
'OPTIPAC' - OPTIMIZATION IN ENGINEERING DESIGN

'OPTIPAC'

A USER-ORIENTED COMPUTER SYSTEM

FOR

OPTIMIZATION IN ENGINEERING DESIGN

By

JOHN FRANKLIN McDONALD, B. ENG.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Engineering

McMaster University

(May) 1970

MASTER OF ENGINEERING (1970) McMASTER UNIVERSITY
(Mechanical Design) Hamilton, Ontario.

TITLE: OPTIPAC: A User-Oriented Computer System for
Optimization in Engineering Design

AUTHOR: John Franklin McDonald, B.Eng. (McGill University)

SUPERVISOR: Professor J.N. Siddall

NU~illER OF PAGES: v, 127

SCOPE ru~D CONTENTS:

A description is given of the multi-technique nonlinear

optindzation system called OPTIPAC.

The overall organization of the program is outlined and the

significant features of each of the method subroutines are discussed.

Considerable emphasis has been placed on the documentation for the

system, and the two manuals which have been written are described

briefly. The results of three test problems are included to demonstrate

the value of having a variety of techniques in the package.

A preliminary evaluation of OPTIPAC's performance is given, with

relevant suggestions for further development.

(ii)

ACKNOWLEDGEMENTS

The author wishes to express his sincere thanks to

Professor J.N. Siddall who originally conceived of this project

and who was constantly available for advice and encouragement.

This work is based on a group project undertaken during the

winter term of 1968-69, in Professor Siddall's graduate course

"Design Optimization". The members of that class were:

E.M. Alexander, M. Badiuzzaman, L. Bialy, D.J. Bonham, C.K. Cordahi,

G. Cocksedge, R.H. Dumala, L. Greenberg, R.L. Hewitt, M. Kratky,

J.F. McDonald, H.V. Minh, H. Moussadji, L.D. Newton, S.S. Pereira,

and ~1.M. Win. The contribution of each is gratefully acknowledged.

The project was supported by the National Research Council,

Research Grant No. A7105.

(iii)

TABLE OF CONTENTS

Page

1. 	 INTRODUCTION 1

2. 	 THE COMPUTER PROGRAM PACKAGE "OPTIPAC" 3

2.1 	 General Description 3

2.2 Service Subroutines 	 5

2.3 System Subroutines 	 10

2.4 	 Method Subroutines 17

3. 	 DOCUMENTATION FOR THE SYSTEM 34

3.1 The Users' Manual 	 34

3.2 	 The Programmers' Manual 36

4. 	 TEST PROBLEMS 37

5. 	 DISCUSSION 43

6. 	 CONCLUSIONS 51

APPENDIX

A. SANPLE DOCUMENTATION FOR 	 THE SYSTEN 53

B. 	 RESULTS OF TEST PROBLENS 64

C. 	 FORTRAN IV LISTING OF PROGRAM 66

REFERENCES . 126

(i v)

LIST OF ILLUSTRATIONS

Page

1. Typical SEEKl Strategy 23

2. SEEK2 Starting Points 26

3. Histogram of Test Results 39

(v)

TEXT

1. INTRODUCTION

The basic criterion for a successful engineering design is

that it meet or surpass all restrictions imposed upon it by the design

specifications themselves, the laws of physics and chemistry, and the

properties of the materials used. A design which satisfies all these

requirements is called an acceptable, or feasible solution to the

problem. In practice, nearly all design problems have several feasible

solutions, and the final configuration must be chosen according to some

other criterion such as minimum weight, maximum volume, or minimum cost.

This part of the design procedure is known as optimization.

Before the introduction of high speed digital computers, very

little systematic optimization was done because of the prohibitive

amount of time necessary to determine even a few feasible solutions.

Although several computer techniques have now been developed, formal

optimization in engineering design is still not widely used and there

appear to be two main reasons for this. First of all, few engineers

have either the time or computer progrSIII'lling knowledge to write their

own optimization algorithms. Programs which are available in computer

libraries are usually inflexible and difficult for an inexperienced

programmer to use. Secondly, only for purely linear problems,* is there

a general method (revised Simplex1) which can guarantee that the optimum

*In optimization theory the terms "linear" and "nonlinear" refer
to the forms of the constraint equations and inequalities, and the
optimization function which define the particular problem.

1

2

found is the global or absolute optimum. Unfortunately, most real

problems are nonlinear and the relative success of any one of the

nonlinear techniques is largely dependent upon the form of the functions

describing the problem. It is rarely possible to predict which method

is best suited to a particular problem. To overcome all these

difficulties it was felt that the designer needed a pre-written program

package containing several different optimization techniques, with input

requirements kept to a minimum. In addition, the program would need

thorough documentation written in a straightforward, "how-to-do-it" style.

A system of this type has been developed by the author and others

who are credited in the "Acknowledgements". The package is called

OPTIPAC and it contains eight nonlinear optimization methods and a code

for revised Simplex. Input/output is controlled internally and the user

needs only a basic understanding of simple FORTR&~. Step-by-step

instructions on how to run a problem are contained in a users' manual, 2

while a second manua13 provides detailed information about the actual

program organization and logic.

This thesis describes the significant features of OPTIPAC and

makes suggestions for its further development. The results of some test

problems are discussed and a complete FORTRAN listing of the program

is included in the Appendix C to provide a permanent record of the version

2 3 of OPTIPAC which is described here. The users' and programmers' manuals '

are frequently referred to as they contain a thorough description of

every facet of the system's design and operation.

2. THE COMPUTER PROGRAM PACKAGE "OPTIPAC"

2.1 General Description

The program is written in FORTRAN IV and is organized into a

series of subroutines which fall into three basic categories: service

subroutines, system subroutines and method subroutines.

The service subroutines are written by the user to define the

objective function and constraints for his problem. These, along with

a program MAIN and some data cards, comprise the user's input deck. The

rest of the program is stored on magnetic tape.

The system subroutines form the heart of the package. They read

in the data, call the appropriate method(s), find a feasible starting

point if necessary, print out the results, and perform a sensitivity

analysis of the results if requested. OPTIPAC* is the name of the

controlling subroutine which provides the overall logic. Access .to the

package is obtained by calling subroutine OPTIPAC from another program -­

often a small "dummy" MAIN. Probably, the most powerful feature of the

package is that a problem can be run on several methods at once. This

provides both a check on the solution and an indicat:Lon as to which is the

most suitable optimization technique. As stated in the introduction, none

* The name "OPTIPAC" is derived from the words OPTimization
PACkage. Although it is actually the name of a subroutine, it is used
synonymously as the name of the whole package.

3

·4

of the nonlinear methods is completely general, and several parameters.

such as stopping criteria, step sizes, and the allowable number of

moves, must be adjusted for each problem. Often it is difficult to

choose these values in advance, and consequently the package has been

designed to operate at two distinct levels. At the "unsophisticated"

level, subroutine OPTIPAC automatically assigns reasonable values to

all parameters which require judgment on the part of the user. Thi.s

reduces the necessary input data considerably and makes it very easy to

get an initial, rough solution. At the "sophisticated" level, the

user must feed in the extra data cards to define all the program

parameters. This enables him to tune methods specifically to his

problem, thus obtaining the most accurate solution possible. This two­

level facility is an extremely useful feature. It means the package is

of equal value to a person who knows nothing about optimization theory

and to someone who is familiar with the smallest details of each method.

The method subroutines contain the coding for the various

optimization techniques. At present, these include revised Simplex for

purely linear problems, and eight methods for nonlinear problems. These

methods are: two types of direct search, a sequential direct search, an

alternate search-linearization method, successive linear approximation,

geometric programming and two different random search strategies. Such

a wide variety of methods greatly increases the likelihood of the program

finding a solution for any input problem. Obviously, the effectiveness

of the package will increase as more methods are added, and the program

has been set up with this in mind. Only a few modifications are necessary

5

to incorporate an entirely new method. (The actual procedure involved

is given in section 5 of the programmers' documentation3).

2.2 Service Subroutines

The description of the problem to be optimized is supplied to

the package via the three service subroutines for all methods except

revised Simplex and geometric programming. (These are highly specialized

techniques for which the constraints and objective function must be fed

in as data in a specified pattern). The objective function, equality

constraints, and inequality constaints are evaluated in subroutines

UREAL, EQUAL, and CONST respectively. In order to standardize the input

to some extent, the following convention is used for stating the problem:

Minimize the objective function* defining the optimization criterion:

U • U(x1,x2 , •••xn)

subject to equality constraints defining feasibiiity:

~j = ~j(x1 ,x2 , •••xn) • 0 j•l,m

and inequality constraints defining feasibility:

k•l,p

where are the independent or design variablesx1

n is the number of design variables

m is the number of equality constraints

p is the number of inequality constraints

*The objective function is also known as the optimization, cost,
or criterion function.

6

The user must abide by this convention, but it in no way

detracts from the generality of the program. Maximization can easily

be achieved by minimizing the negative of the true objective function.

Also, inequalities of the form +ksO can be readily converted to +k~O

by multiplying through by -1. If the constraints have non-zero

tenns on the right hand side, then these terms must be transposed to

the left hand side. Problems with only one type of constraint (m•O or

p=O), or with no constraints at all (m=O and p=O) are perfectly

acceptable.

The input to the service subroutines is the X(I) array containing

the current values of the design variables. The corresponding values

of U, .p. and 4>. are calculated and returned to OPTIPAC. In the simplest
J K

case, the objective function and the constraints can be expressed directly

as FORTRAN arithmetic statements such as,

U=X(l)*X(3)
or PSI(l)=X(l)-SIN(X(2))*3.0
or PHI(3)=X{2)-·16.0

Oftent however, a more complicated analysis is involved. It may, for

instance, require the solution to a set of E!igen value equations in

order to put a constraint on the eigen value itself.

e.g. PHI(2)=EIGEN-2.3

This is quite straightforward to do, since the user actually punches up

the service subroutines and can therefore include as much coding as

necessary. He may dimension his own working arrays, and call any

subroutines he wishes from the computer library. If extra data such as

physical constants or material properties is needed, it can be read in by

the MAIN program and transferred to the service subroutines through

7

labelled COMMON. When a complicated analysis is required, the user

should include conditional STOP's after sections of coding which

could possibly produce meaningless results. If, for instance, a

matrix inversion fails, then the program should be stopped rather than

have OPTIPAC continue, acting on misleading or even absurd information.

It is extremely important that the service subroutines be written

efficiently -- especially if they are complicated. They are called

almost continually by the method subroutines and thei.r execution time

constitutes a large portion of the total execution time for the job.

Although the three service subroutines are very similar to

each other from the programming point of view, they performseparate

roles in specifying the optimization problem.

Objective Function: Subroutine UREAL

UREAL contains the coding to evaluate the objective function U

at a point. Most frequently, this is the cost of the product. Other

typical objective functions are weight, volume, strength, output power,

aerodynamic drag, and fluid and thermal flow rates. The objective

function must be dependent on at least one of the design variables,

although it need not necessarily represent any physical characteristic

of the design. For example, a specific value of horsepower could be

obtained by minimizing,

U = (HPTEST-HPGOAL)**2

It is often difficult to choose a single objective function.

For instance, the designer may want to minimize the cost and the volume

at the same time. This is possible by writing,

U = WATEl*COST + WATE2•VOL

8

The weighting factors WATEl and WATE2 are needed to compensate for

large 	differences in the orders of magnitude of COST and VOL, and also

to place emphasis on the more important of the two. Several trial

runs would probably be necessary to determine reasonable values for

these 	factors.

Equality Constraints: Subroutine EQUAL

EQUAL calculates the equality constraints ;j which are usually

equations based on physical or chemical laws. They may also be design

objectives such as,

PSI(l)•X(l)-X(2)

which could stipulate a beam of square cross-section for instance. Since

all the nonlinear methods in OPTIPAC are basically exploratory strategies,

the equality constraints are very rarely exactly equal to zero. This

creates some technical difficulties which are later discussed for each

method subroutine. For this reason, it is desirable to use as few ljl's

as possible. If some tolerance is acceptable on either side of the

equality, then quite often, two inequality constraints can be used instead.

PHI(l)•X(l)-X(2)+.01 }
e.g. 	 could replace PSI(l)=X(l)-X(2)

PHI(2)•X(2)-X(l)+.Ol

Another problem with equality constraints is introduced if the

independent variables are of different orders of magnitude. Typically,

one constraint could be defining a buckling load of millions of pounds,

while another specifies a flange thickness of a few inches. Weighting

factors would be needed to prevent the buckling constraint from completely

dominating the others. Alternate search (subroutine ALTS) is the only

method which adds weighting factors internally. For the rest of the

http:PHI(2)�X(2)-X(l)+.Ol
http:PHI(l)�X(l)-X(2)+.01

9

techniques, these weighting factors can be added directly in

subroutine EQUAL as shown below:

PSI(l)~l.O*(X(l)-X(2))
PSI(2)=l.OE-06*(Cl*X(3)**2-C2•X(3)-C3)

where X(3) is the critical buckling load and Cl,C2 and C3 are functions

of the other ir•dependent variables. The factors 1.0 and l.OE-06 would

probably have to be adjusted after a few trial runs.

Inequality Constraints: Subroutine CONST

CONST evaluates the inequality constraints +k' where +k~O at a

feasible point. They are used to place bounds on the independent

variables themselves or on functions of them. Sometimes it can be quite

difficult for the designer to know if he has put enough constraints on

his problem. The best way for him to find out is by making a trial run

and checking if the results are reasonable or not. Often, seemingly

trivial restrictions must be included. For example, it may be necessary

to have a constraint stating that the overall height of an I-beam is at

least as great as two flange thicknesses. This fact is self-evident to

the designer, but not to the purely mathematical optimization techniques.

Geometric programming (subroutine GEOM) is the only method which assumes

that all the design variables are positive. Any of the other methods

will readily accept negative physical dimensions or even negative cost

if specific constraints are not imposed.

Like the equality constraints, some of the inequality constraints

may need weighting to allow for differences in magnitude or relative

importance. These weighting factors have to be included in subroutine

CONST since none of the methods is set up to add them internally.

10

The effect of weighting factors in the three service

subroutines can be quite significant -- especially when using

methods which minimize an unconstrained objective function with

penalty terms added for violated constraints. This is discussed

fully in section 2.4.

2.3 System Subroutines

The system subroutines make program OPTIPAC a coherent package

rather than just a collection of different optimization techniques.

They read in and screen the data, find a feasible starting point if

necessary, print out the results and perform a sensitivity analysis

upon request. Most important of all, they can process any number of

data decks, permitting the user to try different methods and di.fferent

program parameters all in one run. The purpose and operation of each

of the system subroutines is explained below.

Central Control: Subroutine OPTIPAC

Subroutine OPTIPAC coordinates the operation of the entire

package. It acts essentially like a main progrmn, but is written in

the form of a subroutine for two reasons. First of all, the initial

DIMENSION statement presents a technical difficulty. Several arrays

must be sized specifically for each problem to use the computer memory

efficiently. This can be done only by inserting actual numbers into

the arguments of array names in the DIMENSION statement of the main

program. Since the whole package is on tape, this would be quite

impractical. It would eliminate one of the system's major advantages

a small input deck. In a subroutine, however, arrays may be given

variable dimensioning which means that they expand to the size allotted

11

to them in the calling program (see reference 3, page 5-2). Thus, by

writing OPTIPAC as a subroutine, the package can still be stored on

tape, and can be called by a very simple, or "dunnny", program MAIN

consisting basically of a DIMENSION statement and a CALL to OPTIPAC.

Making OPTI.PAC a subroutine also permits any program to have

access to it. For example, optimization of some intermediate results

may be needed during the execution of a large analytical progi'am. This

could not be run as a continuous job if OPTIPAC was itself a main

program. At Mcllaster, the package is kept semi-permanently* on a

COMMON file "OPTAPE". This makes it available to any program having a

control card COMMON(OPTAPE) and a CALL statement to subroutine OPTIPAC.

Since the user has to keypunch the MAIN program himself, the

arrays in its DIMENSION statement, (and therefore the names in the CALL

OPTIPAC argument list) are kept to a minimum. Only data arrays and

large, doubly-subscripted working arrays are included. All other working

space required by the package is declared in subroutine OPTIPAC as

labelled COMMON blocks which are allotted to the other subroutines as

shown on page 5-13 in reference 3. The blocks consist of from one to

four arrays, each dimensioned (100). This scheme allows several sub­

routines to share storage space, although for small problems, the memory

set aside for working arrays is larger than necessary. (This inefficiency

could only be corrected by further complicating program MAIN). Another

result of using working arrays of fixed size (100) is that input problems

*The COMMON file is re-created from a binary tape immediately
after every "dead-start" of the computer. True permanent files are not
yet available at McMaster.

12

are arbitrarily limited to having 100 independent variables, 100

equality constraints, and 100 inequality constraints.

After subroutine OPTIPAC has set up the labelled COMMON

blocks, it clears all the working arrays and initializes the error

flag, Ko-o. (All subroutines in the package use KO=l to indicate a

failure of any kind). OPTIPAC then calls subroutine DATA to read in

the data for the method being run. If KO=l after DATA, the job is

terminated because READ statements will have been omitted putting the

remaining data cards out of phase. The values of INDEX, LEVEL and

NSENSE which are returned from DATA, determine the flow of logic

through the rest of the package.

INDEX identifies the method to be used, or signals the end of

the data deck if set = 99. LEVEL indicates whether the package is to

be run in the unsophisticated mode (LEVEL=O) or the sophisticated mode

(LEVEL•l). If a sensitivity analysis has been requested, then subroutine

DATA returns NSENSE•l (otherwise NSENSE•O). Subroutine OPTIPAC first

checks the value of INDEX to see if control must be returned to program

~~IN (i.e. INDEX•99). If not, then a new set of data is ready and the

level of sophistication is checked. Before calling the method subroutine,

the computer's internal clock (subroutine SECOND) is referenced to obtain

the time a~ the start of execution. If LEVEL=O, OPTIPAC presets the

necessary program parameters and then calls the method subroutine

stipulated by INDEX. At LEVEL=l, the method subroutine is called

immediately after the return from DATA because all the program parameters

are read in from data cards. The method subroutine performs the

optimization procedure, prints out the results, and returns control to

13

subroutine OPTIPAC. Subroutine SECOND is called again, and the net

execution time for the method is calculated and printed out. Then,

if the flag NSENSE•l, subroutine SENSE is called to do a sensitivity

analysis of the results. Finally, control is returned to the

beginning of subroutine OPTIPAC and the sequence is repeated for the

next set of data. To summarize, subroutine OPTIPAC performs the

follO\oling functions:

a) provides entry to the package from any other program

b) allocates storage space for all internal working arrays

c) clears these working arrays and sets KO==O

d) calls subroutine DATA to read user's input data deck

e) presets parameters for method subroutines at LEVEL=O

f) calls the appropriate method subroutine

g) calculates and prints out the net execution time for

the method

h) calls subroutine SENSE if sensitivity analysis requested

i) repeats this sequence for many data decks until INDEX=99

is encountered.

System Input: Subroutine DATA

the purpose of subroutine DATA is to read in all the data for

each method, check key parameters to see if they are acceptable, and

list the input data (upon request) for the user's scrutiny.

Basically, subroutine DATA is a series of READ statements, one

for every possible input parameter to the package. The first card of

every method's data deck contains three parameters, INDEX, LEVEL and

!DATA, which control the flow through the remainder of subroutine DATA.

14

Since the set up of the input deck for each method is completely

specified in the users' manua1, 2 the values of INDEX and LEVEL

together determine which parameters are to be read in. Therefore,

simple logical statements are placed before each READ so that unwanted

parameters are bypassed. All arrays are cleared before data is read

into them. Immediately following each READ, the parameter IDATA is

tested and if IDATA•l, the value of the parameter(s) just read is

printed out. This allows the user to check his input. On later runs

he may suppress the listing by setting IDATA=O.

LEVEL and !DATA must be 0 or 1 while INDEX must be between 0

and 8 inclusive or be equal 99 to signal the end of the data decks.

Subroutine DATA checks these values, and if any is unacceptable, the

error flag KO is set equal to 1 and control is returned to OPTIPAC

which returns to MAIN.

Subroutine DATA is designed to read in only the special OPTIPAC

parameters described in reference 2. If the user has auxiliary data,

(such as physical constants), which is needed by the service subroutines,

then he must insert his own READ statements in program MAIN and transfer

the information via labelled COMMON blocks.

Fe&~ible Starting Point: Subroutine FEASBL

Several of the nonlinear optimization techniques require a

feasible starting point, i.e., a point which satisfies all the contraints.

In many cases however, the user does not know and cannot calculate a

feasible point for his problem. To overcome this difficulty, subroutine

FEASBL is included in the package.

15

FEASBL consists of two phases since there are two types of

constraints. First of all, method subroutine SEEK3 is called to find

a point which satisfies all the inequality constraints.* If such a

point is obtained, then FEASBL uses a direct search in the feasible

region to drive the equality constraints to zero. In this search,

the objective function is the sum of the absolute values of the equality

constraints, and ideally, the minimum is at zero. No acceleration or

pattern move is used since the equalities are already reduced to

reasonably small values in SEEK3. The actual final magnitude of the

equalities can be controlled by the user at LEVEL=l by his. choice of the

parameter "F" (see reference 3, page 5-76). If SEEK3 fails to find a

point which satisfies the inequality constraints, then FEASBL cannot

proceed because the direct search minimization of the ~'s can only

operate in the feasible region. When this happens, an error message

is printed out and the user must try another (still infeasible) input

starting point.

In the current version of OPTIPAC, FEASBL is used by alternate

search (ALTS) and successive linear approximation (APPROX). Neither of

these methods can get started if any equalities are violated. Adaptive

random search (ADRANS) does not require a feasible start, but calls

subroutine FEASBL to speed up the method. These three methods call FEASBL

automatically -- it is not an option controlled by the user.

*When called by FEASBL, SEEK3 cuts out as soon as a feasible
point is found. It does not complete the optimization of the problem
unless INDEX•3.

16

System Output: Subroutine ANSWER

Subroutine ANSWER is a convenient means of printing out the

results of the methods in a neat, standardized form. As a safety

feature, ANSWER evaluates U, PHI(I) and PSI(I) directly from

subroutines UREAL, EQUAL and CONST respectively. This is necessary

because the final values at the end of a method do not always correspond

to the optimum point defined by X(l). For example, in a direct search,

the method stops when no improvement can be found. In this case, the

final values of PHI(I) and PSI(!) usually refer to the last unsuccessful

(often infeasible) point tried. Also, the final value of U may actually

be U plus some small penalty tenns if equality constraints are involved.

Subroutine ANSWER is usecl to print out either the optimum found or the

results of the last iteration if the method stops prematurely. Inter­

mediate results are printed out by the method subroutines according to

the parameter IPRINT. 2

Sensitivity Analysis: Subroutine SENSE

The designer is often interested in how the optimum would be

affected by a small change in any of the independent variables. To

provide him with this information, subroutine SENSE has been included ·

in the package. Since it entails a large amount of output, the

sensitivity analysis is only performed if specifically asked for (see

reference 2, page 2-6). The procedure is quite straightforward. The

first variable X(l) is decreased fractionally from its optimum value

and U, PHI(I) and PSI(I) are calculated and printed out. The same is

done for an increased value of X(l). Then X(l) is returned to the

optimum and the next variable is changed, and so on. The fraction

17

which is added and subtracted to each variable is FSENSE, a parameter

input as data by the user. The pdnt~out from SENSE allows the user

to see which variables have a strong influence on U, and which constraints

are sensitive to small changes in the variables, i.e. which are the

critical constraints. Another useful type of sensitivity analysis, is

to show the effect on the optimum of changes in the :lnequality constraints

themselves. This can be achieved with OPTIPAC by running a problem

several times, varying the PHI(I) statements in subroutine CONST.

Typically, a "DO-loop" would be placed around CALL OPTIPAC in the program

MAIN, and the constants to be changed in the inequalities would be stored

in a labelled COMMON block.

Method Execution Time: Subroutine SECOND

To compare efficiencies of the various methods, the execution

thaes must be considered as well as the optima obtained. On the

c.n.c. 6400, subroutine SECOND provides access to the computer's

internal clock. Therefore, SECOND is called immediately before and after

the CALL to amethod subroutine and the net execution time is simply the

difference between the two readings. All computers have similar

internal clocks, and only a minor modification is required to run on

another machine (see reference 3, page 5-88).

2.4 Method Subroutines

The method subroutines contain the coding for the various

optimization procedures. Every method can be run at LEVEL=O

(unsophisticated user) or at LEVEL=l (sophisticated user). However,

this only affects the values of the input parameters and the actual

strategy used is identical for both values of LEVEL. The current

18

version of OPTIPAC includes linear programming and eight nonlinear

methods.

Linear Programmin6~ Subroutine SUfPLE

Linear programming minimizes a linear objective function

subject to linear constraints. It is included i.n the package for two

reasons. 1-·irst of all, two of the nonlinear methods, alternate search

and successive linear approximation, require the minimization of a

linearized system to determine optimum gradients. These methods could

call the computer's own library subroutine direc.tly, but that would

introduce another machine-dependent feature. Also, the variable

dimensioning scheme used elsewhere in the package could not be applied.

This would mean that more array names would have to be added to

subroutine OPTIPAC':5 argument list and to program MAIN's DIMENSION

statement. The second reason for including linear programming is to

make OPTIPAC more general. It is written in the form of a separate

method subroutine to allow the user to run a linear problem easily by

following the straightforward instructions in the users• manual.2

'fhe algorithm chosen is the I.B.H. subroutine "SIMPLE" which

uses Revised Simplex, a computationally more efficient version of

Oantzig 's original Simplex method. 1 •17 Slight modifications have been

made to make the subroutine conform with the rest of the package, but

u 2the basic algorithm is unchanged. It performs Phase I and Phase

so that an initial feasible basis is not required. It is important to

note that SIMPLt; assumes it is dealing with equations and the user must

add slack variables to convert inequalities to equations. The number of

slack variables plus the number of independent design variables gives

19

the total number of Simplex variables, or columns in the Simplex

tableau. Another restriction is that SIMPLE can handle only positive

values of the Simplex variables. If any of the design variables is

expected to be negative (a voltage or beam deflection for example),

+ ­then the user can employ the substitution xi • (xi- xi), where both

x
+

and x
-

are positive valued but xi itself may be negative. Consider
i i

the constraint

If the user knows X(2) is negative, he must rewrite the constraint as,

3.•X(l) + 2.•X(2) -2.•X(3) • 4.0

'fhe Simplex method calculates the optimum values of X(2) and X(l) and

their difference gives the optimum value of the second design variable.

'fhis substitution is very useful, although it does increase the number

of Simplex variables.

'fhe only input parameter which the user can control (at LEV~L-1)

is NSTOP, the maximum number of iterations* allowed without reaching an

optimum. At LEVEL=O, this is set arbitrarily at four times the numbe~

of Simplex variables plus ten. If the program stops because NSTOP

iterations have been exceeded, a message is printed out to tell the user

whether or not the solution is still feasible. If it is, then the problem

should run successfully with a larger input value of NSTOP. If the

solution is not feasible after NSTOP iterations, it is unlikely that

SIMPLE can find an optimum at all. This is usually due to an input

*One Simplex iteration consists of selecting the variable to
be removed from the basis and the variaJ:,le to be added to the basis,
and performing the i.nterchange.

20

error in the coefficients of the objective function or constraint

equations. If the user omits a necessary constraint entirely, a

message is printed out stating that the optimum is unbounded. The

results at the optimum are printed out only when SIMPLE is being used

as a method subroutine (INDEX•O). When it is called by ALTS or APPROX,

there is no printed output except for error messages.

Nonlinear Programming

Five of the eight nonlinear methods contained in OPTIPAC are

direct or random search techniques. They diffe·r in their strategy for

determining the direction and magnitude of trial moves and in their

criteria for ending the search. These differences are significant and

usually one method is considerably more effic:f.ent than the others for

a particular problem. The direct searches are relatively fast but not

always accurate, while the random searches are slow but can avoid or at

least detect local optima. Two other techniques in OPTIPAC rely on a

linear approximation of the nonlinear problem. One is the Method of

Successive Linear Approximation (MAP) developed by Griffith and Stewart. 5

and the other is a combination of accelerated direct search and MAP

developed by Gurunathan.6 They both use a Simplex solution to determine

the optimum gradient -- the direction which gives the largest improvement

in the objective function. The remaining nonlinear method is geometric

programming4 which solves the special problem where all terms in the

objective function and constraints are products ()f the design variables.

In some limited cases, geometric programming yields the global optimum

directly, but in general, a direct search is required to optimize the

associated dual problem.

21

Direct Search: Subroutine SEEKl

SEEKl uses the direct search strategy of Hooke and Jeeves 7

followed by a random search to check if a true optimum has been found.

All the direct search methods in OPTIPAC are based on the

same principle. That is, to incorporate the constraints into an

artificial objective function which can be minimized by systematically

calculating its value at selected points in the search region, and

taking the smallest value as the minimum. To account for the constraints,

penalty terms are added to the real objecti.ve function whenever constraints

are violated. By making these penalty terans proportional to the

magnitude of the violation, it is possible to compare the values of

the artificial objective function at different points and to move in

the direction of the apparent optimum. For SEEKl, the penalty terms are

simply the absolute value of each violated constraint multiplied by a

large constant. 2

In the "exploratory search", each variable is never changed by

more than one basic step length and the results of the exploratory

search determine the direction for making the larger, pattern moves.

This means that the search is only accelerated on the basis of feedback

from changes in !!!. the variables. This is a major difference between

SEEK! and SEEK2. SEEK2 uses acceleration in the exploratory search

itself to change each variable as much as possible before starting the

pattern moves. The relative success of the two approaches depends

entirely on the form of the problem and the starting point used.

Like most direct search methods, SEEKl tends to stall on

constraints. This occurs when no small change (equal to the specified

http:objecti.ve

22

minimum step size) in a single variable can improve the artificial

objective function. Usually, an improvement could be found using a

pattern move, but pattern moves are only possible after a successful

exploratory search. To overcome this difficulty, SEEK! employs a

simple random search after the direct search has hung up. Every

variable is increased (or decreased) by a random fraction of ten times*

the original step length and the result is a composite move of random

length and direction. At LEVEL•O, up to one hundred such moves are

tried to find an improved value of the artificial objective function.

At LEVEL=!, the number is specified by the input parameter NTEST. If

an improvement is found, then the direct search is resu~d. If not,

the method assumes it has reached the optimum. Figure 1 shows how this

random search gets the method started again after it has stalled on a

constraint.

The input starting point and the weighting factors for the

constraints can greatly influence the results of SEEK!. The starting

point does not have to be feasible, but its position in relation to

the constraints largely determines whether or not the method will hang

up. Since it is often impossible for the user to visualize his problem

irt space, the safest approach is to run the problem with several different

starting points.

The penalty terms added to the artificial objective function are

proportional to the magnitude of the violation of each constraint. TI1is

*Relatively large moves are made because the object is to get
as far away from the constraints as possible so that the direct search
can be started again.

23

·--·----­

Startin1
point o-----.4

Successful direct search

Failures in direct search

Random move

Filure J. Reatartin1 SEEKI with a random move

24

causes difficulties when certain constraints are very sensitive to

changes in a particular variable -- especially a change in sign.

For example, a problem may have a simple i.nequality constraint to

keep a small physical dimension, X(3) positive. There may also be

a complicated equality constraint where X(3) appears in several terms

multiplied by large factors. Then it is quite possible that, in

moving from a positive to a negative value of X(3) the equality

constraint is drastically reduced, while the inequality becomes slightly

violated. The overall effect is a large improvement in the artificial

objective function. After this type of jump has occurred, it is very

difficult to drive X(3) positive again because the equality constraint

has such a low value that almost any increase in X(J) increases the

artificial objective function. In some cases, this prevents SEEKl

from obtaining a feasible solution at all. This trouble can be avoided

by adding a large weighting factor to X(3) in the inequality constraint.

That is, constrain lOOOO.•X(l) to be positive, rather than just X(J).

'l'hen a negative value of X(3) causes an overall increase in the artificial

objective function as it should. To choose appropriate values, the user

can run his problem at LEVEL-0 without any weighting factors and use the

results to decide which (if any) constraints need to be weighted.

Direct Search: Subroutine SEEK2

SEEK2 uses the direct search strategy developed by Flood and

Leon. 8 •9 As mentioned above, the distinctive feature of this technique

is that an acceleration procedure is used to advance each variable as

far as possible before any pattern move is attempted. This approach is

suitable for some problems, but in general, SEEK2 tends to be extremely

25

sensitive to the input starting point and to the order in which the

design variables are assigned to X{l) through X(N). The starting

point is important because, by making large moves in a single direction,

the method can hang up on constralnts before all the variables have been

changed. Then the final value of the objective function depends on the

location of the starting point, Wi shown in Figure 2.

The user arbitrarily namen the design variables X(l), X(2), •••X(N)

when he is formulating his problem. However, his choice fixes the order

in which the design variables are moved, since SEEK2 always changes the

X's in sequence, starting with X(l). The effect of the design variable

assignments can be seen by studying Figure 2. Starting points B and C

would have been quite acceptable if the variable X(2) had been moved

first, that is; if the user had reversed the names of the design

variables. Unfortunately, in most cases it is impossible to predict

the best order-- especially since it may change as the solution proceeds.

Flood and Leon9 suggest randomly changing the order after every search

iteration. This modification could easily be added as a small subroutine,

and it would probably greatly improve the efficiency of the method. At

present, SEEK2 does not have this feature, and the user must reformulate

the problem to change the search sequence.

The penalty terms for SEEK2 are the same as for SEEK!, and

. weighting factors should be applied to the constraints in the same

manner. The method stops when, moving with the minimum step size, the

relative change in the artificial objective function is less than the

specified toleTance KPS.

26

atortinti point)

I
I
I
I
I
I
I
I
I• --------­' I I I

I
I
I

A
(lest

I 0------·----------------------------~~~(Poor starting point)

---- Successful moves

-- ----- Unsuccessful moves

c
(Wont starting point)

I
I
I
:t

Figure 2. The importance of the storting point in SEEK2

27

Sequential Direct Search: Subroutine SEEKJ

sm•;K) is based on a method by Fiacco and McCormick 10 , 11 which

they call the Sequential Unconstrained Minimization Technique (SUMT).

The method consists of a series of direct search minimizations

using the strategy of SEEKl. The artificial objective function uses

2:-.pecial penalty terms which are designed to prevent the solution from

leaving the feasible region (all inequalities satisfied) while driving

the equality constraints to zero. This assumes that the input starting

point. is feasible. To permit infeasible starting points, alternate

penalty terms, like those used in SEEKl, are substituted for all

unsatfsfit~d inequality constraints. These alternate penal ties are

relatively large and the solution tends to the feasi.blc region rapidly.

Fiacco and HcCormick have proposed another procedure for handling

i.nfensible starting points ~.;htch uses· SilltT itself to drive the inequalities

positive. gxperienc£> vlth OPTIPAC howevPr, has indicated that the former

approach ls quite adequate.

Some effort has been made to find criteria for choosing the

pen;tlty term parameter R and its reduction factor REDUCE. No

satisfactory answer has been found, and it appears that these parameters

are problem-independent. Their values can affect the rate of convergence,

but they du not influence the opti.mum obtained. The LEVEL=O values of

R=l.O and REDUCE=.04 have proved effective for many test problems.

Each iteration of SEEK) constitutes a complete minimization

problem in itself. To reduce the number of calculations (and therefore

computer t i.mc), some techniques have been developed111 for: extrapolating

http:REDUCE=.04

28

the results of successive :iterations to speed up convergence. 11lis is

a feature which should definitely be added to Sr:EK3 in the future.

SEEKJ is not as prone to stalling on constraints as are SEEKl

and SEEK2, although some weighting factors (especially on equalities)

are usually necessary. The method stops when the relative change in

the objective function is less than 10-8 or when R has been reduced

below lo-21 •

Adaptive Random Search: Subroutine ADRANS

ADRANS uses the pseudo-random search strategy originated by

Gall. 12 The basic approach is to detennine the optimum search direction

by taking the mean path through five randomly generated improved points.

'fhe artificial objective function uses the same penalty terms as S.EEI\.1/

and the method can handle infeasible starting points. An attractive

feature of ADRANS is that every trial move involves changes in all the

variables, making the method less likely to stall on c.onstraints.

Generat.ing the trial random points is a cumbersome process, but the

directions obtained are reliable and accelerated pattern moves help to

improve the overall efficiency. At present, subroutine FEASBL is c:alled

tc.1 speed up the method by providing a reasonable starting point -- even

though AlJRANS does not require a feasible. starting point.

ADRAI.~S is assumed to have reached the optimum when no improvement

in the artificial objective function can be found after generating a

user-specified number (NSMAX) of random trial moves.

Random Search: Subroutine RANDOM

RANDO~t J.s probably the best method in OPTI.PAC for handling problems

with local optima. The strategy used was developed by Dickinson and

29

Gallagher13 although similar techniques have been devised by other

authors .14 1'he method evaluates the objective function at NUHR

randomly chosen test points within the initial search region specified

by the user. Points which violate any inequality constraints* are

discarded, and the remainder are sorted according to their value of

the objective function. Then the search area is shrunken to include

only the NRET best points and the procedure is repeated until the range

of each variable is acceptably small. The important feature here is

that, if local opti.ma exist in the original search region, they will

prevent RANDOM from shrinking that region to any great extent. The

user could then investigate his original area in smaller segments

to locate the true optimum.

The number of random points generated and the shrinkage factor

used can affect RANDOM's efficiency and so both parameters are controlled

by the user at LEVEI~•l. Since the whole object is to shrink the

original search region, it; follows that if the user excludes the

optimum in his initial estimates of the design variable ranges, then

it is impossible for RANDOM to reach that optimum.

Successive Linear Approximation: Subroutine APPROX

Griffith and Stewart5 havt! developed a technique for conducting

an extremely efficient search. The method converts the nonlinear problem

into a linear problem by using a first order Taylor series expansion to

approximate the objective function and the constraint equations about a

*RANDOM at present does not accept equality constraints.

30

point. This produc.es a system of linear equations and inequalities

in which the variables are the steps to be taken in each search din~c.tion

and the linearized objective function is the improvement tn the objective

funt:tion at. the new point. After adding constraints to limit the step

lengths,* this system is solved as a linear programming problem

(subroutine SlMPLE) to find the optimum search vector. Every move ls

determined in this manner, and the processstops when SIMPLE cannot

find a significant improvement in the objective function.

In practice, there appear to be two main difficulties with the

method. First of all, the partial deri.vative.s which form the S:i.mplex

2coefficients an• evaluated numerically and they can be quite inaccurate,

This is a serious problem when equality constraints are linearized

because no compensating slack variables are added as they are to

inequalities. The second problem is in determining the Hmit.s to be.

placed on the tndividual step lengths. Their maximum size has been

arbitrarily set at ten percent of the range of each variable to satisfy

th(: approxi.mate Taylor series expansion. As the solution proceeds, it

;s necessary to decrease the allowable step lenrths i.n order to force

convergence. The logic which controls this step t<..ngth rt:!gulati.on is

3purely intuitive on the part of the author and it: may prove to be too

crude for larger problems.

APPROX has been very successful on the test problems tried and

usually the di fflr.:ul ties mentioned above can be avoided by careful

*ThP step lengths are restricted to small values because the
Taylor ~eries expansion is only valid near the base point.

http:rt:!gulati.on
http:produc.es

)]

!iel.ection of the input paramt!ters at the sophisticated level (LEVEL,.l).

Alternate Search: Subroutine ALTS

A logical extention of the method of successive linear

approximation is to combine it with a direct search in order to take

better advantage of the optimwn search direction, thus reducing the

necessary number o.f Simplex solutions. Gurunathan' s work6 has been

used as the basis for subroutine ALTS.

An accelerated direct search is carried out in the feasible

regir.m (all inequalities satisfied) with an artificial objective function

eomposed of the true objective function plus the ,.-alues of the equality

constraints multiplied by weighting factors. \.Jhenever the direct search

stalls, a linearizatton is performed to find a new search direction. The

process stops when no significant improvement can be obtained by either

method. One disadvantage of AI.TS is that a feasible starting point is

r£•qui red, but :l.n most cases subroutine FEASBL 3 is able to locate one.

The major difficulty with the method is in choosing step length

Hmltations for the linearizations. The problem is more pronounced than

f"r t\PPROX because the linearizatJons are separated by porti.ons of di rt!C::t

sear('h and theref('!re the Simplex search directions do not develop in a

reco~n:izable pattern. At present, the step lengths are not adjusted at

all, and oscillation or overstepping o.f the optimum can occur. Since

convergence is not guaranteed, th~ method keeps track of the "best poi.nt

so far" which ts taken as the optimum if the method does not converge.

At LEVEL::: 1. the user has control ovt'!r all important parameters

(indudin~ maximum step length) and he should be :1ble to tune the method

to h.is pr()blem. The direct sear<:h portion of ALTS is particularly

2

32

efficient for handling equality constraints. The linearizations will

be more successful when a method of forcing convergence is perfected.

Geometric Progranuting: Subroutine GEOM

Geometric programming is the only special purpose nonlinear

method in OPTIPAC. It was invent~d by Zener4 to solve the problem

where the objective function and inequality constraints are "posynomials",

i.e. polynomials with positive coefficients. Also, the independent

variables are restricted to having positive values.

The method involves a mathematical transformation to the dual

problem, the maximization of the dual problem, and then a transformation

2 * back to the input or primal problem. In certain cases, the dual

maximization is not needed as the mathematical transformations yield the

global optimum dirac:tly. For most problems however, SEEKl is required

t.o maximize the dual objective function.

The most attractive feature of geometric programming is that the

relative values of the primal and dual objective functions indicate

whether or not the solution is optimal. They are equal at the global

optimum, and represent upper and lower bounds on the global optimum i.f

they are not equal. One major disadvantage of the method is that the

transformation back to the primal problem is not always possible. Then

the value of the dual function gi.ves a lower bound on the optimum, but no

infomation is gained about the values of the design variables.

ln its pre:;ent form, GEOM has very limited applications. It needs

*The globa:. optimum is obtained directly when the ''degree of
difficulty" equals zero (see reference 2 .t page 4-50).

33

to be modified to permit negative polynomial coefficients, (and therefore

greater... than-equal type inequality constraints), and negative

independent variables. It has been used successfully to design

electrical transformers15 and journal bearings , 16 but problems wi.th

large "degrees-of-difficulty" have not been tested.

3. £PCUMENTATlON FOR THE SYSTEM

The main object of OPTIPAC is to encourage the use of formal

optimization procedures in engineering design. It is aimed largely at

people unfamiliar with optimization theory and therefore the

documentation for tbe system is extremely important. Separate manuals

have been written for the user2 and the programmer, 3 and a third

manual is being c~piled* to illustrate typical applications and sample

input .for some test problems.

3.1 The Users' Hanual

The first section, "Quick Information", provides a very brief

description of the whole system. The generalized form of the optimization

problem which is solved by OPTIPAC is given, with an explanation of how

to convert any problem to the standard form. The three categories of

user, unsophisticated, sophisticated and programmer, are clearly defined

so that the user can decide which parts of the documentation concern him.

"Procedural Instructions" outline a systematic, c;1eck-list approach to

running a problem, referring the user to the relevant documentation at

every step. Finally, there is a list of the nine techniques currently

included in the package and a simplified flow chart showing the program

organization.

---·----------------------­
*The third manual is intended for commerc:Lal users and has not yet

been completed. It is not described further in this thesis.

34

35

The second section explains how to set up the input deck, and

describes the arrangement of the MAIN program. service subroutines and

data deck. A diagram is used to show the complete input deck with all

the control cards nec.essary to gain access to OPTIPAC whi.ch is stored

on magnetic tape. Instructions are also given for running more than

one method at a time and a second diagram illustrates this case. The

sensitivity analysis which is contained in subroutine SENSE is described

fully, and instructions for requesting it are given.

'l'he third section of the users' manual contains the documentation

for each of the method subroutines at the unsoph:Lsticated level. After

a short introduction, there is a simplified flow chart to help the user

choose methods for running his problem. This method selection chart is

intended only as a rough guide however. and at the unsophisticated

level, best results are obtained by trying as many methods as possible.

'i'he descriptions of the methods are written in a standard format and

are very brief. A statement is given of the type of problem which can

be handled, and the basic instructions necessary to run a job are

provided. Virtually no background theory is included in this section.

The data decks required by each method at this level are almost identical,

which makes it very easy for the user to try several different techniques.

The fourth and last section of the users' manual contains the

documentation for a sophisticated user. The layout is similar to that

in the previous section, but considerably more detail is included. The

basic theory behind each technique is outlined and useful references are

given. A sub-section on special features helps the user choose values

for all the i.nput program parameters, and the default values of these

36

parameters used at LEVEL=O are listed. As an aid in de-bugging, a

flow chart is provided to show which subroutines are called. Two

excerpts from the users' manual are contained in Appendix A to

illustrate typical documentation at both the unsophisticated and

sophisticated levels.

3.2 The Programmers' Manual

The second manual contains all the information concerning the

operation and organization of the FORTRAN program itself. It is divided

into two parts: a description of the program, and an actual listi.ng of

the source deck.

The first section begins with a general description of the system,

including its subroutine structure, the variable dimensioning scheme and

the use of COMMON blocks. A "Thesaurus of Program Parameters" gives a

complete alphabetical list of all user-input parameters together with

their definitions. The details of each subroutine are discussed in a

standard format. The internal variables are defined, and a flow chart

of the program logic is given. A second, simplified flow chart shows

how the particular subroutine is related to the rest of the package.

Additional notes are used to elaborate on unusual or subtle aspects of

the coding. The programmers' documentation for subroutine RANDOM is

included in Appendix A as a typical example. Two other important topics

which are covered in this manual are the incorporation of new method

subroutines and features of the program which arc machine-dependent.

The second half of the programmers' manual is taken up by the

FORTRAN IV listing of OPTIPAC. Comment cards have been used liberally to

help clarify the logic involved.

http:listi.ng

4. TEST PROBLENS

The test problems discussed below represent real design

problems chosen to give a good comparison of all the methods. They

demonstrate clearly how difficult it is to predict which method will

find the best solution. Several other problems were used in developing

the individual methods and larger design problems have been run on the

package by both undergraduate and graduate students at HcHaster University.

The first example is the design of a three phase shell type

electrical transfonner. This was used as the main test problem for the

geometric programming subroutine GEOM and it is fully described in

15Frank's paper. The object is to minimize the volume of material while

satisfying two geometrical constraints. GEOM assumes that all the

variables are positive, but for the other methods, extra constraints are

needed. Each of the independent variables is a physical dimension of

the transformer, and the problem can be stated mathematically as follows:

.Hinimize,

Subject to the inequality constraints,
= -4.0x1 /x5 -6.0x2/x5 -4.0x3tx5 + 1.0 ~ 0

'z
1$11

= -6.0x3tx6 -6.ox4tx6 -9.424x1tx6 + 1.0 ~ 0

cp3 = xl ~ 0

's = x3
~

!:
0
'4 = x2
0

cp6 = x,. ~ 0

's = x6

(! 0== xs'7
2: 0

37

38

The problem was run on eight methods at the unsophisticated level, and

the results and execution times are tabulated in Appendix B. All methods

used the same starting point. GEOM's solution agrees exactly with that

of Frank. 15 It is particularly interesting to note ho\v 'o~ell some of

the other methods work on this specialized problem. Sequential search,

SEr:K3, is especially good and the direct searches are considerably

faster than GEOM itself. At the sophisticated level it would definitely

be possible to adjust parameters in SEEK.3 to obtain the global optimum.

The histogram in Figure 3 gives a visual compar.ison. of the minima

obtained and the execution times required by each method.

The second test problem is a simple structural optimization,

described by Siddal1. 17 A three member indeterminant truss is to be

designed for minimum weight. The lengths of the members are fixed and

the structure must be able to support a one thousand pound load.

Initially, eight independent variables were chosen: the cross-sectional

areas and tensile stresses of each member, and the horizontal and vertical

displacements of the point of application of the load. The problem could

then be specified by two force-equilibrium equations, three displacement

equations and nine inequality constraints restricting stresses, tninimum

areas and buckling loads. This formulation was run on OPTIPAC without

much success. All of the methods had difficulty handling the five

equations (equality constraints). After careful examination it was

realized that only three of the variables were truly independent.

Having chosen values for the three cross-sectional areas, the five

equations become linear and can be solved by Gauss ~dimination for the

http:Frank.15

-
-

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

N
or

m
al

iz
ed

 O
bj

ec
ti

ve
 F

un
ct

io
n

(to
 b

e
m

in
im

iz
ed

)
6

0
6

SE
EK

1

S
E

E
K

2
;" "' -

a· ""
I

tSE
£K

3
;;·

..c .,
-Q

I
~I.

TS
!"

'
I

~

Q
A

P
P

R
O

X

::s "' 3' ...
., ~

3

I•
C

l)
..

..
~ "a

~~

.. .. 0 ...

:
f

3 ..
i

r.
Q ::s

!:.

-8
"' CD

..
=

!L

=

 i
-:r

=

8 2
3 0

•
!'

1
.. ..

l a
:I

§"

-·

..:I

0 .. 3 ~
 .. :r
 l s· 0 ... -... J n

I
I

!t "' ;;; .. I.D • a .. ;·

10

R
A

N
D

O
M

I
I 5

t:
t:

K
2

I

"' §" 1!
.

CD
 "' -.. c 1'
\ .. c .. CD

G
E

O
M

(N
ot

 a
pp

li
ca

bl
e)

A
D

RA
N

S

6
£

40

remaining five intermediate variables. (These are someti.mes called

"state" variables). Inequality constraints are still imposed upon the

intermediate variables, but the formal equality constraints are no

longer necessary. This revised problem with three independent variables

and nine inequality constraints was run on OPTIPAC at the unsophisticated

level using seven methods, and the results are tabulated in Appendix B.

(All methods used the same starting point). The msthematical statement

of the problem is given below.

Minimize,

Subject to the inequality constraints,

fl • 20000.... lx4l ~ 0
tfl2 .. 20000. - lx5l ?: 0
413 .. 2o~go. - 1"61
<P4 .. 102oxl ~ 0

's • 10 X ?: 0

'6 • lo2ox2 ~ 02.7 . w7 .5 fo xl I

?: 0

250.9 - jxlx41~ 0

'a .. 11'7.5 106 x2
2 I 36.02

lx2xs1~ 0

~9 • "'f7.5 10
6 2

x3 I 50.92 - lx3x61~ 0

It should be noted that the fourth, fifth and sixth constraints

are heavily weighted to prevent the cross-sectional areas becoming

negative. The variables x4 ,x5 ,x6 in the above inequalities are obtained

by solving the following set of linear equations for specified values of

41

-.707x1 x4 + • 707x3 x6 ... -866.
.707xg x4 + x2 xs + • 707x3 ... 500.

50. x6-21.21 106 x7 + 21.21 106x8 • o.x4
36.0 + 30.00 106x8 .. ~0.xs

50.9 x6+21.21 106 x7 + 21. 21. 106x8 .. o.

Once again, the value of having several different techniques

in a package is demonstrated. Adaptive random search, ADRANS, finds

as low a minimum as sequential search (SEEK3) but it is almost four

times slower. The fact that these two entirely different meth9ds

obtain identical solutions, gives the user some confidence that the

global optimum has been achieved. Both alternate search and successive

linear approximation have difficulty linearizing the constraints, and

this could be due to the absolute terms in the inequalities. Figure 3

compares the relative performance of the seven methods tried. As this

example shows, it is often possible to eliminate or at least reduce the

number of equality constraints. The user should always have this aim

in mind when formulating his problem.

The third test problem is based on the design of a simple roller

bearing in which the total volume of material is the objective function

to be minimized. Due to a slight error in one of the constraints,* the

solutions obtained are not realistic. However, the example is still a

perfectly valid optimization problem in the mathematical sense. It is

included here because OPTIPAC's performance contrasts markedly with the

two other test problems. The five independent variables selected are the

*the variable x4 should appear in the denominator of the first
term in +1•

http:x6+21.21

42

thicknesses of the inner and outer races, the overall lengtt1 of the

hearing, the roller diameters, and a factor to control the spacing

between rollers. E.ach of the four dimensions is limited by an

inequality constraint, and the bearing must be able to support a

radial load of ten thousand pounds. The spacing factor indirectly

determirtes the number of rollers and an additional constraint stipulates

that at least three rollers must be used. The problem is formulated

as follows:

Minimize,

+ 1rX~ (x2+2x3+2~
4x1~

Subject to the inequality constraints, . .. 2735. x 5 (x3+1) - 10000. 2!. 0
l = x - x ~ 0¢z 1 2

~·3 = xj- 0.62: 0

$4 X~ - .1.1~ 0
=

¢.s = 'IT x2+zx3+2)/x2x4 - 3. ~ 0

¢6 ... -x5 + ox2 ~ o

Appendix l> shows the results from the seven methods run at the sophisticated

level. (All methods use the same starting point). Geometric programming

ls not applicable because the objective function contains negative

coefficients. The histogram in Figure 3 emphasizes again that the

relative success of each method in the package is strongly problem-

dependent. Sequential search, SEEK3, which is the best method in the

structural example, is by far the worst method for this problem. APP}~OX

and ALl'S obtain the lowest value of the objective function here~ but in

the structural problem, ALTS is only mediocre and .APPROX fails altogether.

Direct search, SimKl, which is consistently one of the fastest but least

accurate methods, manages to find one of the best solutions.

5. DISCUSSION

A multi-technique package has proven to be a valid approach to

the general problem of nonlinear optimization. The results of the

test problems indicate clearly that a variety of methods is much more

effective than any single method.

Direct search SEEK! is usually the fastest method. It rarely

finds the best optimum, although the simple random search at the end

of the direct search prevents it from hanging up too badly. SEEK2 is

almost as fast as SEEK! but more prone to stalling on constraints. As

mentioned in Section 2.4 of this thesis, SEEK2 needs to be modified so

that the order in which the variables are moved is changed after

every step. (This would probably be a worthwhile addition to SEEKl as

well). SEEK2 would also benefit from a random check on the optimum

obtained and subroutine SHOT of SEEKl could easily be incorporated

for this purpose.

Sequential search, SEEK3 is considerably more accurate than

either of the direct searches. This emphasizes the importance of

the form of the penalty terms in the artificial objective function,

since the actual search strategy is the same as that used in SEEK!.

SEEK3's execution time could be reduced by adding the extrapolation

feature described in Section 2.4.

Adaptive random search, ADRANS, is a reasonably accurate method,

43

44

but it is slowed down severely by the cumbersome process of generating

trial random points. It seems that there should be some means of

progressively modifying the search area to speed up the process. For

example, after one improved point is located, the remainder of the

search could be concentrated in that area rather than continuing to

search the full ranges of each variable. If this segment of ADRANS

could be made more efficient, it would not be necessary to call

subroutine FEASBL to start the method. (Calling subroutine FEASBL

is undesirable because it introduces the difficulties associated with

SEEK3 and SEEKl).

Random :;;earch, RANDOM, is slower than ADRANS, but it is the only

method in OPTIPAC capable of detecting local optima. A useful

modification would be to print out all the current "best" points when

the method stops before convergence. The user could then use the local

optima as starting points for other techniques to determine the true

optimum. At present, only the lowest relative minimum is printed out

when the method fails to converge. As explained previously, the initial

search region specified by the user cannot be increased in RANDOM. This

means that the input values of RMIN(I) and RMAX(I) act like strict

limit equations on the variables. If the user excludes the optimum by

specifying too small a range for any of the variables, it will show up

in the solution because that variable will be approximately equal to

one of its original bounds. The problem could then be rerun with an

expanded initial search region. This difficulty does not occur frequently

enough to warrant building in automatic expansion of the search area.

45

Successive linear approximation (APPROX) is potentially the

most effective nonlinear technique in OPTIPAC. It is probably the

only method which can be expected to work efficiently on very large

problems. At the unsophisticated level, the linearization often

fails because the numerical partial derivatives which make up the

Simplex coefficients are too roughly approximated. At the sophisticated

level, however, the user should be able to obtain good results for

most problems. The method can handle equality constraints, provided that

the starting point itself satisfies all the equalities. If the user

cannot provide such a point, then subroutine FEASBL is called automatically

to find one.

Alternate search (ALTS) attempts to combine the speed of direct

search with the accuracy of successive linear approximation. The

original idea was to use the linearization only to restart the direct

search after it had hung up. In practice, the search seldom regains

any momentum after its first failure. This is due to the fact that the

search usually stalls close to the optimum or on a constraint boundary

which permits only composite moves. This leads to a series of successive

linearizations, but without the extra logic of APPROX to force convergence.

The result may be oscillation or even divergence. The method stops when

oscillation is detected, and stores the "best point so far" in case of

divergence. The method is still not quite satisfactory however, and the

entire step length regulation logic of APPROX should be incorporated.

There appears to be a flaw in the basic concept of alternate search: it

has combined two complete methods rather than just the·best features of

these methods. A more logical approach would seem to be to choose all

46

search directions exclusively by linearizing the problem and to

determine the correct step lengths by a direct search in the direction

obtained. In this way, ALTS would truly utilize only the best features

of the two different techniques.

Geometric programming (GEOM) is the only special purpose

nonlinear method in the package. It has performed well on very

restricted problems, but still needs several modifications which are

outlined in Section 2.4 of the thesis.

No difficulties have been encountered with the revised Simplex

algorithm SIMPLE. A useful addition would be to automatically make the

standard substitution which allows negative Simple4 variables. This

is already a feature of alternate search and successive linear

approximation.

All of the methods have difficulty compensating for constraints

of vastly different magnitudes, since the largest constraints tend to

dominate the others. Ideally, the program should put equal emphasis on

all the constraints unless the user specifically includes weighting

factors in the service subroutines. One approachl7 is to normalize

all the independent variables by dividing each one by its estimated

range. This scaling of the independent variables is useful in

unconstrained problems to make step lengths and gradients more uniform.

(It would definitely be an asset in the linearizations performed in ALTS

and APPROX). It does not, however, make a signiflcant improvement in the

constrained case. A better solution seems to be to normalize the

magnitudes of the constraints themselves in some fashion. One crude

range approximation could be obtained by evaluating each constraint at

47

the upper bounds and then the lower bounds of all the independent

variables. The differences could then be used as the scaling factors

for subsequent values of the constraints. In certain problems, the

user may be able to actually input accurate estimates of the expected

ranges. It should be pointed out that the existing method of entering

weighting factors is quite satisfactory from tht~ analytical viewpoint,

but it reqtrlres too much judgment and experience on the part of the user.

In a system such as OPTIPAC, the user should not need to get involved

with the technicalities of the program.

Very few problems with equality constraints have been run

successfully on the package. SEEK3, ALTS, and APPROX are best equipped

to handle them, but even these methods have considerable difficulty if

the starting point is badly infeasible. Equality constraints are

extremely restrictive because they force the solution to move right

along a boundary, which is much more demanding than merely staying on

one side of the boundary (inequality constraints). The direct searches

(SEEKl and SEEK2) hang up frequently because once they reach a point on

or very close to an equality, they cannot find a better point. Their

exploratory search does not allow for the necessary move along the

constraint. Sequential search, SEEK3, is more successful because of

the special form of the penalty terms in the artificial objective function.

For the first minimization, the equalities are virtually ignored due to

very small weighting factors. The method first concentrates on finding

a point which satisfies all the inequalities. On subsequent minimizations,

the equalities are gradually emphasized more until they are finally forced

to zero. The direct search portion of alternate search (ALTS) uses a

48

somewhat similar strategy, although it requires that the starting point

satisfy all inequalities. The search is conducted in the feasible

region, with user-specified weighting factors (WATE(I)) to drive the

equality constraints to zero. The linearization technique of ALTS and

APPROX is ideal for following the constraint boundaries, and APPROX

appears to be the best method for handling problen~ with a large number

of equality constraints. RANDOM and GEOM do not accept equalities at all.

ADRANS is very inefficient since so many random points must be generated

to obtain another point on the constraint boundary. (Execution times

soon become prohibitive).

The whole question of equality constraints :is completely ignored

by many authors. They apparently feel that opti':nization pertains mainly

to the solution of inequalities, while systems of equations are best

handled by the methods of numerical analysis and classical mathematics.

This is a valid argument in some cases and the structural test problem

in this thesis shows how equality constraints can often be eliminated.

When they cannot be avoided by reformulating the problem, it is always

possible to replace an equality by two inequalities. This implies that

some tolerance is acceptable, but the tolerance can be reduced on

successive runs until the equality constraint is satisfied exactly.

As a computer system, OPTIPAC has performed well. Problems have

been run by a variety of users, many of them unfamiliar with optimization

and inexperienced in programming. Most have preferred the unsophisticated

mode of operation because the input is very simple and all applicable

methods use virtually identical data decks. The users' documentation

has proven to be more than adequate, and it is constantly being revised

as minor mistakes are discovered. At present, the programmers'

manual3 is referred to mainly by users interested in the FORT~~

listing of OPTIPAC. When major changes to the system are being made,

the rest of this manual will be indispensable.

Now that some operational experience with the package has been

gained, it is possible to suggest where changes and additions might

be made to improve OPTIPAC.

One of the weakest features of the system is the method

selection chart. Presently, the most reliable way of choosing a

method is to run the problem on all the methods at the unsophisticated

level to see which one gives the best results. This would obviously

be impractical with very large problems. As more test problems are run,

it should pe possible to establish a statistical basis for method

selection. That is, the efficiency of each method will be functionally

related to the key parameters defining the input problem. Typically

these would include the number of variables, the number of equality

and inequality constraints, and a parameter to indicate the degree of

nonlinearity. With this sort of information, the program could choose

the most efficient method completely automatically. Before incorporating

this feature, some changes to the method of data input would be necessary.

Since the user does not know in advance which method will be run,

then he must supply sufficient data to run every method in a single data

deck. At the unsophisticated level this is simple, but at the sophisticated

level it may mean specifying values for over twenty parameters. To reduce

this number, it will be necessary to further standardize several parameters,

50

such as stopping criteria, so that they apply to all methods. Limits

on the number of moves or complete iterations can probably be related

to the number of variables and thus eliminated from the input deck.

In the present system, all data cards are always read in by the

system subroutine DATA. It is now apparent that the user should have

the option of bypassing subroutine DATA in order to transfer data directly

to OPTIPAC through its argument list and through blank C0!-1MON. This

option is essential if the package is to be available as a standard

subroutine to other programs when optimization input data is internally

generated. Only a very simple modification is needed to add this

feature. For example, a value of IPRINT exceeding 500 could be used as

the flag for bypassing subroutine DATA. The true value of !PRINT would

then be obtained by subtracting 500 from its input value. The overall

operation of the system would be unchanged, and runs could still be

made at either level of sophistication.

The modifications discussed here represent only some of the

more significant improvements which could be made to the system. Necessary

changes to the FORTRAN coding itself may become apparent with further usage.

6. CONCLUSIONS

OPTIPAC has been developed to encourage the use of formal

optimization techniques in engineering design. Its aim is to provide

a system which is easy to use, and yet capable of handling a wide

variety of both linear and nonlinear problems. The project consisted

of two phases: developing the FORTRAN program i. tself; and writing

detailed documentation for three separate types of user.

Since there is no generally applicable nonlinear optimization

technique, several different methods have been incorporated into a

single package. Input/output is controlled internally and the system

may be operated at two distinct levels, depending on the user's

familiarity with optimization and programming. Many test problems

have been run and they have shown that a multi-technique approach is

well justified. Although the performance of individual methods is

unpredictable, at least one of the eight methods can usually obtain a

reasonable solution.

It was realized at the beginning of the project, that designers

would not use the package unless it was accompanied by thorough doc­

umentation. Therefore, a considerable amount of time was spent in

compiling a manual for the user2 and a second manua13 describing the

programming aspects of the system. The users' manual contains explicit,

step-by-step instructions for running a job and these have proven to

be more than adequate. Students at the undergraduate and graduate level

51

52

in the Design program at McMaster, have been able to run problems

without difficulty. Considerable interest in the system has also been

shown by people outside the university. Those who have already used

or are intending to use OPTIPAC are: the University of Texas; Sheffield

University, England; the National Research Council (Ottawa); STELCO

Research Division; DOFASCO; and the Butler Manufacturing Company. The

latter three companies are all located in Hamilton.

OPTIPAC's proble~solving ability is limited only by the

number of techniques included, and the program has been designed to

make the addition of new methods straightforward. As a system,

OPTIPAC is still relatively unsophisticated. Its ultimate configuration

will probably be as a "conversational" program, ~,.,rith the user interracting

through a ti1ne-shared terminal.

~~ile it is far from being in its final form, OPTIPAC does

appear to have succeeded in its two main objectives. It does handle

a wide range of proble1DS, and the system is easy to use.

APPENDIX

A) SAMPLE DOCUMENTATION·FOR 'OPTIPAC'2,3

(Unsophisticated User)

3-22

RANDOM SE.UCH

!.!!!.
IWIDOH

PurpOIIe

To solve a ooolinear opt~&atioo function with nonlinear inequality constraints.

The function to be aiaiai&ed will be of the fo~ u- U(x1.x2••••x)

0

The -thCHI couists of a raad- search for the 111:'.ni- or amply a

ahotgua tachDique with iterative shriakaa•·

Liet of taeut Variables

IIDIX iaclu nUIIIber of subroutine, • 6

LEVEL lewl of sophistication, • 0

IPllHT prints iater.ediete results every !PRINT cycle,

aet at zero for no inter.ediate data

IDATA if ID«rA • 1 the input data will be printed out,

otharviaa set at zero

H nUIIIbar of variables (specified in MAIN)

HCOIIS nUIIIber of inequality constraints

llHAl(I) eatiaated upper bound for variable X(l)

RMltf(l) eatiaated lower bound for variable X(l)

List of Output Variables

U llinia111 value of the opt~&atioo functioo

X(l) values of independent variables at the optia\11

53

http:u-U(x1.x2

54

(Unsophisticated User)

3-23

How to Set Up MAIN Procr•

DIMENSION X(N),PHI(NOONS),RMAX(N),RMIN(N),Z(J,N),UU(J)
N•numerical value
J•numerical value
M•l
NN•l
NTOTER•l
CALL OPTIPAC(X,PHI,PSI,A,B,C,WORKA,DELX,STEP,XSTRT,RMAX,aMIN,~STAR
l,NTERMS,GS,WATE,TEST,Z,UU,EX,OONST,AA,BBB,CC,NCONS,NEQUS,~,N,lffi,NT

20TER,J,XX)
STOP
END

Note: The n~rieal values of N, NCOHS, J (J • 3*M) aust be inserted in

the DIMENSION atatea.nt, If NOONS is aero then put PHI (1) 1~ the DIMENSION

Hov to KU.e Up Data Deck

Variable M- No, of Carda

IMDEX, LEVEL, IPIUIIT, !DATA 1 413

IICONS 1 15

RMAX(I) aa •any aa required 5El6.8

IKIN(I) aa aany aa required 5El6.8

Settiaa up Service SUbroutines

UUAL, see page 3-30

COHST, see page 3-34

Miscellaneous

The values of RKlN(I), BKAX(I) put in by the user establish

absolute b-da on the variables which can only shrink. If the user is

unsure, it is safest to aake IMAX(l) too large and IKIH(I) too saell.

http:atatea.nt

55

(Sophisticated User)

4-45

RANDOM SEARCH

RANDOM

To solve a nonlinear optimization function with nonlinear inequality constraints.

The -thod consist» of a random search for the minimUIIl, or simply

a shotgun technique, with iterative shrinkage. Random points for each variable

x1 to X n
are generated froa the expression xi•ti+ri (ucti)

where li is the estimated lower limit for xi

ui is the estimated upper limit for Xi

ri h a random n~er uniformly distributed between zero and one.

Any generated point that violates an inequality conatraint is discarded. If

the constraints are violated NSMAX times consecutively the process will stop.

Probl... having more than a few constraints are. liable to bog down in

violations, particularly if the initial limits overlap appreciably infeasible

areas.

The search is bqun by evaluating NUMR randca points by use of the

above equation, N1lM1l being a 11Ultiple of the nUIIIber of variables. From these

the best HIET are selected and used as the basis for a new and shrunken range

for each variable. HRET is defined by NUMR/NSHRIN where NSHRIN is a shrinkage

factor. Within this new space NUKR new random points are evaluated. These,

plua the preYious NIET best, are sorted to yield a new NRET best and a new

shrunken space. the process is repeated until the range of each variable is

acceptably s.all, or until the r.nse has been shrunken MAXM times.

56

(Sophisticated User)

4-46

!!!!!!.!!:!.!
1. 	 McArthur, D.S., "Scratecy in Qaaearch- Alternative Methods for

Deaisn of txpedaenta", lllE Trans, on Engrg. Manaaement_, Vol EM-8,

March 1961, pp, 34-40.

2. 	 Gallaper, P,J., "MOP-1, An Optimizing Routine for the IBM 650",

Can. GE CiviliaA Atomic Power Dept. Report No. R60cAP35, 1960,

Special Features

KSTARr is an integer used to initialize the random number generator

subroutine FRANDN. If a large nUilber of random points is generated (MAX11

and/or NSMAX very large), several values of HSTART should be tried to

insure that the random numbers are being uniformly distributed.

It should be noted that the user's input values for RMAX(I) and

MKIN(l) establish absolute extremes for the variables which can only shrink.

If there is any uncertainty, BMAX(l) should be made higher than expected

and IHlN(l) lower thaD expected. At LEVEL • 0, para.eters set internally

for RANDOM are:

F • .001

NSMAX • 300

HAXM • 400

NSHRIN • 4

MSTAllT • 128

NUMR is set internally in RANDOM as NUMR•J•NSHRIN, where J is set in

MAIN and is equivalent to NRET. The user can set NRET and NUMR independently

since be inputs J and NSHRIN. A reasonable value of J is the integer result

of 10•N/NSIIRIN.

57

(Sophisticated User)

4-47

,!!put Var!!li!!,

INDEX index number of subroutine, • 6

LEVEL level of sophistication, • 1

!PRINT prints results every IPRlNT cycles, set at

zero for no inte~diate output

lDATA • 1, all input data is printed out

• 1, input data is not printed out

the number of independent variables X(I) (specified in MAIN)

NCONS the nUMber of inequality constraints

F fraction of original input range used aa a convergence

criterion

NSHRIN shrinkage factor

MSTAU anY positive inteaer, used as starting value for

aenerating randoa nu.bers

aaxi1111111 nllllber of cycles allCIW'ed if process does not

converge

NSMAX aai1111111 n.-ber of times constraints can be violated

consecutively before abandoning the search

RMAX(I) upper bound for variable X(l)

RKIN(l) lower bound for variable X(I)

Output Variables

U ainiaua value for the function

X(I) value of xt where ainiaua occurs

58

(Sophisticated User)

4-48

DIMENSION X(N),PHI(NOONS),RHAX(N),RMIN(N),Z(J,N),UU(J)

N•numerical value

J•numerical value

M-1

NN•l

NTOTIB.•l

CALL OPTIPAC(X,PHI,PSI,A,B,C,WORKA,DELX,STEP,XSTB.T,RMAX,r.KIN,DSTAR

l,NTERMS,GS,WATE,TEST,Z,UU,Bl,CONST,AA,BBB,CC,NCONS,NEQUS,M,N,NN,NT
20TER,J,XX)

STOP
END

Note: Tbe n.-rical valuaa of 11, NCOIIS, J (J • ltUT) -t be inaarted ia

the DIHEISION atat..eat. If NCOIS ia aero, thea put PBI(l) in the

DIHENSIOH atat...nt.

How to Set. Up Data Deck

no. of Cerda!!.!!!!.
413lltlliX, lZVEL, lPRUIT, IDATA 1

1 ISNCONS

1 El6.8
'

1 16

1 16HST.Aft

1 16liiSHRIN

1 16

JMAX(I) u-nyu required 5El6.8, .. required 5!16.8IKUI(l)

S.ttlna Up Service Subroutlaea

UIEAL, au paaa 4-63

OONST, aee paae 4-67

59

(Sophisticated User)

4-49

~~

I.AIIIlOH 1a a relathely s1- ..thod, but it does not hans up on

local opti... For thie nason, it is a good Mthod for c-.hecking the

r..ulta of other ..thode.

Aft i~~proved opti- aay be obtained, at the expense of time, by

ueing a laraer value of NSRRIN. RANDOM will not run efficiently with small

valuea of NSHllN, say less than 3.

L

60

(Programmer)

5-57

SIJIIIIOOTINI IIIIIDOK

!!!!!.!!!!.

Subroutillle RAMDOtl b uaed only a111 a aethod aubroutine aud ia called

Dilly hy OPTlPAC.

lnteraal Variables

'

Variables not included in the list below, ~an be found in the

Tbaaaurua of P.-ogr• Par•eters.

~ Definition

M(l) Luwer bouada oo X(1), aet•JMIN(I) in1t.ielly

CC(I) Upper bouads on X(I), set•RHAX(l) initially

Fraction of initial range used aa the aazU..

acceptable ranse for convergence

n Teaporary counter to coapare with lPRit~ for printout

11:0 Flaa, set•l after abnoraal exit, otherwise Ko-0

Teaporary counter of consecutive constraint violations

Ll,L2 Teaporary counters used for printing out results

weE Te.porary variable used for sorting the UU array

llAJlll Ha:i- nUIIber of cyclea peraitted 1.f no conversenc:e

"" An integer cODstant required by subroutine FRANDN,

aet-o after initial CALL FRARDH

IISTAitT Any positive integer to be uaed as the initial value of HM

• Nu.ber of independent variables X(I)

NCAXCS Nuaber of inequality conatraints PHI(l)

NCfCLE Couater of the nuaber of c:oaplete cycles

61

N!lET

NSHRttf

NSMAX

!IUHR

IIVtOL

PHI (I)

R(I)

u

liTDIP

UU(I)

UXTIIA

T!STl(l)

X(I)

XTUtP(l)

Z(I,J)

(Programmer)

5-58

N.-ber of ''beat" rand011 feasible points retained in each

cycle, called J in MAIN progr.., and used to dimension

the Z array

Shrinkage factor where N!lET•NIIttt/NSHRIN

Huiawn n•ber of consecutive infeasible rand011

points pe~itted

Nwnber of random feasible points generated each cycle-RIIT•NSHRIN

Counts the nuabar of constraints violated at a point

Values of the inequality constraints

A string of N randam nuabera associated with X(l)

Value of the optiaizatioo function at the optiaum

Value of the optiaization function at a trial point

Values of the optiaization function at eaeh of the NRET

feasible points, UU(l) contains the largest value

t.-porary storage for trial values of U

The maximum acceptable range of X(I) at convergence

Values of the independent variables at the optiaua

Values of the independent variables at trial points

The NRET beat random feasible points, stored in rows

62

(Programmer)

5-59

Initialize eouatera

CC(l)•RKAX(l)

AA(I)•RKIN(I)

TESTl(I)•P*(RHAX(I)-RHIN(I))

Cenerate a randa. point
XTEKP(l)•AA(I)+R(I)*(CC(l)-AA(l))
Evaluate UTEKP, PHI(I)'a at thia point

Feasible point
Z(J ,li•XTEMP(I)
UU(J)•tn'EKP

Generate a randa. point
UI'JIP(I)•.AA(I)+&(l)e(CC(I) -AA(I))
E•aluate ·uxtJA, PHI(I)'a at thia

NO

63

(Programmer)

5-60

Calla To and f~~ Subroutine RANDOM

~ eannot handle inequality constraints, and NEQUS is therefore

aot an input par...ter. To avoid getting an indefinite error aessage in

"'uhroutlae AIISWil, MEQUS is set.O in the body of RANDOM.

lf MAIM cycles are exceeded, it is still necessary to sort the

UU(t) array so that the best point so far can be output.

B) RESULTS OF TEST PROBLEMS

.Desisn of a Three Phase Electrical Transformer

Number of independent variables 6
Number of inequality constrai-nts 8
Number of equality constraints 0
User's level of sophistication 0
Number of methods tried 8

Method Time u Inde,Eendent Variables (ins)
Name (Sees) (cu. ins.) xl x2 x3 x4 x5 x6

SEEK! 0.68 73042. 11.27 14.42 11.78 57.99 178.69 524.81
SEEK2 0.69 70017. 7.90 15.75 16.92 53.87 193.76 499.21
SEEK3 2. 39 66 723. 8.66 12.91 18.86 40.77 187.56 439.45
ALTS 6.44 70704. 10.26 11.22 16.25 62.50 173.39 569.23
APPROX 12.24 67572. 10.13 10.00 18.00 50.00 172.54 503.55
RANDOM 29.69 68007. 8.67 11.49 16.01 58.26 167.66 527.40
GEOM 1.09 66 704. 8.41 13.09 18.75 40.81 187.15 436.56
ADRANS 6.61 69077. 9.41 8.75 15.57 67.82 152.44 589.25

Des~_gn of a Three Member 1 2-Dimensiona1 Structure

Number of independent variables 3
Number of inequality constraints 9
Number of equality constraints 0
User's level of sophistication 0
Number of methods tried 7

As described in the text, equality constraints have been

avoided by careful formulation of the problem. Only seven methods

were run because the problem is not of a form acceptable to

geometric programming.

64

65

Method Time u Independent Variables (sq.ins)
Name (Sees) (lbs) xl x2 x3

SEEK! 0. 71 5.659 .0095 .0649 .3375
SEEK2 0.94 7.995 .0000 .0778 .5000
SEEK3 3.50 3.127 .0483 .0000 .1688
ALTS** 0.47 5.545 .0247 .0375 .0334
APPROX* 0.25
RANDOM 3.52 5. 777 .0215 .0427 • 3493
ADRANS 11..52 3.127 .0483 .0000 .1688

** 	Subroutine ALTS could not make a linearized step after the direct

search had hung up. The values shown are simply the results at

the last iteration of the direct search.

* 	 Subroutine APPROX could not perform the second linearization

and therefore could not get started.

Design of a Simple Roller Bearing

Number of independent vari.ables 5
Number of inequality constraints 6
Number of equality constraints 0
User's level of sophistication 1
Number of methods tried 7

Method Time u IndeEendent Variables
Name (Sees) (cu. ins) xl x2 x3 x4 x5

SEEK! 0.54 20.350 .280 .280 •63 7 . 13.29 2.240
SEEK2 o. 71 26.976 .198 .198 1.314 25.50 1.585
SEEK3 6.65 28.695 .185 .185 1.472 28.96 1.484
ALTS 0.90 20.053 .287 .287 .600 12.74 2.292
APPROX 2.74 20.053 .287 .287 .600 12.74 2.292
RANDOM 14.37 21.708 • 311 .287 .648 9.09 2.225
ADRAI.'lS 8.14 20.077 • 287 .287 .600 12.65 2.293

C) FORTRAN IV LISTING OF PROGRAV OPTIPAC

---------------------~-~---------------------

SUBROUTINE OPTIPAC(XtPHltPSitAtB,CtWORKAtDELXtSTEPtXSTRTtRMAX,RMIN
ltDSTARtNTERMStGStWATE,TEST,z,u0,EX,CONSTtAAtBB6,CC,NCONStNEQUSt0tN
2tNNtNTOTER,NRETtXX)

0 H-1 ENS I ON X (1 l , PH I (1 l , P S I (1 I , Z. {NRI:. T , 1 i , AU-4 , 1 l , lJ (1 l , C (1 J t 'tJ 0 R KA (1 l '
lCC<NTOTERtl>tXX(ll,DELX(ll,sTEP<l>,xsTRT<l)tRMAXtl'•RMIN(li,OSTAR<
2N TOTER' 1 > tN TERMS (1) tGS 11 l , WP.Tf (1 l , TEST (1 i tUU (1 l , EX (N TOTER d l 'CONS T
3(1l,AA(NTOTER,l),BBBINTOTER,ll

COMMON INDEXtLEVELtlPRINTtiDATAtFtMAXMtGtNSHRINtMSTART,PDtEPS,ICT,
liFENCEtPLtNSTOPtNSMAXtNSHOTtNTESTtTEStRtREDUCEtNVIOLtKOtNNDEX
COM~ON /Al/WORK11100ltWORK2(lOOi,WORK3(lOOltWORK4(lOOl
COMMON /A2/WORK5(l0Q),WORK6(lOOJ
COMMON /A3/WORK9ClOQl,WORKlO<lOOJ,WORKll(lOOl
COMMON /A4/WORK12ClOOltWORK13(100ltWORK14:loo>,WORK15tlOOJ
COMMON /A5/WORK16(lOO>

COMMON /A7/WORK18(100~,wORK19ClOOl

COMMON /A8/IWORKl<lOOl

COMMON /NA~E/METHOD~9J

C 	 STORE THE NAMES OF THE METHODS FOR HEAUINGS IN SENSE AND ANSWER
DATA <METHQD(Jl,I=l,91/6HSIMPLE,5HS~EKlt5HSEEK2,5HSEc~3,4rlALTStbHA

lPPROX,6HRANDOMt4HGEOMt6HADRANS/
C SUBROUTINE OPTIPAC IS ESSlNTIALLY AN EXTENSION OF THE SMALL USER­
C WRITTEN MAIN PROGRAM. IT PERFORMS THE FOLLOWING FUNCTIONS•••
C 1. IT CALLS SUBR.DATA TO READ lN ALL NECESSARY DATA
C 2. IT ASSIGNS VALUES TO CERTAIN PARAMETERS AT LEVEL=O
C 3• IT CALLS THE REQUESTED METHOD SUBROUTINE
C 4• IT COMPUTES THE NET EXECUTION TIME FOR THE METHOD ANO PRINTS IT
C OUT
C 5. AFTER A NORMAL EXIT FROM A METHOD SUBROUTINE IT CALLS SUBR·
C SENSE TO PERFORM A SENSITIVITY ANALYSIS ON THE SOLUTION

1 CONTINUE
C INITIALIZE THE EXIT MODE FLAG KO

KO=O
C CALL SUBR.DATA TO READ IN ALL NECESSARY DATA FOR THE METHOD CHOSlN

CALL DATA lNtNCONStNEQUStM,NTOTER,RMAX,RMINtXSTRT,GS,STEP,DELX'T~S
lT,WATE,NTERMStEX,CONSTtBtCtAtNSENSE,FSENSEI

C THt STOPPING CRITERION IS 1NDEX=99 SO EV~RY COMPLtTE UATA uECK
C 	 SHOULD END WITH 099 PUNCHED IN COLUMNS lt2,AND

IF<INDEX.EQ.99> RETURN
JF<KO.EO.l>RFTURN

C 	 IF KO=l AFTER CALL TO DATA, THERE IS NO POINT
C RUN BECAUSE SEVERAL READ STATEMENTS WILL
C GENERAL DATA SEQUENCE IS NOW SHIFTED OUT
C ZERO U AND CLEAR THE X(II ARRAY AND ALL
C ARRAYS HEFORE CALLING A NEW METHOD

U=O.O
DO 2 I= 1 t N
xn>~o.o

2 	 CONTINUE

DO 4 I=ltlOO

HAVE

3

CONTINUING WITH THE
BEEN SKIPPED AND THE

OF PHASE
COMMON bLOCK WORKING

66

http:IF<INDEX.EQ.99

67

WORKl<I>=o.o

WORK2(1l=O·O

WORK3(ll=O•O

WORK4CI)=Q.O

WORK5t!)=O.O

WORK6(I>=O.O

WORK9(1)=0e0

\4.'0RK10(I)=0.0

WORKll!ll=O.O

vJORK 12 (I) =0 ~ 0

WORK13(1)=0.0

WORK14(Il=O.O

WORK15(1l=O.O

WORK16(ll=C.O

WORK18(l)=O.O

WORK19(l)=O.O

4 IWORKl!l)=O
C 	 CALL SUBR.SECOND TO GET TH~ STARTING EXECUTION TIME FOR THE METHOD

CALL SECOND(START)
IF<LEVEL.EQ.O.ANDelDATA.EQ.llWRITE(6,300J

C GO TO THE PART OF OPTIPAt WHICH SETS PARAMETERS FOR LEVEL=O AND
C CALLS THE REQUESTlD METHOD SUBROUTINE

3 JACK=INDEX+l
GO TO (10tlltl2tlltl4tl5tl6t17tl8ltJACK

10 IFCLEVEL.NE.O) GO TO 110
NSTOP=4*M+l0
IF<IDATA.EO.llWRITE<6t309~NSTOP

110 	CALL SIMPLE!XtUtMtNtAtBtCtWORKAi

GOT020

11 	 IF<LEVEL.NE.O) GO TO 1111

F=.Ol

MAXM=300

G=.Ol

IFtiNDEX.EQ.llNSHOT=l
IF!INDEX.EQ.llNTEST=lOO

C NOTE••• AVOID ZERO STARTING VALUES BY ADDING A SMALL INCREMENT
DO 211 I=ltN

211 	 XSTRT(Il=tRMAX(ll+RMlN<I)i/2. +0.000001

IF<IDATA.NE.llGOTOllll

WRITE(6,303lF

WRITE (6t304 >MAXi'-1

WRITE<6t305lG

IF!INDEX.EQ.llWRITEl6t312)NSHOT

IF!INDEX.EQ.llWRlTE!6t313)NTEST

WRITE!6,319> !XSTRT (I l ,I=l,NJ

1111 	 IF<INDEX.NE.3lGOTOlll

IF<LEVEL.NE.O)GOT01112

R=l.O

REDUCE==0.04

IF<IDATA.NEel)GOT01112

WRlfE(6,337>R
WRITE(6,338lREDUCE

1112 CALL SEEK3(X,UtNtXSTRTtR~AXtHMIN,PHitPSitNCONStNEQUStUARTtDST
lARtNTERMStNTOTER)

http:REDUCE==0.04

68

GOT020
111 CALL SEEKl(X,UtNtXSTRTtRMAXtRMIN,PHltPSltNCONStNEQUStUARTtDSTARtNT

lERMStNTOTERl
GO TO 20

12 	 IFCLEVEL·NE.Ol GO TO 112

F=l.OE-06

MAXM=50

PD=0.75

EPS=l.OE-8

ICT=4

IFENCE=O

PL=le3

DO 212 I:::: 1 tN

XSTRT(Il=(RMAX<Il+RMIN(Ill/2• + 0·000001

212 	GS(ll=l5.0

IF<IDATAeNEel)GOT0112

WRlTE(6,303lF

WRITEI6t304lMAXM

WRITE(6t307lPD

wr~ITEC6t332lEPS
WRITEC6t333) ICT

WRITEC6t334liFENCE

WRlTE(6t308lPL

WRITE(6t319l(XSTRT<Iltl=l,Ni

WRITE(6t320l<GS<Ilti=ltNl

112 CALLSEEK21XtUtNtXSTRTtRMAXtRM1NtPHl,PSI,NCONS,NEQUStGSJ

GO TO 20

14 IFCLEVELeNE.Ol ~0 TO 114

F=O.Ol

MAXM=300

G=O.Ol

PL=l•5

NSTOP=4*M+10

NSMAX=40

TES=0.0001
DO 214 l=l•N

XSTRT(Il=CRMAX(ll+RMIN(Ill/2e0+.000001

STEPill=O.lO*ABSCRMAX<Il-RMINtlll

214 	DELX(ll=.OOl*ABS<RMAX(ll-RMIN<Ili

IF<NEQUSeEO.OlGOT02215

DO 2214 I=ltNEQUS

2214 	WATE<Il=lO.OE+20
2215 	 IFtiDATAeNE.llGOT0114

\-JRITE(6,303lF
WRITEC6t304lMAXM
WRITEC6t305lG
WRITE<6t308lPL
WRITEl6t309lNSTOP
WRITE(6,310)NSMAX
WRITEt6,315lTES
WRITE16t319l<XSTRTClltl=1,Ni
WRITEC6t32ll tSTEPC I l tl=l,Nl
WRlTE(6,322l(DELX(l),I=ltNl
IFCNEQUS.GT.OlWRITEC6t324l(WATE(Jl,I=ltNEQUSl

http:IFCLEVELeNE.Ol
http:IFCLEVEL�NE.Ol

69

114

15

215

115

16

116

17

117

18

CALL ALTS{XtUtNtXSTRTtRMAXtRMINtWATEtSTEPtNEQUStNCONStPSitPHitMtNN
ltAt9tCtWORKAtDSTAR,NTERMStNTOTERtDELXtXXJ

GO T02(J
CONTINUE
lF<LEVEL.NEe0)GOT0115
F=O.vl
NS TOP=4*1-1+l 0
NSMAX=40
00215 I=ltN
XSTRT<Il=<RMAX(ll+RMJN(Il 112• + OeOOOOOl
STEP<Il=O.l*ABSCRMAX<Il-RMINtil I
OELXCil=O.OOl*ABSLRMAX(ll-RMIN<l''
TESTIIl=O.OOl*ABS<RMAX<Il-RMlN(IJI
IF<IDATAeNEel)GOT0115
\,. R I T E <6 , 3 0 3 l F
WRITEC6t309)NSTOP
WRITEC6t310>NSMAX
WRITE (6,319) (XSTRT (I l ,I=l,Nl
WRITE(6,32li(STEP(lltl=ltNi
WRITEC6t322l WELX(I l ,I=l,Nl
WRITEt6t323l <TEST(1 l, l=ltNI
CALL APPROXCXtUtNtDELXtSTEP,TESTtMtNNtAtBtCtWOR(A,XSTRT,RMAXtRMIN,

lPHI,PSitNCONStNEQUStUART,DSTARtNTERMStNTOTERtXX 1

GO TO 20
IFCLEVEL.NE.O) GO TO 116
F=.OOl
MAXM=400
MSTART=128
NSHRIN=4
NSMAX=300
IF<IOATA.NEel)GOT0116
~IRITE(6,3G3lF
WRITE(6,304lMAXM
WRITE<6t353lMSTART
WRITE(6,352lNSHRIN
WRITE(6,31UlNSMAX
CALL RANDOM(XtUtNtRMAXtRMINtZtUUt~RETtNCONStPHll
GO TO 20
lF(LEVEL.NE.OlGOT0117
F=O.Ol
MAX~1=300

G=O.OOl
lF(IDATAeNEel)GOT0117
WRlTE(6,303lF
WRITE(6,304lMAXM
WRITE(6,305lG
CALL GEOM<NTOTERtN,NCONStNTERMS,EXtCONSTtAA,BBB,CCtDSTARtRMAX,RMIN

ltXtXSTRTl
GOT020
IF!LEVELeNE.Ol GO TO 118
MAXM=75
t-1STAIH=l28
NSIAJ\X=50
DO 218I=ltN

http:IF!LEVELeNE.Ol

7o

218 	 XSTRT<I>=(RMAXCI>+RMINCIJ 112. + OeOOOOOl

IF(!DATA.NE.llGOTOll8

WRITEC6t304lMAXM

WRITE<6,353lMSTART

WRITE<6t310lNSMAX

WRITE(6,319l(XSTRT<I>•I=l,Nl

118 	 CALL ADRANSCXtU•N•XSTRT,RMAX,RMINtPHI,PSI,uARTtNCONS,NEOUStDSTARtN
lTOTER,NTERMSl

C CALL SUBR.SECOND TO GET THE FINAL TIME FOR THE METHOD AND COMPUTE
C THE NET EXECUTION TIME AND PRINT IT OUT

20 	 CALL SECOND<FINISHl

T=FINISH-START

WRITEC6tl04lT

IF<INDEX.EO.o.oR.INDEXeE0.7'GOTOl

IFCKO.EQ.Ol GO TO 22

IFCNSENSE.EQ.llWRITE<6,lOO)

GO TO 1

C SENSITIVITY ANALYSIS IS PERFORMED ONLY AFTER A NORMAL EXIT<KO=Ol
C FROM THE METHOD SUHROUTINE• AND WHEN THE WORD SENSITIVITY
C APPEARS IN COLUMNS 13 TO 23 ON THE FIRST DATA CARD FOR THAT METHOD

22 	 IF(NSENSE.NE.llGOTOl

IF<FSENSE.LE.O.OlGOT023

CALL SENSE(X,NtNCONS•NEQUS.FSENSEtiNDEX>

GOTOl

C USER HAS NOT ENTERED A VALUE FOR FSENSE ON THE CNCONS~ DATA CARD
23 WRITEC6tlOll

GOTOl
lUO FORMATC62HO ERROR lN RESULTS 50 SENSITIVITY ANALYSIS IS NOT PER

lFORMEDl
101 FORMATC1H-,92HERROR***SENSITIVITY ANALYSIS OMITTED- NO VALUE FOR

1 FSENSE ENTERED ON THE CNCONS> DATA CARD!fl
lu4 FORMATC1H-tl4Xtl7HEXECUTlON TIME =tF8.4,9H SECONDS/II
3UU FORMATC1H-,6X,67HTHE FOLLOWING PARAMETERS ARE ASSIGNED VALUES INTE

lRNALLY FOR LEVEL=0/7X•67H-- ­
2--------------------------/l

301 FORMATC61HONUMBER OF INDEPENuENT VARIABLtS • • • • ••• • •
1 N =t!6l

302 FORMATC61HONUMBER OF INEQUALITY c.GE.l CONSTRAINTS • • • • • NCO
lNS =tl6)

303 FORMATC61HOFRACTION OF RANGE USED AS STEP SIZE • •• • • • •
1 F =•El9.8l

3U4 FORMATI61HOMAXIMUM NUMBER OF MOVES PERMITTED • • ••• • • • MA
lXM =ti6l

3U5 FORMATC61HOSTEP SIZE FRACTION USED AS CONVERGENCE CRITERION.
1 G =tE19.8l

306 FORMATC61HONUMBER OF EQUALITY CONSTRAINTS •••• • • • • • • NEQ
IUS =ti6)

307 FORMATI61HOSTEP LENGTH MULTIPLIER FOR INITIAL PATTERN MOVE •
lPD =tE19.8l

3U8 FORMATC61HOACCELERATION FACTOR FOR PATTERN MOVE STEP SIZES •
lPL =tE19.8l

3U9 FORMATI61HUNUMBER OF ITERATIONS PERMITTED. • • • • • • • • • NST
lOP =ti6)

310 FORMATI61HOMAXIMUM NUMBER OF LINEARIZED STEPS ••• • •• • • NSM
lAX =ti6>

http:IFCKO.EQ.Ol

71

312 FORMATC61HONUMBER OF SHOTGUN SEARCHES PERMITTED• • • • • • • NSH
lOT =,16)

313 FORMATC61HONUMBER OF TEST POJNTS IN SHOTGUN SEARCH • • • • • NTE
1ST =tl6)

314 FORMAT(61HONUMBER OF CONSTRAJNT EUUATIONS (ROwsJ IN SIMPLEX.
1 M =ti6)

315 FORMATC61HOCONVERGENCE CRITERION FOR OPTI~IZATION FUNCTION • T
lES =tE19.8l

316 FORMATC61HOTOTAL NUMBER OF TERMS IN ALL RELATIONS• • • • • • NTOT
lER ;,16)

317 FORMATC61HOESTIMATED UPPER BOUND ON RANGE OF X(!> •• • • • • RMAX<
li> =t//!5El6.8)l

318 FORMATt61HOESTIMATED LOWER ~OUND ON RANGE OF X<IJ. • • • • • RMIN(
1Il =t//C5El6.8J)

319 FORM~T(61HOSTARTING VALUES OF XCI) • • • • • • • • • • • • .XSTRT(
11) =t//(5£16.8)~

320 FORMATC61HOSTEP LENGTH MULTIPLIERS FOR UNIVARIABLE SEARCH. • GS<
11) =t//C5E16.8)}

321 .FORMATC61HOINITIAL STEP SIZE INPUT BY USER • • • • • • • • • STEP<
11) =t//(5£16.8))

322 FORMATC61HOINCREMENTS FOR APPROXIMATING PARTIAL DERIVATIVES. ~ELXC
11) =t//(5£16.8))

323 FORMATC61HOLOWER BOUND ON STEP LENGTH REDUCTION• • • • • • • TEST(
11) =t//(5£16.8))

324 FORMATC61HCWEIGHTING FACTORS • • • • • • • • • • • • • • • • WATE(
11) =t//(5E16.8))

326 FORMATC61HONUMBER OF TERMS IN EACH RELATION. • • • • • • • NTERMS<
11) =,//(5El6e8))

327 FORMAT<61HOEXPONENTS OF EACH TERM IN EACH RELATION. • • • • EX(I,
lJ) =t//(5E16.8))

328 FORMAT(61HOCONSTANT CPOSITIVE' COEFFICIE~TS OF EACH TERM •• CONSTI
lJ) =,//(5£16.8))

329 FORMAT<61HURIGHT HAND SIDE OF SIMPLEX ARRAY· • • • • • • • • HC
lMl =t//(5El6e8))

330 FORMAT<61HOCOEFFICIENTS OF SIMPLEX OBJECTIVE FUNCTION. • • • C(
lN) =t//C5El6.8))

331 FORMATC61HOCOEFFICIENTS OF SI~PLEX CONSTRAINT EVUATIONS. • • A!M,
lN> =t//(5El6e8J)

332 FORMAT<61HOMAX. RELATIVE CHANGE IN U FOR CONVERGENCE • • • • E
lPS =tE19.8l

333 FORMAT(61HONO. OF TIMES STEP SIZE DIVIOEC ~y 10•0 • • • • • I
lCT =tl6)

334 FORMAT(61HOOPTION TO STOP AFTER UNIVARIABLE SEARCH FAILS • • IFEN
lCE =•16)

337 FORMATC6lHOPENALTY MULTIPLIER USED IN SEEK3• • • • • • • • •
1 R =tEl9e8l

338 FORMAT(61HOREDUCTION FACTOR FOR (Rl AFTER EACH MINIMIZATION. REDU
ICE =•El9.8)

352 FORMATC61HOSHRINKAGE FACTOR. • • • • • • •••••• • • • • NSHR
liN =t!6)

353 FORMAT<61HOSTARTING VALUE FOR RANDOM NUMBERS • • • • • • • • MSTA
lRT =ti6>

END

http:t//C5El6.8J

72

SUBROUTINE SENSE!XtNtNCONStNEQUS,FSENSE,INDEXJ

Dl1"1ENSION X!l)

COMMON /NAME/METH00(9l

COMMON /A3/XTEMPllOOltAbOVEClOOl,BELOWClOOI

WRITE(6,11METHOD(INDEX+ll

V.IRITE (6,8 lFSENSE

C IN THE FOLLOWING SENSITIVITY ANALYSIS, EACH VARIABLE IN TURN IS
C MULTIPLIED BY THE FACTORS Cle+FSENSEl AND (1.-FSENSEl AND ALL THE
C CONSTRAINTS ARE EVALUATED AT EACH POINT.
C STORE THE OPTIMUM VALUES OF XCII IN XTEMP(Il

DO 	 l 0 I= 1, N
lll 	 XTEMP!Il=X(l)

DO 5:) I= 1, N

X! I 1=(1.-FSENSEl*XTEMP(ll

WRITE (6, 2) I

III'I~ITE!6t3l I tX(I)

CALL UREAL(X,ULESSl

IF(NCONS.EQ.OlGOT020

CALL CONST(X,NCONStBELOWl

20 	 X!Il=(l.+FSENSEl*XTEMP(Il

WRITE(6,4)l,X!Il

CALL UREAL(X,UMOREl

WRITE(6,51ULESStUMORE

IF<NCONS.EQ.O)GOT030

CALL CONST(X,NCO~S,ASOVEl

WRITE(6,6l (J,BELOWCJltABOVECJl,J=ltNCONSl

30 	 IFINEQUSeEQ.OlGOT040

CALL EQUAL!X,ABOVEtNEQUSl

X! I)=(le-FSENSEl*XTEMP(Il

CALL EQUAL(X,BELOWtNEQUSl

WRifE(6,7l(J,BELOW!Jl,ABOVE(Jl,J=l,NEOUSl

40 Xll l=XTEMP!Il
5J CONTINUE

1 FORMATC1H-,45HSENSITIV!TY ANALYSIS OF THE OPTIMUM FOUND BY ,A6/1X,
lSlH-------------------------------~-------------------1/j

2 FORMAT<lH-,23XtlOHVARYING X(tl2t6H) ONLY/24Xtl8H----------------- ­
l//l

3 FORMAT11H+,2X,2HX(tl2t3H) =,£18.81
4 FOR~AT!31X,2HX(tl2t3HI =tE16.8~
5 FORMATI1H0,6X,3HU =tE18.8,lOXtEl6e8/)
6 FURt.ti/l.T(lXt4HPHI (,I2t3H> =tfl8e8tlOXtEl6.8)
7 FORMAT(lHO/lX,4HP~I!tl2t3Hl =tEl8•8tlOXttl6e8)
8 FORMAT(l~IOt52HFRACTION OF OPTIMUM Xtll USED AS INCR~~ENTt FSENSE =
ltE16.8//)

R ET'JRN
END

73

SUBROUTINE ANSWERCUtXtPHI,PSI,N,NCONStNEQUSl
DIMENSION X (1 l ,PHI (1) tPSI (11
COMMON INDEXtLEVELtiPRINTtiDATAtFtMAXMtGtNSHRINtMSTART,PD,EPStiCTt

liFENCE,PL,NSTOP,NSMAXtNSHOT,NTESTtTEStRtREDUCE,NVIOLtKO,NNDEX
COMMON /NAME/METH00(9l

C THIS SUBROUTINE IS USED MERELY TO OUTPUT THE FINAL SOLUTION IN A
C STANDARD FORM. IF AN OPTIMUM IS NOT REACHED<KO=llTHEN THE RESULTS
C AT THE LAST ITERATION MAY BE PRINTED OUT.

CALL UREI\L (X tU)

IF (KO.EC~. 0 J GOTOl

WRITEC6t18lMETHO~<INDEX+1l

~v R IT l <6 , 1 9 l U

GOT02

1 	 WRITEI6t20lMETHODCINDEX+ll

WRITE(6,2llU

2 	 WRITE(6,22l(I,X(J),J=ltNl

IF<NCONS.EQ.OlGOT03

CALL CONST(X,NCONS,PHll

V.Jl~ITE<6t23l
WRITE(6,24l(I,PHI (Il,I=1,NCONSl

3 	 IFCNEQUS.EQ.ClGOT030

CALL EQUAL(X,PSI,NEQUSl

\.oJRITE(6,25>

WRITEC6t26)(J,PSI(J),l=l,NEQUSl

18 FORMAT<lH-,16Xt30rlRESULTS AT LAST ITERATION OF tA6/l7X,36H------­
l-----------------------------fl

19 FORMATC29Xt3HU =tE16.8//)
20 FORMATC1Hl,21X,27HOPTIMUM SOLUTION FOUND BY ,A6/22X,33H---------­

l-----------------------/l

21 FORMATC20X,l2HMINIMUM U =•El6e8//)

22 FORMAT(25X,2HX(,I2,3H 1 =,El6.8l

23 FORMATClrl-,22HINEUUALITY CONSTRAINTS)

24 FORMAT(23X,4HPHI<,I2,3H) =,El6.8J

25 FORMAT<Hi-,22H Ei..IUALlTY CONSTRAINTS)

26 FORMAT!23Xt4HPSI(,I2t3Hl =tE16e8l

30 RETURN

END

SUBROUTINE DATA<NtNCONS,NEUUStMtNTOTERtRMAXtRMINtXSTRT,GStSTEPtDEL
lXtTEST,WATE•NTERMStEXtCONST,~tCtAtNSENSEtFSENSEl

DIMENSION RMAX(ll~RMINClltXSTRT<l'•GS!l>,~TEPCl~,uELX(lJ,TEST!ll,
1WA TE (1 l , NT ERMS {ll , EX (N TOTER d, , CONS T (1 i , B (1) , C (1 l , A (Md) , TITLE (17 l

COMMON INDEXtLEVELtlPRINTtiDA~-A,FtMAXMtG,~SHRINtMSTART,PD,EPS,ICTt

liFENCE,PL,NSTOP,NSMAXtNSHOT,NTEST•TES,R,REDUCEtNVIOL,KO,NNDEX
COMMON /NAME/METHOD<9'

c
c
C THE FIRST DATA CARD <INDEX,LEVEL,IPRINTtlDATAl MAY CONTAIN A HEAP-
e ING STARTING IN COLUMN 13 AND ENDING IN OR tiEFORE COLUMN 80
c

READI5tlOOliNDEXtLEVEL,IPRINTtiDATAt(TlTLE(ll,I=l,l7)

IFtiNDEX.EQ.99lRETURN

WRITEC6t24ll<TITLE!Ilti=l,l7>

74

C 	 CHECK TO SEE IF SENSITIVITY ANALYSIS HAS BEEN REQUESTED
NSENSE=O
IFtTITLE<ll.EQ.4HSENS•AND.TITLE<2l.EQ.4HITIVlNSENSE=l

C 	 SENSITIVITY ANALYSIS IS NOT AVAILABLE TO SIMPLE OR GEOM
IFtlNUEX·EUeOeOR.INUEX•EQ.7jNSENSE=O
IF!IUATAeNEellGOT0599
WRITE(6t240lMETHOD<INDEX+l)

WRITE(6,197liNDEX

WRITE!6tl98lLEVEL

WRITE!6tl99liPRINT

WRITE(6t200liDATA

599 CONTINUE
(
(CHECK THAT VALUES OF !DATA AND LEVEL A~E ACCEPTAbLE
c

If<LEVEL•GT.leOR.LEVELeLT.OIGO TO 600

IF<IDATA.GT.leOR.IDATAeLT.OJGO TO 601

GO TO 602

6UU 	 WRITE<6,235)

KO=l

RETURN

601 	 WRITE!6,236l

KO=l

RETURN

602 CONTINUE
c
C CONTROL RETURNED TO OPTIPAC IF INDEX OUTSIDE RANGE O•LE.INDEX·LE*8
c

IFtiNDEXeLE.a.oR.lNDEX.GE.OJ~O TO 603

IFtiNDEX.EQ.99lRETURN

WRITs<6t242liNDEX

KO=l

RETURN

603 	 IF!INDEX.EQ.O.AND.LEVEL.EQ.llGO TO 13

IFtiNDEX·EQ.ulGO TO 15

IF!NSENSE.EQ.llGOT0604

c
C NCONS READ FOR INDEX=lt2,3t4t5t6,7,8
c

READ(5,10llNCONS
IF<IDATA.EQ.llWRITfC6t202lNCONS
GOT0605

c
WHEN NSENSE=lc

c
IF SENSITIVITY ANALYSIS HAS bEEN RE~UfSTED <NSENSE=ll THEN THE

c FRACTIONAL INCREMENT FSENSE APPEARS ON THE SAME CARD AS NCONS• THE
c FORMAT IS (J5,El6e8)

604 	READ(5,l07lNCONStFSENSE

IF<IDATA.EQ.llWRITE(6,202)NCONS

IF(!DATA.EQ.llWRIT£(6,254lFSENSE

6U5 	 lF(lNDEX.EQ.8.AND.LEVEL•EQ.QlGO' TO 11

lF(INDEX.EQ.BlGO TO 9

lF(INOEX.EQ.7.ANUaLEVEL•EQ.OJGO TO 22

c

75

lFCIN0EXeEQ.6.ANDeLEVEL·EQ.QIGO TO 18
IF(LtVEL.EQ.J)GO TO ll

c
c F READ FOR lNDEX=lt2t3t4t5,6,7 WHEN LEVEL =1
c

READ(5,104lF
lf(IDATA.EQ.l)WRITf(6t203lF
IF<INDEX.EQ.5)G0 TO 11

9 CONTINUE
c
C MAXM READ FOR INDEX=lt2t3t4t6t7,8 WHEN LEVEL=l
c

READ (5 tl 0?> f'.lAXM
IF(lDATA.EQ.llWRIT[(6t204lMAXM
IF!INDEXeE0·6>GO TO 48
IFliNDEX.EQ.8.0R.INDEX.EQ.2~GO TO 11

lU CONTINUE
c
c G READ FOR INDEX=lt3t4t7 WHEN LEVEL =1
c

READC5tl04)G
IFCIDATA.EQ.l)WRITE(6t205lG
IFCINDEX.EQ.7>GO TO 22

11 CONTINUE
(

C NEQUS READ FOR 1NDEX=lt2t3t4t5t8
c

READ(5,10llNEQUS
IF<IDATA.EQ.l)WRITEC6t206lNEOUS
IF<INDEX.EQ.8.AND.LEVEL·EQ.l>GOT048
IF<LEVEL.EQellGOTO(l4t50,l8,12tl3),INDEX
IFliNDEX.EQ.5lGOT05l
GO TO 18

c
C MSTART READ FOR INDEX=6,8 WHEN LEVEL=l
c

48 IFCLEVEL.EQ.O)GOT052
READ(5,102lMSTART
IFCIDATA.EQ.l)WRITE(6t253lMSTART
IFCINDEX.EQ.8)GOT052

c
c NSHRIN READ FOR INDEX=6 WHEN LEVEL=l
c

READ(5,102>NSHRIN
IF(IDATA.EQ.llWRITEC6t252lNSHRIN
GOT052

50 CONTINUE
c
c PD READ FOR INOEX=2 WHEN LI::VEL =1
c

READ(5tl04lPD
IFCIDATA.EQ.llWRITE(6t207lPD

c

76

C EPS,ICT,IFENCE READ FORINUEX=2 WHEN LEVEL=l
c

READ<5,104lEPS
IF<IUATA.EQ.1lWRITEC6t232lEPS
READ(?,lOlliCT
lF<IDATA.EQ.llWRITE(6t233)1CT
READ(5t10liiFENCE
lf(lDATA.EQ.l)WRITEC6,234liFENCE

12 CONTINUE
c
c PL READ FOR INDEX= 2,4 WHE\l LEVEL=l
c

REA0(5tl04lPL
IF<IDATA.EQ.1>WRITE(6t208)PL
IF<lNDEX.E0.2lGO TO 18

13 CONTINUE
c
c NSTOP READ FOR INDEX= 0,4,5 WHE 'l !_EVEL= 1
c

READ<5tl02lNSTOP
IF<IDATA.EQ.llWRITE(6t209lNSTOP
If<INDEXeEO.O>GO TO 15

52 CONTINUE
c
c NSMAX READ FOR INDEX= 4,5,6t8 W':-iE"l LEVEL=l
c

READ(5,102lNSMAX
lF(IDATA.EQ.l.AND.INDEXeNE.6lWRITE(6,210l'lSMAX
IF<IDATA.EQ.l.AND·INDEX•EQ.6)WRITE(6,2441~SMAX
IF<INDEX.E0.6.0R.lNDEX·EQ.8lG) TO 18
IF<INDEX.EQe4lGO TO 16

51 CONTINUE
GO TO 18

14 CONTINUE
c
c NSHOT READ FOR INDEX= 1 \>JHE 'IJ LEVEL= 1
c

READ (5 d 02 l NSHOT
IF<IDATAeEOe1)WRITE(6t212lNSHOT

c
c NTEST READ FOR INDEX= 1 WHEN LEVEL=1
c

READ(5,102lNTEST
IF<IDATA.EQ.l>WRITE(6t213lNTEST
GO TO 18

15 CONTINUE
GO TO 23

16 CONTINUE
c
c TES READ FOR INDEX =4 WHEN LEVEL =1
c

READ(5,104lTES
1F<IDATA.EQ.llWRITE(6t215)TES

77

18 CONTINUE
c
c Rt REDUCE READ FOR 1NDEX=3
c

IF(INDEX.NE·3)GOT0609
IF<LEVEL.EQ.O)GOT0609
READ!5d04JR
READ!5,104lREDUCE
lF!IDATA.EQ.1lWRITE(6t237lR
!F(lDATA.EO.l>WRITEC6t238lREDUCE

c
C RMAX,RMIN READ FOR INDEX= 1•2,3,4,5,6,8
c
C NOTE ALL SUtiSCRlPTED VARIAtiLtS AR~ ZERO~U IMMEUIATELY dEFORE THEY
C ARE READ
c

609 DO 610 J=ltN
RMAX(J)-=Oe
R,'v11N(Jl=O.

610 CONTINUE
READ(5,105l<RMAX(lltl=l•Nl
IF<IDATA.EO.llWRITE(6t217J(RMAXtil,I=ltNl
READ (5 tl 0 5 i (RM IN (1 l , 1 =1 'N)
IF<IDATA.EQ.llWRITE!6t218i(RMIN(IJ,I=ltNl

c
IF!LEVELeNE.llGO TO 24
IF!INDEX.EQ.6lGO TO 24

c
c vJHEN LEVEL= 1

c
DO 611 J=ltN

bll XSTRT(J)=O•
READ(5,105l(XSTRT<I>tl=ltNl
IF<IDATA.EQ.llWRITE(6,219l(XSTRT<IJ,I=ltNl
IF!INDEX.EQ.2lGO TO 19
IF!INDEX.EQ.4)G0 TO 20
IF<INDEX.tU.5lGO TO 20
GO TO 24

19 CONTINUE
c
c GS READ FOR INDEX= 2 WHEN LEVEL=l
c

DO 612 J=1tN
612 GS(J)=O.

READ (5' 10 5 J (GS (1) t I= 1 'N J
1 F (IDA T A • EO .1 >WRITE< 6, 22 0) (GS (I l , I= 1, Ni

GO TO 24
20 CONTINUE

c
c STEP READ FOR INDEX= 4t5 WHEN LEVEL=l
(

DO 613 J=ltN
613 STE.P(Jl=O.

78

IF<IDATA.EQ.llWRITE(6t22l>tS1EP<I>,I=ltNl
c
c DELX READ FOR INDEX= 4t5 WHEN LEVEL=l
c

DO 614 J=ltN
DELX(Jl=O.

614 TEST<Jl=O.
READ(5,105><DELX(I),I=l•N>
IF<IDATA.EQ.l)WRITE(6t222><DELX(I>,I=l,Nl
IF<INDEX.EQ.4)G0 TO 21

c
C TEST READ FOR INDEX= 5 WHEN LEVEL=!

READ(5,105l<TEST(lltl=l,NJ
IF< IDATA.EQ.l)WRITE(6,223)(TEST(IJ,I=l,NJ
GO TO 24

21 CONTINUE
c
c READ FOR INDEX = 4 WHEN NEQUS·GT•O AND LEVEL=l
c

IF<NEQUS.EQ.0lGOT024
DO 615 J=1,NEQUS

615 WATE(Jl=O.
READ (5 t 10 5 > (WA T E (I) , I =1 , N E QUS >

IF<IDATA.EOellWRITE(6t224l(WATE<I>,I=ltNEQUS>
GO TO 24

22 CONTINUE
c
c.: DATA FOR GEOM 1NDEX=7
c
c NTERMStEXtCONSTt READ FOR INDEX = 7
c
c
c

NTERMS(J)=NO. OF TERMS IN EACH RELATION
EX(I,Jl =EXPTS FOR EACH TERM OF EACH RELATION

c
(LONST(Jl =CONSTANT COEFFICIENTS Of tACH TERM
c NO.OF VARIABLES=NtNO.OF CONSTRAlNTS=NCONS
c

NT=NCONS+l
c
c NO.OF TERMS IN EACH RELATION=NTERMS(NTi
c

DO 616 J=1tNT
616 NTERI'-15 <J) ::()

READ (5,106 i (NTERMS t J) ,J= 1 ,NT)
lF<IDATA.EQ.l)WRITE(6t226i(NTERMS(Jl,J=ltNTl

c
C NTOTER=TOTAL NOeOF TERMS
(

NCHEK=O
DO 500 J=ltNT

c
C CHECK USERS ESTIMATE OF NTOTER
c

500 NCHEK=NCHEK+NTERMS(Jl

79

IFtNTOTER.EQ.NCHEK>GOT0498
KO=l
WRIT~(6t255lNCHEK

GO TO 24
c
C EX(NTOTERtN>=EXPONENTS FOR EACH TERM OF EACH RELATION
c

498 DO 617 J=ltN
DO 617 I=ltNTOTER

617 EX({,J)=O.
READI~tl05)((EX<ItJltJ=l,Nl,l=ltNTOTERJ
IF(Il>ATA.EQ.l lWRiTE(6t227 > (tlX(1 ,JJ tJ=ltN> tl=l tNTOTERJ

c
C CONST<NTOTERl=CONSTANTS FOR lACH RELATIONSHIP
c

DO 618 J=ltNTOTER
618 CONST(Jl=O.

READf5,105J (CONST(Jl,J=ltNTOTERJ
IF (IDA T A. EQ .1) WRITE (6 t 22 8 J (CONS T (J l , J= 1, tHOT ER)
GO TO 24

c
23 CONTINUE

c
C BtCtA READ FOR INDEX= 0
c

DO 619 I= 1 tM
DO 619 J=1tN
B(J>=O.
C! I):::0.

619 AfltJl=O•
READ(5,105l(B(J),J=ltM>
IF<IDATA.EQ.llWRITE(6t229J(~(Ji tJ=l,Ml
READ(5,105><C<Iltl=ltNl
IF<IDATAeEO.llWRITE(6t230l(C(IJ,I=l,Nl
READC5,105l((A(!,J),J=ltNl,I=ltMl
IF< IDJ\.TAeEO.l llhRITE(6t23ll ((A(I ,Jl ,J=l,N·I tl=l,Ml

24 CONTINUE
luu FORMATt413tl7A4)
101 F0Rt-1AT (I 5)
102 FORMAT<l6)
103 FORMAT<I3)
104 FORMATtE16.8l
105 FORMAT<5El6.8>
106 FORMAT(l6I5l
107 FORMAT<I5tE16.8)
197 FORMAT(61HOINDEX NUMBER OF METHOD USED • • • • • • • • • • • lND

lEX =tl6)
198 FORMATC61HOUSERS LEVEL OF SOPHISTICATION • • •••• • • • • LtV

lEL =tl6)
199 FORMATt61HOINTERMEDIATE OUTPUT EVERY IPRINT<TH) CYCLE• • • • IPRI

lNT =d6)
2~0 FORMAT(61HOINPUT DATA IS PRINTED OUT FOR lDATA=l ONLY• • • • IDA

lTA = t I 6)

tiO

2u2 FORMATI61HONUMBER OF INEQUALITY (eGE.> CONSTRAINTS • • • • • NCO
INS =ti6l

203 FORMAT(61HOFRACT10N OF RANGE USED AS STEP SIZE • • • • • • •
1 F =,El9.8l

2U4 FORMAT(61HOMAXIMUM NUM~ER OF MOVES PERMITTED • • • • • • • • MA
lXM =,16)

205 FORMATI61HO~TEP ~IZE fRACTIO~ USED AS CONVERGENCE CRITERION.
1 G =tE19.Bl

206 FORMAT<61HONUMBER OF EQUALITY CONSTRAINTS• • • • • • • • • • NEQ
IUS =tl6l

207 FORMATI61HOSTEP LENGTH MULTIPLIER FOR INITIAL PATTERN MOVE •
lPD =tE19.8)

2U8 FURMAT<61HOACCELERATION FACTOR FOR PATTERN MOVE STEP SIZES •
lPL =t£19.8)

2U9 FURMAT<61HONUMBER Of ITERATIONS PERMITTED. • • • • • • • • • NST
lOP =,!6)

210 FORMATC61HOMAXIMUM NUMBER OF LINEARIZED STEPS. • • • • • • • NSM
lAX =,16)

212 FORMAT!61HONUMBER Of SHOTGUN SEARCHES PERMITTED· • • • • • • NSH
lOT =,16)

213 FORMAT<61HONUMBER OF TEST POINTS IN SHOTGUN SEARCH • • • • • NTE
1ST =,16)

215 FORMAT(61HOCONVERGENCE CRITERION FOR OPTIMIZATION FUNCTION • T
lES =,£19.8>

217 FORMAT(61HOESTIMATED UPPER BOUND ON RANGE OF X<I> •• • • • • RMAX(
11 > =,//(5El6.8ll

218 FORMAT(61HOESTIMATED LOWER BOUND ON RANGE OF XII>. • • • • • RMINI
lil =,//(5El6.8))

219 FORMAT<61H-STARTING VALUES OF X(II • • • • • • • • • • • • eXSTRT<
11) =,//(5£16.8))

220 FORMAT<6lHOSTEP LENGTH MULTIPLIERS FOR UNIVARIAdLE SEARCH. • GS(
lll =•//t5El6.8ll

221 FORMATI61HOINITIAL STEP SIZE INPUT BY USER • • • • • • • • • STEP(
11> =t/1(5El6.8)l

222 FORMATI61HOINCREMENTS FOR APPROXIMATING PARTIAL DERIVATIVES. OELX(
lll =•//(5El6.8ll

223 FORMAT<61HOLOWER BOUND ON STEP LENGTH REUUCTION• • • • • • • TEST(
11) =t//(5£16.8))

224 FORMAT(61HOWEIGHTING FACTORS • • • • • • • • • • • • • • • • WATE(
11) =t//(5E16.8))

226 FORMAT!61HONUMBER OF TERMS IN EACH RELATION. • • • • • • • NTERMS(
11) =t/1(1615))

227 FORMAT<61HOEXPONENTS OF EACH TERM IN EACH RELATION • • • • • EX(I,
lJl =,//(5El6.8ll

228 FORMAT<61HOCONSTANT (POSlTIVEl COEFFICIENTS OF EACH TERM • .CONST(
1Jl =t//(5El6.8ll

229 FORMAT<61HORIGHT HAND SlDt OF SIMPLEX ARRAY• • • • • • • • • ~(
lMl =t//(5El6.8)l

230 FORMAT(61HUCOEFFICIENTS OF SIMPLEX OUJECTIVE FUNCTION. • • • C<
lNl =t//(5El6.8l)

231 FORMAT<61HOCOEFFICIENTS OF SIMPLEX CONSTRAINT EQUATIONS. • • A<M,
lN) =t//(5£16.8))

232 FORMAT<61HOMAX. RELATIVE CHANGE IN U FOR CONVERGENCE • • • • E
lPS =tE19.8>

http:t//(5El6.8l

81

233 FORMAT(6lHONO. OF TIMES STEP SIZE DIVIDED BY 10·0 • • • • •
lCT =•16}

234 FORMAT(61HOOPTION TO STOP AFTER UNlVARIAtiLE SEARCH FAILS • • IFEN
lCE =tl6)

235 FORMAT(lH-,56HERROR***lNPUT VALUE FOR (LEVELi IS NEGATIVE OR TOO L
lARGE/l

236 FORMAT(lHOt78HERROR***VALUE FOR <IDATA 1 IS INCORRECT, 1 OR 0 ARE
lTHE ONLY ACCEPTABLE VALUES/I

237 FORMAT(61HOPENALTY MULTIPLIER USED IN SEEK3• • • • • • • • •
1 R =•El9.8l

238 FORMAT(61HOREDUCTION FACTOR FOR (Rl AFTER EACH MINIMIZATION. REUU
lCE =tE19.8l

240 FORMAT<lH-,2CX,33HLISTING OF ALL DATA READ IN FOR ,A6/21Xt39H---­
l-----------------------------------/l

241 FORMATI1Hltl7A4)
242 FORMAT(lH-t28HERROR***THE VALUE OF INDEX =ti6,43H IS OUTSIDE THE

!ALLOWABLE RANGE OF 0 TO 8/>
244 FORMATI61HOMAXIMUM NO• OF CONSECUTIVE INFEASIBLE POINTS. • • NSM

lAX =ti6)
251 FORMAT<lHO,l616)
252 FORMAT(61HOSHRINKAGE FACTOR. • • • • • • • • • • • • • ••• NSHR

liN =tl6)
253 FORMATI61HOSTARTING VALUE FOR RANDOM NUMBERS • • • • • • • • MSTA

lRT =tl6)
254 FORMATI61HOFRACTIONAL INCREMENT FOR SENSITIVITY ANALYSIS • • FSEN

lS~ =•El6.8>
255 FORMAT(lHOt80HERROR***USERS ESTIMATE OF (NTOTERl IS INCORRECT - TH

lE CORRECT VALUE IS NTOTER =ti6l

RETURN

END

SUBROUTINE SIMPLE(XtUtMtNtAtUtCtEi

DIMENSION X(l),A(Mtll,B(lltC(ll tE<MtlltM0(2)

COMMON lNDEXtLEVELtiPRINTtlDATAtFtMAXMtGtNSHRINtMSTARTtPDtEPStiCT,

liFENCEtPL,NSTOPtNSMAXtNSHOT,NTESTtTES,R,REDUCEtNVIOL,KO,NNDEX
COMMON/A4/P(100)tXX(lOO)tY(lOQ>,pE(lOO)
COMMON/A8/JH(100)

c
C SUBROUTINE SIMPLE IS USED PRIMARILY AS A MEANS TO CALCULATE
C A VALUE OF THE OBJECTIVE FUNCTION AT THE OPTIMUM CONDITIONS
C OR IF THE SOLUTION IS NOT VALID TrllS SU~ROUTINE THEN OUTPUTS
C THE DIAGNOSTIC MESSAGES
C THE ACTUAL ITERATIVE PROCess OF THE REVISED SIMPLEX TECHNIQUE IS
C PERFORMED IN SUBROUTINE SIMP
c
c

c
C THE FOLLOWING STATEMENTS ARE TO DETERMINE THE CONOlTION OF THt
C SOLUTION ON RETURN FROM THE SUBROUTINE SIMP
c

IF<MO(ll.GT.5)GOT018

MODEl=MO(l)+l

82

c
C NO FEASI~LE SOLUTION CAN BE FOUNU FROM THE GIVEN DATA
c

15 WRITE(6t51)
GOT020

c
C AN UNBOUNDED OPTIMUM HAS BEEN FOUND
c

16 WRITE<6t52>
GO TO 20

c
C THE MAX. NUMBER OF ALLOWABLE ITERATIONS HAS BEEN EXCEEDED
C THE SOLUTION IS STILL FEASIBLE
c

17 WRITE(6,53) M0f2)
GO TO 20

c
C THE MAX. NUMBER OF ALLOWABLE ITERATIONS HAS BEEN EXCEEDED
C THE SOLUTION AT THE TIME OF INTERUPTION WAS NOT FEASIBLE
c

18 WRITE(6t54>M0(2)
20 KO=l

GO TO 11
c
C THE SOLUTION IS VALID --­ CALCULATE THE OPTIMIZATION FUNCTION
C AND OUTPUT THE RESULTS
c

21 U=O.O
DO 23 J=1tN

23 U=U+C(Jl*X(J)
c
C IF THE INDEX DOES NOT EQUAL ZERO THE OUTPUT FROM THE SUBROUTINE
C SIMPLE IS O~ITTED.
c

IF<INUEX.GTe0) GO TOll
WRITE(6,30J
WRITE(6t3l>U
WRITEC6t32)(J,X<Iltl=l,N)

11 RETURN
30 FORMAT(1Hlt22Xt36HOPTIMUM SOLUTION

l--------------------------------;J
31 FORMAT<20Xtl2HMINIMUM U =tEl6eB//J

FOUND BY SIMPLE/23Xt36H---­

32 FORMAT<25Xt2HX(t!2t3H) =tE16.Bl
51 FORMAT(lX,44H NO FEASIBLE SOLUTION CAN BE FOUND BY SIMPLE)
52 FORMAT<lHOt43HTHE SIMPLEX ROUTINE FOUND UNBOUNDED OPTIMUM)
53 FORMAT(lHOt97HTHE MAXIMUM ALLOWABLE NO OF ITERATIONS FOR SIMPLEX H

lAS BEEN EXCEEDED,--SOLUTION IS STILL FEASieLE/ltiOtl7HNO OF ITERATI
10NS=tl5l

54 FORMAT(lHOt85HNO FEASIBLE SOLUTION EXISTS FOR SIMPLEX-PROGRAM STUP
lPED ON ALLOWAclLE NO OF ITERATIONS/lHOtl7HNO OF ITERATIONS=,I5J

END

83

SUBROUTINE SIMPCM.N,KO,KBtEtA•BtCtNSTOP>

D I r-1ENS ION B (1 l ,c (1 l, E (1 l 'KO (2 l, KB (l) , A (M, 1 l

COMMON /A4/PC100ltXC10Q),Y(lOOl,pE(lOOl

COMMON /A8/JHC100)

EQUIVALENCE (XXtLL)

LOGICAL FEAS,VERtNEG,TRlG,KQ,ABSC

c
C THE PURPOSE OF THE SU~ROUTINE SIMP IS TO PERFORM THE ITERATIVE
C METHOD OF LINEAR PROGRAMMING KNOWN AS THE SIMPLEX METHOD
C SIMP IS A MODIFIED VERSION OF SUBROUTINE SIMPLE IN THE LIBRARY OF
C THE I.B.M. 7040 COMPUTER AT MCMASTER UNIVERSITY
c
C SET INITIAL VALUES, SET CONSTANT VALUES

ITER = 0
NUMVR = 0
NUMPV = 0
TEXP = .5**16

c
C IF LEVEL=O THE MAXIMUM NUMBER OF ITERATIONS ALLOWED IS SET
C AUTOMATICALLY AT 4*M+l0 IN OPTIPAC •• AT LEVEL=l NSTOP IS READ IN
C AS DATA• THIS APPLIES FOR lND~X=Ot4t5
c

NCUT=NSTOP
NVER = M/2 + 5

c
C THE LOGICAL VARIABLE FEAS IS USED TO DETERMINE WHETHER THE
C SOLUTION IS FEASIBLE OR NOT
c

FEAS = .FALSE.
c
C* • NE'vJ I START PHASE ONE WITH SINGLETON BASIS
c
c SELECT THOSE COLUMNS IN ACI,Ji WHICH HAVE ONLY ONE NON ZERO
c COEFFICIENT
c SET KBCJl=l (WHERE J= THE COLUMN NUMBERl
c NOTE THAT IF THE ABOVE CONDITION IS TRUE BUT THE CORRESPONDING A
c VALUE IS NEGATIVE <Il TH~RE IS A POSSIBILITY THAT THE NON­
(NEGATIVITY CONSTRAINT HAS BEEN VIOLATED J THEN SET KB(Ji=O FOR
c THAT COLUMN
c

DO 1402 J = ltN

KB<Jl = 0

KO = .FALSE.
DO 1403 I = l,M

IF (A(!,J).tQ.O.QI GO TO 1403

IF CKQeOReA(!,J)eLTeO.Oi GO TO 1402

KQ = .TRUE.

1403 CONTINUE
KBCJ) = 1

1402 CONTINUE

1400 DO 1401 I = ltM

JH (I) = -1

14vl CONTINUE

c

http:CKQeOReA(!,J)eLTeO.Oi
http:A(!,J).tQ.O.QI

84

C* 1 VEH 1 CREATE INVERSE FROM 'Kb' AND 1 JH 1 (STEP 7)
c

1320 	VER = .TRUE.

I NVC = 0

NUMVR = NUMVR +1

TRIG = .FALSE.

DO 1101 I = 1,M2

E(l) = o.o

llvl CONTINUE

MM=l
c
C SET Et1l AND EVERY I=N*(M+l~ VALUE OF ECll EQUAL TO 1·0 UP TO
C t=M**2 <N=SET OF INTEGERs>.
C SET XCil=Btll FOR I=1•M CIE LET X<Il BE lHE VARIABLE IN THE BASis>
c

DO 1113 I = l,M

E < r.-tt--1 l = 1 • o

PE(l) = 0.0

Xtll = BCil
IF (JH(ll eNE.Cl JH(ll = -1
i'-1t-1 = MM + M + 1

1113 CONTINUE
C FORM INVERSE

DO 1102 JT = l,N
IF (KBtJTl.EQ.O) GO TO 1102
GO TO 600

c
c TRANSFER CONTROL TO THE MACRO -JMY- BEGINING AT STATEMENT NUMB~R
c 600 FOR ALL COLU~NS THAT HAVE KB(Jl=l.O
c LET TY=PIVOT ELEMENT
c SET IR=ROW NUMBER IN WHICH THE PIVOT ELE~ENT OCCURS
c CALCULATE Ati,JTl/8(Il SELECT THE LARGEST VALUE IN COLUMN JT
c ~ET TY=CTHE VALUE OF THE ABOVE RATIOl
c CHECK THAT TY.GT.O. RESET THE fLAG K~(JTJ:o
c
c 600 CALL JMY
c CHOOSE PIVOT
c

1114 	 TY = o.u

KQ = .FALSE.

DO 1104 I = l'M

IF lJHlil.NE.-1.0R.ABS(Y(lli.LE•TPIVI GO TO 1104
IF (KQl GO TO 1116
IF (X(Jl.EQ.O.l GO TO 1115
IF tABS<Y<Il/X(JlleLE.TYl GO TO 1104
TY = ARS(Y(ll/X(Ill
GO TO 1118

1115 KQ = eTRUE.
GO TO 1117

1116 IF (XCil.NE.o ••oR.AbS(Y(IJ'·LE.TYJ GO TO 1104

1117 TY = ABS (Y C I) l

1118 I R = I

1104 	 CONTINUE

KR<JTl = n

85

(TF.ST PIVOT
IF (TY.LE.O.) GO TO 1102

c PIVOT
GO TO 900

(

C TRANSFER CONTROL TO THE MACRci -PlV- ~EGINING AT STATEMENT NUM~ER
c 900
c
C 900 CALL PIV

1102 CONTINUE
c
C RESET ARTIFICIAL$
c

DO 1109 I = ltM

IF (JH(ll.EQ.-1) JH(l) = 0

IF (JH<Il.EQ.O) FEAS = .FALSE.

1109 CONTINUE
c

THE LOGICAL VARIABLE VER IS USED TO DETERMINE IF THE SOLUTION IS
c IN PHASE 1 OR IN PHASE 2
c

c

12vv VER = .FALSE.
c
C *** PERFORM ONE ITERATION **•
C* 1 XCK 1 DETERMINE FEASIBILITY (STEP 1>
c

NEG = .FALSE.

If <FEASl GO TO 500

FEASo: .TRUE.

DO 12 01 I = 1,M

IF (X(I>.LT.OeOl GO TO 1250
IF (JH(Il.EQ.Ol FEAS = .FALS~•

1201 CONTINUE
C* 1 GET 1 GET APPLICABLE PRICES (STEP 2)

IF (.NOTeFEASl GO TO 501
500 DO ~03 I = l,M

P(ll = PE(I)

IF (X(Il.LT.Oel X<Il = o.

503 	CONTINUE

ABSC = .FALSE.

GO TO 599

1250 FEAS = .FALSE.
NEG = .TRUE.

5Ul DO 5U4 J = 1' M

P(J) = o.

504 	CONTINUE

Al3SC = .TRUE.

DO 505 I = 1 tM

t-1M = I

IF (X(Jl.GE.O.Ol GO TO 507

ABSC = .FALSE.

DO 508 J = ltM

P<JJ = P(Jl + ECMMl

f-1r"l = MM + M

508 CONTINUE

http:X(Jl.GE.O.Ol
http:JH(Il.EQ.Ol

86

GO TO 	 505
5U7 	 IF CJHCI>.NE.Ol GO TO 505

IF (X(I l.NE.O.) ABSC = .FALSE.

DO 510 J = l,M

P(J) = PCJl - ECMM)
Mfv'1 = MM + 1>'1

510 CONTINUE

5C5 CONTINUE

c
C* 1 MIN 1 FIND MINIMUM REDUCED COST <STEP 3)
c

599 	 JT = 0
BB 	 = o.o
DO 701 J =ltN

IF CKB(Jl.NE.O> GO TO 701

DT = o.o

DO 303 1 = ltM

DT = DT + P<I) * ACltJI

303 CONTINUE

IF CFEASJ DT = DT + ((Jl

IF 	 <ARSC) DT = - ABSCDT)
IF CDT.GE.8Bl GO TO 701

BB = DT

JT :.: J

7vl CONTINUE.
c
C TEST FOR NO PIVOT COLUMN
c

IF <JT.LE.O> GO TO 203
c
C TEST FOR ITERATION LIMIT EXCEEDED
c

IF !lTEReGEeNCUTl GO TO 160
ITER = ITER +1

c
C 	 START OF THE MACRO -JMY­
C
C* 'JMY 1 MULTIPLY INVERSE TIMES A(.,JT' !STEP 4>

6UO DO 61U I= l'M
YCl) = o.o

610 	CONTINUE

LL == 0

COST = CCJT>

c
C LET Y(I l (WHERE I =THE ROW NUMBER) BE THE COEFFICIENT OF THE
C VARIABLE IN THE BASIS IN COLUMN JT
C SET COST=THE COEFFICIENT OF THE JT-TH TERM IN THE OBJECTIVE
C FUNCTION

00 6 o5 I = l , M

AIJT = A(I,JTl

IF !AIJT.EQ.O.l GO TO 602

COST =COST+ AIJT * PE(II

DO 606 .J = 1 'M

LL = LL + 1

http:CJHCI>.NE.Ol

87

YCJ) = YCJ) + AIJT * E(LL)

606 CONTINUE

GO TO 6C5

602 LL = Ll + M

6U5 CONTINUE

c
c COMPUTE PIVOT TOLERANCE
c

YMAX = 	0.0
r...
C SET YMAX=THE LARGEST VALUE Of Y(t)
t SET PIV=YMAX*0•5**16
c

DO 620 I = ltM

YMAX = AMAXl(ABS(Y(IIl,YMAX I

620 CONTINUE

TPIV = YMAX * TEXP

C RETURN TO INVERSION ROUTINE, IF INVERTING
c
C END OF MACRO -JMY­
C

IF IVER) GO TO 1114
C COST TOLERANCE CONTROL

RCOST = YMAX/BA
IF CTRIG.AND.BB.GE.-TPIV) GO TO 203

TRIG = .FALSE.

IF <HB.GE.-TPIVl TRIG = .TRUE•

C* 'ROW' SELECT PIVOT ROW <STEP 5)

C AMONG EQ5. WITH X=O• FIND MAXIMUM Y AMONG ARTIFlCIALSt OR, IF NONE,

C GET MAX POSITIVE Y<Il AMONG MEALS•

lR = 	IJ
AA = 	0.0
KQ = 	.FALSE.
DO 1050 I =1 tM

IF IX<Il.NEeOeOeOR·Y<I>.LEeTPIVI GO TC 1050

IF CJHCI>.EQ.O) GO TO 1044

IF <KOl GO TO 1050

1045 IF <Y<Il.LEeAAl GO TO 1050

GO TO 1047

1044 IF (KQ) GO TO 1045

KG! = • TRUE.

1047 	 AA = Y(Il

IR = I

1050 	CONTINUE

IF <IR.NE.Ol GO TO 1099

AA = 1.0£+20

C 	 FIND MIN. PIVOT AMONG POSITIVE EQUATIONS
DO 1010 I = ltM

IF CY<IleLE.TPIV.OR.X<II.LE.o.o.oR.YCil*AA.LEeXCil l GO TO 1010
AA = X(ll/Y(Il
IR = I

liJlJ CONTINUE
IF (eNOTeNEG> GO TO 1099

(FINU PIVOT AMONG NlGATIV~ tQUATlONSt IN WrllCH X/Y IS LE55 THAN THE

http:IR.NE.Ol

88

C MINIMUM X/Y IN THE POSITIVE EQUATIONS, THAT HAS THE LARGEST AbSF(Yl
BB = - TPIV
DO 1030 I = ltM

IF <X(J).GEeOe.OR.Y<I>.GE.bBeOReY(II*AA.GT.XII l GO TO 1030
BP. = Y (I l
IR :: I

1030 CONTINUE

C TEST FOR NO PIVOT ROW

1099 IF <IReLE.ul GO TO 207

C* 1 PIV' PIVOT ON IIR,JT' (STEP 6l

I A = JH (I R l

IF <IA.GT.Ol KB<IAl = 0

c

C START OF MACRO'-PlV-

C

900 	 NUI'IJPV = NUfv!PV + 1

JH (I R) = JT

KbtJT) = IR

c
C SET Yl=-<COEFFIClENT OF THE VARlAULE IN THE BASIS IN ROW IRl
C =A<IR,JTl
C SET Y<IR)=-1.0
c

Y I = -Y (I R)

Y<ll~l =-leU

LL = 0

c TRANSFORM INV~RSE
DO 904 J = ltM

L = LL + IR
IF <E<LleNE.O.Ol GO TO 905

LL = LL + M

GO TO 	 904

c
c LET XY=INVERSE OF -A(lRtJTI AND E<LLl=INVERSE OF ACIR,JTI
c
c
c SET X<IRl=B<IRl!A<IR,JTl END OF MACRO -PIV­
c

905 	 XY = E(Ll I Yl

PE<Jl = PE(J) + COST * XY

E<Ll = o.o

DO 906 I = ltM

LL 	 = LL + 1
E<LL) =tiLL) + XY * Y(Il

906 CONTINUE

904 CONTINUE

c TRANSFORM X
XY = X!IRl I VI
DO 908 I = lt M

XOLD =XII)

X(l) = XOLD + XY * Y(ll

IF <.NOT.VER.AND.X<ll.LTeO••ANDeXOLD.GE.o.l X<I> = o.

908 	 CONTINUE

Y<IRl = -YI

X(lRl = -XY

http:E<LleNE.O.Ol
http:IA.GT.Ol
http:IReLE.ul

89

IF CVER> GO TO 1102
IF INUMPVeLEeMl GO TO 1200

c
C TEST FOR INVER~ION ON THlS lTERATlON
c

lNVC = INVC +1
If ClNVC.EQ.NVER) GO TO 1320
GO TO 1200

c
C* END OF ALGORITHM, SET EXIT VALUES *** c

2U7 IF leNOT.FEAS.OR.~COSTeL~.-lOOO.l GO TO 203
c
c 	 INFINITE SOLUTION
(

K = 2
GO TO 250

c PROBLEM IS CYCLING
160 K = 4

GO TO 250
c
c FEASIBLE OR INFEASIBLE SOLUTION

203 K = 0

250 IF CeNOTeFEASl K = K + l

DO 1 3 9 9 J = 1 , N

XX -· 0.0

KBJ = Kb(.J)

IF lKBJ.NE.O) XX = XIK8Ji

Kt3(J) = LL

1399 	CONTINUE

KO (1 l = K

KOC2> = ITER
RETURN

END

SUBROUTINE SEEKlCXtUtNtXSTRTtRMAXtRMIN,PHI,PSitNCONStNEQU~tUART,
1 DSTAR,NTERMStNTOTERl

DIMENSION X(l),XSTRTCl>tRMAXCl)tRMlN(1l,pHIC1l,pSl(ll,DSTAR(NTOTER
l,lltNTERMSCl)

COMMON lNDEXtLEVELtlPRlNT,IDATAtFtMAXMtGtNSHRlNtMSTARTtPDtEPStiCT,
liFENCEtPLt~STOPtNSMAXtNSrlOTtNTESTtTEStRtREDUCEtNVIOLtKO,NNUEX

lf(lNDEX.EQ.l)WRITEl6tl9l
IFCINDEX.EO.l.ANU.IPRINTeGT.QlWRITEC6t7)

c
C SUBR.SEARCH IS USED BY SEEKl AND SEEK3tBOTH OF WHICH ARE CALLED BY
C OTHER METHODS• NNDEX IS USED lN SEARCH (AND OPTIMF) TO IDENTIFY
C SEEKl OR SEEK3.(1NDEX RETAINS THE VALUE FOR THE METHOD WHICH HAS
C CALLED SEEKl OR SEEK3)• .
c

NNDEX=l

KOUNT=O

90

SUBROUTINE SEEKlCXtUtNtXSTRTtRMAXtRMINtPHI,PSltNCONStNEQUStUART,
1 DSTAR,NTERMStNTOTER)

DIMENSION X<l1tXSTRT(lltRMAX(lltRMIN<ll,pHIClj,PSICll,DSTARCNTOTER
ltl),NTERMS(l)

COMMON lNDEXtLEVELtiPRlNTtlDATAtFtMAXMtGtNSHRlNtMSTARTtPDtEPStlCTt
liFENCEtPLtNSTOPtNSMAXtNSHOTtNTESTtT£S,RtREUUCE,NVlOLtKOtNNDEX

IF!INUEX.EQ.l>WRITElbtl91
IFCINDEX.EQ.l.ANDalPRlNT•GT.Q~WRlTE(6,7l

c
C SUBR.SEARCH IS USED BY SEEKl AND SEEK3tBOTH OF WHICH ARE CALLED bY
C OTHER METHODS. NNDEX IS USED IN SEARCH lAND OPTIMFl TO IDENTIFY
C 5EEK1 OR SEEK3·<1NDEX RETAINS THE VALUE FOR THE METHOD WHICH HAS
C 	 CALLED SEEKl OR SEEK3)•
c

NNDEX=l
KOUNT=O

2 	 CALL SEARCHCXtUtNtXSTRT,RMAXtRMlNtPHI,PSl,NCONStNEQUStUARTt
1 DSTAR,NfERMStNTOTERl

C IF SEEKl HAS BEEN CALLED BY ANOTHER METHOD RETURN AFTER CALL
C TO SEARCH
C RESET NN0EX=INDEX FOR FUTURE CALLS TO OPTIMF OR StARCH BY THE
C CALLING METHOD.

NNOEX=INDEX
IF<INDEXeN~·llRETURN
CALL SHOTCUtXtNtKKtPHitPSitNCONStNEOUStRMAXtRMIN)

C 	 CHECK TO SEE WHETHER SUBReSHOT HAS FOUND AN IMPROVED POINT
IF<KK.EQ.ll GO TO 4
IFCKO.EQ.OlGOT016

C 	 KO CANNOT BE RESET IN SUBR.SHOT, THEREFORE IF KO=l AT THIS STAG~
C 	 THEN SUBR.SEARCH FAILED ANU SHOT FOUND NO IMPROVEMENT

WRITt(6t5)
GOT016

4 	 IF<IPRINT.GT.OlWRITEt6t25lU,CXti>,I=l,Nl

KOUNT=KOUNT+l

IF<KOUNT.LE.NSHOT>GOT013

WRITE(6,17lNSHOT

KO=l

GOTOlb

C REDEFINE STARTING POINT FOR SEARCH
13 DO 14 I=ltN
14 XSTRTCil=X<I)

GOTO 2
C PRINT OUT OPTIMUM<KO=Ol OR LAST ITERATIONS RESULTSCKO=ll

lb CALL ANSWER(UtXtPHI,PSitNtNCONStNEQUSi
5 FORMAT<lH-,71HDIRE(T SEARCH HAS HUNG UP AND SHOTGUN SEARCH CANNOT

lFIND A HETTER POINT/41HTRY A UlFFfHENT STARTING POINT AT LEVEL=l/l
7 FORMAT<lH-,l5X,lHUt25Xt23HINDEPENUENT VARIA~LES X//l

19 FORMAT<lHltlOXt38HDIRECT SEARCH OPTIMIZATION USING SE~Klt/l
17 FORMATilH-t48HSHOT6UN SEARCH FOUND AN IMPROVEMENT BUT NSHOT =,Ib,

ll8H HAS BEEN EXCEEUED/1Xt34HTRY RUNNING THIS PROULEM ON ADRANS/>
25 	 FORMAT(lH-,7H.SHOTe ,5Elbe8/(24Xt4El6e8>)

RETURN

END

http:IF<KK.EQ.ll

91

SUBROUTINE SHOTCUtXtNtKKtPHI,PSI,NCONStNEQUStRMAXtRMINI
DIMENSION PHI(l)tPSI(l),RMAXIll,RMIN(lJ,xtl)
COMMON INOEXtLEVELtiPRINTtlDATAtFtMAXM,G,NSHRINtMSTART,PD,EPS,ICT,

liFENCE,PLtNSTOPtNSMAXtNSHQT,NTESTtTEStRtREDUCEtNVIOLtKOtNNDEX
COMMON/A2/RRC100ltXX(lOOI
COMMON /A5/Rf(l00)

C U=OPTIMUM DETERMlN~D BY UIRECT SEARCH. lT IS CHANGED TO IMPROVED
C VALUE IF SUCH A VALUE IS OBTftiNED
C XX= TRIAL VALUES OF XCI) FRO~ SHOTGUN SEARCH
C RF= FRACTION OF RANGE USED IN SHOTGUN SEARCH
C KK= INDICATOR TO SHOW IF U RETURNED IS AN IMPROVEMENT
C INITIALIZE RANDO~ NUMBER GENERATOR

CALL FRANDNCRRtN,ll
UMIN=U
KK=O

C THIS SHOTGUN SEARCh IS INTENDED TO GET THE SOLUTION OFF A FENCE
C RATHER THAN TO INCH IT TOWARDS THE OPTIMUM. THEREFORE LARGE STEPS,
C EQUAL 10. TIMES THE INITIAL STEP SIZE IN SEARCH ARE TRIED.

DO 1 I=ltN
1 RF<I>=lOe*F*ABS(RMAX(I>-RMlNII)I

DO 4 J=l•NTEST
CALL FRANDN<RRtNtO)
DO 2 I=l,N

2 XXCI)=(XCii-RFCI)l+RR(li*2•0*RFCIJ
CALL OPTIMFCXXtUTEST,PHitPSitNCONStNEQUSJ
IF!NVIOLeNE.OJGOT04
IF!UTEST.GEeUMIN>GOT04
UMIN=UTEST
U=UTfST
DO 3 l=l•N

3 X(!)=XX(l)
KK=l

4 CONTINUE
RETURN
END

SUBROUTINE SEARCH (XtUtNtX~TRTtRMAXtRMIN,PHltPSitNCONS,NtUUSt

1 UARTtDSTAR,NTERMS,NTOTER)
DIMENSION X(l)tXSTRT(l),RMAXCl),RMINCll,PHI<l),pSI(l),

1 DSTAR!NTOTERtl)tNTFRMSCl>
COMMON INDEXtLEVELtiPRINTtiDATAtFtMAXMtGtNSHRINtMSTARTtPD,EPS•ICT,

liFENCEtPLtNSTOPtNSMAXtNSHOTtNTESTtTEStRtREDUCEtNVIOLtKOtNNDEX
COMMON/Al/XO(lOO),XB<lOUJ tUXXX<lOUJ,TXXX(lOQJ

c
C DIRECT SEARCH PORTION OF SEEKl AND SEEK3
c
C SUBR.SEARCH IS USED BY SEEKl AND SEEK3tBOTH OF WHICH ARE CALLED BY
C OTHER METHODS. NNDEX IS USED IN SEARCH (AND OPTIMF) TO IDENTIFY
C SEEKl OR SEEK3.<INDEX RETAINS THE VALUE FOR THE METHOD WHICH HAS
C CALLED SEEKl OR SEEK3l.
C NNDEX=l MEANS SEARCH HAS BEEN CALLED BY SEEKl
C NNUEX=3 MEANS SEARCH HAS oEEN CALLEU ~y SEEK3

92

C IN CASE SEARCH IS CALLED DIRECTLY BY ANOTHER METHOD,DEFINE NNuEX
!F(NNDEX.NEeleAND•NNDEXeNEe3J~NDEX=INDEX
NVIOLl=l

KKK=O

Ml = 0

C 	 DEFINE INDICES OF X(l~ FOR GEOMETRIC PROGRAMMING

IF<INDEXeNEe7)GOTO 20

Kl=2

K2=NTOTER-N

GOTO 30

2u 	 Kl=l

K2=N

30 DO 	 40 I =K 1 , K2
DXXXCIJ=O•

TXXX<l)=O.

XO(!I=O•

40 XB<Il=O.

DO 60 I =Kl tK2

60 X<I> = XSTRT(Il

C SET FIRST BASE POINT

DO 70 I=KltK2

70 XO(!) =X(l)

C GENERATE DELX(l) AND TEST<Il

DO 80 I=KltK2

DXXX< I) = F*<RMAX(I >-RMIN(I J J

80 TXXX(l)=DXXX<Il*G
C CHECKS FOR PURPOSE OF CALL TO SEEKl

NCALL=l
90 	 IF<INDEXeNE.7l GO TO 100

CALL GEOPTCNTOTERtNtNCONStNTERMS,USTAR,UART,X)

GOTO 110

100 CONTINUE

CALL OPTIMFlXtUARTtPHI,PSltNCONStNEQUSJ

110 IFlNCALLeNE.l>GOTO 120

UARTO = UART

12u CONTINUE
C ONCE THE SOLUTION HAS BECOME FEASlbLE(NVIOL=Ol THE PENALTY
C FUNCTIONS IN OPTI~F PREVENT IT GOING INFEASIBLEeTHEREFORE NVIOLl=O
C MEANS THE SdLUTION HAS BECOME PERMANENTLY FEASIBLE

IF<NVIOL•EQ.v)NVIOLl=O

IF<INDEX.EQ.l) GO TO 130

IFCINDEX.EQ.3J GO TO 130

IF<INUEX.EQ.7) GOTO 130

C IF SEARCH IS BEING USED MERELY TO OBTAIN A FEASIBLE STARTING POINT
C THEN RETURN AS SOON AS SOLUTION GOES FEASIBLE

IFCNVIOLl.EQ.O)GO TO 365

130 GO TO (170, 200t 210t 355> NCALL

170 CONTINUE

C 	 MAKE SEARCH
180 	NFAIL=O

DO 240 I=KltK2

X (I) =X t I> +UXXX (I)

NCALL=2

GO TO 90

http:IFCINDEX.EQ.3J
http:IF<INDEXeNE.7l

200 	CONTINUE

IFCUART.LT.UARTOl GOTO 230

XCll=X!I)- 2eO*DXXXCI>

NCALL=3

GO TO 90

210 	CONTINUE

lf!UARTeLTeUARTOl GOTO 230

NFAIL = NFAIL + l

X (I l =XC 1) +DXXX I I)

GOTO 240

230 	UARTO = UART
240 	CONTINUE

IFCINDEXaNEe7)GOTO 250

Nur-1B=K2-l

IF<NFAILeEQaNUM~IGOTO 260
GOT0315

250 IFCNFAILaEQ.N)GOTO 260
GOTO 315

260 DO 2BO I=KltK2
IF!DXXXCil.GTeTXXX(J)j GO TO 290

280 CONTINUE
GO TO 385

290 DO 310 l=KltK2

310 DXXX(l)=DXXX!ll/2•

GOTO 180
C ESTABLISH NEW BASE POINT

315 DO 320 I=KltK2
320 XB (I l = XC I >

Ml = Ml + 1
lf!INDEXaEOellGOT0330

GO TO 340

330 	KKK=KKK+l
IFCKKKaNE.IPRINT) GO TO 340
CALL UREAL!XtULOW)
WRITE (6t2> MltULOW , (XIIl~ I=ltNl
KKK=O

340 CONTINUE
IF!Ml.GTeMAXM> GO TO 385

C MAKE A PATTERN MOVE
DO 350 I=KltK2

350 	Xlll =XIII+ (XII)- XO(J)J

NCALL=Lt

GO TO 90

355 	CONTINUE
IfCUARTaLTeUARTOl GOTO 370
DO 360 I=KltK2
XO (I > = X~ I I)

3tlu 	XCll = Xti(ll
GOTO 180

370 DO 380 I=KltK2

380 XO (I l = XB (1)

UARTO = UART
GOTO 180

385 IF!INDEX·EQ.7)GOT0387

94

CALL UREAL(XtU)
CALL OPTIMF(XtUARTtPHitPSitNCONStNEQUSI
IF<NVlOL·EQ.UlGOT0387
IFtMleGT.MAXMlWRITE(6t4lMAXM
KO=l

387 RETURN
2 FORMAT(lHO,I4t3Xt5El6e8/(24Xt4El6e8l)
4 FORMAT(lH0,60HNO FEASIBLE SO(UTION AFTER ALLOWABLE NUMBER OF MOVES
1, MAXM =•16/l

END

SUBROUTINE OPTIMF(X,UARTtPHitPSitNCONStNEQUSl
DIMENSION X(lltPHI(lltPSI~ll
COMMON INDEX,LEVELtiPRINT,IDATAtFtMAXMtGtNSHRINtMSTART,PD,EPS,ICT,

liFENCEtPLtNSTOPtNSMAXtNSHOTtNTEST,TEStRtREDUCE,NVIOLtKO,NNDEX
C VERY MINOR VIOLATIONS OF INEQUALITY CONSTRAINTS SHOULD NOT MAKE
C THE ENTIRE SOLUTION INFEASIBLE• THEREFORL TEST FOR PHI<l'·GE.ZEHO
C WHERE ZERO=-l.OE-10

ZERO=-l.OE-10
NVIOL=O

C SUBR.OPTIMF IS USED BY SEEKl AND SEEK3,BOTH OF WHICH ARE CALLED UY
C OTHER METHODS. NNDEX IS USED IN OPTlMF <AND SEARCH) TO IDENTIFY
C SEEKl OR SEEK3.1INDEX RETAINS THE VALUE FOR THE METHOD WHICH HAS
C CALLED SEEKl OR SEEK3'•
C NNDEX=l MEANS SEARCH HAS BEEN CALLED BY SEEKl
C NNDEX=3 MEANS SEARCH HAS BEEN CALL~U bY SEEK3

SUMl=O.O
SUM2=0.0
CALL UREAL(X,Ul
IF<NNDEX.F.Q.3lGOT0110

c
C SEEKl PENALTY FUNCTIONS-
c
C A ROUTINE TO CALCULATE A VALUE FOR AN ARTIFICIAL ObJECTIVt
C FUNCTION OF THE FORM
C UART=UREAL+SUMIABSCPHl(I''~*lO·E20+SUMCABSCPSI(IJ 1 l*lO•E20
C WHERE
C
C

PSllll AND PHI(l) IN THE ABOVE EXPRESSION ARE THE VALUES OF THE
CORESPONDING EQUALITY AND INEUUALIT~ CONSTRAINTS THAT HAVE HElN

C VIOLATED
!F(NCONS.EQ.OlGOT02
CALL CONST<X,NCONS,PHll
DO 1 I=l,NCONS
IF<PHIIIl.Gt.ZEROlGOTOl
SUMl=SUMl + ABS(PHI(JI l*lO.OE+20
NVIOL=NVIOL + 1

1 CONTINUE
2 lf(NEQUS.EQ.OlGOTOll5

CALL EQUAL(X,PSI,NEQUS)
DO 3 I=l,NEQUS

3 SUM2=SUM2 + ABS<PSICll)*lO.OE+20
GOT0115

95

C SEEK3 PENALTY FUNCTIONS ­
c
C TH~ ARTIFICIAL OBJLCTlVE FUNCTION IS OF THE FORM
C UART=UREAL + R*SUMCle/PHI(IIJ + SUMtlPSl(J)**2l/SQRT<RJI
c

110 	DIV=SQRT(Rl

IF<NCONSeLEeOlGOTOll3

CALL CONST(XtNCONStPHil

DO 112 I=ltNCONS

IF<PHI<Il.~E.ZEROlGOTOlll

NVIOL=NVIOL+l
C ADO A SEVERE PENALTY TO ANY PHl<I~ WHICH IS VIOLATED

SUM1=SUMl+AtlS(PHitlll*l0·0~+20

GOT0112
C AVOID DIVIDING BY APPROXIMATELY ZERO, THERE IS NO POINT PENALIZING
C A VERY SMALL PHitll ANYWAY

111 IF<ABStPHICI) leLT•-ZERO)GOT0112
SUMl=SUMl+R/AeS<PHI(IIl

112 CONTINUE

113 IF<NEQUSeLE.OlGOT0115

CALL EQUAL(X,PSitNEOUSl
DO 114 J=ltNEOUS

114 SUM2=SUM2+CABSCPSI (Jl)**2l/DIV

115 UART=U+SUMl+SUM2

RETURN

END

SUBROUTINE SEEK2<XtUtNtXSTRT,~MAXtRMINtPHI,PSitNCONStNEOUStGSJ
DIMENSION X (1 l , X S T RT (1) 'RMAX (1) t Rr-il N (l i t PH I (1 l , PSI (1 l , GS (1 l
COMMONINDEXtLEVEL•IPRINTtlDATAtFtMAXMtGtNSHRlNtMSTARTtPDOtEPStlCT,

liFENCEtPLtNSTOPtNSMAXtNSHOT,NlESTtTE5,RtREDUCEtNVl0LtKOtNNUEX
COMMON /Al/DX(100) tXO(l~Q),DXS(lQO)tXN<lOOl
NNDEX=INDEX
~iRITE(6tlOlJ

KUT=O

KOUNT=O

DO 2 I= 1, N

X(I)=XSTRTl I)

XO(Il=X<IJ

uX(I J=F*AI:3S<RMAX(1 l-Rt41N(I) i

DXS(I >=DX(I l

2 CONTINUE
61 CALL OPTIMFCXtUARTO,PHitPSI,NCONStNEQUS)
62 U=UARTO

C PERFORM THE UNIVARIABLE SEARCH
DO 6 I= 1 tN

C MAKE A MOVE IN THE POSITlVE UlRECTlON
3 	 X(I l=X< I)+{)X(I)

CALL OPTIMF!XtUARTtPHI,PSitNCONStNEYUS'

IF<UART.LTeUlGOT04

C 	 MAKE A MOVE IN THF. NEGATIVE DIRECTION
X(I J=X< I J-2.0*DX< I J

96

CALL OPTIMF(X,UARTtPHl,PSI,NCONS,NEWUS)
lF(UARTeLTeUlGOT05

C RETURN TO ORIGINAL VALUE
X (I) =X (1) +DX (I)
GOT06

4 U=UART
C INCREASE STEP LENGTH AFTER A SUCCESSFUL MOV~

DX(I l=DX< I l*GS(I l
X< I l=X< I l+DX(1 i
CALL OPTIMF(X,UARTtPHl,PSltNCONS,N~YUSt

C
lF(UARTeLTeU)GOT04
RETURN TO ORIGINAL POSITION AFTER A FAILURE
X (I) =X (I) -DX (1)

C
DX< I l=DXS(I l
DECIDE WHETHER OR NOT TO PROCEED WITH UNIVARIABLE SEARCH

C <IFENCE=O AT LEVEL=Ol
lF<IFENCt.EQ.llGOT06
GOT03

C INCREASE STEP LEN~TH AFTER A SUCCESSFUL NEGATIVE MOVE
5 OX(I l=-DX(I)

GOT04
6 CONTINUE

C CHECK PERCENTAGE IMPROVEMENT IN U
CALL OPTIMFIXtUARTtPHI,PSitNCONS,NEQUSl
IF(AeSIUART-UARTOI.GTeEPS*A6~(UARTQJ)GOT06
IF<KUT.LT.ICTIGOT07
IF(NVIOL.EQ.u)GOT099
KO=l
~IRITEC6.!05l
GOT099

C REDUCE STEP SIZE bY A FACTOR OF 10•0
7 DO 18 I= 1, N

DX(I >=DX(I lflO.O
18 DXSC I)=DXC I l

UARTO=UART
KUT=KUT+l
GOT062

C START PATTERN MOVES
8 U=UM<T

PD=PDO
DO 42 I= 1, N

42 XN<Il=Xlll
15 DO 9 I=l,N

9 XN(1 l =XNl I l+(X <I)-XO(I))*PI)
CALL OPTIMF<XN,UART,PHl,PSI,NCONS,NEQUSl
IF<UART·LT•UlGOTOl4
IF(PD·LT.O.OlGOT013

C TRY A NEGATIVE PATTERN MOVe
DO 40 I=ltN

40 XN (I l =XN (I) - (X< I) -XO (I))*Pi.>
PD=-PDO
GOT015

C RETURN TO ORIGINAL POINT
1 3 DO 1 6 I =1 , N

97

UARTO=U

KOUNT=KOUNT+l

IFCIPRINT.EO.O>GOT017

IF<KOUNT.EQ.IPRINT>WRITEC6tl021

IFCCKOUNT/IPRINT)*IPRlNTeNEeKOUNT)GOT017

CALL UREALCXtUU)

WRITEt6t1U3)KOUNTtUUtCX,Iiti=ltNl

17 IFCKOUNT.~U.MAXMlGOTC20
GOT062

c ACCELERATE STEP LENGTH AFTER SUCCESSFUL PATTERN MOVES
14 	 PD=PD*PL

U=UART

DO 11 I= 1 tN

11 	 XNC I >=XN(I)+(X(I J-XOC 1) >*PO

CALL OPTIMFCXNtUART,PHitPSJ,NCONStNEQUS)

IF<UART.LTeU)GOTOl4

c 	 RETURN TO LAST POSITION AFTER PATTERN MOVE FAILS
DO 41 I=l,N

41 	 XN (I > =XN (I) - (X t I) -XO (1) l *PU

PD=PDO

GOT015

c NO CONVERGENCE AFTER MAXM COMPLETE CYCLES
20 WRITEC6tl04lMAXM

KO=l
99 CALL ANSWERtUtXtPHitPSitNtNCONStN~QUSi

lul FORMATtlHlt46HOPTIMIZATION USING U!RECT SEARCH MtTHOD SEEK2/~
102 FORMATtlH-,15X,lHU,25Xt26HINDEPEN~ENT VARIA~LES X<I>t/l
103 FORMATC1HO,I4,3X,5El6•8/(24Xt4El6.8) l
104 FORMATtlH-,29H OPTIMUM CANNOT BE FOUND IN ,I3,7H CYCLESl
105 FORMATtlH-,43HSEEK2 CANNOT FIND A FEASIBLE STARTING POINT/)

RETURN

END

SUBROUTINE SEEK3CXtUtNtXSTRT,~MAXtRMINtP~I,PSltNCONStNEQU~tUART,DS
lTARtNTERMStNTOTERl

DIMENSION X<lltXSTRTCl>•RMAX(lltRMINCli,pHI(ll,pSICl>t~STARCNTOTER
ltl>tNTERMSCll ,

COMMON lNDEX,LEVELtiPRINTtlDATAtFtMAXMtGtNSHRINtMSTARTtPDtEPStlCT,
liFENCEtPLtNSTOPtNSMAXtNSHQT,NTESTtTEStRtREDUCEtNVIOLtKOtNNUEX

1FCINDEX.EQ.3)WRITEC6t9J
ULAST=lOeOE+40
KOUN·T=O

C 	 DEFINE NNDEX=3 SO THAT OPTIMF AND SEARCH WILL FUNCTION CORRECTLY
NNDEX=3

C DEFINE R AND REDUCE FOR THE CASE WHERE SEEK3 HAS BEEN CALLED bY
C ANOTHER METHOD

IFCINDEX.NE.3>R=l.O
IFCINDEX.NE.3>REDUCE=Oe04

1 CALL SEARCHCXtUtNtXSTRTtRMAXtRMINtPHltPSltNCONStNEQUStUARTtDST
lARtNTERMStNTOTER)

C iF SEEK3 HAS BEEN CALLED BY ANOTHER METHOD RETURN
C RESET NNDEX=INDEX FOR FUTURE CALLS TO OPTIMF OR SEARCH BY THE
C CALLING METHOD.

C

98

C

C

NNDEX=INDEX

IFC!NDEX.NE.3)RETURN

IF<KO.NE.llGOT05

WRITEC6tl4J

GOT06

5 	 KOUNT=KOUNT+l

IFCIPRINT.EQ.O)GOT02

IFCKOUNT.EQ.IPRINTlWRITEC6tlCJ

IF(CKOUNT/IPRINTl*IPRINT.NE.KOUNT)GOT02

WRITEC6t4)R

WRITEC6tll)U,(X(Ilti=ltNl

2 IFCA~S(U-ULAST>.GleleE-07*ABSCULASTJ)GOT07

OPTIMUM HAS BEEN REACHED

6 CALL ANSWERCUtXtPHltPSltNtNCONStNEOUSl

RETURN

7 	 JFCR.GT.l.OE-20)GOT08

WRITEC6tl2)R

1(0=1

GOT06

8 	 ULAST=U

R=R*REDUCE

DO 3 I=ltN

'3 	 XSTRTCI>=X(l)
GOTOl

4 FORMATClHOt3HR =tE16.8)

9 FORMAT(1Hl,45HOPTIMIZATION USING DIRECT SEARCH METHOD SEEK3,//)

10 FORMATClH0,38X,27HINDEPENDENT VARIABLES X(I)/tl
11 FORMAT(1Xt3HU =tE16e8tlXt4El6•8/(2lX,4El6.8l)
12 FORMATClHOt23HNO CONVERGENCE WITH R =tE16.sJ
l4 FORMAf(66HlSEEK3 uNAULE TO FINU A ftASlbLE STARTING POINTCALL Prllt

lll.GE.O.Ol/)

END

SUBROUTINE ALTSCXtUtNtXSTRTtRMAXtRMINtWATEtSTEPtNEOUStNCONStPSitPH
1 I tt·hNN tA '~, CtWORKA 'DS TAR tNTERI-'IS tNT OTI:::R 'ut. LX tXX)

UlMENSION XClltXSTRTClltRMAX(lltRMINCllt~ATECli,~TEPll~,PSl(lltPHI
l(lJ,DELXClJ,A(Mtll,B(lltC(lltWORKA(Mtl),USTARCNTOTERtl~,NTERMSllJ,

2XX(ll
. COMMON lNDEXtLEVEL,IPRINT,IDATA,F,MAXM,Gt~SHRINtMSTART,PD,EPS,ICT,
liFENCEtPL,NSTOPtNSMAXtNSHOTtNTEST,TEStRtREDUCEtNVIOLtKOtNNDEX

COMMON /A5/ XINC(l00)
WRITE(6,1)
UU=l.OE+40
UI:)EST=leOE+40
NCY=O
CHECK INPUT VALUE OF STEP<I>. THE LINEARIZATION PERFORMED IN SUBR.
LINEAR IS ONLY VALID FOR A SMALL STEP SIZE
DO 9 I =1 ,N
XC I >=XSTRT(I)
RANGE=A~S(RMAX(Il-RMIN(Jl)

9 	 IF<ABSCSTEP(l) >.GT.O.lO*RANGE)STEP<l>=OelO*RANGE

http:lll.GE.O.Ol
http:tE16e8tlXt4El6�8/(2lX,4El6.8l

99

C CALL SUBR.FEASBL TO CHECK WHETHER XSTRT<I> IS FEASIBLE AND TO
C DRIVE IT FEASIBLE IF NECESSARY.

1FlNCONS.EQ.Q.ANDeNEQUS·EQ.QlGOT020
CALL FEASBL<XtUtNtXSTRTtRMAXtRMINtP~II,Psi,NCONStNEQUStUDUM~Y,USTAR

1 ,NTERf·-1S ,NTOTER)
IF(KO.EQ.O)GOTOlO

c SUBR· LINEAR CAN HANDLE INFEASIBLE INEQUALITY CONSTRAINTS• BUT NOT
c UNSATISFIED EQUALITIES

IFtNEQUS.GTeOlRETURN
c PROCEED WITH LINEARIZATION, RESET KO=O

KO=U
GOT03v

10 IF<IPRINT.GT.UlWRllE(6t3lU,(X<I),!=ltNl
20 CALL ASERCH<XtNtRMAXtRMINtPHltPS!tNCONStNEQUS,NCY,WATEl

c
CALL UREAL(X,UARTO)
CHECK TO SEf IF THf RESULTS Of THIS SEARCH HAVE IMPROVED U OVER

c THE PREVIOUS SEARCH(THJS METHOD TENDS TO OSCILLATEJ

(
lF((UARTO-UUleLT.O.OlGOT021
CHECK FOf-\ OSC+LLA T I ON, I • E • NO S I \:JN 1 F 1 CANT CHANGt. FROfl; U'S T SEAi,CH
lF(AHS(UARTO-UUl.LTel•OE-081GOT023
GOT024

c
21 IF((UARTO-UBESTl.GEeOeOlGOT024

DEFINE THE NEW •BEST' POINT AND STORE IT IN UBEST AND XSTRT! Il
UbEST=UARTO
UU=UARTO
DO 22 I= 1 tN

22 XSTRT(I)=X(I>
GOT035

c IF THE OPTIMIOATION FUNCTION IS OSCILLATING , RETURN TO 'bEST'
c POINT SO FAR

23 WRITE(6,7)
U=UBEST
DO 26 I=ltN

26 X(I)=XSTRT(l)
GOTOllO

c STORE VALUE OF U 'FOR THIS ITERATION
24 UU=UARTO

GOT035
30 CALL UREAL(X,UARTO)
35 IF!NEQUS.EQ.OlGOT050

CALL EQUAL(X,PSltNEQUS)
DO 40 I=ltNEQUS

40 UARTO=UARTO+A~S(PSl(li)*WATE<II
50 CALL LINEAR<x,uo,PHltPSitAtBtCtDELXtSTEPtMtNN,NtNCONStNEQUS)

CALL SIMPLE<XXtDELUtMtNNtAtBtCtWORKA)
IF(KO.EQ.l)RETURN
DO 60 I=l ,N
XlNC(l)=XX(2*I-l>-XX(2*1)

60 X(l)=X(l)+XINCCl)
CALL UREAL(X,Ul
NCY=NCY+l
IF(IPRINTeEWeO>GOT070
WRITE(6,5)LJ,(X(l),I=ltN>

10 IF<NCY.GT.NSMAX)GOTOlOO

100

UART=U

NVIOL=O

IFCNEOUSeEQ.OlGOT081

CALL EOUAL(X,PSitNEQUS)

DO 80 I=l,NEOUS

80 UART=UART+ABS(PSl(Ill*WATf(l)
C CHECK IF PREVIOUS MOVE WAS INFEASltiLE

81 	 IFCNCONS·EQ.O)GOT090

CALL CONST(XtNCONStPHJ)

1.)0 82 I=ltNCONS

82 	 IFCPHICil.LT.O.O)GOT083
GOT090

C IF LAST POINT FOUND BY LINEARIZATION WAS INFEASIBLE, BYPASS ASERCH
C AND GO DIRECTLY TO LINEARIZATION

83 	 IFCIPRlNT.~T.olWR1TtC&t4j

NVIOL=l

90 	 lF<AUSCUARTO-UART>.LT·TES*ABS<UARTOil60TOllO

IFCNVIOLeEO.OlGOT020

lJARTO=UART

GOT050

lvO 	 WRITEC6t6lNSMAX
C 	 PRINT OUT THE •BEST' VALUE SO FAR

U=UUEST
DO 105 1= l tN

105 	XC I l=XSTRTC I)

KO=l

110 CALL ANSWERCUtXtPHI,PSitNtNCCNS,NEOUS)
1 FORMATC1Hlt35HOPTIMIZATICN USING ALTERNATE SEARCH//)
2 FORMATC1H-,47HMETHOD UNABLE TO FIND A FEASIBLE STARTING POINT/>
3 FORMATC1H-,47HFEASI~LE STARTING POINT FOUND bY METHOU IS U =tEl6.
l8tllH AT X(l) =//(6Xt5El6e6l>

4 FORMAT(30Xt3lrlCTHE A~OVE POINT 15 INFtASI~LEl>
~ FORMATC7HOLIN~AR,El~.8,4El6.8/(~2Xt4El6.8J)
6 FORMAT!lH~,BOHMAXIMU~ NUM~ER OF IT~RATIONS THROUGH ALTERNATE SEARC

lH ~i.~S IJt:EN EXCEEr.lED CNSMAX =tl6t1Hl/1X,43HTHE [3EST POINT FOLJN[) SO
2FAR IS LISTED BELOW/)

7 ~ORMATC1H-,68HSOLUTION 15 OSCILLATING, ASSUME PREVIOUS •bEST' POIN
lT IS THE OPTIMUM/)

RETUHN

END

SUBROUTINE ASERCHCXtNtRMAXtRMIN,PHltPSI,NCONS,NEQUS,NCY,WATE'
DIMENSION X(l),RMAXCl),RMlNCl''PHl(lltPSICll,WATE(lJ
COMMON INDEXtLEVEL,IPRINTtiDATAtFtMAXM,G,NSHRINtMSTART,PDtEPStiCTt

liFENCEtPLtNSTOPtNSMAXtNSHOTtNTESTtTEStRtREUUCEtNVlOLtKOtNNDEX
(OMMON /A3/TESTClOO>tDLLX(100l,XOClOOl
COM~ON /A5/XlNCClU0)
l(OUNT =0
.J=O

C NOTE ••• ASERCH ASSUMES THAT ALL PHI(Il.GE•O• ALREADY
C INITIALIZE lHE STEP LENGTHS AND CONVERGENCE CRITERIA

DO 10 I= 1, N

http:FORMATC7HOLIN~AR,El~.8,4El6.8/(~2Xt4El6.8J

101

DLLX(ll=F*ABS(RMAX(ll-RMlNttJl
1;; 	 TEST!Il=G*DLLX(ll

(ALL UREAL(X,UOl

lFINLUUS•EQ.OlGOT035

CALL lQUAL(XtPSltNEQU~l

DO 30 J=l,NEQUS

30 UO=UO+A8S(PSII!l)*WATE(ll
C IF A LINEARIZATION HAS JUST BEEN COMPLETED, TRY A PATTERN MOVE

35 IF<NCY.GT.OlGOTOl50
C MAKE EXPLORATORY SEARCH

4 0 00 50 I =1 , N
50 XO(I l=X< 1)

NFAIL=O

DO 120 I=ltN

LOOP=l

X!Il=Xtll+DLLX(Il

55 	 CALL UREAL(X,Ul

IF<NCONS•EQ.U)GOT070

CALL CONST!XtNCONS,PHll

00 60 L=1tNCONS

6U 	 IF!PHl!LleLTeOeOlGOTOlOU
70 	 IF!NEQUSeEQ.O)GOT090

CALL EQUAL!XtPSitNEQUSl

DO 80 L=ltNEOUS

80 U=U+ABS<PSI<Ll l•WATE<Ll

90 IFtU.GE.UOlGOTOlOO

UO=U
GOT0120

hiU 	LOOP =LOOP+l

lf(LOOP.GT.2iGOT0110

X! I l=X! I l-2.U*ULLX< J)

GOT055

110 X! I)=X! I l+DLLX(I l

NFAIL=NFAIL+l

120 CONTINUE

C 	 DEFINE STEP LENGTH FOR PATTERN MOV~ AFTER EXPLORATORY MOVES

L>O 	 1 2 5 I = 1 , N
125 	XINCIIl=Xtil-XO!Il

lF!NFAIL·LTeNlGOT0150

Nll=O

DO 140 I= 1 tN

IFIABS!OLLX!l)i.LT.ABS(TESTCI)JJGOT0130

DLLX< I >=DLLX(I l/2.0

GOT0140

130 NlL=NlL+l

140 CONTINUE

c 	 IF ALL STEP LENGTHS DLLX(!I.LT•TEST(IJ CONVERGENCE IS ASSUMED
IF!NIL.EQ.NlRETURN
GOT040

c MAKE PATTERN ~OVE
c XlNC!Il FROM LAST LINEARlZATION IS CARRI~U THROUbH COMMON /A5/

150 IF(J.EQ.OlHURRY=l.O
IFIJeNE.UIHURRY=PL**J
LlO lou l=ltN

l6C X(I l=X! I l+XINC(I >*HURRY

102

IFCNCONS.EQ.O)GOT0180

CALL CONSTCX,NCONS,PHI)

DO 170 I=l,NCONS

170 	 IFCPHICil.LT.O.OlGOT0210
180 	CALL UREAL(X,U~

IFCNEQUSeEO.o>GOT0200

CALL EQUALCXtPSltNEQU~)

UO 190 I::l,NEQU5

190 U=U+ABSCPSICill*WATECJ)

200 IFCUeGT.UO)GOT0210

UO=U

C 	 ACCELERATE THE STEP AFTER A SUCCESSFUL PATTERN MOVE

J=J+l
GOT0150

C HETURN ·ro LAST GOOD POINT
2lu UO 220 I=ltN
220 XCI>=X(!l-XINCCil*HURRY

C 	 IF J=O AT THIS STAGEt THEN EVEN THE SMALLEST PATTERN MOVE HAS
C 	 FAILED AND ANOTHER EXPLORATORY MOVE MUST BE ATTEMPTED

IFCJeGTeOlGOT0227
KUUNT=KOUNT+l
IFCIPRINT.EQ.O}GOT0225
KOWNT=KOUNT+NCY
lfCKOWNTeEO.IPRINT)WRITE(6t4l
IFCCKOUNT/IPRINTl*IPRINTeNE.KOUNTIGOT0225
c~.LL uREt1LC x,uu,
WRITE(6,5lKOUNTtUU,(X(Il,I=l•~l

225 IFCKOUNTeGT.MAXM)GOT0230
GOT040

227 J=O
GOT0150

230 WRITEC6tllMAXM
KO=l

1 FORMATC1H-,56HTHE MAXIMUM NUMHER OF MOVES PERMITTED IN ASERCH IMA
lXM =,J6,19H> HAS BEEN EXCEEDED/)

4 FORMATC1H-,12XtlHUt25Xt26HlNDEPENDENT VARIABLES X(Ilffl

5 FORMATC1HO,I3,2X,5El6•8/(21X,4El6•8J)

RETURN

END

SUBROUTINE APPROXCX,UtNtDELXtSTEPtiESTtMtNNtAtBtCtWORKA,XSTRT,RMAX
l,RMIN,PHI,PSI,NCONS,NEOUStUART,DSTAR,NTERMStNTOTER,XXJ

DIMENSION WORKACl)tXCl),DELXClltSTEP(li,TESTClJ,ACMtll,HCl),((ll,
lXSTRTCll tRf'IJAXCll ,RMINClJ tPH!(lj ,p~I (}i tU~TARCNTOTt.Rtl) tNTERM~Cl)'
2XX(l)

COMMON lNDEX,LEVELtlPRINltiDATAtFtMAXMtGtNSHRINtMSTARTtPDtEPStiCT,
liFENCE,PL,NSTOP,NSMAXtNSHOT,NTESTtTES,R,RtDUCE,NVIOL,KO,NNDEX

COMMON /A7/XINCC100),WORK19ClOO)
COMMON /A8/JELLY(l00)
WRITE (6,4 l
NSTEPL=O
T INY=l.OE-lJ8

1C3

ULI\S T= l• OE+4u
DO 22 I=ltNN

22 XX <I)=tJ.u
00 2 3 I= l tN
JELLY(J)=O
X(ll=XSTRT(ll
WORK19(l)=XSTRT(I)

23 XINC(l)=0.0
IFCNEOUS.EQeOeANDeNCONS•EQ.OlGOT026

C APPROX REQUIRES THAT ALL PSI(JI bE SATISFIED, BUT IT CAN HANDLE
C INFEA~l~LE PH+(ll. IF THE USER HAS CHOSEN XSTRT(ll SO AS TO MAKE
C ALL PSifli=O. , THEN FEASBL IS BYPASSED BECAUSE IT WOULD UPSET THf
C GOOD VALUES OF PSlti> IN ORDER TO DRIVE ALL PHl(ll FEASieLE

IFCNEQUS.EQ.O)GOT027
CALL EOUALfXSTRT,PSI,NEQUSl
DO 21 I=l,NEOUS

21 IFCAHS!PSl(ll)eGT•l·E-04lGOT027
GOT026

C DEfiNE G AND MAXM FOR SUHROUTINE FEAS~L
21 G=F

MAXM=lOO*N
C CALL SUBR. FEASBL TO TEST WHETHER THE INPUT STARTING VALUES<XSTRJ;
C ARE FEASIULE OR NOT.IF NOT,FEASBL DETERMINES A FEASIBLE STARTING
C POINT AND RETURNS IT IN THE ARRAY X(Il.

CALL FEASBL<X'U'N'XSTRT,RMAXtRMIN,PHI,PSltNCONS,NEQUS,uDUMMY,DSTAR
1 ,NTEf~MStNTOTER)

IflKOeNE•l•OReNEQUS.EQ.OlGOT024
~\'RIT:::(6,76l

GO TO lUO
24 IFCIPRINT.GT.O)CALL UREAL(XtUI

lFCIPRINT.GTe0)WRlTEC6,77lU,(~(Il,I=l,Nl
c
C CHECK INPUT VALUES OF STEP(ll~ IF ANY STEPCI) .GT. 10 PERCENT OF
C THE RANGE THEN REDUCE IT TO .lO*CRMAX(ll-RMlN(Ill

26 DO 2 5 I= l, N
RANGE=AbS!RMAX(ll-RMIN(IIJ
IFlSTEP!IleGT.OelO*RANGEISTEP(li=OelO*RANGE

25 CONTINUE
35 CALL LINEAR!XtUOtPHI,PSitA'B'C,OELXtSTEPtMtNN,NtNCONS,NEQUSl

CALL SIMPLE!XXtDELUtM,NNtAtBtltWORKA)
IFCKO·EQ.llGOT065
DO 36 I=ltN
XINC<ll=XX(2*+-ll-XX(2*li

36 X!ll=XCll+XINCCll
CALL Uf~EAL(X,u)
NSTEPL=NSTEPL+l
IF(IPRINT.EQ.Q)GOT037
IFCNSTEPL.EQ.IPRINT)WR1TE(6,70l
IF!CNSTEPL/lPRINTl*IPRINT.EO•NSTEPLlWRITE(6,7llNSTEPLtUtCX(Il,I=lt

lN)
37 lf(NSTEPL.GE.NSMAXl GO TO b2

C REGULATION OF ALLOWAULE MAXIMUM STEP LENGTH STEP(l) -

104

c HALF STtPil~•••lf TH~ LAST INCREMENT WAS FlNIT~(.GT.TINYI bUT
c LESS THAN 5 P~RCENT OF TrlE ALLOWAdLE STEP(iJ
c IF THE VARIABLE IS OSCILLATING
c DOUBLE STEPCI>•••lF THE LAST INCR~MENT WAS .GT.Q.99*THE ALLOWAdLE
c STEPCii ANO VARIABLE WAS NOT OSCILLATING
c OSCILLATION •••VALUES OF XCil ARE COMPARED EVERY SECONDCEVEN)
c ITERATION. IF THEY ARE EQUAL ANU THE LAST IN­
c CREMENT WAS FINITE THEN OSCILLATION M~ST HAV~
c OCCURKEL>• SET T11t: FLI\t) JE.LLY (1 l =l TO PkEVt.NT Ai-.Y
c SU~SEQUENT OOUBLlNG OF THE VARlA~LEeCOSClLLATlUN
c IS ASSUMED TO TAKE PLACE ABOUT THE OPTIMUM)

IF<<NSTEPL/2l*2•NE.NSTEPLlGOT059

LESS=O

!)() 58 I=ltN

IF<ABSCXINC<I> l.LEeTINY)GOT0~7

I 	
1F (A1:3 S (X (I l -X S T R T C I) l • G T • T 1 NY i GO T 0 5 5

~ 	 SET FLAG JiLLYCil=l FOR THt OSCILLATING VARIABLE
JI:.LLY(I)=l
lF(STEPtlleGTeTESTCiliGOT054
LESS=LESS+l
GOT057

54 	STEPCI>=STEP(I}/2.0

GOT057

55 	 IF<ABSCXlNC(l)leGTeOe05*STE.PCii1GOT056

I F (STEP < I i • G T • TEST (1 >) STEP (I >=STEP { I l/ 2 • 0

GOT057

c DO NOT INCREASE STEPCI) IF VARIABLt HAS OSClLLATtU(JELLY(ll=ll
56 IF<JELLY(I>.EQ.llGOT057

c 	 DO NOT INCREASE STEP<Il SO THAT STEPCIJ.GT •• l*CRMAX<Il-RMINCill
IF<STEPC I) .GT.Oe05*ABS(RMAX(I 1-RMIN(l I I lGOT057
lf<ABSCXINC(I l) eLT•0•99*STEPC I j lGOT057
STEP(I l=STEPt I >*2•0

57 	 XSTRT<I>=X<Il
58 	 CONTINUE

lf(LESSeLT.NlGOT062

IFC(U-ULASTl.GTeOe0)G0T065

GOTOlOO

c CHECK FOR STEP SIZE ADJUSTMENT EVERY ITERATION(OSClLLATION CHECKED
c ONLY ON EVEN NUMBERED ITERATIONS)

59 DO 	 6 1 I =1 , N
IF<AbS(XlNC(l)leGT•0•05*STEP(liJGOT060

!FtAtjS(XlNC(I> l•LTeTlNYlGOT06l

IF<STEP<Il.GT.TEST(l)jSTEP(ll=STEP!ll/2.0

GOT061

60 	 IF<JELLY(ll.EQ.l)GOT06l

IFCAbSCXINC(ll l.LT•0.99*ST£PtiilGOT06l

IF<S1EP<Il.GT.0.05*A~SCRMAXCii-RMIN<Illl~OT061
STEP<Il=STEP<ll*2•0

61 CONTINUE

b2 IF<NSTEPL.GE.NSMAXeANDeNCONS•EQ.QJGOT064

lF<NCONS·EQ.OlGOT067
c 	 CHECK WHETHER OR NOT THE POINT IS FEASI~LE

NVIOL=O
CALL CONSTCXtNCONStPHl)

http:STEPCIJ.GT
http:PkEVt.NT

105

DO 63 I=ltNCONS
63 IF<PHIIl)eLT·-TlNY)NVlOL=NVIOL+l

C AN INFEASIBLE POINT IS NOt A CANDIDATE TO BE THE OPTIMUM
IFINVIOL.EQ.OJGOT067 ·
IFIIPRINT.~Q.O>GOT072
IFI INSTEPL/lPRINT~*IPKINT.EQ.NSTEPL}WRlT1::(6,78)

72 IFINSTEPL.GE.NSMAX>GOT064
GOT03S

67 IF((U-ULASTl.GEeUeO)b0T069
C STORE NEW •BEST' POINT IN ULAST AND WORK19(Il

ULAST=U
DO 	 68 1=1 tN

68 	WORK19(l)=X(l)
6 9 	 1.)0 51 I =1 , N

IFU\iJSIXINCil)l.GI::.H.STII~~ CJO TO 35

51 CONTINUE

IF(IU-ULAST>.GTeOe0)GOT065

GOTOlOO

64 WRITEI6t5> NSMAX

KO=l

C PRINT OUT BEST POINT FOUND SO FAR
65 DO 66 !=ltN
66 Xll)=WOf~Kl91I>

luJ CALL ANSWERIUtXtPHI,PSitNtNCUNStNEUUS)
4 FORMAT11Hlt60HOPJIMIZATION USING METHOD OF SUCCESSIVE LINEAR APPRO

1 X I :--1A.T I ON I I)
5 FORMATC1H-,45HLIMIT ON NO• OF ITERATIONS EXCEEDED, NSMAX = ,15/lX,

143HTHE BEST POINT FOUND 50 FAR IS LISTED BELOWtl
70 FORMATClH-,15X,lHU,25X,23HlNDl~~NJ~NT VARIAbLES X//}
71 FORMATilHUtl4,3X,5El6•8/(24Xt4El6•Hll
76 FORMAT11H-,49H~UBR· FEA~~L UNAbLt TO FlN~ F~ASibL~ STARTING PTe/~
77 FORMAT(lH-,53HFiASIBLE STARTING VALUES FOUND BY FEASBL ARE U

l~,El6.8,10H AT XCI) =//(1XtE15.8,4El6.8)1

78 FOI~I'-1AT<30X,31HCHlE ABOVE POINT IS lNFEASIBLE)l

81 FORI"1ATC1H-,25HFINAL VALUES OF STEP([) =,/(5El6.8))

r~ETURN
END

SUBROUTINE LlNEARCXtUOtPHTtPSitAtB,CtDELXtSTEPtMtNNtNtNCONStNlQUSl
DIMENSION X (1) , DE LX (1 l , STEP (1 l , PH I (1 l , PSI (1) , A (tvl tl l , B (1 l , C (1 l
COMMON INDEXtLEVEL,IPRINTtlDATAtf,MAXMtGtNSHRINtMSTARTtPD,EPS•ICT,

liFENCEtPLtNSTOPtNSMAXtNSHQT,NTEST•TEStRtREDUCE,NVIOLtKO,NNDEX
COMMON /A2/SIGNilUOltPARTtlOOI

C 	 ZERO ARRAYS TO UE USED
oo 2 o r=1 , r•i
tHil=U.O
DO 20 J=ltNN
A(l,Jl=O.O

20 CONTINUE

DO 22 I=ltNN

22 ((Il=O.O

106

DO 23 I=ltNCONS
23 PHI!Jl=O.O

DO 2t+ I=ltNEQUS
'2.4 PSI!ll=U•O

C LlNEIIRIZt THE OPTIMIZATION FUNCTION
CALL UREAL(X,UO)
DO 10 I= 1, N
X!Il=X(ll+DELX(ll
CALL UREAL(XtUl
X (1 l =X (1 >-DELX (I)
tT~~P=!U-UUI/DELX(l)
C!2*l-ll=CTEMP
CC2*l l=-CTEMP

10 CONTINUE
C SET UP EQUATIONS LIMITING THE: STEP SIZE OF EACH VARlJ\[jLE FOR EACH
C ITERATION

DO 3C J=ltN
JJ=J+f\
J2=2'*J
A!J,..J2-1l=l·o
A(J,J2)=-l•O
A!JJ,J2-ll=-l.O
/\!JJ,J2l=l•O
B!Jl=ARSCSTEP!Jll
B!JJ)=ABSCSTEPCJ))

30 CONTINUE '
t SET UP SLACK VARIAbLES IN STEP LENGTH Ll~IT ~QUATIONS

t-1A=2*N
DO 55 J=ltMA
IJ=J+MA+NCONS

5 5 A! J , I J) =.1 • 0
C LINEARIZE THE INEQUALITY CONSTRAINTS, MULTIPLYING THROUGH BY -1·0
C IF THE RIGHT HANO SIDE IS NEGATIVE

IF!NCONS·EQ.OlGOT048
DO 29 I=l,NCONS

29 PI\RT (I l =0.0
CALL CONST!XtNCONStPARTj
uo 31 I=ltNCONS
S IC1N! I) =1. 0
IF (-PART ! I i • L T • 0 • 0 l S I GN (I) =-1• 0

31 CONTINUE
DO 35 I= 1 tN
X(l)=X(ll+DELXCll
CALL CONST!XtNCONStPHl)
XCil=X!Il-DELX(l)
DO 35 II=ltNCONS
ATEMP=SIGN(I I)*(PHI C I 1)-PART(I I) l/DELX(I~
N2=2*N+ll
A(N2t2*I-ll=ATEMP
A<N2•2*1)=-ATEMP

35 CONTINUE
C SET UP RIGHT HANO SIDES OF LINEARIZED INEQUALITY CONSTRAINTS AND

1C7

C ADD SLACK VARIABL~S
DO 36 I=l,NCONS
12=2-»N+l
A(I2,I2l=-SIGN(Il
BCI2l=-PART<ll*SIGN(l~

36 CONTINUE
C LINEARIZE THE EQUALITY CONSTRAlNTSt MULTIPLYING THROUGH BY -l·C
C IF THE RIGHT HAND SIDE IS NEGATIVE

48 IF!NEQuS.EQ.O)GOT052
UO 47 I=ltNE.C;>US

it7 PART!ll=O.U
CALL EUUAL(X,PARTtNEQUS'
DO 49 I=l,NEQUS
s I G.N < I l =1. o
IF<-PART(Jl.LTeOeOlSIGNCl)c-1•0

lt9 CONTINUE
DO 50 I= 1, N
XCil=Xtll+UELX(l)
CALL lQUAL(X,PSltNEQUS).
X!ll=X<I>-DELX(Il
00 50 Il=l•NEQUS
~o\TEMP=SIGN(I I l*CPSI (I 1•-PARTt I I))J!.JELX(I)
Il2=2*N+NCONS+Il
A!II2t2*l-l)=ATEMP

so ~6~ii~B~I>=-ATE~P
C. St.T UP RIGHT tii\NU Slt.)t:.S OF LlNt:ARlZt.D EWUALITY CONSTRAINT;,

DO 51 I=ltNEQUS
II2=2*N+NCONS+I
U (1 I 2 l =-PART (I) *5 I GN (I)

51 CONTINUE
52 RETURN

END

SUBROUTINE FEASBL<XtUtNtXSTRTtRMAXtRMIN,PHitPSltNCONStNEQUStUART•
lDSTARtNTERMS,NTOTERl

DIMENSION X(lltXSTRTtl)tRMAX<li,RMIN<l',PHI(lJ tPSI(ll,DSTAR!NTOTER
1 tl l tNTEI~MS(1 l

COMMON lNDEXtLEVELtlPRlNTtlD~TAtftMAXMtGtNSHRINtMSTART,PDtEPStlCT,
llfENCL,PltNSTOPtNSMAXtNSHOTtNT~ST,TEStRtREDUCEtNVlOL•KOtNNUEX

COMMON /A5/STEPP(l00l
C THIS SUBROUTINE USES SEEK3 TO DRIVE ALL PHI1t> FEASIBLE AND THEN
C REDUCES THE PSI<IlS BY MINIMIZING SIGMA(PSitJ)l SUBJECT TO THE
C CONDITION THAT ALL PHl(ll REMAIN FEASIBLEl.GE.O.)

NNDEX=INDEX
KUT=O
DO 9 I=ltN

9 X(Il=XSTRT<Il
lFCNCONS•EQ.OlGOT013
CALL CONST!XtNCONStPHil
DO 10 l'=ltNCONS

108

IF<PHl(ll.LT.O.O)GOTOll
10 CONTINUE

GOT013
C IF ANY PHICI)aLT.u. CALL SEEK3 TO URIVE THEM FEASI~LE

11 CALL SEEK3(X,UtNtXSTRTtRMAX,RMIN,PHltPSI,NCONS,NEQUStUART,DSTARtNT
lERM~)tNTOTER>

C
IF<NVIOL•EWeU)GOTOl3
IF Si:~f.K3 COULD NOT GET /\LL PHilljeGE•O• THEN SUclR.FEASBL CANNOT

C ObTAIN A FEASIBLE POINT
KO=l
GOT031

C
13 IF<NEUUSeEQ.O)GOT031

t·1INiiv1IZE SIGMA<PS!(l)i KEEPIN<i ALL PHI(Ii.GE.o.
C NOTE ••• THE FRACTION OF THE RANGE USED AS STEP SIZE SHOULD NOT
C EXCEEU 5 PERCENT. IF THE USER IS INTERESTED IN A VERY FEASIBLE
C POINT<IE•/\LL PSl(llS VERY Siv!ALLII-f£ CAN GIVE (FI A VERY St<'lALL VALUE

Pt::RCNT=Oe05
IF<ABS(FlaLT.0.05lPERCNT=F
DO 14 I= 1 , ~~

14 STl:.PP (I J ==I·'UKNT* CI~I\1AX CI> -f-<M IN~ 1)}
C INITIALIZE THE SUf-1 OF THE PS!(l)S

CALL SUMPSI(X,PSl•NEQUS•SUMOl
15 NFAIL=O

DO 2 5 I= 1, N
XC I >=XI I l+::.>TEPPI I l
CALL CONSTCX,NCONS,PHil
DO 17 J=l,NCONS

C IGNORE A MOVE WHICH MAKES ANY PHICIJ.LT.o.o
IFCPHICJl.LT.O.O)GOT019

17 CONTINUE
CALL SUMPSl(X,PSitNEUUStSUMlJ
IFCSUM1.GE.SUMO)GOT019
SUf'-10= SlJi'.·ll
GOT025

19 X(I >=X(I l-Z.U*STEPP(I I
CALL CO~ST(X,NCONS,PHI)
DO 21 L=l,NCONS
IF!PHICLleLT.OeO)GOT023

21 CONTINUE
CALL SUMPSlCXtPSitNEQUStSUM21
IF<SUM2.GE.SUMO)GOT023
SUMO=SUI\12
GOT025

23 X(I l =X (1) +STEPP C I)
NFA.IL=NFAIL+l

25 CONTINUE
IFCNFAIL•EQ.NlGOT027
GOT015

C REDUCE STEPPCll BY A fACTOR OF 4.0 UP TO 4 TIMES• ThiS MEANS STEPP
C REDUCES TO LES~ THAN eUOO~*CRMAX<II-RMlNCIIi, OR IF FeLT.0.05
C THEN MINIMUM STEPP(J):(f/256l*CRMAXCll-RMlNCI)). THEREFORr THl
C USEr~ MAY DRIVE THE PSI (I I VI\LUES AS SI"'ALL. AS HE. WISHES BY ENTERING
C A VERY SMALL VALUE OF F AT LEVEL=l

27 KUT=KUT+l

109

IF(KUT.GT.4l~OT03l
DO 29 I= 1, N

29 STEPPCil=STEPPCll/4.0

GOT015

31 CALL UREAL(XtUl

C ZtRO STEPPtil SINCE ULOCK /A5/ 15 USED tiY CALLING MtTHODS

DO 33 I= 1 ,N

33 	 STEPP<Il=OeO

RETURN

END

SUHROUTINE SUMPSIIXtPSitNEOUS•SUMl

DIMENSION Xlll,PSI(J)

CALL EQUAL(X,PSI.NEQUS)

SUt-1=0 • 0
DO 1 I=ltNEQUS

SUM=SUM + ABSCPSlll))

l 	 CONTINUE

RE:.TURN

END

SUBROUTINE RANDOM CXtUtNtRMAXtRMIN,z,uu,NRETtNCONStPHil
DIMENSION XClltRMAXtl)tRMlN(l~•ZtNRET•1ltUU(lJ,pHI(ll
COMMON lNDEXtLEVELtlPRlNTtlDATAtFtMAXMtGtNSHRlNtMSTARTtPDtEPStlCT,
liFENCEtPltNSTOPtNS~iAXtNSHOTtNTESTtTEStOtREUUCEtNVIOLtKOtNNDEX

COMMON/A1/AAtlOOltCCClOUjtWORK3(1QQI,TESTl(lOOl

COMMON /A5/Ril00)

c

C OPTIMIZATION USING DICKINSON$ RANDOM SEARCH STRATEGY

c

WRITE (6t200)
C RANDOM DOES NOT HANDLE INEQUALITY CONSTRAINTS AND THEREFOf:E NEQUS
C IS NOT INPUT. SET NEQUS=O TO AVOID GETTING AN INOEFlNIT~ MtSSAGl

NEOUS=O

NCYCLE=l

DO 18 I=ltN

(((1)=0.

AA<Il=O.

TESTl(I)=O•

X<I)=0.0

18 	 CONTINUE

DO 2 2 I= 1• N

CCCil=RMAX(Il

AACI>=RMINtll

2? TESTlCI)=F*ARSCCClil-AACill
C NUMR IS THE NUMBER OF FEASIBLE RANDOM POINTS EVALUATED EACH CYCL~

NUMR=NRET*NSHRIN
C THE NUMBER OF FEASibLE RANDOM POINTS RETAINED EACH CYCLE IS
C NRET=NUMR/NSHRIN AND NRET ARRIVES THROUGrl TH~ ARGUMENT LIST
C GENERATE NRET FEASIBLE RANDOM POINTS

110

C MSTART IS THE STARTING VALUE FOR GENERATING RANDOM NUMBERS·
C AT LEVEL=U MSTART=l28 IS SET IN OPTIPAC. AT LtVEL=l MSTART IS DATA

MM=~1START
DO 21 J=l,NRET
L=l

50 CONTINUE
CALL FRANDN(RtNtMM)
MM=u
DO 20 I= 1 tN

20 X(I l=~\A(I l+R(I)*(CC(I i-AAC 1 J)

IF!NCONS·EOe0)GOT052
CALL CONST(X,NCONStPHll
NVIOL.=O
DO 42 I=l,NCONS
IfCPHICil.GE.OeO)GOT042
NVlOL=NVlOL.+1

42 CONTINUE
IFtNVIOL·EOeO)GOT052
L=L+1
IF (LeGT•NSMAXl GO TO 80
GO TO 50

52 CALL UREAL(X,UTEMP)
DO 43 I= 1, N

43 ZCJ,I>=XfiJ
UU(Jl=UTEMP

21 CONTINUE
C FIND LARGEST VALUE OF UU(Jl

LARGE=l
DO 10 J=2tNRET
IFfUU!J>.LEeUU(LARGEliGOTOlO
LARGE=J

10 CONTINUE
t PLACE LARGEST VALUE OF UUCJj AT UU(ll AND INTERCHANGE l(J,Ii WITH
C Z!ltl)

Ult:MP=UU<LARGEl
UU (LI\RGE) =UU (1)
UU(ll=UTEMP
DO 11 I= 1 tN
ZTEMP=Z<LARGE,I)
Z<LARGEt!l=ZCltll
Z(l,Il=ZTEMP

11 CONTINUE
C GENERATE NUMR MORE FEASIBL~ POINTS AND IF ANY HAS UU(Jl.LTeUU(ll
C THEN INTERCHANGE THEM

KK=l
60 DO 12 K=ltNUMR

L=l
53 CONTINUE

CALL FRANDN<R,N,Q)
DO 13 I= 1, N

13 XC I l =AA C1 l +R t I)* (CC (11-AA (I i l
IFtNCONS•EQ.O)GOT055
CALL CONSTtXtNCONS,PHl)

L.l

NVIOL=O
DO 56 I=l,NCONS
IFCPHICil.GE.O.OlGOT056
NVIOL=NVIOL+l

56 CONTINUE
IFCNVlOLeLTel)GOT055
L=L+1
IF (l.GTeNSMAX) (0 TO 80
GO TO 53

55 CALL UREAL(XtUXTRA>
IF CUXTRA.GE.UU(l)) GO TO 12
UlJ(li=UXTRA
DO 14 J=ltN

14 Z < 1, I) =X (I l
C PUT NEW LARGEST UUCJ) AT UUCl)

DO 30 J=2tNRET
IF CUU(Jl.LE.UUCl)) GO TO 30
UTEMP=UU(Jl
UU(Jl=UUC1l
UU(ll=UTEMP
DO 31 I= 1 tN
XTEMP=Z(J,l)
Z (J, I) =Z (1 , I l

31 Z<ltll=XTEMP
30 CONTINUE
12 CONTINUE

C SELECT NEW AA!Il AND CC(I>
DO 15 I=ltN
AA< I l=ZI ltl)
CCC I >=Z.< ld l
DO 16 J=2,NRET
I F <Z (J , I > • G T • AA (1 l) GO T 0 l 1
AA(I >=ZC.Jtl l
GO TO 16

17 IF (Z (J, I l • LT. CC (I I) GO TO 16
CCCII=Z(J,I}

16 CONTINUE
15 CONTINUE

IF (KK-IPRINTl 27t28t62
27 KK=KK+l

GOT062
28 IF<NCYCLE.EQ.IPRINT>WRITEC6,91

WRITEC6t8lNCYCLE,UU<l'
L2=0

29 Ll=L2+1
L2=Ll+4
IFCL2.GTeNlL2=N
WRITEC6t4l(CCCllti=LltL2)
WRITE(6,2lCAACIItl=LltL2l
IFCL2.LTeNlGOT029
KK=l

62 IF<NCYCLE.GE.MAXM>GOT06l
NCYCLE=NCYCLE+l
DO 63 I= 1 ,N

112

IFCABSCCCC I l-AAC I)) aGT.ARS<TfSTl (I j))G0T060
63 CONTINUE

C SELECT SMALLEST UU(J)
61 JMIN=2

UO 19 J=3tNRET
lF(UU(J)e6leUU(JMIN))60T019
.JMIN=J

19 CONTINUE
DO 5'+ I= 1 ,N

54 X (I >=ZCJMIN.I)
lf(NCYCLE.GEaM~X~)GOTOlOO

GOT081
80 WRITE(6,3)NSMAX

WRITE(6t5>
KO=l
RETURN

100 	WRITE C6t6) MAXM
KO=l

81 CALL ANSWERCUtXtPHI,PSltN,NCONStNEQUS)
2 FORMATC6X,5El6.8)
3 FURMATtlHOt40HNO FEASIBLE POlNT FOUND AFTE~ GENERATlNG,I6,16H RAN

lDOM NUMBERS)
4 FORMAT(lHOt5X,5El6e8)
5 FORMATClX t54HTRY SHRINKING T~E RANGE OR INCREASING NSMAX AT LEVEL
l=l/)

6 FORMAT(//34H PROCESS FAILED TO CONVERGE AFTER ti4,2Xt6HCYCLESI
8 FORMATClHOtl3,3H (,El5a8,1H)}
9 FORMATC6H-CYCLEt5Xt6HCUMAXl,22Xt2bHUPPER/LOWER BOUNDS ON XC Il//l

2UO 	 FORMATC1HltS8HOPTIMIZATlON USING UlCKINSONS RANUOM SEARCH METHOU
lRANDOM//)

RETURN
END

SUBROUTINE FRANDNCA,N,Ml
DIMENSION ACll

C THIS RANDOM NUMBER GENERATOR .IS A MODIFIED IBM SUUROUTINE
C B IS A MACHINE-UEPENDENT CONSTANT AND B=2•0**(l/2+1)+3•0
C WHERE I = NUMB~R OF BITS IN AN INTEGER WORD (1=47 FOR CDCb400J

R=262147.o
X=M
X=X/0.8719467

20 	 IF(XeNE.O.OlY=AMOD(A85(X)t3al8967l
DO 10 K=l,N
DO 11 J=lt2

11 Y=AMOD(B*Y,l.Ol
A(K)=Y

C AVOID Y=U. AND Y=l• TO PREVENT DIVIDING INTO ZERO
10 	 IF(y.EQ.o.o.oR.YeEO.l•OJY=O·l82818285

RETURN
E'ND

http:Y=AMOD(B*Y,l.Ol

113

SUBROUTINE GEOMCNTOTERtNtNCONS,NTERMS,EX,CONSTtAAtBBtCtDSTAR,RMAX,
lRMINtXtXSTRT>
OIMEN~ION NTERMS<lJ,EXlNTOTERtlltCON~Ttl),ftA(NTOTERtli,BBCNTOTERtl

lltC(NTOTERtl),USTAR<NTOTERtlltRMAXCl>tRMIN(ll,x(lJ tXSTRT(ll
COMMON INDEXtLEVEL,JPRINTtlDATAtFtMAXMtGtNSHRIN,~START,PDtEPStlCT,

liFENCEtPltNSlOPtNSMAXtNSHOT,NTESTtTES,R,REDUCE,NVIOL,KO,NNUEX
COMMON /A3/CKCl00),GAM(l00),T(lOO)
COMMON /A5/DC100l
COMMON /A7/SUM(lUO),USE(lOOI
COMMON /A8/NUSE(100)

c
c THE GEOMETRIC PROGRAMMlNu METHOU OF OPTIMIZATION
c
c THE PROGRAM IS DIVIDED INTO FIVE SECTIONS AS FOLLOWS•<NOTATION AS
c IN MATHEMATICAL DESCRIPTION GIVEN IN LEVEL 1 DOCUMENTATION).
c
c 1. CALCULATION OF THE DELTA SUB 1 SUPER J ARRAY
c 2. RELAXATION METHOD TO FIND FEASIBLE STARTING VALUES OF TCII
c 3. CALCULATION OF THE K SUB Q VECTOR
c 4. MAXIMIZATION OF DUAL BY DIRECT S~ARCH tSEEKlJ
c 5. CONVERSION FROM DUAL BACK TO PRIMAL PROBLEM
c
c SECTION Cll
c
c CALCULATION OF THE SET OF NORMAL AND NULL VECTORS = DELTA SUd I
c SUPER Je THESE ARE DERIVEU FROM THE INPUT EXPONENT ARRAY <EXI•
c
c NOTEeeeKO=O INITIALLY• KO=l lF A FAILURE OCCURS ANYWHERE IN GEOM·

NT=NCONS+l

NM=NTOTER-N

Nl=N+l

c
c TRANSPOSE THE ROWS ANO COLUMNS OF THE EXPONENT ARRAY <EXIINTO (AA)
c

10 DO 11 I=l,NTOTER
()0 11 J=ltN

ll l\A(J,I >=EX< I,J)
c
c GAUSS REDUCE Tt-IE t-1ATR I X CAA! BY ROWS KEEP INS TRACK OF COLI W,N INTER
c -CHANGES• THIS CHANGES THE <AA> MATRIX INTO A UNIT t-'lATRIX IN THE
c N BY N POSITIONS AND MODIFIES ELEMENTS IN THE N BY <Nl TO NTOTERI
c POSITIONS.THESE OPERATIONS ARE PERFORMED WITHIN SUBR. GAJON.
c NOTE···ARRAY NUSE IS COMMONED BETWEEN GEOM AND GAJON•
c

CALL GAJONCAAtNTOTER,N)
IF(KOeNE.o>RETURN

c
c FORM THE MATRIX CC> ••• IN THE N BY NM POSITIONS OF ((I PLACE THE
c NEGATIVES OF THE N BY CN+liTOCNTOTERi ELEME~TS OF THE REDUCED IAA)
c SET EQUAL TO 1 ALL CC) ELEMENTS FOR WHICH I=J+N. SET REMAINING CCI
c ELEMENTS EQUAL TO ZERO.
c

DO 12 I= 1 'N

DO 12 J=NltNTOTER

JJ=J-N

114

12 	 C(I,JJl=-AA!ItJl

DO 13 I=NltNTOTER

DO 13 J=l,NM

JJ=J+N

IF!I.EQ.JJ) GO TO 14

C(I,J)=O.O
GO TO 13

14 C(I,Jl=l•O

13 CONTINUE

c
C FOR EVERY COLUMN INTERCHANGE (STORED IN NUSEl MADE I~ THE GAUSS
C REDUCTION MAKE T~E CORRESPONDING ROW INTERCHANGE IN THE MATRIX fC)
C CALL THE RESULTI~G MATRIX tBal.
c

DO 15 I=l,NTOTER

DO 15 J=ltNM

NISE=NUSEfl)

15 	 AB(NISEtJl=C<I,Jl

DO 16 I=1tNM

NUSE(J):O

RMJN(Il=O.O

RMAXfll=O.O

16 	 SUM (I) =0 • 0
c
C SUM THE FIRST NTERMS(ll ELEMENTS OF EVERY COLUMN OF !BBl.
c

NTER=NTERMSfl)

DO 17 I=ltNM

DO 17 J=ltNTER

17 	 SUM(ll=SUM(I)+BB(J,I)

C FIND THE FIRST COLUMN OF CBBJ HAVING THE SUM OF ITS FIRST '
C NTERMSfl) ELEMENTS = SUM NOT EQUAL TO ZERO· DlVIU~ EACH ELEMENT
C IN THAT COLUMN BY SUM AND STORE THE RESULT IN DSTAR(J,1l. THIS IS
C THE DELTA SUB I SUPER 0 VECTOR.
c

I =0
18 	 I=I+l

IF<I·GT·NMJ GO TO 19

IffABS!SUM(I)).GTeleOE-81 GO TO 20

GO TO 18

C ARRAY (~el MUST BE SINGULAR.
19 	 WRITEf6t60U

KO:l

RETURN

20 	 NUSE(1)=1

DO 21 J=ltNTOTER

21 DSTARCJt1l=BB(J,Il/SUM(ll
c
C COMPLETE THE DSTAR ARRAY--DSTAR(J,Jll=BB(J~Il-SUM(Il*DSTAR(J,ll
c

I I= 1

DO 23 I=ltNM

IF<NUSE(l)eNE.O> GO TO 23

http:IF!I.EQ.JJ

1 1 5

II=tl+l

DO 2? J=l,NTOTER

22 DSTARIJtll)=BB<Jtl)-SUM(l)*DSTAR(J,l)

23 CONTINUE

c
c

c SECTION f2l

c
c CALCULATION OF INITIAL VALUES OF THE THE CUAL VARIABLES T USING A
c RELAXATION TECHNIQUE.
c THE T VALUES ARE FEASIBLE IF fOR l=l,NTOTER THE FOLLOWING EuNS
c HOLD••• o.o eLE• DSTARiltli+DSTAR(I,JJ*T<J' J=2tNM• (TiiESE SUMS
c REPRESENT TH~ DELTA SUS I VECTOR IN THE MATHEMATICAL DESCRIPTIONl.
c

KOUNT=O
LIMIT=300*NM

c NOTE•••LlMIT DOES NOT STOP THE PROGRAM - SEE COMMENT BELOW.
DO 97 I=ltNTOTER

97 USEII)=OeO
c START WITH ALL DUAL VARIABLES T EQUAL TO ZERO

DO 98 I=ltNM
98 T<Il=o.o

c CALCULATE THE SORT OF THE SUM OF THE SQUARES OF ELEMENTS 2 TO NM
c IN EACH ROW OF DSTAReSTORE THE RESULTS IN ARRAY (USE).

DO 800 I=l,NTOTER
no 805 J=2·N~

8v5 USE<ll=USE(l)+DSTAR(J,J)**2

suo USECil=SQRTIABS<USE(IJlJ

c
c NORMALIZE THE (DSTARl AkRAY bY DIVIUING ALL ELEMENTS IN A ROW BY
c THE ROWS VALUE OF (USE). IF AN ELEMENT IS ZERO!LESS THAN l.E-08l
c LEAVE IT ZERO.IF A FIRST COLUMN ELEMENT <DSTARCI,l>> IS ZERO,FORCE
c IT NEGATIVE BY ADDING -l·E-06 .STORE THE MODIFIED COSTAR> IN (8~>.
c

DO 801 I=l,NTOTER

DO 801 J=ltNM

c 	 TEST AGAINST l.E-08 RATHER TttAN 0•0 TO ALL0W FOR ROUNUING LRROR•
IFCUSE!J).GT.l.OE-08lGOT0802
RBIItJJ=DSTARCitJ)
GOT0801

~02 IF!JeEO.l)GOTOln3

GOT0104

1U3 Bb(J,J>=CDSTAR(l,JJ-l•OE-061/USECl I

GOT0801

lU4 BU(J,J)=(DSTARCI,J))/USEClj

8ul CONTINUE

111 KOUNT=KOUNT+l .

IFCKOUNTeLT.LIMlT)GOTOiC~
C IF NO FEASIBLE STARTING VALUES FOR T HAVE bEEN FOUND AFTER (LIMITl
C STEPS OF RELAXATION PROCEDURE, GO DIRECTLY TO SUBReSEEKl WHICH IS
C CAPABLE OF FINDING ITS OWN STARTING VALUES~

GO TO 	 203
c
C 	 CALCULATE THE DELTA SU~ l VECTOR, STORING !T IN <USEI.

116

c
lv5 	DO 106 I=l,NTOTER

USE< I >=BB< I ,1 l

DO 106 J=2tNM

USE< I >=USE(I l+RB< [,Jl*TCJ)

106 	CONTINUE
c
C FIND THE MOST NEGATIVE ELEMENT OF <USE), CALL IT SN AND CALL ITS
C SUBSCRIPT IQ. WHEN NO NlGATIVE ELlMLNTS ARE FOUND WE HAVE A SLT OF
C FEASibLE T VARIAbLES.
c

SN=CJ.O

DO 109 I=l,NTOTER

IF(USE(IleGE.O~OlGOT0109
IFCUSECI)eLTeSN)GOT0108
GOT0109

lu8 IQ=I
SN=USE(I}

109 CONTINUE
C SN MAY CONVERGE TO ZERO VERY SLOWLYtTHEREFORE TEST AGAINST -l.E-08

IF(~N.LT.-l.OE-08lGOTOllO
GOT0203

c
c MODIFY THE T VALUES AND REPEAT THt ABOVE PROCEDURE·
c

110 DO 107 J=2tNM
T<Jl=TCJl-BB(IQ,J)*SN

107 CONTINUE
. GOH)l 11

c
c

c SECTION (3)

c

c CALCULATION OF THE K SUB U VECTOR (STORED IN <CK}).

c

203 	 DO 200 IQ=ltNM

CKCIQl=DSTAR(l,IQl*ALOG<CONST(l))

DO 201 II=2tNTOTER

201 	 CK(lQl=CKIIQl+DSTARCII,IQ>*ALOG(CONST<II))
2li0 CK(lQl=EXP(CK(lQ))

c
c
c SECT I ON (4 l
c
c MAXIMIZE THE DUAL FUNCTION SN BY DIRECT SEARCH - SUBR SEEKl THE
c SEARCH STOPS WHEN NO INCREASE IN SN IS OBTAINED BY CHANGING ANY
c T VALUE bY +0-- F*G*RANGE (SlE LEVEL 1 DOCUMENTATION)•
c USE T VALUES FROM RELAXATION AS STARTING VALUES FOR SEEKl AND
c SET RANGES OF T<IJ VALUES TO ESTAdLISH INITIAL STEP SIZE IN SEEKl

2li7 	 DO 811 I=2tNM
RMIN(Il=T(ll-0.50*AHS(T(Il~
RMAXCil=T<Il+0.5U*ABS<TCl>l

811 XSTRT (Il =T (l)
c X MUST BE FIRST ARGUMENT FOR SEEKl TO PRESERV~ VARIABLE DIMENSION

CALL SEEKl(X,U•N•XSTRTtRMAX,RMlNtPHitPSltNCONStNEQUStSNtDSTAR,NTl

117

lRMS,NTOTER)

IFCKO.EQ.O>GOT0812

WRITEC6t615)

GOT09999

812 DUAL=-SN
DO 813 I=2tNM

813 T(I>=XCI)
c
c
c SECTION <5>
c
c CdNVERT FROM THE DUAL PRO~LE~ dACK TO THE PRIMAL CINPUTJ PRObLEM•
c
c FORM THE RIGHT HAND SIDE OF THE SET OF LlkEAR EQNS IN THE UNKNOWNS
c LOGCXCI)). DUAL• CONSTCIJ, Oli~, AND GAM<I' ARE ALL KNOWN AT THIS
c STAGE. STORE THE R.H.S• IN A-(J,Nl> FOR TRANSFER TO SUBR GELIM.
c

NTEMP2=NTERMS(l)
DO 700 I=l,NTEMP2

700 	AAll•Nli=ALOGCDCI)*AbSlDUALi/CONSTCI>J

LYMl=l

LYM2=NTERMSC1)

DO 702 IQ=ltNCONS

LYMl=LYMl+NTERMSCIQ)

IQl=IQ+l

LYM2=LYM2+NTERMSCIQ1)

DO 702 I=LYMltLYM2

AAlltNl>=ALOGCDCl)/(CONSTCIJ*GAMCIQJ)J

702 CONTINUE
c
C COEFFICIENTS OF THE UNKNOWN VARIABLES LOGCXCIJJ ARE SIMPLY THE
C ELEMENTS OF THE INPUT EXPONENT ARRAY <EX).
c

DO 703 I=ltNTOTER
IJO 703 J=l,N

7v3 AACltJl=EX(l,J)
c
C CALL SUBR GELIM TO SOLVE THE SET OF EQNS BY GAUSS ELIMINATION.
C NOTE••• THE LOGCX} VALUES ARE RETURNED FRO~ GELIM IN AACitNl>.
c

CALL GELIMCNTOTERtNtAA)
IF(K0eNEeO>GOT09999

c
C CALCULATE THE ·PRIMAL OPTlMlZATION FUNCTION FROM THE LOG(XJ VALUES•
c

DO 704 I=ltN
704 USE< I)=AA< I ,Nl)

SN=O.O
NHI=NTERMSll)
DO 705 I=l,NHI
PP=O.O
DO 706 J=ltN

706 PP=PP+tXCitJ)*USE(J)
7v5 SN=SN+CONST(l)*EXP<PPI

PRIMAL=SN

118

C NOTE • •• THE VALUf:S OF PRIMAL AND DUAL SIIOULO AGGRE E TO SEVERAL

C DECIMAL PLACES AT THE GLORAL OPTI~U~

c
C CONVERT LOG(X) VALUES TO X VALUES•
c

DO 707 I=1tN
7G7 XII I=EXPCUSE(l}l

c
c CALCULATE THE VALUES OF THE ORIGINAL(PRIMAL) CONSTRAINT EQUATIONS
c ALL OF \>JH I CH SHOULD BE •LEel•O {PLACE RESULTS IN WORKING ARRAY
c SUM(l00)
c

Ll=NTERMS(l>+l ·

00 710 I=2tNT

L2=Ll+NTERMS(+J-l

SUM (I) =G • 0

DO 709 K=LltL2

TERM=CONST(K)

DO 708 J=l•N

708 TERM=TERM*X(J)**EX(K,Jl

7U9 SUM(l)=SUM<Il+TERM

Ll=L2+1

710 CONTINUE

c
c PRINT OUT RESULTS
c

WRITEC6t610)

WRITEC6t6ll>PRIMAL

WRITE(6,612)0UAL

WRifl(6t613)(ltX(l l,I=ltNI

WRITE(6,614)

WRITE(6t618J <I,SUM<I+l),J=ltNCONS)

WRITEC6t616)

WI~ IT E (6, 61 7)

601 FORt--1/\T(lH-,??H;\RRAY 03RJ IS SINGl!Lll.fd
610 FORMAT(1Hlt24Xt3UHOPTIMUM SOLUTION FOUND bY GEOM/25Xt30H---------­

l--------------------l'
611 FORMAT(l9Xtl5HMIN1MUM U(XJ =,El6.8,9H (PRIMAL''
612 FORMAT(l9X,l5HMAXlMUM U(TJ =,El6.8,7H <DUALl;;J
613 FORMAT(27Xt2HX(tl2t3H' =tEl6e81
614 FORMAT(IH-,24H INEQUALITY CONSTRAINTS/1Xt24H<FEASIBLE PHI(I l.LE.l

1. 0 l l
615 FORMAT(lH-,47HSUBR·SEEKl UNABLE TO MAXIMIZ~ THE DUAL FUNCTION/>
616 FORMAT<lH-t73HNOTE ••• THf VALUES Of THE PRIMAL AND DUAL OPTIMIZATIO

lN FUNCTIONS ESTABLISH/1Xt73HUPPER AND LOWER BOUNDS RESPECTIVELY ON
2 THE GLOBAL 0-TIMUM. IF THEY DO NOTI

617 FORMAT(1Xt68HAGREE TO SEVERAL UECIMAL P~ACES, TRY REUUCING F AND G
1 TO IMPROVE THE/1Xt21HMAX1MIZATION IN SELKl/J

618 FORMAT(25Xt4HPHI<d2t3Hl =tEl6e8l
G999 RFT!IRN

fND

http:SINGl!Lll.fd

119

SUBROUTINE GAJON<AA,NTOTER,NI

DIMENSION AA(NTOTERtl)

COMMON INDEXtLEVELtiPRINTtiDATAtFtMAXMtG•NSHRINtMSTARTtPDtEPS,ICT,

llFENCEtPLtNSTOPt~SMAXtNSHOTtNTESTtTEs,R,I~EDUCE,NVIOL,KO,NNuEx

COMMON /A8/NUSE(lUU)
c
c
C THIS SUBR. PERFORMS A GAUSS-JORDAN REDUCTION BY ROWS OF THE MATRIX
C CAA) KEEPING TRACK OF COLUMN INTERCHANGES IN ARRAY CNUSEJ. THE
C RESULT IS A UNIT MATRIX IN THE N ~y N POSITIONS (OFF-DIAGONAL
C ELEMENTS ARE SE:T =O.u AFTER HETURN TO GEOMI AND A MODIFIED /~RRAY

C IN THEN BY CNl. TO NTOTERi POSITIONS CTHE NEGATIVES OF THr.SE F0Ki"1
C THE N BY NM ELEMENTS OF ((I AFTER RETURN TO GEOMI. NOT~··• (NUSE)
C IS NEEDEU IN GEOM AND IS CARHIEU ThROUGH COrV\r-'lONe
c

NN=O

NTl=N-1

NT4=NTOTER-1

DO liJ I=l tNTOTER

lU NUSEIIl=I
c
C SEARCH THE NNTH ROW FOR FIRST NON-ZERO ELEMENT. INTERCHANGl THAT
C COLUMN WITH THE KTH COLUMN•
c

101 	 NN=NN+l

K=NN-1

11 	 K=K+l

IFCABS(AACNN,Kl>.GT.l•OE-6) GO TO 12

lF!KeLE.NT4}GOTOll

C A ROW OF CAAl IS ENTIRELY ZEROS I~. THE MATRIX IS SINGULAR.SINCE
C AA IS THE TRANSPOSE OF ~x, THIS MEANS THAT ONE OF THE INPUT
C VARIAbLES DOES NOT APPEAR IN ANY TERM

VIRITE(6,20lK,K

KO=l

GO TO 13

12 	 IFCK.lQ.NNl GO TO 14

DO 15 I= 1, N

T£1v1P=AAC I tNNl

AAC I tNNl=AA(I tKl

15 	 AACitKlttEMP

NTEMP=NUSE(l\!Nl

NUSECNNl=NUSE(K)

NUSE C K l =NTEivlP

c
C DIVIDE THE NNTH ROW BY THf ~IAbONAL tLEMENT IN IT CAACNN,NNJJ
c

14 J=NTOTER+l
141 	 J=J-1

IFCJ.LTeNNl GO TO 16

AACNNtJl=AACNN,Jl/AACNNtNNl

GO TO 141

120

l 	 RtUUC~ ALL ROWS dtLOW THE NNTH ROWe
16 	 NA=NN+l

IFCNA.GT.N>GO TO 171

DO 17 I=NA,N

DO 17 J=NA,NTOTER

17 	 AACitJl=AACI,J>-AACitNN)*AA(NN,J)
171 	 IFINNeLT•Ni GO TO 101

DO 18 I=ltNTl

NT2=I+l

DO 18 NL=NT2tN

NT3=NL+l

DO 18 J=NT3tNTOTER

18 	 AACI,Jl=AA(!,Jl-AA(I,NL>*AA(NL,Jl
20 FORMATC1H-,38HTHE EXPONENT ARRAY 15 SINGULAR IN ROW ,I4/1X,l3HTHAT

1 IS, THE tl2t59h TH INPUT VARlAdLt UOES NOT APPEAR IN ANY OF Tht
2RtLATIONS/l

13 	 RETURN

eND

SUBROUTINE GELIMCNTOTERtNtAAl
DIMENSION AACNTOTER,lJ
COMMON /A5/DC100)
COMMON lNDEXtLEVELtlPRlNTtlDATAtftMAXMtG,N~HRINtM~TARTtPU,LP~tllft

llFENCt,PLtN~TOPtNSMAXtNSHOT,NTESTtTl~tRtREUUCE,NVIOLtKOtNNUEX

c
C THIS SUUR. USES GAUSS ELIMINATION TO SOLVE A SET OF NTOTlk EUNS
C IN N UNKNOWNS WITH ONE RIGHT HAND SIDE. THE COEfFICIENTS ENTER
C T~fE SUBR. IN THE NTOTER BY N POSITIONS OF lAA'· TrlE R.H.S. IS
C STORED IN THE VECTOR AA(l,Nl'• THE SOLUTION VLCTOR <IN THIS CASE
C TrlE SET OF LOG(XI VALUES' IS RETURNED IN AA(I,Nll.
C NOTE ••• GEL!M -EUUIRES THAT NTOTER.GE.N

KOUNT=NTOTER
KO~o

Nl=N+l
c THE ARGUMENT OF ALOG(l MUST dE POSITIVE,THEREFORE DISCARD ~Nv
c EQUATION FOR WHICH D<Il.LE.O.
c IF ANY D(l'.LL.O.O , TtiEN ZERO THE CORRESPONUING ROW IN <AAI A~D
c DECREMENT KOUNT. (IF KOUNTeLTeN THEN THE MATRIX IS SINGULARJ.

l=U
lul 	I=I+l

IF(l.GT.NTOTER)GOT0102

IF<D<I>.GT.l.OE-10) GO TO 101

c 	 TEST AGAINST l.E-10 RATHER THAN 0•0 TO ALLOW FOR ROUNDING ERR0R·
KOUNT=KOUNT-1
DO 10 J=ltNl

lv 	 AA(ltJl=OeO

GO TO 101

10£ CONTINUE
c CHECK TO SlE IF THERE ARE SUFFICIENT VALID EUUATIONS RE~AINING.
c IF THERE ARE LESS THAN N EUUATIONS, THE N UNKNOWNS CANNOT UE
c SOLVED FOR

IFCKOUNTeLTeN)GOTOll

121

KN=O
GO TO 12

ll 	 WRITEI6t610l
KO=l
GO TO 99

c
C LOCATE THE FIRST NON-ZERO ~LEMENT IN THE KNTH COLUMN IANU KTH ROW)
c

12 KN=KN+l
K=KN-1

121 	 K=K+l
lf(AUSIAAIKtKN)).Gl.l·OE-10'60T013
IF<K·LT•NTOTER)GOT0121
KO=l
~oJR ITt:. (6, 611 l KN
GO TO 99

c
C INTERCHANGE THE KTH AND KNTH ROWS•
c

13 	 IF<K.EO·KN) GO TO 15
uO 14 I=KNtNl
Ti:J-'lP=AA (KN, I l
AAIKN,I >=AA(K,I)

ll• 	 1\ A (K , I l =T E MP
c
c DIVIUE THE NEW KNTH ROW BY ITS DIAGONAL lLEMENT AAIKNtKN)•
r,_

15 	 J=Nl+l
151 	 j=J-1

lF(JelT·KNl GO TO 16
AACKN,Jl=AAIKN,Jl/AA(KNtKNl
GO TO 151

16 KNl=KN+1
c
C REDUCE ALL ROWS HELOW THE KNTH ROW•
c

DO 17 I=KNl,NTOTEk
PMULT=AA(l,KN)
DO 17 J=KNtNl

17 	 AACitJl=AA(I,Jl-PMULT*AA<KN,JI
IFIKNeLTeN)GOT012
NVl=N-1
DO 18 I = 1 , NV 1
IPLUS=I+l
DO 18 Il=IPLUStN
PlvlUL T=AA(I, I I l
DO 18 J=lltNl

18 	 AA(l,Jl=AAII,Jl-PMULT*AAIII,J)
610 	FORMATI43H- CANNOT MAKE DUAL TO PRIMAL TRANSFORMATION)
611 	 FOkMATilH-,48HTHE MATfHX PASSED TO GELIM IS SINGULAI~ IN COLUMN,I3l
99 	 RETURN

ENl>

122

SUdROUTINE GEOPTINTOTERtNtNCONStNT~RMStDSTAR,SNtT)
DIMENSION NTE-MS(l),DSTARINTOTER,ll,y(ll
COMMON INDEXtLEVELtlPRINTtiDATAtFtMAXMtGtNSHRIN,MSTARTtPDtLPStiCTt
liFENCEtPltNSTOPtNSMAXtNSHOTtNTE~TtlEStRtR[DUCEtNVIOLtKOtNNU~X

COMMON /A3/CK(lUU),GAMilOOltWORKllClOOl
COMMON /AS/DilOOJ

C GECPT IS CALLED FROM SEEKU , HENCE T IS VARIABLY DIMENSION~D
c
C THIS SUBR. EVALUATES THE OPTIMIZATION FUNCTION FOR A GIVEN SET
C OF VARIABLES T. PENALTY FUNCTIONS AkE AODED IF ANY CONSTkAlNTS
C ARl VIOLATlD.GEOPT lS THE ANALOGUE OF IUPTIMFJ USED ELSEWH~RE IN
C OPTIPAC.
C NOTE*** SUBR.SEARCH WHICH CALLS GEOPT IS A MINIMIZATION TECHNIUUE
C THEREFORE THE NEGATIVE OF THE OPTIMIZATION FUNCTION IS RETURNED.
C THAT 1St MINIMlZING t-SNl IS EQUIVALENT TO MAXIMIZING (+SN).
c
C EVALUATE THE D<ll VECTOR- ALL D(II.GTeOeO 15 THE CONSTRAINT
c

NI'-1=NTOTER-N
DO 202 II=ltNTOTER

Dt 1 I l =DS TAR< I I tl l

DO 202 IQ=2tNM

2U2 D!IIJ::D(III+T!IOl*DSTARCI!,IQ)
SN=-l.OE+lO

c
C ASSIGN PENALTY FUNCTIONS TO SN IF ANY D(II.L~.o.o
c

DO 203 II=l,NTOTER

IFIDlii>.LT•O•O)SN=SN+leOE+20*D!III

lF(SNeLT·-l·OE+lOtGOT0215

203 CONTINUE
c
C EVALUATE THE GAM!Il VECTOR.
c

NTEMPl=l
NTEMP2=NTERMS(ll
DO 2J4 J=ltNCONS
GAM(Jl=U.O
NTE~Pl=NTEMPl+NTERMSCJ)
JJ=J+l
NTEMP2=NTEMP2+NTERMS(JJ)
DO 205 Il=NTEMPltNTEMP2

2u5 GAM(Jl=GAM(Jl+D(llJ

2Utt CONTINUE

c
C CALCULATE THE OPTIMIZATION FUNCTION SN•
c

SN=CK!l)

DO 206 IQ=2tNM

2U6 SN=SN*CK(IQl**T(IQ)

DO 207 II=l,NTOTER

2J7 IFCDIIIJ.GT.UeOlSN=SN*Dlli)**(-D(lll)

DO 208 J=ltNCONS

2U8 IF!GAM!Jl.GT.O.OlSN=SN*GAMIJ)**GAM(Jl

c
C MAKE SN NEGAT+VE AGAIN tiFORE RETURNING TO SUBR.SEEKl
c

215 SN=-SN
RETURN
END

SUBROUTINE ADRANS (XtUtNtXSTRTtRMAXtRMINtPHI,PSitUARTtNCONS,NcUUSt
lDSTARtNTOTERtNTERMSJ

D I 'v1F N.S I ON XC 1) , X S TR T (1) , RMAX (1) , Rr-11 N (1 i , PH I (1 i , PSI (1)
DIMENSION DSTARCNTOTERtlitNTERMS(l)
COMMON INDEXtLEVELtlPHlNTtlDATAtFtMAXMtGtNSHRINtMSTARTtPUtEPStiCTt
liFENCEtPLtNSTOPtNSMAX•N~HOTtNTESTtTEStUtREOUCEtNVIOLtKOtNI:uEX
tOMMO~ /Al/RClOOltAVEllUOJtXOllUOltRANb~llOO~

C AFTER EVERY F+VE IMPROVEMENTS THROUGH THE ADAPTIVE RANDOM SEARCH
C MODE• A LARGE­ STEP IS TAKEN ALONG A MEAN PATH THROUGH THESE
C 5 POINTS. MORE STEPS ARE TAKEN ALONG THIS PATH UNTIL A NEW POINT
C FAILS TO PRODUCE AN IMPROVEMENT. THE PROGRAM THEN CONTINUES THE PATTER
C OF FlNOlNG 5 NEW IMPROVEMENTS BY THE ADAPTIVE RANDOM SEARCH
C FOLLOWED ey AN EXTRAPOLATION ALONb THt MEAN PATH •

NNUEX=INIJEX
viR IT E (6, 4 3)
NCOUNT=O
KOUNT=l
KON3=0
Kl=O

C TO SPEED UP THE METHODt USE SUBROUTINE FEASeL TO OeTAIN AN INITIAL
C STARTING POINT. NOTE ••• THE METHOD DO~S NOT ACTUALLY REQUIRE A
C FEASibLE START tSO IF F~ASdL FAILS THEN ADRANS STILL PROCEEDS•
C SET F=.05 TO DEFINE TrlE INITIAL ST~P SIZE IN FtASbL
C SET G=.Ol TO UEFINE THE MINIMUM ST~P SIZE IN FEASbL

G=O.Ol
CALL FEASBL(XtU'N'XSTRTtRMAXtRMIN,PHI,PSI,NCONStNEQUS,UART,DSTAR,

lNTERMS,NTOTERl
IF<IPRINT.GT.OlWRITf(6t66lU,(XCil,I=ltNl
IF<KO.EQ.llWRIJ~(6t67~

C IGNORE A KO=l MESSAGE FROM F~ASbL
KO=O

C ZERO THE COMMON BLOCK ARRAYS SINCE TH~Y ARE USEU IN SUbR• FEASbL
DO 4 I= 1 t 100
fHI>=O.O
AVE<I>=OeC
XOCil=O.O

4 RANGE<ll=G.O
DO 5 I:: 1 'N
XOCl)=X(l)

5 RANGECll=ABSCRMAXCI>-RMINCij I
C SUBROUTINE OPTIMF IS THE OPTIMISATION FUNCTION WITH P~NALTIES

CALL OPTIMF CX,UOtPHitPSI,NCONS,NEGUSl
C RANDOM NUMbER GENERATION

K=r-1.5 TART

124

8 DO 9 I= 1 tN

9 ;.'\VE(I)=O•

M=l

11 	 CALL FRANON(RtNtKl

K=O

DO 1U 1=1 tN

C GENERATE NUMBERS WITHIN HALF THE RANGE FROM XO(!l
10 X(I l=XO< I)+RANGE< I)*(R(I >-.50l**M

CALL OPTIMF (XtUtPrlltPSltNCONStNEOUS)
K.l =K 1 +1
IFtU.LTeUOlGOT018
IF!KleLEeNSMAXlGOTOll

C IF NO IMPROVEMENT AFTER NSMAX TRIES WITH ThE MINIMUM RANGE <M=7J
C THEN AN OPTIMUM IS ASSUM~U

IFIM.GE.7)GOT045
C INCREASE M TO EFFECTIVELY DECREASE THE STEP SIZE

t-i=~l+?

Kl=O

GOTOll

18 Kl=O

f\.1=1
DO 20 I= 1 tN

AVE(I I =AVE< I) + (XC I) -XO (I))

20 	 XO <I) =X (I)

UO=U

NCOUNT=NCOUNT+l

C 	 FIVE RANDOM NUMBERS ARE GENERATED
C 	 THE AVERAGE OF THE FlVE VALUES IS THEN O~TAINED

lFINCOUNTeLT.5) GO TO 11
NCOUNT=O
DO 2 5 I= 1, N

25 AVE!Il=AVECll/5.
C PATT~RN SEARCH
C K2 - IS A COUNT OF THE CYCLES MADE WITHIN TH~ PATT~RN SEARCH

K2=0

5 U DO 3 U I = 1 , N

3v X!lli=XOtii+IWEtl)

CALL OPTIMF IX,UtPHitPSltNCONStNEQUSj

IFtu.GE.UOl GO TO 42

DO L~O I=ltN

AVEfll=AVE(Il*l•2

40 	 XO(J:)=XCI)

UO=U

K2=K2+1

C 	 DO NOT MAKE MOR~ THAN 50 PATTERN MOVES WITHOUT RECALCULATING ThE
C 	 BlST DIRECTION tiY THE RANUOM S~ARCH STRATEGY ABOVE

IF<K2.GTe50) GO TO 42
GOT050

41 	 KO= 1

WRITEI6t65lKOUNT

GOTOlUU

42 KON3=KON3+1

DO J.2 I=ltN

1£ X (I ;i =XO (I)

•

125

lFCIPRINTeEU•O•OReKON3•N~.IPRlNTibOT046
lf(KOUNT.EQ.IPRINT)WRlTEC6t48i

CALL UREALCXtUU)

WRITEC6t44)KOUNTtUUtCXCIJ,I=ltNI

KON3=0

46 	 KOUNT=KOUNT+l

lf(KOUNTeGTeMAXMJGOT04l

GO TO 8

45 	 DO 13 I=ltN
13 	 X(I>=XOCI)

KOUNT=KOUNT+l
CALL UREAL(X,UU)
IFCNCOUNTeGT.O)WRITE(6t44)KOUNTtUUtCXCII,I=l,N)

100 CALL ANSWERCUtXtPHitPSitNtNCONStNEUUS)
43 FORMATC1Hlt49HOPTIMllAT10N USING AUAPTlVE RANDOM SEARCH AURANS//l
44 FORMATClHOtl4t3Xt5El6·8/(24X,4El6·~))
4b FORMA1(1H-,15XtlH0t25Xt23HlNDtP~NvENT VARlAbLtS X//)
65 FORMATC1H-,20HNO.CONVERGENCE AFTERt15t7H MOVES/1
66 FORMAf(lH-,38HSTARTING POINT FOUND BY METHOD IS U =tE16eBtllH AT

1 XCI> =t/1ClXtEl5e8t4El6.8)i
67 	FORMATClH+,81Xt12HCINFEASlBLFl;J

RETURN

END

REFERENCES

1. 	 Garvin, W.W., "Introduction to Linear Programming", McGraw­

Hill, 1960.

2. 	 Siddall J .N., McDonald J. F., et al., "OPTIPAC - Volume I:
Users' Information", Department of Mechanic! Engineering, McMaster
University, October, 1969.

3. 	 Siddall, J .N., McDonald J. F., et al., "OPTIPAC - Volume II:

Programmers' Information", Department of Mechanical Engineering,

McMaster University, October, 1969.

4. 	 Duffin, R.J., Peterson E.L. and C.M. Zener, "Geometric Programming",
John Wiley & Sons, 1967.

5. 	 Griffith, R.E. and.R.A. Stewart, "A Nonlinear Programming Technique
For The Optimization of Continuous Processing Systems", Manasement
Science, Vol. 7, 1961, pages 379-392.

6. 	 Gurunathan, U., "Vibration Analysis and Design Optimization Studies
of Space Frames-Optimization Studies'', Master's Thesis, Department
of Mechanical Engineering, McMaster University, May 1968.

1. 	 Hooke, R. and T.A. Jeeves, "Direct Search Solution of Numerical and
Statistical Problems", Westinghouse Research Laboratories Scientific
Paper, 1960.

8. 	 Flood, M.M. and A. Leon, "Direct Search Code For The Estimation of
Parameters in Stochastic Learning Models", Mental Health Research
Institute, University of Michigan, May 1963.

9. 	 Flood, M.M. and A. Leon, "A Generalized Direct Search Code For

Optimization", Mental Health Research Institute, University of

Michigan, June 1964.

10. 	 Fiacco, A.V. and G.P. McCormick, "Extensions of SUMT For Nonlinear
Programming: Equality Constraints and Extrapolation", Management
Science, Vol. 12, July 1966, pages 816-828.

11. 	 Fiacco, A.V. and G.P. McCormick, "Nonlinear Programadng: Sequential
Unconstrained Minimization Techniques", Wiley, 1968.

126

127

12. 	 Gall, D.A. and E. Krokosky, "A Generalized Procedure For
Automated Optimal Design", Proc. Fourth National Conference on
Ensineering Design, Hanover, New Hampshire, July, 1967.

13. 	 Gallagher, P.J., "MOP-1, An Optimizing Routine For The IBH 650",
Canadian General Electric, Civilian Atomi.c Power Dept. Report
No. R60CAP35, 1960.

14. 	 McArthur, D.S., "Strategy in Research-Alternative Methods For
Design of Experiments", IRE Trans. on Engrg. Management,
Vol. E~t-8, March 1961, pages 34-40.

15. 	 Frank, C.J., "Transformer De.sign Using Geometric Programming",
\o/estinghouse Research Laboratories Uemo 64-7C4-361-Hl, December 1964.

16. 	 Beightler, c.s., Lo, T. and H.G. Rylander, "Optimal Design by
Geometric Programming", ASME Paper No. 69-WA/DE-7, July, 1969.

17. 	 Siddall, J.N., "Theory of Engineering Design- Part II", Department
of Mechanical Engineering, Mcltaster University, 1967.

18. 	 Hassitt, A., "Computer Programming and Computer Systems", Academic
Press, New York, 1967.

	Structure Bookmarks
	GEOM(Not applicable) ADRANS

