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1. INTRODUCTION 

The basic criterion for a successful engineering design is 

that it meet or surpass all restrictions imposed upon it by the design 

specifications themselves, the laws of physics and chemistry, and the 

properties of the materials used. A design which satisfies all these 

requirements is called an acceptable, or feasible solution to the 

problem. In practice, nearly all design problems have several feasible 

solutions, and the final configuration must be chosen according to some 

other criterion such as minimum weight, maximum volume, or minimum cost. 

This part of the design procedure is known as optimization. 

Before the introduction of high speed digital computers, very 

little systematic optimization was done because of the prohibitive 

amount of time necessary to determine even a few feasible solutions. 

Although several computer techniques have now been developed, formal 

optimization in engineering design is still not widely used and there 

appear to be two main reasons for this. First of all, few engineers 

have either the time or computer progrSIII'lling knowledge to write their 

own optimization algorithms. Programs which are available in computer 

libraries are usually inflexible and difficult for an inexperienced 

programmer to use. Secondly, only for purely linear problems,* is there 

a general method (revised Simplex1) which can guarantee that the optimum 

*In optimization theory the terms "linear" and "nonlinear" refer 
to the forms of the constraint equations and inequalities, and the 
optimization function which define the particular problem. 
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found is the global or absolute optimum. Unfortunately, most real 

problems are nonlinear and the relative success of any one of the 

nonlinear techniques is largely dependent upon the form of the functions 

describing the problem. It is rarely possible to predict which method 

is best suited to a particular problem. To overcome all these 

difficulties it was felt that the designer needed a pre-written program 

package containing several different optimization techniques, with input 

requirements kept to a minimum. In addition, the program would need 

thorough documentation written in a straightforward, "how-to-do-it" style. 

A system of this type has been developed by the author and others 

who are credited in the "Acknowledgements". The package is called 

OPTIPAC and it contains eight nonlinear optimization methods and a code 

for revised Simplex. Input/output is controlled internally and the user 

needs only a basic understanding of simple FORTR&~. Step-by-step 

instructions on how to run a problem are contained in a users' manual, 2 

while a second manua13 provides detailed information about the actual 

program organization and logic. 

This thesis describes the significant features of OPTIPAC and 

makes suggestions for its further development. The results of some test 

problems are discussed and a complete FORTRAN listing of the program 

is included in the Appendix C to provide a permanent record of the version 

2 3 of OPTIPAC which is described here. The users' and programmers' manuals ' 

are frequently referred to as they contain a thorough description of 

every facet of the system's design and operation. 



2. THE COMPUTER PROGRAM PACKAGE "OPTIPAC" 

2.1 General Description 

The program is written in FORTRAN IV and is organized into a 

series of subroutines which fall into three basic categories: service 

subroutines, system subroutines and method subroutines. 

The service subroutines are written by the user to define the 

objective function and constraints for his problem. These, along with 

a program MAIN and some data cards, comprise the user's input deck. The 

rest of the program is stored on magnetic tape. 

The system subroutines form the heart of the package. They read 

in the data, call the appropriate method(s), find a feasible starting 

point if necessary, print out the results, and perform a sensitivity 

analysis of the results if requested. OPTIPAC* is the name of the 

controlling subroutine which provides the overall logic. Access .to the 

package is obtained by calling subroutine OPTIPAC from another program -­

often a small "dummy" MAIN. Probably, the most powerful feature of the 

package is that a problem can be run on several methods at once. This 

provides both a check on the solution and an indicat:Lon as to which is the 

most suitable optimization technique. As stated in the introduction, none 

* The name "OPTIPAC" is derived from the words OPTimization 
PACkage. Although it is actually the name of a subroutine, it is used 
synonymously as the name of the whole package. 

3 
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of the nonlinear methods is completely general, and several parameters. 

such as stopping criteria, step sizes, and the allowable number of 

moves, must be adjusted for each problem. Often it is difficult to 

choose these values in advance, and consequently the package has been 

designed to operate at two distinct levels. At the "unsophisticated" 

level, subroutine OPTIPAC automatically assigns reasonable values to 

all parameters which require judgment on the part of the user. Thi.s 

reduces the necessary input data considerably and makes it very easy to 

get an initial, rough solution. At the "sophisticated" level, the 

user must feed in the extra data cards to define all the program 

parameters. This enables him to tune methods specifically to his 

problem, thus obtaining the most accurate solution possible. This two­

level facility is an extremely useful feature. It means the package is 

of equal value to a person who knows nothing about optimization theory 

and to someone who is familiar with the smallest details of each method. 

The method subroutines contain the coding for the various 

optimization techniques. At present, these include revised Simplex for 

purely linear problems, and eight methods for nonlinear problems. These 

methods are: two types of direct search, a sequential direct search, an 

alternate search-linearization method, successive linear approximation, 

geometric programming and two different random search strategies. Such 

a wide variety of methods greatly increases the likelihood of the program 

finding a solution for any input problem. Obviously, the effectiveness 

of the package will increase as more methods are added, and the program 

has been set up with this in mind. Only a few modifications are necessary 
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to incorporate an entirely new method. (The actual procedure involved 

is given in section 5 of the programmers' documentation3). 

2.2 Service Subroutines 

The description of the problem to be optimized is supplied to 

the package via the three service subroutines for all methods except 

revised Simplex and geometric programming. (These are highly specialized 

techniques for which the constraints and objective function must be fed 

in as data in a specified pattern). The objective function, equality 

constraints, and inequality constaints are evaluated in subroutines 

UREAL, EQUAL, and CONST respectively. In order to standardize the input 

to some extent, the following convention is used for stating the problem: 

Minimize the objective function* defining the optimization criterion: 

U • U(x1,x2 , •••xn) 

subject to equality constraints defining feasibiiity: 

~j = ~j(x1 ,x2 , •••xn) • 0 j•l,m 

and inequality constraints defining feasibility: 

k•l,p 

where are the independent or design variablesx1 

n is the number of design variables 

m is the number of equality constraints 

p is the number of inequality constraints 

*The objective function is also known as the optimization, cost, 
or criterion function. 
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The user must abide by this convention, but it in no way 

detracts from the generality of the program. Maximization can easily 

be achieved by minimizing the negative of the true objective function. 

Also, inequalities of the form +ksO can be readily converted to +k~O 

by multiplying through by -1. If the constraints have non-zero 

tenns on the right hand side, then these terms must be transposed to 

the left hand side. Problems with only one type of constraint (m•O or 

p=O), or with no constraints at all (m=O and p=O) are perfectly 

acceptable. 

The input to the service subroutines is the X(I) array containing 

the current values of the design variables. The corresponding values 

of U, .p. and 4>. are calculated and returned to OPTIPAC. In the simplest
J K 

case, the objective function and the constraints can be expressed directly 

as FORTRAN arithmetic statements such as, 

U=X(l)*X(3) 
or PSI(l)=X(l)-SIN(X(2))*3.0 
or PHI(3)=X{2)-·16.0 

Oftent however, a more complicated analysis is involved. It may, for 

instance, require the solution to a set of E!igen value equations in 

order to put a constraint on the eigen value itself. 

e.g. PHI(2)=EIGEN-2.3 

This is quite straightforward to do, since the user actually punches up 

the service subroutines and can therefore include as much coding as 

necessary. He may dimension his own working arrays, and call any 

subroutines he wishes from the computer library. If extra data such as 

physical constants or material properties is needed, it can be read in by 

the MAIN program and transferred to the service subroutines through 
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labelled COMMON. When a complicated analysis is required, the user 

should include conditional STOP's after sections of coding which 

could possibly produce meaningless results. If, for instance, a 

matrix inversion fails, then the program should be stopped rather than 

have OPTIPAC continue, acting on misleading or even absurd information. 

It is extremely important that the service subroutines be written 

efficiently -- especially if they are complicated. They are called 

almost continually by the method subroutines and thei.r execution time 

constitutes a large portion of the total execution time for the job. 

Although the three service subroutines are very similar to 

each other from the programming point of view, they performseparate 

roles in specifying the optimization problem. 

Objective Function: Subroutine UREAL 

UREAL contains the coding to evaluate the objective function U 

at a point. Most frequently, this is the cost of the product. Other 

typical objective functions are weight, volume, strength, output power, 

aerodynamic drag, and fluid and thermal flow rates. The objective 

function must be dependent on at least one of the design variables, 

although it need not necessarily represent any physical characteristic 

of the design. For example, a specific value of horsepower could be 

obtained by minimizing, 

U = (HPTEST-HPGOAL)**2 

It is often difficult to choose a single objective function. 

For instance, the designer may want to minimize the cost and the volume 

at the same time. This is possible by writing, 

U = WATEl*COST + WATE2•VOL 
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The weighting factors WATEl and WATE2 are needed to compensate for 

large 	differences in the orders of magnitude of COST and VOL, and also 

to place emphasis on the more important of the two. Several trial 

runs would probably be necessary to determine reasonable values for 

these 	factors. 

Equality Constraints: Subroutine EQUAL 

EQUAL calculates the equality constraints ;j which are usually 

equations based on physical or chemical laws. They may also be design 

objectives such as, 

PSI(l)•X(l)-X(2) 

which could stipulate a beam of square cross-section for instance. Since 

all the nonlinear methods in OPTIPAC are basically exploratory strategies, 

the equality constraints are very rarely exactly equal to zero. This 

creates some technical difficulties which are later discussed for each 

method subroutine. For this reason, it is desirable to use as few ljl's 

as possible. If some tolerance is acceptable on either side of the 

equality, then quite often, two inequality constraints can be used instead. 

PHI(l)•X(l)-X(2)+.01 } 
e.g. 	 could replace PSI(l)=X(l)-X(2) 

PHI(2)•X(2)-X(l)+.Ol 

Another problem with equality constraints is introduced if the 

independent variables are of different orders of magnitude. Typically, 

one constraint could be defining a buckling load of millions of pounds, 

while another specifies a flange thickness of a few inches. Weighting 

factors would be needed to prevent the buckling constraint from completely 

dominating the others. Alternate search (subroutine ALTS) is the only 

method which adds weighting factors internally. For the rest of the 

http:PHI(2)�X(2)-X(l)+.Ol
http:PHI(l)�X(l)-X(2)+.01
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techniques, these weighting factors can be added directly in 

subroutine EQUAL as shown below: 

PSI(l)~l.O*(X(l)-X(2)) 
PSI(2)=l.OE-06*(Cl*X(3)**2-C2•X(3)-C3) 

where X(3) is the critical buckling load and Cl,C2 and C3 are functions 

of the other ir•dependent variables. The factors 1.0 and l.OE-06 would 

probably have to be adjusted after a few trial runs. 

Inequality Constraints: Subroutine CONST 

CONST evaluates the inequality constraints +k' where +k~O at a 

feasible point. They are used to place bounds on the independent 

variables themselves or on functions of them. Sometimes it can be quite 

difficult for the designer to know if he has put enough constraints on 

his problem. The best way for him to find out is by making a trial run 

and checking if the results are reasonable or not. Often, seemingly 

trivial restrictions must be included. For example, it may be necessary 

to have a constraint stating that the overall height of an I-beam is at 

least as great as two flange thicknesses. This fact is self-evident to 

the designer, but not to the purely mathematical optimization techniques. 

Geometric programming (subroutine GEOM) is the only method which assumes 

that all the design variables are positive. Any of the other methods 

will readily accept negative physical dimensions or even negative cost 

if specific constraints are not imposed. 

Like the equality constraints, some of the inequality constraints 

may need weighting to allow for differences in magnitude or relative 

importance. These weighting factors have to be included in subroutine 

CONST since none of the methods is set up to add them internally. 
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The effect of weighting factors in the three service 

subroutines can be quite significant -- especially when using 

methods which minimize an unconstrained objective function with 

penalty terms added for violated constraints. This is discussed 

fully in section 2.4. 

2.3 System Subroutines 

The system subroutines make program OPTIPAC a coherent package 

rather than just a collection of different optimization techniques. 

They read in and screen the data, find a feasible starting point if 

necessary, print out the results and perform a sensitivity analysis 

upon request. Most important of all, they can process any number of 

data decks, permitting the user to try different methods and di.fferent 

program parameters all in one run. The purpose and operation of each 

of the system subroutines is explained below. 

Central Control: Subroutine OPTIPAC 

Subroutine OPTIPAC coordinates the operation of the entire 

package. It acts essentially like a main progrmn, but is written in 

the form of a subroutine for two reasons. First of all, the initial 

DIMENSION statement presents a technical difficulty. Several arrays 

must be sized specifically for each problem to use the computer memory 

efficiently. This can be done only by inserting actual numbers into 

the arguments of array names in the DIMENSION statement of the main 

program. Since the whole package is on tape, this would be quite 

impractical. It would eliminate one of the system's major advantages 

a small input deck. In a subroutine, however, arrays may be given 

variable dimensioning which means that they expand to the size allotted 
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to them in the calling program (see reference 3, page 5-2). Thus, by 

writing OPTIPAC as a subroutine, the package can still be stored on 

tape, and can be called by a very simple, or "dunnny", program MAIN 

consisting basically of a DIMENSION statement and a CALL to OPTIPAC. 

Making OPTI.PAC a subroutine also permits any program to have 

access to it. For example, optimization of some intermediate results 

may be needed during the execution of a large analytical progi'am. This 

could not be run as a continuous job if OPTIPAC was itself a main 

program. At Mcllaster, the package is kept semi-permanently* on a 

COMMON file "OPTAPE". This makes it available to any program having a 

control card COMMON(OPTAPE) and a CALL statement to subroutine OPTIPAC. 

Since the user has to keypunch the MAIN program himself, the 

arrays in its DIMENSION statement, (and therefore the names in the CALL 

OPTIPAC argument list) are kept to a minimum. Only data arrays and 

large, doubly-subscripted working arrays are included. All other working 

space required by the package is declared in subroutine OPTIPAC as 

labelled COMMON blocks which are allotted to the other subroutines as 

shown on page 5-13 in reference 3. The blocks consist of from one to 

four arrays, each dimensioned (100). This scheme allows several sub­

routines to share storage space, although for small problems, the memory 

set aside for working arrays is larger than necessary. (This inefficiency 

could only be corrected by further complicating program MAIN). Another 

result of using working arrays of fixed size (100) is that input problems 

*The COMMON file is re-created from a binary tape immediately 
after every "dead-start" of the computer. True permanent files are not 
yet available at McMaster. 
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are arbitrarily limited to having 100 independent variables, 100 

equality constraints, and 100 inequality constraints. 

After subroutine OPTIPAC has set up the labelled COMMON 

blocks, it clears all the working arrays and initializes the error 

flag, Ko-o. (All subroutines in the package use KO=l to indicate a 

failure of any kind). OPTIPAC then calls subroutine DATA to read in 

the data for the method being run. If KO=l after DATA, the job is 

terminated because READ statements will have been omitted putting the 

remaining data cards out of phase. The values of INDEX, LEVEL and 

NSENSE which are returned from DATA, determine the flow of logic 

through the rest of the package. 

INDEX identifies the method to be used, or signals the end of 

the data deck if set = 99. LEVEL indicates whether the package is to 

be run in the unsophisticated mode (LEVEL=O) or the sophisticated mode 

(LEVEL•l). If a sensitivity analysis has been requested, then subroutine 

DATA returns NSENSE•l (otherwise NSENSE•O). Subroutine OPTIPAC first 

checks the value of INDEX to see if control must be returned to program 

~~IN (i.e. INDEX•99). If not, then a new set of data is ready and the 

level of sophistication is checked. Before calling the method subroutine, 

the computer's internal clock (subroutine SECOND) is referenced to obtain 

the time a~ the start of execution. If LEVEL=O, OPTIPAC presets the 

necessary program parameters and then calls the method subroutine 

stipulated by INDEX. At LEVEL=l, the method subroutine is called 

immediately after the return from DATA because all the program parameters 

are read in from data cards. The method subroutine performs the 

optimization procedure, prints out the results, and returns control to 
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subroutine OPTIPAC. Subroutine SECOND is called again, and the net 

execution time for the method is calculated and printed out. Then, 

if the flag NSENSE•l, subroutine SENSE is called to do a sensitivity 

analysis of the results. Finally, control is returned to the 

beginning of subroutine OPTIPAC and the sequence is repeated for the 

next set of data. To summarize, subroutine OPTIPAC performs the 

follO\oling functions: 

a) provides entry to the package from any other program 

b) allocates storage space for all internal working arrays 

c) clears these working arrays and sets KO==O 

d) calls subroutine DATA to read user's input data deck 

e) presets parameters for method subroutines at LEVEL=O 

f) calls the appropriate method subroutine 

g) calculates and prints out the net execution time for 

the method 

h) calls subroutine SENSE if sensitivity analysis requested 

i) repeats this sequence for many data decks until INDEX=99 

is encountered. 

System Input: Subroutine DATA 

the purpose of subroutine DATA is to read in all the data for 

each method, check key parameters to see if they are acceptable, and 

list the input data (upon request) for the user's scrutiny. 

Basically, subroutine DATA is a series of READ statements, one 

for every possible input parameter to the package. The first card of 

every method's data deck contains three parameters, INDEX, LEVEL and 

!DATA, which control the flow through the remainder of subroutine DATA. 
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Since the set up of the input deck for each method is completely 

specified in the users' manua1, 2 the values of INDEX and LEVEL 

together determine which parameters are to be read in. Therefore, 

simple logical statements are placed before each READ so that unwanted 

parameters are bypassed. All arrays are cleared before data is read 

into them. Immediately following each READ, the parameter IDATA is 

tested and if IDATA•l, the value of the parameter(s) just read is 

printed out. This allows the user to check his input. On later runs 

he may suppress the listing by setting IDATA=O. 

LEVEL and !DATA must be 0 or 1 while INDEX must be between 0 

and 8 inclusive or be equal 99 to signal the end of the data decks. 

Subroutine DATA checks these values, and if any is unacceptable, the 

error flag KO is set equal to 1 and control is returned to OPTIPAC 

which returns to MAIN. 

Subroutine DATA is designed to read in only the special OPTIPAC 

parameters described in reference 2. If the user has auxiliary data, 

(such as physical constants), which is needed by the service subroutines, 

then he must insert his own READ statements in program MAIN and transfer 

the information via labelled COMMON blocks. 

Fe&~ible Starting Point: Subroutine FEASBL 

Several of the nonlinear optimization techniques require a 

feasible starting point, i.e., a point which satisfies all the contraints. 

In many cases however, the user does not know and cannot calculate a 

feasible point for his problem. To overcome this difficulty, subroutine 

FEASBL is included in the package. 
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FEASBL consists of two phases since there are two types of 

constraints. First of all, method subroutine SEEK3 is called to find 

a point which satisfies all the inequality constraints.* If such a 

point is obtained, then FEASBL uses a direct search in the feasible 

region to drive the equality constraints to zero. In this search, 

the objective function is the sum of the absolute values of the equality 

constraints, and ideally, the minimum is at zero. No acceleration or 

pattern move is used since the equalities are already reduced to 

reasonably small values in SEEK3. The actual final magnitude of the 

equalities can be controlled by the user at LEVEL=l by his. choice of the 

parameter "F" (see reference 3, page 5-76). If SEEK3 fails to find a 

point which satisfies the inequality constraints, then FEASBL cannot 

proceed because the direct search minimization of the ~'s can only 

operate in the feasible region. When this happens, an error message 

is printed out and the user must try another (still infeasible) input 

starting point. 

In the current version of OPTIPAC, FEASBL is used by alternate 

search (ALTS) and successive linear approximation (APPROX). Neither of 

these methods can get started if any equalities are violated. Adaptive 

random search (ADRANS) does not require a feasible start, but calls 

subroutine FEASBL to speed up the method. These three methods call FEASBL 

automatically -- it is not an option controlled by the user. 

*When called by FEASBL, SEEK3 cuts out as soon as a feasible 
point is found. It does not complete the optimization of the problem 
unless INDEX•3. 
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System Output: Subroutine ANSWER 

Subroutine ANSWER is a convenient means of printing out the 

results of the methods in a neat, standardized form. As a safety 

feature, ANSWER evaluates U, PHI(I) and PSI(I) directly from 

subroutines UREAL, EQUAL and CONST respectively. This is necessary 

because the final values at the end of a method do not always correspond 

to the optimum point defined by X(l). For example, in a direct search, 

the method stops when no improvement can be found. In this case, the 

final values of PHI(I) and PSI(!) usually refer to the last unsuccessful 

(often infeasible) point tried. Also, the final value of U may actually 

be U plus some small penalty tenns if equality constraints are involved. 

Subroutine ANSWER is usecl to print out either the optimum found or the 

results of the last iteration if the method stops prematurely. Inter­

mediate results are printed out by the method subroutines according to 

the parameter IPRINT. 2 

Sensitivity Analysis: Subroutine SENSE 

The designer is often interested in how the optimum would be 

affected by a small change in any of the independent variables. To 

provide him with this information, subroutine SENSE has been included · 

in the package. Since it entails a large amount of output, the 

sensitivity analysis is only performed if specifically asked for (see 

reference 2, page 2-6). The procedure is quite straightforward. The 

first variable X(l) is decreased fractionally from its optimum value 

and U, PHI(I) and PSI(I) are calculated and printed out. The same is 

done for an increased value of X(l). Then X(l) is returned to the 

optimum and the next variable is changed, and so on. The fraction 
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which is added and subtracted to each variable is FSENSE, a parameter 

input as data by the user. The pdnt~out from SENSE allows the user 

to see which variables have a strong influence on U, and which constraints 

are sensitive to small changes in the variables, i.e. which are the 

critical constraints. Another useful type of sensitivity analysis, is 

to show the effect on the optimum of changes in the :lnequality constraints 

themselves. This can be achieved with OPTIPAC by running a problem 

several times, varying the PHI(I) statements in subroutine CONST. 

Typically, a "DO-loop" would be placed around CALL OPTIPAC in the program 

MAIN, and the constants to be changed in the inequalities would be stored 

in a labelled COMMON block. 

Method Execution Time: Subroutine SECOND 

To compare efficiencies of the various methods, the execution 

thaes must be considered as well as the optima obtained. On the 

c.n.c. 6400, subroutine SECOND provides access to the computer's 

internal clock. Therefore, SECOND is called immediately before and after 

the CALL to amethod subroutine and the net execution time is simply the 

difference between the two readings. All computers have similar 

internal clocks, and only a minor modification is required to run on 

another machine (see reference 3, page 5-88). 

2.4 Method Subroutines 

The method subroutines contain the coding for the various 

optimization procedures. Every method can be run at LEVEL=O 

(unsophisticated user) or at LEVEL=l (sophisticated user). However, 

this only affects the values of the input parameters and the actual 

strategy used is identical for both values of LEVEL. The current 
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version of OPTIPAC includes linear programming and eight nonlinear 

methods. 

Linear Programmin6~ Subroutine SUfPLE 

Linear programming minimizes a linear objective function 

subject to linear constraints. It is included i.n the package for two 

reasons. 1-·irst of all, two of the nonlinear methods, alternate search 

and successive linear approximation, require the minimization of a 

linearized system to determine optimum gradients. These methods could 

call the computer's own library subroutine direc.tly, but that would 

introduce another machine-dependent feature. Also, the variable 

dimensioning scheme used elsewhere in the package could not be applied. 

This would mean that more array names would have to be added to 

subroutine OPTIPAC':5 argument list and to program MAIN's DIMENSION 

statement. The second reason for including linear programming is to 

make OPTIPAC more general. It is written in the form of a separate 

method subroutine to allow the user to run a linear problem easily by 

following the straightforward instructions in the users• manual.2 

'fhe algorithm chosen is the I.B.H. subroutine "SIMPLE" which 

uses Revised Simplex, a computationally more efficient version of 

Oantzig 's original Simplex method. 1 •17 Slight modifications have been 

made to make the subroutine conform with the rest of the package, but 

u 2the basic algorithm is unchanged. It performs Phase I and Phase 

so that an initial feasible basis is not required. It is important to 

note that SIMPLt; assumes it is dealing with equations and the user must 

add slack variables to convert inequalities to equations. The number of 

slack variables plus the number of independent design variables gives 
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the total number of Simplex variables, or columns in the Simplex 

tableau. Another restriction is that SIMPLE can handle only positive 

values of the Simplex variables. If any of the design variables is 

expected to be negative (a voltage or beam deflection for example), 

+ ­then the user can employ the substitution xi • (xi- xi), where both 

x 
+ 

and x 
-

are positive valued but xi itself may be negative. Consider 
i i 

the constraint 

If the user knows X(2) is negative, he must rewrite the constraint as, 

3.•X(l) + 2.•X(2) -2.•X(3) • 4.0 

'fhe Simplex method calculates the optimum values of X(2) and X(l) and 

their difference gives the optimum value of the second design variable. 

'fhis substitution is very useful, although it does increase the number 

of Simplex variables. 

'fhe only input parameter which the user can control (at LEV~L-1) 

is NSTOP, the maximum number of iterations* allowed without reaching an 

optimum. At LEVEL=O, this is set arbitrarily at four times the numbe~ 

of Simplex variables plus ten. If the program stops because NSTOP 

iterations have been exceeded, a message is printed out to tell the user 

whether or not the solution is still feasible. If it is, then the problem 

should run successfully with a larger input value of NSTOP. If the 

solution is not feasible after NSTOP iterations, it is unlikely that 

SIMPLE can find an optimum at all. This is usually due to an input 

*One Simplex iteration consists of selecting the variable to 
be removed from the basis and the variaJ:,le to be added to the basis, 
and performing the i.nterchange. 
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error in the coefficients of the objective function or constraint 

equations. If the user omits a necessary constraint entirely, a 

message is printed out stating that the optimum is unbounded. The 

results at the optimum are printed out only when SIMPLE is being used 

as a method subroutine (INDEX•O). When it is called by ALTS or APPROX, 

there is no printed output except for error messages. 

Nonlinear Programming 

Five of the eight nonlinear methods contained in OPTIPAC are 

direct or random search techniques. They diffe·r in their strategy for 

determining the direction and magnitude of trial moves and in their 

criteria for ending the search. These differences are significant and 

usually one method is considerably more effic:f.ent than the others for 

a particular problem. The direct searches are relatively fast but not 

always accurate, while the random searches are slow but can avoid or at 

least detect local optima. Two other techniques in OPTIPAC rely on a 

linear approximation of the nonlinear problem. One is the Method of 

Successive Linear Approximation (MAP) developed by Griffith and Stewart. 5 

and the other is a combination of accelerated direct search and MAP 

developed by Gurunathan.6 They both use a Simplex solution to determine 

the optimum gradient -- the direction which gives the largest improvement 

in the objective function. The remaining nonlinear method is geometric 

programming4 which solves the special problem where all terms in the 

objective function and constraints are products ()f the design variables. 

In some limited cases, geometric programming yields the global optimum 

directly, but in general, a direct search is required to optimize the 

associated dual problem. 
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Direct Search: Subroutine SEEKl 

SEEKl uses the direct search strategy of Hooke and Jeeves 7 

followed by a random search to check if a true optimum has been found. 

All the direct search methods in OPTIPAC are based on the 

same principle. That is, to incorporate the constraints into an 

artificial objective function which can be minimized by systematically 

calculating its value at selected points in the search region, and 

taking the smallest value as the minimum. To account for the constraints, 

penalty terms are added to the real objecti.ve function whenever constraints 

are violated. By making these penalty terans proportional to the 

magnitude of the violation, it is possible to compare the values of 

the artificial objective function at different points and to move in 

the direction of the apparent optimum. For SEEKl, the penalty terms are 

simply the absolute value of each violated constraint multiplied by a 

large constant. 2 

In the "exploratory search", each variable is never changed by 

more than one basic step length and the results of the exploratory 

search determine the direction for making the larger, pattern moves. 

This means that the search is only accelerated on the basis of feedback 

from changes in !!!. the variables. This is a major difference between 

SEEK! and SEEK2. SEEK2 uses acceleration in the exploratory search 

itself to change each variable as much as possible before starting the 

pattern moves. The relative success of the two approaches depends 

entirely on the form of the problem and the starting point used. 

Like most direct search methods, SEEKl tends to stall on 

constraints. This occurs when no small change (equal to the specified 

http:objecti.ve
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minimum step size) in a single variable can improve the artificial 

objective function. Usually, an improvement could be found using a 

pattern move, but pattern moves are only possible after a successful 

exploratory search. To overcome this difficulty, SEEK! employs a 

simple random search after the direct search has hung up. Every 

variable is increased (or decreased) by a random fraction of ten times* 

the original step length and the result is a composite move of random 

length and direction. At LEVEL•O, up to one hundred such moves are 

tried to find an improved value of the artificial objective function. 

At LEVEL=!, the number is specified by the input parameter NTEST. If 

an improvement is found, then the direct search is resu~d. If not, 

the method assumes it has reached the optimum. Figure 1 shows how this 

random search gets the method started again after it has stalled on a 

constraint. 

The input starting point and the weighting factors for the 

constraints can greatly influence the results of SEEK!. The starting 

point does not have to be feasible, but its position in relation to 

the constraints largely determines whether or not the method will hang 

up. Since it is often impossible for the user to visualize his problem 

irt space, the safest approach is to run the problem with several different 

starting points. 

The penalty terms added to the artificial objective function are 

proportional to the magnitude of the violation of each constraint. TI1is 

*Relatively large moves are made because the object is to get 
as far away from the constraints as possible so that the direct search 
can be started again. 
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causes difficulties when certain constraints are very sensitive to 

changes in a particular variable -- especially a change in sign. 

For example, a problem may have a simple i.nequality constraint to 

keep a small physical dimension, X(3) positive. There may also be 

a complicated equality constraint where X(3) appears in several terms 

multiplied by large factors. Then it is quite possible that, in 

moving from a positive to a negative value of X(3) the equality 

constraint is drastically reduced, while the inequality becomes slightly 

violated. The overall effect is a large improvement in the artificial 

objective function. After this type of jump has occurred, it is very 

difficult to drive X(3) positive again because the equality constraint 

has such a low value that almost any increase in X(J) increases the 

artificial objective function. In some cases, this prevents SEEKl 

from obtaining a feasible solution at all. This trouble can be avoided 

by adding a large weighting factor to X(3) in the inequality constraint. 

That is, constrain lOOOO.•X(l) to be positive, rather than just X(J). 

'l'hen a negative value of X(3) causes an overall increase in the artificial 

objective function as it should. To choose appropriate values, the user 

can run his problem at LEVEL-0 without any weighting factors and use the 

results to decide which (if any) constraints need to be weighted. 

Direct Search: Subroutine SEEK2 

SEEK2 uses the direct search strategy developed by Flood and 

Leon. 8 •9 As mentioned above, the distinctive feature of this technique 

is that an acceleration procedure is used to advance each variable as 

far as possible before any pattern move is attempted. This approach is 

suitable for some problems, but in general, SEEK2 tends to be extremely 
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sensitive to the input starting point and to the order in which the 

design variables are assigned to X{l) through X(N). The starting 

point is important because, by making large moves in a single direction, 

the method can hang up on constralnts before all the variables have been 

changed. Then the final value of the objective function depends on the 

location of the starting point, Wi shown in Figure 2. 

The user arbitrarily namen the design variables X(l), X(2), •••X(N) 

when he is formulating his problem. However, his choice fixes the order 

in which the design variables are moved, since SEEK2 always changes the 

X's in sequence, starting with X(l). The effect of the design variable 

assignments can be seen by studying Figure 2. Starting points B and C 

would have been quite acceptable if the variable X(2) had been moved 

first, that is; if the user had reversed the names of the design 

variables. Unfortunately, in most cases it is impossible to predict 

the best order-- especially since it may change as the solution proceeds. 

Flood and Leon9 suggest randomly changing the order after every search 

iteration. This modification could easily be added as a small subroutine, 

and it would probably greatly improve the efficiency of the method. At 

present, SEEK2 does not have this feature, and the user must reformulate 

the problem to change the search sequence. 

The penalty terms for SEEK2 are the same as for SEEK!, and 

. weighting factors should be applied to the constraints in the same 

manner. The method stops when, moving with the minimum step size, the 

relative change in the artificial objective function is less than the 

specified toleTance KPS. 
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Sequential Direct Search: Subroutine SEEKJ 

sm•;K) is based on a method by Fiacco and McCormick 10 , 11 which 

they call the Sequential Unconstrained Minimization Technique (SUMT). 

The method consists of a series of direct search minimizations 

using the strategy of SEEKl. The artificial objective function uses 

2:-.pecial penalty terms which are designed to prevent the solution from 

leaving the feasible region (all inequalities satisfied) while driving 

the equality constraints to zero. This assumes that the input starting 

point. is feasible. To permit infeasible starting points, alternate 

penalty terms, like those used in SEEKl, are substituted for all 

unsatfsfit~d inequality constraints. These alternate penal ties are 

relatively large and the solution tends to the feasi.blc region rapidly. 

Fiacco and HcCormick have proposed another procedure for handling 

i.nfensible starting points ~.;htch uses· SilltT itself to drive the inequalities 

positive. gxperienc£> vlth OPTIPAC howevPr, has indicated that the former 

approach ls quite adequate. 

Some effort has been made to find criteria for choosing the 

pen;tlty term parameter R and its reduction factor REDUCE. No 

satisfactory answer has been found, and it appears that these parameters 

are problem-independent. Their values can affect the rate of convergence, 

but they du not influence the opti.mum obtained. The LEVEL=O values of 

R=l.O and REDUCE=.04 have proved effective for many test problems. 

Each iteration of SEEK) constitutes a complete minimization 

problem in itself. To reduce the number of calculations (and therefore 

computer t i.mc), some techniques have been developed111 for: extrapolating 

http:REDUCE=.04
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the results of successive :iterations to speed up convergence. 11lis is 

a feature which should definitely be added to Sr:EK3 in the future. 

SEEKJ is not as prone to stalling on constraints as are SEEKl 

and SEEK2, although some weighting factors (especially on equalities) 

are usually necessary. The method stops when the relative change in 

the objective function is less than 10-8 or when R has been reduced 

below lo-21 • 

Adaptive Random Search: Subroutine ADRANS 

ADRANS uses the pseudo-random search strategy originated by 

Gall. 12 The basic approach is to detennine the optimum search direction 

by taking the mean path through five randomly generated improved points. 

'fhe artificial objective function uses the same penalty terms as S.EEI\.1/ 

and the method can handle infeasible starting points. An attractive 

feature of ADRANS is that every trial move involves changes in all the 

variables, making the method less likely to stall on c.onstraints. 

Generat.ing the trial random points is a cumbersome process, but the 

directions obtained are reliable and accelerated pattern moves help to 

improve the overall efficiency. At present, subroutine FEASBL is c:alled 

tc.1 speed up the method by providing a reasonable starting point -- even 

though AlJRANS does not require a feasible. starting point. 

ADRAI.~S is assumed to have reached the optimum when no improvement 

in the artificial objective function can be found after generating a 

user-specified number (NSMAX) of random trial moves. 

Random Search: Subroutine RANDOM 

RANDO~t J.s probably the best method in OPTI.PAC for handling problems 

with local optima. The strategy used was developed by Dickinson and 
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Gallagher13 although similar techniques have been devised by other 

authors .14 1'he method evaluates the objective function at NUHR 

randomly chosen test points within the initial search region specified 

by the user. Points which violate any inequality constraints* are 

discarded, and the remainder are sorted according to their value of 

the objective function. Then the search area is shrunken to include 

only the NRET best points and the procedure is repeated until the range 

of each variable is acceptably small. The important feature here is 

that, if local opti.ma exist in the original search region, they will 

prevent RANDOM from shrinking that region to any great extent. The 

user could then investigate his original area in smaller segments 

to locate the true optimum. 

The number of random points generated and the shrinkage factor 

used can affect RANDOM's efficiency and so both parameters are controlled 

by the user at LEVEI~•l. Since the whole object is to shrink the 

original search region, it; follows that if the user excludes the 

optimum in his initial estimates of the design variable ranges, then 

it is impossible for RANDOM to reach that optimum. 

Successive Linear Approximation: Subroutine APPROX 

Griffith and Stewart5 havt! developed a technique for conducting 

an extremely efficient search. The method converts the nonlinear problem 

into a linear problem by using a first order Taylor series expansion to 

approximate the objective function and the constraint equations about a 

*RANDOM at present does not accept equality constraints. 
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point. This produc.es a system of linear equations and inequalities 

in which the variables are the steps to be taken in each search din~c.tion 

and the linearized objective function is the improvement tn the objective 

funt:tion at. the new point. After adding constraints to limit the step 

lengths,* this system is solved as a linear programming problem 

(subroutine SlMPLE) to find the optimum search vector. Every move ls 

determined in this manner, and the processstops when SIMPLE cannot 

find a significant improvement in the objective function. 

In practice, there appear to be two main difficulties with the 

method. First of all, the partial deri.vative.s which form the S:i.mplex 

2coefficients an• evaluated numerically and they can be quite inaccurate, 

This is a serious problem when equality constraints are linearized 

because no compensating slack variables are added as they are to 

inequalities. The second problem is in determining the Hmit.s to be. 

placed on the tndividual step lengths. Their maximum size has been 

arbitrarily set at ten percent of the range of each variable to satisfy 

th(: approxi.mate Taylor series expansion. As the solution proceeds, it 

;s necessary to decrease the allowable step lenrths i.n order to force 

convergence. The logic which controls this step t<..ngth rt:!gulati.on is 

3purely intuitive on the part of the author and it: may prove to be too 

crude for larger problems. 

APPROX has been very successful on the test problems tried and 

usually the di fflr.:ul ties mentioned above can be avoided by careful 

*ThP step lengths are restricted to small values because the 
Taylor ~eries expansion is only valid near the base point. 

http:rt:!gulati.on
http:produc.es
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!iel.ection of the input paramt!ters at the sophisticated level (LEVEL,.l). 

Alternate Search: Subroutine ALTS 

A logical extention of the method of successive linear 

approximation is to combine it with a direct search in order to take 

better advantage of the optimwn search direction, thus reducing the 

necessary number o.f Simplex solutions. Gurunathan' s work6 has been 

used as the basis for subroutine ALTS. 

An accelerated direct search is carried out in the feasible 

regir.m (all inequalities satisfied) with an artificial objective function 

eomposed of the true objective function plus the ,.-alues of the equality 

constraints multiplied by weighting factors. \.Jhenever the direct search 

stalls, a linearizatton is performed to find a new search direction. The 

process stops when no significant improvement can be obtained by either 

method. One disadvantage of AI.TS is that a feasible starting point is 

r£•qui red, but :l.n most cases subroutine FEASBL 3 is able to locate one. 

The major difficulty with the method is in choosing step length 

Hmltations for the linearizations. The problem is more pronounced than 

f"r t\PPROX because the linearizatJons are separated by porti.ons of di rt!C::t 

sear('h and theref('!re the Simplex search directions do not develop in a 

reco~n:izable pattern. At present, the step lengths are not adjusted at 

all, and oscillation or overstepping o.f the optimum can occur. Since 

convergence is not guaranteed, th~ method keeps track of the "best poi.nt 

so far" which ts taken as the optimum if the method does not converge. 

At LEVEL::: 1. the user has control ovt'!r all important parameters

(indudin~ maximum step length) and he should be :1ble to tune the method 

to h.is pr()blem. The direct sear<:h portion of ALTS is particularly 

2 
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efficient for handling equality constraints. The linearizations will 

be more successful when a method of forcing convergence is perfected. 

Geometric Progranuting: Subroutine GEOM 

Geometric programming is the only special purpose nonlinear 

method in OPTIPAC. It was invent~d by Zener4 to solve the problem 

where the objective function and inequality constraints are "posynomials", 

i.e. polynomials with positive coefficients. Also, the independent 

variables are restricted to having positive values. 

The method involves a mathematical transformation to the dual 

problem, the maximization of the dual problem, and then a transformation 

2 * back to the input or primal problem. In certain cases, the dual 

maximization is not needed as the mathematical transformations yield the 

global optimum dirac:tly. For most problems however, SEEKl is required 

t.o maximize the dual objective function. 

The most attractive feature of geometric programming is that the 

relative values of the primal and dual objective functions indicate 

whether or not the solution is optimal. They are equal at the global 

optimum, and represent upper and lower bounds on the global optimum i.f 

they are not equal. One major disadvantage of the method is that the 

transformation back to the primal problem is not always possible. Then 

the value of the dual function gi.ves a lower bound on the optimum, but no 

infomation is gained about the values of the design variables. 

ln its pre:;ent form, GEOM has very limited applications. It needs 

*The globa:. optimum is obtained directly when the ''degree of 
difficulty" equals zero (see reference 2 .t page 4-50). 
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to be modified to permit negative polynomial coefficients, (and therefore 

greater... than-equal type inequality constraints), and negative 

independent variables. It has been used successfully to design 

electrical transformers15 and journal bearings , 16 but problems wi.th 

large "degrees-of-difficulty" have not been tested. 



3. £PCUMENTATlON FOR THE SYSTEM 

The main object of OPTIPAC is to encourage the use of formal 

optimization procedures in engineering design. It is aimed largely at 

people unfamiliar with optimization theory and therefore the 

documentation for tbe system is extremely important. Separate manuals 

have been written for the user2 and the programmer, 3 and a third 

manual is being c~piled* to illustrate typical applications and sample 

input .for some test problems. 

3.1 The Users' Hanual 

The first section, "Quick Information", provides a very brief 

description of the whole system. The generalized form of the optimization 

problem which is solved by OPTIPAC is given, with an explanation of how 

to convert any problem to the standard form. The three categories of 

user, unsophisticated, sophisticated and programmer, are clearly defined 

so that the user can decide which parts of the documentation concern him. 

"Procedural Instructions" outline a systematic, c;1eck-list approach to 

running a problem, referring the user to the relevant documentation at 

every step. Finally, there is a list of the nine techniques currently 

included in the package and a simplified flow chart showing the program 

organization. 

-----------------------------------------·----------------------­
*The third manual is intended for commerc:Lal users and has not yet 

been completed. It is not described further in this thesis. 

34 
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The second section explains how to set up the input deck, and 

describes the arrangement of the MAIN program. service subroutines and 

data deck. A diagram is used to show the complete input deck with all 

the control cards nec.essary to gain access to OPTIPAC whi.ch is stored 

on magnetic tape. Instructions are also given for running more than 

one method at a time and a second diagram illustrates this case. The 

sensitivity analysis which is contained in subroutine SENSE is described 

fully, and instructions for requesting it are given. 

'l'he third section of the users' manual contains the documentation 

for each of the method subroutines at the unsoph:Lsticated level. After 

a short introduction, there is a simplified flow chart to help the user 

choose methods for running his problem. This method selection chart is 

intended only as a rough guide however. and at the unsophisticated 

level, best results are obtained by trying as many methods as possible. 

'i'he descriptions of the methods are written in a standard format and 

are very brief. A statement is given of the type of problem which can 

be handled, and the basic instructions necessary to run a job are 

provided. Virtually no background theory is included in this section. 

The data decks required by each method at this level are almost identical, 

which makes it very easy for the user to try several different techniques. 

The fourth and last section of the users' manual contains the 

documentation for a sophisticated user. The layout is similar to that 

in the previous section, but considerably more detail is included. The 

basic theory behind each technique is outlined and useful references are 

given. A sub-section on special features helps the user choose values 

for all the i.nput program parameters, and the default values of these 
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parameters used at LEVEL=O are listed. As an aid in de-bugging, a 

flow chart is provided to show which subroutines are called. Two 

excerpts from the users' manual are contained in Appendix A to 

illustrate typical documentation at both the unsophisticated and 

sophisticated levels. 

3.2 The Programmers' Manual 

The second manual contains all the information concerning the 

operation and organization of the FORTRAN program itself. It is divided 

into two parts: a description of the program, and an actual listi.ng of 

the source deck. 

The first section begins with a general description of the system, 

including its subroutine structure, the variable dimensioning scheme and 

the use of COMMON blocks. A "Thesaurus of Program Parameters" gives a 

complete alphabetical list of all user-input parameters together with 

their definitions. The details of each subroutine are discussed in a 

standard format. The internal variables are defined, and a flow chart 

of the program logic is given. A second, simplified flow chart shows 

how the particular subroutine is related to the rest of the package. 

Additional notes are used to elaborate on unusual or subtle aspects of 

the coding. The programmers' documentation for subroutine RANDOM is 

included in Appendix A as a typical example. Two other important topics 

which are covered in this manual are the incorporation of new method 

subroutines and features of the program which arc machine-dependent. 

The second half of the programmers' manual is taken up by the 

FORTRAN IV listing of OPTIPAC. Comment cards have been used liberally to 

help clarify the logic involved. 

http:listi.ng


4. TEST PROBLENS 

The test problems discussed below represent real design 

problems chosen to give a good comparison of all the methods. They 

demonstrate clearly how difficult it is to predict which method will 

find the best solution. Several other problems were used in developing 

the individual methods and larger design problems have been run on the 

package by both undergraduate and graduate students at HcHaster University. 

The first example is the design of a three phase shell type 

electrical transfonner. This was used as the main test problem for the 

geometric programming subroutine GEOM and it is fully described in 

15Frank's paper. The object is to minimize the volume of material while 

satisfying two geometrical constraints. GEOM assumes that all the 

variables are positive, but for the other methods, extra constraints are 

needed. Each of the independent variables is a physical dimension of 

the transformer, and the problem can be stated mathematically as follows: 

.Hinimize, 

Subject to the inequality constraints, 
= -4.0x1 /x5 -6.0x2/x5 -4.0x3tx5 + 1.0 ~ 0 

'z 
1$11 

= -6.0x3tx6 -6.ox4tx6 -9.424x1tx6 + 1.0 ~ 0 

cp3 = xl ~ 0 


's = x3 
~ 

!: 
0
'4 = x2 
0 


cp6 = x,. ~ 0 


's = x6 

(! 0== xs'7 
2: 0 

37 
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The problem was run on eight methods at the unsophisticated level, and 

the results and execution times are tabulated in Appendix B. All methods 

used the same starting point. GEOM's solution agrees exactly with that 

of Frank. 15 It is particularly interesting to note ho\v 'o~ell some of 

the other methods work on this specialized problem. Sequential search, 

SEr:K3, is especially good and the direct searches are considerably 

faster than GEOM itself. At the sophisticated level it would definitely 

be possible to adjust parameters in SEEK.3 to obtain the global optimum. 

The histogram in Figure 3 gives a visual compar.ison. of the minima 

obtained and the execution times required by each method. 

The second test problem is a simple structural optimization, 

described by Siddal1. 17 A three member indeterminant truss is to be 

designed for minimum weight. The lengths of the members are fixed and 

the structure must be able to support a one thousand pound load. 

Initially, eight independent variables were chosen: the cross-sectional 

areas and tensile stresses of each member, and the horizontal and vertical 

displacements of the point of application of the load. The problem could 

then be specified by two force-equilibrium equations, three displacement 

equations and nine inequality constraints restricting stresses, tninimum 

areas and buckling loads. This formulation was run on OPTIPAC without 

much success. All of the methods had difficulty handling the five 

equations (equality constraints). After careful examination it was 

realized that only three of the variables were truly independent. 

Having chosen values for the three cross-sectional areas, the five 

equations become linear and can be solved by Gauss ~dimination for the 

http:Frank.15
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remaining five intermediate variables. (These are someti.mes called 

"state" variables). Inequality constraints are still imposed upon the 

intermediate variables, but the formal equality constraints are no 

longer necessary. This revised problem with three independent variables 

and nine inequality constraints was run on OPTIPAC at the unsophisticated 

level using seven methods, and the results are tabulated in Appendix B. 

(All methods used the same starting point). The msthematical statement 

of the problem is given below. 

Minimize, 

Subject to the inequality constraints, 

fl • 20000.... lx4l ~ 0 
tfl2 .. 20000. - lx5l ?: 0 
413 .. 2o~go. - 1"61 
<P4 .. 102oxl ~ 0 

's • 10 X ?: 0 

'6 • lo2ox2 ~ 02.7 . w7 .5 fo xl I 

?: 0 

250.9 - jxlx41~ 0 

'a .. 11'7.5 106 x2
2 I 36.02 

lx2xs1~ 0 

~9 • "'f7.5 10
6 2

x3 I 50.92 - lx3x61~ 0 

It should be noted that the fourth, fifth and sixth constraints 

are heavily weighted to prevent the cross-sectional areas becoming 

negative. The variables x4 ,x5 ,x6 in the above inequalities are obtained 

by solving the following set of linear equations for specified values of 
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-.707x1 x4 + • 707x3 x6 ... -866. 
.707xg x4 + x2 xs + • 707x3 ... 500. 

50. x6-21.21 106 x7 + 21.21 106x8 • o.x4 
36.0 + 30.00 106x8 .. ~0.xs 

50.9 x6+21.21 106 x7 + 21. 21. 106x8 .. o. 

Once again, the value of having several different techniques 

in a package is demonstrated. Adaptive random search, ADRANS, finds 

as low a minimum as sequential search (SEEK3) but it is almost four 

times slower. The fact that these two entirely different meth9ds 

obtain identical solutions, gives the user some confidence that the 

global optimum has been achieved. Both alternate search and successive 

linear approximation have difficulty linearizing the constraints, and 

this could be due to the absolute terms in the inequalities. Figure 3 

compares the relative performance of the seven methods tried. As this 

example shows, it is often possible to eliminate or at least reduce the 

number of equality constraints. The user should always have this aim 

in mind when formulating his problem. 

The third test problem is based on the design of a simple roller 

bearing in which the total volume of material is the objective function 

to be minimized. Due to a slight error in one of the constraints,* the 

solutions obtained are not realistic. However, the example is still a 

perfectly valid optimization problem in the mathematical sense. It is 

included here because OPTIPAC's performance contrasts markedly with the 

two other test problems. The five independent variables selected are the 

*the variable x4 should appear in the denominator of the first 
term in +1• 

http:x6+21.21
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thicknesses of the inner and outer races, the overall lengtt1 of the 

hearing, the roller diameters, and a factor to control the spacing 

between rollers. E.ach of the four dimensions is limited by an 

inequality constraint, and the bearing must be able to support a 

radial load of ten thousand pounds. The spacing factor indirectly 

determirtes the number of rollers and an additional constraint stipulates 

that at least three rollers must be used. The problem is formulated 

as follows: 

Minimize, 

+ 1rX~ (x2+2x3+2~ 
4x1~ 

Subject to the inequality constraints, . .. 2735. x 5 (x3+1) - 10000. 2!. 0 
l = x - x ~ 0¢z 1 2 

~·3 = xj- 0.62: 0 

$4 X~ - .1.1~ 0
= 


¢.s = 'IT x2+zx3+2)/x2x4 - 3. ~ 0 


¢6 ... -x5 + ox2 ~ o 


Appendix l> shows the results from the seven methods run at the sophisticated 

level. (All methods use the same starting point). Geometric programming 

ls not applicable because the objective function contains negative 

coefficients. The histogram in Figure 3 emphasizes again that the 

relative success of each method in the package is strongly problem-

dependent. Sequential search, SEEK3, which is the best method in the 

structural example, is by far the worst method for this problem. APP}~OX 

and ALl'S obtain the lowest value of the objective function here~ but in 

the structural problem, ALTS is only mediocre and .APPROX fails altogether. 

Direct search, SimKl, which is consistently one of the fastest but least 

accurate methods, manages to find one of the best solutions. 



5. DISCUSSION 

A multi-technique package has proven to be a valid approach to 

the general problem of nonlinear optimization. The results of the 

test problems indicate clearly that a variety of methods is much more 

effective than any single method. 

Direct search SEEK! is usually the fastest method. It rarely 

finds the best optimum, although the simple random search at the end 

of the direct search prevents it from hanging up too badly. SEEK2 is 

almost as fast as SEEK! but more prone to stalling on constraints. As 

mentioned in Section 2.4 of this thesis, SEEK2 needs to be modified so 

that the order in which the variables are moved is changed after 

every step. (This would probably be a worthwhile addition to SEEKl as 

well). SEEK2 would also benefit from a random check on the optimum 

obtained and subroutine SHOT of SEEKl could easily be incorporated 

for this purpose. 

Sequential search, SEEK3 is considerably more accurate than 

either of the direct searches. This emphasizes the importance of 

the form of the penalty terms in the artificial objective function, 

since the actual search strategy is the same as that used in SEEK!. 

SEEK3's execution time could be reduced by adding the extrapolation 

feature described in Section 2.4. 

Adaptive random search, ADRANS, is a reasonably accurate method, 
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but it is slowed down severely by the cumbersome process of generating 

trial random points. It seems that there should be some means of 

progressively modifying the search area to speed up the process. For 

example, after one improved point is located, the remainder of the 

search could be concentrated in that area rather than continuing to 

search the full ranges of each variable. If this segment of ADRANS 

could be made more efficient, it would not be necessary to call 

subroutine FEASBL to start the method. (Calling subroutine FEASBL 

is undesirable because it introduces the difficulties associated with 

SEEK3 and SEEKl). 

Random :;;earch, RANDOM, is slower than ADRANS, but it is the only 

method in OPTIPAC capable of detecting local optima. A useful 

modification would be to print out all the current "best" points when 

the method stops before convergence. The user could then use the local 

optima as starting points for other techniques to determine the true 

optimum. At present, only the lowest relative minimum is printed out 

when the method fails to converge. As explained previously, the initial 

search region specified by the user cannot be increased in RANDOM. This 

means that the input values of RMIN(I) and RMAX(I) act like strict 

limit equations on the variables. If the user excludes the optimum by 

specifying too small a range for any of the variables, it will show up 

in the solution because that variable will be approximately equal to 

one of its original bounds. The problem could then be rerun with an 

expanded initial search region. This difficulty does not occur frequently 

enough to warrant building in automatic expansion of the search area. 
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Successive linear approximation (APPROX) is potentially the 

most effective nonlinear technique in OPTIPAC. It is probably the 

only method which can be expected to work efficiently on very large 

problems. At the unsophisticated level, the linearization often 

fails because the numerical partial derivatives which make up the 

Simplex coefficients are too roughly approximated. At the sophisticated 

level, however, the user should be able to obtain good results for 

most problems. The method can handle equality constraints, provided that 

the starting point itself satisfies all the equalities. If the user 

cannot provide such a point, then subroutine FEASBL is called automatically 

to find one. 

Alternate search (ALTS) attempts to combine the speed of direct 

search with the accuracy of successive linear approximation. The 

original idea was to use the linearization only to restart the direct 

search after it had hung up. In practice, the search seldom regains 

any momentum after its first failure. This is due to the fact that the 

search usually stalls close to the optimum or on a constraint boundary 

which permits only composite moves. This leads to a series of successive 

linearizations, but without the extra logic of APPROX to force convergence. 

The result may be oscillation or even divergence. The method stops when 

oscillation is detected, and stores the "best point so far" in case of 

divergence. The method is still not quite satisfactory however, and the 

entire step length regulation logic of APPROX should be incorporated. 

There appears to be a flaw in the basic concept of alternate search: it 

has combined two complete methods rather than just the·best features of 

these methods. A more logical approach would seem to be to choose all 
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search directions exclusively by linearizing the problem and to 

determine the correct step lengths by a direct search in the direction 

obtained. In this way, ALTS would truly utilize only the best features 

of the two different techniques. 

Geometric programming (GEOM) is the only special purpose 


nonlinear method in the package. It has performed well on very 


restricted problems, but still needs several modifications which are 


outlined in Section 2.4 of the thesis. 


No difficulties have been encountered with the revised Simplex 

algorithm SIMPLE. A useful addition would be to automatically make the 

standard substitution which allows negative Simple4 variables. This 

is already a feature of alternate search and successive linear 

approximation. 

All of the methods have difficulty compensating for constraints 

of vastly different magnitudes, since the largest constraints tend to 

dominate the others. Ideally, the program should put equal emphasis on 

all the constraints unless the user specifically includes weighting 

factors in the service subroutines. One approachl7 is to normalize 

all the independent variables by dividing each one by its estimated 

range. This scaling of the independent variables is useful in 

unconstrained problems to make step lengths and gradients more uniform. 

(It would definitely be an asset in the linearizations performed in ALTS 

and APPROX). It does not, however, make a signiflcant improvement in the 

constrained case. A better solution seems to be to normalize the 

magnitudes of the constraints themselves in some fashion. One crude 

range approximation could be obtained by evaluating each constraint at 
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the upper bounds and then the lower bounds of all the independent 

variables. The differences could then be used as the scaling factors 

for subsequent values of the constraints. In certain problems, the 

user may be able to actually input accurate estimates of the expected 

ranges. It should be pointed out that the existing method of entering 

weighting factors is quite satisfactory from tht~ analytical viewpoint, 

but it reqtrlres too much judgment and experience on the part of the user. 

In a system such as OPTIPAC, the user should not need to get involved 

with the technicalities of the program. 

Very few problems with equality constraints have been run 

successfully on the package. SEEK3, ALTS, and APPROX are best equipped 

to handle them, but even these methods have considerable difficulty if 

the starting point is badly infeasible. Equality constraints are 

extremely restrictive because they force the solution to move right 

along a boundary, which is much more demanding than merely staying on 

one side of the boundary (inequality constraints). The direct searches 

(SEEKl and SEEK2) hang up frequently because once they reach a point on 

or very close to an equality, they cannot find a better point. Their 

exploratory search does not allow for the necessary move along the 

constraint. Sequential search, SEEK3, is more successful because of 

the special form of the penalty terms in the artificial objective function. 

For the first minimization, the equalities are virtually ignored due to 

very small weighting factors. The method first concentrates on finding 

a point which satisfies all the inequalities. On subsequent minimizations, 

the equalities are gradually emphasized more until they are finally forced 

to zero. The direct search portion of alternate search (ALTS) uses a 
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somewhat similar strategy, although it requires that the starting point 

satisfy all inequalities. The search is conducted in the feasible 

region, with user-specified weighting factors (WATE(I)) to drive the 

equality constraints to zero. The linearization technique of ALTS and 

APPROX is ideal for following the constraint boundaries, and APPROX 

appears to be the best method for handling problen~ with a large number 

of equality constraints. RANDOM and GEOM do not accept equalities at all. 

ADRANS is very inefficient since so many random points must be generated 

to obtain another point on the constraint boundary. (Execution times 

soon become prohibitive). 

The whole question of equality constraints :is completely ignored 

by many authors. They apparently feel that opti':nization pertains mainly 

to the solution of inequalities, while systems of equations are best 

handled by the methods of numerical analysis and classical mathematics. 

This is a valid argument in some cases and the structural test problem 

in this thesis shows how equality constraints can often be eliminated. 

When they cannot be avoided by reformulating the problem, it is always 

possible to replace an equality by two inequalities. This implies that 

some tolerance is acceptable, but the tolerance can be reduced on 

successive runs until the equality constraint is satisfied exactly. 

As a computer system, OPTIPAC has performed well. Problems have 

been run by a variety of users, many of them unfamiliar with optimization 

and inexperienced in programming. Most have preferred the unsophisticated 

mode of operation because the input is very simple and all applicable 

methods use virtually identical data decks. The users' documentation 

has proven to be more than adequate, and it is constantly being revised 



as minor mistakes are discovered. At present, the programmers' 

manual3 is referred to mainly by users interested in the FORT~~ 

listing of OPTIPAC. When major changes to the system are being made, 

the rest of this manual will be indispensable. 

Now that some operational experience with the package has been 

gained, it is possible to suggest where changes and additions might 

be made to improve OPTIPAC. 

One of the weakest features of the system is the method 

selection chart. Presently, the most reliable way of choosing a 

method is to run the problem on all the methods at the unsophisticated 

level to see which one gives the best results. This would obviously 

be impractical with very large problems. As more test problems are run, 

it should pe possible to establish a statistical basis for method 

selection. That is, the efficiency of each method will be functionally 

related to the key parameters defining the input problem. Typically 

these would include the number of variables, the number of equality 

and inequality constraints, and a parameter to indicate the degree of 

nonlinearity. With this sort of information, the program could choose 

the most efficient method completely automatically. Before incorporating 

this feature, some changes to the method of data input would be necessary. 

Since the user does not know in advance which method will be run, 

then he must supply sufficient data to run every method in a single data 

deck. At the unsophisticated level this is simple, but at the sophisticated 

level it may mean specifying values for over twenty parameters. To reduce 

this number, it will be necessary to further standardize several parameters, 
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such as stopping criteria, so that they apply to all methods. Limits 

on the number of moves or complete iterations can probably be related 

to the number of variables and thus eliminated from the input deck. 

In the present system, all data cards are always read in by the 

system subroutine DATA. It is now apparent that the user should have 

the option of bypassing subroutine DATA in order to transfer data directly 

to OPTIPAC through its argument list and through blank C0!-1MON. This 

option is essential if the package is to be available as a standard 

subroutine to other programs when optimization input data is internally 

generated. Only a very simple modification is needed to add this 

feature. For example, a value of IPRINT exceeding 500 could be used as 

the flag for bypassing subroutine DATA. The true value of !PRINT would 

then be obtained by subtracting 500 from its input value. The overall 

operation of the system would be unchanged, and runs could still be 

made at either level of sophistication. 

The modifications discussed here represent only some of the 


more significant improvements which could be made to the system. Necessary 


changes to the FORTRAN coding itself may become apparent with further usage. 




6. CONCLUSIONS 

OPTIPAC has been developed to encourage the use of formal 

optimization techniques in engineering design. Its aim is to provide 

a system which is easy to use, and yet capable of handling a wide 

variety of both linear and nonlinear problems. The project consisted 

of two phases: developing the FORTRAN program i. tself; and writing 

detailed documentation for three separate types of user. 

Since there is no generally applicable nonlinear optimization 

technique, several different methods have been incorporated into a 

single package. Input/output is controlled internally and the system 

may be operated at two distinct levels, depending on the user's 

familiarity with optimization and programming. Many test problems 

have been run and they have shown that a multi-technique approach is 

well justified. Although the performance of individual methods is 

unpredictable, at least one of the eight methods can usually obtain a 

reasonable solution. 

It was realized at the beginning of the project, that designers 

would not use the package unless it was accompanied by thorough doc­

umentation. Therefore, a considerable amount of time was spent in 

compiling a manual for the user2 and a second manua13 describing the 

programming aspects of the system. The users' manual contains explicit, 

step-by-step instructions for running a job and these have proven to 

be more than adequate. Students at the undergraduate and graduate level 
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in the Design program at McMaster, have been able to run problems 

without difficulty. Considerable interest in the system has also been 

shown by people outside the university. Those who have already used 

or are intending to use OPTIPAC are: the University of Texas; Sheffield 

University, England; the National Research Council (Ottawa); STELCO 

Research Division; DOFASCO; and the Butler Manufacturing Company. The 

latter three companies are all located in Hamilton. 

OPTIPAC's proble~solving ability is limited only by the 

number of techniques included, and the program has been designed to 

make the addition of new methods straightforward. As a system, 

OPTIPAC is still relatively unsophisticated. Its ultimate configuration 

will probably be as a "conversational" program, ~,.,rith the user interracting 

through a ti1ne-shared terminal. 

~~ile it is far from being in its final form, OPTIPAC does 

appear to have succeeded in its two main objectives. It does handle 

a wide range of proble1DS, and the system is easy to use. 



APPENDIX 




A) SAMPLE DOCUMENTATION·FOR 'OPTIPAC'2,3 


(Unsophisticated User) 


3-22 

RANDOM SE.UCH 

!.!!!. 
IWIDOH 

PurpOIIe 


To solve a ooolinear opt~&atioo function with nonlinear inequality constraints. 


The function to be aiaiai&ed will be of the fo~ u- U(x1.x2••••x )

0 

The -thCHI couists of a raad- search for the 111:'.ni- or amply a 

ahotgua tachDique with iterative shriakaa•· 

Liet of taeut Variables 

IIDIX iaclu nUIIIber of subroutine, • 6 

LEVEL lewl of sophistication, • 0 

IPllHT prints iater.ediete results every !PRINT cycle, 

aet at zero for no inter.ediate data 

IDATA if ID«rA • 1 the input data will be printed out, 

otharviaa set at zero 

H nUIIIbar of variables (specified in MAIN) 

HCOIIS nUIIIber of inequality constraints 

llHAl(I) eatiaated upper bound for variable X(l) 

RMltf(l) eatiaated lower bound for variable X(l) 

List of Output Variables 

U llinia111 value of the opt~&atioo functioo 

X(l) values of independent variables at the optia\11 
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(Unsophisticated User) 

3-23 

How to Set Up MAIN Procr• 

DIMENSION X(N),PHI(NOONS),RMAX(N),RMIN(N),Z(J,N),UU(J) 
N•numerical value 
J•numerical value 
M•l 
NN•l 
NTOTER•l 
CALL OPTIPAC(X,PHI,PSI,A,B,C,WORKA,DELX,STEP,XSTRT,RMAX,aMIN,~STAR 
l,NTERMS,GS,WATE,TEST,Z,UU,EX,OONST,AA,BBB,CC,NCONS,NEQUS,~,N,lffi,NT 

20TER,J,XX) 
STOP 
END 

Note: The n~rieal values of N, NCOHS, J (J • 3*M) aust be inserted in 

the DIMENSION atatea.nt, If NOONS is aero then put PHI (1) 1~ the DIMENSION 

Hov to KU.e Up Data Deck 

Variable M- No, of Carda 

IMDEX, LEVEL, IPIUIIT, !DATA 1 413 

IICONS 1 15 

RMAX(I) aa •any aa required 5El6.8 

IKIN(I) aa aany aa required 5El6.8 

Settiaa up Service SUbroutines 

UUAL, see page 3-30 

COHST, see page 3-34 

Miscellaneous 

The values of RKlN(I), BKAX(I) put in by the user establish 

absolute b-da on the variables which can only shrink. If the user is 

unsure, it is safest to aake IMAX(l) too large and IKIH(I) too saell. 

http:atatea.nt
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(Sophisticated User) 

4-45 

RANDOM SEARCH 

RANDOM 

To solve a nonlinear optimization function with nonlinear inequality constraints. 

The -thod consist» of a random search for the minimUIIl, or simply 

a shotgun technique, with iterative shrinkage. Random points for each variable 

x1 to X n 
are generated froa the expression xi•ti+ri (ucti) 

where li is the estimated lower limit for xi 

ui is the estimated upper limit for Xi 

ri h a random n~er uniformly distributed between zero and one. 

Any generated point that violates an inequality conatraint is discarded. If 

the constraints are violated NSMAX times consecutively the process will stop. 

Probl... having more than a few constraints are. liable to bog down in 

violations, particularly if the initial limits overlap appreciably infeasible 

areas. 

The search is bqun by evaluating NUMR randca points by use of the 

above equation, N1lM1l being a 11Ultiple of the nUIIIber of variables. From these 

the best HIET are selected and used as the basis for a new and shrunken range 

for each variable. HRET is defined by NUMR/NSHRIN where NSHRIN is a shrinkage 

factor. Within this new space NUKR new random points are evaluated. These, 

plua the preYious NIET best, are sorted to yield a new NRET best and a new 

shrunken space. the process is repeated until the range of each variable is 

acceptably s.all, or until the r.nse has been shrunken MAXM times. 
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(Sophisticated User) 

4-46 

!!!!!!.!!:!.! 
1. 	 McArthur, D.S., "Scratecy in Qaaearch- Alternative Methods for 

Deaisn of txpedaenta", lllE Trans, on Engrg. Manaaement_, Vol EM-8, 

March 1961, pp, 34-40. 

2. 	 Gallaper, P,J., "MOP-1, An Optimizing Routine for the IBM 650", 

Can. GE CiviliaA Atomic Power Dept. Report No. R60cAP35, 1960, 

Special Features 

KSTARr is an integer used to initialize the random number generator 

subroutine FRANDN. If a large nUilber of random points is generated (MAX11 

and/or NSMAX very large), several values of HSTART should be tried to 

insure that the random numbers are being uniformly distributed. 

It should be noted that the user's input values for RMAX(I) and 

MKIN(l) establish absolute extremes for the variables which can only shrink. 

If there is any uncertainty, BMAX(l) should be made higher than expected 

and IHlN(l) lower thaD expected. At LEVEL • 0, para.eters set internally 

for RANDOM are: 

F • .001 

NSMAX • 300 

HAXM • 400 


NSHRIN • 4 


MSTAllT • 128 


NUMR is set internally in RANDOM as NUMR•J•NSHRIN, where J is set in 

MAIN and is equivalent to NRET. The user can set NRET and NUMR independently 

since be inputs J and NSHRIN. A reasonable value of J is the integer result 

of 10•N/NSIIRIN. 
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(Sophisticated User) 

4-47 

,!!put Var!!li!!, 

INDEX index number of subroutine, • 6 

LEVEL level of sophistication, • 1 

!PRINT prints results every IPRlNT cycles, set at 

zero for no inte~diate output 

lDATA • 1, all input data is printed out 

• 1, input data is not printed out 

the number of independent variables X(I) (specified in MAIN) 

NCONS the nUMber of inequality constraints 

F fraction of original input range used aa a convergence 

criterion 

NSHRIN shrinkage factor 

MSTAU anY positive inteaer, used as starting value for 

aenerating randoa nu.bers 

aaxi1111111 nllllber of cycles allCIW'ed if process does not 

converge 

NSMAX aai1111111 n.-ber of times constraints can be violated 

consecutively before abandoning the search 

RMAX(I) upper bound for variable X(l) 

RKIN(l) lower bound for variable X(I) 

Output Variables 

U ainiaua value for the function 

X(I) value of xt where ainiaua occurs 
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(Sophisticated User) 

4-48 

DIMENSION X(N),PHI(NOONS),RHAX(N),RMIN(N),Z(J,N),UU(J) 

N•numerical value 

J•numerical value 

M-1 

NN•l 

NTOTIB.•l 

CALL OPTIPAC(X,PHI,PSI,A,B,C,WORKA,DELX,STEP,XSTB.T,RMAX,r.KIN,DSTAR 


l,NTERMS,GS,WATE,TEST,Z,UU,Bl,CONST,AA,BBB,CC,NCONS,NEQUS,M,N,NN,NT 
20TER,J,XX) 

STOP 
END 

Note: Tbe n.-rical valuaa of 11, NCOIIS, J (J • ltUT) -t be inaarted ia 

the DIHEISION atat..eat. If NCOIS ia aero, thea put PBI(l) in the 

DIHENSIOH atat...nt. 

How to Set. Up Data Deck 

no. of Cerda!!.!!!!. 
413lltlliX, lZVEL, lPRUIT, IDATA 1 

1 ISNCONS 

1 El6.8
' 

1 16 

1 16HST.Aft 

1 16liiSHRIN 

1 16 

JMAX(I) u-nyu required 5El6.8 ....., .. required 5!16.8IKUI(l) 

S.ttlna Up Service Subroutlaea 

UIEAL, au paaa 4-63 

OONST, aee paae 4-67 
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(Sophisticated User) 

4-49 

~~ 

I.AIIIlOH 1a a relathely s1- ..thod, but it does not hans up on 

local opti... For thie nason, it is a good Mthod for c-.hecking the 

r..ulta of other ..thode. 

Aft i~~proved opti- aay be obtained, at the expense of time, by 

ueing a laraer value of NSRRIN. RANDOM will not run efficiently with small 

valuea of NSHllN, say less than 3. 
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(Programmer) 

5-57 

SIJIIIIOOTINI IIIIIDOK 

!!!!!.!!!!. 

Subroutillle RAMDOtl b uaed only a111 a aethod aubroutine aud ia called 

Dilly hy OPTlPAC. 

lnteraal Variables 

' 

Variables not included in the list below, ~an be found in the 

Tbaaaurua of P.-ogr• Par•eters. 

~ Definition 

M(l) Luwer bouada oo X(1), aet•JMIN(I) in1t.ielly 

CC(I) Upper bouads on X(I), set•RHAX(l) initially 

Fraction of initial range used aa the aazU.. 

acceptable ranse for convergence 

n Teaporary counter to coapare with lPRit~ for printout 

11:0 Flaa, set•l after abnoraal exit, otherwise Ko-0 

Teaporary counter of consecutive constraint violations 

Ll,L2 Teaporary counters used for printing out results 

weE Te.porary variable used for sorting the UU array 

llAJlll Ha:i- nUIIber of cyclea peraitted 1.f no conversenc:e 

"" An integer cODstant required by subroutine FRANDN, 

aet-o after initial CALL FRARDH 

IISTAitT Any positive integer to be uaed as the initial value of HM 

• Nu.ber of independent variables X(I) 

NCAXCS Nuaber of inequality conatraints PHI(l) 

NCfCLE Couater of the nuaber of c:oaplete cycles 
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N!lET 

NSHRttf 

NSMAX 

!IUHR 

IIVtOL 

PHI (I) 

R(I) 

u 

liTDIP 

UU(I) 

UXTIIA 

T!STl(l) 

X(I) 

XTUtP(l) 

Z(I,J) 

(Programmer) 

5-58 

N.-ber of ''beat" rand011 feasible points retained in each 

cycle, called J in MAIN progr.., and used to dimension 

the Z array 

Shrinkage factor where N!lET•NIIttt/NSHRIN 

Huiawn n•ber of consecutive infeasible rand011 

points pe~itted 

Nwnber of random feasible points generated each cycle-RIIT•NSHRIN 

Counts the nuabar of constraints violated at a point 

Values of the inequality constraints 

A string of N randam nuabera associated with X(l) 

Value of the optiaizatioo function at the optiaum 

Value of the optiaization function at a trial point 

Values of the optiaization function at eaeh of the NRET 

feasible points, UU(l) contains the largest value 

t.-porary storage for trial values of U 

The maximum acceptable range of X(I) at convergence 

Values of the independent variables at the optiaua 

Values of the independent variables at trial points 

The NRET beat random feasible points, stored in rows 
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(Programmer) 

5-59 

Initialize eouatera 

CC(l)•RKAX(l) 

AA(I)•RKIN(I) 

TESTl(I)•P*(RHAX(I)-RHIN(I)) 


Cenerate a randa. point 
XTEKP(l)•AA(I)+R(I)*(CC(l)-AA(l)) 
Evaluate UTEKP, PHI(I)'a at thia point 

Feasible point 
Z(J ,li•XTEMP(I) 
UU(J)•tn'EKP 

Generate a randa. point 
UI'JIP(I)•.AA(I)+&(l)e(CC(I) -AA(I)) 
E•aluate ·uxtJA, PHI(I)'a at thia 

NO 
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(Programmer) 

5-60 

Calla To and f~~ Subroutine RANDOM 

~ eannot handle inequality constraints, and NEQUS is therefore 

aot an input par...ter. To avoid getting an indefinite error aessage in 

"'uhroutlae AIISWil, MEQUS is set.O in the body of RANDOM. 

lf MAIM cycles are exceeded, it is still necessary to sort the 

UU(t) array so that the best point so far can be output. 



B) RESULTS OF TEST PROBLEMS 

.Desisn of a Three Phase Electrical Transformer 

Number of independent variables 6 
Number of inequality constrai-nts 8 
Number of equality constraints 0 
User's level of sophistication 0 
Number of methods tried 8 

Method Time u Inde,Eendent Variables (ins) 
Name (Sees) (cu. ins.) xl x2 x3 x4 x5 x6 

SEEK! 0.68 73042. 11.27 14.42 11.78 57.99 178.69 524.81 
SEEK2 0.69 70017. 7.90 15.75 16.92 53.87 193.76 499.21 
SEEK3 2. 39 66 723. 8.66 12.91 18.86 40.77 187.56 439.45 
ALTS 6.44 70704. 10.26 11.22 16.25 62.50 173.39 569.23 
APPROX 12.24 67572. 10.13 10.00 18.00 50.00 172.54 503.55 
RANDOM 29.69 68007. 8.67 11.49 16.01 58.26 167.66 527.40 
GEOM 1.09 66 704. 8.41 13.09 18.75 40.81 187.15 436.56 
ADRANS 6.61 69077. 9.41 8.75 15.57 67.82 152.44 589.25 

Des~_gn of a Three Member 1 2-Dimensiona1 Structure 

Number of independent variables 3 
Number of inequality constraints 9 
Number of equality constraints 0 
User's level of sophistication 0 
Number of methods tried 7 

As described in the text, equality constraints have been 

avoided by careful formulation of the problem. Only seven methods 

were run because the problem is not of a form acceptable to 

geometric programming. 
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Method Time u Independent Variables (sq.ins) 
Name (Sees) (lbs) xl x2 x3 

SEEK! 0. 71 5.659 .0095 .0649 .3375 
SEEK2 0.94 7.995 .0000 .0778 .5000 
SEEK3 3.50 3.127 .0483 .0000 .1688 
ALTS** 0.47 5.545 .0247 .0375 .0334 
APPROX* 0.25 
RANDOM 3.52 5. 777 .0215 .0427 • 3493 
ADRANS 11..52 3.127 .0483 .0000 .1688 

** 	Subroutine ALTS could not make a linearized step after the direct 

search had hung up. The values shown are simply the results at 

the last iteration of the direct search. 

* 	 Subroutine APPROX could not perform the second linearization 

and therefore could not get started. 

Design of a Simple Roller Bearing 

Number of independent vari.ables 5 
Number of inequality constraints 6 
Number of equality constraints 0 
User's level of sophistication 1 
Number of methods tried 7 

Method Time u IndeEendent Variables 
Name (Sees) (cu. ins) xl x2 x3 x4 x5 

SEEK! 0.54 20.350 .280 .280 •63 7 . 13.29 2.240 
SEEK2 o. 71 26.976 .198 .198 1.314 25.50 1.585 
SEEK3 6.65 28.695 .185 .185 1.472 28.96 1.484 
ALTS 0.90 20.053 .287 .287 .600 12.74 2.292 
APPROX 2.74 20.053 .287 .287 .600 12.74 2.292 
RANDOM 14.37 21.708 • 311 .287 .648 9.09 2.225 
ADRAI.'lS 8.14 20.077 • 287 .287 .600 12.65 2.293 



C) FORTRAN IV LISTING OF PROGRAV OPTIPAC 

---------------------~-~---------------------

SUBROUTINE OPTIPAC(XtPHltPSitAtB,CtWORKAtDELXtSTEPtXSTRTtRMAX,RMIN 
ltDSTARtNTERMStGStWATE,TEST,z,u0,EX,CONSTtAAtBB6,CC,NCONStNEQUSt0tN 
2tNNtNTOTER,NRETtXX) 

0 H-1 ENS I ON X ( 1 l , PH I ( 1 l , P S I ( 1 I , Z. {NRI:. T , 1 i , AU-4 , 1 l , lJ ( 1 l , C ( 1 J t 'tJ 0 R KA ( 1 l ' 
lCC<NTOTERtl>tXX(ll,DELX(ll,sTEP<l>,xsTRT<l)tRMAXtl'•RMIN(li,OSTAR< 
2N TOTER' 1 > tN TERMS ( 1 ) tGS 11 l , WP.Tf ( 1 l , TEST ( 1 i tUU ( 1 l , EX ( N TOTER d l 'CONS T 
3(1l,AA(NTOTER,l),BBBINTOTER,ll 

COMMON INDEXtLEVELtlPRINTtiDATAtFtMAXMtGtNSHRINtMSTART,PDtEPS,ICT, 
liFENCEtPLtNSTOPtNSMAXtNSHOTtNTESTtTEStRtREDUCEtNVIOLtKOtNNDEX 
COM~ON /Al/WORK11100ltWORK2(lOOi,WORK3(lOOltWORK4(lOOl 
COMMON /A2/WORK5(l0Q),WORK6(lOOJ 
COMMON /A3/WORK9ClOQl,WORKlO<lOOJ,WORKll(lOOl 
COMMON /A4/WORK12ClOOltWORK13(100ltWORK14:loo>,WORK15tlOOJ 
COMMON /A5/WORK16(lOO> 

COMMON /A7/WORK18(100~,wORK19ClOOl 

COMMON /A8/IWORKl<lOOl 

COMMON /NA~E/METHOD~9J 


C 	 STORE THE NAMES OF THE METHODS FOR HEAUINGS IN SENSE AND ANSWER 
DATA <METHQD(Jl,I=l,91/6HSIMPLE,5HS~EKlt5HSEEK2,5HSEc~3,4rlALTStbHA 

lPPROX,6HRANDOMt4HGEOMt6HADRANS/ 
C SUBROUTINE OPTIPAC IS ESSlNTIALLY AN EXTENSION OF THE SMALL USER­
C WRITTEN MAIN PROGRAM. IT PERFORMS THE FOLLOWING FUNCTIONS••• 
C 1. IT CALLS SUBR.DATA TO READ lN ALL NECESSARY DATA 
C 2. IT ASSIGNS VALUES TO CERTAIN PARAMETERS AT LEVEL=O 
C 3• IT CALLS THE REQUESTED METHOD SUBROUTINE 
C 4• IT COMPUTES THE NET EXECUTION TIME FOR THE METHOD ANO PRINTS IT 
C OUT 
C 5. AFTER A NORMAL EXIT FROM A METHOD SUBROUTINE IT CALLS SUBR· 
C SENSE TO PERFORM A SENSITIVITY ANALYSIS ON THE SOLUTION 

1 CONTINUE 
C INITIALIZE THE EXIT MODE FLAG KO 

KO=O 
C CALL SUBR.DATA TO READ IN ALL NECESSARY DATA FOR THE METHOD CHOSlN 

CALL DATA lNtNCONStNEQUStM,NTOTER,RMAX,RMINtXSTRT,GS,STEP,DELX'T~S 
lT,WATE,NTERMStEX,CONSTtBtCtAtNSENSE,FSENSEI 

C THt STOPPING CRITERION IS 1NDEX=99 SO EV~RY COMPLtTE UATA uECK 
C 	 SHOULD END WITH 099 PUNCHED IN COLUMNS lt2,AND 

IF<INDEX.EQ.99> RETURN 
JF<KO.EO.l>RFTURN 

C 	 IF KO=l AFTER CALL TO DATA, THERE IS NO POINT 
C RUN BECAUSE SEVERAL READ STATEMENTS WILL 
C GENERAL DATA SEQUENCE IS NOW SHIFTED OUT 
C ZERO U AND CLEAR THE X(II ARRAY AND ALL 
C ARRAYS HEFORE CALLING A NEW METHOD 

U=O.O 
DO 2 I= 1 t N 
xn>~o.o 

2 	 CONTINUE 

DO 4 I=ltlOO 


HAVE 


3 

CONTINUING WITH THE 
BEEN SKIPPED AND THE 

OF PHASE 
COMMON bLOCK WORKING 
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WORKl<I>=o.o 

WORK2(1l=O·O 

WORK3(ll=O•O 

WORK4CI)=Q.O 

WORK5t!)=O.O 

WORK6(I>=O.O 

WORK9(1)=0e0 

\4.'0RK10( I )=0.0 

WORKll!ll=O.O 

vJORK 12 ( I ) =0 ~ 0 

WORK13(1)=0.0 

WORK14(Il=O.O 

WORK15(1l=O.O 

WORK16(ll=C.O 

WORK18(l)=O.O 

WORK19(l)=O.O 


4 IWORKl!l)=O
C 	 CALL SUBR.SECOND TO GET TH~ STARTING EXECUTION TIME FOR THE METHOD 

CALL SECOND(START) 
IF<LEVEL.EQ.O.ANDelDATA.EQ.llWRITE(6,300J 

C GO TO THE PART OF OPTIPAt WHICH SETS PARAMETERS FOR LEVEL=O AND 
C CALLS THE REQUESTlD METHOD SUBROUTINE 

3 JACK=INDEX+l 
GO TO (10tlltl2tlltl4tl5tl6t17tl8ltJACK 

10 IFCLEVEL.NE.O) GO TO 110 
NSTOP=4*M+l0 
IF<IDATA.EO.llWRITE<6t309~NSTOP 

110 	CALL SIMPLE!XtUtMtNtAtBtCtWORKAi 

GOT020 


11 	 IF<LEVEL.NE.O) GO TO 1111 

F=.Ol 

MAXM=300 

G=.Ol 

IFtiNDEX.EQ.llNSHOT=l 
IF!INDEX.EQ.llNTEST=lOO 

C NOTE••• AVOID ZERO STARTING VALUES BY ADDING A SMALL INCREMENT 
DO 211 I=ltN 

211 	 XSTRT(Il=tRMAX(ll+RMlN<I)i/2. +0.000001 

IF<IDATA.NE.llGOTOllll 

WRITE(6,303lF 

WRITE ( 6t304 >MAXi'-1 

WRITE<6t305lG 

IF!INDEX.EQ.llWRITEl6t312)NSHOT 

IF!INDEX.EQ.llWRlTE!6t313)NTEST 

WRITE!6,319> !XSTRT (I l ,I=l,NJ 


1111 	 IF<INDEX.NE.3lGOTOlll 

IF<LEVEL.NE.O)GOT01112 

R=l.O 

REDUCE==0.04 

IF<IDATA.NEel)GOT01112 

WRlfE(6,337>R 
WRITE(6,338lREDUCE 

1112 CALL SEEK3(X,UtNtXSTRTtR~AXtHMIN,PHitPSitNCONStNEQUStUARTtDST 
lARtNTERMStNTOTER) 
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GOT020 
111 CALL SEEKl(X,UtNtXSTRTtRMAXtRMIN,PHltPSltNCONStNEQUStUARTtDSTARtNT 

lERMStNTOTERl 
GO TO 20 

12 	 IFCLEVEL·NE.Ol GO TO 112 

F=l.OE-06 

MAXM=50 

PD=0.75 

EPS=l.OE-8 

ICT=4 

IFENCE=O 

PL=le3 

DO 212 I:::: 1 tN 

XSTRT(Il=(RMAX<Il+RMIN(Ill/2• + 0·000001 


212 	GS(ll=l5.0 

IF<IDATAeNEel)GOT0112 

WRlTE(6,303lF 

WRITEI6t304lMAXM 

WRITE(6t307lPD 

wr~ITEC6t332lEPS 
WRITEC6t333) ICT 

WRITEC6t334liFENCE 

WRlTE(6t308lPL 

WRITE(6t319l(XSTRT<Iltl=l,Ni 

WRITE(6t320l<GS<Ilti=ltNl 


112 CALLSEEK21XtUtNtXSTRTtRMAXtRM1NtPHl,PSI,NCONS,NEQUStGSJ 

GO TO 20 


14 IFCLEVELeNE.Ol ~0 TO 114 

F=O.Ol 

MAXM=300 

G=O.Ol 

PL=l•5 

NSTOP=4*M+10 

NSMAX=40 

TES=0.0001 
DO 214 l=l•N 

XSTRT(Il=CRMAX(ll+RMIN(Ill/2e0+.000001 

STEPill=O.lO*ABSCRMAX<Il-RMINtlll 


214 	DELX(ll=.OOl*ABS<RMAX(ll-RMIN<Ili 

IF<NEQUSeEO.OlGOT02215 

DO 2214 I=ltNEQUS 


2214 	WATE<Il=lO.OE+20 
2215 	 IFtiDATAeNE.llGOT0114 

\-JRITE(6,303lF 
WRITEC6t304lMAXM 
WRITEC6t305lG 
WRITE<6t308lPL 
WRITEl6t309lNSTOP 
WRITE(6,310)NSMAX 
WRITEt6,315lTES 
WRITE16t319l<XSTRTClltl=1,Ni 
WRITEC6t32ll tSTEPC I l tl=l,Nl 
WRlTE(6,322l(DELX(l),I=ltNl 
IFCNEQUS.GT.OlWRITEC6t324l(WATE(Jl,I=ltNEQUSl 

http:IFCLEVELeNE.Ol
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114 


15 


215 

115 

16 

116 

17 

117 


18 


CALL ALTS{XtUtNtXSTRTtRMAXtRMINtWATEtSTEPtNEQUStNCONStPSitPHitMtNN 
ltAt9tCtWORKAtDSTAR,NTERMStNTOTERtDELXtXXJ 

GO T02(J 
CONTINUE 
lF<LEVEL.NEe0)GOT0115 
F=O.vl 
NS TOP=4*1-1+l 0 
NSMAX=40 
00215 I=ltN 
XSTRT<Il=<RMAX(ll+RMJN(Il 112• + OeOOOOOl 
STEP<Il=O.l*ABSCRMAX<Il-RMINtil I 
OELXCil=O.OOl*ABSLRMAX(ll-RMIN<l'' 
TESTIIl=O.OOl*ABS<RMAX<Il-RMlN(IJI 
IF<IDATAeNEel)GOT0115 
\,. R I T E <6 , 3 0 3 l F 
WRITEC6t309)NSTOP 
WRITEC6t310>NSMAX 
WRITE (6,319) (XSTRT (I l ,I=l,Nl 
WRITE(6,32li(STEP(lltl=ltNi 
WRITEC6t322l WELX( I l ,I=l,Nl 
WRITEt6t323l <TEST( 1 l, l=ltNI 
CALL APPROXCXtUtNtDELXtSTEP,TESTtMtNNtAtBtCtWOR(A,XSTRT,RMAXtRMIN, 

lPHI,PSitNCONStNEQUStUART,DSTARtNTERMStNTOTERtXX 1 

GO TO 20 
IFCLEVEL.NE.O) GO TO 116 
F=.OOl 
MAXM=400 
MSTART=128 
NSHRIN=4 
NSMAX=300 
IF<IOATA.NEel)GOT0116 
~IRITE(6,3G3lF 
WRITE(6,304lMAXM 
WRITE<6t353lMSTART 
WRITE(6,352lNSHRIN 
WRITE(6,31UlNSMAX 
CALL RANDOM(XtUtNtRMAXtRMINtZtUUt~RETtNCONStPHll 
GO TO 20 
lF(LEVEL.NE.OlGOT0117 
F=O.Ol 
MAX~1=300 

G=O.OOl 
lF(IDATAeNEel)GOT0117 
WRlTE(6,303lF 
WRITE(6,304lMAXM 
WRITE(6,305lG 
CALL GEOM<NTOTERtN,NCONStNTERMS,EXtCONSTtAA,BBB,CCtDSTARtRMAX,RMIN 

ltXtXSTRTl 
GOT020 
IF!LEVELeNE.Ol GO TO 118 
MAXM=75 
t-1STAIH=l28 
NSIAJ\X=50 
DO 218I=ltN 
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218 	 XSTRT<I>=(RMAXCI>+RMINCIJ 112. + OeOOOOOl 

IF(!DATA.NE.llGOTOll8 

WRITEC6t304lMAXM 

WRITE<6,353lMSTART 

WRITE<6t310lNSMAX 

WRITE(6,319l(XSTRT<I>•I=l,Nl 


118 	 CALL ADRANSCXtU•N•XSTRT,RMAX,RMINtPHI,PSI,uARTtNCONS,NEOUStDSTARtN 
lTOTER,NTERMSl 

C CALL SUBR.SECOND TO GET THE FINAL TIME FOR THE METHOD AND COMPUTE 
C THE NET EXECUTION TIME AND PRINT IT OUT 

20 	 CALL SECOND<FINISHl 

T=FINISH-START 

WRITEC6tl04lT 

IF<INDEX.EO.o.oR.INDEXeE0.7'GOTOl 

IFCKO.EQ.Ol GO TO 22 

IFCNSENSE.EQ.llWRITE<6,lOO) 

GO TO 1 


C SENSITIVITY ANALYSIS IS PERFORMED ONLY AFTER A NORMAL EXIT<KO=Ol 
C FROM THE METHOD SUHROUTINE• AND WHEN THE WORD SENSITIVITY 
C APPEARS IN COLUMNS 13 TO 23 ON THE FIRST DATA CARD FOR THAT METHOD 

22 	 IF(NSENSE.NE.llGOTOl 

IF<FSENSE.LE.O.OlGOT023 

CALL SENSE(X,NtNCONS•NEQUS.FSENSEtiNDEX> 

GOTOl 


C USER HAS NOT ENTERED A VALUE FOR FSENSE ON THE CNCONS~ DATA CARD 
23 WRITEC6tlOll 

GOTOl 
lUO FORMATC62HO ERROR lN RESULTS 50 SENSITIVITY ANALYSIS IS NOT PER 

lFORMEDl 
101 FORMATC1H-,92HERROR***SENSITIVITY ANALYSIS OMITTED- NO VALUE FOR 

1 FSENSE ENTERED ON THE CNCONS> DATA CARD!fl 
lu4 FORMATC1H-tl4Xtl7HEXECUTlON TIME =tF8.4,9H SECONDS/II 
3UU FORMATC1H-,6X,67HTHE FOLLOWING PARAMETERS ARE ASSIGNED VALUES INTE 

lRNALLY FOR LEVEL=0/7X•67H---------------------------------------- ­
2--------------------------/l

301 FORMATC61HONUMBER OF INDEPENuENT VARIABLtS • • • • ••• • • 
1 N =t!6l 

302 FORMATC61HONUMBER OF INEQUALITY c.GE.l CONSTRAINTS • • • • • NCO 
lNS =tl6) 

303 FORMATC61HOFRACTION OF RANGE USED AS STEP SIZE • •• • • • • 
1 F =•El9.8l 

3U4 FORMATI61HOMAXIMUM NUMBER OF MOVES PERMITTED • • ••• • • • MA 
lXM =ti6l 

3U5 FORMATC61HOSTEP SIZE FRACTION USED AS CONVERGENCE CRITERION. 
1 G =tE19.8l 

306 FORMATC61HONUMBER OF EQUALITY CONSTRAINTS •••• • • • • • • NEQ 
IUS =ti6) 

307 FORMATI61HOSTEP LENGTH MULTIPLIER FOR INITIAL PATTERN MOVE • 
lPD =tE19.8l 

3U8 FORMATC61HOACCELERATION FACTOR FOR PATTERN MOVE STEP SIZES • 
lPL =tE19.8l 

3U9 FORMATI61HUNUMBER OF ITERATIONS PERMITTED. • • • • • • • • • NST 
lOP =ti6) 

310 FORMATI61HOMAXIMUM NUMBER OF LINEARIZED STEPS ••• • •• • • NSM 
lAX =ti6> 
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312 FORMATC61HONUMBER OF SHOTGUN SEARCHES PERMITTED• • • • • • • NSH 
lOT =,16)

313 FORMATC61HONUMBER OF TEST POJNTS IN SHOTGUN SEARCH • • • • • NTE 
1ST =tl6)

314 FORMAT(61HONUMBER OF CONSTRAJNT EUUATIONS (ROwsJ IN SIMPLEX. 
1 M =ti6)

315 FORMATC61HOCONVERGENCE CRITERION FOR OPTI~IZATION FUNCTION • T 
lES =tE19.8l 

316 FORMATC61HOTOTAL NUMBER OF TERMS IN ALL RELATIONS• • • • • • NTOT 
lER ;,16)

317 FORMATC61HOESTIMATED UPPER BOUND ON RANGE OF X(!> •• • • • • RMAX< 
li> =t//!5El6.8)l

318 FORMATt61HOESTIMATED LOWER ~OUND ON RANGE OF X<IJ. • • • • • RMIN( 
1Il =t//C5El6.8J) 

319 FORM~T(61HOSTARTING VALUES OF XCI) • • • • • • • • • • • • .XSTRT( 
11) =t//(5£16.8)~ 

320 FORMATC61HOSTEP LENGTH MULTIPLIERS FOR UNIVARIABLE SEARCH. • GS< 
11) =t//C5E16.8)}

321 .FORMATC61HOINITIAL STEP SIZE INPUT BY USER • • • • • • • • • STEP< 
11) =t//(5£16.8)) 

322 FORMATC61HOINCREMENTS FOR APPROXIMATING PARTIAL DERIVATIVES. ~ELXC 
11) =t//(5£16.8)) 

323 FORMATC61HOLOWER BOUND ON STEP LENGTH REDUCTION• • • • • • • TEST( 
11) =t//(5£16.8)) 

324 FORMATC61HCWEIGHTING FACTORS • • • • • • • • • • • • • • • • WATE( 
11) =t//(5E16.8))

326 FORMATC61HONUMBER OF TERMS IN EACH RELATION. • • • • • • • NTERMS< 
11) =,//(5El6e8))

327 FORMAT<61HOEXPONENTS OF EACH TERM IN EACH RELATION. • • • • EX(I, 
lJ) =t//(5E16.8)) 

328 FORMAT(61HOCONSTANT CPOSITIVE' COEFFICIE~TS OF EACH TERM •• CONSTI 
lJ) =,//(5£16.8)) 

329 FORMAT<61HURIGHT HAND SIDE OF SIMPLEX ARRAY· • • • • • • • • HC 
lMl =t//(5El6e8))

330 FORMAT<61HOCOEFFICIENTS OF SIMPLEX OBJECTIVE FUNCTION. • • • C( 
lN) =t//C5El6.8))

331 FORMATC61HOCOEFFICIENTS OF SI~PLEX CONSTRAINT EVUATIONS. • • A!M, 
lN> =t//(5El6e8J)

332 FORMAT<61HOMAX. RELATIVE CHANGE IN U FOR CONVERGENCE • • • • E 
lPS =tE19.8l 

333 FORMAT(61HONO. OF TIMES STEP SIZE DIVIOEC ~y 10•0 • • • • • I 
lCT =tl6)

334 FORMAT(61HOOPTION TO STOP AFTER UNIVARIABLE SEARCH FAILS • • IFEN 
lCE =•16) 

337 FORMATC6lHOPENALTY MULTIPLIER USED IN SEEK3• • • • • • • • • 
1 R =tEl9e8l 

338 FORMAT(61HOREDUCTION FACTOR FOR (Rl AFTER EACH MINIMIZATION. REDU 
ICE =•El9.8) 

352 FORMATC61HOSHRINKAGE FACTOR. • • • • • • •••••• • • • • NSHR 
liN =t!6) 

353 FORMAT<61HOSTARTING VALUE FOR RANDOM NUMBERS • • • • • • • • MSTA 
lRT =ti6> 

END 
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SUBROUTINE SENSE!XtNtNCONStNEQUS,FSENSE,INDEXJ 

Dl1"1ENSION X!l) 

COMMON /NAME/METH00(9l 

COMMON /A3/XTEMPllOOltAbOVEClOOl,BELOWClOOI 

WRITE(6,11METHOD(INDEX+ll 

V.IRITE (6,8 lFSENSE 


C IN THE FOLLOWING SENSITIVITY ANALYSIS, EACH VARIABLE IN TURN IS 
C MULTIPLIED BY THE FACTORS Cle+FSENSEl AND (1.-FSENSEl AND ALL THE 
C CONSTRAINTS ARE EVALUATED AT EACH POINT. 
C STORE THE OPTIMUM VALUES OF XCII IN XTEMP(Il 

DO 	 l 0 I= 1, N 
lll 	 XTEMP!Il=X(l) 


DO 5:) I= 1, N 

X! I 1=(1.-FSENSEl*XTEMP(ll 

WRITE ( 6, 2 ) I 

III'I~ITE!6t3l I tX( I) 

CALL UREAL(X,ULESSl 

IF(NCONS.EQ.OlGOT020 

CALL CONST(X,NCONStBELOWl 


20 	 X!Il=(l.+FSENSEl*XTEMP(Il 

WRITE(6,4)l,X!Il 

CALL UREAL(X,UMOREl 

WRITE(6,51ULESStUMORE 

IF<NCONS.EQ.O)GOT030 

CALL CONST(X,NCO~S,ASOVEl 

WRITE(6,6l (J,BELOWCJltABOVECJl,J=ltNCONSl 


30 	 IFINEQUSeEQ.OlGOT040 

CALL EQUAL!X,ABOVEtNEQUSl 

X! I )=(le-FSENSEl*XTEMP(Il 

CALL EQUAL(X,BELOWtNEQUSl 

WRifE(6,7l(J,BELOW!Jl,ABOVE(Jl,J=l,NEOUSl 


40 Xll l=XTEMP!Il 
5J CONTINUE 

1 FORMATC1H-,45HSENSITIV!TY ANALYSIS OF THE OPTIMUM FOUND BY ,A6/1X, 
lSlH-------------------------------~-------------------1/j 

2 FORMAT<lH-,23XtlOHVARYING X(tl2t6H) ONLY/24Xtl8H----------------- ­
l//l 

3 FORMAT11H+,2X,2HX( tl2t3H) =,£18.81 
4 FOR~AT!31X,2HX(tl2t3HI =tE16.8~ 
5 FORMATI1H0,6X,3HU =tE18.8,lOXtEl6e8/) 
6 FURt.ti/l.T(lXt4HPHI ( ,I2t3H> =tfl8e8tlOXtEl6.8) 
7 FORMAT(lHO/lX,4HP~I!tl2t3Hl =tEl8•8tlOXttl6e8) 
8 FORMAT(l~IOt52HFRACTION OF OPTIMUM Xtll USED AS INCR~~ENTt FSENSE = 
ltE16.8//) 

R ET'JRN 
END 
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SUBROUTINE ANSWERCUtXtPHI,PSI,N,NCONStNEQUSl 
DIMENSION X ( 1 l ,PHI ( 1) tPSI ( 11 
COMMON INDEXtLEVELtiPRINTtiDATAtFtMAXMtGtNSHRINtMSTART,PD,EPStiCTt 

liFENCE,PL,NSTOP,NSMAXtNSHOT,NTESTtTEStRtREDUCE,NVIOLtKO,NNDEX 
COMMON /NAME/METH00(9l 

C THIS SUBROUTINE IS USED MERELY TO OUTPUT THE FINAL SOLUTION IN A 
C STANDARD FORM. IF AN OPTIMUM IS NOT REACHED<KO=llTHEN THE RESULTS 
C AT THE LAST ITERATION MAY BE PRINTED OUT. 

CALL UREI\L (X tU) 

IF ( KO.EC~. 0 J GOTOl 

WRITEC6t18lMETHO~<INDEX+1l 


~v R IT l <6 , 1 9 l U 

GOT02 


1 	 WRITEI6t20lMETHODCINDEX+ll 

WRITE(6,2llU 


2 	 WRITE(6,22l(I,X(J),J=ltNl 

IF<NCONS.EQ.OlGOT03 

CALL CONST(X,NCONS,PHll 

V.Jl~ITE<6t23l 
WRITE(6,24l(I,PHI (Il,I=1,NCONSl 

3 	 IFCNEQUS.EQ.ClGOT030 

CALL EQUAL(X,PSI,NEQUSl 

\.oJRITE(6,25> 

WRITEC6t26)(J,PSI(J),l=l,NEQUSl 


18 FORMAT<lH-,16Xt30rlRESULTS AT LAST ITERATION OF tA6/l7X,36H------­
l-----------------------------fl 

19 FORMATC29Xt3HU =tE16.8//) 
20 FORMATC1Hl,21X,27HOPTIMUM SOLUTION FOUND BY ,A6/22X,33H---------­

l-----------------------/l 

21 FORMATC20X,l2HMINIMUM U =•El6e8//) 

22 FORMAT(25X,2HX(,I2,3H 1 =,El6.8l 

23 FORMATClrl-,22HINEUUALITY CONSTRAINTS) 

24 FORMAT(23X,4HPHI<,I2,3H) =,El6.8J 

25 FORMAT<Hi-,22H Ei..IUALlTY CONSTRAINTS) 

26 FORMAT!23Xt4HPSI(,I2t3Hl =tE16e8l 

30 RETURN 


END 

SUBROUTINE DATA<NtNCONS,NEUUStMtNTOTERtRMAXtRMINtXSTRT,GStSTEPtDEL 
lXtTEST,WATE•NTERMStEXtCONST,~tCtAtNSENSEtFSENSEl 

DIMENSION RMAX(ll~RMINClltXSTRT<l'•GS!l>,~TEPCl~,uELX(lJ,TEST!ll, 
1WA TE ( 1 l , NT ERMS {ll , EX ( N TOTER d, , CONS T ( 1 i , B ( 1) , C ( 1 l , A ( Md) , TITLE ( 17 l 

COMMON INDEXtLEVELtlPRINTtiDA~-A,FtMAXMtG,~SHRINtMSTART,PD,EPS,ICTt 

liFENCE,PL,NSTOP,NSMAXtNSHOT,NTEST•TES,R,REDUCEtNVIOL,KO,NNDEX 
COMMON /NAME/METHOD<9' 

c 
c 
C THE FIRST DATA CARD <INDEX,LEVEL,IPRINTtlDATAl MAY CONTAIN A HEAP-
e ING STARTING IN COLUMN 13 AND ENDING IN OR tiEFORE COLUMN 80 
c 

READI5tlOOliNDEXtLEVEL,IPRINTtiDATAt(TlTLE(ll,I=l,l7) 

IFtiNDEX.EQ.99lRETURN 

WRITEC6t24ll<TITLE!Ilti=l,l7> 
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C 	 CHECK TO SEE IF SENSITIVITY ANALYSIS HAS BEEN REQUESTED 
NSENSE=O 
IFtTITLE<ll.EQ.4HSENS•AND.TITLE<2l.EQ.4HITIVlNSENSE=l 

C 	 SENSITIVITY ANALYSIS IS NOT AVAILABLE TO SIMPLE OR GEOM 
IFtlNUEX·EUeOeOR.INUEX•EQ.7jNSENSE=O 
IF!IUATAeNEellGOT0599 
WRITE(6t240lMETHOD<INDEX+l) 

WRITE(6,197liNDEX 

WRITE!6tl98lLEVEL 

WRITE!6tl99liPRINT 

WRITE(6t200liDATA 


599 CONTINUE 
( 
( CHECK THAT VALUES OF !DATA AND LEVEL A~E ACCEPTAbLE 
c 

If<LEVEL•GT.leOR.LEVELeLT.OIGO TO 600 

IF<IDATA.GT.leOR.IDATAeLT.OJGO TO 601 

GO TO 602 


6UU 	 WRITE<6,235) 

KO=l 

RETURN 


601 	 WRITE!6,236l 

KO=l 

RETURN 


602 CONTINUE 
c 
C CONTROL RETURNED TO OPTIPAC IF INDEX OUTSIDE RANGE O•LE.INDEX·LE*8 
c 

IFtiNDEXeLE.a.oR.lNDEX.GE.OJ~O TO 603 

IFtiNDEX.EQ.99lRETURN 

WRITs<6t242liNDEX 

KO=l 

RETURN 

603 	 IF!INDEX.EQ.O.AND.LEVEL.EQ.llGO TO 13 

IFtiNDEX·EQ.ulGO TO 15 

IF!NSENSE.EQ.llGOT0604 


c 
C NCONS READ FOR INDEX=lt2,3t4t5t6,7,8 
c 

READ(5,10llNCONS 
IF<IDATA.EQ.llWRITfC6t202lNCONS 
GOT0605 

c 
WHEN NSENSE=lc 

c 
IF SENSITIVITY ANALYSIS HAS bEEN RE~UfSTED <NSENSE=ll THEN THE 

c FRACTIONAL INCREMENT FSENSE APPEARS ON THE SAME CARD AS NCONS• THE 
c FORMAT IS (J5,El6e8) 

604 	READ(5,l07lNCONStFSENSE 

IF<IDATA.EQ.llWRITE(6,202)NCONS 

IF(!DATA.EQ.llWRIT£(6,254lFSENSE 


6U5 	 lF(lNDEX.EQ.8.AND.LEVEL•EQ.QlGO' TO 11 

lF(INDEX.EQ.BlGO TO 9 

lF(INOEX.EQ.7.ANUaLEVEL•EQ.OJGO TO 22 


c 



75 

lFCIN0EXeEQ.6.ANDeLEVEL·EQ.QIGO TO 18 
IF(LtVEL.EQ.J)GO TO ll 

c 
c F READ FOR lNDEX=lt2t3t4t5,6,7 WHEN LEVEL =1 
c 

READ(5,104lF 
lf(IDATA.EQ.l)WRITf(6t203lF 
IF<INDEX.EQ.5)G0 TO 11 

9 CONTINUE 
c 
C MAXM READ FOR INDEX=lt2t3t4t6t7,8 WHEN LEVEL=l 
c 

READ ( 5 tl 0?> f'.lAXM 
IF(lDATA.EQ.llWRIT[(6t204lMAXM 
IF!INDEXeE0·6>GO TO 48 
IFliNDEX.EQ.8.0R.INDEX.EQ.2~GO TO 11 

lU CONTINUE 
c 
c G READ FOR INDEX=lt3t4t7 WHEN LEVEL =1 
c 

READC5tl04)G 
IFCIDATA.EQ.l)WRITE(6t205lG 
IFCINDEX.EQ.7>GO TO 22 

11 CONTINUE 
( 

C NEQUS READ FOR 1NDEX=lt2t3t4t5t8 
c 

READ(5,10llNEQUS 
IF<IDATA.EQ.l)WRITEC6t206lNEOUS 
IF<INDEX.EQ.8.AND.LEVEL·EQ.l>GOT048 
IF<LEVEL.EQellGOTO(l4t50,l8,12tl3),INDEX 
IFliNDEX.EQ.5lGOT05l 
GO TO 18 

c 
C MSTART READ FOR INDEX=6,8 WHEN LEVEL=l 
c 

48 IFCLEVEL.EQ.O)GOT052 
READ(5,102lMSTART 
IFCIDATA.EQ.l)WRITE(6t253lMSTART 
IFCINDEX.EQ.8)GOT052 

c 
c NSHRIN READ FOR INDEX=6 WHEN LEVEL=l 
c 

READ(5,102>NSHRIN 
IF(IDATA.EQ.llWRITEC6t252lNSHRIN 
GOT052 

50 CONTINUE 
c 
c PD READ FOR INOEX=2 WHEN LI::VEL =1 
c 

READ(5tl04lPD 
IFCIDATA.EQ.llWRITE(6t207lPD 

c 
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C EPS,ICT,IFENCE READ FORINUEX=2 WHEN LEVEL=l 
c 

READ<5,104lEPS 
IF<IUATA.EQ.1lWRITEC6t232lEPS 
READ(?,lOlliCT 
lF<IDATA.EQ.llWRITE(6t233)1CT 
READ(5t10liiFENCE 
lf(lDATA.EQ.l)WRITEC6,234liFENCE 

12 CONTINUE 
c 
c PL READ FOR INDEX= 2,4 WHE\l LEVEL=l 
c 

REA0(5tl04lPL 
IF<IDATA.EQ.1>WRITE(6t208)PL 
IF<lNDEX.E0.2lGO TO 18 

13 CONTINUE 
c 
c NSTOP READ FOR INDEX= 0,4,5 WHE 'l !_EVEL= 1 
c 

READ<5tl02lNSTOP 
IF<IDATA.EQ.llWRITE(6t209lNSTOP 
If<INDEXeEO.O>GO TO 15 

52 CONTINUE 
c 
c NSMAX READ FOR INDEX= 4,5,6t8 W':-iE"l LEVEL=l 
c 

READ(5,102lNSMAX 
lF(IDATA.EQ.l.AND.INDEXeNE.6lWRITE(6,210l'lSMAX 
IF<IDATA.EQ.l.AND·INDEX•EQ.6)WRITE(6,2441~SMAX 
IF<INDEX.E0.6.0R.lNDEX·EQ.8lG) TO 18 
IF<INDEX.EQe4lGO TO 16 

51 CONTINUE 
GO TO 18 

14 CONTINUE 
c 
c NSHOT READ FOR INDEX= 1 \>JHE 'IJ LEVEL= 1 
c 

READ ( 5 d 02 l NSHOT 
IF<IDATAeEOe1)WRITE(6t212lNSHOT 

c 
c NTEST READ FOR INDEX= 1 WHEN LEVEL=1 
c 

READ(5,102lNTEST 
IF<IDATA.EQ.l>WRITE(6t213lNTEST 
GO TO 18 

15 CONTINUE 
GO TO 23 

16 CONTINUE 
c 
c TES READ FOR INDEX =4 WHEN LEVEL =1 
c 

READ(5,104lTES 
1F<IDATA.EQ.llWRITE(6t215)TES 
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18 CONTINUE 
c 
c Rt REDUCE READ FOR 1NDEX=3 
c 

IF(INDEX.NE·3)GOT0609 
IF<LEVEL.EQ.O)GOT0609 
READ!5d04JR 
READ!5,104lREDUCE 
lF!IDATA.EQ.1lWRITE(6t237lR 
!F(lDATA.EO.l>WRITEC6t238lREDUCE 

c 
C RMAX,RMIN READ FOR INDEX= 1•2,3,4,5,6,8 
c 
C NOTE ALL SUtiSCRlPTED VARIAtiLtS AR~ ZERO~U IMMEUIATELY dEFORE THEY 
C ARE READ 
c 

609 DO 610 J=ltN 
RMAX(J)-=Oe 
R,'v11N(Jl=O. 

610 CONTINUE 
READ(5,105l<RMAX(lltl=l•Nl 
IF<IDATA.EO.llWRITE(6t217J(RMAXtil,I=ltNl 
READ ( 5 tl 0 5 i ( RM IN ( 1 l , 1 =1 'N) 
IF<IDATA.EQ.llWRITE!6t218i(RMIN(IJ,I=ltNl 

c 
IF!LEVELeNE.llGO TO 24 
IF!INDEX.EQ.6lGO TO 24 

c 
c vJHEN LEVEL= 1 

c 
DO 611 J=ltN 

bll XSTRT(J)=O• 
READ(5,105l(XSTRT<I>tl=ltNl 
IF<IDATA.EQ.llWRITE(6,219l(XSTRT<IJ,I=ltNl 
IF!INDEX.EQ.2lGO TO 19 
IF!INDEX.EQ.4)G0 TO 20 
IF<INDEX.tU.5lGO TO 20 
GO TO 24 

19 CONTINUE 
c 
c GS READ FOR INDEX= 2 WHEN LEVEL=l 
c 

DO 612 J=1tN 
612 GS(J)=O. 

READ ( 5' 10 5 J ( GS ( 1 ) t I= 1 'N J 
1 F ( IDA T A • EO .1 >WRITE< 6, 22 0) ( GS ( I l , I= 1, Ni 

GO TO 24 
20 CONTINUE 

c 
c STEP READ FOR INDEX= 4t5 WHEN LEVEL=l 
( 

DO 613 J=ltN 
613 STE.P(Jl=O. 
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IF<IDATA.EQ.llWRITE(6t22l>tS1EP<I>,I=ltNl 
c 
c DELX READ FOR INDEX= 4t5 WHEN LEVEL=l 
c 

DO 614 J=ltN 
DELX(Jl=O. 

614 TEST<Jl=O. 
READ(5,105><DELX(I),I=l•N> 
IF<IDATA.EQ.l)WRITE(6t222><DELX(I>,I=l,Nl 
IF<INDEX.EQ.4)G0 TO 21 

c 
C TEST READ FOR INDEX= 5 WHEN LEVEL=! 

READ(5,105l<TEST(lltl=l,NJ 
IF< IDATA.EQ.l)WRITE(6,223)(TEST(IJ,I=l,NJ 
GO TO 24 

21 CONTINUE 
c 
c READ FOR INDEX = 4 WHEN NEQUS·GT•O AND LEVEL=l 
c 

IF<NEQUS.EQ.0lGOT024 
DO 615 J=1,NEQUS 

615 WATE(Jl=O. 
READ ( 5 t 10 5 > ( WA T E ( I ) , I =1 , N E QUS > 

IF<IDATA.EOellWRITE(6t224l(WATE<I>,I=ltNEQUS> 
GO TO 24 

22 CONTINUE 
c 
c.: DATA FOR GEOM 1NDEX=7 
c 
c NTERMStEXtCONSTt READ FOR INDEX = 7 
c 
c 
c 

NTERMS(J)=NO. OF TERMS IN EACH RELATION 
EX(I,Jl =EXPTS FOR EACH TERM OF EACH RELATION 

c 
( LONST(Jl =CONSTANT COEFFICIENTS Of tACH TERM 
c NO.OF VARIABLES=NtNO.OF CONSTRAlNTS=NCONS 
c 

NT=NCONS+l 
c 
c NO.OF TERMS IN EACH RELATION=NTERMS(NTi 
c 

DO 616 J=1tNT 
616 NTERI'-15 <J) ::() 

READ ( 5,106 i ( NTERMS t J) ,J= 1 ,NT) 
lF<IDATA.EQ.l)WRITE(6t226i(NTERMS(Jl,J=ltNTl 

c 
C NTOTER=TOTAL NOeOF TERMS 
( 

NCHEK=O 
DO 500 J=ltNT 

c 
C CHECK USERS ESTIMATE OF NTOTER 
c 

500 NCHEK=NCHEK+NTERMS(Jl 
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IFtNTOTER.EQ.NCHEK>GOT0498 
KO=l 
WRIT~(6t255lNCHEK 

GO TO 24 
c 
C EX(NTOTERtN>=EXPONENTS FOR EACH TERM OF EACH RELATION 
c 

498 DO 617 J=ltN 
DO 617 I=ltNTOTER 

617 EX({,J)=O. 
READI~tl05)((EX<ItJltJ=l,Nl,l=ltNTOTERJ 
IF( Il>ATA.EQ.l lWRiTE(6t227 > ( tlX( 1 ,JJ tJ=ltN> tl=l tNTOTERJ 

c 
C CONST<NTOTERl=CONSTANTS FOR lACH RELATIONSHIP 
c 

DO 618 J=ltNTOTER 
618 CONST(Jl=O. 

READf5,105J (CONST(Jl,J=ltNTOTERJ 
IF ( IDA T A. EQ .1) WRITE ( 6 t 22 8 J (CONS T ( J l , J= 1, tHOT ER) 
GO TO 24 

c 
23 CONTINUE 

c 
C BtCtA READ FOR INDEX= 0 
c 

DO 619 I= 1 tM 
DO 619 J=1tN 
B(J>=O. 
C! I ):::0. 

619 AfltJl=O• 
READ(5,105l(B(J),J=ltM> 
IF<IDATA.EQ.llWRITE(6t229J(~(Ji tJ=l,Ml 
READ(5,105><C<Iltl=ltNl 
IF<IDATAeEO.llWRITE(6t230l(C(IJ,I=l,Nl 
READC5,105l((A(!,J),J=ltNl,I=ltMl 
IF< IDJ\.TAeEO.l llhRITE(6t23ll ((A( I ,Jl ,J=l,N·I tl=l,Ml 

24 CONTINUE 
luu FORMATt413tl7A4) 
101 F0Rt-1AT (I 5) 
102 FORMAT<l6) 
103 FORMAT<I3) 
104 FORMATtE16.8l 
105 FORMAT<5El6.8> 
106 FORMAT(l6I5l 
107 FORMAT<I5tE16.8)
197 FORMAT(61HOINDEX NUMBER OF METHOD USED • • • • • • • • • • • lND 

lEX =tl6)
198 FORMATC61HOUSERS LEVEL OF SOPHISTICATION • • •••• • • • • LtV 

lEL =tl6)
199 FORMATt61HOINTERMEDIATE OUTPUT EVERY IPRINT<TH) CYCLE• • • • IPRI 

lNT =d6) 
2~0 FORMAT(61HOINPUT DATA IS PRINTED OUT FOR lDATA=l ONLY• • • • IDA 

lTA = t I 6) 
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2u2 FORMATI61HONUMBER OF INEQUALITY (eGE.> CONSTRAINTS • • • • • NCO 
INS =ti6l 

203 FORMAT(61HOFRACT10N OF RANGE USED AS STEP SIZE • • • • • • • 
1 F =,El9.8l 

2U4 FORMAT(61HOMAXIMUM NUM~ER OF MOVES PERMITTED • • • • • • • • MA 
lXM =,16) 

205 FORMATI61HO~TEP ~IZE fRACTIO~ USED AS CONVERGENCE CRITERION. 
1 G =tE19.Bl 

206 FORMAT<61HONUMBER OF EQUALITY CONSTRAINTS• • • • • • • • • • NEQ 
IUS =tl6l 

207 FORMATI61HOSTEP LENGTH MULTIPLIER FOR INITIAL PATTERN MOVE • 
lPD =tE19.8) 

2U8 FURMAT<61HOACCELERATION FACTOR FOR PATTERN MOVE STEP SIZES • 
lPL =t£19.8) 

2U9 FURMAT<61HONUMBER Of ITERATIONS PERMITTED. • • • • • • • • • NST 
lOP =,!6) 

210 FORMATC61HOMAXIMUM NUMBER OF LINEARIZED STEPS. • • • • • • • NSM 
lAX =,16) 

212 FORMAT!61HONUMBER Of SHOTGUN SEARCHES PERMITTED· • • • • • • NSH 
lOT =,16)

213 FORMAT<61HONUMBER OF TEST POINTS IN SHOTGUN SEARCH • • • • • NTE 
1ST =,16) 

215 FORMAT(61HOCONVERGENCE CRITERION FOR OPTIMIZATION FUNCTION • T 
lES =,£19.8> 

217 FORMAT(61HOESTIMATED UPPER BOUND ON RANGE OF X<I> •• • • • • RMAX( 
11 > =,//(5El6.8ll

218 FORMAT(61HOESTIMATED LOWER BOUND ON RANGE OF XII>. • • • • • RMINI 
lil =,//(5El6.8)) 

219 FORMAT<61H-STARTING VALUES OF X(II • • • • • • • • • • • • eXSTRT< 
11) =,//(5£16.8)) 

220 FORMAT<6lHOSTEP LENGTH MULTIPLIERS FOR UNIVARIAdLE SEARCH. • GS( 
lll =•//t5El6.8ll 

221 FORMATI61HOINITIAL STEP SIZE INPUT BY USER • • • • • • • • • STEP( 
11> =t/1(5El6.8)l

222 FORMATI61HOINCREMENTS FOR APPROXIMATING PARTIAL DERIVATIVES. OELX( 
lll =•//(5El6.8ll 

223 FORMAT<61HOLOWER BOUND ON STEP LENGTH REUUCTION• • • • • • • TEST( 
11) =t//(5£16.8)) 

224 FORMAT(61HOWEIGHTING FACTORS • • • • • • • • • • • • • • • • WATE( 
11) =t//(5E16.8)) 

226 FORMAT!61HONUMBER OF TERMS IN EACH RELATION. • • • • • • • NTERMS( 
11) =t/1(1615)) 

227 FORMAT<61HOEXPONENTS OF EACH TERM IN EACH RELATION • • • • • EX(I, 
lJl =,//(5El6.8ll 

228 FORMAT<61HOCONSTANT (POSlTIVEl COEFFICIENTS OF EACH TERM • .CONST( 
1Jl =t//(5El6.8ll 

229 FORMAT<61HORIGHT HAND SlDt OF SIMPLEX ARRAY• • • • • • • • • ~( 
lMl =t//(5El6.8)l 

230 FORMAT(61HUCOEFFICIENTS OF SIMPLEX OUJECTIVE FUNCTION. • • • C< 
lNl =t//(5El6.8l) 

231 FORMAT<61HOCOEFFICIENTS OF SIMPLEX CONSTRAINT EQUATIONS. • • A<M, 
lN) =t//(5£16.8)) 

232 FORMAT<61HOMAX. RELATIVE CHANGE IN U FOR CONVERGENCE • • • • E 
lPS =tE19.8> 

http:t//(5El6.8l
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233 FORMAT(6lHONO. OF TIMES STEP SIZE DIVIDED BY 10·0 • • • • • 
lCT =•16}

234 FORMAT(61HOOPTION TO STOP AFTER UNlVARIAtiLE SEARCH FAILS • • IFEN 
lCE =tl6) 

235 FORMAT(lH-,56HERROR***lNPUT VALUE FOR (LEVELi IS NEGATIVE OR TOO L 
lARGE/l 

236 FORMAT(lHOt78HERROR***VALUE FOR <IDATA 1 IS INCORRECT, 1 OR 0 ARE 
lTHE ONLY ACCEPTABLE VALUES/I 

237 FORMAT(61HOPENALTY MULTIPLIER USED IN SEEK3• • • • • • • • • 
1 R =•El9.8l 

238 FORMAT(61HOREDUCTION FACTOR FOR (Rl AFTER EACH MINIMIZATION. REUU 
lCE =tE19.8l 

240 FORMAT<lH-,2CX,33HLISTING OF ALL DATA READ IN FOR ,A6/21Xt39H---­
l-----------------------------------/l 

241 FORMATI1Hltl7A4) 
242 FORMAT(lH-t28HERROR***THE VALUE OF INDEX =ti6,43H IS OUTSIDE THE 

!ALLOWABLE RANGE OF 0 TO 8/> 
244 FORMATI61HOMAXIMUM NO• OF CONSECUTIVE INFEASIBLE POINTS. • • NSM 

lAX =ti6) 
251 FORMAT<lHO,l616) 
252 FORMAT(61HOSHRINKAGE FACTOR. • • • • • • • • • • • • • ••• NSHR 

liN =tl6) 
253 FORMATI61HOSTARTING VALUE FOR RANDOM NUMBERS • • • • • • • • MSTA 

lRT =tl6) 
254 FORMATI61HOFRACTIONAL INCREMENT FOR SENSITIVITY ANALYSIS • • FSEN 

lS~ =•El6.8> 
255 FORMAT(lHOt80HERROR***USERS ESTIMATE OF (NTOTERl IS INCORRECT - TH 

lE CORRECT VALUE IS NTOTER =ti6l 

RETURN 

END 


SUBROUTINE SIMPLE(XtUtMtNtAtUtCtEi 

DIMENSION X(l),A(Mtll,B(lltC(ll tE<MtlltM0(2) 

COMMON lNDEXtLEVELtiPRINTtlDATAtFtMAXMtGtNSHRINtMSTARTtPDtEPStiCT, 


liFENCEtPL,NSTOPtNSMAXtNSHOT,NTESTtTES,R,REDUCEtNVIOL,KO,NNDEX 
COMMON/A4/P(100)tXX(lOO)tY(lOQ>,pE(lOO) 
COMMON/A8/JH(100) 

c 
C SUBROUTINE SIMPLE IS USED PRIMARILY AS A MEANS TO CALCULATE 
C A VALUE OF THE OBJECTIVE FUNCTION AT THE OPTIMUM CONDITIONS 
C OR IF THE SOLUTION IS NOT VALID TrllS SU~ROUTINE THEN OUTPUTS 
C THE DIAGNOSTIC MESSAGES 
C THE ACTUAL ITERATIVE PROCess OF THE REVISED SIMPLEX TECHNIQUE IS 
C PERFORMED IN SUBROUTINE SIMP 
c 
c 

c 
C THE FOLLOWING STATEMENTS ARE TO DETERMINE THE CONOlTION OF THt 
C SOLUTION ON RETURN FROM THE SUBROUTINE SIMP 
c 

IF<MO(ll.GT.5)GOT018 

MODEl=MO(l)+l 
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c 
C NO FEASI~LE SOLUTION CAN BE FOUNU FROM THE GIVEN DATA 
c 

15 WRITE(6t51) 
GOT020 

c 
C AN UNBOUNDED OPTIMUM HAS BEEN FOUND 
c 

16 WRITE<6t52> 
GO TO 20 

c 
C THE MAX. NUMBER OF ALLOWABLE ITERATIONS HAS BEEN EXCEEDED 
C THE SOLUTION IS STILL FEASIBLE 
c 

17 WRITE(6,53) M0f2) 
GO TO 20 

c 
C THE MAX. NUMBER OF ALLOWABLE ITERATIONS HAS BEEN EXCEEDED 
C THE SOLUTION AT THE TIME OF INTERUPTION WAS NOT FEASIBLE 
c 

18 WRITE(6t54>M0(2) 
20 KO=l 

GO TO 11 
c 
C THE SOLUTION IS VALID --­ CALCULATE THE OPTIMIZATION FUNCTION 
C AND OUTPUT THE RESULTS 
c 

21 U=O.O 
DO 23 J=1tN 

23 U=U+C(Jl*X(J) 
c 
C IF THE INDEX DOES NOT EQUAL ZERO THE OUTPUT FROM THE SUBROUTINE 
C SIMPLE IS O~ITTED. 
c 

IF<INUEX.GTe0) GO TOll 
WRITE(6,30J 
WRITE(6t3l>U 
WRITEC6t32)(J,X<Iltl=l,N) 

11 RETURN 
30 FORMAT(1Hlt22Xt36HOPTIMUM SOLUTION 

l--------------------------------;J
31 FORMAT<20Xtl2HMINIMUM U =tEl6eB//J 

FOUND BY SIMPLE/23Xt36H---­

32 FORMAT<25Xt2HX(t!2t3H) =tE16.Bl 
51 FORMAT(lX,44H NO FEASIBLE SOLUTION CAN BE FOUND BY SIMPLE) 
52 FORMAT<lHOt43HTHE SIMPLEX ROUTINE FOUND UNBOUNDED OPTIMUM) 
53 FORMAT(lHOt97HTHE MAXIMUM ALLOWABLE NO OF ITERATIONS FOR SIMPLEX H 

lAS BEEN EXCEEDED,--SOLUTION IS STILL FEASieLE/ltiOtl7HNO OF ITERATI 
10NS=tl5l 

54 FORMAT(lHOt85HNO FEASIBLE SOLUTION EXISTS FOR SIMPLEX-PROGRAM STUP 
lPED ON ALLOWAclLE NO OF ITERATIONS/lHOtl7HNO OF ITERATIONS=,I5J 

END 
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SUBROUTINE SIMPCM.N,KO,KBtEtA•BtCtNSTOP> 

D I r-1ENS ION B ( 1 l ,c ( 1 l, E ( 1 l 'KO ( 2 l, KB ( l) , A ( M, 1 l 

COMMON /A4/PC100ltXC10Q),Y(lOOl,pE(lOOl 

COMMON /A8/JHC100) 

EQUIVALENCE (XXtLL) 

LOGICAL FEAS,VERtNEG,TRlG,KQ,ABSC 


c 
C THE PURPOSE OF THE SU~ROUTINE SIMP IS TO PERFORM THE ITERATIVE 
C METHOD OF LINEAR PROGRAMMING KNOWN AS THE SIMPLEX METHOD 
C SIMP IS A MODIFIED VERSION OF SUBROUTINE SIMPLE IN THE LIBRARY OF 
C THE I.B.M. 7040 COMPUTER AT MCMASTER UNIVERSITY 
c 
C SET INITIAL VALUES, SET CONSTANT VALUES 

ITER = 0 
NUMVR = 0 
NUMPV = 0 
TEXP = .5**16 

c 
C IF LEVEL=O THE MAXIMUM NUMBER OF ITERATIONS ALLOWED IS SET 
C AUTOMATICALLY AT 4*M+l0 IN OPTIPAC •• AT LEVEL=l NSTOP IS READ IN 
C AS DATA• THIS APPLIES FOR lND~X=Ot4t5 
c 

NCUT=NSTOP 
NVER = M/2 + 5 

c 
C THE LOGICAL VARIABLE FEAS IS USED TO DETERMINE WHETHER THE 
C SOLUTION IS FEASIBLE OR NOT 
c 

FEAS = .FALSE. 
c 
C* • NE'vJ I START PHASE ONE WITH SINGLETON BASIS 
c 
c SELECT THOSE COLUMNS IN ACI,Ji WHICH HAVE ONLY ONE NON ZERO 
c COEFFICIENT 
c SET KBCJl=l (WHERE J= THE COLUMN NUMBERl 
c NOTE THAT IF THE ABOVE CONDITION IS TRUE BUT THE CORRESPONDING A 
c VALUE IS NEGATIVE <Il TH~RE IS A POSSIBILITY THAT THE NON­
( NEGATIVITY CONSTRAINT HAS BEEN VIOLATED J THEN SET KB(Ji=O FOR 
c THAT COLUMN 
c 

DO 1402 J = ltN 

KB<Jl = 0 

KO = .FALSE. 
DO 1403 I = l,M 


IF (A(!,J).tQ.O.QI GO TO 1403 

IF CKQeOReA(!,J)eLTeO.Oi GO TO 1402 

KQ = .TRUE. 


1403 CONTINUE 
KBCJ) = 1 


1402 CONTINUE 

1400 DO 1401 I = ltM 


JH ( I ) = -1 

14vl CONTINUE 


c 

http:CKQeOReA(!,J)eLTeO.Oi
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C* 1 VEH 1 CREATE INVERSE FROM 'Kb' AND 1 JH 1 (STEP 7) 
c 

1320 	VER = .TRUE. 

I NVC = 0 

NUMVR = NUMVR +1 

TRIG = .FALSE. 

DO 1101 I = 1,M2 

E(l) = o.o 

llvl CONTINUE 


MM=l 
c 
C SET Et1l AND EVERY I=N*(M+l~ VALUE OF ECll EQUAL TO 1·0 UP TO 
C t=M**2 <N=SET OF INTEGERs>. 
C SET XCil=Btll FOR I=1•M CIE LET X<Il BE lHE VARIABLE IN THE BASis> 
c 

DO 1113 I = l,M 

E < r.-tt--1 l = 1 • o 

PE(l) = 0.0 

Xtll = BCil 
IF (JH(ll eNE.Cl JH(ll = -1 
i'-1t-1 = MM + M + 1 

1113 CONTINUE 
C FORM INVERSE 

DO 1102 JT = l,N 
IF (KBtJTl.EQ.O) GO TO 1102 
GO TO 600 

c 
c TRANSFER CONTROL TO THE MACRO -JMY- BEGINING AT STATEMENT NUMB~R 
c 600 FOR ALL COLU~NS THAT HAVE KB(Jl=l.O 
c LET TY=PIVOT ELEMENT 
c SET IR=ROW NUMBER IN WHICH THE PIVOT ELE~ENT OCCURS 
c CALCULATE Ati,JTl/8( Il SELECT THE LARGEST VALUE IN COLUMN JT 
c ~ET TY=CTHE VALUE OF THE ABOVE RATIOl 
c CHECK THAT TY.GT.O. RESET THE fLAG K~(JTJ:o 
c 
c 600 CALL JMY 
c CHOOSE PIVOT 
c 

1114 	 TY = o.u 

KQ = .FALSE. 

DO 1104 I = l'M 


IF lJHlil.NE.-1.0R.ABS(Y(lli.LE•TPIVI GO TO 1104 
IF (KQl GO TO 1116 
IF (X(Jl.EQ.O.l GO TO 1115 
IF tABS<Y<Il/X(JlleLE.TYl GO TO 1104 
TY = ARS(Y(ll/X(Ill 
GO TO 1118 

1115 KQ = eTRUE. 
GO TO 1117 


1116 IF (XCil.NE.o ••oR.AbS(Y(IJ'·LE.TYJ GO TO 1104 

1117 TY = ABS ( Y C I ) l 

1118 I R = I 

1104 	 CONTINUE 


KR<JTl = n 
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( TF.ST PIVOT 
IF (TY.LE.O.) GO TO 1102 

c PIVOT 
GO TO 900 

( 

C TRANSFER CONTROL TO THE MACRci -PlV- ~EGINING AT STATEMENT NUM~ER 
c 900 
c 
C 900 CALL PIV 

1102 CONTINUE 
c 
C RESET ARTIFICIAL$ 
c 

DO 1109 I = ltM 

IF (JH(ll.EQ.-1) JH(l) = 0 

IF (JH<Il.EQ.O) FEAS = .FALSE. 


1109 CONTINUE 
c 

THE LOGICAL VARIABLE VER IS USED TO DETERMINE IF THE SOLUTION IS 
c IN PHASE 1 OR IN PHASE 2 
c 

c 

12vv VER = .FALSE. 
c 
C *** PERFORM ONE ITERATION **• 
C* 1 XCK 1 DETERMINE FEASIBILITY (STEP 1> 
c 

NEG = .FALSE. 

If <FEASl GO TO 500 

FEASo: .TRUE. 

DO 12 01 I = 1,M 


IF (X(I>.LT.OeOl GO TO 1250 
IF (JH(Il.EQ.Ol FEAS = .FALS~• 

1201 CONTINUE 
C* 1 GET 1 GET APPLICABLE PRICES (STEP 2) 

IF (.NOTeFEASl GO TO 501 
500 DO ~03 I = l,M 


P(ll = PE(I) 

IF (X(Il.LT.Oel X<Il = o. 


503 	CONTINUE 

ABSC = .FALSE. 

GO TO 599 


1250 FEAS = .FALSE. 
NEG = .TRUE. 


5Ul DO 5U4 J = 1' M 

P(J) = o. 


504 	CONTINUE 

Al3SC = .TRUE. 

DO 505 I = 1 tM 


t-1M = I 

IF (X(Jl.GE.O.Ol GO TO 507 

ABSC = .FALSE. 

DO 508 J = ltM 


P<JJ = P(Jl + ECMMl 

f-1r"l = MM + M 


508 CONTINUE 


http:X(Jl.GE.O.Ol
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GO TO 	 505 
5U7 	 IF CJHCI>.NE.Ol GO TO 505 


IF (X( I l.NE.O.) ABSC = .FALSE. 

DO 510 J = l,M 


P(J) = PCJl - ECMM) 
Mfv'1 = MM + 1>'1 


510 CONTINUE 

5C5 CONTINUE 


c 
C* 1 MIN 1 FIND MINIMUM REDUCED COST <STEP 3) 
c 

599 	 JT = 0 
BB 	 = o.o 
DO 701 J =ltN 


IF CKB(Jl.NE.O> GO TO 701 

DT = o.o 

DO 303 1 = ltM 


DT = DT + P<I) * ACltJI 

303 CONTINUE 


IF CFEASJ DT = DT + ((Jl 

IF 	 <ARSC) DT = - ABSCDT)
IF CDT.GE.8Bl GO TO 701 

BB = DT 

JT :.: J 

7vl CONTINUE. 
c 
C TEST FOR NO PIVOT COLUMN 
c 

IF <JT.LE.O> GO TO 203 
c 
C TEST FOR ITERATION LIMIT EXCEEDED 
c 

IF !lTEReGEeNCUTl GO TO 160 
ITER = ITER +1 

c 
C 	 START OF THE MACRO -JMY­
C 
C* 'JMY 1 MULTIPLY INVERSE TIMES A(.,JT' !STEP 4> 

6UO DO 61U I= l'M 
YCl) = o.o 

610 	CONTINUE 

LL == 0 

COST = CCJT> 


c 
C LET Y(I l (WHERE I =THE ROW NUMBER) BE THE COEFFICIENT OF THE 
C VARIABLE IN THE BASIS IN COLUMN JT 
C SET COST=THE COEFFICIENT OF THE JT-TH TERM IN THE OBJECTIVE 
C FUNCTION 

00 6 o5 I = l , M 

AIJT = A(I,JTl 

IF !AIJT.EQ.O.l GO TO 602 

COST =COST+ AIJT * PE(II 

DO 606 .J = 1 'M 


LL = LL + 1 

http:CJHCI>.NE.Ol
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YCJ) = YCJ) + AIJT * E(LL) 

606 CONTINUE 


GO TO 6C5 

602 LL = Ll + M 

6U5 CONTINUE 


c 
c COMPUTE PIVOT TOLERANCE 
c 

YMAX = 	0.0 
r... 
C SET YMAX=THE LARGEST VALUE Of Y(t) 
t SET PIV=YMAX*0•5**16 
c 

DO 620 I = ltM 

YMAX = AMAXl( ABS(Y(IIl,YMAX I 


620 CONTINUE 

TPIV = YMAX * TEXP 

C RETURN TO INVERSION ROUTINE, IF INVERTING 
c 
C END OF MACRO -JMY­
C 

IF IVER) GO TO 1114 
C COST TOLERANCE CONTROL 

RCOST = YMAX/BA
IF CTRIG.AND.BB.GE.-TPIV) GO TO 203 

TRIG = .FALSE. 

IF <HB.GE.-TPIVl TRIG = .TRUE• 

C* 'ROW' SELECT PIVOT ROW <STEP 5)

C AMONG EQ5. WITH X=O• FIND MAXIMUM Y AMONG ARTIFlCIALSt OR, IF NONE, 

C GET MAX POSITIVE Y<Il AMONG MEALS• 


lR = 	IJ 
AA = 	0.0 
KQ = 	.FALSE. 
DO 1050 I =1 tM 

IF IX<Il.NEeOeOeOR·Y<I>.LEeTPIVI GO TC 1050 

IF CJHCI>.EQ.O) GO TO 1044 

IF <KOl GO TO 1050 


1045 IF <Y<Il.LEeAAl GO TO 1050 

GO TO 1047 


1044 IF (KQ) GO TO 1045 

KG! = • TRUE. 

1047 	 AA = Y(Il 

IR = I 


1050 	CONTINUE 

IF <IR.NE.Ol GO TO 1099 

AA = 1.0£+20 


C 	 FIND MIN. PIVOT AMONG POSITIVE EQUATIONS 
DO 1010 I = ltM 

IF CY<IleLE.TPIV.OR.X<II.LE.o.o.oR.YCil*AA.LEeXCil l GO TO 1010 
AA = X(ll/Y(Il 
IR = I 

liJlJ CONTINUE 
IF (eNOTeNEG> GO TO 1099 

( FINU PIVOT AMONG NlGATIV~ tQUATlONSt IN WrllCH X/Y IS LE55 THAN THE 

http:IR.NE.Ol
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C MINIMUM X/Y IN THE POSITIVE EQUATIONS, THAT HAS THE LARGEST AbSF(Yl 
BB = - TPIV 
DO 1030 I = ltM 

IF <X(J).GEeOe.OR.Y<I>.GE.bBeOReY(II*AA.GT.XII l GO TO 1030 
BP. = Y ( I l 
IR :: I 

1030 CONTINUE 

C TEST FOR NO PIVOT ROW 


1099 IF <IReLE.ul GO TO 207 

C* 1 PIV' PIVOT ON IIR,JT' (STEP 6l 


I A = JH ( I R l 

IF <IA.GT.Ol KB<IAl = 0 


c 

C START OF MACRO'-PlV-

C 


900 	 NUI'IJPV = NUfv!PV + 1 

JH (I R) = JT 

KbtJT) = IR 


c 
C SET Yl=-<COEFFIClENT OF THE VARlAULE IN THE BASIS IN ROW IRl 
C =A<IR,JTl 
C SET Y<IR)=-1.0 
c 

Y I = -Y (I R) 

Y<ll~l =-leU 

LL = 0 


c TRANSFORM INV~RSE 
DO 904 J = ltM 

L = LL + IR 
IF <E<LleNE.O.Ol GO TO 905 

LL = LL + M 

GO TO 	 904 

c 
c LET XY=INVERSE OF -A(lRtJTI AND E<LLl=INVERSE OF ACIR,JTI 
c 
c 
c SET X<IRl=B<IRl!A<IR,JTl END OF MACRO -PIV­
c 

905 	 XY = E(Ll I Yl 

PE<Jl = PE(J) + COST * XY 

E<Ll = o.o 

DO 906 I = ltM 


LL 	 = LL + 1 
E<LL) =tiLL) + XY * Y(Il 


906 CONTINUE 

904 CONTINUE 


c TRANSFORM X 
XY = X!IRl I VI 
DO 908 I = lt M 

XOLD =XII) 

X(l) = XOLD + XY * Y(ll 

IF <.NOT.VER.AND.X<ll.LTeO••ANDeXOLD.GE.o.l X<I> = o. 


908 	 CONTINUE 

Y<IRl = -YI 

X(lRl = -XY 


http:E<LleNE.O.Ol
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IF CVER> GO TO 1102 
IF INUMPVeLEeMl GO TO 1200 

c 
C TEST FOR INVER~ION ON THlS lTERATlON 
c 

lNVC = INVC +1 
If ClNVC.EQ.NVER) GO TO 1320 
GO TO 1200 

c 
C* END OF ALGORITHM, SET EXIT VALUES *** c 

2U7 IF leNOT.FEAS.OR.~COSTeL~.-lOOO.l GO TO 203 
c 
c 	 INFINITE SOLUTION 
( 

K = 2 
GO TO 250 

c PROBLEM IS CYCLING 
160 K = 4 

GO TO 250 
c 
c FEASIBLE OR INFEASIBLE SOLUTION 

203 K = 0 

250 IF CeNOTeFEASl K = K + l 


DO 1 3 9 9 J = 1 , N 

XX -· 0.0 

KBJ = Kb(.J) 

IF lKBJ.NE.O) XX = XIK8Ji 

Kt3(J) = LL 


1399 	CONTINUE 

KO ( 1 l = K 

KOC2> = ITER 
RETURN 

END 


SUBROUTINE SEEKlCXtUtNtXSTRTtRMAXtRMIN,PHI,PSitNCONStNEQU~tUART, 
1 DSTAR,NTERMStNTOTERl 

DIMENSION X(l),XSTRTCl>tRMAXCl)tRMlN(1l,pHIC1l,pSl(ll,DSTAR(NTOTER 
l,lltNTERMSCl) 

COMMON lNDEXtLEVELtlPRlNT,IDATAtFtMAXMtGtNSHRlNtMSTARTtPDtEPStiCT, 
liFENCEtPLt~STOPtNSMAXtNSrlOTtNTESTtTEStRtREDUCEtNVIOLtKO,NNUEX 

lf(lNDEX.EQ.l)WRITEl6tl9l 
IFCINDEX.EO.l.ANU.IPRINTeGT.QlWRITEC6t7) 

c 
C SUBR.SEARCH IS USED BY SEEKl AND SEEK3tBOTH OF WHICH ARE CALLED BY 
C OTHER METHODS• NNDEX IS USED lN SEARCH (AND OPTIMF) TO IDENTIFY 
C SEEKl OR SEEK3.(1NDEX RETAINS THE VALUE FOR THE METHOD WHICH HAS 
C CALLED SEEKl OR SEEK3)• . 
c 

NNDEX=l 

KOUNT=O 
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SUBROUTINE SEEKlCXtUtNtXSTRTtRMAXtRMINtPHI,PSltNCONStNEQUStUART, 
1 DSTAR,NTERMStNTOTER)

DIMENSION X<l1tXSTRT(lltRMAX(lltRMIN<ll,pHIClj,PSICll,DSTARCNTOTER 
ltl),NTERMS(l) 

COMMON lNDEXtLEVELtiPRlNTtlDATAtFtMAXMtGtNSHRlNtMSTARTtPDtEPStlCTt 
liFENCEtPLtNSTOPtNSMAXtNSHOTtNTESTtT£S,RtREUUCE,NVlOLtKOtNNDEX 

IF!INUEX.EQ.l>WRITElbtl91 
IFCINDEX.EQ.l.ANDalPRlNT•GT.Q~WRlTE(6,7l 

c 
C SUBR.SEARCH IS USED BY SEEKl AND SEEK3tBOTH OF WHICH ARE CALLED bY 
C OTHER METHODS. NNDEX IS USED IN SEARCH lAND OPTIMFl TO IDENTIFY 
C 5EEK1 OR SEEK3·<1NDEX RETAINS THE VALUE FOR THE METHOD WHICH HAS 
C 	 CALLED SEEKl OR SEEK3)• 
c 

NNDEX=l 
KOUNT=O 

2 	 CALL SEARCHCXtUtNtXSTRT,RMAXtRMlNtPHI,PSl,NCONStNEQUStUARTt 
1 DSTAR,NfERMStNTOTERl 

C IF SEEKl HAS BEEN CALLED BY ANOTHER METHOD RETURN AFTER CALL 
C TO SEARCH 
C RESET NN0EX=INDEX FOR FUTURE CALLS TO OPTIMF OR StARCH BY THE 
C CALLING METHOD. 

NNOEX=INDEX 
IF<INDEXeN~·llRETURN 
CALL SHOTCUtXtNtKKtPHitPSitNCONStNEOUStRMAXtRMIN) 

C 	 CHECK TO SEE WHETHER SUBReSHOT HAS FOUND AN IMPROVED POINT 
IF<KK.EQ.ll GO TO 4 
IFCKO.EQ.OlGOT016 

C 	 KO CANNOT BE RESET IN SUBR.SHOT, THEREFORE IF KO=l AT THIS STAG~ 
C 	 THEN SUBR.SEARCH FAILED ANU SHOT FOUND NO IMPROVEMENT 

WRITt(6t5) 
GOT016 

4 	 IF<IPRINT.GT.OlWRITEt6t25lU,CXti>,I=l,Nl 

KOUNT=KOUNT+l 

IF<KOUNT.LE.NSHOT>GOT013 

WRITE(6,17lNSHOT 

KO=l 

GOTOlb 

C REDEFINE STARTING POINT FOR SEARCH 
13 DO 14 I=ltN 
14 XSTRTCil=X<I) 

GOTO 2 
C PRINT OUT OPTIMUM<KO=Ol OR LAST ITERATIONS RESULTSCKO=ll 

lb CALL ANSWER(UtXtPHI,PSitNtNCONStNEQUSi 
5 FORMAT<lH-,71HDIRE(T SEARCH HAS HUNG UP AND SHOTGUN SEARCH CANNOT 

lFIND A HETTER POINT/41HTRY A UlFFfHENT STARTING POINT AT LEVEL=l/l 
7 FORMAT<lH-,l5X,lHUt25Xt23HINDEPENUENT VARIA~LES X//l 

19 FORMAT<lHltlOXt38HDIRECT SEARCH OPTIMIZATION USING SE~Klt/l 
17 FORMATilH-t48HSHOT6UN SEARCH FOUND AN IMPROVEMENT BUT NSHOT =,Ib, 

ll8H HAS BEEN EXCEEUED/1Xt34HTRY RUNNING THIS PROULEM ON ADRANS/> 
25 	 FORMAT(lH-,7H.SHOTe ,5Elbe8/(24Xt4El6e8>) 


RETURN 

END 


http:IF<KK.EQ.ll
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SUBROUTINE SHOTCUtXtNtKKtPHI,PSI,NCONStNEQUStRMAXtRMINI 
DIMENSION PHI(l)tPSI(l),RMAXIll,RMIN(lJ,xtl) 
COMMON INOEXtLEVELtiPRINTtlDATAtFtMAXM,G,NSHRINtMSTART,PD,EPS,ICT, 

liFENCE,PLtNSTOPtNSMAXtNSHQT,NTESTtTEStRtREDUCEtNVIOLtKOtNNDEX 
COMMON/A2/RRC100ltXX(lOOI 
COMMON /A5/Rf(l00) 

C U=OPTIMUM DETERMlN~D BY UIRECT SEARCH. lT IS CHANGED TO IMPROVED 
C VALUE IF SUCH A VALUE IS OBTftiNED 
C XX= TRIAL VALUES OF XCI) FRO~ SHOTGUN SEARCH 
C RF= FRACTION OF RANGE USED IN SHOTGUN SEARCH 
C KK= INDICATOR TO SHOW IF U RETURNED IS AN IMPROVEMENT 
C INITIALIZE RANDO~ NUMBER GENERATOR 

CALL FRANDNCRRtN,ll 
UMIN=U 
KK=O 

C THIS SHOTGUN SEARCh IS INTENDED TO GET THE SOLUTION OFF A FENCE 
C RATHER THAN TO INCH IT TOWARDS THE OPTIMUM. THEREFORE LARGE STEPS, 
C EQUAL 10. TIMES THE INITIAL STEP SIZE IN SEARCH ARE TRIED. 

DO 1 I=ltN 
1 RF<I>=lOe*F*ABS(RMAX(I>-RMlNII)I 

DO 4 J=l•NTEST 
CALL FRANDN<RRtNtO) 
DO 2 I=l,N 

2 XXCI)=(XCii-RFCI)l+RR(li*2•0*RFCIJ 
CALL OPTIMFCXXtUTEST,PHitPSitNCONStNEQUSJ 
IF!NVIOLeNE.OJGOT04 
IF!UTEST.GEeUMIN>GOT04 
UMIN=UTEST 
U=UTfST 
DO 3 l=l•N 

3 X(!)=XX(l) 
KK=l 

4 CONTINUE 
RETURN 
END 

SUBROUTINE SEARCH (XtUtNtX~TRTtRMAXtRMIN,PHltPSitNCONS,NtUUSt 

1 UARTtDSTAR,NTERMS,NTOTER) 
DIMENSION X(l)tXSTRT(l),RMAXCl),RMINCll,PHI<l),pSI(l), 

1 DSTAR!NTOTERtl)tNTFRMSCl> 
COMMON INDEXtLEVELtiPRINTtiDATAtFtMAXMtGtNSHRINtMSTARTtPD,EPS•ICT, 

liFENCEtPLtNSTOPtNSMAXtNSHOTtNTESTtTEStRtREDUCEtNVIOLtKOtNNDEX 
COMMON/Al/XO(lOO),XB<lOUJ tUXXX<lOUJ,TXXX(lOQJ 

c 
C DIRECT SEARCH PORTION OF SEEKl AND SEEK3 
c 
C SUBR.SEARCH IS USED BY SEEKl AND SEEK3tBOTH OF WHICH ARE CALLED BY 
C OTHER METHODS. NNDEX IS USED IN SEARCH (AND OPTIMF) TO IDENTIFY 
C SEEKl OR SEEK3.<INDEX RETAINS THE VALUE FOR THE METHOD WHICH HAS 
C CALLED SEEKl OR SEEK3l. 
C NNDEX=l MEANS SEARCH HAS BEEN CALLED BY SEEKl 
C NNUEX=3 MEANS SEARCH HAS oEEN CALLEU ~y SEEK3 
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C IN CASE SEARCH IS CALLED DIRECTLY BY ANOTHER METHOD,DEFINE NNuEX 
!F(NNDEX.NEeleAND•NNDEXeNEe3J~NDEX=INDEX 
NVIOLl=l 

KKK=O 

Ml = 0 


C 	 DEFINE INDICES OF X(l~ FOR GEOMETRIC PROGRAMMING 

IF<INDEXeNEe7)GOTO 20 

Kl=2 

K2=NTOTER-N 

GOTO 30 


2u 	 Kl=l 

K2=N 


30 DO 	 40 I =K 1 , K2 
DXXXCIJ=O• 

TXXX<l)=O. 

XO(!I=O• 


40 XB<Il=O. 

DO 60 I =Kl tK2 


60 X<I> = XSTRT(Il 

C SET FIRST BASE POINT 


DO 70 I=KltK2 

70 XO(!) =X(l) 


C GENERATE DELX(l) AND TEST<Il 

DO 80 I=KltK2 

DXXX< I) = F*<RMAX( I >-RMIN( I J J 

80 TXXX(l)=DXXX<Il*G 
C CHECKS FOR PURPOSE OF CALL TO SEEKl 

NCALL=l 
90 	 IF<INDEXeNE.7l GO TO 100 


CALL GEOPTCNTOTERtNtNCONStNTERMS,USTAR,UART,X) 

GOTO 110 


100 CONTINUE 

CALL OPTIMFlXtUARTtPHI,PSltNCONStNEQUSJ 


110 IFlNCALLeNE.l>GOTO 120 

UARTO = UART 


12u CONTINUE 
C ONCE THE SOLUTION HAS BECOME FEASlbLE(NVIOL=Ol THE PENALTY 
C FUNCTIONS IN OPTI~F PREVENT IT GOING INFEASIBLEeTHEREFORE NVIOLl=O 
C MEANS THE SdLUTION HAS BECOME PERMANENTLY FEASIBLE 

IF<NVIOL•EQ.v)NVIOLl=O 

IF<INDEX.EQ.l) GO TO 130 

IFCINDEX.EQ.3J GO TO 130 

IF<INUEX.EQ.7) GOTO 130 


C IF SEARCH IS BEING USED MERELY TO OBTAIN A FEASIBLE STARTING POINT 
C THEN RETURN AS SOON AS SOLUTION GOES FEASIBLE 

IFCNVIOLl.EQ.O)GO TO 365 

130 GO TO (170, 200t 210t 355> NCALL 

170 CONTINUE 


C 	 MAKE SEARCH 
180 	NFAIL=O 


DO 240 I=KltK2 

X ( I ) =X t I> +UXXX (I) 

NCALL=2 

GO TO 90 
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200 	CONTINUE 

IFCUART.LT.UARTOl GOTO 230 

XCll=X!I)- 2eO*DXXXCI> 

NCALL=3 

GO TO 90 


210 	CONTINUE 

lf!UARTeLTeUARTOl GOTO 230 

NFAIL = NFAIL + l 

X ( I l =XC 1 ) +DXXX I I ) 

GOTO 240 


230 	UARTO = UART 
240 	CONTINUE 


IFCINDEXaNEe7)GOTO 250 

Nur-1B=K2-l 

IF<NFAILeEQaNUM~IGOTO 260 
GOT0315 

250 IFCNFAILaEQ.N)GOTO 260 
GOTO 315 

260 DO 2BO I=KltK2 
IF!DXXXCil.GTeTXXX(J)j GO TO 290 

280 CONTINUE 
GO TO 385 


290 DO 310 l=KltK2 

310 DXXX(l )=DXXX!ll/2• 


GOTO 180 
C ESTABLISH NEW BASE POINT 

315 DO 320 I=KltK2 
320 XB (I l = XC I > 

Ml = Ml + 1 
lf!INDEXaEOellGOT0330 

GO TO 340 


330 	KKK=KKK+l 
IFCKKKaNE.IPRINT) GO TO 340 
CALL UREAL!XtULOW) 
WRITE (6t2> MltULOW , (XIIl~ I=ltNl 
KKK=O 

340 CONTINUE 
IF!Ml.GTeMAXM> GO TO 385 

C MAKE A PATTERN MOVE 
DO 350 I=KltK2 

350 	Xlll =XIII+ (XII)- XO(J)J 

NCALL=Lt 

GO TO 90 


355 	CONTINUE 
IfCUARTaLTeUARTOl GOTO 370 
DO 360 I=KltK2 
XO ( I > = X~ I I ) 

3tlu 	XCll = Xti(ll 
GOTO 180 


370 DO 380 I=KltK2 

380 XO ( I l = XB ( 1 ) 


UARTO = UART 
GOTO 180 


385 IF!INDEX·EQ.7)GOT0387 
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CALL UREAL(XtU) 
CALL OPTIMF(XtUARTtPHitPSitNCONStNEQUSI 
IF<NVlOL·EQ.UlGOT0387 
IFtMleGT.MAXMlWRITE(6t4lMAXM 
KO=l 

387 RETURN 
2 FORMAT(lHO,I4t3Xt5El6e8/(24Xt4El6e8l) 
4 FORMAT(lH0,60HNO FEASIBLE SO(UTION AFTER ALLOWABLE NUMBER OF MOVES 
1, MAXM =•16/l 

END 

SUBROUTINE OPTIMF(X,UARTtPHitPSitNCONStNEQUSl 
DIMENSION X(lltPHI(lltPSI~ll 
COMMON INDEX,LEVELtiPRINT,IDATAtFtMAXMtGtNSHRINtMSTART,PD,EPS,ICT, 

liFENCEtPLtNSTOPtNSMAXtNSHOTtNTEST,TEStRtREDUCE,NVIOLtKO,NNDEX 
C VERY MINOR VIOLATIONS OF INEQUALITY CONSTRAINTS SHOULD NOT MAKE 
C THE ENTIRE SOLUTION INFEASIBLE• THEREFORL TEST FOR PHI<l'·GE.ZEHO 
C WHERE ZERO=-l.OE-10 

ZERO=-l.OE-10 
NVIOL=O 

C SUBR.OPTIMF IS USED BY SEEKl AND SEEK3,BOTH OF WHICH ARE CALLED UY 
C OTHER METHODS. NNDEX IS USED IN OPTlMF <AND SEARCH) TO IDENTIFY 
C SEEKl OR SEEK3.1INDEX RETAINS THE VALUE FOR THE METHOD WHICH HAS 
C CALLED SEEKl OR SEEK3'• 
C NNDEX=l MEANS SEARCH HAS BEEN CALLED BY SEEKl 
C NNDEX=3 MEANS SEARCH HAS BEEN CALL~U bY SEEK3 

SUMl=O.O 
SUM2=0.0 
CALL UREAL(X,Ul 
IF<NNDEX.F.Q.3lGOT0110 

c 
C SEEKl PENALTY FUNCTIONS-
c 
C A ROUTINE TO CALCULATE A VALUE FOR AN ARTIFICIAL ObJECTIVt 
C FUNCTION OF THE FORM 
C UART=UREAL+SUMIABSCPHl(I''~*lO·E20+SUMCABSCPSI(IJ 1 l*lO•E20 
C WHERE 
C 
C 

PSllll AND PHI(l) IN THE ABOVE EXPRESSION ARE THE VALUES OF THE 
CORESPONDING EQUALITY AND INEUUALIT~ CONSTRAINTS THAT HAVE HElN 

C VIOLATED 
!F(NCONS.EQ.OlGOT02 
CALL CONST<X,NCONS,PHll 
DO 1 I=l,NCONS 
IF<PHIIIl.Gt.ZEROlGOTOl 
SUMl=SUMl + ABS(PHI(JI l*lO.OE+20 
NVIOL=NVIOL + 1 

1 CONTINUE 
2 lf(NEQUS.EQ.OlGOTOll5 

CALL EQUAL(X,PSI,NEQUS) 
DO 3 I=l,NEQUS 

3 SUM2=SUM2 + ABS<PSICll)*lO.OE+20 
GOT0115 
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C SEEK3 PENALTY FUNCTIONS ­
c 
C TH~ ARTIFICIAL OBJLCTlVE FUNCTION IS OF THE FORM 
C UART=UREAL + R*SUMCle/PHI(IIJ + SUMtlPSl(J)**2l/SQRT<RJI 
c 

110 	DIV=SQRT(Rl 

IF<NCONSeLEeOlGOTOll3 

CALL CONST(XtNCONStPHil 

DO 112 I=ltNCONS 

IF<PHI<Il.~E.ZEROlGOTOlll 

NVIOL=NVIOL+l 
C ADO A SEVERE PENALTY TO ANY PHl<I~ WHICH IS VIOLATED 

SUM1=SUMl+AtlS(PHitlll*l0·0~+20 

GOT0112 
C AVOID DIVIDING BY APPROXIMATELY ZERO, THERE IS NO POINT PENALIZING 
C A VERY SMALL PHitll ANYWAY 

111 IF<ABStPHICI) leLT•-ZERO)GOT0112 
SUMl=SUMl+R/AeS<PHI(IIl 


112 CONTINUE 

113 IF<NEQUSeLE.OlGOT0115 


CALL EQUAL(X,PSitNEOUSl 
DO 114 J=ltNEOUS 


114 SUM2=SUM2+CABSCPSI (Jl)**2l/DIV 

115 UART=U+SUMl+SUM2 


RETURN 

END 


SUBROUTINE SEEK2<XtUtNtXSTRT,~MAXtRMINtPHI,PSitNCONStNEOUStGSJ 
DIMENSION X ( 1 l , X S T RT ( 1 ) 'RMAX ( 1 ) t Rr-il N ( l i t PH I ( 1 l , PSI ( 1 l , GS ( 1 l 
COMMONINDEXtLEVEL•IPRINTtlDATAtFtMAXMtGtNSHRlNtMSTARTtPDOtEPStlCT, 

liFENCEtPLtNSTOPtNSMAXtNSHOT,NlESTtTE5,RtREDUCEtNVl0LtKOtNNUEX 
COMMON /Al/DX(100) tXO(l~Q),DXS(lQO)tXN<lOOl 
NNDEX=INDEX 
~iRITE(6tlOlJ 

KUT=O 

KOUNT=O 

DO 2 I= 1, N 

X( I )=XSTRTl I) 

XO(Il=X<IJ 

uX( I J=F*AI:3S<RMAX( 1 l-Rt41N( I) i 

DXS( I >=DX( I l 


2 CONTINUE 
61 CALL OPTIMFCXtUARTO,PHitPSI,NCONStNEQUS) 
62 U=UARTO 

C PERFORM THE UNIVARIABLE SEARCH 
DO 6 I= 1 tN 

C MAKE A MOVE IN THE POSITlVE UlRECTlON 
3 	 X( I l=X< I )+{)X( I) 


CALL OPTIMF!XtUARTtPHI,PSitNCONStNEYUS' 

IF<UART.LTeUlGOT04 


C 	 MAKE A MOVE IN THF. NEGATIVE DIRECTION 
X( I J=X< I J-2.0*DX< I J 
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CALL OPTIMF(X,UARTtPHl,PSI,NCONS,NEWUS) 
lF(UARTeLTeUlGOT05 

C RETURN TO ORIGINAL VALUE 
X ( I ) =X ( 1 ) +DX ( I ) 
GOT06 

4 U=UART 
C INCREASE STEP LENGTH AFTER A SUCCESSFUL MOV~ 

DX( I l=DX< I l*GS( I l 
X< I l=X< I l+DX( 1 i 
CALL OPTIMF(X,UARTtPHl,PSltNCONS,N~YUSt 

C 
lF(UARTeLTeU)GOT04 
RETURN TO ORIGINAL POSITION AFTER A FAILURE 
X ( I ) =X ( I ) -DX ( 1 ) 

C 
DX< I l=DXS( I l 
DECIDE WHETHER OR NOT TO PROCEED WITH UNIVARIABLE SEARCH 

C <IFENCE=O AT LEVEL=Ol 
lF<IFENCt.EQ.llGOT06 
GOT03 

C INCREASE STEP LEN~TH AFTER A SUCCESSFUL NEGATIVE MOVE 
5 OX( I l=-DX( I) 

GOT04 
6 CONTINUE 

C CHECK PERCENTAGE IMPROVEMENT IN U 
CALL OPTIMFIXtUARTtPHI,PSitNCONS,NEQUSl 
IF(AeSIUART-UARTOI.GTeEPS*A6~(UARTQJ)GOT06 
IF<KUT.LT.ICTIGOT07 
IF(NVIOL.EQ.u)GOT099 
KO=l 
~IRITEC6.!05l 
GOT099 

C REDUCE STEP SIZE bY A FACTOR OF 10•0 
7 DO 18 I= 1, N 

DX( I >=DX( I lflO.O 
18 DXSC I )=DXC I l 

UARTO=UART 
KUT=KUT+l 
GOT062 

C START PATTERN MOVES 
8 U=UM<T 

PD=PDO 
DO 42 I= 1, N 

42 XN<Il=Xlll 
15 DO 9 I=l,N 

9 XN( 1 l =XNl I l+(X <I )-XO( I) )*PI) 
CALL OPTIMF<XN,UART,PHl,PSI,NCONS,NEQUSl 
IF<UART·LT•UlGOTOl4 
IF(PD·LT.O.OlGOT013 

C TRY A NEGATIVE PATTERN MOVe 
DO 40 I=ltN 

40 XN ( I l =XN ( I ) - (X< I) -XO ( I) )*Pi.> 
PD=-PDO 
GOT015 

C RETURN TO ORIGINAL POINT 
1 3 DO 1 6 I =1 , N 
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UARTO=U 

KOUNT=KOUNT+l 

IFCIPRINT.EO.O>GOT017 

IF<KOUNT.EQ.IPRINT>WRITEC6tl021 

IFCCKOUNT/IPRINT)*IPRlNTeNEeKOUNT)GOT017 

CALL UREALCXtUU) 

WRITEt6t1U3)KOUNTtUUtCX,Iiti=ltNl 


17 IFCKOUNT.~U.MAXMlGOTC20 
GOT062 

c ACCELERATE STEP LENGTH AFTER SUCCESSFUL PATTERN MOVES 
14 	 PD=PD*PL 


U=UART 

DO 11 I= 1 tN 


11 	 XNC I >=XN( I )+(X( I J-XOC 1) >*PO 

CALL OPTIMFCXNtUART,PHitPSJ,NCONStNEQUS) 

IF<UART.LTeU)GOTOl4 


c 	 RETURN TO LAST POSITION AFTER PATTERN MOVE FAILS 
DO 41 I=l,N 

41 	 XN ( I > =XN ( I ) - (X t I ) -XO ( 1 ) l *PU 

PD=PDO 

GOT015 


c NO CONVERGENCE AFTER MAXM COMPLETE CYCLES 
20 WRITEC6tl04lMAXM 

KO=l 
99 CALL ANSWERtUtXtPHitPSitNtNCONStN~QUSi 

lul FORMATtlHlt46HOPTIMIZATION USING U!RECT SEARCH MtTHOD SEEK2/~ 
102 FORMATtlH-,15X,lHU,25Xt26HINDEPEN~ENT VARIA~LES X<I>t/l 
103 FORMATC1HO,I4,3X,5El6•8/(24Xt4El6.8) l 
104 FORMATtlH-,29H OPTIMUM CANNOT BE FOUND IN ,I3,7H CYCLESl 
105 FORMATtlH-,43HSEEK2 CANNOT FIND A FEASIBLE STARTING POINT/) 

RETURN 

END 


SUBROUTINE SEEK3CXtUtNtXSTRT,~MAXtRMINtP~I,PSltNCONStNEQU~tUART,DS 
lTARtNTERMStNTOTERl 

DIMENSION X<lltXSTRTCl>•RMAX(lltRMINCli,pHI(ll,pSICl>t~STARCNTOTER 
ltl>tNTERMSCll , 

COMMON lNDEX,LEVELtiPRINTtlDATAtFtMAXMtGtNSHRINtMSTARTtPDtEPStlCT, 
liFENCEtPLtNSTOPtNSMAXtNSHQT,NTESTtTEStRtREDUCEtNVIOLtKOtNNUEX 

1FCINDEX.EQ.3)WRITEC6t9J 
ULAST=lOeOE+40 
KOUN·T=O 

C 	 DEFINE NNDEX=3 SO THAT OPTIMF AND SEARCH WILL FUNCTION CORRECTLY 
NNDEX=3 

C DEFINE R AND REDUCE FOR THE CASE WHERE SEEK3 HAS BEEN CALLED bY 
C ANOTHER METHOD 

IFCINDEX.NE.3>R=l.O 
IFCINDEX.NE.3>REDUCE=Oe04 

1 CALL SEARCHCXtUtNtXSTRTtRMAXtRMINtPHltPSltNCONStNEQUStUARTtDST 
lARtNTERMStNTOTER) 

C iF SEEK3 HAS BEEN CALLED BY ANOTHER METHOD RETURN 
C RESET NNDEX=INDEX FOR FUTURE CALLS TO OPTIMF OR SEARCH BY THE 
C CALLING METHOD. 
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C 

C 


NNDEX=INDEX 

IFC!NDEX.NE.3)RETURN 

IF<KO.NE.llGOT05 

WRITEC6tl4J 

GOT06 


5 	 KOUNT=KOUNT+l 

IFCIPRINT.EQ.O)GOT02 

IFCKOUNT.EQ.IPRINTlWRITEC6tlCJ 

IF( CKOUNT/IPRINTl*IPRINT.NE.KOUNT)GOT02 

WRITEC6t4)R

WRITEC6tll)U,(X(Ilti=ltNl 


2 IFCA~S(U-ULAST>.GleleE-07*ABSCULASTJ )GOT07 

OPTIMUM HAS BEEN REACHED 


6 CALL ANSWERCUtXtPHltPSltNtNCONStNEOUSl 

RETURN 


7 	 JFCR.GT.l.OE-20)GOT08 

WRITEC6tl2)R 

1(0=1 

GOT06 


8 	 ULAST=U 

R=R*REDUCE 

DO 3 I=ltN 


'3 	 XSTRTCI>=X(l) 
GOTOl 


4 FORMATClHOt3HR =tE16.8) 

9 FORMAT(1Hl,45HOPTIMIZATION USING DIRECT SEARCH METHOD SEEK3,//) 


10 FORMATClH0,38X,27HINDEPENDENT VARIABLES X(I)/tl 
11 FORMAT(1Xt3HU =tE16e8tlXt4El6•8/(2lX,4El6.8l) 
12 FORMATClHOt23HNO CONVERGENCE WITH R =tE16.sJ 
l4 FORMAf(66HlSEEK3 uNAULE TO FINU A ftASlbLE STARTING POINTCALL Prllt 

lll.GE.O.Ol/) 

END 


SUBROUTINE ALTSCXtUtNtXSTRTtRMAXtRMINtWATEtSTEPtNEOUStNCONStPSitPH 
1 I tt·hNN tA '~, CtWORKA 'DS TAR tNTERI-'IS tNT OTI:::R 'ut. LX tXX) 

UlMENSION XClltXSTRTClltRMAX(lltRMINCllt~ATECli,~TEPll~,PSl(lltPHI 
l(lJ,DELXClJ,A(Mtll,B(lltC(lltWORKA(Mtl),USTARCNTOTERtl~,NTERMSllJ, 

2XX(ll 
. COMMON lNDEXtLEVEL,IPRINT,IDATA,F,MAXM,Gt~SHRINtMSTART,PD,EPS,ICT, 
liFENCEtPL,NSTOPtNSMAXtNSHOTtNTEST,TEStRtREDUCEtNVIOLtKOtNNDEX 

COMMON /A5/ XINC(l00) 
WRITE(6,1) 
UU=l.OE+40 
UI:)EST=leOE+40 
NCY=O 
CHECK INPUT VALUE OF STEP<I>. THE LINEARIZATION PERFORMED IN SUBR. 
LINEAR IS ONLY VALID FOR A SMALL STEP SIZE 
DO 9 I =1 ,N 
XC I >=XSTRT( I) 
RANGE=A~S(RMAX(Il-RMIN(Jl) 

9 	 IF<ABSCSTEP(l) >.GT.O.lO*RANGE)STEP<l>=OelO*RANGE 

http:lll.GE.O.Ol
http:tE16e8tlXt4El6�8/(2lX,4El6.8l
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C CALL SUBR.FEASBL TO CHECK WHETHER XSTRT<I> IS FEASIBLE AND TO 
C DRIVE IT FEASIBLE IF NECESSARY. 

1FlNCONS.EQ.Q.ANDeNEQUS·EQ.QlGOT020 
CALL FEASBL<XtUtNtXSTRTtRMAXtRMINtP~II,Psi,NCONStNEQUStUDUM~Y,USTAR 

1 ,NTERf·-1S ,NTOTER) 
IF(KO.EQ.O)GOTOlO 

c SUBR· LINEAR CAN HANDLE INFEASIBLE INEQUALITY CONSTRAINTS• BUT NOT 
c UNSATISFIED EQUALITIES 

IFtNEQUS.GTeOlRETURN 
c PROCEED WITH LINEARIZATION, RESET KO=O 

KO=U 
GOT03v 

10 IF<IPRINT.GT.UlWRllE(6t3lU,(X<I),!=ltNl 
20 CALL ASERCH<XtNtRMAXtRMINtPHltPS!tNCONStNEQUS,NCY,WATEl 

c 
CALL UREAL(X,UARTO) 
CHECK TO SEf IF THf RESULTS Of THIS SEARCH HAVE IMPROVED U OVER 

c THE PREVIOUS SEARCH(THJS METHOD TENDS TO OSCILLATEJ 

( 
lF((UARTO-UUleLT.O.OlGOT021
CHECK FOf-\ OSC+LLA T I ON, I • E • NO S I \:JN 1 F 1 CANT CHANGt. FROfl; U'S T SEAi,CH 
lF(AHS(UARTO-UUl.LTel•OE-081GOT023 
GOT024 

c 
21 IF( (UARTO-UBESTl.GEeOeOlGOT024 

DEFINE THE NEW •BEST' POINT AND STORE IT IN UBEST AND XSTRT! Il 
UbEST=UARTO 
UU=UARTO 
DO 22 I= 1 tN 

22 XSTRT( I )=X( I> 
GOT035 

c IF THE OPTIMIOATION FUNCTION IS OSCILLATING , RETURN TO 'bEST' 
c POINT SO FAR 

23 WRITE(6,7) 
U=UBEST 
DO 26 I=ltN 

26 X(I)=XSTRT(l) 
GOTOllO 

c STORE VALUE OF U 'FOR THIS ITERATION 
24 UU=UARTO 

GOT035 
30 CALL UREAL(X,UARTO) 
35 IF!NEQUS.EQ.OlGOT050 

CALL EQUAL(X,PSltNEQUS) 
DO 40 I=ltNEQUS 

40 UARTO=UARTO+A~S(PSl(li)*WATE<II 
50 CALL LINEAR<x,uo,PHltPSitAtBtCtDELXtSTEPtMtNN,NtNCONStNEQUS) 

CALL SIMPLE<XXtDELUtMtNNtAtBtCtWORKA) 
IF(KO.EQ.l)RETURN 
DO 60 I=l ,N 
XlNC(l)=XX(2*I-l>-XX(2*1) 

60 X(l)=X(l)+XINCCl) 
CALL UREAL(X,Ul 
NCY=NCY+l 
IF(IPRINTeEWeO>GOT070 
WRITE(6,5)LJ,(X(l),I=ltN> 

10 IF<NCY.GT.NSMAX)GOTOlOO 
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UART=U 

NVIOL=O 

IFCNEOUSeEQ.OlGOT081 

CALL EOUAL(X,PSitNEQUS) 

DO 80 I=l,NEOUS 


80 UART=UART+ABS(PSl(Ill*WATf(l) 
C CHECK IF PREVIOUS MOVE WAS INFEASltiLE 

81 	 IFCNCONS·EQ.O)GOT090 

CALL CONST(XtNCONStPHJ) 

1.)0 82 I=ltNCONS 


82 	 IFCPHICil.LT.O.O)GOT083 
GOT090 

C IF LAST POINT FOUND BY LINEARIZATION WAS INFEASIBLE, BYPASS ASERCH 
C AND GO DIRECTLY TO LINEARIZATION 

83 	 IFCIPRlNT.~T.olWR1TtC&t4j 


NVIOL=l 

90 	 lF<AUSCUARTO-UART>.LT·TES*ABS<UARTOil60TOllO 


IFCNVIOLeEO.OlGOT020 

lJARTO=UART 

GOT050 


lvO 	 WRITEC6t6lNSMAX 
C 	 PRINT OUT THE •BEST' VALUE SO FAR 

U=UUEST 
DO 105 1= l tN 

105 	XC I l=XSTRTC I) 

KO=l 


110 CALL ANSWERCUtXtPHI,PSitNtNCCNS,NEOUS) 
1 FORMATC1Hlt35HOPTIMIZATICN USING ALTERNATE SEARCH//) 
2 FORMATC1H-,47HMETHOD UNABLE TO FIND A FEASIBLE STARTING POINT/> 
3 FORMATC1H-,47HFEASI~LE STARTING POINT FOUND bY METHOU IS U =tEl6. 
l8tllH AT X(l) =//(6Xt5El6e6l> 

4 FORMAT(30Xt3lrlCTHE A~OVE POINT 15 INFtASI~LEl> 
~ FORMATC7HOLIN~AR,El~.8,4El6.8/(~2Xt4El6.8J) 
6 FORMAT!lH~,BOHMAXIMU~ NUM~ER OF IT~RATIONS THROUGH ALTERNATE SEARC 

lH ~i.~S IJt:EN EXCEEr.lED CNSMAX =tl6t1Hl/1X,43HTHE [3EST POINT FOLJN[) SO 
2FAR IS LISTED BELOW/) 

7 ~ORMATC1H-,68HSOLUTION 15 OSCILLATING, ASSUME PREVIOUS •bEST' POIN 
lT IS THE OPTIMUM/) 


RETUHN 

END 


SUBROUTINE ASERCHCXtNtRMAXtRMIN,PHltPSI,NCONS,NEQUS,NCY,WATE' 
DIMENSION X(l),RMAXCl),RMlNCl''PHl(lltPSICll,WATE(lJ 
COMMON INDEXtLEVEL,IPRINTtiDATAtFtMAXM,G,NSHRINtMSTART,PDtEPStiCTt 

liFENCEtPLtNSTOPtNSMAXtNSHOTtNTESTtTEStRtREUUCEtNVlOLtKOtNNDEX 
(OMMON /A3/TESTClOO>tDLLX(100l,XOClOOl 
COM~ON /A5/XlNCClU0) 
l(OUNT =0 
.J=O 

C NOTE ••• ASERCH ASSUMES THAT ALL PHI(Il.GE•O• ALREADY 
C INITIALIZE lHE STEP LENGTHS AND CONVERGENCE CRITERIA 

DO 10 I= 1, N 

http:FORMATC7HOLIN~AR,El~.8,4El6.8/(~2Xt4El6.8J
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DLLX(ll=F*ABS(RMAX(ll-RMlNttJl 
1;; 	 TEST!Il=G*DLLX(ll 


(ALL UREAL(X,UOl 

lFINLUUS•EQ.OlGOT035 

CALL lQUAL(XtPSltNEQU~l 

DO 30 J=l,NEQUS 


30 UO=UO+A8S(PSII!l)*WATE(ll 
C IF A LINEARIZATION HAS JUST BEEN COMPLETED, TRY A PATTERN MOVE 

35 IF<NCY.GT.OlGOTOl50 
C MAKE EXPLORATORY SEARCH 

4 0 00 50 I =1 , N 
50 XO( I l=X< 1) 

NFAIL=O 

DO 120 I=ltN 

LOOP=l 

X!Il=Xtll+DLLX(Il 


55 	 CALL UREAL(X,Ul 

IF<NCONS•EQ.U)GOT070 

CALL CONST!XtNCONS,PHll 

00 60 L=1tNCONS 


6U 	 IF!PHl!LleLTeOeOlGOTOlOU 
70 	 IF!NEQUSeEQ.O)GOT090 


CALL EQUAL!XtPSitNEQUSl 

DO 80 L=ltNEOUS 


80 U=U+ABS<PSI<Ll l•WATE<Ll 

90 IFtU.GE.UOlGOTOlOO 


UO=U 
GOT0120 

hiU 	LOOP =LOOP+l 

lf(LOOP.GT.2iGOT0110 

X! I l=X! I l-2.U*ULLX< J) 

GOT055 


110 X! I )=X! I l+DLLX( I l 

NFAIL=NFAIL+l 


120 CONTINUE 

C 	 DEFINE STEP LENGTH FOR PATTERN MOV~ AFTER EXPLORATORY MOVES 

L>O 	 1 2 5 I = 1 , N 
125 	XINCIIl=Xtil-XO!Il 


lF!NFAIL·LTeNlGOT0150 

Nll=O 

DO 140 I= 1 tN 

IFIABS!OLLX!l)i.LT.ABS(TESTCI)JJGOT0130 

DLLX< I >=DLLX( I l/2.0 

GOT0140 


130 NlL=NlL+l 

140 CONTINUE 


c 	 IF ALL STEP LENGTHS DLLX(!I.LT•TEST(IJ CONVERGENCE IS ASSUMED 
IF!NIL.EQ.NlRETURN 
GOT040 

c MAKE PATTERN ~OVE 
c XlNC!Il FROM LAST LINEARlZATION IS CARRI~U THROUbH COMMON /A5/ 

150 IF(J.EQ.OlHURRY=l.O 
IFIJeNE.UIHURRY=PL**J 
LlO lou l=ltN 

l6C X( I l=X! I l+XINC( I >*HURRY 



102 

IFCNCONS.EQ.O)GOT0180 

CALL CONSTCX,NCONS,PHI) 

DO 170 I=l,NCONS 


170 	 IFCPHICil.LT.O.OlGOT0210 
180 	CALL UREAL(X,U~ 


IFCNEQUSeEO.o>GOT0200 

CALL EQUALCXtPSltNEQU~) 

UO 190 I::l,NEQU5 


190 U=U+ABSCPSICill*WATECJ) 

200 IFCUeGT.UO)GOT0210 


UO=U 

C 	 ACCELERATE THE STEP AFTER A SUCCESSFUL PATTERN MOVE 

J=J+l 
GOT0150 

C HETURN ·ro LAST GOOD POINT 
2lu UO 220 I=ltN 
220 XCI>=X(!l-XINCCil*HURRY 

C 	 IF J=O AT THIS STAGEt THEN EVEN THE SMALLEST PATTERN MOVE HAS 
C 	 FAILED AND ANOTHER EXPLORATORY MOVE MUST BE ATTEMPTED 

IFCJeGTeOlGOT0227 
KUUNT=KOUNT+l 
IFCIPRINT.EQ.O}GOT0225 
KOWNT=KOUNT+NCY 
lfCKOWNTeEO.IPRINT)WRITE(6t4l 
IFCCKOUNT/IPRINTl*IPRINTeNE.KOUNTIGOT0225 
c~.LL uREt1LC x,uu, 
WRITE(6,5lKOUNTtUU,(X(Il,I=l•~l 

225 IFCKOUNTeGT.MAXM)GOT0230 
GOT040 

227 J=O 
GOT0150 

230 WRITEC6tllMAXM 
KO=l 

1 FORMATC1H-,56HTHE MAXIMUM NUMHER OF MOVES PERMITTED IN ASERCH IMA 
lXM =,J6,19H> HAS BEEN EXCEEDED/) 


4 FORMATC1H-,12XtlHUt25Xt26HlNDEPENDENT VARIABLES X(Ilffl 

5 FORMATC1HO,I3,2X,5El6•8/(21X,4El6•8J) 


RETURN 

END 


SUBROUTINE APPROXCX,UtNtDELXtSTEPtiESTtMtNNtAtBtCtWORKA,XSTRT,RMAX 
l,RMIN,PHI,PSI,NCONS,NEOUStUART,DSTAR,NTERMStNTOTER,XXJ 

DIMENSION WORKACl)tXCl),DELXClltSTEP(li,TESTClJ,ACMtll,HCl),((ll, 
lXSTRTCll tRf'IJAXCll ,RMINClJ tPH!(lj ,p~I (}i tU~TARCNTOTt.Rtl) tNTERM~Cl)' 
2XX(l) 

COMMON lNDEX,LEVELtlPRINltiDATAtFtMAXMtGtNSHRINtMSTARTtPDtEPStiCT, 
liFENCE,PL,NSTOP,NSMAXtNSHOT,NTESTtTES,R,RtDUCE,NVIOL,KO,NNDEX 

COMMON /A7/XINCC100),WORK19ClOO) 
COMMON /A8/JELLY(l00) 
WRITE (6,4 l 
NSTEPL=O 
T INY=l.OE-lJ8 
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ULI\S T= l• OE+4u 
DO 22 I=ltNN 

22 XX <I )=tJ.u 
00 2 3 I= l tN 
JELLY(J)=O 
X(ll=XSTRT(ll 
WORK19(l)=XSTRT(I) 

23 XINC(l )=0.0 
IFCNEOUS.EQeOeANDeNCONS•EQ.OlGOT026 

C APPROX REQUIRES THAT ALL PSI(JI bE SATISFIED, BUT IT CAN HANDLE 
C INFEA~l~LE PH+(ll. IF THE USER HAS CHOSEN XSTRT(ll SO AS TO MAKE 
C ALL PSifli=O. , THEN FEASBL IS BYPASSED BECAUSE IT WOULD UPSET THf 
C GOOD VALUES OF PSlti> IN ORDER TO DRIVE ALL PHl(ll FEASieLE 

IFCNEQUS.EQ.O)GOT027 
CALL EOUALfXSTRT,PSI,NEQUSl 
DO 21 I=l,NEOUS 

21 IFCAHS!PSl(ll)eGT•l·E-04lGOT027 
GOT026 

C DEfiNE G AND MAXM FOR SUHROUTINE FEAS~L 
21 G=F 

MAXM=lOO*N 
C CALL SUBR. FEASBL TO TEST WHETHER THE INPUT STARTING VALUES<XSTRJ; 
C ARE FEASIULE OR NOT.IF NOT,FEASBL DETERMINES A FEASIBLE STARTING 
C POINT AND RETURNS IT IN THE ARRAY X(Il. 

CALL FEASBL<X'U'N'XSTRT,RMAXtRMIN,PHI,PSltNCONS,NEQUS,uDUMMY,DSTAR 
1 ,NTEf~MStNTOTER) 

IflKOeNE•l•OReNEQUS.EQ.OlGOT024 
~\'RIT:::(6,76l 

GO TO lUO 
24 IFCIPRINT.GT.O)CALL UREAL(XtUI 

lFCIPRINT.GTe0)WRlTEC6,77lU,(~(Il,I=l,Nl 
c 
C CHECK INPUT VALUES OF STEP(ll~ IF ANY STEPCI) .GT. 10 PERCENT OF 
C THE RANGE THEN REDUCE IT TO .lO*CRMAX(ll-RMlN(Ill 

26 DO 2 5 I= l, N 
RANGE=AbS!RMAX(ll-RMIN(IIJ 
IFlSTEP!IleGT.OelO*RANGEISTEP(li=OelO*RANGE 

25 CONTINUE 
35 CALL LINEAR!XtUOtPHI,PSitA'B'C,OELXtSTEPtMtNN,NtNCONS,NEQUSl 

CALL SIMPLE!XXtDELUtM,NNtAtBtltWORKA) 
IFCKO·EQ.llGOT065 
DO 36 I=ltN 
XINC<ll=XX(2*+-ll-XX(2*li 

36 X!ll=XCll+XINCCll 
CALL Uf~EAL( X,u) 
NSTEPL=NSTEPL+l 
IF(IPRINT.EQ.Q)GOT037 
IFCNSTEPL.EQ.IPRINT)WR1TE(6,70l 
IF!CNSTEPL/lPRINTl*IPRINT.EO•NSTEPLlWRITE(6,7llNSTEPLtUtCX(Il,I=lt 

lN) 
37 lf(NSTEPL.GE.NSMAXl GO TO b2 

C REGULATION OF ALLOWAULE MAXIMUM STEP LENGTH STEP(l) -
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c HALF STtPil~•••lf TH~ LAST INCREMENT WAS FlNIT~(.GT.TINYI bUT 
c LESS THAN 5 P~RCENT OF TrlE ALLOWAdLE STEP(iJ 
c IF THE VARIABLE IS OSCILLATING 
c DOUBLE STEPCI>•••lF THE LAST INCR~MENT WAS .GT.Q.99*THE ALLOWAdLE 
c STEPCii ANO VARIABLE WAS NOT OSCILLATING 
c OSCILLATION •••VALUES OF XCil ARE COMPARED EVERY SECONDCEVEN) 
c ITERATION. IF THEY ARE EQUAL ANU THE LAST IN­
c CREMENT WAS FINITE THEN OSCILLATION M~ST HAV~ 
c OCCURKEL>• SET T11t: FLI\t) JE.LLY ( 1 l =l TO PkEVt.NT Ai-.Y 
c SU~SEQUENT OOUBLlNG OF THE VARlA~LEeCOSClLLATlUN 
c IS ASSUMED TO TAKE PLACE ABOUT THE OPTIMUM) 

IF<<NSTEPL/2l*2•NE.NSTEPLlGOT059 

LESS=O 

!)() 58 I=ltN 

IF<ABSCXINC<I> l.LEeTINY)GOT0~7 


I 	
1F ( A1:3 S ( X ( I l -X S T R T C I ) l • G T • T 1 NY i GO T 0 5 5 

~ 	 SET FLAG JiLLYCil=l FOR THt OSCILLATING VARIABLE 
JI:.LLY(I)=l 
lF(STEPtlleGTeTESTCiliGOT054 
LESS=LESS+l 
GOT057 

54 	STEPCI>=STEP(I}/2.0 

GOT057 


55 	 IF<ABSCXlNC(l)leGTeOe05*STE.PCii1GOT056 

I F ( STEP < I i • G T • TEST ( 1 > ) STEP ( I >=STEP { I l/ 2 • 0 

GOT057 


c DO NOT INCREASE STEPCI) IF VARIABLt HAS OSClLLATtU(JELLY(ll=ll 
56 IF<JELLY(I>.EQ.llGOT057 

c 	 DO NOT INCREASE STEP<Il SO THAT STEPCIJ.GT •• l*CRMAX<Il-RMINCill 
IF<STEPC I) .GT.Oe05*ABS(RMAX( I 1-RMIN( l I I lGOT057 
lf<ABSCXINC( I l) eLT•0•99*STEPC I j lGOT057 
STEP( I l=STEPt I >*2•0 

57 	 XSTRT<I>=X<Il 
58 	 CONTINUE 


lf(LESSeLT.NlGOT062 

IFC(U-ULASTl.GTeOe0)G0T065 

GOTOlOO 


c CHECK FOR STEP SIZE ADJUSTMENT EVERY ITERATION(OSClLLATION CHECKED 
c ONLY ON EVEN NUMBERED ITERATIONS) 

59 DO 	 6 1 I =1 , N 
IF<AbS(XlNC(l)leGT•0•05*STEP(liJGOT060 

!FtAtjS(XlNC( I> l•LTeTlNYlGOT06l 

IF<STEP<Il.GT.TEST(l)jSTEP(ll=STEP!ll/2.0 

GOT061 


60 	 IF<JELLY(ll.EQ.l)GOT06l 

IFCAbSCXINC(ll l.LT•0.99*ST£PtiilGOT06l 

IF<S1EP<Il.GT.0.05*A~SCRMAXCii-RMIN<Illl~OT061 
STEP<Il=STEP<ll*2•0 


61 CONTINUE 

b2 IF<NSTEPL.GE.NSMAXeANDeNCONS•EQ.QJGOT064 


lF<NCONS·EQ.OlGOT067 
c 	 CHECK WHETHER OR NOT THE POINT IS FEASI~LE 

NVIOL=O 
CALL CONSTCXtNCONStPHl) 

http:STEPCIJ.GT
http:PkEVt.NT
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DO 63 I=ltNCONS 
63 IF<PHIIl)eLT·-TlNY)NVlOL=NVIOL+l 

C AN INFEASIBLE POINT IS NOt A CANDIDATE TO BE THE OPTIMUM 
IFINVIOL.EQ.OJGOT067 · 
IFIIPRINT.~Q.O>GOT072 
IFI INSTEPL/lPRINT~*IPKINT.EQ.NSTEPL}WRlT1::(6,78) 

72 IFINSTEPL.GE.NSMAX>GOT064 
GOT03S 

67 IF( (U-ULASTl.GEeUeO)b0T069 
C STORE NEW •BEST' POINT IN ULAST AND WORK19(Il 

ULAST=U 
DO 	 68 1=1 tN 

68 	WORK19(l)=X(l) 
6 9 	 1.)0 51 I =1 , N 


IFU\iJSIXINCil)l.GI::.H.STII~~ CJO TO 35 

51 CONTINUE 


IF( IU-ULAST>.GTeOe0)GOT065 

GOTOlOO 


64 WRITEI6t5> NSMAX 

KO=l 


C PRINT OUT BEST POINT FOUND SO FAR 
65 DO 66 !=ltN 
66 Xll)=WOf~Kl91I> 

luJ CALL ANSWERIUtXtPHI,PSitNtNCUNStNEUUS) 
4 FORMAT11Hlt60HOPJIMIZATION USING METHOD OF SUCCESSIVE LINEAR APPRO 

1 X I :--1A.T I ON I I ) 
5 FORMATC1H-,45HLIMIT ON NO• OF ITERATIONS EXCEEDED, NSMAX = ,15/lX, 

143HTHE BEST POINT FOUND 50 FAR IS LISTED BELOWtl 
70 FORMATClH-,15X,lHU,25X,23HlNDl~~NJ~NT VARIAbLES X//} 
71 FORMATilHUtl4,3X,5El6•8/(24Xt4El6•Hll 
76 FORMAT11H-,49H~UBR· FEA~~L UNAbLt TO FlN~ F~ASibL~ STARTING PTe/~ 
77 FORMAT(lH-,53HFiASIBLE STARTING VALUES FOUND BY FEASBL ARE U 

l~,El6.8,10H AT XCI) =//(1XtE15.8,4El6.8)1 

78 FOI~I'-1AT<30X,31HCHlE ABOVE POINT IS lNFEASIBLE)l 

81 FORI"1ATC1H-,25HFINAL VALUES OF STEP([) =,/(5El6.8)) 


r~ETURN 
END 

SUBROUTINE LlNEARCXtUOtPHTtPSitAtB,CtDELXtSTEPtMtNNtNtNCONStNlQUSl 
DIMENSION X ( 1 ) , DE LX ( 1 l , STEP ( 1 l , PH I ( 1 l , PSI ( 1 ) , A ( tvl tl l , B ( 1 l , C ( 1 l 
COMMON INDEXtLEVEL,IPRINTtlDATAtf,MAXMtGtNSHRINtMSTARTtPD,EPS•ICT, 

liFENCEtPLtNSTOPtNSMAXtNSHQT,NTEST•TEStRtREDUCE,NVIOLtKO,NNDEX 
COMMON /A2/SIGNilUOltPARTtlOOI 

C 	 ZERO ARRAYS TO UE USED 
oo 2 o r=1 , r•i 
tHil=U.O 
DO 20 J=ltNN 
A(l,Jl=O.O 

20 CONTINUE 

DO 22 I=ltNN 


22 ((Il=O.O 
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DO 23 I=ltNCONS 
23 PHI!Jl=O.O 

DO 2t+ I=ltNEQUS 
'2.4 PSI!ll=U•O 

C LlNEIIRIZt THE OPTIMIZATION FUNCTION 
CALL UREAL(X,UO) 
DO 10 I= 1, N 
X!Il=X(ll+DELX(ll 
CALL UREAL(XtUl 
X ( 1 l =X ( 1 >-DELX ( I ) 
tT~~P=!U-UUI/DELX(l) 
C!2*l-ll=CTEMP 
CC2*l l=-CTEMP 

10 CONTINUE 
C SET UP EQUATIONS LIMITING THE: STEP SIZE OF EACH VARlJ\[jLE FOR EACH 
C ITERATION 

DO 3C J=ltN 
JJ=J+f\ 
J2=2'*J 
A!J,..J2-1l=l·o 
A(J,J2)=-l•O 
A!JJ,J2-ll=-l.O 
/\!JJ,J2l=l•O 
B!Jl=ARSCSTEP!Jll 
B!JJ)=ABSCSTEPCJ)) 

30 CONTINUE ' 
t SET UP SLACK VARIAbLES IN STEP LENGTH Ll~IT ~QUATIONS 

t-1A=2*N 
DO 55 J=ltMA 
IJ=J+MA+NCONS 

5 5 A! J , I J ) =.1 • 0 
C LINEARIZE THE INEQUALITY CONSTRAINTS, MULTIPLYING THROUGH BY -1·0 
C IF THE RIGHT HANO SIDE IS NEGATIVE 

IF!NCONS·EQ.OlGOT048 
DO 29 I=l,NCONS 

29 PI\RT (I l =0.0 
CALL CONST!XtNCONStPARTj 
uo 31 I=ltNCONS 
S IC1N! I ) =1. 0 
IF ( -PART ! I i • L T • 0 • 0 l S I GN ( I ) =-1• 0 

31 CONTINUE 
DO 35 I= 1 tN 
X(l)=X(ll+DELXCll 
CALL CONST!XtNCONStPHl) 
XCil=X!Il-DELX(l) 
DO 35 II=ltNCONS 
ATEMP=SIGN( I I )*(PHI C I 1 )-PART( I I) l/DELX( I~ 
N2=2*N+ll 
A(N2t2*I-ll=ATEMP 
A<N2•2*1)=-ATEMP 

35 CONTINUE 
C SET UP RIGHT HANO SIDES OF LINEARIZED INEQUALITY CONSTRAINTS AND 
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C ADD SLACK VARIABL~S 
DO 36 I=l,NCONS 
12=2-»N+l 
A(I2,I2l=-SIGN(Il 
BCI2l=-PART<ll*SIGN(l~ 

36 CONTINUE 
C LINEARIZE THE EQUALITY CONSTRAlNTSt MULTIPLYING THROUGH BY -l·C 
C IF THE RIGHT HAND SIDE IS NEGATIVE 

48 IF!NEQuS.EQ.O)GOT052 
UO 47 I=ltNE.C;>US 

it7 PART!ll=O.U 
CALL EUUAL(X,PARTtNEQUS' 
DO 49 I=l,NEQUS 
s I G.N < I l =1. o 
IF<-PART(Jl.LTeOeOlSIGNCl)c-1•0 

lt9 CONTINUE 
DO 50 I= 1, N 
XCil=Xtll+UELX(l) 
CALL lQUAL(X,PSltNEQUS). 
X!ll=X<I>-DELX(Il 
00 50 Il=l•NEQUS 
~o\TEMP=SIGN( I I l*CPSI (I 1•-PARTt I I) )J!.JELX( I) 
Il2=2*N+NCONS+Il 
A!II2t2*l-l)=ATEMP 

so ~6~ii~B~I>=-ATE~P 
C. St.T UP RIGHT tii\NU Slt.)t:.S OF LlNt:ARlZt.D EWUALITY CONSTRAINT;, 

DO 51 I=ltNEQUS 
II2=2*N+NCONS+I 
U ( 1 I 2 l =-PART (I ) *5 I GN ( I) 

51 CONTINUE 
52 RETURN 

END 

SUBROUTINE FEASBL<XtUtNtXSTRTtRMAXtRMIN,PHitPSltNCONStNEQUStUART• 
lDSTARtNTERMS,NTOTERl 

DIMENSION X(lltXSTRTtl)tRMAX<li,RMIN<l',PHI(lJ tPSI(ll,DSTAR!NTOTER 
1 tl l tNTEI~MS( 1 l 

COMMON lNDEXtLEVELtlPRlNTtlD~TAtftMAXMtGtNSHRINtMSTART,PDtEPStlCT, 
llfENCL,PltNSTOPtNSMAXtNSHOTtNT~ST,TEStRtREDUCEtNVlOL•KOtNNUEX 

COMMON /A5/STEPP(l00l 
C THIS SUBROUTINE USES SEEK3 TO DRIVE ALL PHI1t> FEASIBLE AND THEN 
C REDUCES THE PSI<IlS BY MINIMIZING SIGMA(PSitJ)l SUBJECT TO THE 
C CONDITION THAT ALL PHl(ll REMAIN FEASIBLEl.GE.O.) 

NNDEX=INDEX 
KUT=O 
DO 9 I=ltN 

9 X(Il=XSTRT<Il 
lFCNCONS•EQ.OlGOT013 
CALL CONST!XtNCONStPHil 
DO 10 l'=ltNCONS 
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IF<PHl(ll.LT.O.O)GOTOll 
10 CONTINUE 

GOT013 
C IF ANY PHICI)aLT.u. CALL SEEK3 TO URIVE THEM FEASI~LE 

11 CALL SEEK3(X,UtNtXSTRTtRMAX,RMIN,PHltPSI,NCONS,NEQUStUART,DSTARtNT 
lERM~)tNTOTER> 

C 
IF<NVIOL•EWeU)GOTOl3
IF Si:~f.K3 COULD NOT GET /\LL PHilljeGE•O• THEN SUclR.FEASBL CANNOT 

C ObTAIN A FEASIBLE POINT 
KO=l 
GOT031 

C 
13 IF<NEUUSeEQ.O)GOT031 

t·1INiiv1IZE SIGMA<PS!(l)i KEEPIN<i ALL PHI(Ii.GE.o. 
C NOTE ••• THE FRACTION OF THE RANGE USED AS STEP SIZE SHOULD NOT 
C EXCEEU 5 PERCENT. IF THE USER IS INTERESTED IN A VERY FEASIBLE 
C POINT<IE•/\LL PSl(llS VERY Siv!ALLII-f£ CAN GIVE (FI A VERY St<'lALL VALUE 

Pt::RCNT=Oe05 
IF<ABS(FlaLT.0.05lPERCNT=F 
DO 14 I= 1 , ~~ 

14 STl:.PP (I J ==I·'UKNT* CI~I\1AX CI> -f-<M IN~ 1)} 
C INITIALIZE THE SUf-1 OF THE PS!(l)S 

CALL SUMPSI(X,PSl•NEQUS•SUMOl 
15 NFAIL=O 

DO 2 5 I= 1, N 
XC I >=XI I l+::.>TEPPI I l 
CALL CONSTCX,NCONS,PHil 
DO 17 J=l,NCONS 

C IGNORE A MOVE WHICH MAKES ANY PHICIJ.LT.o.o 
IFCPHICJl.LT.O.O)GOT019 

17 CONTINUE 
CALL SUMPSl(X,PSitNEUUStSUMlJ 
IFCSUM1.GE.SUMO)GOT019 
SUf'-10= SlJi'.·ll 
GOT025 

19 X( I >=X( I l-Z.U*STEPP( I I 
CALL CO~ST(X,NCONS,PHI) 
DO 21 L=l,NCONS 
IF!PHICLleLT.OeO)GOT023 

21 CONTINUE 
CALL SUMPSlCXtPSitNEQUStSUM21 
IF<SUM2.GE.SUMO)GOT023 
SUMO=SUI\12 
GOT025 

23 X(I l =X ( 1 ) +STEPP C I ) 
NFA.IL=NFAIL+l 

25 CONTINUE 
IFCNFAIL•EQ.NlGOT027 
GOT015 

C REDUCE STEPPCll BY A fACTOR OF 4.0 UP TO 4 TIMES• ThiS MEANS STEPP 
C REDUCES TO LES~ THAN eUOO~*CRMAX<II-RMlNCIIi, OR IF FeLT.0.05 
C THEN MINIMUM STEPP(J):(f/256l*CRMAXCll-RMlNCI)). THEREFORr THl 
C USEr~ MAY DRIVE THE PSI (I I VI\LUES AS SI"'ALL. AS HE. WISHES BY ENTERING 
C A VERY SMALL VALUE OF F AT LEVEL=l 

27 KUT=KUT+l 
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IF(KUT.GT.4l~OT03l 
DO 29 I= 1, N 


29 STEPPCil=STEPPCll/4.0 

GOT015 


31 CALL UREAL(XtUl 

C ZtRO STEPPtil SINCE ULOCK /A5/ 15 USED tiY CALLING MtTHODS 


DO 33 I= 1 ,N 

33 	 STEPP<Il=OeO 


RETURN 

END 


SUHROUTINE SUMPSIIXtPSitNEOUS•SUMl 

DIMENSION Xlll,PSI(J) 

CALL EQUAL(X,PSI.NEQUS) 

SUt-1=0 • 0 
DO 1 I=ltNEQUS 

SUM=SUM + ABSCPSlll)) 


l 	 CONTINUE 

RE:.TURN 

END 


SUBROUTINE RANDOM CXtUtNtRMAXtRMIN,z,uu,NRETtNCONStPHil 
DIMENSION XClltRMAXtl)tRMlN(l~•ZtNRET•1ltUU(lJ,pHI(ll 
COMMON lNDEXtLEVELtlPRlNTtlDATAtFtMAXMtGtNSHRlNtMSTARTtPDtEPStlCT, 
liFENCEtPltNSTOPtNS~iAXtNSHOTtNTESTtTEStOtREUUCEtNVIOLtKOtNNDEX 

COMMON/A1/AAtlOOltCCClOUjtWORK3(1QQI,TESTl(lOOl 

COMMON /A5/Ril00) 


c 

C OPTIMIZATION USING DICKINSON$ RANDOM SEARCH STRATEGY 

c 


WRITE (6t200) 
C RANDOM DOES NOT HANDLE INEQUALITY CONSTRAINTS AND THEREFOf:E NEQUS 
C IS NOT INPUT. SET NEQUS=O TO AVOID GETTING AN INOEFlNIT~ MtSSAGl 

NEOUS=O 

NCYCLE=l 

DO 18 I=ltN 

(((1)=0. 

AA<Il=O. 

TESTl(I)=O• 

X<I 	)=0.0 

18 	 CONTINUE 

DO 2 2 I= 1• N 

CCCil=RMAX(Il 

AACI>=RMINtll 


2? TESTlCI)=F*ARSCCClil-AACill 
C NUMR IS THE NUMBER OF FEASIBLE RANDOM POINTS EVALUATED EACH CYCL~ 

NUMR=NRET*NSHRIN 
C THE NUMBER OF FEASibLE RANDOM POINTS RETAINED EACH CYCLE IS 
C NRET=NUMR/NSHRIN AND NRET ARRIVES THROUGrl TH~ ARGUMENT LIST 
C GENERATE NRET FEASIBLE RANDOM POINTS 
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C MSTART IS THE STARTING VALUE FOR GENERATING RANDOM NUMBERS· 
C AT LEVEL=U MSTART=l28 IS SET IN OPTIPAC. AT LtVEL=l MSTART IS DATA 

MM=~1START 
DO 21 J=l,NRET 
L=l 

50 CONTINUE 
CALL FRANDN(RtNtMM) 
MM=u 
DO 20 I= 1 tN 

20 X( I l=~\A( I l+R( I )*(CC( I i-AAC 1 J) 

IF!NCONS·EOe0)GOT052 
CALL CONST(X,NCONStPHll 
NVIOL.=O 
DO 42 I=l,NCONS 
IfCPHICil.GE.OeO)GOT042 
NVlOL=NVlOL.+1 

42 CONTINUE 
IFtNVIOL·EOeO)GOT052 
L=L+1 
IF (LeGT•NSMAXl GO TO 80 
GO TO 50 

52 CALL UREAL(X,UTEMP) 
DO 43 I= 1, N 

43 ZCJ,I>=XfiJ 
UU(Jl=UTEMP 

21 CONTINUE 
C FIND LARGEST VALUE OF UU(Jl 

LARGE=l 
DO 10 J=2tNRET 
IFfUU!J>.LEeUU(LARGEliGOTOlO 
LARGE=J 

10 CONTINUE 
t PLACE LARGEST VALUE OF UUCJj AT UU(ll AND INTERCHANGE l(J,Ii WITH 
C Z!ltl) 

Ult:MP=UU<LARGEl 
UU ( LI\RGE) =UU ( 1) 
UU(ll=UTEMP 
DO 11 I= 1 tN 
ZTEMP=Z<LARGE,I) 
Z<LARGEt!l=ZCltll 
Z(l,Il=ZTEMP 

11 CONTINUE 
C GENERATE NUMR MORE FEASIBL~ POINTS AND IF ANY HAS UU(Jl.LTeUU(ll 
C THEN INTERCHANGE THEM 

KK=l 
60 DO 12 K=ltNUMR 

L=l 
53 CONTINUE 

CALL FRANDN<R,N,Q) 
DO 13 I= 1, N 

13 XC I l =AA C1 l +R t I)* ( CC ( 11-AA (I i l 
IFtNCONS•EQ.O)GOT055 
CALL CONSTtXtNCONS,PHl) 
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NVIOL=O 
DO 56 I=l,NCONS 
IFCPHICil.GE.O.OlGOT056 
NVIOL=NVIOL+l 

56 CONTINUE 
IFCNVlOLeLTel)GOT055 
L=L+1 
IF (l.GTeNSMAX) (0 TO 80 
GO TO 53 

55 CALL UREAL(XtUXTRA> 
IF CUXTRA.GE.UU(l)) GO TO 12 
UlJ(li=UXTRA 
DO 14 J=ltN 

14 Z < 1, I) =X ( I l 
C PUT NEW LARGEST UUCJ) AT UUCl) 

DO 30 J=2tNRET 
IF CUU(Jl.LE.UUCl)) GO TO 30 
UTEMP=UU(Jl 
UU(Jl=UUC1l 
UU(ll=UTEMP 
DO 31 I= 1 tN 
XTEMP=Z(J,l) 
Z ( J, I ) =Z ( 1 , I l 

31 Z<ltll=XTEMP 
30 CONTINUE 
12 CONTINUE 

C SELECT NEW AA!Il AND CC(I> 
DO 15 I=ltN 
AA< I l=ZI ltl) 
CCC I >=Z.< ld l 
DO 16 J=2,NRET 
I F <Z ( J , I > • G T • AA ( 1 l ) GO T 0 l 1 
AA( I >=ZC.Jtl l 
GO TO 16 

17 IF (Z ( J, I l • LT. CC ( I I ) GO TO 16 
CCCII=Z(J,I} 

16 CONTINUE 
15 CONTINUE 

IF (KK-IPRINTl 27t28t62 
27 KK=KK+l 

GOT062 
28 IF<NCYCLE.EQ.IPRINT>WRITEC6,91 

WRITEC6t8lNCYCLE,UU<l' 
L2=0 

29 Ll=L2+1 
L2=Ll+4 
IFCL2.GTeNlL2=N 
WRITEC6t4l(CCCllti=LltL2) 
WRITE(6,2lCAACIItl=LltL2l 
IFCL2.LTeNlGOT029 
KK=l 

62 IF<NCYCLE.GE.MAXM>GOT06l 
NCYCLE=NCYCLE+l 
DO 63 I= 1 ,N 
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IFCABSCCCC I l-AAC I)) aGT.ARS<TfSTl (I j) )G0T060 
63 CONTINUE 

C SELECT SMALLEST UU(J) 
61 JMIN=2 

UO 19 J=3tNRET 
lF(UU(J)e6leUU(JMIN) )60T019 
.JMIN=J 

19 CONTINUE 
DO 5'+ I= 1 ,N 

54 X (I >=ZCJMIN.I) 
lf(NCYCLE.GEaM~X~)GOTOlOO 

GOT081 
80 WRITE(6,3)NSMAX 

WRITE(6t5> 
KO=l 
RETURN 

100 	WRITE C6t6) MAXM 
KO=l 

81 CALL ANSWERCUtXtPHI,PSltN,NCONStNEQUS) 
2 FORMATC6X,5El6.8) 
3 FURMATtlHOt40HNO FEASIBLE POlNT FOUND AFTE~ GENERATlNG,I6,16H RAN 

lDOM NUMBERS) 
4 FORMAT(lHOt5X,5El6e8) 
5 FORMATClX t54HTRY SHRINKING T~E RANGE OR INCREASING NSMAX AT LEVEL 
l=l/) 

6 FORMAT(//34H PROCESS FAILED TO CONVERGE AFTER ti4,2Xt6HCYCLESI 
8 FORMATClHOtl3,3H (,El5a8,1H)} 
9 FORMATC6H-CYCLEt5Xt6HCUMAXl,22Xt2bHUPPER/LOWER BOUNDS ON XC Il//l 

2UO 	 FORMATC1HltS8HOPTIMIZATlON USING UlCKINSONS RANUOM SEARCH METHOU 
lRANDOM//) 

RETURN 
END 

SUBROUTINE FRANDNCA,N,Ml 
DIMENSION ACll 

C THIS RANDOM NUMBER GENERATOR .IS A MODIFIED IBM SUUROUTINE 
C B IS A MACHINE-UEPENDENT CONSTANT AND B=2•0**(l/2+1)+3•0 
C WHERE I = NUMB~R OF BITS IN AN INTEGER WORD (1=47 FOR CDCb400J 

R=262147.o 
X=M 
X=X/0.8719467 

20 	 IF(XeNE.O.OlY=AMOD(A85(X)t3al8967l 
DO 10 K=l,N 
DO 11 J=lt2 

11 Y=AMOD(B*Y,l.Ol 
A(K)=Y 

C AVOID Y=U. AND Y=l• TO PREVENT DIVIDING INTO ZERO 
10 	 IF(y.EQ.o.o.oR.YeEO.l•OJY=O·l82818285 

RETURN 
E'ND 

http:Y=AMOD(B*Y,l.Ol
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SUBROUTINE GEOMCNTOTERtNtNCONS,NTERMS,EX,CONSTtAAtBBtCtDSTAR,RMAX, 
lRMINtXtXSTRT> 
OIMEN~ION NTERMS<lJ,EXlNTOTERtlltCON~Ttl),ftA(NTOTERtli,BBCNTOTERtl 

lltC(NTOTERtl),USTAR<NTOTERtlltRMAXCl>tRMIN(ll,x(lJ tXSTRT(ll 
COMMON INDEXtLEVEL,JPRINTtlDATAtFtMAXMtGtNSHRIN,~START,PDtEPStlCT, 

liFENCEtPltNSlOPtNSMAXtNSHOT,NTESTtTES,R,REDUCE,NVIOL,KO,NNUEX 
COMMON /A3/CKCl00),GAM(l00),T(lOO) 
COMMON /A5/DC100l
COMMON /A7/SUM(lUO),USE(lOOI 
COMMON /A8/NUSE(100) 

c 
c THE GEOMETRIC PROGRAMMlNu METHOU OF OPTIMIZATION 
c 
c THE PROGRAM IS DIVIDED INTO FIVE SECTIONS AS FOLLOWS•<NOTATION AS 
c IN MATHEMATICAL DESCRIPTION GIVEN IN LEVEL 1 DOCUMENTATION). 
c 
c 1. CALCULATION OF THE DELTA SUB 1 SUPER J ARRAY 
c 2. RELAXATION METHOD TO FIND FEASIBLE STARTING VALUES OF TCII 
c 3. CALCULATION OF THE K SUB Q VECTOR 
c 4. MAXIMIZATION OF DUAL BY DIRECT S~ARCH tSEEKlJ 
c 5. CONVERSION FROM DUAL BACK TO PRIMAL PROBLEM 
c 
c SECTION Cll 
c 
c CALCULATION OF THE SET OF NORMAL AND NULL VECTORS = DELTA SUd I 
c SUPER Je THESE ARE DERIVEU FROM THE INPUT EXPONENT ARRAY <EXI• 
c 
c NOTEeeeKO=O INITIALLY• KO=l lF A FAILURE OCCURS ANYWHERE IN GEOM· 

NT=NCONS+l 

NM=NTOTER-N 

Nl=N+l 


c 
c TRANSPOSE THE ROWS ANO COLUMNS OF THE EXPONENT ARRAY <EXIINTO (AA) 
c 

10 DO 11 I=l,NTOTER 
()0 11 J=ltN 

ll l\A(J,I >=EX< I,J) 
c 
c GAUSS REDUCE Tt-IE t-1ATR I X CAA! BY ROWS KEEP INS TRACK OF COLI W,N INTER 
c -CHANGES• THIS CHANGES THE <AA> MATRIX INTO A UNIT t-'lATRIX IN THE 
c N BY N POSITIONS AND MODIFIES ELEMENTS IN THE N BY <Nl TO NTOTERI 
c POSITIONS.THESE OPERATIONS ARE PERFORMED WITHIN SUBR. GAJON. 
c NOTE···ARRAY NUSE IS COMMONED BETWEEN GEOM AND GAJON• 
c 

CALL GAJONCAAtNTOTER,N) 
IF(KOeNE.o>RETURN 

c 
c FORM THE MATRIX CC> ••• IN THE N BY NM POSITIONS OF ((I PLACE THE 
c NEGATIVES OF THE N BY CN+liTOCNTOTERi ELEME~TS OF THE REDUCED IAA) 
c SET EQUAL TO 1 ALL CC) ELEMENTS FOR WHICH I=J+N. SET REMAINING CCI 
c ELEMENTS EQUAL TO ZERO. 
c 

DO 12 I= 1 'N 

DO 12 J=NltNTOTER 

JJ=J-N 
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12 	 C(I,JJl=-AA!ItJl 

DO 13 I=NltNTOTER 

DO 13 J=l,NM 

JJ=J+N 

IF!I.EQ.JJ) GO TO 14 

C(I,J)=O.O 
GO TO 13 


14 C(I,Jl=l•O 

13 CONTINUE 


c 
C FOR EVERY COLUMN INTERCHANGE (STORED IN NUSEl MADE I~ THE GAUSS 
C REDUCTION MAKE T~E CORRESPONDING ROW INTERCHANGE IN THE MATRIX fC) 
C CALL THE RESULTI~G MATRIX tBal. 
c 

DO 15 I=l,NTOTER 

DO 15 J=ltNM 

NISE=NUSEfl) 


15 	 AB(NISEtJl=C<I,Jl 

DO 16 I=1tNM 

NUSE(J):O 

RMJN(Il=O.O 

RMAXfll=O.O 


16 	 SUM ( I ) =0 • 0 
c 
C SUM THE FIRST NTERMS(ll ELEMENTS OF EVERY COLUMN OF !BBl. 
c 

NTER=NTERMSfl) 

DO 17 I=ltNM 

DO 17 J=ltNTER 


17 	 SUM(ll=SUM(I)+BB(J,I) 

C FIND THE FIRST COLUMN OF CBBJ HAVING THE SUM OF ITS FIRST ' 
C NTERMSfl) ELEMENTS = SUM NOT EQUAL TO ZERO· DlVIU~ EACH ELEMENT 
C IN THAT COLUMN BY SUM AND STORE THE RESULT IN DSTAR(J,1l. THIS IS 
C THE DELTA SUB I SUPER 0 VECTOR. 
c 

I =0 
18 	 I=I+l 


IF<I·GT·NMJ GO TO 19 

IffABS!SUM(I)).GTeleOE-81 GO TO 20 

GO TO 18 


C ARRAY (~el MUST BE SINGULAR. 
19 	 WRITEf6t60U 


KO:l 

RETURN 


20 	 NUSE( 1)=1 

DO 21 J=ltNTOTER 


21 DSTARCJt1l=BB(J,Il/SUM(ll 
c 
C COMPLETE THE DSTAR ARRAY--DSTAR(J,Jll=BB(J~Il-SUM( Il*DSTAR(J,ll 
c 

I I= 1 

DO 23 I=ltNM 

IF<NUSE(l)eNE.O> GO TO 23 


http:IF!I.EQ.JJ


1 1 5 

II=tl+l 

DO 2? J=l,NTOTER 


22 DSTARIJtll)=BB<Jtl)-SUM(l)*DSTAR(J,l) 

23 CONTINUE 


c 
c 

c SECTION f2l 

c 
c CALCULATION OF INITIAL VALUES OF THE THE CUAL VARIABLES T USING A 
c RELAXATION TECHNIQUE. 
c THE T VALUES ARE FEASIBLE IF fOR l=l,NTOTER THE FOLLOWING EuNS 
c HOLD••• o.o eLE• DSTARiltli+DSTAR(I,JJ*T<J' J=2tNM• (TiiESE SUMS 
c REPRESENT TH~ DELTA SUS I VECTOR IN THE MATHEMATICAL DESCRIPTIONl. 
c 

KOUNT=O 
LIMIT=300*NM 

c NOTE•••LlMIT DOES NOT STOP THE PROGRAM - SEE COMMENT BELOW. 
DO 97 I=ltNTOTER 

97 USEII)=OeO 
c START WITH ALL DUAL VARIABLES T EQUAL TO ZERO 

DO 98 I=ltNM 
98 T<Il=o.o 

c CALCULATE THE SORT OF THE SUM OF THE SQUARES OF ELEMENTS 2 TO NM 
c IN EACH ROW OF DSTAReSTORE THE RESULTS IN ARRAY (USE). 

DO 800 I=l,NTOTER 
no 805 J=2·N~ 


8v5 USE<ll=USE(l)+DSTAR(J,J)**2 

suo USECil=SQRTIABS<USE(IJlJ 


c 
c NORMALIZE THE (DSTARl AkRAY bY DIVIUING ALL ELEMENTS IN A ROW BY 
c THE ROWS VALUE OF (USE). IF AN ELEMENT IS ZERO!LESS THAN l.E-08l 
c LEAVE IT ZERO.IF A FIRST COLUMN ELEMENT <DSTARCI,l>> IS ZERO,FORCE 
c IT NEGATIVE BY ADDING -l·E-06 .STORE THE MODIFIED COSTAR> IN (8~>. 
c 

DO 801 I=l,NTOTER 

DO 801 J=ltNM 


c 	 TEST AGAINST l.E-08 RATHER TttAN 0•0 TO ALL0W FOR ROUNUING LRROR• 
IFCUSE!J).GT.l.OE-08lGOT0802 
RBIItJJ=DSTARCitJ) 
GOT0801 

~02 IF!JeEO.l)GOTOln3 

GOT0104 


1U3 Bb(J,J>=CDSTAR(l,JJ-l•OE-061/USECl I 

GOT0801 


lU4 BU(J,J)=(DSTARCI,J))/USEClj 

8ul CONTINUE 

111 KOUNT=KOUNT+l . 


IFCKOUNTeLT.LIMlT)GOTOiC~ 
C IF NO FEASIBLE STARTING VALUES FOR T HAVE bEEN FOUND AFTER (LIMITl 
C STEPS OF RELAXATION PROCEDURE, GO DIRECTLY TO SUBReSEEKl WHICH IS 
C CAPABLE OF FINDING ITS OWN STARTING VALUES~ 

GO TO 	 203 
c 
C 	 CALCULATE THE DELTA SU~ l VECTOR, STORING !T IN <USEI. 



116 

c 
lv5 	DO 106 I=l,NTOTER 


USE< I >=BB< I ,1 l 

DO 106 J=2tNM 

USE< I >=USE( I l+RB< [ ,Jl*TCJ) 


106 	CONTINUE 
c 
C FIND THE MOST NEGATIVE ELEMENT OF <USE), CALL IT SN AND CALL ITS 
C SUBSCRIPT IQ. WHEN NO NlGATIVE ELlMLNTS ARE FOUND WE HAVE A SLT OF 
C FEASibLE T VARIAbLES. 
c 

SN=CJ.O 

DO 109 I=l,NTOTER 

IF(USE(IleGE.O~OlGOT0109 
IFCUSECI)eLTeSN)GOT0108 
GOT0109 

lu8 IQ=I 
SN=USE(I} 

109 CONTINUE 
C SN MAY CONVERGE TO ZERO VERY SLOWLYtTHEREFORE TEST AGAINST -l.E-08 

IF(~N.LT.-l.OE-08lGOTOllO 
GOT0203 

c 
c MODIFY THE T VALUES AND REPEAT THt ABOVE PROCEDURE· 
c 

110 DO 107 J=2tNM 
T<Jl=TCJl-BB(IQ,J)*SN 

107 CONTINUE 
. GOH)l 11 

c 
c 

c SECTION (3) 


c 

c CALCULATION OF THE K SUB U VECTOR (STORED IN <CK}). 

c 

203 	 DO 200 IQ=ltNM 

CKCIQl=DSTAR(l,IQl*ALOG<CONST(l)) 

DO 201 II=2tNTOTER 


201 	 CK(lQl=CKIIQl+DSTARCII,IQ>*ALOG(CONST<II)) 
2li0 CK(lQl=EXP(CK(lQ)) 

c 
c 
c SECT I ON ( 4 l 
c 
c MAXIMIZE THE DUAL FUNCTION SN BY DIRECT SEARCH - SUBR SEEKl THE 
c SEARCH STOPS WHEN NO INCREASE IN SN IS OBTAINED BY CHANGING ANY 
c T VALUE bY +0-- F*G*RANGE (SlE LEVEL 1 DOCUMENTATION)• 
c USE T VALUES FROM RELAXATION AS STARTING VALUES FOR SEEKl AND 
c SET RANGES OF T<IJ VALUES TO ESTAdLISH INITIAL STEP SIZE IN SEEKl 

2li7 	 DO 811 I=2tNM 
RMIN(Il=T(ll-0.50*AHS(T(Il~ 
RMAXCil=T<Il+0.5U*ABS<TCl>l 

811 XSTRT ( Il =T (l) 
c X MUST BE FIRST ARGUMENT FOR SEEKl TO PRESERV~ VARIABLE DIMENSION 

CALL SEEKl(X,U•N•XSTRTtRMAX,RMlNtPHitPSltNCONStNEQUStSNtDSTAR,NTl 
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lRMS,NTOTER) 

IFCKO.EQ.O>GOT0812 

WRITEC6t615) 

GOT09999 


812 DUAL=-SN 
DO 813 I=2tNM 

813 T(I>=XCI) 
c 
c 
c SECTION <5> 
c 
c CdNVERT FROM THE DUAL PRO~LE~ dACK TO THE PRIMAL CINPUTJ PRObLEM• 
c 
c FORM THE RIGHT HAND SIDE OF THE SET OF LlkEAR EQNS IN THE UNKNOWNS 
c LOGCXCI)). DUAL• CONSTCIJ, Oli~, AND GAM<I' ARE ALL KNOWN AT THIS 
c STAGE. STORE THE R.H.S• IN A-(J,Nl> FOR TRANSFER TO SUBR GELIM. 
c 

NTEMP2=NTERMS(l) 
DO 700 I=l,NTEMP2 

700 	AAll•Nli=ALOGCDCI)*AbSlDUALi/CONSTCI>J 

LYMl=l 

LYM2=NTERMSC1) 

DO 702 IQ=ltNCONS 

LYMl=LYMl+NTERMSCIQ) 

IQl=IQ+l 

LYM2=LYM2+NTERMSCIQ1) 

DO 702 I=LYMltLYM2 

AAlltNl>=ALOGCDCl)/(CONSTCIJ*GAMCIQJ)J 


702 CONTINUE 
c 
C COEFFICIENTS OF THE UNKNOWN VARIABLES LOGCXCIJJ ARE SIMPLY THE 
C ELEMENTS OF THE INPUT EXPONENT ARRAY <EX). 
c 

DO 703 I=ltNTOTER 
IJO 703 J=l,N 

7v3 AACltJl=EX(l,J) 
c 
C CALL SUBR GELIM TO SOLVE THE SET OF EQNS BY GAUSS ELIMINATION. 
C NOTE••• THE LOGCX} VALUES ARE RETURNED FRO~ GELIM IN AACitNl>. 
c 

CALL GELIMCNTOTERtNtAA) 
IF(K0eNEeO>GOT09999 

c 
C CALCULATE THE ·PRIMAL OPTlMlZATION FUNCTION FROM THE LOG(XJ VALUES• 
c 

DO 704 I=ltN 
704 USE< I )=AA< I ,Nl) 

SN=O.O 
NHI=NTERMSll) 
DO 705 I=l,NHI 
PP=O.O 
DO 706 J=ltN 

706 PP=PP+tXCitJ)*USE(J) 
7v5 SN=SN+CONST(l)*EXP<PPI 

PRIMAL=SN 
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C NOTE • •• THE VALUf:S OF PRIMAL AND DUAL SIIOULO AGGRE E TO SEVERAL 

C DECIMAL PLACES AT THE GLORAL OPTI~U~ 


c 
C CONVERT LOG(X) VALUES TO X VALUES• 
c 

DO 707 I=1tN 
7G7 XII I=EXPCUSE(l}l 

c 
c CALCULATE THE VALUES OF THE ORIGINAL(PRIMAL) CONSTRAINT EQUATIONS 
c ALL OF \>JH I CH SHOULD BE •LEel•O {PLACE RESULTS IN WORKING ARRAY 
c SUM(l00) 
c 

Ll=NTERMS(l>+l · 

00 710 I=2tNT 

L2=Ll+NTERMS(+J-l 

SUM ( I ) =G • 0 

DO 709 K=LltL2 

TERM=CONST(K) 

DO 708 J=l•N 


708 TERM=TERM*X(J)**EX(K,Jl 

7U9 SUM(l)=SUM<Il+TERM 


Ll=L2+1 

710 CONTINUE 


c 
c PRINT OUT RESULTS 
c 

WRITEC6t610) 

WRITEC6t6ll>PRIMAL 

WRITE(6,612)0UAL 

WRifl(6t613)(ltX(l l,I=ltNI 

WRITE(6,614) 

WRITE(6t618J <I,SUM<I+l),J=ltNCONS) 

WRITEC6t616) 

WI~ IT E ( 6, 61 7 ) 


601 FORt--1/\T(lH-,??H;\RRAY 03RJ IS SINGl!Lll.fd 
610 FORMAT(1Hlt24Xt3UHOPTIMUM SOLUTION FOUND bY GEOM/25Xt30H---------­

l--------------------l' 
611 FORMAT(l9Xtl5HMIN1MUM U(XJ =,El6.8,9H (PRIMAL'' 
612 FORMAT(l9X,l5HMAXlMUM U(TJ =,El6.8,7H <DUALl;;J 
613 FORMAT(27Xt2HX(tl2t3H' =tEl6e81 
614 FORMAT(IH-,24H INEQUALITY CONSTRAINTS/1Xt24H<FEASIBLE PHI( I l.LE.l 

1. 0 l l 
615 FORMAT(lH-,47HSUBR·SEEKl UNABLE TO MAXIMIZ~ THE DUAL FUNCTION/> 
616 FORMAT<lH-t73HNOTE ••• THf VALUES Of THE PRIMAL AND DUAL OPTIMIZATIO 

lN FUNCTIONS ESTABLISH/1Xt73HUPPER AND LOWER BOUNDS RESPECTIVELY ON 
2 THE GLOBAL 0-TIMUM. IF THEY DO NOTI 

617 FORMAT(1Xt68HAGREE TO SEVERAL UECIMAL P~ACES, TRY REUUCING F AND G 
1 TO IMPROVE THE/1Xt21HMAX1MIZATION IN SELKl/J 

618 FORMAT(25Xt4HPHI<d2t3Hl =tEl6e8l 
G999 RFT!IRN 

fND 

http:SINGl!Lll.fd


119 

SUBROUTINE GAJON<AA,NTOTER,NI 

DIMENSION AA(NTOTERtl) 

COMMON INDEXtLEVELtiPRINTtiDATAtFtMAXMtG•NSHRINtMSTARTtPDtEPS,ICT, 

llFENCEtPLtNSTOPt~SMAXtNSHOTtNTESTtTEs,R,I~EDUCE,NVIOL,KO,NNuEx 

COMMON /A8/NUSE(lUU) 
c 
c 
C THIS SUBR. PERFORMS A GAUSS-JORDAN REDUCTION BY ROWS OF THE MATRIX 
C CAA) KEEPING TRACK OF COLUMN INTERCHANGES IN ARRAY CNUSEJ. THE 
C RESULT IS A UNIT MATRIX IN THE N ~y N POSITIONS (OFF-DIAGONAL 
C ELEMENTS ARE SE:T =O.u AFTER HETURN TO GEOMI AND A MODIFIED /~RRAY 

C IN THEN BY CNl. TO NTOTERi POSITIONS CTHE NEGATIVES OF THr.SE F0Ki"1 
C THE N BY NM ELEMENTS OF ((I AFTER RETURN TO GEOMI. NOT~··• (NUSE) 
C IS NEEDEU IN GEOM AND IS CARHIEU ThROUGH COrV\r-'lONe 
c 

NN=O 

NTl=N-1 

NT4=NTOTER-1 

DO liJ I=l tNTOTER 


lU NUSEIIl=I 
c 
C SEARCH THE NNTH ROW FOR FIRST NON-ZERO ELEMENT. INTERCHANGl THAT 
C COLUMN WITH THE KTH COLUMN• 
c 

101 	 NN=NN+l 

K=NN-1 


11 	 K=K+l 

IFCABS(AACNN,Kl>.GT.l•OE-6) GO TO 12 

lF!KeLE.NT4}GOTOll 


C A ROW OF CAAl IS ENTIRELY ZEROS I~. THE MATRIX IS SINGULAR.SINCE 
C AA IS THE TRANSPOSE OF ~x, THIS MEANS THAT ONE OF THE INPUT 
C VARIAbLES DOES NOT APPEAR IN ANY TERM 

VIRITE(6,20lK,K 

KO=l 

GO TO 13 


12 	 IFCK.lQ.NNl GO TO 14 

DO 15 I= 1, N 

T£1v1P=AAC I tNNl 

AAC I tNNl=AA( I tKl 


15 	 AACitKlttEMP 

NTEMP=NUSE(l\!Nl 

NUSECNNl=NUSE(K) 

NUSE C K l =NTEivlP 

c 
C DIVIDE THE NNTH ROW BY THf ~IAbONAL tLEMENT IN IT CAACNN,NNJJ 
c 

14 J=NTOTER+l 
141 	 J=J-1 


IFCJ.LTeNNl GO TO 16 

AACNNtJl=AACNN,Jl/AACNNtNNl 

GO TO 141 
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l 	 RtUUC~ ALL ROWS dtLOW THE NNTH ROWe 
16 	 NA=NN+l 


IFCNA.GT.N>GO TO 171 

DO 17 I=NA,N 

DO 17 J=NA,NTOTER 


17 	 AACitJl=AACI,J>-AACitNN)*AA(NN,J) 
171 	 IFINNeLT•Ni GO TO 101 


DO 18 I=ltNTl 

NT2=I+l 

DO 18 NL=NT2tN 

NT3=NL+l 

DO 18 J=NT3tNTOTER 


18 	 AACI,Jl=AA(!,Jl-AA(I,NL>*AA(NL,Jl 
20 FORMATC1H-,38HTHE EXPONENT ARRAY 15 SINGULAR IN ROW ,I4/1X,l3HTHAT 

1 IS, THE tl2t59h TH INPUT VARlAdLt UOES NOT APPEAR IN ANY OF Tht 
2RtLATIONS/l 

13 	 RETURN 

eND 


SUBROUTINE GELIMCNTOTERtNtAAl 
DIMENSION AACNTOTER,lJ 
COMMON /A5/DC100) 
COMMON lNDEXtLEVELtlPRlNTtlDATAtftMAXMtG,N~HRINtM~TARTtPU,LP~tllft 

llFENCt,PLtN~TOPtNSMAXtNSHOT,NTESTtTl~tRtREUUCE,NVIOLtKOtNNUEX 

c 
C THIS SUUR. USES GAUSS ELIMINATION TO SOLVE A SET OF NTOTlk EUNS 
C IN N UNKNOWNS WITH ONE RIGHT HAND SIDE. THE COEfFICIENTS ENTER 
C T~fE SUBR. IN THE NTOTER BY N POSITIONS OF lAA'· TrlE R.H.S. IS 
C STORED IN THE VECTOR AA(l,Nl'• THE SOLUTION VLCTOR <IN THIS CASE 
C TrlE SET OF LOG(XI VALUES' IS RETURNED IN AA(I,Nll. 
C NOTE ••• GEL!M -EUUIRES THAT NTOTER.GE.N 

KOUNT=NTOTER 
KO~o 

Nl=N+l 
c THE ARGUMENT OF ALOG(l MUST dE POSITIVE,THEREFORE DISCARD ~Nv 
c EQUATION FOR WHICH D<Il.LE.O. 
c IF ANY D(l'.LL.O.O , TtiEN ZERO THE CORRESPONUING ROW IN <AAI A~D 
c DECREMENT KOUNT. (IF KOUNTeLTeN THEN THE MATRIX IS SINGULARJ. 

l=U 
lul 	I=I+l 


IF(l.GT.NTOTER)GOT0102 

IF<D<I>.GT.l.OE-10) GO TO 101 


c 	 TEST AGAINST l.E-10 RATHER THAN 0•0 TO ALLOW FOR ROUNDING ERR0R· 
KOUNT=KOUNT-1 
DO 10 J=ltNl 

lv 	 AA(ltJl=OeO 

GO TO 101 


10£ CONTINUE 
c CHECK TO SlE IF THERE ARE SUFFICIENT VALID EUUATIONS RE~AINING. 
c IF THERE ARE LESS THAN N EUUATIONS, THE N UNKNOWNS CANNOT UE 
c SOLVED FOR 

IFCKOUNTeLTeN)GOTOll 
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KN=O 
GO TO 12 

ll 	 WRITEI6t610l 
KO=l 
GO TO 99 

c 
C LOCATE THE FIRST NON-ZERO ~LEMENT IN THE KNTH COLUMN IANU KTH ROW) 
c 

12 KN=KN+l 
K=KN-1 

121 	 K=K+l 
lf(AUSIAAIKtKN)).Gl.l·OE-10'60T013 
IF<K·LT•NTOTER)GOT0121 
KO=l 
~oJR ITt:. ( 6, 611 l KN 
GO TO 99 

c 
C INTERCHANGE THE KTH AND KNTH ROWS• 
c 

13 	 IF<K.EO·KN) GO TO 15 
uO 14 I=KNtNl 
Ti:J-'lP=AA ( KN, I l 
AAIKN,I >=AA(K,I) 

ll• 	 1\ A ( K , I l =T E MP 
c 
c DIVIUE THE NEW KNTH ROW BY ITS DIAGONAL lLEMENT AAIKNtKN)• 
r,_ 

15 	 J=Nl+l 
151 	 j=J-1 

lF(JelT·KNl GO TO 16 
AACKN,Jl=AAIKN,Jl/AA(KNtKNl 
GO TO 151 

16 KNl=KN+1 
c 
C REDUCE ALL ROWS HELOW THE KNTH ROW• 
c 

DO 17 I=KNl,NTOTEk 
PMULT=AA(l,KN) 
DO 17 J=KNtNl 

17 	 AACitJl=AA(I,Jl-PMULT*AA<KN,JI 
IFIKNeLTeN)GOT012 
NVl=N-1 
DO 18 I = 1 , NV 1 
IPLUS=I+l 
DO 18 Il=IPLUStN 
PlvlUL T=AA( I, I I l 
DO 18 J=lltNl 

18 	 AA(l,Jl=AAII,Jl-PMULT*AAIII,J) 
610 	FORMATI43H- CANNOT MAKE DUAL TO PRIMAL TRANSFORMATION) 
611 	 FOkMATilH-,48HTHE MATfHX PASSED TO GELIM IS SINGULAI~ IN COLUMN,I3l 
99 	 RETURN 


ENl> 
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SUdROUTINE GEOPTINTOTERtNtNCONStNT~RMStDSTAR,SNtT) 
DIMENSION NTE-MS(l),DSTARINTOTER,ll,y(ll 
COMMON INDEXtLEVELtlPRINTtiDATAtFtMAXMtGtNSHRIN,MSTARTtPDtLPStiCTt 
liFENCEtPltNSTOPtNSMAXtNSHOTtNTE~TtlEStRtR[DUCEtNVIOLtKOtNNU~X 

COMMON /A3/CK(lUU),GAMilOOltWORKllClOOl 
COMMON /AS/DilOOJ 

C GECPT IS CALLED FROM SEEKU , HENCE T IS VARIABLY DIMENSION~D 
c 
C THIS SUBR. EVALUATES THE OPTIMIZATION FUNCTION FOR A GIVEN SET 
C OF VARIABLES T. PENALTY FUNCTIONS AkE AODED IF ANY CONSTkAlNTS 
C ARl VIOLATlD.GEOPT lS THE ANALOGUE OF IUPTIMFJ USED ELSEWH~RE IN 
C OPTIPAC. 
C NOTE*** SUBR.SEARCH WHICH CALLS GEOPT IS A MINIMIZATION TECHNIUUE 
C THEREFORE THE NEGATIVE OF THE OPTIMIZATION FUNCTION IS RETURNED. 
C THAT 1St MINIMlZING t-SNl IS EQUIVALENT TO MAXIMIZING (+SN). 
c 
C EVALUATE THE D<ll VECTOR- ALL D(II.GTeOeO 15 THE CONSTRAINT 
c 

NI'-1=NTOTER-N 
DO 202 II=ltNTOTER 

Dt 1 I l =DS TAR< I I tl l 

DO 202 IQ=2tNM 


2U2 D!IIJ::D(III+T!IOl*DSTARCI!,IQ) 
SN=-l.OE+lO 

c 
C ASSIGN PENALTY FUNCTIONS TO SN IF ANY D(II.L~.o.o 
c 

DO 203 II=l,NTOTER 

IFIDlii>.LT•O•O)SN=SN+leOE+20*D!III 

lF(SNeLT·-l·OE+lOtGOT0215 


203 CONTINUE 
c 
C EVALUATE THE GAM!Il VECTOR. 
c 

NTEMPl=l 
NTEMP2=NTERMS(ll 
DO 2J4 J=ltNCONS 
GAM(Jl=U.O 
NTE~Pl=NTEMPl+NTERMSCJ) 
JJ=J+l 
NTEMP2=NTEMP2+NTERMS(JJ) 
DO 205 Il=NTEMPltNTEMP2 


2u5 GAM(Jl=GAM(Jl+D(llJ 

2Utt CONTINUE 


c 
C CALCULATE THE OPTIMIZATION FUNCTION SN• 
c 

SN=CK!l) 

DO 206 IQ=2tNM 


2U6 SN=SN*CK(IQl**T(IQ) 

DO 207 II=l,NTOTER 


2J7 IFCDIIIJ.GT.UeOlSN=SN*Dlli)**(-D(lll) 

DO 208 J=ltNCONS 


2U8 IF!GAM!Jl.GT.O.OlSN=SN*GAMIJ)**GAM(Jl 




c 
C MAKE SN NEGAT+VE AGAIN tiFORE RETURNING TO SUBR.SEEKl 
c 

215 SN=-SN 
RETURN 
END 

SUBROUTINE ADRANS (XtUtNtXSTRTtRMAXtRMINtPHI,PSitUARTtNCONS,NcUUSt 
lDSTARtNTOTERtNTERMSJ 

D I 'v1F N.S I ON XC 1) , X S TR T ( 1) , RMAX ( 1) , Rr-11 N ( 1 i , PH I ( 1 i , PSI ( 1) 
DIMENSION DSTARCNTOTERtlitNTERMS(l) 
COMMON INDEXtLEVELtlPHlNTtlDATAtFtMAXMtGtNSHRINtMSTARTtPUtEPStiCTt 
liFENCEtPLtNSTOPtNSMAX•N~HOTtNTESTtTEStUtREOUCEtNVIOLtKOtNI:uEX 
tOMMO~ /Al/RClOOltAVEllUOJtXOllUOltRANb~llOO~ 

C AFTER EVERY F+VE IMPROVEMENTS THROUGH THE ADAPTIVE RANDOM SEARCH 
C MODE• A LARGE­ STEP IS TAKEN ALONG A MEAN PATH THROUGH THESE 
C 5 POINTS. MORE STEPS ARE TAKEN ALONG THIS PATH UNTIL A NEW POINT 
C FAILS TO PRODUCE AN IMPROVEMENT. THE PROGRAM THEN CONTINUES THE PATTER 
C OF FlNOlNG 5 NEW IMPROVEMENTS BY THE ADAPTIVE RANDOM SEARCH 
C FOLLOWED ey AN EXTRAPOLATION ALONb THt MEAN PATH • 

NNUEX=INIJEX 
viR IT E ( 6, 4 3 ) 
NCOUNT=O 
KOUNT=l 
KON3=0 
Kl=O 

C TO SPEED UP THE METHODt USE SUBROUTINE FEASeL TO OeTAIN AN INITIAL 
C STARTING POINT. NOTE ••• THE METHOD DO~S NOT ACTUALLY REQUIRE A 
C FEASibLE START tSO IF F~ASdL FAILS THEN ADRANS STILL PROCEEDS• 
C SET F=.05 TO DEFINE TrlE INITIAL ST~P SIZE IN FtASbL 
C SET G=.Ol TO UEFINE THE MINIMUM ST~P SIZE IN FEASbL 

G=O.Ol 
CALL FEASBL(XtU'N'XSTRTtRMAXtRMIN,PHI,PSI,NCONStNEQUS,UART,DSTAR, 

lNTERMS,NTOTERl 
IF<IPRINT.GT.OlWRITf(6t66lU,(XCil,I=ltNl 
IF<KO.EQ.llWRIJ~(6t67~ 

C IGNORE A KO=l MESSAGE FROM F~ASbL 
KO=O 

C ZERO THE COMMON BLOCK ARRAYS SINCE TH~Y ARE USEU IN SUbR• FEASbL 
DO 4 I= 1 t 100 
fHI>=O.O 
AVE<I>=OeC 
XOCil=O.O 

4 RANGE<ll=G.O 
DO 5 I:: 1 'N 
XOCl)=X(l) 

5 RANGECll=ABSCRMAXCI>-RMINCij I 
C SUBROUTINE OPTIMF IS THE OPTIMISATION FUNCTION WITH P~NALTIES 

CALL OPTIMF CX,UOtPHitPSI,NCONS,NEGUSl 
C RANDOM NUMbER GENERATION 

K=r-1.5 TART 
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8 DO 9 I= 1 tN 

9 ;.'\VE(I)=O• 


M=l 

11 	 CALL FRANON(RtNtKl 


K=O 

DO 1U 1=1 tN 


C GENERATE NUMBERS WITHIN HALF THE RANGE FROM XO(!l 
10 X( I l=XO< I )+RANGE< I )*(R( I >-.50l**M 

CALL OPTIMF (XtUtPrlltPSltNCONStNEOUS) 
K.l =K 1 +1 
IFtU.LTeUOlGOT018 
IF!KleLEeNSMAXlGOTOll 

C IF NO IMPROVEMENT AFTER NSMAX TRIES WITH ThE MINIMUM RANGE <M=7J 
C THEN AN OPTIMUM IS ASSUM~U 

IFIM.GE.7)GOT045 
C INCREASE M TO EFFECTIVELY DECREASE THE STEP SIZE 

t-i=~l+? 

Kl=O 

GOTOll 


18 Kl=O 

f\.1=1 
DO 20 I= 1 tN 

AVE( I I =AVE< I ) + (XC I ) -XO ( I ) ) 


20 	 XO <I ) =X (I ) 

UO=U 

NCOUNT=NCOUNT+l 


C 	 FIVE RANDOM NUMBERS ARE GENERATED 
C 	 THE AVERAGE OF THE FlVE VALUES IS THEN O~TAINED 

lFINCOUNTeLT.5) GO TO 11 
NCOUNT=O 
DO 2 5 I= 1, N 

25 AVE!Il=AVECll/5. 
C PATT~RN SEARCH 
C K2 - IS A COUNT OF THE CYCLES MADE WITHIN TH~ PATT~RN SEARCH 

K2=0 

5 U DO 3 U I = 1 , N 

3v X!lli=XOtii+IWEtl) 


CALL OPTIMF IX,UtPHitPSltNCONStNEQUSj 

IFtu.GE.UOl GO TO 42 

DO L~O I=ltN 

AVEfll=AVE(Il*l•2 


40 	 XO(J:)=XCI) 

UO=U 

K2=K2+1 


C 	 DO NOT MAKE MOR~ THAN 50 PATTERN MOVES WITHOUT RECALCULATING ThE 
C 	 BlST DIRECTION tiY THE RANUOM S~ARCH STRATEGY ABOVE 

IF<K2.GTe50) GO TO 42 
GOT050 

41 	 KO= 1 

WRITEI6t65lKOUNT 

GOTOlUU 


42 KON3=KON3+1 

DO J.2 I=ltN 


1£ X ( I ;i =XO ( I ) 


• 
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lFCIPRINTeEU•O•OReKON3•N~.IPRlNTibOT046 
lf(KOUNT.EQ.IPRINT)WRlTEC6t48i 

CALL UREALCXtUU) 

WRITEC6t44)KOUNTtUUtCXCIJ,I=ltNI 

KON3=0 


46 	 KOUNT=KOUNT+l 

lf(KOUNTeGTeMAXMJGOT04l 

GO TO 8 


45 	 DO 13 I=ltN 
13 	 X(I>=XOCI) 

KOUNT=KOUNT+l 
CALL UREAL(X,UU) 
IFCNCOUNTeGT.O)WRITE(6t44)KOUNTtUUtCXCII,I=l,N) 

100 CALL ANSWERCUtXtPHitPSitNtNCONStNEUUS) 
43 FORMATC1Hlt49HOPTIMllAT10N USING AUAPTlVE RANDOM SEARCH AURANS//l 
44 FORMATClHOtl4t3Xt5El6·8/(24X,4El6·~)) 
4b FORMA1(1H-,15XtlH0t25Xt23HlNDtP~NvENT VARlAbLtS X//) 
65 FORMATC1H-,20HNO.CONVERGENCE AFTERt15t7H MOVES/1 
66 FORMAf(lH-,38HSTARTING POINT FOUND BY METHOD IS U =tE16eBtllH AT 

1 XCI> =t/1ClXtEl5e8t4El6.8)i 
67 	FORMATClH+,81Xt12HCINFEASlBLFl;J 


RETURN 

END 
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