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present work involves an extension of the techniques associ-

ated with this model and is an investigation of the extent to 

which it can quantitatively predict properties of the low-ly-

ing levels of spherical even-even nuclei. 

As a particular application, the energies of several 

of the low-lying levels and the reduced transition probabili-

ties for the first 2+ levels are calculated for the even iso-

topes of lead. 

These calculations show in a natural way how collec-

tive levels arise, and help to clarify the nature both of 

these and of the non-collective levels. 
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INTRODUCTION 

The presence of collective effects in the spectra of 

certain nuclei has been recognized for many years. Most 

non-spherical, heavy nuclei have low-energy spectra which 

can be attributed to a rotation of part of their nuclear 

matter, While many nuclei near closed shells, and possessing 

a spherical equilibrium shape, exhibit spectra which can be 

attributed to a vibration of the surface. Volume excita

tions are possible, but because of the high degree of incom

pressibility of nuclear matter, such modes will occur at 

energies that are much higher than the range observed for 

surface vibrations. 

The present work is concerned chiefly with a study 

of the spectra of even-even spherical nuclei. Such nuclei 

show significant regularities (S-55). The first excited 

level nearly always has spin and parity 2+ and possesses an 

E2 transition rate to the ground state that is enhanced over 

the single particle value. The energy of this level varies 

more or less regularly from isotope to isotope, and increases 

as a closed shell is approached. In most cases the next ex

cited level lies at roughly twice the energy of the first, 

and has spin and parity 2+, 4+ or, occasionally, o+. 
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In particular, this work treats the even isotopes of lead. 

These isotopes are appropriate for a quantitative study 

since the single particle energies needed in the calcula

tion are well known from studies on the one-hole nucleus 

Pb207. 

The present work is a microscopic approach to the 

problem in which an attempt is made to fit the experiment

ally observed energies and E2 transition rates by consi

dering shell model particles and allowing them to inter

act by means of a residual two-body force. 

The treatment is reasonably exact insofar as the 

force chosen for the residual interaction is a good ap

proximation to the actual residual interaction. Exchange 

terms in the interaction, which have been ignored in all 

"pairing-model" calculations, as well as in many other 

treatments, are here treated exactly. Their effect is in 

no way negligible but their inclusion does complicate the 

calculations to a considerable degree. 

The main purpose of this work is to find out whe

ther or not the pairing force, along with a quadrupole 

force, is capable of yielding quantitative results in the 

calculation of nuclear spectra, and at the same time, to 

investigate the nature of the states which combine coher

ently to produce the observed collective excitations. 
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CHAPTER I 

METHODS OF TREATING COLLECTIVE VIBRATIONS 

OF SPHERICAL NUCLEI 

The rapidly growing body of experimental data being 

accumulated on both collective and non-collective excita

tions has motivated the introduction of many nuclear models. 

The success of the shell model in predicting many 

of the ground state spins and magnetic moments as well as 

the discontinuities associated with the magic numbers has 

shown that the main part of the two-nucleon interaction can 

be assumed to produce a spherically symmetric, static po

tential (E-57). 

The unified model developed by Bohr, Mottelson, and 

others, is based on the assumption that from the remaining 

part of the interaction it is possible to extract an addi

tional self-consistent field Which is non-spherical and 

time dependent (B-55). 

However, the real two-nucleon interaction can not 

be completely reduced to a self-consistent field, and some 

residual interaction will always remain. While this latter 
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interaction can be neglected in the calculation of many nu

clear properties, especially those that depend on gross 

features, there are other phenomena in which the residual 

interaction plays a crucial role (B-55), (K-60), (B-59). 

4 

It is responsible, for example, for the shift of the intrin

sic observed levels from the independent particle prediction1 

for the stability of the spherical shape near closed shell 

nuclei, and the sharp transition to the deformed shape away 

from the closed shells7 for the reduction of the moment of 

inertia from the rigid body value7 and for the energy gap 

observed in the spectra of same even-even nuclei. 

Let us now discuss, in more detail, some of the 

above concepts as they apply to collective phenomena. 

1. Liquid Drop Model 

One of the first models that was introduced in an 

attempt to discuss specifically collective effects was the 

liquid drop model (M-57). In this model, the wavefunction 

contains no explicit reference to individual nucleons but 

is defined in terms of the shape of the nuclear surface. 

The equation for the surfaces of constant density can be 

written as (B-52) 
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where the o( ~ are a set of coordinates which describe the 

deformation of the nuclear surface. For small deforma-

tiona, the potential energy, corresponding to a given equi-

librium shape, can be written in the form 

E{o<) 
2. = E ( 0 ) + .! ~ )\., c " I 0( A)" I 

2 ?-

(1.1) 

where the coefficients C~ give a measure of the resis-

tance of the nucleus against deformation. Collective mo-

tiona are introduced by allowing the deformation parame-

ters to vary with time. If these parameters change slow-

ly, with respect to intrinsic nucleon motions, the kinetic 

energy can be written in the form 

T=J:. 
2 

(1.2) 

where the coefficients BA give a measure of the inertia of 

the nucleus with respect to changes in deformation. 

The total Hamiltonian which describes the motion of 

the nucleus can be written 

H = E ( 0 ) + .L :E ~ c )>. ~ )-«. t o( ~ 12 
+- .L ~ ).. 8 " ~/"" I ~ ~ I z. ( 1. 3) 

' 2 
from which the classical frequencies of oscillation are 

given by 

(1.4) 

and the energy levels by 
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E = E ( 0 ) + ~ ~ ,_.u- ( 77 ~/"- t- !- ) 1\ W (1.5) 

where the 77 .y.<- give the number of phonons in the mode 

.>./" · We note that the formulae given above are a conse-

quence only of the assumed spherical equilibrium shape, of 

the smallness of the shape oscillations, and of the adia-

batic hypothesis. The parameters CA and B>-. contain all 

the dependence on the detailed properties of nuclear matter. 

Most studies of the vibrations of spherical nuclei 

have been concerned with quadrupole vibrations, i.e., the 

mode ~= 2. We are thus led to consider the spectrum pre-

dieted by the Hamiltonian 

2 • ( 2. 
H = .! c2 ~r I 0( zr- I + ~ Bz. :Er f 0( z,.u-

2 
(1.6) 

Only positive parity states can arise, since the parity, 
)... 

given by (-1) , is +1 for quadrupole vibrations. 

The Hamiltonian, (1.6), predicts a ground state spin 

of I = o+ a single phonon state with I 
+ = 2 at an energy 

bw2 above the ground state, and a triplet of states with 

I = o+ , 2+ , 4+ at an energy 2nw2 above the ground state. 

This triplet of states results from the coupling of two one-

+ phonon states, each with I = 2 • 

These features are seen to be in partial agreement 

with the experimental facts as outlined earlier. The 
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liquid drop model, however, fails to predict either the 

correct magnitude for hw2 , or the correct dependence of 

this energy on A. Using the hydrodynamic estimates for 

B2 and c2 (P-62), hw2 has a value slightly over 2 Mev for 

A ~ 100, whereas the observed values lie in the ranqe 0.5 

to 1 Mev. The agreement is better for A ~ 200, where 

the calculated value drops to 1 Mev, but the dependence on 

A is still not correct. 

The liquid drop model can also be used to calcu-

late the ~ -ray transition rates between the low-lying 

levels. The following features, all in qualitative agree-

ment with experiment, are found (E-58): 

a) The cross-over transition from the second 2+ level 

+ to the 0 ground state is strongly inhibited. 

b) 
+ + The M1 cauponent of the 2 -. 2 decay is very 

weak. 

c) The E2 rates between adjacent levels are con-

siderably higher than the single particle 

estimates. 

Again, however, the estimates of B2 and c2 obtained 

from these studies are markedly different from the values 

required by the experimental data. 

Thus, to summarize the contribution of the liquid 
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drop model, it may be said that the actual nuclear oscilla-

tions resemble those of a liquid drop in some respects, but 

an attempt at detailed calculations on the basis of this 

model are rather less than successful. 

There might thus appear to be some justification 

for assuming that the form of the equations given by the 

liquid drop model may be quite adequate. In that case, 

there would be some interest in attempting to calculate the 

parameter C)- and BJ.. within the framework of a more sophis-

ticated model. One method of determining the inertial para-

meters B A involves using the "cranking" model formula of 

Inqlia (I-54), 

2. 
( i. I C) /C)O( I 0 > I 

\,../ i. - \,./ 0 

(1.7) 

where the states ~i) refer to the intrinsic single parti-

cle states, and Wi is their total energy. This formula, 

for an harmonic oscillator potential, leads to a value of 

B(~), so small that the adiabatic condition is violated. 

2. Shell Model 

Shell model calculations in which two-body inter-

actions are taken into account are restricted, because of 

the complexities involved in computation, to light nuclei 
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or to nuclei in the vicinity of closed shells. The nucleus 

Pb206 , falling in the latter category, has been particular-

ly well studied (T-58), (G-61). 

The first extensive calculation was carried out by 

True and Ford. These authors obtained reasonably good 

agreement for the energies of the levels of Pb206 up to 3.2 

Mev, using a singlet two-body force with the same effective 

range and strength as for the low energy two-body system. 

Their calculations indicated that better agreement could be 

obtained if same coupling to collective surface vibration 

was introduced, and further, that such coupling was essen-

tial to yield the correct E2 transition rates. 

A more recent calculation, more in the spirit of 

the unified model, in which surface coupling is introduced 

at the start, waa carried out by Guman et al (G-61). Let 

us briefly outline the method used in this calculation. The 

nucleus Pb206 is regarded as a system consisting of two neu-

tron holes and the surface of the core. The Hamiltonian is 

written as 

2 
H_ =-h 

P 2m 
+ v 

c 
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>-(..Lf 
............ 

v = V(r)- .!..:..!. qV(r) 1.8) c 
2mc r ~r 

V(r) = - vo 
(1 + eO((r-ro)) 

2 
I r1 - r~ I 

vP [ vt rr t rrs] = + vs e p2 

The parameters of the central potential, Vc' are as-

surned to be known from previous work (S-59). 

In the expression for Vp' vt and v 8 are the triplet 

and singlet interactions, and fT t and rr s are the correspon-

ding projection operators. ;o is the effective range of the 

pair interaction. 

Vs(~) describes the interaction between one external 

nucleon and the field generated by all the others, and leads 

to a deformation of the potential surface of the core. For 

small deformation, the matrix element of the radial part of 

this quadrupole force is taken to be 
I 

n+n 
(nil X(rK) Jn'l') ~(-1) · 4fO Mev 

The parameter o<2J"C- is represented by 

where c + 
is the effective surface tension, and b2~ 

(1.9) 
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are th.e annihilation and creation operators for a phonon with 

angular momentum 2 and z - component,~ • The frequency of 

the core surface oscillations is w. 

The basic set of eigenfunctions are chosen to be of 

the form 

which corresponds to a state with total angular momentum I 

and z - component M formed from a state of two nucleons coup-

led to angular momentum J and N phonons with angular mo-

mentum R. 

These functions form the basis for a calculation of 

the eigenfunctions of the complete Hamiltonian H. 

There are four constants to be determined, namely 

hw, C.G, f> , and v 8 • The authors show that, with suit-

able choices for these parameters, all experimentally known 

excited levels up to an energy of 3 MeV can be reproduced. 

+ The authors note one exception, namely, the 4 level at 1.66 

Mev. and cite this exception as evidence that this level 

should be reinvestigated. Good agreement with experiment 

is also achieved for the calculated transition probabilities 

between the various levels. 

This calculation shows that collective states are 

admixed in all the excited levels, and that the short range 



pair interaction leads to a mixing of the single particle 

states. 

3. Pairing-Plus-Quadrupole Force Method 

12 

One of the most difficult problems associated with 

the residual interaction has been that of suitably accounting 

for the short range part. A major breakthrough in this di

rection occurred When Bardeen, Cooper and Schrieffer intro

duced their theory of superconductivity (B-57). The ideas 

associated with this theory have been taken over to the case 

of nuclear matter and have formed the basis for tne introduc

tion of the pairing force. It was observed that nuclear 

structure exhibits certain features which are similar to 

those of electron structure in metals, the m~st important of 

these being an energy gap observed both in the spectra of 

certain nuclei and in the band structure of superconducting 

metals. Bohr, Mottelson and Pines(BM-58) suggested a possi

ble analogy between the correlation in the two systems re

sponsible for the gap. The physical basis for this analogy 

is the similarity between the pairing energy of two nucleons 

with equal and opposite projections of the angular momentum, 

and quasi-bound states of electron pairs with equal and 

opposite linear momentum. 
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The pairing force which has emerged from the above 

considerations can be defined (K-60) as one which has con-

stant matrix elements in a ljm) lj-m) configuration. 

This is equivalent to saying that the matrix element- of 

the interaction between two particles in a j-shell and two-

particles in a j'-shell vanishes unless the total angular 

momentum in each state is zero, in which case it is propor-

tional to 

Assuming then, that the pairing force adequately 

describes the short range part of the residual interaction, 

it remains to describe the long range part. The presence of 

quadrupole vibrations of even-even nuclei, and the appearance 

of several regions of permanently deformed nuclei possessing 

large quadrupole moments, suggests that a quadrupole force is 

required as at least part of the field-producing portion of 

the residual interaction. It appears that higher multipoles 

are not required. 

Let us now discuss, in more detail, some of the 

main features of the pairing model. 

a) Pairing Model (B-59) 

+ Let us introduce the Fermi operators a~ and a~ 

which create and annihilate a particle in the state ~ 

The index .;) can refer to any appropriate set of quantwn 
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numbers, in particular, for the case of a spherical nucleus, 

~ = [n, l, j, m]. We will define such single particle 

states as 

f.U > 

where jO) denotes the vacuum state with respect to the ope

+ rators a , a, and is defined by the set of all equations 

a;, f o) = o 

If we impose the condition of time reversal invariance on the 

system then, the states 1 i) > and 1- .;) ) are degenerate. 

Here, J ~ i) > is tl1e state with the same set of quantum 

numbers as I i> > but with the opposite sign for the projec-· 

tion of angular momentum. The relation between the two 

states , apart from a phase factor, is 

-- ( 1.1 o) 

where r is the time reversal operator. 

In terms of the usual angular momentum ntates used, 

for example, by Condon and Shortley (C-57), a state with 

angular momentum j and component m can be written 

where 

:E 
tns+ml :m 

c'_7nAj SM5 
)In 

is a Clebsch-Gordon coefficient, 

{1.11) 

is the usual spin function, and the spherical har.monics 

have been defined as ilylm· To obtain the time-reversed 
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state, we make use of the relations (W-59) 

= 
m.a. 

(-1) Yl.-m.t 

and write 

.l '"s 
a ' 

.J m1. l S ms J 
C j ., t- iJ YJ "'..t ~ s "'s 

J-,., 
- c-o i'; -m 

Thus, the stat.es 1-v) = 1 j-m) have the phases 

(-l)j-m times those in the usual Condon and Shortley nota-

tion (allowing for the extra phase factor introduced in the 

spherical harmonics). 

The Hamiltonian for a system of particles moving 

in a spherically-symmetric, self-consistent well, and inter-

acting through a residual two-body force, can be written 

I + I I ') + + H = ~ ;) £ j Cc. ..,) Cl ,) - I ~ < .;) I .;) ~ v I i> z. -\) I Q. ~ I Q. i)'L Q. -\) ~ Cl il,' e 
where E j is the energy of a particle in the shell j. 

The pairing interaction is one in which each state 

( /.12.) 

is assumed to be correlated with its time-reversed conjugate. 

A convenient way of introducing these correlations is to de-

fine new Fermi operators as follows: 

(1.13) 
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The canonical nature of the transformation is insured 

by choosing the u~ and v~ to be real and to satisfy the 

relation 

= 1 (1 .. 14) 

This canonical transformation does not conserve the 

number of particles, and instead of considering the Hamilton-

• ian H , it is necessary to introduce the Hamiltonian 

I 

H=H -.AN (1 .. 15) 

where .A is chosen in such a manner that the average number 

of particles in the N-body system is N. 

The inverse transformation to (1.13) is 

+ = u ..) 0(..) + V..) f3..) 

a_~ = U-1> (3~ - V--> o.c!, 

{1.16) 

Substitution of this transformation into (1.15) 

yields a Hamiltonian with the followinq structure: 

(1.17) 

U is a constant term 

(1.17a} 

(H02 + H20> and H11 are quadratic in the new operators. 

(H
02 

+ H20) = ~"' [ (.E-.> -).) 2. t.t..:>V.> - 6. ~ ( u.~- 11:::,) J 
X ( o< ~ t3 :_, ... fJ.;) o<.;;, ) ( 1.1 7b) 



H11 = ~ ~ [ ( £ ..> -).) ( U ~ - 1.1 ~ ) + (j..,) 2 U .> v ~ ] 

)( ( o< ~ o< ~ + [9 ~ f'v) 

where €..> and 6:;) are defined by 

£.., 
I - 1. 

= £..:> - ~.,) <..,).,;)I I v J .J, v > V.fl, 
' 

I 

6~ = ~ -i), <..J-t>l V lv,vL) u. ~, 1..11)1 

The matrix elements in (1.18) and (1.19) 

by 

<.. .v, 0,_ I V I v; 1),' > = 

< .\)I ..) t I v /..J~ i>; > 

• • • -(j m j m 
' 1 1 2 2 

v 

, 

17 

(1.17c) 

(1.18) 

(1.19) 

are defined 

~ means that the sum is restricted to positive 

values of the angular momentum oanponents. The remaining term 

in the Hamiltonian, Hint' describes the interaction between 

the new particles, and can be written in the form 

Hint = (H40 + H04) + (H + H ) + 
31 1? 

Explicit expressions for the te:c: · 
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given in the appendix to reference (B-59). 

Let us, for the moment, neglect the terms in Hint• 

Then the Hamiltonian (1.17) will describe a set of inde-

pendent particle-like entities, or 'quasiparticles', if the 

term (H20 + H02 ) is set equal to zero. This condition 

yields the relation 

(1.20) 

which, along with (1.14) yields the familiar relations for 

u~ and v .;,. 

1. 

[' £.,-~] t. [ -£~-~] U...v = t + v.j) = ( 
E.o> 'F E. ... ~ (1.21) 

z z. J 'lz. 
where £~ : [cf..:>-~) r /J..;) 

is the energy of a quasi-particle in the state ~ • 

Using (1.21) and (1.20), the equation for A~ can 

be written in the for.m 

(1.22) 

Specializing now to the case where ~ = [j,m] (we 

can suppress the dependence on n and 1 for what follows), 

the pairing matrix element in (1.22) can be written in the 

following form: 



·• ' j'm' J -m ; 

•I I .. 1 I 
J-m~Jm 

CJM 

• I I o I I 
J m ; J _,., 

CJ"M 

;_..,., ; j m 

C:rM 

j-mj.im T 
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<TM/V/TM) 

C:rM c j M (I +- ( -1) ) < J M I vI j M > (1 .. 23) 

Since the pairing force we are considering vanishes 

unless J = 0, we set J = 0 in (1.23). Then, using the rela-

tion jn-~;.i-rn 

c 00 - ( -1) 
J-'" - 'lz. 

(z.i+-,) 

and defining <oo I v I oo) as G J (2j + 1) (2j 
1 

+ 1) 
2 

we can rewrite (1.22) in the form 

o' I 
I ,) -M 

G ;£j'n, 1 (-J) .t6,j'm' 

This expression shows that 

is a constant. We then define 

and this reduces (1.24) to the form 

I = G 2.. J' .n. J• 
2. £ jl 

= G 
z. 

£.;/ (1.24) 

(1.25) 

(1.26) 

where ..I2.. j = :j + 1/2 is the pair degeneracy of the j-shell. 

As mentioned earlier, the constant A is found by 
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requiring that the average number of particles in the system 

be N. This requirement can be written 

"' <o{ Nlo) =N f.j - )I] 
Ej 

Thus, if the shell model energies, 

(1.27) 

E. j , are known, 

and a value for G, the strength of the pairing force is esti-

mated, then (1.26) and {1.27) can be solved simultaneously 

for and A • It should be noted that, while in equa-

tiona (1.26) and (1.27) the sum includes all distinct neutron, 

or proton, energies, in practice only states in the partially 

filled shell under consideration are considered. This is not 

a serious approximation, since states that are distant from 

the Fermi energy, A , will make little contribution to the 

sum, since, for these states, 2 
v ~ 1 or o. 

The main results of the pairing model can be summar-

ized as follows: 

1). The Hamiltonian describes a system of independent quaai-

particles 

H-= U + ~~j £; (c<;m o(jm + (3~11'1 p:;,.,) 

2). The single quasiparticle excitation energy is given by 
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3). The quasiparticle vacuum is defined by 

o<j fo> 0 
for all j. 

The approximations involved in achieving this simpli

fied picture are as follows: 

1) The number of particles is no longer fixed. This means 

that solutions of a Hamiltonian which has quasiparticle& 

as eigenstates, will describe only average properties of 

nuclei, that is, in calculating the properties of a nu

cleus with N particles, an average over the properties 

of nuclei with N, N ± 2, N ± 4, etc. is involved. In 

practice, this does not appear to be too serious, but it 

is important that the property being studied varies 

smoothly from one nucleus to another. 

2) The matrix elements of the pai!ing force are set equal to 

a constant, for states coupled to total angular aomentum 

zero. Such a force does seem to reproduce the important 

characteristics of a short range interaction. In partic

ular, it gives rise to a two-particle spect1~ in which 

one state, that with J = 0, is split off from all the 

others (M-58). It is hoped that the differences between 

the pairing force and the short range part of the actual 

two-body interaction will be relatively unimportant. 
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b) Work of_Kisslinqer and Sorensen (K-60) 

A nuclear model in which the residual interaction is 

represented by just these two components, the pairing force 

and a quadrupole force, was first studied in some detail in 

a fundamental paper by Belyaev(B-59). The first realistic 

quantitative calculations based on this model were performed 

by Kisslinger and sorensen (K-60}. In order to avoid the 

difficult problem of treating the short range interaction 

between neutrons and protons, the authors considered only 

the case of nuclei in which either the neutron shell or pro· 

ton shell was closed. They followed the procedure of Bel

yaev, in which the pairing force correlations are taken into 

account by means of a canonical transformation from the 

original interacting shell-model nucleons to new independent 

quasiparticle&. The ground state of the system in te~a of 

the new quasiparticle& is the "vacuum .. state. The pairing 

correlations enter into the "vacuum" enerqy, and into the 

intrinsic structure of the quasiparticle&. Thus, if the 

interaction between quasiparticle& is :i.gnored, one is lef-t: 

with a system of new independent "particles" which implicit

ly contain the effect of the pairing force. The effect of 

the quadrupole force is then taken into account by intro

ducing the total quadrupole moment of the nucleus as a 
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parameter, and allowing the particles defined above t.o inter-

act with the deformed field generated by this parameter. 

The adiabatic hypothesis is then invoked, and the enerqy is 

calculated for a fixed value of the quadrupole moment, W(Q). 

The Hamiltonian of t.he collective motion, for amall Q , can 

be written 

2 •2 H = ~ C(Q) Q + 1 B(Q) Q (1.28) 
2 2 

Where the inertial parameter B(Q) is found from the usual 

cranking model formula of Inglis (1.7). 

This Hamiltonian describes harmonic quadrupole sur-

face vibrations and yields, for the energy of the first 2+ 

level, 

(1.29) 

As mentioned previously, the potential energy ter.m, 

C(Q) , and the kinetic enerqy term, B (Q), depend upon 

the details of the intrinsic nucleon motion. The authors 

calculate these quantities for the quasiparticle model, and 

for the case of a single j-shell, e~. (1.29) can be written 

in the form (B-61) 

(1.30) 
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whE!re E is the energy of a quasiparticle in the j-shell be-

ing considered, and 9 is a function of the number of par-

ticles that varies from nearly zero at closed shells, to 

nearly unity as the shell becomes half-filled. This is in 

qualitative agreement with the observed trend, Where the 

first 2+ excitation i.s smaller than the lowest "single-

particle" excitation, ZE, and decreases as particles are 

added to a closed shell nucleus. The authors also calculate 

the reduced matrix elements for excitations fran the ground 

+ state to the 2 level 

B ( el) 5 -=-
2. (1.31) 

where e eH is the effective charge of the external nucle-

ons. The derivation of this formula involves the assumption 

that this transition exhausts the sum rule for quadrupole 

matrix elements to the ground state. For the isotopes of 

lead, the authors obtain agreement with experiment by using 

the experimentally measured effective charge in Pb207 

(T-58). 

The results of Kisslinger and Sorensen do seem to 

indicate that a quite adequate description of those proper-

ties of nuclei Which depend strongly on the residual inter

action can be achieved by the use of a pairing force and a 

quadrupole force. 



The calculat.ions of Kisslinge.e and Sorensen, :in 

which a parameter is introdaced to descr.il?e a specific type 

of collective motion can be c-:n-1si.dered as :;. macrosct.lpic 

d~scri~tion ot the problem. ·tFrom such a viewpoint, the 2 

excited levels occur as a result of oscillations of the 

quadrupole moment of the external nucleons. The static po-

larizabil i ty of t.he core then gi'\.~es rise t.o surfac:e osci.l-

1ation.s (B-61). 

A more funda.cner .. tal a.ppro<lch to the ~roblem would. be 

a roicros,~·opic descl::."~pt.ion, in l;l.-h.ic~ one starts from the 

basic si:rv.:rle partie] e s~.:ate·s and an ?pprcpriate residual 

int~raction, calc,llates the "elementary exc:i tations" of the 

sysb.?lr., and fr.om these :Cuild<'3 up tfl€ col.lect.ivG Iew~ls. 'l'he 

only parameters appearing in such a t rea.tro,~nt would b·s t.:.he 

strengths of the various canponenta of the residual iT'Iter·-

action, for example, the st.rengt.h:s of the rairing and ~-uad-

1-ur~ forces.. Besid~s bding more fundamental, a cnicro-

~" 

theory to include hiqh~::•r exr::it>~t i cnL t.han <.ne 2 l'S'V<'?'ls c:.n~ 

at. tempted for here>, 

A further advantaae lies in tne fac: tha~ ccllective lev~ls, 
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excitations can be described by the same set of equations .. 

4. Method of Approximate Second Quantiz~tion 

T".nere are t·wo general methods which have been used 

to investigate, from a microscopic viewpoint, the collective 

excitations. The first method, discussed in this section, 

is the "method of approximate second quantization, •• although 

it is also known under various other names (B-60). '!'he 

second method, and the one to be used in this work, is the 

method of Green's function (B-61) (G-58). An introductory 

note on this latter method is contained in the next section. 

The Hamiltonian for the residual interaction is 

written in the form 

H=H + H (1.32) 
p Q 

where ll is the pairing Hamiltonian, and 
p 

.. l I I " HQ - .L ~ < .,), -ih ! 1- .,_ 
~'"' y~(i) y~ (Z) vz. -i>, l - X r, r z. 

2 / 

+ + Ct.,) I X av 1 c~v~ 1 a. t>,' (1.33} 

The usual Bogoliubov transformation converts these 

Hamiltonians to the following forms. 

(1.32a) 

:: 
, 

+ HQ (1.32b) 



Here, 

I 

H Q = - I I 2. :X ~ ( ~ z ) j j I ( ~ 2 ) .i' j ,' ( U.; 1.lj I + u j I v J. ) 
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;( ( A+: .. + (-I);U- A ;,·J·, : K -.M-) 
~, J, .i ¥ ., . / (1 .. 34) 

and 

( Q ) . q 

0 2 "J (1.35) 

+ 
• •I I 
Jlri;Jm 

A j j' ~ 'r = c~ (1.3G) 

+ The operator A thus creates a quasiparticle pair 

in a state with a fixed anqular momentum and z- component. 
11 

HQ contains the remaining terms which contribute to 

Hint defined by equation (1.17d). The error made in neqlec-
-1 '"'"' A- y3 ting HQ is '"'-(~D.) • Here, I! is the 

density of levels near the Fermi surface, and ~ is the 

energy gap. To the same order of approximation, the opera-

tors A and + 
A can be regarded as Boson op~'rators obeying 

the commutation relations 

[A+ A J "'- c . . ~ I • , & .. ' c j' j, 
.; j, ; _l(r ' il j,' ; Ji/,tA.. - - o J J, o j J, - J J, a 

The excitation energy w of an excited levgl with 

angular momentum 2 and z-canponent .)A- can then be obtain-

ed by taking matrix elements of the equations of motion 



+ 
for A and A between the ground state and the excited 

level. 

Let us denote the exact ground state by I ~o> 
and the excited level by [ 2-_)A- >. The matrix element of 

the equation of motion for A+ can then be written 

(1.38) 

where 

A similar equation holds for the operator A. A sys-

tern of coupled equations for the amplitudes 

+ 
A I 2-.JA-) and 

is thus obtained. The condition that these equations be 

consistent yields the secular equation 

a l 
_L = ~jj' 2.(Ej+Ej•)(1,2)jj' (u.JVj'+ VjUj•) 

;< (£j~o£jt)z- .....,.2. 

(1.39) 

A graph of this function is shown below in Figure 1. 

Only positive values of w should be considered since, by 

definition, the ground state has zero energy and negative 

values of w are thus unphysical. 

28 
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The function P' .. i (w) has poles at the quasiparticle. 
JJ 

energies (Ej + Eji). The first such pole occurs at an ener-

gy > 2. tJ. since Cl. is the smallest value that E can as-

sume. As can be seen from Figure 1, if )( is positive, and 

not too small, a collective level is split off from the 

otherwise regular two-quasiparticle spectrum. The level is 

collective in nature since it is only through a coherent inn· 

teraction among several single particle states that a.n 

energy can be obtainad Which is lower than that of the 

states taken individually. 

The same equation of motion approach can be used to 

find the state ~.rector for the excited collective lev'el .. 

If we define an operator 
+ 

Ba/" such that 
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I~> - B~r I~.) (1.40) 

and asswne that B+ 
2;"-

can be expanded in terms of the oper-

+ 
ators A and A, then (1.38) can be used to find the coef-

ficients of expansion. It turns out that these coefficients 

'*' are just proportional to the amplitudes < io / A I z~) 

and 
+ Thus, once the energy of the 2 

level is found, the amplitudes, and hence the state vector, 

can also be found. 

+ 
The assumption that the operators A and A can 

be regarded as Boson operators, has led to the above approach 

being called the •ouasi-Boson• method. 

An equivalent approach, called the "method of linear-

ized equations of motion," has also been used to derive the 

same secular equation and state vector (B-60). In this 

method, the equation of motion technique is again used, but 

+ 
the exact commutators of A and A are found with the 

I II 

complete Hamiltonian Ho + HQ. The approximation consists 

in dropping all ter.ms containing four single quasiparticle 

operators, and keeping only those with two such operators. 

This procedure leads to a set of equations Which are linear 

in A and + 
A , the same set, in fact, Which arise from the 



Quasi-Boson approximation. The justification for droppin•J 

ter.ms with four operators, according to Baranger, is that 

these ter.ms involve more energetic excitation. Beyond this 

statement, however, an investigation of the validity of the 

approximation is not carried out. Presumably, there is a 

close connection between this approximation and the quasi

bos-on treatment where only that part of the Hamiltonian 

which will lead to linear equations is used. 

Besides these approximations, which are rather dif

ficult to assess, it should be mentioned that the simplici

ty in form of the secular equation for w, (1.39), results 

from a neglect of certain exchange terms. This point will 

be taken up again when the equations to be used in this 

work have been derived. 

5. ~hod of Green's Function~ 

31 

The method used in the present work to study the 1~ 

lying collective excitations in spherical, even-even nuclei 

involves the use of Green•s functions (B-61). Let us brief

ly outline the method to be followed. 

Single particle excitations can be described by 

single particle Green's functions, whose poles in the complex 

energy plane determine the energy and damping of these exci

tations (GM-58). Similarly, the poles of the two particl~ 
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Green's function yield the energies and damping rates of the 

two-particle excitations. 'rhus, to describe the collect:i.ve 

states in the presence of a pairing force and a quadrupole 

force, the following procedure is carried out. Considering 

first only the pairing force, the single-particle Green's 

functions are calculated and the single-particle e:xcitatic->ns 

are found. These excitations will be called "quasiparti

cles." We note that this definition of quasiparticles, as 

will be dlscussed in the next chapter, is not the same as 

that introduced in connection with the canonical transfor

mation t.echnique discussed earlier. The effect of the quad

rupole force is then introduced as an interaction between 

the quasiparticles, and the Green•s function for the two 

quasiparticle excitations is calculated, yielding the two 

quasiparticle energy spectrum. Collective levels can also 

arise, depending on the nature of the interaction. Since 

only a quadrupole force is being considered, the appearance 

of collective levels will depend upon the strength and the 

sign of this force. 

Because of the presence of pairing, which leads to 

a condensate of Cooper pairs being formed in the ground 

state, the usual methods of quantum field theory, in partic

ular the analysis of the problem in terms of Feynman 
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diagrams, break down (B-58). This difficulty is associated 

with the non-vanishing ground state expectation values asso

ciated with uncontracted pairs of operators. This problem 

can be circumvented by considering particles outside the 

condensate, and then treating the condensate as an external 

field. The system will no longer be closed with regard to 

the number of particles, since allowance must be made for 

the absorption of a pair of particles from the condensate, 

or the loss of a pair of particles which may combine to 

form a bound state with zero momentum and drop into the con

densate. 

The presence of the condensate necessitates the 

introduction of three single-particle Green's functions: 

the normal one, and two more which allow for propagation into 

and out of the condensate. Similarly, we must introduce 

three two-particle Green's functions. A system of coupled 

equations for these functions is then derived. Each of the 

two-particle Green•s functions can be reduced to an ampli

tude for a specific kind of pair, particle-particle, parti

cle-hole or hole-hole. By pai~:· is meant just a product of 

two real particle creation or annihilation operatora. These 

amplitudes are transition matrices between the exact ground 



34 

state and an excited level characterized by angular momentum 

K, and energy w. They can be interpreted physically as the 

proportions of the various two-quasiparticle states from 

Which the collective level is built. The system of coupled 

equation• forms a homogeneous set in terms of these ampli

tudes, with coefficients depending upon the energy w. A 

secular determinant is then constructed from which the energy 

of the collective level is determined. Having found the 

energy, the amplitudes are then calculated and the state 

vector found. Once the state vector is found, of course, it 

is possible to calculate electromagnetic transition rates. 

The next chapter describes in detail how the above 

calculations are carried out. 



CHAPTER II 

FORMULATION OF THE GREEN'S FUNCTION METHOD 

1. One-Particle Green's Function 

We introduce the single particle Green's function, 

defined in the coordinate representation, 

G-Cf, t,;r';t,) = -i <.~:lri Yct.t,J -t~ci';t.)J I if:> 
(2.1) 

where f t:) denote9 the exact ground state for a system 

of N particles, y t and 'f are creation and annihila-

tion operators in the Heisenberg picture, and T is the 

Wick Chronological operator. 

Let us write the Hamiltonian of the system in the 

form 

+ J J t'crn ~ <tt ;r· t') t cf't') dt J.t· dt' 
(2.2) 

The potential ~ , which in general is non-local, 

comprises the set of all proper self-energy diagrams. 

Corresponding to this Ha~iltonian, the equation of 

motion for the Green's function, (2.1), takes the form (KK-60) 

35 



(2.3) 

We first assume that the Hamiltonian (2.2) does not 

depend explicitly on time, in which case both G and~ are 

functions of time only through the difference t 1 - t 2 • ' 

Taking the Fourier transform of (2.3) with respect to this 

time difference, we get 

( ~2) ..... ~ 
E. -L G- ( r.,r,; e) 

Z.M 

+ J z < r. ,r · ; £) G < r ·, r. ; £ > d r · 
(2.4) 

It is well-known that the poles of G in the com-

plex energy plane determine the energy and damping of the 

elementary excitations of the system (GM-58). Also, the 

single particle states with which we will be dealing are 

those with energies close to the Fermi energy • 

It is thus necessary to investigate the expansion 

of ~ ( E. ) in the neighborhood of the Fermi energy. This 

has been carried out in some detail by Migdal (M-62). He 

emphasizes the difference in character of ~ (f. ) , depen-

ding on whether or not Cooper pairs may be formed near the 

Fermi surface. If ~A denotes the regular part of ~ 

containing no Cooper pairing, and if ~ K denotes the part 

36 
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of the self energy corresponding to the presence of Cooper 

pairs, then equation (2.4) reduces, as shown by Migdal, to 

the form 

( £ - L t - U ( Y, ) ) ( I - cD ~ R ( 6' •• £ .)) G ( r, , ;:; E..) 
2. MeH C> fo 

= s ct.-~> +-j z K cr. ,r' ; c> G c r', t. ; e) J.r• 
(2.5) 

where 

I -

(2.6) 

and 

:E...R CrJ fo£o)- Eo C>£.A - (lo 2>£R 
~ 

U < r) = ;:> ( o Z C) P0 

(2. 7) 

In these equations, (J. and Eo denote the momen-

tum and energy associated with the Fermi surface. The above 

equations are accurate to order 
-1/3 

rc/R ~ A Where 

the interparticle distance at the Fermi surface, and R is 

the size of the system. 

One of the basic assumptions of the present work, as 

well as of those outlined earlier, is that the same set of 

intrinsic single particle states can be used throughout an 

entire major oscillator shell. Another way of stating this 

assumption is to assert that the self-energy term., 2: ~ , 



does not change as particles are added to, or subtracted 

from, the system, provided that such changes do not occur 

across a magic nucleus. The mathematical expression of 

this assumption is contained in the statement 

= 0 
(2.8) 

since the only quantity affecting the position of the Fer.mi 

energy is now assumed to be the number of particles, and 

~ R is independent of this number. Similarly, we can 

set 

written 

v~P. - o 
;> C1'0 (2.9) 

The equation for the Green's function can now be 

( 

.... 1 

£ - !i!... 
ZM 
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= scr".-tz> +- ;£·II\ ( r, , r ~ E J ~ ~~ ) (2 .10) 

where U(r) = (2.11) 

In the absence of pairing, ~ J< = 0 , equation (2 .10) 

describes the motion of independent "quasiparticle&" in a po-

·tential well U(r) according to the Hamiltonian 

...... ~ 
1-1 = ..!:._ + u <7> 

ZM (2.12) 
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We note here, that the term "quasiparticle" does not 

have the same meaning as in the context of the pairing model 

described earlier. The term "quasiparticle,• in this and in 

subsequent sections, will be used to describe real particles 

modified by the self energy, ~ R , and interacting with 

other such particlea through the pairing interaction, 2 u. • 

The energies of the single particle excitations of 

the system can be found from the eigenvalues of H as 

given by 2.12. 

(2.13) 

In actual practice, it is assumed that the E.j I 

given by (2.13), are just the single particle energies given 

by experiment for the case of one particle outside a double 

closed-shell. In the present work, these energies for the 

lead isotopes are known from work on Pb207 • As mentioned 

earlier, the variation with A of the single particle ener

gies is igaored. This assumption is shown by the work of 

(K-60) to be reasonably valid, and certainly for the case 

of the lead isotopes, Where A changes only from 200 to 

206, it should be quite valid. 

For the case of spherical nuclei, the index ).. in 

(2.13) denotes the set of quantum numbers [n,l,j,m]. 
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Let us now turn to the solution of (2.10) for the 

case where • We proceed by expanding G in 

ter.ms of the eigenfunctions ~~ of (2.13). 

(2.14) 

Substituting this expansion in (2.10) yields the equation 

(e- £>-,) G).,h(f) = S'lo,).z. +~>-'(~~<co},.,.\' G;t).t(E) 
{2.15) 

Introducing the single particle Green•s function 

in the absence of pairing, 

0 

&.,.,).,_ ( £) = . &~, ~1. 
£-f.)>,+ is,.. 

where h).o ---+ +0 

--+ -o 

for €.-£)..>0 

fol"' E' -£,.,.<0 

(2.16) 

and € ). 0 is the enerqy of the highest filled state, we 

can rewrite (2.15) in the form 

G,.,l-1.(£) = G~,h.<.t) 
.,. ~).'"" c;;,,., (£) c~·«t>J)!,. .. G).·).~.<£) (2.17) 

Comparing (2.17) with the corresponding equation 

that would result from {2$4), namely 

G-;.,"t(f) + zx,." G:,,.· (£) (~Reo),.•}." G,.").z_(E) 

where 

+ ~ ,.. "It e:/·,., ).1 
( E ) ( £ I( ( E ) ) }.1 

}. .. G }-" >- 2. < ( ) 

0 

6- )., /l.a_ (E) 
- I 

= a')>., ).1. ( £- £)..; +i b.>-o) 



and 
I 

J-1 <P). = £ >-' <.p;. 
I ~t 

1-1 = .Jl_ 
ZM 

we note that the simplicity of form of (2.17) results from 

assuming that the effect of ~ R ( £) can be absorbed in-

to the function 

a) Structure of :f. k 
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Let us consider the structure of ~k' the self-energy 

term giving rise to the pairing correlations. Since this is 

discussed in detail by Migdal (M-62), we will just sketch the 

main ideas. 

The interaction z k which we will hereafter denote 

simply by ~ , can be represented graphically 

(2.18) 

The wavy line denotes a Cooper pair, that is, a 

bound pair with total angular momentum zeror - i D.>- (E) 

is the amplitude for a pair of particles to form a bound 

intermediate state with total angular momentum zero, and 

is the amplitude for a pair o.f particles 
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to come out of this bound state: - )t. denotes the state of 

the hole that is left when the Cooper pair is formed. The 

initial energy of the system is E0 (N) + c and the enerqy 

of the state A is E0 (N + 2) - E-~ • If the above pro-

cess obeys the conservation laws, then we can write 

• s ,. )..1 IJ. ..,.. ( € ) Ll- >- (- l ) 

(E + £ -). - z~) (2.19) 

Equation (2.18) can be interpreted in the following 

fashion. The initial state of the system consists of a con-

densate of N/2 bound Cooper pairs and an external particle 

in the state with energy • This particle inter-

acts with another external particle in the state - ~ 

to form a bound Cooper pair, leaving behind a hole in the 

state-~ • The initial state is again restored when the 

bound pair ( ). , -}.) is broken up allowing the particle in 

state - }. to combine with the hole in that same state, 

and leaving the particle in state )\ to propagate freely 

once more. 

In analogy with the definition of the Green's func-

tion for a particle without pairing, (2.16), let us introduce 

the Green's function corresponding to a hole in the absence 

of pairing, 
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- () 

&>-,h(€) = S>.,).z. ___ ___.;.~--
€+E,.,-~-tib)> 0 (2.20) 

Using this definition, equation (2.19) can be written 

in the fonn 

(2.21) 

b) Structure of £:::,. 

Let us now investigate the structure of the vertex 

part Cl • This quantity must be dete~ined from the self-

consistent equation 

(2 .. 22) 

where - i. T' represents the sum of all interactions which 

scatter a pair of particles but which allow for the fact 

that in the intermediate state, one line denotes the complete 

Green•a function G, while the other denotes the Green's 

function defined by (2.20). This asymmetry in structure 

follows from equation (2.18), where it can be seen that in 

the state A, the single hole propagator must not include 

the pairing effect, for otherwise the diagram is not irre-

ducible. 
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'l'hus 6 can be expx-essed in the fonn 

A). ( £ ) : - J.... ;E. ~I r d f I -r ( >.' £I • - >-' - e I ; - ). - f ~ ). ( ) .,,. 
X G >-' ( E I ) D.. .,! ( £ I ) G 0:: )' ( ( I ) 

{2.23) 

Introducing the new function 

(2.24) 

allows us to write (2.23) in the form 

6).<£) 

= ..!:... ~ ,..~ j J. E., r ( ).' e,' - "'- £I ; - >- -E. ' }. E. ) F;, < e ' > 
2.'1r 

(2. 25) 

"' In a similar fashion, the equations for D. can be 

written 

= ' 
ZTr 

where 

.fl 
6-~ (- () 

;E ,.,JcJ r.' r ( ).' £ 'J - ;.'- £ ( ~ -;.. - £, >- c. ) f_•,., <- £') 
(2.26) 

+ - )* f _" (- f) = ( F_.,._ C 0 

= - 0 ~ ) 
G-~<E) A-).(-f) G-).(E 

(2.27) 

Using (2.21) and (2 .. 27), and dro{pinq the factors 

6].,..1 
, equation (2.17) can be written in the form 

o o -o « ) G G ._ ( E ) = G 1-- ( E ) + G ,. <f) ~ ._ c E) G -1< ( 0 b.-). <- £ >- C 0 

0 0 + 
=- G,. (€) - G).<£) /),.)..(E) J=_,. <-£) 

(2. 28) I 

Thus, using (2.16) and (2.20) for G0 and G0 re-

apectively, equation (2.28) reduces to 
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> ~ 
(£-€).)(£+£-,.-~)-/6.).(£)/ (2.29) 

The functions F+ and F- can now be written 

tj( + F-;. (-E) = - b.-~(-£) 

(2.30) 

= - o.~ ({) ' 
(2.31) 

In order to reduce the system of equations (2.29)-

(2.31) to a more manaqab1e form, we introduce two approxima-

tiona. 

1) r is restricted to the class of instantaneous 

interactions. 

2) 6 ( r ) does not depend on 

Statement 1) implies that T' does not depend on 

energy, and frail (2.25) we see that this means that D.>- {f) 

is independent of energy. 

order 

The assumption in 2), Which leads to an error of 
-1/3 

A (M-62) , means that f);" is a constant, apart 

from a phase factor. We write, for the [j,m] representa-

tion 
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J-m J-m 
L! ;P1 ::: (-/) {).; :: (-1) Ll 

We also note that for constant A , equations (2.30) 

and (2.31) are invariant under the transformation 
I _i.o( 

Fe 

so without loss in generality we can choose A 

is 1 o< = o. 

real, that 

To simplify the form of the equations, let us measure 

all energies with respect to~ • we thus set 

(2.32) 

The system of equa tiona fer the three functions G, 

F+ and F- can now be written 

GJ. (£) = E + £>-
£1- E~- 61. 

+ 
F.,.- (£) =-

J _,., 

+ A (-1) 

Et - e: ~ 

where 

= 

= 

(2.33a) 

(2.33b) 

(2.34) 

In order to calculate physical quantities of inter-

eat from the functions defined in (2.33) it is usually neces-

aary to integrate over the energy variable. To do thia, the 

singularities of these functions in the complex c- plane 
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must be known. The procedure for specifying the contour for 

this integration can be formulated as follows: 

E J.. is replaced by (where 

in the denominators of (2.33), (2.34) and (2.35). This is 

equivalent to the introducti-on of a vanishingly small damping 

of the states describing the particle and hole (M-59). Thus 

J t , ·c 11 z. 
E). __.... E>- ... Cl.- ZLOI E.>o/1£).1 

~ E."' ( 1 - ;., s. •I E,.) = e >- - i ~' 

The contour of integration in t~e € - plane now con-

sists of the real axis plus a semi-circle enclosing the upper 

half-plane. 

For pu~oses of calculation, it is thus convenient 

to replace the set of equations (2.33) by the followings 

I. 

& ,. c [ > = ___..;u~~-
t. 

Vt-+ 

(2.35a) 

+ F; <£) = (2.35b) 

Where t ( J+ ()..) 
z_ 

('-Y-) u.,. = J_ v,. =...!... 
z. E). z E~< 

J-m 

u,.. v" = _t:u_ = (-J) c::. 
Z EJ. 2 ~ )> (2.36) 
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The equation for {J.). , (2.25) now takes the for.m 

.D. ,. - -...L ~ )'.' r ( 'J.' - >-' ; - >- >. ) J F; < e > d e. 
z rri 

- ~ >-I .,.., ( ).
1 

- ).
1 

; - ). ~ ) D )..1 

2 E ,... 

In its first approximation, T' has the form 

(2.37) 

(2.38) 

Thus, equations (2.34), (2.36) and (2.37), when the 

approximation (2.38) is used, are the same as those derived 

by the canonical transformation technique. See, for example, 

equations (1.21) and (1.22) of the introduction. In princi-

ple, these results could be improved by relaxing approxima-

tiona 1) and 2) and including a larger set of graphs in 

the calculation of T' • In practice, however, since T 

depends on G, and G of course depends on P , solutions 

+ -for G, F and F involve the solution of a set of complica-

ted coupled equations and it is difficult to advance much 

beyond the approximations used in this section. 

We now come to the question concerning the number 

of particles in the system. The single particle density ma-

trix can be written 

Nl -#-~ _,.IN> < 2o 1/' ( r,) 1J'( Tz) io 

= - L (;, ( -;, J t~ ; t' ) I 't' -4 - 0 

= .L j G- cr.,~~£) dE.z.,., 
(2.39) 
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where the contour again consists of the real axis and a semi-

circle of infinite radius in the upper half plane. In the 

'f >- representation, this becomes 

t~.,.., = 
(2 .. 40} 

Using {2.35a) for G, the number of particles in 

the state 'A is 

.:: d! = 
z. 

VJ. 

(2.41) 

and the total number of particles in the system is 

1.. 

= 2. ~ j .JL j VJ (2.42) 

where ..!2. j : j + 'lz. 2 Equation (2.42) shows that v. can be 
J 

interpreted as the probability that any one of the (2j + 1)-

degenerate states in the j-shell is occupied. From (2.36) we 

see that u~ is then the probability that this same state is 

empty. These quantities thus have the usual interpretation. 

For the case of the one-particle Green's functions 

G, F+ and F-, the essential problem can be summarized as 

follows: 

1) The single particle energies, E >- := E. ,j are 

taken from experiment. 

2) An appropriate value of the strength of the 



and 

pairing force, G, is chosen. 

3) The parameters ~ 1 and tj. are found, for 

fixed n1 from the simultaneous equations 

£ :: ~j .JZ.j 
G E.j 

= ~j J"L~ 
j{E;/")t.,.tJ"-

[ 
1 - £j -p: J 

j<£..; ~) + D. t: 

The first equation results from (2.37) by setting 

T' = - G/z. 
' and the second is 

just (2.42). 

c) Diagram Convention 

. + - d The structure of the funct1ons F I F an G aug-

gests the following physical interpretation of their roles. 
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F- can be considered as a propagator that effective

ly replaces a particle by a hole, While F+ can be considered 

as a propagator that changes a hole into a particle. The 

function G is just the usual propagator for either a hole 

or a particle. 

The following diagram convention can be introduced 

as an aid to the understanding of the equations discussed 

in this section. 
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G ,_ co ). > -
/:l). + G; c:.;.• F->-- -i-> f: 0 > (2.43a) 

.. 
+ <.). _,.> -• A>- G 

F,. u:> - - ( G~ (2.43b) 

>< = (2.43c) 

2. Two-Particl~ Green's Functiqn 

We define the normal two-particle Green's function 

as 

K22(xlX2J x3x4) = 

= < i: I Tf 1/' ( x,) V''<-t.,) '1jl <;r,) '1jl + ( 'X•>} I~=> (2.44) 

Where x = £ -r, tJ., 

Thia function obeys the Dyson equation (G-51) 

G(x1x4 ) G(x3x2 ) - G(x1x2 ) G{x3x4) 

+ i J d 4
x 5 

4 d 4x d
4xa G(x1x 5 ) G(x6x 2) d x6 1 X 

"f (XSX67 x7x8) K22(x7xar x3x4) (2.45) 

Where all the symbols have the same meaning as in the previ-

ous section, and G is the exact single particle Green•a 

function defined by equation (2.1), not the pairing approxi-

mation Green's function. 
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Let us consider a particular ordering of the times 

in (2.44) 

In this case we can write 

K22(XlX27 X3X4) 

= ~s <~:1 rf 11'L~,>1P+cx~.>IJs><s1Tf1Pcx,>7JI+c~.,>} fi:> 
(2 .46) 

~s can be interpreted as an amplitude describinq 

the systematic motion of a particle and a hole (KK-60). In 

particular, for t 1 = t2 = t, 

preted as an amplitude describinq the behavior of a parti-

cle and a hole in the state s. It is possible to show 

that when bound states are being ~onsidered, the inhomogen-

eous part of (2.45) does not contribute, and upon substitu-

ting (2.46) into (2.45), an equation for the amplitude ~5 

can be extracted (0-51) {KK-60). 

We can thus write an equation for cps in the fom 

X 

(2.47) 

We now introduce again the assumption that r des-

cribes an instantaneous interaction, and that the propagators 
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G depend on their time coordinates only through the difference 

t - t = r 1 2 • This assumption means that the time coordi-

nates in ~5 are equal. 

We thus define, from 

cps ( 'tot 'Xt) = (/}s ( r, t,) ~l tz) 

the function 

..... ..... ) <Ps ( ,., rz ; t 
z: = -t.,- t:,_ --o 

(2.48) 

Equation (2.47) can now be written 

The opposite sign for ' in the two Green's func-

tiona in (2.49) arises because one function describes the 

propagation of a particle while the other describes the propa-

gation of a hole. 

Equation (2.49) can be interpreted in the following 

sense. 

The left hand side describes a bound state of a 



particle and a hole at time t. In the right hand s.i.cle, 

G ( 7::), for r: ,'> 0 describes the propagat.:ion of a particle 

from ti.me t to time t = t + 7: r while G (- Y) des-

I 

cribes the propagation of a hole from t i.me t to tim~ t: • 

' At time t , the particle and hole interact to form a bound 

state. 

If t.he single particle Green's function is kno\.;n, 

and if the interaction r is YJ\OWn, then (2 .. 49) oives a 

prescription for calculating the two-particle amplitude. 

In practice, these functions are usually not known, and ap-

proximations for them must be introduced. We are interest-

ed in the case -vJhere the system contains pairing correla-
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tions, but as we have seen in the previous section, this in-

volves the introduction of two new single particle propaga-

tors. The modification which this reqt.:lires in the str...:ac-

* ture of the two-particle amplitude •...rill be discussed in the 

next chapter. 

* We will see that two new amplitudes besides ~ 
must be introduced. 



CHAPTER III 

DERIVATION OF THE EIGENVALUE EQUATION FOR 

THE EXCITED LEVELS 

1. Derivation of the General Eqqations fQr the ~plitudes 

The equation for the amplitude of a particle-hole 

pair in a state l :r:.:> ~J was derived in the previous chap-

ter, and can be written 

= '] dt, clC. ott, J.r, G<f.i'5 ;-t) G<t.r. ,z·) 

)( r ( rs ~ ; ~ r'f) 'P> ( ri rAf ~ -t, + r) 
(3 .1) 

However, as was shown in section 1 of Chapter II, 

the single particle (or hole) propagation, in the presence 

of pairing, is described not only by G, but also by the new 

propagators F+ and F-·. + As was indicated there, F dee-

cribes the transition of a hole into a particle, while F-

describes the transition of a particle into a hole. The 

modification to the two-particle case required by the 

presence of these new propagators can be introduced as 

follows .. 

55 
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In equation (3.1), we make the followinq chanqea. 

&<r."rs j--z-) ) C:r ct r; ; -t" J + + ..... - ) F ( ,.., rs; -T 
(3.2a) 

G-<~?;;£) > G-<-r, -rz ~-r-) + F-((.~;r) 

(3.2b) 

+ {3.3) 

and we introduce 

= 
(3.4) 

= (3.5) 

Here, 
T7, 
' is defined as the set of diagrams that 

T' ll 

is irreducible in the particle-hole direction, and 

is the set that is ineducible in the particle-particle or 

hole-hole direction. This is illustrated in the accompan-

yinq fiqure. 

T'" 

The function X ia an amplitude describing the be-

havior of two particles in the state s , While .Xs is the 
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corresponding function for two holes. 

These functions enter in the following manner. The 

left hand side of (3.1) still describes a particle-hole pair 

at time t, so the right hand side must still describe a 

particle and a hole propagating from time t. If the parti-

I 

cle and hole each propagate by a G-function, then at time t , 

the interaction 
I P leads to the formation of a bound parti-

cle-hole pair, described by cp • Consider What now happens 

when the propagation of the particle is described by F-, and 

the propagation of the hole is described by G. The parti-

• cle at t becomes a hole at t and the interaction, which 

II 
is now T' , leads to the formation of a bound hole-hole 

pair, described by X Similarly, if the hole propagates 

+ ~u by F , and the particle by G, then the interaction 1 

leads to the formation of a particle-particle pair described 

by X • Finally, if the hole propagates by F+ and the par-

ticle propagates by F-, then the interaction is again T' , 

and a bound particle-hole pair is again formed. 

With the aid of this rather "picturesque" descrip-

tion, it is easy to see that equation (3.1) should be re-

placed by 



......... 
!f>s ( r, l"z. ; i:) = 

[6 <;:';t,; -'l") G-(r.r,;t) 

X r ' ( rs t;_ ~ r; h ) 
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F + (- ...... ) - ~ ...... )] + r, l"s ; -t" F ( rc. rr: ~ 

Passing to the 

comes 

'P>- representation, this equation be-

5 
c.p~,>.t. (t) 

- i :!. ~· h J d r f G ~.<- r > G-~,c r J r ' ( }, '" ·, h >.,) <p:,>, (t •1:) 

+ t s 
+ F~, (-'?") F~~.( 'Z'"} T'' (-h).,.;-~,, ~J) cp~Jl"f ( t-t-1:) 

s 
.X?<;(.'{ ( t: f' t") 

where 

X>•>• (H1:) l (3.7) 

... _....... ) 
~ ). 1 ).z. F :, 'f.'t ( t ?:) 

...... _.. 
f ( r, ,. "' : t..-"t' = <.p,_,(t-,) 'P~-1. ( rz.) 

F-er,~ ~!-r-) 
. ..... 

*' -= ~~I )..'1.. F;, >-~ (! 'l:") Cf>).t <.r,> c.p ~'t <. rd (3.8) 

(.{>s ( r. r~:. ~ 't' ) 2 ).a }-t. 
s -~ 

_.. 
= 'P)., ).z. ( ?: ) c:.p~, (r,) c.p ,.,_ ( rl..) 

and 

} 
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(3.9) 

The orthonormality of the complete set of functions 

(3.10) 

along with the 6 - functions appearing in the definitions 

of G, F+ and F-, have been invoked to reduce the number of 

independent summation indices in (3.7) from four to two. 

II 

We note that T' and r' obey the symmetry condi-

tion 
-rY 1 ( 11 ) ( \ I \ Z. ) 
I I' I' ~~3~"f 

= 
(3.lla) 

while ~ and X satisfy 

:X 't-1 }.t ( 'l'" ) = - X )I'&>. r ( 't" ) 

X >-• h .. ('l'} = X )>.'l ,., < T) (3.llb) 

The relation (3.lla) follows immediately ·from equation (2.38) 

while (3.llb) follows from the definition of X and X 

Let us now consider the structure of the equation 

satisfied by X • We recall that this function describes 

the bound state of two particles. The propagation of two 
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particles, initially at time t, can be described by 

..... _.. 
F ( r" rz ; r) 

o.nd. 
(3.12) 

The equation for X in terms of X , X and cp follows im-

mediately, except for the relative signs of the terms, as 

X s ( ;:-'; r. ' t ) i I cl t, o/1';. ell) cl r; X 

[ G ( r. r.; r) F- ( r. ;:; ; ?') - G- ( ts r; ' ... ) F- ( '• '" "T) J 
_.a. _... ..... __. ) ..... ..... ) x T' ( rs r,; r1 r..,. (f:;, ( rr r-v ~ t + ?-

G- ...... .....&, ..... ~ , _,.,_. _.__.)- -- ) 

+ (t'"rt:t:) G(r.s r1 ~1:') r (rs ''" ~ r, r-1 Xs <r, r..,; t1'?: 

+ F - ( t!'. t, ; r ) F" ( r5 r, , -r ) 7' " ( ;; r. ; t) i~ ) X s ( r • '• ; t + t: ) } 

(3.13) 

In the ~~ representation, this becomes 

_s 
X,_, ).l. ( t) 

-L~,.~.,jdrl 
G,_, (7:) F;t.(7:) r'(>....,->..-~;).,}.,) 'P!,~.,(-t-+'2") 

+ C?~ 't') & 1., < -r-) r" < )..y }.J; ),, ).·,.) x ~3 'f."" (-t'r?:) 

.,_ Fj..(?:J F;, ("T) T'" (-~,-h;~.~,) X~J~• (HZ:)} (3.14) 

Finally, for the function Xs8 propagation by the 
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combination 
.,. ~- _. ..... F ( r, rs ; - T) -+ & ( r, r,s ; - r) 

(3.15) 

leads to the equation 
s 

')(. ,., .h ( ~) 

- i z.,,,~ felt' f- u-,, <-t) F{, <-z-) r'<~.v >.; ••->.) 4'~••• c ... r) 

+ GJ.z.(-"Z"") Ft, (-"l') r'(J.~ >.~; ",-~,) cp~,,.-t (r+Z") 

F ; -z. (- 7:") F :, (-7: ) T' " \ ). :1 )\ ~ ~ -). l- - )1, ) :X ~, 1. "~ ( t + l:) <. 
j(3 .. 16) 

The form of (3.12) and of (3.15) with respect to 

the signature is a consequence of the definitions of X 

and X that are implied by the form of equation (3.6) or 

(3.7). A convenient method of verifying this self-consis-

tency is to adopt the diagram convention outlined in sec-

tion 1 of the preceding chapter, along with the labelling 

convention for 'T' discussed in the next section, and then 

to substitute (3.14) and (3.16) into (3.7). 

We now define 

s 
Cl>>.dz. (t) 

(3.17) 
cp,., h ( w, o<) 
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N N 
where C...V=E -E 

s 0 
is the energy of the N-particle excited 

state with respect to the gr~1nd state of N particles. 

The label a< denotes the remaining quantum numbers that 

are needed to completely specify the state s. 

In a similar fashion we define 

-s 
X >.1>-t ( t) -

= 
i (A; t 

e- ;x: ). I h. ( W 1 o{ ) 

We note that 

N-2 
(E 

8 

N - E ) s 

(3.18) 

since all energies are being measured with respect to ~ • 

Finally, we have 

(3 .. 19) 

Substitutin9 (3.17), (3.18) and (3.19) in the equa-

tions for X , ;x: and cp , and making use of the relations 
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the equations for the Fourier components cp ( w) , X ( c.v) 

and X. C w) can be written. 

= 

cp)., }.z_ (WI o() 

f,. :E.~· h J d.£ f G ~· < 0 G,, (£-""') T'' ( ~ .. ~.; h h) 4'..,~. ( w,.,) 

1- f:, (£-w) F;~.(£) T''(~.ot-~l; ),-]\,) (/JJ, 3 ).'f(w,o<) 

+ Gr>- 1 (f.-w) F~t-(') r"(>"'- l-2.~ >.-t>.~) ):.).;,).'~ (w)o<) 

F:, ( £-w) G~,(£) r" (~, '";-;,h) X~'~" (w,o~)} + 

:X. )..1 Az. ( w, o<.) (3.2.1) 

= t,;. ;E_ h)•/ d f f G-H (E) F;:, (- £+~) r' ()., -). 1 ; 1-o h) l.Jl» >.. ( w,o<) 

- G ~ , < E. > F ; 1. ( - t + w ) r ' ( >. ~~ - h. ; " s 1\1 ) q> J.. J >.~ C w, c< ) 

- G;., (E) 6->.~(-(+w) T'"().:r~-,; At ~7.) Y- ).,).'I (wJ-<) 

+ F)., ( £) F ~-, < - £ + ~ ) T' " ( - ;, - h ; ~. ~' ) X:~, ~. < w, -< )} 

('3.2.2) 

= ; 7r ~ >• ~·J dE [ G>, <E) F ~~ (-c-w) 7' '( ~. h ; ~.-~,) cp~,~. (w 1 o<) 

- G ;..., (£) F tt <- c- w) T'< )..11 )., ; ).3 ->.t) <P)., ).., ((...JJ o<) 

X )J ~ ., ( w, "') f 
( ,, 2 3) 
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The integrations over c can now be carried out, 

using the relations for G ;. < £), 
+ 

F >.(E) and F-; c [) 

derived in Chapter II (equations (2.35)). 

To simplify the form of the resulting equations, let 

us define the following quantities. 

z.. L 1... 1... 

E~,+ E ~l.. = A}., ~L u ~~ V).L + v >-I u .. 1. = B ;.1 h. 

2. 1.. z. 1. 
(3.24) u,., - uh = CJ-.th u .,., vh. D)o, h. 

M )., 
L L 

p )-r D).,;., u ).., I( v,., = u)., v,., = -
The systems of equations for <P, :X and X can 

now be written in the form 
~ 

( A )., A 1.. - C...V 
1

) LP ).1 h ( W, ad 

MI.., (AJ. 1 h PJ. 1 -+w) :E1.1.h T'" (>.,).~tj-J.c.h) X~J>,.,(w.,oi) 

(1.25) 

l. 

( A .,.., "J..t - l.A..J ) x "' ~ z. < w) o() 

+ [ A~d·l..(l-8~,.1..) +t.u OJ.,).._].:E~:I>·lf T"(~7A~;J..,A 2 ) X,! 3 ~.<w.,«) 

- z. M ;.., M).. 1... A 1-1).... 2. "3 .,. "~ r " c- >., - J. z j J...¥ ).. J ) x '~-, >-• ( w J o~ > 
(3. Z.&) 
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- M ~ I ( A )., ). t p). 2. - (..c.)) z. 'H >.~t .,., I ( ). If ~ z.. ; ). J - ). I ) cp J.. 3 )..~ ( w I 0() 

[A>.rh (1-8-,./J..t) -wO,.,>-z.] ~J.J).¥ 1"'"(.,.,).1.:')..,~3) X>-J.A.,(CAJ,o<) 

(3.27) 

2. The Interaction 

Let us consider the structure of • We first 

consider ' r , which has been defined as the sum of all 

irreducible diagrams in which a particle-hole pair is 

scattered. In first order, the following diagrams contri

bute to T' '(~,hi h l...,) {T-61) 

~ 
>-3 l-J ,.., >. ~ r<:.. I 

I h' ). I I 
: }-1 I I 

I I I I 
I I I I 
I 

~ 
I ). t ~~t (3.2Ba) 

~ ~ 
>-• l''f 'J.¥ 

Q.) b) c) d) 

The convention adopted in these diagrams is as 

follows: 

1) Arrows pointing away from the interaction denote 

the creation of particles or of holes, while arrows pointing 

toward the interaction denote the annihilation of particles 



or holes. 

2) Arrows directed to the right, which is taken as 

the direction of increaainq time, refer to particles, While 

those directed to the left, refer to holes. 

The contribution from each of a) and b) is 

('/z.)<.>-.,f..7..1 vl~r~..,) 
and from each of c) and d) is 

-(1/z) <'-•J..d VI i-'1)~) 
Thus, in first order, 

T I ( ). I ). 'L ; }.J ~., ) 
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::. < ). I )\ 1 I v I ). J }.~ > - < ).., ~ 'L I v I ). 'f ).1 > (3.29) 

is the sum of all irreducible interactions that 

scatter particle-particle or bole-hole pairs. In first 

order, the following diagrams contribute to T'" ( }. 'At ; }. J l-¥ ) 

Thus in first order, 

~ 
I 
I 
I 
I 

~ 

l T' ,, ( ~ I ) Z. j ). I )t 'I' ) 

(3.28b) 

(3.30) 

Since we are interested in the case of spherical 

systems, let us now proceed to write the matrix elements of 

the potential V in a form that exhibits ita invariance 

under rotations and reflections. 

We write the two-body potential in the form 
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(3.31) 

h Tk . f d k w ere 1s a tensor operat~r o egree which trans-

k forms under rotations like the spherical harmonics Y • 

An arbitrary matrix element of this potential be-

tween the single particle states 1 -\)) • I jm) can be 

written 

< i> 1 ,) 1. I V I i) J ;) 't ) = 2. t<. ( .,) , ..) z J v < r1 r z ) T "' ( 1 ) · T t< < l.> I ~ J i> 't ) 

- ZK)'C- c-·1),.._ < JZ. I v c r, Fd /3'1) < i, m,/ r;. <•> I j, m,) " 

<jzmzl T-~(Z)JjJm:t) (3.32) 

We define 

R ( 12 1 34) • (..} 2 I v ( r 1 r 2
) l 34 ) 

Uainq the Wigner-Eckart theorem (E-58), we write 
I( J~ "''+ i 1<1""'- I< • -'lz. ( j,m,f T_,...../ j_,m~t) = (;,,.,, (tlf T Jl'f)(2J

1
+i) 

. . . (3.33) J.,.,..,.f J,n,,;J.,-m., -'/, 

=(-J) (~ (11/TJ</f'f)(ZI<+I) z. 

and aimilarly 
j,_ "'' jz. rnz. ; J,_,J 

(-1) C x~ <zl( T
11 

//3) 

Jz~+,-

We define 

p~ (12:34) == - R(l2t~4.l < 1 If Tk II 4 > < 2 If Tk H 3 > 
2k + 1 

and we finally get 

<VI ,)z./ vI iJJ ;>.,) 

j, ,, ; jJ_,, 

X ( K~ 
(3.34) 
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Fk is a rotationally invariant particle-hole matrix element. 

However, the interaction V can also be expressed in terms 

of a rotationally invariant particle-particle or hole-hole 

matrix element, Gk, defined by 

a j,m,;j~mL 

= - 2. ~ G {12:34) C ~ 
k 

I I 

The functions Fk and Gk are related by 

J) ,.,, i j., ,..,., 

c i<,.;U 

(3 .. 35) 

I h+~~1 J 

FK (tZ.;3"t) = ~.t c-1) (z.R+I) G-1 (1z;;,~) W(I¥Z3i x.l) 

(3.3l:.) 
, j,+j1-tK I 

G-t( (12~3""t) = (-1) Z.t (Z.l+l) F.l (IZ;'J'-1) W(IZ'f1j KL) 

(See Appendix A, equations (A-3).) Here, W (1234: kl) is the 

usual Racah coefficient as defined by Rose (R-57). 

Let us consider the case where the interaction con-

sists of a ~~adrupole force and a pairing force. For the 

former we have 

v -- (3.37) 

Then we get 

F
2 

(12~34) 

= ( x /s)< 1 If ri I( 4 > ( 2 If r~ I( 3) < 1 1/ Y 2 I( 4) < 2 ({ Y 2 {( 3 > 
Now the reduced matrix element is given by (E-58) 

< 1 /{ y2 If 4) = ~1/2 
[~7)" (2j4 + lj 
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so we get the particle-hole matrix element F in the for.m 

F 2 (12:34) 

• fir < 1 II r~ II 4) < 2 II r~ II 3) f2j4+ll l2j3+1l] 

1/2 

j.., '/z ; Z o 

X ( i, '/l- (3.38) 

Evaluating the radial part of the matrix e.l.ement 

yields (K-60) 

::; ( ...lL )' 
\MW0 

2 
{n + 3/2) (3.39) 

where M is the nucleon mass, 'h W 0 = 41A - 1/ 3 Mev, and n is 

the number of oscillator quanta associated with the single-

particle states in the region being studied. For the lead 

isotopes, n • s. We follow Kisslinger and Sorensen and de-
' 

fine 

2 I 2 
--L x(j II r ll j > 
411 

= X 

We can thus write (3.38) as 

(12:34) 
j,. 'Ia ; 2 o 

Cj, '/'l 

• 

Jj .,., i 2 0 

Cjz 'It 

(3 .40) 

(3.41) 

It follows from (3.41) that P
2 

obeys the following symmetry 

properties 
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F (12:34) = (-l)jl-j4 F (42:31) 
2 2 (3.42) 

• j 1 + j z. r i., + Jr.~ 
t 

F {12:34) = (-1) F2 (43721) 
2 

I 

It further follows from (3.36) that G
2 

obeys the 

symmetry properties 

• G2 (12734) = 
(3.43) 

• G
2 

(12;34) = (-1) • 
G2 (21:34) 

The pairing force result has been mentioned previous-

ly and can be written 

'lz.. 
G {12:34) = G b 12 S 34 [ _n_, _n3] (3.44) 

As mentioned earlier, the particle-hole interaction 

consists of two types of terms, shown below 

>, ~ 
I 

I I 
I I 
I I 
~ ~ (3 .. 45) 

direct exchange 

We can see that for a given multipole moment of the 

potential, say the kth, the direct term is the dominating 

one. This is readily seen fran the above diagram, Where a 

particle and hole coupled to an angular momentum K can anni-

hilate only through the kth term in the multipole expansion. 

The exchange term, on the other hand, depends on all the multi-
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pole moments, these moments being recoupled to k by means 

of a Racah coefficient (3.37). The ratio of the contribu-

tion of the exchange term to the contribution of the direct 

term for a single multipole will, in general, be small, but 

by no means negligible. 

r I and .,-, II We now want to express the interactions , 

in terms of the matrix elements F and G. From Appendix 

A we obtain the following relations 

I 

~~ {j4m4jlml 7 j3m3j2a2) 

= ~ k Fk (41;32) 
[< -1) j•- mL C j.:.::; ,._.,,] 

[ F~(l3r42) + f~ (4lr32) J 
[

( _
1

)i"4 -rnttc ~~·; ;.,--.,] 
(3.46) 

(3.47) 

I j,+jz.+M.+.l 

and fk (41732) = - ~ 
1 

(21 + 1) F1 (41:32) (-1) W( j,~J.j, j.,j 1<1) 

(3.48) 

(3.49) 

where 
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(3.50) 

and 
I J',+jl.-+.J. 

= -Zl(21 ~ 1) Fl(42:31)(-l) W(jlj2j4j3:kl) 

(3.51) 

The extra phase factor in the definition of (3.49) 

will prove to be convenient later. 

,, 
2 ~fA (jlm1 j2m2:j3m3 j4m4) 

j,rn, i Ja.-mt. 

= 2k Gk(43;21) C ~ 

where 

Gk (43: 21) 

{21+1) [ F~(l2;34) 

Fl.• (21134) W (1234:kl)J 

,, 

k 
W{l243:kl) + (-1) X 

2 J7;u (j4m4 j3m3: j2m2 jl-ml) 

j,.,, r ~~ .i.,-m"fj j3-rnJl 

_ - 2~o< G·~ ('tJ;zl) (-J) L(-1) C K_,..u J 
X [(- /)j, ... , C ~;·; ;,_,.,.] 

{3.52) 

(3.53} 

(3.54) 

It will also prove convenient to extract from the 

equations for the amplitud .. _.J, the remaining dependence on the 

quantum number m. 

From the relations (1.25) and {2.36), 



and, using the fact that E~ = Ej is independent of m, we 

write 
j-m 

ujm Vjm = (-1) uj vj 

or 

This definition gives ujm and vjm the symmetry 

properties adopted in the usual pairing model treatments 

VJ'm = -v. J-m 
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Using these relations, we can thus write, from (3.25) 

(3.55) 

Thus, all the m- dependence in equations (3.26) 

(3.28) can be separated out. 

We thus see that for an interaction F, there corre-

aponds a value of G. This value will, in general, be 

smaller than F because the recoupling of the angular mamen-

tum spreads the strength of G over many angular maaenta. 

This is the same situation occurring with the exchange term 

to F, namely f. However, an accurate treatment of the 

prOblem would require taking both of these effects into 
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account. Since G is associated with the particle-particle, 

or hole-hole wave functions, a finite value of this quantity 

means that the system of equations can not be uncoupled. 

Thus, even if there is no (p-p) or (h-h) interaction as 

such, we can not take G to be zero, at least not in an ac-

curate treatment. 

A first approximation would thus involve neqlecting 

both fk and Gk, in which case the equation tor c:p K is 

closed, and a solution can be obtained. 

A second approximation which might be valid would be 

• to consider tk but not Gk even though these quantities will 

contribute roughly equal amounts. The advantage would be, 

of course, that we could still consider only the equation 

for • 

The exact treatment would have to include the full 

set of three coupled equations. 

Let us consider the case where the interaction con-

sists of a quadrupole force and a pairing force. 

I I jl+jz+J< 

a Fk(l3742)ok2- 5 F2 (41732)(-l) W(l2347k2) (3.56) 

Fk(42:31) 
I I 

• Fk(l3J42)S k,2 + 5 F2 (42:31) W(l243Jk2) (3.57) 
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Gk (42r31) 

• 2 G (.Ql..Q3)l/
2 

043 612&kO 

+ 

- P;(42r31) W(l243:k2) ] (3. 58) 

3. Eqgationa for Amplitudes of States with Definite Angylar 

Momentum 

Let us now define 

A Ja- ""L ,;,, i J,-, .. 
cp 127k_.P- = ~ ml,m2 (-1) + aj1m

1 
(3.59a) CKJ4 a j2m2 

"" 1<7"'- j I rWJ j j1. 1ft Z. 

X 12rk.l" • ~ ml,m2 
+. + (-1) c lo(~ a J2m2 a j 1m1 (3.59b) 

A ,;, .... ; j ... rth 

Al2rk • 2: ml,m2 C KJ" aj2m2 aj1•1 (3.59c) 

The phase factors ari.. because of the way in which 

we have defined the conjugate states. These equations de-

fine pair operators for states with aoqular momentum k 

and z- component ~ • 

Finally, to simplify the equations for the amplitudes 

we introduce two new operators 

(3.60) 

and the corresponding amplitudes 

(3.61) 
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We note from (3.59b) and (3.59c) that x- obeys 

the symmetry relation 

"'t j,- j., +I< ;'\ + 
X 12rk)" = (-1) .X- 2l:Jy' (3.62) 

Substituting (3.46) 1 (3.49), (3.52), (3.54) and 

(3.61) in equations (3.25) to (3.27), we obtain the following 

set of equations for the amplitudes corresponding to the func-

tions (3.59), 

2 2 
(Al2 -w) <P12:k (w) 

+ 2MlM2Al2 ~ 34 Fk (42 7 31) <.(> 34:k (w) 

+ 1/4 [(M1A12P2+M2A12P1) + (M1-M2)w J~34Gk(43r21) .Xl4:k 

+ 1/4 [ (M1A12P
2

-M
2

A12P
1

) + (M1+M2)wJ~ 34Gk(43:21) :x;4 ,k 

(3.63&) 

I 2 -
(Al2- w ) :X. 12rk (w) 

= (M1Al2P2+M2Al2Pl) + (Ml-M2)wJ~34Fk(41:32) cp 34Jk (w) 

+ [ M2Al2Pl+MlA12P2) + (M2-Ml)W] £ 3jk(42:31) (/}347k (w) 

+ 1/2 [ A12 (1-B 12 ) - 2 M1M2A12 ] ~ 34Gk(43:21) X-347 k (w) 

(3.63b) 
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(A2 -w
2

) X+ (w) 
12 12Jk 

= r(MlA12p 2 -M2Al2Pl) + (Ml:+-M2) c..v] ~ 34F k (41132) <p 34Jk (w) 

+ [<M2Al2P 1-Ml Al2P 2) + (Ml+M2)w] ~ 34Fk(42J31) cp 34Jk (w) 

+ 1/2 [ Al2(1-Bl2) + 2MlM2Al2] ~ 34Gk(43721) ..X~4:k (UJ) 

(3.63c) 

This is the final form for the equations relating 

the set of amplitudes which describe the excited state I ~ LU> 

When the paired states are interacting by means of the func-

tiona Fk and Gk. 

Let us consider the caae Where there is only a di-

rect quadrupole interaction. In this case, the 

uncoupled from 

I 

Fz ( t3 i¥2.) 

+ :X. and 

= X 
5 

and we get 

are 



(A"-(..Vt)cp,z;z.. = 
(A8-""-'C +2M,M:z.A]I=:~ 

X 
5 

7£. IZ 

= c.onstc::.nt 

•• ~ 12. X 
5 
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= Consta.nt 

This expression is symmetric in jl and j 2 except for 

the second term in brackets, which is antisymmetric. This 

latter term will vanish when jl and j 2 are summed over, 

so it can be set equal to zero in the above expression. 

We are left with 

5/X = 
t. 

(E I ...... E l.. ) ( (J. I v 7. + I.A. 2.. v, ) 
(E,+Ez.l- LM1.. 

(3.65) 

This is the same expression as that found by Baranger 

and by Tamura and Udagawa (see equation (1.39)). 

We see that the situation is much more complex when 

both direct and exchange interactions are considered. It 

is not possible to write down a simple expression corre-

spondinq to (3.65) and some other method must be used to 

:: 1 



find the eigenvalues <...v of the set of equations (3.62}. 

+ 
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When we are only interested in the lowest 2 level, that is, 

the collective level, approximate nwnerical techniques can 

be adopted. These are outlined in Appendix B. 



CHAPTER IV 

CONSTRUCTION OF THE STATE VECTOR 

FOR THE EXCITED LEVELS 

1. State Vector 

We assume that the state vector for the level charac-

terized by angular momentum k 1 z- caaponent )A- 1 and energy 
A 

E I can be expanded in terms of the operators cp , ... ~ 

X and 

x-. The state vector for this level can then be defined by 

the relati.on 

= I ~e) 
(4.1) 

where 

(4 .. 2) 

and 

BK~ F.. 

- ~ !tz.[ x,z.;•• f,.:.r + y,., •• X~''";;"-~ z,.,.E X;,•'l'-] 

80 
(4.3) 
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The equation that results when ,lA- is replaced by 

-~ in (4.2) or (4.3) must be the same as that obtained by 

the application of the time-reversal operator to these same 

equations. Using relations (c.2) of Appendix c, we thus 

obtain the following condition which must be satisfied by 

the coefficients X , Y and Z • 

# j, + Jz.,.,. f( 

X,z.~~e. = - (-I) Xtt-;KE 

• J,+ja.+K 
r,~.l(e Y,z;KE. = (-/) 

11 j,.j.+tC 
ZHillE.. (4 .4) Z a~ ~e e = (-I) 

Using these equations along with equations (c.3) of 

Appendix C, we can rewrite equation (4.2) in the form 

.... t 
8 'Y'- E. 

"" X 12; ll e. lPzt; ~<'"?"' 

+ ZI2;1<E XtliK?' (-1) 
] 

j,-j~,+K 

(4.5) 

2. System of Equations for the Coefficients X' r tnd Z 

One method of obtaining the system of equations 

satisfied by the coefficients X ) Y and Z is to 

proceed as follows: 

We take the matrix element between the ground state 

and the state I I<;-' E) of the operator defined by equation 

(4.2). The left hand side becomes 
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since we require the state to be normalized. The right hand 

side of (4.2) can be written as 

j_ ~ IZ 
N [ 

< K? E I ( ; ,-. ,.,_ t I :i.) ] 

The normalization condition is thus 

i'l 
( x;z;~) j 

N = ::E.,. [ x,, a cp,t:u. + Y,.,~e ;x:~.,~c • z,.,.. x.~, .. ~14 • 6 l 

We have seen that the amplitudes cp 1 :X+ and 

iC- are the components of the eigenvector, for the state 

t K_.P- E), of the energy matrix A(w • E). It thus follows 

from (4.6) that the coefficients X, Y and Z are the 

corresponding components of the eigenvector, for this same 

state of the matrix transpoae to A, that is T A (w = E). 
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If A is synunetric, then of course the two eigenvectors are 

identical. In the present case, however~ A is not synune-

tric, so both eigenvectors must be obtained. 

A second, and more direct method of obtaining the 

equations for these coefficients is to substitute (4.3) di-

rectly into the equations of motion for tp } :X:+ and X-

making use of the double commutation relation 

< ~ 0 I [ H J [ H ) 8 ~£]] I K/'" E.> 
: wt ( ~ol B~.t.,PE J K/"E> (4. 7) 

The secular matrix resulting from. this procedure can 

be readily verified to be just the transpose of the matrix 

derived previously. 

3. Normalization 

Let us now investigate the form of the normalization 

condition for the state vectors I K~E) From (4 .. 2) and 

(4.3) we get 

* yll>f j #(~ 
..... "" 't• < i 0 t <.pI z. j· w ~I ( X;"';~) I i 0 > 

.. 
+ ZJ..,;II?"- <i.{ $.,;K;,..' (i;.,.,../li.>} 

r • --+ "T 1 > + Y12.i K'e' l XJ"t ;llE < io/ X 12;11~ 1 
(/)J'ij.t',/". ~o +-
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( x:.,, ~~-) t If·> 

( X;.; 'l-'J It.>} }4.Bl 
Inserting a complete set of states between the pairs 

of operators appearing in the ground state expectation values 

of (4.8), and making use of the relation 

(4.9) 

allow us to rewrite equation (4.8) in the fo~ 

}( 

XIZ.ii<E' (/),z_;HE" .,_ Ytr;KE' ;xtz;ICE-11 
+ ZttH<E

1 
:Xir:K.6' 1

} 

x)'l; I(E cp,,; t<e.".,. Y3¥jKE X~.y;~ee" + ZJ¥;K~ -x;.,;lt6 11 z] 
(4.10) s 

However, it is'shown in Appendix B, that each of the 

summations in (4.10) is zero unlesa the enerqies appearing 

in that sum are equal. The normalization condition thus be-

comes 

[~n[ X~t;KE 'Pa;K£ + y,.,.,. xi.;K& + ZIZ;Kt. ;r;o;KE~ Jz. 
(4.11) 
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As we shall see in the next chapter, the matrix ele-

ment, between the ground state and the excited level / K;U E. > 
can be expressed in terms of the suitably normalized func-

tions 

-' N' 
( 4.12) 

If we operate on both sides of equation (4.2) with 

cp,,; 'Y" and then take the matrix element between I ~o) 

and ( 1-<p E) of the resulting operator, we obtain 

""' 
t./)IZ.jKE. <~ .. I </)IZj ~<.~"'" I ~E) 

~..,[ -« 
( io J 

.... ..... 't 
X3Afi KE cp I Z i I(/' cp3'f i ¥./""' I £ .. > 

- <Eo/ cPtz j ll/" ( X.J., i ll/4) t J i o) + y,..,ii<E 

+ 11 < ~.I 4>,.;~/" <:Xio;y/ I f./] z ,.,. ; I( E. 
(4.13) 

+- ""' -Now, since the functions c.p ~ X , .,.. and X, Y, l. 

each form a complete set, it is not difficult to see that 

in order to obtain the required set of normalized functions 

(4.12), it is not enough to write N2 in the form (4.10) and 

~t2.iKE in the corresponding form from (4.13), but rather, 

the expectation values in (4.8) and in (4.13) must be explicit-

ly evaluated. Let us now consider these two equations which 

we rewrite as follows. 

7 
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I'{+/"'- JJ - j., ~ I( 

(/)1z.;KE = (-1) ZJ¥ (-1) X 

[ x3.., j J(E:_ <io} fiJil.j )(r cP.,J;k'/'"" I fo) - y,.,;JCe <~ol ~tZ;"/"- x~l;~e~ li.) 

(4 .14) 

I<+/'- J,- j.,.,. I( 

= (-1) ~ 12.3"'1 (-/) 

[ X ••; • e. f X r.,:"" < i. I fP,.; •r cf¥,; "? I ii· '? 

- YJ4f~lil! <2o/ cf,z.;~ i!3;1L'/""J~o) 

+ 

X.;,"?'" I~.)] "' + z,..,; ~<e ( ~o/ <Ptz-~1~~ 

'(,r_; KE f XJif; KE < $io/ 
~+ 

'X I t ; ll/"" 

y 1"1; J{.£ < fio J 
..... +-- 'X 11- : ,.. /""' 

... ~ 
X.-.,J;~/"'-/~o) 

X;.,"./'"" I r.>} 
t- l ,, ,,_. f X .... : 1<£ <..'E./ x_,-,: • .,.. /P.,," "/"'- I I.> 

- Y3~;1tE < ~o/ .X;~:Il_,AA. XZ"i:~~ / ~.) 

_,. z,.,; ... <.~:./ X;,,~;;::,.,./"'"/~.>} ] (4.15) 

Let us consider the form of the expectation values 

appearing in these expressions. We have, for example, 

J<J-mt. j, ,...,, ; j1..""'\. i1 -m1 j" """t; .i,-m'l 

::: 2. rn, ma. m 1 ,.,.., (-1) C K/'-' (-J) C t-< "/"' X 

(4.16) 
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The last factor in (4.16) can be regarded as an equal-

~irnes, two-particle Green's function. A first approximation 

to this expectation value can thus be obtained by keeping 

only the inhomogeneous part of the Dyson expansion (2.45) and 

allowing also for pairings of two creation or two annihilation 

operators. Provided the interaction is not too strong, this 

approximation should be quite valid. 

We thus have 

{4 .17) 

The ground state expectation values of products of 

two creation or annihilation operators are known (see Appen

dix c, equations (c.4y and so the expression (4.17) can be 

evaluated. 

A special case occurs in the expansion of a product 

of four operators, such as (4.17), arising from two upair" 

operators, such as the two rn IS ) v in (4.16 • Since these 

"pair" operators are coupled to angular momentum K , that 

term in the expansion (4.17) which involves the ground state 

expectation value of these operators must vanish unless k=O. 
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To be more precise, consider the first term in (4.17). Sub-

stituting this in the right hand side of (4.16), and using 

equation (C.4a), we obtain 

J a.- m L ,j, '"' ; .ia.-"" I. J r-"" J 
~ m 1 m1. ,.., 1 m&~ (-1) C 1<,..1'4 (-t) 

;, lf'fl; <~'a.-"" .. 

= c,~ 

Making use of the relation 

. jm. ,.,·_,.., 
J- m ' 

2. ,.,., (-I) b ~0 C I< o - bllJO ~,...., I 

Jzi-~·1 

the above expression reduces to 

io.t "'tt; J) _,.,, 

c I(/""" 

j 11 ""., ; .i, -"'I 

c ~-/"' 

(4.18) 

Expressions similar to (4.18) arise from the other 

ground state expectation values appearing in (4.14) and 

(4.15). We will omit these terms until we came to discuss 

the k=O state. 

Thus, in this approximation, and for k :f=. 0, the 

normalization condition can be written in the form (see 

Appendix C) 

I( 
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L 
N 

-I 
(1+~)/z.) ;< 

[ 

~-~~K 
x,,_i ~<e. vz.u, + Xz.t;KE v, t..t,_C-'J 

+ 2 (U,Uz. +V,Vt.) Yn~llE 
(4 .19) 

2. ( u I (..( r. - v, Vt ) z It; ~IE. 
]

l_ 

4. Spurious States 

It has been demonstrated (M-58) (K-60} (B-60) that 

treatments of excited levels which do not conserve the number 

of particles, contain spurious solutions. In the present 

work, there is one spurious state present with k=O. It can 

be found as follows. Since the ground state we are using is 

not an eigenstate of the number of particles, the state 
1'\ 

N llo) is different from J ~o) where 

A 

N :: 
(4.20) 

is the operator for the number of particles. This extra 

atate is spurious, and should be eliminated from the discus-

sion. The number operator can be rewritten as 

;\ + 
N = zj"" Ct. j,. {AJ, 

j,.,; j-"' J-m J t 
::: ~;,. Coo (-1) ZJ+I Ct .. i,., 0.. i, 

J 2. ..n. j "' = 2. jm cpj.j;oo (4.21) 



Here, we have made use of the relation 

We thus have 

"'t 
Boo(..&.)0 

jm i J-m ,, J-,.,.., -JL 
Coo = (-1) (zj-rt) 
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(4.22) 

as the operator that creates the spurious k=O level. Thus, 

in order to eliminate this level, we must set the amplitude 

= ~ ,J. Jz .nJ· rn . ..,jJ;ow0 

(4.23) 

equal to zero. This condition yields the set of relations 

cf);; ;ow
0 

= 0 
(4.24) 

For the o + levels, equations (3.63) becane 

( ~ E ,2 
- (A.Il) c.p II ; 0 ( w) 

't l. = 8 E, U 1 V1 ~ 2. Fo ( Z I ; Z. I) (/Jz z.; o ( c..v) 

~ -+ E 1 U 1 V 1 ( u 1 - v,t.) ~ z. G o { z z i 1 1 ) :X. z z. ; o ( w ) 

+ t,.A,V, c..,v ~~ Go(ZZ.;tl) x~~;o (tr.~) 
z. (4.25a) 

z 't) - ) (~E,- c..v X.ujc> (w 

= 8 e I LA. I v, ( (.,{: - v, \ ) '£ t. F u ( z I ; 2. I) c.pz z ; 0 ( c.v} 

.,. E. I ( I.- ..,. u, .. -u,Z.) ;£ z G 0 ( 2. z; II ) X i z; 0 ( w) 

(4.25b) 
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(4 .25c) 

where 

(4.26) 

Go (zz;u) = '''/:'lOJW, Ja, I I 

.,. Z X ( C i, 'lt. .J2. j,_ 

Jl.i, (4.27) 

To obtain these equations we have used the relation 

J. + j, )-Yz 
W ( jj j'j';oz) = (-t) ( ~..nj Sl_J, 

For the spurious level, we set rn · · = o and "'1' I. I. ; 0 c..,)c> 

obtain 

(4. 28a) 

( .Y E,'l.- w:) 

(4. 28b) 
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If we consider the case where the exchange terms are 

neglected, then 

Fo ( 2 I ; 2 I) = 0 Go(zz;u) = z.GJ-fl..~-'2z. 

and it can be readily verified that a solution exists with 

~o= 0 , and X = 0. In this case we get 

+ 
?( 11; Go 

which leads to the identity 

G- : 2._j Z E; 
..52.j 

+ 
X'z2;oa 

When the exchange contribution is included, the ener-

gy of the spurious level will not necessarily be zero. It 

is still hoped, however, that this level can be easily picked 

out from among the solutions which appear. It will probably 

still be the lowest solution. The important point, however, 

is that the spurious level will be orthogonal to the other 

0+ levels, so the latter will contain no components from the 

spurious solution. 



CHAPTER V 

CORE POLARIZATION EFFECTS 

Up to this point we have treated the nuclear core as 

inert, however, there are same effects in which the core 

plays a crucial role, two of which are especially important 

in this work. It should first be noted that the term "nu

clear core" is intended to include both proton and neutron 

filled shells, as well as higher unoccupied shells which are 

important when hole states are being considered. The first 

effect arises because of the ability of the few particles or 

holes outside a closed shell to polarize that core. This 

can lead to an enhancement of electromagnetic moments and 

transition rates. Secondly, we note that interactions be

tween particles or holes outside a core can take place not 

only directly, but also indirectly by way of particles or 

holes in the closed shells. This can lead to a renormaliza

tion of the interaction between external nucleons. Let us 

censider these two effects in more detail. 

1. Renormalization of the interaction (B-61) 

We recall that the interaction between particle-hole 
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states was represented in diagram form as 

r'<'"~' i:JZ > ~ 

Let us denote by T' I that part of r' corresponding 

to an interaction, via the core, between an external particle 
-, 

and hole. We can represent r by the equation 

r' ('+I; 32) = - i. ~ K''( 1./; 5Z) Ku. ( 5'; 78) ¥
1

(~7; 18) 
s. "·"·a 

or in diagram form by 

Here, ~ describes the interaction of an outer parti-

cle or hole with the core. If this interaction is assumed to 

be the same as that between external particles and holes, 

then is just r' • Even if this assumption is not 

true, these two functions will still have the same form. In 

the above equation, K
22 

denotes the Green's function of the 

core, defined as 

We can rewrite the equation for 
-, 
~ in a representa-

tion in which the angular momentum of the particle-hole pairs 



is fixed. This is the same procedure as that used in Chap-

ter III. We thus have 
_, 
F~~. (A11;'3Z) 

- - i ;E 5, 6.1 7, 8 f 1< ( b I ; 5 2 ) 1-< z 'Z. ( 5 '- , K ; 7 8 , K ) f ~ ( lf 7 i 3 8 ) 

(5.1) 
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• 
where f bears the same relation to '({ , as F does to T' '. 

Here, 

Let us restrict ourselves to the situation where the 

external nucleons are of one kind only, say neutrons. It is 

thus necessary to distinguish two cases, an interaction of 

the external neutrons with the proton core, and an interac-

tion with the neutron core. Let us consider the former 

c~se first. 

The only first order term contributing to 
-, 
T' will 

be of the form 

Figure 1 

In this case we can write 



II II 

fk(l2:34) = fk(21;34) = fk(24) fk(l3) 

(Note the analogous equation for Fk(l2:34) in 

Chapter III) Equation (5.1) thus simplifies to 
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= - i f ~ ( /2) [ ;!: S, (,.,, 18 +: (b,5) 'fi:zz (5h,K; 78,K) +~(?,a)] f~ (¥,3) 

II II 

::::. 7J~ .f J< (IZ) t (A.f3) = 7J; .fK('ft;:Jz) (5.2) 

The total interaction between external holes and 

particles can thus be written 

-· Fk(41:32) ~ Fk(41;32) + Fk(41;32) 

= Fk(41;32) + ~~ fk(41;32) 

Since fk = Fk except possibly for a change in the 

coupling constant, we can write 

(5.3) 

The presence of the proton core thus leads to a re-

normalization of the interaction between external nucleons. 

The treatment of the neutron core is slightly more 

complicated because of the effect of exchange graphs. Thus, 

along with Figure 1, whe~the intermediate states now refer 

to neutron core particle-hole pairs, we must consider the 
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following processes. 

Figure 2 

These allow for the scattering of external neutrons 

into neutron core states. 

The complication arises because the functions f 

are no longer factorable. However, we can still write 

-I 

F~~. ('tt;3z) = 

where 

'Z_ 5, ~. '1
1 

8 f K ( '- I ; 5 Z. ) 
I 

KLz. (sb,K; 78~~> f~<. (~7;3a) = 
frt (A-t1;3Z) 

(5.4) 

is a function of the indices 1, 2, 3, 4. 

We can again write 

Ft< (lflj12.) 
___. FK ('+1;32.) + 7)~ tl< ( ~~; 12) 

= ( I+ "'n ) FK (4.1/; 12) 
(5 .. 5) 

The total renormalized interaction can then be writ.-

ten 
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F X ( '-1 1 ; 3 z. ) ----) ( I + 7Jn + 7J P ) F ~< ( 1-/ 1; 32) 

= (1-t-7Jr) FK(stlj32.) 
(5.6) 

for the direct terms, and 

F"< (11J;'3Z) ~ (/+7Jfl) Fl<("flj3Z) 
(5.7) 

for the exchanqe terms. We emphasize again that "'! P invol-

vea a sum over proton core states, while 1f n involves a sum 

over neutron core states. 

2. Effective Charge 

The matrix element for the transition of an external 

nucleon from a state ..J 1 to a state .;:>z. under the action 
... 

of a multipole operator Q ~~ can be represented by the alge-

braic equation 

(5.8) 

or by the equivalent equation in diagram form 

@::; + 

where denotes an interaction with an external 

I 

multipole field. ~2 and r' refer to external nucleons, 

while x22 and T refer to core nucleons. 



The first and second order diagrams that contribute 

to the transition matrix element are shown below. 

I)~ 

3) 
Figure 3 

In general, the intermediate states formed can be 

composed either of external nucleons or of core nucleons. 

Since we are interested in neutron transitions, however, 

it is only when core protons are excited that there will 

be any contribution to the electric multipole moments. For 

reasons identical to those put forth in a) only processes 

such as 2) in Figure 3 should be included. This again 

means that r is factorable. We thus have 

< -vI 1 a }.r 1 .fJz. > 

~3,1f1 S1 • g ( 3 'f) Xz.z. ('3'1;s•> T' (51; 1:12.) 
(5.9) 

Using theUJigner-Eckart theorem we can rewrite this 

as 
<.. J I If Q ~ II j t '> 

__,. ~3.~>~,6,~> g) (j3 j'f) Kzz('31i)Jif.j5fJ,K) F). (51;r.z) 

where the double bar over q denotes a reduced matrix ele

ment. 
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For the quadrupole transition rate we have 

_, 
Fz ( 5 1 ~ o 2 ) = F z ( I 5 ; ' 2 ) 

We can thus replace ( i 1 (/ Q 2. l/ h .. ) by 

eeu (j,I{Qzlfj-z.) 
e 

where 
X 

< j 3 11 & z If J'1 > i< zz < 3¥. z; s 6, z) < jsft Gz.ll j, > 
(5.11) 

where the sum is taken over all proton states. 

We note that we can rewrite the expression for the 

effective charge in the form 

7jp e ::::: Z 11r e 
A 

Thus, the ratio ee++je 

(5.12) 

is the same quantity as 

that Which leads to a renormalization of the interaction by 

the proton core. 
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3. Electromagnetic Transition Rates 

The electric multipole operator is defined as 

(5.13) 

The polar coordinates are referred to a coordinate 

system with its origin in the nuclear mass centre and with 

a fixed direction of the polar axis. 

We assume that the nuclear charge density is made 

up of point charges, in which case the density operator in 

the second quantized representation can be written 

"' ...... ..... + - e z;:,, .;> ,_ cp-u. ( r > tp .v z. ( r ) a .v, a...)' 
(5.14) 

"" We can thus write Q ~ in the form 

(5.15) 

where 

(5.16) 

and the sum is taken over all the proton states in the nuc-

leus (e is zero for neutron states). 
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We are interested in the operator for electric quad-

rupole transitions. This can be rewritten in the following 

way. 

Q ~ = e ~ .;:>, .:>z. < -i), I r
1 

Yz./""' I vz.) a..+-i>, C1. .Jz.. 

- e ~IZ. <Ill r'~Yz.l/2.) 

J2..j,+( 

j 1. na ; fr"' 
:E m, m t C i, "'• 

jt.mt j,m,jj,.J?Jt + 
< 1 lf r 1 Y2. /12) 2. m,mz. (-J) C 7-"- O.J,,, uh,z. = e 'Z...,z 

J5 
j,_j.,_y t "' 

= (ejJ5) ~,z. c-o <lllr Yz.l/z/ cpzt;K-r (5 • 17 ) 

We again use harmonic oscillator wave functions to 

evaluate the radial integral. The reduced matrix element 

of Y2 is given by 

We thus get 

jL 1/z. ; Z 0 

c j, 'ft. 

A ) l I 
Q~ = (ejJ7in- <,. > x 

(5.18) 

The reduced matrix element for an electric multipole 

transition is defined as (P-62) 

8 ( E ~ ; T;. -" T i) 

= -1-- :E. ,.., 1 M ~ J < I~ M ~ I a "r I r' M i > I 
Z.TL+I 

2. 

(5.19) 

where a sum is taken over the spin orientations of the final 
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state, and an average is taken over the spin orientations 

of the initial state. 

For the case of an electric quadrupole transition 

+ from the ground state to the 2 excited level, the reduced 

matrix element becomes 

z. 'Z. e < ,..t > X 

'i1r 

" Since the matrix element of cp is independent of 

~ , the sum over~ just contributes a factor of 5. We 

thus get 

J .. 'I& i 2. 0 J 1 - .j, 

C;, 'Ia (-1) 

In the case of the isotopes of lead, the collective 

2+ level is made up of neutron quasiparticle&, which would 

normally mean that the reduced transition probability would 

vanish. However, as we saw in the last chapter, when core 

polarization effects are included, an effective charge should 

be used in equation {5.20) and this leads to a non-zero value 

for B (E2). 
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In Chapter rv, the problem of normalizing the ampli-

tudes, 'Pi.j: "e , was discussed. This normalization is 

given in Appendix c. Using equation (C.l2) we finally ob-

tain 

l ( u.v, XZI;ZE (-!);,.;, 

+- 2 ( u, u t -+ V', 'tit) Y,z. i 2 E 

where ~ is given by (4.19). 

2. 

- 2. ( U.t Ut- t.r, Vi) Z IZ; 2EJl 
ljcs.2.t) 



CHAPTER VI 

APPLICATION TO ISOTOPES OF LEAD 

1. Choice of Parameters 

In order to apply the formulas derived in the prece-

ding chapters to the case of specific nuclei, it ~s necessary 

to know the single particle energy levels in the absence of 

residual interactions, E ., the strength of the pairing force, 
J 

G, and the strength of the quadrupole force, X. 

207 
The energy levels for the single hole in Pb are 

known quite accurately (A-55). The strength of the pairing 

force is known approximately from experimental odd-even mass 
(YieV 

differences and has a value between 23/A to 30/AA(KK-60). 

The strength of the quadrupole force can be assigned roughly 

by choosing a value such that, in conjunction with a value 

of G from the above range, the energies of the 2+ levels 

are given correctly. On this basis, a value of X ~ 110/A /VfeV 

has been previously used to give reasonable results (KK-60), 

(T-61). Once these rough values have been given, both param-

eters can be varied within their respective ranges until the 

best fit to the energy levels is found. 
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As mentioned previously, one way in which the present 

work improves on earlier treatments is in the inclusion of 

exchange terms. In these earlier treatments the strength of 

the quadrupole force, found by fitting calculations to experi-

mental results, is really the renormalized interaction as dis-

cussed in the preceding chapter. However, as was noted there, 

the renormalization of the direct and exchange parts of the 

interaction are not the same. Thus a third parameter, the 

ratio of the direct to exchange parts of the interaction, is 

introduced. We call this new parameter Y. Using the nota-

tion of the last chapter, we have 

y = I + 7J-n + 7Jp 
= 

I + 7} n 

+ 1Jr 
I + 7f II 

(6.1) 

However, 7J pe is just the value of the effective charge. 

For Pb207 the value has been obtained from a measurement of 

E2 transition rates and is __ 1.15 e (T-58). If we assume 

that 

'!r ~ ( Ajz) 1/p 
(6.2) 

then we also have Y ~ 1.4. This can be used as a rough 

value, with the final value again being decided upon by the 

agreement with experiment of the energy levels. 

Once the eigenvectors for the 2+ levels are known, 
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the calculation of the E2 transition rates is then a straight

forward matter. Although an estimate of the effective charge 

could be made from the defining formulas in Chapter V (see in 

this regard (T-62)), it was decided to assume that the value 

given by Pb207 remains constant over the range of A values 

being considered. This value is probably more correct than 

any approximate calculations could claim to be. The agreement 

with experiment of the transition rates can also be used, in 

conjunction with the energies of the 2+ levels, to fix the 

values of the parameters G, X and Y. The values of the 

transition rates in Pb204 and in Pb206 are known, and because 

of the approximations involved in deriving the theoretical 

estimates, the ratio of the values in these two isotopes pro

vides a more meaningful quantity for comparison than do the 

values taken individually. 

2. E!Perimental Data 

It will be convenient to collect here all the data on 

energy levels (up to about 2 Mev) and transition rates witl. 

which we will be dealing. All the data reproduced here can 

be found in the Nuclear Data Sheets (N-61). 



108 

Table 1 

207 SINGLE-PARTICLE LEVELS IN PL (Mev) 

Level fs/2 P3/2 

Energy 0 0.570 0.894 
------~---------- -----

1.634 2.338 

Table 2 

ENERGY LEVELS OF EVEN LEAD ISOTOPES (Mev) 

Level 

Ener~J 0.803 1.15 1.341 1.47 1.684 1.78 1.82 1.998 2.200 

Level 2+ 

Energy 0.899 

Level 

Energy 0.961 

4+ 4+ ? 

1.274 1. 563 1.816 

1.384 

Level 

Energy 

Pb204 

( 4) 
+ 

1.624 

Pb202 

1..027 
---------

Pb200 

? 7 9-
--,·--·---

1. 945 2.065 2.186 

2.041 2.171 

? 

1.489 



Table 3 

REDUCED TRANSITION PROBABILITIES (N-62) 

(e2 x l0-48 cm4 ) 

Isotope 206 204 

0.13 0.22 
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It should be noted that in Table 1, the energies of 

the hole states are taken to be positive with respect to 

the p1; 2 level. In Table 2, the spins and parities in paren

theses denote values which have not been measured directly 

and are just •probable.• 

3. Preliminary Results 

When this work was undertaken, it was intended that 

the calculations would be carried out on the Bendix G-15 

computer in the Computing Center of this university. It was 

realized that the storage capacity of this unit would re

strict the size of the energy matrix Which could be treated 

and so it was decided to carry out the calculations, neglect

ting the effects of the f 7; 2 single-particle level. As shown 

in Table 1, this level is well separated from the others (the 

il3/2 level has opposite parity and thus does not enter) and 

is far enough from the Fermi surface so that its probability 
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of being occupied (by a hole) is close to zero (see Table4f). 

The effect of neglecting this level was investigated by 

treating different parts of the full energy matrix (including 

the f7;2 level). It was found that in the case of Pb206 , 

+ there appeared to be no change in the energy of the 2 level 

When this extra level was included, and also, that the ampli-

tudes involving the f 7; 2 components were essentially zero. 

The effect is not negligible for the other isotopes, however, 

and for Pb200 , the lowest A value treated, it was esti-

mated that the calculated value for the energy of the 2+ level, 

neglecting the f 7; 2 components, would be about 10% too high. 

An error of this magnitude will not affect the proposed test 

of the formalism outlined in this work, although the actual 

values of the parameters that will be required to give agree-

rnent with experiment will not be the same as those which 

would came from a treatment of the full energy matrix. How-

ever, as will be seen, the difference in the two sets of 

parameters should not be great. 

At the time this work was begun, no satisfactory 

general method was known for finding the eigenvalues and 

eigenvectors of large non-symmetric matrices. For this 

reason, an approximation technique (discussed in Appendix B) 

was used which could extract from such a matrix, the lowest 
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eigenvalue and its corresponding eigenvector. This procedure, 

which depends on the lowest eigenvalue being well separated 

from the second lowest, was quite satisfactory for the study 

+ . of the first 2 level, since th1s collective level is split 

+ 
off from the rest of the spectrum of 2 levels. For the 

other excited levels, however, this technique was found to be 

less satisfactory. 

While these calculations were in progress, a paper was 

published (E-62) containing a new method for finding all the 

eigenvalues and eigenvectors of a non-symmetric matrix. It 

was then decided, on the basis of the success of the present 

calculations, to take advantage of the greater accuracy and 

completeness of this method by obtaining the use of a larger 

and faster computer. At the same time, this would permit 

the full energy matrix to be treated- Plans are now in pro-

gress for using the IBM 7090 computer at the Computing Center 

of the University of Toronto to carry out a thorough study 

of all the low-lying excited levels in the isotopes of lead. 

The results of this set of computations will be published at 

a later date. 

Let us now discuss the results of the present calcu-

lations. 
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Figure 1 shows the variations in the energies of the 

first 2+ levels as a function of X = Y for two values of 

G. It will be noted that the separation in energy, for 

fixed X, of any two isotopes is roughly independent of G, 

but for fixed G, this separation decreases as X is in-

creased. It is thus apparent that the correct sequence of 

energy separations for the isotopes being considered will be 

mainly dependent on X and the correct placing of the indi-

vidual levels on the energy scale will then mainly be depen-

dent upon G. 

Figure 2 shows a similar variation for one value of 

G, but this time as a function of Y with X fixed at 0.4. 

A better estimate of G itself can be obtained from 

a study of the levels with spin different from 2. In these 

cases, only the exchange contribution to the quadrupole 

force enters and the variation in energy of these levels as 

a function of the strength of this force is much less than 

+ in the case of the 2 levels. 

The 9- level is convenient in this regard because 

the high spin and odd parity reduces the number of single 

particle levels Which can contribute. Thus, if we neglect 

the f 7; 2 level, only the fs;2 and i 1312 levels need to 



Energy of the first 2+ level as a function of the strength of the 
quadrupole forces. 
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Energy of the first 2+ level as a function of the relative strength 
of direct and exchange quadrupole forces. 

I. 5 .----r----.--T 
I ' I I I I 
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i I I I ' ' I ' 
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1.
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XY (MeV) (X=0.4) 

Figure 2 



be considered. The experimental value for the energy of 

this level in Pb
204 

is 2.19 Mev. A value of G = 28/A 

along with X = 0.4 yields the result 2.21 Mev and in-

creasing X to 0.8 lowers this value by only 0.02 Mev. 

On the other hand, a value of G = 27/A and X = 0.4 

yields the result 2.14 Mev. 

Table 4 gives the values of ~ , 6 , and 

2 uj' corresponding to G = 28/A, for each of the isotopes 

being treated. The units for /'• ~ and Ej are Mev. 

PARAMETERS "'" , A , , 

Pb206 

~ o.ooo 
A 0.408 

El/2 0.4080 

E5/2 0.7010 

E3/2 0.9827 

El3/2 1.6842 

E2/2 2.3732 

u~/2 0.5000 

T2 0.9066 

u /2 0.9549 

u~3/2 0.9851 

u /2 0.9926 

E. 
J 

Table 4 

2 
AND u. FOR G • 28/A 

J 

Pb204 Pb202 Pb200 

0.220 0.415 0.606 
0.590 0.725 0.826 
0.6297 0.8353 1.0247 
0.6860 0.,7414 0.8268 
0.8958 0.8689 0.8746-
1.5323 1.4183 1.3184 
2.1987 2.0551 1.9185 
0.3253 0.2516 0.2041 
0.7551 0.&045 0.417() 
0.8762 0.7751 0.6643 
0.9614 0.9297 0.8896 

0.9816 0.9679 0.9513 
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4. The First 2+ Levels 

The energies of the first 2+ levels are shown in 

Figures 3 and 4 for the case G = 28/A. Figure 3 shows the 

variation in energy of these levels as the strength of the 

quadrupole force is varied for the case x • y. Figure 4 

shows a similar variation, but this time as a function of Y, 

with X held fixed at 0.4. The short solid horizontal 

lines denote the experimentally observed values. In both 

these cases, reasonable agreement with experiment for all 

the isotopes except Pb200 is achieved with a value of slight-

ly greater than 0.8 for the abscissa. 

Table 5 shows the amplitudes of the "two-particle" 

states that contribute to the 2+ level for each of the iso-

topes treated and corresponding to the parameters G = 28/A, 

+ 
X = Y = 0.8. The most noticeable feature is that the 2 

level becomes less collective as the closed shell of neu-

trona is approached. 
206 

In Pb , the main contributions come 

from the (1/2 5/2) components, with an appreciable part also 

being contributed by the (5/2 5/2) components. However, for 

the case of Pb200 there are only a few "small" components, 

and the 2+ level is highly collective. 
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Energy of the first 2+ levels as a function of the strength of the 
direct part of·the quadrupole forces. 

0.2 0.4 0.6 0,8 i.2 

Y(MeV) (X=0.4) 
Figure 4 
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Table 5 

AMPLITUDES OF COMPONENTS CONTRIBUTING TO THE 

COLLECTIVE LEVELS (G = 28/A X = Y = 0.8) 

i, j Pb2l56 Pb20~ Pb202 Pb~oo 

1/2 5/2 1.000 1.000 1.000 1.000 
1/2 3/2 - .423 -.544 -.759 -.914 
5/2 3/2 .059 .166 .404 .659 

Cf>,;j;z.E 
3/2 3/2 - .047 -.128 -.165 -.736 
5/2 5/2 - .189 -.492 -.959 -1.307 
5/2 1/2 .390 .472 .563 .603 
3/2 1/2 .122 .188 .334 .423 
3/2 5/2 -.042 -.120 -.305 -.499 

1/2 5/2 .672 .127 -.232 -.558 

... 1/2 3/2 -.319 -.174 -.039 .200 
:X i.i; z. e 5/2 3/2 .166 .236 .291 .167 

3/2 3/2 -.208 -.292 -.482 -.513 
5/2 5/2 -.494 -.584 -.412 .113 

1/2 5/2 1.075 1.027 1.097 1.269 

Xii;a.E 
1/2 3/2 -.384 -.457 -.672 -.926 
6'/2 3/2 .163 .273 .516 .868 
3/2 3/2 -.202 -.316 -.626 -1.183 
5/2 5/2 -.576 -.968 -1.496 -2.035 

Table rf' shows the values of the reduced transition 

probabilities 
+ 

for the 2 levels in Pb206 and Pb204 • The 

units are e 2 x lo-48 cm4. The symbol R denotes the ratio 

of the value for Pb204 to that of Pb206. 

Table Sa 

E2 TRANSITION RATES (e2 x l0-
48 cm4 ) 

Pb206 

x = Y c o.8 .101 
x = o.4 Y= o.8 .116 

.253 

.210 

R 

2.36 
1.81 
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These results were obtained by using oscillator wave 

< r 2\.2 functions to evaluate / and by taking eeff = l.lSe. 

The B(E2) values shown in Table Sa agree reasonably well with 

the observed values, but the case X = 0.4 Y = o.a yields a 

value for the ratio R which is much closer to the observed 

value of 1.73. 

5. The 9- Levels 

Because of the high spin and odd parity of these 

levels, the only contribution will come from the f 5; 2 and 

i
1312 

single-particle levels. We are again neglecting the 

f 7; 2 level. i~e justification for doing so here, is that 

the smallness of the off diagonal elements of the energy 

matrix introduces a negligible amount of coupling between 

the (5/2 13/2) and (7/2 13/2) components. Thus inclu-

ding the latter terms would not affect the energy given by 

the former terms alone, but of course would introduce another 

solution with a value n~arly equal to the sum of the f 7; 2 

and quasiparticles. This energy lies above the re-

gion in which we are interested. 

The following values were obtained for the energies 

of these levels. 
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Table 6 

ENERGIES OF THE 9- LEVELS 

Nuclide X(Mev) Energy (Mev) 

Pb204 0.4 2.21 
o.a 2.19 

Pb202 0.4 2.16 
o.a 2.14 

-From the equations for the amplitudes of the 9 

levels, it will be observed that there are 4 positive 

and 4 negative solutions. The latter are unphysical, 

and can be dropped. The energies quoted above are, in 

each case, averages of the four calculated energies (none 

of which varied by more than ±0.01 from the average). 

The multiplicity in the solutions is a result of the fact 

that our treatment does not conserve the number of parti-

cles, and should not be taken to indicate that four 9-

levels should be observed. It is well known that the 

pairing model leads to solutions for the energy which are 

averages over the energies of the nucleus being studied 

and the neighboring nuclei differing by an even number of 

particles. 
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Because the energies of the four solutions were so 

close in value, it was not possible, without using an unwar-

ranted amount of computer time, to obtain the corresponding 

eigenvectors. 

6. The 4+ Levels 

+ For the 4 levels, contributions can come from the 

(5/2 3/2) and (5/2 5/2) components. It seems reasonable 

to postulate that the two 4+ levels in each of Pb204 and 

Pb202 are mainly composed of (5/2 5/2) and (5/2 3/2) cam-

ponents respectively. Under this assumption, the equationsof 

motion yield the following values for the energies. 

Table 7 

ENERGIES OF THE 4+ LEVELS (Mev) 

Nuclide X 

o.s 
o.s 

First 4+ Level Second 4+ Level 

1.33 1.56 
1.47 1.60 

"The values quoted here are the smallest and largest 

eigenvalues of the energy matrix for each of the two nuclei 

treated. Because of the unfeasibility of obtaining accurate 

eigenfunctions, attempts made to calculate the other eigen-

functions were not successful beyond indicating that they 
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were close to one or the other of the values in Table 7. 

This clustering of solutions around two values is, of course, 

expected from the stucture of the energy matrix for the 4+ 

levels, and is similar to the situation that occurred in the 

case of the 9 levels. Table 8 shows, for Pb
204

, the approx-

imate values of the amplitudes of the two-particle components 

for each of the two solutions. 

Table 8 

AMPLITUDES OF THE 4+ STATE VECTORS FOR Pb204 

Level 

1.33 
1.56 

o.oo 
1.00 

o.oo 
0.01 

0.92 
0.04 

o.oo 
0.42 

0.93 
0.01 

o.oo 
0.70 

1.00 
0.02 

These values indicate that the two levels are indeed mainly 

(5/2 5/2) and (5/2 3/2) components respectively. 

7. Concluding Remarks 

Because of the slowness of convergence of the approxi-

mation technique being used in this work, attempts to calcu

late same of the other low-lying levels in Pb206 were not very 

successful. As mentioned earlier, further work is now in pro-

gress which will allow these levels to be treated. The sue-

cess of the present calculations indicates that the formalism 
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presented here is indeed capable of yielding quantitative 

results and suggests that further calculations would be quite 

fruitful. 

There are several interesting features which such an 

eKtended program should help to explain. For example, the 

energy matrix for the 4+ levels in the case of Pb
206 

indi-

cates that levels are expected at energies of about 1.30 and 

1.61 Mev corresponding to the levels observed in Pb204 and 

Pb202 • However, the lowest observed 4+ level is at an energy 

of 1.68 Mev. This probably corresponds to the higher of the 

two calculated values a.nd the question is raised as to why the 

lower level has not been observed. A similar question can 

also be asked about the lack <>f a 9- level in Pb
206

• A 

possible explanation is offerE!d by Kisslinger and Sorensen, 

who point out that their calctLlations indicate the presence 

of several other negative parity levels with spins less than 

9- which lie above the g- level in Pb204 and Pb202 , but 

just below it in Pb206
• The transition from the 9- level 

in Pb206 could thus easily be missed. 

From the energy matrix for the 4+ levels in Pb200 , 

a solution with energy about 1.55 Mev is expected. This 

probably corresponds to the unlabelled level observed at 1.49 

Mev. 



As a final note, it 1night also be possible,from a 

careful observation of the v.ilriation in energy of the 2+ 

levels as the parameters of the quadrupole force are 

changed, to estimate the relc!tive strengths of the direct 

and exchange contributions a1:ld thus to estimate the rela

tive polarizing effects of the closed cores of neutrons 

and protons .. 
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Although we have res·tricted this work to a study 

of the isotopes of lead, the method is of course much more 

general in scope. We will c'onclude by expressing the hope 

that this method will prove t:o be helpful in the study of 

the low-lying levels of many other even-even spherical nu

clei, and that it will help to clarify the nature of these 

levels. 



APPENDIX A 

DERIVATION OF FC1RMULAS INVOLVIR:; 

THE IN'l'E:RACTIONS 

Along with equation (~1.34) which expresses the 

interaction in terms of a rotntionally-invariant particle-

hole pair, there corresponds itn equation expressing the 

interaction in tenns of a rotittionally invariant particle-

particle or hole-hole matrix i::dement. We thus write 

(A.l) 

This expansion must be the same as (3.34) 

Equating the right hund sides, and using the follow-

ing relation between pairs oJ: Clebsch-Gordan coefficients 

and the Racah coefficient, 1~ (R-57) 
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we get 
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c e(f-,19 +' j ol-r. 
C e -. +tJ 

(21 +1) Gl (12:34) W(4132rkl) 

(A.3) 
j, +jr+l<. 

(-1) ~ 1. (21 + 1) F l (12:34) W(4321:k1) 

· · T' ' and -r7 
11 

Let us now express the 1nteract1ons ' 

in ter.ms of the matrix elements F and G • 

i,. 1'1'11>4; i,-mt 

c~ 

The second ter.m can be rewritten as 

I j.,- j3 
F I< ( I .of j :J z ) (-/) 

.J~,,; .Jj-mJ 

CK~ 

i., "'"' i J,- ""J 

c I</"-

and the first ter.m can be written in the same fo~mto give 
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I 

~~ f1< (-tt;12.) X 

~-1);,-m, c ~;; i,-m,] ~-./•-'"· c.i;:" i·-'"] 
where 

=- 2. .l (21 + W(l234:kl) (A.4) 

This last relation can be derived using the same pro-

cedure as that which led to equation (A.3). 

We now define 

= + (A. 5) 

We thus have 

(A.6) 

In a similar manner, 'ile write 

1 - J,-J.,_~ 
T' r ( ,)., -V'I. ; ;;1 -v,) ~ 2 K FJ( (-¥Z; 31) (-1) X 

[t-1) ;, _,., c ";; '·- '"'] [c-1) J.-... cj~; ''• _.,., J 
where 

1-( 

= (-1) + 

Fk(42:31) 
j,-.i,. -·· 

(-1) fk(42731) (A.7) 



and 

I 

f (42:31) 
k 

J, + jl. +.I. 
- - ~ .l (21 + 1) {-1) 

I 

F (42r31) w (1243Jkl) 
1 

= 

= 

r ll 

Now let us consider the ter.ms in 

j., ,.,.,., j i, "'1 

C K/"'" 

i 1 m, i i.,"t., 
+ ~ ~ G ~( (31/~ZI) c 1<-~ 

Let us define 

j, -~1 i j'l.. Mz. 

ct(~ 

j,-,, i j.,_ ... ~. 

CK? 

We can then write 

1/ r r < .v., -v1 ; vz -v, ) 

(-I) 
[ 

I(~ 
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(A.8) 

(A.9) 

(A.10) 
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The value of G which corresponds to the particle-

hole quadrupole force is given by 

;f,l (21 + 1) P'
1

(43J21) W (1243;kl) (A.U.) 
1 

We thus get 

= :E1. (21 + 1) C-1) 
• .)J + J"f 

[
F

1 

(12:34) W {1243;k1) 
1 

+ (-1)~ F~ (21:34) W (1234:kl} 1 (A.l2) 

In a similar fashion, and making use of the symmetry 

properties (3.43), we get 

(A.l3) 



APPENDIX B 

THE ENERGY MATRIX 

The energy matrix, formed from the set of three homo-

geneous equations for cp y+-
) /'- and :X- can be expressed 

in the form 

( fL-Vt- A,t.u- A,_) X= o 
(B .1) 

where A.2 and are square matrices of order 77 , and 

is the unit matrix of the same order The components of the 

vector X are just the functions 4>, "X~ and X-. Let 

us define a new vector 

...., -y = U.JX 

We can then write (B.l) in the usual form of an eigenvalue 

equation 

,...,. "" - -A,-Tw Az. y 

= 0 

l 
..... 

-w I 

(B.2) 
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Besides (B.l) we also need to consider the equation 

( - ' --..r -r ) x' r(...U - A,VJ At. = 0 

(B.3) 

where ""'T A denotes the transpose ot 
,.., 
A. 

The equation corresponding to (B.2) is 

,.,. T ""' 
A, - I c.v 

...... T 
A, 

...... , 
y 

= 0 

-I --w I 
.... , 
X 

(B.4) 

Thus to obtain the complete solution to the eigen-

value problem, we are required to find the eigenvalues of 

a square matrix of order 2n and the eigenvectors of this 

matrix and also of its transpose. 

Let us now show that the eigenvector 

belonging to the eigenvalue w, 
r 

onal to the eigenvector (~) value w 5 

We write (B. 2) as 

..... -A, Ys 
: c..-Vs 

..... ..... -I 0 x~ 

is orthog-

belonging to the eigen-

.... 
Ys 

..... 
Xs 

(B.S) 
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and (B.4) as 

- -At Az. 
( y; x~) Wr ( 

-I 

x~) = y,.. 
.- -I 0 

(B .6) 

Taking the scalar product of (B.S) with ( y~ x~) 

and of (B.6) with 0:) we get 

( vJ,.. - ws) ( 
_,I 

X~) ( y,) y,.. = 0 

Xs 

Thus if Wr :1::. Ws , we have 

,...I - ,..., ... .... , - ) y,. Ys + X,. Xs -- (1+-WrWs)(Xr Xs = 0 -
(B .. 7) 

The orthogonality relation is thus 

if rt-5 
(B .. 8) 

We note from (B.7) that if W r Ws = -I then 

the corresponding vectors are not necessarily orthogonal. 

However, since we are only interested in positive eigen-

values, this point is of no further importance. 

Let us define a new matrix 

At 
,..._ 

A 

I 
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Then 
..... ,.., -
A Xm = w, Xm 

,.._. - ,... 
Let x1 , x

2 
• • • • be the eigenvectoD! of A 

associated with the eigenvalues w, , w z. , •••• re-

spectively. 

-Now an arbitrary vector Y
0 

can be expanded in 

terms of the ~· 

where the an are constants. 

Multiplying by A we get 

..... ,._ x x A Yo = al wl xl + a2 I.A..) + • • • • + an c..v n 2 2 n 

and after k iterations we get 

-k ..... K - k x k x A Yo = alwl xl + a2 VJ + • • • • + a f.A.) 

2 2 n n n 

Define 
-k .... - (ylk' Ynk) A y = y = Y2k • • • .. 

0 k -xl = (xll' x21' x31' • • • • xnl) 
..., 

x2 = (xl2' X 
22' x32' • • .. • xn2) 

• • 
• • 
• • ..., 

xn = (xln' x2n' • • • • 
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We can then write, for an arbitrary element of the 

kth iterate 

k k 
Yik = al xil (..A)l + a2 xi2 (A.)i + • • • • a X t..V 

n in 

k 
The coefficient of w reduces to zero only if 

1 

k 
n 

a 1 = 0 or xil = 0, and since all xil are not zero (that is, 

X :F 0) the coefficients of w k in all components can be zero 
1 

only if a 1 = o. 
..... 

We thus see that any component of the vector Yk de-

pends linearly on 
k k 

(...()1, (..(.)2, ..... 
k 

(..,(.J • 
n 

Let us write, for such a component 

k 
w 

1 
+ c 

2 

k 
(.A./ 

2 
+ • • • • + c 

n 

k 

n 

Let us assume that Y has been chosen so that a :f-. 0 
0 1 

(that is, Y
0 

is not orthogonal to x1). 

If lwd > I Wt I ) I w1f·· · , then 

1(+1 ,.., 1(+1 
~.~1 ____ + __ C~z~t..A.J~& ____ + __ ·_·_·_· __ c_~"~~~a~ 

C 1 CA.J /( T C t C.A}f,l<. T ' ' ' ' C 1'1 G4J :: 

t-V, [ I - Cz. 
C I 

/( 
CJ c....>J 
c, w

1
1<. 

Thus, if w, is sufficiently larger than t.Vt. 



and if k is large enough, then 

We thus see that the largest eigenvalue is approximately 

equal to the ratio of any two corresponding elements of 

two sufficiently high successive iterates of an arbitrary 

,..., 
vector Y by the ma·trix A • 

0 
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Since we are interested in the smallest eigenvalue 

rather than the largest one, we can perform the following 

transformations: 

""' ,.... 
AXn= c..unx 

n 

Multiply both sides on the left by 
,..-1 
A • We have 

,., -1 .... - A -1 -A A xn = Wn X 
n 

,.... -1 ,.., 
or A X = ,l.nX where ). = .! n n I,V 

,.., -1 
Thus, by forming iterates with A rather than 

-with A, we will find the largest value of " , Which 

corresponds to the smallest value of ~ • 

This procedure also yields the components of the 

eigenvector corresponding to the largest eigenvalue, since 

th f h k th . 1 e components o t e 1terate, Yk are equa , apart 

from a normalization factor, to the components of the 
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eigenvector in question. This can be seen as follo"W-s: 

...... ..... k .... k .- k ,... 
yk = A y = wl a X + a (.A.) X + •••• 

0 1 1 2 2 2 

k 
[ al - k .... J = w X + ( ~) a X + 

1 1 2 2 

""'- k ._ al w X 
1 1 



APPENDIX C 

PROPERTIES OF THE AMPLITUDES AND NORMALIZATION 

OF THE STATE VECTOR 

1. Time Reversal and Hermiticity Properties of t~ 

Ampl~tu.des 

We have defined the following operators: 

:: 

..... j, Wll; j-..-JifL 

J( I Z; 1(,/A-- : Z m, rHt. CK/" 

j, m,; i, "'t 
C~t?' 

(C.l) 

,1\ 

"!:: X12i "~ 

""' Operating on cp with the time-reversal operator 

yields the result 
J~-m~ j, ,, i ia-ma + 

;: ~ m, ""- (-I) C II r a. j, -mz. a;, -m, 

"" 7: cp,l i K,l"' 

J~- '"' j .it. 17fZ 

c ~~ 

;,_jt-+1( J"'-mt. 
(-1) Z. m, ,.,,_ (-!.) 

j, .._ ja. + K 

:::-(-/) 
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J, ,, i ,i\-,.., t 

C~t""/"" 

{C.2a) 



Similarly we obtain 

t" " :X l't i 1(/"' = 

A 

7' XH;~ 

from which we get 

.:: 

/, + j&-+ I{ 
(-I) 

j,.,. jt. + K 
(-1) 

i, ... j1.. +I< 
-=..(-1) 

The Hermitian adjoint of 

""t cp I Z. j I( /"" = 
h- ,.,1.. 

:E._ r't-! 1 ltt1 (-I) 

J(~M- A 

- (- /) / ({) l I j 'Y" 

Similarly we obtain 

from which we obtain 

,... .... t 
( X - ) I 2 j I('/" 

I(~ = (-1} 
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;. 

.X IZ i K/""' (C.2b) 

"" X I 2 .i K /"""" 

(c.:£.}) 

{C.2d) 

A 

c.p is given as follows& 

(C.3a) 

"" 
:Xz1;J</' 

(C. 3d) 

2. The Evaluation of the Equal-times, Sinqle-particl~ 

Green's Functions 
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- i. < ~ o I r t a.-i) a. ( r > ~ ~, ( o ) J 1 ~ o > 

:: -· L 

= 

.::: 6 v, t) .t. J ( £ + £ .v, ) c1 (_ 
(f- E.v, +i~) (E+E..;,-i$) 

z. = V"/ s J 1 j l. b nt 1 ,.,.., Z. 

jll.-+mz. 
= (._-1) U ~ 't/.4 bj, h. S nr•-rnt 

Similarly 

00 
,.. c: £?: 

,e;.,..__ _1 ·) ~ G .v, ( tJ d £. 
-z--..o- zrrt. 

-00 

= £-v,- E..v, Sv .... ).t. 

-- z E .,.)I 

& .v, - i) 'I. 6 ,.) 11.-

2 £ <&);,_ 

(C.4a) 

{C.4b) 
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3. Evaluation of the Ground State Expectation y~lues of 

Four Op~rator!ll 

Let us evaluate, in the first approximation, the 

ground state expectation values of the bilinear combinations 

of and X.- which appear in the expressions for 

the normalization condition (4.15) and for the amplitudes 

cp , (4 .14) • 

Using equation (C.4) we can write 

JJrYifJ j_,+I<Pf¥ 
+(-1) (-JJ ~r>,-D 3 S-v1 -"'f u.Jv1 u.._,'f.l".., 

(C.Sa) 

Similarly 

j.; + ...,.., 't 

.:t c, v, ,,_ ~ ..,,_ i:>.., c-1; -v, u."' v~ 

j-t+m"f l. 
(-IJ U~t v.,. u 1 (C.Sb) 
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Jy ""'¥ 
+ s ..,, ...,, 6 '1,)2 _;)..,(-I) v, ~ u., v;. 

,j 1 + t'H>( ,. 

- 0 V 1 V"' 6 "\h - V 1 (.-I) 7J, U 'J V1 

(C.Sc) 

Using {4.15) and (C.Sa) we get 

I(~ J'J-j-4+1< 
c-J) :E,>+(-1) X3-t;Ke 

Similarly we get 

ll +,/""' ;,_jot+ K 
{ -J) ~ '1"1 (-1) 

..... "'"' 
Y'#t+j I(E. <.'fo{ c{Jz.J; ~</"-' X~J;K~ I~.) 

(C.Sb) 
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(C.6c) 

Xtl;ltE) 
(C.6d) 

fP¥'1; ~ /~o~ 

t.. J, - j ... + I( '1. ) 

( (...(. I u z. Vz. X I 'L ; K E (-I ) + u z. u I -v, X 'l-1 ; I( E 

(C.6e) 

(·2o{ X1.t;1<''7'"' j'lfjl(/"" /~oJ] 

J~- /a. +-I< ) 

- b 1(1(1 ~/' U, Uz. V, Vt. ( Z1z.; KE C:-1) -+ lz.lil(fii. 

(C. 6f) 
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(C.6g) 

Equations (C.6) can be recombined to yield the follow-

ing expressions: 

1Ji. {.).I ] 

(C.7a) 

(C.7b) 
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(C. 7c) 

l. 

~- 2. 6 k'l( 1 ~// ( u, Ut + v, if-a.) Zll. ~~E 
(C. 7f) 

~ 8 0 I 2.. 6 I{ I( I 6 I( 0 y_ I Vt J"':ii1 Z J z ~ J ; I( C (.A. 3 VJ t.F:iEj 

z. 
t- Z. S I{ I( I ~/"'I ( {A. 1 {.J. z. - '1.}j if~ ) z I l. ; J( E. (C. 7g) 
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v, ... t/i,) z~~.; "~ 
(C.7h) 

(C. 7i) 

Equation (4.14) can now be written 

<PtZji<E 

= 2 E> IZ bt<o v, I. Ji2, ~ 3 [ XJJ; rf v,l ¥·"!, y,3; 1(£ Us'tl"j] Jji, 

[ 

~~ _j._ +I( ] 
+Vi u.., XZ.IjltE f.A.'I.Vi(-1) +- XIZ.jllE V't.CA.t 

+- z tr~ v<., [ Y, t · 1tE. (u, Ut.. + v; v,.) - Z,tj f(E ( u, u.~.- v; t.Tt) -] 
' {C.S) 

However, we are more interested in the quantity 

J,'ftjlO J,-jL 
c iz. 'ft.. (- I) (/?, ~ j Z E 

(C.9) 

which appears in the expression for the quadrupole transi-

tion rate 

We write (C.9) in the form 

(C,.lO) 
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Substituting (C.8) in this expression we get 

[c 

J,-ja.. 
(-1) 

. . 
J.- Jt 

U. t. v, X z,; z..e ( -1) 

j, 1/r.- ; z..o 
c J~. '/a. ( ift U l. + tJ'i U 1 ) K 

+ Vi.(.,(, X /Z..j lE.) 

The normalization condition can be written 

z. 
N 

i,-j .. +l( ) 

+VzUt (X21;KE U 1 V,(-I) +Xt'l.;I<E Yt.U, 

- ..,. b /2 6 I( o V, 7. JJi. 1 2_ 3 y 1 'J i Jt E {.). 1 1/1 J:fLj 

+ Z Vz. u, ( u, lA\. + v, v.,) Yn; l(t: 

- zv,u, (u,u.-v,v,) ZIZ;•e f 
j,- Ja +I( ) 

+ Yn; ~· e: ~ ( u. u, +_1/, v,) ( ""·_ ~· x,; "E C-1) + u, v. x,. ;•E 

.,.. 2 ( Uc U1. + "1/, V-a.) Yn ... ji(E 

z ( (..<~ u'..- v,' v.') Zn;"" } 

+ 8 & I z. 6 J( 0 lA I u, J]:f, ~ 3 z 3 3 ; It E. u 1 V:J t/ _Q J 

+ 2 ( u,£..(,- v; v.)' z,z; llE J ] 
( c .13) 



Collecting terms we obtain 

1 N -.:. 
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[ 'i '" b<• X••;~E v: J:£, ::£.3 ( Xn;KE v;'-z. Y.,;~e u.,v.)t/.iL, 

- 8 61Z. 61<'o Z12j It£ u., Vi~ ~3 (Xn;XE 173
1 

+2 Z:l1iK£ u~1Jl)J.ii"; 

X I z ; " E Vt. u I 

j,-ht-K 
+_Xz_t;I(E Vi UL(-1) 

- 2. ] 
+ 2 ( u 1 u z. 1- v, v .,_ ) Yn i " e - 2 ( u , u 1.. - t...r, v 1. ) Z 1 z ; If E. ~ 

(C.l4) 
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