AN ADAPTIVE CONTROL ALGORITHM FOR A

CNC MILLING MACHINE

AN ADAPTIVE CONTROL ALGORITHM FOR A CNC MILLING MACHINE

By
Gajananda Nandakumar Mailvaganam
B.Sc (Eng.) (Hon.) (Ceylon)
C.Eng. M.I., Mech. E. (London)

A Thesis
Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree
Master of Engineering
McMaster University

$$
\text { April, } 1974
$$

TITLE: An Adaptive Control Algorithm for a CNC Milling Machine

AUTHOR: Gajananda Nandakumar Mailvaganam B.Sc. (Eng.) (Hon.) (Ceylon)
C.Eng. M.I. Mech. E. (London)

SUPERVISOR: Professor J. Tlusty
NUMBER OF PAGES: 120
ABSTRACT:
The purpose of this project was to develop an Adaptive Control Algorithm for a CNC milling machine. The milling machine is controlled by a 2l00A Hewlett Packard mini-computer. The Adaptive Control Software has to operate in unison with an already available Numerical Control Software. Both these programmes are stored in the computer and the computer operates on them with the aid of the interrupt pulses received from the Time Base Generator located in the Controller.

The Adaptive Control Software should be capable of optimising the milling process, that is enabling the milling machine to operate at the highest feed-rate without violating or overriding the maximum permissible values of the horizontal force and torque acting on the cutter. These maximum values of the force and torque are determined from the tool strength and capacities of the servo drives and spindle motor. Further, the machine should be able to arrive at the above feed-rate in the shortest possible time interval without causing cyclic variations in the feed-rate which could lead to an unstable system. The programme should be able to obtain ten samples of the parameters per revolution of the spindle. The feed-rate thus obtained (after comparing with the maximum and minimum feed-rates of the machine and making any corrections, if necessary) should be stored in a memory location accessible to the Numerical Control Programme. The instantaneous values of the force and torque are transmitted to the computer via the transducers attached on the spindle of the machine and the Analog-to-Digital Processor, therefore, the Adaptive Control Software will have to communicate with the Analog-to-Digital Processor in order to receive the values of the forces and torque. Thus the above mentioned requirements will have to be met by this piece of software. With this end in view, the following algorithm was developed.

The algorithm consists of two portions, namely, the Data Reading Routine and the Policy Routine. The former accepts the two horizontal forces (which are phase shifted by 90°) and the torque acting on the cutter by communicating with the Analog-to-Digital Processor. However, all these three parameters are received through the same channel from the Analog-to-Digital Processor as such a method of identifying the variables was necessary. For this purpose, the Data Reading Routine consists of software capable of communicating with the Analog-to-Digital Processor at time intervals of $10 \mathrm{~m} . \mathrm{sec}$. and receiving the data in a digital form, decoding the input and ascertaining which input parameter was received. The Policy Routine has two modes of operation viz., the constraint and optimizing modes. This routine ascertains the critical error and arrives at the new feed-rate depending on the Policy used. After checking the value of this feed-rate with the maximum and minimum feed-rates available on the machine (and corrections made if necessary), the suitable value of this feed-rate is stored in a memory location accessible to the Numerical Control programme. This gives the general structure of the Adpative Control Algorithm developed in this project.

ACKNOWLEDGEMENTS

I would like to sincerely thank my supervisor, Professor J. Tlusty, for suggesting the research topic, his knowledpeable advice, critical appraisal, continuous enthusiasm and encouragement, through this research programme and for the rewarding experience of working under his guidance.

I extend my appreciation and sincere thanks to Dr. Y. Koren for his devoted guidance, encouragement and unrelenting insistence on adeauate rigour and the valuable contributions he made for the fruitful completion of this work.

My thanks are extended to Dr. Frans Van Dijck and Mr. Peter McNeil for the valuable discussions during the course of this work.

I gratefully acknowledge the financial assistance from the National Research Council of Canada and McMaster University.

I am grateful for the patience and efficiency of Miss Deborah Tudin in tyoing from a difficult manuscript.
Page
Chapter 1 INTRODUCTION 1
1.1 Numerical Control (NC) 1
1.2 Direct Numerical Control 6
(DNC) and Computer NumericalControl (CNC)
1.3 Adaptive Control (AC) 9
1.4 Programmable Adaptive Control 11
Chapter 2 The General Description of the System 13
2.1 The Milling Machine 14
2.2 The Controller 16
2.2.1 The Auxiliary Controller 16
2.2.2 The Servo Drive Unit (SDU) 17
2.2.3 Drives and Feedback Devices 18
2.3 The Hewlett Packard 2100A Computer 19
2.3.1 General Specifications 20
2.3.2 Interrupt System 21
2.4 System Operation 26
Chapter 3 The Sensed Variables 27
Chapter 4 The Dynanometer Description 34
Chapter 5 The Adaptive-Control Hardward 40
Chapter 6 The CNC System 44
6.1 System Description 44
6.2 The NC Programme 47
6.2.1 The Initiator Routine 47
6.2.2 The Continuator Routine 48
6.2.3 The Digital Differential. Anal- 50yzer (DDA)
6.2.4 The Interpolator 51
6.3 Lost Motion 53
Chapter 7 The NC Data Programme (DP) and the 55 Data Reading Programme (DRP)
7.1 General 55
7.2 NC Data Programming 55
7.3 The Data Reading Programme 60

TABLE OF CONTENTS Continued

Page
Chapter 8 The Adaptive Control Programme 62
8.1 Data Reading Routine 62
8.2 AC Policy Routine 64
8.3 AC-NC System 69
Chapter 9 Conclusion 71
APPENDIX A The HP 2100A Computer 105
APPENDIX B The Adaptive Control Programme (AC) 111
APPENDIX C The Data Reading Programme (DRP) 115
BIBLIOGRAPHY 120

LIST OF FIGURES

Figure No.
Illustration
Page
1.1 Block diagram for a numerically controlled 75 machine tool, closed-loop system
1.2 Conventional Hardwired NC Control System 76
1.3 Hybrid Configuration 77
1.4 Software CNC Configuration 77
1.5 Adaptive Control System block diagram 78
2.1 Block diagram of CNC-AC System 79
2.2 Block diagram of the Milling Machine, 80 Computer and Controller
2.3 Priority Linkage 81
2.4 Interrupt Sequences 82
3.1 Graph of Force Vs Length of Cutter 83
3.2 Graph of Torque Vs Diameter of Cutter 84
4.1 Dynamometer (Assembly) 85
4.2 Flexure Plate 86
4.3 Torque Ring 87
5.1 Electronic Bridge 88
5.2 Analog-to-Digital Processor (ADP) 89
5.3 ADC-10Z Timing Diagram 90
6.1 Initiator Routine 91
6.2 Continuator Routine 92
6.3 Digital Integrator 95
6.4a Internolator 96
6.4b Circular Interpolator 96
6.5 Initial contitions of circuit 06

LIST OF FIGURES continued

Figure No. Illustration Page
6.6 Profile to check "Lost Motion" 97
7.1 Data Manuscript 94
7.2 Data Reading Programme (DRP) 98
8.1 Data Reading Routine 99
8.2 AC Policy 100
8.3 The AC Strategy 101
A1 Data Formats and Octal Notation 102

LIST OF TABLES

Table No. Page
1 Preparatory Functions 93
2 Miscellaneous Functions 94
A2
Memory Pages 103
AlExtended Arithmetic Execution104Times

CHAPTER 1

INTRODUCTION

1.1 Numerical Control (NC)

Numerical control may be termed as the most dynamic manufacturing process in use. The history of this process dates back to July of 1949, when at the Massachusetts Institute of Technology an inftial research project was carried out under the sponsorship of Parsons Corporation of Traverse City, Michigan and the United States Air Force. Numerical Control has had a tremendous influence on manufacturing in the twentieth century. This discipline presents not only engineering problems, but also economic and sociological ones, whose impact in one way or another will eventually effect all of society.

Numerical control is defined by The Electronics
Industries Association as: "A system in which actions are controlled by the direct insertion of numerical data at some point. The system must automatically interpret at least some portion of this data". The basic system may be represented as shown by the block diagram in Figure 1.l. The total system may be subdivided into eight distinctunits. These units being the inrut medium, reader, store, comparing equipment, amplifying equipment, operational devices, machine drive, and feedback. The input
medium consists of physical material carrying the sequential instructions that the machine tool will need to perform its operation. The input to a numerically controlled machine tool could take a wide variety of forms, such as manual input, punched-paper-tape input, magnetic tape and punched cards. The most commonly used input medium is a l-in.-wide punched paper or Mylar tape. The control unit of the system consists of the reader,store and the comparing equipment. The information present on the input medium is transferred by the reader to the store element of the control unit. The store unit holds and preserves this information received from the reader until it is required for the operation of the system and also generates position signals which is analogous to the desired position of the operational device. The operational device transfers the workpiece to a predetermined position or series of positions and it enables operations to be performed on the workpiece at the above position or positions. It is evident from this that the operational device has two functions. The machine drive provides the necessary power to the operational device. The feedback unit may be considered as a unit capable of generating a position signal which is analogous to the present position of the operational device. The feedback unit is coupled to the operational device. The comparing Gauipment compares the theoretical-position signal from the store and the presentor actual-position signal from the feedback mechanism and
generates an error signal, which, when amplified causes the machine tool to move the operational device to a location where the theoretical position signal and the feedback signal will be at electrical null. The purnose of the amplifying equioment is to amplify the signal from the comparing equipment, so that, this signal will cause the machine drive to move the overational device and consequently the feedback mechanism, to the point called for by the theoretical signal.

The control unit is an information-handing device and could be classified as the most important element in a numerically controlled machine tool. The basic function of the control unit is to accept information from the input medium, store it, interpret it, and then generate electrical command pulses which cause the movement of the operational device. The frequency of these command pulses determine the velocity, while the number of pulses determine the distance of this movement. As mentioned above, the control unit comprises the tape reader, buffer storage (temporary), the interpreter section and electronic circuitry necessary to produce the necessary and appropriate pulses to actuate the machine tool. The buffer storage functions as a temporary information handing section for the data received from the tape. The purpose for a buffer storage arises so as to nullify any stoppage of the machining process due to the delay of data transfer from tape to the control unit. Such stoppape could cause a strain on the whole system and defects on the surface finish of the work.

The interpolation section is typical for contouring systems, but the section is absent in positioning systems. The purpose of the interpolation section is to obtain the intermediary points (co-ordinate values) on a straight line from given start and end co-ordinate values or on a curve from its given mathematical expression. Machine Tool control systems may be classified into four categories:
(a) Positioning System: This is the simplest form of numerical control. This form of control is usually associated with equipment that perform operations at specific positions and does not effect the workpiece when moving from one point to the next. The exact path that the spindle takes in moving from point to point is immaterial, providing, of course, the time reauired is reasonable and the spindle does not collide with either the part or the holding fixture. The feed-rate used in point to point positioning is the maximum feed-rate permissible for the machine tool.
(b) Positioning/Straight-Cut System: This system has, in additon to positioning, the capability to perform miliing along each machine tool axis. Thus it could perform milling and facing operations on any rectangular shape.
(c) Contouring System: This system is capable of all operations described under positioning systems and straight cut systems and in addition, it could execute straight lines at any
angle; circles, conics or any other mathematically definable configurations.
(d) Contouring/Positioning Combination System:

This system combines the advantages of each mode. If the machine control unit is in the contouring mode, it works exactly like a contouring system. However, if strictly positioning is necessary, the path control is eliminated which increases the operating speed.

The conventional NC systems discussed above, fall into two categories. In the first case, the control system could be programmed to receive the "gross" data, such as two points specifying a straight cut, and using this information, to perform the necessary interpolation to make the machine tool move in a line between these two points or given the specification of a circle or conic, the necessary interpolation is performed for the machine tool to move along the speciffied circle or conic within acceptable tolerances. In these control systems the interpolation andfeed-rate calculation features are incorporated. The part programmer processes the part programe in a generalpurpose computer and the punched tape obtained from the computer which contains the "gross" data is used as the input medium to the above control systems. It is evident from this that the above mentioned capabilities call for more sophisticated control systems. In the second category the internolating and feed-rate calculation features are not incorporated in the control system of the machine tool. This function is performed in a special
purpose computer, usually called a director. The director, performing interpolation and feed-rate calcuations, produces a control medium which contains all of the interpolated data necessary for the machine tool on a real time basis. In this case, the part programmer first processes the part programme in a general-purpose computer and obtains the punched tape with "gross" data. This tape is then fed into the director which performs the geometric and feedrate interpolation from the "gross" data punched tape and produces a control tape containing the interpolated geometry and feed rate information. This tape is next fed into the control system of the machine tool which reads it and commands the servosystem of the machine tool. The first category is called the on-line director process while the latter is called an off-line director process.
1.2 Direct Numerical Control (DNC) and Computer Numerical Control (CNC)

In numerical control systems we have observed that there are systems
(a) which utilize the director to produce the interpolated control media from the "gross" data produced by the general purpose computer,
(b) systems which are carable of internal internolation.
(c) Finally, we have systems which utilize the computer for directly controlling the machine tool, thereby completely eliminating any type of control medium.

The term DNC will denote a numerical control system wherein a multimachine manufacturing process is controlled by a remote powerful computer or a group of computers. In this system instructions are issued directly by a central computer wherein all the functions (primary and secondary) are executed. In DNC systems the most commonly used input devices are: teleprinter and cathode ray communications terminals with keyboards, mannetic tape, paper tape, and Hollerith card readers; while inhardwired numerical controls, the part programme data is fed in at the machine location by means of a built-in tape reader. The part programme data can be fed into the computer at a relatively high speed using any appropriate input device.

In a DNC system, the individual machines can be connected in the following ways:
(a) The machine tool in the DNC system has a standalone controller which could operate off-line from the DNC system, with a tape input as well as under the central computer control. The stand-alone controller can be a computer or a conventional NC controller (hardwired). [2]
(b) In this case, the NC control functions are shared between the central computer and a reduced special-purpose controller which is dedicated to the machine tool. Here the path generation function is separated into a coarse interpolation in the central computer and a fine linear interpolation in the special-purpose controller. This specialpurpose controller may consist of either hardwired logic or a small dedicated computer. Since functions are shared with the central computer, stand-alone operation of the machine tool is not possible. [2]
(c) Here all the NC functions for several machines, including path generation and loop closure are performed in a central computer.

In more sophisticated DNC systems more than one central computer is used and the various functions'are shared by the individual computers.

A computer Numerical Control System (CNC) may be visualized as a system in which, a single machine tool is controlled by a dedicated mini-computer. The mini-computer serves as part of the hardware of the system. Figure 1.2 illustrates in detail a conventional hardwired NC control system. Data is read into the core unit either by tape or by manual input. The core unit provides buffer storage, decoding and sequencing logic, decimal-to-binary conversion, etc., while the auxiliary
function commands and tool chanpe commands are directly sent to the machine tool via the appropriate interface relay logic at the machine tool. It should be noted here that virtually all conventional NC contouring control systems utilize pulseoriented dipital circuitry. In the CNC systems two alternatives to the conventional control systems have been adopted. They are:
(a) A hybrid combination consisting of a computer and hardwired logic, the general-purpose mini-computer replaces the functions of the conventional core unit and the conventional hardwired circuits are retained for the interpolation and position loop logic. This system is illustrated in Figure 1.3.[11]
(b) A mini-computer system capable of all control functions, including interpolation and position-loop closure. These are performed with the aid of the software present in [11] the computer. Figure 1.4 depicts this system. 1.3 Adaptive Control (AC)

Adaptive control may be understood as a control system which measures some process variable or variables such as toraue, force, spindle deflection, cutting temperature, etc. and uses these measurements to adjust feed and/or speed in the operation. Figure 1.5 illustrates an NC system with adaptive control. The sensors mounted on the machine tool generate signals
to the adaotive control system. The signals which are received from the sensors are analyzed by the adaptive control system, and appropriate modifier siunals are sent to the NC system. The NC system in turn provides the necessary slide velocities and spindle speed commands to the machine tool. The adaptive control system like a human operator senses tool deflection, vibration, tool temperature, etc. at the work zone and enables the numerical control system to make the necessary changes in the feed-rates and/or spindle speed in order to optimize the cutting process within the prevailing condition in the work zone. In the conventional adaptive control systems, the limiting values of the constraints are manually preset in the adaptive controller. In effect these settings define the range of permissible operation for the adaptive control system. Using these values as references, this system analyzes the prevailing conditions at the work zone (from the information it receives from the sensors) and informs the NC system for necessary action. The preset constraints could be (a) maximum spindle speed
(b) minimum spindle speed
(c) maximum torque
(d) maximum chip load
(e) maximum feed-rate
(f) impact chip load
(g) maximum vibration

(h) maximum force
 (i) minimum chip load

In effect these would definethe range of permissible operation of the machine tool.
1.4 Programmable Adantive Control

With the development of stored programme control systems, the adaptive control function is achieved by software. In the conventional type of adaptive control systems, the adaptive control function was achieved via hardware components. In this new system the adaptive controller is a software programme which contains the limits of the constraints and the necessary software to handle the signals from the sensors on the machine and compute the optimum feeds and speeds for the particular machining process. Therefore, it is noticed that in an adaptive control system real-time measurements of the parameters affecting the workpiece are found and controlled in order to optimize the cutting process. If a mathematical model is constructed for a (say) milling operation, the spindle speed and feed are the independent-variables while the tool tip temperature, spindle torque, the resultant force on the cutter and workpiece vibration are the dependent variables. Now, if this model is accurate, then the optimum spindle speed and feed of the cutter could be preprogrammed for all the individual stages of the operation and, hence, the need for adaptive control
would not arise. However, at present it is not possible to construct such a mathematical model except in the most elementary or in ideal cases such as the turning of a bar of constant diameter, of homogenous material, clamped at both ends in a perfectly rigid machine (lathe) having a tool bit of unvarying sharpness. It should be mentioned here that the introduction of "noise" into a simplified system is so great that to make a good simulation is too laborious and impracticable. Noise js represented by cutting fluids that cool the tool tip in an unpredictable manner by a variety of work clamping methods, by cutter wear, and by non-homogeneous metallurgical properties of the material. The vibration characteristics are determined by the shape of the workpiece as such require a mathematical analysis for each workpiece shape. As such, mathematical models may become a reaiity as computation and simulation skills improve, however they may not be economically realistic at present.

CHAPTER 2

THE GENERAL DESCRIPTION OF THE SYSTEM

An adaptive control system (in general) consists of three stages:
(1) The Identification Stage, in which the parameters (which will be used to ascertain the optimal working point) are identified.
(2) The Decision Stage, in this stage the optimal working point is calculated according to a prescribed strategy. This stage uses as an input the identified parameters of the Identificstion Stage.
(3) The Implementation Stage, here the theoretical optimal point which was obtained from the decision stage is carried out.

In a CNC-AC System the identification process requires the following equipment:
(1) Transducers for sensing the process variables which will be used in the decision process.
(2) An amplification unit to amplify the sensed variables.
(3) An Analog-to-Digital Processor (ADP) which is necessary to convert the analog data to a digital form which is acceptable to a mini-computer.

The general structure of a CNC-AC system is given in Figure (2.1). The elements of the identification process
will be given in Chapters 4 and 5 of this thesis.
The decision process in a CNC-AC system consists of pure software and will be referred to henceforth as the Adaptive Control (AC) Programme. The latter will be described in Chapter 8 of this thesis.

The Implementation Stage carries out the decisions arrived at by the Decision Stage so as to optimize the working conditions. In a CNC-AC System, the CNC portion of the system acts as the implementation unit. This unit consists of two portions (1) a software portion, which will be denoted henceforth as the NC Programme,
(2) the hardware portion including the control
loops termed as the Controller (shown in Figure 2.1), the Servomotors and the feedback elements.

A general description of the milling machine, its main control components, the controller and the mini-computer which was used in this project are given below.

2.1 THE MILLING MACHINE

A FA4V knee type TOS milling machine was retrofitted for this project. "The word retrofit is used to outline at least three machine tool applications. These may include , first, rerlacement of old numerically controlled electronic systems. Many current users of numerically controlled equipment originally purchased their machine tools during the early days of numerical control development and currently are finding considornbin merit in removine the older and often less
reliable control system and replacing it with new solidstate electronic hardware. In these cases, the machine tool is' less than ten years old and is far from being mechanically worn out, and the addition of the new control system adds substantially to the overall reliability and performance. The addition of numerical control hardware to machine tools origainally designed for, but not delivered with numerical control capability, is the second category of retrofits. This type of machine tool is usually delivered equipped with ball-nut lead screws, anti-friction ways and some type of tracer or profiling capability. The third and perhaps the most important classification of retrofits is furnishing numerical control to machines originally designed for manual or tracer operation. "[10]

The TOS milling machine falls under the third category. This machine was fitted with two ball bearing lead screws, one for the table and the other for the saddle, having a pitch of 0.25 inches.

The total length of the saddle lead screw is 22 Inches and its diameter is 1.0 inches. The lead screw for the table has a length of 46 inches and a diameter of 1.5 inches. Each lead screw has a bearing housing. On the drive end, two thrust bearings are preloaded against each other and a radial bearing is used to support the shaft. The bearing, housing on the opposite end of the shaft carries only a supporting radial bearing. The drive for the vertical motion of the spindle
employs a conventional lead screw driven by a D.C. motor through a worm gear reduction.

The basic design is similar for both axes, although different sizes of bearings, oil seals and gears are used. In the saddle, the lead screw is fixed axially while the nut Is attached to the saddle, moving the latter in response to the lead screw rotation. The table, however, is moved by axial motion of the lead screw through a stationary nut.

2.2 THE CONTROLLER

The control, which serves as an interface between the computer and the motors, consists of two units: the Auxiliary Controller and a Servo Drive Unit and is illustrated in Figure (2.2).

2.2.1 The Auxiliary Controller

The Auxiliary Controller contains a Time Base Generator (TBG), the x, y, z axes position control boards and a manual control. The Time Base Generator serves the purpose of providing
(a) interrupt pulses for the computer (via a frequency divider) to switch the computer control from the AC programme tc the NC programme.
(D) pulses for the manual control of the milling machine
(c) reference signals for the resolvers through a divide by 1000 counter and two low-pass filters. The computer
sends pulses which are converted into command signals. The x, y, z control feedback signal from the resolvers and the resulting error is fed to the servomotors via the servo control unit. This causes the motor to rotate in a direction to reduce the error. In the manual mode pulses are obtained from the Internal Pulse Generator (instead from the computer) and these pulses are controlled by the external knob of the potentiometer on the controller panel.
2.2.2 The Servo Drive Unit (SDU)

This unit controls the DC motors by a switching technique known as pulse with modulation. This unit is basically a velocity controller. A velocity command analog signal is applied to the servo and the servo operates to force the actual velocity analog signal to match it, thus achieving velocity control. To do this, the servo controls the width of the pulses applied to the motor circuit from 0 to 100 percent "on" time, at a rate of 2000 per second (the exact frequency is not critical forcorrect servo operation). The rectangular pulses applied to the motor terminals are filtered by inductance (natural or added externally) of the armature circuit. The armature current produced is related to the average pulse width. Thus, varying the pulse width effectively varies the applied motor voltage over a continuous range and enables the use of transister switches in their most efficient operating mode.

2.2.3 Drives and Feedback Devices

Servomotors: The servomotors used have a maximum speed of 1750 R.P.M., torque of 54 lb . in. and a horse power of 1.7 Type SV-7114 BW-1, Rating $20.8 \mathrm{~V} / 1000 \mathrm{R} . \mathrm{P} . \mathrm{M} .$, manufactured by Servo-Tek Products Co., Hawthorne, N. J.

The motor is connected in a separate exciting mode which means that the field is connected to a constant voltage of 90 V and the armature is connected to the power amplifier output. The speed of the motor is linearly proportional to the voltage supplied by the power amplifier, where the latter could change between 0 to +90 V for one direction of motion and from 0 to -90 V for the other direction.

Resolvers: The position measuring device used in the control loop is a resolver. Type MFG 09301 manufactured by SingerGeneral Precision, Inc. It consists of two stator windings and one rotor winding. The two stator windings are fed by two reference sinewave signals equal in amplitude, which are 90 degrees-phase shifted. The rotor output voltage, V_{b} :

$$
\begin{equation*}
V_{b}(t)=V_{r} \sin (\omega t+\phi) \tag{2-1}
\end{equation*}
$$

where $\omega=2 \pi f$ and f is the reference voltage frequency, $V_{r}=$ amplitude of the output voltage, $V_{b}(t)$ is the feedback signal. The phase-angle ϕ depends on the angular position of the rotor axis, which is geared to the lead screw of the machine. If the rotor is rotated through 90 mechanical degrees for example, the output voltage of the rotor winding is shifted by 90
electrical degrees from the reference.
In the case where the rotor is continuously rotated with an angular velocity ω_{0}, the feedback signal is:

$$
\begin{equation*}
V_{b}(t)=V_{r}\left[\sin \left(\omega+\omega_{0}\right) t+\phi_{0}\right] \tag{2-2}
\end{equation*}
$$

where ϕ, is the cumulative error value from $t=0$ untilreaching the steady state. From Equation 2-2 one could observe the feedback has the form of aphase modulation wave.

The resolver is geared to make one revolution for each 0.1 inch of linear motion*. The practical accuracy of a resolver is one part in a thousand.
D. C. Tachogenerator: The velocity feedback device of the control loop is a DC Tachogenerator with the rating of $20.8 \mathrm{~V} / 1000 \mathrm{R} . \mathrm{P} . \mathrm{M}$. and the internal DC resistance, $\mathrm{R}_{\mathrm{b}}=850 \Omega$.
2.3 The Hewlett Packard 2100A Computer
"The Hewlett-Packard 2100 A Computer is a compact data processor featuring a powerful extended instruction set, pluk-in interfaces, and modular software. Standard features include memory parity generation and checking, memory and

[^0]I/O protect for executive systems, extended arithmetic capacity, and power fail interrupt with automatic restart. Optional features include two-channel direct memory access, multiplexed input/output, a controller panel, and the I/O interfaces. The controller panel, which provides a minimum of controls and indicators, is available for applications where the full complement of controls and indicators provided on the operator panel is not necessary.

2.3.1 General Specificiations

Basic Characterisitics
(a) 16-Bit word length; 17 th bit memory parity checking.
(b) 980 nanosecond cycle time.
(c) A memory size of 16384 .
(d) 1024 - word page size.

Processor
(a) 80 basic instructions, including extended arithmetic.
(b) Two accummulators, addressable as memory locations.
(c) Six working repisters, may be selected for display and instant modification (A, B, T, P, M, S)
(d) Illuminated control pushbuttons allow simultaneous display and control of internal features.
(e) All instructions fully executed in 1.96 microseconds excent $I S Z$ and extended arithmetic (2.94 to 16.7 microseconds).
(f) 980 nanoseconds added for each level of indirect addressing.

Input/Output System
(a) 14 internal $I / 0$ channels, externally expandable to 45 .
(b) All channels buffered and bi-directional.
(c) Multilevel priority interrupt for device servicing.
(d) Peripherals interfaced simply with plug-in cards.
(e) General purpose interface cards available.

A further description of the main features of the computer is given in Apnendix A. However, since an understanding of the interrunt system of the computer is essential to gain an insight into the CNC/AC system, it will be explained in this chanter.

2.3.2 Interrupt System

The computer interrupt system has 60 distinct interrupt levels. Each level has a unique priority assigned to it, and is associated with a numerically corresponding interrupt location in the core memory.

As an example of the simplicity of this system, a service request from I/O channel 13 will cause an interrupt to core location 00013. The reauest for service will be granted on a priority basis higher than channel 14 but lower
than channel 12. Thus a transfer in prorress via channel 14 would be suspended to let channel 13 proceed, but a transfer via channel 12 could not be interrupted by channel 13.

Under propramme control, any device may be selectively enabled or disabled, thus switching the device in or out of the interrupt structure. In addition the entire interrupt system may be enabled or disabled under programme control using a single instruction (except powerfail and parity error interrupts)

The interrupt locations (octal 00010 through 00077) are available to I / O devices. This represents a total of 56 decimal locations, one for each of $56 \mathrm{I} / 0$ channels. In typical input/output operations, the computer issues a programmed command (e.g., set control/clear flag instruction STC,C) to one or more external devices, causing these devices to begin their read or write operation. Each device will put data into (inout) or take data from (output) the input/output buffer on each individual interface card. During this time, the computer may continue running a programme or may be programmed into a waiting loop to wait for a specific device. On completion of the read or write operation, each device returns an operation completed (flag) to the computer. The flags are passed through a priority network which allows only one device to be serviced repardless of the number of flags simultaneouslv present. The flag with the highest priority generates an interrupt signal at the end of the current machine cycle.

A set flag flip-flop inhibits all interrunt requests below it on the, priority string (provided that the control flip-flop is also set). Once the flag flin-flop is cleared the next lower device can then interrupt. A service subroutine for any device can be interrupted only by a higher priority device; then, after the higher priority device is serviced, the interrupted subroutine may continue. In this way, it is possible for several service subroutines to be in a state of interruption at one time; each will be permitted to continue when the hipher priority device is serviced. All service subroutines normally end with $\mathbb{J M P}$ indirect instruction to return the computer to the point of interrupt.

When a device is ready to be serviced, it causes its interface to recuest an interrupt so that the computer will interrupt the current programme and service the device. Since many device interfaces will be reauesting service at random times, it is necessary to establish an orderly sequence for granting interrupts. Secondy, it is desirable that high speed devices should not have to wait for low speed device transfers.

Both of these requirements are met by a serieslinked priority structure illustrated in a simplified form in Figure (:.3). The bold line , representing a priority enabling signal, is routed in series through each card which is capable of causing an interrupt. The card may not interrupt unless this enabling signal is present at its input.

Each device (or other interrupt function) can break the enabling line when it request an interrupt. If two devices simultaneously reauest an interrupt, obviously the device with the lowest select code number will be the first one which can interrupt, since it has broken the enable line for the higher select code. The other device cannot begin its service routine until the first device is finished, however a. still hipherpriority device (lower select code) may Interrunt the service routine of the first device. Figure 2.4 illustrates a hypothetical case in which several devices reauire servicing by interrupting a CPU programme. Both simulataneous and time-separated interrupt requests are considered.

Assume that the computer is running a CPU programme when an interrunt from I / O channel 12 occurs (at reference time t.l). A JSB instruction in the interrupt location for select code 12 causes a propramme jump to the service routine for the channel 12 device. The JSB instruction automatically saves the return address (in a location which the programmer must reserve in his routine) for a later return to the CPU programme.

The routine for channel 12 is not completed when several other devices request service (set flag). First, channels 13 and 14 request simulataneously at $t 2$, however neither has prionfy over channel 12 , so their flags are ignored and channel 12 continues its transfer. But at $t 3$,
a higher priority device on channel 10 request service. This request interrupts the channel 12 transfer and causes the channel 10 transfer to begin. The JSB instruction saves the return address for return to the channel 12 routine.

During the channel 10 transfer, device 11 sets the channel 11 flag (t4). Since it has lower priority than channel 10, device 11 must wait until the end of the channel 10 routine. And since Channel 10 , when it ends, contains a return address to the channel 12 routine, programme control temporarily returns to channel 12 (even though the waiting channel 11 has higher priority). The JSB, I instruction used for the return inhibits all interrupts until fully executed (plus one phase of the next instruction). At the end of this short interval, the channel 11 interrupt request is granted.

When channel 11 has finished its routine, it returns control to channel 12 , which at last has sufficient priority to complete its routine. Since channel 12 has been saving a return address in the main CPU programme, it returns control to this point.

The two waiting interrupt reauests from channels 13 and 14 are now enabled. Since channel 13 has higher priority, it goes first. At the end of its routine, it temporarily returns to the CPU programme. Then the lowest priority channel 14 , interrupts and completes its transfer. Finally, control is returned to the CPU programme, which continues processing."[6]

2.4 System Operation

The NC, AC programmes and the DATA are stored in the relevant memory locations of the computer. The operation of the system is inftiated by addressing the memory location at which the NC programme starts. The computer control resides on the NC programme until it completely executes the whole programme and then it acts on the $A C$ programme. Meanwhile, interrupt pulses are received from the TBG at a fixed frequency (5 kHz.). When the computer control is on the AC programme as soon as a interrupt pulse is received, the computer control jumps from the AC programme to the NC programme and after it executes the latter, the control is transferred to the location in the AC programe at which it was interrupted. In this manner with the aid of the interrupt pulses the computer is able to run on both proprammes. During this process data required for the NC programe is taken from the data available in the relevant memory locations by the computer. The AC programme receives its information from the transducers through the Analog-to-Digital Processor (details Chapter 3 and 5) and calculates an optimal feed-rate according to a prescribed strategy (see Chapter 8). This new feed-rate is used by the NC Programme in order to drive the servomotors through the Auxiliary Controller as explained in Chapter 6.

CHAPTER 3

THE SENSED VARIABLES

The identification portion of the adaptive control system has been developed to receive three sensed variables. The sensed variables are:
(a) the torque on the cutter
(b) the horizontal forces $F v$ and $F u$ acting on the cutter, the resultant of these forces being F. However, the cutter deflection, or the armature current of the servometers could also be tound if required. As outlined above, the force F is the resultant of the two forces F_{V} and F_{u}, which are 90 degrees phase shifted from each other. These two force vectors rotate with the spindle and are monitored by the dynamometer. Thesensing elements in the dynanometer are strain gauges. The values of the forces F_{v} and F_{u} are sensored and passed into the computer via the Analog-to-Digital Processor. The adaptive control programme in the computer acceots these values and calculates the resultant force F acting on the cutter where

$$
\begin{equation*}
F=\sqrt{F v^{2}+F u^{2}} \tag{3-1}
\end{equation*}
$$

The maximum allowable value $F_{\max }$. of the resultant force for a particular milling operation depends on the strength of the cutter material, the geometry of the cutter, the forces, the table and saddle of the milling machine could accommodate
without overloading the servomotors. This value of $F_{\max }$ is used as the constraint limit for the force on the cutter. Durinf the milling process the adaptive control system ensures that the prevailinp value F in the work zone does not exceed the value of $F_{\max }$. In the case of the torque acting on the cutter, the maximum allowable toraue $\mathrm{T}_{\max }$. depends on the strength of the cutter in torsion and the toraue the spindle could take at the particular r.p.m. The value of $\mathrm{T}_{\mathrm{max}}$. is used as the constraint limit for the torque on the cutter, and the adantive control system maintains the value of the torque on the cutter below $T_{\text {max. }}$. It should be mentioned here that the strategy used in the adaptive control software utilizes the smaller error of ($\left.F_{\text {max. }}-F\right)$ and ($T \max .-T$) to calculate the new feed rate. It is the duty of the part programmer to calculate the values of $\mathrm{F}_{\text {max }}$, and $\mathrm{T}_{\max }$. for each cutter he intends using and the respective spindle speed.

These values are then stored in the appropriate memory
location of the computer to be used by the adaptive control software. It is evident at this stage that these two variables, F and T, are functions of the material strength, lencth and diameter of the cutter. But on the other hand, the maximum value of F and T are limited by the maximum force and torque which are available from the servomotors and the spindle motos respectively. Treerefore, in each case the maximum value of the variable has to be checked from these two points of view and the smaller value of the two
taken as the maximum allowable value for a particular case. The maximum force and torque which are available from the motors are not dependent on the cutter.

In the analysis to follow it is assumed that the failurecriteria of the cutter is due to eitherpure bending or forsion and the cutter tends to fail across its crosssection. However, failure could originate due topure shear (for smaller cutters) or the individual teeth of the cutter breaking. It is assumed that the resultant force acts at the end of the cutter and the cutter is considered as a circular cantilever built-in at its other end (spindle end). The following equation gives the stress in the fibres at a distance y from the centre of the cutter, maximum stress distribution occuring at the outer fibers.

$$
\begin{equation*}
\sigma=\frac{M y}{I} \tag{3-2}
\end{equation*}
$$

Where σ - tensile stress in the fibers, distance y
from the center of the cutter, M - bending moment due to the force F at this cross-section, y - distance of the fibers from the center of the cross-section, i.e. $y=\frac{d}{2}$ for maximum stress concentration, I - the moment of inertia of the cross-section. Eq. (3-2) may be written as:

$$
\begin{equation*}
\sigma=\frac{\mathrm{Fl} \mathrm{~d}}{2 \mathrm{I}} \tag{3-3}
\end{equation*}
$$

Where ℓ-is the length of the cutter. $\quad I=\frac{\pi d^{4}}{64}$
for a circular cross-section. For the safety of the cutter
$\sigma<\sigma_{\max .}$, where $\sigma_{\max }$ is the permissible tensile stress of the materlal of the cutter. Hence,

$$
\begin{equation*}
F_{\max .}<\frac{\sigma_{\max } \cdot{ }^{\pi d^{3}}}{32 \ell} \tag{3-4}
\end{equation*}
$$

We see that $F_{\max }$. depends on the maximum permissible tensile strength of the cutter material, the diameter and length of the cutter. To analyze the stress due to the torque on the cutter, the cutter was assumed to be a solid round bar built-in at one end. The following equation gives the stress due to torsion:

$$
\begin{equation*}
\tau=\frac{T d}{2 J} \tag{3-5}
\end{equation*}
$$

Where τ - is the shear stress, T - torque, d-diameter
of the cutter, J - the polar moment-of-inertia, which is $\frac{\pi d^{4}}{32}$ in our case. For the safety of the cutter in torsion we have,

$$
\begin{equation*}
\mathrm{T}_{\max }<\frac{\pi{ }^{T} \max \cdot \stackrel{3}{\mathrm{~d}}}{16} \tag{3-6}
\end{equation*}
$$

Where ${ }^{\tau} \max$. is the permissible shear stress for the material of the cutter.

The values of F and T were calculated for cutters of diameter $1 / 4,3 / 8,1 / 2,5 / 8,3 / 4$, and 1 inches and lengths varying from 1 inch to 6 inches (in steps of one inch) respectively where the materjal of the cutter had $\sigma_{\max }=60 \mathrm{~T} / \mathrm{sa} . "$ and ${ }^{\mathrm{T}} \max .=$ $40 \mathrm{~T} / \mathrm{sa} . "$. From the values thus obtained, Figure 3.1 and 3.2 were arrived at. Figure 3.1 indicates the variation of $F v s$. ℓ (the length of cutter) for various diameters of the cutter, while figure 3.2 illustrates the variation of T vs. D the diameter of the cutter).

In determining the allowable forces on the table and saddle, it was assumed that the energy supplied by the servomotors was utilized in overcoming the frictional forces and the force on the table (saddle) due to the cutter workpiece interaction. The following formula was used for determining the force on the table (saddle).

$$
\begin{equation*}
T_{m} \times \omega \times n=F \times v \quad+T_{F} \times \omega \times n \tag{3-7}
\end{equation*}
$$

(Energy supplied by (Energy consumed by (Energy consumed by motor per second) F per second) frictional torque per/sec.

Where, T_{m} - motor toraue, ω - sneed of motor shaft, n - efficiency of the gear box (transmission), F - linear force in the table (saddle), v - linear velocity of the table (saddle) T_{F} - frictional torque on the system (measured from the motor shaft). The toraue required to overcome the static friction on each axis of the milling machine was determined experimentally. A simple lever arm was fastened to each leadscrew at the motor end and weights added to a cradle on the end of the lever until the leadscrew beqan to rotate. The torque was the product of the total weight on the lever and the length of the arm. The frictional torques for the x-axis and y-axis were found to be 5.66 lb . in. and 13.03 lb . in. respectively. n was assumed to be 90%. The linear motion of the table (x-axis) was found to be $0.106^{\prime \prime}$ per revolution of the x-axis servomotor and the linear motiun of the saddle was $0.090^{\prime \prime}$ per revolution of the y-axis servomotor. Using this data in equation (3-7) the
permissible forces on the table and saddle was determined as 2570 lbf and 2560 lbf respectively. For simplicity, the smallest of the two values i.e. 2560 lbf was taken as the limiting value for F as far as the table and saddle was concerned. This value is represented in Figure 3.1 by a straight line running parallel to the horizontal axis (length of cutter) through the point 2560 lbf on the force axis.

For the determination of the allowable torque on the spindle, the following equation was used:

$$
\begin{equation*}
P=\frac{T \Omega}{33000} \tag{3-8}
\end{equation*}
$$

Where P - the power of the spindle motor in hp, T the torque on the spindle, $\Omega-r . p . m$. of the spindle in radwasis. The value of this torque for different spindle speeds is represented in Figure 3.2 by straight lines running parallel to the cutter diameter axis.

For a particular milling oneration the part programmer first decides on the dimensions of the cutter to be used and the spindle speed. Then, using Figure 3.1 , checks the maximum force the cutter could withstand and compares this with the maximum table (sadde) force (which is also given in Figure 3.1) and takes the lower value for $F_{\max .}$. Next, using Figure 3.2, he obtains the maximum toraue the cutter could take without breakage and compares this value with allowable toraue the spindle could take at the oarticular spindle speed and uses the lower value
of these two as Tmax. This ensures that the milling operation will be optimized by the adaptive control system without overloading the motors or breaking the cutter.

CHAPTER 4

THE DYNAMOMETER DESCRIPTION

Figures (4.1), (4.2) and (4.3) illustrate the dynamometer used in this system. This dynamometer has been designed by the Metal Cutting Research proup. The horizontal forces F_{u} and F_{v} and the torque T acting on the cutter are sensed by the strain galges located on the dynamometer. These values of the forces and toraue are next transmitted to the computer via the adantive control hardware for the ontimization of the milling process.

The dynamometer consists of:
(a) Spindle plate, which secures the main body of the dynamometer on to the spindie.
(b) A rlexureplate, which is fixed on to the spindle plate and the housing of the dynamometer. The purpose of this member is to ensure that the measuring zone of the dynamometer takes almost the full values of the forces and torque which are to be measured. This plate consists of four spokes with a thin slot for torsional flexibility. The thick middle portion provides radial stiffness. The plate has been almost cut through (except for the four small pieces of metal remaining) on two levels. This provides argular flexibility about the x and y axes.
(c) The housing of the dynamometer, which is bolted on to the spindle plate on the top and to the rim plate at the bottom. This serves as a support for the rim plate and the toraue ring which is suspended by leaf springs from it.
(d) The collet holder, which is centrally located in the dynamometer, secures the collet to the dynamometer. The collet holder is bolted on to the flexure plate.
(e) The stone, which is located inside the collet enables the collet to be drawn into the collet holder.
(f) The pin, this secures the stone onto the collet.
(g) The M-elements, these consists of three legs, the the outer two are bolted on to the collet holder while the inner leg is bolted on to the rim plate. The strain gauges used to measure the radial forces are fixed on the outer legs of the M elements.
(h) The leaf springs, are used to suspend the torque rinp from the housing.
(i) The rim plate, is fixed onto the inner leg of the M-elements and the housing of the dynamometer.
(i) The torque ring, is connected onto the housing by the leaf springs and retains the strain gauges for measuring the torque.
(k) The torque plate, which is bolted on to the collet holder, transmits the toraue on the cutter to the toraue ring.
(1) The "Lmembers " are located on the torque plate. (Their location on the torque plate could be varied) and transmits the toraue on to the limbs of the torque ring. These elements have been desimned with a very thin cross-section to ensure flexibility under radial forces.

The measurement of F_{u} and F_{v} by the dynamometer and the subsequent calculation of the resultant force F by the adaptive control programme enables the system to ascertain the resultant horizontal force acting on the cutter. Forces F_{u} and F_{v} act at some point along the length of the cutter. The point of application of these forces depend on various factors such as: depth of cut, geometry of the cutter, cutter deflection etc. However, to simplify the design it is assumed at this stage that these forces act at the end of the cutter. Due to the radial forces acting on the cutter, strain is induced on the outer legs of the M-elements. If tensile forces are induced on a particular M-element then compressive forces will be induced on the M-element which is located directly opposite to the latter. There are four M-elements located at 90° to each other as such two of them will monitor the effects due to F_{u} while the other two would monitor the effects due to F_{V}. The collet holder on to which the M-elements (outer legs) and the cutter are secured is fixed on to the flexure plate.

As mentioned earlier the flexure plate has been designed so that it is angularly flexible (i.e. flexible in bending) about the x and y axes. This characteristic ensures for all practical purposes that the collet holder is pin-jointed on to the spindle. Which means that it is under the effect of pure forces. Therefore, knowing the forces acting on the M-elements, the distance of the M-elements from the flexure plate and the distance of the end
of the cutter from the flexure plate, F_{u} and F_{V} could be calculated by taking moments about the axes parallel to the x and y axes through the filexure plate. It was mentioned in the first paragranh that the inner legs of the M-element are connected onto the rim plate. The rim plate is not directly in contact with the collet holder, as such when the collet holder deflects the strain Induced in the M-elements will be due to the absolute value of F_{v} and F_{u}, this ensures that the absolute value of F_{u} and F_{v} could be determined by this system. This is one of the important features of the system. The torque ring has been designed in such a manner to take almost the full value of the toraue acting on the cutter and further the M-elements have been designed with small slots to allow for torsional flexibility as such the effects due to the torque on the cutter are not monitored by the strain pauges on the M-elements which are intended only for measurine the effects due to the radial forces acting on the cutter. The strain gauges placed on the two iimbs of the torque ring measure the toraue.

Due to the torque acting on the cutter the collet holder experiences an angular deflection, which causes the torque plate to deflect horizontally about the centre of the cutter. This movement of the torque plate transmits a force on to the limbs of the toraue ring via tne "L members". This induces a strain in the limbs of the toroue ring which is monitored by the strain gauses placed on them. Thus the value of the torque
actinp on the cutter could be ascertained. There are two toraue plates connected on to the collet holder transmjtting two forces on the two limbs respectively of the torque ring. These forces are produced by the toraue acting on the cutter. If these two forces do not constitute a couple, then a resultant force will be induced in the system and will be sensed by the strain gauges on the M-elements (which are supposed to monitor only the effects due to the radial forces). This will give erroneous values for the radial forces computed. To avold this anomaly the leaf springs have been included in the design. When there is a difference between these two forces, the leaf spring would deflect (as they are radially flexible) until both the forces are equalized, thus eleminating a resultant -induced force on the system due to the toraue on the cutter. The radial forces on the other hand have no effect on the torque measuring strain gauges as the above leaf springs which suspend the toraue ring from the housing are flexible in the radial direction. Provision is made on the torque plate to vary the distance of the L members from the centre of the cutter to obtain reasonable sensitivity with various diameter cutters used.

It is evident from the above discussion that the dynamometer consists of two distinct zones. The first being the zone where ihe measurements of the forces and toraue are effected. This zone is situated at the lower region of the dynamometer where the various strain gaupes are positioned. This measuring zone has been desipned so that the force measuring strain gauges
would measure only the effects due to the radial forces while the torque measurine strain paupes would measure only the effects due to the torque. While the other zone being where the flexure plate is situated, at the upper end of the dynamometer. This zone ensures that the total values of the forces and torque on the cutter are experienced by the measuring zone. This provides that the total value of F_{u}, F_{v} and T are measured. Further this zone contributes the necessary radial stiffness to withstand the radial forces on the tool to avoid chatter conditions and excessive tool deflection.

CHAPTER 5

THE ADAPTIVE-CONTROL HARDWARE

As was mentioned in Chapter 2, the identification process contains a piece of hardware which consists of amplification units and analog-to-digital converters. A detailed description of the hardware will be given in this chapter.

The hardware has been designed to sense three variables at the same instant. Normally, the sensed variables would be two horizontal cutting forces 90° phase-shifted from each other and the torque. However, the hardware is capable of accepting any other variables (three).

The two forces and the torque are measured through the strain gauges located on the dynamometer. The strain gauges are connected in the form of electronic bridges, one of which is shown in Figure (5.1). The output from the bridges is connected to an amplifier which has an output range 0 to $\pm 10 \mathrm{~V}$. This is the voltage range acceptable by the A / D converters used in this system.

Figure (5.2) describes the entire block diagram of the hardware portion of the identification process.

The Analog-to-Digital Provessor (ADE) contains three identical A / D converters, a digital scanner, a code generator and a status generator. The A / D converters $A D C-10 Z$ are produced by Analog Devices Inc. and have the following features:

The AJC-l0Z is a 10 bit converter and has a maximum relative accuracy error of $\pm 1 / 2$ LSB. All of its logic inputs and outputs are fully TTL/DTL compatible.

The ADC-10Z is designed for flexibility and ease of use and contains an internal temperature-compensated precision voltage reference, eleminating the problem of supplying an external reference voltare. Any of four calibrated input ranges (two unipolar and two bipolar) can be selected with jumpers and connections to the module terminals. A direct input allows the Input ranges to be set to any desired value by selecting the value of an external series resistor. An internal clock is provided in this system.

Binary output coding is used for unipolar operation, but the user selects efther two's complement or offset binary coding when operating in the bipolar mode. The two codes differ only in that their MSB are in complementary states. The MSB output is used for offset and binary coding, (the MSB can also be used to give two's complement coding. STATUS, which indicates when the parallel output data is valid, and its complement, STATUS are botn available.

There are four fixed input voltage ranges available, 0 to $+5 \mathrm{~V}, \pm 5 \mathrm{~V},+10 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$. As shown in Figure (5.3) the timing diarram, the leading edge ("0" to "l" transition) of the convert command pulse sets the STATUS and MSB outputs to the "1" state, and the output bits 2-10 to "0".

The conversion bepins on the tralling edge of the conversion command pulse with the starting of the internal clock. The conversion command pulse is generated by the data reading routine of the AC programe. During the conversion process bit decisions are made on successive "I" to "0" clock pulse transitions with the MSB decision occurring first. At the completion of the conversion, the STATUS output returns to zero, signalling that the paralleloutput data is valid. The STATUS output of each converter is fed into the status generator. When all the three status outputs of the three A / D converters are fed to the status generator, the latter produces a pulse which is used to set the flag of the ADC interface board of the computer (i.e. channel No. 12). This signals to the Data Reading Routine that the entire data conversion has been accomplished and the input data is available.

The input to the AC propramme consists of lombit data plust 3-bit code where the latter is generated by the code generator and used to identify the A / D channel. Each of the three A / D converters has its own code. The Digltal Scanner picks up only one of the A / D outputs and adds to it the approximate code and sends it to the computer. The same pulse which is used as a conversion command is used to change the code as well which means, that in every cycle only one of the A / D outnuts is fed into the computer. The A / D outputs are seiected successively by the Digital Scanner and their approximate code word is combined with the respective output. In the Data Reading Routine the data from each A / D converter is identified by means of its code which
means that the input is decoded and then stored in the memory for further use. The data reading is done for a period of 10 $\mathrm{m} . \mathrm{sec}$. and then the programme is switched into the Policy Routine. This implies that the latter will use the last data picked up from the converters.

The Analop-to-Digital Processor is connected to the computer through an interface board located in slot No. 12 (OCT.) The same board is used by the ADC of the Fourier Anaiyzer. The plug or the board has to be connected to the ADP when the adaptive control system is used.

CHAPTER 6

THE CNC SYSTEM

6.1 System Description

The block diagram of the entire system is shown in Figure 2.2. One could observe that the system consists of the foilowing units:
(a) The milling machine with the servodrives, resolvers, tachogenerators and the transducers for the adaptive control system. The servodrive unit with the resolvers and the tachogenerators were purchased from General Electric as a package.
(b) The Controller which functions as an interface between the computer and the milling machine. This unit consists of three identical control boards (which apply the position control loop to each axis of motion), a time base generator (TBG) and a manual control. The TBG supplies interrupt pulses to the computer, two waves 90° phase shifted to the stators of the resolvers and provides clock pulses to the control boards in order to synchronize the entire system.
(c) The mini-computer which takes the place of the conventional NC controller. Details on the computer have been Miven in Chapter 2 and Appendix A.
(d) A tape reader which is used for reading the NC and AC programmes and the NC data tape.

The computer handles two proprammes viz.,
the NC and the AC programmes simultaneously. Normally, the computer works on the AC programe and as an interrupt pulse is accepted from the controller, the computer control jumps from the AC promramme to the NC programme and the NC programme is executed. Once the computer has completed working on the NC programme the control is returned to the AC programme to the point at which it was interrupted. The AC programme calculates the optimal feed rate at which the machine has to be operated. The feed rate is fed automatically into the NC programme and used as a command for driving the servodrives. The AC programe will be explained in Chapter 8, while the NC programme will be explained in Section 6-2 of the present chanter.

The NC programme supplies (through a interface board located in the computer) command pulses to the control boards. There are altogether six channels between the computer and the controller: Three channels for command pulses, one for each axis and three charnels to establish the direction of motion of each axis. Each command pulse represents an instruction to advance the appropriate axis of motion by one
tenth of a thousand of an inch. Every control board contains a modulator and a phase comparator as shown in figure (2.2). The modulator supplies a square wave command signal and converts each pulse to a phase-shift of $1 / 1000$ of a cycle. The phasecomparator (discriminator) compares the falling edge of the feed back signal from the resolver. The modulator includes the following blocks: Rate flip-flops, variable count counter and divide by ten counter. The phase-comparator output is fed throuph the Servodrive unit into the DC motor. The loop is connected in such a way that the motor rotates in a direction to reduce the phase-error. The phase-comparator holds the position error. When sliding motion is confronted with a higher mechanical resistance, the position error increases. This causes a higher voltage to be supplied to the motor and the motor will overcome this resistance. The normal command pulses still being suppiled. Normally, every control loop operates with a small position error which is used to drive the motor. The command signal is supplied to the phasecomparator from an electronic modulator located on the control board. For every command pulse which is received from the computer, the modulator converts it to l/lo00th of a cycle. The lagging or leading of this phase shift depends on the airection of motion which is also fed from the computer through the sign channels. The sign filp-flop is used for storing the sign signal which is accepted from the computer. The Schmitt trigger converts the
sion wave stonal which is received from the rotor of the resolver into a square wave signal which is compared with the square wave command stgnal from the modulator.

6.2 The NC programme

The NC programme consists of two routines: an
Initiator Routine which is activated each time a new data block* is required, and a Continuator Routine which is performed for each interrupt pulse. The general flow charts of both routines are given in Figure (6.1) and Figure (6.2) and their main functions are summarized below.

6.2.1 The Initiator Routine

The main functions of the Initiator Routine are:

1. Loading a new data block into the memory locations which the Continuator Routine is using.
2. To chose two of the three axes to be controlled. This is done according to the g instruction in the data block: namely, gl7 is for the X-Y plane, 018 is for the Z-X plane and gl9 is for the Y-Z plane (see Table 1). The details of the plane chosen is stored until these are reolaced by a new plane-selection instruction. 3. Settling the computer digital output lines (which will be used in the current seament) accordinp to the selected plane. * A data block contains the numerical data required to machine a simple semment of the workpiece.
3. Loading the position counters by the required incremental distances.
4. Choosing the mode of circular interpolation (Cl or C2) according to the direction - of - motion and the direction of producing the arc (clockwise or counter-clockwise).
5. Halt the computer after the completion of the instructions in a block which contains the "miscellaneous function" M30 (see Table 2). In this case the initial address of the first data block is loaded before halting the computer. When the RUN pushbutton is pressed the computer starts to machine a new workpiece.
6.2.2 The Continuator Routine

The positional control is performed by the position loop and software counters, which are stituated in the Continuator Routine. The counters are loaded with the reouired incremental distance at the beginning or the sepment. Each axis-of-motion is provided with a counter. Each time a command pulse is sent by the computer, the contents of the appropriate counter are reduced by one unit.

The functions of the Continuator Routine are performed
in the followint order:

1. When the interrupt occurs, the cuntents of the arithmeticunit recisters are stored. This stored data is required for the continuation of the $A C$ programme.
2. If point-to-point (PTP, i.e., a rapid traverse) operation is reauired, high frequency command pulses are sent out. A subtraction of the anpropriate counter by one unit is carried out for each command pulse. An automatic deceleration is accomplished when a counter is almost zero. The PTP deceleration is carried out in three steps and it is a part of the PTP routine. As long as the deceleration is not actuated the PTP routine continues to supply the high frequency pulses. Once this deceleration is actuated, the programme jumps either to step 5 or to step 6 below.
3. If interpolation is needed a FEED routine is actuated and determines, according to the F-word in the data block, whether to start internolation, or to jump to step 6 below. A programmed deceleration can be added by using the function go9 in a data block (see Table 1).
4. The type of interpolation (linear, or one of the two circular interpolations) is chosen and a single cycle of a DDA interpolator is simulated. More details about a DDA interpolator are fiven later. If as a result an overflow pulse in one axis or both of the axes is generated, the appropriate software counter is decremented by one unit and a command pulse is sent to the proper output line.
5. When all counters are in a zero position, the programme jumps to the Initiator Routine. When the performance of the latter is finished, the programe fumps back to this point.
6. The registered values of the AC programme that were stored are returned to the arithmetic unit of the computer. The AC programme is continued from the point at which it was interrupted.

6.2.3: The Digital Differential Analyzer (DDA)

The principle of the DDA is based on the dioital integrator which takes $\Sigma Y \Delta x$ as a close approximation of 'Ydx (where Δx is a small increment in x). The digital integrator uses two registers Y and R as shown in Figure 6.3.

With the completion of each cycle, the quantityY Δx
is added to the contents of the R register and ΔY incremented \cdot as desired. As the canacity of R is finite, after a certain number of cycles, the R register is filled to capacity and an overflow results. Δz represents this overflow, which is an incremental output in the form of a discrete pulse. If Δx is made to equal ± 1 or 0 , there is a simplification of the process as follows: The operation takes the form of an addition (if, $\Delta x=+1$), and a subtraction (if, $\Delta x=-1$), and no operation (if, $\Delta x=0$). If $\Delta x=1$, the contents of the y register are added to that of the R repister. Then, the process may be considered as a gating oneration. Wherein, the arrival of a pulse Δx results in the gate being cpened and the entire contents of the Y register added to the R register. If the overflow Δz are stored in another register, these wilj reoresent the most significant portion of the integral 'y $d x$, with the less sientficant mortion remainine in the R receister $[9]$.

6.2.4: The Interpolator

"The Interpolator which is shown in Figure 6.4 a consists of a simulation of two DDA integrators and is capable of linear and circular interpolation, in accordance with characters from the data tape.

The integrators function separately in linear interpolation. The data tape feeds the Y register a number proportional to the feed required from the axis. The pulses from $+\Delta z$ are fed directly to the control system and serve as commands to the motor, with integrator 1 controlling the X axis and 2 the Y axis. For a linear cut with path lengths a and b along the X and Y axes, respectively, these numbers must be fed to the respective registers.

In circular interpolation, Figure $6.4 b$ the following

equation is satisfied:

$$
\begin{equation*}
(X-R)^{2}+Y^{2}=R^{2} \tag{6-1}
\end{equation*}
$$

Where,

$$
X=R(1-\cos t)
$$

and

$$
\begin{equation*}
Y=R \sin t \tag{6-2}
\end{equation*}
$$

The integrator cutputs are

$$
\begin{equation*}
d x=\sin t d t=-d(R \cos t) \tag{6-3a}
\end{equation*}
$$

and

$$
\begin{equation*}
d y=R \cos t d t=d(R \sin t) \tag{6-3b}
\end{equation*}
$$

On feeding the initial conditions to the y registers, care should be taken that the integrator emitting R sin t receives $R(1-\cos t)$ and vice versa. The Y register of integrator 1 belonss to the X-axis section on the command panel, hence it receives the number i which is the initial condition for $R(1-\cos t)$ Figure 6.5. At the integrator output we have the value R sin t, which by Eauation $(6-2)$ should be connected to the Y axis. Accordingly, integrator 2 (which belongs to that axis) will receive the value j, the initial condition for R sin t. Its output, $R(1-\cos t)$, is connected to the X axis.

The output of integrator 2 is connected to $-\Delta y$ of integrator 1 , so as to secure sign reversal in Equation (6-3a); similarly, that of integrator 1 is connected to $+\Delta y$ of integrator 2.

The feed rate is set by a clock connected to $+\Delta t$ in the inteqrators. Three clocks are provided for a given workplece, and selected as required by the F word of the data tape. As an illustration, assume that a circular quadrant with radius r is to be produced, with initial conditions $i=r$, $b=0$. The number r is fed to the y register of integrator I and connected to its R register in every cycle, so that the interrator l initially emits pulses at a high frequency. The reading o.l y is gradually reduced by pulses entering -Ay , and the output frequency drops until $y=0$.

By contrast, a zero value is connected initially to the R register of integrator 2 , but its y register is gradualiy filled un with pulses from integrator 1 , and the output frequency increases accordingly.

As the output of integrator 1 , is connected to the Y axis and vice versa, and as the motor speed is directly proportional to the output freauency of the interpolator, the Y axis motor starts at a hiph speed and decelerates (dy/dt = R cos t), while that of the X axis starts at zero speed and accelerates ($d x / d t=R \sin t$). Since the position of the axes is the integral of the motor's speeds, the movement will be according to Equation ($6-2$), so that the required circuit is obtained"[7]

6.3 Lost Motion

In order to check the lost motion in the X and Y axes of the milling machine, a two-dimensional programme (in the X and Y plane) was developed and the profile (shown in Figure 6.6) was produced on pexi-class using a sharp pointer fixed on to the snindle. The spindle was not rotated during the X and Y motion. The profile was produced at two different feed rates viz., 10 inches per minute and 1 inch per minute. Three runs were made at the feed rate of 10 inches per minute to check reveatability. The following results were obtained by the above tests usin a 'Tool maker's microscone:

Axis	Lost Motion at	Feed rate 10"/min, 3 runs	Feed rate $10^{\prime \prime} / \mathrm{min}$, 1 run	Feed rate l"/min, 1 run
Y	B	. 00401	. 00501	. 00501
X	C	Not visible	Not visible	Not visible
Y	D	. 00401	'.0040'	.0040"
X	E	Not visible	Not visible	Not visible
Y	F	.0040"	.0040"	. 004011

Overshoots: Of the order of .0015"

CHAPTER 7

THE NC DATA PROGRAMME (DP) AND DATA READING PROGRAMME (DRP)

7.1 General

One of the main differences between a conventional NC System and the CNC System is that in the latter case, the NC data tane is read only once for a particular manufacturing series. The data in the NC data tape is stored in known locations of the computer memory. The NC programme which is also stored in the computer memory has access to these memory locations and uses the required data to control the machine tool.

The NC data is arranped in accordance with the EIA standards, which will be explained later in this chapter. This data is punched on a tape called the data tape. A special programme denoted as the data reading programme (DRP) has been developed which enables the data tane acceptable to the computer and inserts the data into relevant memory locations. The flow chart of this progranme will be explained in detail in Section 7.3 of this chapter.

7.2 IIC Data Prosramming

Part procramming and the preparation of the manuscript consists of a list of instructions which describe the detailed and precise sten-by-step operation of a machine tool under
numerical control. A manuscrint is illustrated in pigure (7.1). To prepare a manuscript for a particular part, the part promrammer has to collect all data necessary to produce the part and arrance this in a standard format. This chart or Iist of instructions is termed the manuscrint. Each horizontal line in the manuscrint consists of a "block" of information and represents one complete instruction for a particular machine movement including the relevant machining instructions during this movement. This "block" of information is called a data block. A character is a collection of holes positioned on one line across the tape and represents either a number, letter or symbol on the manuscript. A group of characters is referred to as a word and initiates a specific action of the machine tool. Each data block ends with the end of block (EB) character. The EB character is not printed, but only punched, and is represented by the "Line Feed" code (which is punched immediately after the "Carriage return" code). The manuscript is typed with a teletype during which the tape is prepared simultaneously.

The data block contains the followine words:
n - seauential number of the block
9 - preparatory function, consisting of 2 digits
$x, y, z, i, j, k-d i m e n s i o n$ words
f - feed rate code
m - miscellaneous function

It should be mentioned nere that the EIA standards use small letters to address the above words, while on the teletype, only carital letters are available. Figure (7.1) shows the order in which a data block must be arranged. At least one "0" will have to be typed in the position when a word is not needed in a particular block. The plus sign and the leadinc zero in the dimension words may be ignored. At least one "space" character must be inserted between every two words in a block. The last word in a block can be followed by a space character (s). The minth word in a block is the feed rate code (f). Since this is necessary in every block (as the NC propramme does not store the previous feed rate code), a data block contains at least 9 words, except in a point-to-point operation when rapid traverse is reouired a data block can contain even three words.

A detailed description of the various words used in the manuscript will be given below:

1. Sequence Number, n.

Each block of the tape has a sequential number, the sequence number word is the first in the block. The sequence number is displayed in the display register of the computer (in a binary form) during the period the particular block instructions are performed. This enables the operator to cheak the performance of the machine with the programmed instructions.
2. Preparatory Function, g

The preparatory function prepares the NC programme to be ready to perform a specific mode of operation. Table 1 gives a brief explanation of the various preparatory functions used in this system. The goo indicates a point-to-point operation, as such the f function must be programmed in every single block. A point-to-point operation could be performed only in the $X-Y$ plane.
3. Dimension Words

The following dimension words are used in this system:
(a) $\mathrm{x}, \mathrm{y}, \mathrm{z}$ - Distance dimension words for motion in the $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$ axis respectively.
(b) i,f,k - Circular dimension words. These determine the distance of the starting point of the arc from the center of the arc in directions parallel to the X, Y, Z axes respectively.

A maximum of two distance dimension words and two circular dimension words can be programmed in one block.

The dimension words are programmed in incremental form and should adhere to the following specifications:
(i) Decimal points should not be used.
(ii) Dimensions should be expressed in urits of $1 / 10$ thousands of an inch.
(iii) Only nepative signs must be proprammed.
(iv) The i,j,k words are programmed without algebraic signs.
(v) Leadine zeros need not he nrocrammed.
(vi) The maximum length of the path that can be programmed in one block is limited to 3.276 inches.

In the distance dimension words the sign indicates the direction of the axis of motion. TheX-,Y-, and Z-axes of motion denote a right-hand co-ordinate system. Which means that if one stands in front of the machine then:
for a positive x command the workpiece will move to the right.
for a positive y command the workpiece will move IN, i.e. towards the machine.
for a positive z command the tool will move up.
4. Feed Function, f

The f word is used for the selection of a particular feed rate in contouring operations. In point-to-point operation (900) a constant maximum feed rate of 158 ipm/axis is selected automatically. Feed rates are independent of spindle speed and are expressed in inches/min.

The feed rate word will rance from 1 to 3000 , and is equivalent to the required feed rate in ipm multiolied by 100 . The feed rate has to be punched on the tape even though there may be no change from the previously programmed feed rate code. The maximum feed rate allowed in the Z-direction is only 15 ipm. 5. Miscellaneous Function, m

The miscellaneous function pertains to auxiliary information which does not relate to dimensional movement of the machine such as soindle command and other functions as explained in Table 2.

6. Circular Interpolation

The prenaratory function is used to select the plane on which the circular interpolation has to be performed (i.e. g17, gl8, (19) and to determine sense of motion (i.e. g02, g03) of the tool during circular interpolation. In circular interpolation, four dimension words are required ner block. The first two dimension words (two of x, y, z) denotes the distance In the X and Y co-ordinates respectively of the final point of the are from the inttial point. The sipn of these two numbers depend on the direction of motion in the two co-ordinate direction. The next two dimension words (two of i, f, k) denote the distance of the initial point of the arc from the center of the arc in the direction of the two selected co-ordinate axes. These dimension words are taken as positive always.

7.3 The Data Readino Prooramme (DRP)

The purpose of this propramme is two fold:
(a) To transfer the data in the data tape to relevant memory locations of the computer and store them at these locations. (b) To calculate the PATH or RADIUS (denending whether linear or circular interpolation respectively) for the particular block of data and store this value at the appropriate memory location. First the binary version of this programme is read into the computer then the data tape is placed at the photo reader and the origin of the DRP is addressed, then the computer starts
to read the data tape and the functions mentioned (a) and (b) are performed. The flow chart of the DRP is given at Figure (7.2) and the programme in Appendix C. It is evident from the flow chart that when LF (line feed) is encountered (i.e. the end of block character) the PATH or RADIUS is computed and stored. Further, when a slash is noticed, the computer understands that the end of the data tape has been reached and it stops readine the tape and halts displaving 75(OCT) in the display repister. The computer reads a character at a time, but a number may consist of one or more characters. Therefore, before storine the number in the apropriate memory location, the number must be formed correctly with its digits in the correct position with respect to each other. For this purpose the loric in the block "Calculate Number N " in Figure (7.2) has been developed. Also whenever the computer encounters a nerative number (which it would realize as soon as it sees the character for - in front of the number) it makes a note in one of its accunulators ("B" repister) and after it formulates the number (i.e. the absolute value of the number) using the iopic in block "calculate number N", it adds the -ve sion for the number and stores $i t$ in the relevant memory location. This ensures that a distinction is made between positive and nearative numbers when storing them in the memory locations. The calculation of PATH or RADTUS is necessary to determine the feed rates in the X and Y directions by the $N C$ programme.

CHAPTER 8

THE ADAPTIC CONTROL PROGRAMME

The Adantive Control Programme (AC) consists of two main routines: DataReading Routine and the Policy Routine. The function of these routines are clear from their nomenclature. The Data Reading Routine receives the input (i.e. the data and the code) from the Analog-to-Digital Processor (see Chanter 5) and stores this in the appropriate memory locations. Approximately every $10 \mathrm{~m} . \mathrm{secs}$. the programme fumps from the Data Reading Routine to the AC Policy Routine. In the latter the calculations for the new feed rate are carried out, the purpose of this calculation is to modify the prevalent feed rate towards achieving an optimum feed rate consistent with the cutting conditions. A detailed explanation and relevant flow charts of the $A C$ programme itself is given in Appendix B.

8.1 Data Reading Routine

Figure 8.1 illustrates the flow chart of the Data Reading Rontinc. Since the data is received throuph the same channel from three different sources, the first task of the Data Readine Routine is to decode the input immediately after reading it. This is achieved by removing the 3 -bit code from the 13 - bit input word. The ? - bit code ts used to identify the source from which the
data was received (i.e. whether the data is T, F_{u} or F_{v}). The Data Reading Routine runs in a closed loon until the contents of a software counter, denoted as the Time Counter (TC) exceeds the value of 5000 , an event which occurs approximately every 10 m . secs. Once the value of 5000 is exceeded the computer control is transferred to the AC Policy Routine. The time of $10 \mathrm{~m} . \mathrm{sec}$. was arrived at by assuming that the maximum spindle speed which would be used is 600 R.P.M. (for die-sinking purposes) and at least ten samples of measurements would be required per revolution of the snindle.

The details of the Data Reading Routine are given below: The execution of this routine begins by clearing the counter FC and the flag in the interface board or select code 12 , the Digital-to-Analog Processor. Then the control bit is set in the interface of the select, code 12 and the computer enters into a waiting loop until the flap is set by a pulse received from the Analog-to-Digital Processor, informing that the data conversion has been completed. Subsequently, the input is received and the control bit in the interface board 12 is cleared. The input thus received is decoded and the data is stored in the appropriate memory location after ascertaining the source from which the data has been received. At this stage an output pulse is sent and simultaneously the flag in the inter ace of select code 12 is cleared. This output pulse (which is between the STC and CLC commands) is utilized to:
(a) activate the theee Analog-to-Digital converters in the Analog-to-Digital Processor in order to perform the conversion of the analog signals received from the Dynanometer.
(b) to advance the Dipital Scanner by one step via the Code Generator.

It may be pointed at this stage that it takes $20 \mu \mathrm{sec}$. for the data to be ready after conversion, this means that the data will be ready eleven instructions (since 1.96 x 11 > $20 u \sec$.$) after the conversion Command. Next the software$ counter is checked whether $T C \geq 5000$? If $T C<5000$, control is transferred to LO to receive a new input. The above logic has been developed and arranged so that sampling is done approximately every 5000 instructions. The counter $T C$ counts infact the number of computer instructions executed. Since a single instruction is fully executed in $1.96 \mu \mathrm{sec}$. it takes approximately $10 \mathrm{~m} . \mathrm{sec}$. to execute 5000 instructions. The TC Counter is present in both the NC and AC programmes. As and when a certain group of instructions is executed, the number of instructions in the particular group is added to the counter.
8.2 AC Policy Routine

On completion of the Data Reading Routine, computer control is transferred to the $A C$ Policy Routine which is illustrated in Figure 8.2. Inis routine is divided into two main parts viz.,
an Error Calculator and a Feed Rate Calculator. In the Error Calculator Section of the AC Policy Routine, two errors (of the resultant force (F) and torque (T)) are evaluated and compared between themselves. The smaller of the two errors is taken as the critical error (E), for the continuation of the feed rate calculation. The errors are defined as a percentage of a desired value of the variables (F and T). The desired values are obtained using the methods enumerated in Chapter 3 (SensedVariables).

Once the smaller error has been determined, the strategy of the algorithm begins. Two separate strategies are used, depending on whether the error (E) is greater or smaller than zero. When E is smaller than zero, which means that the desired value of the variables (F or T) has been already exceeded and an urgent corrective action on the feed-rate is required (immediate reduction). While in the case when E is greater than zero, the feed rate will have to be increasedin accordance with a suitable policy. The policy calculates the derivative of the feed rate with respect to time, which is then multiplied by Δt (Δt being the calculated time increment $10 \mathrm{~m} . \sec$.$) and the result is added to$ the original feed rate i.e.

$$
\begin{equation*}
f_{t+\Delta t}=f_{t}+\frac{d f}{d t} \Delta t \tag{8-1}
\end{equation*}
$$

The new feed rate thus calculated is checked to ascertain wiether it is greater or smaller than the maximum or minimum values of the feed rate respectively, allowable on the machine (the minimum limit may be exceeded for $E<0$ strategy), and
a suitable correction made if necessary. Once the above limits have been checked and a new feed rate arrived at, the value of this feed rate is stored in the relevant memory location and is used by the NC programme.

The details of the AC Policy Routine is as follows: As mentioned earlier this routine consists of two parts viz., Error Calculator and the Feed Rate Calculator. The routine begins with the Error Calculator. Using the two force signals (F_{u} and F_{v} which are 90 degrees phase-shifted) obtained from the Dynanometer, first the resultant force (F) is calculated where F is given by:

$$
\begin{equation*}
F=\sqrt{F_{u}^{2}+F_{v}^{2}} \tag{8-2}
\end{equation*}
$$

Next, the fractional errors E_{f} and E_{T} of the force F and the torque T respectively, are calculated. Where E_{f} and E_{T} are given by:

$$
\begin{align*}
& E_{f}=\frac{F_{m}-F}{F_{m}} \tag{8-3}\\
& E_{T}=\frac{T_{m}-T}{T_{m}} \tag{8-4}
\end{align*}
$$

Where, F_{m} - maximum permissible value of the force

$$
T_{m} \text { - maximum permissible value of the torque. }
$$

As mentioned oreviously, the maximal permissible
value of force F_{m} and torque T_{m} (oblained as explained in Chapter 3) are used for the above calculation. Of the two errors thus obtained, the smaller one is taken as the basis for the feed rate calculation.

The error E is checked whether it is greater or smailer than zero. Initially, when the AC process starts to operate the feed rate has to be increased. When the feed rate is not close to its optimal value, the rate of increase of the feed rate should be large, while only small feed rate changes are required when the value of the feed rate is close to its optimal value. Various strategles which fuifill this requirement could be applied. The one used here is a very simple strategy, a parabolic one given by the following equation:
$\dot{f}=\dot{f}_{\text {max }} . x E^{2}$
Where a superior dot denotes a time derivative.
Hence, the new feed rate is given by:
$f_{t+\Delta t}=f_{t}+\dot{f}_{\max } \times E^{2} \times T C \times T$
$T C \simeq 5000$ instructions
$T=$ Time to execute one instruction ($\because 2, \mathrm{u} \sec$.)
and $\quad T C \times T=\Delta t(\approx 10 \mathrm{~m} . \sec$.
In the case wheme E is smaller than zero, a more drastic correction of the feed rate has to be carried out. The strategy chosen in this instant was given by equation:

$$
\begin{equation*}
\hat{\mathrm{i}}=\mathrm{f}_{\max } \mathrm{x}(10 \mathrm{E})^{2} \tag{8-7}
\end{equation*}
$$

Which is apain a parabolic curve and a equation similar to Eq. (8-6) is used to calculate the new feed rate. The strategy curve (for both cases $E>0$ and $E<0$) : s given in Figure (8.3). It is worth-while to comment here that in the parabolic curves pertaining to Eas. 1 and 3 the acceleration is equal to zero for the values of E in the immediate neighbourhood of the point $E=0$
(i.e. at the immediate vicinity of the saddle point of the strategy curve). This is due to the fact that the computer functions with discrete values rather than with continuously varying functions. This phenomena creates a natural dead zone and consequently stabilizes the system. In order to arrive at more sophisticated strategies than the one presented by Eqs. (8-5) and (8-7) and illustrated in Figure 8.3 more experimental work will have to be carried out as a theoretical solution for this problem is not simple or even impossible as the relationship between the force and the feed rate are not known.

Next the new feed rate arrived at is checked whether It exceeds the maximum permissible feed rate ($F_{\max }$) of the machine, if so, $F_{\text {max. }}$ is used as the new feed rate. If the calculated feed rate is less than $F_{\text {max. }}$ it is checked whetrer it is smaller than the minimum feed rate ($F_{m i n}$) of the machine, if so, $F_{m i n}$ is used as the new feed rate. If the calculated feed rate lies between $F_{\max }$. and $F_{m i n .}$, then this value is used as the new feed rate. The new feed rate thus obtained is stored in the relevant memory location to be used by the NC programme. Finally, the software counter is cleared and the computer control is transferred to the Data Reading Routine (at LO) to obtain a new input.

8.3 AC - NC System

The AC and the NC programmes are developed in such a manner as to operate as one system. The three factors which enable this particular mode of operation are:
(1) The interrupt system of the computer.
(2) The common software counter TC.
(3) A common memory location for storing the feed rate which is accessible to both programmes.

The computer runs on the AC programme and whenever an Interrupt pulse is received the computer control jumps (by a JSB instruction) to the NC programme and begins to execute the latter. Orice the NC programme is completed the computer control is returnea to the AC programme to the point where it was interrupted. The AC programe continues to be executed until the next interrupt occurs.

As was already mentioned above, the counter TC is common to both the NC and AC programmes. This counter is used for indirect measurement of real time, by counting the computer instructions which are executed. Each time a group of instructions are performed, the counter is advanced by the appropriate number. These groups of instructions can be either in the NC programme or in the AC programme, and they influence the counting in the same manner.

The current feed rate word is stored in a memory
location which is common to both the NC and AC programmes. Each time that a feed rate word is required tor the calcuiations, fh.s
memory location is indirectly addressed. The memory location In our case was chosen to be OCT 20004, a memory location which is neither in the stored data area nor in the programme pages. By this method any modification of the feed rate by the $A C$ propramme is automatically inserted in the above location and subsequently used by the NC programme.

CHAPTER 9

CONCLUSION

The purpose of an adaptive control system is to increase the productivity of the milling process by maintaining the highest possible metal-removal rate consistant with milling acceptable parts and maintaining an economical tool life. This means that the desired operation is an optimal combination of maximum stock removal rates and minimum costs. Further, an adaptive control system operates in a time varying envenment which cannot be predicted in advance.

In practice, operating the machine at the maximum feed value subject to the force or torque constraints (determined with respect to the strenpth of the cutter) does not guarantee that the process is operating to maximize the metal removal rate as is often reported.

To maximize the metal removal rate, an optimum balance must be achleved between the rate at which material is being removed from the workpiece and at the rate at which the tool is worn out.

Material removal from the workpiece is directly proportional to the value of the feed. The rate of tool wear is also directly related to feed. A faster rate of tool wear means that less work material can be machined with a given tool. Therefore, increasing the feed-rate above a certain level will
actually decrease the metal removal rate due to increased process down-time. The inference which could be drawn from the above analysis, is that metal removal rate can be maximized by properly balancing volume rate of metal removal against rate of tool wear. This balance is not necessarily obtained by operating at the highest feed that is consistant with some force or torque constraint. It is evident from the above analysis that the identification function of the adaptive control system should be concerned, or should monitor as many process variables that would effect the metal-removal rate and tool life.

Therefore, for the system to operate successfully,
process variables such as : Force and torque on the cutter, horsepower of the drive motors, spindle deflection, air gaps between the workpiece and cutter, temperature and vibration will have to be monitored and an index of performance evaluated and the control variable (feed in our case) should be adjusted to maximize this index without the violation of any constraint limits.

The index of performance is determined with respect to the optimal combination of the metal-removal rate and tool life. Once the identification function has determined the performance of the process next the decision function will have to decide how best the performance index could be increased. This depends on the strategy used in the systen. The decision function should be capable of selectinf a line of attack which will optimize the performance index at the shortest period of time without the violation of any constraint limits.

In our case, the strategy used is a parabolic one and there is no guarantee at this stage that the optimal performance index will be reached in the shortest period of time by using this strategy. Further research will have to be done to decide on the most suitable for the above system.

It is difficult (if not impossible) to measure online certain process variables such as temperature and tool wear. This requires certain off-line experimental data collection Defore the on-line operation of the system. The purpose of this experimental work is to establish the max. (or min,) values of the allowable constraint limits beyond which the operation of the process is forbidden. Any initial off-line experimentation that is required before the adaptive control system can be put into operation makes the system less attracثive from the economic point of view. This is one of the problem areas of adaptive control machining.

In the absence of a sensing device which will measure a particular process variable, an indirect measuring scheme may be developed based on direct measurement of other process variables which are related to the particular process variable. If the above additional functions are incorporated in the system, the system could be considered as satisfactory for practical purposes.

It is noticed in the present system we have two feed back loops. The first is the conventional NC control loop. The purpose of this loop is to compare the commands with the feed back signals and eventually control the position and velocity of the slides and quili of the machine. Next, is the adaptive control loop which is used to optimize the milling process.. Finally, we could add a third loop. The purnose of this loop is to inspect the output from the machine (the finished workpiece) and evaluate the actual performance index and compare this with the performance index arrived at by the adaptive control system and depending on the outcome of the comparison, the adaptive control system is informed of the most suitable strategy to be used to arrive at the optimum. This inspection can be performed automatically on one workiece while the next part is being made or it can be performed on one portion of the workpiece while the remainder is being finished. The signals received from the inspection system is used to evaluate the actual performance index. The inclusion of the above function in this system would increase the efficiency of the system tremendously.

FIGURE 1.l: Block diagram for a numerically controlled machine tool, closed-loop system Ref(4)

FIGURE 1.2: Conventional Hardwired NC Control System Ref(12)

FIGURE 1.3: Hybrid Configuration Ref(12)

FIGURE 1.4: Software CNC Configuration Ref(12)

FIGURE 1.5: Adaptive control system block diagram Ref(5)

FIGURE 2.2: Block Diagram of the Miling Machine, Computer and Controller

FTGURE 2.3: Priority Linkage Ref(6)

FIGURE 2.4: Interrupt Sequences $\operatorname{Ref}(\overline{0})$

FIGURE 3.1: Graph of Force vs. Length of Cutter

FIGURE 3.2: Graph of Torque vs. Diameter of Cutter

PIGURA $4,2:$ blexure plate

FIGURE 5.1: Electronic Bridge

FIGURE 5.3: ADC-10Z Timing Diagram

FICURE 6.1: Initiator Routine

FIGIJRE 6.2 Continuator Routine

Code	Function	Explanation
g 00	Point-to-Point, Positioning	Used with combination point-to-point/ contouring systems for indicating positioning operation.
g 01	Linear Interpolation (Normal Dimensions)	A mode of contouring control used for generating a slope or straight cut, where the incremental dimensions are normal, i.e.: input resolution is as specified.
g 02! g 03	Circular Interpolation Arc CW (Normal Dimensions) Circular Interpolation Arc CCW (Normal Dimensions)	A mode of contouring control which produces an arc of a circle by the coordinated motion of two axes. The curvature of the path (clockwise $=g 02$, or counter clockwise $=903$) is determined when viewing the plane of motion in the negative direction of the perpendicular axis. The distances to the arc center (i, j, k) are "normal dimensions".
g 04	Dwell	A programed (or established) time delay, during which there is no machine motion. Its duration is adjusted elsewhere, usually by the F word. In this case dimension words should be set at zero.
g 09	Deceleration	The feed rate decreases smoothly (usually exponentially) to a fixed percent (20% in our case) of the programined feedrate in the declera. tion block.
$\begin{array}{ll}\mathrm{g} & 17 \\ \mathrm{~g} & 18 \\ \mathrm{~g} & 19\end{array}$	XY Plane Selection XZ Plane Selection YZ Plane Selection	Used to identify the plane for Interpolation. The Plane Code is stored until it is replaced by another. In a block which contains the Plane Selection Code, a linear interpolation is performed.

Code	Function	Explanation．
m03	Spindle CW	Start spindle rotation in a clock－ wise direction．
m05 06	Spindle OFF	Tool Change
m 30	End of Tape spindle．	
Execute the change of a tool．		

TABLE 2：Miscellaneous Functions

PART NAME：
DATE：

N	G	x	\boldsymbol{Y}	z	1	J	κ	F	M
1	18	2001	0ø日日	4ヵロa	вのаด	0008	ロด¢ด	300	03 （EB）
2	17	－3ano	－3аのа	g	0	\square	\square	786	（ER）
3	93	－5000	-5000	\square	\square	5000	\square	700	（EB）
4	03	5000	－5006	\varnothing	5800	\square	\square	760	（EE）
5	01	8500	\emptyset	0	0	0	0	$70 \square$	（EB）

FIGURE 6.3: Digital Intergrator $\operatorname{Ref}(10)$

FIGURE 6.4b: Circular Interpolator

FIGURE 6.5: Initial conditions of circuit
FIGURE 6. $6:$ Profile to check"lost Motion"

FIGURE 7.2: Data Readine Programme (DRE)

Data Reading Routine

FIGUPE 8.3: The AC stratery

PACKED
BYTE FORMAT

INTEGER DOUBLE WORD

OCTAL NOTATION

INTEGER DOUBLE WORD

FIGURE AI: Data Formats and Octal Notation Ref(6)

MEMORY SIZE	PAGE	octal ADDRESSES
	0	00000 to 01777
	1	02000 to 03777
	2	04000 to 05777
$4 \mathrm{~K} \downarrow$	3	06000 to 07777
	4	10000 to 11777
	5	12000 to 13777
	6	14000 to 15777
8K \downarrow	7	16000 to 1
	3	20000 to 21777
	9	22000 to 23777
	10	24000 to 25777
$12 \mathrm{~K} \downarrow$	11	26000 to 27777
	12	30000 to 31777
	13	32000 to 33777
	14	34000 to 35777
16K \downarrow	15	36000 to 37777
	16	40000 to 41777
	17	42000 to 43777
	18	44000 to 45777
	19	46000 to 47777
	20	50000 to 51777
	21	52000 to 53777
	22	54000 to 557777
24 K	23	56000 to 57777
	24	60000 to 61777
	25	62000 to 63777
	26	64000 to 65777
	27	66000 to 67777
	28	70000 to 71777
	29	72000 to 73777
	30	74000 to 75777
$32 \mathrm{~K} \frac{1}{\text { ¢ }}$	31	76000 to 77777

TABLE A2: Memory Pages Ref (6)

INSTRUCTION		TIME ($\mu \mathrm{sec}$)
MPY (Multiply)		10.78
DIV (Divide)	Max	15.66
DLD (Double Load)		5.88
DST (Double Store)		5.88
	Number of Shifts	
ASR	1, 2, 3	2.94
(Arithmetic	4,5,6, 7, 8	3.92
Shift	9, 10, 11, 12, 13	4.90
Right)	14, 15, 16	5.88
ASL	1, 2, 3, 4, 5	4.90
(Arithmetic	6, 7, 8, 9, 10	5.88
Shift	11, 12, 13, 14, 15	6.86
Left)	16	7.84
LSR, RRR	1,2	2.94
(Logical	3, 4, 5, 6, 7	3.92
Shift Right,	8, 9, 10, 11, 12	4.90
Rotate Right)	13, 14, 15, 16	5.88
LSL, RRL	1,2,3,4	4.90
(Logical	5, 6, 7, 8, 9	5.88
Shift Left,	10, 11, 12, 13, 14	6.86
Rotate Left)	15, 16	7.84

TABLE AI: Extended Arithmetic Execution lismes $\operatorname{Ref}(6)$

AFPENDIX A

Data Formats

"The basic data format for the 2100 A computer is a 16-Bit word. Bit positions are numbered from 0 through 15 , in order of Increasing significance. Bit position 15 of the data format is used for the sign bit; a "0" in this position indicates a positive number and a "I" indicates a negative number. The data is assumed to be a whole number, thus the binary point is assumed to be to the right of the number.

The basic word, as shown in Figure Al can also be divided into two 8-bit bytes or combined to form a 32-bit double word. The byte format is used for character-oriented input/output devices. Packing of the bytes into one word is accomplished by the software drivers. In $I / 0$ operations the higher order byte (Byte 1) is the first to be transferred. The integer doubleword format is used for extended precision arithmeticinstructions. Bit 15 of the most significant word is the sign bit, and the binary point is assumed to be to the right of the least significant word location; the next hipher location contains the most sirnificant word. When loaded into the accumulators, the B-refister contains the most significant word and the A-resister contains the least simnificant word. The floating point doubleword format is used with floating point software. Bit 15 of the most significant word is the exnnnent sion bit. Bits 1 throuph 17 are used to express
the mantissa. The mantissa is assumed to be a fractional value, thus the binary point appears to the left of the mantissa. Software converts decimal number to this binary form and normalizes the quantity expressed (sign and leadine mantissa bit differ). If either the mantissa or the exponent is negative, that part is wored in two's complement form. The number must be in the approximate range of 10^{-38} through 10^{+38}.

Figure Al also illustrates the octal notation of data for both single-length and double-length words. Each group of three bits, begirming at the right, is combined to form an octal digit. Each djgit to the left increases in significance. A single-length 16-bit word can therefore be fully expressed by six octal digits and a double-length 32bit word can be fully expressed by 11 octal digits. Octal notation is not shown for byte or floating point formats, since bytes normally represent characters and floating point numbers are given in decimal form.

For sinfle-word data, the range of representable numbers is $+32,767$ to $-32,768$ (decimal), or $+77,777$ to $-100,000$ (octal). For doublword integer data, the range is $+2,147,483,647$ to $-2,147,483,468$ (decimal) or $+17,777,777,777$ to $-20,000,000$ (octal).

Memory Addiessing

The computer memory is locically divided into pages of 1024 words each. A page is defined as the largest block of memory which can be directly addressed by the memory address
bits of a memory reference instruction (single length). These memory reference instructions have lo-bits to specify a memory address, and thus the page size is 1024 locations (2000 in octal notation). Octal addresses for each page, up to the maximum memory size, are given in Table A2.

Provision is made to address directly one of two pages: page zero (the page in wheh the instruction itself is located). Memory reference instructions include a bit (bit 10) reserved to specify one or the other of these two pages. To address locations in any other page, indirect addressing is used. Page references are specified by bit 10 as follows:

Loric $0=$ Page Zero (z)
Logic $I=$ Current Page (c)
All memory reference instructions reserve a bit to specify direct or indirect addressing. For single-length memory reference instructions, bit 15 of the instruction word is used; for extended arithmetic memory reference instructions, bit 15 of the address word is used. Indirect addressing uses the address part of the instruction to access another word in memory, which is taken as a new memory reference for the same instruction. This new address word is full 16 bits long, 15 bits of address plus another direct/indirect bit. The 15-bit length of the address, permits access to any location in memory. If bit 15 again specifled indirect addressing, still another address is obtained; this multiple-step indirect addressing may be done to any number of levels. The first address
obtained in the indirect phase which does not specify another indirect level becomes the effective address for the instruction. Direct or indirect addressing is specified by bit 15 as follows:

Logic $0=$ Direct
Logic $1=$ Indirect

Interrunt System

Of the 60 interrupt levels, the two highest priority levels are reserved for hardware faults (power fail and parity error), the next two are reserved for DMA completion interrupts, and the remaining 56 are available for the I/O device channels. Interrupt requests received while the computer is in half mode will be processed, in order of priority, when the computer is put into run mode or is stepped single cycle.

The flag with the highest priority generates an interrupt signal at the end of the current machine cycle except in order any of the following circunstances
(a) Interrupt system disabled or device interrupt disabled.
(b) JMP indirect or JSB indirect not sufficiently executed. These instructions inhibit all interrupts, except memory protect, until the instruction (plus one phase of the succeeding instruction) is completed, or until at least three indirect references have occurred. The remory protect interrupt for a jump violation will occur on completion of the execute phase, but the jump itself will be inhibited.
(c) Instruction in an interrunt location not sufficiently executed, even if of lower priority. Any interrupt inhibits the entire interrupt system at least two phases have been completed. (JMP indirect and JSB indirect will be fully executed.)

Instruction Timing
All instructions excent ISZ and the extended arithmetic instructions are fully executed in 1.96 microseconds. ISZ is executed in 2.94 microseconds, and the extended arithmetic instructions executed in the times shown in Table Al. The Divide instruction executes faster than shown if the diviser is positive (15.68 microseconds) or if overflow occurs (11.76 microseconds). If indirect addressing is used with any of the single-word memory reference instructions, 0.98 microseconds is added for each levcl of indirect addressing used; 1.96 microseconds are added for each level of indirect addressing with extended arithmetic memory reference instructions.

Instructions are executed in two or more phases. The first phase is the fetch phase, which obtains an instruction from memory and transfers it onto the central processor's instruction regjster. Next, there can be one or more indirect phases. The indirect phase, which applies only to singlelenpth memory reference instructions, obtains a new operand address for the same (current) instruction. Lastly, there is an execute phase, which accomplishes actual execution of the instruction. For extended arithmetic memory reference instructions indirect addressine is also accomplished in the execute phase.

Although the duration of a phse varies considerably (588 nanoseconds to an indeterminate time in the case of extended arithmetic indirect addressing), synchronization with memory or input/output operations results in overall execution times as specified in the preceding paragraph." [6]

60¢1			ASMB．A，B，L		COMMENTS
gane	620． 2.4			ORG 2624B	
gag3	92004	6acam6		C．A	
0604	9¢ą5	172263		STA K．I	
60\％5	ロ20e6	152112		STP 128	
00¢6	ก2027	\％neatay	L6	CLA	Input Routine
ロロッ7	の2036	na3man		Cula	
0008	02031	102612		OTA 12 B	
0099	02032	102712		STC 12B	
0010	020333	102312		SFS $12 B$	
0011	02034	926633		JMP＊－1	
0012	¢2．635	102512		LIA 123	
0013	62036	106712		CL．G 128	
0914	92037	0.72316		STA TS	Data Decoding and
60.15	の2\％40	012273		ASD COD	Storing
9016	02091	072317		STA TSS	
0017	02042	966317		1．DB TSS	
0018	02043	762316		LDA TS	
0.619	90．644	012872		AdD CHt	
9020	92045	0552657		CPA CHI	
0001	00045	076313		5 Se C 1	
09.22	62047	052270		CPA CH？	
QuP3	62050	075314		Ste M2	
ตn24i	aこの5：	n522？1		CPA CH3	
6025	¢2752	$0763: 5$		STB M3	
のヘอ5	aems3	002400		CL．A	Output Pulse
0927	92654	102612		OTA 123	
日acs	20055	193712		STC 128， 6	
9529	00056	165712		CLC 12 F	
0030	02057	162263		L．DA K，I	Is TC＞5，000？
9031	02の59	042092		ALA FT	
ロ0，	62061	Eache？		SSA，PSS	
10.33	00962	925667		MD I	
00.34	00563	102063		L．DAK，	－
0935	02064	042274		ADA CUl	
9080	00 n 65	：72063		STA K，I	
$0 \cdot 37$	apa66	9\％5927		THe LG	
¢¢38	02967	050313	1.1	L，DA ： 1	Is $\mathrm{F}_{u} \leqslant \mathrm{~F}$
ans 30	corta	0n3mat		CMA，ida	
9n49	020071	040314		ADA S ？	
comal	60772	\％abari		SSADRSS	
ancs	92873	प0．6191		Mmple	
0643	00074	962513		LDA M1	
6in44	¢0\％75	976323		Sta	coring $\mathrm{u}, \mathrm{F}_{\mathrm{v}}$
6 m 45	10.776	160316		I．DA me	Appropiately
0.40	60977	076324		STA 0	
00447	02100	026105		MP $1 / 3$	
め74as	92101	062313	1.2	LDA ：$: 1$	
1040	ratae	972324		san	
4．5	xatay	－6814		L\％A \％	
405	melat	70023		STA	
65se	nelns	960306	L3	LTA， 0	Calculation of
9653	82106	105269		MPY 0	$F\left(=\sqrt{F_{u}^{2}+F_{v}^{2}}\right)$
695	Q110	114．and		1 Sa	
	09111	29301			
＂ 3	$\therefore 6: 3$	：$\%$		$\because \%$	

	92.113	¢02323			
0056	02114	901100		APS	
0657	02115	¢72325		STA Y	
ø059	02116	19 cona		Wipy Y	
	¢2117	762325			
0a59	g2129	100409		DIV P	
	02121	092323			
0060	ต2122	961100		ARS	
6061	02123	¢72326		STA 2	
0062	02.124	109290		MPY	
	02125	902325			
0063	02126	100496		DIV P	
	－ 2127	のn2323			
0064	92139	－42323		ADA P	
0×65	ø2131	942325		ADA Y	
0066	02132	¢72329		STA RR	
966%	92133	¢62326		LDA Z	
ற068	¢2134	のต3ヵต4		CUA，ITA	
の¢69	02135	ब42320		ADA FR	
9670	82136	072332		Sta ser	Calculation of
0071	02137	96309．		CMA，InA	Calculation or
6×72	921．149	142264		ADS EN1，I	E_{f}
0074	02143	1 cosma		DEV EMH，	
	02.144	102264			
0675	02145	072333		Sta Ei	
0676	02146	962.315		LDA ma	Calculation of
06977	0.14 .7	9a3g54		CMAs INA	
ต079	$\begin{aligned} & \text { 92151 } \\ & \text { O2: } 52 \end{aligned}$	$\begin{aligned} & \text { Ionarg } \\ & \text { anes } \end{aligned}$		MPY TY	
0080	02153	1804am		div Eis．i	
	09154	19295			
6691 0682	02155	672335		STA E3	Is $E_{f} \leqslant E_{t}$
6082	0215	g42333		ADA El	
$9 \mathrm{mb4}$	82：69	atraca		SSA	
Sces	M？16：	996！65		Jmp Le	
0056	09162	10635：		LDA E3	Store E_{t} in E
0987	02163	972335		STe E	
9688 6.789	92164	926167		dmp L5	Store Ef in E
cmo：	02157	M49ap	L 5	Ssa	Is $\mathrm{E} \lesseqgtr 0$
6092	02179	920210		－ht L6	
6mo 3	0.171	104260		MPY E	Calculation of E^{2}
	02172	ต¢？ 335			
0，00：	69173	412351		STA EE	
19，9\％	82174	maser		as Me	
0396	92175	4－am？ 1		SSA，RS：	
909	09176	920213		Mp Ll：	
0098	a2177	162263	LLe	$\text { LDA } \mathrm{K},$	Strategy of E＞0
010	ancı	10 ara		ander	
	tyem	nuasa			
\％	lum	aramo		\％\％＂	

	920¢4	662331				
0102	の2205	1 घの9の日		MPY	$F I F$	
	वр？6：\％	6n2337				
6103	日2207	106400		DI V	TND	
	02213	002340				
0104	62211	67233m		STA	DF	
0105	02212	026237		JMP	L？，	
0106	92213	662310	LL 1	L．DA	PB	Calculation of E^{2}
0107	02214	072331		STA	EE	
0.168	の2215	026177		JMP	LL2	
0109	02216	169296	16	MPY	E	Calculation of E^{2}
	02217	002335				
0110	02229	072331		STA	EE	
0111	92221	042397	？	ADA	MB	
0112	0229？	602021		SSA，	ESS	
0.113	02223	026253		JMP	J．1．3	
0114	02224	162263	L1． 4	L．DA	K， F	Strategy of $\mathrm{E}<0$
0.115	02225	942975		ADA	CNE	
0116	02226	109460		DI V	HNT	
	62227	002312				
A117	822．36	1 100207		$M P V$	$E E$	
	02¢31	H62331				
0115	028.32	1802 xa		MPY	FIF	
	22233	602337				
0119	02234	100400		DIV	HTEN	
	62235	962311				
G1en	92936	672336		STA	DF	
0121	92237	562330	1.7	$1 . \mathrm{DA}$	DF	Is new feed－rate
0122	92206	142066		ADA	$F=I$	$>F$
0123	の2241	172260		STA	$F=I$	$>\mathrm{min}$
0194	02242	942346		ADA	FMIN	
0195	¢egt3	002906		SSA		
ai－6	Q2044	125256		Jivip	L8	
ate？	为cas	\％ 2 ご5		ADA	FiAx	Is new feed－rate
Q123	62246	902020		SSA		Is new \llcorner
al29	02047	のćaso		－IMP	$L 9$	$\rangle \mathrm{F}_{\max }$
9130	9225\％	962393		LDA	$F X$	Store F max．
$013!$	mec51	179266		STA	F, I	Calculation of E^{2}
0139	gorse	12.2664		U17P	19	
0133	62e53	A6231m	L． 3	LDA	PS	
6134	0е854	ayc331		STA	EE	
0.135	60255	90620a		JMP	LT4	
0.136	62256	0623，44	1.8	L．DA	FL．	$F=F_{\min }$
0137	ges5\％	179266		STA	$F>I$	Store F
Q153	62064	41948	1.9	Cla		Clear TC
615	meas	17：96\％		SHA	\therefore A 1	
0149	日2262	926027		Jip	LO	
6141	02263	420日6ar	K	OCT	26090	
0142	92064		P41	）CT	296せ1	
4？	\％rcs 5	S6ma．	513	9 Om		
918	10006	90ncrat	μ	$06 T$	9\％0तA	
145	10257	g1rama	CH：	OCT	18048	
6146	629\％9	909\％60	CHO	OCT	206060	
$\cdots 9$	moser	atram＝	\cdots	nop	yarimrt	
－	कode	；	S\％	®	iscos	
1． 20	$150 \% 3$	matry	con	06	4179	
： 9 ；	のoッ：	Mrsac8	\therefore ：	\cdots	90	

0151	60975	Came6d	Cur	D8\％	183	11.4
9152	¢0276		जnte	D16C	1	
6193	92277	mbathe	TW0	URC	e	
0．154	日gstor	065 i 44	Mom	DEC	16%	
9155	02301	006\％t5	T	DEC		
6156	60362	166170	Fr	DEC	－5600\％	
0157	02303	me5670	F\％	DEC	369\％	
0.158	02304	906036	Fl ．	DEC	30	
0.50	¢0365	179146	Mmat	DEC	－2970	
0160	02306	177742	FATM	DEC	－30	
0.161	02347	176666	08	DEC	－6Am	
0168	92314	091200	PR	DEC．	$+640$	
0163	62311	177766	HTEX	DEC	－16	
0164	02312	600146	HNT	DEG	102	
0165	02313	raterata	M！	Nop		
П166	02314	Whomac	Me	M0p		
¢1 67	02315	cobare	M3	M0P		
0163	09316	n0\％＠ag	TS	100P		
0169	92317	ज0mada	TSS	MOP		
0179	62320	906mba	RF	NOP		
6171	6239：	monomara	R	NOP		
9179	02320	Aのmota	Re	NOP		
0173	6e323	कctrena	p	NOP		
0.74	60.384	bकmmat	\bigcirc	NOP		
6175	¢2305	लकかrm	Y	NOP		
0176	02306	nownom	2	NOP		
9177	923e\％	の日emer	$A X$	sop		
6178	62330	actacher	DF	Mop		
6179	62331	कहmmba	EF	vop		
0183	62332	कणतकी	SOR	Nop		
9181	62333	Fकmmba	E1	Wop		
有180	69384	कめthmo	Pe	Mop		
9183	923：	members	P	Mop	－	
所碞	artasy	¢ध	33	W0p		
9） 65	60337		EIF	DEC	15	
9186	62340	beramo	TMD	DEC．	1024	
01\％7				EUD		
＊＊	EFPO	\％ $5 *$				

のめロ1		
00n2	01490	
0093	01400	006409
の004	01401	9の249の
6095	Q1402	171727
0006	01403	835727
0007	01404	261727
ดロø8	01405	051730
0069	01406	025410
00.10	01407	925401
0011	0.1410	103710
0012	01411	102319
0013	01412	625411
00.14	0.1413	102510
0015	0.1414	051740
0016	01415	525450
0017	0.1416	851743
00.18	01417	925450
0919	01429	651744
0620	01421	025450
001	01422	651732
0022	91423	925513
0023	0.1424	051733
0624	0.1425	625450
0925	01426	051734
0026	01427	025514
0027	01430	051735
0028	01431	025514
$6 ¢ 29$	01432	651741
6035	01433	625594
0531	6.1434	651742
0032	01435	625594
0033	0.1436	611746
0034	01437	041737
0¢35	0.1445	171736
0936	91441	001006
0037	91442	07.1737
6038	91443	001900
9939	01.444	001009
9049	0.1445	041737
9541	0.1446	871737
0042	91447	925410
0043	01450	955745
0844	0.1451	925596
0245	0.1452	103710
0046	01453	192310
0.047	01454	325453
0948	01455	102510
0049	0.1455	051748
9050	． 1457	925459
0051	01463	051743
0052	01461	ต2545g
0253	214 146	651744
0054	01463	ด25450
0055	91454	051732
\％）${ }^{\text {a }}$	\＄1405	23513
0657	01460	951733

ASMB；A，B，L．
ORG 140日B
CLB
START CLA
STA SA，I
ISZ SA
LDA SA
CPA FA
Jilp Ll
IMP START
STC 10B，C
SFS 1 GB
JMP＊－1
LIA $10 B$
CPA SPACE Space？
JMP L3
CPA PLUS
JMP L3
CDA PLSC
Plus？
JMP L3
CPA SLASH Slash？
JMP L8
CPA CR CR？
JMP L3
CPA LF LF？
JMP L7
CPA LFF
JMP L． 7
L4 CPA MINUS
JMP L5
GPA MINC Minus？
JMP L 5
AND M
ADA SP
STA LP，I
ALS
STA SP
ALS
ALS
ADA S ？
STA SP
$\begin{array}{lll}\operatorname{MMP} & \text { Li } \\ \operatorname{CPB} & \text { TV }\end{array} \quad$ Is $N<0$
JMP Liv
STC 102，C Read a character
SFS 133
JMP＊－1
LIA 1GB
CPA SPACE Space？
JMP L3
CPA PLUS
NMP $L 3$
CPA PLSG
JMP L3
GPA SLASK Slash？
U！？LS
CPA CP CR？
Read a character

Plus？

Minus？

Calculate Number N

LM • STC
Read a character

Plus？

PAGE $0004 \# 01$

	0658	0.1467	025452		JMP LM	116
	0059	01470	006499		CLB	
	0060	01471	075737		STB S	
	0061	01472	051734		CPA LF	LF?
	0062	0.1473	Ø25514		JMP L7	
	0063	0.1474	051735		CPA LFF	
	0064	01475	.025514		JMP L7	
\because	0965	01476	005736		L.DB LP	Increment of memory
\because	0966	01477	045726		ADB HLN	location
	0067	0.1500	075736		STB LP	
	0068	01501	006499		CLB	
	0969	01502	875737		STB SP	
	0079	01503	025432		JMP L4	
	0671	0.1504	065745	L. 5	LDB TW	$B=20$
	0072	01595	925410		JMP L1	
	0073	01506	161736	LN	L DA LP, I	$\mathrm{N}=-\mathrm{N}$
	0674	01507	093094:		CMA, INA	
	0075	0.1510	171736		STA LP, I	Store N
	00076	01511	006400		CLB	$\mathrm{B}=0$
	9077	01512	g25452		JMP LM	
	0078	01513	102975	1.8	HLT. 75 B	Halt.
	øø79	0.1514	065731	L7	LDB RP	Calculating Path/ Rad. and Store
	ø08■	01515	045725		ADB WH	
	9081	0.1516	¢75736		STB LP	
	0082	01517	606400		CLB	
	0083	0.1520	07.5737		STB SP	
	0084	0.521	961762		LDA TWO	
	0985	01522	151747		CPA RG, I	
	0986	01523	025530		JMP CIRCL	
	0087	0.1524	061776		LDA THREE	
	0988	01525	151747		CPA RG, I	
	0089	01526	025530		JMP CIRCL	
	0990	01527	02.5534		JMP LINE	
	0091	0.1530	061747	CIPCL	LDA RG	
	0092	01531	64.1757		ADA FAUN	
	0993	0.1532	671747		STA RG	
	0994	01533	025537		JMP PATH	
	0095	0.1534	06.1747	LINE	LDA PG	
	0996	01535	041726		ADA HUN	
	0997	61536	971747		STA RG	
	0098	21537	161747	PATH	L DA RG, I	
	0999	0.1540	092920		SSA	
	0100	01541	Пด3894		CMA, INA	
	0101	0.1542	671753		STA ABX	
	0102	01543	106205		MPY ASX	
		011544	901753			
	0103	01545	104496		DST SQX	
		0.1546	9\%1751			
	0104	01547	161747		LDA RG, I	
	0105	01550	071772		STA X	
	0.106	0.1551	161753		L. DA ABR	
	0107	0.1552	100970		MPY TWO	
		0.1553	001762			
	0.108	0.1554	941759		ADA ONE	
	0109	01555	10.44ax		DST TX	
		0.1556	091764			
	0110	D1557	061747		L.DA RG	

	01560	04172
0112	0.1561	071747
0113	01562	161
14	01563	90
0115	01564	¢0
0116	01565	971
0117	0.1566	109209
	0.1567	¢01754
6118	01570	104406
	01571	90.1755
0119	01572	16
0120	01573	871773
121	01574	96
0122	01575	100200
	01576	001762
123	01577	941750
0124	01600	104400
	0.1601.	091766
125	01602	061747
126	01693	041
0127	01604	071747
01.28	0.1605	161747
0129	01606	092g2a
0130	01607	003004
0131	01610	071777
9132	01611	100200
	01612	001777
0133	0.16 .13	104400
	G1614	002059
34	0.615	161747
0135	01616	071774
0136	01617	061
0137	01520	100209
	01621	00
0138	01622	041750
0139	01623	104400
	01624	001770
42	01625	061754
0141	01626	00300
0.142	01627	041753
0.143	01630	002620
0144	0.1631	025654
0145	0.1632	061777
0146	01633	093004
0.147	01634	041753
0148	01635	002020
0140	0.636	025652
0150	01637	104200
	0.1640	001755
0151	01641	100400
	01642	901764
0.152	01643	171736
0153	01644	194200
	91645	の日2909
0154	01546	10040
	0.1647	3801
155	16	14

9156	01651	041753		ADA ABX		
0.157	01652	171736		STA LP，I		1.18
0153	01653	025716		JMP S		
0.159	01654	661777	P	LDA ABZ		
0160	01655	0030804		CMA，INA		
0161	0.1656	041754		ADA ABY		
0162	01657	902020		SSA		
0163	0.1660	025662		JMP R		
0164	01661	925700		JMP Q		
6165	01662	ตดดめดの	R	NOP		
0166	01663	104200		DLD SOX	，	
	01664	001751				
0167	01665	100400		DI U TZ		
	0.1666	60．1770				
0.168	01667	171736		STA LP，I		
0169	0.1670	104200		DED SQY		
	0.1671	501755				
0170	01672	100400		DIV TZ		
	0.1673	901770				
0171	01674	141736		ADA LP，I		
0.172	01675	041777		ADA ABZ		
0173	0.1676	171736		STA LP，I		
9174	01677	025716		JMP S		
0175	01709	¢08000	Q	NOP		
0176	01701	104200		DLD SOX		
	0.1792	901751				
0177	01703	109400		DIV TY		
	01704	00.1766				
0178	01705	171736		Sta lpgit		
0179	0.1706	104200		DLD SQZ		
	0.1707	Фด2000				
0180	01710	100490		DIV TY		
	01711	001766				
0181	01712	141736		ADA LP，I		
0.182	0.1713	0.41754		ADA ABY		
0.183	0.1714	171736		STA LPy I		
0184	01715	025716		JMP S		
0185	01716	051731	S	LDA RP		
0.186	01717	002004		INA		
0.187	01720	071731		STA RP		
0.188	0.721	071736		STA LP		
0.189	0.1722	041726		ADA HUN		
0199	0.1723	971747		STA RG		
0191	91724	925410		JMP Li		
0192	01725	005080	WH	0 CT 50nめ		
0193	01726	0004006	HUN	OCT 4 Ag		
0194	01727	日30000	SA	0cT 30900		
0195	01730	936000	FA	0 CT 36000		
0196	01731	93099の	RP	0 CT 30900		
0197	01732	000257	Slasit	OCT 257		
0198	01733	n00215	CR	OCT 215		
0109	01734	gogal2	L．F	OCT 12		
92001	01735	000212	LFF	OCT 212		
9291	0.1736	ロ30000	LP	0 CT 30000		
mos？	91737	anamga	SP	N00		
0283	01749	000240	SPACE	0ct 240		
02034	01741	9力0955	ininus	OCT 55		

0205	01742	600255	MINC	OCT	255	119
0206	01743	0000653	PLUS	OCT	53	
0207	01744	000253	PLSC	OCT	253	
0208	0.1745	000024	TV	DEC	20	
0299	01746	000017	M	OCT	17	
0219	01747	930400	RG	OCT	39400	
0211	6．1750	000001	ONE	DEC	1	
22．12	01751	060006	SQX	NOP		
0213	01752	めด0000	AD1	NOP		
0214	01753	のロロロロロ	$A B X$	NOP		
0215	0.1754	øดのดロロ	ABY	NOP		
0216	01755	0000日0	SQY	NOP		
0217	0.1756	006900	AD2	NOP		
0218	01757	002000	FHIN	OCT	2000	
$\square 219$	01769	09\％0日の	JSQ	NOP		
0229	61761	0000959	KSQ	NOP		
0221	91762	ตロロตの2	TWO	DEC	2	
9222	01763	009909	I	NOP		
0223	01764	009000	T	NOP		
0224	01765	0g00gg	AD3	NOP		
0225	01766		TY	NOP		
6226	01767	006909	AD4	NOP		
0227	01779	000000	TZ	NOP		
0228	01771	の00006	AD5	NOP		
0229	61772	0060¢口	X	NOP		
9230	01773	900909	Y	NOP		
0231	01774	øのøの日の	Z	NOP		
0232	01775	000006	TI	NOP		
6233	01776	000003	THREE	DEC	3	
0234	01777	009000	ABZ	NOP	．	
0235	02008	909009	S0Z	NOP		
0236	ต2001	090099	AD6	NOP		
0237				END		
＊＊NO ERRORS＊						

BIBLIOGRAPHY

1. Olesten, N. O., Numerical Control, John Wiley and Sons, Inc., 1970.
2. The Expanding World of NC, Proceedings of the Ninth Annual Meeting and Technical Conference Numerical Control Society, April 17-19, 1972, Chicago, Illinois.
3. Childs, James, J., Principles of Numerical Control, Industrial Press Inc., New York, N. Y., 1965.
4. Thornhill, Robert, B., Engineering Graphics and Numerical Control, McGraw-Hill, 1967.
5. Numerical Control for Tomorrow, Frontiers in Manufacturing Technology, Vol. IV., Institute of Science and Technology, The University of Michigan, Ann Arbor, Michigan, 1969.
6. Hewlett Packard 2100A Computer Reference Manual, 1971.
7. Koren, Y., Shani, A.; Ben-Uri., Numerical Control of a Lathe, I.E.E.E., Transactions on Industry and General Applications, Volume lGA-6, Number 2, March/April, 1970.
8. Mueller, P. A., Trainable Adaptive Control for Automated Machining, Manufacturing/Numerical Control Systems Technical Paper, Society of Manufacturing Engineers, 1972.
9. Seth, M. K., Direct Digital Control of Machine Tools (Ph.D Thesis), Wisconsin, Department of Mechanical Engineering, University of Wisconsin, 1972.
10. Hardy, James, M., Retrofitting Machine Tools, Ann Arbor, Michigan: Industrical Development Division of the Institute of Science and Technology, University of Michigan, 1967.
11. Evans, L., Computerized Numerical Control Revised, Control Engineering, August, 1972.

[^0]: * The lead screws have a pitch of 0.25 , which means that with a transmission ratio of $2.5: 1$ the resolver rotates once per 0.1 inch.

