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SCOPE AND CONTENTS: 

A special pm .. 'pose computer (s.p.c.) is described which provides 

decimal readouts of the first four time-averaged moments and of the 

cumulative ampli tPde distribution of a randomly varying voltage. 

There is no th.;oT'.c;tlc:al lm1 freque:nc:y 1i'ltit., the Uf'JJ'-'!l' f:n:qu·ency b~ins 

about 5 kHz for a 99.73% <:onfidence limit of a 1% error. He2.surements 

can be made in a o;1e cycle mode (for pc1·io<lic :inputs) or in a fixed­

time or fixed-sampJ.e·-size mode. Readouts of all mom; .. mts are available 

irnmcdiatdy at the end of the measurcJrr-~mt time so that the s.p.c. can 

be used for l';.":f;l-tih1e applications, A simple n:ethod for the di:rect 

compvtation of standard deviat:i.on from the :r.:oa~am~d values of th·o first 

and second nK)mcnts is also described. The errors arising in the s.p.c. 

are investigated theoretically and it is shmm th<? .. t for rno..ny commor.ly­

encountcred signals the overall error is within P;; for aD moments. 

Iterative and ncax-itexative arrays using univcrsd arH .. hmetic cells are 

proposed; these w:mld simplify the design of the s.p.c. c.onsidcrz'bly. 
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ABSTRACf: 

A portable special purpose computer (s.p.c.) is described l'l'hich 

provides decimal readouts of the first four moments of a fluctuating 

voltage v on four separate registers. A fifth register provides a 

readout of the measuring time which can be within the range 10 rns. to 

30 Hrs. The s.p.c. can be switched to another mode which provides a 

measure of the cumulative amplitude distribution of v within sixteen 

positive and negative levels. Salient characteristics of the s.p.c. 

are as folloh'S: 

(a) There are no low frequency li111itations. The upper frequency 

limit, established by error considerations, is about 5kHz with 99.73% 

confidence that the error is within 1%. 

(b) At the end of the measuring time T, all the four ooments are 

immediately available in magni tudf: and sign. 

(c) The outputs can be available in any code, 'the only change 

necessary being in the code of the counting Ieadout. registers. 

(d) All computations fo1· a sample are completed before the next 

sample arrives so that programming and unnecess<!-r:r storage facilities 

are eliminated. 

The voltage input v is rectified and sampled systematically by 

an equi-interval a.d. converter. The samples, together with the sign 

bit, are fed into special purpose digital multipliers based on a 

11\o!eighted feed" principle. The outputs from these multipliers, with the 

sign bit, arc ted to accumulators via parallel adders for each of the 

moments. The overflm~·s of these accumulators are shown to be contribu­

tions to the various moments and are fed to the decimal display registers. 

(iii) 



Direct computation of the standard deviation (o) of the input, from 

measured first and second moments has also been investigated. 

A theoretical analysis of the various errors which occur in 

such an s.p.c. has been made. Results indicate that for most signals 

the overall error is within 1% for all four moments. 

Finally, the development of a universal arithmetic cell, for 

use in iterative and near-iterative arrays, is reported in this thesis. 

It is shown that use of such arrays in the arithmetic units of the 

·s.p.c. can lead to a considerably simplified design. 

(iv) 
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CHAPTER 1 

In recent years, statistical rnethocls have been successfully used 

to solve engineering problems especially in the fields of optimal control, 

communication and detection systems. One aspect of these applications is 

the need for raeasured statistics of a random signal. The rr.ore commonly 

required statistics arc the probability density function and the various 

time averages (e.g., auto- and cross-correlation, moments). Num0rous 

techniques fol' probability density function and correlation analysi;, have 

been reported in the engineering literatm~e; However, for the analysis 

of statistical moments, the trend has been towards the use of a general 

purpose computer with a. d. conversion facilities. In this thesis, the 

developJm:m1~ of a !>pedal purpcse computeT for the anaJy:::.is of statistical 

moments} is reported. Progra;mdng requirements are entirely elimina.ted; 

aJs.o the computer may be used in rcal-tilr:c applications. 

Assuming that the random signal is at least quasi-ergodic, the 

time averages and ensm:1ble averages are equivalent. Thus the time 

k average of v where v is the rsndom signal, is defined as 

(1.1) 

This may also be defined as an expectation integral. 

+-» 

Thus mk = E{vk} = I vkf(v)dv 
-<.0 

(1. 2) 

1 



where f(v) is the probability density function of v. The quantity mk is 

called the kth order moment of v. 

The importance of moments in statistical analysis is well 

established1• Thus a statistical distribution is completely specified, 

2 

once all its moments are knmm. In some cases it is possible to represent 

the physical phenomenon under investigation by a statistical distribution 

of known properties and theoretically justify such a representation. 

However, in cases where such a theoretical justification can not be made, 

the moments may be used to obtain an empirical distribution. Such 

empirical distributions are useful in simulation studies where the random 

variables to be used are selected from the de:rivcd distributions. Their 

use has also been suggested recently by Kuo and Rowland, in a suboptimal 

adaptive filtering algorithm2
• This algorithm requires only the first 

four moments of a specified random variable. 

Analytic techniques 3 for approximating the statistical distribu-

tion have also been developed. These usc an orthogonal expansion whose 

coefficients are the moments of the random variable. 4 Karl Pearson , 

on the other hand has suggested the use of a family of curves, each member 

of which is completely specified by the first four moments of the random 

variable. Such approximate representations are useful in evaluating a 

system performance in terms of its corr.ponent performances. 

The advantages of digital techniqt:es are now well recognized for 

performing arithmetic operations. These features, coupled with readily 

available and accurate analog to digital converters, make the use of 

digital IDf.Jthods very attro.cti ve for certain types of measurements. One 

particular area for such an a.pplication is that of st2.tistical analysh. 



Earlier efforts in instrumentation for this purpose have been mainly in 

the sequential determination of the probability density function and 

correlation measurements. In the measurement of probability density 

function5•6•7•8•9 , slicing circuits or comparators are used to simulate 

a voltage window (or interval) 6V1 about a voltage reference v1• The 

time spent by the random voltage in this interval is measured digitally 

and represents the probability that the voltage lies in the interval 

3 

~v1 about v1• Several analog10 • 11 and digital methods have been proposed 

for autocorrelation and cross-correlation measurements. The correlator 

design proposed by Cheney12 is significant since it uses the residue 

number system for the arithmetic processing. This number system13 offers 

the advantage that multiplication can be as fast as addition, but has 

the disadvantage of special storage requirements. Furthermore division 

and overflow are not clearly defined in the residue number system. A 

substantial improvement in correlator design is that proposed by Kitai 

and Masuko14 • This design uses a unique arithmetic processing system 

and requires very little storage for the actual processing. Further-

more, the reading of autocorrelation function for a given time delay 

Td is available immediately after the sampling of the input is terminated. 

Clearly for Td = 0, this system yields the value .of the second moment. 

Instrumentation for the statistical moments by ensemble averaging 

has received very little attention in the past, the emphasis always being 

on the use of a general purpose computer for such :;malysis. One of the 

earliest effort~ was by Deist and Kitai 15 , who pro_posed a digital r.m.s. 

voltmeter. An algorithm for the second moment was developed and an 

iterative procedure was propc•sed for calc.ulating tile r.m.s value of a 



4 

voltage. A special purpose digital in5trument using this algorithm was 

d b K. . d B . h . 16 reporte y 1ta1 an ra1t wa1te . An extensive theoretical and 

experimental error anal)'·sis of this instrwnent was carried out by the 

17 present author and has been reported else\'there • This analysis indicated 

the necessity for use of higher number of quantisation levels in order to 

reduce the errors. Feasibility of the basic processing used in the 16-

level instrument 16 , for use in the measurement of the higher order moments 

was also established. 18 Hanrahan has recently considered the use of 

various types of quantisers in real time averaging. Several standard 

numerical integration formulae are analysed and the error characteristics 

are given for first two moments, for autocorrelation and Fourier analysis. 

Some design aspects of individual modules for use in the Tangent Formula 

for numerical integration are also described. 

This thesis deals with an extension of the above mentioned 

work 17 and describes the design and error characteristics of a special 

purpose digital computer (s.p.c.) for the measurement of the first four 

moments of a random signal. The salient features o:f this computer are 

as follows. 

1. There are no low frequency limitations. The upper frequency 

limit is established by certain error considerations and is about 5kHz. 

2. At the end of the measurement time T, all four moments are 

immediately available in a sign and magnitude form. The s.p.c. is 

therefore particularly suitable for real-time applications. 

3. The outputs are in a decimal code but can be displayed in any 

other code, the only change required being in the logic of the display 

units. 
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4. The above-level amplitude probability distribution is readily 

measured in an alternate mode of operation, incorporated in the s.p.c. 

5. -Real time measurement of the standard deviation a from the 

continuous computation of first and second moments can also be made. 

A technique for this purpose has been developed and is reported in this 

thesis. 

6. The sample size or the measurement time can be varied so that 

the special purpose computer can be programmed for long measurement runs. 

7. The s.p.c. can be readily modified to accept either a continuous 

signal and use its own a.d. converter or to use ready-quantised data 

as input. 

8. Since all computations for a sample are complete before the next 

sample arrives, all programming and unnecessary storage facilities are 

eliminated. 

The properties of amplitude and time quantisation of a continuous 

signal are reviewed in Chapter 2. The algorithms, for the first four 

moments, to be used in the s.p.c. are developed and general design 

requirements are considered. 
th . 

Calculation of the k moment generally 

requires at least k multiplications per sample of the input signal. 

Such a method is not suitable for real time computations since it requires 

excessive computation time. The weighted feed concept developed in this 

chapter is particularly powerful for such purposes since it requires only 

one multiplication and addition cycle for each sample to accumulate the 

kth moment. Furthermore, use of precise rectification of the input signal 

simplifies the design of the ari thmctic units considerably. 

Chapter 3 deals with the an;1lysis of the weighted feed concept 
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used in the arithmetic unit of the s.p.c. Simultaneous binary multipliers 

using combinational logic have been designed, for the purpose of calcula­

ting the weighting numbers, using general minimisation techniques. These 

techniques are suitable for multiple output - multiple input logic system 

minimisation. Computer programs for this minimisation are also discussed 

in this chapter. 

In Chapter 4, a hardl.rare implementation of the s.p.c. is con­

sidered. It is shown that use of one-step parallel binary adders in 

circulating accumulators considerably simplifies the timing requirements. 

Complete design details of the individual units of the s.p.c. are treated. 

Details of performance tests by using direct decimal readouts for d.c. 

inputs are also given. A novel technique for computation of standard 

deviation is described in this chapter. 

Results of a theoretical error analysis are given in Chapter 5. 

Individual sources of errors are discussed. Extensive use has been made 

of a general purpose computer for calculation of th~se errors. The 

computer programs and the results obtained are also described. These 

results indicate that little improvement in errors is achieved beyond a 

quantisation of 128 levels, and that the en'ors due to level inaccuracies 

in the a.d. converter tend to swamp the ether errors in such cases. 

In the design of special purpose cor,iputers, the most critical 

unit is the arithmetic processor. This is also true of the-: s .p. c. 

designed for the analysis of moments. The arithmetic unit described in 

Chapter 3 is a hard-wired special purpose simultaneous multiplier, which 

cannot be easily extended for, say, a higher number cf quantisation 

levels. Hence arithn:.;;tic processes using iterative arrays of logic cells 



were investigated and the results are described in Chapter 6. Fully 

iterative and nearly-iterative arrays have been developed for binary 

multiplication, division and square root extraction. These arrays use 

a Wliversal logic cell based on the principles of ordinary binary 

arithmetic. Use of such arrays, implemented as LSI functions, would 

simplify the design of the s.p.c. Methods of interconnecting such 

arrays for the realisation of the \'ieighting numbers for the moments are 

also described in this chapter. 

7 

In Chapter 7, the significant aspects of the s.p.c. are reviewed. 

Possible areas for further investigation are suggested. It is felt that 

design of special purpose computers for other measurements is feasible 

and that the weighted feed concept is an extremely powerful technique 

for use in such designs. Investigation of cellular a:rrays for complex 

arithmetic operations uould considerably simplify the design of special 

purpose computers. 



CHAPTER II 

REAL TIME ALGORITHMS FOR STATISTICAL P.llf.fENTS 

2.1 Introduction 

Digital computation from analog data requires that the signal 

be sampled at discrete time and quantised in amplitude. The number of 

bits used in the quantisation process is restricted in order to reduce 

the complexity of the arithmetic processing units. In special purpose 

computers unnecessary storage should also be eliminated. Furthermore 

since real time applications are an important consideration, it is 

necessary that the results be available immediately after sampling is 

terminated. 

In this chapter, the theory of amplitude quantisation is reviewed 

with specific reference to special purpose computers. Based on this 

discussion, the discrete models for the first four moments are developed 

and the design of a system for these algorithms is outlined. A powerful 

arithmetic processing technique i.e., the use of weighted feeds, which 

is particularly useful in time averaging is also introduced. 

2.2 ~mplitude Quantisation 

For digital computation the analog signal has to be sampled and 

the sample converted to a digital value of a finite word length. Thus 

the range of a r~ndom voltage v is subdivided into class intervals, 

·r· d f h .th · 1 b spec~ ~e or t e 1 1nterva y 

8 



i 
[}:t:N] 
q=l q 

< v < 
i 

[ l fiV ] 
q=l q 

A1' + u\1. 1 l+ 

(i=0,±1,±2, ••• ,±n-l) 

9 

(2 .1) 

h V · h · · · 1 d" to the qth l·nterval. w ere 6 1s t e quant1sahon 1nterva correspon 1ng 
q i 

The quantity [q~ltJ.Vq] • h h } ld 1 L .th 1 1 1s t e t res1o vo tage at ti1e 1 eve • The 

manner in which these threshold voltages are disposed in amplitude, 

determines the quantiser characteristic. A typical example of such a 

characteristic is shown in Fig. (2.1). 

Arnpli tude qua .. , tisation is a non-linear operation, in which the 

quantised output v can be regarded as the sum of the input v and a 
q 

round off error (nq) such that 

n = v - v q q 
(2. 2) 

The round off error n is often referred to as the quantisation no5.se or 
q 

the quantisation error. Any computation involving the quantised data, 

therefore, will be subject to errors. 

In statistical analysis random data are often grouped into classes 

for further analysis. To compensate for errors in the computation of 

moments due to grouping, corrections known as Sheppard's corrections 
19 

are usually applied. Amplitude quantisation of continuous signals, for 

use in analysis has been considered by Widroiv-20 and also by Watts 21 • 

Both have shown that if the quantisation is sufficiently fine, Sheppard 1 s 

corrections may also be applied in these cases, provided the sampling rate 

exceeds the Nyquist Rate. An equi-interval quantiser is usually assumed 

in such analyses. 

The quantiser characteristic i.e., the th1~shold voltages to be 

used, must be such that the error due to quantisation is minimised for as 



- - - - - - - - -- --- - -r---

- - - - - - - - - - - -r----!1 

2 "'"------..,.--~ 

1 

-4.6.V -Jav -2hV 

- - --r----!1 
I 

I 
.I 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 
I 
I 
I 
I 

I 

I 
I ;-' __ _. _____ -1 

i-1 ----J'- - - - --- - -2 

,.... __ ,__ -----------3 

--J.- - -- - ---- - - - ---- -4 

AV 2AV 

I 
I 
I 
I 
I 
I 
I 
I 

)&>.V 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

4D-V 

10 

Input 
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wide a range of signals as possib1e. Although it is possible to construct 

the quantiser characteristic such that the error in the measured 

. . . 22, 2 3 . . f d 1 h. . . k 1 d stat1.st1cs 1s zero , 1t 1.s oun t1at t 1s rcqm.res a pnor noi'l e ge 

of the probability distribution of the input signfll, In statistical 

measurements, this is seldom the case and therefore it is d,e;sirablt" that 

ldthin a range of values prescribed, the quantiser thresholds be spaced 

at equal interva.ls. In this manner all values are equally emphasised, 

An equi--interval quantiscr is simple to realise and comrnel'd.al a.d. 

24 .1 -1 b.l. d .lbl converters \Ht1 excel ent sta 1. 1ty an accuracy are now ava1. a e. 

The special purpose computer, designed for the analysis of JllOments, uses 

such an a.d. converter. 

2. 3 Finite Sanrpling Time 

Sampling of the voltage is usually systematic and at a finite 

rate. The sample size or the total time of computation is also finite. 

The statisties, (in this case the first four time-averaged moments) 

which are computed using a finite sa·;l'plc size :1.rc not invariable i.e., 

they can not be reproduced by performing the measuren:0nt an eN. The 

values obtained are governed by tho probability distribution of the 

voltage under measurement. 

Effect of finite sample size has been considered by R.A. Fisher25 

who has sholm that tho deviation in the measur~d statistics is proportional 

to L. 
IN 

mcnt T. 

For systematic sampling N can be related to the time of measure-

26 A s-;.!co:nd approach uses the variance expression, 

(2. 3) 



The above equation indicates that the variance in the measured 

value of ~K can only be zero if T + ~. In practice where T is finite 

the variance is also finite and therefore a confidence interval for the 

measured statistic is usually specified. Excessive measurement times, 

on the other hand, may endanger the validity of the stationarity 

assumption usually made in the derivation of the real time aigorithrns. 

It is therefore necessary to determine the minimum measurement time T 

or sample size N required to produce a specified confidence limit for 

a measured statistic. 

The use of equation 2.3 for calculation of the confidence limits 

is possible only if the autocorrelation function R (1) of vk is known. mrn 

If this information is not available then the results of sampling theory 

may be applied. It has been shown25 that if the sample size is large, 

then the distribution of the first four moments follows a very nearly 

Normal Law. In these cases the variance is given by 

(2 .4) 

where Kk is a constant depending on the value k i.e., the order of the 

measured mon:ent. Again tht;! sarr.pl e size to be used in a measurement 

should be large in order to assure only small variations in the measured 

values. 

2.4 Real Time AlJ:orithms for Statistical Moments 

If the random signal to be analysed is at least quasi-ergodic 

then the time averages and ensemble averages are equivalent27 • For such 

a signal, the kth statistical moment (:an be defined either as an 

12 



expectation integral or as a time average. 1bus 

+co 

mk = E{vk} = f vkf(v)dv (2 .5) 

-oo 

where f(v) is the probability density function of the random voltage v. 

T 

~ = Lim i f vkdt 
T-+«> 

Also 
(2 .6) 

0 

Assuming quantisation into n equal intervals on either side of 

zero as shmvn in Fig. (2.2.a.), the discrete-value expectation integral 

form for equation (2. 5) may be written as 

+n 
~d = l (2. 7) 

r=-n 

where p(vr) is the discrete value probability density function. 

The quantiser assumed in Fig. (2.2.a.) is of the equi-interval 
vn 

type with the quantisation interval being - where V i5 the voltage 
n n 

corresponding to the nth level. In the subsequent analysis it is 

assumed that Vn = 1. 

Using mid-interval values for vr in equation (2.7), the kth 

moment may be expressed as 

+n 
~d = t (P p )Vk 

K L r - r+l mr (2. 8) 
r=-n 

where P r is the probability that the voltage exceeds the rth level and 

Vmr is the mid-interval value corresponding to the rth interval. 

Now 

v = mr 
2r + 1 

2n 

+n k 
~ 2r + 1 } 

mkd- l (Pr- pr+l){ ----2n--.--
r=-n 

(2.9) 

13 



14 

LEVELS VOLTAGE 

n-------------------------------------------------------1 
--·-- ~--·---·---·---·---·---·---·-

r 
-4--· --· ------·--- ·--n 

--·--·--·--·-~·--·--·---·--. 

1----·---·---·---·---·-
r.__-

n----------------------------

LEVEL _/ 
---~~ 

r 

QUANTISED 

VOLTAGES 
~ r + 1 --n 
• 2r + 1 

2n 
r 
Tt 

--J,..,J..,: I.......__.III-L..L..JIIII....L....L..i l.'l....I..-!..-IIIILL-L-11 LL...L.IIII&.....~-~.., II..A....L....Llll-~-~-1: _sampling rate r P samples/sec. 

~Contribution to Pr --->1 
Figure 2.2: (a) Voltage under measurement with quantisation 

levels. 
(b) Sampling at the rth level. 
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Separating the positive and negative parts of equation (2.9), 

we have 

(2.10) 

= 
n k +n k 
t (Pr P ){2r + 1} + ( -l)k l (P -P ) {2r +_!_} 
L - r+1 2n r--O r r+l 2n r=O 

r+ r-
(2.11) 

Since the expressions for the positive and negative parts are 

identical except for a possible sign difference, the algorithm is 

developed for mk+ only. Thus 

1 k 3 k 
~. = (Po+ - Pl) (2n) + (Pl - P2) Czn0 + • • • 

• • • + (P _ P )(2r + l)k + 
r r+l 2n 

• • •• + (P 1- p )(2n -l)k (2.12) 
n- n 2n 

If the nth level is never exceeded than Pn = 0 and equation (2.12) 

may be written as 

p 
o+ 1 n-1 k k 

~.= (2n)k 
+ I Pr+{(2r + 1) - (2r - 1) } 

(2nl r=l 
(2 .13) 

r+ 

p 
The first O+ . term--- 1n 

(2n)k 
equation (2.13) represents the contri-

bution to mk+ due to the vo 1 tage in the first quantisation interval. Its 

contribution to mk+ is usually small except for k=l and small n. In 

general, however, if n is large, this term may be neglected even for k=l. 

It is found that this assumption simplifies the 

purpose computer considerably. In a systematic 

design of the special 
c 

1 . P ~ r h samp mg - -C \'1 ere 
r o 

Cr denotes the number of samples occurring while the input signal exceeds 
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the voltage for the rth level and C0 is the total number of samples. 

Substituting for P in equation (2.13), one obtains 
r 

:: 
~+ 

n-1 
l L C {(2r + l)k - (2r - l)k}/C

0 (2n)k r=l r+ 
(2 .14) 

r+ 

The algorithms for various values of k may now be derived using 

the general expression (2.14). 

2.4.1. k = 1: First Moment. 

From equation (2.14) 

n-1 
= ..l_ i c 

nCo r=l r 
r+ 

Similarly, 

and 

n-1 
=.:!_ ~ c 

nC l r 
o r=l 

r-

2.4.2. k = 2: Second ~1oments. 

(2 .lSa) 

(2.15b) 

(2.16) 

The second moment of a random variable v is used together with 

the ~~an value m1 to describe the spread of the statistical distribution 

of v. The standard deviation a = \{'2 - mi is the Jueasure of this spread. 

For periodic signals l'lith zero mean, a is the r.m.s. value. 

From equation (2.14), fork= 2 
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1 n-1 2 2 
m2+ = [ L C { (2r + 1) - (2r - 1) l] 

2 r C •4n r=l 0 
r+ 

n-1 

m2+ = _2_ I rC (2.17a) 
2 r 

C
0

n r=l 

Similarly 

2 
n-1 

m2- = --2 r rC (2 .1 ib) 
C

0
n r=l 

r 

r-
and 

IDz = 1m2+! + 1m2_ I (2 .18) 

2.4.3. k = 3: Third r.toments. 

The third moment is used to describe the asymmetry or skewness 

of the distribution for v. A useful formula is the third moment defined 

about the mean value, m1. Thus, 

(2 .19) 

and a skewness factor e1 is defined as 

(2.20) 

A single-peaked distribution with e
1 

< 0 is said to be skewed to 

the left or has a left 'tail' and with e1 > 0, it is skewed to the right. 

If e1 = 0, the distribution is symmetrical. The algorithm for m
3 

is now 

derived. From equation (2.14), fork= 3, 
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n-1 2 
m3+ = ~3 [ L C ( 24r + 2 )] 

C n r=l r 8 
(2 .21) 

0 r+ 

If the input signal is of low level such that only a few of the 

available n levels are utilised then the errors in the time averages 

become excessive. It is therefore expected that a scaler is included at 

the input so that all n levels are used. In this case 3i » ~ and 

equation (2.21) may be further simplified to 

(2.22a) 

Similarly 
n-1 

: ~ L 3r
2c 

C n r=l r 
(2.22b) 

0 r-
and 

(2. 23) 

2.4.4. k = 4: Fourth ~foment. 

The fourth moment (m4) is used to describe the peakedness of a 

distribution. Thus the fouTth moment about the mean (JJ
4

) is used to 

define the coefficient of kurtosis (8
2
), ~here 

(2. 24) 

and 

{2.25) 



and 

Using equation (2.14), one obtains 

1 n-1 4 4 
m

4
+ = --...,.. ( I C { (2r + 1) - (2r - 1) }] 

C
0 

(2n) 4 r= 1 r 
r+ 

n-1 
= ~ [ r c (4r

3 
+ r)] 

C n r=l r 
0 r+ 

3 Assuming that scaling is used, then 4r >>r and 

r-

19 

(2 .26) 

(2. 27) 

(2. 28a) 

(2.28b) 

(2.29) 

A general expression for IT''k+ can be deduced from equations (2 .!Sa), 

(2.17a), (2.22a) and (2.28a). Thus 

. 1 n-l (k 1) 
m. = - r k r - c (2. 30) 

K+ C k 1 r n r= 
0 

A similar expression holds for mk-· Furthermore, 

The expressions (2.30) and (2.31) are used for the moments analysis in 

the special purpose computer. 
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2. 5 The l'leig_hted Feed Concept 

Consider the general moments equation (2.30). For each sample 

th k-1 exceeding the r level it is necessary to compute kr and add this 

quantity to an accumulator. The evaluation of krk-l requires k 

multiplications, except for k = 1 when no multiplication is necessary. 

Furthermore, such an implementation of equation (2.30) would, also 

require either level selectors (so that r can be varied) or n comparators 

with preset references corresponding to the n levels. The design of a 

computer based on such a method is extremely wasteful of hardware and 

the time of processing would be excessive. An alternative is to use 

weightings for each level which would allow use of a single comparator 

and which considers all the available levels simultaneously at a sampling 

instant. Thus consider sar~ling of the input signal, at the rth level 

shown in Fig. (2 .2 (b)). If a sample occurs while the input exceeds the 

rth level, then all the levels from 0 to (r-1) are also exceeded. Thus 

this sample contributes to cl, c2, • , Cr. The total contribution to 

mk+' due to a sample exceeding the rth level, therefore is given by 

r 

l 
q=l 

w = k,r 
k-1 k q (2.32) 

W is termed the weighting number for the kth moment and rth k,r 

level. Thus it cm1 be seen that computation of mk+ or~- is an 

accumulation process in which, given the information of r the highest 

level exceeded at the sampling instant, a corresponding weighting number 

Wk is added to the accumulator. ,r 

The weighting numbers of equation (2. 32) can be realised either 

by a combination logic system i.e., simultaneous multipliers or by gen~ral 
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purpose polynomial evaluators. Both these methods are considered in this 

thesis (Chapters 3 and 6). If k is even then the same logic is used in 

conjunction with a single accumulator (see equations (2.18) and (2.29). 

If k is odd then the output of the weighted feed logic system is gated 

to either a positive accumulator or a negative accumulator, by the 

predetermined sign bit. 

The weighting numbers for the first four moments may be 

deduced from equation (2.32). Thus, 

W = r 1, r 

w2 = r(r + 1) ,r 
(2. 33) 

W = !_(r + 1)(2r + 1) 
3,r 2 

and 

Division by C
0 

in equation (2.30) is a trivial operation and can 

be implemented if required. The only operation remaining is, therefore, 

d . . . b k 
lVlSlon y n • The size of the accumulator for the k th moment and 

.t-bit quantisation (i.e •• 21=n), is tk bits. For such an accumulator, 

a carry out or overfl0\'1 occurs \>lhen the accumulated total exceeds or just 

R.k k equals 2 (i.e •• n ) . Thus the overfloN represents the contribution 

to mkco at a sampling instant. Inputs at a sampling instant, to the 

binary adder of the accumulator, are the weighting number and the remainder 

of the division by nk of the accumulated number. Complete design of such 

accumulators is considered in Chapter 4. 
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2.6 General Description of the S.P.C. 

A schematic diagram of the special purpose computer for the 

measurement of moments is shown in Fig. (2. 3). A scaler is included for 

precision amplification or attenuation so that the full range of the a.d. 

converter (i.e. all available levels) is utilised. The sign of the 

input voltage v is detected at the input and is required in the computation 

of odd-order moments. Since only the magnitude of r, the highest level 

exceeded, is required for the determination of the weighting numbers, a 

precision rectifier with low distortion is used. The sampling rate of 

the a.d. converter is controlled by a master clock system. 

The level r information determined by the a.d. converter, is used 

as an address input to the weighted feed logic (W.F.L.) unit which 

determines the \\"eighting number for each moment. For k odd, the output 

of the corresponding W. F. L. unit is gated by the sign bit to either the 

positive or the negative accumulator. For k even, the outputs of the 

W.F.L. unit feed directly to an accumulator. The overflows from these 

accumulators represent the contribution to ~C0 and are used to gate a 

delayed clock pulse (or the a.d. done pulse usually produced by an a.d. 

converter) to display registers. Clearly, since computation of mkCo is 

a simple counting process, it can be performed in any code. 

For odd-numbered moments, the sign information is used to control 

the com1t direction of up-down counters. For even numbered moments, the 

sign information is redundant and only unidirectional counters are 

required. The master clock also feeds to a counter for C
0 

display. 

Control circuits·are required to change the sampling rate, provide 

start and stop facilities and also change the mode of operation by which 



In 
Volt 

~· 
put 
age v 

'' 
Scaler 

v 
Rectifier 

Lev 
Sele 

t 

I A.D. 
j Converter 

8. 
I 

l\1aster 
Clock 
System 

el R 
ctor -

- Sign 
-... Detector 

A 

l 
To C0 Readout 

~A 
Digital 

Comparator 

Sign 

::;1;1 gn 
Accumulators 

- ml+ ... -... 
- ml-.... 

, 
Weighted ... u ... m2 Feed 

Logic -- Unit 

~ mJ+ 
r--

4> mJ-

,.tt"a, d. 
A~R Done ... m4 I Pulse --

Logic 

Selection P4 
Gates. p Readout r 

Display 

Sign 
,; 

l~ ml 

r Readout 

-- m2 

' 
,. 

I Readout 1 

l'f Sign 

L. m3 I 
r I Readout I 

- m4 . 
Readout 

Master-----., 
Clock -... Pulses Co 

Readout 

Figure 2.Js Block diagram of the S.P.c. for measurement of moments. 
IV 
~ 



24 

the s.p.c. can be used as an above level probability analyser. 

2.7 Above Level Probability Measurements 

Above level probabilities can be measured by comparing the output 

of the a.d. converter to a reference level R selected externally by 

means of a level selector switch. The reference level information is 

required in a binary code so that the difficulties of precision reference 

levels setting are eliminated. In Fig. 2.3, referring to the probability 

section of the circuit, the A inputs are the a.d. conve·rter bits for a 

sample and the R inputs are the binary bits of the reference level. 

When A ~ R, the digital comparator switches to the logic state 1. This, 

together with the sign bit is used to gate the clock to the output 

counter. For a sample size c o' the counter reading C 
C r 

represents the time 

for which the input exceeds the rth 1 , . r is the approximate eve.1. 1.e., C 
0 

above level amplitude probability. Use of the sign bit allows measure-

ments to be made on either side of the zero level. If a second level 

selector is used to produce the reference (R + 1) for a second comparator, 

then the output of the latter can be used to inhibit the Cr counter. In 

this way, the probability that the input signal is within a quantisation 

interval above the Rth level may also be deternuned. 

2.8 Hardware Details 

The individual units of the special purpose computer of Fig. (2 .3) 

are implemented using currently available lTL integrated logic. circuits, 

which have a logic 0 state at 0 v and a logic 1 state at +3v. The a.d. 

28 convc1·ter used is an S-·bi t successive approximation type Precision 



rectification is perfonned using high slew-rate operational amplifiers. 

Design and implementation of these units are considered in the next two 

chapters. 
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CHAPTER III 

DESIGN OF THE WEIGHTED FEED LOGIC 

3.1 Introduction 

The concept of weighted feed logic for use in the computation of 

the first four moments has been introduced in Chapter II. The weighting 

numbers to be used for each sample, can be realised either by general 

purpose binary multipliers or by binary polynomial evaluators. Both 

these methods are difficult to implement with available logic circuits. 

Furthermore conventional multipliers29 tend to be slow for real time 

applications. In vie\'r' of these limitations, the use of simultaneous 

multipliers, to be implemented tdth combinational logic modules, was 

investigated. The design and implementation of such multipliers are 

considered in this chapter. 

The weighted feed logic concept is analysed in detail and 

recognised as a problem in multiple output combinational logic design. 

To minimise cost and improve the reliability of the system it is 

necessary to minimise the number of logic gates required. ~linimisation 

using a computer-aided approach has been investigated and the various 

programs used for this purpose are described in this chapter. An overall 

design of the weighted feed logic for a 6-bit a.d. conversion in terms of 

circuit requirements is also considered. 

26 



3.2 Analysis of the \'ieighted Feed Concept 

It has been sho\m in Chapter II, Section (2. 5). that for the 

.computation of the kth moment, each sample has to be weighted by the 

weighting number \Ilk given by ,r 

r 

wk = L 
'
r q=l 

k-1 k q (3.1) 

27 

where the highest level exceeded by the sample is r. The expressions for 

the weighting numbers for the four momcnts were also derived. These are, 

w l,r = r 

lV2 = r(r + 1) ,r 
(3.2) 

w = r(r + 1)(2r + 1) 
3,r 2 

w = 2 1)2 
4,r r (r + 

The range of r is finite and is determined by the a.d. converter 

used. Thus for a six bit a.d. converter, the highest number of bits 

required for the weighting numbers is for w4 and equals 24, as can be ,r 

seen from equation (3.2). 

12 Cheney has suggested use of the residue number system in cases 

where the range of numbers is rest:ricted. Hm:ever, this approach requires 

special coding and decoding circuits, which would complicate the design 

of the special purpose computer. The conventional shift and add multiply­

ing technique
29

, on the other hand, is simple to implement but requires 

considerable processing time, a factor which limits its use in systems 

where z·eal time applications are important. The remaining possibility is 
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the use of special simultr<neous multipliers where each bit of the product 

is realised with an AND/OR logic configuration. Thus consider a simple 

design for w
2 

where r is restricted to three bits (i.e., r "" 7). ,r max 

The weighting numbers and their binary eqaivalcnts are shmm in Table 3.1. 

Each output line of this table can be \Hit. ten as a Boolean expression. 

Thus, consider the output line ZA. This line is in logic state 1 when ,, 

r = 3, 5, 6 and "7. Thus the sum of products type Boolean expression 

for z4 may be derived as shown, 

24 - I (3, 5, 6 , 7) (3. 3) 

24 - abc + abc + abc -} abc 

This may be simplified to 

z4 -- ab + ac + be (3.4) 

\vhere a, h and c n~p:ces0nt the three bits of t!le level information r. 

The l(Jgic miuimisa.tion for a single output line can be carried 

' 30 out using \'lOll know:n rules of Boolean algeora (as in equation (3 .4)), 

the Karnaugh maps
31 

or by iterative techniqucs 32 , 33 • However, th~se 

methods do not take into account the possibility of a logic product 

term (i.e., a minterm) being shared by two or more output lines. Thus, 

referring to Tabl c 3.1, it is seen that. the minterm ab is also required 

in the output line z6 as well as in z
4 

and therefore need not be 

reproduced for z6. Such sha.red minterr'.s can be ea.sily recognised for 

simple system;; bv.t for systems with a lar1~0 number of cutputs this is 

seldom the case and a sys ternatic minimisation pr~.;cedurc! is called for, 

which takes into account all of the outputs of the system. 



BinJ.ry 
r Equivalent 

r 

0 0 0 0 

1 0 0 l 

2 0 1 0 

3 0 1 1 

4 1 0 0 

5 1 0 1 

6 1 1 0 

,..........,----·--------------·---
W _

1 
____ Bin_a~_Equivalent of w2,r 

2,r - z Z Z Z Z Z ~7 6 5 4 3 2 1 
-------· - ~ -·-· ·- ----

0 0 0 0 0 0 0 0 

2 0 0 0 0 0 1 0 

6 0 0 0 0 1 1 0 

12 I 0 0 0 1 1 0 0 

20 0 0 1 0 1 0 0 

30 0 0 J. 1 1 1 0 

42 0 1 0 1 0 1 0 

_!_ __ ...1.. __ 1_1_ 1 __ ..___56 L__.=_j_1_....__1 _ _.__1 __ _,__,_o_ 0 0 

Table 3.1: The Input/Output table for design of 

t¥
2 

with r = 7. ,r max 
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Input 

a b 

0 0 

0 0 

0 1 

0 1 

1 0 

1 0 

1 1 

1 1 

Table 3.2: 

a 
b 

c 

Fig. 3 .• 1: 

c 

0 

1 

0 

1 

0 

1 

0 

1 

Output 

z6 zs z4 ., z2 zl L.3 

0 0 0 0 0 0 

0 0 0 0 1 0 

0 0 0 1 1 0 

0 0 1 1 0 0 

0 1 0 1 0 0 

0 1 1 1 1 0 

1 0 1 0 1 0 

1 1 1 0 0 0 

Input/Output representation for w2 • ,r 

""' - -> ... 
, ... {::> ,. 

!> -... ::> 
~,..... 

Multiple Input-~;fultiple Output logic unit for W..., • .. ,r 
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Table 3.1 may be reorganised as shown in Table 3.2 and the logic 

system is represented as shown in Fig. (3.1). The reorganised table is 

a standard multiple output-multiple input logic truth table. Truth 

tables similar to Table 3.2 are produced for r = 63 and for each max 

weighting number expression of equation (3.2), except fork= 1 where 

no multiplication is required. An a.d. converter with 6-bit conversion 

has been assumed. The truth tables are produced using a tabulating 

program whose flO\" chart is shown in Fig. (3. 2). Thus each output line 

of the weighted feed logic is available in the sum of products form of 

the type of equation (3.3). 

The logic minimisation technique considered in the next section 

has been developed for a general multiple output-multiple input problem. 

3. 3 Multiple Output-~:ul tiple ~ut Logic ~1inimisation 

~Iinimised logic design at present and in particular reference to 

special purpose computer design, is required for economy and reliability. 

The development of LSI functions and microminiaturised circuits will, 

ho\"ever, reduce the importance of the cost factor and therefore the 

need for absolute minimisation. However it will still be necessary to 

eliminate redundancies, in order to produce a reliable logic system. 

The minimisation technique developeo in this section does not produce 

an absolute minimum ans\ver but one in which a near minimum solution is 

obtained without requiring excessive computer time. A three-output 

system is used as an example. 
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NO 

Print all 
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K = 0 

K = K + 1 

I= 0 

I = I + 1 

Find if for t e 
input) the output 

NO 

Store value of I in 
line K. 

NO 

NO 

0s 
F~gu::_e ).2: Contd. 
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NO 

Print all 
output line 
expressions. 

STOP. 

Figure ).2: Contd. 
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3.3.1. Multiple Output Prime Implicants (~OPI) 34 

Each output z
1

, ..• , Zn of the combinational logic system is 

expressed as a logical sum of several products (minterms), the number 

35 

of input variables being specified. A sum of products type representation 

usually implies a realisation with AND/OR logic. The first step in a 

minimisation process is to generate prime implicants from the given set of 

output functions. This is usually a simple process for a single output 

system with up to four or five input variables. However, the standard 

tabulation method32 becomes extremely tedious when the logic system has 

a large number of outputs with more than five logic variables and where 

the multiple output prime implicants are to be generated. 

The multiple output prime implicant (MOPI) has been defined by 

Bartee35• In this definition use is made of E terms which are obtained 

from the output functions. An E term consists of a V-section which is 

comprised of the logic variables and their complements and a book-keeping 

or KP-section which denotes the output lines. Thus a minterm abcdf used 

in the output lines z1, z3 and z5 has an E term given by abcdfz
1
z

2
z

3
z

4
z

5 

or by 011120,20202 in the notation adopted in the program. 

Two basic operations which are used in the MOPI-program are now 

defined. 

(i) Consensus: If two minterrns X and Y contain only a variable \"hich is 

complemented in one and not in the other, then the consensus is the minterrn 

formed by the product of X and Y omitting the opposed variable e.g., 

then the consensus exists and is given by 

C = ab - - de Z Z Z 1 2 3 
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A minterm X subsUJnes another minterm Y if all the 

1i tcrals in Y are also in X. Thus X "" abc subsumes Y :; ab. In a 

multiple output system, the KP-·section of X must be completely included 

in the KP-scction of Y if X is to subsurru:.: Y. 

The MOPI is an E term formed fxora the original output functions 

or by repeated consenslJ.S operation. The l'viOPI is such th~.t its V-section 

subsumes no shorter V-·scction of another E term having the same KP-

section or a KP-section with fewer outputs. It has been shown by 

Bartee
35 

that the Quine-f.Jcluskf:y iteJ·ativc consensus method may be l.l.secl 

to generate the MOPI. This method is at~.opted in the program with a flow 

chart shown in Fig. 3. 3. 

The ~:OPI program requires as input data, the output func.tions 

z1 , z2 , etc. expressed as a row of minterms, in their decimal equivalent. 

It j s to be noted tJ,.c-.t the tabulating p:rogram _of rig. 3. 2 produces the 

output lines for the W.F.L. tmit in this form and therefore these may 

be used directly for MOPI gencrJ.tion. 

A typical example to illustrate the MOPI generation is given. 

3.3.2. Example 

zi .. 1 6, 7, 9, 11, 14, 15 .... 

z2 = 4, 5, 6, 7, 10, 12, 13, 14. 15 

zs -· lJ 4, S, 9 • 10, 11, 12, 13s 14, 15 

The MOP! obtained bv 
" 

the program a.:re given in Table 3.3 on 

page 41. 
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Initialise. 

a) Dimension statements 
b) Read in M, the number 

of output functions. 

, 
Clear all arrays 

being used. 

,. 
Read given data. 

(FORMAT 64I2) 

'!t -
For each decimal 
number 0 to NUM1, 

form the KP section. 

,, 
Convert decimal 

numbers 0 to NUM1 
to their binary 
equivalent. 

,, 
2 

Figure J.Jc Flow-chart procedure for MOPI generation. 



Remove those terras 
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any output functions. 
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----------------------~A 
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consensus terms from 
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consensus 
operation. 

Print 
warning. 

STOP 



Remove those E terms 
in which no outputs 

are involved. No. of E 
terms is NC5A = L3MAX1 

If only one term remain 
then L3MAX1 = 1 
and also NP = 1 

YES 

heck terms from previou 
et of E terms, which are 
not subsumed by the new 
set. These are MOPI. 

Punch c~~ds] 
for MOPI. 

39 

The entire 
previous set 

is MOPI. 

STOP 



NO 

remaining 
term as 

MOPI. 

for MOPI. 

Figure 3.3: Contd. 
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YES 

STOP 
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V-section KP-section 

2122 020 

2122 220 

2102 022 

2201 002 

1122 022 

1212 002 

1221 002 

1021 202 

2001 202 

1112 222 

1211 202 

1210 022 

Table 3.3: HOPI for example of Section 3.3.2. 
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The MOPI program considers up to twelve outputs at a time, this 

limit being placed in order to operate the program within permissible 

computing facilities. 

3. 3. 3. Logic Minimisation 

The problem of logic minimisation has been treated by many 

th 36,37,38 au ors . The more commonly used methods are the Karnaugh maps 

and the tabulation techniques referred to earlier. Several reduction 

. 37 38 algorithms have also been described recently in the l1terature ' • 

These methods generally aim at an absolute minimum solution and there-

fore require considerable computational effort. However the hardware 

cost saved by using an absolute minimum solution, instead of a near-

minimum solution is often trivial compared to the computation cost. 

This is even more true because of the tremendous cost reductions of 

availa.ble integrated circuit logic modules. Thus., the minimisation 

technique should be such that a near minimum solution is obtained with 

the emphasis being on computation time. 

The minimisation technique developed uses the ~OPI obtained in 

the previous section. It separates the MOPI set into two subsets. The 

first consists of essential prime implicants, all of which must be used 

in the final answer. The second set contains dispensable minterms all 

of which are not required in the final a.,swer. Thus, in the near-

minimum solution, a minimum number of these dispensable terms are 

retained together with the first subset of essential min terms. 

I d t d 1 th . . ~ d. b . 1. 39 . d n or er o eve.op e cr1ter1on LOr 1spensa 1 1ty , cons1 er 

the case of a single output network. The output g may be written as a 

logical sum of the prime implicants. Thus 



i.e., 
n 

g = u Qi 
i=l 

(3.4) 

When a minterm Qj implies another minterm ~, the following 

two identities result. 

(3.5) 

and 

Q. • Qo = Q. 
J '<.. J 

(3.6) 

This result can 

be extended to a general set of prime irnplicants as follows: 

n 
If Q. ~ U Q. 

J i=l 1 

i#j 

prime implicant, since 

n 
Q. + u Q. 

J i=l 1 

i#j 

n 
= u 
i=l 
i#j 

then Q. is a redundant or dispensable 
J 

Q. 
1 

To check if a prime implicant is redundant, the concept of 

Boolean ratios is introduced. For this purpose, equation (3.7) is 

divided by Q. • Thus 
J 

n Q. 
u 2.. 

i=l Qj 
i~j 

n Q. 
= 1 + u 1 

i=l Qj 
if.j 

(3.7) 

(3.8) 

Since if A = A + 1 then A = 1, one obtains from equation ·(3.8) 

that n Q. 
u .2.. = 1 

i=l Qj 
i;lj 

(3.9) 

43 
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Equation (3. 9) is the necessary condition for redundancy of Qj. 

The Boolean ratio used here is quite different from the normal arithmetic 

ratios and should be considered further. Consider as an 

system with two prime implicants only, in which case the 

needs to be analysed. If all the literals in Q1 are set to logic 1, 

then the ratio a.l is given by Q2 • 

Examples: 

abc - since b 1 Cll = b = ac = 

abc 
0 since if e = 1, - 0 (12 = -- = c -c 

a 
1 since a= b 1 (13 = abc = = c = 

Obviously the ratio a. can also be obtained by forming the 
Q. 1 

logical conjunction of Q~ and suppressing Qe in it. The dispensability 

criterion may now be restated. 
Q. 

1 If ai denotes the Boolean ratio --Q. then the prime implicant Q. 
J J 

is redundant if the logical sum of all the ratios a. (i = 1,2, •.. n, i ~ j) 
1 

is valid. Standard rules of Boolean Algebra are used to check this 

validity. 

Essential prime implicants are those minterms for which the 

logical sum of the Boolean ratios can not be valid by any combination 

of the ratios. Such essential prime implica11ts must all be present in 

the final ansuer for the logic system. 

Prime implicants for which the logical sum of the ratios is 

valid are dispensable terms. If the ratios which cause this validity 

involve only the essential prime implicants, then the dispensable prin:e 
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implicant is completely redundant or absolutely dispensable and need not 

be considered any further in the analysis. If the dispensability is due 

to ratios which involve essential prime implicants .and absolutely 

dispensable prime implicants, then again that pri:ae implicant is 

absolutely dispensable. These absolutely dispensable prime implicants 

are removed from the original list and only the ~aining dispensable 

terms need to be analysed further. The minimisation procedure is now 

outlined in the Fig. (3.4). The remaining analysis is, therefore, 

applied to the dispensable terms only. 

It has been shown that for a dispensable prime implicant the 

logical sum of its Boolean ratios is valid (see £qn. 3.9). This validity 

can occur due to the logical sum of some of the r~tios being valid 

(since A+l = 1). Furthermore several combinatiois of these ratios can 

cause this validity. These combinations can be represented by presence 

factors. Thus if a prime implicant Qj 

Qn Qe 
sum of -Q· and -Q· and also due to the 

J J 

is dispens.able due to the logical 

. Qm ~ ~ logJ.cal sum of q:- , Q. and Q. 
J J J 

say, then the presence factors for QJ· are o., a Om and a a a . These 
J n ~ m p q 

factors imply that in a logical expression involving Qj, either ~ Ql 

or Q 0 Q may be used. The presence fw1ction (S.) is defined as 
m 'P q J 

S. = (a. +a au+ a a a) 
J J n~ mpq (3.10) 

Use of these presence functions may be understood from the follm·ling 

example. 



Given set of 
Prime Implicants. 

Apply Boolean Ratio 
Criterion to each. 

Essential 
Prime Implicants. 

Dispensable 
Prime Implicants. 

f 
Part1.ally 
Dispensable 

Terms. 

Retain the minimum set 
from this to guarantee 
dispensability of all 
other Prime Implicants. 

The two sets combine to 
give the minimum 

solution. 

~-------------------·------·--~ 

Absolutely 
Dispensable 

Terms. 

g_.tg~1r.e.J.4: Outline of the general minimisation 
procedure. 
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3.3.4. Example 

To minimise F = XY + XY + XZ + YZ + WZ 

i.e. F = Ql + Q2 + Q3 + Q4 + Qs 

The Boolean ratio test gives Q1, Q2 and Q5 as essential 

implicants. Q3 and ~ are dispensable with their presence functions 

being, 

for F. 

· The system presence function (Ss) is given by 

Ss = (ala2aS)(cr3 + a2a4)(a4 + a1a3) 

F . = XY + xY + xz + wz 
nun 

or F . = XY + XY + yz + WZ. m1n 

3.3.5. Further Analysis of Dispensable ~linterms 

In the example of section 3.3.4., the dispensabilities are due 

to combinations of t\.;o min terms only. This is not usually the case, 

especially for large numbers of prime implicants, where some of the 

47 

combinations causing a validity involve many mintenns. In these cases, 
. 

the problem of choosing an irredundant solution tends to be very time 

consuming. A near minimum solution obtained within a small computation 

time is usually quite adequzte in such cases. For example when a prime 
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implicant is made dispensable by a combination of a large number of 

prime implicants then the dispensability is a weak one and it would be 

sufficient to treat the prime implicant as an essential term. Thus 

in a- practical minimisation approach, for each dispensable prime implicant, 

all the combinations of prime implicants which cause the dispensability 

are found. A restriction is placed on the maximum number of prime 

implit:ants in each combination. If in each combination, the number of 

terms involved exceeds this limit, then the dispensable prime implicant 

is treated as a.'l essential prime implicant. 

·The dispensabilities are converted into presence factors. 

Presence factors which involve the least number of other dispensable 

prime implic.ants are retained, The process is repeated for all the 

other dispensable prime implicants. The final presence function 

calculated from these presence factors will consist of 

(a) all essential prime implicants 

(b) a minimum or near minimum number of dispensable prime 

implicants required in addition to (a), to completely 

define the original problem. 

The example of the previous section illustrates the use of (a) 

and (b). 

The general concept of dispensable prime implicants is now 

extended to MOPI minimisation. 

3. 3.6 •. MOP! Minimisation 

The mul tipl~ output prime implicants of the logic system to be 

minimised are generated by the progr<>.m of section 3. 3 .l Logic minimisation 
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of large systems can be carried out by subdividing the system into 

smaller subsystems a~d applying the minimisation technique to each. 

The minimisation technique discussed here can handle systems with six 

logic variables and twelve outputs. 

The dispensability criterion can be extended to the ~DPI terms. 

A ~DPI ¢.consists of a V section, V. and a KP-section ~ .• The output 
J J J 

vector [F] may be written as 

n 
[F] = u v. r;. 

i=l ~ ~ 
(3.11) 

The MOPI ¢ j can be dispensable if and only if its V-section V j 

implies the logical sum of the V-sections of all the 1-DPI whose ~ 

section (i.e., KP section) includes at least 

to stating that the Boolean ratio for a l·10PI 

r; •• This is equivalent 
J y. 

can be defined as V ~ if 
J 

~; includes at least~., i.e., if both V. and V. are used together in 
... J ~ J 

any output line. The dispensability criterion of equation (3.9) may 

now be generalised to include the MOPI. Thus, if 

n v. 
u 1 1 (3.12) y-8· = 

. 1 
i=l J 
i#j 

where s. = 1 if ~i includes ~. 
1 J 

= 0 otherwise 

then ~- is a dispensable NOPI. 
J 

For each MOPI, the dispensability criterion of equation (3.12) is 

applied and the given HOPI set is subdivided into essential ~lOP I and 

dispensable f.fOPI. Absolutely dispensable terms as defined earlier are 

removed entirely from the set. The remaining dispensable pririte implicants 
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are now considered for further analysis. 

The flow chart for a minimisation program using the dispensability 

criterion is shown in Fig. (3.5). The given MOPI set is rearranged so 

that the output involving the least number of l>DPI can be considered 

first. The set is subdivided into an essential subset and dispensable 

subset, using the dispensability criterion of equation (3.12). The 

absolutely dispensable terms are removed from the set of dispensable 

prime implicants. 

For each remaining ~:DPI a weighting factor w. is defined which 
1 

denotes the number of times the MOP! is used in the unminimised logic 

system. For each output line starting with the one with the least 

number of prime implicants, minimisation is carried out as outlined in 

section 3.~, using the presence functions. If several minimum solutions 

result, then all these are retained tmtil all other outputs have been 

minimised. 

Based on the new set of solutions, the weighting factors are 

re-evaluated. For each output line the solution with the highest sum 

of the weighting factors is retained. The procedure is repeated for 

all the output lines. At this stage each output may again have more 

than one solution. The weighting factors for the ~DPI are therefore 

re-evaluated. 

A final step in minimisation is now carried out. If a lvOPI 

has a weighting factor wi=l then tests are made to check if it can be 

replaced by two· or more prime implicants used elsewhere in the system. 

For example, a MOPI BC Hi th w. =1 can be replaced by BCD and BCD both of 
1 

which are used in other output lines. I:n this way, all the HOPI with a 



A ratio cannot 
be formed. 

Read in the given set 
of MOPI, total number =n 

Rearrange the KP section 
according to number of 

terms in each output 
lin et I = 0 

I = I + 1 

J = J + I 

YES 

Check the KPj and KPi for 

forming a Boolean _ratio. 

NO 

Figure ).5: Flow-chart representation for MOPI 
• • • ..l • 

m~n~m~sa ~J.on. 
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To B 

NO 
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NO 

Form the Boolean ratio 

Check combinations of 
Boolean ratios, upto four 
terms in each combination., 

The rth prime 
implicant is dispensable. 

From the dispensable MOPI 
remove the absolutely 
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i. 
The rth prime 

implicant is essenti~l 

To A 

NO 

YES 



NO 

NO 

To C 

Calculate the weighting 
.factor \'li for each 

remainin MOPI. 

For each output line, 
minimise using 

resence functions. 

Store all minimt~ 
answers. 

Re-evaluate the weighting 
factors Vli. 

Attempt elimination of 
a MOPI with Wi = 1 
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NO 

Re-evaluate the weighting 
factors l'li 

For each output line, 
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minilllum solution. 

Print minimum 
solution for 
all outputs. 

STOP. 

Figure J.5: Contd. ---------
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weighting factor of unity are removed if possible and the weighting 

factors re-evaluated. For each output line the solution with the highest 

sum of the weighting factors is retained as the best minimised solution. 

3.3.7. Example 

The MOP! determined in section 3.3.2. were minimised using the 

program of the previous section. The results are 

zl = be • Gcd • acd 

z2 = be • be • acd 

z3 = acd + aca • be • fied 

3.4 Minimised Design of the W.F.L. Unit 

The weighted feed logic for the three hif;her moments (k=2,3,4) 

requires 1?., 18 and 24 output lines respectively for six bit level 

inputs. Therefore, it is necessary to subdivide the l~.F.L. units for 

the third and fourth moments into t1"o subsystems e.ach. The logic 

minimisation for the W.F.L. unit, requires five ~IOPl and five minimisa­

tion program runs. The results of the five minimisation programs are 

combined together to form a listing of all the pri:~<e implicants 

required. In this listing procedure, a number is assigned to each prime 

implicant. The output lines where a prime implicant is used are also 

indicated. The prime implicants list is used to design the NAND/NA.:'-40 

logic configuration for each output line and also to evaluate the 

loading requirement for each MOPI and the input information a, b, c, d, 

e and f. · 



TYPE OF IC MOPI 
K PACKAGE. MINIMISATION. 

2 I/P NAND(4) 

J I/P NAND(J) 

2 4 I/P NAND(2) 

8 I/P NAND(1) 

Inverters (6) 

NUMBER OF PACKAGES 
FOR 12 OUTPUT LINES. 

2 I/P NAND(4) 

.3 I/P NAND(3) 

3 4 I/P NAND{2) 

8 I/P NAND(1) 

Inverters ( 6) 
' 

NUMBER OF PACKAGES 
FOR 18 OUTPUT LINES. 

2 I/P NAND(4) 

3 I/P NAND(3) 

4 4 I/P NAND(2) 

8 I/P NAND(1) 

Inverters ( 6} 

NUMBER OF PACKAGES 
FOR 24 OUTPUT LINES, 

2 

7 

29 

46 

2 

86 

1 

3 

40 

97 

4 

125 

0 

2 

10 

85 

5 

102 

TOTAL PACKAGE REQUIREMENT 
313 FOR W.F.IJ. UNIT. 

MAP 
MINIMISATION. 

2 

7 

.3.3 

46 

2 

·- 90 

1 

5 

55 

121 

.3 

- 185 

1 

3 

.35 

214 

5 

258 

533 

~---------------------~---------·---------------
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NOTE: .Ntunb~r of gates in each package is given in brackets. 

Ta21e_1!1= I.ogic requirements f'or WeF.L. unit. 
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Integrated circuit module requirements for the minimised \'v' .F .L. 

unit arc given in Table 3.3. Results are compared with the module 

requirements obtained by mininusation of each output line using a six-

variable Karnaugh map. It is evident that considerable economy has been 

achieved. A typical output line implemented with NAND/NAND logic is 

sho\~n in Fig. (3.6). 

3.5 Some Comments on Logic ~linimisation 

Experience with the logic minimisation programs described has 

shown that absolute minimisation usually requires long computer runs. 

In such cases, the saving in component costs is often out\o:eighed by the 

cost of computer tiffie m1d effort. Any minimisation process, therefore, 

must take this factor into account. There will certainly be.systerns 

where the direct logic realisation of the outputs in terms of all 

possible minterms may prove more economical. For a six input system, 

sixty-four minterms need to be realised. If in such a system, the 

number of outputs is considerably greater than 64 and if the outputs 

are not well ordered* logical sum of the minterms then the direct 

realisation should also be investigated. For the weighted feed logic 

Wiits, direct realisation was discarded since it required a large 

number of buffer gates thereby increasing the I .C. package requirements. 

*A well ordered function is one for which all the minterms 
combine to give a minimum answer of the type (A 0 B) + (C G D) + - -



CHAPTER IV 

DESIGN OF TilE SPECIAL PURPOSE COMPIITER 

4.1 Introduction 

The design of the various units of the special purpose computer 

are considered in detail in this chapter. A precision rectifier is used 

at the input of the system so that a single a.d. converter is needed for 

both positive and negative inputs. It is shown that use of one-step 

parallel binary adders in circulating registe1·s simplifies the timing 

requirements and also achieves the division by nk required in the 

equations for the kth moment. 

The evaluation of standard deviation (o=v;;;:;;) is also 

investigated. Since computa'tion of all the moments is continuous, the 

evaluation of o should also, preferably, be continuous with the final 

result available soon after the computation of the moments is 

terminated. A technique for such a computation of o is also described. 

The circuit for measurement of o is capable of follo\l!ing fluctuating 

nun~bers and furthermore the standard d~viation can be available in any 

code. 

A general description of the special purpose computer has already 

been given in Chapter II and a schematic diagram of an imp!~mentation 

was also presented. In this chapter, the individual units are considered 

and their design and op•:!ration are described. 
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4.2 Rectification 

Implementation of n-level quantisation on either side of the 

zero level has the disadvantage of requiring separate weighted feed 

logic units to obtain the weighting factors for positive and negative 

inputs. Furthermore the logic required in these units is complicated 

by the need to code negative levels for l's or 2's complement arithmetic. 

A possible alternative investigated, is the use of levels on 

one side of zero level only and shift the input by adding a d. c. voltage 
vn 
~ This possibility was discarded because of the following disadvantages. 

(i) For a six-bit a.d. converter, one has effectively only five-

bit quantisation when the input is shifted by adding the d. c. voltage. 

Thus, although the entire s.p.c. is designed for six-bit quantisation, 

the accuracy obtained is that of a five-bit s.p.c. 

(ii) For a fixed upper voltage (+10'1), the quantisation intervals 

are halved in voltage range and hence the errors due to level offsets 

will be increased. 

(iii) All the final readings for .ITK)ments. must be corrected for 

the d.c. voltage added to the input. This can be done in the weighted 

feed logic by assigning ne:gati ve weights to samples below the half level 

value, again complicating the design of the l'I.F~L. units considerably. 

If however, the l'i.F.L. units discussed in Chapter III are used, then the 

special purpose computer is no longer a direct reading system. 

Rectification is, therefore, preferred. A precision rectifier40, 

consisting of two high slew-rate operational amplifiers (2SOV/~sec) and 

stable precision resistors, is used. The rectifier circuit is shown in 

Fig. (4.1) 



20K 

1 OO.fl. 
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20K 

500.0. 

500..Jt. 

lOK 20K 

Output 

A1 , A2 are high slew-rate Op. 
amps. 

are low capacitance 
diodes. 

D 1-----~-- + 

r---1 ClOCK~-----> -

clear 

A.D. 
Start 

':" C = L!'11311 Comparator. 
R1 is adjusted for 25 mv. 

hysteresis. 

Figure 4.1: Rectifier and Sign detection circuit. 



When the input (V. ) to the rectifier is negative, the voltage 
ln 

V
01 

is essentially zero and the second operational amplifier acts as an 

inverting amplifier with tmi ty gain and an output given by 

-V. 
lll 

(4.1) 
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When the input (Y. ) is positive, the diode Dl conducts making Y 1=-V. , 
1n o 1n 

since the gain of the first inverting amplifier is also tmity. The 

second amplifier nm'l acts as a summing and inverting amplifier with an 

output given by 

-Y. + 2Y. 
lll ln 

(4 .2) 

With the precision resistors selected to maintain the appropriate 

ratios accurately, the error and the distortion in the output caa be 

made very small. Thus the rectifier designed for the special purpose 

computer has a maximum error of 5 mV for the input in the range ±2SrnV 

to ±lOY. Distortion in the output is negligible for the frequency 

range D.C. to S kHz. The loss of 5 mV in the signal causes errors in 

the measured values of the moments. These errors are treated in 

Chapter V. 

The sign detection circuit is also sho\'ln in Fig. (4.1). The 

resistor R1 is adjusted to produce a hysteresis of about 25 mY in the 

switching characteristic of the comparator. This hysteresis is 

necessary in order to eliminate erratic swi t~ing of the comparator 

due to additive noise in the input signal. A D-type flip-flop, used 

to store the sign information at the beginning of each sampling operation, 

elimin<!tes the change of sign occurring during the sampling and 



63 

conversion process. 

4. 3 Analog-Digital Converter 

Ai1 8-bi t successive approximation a. d. converter with a bui 1 t-in 

~ 1 . d41 
re~erence supp y ~s use The converter circuit is shown in Fig. (4.2). 

Conversion is initiated by raising the convert input (i.e., a.d. start) 

to logic 1. The digital output bits for a sample are available at 

1 ~sec. rate, with the conversion completed within 8 ~sec. The maximum 

sampling rate is, therefore, limited to 100 kHz. Of the bits available 

after conversion,all eight are used in the computation of the first 

moment, whereas only six most significant bits are required in the 

computation of the higher moments. After the completion of an 8-bit 

conversion, an a.d. done pulse is produced by the converter as shown in 

the timing diagram of Fig. (4.3). The a.d. done Jl1.dsc is used in the 

accumulation for the various moments. The samples are taken on the 

-rectified signal. At the end of an a.d. conversion, therefore, the 

highest level exceeded information is available in magnitude and sign 

form. The highest level exceeded information is used as an address 

input to the W. F. L. units. For odd-order moments. the output lines of 

the corresponding W.F.L. units are gated by the si~1 bit to positive 

or negative accumulators. For the even-order moments, the sign bit 

information is redundant and is therefore not used. 

Control of the a.d. converter sampling rate is provided by 

the clock rate circuit. 
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4.4 Clock-rate Circuit 

A master clock is used in the clock rate circuit. The pulse 

rate of the master clock is fixed at 1 MHz and divide-by-ten TTL 

circuits are used to provide lm·1er rates down to 1 Hz. A two-input 

OR gate is provided in the master clock circuit for start and stop 

control, which in the case of the special purpose computer, is obtained 

from a timing control circuit. 

The complete clock rate circuit is shown in Fig. (4.4). Yne 

clock output is selected by a rotary switch. Since the a.d. converter 

start pulse must not exceed a \'lidth of 500 ns., a pulse shortening 

circuit is used at the output of the rotary Sl'dtch. The output of this 

circuit provides the a.d. start pulse for the a.d. converter. It also 

feeds an output counter which measures the total sample size and there-

fore the measurement time. 

4.5 Control Circuits 

Two control circuits are provided in the special purpose co~puter: 

(i) Mode control which allows the system to be used either for 

the measurement of the four moments or for the above level probability 

measurements (see section 4.8). 

(ii) Timing control l':hich enables the measurement to be made 

for one cycle of the input (if this is periodic) or for a predetermined 

sample size C . 
0 
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In the probability mode, the a.d. done pulse is transferred by 

a selection switch to the output gate of the probability measuring 

circuit and all the accumulators used in the computation of the moments 

are inhibited. The first moment counter and display is also used for 

the probability display. In the moments' mode, the a.d. done pulse is 

transferred to the gating circuits of the various accumulators. A sign 

selection switch used in the probability mode only, allows nJeasurements 

to be made on either side of the zero level. 

The s.p.c. can be operated either in the one cycle mode or in 

a fixed~sample-size mode in which the sample size is chosen externally 

and can be 103, 104 , 10S or 106. The timing control circuit is sho\'m 
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in Fig. (4.S). The sign detection comparator is used as a zero-crossing 

detector. Both the flip-flops are initially cleared in either timing 

mode. In the one cycle mode, the comparator output's negative going 

edge (6-transi tion) occurs at a zero crossing and triggers the first 

JK flip-flop. The Q1 output of this flip-flop goes to 0 and enables 

the sample-rate master clock. At the next e-transition which occurs 

precisely at the end of one cycle of input,Q1 goes to logic 1 and thereby 

inhibits the master clock, terminating the sampl~ng process. At tho 

same time Q1 triggers the second flip-flop whose Q2 output goes to logic 

0 which in turn inhibits the first flip-flop. The s.p.c. can be re-

started only after clearing the tl~o flip-flops. 

In the fixed-sample··size or the fixed time mode, measurements 

conunence upon pressing the manual start stV'i tch and setting the R-S flip-

flop. The QR output goes to logic 0 and enables the mastt~r clock. Stop 

pulses are produced by the sample size counter at 103, 104, lOS or 106 



r-- J Q, 
"-- K 

t" FFI 
Q, 

~~ l 
:t put from I 

Sign detector 
+ output 

R-S flip-flop 1--------1 

s 

I 

I 
I 
I 
I 
I 

I 

~-------1 

k:a o Clear 

Co stop 
signal 

+.Jv 

r- J 

l '--- K 

FF2 

~2. !--

I 

'One cycle' 

'Fixed Time • 
Mode 

Mode ... 

69 

~Clear 
"'"'J ~ - Input 

T o 'enable' of 
sample-rate 
clock 

Figure 4.5: Control circuit for the S~P.C. 



samples. Any one of these pulses is used to reset the R-S flip-flop 

which in turn disables the master clock. The R··S flip-flop also 

eliminates any contact boUnce effects in the start switch. 

4.6 Accumulators 

The a.d. converter output gives r the highest level exceeded 

at the sa~~ling instant. This together with the sign bit, feeds the 

w.F.L. units. The weighting numbers are computed using the magnitude 

of r, with the sign bit being used to gate the weighting number output 

lines for odd-order moments, to the positive or negative accumulators. 

If a serial type multiple feed accumulator17 is used, then for 

the kth moment and !-bit quantisation, ik clock pulses are required 

to add the weighting numbers for a sample to the previous accumulation. 

Assuming a propagation delay of -em sec. for each stage of the serial 

accuJnulator then the total time required before the next sample can be 
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taken, is 2.!.k.-c sec. This is calculated by taking into consideration 
m 

the requirement that the fe~d lines for the wei~1ting numbers, must be 

applied serially into the accumulator and furthenoore, the least 

significant bit applied at (!k) th pulse rHust be allowed to propagate 

through the entire length of the ik-bi t register before the next sanrple 

can be taken. Typically T =50 ns. and for the fourth mon:-ent, the total 
m 

delay is 2.4 ).!sec. An additional clock system fo.r each moment is also 

required to produce the !k pulses following every a.d. done pulse. At 

this advanced state of the art, the serial feed acc~~ulator has been 

superseded and is, therefore, not economical to implement. It would 

also result in considerable rcclu;:tion in the upper f:requency limit of 



the s.p. c. 

A one-step addition and accumulation is easily implemented with 

TTL circuit modules. A complete 1\'1-bi t accumulator. requiring an 1\'1-bi t 

adder and storage, is shmm in Fig. (4 .6). Initially all the JK flip-

flops are cleared. The A inputs to the binary adder are therefore 0 

and the B inputs are the output lines of the W.F.L .. unit for a given 

kth moment, gated by the sign bit where necessary. The 4-bit adder 
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modules used in the adder circuit have a delay of 50 ns. so that for the 

fourth moment, the maximum total delay for addition is 300 ns. The 

final carry-out of the ~I-bit adder occurs when the total accumulated, 

lk exceeds or equals 2 (H=lk). A similar overflol>r will occur for the 

accumulation of negative samples. Since 2£.k=nk, the overflow represents 

contributions to the kth moment. These overflow signals, gate the a.d. 

done pulse to the display counters and display units. The remainder 

which is available as the r outputs of the binary adder, is shifted to 

the JK flip-flop outputs by the a.d. start pulse. Thus, in general, 

the inputs to the ~dder after the (i+l)th sample are the weighted feed 

outputs for the (i+l) th sample as B inputs and the remainder of 

1 i 
-,ik l \~k . as the A inputs. 
2~· ._, ,J 

J-. 

Division by nk required in equation (2.30) is therefore easily 

achieved. Furthermore, since the computation of the various moments is 

a siThple counting procedure, any code may be used in the final display. 

The fractional· val uc, rtlmaining in the a.ccumulator after processing is 

complete, i::; usually negligible for sample size exceeding 103 and 

therefore is seldom required. 
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The total delay in accumulation. is equal to the time required 

to carry out !k-bit addition. In the s.p.c. where TTL binary adders 

and flip-flops are used, the worst case delay is in the fourth moment 

and equals 300 ns. Thus all computations for a sample are completed 

soon after the sixth bit of the level r is available. 

For the first and third moments, two separate accumulators are 

required to accumulate ~+ and ~-. The overflows from these 

accumulators, together with the a.d. done pulse, feed an UP/DOWN counter 

whose count direction is controlled by the sign bit. For even-order 

moments, only UP counters are required. 

4.7 Above-level Amplitude Proba~ility Distribution Measurements 

Above-level probabilities (i.e., cumulative probability 

distribution) are measured using a digital comparator. In the s.p.c. 

designed, 4-bits or. 16 levels are used. The circuit is shown in 

Fig. (4.7). The A inputs to the 4-bit digital comparator are the four 

m.s. bits of the a.d. converter and the R inputs are the four reference 

bits selected by a rotary switch. When A ~ R, the comparator output 

switches to logic 1. This tog~ther with the sign bit gates the a.d. 

done pulse to a counter. Thus, for a sample size C , this counter 
0 

readout Cr divided by C
0 

is approximately the probability that a 

reference level R is exceeded. The reference level can be varied 

sequentially ru1d measureffients are repeated to obtain sixteen values of 

the above-level probability on either side of the zero level. 
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4.8 Display Registers and Readouts 

The display counters built use TTL circuit modules throughout, 

including the drivers for the Nixie display tubes. Standard designs 

are used in both the UP/DOWN and the UP counters. The upper frequency 

limit is about 5 MHz. The UP counters have the additional facility of 

3 4 5 6 output pulses when the count reaches 10 , 10 , 10 or 10 counts. These 

pulses are used in the control circuit, to terminate computation. 

The s.p.c. is shmm in open rack form in Fig. (4.8) and Fig. 

(4.9). The a.d. converter and the master clock are on two plug-in cards. 

The logic for the entire s.p.c. uses TTL circuits and is on eight 6" x 6" 

printed circuit boards (see Fig. (4.9)). The complete system is con-

tained in a 4-rack 19" x 5" stand and includes all necessary power 

supplies. Two indicator lights are also provided on the control panel, 

one to indicate that sampling is in progress and the other a warning to 

indicate if the input exceeds +lOV, the maximum voltage limit of the 

a.d. converter. 

The accumulators, displays and the control circuit are all 

cleared by a single clear pulse. 

4.9 Performance Tests 

Direct decimal readouts (D.D.R.) for d. c. input voltages, 

provide a very convenient method for testing the entire s.p.c. If the 

d.c. input voltage is bett-1een the rth and (r+l)th level, then the 

readouts for the various moments correspond to the mid-interval voltage 
2r+l .. -zn- corresponct1ng to the rth interval. The expression for the kth 

moment, developed earlier, gives 



Figure 4.8: Photograph of the S. P.; C. 



Figure 4.9: Rear-end view of the S.P.C. 



78 

{ 2r+1 }k 1 1 
n-1 

k k-1 c = +-- \ 
2n k nkc 

1.. r r 
(2n) r=l 

0 

(4 .3) 

The direct decimal readout (DDR)k is defined as ,r 

/). 1 r k 
k-1 

(DDR)k = k r C ,r r n 
(4.4) 

Thus, 

(DDR) l = 
r.C

0 --,r n 
(4 .5) 

C. r(r+l) 
(DDR)

2 
= 0 

,r 2 
n 

(4.6) 

2 + 6r + 3) C
0

• r(4r 
(DDR) 

3 = 
4n 3 ,r 

(4.7) 

and 
C . r(2r3 + 4r

2 
+ 3r + 1) 

(DDR) 4 
0 

= 
2n4 ,r 

(4. 8) 

The clirect decimal readouts are computed fur d.c. voltage inputs 

4 in the range 0 to lOY \lith C =10 and n=64. The values are given in 
0 

Appendix A together with the cotr.puter program £101111 chart for this 

computation. These values are used to check the ~tire s.p.c. The 

a.d. converter switching characteristic can also be checked by measur-

ing the voltage levels at which the output readin!S change, while the 

rectifier performance may be checked by using d. c: .. voltage inputs of 

both polarities. 

The s.p.c. of Fig. (4.8), has been tested for these direct 

decimal readouts and has also been used to measure: the moments of known 

signals available in the lab·::ratory. The overall performance is within 
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the specifications of 1% overall error for input signals of frequencies 

42 
up to 5 KHz • 

4.10 Extension to Heasure the Standard Deviation 

The standard deviation (o) of a random signal is defined as 

(4.9) 

Several methods have been proposed for obtaining the square-root 

of a binary number. These use either the Ne\oJton approximation 43 or the 

rational Chebyshev approximations valid in a given range of the number44 • 

Recently direct restoring and non-restoring square root extractions 

using cellular arrays have also been considered (see Chapter VI). In 

all these methods, the square root answer is in a binary code and there-

fore code conversion circuits are necessary if the final readout is to 

be in any other code. Additional circuits, to compute mi and perform 

the subtraction in equation (4.9), are also required. Such methods are, 

therefore, not suitable for special purpose computations. 

The square-root method described here45 is especially suitable 

for such applications. It is capable of following a fluctuating number 

N whose square-root is desired. Furthermore, subtraction, squaring 

and square-root extraction are all implemented in a single circuit, 

making the method economical for implementation for large numbers. 

Consider first the square-root algorithm. 
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4.10.1. The Square-root Algorithm 

The algorithm is an extension of one proposed by Phister46 • 

This extension provides a particularly fast and economical means of 

implementation. In the algorithm a number S is compared with N and one 

of two procedures is carried out, depending on whether S<N or S>N. Let 

j denote the jth step in the process. 

(i) For S<N 

Let x. 1 = x. + 1 
J+ J 

( 4.1 0) 

and sj+l 
2 = x. 1 J+ 

2 + 2x. 1 "" X. + 
J J 

These may be written 

xnew = xo1d + 1 

(4.11) 

5new = 5old + 2xold + 1 

(ii) For S>N 

Let xj+l = X. - 1 
J 

(4.12) 

and s. 1 
2 

= x. 1 J+ J+ 

sj+l 
2 - 2x. 1 or = x. + 
J J 

(4.13) 

These may be written 

X new = xold - 1 

and ( 4.14) 
s = sold - 2xold + 1 neti 



In the original algorithrn46 , equations (4.11) and (4.14) are 

intended for implementation. In a hard wired special purpose computer, 

however, equation (4.14) is found to present difficulties in complement 

arithmetic. These are overcome by rewriting equation (4.13) as 

2 
sj+l = xj - 2(xj+l + 1) + 1 

where (4.15) 

Let [D] 1 denote the ones-complement of a binary number D. Then using 

twos-con~lement arithm~tic for subtraction, equation (4.15) becomes 

To sun~arise, the algorithm for S>N uses 

x = x01 -1 - 1 new u 
(4.16) 

Equations (4.11) ru1d (4.16) are implemented in the square-rooting 

process. 

4.10.2 Squaring Algorithm 
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The square root algorithms can be used, td th a small modification, 

to calculate the square of an m-bit binary number M which may be 

fluctuating. The basic algorithms of equations (4.11) and (4.16) are 

still used but the choice botween the two is now decided according to 

the states x<H and x>M. Thus when x<M~ equation (4.11) is implemented 

whereas x>M required use of equation (4.16). The processing is stopped 
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when x=M, at which instant, the S register contains 'tvt exactly. The 

x-counter must be cleared before the square-root or the squaring operation 

is commenced. 

4.10. 3. Computation of Standard Deviation 

The square-root algorith~s can also be used to calculate a. For 

this purpose, the equation (4.9) is rewritten as 

( 4 .17) 

Initially computation of mi is carried out using the squaring 

mode of section 4.10.2. On completion, the S register contains mi· The 

entire system is cleared, except the S register and the square-root mode 

is implemented with m2 being compared with S. Since the S register 

contained mi, its value will increase to mi + x~+l after each step. The 

square-root process is stopped when S~m2 • The S register will then 

2 2 
contain m1 + xj+l ~ ~ and equation (4.17) shows that the x-register 

content is a \dth a maximum error of 1. Again, since the computation of 

a is a simple counting procedure any readout can be used. 

4.10.4. lmElementation 

A block diagram of a 2m-bit system is shown in Fig. (4.10). The 

square-root rode is used in the follo·wing description and only minor 

modifications are necessary for a c:.omputation. 

The system comprises two 2m-bit binary registers for N and S, 

a buffer register for N, a 2m-bit binary comparator to indicate the 

states S<N, S=N, S>N, a 2m-bit binary adder, 2m true/complem~nting (T/C) 
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gates, and an m-bit synchronous UP/DOWN counter for x and a clock system. 

In the diagram, a counter for readout of IN in the decimal code is shown. 

However, if the readout is to be in binary code, then it may be directly 

obtained from the x counter. Register S is comprised of D type clocked 

flip-flops. The buffer register is made up of bistable latches. 

(i) Calculation of S new 

A one step parallel adder is used in conjunction with parallel 

. true/complementing (T/e) gates. The output Y of a T/C gate is given by 

Y ~ ex + ex = ex + ex 

e:O implies S>N for which Y=X and C=l implies S<N for which Y=X. The 

inputs to the T /e gates are the various bits of the x counter and are 

wired with a left shift of one bit as shown in Fig. (4.11). This shift 

accomplishes multiplication by 2. The 1. s. b. input to the T /e gates is 

permanently in state 0. The control signal is S<N. The T/C gates have 

2x as output when S<N and [2x] 1 when S>N. 

The various inputs to the pa:r<'-llel adder are as follows: 

a. The addend is Sold from the output of the storage register S. 

b. The augend is the output from the T/C gates. 

c. The "carry in" is the state of the comparator S<N since from 

equation (4.11), Su11 only in the up-count mode. 

(ii) Clock System 

In the down-cou-nt mode, i.e., \oi'hen S>N, x is used in the new 

algorithm, so that S\"'"'~~ celay must be inCOl'Porated to allow x to change 
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before s. In ·the up-count mode no delay is necessary since delay in the 

T/C gates and the adder ensure that x01d and not xnew is used to form 

Snew when the S register is clocked on the leading edge of the clock 

pulse. Tinting diagrams for these conditions are shown in Fig. (4.12). 

Fig. (4.13) shows the clock system. Clock 1 is used to transfer 

Snew to the storage register S while clock 2 is used to clock the x 

counter. A delay is incorporated in the clock system, which delays the 

pulse for transferring S when S>N. Computation of vN is stopped by ne\i 

inhi.bi ting the clock, according to any one of the following conditions: 

a. S=N 

b. N is "complete" and transitions from S<N to S>N occur at a later time 

c. N i.s "complete" and tr.?.nsitions from S>N to S<N occur at a later time. 

The inhibiting conditions (b) and (c) prevent the oscillation in 

the least significant bit of vN when N is complete and when vN is not an 

integer. Since these conditions require a transition from an initial 

state to a final state, some memory must obviously be provided. The 

two 0-type clocked flip-flops Fl and F2 are used for this purpose. In 

the absence of an "N complete" signal the clear inputs of the two flip­

flops are held at state 1 so that Q1=1 and Q2=1. Hm.,ever, if N is fixed, 

denoted by "N complete"=!, the clear inputs are in state 0 and the flip-

flops are ft·ec to change state. The "N complete" signal is delayed by 

200 ns. to allow the comparator to settle. Assume that when N is complete, 

S<N (indicated by state 0). At the subsequent transition to S>N the 

clock input to. flip-flop Fl changes from 0 to 1, so that Q
1 

changes from 

1 to 0 and inhibits the clock. The clock input to F2 changes from 1 to 

0 leaving Q2=L The clock remains inhibited until N changes again, 
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thereby resetting the flip-flops and releasing the clock. 

Referring to Fig. (4 .12), the time delay T must be sufficient a 

for the following to be completed. 

1. Synchronous UP/DOWN x counte1· to settle to the new value of x. 

2. The new value of x presented via the T/C gates to the binary adder. 

3. Binary addition to be completed and the carry propagated through all 

stages of the adder. 

(iii) ~uffer Regis_Eer for N 

The number N may be permitted to change between any steps of the 

algorithm but not during a step, for if the state of the comparator 

should change between clocking of the x cow1ter and the S register, the 

end result will be in error. A convenient \'fay of allowing N to change 

only at allowed times is to use a buffer regist,er to hold it. Tile buffer 

register is controlled by the clock system and a delay -r 0 (Fig. (4.12) 

and Fig. (4.13)) allows theN buffer register and the binary conparator 

to settle before processing of the algorithms commences. The timing 

diagram of Fig. (4.12) shO\'ls the complete sequence in the processing. 

(iv) Modification for Standard Deviation Measurement 

The basic circtdts of Fig. (4.10) and (4.13) are retained but 

some additions are needed. Thus initially in the squaring mode, the 

first moment m1 is transferred into the N register and the comparator 

. t (. N) d Wh . f 2 . 1 11 1npu s are m1 1.e., . an x. en computat1on o · m
1 

1s compete, a 

registers except the S register are cleared. 'n1e "computation of mi 

completed" signal is used to load m2 into the N register, and change the 

comparator inputs to m2 (i.e., N) and S. ThrH·eafter since S<N (i.e., o~O), 
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the algorithm of equation (4.11) is automatically implemented. This 

continues until S=N when the clock is inhibited or when S>N. If the 

latter obtains, the algorithm changes to that of equation (4.16). Thus 

if N does not change, the x value will oscillate by :!:1. Hmiever, if a 

signal "N complete" is applied then the clock is inhibited when the first 

transition from S<N to S>N or from S>N to S<N occurs. The final o - -
value contained in the x counter will be in error by :!:1 maximum. 

The minimum processing time for one step can be derived from the 

timing diagram of Fig. (4.12) and is given by 

where T0 = delay to allow buffer register and comparator to settle after 

N is tran~ferred to buffer register 

T = delay to allow correct computation of S in tho S>N mode a new 

Tc = clock pulse width. 

All delay elements in the clock system coaoprise open collector 

NAND gates loaded with suitable small capacitors, and are therefore 

easily implemented. 

For the s.p.c. considered, the maximum sample size is 106 . 

Therefore a 40-bit square-root system is required to 

standard deviation, since mi can have up to 40 bits. 

compute 

2 The m1 

the 

computation 

can run simultaneously with the computation of m1• However, the square·­

root operation commences only after rni is computed, so that the standard 

deviation is available shortly after change-over to the square-root mode. 



If TTL integrated circuits are used, then the process can be 

operated at l l·lHz clock-rate \o'hich is already available in the master 

clock system of the s.p.c. 
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5.1 Introduction 

CHAPTER V 

ERROR ANALYSIS 

The use of mid-interval values of the quantised signal and the 

simplifications made in the derivation of the algorithms for the moments, 

result in an error in the measured values of the moments. Also, the 

measurements are terminated after a finite time, which causes further 

statistical fluctuations in the measured values. Additional errors due 

to level offsets, finite sampling rate etc., can be reduced by 

improvements in the design of the various units of the s.p.c. 

In this chapter, the predominant errors are analysed for 

several standard input si~1als. The analysis assumes an exact 

correspondence between time averages and expectation integrals (using 

ensemble averaging). The errors are analysed on the basis of statistical 

independence. This assumption alloHs each error to be treated 

individually. 

The error equations do not, in general lend themselves to 

closed-form solutions. They are, therefore, best evaluated by means of 

a general purpose computer. In these computation procedures, the errors 

due to truncation are insignificant. 

Since the errors depend on the amplitude distribution of the 

signal and its ,peak value, it is desirable that waveforms of as wide a 

range of probability distribution as possible are treated. It is shown 

that full wave roctifjed (F\'iR) signals are suitable for a complete error 

92 
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analysis of the s.p.c. 

The errors that arise in the s.p.c. are essentially stochastic 

in nature, so that if an overall error characteristic is required, then 

the various error probability distributions must be convolved together. 

However, this overall error distribution is seldom needed since the 

worst case errors are sufficient specifications fOr the s.p.c. 

5.2 The Error Equation 

th Let the error due to any one source for the ~ moment be 

ek where z represents the source of error. Then ek is defined by , z , z 
1 

mk,z - mk 
ek,z = ~ (5.1) 

where m.1 is the measured value for a system in '117hich only the z source 
K,Z 

of error is present and ~ is the actual k th moment. 

Since it is usual to define the error in terms of full scale 

readings, it is tacitly assumed that all the quantisation intervals of 

the s.p.c. are used in the measurements. 

5.3 Standard Signals 

The errors arising in the s.p.c. are dependent on the signal 

waveform. Thus in any investigation of the errors, it is necessery 

to specify the signal. The following criteria are useful in selecting 

the waveform to be used in the analysis. 

(i) All four moments are finite and non-i.ero. 

(ii) The probability density function of tbe signal can be 

expressed in closed-form. 
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(iii) The signals used in the theoretical analysis should be 

available in the laboratory for experimental verification. 

Full-wave rectified (FWR) signals have non-zero and finite four 

moments, and the s.p.c. has a precision rectifier at its input. Further-

n~re, the only modification necessary, in the s.p.c., for the measure-

ments on A~R signals is to put the sign control of the odd-order moments 

counters in a fixed UP-cotmt mode. The signals used for the theoretical 

analysis are: 

1. FWR rectangular waveform or D.C. input. 

2. Am Sine wave. 

3. FWR Triangular wave. 

Each of these periodic waveforms has a normalized peak voltage 

I; such that the peak lies in the last quantisation interval. 

4. For non-periodic signal analysis, bandlimited FWR Gaussian 

noise of standard deviation a is usedo 

The four moments for these standard signals are given in Table 

5.1. If P denotes the probability that the rth level is exceeded and r 

if all levels are used, then the following distributions can be easily 

derived. 

(a) FWR Rectangular Waveform or D.C. 

p = 1 0 < r < n-1 r+ 
(5. 2) 

p 
r- = 0 

(b) FWR Sine Wave 

v(t) = r;jcos(wt)l 



and p 2 -1 r 0 r < n-1 = cos - < r+ 'IT nr; -
p = 0 
r-

(c) FWR Triangular Wave 

p 2 (1 r = - -) r+ nr;; 

p = 0 r-

In general 
n-1 + e: 

I; = n 

where e: is a fraction of the highest level occupied by the input. 

(d) Normal l'lave or Bandlimi ted Gaussian Signal 

p 
r~ 

= 1 - 2 

p = 0 
r-

0 

r 

1 v2 
-· exp.(- -)dv 
12-i 2 
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(5 .3) 

(5 .4) 

(5 .5) 

(5.6) 

A normal wavt~form in the above case is defined as a periodic 

signal which has a Gaussian probabiU ty density ftmction when sampled 

at random in time. If the standard deviation a is small, then the 

normal i'laveform approaches a unit impulse for each half cycle. 

The various errors are now considered individually. 

S .4 Error due t_? Algorithm Approximations and Amplitude Quantisation 

The general equation for the four moments has been derived using 

two approximations, viz, 

(a) The contribution, dtH~ to the voltage in the first interval, 

is negligible for all four moments. 

(b) The \'leighting number expressions t~cre simplified on the 



F.W.R. 
Signal 
Input 

Rectangular 

Wave or D.C. 

Sine Wave 

Triangular 

Wave 

Normal Wave 
or 

Bandlimi ted 
Gaussian Noise 

"Note: 

First Moment 

(ml) 

r,; 

2r; 
'II' 

r,; 
2 

j{ -a 
lT 

r,; = n-1 + e: 
n 

Second ~foment Third Moment Fourth 
Moment 

(m2) (m3) (m4) 
"-

1;2 r,;3 r;4 

.2 
!__ r,;3 ~ r;4 <, 

2 3'11' 8 

r;2 r;3 r,;4 
3 4 5 

2 J3 3a
4 a ;- 2a 

where 0 < e: < 1 

and a is standard deviation of Normal Wave 

or Gaussian Noise. 

Table 5 .1.: The four moments of the F\VR signals 

used in the error analysis. 
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basis that all available levels are used. 

Both these asstunptions cause an 'approximation error' in all 

four moments, t•:hich is independent of the s~p.c. system. 

In the s.p.c.,samples are d::1ssificd within n intervals (i.e., 

the discrete va.lue expectation integral is used) on each side of the 

zero level, and a mid-interval valu:J is assigned to each sample. In 

the computation of moments t11e k th po>·;er of c:ach saraple value is used. 
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Since n is finite, a quantisation error occurs in the computed Jr:omcnts. 

For the purpose of analysis, the appr0xim;1tion and· quantisation errors 

are grouped together and referred to as the system quantisation error 

ek • . ,n 

For periodic \vaveforms, the peak of the input signal may lie 

anywhere within the nth inter·va.l. Since this peak value influences the 

probi'tbility distribution values as seen from section 5.3, it is to be 

expected th;Jt the system quantisation m:ror, ek,n' is also a function 

<.)f the position of the peak value, within the last interval. 

For bandlimi ted Gau~sian noise or for the normal wave, the 

mechanism of the occur<";;nce of system quantisation error is somewhat 

different, since the voltage is not confined within the n intervals. 

Thus 1 in addition to the approximations and quantisation errors 

mentioned earlier, a level lini t error arises. This is due to the fact 

that samples beyond the nth level are all grouped together and classified 

. t 1 th . 1 1n o t1c n 1ntcrva • For small standard deviation o, this limit. error 

is negligible. In such cases the effect of using n intervals c.an also 

be obtained by the Sheppard correction formulae19 . These cor:cection 

formulae, howe'ler, do r.ot account for c.;:-rors due to alr:ori thr:· approximations. 



The system quantisation error analysis in most cases, yields 

bl · ~ d · s· 1· f. · 16 · intracta e express~ons except LOr .c. ~nputs. ~mp ~ ~cat1on ~s 

possible in some cases but yields very little useful information 

regarding the general behaviour of the error. Instead two computer 

programs are used to obtain the system quantisation characteristics. 

The error definition uses the calculated mk1 as used in the s.p.c., ,z 
i.e., 
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1 1 n-1 k 1 
m. =-r k·r- P 
x,z nk r=l r 

(5. 7) 

The first program used for periodic signals requires Pr and 

the actual moments to be specified. The second program is for Gaussian 

signals where P r' a and the actual moments need to be specified. In 

both programs n, the peak position (n-1 + E) or a are varied. The 

flow-charts for these two programs are given in Appendix B and C. 

5.4.1. Results for ek • ,n 

The computer analysis results for ek are divided into two ,n 

categories, viz 

(a) For a fixed n, the variation of the error due to the peak value 
n-1 

changing from n-· to 1 for periodic signals and due to variation 

of standard deviation a for Gaussian signals, is investigated. 

(b) Effect of variation of n for a given peak position for periodic 

signals and a given a for Gaussian noise, is also investigated. 

This analysis establishes a design criterion for the special 

purpose computer. 

The results of the tt.,o analys;;:s for the standard signals are 

presented in Figures (5 .1) to (5 .3). 
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The dependence of the system quantisation errors on the position 

of the peak values is seen from the graphs of Figures (5.1), (5.2), 

(5.3) and (5.4). Results indicate that it is possible to reduce e to k,n 

zero by properly locating the peak value position of the signal. 

HO\.,rever, such a technique requires a knowledge of the input and would 

also invariably involve an iterative scaling procedure. Hence in 

practice, it is likely that the assumption of the peak being situated 

anywhere within the last interval with uniform probability distribution 

will be more valid. To obtain the statistical distribution of the error, 

Monte Carlo methods17 of simulation can be used. 

For all four FWR signals the maximum error in the first moment 

varies inversely with n. The graphs of Figures (5.5), (5.6), (5.7) and 

(5.8) also show that it is necessary to use n=256 i.e., 8-bit quanti-

sation in order to keep the system quantisation error for first moments, 

below 1%. 

1 The maximum errors in all the other moments vary as - where 
u 

n 
u is a function of the periodic signal. Thus for F\'iR Sine Wave u= 1. 5, 

for F\•lR Triangular Wave u=2 and for D.C •. inputs u=l. The errors are 

largest for D. C. inputs as would be expected. 

In the case of FWR Gaussian signals, a normalised standard 

deviation of 0.25 is used so that level limit errors are negligible. 

The system quantisation error is large for small values of n but begins 

to settle to a steady value for all higher moments, indicating that 

above a certain valu<~ of n, very little reduction in ek is achieved. ,n 
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5.4.2. Level Limit Errors 

(a) Periodic Waveforms: 

If the peak value of the input exceeds the nth level voltage, 

then a negative erro:- occurs. A typical example of this error is shown 

for FWR Sine Wave, in Figure 5. 9. This error is easily eliminated in 

practice by scaling down the input. 

(b) Gaussian Signals: 

The level limit errors are most serious for these signals since 

there is always a finite probability that at some instant the highest 

level available will be exceeded. For large a, this probability 

increases rapidly and the negative level limit error swamps the system 

quantisation error as shown in Fig. (5.4). It is seen that if the 

standard deviation is within 1.1 v to 2.9 v, the total system quantisa­

tion error (including the level limit error) is within 1% for all 

moments. 

5.5 Svstem Errors 

The system quantisa~ion error, as mentioned earlier, is 

independent of the method adopted in the actual computation. System 

errors depend on the system design and on the components used in the 

processing. The main errors in this category are 

(a) Level offset errors 

(b) Finite sampling time errors 

(c) Finite sampling-rate errors 

(d) Aperture-time err()rs. 



0 6).8 

-0.1 

-0.2 

109 

64 Peak level position 
-1 ,.--I 

t 1st Moment. 

t 
rd 3 Moment .. 

Notes Multiply level scale by l} 

for first moment. 

tJ 4 Moment. 

Figure 5. 9: Errors for F'i'lR Sine Wave of 
Peak Exceeding .6L:.th level. 



110 

Errors due to finite sampling tirre and finite sampling rate are 

regarded for the purpose of analysis as system errors since in practice 

the upper limit in measurement time is fixed by the size of the C
0 

register, while the sar~ling rate is limited by the a.d. converter 

selected in the design of the s.p.c. 

5.5.1. Level Offset Errors 

The offset at any given level can be due to inaccuracies in 

the rectifier and due to the a.d. converter resolution capabilities. 

Thus let the total offset at the rth level be oVr. An incorrectly 

weighted sample occurs for all moments if the sample falls in the range 

Vr to Vr + oVr where Vr is the voltage at the rth level. The error in 

the weighting number for the kth moment, for a positive oV is 
r 

= -
r l k qk-1 + 

q=l 

.. k-1 
oWk = -k r ,r 

r-1 k-1 l k q 
q=l 

(5. 8) 

Thus all the measured val u~s of the moments will be lower than 

the actual values when oV is positive. The total error depends on the r 

number of samples occurring in the level interval 6Vr. Obviously such 

offsets can occur at all levels. For signals which are symmetrical 

about the zero level these offset errors tend to cancel out since both 

~+ and mk- tend to be lower than the actual values for a positive 

offset. Similarly, in the one cycle mode for periodic dgnals, the 

offset error is small since the probr.bili ty of a sample occurring in the 
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offset interval is very small except at high sampling rates. The level 

offset errors are therefore, important only in the fixed time mode of 

operation of the s.p.c. 

The error due to level offsets depends on the number of times 

a level is crossed and the time spent in the offset interval at each 

crossing. The offset can also be regarded as causing an error in the 

value of Pr, the probability that the rth level is exceeded. For 

periodic signals it is relatively easy to obtain the number of crossings 

whereas for Gaussian signals, the error is best analysed by considering 

(a) FWR Periodic Signals 

A level is crossed twice for each half cycle. Therefore, for 

a total measuremant time of T sec., the number of crossings of any 

level is 4 f. T where f. is the frequency of the input. If the time 
1 1 

spent by the signal, in the offset interval 

number of samples within this interval, for 

oV is t then the expected 
r r t 

a san-;pling rate 1/-r is ...!.. • 
't 

The total expected number of samples in the interval oV is given by 
r 

N = 4t f. C r r 1 o (5 .9) 

Each of the N samples is incorrectly weighted, the weighting r 

error being given by Equation (5.8). If the slope of the waveform at 

the rth level is v1 then assuming oV is small 
r r 

ov 
r 

tr = ;r 
r 

Hence the error in the k th moment for periodic signals is 

(5.10) 
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ov 
4C 

0 
f. _lr k 

1 v 
k-1 

r (5 .11) 

r 

(5.12) 

Since v; involves the frequency, fi, it is easy to shmq that 

ek,l is independent of fi the signal frequency. 

(b) FWR Gaussian Signals 

The expression for the expected number of crossings developed 

by S.O. Rice48 can be used; ho\qever, difficulty arises in the evaluation 

of the slope at a level crossing. In such cases, therefore, the 

probability analysis is more convenient. Tht>s the error oP r in P r due 

to a level offset ov is given by r 

2 ov 2 
oP r exp. { -r } = 

2n2a2 r ilia 
(5 .13) 

This is derived from the probability density function for A~R 

Gaussian Signals. 

The error in the kth moJnent for A~R Gaussian Signals is therefore, 

given by 
n-1 
l 

r=l 

2ov 
r 

(c) Results for ek,l" 

2 
-r } k-1 [exp.{ 2 2 ]·k r 
2n o 

(5.14) 

The error expressions (5.12) ru1d (5.14) are best evaluated with 

a general computer program. The flow chart of the procedure is given 

in Appendix D. The analysis assumes that the level offsets are equal 
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for all levels; however if the actual offsets are known then their 

values can be used in the analysis, the program modification required, 

being a very trivial one. The offset oV and the number of levels n 
r 

are considered as the variables in the analysis. For a fixed number 

of quantisation levels n, the error ek,i varies linearly with oVr. 

Thus 

where oV is the level offset in millivolts. The constant of proportion­
r 

ality for various waveforms are given in Table 5.2. 

Errors due to level offsets do not occur for d.c. or rectangular 

waveforms since only one level is occupied at any time. However, the 

offset will affect the highest level exceeded information and thereby 

affect the system quantisation errors, if the peak lies in the offset 

region. 

The level offset errors increase only slightly as n is increased 

as sho\m in Fig. 5.10. However, a large n implies a smaller quantisation 

interval in which case there is every possibility that oVr will also 

increase. Therefore, little improvement can be achieved by using a 

higher n. For this reason, n=64 has been chosen in the s.p.c. designed. 

5.6 Errors due to Finite Time of Measurement 

Statistical analysis using the s.p.c. assumes a finite time of 

averaging. However, time averaging without errors, requires a time of 

integration which tends to infinity. In practice, measurements are 

always terminated after a finite time. If the input is periodic then 

this error can be regarded as arising from the use of a non-integral 
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FWR 

Waveform ml IDz m3 m4 

Sine 14.3 X 10 -3 22.3 X 10 -3 30.4 X 10 -3 
37.2 X 10 -3 

Triangular l'-1.7 X 10-3 29.5 X 10-3 39.1 X 10 -3 -3 48.4 X 10 • 

I 

Table 5. 2.: Constants of proportionality for 

equation (5.15) to calculate ek !. 
' -
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nunher of cycles in the measurement process. In general cases, thr.: 

effect of finite~ time is to- cause a random error -which has a neal; 

. 27 Normal statistical distribution <-md llhose var:umce is given by 

2 fT t 2 Var(ek, T) = f (1 - 1-) (Rmm(t) - Vk)dt (5.16) 
0 

wlwre R (t) is the autocorrelation function of (vk) co1·responding to mm 
th 

the k moment of v and ~-k is the mean value f k 
0 v • If R (t) is known mm 

then the variance can be calculated and a confidence limit can then be 

specified for ek M,. H011cvcrs difficulties usually arise in calculating 
, 1 

R (t), unless suitable approximations can b~ made27 . Rice
47

, on the mm 

other hand, has suggested a db:ect evaluation of the variance. Again, 

th{~ same difficulty as in Eqn. (S.~6) is experienced. 

A simpler analysis can be made using the eq;.d v2.lence between 

time averages and ensemble averages and then app1yinz the results of 

large sampling theory. This approach has been adopted in the follmdng 

analysis (section 5.6.2.). 

5.6.1. 

The kth time averaged moment for a finite timeT is given by 

1 JT k m. = -·· v dt 
K T T • 0 

(5 .17) 

d h 1 l th . 
an t e actua :. · moment 1s 

(5 .18) 

Let the measurement process ru..'1 for (q+n) r;;:riods as sho1m in 

Fig. (5 .11) Hhcre a = 11 - ~· ,. The ste.rting point ¢ ;.,r:d stopping at n 
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are completely random. For a periodic signal 

and 

v = g(e) 

1 
~,T = -=--.,..---~ 2'11'(q + a) f

2'11'(q+a) k 
g (e) de 

0 

where 0 < a < 1 -
1 J2'11'q ~ = 2'11'q 

0 
lee) de 

The error ek,T due to finite time is 

= ~,T - 1 
~ 
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(5 .19) 

(5.20) 

(5. 21) 

Substituting for ~,T' one obtains the general expression for 

ek, T' viz 
2n·a 

J gk(e) de + 2'11'q ~ - 2'11'(q+a)~ 
0 

mk • 27r(q+a) 

If q >> a, the equation (5.22) reduces to 

= 1 J2'11'a k(6) de - ~ 
ek,T 2'11'q ~ 

0 
g q 

(5.22) 

(5.23) 

For A1R signals used in the analysis, g(9) is known and therefore 

the product q · ek, T can be evaluated for various a. The maximum values 

of this error for the four periodic signals are given in Table 5.3. For 

D.C. inputs g(e)=l, assuming peak value is at the nth lev.;;l, '\=1 and 
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Maximum error ek T% , 

FV/R First Second Third Fourth 

Waveform Moment Moment ~foment ~foment 

Rectangular 0 0 0 0 
Waveform 

Sine 
:!: 0.052~ 0.0796 :!: 0.0966 0.257 

:!: :!: 
Waveform q q q q 

Triangular ± 0.0624 :!: 2.=._0961 ± 10.1181 :!: 0.1337 

Waveform q q q q 

q = no. of cycles of input, used in measurement process. 

Table 5.3.: The error ek,T for the four attaveforms. 
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therefore ek,T is always zero. 

5.6.2. Error ek,T for FWR Gaussian Noise 

Since the autocorrelation function R (t) for vk cannot be easily 
mm 

calculated for Gaussian signals, the general variance expression of 

Equation (5.15) yields little useful information. An alternate method 

suggested by S.O. Rice47 , attempts at a direct evaluation of variances. 

An example of this approach is given in Appendix E. It is seen that 

this method also has the same disadvantages as for the general expresion 

of Equation (5.16). 

A simple analysis can be made using the statistical theory of 

large sample sizes. It is knet-m that the four statistics m1 , m2 , 

ISl and s2 obey the Normal distribution for large sample sizes. R.A. 

Fisher25 has given the results of the variances of the distributions 

of these statistics. When the sample size is large the results can be 

simplified further. For systematic sampling· of a Gaussian signal with 

a band~<.·idth of B Hz., the minimum sampling rate is the Nyquist rate 

28 Hz. Thus if measurement time is T sees., the sample size N is 

N = 2BT (5.24) 

The variance results for large sample size are given in Table 

5.4. For a 99% confidence limit, the measured statistics will be within 

:t2. 58cr
5 

of the true value. Thus, if the Gaussian signal has a very 

narrow bandwidth, then the time of measurement must be increased 

considerably, ~f the fluctuations in the measured statistics are to 

be small. 



Expression for 
Statistic General Expression samples at 

Nyquist Rate 

~lean Value (m1) C1 C1 
C1 = - --s & f2BT 

Standard .fio C1 

deviation (o) C1 = --s IN .fiT 

Skewness ( /i3l"J C1 =~ JJ s N 

Flatness (82) C1 =vf/ JfJ s N T 

Table 5.4.: Expressions for standard deviations (os) 

for Gaussian inputs. 
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5. 7 Error due to Finite Sa•nvling Rate ------··-·----·---'--·----
If the input· signal crosses a quantisation level during an a.d. 

conversion process before the next a.d. start pulse is produced, then 

an incorrectly \1ei1~h ted sample occurs, causing an error in each moment 

value. Thus consider sampling at the rth level as shown in Fig. 5.12. 

The o and 8 sections of the input signal arc incorrectly vteighted, r r 

In practice the values of o and 8r occurring at all levels are 
r 

uniformly distributed in the range 0 to 1. Of cou:;.·se, the error due to 

finite sampling rate occurs only if a sample is taken during the 

crossing inte;rval. The .exact analysis which takes into account the 

number of crossings of each level and the val'iation of or and Sr from 

one level to another is extremely complex. A simpler analysis to 

evaluate only the worst case maximum errors can be carried out, assuming 

that a sample occurs at each level crossing. It can be readily shown 

that the worst case er:tors occur when o ::.:0 and 8 =1. Assuming also 
r r 

that fast sampling approximates continuous time averaging, the error 

ek due to a finite ::;ampling rate is given by ,p 

n-1 
1 \' 

ek = -k -- L (Wk 1 ~· wk ) ' . N a , P , T • , r+ 1 r r , ~-> 
n Il''k r-<J 

(5.25) 

,.,.here N is the numbe1· of negative going crossir.g~. of the rth level. 
r,8 

Fo::r a FI'!R periodic sig11al of input frequency f. Hz, 
~ 

N = 2f. T r,B ~ 

and 

1 
2f. n-1 

l ~ 

(W w ) e = _k ____ 
l -k,p 

n mk 
p 

r=l 
k,r+l k,r 

2f. n-1 w - w 
~ [ 

.. k,rd k,r 1 = L P'll}; 
-·---·-](··---·----~- J 

r=l n 

(5. 26) 

(5.27) 
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LEVEL 

----------------~------------------~~----------(r+l) 

I I 

Figure 5.12: 

Sampling Instants 

I 

Error due to finite rate of 
sampling. 
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For large n it can be shmm that the quantity within the square brackets 

approaches unity. Th{~refore, the worst cctse maximu:n en·or is 

max. ek . . ,p 

2 f. 
l 

p·rnk 
(5.28) 

For a FWR Gaussian ba;1dlimitcd signal of bandwidth B Hz, the 

expected number of negative crossings 
r2 

where 

N r 

N 
0 

N •. -2 ·z-z-
o .n o 

= z- c 

. . 48 1s g1ven by 

The t<'orst case error ek ftJr this signal is ,p 

e 
k,p 

. e 

(5. 29) 

(S. 30) 

] . (5. 31) 

Again it can be sho;m that the qu:mtity \>:i thir• the square 

brackets in Equation (5. 31) can never exceed unity. 'fl-;e ~;orst case 

error in the limit is there fore given by 

B K k 
max. ek "' ,p p·mk 

where 0 < K < 1 
k -

(5. 32) 

The analysis for ek suggests that the ratio f/p should be made ,p 

small in order to reduce the error due to fin it~ sampling rate. It must 

also be pointed out that this analysis considers the worst possible 

s:i. tuation at each level crossing, i.e., o = 0 and 8 = 1 and that a 
r r 

sample occurs at every 8 crossing. In practicc 1 ho:,•cver, this is seldom 

the case and the average e:rrol' e is much less than the worst case k,p 

error. 

l7 Fo:r: exa;aple, it has be~m . .:;h0~-:n that for the second moment the 
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error ek 
2f. ,p 

has a Gaussian statistical distribution with an average value 

1 standard deviation - and a np 
12f· 

for the error ek is ___!_ • ,p np 

4f. 
of - 1

- • Thus a 99.73% confidence limit np 

For the s.p.c. designed with a maximum 

value of p being 105 Hz and n=64, the highest input frequency, fi' is 

slightly over 5 KHz. 

Deliberate jittering of the samples is a simple method for 

preventing a systematic build up of errors due to finite sampling rate. 

In the s.p.c. designed, the master clock frequency is voltage controlled, 

so that a random voltage can be used as an input to this clock and 

thereby produce the required jittering of the samples. 

5.8 Errors due to Aperture Time 

The a.d. converter, used in the special purpose computer, employs 

a successive approximation technique, in which the digital output is 

determined one bit at a time starting with the most significant bit. 

For this type of a.d. converter, the digital output corresponds to 

some previous value of the analog input during the conversion process. 

The aperture time ~a is the total conversion time and equals 8 ~sec. for 

the a.d. converter used. 

If, during this aperture time, the input changes from the rth 

th to (r+l) level then an incorrectly weighted sample occurs. Thus, if 
Va 

the slope of the input signal exceeds 
lJa•n 

v/sec. an error \llill occur 

if a sample is taken at this slope. 

The error due to aperture time depends on the probability that 

a sample occurs at the instant where the slope exceeds the lintiting 

value. Thus for a triangular waveform of 10 V peak and a frequency of 
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500 Hz, the aperture time errors begin to occur. The magnitude of this 

error depends on several factors and is therefore not easily analysed. 

However, aperture time errors have a tendency to cancel, since the 

errors for positive going slopes usually differ from the errors for 

negative slopes, in sign only. In practice, therefore, a much higher 

frequency input can be analysed. Thus in the s.p.c. designed, signals 

up to 5 KHz have been analysed with a total error being within 1% for 

any moment. Aperture time errors can be minimised by using a sample 

·and hold circuit before th~ a.d. converter. 

5. 9 Errors in the Above-level Probabili tv ~Ieasurements 

Errors in the above level probability arise from two sources 

viz: 

(a) Level offsets at each level 

(b) Finite time of measurement. 

If the level offsets are identical at each level then the effect 

will be, simply a shift in the quantisation interval by a fixed aroount. 

However, this is seldom the case and in practice the above-level 

probability is measured for a level V +oV exceeded instead of the level r r 

For coarse quantisation (16 levels) oV << V and therefore the r r 

error due to level offsets is negl~gible. If, on the other hand, oV 
r 

is known, then a correction can be easily made in the final results. 

The effect of finite time of measurement will be to cause a 

statistical variation in the measured probability, in the same way as 

in the measurement of the four moments (section 5.6). For a negligible 
c '[ 

r ~ r cSVr' the s.p.c. produces Co - T- where T is the total time of measurement 
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and • is the time for which the rth level is exceeded. It now remains 
r 

'tr 
to assess whether r- is a good estimate of the above level probability. 

't 
The quantity Tr will depend radically on T and of course on the 

amplitude distribution of the input. A detailed analysis of the 

fluctuations is not necessary since one would expect the following 

precautions to be taken during a measurement of the above level 

probability distribution. 

1) The measurement time T will be at least as long as that required for 

a prescribed confidence limit in the first moment, since the latter 

is computed by a simple accumulation of the above level proba~ilities. 

The measured probability will have a confidence limit comparable to 

that for the first moment. 

2) Several Cr measurements for one level r are made and the average of 
cr 

the -- values is used as the above level probability value. 
Co 

5.10 Comments on the Error Analysis 

In order to obtain the overall error distribution characteristics, 

the statistical distribution of the individual errors·are required. A 

17 convolution approach can be used to obtain the distribution of the 

sum of these errors, assuming their statistical independence. For 

design purposes, however, the worst case errors are usually more meaning--

ful. 

Accurate experimental error analysis requires a precision signal 

source with very small but known distortion. The measuring equipment 

for the actual moments, must have an overall accuracy which is at least 

an order of magnitude better than that of the s .p.c. Measurements made 
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for the four moments for the standard FWR signals with the highest 

frequency of 1 KHz indicate that the total error is well within 1% 

for the fourth moment for a sample size C = 106 and a sampling rate of 
0 

10 KHz. The r.m.s. value of the input signal lias measured by the 

Hewlett Packard Hodel 3450 Multifunction digital meter, which has an 

overall accuracy of 0.01% in the lOV range. 



CHAPTER VI 

ITERATIVE ARRAYS FOR BINARY ARITH~ffiTIC 

6.1 Introduction 

The weighted feed logic, implemented for the s.p.c. uses special 

purpose simultaneous multipliers which complete a 24-bit binary 

multiplication within 50 ns. The design of such multipliers makes an 

·efficient use of the fact that for the weighting numbers, the multiplier 

and the multiplicand are interrelated and are in a restricted range. 

However the l'l.F.L. units cannot be easily generalised to accommodate a 

larger number of bits. Thus if instead of a 6-bit s.p.c., an 8-bit 

machine were required, then the entire design procedure outlined in 

Chapter III for the W.F.L. units would need to be carried out again, 

resulting in a cumbersome and costly hardware system. 

In this chapter, the use of iterative and near-iterative cellular 

arrays for arithmetic operations is investigated. A universal arithmetic 

cell (U.A.C.), based on the rules of binary addition and subtraction, 

has been developed for use in cellular arrays. The arithmetic operations 

considered are multiplication, division and square-root extraction. A 

method of intercoming such arrays for the realisation of the weighted 

feed logic is also described. 

129 
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6.2 Review 

It has now been recognised that there are many problems in the 

area of computer structures, especially useful in information process­

ing49, that involve the presentation of data in the form of a single 

tmiform array. The arithmetic operations of binary multiplication 

and division are typical problems in this area. Their problem structure 

suggests that it would be possible to design a group of processing 

arrays in which each array is composed of a number of identical cells 

interconnected in a regular fashion. An iterative array has been 

defined by Hennie49 as one that is composed of a number of identical 

logic cells with all connections to the neighbouring cells being regular. 

Arrays constructed in an iterative or in a near-iterative 

fashion have several advantages. Being made up of identical cells, they 

are economical to manufacture and repair. An array can be easily 

enlarged to accommodate more variables, e.g., an increased number of 

binary bits, by simply adding more cells. Since some of the processing 

can be carried out in parallel, a considerable improvement in speed 

usually results. Use of cellular arrays for arithmetic· operations was 

initially suggested by Hoffmann, Csillag and Lacaze50 , who proposed a 

simple multiplier in which the conventional add and shift algorithm 

was implemented in an iterative array. Significant contributions by 

. 51-62 several authors followed th1s work • The array structures proposed 

by these authors begin the multiplication process with the l.s.b. of 

the multiplier in the conventional manner and obtain a speed of 

multiplication for two n-bit numbers as (3n-l)T where T is the cell 

delay. Similarly division is implemented using a restoring type 
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algorithm57 which tends to be slo'". The array structures proposed were 

not easily applicable to other arithmetic operations, e.g., it is not 

possible to use a single array for both multiplication and division. 

The investigation described in this chapter differs somewhat 

from the above-mentioned work, in that it emphasises the concept of a 

universal logic cell for use in all arithmetic arrays. This method of 

implementation of arrays allows the same array to be used for multipli-

cation and division. 

6.3 The Universal Arithmetic Cell (U.A.C.) 

The Universal Arithmetic Cell (U.A.C.) proposed here has been 

60 developed using the truth-table for binary addition or subtraction 

shol~ in Table 6.1. In this table,C represents the carry-in for 

addition and a borrow-in for subtraction. A and B are the primary 

inputs. 

6.3.1. Addition 

The logic requirements for the sum S0 and the carry-out C0 can 

be easily simplified using three-variable Karnaugh maps, giving the 

following expressions. 

so = C[AB + AB] + C[AB + AB] 

so = A G) B 0 c (6.1) 

where G) denotes "exclusive OR" operation 

and co = A[B + C] + BC • 
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Inputs Addition Subtraction 

A B c so co D Bo 0 

0 0 0 0 0 0 0 

0 0 1 1 0 1 1 

0 1 0 1 0 1 1 

0 1 1 0 1 0 1 

1 0 0 1 0 1 0 

1 0 1 0 1 0 0 

1 1 0 0 1 0 0 

1 1 1 1 1 1 1 

Table 6 .1.: Binary Addition and Subtraction 



6.3.2. Subtraction 

A similar logic minimisation as for addition gives 

and 

B = A(B + C) + BC 
0 
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(6 .2) 

6.3.3. Generalised Arithmetic Operation and the U.A.C. 

Comparison of Equations (6.1) and (6. 2) !:bows that the sum and 

difference expressions are identical whereas the carry-out and borrow-

out expressions differ only in the variable A. Thus a generalised 

addition/subtraction operation can be described by the following 

equations. 

S=A0B0C 

P = W[B + C] + BC 

\~=AG F. 

(6. 3) 

The input F is a control input and decides the mode of operation. 

Binary arithmetic also requires the facility to inhibit an 

operation if desired, i.e., to let the primary inputs A and B go through 

the processor unaltered. This inhibiting decision is to be provided by 

an external control state D. Thus the generalised adder/subtractor with 

this inhibit control has logic equations which are 

S = [A 0 B 0 C]D + AD 

i.e. , S = A 0 BD 0 CD 

and P = W [B + C] + BC 

(6.4) 

To complete the design of the uni versa! cell, only a fel'< minor 

additions are required. Thus the states B, D and F are also made 



134 

available as outputs. The U.A.C. has five inputs and five outputs and 

is described by the following logic equations 

S =A 0 BD G) CD 

P = W[B + C) + BC 

where W =A 0 F 

U = D 

V = B 

G = F 

This cell together with one logic realisation is shown in 

Fig. (6•1). 

(6.5) 

A useful modification of the U.A.C. is to replace A in the 

expression for Sin Equations (6.5), by W. This modification requires 

no extra components and can be easily implemented using a binary adder 

and some additional logic gates. Its primary use is in cellular arrays 

for complement arithmetic operations60 

6. 4 Functions of the U.A. C. 

The arithmetic operations of the U.A.C. are controlled by the 

inputs F and D. The following operations are relevant. 

6.4.1. Controlled Adder F = 0 

The cell equations for S and P are 

s = A0 BD 0 CD 

(6.6) 
p = A[B + C) + BC 

The other outputs are as given in Equations (6. 3). 
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Figure 6.1: (a) Th~)Universal Arithmetic Cell. 
(b) A logic realisation of the U.A.C. 
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The cell is a controlled adder in which S is the sum and P is 

the carry-out. If D = 0, S = A and no arithmetic is performed. This 

mode is useful in binary arithmetic. 

6.4.2. Controlled Subtracter F = 1 

The logic equations for S and P become 

S =A 0 BD 0 CD 

P = A[B + C] + BC 
(6. 7) 

The cell is a controlled subtracter in which S is the difference 

and P is the borrow-out. If D = 0, no arithmetic is performed. The 

cell can be used in a division process using the restoring algorithm5? 

6.4.3. Conditional Adder/Subtracter D = 1 

The logic equations for S and P are 

S=AG)BG)C 
(6 .8) 

P = [A 0 F] [B + C] + BC 

The controlled U.A.C. is a full adder when F = 0 and when F = 1 

it is a full subtracter. This is the most useful n~de of operation 

since it enables a single array to be used as a multiplier or divider. 

6.4.4. Ternary Operation 

When both F and D are used as control lines, the U.A.C. can 

perform addition, subtraction or leave the inputs A and B unaltered. 

This ternary operation is useful in multiplication of signed binary 
6? numbers -. 



137 

6.5 Cellular Arrays Using the U.A.C. 

The universal cell operated as a controlled adder or subtractor 

. 51-60 may be used in any of the cellular arrays mentioned earl1er • 

However, these arrays implemented the slower algorithms for multiplication 

and division. One method of increasing the speed is to use some form 

of "carry save" techniques 63 for multiplication. For division or 

square-root extraction, considerable speed improven1ent can be obtained 

b . . 1 . h 63 y us1ng non-restor1ng a gor1t ms • 

6.5.1. Array for ~fultiplication 

Figure 6.2 shows a three row array with the additional logic 

required to perform multiplication of two 3-bit binary numbers, using 

a 'carry save' technique. The order of multiplication is reversed with 

the m.s.b. of the multiplier being considered first. The F inputs to 

all the cells are in state 0, i.e., they are used as controlled adders. 

To obtain the product LM, M is applied to the B inputs of the top rm.,. 

and all A inputs of this row are in state 0. The L inputs are applied 

to the row control lines D. The least significant: bit C inputs arc 

obviously zero. In Figure 6.2 L = 101 and M = 111 have been chosen. 

All the intermediate states are also shown. The product is obtained 

at the S outputs of the lowest row, with the m.s.b. being the logical 

OR of the 'carry outs' from the rn.s.b. cells of rows whose D inputs are 

1. This is implemented in each row by an k~D gate fed from the D 

input and the rn.s.b. carry output. The AND gate outputs constitute the 

inputs to the final OR gate. No AND gate is required in the top row 

since its carry out P is ah.,.ays zero. 
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The array requires n( 3~-l) cells for multiplication of two 

n-bit numbers. Also (n-1) 2-input AND gates and one (n-1)-input OR 
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gate are required. The states on the diagonal inputs and outputs of the 

cells appear without any delay. Propagation of the carry outs from one 

diagonal of cells to the next m.s.b. diagonal is simultaneous. Thus 

the l.s.b. of the product is available after a delay equal to a cell 

delay T. The next bit is available after 2T. The carry out of the 

m.s.b. cell of the last row is available after a delay (2n-l)T. If T g 

is the delay of the external A~D and OR gates then the maximum total 

delay for multiplication of two n-bit numbers is 

T = (2n-l)T + 2T sec. m g 

The multiplier array is also capable of performing the arithmetic 

operation L~i+K where L, M and K are all n-bit numbers. The K inputs 

are applied to the A lines which are marked K in Figure 6.2. Since 

a carry can result from the first row, an additional AND gate is 

required for this row. 

6.5.2. Non-restoring Division Array 

For a non-restoring algorithm the U.A.C. is used as a conditional 

. 60 64 adder/subtracter. The non-restoring algonthm , requires addition for 

the divisor when the remainder is negative. The division is performed by 

shifting the remainder to the left at each step (en· by shifting t:he 

divisor one position to the right) and either adding to or subtracting 

from the partial remainder. The D inputs of all the cells in the array 

for division are in state 1 and the F inputs are used as control lines. 

If Fn is the control input to the nth row and Pn is the borrow out/carry 
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out signal then the quotient bit Qn and the control Fn+l for the next 

row may be derived from the following truth table. 

Control to BorrOl"/Carry Quotient Control to 

nth rO\i Fn out signal P n ~ (n+l)th rO\i F l n+ 

1 0 1 1 

1 1 0 0 

0 1 1 1 

0 0 0 0 

Table 6.2.: Quotient bit & control states for (n+l)th row. 

Note that F =1 implies subtract mode and F =0 implies add mode. n n 

From the truth table one obtains 

The array for division by the non-restoring algorithm is shown 

in Fig. 6.3. The dividenu is applied to the A inputs and the divisor 

is at the B inputs of the top row. The F input to the first row is at 

1. For each row the borrow out/carry out signal P from the m.s.b. cell 

and the control signal F constitute the inputs to an exclusive-OR gate. 

The output of this gate is the quotient bit and also the control signal 

for the next rQw. Clearly the number of rows may be increased to obtain 

more bits of the quotient. In Fig. 6.3, division of binary L=Oll by 

M=lOO is treated. All intermediate states are also shown. 
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The number of cells required for division of t\-:o n-bit numbers 

to produce ann-bit quotient is the same as that for the multiplier. 

If however, m bits of the quotient are required, then the array will 

have m(rn + 2n - l) cells. 
2 

The total delay to produce the m-bit quotient will be 

where 

m(rn + 2n - 1)-r 
Td = 2 

T = cell delay and 

+ m-r sec. g 

T = exclusive-OR gate delay. g 

6.5.3. General Array 

A significant feature of the multiplier and divider arrays of 

Fig. 6.2 and 6.3is that their cell interconnections are the same, so 

that a multiplication or division operation may be readily performed by 

63 a small control logic block for each row of the array • An example 

of such a logic block is sho\m in Figure 6.4. Th th d" . L e n 1g1t n 
of 

th number L is fed to the block for the n row of the array. The block 

outputs for feeds to the nth row are Dn and Fn. 

block is applied to the A input of the nth cell 

The A output of the 
n 

of the top row. The 

block carry in/borrow in is P • Control of the array is exercised by n 

Z. For Z=O, A =0, D =L and the array acts as a multiplier with L as 
n n n 

the multir1licand and M the multiplier. When Z=l, A =L , D =1 and the 
n n n 

array is a non-restoring divider with L as the dividend and Mas the 

divider. The input M is applied to the first row in both cases so 

that the M inputs do not feature in the control logic. The outputs 

marked Rn feed an OR gate which is required for the m.s. b. of the product 

L~f in the multiplication rode. 



Z =0 Multiply 

Z= I Divide 

Fn-1 

Quotient bit On 
and Fn+t 

r--­

' 

"111 

--- --- - - -----l 

I 
I 
I 
I 

_ _j 

Rn 

To Final 

Figure 6.4: Logic block required ror each 
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A general array for processing two n-bit numbers \·lill require 

n control logic blocks in addition to the n-row array. The product will 

have 2n bits and the quotient n bits. The speed of processing is slightly 

reduced due to propagation through the control logic blocks. The array 

structure can be extended readily for larger numbers or for increased 

accuracy in division. 

6.5.4. Array for ~rultiplication of Signed Binary Numbers 

For the multiplier of Section 6.5.1., if a negative number 

(multiplier or multiplicand) is in two's complemmt form, then it has 

first to be converted to a sign and magnitude form before multiplication 

can be performed. 

The general multiplier considered here requires no prior know-

ledge of the sign of the multiplier or multiplicand. If the final 

ans\'ler is negative, then the product is in two's ccmplcment form. 

Such arrays can be used in data processing and would also eliminate the 

use of the precision rectifier in the s.p.c. The array uses an algorithm 

due to A.D. Booth65 and is summarised below for Jmltiplication of two 

signed n-bit numbers x and y. The number x is assumed to be a binary 

fraction having (n+l) bits and is written 

0 -1 x = x
0
2 + x12 + (xr = 0, l) 

where x
0 

is the sign bit. The rules for multiplication apply to each 

digit xk starting with the least significant bit. 

(i) If xk = xk+l, shift the existing sum of partial products one 

place to the right. 

(ii) If xk = 1, xk+l = 0 i.e., xk > xk+l' subti·act y from the existing 
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sum of partial products and shift the new sum one place to the 

(iii) 

right. 

If xk = 0, xk+1 = 1, i.e., xk < xk+l' add y to the existing sum 

of partial products and shift the new sum one position to the 

right. 

No shift is required after the last operation is carried out. 

Clearly the operation can start with the most significant bit of x, 

instead of with the least significru1t bit as originally proposed. 

Furthermore, if the multiplicand is shifted instead of the partial sum, 

the same end result is obtained with the advantage that some parallel 

processing may be used, resulting in an improvement in the speed of 

multiplication. It should be noted that Hhen a number with a 0 in its 

m.s.b. position is right-shifted, there will also be a 0 in the m.s.b. 

position of the new number. Similarly, for a number with a 1 in its 

m.s.b. position, there is also a 1 in the m.s.b. position after the 

right shift. 

ExaiD21~: Consider multiplication of y = 0.01 by x = -0.11. In two's 

complement form y = 0.01 and x = 1.01. 

(a) x
0 

= 1, x1 = 0, subtract y from 000 to give yp1 = 1.110 

Shift y one place to give y1 = 0.001 

(b) x1 = 0, x2 = 1, add y1 to y11 

Yp2 = 1.111 

Shift y1 to give y2 = 0.0001 

(c) x2 = 1, x3 = 0, subtract y2 from yp2 

y p3 = 1.1101 No shift is required at this step. 

The answer is 1.1101 (i.e., -0.0011) 
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The array for multiplication of signed binary numbers uses the 

C ' . h d f . 62 U.A. . s 1n t e ternary mo e o operat1on The iterative array is 

shown in Fig. 6.5. It is capable of multiplying two three-bit signed 

numbers. The A inputs to the first row are in state 0. The Y inputs 

are at the B lines of the first row with the m.s.b. at the extreme 

left cell. The B inputs to the m.s.b. cell of any row other than the 

first are obtained from the B inputs to the next cell in that row. 

Thus the diagonal lines present the multiplicand Y in a correctly 

shifted position for further processing. Furthermore, since no shift 

is required after the last operation, the final product is available at 

the S outputs of the last row, without any processing. A one-bit 

comparator is used to obtain the results of comparison of xk and xk+l 

th for the k row and provide the D and F inputs to that row. Thus 

[xk > ~.1 ] is the F input and [xk = xk+l] is the D input. If 

xk > xk+l is denoted by [xk > xk+l] = 1 then F = 1, D = 1 and the row 

with these inputs will be in the "subtract" rode. If xk < xk+l is 

denoted by [xk > xk+l] = 0, then F = 0, D = 1 and the row is in the 

"add" mode. When xk = xk+l' xk = xk+l' [xk = ~+1] = 0, therefore, 

D = 0 and the row perforws no arithmetic. In Fig. 6.5, multiplication 

of Y = 0.01 by X= 1.01 (i.e., +0.01 by -0.11) is treated. All inter-

mediate states are also shown. 

If both X and Y are two n-bi t ntuPbers including the sign bit, 

then the array requires n( 3~-l) cells and n 1-bit magnitude comparators. 

If the comparators have a delay of tc sec. each, then the mode 

of operation of each row is settled after 1' sec. Assuming a cell delay c 

oft to produce either S or T output, the l.s.b. of the produce appears 
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after a tirr~ T+Tc sec. The states on the diagonal lines appear without 

any delay. Therefore, the next bit of the produce will be available 

after a delay 2T+Tc, the third bit after a delay 3~+Tc etc. Since there 

are (2n-l) diagonals of cells, the delay in obtaining the m.s.b. of the 

product wi 11 be 

T = (2n-l)• + Tc sec. gm 

This delay is comparable to the delay of the general multiplier/ 

divider array described earlier in this chapter. 

6.5.5. Array for Sguare-root Extraction 

A non-restoring division array can be readily extended to yield 

a square-rooting array which is near-iterative, but has a simple inter-

cellular connection pattern. 

The non-restoring square-root algorithm~ be outlined as 

follows: 

(a) The binary number N is paired off starting from the radix point. 

Let these pairs be An, An-l' etc. 

(b) The first minuend is 01. Subtract this from A . 
n 

If the remainder 

is positive, 1 is entered in the square-root answer. 01 is 

appended to the square-root developed so far, shifted by the correct 

number of times and a further subtraction is attempted. 

(c) If the result of subtraction is negative, then 0 is entered in the 

square-root. 11 is appended to the square root developed so far 

and this number is added to the remainder after being shifted 

correctly. 
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When the remainder is positive, the square-root is al\iays 1, 

01 is appended and a subtraction is performed on the next cycle. If 

the remainder is negative, the square-root bit is 0, 11 is appended 

and an addition performed on the next cycle. 

Fig. 6.6 shows a decision tree of the possible numbers to be 

added or subtracted in each cycle. The square-root bit developed in 

the previous cycle is SA and is also indicated. 

An iterative array for square-root extraction is shown in 

Fig. 6.7. The D inputs are at 1 in each row. The number N is applied 

in pairs to each row. The least significant number to be added or 

subtracted is always 1 (Figure 6.6). Furthermore, the next two bits 

are always SA and SA, SA being the square-root bit developed in the 

preceding cycle. Since SA is also the F inputs to a row, the next two 

feeds may be obtained from these lines, as shown in Figure 6.7. The 

remaining bits of the numbers of Figure 6.6 are obtained from the 

diagonal outputs of the preceding row. As for non-restoring division, 

an exclusive-OR gate is required for each row to produce the square-root 

bit and F input to the next row. In Figure 6.7, the square-root of 

1001 is treated. All intermediate states are also shown. 

The square-root array requires n(n+l) cells to extract an n-bit 

square-root of a 2n-bit number. If the cell delay is T and the exclusive­

OR gate delay is T then the total delay in obtaining the n-bit square-g 

root will be 

T = n(n+l)T + nT sec. s g 
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6.6 BCD fl'tul tiplication 

It is possible to perform complex arithmetic operations such as 

BCD multiplication by connecting the arrays of the preVious section 

in an iterative system. The iterative array proposed here for BCD 

multiplication, uses sub-arrays, each of which has two basis operations. 

The first operation is multiplication of two binary numbers and additions 

of any carry-ins. The second operation is division by a fixed divisor 

decimal 10(1010 binary), of the multiplication results. The general 

multiplier/divider arrays can be used in this application. Thus, 

referring to Fig. 6.8, the multiplier together with an extra adder 

produces [A·D + B + C] and the divider, divides this by 10 and produces 

a remainder P and a quotient Q. The operation of such a sub-array is 

then given by the follol'ling equations. 

P = Rem.[{A•D + B + C}ilO] 

Q = Quo.[{A·D + B + C}/10] 

F = D 

G =A 

Note that in Fig. 6.8 all the literals are BCD variables, i.e., 

each input/output line represents four lines of a BCD digit. 

The iterative array for BCD multiplication is shown in Fig. 6.9. 

Decimal equivalents of the BCD digits are used. ln Figure 6.9, the 

operation [999 x 999 + 999 + 999] is treated. All intermediate states 

are also shown. Each sub-array multiplies two BCD numbers and adds any 

carry-ins to produce a result which cannot exceed 99. This result is 

then divided once by decimal 10 to produce the BCD remainder and a BCD 

quotient. The quotient becomes the carry-in to the next m.s.b. sub-array. 
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Cell for BCD arithmetic. 
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Each sUb-array thus consists of a 4-bit by 4-bit binary 

multiplier and a divider to accommodate a seven-bit dividend and a 

four-bit divisor. Since both of these processes can use the same logic 

structure, the sub-array can be realised as a single LSI function. 

The BCD multiplier requires n(3~+l) sub-arrays to multiply 

two n-digit numbers. For a sub-array delay of Ts' the first digit of 

the product is available after a time T
5

• The carry-outs from one 

diagonal propagate simultaneously to the next m.s.b. diagonal, there 

being parallel processing in each diagonal set of sub-arrays. The 

BCD multiplication is therefore completed within 2nT 
5 

sec. Addition 

of K
1 

and K2 involve no extra time delay. 

6.7 ~lication c,f Iterative Arrays in W.F.L. Units 

The cellular arrays can be interconnected to obtain the weighting 

numbers for the three higher moments. Since the arrays required are 

all identical to each other, the entire W.F.L. unit design is considerably 

simplified. 

The weighting number expressions for the three higher moments are 

W = r(r + 1) r,2 

_ r(r + 1)(2r + 1) 
l'lr,3 - 2 

2 2 
W 4 = r (r + 1) r, 

(6.9) 

The maximum valu.e of r is 63 for a 6-bit quantisation process. 

It is seen that only multiplier arrays are required. The array described 

in section 6.5.1. is capable of realising the product LM+K where L, M 



and K are all n-bit numbers. 

The weighting number \\' 
2 

can be realised with a single r, 

multiplier array in which L=M=K=r. A 6-bit array is required. To 

realise W 3, the expression r(r+l) for W 2 may be used. Thus let r, r, 

R = r(r + 1) 

R 
then wr, 3 = 2 {2r + 1} 
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(6.10) 

Division of R by 2 is a simple right shift of R by one bit and 

can be easily accomplished by wiring R into an array, with a right shift. 

Thus, W 
3 

is realised as r, 

R 
W =R·r+-2 r,3 

The implementation of W 4 requires the realisation of R· R, r, 

where R = r(r + 1). It is possible to simplify a ntul tiplier array and 

obtain a special squarer~- However the general multiplier array can 

also be used. The design of the W.F.L. unit, using arrays is illustrated 

in Fig. 6.10. The arrays required are a 6-bit by 6-bit multiplier 

for W 2, a 6-bit by 12-bit array for W 3 and a 12-bit by 12-bit r, r,. 

multiplier for W 4• r, 

The total delay is obtained by calculating the delay in 

obtaining W 4• Thus r, 

Assuming 

Delay to compute W 2 is r, 

T(W 2) = (2n-l)t + 2t r, g 

= l3't 

t = t g 

and TO'I 4) = l3t + (2 x 12 - l)t + 2-r sec. r, 
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T(W 4) = 38• sec. r, 
Typically •=10 nsec. Hence the total delay is 380 ns., to 

realise all the weighting numbers. 

In the special purpose computer designed, ~he first moment 
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uses all eight bits of the a.d. converter, each bit being available at 

1 J,Jsec. interval. The other three moments use 6-bits. Therefore, the 

weighting numbers for these three moments would be available before the 

accumulation process which begins after the eight-bit conversion is 

complete. 

6.8 Comments 

The iterative arrays offer a convenient me~hod for implementing 

the arithmetic operations which arise in special purpose computers. 

The simplification achieved by using such arrays is seen from Fig. 6.10. 

It is quite conceivable that in the near future, such arrays will be 

available as LSI ftmctions. The universal arithmetic cell developed 

in this chapter is shmm to have a versatility which was not available 

in the cells proposed earlier. 



CHAPTER VII 

CONCLUSIONS 

The use of above-level probabilities results in simple algorithms 

for the moments of a random signal. A special purpose computer using 

such algorithms for the first four moments has been designed and 

constructed. Some tests have been carried out which indicate that the 

overall accuracy of the s.p.c. is within 1% for all four moments for 

commonly-encountered random and periodic signals. 

The concept of the weighted feeds is simple but a powerful one 

since it enables fast processing without storage of the samples of 

the input signals. Simultaneous parallel multipliers have been used 

in the weighted feed logic units. Design of-these multipliers makes 

an efficient use of the fact that the multiplier and multiplicand are 

interrelated. Logic minimisation of these units, therefore, results in 

economy. 

Logic minimisation has received considerable attention in the 

past. However, with the reduction in cost and improved reliability 

of integrated circuit modules, any multiple output logic problem must 

be analysed carefully before attempting a minimisation. In many cases, 

cost of computer time becomes excessive compared to savings in 

component costs resulting from a minimisation. In the minimisation 

approach adopted in Chapter III, a compromise has been used in which 

a near-minimum logic solution is sought for the multiple output weighted 

feed logic within a reasonable computer-ru.TJ. time. 

159 
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In the implementation of the s.p.c., the significant feature 

is the direct computation of the standard deviation (a) from first and 

second moment. The counter-equation algorithm used in this system is 

simple and can be readily used in other direct computations (e.g., 

reciprocals, approximations to functions, etc.). 

A comprehensive error analysis for the four moments has been 

carried out. The most important error sources are 

(a) Approximations rutd quantisation of the input, 

-(b) Level offsets in rectifier and a.d. converter, 

(c) Finite time of measurement, 

(d) Finite sampling rate and finite aperture time of the a.d. converter. 

Errors due to (c) and (d) can often be reduced in practice. Thus, 

depending on the frequency of the input, the time of measurement should 

be chosen such that an appropriate sample size is obtained. Use of a 

sample and hold circuit before a.d. conversion, would reduce finite 

1 aperture time effects and if the ratio f/p does not exceed 20 , then 

the finite sampling rate errors are also negligible. Analysis of the 

other remaining errors sho\~S that beyond six-bit quantisation for 

higher moments, the reduction in errors is small whereas the complexity 

of the W.F.L. units increases considerably. 

Design of W.F.L. units, using the simultaneous parallel 

multipliers, although compatible with the presently available IC 

components, tends to be complex and time consuming. Furthermore, the 

design cannot be easily extended to a higher number of bits. Simplicity 

of design would be achieved by using iterative or near-iterative 

arithmetic arrays. The universal arithmetic cell developed for use in 
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these arrays is extremely versatile; its use in other arithmetic 

operations has been demonstrated. The W.F.L. units for a s.p.c. using 

6-bit quantisation would require only three multiplier arrays. With 

the current progress in LSI technology, it is possible that in the 

fOrseeable future such arrays will be available as LSI modules. 

The use of such LSI arrays in arithmetic operations would also 

make the design of substandard digital instruments an attractive 

possibility which should be investigated further. In such designs it 

is apparent that methods of improving speed of operation should be 

sought. A possibility in this area is the design cf data-dependent 

ar1·ays in which some arithmetic cycles are eliminated depending on 

. 66 67 1nput data , Special purpose computers using such arrays are also 

possible for other applications such as multivariate averaging and 

convolution, the latter being useful in digital filtering. 

Another area for possible investigation is the use of the s.p.c. 

for the four moments for real time applications. An example is the use 

of the second rnO~nt algorithm to compute J:v2dt, v being an error 

voltage and obtain an optimum control strategy. Finally, the first 

four moments may also be used for approximation of the probability 

density fw1ctions to be used in non-linear filtering algorithms2• 
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APPENDIX A 

Initialiser clear all 

dimensioned arrays. 

,. 
v = 10 

,, 
Sample Size co = 104 

~. 

RN = 64 

,It 

QUANT = V/RN 

,, 
J = 0 

,, 
2 

Figure A Flow-chart procedure for evaluation 
of Direct Decimal Readouts for Co = 104 



J = J + 1 

VEl(J) = QUANT*(J-1) 

VE2(J) = QUANT*(J) 

Compute all Direct Decimal 
Readouts as in CH. IV for 

Co = 104 

intervals an 
their DDRs. 

STOP 

Figure A a Contd. 
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ANGE VOLTAGE R 
(VOLT S) 

o.-oooo o. 1563 

0.1563 o. 3125 

0.3125 o. 4688 

0.4688 o. 6250 

0.6250 o. 7813 

0.7813 o. 9375 

0.9375 1. 0938 

1.0938 1. 2500 

1. 2500 1. 4063 

1.4063 1. 5625 

1.5625 1. 7188 

1. 7188 1. 8750 

1.8750 2. 0313 

2.0313 2. 1875 

2.1875 2. 3438 

2.3438 2. 5000 

2.5000 2. 6563 

2.6563 2. 8125 

2.8125 2. 9688 

-

APPENDIX Aa CONTD. 
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-. 
FIRST SECOND THIRD FOURTH 
MOMENT MOlVIENT MOMENT MOMENT 

o.oo o.oo o.oo o.oo 

156.25 4.88 .12 • 00 

312.50 14.65 .59 .02 

468.75 29.30 1.63 .09 

625.00 48.83 3.47 .24 

781.25 73.24 6.34 .55 

937.50 102.54 10.47 1.06 

1093.75 136.72 16.09 1.89 

1250.00 175.78 23.42 3.11 

1406.25 219.73 I )2.70 I 4.85 I 

1562.50 268.55 44.16 7.24 

1718.75 322.27 58.01 10.42 

1875.00 380.86 74.50 14.55 

2031.25 444.34 9).85 19.80 

2187.50 512.70 116.29 26.35 

2343.75 585.94 142.05 34.40 

2500.00 664.06 171.36 44.18 

2656.25 747.07 204.44 55.90 

2812.50 834.96 241.53 69.82 

2.9688 3· 

-..n..~----11:--

1250 2968.75 927.73 2:8:~J 
. -........ -· 

Table A: Direct Decimal Readouts f'or 37 
four moments, n = 64, Co = 104 
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---
VOLTAGE RANGE FIRST SECOND THIRD FOURTH 

(VOLTS) MOMENT MOMENT MOMENT MOMENT 
• Ol= -- ----~--

3.1250 3.2813 3125.00 1025.39 328.64 105.27 

3.2813 3.4375 3281.25 1127.93 379.11 127.36 

3.4375 3.5938 3437.50 1235.35 434.51 152.?6 

3·5938 3-7500 3593·75 1347.66 495.06 181.78 

3.7500 3.9063 3750.00 1464.84 560.99 214.76 

3.9063 4.0625 3906.25 1586.91 632.52 25202 

4.0625 4.2188 4062.50 1713.87 709.90 293.94 

4.2188 4.3750 4218.75 1845.70 193 • .3.3 340.89 

4 • .3750 4.5.31.3 4.375.00 1982.42 88),06 .393.24 
I I 

4.5.31.3 l.j-,6875 1~531. 25 2124.02 979 • .32 451.41 

4.6875 4.84.38 4687.50 2270.51 1082 • .32 515.80 

4. 8L~ )8 5.0000 4843.75 2421.88 1192 • .31 586.84 

5.0000 5.156.3 5000.00 2578.1.3 1309.51 664.99 

5.1563 5 • .3125 5156.25 2739.26 1434.14 750.69-

5.3125 5.4·688 5.312.50 2905.27 1566 .4·5 844.42 

5.4688 5.6250 5468.75 3076.17 1706,65 946.66 

5.6250 5.7813 5625.00 .3251.95 1854.97 1057-92 

5· 7813 5-9375 5781.25 .3432.62 2011.65 1178.71 

5.9.375 6.0938 5937.50 .3618.16 2176.91 1309.55 

6.09.38 6.2500 609.3.75 )808.59 2350.99 1451.00 

. 
-._-~-..-~-"""- ·-·- . ·- --------~ 

Table A: Contd. 
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-
VOLTAGE RANGE FIRST SECOND THIRD FOURTH 

(VOLTS) MOMENT MOMENT MOMENT MOMENT 
~- -- --

6.-2500 6.4063 6250.00 4003.91 2534.10 1603.62 

6.4063 6.5625 6406.25 4204.10 2726.49 1767.96 

6.5625 6.7188 6562.50 4409.18 2928.37 194L~. 62 

6.7188 6.8750 6718.75 4619.14 3139.98 2134.21 

6.8750 7.0313 6875.60 4833.98 3361.55 2337-33 

7.0313 7.1875 7031.25 5053.71 3593.30 2554.62 

7.1875 7 3438 7187.50 5278.32 3835.47 2786.71 

7.3438 . 7.5000 7343.75 5507.81 4088.28 3034.27 

7.5000 7.6563 - 7500.00 5742.19 4351.96 3297.97 

' ' • 
I 3578.50 

, 
7.6563 7.8125 7656.25 5981.45 . 4616.74 

7.8125 7.9688 7812.50 6225.59 4912.85 3876.55 

7.9688 8.1250 7968.75 6474.61 5210.52 4192.85 

8.1250 8.2813 8125.00 6728.52 5519.98 4528.11 

8.2813 8.4375 8281.25 6987.30 5841.46 4883.10 

8.4375 8.5938 8437.50 7250.98 6175.17 5258.55 

8.5938 8.7500 8593.75 7519.53 6521.37 5655.25 

8.7500 8.9063 8750.00 7792.97 6880.26 607).99 

8.9063 9.0625 8906.25 8071.29 7252.09 6515.56 

9.0625 9.2188 9062.50 9354.49 7637.08 6980.77 

9.2188 9·3750 9218.75 8642.58 8035.46 7470.47 

. -- --- ·-· ~-

Table A: Contd. 
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-
VOLTAGE RANGE FIRST SECOND THIRD FOURTH 

(VOLTS) MOMENT MOMENT MOIYIENT film1ENT 
- . __ , ·--

9. 3750. 9·5313 9375.00 8935.55 8447.46 7985.ll-9 

9.5313 9.6875 9531.25 9233.40 8873.30 8526.69 

9.6875 9.8438 9687.50 9536.13 9313.22 9094.95 

9.8l~J8." 10.0000 984).75 9843.75 9767.45 9691.14 

Table A: Contd. 



APPENDIX B 

COMPUTATION OF SYSTEM QUANTISATION ERRORS 

The following notes apply to the flow-charts for the 

computer programs, of Figure B. 

(a) Periodic Waveforms have been assigned numbers as follows. 

WAVEFORM NUMBER 

Sine Wave 1 

FWR Sine Wave 2 

Triangular Wave J 

FWR Triangular Wave 4 

Rectangular Wave 5 

FWR Rectangular Wave or 
6 DC Input 

(b) Two passes are made through the computation procedure. 

(i) First Passa Peak of input waveform is varied in 

the level interval 255-256 for first 

moment and in the interval 6J-64 for 

the other three moments. For each 

peak position, the quantisation error 

is calculated using the actual moments 

algorithms. 

(ii) Second Pass 1 The nurnber of quantisation levels n 

is varied in the range 8 to 1 02l~. The 

peak position o-r input is varied in the 

interval (n-1) ton. The maximum and 

minimum errors are calculated for each 

value of n. 
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n = 64 & 
n = 256 
for m1 

NO 

Initialiser clear all 

dimensioned arrays. 

K = 0 

K = K + 1 

! = 0 

I = I + 1 

Choose n from the stored 
values in the range 8 to 

1024. 

Figure B: Flow-cha.rt procedure for calculation of 
system quantisation errors. 
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Calculate and store 100 
peak positions, equally 

spaced in tho last 
interval for the value 

of n selected. 

For waveform number K, 
calculate for each peak 
position, all moments 
and Pr for all levels 

0 to n. 

Calculate the four 
moments using the 
moments' algorithms. 

Calculate % error 

for each moment. 

Figure B: Contd. 
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YES 

Go to E 

NO 

Sort all error values 
for each moment. 
Print the max. and 

min. values 

STOP 

fi~ure B: Contd. 

NO 

172 

To F 

To D 

To C 

NO 



APPENDIX C. 

Initialise, and clear 
all dimensioned arrays. 

~--------------------------A 

Read in value of n, the 

number of quantisation 
levels. 

J = 0 

J==J+l 

= o. 01* J 

J{() 

Figure C: Flow-chart procedure for calculation of 
quantisation errors for Ga.u.ssia.n Noise. 
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YES 

For DEVI (J) & 
Gaussian input, 
calculate all moments 
& Pr for all levels. 

To F 

J = 0 

J = J + 1 

I = 0 

I = I + 1 

Figure C: Contd. 

YES 

STOP 

YES 

For DEVI (J) & HWR 
Gaussian input, 
calculate all moments 
& Pr for all levels. 

To F 
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For DEVI (J) and FWR 
Gaussian input, 
calculate all moments 
& Pr for all levels. 

F------------------------~ 

Use the moments• 
algorithms and calculate 
all four moments. 

NO 

Figure C: Contd. 
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To C 

To A 

NO 
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To B 

NO 

STOP 

Figure Q..:. Contd. 



,~ 

2 A 

APPENDIX D 

Initialise and clear 
all dimensioned arrays. 

M ::; J 

, 
MN = 0 

-,~ .... c 

MN = IvlN + 1 

I = 0 

-,, -
I = I + 1 

, 
NO I = 1? 

YES ,II 
2 

Figure ns Flow-chart procedure for evaluation 
of errors due to level offsets. 
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FP RATIO = 0.002 

N = 4 

JK = JK + 1 

N = N*2 

To P 

NO 

NO 

NO 

J = 0 

J = J + 1 

FP RATIO= J*0.00005 

N = 64 

Store 10 values of 
offset voltage 1-10mV. 

Figure D : Contd. 
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FWR Sine Wave. Error 
calculation for all 

offsets. 

FWR Triangular Wave. 
Error calculation for 

all offsets. 

FV'IR Gaussian Noise. 
Error calculation 
for all offsets. 

Print errors for. 
all offsets. 
Print N & FP 

Figure D: Contd. 

To D 

NO 

179 
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T B 

NO T A 

p 

To C 
YES 

STOP 

Figure Da. Contd. 



AP.PENDIX E 

ERRORS IN HIGH'€R ORDER MOMENTS ---- ----·-------
DUE TO FINI TZ MEAS UREi'ilENT TIME. 

The following analysis has been suggested by Dr. s.O.Rice. 
of the Bell 'l1elephone laboratories, U .. s .A. 

Consider for example the forth moment of a , 
random variable x measured over a finite time T. 

Let 

{1) 

where x(t) is a. stationary Gaussia"l process with two--sided 
pvwtH~ sp~ctrum \i(f) and aui,;o-,·correlation R( "t ). ·then 

co 

R( ) I e+i27rf-rW(f)df 
'! = _co 

(2) 
-co 

2 I' (J = 
_co 

~~r( :r) df 

..... 

The ensemble average < y) is · 

(y)= JT<x4(t))dt = 
0 . 

- 3cr4T 

(3) 
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The ~~cond ·moment of·y is 

. . 

T 2 T T ·-- · 

~ [t ctt1 ( 3a 
4

) J + .f 
0 

d t 1 J ctt2 [ 7.2,/~R2 ( t 1 -t2 ) + 21m
4 
(t1 -t2 ) J 

0 

~ l( y )]2 + 2 f d,. ( T-,..) [ 72,/~R2 {-c) + 211R4(,.) J 
0 

i·Te have 

'l'he variance of y is 

T . 

( ;
2

) - ( y )
2 ~ 48 t (T--rl[ 3cr 4R

2
( -.:) + R1~(...) }-r 

For rrflat 11 band-limited noise ~'lith 

R( ·r) 
f 

~r 
c 

lfl < :rc 

rrl > :fc 

== _Z__ ____ sin(21rf -r) 
27rf -r c c ·. 
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and the integral for the variance of y can probably be evaluated 
in terms of Ci and Si functions. 

The expression for< x1~(t1 )x4 (t2 )) can be obtained 

as the coefficient of (iv) 4 (iv) 4/(4!l~!) in _the expansion of 

iuxl +ivx2 r 2 .2 2 ] 
( e ) = expL- cr2 (u +v ) - R(t1-t2 )uv . · 

1-fnen T becon~es large we have 

(y2)- (_y)2:::: 1~88T2 Jl\cq r 3crl~R2(1.") + R4(1.")J.d1." 
. < Y )2 9cr T 0 L 

. The integral of [x(t) ]~ c~n also be evaluated in 
the s rune ~·my! 
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