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ABSTRACT 

The work in this thesis focuses on the temperature control of a semi-batch 

polymerization reactor. The system is published by Chylla and Haase (1993) as an 

Industrial Challenge and is typical of reactors at S.C. Johnson Wax. The challenge is to 

find a single controller that can adequately regulate reactor temperature despite changing 

process conditions. The multi-product nature of the system makes it a particularly 

interesting problem. Several different controllers are implemented and evaluated in this 

thesis. The controllers are in part chosen to quantify the amount process information 

(large or small) required in a controller structure in order to achieve satisfactory control. 

Two of the most promising controllers are a PID with feedforward compensation and a 

Nonlinear Adaptive algorithm. It is found that in many cases, there may be little incentive 

to go to a complex model based controller as the simpler feedback algorithm provides 

adequate control. However, the nonlinear adaptive controller is more easily extended to 

multi-batch or multi-product situations because of its more general nature. The PID with 

feedforward compensation requires retuning for each new situation in order to maintain 

satisfactory control. 
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CHAPTERl 

INTRODUCTION 

1.1 THE INDUSTRIAL CHALLENGE PROBLEM 

The operation of polymerization processes presents a unique and challenging control 

problem. Many polymerization reactors exhibit nonlinear dynamics, and sometimes 

operation at open loop unstable operating points is required for polymer quality. Other 

issues include high viscosity, lack of on-line sensors and highly exothermic reactions. All 

these conditions can create a situation where traditional algorithms perform poorly or even 

go unstable. 

The motivation for the thesis is an industrial challenge problem published by Chylla 

and Haase (1993). The 1993 'industrial challenge' model is based on the authors' 

experiences with semi-batch polymerization reactors. The challenge is to formulate a 

temperature controller that can effectively deal with the following process characteristics: 

• Semi-batch operation; 

• Production of multiple products in a single reactor; 

• Changing heat transfer ability (from batch to batch, and during a batch run); 

• Auto-acceleration of the rate of reaction; 

• Limited process knowledge; 

The controller must maintain the reactor temperature within one degree of setpoint 

under all conditions. Monomer feed is started and stopped according to set product 

recipes. Currently, the control system is cascaded, as in Figure 1.1. The master controller 

controls temperature by manipulating the setpoint of the inlet jacket temperature. A slave 



controller adjusts valve positions to control the inlet jacket temperature to the setpoint 

calculated by the master controller. 

Steam 
Valve 

Cold Water 
Inlet 

Monomer Feed 

i5 
0 
0 
D 

-+--+-~TIC ----

' Dump 
Valve 

FIGURE 1.1: SCHEMATIC OF 1HE CHYLLA HAASE SEMI-BATCH REACTOR 

It should be noted that the equipment of Figure 1.1 differs from the schematic 

published by Chylla and Haase (1993). A discussion is provided in Appendix A. 

The model includes a random factor in the rate of reaction to simulate the effect of 

feed impurities from batch to batch. Summer and winter conditions are given for 

robustness tests. The authors encourage researchers to add noise to process 

measurements to more accurately represent the true environment. 

The published model includes reactor and jacket energy balances and a material 

balance for the monomer. Empirical equations (based on actual plant data) describe the 
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behavior of the heat transfer coefficient and viscosity. The authors also provide an 

equation to describe the dynamics of the coolant recirculation loop. For more specific 

details, the reader is referred to Chylla and Haase (1993) and updates. The reactor energy 

balance simulated in the thesis differs slightly from that of Chylla and Haase. An error in 

the equation derivation was discovered, therefore a correct reactor energy balance for a 

semi-batch reactor is derived and simulated instead. Please refer to Appendix A. 

Table 1.1 summarizes key operating information: 

Table 1.1: Operating Information for Products 

Product 1 Product 2 

Setpoint 180 °F 176 °F 

Recipe 1/ Charge reactor with water and pre- 1/ Charge reactor as per the recipe; 

polymer as per the recipe; 2/ Heat reactor to 17 5 °F then begin 

2/ Heat reactor to 179 °F then begin feed; 

feed; 3/ Feed monomer #2 at 0.8lb/min for 

3/ Feed monomer #1 at 1lb/min for 60 minutes; 

70 minutes; 4/ Hold reactor temperature to 

4/ Hold reactor temperature to setpoint for 30 minutes; 

setpoint for 60 minutes; 51 Feed monomer #2 at 0.8 lb/min for 

40 minutes; 

6/ Hold reactor temperature to 

setpoint for 45 minutes; 

The recipe for each product is repeated for five batches. After the fifth batch, the 

reactor walls are cleaned to remove the polymer buildup (fouling). This buildup reduces 

the heat transfer ability of the system from batch to batch. 
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1.2 APPROACH 

The goal of the thesis is to evaluate the problem of temperature control of semi-batch 

polymerization reactors. The multi-product, semi-batch nature of the Chylla Haase 

reactor makes it an interesting and challenging control problem. The effect of process 

knowledge on controller performance in these types of systems is highlighted in the thesis 

work. Several different controllers with varying degrees of process information are 

compared. Solutions evaluated include: 

• well tuned PID 

• adaptive PID 

• PID with feedforward compensation 

• nonlinear controller 

• nonlinear adaptive controller 

A portion of the thesis is dedicated to the PID controller and variations of this linear 

algorithm. It is felt that often this controller is overlooked in solutions because of its 

simplicity. Certainly, complex nonlinear model based controllers can provide more 

eloquent and impressive solutions. However, as the thesis work shows, surprisingly good 

control can be achieved by returning to the basics of PID control. 

It should be noted that for the model based controllers, the focus is on solutions 

based on mechanistic (as opposed to empirical) process models. For a system with many 

products, empirical models must be identified for each product. Mechanistic models result 

in a more general control solution which is useful in multi-product systems. For this 

reason, controllers based on mechanistic models (as in nonlinear geometric control) are 

primarily considered for the Chylla Haase system. 

All simulations were run in Matlab. The above controllers are implemented as the 

master controller in the cascaded loop. The inlet jacket temperature control can be 

satisfactorily accomplished using a PI controller as the slave. For all controllers, the slave 

is being executed every 0. 6 seconds and the master every minute. The control interval for 

the slave was selected to reduce the impact this loop has on the performance of the master 



controller. The execution time for the master is selected as a reasonable value, based on 

examples in literature. It is expected that the control interval affects the performance of 

the algorithms. However, the thesis focuses primarily on comparing the controllers, 

therefore consistency between algorithms is far more important. 

1.3 OVERVIEW OF THE THESIS 

In this section, a brief overview of the thesis is provided. In chapters 3 through 6, 

each of the controllers is developed and tested on a Product One, batch one, summer 

simulation ('ideal conditions'). A comparison of the most promising controllers for 

nonideal situations is presented in Chapter 7. The details of each chapter are outlined 

below. 

Before simulating the Chylla Haase system, the literature on the temperature control 

of polymerization reactors was thoroughly surveyed. Several of the most interesting 

papers are discussed in Chapter 2. 

In Chapter 3, the time varying behavior of the Chylla Haase semi-batch reactor is 

quantified through an approximate linear analysis. Then, a PID and an adaptive PID 

controller are presented and the resulting control compared. The performance of the 

adaptive PID is comparable to the constant parameter PID when the former has full 

process knowledge. The adaptive PID performs considerably worse if limited process 

knowledge is available. 

5 

In Chapter 4, a second modification to the PID controller is presented. Feedforward 

compensation for the heat released and the feed stoppage is considered. With limited 

process knowledge, the PID with feedforward compensation outperforms the well tuned 

PID controller. 

Chapter 5 introduces geometric nonlinear control. Nonlinear control theory is 

reviewed and a controller is derived for the semi-batch reactor. With exact knowledge of 

all process parameters, the nonlinear controller outperforms the PID algorithm. However, 



it is shown that the performance of the nonlinear controller is very sensitive to errors in 

parameter values. Using average values of some parameters in the algorithm, the 

nonlinear controller performs worse than a PID controller. This chapter highlights the 

need for an on-line parameter estimation scheme. 

6 

In Chapter 6, Kalman filtering is introduced to track model parameters. The set of 

parameters to be updated is chosen in part based on the results of Chapter 5. Problems 

associated with updating the parameters are outlined in the first half of the chapter. In the 

second half, the estimation scheme is combined with the nonlinear controller. The 

performance of the nonlinear adaptive controller is comparable to that of the nonlinear 

controller with all parameters known. A brief study shows that the nonlinear adaptive 

algorithm is robust to errors in the required initial parameter guesses. 

Chapter 7 summarizes the work by comparing three controllers under non-ideal 

conditions. Noise is added to all simulations. The proportional integral derivative 

controller, the PID with feedforward compensation and the nonlinear adaptive controller 

are compared. The three controllers show a nice progression as process knowledge in the 

algorithms is increased. As expected, the nonlinear adaptive algorithm outperforms the 

PID class controllers. For the ideal simulation (summer, batch one), the improvement is 

not a substantial as one might expect. The nonlinear adaptive controller is more 

effectively extended to multiple batches and multiple products. This is a direct result of 

the mechanistic model on which the controller is based. 

Chapter 8 summarizes the results of the thesis. 



CHAPTER2 

TEMPERATURE CONTROL OF POLYMERIZATION 

REACTORS 

2.1 INTRODUCTION 

Before proceeding with the problem of controlling temperature in the Chylla Haase 

polymerization reactor, it is important to be familiar with work already done. For this 

reason, a comprehensive literature survey of the control of polymerization reactors was 

undertaken. Papers are organized according to algorithm and four major areas are 

covered: traditional approaches, model predictive control, adaptive control and nonlinear 

control. Only selected papers are discussed, however summary information on all papers 

is available in Table 2.1 at the end of Chapter 2. 

A general point of interest is the tuning of 'comparison controllers'. Often, 

researchers tune the PID controllers from step/PRBS tests done on the reactor full of 

water/solvent. This can be very misleading and could result in poor models and tuning. 

Fine tuning (trial and error simulations or experiments) is required to obtain a well tuned 

PID. Comparing a new control strategy to a poorly tuned PID does not provide an 

accurate comparison. 
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2.2 TRADITIONAL LINEAR CONTROL 

2.2.1 INTRODUCTION 

Before discussing advanced control methods applied to polymerization reactors, it is 

worthwhile evaluating papers that deal with traditional process control. Simple extensions 

of traditional control, such as feedforward control, are also considered here. This section 

is divided into two categories: feedback algorithms, and combined feedforward/feedback 

algorithms. 

2.2.2 FEEDBACK ALGORITHMS 

An interesting application is presented by Davidson (1987). Davidson (1987) 

introduces an 'intelligent' temperature controller for jacketed reactors. He points out the 

need for a simple but functional controller and combines an algorithm with logic. The 

general idea is that speed of response is improved by relying on Proportional action; 

integral action is implemented only when the temperature is close to its setpoint. The 

controller is coded as a series of 'if this then do that' statements, which is not particularly 

useful for general applications. While the controller is a good example of unique thinking, 

more simulations are required to be convincing. 

Lie and Balchen (1992) evaluate four different structures for controlling a 

polymerization reactor. The paper attempts to highlight issues of multivariable control in 

an interactive, nonlinear system. The example system is a polypropene CSTR with the 

following controlled variables: level in reactor, level in the reflux accumulator and reactor 

pressure (conversion). The authors look at the existing multiloop PI structure, the current 

PI structure with better tuning, multiloop PI with different loop pairing, multivariable LQ 

(with input weighting) and a nonlinear decoupling controller. The controllers are 

compared in simulations for disturbance rejection, pressure setpoint tracking, and 



changing process conditions ('model errors'). Lie and Balchen (1992) conclude that the 

multivariable LQ is most promising overalL Unfortunately, no insight into the findings is 

provided. Given that the system is continuous, with no large operating changes, the 

nonlinearities of the system may not be significantly excited. The interactions are strong, 

hence a linear, multivariable controller is probably all that is needed. Such a discussion 

would have provided an excellent wrap up for an otherwise interesting paper. 

Henderson and Cornejo (1989/1987) explore the effect of viscosity on temperature 

controL Three different control schemes are evaluated : heat removal by internal 

coils/jacket, by evaporation, and by external heat exhange. The mathematical treatment is 

not overly theoretical and the paper provides excellent insight into the behavoir of 

polymerization reactors . Summary information is available in Table 2.1. 

Dougherty et al.(1988) are concerned with controlling temperature in an industrial 

semi-batch polymerization reactor. Prior to the work, the reactor was under manual 

controL By correctly identifying a stochastic model (transfer function and disturbance 

model) of the process, a well tuned PID results. Temperature control is significantly 

improved on the industrial reactor. 

9 

Chien and Penlidis (1994b) perform a very interesting study. It is the only study 

found that conducts simulations and experiments then compares the results. The control 

of conversion with initiator flow is considered in a continuous methyl methacrylate 

solution polymerization reactor. Control is tested in presence of unmeasured impurity 

disturbances. The authors compare a Smith Predictor, the Dahlin controller, a PID, a 

Minimum Variance, a Constrained Minimum Variance, and an LQ 1 step controller. 

Simulation and experimental runs are conducted for all controllers. While the simulations 

differed slightly from the experiments, the conclusions drawn from both were the same. In 

both experimental and simulated conditions, the stochastic controllers outperformed the 

PID-type controllers. The reasons for this were not discussed. However, the stochastic 

controllers do have more process information incorporated in them and this may be the 

source of the improved controL 
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2.2.3 FEEDFORW ARDIFEEDBACK ALGORITHMS 

Juba and Hamer (1986) published a very insightful paper on the control ofbatch and 

semi-batch reactors. They highlight the issues of stability of exothennic reactors; 

feedforward compensation for the heat released due to reaction; tracking optimal 

temperature policies (known and unknown kinetics) and property control. It is a 

comprehensive article that shows excellent understanding. 

Congalidis et al.(I 989) present a feedforwardlfeedback algorithm for a multivariable 

reactor with recycle. The control of rate, compostion, molecular weight and temperature 

is considered assuming accurate online measurements of these outputs. This is not 

necessarily valid for composition and molecular weight, and the results of the paper are 

misleading. F eedforward action is used to compensate for flow and composition 

disturbances in the recycle. Summary information is available in Table 2.1. 

2.3 MODEL PREDICTIVE CONTROL 

2.3 .1 INTRODUCTION 

In this section, model predictive applications to polymerization reactors will be 

discussed. Papers are grouped into two categories, polymer applications and control 

applications and is based on the overall perspective of the publication. 

2.3.2 POLYMER APPLICATIONS 

Inglis et al.(1991) examine the application of generalized predictive control in two 

parts. The control of conversion in a simulated MMA CSTR and temperature control of 

an experimental batch MMA are considered. The strength of the paper is that the authors 



are concerned with controlling the polymerization reactor and not with demonstrating an 

algorithm. 
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Dittmar et al.(1991) evaluate two predictive control algorithms: an adaptive 

Generalized Predictive Controller, and a new nonadaptive predictive controller 

developped by the authors. The motivation for the problem is the stabilization of an 

industrial reactor. Temperature control of solution styrene/acrylnitrile copolymerization is 

considered by manipulating the cooling oil flow. The controllers are tested on a realistic 

simulation model for disturbance rejection and setpoint tracking capabilities. The newly 

derived predictive controller depends on historical data instead of a process model for 

predicting the output and the authors show that it outperforms the adaptive-predictive 

controller and a PID. 

Gattu and Zafirio (1991) propose a Nonlinear QDMC solution for the 'industrial 

challenge problem' that is the basis for this thesis work. They did not compare the 

controller to a PID~ therefore it is impossible to tell if there is an improvement in control. 

The multi-product issue is not addressed in the solution. The authors are more concerned 

with demonstrating the NLQDMC algorithm that solving the actual control problem. 

2.3.3 CONTROL APPLICATIONS 

Hidalgo and Brosilow (1990) present a framework for a nonlinear model predictive 

controller. Issues addressed in paper are considerations for unstable processes and 

options for handling model mismatch and unmeasured disturbances. 

Prasad et al.( 1990) demonstrate the capabilities of a multivariable model based 

controller on a solution methyl methacrylate CSTR. The control of reactor temperature 

and conversion with jacket temperature and monomer concentration is presented. The 

apparent issues are nonlinearity and interaction. In general, the paper is quite weak. The 

authors obtain linear models for the process by doing tiny step changes. Therefore, they 

have very good linear approximations of the process around the operating point. In a real 



system, such small step tests are not possible. Simulations show that the controller has 

difficulties handling a time varying heat transfer coefficient because the linear models on 

which the controller is based are inaccurate over a wide range. 

2.4 ADAPTIVE CONTROL 

2.4.1 INTRODUCTION 
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Adaptive control has clearly been a productive area of research since the last major 

review on polymer reactor control by MacGregor et al. (1984). Most of the work was 

accomplished in the mid- to late- 1980s, however new papers on adaptive control still 

frequently appear. Adaptive control applications have been divided into the following two 

subsections: pole-placement adaptive control and robust adaptive control. 

The adaptive control field is very algorithmic and the main criticism of this area is 

that the controllers are often applied with little insight. Adaptive control can provide 

excellent control when applied correctly to time varying systems. The papers summarized 

in this section represent some of the stronger publications. 

2.4.2 POLE PLACEMENT ADAPTIVE CONTROL 

Tzounas and Shah (1989) published an excellent paper to illustrate some important 

issues in adaptive control. An adaptive pole placement controller manipulates the desired 

reactor temperature in order to control conversion. An experimental batch M11A reactor 

is considered. The adaptive pole placement controller is compared to a generalized 

minimum variance controller (adaptive 1-step LQ) and a fixed gain PID. The issues 

highlighted in the paper are: the need for good initial parameter estimates (options are 

provided), global stability of the adaptive controller (mathematical treatment presented) 
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and the need for on-line measurements. With reference to the last point, the adaptive 

algorithms only outperformed the PID when on-line measurements were available every 

minute (currently, sampling time for polymer quality is upward of 15 minutes) . The 

authors conclude that the advantages of adaptive algorithms can only be realized with on­

line sensors that have short sampling intervals. This is particular point is important for 

polymer quality control, where measurements are very infrequent. 

Ham and Rhee ( 1994) present an interesting application of an adaptive pole 

placement controller. The authors apply the controller to a LDPE autoclave reactor. 

Significant effort went into modeling the system for simulations. Since this is a conference 

paper, it is expected that a publication with more details will follow. 

2.4.3 ROBUST ADAPTIVE CONTROL 

Mendoza-Bustos et a1.(1990) evaluate a Stable Robust Adaptive Controller (SRAC). 

The system in question is a simulated MMA CSTR where the flow of initiator is 

manipulated to control conversion. The SRAC is an adaptive minimum variance 

controller with the robustness feature added to the estimator. The estimation algorithm 

uses a normalizing factor such that the estimator sees the unmodeled dynamics as bounded 

disturbances (that is, the estimator is not mislead by the ' disturbances') . The paper 

indicates that the controller shows promise. The paper itself is very insightful for 

polymerization applications. 

Defaye et a1.(1993) present an adaptive-predictive algorithm for improving 

temperature control in semi-batch reactors. In semi-batch systems, feed starting/stopping 

often introduces undesirable temperature disturbances. The authors treat an experimental 

semi-batch, copolymerization reactor (Vinyl acetate/2 ethyl-hexyl acrylate). The 

algorithm distinguishes itself from others by using filtered data in the estimation 

(adaptation) part to avoid misleading the estimator during feed starts/stops. The data 

filtering before estimation is credited with the improvement seen in the control. 
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Despite the many complicated algorithms tried and tested in literature, there are few 

reported applications in industrial reactors. An excellent example of adaptive control in an 

industrial setting was published by Whatley and Pott (1984). In the paper, an adaptive 

gain PI controller is applied to an industrial polymerization reactor. The simple adaptive 

algorithm is used to control the reactor temperature and maintain stability in the system. 

The controller results in higher profits because of improved operability. 

There are many other adaptive algorithm applications and the remaining papers in 

this area are summarized in Table 2.1 at the end of chapter 2. 

2.5 NONLINEAR CONTROL 

2.5.1 INTRODUCTION 

Papers in this area are classified into to sections according to their objectives. In the 

first section, Nonlinear Control Concepts, papers which discuss more global concerns of 

geometric nonlinear control are presented. In the second section, Nonlinear Control 

Algorithms, papers that primarily demonstrate specific nonlinear controllers are discussed. 

Several good review papers are available to understand the nonlinear control field. 

Bequette (1990) gives a broad overview of nonlinear control; this is a helpful paper for 

seeing what is available. McLellan et al.(1990) have an excellent paper for understanding 

the similarities between many nonlinear geometric control algorithms. 

Most successful applications of nonlinear control have very complex process models 

in their controllers. While this results in impressive control, it presents a major barrier to 

implementation in industry. Clearly, this difference will need to be overcome before the 

nonlinear control algorithm can make the leap from academia to industry. 



2.5.2 NONLINEAR CONTROL CONCEPTS 

A large source of confusion in the field of geometric nonlinear control is that many 

very similar algorithms are called by different names. Despite the different derivations, 

most nonlinear controllers are based on differential geometric control theory, and differ 

only in how the researcher chooses to approach the problem. 
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Balchen et al.(1988) investigate a multivariable nonlinear controller in decoupling 

framework. The key issues are the effect of process/model mismatch on closed loop 

stability (analytical treatment); dealing with a plant in which there are more controlled 

variables than manipulated variables; and plants in which the manipulated variable does not 

appear explicitly in the controller equations (requires implicit solution). The paper 

concludes with an application of the nonlinear decoupling controller to a simple process 

simulation. 

Alvarez and coworkers have a series of papers treating nonlinear control of 

polymerization reactors (Alvarez, Suarez and Sanchez (1990), Alvarez, Hernandez, 

Suarez (1988), Alvarez, Alvarez, Gonzalez (1989)). While the papers do not provide a lot 

of insight into polymerization concepts, they do treat the problem more mathematically 

than most. 

2.5.3 NONLINEAR CONTROL ALGORITHMS 

Cott and Macchietto ( 1989) demonstrate the capabilities of a nonlinear model based 

controller. They consider the control of reactor temperature by manipulating the jacket 

temperature setpoint using Lee and Sullivan's Generic Model Control (GMC). The 

generic batch exothermic reactor model in the controller allows the algorithm to be quite 

general; an on-line energy balance provides estimate of Qr for the controller. Results show 

that the nonlinear GMC controller outperforms the dual mode controller for the cases 

chosen. However, the PID in the dual mode controller is poorly tuned and the extent of 



16 

nonlinearity of the system is unclear. It appears the estimator, not the nonlinear controller, 

is providing the observed improvement in control. 

Soroush and Kravaris (1992) present an experimental application ofthe Globally 

Linearizing Control algorithm. The system in question is a batch MMA reactor. The 

control of temperature and conversion is considered. The authors perform a very 

thorough robustness study; however, all errors are on the ' safe' side. As a result, the 

question of closed loop stability in the face of errors is unanswered. As well, the 

controller uses very complex process models; it is unlikely that these models would be 

available in industry. However, despite the weakness, this is a good article to understand 

the GLC algorithm, and the experimental nature of the study is very interesting. Kravaris 

and coworkers have several other papers published on this topic (Daoutidis, Soroush and 

Kravaris (1990), Soroush and Kravaris (1993)). 

A very unique industrial application of nonlinear control is published by Singstad et 

al.(1992). A multivariable, nonlinear controller for an industrial LDPE plant is briefly 

presented. When the controller was implemented, improved temperature and conversion 

control resulted. 

2.6 SUMMARYTABLE 

Key details on all papers are summarized in Table 2.1. 

T bl 2 1 S a e ummary Inti ormatiOn on T emperature c I f P I ontro o o yrnenzat10n R eactors 
Reference Polymer Simulation! Reactor Controlled Manipulated 

Experiment Type Variables Variables 

Adebekun and Schork MMA sun continuous [M], [I], [MJreed, Tj , 
(1989) T, fsolv] [Ilreed 
Alvarez, Alvarez, Gonzalez - sun continuous T, [M] Tj 
(1989) 
Alvarez, Hernandez, Suarez MMA sun continuous T,[M], [!]feed, Tj 
(1988) [I] 
Alvarez, Suarez, Sanchez MMA s1m continuous T,x initiator flow, 
(1990) T 
Balchen et al.(l988) - sun continuous T Qi 
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Chien and Penlidis ( 1994a) MMA exp continuous X initiator flow 
Chien and Penlidis (1994b) MMA sim&exp continuous X initiator flow 
Cluett et al.(1985) PVC sun batch Tor rate steam flow 
Congalidis et al.(1989) VAC,MMA sun continuous prodn. monomer, 

rate, solvent, 
MW,T, initiator & eta 
comp. flows, Tj 

Cott and Macchietto (1989) - sun continuous T Tj 
Daoutidis et al.(l990) MMA sun continuous T,MW Fj, initiator 

flow 
Davidson (1987) - sun batch T Tj 
Defaye et al.(l993) V A/2-ethyl- exp semi-batch T heating 

hexyl (power) 
acrylate 

Dittmar et al.(l991) stryene/ SliD continuous T Fj 
acrylnitril 

Dougherty et al.(1988) unknown exp semi-batch T monomer flow 
Farber and Ydstie (1986) styrene SliD continuous T heat transfer 

coefficient 
Gattu and Zafirio (1991) unknown sun semi-batch T heating valve 
Ham and Rhee_(1994) LDPE sun continuous T initiator flow 
Henderson and Cornejo styrene SliD continuous T -
(1989) 
Hindalgo and Brosilow styrene sun continuous T Fj, monomer 
(1990) flow 
Houston and Schork (1987) MMA sun semi-batch T,Xor initiator flow, 

X,MW T 
Inglis et al.(1991) MMA sim&exp both XorT initiator flow 

orTi 
Jutan and Uppal (1984) - SliD batch T heating 
Kwalik and Schork (1985) MMA SliD continuous [Ml,T [!]reed, T 
Lee et al.(l994) ABS industrial batch T heating 
Mendoza-Bustos et al. MMA SliD continuous X initiator flow 
(1990) 
Merkle and Lee (1989) - exp batch T steam flow 
Papadoulis et al.(1987) - SliD continuous [reactnt] coolant flow 
Peterson et al.(1992) MMA sim semi-batch T,MW Tj, initiator 

flow 
Prasad et al.(1990) MMA sun continuous T, [M] Tj, [!]feed 
Singstad et al.(l992) LDPE ind continuous T 
Soroush and Kravaris MMA exp batch T heating 
(1992) 
Soroush and Kravaris MMA exp continuous T,X heating, 
(1993) initiator flow 
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Tzouanaz and Shah (1989) MMA sim&exp batch X or Tsp 
MW 

Wang and Lin (1991) PVC sun batch T steam flow 
Wang et al.(1994) sun continuous X,T heating valve 

opening, [I]reed 
Whatley and Pott (1984) unknown industrial continuous Tand T oil.sp and Foil in 

Toilsp 



3.1 INTRODUCTION 

CHAPTER3 

LINEAR CONTROL 

The purpose of this chapter is to explore the issues surrounding linear control. First, 

the time varying, nonlinear nature of the reactor is quantified in order to provide some 

insight into controller performance. A Proportional Integral Derivative Controller is 

implemented and will serve as a basis of comparison for future solutions. An adaptive PID 

(integral time constant and controller gain adapted) is also implemented. The performance 

of the adaptive PID is comparable to the constant parameter PID controller. 

3.2 TIME VARYING NATURE OF THE REACTOR 

3.2.1 DERIVATION OF TIME CONSTANT AND PROCESS GAIN 

Before implementing and comparing controllers, it is important to understand the 

time varying and nonlinear behavior of the system. An approximate linear analysis is 

helpful in this aspect. The procedure in this section may be visualized as freezing the 

system at an operating point ~' and performing a linear analysis of the system at that 

point. Repeating this for several operating points gives a snap shot view of the reactor at 

selected points in the batch. 

An energy balance around the cooling jacket and the reactor provides the equations 

for deriving the linearized time constant and process gain. The energy balance for the 
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reactor may be written as: 

dT • 
L(miCpi)dt=mm cpm(Tfeed - T)-UA(T- ~,out) +Q, (3 .1) 

Notation used here and throughout the thesis may be found in Appendix B, and is 

consistent with that used in Chylla and Haase (1993). 

In the absence of any knowledge of reactor dynamics, this equation provides a solid 

starting point. Equation (3 .1) assumes the jacket is well mixed (i.e. jacket temperature 

may be represented as Tjout) . As well, it is assumed for equation (3 .1) that no information 

about the heat loss to the surroundings is available. Ifkinetic information is available, the 

term for the heat release, Qr, may be expanded: 

(3.2) 

= k 0.4 n e - a ! T (-Mi ) oJL m r 

It should be noted that the viscosity term in the rate of reaction (Rp) is included in 

Chylla and Haase ( 1993) to model the auto-acceleration of the reaction with increased 

viscosity. For the initial analysis, full knowledge ofRp is assumed in order to illustrate the 

variations in the semi-batch reactor time constant and process gain. In section 3 .2.2, the 

implication of not knowing the kinetics is discussed. 

Equation (3 .1) requires linearization for the linear analysis. An obvious nonlinearity 

is the Arrhenius dependence of reaction rate. The heat transfer coefficient and reactor 

viscosity are also typically treated as nonlinear functions of temperature. However, 

consider the following logic with respect to the heat transfer: as the reactor is being heated 

up, the temperature changes over 80 °F. The corresponding change in the heat transfer 

coefficient is about 4 Btu/(ft2 hr °F). While the monomer is being fed, reactor temperature 

is held constant at its setpoint. During the feed period, the heat transfer coefficient drops 
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over 90 Btu/(ft? hr °F). This parameter is clearly a much stronger function of some other 

variable (fraction solids for example). Therefore, it may be assumed that U is a time 

varying parameter, independent of temperature. The same logic also applies to viscosity. 

As a result, only the Arrhenius expression requires linearization with respect to 

temperature. 

Taylor series expansion is used to linearize equation (3 .2) about some operating state, 

denoted by Top· Expressed in deviation variables, the linearized form of equation (3 .1) is: 

+ k 0.4n (-!lH )(e-a!Top _!!__T) 
of.l m p T 2 

op 

(3.3) 

where 

Rearranging: 

• 
= m m c pm Tfeed + UATj,ou/ 

(3.4) 

Let: 

i=l (3.5) 
.reactor = (. c + UA - k 110.4 n (-Mf )(e -a/Top ~ )) 

mm pm or m p T 2 
op 
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. 
mmCpm 

K=----------''--------~ • a 
(m C + UA- k tt 0·4n (-Ml )(e-a!Top -)) 

m pm or "' p T2 
op 

(3.6) 

(3.7) 

Therefore, the linearized energy balance for the reactor may be represented in the Laplace 

domain as: 

- ~I - K~ -
T(s)= Tfeed(s)+ Tjout(s) 

r reactors+ 1 r reactors+ 1 , 
(3.8) 

In the semi-batch system, the manipulated variable is the setpoint for the inlet jacket 

temperature. An energy balance for the jacket is required to obtain Tjout (and hence T) in 

terms of Tjin· Assuming a well mixed cooling jacket: 

(3.9) 

Equation (3.9) is a first order linear differential equation. After applying a Laplace 

transform, equation (3.9) is expressed as: 

(3.10) 

where 



. 
me cpe K l = __ ___, __ 

J • 

me C pe + UA 

UA 
K 2=----­; . 

me Cpc + UA 

me C pc + UA 

Replacing Tjout in equation (3 .8) with equation (3.10): 

Simple algebraic manipulation results in equation (3 .15): 

Rearranging: 

( 
r t 7: ( r t + r ) J ~ ~ K 2K1 reac or 1 2 reac or 1 1 T _ K ( 1) T r 1 T~ s + s + - 1 7: .s + fi d + .. 

1- Kr2Kj2 1- Kr2Ki2 r J ee 1- Kr 2Kj2 1.m 
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(3.11) 

(3.12) 

(3 .13) 

(3 .14) 

(3.15) 

(3.16) 
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Equation (3. 16) shows that at any operating point, a second order relationship exists 

between the inlet jacket temperature and the reactor temperature. To obtain a more 

convenient expression, a further simplification may be made. Compared to the time 

constant between Tjout and T ( 'treactor > 7 minutes), the dynamics between Tjin and Tjout are 

very fast (tj < 0.3 minutes). Therefore, neglecting the jacket dynamics introduces only a 

small error into the approximate linear analysis. Equation (3 .1 0) becomes: 

(3.17) 

Substituting equation (3.17) into equation (3.8) and rearranging gives: 

(3.18) 

Equation (3.18) can be equivalently derived by setting 'tj to zero in equation (3.16). 

Expressions for the instantaneous, linearized system time constant and gain of the process 

are: 

'["reactor 

'["process= 1-K K. 
r2 }2 

(3.19) 

(3.20) 

It should be noted that the material balance for the monomer is not included in the 

analysis. By neglecting the material balance, the system order is reduced. This introduces 

some error into the linear analysis presented above; not all of the process dynamics are 
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captured with a first order model. The mismatch between the 'true' second order process 

and the approximate first order process is most substantial immediately after the feed 

starts. At this time, the poles of the characteristic equation are equal in magnitude and 

contain small imaginary parts (indicating underdamped behavior is possible). After this 

initial transient, the pole associated with the reactor energy balance dominates and 

contains no imaginary part. Despite the errors introduced by approximating the higher 

order process with a lower order model, the analysis still provides some insight into the 

semi-batch reactor. 
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FIGURE 3.1: LINEARIZED PROCESS GAIN (PRODUCT ONE, BATCH ONE, SUMMER) 

Equations (3.19) and (3.20) are functions of process variables (e.g. viscosity, heat 

transfer coefficient) and may be evaluated periodically during a batch run. Figures 3. 1 and 

3.2 show how the linearized gain and time constant typically vary for a Product One, batch 
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one simulation. Exact knowledge of all the process variables (e.g. heat transfer, viscosity) 

is assumed. 
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FIGURE 3.2: LINEARIZED TIME CONSTANT (PRODUCT ONE, BATCH ONE, SUMMER) 

In this section, the linearized time constant and process gain for the semi-batch 

reactor have been derived. The expressions for the linearized parameters were evaluated 

periodically during a product one, batch one run and presented in figures. 

3.2.2 ANALYSIS OF TIME CONSTANT AND PROCESS GAIN 

Expressions for the instantaneous linearized time constant and process gain were 

developed in section 3 .2 .1 . In this section, the individual contributions of select process 

parameters on the behavior of the linearized time constant and gain are evaluated. Only 
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Product One is considered here; Product Two has unique problems that will be discussed 

in section 3.2.3. 

The linearized time constant and process gain from section 3 .2.1 can be re-evaluated 

during a batch for three different situations: 

CASE 1 : Effect of the heat released during the reaction. In many situations, an 

expression for Rp is unavailable, and Qr must be treated as a lumped, unknown 

disturbance acting on temperature. Therefore, equations (3. 5) through (3. 7) are 

re-evaluated without the expression {koJ.l0.4IIm(-AHp)e-arrop(alTo/)}, and used in 

equations (3 .19) and (3 .20). 

CASE 2: Effect of the viscosity term in the rate of reaction (auto-acceleration). 

In evaluating equations (3 .19) and (3 .20), assume a value of one for the viscosity 

multiplying factor (J.l0.4). The true value of the variable changes from one and nine 

during a batch. 

CASE 3: Effect offalling heat transfer coefficient. A constant value ofU equal to 

its initial value is used in evaluating equations (3.19) and (3.20). 

The three cases and the original plots from Figures 3.1 and 3.2 are shown in Figures 

3.3 (process gain) and 3.4 (time constant). The figures demonstrate how each of the 

components contribute to the time varying behavior of the linearized time constant and 

process gain. It is clear that the heat transfer coefficient (Case 3) has a large effect on the 

linearized time constant and a moderate effect on the linearized gain. The kinetic terms in 

Qr (Case 1) and the viscosity multiplying factor (Case 2) both have a large impact on the 

linearized process gain and show a lesser influence on changes in the time constant. 
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FIGURE 3. 3: CONTRIBliTIONS OF PARAMETERS TO LINEARIZED PROCESS GAIN 

While it is interesting to evaluate the effect each individual component has on the 

linearized parameters, there is a more important interpretation. In most realistic systems, 

one has limited process knowledge. Each of the above three cases describes a situation 

where a piece of process information is missing. From the plots, it can be interpreted that 

limited process knowledge significantly alters the view of the system. With no knowledge 

of fouling (constant U value), the estimated time constant and process gain differ 

significantly from the ' true' linearized values. Not knowing the reaction kinetics or having 

no quantitative auto-acceleration information similarly affects the behavior of the 

estimates. 
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In summary, the individual contributions to the linearized time constant and gain have 

been examined. From the analysis, it is evident that limited process knowledge has a 

significant impact on the estimates of the linearized parameters. 

3.2.3 PRODUCT Two CONSIDERATIONS 

Since the Chylla Haase semi-batch reactor has two products, a similar analysis can be 

performed for the second product. For the first feed period, the results are consistent with 

findings in section 3 .2.2. However, early in the second feed period, the heat transfer 

coefficient drops to zero due to extensive fouling. Beyond that point, the linearized time 
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constant and gain acquire non-real values as there is no longer a relationship between the 

controlled and manipulated variables. 

A suggested remedy (Chylla, 1994) for the general problem of extensive fouling is to 

increase the jacket temperature in order to cool the reactor. This counter-intuitive 

measure is intended to increase the wall temperature, decrease the viscosity of the polymer 

at the wall and increase the heat transfer coefficient. Therefore, although the jacket 

temperature is increasing (thereby reducing the heat transfer driving force), the reactor 

will experience more cooling due to an increased heat transfer coefficient. Simulations 

using this counter-intuitive control action proved unsuccessful. Figure 3.5 explains why: 
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FIGURE 3.5: EFFECT OF WAll TEMPERATURE ON HEAT TRANSFER COEFFICIENT 

Figure 3. 5 shows the effect of wall temperature at a constant value of the fraction 

solids (set to its value at the beginning of the second feed). In order to obtain a value of 

the heat transfer coefficient of only 1 Btu/(hr fl? °F), a wall temperature of 228 op is 

needed. In other words, the jacket temperature will need to be well above the reactor 



setpoint of 176 op in order to get measurable heat transfer. At that point, the increased 

heat transfer will heat, not cool, the reactor. 

From this brief study, it is clear that the problems with Product Two (during the 

second feed) cannot be solved with a different control algorithm. The situation is a 

process design problem, and will require an appropriate design solution. 

3.3 PROPORTIONAL INTEGRAL DERIVATIVE CONTROL 

3.3.1 TUNING RULES 

In order to reduce the time and expense of tuning a PID controller on-line, tuning 

rules are helpful in establishing initial tuning parameter estimates. Tuning rules from 

Smith and Corripio, 1985 (ITAE, ISE, IAE) and Marlin, 1995 (Ciancone) are discussed. 

Only PID tuning will be considered as the controller with derivative action outperforms 

the PI controller. A brief discussion on each of the rules is included in this section. 
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The rules in Smith and Corripio (1985) were developed by Lopez and coworkers and 

provide the tuning given different error functions to minimize. Inherent in the rules are the 

following assumptions: 

• first order plus deadtime model between the manipulated and controlled 

variable; 

• disturbance model is the same as the process model; 

• fraction deadtime (8fT.) is between 0. 1 and 1; 

The Integral of the Absolute Error (IAE) tuning places equal weight on all errors 

while the Integral of the Squared Error (ISE) weights larger errors more heavily. The 

Integral of the Time-Weighted Absolute Error (IT AE) includes a penalty for the elapsed 

time, to reduce the oscillatory behavior often noted with the ISE tuning. The ISE criteria 

of penalizing the largest errors is most compatible with the semi-batch performance 



requirement (±1 °F). Of these three, the ISE rules provide the tightest tuning and the 

IT AE rules give the loosest tuning. 
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The Ciancone correlations (Marlin, 1995) also assume the process is first order with 

deadtime and the disturbance transfer function is identical to the process transfer function. 

However, the tuning parameters are derived to provide the minimum IAE given: 

• errors of25% in the model parameters 

• limits on the manipulated variable moves 

• noise on the controlled variable 

Because of the addition three criteria, the Ciancone correlations result in tuning that 

is less tight than the others. However, the Ciancone tuning tends to be much more 

realistic since few processes meet the rigid assumptions of the Lopez rules. 

3.3.2 PRODUCT SPECIFIC TUNING PARAMETERS 

For good performance, each different product requires unique tuning parameters. 

Both products are tuned for ideal conditions (batch one, summer). The robustness of the 

PID controller for winter and batch five runs is evaluated in Chapter 7. Noise is also 

added to the temperature measurements in Chapter 7. 

Initial tuning parameters are based on average values of the linearized time constant 

and process gain from section 3 .2. Alternatively, a step test could be performed with the 

reactor filled with the initial loading contents. An estimate of the process deadtime is also 

required. For sampled data systems, as a rule of thumb the 'deadtime' is taken as the 

actual process deadtime plus one half the sampling interval. Since the semi-batch reactor 

has only a small amount of deadtime, a value of fraction deadtime (8/t) of0.1 is assumed 

to apply the rules. Table 3.1 summarizes the initial tuning values from each rule, and the 

final tuning for a well tuned PID controller for Product One. Due to the known model 

error, significant effort is directed towards fine tuning the PID. The final tuning of the 

PID is the result of numerous trial and error simulations. 



Table 3.1: Tuning for Product One('tp = 12 min, Kp = 1.5, 9/T. = 0.1) 

Tuning Rule Kc 'ti 'td 

IAE (Lopez) 7.9 2.44 0.42 

ISE (Lopez) 8.8 1.84 0.0552 

IT AE (Lopez) 8.0 2.61 0.462 

Ciancone 0.93 2.16 0 

By Trial and Error 4 8 0.3 

As Table 3.1 shows, the Lopez tuning rules predict much tighter tuning than is 

actually implemented. Conversely, Ciancone predicted a smaller gain, but more integral 

action than the actual best tuning. 

The PID algorithm is implemented in velocity form with anti-reset windup 

precautions (equation 3.21): 
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(3.21) 

~insp ( n) = ~insp ( n - 1) + !1~insp 

The implemented value of Tjinsp is retained for use at the next execution interval in 

order to avoid windup. At the beginning of the batch, Tjinsp is initialized to the ambient 

temperature. 

Figure 3. 6 shows the performance of the well tuned PID controller for Product One, 

batch one, summer conditions (both the controlled and manipulated variables are shown). 

The setpoint for Product One is 180 °F. The limits of good control, ± 1 op, are also 

plotted. 
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The recipe for Product One calls for one monomer feed period. The reactor is 

initially charged with water and some polymer and the reactor contents heated. The 

monomer feed begins when the temperature is within one degree of setpoint and is fed at a 

rate of one pound per minute. The feed is stopped exactly seventy minutes from the time 

that it is started. As Figure 3. 6 shows, an unacceptably large temperature deviation results 

when the feed is stopped. 

A few comments will be made here about convention. The top plot shows the 

reactor temperature. It should be noted that the reactor contents are initially at the 

ambient temperature (90 °F for summer), however only the upper portion of the 

temperature trajectory is shown. Temperature figures will be presented in this manner 

throughout the thesis. In Figure 3.6, the setpoint is plotted, however it will not be shown 

on future temperature figures in order to simplify the presentation. On the bottom plot, 

the manipulated variable (inlet jacket temperature setpoint) is at its upper bound of350 °F 

for the first few minutes of the batch. The line is plotted but is being masked by the plot 

borders (this is seen in many future plots of the manipulated variable). 
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Table 3.2 and Figure 3. 7 show the tuning for Product Two and the controller 

performance, respectively. The setpoint for product two is 176 op and is shown on the 

figure. Note that only the first feed period is considered for Product Two, due to 

considerations discussed in section 3 .2.3. As well, only the upper portion of the reactor 

temperature behavior is shown, however the controller is heating the contents from 

ambient temperature. The initial value of the inlet jacket temperature setpoint is masked by 

the plot border. Once again, stopping the monomer feed causes a large temperature 

disturbance. 

Table 3.2: Tuning for Product Two (tp = 20, Kp = 2.1, Slt = 0.1) 

Tuning Rule Kc 'ti 'td 

IAE (Lopez) 5.9 4.0 0.70 

ISE (Lopez) 6.6 3.0 1.1 

ITAE (Lopez) 6.0 4.3 7.7 

Ciancone 0.7 3.6 0 

By Trial and Error 5 6 0.3 
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In this section, the tuning for the PID controllers has been outlined. Simulations 

indicate that a well tuned PID controller cannot maintain the temperature within the 

bounds for good control. 

3.4 ADAPTIVE PROPORTIONAL INTEGRAL DERIVATIVE CONTROL 
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The time varying behavior of the semi-batch reactor makes it an ideal candidate for 

adaptive control. The PID controller in section 3.3 is tuned for average performance over 

a range of process conditions. In this section, an adaptive PID controller is developed to 

account for the time varying behavior. Its performance is compared to that of the well 

tuned PID controller. 

There are many different formulations for an adaptive PID controller. Building on 

the analysis in the previous sections, the linearized time constant and gain are chosen as 

measures of the time varying behavior ofthe reactor. It should be emphasized that many 

formulations of the adaptive PID are possible, however by using the linearized parameters, 

it is possible to take advantage ofthe PID tuning rules discussed in section 3.3. Recall 

that the time constant increases during the feed period. Therefore it is expected that the 

tuning will be tightest at the beginning of the batch. Detuning will be required throughout 

the batch as the process becomes more difficult to control. From this, one may predict 

that the benefits of adaptive control will primarily be seen in a reduction of the initial 

overshoot. 

The Lopez IT AE rules are used as a starting point for the adaptive controller tuning. 

The rules are in the form: 

K =_.:,__a! ( e Jbi 
c K process 'r process 

(3.22) 
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( J
b3 

'process e 
'rl = (3 .23) 

a2 'process 

'd = a3 'process ( e J b

3 

'r process 

(3 .24) 

The fraction deadtime is set at the minimum value allowable (8h=0.1). Estimates of 

the linearized time constant and process gain to be used in equations (3 .22) through (3 .24) 

are provided by equations (3 .19) and (3 .20). Initially, it is assumed that all process 

parameters (e.g. U, viscosity) are measured and available to the adaptive controller at each 

control step. 

The Lopez IT AE tuning gives very oscillatory closed loop behavior, particularly 

when the monomer feed is started. Therefore, the rules are 'detuned' until good 

performance is achieved. Table 3.3 summarizes the adaptive PID controller tuning for 

Product One. Again, significant effort was directed at fine tuning the adaptive PID 

controller, due to the known model error. Figure 3.8 shows how the controller gain, 

integral time constant and derivative time constant are adapted based on the trial and error 

tuning in Table 3.3. 

Table 3.3: Tuning for Adaptive PID Control (Product One) 

Kc "t; "td 

ITAE tuning 12/K.p 0.217-r 0.0385-r 

Trial and Error tuning 6/K.p 0.7"t 0.0385-r 

Figure 3. 9 shows the performance of the adaptive controller when all process 

parameters are assumed known in evaluating the linearized time constant and gain. A 

Product One, summer, batch one simulation is plotted. The corresponding PID with 

constant parameters is shown as a dotted line for comparison purposes. 



35~----~------~-------r------~------~----~ 

30 

25 

20 tau,i. 

15 
························· 

10 .. .. 
········-······-·· .. ··············· 

5 ........ - .. <.._· ---------! Kc 

0 . -. 
0 

tau,d 

20 40 60 80 100 

Tune (minutes) 

FIGURE 3.8: ADAPTATION OF PID TuNING PARAMETERS 

120 

40 

The performance of the adaptive controller is only marginally better than that of the 

PID controller, and is slightly oscillatory when the feed starts. Note that Figure 3.9 

demonstrates an ideal situation for the adaptive controller: all time varying process 

parameters are assumed known. However, realistically, not all of the process variables 

such as viscosity and heat transfer coefficient will be available to the adaptive controller. 

From the short study in section 3 .2.2, it is known that limited process knowledge 

significantly affects one's perception of the process. It is important to see how the 

adaptive controller performs with limited process knowledge. 

Unless extensive modeling effort is initiated, only rough estimates of the heat transfer 

coefficient and the auto-acceleration effect will be available (at best). If reasonable 

estimates are available from process experience, they may be used. Otherwise, a 

procedure to obtain an average heat transfer value using on-line energy balances is 
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described in Chapter 4. To evaluate the performance of the adaptive controller, the value 

ofU from a batch three, summer simulation has been parameterized off-line as a function 

ofthe mass of monomer fed. The parameterized value ofU is used in the calculation of 

the linearized time constant and process gain. It is also assumed that the viscosity 

multiplying factor on rate of reaction (auto-acceleration) is unknown (value is assumed to 

be one). 
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The performance of the adaptive controller with the above assumptions is shown in 

Figure 3.10. Also shown on the plot is the adaptive controller ofFigure 3.9. There is a 

degradation of control, particularly at the beginning of the batch. 

It was noted at the beginning of this section that the benefits of the adaptive control 

will most likely be seen at the beginning of the batch. Trial and error simulations on 

Product One show that the reactor is susceptible to oscillations when the feed starts. 
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Clearly, starting the feed introduces a severe disturbance into the system. As a result, the 

adaptive controller must be detuned to accommodate the nature of the disturbance at the 

beginning. However, the increasing time constant of the process indicate that the process 

becomes more difficult to control. Therefore, the adaptation detunes the controller, from 

the initial values, over the course of the batch. The combination of severe disturbance at 

the onset and more difficult process to control at the end results in a situation where this 

adaptive PID does not provide any benefit over the constant parameter PID. 
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It should be re-iterated that there are many different formulations of an adaptive PID 

controller, and only one is presented here. Other options include adapting the tuning 

parameters based on a different measure of process changes. It is possible that with 

enough effort, an adaptive controller that outperforms the well tuned PID can be derived. 

However, it was decided not to pursue this option any further because of the multi-batch, 



multi-product nature of the system. The empirical nature of the adaptive PID controller 

tuning makes it less flexible than a controller based on mechanistic models. 
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In summary, for the semi-batch reactor considered, the adaptive PID control 

performs only slightly better than the PID controller. It is unable to maintain the 

temperature within one degree of setpoint for Product One, batch one, summer conditions. 

Based on the findings of this initial study and considering other process characteristics, the 

adaptive PID controller will not be pursued further. 



CHAPTER4 

FEEDFORW ARD COMPENSATION 

4.1 INTRODUCTION 

In this chapter, a second method of adding information to the PID algorithm is 

explored. The batch runs of the well tuned PID for Product One show that the 

temperature exceeds the ± 1 °F limits twice. Initially, the temperature overshoots the 

setpoint due to the heat released by reaction. It then exhibits a sharp drop when the feed 

stops. In this chapter, feedforward compensation is added to the well tuned PID to 

counter the effect of these disturbances. The controller is discussed for Product One, 

batch one, summer conditions only; the results are extended to other batches and products 

in Chapter 7. It is seen that the combined feedforward/feedback controller is able to 

maintain the temperature within one degree of setpoint for a Product One, batch one, 

summer simulation. 

4.2 FEEDFORWARD FOR THE FEED STOPPAGE 

4.2.1 THEORY 

The feed stoppage clearly causes the temperature to deviate the most from setpoint. 

Therefore, feedforward for this disturbance will be considered first. Simple linear theory 

provides a platform for the discussion and is reviewed in this section. 



The semi-batch reactor may be generally represented by: 
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For the effects of the feed disturbance to be exactly canceled: 

. 
mm(s)Ga(s) + J;·.in,ff(s)Gp(s) = 0 

Therefore: 

If expressions for Gd and Gp are available, an approximate expression for the 

feedforward action can be formulated. Models of Gd and Gp are required for each 

product. Values are given for Product One, however the results for Product Two are 

similar. 
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(4.1) 

(4.2) 



For Product One, the relationship between the inlet jacket temperature and reactor 

temperature at the time of the disturbance can be approximated by a first order transfer 

function with a gain of one and a time constant of eighteen minutes (section 3. 2). A 

similar result could also be obtained by doing an open loop step test on the batch at the 

end of the run. 
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An expression for the disturbance transfer function is obtained with a step test. On a 

batch one, summer simulation, the master temperature controller is turned off when the 

feed is stopped. The ensuing response may be approximated by a first order transfer 

function with gain of minus twenty-nine °Filb/min and time constant oftwenty minutes. 

To derive the feedforward controller, Gd and Gp in equation (4.2) are replaced with 

their respective transfer functions: 

(20~9+ J llr:zm 
~in,ff ( S) = - ( 1 ) S 

18s+ 1 

. 
18s+ 1 flmm 

=-29---
20s+ 1 s 

(4.3) 

For a step in the feed from llb/min to 0 lb/min (Product One recipe), equation (4.3) 

in the time domain (Marlin, 1995) is: 

K ( ( r - r d) r/ J · ( 18 - 20 r/ ) T (t) = __ d 1+ P e-hri lim = 29 1+ e -/20 
Jm ,JJ K r m 20 

p d 

(4.4) 

Equation ( 4. 4) provides compensation for a specific disturbance (the feed stoppage). 

Feedback is still required for other unmeasured or unknown disturbances, and to account 
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for any error in the feedforward compensation. The setpoint calculated by the combined 

feedforwardlfeedback algorithm is the sum of the individual components: 

(4.5) 

Equations (4.3) and (4.4) hold several pieces ofinformation. First, equation (4.3) is 

a lead-lag transfer function. As shown in equation ( 4.4), the time domain interpretation of 

a lead-lag (for a step input) is an exponential relationship. Second, the disturbance and the 

process time constants are very close in value. Therefore, one might expect that a steady 

state feedforward algorithm (that is, a constant value) would provide good compensation 

as well. Performance of both dynamic and steady state compensation is discussed in the 

next section. 

4.2.2 STEADY STATE AND DYNAMIC FEEDFORW ARD 

COMPENSATION 

In this section, the performance of the two types of feedforward control is shown for 

a Product One, batch one, summer simulation. First, the steady state (constant value) 

compensation is discussed. The dynamic (exponential) compensation is then compared to 

the steady state compensation. 

From section 4.2.1, the expression for steady state feedforward compensation 

(Product One value) is: 

-K • • 
~·.in,sp,ff (t) = T l:!.mm = -29/).mm 

p 

(4.6) 

Due to model error, the feedforward gain in equation (4.6) does not give the best 

compensation possible. Trial and error tuning of the feedforward gain shows that a value 



of -23 °Filb/min results in the best control. Figure 4.2 shows the temperature control of 

the combined feedforward/feedback algorithm for a Product One, batch one, summer 

simulation. The same PID tuning constants are used in the feedback portion and a 

constant gain of -23 °Filb/min is implemented in the feedforward portion. The feedback 

algorithm alone is shown as a dotted line for comparison. 
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Clearly, the feedforward action has improved control. The temperature is maintained 

above 179 °F when the feed stops. The difference in the manipulated variable behavior is 

also seen in Figure 4.2. 

Now, the performance of the dynamic feedforward controller is shown and compared 

to the above steady state feedforward controller. The best dynamic feedforward 

compensation is also found by trial and error. Equation (4.4) gives the theoretical 

feedforward algorithm. Trial and error tuning results in: 

. 
~in,sp,ff (t) = -25(1- O.Ie-o.ost)Llmm (4.7) 

where tin equation (4.7) is the time from when the feed stops. 

Equation (4.7) assumes that the feedrate is known and that the control system has 

knowledge of when the feed stops. Tjin,sp,ff is calculated every minute and implemented 

with the feedback Tjin,sp· Figure 4.3 shows the performance of the dynamic feedforward 

algorithm (coupled with feedback control). 

Comparing Figure 4.2 and Figure 4.3, the steady state feedforward compensation 

and the dynamic feedforward compensation both give about the same controL This is 

consistent with the prediction in section 4 .2.1. 
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FIGURE 4.2: FEEDFORWARDIFEEDBACK CONIROL: S'IEADY STATE COMPENSATION FOR 

FEED STOPPAGE 
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The robustness of the dynamic feedforward/feedback controller was also studied. In 

the interest ofbrevity, the results are mentioned but no simulations are shown. The study 

was performed to evaluate how sensitive the feedforward/feedback controller is to errors 

in the process and disturbance model time constants. Several different values of 'td and 'tp 

were tested in equation (4.4) and the controller implemented. It was found that the 

feedforward/feedback performs well if the relative sizes of the time constants are correct 

(that is, 'ti'tp > I). Therefore, the feedforward/feedback algorithm is robust to errors in 

the models, as long as the relative sizes of the time constants are correct. 

Despite the robustness of the dynamic feedforward controller, the constant gain 

feedforward algorithm is applied in all future feedforward simulations. Since performance 

is not seriously affected, it is desirable to use the simplest algorithm possible. 

4.3 FEEDFORWARD COMPENSATION FOR THE HEAT RELEASE 

4.3.1 THEORY 

This section presents a second form of feedforward control. Recall that the 

temperature exhibits an initial overshoot due to the heat of reaction. If it is critical to 

reduce the overshoot, feedforward compensation for the heat released, Qr, may be 

considered. 

To compensate for Qr, a feedforward transfer function and an estimate of the heat 

released are required. The transfer function is derived in this section. The relationship 

between the heat released and reactor temperature can be estimated using the overall 

energy balance for the reactor (same structure for both products): 

(4.8) 
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Rearranging equation (4.8): 

Recall from section 3.2.1, the jacket dynamics between Tjin and Tjout are very fast and 

may be represented by a steady state equation: 

~Oilt(t) = Kjl~in(t) + Kj2T(t) (4.10) 

Substituting (4.10) into (4.9) gives: 

(4.11) 

where, in this case: 

(4.12) 

UA 
Kpt=-.---- (4.13) 

mmCpm +UA 

• 
mmCpm 

K p2 = -.---='--- (4.14) 
mmCpm+UA 



1 
KpQ=-.----

mmCpm+UA 

. 
me cpe 

K Jl = -.---=---
meCpe +UA 

UA 
KJz =-.----

me Cpe + UA 

Rearranging equation ( 4.11) for the gain between Qr and T: 

Tp dT KplKjl Kp2 KpQ 
K K d + T = 1 K K J;·;n + 1- K K. lfeed + 1- K K. Qr 1 - pl j2 t - pl j2 pl }2 pl ,z 

From equation (4.18), one obtains an expression for the transfer function (Gd) 

between the disturbance Qr and the controlled variable T: 

As with the feed stoppage, this is a first order disturbance transfer function. 
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(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

Therefore, the feedforward algorithm will be a lead-lag transfer function. In order to 

improve the robustness and the simplicity of the feedforward/feedback controller, only a 



steady state (constant gain) feedforward controller will be considered. The feedforward 

algorithm is: 
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(4.20) 

Expressions for the process and disturbance gains can be obtained from equation (4.18) 

and ( 4 .19), respectively: 

KpQ 

(4.21) 

With minimum process knowledge, a rough estimate of the feedforward gain may be 

obtained by noting that Kpl:::1=Kjl· As well, K~~<F1/(UA)o allows for an order of 

magnitude estimate of equation (4.21). For Product One: 

~in,sp,ff = -0.06Qr (4.22) 

Trial and error tuning is required to fine-tune the feedforward action. 

In order to implement the feedforward algorithm, an estimate of the heat released is 

also required. Estimating Qr is discussed in the following section. The transfer function 

derived above is combined with the estimate ofQr in the section 4.4. 



4.3.2 ON-LINE ENERGY BALANCE FOR ESTIMATING HEAT 

RELEASED 
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Several different options are available for estimating the heat released. Some of the 

most common are: 

II Deterministic On-line Energy Balance: Rearranging the energy balance of the reactor 

results in an expression for the heat released. The expression can be evaluated on-line. 

2/ Empirical Heat Released Estimator: For example, Juba and Hamer (1984) identified 

transfer functions between the two inputs, Heat Released and Inlet Jacket Temperature, 

and the output, Reactor Temperature. By rearranging this equation, they obtained an 

expression for the heat released as a function of the reactor temperature and inlet jacket 

temperature. The equation can be used to provide an estimate of the heat released. 

3/ On-line Estimation Using an Extended Kalman Filter: the Heat Released can be 

represented as a stochastic state in the EKF and estimated on-line. 

The deterministic on-line energy balance is chosen as it provides a simpler solution 

than the EKF and is more general than an empirical solution (important for multiple 

products). In this section, the derivation and implementation of the energy balance is 

considered (MacGregor (1986), Cott and Macchietto(1989)). 

Once again, the starting point for estimating the heat released is the reactor energy 

balance common to both products (equation (4.8)): 

(4.8) 

Rearranging equation (4.8) for the heat released gives: 

(4.23) 
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To apply equation ( 4.23), the mass and heat capacity of each component (or total 

mass and average heat capacity) in the reactor must be approximately known (the values 

will be different for different products). In the simulations, the actual values are used. In 

reality, good estimates are possible (please see Appendix C for a discussion). 

The time derivative of the temperature is also required. The following equation is 

used: 

dT 3Tk- 4Tk-l + yk-2 
:::-------

dt- 2M 
(4.24) 

Temperature measurements are assumed available every minute. For studies in this 

section, no noise is added to the system (it will be added later). It should be noted that 

proper treatment of very noisy measurements (for example by filtering) is imperative for 

the success of the estimation algorithm. Since temperature measurements are generally 

filtered, treating noisy data is not discussed for this application. 

The final parameter in equation (4.23) that does not have a measurement associated 

with it is the heat transfer coefficient. If an estimate is not available from process 

experience, another simple procedure to get an average value ofU for all batches of a 

single product is: 

1/ Rearrange equation (4.23) and run an on-line energy balance during heating (Qr 

= 0) to estimate U (or UA). Over a series of batches, this establishes a value for 

an average Uo. 

2/ Run the on-line energy balance for U (or UA) again after the feed stops. Over 

a series ofbatches, this establishes a value for an average Ur. 

3/ Using the average Uo and Ur, parameterize U off-line as a function of the mass 

of monomer fed. Some knowledge ofthe shape ofU may be known, or a simple 

linear function can be interpolated between the initial and final values. 



For the thesis, the trajectory of the heat transfer coefficient from batch three is 

parameterized off-line to simulate the results of the above procedure. At each control 

interval, an estimate ofU for Product One is given by: 
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U(t) = 109.9+0.28massjed1 -O.l7massjed/ (4.25) 

Figure 4.4 shows the values ofU for all five batches ofProduct One (dashed lines), 

and the parameterized heat transfer coefficient from equation (4.25) (solid lines). 
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Figure 4.5 shows the performance of the heat released estimator when the true value 

of the heat transfer coefficient is used. In the simulation shown, the batch is run under 

Product One, batch one, summer conditions with tlie temperature being controlled by the 

PID of Chapter 3. The solid line is the actual heat released; the dotted line is the estimated 



value. Both the PID controller and the estimation algorithm are being executed every 

minute. 

350 

300 
:s 

I 250 

-o 
200 u 

"' :i 
~ 150 = u 
!:I: .... 100 .a 
0 
< 
-o 

50 c 
"' -o 
.£ 
"' E 0 .-5 
w 

-50 

-100 
0 50 100 150 

Tune (minutes) 

FIGURE 4.5: ESTIMATION OF HEAT RELEASED USING TRUE VALUE OF HEAT TRANSFER 

58 

Three items require comment. First, note the offset between the estimated and actual 

values. The reactor experiences some heat loss which is not accounted for in the on-line 

energy balance. If some rough estimate of the heat loss is available, it can be included in 

equation (4.23). If not, there will be offset in the estimate due to model error. Unless the 

heat loss is very large, this should not be a problem. The second item requiring note is the 

inverse response seen in the estimated Qr value, possibly due to the discrete nature of the 

estimation algorithm. Indeed, when the temperature measurements are assumed every 0.6 

seconds (instead of every minute), the suspicious inverse response disappears. In a true 

system, a logic check can be implemented to ensure the estimated value of Qr is always 

positive (for an exothermic reaction). Finally, semi-batch emulsion reactors are often run 
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under monomer starved conditions (Dimitratos et al., 1994 ). In such cases, the monomer 

concentration (and hence the heat released) can drop suddenly when the monomer feed 

stops. This process information is incorporated into the estimator by setting the estimated 

heat released to zero when the feed stops (instead of allowing it to track Qr to a zero 

value). 

Figure 4. 6 demonstrates the performance of the heat release estimator when the 

parameterized value of the heat transfer coefficient from batch three is used in equation 

(4.23). Once again, the simulation is run under summer, batch one conditions. A logic 

check has been implemented to avoid negative estimates for Qr: 
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Having a parameterized value ofU in the on-line energy balance results in Qr being 

underestimated. The error is largest at the beginning, where the parameterized value ofU 

differs most from the true batch one heat transfer coefficient. 

In all future simulations, the heat release estimator is used with the average 

parameterized value of the average heat transfer coefficient. 

4.3.3 STEADY STATE FEEDFORWARD COMPENSATION 

In the previous two sections, a feedforward transfer function (for Product One) and 

an on-line heat release estimator were derived. In this section, the two parts are combined 

and the full feedforward controller implemented. 

In section 4.3.1, the feedforward controller for Product One was derived: 

J;·in,sp,ff = -0.06Qr (4.26) 

Trial and error tuning is required to obtain the actual best value. With the on-line 

heat release estimator providing a value for Qr, it was found that the best gain for the 

feedforward controller is: 

~in,sp,ff = -0.025Qr (4.27) 

A larger gain in the feedforward controller results in ragged regulation of 

temperature. Figure 4. 7 shows a Product One, batch one, summer simulation using 

equation (4.27) for feedforward. The solid line is the combined feedback/feedforward (for 

Qr) controller. The dotted line is the control by a well tuned PID with no feedforward. 
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FIGURE 4. 7: FEEDFORWARDIFEEDBACK CONTROL: COMPENSATION FOR HEAT RELEASED 
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As expected, the feedforward improves control over the well tuned feedback 

algorithm. The overshoot is reduced, and the temperature stays within 1 °F of setpoint 

until the feed stops. Note that by compensating for Qr, the feed stoppage has less effect 

on the temperature. This is not surprising as the disturbance associated with the feed 

stopping is, in fact, the drop in the heat released. The manipulated variable, Tjm,sp, appears 

only slightly different from the PID however this is due to the scale of the plot. 

4.4 PERFORMANCE OF THE COMBINED 

FEEDFORW ARDIFEEDBACK CONTROLLER 

Considering the heat released and feed stoppage individually results in improved 

control in the areas targeted. Combining both feedforward algorithms with the PID 

controller should result in a far superior regulation of temperature. Therefore, during the 

feed, feedforward action counters the heat released. After the feed, feedforward is used to 

reduce the observed drop in temperature. 

Compensating for the heat released reduces the temperature deviation due to feed 

stoppage. The dual feedforward algorithm (compensation for both disturbances) is given 

below. When the feed is 'on', equation (4.28) gives the required feedforward. After the 

feed is turned off, equation (4.29) is used to calculate the feedforward compensation. 

~in,sp,ff = -0.025Qr (4.28) 

. 
~in,sp,ff = -18.1mm (4.29) 

The performance of the combined feedback/dual feedforward controller is shown in 

Figure 4.8 for a summer, batch one simulation. During the entire batch, the temperature is 

maintained within ± 1 °F. 
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To this point, this is the only algorithm that has successfully achieved 'good' control 

(± 1 °F for this system). For all future chapters, the "PID with Feedforward 

Compensation" refers to the controller ofFigure 4.8 (compensation for both 

disturbances). In Chapter 7, this controller will be compared to other controllers with 

more sophisticated process knowledge built in. 



CHAPTERS 

NONLINEAR CONTROL 

5.1 INTRODUCTION 

Nonlinear control is frequently applied to free radical polymerization reactors. 

However, in many successful applications, very complex models of the process are used. 

In this chapter, a geometric nonlinear controller based on general energy balances is 

derived for the semi-batch reactor. No empirical models are available for parameters such 

as the heat transfer or viscosity. The performance of the nonlinear controller when all 

parameter values are exactly known is assessed for a Product One, batch one simulation. 

The sensitivity of the controller to errors in some of the parameter values is also studied. 

5.2 NONLINEARCONTROL THEORY 

5 .2.1 LINEARIZING CONTROLLER 

There are many different approaches to nonlinear control. In this thesis, the 

application of a nonlinear controller derived from differential geometric control theory is 

considered. The theory of the linearizing controller is presented in this section. 

Within the geometric nonlinear control area, several algorithms have been derived. 

Some of the more common ones found in chemical engineering literature are Nonlinear 

Decoupling Control (Balchen), Generic Model Control (Lee and Sullivan) and Globally 

Linearizing Control (Kravaris). While the names are different, the algorithms primarily 

differ in how the researcher chooses to approach the control problem and the assumptions 
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built into the algorithm. In this work, the linearizing controller is derived in an error 

trajectory framework (McAuley and McGregor (1993), McLellan et al. (1990)) . Parallels 

will be drawn to the well known Globally Linearizing Control (Soroush and Kravaris, 

1992) to provide insight. Note that 'linearizing controller' and 'nonlinear controller' will 

be used interchangeably during this Chapter. 

The general form of the process considered in nonlinear control is given by equation 

(5 .1): 

dx 
d~ = f (~) + ~(~)u 

(5 .1) 

y = h(~) 

where y is the controlled variable. Model equations of the above form usually arise from 

mass and energy balances around a reactor. It should be noted that the input, u, appears 

explicitly in the expression for the time derivative of the states. This is a convenient form 

as it results in an explicit expression for the manipulated variable. However, it is not a 

necessary condition to derive the nonlinear controller. 

The concepts are discussed for a single input, single output system. The ideas can be 

easily extended to MIMO processes. In order to keep the equations compact, the dot 

notation is used for time derivatives in this Chapter. 

Two important concepts in nonlinear control are relative order and Lie derivatives. 

The relative order of an input-output pair, r, is the number oftimes that the input must be 

integrated to affect the output. For a relative order one process, the first time derivative 

of the output is a function of the input (equation (5.2)). In a process with relative order 

two, the second time derivative of the output is a function of the input, however the first 

time derivative is not (equation (5 .3)): 

r=1 y = F(x,u) (5.2) 



66 

r=2 y = F(x); y = F(x,u) (5.3) 

A second important concept is that ofLie derivatives. The use ofLie derivatives 

significantly simplifies the derivation of controllers for high (greater than one) relative 

order processes. In words, the Lie derivative is the directional derivative ofh(x), and is an 

algebraic function of the states. Given a vector function f(x) and a scalar function h(x), 

the Lie derivative ofh(x) in the direction off(x) is: 

Given a system described by equations (5.1), the following relationships are 

particularly helpful: 

r = 1 system: 

r = 2 system: 

(5.4) 

(5 .5) 

(5.6) 

(5.7) 

The nonlinear controller is discussed for a relative order two system. It is assumed 

that a model of the process in the form of equation (5.1) is available. 

The controller is derived to achieve a desired closed loop behavior, as specified by 

the user. The desired closed loop behavior is conveniently expressed in an error trajectory 

equation. The order of the equation is set by the relative order of the process. Of course, 



one can modify the error trajectory by adding or removing terms. The interpretation of 

this is discussed later in the section. For a relative order two process, the appropriate 

error equation is: 
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(5.8) 

where: 

e=ysp-y 

The inclusion of e in equation (5.8) is required for a relative order two process. The 

parameters d1 and d2 are the tuning parameters in linearizing control algorithm and are 

chosen by the user to provide the desired closed loop behavior. Equations (5.6) and (5.7) 

provide expressions for the time derivatives of the output. Substituting these into the 

error trajectory of equation (5.8): 

Equation (5.9) may be rearranged for the manipulated variable (input): 

(5.10) 

A block diagram of the linearizing controller is shown in Figure 5 .1. 

If a perfect model is used in the controller (equation (5.10)), the process will exhibit 

the specified closed loop behavior (as defined by equation (5.8)). Process-model 

mismatch causes a deviation from the specified error trajectory. 
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ysp Linearizing u 
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y 
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process states 
' and parameters 
; y 
i 

FIGURE 5 .1 : BLOCK DIAGRAM OF TilE LINEARIZING CONTROL ALGORITIIM 

In order to better understand the performance of the above nonlinear controller, it is 

helpful to compare it to another common formulation of linearizing control, such as 

Globally Linearizing Control. A brief overview of the GLC derivation is presented here. 

The controllers will then be compared in two aspects: 

1/ closed loop behavior; 

2/ manipulated variable expression; 

Globally Linearizing Control is most easily explained in conjunction with a diagram. 

Figure 5.2 shows the block diagram of the GLC algorithm. 

With the GLC approach to nonlinear control, a linearizing input, v, is defined such 

that the following linear relationship holds for a relative order two process: 

(5 .11) 
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FIGURE 5.2: BLOCK DIAGRAM OF GLOBALLY LINEARIZING CONIROL 

The betas are constants, selected by the user. The linearizing input, v, has no 

meaning in the real plant. In order to implement the GLC algorithm, an expression for the 

true input, u, must be calculated. Once again, equations (5.6) and (5 .7) prove useful for 

substitutions: 

(5.12) 

Rearranging for the input: 

v- j31L1 2h(!)- /30 L1h(!)- y 
u= 2 

f31Lf h(!) 
(5.13) 



Equation (5.13) provides an expression for the manipulated variable in terms of the 

output, the model and the linearizing input. An expression for v is still required to 

implement GLC. 
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Recall the linear system between y and v. Consider controlling this ' process' with a 

PI algorithm, thus providing output feedback for the GLC loop. The linear controller is 

referred to as the 'external controller' . A PI is chosen as the external controller for 

convenience, however there is nothing restricting the user to this algorithm. The 

expression for the output of a PI controller is: 

(5 .14) 

Tuning parameters for the PI controller are chosen based on the behavior of the 

linear system between y and v (which is specified by the user). Note that the bias is 

usually some function of the setpoint, as decided by the user. 

Substituting equation (5 .14) into equation (5 .13): 

(5 .15) 

Equation (5.15) is the expression for the manipulated variable for the GLC algorithm. 

Consider specifying a time varying bias in the PI controller: 

(5 .16) 

Substituting (5.16) into (5 .15), and rearranging: 
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(5.17) 

If a perfect model is used in the nonlinear controller, implementing equation ( 5 .17) as 

the manipulated variable results in the following closed loop behavior: 

Comparing equations (5.17) and (5.18) ofGLC to equations (5.10) and (5.8), 

respectively, from the error trajectory derivation, the following items are noted: 

1/ The linearizing controller in the form of equation (5.8) has no integral action; 

(5.18) 

2/ The linearizing controller derived from an error trajectory, above, is equivalent to the 

GLC algorithm with a time varying bias and a Proportional only external controller; 

3/ The GLC algorithm requires three variables to be specified for a relative order two 

process with a P-only external controller (J3~, J30 and Kc). The error trajectory linearizing 

controller requires only two (d1 and d2) for the same algorithm. Therefore, Globally 

Linearizing Control has an extra (unnecessary) tuning factor. 

Integral action can easily be incorporated into the linearizing controller. The error 

trajectory equation is modified to include an integral term: 

(5.19) 

Given the specified trajectory of equation ( 5 .19), the nonlinear controller is now 

equivalent to the GLC algorithm implemented with a time varying bias and a PI external 

controller. Once again note that the linearizing controller derived from an error trajectory 

specification has one less tuning factor than the equivalent GLC algorithm. 
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In summary, the derivation of a linearizing controller for an relative order two 

process has been shown. The algorithm has been compared to the well known Globally 

Linearizing Control. While the two formulations are shown to be equivalent in structure, 

each specify the controller tuning in different ways. Because of the error trajectory 

approach, the tuning parameters of the linearizing controller directly relate to the closed 

loop poles of the system. Therefore, this controller is more easily tuned and implemented. 

In the following section, the error trajectory-based controller is presented for the Chylla 

Haase semi-batch reactor. 

5 .2.2 DERIVATION OF A LINEARIZING CONTROLLER FOR CHYLLA 

HAASE REACTOR 

In this section, the specific nonlinear controller for the Chylla Haase system is 

derived. Proportional only control is considered first (error equation (5 .8)) . 

Recall that temperature is being controlled by manipulating the setpoint of the inlet 

jacket temperature. To derive the nonlinear controller, it is assumed that the slave 

dynamics are very fast. Therefore, the actual inlet jacket temperature is assumed to be 

equal to the setpoint. This assumption significantly simplifies the controller. During the 

batch, there are two situations where this assumption is not strictly true: 

1/ Heat-up phase. While heating the contents, the inlet jacket setpoint is at its 

upper limit. The actual inlet jacket temperature is much slower to respond. 

However, the violation of the assumption during heat-up is not critical since the 

controller is requesting full heating (that is, there really is no control here) . 

Feedback of the actual reactor temperature insures that full heating is not backed 

offtoo early. 

2/ Quickly changing jacket inlet setpoint. When the master controller calls for 

sudden changes in the setpoint, the actual jacket inlet temperature lags slightly 

behind. It will be shown in section 5. 3.1 that this affects the nonlinear controller 
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performance primarily when the feed stops. However, it will also be shown that 

several other factors are affecting the controller at that point. The process/model 

mismatch introduced by the assumption of no jacket dynamics plays only a small 

role. 

The process equations that form the backbone of the nonlinear controller arise from 

energy balances around the reactor and the jacket contents: 

(5.21) 

Knowledge of the form of the kinetics and of the exact parameter values is currently 

assumed. It is also assumed that the jacket is well mixed. Therefore, the jacket 

temperature may be represented by the outlet jacket temperature. In terms of matrix 

notation: 

(5.22) 

where 
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(5.23) 

- UA(T- ~·out)- UA~oss (T- Tamb)) 

(5.24) 

g -0 1- (5.25) 

(5.26) 

The states,~' are the reactor and jacket temperatures, respectively. The output, y, is 

the reactor temperature. Therefore, the function h(~) is T. 

From equations (5.20) and (5.21), this is a relative order two system. The desired 

closed loop behavior for a constant setpoint is given by equation (5.27): 

The selection of d1 and d2 will be discussed following the controller derivation. 

Expressions for the time derivatives of temperature are needed. The first time 

derivative oftemperature is given by model equation (5.20): 

(5.27) 

(5.28) 



75 

Using the Lie derivative notation, an expression for d2T/dt2 may be derived. To 

begin, note that: 

(5.29) 

Using the definition ofLie derivatives (equation (5.4)): 

(5.30) 

and 

(5.31) 

Expressions for the partial derivative of f1 with respect to the temperatures are 

required. Recall from the discussion in section 3 .2.1 that the heat transfer coefficient and 

the viscosity are very weak functions of temperature. Therefore, the following is 

assumed: 
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a; a; 
-=--::::::0 
8J' ~out 

op op 
-----0 
8!'- ~out-

(5.32) 

It is important to note that even if the heat transfer coefficient and viscosity are 

known to be strong functions of temperature, detailed models are often not available in 

industry. This is particularly true of multi-product systems. In such a case, the 

assumption of equation (5.32) may still be valid because of the tight temperature control 

required during the batch (deviations ofless that one degree Fahrenheit). 

With the assumptions of (5.32), the following expressions result: 

(5.33) 

(5.34) 

The controller is implemented at each control step as follows: 

11 Obtain measurements oftemperatures and values of parameters (for now, it is 

assumed that the exact values are available); 

2/ Estimate the partial derivatives (ati/8xi) from equations (5.33) and (5.34); 

3/ Estimate the function values (ti, g2) from equations (5.23, 5.24, 5.26); 

4/ Calculate L/h(x) and LgLth(x) from equations (5.30) and (5.31); 

51 Calculate the manipulated variable move required: 

T = -d1(L1 h(!_))+d2 (T,p -1)-L/h(!_) 
pn,sp LgL1h(x) (5.35) 
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The value is clamped between physical limits before implementing the move in the plant. 

Note that to this point, the controller is perfectly general for different products. The 

structure of the equations is the same for both products. However, the values of the 

parameters in the equations will change for each product. 

In summary, a nonlinear controller for the Chylla Haase reactor has been derived. Its 

application is described in the next section. 

5.3 APPLICATION OF NONLINEAR CONTROLLER 

5.3 .1 PERFORMANCE OF THEN ONLINEAR CONTROLLER 

The purpose of this section is to evaluate the controller performance. First, the 

performance of the nonlinear controller is presented for the case in which all parameters 

are known. Proportional control on a Product One, batch one summer simulation is 

considered. It is seen that the controller has difficulty when the feed stops and three 

contributing factors are quantified. Finally, it is shown that the benefits provided by the 

nonlinear controller are not, in fact, due to accounting for the process nonlinearities. 

The tuning parameters for the nonlinear controller are d1 and d2. The values of d1 

and d2 were chosen as d1 = 6 and d2 = 3 by simulating the error trajectory equation in 

Matlab. For these values, the desired closed loop response is overdamped with a settling 

time of ten minutes. When implemented on the plant, these tuning parameters gave good 

performance for temperature control of product one. 

Figure 5. 3 shows the performance of the nonlinear controller (solid line) for a 

Product One, summer, batch one simulation. The well tuned PID (no feedforward) is 

shown as a reference. 
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FIGURE 5.3: NONLINEAR PROPORTIONAL CONTROL USING EXACT PROCESS PARAMETER 

VALUES 
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Negligible offset is seen because a very good process model is used in the nonlinear 

controller. When the temperature deviates from 180 °F, the controller returns it to the 

setpoint along the specified closed loop trajectory. 

While the nonlinear controller is outperforming the PID, the temperature drops 

below 179 °F after the feed stops. A short study indicates that three contributing factors 

are: 

1/ Time that the feed stops; 

2/ Execution interval of the controller; 

3/ Slave dynamics; 

With respect to the first point, it is noted that the feed is stopped at 84. 14 minutes 

(exactly 70 minutes after it is started). However, the controller is unaware of the change 

until 85 minutes, when it makes its next control move. By that time, the reaction has 

ceased, no heat is being released and temperature is already falling. If the feed is stopped 

at 83.9 minutes, control improves significantly. This situation is shown in Figure 5.4 (the 

control when feed is stopped at 84.14 minutes is also shown). A small time frame is used 

to emphasize the differences. The temperature is maintained within one degree of setpoint 

when the feed is stopped at 83.9 minutes. 

It should be emphasized that it is unlikely that the feed will be stopped after exactly 

70.00 minutes. In the true processing environment, it is expected that some batches will 

have better temperature control when the feed stops because of this randomness. The 

simulation in Figure 5.3 shows the worst case scenario, where almost a full minute has 

passed before the controller records a feed flow measurement and knows that the feed has 

stopped. It should also be noted that this problem is less severe for the PID class 

controllers presented in Chapters four and five. Due to the different heating time required 

by the PIDs, the feed was stopped less than a half minute before the controllers next 

execution interval. Therefore, the plots shown in the previous Chapters were not actually 

the worst case scenario (with respect to the time that the feed stops). 
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The second contributing factor, the execution interval of the controller, is related to 

the discussion on the timing of the feed stop. When the controller is being executed more 

often, it senses process changes more quickly. Figure 5.5 show the performance of the 

nonlinear controller when it is being executed every 0.1 minutes instead of every minute 

(the same tuning is used). Once again, the original control (executing every minute) is 

shown on the figure for comparison. 
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FIGURE 5.4: EFFECT OF TIME AT WinCH THE FEED STOPS 

Again, an improvement in control is seen. If it is possible to change the execution 

interval on the controller, this is a viable method to improve temperature regulation. 

Finally, it is interesting to see the impact of slave dynamics are on the nonlinear 

controller. To simulate this, the actual process equations are modified so that Tjin = Tjsp 

(possible in a simulation only!). The nonlinear controller is executed every minute. Figure 

5.6 shows the control under this situation. 
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Figure 5. 6 shows that control can be improved if there are no slave dynamics. 

Obviously, setting Tjin to Tjsp is not physically possible on a real plant. One physically 

possible option is to include a dynamic equation in the controller: 
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(5.36) 

Including this equation with the two energy balances in the nonlinear controller 

increases the relative order of the system to three. This was not pursued further for two 

reasons: 

II Increased complexity of the controller; 

2/ Larger improvements in control are possible by adjusting the time that the feed 

stops and changing the control interval; 
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The slave dynamics assumption is interesting for one other reason. Often in 

literature, processes are simulated under the assumption that neglecting slave dynamics 

does not introduce error into the simulation. For the semi-batch Chylla Haase system, this 

assumption is not valid and it is questionable for how many processes it is valid. Clearly, 

when slave dynamics are neglected, the nonlinear controller is able to maintain the 

temperature within the bounds of good control. Even with fast slave dynamics (given a 

control interval of one minute), it cannot. 

Despite the temperature drop when the feed stops, the nonlinear controller 

outperforms the well tuned PID over the batch. One might assume that the benefits are 

due compensating for nonlinearities in a highly nonlinear polymerization reactor. 
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Consider again the energy balance equations in the controller: 

(5.20) 

(5.21) 

In section 5.2.2, it was discussed that the only source of temperature nonlinearity 

being compensated for is the Arrhenius dependence of the rate of reaction. Many 

parameters are functions of other variables (fraction solids for example), but are not 

strongly dependent on either the reactor or jacket temperature. Figure 5. 7 shows the 

value of the exponential term (e-a!I) during a product one simulation. 

Figure 5. 7 shows that, in fact, the exponential term is essentially constant once the 

initial heating phase is finished. That is, except between 14 and 18 minutes, the 

nonlinearities are not really being exercised. Therefore, any benefits seen by the nonlinear 

controller are probably not due to accounting for the nonlinearities in temperature. 

Rather, the nonlinear controller outperforms the PID because the former has more 

information about how the process changes with time. 
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FIGURE 5. 7: VALUE OF ARRHENIUS TERM IN RA1E OF REACTION 

In summary, the performance of the nonlinear controller is shown. An explanation of 

the controller behavior is provided by changing various process conditions. Finally, it is 

highlighted that the benefits of the nonlinear controller arise primarily from having more 

information about how the process is changing. 

5.3.2 SENSITMTY TOP ARAMETER ERROR 

The previous section showed the performance of the nonlinear controller with perfect 

knowledge of all parameter values. In this section, the effect oflimited process 

information on the controller behavior is studied. Simulations without integral action are 

considered first. 



In a true processing environment, one might expect very limited information about 

the heat transfer rate (UA), the auto acceleration effect (viscosity term in reaction rate) 

and the reactor contents heat capacity(:L(miCpi)). It was found that the nonlinear 

controller is most sensitive to errors in the first two parameters, therefore discussion is 

limited to the heat transfer and auto acceleration. 
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Consider first the effect on the linearizing controller performance when an average 

value ofUA is used in the algorithm. It is assumed that all other parameters in the 

controller are known, or good estimates are available. Figure 5.8 shows the control when 

a constant value ofUA = 875 Btu/(°F hr) is used (the true value ranges from ~1400 to 

500 Btu/(°F hr)). The dashed lines show the limits for good control performance. 
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As Figure 5.8 shows, using an average value of heat transfer rate degrades controller 

performance. The temperature drops to 179 °F during the feed, and exceeds 181 °F at the 

end of the feed. 

The second parameter of interest is the auto-acceleration effect. An average value of 

four for J..L0·4 is used in the controller (the actual parameter varies between one and nine). 

Figure 5.9 shows the performance (note that UA is assumed exactly known for this plot): 
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Clearly the controller is very sensitive to mis-information about the auto-acceleration. 

Figure 5.10 shows the temperature control when average values ofboth UA and the 

auto-acceleration effect are used in the controller. Temperature regulation has severely 

degraded, and is in fact worse than that of a PID controller. 
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It should be noted that there is no integral action in the above simulations and the 

offset seen is due to process-model mismatch. To eliminate the offset, integral action can 

be implemented by modifying the error equation (discussed in section 5.2.1). The 

expression for the manipulated variable also changes to reflect the integral action: 

(5.37) 

(5.38) 
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The values for d1 and d2 are retained from the proportional-only nonlinear controller 

tuning. The best value of d3 is found by trial and error to be 0. 4. It was decided to 

implement the integral action when the feed starts~ having integral action during heatup 

causes heating to be reduced too early and lengthens the time of the batch. Windup is 

avoided by clamping the value of the integral term between limits: 

(5.39) 

The limits are calculated at each execution interval with equation (5.40): 

(5.40) 

Note that equation (5.40) is simply equation (5.38) rearranged and written for the 

Chylla Haase reactor. If the integral term exceeds the calculated limits, it is set to the 

respective limit value. Figure 5.11 is the controller performance for product one, batch 

one when average values ofUA and the auto-acceleration effect are used and integral 

action is implemented. 

As Figure 5. 11 shows, the integral action is unable to compensate for the process­

model mismatch. The temperature is deviating significantly from setpoint and the control 

is severely degraded from the case where all parameter values are known. 
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In summary, the performance of the nonlinear controller is presented for the case 

where all parameter values are known. It easily outperforms the well tuned PID. 

However, temperature control degrades substantially when only average values of select 

parameters are available. Integral action is unable to compensate sufficiently for the 

process/model mismatch. 



CHAPTER6 

NONLINEAR ADAPTIVE CONTROL 

6.1 INTRODUCTION 

The results of Chapter 5 highlight the need for good, on-line parameter estimates. An 

extended Kalman filter is applied in this chapter to provide the required estimates. In the 

first section, the theory ofKalman filtering is reviewed. Then, the details of the parameter 

updating are discussed, and the performance of the estimator is presented. Note that the 

estimation is only discussed in the context of Product One. The extension to Product Two 

is left as a discussion in Chapter 7. Finally, the extended Kalman filter is coupled with the 

nonlinear controller of Chapter 5, and the temperature control ofthe nonlinear adaptive 

controller is assessed. It is shown that the control provided by the combined 

estimation/control scheme is comparable to that of the nonlinear controller with all 

parameter values known for a Product One, batch one simulation. Robustness of the 

nonlinear adaptive controller to expected errors is presented at the end of this Chapter. 

6.2 EXTENDED KALMAN FILTER 

In this section, a brief review of the theory of Kalman Filtering is presented (Gagnon 

and MacGregor (1991), MacGregor (1986)). 

To apply the Kalman Filter, it is assumed that a state space model of the process is 

available: 
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(6.1) 

(6.2) 

where Xd is a vector of deterministic model states (for example, reactor temperature and 

jacket temperature). The measurements, y, are some function h of the states of the 

system. The measurement error (from sensors) is represented by v. Since the state 

equations are identical to those required by the nonlinear controller, a minimal amount of 

process modeling is required to apply the Kalman filter in conjunction with the controller 

from Chapter 5. In the extended Kalman filter, the unknown parameters are represented 

as stochastic states. Therefore, process equation (6.1) is augmented with equation (6.3): 

dxs 
-=-=a 
dt -

In the absence of any knowledge about the parameters, random walk behavior is 

generally assumed. In such a case, alpha is a white noise vector. 

(6.3) 

The Kalman filter may be visualized as two main parts. First, the process model 

(equations (6.1) and (6.3)) is integrated from time tk (last execution time) to time tk+I 

(current time), thus providing estimates of the deterministic and stochastic states at tk+ 1 

Second, the Kalman filter updates the state estimates (predicted by the model) based on 

the on-line measurements. In the simulations, the extended Kalman filter is implemented 

every minute, and provides updated parameter values to the nonlinear controller. Five 

steps are followed at each execution: 

1/ Integrate the process equations from tk to tk+( 
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k+l 

!k+llk = !klk + J f(x,u)dr 
k 

(6.4) 

where~ includes deterministic and stochastic states. The Runge-Kutta numerical 

integration algorithm is used. 

2/ Linearize the model equations about the predicted state values. Taylor series 

expansion is used to linearize the equations. Subsequent discretization results in 

equation (6.5): 

(6.5) 

where Xk+l includes deterministic and stochastic states. wk is a white noise vector 

with covariance matrix Rw. The matrix Rw is generally assumed to be diagonal, 

and its elements (particularly those associated with the stochastic states) are the 

main tuning factors of the extended Kalman filter. A comment about tuning is 

included below. 

3/ If necessary, linearize the measurement equation (6.2); 

vk is a white noise vector with a covariance matrix Rv. For a given sensor, the 

measurement error is usually well known. 

4/ Solve the Ricatti equations for the Kalman gain: 

(6.6) 

(6.7) 



51 Update the state and parameter estimates when new measurements, Yk+I, 

become available. For the Chylla Haase reactor, the measurement vector is [T 

Tjout]'; 
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(6.8) 

Before proceeding, a comment about the tuning is required. Each diagonal element 

in Rw is associated with a state or parameter. As indicated above, the elements in Rw 

associated with the stochastic states are the main tuning factors of the extended Kalman 

Filter. Initially, the value of an Rw element is selected to represent the amount the 

associated parameter is expected to change during the execution interval. Throughout the 

chapter, this is used as a guideline for characterizing the tuning of a given Kalman filter. 

The expected change in a state or parameter is roughly equal to 2cr. Therefore, an order 

of magnitude guideline for the value of the corresponding Rw element, crw2, is: 

a-w 2 ~ (expected change I 2) 2 (6.9) 

In the simulations in Chapter 6, a qualitative level (large, reasonable or small) is 

given to the Rw elements, based on the guideline of equation (6.9). The size ofthe Rw 

elements reflect the weight given to the measurements and that given to the model 

predictions (Wells, 1971). Increasing the size ofthe Rw values increases the Kalman gain 

thus placing more weight on the measurements and less on the model predictions. Very 

large values of crw2 effectively mask any good information that is in the process model by 

heavily emphasizing the measurements. Therefore, it is desirable to keep the Rw elements 

small in order to take advantage of the process model. A second advantage of keeping the 

crw 2 values small (particularly those associated with the stochastic parameters) is to 

moderate the updating. Large cr/ values can cause the updated parameters to change 
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significantly at each interval. Since the estimates of the unlmown parameters are used in 

the control algorithm, this type of behavior should be avoided for stability concerns. 

In order to assess the performance of the Kalman filter, the estimated parameters are 

compared to the true values. Of course, in practice, one may never know how well the 

Kalman Filter is estimating the actual parameters. The only true measure is how the 

combined estimation/controller is regulating temperature. However, comparing the 

estimated parameters to the true values is helpful for establishing guidelines for the 

successful application of the Kalman filter. 

Implementation issues are discussed in the next section. 

6.3 SELECTION OF UPDATED PARAMETERS 

The equations in the nonlinear controller contain several parameters that may not be 

known. However, the Kalman filter has limited degrees of freedom, and not all 

parameters can be updated. Recall the equations required for the nonlinear controller: 

where f..1 °'4 and ko are lumped together as f3 and henceforth referred to as the auto­

acceleration factor. To implement the nonlinear controller, values for all the process 

parameters are required. The Kalman filter will be considered for updating the time 

varying parameters whose values cannot be obtained by other means. Table 6.1 

(6.11) 

(6.12) 
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summarizes the process parameters, and the assumptions about their estimates. Note that 

values will be required for each polymer product. Appendix C outlines possible methods 

for obtaining values of the parameters assumed 'known'. 

Table 6.1: Summary oflnformation about Process Parameters 

Parameter Assumption 

:L(miCpi) known 

. known 
mm 

Cpm, Cpc known 

Tfeed known 

A known 

. known 
me 

IDe known 

e-aJT known* 

dHr known* 

UA1oss known 

p unknown 

I1m unknown 

u unknown 

Tamb known 

From Table 6.1, the parameters that require estimation are the auto acceleration 

factor (f3), the moles of monomer (nm) and the heat transfer coefficient (U). With respect 

to the items marked with asterisks, if estimates of e -aJT and dHr are not available, these two 

parameters can also be lumped into beta and estimated by the Kalman filter. 

Implementing the Kalman filter is discussed in the next section. 
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6.4 PARAMETERESTIMATION 

6.4.1 ESTIMATION OF AUTO ACCELERATION FACTOR 

One of the time varying parameters to be updated is the auto acceleration factor, B. 

Key ideas about the extended Kalman filter (EKF) are introduced in this section by 

presenting the estimation of beta. Building a priori knowledge into the extended Kalman 

filter is the focus of this section. The auto acceleration parameter is modeled as a random 

walk, a ramp and an exponential. It is seen that the Kalman filter can track the auto 

acceleration factor most effectively when it is represented as an exponential. The section 

highlights the importance of incorporating process structure into the Kalman filter. 

Initially when considering the rate of reaction parameters (B and nm), both were 

lumped into a single variable, Bnm. The Kalman filter equations include equations (6.11) 

and (6.12) for the deterministic states and a random walk model for the parameter, Bnm. It 

is assumed that the heat transfer coefficient is exactly known for these simulations. Note 

as well that the estimation is only run during the feed period. The nonlinear controller is 

regulating temperature during the batch independent of the EKF. The true process values 

are used in the controller for now (combined estimation and control is considered at the 

end of this Chapter). Figure 6.1 shows true (solid line) and updated (dotted line) values of 

Bnm for a Product One, batch one, summer simulation. No noise is added to the 

temperature measurements until the end of the chapter. 

It should be noted that the extended Kalman filter in Figure 6.1 has a very high value 

of crw 2 associated with Bnm. From the plot, the expected change in the true parameter 

value during one execution interval is about 18 units. Therefore 2cr ~ 18 for this 

parameter and the corresponding Rw element should be approximately 81 (from the 

guideline presented in the previous section). The Rw element corresponding to Bnm is set 

actually set to 2000 in Figure 6.1, two orders of magnitude higher. 
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FIGURE 6.1: ESTIMATION OF PRODUCT f3Ilm (Rw = DIAG{2, 2, 2000}) 

The shape of the parameter f3Ilm is causing problems for the Kalman filter for two 

reasons. First, it is not a random walk (as it is modeled). Second, the true f3I1m value 

changes very rapidly, making it difficult to track. This highlights the fact that the Kalman 

filter is ideally suited for slow, time varying parameters (if a random walk model is 

assumed). For these reasons, the auto acceleration and the moles of monomer will be 

treated separately. 

By considering the auto acceleration factor alone, the problem of a fast changing 

parameter is less severe. However, it varies exponentially, changing slowly at the 

beginning of the feed and more quickly near the end. The performance of the extended 

Kalman filter when estimating f3 is shown in Figure 6.2. In the estimation, beta is scaled 

by 100 so that its magnitude is on the same order as the temperatures. Even with a large 

value of crw2, the EKF has difficulty tracking f3. 
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Note that the auto acceleration factor is only estimated during the monomer feed. 
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For control purposes, this is the only time that an estimate of J3 is required: the moles of 

monomer (and hence the reaction rate) are zero otherwise and J3 does not appear in the 

nonlinear control equations. For the purpose of estimating the parameter, once the feed is 

stopped, the last estimate of J3 is retained. 

Models for unknown parameters are not restricted to random walks. A second 

alternative is to model the auto acceleration factor as a ramp. Therefore, both the slope 

and the level are updated as random walk variables. The extended Kalman filter equations 

are: 
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djJ 
dt =bo +wri 

(6.13) 
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FIGURE 6.3: ESTIMATION OF AUTO ACCELERATION MODELED AS A RAMP; 

RW= DIAG{2, 2, 50, 0.02} 

Parameter tracking when a ramp model is used is shown in Figure 6.3. Once again, 

the estimated auto acceleration factor is shown as a dotted line. The Kalman filter in 

Figure 6.3 has a 'reasonable' value of the Rw elements associated with the updated 

parameters. 

With reasonable crw 2 values and a ramp model, the Kalman Filter can track the auto­

acceleration parameter as well as it could with a high crw2 value and a random walk model. 
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However, the estimate is still lagging behind the true parameter and two parameters (the 

slope and the level) require updating. 

A third option is to model the auto acceleration factor as an exponential function of 

mass of monomer fed. The auto acceleration factor is represented in the state equations 

as: 

fJ = Po exp( ~ massfed) (6.14) 

The parameter ~ is updated as a random walk. The mass of monomer fed is used 

instead oftime so that any variation in the feedrate can be accounted for. First, note that 

to apply equation (6.14), an estimate of f3o is required. For the current simulations, the 

exact value of f30 when the estimation begins is assumed. The robustness of the extended 

Kalman filter to this assumption is discussed in a later section. Second, ~ is scaled so that 

its value is on the same order of magnitude as the temperature measurements. Without 

scaling, the estimate of the auto acceleration factor exhibits a sharp spike when the 

estimation begins. 

Figure 6.4 shows the performance of the extended Kalman Filter for a Product One, 

batch one simulation when the auto acceleration is modeled as an exponential. The value 

of crw2 associated with~ has a reasonable value (as per the guideline of equation (6.9)). 

As Figure 6.4 shows, the Kalman filter can more easily track the auto acceleration 

when it has correct information about the parameter's structure. In future applications, 

the auto acceleration is modeled as an exponential in the Kalman filter equations. 
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In summary, several different models for the auto acceleration factor have been 

attempted. It is seen that the exponential model for the auto-acceleration most closely 

represents the parameter's true behavior and this is reflected in the smaller (more 

desirable) crw2 value required to track~. Therefore, a priori knowledge about an unknown 

parameter is preferable for the successful implementation of the Kalman Filter. 

6.4.2 ESTIMATION OF MONOMER IN THE REACTOR 

In this section, the estimation of the moles of monomer in the reactor is considered. 

Due to observability constraints, only one of the moles of monomer and the auto 

acceleration factor can be updated by the extended Kalman filter. As a result, an on-line 
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mole balance is coupled with the EKF to provide an estimate ofthe moles of monomer. It 

is assumed that the heat transfer coefficient is known for simulations in this section. 

The main issue when estimating 11m and f3 individually is one of observability. In all 

molar and energy equations, the two terms appear as a product. Therefore, the individual 

parameters cannot be estimated separately by the Kalman filter. However, in the previous 

section, it was seen that the EKF performs poorly when trying to track the quickly 

changing product of f3nm. 

The solution is to build structure into the Kalman filter for the individual parameters, 

thus providing the Kalman filter with information about how the product of the two 

parameters changes. In the previous section, structure is included for the auto 

acceleration factor (f3) by modeling it as an exponential during the feed period. In this 

section, structure is included for the moles of monomer in the reactor in the form of a 

mole balance. 

While the moles of monomer cannot be estimated directly with the Kalman filter, a 

mole balance can be integrated on-line. The mole balance for the moles of monomer is 

given by equation (6.15): 

dnm = F - /)nA e-a!T 
dt m m 

(6.15) 

where the molar flow of monomer, Fm, can be calculated knowing the mass flow and an 

estimate of the molecular weight of the monomer. 

The mole balance is easily coupled with the Kalman Filter. Recall that integration of 

the process equations is the first step ofKalman filtering. The monomer mole balance is 

included with the reactor energy balances in this step. Therefore, the model equations are 

integrated to predict the reactor temperature, jacket temperature, moles of monomer and 

the stochastic state at tk+I· The Kalman filter then updates the temperatures and the 

stochastic state based on on-line measurements. The mole balance is not updated (i.e. 

there is no feedback for the moles of monomer). Recall that f3 is only estimated during the 
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monomer feed period. Likewise, the mole balance is integrated only if :rzm * o. The moles 

of monomer are set to zero otherwise (please refer to the discussion of monomer -starved 

conditions in Chapter 4). 

As one might expect, the openloop status of the monomer mole balance results in the 

estimate ofthe moles of monomer diverging from the true value as the batch proceeds. As 

a direct result, the estimate of the auto-acceleration factor (updated by the Kalman filter) 

also diverges. Figure 6.5 shows how the auto acceleration factor (f3) and the moles of 

monomer (nm) are tracked by the Kalman filter/on-line mass balance. The 'true' values of 

the parameters are solid lines and the estimated values are shown as dots. 

Reasonable values for the Rw elements are used for the simulation in Figure 6.5. It 

should be noted, however, that even with very tight tuning, the individual parameters J3 

and nm are not tracked closely. 

The results shown in Figure 6.5 may appear dismal at first. However, recall that the 

purpose of the extended Kalman filter is to provide estimates of unknown parameters to 

the controller. The auto-acceleration factor and the moles of monomer always appear as a 

product (the original source of problems). Therefore, the estimation ofthe product, not 

the individual components, is important for the controller. Figure 6.6 shows the estimated 

value of f3nm and the true value of this product. 

By breaking J3nm into components, and incorporating structure about the components 

into the estimation scheme, excellent tracking of the product results. Of particular interest 

is how well the value of f3nm is estimated in the first few minutes after the feed starts. This 

is important to keep the initial temperature overshoot to a minimum. It should be noted 

that there is very little process/model mismatch in the simulations in this section. The 

effect of error on the performance of the estimator is discussed at the end of Chapter 6. 
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FIGURE 6.5: ESTIMATING OF AUTO ACCELERATION FACTOR AND MOLES OF MONOMER; 

RW=DIAG{2, 2, 50} 
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FIGURE 6.6: ESTIMATION OF THE PRODUCT ~NM; RW=DIAG{2, 2, 50} 

In summary, an openloop, on-line mass balance is coupled with the extended Kalman 

filter to provide an estimate ofboth the moles of monomer and the auto acceleration 

factor. In fact, by providing structure for the individual components,~ and 11m, the 

product of the two, ~nm, is easily tracked by the Kalman Filter. This section re­

emphasizes the idea that a priori knowledge of the process is helpful to benefit from the 

Kalman Filter. 

6.4.3 ESTIMATION OF THE HEAT TRANSFER COEFFICIENT 

The final parameter that requires on-line estimation is the heat transfer coefficient. In 

this section, the selection of a model for the heat transfer coefficient is discussed. It is 

shown that an inappropriate model can introduce estimation problems. A reasonable 



model for the heat transfer coefficient is presented and its implementation is shown to 

yield good results. 

106 

Consistent with the conclusions of the previous sections, an appropriate model for 

the heat transfer parameter (U) is very important for the success of the extended Kalman 

Filter. In pre-heat mode, the value ofU is expected to be relatively constant. From a 

priori knowledge of polymerization processes, the heat transfer coefficient is expected to 

exponentially decrease during the feed (semi-batch mode). The change in U is due 

primarily to the increasing viscosity, and hence fouling, as the batch proceeds. Recall that 

the auto acceleration (f3) of the rate of reaction is also caused by the increasing viscosity. 

From this, equation (6.16) was attempted as a model for the heat transfer coefficient 

during the feed period: 

U = U0 -af3 

where f3 = f30exp(~*massfed). The parameter cr is modeled as a random walk and is 

updated on-line by the extended Kalman filter. Therefore, the EKF consists of: 

(6.16) 

11 Deterministic state equations for reactor temperature and jacket temperature; 

2/ The auto acceleration factor, f3, represented as an exponential in the state 

equations; the parameter ~ is modeled as a random walk and is updated by the 

Kalman filter; 

3/ On-line openloop mole balance to estimate the moles of monomer; 

4/ The heat transfer coefficient (U) is represented by equation (6.16) in state 

equations; the parameter cr is updated by the Kalman filter; 

In Figure 6.7, it is assumed that the initial value ofthe heat transfer coefficient is 

known (U0 will be treated later in this Chapter). The extended Kalman filter provides 

estimates of the heat transfer coefficient during the feed period. When the feed stops, the 

last estimate ofU is retained (unlike the estimate of f3, this value will be required for the 

nonlinear controller). 
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RW=DIAG{2, 2, 50, 0.1} 



Because of the selection of the model, a large value of the Rw element associated 

with the heat transfer coefficient is required to track the heat transfer coefficient. Even 

with a large crw 2 element, the EKF has difficulty tracking the heat transfer coefficient. 

When noise is added to the temperature measurements, and the estimates of the 

parameters used in the nonlinear controller, stability problems are encountered in the 

estimates of the heat transfer coefficient (Figure 6.8). 
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FIGURE 6.8: ESTIMATION OF U IN TiiE PRESENCE OF NOISE {MODEL ONE) 

Once again, this illustrates the need for appropriate models for the unknown 

parameters in the Kalman Filter. 
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After some trial and error, the final form of the model for the heat transfer coefficient 

(U) is arrived at: 

(6.17) 
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where m is the power to the agitator. By representing U as a function of the agitator 

power, equation (6.17) acknowledges that the heat transfer coefficient depends on the 

reactor contents viscosity. In a polymer processing environment, viscosity measurements 

are not readily available, however the a variable such as agitator power is. The two are 

directly related; as viscosity increases, so will the power supplied to the agitator. 

Depending on the system, variables other than agitator power may be used to infer 

viscosity. 

Since there is no expression for agitator power in the Chylla Haase system, equation 

(6.17) is modified, and the actual viscosity is used to represent the agitator power: 

Equation ( 6 .18) contains two unknown parameters, <1>3 and <1>4. However, an 

expression for <1>3 can be obtained by noting that at the end of the feed: 

Rearranging equation (6.19): 

Therefore, equation (6.18) becomes: 

U=U,~(U,~uA:r 

(6.18) 

(6.19) 

(6.20) 

(6.21) 
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Equation ( 6.21) describes how the heat transfer coefficient changes with time during 

the feed period. To implement it, initial and final values ofU and the final viscosity 

(agitator power) are required. The final viscosity should be the approximately same for 

every batch of polymer one, therefore an average value for the final viscosity (agitator 

power) is easily obtained from experience. The final heat transfer coefficient will not be 

the same for each batch. Prior to implementing the EKF, the value of Ur for each batch 

can be obtained by running an on-line energy balance at the end of each batch: 

(6.22) 

Since the temperature is held constant, and there is no heat released, the 

implementation of this energy balance is simple. It is assumed that good estimates of the 

parameters on the right hand side of equation (6.22) are available (Appendix C). It is seen 

that while Uris unique to each batch, the difference from batch to batch is not large. 

Therefore, an average value for the final heat transfer coefficient, U 1 , can be used in 

equation (6.21). 

Estimating the initial value of the heat transfer coefficient is more difficult. The value 

ofU0 can be estimated using an on-line energy balance during the heating period: 

(6.23) 

Implementing the on-line energy balance of equation (6.23) indicates that excellent 

estimates ofUo are possible when the manipulated variable, Tjm, sp, is at its maximum value. 

During this time, the reactor temperature is increasing at a constant rate, and accurate 

estimates of dT/dt are possible. After the manipulated variable comes off the upper 



bound, the reactor temperature behaves less predictably, and the estimate of the heat 

transfer coefficient deteriorates. Therefore, the last estimate ofUo while Tjm,sp is at its 

constraint is used in equation (6.21). 
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Unlike the final value of the heat transfer coefficient, Uo is significantly different from 

batch to batch. Therefore, an on-line energy balance for Uo is required for each batch. 

Note that if no process changes are expected, the on-line energy balance for Uo can 

eventually be replaced with a table of initial heat transfer values for each batch. 

Returning to the model of the heat transfer coefficient, only <1>4 remains unknown. A 

brief off-line study in a spreadsheet shows that a constant value of <1>4 adequately models 

the trajectory of the heat transfer coefficient for all batches of product one. Therefore, it 

is not necessary to update <1>4 on-line. Of course, one could proceed to model <1>4 as a 

random walk, and update it on-line via the extended Kalman filter. The same conclusion, 

<1>4 is constant, would be found. Eventually the Kalman filter (for <1>4) could be taken off­

line and replaced with the appropriate constant value. 

Equation (6.21) is coupled with the on-line energy balance for U0 (equation (6.23)) 

and implemented on the semi-batch reactor. Table 6.2 summarizes the parameter values 

that the user is required to supply to the estimation algorithm (values are give~ for 

Product One). The same parameters are required for Product Two, however they will 

have different values. 

Table 6.2: Summary ofRequired Parameter Values, Product One 

Parameter Value for Product One 

~0 4000 

Ur 48 Btu/hr ft? °F 

f.lf 193 cp 

<1>4 0.7 
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Figure 6.9 shows the estimation of the product, Pllm, and the heat transfer coefficient 

for a Product One, batch one, summer simulation. Some measurement noise ( o = 0. 04 °F) 

is included. 

As Figure 6.9 shows, the combination of the extended Kalman filter and off-line 

parameterization is successful in estimating the unknown process parameters. Similar 

performance is observed under batch five conditions. 

In summary, the estimation of the heat transfer coefficient has been discussed in this 

section. Once again, the importance of choosing an appropriate model is seen. With some 

modeling effort, the EKF can successfully estimate the required parameters. The next step 

is implementing the estimates of the process parameters in the nonlinear controller. This is 

discussed in the next section. 



~ 
...2 

¢:: 
":! 
§. -c ., . ., 
!:a ., 
0 
u ... 
~ 
"' a 

E!: 
i 
::I: 

E .a 

113 
180 

160 

... 
140 ··········· ············· ... 

·· .. .. 
120 .. . .. 

100 

80 

60 

40 
0 20 40 60 80 100 120 

Time (minutes) 

.. .· ..... · .... 
200 

150 

100 

50 

0~--~~------~----~----~~~--~----~ 
0 20 40 60 80 100 120 

Time (minutes) 

FIGURE 6.9: ESTIMATION OF f3NM AND Tim HEAT TRANSFER COEFFICIENT {MODEL TWO); 

RW=DIAG{2, 2, 50} 



114 

6.5 NONLINEAR ADAPTIVE CONTROL PERFORMANCE 

6.5.1 PERFORMANCE UNDER IDEAL CONDITIONS 

The goal of the estimation algorithm is to provide the required parameter estimates 

to the controller. Ultimately, the performance of the estimator is determined by the 

resulting temperature control. In this chapter, the nonlinear controller using the parameter 

estimates is presented for Product One. Integral action is included in the nonlinear 

controller. It is found that for the ideal case (summer, batch one), the nonlinear adaptive 

control is comparable to the nonlinear controller in which all parameters are known. 

Noise with a standard deviation of0.04 °F is added to the simulations in this section 

(note that noise of standard deviation of up to 0.5 °F was tested to ensure the robustness 

ofthe estimator, however 0.04 °F is considered representative of noise on filtered 

temperature measurements). Parameter estimates for the auto acceleration, moles of 

monomer and heat transfer coefficient are supplied to the nonlinear controller by the 

estimation algorithm during the feed. The on-line energy balance (discussed in the 

previous section) provides an estimate ofU to the nonlinear controller during heat up as 

well as providing a value ofUo for the heat transfer model. Figure 6.10 shows the 

temperature control for a summer, batch one, Product One simulation: 
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The nonlinear adaptive control performance is comparable to that of the nonlinear 

controller in which all parameter values are known. Therefore, the estimation is not 

degrading control from the best possible case. The nonlinear adaptive controller however, 

also has problems maintaining the temperature within one degree of setpoint when the 

feed stops. From the discussion in Chapter 5, this can be fixed by decreasing the 

execution interval of the controller, or by adjusting the time that the feed stops by a half 

minute. With respect to the last option, it is unlikely that the feed will be stopped after 

exactly 70.00 minutes for every batch. In the true processing environment, it is expected 

that some batches will have better temperature regulation when the feed stops because of 

this randomness. Figure 6.10 shows the worst case possible, where almost a full minute 

has passed before the controller records a feed flow measurement and knows that the feed 

has stopped. 

In summary, it is seen that the nonlinear adaptive controller provides good 

temperature regulation for the situation considered in this section. 

6.5.2 ROBUSTNESS OF THE NONLINEAR ADAPTIVE CONTROLLER 

In this section, the robustness of the nonlinear adaptive controller is evaluated for 

two different types of errors. First, the controller is implemented with errors in the initial 

parameter guesses (see Table 6.2) and it is found that the nonlinear adaptive controller is 

robust to reasonable uncertainties in these variables. Second, the effect of unmodeled 

events, such as changes in process parameters listed Table 6.1, is evaluated. It is shown 

that the Extended Kalman Filter provides the nonlinear controller with an added 

robustness feature. 

For the batch simulation in Figure 6.10, good values ofUo, U 1 , <1>4 and 13o are 

assumed. It is important to understand the robustness ofthe nonlinear adaptive controller 

to errors in these values. The regulation of temperature is considered as a measure of the 

robustness of the estimation/control algorithm. A short robustness study is undertaken 
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and Table 6.3 summarizes the simulations. Over- and underestimated values of the initial 

parameters are implemented in the estimation, and the resulting control assessed. Only 

Product one, batch one, summer conditions are considered. 

Table 6.3: Robustness Simulations for Product One, batch one, summer Conditions 

Simulation Uo(Btulhr ft2 F) Ur (Btulhr ft2 F) ~0 <1>4 

nominal value 140 48 4000 0.7 

high Uo 180 (+28%) 48 4000 0.7 

lowUo 100 (-28%) 48 4000 0.7 

high Ur 140 60 (+25%) 4000 0.7 

lowUr 140 35 (-25%) 4000 0.7 

high ~0 140 48 8000 (+100%) 0.7 

low ~o 140 48 1000(-75%) 0.7 

high <1>4 140 48 4000 0.5 (-28%) 

low<j>4 140 48 4000 0.9 (+28%) 

An error in Uo represents a situation where the initial on-line energy balance is 

incorrect. The other three parameters are actually specified by the user. The error in ~0 is 

tested most rigorously, as it is expected that the user has very little information about the 

auto acceleration factor. 

In the interest ofbrevity, only two representative simulations from Table 6.3 are 

shown. The nonlinear adaptive controller is remarkably robust to the selected errors. 

Figure 6.11 shows the temperature control when the initial value ofthe heat transfer 

coefficient is overestimated. The nonlinear adaptive controller with the nominal U0 value 

is shown as a dotted line. 

Figure 6.11 represents a situation in which the controller believes it has more heat 

transfer ability that it actually does. This is of particular concern for exothermic reactors 

and it could result in a case where the reaction runs away. For the semi-batch reactor, 
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good temperature control is maintained despite the error in U0. In fact, it appears that 

better control results when the feed is stopped. However the improvement is actually due 

to the fact that the feed stops at 84.8 minutes, only 0.2 minutes before the controller's 

next execution. 
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Figure 6.12 shows the batch run in which the user underestimates 13o. The 

temperature overshoots the setpoint by 1.5 degrees and is slow to return to the desired 

value. Once again, the nonlinear adaptive controller with the nominal value of 13o is shown 

as a dotted line. 

Despite the degradation in control, the system remains stable, which is of primary 

concern. Since the auto acceleration factor is updated by the Kalman filter, a good initial 



guess of ~o can be iteratively obtained with the following procedure: 

1/ Specify an initial guess of ~o and running the extended Kalman filter off-line 

during a batch; 

2/ Observe the value of the auto acceleration predicted by the estimation during 

the batch; 

3/ Specify a 'better' guess of ~o for the next batch and repeat the process; 

The above procedure will eventually result in a good estimate of ~o. 
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The second type of process/model mismatch considered relates to unknown or 

unmodeled events occurring in the process. An example would be unknown changes in 

the variables in listed Table 6.1. Recall that many of these parameter values were assumed 

known and/or constant. It is important that the nonlinear adaptive controller be able to 

handle these situations. 
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For brevity, only one simulation is shown in this section, however several different 

cases were tested. In order to evaluate the robustness of the nonlinear adaptive controller, 

the monomer specific heat, Cpm, is modeled in the process as a drifting variable with an 

initial value of0.4. The model in the nonlinear controller and the Kalman Filter retains a 

constant value of0.4. Figure 6.13 shows the drifting process variable Cpm: 
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FIGURE 6.13: VALUE OF MON01-1ER SPECIFIC HEAT IN PROCESS EQUATIONS 

The performance of the nonlinear adaptive controller is shown in Figure 6.14. The 

estimation of the product J3nm is shown below the temperature plot. 
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Despite the significant and unknown variations in Cpm, the nonlinear controller 

provides good temperature regulation. The robustness of the controller is a direct result 

of the Extended Kalman Filter. As Figure 6.13 shows, the estimated value of f3nm (dotted 

line) slowly departs from the true value of the parameter (solid line). In order to 

compensate for the model error introduced by the drifting Cpm value, the EKF decreases 

the estimate of f311m. That is, the error in the Cpm value (physical meaning: the feed is 

providing more cooling to the reactor contents) can be effectively represented in the 

model equations as a lower f311m value (physical meaning: less heat released due to 

reaction). Any process/model mismatch which can be interpreted as a change in the heat 

released falls into a broad class of error that will be handled by the EKF in this manner. 

Therefore, the Extended Kalman Filter is providing a flexible robustness feature to the 

nonlinear controller. 

In summary, the nonlinear controller using parameter estimates has been 

implemented in this chapter. It is seen that the nonlinear adaptive controller provides 

temperature control that is comparable to that of the nonlinear controller with all 

parameters exactly known. Several robustness studies are also presented. It is found that 

the performance of adaptive controller is robust to reasonable uncertainties in initial 

estimates of f3o, Uo, <1>4 or Ur. Finally, it is seen that the Extended Kalman Filter improves 

the robustness of the nonlinear controller for a general class of process/model mismatch. 



CHAPTER7 

COMPARISON OF CONTROL ALGORITHMS 

7.1 INTRODUCTION 

In this chapter, three of the control algorithms developed in the thesis are compared: 

• PID algorithm; 

• PID with feedforward compensation for heat released and feed stoppage; 

• Nonlinear Adaptive controller; 

The following five situations are presented: performance under ideal conditions 

(summer, batch one, product one), effect of fouling (batch to batch variation), effect of 

ambient conditions (summer/winter), process/model mismatch, and extension to product 

two. These situations are suggested in Chylla and Haase (1993) for testing controllers for 

robustness. 

7.2 PERFORMANCE UNDER IDEAL CONDITIONS 

Ideal conditions for the controllers are assumed to be Product·one, summer, batch 

one simulations. These simulations are shown in previous chapters and are repeated here 

to compare the controllers. Noise (cr = 0.04 °F) is added to all simulations in this chapter. 

Figure 7.1 shows the performance of the three controllers. The well tuned PID is 

shown as dash-dot lines, the PID with feedforward compensation plots with dots and the 

nonlinear adaptive controller is shown as a solid line. The ± 1 °F limits are also plotted. 
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Only the PID with feedforward compensation maintains the reactor temperature 

within the required bounds. The information about the heat released helps this controller 

minimize the initial temperature overshoot, however the temperature slowly moves off its 

setpoint near the end of the feed. The well tuned PID exhibits the same behavior around 

80 minutes. The likely cause of this can be related to the process information incorporated 

in the PID algorithms: neither knows about the decreasing heat transfer coefficient. Both 

the PID class controllers are relying on feedback to correct the temperature deviation 

introduced by falling heat transfer ability. The nonlinear adaptive controller does not 

exhibit a control problem at the end of the feed, and it does have information about the 

decreasing heat transfer coefficient. A model for U provides the nonlinear adaptive 

controller with a form offeedforward control for this 'disturbance'. 



From Figure 7.1, it is not clear which controller, the nonlinear adaptive or the PID 

with feedforward action, provides superior control. The PID controller maintains the 

temperature between 179 °F and 181 °F at all times. However, the nonlinear adaptive 

algorithm keeps the temperature closest to the setpoint (180 °F) overall, and a shorter 

control interval would eliminate the excursion at the end of the monomer feed. 

Ultimately, the effect that each temperature trajectory has on polymer quality will 

determine the superior controller. 

7.3 EFFECT OF FOULING 

125 

In this section, the robustness of the controllers to fouling is presented. Each of the 

algorithms is applied to a Product One, batch five, summer simulation. Tuning from the 

previous section (summer, batch one) is used. Noise is present in all simulations. 

Figure 7.2 shows the performance of the three controllers - well tuned PID (dash­

dot), PID with feedforward compensation (dot) and nonlinear adaptive (solid). Once 

again, the limits of 181 °F and 179 °F are shown. 

The PID algorithms show a serious degradation in control. Both allow the reactor 

temperature to overshoot the setpoint by 6 °F. The nonlinear adaptive controller is very 

robust to different batches, and shows little change from the summer, batch one 

simulation. 
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Of course, the robustness of the nonlinear adaptive controller is a direct result of the 

information built into its structure. Recall that this algorithm has an general on-line energy 

balance to provide it with an estimate of the initial heat transfer coefficient (Uo) during 

heatup. Therefore, it is aware of how the heat transfer varies from batch to batch. The 

same type of information may be given to the PID class controllers by having different 

tuning for each batch. Figure 7.3 shows the performance of the well tuned PID for a 

batch five, summer simulation when the controller has been tuned for batch five. The 

temperature control of the well tuned PID for a batch one simulation is shown as a dotted 

line for reference. 



127 

185r---------------~--------------.---------------. 

180 _._ ..... -· 
iZ' 
~ 

e 
::l 
~ 
:;; 
c.. = ~ 175 
.... 
0 
t) 

"" ... 
t::r::: 

170 

16SL---~----------~--------------~--------------~ 

0 50 100 150 

Time (minutes) 

FIGURE 7.3: WELL TUNED PID Willi TuNING FOR BATCH FIVE 

Figure 7.3 shows that the performance of the PID class controllers is consistent from 

batch to batch if different tuning is implemented for each batch. 

For a process with many batches, finding new tuning parameters for each new 

situation can be very time consuming. In such a case, the nonlinear adaptive controller 

becomes very appealing. Its structure changes with the values of the process parameters 

such as the heat transfer coefficient, in order to provide the same closed loop response 

(the desired error trajectory) when the plant model changes. In this section, the plant 

model changes as a result of different levels of fouling. It should be noted that if an 

average value ofUo is implemented in the adaptation algorithm, a degradation of control 

would undoubtedly be observed in the nonlinear adaptive controller. 

In summary, the performance of the three controllers for batch five conditions has 

been shown. It is seen that the nonlinear adaptive controller is more robust to changes in 
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the level of fouling. This is a direct result of the information included in its structure about 

the initial heat transfer coefficient. The PID class controllers tuned for ideal conditions 

exhibit poor control for batch five runs. The control performance can be improved by 

retuning the PID algorithms for each batch. 

7.4 EFFECT OF AMBIENT CONDITIONS 

In this section, the robustness of the three controllers to changing ambient conditions 

is tested. Simulations for product one, batch one, winter conditions are considered. 

In winter, the ambient temperature is lower, and this affects the system in two ways. 

First, heat loss from the reactor is larger. Second, the monomer feed is cooler when 

entering the reactor in winter. Figure 7.4 shows the performance of the three controllers 

for a Product One, batch one, winter simulation. 
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Once again, the nonlinear adaptive controller shows excellent robustness to changing 

ambient conditions. While the PID with feedforward compensation is able to maintain the 

reactor temperature within ± 1 °F, is has problems quickly heating the reactor contents. 

This could easily be amended, however, ~y requiring that the manipulated variable Tjm,sp be 

kept at its upper bound until a specified temperature (one degree before setpoint for 

example). 

The robustness of the nonlinear adaptive controller is once again due to the 

information included in its structure. The parameter T amb appears in the process model 

used in the controller. Therefore, different values ofT amb change the structure of the 

nonlinear adaptive controller so that the desired closed loop response is achieved. 

In summary, the nonlinear adaptive controller is more robust to changing ambient 

conditions than the PID class controllers (in their current form). 

7.5 EFFECT OF PROCESS/MODEL MISMATCH 

7.5.1 RANDOM VARIATIONS IN REACTION RATE 

Chylla and Haase (1993) include a random factor, i, that multiplies the rate of 

reaction. The value of 'i' ranges between 1.2 and 0.8. This is an attempt to model the 

batch to batch variations in the reaction rate due to feed impurities. In previous 

simulations, 'i' was set to one. In this section, simulations with i = 1.2 and i = 0.8 are 

considered. It is seen that all three controllers are robust to unknown changes in the rate 

of reaction. 

When 'i' is equal to 1.2, the rate of reaction is described by equation (7 .1): 

R = 12pe-a/T n 
p • m (7.1) 



The control algorithms are not modified to account for this change. Figure 7. 5 

shows the performance of the three controllers for a Product One, batch one, summer 

simulation with 'i' set to 1.2: 
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Very little difference is seen in the control under these circumstances, as compared to 

an 'ideal' batch. The reason for this is simple. Although Rp includes a factor of 1.2, the 

rate of reaction (and therefore the heat released) does not increase. A higher rate of 

reaction results in the monomer being consumed more quickly. Therefore, the moles of 

monomer, nm, in the s system is lower. For the Chylla Haase semi-batch reactor, the 

factor of 1.2 is almost exactly balanced by a decrease in monomer. The rate of reaction 

(and the heat released) in Figure 7.5 is very close to that in Figure 7.1 (ideal conditions). 
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7.5.2 CHANGES IN JACKET DYNAMICS 

Chylla and Haase (1993) also indicated that the jacket dynamics change from batch 

to batch. Equation (7 .2) models the coolant recirculation loop (note that this equation is 

not included in the nonlinear controller). 

(7.2) 

where Kj is the heating/cooling process gain and is a function of the slave controller 

output. Chylla and Haase state that changes of 25% are possible in the time constants and 

gains. In this section, a change in the time constant ( 'tj) of 50% is considered. 

The nominal value of the time constant is 0.67 minutes. Figure 7.6 shows the control 

performance with the jacket time constant equal to one minute. 
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Once again, very little deviation from the ideal situation is seen. While the time 

constant of the jacket dynamics has changed, it is well within the bounds of stable control 

for the tuning selected. As well, even with a 50% increase, the jacket dynamics are much 

faster than the process (reactor) response times. 

In summary, it is seen that all three controllers are robust to the expected process 

variations suggested by Chylla and Haase (1993). 

7.6 MULTIPLE PRODUCT CONSIDERATIONS 

7.6.1 EXTENSIONTOPRODUCTTWO 

The primary concern with the second product is the increase in information required. 

Two issues are addressed in this section: 

• Tuning 

• Process Parameters 

For the PID class controllers (PID and PID with feedforward compensation), there­

tuning presents the largest barrier for multiple product systems. For each new product, 

new tuning is required for good performance. Well tuned controllers are the result of 

numerous time consuming trial and error batches. For the Chylla Haase reactor, separate 

PID tuning factors are required for each batch of each product, for a total of ten sets of 

tuning rules for only two products. For the feedforward algorithm, transfer functions for 

the heat released and the feed stop must be derived for each product. The on-line energy 

balance for Qr can be implemented in the same form regardless of the product. 

The nonlinear adaptive controller has advantages over the PID controllers because of 

its mechanistic model based approach. A desired closed loop trajectory can be specified 

for each product if necessary (for the Chylla Haase reactor, values of d~, d2 and d3 for 

product one also give good control for product two). The controller structure changes 

automatically in response to different on-line measurements and values of the process 



parameters. At most, for a two product reactor, two sets of tuning (two error 

trajectories) will require specification. 
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The second point of interest is the process parameters. For the three controllers, 

Table 7.1 summarizes the process parameters that the algorithm requires to calculate the 

manipulated variable output. A value for each process parameter is required for each 

product: 

Table 7.1: Summary of Process Parameters 

Controller Process Parameters Required 

PID -
PID with Feedforward . 

Uest, A, <;,zn, mm, 2:(mi<;n), Treec~ 
Compensation 

where Uest is parameterized off-line 

Nonlinear Adaptive Controller 
U, A, <;,m, ;,m, :~XIlli<;n), Tfeed, e~, 

. 
L\It, IIlc, me' Cp:, f3, nm, UAtoss 

where U, f3, nm are updated on-line 

(approximate shapes must be known) 

Since U, f3 and Dm are updated on-line, some knowledge of how these parameters are 

expected to change is needed. Clearly the nonlinear controller requires far more process 

knowledge, and more modeling effort to implement. The payoff is in its more general 

nature, once the initial modeling is complete. 

Figure 7. 7 shows a simulation for Product Two, batch one, summer conditions. Only 

the nonlinear adaptive controller is able to maintain the temperature within the bounds of 

good control for Product Two. 

Only the first feed period is shown, due to the process problems noted in Chapter 3. 

Both the PID class controllers have been tuned for Product Two, batch one, summer 
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conditions. It should be noted that the nonlinear adaptive controller is straightforward to 

implement for two reasons: 

11 the form of the kinetics is the same for the two products; therefore, the same 

model for Rp is implemented; 

2/ the parameters U and f3 in product one and product two change in the same 

manner. Therefore, the models from Product One adequately represent the 

parameter behavior when producing polymer two. 

If the second point is not valid, different models will need to be formulated for the 

changing parameters in each Product. 
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FIGURE 7. 7: PERFORMANCE OF CONTROLLERS FOR PRODUCT TWO, BATCH ONE 

In summary, Product Two considerations have been discussed. 
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7.6.2 MULTIPLE FEED PERIODS 

In the recipe for product two calls for two feed periods. Due to process equipment 

limitations, only one is shown in the product two simulation. The existence of multiple 

feed periods introduces further complications for all the controllers. A brief discussion for 

each algorithm is included below. 

For the PID feedback controllers, it is expected that new tuning rules will not be 

required for each feed period. However, the implemented tuning must give good control 

for both feeds, at the expense of giving better control for each individual period. 

Therefore, it is expected that the PID feedback algorithms will show a degradation of 

control. 

The feedforward algorithm may need to be re-tuned for the heat released in each feed 

period and for the disturbance of each feed stop. Therefore, for two feed periods, four 

separate transfer functions may be required, depending on the flowrate and monomer type 

of each feed. 

The nonlinear controller handles different feed periods easily because of its general 

nature. The estimation algorithm, however, may require specialization. If the updated 

parameters change in the same manner in each feed period, the estimation algorithm 

presented in the thesis will perform well. However, if the updated parameters exhibit 

different behavior during different feed periods, new models are required. This type of 

situation reduces the general nature of the nonlinear adaptive controller. Regardless of the 

models, the estimation will need to be reset at the beginning of each new feed. For the 

most part, this can be done by setting the initial parameter values (for example Po) to the 

last estimated value (estimated p from the last feed period). 

In summary, a brief discussion has raised some of the issues associated with multiple 

feed periods. 



CHAPTERS 

SUMMARY 

The temperature control of an 'industrial challenge' semi-batch reactor has been 

considered. Solutions evaluated include a well tuned PID, an adaptive PID, a PID with 

feedforward, a nonlinear controller and a nonlinear adaptive controller. Some of the key 

results are summarized below: 

• in the family ofPID controllers, the PID with feedforward compensation provides the 

best temperature control; 

• the nonlinear controller with all parameters known outperforms the PID with 

feedforward compensation; 

• using constant, average values for time-varying parameters in the nonlinear controller 

results in very poor control; this illustrates the need for precise process knowledge to 

achieve benefits from nonlinear control; 

• some 'knowledge about what you don't know' is required for good performance of 

the extended Kalman filter: models for the unknown parameters must be chosen 

intelligently; 

• the nonlinear adaptive controller outperforms the PID with feedforward compensation; 

it is comparable to the nonlinear controller with all parameters known (estimation does 

not degrade control); 

• the nonlinear adaptive controller gives good control performance for a range of 

operating conditions. The PID class controllers require retuning in order to provide 

consistent temperature control. 
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For systems in which one set of operating conditions is consistently repeated, 

excellent improvements in control are possible with a PID class controller. Recall that for 

Product One, batch one conditions, the PID with feedforward provided acceptable control 

with significantly less process information that the nonlinear adaptive controller. Under 

these circumstances, there may be little incentive (or need) to apply a complex, model 

based controller. 

However, for multi-batch, multi-product systems, the nonlinear adaptive controller 

shows more promise. In such situations, controllers such as the PID with feedforward 

compensation require retuning for each case. Empirical model based controllers would 

require model identification for each situation. The nonlinear adaptive controller 

structure, however, is automatically modified by changing process conditions to achieve a 

specific closed loop response. 
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APPENDIX A 

CORRECTIONS AND CLARIFICATIONS 

FOR THE SEMI-BATCH REACTOR 

A.l ENERGY BALANCE FOR THE SEMI-BATCH REACTOR 

In Chylla and Haase(1993), an error was discovered in the derivation of the energy 

balance for the semi-batch reactor. The correct form is derived here and is used to 

simulate the behavior ofthe system. Notes from Crowe (1995), Marlin (1995) and Smith 

and Van Ness (1987) are used as a basis. Notation for this system may be found in 

Appendix C. 

From Crowe (1995), Marlin (1995), the energy balance of the system may be written 

as: 

where: Ui =specific internal energy of component I (energy/mass) 

Q = rate of heat addition/loss to system (energy/time) 

W = rate of doing work on system (energy/time) 

The work may be divided into components: 

(A.l) 



Flow Work (due to stream entering reactor only): 

where Pis the pressure and v the volumetric flow (volume/time). 

Expansion Work: 

dV 
W=-P-

e dt 
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(A.2) 

(A.3) 

The remaining work done on the system is lumped into Wr. Therefore the total work 

is given by: 

(A.4) 

Substituting equations (A.2) and (A.3) into (A. I) and assuming that Wr is negligible: 

(A.5) 

Noting that specific enthalpy may be written as: 

~ 
h. =u. +-~ 

I I Pi 
(A.6) 
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Replacing Ui in equation (A5) with (A6) gives: 

(A.7) 

and: 

(A.8) 

In equation (A.8), it is assumed that the pressure of each of the components is equal 

and has a value P. 

Assuming a constant system pressure and rewriting equation (A.8) in terms of mass 

instead of volume: 

(A.9) 

The left hand side of equation (A.9) may be expanded: 

(AIO) 

Using the chain rule for each component: 



d(m;h;) dh; + h dm; 
=m- -

dt idt idt 

Noting, from Smith and Van Ness (1987): 

Therefore, equation {All) becomes: 

dh. 
cpi = d; 
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{All) 

{Al2) 

(A13) 

Substituting (A13) into {AlO), the left hand side of equation (A9) may therefore be 

written: 

{Al4) 

Incorporating mass balances for the monomer and the solids (polymer): 

dm 0 

dtm = mm- RpMWm {Al5) 

{Al6) 



dmw 
-=0 

dt 

Noting that for a constant heat capacity value (Smith and Van Ness): 
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(A.17) 

(A.18) 

The reference temperature is a temperature at which the enthalpy of the component 

is known. Substituting equations (A. IS)- (A.I8) into (A.14): 

(A.19) 

Replacing the left hand side of equation (A.9) with (A.19): 

(A.20) 

Expanding and rearranging: 
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(A.21) 

Canceling terms and rearranging again: 

(A.22) 

Equation (A.22) still contains enthalpy tenns (hm and hs). However, noting that the 

difference in enthalpy between the reactants (monomer) and products (solids) is the heat 

of reaction: 

(A.23) 

where the units of ( -Mlr) are energy/mass. 

As well, the heat to the reactor, Q, can be broken into its components, resulting in: 

dT • I 
L(miCpi) dt = mm Cpm(Tfeed -1) +RpMWm(-Mfr) Tref +RpMWm(Cpm- cps)(T- T,.ef) 

- UA(T- ~out)- UA~oss(T- Tamb) 

(A.24) 

Note that in equation (A.24), the jacket is assumed to be well mixed. Therefore, the 

jacket temperature can be represented by Tjout in the expression for Q. This assumption is 

valid due to the small temperature difference between Tjin and Tjout (MacGregor, 1986). 



The jacket energy balance in Chylla and Haase (1993) is also modified to included the 

same expression for Q (the original expression represented the jacket temperature as 

Tjavg). The modifications were made in order to maintain consistency with the author's 

implicit assumption of well mixed behavior in the jacket energy balance (where the 

enthalpy of the jacket contents is expressed as a function ofTjout). It should be pointed 

out that the changes to the expression Q do not (noticeably) affect the results, again 

because of the small temperature difference between Tjin and Tjout· 

Finally, the heat of reaction at T can be expressed as: 
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(A.25) 

The final form of the energy equation is: 

dT • 
L(miCpi)dt = mm cpm(Tfeed- T) +RpMWm(-M!JT-UA(T- ~·out) -UAlossCT- Tamh) 

(A.26) 

Equation (A.26) is used in the matlab files to simulate the semi-batch reactor 

behavior. In the Chylla Haase reactor, ( -Mlr) is given in units of energy/mole therefore 

the monomer molecular weight is not included in the simulation. Note also that in the 

process simulation, temperature sensor dynamics are assumed negligible. 

A.2 IMPLEMENTATION OF SLAVE CONTROLLER 

In Chylla and Haase (1993), the following equation describes the split range 

controller for heating and cooling: 
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0 ~ c(t) ~ 49: cooling 

50: no heating or cooling (A.27) 

51~ c(t) ~ 100: heating 

From equation (A.27), the controller output is not specified between 49 and 50, and 

between 50 and 51. The equation that is actually implemented is: 

0 ~ c(t) < 50: cooling 

50: no heating or cooling (A.28) 

50 < c(t) ~ 100: heating 

A.3 COOLANT RECIRCULATION LOOP 

Figure 1.1 presents a schematic of the process equipment and control system that 

differs slightly from Chylla and Haase (1993). In the original publication, it is stated that 

the dump value is manipulated for cooling. The cooling valve is adjusted by a pressure 

regulator to exactly compensate for the volume of water leaving the coolant recirculation 

loop. Steam is injected directly into the loop to provide heating. 

Unfortunately, the recirculation loop does not material balance and no allowance for 

the increase in volume (and hence pressure) of the system is included in the model 

equations. A more likely setup (and one corresponding to the published equations) is 

presented in Figure 1.1. In this figure, the slave controller manipulates the cold water and 

steam valves directly. The dump valve is adjusted by a pressure regulator and removes 

coolant when either the cold water or the steam is being injected into the loop. 



APPENDIXB 

NOTATION 

Names and units of variables referred to during the thesis are included in this 
appendix. 

mm: Mass of monomer in reactor (lb) 
mw: Mass ofwater in reactor (lb) 
ms: Mass of polymer (solids) in the reactor (lb) 
Illc: Mass of coolant in jacket (lb) 
Cpm: Specific heat of monomer (Btu/lb °F) 
Cpw: Specific heat ofwater (Btullb °F) 
Cps: Specific heat of polymer (Btullb °F) 
Cpc: Specific heat of coolant (Btu/lb °F) 
T: Reactor temperature (°F) 
Tjout: Jacket outlet temperature (°F) 
Tjin: Jacket inlet temperature (°F) 
Tamb: Ambient temperature (°F) 
Treed: Temperature of feed (equal to ambient temperature) (°F) 
T rer: Reference temperature eF) 
U: Overall heat transfer coefficient (Btu/(ft? °F hr) 
A: Heat transfer area ( ft2) · 

ko: Pre-exponential factor (min"1) 

nm: Moles of monomer in reactor (lbmol) 
J..L: Viscosity of reactor contents ( cP) 
a.: Kinetic constant (activation energy/R) eF) 
(-MI.): Heat of reaction (Btullbmol) 
Rp: rate of reaction (lbmol/min) 
MWm: Molecular weight of monomer (lb/lbmol) 
h: Enthalpy (Btullb) 
UA,oss: Heat loss coefficient (Btu/°F) . 
mm: Monomer feedrate (lb/min) . 
me : Coolant flow (lb/min) 



t: time (min) 
Qr: Heat released due to reaction (Btu/min) 

SUBSCRIPTS: 

m: monomer 
w: water 
s: polymer (solids) 
c: coolant 
sp: setpoint 
op: operating point 

GENERAL NOTATION: 

~: vector of states 
u: input 
y: measurement (Kalman filter) or controlled variable (nonlinear control) 
i : time derivative ( dxl dt) 
x : second time derivative (d2x!de) 
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APPENDIXC 

OBTAINING VALUES FOR REQUIRED PROCESS 

PARAMETERS 

Although some of the process parameters may not be currently known for a process, 

it is possible to get good estimates of the values if some simple research is conducted and 

common sense applied. This section outlines some methods that could be used to get 

quick estimates of the unknown parameters. 

:L(mi<;n) 

For this parameter, both specific heat data and mass information is required. One 

option for evaluating this expression is to consider the initial and final values. Initially, 

there is only water and polymer, according to the recipe: 

The mass of water and polymer are known because the quantities are specified by the 

recipe. The specific heat of water can be found in standard property books. The specific 

heat of the polymer may be known from product specifications, or a good estimate can be 

made using water and a few other typical compounds as references. At the end of the 

batch, there is only water and polymer again: 
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The mass of water is the same since only pure monomer is fed to the reactor. The 

final mass of polymer is the sum of the initial mass of polymer and the mass of monomer 

fed (assuming all monomer is reacted). Knowing how long the monomer is typically fed 

and the feedrate, the mass of at the end of the batch can be estimated. The value of 

2:(miCpi) during the batch can be interpolated between the initial and final values. For the 

Chylla Haase system, a linear interpolation gives good estimates. The value can be 

parameterized as a function of mass of monomer fed, or a lookup table can be 

programmed into the controller. 

The feedrate of monomer should be associated with a flow measurement. If it is not, 

the recipe value can be inserted into the process model when the feed is 'on' . 

The monomer specific heat may be known from supplier data or physical tables. It 

could also be estimated based on the specific heat of water and other reference 

compounds. 

Tfecd 

The temperature of the feed should be associated with a temperature measurement. 

A 

The heat transfer area can be calculated with a level measurement and the dimensions 

of the reactor (these dimensions should be available design knowledge). 

The feedrate of the coolant to the jacket should be associated with a flow measurement. 



Since the coolant is water, this value is easily obtained. 

The mass of coolant in the jacket should be available design knowledge. 

e-atr 

The kinetic parameter a. is required to evaluate the exponential. It is {activation 

energy of the reaction/R} in the appropriate units. It may be available in proprietary 

kinetic information, or an rough estimate could be possible from reference reactions. 

The heat of reaction may also be available in proprietary kinetic data, or a rough 

estimate may be possible using other reactions (whose data is available) as a reference. 

U~oss 
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A rough estimate of this value is usually available from experience. However, once 

again, a literature survey may uncover guidelines for specifying a value based on reactor 

size or volume. 

Tamb 

This value may be associated with a temperature measurement, or average values for 

a season or time of day may be summarized in a look up table in the controller. 




