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ABSTRACT

This project is a study involving the application
of the ALTRAN system to rational function integration. A
discussion and the implementation of two methods are given,
one by Hermite [HER 12] and a second by Horowitz [HOR 70].
Included is a brief discussion of the integration of the
transcendental part over the rational field using polynomial
factorization over the integers. Furthermore, an extension
for multivariate rational function integration and

multivariate polynomial factorization is included.
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CHAPTER 1
INTRODUCTION TO SYMBOLIC ALGEBRAIC MANIPULATION

1.7 Introduction

While much has been accomplished in the way of
solving mathematical problems using numerical techniques on
digital computers, many of these techniques fail to give
exact solutions in terms of closed forms. To obtain
solutions in terms of closed forms, analytical techniques
must be employed which not only are well structured, but
are carefully defined to enable one to perform operations
on mathematical expressions without concern to their
numeric value.

The application of analytical techniques on a
digital computer is called formal symbolic computation and
can include symbolic integration, symbolic differentiation,
solutions of simultaneous equations, power series manipula-
tion, polynomial factorization as well as substitution and
simplification of expressions.

Before the lasi decade using a digital computer to
perform formal symbolic manipulation was a tedious task due
to the slow speed of the machines, their small storage
capacity and the demand of having to program in machine
f

Tanguage. One of the earliest examples was a program for

performing symbolic differentiation written by Nolan [NOL 53]
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using a Whirlwind machine. In the later part of the last
decade systems such as Alpak [BRP 63], Formac [TOB 67,a],
SACT [C@L 71], MATHLAB [ENG 65] and REDUCE [HEA 67] became
available for performing formal symbolic computation, while
some of these earlier systems were designed to manipulate
polynomials in several variables. The ALTRAN [BR@ 73],
MATHLAB and REDUCE2 [HEA 70] systems provide the user with
the capability of manipulating rational functions in several
variables. These later programming systems have offered a
powerful set of Togic, passing and testing functions. Many
of these systems include the capabilities to perform pattern
matching, symbolic to numeric conversion as well as
constructing recursive procedures.

This project is primarily concerned with the formal
symbolic integration of ratibna] functions in several
variables, including symbolic factorization of multivariate
polynomials. Programs written in ALTRAN system to perform

these exercises will be demonstrated.

1.2 Brief History of Symbolic Integration by Computer

The first investigation into symbolic integration by
a digital computer came from the area of Artificial
Intelligence in the work of Slagle's SAINT [SLA 61]. In
SAINT a pattern matching routine is applied to determine
the proper transformation needed to obtain results from

tabulated formulas. Three years after Slagle's SAINT,



Manove using the MATHLAB system [MAN 68] developed a
rational function integration program. Manove's implementa-
tion relies upon the method of Hermite [HER 12]; a method
that has attracted considerable interest during the last
~decade. Unfortunately, Manove's program has difficulty
when factoring the denominator of rational functions. A
third system for performing formal symbolic integration
using a digital computer was developed by Moses [MOS 67].
Called SIN, Moses was able to develop a more superior and
faster algorithm than SAINT using a more sophisticated
pattern recognition program for finding the optimal method
to perform integration. Much of the pattern recognition
program depends upon decision procedures such that of the
method chosen and applied to the integrand, the exact
results will easily be obtained.

The integration of rational functions in SIN makes
used of the method of Hermite.

Tobey in his Ph.D. thesis [T@B 67,b] concentrated
on the formal symbolic integration of rational functions.
He has given a complete discussion and analysis of the
problem including an algorithm for performing the integration
‘using Hermite's method. Included in his discussion is an
analysis on performing efficiently the greatest common
divisor calculation using the Euclidean algorithm, as well

as partial fraction decomposition. Algorithms for perform-



ing these functions are also discussed.

In the beginning of this decade Horowitz [HPR 70]
using the SAC1 system performed a complete analysis on
rational function integration by applying modular arithmetic
to Hermite's method. 1In addition, Horowitz developed a new
and more efficient method for finding the rational part of
the integral of a rational function. This method involves
the solution of a system of linear equations which are
easier to obtain over that of partial fraction decomposition.
Horowitz left the transcendental part unfactorized.

Tobey [T@B 67,b] discussed a numerical technique
for obtaining the transcendental portion of a rational
integral. His method involved approximating the roots of
the denominator of the transcendental part numerically
while continuing to use a symbolic approach. Tobey also
discussed the need for faster polynomial factorization
algorithms.

Since Tobey's thesis, Musser [MUS 71] and Wang
[WAN 73] have developed more efficient polynomial factoriza-
tion algorithms using modular arithmetic. Much of what these
.people have accomplished has been implemented in this project
to factorize multivariate polynomials of the transcendental

part of a rational integral.

1.3 Purpose of this Project

The purpose of this project is to implement both



the Hermite and Horowitz methods for rational function
integration in the ALTRAN system. While the ALTRAN system
is a rational function system, our interest here is to
extend the capability of ALTRAN to perform the integration
of rational functions. In performing this exercise several
algorithms have been implemented in ALTRAN to perform
polynomial square free factorization, complete partial
fraction decomposition and the solution of linear simul-
taneous equations. In addition, an extension of Horowitz's
algorithm to perform the integration of multivariate
rational functions is discussed and implemented using
ALTRAN.

In continuing the study for integrating the
transcendental part, the polynomial factorization algorithm
of Wang has been implemented using the modular arithmetic
capability of ALTRAN.

The project is concluded by using an algorithm to
integrate the transcendental part employing factorization
of the denominator, partial fraction decomposition,while
using a simple pattern matching program. However the
integration of the transcendental part is not complete in
'some cases, since it requires computation over irrational
and complex fields which are at present beyond the

capabilities of the ALTRAN system.



1.4 Outline of Further Chapters

In Chapter 2 we will briefly discuss the ALTRAN
system, listing some of its capabilities, specifically
those used in implementing some of the algorithms discussed
in later chapters. Included in Chapter 2 is a discussion
of Hermite's and Horowitz's method as well as a description
of their implementation in ALTRAN.

In Chapter 3 a discussion of Wang's algorithm for
multivariate polynomial factorization is described including
its implementation in the ALTRAN system.

In the last chapter a discussion of the integration
of the transcendental part along with a description of its
implementation in ALTRAN is given. Erogram listings and

results have been included in the appendix.



CHAPTER 2
INTEGRATION OF RATIONAL FUNCTIONS

In this chapter we will discuss ALTRAN and its
application for symbolically computing the integrals of

rational functions.

2.1 Introduction to ALTRAN

ALTRAN, short for algebraic translator, is both a
language and a system for performing formal algebraic
computations on algebraic data. Basically it is capable of
performing rational operations on rational expressions in
one or more variables with integer coefficients.

The ALTRAN system is composed of a translator,
interpreter and run time library and has been written almost
entirely in FORTRAN IV. Considerable effort was made to
achieve a portable system without sacrificing efficiency, To
avoid machine limitations, both macros and primitive
subroutines are used. Macros permit extensions of the
implementation language while primitives allow for the
‘efficient coding of critical opérations.

As a programming language ALTRAN supports the
elementary arithmetic operations (+, -, *, /, **) while
more complicated operations such as symbolic differentiation

and greatest common divisor are provided through procedure
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calls to library routines.

Syntax and semantics of ALTRAN have been based on
that of FORTRAN and PL/I, but with the extensions of new
data types. Data types in ALTRAN include LABEL, LOGICAL,
INTEGER, RATIONAL, REAL and ALGEBRAIC. ALGEBRAIC is an
attribute for declaring rational functions. These last
four attributes can also be associated with precision
attribute SHORT or LONG, a storage class attribute AUTOMATIC
or STATIC and a scope attribute INTERNAL or EXTERNAL.
Default attributes are SHORT, AUTOMATIC and INTERNAL. A
parenthesized 1list associated with the ALGEBRAIC attribute
is called a lTayout and serves to declare the maximum
exponent associated with the determinates (independent
variables of rational functions). For example, LONG
ALGEBRAIC (x:20,y:30) A,B declares A and B to be internal
automatic ALGEBRAIC's with long integer coefficients. The
maximum exponent for x and y are 20 and 30 respectively.

Arrays for all data types can be declared using the
array attribute. For example, the declarations

RATIONAL ARRAY(5,6)A
ALGEBRAIC (x:20,y:30) ARRAY (2,3)B
‘declaresA to be a 5*6 array of rational numbers and B to be
a 2*3 array of ALGEBRAIC in the indeterminates X,Y.
There are four classes of operators in ALTRAN, these

include arithmetic, relational, logical and special. Special



operators include dollar "$", used for multiple assignments,

colon ":" used in the layouts, equal "=" for assignment,
and comma "," for representing lists.

Expressions in ALTRAN are written by combining
constants, variable, array elements, function calls and
algebraic references with the arithmetic operators. An
algebraic reference, while similar to a function call,
denotes a value obtained by substitution rather than by
execution of a function. For example, if A is ALGEBRAIC in
the variable X and Y, then the expression

A (5%*3,T)

3 and T

would result in the simultaneous substitution of 5
for X and Y throughout the expression of A.

ALTRAN also supports assignment statements which
are similar in appearance to those of FORTRAN and PL/I.
In addition, there are a modest number of control statements
which include Do group, labels and jumps, if groups, etc.
Input and output are handled by the functions READ and
WRITE. Input is in a free-format while output is in a
standard format that is input compatible.

An ALTRAN program consists of a collection of one
or more procedures each beginning with a procedure declara-
tion and ending with an END statement. A procedure may be
a subroutine or a function depending on whether or not it

returns a value using the RETURN statement. Only the first
procedure, PROCEDURE MAIN has no RETURN statements.
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The ALTRAN system also has a variety of library
procedures for numerical and symbolic manipulation. These
include procedures for numerical analysis, testing and
conversion of numerical values, algebraic analysis, algebraic
computation, modular reduction, array operations and matrix
computation, truncated power series computation and input-
output. A more extensive discussion, including examples

can be found in the ALTRAN user's manual [BR@ 73].

2.2 Definitions and Theorems

The purpose of this section is to introduce some
of the basic definitions and theorems needed in the analysis
of Hermite's and Horowitz's algorithms. Since more formal
proof to each of the thebrems can be found in the Titerature,

only a brief discussion is given for each proof.

2,201 A rational function R(x) is defined as a numerator -
denominator pair of polynomials A(x)/B(x), where
A(x) and B(x) have integer coefficients, are
relatively prime and where the Teading coefficients

of B(x) is positive.

2.2D2 A rational function R(x) = A(x)/B(x) is called
reqular if the degree of the numerator A(x) is Tless

than the degree of the denominator B(x).

2.2D3 A polynomial B(x) of positive degree over an integer

domain I is said to be dirreducible over I if it can-



2.2T1

2.2D4

2.2D5

11

not be expressed as the product of two polynomials

of positive degree over I.

If B(x) is a polynomial of positive degree over
field F and if "a" is its leading coefficients,
then there exist distinct, monic, irreducible
polynomials, B](x), Bz(x),...,Bk(x) over F such
that

) 2

n, ny
B(x) = a*B](x) *Bz(x y *Bk(x)

where n; are positive integers, i=1,2,...,k, the

degree of (Bi)>0 and where the
degree(B) =_2: (n;*degree (B,)),
'l:

this factorization being unique except for order
[HOR 70]. The proof to this theorem can be given
by proving the theorem of uniqueness of prime

factorization in principal ideal rings [VAN 53].

A polynomial B(x) of positive degree is said to be
square-free if it cannot be written in the form
B(x) = C(x) Dz(x) where D(x) is a polynomial of
positive degree. Thus a polynomial which is square

free has only roots of multiplicity 1.

Suppose B(x) = a*B](x)]*Bz(x)z*,...,Bk(x)k where
g &l Bi is primitive and has a positive leading
coefficient for Igig<k. In addition a €I and deg

(B, (x))>0 and all B.'s are pairwise relatively
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prime. Then a Hk B.'(x) is called the square

f=] !

free factorization of B(x).

2.2T2 If B](x) and Bz(x) are two relatively prime
polynomials over a field F,m = deg(B]), n = deg(Bz),
m,n>0 and if A(x) is an arbitrary polynomial of

degree less than m+n, then there exists an identity

A(x) = C(x)*B](x) + D(x)*Bz(x), where deg

(C(x))<n, deg (D(x))<m, C(x),D(x) eI[x]
[HOR 70]

Proof follows that of [WAN 53,pp.88].
By hypothesis, the greatest common divisor of B](x),
Bz(x) is equal 1. Then the following identity
holds:

R(x)*B](x) + S(x)*Bz(x) = 1
Multiplying both sides by A(x) gives

A(x) = (R(x)*A(x)*B,(x) + (S(x)*A(x))*B,(x)  (2.7)
To reduce the degree of (R(x)*A(x))to a value less
than n we divide this polynomial by Bz(x):

R(x)*A(x) = G(x)*B,(x) + C(x) (2.2}

where deg(C(x))<n.

Substituting this into equation (2.1) gives:
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A(x) = C(x)*B,(x) + (G(x)*B;(x) + A(x)*S(x))*B,(x)

i.e., A(x) = C(x)*B](x) + D(x)*Bz(x) where
Deg D(x)<(Deg A(x) - Deg Bz(x)), | -

Deg (D(x))<Deg(B,(x))
This completes the proof.

2.2T3 Let A(x)/B(x) be a regular rational function, whose
denominator B(x) can be resolved into powers of
i Ry Mg
prime polynomials B1(x) . Bz(x) ,...,Bk(x) "
k

N
i.e., B(x) = I B,(x) b
i=1

This rational function can then be represented as

a sum of partial fractions whose denominators are

powers of prime polynomials into which the denominator

B(x) resolves. This summation called the partial

fraction decomposition of a rational function is

given by
A(x)/B(x) =

n.
Ai(x)/Bi(x) T, where
i

nesS-1x

1
n. ’
Deg Ai(x)<Deg Bi(x) T or Ai(x) = 0 if Deg Bi(x) = 0

[HOR 70]
n
For the proof let k = 2, such that B(x) = B](x) Ly

n
B, (x) 4
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Using 2.2T2 we can write
i N2
A(x) = C(x)*B;(x) ~ + D(x)*B,(x)

Dividing both sides by B(x) we obtain two partial

fraction terms

n n
A(x)/B(x) = D(x)/By(x) " + C(x)/B,(x) 2, where
R N2
Deg D(x)<Deg B](x) , Deg C(x)<Deg Bz(x)
By induction we can prove the theorem for K>2

2.2T4 The partial fraction decomposition of a rational

function is unique.
[HOR 70]

2.2T5 Given a regular rational function A(x)/B(x) whose
denominator has the factorization

k
B(x) = b I Bi(x), where the Bi(x) are pairwise
i=1

relatively prime polynomials, there exist polynomials
Ai j(x) for 1sj<ni, 1<i<k, such that the rational
function A(x)/B(x) can be represented as

-1 x

A(x)/B(x) =

J
; Z Ai,j(x)/Bi(X) , Where

T3
Deg Ai J.(x)<Deg Bi(x) [HOR 70]
This summation is referred to as the complete partial

fraction decomposition. From 2.2T3, we can write

rational function as:
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k .
AGO/BG = § A G078y (x) T (2.3)
'l:

Using the remainder theorem we write

n.
As(x) = S;(x) B.(x) i-1, ry(x)

n.
ro(x) = S,(x) By(x) -2, ry(x)

rni_](x) =S, (x)

1

-1 -2
Thus Ai(x) = S](X)Bi(x) + Sz(x)Bi(x)

+ ... +S_ (x)

n. "
Dividing both sides by B, (x) L
A1(X) S](x) SZ(X) Sni(X)
n. = + i +
i B. (x) 2 n
Bi(x) i B1(x) Bi(x) i
and setting
A1’j(x) = Sj ji=1, P
A.(x) n.
1 1 J
R ek b
i Jj=1

Substituting this last summation into equation

(O8]

(2.3) for i = 2,3,...,k, we obtain

2y, 5(x)/8;7(x) (2.4)

nes~-1>=

k
A(x)/B(x) =} !
i=1  j=1
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2.2T6 A complete square free partial fraction decomposition

of a regular rational function is unique. [HOR 70]

2.2T7 Let R(x) = A(x)/B(x) be a regular rational function
then

k
f R(x)dx = S(x) + ) di 1og(x-bi) (2.5)
i=1

where s(x) is a regular rational function and

n
) d; ]og(x—bi) is the transcendental part of
1=1

integration, bi are in complex number field £ and
are distinct roots of B(x) where dieﬁ for

§ 8 15@8500nsk [HAR 16]
For the proof let us write B(x) as

n n n
B(x) = a*(X‘b]) ]*(X_bz) 2 4 .. *(x_bk) k (2.6)

where bieﬁ

Using theorem 2.2T7 we can write

k Ai, i,
R(x) = A(x)/B(x) =iZ] Tx-b.) +

where
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L3 By Bl }
N
sy (nj_q) (x=by) 1

’ 1.’1]og(x—b1.) + S(x)

where S(x) is a rational function and Ay = di’

2.2T8 If R(x) is a rational function, the the rational
and transcendental parts of f R(x) dx are unique.

[HOR 70]

2.3 Hermite's Method for Rational Function Integration

Hermite's method [HER 12] for the integration of
rational functions can be divided into two parts. 1In the
first part we obtain the complete square free partial
fraction decomposition, while in the second part we obtain
the rational part of integration using a reduction method.
A general algorithm describing Hermite's method is given
in Figure 2.1.

: In performing the complete square free partial
fraction decomposition, we make use of the algorithm
RSQDEC to obtain a square fee partial fraction decomposition.

During the execution of RSQDEC we compute the square free

factorization of the denominator using the algorithm PSQFRE



HERM

READ AB '

l —

HERM2

RDEC

—

RSODEC

If AB non regular put it in this form

AB=AB*+R;, where AB*=A/B is

regular rational function and degree

of R;<degree of B

—— ._._—’_..___ s

Set R=0, S=0

T P L. SN

Factorization algorithm such that

ﬁ i :
B=Q., y. (x),y. is square
. A i
i=1
free polynomial

Construct matrix E for performing

partial fraction decomposition

MATSFD PSQFRE

Solve system of linear equation to

obtain A; such that
k .
A/B= L A (x)/Yit(x)

J.=l___~ - — __J

X) such that
Ai,q
wi Yil(x)

Compute Aj , §

.
M=~
=

Aj (x)/Y3i=

1

L]

{
s=A3 ,1/(Y1(x)*a), I=2

I=I+1

HERM1

Compute Rp, Sp such that
1 Ai,j

. ~— =Rp + [ Sp

R=R+Rp/a*w., S=S+Sp/a*wj

18

FPigure 2.1 Hermite Algorithm



19

followed by computing the partial fraction terms using the
algorithm MATSFD. Once we have completed these steps, we
then proceed to compute the complete partial fraction
decomposition using the algorithm PCDEC.

A brief description of these algorithms foliows:

Algorithm PSQFRE:-
Input is any polynomial B(x) while the output is

the square free polynomials Q]’QZ""’Qk represented by a

vector such that

) ¥

N7 g
B(x) = Q](x) Qz(x) *...*Qk(x , where

nk>nk 1 >0 .,>n2>n]

1) Initialize: set Q=0, D=0

2) Obtain the linear term:

GCD(B, dB/dx)

1

set E

1

If E 0 then set F = By else F = B/E
3) Add to the vector Q:

if deg(D) = deg(F) go to 4), if Q#0 add D/F to Q
4) Test for an end to the algorithm:

if E is an integer add B to the vector Q, then

end; else set B = E, D = F and return to step

2},

Let n = Deg (B(x)), ny = Deg (Bi(x)) such that
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B(x) = I_ B, (x)]

Our purpose is to obtain Ai(x) which satisfies
theorem 2.2T3 such that
X i
A(x)/B(x) =} A;/B.(x)
i=1
This equation can be rewritten by multiplying both

sides by B(x) such that

A(x) = A]E] + A2E2+ e +AkEk (2.7)
where in
i-1 .
Ai(x) = ) I XY
j=o ?
n-in.
E.(x) = ¥ 1 e xJ
i j=0 ¢
where ai,j’ ei,j el.

To compute Ai we must compute as i This can be

obtained by equating the coefficients for the same powers
in x in both sides of equation (2.7).

Before this can be done, the procedure MATSFD
constructs a matrix E composed of the coefficients e. . as

1,7
follows:
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Algorithm MATSFD: -

Inputs to this procedure are both B(x) and the
resolvers list (B]’BZ""’Bk)' Qutput is matrix E shown in
Figure 2.2. Matrix E will be employed to compute the

partial fraction terms of any rational function.

1) Initialization:

set i = 1

2) Compute the vector Q:
set E; = B(x)/Bi1(x), Q equal to the vector of
coefficients Ei’ placing Q in the first column

of the n; group. Set j = 2, ni=deg(Bi(x))i

3) Construct the remainder of n, columns:
shift downward by one place all the elements
in vector Q while placing an element of value
zero into first location. Add Q to the matrix

in the jth column of the n, group. If j F nss

set j = j+1 and repeat step 3).
4) Set i = i+1. If i>k then end; else return to
step 2).
n—ini : :
Since E, = 1§ e. . xJ where e, . eI, the
i 350 I P

coefficient matrix for the numerator of the partial fraction
terms is given in Figure 2.2. This matrix will also be

employed when computing the transcendental part.



e'l ’n_n-l, 0’ 9 O"
e
],n-n]—l, 1,n-n],
e
1,n—n]-1,
e
1,n-n1,
e
151
e1,n-n]-1,.
1,0 ®1.1°
Og e’l ’0’
0,
SIRE
0 0, e]’o,
N, —_ A
1
Figure 2.2

22

e 0, 0
k,n-knk
ek,n-knk-1, ek,n—kn
ek,n-kn S
e
k,n-knk
e
ek’1 § k,n-knk-1
®k,0 ° &1
0 ek,O
0
€k,
0. 0, . ek,0
"
TN
k

Coefficient MATRIX E
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Procedure RSQDEC is now employed to obtain the

partial fraction decomposition. From the left-hand side

of equation (2.7) we construct a constant vector C from the
polynomial A(x). From procedure MATSFD we have constructed
the coefficient matrix E. Using the vector C and the
coefficient matrix E we then can proceed to solve a Tinear
system of equations, the solution being the coefficients

a. .. From these the polynomials Ai(x) can be constructed.

15

Algorithm RSQDEC: -

Input is the rational function A(x)/B(x), while

the output is the terms Ai and Bi’ i=1,...,k such that
< i
AXI/B(x) = § Ay (/847 (x)
1:

1) Factorization:
Set Q = PSQFRE (B(x)). The result is a linear
list (vector) of all the square free polynomials

of B(x).

2) Construct the coefficient matrix:
E = MATSFD (B(x),Q). Here we obtain the

coefficient matrix given in Figure 2.2.

3) Construct the constant vector C:
Place the coefficients of the numerator A(x)

of the rational function in vector C.
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4) Solve the system of linear equations:
Here we solve a system of linear equations
Eo = C using the ALTRAN procedure ASOLVE. The
solution o is a vector listing the coefficients

of Ai’ Set By = 0, j=1

5) Construct Aj:

n_+n.
o j-1 .
A.= Y o, x' "o set j=j+1
J i=n 1
o)
If i = n, the end; else n0 = n0 + nj-] and

repeat this step.

To compute the complete partial fraction decomposi-

tion, we now make use of procedure PCDEC.

Algorithm PCDEC: -
Input is two polynomials Aa, Ba and integer i such
that

. 1
L -
Aa/Ba = ]/N.Z

J Y5(x)/8 3 (x)

:
where W is a constant determined during the computation of

the algorithm. Output is vector Y and constant W.

1) Initialize variables:

Set m = degree (Aa(x)),
n = degree (Ba(x)),
w = Lo (s, (x))" "
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(where 1dc represents the leading coefficient

term),
Y =20
Q= WA/(x), Set j =1

2) Compute Q' and Yj such that:

Q = Ba(X) Q' + Yj
If Deg (Q')<n, Set Yj+] = Q' and end; else
set Q = Q'.

j+*+1. If j>i then end; else repeat this

Set j

step.

Procedure RDEC provides the steps necessary to

obtain the complete partial fraction decomposition.

Algorithm RDEC:

Input is the regular rational function A(x)/B(x).
Output are the terms of the complete partial fraction

decomposition such that

k 1 i j
AGO/BG) = T g (L Ay 500787 ()

5

These include an array of the terms Ai j and vectors

for the terms Bi and wi.

1) Perform partial fraction decomposition:

Call RSQDEC (A(x)/B(x)). Set i =1
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2) Perform the complete partial fraction
decomposition for Ai(x)/Bi1(x):

Call PCDEC (Ai(x), Bi(x),i) Set i = i+l

If i>k then end; else repeat step 2).

Let us now consider computing the rational part of
integration using a reduction method. After computing the
complete square free partial fraction decomposition we have

the equation

J
Ai,j(x)/Bi (x) dx

n
oy
-
ne~—x
—
=|—
I 1

f A(x)/B(x)dx

1 % f A. .(x)/B.j(x) dx
1 Myogz ) Tl L

n
e~

What is necessary is to integrate the terms Ai j(x)/BiJ(x)

with respect to x for i>1.
Since Bi(x) is a square free polynomial,
gcd (Bi(x), dBi(x)/dx) = ]

From theorem 2.2T2 there exist two polynomials C(x) and
D(x) such that
C(x) Bi(x) + D(x) dBi(x)/dx = Ry {X)

141
for i>1.
Then, b dBi(x)
A, .(x D(x)
[ i g - I Clxl —— gx + J Sy
B. (x) B. (x) B (x)

i i
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Using integration by parts, we have

J ﬁi4i£il dx = f gEXI g # f dD(x)/dx e

1. e, (x) (i-18, 77T (x)

- 0(3)
(i-18;" 7 (x)

which can be written as

QLTSRS TeS MY R 1¢ 1 NP
Bi (x) (i-])Bi (x) Bi (x)
where
H(x) = C(x) + (111) dggxl ; (2.9)

Since the deg(C(x)) < deg(Bi(x)) and the deg(g%§ll) <
deg(Bi(x)), we find that the deg(H(x)) < deg(Bi(x))

Now let

*
A = A,

1,4-1 = Aj,11 ¥ HIX) (2.10)

where the deg(A: 1._](x)) < deg(Bi(x)).

Proceeding in the same fashion we reduce by one the

o ] -
exponent of Bi(x) in Ai 1._1(x)/B1.1 1(x) until we arrive at

fAiJ(x)
T

dx

which is the transcendental part. OQur result is then
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A(x K k Ay q(x)
[ B(x dx -izz Si(X) i3 f ]-Z]_B—]TT dx (2.]])
where k
Y Si(x) is the rational part of integration and
i=2

k
A.
s 1 .
fiz] E%T§7 dx 1is the transcendental part.

This formulation is implemented by the procedures HERMI
and HERM2. The procedure HERMIT uses the reduction procedures

described above.

Algorithm HERM1: -

1..2,...,!\1.’]. obtained

from algorithm RDEC, Bi(x) and the integer i. Output is a

Inputs will be a vector Ai 1° A

pair of polynomials R(x) and S(x) such that

i A, .(x)
[ I —2— dx = R(x) + f S(x) dx
3=1 87 (x)

1) Initialize the rational and transcendental

parts:

Set R =0, S = Ai,i

2) Use the identity discussed in theorem 2.2T2:
Call PEDCD (Bi,dBi/dx) to compute C(x), D(x)
such that

C(x) Bi(x) + D(x) dBi(x)/dx = ]

PEGCD is a user defined algorithm. Set j=i.
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5)

6)
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Implementation of theorem 2.2T2:
Call EGCD (Bi,dBi/dx,S,C,D) to compute CC(x),

DD(x) and W, an integer such that

W.S = CC(x) Bi(x) + DD(x) dBi(x)/dx
where Wel.
W*S insures that the right hand side of the
above equation has coefficients over the

integers.

Compute the rational part:

Set R = R - DD(x)/[W (j-1) B9 1]

*
Compute Ai,j—1:

- 1 dDD(x)
Set S = Ai,j-] + CC(x) + TE:TT %

j-1. If j>1 return to step 3)

Set J

Compute the transcendental part:
8 = S/(N‘Bi(X)),

then end.

Procedure HERM2 will perform the integration for

any regular rational function.

Algorithm HERM2: -

Input is a regular rational function A(x)/B(x)

while the output is 2 polynomials R(x) and S(x) such that

f é(i dx = R(x) + f S(x) dx
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Procedure HERM] calls upon procedure HERM2 and RDEC.

1) Initialize R and S:
Set R=0, $=20

2) Compute the complete partial fraction decomposi-
tion:
Call RDEC(A/B) to compute the complete partial
fraction terms.

3) Initialize the transcendental part:

Ay, 1B )

2

i

Set S

Set j

4) Reduction procedures:

Call HERMI((A A Ry «)s Bz )

Il 73,2773, Jsd
to compute Rp and Sp such that

% e T dx = R S
T N P T X = +
[ i=1 B, (x) P [ P

J
5) Sum the rational and transcendental parts:

R =R+ R 5 5 = 4 :
Set p/WJ S 5 Sp/NJ

wj is obtained from RDEC
Set j = j+1

If j<sk return to step 4); else end.

The purpose of procedure HERM is to act as a
supervisor for the integration of any rational function
over the integers. If the rational function is not regular

HERM converts it to a regular rational function plus a



polynomial.

Algorithm HERM: -
Input is any rational function called AB = A(x)/

B(x). Output is the integration of this function.

1) Initialize:

Set Rl = 0, AB* = AB, R =0, §$ =0

2) Test if AB is a regular rational function:
If degree (A(x)) < degree (B(x))

go to step 4); else compute A*(x) and RI

such that
A(x) = RT1(x) B(x) + A*(x)
Then AB* = A*(x)/B(x)

3) Integration of polynomial R1:
Set R = J R1 dx using the ALTRAN system

procedure PINT.

4) Integration of the regular rational function:
Call HERM2 (AB*(x)) to integrate the regular
rational function from which rational and

transcendental parts, RX and Sx are computed.

5) Compute the final rational and transcendental
parts:

Set R=R+R , S§$=23§

X X

A listing for the algorithm HERM is given 1in
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Appendix A.

2.4 Horowitz's Method for Rational Function Integration

By Hermite's algorithm we were able to ccmpute

polynomials C and D such that

A%x; - C(x) D(x)
dx = + dx
J oL B,(x)*...*B, <"1 (x) [ By (x)*...*B, (x)

(2.12)

where C(x)

- . K-1 is the rational
B,(x)*... B, " (x)

part.

Using Hermite's method, we first obtained the
partial fraction decomposition as described in Section 2.3

and then apply a reduction process to the partial sums

J

I~ =

J
for 2<igk.
Instead of Hermite's method, let us consider
equation (2.12) above where C(x) and D(x) are undetermined
polynomials. Differentiating both sides of equation (2.12)

we have



: k-1 k-1,"
A(x) . © (B, B, ')-C(B, ... B,"") ) .
B X (B Bkk-])Z B-l e o o
= {c'(B B, ) (B B, K"Ty_c(B B, )
1 k/\P2 k 1 k
k-1," k-1,2
(B2 . By ) o+ D(82 B )Y/
k-1,2
[(B, B,) (B, B~ )]
But
2 T 2 k-2, .
(B,B, . B ) = (BgB, B, °)
(§ (i-1) :
i-1)B, ... B, .B.
igo 2 i-171
Bi+q By)

[HOR 70, pp.103]

Substituting equation (2.14) into (2.13) we obtain

A(x)

B(x) {C'(Bl

541

where B = (B]

. Bk)(B2 % & P Bk

k ]
L BCCE (1) 8By o By By
k-1
. By ) + D(B, ... B )}/
[(B, ... B)(B, ... B )]

k-])
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(2.14)

{2.15)



k k
Let U(x) = T B.(x), V(x) =1 B, "T(x)
i=1 el !
n-2 i m-2
'y = . = j+ . -
c'u iZO e;x where e jZO (J 1)c3+]u1_3
n—2 _i m"']
C.W —120 fix where f, —jZO €Wy 33
n-1 j m
D.V =iZO g ;X where g, =jZO di-jvj
Thus, if n-1 i
’ A(x) = ) a.x,
i=0
then
m .
23 T WGty g * gy * digYy)

If H = (Cm—1""’co’ d "’do) and A = (a

n-m-1°"°
then H is a unique vector satisfying the equation
EH = A

where E is the coefficient matrix given in Figure 2.3.

A flowchart showing the steps necessary in
Horowitz's algorithm is given in Figure 2.4. A brief
description of these procedures used in Horowitz's

,algorithm follows:

Algorithm MATX: -
Inputs are the polynomials U and V and vector

(31’82""’Bk) such that

34

n_]s-o-aao):
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The polynomial W is constructed within this

procedure.

Figure 2.3.

1)

OQutput is the coefficient matrix given in

Initialize:

Set m = deg(V), n = deg(U) + m

W= -
.i

IHe~1x

(i-1) u/B, - dB./dx
) 1 1

Construct set of vectors:
Set L

v to the coefficient of polynomial V,

LU to the coefficient of polynomial U and

Lw to the coefficient of polynomial W.

Set i = 1.

[Construct the first m columns of the coefficient
matrix E.]

Place column L, in the mth column of the matrix E

W
Set j=0, W=W.X

a) Set X1 = (W + (j+1).U).XY and vector L, to

W
the coefficient of polynomial X1, placing
vector L, in the (m=T-j)th column of matrix E.
Set j = j+1

If j < (m-1) go to a).



0 B 5 4 5 & » @ n B 0, Vo 0 .0 0
Vv ¥ s
Wn-m-1+<m_])un-m’ 0, m-1 m’
v v
m-2° m-17«
wn-m-2+(m'])un-m-1’ % -m-1+(m'2)un-m’ ) 0 0
wn-m-3+(m'])un-m—2’ Yh-m-2 (m'z)un—m-1’° v
o 0, 0, v 0
. m
V-1 Vin
n—m-1+un—m’ 0 g
m-1
n-m-2+un-m—1’ Yh-m-1° Vi» V2ﬂ
-1) .
w0+(m 1,u], w]+(m 2)u2, W me2e Vo Vis s
(m-T)uO, w0+(m—2)u1, 0 Vo> .
0 (m-2)u0, : 0 . .
0, 0, .o '
. ‘ V2
. w14u2, Wo s 0 0 ‘v1 v2
' w0+u1, Wqs 0 0 v0 Vi
0 D5 5 508 5 575 & 5 s uo, wO 0 0 . 0 v0
g J/ - S
m columns n-m columns
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Figure 2.3 Coefficient MATRIX




4)

[Construct the n-m columns of matrix E.]

Set i = m+]

n

Set j 0

b) Set p = N-j Place vector L, in the pth

v
column of matrix E, set j = j+1. If
J > (n-m) then end; else shift up one

place all the elements in vector Lv and

place element of value zero on the bottom.

Repeat step b).

The purpose of procedure RINTG is to integrate a

regular rational function.

Algorithm RINTG:

Input is a regular rational function A(x)/B{x)

while the output is the rational part R(x) and the

transcendental part S(x).

1)

2)

Compute the square free factor of the
denominator B(x):
Call PSQFRE (B(x)) to obtain the square free

polynomials B]’BZ""’Bk'

Compute the polynomials U and V:

Set
U =TI 819
i=1 i

37



RINTGS
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READ AB=A/B
AB Rational Function

RIMTG

PSQFRE

MATX

If AB non regular put it in this form
AB=AB*+R;, where AB* is regular |
rational function, R; € I[x]

}

Factorization Algorithm l

k :
B =1 vjt(x)
: |

i=1 |
k w
v=1 v;*1x
i=2 :
k .
W= —122 (1=-1)Bj .. *Bj*..*By

Construct matrix E for unknown coefficient
from equation C'*U+C*W+D+V

|

Construct the constant vector from the
coefficient of numerator A.
Solve system of linear equation

s i e —t
Cru-1 an-1
Cm-2 an-2
Co E = '
dn-m-1 )
E-_ T i mal 20 _|
' |
ngl 4
- . l
& [i=o Ci x1]
n—%—l i I
— d,
D i=0 1 ] .
' |
R=C/V S =D/V _J
J— T A
-
R

R=R+ /R s=¢8 |
LEWET SN T

/ Write AB,R,S/

Figure 2.4 Horowitz Algorithm
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Compute Vi’ U.

i Ni such that

L i o 4=
V(x) =} V.x' =T B, (2.16)
i=0 i=2
n"m ,i k
U(x) = 7§ U;x' = T B, (2.17)
i=0 i=1
k
W(x) = 12] {(i-1) 1° "Bi—lBiBi+1’ . ,Bk}
n-m-1 i
= ) W, X (2.18)

Construct the coefficient matrix E:
Call MATX to construct the coefficient matrix

E given from the equation

A=C'U+ CH + DV ' (2.19)
where
m-1 j
C(x) =} Cix',
i=0
n"'m"-l _i
D(x) = ) d.x
i=0
m-2 i
E'{%) 2120 (i+1) Ci+] X

Solve system of Tinear equation:
Construct constant vector F from the coefficients
of the numerator A(x). Solve the system of

linear equations
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using the Altran procedure ASOLVE

5) Compute polynomials C(x) and D(x):

m-1
Set C(x) =

1

m-1-1
’ hix

e~

where the first m elements of H are the
coefficients of C.

n-1
Set D(x) B

1

n-i-1
hix

ne--11

m

where (m+1)th to (n)th elements of H are
coefficients of D.

6) Rational and transcendental computation:

1]

B, 71 (x))

Set R
2 ]

i

k
C(x)/( T

k
D(x)/( I B,(x))

i=1

w
1]

Procedure RINTG acts as a supervisor procedure
for Horowitz's algorithm. It's primary purpose is to

reduce any nonregular rational function into a regular
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rational function plus a separate polynomial. Procedure
RINTGS calls upon procedure RINTG to perform the integration
of the regular rational function. Steps taken by RINTGS

are similar to those in procedure HERM.

2.5 Discussion on the Methods and Empirical Results

It is clear from Hermite's algorithm that
considerable computation time is needed for complete partial
fraction decomposition. This time depends upon the
coefficient bound, the coefficient bound being related to
the norm of the coefficients of a polynomial, and the order
of the denominator of the input function. From the examples
the time taken to perform complete partial fraction
decomposition in itself is greater than the time taken for
the complete Horowitz algorithm.

In the more efficient implementation where modular
reduction [HOR 70] is used to compute the complete partial
fraction decomposition the execution time is proportional to
O(n4.CBZ) where n is the degree of the denominator B and CB
is proportional to the coefficient bound. However the
difference in the computation time of modular reduction over
I is approximately equal to direct computation when both n
and CB are small. In addition the time taken by the reduc-
tion technique due to Hermite's is proportional to the square
of the number of the square fee polynomials of the denominator
[HOR 70, pp. 96].

The method discussed by Horowitz avoids the partial



42

fraction decomposition and instead requires the solution of
a system of linear equations. Execution time of Horowitz's
method depends upon having an efficient procedure, such as
ASOLVE in ALTRAN, to compute these solutions. In addition,
Horowitz's method is not dependent upon the number of square
free polynomials of the input denominator B.

Due to the storage of partial fraction decomposition
required by Hermite's algorithm, this method requires more
storage than Horowitz's algorithm. While the problem is not
an academic one, it could become serious for small algebraic

systems.
A comparison of execution times for Hermite's and

Horowitz's method is given in Figure 2.

2.6 Extension of Rational Function Integration to
Multivariate Rational Functions

A multivariate polynomial F can be written as

u i
F(x],xz,...,xn) =.Z fixl
i=1
where the coefficient f. is a polynomial in (n-1) variables
over the integers,
fi € I[xz,x3,...,xn]

)

m = degree of F(x],xz,_x3,...,xn

with respect to Xq -

A multivariate rational function is simply the
ratio of two multivariate polynomials. In performing
multivariate rational function integration, all operations

are performed with respect to main variables (main
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indeterminate). A1l definitions and theorems discussed in
section 2.2 concerning polynomials of a single variable
with integer coefficients can be extended to multivariate
polynomials over the integers. For example, in the case

of the square free polynomia