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SCOPE AND CONTENTS:

A special purpose computer (s.p.c.) is describesd which provides
decimal readouts of the first four time-averaged moments and of the
cunulative amplitude distribution of a randomly varying veoltage.

There is no th@@f@tigaj low frequency Iimit, the upper f{requency being
about 5 kHz for a 99.73% confidence limit of a 1% error. Measuremsnts
can be made in é oine cycle mode (for peviedic inputs) or in a fixed-
time or fixed-sample-size mode. Readouts of all moments are available
immediately at the end of the measurement time so that the s.p.c. can
be used fof'rﬁal-time applications; A simple method for the direct
computation of standard deviation from the measured values of the first
and second momunts is also described. The errors arising in ths s.p.c.
are investigated theoretically and it is shown that for nmany commonly-
encountered signals the overall error is within 1% for a1l moments.
Iterative end near-iterative arrays using universal arithmetic cells are

proposed; these would simplify the design of the z.p.c. considerably.
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ABSTRACT :

A portable special purpose computer (s.p.c.) is described which
provides decimal readouts of the first four momemnts of a fluctuating
voltége v on four separate registers. A fifth register provides a
readout of the measuring time which can be within the range 10 ms. to
30 Hrs. The s.p.c. can be switched to another mode which provides a
measure of the cumulative émplitude distribution of v within sixteen
positive and negative levels. Salient characteristics of the s.p.c.
are as follows:

(a) 'There are no low frequency limitations. The upper frequency
limit, established by error considerations, is about 5 kHz with 99.73%
confidence that the error is withiﬁ 1%.

(b) At the end of the measuring time T, all the four moments are.
immediately available in magnitude and sign.

(c) The outputs can be available in any code, the only change
necessary being in the code of the counting readout registers.

(d) All computations for a sample are completed before the next
sample arrives so that programming and unnecessary storage facilities
are eliminated.

The voltage input v is rectified and sampled systematically by
an equi-interval a.d. converter. The samples, together with the sign
bit, are fed into special purpose digital multipliers based on a
"weighted feed'" principle. The outputs from these multipliers, with the
sign bit, are fed to accumulators via parallel adders for each of the
moments. The overflows of these accumulators are shown to be contribu-
tions to the various moments and are fed to the decimal display registers.
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Direct computation of the standard deviation (o) of the input, from
measured first and second moments has also been investigated.

A theoretical analysis of the various errors whicH occur in
such an s.p.c. has been made. Results indicate that for most signals
the overall error is within 1% for all four moments.

Finally, the development of a universal arithmetic cell, for
use in iterative and near-iterative arrays, is reported in this thesis.
It is shown that use of such arrays in the arithmetic units of the

s.p.c. can lead to a considerably simplified design.
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CHAPTER 1

INTRODUCTION

In recent years, statistical methods have been successfully used
to solve engineering problems especially in the fields of optimal contwrol,
communication and detection systems. One aspect of these applications is
the need for measured statistics of a random signal. The more commonly
required statistics are the probability density function and the various
time averages (e.g., auto- and cross-correlation, moments). Numsrous
techniques for probability density function and correlation analysis have
bzen reported in the cngineering literature. However, for the analysis
of statistical moments, the trend has been towards the use cf a general
purpose computer with a.d. conversion facilities. In this thesis, the

of statisticsl

wn

development of a special purpcse computer for the analyei
mements, is reported. Programuing requirements are entirely eliminated;
also the computer may be used in real-time applications,

Assuming that the random signal is at least quasi-ergodic, the
time averages and ensemble averages are equivalent, Thus the time
. 'k . . . .
average of v where v is the random signal, is defined as

3 T—)oo]

T

m = Lim~£[ vk dt (1.1)
0

This may also be defined as an expectation integral.

+0

} = [ VREQ(Y) dv | | (1.2)



where f(v) is the probability density function of v. The quantity My is

called the kth

order moment of v.

The importance of moments in statistical analysis is well
establishedl. Thus a statistical distribution is completely specified,
once all its moments are known. In some cases it is possible to represent
the physical phenomenon under investigation by a statistical distribution
of known properties and theoretically justify such a representation.
However, in cases where such a theoretical justification can not be made,
the moments may be used to obtain an empirical distribution. Such
empirical distributions are useful in simulation studies where the random
variables to be used are selected from the derived distributions. Their
use has also been suggested recently by Kuo and Rowland, in a suboptimal
adaptive fiitering algorithmz. This algorithm requires only the first
four moments of a specified random variable.

Analytic techniques3 for approximating the statistical distribu-
tion have also been developed, These use an orthogonal expansion whose
coefficients are the moments of the random variable. Karl Pearson4,
on the other hand has suggested the use of a family of curves, each member
of which is completely specified by the first four moments of the random
variable. Such approximate representations are useful in evaluating a
system performance in terms of its component performances.

The advantages of digital techniques are now well recognized for
performing arithmetic operations. These features, coupled with readily
available and accurate analog to digital converters, make the use of
digital methods very attractive for certain types of measurements. One

particulay area for such an application is that of statistical analysis.



Earlier efforts in instrumentation for this purpose have been mainly in
the sequential determination of the probability demnsity function and
correlation measurements. In the measurement of probability density

function5’6’7’8’9

, slicing circuits or comparators are used to simulate
a voltage window (or interval) AVz about a voltage reference Vz. The
time spent by the random voltage in this interval is measured digitally
and represents the probability that the voltage lies in the interval

AVZ about Vl' Several analogm’11

and digital methods have been proposed
for autocorrelation and cross-correlation measurements. The correlator
design proposed by Cheney12 is significant since it uses the residue
nunber system for the arithmetic processing.' This number system13 offers
the advantage that multiplication can be as fast as addition, but has
the disadvantage of special storage requirements. Furthermore division
and overflow are not clearly defined in the residue number system. A
substantial improvement in correlator design is that proposed by Kitai
and Masukol4. This design uses a unique arithmetic processing system
and requires very little storage for the actual processing. Fdrther-
more, the reading of autocorrelation function for a given time delay
T4 is available immediately after the sampling of the input is terminated.
Clearly for T4 © 0, this system yields the value of the second moment.
Instrumentation for the statistical moments by ensemble averaging
has received very little attention in the past, the emphasis always being
on the use of a general purpose computer for such snalysis. One of the
earliest efforts was by Deist and Kitails, who proposed a digital r.m.s.

veltmeter. An algorithm for the second moment was developed and an

iterative procedure was propased for calculating the r.m.s value of a



voltage. A special purpose digital instrument using this algorithm was
reported by Kitai and Braithwaitels. An extensive theoretical and
experimental error analysis of this instrument was carried out by the
present author and has been reported elsewhere17. This analysis indicated
the necessity for use of higher number of quantisation levels in order to
reduce the errors. Feasibility of the basic processing used in the 16-
level instrument16, for use in the measurement of the.higher order moments
was also established. Hanrahan18 has recently considered the use of
various types of quantisers in real time averaging. Several standard
numerical integration formulae are analysed and the error characteristics
are given for first two moments, for autocorrelatiom and Fourier analysis.
Some design aspects of individual modules for use in the Tangent Formula
for numerical integration are also described.

This thesis deals with an extension of the above mentioned
work17 and describes the design and error characteristics of a special
purpose digital computer (s.p.c.) for the mezsurement of the first four
moments of a random signal. The salient features of this computer are
as follows.
1. There are no low frequency limitations. The upper frequency
limit is established by certain error considerations and is about 5kHz.
2. At the end of the measurement time T, all four moments are
immediately available in a sign and magnitude form‘ The s.p.c. is
therefore particularly suitable for real-time applications.
3. The outputs are in a decimal code but can be displayed in any

other code, the only change required being in the logic of the dispiay

uynits.



4. The above-level ampiitude probability distribution is readily
measured in an alternate mode of operation, incorporated in the s.p.c.
5. -Real time measurement of the standard deviation o from the
continuous computation of first and second moments can also be made.

A technique for this purpose has been developed and is reported in this
thesis.

6. The sample size or the measurement time can be varied so that
the special purpose computer can be programmed for long measurement runs.
7. The s.p.c. can be readily modified to accept either a continuous
signal and use its own a.d. converter or to use ready-quantised data

as input.

8. Since all computations for a sample are complete before the next
sample arrives, all programming and unnecessary storage facilities are
eliminated.

The properties of amplitude and time quantisation of a continuous
signal are reviewed in Chapter 2. The algorithms, for the first four
moments, to be used in the s.p.c. are developed and general design
requirements are considered. Calculation of the kth moment generally
requires at least k multiplications per sample of the input signal.

Such a method is not suitable for real time computations since it requires
excessive computation time. The weighted feed concept developed in this
chapter is particularly powerful for such purposes since it requires only
one multiplication and addition cycle for each sample to accumulate the
kth moment. Furthermore, use of precise rectification of the input signal
simplifies the design of the arithmetic units considerably.

Chapter 3 deals with the analysis of the weighted feed concept



used in the arithmetic unit of the s.p.c. Simuitaneous binary multipliers
using combinational logic have been designed, for the purpose of calcula-
ting the weighting numbers, using general minimisation techniques. These
techniques are suitable for multiple output - multiple input logic system
minimisation. Computer programs for this minimisation are also discussed
in this chapter.

In Chapter 4, a hardware implementation of the s.p.c. is con-
sidered. It is shown that use of one-step parallel binary adders in
Qirculating accumulators considerably simplifies the timing requirements.
Complete design details of the individuval units of the s.p.c. are treated.
Details of performance tests by using direct decimal readouts for d.c.
inputs are also given. A novel technique for computation of standard
deviation is described in this chapter.

Results of a theoretical error analysis are given in Chapter 5.
Individual sources of errors are discussed. Extensive use has been made
of a general purpose computer for calculation of these errors. The
computer programs and the results obtained are also described. These
results indicate that little improvement in errors is achieved beyond a
quantisation of 128 levels, and that theerrors due to level inaccuracies
in the a2.d. converter tend to swamp the cther errors in such cases.

In the design of special purpose computers, the most critical
unit is the arithmetic processor. This is aiso true of the s.p.c.
designed for the analysis of moments. The arithmetic umit described in
Chapter 3 is a hard-wired special purpose simultaneous multiplier, which
cannot be easily extended for, say, a higher number cf guantisation

levels. Hence arithmetic processes using iterative arrays of logic cells



were investigated and the results are described in Chapter 6. Fully
iterative and nearly-iterative arrays have been developed for binary
multiplication, division and square root extraction. These arrays use
a uniQersal logic cell based on the principles of ordinary binary
arithmetic. Use of such arrays, implemented as LSI functions, would
simplify the design of the s.p.c. Methods of interconnecting such
arrays for the realisation 6f the weighting numbers for the moments are
also described in this chapter.

In Chapter 7, the significant aspects of the s.p.c. are reviewed.
Possiblelareas for further investigation are suggested. It is felt that
design of special purpose computers for other measurements is feasible
and that the weighted feed concept is an extremely powerful technique
for use in such designs. Investigation of cellular arrays for complex
arithmetic operations would considerably simplify the design of special

purpose computers.



CHAPTER II

REAL TIME ALGORITHMS FOR STATISTICAL MOMENTS

2.1 Introduction

Digital computation from analog data requires that the signal
be sampled at discréte time and quantised in amplitude. The number of
bits used in the quantisation process is restricted in order to reduce
the complexity of the arithmetic processing units. In special purpose
computers unnecessary storage should also be eliminated. Furthermore
since real time applications are an importantAconsideration, it is
necessary that the results be available immediately after sampling is
terminated.

In this chapter, the theory of amplitude quantisation is reviewed
with specific reference to special purpose computers. Based on this
discussion, the discrete models for the first four moments are developed
and the design of a system for these algorithms is outlined. A powerful
arithmetic processing technique i.e., the use of weighted feeds, which

is particularly useful in time averaging is also introduced.

2.2 Amplitude Quantisation

For digital computation the analog signal has to be sampled and
the sample converted to a digital value of a finite word length. Thus
the range of a random voltage v is subdivided inte class intervals,

specified for the ith interval by



i i
(T av]<v<[]av]+av,
=1 1 =1 U
(i=0,%1,%2,...,%n-1) (2.1)
where AVq is the quantisation interval corresponding to the qth interval.
, i :
The quantity [ z AVd] is the threshold voltage at the ith level. The

q=1
manner in which these threshold voltages are disposed in amplitude,

determines the quantiser characteristic. A typical example of such a
characteristic is shown in Fig. (2.1).

Amplitude quantisation is a non-linear operation, in which the
quantised output v_ can be regarded as the sum of the input v and a

round off error (n_) such that

< £ 0

n ey - (2.2)

q q
The round off error nq is often referred to as the quantisation noise or
the quantisation error. Any computation involving the quantised data,
therefore, will be subject to errors.

In statistical analysis random data are often grouped into classes
for further analysis. To compensate for errvors in the computation of
moments due to grouping, corrections known as Sheppard's corrections19
are usually applied. Amplitude quantisatiorn of continuous signals, for
use in analysis has been considered by Widrowzo and also by WattSZI.

Both have shown that if the quantisation is sufficiently fine, Sheppard’s
corrections may also be applied in these cases, provided the sampling rate
exceeds the Nyquist Rate. An equi-interval quantiser is usually assumed
in such analyses.

The quantiser characteristic i.e., the threshold voltages to be

used, must be such that the error due to quantisaticn is minimised for as
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wide a range cf signals as possibie. Although it is possible to construct
the quantiser characteristic such that the error in the measured

22’23, it is found that this requires a prior knowledge

statistics is zero
of the probability distribution of the input signal, In statistical
measurenents, this is seidom the case and therefore it is <dasirable that
within a range of values prescribed, the quantiser thresholds be spaced
at equal intervals. In this manner all values are equally emphasised.
An equi-interval quantiser is simple to vealise and commercial a.d.
24 - et 1 i .
converters” with excellent stability and accuracy are now available.

The special purpose computer, designed for the znalysis of moments, uses

such an a.d. .converter.

2.3 Finite Sampling Time

Sampling of the voltage is usually systematic and at a finite
rate. The sample size or the total time of computation is also finité.
The statistics, (in this case the first foar time-averaged moments)
which are computed using a finite sawple size are not invariable i.e.,
they can not be reproduced by performing the measurement anew. The
values obtained are governed by the probability distribution of the
voltage under measurement.

Effect of finite sample size has been considered by R.A. Fisherzs

who has shown that the deviation in the measured statistics is proportional

to lw-. For systematic sampling N can be related to the time of measure-
ment T. A sccond appreach™ uses the variance expression,
varm 3 = 2 {01 - Ty B2
oy v s . % - 3 3 4
dx{mk 71 -5 )1Rﬁmx ) -~ (V) Mt (2.3)

Q



The above equation indicates that the variance in the measured
value of m can only be zero if T + ». In practice where T is finite
the variance is also finite and therefore a confidence interval for the
measured statistic is usually specified. Excessive measurement times,
on the other hand, may endanget the validity of the stationarity
assumption usually made in the derivation of the real time algorithms.
It is therefore necessary to determine the minimum measurement time T
or sample size N required to produce a specified confidence limit for
a measured statistic.

The use of equation 2.3 for calculation of the confidence limits

-is possible only if the autocorrelation function Rmm(r) of vk is known.
If this information is not available then the results of sampling theory
may be applied. It has been shown25 that if the sample size is large,
then the distribution of the first four moments follows a very nearly

Normal Law. In these cases the variance is given by

X
Var(mk) =5 (2.4)

where Ky is a constant depending on the value k i.e., the order of the
measured moment. Again the sample size to be used in a measurement
should be large in order to assure only small variations in the measured

values.

2.4 Real Time Algorithms for Statistical Moments

If the random signal to be analysed is at least gquasi-ergodic
im A . 27
then the time averages and ensemble averages are equivalent® . For such

. th . a .
a signal, the k~ statistical moment can be defined either as an

12
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expectation integral or as a time average. Thus
4+

m = E(vF} = f vEE(v) dv _ (2.5)

where f(v) is the probability density function of the random voltage v.

T

Also 1 X
m = Lim -f[ v dt : (2.6)

T
0
Assuming quantisation into n equal intervals on either side of
zero as shown in Fig. (2.2.a.), the discrete-value expectation integral
form for equation (2.5) may be written as
+n k
Wy = )) v,p(v.) - 2.7)
T=-n
where p(vr) is the discrete value probability density function.
The quantiser assumed in Fig. (2.2.a.) is of the equi-interval
V
type with the quantisation interval being 52- where Vn is the voltage
corresponding to the nth level. In the subsequent analysis it is
assumed that V, = 1.

Using mid-interval values for v_ in equation (2.7), the kth

T

moment may be expressed as

+N K
my = =§n(pr - pr+l)vmr (2.8)

where P. is the probability that the voltage exceeds the rth level and

Vor is the mid-interval value corresponding to the rth interval.

Now
_2r + 1
er T 2n
+n
. I TP 2r + 1 .k
) mkd = IA (Pr - pr+1){ "_"'2‘—1":"—" } (2.9)

Ir=-n
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Separating the positive and negative parts of equation (2.9),

we have
Md = e * M | (210
2r + 1,k k ¢ 2r + 1.k
B rg (Pp - P + (1) rZO( e P
T+ -
. .. (2.11)

Since the expressions for the positive and negative parts are
identical except for a possible sign difference, the algorithm is

developed for m ., only. Thus

1 .k 3 k
mea = (Pop - Pl)('fﬁ') + (P =PG4 -

2r + 1.k
e o . ¥+ (Pr - r+1)( >n v TR T

2“ - 1)k (2.12)

cooe e (P - P

If the nth level is never exceeded than P, = 0 and equation (2.12)

may be written as

P n-1 _
m, = °+k + X Z P {(2r + 1) - @2r - 1) } (2.13)
(2n) (2n)
I+
Pos
The first term % in equation (2.13) represents the contri-
(2n) |

bution to m
+

contribution to m

due to the voltage in the first quantisation interval. Its

ke is usually small except for k=1 and small n. In

general, however, if n is large, this term may be neglected even for k=1.

It is found that this assumption simplifies the design of the special

C

purpose computer considerably. In a systematic sampling Pr = EE- where
0

C, denotes the number of samples occurring while the input signal exceeds
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the voltage for the rth level and C, is the total number of samples.

Substituting for Pr in equation (2.13), one obtains

m, Z ¢, {er+ D* - @r - n¥yc, (2.14)

(2n) '
r+

The algorithms for various values of k may now be derived using

the general expression (2.14).

2.4.1. k = 1: First Moment.

From equation (2.14)

1 nil
m, = s C.-2
1+ ZnCo rel T
1 n-il
= e C ) (2.158)
nCo r=1 r :
T+
Similarly,
-1 n-1
m_ = = ) C, (2.15b)
o r=1
r-
and m = |m1+| - Iml_l : (2.16)

2.4.2. k = 2: Second Moments.

The second moment of a random variable v is used together with
the mean value m to describe the spread of the statistical distribution
of v. The standard deviation o = an - m is the measure of this spread.

For periodic signals with zero mean, ¢ is the r.m.s. value.

From equation (2.14), for k = 2
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1 n:l 2 2
m,, = = [ 1 cler+ 1 - @r- %)
Co'4n r=1 ,
I+
2 n-1
Soom,, = 5 ) xC (2.172)
Cn" r=1
o
Similarly
2 n-1
m,_ = - ] 1C_ (2.17b)
Cn r=1
o
r-
and
m, = |m2+| + ]mz_l (2.18)

2.4.3. k = 3: Third Moments.

The third moment is used to describe the asymmetry or skewness
of the distribution for v. A useful formula is the third moment defined

about the mean value, m. Thus,

3

E{(v - ml) }

B3

3
mg - szml + 2m1 } (2.19)

and a skewness factor 81 is defined as

H3
Bl = ;'g (2.20)

A single-peaked distributionlwith B1 < 0 is said to be skewed to
the left or has a left 'tail' and with Bl > 0, it is skewed to the right.
If 61 = 0, the distribution is symmetrical. The algorithm for My is now
derived. From equation (2.14), for k = 3,
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1 n.l 3
mg, = — [ ] cl@r+ 13- @r-n7

(Zn)?Co r=1
T+

1 MY 242 ‘

A [} c.(==—*=)] (2.21)
3+ Con3 o1 T 8
Ir+

If the input signal is of low level such that oniy a few of the
available n levels are utilised then the errors in the time averages
become excessive. It is therefore expected that a scaler is included at
the input so that all n levels are used. In this case 3r2 >> Y% and

equation (2.21) may be further simplified to

)
mg, T ——5 1 3r°C, (2.222)
Cn” r=1 :
(o]
T+
Similarly
1 "2
mg T ——y ] 3r°C | (2.22b)
Cn” r=1
(o]
r-
and
mg = [mg, | - |mg_| (2.23)

2.4.4. k = 4: Fourth Moment.

The fourth moment (m4) is used to describe the peakedness of a
distribution. Thus the fourth moment about the mean (u4) is used to

define the coefficient of kurtosis (BZ), where

4

My = E{(v - ml) }
=m, - dm.m. + 6mme - 3m (2.24)
4 3™ L) 1 .
and
U
4
B, = | (2.25)

(=)
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Using equation (2.14), one obtains

1 A 4 4
m, = 7 [] cter+ - @r-17Y . (2.26)
C°(2n) =1
I+
n-1
= L1 ¢ (ar> + 1)) | (2.27)
cn” =1 T
(o]
Ir+

Assuming that scaling is used, then 4r3 >>r and

1 " os
m,, =y Y 4r C, (2.28a)
Cn r=1
o]
T+
and
n-1
m,_ = 1 ) ar’c_ (2.28b)
Cn r=1
[o)
r-
s m, = [m4+| + 1m4_| (2.29)

A general expression for m, , can be deduced from equations (2.15a),

(2.17a), (2.22a) and (2.28a). Thus

‘ n-1 :
m,=—p § k™Y | (2.30)
Cn r=l :
o :
A similar expression holds for m_e Furthermore,
m = Im, |+ DX n | (2.31)
k s M- ’

The expressions (2.30) and (2.31) are used for the mements analysis in

the special purpose computer.
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2.5 The Weighted Feed Concept

Consider the general moments equation (2.30). For each sample

k-1 .nd add this

exceeding the rth jevel it is necessary to compute kr
quantity to an accumulator. The evaluation of krk"1 requires k

' multiplications, except for k = 1 when no multiplication is necessary.
Furthermore, such an implementation of equation (2.30) would, alsb
require either level selectors (so that r can be varied) or n comparators
with preset references corresponding to the n levels. The design of a
computer based on such a method is extremely wasteful of hardware and

the time of processing would be excessive. An alternative is to use
weightings for each level which would allow use of a2 single comparator
and which considers all the available levels simul taneously at a sampling
instant. Thus consider sampling of the input signal, at the rth level
shown in Fig. (2.2(b}}. If a sample occurs while the input exceeds the
rth level, then all the levels from 0 to (r-1) are also exceeded. Thus

this sample contributes to Cl, Cry « o v, Cpo The total contributicen to

My s due to a sample exceeding the rth level, therefore is given by

T
W= ) kgl (2.32)
,T
q=1
Wk r is termed the weighting number for the kth moment and rth
14
level. Thus it can be seen that computation of M, OF W _ is an

accumulation process in which, given the information of r the highest
level exceeded at the sampling instant, a correspoading weighting number
wk,r is added to the accumulator.

The weighting numbers of equation (2.32) can be realised either

by a combination logic system i.e., simultaneous multipliers or by general
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purpose polynomial evaluators. Both these methods are considered in this
thesis (Chapters 3 and 6). If k is even then the same logic is used in
conjunction with a single accumulator (see equations (2.18) and (2.29).
If k is odd then the output of the weighted feed logic system is gated
‘to either a positive accumulator or a negative accumulator, by the
predetermined sign bit.

The weighting numbexrs for the first four moments may be

deduced from equation (2.32). Thus,

wl,r =7
Wz’r = r{r + 1)
(2.33)
W - r(r + 1)(2r + 1)
3, r 2
A 2
and w4,r =r(r+1)

Division by C° in equation (2.30) is a trivial operation and can
be implemented if required. The only operation remaining is, therefore,
division by nk. The size of the accunulator for the kth moment and
2-bit quantisation (i.e., 2£=n), is 2k bits. For such an accumulator,
a carry out or overflow cccurs when the accumulated total exceeds or just
equals 2Zk (i.e., nk). Thus the overflow represeats the contribution
to kao at a sampling instant. Inputs at a samplinmg instant, to the
binary adder of the accumulator, are the weighting number and the remainder

of the division by nk of the accumulated number. Complete design of such

accumulators is considered in Chapter 4.
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2.6 General Description of the S.P.C.

A schematic diagram of the special purpose computer for the
measurement of moments is shown in Fig. (2.3). A scaler is included for
precision amplification or attenuation so that the full range of the a.d.
converter (i.e. all available levels) is utilised. The sign of the
input voltage v is detected_at the input and is required in the computation
of odd-order momeﬁts. Since only the magnitude of r, the highest level
exceeded, is required for the determination of the weighting numbers, a
precision rectifier with low distortion is used. The sampling rate of
the a.d. converter is controlled by a master clock system.

| The level r information determined by the a.d. converter, is used
as an address input to the weighted feed logic (W.F.L.) unit which
determines the weighting number for each moment. For k odd, the output
of the corresponding W.F.L. unit is gated by the sign bit to either the
positive or the negative accumulator. For k even, the outputs of the
W.F.L. unit feed directly to an accumulator. The overflows frdm these
accumulators represent the contribution to kao and are used to gate a
delayed clock pulse (or the a.d. done pulse usually produced by an a.d.
converter) to display registers. Clearly, since computation of m, C, is
a simple counting process, it can be performed in any code.

For odd-numbered momenté, the sign information is used to control
the count direction of up-down counters. For even numbered moments, the
sign information is redundant and only unidirectional counters are
required. The ﬁaster clock also feeds to a counter for C, display.

Control circuits are required to change the sampling rate, provide

start and stop facilities and also change the mode of operation by which
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the s.p.c. can be used as an above level probability analyser.

2.7 Above Level Probability Measurements

Above level probabilities can be measured by comparing the output
of the a.d. converter to a reference level R sclected externally by
means of a level selector switch. The reference level information is
required in a binary code so that the difficulties of precision reference
levels setting are eliminated. ‘In Fig. 2.3, referring to the probability
section of the circuit, the A inputs are the a.d. converter bits for a
sample and the R inputs are the binary bits of the reference level.
When A > R, the digital comparator switches to the logic state 1. This,
together with the sign bit is used to gate the clock to the output
counter. For a sample size C , the counter readéng Cr represents the time
for which the input exceeds the rth level i.e., EE- is the appfoximate
above level amplltude probability. Use of the sign bit allows measure-
ments to be made on either side of the zerc level. If a second level
selector is uSed to produce the reference (R + 1) for a second comparator,
then the output of the latter can be used to inhibit the C, counter. In
this way, the probability that the input signal is within a quantisation

interval above the Rth level may also be determined.

2.8 Hardware Details

The individual units of the special purpose computer of Fig. (2.3)
are implemented using currently available TTL integrated logic circuits,
which have a legic 0 state at 0 v and a logic 1 state at +3v. The a.d.

. . . . . . 8 s
converter used is an §-bit successive approximation type2 . Precision



rectification is performed using high slew-rate operational amplifiers.
Design and implementation of these units are considered in the next two

chapters.
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CHAPTER 111

DESIGN OF THE WEIGHTED FEED LOGIC

3.1 Introduction

The concept of weighted feed logic for use in the computation of
the first four moments has been introduced in Chapter II. The weighting
numbers to be used for each sample, can be realised either by general
purpose binary multipliers or by binary polynomial evaluators. Both
these meﬁhods are difficult to implement with available logic circuits.
Furthermore conventional multipliers29 tend to be slow for real time
applications. In view of these limitations, the use of simultaneous
multipliers, to be implemented with combinational logic modules, was
investigated. The design and implementation of such multipliers are
considered in this chapter. |

The weighted feed logic concept is analysed in detail and
recognised as a problem in multiple output combinational logic design.

To minimise cost and improve the reliability of the system it is

necessary to minimise the number of logic gates  required. Minimisation
using a computer-aided approach has been investigated and the various
programs used for this purpose are described in this chapter. An overall
design of the weighted feed logic for a 6-bit a.d. conversion in texrms of

circuit requirements is also considered.

.

26
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3.2 Analysis of the Weighted Feed Concept

It has been shown in Chapter II, Section (2.5), that for the
-computation of the kth moment, each sample has to be weighted by the

weighting number wk,r given by

T
k-1
wk,r_= z k q

q=1

(3.1)

where the highest level exceeded by the sample is r. The expressions for

the weighting numbers for the four moments were also derived. These are,

wl,r =T
Wz’r =r(r+ 1)
(3.2)
W _r(r+1)@2r + 1)
3, r 2
2 2
W4’r =1 (r+1)

The range of r is finite and is determined by the a.d. converter
used. Thus for a six bit a.d. converter, the highest number of bits

required for the weighting numbers is for W

4,r and equals 24, as can be

seen from equation (3.2).

Cheney12 has suggested use of the residue number system in cases
where the range of numbers is restritted. However, this approach requires
special coding and decoding circuits, which would complicate the design
of the special purpose computer. The conventional shift and add multiply-
ing techniquezg, on the other hand, is simple to implement but requires
considerable processing time, a factor which limits its use in systems

where real time applications are important. The remaining possibility is
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the use of special simultaneous multipliers where each bit of the product
is realised with an AND/OR logic configuration. Thus consider a simple

= 7).

design for WZ r where r is restricted to threc bits (i.e.,

r
s max

The weighting numbers and their binary equivalents are shown in Table 3.1.

Each output line of this table can be written as a Boolean expression.

Thus, consider the output line Z This line is in logic state 1 when

a°

r =3, 5 6 and 7. Thus the sum of products type Boolean expression

1
&

for Z¢ may be derived as shown,

=
|}

(=135, 6,7 | (3.5

abc + abc + abe ¢+ abe

.
.
.
[a\
4

=3
e
P
3

is may be simplified to

Z4 = gb + ac + bc (3.4)

where a, b and c represent the three bits of the level information r.

The logic minimisation for a single output line car be carried

. . .30 . s
out using well known rules of Boolean algebra (as in equation (3.4)),
) . . . 32,33 ,
the Karnaugn maps™ or by iterative techniques . However, these

methods do not take into account the possibility of a logic product
term (i.e., a minterm) being shared by two or more output lines. Thus,
referring to Table 3.1, it is seen that the minterm ab is also required

in the output line 26 as well as in Zd and therefore need not be

reproduced for 26' Such shared minterrs can be easily recognised for

s

simple system

U8

but for systems with a large number of cutputs this is
seldom the case and a systematic minimisation procedure is called for,

|3
&

which takes inte accownt ail of the outputs of the systenm.



29

Binary Binary Equivalent of Wy L

Equivilent of w2,r . . - ; .

7 6 S 1.74 3

a0 o0 0 0 0 0 0 0
0 0 21 o oo o |o
0 1 6 0 0 0 0 1
0 1 12 0 0 0 1 1
1 0 20 0 0 1 0 1
1 0 30 0 0 1 1 1
11 42 0 1 0 1 0
i 1 56 ¢ 1 1 1 0
The Input/Output table for design of

Table 3.1:

W with r

2,r

= 7.

max



Input Output
a b ¢ Z6 Zs Z4 Zg 22 Z1
0 0 o© 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 1 0
o 1 1 0 0 1 1 0 0
1 0 o0 0 1 0 1 0 0
1 0 1 0 1 1 1 1 0
1 1 0 1 0 1 0 1 0
1 1 1 1 1 1 0 0 0
Table 3.Z2: Input/Output representation for W, r
——————— >
211
a o 22
r>l4
C ——> A
> 26

Fig. 3.1:

Multiple Input-Multiple Output logic unit for W,

s
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Table 3.1 may be reorganised as shown in Table 3.2 and the logic
system is represented as shown in Fig. (3.1). The reorganised table is
a standard multiple output-multiple input logic truth table; Truth
tables similar to Table 3.2 are produced for Toax - 63 and for each
weighting number expression of equation (3.2), except for k = 1 where
no multiplication is required. An a.d. converter with 6-bit conversion
has been assumed. The truth tables are produced using a tabulating
program whose flow chart is shown in Fig. (3.2). Thus each output line
of the weighted feed logic is available in the sum of products form of
the type of equation (3.3).

The logic minimisation technique considered in the next section

has been developed for a general multiple output-multiple input problem.

3.3 Muitiple Output-Multiple Input Logic Minimisation

Minimised logic design at present and in particular reference to
special purpose computer design, is required for economy and reliability.
The development of LSI functions and microminiaturised circuits will,
however, reduce the importance of the cost. factor and therefore the
need for absolute minimisation. However it will still be necessary to
eliminate redundancies, in order to produce a reliable logic system.

The minimisation technique developed in this section does not produce
an absolute minimum answer but one in which a near winimum solution is
obtained without requiring excessive computer time. A three-output

system is used as an example.
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3.3.1. Multiple Output Prime Implicants (MOPI)34

Each output Zl’ . e ey Zn of the combinational logic system is
expressed as a logical sum of several prodﬁcts (minterms), the number
of input variables being specified. A sum of products type representation
usually implies a realisation with AND/OR logic. The first step in a
minimisation process is to generate prime implicants from the given set of
output functions. This is usually a simple process for a single output
system with up to four or five input variables. However, the standard
tdabulation method32 becomes extremely tedious when the logic system has
a large number of outputs with more than five logic variables and where
the multiple output prime implicants are to be generated.

The multiple output prime implicant (MOPI) has been defined by
Barteess. In this definition use is made of E terms which are obtained
from the output functions. An E term consists of a V-section which is
cbmprised of the logic variables and their complements and a book-keeping
or KP-section which denotes the output lines. Thus a minterm abcdf used
in the output lines Z,, Z; and Z; has an E term given by 5bcdf2122232425
or by 011120,20202 in the notation adopted in the program.

Two basic operations which are used in the MOPI .program are now
defined.

(i) Consensus: If two minterms X and Y contain only a variable which is
complemented in one and not in the other, then the consensus is the minterm
formed by the product of X and Y omitting the opposed variable e.g.,

X =abe - -Z; 2,2 Y= - -3del; 2,12

then the consensus exists and is given by

C=ab - - de Zl Z2 23



a2
o

(ii) Subsumpticn: A minterm X subsumes another minterm Y if all the
literals in Y are also in X. Thus X = abc subsumes Y = ab. In a
multiple cutput system, the KP-section of X must be completely included

in the KP-section of Y if X is to subsume Y.

The MOPI is an E term formsd from the original output functions
or by repeated consensus opzration. The MOPI is such that its V-section
subsumes no shorter V-section of another E temm having the same KP-
section or a KP-section with fewer outputs. It has been shown by

.

Bartee™™ that the Quine-Mclusksy iterative consensus method may be used
to generate the MOPI. This method is acdopted in the program with a flow
chart shown in Fig. 3.3.
The MOPI program requires as input data, the output functions
21, 22, etc. expressed as a row of minterms, in their decimal equivalent.
It is to be noted that the tabulating program of Fig. 3.2 produces the
cutput lines for the W.F.L. unit in this form and therefore these may
be used directly for MOPI generaztion,
A typical example to illustrate the MOPI generation is given.
3.3.2. Example

Z, =1, 6, 7, 9, 11, 14, 15

1
22 =4, 5,6, 7, 10, 12, 13, 14, 15
23 =1, 4, 5, 9, 10, 11, 12, 13, 14, 15

The MOPI obtained by the program ave given in Table 3.3 on

page 41,



Figure 3.3:

Initialise.
a) Dimension statements
b) Read in M, the number
of output functions.

:

Clear all arrays
being used,

%

Read given data,
(FORMAT 6412)

:

For each decimal
number 0 to NUMi,
form the KP section,

$

Convert decimal
numbers O to NUM1

to their binary

equivalent,

Flow-chart procedurc for MOPI generation.
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Figure 3.3: Contd.
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V-section KP-section
2122 020
2122 220
2102 022
2201 002
1122 022
1212 002
1221 002
1021 202
2001 202
1112 222
1211 202
1210 022

Table 3.3: MOPI for example of Section 3.3.2.
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The MOPI program considers up to twelve outputs at a time, this
limit being placed in order to operate the program within permissible
computing facilities.

3.3.3. Logic Minimisation

The problem of logic minimisation has been treated by many
author536’37’38. The more commonly used methods are the Karnaugh maps
and the tabulation techniques referred to earlier. Several reduction
algorithms have also been described recently in the 1iterature37’38.
These methods generally aim at an absolute minimum solution and there-
fore require considefable computational effort. However the hardware
cost saved by using an absolute minimum solution, instead of a near-
minimum solution is often trivial compared to the computation cost.

This is even more true because of the tremendous cost reductions of
available integrated circuit logic modules. Thus,. the minimisation
technique should be such that a near minimum solution is obtained with
the emphasis being on computation time.

The minimisation technique developed uses the MOPI obtained in
the previous section. It separates the MOPI set into two subsets. The
first consists of essential prime implicants, all of which must be used
in the final answer. The second set contains dispensable minterms all
of which are not required in the final answer. Thus, in the near-
minimum solution, a minimum number of these dispensable terms are
retained together with the first subset of essential minterms.

In order to develop the criterion for dispensabilitysg, consider

the case of a single output network. The output g may be written as a

logical sum of the prime implicants. Thus
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ie., g=U Q - (3.4)

When a minterm Qj implies another minterm QK’ the following

two identities result.

Qj + Qﬂ = Qz (3.5)

and

F Q= (3.6)

1f Qj inplies Qﬁ, i.e., Qj > QL then Qj is redundant. This result can
be extended to a general set of prime implicants as follows:
n
If Qj > U Qi then Qj is a redundant or dispensable
i=1
ifj
prime implicant, since

n n ‘
Q; *.21 Q =131 G 3.7)
ifj i#j

To check if a prime implicant is redundant, the concept of
Boolean ratios is introduced. For this purpose, equation (3.7) is

divided by Q;. Thus

D

_%. (3.8)

J

L)L

=1 +

1 i

j i

i
i

HwHnos
SO L i

1
j

-

Since if A A + 1 then A = 1, one obtains from equation -(3.8)

that

O!KD
o 1 pebe

=1 (3.9)
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Equation (3.9) is the necessary condition for redundancy of Qj‘
The Boolean ratio used here is quite different from the normal arithmetic

ratios and should be considered further. Consider as an example a
%

1 Q

needs to be analysed. If all the literals in Q1 are set to logic 1,

system with two prime implicants only, in which case the ratio o

then the ratio @ is given by Q,-

Examples:
u1=?—:—‘1=ac‘: since b = 1
abc . . -
ay =~ = 0 since ife=1, ¢ =0
a .
Gz = P = 1 since a=b=c¢=1

Obviously the ratio a; can also be obtained by forming the

logical conjunction of —= and suppressing QE in it. The dispensability

T
criterion may now be restated.
1
Y

is redundant if the logical sum of all the ratios ai(i =1,2,...n, i # j)

If oy denotes the Boolean ratio then the priﬁe implicant Qj
is valid. Standard rules of Boolean Algebra are used to check this
validity.

Essential prime implicaﬁts are those minterms for which the
logical sum of the Boolean ratios can not be valid by any combination
of the ratios. Such essential prime implicants must all be present in
the final answer for the logic system.

Prime implicants for which the logical sum of the ratios is
valid are dispensable terms. If the ratios which causé this validity

involve only the essential prime implicants, then the dispensable prims
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implicant is completely redundant or absolutely dispensable and need not
be considered any further in the analysis. If the dispensability is due
to ratios which involve essential prime implicants and absolutely
dispénsable prime implicants, then again that prime implicant is
absolutely dispensable. These absolutely dispensable prime implicants
are removed from the original list and only the remaining dispensable
terms need to be analysed further. The minimisation procedure is now
outlined in the Fig. (3.4). The remaining analysis is, therefore,
applied to the dispensable terms only.

'It has been shown that for a dispensable prime implicant the
logical sum of its Boolean ratios is valid (see Egn. 3.9). This validity
can occur due to the logical sum of some of the ratios being valid
(since A+l = 1). Furthermore several combinatioas of these ratios can
cause this validity. These combinations can be represented by presence

factors. Thus if a prime implicant Qj is dispensable due to the logical

Q Q
sum of 92- and gﬁ‘ and also due to the logical sum of LU , and =3
q q QG ’ Q

say, then the presence factors for Qj are cj, onci and cmopcq. .These

factors imply that in a logical expression involviag Qj’ either QnQZ

or QmeQq may be used. The presence function (Sjj is defined as

Sj = (oj + 00, amopcq) | (3.10)

Use of these presence functions may be understood from the following

example,



Given set of
Prime Implicants.

4

Apply Boolean Ratio
Criterion to each.

Y

]

Y

Essential

Prime Implicants.

Dispensable
Prime Implicants.,

Y

Y

Partially Absolutely
Dispensable Dispensable
Terms. Terms.

Retain the minimum set
from this to guarantee
dispensability of all

other Prime Implicants.

The

give the minimum

two sets combine to

solution,

Figure 3.,4: Outline of the general minimisation

procedure.
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3.3.4. Exampie
To minimise F = XY + XY + XZ + YZ + WZ

i.e. F Q1 + Q2 + Q3 + Q4 + QS

The Boolean ratic test gives Q, Q and Qg as essential

implicants. Q3 and Q, are dispensable with their presence functions

being,
S3 =05 + 0,0,
and S4 =0, + 0,04
- The system presence function (Ss) is given by
Ss = (616205)(03 + 0204)(04 + 0103)
o Ss = 010,050, + 0,0,0,0c + 0,0,070,0¢
Either 0,0,0305 OT 0,0,0,0- give the minimum logic realisation
for F.
F. =XY+ XY + X2+ W2
min
or F. =XY+ XY+ YZ+ WZ.

min

3.3.5. Further Analysis of Dispensable Minterms

In the example of section 3.3.4., the dispensabilities are due
to combinations of two minterms only. This is not usually the case,
especially for large numbers of prime implicants, where some of the
combinations causing a validity involve many minterms. In these cases,
the problen of‘chaosing an irredundant solution tends to be very time
consuming. A near minimum solution obtained within a small computatiocn

time is usually quite adequate in such cases. For example when a prime
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implicant is made dispensable by a combination of a large number of

prime implicants then the dispensabilify is a weak one and it would be
sufficient to treat the prime implicant as an essential term. Thus

in a practical minimisation approach, for each dispensable prime implicant,
all the combinations of prime implicants which cause the dispensability
are found. A restriction is placed on the maximum number of prime
implicants in each combination. If in each combimation, the number of
terms involved exceeds this limit, then the dispensable prime implicant

is treated as an essential prime implicant.

" The dispensabilities are converted into presence factors.
Presence factors which involve the least number of other dispensable
prime implicants are retained. The process is repeated for all the
other dispensable prime implicants. The final presence function
calculated from these presence factors will consist of

(a) all essential prime implicants
(b) a minimum or near minimum number of dispensable prime
implicants required in addition to (a), to completely
define the original problem.
The example of the previous section illustrates the use of (a)
and (b).
The general concept of dispensable prime implicants is now

extended to MOPI minimisation.

3.3.6.. MOPI Minimisation

The multiple output prime implicants of the logic system to be

minimised are generated by the program of section 3.3.1 Logic minimisation
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of large systems can be carried out by subdividing the system into
smaller subsystems and applying the minimisation technique to each.
The minimisation technique discussed here can handle systems with six
logic variables and twzlve outputs.

The dispensability criterion can be extended to the MIPI terms.
A MOPI ¢j consists of a V section, Vj and a KP-section ;j. The output

vector [F] may be written as

(L il -]

[F] =

V.z. , (3.11)
1 ,

1 1°1

The MOPI Qj can be dispensable if and only if its V-section Vj
implies the logical sum of the V-sections of all the MOPI whose ¢
section (i.e., KP section) includes at least Cj' This is equivalent

V.

to stating that the Boolean ratio for a MOPI can be defined as V%' if
J

ci includes at least Cj’ i.e., if both Vi and Vj are used together in
any output line. The dispensability criterion of equation (3.9) may

now be generalised to include the MOPI. Thus, if

n Vi
.U VT'Bi =1 (3.12)
i=1 'j
i#j
where Bi = 1 if &5 inc¢ludes Cj

0 otherwise
then ¢j is a dispensable MOPI.

For each MOPI, the dispensability criterion of equation (3.12) is
applied and the given MOPI set is subdivided into essential MOPI and
dispensable MOPI. Absolutely dispensable terms as defined earlier are

removed entirely from the set. The remaining dispensable prime implicants
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are now considered for further analysis.

The flow chart for a minimisation program using the dispensability
criterion is shown in Fig. (3.5). The given MOPI set is rearranged so
that the output involving the least number of MOPI can be considered
first. The set is subdivided into an essential subset and dispensable
subset, using the dispensability criterion of equation (3.12). The
absolutely dispensable terms are removed from the set of dispensable
prime implicants.

For each remaining MOPI a weighting factor wy is defined which
denotes the number of times the MOPI is used in the unminimised logic
system. For each output line starting with the one with the least
number of prime implicants, minimisation is carried out as outlined in
section 3.33, using the presence functions. If several minimum solutions
result, then all these are retained until all other outputs have been
minimised.

Based on the new set of solutions, the weighting factors are
re-evaluated. For each output line the solution with the highest sum
of the weighting factors is retained. The procedure is repeated for
all the output lines. At this stage each output may again have more
than one solution. The weighting féctors for the MOPI are therefore
re-evaluated.

A final step in minimisation is now carried out. If a MOPI
has a weighting factor w; =1 then tests are made to check if it can be
replaced by two' or more prime implicants used elsewhere in the system.
For example, a MOPI BC with w;=1 can be replaced by BCD and BCD both of

which are used in other output lires. In this way, all the MOPI with a
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weighting factor of unity are removed if possible and the weighting
factors re-evaluated, For each output line the solution with the highest

sum of the weighting factors is retained as the best minimised solution.

3.3.7. Example

The MOPI determined in section 3.3.2. were minimised using the

program of the previous section. The results are

N
n

bc + bed + acd

1
Z2 = bc + bc + acd
Z;= acd + acd + b¢ + bed .
3.4 Minimised Design of the W.F.L. Unit

The weighted feed logic for the three higﬁcr noments (k=2,3,4)
requires 12, 18 and 24 output lines respectively for six bit level
inputs. Therefore, it is necessary to subdivide the W.F.L. units for
the third and fourth moments into two subsystems each. The logic
minimisation for the W.F.L. unit, requires five MOP1 and five minimisa-
tion program runs. The results of the five minimisation programs are
combined together to form a listing of all the prime implicants
required. In this listing procedure, a number is assigned to each prime
implicant. The output lines where a prime implicamt is used are also
indicated. The prime implicants list is used to design the NAND/NAND
logic configuration for each output line and also to evaluate the
loading requirement for each MOPI and the input information a, b, ¢, d,

e and f.
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& TYPE OF IC MOPI MAP
PACKAGE, MINIMISATION, MINIMISATION,
2 I/P NAND(4) 2 2
3 I/P NAND(3) 7 7
2 |4 1I/P NAND(2) 29 33
8 I/P NAND(1) 46 L6
Inverters (6) 2 2
NUMBER OF PACKAGES 86 L 90
FOR 12 OUTPUT LINES.
2 I/P NAND(%4) 1 1
3 I/P NAND(3) 3 5
3 |4 I/P NAND(2) 40 55
8 I1/P NAND(1) 97 121
Inverters (6) L 3
NUMBER OF PACKAGES 125 _ 185
FOR 18 OUTPUT LINES.
2 I/P NAND(4) 0 1
3 I/P NAND(3) 2 3
4 |4 1/P NAND(2) 10 35
8 I/P NAND(1) 85 214
Inverters (6) 5 5
NUMBER OF PACKAGES 102 _ 258
FOR 24 OUTPUT LINES.
TOTAL PACKAGE REQUIREMENT
1 S
FOR W.F.L. UNIT, 313 »33

NOTE: Number of gates in each package is given

Table 3.3: Logic requirements for W.F,L. unit.

in brackets.
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Integrated circuit module requirements for the minimised W.F.L.
unit are given in Table 3.3. Results afe compared with the module
requirements obtained by minimisation of each output line using a six-
variable Karnaugh map. It is evident that considerable economy has been
achieved. A typical output line implemented with NAND/NAND logic is

shown in Fig. (3.6).

3.5 Some Comments on Logic Minimisation

Experience with the logic minimisation programs described has
shown that absolute minimisation usually requires long computer runs.
In such cases, the saving in component costs is often outweighed by the
cost of computer time and effort. Any minimisation process, therefore,
must take this factor into account. There will certainly be systems
where the direct logic realisation of the outputs in terms of all
possible minterins may prove more economical. For a six input system,
sixty-four minterms need to be realised. If in such a system, the
number of outputs is considerably greater than 64 and if the outputs
are not well ordered” logical sum of the minterms then the direct
realisation should also be investigated. For the weighted feed logic
units, direct realisation was discarded since it required a large

number of buffer gates théreby increasing the I.C. package requirements,

*A well ordered function is one for which all the minterms
combine to give a minimum answer of the type (A @ B) + (C G-) D) + - -,



CHAPTER 1V

DESIGN OF THE SPECIAL PURPOSE COMPUTER

4.1 Introduction

The design of the various units of the special purpose computer
are considered in detail in this chapter. A precision rectifier is used
at the input of the system so that a single a.d. converter is needed for
both positive and negative inputs. It is shown that use of one-step
parallel binary adders in circulating registers simplifies the timing
requirements and also achieves the division by nk required in the
equations for the kth moment.

The evaluaﬁion of standard deviation (cﬂ\/mz-mf ) is also
investigated. Since computation of all the moments is continuous, the
evaluation of ¢ should also, preferably, be continuous with the final
result available soon after the computation of the moments is
terminated. A technique for such a computation of ¢ is also described,
The circuit for measurement of ¢ is capable of following fluctuating
nunbers and furthermore the standafd deviation can be available in any
code.

A general description of the special purpose computer has already
been given in Chapter II and a schematic diagram of an implementation
was also presented. In this chapter, the individual units are considered

and their design and operation are described.

59
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4.2 Rectification .

Implementation of n-level quantisation on either side of the
zero level has the disadvantage of requiring separate weighted feed
logic units to obtain the weighting factors for positive and negative
inputs. Furthermore the logic required in these units is complicated
by the need to code negative levels for 1l's or 2's complement arithmetic.

A possible alternative investigated, is the use of levels on
one side of zero level only and shift the input by adding a d.c. voltage

v :
5= . This possibility was discarded because of the following disadvantages.

2

(1) For a six-bit a.d. converter, one has effectively only five-
bit quantisation when the input is shifted by adding the d.c. voltage.
Thus, although the entire s.p.c. is designed for six-bit quantisation,
the accuracy obtained is that of a five-bit s.p.c.

(ii) For a fixed upper voltage (+10V), the quantisation intervals
are halved in woltage range and hence the errors due to level offsets
will be increased. |

- (iii) All the final readings for moments must be corrected for
the d.c. voltage added to the input. This can be done in the weighted
feed logic by assigning negative weights‘to samples below the half level
value, again complicating the design of the W.F.L. units considerably.
If however, the W.F.L. units discussed in Chapter III are used, then the
special purpose computer is no longer a direct reading system.

Rectification is, therefore, preferred. A precision rectifier40,
consisting of two high slew-rate operational amplifiers (250V/usec) and
stable precision resistors, is used. The rectifier circuit is shown in

Fig. (4.1)
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Figure 4.1: Rectifier and Sign detection circuit.
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When the input (Vin) to the rectifier is negative, the voltage
V01 is essentially zero and the second operational amplifier acts as an

inverting amplifier with unity gain and an output given by

Vo = Vi - - (4.1)

When the input (vin) is positive, the diode D1 conducts making Vol=-vin’
since the gain of the first inverting amplifier is also unity. The
second amplifier now acts as a summing and inverting amplifier with an

output given by

Vo= -Vi + 2V, (4.2)

With the precision resistors selected to maintain the appropriate
ratios accurately, the error and the distortion in the output can be
made very small. Thus the rectifier designed for the special purpose
éomputer has a ﬁaximum error of 5 mV for the input in the range £25mV
to *10V. Distortion in the output is negligible for the frequency
range D.C. to 5 kHz. The loss of 5 mV in the signal causes errors in
the measured values of the moments. These errors are treated in
Chapter V.

The sign detection circuit is also shown in Fig. (4.1). The
resistor R1 is adjusted to produce a hysteresis of about 25 mV in the
switcﬁing characteristic of the comparat6r. This hysteresis is
necessary in order te eliminate erratic switching of the comparator
due to additive noise in the input signal. A D-type flip-flop, used
to store the sign information at the beginning of each sampling operation,

eliminates the change of sign occurring during the sampling and
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conversion process.

4.3 Analog-Digital Converter

An 8-bit successive approximation a.d. converter with a built-in
reference supply is used41. The converter circuit is shown in Fig. (4.2).
Conversion is initiated by raising the convert input (i.e., a.d. start)
to logic 1. The digital output bits for a sample are available at
1 usec. rate, with the conversion completed within 8 usec, The maximum
sampling rate is, therefore, limited to 100 kHz. Of the bits available
after conversion,all eight are used in the computation of the first
moment, whercas only six most significant bits are required in the
computation of the higher moments. After the completion of an 8-bit
conversion, an a.d. done pulse is produced by the converter as shown in
the timing diagram of Fig. (4.3). The a.d. doae pulse is used in the
accumulation for the varicus mcoments. The samples are taken on the
-rectified signal. At the end of an a.d. conversion, therefore, the
highest level exceeded information is available in magnitude and sign
form. The highest level exceeded information is used as an address
input to the W.F.L. units. For odd-order moments, the output'lines of
the corresponding W.F.L. units are gated by the sign bit to positive
or negative accumulators. For the even-order moments, the sign bit
information is redundant and is therefore not used.

Contrcl of the a.d. converter sampling rate is provided by

the clock rate circuit.
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4.4 Clock-rate Circuit

A master clock is used in the clock rate circuit. The pulse
rate of the master clock is fixed at 1 MHz and divide~by-ten TTL .
circuits are used to provide lower rates down to 1 Hz. A two-input
OR gate is provided in the master clock circuit for start and stop
control, which in the case of the special purpose computer, is obtained
from a timing control circuit.

The complete clock rate circuit is shown in Fig. (4.4). The
clock output is selected by a rotary switch. Since the a.d. converter
start pulse must not exceed a width of 500 ns., a pulse shortening
circuit is used at the output of the rotafy switch. The output of this
circuit provides the a.d. start pulse for the a.d. converter. It also
feeds an output counter which measures tiie total sample size and there-

fore the measurement time.

4.5 Control Circuits

Two control circuits are provided in the special purpose computer:
(i) Mode control which allows th¢ system to be used either for
the measurement of the four moments or for the above level probability
measurements (see section 4.8).
(ii) Timing control vhich enables the measurement to be made
for one cycle of the input (if this is periodic) or for a predetermined

sample size Co'
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In the probability mode, the a.d. done pulse is transferred by
a selection switch to the output gate of the probability measuring
circuit and all the accumulators used in the computation of the moments
are inhibited. The first moment counter and display is also used for
the probability display. In the moments' mode, the a.d. done pulse is
transferred to the gating circuits of the various accumulators. A sign
selection switch used in the probability mode only, allows neasurements
to be made on either side of the zero level.

The s.p.c. can be operated either in the one cycle mode or in
a fixed-sample-size mode in which the sample size is chosen externally
and can be 103, 104, 10° or 108, The timing control circuit is shown
in Fig. (4.5). The sign detection comparator is used as a zero-crossing
detector. Both the flip-flops are initially cleared in either timing
mode. In the cne cycle mode, the comparator output's negative going
edge (B-transition) occurs at a zero crossing and trigggrs the first
JK flip-flop. The Ql output of this flip-flop goes to 0 and enables
the sample-rate master clock. At the next B-transition which occurs
precisely at the end of one cycle of input,Q1 goes to logic 1 and thereby
inhibits the master clock, terminating the sampling process. At the
same time Q1 triggers the second flip-flop whose Qz output goes to logic
0 which in turn inhibits the first flip-flop. The s.p.c. can be re-
started only after clearing the two flip-flops.

In the fixed-sample-size or the fixed time mode, measurements
commence upon pressing the manual start switch and setting the R-S flip-
flop. The Qp output goes to logic 0 and enables the master clock. Stop

pulses are produced by the sample size counter at 103, 104, 10° or 106
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samples. Any one of these pulses is used to reset the R-S flip-flop
which in turn disables the master clock. The R-§ flip-flop also

eliminates any contact bounce effects in the start switch.

4.6 Accumulators

The a.d. converter output gives r the highest level exceeded
at the sampling instant. This together with the sign bit, feeds the
W.F.L. units. The weighting numbers are computed using the magnitude
of r, with the sign bit being used to gate the weighting number oufput
lines for odd-order moments, to the positive or regative accumulators.

If a serial type multiple feed accumulatarl7 is used, then for
the kth moment and £-bit quantisation, £k clock pulses are required
to add the weighting numbers for a sample to the previous accumulation.
Assuming a propagation delay of T, Sec. for each stage of the serial
accumulator then the total time required before the next sample can be
taken, is Z.E.k.rm sec. This is calculated by taking into consideration
the requirement that the feed lines for the weighting numbers, must be
applied serially into the accumulatcr and furthermors, the least

th pulse nust be allowed to propagate

significant bit applied at (£€k)
through the entire length of the fk-bit register before the next sample
can be taken. Typically rmssb ns. and for the fourth moment, the total
delay is 2.4 psec. An additional clock system for each moment is also

required to produce the £k pulses foilowing every a.d. done pulse. At

this advanced state of the art, the serial feed accumulator has been

superseded and is, therefore, not economical to implement. It would

also result in considerable reduction in the upper freaquency limit of



71

the s.p.c.

A one-step addition and accumulation is easily implemented with
TTL circuit modules. A complete M-bit accumulator, requiring an M-bit
adde£ and storage, is shown in Fig. (4.6). Initially all the JK flip-
flops are cleared. The A inppts to the Binary adder are therefore 0
and the B inputs are the output lines of the W.F.L. unit for a given
kt? moment, gated by the sign bit where necessary. The 4-bit adder
modules used in the adder circuit have a delay of 50 ns. so that for the
fourth moment, the maximum total delay for additiem is 300 ns. The
final cérry-out of the M-bit adder cccurs when the total accumulated,
exceeds or equals sz (M=€k). A similar overflow will occur for the

£k

. . . k
accumulation of negative samples. Since 2 =n, the overflow represents

contributions to the kth

moment. These overflow signals, gate the a.d.
done pulse to the display coﬁnters and display units. The remainder
which is available as the ] outputs of the binary adder, is shifted to
the JK flip-flop outputs by the a.d. start pulse. Thus, in general,
the inputs to the adder after the (i+1)th sample are the weighted feed
outputs for the (i.+1)th sample as B inputs and the remainder of

1

20K j

W, . as the A inputs.
k,j P

i e

1
Division by nk required in equation (2.30) is therefore easily
achieved. Furthermore, since the computation of the various moments is
a simple counting procedure, any code may be used in the final dispilay.
The fractional‘'value, remaining in the accumulator after pfocessing is

complete, is usually negligible for sample size exceeding 103 and

therefore is seldom required.
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The total delay in accumulation is equal to the time required
to carry out £k-bit a&dition. In the s.p.c. where TTL binary adders
and flip-flops are used, the worst case delay is in the fourth moment
and equals 300 ns. Thus all computations for a sample are completed
soon after the sixth bit of the level r is available.

For the first and third moments, two separate accumulators are
required to accumulate ﬁk+ and M The overflows from these
accumulators, together with the a.d. done pulse, feed an UP/DOWN counter
whose count direction is controlled by the sign bit. For even-order

moments, only UP counters are required.

4.7 Above-level Amplitude Probability Distribution Measurements

Above-level probabilities (i.e., cumulative probability
distributicn) are measured using a digital comparator. In the s.p.c.
designed, 4-bits or 16 levels are used. The circuit is shown in
Fig. (4.7). The A inputs to the 4-bit digital comparator are the four
m.s. bits of the a.d. converter and the R inputs are the four reference
bits selected by a rotary switch. When A > R, the comparator output
switches to logic 1. This togsther with the sign bit gates the a.d.
done pulse to a counter. Thus, for a sample size Co’ this counter
readout Cr divided by C, is approximately the probability that a
reference level R is exceeded. The reference level can be varied
sequentially and measurements are repeated to obtain sixteen values of

the above-level prcbability on either side of the zero level.
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4.8 Display Registers and Readouts

The display counters built use TTL circuit modules throughout,
including the drivers for the Nixie display tubes. Standard designs
are used in both the UP/DOWN aﬁd the UP counters. The upper frequency
limit is about 5 MHz. The UP céunters have the additional facility of
output pulses when the count reaches 103, 104, 105 or 106 counts. These
pulses are used in the control circuit, to terminate computation.

The s.p.c. is shown in open rack form in Fig. (4.8) and Fig.
(4.9). The a.d. converter and the master clock are on two plug-in cards.
The logic fer the entire s.p.c. uses TTL circuits and is on eight 6" x 6"
printed circuit boards (see Fig. (4.9)). The complete system is con-
tained in a 4-rack 19" x 5" stand and includes ail necessary power
supplies. Two indicator lights are also provided on the control panel,
one to indicate that sampling is in progress and the other a warning to
indicate if the input exceeds +10V, the maximum voltage limit of the
a.d. converter.

The accumulators, displayé and the contrel circuit are all

cleared by a single clear pulse.

4.9 Performance Tests

Direct decimal readouts (D.D.R.) for d.c. input voltages,
provide a very convenient method for testing the entire s.p.c. If the
d.c. input voltage is between the rth and (r+1)th 1evel, then the
readouts for the various moments correspond to the mid-interval voltage

2r+l i . .
7, Corresponding to the rth interval. The expression for the kth

moment, developed earlier, gives



Figure 4.8: Photograph of the S.P.C.



Figure 4.9: Rear-end view of the S.P.C.
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n-1 '
k 1 k-1 '
(ke Ly @9
(2n) nC r=1

The direct decimal readout (DDR)k r is defined as

Al k-1 '
(oDR), . "3 Jkr C. (4.4)
Thus,
r.Co
(DDR)1 r-h (4.5)
2
Cd r(r+l) »
(DDR), _ = ——5— (4.6)
’ n
2
Co.r(4r + 6T + 3)
(DDR)3 r 3 (4.7)
’ 4n
and
Co.r(Zr3 + 4r2 + 3r + 1)
(DDR)4’T = A (4.8)
2n

The direct decimal readouts are computed for d.c. voltage inputs
in the range 0 to 19V with Co=104 and n=64, The values are given in
Appendix A together with the computer program flow chart for this
computation. These values are used to,cﬁeck the entire s.p.c. The
a.d. converter switching characteristic can also be checked by measur-
ing the voltage levels at which the output readings change, while the
rectifier performance may be checked by using d.c. voltage inputs of
both peclarities.

The s.p.c. of‘Fig. (4.8), has been tested for these direct
decimal readouts and has also been used to measurz the moments of known

signals available in the laboratory. The overall performance is within

N
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the specifications of 1% overall error for input signals of frequencies

42
up to 5 KHz .

4.10 Extension to Measure the Standard Deviation

The standard deviation (o) of a random signal is defined as
(4.9)

Several methods have been proposed for obtaining the square-root
of a binary number. These use either the Newton approximation43 or the
rational Chebyshev approximations valid in a given range of the number44.

Recently direct res;oring and non-restoring square root extractions
using cellular arrays have also been considered (see Chapter VI). In
all these methods, the square root answer is in a binary code and there-
fore code conversion circuits are necessary if the final readout is to
be in any other code. Additional circuits, to compute m2

1

the subtraction in equation (4.9), are also required. Such methods are,

and perform

therefore, not suitable for special purpose computations.

The square-root method described here45 is especially suitable
for such applications. It is capable of following a fluctuating number
N vhose square-root is desired. Furthermore, subtraction, squaring
and square-root extraction are all implemented in a single circuit,
making the method economical for implementation for large numbers.

Consider first the square-root algorithm.
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4.10.1. The Square-root Algorithm

The algorithm is an extension of one proposed by Phister46.

This extension provides a particularly fast and economical means of
implementation. In the algorithm a number S is cbmpared with N and one
of two procedures is carried out, depending on whether S<N or S>N. Let

j denote the jth step in the process.

(i) For S<N
Let xj‘,1 = xj +1 (4.10)
_ 2
and Sj+1 = xj+1
= x? + 2x. + 1
J J

These may be written

*new - %o1a * 1
(4.11)
snew = Sold * 2xold +1
(ii) For S>N
Let xj+1 = xj -1 | (4.12)
_ .2
and Sj+1 = xj+1
or S. . = x% - 2x, + 1 (4.13)
i+l J J
These may be written
Xnew = Xo1d ~ 1
and (4.14)
Snew = sold - 2xold +1
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In the original algorithmdé, equations (4.11) and (4.14) are
intended for implementation. In a hard wired special purpose computer,
however, equation (4.14) is found to present difficulties in complement
arithmetic. These are overcome by rewriting equation (4.13) as

2
xj - Z(ch+1 + 1) + L

Sj+1

where Snew = Sold - anew -1 (4.15)

Let [D]1 denote the ones-complement of a binary number D. Then using

twos-conplement arithmetic for subtraction, equation (4.15) becomnes

S =S +1"10

new old * [zxnew]1

To summarise, the algorithm for S>N uses

*new = Xo1d ~ 1

(4.16)

Snew Sol

]

da* [anew 1

Equations (4.11) and (4.16) are implemented in the square~rooting

process.

4.10.2 Squaring Algorithm

The square root algorithms can be used, with a small modification,
to calculate the square of an m-bit binary number M which may be
fluctuating. The basic algorithms of equations (4.11) and (4.16) are
still used but the choice between the two is now decided according to
the states x<M and x>M. Thus when x<M, equation (4.11) is implemented

whereas x>M required use of equation (4.16). The processing is stopped
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when x=M, at which instant, the S register contains Mz exactly. The
x-counter must be cleared before the square-root or the squaring operation

is commenced.

4.10.3. Computation of Standard Deviation

The square-root algorithms can alsc be used to calculate o. For

this purpose, the equation (4.9) is rewritten as

2 2 2
o7 +m = m, (4.17)

Initially computation of mf

mode of section 4.10.2. On completion, the S register contains mf. The

is carried out using the squaring

entire system is cleared, except the S register and the square-root mode
is implemented with m, being compared with S. Since the S register

contained mf, its value will increase to m2 after each step. The

1Y %541
square-root process is stopped when S:mz. The S register will then
contain mf + x§+1 >m, and equation (4.17) shows that the x-register

content is o with a maximum error of 1. Again, since the computation of

o is a simple counting procedure any readout can be used.

4.10.4. Implementation

A bloék diagram of a 2m-bit system is shown in Fig. (4.10). The
square-root mode is used in the following description and only minor
modifications are necessary for ¢ computation.

The system comprises two 2m-bit bimary registers for N and S,

a buffer register for N, a 2m-bit bimary comparator to indicate the

states S<N, S=N, S>N, a 2m-bit binary adder, 2Zm true/complemsnting (T/C)
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gates, and an m-bit synchronous UP/DOWN counter for x and a clock system.
In the diagram, a counter for readout of YN in the decimal code is shown.
However, if the readout is to be in binary code, then it-may be directly
obtained from the x counter. Register S is comprised of D type clocked

flip-flops. The buffer register is made up of bistable latches.

(i) Calculation of Snew

A one step parallel adder is used in conjunction with parallel

. true/complementing (T/C) gates. The output Y of a T/C gate is given by

Y = CX + CX = CX + CX

C=0 implies S>N for which Y=X and C=1 implies S<N for which Y=X. The
inputs to the T/C gates are the various bits of the x counter and are
wired with a left shift of one bit as showa in Fig. (4.11). This shift
accomplishes multiplication by 2. The l.s.b. input to the T/C gates is
permanently in state 0. The control signal is S<N. The T/C gates have
2x as output when S<N and [2x]1 when S>N.

The various inputs to the parallel adder are as follows:
a. The addend is So1d from the output of the storage register S.
b. The augend is the output from the T/C gates.
¢. The "carry in" is the state of the comparator S<N since from

equation (4.11), G,=1 only in the up-count mode.

(ii) Clock System

In the down-count mode, i.e., when S>N, X ew is used in the

w

algorithm, so that sc—e delay must be incorporated to allow x to change
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before S. In the up-count mode no delay is necessary since delay in the
T/C gates and the adder ensure that X514 and not X ew 1S used to form

Snew when the S register is clocked on the leading edge of the clock
pulse. Timing diagrams for these conditions are shown in Fig. (4.12).
Fig. (4.]3) shows the clock system. Clock 1 is used to transfer
Snew to the storage register S while cloc¢k 2 is used to clock the x
counter. A delay is incorporated in the clock system, which delays the
pulse for transferring Snew when S>N. Computatien of VN is stopped by
inhibiting the clock, according to any one of the following conditions:
a. S=N |
b. N is "complete' and transitions from S<N to 8>N occur at a later time
c. N is "complete" and transitions from S>N to S<N occur at a later time.
The inhibiting conditions (b) and (c) prevent the oscillation in
the least significant bit of /N when N is complete and when /N is not an
integer. Since these conditions require a transition from an initial
state to a final state, some memory must obviously be provided. The
two D-type clocked flip-flops Fl1 and F2 are used for this purpose. In
the absence of an "N complete'" signal the clear inputs of the two flip-
flops are held at state 1 so that Ql=1 and QZ=1. However, if N is fixed,
denoted by "N complete''=1, the clear inputs are in state 0 and the flip-
flops are free to change state. The "N complete" signal is delayed by
200 ns. to allow the comparator to settle. Assume that when N is complete,
S<N (indicated by state 0). At the subsequent transition to S>N the
clock input to flip-flop F1 changes from 0 to 1, so that Ql changes from

1 to 0 and irhibits the clock. The clock input te F2 changes from 1 to

0 leaving 62=1. The clock remains inhibited until N changes again,
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thereby resetting the flip-flops and releasing the clock.

Reférring to Fig. (4.12), the time delay T, must be sufficient
for the following to be completed.
1. Synchronous UP/DOWN x counter to settle to the new value of x.
2. The new value of x presented via the T/C gates to the binary adder.
3. Binary addition to be completed and the carry propagated through all

stages of the adder.

(iii) Buffer Register for N

The number N may be permitted to change between any steps of the
algorithm but not during a step, for if the state of the comparator
should change between clocking of the x counter and the S register, the
end result will be in error. A convenient way of allowing N to change
only at allowed times is to use a buffer register to hold it, The buffer
register is contrclled by the clock system and a delay Ts (Fig. (4.12)
and Fig. (4.13)) allows the N buffer register and the binary corparator
to settle before processing of the algerithms commences; The timing

diagram of Fig. (4.12) shows the complete sequence in the processing.

(iv) Modification for Standard Deviation Measurement

The basic circuits of Fig. (4.10) and (4.13) are retained but
some additions are needed. Thus initiaslly in the squaring mode, the
first moment my is transferred into the N register and the comparator

inputs are m (i.e., N) and x. When computation ef mz is complete, all

1
registers except the S register are cleared. The "computation of mi
completed" signal is used to load m, into the N register, and change the

comparator inputs to my (i.e., N) and S. Theresfter since S<N (i.e., o#0),
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the algorithm of equation (4.11) is automatically implemented. This
continues until S=N when the clock is inhibited or when S>N. If the
latter obtains, the algorithm changes to that of equation (4.16). Thus
if N does not change, the x value will oscillate by *1. However, if a
signal "N complete" is applied then the clock is inhibited when the first
transition from S<N to S>N or from S>N to S<N occurs. The final o
value contained in the x counter wiil be in error by *1 maximum.

The minimum processing time for one step can be derived from the

timing diagram of Fig. (4.12) and is given by

Tp = Té + ra + T

where 1, = delay to allow buffer register and comparator to settle after

N is transferred to buffer register

T

o delay to allow correct computation of Snew in the S>N mode

T

c clock pulse width.

All delay elements in the clock system cemprise open collector
NAND gates loaded with suitable small capacitors, and are therefore
easily implemented.

For the s.p.c. considered, the maximum sample size is 106,
Therefore a 40-bit sguare-root system is requiread to compute the
can have up to 40 bits. The m2 computation

1

However, the square-

standard deviation, since mi

can run simultaneously with the computation of oy .

root operation commences only after m2 is computed, so that the standard

1

deviation is available shortly after change-over to the square-root mode.



If TTL integrated circuits are used, then the process can be
operated at 1 Miz clock-rate which is already available in the master

clock system of the s.p.c.
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CHAPTER V

ERROR ANALYSIS

5.1 Introduction

The use of mid-interval values of the quantised signal and the
simplifications made in the derivation of the algorithms for the moments,
result in an error in the measured values of the moments. Also, the
measurements are terminated after a finite time, which causes further
statistical fluctuations in the measured values. Additional errors due
to level offsets, finite sampling rate etc.,.can be reduced by
improvements in thé design of the various units of the s.p.c.

In this chapter, the predominant errors are analysed for
several standard input signals. The analysis assumes an exact
correspondence between time averages and expectation integrals (using
ensemble averaging). The errors are analysed on the basis of statistical
independence. This assumption allows each error to be treated
individually.

The error equations do not, in general lend themselves to
closed-form solutions. They are, therefore, best evaluated by means of
a general purpose computer. In these computation procedures, the errors
due to truncation are insignificant,

Since the errors depend on the amplitude distribution of the
signal and its peak value, it is desirable that waveforms of as wide a
range of probability distribution as possible are treated. It is shown
that full wave rectified (FWR) signals are suitable for a complete error

92
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analysis of the s.p.c.

The errors that arise in the s.p.c. are essentially stochastic
in nature, so that if an overall error characteristic is required, then
the Qarious error probability distributions must be convolved together.
However, this overall error distribution is seldom needed since the

worst case errors are sufficient specifications for the s.p.c.

5.2 The Error Equation

Let the error due to any one source for the kth moment be

e . whére z represents the source of error. Then e . is defined by
3 »
1
. m -m
_ k,z k
ek’z - = (5.1)

where mi z is the measured value for a system in which only the z source
» .

of error is present and m is the actual kth momemnit .
Since it is usual to define the error in terms of full scale

readings, it is tacitly assumed that all the quantisation intervals of

the s.p.c. are used in the measurements.

5.3 Standard Signals

The errors arising in the §.p.c. are dependent on the signal
waveform. Thus in any investigation of the errors, it is necessary
to specify the signal. The following criteria are useful in selecting
the waveform to be uvsed in the analysis.,

(i) All four moments are finite and non-zero.

(ii) The probability density function of the signal can be

expressed in closed-form.
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(iii) The signals used in the theoretical analysis should be
available in the laboratory for experimental verification.
Full-wave rectified (FWR) signals have non-zero and finite four
moments, and the s.p.c. has a precision rectifier at its input. Further-
more, the only modification necessary, in the s.p.c., for the measure-
ments on FWR signals is to put the sign control of the odd-order moments
counters in a fixed UP-count mode. The signals used for the theoretical
analysis are:
1. FWR rectangular waveform or D.C. input.
2. FWR Sine wave.
3. FWR Triangular wave.
Each of these periodic waveforms has a normalized peak voltage
¢ such that the peak lies in the last quantisation interval.
4. For non-periodic signal analysis, bandlimited FWR Gaussian
noise of standard deviation o is used.
The four moments for these standard signals are'given in Table

th Ievel is exceeded and

5.1. If Pr denotes the probability that the r
if all levels are used, then the folleowing distributions can be easily
derived,
(a) FWR Rectangular Waveform or D.C.

P., = 1 0 <r <n-1

P._=0

(5.2)

(b) FWR Sine Wave

v(t) = z]cos(ut)]
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and P =% cos ~ L. 0 <r <n-1
T+ ng - -
) (5.3)
P =0
r-
(c) FWR Triangular Wave
T
Pr+ = 2(1 - ot 5.4
P =0
r-
n-1-+ £
In general g = =g (5.5)
where € is a fraction of the highest level occupied by the input.
{d) Normal Wave or Bandlimited Gaussian Signal
: r
no 1 i¥:
Pr+ = 1 -2 I —-/i——_;r_—_-exp.(- —Z—)d\f (5.6)
P =0
r-

A normal waveform in the above case is defined as a periodic
sigﬁal which has a Gaussian probability density function when sampled
at random in time. If the standard deviation o is small, theh the
normal waveform approaches a unit impulse for each half cycle.

The variocus errors are now considered individually.

5.4 Error due to Algorithm Approximations and Amplitude Quantisation

The general equation for the four moments has been derived using
two approximations, viz,
(a) The contribution, due to the voltage in the first interval,
i; negligible for all four moments.

(b) The weighting number expressions were simplified on the
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F.W.R. First Moment |Second Moment {Third Moment | Fourth
Signal Moment
Input (m)) (m,) (m) (m,)
Rectangular 2 3 ;4
Wave oxr D.C. t & ¢
Sine Wa 2 5 43 3 4
ine Wave = 2 Tr © gt
Triangular C Ei Ei. Ei
Wave 2 3 4 5
Normal Wave - -
or 2 2 2 3 4
Bandlimi ted \/ e o \/:r 20 30
Gaussian Noise
‘Note: ¢ = 5:151—5 where 0 < € < 1

Table 5.1.:

and ¢ is standard deviation of Normal Wave

or Gaussian Noise.

used in the errcr analysis.

The four moments of the FWR signals



basis that all available levels are used\

Both these assumptions cause an 'approximation error' in all
four moments, which is independent of the s.p.c. system.

In the s.p.c.,samples are classificd within n intervals (i.e.,
the discrete value expectation integral is used) on each side of the
zero level, and a mid-interval value is assigned to each sample. In
the computation of moments the kth power of each sample value is used.
Since n is finite, a quantisation error occurs in the computed woments.,
For the purpose of analysis, the appreximation and quantisation errors
are grouped together and referred to as the system quantisation error
k,n .

For periodic waveforms, the peak of the input signal may lie
anywhere within the nth interval. Since this peak value influences the
probability distribution values as seen from section 5.3, it is to be

expected that the system quantisation error, e is alsc a function

k,n?
of the position of the peak value, within the last interval.

For bandlimited Gaussian noise or for the normal wave, the
mechanism of the occcurence of system quantisation error is somewhat
different, since the voltage is not confined within the n intervals.
Thus,; in addition to the approximations and quantisation errors
mentioned earlier, & level linit error arises. This is dus to the fact

) th . . o
that samples beyond the n™ level are all grouped together and classified
: e PR e e - -
into the n interval. For small standard deviation o, this limit error
is ncgligible. In such cases the effect of using n intervals can also

va s : . 19 .
be cbtained by the Sheppard correcticn formulae™ . These corvection

.

formulae, however, do not account for errors dus to algorithm approximations.
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The system quantisation error analysis in most cases, yields
intractable expressions except for d.c. inputs. Simplification16 is
possible in some cases but yields very little useful information
regarding the general behaviour of the error. Instead two computer
programs are used to obtain the system quantisation characteristics.

The error definition uses the calculated m1 as used in the s.p.c.,

k,z

i.e., 1 n

-1

k-

“‘k,z""lT zlk~r be (5.7)
n r=

The first program used for periodic signals requires Pr and
the actual moments to be specified. The second program is for Gaussian
signals where Poo and the actual moments need to be specified. In
both programs n, the peak position (n-1 + €) or o are varied. The

flow-charts for these two programs are given in Appendix B and C.

5.4.1. Results for ® n°

2

The computer analysis results for ek,n are divided into two
categories, viz
(a) For a fixed n, the variation of the_error due to the peak value
changing from r-!—r-;-l--to 1 for periocdic signals and due to variation
of standard deviation o for Gaussian signals, is investigated.
(b) Effect of variation of n for a given peak position for periodic
signals and a given o for Gaussian noise, is also investigated.
This analysis establishes a design criterion for the special
purpose computer.

The results of the two analyses for the standard signals are

presented in Figures (5.1) to (5.8).
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The dependence of the s}stem quantisation errors on the position
of the peak values is seen from the graphs of Figures (5.1), (5.2),
(5.3) and (5.4). Results indicate that it is possible to reduce ek,n to
zero by properly locating the peak value position of the signal.
However, such a technique requires a knowledge of the input and would
also invariably involve an iterative scaling procedure. Hence in
practice, it is likely that the assumption of the peak being situated
anywhere within the last interval with uniform probability distribution
will be more valid. To obtain the statistical distribution of the error,
Monte Carlo methods17 of simulation can be used.

For all four FWR signals the maximum error in the first moment
varies.inversely with n. The graphs of Figures (5.5), (5.6), (5.7) and
(5.8) also show that it is necessary to use n=256 i.e,, 8-bit qdanti-
sation in order to keep the system quantisation error for first moments,
below 1%.

The maximum errors in all the other moments vary as lﬁ' where
u is a function of the periodic signal. Thus for FWR Sine nge u=1.5,
for FWR Triangular Wave u=2 and for D.C. inputs u=1l. The errors are
largest for D.C. inputs as would be expected.

In the case of FWR Gaussian signals, a normalised standard
deviation of 0.25 is used so that level limit errors are negligible.

The system quantisation error is large for small values of n but begins
to settle to a steady value for all highef moments, indicating that

above a certain valuz of n, very little reduction in e is achieved.

k,n
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5.4.2. Level Limit Errors

(a) Periodic Waveforms:

If the peak value of the input exceeds the nth level voltage,
then a negative error occurs. A typical example of this error is shown
for FWR Sine Wave, in Figure 5.9. This error is easily eliminated in
practice by scaling down the input.

(b) Gaussian Signals:

The level limit errors are most serious for these signals since
there is always a finite probability that at some instant the highest
level available will be exceeded. For large o, this probability
increases rapidly and the negative level limit error swamps the system
quantisation error as shown in Fig. (5.4). It is seen that if the
standard deviation is within 1.1 v to 2.9 v, the total system quantisa-
tion error (including the level limit error) is within 1% for all

moments.

5.5 System Errors

The system quantisation error, as mentioned earlier, is
independent of the method adopted in the actual computation. System
errors depend on the system design and on the components used in the
processing. The main errors in this category are
(a) Level offset errcrs
(b) Finite sampling time errors
(c) Finite sampling-rate errors

(d) Aperture-time errors.
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Errors due to finite sampling time and finite sampling rate are
- regarded for the purpose of analysis as system errors since in practice
the upper limit in measurement time is fixed by the size of the Co
register, while the sampling rate is limited by the a.d. converter

selected in the design of the s.p.c.

5.5.1, Level Offset Errors

The offset at any given level can be due to inaccuracies in
‘the rectifier and due to the a.d. converter resolution capabilities.
Thus let the total offset at the r'" level be §V_. An incorrectly
weighted sample occurs for all moments if the sample falls in the range
V. to’Vr + svr where Vr is the voltage at the rth level. The error in

th

the weighting number for the k™ moment, for a positive GVr is

Weor = Yior Y-l
r r-1
=- Tk qk-l R Z K qk-l
q=1 q=1
-~ W, = -k £ | (5.8)

k,r

Thus all the measured values of the moments will be lower thén
the actual values when GVr is positive, The total error depends on the
number of samples occurring in the level interval Gvr. Obviously such
offsets can occur at all levels. For signals which are symmetrical
about the zero level these offset errors tend to cancel out since both
o, and m tend to be lower than the actual values for a positive
offset. Similarly, in the one cycle mode for periodic signals, the

offset error is small since the probability of a sample occurring in the
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offset interval is very small except at high sampling rates. The level
offset errors are therefore, important only in the fixed time mode of
operation of the s.p.c.

The error due to level offsets depends on the number of times
a level is crossed and the time spent in the offset interval at each
crossing. The offset can also be regarded as causing an error in the

value of P, the probability that the rth

level is exceeded. For
periodic signals it is relatively easy to obtain the number of crossings
whereas for Gaussian signals, the error is best analysed by considering

P.

(a) FWR Periodic Signals

A level is crossed twice for each half cycle. Therefore, for
a total measurement time of T sec.,rthe number of crossings of any
;evel is 4 fi T where fi is the frequency of the input. If the time
§pep; by thg signal, in the offset in;erval 6Vr is t, then the expe:ted
number of sanples within this interval, for a sampling rate 1/t is ;E-.

The total expected number of samples in the interval GVr is given by

No =4t £ C, (5.9)

Each of the Nr samples is incerrectly weighted, the weighting
error being given by Equation (5.8). If the slope of the waveform at
the rth level is Vi then assuming évr is small

5Vr

Hence the error in the kth moment for periodic signals is
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n-1 6V
e, p= ——t— J 4C_f, =Sk ! (5.11)
k,2 nk C =1 o i v1
Omk T
n-1 sV
. . 45 k k-1 | (5.12)

.o ek’l-

Since Vi involves the frequency, fi’ it is easy to show that

€ ¢ is independent of fi the signal frequency.
»

(b) FWR Gaussian Signals

The expression for the expected number of crossings developed
by S.0. Rice48 can be used; however, difficulty arises in the evaluation
of the slope at a level crossing. In such cases, therefore, the
probability analysis is more.ccnvenient, Thus the error'épr in Pr due

to a level offset GVr is given by

§p_ = 2 Y exp.{ _:gif } (5.13)
Y21 o 2n‘o

This is derived from the probability density function for FWR

Gaussian Signals.

The error in the kth moment for FWR Gaussizn Signals is therefore,

given by
1 n-1 26Vr _rZ k-1
ek’L = X L -*‘/_—:_--* . [exp.{——-z-—z—}]'k r (5.14)
n mk r=1 2m o 2n"o
(c) Results for ek,l’

The error expressions (5.12) and (5.14) are best evaluated with
a general computer program. The flow chart of the procedure is given

in Appendix D. The analysis assumes that the level offsets are equal
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for all levels; however if the actual offsets are known then their
values can be used in the analysis, the program modification required,
being a very trivial one. The offset 6V} and the number of levels n
are considered as the variables in the analysis. For a fixed number
of quantisation levels n, the error ek,£ varies linearly with GVr.

Thus

ek’£ = kz . GVr (5.15)

where 6Vr is the level offset in millivolts. The constant of proportion~
ality for various waveforms are given in Table 5.2.

Errors due to level offsets do not occur for d.c. or rectangular
waveforms since only one level is occupied at any time. However, the
offset will affect the highest level exceeded information and thereby
affect the system quantisation errors, if the peak lies in the offset
region.

The level offset errors increase only slightly as n is increased
as shown in Fig. 5.10. However, a large n implies a smaller quantisation
interval in which case there is every possibility that 6Vr will also
increase. Therefore, little improvement can be achieved by using a

higher n. For this reason, n=64 has been chosen in the s.p.c. designed.

5.6 Errors due to Finite Time of Measurement

Statistical analysis using the s.p.c. assumes a finite time of
averaging. However, time averaging without errors, requires a time of
integration which tends to infinity. In pracfice, measurements are
always terminated after a finite time. If the input is periodic then

this error can be regarded as arising from the use of a non-integral
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FWR ,
Waveform M ] n3 My
Sine 14.3 x 107> [22.3 x 1073 |30.4 x 107% |37.2 x 1073
. -3 e o 1n=3 a3 -3
Triangular 19.7 x 19 29.5 x 10 9.1 x 10 48.4 x 10
GarssLon w - 3 )
. 49 x10° ]e3x10 |76x107° |81 x107°
Noise
g=0,25
Table 5.2.: Constants of proportionality for

equation (5.15) to calculate e g
» .
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nusher of cycles in the measurement process. In general cases, the
effect of finite time is to cause a random error which has a near

Normal statistical distribution and vhose variance™  1s given by
2 (F. ot 2
Var(ek’T) = 5 Io(l - TJ(Rmm(t) - Vk)dt , -(5.16)

. . . k .
where Rmm(t) is the autocorrelation function of (v') corresponding to
th - . _ k N ie 1
the k™ moment of v and v is the mean value of v, If an(t, is knovn
i
then the variance can be calculated and a confidence limit can then be
However, difficulties usually arise in calculating

Rmm(t), unless suitable approximations can be madeZ7. Rice47, on the

specified for’ek’T.
other hand, has suggested a direct evaluation of the variance. Again,
the same difficulty as in Eqn; (S;;é) is experienced.

A simpler analysis can be made using the equivalence between
time averages and ensemble a§$rages and then appiying the results of
large sampling theory. This approach has been adopted in the fellowing

analysis (section 5.6.2.).

5.6.1. Error e

for FWR Periodic Signals
k,T

———

The k;n time averaged woment for a finite time T is given by
T ,
m g = J K at | (5.17)
;T 01
0 :
th s
and the actual k™ moment is

m = Lim[m (5.18)

T—)c:) k’T
Let the measurcment process run for {g+a) pericds as shown in
i I

Fig. (5.11) where « = n - ¢. The starting point ¢ znd stopping at n
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PFigure 5.11: Finite time of measurement
for a periodic signal.
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are completely random. For a periodic signal

v = g(6)
. 1 2n(q+a) X
oe mor Tr(a + ) [ g (e) ds (5.19)
’ q o
where 0 <a <1
and
1 ("
. f &Ko) do . (5.20)
1 )
The error e due to finite time is
k,T
o . =Tk
k,T m
. '_n.km_k_T. -1 | (5.21)
Substituting for m s ONE obtains the general expression for
ek,T’ viz
2n0 k
Jo g (8) do + 2nq m - 2-rr(q+a)mk
T = (5.22)

m - 2n{g+a)

If q > a, the equation (5.22) reduces to

1 2Ta K a
ek,T = 774 m IO g (6) do - a— (5.23)

For FWR signals used in the analysis, g(8) is known and therefore
the product q-e, p can be evaluated for various a«. The maximum values
?
of this error for the four periodic signals are given in Table 5.3. For

D.C. inputs g(9)=1, assuming peak value is at the nth level, mk=1 and



Maximum error e

)
%

k,T
FWR First Second Third Fourth

Wave form Moment Moment Moment Moment
Rectangular 0 0 0 0
Waveform

Sine , 0.0526 0.0796 . 0.0966 , 0.257
Waveform T q q q T q
Triangular , 0.0624 0.0961 . 0.1181 . 0.1337
Waveform q a q q

q = no. of cycles of input, used in measurement process.

Table 5.3.: The error e T'fbr the four waveforms.
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therefore e is always zero.

>

5.6.2. Error ek T for FWR Gaussian Noise
’ }

Since the autocorrelation function Rmm(t) for vk cannot be easily
calculated for Gaussian signals, the general variance expression of
Equation (5.15) yields little useful information. An alternate method
suggested by S.0. Rice47,.attempts at a direct evaluation of variances.
An example of this approach is given in Appendix E. It is seen that
this method also has the same disadvantages as for the general expresion
of Equation (5.16).

A simple analysis can be mads usingAthe statistical theory of
large sample sizes. It is known that the four statistics m, My,

/5; and B, obey the Normal distribution for large sample sizes. R.A.

2
Fisher25 has given the results of the variances of the distributions
of these statistics. When the sample size is large the results can be
simplified further. For systematic sampling of a Gaussian signal with
a bandwidth of B Hz., the minimum sampling rate is the Nyquist rate
2B Hz. Thus if measurement time is T secs., the sample size N is

N = 2BT (5.24)

The variance results for large sample size are given in Table

5.4. For a 99% confidence limit, the measured statistics will be within
:2.5805 of the true value. Thus, if the Gaussian signal has a very
narrow bandwidth, then the time of measurement must be increased

considerably, if the fluctuations in the measured statistics are to

be small.



Expression for

Statistic General Expression samples at
Nyquist Rate
Mean Value (ml) oy = < g
N vY2BT
Standard 5o o
deviation (o) Os = N JoT
Skewness (VB ) o_ = 6 3
1 S N BT
_[24 [12
Flatness (62) 9 =\[§— BT

Table 5.4.:

Expressions for standard deviations (os)

for Gaussian inputs.
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5.7 Error due to Finite Sawpling Rate:

If the input signal crosses a quantisation level during an a.d.
conversion process before the next a.d. start pulse is produced, then
an incorrectly weighted sample occurs, causing an error in each moment
value. Thus consider sampling at the rth level as shown in Fig. 5.12.
The Gr and Br sections of the inpht signal are incorrectly weighted,

In practice the valuss of dr and Sr.occurring at all levels are
uniformiy distributed in the range 0 to 1.7 of course,rthe error dug to
finite sampling rate occurs only if a sample is taken during the
crossing interval, The sexact analysis which takes into account the
number of crossings of each level and the variation of Gr and Bf from
one level to énéther is extﬁémely comrplex. A simpler analysis to |
evaluate only fhe worst case maximum ervors can be carried out, assuming
that a sample occurs at each level crossing. It can be readily ghown
that the worst case eryors cccur when ér:O'and 8r=1’ Assuming also

that fast sampling approximates continuous time averaging, the errvor

e due to a finite sampling rate is given by

k,p
1 n“:l
e p = T 2, CAIPRE NS LI (5.25)
nv T mk =3
where Nr 8 is the number of negative going crossings of the rth level.
2
For a FWR periodic signal of input frequency»fi Hz,
Nr,s B Zfi T
and
1 Zfi n;l
Sy - % L W p 7 W) (5.26)

7

: - W
. [ J e 2l 1 (5.27)
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For large n it can be shown that the quantity within the square brackets
approaches unity. Therefore, the worst case maximum error is
2 f,

o ~ i c -
max. ck,p Pt (5.28)

For a FWR Gaussian bandlimited signal of bandwidth B Hz, the

) . . . .., A8
expected number of negative crossings is given = by

. S
No ?rzc
Nr = 5 (5.29)
where N0 = i%: ‘ (5.30)
. L2

The werst case error ey p for this signal is
nell, - M T TET
1 B [ ; “k, r-u kK, Xy o 20 1. (5.3

n ¥Y3p-nm nt
Py
Again it can be shown that the quentity within the square
brackets in Equation (5.31) can never exceed unity. The worst case

error in the limit is therefore given by

B Kk
MaxX, € % where 0 < K, <1 (5.32)
PPy - "k -

The énalysis for ek,p sugggsts that the ratic f/p should be made
small in order te reduce the error due to finite sampling rate. It must
also be pointed out that this analysis considers the worst pbssible
situation at each lewvel crossing, i.e., Gr =0 and‘Br = 1 and that a
sample occurs at every B cvrossing. In practice, however, this is seldom
the case and the average ervor ek,p is much less than the worst case

erToY.

. v, ;
For example, it has been shown™  that for the second moment the
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error e, p has a Gaussian statistical distribution with an average value
2f, ? 4f.

—2L and a standard deviation of ~55-. Thus a 99.73% confidence limit

np
12f;
for the error e p is npl . For the s,p.c. designed with a maximum
»

value of p being 10° Hz and n=64, the highest input frequency, fi’ is

slightly over 5 KHz.

Deliberate jittering of the samples is a simple method for
preventing a systematic build up of errors due to finite sampling rate.
In the s.p.c. designed, the master clock frequency is volﬁage controlled,
so that a random voltage can be used as an input to this clock and

thereby produce the required jittering of the samples.

5.8 Errors due to Aperture Time

The a.d. converter, used in the special purpose computer, employs
a successive approximation technique, in which the digital output is
determined one bit at a time starting with the most significant bit.
For this type of a.d. converter, the digital output corresponds to
some previous value of the analog input during the conversion process.
The aperture time My is the total conversion time and equals 8 usec., for
the a.d. converter used.
If, during this aperture time, the input changes from the :th
to (r+1)th level then an incorrectly weighted sample occurs. Thus, if

the slope of the input signal exceeds v/sec. an error will occur

a‘
if a sample is taken at this slope.

The error due to aperture time depends on the probability that
a sample occurs at the instant where the slope exceeds the limiting

value. Thus for a triangular waveform of 10 V peak and a frequency of
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500 Hz, the aperture time errors begin to occur. The magnitude of this
error depends on several factors and is therefore not easily analysed.
However, aperture time errors have a tendency to cancel, .since the
errors for positive going slopes usually differ from the errors for
negative slopes, in sign only. In préctice, therefbre,:a much higher
frequency input can be analysed. Thus in the s.p.c. designed, signals
up to 5 KHz have been analysed with a total error being within 1% for
any moment. Aperture time errors can be minimised by using a sample

‘and hold circuit before ths a.d. converter.

5.9 Errors in the Above-level Probability Measurements

Errors in the above level probability arise from two sources

{a) Level offsets at each level

(b) Finite time of measurement.

If the level offsets are identical at each level then the effect
will be, simply a shift in the quantisation interval by a fixed amount.
However, this is seldom the case and in practice the above-1level
probability is measured for a level Vr+5Vr exceeded instead of the level
Vr. For coarse quantisation (16 levels) 8V, <<V and therefore the
error due to lével offsets is negligible. If, on the other hand, svr
is known, then a correction can be easily made in the final results.
| The effect of finite time of measureﬁent will be to cause a
statistical variation in the measured probability, in the same way as
in the measurement of the four moments (section 5.6). For a negligible

C. ..

V. the s.p.c. produces Ei-z fi' where T is the total time of measurement
o :
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and T is the time for which the rth level is exceeded. It now remains

T .
to assess whether T£ is a good estimate of the above level probability.
T .

The quantity Tz' will depend radically on T and of course on the

amplitude distribution of the input. A detailed analysis of the
fluctuations is not necessary since one would expect the following
precautions to be taken during a measurement of the above level
probability distribution.
1) The measurement time T will be at least as long as that required for
a prescribed confidence limit in the first moment, since the latter
is computed by a simple accumulation of the above level probabilities{
The measured probability will have a confidence limit comparable to
that for the first moment.

2) Several C_ measurements for one level r are made and the average of

C T
the E£ values is used as the above level probability value.
0
5.10 Comments on the Error Analysis

In order to obtain the overall error distribution characteristics,
the statistical distribution of the individual errors-are required. A
convolution approach17 can be used to obtain the distribution of the
sum of these errors, assuming their statistical independence. For
design purposes, however, the worst case errors are usually more meaning-
ful.

Accurate experimental error analysis requires a precision signal
source with very small but known distortion. The measuring equipment
for the actual moments, must have an overall accuracy which is at least

an order of magnitude better than that of the s.p.c. Measurements made
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for the four moments for the standard FWR signals with the highest
frequency of 1 KHz indicate that the total error is well within 1%

for the fourth moment for a sample size Co = 106 and a sampling rate of
10 KHz. The r.m.s. value of the input signal was measured by the
Hewlett Packard Model 3450 Multifunction digital meter, which has an

overall accuracy of 0.01% in the 10V range.



CHAPTER VI

ITERATIVE ARRAYS FOR BINARY ARITHMETIC

6.1 Introduction

The weighted feed logic, implemented for the s.p.c. uses special
purpose simultaneous multipliers which complete a 24-bit binary
multiplication within 50 ns. The design of such multipliers makes an
-efficient use of the fact that for the weighting numbers, the multiplier
and the multiplicand are interrelated and are in a restricted range.
However the W.F.L. units cannot be easily generalised to accommodate a
larger number of bits. Thus if instead of a 6-bit s.p.c., an 8-bit
machine were required, then the entire design procedure outlined in
Chapter III for the W.F.L. units would need to be carried out again,
resulting in a cumbersome and costly hardware system.

In this chapter, the use of iterative and near-iterative cellular
arrays for arithmetic operations is investigated. A universal arithmetic
cell (U.A.C.), based on the rules of binary addition and subtraction,
has been developed for use in cellular arrays. The arithmetic operations
considered are multiplication, division and square-roct extraction. A
method of intercoming such arrays for the realisation of the weighted

feed logic is also described.

129
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6.2 Review
It has now been recognised that there are many problems in the
area of computer structures, especially useful in information process-

49, that involve the presentation of data in the form of a single

ing
uniform array. The arithmetic operations of binary multiplication
and division are typical problems in this area. Their problem structure
suggeéts that it would be possible to design a group of processing
arrays in which each array is composed of a number of identical cells
interconnected in a regular fashion. An iterative array has been
defined by Hennie49 as one that is composed of a number of identical
logic cells with all connections to the neighbouring cells being regular.
| Arrays constructed in an iterative or in a near-iterative
fashion have several advantages. Being made up of identical cells, they
are economical to manufacture and repair. An array can be easily
énlarged to accommodate more variables, e.g., an increased number of
binary bits, by simply adding more cells. Since some of the processing
can be carried out in parallel, a considerable improvement in speed
usually results. Use of cellular arrays for arithmetic operations was
initially suggested by Hoffmann, Csillag and Lacazeso, who proposed a
simple multiplier in which the conventional add and shift algorithm
was implemented in an iterative array. Significant contributions by
several authors followed this work51-62. The array structures proposed
by these authors begin the multiplication process with the 1.s.b. of
fhe multiplier in the conventional manner and obtain a speed of

multiplication for two n-bit numbers as (3n-1)t where 1 is the cell

delay. Similarly division is implemented using a restoring type
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algorithms7 which tends to be slow. ' The array structures proposed were
not easily applicable to other arithmetic operatioms, e.g., it is not
possible to use a single array for both multiplication and division.
The investigation described in this chapter differs somewhat
from the above-mentioned work, in that it emphasises the concept of a
universal logic cell for use in all arithmetic arrays. This mgthod of
implementation of arrays allows the same array to be used for multipli-

cation and division.

6.3 The Universal Arithmetic Cell (U.A.C.)

The Universal Arithmetic Cell (U.A.C.) proposed here has been
developed60 using the truth-table for binary addition or subtraction
shown in Table 6.1. In this table,C represents the carry-in for
addition and a borrow-in for subtraction. A and B are the primary
inputs.

6.3.1. Addition

The logic requirements for the sum S, and the carry-out C, can
be easily simplified using three-variable Karnaugh maps, giving the

following expressions.

Sy = C[AB + AB] + C[AB + AB]
S°=A®B®C (6.1)
where (¥) denotes "exclusive OR" operation
and C =A[B +C] + BC.
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Inputs Addition | Subtractiocn
A B C So C, D, B,
0 0 0 0 0 0 0
0 0 1 1 0 1 1
0 1 0 1 0 1 1
0 1 1 0 1 0 1
1 0 0 1 0 1 0
1 0 1 0 1 0 0
1 1 0 0 1 0 0
1 1 1 1 1 1 1

Table 6.1.: Binary Addition and Subtraction
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6.3.2. Subtraction

A similar logic minimisation as for addition gives

D,=A® B ®C

and (6.2)

-]
n

A(B + C) + BC

6.3.3. Generalised Arithmetic Operation and the U.A.C.

Comparison of Equations (6.1) and (6.2) shows that the sum and
difference expressions are identical whereas the carry-out and borrow-
out expressions differ only in the variable A. Thus a generalised
addition/subtraction operation can be described by the following

equations.

S

A@B@®C

W[B + C] + BC . (6.3)

AQ@® F.

The input F is a control input and decides the mode of operation.

P

W

Binary arithmetic also requires the facility to inhibit an
operation if desired, i.e., to let the primary inputs A and B go through
the processor unaltered. This inhibiting decisiom is to be provided by
an external control state D. Thus the genefalised adder/subtractor with

this inhibit control has logic equations which are

S=[A® B® CID+AD
i.e., S=A ® BD ® CD (6.4)
and P=W[B+ C] + BC

To complete the design of the universal cell, only a few minor

additions are required. Thus the states B, D and F are also made
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available as outputs. The U.A.C. has five inputs and five outputs and

is described by the following logic equations

Ss=A® BD® CD
P=W[B +C] +BC
where W=A (® F
(6.5)
U=D
V=38
G=F

This cell together with one logic realisation is shown in
Fig. (6.1).

A useful modification of the U.A.C.‘is to replace A in the
expression for S in Equations (6.5), by W. This modification requires
no extra components and can be easily implemented using a binary adder
and some additional logic gates. Its primary use is in cellular arrays

for complement arithmetic_operations60.

6.4 Functions of the U.A.C.

The arithmetic operations of the U.A.C. are controlled by the

inputs F and D. The following operations are relevant.

6.4.1., Controlled Adder F = 0

The cell equations for S and P are

[72]
n

A® B @ O

(6.6)

o=
L]

A[B + C] + BC

The other outputs are as given in Equations (6.3).
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The cell is a controlled adder in which S is the sum and P is
the carry-out. If D=0, S = A and no arithmetic is performed. This

mode is useful in binary arithmetic.

6.4.2. Controlled Subtractor F = 1

The logic equations for S and P become

n
[}

A® B ® D

(6.7)
A[B +C] + BC

ja-
[}

The cell is a controlled subtractor in which S is the difference
and P is the borrow-out. If D = 0, no arithmetic is performed. The

cell can be used in a division process using the restoring algorithms?

6.4.3. Conditional Adder/Subtractor D = 1

The logic equations for S and P are

wn
"

A@®B®C

(6.8)
[A ® F][B+C] +BC

o
"

The controlled U.A.C. is a full adder when F = 0 and when F = 1
it is a full subtractor. This is the most useful node of operation

since it enables a single array to be used as a multiplier or divider.

6.4.4. Ternary Operation

When both F and D are used as control lines, the U.A.C. can
perform addition, subtraction or leave the inputs A and B unaltered.
This ternary operation is useful in multiplication of signed binary

62
numbers .
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6.5 Cellular Arrays Using the U.A.C.

The universal cell operated as a controlled adder or subtractor
may be used in any of the cellular arrays mentioned earlier51_60.
However, these arrays implemented the slower algorithms for multiplication
and division. One method of increasing the speed is to use some form
of "carry save" techniques63 for multiplication. For division or

square-root extraction, considerable speed improvement can be obtained

by using non-restoring algorithms63

6.5.1. Array for Multiplication

Figure 6.2 shows a three row array with the additional logic
required to perform multiplication of two 3-bit binary numbers, using
a 'carry save' technique. The order of multiplication is reversed with
the m.s.b. of the multiplier being considered first. The F inputs to
all the cells are in state 0, i.e., they are used as controlled adders.
To obtain the product LM, M is applied to the B inputs of the top row
and all A inputs of this row are in state 0. The L inputs are applied
to the row control lines D. The least significant bit C inputs are
obviously zero. In Figure 6.2 L = 101 and M = 111 have been chosen.
All the intermediate states are also shown. The product is obtained
at the S outputs cf the lowest row, with the m.s.b. being the logical
OR of the 'carry outs' from the m.s.b. cells of rows whose D inputs are
1. This is implemented in each row by an AND gate fed from the D
input and the m.s.b. carry ocutput. The AND gate outputs constitute the
inputs to the final OR gate. No AND gate is required in the top row

since its carry out P is always zero.
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The array requires Eié%:ll- cells for multiplication of two

n-bit numbers. Also (n-1) 2-input AND gates and one (n-1)-input OR
gate are required. The states on the diagonal inputs and outputs of the
cells appear without any delay. Propagation of the carry outs from one
diagonal of cells to the next m.s.b. diagonal is simultaneous. Thus
the 1l.s.b. of the product is available after a delay equal to a cell
delay t. The next bit is available after 2t. The carry out of the
m.s.b. cell of the last row is available after a delay (2n-1)t. 1If rg
is the delay of the external AND and OR gafes then the maximum total
delay for multiplication of two n-bit numbers is
Tm = (2n-1)1 + ng sec. | \

The multiplier array is also capable of performing the arithmetic
operation LM+K where L, M and K are all n-bit numbers. The K inputs
are applied to the A lines which are marked K in Figure 6.2. Since
a carry can result from the first row, an additiormal AND gate is

required for this row,.

6.5.2. Non-restoring Division Array

For a non-restoring algorithm the U.A.C. is used as a conditional
adder/subtractor. The non-restoring algorithm60’64 requires addition for
the divisor when the remainder is negative. The division is performed by
shifting the remainder to the left at each step (ox by shifting the
divisor one position to the right) and either adding to or subtracting
from the partial remainder. The D inputs of all the cells in the array
for division a;e in state 1 and the F inputs are used as control lines.

If F, is the control input to the nth row and Py is the borrow out/carry
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out signal then the quotient bit Q, and the control Fn+1 for the next

row may be derived from the following truth table.

Control to ]| Borrow/Carry Quotient Control to
nth row F, | out signal P Qn (m+1)th row Foel
1 0 1 1
1 1 0 0
0 1 1 1
0 0 0 0

Table 6.2.: Quotient bit § control states for (n+1)th TOW,

Note that Fn=1 implies subtract mode and Fn=0 implies add mode.

From the truth table one obtains

Qn = Fn+1 = Fn CD Pn

The array for division by the non-restoring algorithm is shown
in Fig. 6.3. The dividend is applied to the A inputs and the divisor
is at the B inputs of the top row. The F input to the first row is at
1. For each row the borrow out/carry out signal P from the m.s.b. cell
and the control signal F constitute the inputs to an exclusive-OR gate.
The output of this gate is the quotient bit and also the control signal
for the next rgw., Clearly the number of rows may be increased to obtain
more bits of the quotient. In Fig. 6.3, division of binary L=011 by

M=100 is treatsd. All intermediate states are also shown.
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The number of cells required for division of two n-bit numbers
to produce an n-bit quotient is the same as that for the multiplier.

If however, m bits of the quotient are required, then the array will

m(m + 2n - 1)
2

The total delay to produce the m-bit quotient will be

cells.

have

_m(m+ 2n - 1)t

Td = 5 + mrg sec.
where T = cell delay and
Tg = exclusive-OR gate delay.

6.5.3. General Array

A significant feature of the multiplier and divider arrays of
Fig. 6.2 and 6.3is that their cell interconnections are the same, so
that a multiplication or division operation may be readily performed by
a small control logic block for each row of the array63. An example

of such a logic block is shown in Figure 6.4. The nth

digit L_ of

» n
number L is fed to the block for the nth row of the array. The block
outputs for feeds to the nth TOW are Dn and Fn' The An output of the

h cell of the top row. The

block is applied to the A input of the nF
block carry in/borrow in is Pn. Control of the array is exercised by
Z. For Z=0, An=0, Dn=Ln and the array acts as a multiplier with L as
the multiplicand and M the multiplier. When Z=1, Ah=Ln’ Dn=1 and the
array is a non-restoring divider with L as the dividend and M as the
divider. The input M is applied to the first row in both cases so
that the M inputs do not feature in the control logic. The outputs

marked R, feed an OR gate which is required for the m.s.b. of the product

LM in the multiplication mode.
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A general array for processing two n-bit numbers will require
n control logic blocks in addition to the n-row array. The product will
have 2n bits and the quotient n bits, The speed of processing is slightly
reduced due to propagation through the control legic blocks. The array
structure can be extended readily for larger numbers or for increased

accuracy in division.

6.5.4. Array for Multiplication of Signed Binary Numbers

For the multiplier of Section 6.5.1., if a negative number
(multiplier or multiplicand) is in two's complement form, then it has
first to be converted to a sign and magnitude form before multiplication
can be performed.

The general multiplier considered here requires no prior know-
ledge of the sign of the multiplier or multiplicamd. If the final
answer is negative, then the product is in two's <omplement form.

Such arrays can be used in data processing and weuld also eliminate the
use of the precision rectifier in the s.p.c. The array uses an algorithm

due to A.D. Booth65

and is summarised below for mmltiplication of two
signed n-bit numbers x and y. The number x is assumed to be a binary
fraction having (n+l) bits and is written

o -1 -n

X =Xx2 + x12 + .. .x2

n (x, =0,1)

where X, is the sign bit. The rules for multiplication apply to each

digit X starting with the least significant bit.

1) If Xp = Xpaq0 shift the existing sum of partial products one
place to the right.

(ii) If X = 1, Xeal = 0 i.e., X > N subtract y from the existing
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sum of partial products and shift the new sum one place to the
right.
(iii) Ifx

=0, x 1, i.e., X, < Xpe1? add y to the existing sum

k k+l ©
of partial products and shift the new sum one position to the
right. |
No shift is required after the last operation is carried out.

Clearly the operation can start with the most significant bit of x,

instead of with the least significant bit as originally proposed.

Furthermore, if the multiplicand is shifted instead of the partial sum,

the same end result is obtained with the advantage that some parallel

processing may be used, resulting in an improvement in the speed of
multiplication. It should be noted that when a number with a 0 in its

m.s.b. position is right-shifted, there will also be a 0 in the m.s.b.

position of the new number. Similarly, for a number with a 1 in its

m.s.b. position, there is also a 1 in the m.s.b. position after the

right shift.

Example: Consider multiplication of y = 0.01 by x = -0.11. In two's

complement form y = 0.01 and x = 1.01.

(a) X, = 1, X = 0, subtract y from 000 to give ypl = 1,110

Shift y one place to give Yy = 0.001

(b) 0, Xy = 1, add Yi to Y11
yp2 = 1,111
Shift y, to give Yy = 0.0001
(c) X, = 1, Xz = 0, subtract Yy from ypz,
yp3 = 1.1101 No shift is required at this step.

The answer is 1.1101 (i.e., -0.0011)
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The array for multiplication of signed binary numbers uses the
U.A.C.'s in the ternary mode of operation62. The iterative array is
shown in Fig. 6.5. It is capable of multiplying two three-bit signed
numbers. The A inputs to the first row are in state 0. The Y inputs
are at the B lines of the first row with the m.s.b. at the extreme
left cell. The B inputs to the m.s.b. cell of any row other than the
first are obtained from the B inputs to the next cell in that row.
Thus the diagonal lines present the multiplicand Y in a correctly
shifted position for further processing. Furthermore, since no shift
is required after the last operation, the final product is available at
the S outputs of the last row, without any processing. A one-bit
comparator is used to obtain the results of comparison of X and el

for the k"

row and provide the D and F inputs to that row. Thus
[x > x,;] is the F input and [E;_Z”EE:I] is the D input. If
X > X is denoted by [xk > xk+1] =1 then F=1, D=1 and the row
with these inputs will be in the "subtract" mode. If xk < X1 is
dencted by [x > x .1 =0, then F =0, D = 1 and the row is in the
"add" mode. When X, = X 1, X = X g, [§;_§"§i:;] = 0, therefore,
D = 0 and the row performs no arithmetic. In Fig. 6.5, multiplication
of Y=0.01 by X=1.01 (i.e., +0.01 by -0.11) is treated. All inter-
mediate states are also shown.
If both X and Y are two n-bit nwmers including the sign bit,
then the array requires Eléglll cells and n 1l-bit magnitude comparators.
If the comparators have a delay of T, sec. each, then the mode

of operation of each row is settled after T, sec. Assuming a cell delay

of T to produce either S or T output, the l.s.b. of the produce appears
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after a time T+T, Sec. The states on the‘diagonal lines appear without
any delay. Therefore, the next bit of the produce will be available
after a delay 21+rc, the third bit after a delay St+rc etc. Since there
are (2n-1) diagonals of cells, the deiay in obtaining the m.s.b. of the
product will be

Tgm = (2n-1)7 + T, sec.

This delay is comparable to the delay of the general multiplier/

divider array described earlier in this chapter.

6.5.5. Array for Square-root Extraction

A non-restoring division array can be readily extended to yield
avsquare-rooting array which is near-iteraﬁive, but has a simple inter-
cellular connection pattern.

The non~restoring square-root algorithm may be outlined as
follows:

(a) The binary number N is paired off starting from the radix point.
Let these pairs be A, A _;, etc.

(b) The first minuend is 01. Subtract this from Ah. If the remainder
is positive, 1 is entered in the square-rdot answer. 01 is
appended to the square-root developed so far, shifted by the correct
number of times and a further subtraction is attempted.

(c) If the result of subtraction is negative, them 0 is entered in the
square-root. 11 is appended to the square root developed so far
and this number is added to the remainder after being shifted

correctly.
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When the remainder is positive, the square-root is always 1,

01 is appended and a subtraction is performed on the next cycle. If
the remainder is negative, the square-root bit is 0, 11 is appended
and an addition performed on the next cycle.

Fig. 6.6 shows a decision tree of the possible numbers to be
added or subtracted in each cycle. The square-root bit developed in
the previous cycle is SA and is also indicated.

An iterative array for square-root extraction is shown in
Fig. 6.7. The D inputs are at 1 in each row. The number N is applied
in pairs to each row. The least significant number to be added or
subtracted is always 1 (Figure 6.6). Furthermore, the next two bits
are always SA and SA, SA being the square-root bit developed in the
preceding cycle. Since SA is also the F inputs to a row, the next two
feeds may be obtained from these lines, as shown in Figure 6.7. The
remaining bits of the numbers of Figure 6.6 are obtained from the
diagonal outputs of the preceding row. As for non-restoring division,
an exclusive-OR gate is required for each row to produce the square-root
bit and F input to the next row. In Figure 6.7, the square-root of
1001 is treated. All intermediate states are also shown.

The square-root array requires n(n+l) cells to extract an n-bit
square-root of a 2n-bit number. If the cell delay is t and the exclusive-
OR gate delay is Tg then the total delay in obtaiming the n-bit square-
root will be

Ts = n(n+l)t + nrg sec.
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6.6 BCD Multiplication

It is possible to perform complex arithmetic operations such as
BCD multiplication by connecting the arrays of the previous section
in an iterative system. The iterative array proposed here for BCD
multiplication, uses sub-arrays, each of which has two basis operationms.
The first operation is multiplication cf two binary numbers and additions
of any carry-ins. The second operation is division by a fixed divisor
decimal 10(1010 binary), of the multiplication results. The general
multiplier/divider arrays can be used in this application. Thus,
referring to Fig. 6.8, the multiplier together with an extra adder
produces [A°D + B +vC] and the divider, divides this by 10 and produces
a remainder P and a quotient Q. The operation of such a sub-array is
then given by the fbllowing equations. |

Rem. [{A-D + B + C}/10]

P =

Q = Quo.[{A:-D + B + C}/10]
F=0D

G=A

Note that in Fig. 6.8 all the literals are BCD variables, i.e.,
each input/output line represents four lines of a BCD digit.

The iterative array for BCD multiplication is shown in Fig. 6.9.
Decimal equivalents of the BCD digits are used. In Figure 6.9, the
operation [999 x 999 + 999 + 999] is treated. All intermediate states
are also shown. Each sub-array multiplies two BCD numbers and adds any
carry-ins to produce a result which cannot exceed 99. This result is
then divided once by decimal 10 to produce the BCD remainder and a BCD

quotientQ The quotient becomes the carry-in to the next m.s.b. sub-array.
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4
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P

Figure 6.8: Generalised Multiplier/Divider
Cell for BCD arithmetic,
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Each sub-array thus consists of a 4-bit by 4-bit binary
multiplier and a divider to accommodate a seven-bit dividend and a
four-bit divisor. Since both of these processes can use the same logic
structure, the sub-array can be realised as a single LSI function.

The BCD multiplier requires Eiégill

sub-arrays to multiply
two n-digit numbers. For a sub-array delay of Tgs the first digit of
the product is available gfter a time T The carry-outs from one
diagonal propagate simultaneously te the next m.s.b. diagonal, there
being parallel processing in each diagonal set of sub-arrays. The

BCD multiplication is thersfore completed within ans sec. Addition

of Kl and K2 involve no extra time delay.

6.7 Application of Iterative Arrays in W.F.L. Units

The cellular arrays can be interconnected to obtain the weighting
numbers for the three highsr moments. Since the arrays required are
all identical to each other, the entire W.F.L. unit design is considerably
simplified.

The weighting number expressions for the three higher moments are

wr,2 = r(r + 1)
_r(r+ 1)2r + 1)
wr,z = 3 (6.9)
2 2
WI_,4 = (r+1)

The maximum valve of r is 63 for a 6-bit quantisation process.
It is seen that only multiplier arrays are required. The array described

in section 6.5.1. is capable of realising the product LM+K where L, M



156

and K are all n-bit numbers.
The weighting number Wr , can be realised with a single
»
multiplier array in which L=M=K=r. A 6-bit array is required. To

realise Wr 3 the expression r(r+l) for Wr o may be used. Thus let
» 3

R

r(r + 1) )
(6.10)

R
then Wr E-{Zr + 1}

»3

Division of R by 2 is a simple right shift of R by one bit and
can be easily accomplished by wiring R into an array, with a right shift.

Thus, W is realised as
r,3

The implementation of wr’4 requires the realisation of R°R,
where R = r(r + 1). It is possible to simplify a nmultiplier array and
obtain a special squarer.. However the general multiplier array can
also be used. The design of the W.F.L. unit, using arrays is illustrated
in Fig. 6.10. The arrays required are a 6-bit by 6-bit multiplier

for Wr 2s 2 6-bit by 12-bit array for Wr and a 12-bit by 12-bhit
?

,43
multiplier for Wr 4

’

The total delay is obtained by calculating the delay in

obtaining Wr’4. Thus
Delay to compute Wr’z is
T(Wr,z) = (2n-1)1 + ng'
= 13t
Assuming T =T

g
and T(wr 4)

L

131 + (2 x 12 - 1)t + 21 sec.
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12-bit x 12-bit
Multiplier

Wr'u

r
6-bit x 6-bit
t—oT
r Multiplier
R/2 :
r(r+l) = R
6=bit x 12-bit§3
Multiplier
‘Rr + %
g}
Y Wr, 3 vWJ:',Z

Figure 6.,10: Realisation of ‘the weighting numbers.,
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oo T(wr’4) = 381 sec.

Typically t=10 nsec. Hence the total delay is 380 ns., to
realise all the weighting numbers.

In the special purpoée computer designed, the first moment
uses all eight bits of the a.d. converter, each bit being available at
1 usec. interval. The other three moments use 6-bits. Therefore, the
weighting numbers for these three moments would be available béfbre the
accumulation process which begins after the eight—bif conversion 1is

complete.

6.8 Comments

The iterative arrays offer a convenient method for implementing
the arithmetic operations which arise in special purpose computers.
The simplification achieved by using such arrays is seen from Fig. 6.10.
It is quite conceivable that in the near future, such arrays will be
available as LSI functions. The universal arithmetic cell developed
in this chapter is shown to have a versatility which was not available

in the cells proposed earlier.



CHAPTER VII

CONCLUSIONS

The use of above-level probabilities results in simple algorithms
for the moments of a random signal. A special purpose computer using
such algorithms for the first four moments has been designed and |
constructed. Some tests have been carried out which indicate that the
overall accuracy of the s.p.c. is within 1% for all four moments for
commonly-encountered random and periodic signals.

The concept of the weighted féeds is simple but a powerful one
since it enables fast processing without storage of the samples of
the input signals. Simuitaneous parallel multipliers have been used
in the weighted feed logic units. Design of these multipliers makes
an efficient use of the fact that the multiplier and multiplicand are
interrelated. Logic minimisation of these units, therefore, results in
econony.

Logic minimisation has received considerable attention in the
past. However, with the reduction in cost and improved reliability
of integrated circuit modules, any multiple output logic problem must
be analysed carefully before attempting a minimisation. In many cases,
cost of computer time becomes excessive compared to savings in
component costs resulting from a minimisation. In the minimisation
approach adopted in Chapter III, a compromise has been used in which
a near-minimum logic solution is sought for the multiple output weighted
feed logic within a reasonable'conmuter-run time.

159



160

In the implementation of the s.p.c., the significant feature
is the direct computation of the standard deviation (o) from first and
second moment. The counter-equation algorithm used in this system is
simple and can be readily used in other direct computations (e.g.,
reciprocals, approximations to functions, etc.).

A comprehensive error analysis for the four moments has been
carried out. The most important error sources are
(a) Approximations and quantisation of the input,

(b) Level offsets in rectifier and a.d. converter,

(¢) Finite time of measurement,

(d) Finite sampling rate and finite aperture time of the a.d. converter.
Errors>due to (c¢) and (d) can often be reduced in practice. Thus,
depending on the frequency of the input, the time of measurement should
be chosen such that an appropriate sample size is obtained. Use of a
sample and hold circuit before a.d. conversion, would reduce finite
aperture time effects and if the ratic f/p does not exceed %3-, then
the finite sampling rate errors are also negligible. Analysis of the
other remaining errors shows that beyond six-bit quantisation for
higher moments, the reduction in errors is small whereas the complexity
of the W.F.L. units increases considerably.

Design of W.F.L. units, using the simultaneous parallel
multipliers, although compatible with the presently available IC
components, tends to be complex and time consuming. Furthermore, the
design cannot be easily extended to a higher number of bits. Simplicity
of design would be achieved by using iterative or near-iterative

arithmetic arrays. The universal arithmetic cell developed for use in
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these arrays is extremely versatile; its use in other arithmetic
operations has been demonstrated. The W.F.L. units for a s.p.c. using
6-bit quantisation would require only three multiplier arrays. With
the current progress in LSI technology, it is possible that in the
forseeable future such arrays will be available as LSI modules.

The use of such LSI arrays in arithmetic operations would also
make the design of substandard digital instruments an'attractive
possibility which should be investigated further. In such designs it
is apparent that methods of impreving speed of operation should be
sought. A possibility in this area is the design of data-dependent
afrays in which some arithmetic cycles are eliminated depending on

input data66’67

. Special purpose computers using such arrays are also
possible for other applications such as multivariate averaging and
convolution, the latter being useful in digital filtering.

Another area for possible investigation is the use of the s.p.c.
for the four moments for real time applications. An example is the use
of the second moment algorithm to compute JTvzdt, v being an error
voltage and obtain an optimum control strat:gy. Finally, the first
four moments may also be used for approximation of the probability

density functions to be used in non-linear filtering algorithmsz.
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APPENDIX A

Initialise; clear all

dimensioned arrays.

¢

V=10
O =

10*

Sample Size €

RN = 64

QUANT = V/RN

?

J =

0

Figure A 1 Plow-chart procedure for evaluation '
of Direct Decimal Readouts for Cp = 104



J=J+1

l,

QUANT” (J-1)
QUANT™ (J)

VEL(J)
VE2(J)

:

Compute all Direct Decimal
Readouts as in CH. IV for

Co = 10%

J> 6472 NO

YES

Print 64 voltage
intervals an
their DDRs,

Figure A s Contd.

164



APPENDIX A: CONTD. les
VOLTAGE RANGE PIRST | SECOND | THIRD FOURTH
(VOLTS ) MOMENT | MOMENT | MOMENT MOMENT
0.0000 0.1563 0.00 0.00 0.00 0.00
0.1563 0.3125 156.25 4,88 .12 .00
0.3125 0.4688 312.50 14,65 .59 .02
0.4688 0.6250 468,75 29.30 1.63 .09
0.6250 0,7813 625,00 48,83 3.47 .24
0.7813 0.9375 781.25 73.24 6434 .55
0.9375 1.0938 937.50 | 102.54 10,47 1.06
1,0938 1.2500 1093.75 | 136.72 16.09 1.89
1,2500 1.4063 1250,00 | 175.78 23.42 3.11
1.4063 1.5625 1406.25 | 219,73 32,70 4.85
1.5625 1.7188 1562.50 | 268.55 44,16 7.24
1.7188 1.8750 1718.75 | 322,27 58.01 10.42
1.8750 2.0313 1875.00 | 380.86 74,50 14,55
2,0313 2.1875 2031.25 | 4u4b.34 93.85 19.80
2.1875 2.3438 2187.50 | 512,70 | 116.29 | 26.35
2.3438 2.5000 2343.75 585.94 142,05 3440
2.5000 2.6563 2500,00 | 664,06 | 171.36 44,18
2.6563 2.8125 2656.25 | 747,07 | 204,44 55,90
2,8125 2.9688 2812,50 | 834,96 | 241.53 69.82
2,9688 3.1250 2968.75 | 927.73 | 282.85 86.18
Table Ai Direct Decimal Readouts for 37

four moments, n = 64, Co = 104



APPENDIX A: CONTD.

VOLTAGE RANGE FIRST SECOND | THIRD FOURTH
(VOLTS ) MOMENT | MOMENT | MOMENT | MOMENT
3.1250 3.2813 3125.00 |1025.39 | 328.64 | 105.27
3.2813 3.4375 3281,25 |1127.93 | 379.11 | 127.36
3.4375 3.5938 3437.50 11235.35 434,51 152,76
3.5938 3.7500 3593.75 |1347.66 495,06 181,78
3.7500 3.9063 3750,00 |1464.8% | 560,99 | 214,76
3.9063 4,0625 3906.25 |1586.91 | 632.52 | 25202
4,0625 4.2188 | 4062.50 |1713.87 | 709.90 | 293.94
54,2188 4.3750 4218.75 |1845.70 | 793.33 | 340.89
4.3750 4.5313 4375.00 |1982.42 883,06 393.24
4,5313 4.6875 4531,25 |2124.02 | 979.32 | 451.41
4,6875 4.8438 4687.50 l2270.51 [1082.32 | 515.80
4,8438 5,0000 48h3.75 |2821.88 |1192.31 | 586.84
5,0000 5.1563 5000,00 |2578.13 |1309.51 | 664.99
5,1563 5.3125 5156.25 |2739.26 |1434.14 750469
5.3125 5.,4688 5312,50 |2905.27 |1566.45 | 8u4.42
5.4688 5.6250 5468.75 |3076.17 |1706.65 | 946.66
5.6250 5,7813 5625.00 |3251.,95 [1854.97 |1057.92
5.7813  5.9375 5781.25 |3432.62 |2011.65 |1178.71
5.9375 6.0938 5937.50 |3618.16 |2176.91 |1309.55
6.0938 6,2500 6093.75 |3808.59 |2350.99 | 1451,00
M Contd,




APPENDIX A: CONTD.

VOLTAGE RANGE FIRST SECOND | ‘THIRD FOURTH
(VOLTS) MOMENT | MOMENT | MOMENT | MOMENT
6.2500 6.4063 1 6250,00 [4003.91 |253%4.10 |1603.62
~6.4063 6.5625 6406.25 |4204.,10 |2726.49 [1767.96
6.5625 6,7188 6562,50 |4409,18 |2928,37 194,62
6.7188 6.8750 6718.75 |4619.14 |3139.98 |2134.21
6.8750 7.0313 6875.060 |4833.98 {3361.55 |2337.33
7.0313 7.1875 7031.25 |5053.71 [3593.30 |2554,62
7.1875 7 3438 7187.50 |5278.32 |3835.47 |2786.71
7.3438 - 7.5000 | 7343.75 |5507.81 |4088.28 |3034.27
7.5000 7.6563 7500.00 |5742.19 |{4351.96 | 3297.97
7.6563 7.8125 7656.25 15981.45 {4616.74% | 3578.50
7.8125 7.9688 7812,50 |[6225.59 |#4912.85 | 3876.55 |
7.9688 8.1250 7968.75 |6474,61 |5210.52 |4192,85
8.1250 8,2813 8125.00 |{6728.52 |5519.98 |4528.11
8.2813 8.4375 8281.25 |6987.30 |35841.46 |4883,10
8.4375 8.5938 8437.50 |7250,98 |6175.17 | 5258.55
8.5938 8.7500 8593.75 [7519.53 |6521.37 | 5655.25
8.7500 8.9063 8750.,00 |7792.97 |6880.26 | 6073.99
8.9063 9.0625 8906.25 |8071.29 |[7252,09 | 6515.56
9.0625 9.2188 9062.50 |9354.49 | 7637.08 | 6980.77
9.2188 9.3750 9218.75 18642.,58 | 8035.46 | 7470.47
Eﬂﬁiﬁi Contd.




APPENDIX A: CONTD.

THIRD

T e e e T —

VOLTAGE RANGE FIRST SECOND FOURTH

(VOLTS) MOMENT MOMENT . MOMENT FIOMENT

1 9.3750 9.5313  |9375.00 [8935.55 |84k7.u6  |7985.49

9.5313 9.6875 9531,.25 9233.40 8873,30 8526,69

9.6875 9.8438 9687.50 (9536.13 }9313.22 9094.95

9.8438. 10,0000 9843.75 |9843.75 [9767.45 19691.1k
Table A: Contd,




APPENDIX B

COMPUTATION OF SYSTEM QUANTISATION ERRORS

The following notes apply to the flow-charts for the

computer programs, of Figure B,

(a) Periodic Waveforms have been assigned numbers as follows.

WAVEFORM

Sine Wave

FWR Sine Wave

NUMBER
1

2
Triangular Wave 3
L

FWR Triangular Wave

Rectangular Wave

\n

FWR Rectangular Wave or

DC Input

6

(b) Two passes are made through the computation procedure.

(i) PFirst Pass:

(ii) Second Pass:

Peak of input waveform is varied in
the level interval 255-256 for first
moment and in the interval 63-64 for
the other three moments, For each
peak position, the quantisatioh error
is calculated using the actual moments
algorithms,

The number of quantisation levels n

is varied in the range 8 to 1024, The
peak position of input is varied in the
interval (n-1) to n. The maximum and
minimum errors are calculated for each
value of n,
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Initialise; clear all

dimensioned arrays.

170

K=K+1

-
n
o

NO
n=64 & Choose n from the stored
n = 256 values in the range 8 to
for mq 1024,

Figure B: Flow-chart procedure for calculation of

system quantisation errors.



Calculate and store 100
peak positions, equally
spaced in the last
interval for the value

of n selected,
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é.,,;

For waveform number K,
calculate for each peak
position, all moments

and P, for all levels
0 to n.

%

Calculate the four
moments using the

moments' algorithms.

;

Calculate % error
for each moment.

Figure B: Contd.
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To F

NO

Peak wvalues
considered?

Sort all error values
for each moment.

Print the max, and
min. values,

Print al

errors

To D

All
values of n

NO

Go to E

used? //,7

To C

NO

Figure B: Contd.



APPENDIX C.

Initialise, and clear
all dimensioned arrays.

;

Read in value of n, the

number of quantisation
levels.

NO

Figure C: Flow-chart procedure for calculation of
quantisation errors for Gaussian Noise.
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o

YES

b ]

For DEVI (J) &
Gaussian input,
calculate 2ll moments
& P, for all levels,

To F

Figure C:

YES

YES

Contd,

K

For DEVI (J) & HWR
Gaussian input,
calculate all moments
& Py for all levels.

& To F
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For DEVI (J) and FWR
Gaussian input,
calculate all moments
& Pp for all levels.,

.

Use the moments'
algorithms and calculate

all four moments. . Tﬁ%C
NO
Print all
errors for
To A

NO

Figure C: Contd,
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To B

NO

Figure C: Contd,



APPENDIX D

Initialise and clear
all dimensioned arrays.
M=3

¢

MN = 0

b c

MN = NN + 1

L}
i
o

NO

Figure Dt Flow-chart procedure for evaluation

of errors due to level offsets.
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FP RATIO = 0,002 Jd = O
N=4 Jg=J + 1
JK = JK + 1 FP RATIO = J%0,00005
N = N#2 N = 64
N.G.T.256 NO I
Store 10 values of
YES offset voltage 1-~-10mV.
To P

NO

Figure D : Contd.




@

179

G

FWR Sine Wave. Error

calculation for all
offsets.,

4

FWR Triangular Wave.
Error calculation for

all offsets,

FWIR Gaussian Noise.,

Error calculation
for all offsets.

;

Print errors for

all offsets, To D
Print N & FP

NO

Figure D: Contd.
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ARPENDIX E

ERRORS IN HIGHER ORDER MOMENTS
DUE TO FINITE MEASUREMENT TIME,

The following analysis has been suggested by Dr. S.0.Rice.,
of the Bell Telephone Laboratories, U.S.A,

_ - Consider for example the forth moment of a
random variable x measured over a finite time T.

Let | Ky A
v = J NOLS : (1)
0 _

where x(t) is a2 stationary Gaussian process with two-sided
power spectrum W{i) and auio~correiation K{T ). ¥hen

o
J e™ 2T i pyar
.

I

h(T)

@)

©Q

o° = J W(£)dr

The ensemble average {y) is

T ' T ‘
<y>=J\ CxH(b) dat = J (30™)dt
0 : c (3)
= 304T
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The s~cond moment of 'y is

T T o “
= | at, IO dt?*(x”(tl)xu(te).)

Y0

o
N\
|

<y
2T T o 2 )

| , 12 Y by |
= J | dtl-[ dt, [95 +720 RT(ty~tp)+24R (‘Ll-tg)}
o, "o . :

o 2 T T |
” dtl(sc”)J + [ dtlJ‘ at, [720"“‘R2(t ~t,) +2uRt (t;- 2)]
0 | | ¢ 0 ’
| . |
KydI® + 2 J d (T-1) [72@“112“) +21¥Rh(r)]_
o _ '

il

‘The variance of y is

P> -<v ¥ -asf (1) 3522 () + () Jas

For "flat" vand-limited noise with

{0-2/(2fcj, £l < £,

we) = RS

we have

R(T} =
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and the 1ntegral for the variance of y can probably ‘be evaluated
in terms of Ci and Si functions.

The expression for(x (tl’)x (t,) > can be obtained
as the coefficient of (iv)u(iv)a/(QIHI) in the expansion of
iux,+ivx, - 2

r ' | |
{e 1 | 2>= expj;%—- (uz-!-vg) - R(tl—ta)uv]_

¥hen T becomes large we have

Q

<y> <y> ”8T J 307 R2 )+R4()d
RS 90%20[" () + 2 s

1Y

-The 1ntegral of [x(t)]3 can also be evaluated ip’
the same way. ,
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