
is defined in terms of the shape of the nuclear surface.
The equation for the surfaces of constant density can be

written as (B-52)

R (8,p) = Ro[l + Zx/.‘ o YV’ (scp)]



where the ciéu are a set of coordinates which describe the
deformation of the nuclear surface. For small deforma-
tions, the potential energy, corresponding to a given equi-~-
librium shape, can be written in the form

Ex) = E(0) + 1 ZA,CAI«A/A& (1.1)

2 Vand
where the coefficients C, give a measure of the resis-
tance of the nucleus against deformation. Collective mo-
tions are introduced by allowing the deformation parame-
ters to vary with time. If these parameters change slow-
ly, with respect to intrinsic nucleon motions, the kinetic
energy can be written in the form
. 2 :
T=1 Zar BiZ l"*"\/u{ (1.2)
2

where the coefficients Ba give a measure of the inertia of
the nucleus with respect to changes in deformation.

The total Hamiltonian which describes the motion of
the nucleus can be written
H= EC0) +L 25 CaSplxpul s s 228220 ]dypul (1.3)
from which the classical frequencies of oscillation are

given by

/3
Wi = Q_.L)

B (1.4)

and the energy levels by



E=E(OQO) + Zxru (7 *JP:)FW (1.5)
where the M give the number of phonons in the mode
At - /We note that the formulae given above are a conse~
quence only of the assumed spherical equilibrium shape, of
the smallness of the shape oscillations, and of the adia-
batic hypothesis. The parameters C)A and B, contain all
the dependence on the detailed properties of nuclear matter.,

Most studies of the vibrations of spherical nuclei
have been concerned with quadrupole vibrations, i.e., the
mode A= 2. We are thus led to consider the spectrum pre-
dicted by the Hamiltonian

2 . 2
H=_;_c22/ul°<a,u.l +4 B2 Z ezl (1.6)

Only positive parity states can arise, since the parity,
given by (-l)A , is +1 for quadrupole vibrations.

The Hamiltonian, (1.6), predicts a ground state spin

-+

+
of I = 0 , a single phonon state with I = 2 at an energy

hw, above the ground atate, and a triplet of states with

, 47 at an energy 2hw2 above the ground state.
This triplet of states results from the coupling of two one-
phonon states, each with I = 2+.

These features are seen to be in partial agreement

with the experimental facts as outlined earlier. The



liquid drop model, however, fails to predict either the
correct magnitude for hwi, or the correct dependence of
this energy on A, Using the hydrodynamic eastimates for
B, and C, (P-62), hw, has a value slightly over 2 Mev for
A 2 100, whereas the observed values lie in the range 0.5
to 1 Mev. The agreement is better for A =< 200, where
the calculated value drops to 1 Mev, but the dependence on
A is still not correct.

The liquid drop model can also be used to calcu-
lat; the ¥ ~ray transition rates between the low-lying
levels., The fellowing features, all in qualitative agree-
ment with experiment, are found (E-58):

a) The cross-over transition from the second 2t 1evel

to the 0" ground state is strongly inhibited,

b) The M; component o§ the 27 — 2% decay is very

weak,

c) The E2 rates between adjacent levels are con=-

siderably higher than the single particle
 estimates.

Again, however, the estimates of B, and C, obtained
from these studies are markedly different from the values
required by the experimental data.

Thus, to summarize the contribution of the liquid
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drop model, it may be said that the actual nuclear oscilla-
tions resemble those of a liquid drop in some respects, but
an attempt at detailed calculations on the basis of this
model are rather less than successful.

There might thus appear to be some justification
for assuming that the form of the equations given by the
liquid drop model may be quite adequate. In that case,
there would be some interest in attempting to calculate the
parameter C, and B) within the framework of a more sophis-
ticated model. One method of determining the inertial para-
meters B involves using the “cranking” model formula of

' 2
Bx) =24% 5 | <ild/oxlo)] (1.7)
‘o W - Wo

where the states [i) refer to the intrinsic single parti-
cle states, and Wi is their total energy. This formula,
for an harmonic oscillator potential, leads to a value of

B(x), so small that the adiabatic condition is violated.

2. Shell Model

Shell model calculations in which two-body inter-
actions are taken into account are restricted, because of

the complexities involved in computation, to iight nuclei



9
or to nuclei in the vicinity of closed shells. The nucleus
pp206 . falling in the latter category, has been particular-
ly well studied (T-58), (G~6l).

The first extensive calculation was carried out by
True and Ford. These authors obtained reasonably good

agreement for the energies of the levels of Pb206

up to 3.2
Mev, using a singlet two-body force with the same effective
range and strength as for the low energy two-body system,
Their calculations indicated that better agreement could be
obtained if some coupling to collective surface vibration
was introduced, and further, that such coupling was essen-
tial to yield the correct E2 transition rates.
A more recent calculation, more in the spirit of

the unified model, in which surface coupling is introduced
at the start, was carried out by Guman et al (G-6l1l). Let
us briefly outline the method used in this calculation. The
nucleus Pb206 is regarded as a system consisting of two neu-
tron holes and the surface of the core. The Hamiltonian is
written as

H = Hg + Hy(1) + Hy(2) + Vg(1) + Vg(2) + Vp(12)

where H = hw (2. 6;4 bu + 5/2)

Hp =fhi §72 + Vv

2m c
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V_ = V(r)- )\( f )2 1.3 vir) 1.8)
2me r or
V(r) = - Vo
(1 + ex(r"ro)) | 5
- Irl - X l
vp = - [vt17t + Vg ﬁs] e FZ

V8 (ry) = -x (rx) Z/A X 2u Ya/u_ (OK‘PK)

The parameters of the central potential, Vc, are as-
sumed to be known from previous work (S-59),

In the expression for Vp, Vi and v, are the triplet
and singlet interactions, and M, and TTg are the correspon-
ding projection operators. P is the effective range of the
pair interaction.

Vs(rk) describes the interaction between one external
nucleon and the field generated by all the others, and leads
to a deformation of the potential surface of the core. For
small deformation, the matrix element of the radial part of

this quadrupole force is taken to be

'
n

nNne
<nll X(r)In'8') T (-1) - 90 Mev (1.9)
The parameter 0(3/“_ is represented by

Xpp = /I’vi_avg (ba/u. + (-1)'“ bfz/u)

+
where C is the effective surface tension, and b and b

2p 2
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are the annihilation and creation operators for a phonon with
angular momentum 2 and z - component,/w » The frequency of
the core surface oscillations is w.

The basic set of eigenfunctions are chosen to be of
the form

|3,3, 5 NR; IM)

which corresponds to a state with total angular momentum I
and z - component M formed from a state of two nucleons coup-
led to angular momentum J and N phonons with angular mo-—
mentum R,

These functions form the basis for a calculation of
the eigenfunctions of the complete Hamiltonian H.

There are four constants to be determined, namely

g+ The authors show that, with suit~

hw, Ceg, P and v
able choices for these parameters, all experimentally known
excited levels up to an enerqgy of 3 Me¥ can be reproduced.
The authors note one exception, namely, the 4+ level at 1.66
Mev, and cite this exception as evidence that this level
should be reinvestigated. Good agreement with experiment

is also achieved for the calculated transition probabilities
between the various levels.

This calculation shows that collective states are

admixed in all the excited levels, and that the short range
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pair interaction leads to a mixing of the single particle

states.

3. Pairing-Plus-Quadrupole Force Method

One of the most difficult problems associated with
the residual interaction has been that of suitably accounting
for the short range part. A major breakthrough in this di-
rection occurred when Bardeen, Cooper and Schrieffer intro-
duced their theory of superconductivity (B-S57). The ideas
associated with this theory have been taken over to the case
of nuclear matter and have formed the basis for the introduc-
tion of the pairing force. It was observed that nuclear
structure exhibits certain features which are similar to
those of electron structure in metals, the most important of
these being an enerqgy gap observed both in the spectra of
certain nuclei and in the band structure of superconducting
metals. Bohr, Mottelson and Pines (BM-58) suggested a possi-
ble analogy between the correlation in the two systems re-
sponsible for the gap. The physical basis for this analogy
is the similarity between the pairing energy of two nucleons
with equal and opposite projections of the angular momentum,
and quasi-bound states of electron pairs with equal and

opposite linear momentum.
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The pairing force which has emerged from the above
considerations can be defined (K-60) as one which has con-
stant matrix elements in a ljm} | 3-m) configuration.
This is equivalent to saying that the matrix elementsp of
the interaction between two particles in a j-shell and two-

particles in a j'-shell vanishes unless the total angular

momentum in each state is zero, in which case it is propor-

tional to N J(zi*l) (21'+l)
P

Assuming then, that the pairing force adequately
describes the short range part of the residual interaction,
it remains to describe the long range part. The presence of
quadrupole vibrations of even-even nuclei, and the éppearance
of several regions of permanently deformed nuclei possessing
large quadrupole moments, suggests that a guadrupole force is
required as at least part of the field-producing portion of
the residual interaction. It appears that higher multipoles
are not required.

Let us now discuss, in more detail, some of the
main features of the pairing model.

a) Pairing Model (B-59)

Let us introduce the Fermi operators as and ay

which create and annihilate a particle in the state

The index  can refer tc any appropriate set of quantum
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numbers, in particular, for the case of a spherical nucleus,
2= [n, 1, j, m}. We will define such single particle

gstates as

[2> = a'y o)

where |0) denotes the vacuum state with respect to the ope-

+
rators a , a, and is defined by the set of all equations

azloy) =0

If we impose the condition of time reversal invariance on the
system then, the states ]'D> and L-a) are degenerate,
Here, ]--D) is the state with the same set of quantum
numbers as |9)» but with the opposite sign for the projec-
tion of angular momentum. The relation between the two
states , apart from a phase factor, is

[-d> = T |9 (1.10)
where T is the time reversal operator.

In terms of the usual angular momentum states used,

for example, by Condon and Shortley (C-57), a state with

angular momentum j and component m can be written

2my ;S mg 2
Yim = msz Cim ¢ Y!m,g Xsmg (1.11)
+Mp =
where c;;u;SFB is a Clebsch-Gordon coefficient, Xgm,

is the usual spin function, and the spherical harmcnics

have been defined as ilYlm. To obtain the time-reversed
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state, we make use of the relations (W-59)

My .Zm
T Y‘m‘ = ("’) Yl-m‘ T st‘ 8 ¢ $ xs-ms

and write
Amy s ms 2 2(myemyg)
T Vim = 2 Cinm 1) Yg-my (O

$-mg

Jeom Amg ;S mg 2
Z C:.-m L-‘) Y.c "} xs Mg

1
-~

]
~—
L

'-m

('I)J 1”J-m

Thus, the states |-9)= Ij—m) have the phases

(1) 7™ times those in the usual Condon and Shortley nota-
tion (allowing for the extra phase factor introduced in the
spherical harmonics).

The Hamiltonian for a system of particles moving
in a spherically-symmetric, self-consistent well, and inter-

acting through a residual two-body force, can be written
! + ' ' + +
H=2Z3Easa» "L 2 <Dl VID2DI) G, a9, @y ad (i.12)

where €; is the energy of a particle in the shell j.
The pairing interaction is one in which each state

is assumed to be correlated with its time~reversed conjugate.

A convenient way of introducing these correlations

is to de-
fine new Fermi operators as follows:
- - + (1.13)
XD = UH & Vo G- .
By = US A-p+ Vo o
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The canonical nature of the transformation is insured
by choosing the u, and v, to be real and to satisfy the

relation

u% + vg = 1 (1.14)

This canonical transformation does not conserve the
number of particles, and instead ¢f considering the Hamilton-

]
ian H , it is necessary to introduce the Hamiltonian

H=H - AN (1.15)
where )\ is chosen in such a manner that the average number
of particles in the N-body system is N,

The inverse transformation to (1.13) is

ap = us aa + Vs pah (1.16)
ALy = U B - Vo xD

Subgtitution of this transformation into (1.15)

yields a Hamiltonian with the following structure:

+H ) + H, ., + H, (1.17)

= 1
H=1U+ (Hy, + Hy, 11 int

U is a constant term
[ - t ¢
U= Zo(€o-A)2vVe = 5805 Us VD (1.17a)
] , — . 2 T
+ 0 KRRV G D' DY Vy Vi
(Ho2 + HZO) and Hll are quadratic in the new operators.

(H + H

02 20) = ZQ[(‘E-.)'))ZM‘;U,)"Aa(u:-v:;)]

x (=5 B% +Loxs) (1.170)
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Hll = 20[(50—)«)(‘/{-;’1}3) + A«)Zuova]

X (o o * 84 ABs)

(1.17c)
where £. and A > are defined by
o= €0 - 55 <93 VIdodd>Ve (1.18)
’ o
A> = 25 <021V Iv0» Wo Vy,
(1.19)

The matrix elements in (1.18) and (1.19) are defined

by

(fD:OLlV}QzI«).') = <3112 2‘V‘j2 2'11>

] % 8
. Ve LR N\,
_<3m3 mzf V‘jlml szz Ve

<0 Viowaiy = K20 Vvl
' .
. . N
+<,lm132m2 ! v [ 32“‘2 jl ml >

[ ] $
_(jmjmz Vijll] a2>

¢
P2 means that the sum is restricted to positive

values of the angular momentum ococmponents. The remaining term
in the Hamiltonian, Hint' describes the interacticn between
the new particles, and can be written in the form

H, = + + + H +

Explicit expressions for the tex: -
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given in the appendix to reference (B-59).
Let us, for the moment, neglect the terms in Hint'
Then the Hamiltonian (1.17) will describe a set of inde-
pendent particle-like entities, or 'quasiparticles’, if the

term (H,g5 + Hpy) is set equal to zero. This condition

yields the relation

- 2 (X
- - -V =
(Eo-)) 2 usVo A (- Va) o (1.20)

which, along with (1.14) yields the familiar relations for

u; and vy.

T — T -
Up = L || + Ev-A Vo = L] -~ Ep=X
2 Es z Ed (1.21)
- 2 2 4
where Ey = [( £o=A) + Ao]

is the energy of a quasi-particle in the state J .

Using (1.21) and (1.20), the equation for A > can
be written in the form

L5 = L =5 <ovlVvIvo > A

€2’ (1.22)

Specializing now to the case where O = [j,m] (we
can suppress the dependence on n and 1 for what follows),
the pairing matrix element in (1.22) can be written in the

following form:
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J'-m';J'm' Jom;Jm
<HDI|VvIdV'D> = Cirm Crm <rmlviTm)
J'm';J'-»v' J'-m',.im
- Casm Crm <Tmlv|TMD
J'—m'}‘j'm, J-m;ém 7
= Crm Crm (1« ) <sm]viTm) (1.23)

Since the pairing force we are considering vanishes
unless J = 0, we set J = 0 in (1.23). Then, using the rela-

tion Jomu-m J-m . -z
Coo = (-1) (zder)

[]
and defining <00 |V |00> as G J (23 + 1)(25 + 1) ,
2
we can rewrite (1.22) in the form

'

J-m 5
(=) Aim = L G Sim (1) Ai'm'
£ (1.24)

This expression shows that (-1) Dim
is a constant. We then define
J-m .
(-1) Oim = A (1.25)

and this reduces (1.24) to the form

[ = G i iy =& 2 L5
2 E a ‘/(gj-;)h at (1.26)
where () ; = j + 1/2 is the pair degeneracy of the j~shell.

As mentioned earlier, the constant A is found by
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requiring that the average number of particles in the system
be N. This requirement can be written

<O(K/lo> = N = Ziﬂj[l- Ej.'{l

E; (1.27)

Thus, if the shell model energies, EJ . are known,
and a value for G, the strength of the pairing force is esti-
mated, then (1.26) and {(1.27) can be solved simultaneously
for A and A . It should be noted that, while in equa-
tions (1.26) and (1.27) the sum includes all distinct neutron,
or proton, energies, in practice only states in the partially
filled shell under consideration are considered. This is not
a serious approximation, since states that are distant from
the Fermi energy, ) , will make little contribution to the
sum, since, for these states, v2 ~1 or 0.

The main results of the pairing model can be summar-

ized as follows:

1). The Hamiltonian describes a syatem of independent quasi-

particles

¢ + +
He U+ ZJ Ei (%jm Xim +/3Jmﬂ5m)

2). The single quasiparticle excitation energy is given by

- 2
Fi = j(fi")) *‘Al



3).
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The quasiparticle vacuum is defined by

o(j/o> = © for all j.

The approximations involved in achieving this simpli-

fied picture are as follows:

1)

2)

The number of particles is no longer fixed. This means
that solutions of a Hamiltonian which has quasiparticles
as eigenstates, will describe only average properties of
nuclei, that is, in calculating the properties of a nu~-
cleus with N particles, aﬁ average over the properties
of nuclei with N, N+ 2, N + 4, etc., is ihvolvéd. In
practice, this does not appear to be too serious, but it
is important that the property being studied varies

smoothly from one nucleus to another,

The matrix elements of the paiidng force are set equal to
a constant, for states coupled to total angular mocmentum
zero. Such a force does seem to reproduce the important
characteristics of a short range interaction. In partic-
ular, it gives rise to a two-particle spectrum in which
one state, that with J = 0, is split off from all ths
others (M-58)., It is hoped that the differences bhetween
the pairing force and the short range part of the actual

two-body interaction will be relatively unimportant.
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h) Work of Kisslinger and Sorensen (K-60)

A nuclear model in which the residual interaction is
represented by just these two components, the pairing force
and a quadrupole force, was first studied in some detail in
a fundamental paper by Belyaav(B-59), The first realistic
quantitative calculations based on thiz model were performed
by Kisslinger and Sorensen (K-60). In order to avoid the
difficult problem of treating the short range interaction
between neutrons and protons, the authors considered only
the case of nuclei in which either the neutron shell or pro-
ton shell was closed. They followed the procedure of Bel~-
vaev, in which the pairing force correlations are taken into
account by means of a canonical transformation from the
original interacting shell-model nucleons to new independent
quasiparticles. 7The ground state of the system in terms of
the new quasiparticles is the "vacuum" state., The pairing
correlatione enter inté the "vacuum" energy, and iato the
intrinsic atructu;e of the quasiparticles, Thus, if the
interaction between quasiparticles is ignored, one is left
with a system of new independent "particles" which implicit-
ly contain the effect of the pairing force. The effect of
the quadrupole force is then taken into account by intro-

ducing the total quadrupole moment of the nucleus as a
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parameter, and allowing the particles defined above to inter-
act with the deformed field generated by this parameter.,

The adiabatic hypothesis is then invoked, and the energy is

calculated for a fixed value of the quadrupole moment, W(Q).
The Haniltonian of the collective motion, for swmall Q@ , can
be written

H=1c(@ o + 1B(a) @? (1.28)

1
2

N

where the inertial parameter B(Q) is found from the usual
cranking model formula of Inglis (1.7).

This Hamiltonian describes harmonic gquadrupole sur-
face vibrations and yields, for the energy of the first 2%

level,

h W o= C‘Ql (1029)
B(Q)

As mentioned previously, the potentizl energy term,
C(Q) , and the kinetic energy term, B (Q), depend upon
the details of the intrinsic nucleon wmotion. The authors
calculate these quantities for the quasiparticle model, and
for the case of a single j~shell, eg., (1.29) can bhe written

in the form (B-€l)

hws= 28 |: - 6 (1.30}
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where E 1is the energy of a quasiparticle in the j-shell be~
ing considered, and © 1is a function of the number of par~
ticles that varies from nearly zero at closed shells, to
nearly unity as the shell becomes half-filled. This is in
qualitative agreement with the ocbserved trehd, where the
first 21 excitation is smaller than the lowest "single~
particle” excitation, 2E, and decreases a8 particles are
added to a closed shell nucleus. The authors also calculate
the reduced matrix elements for excitations from the ground

state to the 2+ level

B(eEz2) = 5 C’-:cc
¢ Jsc (1.31)
where e.;¢ is the effective charge of the external nucle-
ons. The derivation of this formula involves the assumption
that this transition exhausts the sum rule for quadrupcle
matrix elements to the ground state. For the isotopes of
lead, the authors cbtain agreement with experiment by using
the experimentally measured effective charge in Pb207 ,
Cess =7./ (T-58).
The results of Kisslinger and Sorensen do ssem to

indicate that a quite adequate descripticn of those proper-

ties of nuclei which depend strongly on the residual inter-

action can be achieved by the use of a pairing force and a

quadrupole force.



The calculations of Kisslinger and Soxensen, in
which a parameter is intrcduced to describe a specific type
of collective motion can be considered as 3 macroscopic
dagerivtion of the preblem., From such a viewpoint, the 2"
excited levels occur as a result of cacillatiens of the
quadrupcle moment of the external nucleons, The static po~
larizability of the core then gives rise to surface oscil-
lations (R-&1),

2 mere fandarental approach toe the problem would be
a microscopic descvipticn, in which one starts from the
bagic single particle statez and an sppropriate residual
interaction, calculates the “"eliementary excitations” c¢f the
syster, and from these hruillds up the collective levels. The
only parameters appearing in such a treatment would bs the
strengths of the various components of the residual inter-
action, for exampls, the strengths of the pairing and guad~
rupake  forces., Besides peing more fundamental, & micro-
scopic description becomes mandatory if extensions <f ihe

.
theory to include higher excitrations than the 2 levels are
attempted for here, the adiabaric hypothensis breaks down,

A further advantage lies ip thne facr that cclilechive levels,

weakly-colisctive levels, and non~collective two-parilcis

(541



excitations can be described by the same set of eguations.

4., Method of Approximate Second Quantization

There are two general methods which have been used
to investigate, from a microscopic viewpoint, the collective
excitations., The first method, discussed in this secticn,
ia the "method of approximate second quantizaticn,® although
it is also known under various other names (B-60). The
second method, anéd the cne to be used in this work, is the
method of Green's function (B-61) (G-58). An introductory
note on this latter methcd is contained in the next sectiom.

The Hamiltonian for the residual interaction is

written in the form

H=H + H {1.32)

where Hp ig the pairing Hamiltonian, and

| . .
H, = -1 x & <9} rFri Ze Tep G2 Youe C2) {00 00

]
@ )
+ + .
X Lo, vy Gd; A (1.33)
The usual Bogoliubov transformation converts these

Hamiltoniansa to the following forms,

t + + )
H, = Eim Ei (Rim Xim * Bim Bim) (1.32a)

! o
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Here,

H; = ‘//.2 x = (32).,','0 (%z).i,.i,’ (“J Ve U UJ')

+ A
X (u.i, v, * wj) U—J,) ( AJJl;K/-L + (-0 AJ"J;K-/u)

+
X ( Ai, i, Koo ¥ (")'“ A, Ky-a) (1.34)
and
2 . -\'VZ.
(g,)ip = <Al rivlli'y (s (1+555)) (1.35)
‘o A e
Ail'szp = Zmm’ Lau im it (1.36)

The operator A+ thus crsates a quasiparticle pair
in a state with a fixed angular momentum and z- component.

H(; contains the remaining terms which contribute to
H; . defined by equation (1.17d). The error made in neglec-
ting HY is ~ (2 A)" ~ A% . Here, A2 ig the
density of levels near the Fermi surface, and A is the
energy gap. To the same order of approximation, the opera-
tors A and A+ can be regarded as Boson opserators obeying
the commutation relations

[A‘:J';!f/u- . AJ}J,’;R/&«-_] > Sia Sty ~ 854 8iu,
+ + )

[AJJ';K/A- 5 AJ.J,",;?u-] = [AJJ‘;% , AJ,J,';y/u.] =0 (1.37)

The excitation energy w of an excited levzl with

angular momentum 2 and z-component «« can then be obtain-

ed by taking matrix elements of the equations of motion



for A+ and A Dbetween the ground state and the excited
level.

Let us denote the exact ground state by ‘ &.,
and the excited level by [27A¢>- The matrix element of
the equation of motion for A" can then be written

+ +
CEJ [AUitip, H]l2m> = w <& Aitigm |200)

(1.38)

where H = Hp + Hé

A similar equation holds for the operator A, A sys~
tem of coupled equations for the amplitudes

<B.| AT louy and <BIAlzu)

is thus obtained. The condition that these equations be
consistent yields the secular eguation

2 2
= Sy 2 CE+E;)(Ra)iit (wive + Vi)

i
X (E; + E1)? = w?

(1.39)
= Fiit (w)

A graph of this function is shown below in Figure 1.
Only positive values of w should be considered since, by
definition, the ground state has zero energy and negative

values of w are thus unphysical,
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Fiy (W)

e WA AW

'

Figure 1

The function Fjji {w) has poles at the quasiparticle
energies (Ej + Eji)’ The first such pole occurs at an enar-
gy 2 24 since A is the smallest value that E can ag-
sume, As can be seen from Figure 1, if X is positive, and
not too small, a collective level is split off from the
otherwise ragular two-quasiparticle spectrum. The level is
collective in nature since it is only through a coherent in-
teraction among several single particle states that an
energy can be obtained which is lower than that of the
states taken individuvally.

The same equation of motion approach can ke used to

find the state wvector for the excited collective level.

f..
If we define an operator B such that
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+
[2p> = Bauw [£eD (1.40)
and assume that B;/L can be expanded in terms of the oper-

ators A and A, then (1.38) can be used to find the coef-
ficients of expansion. It turns out that these coefficients
are just proportional to the amplitudes < &ol A+lz/u.>

and { &l Alzwy . Thus, once the energy of the 2"
level is found, the amplitudes, and hence the state vector,
can also be found.

The assumption that the operators A+ and A can
be regarded as Boson coperators, has led to the above approach
being called the ‘Quasi-Boson’ method.

An equivalent approach, called the "method of linear-
ized equations of motion, " has also been used to derive the
same secular equation and state vector (B-60). In this
method, the equation of motion technique is again used, but

+
the exact commutators of A and A are found with the

N n
complete Hamiltonian Hy + HQ. The approximation consists
in dropping all terms containing four single quasiparticle
operators, and keeping only those with two such operators.

This procedure leads to a set of equations which are linear

+
in A and A , the same set, in fact, which arise from the
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Quasi-Boson approximation. The justification for droppiny
terms with four operators, according to Baranger, is that
these terms involve more energetic excitation. Beyond this
statement, however, an investigation of the validity of the
approximation is not carried out. Presumably, there is a
close connection between this approximation and the quasi-
boson treatment where only that part of the Hamiltonian
which will lead to linear equations is used.

Besides these approximations, which are rather dif-
ficult to assess, it should be mentioned that the simplici-
ty in form of the secular equation for w, (1.39), results
from a neglect of certain exchange terms. This point will
be taken up again when the equations to be used in this

work have been derived.

5. Method of Green's Functions

* The method used in the present work to study the low-
lying collective excitations in spherical, even-even nuclei
involves the use of Green's functions (B-61). Let us brief-
ly outline the method to be followed,

Single particle excitations can be described by
single particle Green's functions, whose poles in the complex
energy plane determine the energy and damping of these exci-

tations (GM~58). Similarly, the poles of the two particla
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Green's function yield the energies and damping rates of the
two-particle excitations., Thus, to describe the collective
states in the presence of a pairing force and a quadrupole
force, the following procedure is carried out, Considering
first only the pairing force, the single~particle Green's
functions are calculated and the single-particle excitations
are found, These excitations will be called “"quasiparti-
cleas." We note that this definition of quasiparticles, as
will be discussed in the next chapter, is not the same as
that introduced in connection with the canonical transfor-
mation technique discussed earlier. The effect of the gquad-
rupcle force is then introduced as an interaction between
the quasiparticles, and the Green's function for the two
quasiparticle excitations is calculated, yielding the two
quasiparticle energy aspectrum. Collective levels can also
arise, depending on the nature of the interaction. Since
only a quadrupole force is being considered, the appearance
of collective levels will depend upon the strength and the
aign of this force.

Because of the presence of pairing, which leads to
a condensate of Cooper pairs being formed in the ground
state, the usual methods of quantum field theory, in partic-

ular the analysis of the problem in terms of Feynman
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diagrams, break down (B~58), This difficulty is associated
with the non-vanishing ground state expectation values asso~
ciated with uncontracted pairs of operators., This problem
can be circumvented by considering particles outside the
condensate, and then treating the condensate as an external
field. The system will no longer be closed with regard tc
the number of pa;ticlea, since allowance must be made for
the absorption of a pair of particles from the condensate,
or the loss of a pair of particles which may combine to
form a bound state with zero momentum and drop into the con-
densate.

The presence of the condensate necessitates the
introduction of three single-particle Green's functionas:
the normal one, and two more which allow for propagation into
and out of the condensate. Similarly, we must introduce
three two-particle Green's functions., A system of coupled
equations for these functions is then derived., Each of the
two-particle Green's functions can be reduced to an ampli~
tude for a specific kind of pair, particle-particle, parti-
cle~hole or hole-~hole. By pair is meant just a product of
two real particle creation or annihilation operators. These

amplitudes are transition matrices between the exact ground
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state and an excited level characterized by angular momentum
K, and energy w. They can be interpreted physically as the
proportions of the various two-quasiparticle states from
which the collective level is built., The system of coupled
equations forms a homogeneous set in terms of these ampli-
tudes, with coefficients depending upon the energy w. A
secular determinant is then constructed from which the energy
of the collective level is determined. Having found the
energy, the Amplitudes are then calculated and the state
vector found. Once the state vector is found, of course, it
is possible to calculate elactromagnetic transition rates,

The next chapter describes in detail how the above

calculations are carried out,



CHAPTER II

FORMULATION OF THE GREEN'S FUNCTION METHOD

1. One-Particle Green's Function

We introduce the single particle Green's function,
defined in the coordinate representation,

G (T, t,;Fata) = ~—c<§§i‘r{?(ﬁm) ’f’??—‘.u)}léf) (2.1)
where I§:ﬂ> denotes the exact ground state for a system
of N particles, ﬂ?+~ and 1? are creation and annihila-
tion operators in the Heisenberg picture, and T is the
Wick Chronoclogical operatcr.

Let us write the Hamiltonian of the system in the
form

~ ‘Af) -2
Ho ff(r %

2

tls

¥ (F1) dF

i + . - — ’ T P g 4

+/ PUE)Z Rt P 8) P(Fre) dP d? dt

(2.2)

The potential Z , which in general is non-local,
comprises the set of all proper self-energy diagrams.

Corresponding to this Hamiltonian, the equation of

motion for the Green's function, (2.1), takes the form (KK-60)
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. =2 N - - A
(la - P )G’(ht:,‘rz*tz) = é(r»-r;)S(t,-tz)
2t 2mM

+/Z(F‘,t,,-?'t') G (F't'; Fp t2) dF' ¢t (2.3)

We first assume that the Hamiltonian (2.2) does not
depend explicitly on time, in which case both G and Z are
functions of time only through the difference t; - t, = T
Taking the Fourier transform of (2.3) with respect to this

time difference, we get

(e ~2.) G(F,frse) = 8 (Fi-F)

amM

+ [ Z(RFe) G(Fyr ;) dF
(2.4)

It is well-known that the poles of G in the com-
plex energy plane determine the energy and damping of the
elementary excitations of the system (GM-58)., Also, the
single particle states with which we will be dealing are
those with energies close to the Fermi energy £o .

It is thus necessary to investigate the expansion
of 2 (€) in the neighborhood of the Fermi energy. This
has been carried out in some detail by Migdal (M-62). He
emphasizes the difference in character of 2 (f) , depen-
ding on whether or not Cooper pairs may be formed near the
Fermi surface. If £gr dsnotes the regular part of 2=

containing no Cooper pairing, and if Z k denotes the part

36



of the self energy corresponding to the presence of Cooper

pairs, then equation (2.4) reduces, as shown by Migdal, to

the form
N — - el
(E"‘_@_ - U(h))(f"DER(ﬂb,E.)) 6(r.,rz;&)
2 Mest D€e
= §(F-F2) + | Ew(F,Fe) G(F,Fz;€) d7’
(2.5)
where
- s
Mess = M | - 25:
{ 4_(32R)ﬂ. {(2.6)
Y VAN
and
S g(F, bute) ~EcDER -~ 0o DEr
U('F) - o>fe 2 = Py
| - Q2EnRr
Deb (2.7)

In these equations, & and &. denote the momen-
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tum and energy associated with the Fermi surface. The above

A_l/3 where r_is

equations are accurate to order r /R =X °

the interparticle distance at the Fermi surface, and R is

the size of the system,

One of the basic assumptions of the present work, as

well as of those outlined earlier, is that the same set of
intrinsic single particle states can be used throughout an
entire major oscillator shell, Another way of stating this

assumption is to assert that the self-energy term, =: ,
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does not change as particles are added to, or subtracted
from, the system, provided that such changes do not occur
across a magic nucleus. The mathematical expression of

this assumption is contained in the statement

Do (2.8)
since the only quantity affecting the poaition of the Femmi
energy is now assumed to be the number of particles, and

Z r is independent of this number. Similarly, we can

set

aZR = 0O

300 (2.9)
The equation for the Green's function can now be
written -y R N
(e-2° - U(F)) G (P, FsE)

2mM
= §(F-F2) +/‘2‘K(F’2,F";e) G(F,fz;¢8)dr’ (2.10)
where U(r) = S a(F, 0., €a) {(2.11)

In the abasence of pairing, Zx = O , equation (2.10)
describes the motion of independent "quasiparticles" in a po~

'tential well U(r) according to the Hamiltonian

- T -
(QY = HY H =@ + U
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We note here, that the term "quasiparticle" does not
have the same meaning as in the context of the pairing model
described earlier. The term "quasiparticle,” in this and in
subsequent sections, will be used to describe real particles
modified by the self energy, = A& , and interacting’with
other such particles through the pairing interaction, =«.

The energies of the single particle excitations of
the system can be found from the eigenvalues of H as
given by 2.12,

H @y = &) Pa
(2.13)

In actual practice, it is assumed that the ¢E; ‘
given by (2.13), are just the single particle energies given
by experiment for the case of one particle outside a double
closed-shell, In the present work, these energies for the
Jead isotopes are known from work on Pb207. As mentioned
earlier, the variation with A of the single particle ener-
gies is igmored. This assumption is shown by the work of
(R-60) to be reasonably valid, and certainly for the case
of the lead isotopes, where A changes only from 200 to
206, it should be quite valid.

For the case of spherical nuclei, the index A in

(2.13) denotes the set of quantum numbers [n,l,j,m].
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Let us now turn to the solution of (2.10) for the
case where 2k 0O . We proceed by expanding G in
terms of the eigenfunctions @, of (2.13).

G(Fi, e €) = Sxie G (&) Py, (Fr) @3 (F2)
(2.14)
Substituting this expansion in (2.10) yields the equation
(€-€x) Graa(€) = By + Ex (Bx0))yx Gaae (€)
(2.15)
Introducing the single particle Green's function

in the absence of pairing,

[~4
Gure (€)= Sad
-£ iSy,
E' )l.' } (2.16)
vhere Spre — + O for E-Ejp,>O0

—_— - O for € ~€pe<O

and €), is the energy of the highest filled state, we

can rewrite (2.15) in the form

Gaurm(E) = Gioe )
+ Z)’A” G;\l}' (.8) (ZK(E))}’}” G');’)c?i(E) (2.17)

Comparing (2.17) with the corresponding equation
that would result from (2,4), namely
Grre (€) + Z 3y G:,}' (e) (ZR C‘E))}';" G 2" »e (€)
+ S NaAn G°>.,\' (€g) (EK (E))x')ﬁ" G\ a2 CE)

whare

-

°
GM)\L(S> = 8 M (E"E%7+L8%o>
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and

] " _ =2
H @, = Ex P, H = £

we note that the simplicity of form of (2.17) results from
assuming that the effect of Z R(f) can be absorbed in-

o
to the function 6'); aw (€) .

a) Structure of Z‘k

Let us consider the structure of = j, the self-energy
term giving rise to the pairing correlations. Since this is
discussed in detail by Migdal (M-62), we will just sketch the
main ideas.

The interaction Zyx which we will hereafter denote

simply by 2 , can be represented graphically

SANCE) = &N

r
O CE) ! oy (- €)
A (2.18)

The wavy line denotes a Cooper pair, that is, a
bound pair with total angular momentum zero; - ¢ Q) (€)
is the amplitude for a pair of particles to form a bound
intermediate state with total angular momentum zero, and

¢ Af;\ (-¢) is the amplitude for a pair of particles
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to come out of this bound state; - ) denotes the state of
the hole that is left when the Cooper pair is formed. The
initial energy of the system is E (N) + &£ and the energy
of the state A is E (N + 2) - £, o If the above pro-

cess obeys the conservation laws, then we can write

SaeCe) = iy Or(e) Alx(-8)
(€ + €-» -2/4—) (2.19)

Equation (2.18) can be interpreted in the following
fashion. The initial state of the system consista of a con-
densate of N/2 bound Cooper pairs and an external particle
in the state A with energy € ., This particle inter-
acts with another external particle in the state - )\
to form a bound Cooper pair, leaving behind a hole in the
state -\ . The initial state is again reastored when the
bound pair (), -)) is broken up allowing the particle in
state - A to combine with the hole in that same state,
and leaving the particle in state AN to propagate freely
once more.

In analogy with the definition of the Green's func-
tion for a particle without pairing, (2.16), let us introduce
the Green's function corresponding to a hole in the absence

of pairing,
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— O
G)l)l(i) = SXIAL = - GO):):_("‘E.*Z///")
E+Ex -2 +i8), (2.20)

Using this definition, equation (2.19) can be written

in the form

— ¥
ZaM(g) = & Drce) G~>.(‘£) Oy (-E) (2.21)

b) Structure of A
Let us now investigate the structure of the vertex
part A . This gquantity must be determined from the self-

consistent equation

0= B

[

(2.22)

where -:¢7’ represents the sum of all interactions which
scatter a pair of particles but which allow for the fact

that in the intermediate state, one line denotes the complete
Green's function G, while the other denotes the Green's
function defined by (2.20). This asymmetry in structure
follows from equation (2,18), where it can be aeen that in
the state A, the single hole propagator must not include
the pairing effect, for otherwise the diagram is not irre-

ducible.



44

Thus /A can be expressed in the form

AyCE) = -4 Zx'[de' PNE,-)-€"; -x-€,208)
4w
xGaNCED) Ay (e) GIx (")
(2.23)
Introducing the new function
Fri(e) = = Gace) arce) G (e)
(2.24)
allows us to write (2.23) in the form
Oy CE)
= i g,l/ola’ T (XN, -N-€'5-x-8,08) Fy (") (2.25)
2m
In a similar fashion, the equations for A" can be
written Afx (-€)
' + '
= i Salde T(Ne',=)-€',-r-€0€) F-x(-€)
2m (2.26)
where . *
Fir (€)= (Free)
° ¥
= - - £ 2 (-€) G, &)
G-aC8) A (-€) G (2.27)

Using (2.21) and (2.27), and drorping the factors

&, » equation (2.17) can be written in the form

G\ Cg) G‘;(e) + G5 (g) BrCE) Gor () A*-). (-€) Gac(E)

G;(s) - G>(g) Or(E) Ff,\ (-€)

i

(2.28)
Thus, using (2.16) and (2.20) for 6° and G° re-

spectively, equation (2.28) reduces to
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Gy(e) = G, (€)
[ -Gy Gl orcer|?

= E t+ E-) - 244
2
(€-€r)(€+E-p-2u) - 1 D2 CO)] (2.29)

+ -
The functions F and P can now be written

Fhoe) = - pY(-£)
(€-€r)(erer-2m) - [Oaed]* (2.30)
F) (&) = - ODACE) (2.31)

(-€r)(E+E-2-20) - [Drce)]T

In order to reduce the system of equations (2,29)-
(2.31) to a more managable form, we introduce two approxima-~

tions.

!

1) 7 is restricted to the class of instantaneous
interactions.

2) A (F) does not depend on r
Statement 1) implies that 7’ does not depend on
energy, and from (2.25) we see that this means that A (¢£)
is independent of energy.

The assumption in 2), which leads to an error of
order Aul/3 (M-62), means that /), is a constant, apart
from a phase factor, We write, for the [j,m] representa-

tion
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J-m J-m

Dim = (1) D = (-0 AN

We also note that for constant A , equations (2.30)
and (2.31) are invariant under the transformation

A /_\'ei" F— Fle"
80 without loss in generality we can choose A real, that
is, «x = 0,

To simplify the form of the equations, let us measure

all energies with respect to‘/u- . We thus set

- — — £
€ Pane —>» £ € X A S (2.32)

The system of equations for the three functions @G,

F' and P~ can now be written

G(g) = £ + &) = € + €A
€t - ¢} - ot E*- Ex (2.33a)
te) N t A
Fh— (¢ = z -1 = b A
€' - X €t - EF {(2.33b)

where (2.34)
Ey = ‘€1* O

In order to calculate physical quantities of inter-
est from the functions defined in {2.33) it is usually neces-
sary to integrate over the energy variable. To do this, the

singularities of these functions in the complex £ - plane
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must be known. The procedure for specifying the contour for

this integration can be formulated as follows:

£, is replaced by &) -¢ & .‘_%ﬁ.' (where §, —> +0)
in the denominators of (2.33), (2.34) and (2.35). This is
equivalent to the introduction of a vanishingly small damping
of the states describing the particle and hole (M-59). Thus
Ey — JEK*A‘-ZiStE;./ltH‘ = E,\Ji-2£8:£z

Ex | Exl?
x> E»(I-L&/E») = Exr-4L0%

The contour of integration in the ¢ - plane now con-
gsists of the real axis plus a semi-circle enclosing the upper
half-plane,

For purposes of calculation, it is thus convenient

to replace the set of equations (2.33) by the following:

1 8
G’) (¢) = U + vill
- ’ -i§
- Eprtd E+E)-¢ (2.352)
= T UMV | 1 -
' E-Epsld E¢Ep-¢8 (2.35b)
where :
who= L (1082) VL (i-e)
2 E) z £y
J-m
UpVa = Ba = 1) 4

2 Ex 2E» (2.36)
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The equation for A, , (2.25) now takes the form

21me

Ay = -1 Z>'7"(X-ﬁ;—xx)/sff(e)da

= - EN T A(N-=A,-rN) QYN

e (2.37
In its first approximation, J° has the form
T (ir2;34) = <12]V[34) - <i2|V]43) (2.38

Thus, equations (2.34), (2.36) and (2.37), when the

approximation (2,.38) is used, are the same as those derived

)

)

by the canonical transformation technique. See, for example,

equations (1.21) and (1.22) of the introduction. In princi-

ple, these resulta could be improved by relaxing approxima-
tions 1) and 2) and including a larger set of graphs in
the calculation of T° . 1In practice, however, since T
depends on G, and G of course depends on 7’ , solutions
for G, FH and F~ involve the solution of a set of complica-
ted coupled equations and it is difficult to advance much
beyond the approximations used in this section.

We now come to the question concerning the number

of particles in the system. The single particle density ma-

trix can be written

pF ) = <Y | wHaEywr 18D
= -t GC(Cri,re; T) s -0
(2.39

2me

= 4 j[ G (F,r2 ;€) de

)
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where the contour again consists of the real axis and a semi-
circle of infinite radius in the upper half plane. In the

‘P; representation, this becomes

/D , = L GAN(Q)G‘&
M 2mi (2.40)

Using (2.35a) for G, the number of particles in

the state A is

T 2
Py = MrF A Via de = Va
; a2 E+Ep-LS (2.41)

and the total number of particles in the system is

A
7= N Ty = Z).\/;L = ZiViZml1

T

where L = J+1 Equation (2.42) shows that v§ can be

interpreted as the probability that any one of the (23 + 1)~
degenerate states in the j-shell is occupied. From (2.36) we
see that u% is then the probability that this same state is

empty. These quantities thus have the usual interpretation.
For the case of the one-particle Green's functions

G, F+ and F , the essential problem can be summarized as
follows:
1) The single particle energies, £, = &, are

taken from experiment.

2) An appropriate value of the strength of the
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pairing force, G, is chosen.
3) The parameters A and A are found, for

fixed n, from the simultaneous equations

2 = Z. 1L = Zj__Ali
G Ej JUEi-m) e ?
and
m = Z; L I = s
(E5-pn)” + O
The first equation resulta fram (2.37) by setting
Jem
r= -6/, Qim = (-1) 4 and the second is

just (2.42) .

c) Diagram Convention

The structure of the functions F+, F~ and G sug-
gests the following physical interpretation of their roles..

F~ can be considered as a propagator that effective-
ly replaces a particle by a hole, while F+ can be considered
as a propagator that changes a hole into a particle. The
function G is just the usual propagator for either a hole
or a particle.,

The following diagram convention can be introduced
as an aid to the understanding of the equations discussed

in this section.



51

G\g) = 2 > A .
° s > F-
= Ga + ___JQA——a(:)$:::£E:;> (2.432)
*
—s A4
+ -~ -
Fa ce) = r:)“ ":, = (.____G.; G-a (2.43b)
Ar =0
- -
Free) = == = =29 G2 . (2.430)

2. TIwo-~Particle Green's Function

We define the normal two-particle Green's function

as
Kzz(xlng x3X,) =
= < ;:‘ T{ "-[’(X,) W+(‘Zz) ’4’(13) W+('x¥)}{§:‘> (2‘44)
where x= [T, t].

This function obeys the Dyson equation (G~51)
Kyg{xyxyi x3%,) =
G(xlx4) G(xqyx3) ~ G(xlxz) G(x3x4)
+ i;[d4x5 d4x6 6413 ddxg G(xy%:) Glxgxy) x
F(xsxsy x7x8) Kzz(x7x8: x3x4) (2.45)
where all the symbols have the same meaning as in the previ-
ous section, and G is the exact single particle Green's

function defined by equation (2.1}, not the pairing approxi-

mation CGreen's function,
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Let us consider a particular ordering of the times
in (2.44)
tye t, > t3, ty4

In this case we can write
Kzz(xlxzz x3x4)
= =5 <87 wz,)w*(n)}/sxsl T §%Cxs) w*cz.,)} (85>

= Zs Ps (% X)) Ps (AsXw) (2.46)

(s can be interpreted as an amplitude describing
the systematic motion of a particle and a hole (KK-60). 1In
particular, for t; = t2 = t, g Irl % t) can be inter-
preted as an amplitude describing the behavior of a parti-
cle and a hole in the state s, It is possible to show
that when bound states are being considered, the inhomogen-
eous part of (2,45) does not contribute, and upon substitu-
ting (2.46) into (2.45), an equation for the amplitude ¢s
can be extracted (0-51) (KK-60).

We can thus write an equation for ¢s in the form

@s (x;x,)

= i¥[;4x5d4x6d4x7d4x8 G(xlxs) G(xsxz) X

I (xg5xg: x7x8) (Ps (x,xg) (2.47)

We now introduce again the assumption that 7 des-

cribes an instantaneous interactiom, and that the propagators
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G depend on their time coordinates only through the difference
t1 - t2 = T . This assumption means that the time coordi-
nates in s are equal.
We thus define, from
Ps (% X2) = Ps (Fit,, Peta)
= <8 Tl W (R YR tD] 5D

the function

P (T Tost) = — LB WA WF s> T=e-te=o0

(2.48)

Equation (2,47) can now be written
Ps (rlrz; t)

= :i.-/\dr5 er dr7 dr8 dr G(rlrsg -T) Glrery: T )

x T(r5r6; r7r8) CP5(r7r t +7') {2.43)

g’
The opposite sign for T in the two Green's func-
tions in (2.49) arises because one function describes the
propagation of a particle while the other describes the propa-
gation of a hole.
Equation (2.49) can be interpreted in the following
sense.,

The left hand side describes a bound state of a
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particle and a hole at time t. 1In the right hand sgide,
G (T), for 7 > O describes the provagaticn of a particle

]
from time t to time t =t +7T , while G (- 7) des-

¥
cribes the propagation of a hole from time t to time ¢t ,

At time t', the particle and hole interact to form a bound
state.,

If the single particle Green's function is known,
and if the interaction 7T is known, then (2.49) gives a
prescription for calculating the two-particle amplitude.
In practice, these functions are usually not known, and ap=-
proximations for them must be introduced., We are interest-
ed in the case where the system conteins vairing correla-
tions, but as we have seen in the previous section, this in-
volves the introduction of two new single particle propaga-
tors. The modification which this requires in the struc-

%
ture of the two~particle amplitude will be discussed in the

next chapter,

* . . . .
We will see that two new amplitudes besides ¢

must be introduced.



CHAPTER IIXI

DERIVATION OF THE EIGENVALUE EQUATION FOR

THE EXCITED LEVEILS

1, Derivation of the General Equations for the Amplitudes

The equation for the amplitude of a particle~hole
pair in a state ’§2Q> was derived in the previous chap-
ter, and can be written

Ps (7: F;} t)

: z[dF; A% dB df. G(Fifs;-7) G(RT ,7)

’(T(Fs_":)—f;?»,) Ps (?a?#)*'*r) (3.1)

However, as was shown in section 1 of Chapter II,
the single particle {(or hole) propagation, in the presence
of pairing, is described not only by G, but also by the new
propagators F' and F~. As was indicated there, F' des~
cribes the transition of a heole into a particle, while F
describes the transition of a particle into a hole. The
modification to the two-particle case required by the
presence of these new propagators can be introduced as
follows,

55
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In equation (3.1), we make the following changes.

G(F Fs ;-T) — C}(F?F;; -T) + F(F Fs;-7)

(3.2a)
G(FFi;7) —> G (FRFe:r) * F (FeF2:T)
(3.2b)
77 (s F: ;73 7&)
—> 7 (TsFesBR) v T(FB TN Fy) {3.3)
and we introduée
- - N-2
X (T R:t) = — <%o | Yy(Fet) vH(RO)|8s D 5.0)
— - A N+2
X (RR:t) = —<& | y(Rt) v(FIlEs ) (3.5)

Here, 7' is defined as the set of diagrams that
is irreducible in the particle-hole direction, and T
is the set that is imeducible in the particle~particle or
hole-hole direction. This is illustrated in the accompan—

ying figure.

T

77"
The function X is an amplitude describing the be-

havior of two particles in the state 38 , while X5 is the
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corresponding function for two holes.

These functions enter in the following manner. The
left hand side of (3.1) still describes a particle~hole pair
at time t, 80 the right hand side must still describe a
particle and a hole propagating from time t. If the parti-
cle and hole each propagate by a G-function, then at time t‘,
the interaction 7' leads to the formation of a bound parti-
cle-hole pair, described by ¢ . Consider what now happens
when the propagation of the particle is described by F~, and
the propagation of the hole is described by G. The parti-
cle at t Dbecomes a hole at t. and the interaction, which
is now T’” , leads to the formation of a bound hole-hole
pair, described by X . Similarly, if the hole propagates
by F¥, and the particle by G, then the interaction 7"
leads to the formation of a particle-particle pair described
by X . Finally, if the hole propagates by F* and the par-
ticle propagates by F~, then the interaction is again 7 ,
and a bound particle-hole pair is again formed.

With the aid of this rather "picturesque" descrip-

tion, it is easy to see that equation (3,1) should be re-

placed by
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- aad B P PN - -—n
Ps (ribrst) = cfdrs drg o7y d7,

[G(EF};-T) G(rere:z) + FY(F Fs:-t) F—(?a?‘;'.?)]

X 7_"(?572:?3?#) Ws (ryry ; t+7T)

- i LEPRNP . 4 - -~
bt G(FF:-T) F(FFr:T) T(Ts R FiFu) Xs(TFu;ts7T)

f GRR 1) FI(FFs;-7) T (FsTa:Tsta) K(rsrmit+7)

(3.6)
Passing to the ), representation, this equation be-
)
comes Priae (t)
. ' s
=t 2,\,;\4/ dr¥ Gau(-1) Cral®) T (Oxihe iha X3) @y y, (2+7)
+ . ( : s
= Fp GT) FLCT) T (=xada ~2d3) Pagy, (6+7)
t G (-T) FraCT) T (hi-hesruds) Xaspe (T+2T)
+ G (T) Fri(-2) T " (M3dw =M ha) Xagra (£#T){ (3.7)
where
-l et el * ———n
G(Rrn:2T) = Zare Grra(2T) @y, (F) @p, (F)
F (R Tr:eT) = S are Fra(ET) @5 (F) @iy (R
I N - - £ - ¥ o
F AR 2T) = Saire Frura BT) @ () Pra ) (3.8)

C.ps (!’lrr,‘,t')

ti

Sarr @iy (T) @ (F) P (F2)

a— [ SR,
Xs (ntre:T)

N

— W - & -l
E_)‘,).:_ x;l)l(z’) <-P)u () @i ()

[ - -
Xs (FFi:T) = Z 0an XMl @y (F) Pry(fe)
and
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70 % Ae; s he)

- . - * s * —a R — —
= /o’h dr Cl!’; A7 Py, (F1) Pas (F3) ProylTy) @y ()

x T (FiT3;Taqle) (3.9)

The orthonormality of the complete set of functions

fol? CP:(?) Py (F) = &xN
(3.10)

along with the & - functions appearing in the definitions

of G, F' and F~, have been invoked to reduce the number of

independent summation indices in (3.7) from four to two.

We note that 7" and T’ obey the symmetry condi-

tion
At (Nidz 2A3hy )

= 7 (ran; dwrz)

T Qu)

= -7 (hz i s ks ha )

(3.11a)
while X and X satisfy
Xopre (T) = = Xparr ()
Xara (T) = Xpanm (T) (3.11b)

The relation (3.1la) follows immediately from equation (2.38)

while (3.11b) follows from the definition of X and X

Let us now consider the structure of the equation

satisfied by X . We recall that this function describes

the bound state of two particles. The propagation of two
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particles, initially at time t, can be described by

F (FeFr:7T) + G (FeFr;T)
and

am - w—tn ol 3.1
F (rst .T) + G(¥sF:.T) (3.12)

The equation for X in terms of X , X and ¢ follows im-

mediately, except for the relative signs of the terms, as
Xs(Fir:.t) = i/d?; d7 dF; dfy
[G(?.F;.;r) F(FsF.:7) — G(FsF:7) F’(r‘rz:‘zf)]
AT (FsTe: BFy) @s (Frfy, te?)
*G(Th.t) G(Fsr 1) T (FBR:FBTr) Xs(FFe;tez)
+ F (FeTe:T) F(rshn:T) T’"(F;FZ,T';F;) Xs(rzby: t+7)

(3.13)

In the ¢, representation, this becomes

f:;ll(t)

¢ 3
205 aphe dr§ Gral®) Fin(2) T Q=3 h3hz) Prgay (£07)

5
— G () FRulT) T (Aw-rziAshi) Prgpry (2+T)
=S
+ (-J',('t‘) Gy (T) 77" (aw hz: M rz) Xagdw (t+7T)
T
s
t R (T) Fa (T) " (- M=Av: My hz) Xagra (£+7)

(3,14)

Finally, for the function Xs, propagation by the
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combination
F'ARFs,-1) + G(FFs;-7)
+ b - = (3.15)
F'(farg;-T) + G(FaTe:-T)
leads to the equation
s
Xraa (#)

5
= iZ)?)“/de {— Gy (-7) F;z -7) T Chw Mj Aa-dz) Poyay (£47)

+ Gra(-7) Fh (-7) 7' (aw )z)%;—h) CP:,;., (z+7)

F Gre-T) G, (=T) T " (hide; dyh3) Xrsgry (e+7)

. — 5
+ F:?, (-7) F:I -T) 7 (Ai.\qi"/\z'h) X agry (\‘-‘*7)§(3 16)

The form of (3.12) and of (3.15) with respect to
the signature is a consequence of the definitions of X
and X that are implied by the form of equation (3.6) or
(3.7). A convenient method of verifying this self-consis-
tency is to adopt the diagram convention outlined in sec-
tion 1 of the preceding chapter, along with the labelling
convention for 7' discussed in the next section, and then

to substitute (3.14) and (3.16) into (3.7).

We now define

5
Prr(t) = - < §oNl aiz‘#) Gy () l§g>
j(E:— ESN)t ~ .
= - ¢ <£o,ah,ah!§:>
it (3.17)

- € Cpll)z(w,ﬁ)
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N N
where W = E8 - E

is the energy of the N-particle excited
o

state with respect to the ground state of N particles.

The label & denctes the remaining quantum numbers that

are needed to completely specify the state s.

In a similar fashion we define

X (£) = = <8 ah (o) a0 | 85 >

s L M2

l(Eo"’Es ) + + -2
= - e <§{axaaxz/§f >
—iwt

= € i}l)‘r. (W, O() (3-18)

Wa note that

i

N N-2 N-2 N N N
-~ E + E . (E - E + (E - E
o s ( s ) ( s o)

= u..)-a/u_ -— )

since all energies are being measured with respect to S .

Finally, we have

miw t

5
Xiyr (t) = € X de (v, o)

(3.19)

Substituting (3.17), (3.18) and (3.19) in the equa-

tions for x , X and ¢ , and making use of the relations

o T

[c[T Gun (-T)G () @ = 1 [de Grate) Gp (e-w){3.20a)

2

zm

_iew?T
jdr Ga(-T)Gr(-T) € = .:.[de Gz (€) Gy (-E-w) (3.20b)

{}

PPNV o
fdr Gr, (T)Gra(T) € o [de Gaz )Gy (-E+w)(3.20¢)

2/
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the equations for the Fourier components CP(w) . X ()

and X (w) can be written.

‘Phﬁ (w, «)
= 4 Z»,A.,/de{ Gae () G (=) TV Qe hrs Asha) Py, ()
+ Flemw) FRa(e) T (=D da=de) Paghy (e, )
Gy (E-w) Frade) T Onr- A Aw A3) Xazd (e, )

+ F;: (£-w) Gy (€) T" ()3 )w}")w)\z) i}i)q(w,a()}

X aihe (w, ) (3.21)

= é‘_{r 2)\3)4/612 ; Gra(€) Fpy (-E+ew) 7’/(,\4")‘1,' A3 AZ) (phM(‘*’/"‘)
(

— GaCE) Fro(-€+w) T (hw=dz;hs ki) Pagry (w, )

—Gprnle)Grrl~-E+w) 7’”(/\3)#; Mrz) X psprw(w,x)

+ Fra(e) Far (-€ +w) T"(-x,—n;Ma)x»anw,d)}

(3.22)
Kyidz (o, et)

= & 2%3)4/618[ Gz L€) F;: Ce-w) T '(aa M2 ; )\3-A:) @Prshy (o, )
2m
- Gu(e)FraCg-w) T M h3-h2) Pog g (@, )
+ Gar(€) Garl-g-w) T (xide; M ds) Xashy (w, o)

~ F,f(s) Fr(-e-w) T "(A3hu;-h-d2) J?,,M(w,oe)}

(3.23)



The integrations over & can now be carried out,
using the relations for G (&), F ACE) and F) (&)
derived in Chapter II (equations (2.35)).

To simplify the form of the resulting equations, let

us define the following quantities.

L L 2 kS

Ext Ejxa = A Uy, Vi, v vy uy, = B

2 b 3 L -

uA‘- u¥1 = C)\,),l u 5, - V)l — D)I)L (3324)
T T

), ¢ Vv, = My, u,, = v,, =Py, = Dy,

The systems of equations for ¢, X and X can

now be written in the form

g

(Az;q hr = o) Py, ap (o)
= (Ah,lz Bare = @ Crnrz)Zaspn T Chw M dsdz) @Prady (W, )
+ 2 Muy Maz Apde Zasae T (Mw=dz;ds-h1) Dishn (w, =)
+ Maz (Byae Pry =) Zasde T Chi-Avs de hs) Xz (w,=)

= Ma (Apde Pratw) 23y 77" (hsdwi-Ahz) X asay (w, =)
(3.25)

(Azm\z ~w ) Xppa (w, )
= My (AapaPra "") Z azhe T/ Cha=0is M 2a) Pogpy (W)
= Mz (Arike Py *‘—‘-’) Z ashy r’(Av~lz$/\3)z) @ M hy (w,e)
+ [Ahn("B»,n) +w th]ZHM T Chghus hry) Xazay (e )

= 2 M Mar Apae S asdw T (-0 =h2; A hs) Xaziy (w, =)
(2.26)
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2
(Axiae - @) Xaira (w,e)

- Mre CAride P),-W) Z »shu TH(MMLA;-)I} Prs ru (w, )
- My (A).};P}l—w)i)&)q T'I(i‘f )L,')?')l) CPA3A4f (w, )

- [A;,)z (I-BMM) - w DM)\z] Z rsw A GV TR )3) Xr3hy (o, X)

+ 2 MMy Arire Zaaaw TOChsdai-h-2z) Xagre (w, ) (3.27)

2. The Interaction

Let us consider the structure of [ . We first
consider T°' , which has been defined as the sum of all
irreducible diagrams in which a particle~hole pair is
scattered., In first order, the following diagrams contri-

¢
bute to 77 (Aidzihzia) (T-61)

J\’AI»)» 2 N M
[} 133 : M : : *3
: : ! :
i N
MA My $ " l{*" (3.28a)
M F ™ Ao
a) b) c) d)

The convention adopted in these diagrams is as
follows:

l) Arrows pointing away from the interaction denote
the creation of particles or of holes, while arrows pointing

toward the interaction denote the annihilation of particles
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or holes,
2) Arrows directed to the right, which is taken as
the direction of increasing time, refer to particles, while
those directed to the left, refer to holes.

The contribution from each of a) and b) is
(/)X Mhal VIdzha)

and from each of ¢} and d) is
—(1/,) <Ml VI Nakrz)

Thus, in first order, ,
T Chidz: s ha)

= Carzl Vs> = <hhal VIradg) (3.29)
ig the sum of all irreducible interactions that
scatter particle~particle or hole-~hole pairs. In first

order, the following diagrams contribute to T (Neha;rsde)

LIRS %
i
: } {3.28b)
| ]
B B8 1IN vralda
Thus in first order, A
2 T Chidz i hada)
= <nrelViazaed> = <nidal VipersD (3.30)

Since we are interested in the case of spherical
systemsa, let us now proceed to write the matrix elemsnts of
the potential V in a form that exhibits its invariance
under rotations and reflections.

We write the two-body potential in the form
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k . mk
V(rlrz) = Zk vk(rlrz) T (1) = T (2) (3.31)

where 'I'k

is a tensor operator of degree k which trans-
forms under rotations like the spherical harmonics Yk.

An arbitrary matrix element of this potential be-
tween the single particle atates | D) s | jm) can be
written
Dy 22| VID3on) = S Kddzlvanr) T T | 03 94)

S Zp 0" Gzl vnnd 30> Ciiml TA D Liemy)

igmg| T—ju. (2) | 3ams3) (3,32)

We define
R(12:34) = (/2 |virr) | 34)

Using the Wigner-Eckart theorem (E-58), we write

. . Jy M }K/L 't
< Jlml’ T/.:- I J4m¥> = CJ‘:m‘,’ <’” TK ”'f>(2‘j|*’)/z
_ . , (3.33)
Jy-my Jp My, 9y =My ./
20 Cup  <UHTR04> (2ran)

and similarly
Jg-m3  Jzma;ig-m3

Cigmy | ™l dgmgy = (1) Cuoe <2 TN 3>

’ZK+I

We define

F. (12:34) = - R(12;34) <1 /[Tl a) 2 || ™ |l 3>
k 2k + 1
and we finally get

<uda[VIdsDe)

' Jam4q Jimy ;e =m 3
("l)’u rk (12:34) (-1) 4 CK/u- (-1) 37®3

Jrma; d3-m3

X CKf/u

=- Zy,

(3.34)
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Fk is a rotationally invariant particle-hole matrix element.
However, the interaction V can also be expressed in terms

of a rotaticnally invariant particle-~particle or hole-hole

matrix element, Gk' defined by
' Jimy ;irmy Jymy; Ju Py
VD, | V]0394) = - Z ke Gk(12;34) C ke C e
(3.35)

l
The functions Fk and Gk are related by

Sivdze t

FK,(IZ;B‘f) = 240 (2.8+1) G:,(:z;;v) W (i423; k)

(3.36)
J';f\).;-f s

] /
Gu (12;324) = () S (22+1) Fpliz;34) Wlizws; kL)
(See Appendix A, equations (A-3).) Here, W (1234; k1) is the
usual Racah coefficient as defined by Rose (R-57).

Let us consider the case where the interaction con-
gists of a quadrupole force and a pairing force. For the
former we have

- 2.2 A -

V= - X rlrlv Z/‘-(""l) Yz/u Yzy.A. (3.31)

Then we get

F2 (12:24)
(ZKfs)<rilles il 4> <22t 3> <y, il a><2(v,( 35

Now the reduced matrix element is given by (E~58)

Iu'h ;20 1/2
<1 Y, i 4>= Ci,y, [_5____ (zj4+13/

41T
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80 we get the particle~hole matrix element F in the form
§

F, (12;34)

1/2
2 2
= X <IN 4> <zusii [;2j4+1)(233+1)]
ixr; 20 ig'h; 2o
X CJ'. 2 J2 Yo (3.38)

Evaluating the radial part of the matrix element

yields (K-60)

2 2
< ity =(m ) (n + 3/2) (3.29)
\Mw,
where M is the nucleon mass, h w, = 41A—1/3 Mev, and 1 is

the number of oscillator guanta associated with the single-
particle states in the region being studied. For the lead

;sotOPes, n = 5, We follow Kisslinger and Sorensen and de-

fine
. 2, .02
S_ox@G W) = X (3.40)
41T
We can thus write (3.38) as
P (12:34)
‘é Jq'l;3zo J,V,;Zo
= X [(2 jatl) (2 j3+1)] Ci Ci, v, (3.41)
5

L
It follows from (3.41) that F2 obeys the following symmetry

properties
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' ]"'3 U
F (12:34) =  (-1)°1 7% P (42;31)

2 2 (3.42)

; Ji+detigt Ju .
Fz {12;34) = (-1) F, (43;21)

t
It further follows from (3.36) that G2 cbeys the
symmetry properties

] 5

G2 (12:34) = G2 (43;21)
e (3.43)

62 (12:;34) = (-1) 62 (21;34)

The pairing force result has been mentioned previous-

ly and can be written

. '/L
G (12:;34) =6 & 12 & 34 [.Q:-Qa] {(3.44)

As menticned earlier, the particle~hecle interaction

consists of two types of terms, shown below

=
<

!

\

I

!
— (3.45)

direct exchange
We can see that for a given multipole moment of the

potential, say the kth, the direct term is the dominating
one. This is readily seen fram the above diagram, where a
particle and hole coupled to an angular momentum X can anni-

hilate only through the th term in the multipole expansion.

The exchange texm, on the other hand, depends on all the multi-
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pole moments, these moments being recoupled to k by means
of a Racah coefficient (3.37). The ratio of the contribu-
tion of the exchange term to the contribution of the direct
term for a single multipole will, in general, be small, but
by no means negligible.

We now want to express the interactions 7' and 7"
in terms of the matrix elements F and G. From Appendix

A we obtain the following relations
7

The (Ggmg3miz 3om 3 m)

Ja-ma Jimi; iz-ma Jy=Mmy igmy;in-my
= Z,F_ (41:532) ((-1) . Ckae (-1) C 1

(3.46)
' '
where Fk(4l:32) = [Fk(13742) + fk (41;32)] (3.47)
' . Jitiz e+t L
and £ (41532) = - Z (21 + 1) Fy(41;32) (-1) W( 1 va iy in; K 2)
(3.48)

I - * I3 .

_ Ji—Jda+ vJ';-mt Jimi; Ja-ma
=2, F (42531) (-1) [(-1) C ko
-y j; ms , J'y—m-/
X [(—1) C K pon (3.49)

where

Pas
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}FK(42;31) = [F;(13;42)(—1)k + (1) " 'f'k(42;31)J (3.50)
and
— ' EEIRD
fk(42;31) = -21(21 + 1) F1(42;3l)(—1) W(3y3,3,357k1)
(3.51)

The extra phase factor in the definition of (3,49)

will prove to be convenient later.

o

. iy . .
Jiom g Jr-L Jymyz ;ou My

= Z, 6,(43:21) Cxu C kpa (3.52)
where

o Gk(43:21)

Ji+ I ] X
=21(~1) (21+1) [ Fy(12;34) w(1243;k1l) + (-1) x

s; (21;34) W (1234;k1)] (3.53)

"
2 7_7/&4. (j4m4 j3m37 j2m2 jl-ml)

dy-my ; i3-m3 7]

=~ Zx Gu(s3;21) (-l)j'-m' [(-l)m’“ Cunm
X [(-/)erl C::Z.';Wm] (3.54)
It will also prove convenient to extract from the
equations for the amplitudci, the re