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1. INTRODUCTION

The basic criterion for a successful’engineering design is
that it meet or surpass all restrictions imposed upon it by the design
specifications themselves, the laws of physics and chemistry, and the
propettiés of the materials used. A design which satisfies all these
requirements is called an acceptable, or feasible solution to the
problem. In practice, nearly all design problems have several feasible
solutions, and the final configuration must be chosen according to some
other criterion such as minimum weight, maximum volume, or minimum cost.
This part of the design procedure is known as optimization.

Before the introduction of high speed digital computers, very
little systematic optimization was done because of the prohibitive
amount of time necessary to determine even a few feasible solucions;
Although several compufer techniques have now been developed, formal
optimization in engineering design is sfill not widely used and there
appear to be two main reasohs for this. First of all, few engineers
have either the time or computer programming knowledge to write their
own optimization algorithms. Programs which are available in computer
libraries are usually inflexible and diffigult for an inexperienced
programmer to use. Secondly, only for pufely linear problems.* is cthere

a general method (revised Simplexl) which can guarantee that the optimum

N ;

In optimization theory the terms "linear" and "nonlinear' refer
to the forms of the counstraint equations and inequalities, and the
optimization function which define the particular problem.



found is the global or absolute optimum., Unfortunately, most real
problems are‘nonlinear and the relative success of any one of the
nonlinear techniques is largely dependent upon the form of the functions
describing the problém. It is rarely possible to predict which method

is best suited to a particular problem. To overcome all these
difficulties it was felt that the designer needed a pre-written program
package containing severél different optimization techniques, with input
requirements kept to a minimum. In addition, the program would need
thorough documentation written in a straightforward, "how-to-do-it" style.

A system of this type has been developed by the author and others
who are credited in the "Acknowledgements'. The package is called
OPTIPAC and it contains eight nonlinear optimization methods and a code
for revised Simplex. Input/output is controlled internally and the user
needs only a basic understanding of simple FORTRAN. Step~by-step
instructions on how to run a problem are contained in a usefs‘ mauual,2
while a second manual3 provides detailed information sbout the actual
program organization and logic.

This thesis describes the significant features 6f OPTIPAC and
makes suggestions for its further development. The results of some test
problems are discussed and a complete FORTRAN listing of the program
is included in the Appendix C to provide a permanent record of the version
of OPTIPAC which is described here. The users' and programmers' manuals®®

are frequently referred to as they contain a thorough description of

every facet of the system's design and operation.



2. THE COMPUTER PROGRAM PACKAGE "OPTIPAC"

2,1 General Description

The program is written in FORTRAN IV and is organized into a
series of subroutines which fall into three basic categories: service
subroutines, system subroutines and method subroutines.

The service subroutines are written by the user to define the
objective function and constraints for his problem. These, along with
a program MAIN and some data cards, comprise the user's input deck. The
rest of the program is stored on magnetic tape.

The system subroutines form the heart of the package. They read
in the data, call the appropriate method(s), find a feasible starting
point if necessary, print out the results, and perform a sensitivity
analysis §f the results if requested. OPTIPAC* is the name of the
controlling subroutine which provides the pverall logic. Access to the
package is obtained by calling subroutine OPTIPAC from another program --
often a small "dummy'' MAIN. Probably, the most powerful feature of the
package is that a problem can be run on several methods at once. This
provides both a check on the solution and an indication as to which is the

most suitable optimization technique. As stated in the introduction, none

*
The name "OPTIPAC" is derived from the words OPTImization

PACkage. Although it is actually the name of a subroutine, it is used
. synonymously as the name of the whole package.



of the nonlinear methods is completely general, and several parameters,
such as stopping criteria, step sizes, and the allowable number of
moves, must be adjusted for each problem. Often it is difficult to
choose these values in advance, and consequently the package has been
designed to operate at two distinct levels. At the "unsophisticated"
level, subroutine OPTIPAC automatically assigns reasonablé values to
all parameters which require judgment on the part of the user. This
reduces the necessary input data considerably and makes it very easy to
get an initizl, rough solution. At the "sophisticated" level, the
user must feed in the extra data cards to define all the program
parameters., This enables him to tune methods specifically to his
problem, thus obtaining the‘most accurate solution possiblé. This two~
level facility is an extremely useful feature. It means the package is
of equal value to a person who knows nothing about optimization theory
and to someone who is familiar with the smallest details of each method.
The method subroutines contain the coding for the various
optimization techniques. At present, these include revised Simplex for
purely linear problems, and eight methods for nonlinear problems. Thése
methods are: two types of direct search, a sequential direct search, an
alternate search~linearization method, successive linear approximation,
geometric programming and two different random search strategies. Such
a wide variety of methods greatly increases the likelihood of the program
finding a solution for any input problem. Obviously, the effeétiveness
of the package will increase as more methods are added, and the program

has been set up with this in mind. Only a few modifications are necessary



to incorporate an entirely new method. (The actual procedure involved

is given in section 5 of the programmers'’ documentation3).

2.2 Service Subroutines

The description of the problem to be optimized is snpplied to
the package via the three service subroutines for all methods except
revised Simplex and geometric programming. (These are highly specialized
techniques for which the constraints and objective function must be fed
in as data in a specified pattern). The objective function, equality
constraints, and inequality constaints are evaluated in subroutines
UREAL, EQUAL, znd CONST respectively. In order to standardize the input

to some extent, the following convention is used for stating the problem:

*
Minimize the cobjective function defining the optimization criterion:

U = U(xl,x ....xn)

2
subject to equality constraints defining feasibility:

wj = wj(xl,xz,...xn) = 0 j=1l,m
and inequality comstraints defining feasibility:

¢k = ¢k(xl,x2,...xn) >0 k=1,p
where x; are the independent or design variaBles
n is the number of design variables
m is the number of equality constraints

p is the number of inequality constraints

*
The objective function is also known as the optimization, cost,
or criterion function.



The user must abide by this convention, but it in no way
detracts from the generality of the program. Maximization can easily
be achieved by minimizing the negative of the true objective function,
Also, inequalities of the form OksO can be readily converted to ¢k20
by multiplying through by ~1. If the constraints have non-zero
terms on the right hand side, then these terms must be transposed to
the left hand side. Problems with only one type of constraint (m=0 or
p=0), or with no constraints at all (m=0 and p=0) are perfectly
acceptable.

The input to the service subroutines is the X(I) array containing
tﬁe current values of the design variables. The corresponding values
of U, wj and ¢k are calculated and returned to OPTIPAC. In the simplest
case, the objective function and the constraints can be expressed directly
as FORTRAN arithmetic statements such as,

U=X(1)%X(3)

or PSI(1)=X(1)~-SIN(X(2))%3.0

or PHI(3)=X(2)-16.0
vOften, however, a more complicated analysis is involved. ' It may, for
instance, require ﬁhe soiutidn to a set of eigen value equations in
order to put a constraint on the eigen value itself. |

e.g. PHI(2)=EIGEN-2.3
This is quite straightforward to do, sincé the user actually punches up
the service subroutines and can therefore include as much cocding as
necessary. He may dimension his own working arrays, and call any
subroutines he wishes from the computer library. If eitra data such as

physical constants or material properties is needed, it can be read in by

the MAIN program and transferred to the service subroutines through



labelled COMMON. When a complicated analysis is required, the user
should include conditional STOP's after sections of coding which
could possibly produce meaningless results. If, for instance, a
matrix inversion fails, then the program should be stopped rather than
have OPTIPAcicontinue, acting on misleading or even absurd information.
It is extremely important that the service subroutines be written
efficiently -- especially if they are complicated. They ére called
almost continually by the method subroutines and their execution time
constitutes a large portion of the total execution time for the job.
Although the three service subroutines are very similar to
each other from the programming point of view, they perform separate
roles in specifying the optimization problem.

Objective Function: Subroutine UREAL

UREAL contains the coding to evaiuate the dbjective function U
at a point. Most frequently, this is the cost of the product. Other
typical objective functions are weight, volume, strength, output power,
aerodynamic drag, and fluid and thermal flow rates. The objective
function must be dependent on at least oné of the design variabies,
although it need not necessarily represent any physical characteristic
of the design. For example; a specific.valﬁe of horsepower could be
obtained by minimizing,

U = (HPTEST-HPGOAL) **2

It is often difficult to choose a single objective function.
For instance, the designer may want to minimize the cost and the volume
at the same time. This is possible by writing,

U = WATE1aCOST + WATE2xVOL



The weighting factors WATEl and WATE2 are needed to compensate for
large differences in the orders of magnitude of COST and VOL, and also
to place emphasis on the more important of the two. Several trial
runs would ﬁrobably be necessary to determine reasonable values for
these factors.

Equality Constraints: Subroutine EQUAL

EQUAL calculates the equality constraints wj whicﬁ are usually
equations based on physical or chemical laws. They may also be design
objectives such as,

PSI(1)=X(1)-X(2)
which could stipulate a beam of square cross~-section foi instance. Since
all the nonlinear methods in OPTIPAC are basically exploratory strategies,
the equality constraints are very rarely exactly equal to zero. This
creates some technical difficulties which are later discussed for each
methoa subroutine. For this reason, it is desirable to use as few y¥'s
as possible. If some tolerance is acceptable on either side of the
equality, then quite often, two inequality constraints can be used instead.

PHI(1)=X(1)-X(2)+.01

e.g. could replace PSI(1)=X(1)-X(2)

PHI(2)=X(2)-X(1)+.01

Another problem with equality constraints is introduced if the
independent variables are of different orders of magnitude. Tfpically,
one constraint could be defining a buckling load of millions of pounds,
while another specifies a flange thickness of a few inches. Weighting
factors would be needed to prevent the buckling constraint from completely

dominating the others. Alternate search (subroutine ALTS) is the only

method which adds weighting factors internally. For the rest of the


http:PHI(2)�X(2)-X(l)+.Ol
http:PHI(l)�X(l)-X(2)+.01

techniques, these weighting factors can be added directly in
subroutine EQUAL as shown below:

PSI(1)=1.0%(X(1)~X(2))
PST(2)=1,0E-06%(C1#X(3)**2-C2xX(3)-C3)

where X(3) is the critical buckling load and C1,C2 and C3 are functions
of the other independent variables. The factors 1.0 and 1.0E-06 would
probably have to be adjusted after a few trial rums.

Inequality Constraints: Subroutine CONST

CONST evaluates the inequality constraints ) where ¢k20 at a
feasible point. They are used to place bounds on the independent
variables themselves or on functions of them. Sometimes it can be quite
difficult for the designer to know if he has put enough constraints on
his problem. The best way for him to find out is by making a trial run
and checking if the results are reasonable or not. Often, seemingly
trivial restrictions must be included. For example, it may be necessary
to have a constraint stating that the overall height of an I-beam is at
least as great as two flange thicknesses. This fact is self-evident to
the designer, but not to the purely mathematical optimization techniques.
Geometric programming (subroutine GEOM) is the only method which assumes
that all the design variables are positive. Any of the other methods
will readily accept negative physical dimensions or even negative cost
if specific constraints are not imposed.

Like the equality constraints, some of the inequaiity constraints
may need weighting to allow for differences in magnitude or relative
importance. These weighting factors have to be included in subroutine

CONST since none of the methods is set up to add them internally.
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The effect of weighting factors in the three service
subroutines can be quite significant -- especially when using
methods which minimize an unconstrained objective function with
penalty terms added for violated constraints. This is discussed

fully in section 2.4,

2.3 System Subroutines

The system subroutines make program OPTIPAC a coherent package
rather than just a collection of different optimization techniques.
They read in and screen the data, find a feasible starting point if
necessary, print out the results and perform a sensitivity analysis
upon request. Most important of all, they can process any number of
data decks, permitting the user to try different methods and different
program parameters all in one run. The purpose and operation of each
of the system subroutines is explained below.

Central Control: Subroutine OPTIPAC

Subroutine OPTIPAC coordinates the operation of the entire
package. It acts essentially like a main program, but is written in
the form of a subroutine for two reasons. First of all, the initial
DIMENSION statement presents a technical difficulty. Several arrays
must be sized specifically for each problem to use the computer meﬁory.
vefficiently. This can be done only by inserting actual-numbers into
the arguments of array names in the DIMENSION statement of the main
program. Since the whole package is on tape, this would be quite
impractical. It would eliminate one of the system's major advantages ~--
a small input deck. In a subroutine, however, arrays may be given

variable dimensioning which means that they expand to the size allotted
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to them in the calling program (see referemnce 3, page 5-2). Thus, by
writing OPTIPAC as a subroutine, the package can still be stored on
tape, and can be called by a very simple, or "dummy", program MAIN
consisting basically of a DIMENSION statement and a CALL to OPTIPAC.
Making OPTIPAC a subroutine also permits any program to have
access to it. For examﬁle, optimization of some intermediate results
may be needed during the execution of a large analytical program. This
could not be run as a continuous job if OPTIPAC was itself a main
program. At McMaster, the package is kept semi~permanently* on a
COMMON file "OPTAPE". This makes it available to any program having a
control card COMMON(OPTAPE) and a CALL statement to subroutine OPTIPAC.
Since the user has to keypunch the MAIN program himself, the |
arrays in its ﬁIMENSION statement, (and therefore the names in the CALL
OPTIPAC argument list) are kept to a minimum. Only data arrays and
large, doubly~subscripted working arrays are included. All other working
space required by the package is declared in subroutine OPTIPAC as
labelled COMMON blocks which are aliotted to the other subroutines as
shown on page 5-13 in reference 3. The blocks consist of from one to
four arrays, each dimensioned (100). This scheme allows several sub-
routines to share storage space, although for small problems, the memory
set aside‘for working arrays is larger than necessary. (This inefficiency
éould only be corrected by further complicating program MAIN). Another

result of using working arrays of fixed size (100) is that input problems

*

The COMMON file is re-created from a binary tape immediately
after every "dead-start" of the computer. True permanent files are not
yet available at McMaster.
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are arbitrarily limited to having 100 independent variables, 100
equality constraints, and 100 inequality constraints.

After subroutine OPTIPAC has set up the labelled COMMON
blocks, it clears all the working arrays and initializes the error
flag, KO=0. (All subroutines in the package use KO=1 to indicate a
failure of any kind), OPTIPAC then calls subroutine DATA to read in
the data for the method being run. If KO=1 after DATA, the job is
terminated becéuse READ statements will have been omitted putting the
‘remaining data cards out of phase; The values of INDEX, LEVEL and
NSENSE which are returned from DATA, determine the flow of logic
through the rest of the package.

iNDEX identifies the method to be used, or signals the end of
the data deck if set = 99. LEVEL indicates whether the package is to
be run in the unsophisticated mode (LEVEL=0) or the sophisticated mode
(LEVEL=1)., If a sensitivity analysis has been requested, then subroutine
DATA returns NSENSE=1 (otherwise NSENSE=0). Subroutine OPTIPAC first
‘checks the value of INDEX to see if control must be returned to program
MAIN (i.e. INDEX=99). If not, then a new set of data is ready and the
level of sophistication is checked. Before calling the method subroutine,
the computer's internal c1ock (subroutine SECOND) is referenced to obtain
the time at the start of execution, If LEVEL=0, OPTIPAC presets the
necessary program parameters and then calis the method subroutine
stipulated by INDEX. At LEVEL=1l, the method subroutine is called
immediately after the return from DATA because all the program parameters
are read in from data cards. The method subroutine performs the

optimization procedure, prints out the results, and returns control to



subroutine OPTIPAC, Subroutine SECOND is called again, and the net
execution time for the method is calculated and printed out. Then,
if the flag NSENSE=1l, subroutine SENSE is called to‘do a sensitivity
analysis of the results. Finally, control is returned to the
beginning of subroutine OPTIPAC and the sequence is repeated for the
next set of data. To summarize, subroutine OPTIPAC performs the
following functions:

a) provides entry to the package from any other program

b) allocates storage space for all.internal working arrays

¢) clears these working arrays and sets KO0=0

d) éalls subroutine DATA to read user's input‘data deck

e) presets paraméters for method subroutines at LEVEL=0

f) calls the appropriate method subroutine

g8) calculates and prints out the net execution time for

the method.
h) calls subroutine SENSE if sensitivity analysis requested
i) repeats this sequence for many data decks until INDEX=99
is encountered.

System Input: Subroutine DATA

The purpose of subroutine DATA is to read in all the data for
each method, check key parameters to see if they are acceptable, and
list the input data (upon request) for the user's scrutiny.

Basically, subroutine DATA is a series of READ statements, one
for every possible input parameter to the package. The first card of
every method's data deck contains three parameters, INDEX, LEVEL and

IDATA, which control the flow through the remainder of subroutine DATA.

13
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Since the gset up of the input deck for each method is completely
specified in the users' manual,2 the values of INDEX and LEVEL
together determine which parameters are to be read in. Therefore,
simple logical statements are placed before each READ so that unwanted
parameters are bypassed. All arrays are cleared before data is read
into them. Immediately following each READ, the parameter IDATA is
tested and if IDATA=1, the value of the parameter(s) just read is
printed out. This allows the user to check his input. On later runs
he may suppress the listing by setting IDATA=0,

LEVEL and IDATA must be O or 1 while INDEX must be between 0
and 8 inclusive or be edual 99 to signal the end of the data decks.,
Subroutine DATA checks these values, and if any is unacceptable, the
error flag KO is set equal to 1 and control is returned to OPTIPAC
which returns to MAIN.

Subroutine DATA is designed tq read in only the special OPTIPAC
parameters descriﬁed in reference 2. If»the user has auxiliary data,
(such as physical constants), which is needed by the service subroutines,
then he must insert his own READ statements in program MAIN and transfer
the information via labelled COMMON blocks.

Feasible Starting Point: Subroutine FEASBL

Several of the nonlinear optimization techniques require a
feasible starting point, i.e., a point which satisfies all the contraints.
In many cases however, the user does not know and cannot calculate a
feasible point for his problem. To overcome this difficulty, subroutine

FEASBL is included in the package.
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FEASBL consists of two phases since there are two types of
constraints. First of all, method subroutine.SEEK3 is called to find
a point which‘satisfies all the inequality constraints.* If such a
point is obtained, then FEASBL uses a direct search in the feasible
region to drive the equality constraints to zero. In this search,
the objective function is the sum of the absolute values of the equality
constraints, and ideally, the minimum is at zero. No acceleration or
pattern move is used since the equalities are already reduced to
reasonably small values in SEEK3. The actual final magnitude of the
equalities can be controlled by the user at LEVEL=1 by his choice of the
parameter "F" (see reference 3, page 5-76). If SEEK3 fails to find a
point which satisfies the inequality constraints, then FEASBL cannot
proceed because the direct search minimization of the ¢'s can only‘
operate in the feasible region. when chié happens, an error message
is printed out and the user must try another (still infeasible) input

starting point.

In the current version of OPTIPAC, FEASBL is used by alternate
search (ALTS) and successive linear approximation (APPROX). Neither of
these methods can get started if any equalities are violated. Adaptive
random search (ADRANS) does not require a feasible start, but calls
subroutine FEASBL to speed up the method. These three methods call FEASBL

automatically -- it is not an option controlled by the user.

*

When called by FEASBL, SEEK3 cuts out as soon as a feasible
point is found, It does not complete the optimization of the problem
unless INDEX=3,
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System Output: Subroutine ANSWER

Subroutine ANSWER is a convenient means of printing out the
results of the methods in a neat, standardized form. As a safety
feature, ANSWER evaluates U, PHI(I) and PSI(I) directly from
subroutines UREAL, EQUAL and CONST respectively. This is necessary
because the final values at the end of a method do not always correspond
to the optimum point defined by X(I)., For example, in a direct search,
the method stops when no improvement can be found. In this case, the
final values of PHI(I) and PSI(I1) usually refer to the last unsuccessful
(bften infeasible) point tried. Also, the finai Qalue of U may actually
ﬁe U plus some small penalty terms if equality constraints are involved.
Subroutine ANSWER is used to print out either the optimum found or the
results of the last iteration if the method stops prematurely. Inter-
mediate results are printed out by the method subroutines according to
2

the parameter IPRINT.

Sensitivity Analysis: Subroutine SENSE

The designer is often interested in how the optimum would be
affected by a small change in any of the independent variables. To
provide him with this information, subroutine SENSE has been included’
in the package. vSince it entails a large amount of output, the
sensitivity analysis is only performed if specifically asked for (see
reference 2, page 2-6). The procedure is quite straightforward. The
first variable X(1) is decreased fractionally from its optimum value
and U, PHI(I) and PSI(I) are calculated and printed out. The same is
done for an increased value of X(1). Then X(1) is returned to the

optimum and the next variable is changed, and so on. The fraction
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which is added and subtracted to each variable is FSENSE, a parameter
input as data by the user. The print-out from SENSE allows the user

to see which variables have a strxong influence on U, and which constraints
are sensitive to small changes in the variables, i.e., which are the
critical constraints, Another useful type of sensitivity analysis, is

to show‘the effeét on the optimum of changes in tﬁe inequality constraints
themselvés. This can be achieved with OPTIPAC by running a problem
several times, varying the PHI(I) statements in subroutine CONST.
Typically, a "DO-loop" would be placed around CALL OPTIPAC in the ﬁrogram
MAIN, and the comstants to be_changed in the inequalities would be stored
in a labelled COMMON block.

Method Execution Time: Subroutine SECOND

To compare efficiencies of the various methods, the execution
times must be considered as well as the optima obtained. On the
C.D.C. 6400, subroutine SECOND provides access to the computer's
internal clock. Therefore, SECOND is called immediately before and after
the CALL to a method subroutine and the net execution time is simpl§ the
difference between the two readings. All computers have similar
internal clocks, and only a minor modification is required to rum on

another machine (see reference 3, page 5-88).

2.4 Method Subroutines

The mechbd subroutines contain the coding for the Qarious
optimization procedures. Every method can be run at LEVEL=0
(unsophisticated user) or at LEVEL=1l (sophisticated user). However,
this only affects the values of the input parameters and the actual

strategy used is identical for both values of LEVEL. The current



version of OPTIPAC includes linear programming and eight nonlinear

methods,

Linear Programming: Subroutine SIMPLE

Linear programming minimizes a linear objective function
sub ject to linear Eonstraints. It is included in the package for two
reasons. Fir;t of all, two of the nonlinear methods, alternate search
and successive linear approximation, require the minimization of a
linearized system to determine optimum gradients. These methods could
call the computer's own library subroutine directly, but that would
introduce another machine-depéndent feature. Also, the variable
dimensioning scheme used elsewhere in the package could not be applied.
This would mean that more array names would have to be added to
subroutine OPTIPAC'S argument list and to program MAIN's DIMENSION
statement. The second reason for including linear programming is to
make OPTIPAC more general. I; is written in the form of a separate
method subroutine to allow the user to run a linear problem easily by
following the straightforward instructions in the users' manual.?

The algorithm chosen is the I.B.lM. subroutine "SIMPLE" which
uses Revised Simplex, a computationally more efficient version of

1,17 Slight modifications have been

Dantzig's original Simplex method.
made to make the subroutine conform with the rest of the package, but
the basic algorithm is unchanged. It pefforms Phase 1 and Phase II°

so that an initial feasible basis is not required. It is important to
note that SIMPLE assumes it is dealing with equations and the user must

add slack variables to convert inequalities to equations. The number o

slack variables plus the number of independent design variables gives

18

f
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the total number of Simplex variables, or columns in the Simplex
tableau, Another restriction is that SIMPLE can handle only positive
values of the Simplex variables. If any of the design variables is
expected to be negative (a voltage or beam deflection for example),
then the user can employ the substitution x; = (xI - x;), where both

x: and xi are positive valued but xi itself may be negative. Consider
the constraint |
3.4X(1) + 2.%xX(2) = 4.0
1f the user knows X(2) is negative, he must rewrite the constraint as,
3.xX(1) + 2.%X(2) <2.xX(3) = 4,0
The Simplex method calculates the optimum values of X(2) and X(3) and
their difference gives the optimum value of the second design variable.
This substitution is very useful, although it does increase the number
of Simplex variables,

The only input parameter which the user can control (at LEVEL=1l)
is NSTOP, the maximum number of iterations* allowed without reaching an
optimum. At LEVEL=0, this is set.arbitratily‘at four times the number
of Simplex variables plus ten. If the program stops because NSTOP
iterations have been exceeded, a message is printed out to tell the user
whether or not the solution is still feasible. If it is, then the problem
should run successfully with a larger input value of NSTOP. If the

solution is not feasible after NSTOP iterations, it is unlikely that

SIMPLE can find an optimum at all, This is usually due to an input

* : .

One Simplex iteration consists of selecting the variable to
be removed from the basis and the variable to be added to the basis,
and performing the interchange.



20

error in the coefficients of the objective function or coﬁstraint
equations. If the user omits a necessary constraint entirely, a
message is printed out stating that the optimum is unbounded. Thé.
results at the optimum are printed out only when SIMPLE is being used
as a method subroutine (INDEX=0)., When it is called by ALTS or APPROX,

there is no printed output except for error messages.

Nonlinear Programming

Five of the eight nonlinear methods contained in OPTIfAC are
direct or random search techniques. They differ in their strategy for
determining the direction and magnitude of trial moves and in their
" criteria for ending the search. These differences are significant and
usually one method is considerably more efficient than the others for
a particular problem. The direct searches are relatively fast but not
always accurate, while the random searches are slow but can avoid or at
least detect local optima. Two 6ther techniques in OPTIPAC rely on a
linear approximation of the nonlinear problem. One is the Method of
Successive Linear Approximation (MAP) developed by Griffith and Scewart.s
and the other is a combination of accelerated direct search and MAP
developed by Gurunathan.® They both use a Simplex solution to determine
the optimum gradieﬁt -- the direction which gives the largest improvement
in the objective function. The remaining nonlinear method is geometric
programming4 which solves the special problem where all ﬁerms in the
objective function and constraints are products of the design variables.
In some limited cases, geometric programming yields the global optimum
directly, but in general, a direct search is required to optimize the

associated dual problem.
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Direct Search: Subroutine. SEEK1l

SEEK] uses the direct search strategy of Hooke and Jeeves7
followed by a random search to check if a true optiﬁum has been found.

All the direct search methods in OPTIPAC are based on the
same principle. That is, to incorporate the constraints into an
artificial objective function whiéh can be minimized by systematically
éalculating its value at selected points in the search region, and
taking the smallest value as the minimum. .To account for the constraiants,
penalty terms are added to the real objective function whenever constraints
are violated. By making these penalty terms proportional to the
magnitude of the violation, it is possible to compare the values of
the artificial objective function at different points and to move in
the direction of the apparent optimum. For SEEKl, the penalty terms are
simply the absolute value of each violated constraint multiplied by a
large constant,?

In the "exploratory search', each variable is never changed by
more than one basic step léngth and the results of the exploratory
search determine the direction for making the larger, pattern moves.
This means that the search is only accelerated on the basis of feedback
from changes in all the variables. This is a major difference between
SEEK1 and SEEKi. SEEK2 uses acceleration in the exploratory search
itself to change each variable as much as possible before starting the
pattern moves. The relative success of the two approaches depends
entirely on the form of the problem and the starting point used.

Like most direct search methods, SEEK1l tends to stall on

constraints. This occurs when no small change (equal to the specified
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minimum step size) in a single variable can improve the artificial
objective function. Usually, an improvement could be found using a
pattern move, but pattern moves‘are only possible after a successful
exploratory search, To overcome this difficulty, SEEK1 employs a
simple random search after.the direct search has hung up. Every
variable is increased (or decreased) by a random fraction of ten times*
the original step length and the fesult is a composite move of random
length and direction. At LEVEL=0, up to one hundred such moves are
tried to find an improved value of the artificial objective function.
At LEVEL=1, the number is specified by the input parameter NTEST. If
an improvement is found, then the direct search is resumed. If not,
the method assumes it has reached the optimum, Figure 1 shows how this
random search gets the method started again after it has stalled on a
constraint.

The input starting point and the weighting factors for the
constraints can greatly influence the results of SEEK1l. The starting
point does not have to be feasible, but its position in relation to
the constraints largely determines whether or not the_mgthod will h#ng
up. Since it is often.impossible for the user to visualize his problem
in space, the safest approach is to run the problem with several different
starting points.

The penalty terms added to the artificial objective function are

proportional to the magnitude of the violation of each constraint. This

N .

Relatively large moves are made because the object is to get
as far away from the constraints as possible so that the.direct search
can be started again.
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causes difficulties when certain constraints afe very sensitive to
Achanges in a particular variable -- especially a change in sign.

For example, a problém may have a simple inequality‘constraint to

keep a small physical dimension, X(3) positive. There may also be

a complicated equality constraint where X(3) appears in several temms
multiplied by large factors. Then 1£ is quite possible that, in

moving from a positive to a negaﬁive value ofIX(B) the equality
constraint is drastically reduced, while the inequality becomes slightly
. violated., The overall effectbis a large improvement in the artificial
objective function. After this type of jump has occurred, it is ver&
difficult to drivé K(Bf positive again because thé equality constraint
has sﬁch a low value th#t almost any increase in X(3) increases the
artificiél objective function. In some cases, this prevenis SEEK1

from obtaining a feasible solution at all. This trouble can be avoided
by adding a large weighting factor to X(?) in the inequality constraint.
That is, constrain 10000.xX(3) to be positive, rather than just X(3).
Then a negative value of X(3) causes an overall increase in the artificial
objective function as it should. To choose appropriate values, the user
can run his problem at LEVEL=O without any weighting factors and use the
results to decide which (if any) constraints need to be weighted.

Direct Search: Subroutine SEEK2

SEEK2 uses the direct search strategy developed by Flood and
Leon.8’9 As mentioned above, the distinctive feature of this technique
is that an acceleration procedure is used to advance each variable as

far as possible before any pattern move is attempted. This approach is

suitable for some problems, but in general, SEEKZ tends to be extremely
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sensitive to the input starting point and to the order in which the
design variables are assigned to X(1) through X(N). The starting

point is important because, by making‘large moves in a single direction,
the method can hang up on constraints before all the variables have been
changed. Then the final value of the objective function depends on the
location of the starting point, as shown in Figure 2,

The user arbitrarily names the design variables X(1), X(2),...X(®)
when he is formulating his problem. However,‘his choiée fixes the order
in which the design variables are moved; since SEEK2 always changes the
X's in sequence, starting with X(1). The effect of the design variable
assignments can be seen by studying Figure 2. Starting points B and C
would have been quite acceptable if the variable X(2) had been'moved
first, that is; if the user had reversed the names of the design
variables. Unfortunately, in most cases it is impossible to predict
the best order -- especially since it may change as the solution proceeds.
Flood and Leon9 suggest randomly changing the order after every search
iteration. This modification could easiiy be added as a small subroutine,
and it would probably greatly improve the efficiency of the method. At
present, SEEKZ does not have this feature, and the user must reformulate
the problem to change the search sequence.

| The penalty terms for SEEK2 are the same as for SEEKl, and
~weighting factors should be applied to the constraints in the same
manner. Thé method stops when, moving with the minimum step size, the
relative change in the artificial objective function is less than the

specified tolerance EPS.
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Sequential Direct Search: Subroutine SEEK3

SEEK3 is based on a method by Fiacco and McCormickm’11

which
they call the Sequential Unconstrained Minimization Technique (SUMT).

The method consists of a series of direct search minimizations
“using the strategy of SEEK1. The artificial objective function uses
special penalty terms2 which are designed to pravent the solution from
leaving the feasible»region (all inequalities satisfied) while driving
the equality constraints to zero. This assumés thét the input starting
peint is feasible. To permit infeasible starting points, alternate
penalty terms, like those used in SEEK1, are substituted for all
unsatisfied inequality constraints. These alternate‘penalties are
relatively large and the solution tends to the feasible region rapidly.
Fiacco and McCormick have proposed another procedure for handling
infeasible starting points which uses SUMT itself to drive che‘inequalities
positive. Experience with OPTIPAC however, has indicatedlthat the former
approach is quite adequate.

Some effort has béen made to find criteria for choosing the
penalty rerm parameter R and its reduction facter REDUCE., No
satisfactory answer has been found, and it appears that these parameters
are problem-independent. Their values can affect the rate of convergence,
but they du not influence tﬁe.optimum obtained. The LEVEL=0 values of
#=1.0 and REDUCE=.04 have proved effective for many test problems.

Each iteration of SEEK] constitutes a complete minimization
problem in itself. To reduce the number of calculations (and therefore

computer time),'snme techniques have been developedl” for extrapolating
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the results of successive iterations to speed up convergenée. This is

a feature which should definitely be added to SEEK3 in the future.
SEEK3 is not as prone to stalling on constraints as are SEEK]

and SEEK2, although some Qeighting factors (especially 6n equalities)

are usually necessary. The method stops when ﬁhe teiative change in

the objective fuaction is lass than 10_8 or when R ﬁas been reduced
-21

below 10 .

Adaptive Random Search: Subroutine ADRANS

ADRANS uses the bseudo-random search strategy originated by
-Gall.lz' The basic approach is to determine the optimum search direction
by taking the mean path through five randomly generated improved points.
fhe artificial objective function uses the same penalty terms as SEEK1,2
and the method can handle infeasible starting points. An attractive
feature of ADRANS is that every trial move involves changes in all the
variableé, making the method less.likely to stall on constraints.
Generating the trial random points is a cumbersome process, but the
directions obtained are reliable and accelerated pattern moves help to
improve the overall efficiency. At present, subroutine FEASBL is called
to speed up the method by providing a reasonable starting point -- even
though ADRANS does not require a feasiblq_starting point.

ADRANS ié assuméd to have reached the optimum when no improvement
in the artificial objective func;ion can be found after generating a

user-specified number (NSMAX) of random trial moves.

Random Search: Subroutine RANDOM

RANDOM is probably the best method in OPTIPAC for handling problems

with local optima. The straﬁegy used was developed by Dickinson and
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Gallagher13 although similar techniques have been devised by other
aﬁthors.la The wethod evaluates the objective function at NUMR
randomly chosen test points within the initial search region specified
by the user. Points which violate any inequality constraints* are
discarded, and the remainder are sorted according to their value of
the objective function. Then the search afea is shrunken to include
only the NRET best points and the procedure is repeated until the range
of each variable is acceptably small., The important feature here is
that, if local optima exist in the original search region, they will
.prevent RANDOM from shrinking that region to any great extent. The
.user could then investigate his'original area in smaller segments

to locate the true optimum.

The number of random points generated and the shrinkage factor
used can affect RANDOM's efficiency and so both parameters are controlled
by the user at LEVEL=1. Since the whole object is to shrink the
original search region, it follows that if the user excludes the
optimum in his initial estimates of the design variable ranges, then
it is impossible for RANDOM to reach that optimum.

Successive Linear Approximation: Subroutine AFPROX

Griffith and Stewart® have developed a technique for conducting
an extremely efficient search, 7The method converts the nonlinear problem
into a linear problem by using a first order Taylor series expansion to

approximate the objective function and the constraint equations about a

*
RANDOM at present does not accept equality constraints.
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point. This produces a system of linear equations and inequalities

in which the va:iableé are the steps to be taken in each search direction
and the linearized objective function is.the improvement in the ébjective
function at the new point. After adding constraints to limit the step
iengths.* this system is solved as a linear programming problem
(subroutine SIMPLE) to find the optimum search veétor. Every move is
determined in this manner, and the process stops when SIMPLE cannot

find a significant improvement in the objective funccion.

In practice, there'éppgar to be two main difficulties with the
method, First of all, thé partial derivatives which form the Simplex
coefficients are evaluatgd_numericallyz énd they can be quite inaccurate,
This is a ser{ous problem when equality constraints are linearized
because no compensating slack variables are added as they are to
inequalities. The second problem is in determining the limits to be
placed on the individual step lengths. Their maximum size has been
arbitrarily set at ten percent of the range éf each variable to satisfy
the approximate Taylor series expansion. As the solution proceeds, it
is necessary to decrease the allowable step lengths in order to force
- convergence, The logic which controls this step length regulation is
purely intuitive on the part of the author3 and it may prove to be too
ctude fur larger problems.

APPROX has been very successful on the test problems tried and

usually the difficulties mentioned above can be avoided by careful

®
The step lengths are restricted to small wvalues because the

Taylor series expansion is only valid near the base point,
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selection of the input parameters at the sophisticated level (LEVEL=1).

Alternate Search: Subroutine ALTS

A logical extention of the method of successive linear
approximation is to combine it with a direct search in order to take
‘better advantage of the optimum search direction, thus reducing the
necessary number of Simplex solutions. Gurunathan's work6 has been
used as the basis for subroutine ALTS.

An accelerated direct search is carried out in the feasible
region (all inequalities satisfied) with an artificial objective functioem
composed of the true objective fﬁnction plus the values of the equality
constraints multiplied by weighting factors. Whenever the direct search
stalls, allinearizatton is performed to find a new search direction. The
process stops when no significant improvement can be obtained by either
method. One disadvantage of ALTS is that a feasible starting point is
reguired, but in most cases subroutine FEASBL3 is able to locate one,

The major difficulty with the method is in choosing step length
limftations for the linearizations. The problem is more pronounced than
for APPROX because the linearizations are separated by portions of direct
search and therefore the Simplex search diréctions do not develop in a
recognizable pattern. At present, the step lengths are not adjusted at
all, and oscillation or overstepping of the optimum can occur. Since
convergence is not guaranteed, the method keeps track of the "best point
su far" which is taken as the optimum if the method does not converge.

At‘LEVEle, the user has controel over all imbortant parameters2
(including maximum step length) and he shéuld be able to tune the method

to his problem. The direct search portion of ALTS is particularly
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efficient for handling equality constraints. The linearizations will
be more successful when a method of forcing convergence is perfected.

Geometric Programming: Subroutine GEOM

Geometric programming is the only special purpose nonlinear
method in OPTIPAC. It was invented by Zenera to solve the problem
where the objective function and inequality constraints are ''posynomials®,
i.e. polynomials with positive coefficients. Also, the independent
variables arekrestticced to having positive values.

The method involves a mathematical transformation to the dual
problem, the maximization of the dual problem, and then a trausformation
back to the input or primal problem.2 In certain cases,* the dual
maiimization is not needed as the mathematical transformations yield the
global optimum directly. For most problems however, SEEK1l is required
to maximize the dual objectiye functibn.

‘The most attractive feature of geometric programming 15 that the
relative values of the primal énd dual objective functions indica;e
whether or not the solution is optimal. They are equal ét the global
- optimum, and represent upper and lower bounds on the glob#l optimum if
they aré not equal. One ﬁajor disadvantage of the method is that the
v'transformation back to the primal problem is not always possible, Then
the value of the dual function gives a lower bound on the>optimum, but no
information is gained about the values of the design variables.

In its present form, GEOM has very limited applicatioms. . It needs

* _ .
The globa. optimum is obtained directly when the “degree of
difficulty" equals zero (see reference 2, page 4-~50).
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to be modified to permit negative polynomial coefficients, (and therefore
greater-than-equal type inequality constraints), aand negative

independent variables. It has been used successfully to design
electrical transforﬁ\ers15 and journal beatings,16 but problems with

large "degrees-df~difficnlty" have not been tested.



3. DOCUMENTATION FOR THE SYSTEM

The main object of OPTIPAC is to encourage the use of formal
optimization proéedures in engineering design. It is aimed largely at
people unfamiliar with optimization theory and therefore the
documeutation'for the system is extremely important. Separate manuals

have been written for the user2 and the programmer,3 and a third

manual is being compiled* to illustrate typical applications and sample

input for some test problems.

3.1 The Users' Manual

The first section, "Quick Information", provides a very brief
description of the whole system. The generalized form of the optimization
problem which is sélved by OPTIPAC is given; with an explanation of how
to convert any problem to the standard form. The three categories of
user, unsophisticated, sophisticated and programmer, are clearly defined
so that the user can decide which parts of the documentation concern him.
"Procedural Instructions' outline a systematic, check-list approach to
running a problen, refetriﬁg the usexr to the relevant documentation at
every step. Finally, there is a list of the nine techniques currently
included in the package and a simplified flow chart showing the program

organization.

* . ' ‘
The third manual is intended for commercial users and has not yet
been completed, It is not described further in this thesis.

34
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The second section explains how io set up the input deck, and
describes the hrrangément of the MAIN p;ogtam, service subroutines and
data deck. A diagram is used to show the coﬁplete input deck with all
the control cardsihecessaty to gain access to OPTIPAC which is stored
on magnetic tape. Instructions are also given for running more than
one method at a time and a second diagram illustrateé this case., The
sensitivity-énalysis which is contained in subroutine SENSE is described
fully, and instructions for requesting it are given,

The third section of the users' manual contains the documentation
for each of the method subroutines at the unsophisticated level. After
a short introduction, there is a simplified flow chart to help the user
choose methods for running his problem. This method selection chartAis
inteunded only #s a rough guide however, and at the unsophisticated
level, best results are obtained by trying as many methods as poésible.
The descriptions of the methods are written in a standard format and
are very brief. A statement is given of the type of problem which can
be handled, and the basic instructions necessary to run a job are
provided., Virtually no background theory is included in this section.
The data decks required by each method at this level are almost identical,
which makes it very easy for the user to try several different techniques.

.The fourth and last section of the users' manual contains the
documentation for a sophisticated user. The layout is similar to that
in the previous section, but considerably more dezail is included. The
basic theory behind each technique is outlined and useful references are
given. A sub-section on special features helps the user choose values

for all the input program parameters, and the default values of these
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parameters used at LEVEL=0 are listed. As an aid in de-bugging, a
flow chart is provided to show which subroutines are called. Two
excerpts from the users' manual are contained in Appendix A to

illustrate typical documentation at both the unsophisticated and

sophisticated levels.

3.2 The Programmers' Manual

The second manual contains all the information concerning the
operation and organization of the FORTRAN program itself. It is divided
into two parts: a description of the program, and an actual listing of
the source deck.

The first section begins with a general description of the system,
including its subroutine structure, the variable dimensioning scheme and
the use of COMMON blocks. A "Thesaurus of Program Parameters'' gives a
complete alphabetical list of all user-input parameters together with
| their definitions. The details of each subroutine are discussed in a
standard format. The internal variables are defined, and a flow chart
of the program logic is given. A second, simplified flow chart shows
how the particular subroutine is related to the rest of the package.
Additional notes are used to elaborate on unusual or subtle aspects of
the coding. The programmers' documentation for subroutine RANDOM is
included in Appendix A as a typical example. Two other important topics
which are covered in this manual are the incorporation of new method
subroutines and features of the program which are machine-dependent.

The second half of the programmers' manual is taken up by the
FORTRAN IV listing of OPTIPAC. Comment cards have been used liberally to

help clarify the logic involved.
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4, TEST PROBLEMS

The test problems discussed below represent real design
problems chosen to give a good comparison‘of all the methods. They
demonstrate clearly how difficult it is to predict which method will
find the best sclution. Several other problems were used in developing
the individual methods and larger design problems have been run on the
package by both undergraduate and graduate students at McMaster University.

The first exawple is ;he design of a three phase shell type

_electrical transformer. This was used as the main test problem for the
geometric programming subroutine GEOM and it is fully described in
Frank's paper,l5 The object is to minimize the volume of material while
satisfying two geometrical constraints. GEOM assumes that all the
variables are positive, but for the other methods, extra constraints are
needed. Each of the independent variables is a physical dimension of

the transformer, and the problem can be stated mathematically as follows:

Minimize,
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The problem was run on eight methods at the unsophisticated level, and
the results and execution times are tabuléted in Appendix B. All methods
used the same starting point. GEOM's soluﬁion agrees exactly with that
of Frank.l’ It is particularly interesting to note how well some of

the other methods work on this specialized problem. Sequential search,
SEEK3, is especially good and the direct searches are considerably

faster than GEOM itself. At the sophisticated level it would definitely
be possible to adjust parameters in SEEK3 to obtain the global optimunm.
The histogram in Figure 3 gives a visual comparison of the minima
obtained and the execution times required‘by each method.

The second test problem is a simple structural optimization,
described by Siddall.l7 A three member indeterminant truss is to be
designed for minimum weight. The lengths of the members are fixed and
the structure must be able to support a one thousand pound load.
Initially, eight independent variables were chosen: the cross-sectional
areas and tensile stresses of each member, and the horizontal and vertical
displacements of the point of application of the load. The problem could
then be specified by two force-equilibrium equations, three displacement
equations and nine inequality constraints restricting stresses, minimum
areas and buckling loads. This formulétion was run on OPTIPAC without
much success. All of the methods had difficulty handling the five
equations (equality constraints). After careful examination it was
realized that only three of the variables were truly independent.

Having chosen values for the three cross—-sectional areas, the five

equations become linear and can be solved by Gauss elimination for the
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remaining five intermediate variables. (These are sometimes called
"state" variables). Inequality constraints are still imposed upon the
intermediate variables, but the formal equality coustraints are no

longer necessary. This revised problem with three independent variables
and nine inequality constraints was run on OPTIPAC at the unsophisticated
level using seven methods, and the results are tabulated in Appendix B.
(All methods used the same starting point). The mathematical statement
of the problem is given below.

Minimize,

U

. 283(50. 9 (x1+x3) + 36x2)

Subject to the inequality constraints,

$1 = 20000. - x4} 2 O
$2 = 20000, - |xs| 2 0
b3 = 20000. ~ |xg| 2 0
o5 ™ 100 x, 20
20,2
bg = 17.5 105 x2 / 36.0% - |xpx5]2 O

¢9 = 77,5 106 xg / 50.92 - 'X3X6‘Z 0

It should be noted that the fourth, fifth and sixth constraints
are heavily weighted to prevent the cross-sectional areas becoming
negative. The variables X, »X5,Xg in the above inequalities are obtained
by solving the following set of linear equations for specified values of

Xps X and X0

2
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=-.707x X, + .707x5 x = -866.
<707x; x4 + Xy x5 + J707x3 x¢ 6. 300,
50.9 x, -21.21 106 %, + 21.21 10°%g = 0.
36.0 xg + 30.00 10xg = ‘0.

50.9 xg+21.21 108 xy + 21.21 106xg = 0.

Once again, the value of having several different techuiques
in a package is demonstrated. Adaptive random search, ADRANS, finds
as low a minimum as sequential search (SEEK3) but it is almost four
times slower. The fact that fhese two entirely different methods
obtain identical solutions, gives the user some confidence that the
global optimum has been achieved., Both alternate search and successive
linear apéroximation have difficulty linearizing the constraints, and
this could be due to the absolute terms in the inequalities. Figure 3
compares the relative performance of the seven methods tried. As this
example shows, it is often possible to eliminate or at least reduce the
number of equality comnstraints. The user should always have this aim
in mind when formulating his problem.,

The third test problem is based on the design of a simple roller
bearing in which the total volume of material is the objective function
to be minimized. Due to a slight error in one of the constraints,* the
solutions obtained are not realistic. However, the example is still a
perfectly valid optimization problem in the mathematical sense, It is
included here because OPTIPAC's performance contrasts markedly with the

two other test problems, The five independent variables selected are the

*The variable x; should appear in the denominator of the first
term in ¢3.
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thicknesses of the inner and outer races, the overall length of the
bearing, the roller diameters, and a factor to control the spacing
between rollers. Each of the four dimensions is limited by an
inequality constraint, and the bearing must be able to support a
radial load of ten thousand pounds. The spacing factor indirectly
determines the number of rollers and an additional constraint stipulates
that at least three rollers must be used. The problem is formulated
as follows:
Minimize,

U= nxs[}xl+x2+x3)2-(x2+x3+l)2+(x3+1)2-1 + nxz(x2+2x3+2{]

hxy,

Subject to the inequality constraints,

¢, = 2735, xs(x3+1) - 10000. 2 0O
17 X5 2 0

43 = Xy - 0162 0

x, - 1.12 0

n%x +2x,+2) [x4%, - 3. 2 0
. 2773 2%4

¢g = ~Xg + dxz 20
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Appendix B shows the results from the seven methods run at the sophisticated
level., (All methods use the same starting point). Geometric programming

i1s not applicable because the objective function contains negative
coefficients. The histogram in Figure 3 ewphaslizes again that the

relative success of each method in the package is strongly problem-
dependent. Sequential search, SEEK3, which is the best method in the
structuralvexample, is by far the worst method for this problem, APPROX
and ALIS obtain the lowest value of the objective function here, but in

the structural problem, ALTS is only mediocre and APPROX fails altogether.
Direct search, SEEK1l, which is consistently one of the fastest but least

accurate methods, manages to find one of the best solutions,



5. DISCUSSION

A multi-technique package has proven'to be a valid approach to
the general problem of nonlinear optimization. The results of the
test problems indicate clearly that a variety of methods is much more
éffective than any single method.

Direct search SEEKl is usually the fastest method. It rarely
finds the best optimum, although the simple random search at the end
of the direct search prevents it from hanging up too badly. SEEK2 is
almost as fast as SEEK1 but more prone to stalling on constraints. As
mentioned in Section 2.4 of this thesis, SEEK2 needs to be modified so
that the order in which the variables are moved is changed after
every step. (This would probably be a worghwhile addition to SEEK1 as
well). SEEK2 would also benefit from a random check on the optimum
obtained and subroutine SHOT of SEEK1l could easily be incorporated
for this purpose.

Sequential search, SEEK3 is considerably more accurate than
either of the direct searches., This emphasizes the importance of
the form of the penalty terms in the artificial objective function,
since the actual search strategy is the same as that used in SEEKI1.
SEEK3's execution time could be reduced by adding the extrapolation
feature described in Section 2.4.

Adaptive random search, ADRANS, is a reasonably accurate method,
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bui'it is slowed down severely by the cumbersome process of generating
trial random'points. It seems that there should be some means of
progressively modifying the search area to speed up the process. For
example, after one improved point is located, the remainder of the
search could be concentrated in that area rather than continuing to
search the full ranges of each variable. If this segment of ADRANS
could be made more efficient, it would not be necessary to call
subroutine FEASBL to start the method. (Calling subroutine FEASBL

is undesirable because it introduces the difficulties associated with
SEEK3 and SEEK1).

Random search, RANDOM, is slower than ADRANS, but it is the only
method in OPTIPAC capable of detecting local optima. A useful
modification would be to print out all the current "best" points when
the method stops before convergence. The user could then use the local
optima as starting points for other techniques to determine the true
optimum. At present, only the lowest relative minimum is printed out
when the method fails to converge. As explained previously, the initial
search region specified by the user cannot be increased in RANDOM. This
means that the input values of RMIN(I) and RMAX(I) %ct like strict
limit equations on the variables. If the user excludes the optimum by
specifying too small a range for any of the variables, it will show up
in the solution because that variable will be approximately equal to
one of its original bounds. . The problem could then be rerun with an
expanded initial search region. This difficulty does not occur frequently

enough to warrant building in automatic expansion of the search area.
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Successive linear approximation (APPROX) is .potentially the
most effective nonlipnear technique in OPTIPAC. It is probably the
only method which can be expected to work efficiently on very large
problems. At the unsophistiéated level, the linearization often
falls because the numerical partial derivatives which make up the
Simplex coefficients are too roughly approximated. At the sophisticated
level, however, the user should be able to obtain good results for
most problems., The method can handle equality constraints, provided that
the starting point itself satisfied all the equalitiesf If the user
cannot provide such a point, then subroutine FEASBL is called automatically
to.find one,

‘Alternate search (ALTS) attempts to combine the speed of direct
search with the accuracy of successive linear approximation. The
original idea was to use the linearization only to restart the direct
search after it had hung up; In practice, the search seldom regains
any momentum after its first failure, This is due to the fact that the
search usually stalls close to the optimum or on a constraint boundary
which permits only composité moves. This leads to a series of successive
linearizations, but without the extra logic of APPROX to force convergence.
The result may be oscillation or even divergence. The method stops when
oscillation is detected, and stores the 'best point so far" in case of
divergence. The method is still not quite satisfactory however, and the
entire step length regulation logic of APPROX should bé incorporated.
There appears to be a flaw in the basic concept of alternate search: it
has combined two complete methods rather than just the best features of

these methods. A more logical approach would seem to be to choose all



search directions exclusively by linearizing the problem and to
determine the correct step lengths by a direct search in the direction
obtained. In this way, ALTS would truly utilize only the best features
of the two different techniques.

,Geometric-programming (GEOM) is the only special purpose
nonlinear method in the package. It has performed well on‘very
restricted problems, but still needs several modifications which are
outlined in Section 2.4 of the thesis.

No difficulties have been encountered with the revised Simplex
algorithm SIMPLE. A useful addition would be to automatically make the
standard substitution which allows negative Simplex variables. This
is already a feature of alternate search and successive linear
approximation,

All of the methods have difficulty compensating for constréints
of vastly different magnitudes, since the largest constraints tend to
dominate the others. Ideally, the program should put equal emphasis on
all the constraints unless the user specifically includes weighting
factors in the service subroutines. One approach17 is to normalize
all the independent variables by dividing each one by its estimated
range. This scaling of the independent variables is useful in
unconstrained problems to make step lengths and gradients more uniform.

(It would definitely be an asset in the linearizations performed in ALTS
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and APPROX). It does not, however, make a significant improvement in the

constrained case. A better solution seems to be to normalize the
magnitudes of the constraints themselves in some fashion. One crude

range approximation could be obtained by ewvaluating each constraint at
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the upper bounds and then the lower bounds of all the independent
variables. The differences could then be used as the scaling factors
for subsequent values of the constraints. 1In certain pfoblems, the
user may be able to actually input accurate estimates of the expected
ranges. It should be pointed out that the existing method of entering
weighting factors is quite satisfactory from the analytical viewpoint,
but it requirés too much judgment and experience on the part of the user.
In a system such as OPTIPAC, the user should not need to get involved
with the technicalities of the program.

Very few problems with equality constraints have been run
successfully on the package. SEEK3, ALTS, and APPROX are best equipped
to handle them, but even these methods have considerable difficulty if
the starting point is badly infeasible. Equality constraints are
extremely restrictive because they force the solution to move right
along a boundary, which is much more demanding than merely staying on
one side of the boundary (inequality constraints). The direct searches
(SEEK1 and SEEK2) hang up frequently because once they reach a point on
or very close to an equality, they cannot find a better point. Their
exploratqry search does not allow for the necessary move along the
conétraint. Sequential search, SEEK3, is more successful because of
the special form of the penalty terms in the artificial objective function.
For the first minimization, the equalities are virtually ignored due to
very small weighting factors. The method first concentrates on finding
a point which satisfies all the inequalities. On subsequent minimizatioms,
the equalities are gradually emphasized more until they are finally forced

to zero. The direct search portion of alternate search (ALTS) uses a
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soméwhat similar strategy, although it requires that the starting point
satisfy all inequalities. The search is conducted in the feasible

region, with user-specified weighting factors (WATE(I)) to dfive the
equality éonstraints to zero. The linearization technique of ALTS and
APPROX is ideal for following the constraint boundaries, and APPROX
appears to be ﬁhe best method for handling problems with a large number
of equality constraints. RANDCM and GEOM do not accept equalities at all.
ADRANS is very inefficient since so many vandom points must be generated
to obtain another pqint on the constraint boundary. (Execution times
soon become prohibitive).

The whole question of equality constraints is completely ignored
by many authors. They apparently feel that optimization pertains mainly
to the solution of inequalities, while systems of equations are best
handled by the methods of numerical analysis and classical mathematics.
This is a valid argument in some cases and the structural test problem
in this thesis shows how equality constraints can often be eliminated.
When they cannot be avoided by reformulating the problem, it is always
possible to replace an equality by two inequalities. This impiies tha;
some tolerance is acceptable, but the tolerance can be reduced on
successive runs until the equality constraint is satisfied exactly.

As a computer system, OPTIPAC has performed well. Problems have
been run by a variety of users, many of them unfamiliar with optimization
and inexperienced in programming. Most have preferred the unscophisticated
mode of operation because the input is very simple and all applicable
methods use virtually identical data decks. The users' documentation

has proven to be more than adequate, and it is constantly being revised
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as minor mistakes are discovered. At present, the programmers'
manual3 is referred to mainly by users interested in the FORTRAN
listing of OPTIPAC. When major changes to the system are being made,
the rest of this manual will be indispensable.
Now that some operational experience with the package has been
gained, it is possible to suggest where changes and additions might
be made to improve OPTIPAC.
One of the weakest features of the system is the method
selection chart. Presently, the most reliable way of cﬁoosing a
method is to run the problem on all the methods at the unsophisticated
level to see which one gives the best results. This would obviously
be impractical with very large problems. As more test problems are run,
it should be possible to establish a statistical basis for method
selection. That is, the efficiency of each method will be functionally
related to the key parameters defining the input problem. Typically
these would include the number of variables, the number of equality
and inequality comstraints, and a parameter to indicate the degree of
nonlinearity. With this sort of information, the program could choose
the most efficient method completely automatically. Before incorporating
this feature, some changes to the method of data input would be necessary.
Since the user does not know in advance which method will be run,
then he must supply sufficient data to run every method in a single data
deck. At the unsophisticated level this is simple, but at the sophisticated
level it may mean specifying values for over twenty parameters. To reduce

this number, it will be necessary to further standardize several parameters,
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such as stopping criteria, so that they apply to all methods. Limits
on the number of moves or complete iterations can probably be related
to the number of variables and thus eliminated from the input deck.

In the present system, all data cards are always read in by the
system subroutine DATA. It is now apparent that the user should have
the option of bypassing subroutine DATA in order to transfer data directly
to OPTIPAC throﬁgh its argument list and through blank COMMON. This
option is essential if the package is to be available as a standard
subroutine to other programs when optimization input data is internally
generated. Only a very simple modification is needed to add this
feature. For example, a value of IPRINT exceeding 500 could be used as
the flag for bypassing subroutine DATA. The true value of IPRINT would
then be obtained by subtracting 500 from its input value. The overall
operation of the system would be unchanged, and runs could still be
made at either level of sophistication.

The modifications discussed here represent only some of the
more significant improvements which could be made to the system. Necessary

changes to the FORTRAN coding itself may become apparent with further usage.



6. CONCLUSIONS

OPTIPAC has been developed to encourage the use of formal
optimization techniques in engineering design. Its aim is to provide
a system which is easy to use, and yet capable of handling a wide
variety of both linear and nonlinear problems. The project consisted
of two phases: developing the FORTRAN program itself; and writing
detailed documentation for three separate types of user.

Since there is no generally applicablé nonlinear optimization
technique, several different methods have been incorporated into a
single package. Input/output is controlled internally and the system
may be operated at two distinct levels, depending on the user's
familiarity with optimization and programming. Many test problems
have been run and they have shown that a multi-technique approach is
well justified. Although the performance of individual methods is
unpredictable, at least one of the eight methods can usually obtain a
reasonable solution.

It was realized at the beginning of the project, that designers
would not use the package unless it was accompanied by thorough doc—
umentation., Therefore, a considerable amount of time was spent in
compiling a manual for the user? and a second manual3 describing the
programming aspects of the system. The users' manual contains explicit,
step-by-step instructions for running a job and these have proven to

be more than adequate, Students at the undergraduate and graduate level
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in the Design program at McMaster, have been able to run problems
without difficulty. Considerable interest in the system has also been
shown by people outside the university, Those who have already used
or- are intenéing to use OPTIPAC are: the University of Texas; Sheffield
University, England; the National Research Council (Ottawa); STELCO
Research Division; DOFASCO; and the Butler Manufacturing Company. The
latter three companies are all located in Hamilton.

OPTIPAC's problem~solving ability is limited only by the
number of techniques included, and the program has been designed to
make the addition of new methods straightforward. As a system,
OPTIPAC is still relatively unsophisticated. Its ultimate configuration
will probably be as a "conversational" program, with the user interracting
through a time-shared terminal.

While it is far from being in its final form, OPTIPAC does
appear to have succeeded in its two main objectives. It does handle

a wide range of problems, and the system is easy to use.
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A) SAMPLE DOCUMENTATION' FOR 'OPTIPAC'Z’3

(Unsophisticated User)

3-22

RANDOM SEARCH
Name
RANDOM

Purpose
To solve a noulinear optimization function with nonlinesr inequality constraints.

The function to be minimized will be of the form U= U(xl,xz,...xn)

and constraiats of the form Ok(xl.xz....xn) 20 k=1,p

Method
The method consists of a random search for the minimwm or simply a

shotgun tecimique with iterative shrinkage.

List of Input Variasbles

INDEX index nusber of subroutine, = 6
LEVEL level of sophistication, » O
IPRINT prints intermediate results every IPRINT cycle,

set st zero for no intemediate data
IDATA 1f IDATA = 1 the ipput data will be printed out,

otherwise set at gero

N number of variables (specified in MAIN)
NCONS number of inaquality constraints

RMAX (1) estimated upper bound for variable X(I)
RMIN(I) estimated lower bound for varisble X(I)

List of Output Variasbles

v nininum value of the optimization function

X(1) values of independent varisbles at the optimum
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(Unsophisticated User)

3-23

How to Set Up MAIN Program

DIMENSIGN X(N),PHI(NCONS) ,RMAX(N),RMIN(N),Z(J,N),UU(])

Nenumerical value

Junumerical value

M=}

NN=1

NTOTER=1

CALL OPTIPAC(X,PHI,PSI,A,B,C,WORKA,DELX,STEP,XSTRT ,RMAX, RMIN,DSTAR
1,NTERMS,GS ,WATE, TEST ,2 ,UU ,EX ,CONST, AA, BBB, CC,NCONS, NEQUS, M, N, IIN NT
20TER,J,XX)

STOP

END

Note: The numerical values of N, RCONS, J (J = 3*N) must be inserted in
the DIMENSION statement, If NCONS is sero them put PHI (i) ir the DIMENSION

statemant .

Hov to Mske Up Data Deck

Varisble Nsme No, of Cards Format
INDEX, LEVEL, IPRINY, IDATA 1 413
NCONS 1 I5
FMAX(1) as many as required 5E16.8
RMIN(I) as many as required $E£16.8

Setting Up Service Subroutines
UREAL, see page 3.30

CONST, see page 3.34

Migcellaneous
The values of RMIN(I), RMAX(I) put in by the user establish
absolute bounds on the variables which can only shrink. If the user is

unsure, it is safest to make RMAX(I) too large and RMIN(I) toc small.
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(Sophisticated User)
ey
RANDOM SEARCH
Nane
RANDOM
Purpose
To solve a nonlinear optimization function with nonlinear inequality constraints.

The function to be minimized will be of the form U= U(xl,xz,...xn) and

constralnts of the form Qk(xl,xz.. ..xn) 20 k=1,p

Method

The method consists of a random search for the minimum, or simply
a shotgun technique, with iterative shrinkage. Random points for each variable
X3 to % are generated from the expression "i""1+r1(“i""i)
vhere g, 1s the estimated lower limit for x;

u; 1is the estimated upper limit for x4

ry is a random nusber uniformly distributed between zero and one.
Any generated point that violates an inequality constraint is discarded. If
the constraints are violated NSMAX times consecutively the process will stop.
Problems having more than a few constraints are liable to bog down in
violations, particularly if the initial limits overlap appreciably infeasible
areas.

The search 18 begun by evaluating NUMR random points by use of the
above equation, NUMR being a multiple of the number of variables., From these
the best NRET are selected and used as the basis for a new and shrunken range
for each variable. NRET is defined by NUMR/NSHRIN where NSHRIN is a shrinkage
factor. Within this new space NUMR new random points are evaluated. These,
plus the previous NRET best, are sorted to yield a new NRET best and a new
shrunken space. The process is repeated until the range of each variable is

acceptably small, or until the range has been shrumken MAXM times.
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(Sophisticated User)
4-46

References

1, HcArth;ar. D.S., "Strategy in Research - Alternative Methods for
Design of Experiments", IRE Trans, on Engrg. Management, Vol EM-8,
March 1961, pp. 34-40.

2. Gallagher, P.J., "MOP-1, An Optimizing Routine for the IBM 650",

Can. GE Civilian Atowmic Power Dept. Report No. R6CcAP35, 1960,

Special Features

MSTART is an integer used to initialize the random number generatox
subroutine FRANDN. 1f a large number of random points is generated (MAXM
and/or NSMAX very large), several values of MSTART should be t¢ried to
insure that the random numbers are being uniformly distributed.

It should be noted that the user's input values for RMAX(I) and
RMIN(I) establish absolute extremes for the variables which can only shrink.
1f there is any uncertainty, RMAX(I) should be made higher than expected
and RMIN(I) lower than expected. At LEVEL = 0, parameters set internally
for RANDOM are:

F = ,001

NSMAX = 300

MAXM = 400

NSHRIN

4

MSTART = 128

NUMR is set internally in RANDOM as NUMR=J#NSHRIN, where J is set in
MAIN and i3 equivalent to NRET. The user can set NRET and NUMR independently
since he inputs J and NSHRIN. A reasonable value of J is the integer result

of 10aN/NSHRIN.
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Input Variables
INDEX

LEVEL

IPRINT

IDATA

NCONS

NSHRIN

MSTARY

NSMAX

RMAX(T)

RMIN(I)

Qutput Variables
U

x(1n

(Sophisticated User)

4~47

index number of subroutine, = 6

level of sophistication, = 1

prints results every IPRINT cycles, set at

zero for no intermediate output

= 1, all input data is printed out

= 1, input data is not printed o.nr.

the number of independent variables X(I) (specified in MAIN)
the number of inequality constraints

fuétion of original input range used a8 a convergence
criterion

shrinkage factor

any positive integer, used as starting value for
generating random numbers

maximum nusber of cycles allowed if process does not
converge

saxinua number of times conmstraints can be violated
consecutively before abandoning the search

upper bound for variable X(I)

lower bound for variable X{I)

minimum value for the function

value of x; where minimum occurs
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(Sophisticated User)

4-48

How to Set Up MAIN Program

DIMENSION X(N), PHI(NCONS) RMAX(N) ,RMIN(N),Z(J,N),UU(J)

Nanumerical value

J=pumerical value

Mel

NN=]1

NTOTERw1

CALL OPTIPAC(X,PHI,PSI,A,B,C,WORKA,DELX,STEP XSTRT ,RMAX,FMIN,DSTAR
1,NTERMS ,GS ,WATE,TEST 2 ,UU,EX,CONST ,AA ,BBB , CC,NCONS ,REQUS ,M,N NN ,NT
207TER, J , XX)

sTOP

END

Note: The numerical valuas of N, NCONS, J (J » NREY) must be inserted im
the DIMENSION statement. If NCONS is zero, thea put PHI(1) 1a the

DIMENSION statement.

Bow to Set Up Data Deck

Nene Ho, of Caxds ) Format
INDEX, LEVEL, IPRINT, IDATA 1 413
NCONS 1 15
1 4 1 E16.8
MAXM i 16
MSTART ' 1 16
NSHRIN 1 16
nsmi 1 16
RMAX(I) as many as required SE16.8
RMIN(I) as many as required 5E16.8

Setting Up Service Subroutines

UREAL, see page 4~63

CONST, see page 4-67



(Sophisticated User)

4=49

Subroutines Called

MAIN

[SENSE }—{ OFTIPAC }—{DATA |}

[ CONST ] RANDOM ANSWER

 UREAL |
{ FRANDN |

Miscellaneous
RANDOM 183 a relatively slow method, but it does not hang up on
local optima. For this reason, it is a good method for checking the

results of other methods.

An improved optimum may be obtained, at the expense of time, by
using a larger value of NSHRIN. RANDOM will not run efficiently with small

values of NSHRIN, say less than 3.
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(Programmer)

5-57
SUBROUTINE RANDOM

enexral

Subroutine KANDOM is used only as a method subroutine and is called

only by OPTIPAC.

Internal Varisbles
Vartables not fucluded in the list below, can be found in the

Thesaurus of Program Parameters.

Name : Definition

AA(1) Lower bounds on X(1), set=RMIN(I) initislly
cc(Y) Upper bounds on X(I), set=RMAX(X) initially

¥ Fraction of initial range used as the naximum

acceptable range for convergance

K Temporary counter to compare with IPRIKT for printout

Ko ‘ Flag, set=l after shnomal exit, otherwise X0=0

L Temporary counter of consecutive constraint violations

Ll,L2 Temporary counters @cd for printing out results

LARGE Temporary variable used for sorting the UU array

NAXM Maximum number of cycles permitted if ro convergence

2] An integer comstant required by subroutine FRANDN,
set=0 after initial CALL FRANDN

MSTART Any positive integer to be used as the initial value of MM

N Number of independent variables X(I)

NCONS Number of inequality comstraints PHI(1)

FCYCLE ' Counter of the number of complete cycles
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NRET

NSHRIN

NSMAX

NUMR
NVIOL
PHI(T)
R(1)

v
UTEMP

uucI)

UXTRA
TESTI(1)
x(n
XTEMP(I)

2(1,J)
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(Programmer)

5-58

Number of "best” random feasible points retained in each
cycle, called J in MAIN program, and used to dimension
the Z array

Shrinkage factor where NRET=NUMR/NSHRIN

Maximwn number of consecutive infeasible random

points permitted

Number of random feasible points geperated each cycleaNRETaNSHRIN
Counts the number of counstraints violated at z point
Values of the inequality constraints

A string of N random numbers associated with X(1)

Value of the optimization function at the optimum

Value of the optimization function at a trial point
Values of the optimization function at each of the NRET
feagible points, UU(1) contains the largest value
Temporary storage for trial values of U

The maximum acceptable range of X(I) at convergence
Values of the independent variables at the optimum
Values of the independent variables at trial points

The NRET dbest random feasible points, stored in rows



(Programmer)

Progras Logic

5-59

Initialize counters
CC(1)=RMAX(1)

AA(I)=RMIN(I)
[TESTL(I)=F*(RMAX(1)-RMIN(I))
ol

it}

XTEMP(1)=AA(I)+R(I)*(CC(I)-AA(I))
Evaluate UTEMP, PRI(1)'s at this point

Generate a randoam point

feasible pts.

lves

Generate a random point

Evaluate UXTRA, PHI(I)'s at this pt.

' P o NUMR Put largest UU(I)at UU(1)
XTEMP (1) = AACT)HR(I)*(CC()~AA(L)) | feasible tricl and corresponding Z(1,J)
pts.

yet values at Z{1,I)

YES
Retain improved point
2(J,1)=XTEMP(T)
jou(a)=txTRA

NCYCLE=NCYCLE+1

Shrink the search area of each variable
AA(I)=smallest X(I) in set of NRET points
CC(1)=largest X(I) in set of NRET points

Put smsllest UU(I) in U

and corresponding 2(1,J)
in X(1)

Print out U and X(1) at
the optimumm or at
the last iteration

ln_y
NOKcC(1y-aa(T) )>txsn(1>”_55..<ucvasﬁ“_°___.
AW 1 7
YES
{K__fo-l:]
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(Programmer)

5-60

Calls To and From Subroutine RANDOM

[GFETFEE]
]
o] [F

Notes

RANDOM cannot handle fnequality constraints, and NEQUS is therefore
aot an input parsmeter. To avoid getting an indefinite error message in
subroutine ANSWER, NEQUS is sets0 ir the body of RANDOM.

1f MAXM cycles are exceeded, it is still necessary to sort the

U(1) array so that the dest point so far can be output.

63



B) RESULTS OF TEST PROBLEMS

Design of a Three Phase Electrical Transformer

Number of independent variables 6

Nunmber of inequality constraints 8

Number of equality constraints 0

User's level of sophistication 0

Number of methods tried 8

Method Time [i] Independent Variables (ins)

Name (Secs) (cu.ins.) Xy X, X4 X, Xz x6
SEEK1 0.68 73042. 11.27 14.42 11.78 57.99 178.69 524.81
SEEK2 0.69 70017. 7.90 15.75 16.92 53.87 193.76 499.21
SEEK3 2.39 66723. 8.66 12.91 18.86 40.77 187.56 439.45
ALTS 6.44 70704. 10.26 11.22 16.25 62.50 173.39 569.23
APPROX 12,24 67572. 10.13 10.00 18.00 50.00 172.54 503.55
RANDOM  29.69 68007. 8.67 11.49 16.01 58.26 167.66 527.40
GEOM 1,09 66704, 8.41 13.09 18.75 40.81 187.15 436.56
ADRANS 6.61 69077. 9.41 8.75 15.57 67.82 152.44 589.25
Design of a Three Member, 2~Dimensional Structure
Number of independent variables 3
Number of inequality constraints 9
Number of equality constraints 0
User's level of sophistication 0
Number of methods tried 7

avoided by careful formulation of the problem.

As described in the text, equality constraints have been

were run because the problem is not of a form acceptable to

geometric programming.
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Method Time 3] Independent Variables (sq.ins)

Name (Secs) (Ibs) %y Xy Xq
SEEK1 0.71 5.659 .0095 .0649 .3375
SEEK2 0.94 7.995 .0000 .0778 .5000
SEEK3 3.50 3.127 .0483 .G000 .1688
ALTS#% 0.47 5.545 L0247 .0375 .0334
APPROX* 0.25 - - - -
RANDOM 3.52 5.777 .0215 L0427 .3493
ADRANS 11.52 3.127 .0483 .0000 .1688

*% Subroutine ALTS could not make a linearized step after the direct
search had hung up. The values shown are simply the results at
the last iteration of the direct search.

* Subroutine APPROX could not perform the second linearization

and therefore could not get started.

Design of a Simple Roller Bearing

Number of independent variables 5

Number of inequality constraints 6

Number of equality constraints 0

User's level of sophistication 1

Number of methods tried 7

Method Time U Independent Variables

Name (Secs) (cu.ins) Xy x2 x3 x4 x5

SEEK1 0.54 20, 350 .280 .280 .637  13.29 2.240
SEEK2 0.71 26.976 .198  .198 1.314 25.50 1.585
SEEK3 6.65 28.695 .185 L185 1.472 28.96 1.484
ALTS 0.90 20.053 .287 .287 600 12.74 2,292
APPROX 2.74 20.053 .287 .287 600 12,74 2.292
RANDOM 14,37 21.708 .311  .287 648 9.09 2.225

ADRANS 8.14 20.077 .287  .287 .600 12.65 2.293
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C) FORTRAN IV LISTING OF PROGRAM OPTIPAC

- . G . . T -y Y W S N o A Ao B oy W M S N S T S S AT U T i HT D D D A B e

SUBROUTINE OPTIPAC(XQPHIDPSI’AzﬁrC’WORKAsDELX9STEPQXSTRTyRﬂAX,RMIN
1sDSTARSNTERMS 9GS sWATE s TEST 9ZsUUsEX s CONST2AA+BBB s CCoNCONSHNEQUS s ol
2eaNNINTOTERSNRET s XX)

DIMENSION X(l)oPHI(l”PSI(l)¢Z(NRhTQI,;A(M l)aU(l)’C(l)’WORKA(l)a
lCC(NTOTER91)9XX(1)sDELX(l)aqTEP(l)9XSTRT(1‘9RMAX(1)9RMIN(1)9DSTAR(
2NTOTER1) sNTERMS(1)sGS(1) sWATE(L) s TEST(LI »UUIL) sEXINTOTER»1)»CONST
3(1)9AA(NTOTER» 1) +»BBB(NTOTER,1)

COMMON INDEXsLEVEL »IPRINTSIDATASFaMAXMsGsNSHRINSMSTART sPDSEPSHICT
1IFENCE sPL sNSTOP sNSMAX sNSHOT sNTESTsTESsResREDUCE s NVIOL s KOs NNDEX

COMMON /A1/WORK1(100) sWORK2(100) sWORK3(100/sWORK4(10D)

COMMON /AZ/WORK5(100) sWORK6 {100

COMMON /A3/WORK9(100) WORKLC{100)sWORK11(100)

COMMON /A4/WORK12(IOO)QWORKlB(lUO)9WORK14(100)aWORK15(100)

COMMON /A5/WORK16(100)

COMMON /AT/WORK18(100/sWORK19(100)

COMMON /A8/IWORK1(100!

COMMON /NAME /METHOD (9 ]

STORE THE NAMES OF THE METHODS FOR HEAUINGS IN SENSE AND ANSWER

DATA (METHOD(I)s»1=1s9)/6HSIMPLE sSHSEEKL »SHSEEK2s5HSECK3 94HALTS»0HA
IPPROX s SHRANDOM s 4HGEOM s 6HADRANS/

SUBROUTINE OPTIPAC 1S ESSENTIALLY AN EXTENSION OF THE SMALL USER-

WRITTEN MAIN PROGRAM. IT PERFORMS THE FOLLOWING FUhCTIONS.-.

le IT CALLS SUBRCDATA TO READ IN ALL NECESSARY DATA

2e IT ASSIGNS VALUES TO CERTAIN PARAMETERS AT LEVEL=0

3¢ IT CALLS THE REQUESTED METHOD SUBROUTINE

4e IT COMPUTES THE NET EXECUTION TIME FOR THE METHOD AND PRINTS IT

out

5¢ AFTER A NORMAL EXIT FROM A METHOU SUBROUTINE IT CALLS SUBRe.

SENSE TO PERFORM A SENSITIVITY ANALYSIS ON THE SOLUTION

CONT INUE

INITIALIZE THE EXIT MODE FLAG KO

KC=0

CALL SUBRDATA TO READ IN ALL NECESSARY DATA FOR THE METHOD CHOSFN

CALL DATA (NsNCONSSNEQUSsMesNTOTERSRMAXsRMINaXSTRTsGS5sSTEPHDELXSTES
1T osWATESNTERMSSsEXsCONSTsBsCrAsNSENSE s FSENSE!

THE STOPPING CRITERION IS INDEX=99 SO EVERY COMPLETE UDATA LECK

SHOULD END WITH 099 PUNCHED IN COLUMNS 1,2,AND 3

IF(INDEXWSEQe99) RETURN

IF(KOWLEQe1YRFTURN

IF KO=1 AFTER CALL TO DATAs THERE IS NO POINT CONTINUING WITH THE

RUN BECAUSE SEVERAL READ STATEMENTS wWILL HAVE BEEN SKIPPED AND THE

GENERAL DATA SEQUENCE IS NOw SHIFTED OUT OF PHASE

ZERO U AND CLEAR THE X(I! ARRAY AND ALL COMMON BLOCK WORKING

ARRAYS BEFORE CALLING A NEwW METHOD

U=0.0

DO 2 I=14N

X(1)=0.0

CONT INUE

DC 4 1=1,100

66
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WORK1(I)
WORK2{ 1)}
WORK3 (1)
WORK4 (1)
WORKS (1)
WORKE&E (1)
WORK9 (1)
WORK10(1
WORK11(1
WORK12(1
WORK13 (1
WORK14({ ]
WORK15 (1
WORK16(1
WORK18(I
WORK19(1)
4 IWORK1(1)=0 ;
CALL SUBRSECOND TO GET THE STARTING EXECUTION TIME FOR THE METHOD
CALL SECOND(START)
IF{LEVELeEQeOeaAND e IDATACEQ.1!WRITE(65300!
GO TO THE PART OF OPTIPAC WHICH SETS PARAMETERS FOR LEVEL=0 AND
CALLS THE REQUESTED METHOL SUBROUTINE
3 JACK=INDEX+1
GO TO (10911s12e11514915916917918)5JACK
10 IF{LEVEL«NE«O) GO TO 110
NSTOP=4%M+10
IF(IDATAEQeLI)WRITE(69309!NSTOP
110 CALL SIMPLE(XsUsMsNsAsBsCsWORKA!
GOT020
11 IF(LEVEL.NEZO) GO TO 1111
F=e01
MAXM=300
G=e01
IF{INDEXSEQelINSHOT=1
IF(INDEXSEQa1INTEST=100
NOTEeee AVOID ZERO STARTING VALUES BY ADDING A SMALL INCREMENT
DO 211 I=1sN
211 XSTRT(I}=(RMAX(I)+RMIN(I))/2. +0.000001
IF{IDATACNE«1)GOTO1111
WRITE(6+303)F
WRITE{6»304)MAXM
WRITE(6930516
IF{INDEXeEQelIWRITE(6+312)NSHOT
IF{INDEX+EQel )WRITE(65313INTEST
WRITE(69319) IXSTRT(I)sI=1,N/
1111 IF(INDEXsNE«3)GOTO111
IF{LEVELNELC)GOTO1112
R=1a.0
REDUCE=0.04
IF{IDATAWNE.1}G0TO1112
WRITE(65337)R
WRITE (65338 )REDUCE
1112 CALL SEEK3(X9U9N’XSTRT9RMAXaRMIN,PHI,PSI9NC0N59NEQU59UARTQDST
IARSNTERMS«NTOTER) '

~ e e we me B BHN
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111 CALL SEEK1(XsUsNsXSTRTsRMAXsRMINsPHI sPSI»NCONSsNEQUS sUARTSDSTARSNT

12

212

112

14

214

2214
2215

1ERMS+NTOTER)

GO TO 20

IF(LEVEL.NE.O) GO TO 112
F=1.0E~06

MAXM=50

PD=0eT75

EPS=1.0E~-B

ICT=4

IFENCE=0

PL=zl.3

DO 212 I1=14N
XSTRT{II=(RMAX{(I)}+RMIN(I))/2+s + 0+000001
GS(1)=15.0

IF(IDATA«NEL1)GOTOL12
WRITE(6+303)F

WRITE(69304)MAXM

WRITE(6+307)PD .

WRITE(69332)EPS

WRITE(69333}1CT

WRITE{(69334) IFENCE

WRITE(6+308)PL _
WRITE(69319) (XSTRT(1)s1=1sN!
WRITE(6’320)(GS(I)’I=1’N)‘
CALLSEEK2(XsUsNsXSTRTIRMAXsRMINsPHI 9PSI yNCONSsNEGQGUSGS!
GO TO 20

IF(LEVELeNE«O) HLO TO 114

F=0.0l

MAXM=300

G=0.01

PL=1le5

NSTOP=4%M+10

NSMAX=40

TES=0.0001

DO 214 1=1sN
XSTRT(1)=(RMAX(I)+RMIN(I) )} /2, o+.000001
STEP(1)=0.10%ABS(RMAX(I)=RMIN(I))
DELX(I)=e001%#ABS(RMAX{II-RMIN(I?)
IF(NEQUS«EQ.0)GOTO2215

DO 2214 I=1,.NEQUS
WATE(I)=100E+20
IF(IDATASNE.1)GOTOL114
WRITE(6+303)F

WRITE(6+304)MAXM

WRITE(69305)G

WRITE(6+308)PL

WRITE(69309)INSTOP
WRITE(69310)NSMAX

WRITE(6+315)TES _
WRITE(65319) (XSTRT(I)sI=1sN!
WRITE(65321)(STEP(I)sl=1sN])
WRITE(69322)(DELX(1)sI=1sN)
IF(NEQUS.GT.O)WRITE(&932&’(WATE(I),I=19NEQUS)
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114 CALL ALTS{XosUsNsXSTRTsRMAXsRMINsWATE 9STEP sNEQUSsNCONSsPST 9sPHI sMaNN
15A+89C s WCREASDSTARSNTERMS sNTOTERSDELX 9 XX )

GG 02U
CONT INUE
IF(LEVEL«NES0O)GOTO115

F=0.U1

NSTOP=4%M+10

NSMAX=40

D0215 I=1sN
XSTRT(I)=(RMAX(I)+RMIN(I) ) /2.
STEP(1)=041%ABS(RMAX (1}=RMIN{
DELX(I)=0sCU1%ABSIRMAX (1) =RMI
TEST(I)=0.001%ABS{RMAX (1 1-RMI
IF{IDATANE«1)1GOTO115
WRITE(69303)F
WRITE(65309)NSTOP

WRITE (69310 )NSMAX
WRITE(635319) (XSTRT(I)sI=1sN)
WRITE(69321) (STEP(I)sIl=1sN!
WRITE(69322)(DELX(T)sI=1sN)
WRITE(69323) (TEST(I),1=14N)

15

215

+ 0000001
[

N(L)H

N(ID))

115 CALL APPROX(XsUsNsDELXsSTEPsTEST sMsNNsAsBsCaWORKASXSTRTSRMAXSRMIN
1PHI oPST sNCONSsNEQUS s UART s DSTARSNTERMS sNTOTER o XX !

GO 70 20
IF(LEVEL«NESQ)
=4001
MAXM=400
MSTART=128
NSHR IN=4
NSMAX=300
[IFIIDATALNES1IGOTO116
WRITE(64+3C3)F
WRITE (65304 1IMAXM
WRITE(65353)MSTART
WRITE(62352)INSHRIN
WRITE(6s310)INSMAX
CALL RANDOMI(IXsUsNsRMAXsRMINJZ
GO TO 20
IF(LEVEL«NE«O)GOTO117
F=0.01
MAXM=300
G=0.001
IF(IDATANE«1)GOTO117
WRITE(6s303I)F
WRITE(635304)MAXM
WRITE(6+3051G
117 CALL GEOMINTOTERsMsNCONSSNTER
19X e XSTRT)
GOTQ20
IF(LEVEL«NE«G)
MAXM=T75
MSTART=128
NSMAX=50
DO 218I=1sN

16 GO T0O 116

116

17

18 GO TO 118

sUUsNRET sNCONSsPHI!

MSsEX s CONST s AAs BBB s CCyDSTARSsRMAX sRMIN


http:IF!LEVELeNE.Ol

[a)

70

218 XSTRT(I)=(RMAX(IJ)+RMIN(1/}/2¢e + 0000001
IF(IDATANE1)GOTO118
WRITE(6930C4)MAXM
WRITE (69353 )MSTART
WRITE(69310)NSMAX

WRITE(6+319) (XSTRT(I)sI=1sN!
118 CALL ADRANS(XsUsNIXSTRTsRMAXsRMINsPHI sPSI sUART sNCONS sNEQUS+sDSTAR SN

1TOTERSNTERMS)
CALL SUBRSECOND TO GET THE FINAL TIME FOR THE METHOD AND COMPUTE
THE NET EXECUTION TIME AND PRINT IT OUT
20 CALL SECOND(FINISH)

T=FINISH-START

WRITE(6+10417

IF(INDEXeEQeQeORINDEXeEQe7?GOTOL

IF(KO+EQeO) GO TO 22

IF (NSENSEEQs1)WRITE (641001

GO TO 1
SENSITIVITY ANALYSIS IS PERFORMED ONLY AFTER A NORMAL EXIT(KO=0)
FROM THE METHOD SUBROUTINEs AND  WHEN THE WORD SENSITIVITY

APPEARS IN COLUMNS 13 TO 23 ON THE FIRST DATA CARD FOR THAT METHOD
22 IF(NSENSE.NEL.1)GOTO1
IF(FSENSESLE0.0)60T023
CALL SENSE(XsNsNCONSsNEQUSFSENSEs INDEX!
GOT01
USER HAS NOT ENTERED A VALUE FOR FSENSE ON THE (NCONS} DATA CARD
23 WRITE(65101)
GOTO1
100 FORMAT (62HC ERROR IN RESULTS 50 SENSITIVITY ANALYSIS IS5 NCQT PER
1FORMED) ‘
101 FORMAT(1H~+92HERROR*®¥SENSITIVITY ANALYSIS OMITTED -~ NO VALUE FOR
1 FSENSE ENTERED ON THE (NCONS) DATA CARD//!
lu4 FORMAT(1H=314Xs1THEXECUTION TIME =sFBebs9H SECONDS//)
300 FORMAT(1H=-96Xs67HTHE FOLLOWING PARAMETERS ARE ASSIGNED VALUES INTE

IRNALLY FOR LEVEL=0/7X967H==—=mm—mmmm e e e
2 e e e e e e /)

301 FORMAT(61HONUMBER OF INDEPENDENT VARIABLES ¢ o o o o o o o o
I N =416)

302 FORMAT(61HONUMBER OF INEQUALITY (eGEe) CONSTRAINTS o o o o & NCO
INS =416} .

303 FORMAT(61HOFRACTION OF RANGE USED AS STEP SIZE o o o s o ¢ &
1 F =+E19.8) ' :

3U4 FORMAT(61HOMAXIMUM NUMBER OF MOVES PERMITTED o o s o o o o » MA
IXM  =416)

3U5 FORMAT(61HOSTEP SIZE FRACTION USED AS CONVERGENCE CRITERION.

1 G =4£19.8)
306 FORMAT(61HONUMBER OF EQUALITY CONSTRAINTSe o o o o o ¢ o o o NE

1US =+16) :
307 FORMAT(61HOSTEP LENGTH MULTIPLIER FOR INITIAL PATTERN MOVE .

1PD =4E19.8)
3U8 FORMAT(61HOACCELERATION FACTOR FOR PATTERN MOVE STEP SIZES

IPL  =3E19.8)

309 FORMAT(61HONUMBER OF ITERATICNS PERMITTED. o o o o o o o o o NST
10P =,16)

310 FORMAT(61HOMAXIMUM NUMBER OF LINEARIZED STEPSe ¢« o o o o o NSM
1AX =4]6)

<
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312 FORMAT(61HONUMBER OF SHOTGUN SEARCHES PERMITTEDe o o o o o NSH

10T =+16)

313 FORMAT(61HONUMBER OF TEST POINTS IN SHOTGUN SEARCH o o o o NTE
1ST =+16)

314 FORMAT{61HONUMBER OF CONSTRAINT EWUATIONS (ROWS!) IN SIMPLEX.
1 M =416}

315 FORMAT (61HOCONVERGENCE CRITERION FOR OPTIMIZATION FUNCTION T

1ES =4E19.8)

316 FORMAT(61HOTOTAL NUMBRER OF TERMS IN ALL RELATIONSe o o o o o NTOT
1ER  =,16)

317 FORMAT(61HOESTIMATED UPPER BOUND ON RANGE OF X(I)e o o o o o RMAX(
11)  =+//(5E1648) "}

318 FORMAT(61HOESTIMATED LOWER BOUND ON RANGE OF X(IJe o o o o o RMINI
11) =9+//{5E1648))

319 FORMAT(61HOSTARTING VALUES OF X{I) o o o o« o o ¢ o o o o o oXSTRTH
11) =4//7(5E1648):

320 FORMAT(61HOSTEP LENGTH MULTIPLIERS FOR UNIVARIABLE SEARCH. . GS¢
11) =5//7(5E1648)}

321 FORMAT(61HOINITIAL STEP SIZE INPUT BY USER e o ¢ o o o o o o STEP(
11V =9//(5E16.8)!

322 FORMAT(61HOINCREMENTS FOR APFROXIMATING FARTIAL DERIVATIVES. ULELXI
11) =4+//(5E1648))

323 FORMAT(61HOLOWER BOUND ON STEP LENGTH REDUCTIONe o o o o ¢ o TESTH
11) =+//7(5E1648))

324 FORMAT(61HCWEIGHTING FACTORS o o o o o o o o o o » o o o o o WATE(
11) =5//(5E16.8}))

326 FORMAT(61HONUMBER OF TERMS IN EACH RELATIONe o o o o o o o NTERMS(
11V =s//(5E16.8})

327 FORMAT(61HOEXPONENTS OF EACH TERM IN EACH RELATION o « o o o EX(Is
1J) =+//(5E16.8))

328 FORMAT(61HOCONSTANT (POSITIVE! COEFFICIENTS OF EACH TERM « «CONST(
1) =3//7(5E1648))

329 FORMAT(61HORIGHT HAND SIDE OF SIMPLEX ARRAYe o o o o o o o o B(
IM)  =9//(5E1648))
330 FORMAT(61HOCOEFFICIENTS OF SIMPLEX OBJECTIVE FUNCTIONe o o o Cf

IN) =9//(5E1648)) :
331 FORMAT(61HOCOEFFICIENTS OF SIMPLEX CONSTRAINT EQUATIONSe o A(My

IN) =s//7(5E1648))

332 FORMAT(61HOMAX. RELATIVE CHANGE IN U FOR CONVERGENCE o o o &
1PS =5E19.8)

333 FORMAT(61HONO. OF TIMES STEP SIZE DIVIDEL BY 1060 o s o o & 1
1CT =916}

334 FORMAT(61HOOPTION TO STOP AFTER UNIVARIABLE SEARCH FAILS « « IFEN
ICE =516)

337 FORMAT(61HOPENALTY MULTIPLIER USED IN SEEK3e o o o o o o o o
1 R =39E19.8)

338 FORMAT(61HOREDUCTION FACTOR FOR (R) AFTER EACH MINIMIZATION. REDU
1CE =+E19.8)

352 FORMAT(61HOSHRINKAGE FACTORe o o o o o o o s o o o o o« o o » NSHR

1IN =916}
353 FORMAT(61HOSTARTING VALUE FOR RANDOM NUMBERS o ¢ o o o o o o MSTA

IRT =416)
END

m
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SUBROUTINE SENSE(XsNsNCONSsNEQUSsFSENSE 3 INDEX !
DIMENSION X(1)

COMMON /NAME /METHOD(9)

COMMON /A3/XTEMP(100) sABOVE (100) oBELOW(100!
WRITE(651)METHOD (INDEX+1)

WRITE(6+8)FSENSE

IN THE FOLLOWING SENSITIVITY ANALYSIS, EACH VARIABLE IN TURN 1S
MULTIPLIED BY THE FACTORS (le+FSENSE) AND (1l.-FSENSE} AND ALL THE
CONSTRAINTS ARE EVALUATED AT EACH POINT.
STORE THE OPTIMUM VALUES OF X(I) IN XTEMP(I]
DO 10 I=1,N

XTEMP(I)=X(1)

DO 590 I=1sN

X(1)=(le-FSENSE)®XTEMP(I)

WRITE(692)1

WRITE(693)1sX(1)

CALL UREAL (XsULESS)

IF(NCONSWEGe0)GOTO20

CALL COMNST(XsNCONSsBELOW)
X(I)=(1e+FSENSE)*XTEMP (1)

WRITE(694)IsX(1)

CALL UREAL { X sUMOCRE)

WRITE(6s5)ULESS s UMORE

IF(NCONS«EQ.0}GOTO30

CALL CONST{XsNCCONSsABOVE) ,
WRITEL636) (JsBELOW(J) sABOVELJ) »J=14NCONS)
IF(NEQUSEQeG)GOTO40

CALL EQUAL (X sABOVE sNEQUS)
X{I)=({1e~FSENSE)®XTEMP (1)

CALL EQUAL (X sBELOWsNEQUS)

WRITE(G6s7) (JsBELOW(J) sABOVE(J) s J=1+NEQUS)
X{I)=XTEMP (1)

CONT INUE _
FORMAT (1H~s45HSENSITIVITY ANALYSIS OF THE OPTIMUM FOUND BY ,A6/1X,
151Homm o e e e e e e e —————— 7/}

FORMAT (1H=-»23Xs IUHVARYING X{s1296H) ONLY/24X»1BH=mmmmm o et
1/7)

FORMAT (1H+92X e 2HX(91293H) =,£1848)

FORMAT (31X s2HX (s 1293H) =sE16e8)

FORMAT (1HO 96X s3HU =9E1848510XsE16e8/)

FORMAT(1IXs4HPHI(91293H) =3E18e8910XsEL6e8)

FORMAT ( 1HO/1X s 4HPST(91293H) =9sE18e83510XsL1648)
FORMAT (1HO »52HFRACTION OF OPTIMUM X{I} USED AS INCREMENTs FSENSE =
19E1648/77)

RETURN

END
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SUBROUTINE ANSWER(UsXsPHI sPSI sNsNCONSSNEQUS)
DIMENSION X(1),PHI(1)sPSI(1)
COMMON INDEX sLEVEL sIPRINT s IDATASFsMAXMaGINSHRINIMSTART sPDsEPS,ICT
1IFENCE sPLaNSTOPsNSMAX sNSHOT oNTEST s TESsRsREDUCE s NVIOL s KOs NNDEX
COMMON /NAME/METHOD(9!
THIS SUBROUTINE 1S USED MERELY TO OUTPUT THE FINAL SOLUTION IN A
STANCARD FORMe IF AN OPTIMUM 1S NOT REACHED(KO=1)THEN THE RESULTS
AT THE LAST ITERATION MAY BE PRINTED OUT. ‘
CALL UREAL{XsU)
IF(KOeEQ«0!GOTOL
WRITE(6s 18 IMETHOD ( INDEX+1 )
WRITE(6919)U
GOTO2
1 WRITE(6920/METHOD({ INDEX+1)
WRITE{6s21JU
WRITE(6922) (ToX(I)sI=1sN)
IF(NCONS«EQ«U)GOTO3
CALL CONST(XsNCONSsPHI)
WRITE(64+23)
WRITE(6924) (1sPHI(I)9I=14NCONS)
3 [F(NEQUS.EQeC)GOTO30
CALL EQUAL(XsPSIsNEQUS)
WRITE(6+25)
WRITE(6926) (1sPSI{1)sI=1sNEQUS)
18 FORMAT(1H=s16Xs30rRESULTS AT LAST ITERATION OF 3A6/17Xs36H=wmmm=x

o

19 FORMATI(29Xs3HU =,E16.8//7)
20 FORMAT(1H1s21Xs27HOPTIMUM SOLUTION FOUND BY sA6/22X933Hwm—mmeem——

21 FORMAT (20X s12ZHMINIMUM U =+El6e8//)
22 FORMAT (25X 92HX(912s3H!) =4E1648)
23 FORMAT(1H=s22HINEQUALITY CONSTRAINTS)
24 FORMAT (23X s4HPHI(+1293H) =,E1648}
25 FORMAT (lH=+22H EQUALITY CONSTRAINTS)
26 FORMAT (23X e4HPSI(51293H) =4E16e8)
30 RETURN

END

SUBROUTINE DATA(NsNCONSsNEWUS»MsNTOTERsRMAXIRMINsXSTRTsGSsSTEP SDEL
1XsTESTsWATE sNTERMS sEX s CONST 9B aC s AsNSENSE s FSENSE)

DIMENSION RMAX (1) osRMIN(L1) oXSTRT(149GS(1) o LTEP(L1 sDELXIL1I 9TEST(1)
IWATE(L) oNTERMS{1) sEXINTOTER s 1+ sCONST(1)s8(1)9C{1)4A(Ms1)sTITLE(1T)
COMMON INDEXsLEVEL sIPRINTsIDATAsFsMAXMsGsNSHRINSMSTART sPDSEPSICT
1IFENCE sPLINSTOP sNSMAX s NSHOT sNTESTs TESsRsREDUCE 9NV IOL s KOs NNDEX
COMMON /NAME/METHOD(S!

THE FIRST DATA CARD (INDEXsLEVELSIPRINTSIDATA} MAY CONTAIN A HEAD-
ING STARTING IN CCOLUMN 13 AND ENDING IN OR BEFORE COLUMN 80

READ(5910C) INDEXsLEVELsIPRINTsIDATAS(TITLE(I)sI=1417)
IFCINDEXeEQe99)RETURN
WRITE(69s241 ) (TITLE(I)»I=1417)
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6C1

602

603

604

6Ub
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CHECK TO SEE IF SENSITIVITY ANALYSIS HAS BEEN REQUESTED
NSENSE=0

IF(TITLE(]) oEQe4HSENSeAND«TITLE(2) eEQe4HITIVINSENSE=1
SENSITIVITY ANALYSIS IS NOT AVAILABLE TO SIMPLE OR GEOM
IF(INDEXeEQeCesORs INDEXeEQe TINSENSE=0
IF(IDATANE«1)GOTO599

WRITE(65240)METHOD ( INDEX+1)

WRITE(65197) INDEX

WRITE(6s198)LEVEL

WRITE(69199)IPRINT

WRITE(69200) IDATA

CONT INUE

CHECK THAT VALUES OF IDATA AND LEVEL ARE ACCEPTABLE

IF(LEVELeGTe1eCReLEVELeLT«0!GO TO 600
IF(IDATAGTe1e0R«IDATASLT0!GO TO 601
GO TO 602 '
WRITE(69235)

KO=1

RETURN

WRITE(62236)

KC=1

RETURN

CONT INUE

CONTROL RETURNED TO OPTIPAC IF INDEX OUTSIDE RANGE OeLE«INDEXsLEWE

IF(INDEXeLE«8sORe INDEXeGE Q!GO TO 603
IF{ INDEX«EQe99)RETURN

WRITE(69242) INDEX

KO=1

RETURN
IF(INDEXeEQe Qs ANDeLEVELEQs1)GO TO 13
IF(INDEXeEQeU)IGO TO 15

IF (NSENSE«EGe11GOTO604

NCONS READ FOR INDEX=1929394959657+8

READ(55101 )NCONS
IF(IDATACFEQe1IWRITE(69202)NCONS
GOT0605

NCONS sFSENSE READ FOR INDEX=19233945556,+8 WHEN NSENSE=1

IF SENSITIVITY ANALYSIS HAS BEEN REQUESTED (NSENSE=1) THEN THE
FRACTIONAL INCREMENT FSENSE APPEARS ON THE SAME CARD AS NCONS. THE
FORMAT 1S (I5+E1648)

READ (545107 INCONS s FSENSE
IF(IDATAEQe1IWRITE(65202)NCONS
IF(IDATAEQe1IWRITE(69254 ) FSENSE
IF{INDEXeEQeBeANDeLEVELEQ0O)IGO TO 11
IF(INDEXEQeB8)GO TO 9
IF(INUEXeEQe7eANDeLEVELSEQeQ/GO TO 22
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IF(INDEXeEQe6 e ANDDeLEVEL«EQeQ!GO TO
IF(LEVEL.EQe0)GO TO 11

F READ FOR INDEX=1329334355657

READ(5+104)F
IF{IDATASEQelIWRITE(692031)F
IF{INDEX«EQe5)GO TO 11

CONT INUE

MAXM READ FOR INDEX=1s23354+657,8
READ(55102)MAXM

IF(IDATAEQeL1IYWRITE (65204 )MAXM
IF(INDEXEQ«6)CGO TO 48

18

WHEN LEVEL =1

WHEN LEVEL=1

IF(INDEXeEQeBeORe INDEXsEQe2?GO TO 11

CONTINUE

G READ FOR INDEX=1939447
READ(551041)G
IF{IDATAEQ1IWRITE(692051G

IF(INDEX«EQe7)GO TO 22
CONTINUE

NEQUS READ FOR INDEX=1+29394+5+8

READ(55101)INEGUS
IF(IDATAEQe1IWRITE (65206 INEQUS

IF(INDEXEQeB8e ANDSLEVEL«EQe11GOTO48

WHEN LEVEL =1

IF{LEVELEQe1)GOTO(14950518512913) 5 INDEX

IF(INDEX-EQ-5)G0TOGS51
GO 70 18

MSTART READ FOR INDEX=6s8 WHEN LEVEL=1

IF(LEVEL.EQ«D)GOTOS52
READ(55102)MSTART '
IF(IDATASEQeLIWRITE(69253)MSTART
IF{INDEX«EQe8)G0OTO052

NSHRIN READ FOR INDEX=6 WHEN LEVEL=1

READ(55102)NSHRIN
IF{IDATASEQs1I)WRITE(69252)NSHRIN
GOT052

CONTINUE

PD READ FOR INDEX=2 WHEN LEVEL

READ(5+1041PD
[F{IDATAWEG. l)WRlTh(é;ZU?’PD

=1

75
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EPSs ICT s IFENCE READ FORINDEX=2

READ(5,104)EPS
IF(IDATACEQe1IWRITE(69232)EPS
READ(5,101)ICT
IF(IDATACEQe1IWRITE(69233)ICT
READ(55101 )} IFENCE
IF(IDATAGEQe1)WRITE(65234) IFENCE
CONTINUE

PL READ FOR INDEX= 2+4

READ(5+104)PL
IF(IDATACEQ«1IWRITE(6+208)PL
IF(INDEXeEQe2)GO TO 18
CONTINUE

NSTOP READ FOR INDEX= 0345

READ(5+102)}NSTOP
IF(IDATASEQeL)WRITE(63209INSTOP
IF(INDEX.EQeC)IGO TO 15

CONT INVE

NSMAX READ FOR INDEX= 43596483

READ (59102 )NSMAX
1F(IDATA«EQel e AND s INDEX eNE o6 ) WRI
IF(IDATAEQeLleAND« INDEXeEQeb I WRI
IF(INDEXeEQe6eORe INDEXsEQe8IGD T
IF(INDEX«EQs4)GO TO 16

CONTINUE

GO 7O 18

CONT INUE

NSHOT READ FOR INDEX= 1

READ(5+102)NSHOT
IF(IDATACEQe1L)WRITE (69212 )INSHOT

NTEST READ FOR INDEX= 1

READ(5+102)NTEST
IF(IDATASEQel)WRITE(6+213)INTEST
GO TO 18

CONT INUE

GO TO 23

CONT INUE

TES READ FOR INDEX =4 WHEN L

READ(5,104)TES
IF(IDATAEQe1IWRITE(6+215)TES

WHEN LEVEL=L

WHEN LEVEL=1

WHEN LEVEL=1

WHEN LEVEL=1

TE(69210) NSMAX
TE (69244 ) NSMAX
O 18

WHEN LEVEL=1

WHEN LEVEL=1

EVEL =1

16
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611

19

612

20

613

CONT INUE
Ry REDUCE READ FOR INDEX=3

IF(INDEXeNE«3)GOT0609
[F{LEVEL.EQ.0)GOTO609
READ(55104)R

READ (5491041 REDUCE
IF(IDATACEQe1)WRITE(65237IR
IF(IDATAEQe1IWRITE(69238)REDUCE

RMAX «RMIN READ FOR INDEX= 14293545546+8

NOTE ALL SUBSCRIPTED VARIABLES ARE ZEROED

ARE READ

DO 610 J=1sN
RMAX(J)=0e

RMIN(J)=0.

CONT INUE

READ(55105) (RMAX(I)sI=1sN)

IF (IDATACEQeL)WRITE(69217) (RMAX(I)s1=1sN/
READ(591051 (RMIN(I)oI=1sN)

IF(IDATACEQe2 IWRITE(69218) (RMIN(I)sI=1sN’

IF(LEVELsNE-1)GO TC 24
IFLINDEXeEQe6)GO TO 24

17

IMMEDIATELY BEFORE THEY

XSTRT READ FOR INDEX= 192+3944+5,8 WHEN LEVEL=1

D0 611 J=1.N

XSTRT(J}=0.

READ(59105) {XSTRT(1)sI=1sN)
IF(IDATASEQe1IWRITE(69219) IXSTRT(I/sI=1,N)
IF({INDEXeEQa2)G0 TO 19

IF{INDEX«EQe4)GO TO 20

IF(INDEX«EU«5)GO0 TO 20

GO TO 24

CONT INUE

GS READ FOR INDEX= 2 - WHEN LEVEL=1

DO 612 J=13N

GS(J)=0. |
READ(55105}(GS(1)sI=1sN}

IF (IDATASEQe1IWRITE(69220) (GS(I)sI=1sN)
GO TO 24

CONT INUE

STEP READ FOR INDEX= 445 WHEN LEVEL=1

DO 613 J=1sN
STEP(J)I=0.
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IF(IDATACEGe1)WRITE(69221) (STEP(I) s1=1sN)
DELX READ FOR INDEX= 445 WHEN LEVEL=1

DO 614 J=1sN
DELX(J)=0,

614 TEST(J)=0.
READ(55105) {DELX(1)sI=1sN)
IF(IDATACEQe 1 )WRITE(69222) (DELX(I)o1=1sN!
IF(INDEX«EGQes4)GO TO 21

TEST READ FOR INDEX= 5 WHEN LEVEL=1L
READ(959105) (TEST(1)4I=1sN)
IF(IDATACEQelIWRITE(69223) (TEST(I)91=1sN!
GO TO 24

21 CONTINUE

WATE READ FOR INDEX = 4 WHEN NEQUSeGT.0 ARND LEVEL=1

[F(NEQUSEQe0)GOTO24
DC 615 J=1,NEQUS
615 WATE(J)=0.
READ(59105) (WATE(I),1=1sNEQUS!
IF(IDATASEQelIWRITE(69224) (WATE(1)s1=14NEQUS)
GO TO 24
CONT INUE

N
N

DATA FOR GEOM  INDEX=7
NTERMSSEXsCONSTs READ FOR INDEX = 7

NTERMS(J)=NOs OF TERMS IN EACH RELATION
EX(1sJ) =EXPTS FOR EACH TERM OF EACH RELATION

CONST(J) =CONSTANT COEFFICIENTS OF EACH TERM
NO«OF VARIABLES=NsNO«OF CONSTRAINTS=NCONS

NT=NCONS+1

NO+OF TERMS IN EACH RELATION=NTERMS(NT!
DO 616 J=1sNT

616 NTERMSI(J)=0

READ(55106) (NTERMS(J)sJ=1sNT]
IF(IDATACEQe1)WRITE(6+226) (NTERMS(J) 9J=19NT)

NTOTER=TOTAL NOOF TERMS

NCHEK=0
DO 500 J=1sNT

CHECK USERS ESTIMATE OF NTOTER

500 NCHEK=NCHEK+NTERMS (J)

78
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IF(NTOTER«EQeNCHEK)GOTO498
KC=1

WRITE (69255 )NCHEK

GO T0O 24

EX(NTOTERsN)=EXPONENTS FOR EACH TERM OF EACH RELATION

498 DO 617 J=1sN
DO 617 I=1sNTOTER

617 EX(1+J)=0.
READ(5105 ) ({(EX(TsJ) oJ=L1sN} 4] =1sNTOTER)
IF(IDATAEQel)IWRITE(6922T)(LEX(L9J)sJ=1eN)s1=1sNTOTER!

CONST(NTOTER)=CONSTANTS FOR LACH RELATIONSHIP

DO 618 J=1»NTOTER

618 CONST(J)=0.
READ(5,105) (CONST(J)}sJ=1sNTOTER)
IF(IDATAEQel)WRITE(69228) (CUNST(J}9J=1sNTOTER)
GO T0O 24

23 CONTINUE

BsCsA READ FOR INDEX= O

DO 619 I=1sM
PO 619 J=1sN
B(J)=0.
CtIy=0.

619 A(19J)=0.
READ(545105)(B(J)sJ=1sM)}
IF(IDATAEQelIWRITE(692290(BlJisJ=1sM)
READ(551058)(C(I)sl=14N)
IF(IDATACEQe1IWRITE(65230) (C{I/s1=1sN)
READ(59105) ({A(IsJ)sJ=1sN)sI=1sM)
[F(IDATACEQel)WRITE(69231) ((AlIsJ) sJd=lsNisI=1,M)

24 CONTINUE

100 FORMAT(413+17A4)

101 FORMAT(15)

102 FORMAT(I16)

163 FORMAT(13)

104 FORMAT(El6.8)

105 FORMAT(5E16.8)

106 FORMAT(1615)

107 FORMAT(I5+E1648)

197 FORMAT(61HOINDEX NUMBER OF METHOD USED o o o o o & o o

1EX =416)
158 FORMAT (61HOUSERS LEVEL OF SOPHISTICATION o o o o o o o

1EL =916)
199 FORMAT(61HOINTERMEDIATE OUTPUT EVERY IPRINT(TH) CYCLE.

INT =.16)
200 FORMAT(61HOINPUT DATA 1S PRINTED OUT FOR I1DATA=1 ONLY.

1TA =,16)

*

IND
Lev
IPRI

1DA



202 FORMAT (61HONUMBER OF INEQUALITY («GEe} CONSTRAINTS o o o
INS =416)
203 FORMAT(61HOFRACTION OF RANGE USED AS STEP SIZE o o e o o o

1 F =3E19.8)
204 FORMAT(61HOMAXIMUM NUMBER UF MOVES PERMITTED o o o o o o o

1XM  =5106)

80
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2u5 FORMAT(61HOUSTEP SIZE FRACTION USED AS CONVERGENCE CRITERION.

1 G =4E19.8)

206 FORMAT(élHONUMBER OF EQUALITY CONSTRAINTSe o o o o o o o o
1US =416)

2067 FORMAT(élHOSTEP LENGTH MULTIPLI&R FOR INITIAL PATTERN MOVE
1PD =35E19.8)

208 FORMAT (61HOACCELERATION FACTOR FOR PATTERN MOVE STEP SIZES

1PL  =+£19.8)
209 FORMAT(61HONUMBER OF ITERATIUNS PtRMITThD- e o o o & o o o

10P =416)

210 FORMAT(61HOMAXIMUM NUMBER OF LINEARIZED STEPSe o o o o o o
IAX =416) '

212 FORMAT {61HONUMBER OF SHOTGUN SEARCHES PERMITTEDe o o o o o
10T =416}

213 FORMAT(61HONUMBER OF TEST POINTS IN SHOTGUN SEARCH o » o
1ST =516}

215 FORMAT (6 1HOCONVERGENCE CRITERION FOR OPTIMIZATION FUNCTION
1ES =5,E19.8)

217 FORMAT(61HOESTIMATED UPPER BOUND ON RANGE OF X(I) o o o o
11) =+//(5E1648))

218 FORMAT(61HOESTIMATED LOWER BCUND ON RANGE OF X(Ile o o o &
11) =,//(5E1648))

219 FORMAT(blH‘STARTING VALUES OF X(I, e e o o & » & ¢ s & o+ o

11) =s//(5E1648))
220 FORMAT(61HOSTEP LENGTH MULTIPLIERS FOR UNIVARIABLE SEARCH.

11} =+//15E16481))
221 FORMAT(61HOINITIAL STEP SIZE INPUT BY USER ¢ ¢ o o o o o o

11) =9//{5E1648))

. NEQ
. NST
. NSM
. NSH
. NTE
. T
« RMAX(
. RMIN{
«XSTRT
N Y
. STEP(

222 FORMAT(61HOINCREMENTS FOR APPROXIMATING PARTIAL DERIVATIVES. DELX{

11) =+//(5E1648}))

223 FORMAT(&IHOLOWER BOUND ON STEP LENGTH REDUCTIONs o o o o
11) =3//(5E1648))

224 FORMAT(61HOWEIGHTING FACTORS o o ¢ o s o o o o o = s o o o
11). =9//(5E16.8))

226 FORMAT(61HONUMBER OF TERMS IN EACH RELATIONe o o o o o o &

11) =s//(1615))

227 FORMAT(E1HOEXPONENTS OF EACH TERM IN EACH RELATION o o o o
14y =s//(5E168))

228 FORMAT(61HOCONSTANT (POSITIVE! COEFFICIENTS OF EACH TERM .
14) =9//(5E1648))

229 FORMAT(61HORIGHT HAND SILE OF SIMPLEX ARRAY- ¢« s o o o o »
IM) =5//(5E1l648))

230 FORMAT(&1HUCOQEFFICIENTS OF SIMPLEX OBJECTIVE FUNCTIONe o o

IN) =+//(5E16.8))
231 FORMAT(61HOGCOEFFICIENTS OF SIMPLEX CONSTRAINT EQUATIONS.

IN). =9//7{(5E16.8))
232 FORMAT(61HOMAXe RELATIVE CHANGE IN U FOR CONVERGENCE o o o

1PS =4E19.8)

. TESTI
. WATE(
NTERMS (
o« EX(Iy
CCONST(
. B (
. i

e A(M,
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233 FORMAT(61HONOe OF TIMES STEP SIZE DIVIDED BY 100 o o o o 1
1ICT =416

234 FORMAT(61HOOPTION TO STOP AFTER UNIVARIABLE SEARCH FAILS « « IFEN
1CE =,186)

235 FORMAT (1H-»S56HERROR*#*#INPUT VALUE FOR (LEVEL) IS NEGATIVE OR T0O L
1ARGE/)

236 FORMAT(1HOs»78HERROR*##VALUE FOR (IDATA’ 1S INCORRECTs 1 OR 0 ARE
1THE ONLY ACCEPTABLE VALUES/)

237 FORMAT(61HOPENALTY MULTIPLIER USED IN SEEK3e o o o o o o o »
1 R =3E19.8)

238 FORMAT(61HOREDUCTION FACTOR FOR (R} AFTER EACH MINIMIZATION. RELU
1CE =4E£19.8)

240 FORMAT(1H-»2GXs33HLISTING OF ALL DATA READ IN FOR 3A6/21Xs39H~--—-
lemm e e e - /)

24) FORMATU(1H1417A4)

242 FORMAT(1H~92B8HERROR®***THE VALUE OF INDEX =+16443H IS OUTSIDE THE
1ALLOWABLE RANGE OF 0O TO 8/}

244 FORMAT (61HOMAXIMUM NOe OF CONSECUTIVE INFEASIBLE POINTSe o o NSM
1AX =416)

251 FORMAT(1HO,1616)

252 FORMAT (61HOSHRINKAGE FACTOR. e o o o o o o o s o o o o e o & NSHR
1IN =416)

253 FORMAT(61HOSTARTING VALUE FOR RANDOM NUMBERS « o o o o o o &« MSTA
IRT =416)

254 FORMAT(61HOFRACTIONAL INCREMENT FOR SENSXTIVITY ANALYSIS o « FSEN
1SE  =3E1648)

255 FORMAT(1HO»80HERROR*#*USERS ESTIMATE OF (NTOTER? IS INCORRECT - TH

1€ CORRECT VALUE 1S NTOTER =161
RETURN
END

SUBROUTINE SIMPLE(XsUsMsNsAsBsCHE!

DIMENSION X{1)9sA(Msl)sB(1)aC(1)sE(Ms1)aMC(2)

COMMON INDEXsLEVELsIPRINTIDATAsFIMAXMeGaNSHRINIMSTART oPDsEPSHICT
LIFENCEsPLINSTOP sNSMAX sNSHOT oNTESTsTESsRsREDUCE o NVIOL sKO s NNDEX
COMMON/AL/P{1C0) s XX{10C)sY(100)PE(100}

COMMON/A8/ JH{100)

SUBROUTINE SIMPLE IS USED PRIMARILY AS A MEANS TO CALCULATE
A VALUE OF THE OBJECTIVE FUNCTION AT THE OPTIMUM CONDITIONS
OR IF THE SOLUTION IS NOT VALID THlS SUBROUTINE THEN OUTPUTS

THE DIAGNOSTIC MESSAGES
THE ACTUAL ITERATIVE PROCESS OF THE REVISED SIMPLEX TECHNIQUE IS

PERFORMED IN SUBROUTINE SIMP

CALL SIMP(MyNsMOsXsEsAsBryCoaNSTOP)

THE FOLLOWING  STATEMENTS ARE TO DETERMINE THE CONUITION OF THE
SOLUTION ON RETURN FROM THE SUBROUTINE SIMP

IF(MO(1)eGTe5)GOTO18
MODE1=MO(1}+1
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GO TO (21+15916+15+17518) yMODE1

NO FEASIBLE SOLUTION CAN BE FOUND FROM THE GIVEN DATA

15 WRITE(6s51)
GOT0R20

AN UNBOUNDED OPTIMUM HAS BEEN FOUND

16 WRITE(69+52)
G0 TO 20

THE MAX+ NUMBER OF ALLOWABLE ITERATIONS HAS BEEN EXCEEDED
THE SOLUTION IS STILL FEASISLE

17 WRITE(6+53) MO(Z)
GO TO 20

THE MAXe. NUMBER OF ALLOWABLE ITERATIONS HAS BEEN EXCEEDED
THE SOLUTION AT THE TIME OF INTERUPTION WAS NOT FEASIBLE

18 WRITE(6s54)M0O(2)

20 KO=1
GO T0 11

THE SOLUTION IS VALID =-~ CALCULATE THE OPTIMIZATION FUNCTION
AND OUTPUT THE RESULTS

21 U=040
DO 23 J=1,N
23 U=U+C{JII*¥X (D)

IF THE INDEX DOES NOT EQUAL ZERO THE OUTPUT FROM THE SUBROUTINE
SIMPLE IS OMITTED.

IF(INDEXeGTeU) GO TO 11
WRITE (6+30)

WRITE(69310U
WRITE(6932)(1sX(I)sI=1,N)

11 RETURN
30 FORMAT(1H1+22Xs36HOPTIMUM SOLUTION FOUND BY SIMPLE/23Xs36H==—-

31 FORMAT({20Xs12HMINIMUM U =5E1648//)

32 FORMAT(25X92HX(s12+3H) =sE16e8!

51 FORMAT(1X»44H NO FEASIBLE SOLUTION CAN BE FOUND BY SIMPLE)

52 FORMAT(1HO»43HTHE SIMPLEX ROUTINE FOUND UNBOUNDED OPTIMUM!

53 FORMAT(1HOs97HTHE MAXIMUM ALLOWABLE NO OF ITERATIONS FOR SIMPLEX H
1AS BEEN EXCEEDEDs—~SOLUTION IS STILL FEASIBLE/1HOs17HNO OF ITERATI
1ONS5=,15)

54 FORMAT(1HCs85HNO FEASIBLE SOLUTION EXISTS FOR SIMPLEX-PROGRAM STOP
1PED ON ALLOWABLE NO OF ITERATIONS/L1HOs17HNO COF ITERATIONS=,15!

END
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SUBROUTINE SIMP(MsNsKOSKB9EsAsBsCaNSTOP)
DIMENSION B(1)sC(1)sE(1)aKO(2)9KBI1)sA(M,y1?
COMMON /A4/P(100)sX(100)sY(100) sPE(100)
COMMON /AB/JH{100)

EQUIVALENCE (XXoLL)

LOGICAL FEASSVERWNEGsTRIGIKQ»ABSC

THE PURPOQSE OF THE SUBROUTINE SIMP IS TO PERFORM THE ITERATIVE
METHOD OF LINEAR PROGRAMMING KNOWN AS THE SIMPLEX METHOD
SIMP 15 A MODIFIED VERSION OF SUBROUTINE SIMPLE IN THE LIBRARY OF
THE 1eBeMe 7040 COMPUTER AT MCMASTER UNIVERSITY
SET INITIAL VALUESs SET CONSTANT VALUES
ITER = O
NUMVR = O
NUMPV = O
TEXP = 5%%16
IF LEVEL=0 THE MAXIMUM NUMBER OF 1TERATIONS ALLOWED 1S SET
AUTOMATICALLY AT 4#*M+10 IN OPTIPAC..AT LEVEL=1 NSTOP s READ IN
AS DATAe THIS APPLIES FOR INDEX=0+445
NCUT=NSTOP
NVER = Ms2 + 5
M2 = Mx®2
THE LOGICAL VARIABLE FEAS IS USED TO DETERMINE WHETHER THE
SCLUTION 1S FEASIBLE OR NOT
FEAS = JFALSE.
* NEW' - START PHASE ONE WITH SINGLETON BASIS
SELECT THOSE COLUMNS IN A(I,J}) WHICH HAVE ONLY ONE NON ZERO
COEFFICIENT
SET KB(J)=1 (WHERE J= THE COLUMN NUMBER)
NOTE THAT IF THE ABOVE CONDITION IS TRUE BUT THE CORRESPONDING A
VALUE IS NEGATIVE (IL THERE IS A POSSIBILITY THAT THE NON-
NEGATIVITY CONSTRAINT HAS BEEN VIOLATED + THEN SET KB(J!=0 FOR
THAT COLUMN
DO 1402 J = 14N
KB(J}Y = O
KQ = <FALSE.
DO 1403 1 = 1M
IF (A(I»J)etQe0e0! GO TO 1403
IF (KQeOReA(IsJ)elTe0e0! GO TO 1402
KQ = «TRUE®
1403 CONTINUE
KB(J) = 1
1402 CONTINUE
1400 DO 1401 1 = 1.M
. JH (1} = =1
1401 CONTINUE
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C® 'VER! CREATE INVERSE FROM 'Kb!' AND 'UH! (STEP 7)
C
1320 VER = +TRUE.
INVC = O
NUMVR = NUMVR  +1

TRIG = +FALSE.
DO 1101 1 = 1.MZ
E(I) = 040
1101 CONTINUE
MM=1

84

C
C SET E(1) AND EVERY I=N®*(M+1) VALUE OF E(1) EQUAL TO 1.0 UP TO
C I=M*%2 (N=SET QF INTEGERS).
C SET X(I)=B(I) FOR I=lsM (IE LET X(I1) BE THE VARIABLE IN THE BASIS)
C
DO 1113 I = 1.M

E(MM) = 1la0

PE(I) = (a0

X(1) = B(I)

MM = MM + M + 1
1112 CONTINUE
C FORM INVERSE
DO 1102 JT = 1N
IF (KB(JT!).EQeC) GO TO 1102

GO TO 600
C
C TRANSFER CONTROL TO THE MACRO —JMY- BEGINING AT STATEMENT NUMBER
C 600 FOR ALL COLUMNS THAT HAVE KB(JI)=1.0
C LET TY=PIVOT ELEMENT
C SET IR=ROW NUMBER IN WHICH THE PIVOT ELEMENT OCCURS .
C CALCULATE A(I1.JT)/B(I) SELECT THE LARGEST VALUE IN COLUMN JT
C SET TY=(THE VALUE OF THE ABOVE RATIO)
C CHECK THAT TYeGTeOw RESET THE FLAG KB{JTI)=0
p )
C 600 CALL JMY
C CHOOSE PIvCT
C
1114 TY = Qa0
KQ = oFALSE.
DO 1104 1 = 1M
IF (JH(I)eNEe—=1eORABS(Y(1?/,LE«TPIV! GO TO 1104
IF (KQ) GO TO 1116
IF (X({1)eEQeDe) GO TO 1115
IF (ABS(Y(I)/X(1)?eLEW.TY) GO TO 1104
TY = ABS(Y{(I)/X(1))
GO TO 1118
1115 KQ = «TRUE.
GO TO 1117
1116 IF (X(I)eNEeQeeOReABSIY (1)) alEeTY) GO TO 1104
1117 TY = ABS(Y{I))
1118 IR = 1

1104 CONTINUE
KB(JT) = O
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C TEST PIVOT
IF (TYeLESOQW) GO TO 1102
C PIVOT
GO TO 9¢C0
& ' )
C TRANSFER CONTROL TO THE MACRC -PlV- BEGINING AT STATEMENT NUMBER
C 900
C
C 900 CALL PIV

1102 CONTINUE
C
C RESET ARTIFICIALS
C
DO 11C9 1 = 1M o
IF (JH(I)OEQo—l) JH(I) = O

IF (JH({1).€Qe0) FEAS = JFALSE.
1109 CONTINUE

C
C THE LOGICAL VARIABLE VER IS USED TO DETERMINE IF THE SOLUTION IS
C IN PHASE 1 OR IN PHASE 2
C
1200 VER = oFALSEe
C
C R 2 PERFORM ONE ITERATION 43 %
c# 'XCK!? DETERMINE FEASIBILITY {(STEP 1)
C

NEG = oFALSEe
IF (FEAS)Y GO TO 500
FEAS= «TRUE
DO 1201 1 = 1+M
IF (X(I1)eLTe0eC) GO TO 1250
IF (JH(I)eEQeC) FEAS = #FALSES
1201 CONTINUE
C* IGET! GET APPLICABLE PRICES (STEP 2)
IF («NOT.FEAS) GO TO 501
500 DO 503 1 = 1,M
P(I) = PE(I)
IF (X{I)elLTeOe) X(I) = Qo
503 CONTINUE
ABSC = oFALSE.
GO TO 599
1250 FEAS = «FALSE.
NEG = o TRUE
501 DO 504 J = 1y M
P(J) = Oe
504 CONTINUE
ARSC = «TRUE.
DO 505 1 = 1loM
MM = 1
IF (X(I)eGE4OeC) GO TO 507
ABSC = JFALSE.
PO 508 J = 1M
P(J) = P(J) + E(MM)
MM = MM + M
508 CONTINUE
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GO TO 505
507 IF (UH({I)eNEOQ} GO TO 505
IF (X{I)eNFa0Oa) ABSC = JFALSE.
DO 510 J = 1M
P(Jy = P(J) - E(MM)
MM = MM + M
510 CONT INUE
5C5 CONTINUE

c :
C# *MIN? FIND MINIMUM REDUCED COST (STEP 3)
C
59 JT = 0
B = 0.0

DO 701 J =1laN
IF (KBUJ)eNELO) GO TO 70C1
DT = 0.0
DO 303 1 = 1M
DT = DT + P(1) » A(lsJ)
303 CONTINUE
IF (FEAS) DT = DT + C(J)

IF (ABSC) DT = - ABS(DT)
IF (DT.GE.BB) GO TO 701
BB = DT
JT = J
701 CONTINUE
C
C TEST FOR NO PIVOT COLUMN
C
IF (JTeLE«O) GO TO 203
C
C TEST FOR ITERATION LIMIT EXCEEDED
C
IF (ITER.GEeNCUT) GO TO 160
ITER = ITER +1
C
C START OF THE MACRO ~JMY-
C
Cx t MY MULTIPLY INVERSE TIMES A(esJTi (STEP 4)

6UG DO 61U I= 1M
Y(I} = 00
610 CONTINUE
LL = 0
COST = CUJT)

LET Y(1) (WHERE I=THE ROW NUMBER) BE THE COEFFICIENT OF THE
VARTABLE IN THE BASIS IN COLUMN JT
SET COST=THE COEFFICIENT OF THE JT-TH TERM IN THE OBJECTIVE
FUNCTION
VO 605 I= 1M

ATJT = A{IJT)

IF (AlJT«EQeOe) GO TO 602

COST = COST + AlJT * PE(I1!

DO 606 J = 1M

LL = LL + 1

aNa¥aNakKa
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606

60C2
6U5

aNala
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620

(AEANANA!

(@]

C AMONG

Y(J) = Y(J) + AIJT * E(LL!
CONT INUE
GO TO 6C5

LL

= LL + M

CONTINUE \

COMPUTE PIVOT TOLERANCE

YMAX

= Qa0

SET YMAX=THE LARGEST VALUE OF Y(Il}

SET P

IVEYMAX*#0e5%%16

DO 620 I = 1M
YMAX = AMAX1( ABS(Y(I}),YMAX !

CONT INUE

TP1vV

= YMAX * TEXP
RETURN TC INVERSION RCUTINE, IF INVERTING

END OF MACRO ~JMY-

IF (v
cos

RCOST
IF (T
TRIG

ER} GO TO 1114
T TOLERANCE CONTROL

= YMAX/BB
RIGeAND«BBeGE.~-TPIV]) GC TO 203

= oFALSF

IF (BBeGEe~TPIV) TRIG = «TRUE.
Cx ROW!

C  GET MAX

1048
1044

1047

IR
AA
KQ

L]

SELECT PIVOT ROW (STEP &)

EQSe WITH X=0s FIND MAXIMUM Y AMONG ARTIFICIALS,

POSITIVE Y{I) AMONG REALSe
v

Ue0

eFALSE.

DO 1050 I =1.M

IF
IF
IF
IF
GO
IF
KQ
AA
IR

(X{1)eNEeOeOeOReY(I)oLE«TPIV) GO TC 1050
(JH{I)eEQeD) GO TO 1044

(KQ)Y GO 70 1050

(Y{1)sLEeAA} GO TO 1050

TO 1047

(XQ) GO TO 1045

+ TRUE

Y(I1)

I

oW

1050 CONTINUE

IF (1
AA =

ReNE«O) GO TO 1099

1.0E+20
FIND MINe PIVOT AMONG POSITIVE EQUATIONS

0O 1010 1 = 1.M

IF (Y(I)eLEeTPIVeOReX(I)eLEaQeaDsORY (I} *AALLESX (]!

AR
IR

= X(Iy/y(1n)
= ]

1ulU CONTINUE
IF («NOTeNEG) GO TO 1099
C FIND PIVOT AMONG NEGATIVE EQUATIONSs IN wrhlICH X/Y IS5 LESS THAN THE

OR s

)

87

IF NONE's

GO TO 1o0l0
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C MINIMUM X/Y IN THE POSITIVE EGQUATIONSs THAT HAS THE LARGEST ABSF(Y)
BB = - TPIV
DO 1030 I = 1M
IF (X(I)eGEeOeasOR Y(l)oGt bB.OR.Y(IJ*AA.GT.x(I) ) GO TO 1030
88 = Y(1)
IR = 1
1030 CONTINUE
C TEST FOR NO PIVOT Row
1696 IF  (IReLE«U) GO TO 207
C* spIve PIVOT ON (IRsJT) (STEP 6)
IA = JH(IR)
IF {(IA«GT«0) KB(IA) = ©

START OF MACRO -Plv-

[aNa¥al

NUMPY + 1
JT
IR

9U0 NUMPV
JH(IR)
KB(JT)

SET Y1=-(COEFFICIENT OF THE VARIABLE IN THE BASIS IN ROW IR)

=A(IRJT)
SET Y(IR)==1.0

[aNARaNaNA

YI = ~Y(IR)
YUIR) = =1e0
L o= 0
C TRANSFORM INVERSE
DO 904 J = 1M
L = LL + IR
IF (E(L)eNE+0Os0) GO TO 905
LL = LL + M
GO TO 904

LET XY=INVERSE OF ~A(IRsJT! AND E(LL)=INVERSE OF A(IR,uT!

SET X(IR)I=B(IR)/A(IR,JT) END OF MACRO ~PIv~

N"OOOO N

305 XY = E(L) /7 Yl
PE(J) = PE(J) + COST * XY

E(L) = 0a0
DO 906 1 = 1M

LtL = LbL + 1

E(LL) = E(LL) + XY * Y(I)

906 CONT INUE
904 CONTINUE

< TRANSFORM X
XY = X(IR) /7 YI ‘
DO 908 I = 1y M
XOoLD = Xx(1I)
X(I) = XOLD 4+ XY % Y(I)

IF (4NOT.VER<AND X (1)eLTe00oAND+XOLDGE « 0e) X(I) = 0.

908 CONTINUE '
Y (IR)
X (IR)

-YI
-XY

it

88
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IF (VER) GO TO 1102
IF (NUMPV.LEeM} GO TO 1200

C
C TEST FOR INVERSION ON THIS ITERATION

C
INVC = INVC +1

IF {INVC.EQeNVER) GO TO 1320
GO TO 120¢

C :
C* END OF ALGORITHM,s SET EXIT VALUES * %

207 IF (oNOTeFEASeOReRCOSToLEe=1000s! GO TO 203

INFINITE SOLUTION

[a N aWa

K = 2
GO TO 250
C PROBLEM IS CYCLING
160 K = &4
GO TO 250

FEASIBLE OR INFEASIBLE SOLUTION

AN ANA]

203 K = 0
250 IF (oNOTFEAS) K = K + 1
DO 1399 J = 1,N
XX = Qa0
KBJ = KB(J)
IF (KBJeNE«Q) XX = X(KBJ!
KB(J) = LL
1399 CONTINUE
T KO(l) = K
KO(2) = ITER
RETURN
END

SUBROUTINE SEEK1{XsUsNsXSTRTsRMAXsRMINIPHIsPSI 9sNCONSHNEQUSsUART

1 DSTARSNTERMSWNTOTER) .
DIMENSION X(1)sXSTRT(L)sRMAX (1) oRMIN{L) oPHI(1) 4PSI(1)sDSTARINTOTER

1s1)sNTERMS(1)
COMMON INDEXSLEVELSsIPRINTSIUATASF s MAXMIGINSHRINIMSTART sPDIEPSHICT

LIFENCEsPLINSTOP sNSMAX sNSHOT oNTESTHTESsRsREDUCE #+NVIOL s KOs NNUEX

IF(INDEXeEQel)WRITE(6419)
IF(INDEXeEQeloANDe IPRINT o GTeCIWRITE(657)

SUBRSEARCH IS USED BY SEEK1 AND SEEK3,80TH OF WHICH ARE CALLED BY
-OTHER METHODS. NNDEX IS USED IN SEARCH (AND OPTIMF) TO IDENTIFY
SEEK1 CR SEEK3«(INDEX RETAINS THE VALUE FOR THE METHOD wHICH HAS
CALLED SEEK1 OR SEEK3?.

aNa¥aNaNala

NNDEX=1
KOUNT=0
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SUBROUTINE SEEK1(XsUsNsXSTRTsRMAXsRMINsPHI sPSIsNCONSINEQUSsUART
1 DSTARSNTERMSsNTOTER)

DIMENSIGN X (13 sXSTRT(1)sRMAX{1) sRMIN(1) yPHI(1?,,PSI(1)sDSTARINTOTER
191 ) +sNTERMS(1)

COMMON INDEXsLEVELIPRINT 9 IDATASF sMAXMsGaNSHRINSMSTART 9PDSEPS»ICT
1IFENCE oPL sNSTOP s NSMAX sNSHOT oNTEST s TESeRsREVDUCE sNVIOL s KO+ NNDEX
IF{INDEXeEQelIWRITE (6919

IF{INDEXeEGoele AND s IPRINToGToCIWRITE(657)

SUBR«SEARCH [S USED BY SEEK1 AND SEEK3.BOTH OF WHICH ARE CALLED BY
OTHER METHGDS. NNDEX IS USED IN SEARCH (AND OPTIMF) TO IDENTIFY
SEEKL OR SEEK3e(INDEX RETAINS THE VALUE FOR THE METHOD WHICH HAS

CALLED SEEK1 OR SEEK3).

NNDEX=1
KOUNT=0
2 CALL SEARCH(XsUsNsXSTRTsRMAXsRMINsPHI 4RSI sNCONSsNEQUSsUART s

1 DSTARSNTERMSsNTOTER!

IF SEEK1 HAS BEEN CALLED BY ANOTHER METHOD RETURN AFTER CALL
TO SEARCH

RESET NNODEX=INDEX FOR FUTURE CALLS TO OPTIMF CR SEARCH BY THE
CALLING METHOD.

NNDEX=INDEX

IF(INDEXeNE«1)RETURN

CALL SHOT{UsXsNsKKsPHIsPSI sNCONSsNEQUSsRMAXsRMIN)
CHECK TO SEE WHETHER SUBReSHOT HAS FOUND AN IMPROVED POINT
IF(KKeEQel) GO TO 4

IF (KO+EQe0)GOTOL6
KO CANNOT BE RESET IN SUBReSHOT, THEREFORE IF KO=1 AT THIS STAGE

THEN SUBR.SEARCH FAILED ANDL SHOT FOUND NO IMPROVEMENT
WRITE(65)
GOTO16

4 TF(IPRINT«GTOIWRITE(6925)Us(X(1)sI=14N)
KOUNT=KOUNT+1
IF (KOUNT « LE«NSHOTIGOTO13
WRITE (6517)NSHOT
KO=1
GOTOl6
REDEFINE STARTING POINT FOR SEARCH

13 DO 14 I=14N

14 XSTRT(I)=X(1)
GOTO 2
PRINT OUT OPTIMUM(KO=0) OR LAST ITERATIONS RtsuLTS(xo 1/

16 CALL ANSWER(UsXsPHI»PSIsNsNCONSINEQUS!

5 FORMAT (1H=-s71HDIRECT SEARCH HAS HUNG UP AND SHOTGUN SEARCH CANNOT
1IFIND A BETTER POINT/Z41HTRY A DIFFERENT STARTING POINT AT LEVEL=1/)

7 FORMAT(1H=915X s 1HU 25X 923HINDEPENVENT VARIABLES X//)

19 FORMAT(1H1+10Xs38HDIRECT SEARCH OPTIMIZATION USING SEEK1//!

17 FORMAT { 1H~- s+ 48HSHOTGUN SEARCH FOUND AN IMPROVEMENT BUT NSHOT =s16.
118H HAS BEEN EXCEEDED/1Xs34HTRY RUNNING THIS PROBLEM ON ADRANS/)

25 FORMAT(1H-s7HeSHOTe +5E16e8/(24Xs4E1648))
RETURN
END
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SUBROUTINE SHOT(UsXsNsKKsPHI+PSIsNCONSsNEQUS s RMAX sRMIN!
DIMENSION PHI(1)sPSI(1)sRMAXI1) sRMIN(L) 94X (1) ,
COMMON INDEXsLEVEL s IPRINTsIDATASFsMAXMsGaNSHRINISMSTART 9PDsEPSSICT,
LIFENCE sPL aNSTOPsNSMAX sNSHOT o NTEST s TESsRsREDUCE sNVIOL s KO sNNDEX
COMMON/AZ2/RR{100}sXX(100)

COMMON /A5/RF(100) '

UsOPTIMUM DETERMINED BY DIRECT SEARCHe 1T IS CHANGED TO IMPROVED
VALUE IF SUCH A VALUE IS OBTAINED

XX= TRIAL VALUES OF X{I) FROM SHOTGUN SEARCH

RF= FRACTION CF RANGE USED IN SHOTGUN SEARCH

KK= INDICATOR TO SHOW IF U RETURNED IS AN IMPROVEMENT
INITIALIZE RANDOM NUMBER GENERATOR

CALL FRANDN{RRsNs1)

UMIN=U

KK=0

THIS SHOTGUN SEARCH IS INTENDED TO GET THE SOLUTION OFF A FENCE
RATHER THAN TO INCH IT TOWARDS THE OPTIMUMe. THEREFORE LARGE STEPS,
EQUAL 10+ TIMES THE INITIAL STEP SIZE IN SEARCH ARE TRIED.

DO 1 I=1sN

RFUII=10e*F*ABS{RMAX (1) ~RMIN(1)

DO & J=1sNTEST

CALL FRANDN(RRINsO)

DO 2 I=1,N

XX(I)=AX(Id=RF(I))4RR(I I %2, 0%RF (1!

CALL OPTIMF(XXsUTESTsPHI +PSI+NCONSsNEQUS)

IF(NVIOLNEL.0O)IGOTO4

IF(UTEST«GEUMINIGOTOG

UMIN=UTEST

U=UTEST

DO 3 I=1sN

X(I)=XX(1)

KK=1

CONT INUE

RETURN

END

SUBROUTINE SEARCH (XsUsNsXSTRTIRMAXsRMINsPHI sPST s NCONSaNEQUS
1 UARTSDSTARSNTERMS o NTOTER)
DIMENSION X{1)eXSTRT(L}sRMAX(1}sRMIN(L)sPHI(1)PSI(1]),

1 DSTAR(NTOTERs1)sNTERMS(1)

COMMON INDEX sLEVEL s IPRINTSIDATASFsMAXMeGINSHRINISMSTART +PD2EPSHICT
1IFENCE sPLsNSTOP»NSMAX sNSHOT oNTEST s TESsRIREDUCE sNVIOL s KOs NNDEX
COMMON/AL/ZXO(LI00) s XBLLlOU! sDXAX{L100 s TXXX(100)

DIRECT SEARCH PORTION OF SEEK1 AND SEEKB‘

SUBR.SEARCH IS USED BY SEEK1 AND SEEK3sBOTH OF WHICH ARE CALLED BY
OTHER METHODSe. NNDEX IS USED IN SEARCH (AND OPTIMF) TO IDENTIFY
SEEK]1 OR SEEK3«.(INDEX RETAINS THE VALUE FOR THE METHOU WHICH HAS
CALLED SEEK1 OR SEFK31.

NNDEX=1 MEANS SEARCH HAS BEEN CALLED BY SEEK1

NNDEX=3 MEANS SEARCH HAS bEEN CALLED BY SEEK3
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SET
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80

90

100
110

120

130
170
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IN CASE SEARCH IS CALLED DIRECTLY BY ANOTHER METHODsDEFINE NNUEX
IF (NNDEXeNEo1leANDeNNDEX e NE o3/ NNDEX=INDEX

NvIOL1l=1

KKK=0

M1 = Q

DEFINE INDICES OF X(I’ FOR GEOMETRIC PROGRAMMING
[IF{INDEX«eNES7)GOTO 20

Kl=2
K2=NTOTER-N
GOTO 30

Kl=1

K2=N

DO 40  I=K1sK2
DXXX(1)=0.
TXXX(1)=0.
X0(1)=04
XEB(1)=Ce

PO 60 1=K1lsK2
X(I}) = XSTRT(I)
FIRST BASE POINT
DO 70 I=K1l,K2
XO0¢I) =X(I)
GENERATE DELX(I) AND TEST(I)
DO 80 [I=K1lsK2
DXXX(I) = F#*(RMAX(I)}=RMIN(I})
TXXX{T)=DXXX{1)*G
CHECKS FOR PURPOSE OF CALL TO SEEK1
NCALL=1
IF(INDEXeNES7) GO TO 100
CALL GEOPT(NTOTERsNsNCONSsNTERMS sUSTAR!JART o X}
GOTO 110

CONT INUE
CALL OPTIMF(XsUARTSPHI +PSI +NCONSINEQUS!

IF(NCALLsNE.1)GOTO 120
UARTO = UART

CONT INUE ,

ONCE THE SOLUTION HAS BECOME FEASIBLE(NVIOL=0) THE PENALTY
FUNCTIONS IN OPTIMF PREVENT IT GOING INFEASIBLE«THEREFORE NVIOL1=0
MEANS THE SOLUTION HAS BECOME PERMANENTLY FEASIBLE
IFINVIOL.EQeO)NVIOL1=0

IF(INDEX+EQel) GO TO 13¢

IF(INDEX+EQe3) GO TO 130

IF(INVEX«EQe7) GOTO 130
IF SEARCH IS BEING USED MERELY TO OBTAIN A FEASIBLE STARTING POINT

THEN RETURN AS SOON AS SOLUTION GOES FEASIBLE

IFINVIOL1.EQ.O0)GO TO 385
GO TO (170s 200s 210s 355) NCALL

CONT INUE

MAKE SEARCH

180

NFALL=C

DO 240 I=K1lsK2
X{II=X(I)+OXXX (1)
NCALL =2

GO TO 90
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200

230
240

250
260
280

290
310

315
320

330

340

350

355

360

370

380

385

CONT INUE

IF(UART.LT.UARTCO) GOTO 230
X{I)=X(I) = 2.0#DXXX(I)
NCALL=3 :

GO TO 90

CONT INUE

IF(UART«LTWUARTO) GOTO 230
NFAIL = NFAIL + 1
XCI)=X(1)Y4DXXX(1)

GOTO 240

UARTO = UART

CONT INUE

IF(INDEXeNE«7)GOTO 250
NUMB=K2~1
IF(NFAILSEQeNUMBIGOTO 260
GOTO315

IF(NFAILEQe.N)GOTO 260

GOTO 315

DO 280 I=K1,K2
IF(DXXX(I)aGTeTXXX(1)}?! GO TO
CONT INUE '

GO TO 385

DO 310 I=K1lsK2
DXXX(I)=DXXX(1)/2

GCTO 180

ESTABLISH NEW BASE POINT
DO 320 I=X1,K2

XBII)Y = X(I)

Ml = M1 + 1
JF(INDEX«EQe1)GOTO330

GO TO 340

KKK=KKK+1

IF(KKKeNESIPRINT) GO TO 340
CALL UREAL(X,ULOW)

WRITE (692) MlouLOW » (XU(IDy

KKK=0

CONT INUE

IF(M1eGTeMAXM) GO TO 385
MAKE A PATTERN MOVE

DO 350 1I=K1lsK2 '

X(I) = X(I) + (X(I) = Xxo(I})
NCALL=4 '

GO TO 90

CONTINUE

IF(UART«LT«UARTO) GOTO 370
DO 360 I=K1sK2

XO0(I) = X8(I)

X(1) = xv(l)

GOTO 180

DO 380 I=K1sK2

XO(I) = XB(1)

UARTO = UART

"GOTO 180

IF{INDEXEQe7)GOTO387

290

I=14N)

93
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CALL UREAL{XsU)
CALL OPTIMF(XsUARTsPHISPSIsNCONSINEQUS!
IF(NVIOLeEQeQ)GOTO387
IF(MleGTaMAXMIWRITE (694 )MAXM
KO=1
387 RETURN
2 FORMAT(1HO»I493Xs5E16e8/(24X94E1648))
4 FORMAT(1HGs60HNO FEASIBLE SOLUTION AFTER ALLOWABLE NUMBER OF MOVES
1s MAXM =,16/)
END

SUBROUTINE OPTIMF(XsUART »PHISPSISNCONSINEQUS!

DIMENSION X(1)sPHI(1)sPSI(1]

COMMON INDEXsLEVEL s IPRINTIDATASFsMAXMeGsNSHRINOMSTART sPDsEPS,ICT,
1IFENCE sPLsNSTOPsNSMAX sNSHOT oNTESTsTESsRsREDUCE sNVIOL s KOs NNDEX

VERY MINOR VIOLATIONS OF INEGUALITY CONSTRAINTS SHCULD NOT MAKE
THE ENTIRE SOLUTION INFEASIELEe THEREFORE TEST FOR PHI(1)eGELZERU
WHERE ZERO=-1e0E~10

2ERO==140E-10

NVIOL=0 _

SUBROPTIMF IS USED BY SEEK1 AND SEEK3sBOTH OF WHICH ARE CALLED 4y
OTHER METHODS. NNDEX 1S USED IN OPTIMF (AND SEARCH! TO IDENTIFY
SEEK]1 OR SEEK3.(INDEX RETAINS THE VALUE FOR THE METHOD WHICH HAS
CALLED SEEK1 OR SEEK3!.

NNODEX=1 MEANS SEARCH HAS BEEN CALLED BY SEEK1

NNDEX=3 MEANS SEARCH HAS BEEN CALLED BY SEEK3

SUM1=04,0

SUMZ2=0.,0

CALL UREAL(XsW)

IF(NNDEX«EQe3)G0TO110

SEEK1 PENALTY FUNCTIONS -~

A ROUTINE TO CALCULATE A VALUE FOR AN ARTIFICIAL OBJECTIVE
FUNCTION OF THE FORM
UART=UREAL+SUMIABS(PHI (1)1 % ]104E20+SUMIABS(PSI(I//)%10.£20
WHERE
PSI(IY AND PHI(I) IN THE ABOVE EXPRESSION ARE THE VALUES OF THE
CORESPONDING EQUALITY AND IMEQUALITY CONSTRAINTS THAT HAVE BEEN
VIGLATED
IF(NCONSEQe0)GOTO2
CALL CONST(XsNCONSsPHI)
DO 1 I=1,NCONS
IF(PHI(])«GE.ZEROIGOTO1
SUM1=SUM1 + ABS{PHI(1?)%10.0£+420
NVIOL=NVIOL + 1
1 CONTINUE .
2 IF(NEQUSEQe0)GOTC115
CALL EQUAL(XsPSIsNEQUS)
DO 3 I=1,NEQUS
3 SUM2=SUM2 + ABSI(PSI(1!11%10.0E+2C
GOTO115
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110

111
112
113

114
115

61
62

95
SEEK3 PENALTY FUNCTIONS -

THE ARTIFICIAL OBJECTIVE FUNCTION IS OF THE FORM
UART=UREAL + R¥SUM{1e/PHI(I?} + SUM{(PSI(JI*#%2)/SQRT(R}

DIV=SQRT(R)

IF {NCONSeLE«0)IGOTO113

CALL CONST(XsNCONSsPHI}

PO 112 I=1sNCONS
IF(PHI(I)eGE«ZEROCIGOTOL11
NVIOL=NVIOL+1

ADD A SEVERE PENALTY TO ANY PHI(I/ WHICH IS VIOLATED
SUM1=SUM1+ABS(PHI(1))*10e0E+20
GOTO112 ,

AVOID DIVIDING BY APPROXIMATELY ZERO, THERE IS NO POINT PENALIZING
A VERY SMALL PHI(1) ANYWAY
IF(ABS(PHI({I))eLTe-ZERO/GOTO112
SUM1=SUM1+R/ABS(PHI(I/)

CONT INUE

IFINEQUSSLE«QIGOTO115

CALL EQUAL (X»PSI+NEQUS)

PO 114 J=1sNEQUS
SUM2=SUM2+ (ABS(PSI (J) i#%2)/D1V .
UART =U+5SUM1+5UM2

RETURN

END

SUBROUTINE SEEK2(XsUsNsXSTRT sRMAX sRMINsPHI sPSI sNCONSINEQUSSGS!
DIMENSION X(1)sXSTRT(1)sRMAX (1) sRMIN(L!4PHI(1)sPSI(1),G6S(1)
COMMONINDEX s LEVEL s IPRINT s IDATA9F s MAXM G sNSHRINSMSTART sPDOEPSICT
1IFENCE sPLaNSTOPsNSMAX sNSHOT sNTEST o TESsRsREDUCE sNVIOL s KOs NNUEX
COMMON /A1/DX(100) sXO(1U0) sDXS{L00) sXN(100)

NNDEX=INDEX

WRITE(69101)

KUT=0

KOUNT=0

DO 2 I=1sN

X(1)=XSTRT(1)

XO(I)=X(1)

DX(I)=F*ABS (RMAX (1 )}=RMIN(I)!

DXS{I)=DX(1)

CONT INUE

CALL OPTIMF{XsUARTOPHIsPSI4NCONSINEQUS)

U=UARTO

PERFORM THE UNIVARIABLE SEARCH

DO 6 I=1sN

MAKE A MOVE IN THE POSITIVE DIRECTION

XUD)=X(I)+DX (1) :

CALL OPTIMF(XsUARTsPHIsPSTsNCONSsNEQUS)

CIF(UART LT eUIGOTOA

"MAKF A MOVE IN THF NEGATIVE DIRECTION

X{I)=X(1)-2.0%DX(])
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CALL OPTIMF(XsUARTsPHLIsPSIsNCONSsNEQUS)
IF(UART«LTU)IGOTOS
RETURN TO ORIGINAL VALUE
X(1)=X(1)+DX(I)
GOTO6
U=UART
INCREASE STEP LENGTH AFTER A SUCCESSFUL MOVE
DX{1)=DX(1)*GS(I)
X{LY=X{1)+DXx (1)
CALL OPTIMF(XsUART sPHI 9PSIsNCONSINEWUST
IF(UARTSLTaUIGOTO%
RETURN TO ORIGINAL POSITION AFTER A FAILURE
XU{TY=X{I)=DX(1)
DX(1)=DXs¢t1)
DECIDE WHETHER OR NOT TO PROCEED WITH UNIVARTIABLE SEARCH
(IFENCE=0 AT LEVEL=0)
IF(IFENCE«EQe11GOTO6
GOTO3
INCREASE STEP LENGTH AFTER A SUCCESSFUL NEGATIVE MOVE
CX(I)==DX(1)
GOTO4
CONT INUE
CHECK PERCENTAGE IMPROVEMENT IN U
CALL OPTIMF(XsUARTsPHI»PSIsNCONSsNEQUS)
IF(ABS{UART=UARTO) o GTEPS*ABS(UARTOI ) GOTOB
IF(KUT«LT«1CTIGOTOT
IF(NVIOLEQeU}GOTCY99
KO=1
WRITE(65105)
GOTO99
REDUCE STEP SIZE 8Y A FACTOR OF 1040
DO 18 1=1sN
DX(1)=DX(I1/1Ge0
DXS(IV=DX(1)
UARTO=UART
KUT=KUT+1
GOTO62
START PATTERN MOVES
U=UART
PD=PDO
DO 42 I=1sN
XN(I)=X{1)
DO 9 I=1sN
XNEI)=XNCI)+(X(1)=XO(I))*PD
CALL OPTIMF(XNsUARTsPHIsPSI,NCONSINEQUS)
IF({UART-LT«UIGOTOL4
IF(PDeLTe0+01GOTOL3 ,
TRY A NEGATIVE PATTERN MOVE
DO 40 I=1sN
XNCI)=XN(I ) =(X([)=XO (1)) *pPD
PD==PDO
GOTO15
RETURN TO ORIGINAL POINT
DO 16 I=1sN



a)

[aNala!

L7

14

11

41

20

99
lvl
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UARTO=U
KOUNT=KOUNT+1

IF{IPRINTEQ.0)GOTOL7

IF(KOUNT<EQe IPRINTIWRITE(69102)
IF((KOUNT/IPRINT)I*#IPRINT«NE«XOUNTIGOTO17

CALL UREAL (XU

WRITE(6s103)IKOUNTsUU»(X{I)sl=1,N)

IF (KOUNTEWeMAXM) GOTC2C

GOT062

ACCELERATE STEP LENGTH AFTER SUCCESSFUL PATTERN MOVES
PD=PD*PL

U=UART

DO 11 I=14N

XNCI)=XNCII+{(X(1)=XO(1))*pPD

CALL OPTIMF(XN,UART.PHI,PSI,NCONS.NEQUS)
IF(UARTLT«U)GOTOL4

RETURN TO LAST POSITION AFTER PATTERN MOVE FAILS

DO 41 I=1eN

XNCIY=XNCI I ={X(I)=XO(1)i*pD

PD=PDO

GOTO15

NO CONVERGENCE AFTER MAXM COMPLETE CYCLES
WRITE(69104)MAXM

KO=1

CALL ANSWER(UsXsPHIsPSTsNsNCONSsNEGUS!

FORMAT (1H1»46HOPTIMIZATION USING DIRECT SEARCH METHOU SEEK2/)
FORMAT (1H=915X s 1HU 925X s 26HINDEPENVENT VARIABLES X(I)//)
FORMAT(1HO» 143X s5E16e8/ (24X s4E1668))

FORMAT {1H=»29H OPTIMUM CANNOT BE FOUND IN +I3,7H CYCLES!
FORMAT (1H-343HSEEK2 CANNOT FIND A FEASIBLE STARTING POINT/!
RETURN

END

SUBROUTINE SEEK3(X9U9N9X5TRT9?MAX9RMIN’PFI,PSI9NCONS;NEQU sUART HDS
ITARSNTERMSSNTOTER)

DIMENSION X(1)aXSTRT(1)sRMAX(1)sRMIN(1)sPHI(1)sPSI(1)sDSTAR(NTOTER
151)sNTERMS(1)

COMMON INDEXSLEVELIPRINTSIDATAIF sMAXMIGINSHRINIMSTART sPDIEPSSICT
IIFENCE sPL aNSTOPsNSMAXsNSHOT osNTESTsTESsResREDUCE s NVIOL s KOs NNDEX
IF(INDEXeEQe3)WRITE(69!

ULAST=10.0E+40

KOUNT=0

DEFINE NNDEX=3 50 THAT OPTIMF AND SEARCH WILL FUNCTION CORRECTLY

NNDEX=3

DEFINE R AND REDUCE FOR THE CASE WHERE SEEK3 HAS BEEN CALLED BY
ANOTHER METHOD

IF(INDEXeNE«3)IR=10

IF({INDEX«eNE«3)REDUCE=0+04

CALL SEARCH(X sUsNsXSTRT sRMAXsRMINSPHI sPSI yNCONSsNEQUSsUART »LST
1ARINTERMSSNTOTER) ‘

IF SEEK3 HAS BEEN CALLED BY ANOTHER METHOD RETURN

RESET NNDEX=INDEX FOR FUTURE CALLS TO OPTIMF OR SEARCH BY THE
CALLING METHOD.
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NNDEX=INDEX
IF{INDEX«NE«3)RETURN

IF(KOeNE«1)GOTO5

WRITE(6914)

GOTO06

KOUNT=KOUNT+1 .

IF(IPRINTWEQe0)GCTO2

IF(KOUNT<EQe IPRINTIWRITE(6+1C!
IF((KOUNT/IPRINT)I®*IPRINT«NEKOQUNTIGOTO2
WRITE(6+4)R ‘

WRITE(6311IUstX(TI)sI=19N)
IF(ABS{U=ULAST ) eGTaleE=UT*ABS(ULAST))IGOTO7
OPTIMUM HAS BEEN REACHED

CALL ANSWER(UsXsPHI sPSIsNsNCONSHINEQUS!

RETURN

IF(ReGTele0E~20)G0OTO8

WRITE(6512)R

KO=1

GOTO6

ULAST=U

R=R#REDUCE

DO 3 I=1,N

XSTRT(I)=X(1)

GOTO1

FORMAT(1HOs3HR =4E1648)

FORMAT (1H1 +4SHOPTIMIZATION USING DIRECT SEARCH METHOD SEEK3,.//1
FORMAT (1HO 938X s 27THINDEPENDENT VARIABLES X(Ii/7)}
FORMAT(1Xs3HU =9E16e891Xs4E16e8/(21Xs4E1668))
FORMAT (1HOs23HNO CONVERGENCE WITH R =,E1648)
FORMAT(66H1SEEK3 UNABLE TO FIND A FEASIBLE STARTING POINT(ALL Prld
11)eGE«QeD) /)

END

SUBROUTINE ALTS{XsUsNsXSTRToRMAXsRMINsWATE sSTEP ¢+ NEQUS s NCONSHPSI sPH
119MaNN2sAsBsCoWORKASDSTARISNTERMSsNTOUTERSDELX 9 XX)

DIMENSION X(1)sXSTRT(1IsRMAX(LI oRMIN(L/ owATE(L ) sSTEP(L1)sPSI(11sPHI
1(1)sDELX(1)sA(MsL1)sB(1)9CI1) sWORKA(IM9L) sUSTARINTOTER 91} 9yNTERMS(1)

2XX{1)

. COMMON INDEXsLEVEL s IPRINT s IDATASFsMAXMaGINSHRINIMSTART SPDSEPS,HICT,

1IFENCEsPLINSTOPsNSMAX o NSHOT oNTESTsTESsRsREDUCE sNVIOL s KOsNNDEX
COMMON /7AS5/ XINC(100)

WRITE(6s1)

UU=1.0E+40

UBEST=10E+40

NCY=0

CHECK INPUT VALUE OF STEP(1)e THE LINEARIZATION PERFORMED IN SUBR.
LINEAR IS ONLY VALID FOR A SMALL STEP SIZE

DO 9 I=1sN

X{1)=XSTRT(1)

RANGE=ABS(RMAX(I)=RMIN(I})

9 IF(ABS(STEP(I))eGTe0sl10¥RANGEISTEP(1)=0+10%RANGE
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CALL SUBRSFEASBL TO CHECK WHETHER XSTRT(I) IS FEASIBLE AND 7O
DRIVE IT FEASIBLE IF NECESSARY.
IFINCONSeEQe Qe AND e NEQUS+EG«01GOTO20

CALL FEASBL(XsUsNsXSTRTsRMAXsRMINSsPHI sPST sNCONSsNEQUSsUDUMMY s USTAR

1»NTERMSsNTOTER)

IF{KC«EQ0)GOTOL0

SUBRe LINEAR CAN HANDLE INFEASIBLE INEQUALITY CONSTRAINTSs BUT ROT
UNSATISFIED EQUALITIES

IF{NEQUS«GT+0)RETURN

PROCEED WITH LINEARIZATION, RESET K0O=0

KO=0

GOTO30

IF{IPRINT«GTeUIWRITE(6930Us (X1 slmlyN)

CALL ASERCHI{XsNsRMAXsRMINsPHI sPSTsNCONSINEQUSINCY s WATE )

CALL UREAL (X UARTO)

CHECK TO SEF IF THF RESULTS OF THIS SEARCH HAVE IMPROVED U OVER
THE PREVIOUS SEARCH{THIS METHOD TENDS TO OSCILLATE!

IF( (UARTO=UU) «L.T« 0«0)GOTO21 '

CHECK FOR OSCHLLATIONs Tefe NU SIONIFICANT CHANGE FROM LAST SEARCH
IF (ABS(UARTO=UU) oL T21e0E~08160T023

GOT024

IF ( (UARTO=UBEST)«GE«0e0)GOTO24

DEFINE THE NEW 'BESTY POINT AND STORE IT IN UBEST AND XSTRT(I!
UBEST=UARTO :

UU=UARTO

DO 22 1=1,N

XSTRT(I)=X(1])

GOT035

IF THE OPTIMIOATION FUNCTION IS OSCILLATING » RETURN TO 'BEST!
POINT SC FAR

WRITE(697)

U=UBEST

DO 26 I=1sN

X{IV=XSTRT(I)

GOTO110

STORE VALUE OF U FOR THIS ITERATION

UU=UARTO :

GOTO35

CALL UREAL {X»UARTO)

IFI(NEQUS«EQeU)GOTOS0

CALL EQUAL(XsPSIsNEQUS)

DO 40 I=1+sNEQUS

UARTO=UARTO+ABS({PSI( I/ I %wWATE(])

CALL LINEAR(X9UO9PHIvPSI’A989C’DELX’STEP,M'NNaNsNCONS’NEQUS)
CALL SIMPLE(XXsDELUsMINNsAsB»CoyWORKA)

IF(KO«EQe 1 )RETURN

DO 60 I=14sN

XINC(I)=XX(2%]=1)=XX{(2%])

X(I)=X(I)+XINC(I])

CALL UREAL (X sU)

NCY=NCY+1

IF(IPRINT«EW.CIGOTOTO

WRITE(695 U (X(I)1sI=1sN]}

IF(NCY«GT«NSMAX)GOTO100
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UART =U

NVIOL=0

IF{NEQUS+FQ.D)GOTO81

CALL EQUAL(XsPSIsNEQUS)

DO 80 I=1sNEQUS

UART = UART+ABS(PSI(I))*WATt(X)

CHECK IF PREVIOUS MOVE WAS INFEASIBLE

IF(NCONS«EQe 0)GOTO90

CALL CONST(XsNCONSsPHI)

DO 82 I=1sNCONS

IF(PHI(I) el Te0,0)G0OT083

GOT090 '

IF LAST POINT FOUND BY LIMEARIZATION WAS INFEASIBLE), BYPASS ASERCH
AND GO DIRECTLY TO LINEARIZATION

IF{IPRINTaGTeCIWRITE (B4

NVIOL=1

IF (ABS {UARTO-UART ) o LT TESHABS(UARTO 1GOTOL10
IF{NVIOLeEQ.0)GOTO20

UARTO=UART

GOTONS0 -

WRITE (696 )INSMAX

PRINT OQUT THE 'BEST' VALUE SO FAR

U=UBEST

DO 105 I=1sN

X{IJ)=XSTRT(I)

KO=1

CALL ANSWER(UsXsPHIsPSIaNsNCONSINEQUS)

FORMAT (1H1535HOPTIMIZATICN USING ALTERNATE SEARCH//)
FORMAT (1H-s 4THMETHOD UNABLE TO FIND A FEASIBLE STARTING POINT/)
FORMAT (1H-s4THFEASIBLE STARTING POINT FOUND BY METHOL IS U =4E 16

18911H AT X({I) =//(6Xs5E168))

FORMAT (30X s31H(THE AGOVE POINT IS INFEASIBLE)?
FURNAT(/HOLINLAR9&15-8’4t16.8/(ddx,4E16 61))

FORMAT { 1H= s BOHMAX IMUM NUMBER OF ITERATIONS THROUGH ALTERNATE SEARC
1H HAS BEEN EXCEEDED (NSMAX =516s1H)/1Xs43HTHE BEST POINT FOUND SO

2FAR IS LISTED BELOW/)

FORMAT (1H~-»68HMSOLUTION 15 OSCILLATINGs ASSUME PREVIOUS 'BEST! POIN
1T IS THE OPTIMUM/} ' '
RETURN

END

SUBROUTINE ASERCH(XsNsRMAXsRMINsPHIsPSI s NCONSsNEQUSsNCY sWATE
ODIMENSION X(1)sRMAX(1)sRMIN(L?sPHI(1)sPSI (1) sWATE(L)
COMMON INDEXsLEVEL s IPRINT s IDATASF siAXMsGsNSHRINSMSTART sPD9EPS»ICT s
1IFENCEsPLsNSTOP s NSMAXsNSHOT sNTEST»TES 9RsREVDUCE sNVIOL » KOs NNDEX
COMMON ZA3/TESTLLIU0) »DLLX(100 sX0O(L00)
COMMNON /A5/XINC(100)
KOURT=0
J=0
NOTEese ASERCH ASSUMES THAT ALL PHI(1)eGEeOe ALREADY
INITIALIZE THE STEP LENGTHS AND CONVERGENCE CRITERIA
DO 10 1=1sN
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DLLX(I)=F*ABS(RMAX (I )=RMIN(13)
TEST(I)=G*DLLX(])

CALL UREAL (XsUO)

IF (NEWQUS«EQeU)GOTO35

CALL EQUALI(XsPSIsNEQUS)

DO 30 I=1,NEQUS
UO=UO+ABSIPSI(I)Y ) *WATE(L)

IF A LINEARIZATION HAS JUST BEEN COMPLETEDs TRY A PATTERN MOVE
IF(NCYeGT«C)GOTOL150

MAKE EXPLORATORY SEARCH

DO 50 I=1eN

XO(I)=xt1)
NFAIL=C

DO 120 I=1sN
Loop=1

XCLysX(ly+oLexcn

CALL UREAL(XsU)

IF(NCONSEQeL)GOTOTO

CALL CONST(XsNCONSsPHI)

DO 60 L=1sNCONS
IF(PHI(L)eLTe0e0)GOTOLOU
IF(NEQUSEGQ«D)IGOTOS0

CALL EQUAL(XsPSIsNEQUS)

DO 80 L=1+NEQUS

UsU+ABS(PST (L) ) *WATE (L.}
IF(UeGELUOIGOTOL100

uo=U

GGTO12C

LOOP=L0OOP+1

IF(LOOP«GTL21GOTO110

X{I)=X(1)=2e UXDLLXCT)

GCTO5%

X{I)y=X(I)+DLLX(T)

NFATL=NFAIL+1

CONT INUE

DEFINE STEP LENGTH FOR PATTERN MOVE AFTER EXPLORATORY MUVES
DO 125 I=1sN

XINCCD)=X(I)1=X0(1)
IF(NFAILLTeN)IGOTG150C

NIL=0

DO 140 1=14N
IF(ABS(DLLX(I) ) eLTeABSITEST(1211G0OTO130
DLLX(I)=DLLX{I) /260

GOT0140

NIL=NIL+1

CONT INUE

IF ALL STEP LENGTHS DLLX(I}etTeTEST(I) CONVERGENCE 1S ASSUMED
IF(NILeEQeNRETURN

GOTO40

MAKE PATTERN MOVE

XINC(I) FROM LAST LINEARIZATION 1S CARRIEL THROUGH COMMON /A5/
IF(JeEQeQIHURRY=140
IF(JeNE e UIHURRY=PL®%J

DO 16U I=1sN '

XEI =X (1 )+XINC (1) *HURRY

101
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IF (NCONS<FEQ.0)GOTO180
CALL CONST(XsNCONS,sPHI)

DO 170 I=1,NCONS

IF(PHI(I)eLTe0.0)G0TO210

CALL UREAL(XsU)

IF(NEQUS«EQeU}GOT0200

CALL EQUAL(XsPSIsNEQUS)

20 190 I=1sNEQUS

UsU+ABS(PST (1) ) *WATE(])

IF{U«GTaUBIGOTOZ210

Uo=u

ACCELERATE THE STEP AFTER A SUCCESSFUL PATTERN MOVE
J=J+1

GOTGL50

RETURN TO LAST GOOD POINT

PO 220 I=1sN

X{I)=X(I)=XINC(I)*HURRY

IF JU=0 AT THIS STAGEs THEN EVEN THE SMALLEST PATTERN MOVE HAS
FAILED AND ANOTHER EXPLORATORY MOVE MUST BE ATTEMPTED
IF(JeGTe0)GOTO227 o

KOUNT=KOUNT+1

IF({IPRINT«EGQe0)GOTO225

KOWNT=KOUNT+NCY

IF(KOWNTeEQe IPRINTIWRITE(694)
IF((KOQUNT/IPRINT)*IPRINT«NE.KOUNT?GOTO225

CALL UREAL({XUU)

WRITE(635)KOUNTsUUs{X(T)sI=1sN)
IF(KOUNT«GT e MAXM)IGOTO230

GOTO4 VU

J=0

GOTQ150

WRITE (691 )MAXM

KO=1

FORMAT(1H=56HTHE MAXIMUM NUMBER OF MOVES PERMITTED IN ASERCH (MA

1XM =4+16+19H) HAS BEEN EXCEEDED/)

4 FORMAT(1H~312Xs1HU 325X s26HINDEPENDENT VARIABLES X(I)//)

5

FORMAT (1HOs1332Xs5E16e8/(21Xs4E16e8))
RETURN
END

SUBROUTINE APPROX(XsUsNsDELXsSTEPsTESTsMaNNsA+sBsCsWORKASXSTRT sRMAX

15RMINSPHI sPST sNCONS s NEQUS sUART s DSTARSNTERMSsNTOTER » XX

DIMENSION WORKA(1)sX {1} sDELX(I)sSTEP(1/sTEST(1)sA(Mea1)sB(1)sCl)s

IXSTRTOL) sRMAX (1) sRMINCL I sPriI (1) sPST (L) sUSTARINTOTER 1) sNTERMS (1)
2XX(1)

COMMON INDEXsLEVEL s IPRINTSIDATAF sMAXMIGINSHRINISMSTART sPDIEPSSICT

1IFENCEsPLaNSTOPsNSMAX s NSHOT 9yNTEST s TESsRHREDUCE sNVIOL s KOs NNDEX

COMMON /AT/XINC(100)sWORK19(100!
COMMON /AB8/JELLY(100)

WRITE(6+4) ‘

MSTEPL=0

TINY=1leOE~USB
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ULAST=10E+40V

DO 22 I=1sNN

XX(1)=3e0

L0 23 I=1sN

JELLY(I}=0

X(I)=XSTRT (1)

WORK19(1)=XSTRT(I)

XINC(I)=0.0

IF (INEQUSeEQe Ve AND e NCONS«EG0)GOTO26 _

APPROX REGUIRES THAT ALL PSI(I) BE SATISFIEDs BUT IT CAN HANDLE
INFEASIBLE PH+(1)e IF THE USER HAS CHOSEN XSTRT(I1) SO AS TO MAKE
ALL PSIt1)=0. » THEN FEASBL IS BYPASSED BECAUSE IT WOULD UPSET THE
GOOD VALUES OF PSI(I) IN ORDER TO DRIVE ALL PHI(I} FEASIBLE
IF{NEQUS+EQs0)GCTO27

CALL EQUAL (XSTRT,PSI,NEQUS!

DO 21 1=1sNEQUS

IF(ABSIPSI(1))eGTelaE~041G0TO27

GOT026

DEFINE G AND MAXM FOR SUBRQUTINE FEASSL

G=F

MAXM=100%N

CALL SUBRe. FEASBL TO TEST WHETHER THE INPUT STARTING VALUES(XSTRT :
ARE FEASIBLE OR NOT.IF NOT,FEASBL DETERMINES A FtASIBLE STARTING
POINT AND RETURNS IT IN THE ARRAY X({ll.

CALL FEASBL(XsUsNIXSTRTsRMAXsRMINSPHI sPSI sNCONSsNEQUSsUDUMMY s DSTAR

1sNTERMSsNTOTER)

IF(KOeNE e 1eORNEQUSEQe0IGOTOZ 4
WRITE(6576)

GO TO 100

IF{IPRINTSGT«UICALL UREAL (XU
IF(IPRINTeGTOIWRITE(6sTTIUS(X(I)oI=1sN)

CHECK INPUT VALUES OF STEP(1)e IF ANY STEP(I} «GTe. 10 PERCENT OF
THE RANGE THEN REDUCE IT TO +10%(RMAX(I)=RMIN(I))

DO 25 I=1sN

RANGE =ABS (RMAX (1) =RMIN(L )}
IF(STEP(I)eGTe0el0%RANGE }STEP (1 /=0e10*RANGE

CONT INUE

CALL LINEAR(XsUCsPHI »PSIsAsBsCsDELXsSTEP sMsNNsNsNCONSsNEQUS!
CALL SIMPLE (XX sDELUsMsNNsAsEsC s WORKA)

IF (KO«EQe1)GOTO65 ‘

DO 36 I=1,N

XINC(I)=XX{2%4+~1)=XX(2%])

X(I)=X(1)+XINC(I)

CALL UREAL(X,U)

NSTEPL=NSTEPL+1

IF(IPRINT«EGe0)GOTO37

IF (NSTEPLeEQeIPRINTIWRITE(6,70)
IF((NSTEPL/IPRINT)#IPRINTEQeNSTEPLIWRITE(6571INSTEPL U {X(I)sI=1,

IN)

IF (NSTEPLeGE«NSMAX) GO TO 62
REGULATION OF ALLOWABLE MAXIMUM STEP LENGTH STEP(1) -
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HALF STEP(lleeslF THE LAST INCREMENT WAS FINITE(eGTeTINY! BUT
LESS THAN 5 PERCENT OF THE ALLOWABLE STEP(I}

IF THE VARIABLE IS OSCILLATING

DOUBLE STEP(I)eselF THE LAST INCREMENT WAS +GTe0e99*%THE ALLOWABLE

: STEP(I? AND VARIABLE WAS NOT OSCILLATING

OSCILLATION ee o VALUES OF X1} ARE COMPARED EVERY SECOND(EVEN)
ITERATION. IF THEY ARE EQUAL AND THE (LAST IN-
CREMENT WAS FINITE THEN OSCILLATION MUST HAVE
OCCURREDe SET THE FLAG JELLY (1?31 TO PKEVENT ANY
SUBSEQUENT DOUBLING OF THE VARIAGLE.(OSCILLATIUN
IS ASSUMED TO TAKE PLACE ABOUT THE OPTIMUM)

IF((NSTEPL/2)*2«NEJNSTEPL)GOTO59

LESS=0

DO 58 I=1yN

IF(ABSIXINCI]))eLE«TINY)GOTOS7

IF(ABSIX{II=XSTRT(I))eGTTINYIGUTOSS

SET FLAG JZbLLY(I)=1 FOR THE OSCILLATING VARIABLE

JELLY(I)=]

IF(SThP(I).eT.TtST(I)»uorosa

LESS=LESS+1

GOTO57

STEP(I)=STEP(1)/2.0

GOTO57

IF{ABSIXINC(I) ) eGTe0e05*STEP(I?1GOTO56

IF(STEP({I)«GT«TEST(1)ISTEP(I)=STEP(1)/240

GOT057

0O NOT INCREASE STEP(I) IF VARIABLE HAS OSCILLATEU(JELLY(I1)=1)

IF(JELLY(I?eEQel)GOTOS7

DO NOT INCREASE STEPRP(I) SO THAT STEP(1)aGTeel* (RMAX(I}=RMIN(I))

IF(STEP(I)eGTe0sOB*ABS(RMAX(I/~RMIN(I}1)IGOTOST

IF(ABSIXINC(I) ) oL TeQe99%STEP(I!IGOTOS7

STEP{I)=STEP(I)*2.0

XSTRTLI)Y=X(1)

CONT I NUE

IF(LESSeLTeNIGOTO62

IF{{U~ULAST) aGTa0e0)GOTO6S

GOTQO100

CHECK FOR STEP SIZE ADJUSTMENT EVERY ITERATION(OSCILLATION CHECKED

ONLY ON EVEN NUMBERED ITERATIONS)

DO 61 I=1sN

IF(ABSIXINC(I) ) eGTe0e05%STEP(1?1GOTO60

IF (ABSUXINC(I))aLTeTINYIGOTO61

IF(STEP(I)eGTTEST(I}ISTEPLII=STERP(1)/240

GOT061

IF(JELLY({])«EQe1)GOTO61

IF(ABSIXINC(I)) oL Te0.99%5TEP(IIGOTOG1

IF(STEP(I)eGTe00 OS*ABS(RMAX(I'—RMIN(I)))GOTO&I

STEP(1)=STEP(I) %240

CONT INUE

IFINSTEPLeGE «NSMAX s ANDeNCUNSEWQe D! GOTO6Y

IF(NCONSEQe0)GOTO67

CHECK WHETHER OR NOT THE POINT IS FEASIBLE

NVIOL=0

CALL CONST(XsNCONSsPHI)
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DO 63 1I=1yNCONS
63 IF(PHI(I)eLTe~TINYINVIOL=NVIOL+1

AN INFEASIBLE POINT IS NOT A CANDIDATE TO BE THE OPTIMUM

IFINVIOL.EQeC)IGOTOET . '

IF(IPRINTEQe0)GOTOT2

IF(INSTEPL/IPRINT I *IPRINT«EQe NSThPLleITt(6,78)
72 IF(NSTEFLeGE«NSMAX)IGOTO64

GOTO35
67 IF((U~ULAST) eGEeUeUG)GOTO6Y

STORE NEW 'BEST® POINT IN ULAST AND WORK19(I)

ULAST=U

DO 68 I=1aN
68 WORK19(1)=Xx(1l)
69 DO 51 I=1sN

IFCABSIXINC(I) ) oGESTEST(IVI GO TO 35
51 CONTINUE

IF({U-ULAST)}eGTe0e0)GOTOES

GOTO1l00
64 WRITE(6s5) NSMAX

KO=1

PRINT OUT BEST POINT FOUND SO FAR
65 DO 66 1=1sN
66 X{I)=WCRK19(1)
LU0 CALL ANSWER(UsXsPHI +PSTsNsNCONSoNEQUS)

4 FORMAT (1H1s6CHOPTIMIZATION USING METHOD OF SUCCESSIVE LINEAR APPRQ
IXIMATIONZ /)
5 FORMAT(1H=+45HLIMIT ON NOe OF ITERATIONS EXCEEDEDs NSMAX = 915/1X»

143HTHE BEST POINT FOUND SO FAR IS LISTED BELOW/
70 FORMAT(1H=915Xs1HU 25X s23HINDERPENVENT VARIABLES X//)
71 FORMAT(1HUs L4 s3Xs5E16e8/ (24X s4EL6e8))
76 FORMAT (1H-s4OHSUBR FEASBL UNABLE TO FINL FEASIBLE STARTING PTe/!
77T FORMAT{1H=953HFEASIBLE STARTING VALUES FOUND BY FEASBL ARE U

1=9E16e8s10H AT X(I) =//(1XsE1548,4E16481!
78 FORMAT(30Xs31H(THE ABOVE POINT IS INFEASIBLE))
B1 FORMAT (1H=-+25HFINAL VALUES OF STERP(I) =,/(5E1648))

RETURN

END

SUBROQUTINE LINEAR(X;UO;PHI9PSI9A9B,C;DELXaSTEP,M,NN9N»NCONS’NEQUS)
DIMENSION X(1)9DELX(1)9STEP(L)sPHI(1)sPSI(1)sA(My1)sB8(1),C(1)
COMMON INDEX sLEVEL s IPRINT s IDATASF s MAXM»GaNSHRINIMSTART sPDSEPSSICT
1IFENCE sPLsNSTOP s NSMAX sNSHOT sNTESTs TESsRyREDUCE sNVIOL »KOsNNDEX
COMMON /A2/SIGN(100) sPART (100!
ZERO ARRAYS TO BE USED
DO 20 I=lah
B(I)=UC
DO 20 J=1sNN
AllsJ)=0.0

20 CONTINUE
DO 22 I=1sNN

?2 CtI1=00
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DO 23 I1=1sNCONS

PHI(T)=0.0

DO 24 1=1sNEQUS

PSI(1)=0ae0 o

LINEARIZE THE OPTIMIZATION FUNCTION
CALL UREAL (XsUO)

DO 10 I=14N

X(I)=xX(1V+DELX( 1)

CALL UREAL(XsU)

X(1)=x(1)=DELX(I}
CTEMP={U=U0 ! /DELX(])

Ct2#1-1)=CTEMP

C(2#])==-CTEMP

CONTINUE

SET UP EQUATIONS LIMITING THE STEP SIZE OF EACH VARIABLE FOR EACH
ITERATION

DO 3C J=1sN

JJI=J+N

J2=2%J

AlJsu2~-11=1a0

AlJsJ2)==1a0

AlJdsd2=1)==1.0

AlJIsd2)=1e0

B(JI=ARS(STEP(J))
B{JJY=ABS(STEP(J))

CONT INUE !

SET UP SLACK VARIABLES IN STEP LENGTH LIMIT EQUATIONS
MA=Z2 %N

DO 55 J=1sMA

1 J=J+MA+NCONS

AlJeIJd)=1,.0 ‘
LINEARIZE THE INEQUALITY CONSTRAINTSs MULTIPLYING THROUGH BY =1.C

IF THE RIGHT HAND SIDE IS NEGATIVE
IF({NCONS«EQeU)YGOTO4E

DO 22 1=1+NCONS

PART(1)=0e0U

CALL CONST(XsNCONS»PART)

DO 31 I=1sNCONS

SIGN(TI)=1.0
IF“pART(I)OLT.OCO)SIGN(I,=-100
CONT INUE

DO 35 I=1sN

X{1)=xX{IY+DELX (1)

CALL CONST(XsNCONSsPHI)
X{1)=X(I)=-DELX(I)

DO 35 I1=14sNCONS
ATEMP=SIGN(IT)®*(PHI(II}-PART(II}I/OELX(])
N2=2%N+11

A(N2s2%]~1)=ATEMP

A(N2 s 2%])=~ATEMP

CONT INUE ) . .
SET UP RIGHT HARD SIDES OF LINEARIZED INEQWUALITY CONSTRAINTS AND
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ADD SLACK VARIABLES

DO 36 I=1sNCONS

[2=2%N+1]

A(IZyI?)--SIGN(I)

B(I2)==PART(I1)*SIGN(]/

CONT INUE

LINEARIZE THE EQUALITY CONSTRAINTS, MULTIPLYING THROUGH BY =1.C
IF THE RIGHT HAND SIDE IS NEGATIVE ‘
IF({NEQUS.EQ.0)GOTO52

PO 47 1=14NEQUS

PART(1)=0.0

CALL EQUAL (X sPART sNEQUS!

DO 49 1=1,NEQUS

SIGN(1)=140

CIF(~PART(]) el Te0e0ISIGNtI)==14D

CONT INUE

DO 50 I=1sN

X{L) =X (I)+DELX(L)

CALL EQUAL(XsPSIsNEQUS)"
x{Iy=x(1)y=-DELX(I)

DO 50 11=1+NEQUS

ATEMP = %IGN(II)*(PSI(ll)-PART(Xi))/UELX(I>
112=2#N+NCONS+I1

A(II2+s2%1~-1)=ATEMP

A(IIZoZ*I)——ATtMP

CONT INUE

SET UP RIGHT HAND SIvES OF LINEARIZED EQUALITY CONSTRAINTS
DO 51 1=14NEQUS

112=2#N+NCONS+!

BU1I2)==PART(II*SIGN(IT)

CONT INUE

RETURN

END

SUBROUTINE FEASBL(XsUsNsXSTRT sRMAXsRMIN9PHIsPSTsNCONSesNEQUSHSUART s
IDSTARSNTERMS ¢ NTOTER)

DIMENSION X{1)sXSTRT(1)sRMAX(1) sRMIN(L1? 4PHI(1)sPSI(1)sDSTARINTOTER
19 1) oNTERMS (1)

COMMON INDEXsLEVEL s IPRINTsIDATASFIMAXMaGoNSHRINSMSTART sPDsEPSs1CT
1IFENCL sPLINSTOP s NSMAX sNSHOToNTEST s TESsRSRELUCE sNVIOL KOs NNVEX
COMMON /A5/STEPP(100)

THIS SUBROUTINE USES SEEK3 TO DRIVE ALL PHI(I) FEASIBLE AND THEN
REDUCES THE PSI(I}S BY MINIMIZING SIGMA(PSI(I1)) SUBJECT TO THE
COMDITION THAT ALL PHI(1) REMAIN FEASIBLE(+GE+OQs)

NNDEX=INDEX

KUT=0

DO 9 I=1sN

X{IVI=XSTRT(I)

IFINCONS«EQeU)IGOTOL3

" CALL CONST(XsNCONSsPHI)

DO 10 I=1sNCONS
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IF(PHI(])alLTe0e0)GOTOL1
CONT INUE

GOTO013
IF ANY PHI(I)eLTeUs CALL SEEK3 TO DRIVE THEM FEASIBLE

11 CALL SEEK3(XsUsNsXSTRTIRMAX «RMINSPHI oPSTsNCONSsNEQUSsUARTsDUSTARSNT

13

15

17

19

21

23

25

27

1ERMSoNTOTER)

IFINVIOL«EGeU)GOTO13

IF SFEK3 COULD NOT GET ALL PHI{I)eGEeUe THEN SUSBRFEASBL CANNOT
OBTAIN A FEASIBLE POINT

KO=1

GOTO31

IFI{NEQUSEGe0)GOTO31 :

MINIMIZE SIGMA(PSI(I)? KEEPING ALL PHI(I)aGEeOQe
NOTEeeeTHE FRACTION OF THE RANGE USED AS STEP SIZE SHOULD NOT
EXCEED & PERCENTe. IF THE USER IS INTERESTED IN A VERY FEASIBLE
POINT(IEeALL PSI(IIS VERY SMALL/HE CAN GIVE (F’ A VERY SMALL VALUE
PERCNT=0Ge05

IFLABS(F) oL Te0e 05 IPERCNT=F

DO 14 I=1leN

STEPP (1) =PERCNT* {RMAX (1) =RMINI1)}

INITIALIZE THE SuM OF THE PSIL(LI)S

CALL SUMPSTIXsP51+NEQUS s SUMO!

NFAIL=0

DO 25 I=1,N

X(I)=X(I)+5TEPP(I])

CALL CONST(XsNCONSsPHI)

DO 17 J=1,NCONS

IGNORE A MOVE WHICH MAKES ANY PHI(1)eLTe040
IF(PHI(J)elLTe0e0)G0TOLY

CONTINUE

CALL SUMESI(XsPSIsNEQUSsSUMLI
IF(SUM1+GE«SUMDIGCTOLY

SUMO=SUML

G0T025

X{I)=X(1) =2 G*STEPP (!

CALL CONSTI(XsNCONSHPHI)

DO 21 L=19NCONS

IF(PHI(L)«LT«0e0)G0OT0O23

CONTINUE '

CALL SUMPSI(XsPS5IaNEQUSYSUMZ!
IF{SUMZeGE«SUMOIGOTO23

SUMO=SUM2

GOT025

X(I)=X(1)+STEPP(I)

NFATL=NFAIL+1

CONT INUE

IF(NFAILeEQeNIGOTO27

GOTO15
REDUCE STEPP(I) BY A FACTOR OF 4.0 UP TO & TIMESe THIS MEANS STEPP

REDUCES TO LESS THAN eU0UZX (RMAX(IJ-RMINII?)s OR IF FelTe0e05
THEN MINIMUM STEPP(I1)=(F/256) % (RMAX(II=RMIN(I))e THEREFOR[ THE
USER MAY DRIVE THE PSI(I) VALUES AS SMALL AS HE WISHES BY ENTERING
A VERY SMALL VALUE OF F AT LEVEL=1

KUT=KUT+1
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IF{KUT«GT+4)G0OTO31

DC 29 I=1sN

STEPP(I)=STEPP(I)/4.0

GOTO15

CALL UREAL(X»sU)

ZERQO STEPP(I) SINCE BLOCK /A5/ 1S USEDL BY CALLING METHOLS
DO 33 I=1sN

STEPP(11=0.0

RETURN

END

SUBROUTINE SUMPSI(XsPSTaNEQUSsSUMI
DIMENSION X(1),PSI(1)

CALL EQUAL(X»PSTI.NEQUS!

SUM=040

DO 1 I=1sNEQUS

SUM=5UM + ABS(PSI(I))

CONTINUE

RETURN

END

SUBROUTINE RANDOM (X sUsNsRMAXsRMINZ sUUsNRET sNCONS oPHI !/

DIMENSION X{1)oRMAX{1)sRMIN(LIsZ(NRET 1) sUU(L)sPHI(L)

COMMON INDEXsLEVEL s IPRINToIDATA9F oMAXMoGoaNSHRINIMSTART sPDsEPSsICT,
LIFENCE sPLoNSTOPsNSMAX sNSHOT oNTEST s TES»Q s REDUCE s NVIOL s KC s NNDEX
COMMON/ALI/AA(LI00) +CCLLI00U) oWORK3 (1002 TEST1(200)

COMMON /A5/R(100)

OPTIMIZATION USING DICKINSONS RANDOM SEARCH STRATEGY

WRITE (6+2G0)

RANDOM DOES NOT HANDLE INEQUALITY CONSTRAINTS AND THEREFOFE NEQUS
IS NOT INPUT. SET NEQUS=0 TO AVOIU GETTING AN INULEFINITCD MESSAGE
NEQUS=0

NCYCLE=1

DO 18 I=1sN

CC(I)=0e

AA(T)=0.

TESTL(I)=0Co

X(I1)=0e0

CONT INUE

DO 22 I=1sN

CCLTI)=RMAX(I)

AA{T)=RMIN(])

TESTI(I)=F*ARS(CC(I)=-AA(])])

NUMR 1S THE NUMBER OF FEASIBLE RANDOM PCINTS EVALUATED EACH CYCLE
NUMR=NRET#NSHRIN

THE NUMBER OF FEASIBLE RANDOM POINTS RETAINED EACH CYCLE IS
NRET=NUMR/NSHRIN AND NRET ARRIVES THROUGH THE ARGUMENT LIST
GENERATE NRET FEASIBLE RANDOM POINTS
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53
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MSTART 1S THE STARTING VALUE FOR GENERATING RANDOM NUMBERS.

110

AT LEVEL=0 MSTART=128 IS SET IN OPTIPAC. AT LEVEL=1 MSTART IS DATA

MM=MSTART

LO 21 J=1sNRET

L=1

CONT INUE

CALL FRANDN(RsNoMMI

MM=0

DO 20 I=1»sN
X(I)=AACII+R(II*(CC(Ii=AA(L )
IF (NCONS+EQ+0)GOTO52

CALL CONST(XsNCONSsPHI)
NVIOL=0

DO 42 I=1sNCONS
IF(PHI(]1)eGE«0e0)GOTOA2
NVIOL=NVIOL+1

CONT INUE
IFINVIOLeEQ.0)IGOTOS2

L=L+1

IF (LeGTeNSMAX) GO TC 80
GO 10 50

CALL UREAL(XsUTEMP)

DO 43 I=1sN

Z(JsIy=XxX(1)

UU(J) =UTEMP

CONT INUE.

FIND LARGEST VALUE OF uwu(J)
LARGE=1

DO 10 J=2sNRET
IF(UU(J) o LEeUU(LARGE} !GOTOL0
LARGE=J

CONT INUE

PLACE LARGEST VALUE OF UU({J? AT UU(1l) AND INTERCHANGE Z(Js1) wITH

Z{1s1)
UTEMP=UU{LARGE)
UULLARGE)=UU(1)
YU(1)=UTEMP

DO 11 I=1N
ZTEMP=Z (LARGE,I)
Z{LARGESI1}=2(1s1)
2(1,1)=ZTEMP
CONTINUE

GENERATE NUMR MORE FEASIBLE PUINTS AND IF ANY HAS UU(J! eLTeUU(L)

THEN INTERCHANGE THEM

KK=1

DO 12 K=1sNUMR

L=1

CONT INUE

CALL FRANDN(R»s»N»Q)

DO 13 I=1sN
XCI)=AALL)4+R(I)%(CC1=AALTD)
IF{NCONS«EQ«0)GOTO55

CALL CONST(XsNCONSsPHI)
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NVIOL=0

DO 56 1=1sNCONS
IF(PHI(I)eGE«0e0)GOTO56
NVIOL=NVIOL+1

CONT INUE
IFINVIOLeLT«1)GOTO55

L=b+1

IF (LeGTeNSMAX) CO TO 80

GO TO 53

CALL UREAL({XsUXTRA)

IF (UXTRAGE.UU(1)} GO TO 12
UU(1) =UXTRA

DO 14 I=1sN

Z(l,)=x¢1)

PUT NEW LARGEST UU(J) AT uutl)
DO 30 JU=2sNRET '
IF (UU(J)aLEeUUIL)) GO TO 30
UTEMP=UU(J)

UuUlJ) =uutl)

UU(1) =UTEMP

DO 31 I=1,N

XTEMP=Z(Js1)

2(Je1)=2(1s1)

Z(1sI)=XTEMP

CONT INUE

CONT INUE

SELECT NEW AA(I) AND CCtI?
DO 15 I=1sN

AA(TY=2(1s1)

CClI)=Z2(11)

DO 16 J=2sNRET

IF (Z21Jsl)eGTeAA(L)) GO TO 17
AA(LY=Z(Js1)

GO TO 16

IF (Z{JsI)elLTeCC(I)} GO TO 16
CClIN=2(Jsl} :

CONT INUE

CONT INUE

IF (KK-IPRINT) 27228462
KK=KK+1

GOT062

IF(NCYCLESEQeIPRINTIWRITE (659!

WRITE(6:8)NCYCLEsUU(Y!
L2=0

Li=t2+1

L2=L1+4

IF(L2eGTeN)IL2=N
WRITE(G6s4) (CClI)sI=LloL2)
WRITE(6+2) (AA(I)»I=L1sL2)
IF(L2.LTeNIGOTO29

KK=1
IF(NCYCLE «GE s MAXMIGOTOSG1
NCYCLE=NCYCLE+1

DO 63 I=1sN
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IF(ABS(CCUII)I=AALT}) oGT.ABS(TESTI(1))GOTO60
63 CONTINUE
SELECT SMALLEST Uu(J)
61 JUMIN=2
DO 19 J=34NRET
IF(UU(J) e GEUUIIMIN} IGOTO19
IMIN=J
19 CONTINUE
DO 54 I=1,N
84 X(I)=Z{JMINI)
IF {NCYCLE «GE « MAXM)IGOTO100
GOTN81
80 WRITE(6s3)NSMAX
WRITE(6+5) '
K0=1
RETURN
100 WRITE (696) MAXM
KO=1
81 CALL ANSWER(UeXsPHIZPSIsNsNCGNSsNEGUS)
2 FORMAT(6X95E1648) '
3 FORMAT(1HO 9 4OHNO FEASIBLE POINT FOUND AFTER GENERATINGsI6s16H RAN
100M NUMBERS)
4 FORMAT(1HOs5Xs5E1648)
5 FORMAT{1X +54HTRY SHRINKING THE RANGE OR INCREASING NSMAX AT LEVEL
1=1/7)
6 FORMAT(//34H PROCESS FAILED TO CONVERGE AFTER 914 92Xs6HCYCLES!
8 FORMATI{1HO»13+3H (sE15e841H) )
9 FORMAT(6H—=CYCLE 35X s6H(UMAX ) 922X+ 26HUPPER/LOWER BOUNDS ON X(1)//)
2U0 FORMAT{1H1»58HOPTIMIZATION USING LICKINSONS RANDOM SEARCH METHQD
1RANDOM/ /)
RETURN
END

SUBROUTINE FRANDN({AsNsM)}
DIMENSION Af(l)
THIS RANDOM NUMBER GENERATOR IS A MODIFIED IBM  SUBROUTINE
B IS A MACHINE-DEPENDENT CONSTANT AND B=2.0%%¥(1/2+1)+3.0
WHERE I = NUMBER OF BITS IN AN INTEGER WORD (I=47 FOR C(DC640Q)
R=262147.0 :
X=M
X=X/0e8719467 .
20 IF(XeNE«QoU)Y=AMOD(ABS(X)+3418967!
DO 10 K=z=1sN '
DO 11 J=1y2
11 Y=AMOD(B*Ys1e0)
AtK)=Y ' A
AVOID Y=0e AND Y=le TO PREVENT DIVIDING INTO ZERO
10 IF(YeEQeNa0aOReYeEQel1e0)Y=0.182818285
RETURN
END
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SUBROUTINE GEOM(NTOTERsNsNCONSsNTERMSsEX9sCONST sAABBsCsDSTARIRMAX

IRMINIXsXSTRT)
DIMENSION NTERMS(1 I 2EXINTOTERsL1? yCONST(L) sAA(NTOTER 1) oBBINTOTER L

1) sCINTOTER» L) sDSTAR(NTOTER 917 oRMAX (1) sRMIN(L) sX (1) s XSTRT (1

COMMON INDEXsLEVELSIPRINTsIDATAF s MAXMaGoNSHRINIMSTART aPLRSEPSHICTy
L1IFENCEsPLaNSTOPsNSMAX sNSHOT oNTESTs TESsRSREDUCE sNVIOL sKO9sNNDEX
COMMON /A3/CK(100),GAMI1C0!,T(100)

COMMON /A5/D(100)
COMMON /AT/5UMLL0C)sUSE(LOQ)

COMMON /AB8/NUSE(100)
THE GEOMETRIC PROGRAMMING METHOD OF OPTIMIZATION

THE PROGRAM IS DIVIDED INTO FIVE SECTIONS AS FOLLOWSe(NOTATICN AS
IN MATHEMATICAL DESCRIPTION GIVEN IN LEVEL 1 DOCUMENTATION!.

le CALCULATION OF THE DELTA 5UB 1 SUPER J ARRAY

2e RELAXATION METHOD TO FIND FEASIBLE STARTING VALUES OF Tt(1)
3e CALCULATION OF THE K SUB Q@ VECTOR

Go MAXIMIZATION OF DUAL BY DIRECT SEARCH (SEEKL1)

5 CONVERSION FROM DUAL BACK TO PRIMAL PROBLEM

SECTION (1)

CALLCULATION OF THE SET OF NORMAL AND NULL VECTORS = DELTA suB 1
SUPER Je THESE ARE DERIVED FROM THE INPUT EXPONENT ARRAY (EX!e

NOTEeseK0O=0 INITIALLYe KO=1 IF A FAILURE OCCURS ANYWHERE IN GEOMe
NT=NCONS+1

NM=NTOTER-N
Nl=N+1

TRANSPOSE THE ROWS AND COLUMNS OF THE EXPONENT ARRAY (EXJINTO (AA)

DO 11 I=1,NTOTER
DO 11 J=1sN
AA(I s II=EX(TI)

GAUSS REDUCE THE MATRIX (AA} BY ROWS KEEPING TRACK OF COLUMN INTER
~CHANGESe THIS CHANGES THE (AA) MATRIX INTC A UNIT MATRIX IN THE

N BY N POSITIONS AND MODIFIES ELEMENTS IN THE N BY (N1 TO NTOTER)
POSITIONS«THESE OPERATIONS ARE PEKFORMED WITHIN SUBRe GAJON.
NOTE e e s ARRAY NUSE 1S COMMONED BETWEEN GEOM AND GAUJUONe

CALL GAJON{AAINTOTERSN)
IF(KO«NE«OIRETURN

FORM THE MATRIX (CleesIN THE N BY NM POSITIONS OF (C) PLACE THE
NEGATIVES OF THE N BY (N+1JTO(NTOTER) ELEMENTS OF THE REDUCED (AA)
SET EQUAL TO 1 ALL (C) ELEMENTS FUR WHICH I=J+Ne SET REMAINING (Q)
ELEMENTS EQUAL TO ZERO.

DO 12 1=1HN
DO 12 J=N1sNTOTER
JJd=J~N
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12 Cl{lIsJJ)=—AA(I,))

14

13

15

16

17

18

19

20

21

DO 13 I=N1sNTOTER

DO 13 J=1,NM

JJ=J+N

IF{1eEQeJJ) GO TO 14
C(lad)=0e0

GO TO 13

ClIsd)=1e(

CONT INUE

FOR £VERY COLUMN INTERCHANGE (STORED IN NUSEJ) MADE IN THE GAUSS
REDUCTION MAKE THE CORRESPONDING ROW INTERCHANGE IN THE MATRIX (C)
CALL THE RESULTING MATRIX (Bal.

DO 15 I=1sNTOTER
DO 15 J=1sNM
NISE=NUSE(T1)
BBINISEsJ)=ClIsJ)
DO 16 I=1sNM
NUSE({I)=0

RMIN(T)
RMAX (1)
SuM(l) =

0
0

SUM THE FIRST NTERMS(1) ELEMENTS OF EVERY CZOLUMN OF (BB/.

NTER=NTERMS (1)

DO 17 I=1sNM

DO 17 J=1sNTER
SUM(T)=SUMIT)+BB(Js1)

FIND THE FIRST COLUMN OF (BB’ HAVING THE SUM OF ITS FIRST
NTERMS(1) ELEMENTS = SUM NOT EQUAL TO ZERCs DIVIDE EACH ELEMENT
IN THAT COLUMN BY SUM AND STORE THE RESULT IN DSTAR(Jsl). THIS IS
THE DELTA SUB I SUPER 0 VECTOR.

=0

I=1+1

IF(l«GTeNM} GO TO 19
IF(ABS(SUM(I))eGTela0E~8) GO TO 20
GO 70 18 :

ARRAY (BB) MUST BE SINGULAR.
WRITE(65601)

K0=1

RETURN

NUSE(I)=1

DO 21 J=1lsNTOTER
DSTAR{Je1)=BB(JsI)/75UM(I])

COMPLETE THE DSTAR ARRAY==DSTAR(JsI11=BB(J>1)~SUM(I}*DSTAR(Js1)

I1=1
DO 23 I=1sNM
IFI{NUSE(I)JeNELO) GO TO 23
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97

98

8ub
gul

802
1u3

104
gul
111

115

[I=1141
DO 22 J=1oNTOTER
DSTAR(Js 11 )=BB(Js I )=SUMITI*DSTAR(J,1)

CONT INUE

SECTION ({2)

CALCULATION OF INITIAL VALUES OF THE THE CUAL VARIABLES T USING A
RELAXATION TECHNIQUE

THE T VALUES ARE FEASIBLE IFf FOR 1=1sNTOTER THE FOLLOWING EUNS
HOLDeeoe 0Ue0 obbe DSTARUISL/+DSTAR(I»JIHT(U! JU=2yNMe (THESE SUMS
REPRESENT THE: DELTA SUB I VECTOR IN THE MATHEMATICAL DESCRIPTIONI.

KOUNT=0
LIMIT=300%NM

NOTEesoLIMIT DOES NOT STOP THE PROGRAM - SFE COMMENT BELOWe
DO 97 I=1sNTOTER

USE(I)=0e0

START WITH ALL DUAL VARIABLES T EQUAL 10O ZERO

0O 98 I=1sNM

T{I)=040 .

CALCULATE THE SQRT OF THE SUM OF THE SQUARES OF ELEMENTS 2 TO NM
IN EACH ROW OF DSTARSTORE THE RESULTS IN ARRAY (USE!.

DO 800 1=1,NTOTER '

DO R05  J=2 4NM

USE(I)=USE(L)+DSTAR( I +»J) % %2

USE(I)=SQRT(ABS(USE(1! 1))

NORMALIZE THE (DSTAR) AKRAY BY DIVIDING ALL ELEMENTS IN A ROW BY:
THE ROWS VALUE OF (USEle IF AN ELEMENT IS ZERO(LESS THAN 1.E-08)
LEAVE IT ZEROCIF A FIRST COLUMN ELEMENT (DSTAR(1,1)) 1S ZEROsFORCE
IT NEGATIVE BY ADDING -1+E-06 «STORE THE MODIFIED (DSTAR) IN (BB).

OO 801 I=1sNTOTER

DO 801 J=1.NM

TEST AGAINST 14£-08 RATHER THAN Q0e¢0 TO ALLOW FOR ROUNDING ERRORe
IF(USE(I)aGTels0E~08)GOTO802

RB(I+J)1=DSTAR(T»J) '

GOT0801

IF(JeEQe1)GOTO103

GOTN104

BB(IeJ)=(DSTAR(I9J)=1e0E~06)/7usSt(])

GOTO8BU1

BB(T»J)=(DSTAR{IsJ) I USE(CT)

CONT INUE

KOUNT=KOUNT+1 .

IF{KOUNTeLTeLIMITIGOTOLICS

IF NO FEASIBLE STARTING VALUES FOR T HAVE BEEN FOUND AFTER (LIMIT)
STEPS OF RELAXATION PROCEDUREs GO DIRECTLY TO SUBRSSEEK1 WHICH 15
CAPABLE OF FINDING ITS OWN STARTING VALUES.

GO 10 203

CALCULATE THE DELTA SUB 1 VECTORs STORING IT IN (USE!.



C

NN N

[aNa¥e

aNaNaNaNala)

aNaNaVaNaValaNaNa!

1ub

106

1u8

109

110

107

203

201
200

267

811

116

DO 106 I=1sNTOTER
USE(I1)=BB(1,1)

DO 106 J=2,NM
USE(TE)=USE(T)+BB(I sJ)%T(J)}
CONT INUE

FIND THE MOST NEGATIVE ELEMENT OF (USEls CALL IT SN AND CALL ITS
SUBSCRIPT 1Qe WHEN NO NEGATIVE ELEMENTS ARE FOUND wWE HAVE A SET OF
FEASIBLE T VARIABLES.

5N=0.0

DO 109 I=1,NTOTER
IF(USE(T)eGE0e0)GOTOL109
IF(USE(1)eLTeSNIGOTO108
GOTO109

1Q=1

SN=USE(L]

CONT INUE

SN MAY CONVERGE TO ZERO VERY SLOWLYsTHEREFORE TEST AGAINST ~1.E-08
IF(SNeLTe~10E=-081GOTO110
GOT0203

MODIFY THE T VALUES AND REPEAT THt ABOVE PROCEDURE.

DO 107 J=2sNM
T(J)=T (I -BB(IQsJ)%SN
CONT INUE

GOTO111

SECTION (3)

CALCULATION OF THE K SUB & VECTOR (STORED IN (CK)J.

DO 200 1Q=19+MM
CK{IQ)=DSTAR(1,IQ)*ALOG(CONST (1))

DO 201 T1=2,NTOTER
CKUIQ)=CK{IQI+DSTAR(1I,1Q)*ALOG(CONST(I1))
CKUIQ)=EXP(CK(IQ))

SECTION (4)

MAXIMIZE THE DUAL FUNCTION SN BY DIRECT SEARCH - SUBR SEEK1 THE
SEARCH STOPS WHEN NO INCREASE IN SN IS OBTAINED B8Y CHANGING ANY
T VALUE BY +0-- F*G®RANGE (SLE LEVEL 1 DOCUMENTATION!.

USE T VALUES FROM RELAXATION AS STARTING VALUES FOR SEEK1 AND
SET RANGES OF T(I) VALUES TO ESTASLISH INITIAL STEP SIZE IN SEEKL
DO 811 1=2NM

RMINCI)=T(1)~0.5%0%ABS{T(] )}

RMAX(I)=T(I)+0e5U*ABS(T(1))

XSTRT(I)=T(1)
X MUST BE FIRST ARGUMENT FOR SEEK1 TO PRESERVE VARTABLE DIMENSION
CALL  SEEKL({XsUsNoXSTRTIRMAXsRMINsPHI »PST sMCONSINEQUSsSNIDSTARSNTE
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1RMSNTOTER)
IF(KO«EQeO)GOTOB12
WRITE(6s615)
GOT09999

- 812 DUAL=-SN
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DO 813 I=2yNM
813 T(Iy=X(I1)

SECTICON (5)
CONVERT FROM THE DUAL PROBLEM BACK TO THE PRIMAL (INPUT) PROBLEMe

FORM THE RIGHT HAND SIDE OF THE SET OF LINEAR EQNS IN THE UNKNOWNS
LOG(X({I))e DUAL» CONST(I)y D(I)s AND GAM(I/ ARE ALL KNOWN AT THIS
STAGEs STORE THE ReHeSe IN AA(IN1} FOR TRANSFER TO SUBR GELIMe

NTEMPZ=NTERMS{1)

DO 700 1=14NTEMP2 ' :
700 AA(I»N1}=ALOG(D(I) #ABSIDUAL /CONST(I))

LYM1=1 '

LYM2=NTERMS (1)

DO 702 1Q=1,NCONS

LYM1=LYMI+NTERMS(1Q)

IQ1=10+1

LYM2=LYM2+NTERMS(1IQ1)

DO 702 I=LYMlsLYM2

AA(I sN1)=ALOGIDU(L) Z(CONST (11 #GAM(IQ) )]
702 CONTINUE

COEFFICIENTS OF THE UNKNOWN VARIABLES LOGLX(I" ARE SIMPLY THE
ELEMENTS OF THE INPUT EXPONENT ARRAY (EXJ.

DO 703 I=1sNTOTER
LO 703 J=1sN
TU3 AA(T 9 JI=EX(1sdJ)

CALL SUBR GELIM TO SOLVE THE SET OF EGNS BY GAUSS ELIMINATION.
NOTEsees THE LOG(X) VALUES ARE RETURNED FROM GELIM IN AA(IsN1l).

CALL GELIM(NTOTERsNsAA)
IF(KOeNE«0)GOT09999

CALCULATE THE ‘PRIMAL OPTIMIZATION FUNCTION FROM THE LOG(X! VALUES.

DO 704 I=1sN
704 USE(IY=AA(IWND)
SN=040
NHI=NTERMS (1)
DO 705 I=1sNHI
PP=040
DO 706 J=1sN
706 PP=PP+EX(1,J)*USE(J)
Tu5 SN=SN+CONST (1)} *EXP(PP!
PRIMAL=SN
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NOTEee«THE VALUES OF PRIMAL AND DUAL SHOULD AGGREE TG SEVERAL
DECIMAL PLACES AT THE GLOBAL OPTIMUM

CONVERT LOG(X) VALUES TO X VALUES.

DO 707 I=1eN
7C7 X(I)=EXP(USE(I))

CALCULATE THE VALUES OF THE ORIGINAL (PRIMAL} CONSTRAINT EQUATIONS
ALL OF WHICH SHOULD BE «LEelel (PLACE REIZULTS IN WORKING ARRAY
SUMC100)

LI=NTERMS(1)+1 -
DO 71U I=2¢NT
L2=L1+NTERMS({+)=]
SUM(I)=Ca0 ‘
DO 709 K=L1,L2
TERM=CONST(X)
DO 708 J=1N
708 TERM=TERMRX(J)%**EX(KsdJd)
TU9 SUM(I)=SUM(I)I+TERM
Ll=L2+1 :
710 CONTINUE

PRINT QUT RESULTS

WRITE(69610)
WRITE(6+611)PRIMAL
WRITE(69612)DUAL
WRITE(69613) (LI eX(I)eI=1eN)
WRITE(G6+616)
WRITE(65618) (1+s5UMITI+1)sI=1sNCONS)
WRITE(6s616)
WRITE(6+617)
601 FORMAT(1H—s22HARRAY (BRB) 1S SINGULAR)
610 FORMAT(1H1 224X 930HCPTIMUM SOLUTION FOUND BY GEOM/25Xs30H-~—meme—wmr—=
o e /!
611 FORMAT(19X915HMINIMUM  U(X) =4E164899H (PRIMAL?Y)
612 FORMAT(19Xs15HMAXIMUM U(T) =42E164847H (DuUALI/ /)
613 FORMAT(2T7Xs2HX{91243H) =3E1648)
614 FORMAT(1H=~924H INEQUALITY COMSTRAINTS/1X24H(FEASIBLE PHI(]I).LEW1
l1e0))
615 FORMAT(1H=47HSUBRSSEEK]1 UNABLE TO MAXIMIZZ THE DUAL FUNCTIGN/)
616 FORMAT{1H-s73HNOTE«s e THE VALUES OF THE PRIMAL AND DUAL OPTIMIZATIO
1IN FUNCTIONS ESTABLISH/1Xs73HUPPER AND LOWER BOUNDS RESPECTIVELY ON
2 THE GLOBAL 0-TIMUM. IF THEY DO NOT! ‘
617 FORMAT(1Xs6B8HAGREE TO SEVERAL DECIMAL PLACES, TRY REDUCING F AND G
1 TO IMPROVE THE/1Xs21HMAXIMIZATION IN SEEKL/I .
618 FORMAT(25Xs4HPHI(s1293H) =9E16e8)
099G RFTURN
END
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SUBROUTINE GAJON(AAJNTOTERNI

DIMENSION AA{NTOTER,1!
COMMON INDEXsLEVEL s IPRINT s IDATASFsMAXMaG s NSHRINIMSTART sPDsEPSsICT s

LIFENCEsPLsNSTOP s NSMAX sNSHOT s NTESTs TESsRsREDUCE sNVIOL s KOs NNUEX
COMMON /7AB/NUSE(100)

THIS SUBRe PERFORMS A GAUSS-JORDAN REDUCTION BY ROWS OF THE MATRIX
(AA) KEEPING TRACK OF COLUMN INTERCHANGES IN ARRAY (NUSE’e THE
RESULT IS A UNIT MATRIX IN THE N BY N POSITIONS (OFF-DIAGONAL
ELEMENTS ARE SET =0.0 AFTER RETURN TO GEOM! AND A MOOIFIED ARRAY
IN THE N BY (N1 TO NTOTER! POSITIONS (THE NEGATIVES OF THIISE FORM
TriE N BY NM ELEMENTS OF (C/ AFTER RETURN TO GEOM!e NOTEHess (NUST)
IS NEEDED IN GEOM AND IS CARRIEL THROUGH COMMONe

NN=0

NT1=N=-1
NT4=NTOTER~1

DO 10 I=1+NTOTER
NUSE(TI) =]

SEARCH THE NNTH ROW FOR FIRST NON~ZERO ELEMENT. INTERCHANGL THAT
COLUMN WITH THE KTH COLUMN.

NN=NN+1

K=NN~1

K=K+1

IF(ABS(AA(NNyK))eGTele0E~6) GO TO 12

IF(KeLE«NT4IGOTOL1

A ROW OF (AA) 1S ENTIRELY ZEROS lte THE MATRIX 15 SINGULARSINCE
AA 1S THE TRANSPOSE OF EXs THIS MEANS THAT ONE OF THE INPUT
VARIABLES DOES NOT APPEAR IN ANY TERM

WRITE(6+20)1K 4K

KO=1

GO TO 13

IF(KeEQeNN) GO TG 14

DO 15 1=1sN

TEMP=AA(IsNN)

ANACT sNNI=AA(T4K)

AA{T 9K} 9 s EMP

NTEMP=NUSE (NN}

NUSE (NN) =NUSE (K)

NUSE(K)=NTEMP

DIVIDE THE NNTH ROW BY THE UIAGONAL ELEMENT IN IT (AA(NNsNNI

JENTOTER+]

J=J=-1

IF(JeLT«NN) GO TO 16

AA(NNs JI=AA(NNsJ) /AA(NNINN)
GO TO 141
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ReDUCE ALL ROWS sblLOw THE NNTH ROwWe
16 NA=NN+1

[IF{NA«GT.NIGO TO 171

DG 17 I=NAN

CO 17 J=NASNTOTER
17 AA(TsJ)=AALT s I)=AA(T sNNI *AA(NNsJ)
P71 IF(NNeLT«N? GO TO 101

DO 18 I=1sNT1

NT2=1+1

DO 18 NL=NTZ2sN

NT3=NL+1

DC 18 JU=NT3sNTOTER
18 AALLsJ)=AA(T»J)=AA(TSNL)I*AA(NL,,J)

20 FORMAT (1H-—-¢3BHTHE EXPONENT ARRAY IS SINGULAR IN ROW »14/1Xsi3HTHAT
1 ISs THE 129591 TH INPUT VARIABLE DOES NOT APPEAR IN ANY OF Thi
2RELATICONS/)

13 RETURN

END

SUBRCUTINE GELIM(NTOTERINsAA!

DIMENSION AA(NTOTERs1)

COMMON 7A5/D(100)

COMMON TNDEXsLEVEL s IPRINT s IDATAoF sMAXM oG aNSHRINsMOSTART sPUSLP S ICT s

LIFENCEsPL NOSTOP sNSMAX sNSHOT sNTEST s TESLsRoREDUCE s NVIOL s KOs NNUEX

THIS SUBR. USES GAUSS ELIMINATION TO SOLVE A SET OF NTOTER EQNS
IN N UNKRNOWNS WITH OME RIGHT HAND SIDE. THE COEFFICIENTS ENTER
THE SUBRe IN THE NTOTER BY N PUOSITIONS OF (AAle THE KereSe IS
STORED IN THE VECTOR AA(lsNlJe THE SOLUTION VECTOR (IN THIS CASE
THE SET OF LOG{X) VALUES) IS RETURNED IN AA(IsN1).
ROTEeeoGELLIM ~EQUIRES THAT KRTOTERSGESN
KOUNT=NTCTER
KO=(
N1l=N+1 . ‘
THE ARGUMENT OF ALOG(! MUST uE POSITIVESsTHEREFORE DISCARD ARY
FQUATION FOR WHICH D{I?eLELCs
IF ANY D(I?eLbta0e0 o THEN ZEKO THE CORRESPONDING ROW IN (AAJ AND
DECREMENT KOUNTe (IF KOUNTJLTeN THEN THE MATRIX 1S SINGULARIG .
I=0

1ol I=1+1
IF(1eGT«NTOTERIGOTO102
IF(D(1)eGTela0E~10) GO TO 101
TEST AGAINST leE~-10 RATHER THAN 00 TO ALLOW FOR ROUNDING ERRURe
KOUNT=KOUNT-1 ‘
DO 10 J=1leN1

lv AA(T»JI=0e60
GO 70 101

vz CONTINUE
CHECK TO SEE IF THERE ARE SUFFICIENT VALID EQUATIONS REMAINING.
IF THERE ARE LESS THAN N EGQUATIONSs THE N UNKNOWNS CANNGCT BE
SOLVED FOR
IF(KOUNTSLTN)IGOTOL1
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KN=0

GO TO 12
WRITE(6+610)
KO=1

GO TC 99

KN=KN+1

K=KN~1

K=K+1
IF(ABSTAA(K sKN)I Y e GTale0E=102GOTOL3
IF(KeLTeNTOTERIGOTO121

KO=1

WRITE(69611 KN

60 TO 99

INTERCHANGE THE KTH AND KNTH ROWSe

IF{KeEQeKN) GO TO 15
LO 14 I=KNsN1
TEMP=AA(KNsI)
AA(KN,II=AA(Ksl)
AA(K s 1 )=TEMP

DIVIDE THE NEW KNTH ROW BY 1TSS DIAGONAL ELEMENT AA(KNsKN!e

J=N1+1

J=Jd-1

IF(JeLTeKN} GO TO 16
AA(KNsJ)=AA(KNsJ) /AA (KN KN
GO 10 151

KNI=KN+1

REDUCE ALL ROWS BELOW THE KNTH ROWe

DO 17 I=KN1SNTOTER
PMULT=AA(TIsKN)

CO 17 J=KNsN1

AA(T s J)=AA(T +sJ)=PMULT*AA(KNsJ!
IF(XNoLTeNIGOTO12

NV1i=N-1

DO 18 I=1sNV1

IPLUS=I+1

DO 18 II=IPLUSsN
PMULT=AA(ISII)

DO 18 J=11,sN1

AA(T 9 J)=AALT s J)=PMULT®*AA(TL4J)
FORMAT {43H- CANNOT MAKE DUAL TO PRIMAL TRANSFORMATION)

121

LOCATE THE FIRST NON=-ZERO ELEMENT IN THE KNTH COLUMN (AND KTH ROW)

FORMAT (1H-+48HTHE MATRIX PASSED TO GELIM IS SINGULAR IN COLUMN,I3)

RETURN
END



[N a AN NARAN AR A AR YA K]

[aNaXa!

[aXaka!

[aNaNR!

2u2

203

2U5
24

206

122

SUBROUTINE GEOPT(NTOTERsNsNCONSsNTERMSsDSTARSSNT)

DIMENSION NTE-=-MS5(1)sDSTAR(NTOTER1I T (1)

COMMON INDEX sLEVEL s IPRINT o IDATASF sMAXMeGoNSHRINSMSTART sPDsLPSsICT
1IFENCEQPL9NSTOP9N$MAXQNSHOT9NTE$T$TES,R;REDUCE9NVIOL,KO9NNUEX
COMMON /A3/CK(100)9GAM(100).WORK11(IOO)

COMMON Z7AS/7D(100)

GECPT 1S CALLED FROM SEEKU s HENCE T 1S VARIABLY DIMENSTONED

THIS SUBRe EVALUATES THE CPTIMIZATION FUNCTION FOR A GIVEN StT
OF VARIABLES Te PENALTY FUNCTIONS ARE AUDED IF ANY CONSTRAINTS
ARE VIOLATED.GEOPT 1$ THE ANALOGUE OF (OPTIMF) USED ELSEWHERE IN
OPTIPACS

NOTE#*%% SUBReSEARCH WHICH CALLS GEOPT IS A MINIMIZATION TECHNIQUE
THEREFORE THE NEGATIVE OF THE OPTIMIZATION FUNCTION IS RETURNED.
THAT 15s MINIMIZING (-SN! IS EQUIVALENT TO MAXIMIZING (+SN) o

EVALUATE THE D(1) VECTOR = ALL D(I)eGTe0e0 15 THE CONSTRAINT

NM=NTOTER=N

DO 202 11=1sNTOTER
DUIT)=DSTAR(IT,1)

DO 202 1Q=24+NM

DI =D(II)+T(IQI*DSTAR(I[51Q)
SN==1e40E+10

ASSIGN PENALTY FUNCTIONS TO SN IF ANY D(IJeLEs0eO

DO 203 11=1,NTOTER

IF(D(ITI) el TeUe0O)SN=SN+10E+20%D (1)
IF{SNelLTe=10E+101G0T0215

CONTINUE

EVALUATE THE GAM(I) VECTOR.

NTEMPl=1
NTEMP2=NTERMS(1)

DO 204 J=1+4NCONS
GAM(J)=0.0
NTEMPL1=NTEMP1+NTERMS (J)
JJ=J+1
NTEMP2=NTEMP2+NTERMS (JJ)
DO 205 I1=NTEMPLlsNTEMPZ
GAM(J)=GAM(J)+L(I 1
CONTINUE

CALCULATE THE OPTIMIZATION FUNCTION SN

SN=CK (1)

DO 206 1Q=2+NM

SN=SN*¥CK{IQI*%T(1Q)

DO 207 I1=1sNTOTER
IF(D(IT)eGTeUO)ISN=SN*U(IT)*%(-D(I1))
DO 208 J=19NCONS

IF(GAM(IJ) «GTe0a0)SN2SNXGAM(J) #*¥GAM(J)
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MAKE SN NEGAT+VE AGAIN BFORE RETURNING TC SUBR.SEEKI

SN=<SN
RETURN
END

SUBROUTINE ADRANS (XsUsNoeXSTRTsRMAXsRMIN» PHI,PSI,UART,NCONS,NcuUS,
IDSTARINTOTERSNTERMS) _
DIMENSION X(l)sXSTRT(l):RMAX(I’,RMIN(l),PHI(l',PSI(l)

DIMENSION DSTARINTOTER 1} 4yNTERMS(1)

COMMON INDEXsLEVEL s IPRINT o IDATASF s MAXMaGaNSHRINIMSTART 9sPDsEPSHICT
LIFENCEsPLINSTOP sNSMAX sNOHOT sNTESTTESsQeREDUCE sNVIOL sKO s NILUEX
COMMON ZA1/R{10C) sAVE(ICG? o X0 1007 sRANGE (200

AFTER EVERY F+VE IMPROVEMENTS THROUGH THE ADAPTIVE RANDOM SEARCH
MCDEs A LARGE- STEP IS TAKEN ALONG A MEAN PATH THROUGH THESE

5 POINTSe MORE STEPS ARE TAKEN ALONG THIS PATH UNTIL A NEW POINT
FAILS TO PRODUCE AN IMPROVEMENTe THE PROGRAM THEN CONTINUES THE PATTERN
OF FINDING 5 NEW IMPROVEMENTS BY THE ADAPTIVE RANDOM SEARCH

FOLLOWED BY AN EXTRAPOLATION ALONG THE MEAN PATH .

NNDEX=INUEX

WRITE(6943)

NCOUNT=C

KOUNT=1

KON3=0

K1=0 .

TO SPEED UP THE METHOD» USE SUBROUTINE FEASBL TO OBTAIN AN INITIAL
STARTING PCINTe NOTEeeeTHE METHOD DOES NOT ACTUALLY REGQUIRE A
FEASIBLE START 50 IF FEASBL FAILS THEN ADRANS STILL PROCEEDS.

SET F=405 TO DEFINE THE INITIAL STEP SI1ZE IN FEASBL

SET G=e0C1 TO UEFINE THE MINIMUM STEP SIZE IN FEASHL

F=QeUb

5=0,01

CALL FEASBLI{XsUSNIXSTRTIRMAX sRMINsPHIsPSI sNCONSINEQUSsUART sDSTAR
INTERMSeNTOTER)

IF(IPRINTWGT 7)WRITt(b,6&)Us(X(I)9I-I,N)

IF(KOeEGel)WRITE (66T

IGNORE A KO=1 MESSAGE FROM FEASBL

KO=0

ZERO THE COMMON BLOCK ARRAYS SINCE THEY ARE USED IN SUBRe FEASHBL
LO 4 I=1,100

RITY=0.0

AVE(I)=0eC

XQ(1)=0e0

RANGE (1) =0 (

DO 5 I=1sN

RC(I)=Xxt1)

RANGE (1) =ABS(RMAX({1)=-RMIN(I )

SUBROUTINE OPTIMF 1S THE OPTIMISATION FUNCTION WITH PENALTIES

CALL CPTIMF (X,UOsPHISPSI yNCONSINEGUS)

RANDCM NUMBER GENERATION

K=MSTART
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8 DO 9 I=1sN
9 AVE({1)=0.
M=1
11  CALL FRANDN(RsNsK)
K=0
DO 10U I=1sN
GENERATE NUMBERS WITHIN HALF THE RANGE FROM Xo(1)
10 XUL1=XO(I)+RANGE(I )% (R(I)=a50) %%M
CALL OPTIMF (XsUsPHI »PSIsNCONSsNEQUS)
Kil=K1+1 ‘
IF (UL TaUOIGOTO18
IF(K1leLE«NSMAX)IGOTO112
IF NO IMPROVEMENT AFTER NSMAX TRIES WITH ThHE MINIMUM RANGE (M=7)
THEN AN OPTIMUM 15 ASSUM&U
IF{M.GES«7)IGOTO45
INCREASE M TO EFFECTIVELY DECREASE THE STEP SIZE
M=M+2
K1=0
GOT0o11
18 K1=0
M=1
DO 20 I=14N
AVE(I)'AVE(I)+(X(I)—XO(I))
20 XO(I)y=x(1)
Uo=U
NCOUNT = NCOUNT+1
FIVE RANDOM NUMBERS ARE OGENERATED
THE AVERAGE OF THE FIVE VALUES IS THEN OBTAINED
IF(NCOUNT«LT«®) GO TO 11
NCOUNT =0¢
DO 25 I=1sN
2% AVE(IY=AVE(1)/5.
PATTERN SEARCH
K2 - 1S A COUNT OF THE CYCLES MADE WITHIN THt PATTERN SEARCH
Ke2=u
50 DO 30 I=1sN
30 X(Ii=XOU(I)+AVEL(L)
CALL OPTIMF (XsUsPHI sPSIsNCONSINEQUS?
[IF{UsGELUO) GO TO 42
DO 4C I=1eN
AVE(I)=AVE(]I)#*1.2
4G XO(I)=x(1)
UO=L
K2=K2+1
DO NOT MAKE MORE THAN 50 PATTERN MOVES wITHOUT RECALCULATING ThE
BEST DIRECTION BY THE RANLOM SEARCH STRATEGY ABOVE
IF{K2«GTe50) GO TO 42
GOTO50
41 KO=l
WRITE(6985)KOUNT
GOTOLluO
42 KON3I=KCON3+1
DO 12 I=1sN
12 X(1)h=x0(1)
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IFUIPRINT eEWoDeOReKONIeNLE o IPRINTIGOTOGE
IF{KOUNT«EQeIPRINTIWRITE(6+48)

CALL UREAL(XsUU)

WRITE(O 244 IKOUNTsUUS (X (T yI=1aN)

KON3=0

KOUMT=KOUNT+1

IF(KOUNT «GT « MAXMIGOTGGL

GO TO 8

DO 13 I=1sN

X(1)=X0¢(1}

KOUNT=KOUNT+1

CALL UREAL (X sUU)

IF(NCOUNT eGTeO)IWRITE(B 944 I KOUNT sUU 9 (X (1) s I=1 N}

CALL ANSWER(UsXsPHI 9PSIsNsNCONS oNEGUS

FORMAT(1H1949HOPTIMIZATION USING AUAPTIVE RANDOM SEARCH AURANS//)
FORMAT(1HOs 14 93X 95E16e¢8/7(24Xs4E 16081}

FORMAT (1H= 915X 9 1HU 25X 9Z3HINDEPENVENT VARIABLES X/7)
FORMAT ( 1H~920HNO CONVERGENCE AFTER1547H MOVES/)
FORMAT { 1H=938HSTARTING POINT FOUND BY METHOD IS U =sE16e8s11H AT

1 X(I) =9//(1XsE15e894E16481)!

FORMAT {1H++B1Xs12H( INFEASIBLF) /)
RETURN ,
END
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