'OPTIPAC' - OPTIMIZATION IN ENGINEERING DESIGN

'OPTIPAC'
 A USER-ORIENTED COMPUTER SYSTEM
 FOR
 OPTIMIZATION IN ENGINEERING DESIGN

By

JOHN FRANKLIN McDONALD, B.ENG.

A Thesis
Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Engineering

McMaster University
(May) 1.970

```
MASTER OF ENGINEERING (1970) McMASTER UNIVERSITY
(Mechanical Design)
TITLE: OPTIPAC: A User-Oriented Computer System for Optimization in Engineering Design

AUTHOR: John Franklin McDonald, B.Eng. (McGill University)

SUPERVISOR: Professor J.N. Siddall

NUMBER OF PAGES: v, 127

SCOPE AND CONTENTS:

A description is given of the multi-technique nonlinear optimization system called OPTIPAC.

The overall organization of the program is outlined and the significant features of each of the method subroutines are discussed. Considerable emphasis has been placed on the documentation for the system, and the two manuals which have been written are described briefly. The results of three test problems are included to demonstrate the value of having a variety of techniques in the package.

A preliminary evaluation of OPTIPAC's performance is given, with relevant suggestions for further development.

\section*{ACKNOWLEDGEMENTS}

The author wishes to express his sincere thanks to Professor J.N. Siddall who originally conceived of this project and who was constantly available for advice and encouragement.

This work is based on a group project undertaken during the winter term of 1968-69, in Professor Siddall's graduate course "Design Optimization". The members of that class were: E.M. Alexander, M. Badiuzzaman, L. Bialy, D.J. Bonham, C.K. Cordahi, G. Cocksedge, R.H. Dumala, L. Greenberg, R.L. Hewitt, M. Kratky, J.F. McDonald, H.V. Minh, H. Moussadji, L.D. Newton, S.S. Pereira, and M.M. Win. The contribution of each is gratefully acknowledged.

The project was supported by the National Research Council, Research Grant No. A7105.

\section*{TABLE OF CONTENTS}
Page
1. INTRODUCTION ..... 1
2. THE COMPUTER PROGRAM PACKAGE "OPTIPAC" ..... 3
2.1 General Description ..... 3
2.2 Service Subroutines ..... 5
2.3 System Subroutines ..... 10
2.4 Method Subroutines ..... 17
3. DOCUMENTATION FOR THE SYSTEM ..... 34
3.1 The Users' Manual ..... 34
3.2 The Programmers' Manual ..... 36
4. TEST PROBLEMS ..... 37
5. DISCUSSION ..... 43
6. CONCLUSIONS ..... 51
APPENDIX
A. SAMPLE DOCUMENTATION FOR THE SYSTEM ..... 53
B. RESULTS OF TEST PROBLEMS ..... 64
C. FORTRAN IV LISTING OF PROGRAM ..... 66
REFERENCES ..... 126

\section*{LIST OF ILLUSTRATIONS}
Page
1. Typical SEEK1 Strategy ..... 23
2. SEEK2 Starting Points ..... 26
3. Histogram of Test Results ..... 39

\section*{1. INTRODUCTION}

The basic criterion for a successful engineering design is that it meet of surpass all restrictions imposed upon it by the design specifications themselves, the laws of physics and chemistry, and the properties of the materials used. A design which satisfies all these requirements is called an acceptable, or feasible solution to the problem. In practice, nearly all design problems have several feasibie solutions, and the final configuration must be chosen according to some other criterion such as minimum weight, maximum volume, or minimum cost. This part of the design procedure is known as optimization.

Before the introduction of high speed digital computers, very little systematic optimization was done because of the prohibitive amount of time necessary to determine even a few feasible solutions. Although several computer techniques have now been developed, formal optimization in engineering design is still not widely used and there appear to be two main reasons for this. First of all, few engineers have either the time or computer programing knowledge to write their own optimization algorithms. Programs which are available in computer libraries are usually inflexible and difficult for an inexperienced programmer to use. Secondly, only for purely linear problems,* is there a general method (revised Simplex \({ }^{1}\) ) which can guarantee that the optimum

\footnotetext{
*In optimization theory the terms "linear" and "nonlinear" refer to the forms of the constraint equations and inequalities, and the optimization function which define the particular problem.
}
found is the global or absolute optimum. Unfortunately, most real problems are nonlinear and the relative success of any one of the nonlinear cechniques is largely dependent upon the form of the functions describing the problem. It is rarely possible to predict which method is best suited to a particular problem. To overcome all these difficulties it was felt that the designer needed a pre-written program package containing several different optimization techniques, with input requirements kept to a minimum. In addition, the program would need thorough documentation written in a straightforward, "how-to-do-it" style.

A system of this type has been developed by the author and others who are credited in the "Acknowledgements". The package is called OPTIPAC and it contains eight nonlinear optimization methods and a code for revised Simplex. Input/output is controlled internally and the user needs only a basic understanding of simple FORTRAN. Step-by-step instructions on how to run a problem are contained in a users' manual, \({ }^{2}\) while a second manual \({ }^{3}\) provides detailed information about the actual program organization and logic.

This thesis describes the significant features of OPTIPAC and makes suggestions for its further development. The results of some test problems are discussed and a complete FORTRAN listing of the program is included in the Appendix \(C\) to provide a permanent record of the version of OPTIPAC which is described here. The users' and programmers' manuals \({ }^{2}, 3\) are frequently referred to as they contain a thorough description of every facet of the system's design and operation.

\section*{2. THE COMPUTER PROGRAM PACKAGE "OPTIPAC"}

\subsection*{2.1 General Description}

The program is written in FORTRAN IV and is organized into a series of subroutines which fall into three basic categories: service subroutines, system subroutines and method subroutines.

The service subroutines are written by the user to define the objective function and constraints for his problem. These, along with a program MAIN and some data cards, comprise the user's input deck. The rest of the program is stored on magnetic tape.

The system subroutines form the heart of the package. They read In the data, call the appropriate method(s), find a Eeasible starting point if necessary, print out the results, and perform a sensitivity analysis of the results if requested. OPTIPAC* is the name of the controlling subroutine which provides the overall logic. Access to the package is obtained by calling subroutine OPTIPAC from another program -often a small "dummy" MAIN. Probably, the most powerful feature of the package is that a problem can be run on several methods at once. This provides both a check on the solution and an indication as to which is the most suitable optimization technique. As stated in the introduction, none

\section*{*}

The name "OPTIPAC" is derived from the words OPTImization PACkage. Although it is actually the name of a subroutine, it is used synonymously as the name of the whole package.
of the nonlinear methods is completely general, and several parameters, such as stopping criteria, step sizes, and the allowable number of moves, must be adjusted for each problem. Often it is difficult to choose these values in advance, and consequently the package has been designed to operate at two distinct levels. At the "unsophisticated" level, subroutine OPTIPAC automatically assigns reasonable values to all parameters which require judgment on the part of the user. This reduces the necessary input data considerably and makes it very easy to get an initial, rough solution. At the "sophisticated" level, the user must feed in the extra data cards to define all the program parameters. This enables him to tune methods specifically to his problem, thus obtaining the most accurate solution possible. This twolevel facility is an extremely useful feature. It means the package is of equal value to a person who knows nothing about optimization theory and to someone who is familiar with the smallest details of each method. The method subroutines contain the coding for the various optimization techniques. At present, these include revised Simplex for purely linear problems, and eight methods for nonlinear problems. These methods are: two types of direct search, a sequential direct search, an alternate search-1inearization method, successive linear approximation, geometric programing and two different random search strategies. Such a wide variety of methods greatly increases the likelihood of the program finding a solution for any input problem. Obviously, the effectiveness of the package will increase as more methods are added, and the program has been set up with this in mind. Only a few modifications are necessary
to incorporate an entirely new method. (The actual procedure involved is given in section 5 of the programmers' documentation \({ }^{3}\) ).

\subsection*{2.2 Service Subroutines}

The description of the problem to be optimized is supplied to the package via the three service subroutines for all methods except revised Simplex and geometric programming. (These are highly specialized techniques for which the constraints and objective function must be fed in as data in a specified pattern). The objective function, equality constraints, and inequality constaints are evaluated in subroutines UREAL, EQUAL, and CONST respectively. In order to standardize the input to some extent, the following convention is used for stating the problem:

Minimize the objective function \({ }^{*}\) defining the optimization criterion:
\[
u=u\left(x_{1}, x_{2}, \ldots x_{n}\right)
\]
subject to equality constraints defining feasibility:
\[
\psi_{j}=\psi_{j}\left(x_{1}, x_{2}, \ldots x_{n}\right)=0 \quad j=1, m
\]
and inequality constraints defining feasibility:
\[
\phi_{k}=\phi_{k}\left(x_{1}, x_{2}, \ldots x_{n}\right) \geq 0 \quad k=1, p
\]
where \(x_{i}\) are the independent or design variables
\(n\) is the number of design variables
\(m\) is the number of equality constraints
\(p\) is the number of inequality constraints

The objective function is also known as the optimization, cost, or criterion function.

The user must abide by this convention, but it in no way detracts from the generality of the program. Maximization can easily be achieved by minimizing the negative of the true objective function. Also, inequalities of the form \(\phi_{k} \leq 0\) can be readily converted to \(\phi_{k} \geq 0\) by multiplying through by -1 . If the constraints have non-zero terms on the right hand side, then these terms must be transposed to the left hand side. Problems with only one type of constraint (m=0 or \(\mathrm{p}=0\) ), or with no constraints at all ( \(\mathrm{m}=0\) and \(\mathrm{p}=0\) ) are perfectly acceptable.

The input to the service subroutines is the \(X(I)\) array containing the current values of the design variables. The corresponding values of \(U, \psi_{j}\) and \(\phi_{k}\) are calculated and returned to OPTIPAC. In the simplest case, the objective function and the constraints can be expressed directly as FORTRAN arithmetic statements such as,
\[
\begin{array}{ll} 
& U=X(1) * X(3) \\
\text { or } & \operatorname{PSI}(1)=X(1)-\operatorname{SIN}(X(2)) * 3.0 \\
\text { or } & \operatorname{PHI}(3)=X(2)-16.0
\end{array}
\]

Often, however, a more complicated analysis is involved. It may, for instance, require the solution to a set of eigen value equations in order to put a constraint on the eigen value itself.
\[
\text { e.g. } \operatorname{PHI}(2)=\text { EIGEN-2.3 }
\]

This is quite straightforward to do, since the user actually punches up the service subroutines and can therefore include as much coding as necessary. He may dimension his own working arrays, and call any subroutines he wishes from the computer library. If extra data such as physical constants or material properties is needed, it can be read in by the MAIN program and transferred to the service subroutines through
labelled COMMON. When a complicated analysis is required, the user should include conditional STOP's after sections of coding which could possibly produce meaningless results. If, for instance, a matrix inversion fails, then the program should be stopped rather than have OPTIPAC continue, acting on misleading or even absurd information. It is extremely important that the service subroutines be written efficiently -- especially if they are complicated. They are called almost continually by the method subroutines and their execution time constitutes a large portion of the total execution time for the job. Although the three service subroutines are very similar to each other from the programing point of view, they perform separate roles in specifying the optimization problem. Objective Function: Subroutine UREAL

UREAL contains the coding to evaluate the objective function \(U\) at a point. Most frequently, this is the cost of the product. Other typical objective functions are weight, volume, strength, output power, aerodynamic drag, and fluid and thermal flow rates. The objective function must be dependent on at least one of the design variables, although it need not necessarily represent any physical characteristic of the design. For example, a specific value of horsepower could be obtained by minimizing,
\[
\mathrm{U}=(\mathrm{HPTEST}-\mathrm{HPGOAL}) * * 2
\]

It is often difficult to choose a single objective function. For instance, the designer may want to minimize the cost and the volume at the same time. This is possible by writing,
\[
U=W A T E 1 * \operatorname{COST}+\text { WATE } 2 \star \text { VOL }
\]

The weighting factors WATE1 and WATE2 are needed to compensate for large differences in the orders of magnitude of COST and VOL, and also to place emphasis on the more important of the two. Several trial runs would probably be necessary to determine reasonable values for chese factors.

\section*{Equality Constraints: Subroutine EQUAL}

EQUAL calculates the equality constraints which are usually equations based on physical or chemical laws. They may also be design objectives such as,
\[
\operatorname{PSI}(1)=X(1)-X(2)
\]
which could stipulate a beam of square cross-section for instance. Since all the nonlinear methods in OPTIPAC are basically exploratory strategies, the equality constraints are very rarely exactly equal to zero. This creates some technical difficulties which are later discussed for each method subroutine. For this reason, it is desirable to use as few \(\psi\) 's as possible. If some tolerance is acceptable on either side of the equality, then quite often, two inequality constraints can be used instead.

\section*{\(\left.\begin{array}{l}\operatorname{PHI}(1)=X(1)-X(2)+.01 \\ \operatorname{PHI}(2)=X(2)-X(1)+.01\end{array}\right\}\) could replace \(\operatorname{PSI}(1)=X(1)-X(2)\)}

Another problem with equality constraints is introduced if the independent variables are of different orders of magnitude. Typically, one constraint could be defining a buckling load of millions of pounds, while another specifies a flange thickness of a few inches. Weighting factors would be needed to prevent the buckling constraint from completely dominating the others. Alternate search (subroutine ALTS) is the only method which adds weighting factors internally. For the rest of the
techniques, these weighting factors can be added directly in subroutine EQJAL as shown below:
```

PSI(1)=31.0*(X(1)-X(2))
PSI(2)=1.0E-06*(C1*X(3)**2-C2*X(3)-C3)

```
where \(\mathrm{X}(3)\) is the critical buckling load and \(\mathrm{C} 1, \mathrm{C} 2\) and C 3 are functions of the other tidependent variables. The factors 1.0 and \(1.0 \mathrm{E}-06\) would probably have to be adjusted after a few trial runs. Inequality Constraints: Subroutine CONST

CONST evaluates the inequality constraints \(\phi_{k}\), where \(\phi_{k} \geq 0\) at a feasible point. They are used to place bounds on the independent variables themselves or on functions of them. Sometimes it can be quite difficult for the designer to know if he has put enough constraints on his problem. The best way for him to find out is by making a trial run and checking if the results are reasonable or not. Often, seemingly trivial restrictions must be included. For example, it may be necessary to have a constraint stating that the overall height of an I-beam is at least as great as two flange thicknesses. This fact is self-evident to the designer, but not to the purely mathematical optimization techniques. Geometric programing (subroutine GEOM) is the only method which assumes that all the design variables are positive. Any of the other methods will readily accept negative physical dimensions or even negative cost if specific constraints are not imposed.

Like the equality constraints, some of the inequality constraints may need weighting to allow for differences in magnitude or relative importance. These weighting factors have to be included in subroutine CONST since none of the methods is set up to add them internally.

The effect of weighting factors in the three service subroutines can be quite significant -- especially when using methods which minimize an unconstrained objective function with penalty terms added for violated constraints. This is discussed fully in section 2.4 .

\subsection*{2.3 System Subroutines}

The system subroutines make program OPTIPAC a coherent package rather than just a collection of different optimization techniques. They read in and screen the data, find a feasible starting point if necessary, print out the results and perform a sensitivity analysis upon request. Most important of all, they can process any number of data decks, permitting the user to try different methods and different program parameters all in one run. The purpose and operation of each of the system subroutines is explained below.

Central Control: Subroutine OPTIPAC
Subroutine OPTIPAC coordinates the operation of the entire package. It acts essentially like a main progran, but is written in the form of a subroutine for two reasons. First of all, the initial DIMENSION statement presents a technical difficulty. Several arrays must be sized specifically for each problem to use the computer memory efficiently. This can be done only by inserting actual numbers into the arguments of array names in the DIMENSION statement of the main program. Since the whole package is on tape, this would be quite impractical. It would eliminate one of the system's major advantages -a small input deck. In a subroutine, however, arrays may be given variable dimensioning which means that they expand to the size allotted
to them in the calling program (see reference 3 , page \(5-2\) ). Thus, by writing OPTIPAC as a subroutine, the package can still be stored on tape, and can be called by a very simple, or "dumm", program MAIN consisting basically of a DIMENSION statement and a CALL to OPTIPAC. Making OPTIPAC a subroutine also permits any program to have access to it. For example, optimization of some intermediate results may be needed during the execution of a large analytical program. This could not be run as a continuous job if OPTIPAC was itself a main progran. At McMaster, the package is kept semi-permanently* on a COMMON file "OPTAPE". This makes it available to any program having a control card COMMON(OPTAPE) and a CALL statement to subroutine OPTIPAC. Since the user has to keypunch the MAIN program himself, the arrays in its DIMENSION statement, (and therefore the names in the CALL OPTIPAC argument list) are kept to a minimum. Only data arrays and large, doubly-subscripted working arrays are included. All other working space required by the package is declared in subroutine OPTIPAC as labelled COMMON blocks which are allotted to the other subroutines as shown on page 5-13 in reference 3. The blocks consist of from one to four arrays, each dimensioned (100). This scheme allows several subroutines to share storage space, although for small problems, the memory set aside for working arrays is larger than necessary. (This inefficiency could only be corrected by further complicating program MAIN). Another result of using working arrays of fixed size (100) is that input problems
*The COMMON file is re-created from a binary tape immediately after every "dead-start" of the computer. True permanent files are not yet available at McMaster.
are arbitrarily limited to having 100 independent variables, 100 equality constraints, and 100 inequality constraints.

After subroutine OPTIPAC has set up the labelled COMMON blocks, it clears all the working arrays and initializes the error flag, K \(0=0\). (All subroutines in the package use \(K 0=1\) to indicate a failure of any kind). OPTIPAC then calls subroutine DATA to read in the data for the method being run. If \(\mathrm{KO}=1\) after DATA, the job is terminated because READ statements will have been omitted putting the remaining data cards out of phase. The values of INDEX, LEVEL and NSENSE which are returned from DATA, determine the flow of logic through the rest of the package.

INDEX identifies the method to be used, or signals the end of the data deck if set \(=99\). LEVEL indicates whether the package is to be run in the unsophisticated mode (LEVEL=0) or the sophisticated mode (LEVEL=1). If a sensitivity analysis has been requested, then subroutine DATA returns NSENSE=1 (otherwise NSENSE=0). Subroutine OPTIPAC first checks the value of INDEX to see if control must be returned to program MAIN (i.e. INDEX=99). If not, then a new set of data is ready and the level of sophistication is checked. Before calling the method subroutine, the computer's internal clock (subroutine SECOND) is referenced to obtain the time at the start of execution. If LEVEL=0, OPTIPAC presets the necessary program parameters and then calls the method subroutine stipulated by INDEX. At LEVEL=1, the method subroutine is called immediately after the return from DATA because all the program parameters are read in from data cards. The method subroutine performs the optimization procedure, prints out the results, and returns control to
subroutine OPTIPAC. Subroutine SECOND is called again, and the net execution time for the method is calculated and printed out. Then, if the flag NSENSE=1, subroutine SENSE is called to do a sensitivity analysis of the results. Finally, control is returned to the beginning of subroutine OPTIPAC and the sequence is repeated for the next set of data. To sumarize, subroutine OPTIPAC performs the following functions:
a) provides entry to the package from any other program b) allocates storage space for all internal working arrays
c) clears these working arrays and sets \(\mathrm{KO}=0\)
d) calls subroutine DATA to read user's input data deck
e) presets parameters for method subroutines at LEVEL=0
f) calls the appropriate method subroutine
8) calculates and prints out the net execution time for the method
h) calls subroutine SENSE if sensitivity analysis requested
i) repeats this sequence for many data decks until INDEX=99 is encountered.

System Input: Subroutine DATA
The purpose of subroutine DATA is to read in all the data for each method, check key parameters to see if they are acceptable, and list the input data (upon request) for the user's scrutiny.

Basically, subroutine DATA is a series of READ statements, one for every possible input parameter to the package. The first card of every method's data deck contains three parameters, INDEX, LEVEL and IDATA, which control the flow through the remainder of subroutine DATA.

Since the set up of the input deck for each method is completely specified in the users' manual, \({ }^{2}\) the values of INDEX and LEVEL together determine which parameters are to be read in. Therefore, simple logical statements are placed before each READ so that unwanted parameters are bypassed. All arrays are cleared before data is read into them. Immediately following each READ, the parameter IDATA is tested and if IDATA=1, the value of the parameter(s) just read is printed out. This allows the user to check his input. On later runs he may suppress the listing by setting IDATA=0.

LEVEL and IDATA must be 0 or 1 while INDEX must be between 0 and 8 inclusive or be equal 99 to signal the end of the data decks. Subroutine DATA checks these values, and if any is unacceptable, the error flag \(K 0\) is set equal to 1 and control is returned to OPTIPAC which returns to MAIN.

Subroutine DATA is designed to read in only the special OPTIPAC parameters described in reference 2 . If the user has auxiliary data, (such as physical constants), which is needed by the service subroutines, then he must insert his own READ statements in program MAIN and transfer the information via labelled COMMON blocks.

Feasible Starting Point: Subroutine FEASBL
Several of the nonlinear optimization techniques require a feasible starting point, i.e., a point which satisfies all the contraints. In many cases however, the user does not know and cannot calculate a feasible point for his problem. To overcome this difficulty, subroutine FEASBL is included in the package.

FEASBL consists of two phases since there are two types of constraints. First of all, method subroutine SEEK3 is called to find a point which gatisfies all the inequality constraints.* If such a point is obtained, then FEASBL uses a direct search in the feasible region to drive the equality constraints to zero. In this search, the objective function is the sum of the absolute values of the equality constraints, and ideally, the minimum is at zero. No acceleration or pattern move is used since the equalities are already reduced to reasonably small values in SEEK3. The actual final magnitude of the equalities can be controlled by the user at LEVEL=1 by his choice of the parameter " \(F\) " (see reference 3, page 5-76). If SEEK3 fails to find a point which satisfies the inequality constraints, then FEASBL cannot proceed because the direct search minimization of the \(\psi\) 's can only operate in the feasible region. When this happens, an error message is printed out and the user must try another (still infeasible) input starting point.

In the current version of OPTIPAC, FEASBL is used by alternate search (ALTS) and successive linear approximation (APPROX). Neither of these methods can get started if any equalities are violated. Adaptive random search (ADRANS) does not require a feasible start, but calls subroutine FEASBL to speed up the method. These three methods call FEASBL automatically -- it is not an option controlled by the user.

\section*{*} p in unless INDEX=3.

System Output: Subroutine ANSWER

Subroutine ANSWER is a convenient means of printing out the results of the methods in a neat, standardized form. As a safety feature, ANSWER evaluates \(U\), PHI (I) and PSI(I) directly from subroutines UREAL, EQUAL and CONST respectively. This is necessary because the final values at the end of a method do not always correspond to the optimum point defined by \(X(I)\). For example, in a direct search, the method stops when no improvement can be found. In this case, the final values of \(\operatorname{PHI}(I)\) and \(\operatorname{PSI}(I)\) usually refer to the last unsuccessful (often infeasible) point tried. Also, the final value of \(U\) may actually be \(U\) plus some small penalty terms if equality constraints are involved. Subroutine ANSWER is used to print out either the optimum found or the results of the last iteration if the method stops prematurely. Intermediate results are printed out by the method subroutines according to the parameter IPRINT. \({ }^{2}\)

Sensitivity Analysis: Subroutine SENSE
The designer is often interested in how the optimum would be affected by a small change in any of the independent variables. To provide him with this information, subroutine SENSE has been included in the package. Since it entails a large amount of output, the sensitivity analysis is only performed if specifically asked for (see reference 2 , page \(2-6\) ). The procedure is quite straightforward. The first variable \(X(1)\) is decreased fractionally from its optimum value and \(U, P H I(I)\) and \(P S I(I)\) are calculated and printed out. The same is done for an increased value of \(X(1)\). Then \(X(1)\) is returned to the optimum and the next variable is changed, and so on. The fraction
which is added and subtracted to each variable is FSENSE, a parameter input as data by the user. The print-out from SENSE allows the user to see which variables have a strong influence on \(U\), and which constraints are sensitive to small changes in the variables, i.e. which are the critical constraints. Another useful type of sensitivity analysis, is to show the effect on the optimum of changes in the inequality constraints themselves. This can be achieved with OPTIPAC by running a problem several times, varying the PHI(I) statements in subroutine CONST. Typically, a "DO-loop" would be placed around CALL OPTIPAC in the program MAIN, and the constants to be changed in the inequalities would be stored in a labelled COMMON block.

Method Execution Time: Subroutine SECOND
To compare efficiencies of the various methods, the execution times must be considered as well as the optima obtained. On the C.D.C. 6400, subroutine SECOND provides access to the computer's internal clock. Therefore, SECOND is called immediately before and after the CALL to a method subroutine and the net execution time is simply the difference between the two readings. All computers have similar internal clocks, and only a minor modification is required to run on another machine (see reference 3, page 5-88).

\subsection*{2.4 Method Subroutines}

The method subroutines contain the coding for the various optimization procedures. Every method can be run at LEVEL=0 (unsophisticated user) or at LEVEL=1 (sophisticated user). However, this only affects the values of the input parameters and the actual strategy used is identical for both values of LEVEL. The current
version of OPTIPAC includes linear programming and eight nonlinear methods.

Linear Programming: Subroutine SIMPLE
Linear programing minimizes a linear objective function subject to linear constraints. It is included in the package for two reasons. First of all, two of the nonlinear methods, alternate search and successive linear approximation, require the minimization of a linearized system to determine optimum gradients. These methods could call the computer's own library subroutine directly, but that would introduce another machine-dependent feature. Also, the variable dimensioning scheme used elsewhere in the package could not be applied. This would mean that more array names would have to be added to subroutine OPTIPAC's argument list and to program MAIN's DIMENSION statement. The second reason for including linear programming is to make OPTIPAC more general. It is written in the form of a separate method subroutine to allow the user to run a linear problem easily by following the straightforward instructions in the users' manual. \({ }^{2}\)

The algorithm chosen is the I.B.H. subroutine "SIMPLE" which uses Revised Simplex, a computationally more efficient version of Dantzig's original Simplex method. \({ }^{1,17}\) Slight modifications have been made to make the subroutine conform with the rest of the package, but the basic algorithm is unchanged. It performs Phase \(I\) and Phase \(I I^{2}\) so that an initial feasible basis is not required. It is important to note that SIMPLE assumes it is dealing with equations and the user must add slack variables to convert inequalities to equations. The number of slack variables plus the number of independent design variables gives
the total number of Simplex variables, or columns in the Simplex tableau. Another restriction is that SIMPLE can handle only positive values of the Simplex variables. If any of the design variables is expected to be negative (a voltage or beam deflection for example), then the user can employ the substitution \(x_{i}=\left(x_{i}^{+}-x_{i}^{-}\right)\), where both \(X_{i}^{+}\)and \(X_{i}\) are positive valued but \(X_{i}\) itself may be negative. Consider the constraint
\[
3 . * X(1)+2 . * X(2)=4.0
\]

If the user knows \(X(2)\) is negative, he must rewrite the constraint as,
\[
3 . * X(1)+2 . * X(2)-2 . * X(3)=4.0
\]

The Simplex method calculates the optimum values of \(X(2)\) and \(X(3)\) and their difference gives the optimum value of the second design variable. This substitution is very useful, although it does increase the number of Simplex variables.

The only input parameter which the user can control (at LEVEL=1) is NSTOP, the maximum number of iterations* allowed without reaching an optimum. At LEVEL=0, this is set arbitrarily at four times the number of Simplex variables plus ten. If the program stops because NSTOP iterations have been exceeded, a message is printed out to tell the user whether or not the solution is still feasible. If it is, then the problem should run successfully with a larger input value of NSTOP. If the solution is not feasible after NSTOP iterations, it is unlikely that SIMPLE can find an optimum at all. This is usually due to an input

\section*{*}

One Simplex iteration consists of selecting the variable to be removed from the basis and the variable to be added to the basis, and performing the interchange.
error in the coefficients of the objective function or constraint equations. If the user omits a necessary constraint entirely, a message is printed out stating that the optimum is unbounded. The results at the optimum are printed out only when SIMPLE is being used as a method subroutine (INDEX=0). When it is called by ALTS or APPROX, there is no printed output except for error messages.

\section*{Nonlinear Prograrming}

Five of the eight nonlinear methods contained in OPTIPAC are direct or random search techniques. They differ in their strategy for determining the direction and magnitude of trial moves and in their criteria for ending the search. These differences are significant and usually one method is considerably more efficient than the others for a particular problem. The direct searches are relatively fast but not always accurate, while the random searches are slow but can avoid or at least detect local optima. Two other techniques in OPTIPAC rely on a Iinear approximation of the nonlinear problem. One is the Method of Successive Linear Approximation (MAP) developed by Griffith and Stewart. 5 and the other is a combination of accelerated direct search and MAP developed by Gurunathan. \({ }^{6}\) They both use a Simplex solution to determine the optimum gradient -- the direction which gives the largest improvement in the objective function. The remaining nonlinear method is geometric programming \({ }^{4}\) which solves the special problem where all terms in the objective function and constraints are products of the design variables. In some limited cases, geometric programing yields the global optimum directly, but in general, a direct search is required to optimize the associated dual problem.

\section*{Direct Search: Subroutine SEEK1}

SEEK1 uses the direct search strategy of Hooke and Jeeves \({ }^{7}\) followed by a random search to check if a true optimum has been found.

All the direct search methods in OPTIPAC are based on the same principle. That is, to incorporate the constraints into an artificial objective function which can be minimized by systematically calculating its value at selected points in the search region, and taking the smallest value as the minimum. To account for the constraints, penalty terms are added to the real objective function whenever constraints are violated. By making these penalty terns proportional to the magnitude of the violation, it is possible to compare the values of the artificial objective function at different points and to move in the direction of the apparent optimum. For SEEK1, the penalty terms are simply the absolute value of each violated constraint multiplied by a large constant. \({ }^{2}\)

In the "exploratory search", each variable is never changed by more than one basic step length and the results of the exploratory search determine the direction for making the larger, pattern moves. This means that the search is only accelerated on the basis of feedback from changes in all the variables. This is a major difference between SEEK1 and SEEK2. SEEK2 uses acceleration in the exploratory search itself to change each variable as much as possible before starting the pattern moves. The relative success of the two approaches depends entirely on the form of the problem and the starting point used.

Like most direct search methods, SEEKl tends to stall on constraints, This occurs when no small change (equal to the specified
minimum step size) in a single variable can improve the artificial objective function. Usually, an improvement could be found using a pattern move, but pattern moves are only possible after a successful exploratory search. To overcome this difficulty, SEEKl employs a simple random search after the direct search has hung up. Every variable is increased (or decreased) by a random fraction of ten times* the original step length and the result is a composite move of random length and direction. At LEVEL=0, up to one hundred such moves are tried to find an improved value of the artificial objective function. At LEVEL=1, the number is specified by the input parameter NTEST. If an improvement is found, then the direct search is resumed. If not, the method assumes it has reached the optimum. Figure 1 shows how this random search gets the method started again after it has stalled on a constraint.

The input starting point and the weighting factors for the constraints can greatly influence the results of SEEKl. The starting point does not have to be feasible, but its position in relation to the constraints largely determines whether or not the method will hang up. Since it is often impossible for the user to visualize his problem in space, the safest approach is to run the problem with several different starting points.

The penalty terms added to the artificial objective function are proportional to the magnitude of the violation of each constraint. This
*
Relatively large moves are made because the object is to get as far away from the constraints as possible so that the direct search can be started again.


Figure 1. Restarting SEEK1 with a random move
causes difficulties when certain constraints are very sensitive to changes in a particular variable -- especially a change in sign. For example, a problem may have a simple inequality constraint to keep a small physical dimension, \(X(3)\) positive. There may also be a complicated equality constraint where \(X(3)\) appears in several terms multiplied by large factors. Then it is quite possible that, in moving from a positive to a negative value of \(X(3)\) the equality constraint is drastically reduced, while the inequality becomes slightly violated. The overall effect is a large improvement in the artificial objective function. After this type of jump has occurred, it is very difficult to drive \(X(3)\) positive again because the equality constraint has such a 1 ow value that almost any increase in \(X\) (3) increases the artificial objective function. In some cases, this prevents SEEKI from obtaining a feasible solution at all. This trouble can be avoided by adding a large weighting factor to \(X(3)\) in the inequality constraint. That is, constrain \(10000 . * X(3)\) to be positive, rather than just \(X(3)\). Then a negative value of \(X(3)\) causes an overall increase in the artificial objective function as it should. To choose appropriate values, the user can run his problem at LEVEL=0 without any weighting factors and use the results to decide which (if any) constraints need to be weighted. Direct Search: Subroutine SEEK2

SEEK2 uses the direct search strategy developed by Flood and Leon. \({ }^{8,9}\) As mentioned above, the distinctive feature of this technique is that an acceleration procedure is used to advance each variable as far as possible before any pattern move is attempted. This approach is suitable for some problems, but in general, SEEK2 tends to be extremely
sensitive to the input starting point and to the order in which the design variables are assigned to \(X(1)\) through \(X(N)\). The starting point is important because, by making large moves in a single direction, the method can hang up on constralnts before all. the variables have been changed. Then the final value of the objective function depends on the location of the starting point, as shown in Figure 2.

The user arbitrarily namen the design variables \(X(1), X(2), \ldots X(N)\) when he is formulating his problem. However, his choice fixes the order in which the design variables are moved, since SEEK2 always changes the X's in sequence, starting with \(X(1)\). The effect of the design variable assignments can be seen by studying Figure 2. Starting points \(B\) and \(C\) would have been quite acceptable if the variable \(X(2)\) had been moved first, that is; if the user had reversed the names of the design variables. Unfortunately, in most cases it is impossible to predict the best order - especially since it may change as the solution proceeds. Flood and Leon \({ }^{9}\) suggest randomly changing the order after every search Iteration. This modification could easily be added as a small subroutine, and it would probably greatly improve the efficiency of the method. At present, SEEK2 does not have this feature, and the user must reformulate the problem to change the search sequence.

The penalty terms for SEEK2 are the same as for SEEK1, and Weighting factors should be applied to the constraints in the same manner. The method stops when, moving with the minimum step size, the relative change in the artificial objective function is less than the specified tolerance EPS.


Figure 2. The importance of the sforting point in SEEK2

Sequential Direct Search: Subroutine SEEK 3
SEEK 3 is based on a method by Fiacco and McCormick \({ }^{10,11}\) which they call the Sequential Unconstrained Minimization Technique (SUMT).

The method consists of a series of direct search minimizations using the strategy of seEK1. The artificial objective function uses special penalty terms \({ }^{2}\) which are designed to prevent the solution from leaving the feasible region (all inequalities satisfied) while driving the equality constraints to zero. This assumes that the input starting point is feasible. To permit infeasible starting points, alternate penalty terms, like those used in SEEK1, are substituted for all unsatisfied inequality constraints. These alternate penalties are relatively large and the solution tends to the feasible region rapidly. Fiacco and McCormick have proposed another procedure for handling infeasible starting points which uses SUMT itself to drive the inequalities positive. Experience with OPTIPAC however, has indicated that the former approach is quite adequate.

Some effort has been made to find criteria for choosing the penalty term parameter \(R\) and its reduction factor REDUCE. No satisfactory answer has been found, and it appears that these parameters are problem-independent. Their values can affect the rate of convergence, but they do not influence the optimum obtained. The LEVEL=0 values of \(\mathrm{k}=1.0\) and REDUCE=. 04 have proved effective for many test problems.

Each iteration of SEEK 3 constitutes a complete minimization problem in itself. To reduce the number of calculations (and therefore computer time), some techniques have been developed \({ }^{10}\) for extrapolating
the results of successive iterations to speed up convergence. This is a feature which should definitely be added to SEEK3 in the future.

SEEK3 is not as prone to stalling on constraints as are SEEKl and SEEK2, although some weighting factors (especially on equalities) are usually necessary. The method stops when the relative change in the objective function is less than \(10^{-8}\) or when \(R\) has been reduced be low \(10^{-21}\).

Adaptive Random Search: Subroutine ADRANS
ADRANS uses the pseudo-random search strategy originated by Gall. 12 The basic approach is to determine the optimum search direction by taking the mean path through five randomly generated improved points. The arcificial objective function uses the same penalty terms as SEEKl, \({ }^{2}\) and the method can handle infeasible starting points. An attractive feature of ADRANS is that every trial move involves changes in all the variables, making the method less likely to stall on constraints. Generating the trial random points is a cumbersome process, but the directions obtained are reliable and accelerated pattern moves help to improve the overall efficiency. At present, subroutine FEASBL is called to speed up the method by providing a reasonable starting point -- even though ADRANS does not require a feasible starting point.

ADRANS is assumed to have reached the optimum when no improvement in the artificial objective function can be found after generating a user-specified number (NSMAX) of random trial moves.

\section*{Random Search: Subroutine RANDOM}

RANDOM is probably the best method in OPTIPAC for handing problems with local optima. The strategy used was developed by Dickinson and

Gallagher \({ }^{13}\) although similar techniques have been devised by other authors. \({ }^{14}\) The method evaluates the objective function at NUMR randomly chosen test points within the initial search region specified by the user. Points which violate any inequality constraints* are discarded, and the remainder are sorted according to their value of the objective function. Then the search area is shrunken to include only the NRET best points and the procedure is repeated until the range of each variable is acceptably small. The important feature here is that, if local optima exist in the original search region, they will prevent RANDOM from shrinking that region to any great extent. The user could then investigate his original area in smaller segments to locate the true optimum.

The number of random points generated and the shrinkage factor used can affect RANDOM's efficiency and so both parameters are controlled by the user at LEVEI=1. Since the whole object is to shrink the original search region, it follows that if the user excludes the optimun in his initial estimates of the design variable ranges, then it is impossible for RANDOM to reach that optimum. Successive Linear Approximation: Subroutine APPROX

Griffith and Stewart \({ }^{5}\) have developed a technique for conducting an extremely efficient search. The method converts the nonlinear problem into a linear problem by using a first order Taylor series expansion to approximate the objective function and the constraint equations about a
*
RANDOM at present does not accept equality constraints.
point. This produces a system of linear equations and inequalities in which the variables are the steps to be taken in each search direction and the linearized objective function is the improvement in the objective function at the new point. After adding constraints to limit the step lengths,* this system is solved as a linear programming problem (subroutine SIMPLE) to find the optimum search vector. Every move is determined in this manner, and the process stops when SIMPLE cannot find a significant improvement in the objective function.

In practice, there appear to be two main difficulties with the method. First of all, the partial derivatives which form the Simplex coefficients are evaluated numerically \({ }^{2}\) and they can be quite inaccurate. This is a serious problem when equality constraints are linearized because no compensating slack variables are added as they are to inequalities. The second problem is in determining the limits to be placed on the individual step lengths. Their maximum size has been arbitrarily set at ten percent of the range of each variable to satisfy the approximate Taylor series expansion. As the solution proceeds, it is necessary to decrease the allowable step lengths in order to force convergence. The logic which controls this step length regulation is purely intuitive on the part of the author \({ }^{3}\) and it: may prove to be too crude for larger problems.

APPROX has been very successful on the test problems tried and usually the difficulties mentioned above can be avoided by careful
selection of the imput parameters at the sophisticated level (LEVEL=1). Alcernate Search: Subroutine ALTS

A logical extention of the method of successive linear approximation is to combine it with a direct search in order to take better advantage of the optimum search direction, thus reducing the necessary number of Simplex solutions. Gurunathan's work \({ }^{6}\) has been used as the basis for subroutine ALTS.

An accelerated direct search is carried out in the feasible region (all inequalities satisfied) with an artificial objective function composed of the true objective function plus the values of the equality constraints multiplied by weighting factors. Whenever the direct search stalls, a linearization is performed to find a new search direction. The process stops when no significant improvement can be obtained by either method. One disadvantage of AlTS is that a feasible starting point is required, but in most cases subroutine FEASBL \({ }^{3}\) is able to locate one.

The major difficulty with the method is in choosing step length Limitations for the linearizations. The problem is more pronounced chan for APPROX because the linearizations are separated by portions of direct search and therefore the Simplex search directions do not develop in a cecognizable pattern. At present, the step lengths are not adjusted at all, and oscillation or overstepping of the optimum can occur. Since convergence is not guaranteed, the method keeps track of the 'best point su far" which is taken as the optimum if the method does not converge. At LEVEL \(=1\), the user has control over all important parameters \({ }^{2}\) (including maximum step length) and he should be able to tune the method to his problem. The direct search portion of ALTS is particularly
efficient for hancling equality constraints. The linearizations will be more successfui when a method of forcing convergence is perfected. Geometric Programning: Subroutine GEOM

Geometric programing is the only special purpose nonlinear method in OPTIPAC. It was invented by Zener \({ }^{4}\) to solve the problem where the objective function and inequality constraints are "posynomials", i.e. polynomials with positive coefficients. Also, the independent variables are restricted to having positive values.

The method involves a mathematical transformation to the dual problem, the maximization of the dual problem, and then a transformation back to the input or primal problem. \({ }^{2}\) In certain cases,* the dual maximization is not needed as the mathematical transformations yield the global optimum directiy. For most problems however, SEEK1 is required to maximize the dual objective function.

The most attractive feature of geometric programing is that the relative values of the primal and dual objective functions indicate whether or not the solution is optimal. They are equal at the global oprimum, and represent upper and lower bounds on the global optimum if they are not equal. One major disadvantage of the method is that the transformation back to the primal problem is not always possible. Then the value of the dual function gives a lower bound on the optimum, but no information is gained about the values of the design variables.

In its present form, GEOM has very limited applications. It needs
*
The globa optimum is obtained directly when the "degree of difficulty" equals zero (see reference 2 , page 4-50).
to be modified to permit negative polynomial coefficients, (and therefore greater-than-equal type inequality constraints), and negative Independent variables. It has been used successfully to design electrical transformers \({ }^{15}\) and journal bearings, 16 but problems with large "degrees-of-difficulty" have not been tested.

\section*{3. LOCUMENTATION FOR THE SYSTEM}

The main object of OPTIPAC is to encourage the use of formal optimization procedures in engineering design. It is aimed largely at people unfamiliar with optimization theory and therefore the documentation for the system is extremely important. Separate manuals have been written for the user \({ }^{2}\) and the programmer, \({ }^{3}\) and a third manual is being compiled \({ }^{*}\) to illustrate typical applications and sample input for some test problems.

\subsection*{3.1 The Users' Manual}

The first section, "Quick Information", provides a very brief description of the whole system. The generalized form of the optimization problem which is solved by OPTIPAC is given, with an explanation of how to convert any problem to the standard form. The three categories of user, unsophisticated, sophisticated and programmer, are clearly defined so that the user can decide which parts of the documentation concern him. "Procedural Instructions" outline a systematic, check-list approach to running a problem, referring the user to the relevant documentation at every step. Finally, there is a list of the nine techniques currently included in the package and a simplified flow chatt showing the program organization.
*The third manual is intended for commercial users and has not yet been completed. It is not described further in this thesis.

The second section explains how to set up the input deck, and describes the arrangement of the MAIN program, service subroutines and data deck. A diagram is used to show the complete input deck with all the control cards necessary to gain access to OPTIPAC which is stored on magnetic tape. Instructions are also given for running more than one method at a time and a second diagram illustrates this case. The sensitivity analysis which is contained in subroutine SENSE is described fully, and instructions for requesting it are given.

The third section of the users' manual contains the documentation for each of the method subroutines at the unsophisticated level. After a short introduction, there is a simplified flow chart to help the user choose methods for running his problem. This method selection chart is intended only as a rough guide however, and at the unsophisticated level, best results are obtained by trying as many methods as possible. The descriptions of the methods are written in a standard format and are very brief. A statement is given of the type of problem which can be handled, and the basic instructions necessary to run a job are provided. Virtually no background theory is included in this section. The data decks required by each method at this level are almost identical, which makes it very easy for the user to try several different techniques.

The fourth and last section of the users' manual contains the documentation for a sophisticated user. The layout is similar to that in the previous section, but considerably more detatl is included. The basic theory behind each technique is out lined and useful references are given. A sub-section on special features helps the user choose values for all the input program parameters, and the default values of these
parameters used at LEVEL \(=0\) are listed. As an aid in de-bugging, a flow chart is provided to show which subroutines are called. Two excerpts from the users' manual are contained in Appendix A to illustrate typical documentation at both the unsophisticated and sophisticated levels.

\subsection*{3.2 The Programpers' Manual}

The second manual contains all the information concerning the operation and organization of the FORTRAN program itself. It is divided into two parts: a description of the program, and an actual listing of the source deck.

The first section begins with a general description of the system, including its subroutine structure, the variable dimensioning scheme and the use of COMMON blocks. A "Thesaurus of Program Parameters" gives a complete alphabetical list of all user-input parameters together with their definitions. The details of each subroutine are discussed in a standard format. The internal variables are defined, and a flow chart of the program logic is given. A second, simplified flow chart shows how the particular subroutine is related to the rest of the package. Additional notes are used to elaborate on unusual or subtle aspects of the coding. The programmers' documentation for subroutine RANDOM is included in Appendix A as a typical example. Two other important topics which are covered in this manual are the incorporation of new method subroutines and features of the program which are machine-dependent.

The second half of the programmers" manual is taken up by the FORTRAN IV listing of OPTIPAC. Comment cards have been used liberally to help clarify the logic involved.

\section*{4. TEST PROBLEMS}

The test problems discussed below represent real design problems chosen to give a good comparison of all the methods. They demonstrate clearly how difficult it is to predict which method will find the best solution. Several other problems were used in developing the individual methods and larger design problems have been run on the package by both undergraduate and graduate students at McMaster University.

The first example is the design of a three phase sheli type electrical transformer. This was used as the main test problem for the geonetric programing subroutine GEOM and it is fully described in Frank's paper. \({ }^{15}\) The object is to minimize the volume of material while satisfying two geometrical constraints. GEOM assumes that all the variables are positive, but for the other methods, extra constraints are needed. Each of the independent variables is a physical dimension of the transformer, and the problem can be stated mathematically as follows: Minimize,
\[
\mathrm{U}=.2007 \mathrm{x}_{3} \mathrm{x}_{4} \mathrm{x}_{5}+.2697 \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{6}+\frac{3.69 \times 10^{9} \mathrm{x}_{6}}{\mathrm{x}_{1} \mathrm{x}_{2} \times_{3}^{2} \times_{4}^{2}}
\]

Subject to the inequality constraints,
\[
\begin{aligned}
& \phi_{1}=-4.0 x_{1} / x_{5}-6.0 x_{2} / x_{5}-4.0 x_{3} / x_{5}+1.0 \geq 0 \\
& \phi_{2}=-6.0 x_{3} / x_{6}-6.0 x_{4} / x_{6}-9.424 x_{1} / x_{6}+1.0 \geq 0 \\
& \phi_{3}=x_{1} \geq 0 \\
& \phi_{4}=x_{2} \geq 0 \\
& \phi_{5}=x_{3} \geq 0 \\
& \phi_{6}=x_{4} \geq 0 \\
& \phi_{7}=x_{5} \geq 0 \\
& \phi_{8}=x_{6} \geq 0
\end{aligned}
\]

The problem was run on eight methods at the unsophisticated level, and the results and execution times are tabulated in Appendix B. A11 methods used the same starting point. GEOM's solution agrees exactly with that of Frank. 15 It is particularly interesting to note hov well some of the other methods work on this specialized problem. Sequential search, SEEK3, is especially good and the direct searches are considerably faster than GEOM itself. At the sophisticated level it would definitely be possible to adjust parameters in SEEK3 to obtain the global optimum. The histogram in Figure 3 gives a visual comparison of the minima obtained and the execution times required by each method. The second test problem is a simple structural optimization, described by Siddall. \({ }^{17}\) A three member indeterminant truss is to be designed for minitum weight. The lengths of the members are fixed and the structure must be able to support a one thousand pound load. Initially, eight independent variables were chosen: the cross-sectional areas and tensile stresses of each member, and the horizontal and vertical displacements of the point of application of the load. The problem could then be specified by two force-equilibrium equations, three displacement equations and nine inequality constraints restricting stresses, minimum areas and buckling loads. This formulation was run on OPTIPAC without much success. All of the methods had difficulty handling the five equations (equality constraints). After careful examination it was realized that only three of the variables were truly independent. Having chosen values for the three cross-sectional areas, the five equations become linear and can be solved by Gauss elimination for the


Figure 3. The relative performance of the nonlinear methods in OPTIPAC
remaining five intermediate variables. (These axe sometimes called "state" variables). Inequality constraints are still imposed upon the intermediate variables, but the formal equality coustraints are no longer necessary. This revised problem with three independent variables and nine inequality constraints was run on OPTIPAC at the unsophisticated level using seven methods, and the results are tabulated in Appendix B. (All methods used the same starting point). The mathematical statement of the problem is given below.

Minimize,
\[
U=.283\left(50.9\left(x_{1}+x_{3}\right)+36 x_{2}\right)
\]

Subject to the inequality constraints,
\[
\begin{aligned}
& \phi_{1}=20000 .-\left|x_{4}\right| \geq 0 \\
& \phi_{2}=20000 .-\left|x_{5}\right| \geq 0 \\
& \phi_{3}=20000 .-\left|x_{6}\right| \geq 0 \\
& \phi_{4}=10_{20}^{20} x_{1} \geq 0 \\
& \phi_{5}=10^{20} x_{2} \geq 0 \\
& \phi_{6}=10^{20} x_{3} \geq 0 \\
& \phi_{7}=\pi 7.510^{6} x_{1}^{2} / 50.9^{2}-\left|x_{1} x_{4}\right| \geq 0 \\
& \phi_{8}=\pi 7.510^{6} x_{2}^{2} / 36.0^{2}-\left|x_{2} x_{5}\right| \geq 0 \\
& \phi_{9}=\pi 7.510^{6} x_{3}^{2} / 50.9^{2}-\left|x_{3} x_{6}\right| \geq 0
\end{aligned}
\]

It should be noted that the fourth, fifth and sixth constraints are heavily weighted to prevent the cross-sectional areas becoming negative. The variables \(x_{4}, x_{5}, x_{6}\) in the above inequalities are obtained by solving the following set of linear equations for specified values of \(x_{1}, x_{2}\) and \(x_{3}\).

Once again, the value of having several different techniques in a package is demonstrated. Adaptive random search, ADRANS, finds as low a minimum as sequential search (SEEK3) but it is almost four times slower. The fact that these two entirely different methods obtain identical solutions, gives the user some confidence that the global optimum has been achieved. Both alternate search and successive linear approximation have difficulty linearizing the constraints, and this could be due to the absolute terms in the inequalities. Figure 3 compares the relative performance of the seven methods tried. As this example shows, it is often possible to eliminate or at least reduce the number of equality constraints. The user should always have this aim in mind when formulating his problem.

The third test problem is based on the design of a simple roller bearing in which the total volume of material is the objective function to be minimized. Due to a slight error in one of the constraints,* the solutions obtained are not realistic. However, the example is still a perfectly valid optimization problem in the mathematical sense. It is included here because OPTIPAC's performance contrasts markedly with the two other test problems. The five independent variables selected are the

\footnotetext{
\({ }^{*}\) The variable \(x_{4}\) should appear in the denominator of the first term in \(\phi_{1}\).
}
thicknesses of the inner and outer races, the overall length of the bearing, the roller diameters, and a factor to control the spacing between rollers. Each of the four dimensions ls limited by an inequality constraint, and the bearing must be able to support a radial load of ten thousand pounds. The spacing factor indirectly determines tie number of rollers and an additional constraint stipulates that at least three rollers must be used. The problem is formulated as follows:

Minimize,
\[
u=\pi x_{5}\left[\left(x_{1}+x_{2}+x_{3}\right)^{2}-\left(x_{2}+x_{3}+1\right)^{2}+\left(x_{3}+1\right)^{2}-1+\frac{\pi x_{2}}{4 x_{4}}\left(x_{2}+2 x_{3}+2\right)\right]
\]

Subject to the inequality constraints,
\[
\begin{aligned}
& \phi_{1}=2735 . x_{5}\left(x_{3}+1\right)-10000 \geq 0 \\
& \phi_{2}=x_{1}-x_{2} \geq 0 \\
& \phi_{3}=x_{3}-0.6 \geq 0 \\
& \phi_{4}=x_{4}-1.1 \geq 0 \\
& \phi_{5}=\pi\left(x_{2}+2 x_{3}+2\right) / x_{2} x_{4}-3 . \geq 0 \\
& \phi_{6}=-x_{5}+\delta x_{2} \geq 0
\end{aligned}
\]

Appendix \(B\) shows the results from the seven methods run at the sophisticated level. (All methods use the same \(s t a r t i n g\) point). Geonetric programming is not applicable because the objective function contains negative coefficients. The histogram in Figure 3 emphasizes again that the relative success of each method in the package is strongly problemdependent. Sequential search, SEEK3, which is the best method in the structural example, is by far the worst method for this problem. APPROX and ALIS obtain the lowest value of the objective function here, but in the structural problem, ALTS is only mediocre and APPROX fails altogether. Direct search, SEEKl, which is consistently one of the fastest but least accurate methods, manages to find one of the best solutions.

\section*{5. DISCUSSION}

A multi-technique package has proven to be a valid approach to the general problem of nonlinear optimization. The results of the test problems indicate clearly that a variety of methods is much more effective than any single method.

Direct search SEEKI is usually the fastest method. It rarely finds the best optimum, although the simple random search at the end of the direct search prevents it from hanging up too badly. SEEK2 is almost as fast as SEEKI but more prone to stalling on constraints. As mentioned in Section 2.4 of this thesis, SEEK2 needs to be modified so that the order in which the variables are moved is changed after every step. (This would probably be a worthwhile addition to SEEK1 as we11). SEEK2 would also benefit from a random check on the optimum obtained and subroutine SHOT of SEEKl could easily be incorporated for this purpose.

Sequential search, SEEK3 is considerably more accurate than either of the direct searches. This emphasizes the importance of the form of the penalty terms in the artificial objective function, since the actual search strategy is the same as that used in SEEK1. SEEK3's execution time could be reduced by adding the extrapolation feature described in Section 2.4 .

Adaptive random search, ADRANS, is a reasonably accurate method,
but it is slowed down severely by the cumbersome process of generating trial random points. It seems that there should be some means of progressively modifying the search area to speed up the process. For example, after one improved point is located, the remainder of the search could be concentrated in that area rather than continuing to search the \(f u l l\) ranges of each variable. If this segment of ADRANS could be made more efficient, it would not be necessary to call subroutine FEASBL to start the method. (Calling subroutine FEASBL is undesirable because it introduces the difficulties associated with SEEK 3 and SEEK1).

Random search, RANDOM, is slower than ADRANS, but it is the only method in OPTIPAC capable of detecting local optima. A useful modification would be to print out all the current "best" points when the method stops before convergence. The user could then use the local optima as starting points for other techniques to determine the true optimum. At present, only the lowest relative minimum is printed out when the method fails to converge. As explained previously, the initial search region specified by the user cannot be increased in RANDOM. This means that the input values of \(\operatorname{RMIN}(I)\) and \(\operatorname{RMAX}(I)\) act like strict limit equations on the variables. If the user excludes the optimum by specifying too small a range for any of the variables, it will show up in the solution because that variable will be approximately equal to one of its original bounds. The problem could then be rerun with an expanded initial search region. This difficulty does not occur frequently enough to warrant building in automatic expansion of the search area.

Successive linear approximation (APPROX) is potentially the most effective nonlinear technique in OPTIPAC. It is probably the only method which can be expected to work efficiently on very large problems. At the unsophisticated level, the linearization often fails because the numerical partial derivatives which make up the Simplex coefficients are too roughly approximated. At the sophisticated level, however, the user should be able to obtain good results for most problems. The method can handle equality constraints, provided that the starting point itself satisfies all the equalities. If the user cannot provide such a point, then subroutine FEASBL is called automatically to find one.

Alternate search (ALTS) attempts to combine the speed of direct search with the accuracy of successive linear approximation. The original idea was to use the linearization only to restart the direct search after it had hung up. In practice, the search seldom regains any momentum after its first failure. This is due to the fact that the search usually stalls close to the optimum or on a constraint boundary which permits only composite moves. This leads to a series of successive Iinearizations, but without the extra logic of APPROX to force convergence. The result may be oscillation or even divergence. The method stops when oscillation is detected, and stores the "best point so far" in case of divergence. The method is still not quite satisfactory however, and the entire step length regulation logic of APPROX should be incorporated. There appears to be a flaw in the basic concept of alternate search: it has combined two complete methods rather than just the best features of these methods. A more logical approach would seem to be to choose all
search directions exclusively by linearizing the problem and to determine the correct step lengths by a direct search in the direction obtained. In this way, ALTS would truly utilize only the best features of the two different techniques.

Geometric programing (GEOM) is the only special purpose nonlinear method in the package. It has performed well on very restricted problems, but still needs several modifications which are outlined in Section 2.4 of the thesis.

No difficulties have been encountered with the revised Simplex algorithm SIMPLE. A useful addition would be to automatically make the standard substitution which allows negative Simplex variables. This is already a feature of alternate search and successive linear approximation.

All of the methods have difficulty compensating for constraints of vastly different magnitudes, since the largest constraints tend to dominate the others. Ideally, the program should put equal emphasis on all the constraints unless the user specifically includes weighting factors in the service subroutines. One approach \({ }^{17}\) is to normalize all the independent variables by dividing each one by its estimated range. This scaling of the independent variables is useful in unconstrained problems to make step lengths and gradients more uniform. (It would definitely be an asset in the linearizations performed in ALTS and APPROX). It does not, however, make a significant improvement in the constrained case. A better solution seems to be to normalize the magnitudes of the constraints themselves in some fashion. One crude range approximation could be obtained by evaluating each constraint at
the upper bounds and then the lower bounds of all the independent variables. The differences could then be used as the scaling factors for subsequent values of the constraints. In certain problems, the user may be able to actually input accurate estimates of the expected ranges. It should be pointed out that the existing method of entering weighting factors is quite satisfactory from the analytical viewpoint, but it requires too much judgment and experience on the part of the user. In a system such as OPTIPAC, the user should not need to get involved with the technicalities of the program.

Very few problems with equality constraints have been run successfully on the package. SEEK3, ALTS, and APPROX are best equipped to handle them, but even these methods have considerable difficulty if the starting point is badly infeasible. Equality constraints are extremely restrictive because they force the solution to move right along a boundary, which is much more demanding than merely staying on one side of the boundary (inequality constraints). The direct searches (SEEK1 and SEEK2) hang up frequently because once they reach a point on or very close to an equality, they cannot find a better point. Their exploratory search does not allow for the necessary move along the constraint. Sequential search, SEEK 3 , is more successful because of the special form of the penalty terms in the artificial objective function. For the first minimization, the equalities are virtually ignored due to very small weighting factors. The method first concentrates on finding a point which satisfies all the inequalities. On subsequent minimizations, the equalities are gradually emphasized more until they are finally forced to zero. The direct search portion of alternate search (ALTS) uses a
somewhat similar strategy, although it requires that the starting point satisfy all inequalities. The search is conducted in the feasible region, with user-specified weighting factors (WATE(I)) to drive the equality constraints to zero. The linearization technique of ALTS and APPROX is ideal for following the constraint boundaries, and APPROX appears to be the best method for handling problems with a large number of equality constraints. RANDOM and GEOM do not accept equalities at all. ADRANS is very inefficient since so many random points must be generated to obtain another point on the constraint boundary. (Execution times soon become prohibitive).

The whole question of equality constraints is completely ignored by many authors. They apparently feel that optinization pertains mainly to the solution of inequalities, while systems of equations are best handled by the methods of numerical analysis and classical mathematics. This is a valid argument in some cases and the structural test problem in this thesis shows how equality constraints can often be eliminated. When they cannot be avoided by reformulating the problem, it is always possible to replace an equality by two inequalities. This implies that some tolerance is acceptable, but the tolerance can be reduced on successive runs until the equality constraint is satisfied exactly.

As a computer system, OPIIPAC has performed well. Problems have been run by a variety of users, many of them unfamiliar with optimization and inexperienced in programing. Most have preferred the unsophisticated mode of operation because the input is very simple and all applicable methods use virtually identical data decks. The users' documentation has proven to be more than adequate, and it is constantly being revised
as minor mistakes are discovered. At present, the programmers' manual \({ }^{3}\) is referred to mainly by users interested in the FORTRAN listing of OPIIPAC. When major changes to the system are being made, the rest of this manual will be indispensable.

Now that some operational experience with the package has been gained, it is possible to suggest where changes and additions might be made to improve OPTIPAC.

One of the weakest features of the system is the method selection chart. Presently, the most reliable way of choosing a method is to run the problem on all the methods at the unsophisticated level to see which one gives the best results. This would obviously be impractical with very large problems. As more test problems are run, it should be possible to establish a statistical basis for method selection. That is, the efficiency of each method will be functionally related to the key parameters defining the input: problem. Typically these would include the number of variables, the number of equality and inequality constraints, and a parameter to indicate the degree of nonlinearity. With this sort of information, the program could choose the most efficient method completely automatically. Before incorporating this feature, some changes to the method of data input would be necessary.

Since the user does not know in advance which method will be run, then he must supply sufficient data to run every method in a single data deck. At the unsophisticated level this is simple, but at the sophisticated level it may mean specifying values for over twenty parameters. To reduce this number, it will be necessary to further standardize several parameters,
such as stopping criteria, so that they apply to all methods. Limits on the number of moves or complete iterations can probably be related to the number of variables and thus eliminated from the input deck.

In the present system, all data cards are always read in by the system subroutine DATA. It is now apparent that the user should have the option of bypassing subroutine DATA in order to transfer data directly to OPTIPAC through its argument list and through blank COMMON. This option is essential if the package is to be available as a standard subroutine to other programs when optimization input data is internally generated. Only a very simple modification is needed to add this feature. For example, a value of IPRINT exceeding 500 could be used as the flag for bypassing subroutine DATA. The true value of IPRINT would then be obtained by subtracting 500 from its input value. The overall operation of the system would be unchanged, and runs could still be made at either level of sophistication.

The modifications discussed here represent only some of the more significant improvements which could be made to the system. Necessary changes to the FORTRAN coding itself may become apparent with further usage.

\section*{6. CONCLUSIONS}

OPTIPAC has been developed to encourage the use of formal optimization techniques in engineering design. Its aim is to provide a system which is easy to use, and yet capable of handling a wide variety of both linear and nonlinear problems. The project consisted of two phases: developing the FORTRAN program itself; and writing detailed documentation for three separate types of user.

Since there is no generally applicable nonlinear optimization technique, several different methods have been incorporated into a single package. Input/output is controlled internally and the system may be operated at two distinct levels, depending on the user's familiarity with optimization and programming. Many test problems have been run and they have shown that a multi-technique approach is well justified. Although the performance of individual methods is unpredictable, at least one of the eight methods can usually obtain a reasonable solution.

It was realized at the beginning of the project, that designers would not use the package unless it was accompanied by thorough documentation. Therefore, a considerable amount of time was spent in compiling a manual for the user \({ }^{2}\) and a second manual \({ }^{3}\) describing the programing aspects of the system. The users' manual contains explicit, step-by-step instructions for running a job and these have proven to be more than adequate. Students at the undergraduate and graduate level
in the Design program at McMaster, have been able to run problems without difficulty. Considerable interest in the system has also been shown by people outside the university. Those who have already used or are intending to use OPTIPAC are: the University of Texas; Sheffield University, England; the National Research Council (Ottawa); STELCO Research Division; DOFASCO; and the Butler Manufacturing Company. The latter three companies are all located in Hamilton.

OPTIPAC's problem-solving ability is limited only by the number of techniques included, and the program has been designed to make the addition of new methods straightforward. As a system, OPTIPAC is still relatively unsophisticated. Its ultimate configuration will probably be as a "conversational" program, with the user interracting through a time-shared terminal.

While it is far from being in its final form, OPTIPAC does appear to have succeeded in its two main objectives. It does handle a wide range of problems, and the system is easy to use.
A) SAMPLE DOCUMENTATION FOR 'OPTIPAC' \({ }^{2,3}\)
(Unsophisticated User)
\(3-22\)

RANDOM SRARCH
Name
מANDOM
Purpose
To solve a nomilnear optimization function with nonlinear inequality constraints.
The function to be minisized uill be of the form \(U=U\left(x_{1}, x_{2}, \ldots x_{n}\right)\)
and constratats of the form \(\quad \ell_{k}\left(x_{1}, x_{2} \ldots x_{n}\right) \geq 0 \quad k=1, p\)

Mathod
The method consists of a random search for the minimat or gimply a
shotgun techaique with iterative shrinkage.

\section*{List of Input Variebles}
\begin{tabular}{|c|c|}
\hline mavex & Index number of aubroutime, =6 \\
\hline Level. & leval of sophistication, \(=0\) \\
\hline IPRINT & priats internediate results every IPRLNT cycle, \\
\hline & set at zero for no interwediate data \\
\hline IDATA & 1 f IDATA - 1 the input data will be printed out, \\
\hline & otherwiae set at zero \\
\hline
\end{tabular}
H number of variables (specified in MAIN)
HCOAS number of inequality constraints
\(\max (I) \quad\) estimated upper bound for variable \(X(I)\)
MMIN(I) estisated lower bound for variable \(X(I)\)

\section*{List of Output Variables}

U
minimu value of the optimization function
X(I)
values of independent variableg at the optimum

\section*{(Unsophisticated User)}
```

How to Set Up MAIN Prggrga
DIMENSION X(N),PHI(NCONS),RMAX(N),RMYN(N),2(J,N),UU(J)
Nmnumerical value
Jmnumerical value
M=1
NN=1
NTOTER=1
CALL. OPTIPAC(X,PHI,PSI,A,B,C, WORRA,DELX,STEP,XSTRT, RMAX,EMIN,DSTAR
1,NTEEMS,GS,WATE,TEST,Z,WU,EX,CONST,M, BBB,CC,NCONS,NEQUS,M,N,INN,NT
2OTER,J,XX)
stop
END

```
Note: The numerical valuea of \(N\), NCOWS, \(J\) ( \(J=3\) N ) must be inserted in
the DIMENSION atatement. If NCONS is sero then put PHI (i) if the dimension
statemant.
How to Make Up Data Deck
\begin{tabular}{|c|c|c|}
\hline Variable Neme & Mo. of Cards & Pornat \\
\hline index, level, iprint, idata & 1 & 413 \\
\hline acons & 1 & 15 \\
\hline ramax (1) & as many as required & 5816.8 \\
\hline RMIN(1) & as many as required & \(5 E 16.8\) \\
\hline
\end{tabular}

\section*{Secting Up Service Subroutines}

UREAL, see page 3-30
CONST, see page 3-34

\section*{Miscellaneous}

The values of ruin(I), raxin(1) put in by the user establish
absolute bounds on the variables which can only shrink. If the user is
unsure, it is safest to make \(\operatorname{man}(\mathrm{I})\) too large and RMIN(I) too small.

\section*{(Sophisticated User)}
\[
4-45
\]

\section*{RANDOM SEARCH}

Name
RANDOM
Purpose
To solve a nonlinear optimization function with nonlinear inequality constraints.
The function to be minimized will be of the form \(U=U\left(x_{1}, x_{2}, \ldots x_{n}\right)\) and
conatraints of the form \(\phi_{k}\left(x_{1}, x_{2}, \ldots x_{n}\right) \geq 0 \quad k=1, p\)

\section*{Method}

The method consists of a random search for the minimum, or simply
a shotgm technique, with iterative shrinkage. Random points for each variable
\(x_{1}\) to \(x_{n}\) are generated from the expression \(x_{i}=i_{i}+r_{i}\left(u_{i}{ }^{-q_{i}}\right)\)
where \(L_{1}\) is the estimated lower limit for \(x_{1}\)
\(u_{1}\) i弗 the entimated upper linit for \(x_{1}\)
\(r_{1}\) is a randon number unifomily distributed between zero and one. Any generated point that violates an inequality constraint is discarded. If the constraints are violaced NSMAX times consecutively the process will stop. Problems having more than few constraints are. Liable to bog down in violations, particularly if the initiol limits overlap appreciably infeasible ateas.

The search 18 begun by evaluating NumR randon points by use of the obove equation, NHAR being multiple of the number of variables, From these the best NREI are selected and used as the basis for a new and shrunken range for each variable. NRT is defined by NUMR/NSHRIN where NSHRIN is a shrinkage factor. Within this new epace NUKR new random points are evaluated. These, plus the previous NRET best, are sorted to yield sew NaET beat and a new shrumken apace. The procese is repeated tuncil the range of each variable is acceptebly gnadl, or until the range has bean shrunken MAXM ©imes.

\section*{(Sophisticated User)}

\section*{4-46}

\section*{Meferences}
1. McArthur, D.S., "Strategy in Research - Altemative Methods for Design of Experiments", IRE Trans. on Engrg. Management, Vol EM-8, March 1961, pp. 34-40.
2. Gallagher, P.J., "MOP-1, An Optimizing Routine for the IBM 650", Cas. GE Civilian Atomic Power Dept. Report No. R60cAP35, 1960.

\section*{Special Features}

MSTART is an integer used to initialize the randon number generator subroutine FRANDN. If a large number of random points is generated (MAXA and/or RSMAX very large), several values of MSTART should be eried to insure that the random numbers are being uniformly distributed.

It should be noted that the user's input values for \(\operatorname{RMAX}(\mathrm{I})\) and MMIN(I) establish absolute extremes for the variables which can only shrink. If there is any uncertainty, RMAX(I) should be made higher than expected and HMIM(I) lower thm expected. at LEVEL \(* 0\), parameters set internally for RANDOM are:
\(F=.001\)
NSMAX \(=300\)
MAXM \(=400\)
NSHRIN \(=4\)
MSTART \(=128\)

NUMR is set internally in RANDOM as NUMR \(J\) JNSHRIN, where \(J\) is set in MAIN and is equivalent to NRET. The user can set NRET and NUMR independently since he inputs \(J\) and NSHRIN. A reasonable value of \(J\) is the integer result of \(10 * N / N S H R I N\).

\section*{(Sophisticated User)}

4-47


\section*{(Sophisticated User)}

\section*{4-48}
```

How to Set Uo Marn Promzem
DLMENSION X(N), PHI (NCONS), RNAX (N),RMIN(N),Z(J,N),UU(J)
Nenumerical value
J=numerical value
M-1
NN=1
NTOTER=1
CALL OPTIPAC(X,PHI,PSL,A,B,C,HORKA, DELX,STEP,XSTRT, RMAX,MMIN,DSTAR
1,NTERMS,GS,WATE,TEST ,Z,WU, PX,CONST,MA,BBB,CC,NCONS ,NEQUS,M,N,NN,NT
2OTER,J,XX)
STOP
EMD

```

Note: The numerical valuas of \(N\). HCONS, \(J\) (J MRES) must be inmerted in che DIMERSIOS statement. If NCOAS is zero, then put PHI(1) 1 ne the bLimasiod stacement.

How to Set Un Data Deck


\section*{Setcing Up Service Subroutines}
```

UREAL, see page 4-63
CONST, see page 4-67

```
(Sophisticated User)
\[
4-49
\]

\section*{Subroutines Called}


\section*{Miscellmequs}

RASDOM is a relatively slow method, but it does not hang up on local optima, For this reason, it is a good method for checking the resulcs of other methods.

An improved optinum may be obtained, at the expense of time, by using a larger value of NSHRIN. RANDOK will not run efficiently with small valuas of NSHRIN, say less than 3.

\section*{(Programmer)}
\[
5-57
\]

\section*{SHaradtime randon}

\section*{reperal}

Subroutine RANDOM is uned only as a method subroutine and is called only by OPTIPAC.

\section*{Internal Variables}

Variablen not iucluded in the list below, san be found in the
Themaruk of Progran Parameters.

5K. Temporary counter to compare with IPRINT for printout
10
I. Temporary counter of consecutive constraint violations

E1. 12 Temporary counter* used for printing out results
LABER Temporary variable used for sorting the wU array
Mani Maximun number of cycles pernitted if no convergence
My An integer constant required by subroutine FRANDN, setmo after inicial CALL FRANDN

MSTART Any positive integer to be uaed as the initial value of MM
M Humber of Independent variables \(X(I)\)
NCOUS Number of inequality constraints PHI (I)
NCICLE Councer of the number of complete cycles
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{(Programmer)}} \\
\hline & \\
\hline & 5-58 \\
\hline \multirow[t]{3}{*}{NRET} & Number of "best" random feasible points retained in each \\
\hline & cycle, called \(J\) in MAIN program, and used to dimension \\
\hline & the 2 array \\
\hline NSHRIN & Shrinkage factor where NRET-NLMR/NSHRIN \\
\hline MSterk & Maximun number of consecutive infeasible random \\
\hline , & pointe permitted \\
\hline NUMR &  \\
\hline nvtos. & Counts the number of constraints violated at a point \\
\hline PHI (I) & Values of the inequality constraints \\
\hline (2) & A string of N random numbers associated with \(X\) (I) \\
\hline U & Value of the optimization function at the optimum \\
\hline UTEM & Value of the oprimization function at a \(t=1 a l\) point \\
\hline UU(1) & Values of the optiaization function at each of the NRET \\
\hline & feasible pointe, UU(1) contains the largest value \\
\hline UXTMA & Temporary storage for trial values of \(U\) \\
\hline TESTI(1) & The maximum acceptable range of \(X(X)\) at convergence \\
\hline X ( 1 ) & Values of the independent variables at the optimum \\
\hline XTEAP ( 1 ) & Values of the independent variables at trial points \\
\hline 2(1.J) & The NRET best random feasible points, stored in rows \\
\hline
\end{tabular}

\section*{(Programmer)}

Progre Logic


\section*{(Programmer)}

5-60

\section*{Cal1s To and From Subroutine RANDOM}
\begin{tabular}{|c|c|c|}
\hline & OPTIPAC & \\
\hline & \[
1
\] & \\
\hline & & \\
\hline UREA & [PRANDN & CONST \\
\hline
\end{tabular}

\section*{Notes}

RANDOM cannot bandle inequality constraints, and NEQUS is therefore
not an input parsmeter. To avold getting an indefinite error message in
subroutine ARSNER, wRquS is set=0 in the body of RANDOM.
If MANM egclex are exceeded, it is atill necessary to sort the
tu(1) array so that the bear poine so far can be output.

\section*{B) RESULTS OF TEST PROBLEMS}

Design of a Three Phase Electrical Transformer
Number of independent variables 6
Number of inequality constraints 8
Number of equality constraints 0
User's level of sophistication 0
Number of methods tried 8
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Method Name} & \multirow[t]{2}{*}{Time (Secs)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{U} \\
\text { (cu.ins.) }
\end{gathered}
\]} & \multicolumn{6}{|c|}{Independent Variables (ins)} \\
\hline & & & \(\mathrm{x}_{1}\) & \({ }^{\text {x }}\) & \(\mathrm{x}_{3}\) & \(\mathrm{x}_{4}\) & \(\mathrm{x}_{5}\) & \({ }_{6}\) \\
\hline SEEK1 & 0.68 & 73042. & 11.27 & 14.42 & 11.78 & 57.99 & 178.69 & 524.81 \\
\hline SEEK2 & 0.69 & 70017. & 7.90 & 15.75 & 16.92 & 53.87 & 193.76 & 499.21 \\
\hline SEEK 3 & 2.39 & 66723. & 8.66 & 12.91 & 18.86 & 40.77 & 187.56 & 439.45 \\
\hline ALTS & 6.44 & 70704. & 10.26 & 11.22 & 16.25 & 62.50 & 173.39 & 569.23 \\
\hline APPROX & 12.24 & 67572. & 10.13 & 10.00 & 18.00 & 50.00 & 172.54 & 503.55 \\
\hline RANDOM & 29.69 & 68007. & 8.67 & 11.49 & 16.01 & 58.26 & 167.66 & 527.40 \\
\hline GEOM & 1.09 & 66704. & 8.41 & 13.09 & 18.75 & 40.81 & 187.15 & 436.56 \\
\hline ADRANS & 6.61 & 69077. & 9.41 & 8.75 & 15.57 & 67.82 & 152.44 & 589.25 \\
\hline
\end{tabular}

\section*{Design of a Three Member, 2-Dimensional Structure}

Number of independent variables 3
Number of inequality constraints 9
Number of equality constraints 0
User's level of sophistication 0
Number of methods tried 7

As described in the text, equality constraints have been
avoided by careful formulation of the problem. Only seven methods were run because the problem is not of a form acceptable to geometric programming.
\begin{tabular}{lcccccc}
\hline \begin{tabular}{c} 
Method \\
Name
\end{tabular} & \begin{tabular}{c} 
Time \\
(Secs)
\end{tabular} & \begin{tabular}{c}
U \\
(1bs)
\end{tabular} & \multicolumn{3}{c}{ Independent Variables (sq.ins) } \\
\hline & & \(x_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) \\
\hline SEEK1 & 0.71 & 5.659 & .0095 & .0649 & .3375 \\
SEEK2 & 0.94 & 7.995 & .0000 & .0778 & .5000 \\
SEEK3 & 3.50 & 3.127 & .0483 & .0000 & .1688 \\
ALTS** & 0.47 & 5.545 & .0247 & .0375 & .0334 \\
APPROX* & 0.25 & - & - & - & - \\
RANDOM & 3.52 & 5.777 & .0215 & .0427 & .3493 \\
ADRANS & 11.52 & 3.127 & .0483 & .0000 & .1688 \\
\hline
\end{tabular}
** Subroutine ALTS could not make a linearized step after the direct search had hung up. The values shown are simply the results at the last iteration of the direct search.
* Subroutine APPROX could not perform the second linearization and therefore could not get started.

\section*{Design of a Simple Roller Bearing}

Number of independent variables 5
Number of inequality constraints \(\quad 6\)
Number of equality constraints 0
User's level of sophistication 1
Number of methods tried 7
\begin{tabular}{lrrrrrrrr}
\hline \begin{tabular}{l} 
Method \\
Name
\end{tabular} & \begin{tabular}{c} 
Time \\
(Secs)
\end{tabular} & \begin{tabular}{c} 
U \\
(cu.ins)
\end{tabular} & & \multicolumn{6}{c}{ Independent Variables } \\
\hline & & & & \(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(x_{4}\) & \(x_{5}\) \\
\hline SEEK1 & 0.54 & 20.350 & .280 & .280 & .637 & 13.29 & 2.240 \\
SEEK2 & 0.71 & 26.976 & .198 & .198 & 1.314 & 25.50 & 1.585 \\
SEEK3 & 6.65 & 28.695 & .185 & .185 & 1.472 & 28.96 & 1.484 \\
ALTS & 0.90 & 20.053 & .287 & .287 & .600 & 12.74 & 2.292 \\
APPROX & 2.74 & 20.053 & .287 & .287 & .600 & 12.74 & 2.292 \\
RANDOM & 14.37 & 21.708 & .311 & .287 & .648 & 9.09 & 2.225 \\
ADRANS & 8.14 & 20.077 & .287 & .287 & .600 & 12.65 & 2.293 \\
\hline
\end{tabular}

SUBROUTINE OPTIPAC \(X, P H I, P S I, A, B, C\), WORKA,DELX,STEP,XSTRT,RMAX,RMIN 1, DSTAR,NTERMS,GS,WATE,TEST, Z,UU,EX,CONST, AA,BBB,CC,NCONS, NEQUS, A, A 2,NN,NTOTER,NRET,XX)
DIMENSION X(1),PHI (1),PSI(1), Z(NRET, 1\(), A(M, 1), B(1), C(1)\), WORKA(1), 1CC(NTOTER,I),XX(I), DELX(1),STEP(1),XSTRT(1),RMAX(1),RMIN(I),DSTAR( 2NTOTER,1),NTERMS(1),GS(I),WATE(1),TEST(1),UU(1),EX(NTOTER,1), CONST 3(1),AA(NTOTER,1),BBB(NTOTER,I)
COMMON INDEX,LEVEL,IPRINT,IDATA,F,MAXM,G,NSHRIN,MSTART,PD,EPS,ICT, IIFENCE, PL, NSTOP, NSMAX, NSHOT, NTEST,TES,R,REDUCE, NVIOL, KO, NNDEX
COMMON /A1/WORK1(100), WORK2(100), WORK3(100), WORK4(100)
COMMON /AZ/WORK5(100), WORK6(100)
COMMON /A3/WORK9(100), WORK10(100), WORK11(100)
COMMON /A4/WORK12(100), WORK13(100), WORK14:100), WORK15(100)
COMMON /A5/WORK16(100)
COMMON /AT/WORK18(100), WORK19(100)
COMMON /A8/IWORKI(100)
COMMON /NAME/NETHOD(9)
Store the names of the methoos for healings in sense and answer
DATA (METHOD(I), I=1,9)/6HSIMPLE,5HSEEKI,5HSEEK2,5HSEEX3,4HALTS,6HA
IPPROX, GHRANDOM, 4HGEOM, 6 HADRANS/
SUBROUTINE OPTIPAC IS ESSENTIALLY AN EXTENSION OF THE SMALL USERWRITTEN MAIN PROGRAM. IT PERFORMS THE FOLLOWING FUNCTIONS...
1. IT Calls subr.data to read in all necessary data
2. IT ASSIGNS VALUES TO CERTAIN PARAMETERS AT LEVEL=0
3. It CALlS the requested method subroutine
4. IT COMPUTES THE NET EXECUTION TIME FOR THE METHOD AND PRINTS IT OUT
5. AFTER A NORMAL EXIT FROM A METHOD SUBROUTINE IT CALLS SUBR. SENSE TO PERFORM A SENSITIVITY ANALYSIS ON THE SOLUTION
1 CONTINUE
INITIALIZE THE EXIT MODE FLAG KO
\(K C=0\)
CALL SUBR. DATA TO READ IN ALL NECESSARY DATA FOR THE METHOD CHOSEN
CALL DATA (N,NCONS,NEQUS,M,NTOTER,RMAX,RMIN,XSTRT,GS,STEP,DELX,TES 1 I, WATE, NTERMS, EX,CONST,B,C,A,NSENSE,FSENSE!
THE STOPPING CRITERION IS INDEX \(=99\) SO EVERY CONPLETE DATA LECK
SHOULD END WITH 099 PUNCHED IN COLUMNS 1,2,AND 3
IF(INDEX.EQ.99) RETURN
1F(KO.EQ.1)RETURN
IF KO=1 AFTER CALL TO DATA, THERE IS NO POINT CONTINUING WITH THE
run because several read statements will have been skippeo and the
general data sequence is now shifted out of phase
ZERO \(U\) AND CLEAR THE XII ARRAY AND ALL COMMON BLOCK WORKING
ARRAYS BEFORE CALLING A NEW METHOD
\(U=0.0\)
DO \(2 I=1, N\)
\(X(I)=0.0\)
2 CONTINUE
DO \(4 \quad 1=1,100\)
```

 WORK1(I)=0.0
 WORK2(I)=0.0
 WORK3(I)=0.0
 WORK4(I)=0.0
 WORK5(I)=0.0
 WORKG(I)=0.0
 WORK 9(I)=0.0
 WORK1O(I)=0.0
 WORK1I(1)=0.0
 WORK12(I)=0.0
 WORK13(I)=0.0
 WORK14(I)=0.0
 WORK 15(I)=0.0
 WORK16(I)=0.0
 WORK18(I)=0.0
 WORK19(1)=0.0
 4 ~ I W O R K 1 (I) = 0
 C CALL SUBR.SECOND TO GET THE STARTING EXECUTION TIME FOR THE METHOD
CALL SECOND(START)
IF(LEVEL.EQ.O.AND.IDATA.EQ.I'WRITE16,300'
C GO TO THE PART OF OPTIPAC WHICH SETS PARAMETERS FOR LEVEL=O AND
C CAlls the requesteo methou subroutine
3 JACK=INDEX+1
GO TO (10,11,12,11,14,15,16,17,18),JACK
10 IF(LEVEL.NE.O) GO TO 110
NSTOP = 4*M+10
IF(IDATA.EQ.1)WRITE(6,309INSTOP
i10 CALL SIMPLE(X,U,M,N,A,B,C,WORKA.
GOTO20
11 IF(LEVEL.NE.0) GO TO 1111
F=.01
MAXM=300
G=.01
IF(INDEX.EQ.I)NSHOT=1
IF(INDEX.EQ.IINTEST=100
C NOTE... AVOID ZERO STARTING VALUES BY ADDING A SMALL INCREMENT
DO 211 I=1,N
211 XSTRT(I)=(RMAX(I)+RMINII)/2. +0.000001
IF(IDATA.NE.1)GOTOII11
WRITE(6,303)F
WRITE (6,304)MAXM
WRITE (6,305)G
IF(INDEX.EQ.1)WRITE(6,312)NSHOT
IFIINDEX.EG.1)WRITE(6,313)NTEST
WRITE(6,319)(XSTRT(I),I=1,N)
1111 IF(INDEX.NE.3)GOTO111
IF(LEVEL.NE.O)GOTO1112
R=1.0
REDUCE=0.04
IFIIDATA.NE.IIGOTO1112
WRITE(6,337)R
WRITE(6,338)REDUCE
1112 CAL.
SEEK3(X,U,N,XSTRT,RMAX,RMIN,PHI,PSI,NCONS,NEQUS,UART,DST
IAR,NTERMS,NTOTER)

```
```

GOTO20
111 CALL SEEKI(X,U,N,XSTRT,RMAX,RMIN,PHI,PSI,NCONS,NEQUS,UART,DSTAR,NT
1ERMS,NTOTER)
GO TO 20
12 IF(LEVEL.NE.O) GO TO 112
F=1.OE-06
MAXM=50
PD=0.75
EPS=1.OE-8
ICT=4
IFENCE=0
PL=1.3
DO 212 I=1,N
XSTRT(I)=(RMAX(I)+RMIN(I))/2. +0.00000I
212GS(I)=15.0
IF(IDATA.NE.1)GOTO112
WRITE(6,303)F
WRITE (6,304)MAXM
WRITE (6.307)PD
WRITE(6,332)EPS
WRITE (6,333)ICT
WRITE(6,334)IFENCE
WRITE(6,308)PL
WRITE(6,319)(XSTRT(I),I=1,N)
WRITE(6,320)(GS(I),I=1,N)
12 CALLSEEK2(X,U,N,XSTRT,RMAX,RMIN,PHI,PSI,NCONS,NEQUS,GS)
GO TO 20
14 IF(LEVEL.NE.O) GO TO 114
F=0.01
MAXM=300
G=0.01
PL=1.5
NSTOP = 4*M+10
NSMAX =40
TES=0.0001
DO 214 I=1,N
XSTRT(I) =(RMAX(I)+RMIN(I))/2.0+.000001
STEP(I)=0.10*ABS(RMAX(I)-RMIN(I))
214 DELX(I)=.OO1*ABS(RMAX(I)-RMIN(I))
IF(NEQUS.EO.O)GOTO2215
DO 2214 I=1,NEQUS
2214 WATE (I) =10.OE +20
2215 IF(IDATA.NE.1)GOTO114
WRITE(6,303)F
WRITE (6,304)MAXM
WRITE (6,305)G
WRITE(6,308)PL
WRITE (6,309)NSTOP
WRITE(6,310)NSMAX
WRITE (6,315)TES
WRITE(6,319)(XSTRT(I),I=1,N)
WRITE(6,321)(STEP(I),I=1,N)
WRITE (6,322)(DELX(I),I=1,N)
IF(NEQUS.GT.O)WRITE(6,324)(WATE(I),I=1,NEQUS)

```

114 CALL ALTSiX,U,N,XSTRT,RMAX,RMIN,WATE,STEP,NEQUS,NCONS,PSI,PHI,M,NN 1,A,Q, C, NORKA,DSTAR,NTERMS, NTOTER,DELX,XX
GO 1020
15 CONTINUE
IF(LEVEL.NE.O)GOTO115
\(F=0.01\)
NSTOP \(=4 * M+10\)
NSMAX \(=40\)
DO215 I=1,N
XSTRT(I) \(=(\operatorname{RMAX}(I)+\operatorname{RMIN}(I)) / 2 .+0.000001\)
\(\operatorname{STEP}(1)=0.1 * A B S(R M A X(I)-R M I N(I))\)
DELX(I) \(=0.001 * A B S(R M A X(I)-R M I N(I)\)
\(215 \operatorname{TEST}(I)=0.001 * A B S(R M A X(I)-R M I N(I))\)
IFIIDATA.NE.1)GOTOI15
WRITE (6,303)F
WRITE 6,309 )NSTOP
WRITE (6,310)NSMAX
WRITE \((6,319)(X S T R T(1), I=1, N)\)
WRITE \((6,321)(S T E P(I), I=1, N)\)
WRITE(6,322)(DELX(1),I=1,N)
WRITE \((6,323)(T E S T(I), I=1, N)\)
115 CALL APPROX \(X, U, N, D E L X, S T E P, T E S T, N, N N, A, B, C, W O R K A, X S T R T, R M A X, R M I N\), IPHI, PSI, NCONS,NEQUS, UART, DSTAR,NTERMS,NTOTER, XX'
GO TO 20
16 IF(LEVEL.NE.O) GO TO 116
\(F=.001\)
MAXM \(=400\)
MSTART \(=128\)
NSHR IN \(=4\)
NSMAX \(=300\)
IF(IDATA.NE.I)GOTOI16
WRITE(6,303)F
WRITE \((6,304)\) MAXM
WRITE \((6,353)\) MSTART
WRITE \((6,352)\) NSHRIN
WRITE (6,310)NSMAX
116 CALL RANDOMIX,U,N,RMAX,RMIN,Z,UU,NRET,NCONS,PHI'
GO TO 20
17 IF(LEVEL.NE.O)GOTOI17
\(F=0.01\)
MAXM \(=300\)
\(G=0.001\)
IF(IDATA.NE.1)GOTO117
WRITE(6,303)F
WRITE(6,304)MAXM
WRITE 6,305 IG
117 CALL GEOM(NTOTER,N,NCONS,NTERMS,EX,CONST,AA,BBE,CC,DSTAR,RMAX,RMIN 1,X,XSTRT)
GOTO2O
18 IF(LEVEL.NE.O) GO TO 118
MAXM \(=75\)
MSTART \(=128\)
NSMAX \(=50\)
DO 218I=1,N
```

 218 XSTRT(I)=(RMAX(I)+RMIN(I):/2. + 0.000001
 IF(IDATA.NE.I)GOTO118
 WRITE (6,304)MAXM
 WRITE (6.353)MSTART
 WRITE(6,310)NSMAX
 WRITE(6,319)(XSTRT(I),I=1,N)
 118 CALL ADRANSIX,U,N,XSTRT,RMAX,RMIN,PHI,PSI,UART,NCONS,NEQUS,DSTAR,N
 1TOTER,NTERMS)
 C
C
20 CALL SECOND(FINISH)
T=FINISH-START
WRITE(6,104)T
IF(INDEX.EQ.O.OR.INDEX.EQ.7IGOTOI
IF(KO.EQ.O) GO TO 22
IF(NSENSE.EQ.1)WRITE(6,100)
GO TO 1
SENSITIVITY ANALYSIS IS PERFORMED ONLY AFTER A NORMAL EXITIKO=OI
FROM THE METHOD SURPOUTINE, AND WHEN THE WORD SENSITIVITY
APPEARS IN COLUMNS 13 TO 23 ON THE FIRST DATA CARD FOR THAT NETHOD
22 IF(NSENSE.NE.1)GOTO1
IF(FSENSE.LE.O.O)GOTO23
CALL SENSE(X,N,NCONS,NEQUS,FSENSE,INDEX)
GOTOl
USER HAS NOT ENTERED A VALUE FOR FSENSE ON THE \NCONS) DATA CARD
23 WRITE(6,101)
GOTOI
10O FORMATIG2HO ERROR IN RESULTS SO SENSITIVITY ANALYSIS IS NOT PER
IFORMED)
101 FORMAT(1H-,92HERROR***SENSITIVITY ANALYSIS OMITTED - NO VALUE FOR
1 FSENSE ENTERED ON THE (NCONS) DATA CARD//I
l\cup4 FORMAT(1H-,14X,17HEXECUTION TIME =,F8.4,9H SECONDS//)
3UO FORMAT (IH-,6X,67HTHE FOLLOWING PARAMETERS ARE ASSIGNED VALUES INTE
1RNALLY FOR LEVEL=0/7X,67H
2----------------------------1)
301 FORMAT(61HONUMBER OF INDEPENUENT VARIABLES * * *
1 N =, \6)
302 FORMAT(6IHONUMBER OF INEQUALITY (.GE.) CONSTRAINTS NCO
INS =, I6)
3O3 FORMAT(61HOFRACTION OF RANGE USED AS STEP SIZE * * * . . .
1F=,E19.8)
3U4 FORMAT (6IHOMAXIMUM NUMBER OF MOVES PERMITTED * * MA
1XM =, (6)
3U5 FORMAT (GIHOSTEP SIZE FRACTION USED AS CONVERGENCE CRITERION.
1G=,E19.8)

```

```

 IUS =,I6)
 307 FORMAT(6IHOSTEP LENGTH MULTIPLIER FOR INITIAL PATTERN MOVE .
1PD =,E19.8)
3U8 FORMAT(6IHOACCELERATION FACTOR FOR PATTERN MOVE STEP SIZES .
1PL =,E19.8)
3O9 FORMAT (6IHONUMBER OF ITERATICNS PERMITTED. NST
1OP =, {6)
310 FORMAT(GIHOMAXIMUM NUMBER OF LINEARIZED STEPS. NSN
IAX=, (6)

```
312 FORMATIGIHONUMBER OF SHOTGUN SEARCHES PERMITTED. ..... NSH
1OT \(=, 161\)
313 FORMAT (6IHONUMBER OF TEST POINTS IN SHOTGUN SEARCH ..... NTE
1ST \(=, 161\)314 FORMAT (6IHONUMBER OF CONSTRAINT EGUATIONS (ROWS) IN SIMPLEX.\(1 \mathrm{M}=, 16\) )
315 FORMAT (6IHOCONVERGENCE CRITERION FOR OPTIMIZATION FUNCTION • ..... T
1ES =, E19.8)
316 FORMAT (G1HOTOTAL NUMBER OF TERMS IN ALL RELATIONS. . . . . . NTOT\(1 \mathrm{ER}=, 16\) )
317 FORMAT (GIHOESTIMATED UPPER BOUNO ON RANGE OF X(1). . . . . RMAX
1I) \(=, / /(5 \mathrm{E} 16.8)\) )
318 FORMAT (G1HOESTIMATED LOWER BOUNO ON RANGE OF XII). . . . . RMINI
1I) \(=, / /(5 E 16.8))\)
319 FORMAT (G1HOSTARTING VALUES OF X(1) . . . . . . . . . . . .XSTRTI
1I) =9//(5E16.8):
320 FORMAT 161 HOSTEP LENGTH MULTIPLIERS FOR UNIVARIABLE SEARCH. • ..... GSI
\(11)=, / /(5 \mathrm{E} 16.8)\) )
321. FORMATIGIHOINITIAL STEP SIZE INPUT BY USER • . . . . . . . . STEP
\(11)=, / /(5 E 16.8)\) )
322 FORMAT (GIHOINCREMENTS FOR APFROXIMATING FARTIAL DERIVATIVES. UELXI
11) \(=\) = //(5El6.8))
323 FORMAT (GIHOLOWER BOUND ON STEP LENGTH REDUCTION ..... TESTI
1I) \(=9 / /(5 E 16.8))\)
324 FORMAT 161 HOWEIGHTING FACTORS ..... WATEI
1I) \(=\), //(5E16.8))
326 FORMAT 161 HONUMBER OF TERMS IN EACH RELATION. . . . . . . . NTERMSI1I) \(=9 / /(5 E 16.8))\)327 FORMAT 61 HOEXPONENTS OF EACH TERM IN EACH RELATION • . . . EXII,1J) \(=, / /(5 E 16.8))\)
328 FORMAT (GIHOCONSTANT (POSITIVE) COEFFICIENTS OF EACH TERM - .CONSTI1J) \(=\), //(5E16.8))
329 FORMAT (6IHORIGHT HAND SIDE OF SIMPLEX ARRAY. . . . . . . . ..... Bl
1M) \(=, / /(5 E 16.8)\) )
330 FORMAT 61 HOCOEFFICIENTS OF SIMPLEX OBJECTIVE FUNCTION. • • • ..... Cl
1N) =,//(5E16.8))
331 FORMAT 6 IHUCOEFFICIENTS OF SIMPLEX CONSTRAINT EUUATIONS. • A(M,\(1 \mathrm{~N})=, /((5 \mathrm{E} 16.8))\)
332 FORMAT 161 HOMAX . RELATIVE CHANGE IN U FOR CONVERGENCE • • • . ..... \(E\)
1PS \(=\), E19.8)
333 FORMAT (61HONO. OF TIMES STEP SIZE DIVIDEC BY 10.0 ..... 1
ICT \(=, 16\) )
334 FORMAT (6IHOOPTION TO STOP AFTER UNIVARIABLE SEARCH FAILS • • IFEN\(1 C E=, 161\)
337 FORMAT (61HOPENALTY MULTIPLIER USED IN SEEK3. • • • • • • •\(1 \mathrm{R}=, \mathrm{E} 19.81\)
338 FORMAT (61HOREDUCTION FACTOR FOR (R) AFTER EACH MINIMIZATION. REDU1CE \(=\), E19.8)
352 FORMAT (61HOSHRINKAGE FACTOR. ..... NSHR
IIN =, 16)
353 FORMAT (6IHOSTARTING VALUE FOR RANDOM NUMBERS ..... MSTA\(1 R T=, 161\)END

SUBROUTINE SENSE(X,N,NCONS,NEQUS,FSENSE,INDEX)
DIMENSION X(1)
COMMON /NAME/METHOD(9)
COMMON /A3/XTEMP(100),AGOVE(100),BELOW(100)
WRITE 6,1 )METHOD (INDEX+1)
WRITE(6,8)FSENSE
IN THE FOLLOWING SENSITIVITY ANALYSIS, EACH VARIABLE IN TURN IS MULTIPLIED BY THE FACTORS (1•+FSENSE) AND (1.-FSENSE) AND ALL THE CONSTRAINTS ARE EVALUATED AT EACH POINT.
STORE THE OPTIMUM VALUES OF X(I) IN XTEMP (I)
DO \(10 \quad I=1, N\)
\(10 \times \operatorname{TEMP}(I)=X(I)\)
DO \(50 \quad \mathrm{I}=\mathrm{I}, \mathrm{N}\)
\(X(1)=(1 .-F S E N S E) * X T E M P(I)\)
WRITE 6,2\()\) I
WRITE (6,3)I,X(I)
CALL UREAL (X,ULESS)
IF (NCONS.EQ.O)GOTO20
CALL CONST (X,NCONS,BELOW)
\(20 \times(1)=(1 .+F S E N S E) * X T E M P(I)\)
WRITE(6,4)I,X(I)
(ALL UREAL (X,UMORE)
WRITE \((6,5)\) ULESS, UMORE
IF (NCONS.EQ.0)GOTO30
CALL CONST (X,NCONS,ABOVE)
WRITE \((6,6)(J, B E L O W(J), A B O V E(J), J=1, N C O N S)\)
30 IF (NEQUS.EQ.0)GOTO40
CALL EQUAL ( \(X, A B O V E, N E Q U S\) )
X(I) \(=(1,-F S E N S E) * X T E M P(I)\)
CALL EQUAL (X,BELOW,NEQUS)
WRITE \((6,7)(J, B E L O W(J), A B O V E(J), J=1, N E Q U S)\)
\(40 \times(1)=\times T E M P(1)\)
50 CONTINUE
1 FORMAT(IH-,45HSENSITIVITY ANALYSIS OF THE OPTIMUM FOUND BY ,AG/IX,

 1//1
3 FORMAT( \(1 \mathrm{H}+, 2 \mathrm{X}, 2 \mathrm{HX}(, 12,3 H)=, \mathrm{E} 18.8)\)
4 FORMAT \((31 X, 2 H X(, I 2,3 H)=, E 16.8)\)
5 FURWAT ( \(1 \mathrm{HO}, 6 \mathrm{X}, 3 \mathrm{HU}=, \mathrm{E} 18.8,10 \mathrm{X}, \mathrm{E} 16.81\) )
6 FORMAT(1X,4HPHI (, 12,3H) \(=\), E18.8,10X,E16.8)
7 FORMAT \((1 H O / 1 X, 4 H P S 1(, 12,3 H)=, E 18.8,10 X, E 16.8)\)
8 FORMAT ( 1 HO, 52 HFRACTION OF OPTIMUM X(I) USED AS INCREMENT. FSENSE \(=\) 1,E16.8//)
RETURN
END
```

 SUBROUTINE ANSWER(U,X,PHI,PSI,N,NCONS,NEQUS)
 DIMENSION X(1),PHI(1),PSI(11
 CONMON INDEX,LEVEL,IPRINT,IDATA,F,MAXM,G,NSHRIN,MSTART,PD,EPS,ICT,
 IIFENCE,PL,NSTOP,NSMAX,NSHOT,NTEST,TES,R,REDUCE,NVIOL,KO,NNDEX
 COMMON /NAME/METHOD(9)
 C THIS SUBROUTINE IS USED MERELY TO OUTPUT THE FINAL SOLUTION IN A
STANOARD FORM. IF AN OPTIMUM IS NOT REACHED(KO=1)THEN THE RESULTS
At the last iteration may be printed out.
CALL UREAL (X,U)
IF(KO.EQ.0)GOTOI
WRITE(6,18)METHOU(INDEX+1)
WRITE(6,19)U
GOTOZ
1 WRITE (6,20)METHOD(INDEX+1)
WRITE(6,21)U
2 WRITE (6,22)(I,X(I),I=1,N)
IF(NCONS.EQ.O)GOTO3
CALL CONST(X,NCONS,PHI)
WRITE (6,23)
WRITE(6,24)(I,PHI(I),I=1,NCONS)
3 IF(NEQUS.EQ.C)GOTO3O
CALL EQUAL(X,PSI,NEQUS)
WRITE(6,25)
WRITE(6,26)(I,PSI(I),I=1,NEQUS)
18 FORMAT(1H-,16K,3OHRESULTS AT LAST ITERATION OF ,AG/17X,36H-------
1-----------------------------------1
19 FORMAT (29X,3HU =,E16.8/1)
20 FORMAT\1HI,21X,27HOPTIMUM SOLUTION FOUND BY ,A6/22X,33H-----------
1----------------------------
21 FORMAT (20X,12HMINIMUM U =,E16.8//)
22 FORMAT (25X,2HX(,12,3H)=,E16.8)
23 FORMAT(1H-,22HINEQUALITY CONSTRAINTS)
24 FORMAT (23X,4HPHI(,I2,3H)=,E16.8)
25 FORMAT(1H-,22H EQUALITY CONSTRAINTS)
26 FORMAT (23X,4HPSI(,I2,3H)=,E16.8)
30 RETURN
END

```
\(C\)
C
    SUBROUTINE DATAIN,NCONS,NEQUS,M,NTOTER,RMAX,RMIN,XSTRT,GS,STEP,DEL
IX,TEST, WATE,NTERMS,EX,CONST, \(B, C, A, N S E N S E, F S E N S E)\)
    DIMENSION RMAX(1), RMIN(1), XSTRT(1),GS(1), GTEP(1',UELX(1),TEST(1),
IWATE(1),NTERMS(1), EX(NTOTER,1: CONST(1),B(1), C(1), A(M,1),TITLE(17)
    COMMON INDEX,LEVEL, IPRINT,IDATA,F,MAXM,G,NSHRIN,MSTART,PD,EPS,ICT,
1 IFENCE,PL,NSTOP, NSMAX,NSHOT, NTEST,TES,R,REDUCE,NVIOL,KO, NNDEX
    COMMON /NAME/METHOD(G'
```

C CHECK TO SEE IF SENSITIVITY ANALYSIS HAS BEEN REQUESTED
NSENSE=0
IF(TITLE(I).EQ.4HSENS.AND.TITLE(2).EQ.4HITIV'NSENSE=I
C SENSITIVITY ANALYSIS IS NOT AVAILABLE TO SIMPLE OR GEOM
IF(INDEX.EQ.O.OR.INDEX.EQ.7INSENSE=0
IF(IDATA.NE.1)GOTO599
WRITE(6,240)METHOD(INDEX+1)
WRITE(6,197)INDEX
WRITE(6,198)LEVEL
WRITE(6,199)IPRINT
WRITE(6,200)IDATA
599 CONTINUE
check that values of idata and level are acceptable
IFILEVEL.GT.1.OR.LEVEL.LT.OJGO TO 600
IFIIDATA.GT.I.OR.IDATA.LT.OIGO TO 601
GO TO 602
600 WRITE $(6,235)$
$K O=1$
RETURN
601 WRITE $(6,236)$
$K O=1$
RETURN
602 CONT INUE
CONTROL RETURNED TO OPTIPAC IF INUEX OUTSIDE RANGE O.LE.INDEX.LE. 8
IFIINDEX.LE.8.OR.INDEX.GE.OIGO TO 603
IFIINDEX.EQ.99IRETURN
WRITE $(6,242)$ INDEX
$K O=1$
RETURN
603 IF(INDEX.EQ.O.AND.LEVEL.EQ.1)GO TO 13
IFIINDEX.EQ.O)GO TO 15
IF(NSENSE.EEQ.1)GOTO604
NCONS READ FOR INDEX $=1,2,3,4,5,6,7,8$
READ (5,101)NCONS
IF(IDATA.EQ.1)WRITE(6,202)NCONS
GOTO605
NCONS,FSENSE READ FOR INDEX $=1,2,3,4,5,6,8$ WHEN NSENSE=1
IF SENSITIVITY ANALYSIS HAS BEEN REGUESTED (NSENSE=1) THEN THE FRACTIONAL INCREMENT FSENSE APPEARS ON THE SAME CARD AS NCONS. THE FORMAT IS (I5,E16.8)
604 READ (5,107)NCONS,FSENSE
IF (IDATA.EQ.1IWRITE16,202)NCONS
IFIIDATA.EQ.1)WRITE 6,254 IFSENSE
605 IFIINDEX.EQ.8.AND.LEVEL.EQ.OIGO TO 11
1F(INDEX.EQ.8)GO TO 9
IFIINDEX.EQ.7.AND.LEVEL.EQ.OIGO TO 22

```



18 CONTINUE
\(C\) R, REDUCE READ FOR INDEX \(=3\)
IF(INDEX.NE.3)GOTO609
IF(LEVEL.EQ.O)GOTO609
\(\operatorname{READ}(5,104) \mathrm{R}\)
READ (5,104) REDUCE
IF (IDATA.EQ.1)WRITE \((6,237) R\)
IF (IDATA.EQ.1)WRITE(6,238)REDUCE

609 DO \(610 \mathrm{~J}=1, \mathrm{~N}\)
\(\operatorname{RMAX}(J)=0\) 。
\(\operatorname{RMIN}(J)=0\).
610 CONT INUE
\(\operatorname{READ}(5,105)(\operatorname{RMAX}(I), I=1, N)\)
IF (IDATA.EQ. 1 )WRITE( 6,217 )(RMAX(I), I=1,N)
\(\operatorname{READ}(5,105)(\operatorname{RMIN}(I), I=1, N)\)
IF(IDATA.EQ.1)WRITE \((6,218)(R M I N(I), I=1, N)\)
\(c\)
IF(LEVEL.NE.1)GO TO 24
IF(INDEX.EQ.6)GO TO 24
XSTRT READ FOR INDEX \(=1,2,3,4,5,8\)
WHEN LEVEL=1
\(00611 \mathrm{~J}=1, \mathrm{~N}\)
\(611 \times \operatorname{STRT}(J)=0\).
\(\operatorname{READ}(5,105)(X S T R T(1), I=1, N)\)
IF(IDATA.EQ.1)WRITE( 6,219 )(XSTRT(IN,I \(=1, N)\)
IF(INDEX.EQ.2)GO TO 19
IF(INDEX•EQ.4)GO TO 20
IF(INDEX•EU.5)GO TO 20
GO TO 24
19 CONT INUE
C GS READ FOR INDEX=2 WHEN LEVEL=1
C GS READ FOR INDEX=2 WHEN LEVEL=1
DO \(612 \mathrm{~J}=1, \mathrm{~N}\)
\(612 \operatorname{GS}(J)=0\).
\(\operatorname{READ}(5,105)(G S(1), I=1, N)\)
READ (5,105)(GS(1), \(1=1, N)\)
IF (IDATA•EQ.1)WRITE( 6,220\()(G S(I), I=1, N)\)
GO TO 24
20 CONTINUE
RMAX,RMIN READ FOR INDEX \(=1,2,3,4,5,6,8\)
NOTE ALL SUBSCRIPTED VARIABLES ARE ZEROED IMMEUIATELY bEFORE THEY
ARE READ

FOR INDEX \(=1,2,3,4,5\),
\(c\)
c

STEP READ FOR INDEX \(=4,5\)
WHEN LEVEL=1

DO \(613 \mathrm{~J}=1, \mathrm{~N}\)
\(613 \mathrm{STEP}(J)=0\).

```

 IF(NTOTER.EQ.NCHEK)GOTO498
 KO=1
 WRITE(6,255)NCHEK
 GO TO 24
 EX(NTOTER,N)=EXPONENTS FOR EACH TERM OF EACH RELATION
 498 00 617 J=1,N
 DO 617 1=1,NTOTER
 617 EX(1, J)=0.
 READ(5,105)((EX(I,J),J=1,N),:=1,NTOTER)
 IF(IUATA.EQ.1)WRITE(6,227)((EX(I,J),J=1,N),1=1,NTOTER)
 C CONST(NTOTER) =CONSTANTS FOR EACH RELATIONSHIP
C
618 CONST(J)=0.
READ(5,105) (CONST(J),J=1,NTOTER)
IF(IDATA.EQ•1)WRITE(6,228)(CONST(J),J=1,NTOTER)
GO TO 24
23 CONTINUE
B,C,A READ FOR INDEX=O
DO 619 I=1,M
DO 619 J=1,N
B(J)=0.
C(I)=0.
619 A(1,J)=0.
READ(5,105)(B(J),J=1,M)
IF(IDATA.EQ.1)WRITE(6,229)(B(J',J=1,M)
READ(5,105)(C(I), I=1,N)
IF(IOATA.EQ.1)WRITE(6,230)(C(I),I=1,N)
READ(5,105)((A(I,J), J=1,N),I=1,M)
IF(IDATA.EQ.1)WRITE(6,23I)((A|I,J),J=1,NI,I=1,M)
24 CONTINUE
100 FORMAT(413.17A4)
101 FORMAT(15)
102 FORMAT(16)
103 FORMAT(I3)
104 FORMAT(E16.8)
105 FORMAT (5E16.8)
106 FORMAT (1615)
107 FORMAT(I5,E16.8)
197 FORMAT (GIHOINDEX NUMBER OF METHOD USED * * IND
1EX =, 16)
198 FORMATIGIHOUSERS LEVEL OF SOPHISTICATION * * * * * * * . . LEV
IEL =,16)

```

```

 1NT =,I6)
 2OO FORMATIG1HOINPUT DATA IS PRINTED OUT FOR IDATA=1 ONLY. . . IDA
1TA=, (6)

```
\(2 \cup 2\) FORMAT(61HONUMBER OF INEQUALITY (.GE.) CONSTRAINTS • . . . NCO INS \(=, 16\) )
203 FORMAT (61HOFRACTION OF RANGE USED AS STEP SIZE • . . . . . \(1 \mathrm{~F}=, \mathrm{E} 19.8\) )
264 FORMAT(GIHOMAXIMUM NUMBER OF MOVES PERMITTED . . . . . . . . MA IXM =, I6)
\(2 \cup 5\) FORMAT 6 GIHOSTEP SIZE FRACTION USED AS CONVERGENCE CRITERION. \(1 G=9 E 19.81\)
206 FORMAT (G1HONUMBER OF EQUALITY CONSTRAINTS. . . . . . . . . . NEQ \(145=, 16\) )
207 FORMAT 161 HOSTEP LENGTH MULTIPLIER FOR INITIAL PATTERN MOVE • 1PD =,E19.8)
208 FORMAT 6 GIHOACCELERATION FACTOR FOR PATTERN MOVE STEP SIZES • \(1 P L=, E 19.8)\)
209 FORMAT (6IHONUMBER OF ITERATIUNS PERMITTED. . . . . . . . . . NST 1OP =,16)
210 FORMAT (GIHOMAXIMUM NUMBER OF LINEARIZED STEPS. . . . . . . NSM 1AX =,16)
212 FORMAT (GIHONUMBER OF SHOTGUN SEARCHES PERMITTED. . . . . . NSH IOT \(=, I 6\) )
FORMAT \((61 H O N U M B E R ~ O F ~ T E S T ~ P O I N T S ~ I N ~ S H O T G U N ~ S E A R C H ~ . ~ . ~ . ~ . ~ N T E ~\) \(15 T=, 16\) )
215 FORMAT (GIHOCONVERGENCE CRITERION FOR OPTIMIZATION FUNCTION • T 1ES \(=\), E19.8)
217 FORMAT (6IHOESTIMATED UPPER BOUND ON RANGE OF X (I) . . . . . RMAX ( 11) \(=\),//(5E16.8))

218 FORMAT (GIHOESTIMATED LOWER BCUND ON RANGE OF X(I). . . . . RMINi \(11)=, / /(5 E 16.8))\)
219 FORMAT (61H-STARTING VALUES OF X(I) . . . . . . . . . . . . XSTRT 11) = ///(5E16.8))

220 FORMAT 6 IHOSTEP LENGTH MULTIPLIERS FOR UNIVARIABLE SEARCH. - GSI \(11)=, / /(5 \mathrm{E} 16.8)\) )
221 FORMAT (GIHOINITIAL STEP SIZE INPUT BY USER . . . . . . . . . STEP 11) \(=\),//(5E16.8))

222 FORMAT 61 HOINCREMENTS FOR APPROXIMATING PARTIAL DERIVATIVES. DELXI 11) \(=, / /(5 E 16.8))\)

223 FORMAT (6IHOLOWER BOUND ON STEP LENGTH REUUCTION. . . . . . . TEST ( 11) \(=, / /(5 \mathrm{E} 16.8)\) )

224 FORMAT (G1HOWEIGHTING FACTORS . . . . . . . . . . . . . . . . WATEI 1I) \(=\),//(5E16.8))
226 FORMAT (GIHONUMBER OF TERMS IN EACH RELATION. . . . . . . NTERMS 1I) \(=, /(1615))\)
227 FORMAT (EIHOEXPONENTS OF EACH TERM IN EACH RELATION • . . . EXII, 1J) \(=\) //((5E16.8))
228 FORMAT(GIHOCONSTANT (POSITIVE) COEFFICIENTS OF EACH TERM • .CONST ( 1ل) \(=\) ///(5E16.8))
229 FORMAT 6 IHORIGHT HAND SIDE OF SIMPLEX ARRAY. . . . . . . . Bl \(1 M)=, / /(5 E 16.8))\)
230 FORMAT (GIHUCOEFFICIENTS OF SIMPLEX OBJECTIVE FUNCTION. • • - Cl \(1 N)=, /(5 E 16.8))\)
231 FORMAT 61 HOCOEFFICIENTS OF SIMPLEX CONSTRAINT EQUATIONS. • AIM, \(1 \mathrm{~N})=, /((5 \mathrm{E} 16.8))\)
232 FORMAT (GIHOMAX. RELATIVE CHANGE IN U FOR CONVERGENCE • • . . E IPS \(=\), E19.8)
```

233 FORMAT(6IHONO. OF TIMES STEP SIZE DIVIDEO BY 10.0 I
ICT =,16)
234 FORMAT (6IHOOPTION TO STOP AFTER UNIVARIABLE SEARCH FAILS - - IFEN
1CE =,I6)
235 FORMAT(1H-,5GHERROR***INPUT VALUE FOR (LEVEL' IS NEGATIVE OR TOO L
IARGE/I
236 FORMAT(1HO,78HERROR***VALUE FOR (IDATA' IS INCORRECT, I OR 0 ARE
1THE ONLY ACCEPTABLE VALUES/)
237 FORMAT (6IHOPENALTY MULTIPLIER USED IN SEEK3.
1 R =,E19.8)
238 FORMAT(6IHOREDUCTION FACTOR FOR (R) AFTER EACH MINIMIZATION. REUU
1CE =,E19.8)
240 FORMAT(1H-,20X,33HLISTING OF ALL DATA READ IN FOR ,AG/21X,39H----
1--1
241 FORMAT(1HI,17A4)
242 FORMAT(IH-,28HERROR***THE VALUE OF INDEX =,16,43H IS OUTSIDE THE
IALLOWABLE RANGE OF 0 TO 8/1
244 FORMAT(6IHOMAXIMUM NO. OF CONSECUTIVE INFEASIBLE POINTS. . . NSM
IAX =,16)
251 FORMAT(1HO,16I6)
252 FORMAT (61HOSHRINKAGE FACTOR. NSHR
1IN =, (6)
253 FORMAT(GIHOSTARTING VALUE FOR RANDOM NUMBERS MSTA
1RT =,16)
254 FORMAT (GIHOFRACTIONAL INCREMENT FOR SENSITIVITY ANALYSIS . . FSEN
1SE =,E16.8)
255 FORMAT(IHO,8OHERROR***USERS ESTIMATE OF (NTOTER' IS INCORRECT - TH
IE CORRECT VALUE IS NTOTER =,I6)
RETURN
END

```
        SUBROUTINE SIMPLE \((X, U, M, N, A, B, C, E)\)
        OIMENSION X(1), A(M,1),B(1),C(1),E(M,1),MO(2)
        COIMMON INDEX,LEVEL,IPRINT,IDATA,F,MAXM,G,NSHRIN,MSTART,PD,EPS,ICT,
    IIFENCE,PL, NSTOP, NSMAX,NSHOT, NTEST,TES,R,REDUCE, NVIOL, KO, NNDEX
        COMMON/A4/P(100), XX(100),Y(100),PE(100)
        COMMON/A8/JH(100)

SUBROUTINE SIMPLE IS USED PRIMARILY AS A MEANS TO CALCULATE A VALUE OF THE OBJECTIVE FUNCTION AT THE OPTIMUM CONDITIONS OR IF THE SOLUTION IS NOT VALID THIS SUBROUTINE THEN OUTPUTS THE DIAGNOSTIC MESSAGES THE ACTUAL ITERATIVE PROCESS OF THE REVISED SIMPLEX TECHNIQUE IS PERFORMED IN SUBROUTINE SIMP

CALL SIMP (M,N,MO,X,E,A,B,C,NSTOP)
the following statements are to determine the conuition of the SOLUTION ON RETURN FROM THE SUBROUTINE SIMP

IF(MO(1).GT.5)GOTO18
\(\operatorname{MODEL}=\mathrm{MO}(1)+1\)

GO TO \((21,15,16,15,17,18)\), MODE1

NO FEASIBLE SOLUTION CAN BE FOUND FROM THE GIVEN DATA
15 WRITE (6,51).
GOTO20
AN UNBOUNDED OPTIMUM HAS BEEN FOUND
16 WRITE \((6,52)\)
GO TO 20
The max. number of allowable iteratlons has been exceeded
THE SOLUTION IS STILL FEASIBLE
17 WRITE(6,53) MO(2)
GO TO 20
THE MAX. NUMBER OF ALLOWABLE ITERATIONS HAS BEEN EXCEEDED the solution at the time of interuption was not feasible

18 WRITE (6,54) MO(2)
\(20 \mathrm{KO}=1\)
GO TO 11
THE SOLUTION IS VALID --- CALCULATE THE OPTIMIZATION FUNCTION and output the results
\(21 U=0.0\)
DO \(23 \mathrm{~J}=1, \mathrm{~N}\)
\(23 U=U+C(J) * X(J)\)
If ThE INDEX DOES NOT EQUAL ZERO THE OUTPUT FROM ThE SUBROUTINE SIMPLE IS OMITTED.

IF(INUEX.GT.0) GO TO 11
WRITE \((6,30)\)
WRITE \((6,31)\) U
WRITE 6,32 ) (I, X(I) , I=1,N)
11 RETURN
30 FORMAT (1HI,22X,36HOPTIMUM SOLUTION FOUND BY SIMPLE/23X,36H————
1-----------------------------------11
31 FORMAT \(20 X, 12\) HMINIMUM \(U=, E 16.8 / /)\)
32 FORMAT \((25 X, 2 H X(, I 2,3 H)=, E 16.8)\)
51 FORMAT (IX,44H NO FEASIBLE SOLUTION GAN BE FOUND BY SIMPLE)
52 FORMAT (IHO,43HTHE SIMPLEX ROUTINE FOUND UNBOUNDED OPTIMUM'
53 FORMATI 1 HO,97HTHE MAXIMUM ALLOWABLE NO OF ITERATIONS FOR SIMPLEX H IAS BEEN EXCEEDED,--SOLUTION IS STILL FEASIBLE/IHO,17HNO OF ITERATI 1ONS =, I5)
54 FORMAT 1 IHC,85HNO FEASIBLE SOLUTION EXISTS FOR SIMPLEX-PROGRAM STUP IPED ON ALLOWABLE NO OF ITERATIONS/IHO.17HNO OF ITERATIONS=, I51 END
```

SUBROUTINE SIMP(M,N,KO,KB,E,A,B,C,NSTOP)
DIMENSION B(1),C(1),E(1),KO(2),KB(1),A(M,1)
COMMON /A4/P(100),X(100),Y(100),PE(100)
COMMON /AB/JH(100)
EQUIVALENCE (XX,LL)
LOGICAL FEAS,VER,NEG,TRIG,KQ,ABSC
THE PURPOSE OF THE SUBROUTINE SIMP IS TO PERFORM THE ITERATIVE METHOD OF LINEAR PROGRAMMING KNOWN AS THE SIMPLEX METHOD SIMP IS A MODIFIED VERSION OF SUBROUTINE SIMPLE IN THE LIBRARY OF THE I.E.M. 7040 COMPUTER AT MCMASTER UNIVERSITY
SET INITIAL VALUES, SET CONSTANT VALUES
ITER $=0$
NUMVR $=0$
NUMPV $=0$
TEXP $=.5 * * 16$
If LEVEL=0 THE MAXIMUM NUMBER OF ITERATIONS ALLOWED IS SET AUTOMATICALLY AT $4 * M+10$ IN OPTIPAC.. AT LEVEL=I NSTOP IS READ IN AS DATA. THIS APPLIES FOR INDEX $=0,4,5$

```

SELECT THOSE COLUMNS IN AII,J' WHICH HAVE ONLY ONE NON ZERO COEFFICIENT
    SET \(K B(J)=1\) (WHERE \(J=T H E\) COLUMN NUMBER)
    NOTE THAT IF THE ABOVE CONDITION IS TRUE BUT THE CORRESPONDING A
    VALUE IS NEGATIVE IIE THERE IS A POSSIBILITY THAT THE NON-
    NEGATIVITY CONSTRAINT HAS BEEN VIOLATED , THEN SET KB( \(J=0\) FOR
    THAT COLUNN
    DO \(1402 \mathrm{~J}=1, \mathrm{~N}\)
        \(K B(J)=0\)
        \(K Q=. F A L S E\).
        \(001403 \mathrm{I}=1, \mathrm{M}\)
            IF \((A(I, J) \cdot E Q \cdot 0.01 \quad 00\) TO 1403
            IF (KQ.OR.A(I,J).LT•O.O1 GO TO 1402
            \(K Q=. T R U E\).
    CONTINUE
    \(K B(J)=1\)
1402 CONTINUE
\(1400 \mathrm{DO} 1401 \mathrm{I}=1, \mathrm{M}\)
    \(J H(I)=-1\)

1401 CONTINUE
c
NCUT=NSTOP
NVER \(=M / 2+5\)
\(M 2=M * * 2\)
THE LOGICAL VARIABLE FEAS IS USED TO DETERMINE WHETHER THE SOLUTION IS FEASIBLE OR NOT

FEAS \(=\).FALSE.

SET KB(J)=1 (WHERE \(J=\) THE COLUMN NUMBER)
NOTE THAT if the above CONDItION IS true but the CORRESpONDing a
value is negative ife there is a possibility that the nonNEGATIVITY CONSTRAINT HAS BEEN VIOLATED \(\mathcal{I}\) THEN SET KB(J)=0 FOR THAT COLUNN

DO \(1402 \mathrm{~J}=1, N\)
\(K Q=. F A L S E\).
DO 1403 I \(=1, M\)
IF (AII,J).EQ.0.01 GO TO 1403
IF (KQ.OR.A(I,J).LT.O.O) GO TO 1402 \(K Q=\). TRUE.
1403 CONTINUE
\(K B(J)=1\)
1402 CONTINUE
1400 JH (I) \(=-1\) ( 14
```

C* 'VER' CREATE INVERSE FROM 'KG' ANO 'JH' (STEP 7)
C
1320 VER = .TRUE.
INVC = 0
NUMVR = NUMVR +1
TRIG = .FALSE.
DO 1101 I = 1,M2
E(I) = 0.0
1101 CONTINUE
MM=1
C
C SET E(I) AND EVERY I=N*(M+1) VALUE OF E(1) EQUAL TO I.O UP TO
C I=M**2 (N=SET OF INTEGERS).
C SET XII)=B(I) FOR I=I,M(IE LET X(I) BE THE VARIABLE IN THE BASIS)
DO 1113 I = 1,M
E(MM) = 1.0
PE(I) = 0.0
X(I) = B(I)
IF (JH(I) .NE.O) JH(I)= =1
MM = MM + M + 1
1113 CONTINUE
C FORM INVERSE
DO 1102 JT = 1,N
IF (KB(JT).EQ.O) GO TO 1102
GO TO 600
TRANSFER CONTROL TO THE MACRO -JMY- BEGINING AT STATEMENT NUMBER
600 FOR ALL COLUNNS THAT HAVE KB(J)=1.0
LET TY=PIVOT ELEMENT
SET IR=ROW NUMBER IN WHICH THE PIVOT ELEMENT OCCURS
CALCULATE AII,JTI/E|I' SELECT THE LARGEST VALUE IN COLUMN JT
set ty=(the value of the above ratio)
CHECK THAT TY.GT.0. RESET THE FLAG KB(JTi=0
GALL JMY
CHOOSE PIVCT
TY = 0.0
KQ =.FALSE.
DO 1104 I = 1,M
IF (JH(I).NE.-1.OR.ABS(Y(I|.LE.TPIV' GO TO 1104
IF (KQ) GO TO 1116
IF (X(I).EQ.O.) GO TO 1115
IF (ABS(Y(I)/X(I)).LE.TY) GO TO 1104
TY = ABS(Y(I)/X(I))
GO TO 11118
KQ = .TRUE.
GO TO 1117
IF (X(I).NE.O..OR.AGS(Y(1)).LE.TY) GO TO 1104
TY = ABS(Y(I))
IR = I
CONTINUE
KB(JT)=0

```
```

C
C
IF (TY.LE.O.) GOTO 1102
GO TO 900
C
C 900
C. }900\mathrm{ CALI. PIV
1102 CONTINUE
C
C RESET ARTIFICIALS
C
DO 1109 1 = 1,M
IF (JH(I).EQ.-1) JH(I) = 0
IF (JHII).EQ.O) FEAS =.FALSE.
1109 CONTINUE
c
C THE LOGICAL VARIABLE VER IS USED TO DETERMINE IF THE SOLUTION IS
C IN PHASE 1 OR IN PHASE 2
C
1200 VER = .FALSE.
C PE** PERFORM ONE ITERATION
C* 'XCK' DETERMINE FEASIBILITY (STEP 1)
C
NEG = .FALSE.
IF (FEAS) GO TO 500
FEAS= -TRUE.
DO 1201 J = 1,M
IF (X(I).LT.0.0) GO TO }125
IF (JH(I).EQ.O) FEAS = .FALSE.
1201 CONTINUE
C* :GET: GET APPLICABLE PRICES
(STEP 2)
IF (.NOT.FEAS) GO TO 501
500 00 503 1 = 1,M
P(I) = PE(I)
IF (X(I).LT.0.) XII) = 0.
503 CONTINUE
ABSC = .FALSE.
GO TO }59
1250 FEAS = .FALSE.
NEG = .TRUE.
501 DO 504 J = 1,M
P(J) = 0.
504 CONTINUE
ABSC = .TRUE.
DO 505 I = 1,M
MM = I
IF (X(I).GE.0.0) GO TO 507
ABSC = .FALSE.
DO 508 J = 1,M
P(J)=P(J) +E(MM)
MM = MM + M
CONTINUE

```
```

 GO TO 505
 5u7 IF (JH(I).NE.0) GO TO 505
 IF (X(I).NE.O.) ABSC = .FAL.SE.
 DO 510 J = 1,M
 P(J) = P(J) - E(MM)
 MN = MM + M
 510 CONTINUE
 505 CONTINUE
 C
C* 'MIN' FIND MINIMUN REDUCED GOST
599 JT =0
BB=0.0
00701 J =1,N
IF (KB(J).NE.O) GO TO 701
DT = 0.0
DO 303 I = 1,M
DT = DT + P(I) * A(I,J)
303
CONTINUE
IF (FEAS) DT = DT + C(J)
IF (ABSC) DT = - ABS(DT)
IF (DT.GE.BB) GO TO 701
BB=DT
JT=J
7U1 CONTINUE
C
C TEST FOR NO PIVOT COLUMN
IF (JT.LE.O) GO TO 203
C TEST FOR ITERATION LIMIT EXCEEDED
IF (ITER.GE.NCUT) GO TO 160
ITER = ITER +1
START OF THE MACRO - JMY -
C
C* 'JMY' MULTIPLY INVERSE TIMES A(..JT')
600 DO 610 I= 1,M
Y(I) = 0.0
610 CONTINUE
LL=O
COST = C(JT)
C
C LET Y(I) (WHERE I=THE ROW NUMBER) BE THE COEFFICIENT OF THE
c VARIABLE IN THE BASIS IN COLUMN JT
C SET COST=THE COEFFICIENT OF THE JT-TH TERM IN THE OBJECTIVE
C FUNCTION
DO 605 I= 1,M
AIJT=A(I,JT)
IF (AIJT.EQ.O.) GO TO 602
COST = COST + AIJT * PEII)
DO 606 J = 1,M
LL = LL + 1

```
```

 Y(J)=Y(J) + AIJT * E(LL)
 606 CONTINUE
 GO TO 6C5
 602 LL = LL + M
 6u5 CONTINUE.
 COMPUTE PIVOT TOLERANCE
 YMAX =0.0
 SET ymAX=THE LARGEST VALUE OF Y(I)
 SET PIV=YMAX*0.5**16
 DO 620 1 = 1,M
 YMAX = AMAXI\ ABS(Y(I)),YMAX)
 620 CONTINUE
 TPIV = YMAX * TEXP
 RETURN TO INVERSION ROUTINE, IF INVERTING
 END OF MACRO -JMY-
 IF (VER) GO TO 1114
 COST TOLERANCE CONTROL
 RCOST = YMAX/BR
 IF (TRIG.AND.BB.GE.-TPIV) GO TO 203
 TRIG = .FALSE.
 IF (BB.GE.-TPIV) TRIG = .TRUE.
 C* 'ROW' SELECT PIVOT ROW
(STEP 5)
C AMONG EQS. WITH X=O, FIND MAXIMUM }Y\mathrm{ AMONG ARTIFICIALS, OR, IF NONE,
C GET MAX POSITIVE Y(I) AMONG REALS.
LR=0
AA =0.0
KQ =.FALSE.
DO 1050 I =1,M
IF (X(I).NE.O.O.OR.Y(I).LE.TPIV) GO TO }105
IF {JHII).EQ.O) GO TO 1044
IF (KQ) GO TO 1050
1045 IF (Y(J).LE.AA) GO TO 1050
GO TO 1047
1044 IF (KQ) GO TO 1045
KQ =.TRUE.
1047 AA = Y(I)
IR = I
1050 CONTINUE
IF (IR.NE.0) GO TO 1099
AA = 1.OE+20
C FIND MIN. PIVOT AMONG POSITIVE EQUATIONS
00 1010 I = 1,M
IF (Y(I).LE.TPIV.OR.X(I).LE.O.O.OR.Y(I)*AA.LE.X(I) ' GO TO 1010
AA = X(1)/Y(I)
IR=I
lulu CONTINUE
IF (.NOT.NEG) GO TO 1099
C FINL PIVOT AmONG NEGATIVE EQUATIONS, IN WriCH X/Y IS lESS than the

```
( MINIMUM X/Y IN THE POSITIVE EOUATIONS. THAT HAS THE LARGEST ABSF(Y) \(B B=-T P I V\)
DO \(1030 \quad 1=1, M\)
IF (XIIJ.GE.O..OR.Y(I).GE.BH.OR.Y(I)*AA.GT.XII) ) GO TO 1030 \(B P=Y(I)\)
\(I R=I\)
1030 CONTINUE
C TEST FOR NO PIVOT ROW
1099 IF (IR.LE.U) GO TO 207
C* 'PIV' PIVOT ON (IR,JT)
(STEP 6)
\(I A=J H(I R)\)
IF (IA.GT.O) KB(IA) \(=0\)
c
C START OF MACRO -PIV-
\(C\)
900 NUMPV \(=\) NUMPV +1
\(J H(I R)=J T\)
\(K E(J T)=I R\)
C SET YI=-(COEFFICIENT OF THE VARIABLE IN THE BASIS IN ROW IR) \(=A(I R, J T)\)
SET Y(IR)=-1.0
\(Y I=-Y(I R)\)
\(Y(I R)=-1.0\)
\(L L=0\)
\(C\)
\(\begin{array}{rl}D O & 904 \\ L & =L L+1 R\end{array}\)
IF (E(L).NE.0.0) GO TO 905
\(L L=L L+M\)
GO TO 904
C
LET \(X Y=\) INVERSE OF -A(IR,JT' AND E(LL)=INVERSE OF A(IR,JT'

SET \(X(I R)=B(I R) / A(I R, J T)\) END OF MACRO -PIV-
\(905 \quad X Y=E(L) / Y I\)
PE(J) \(=\) PE(J) \(+\operatorname{COST} * X Y\)
\(E(L)=0.0\)
DO 906 I \(=1, M\)
\(L L=L L+1\)
\(E(L L)=E(L L)+X Y * Y(1)\)
906 CONTINUE
904 CONT INUE
\(X Y=X(I R) / Y I\)
DO \(908 \mathrm{I}=1, \mathrm{M}\)
\(X O L D=X(I)\)
\(X(I)=X O L D+X Y * Y(I)\)
IF (.NOT.VER.AND.X(I).LT.O..AND.XOLD.GE.O.) \(X(I)=0\).
908 CONTINUE
\(Y(I R)=-Y I\)
\(X(I R)=-X Y\)
```

IF (VER) GO TO 11.02
IF (NUMPV.LE.M) GO TO 1200
C TEST FOR INVERSION ON THIS ITERATION
INVC = INVC +1
IF (INVC.EQ.NVER) GO TO 1320
gO TO 1200
c
C* END OF ALGORITHM, SET EXIT VALUES
207 IF (.NOT.FEAS.OR.RCOST.LE.-1000.1 GO TO 203
C
C INFINITE SOLUTION
C
K}=
GO TO 250
C PROBLEM 15 CYCLING
160K=4
GOTO 250
c
C FEASIBLE OR INFEASIBLE SOLUTION
c
203 K = 0
250 IF (.NOT.FEAS) K=K + I
DO 1399 J = 1,N
XX=0.0
KBJ=KB(J)
IF (KBJ.NE.O) XX=X(KBJ)
KB(J)=LL
1399 CONTINUE
KO(1) = K
KO(2) = ITER
RETURN
END

```
    SUBROUTINE SEEKIIX,U,N,XSTRT,RMAX,RMIN,PHI,PSI,NCONS, NEQUS, UART,
        1 DSTAR,NTERMS,NTOTER)
        DIMENSION X(1), XSTRT(1),RMAX(1),RMIN(1),PHI(1),PSI(1),DSTAR(NTOTER
        1,1),NTERMS(1)
        COMMON INDEX,LEVEL, IPRINT,IUATA,F, MAXM,G,NSHRIN,MSTART,PD,EPS,ICT,
        IIFENCE,PL, NSTOP, NSMAX, NSHOT, NTEST, TES,R,REDUCE, NVIOL, KO, NNUEX
        IF (INDEX.EQ.1)WRITE(6,19)
        IF (INDEX.EQ.I.ANO.IPRINT.GT.O)WRITE(6,7)SEEK1 OR SEEK3. IINDEX RETAINS THE VALUE FOR THE METHOD WHICH HASCALLED SEEK1 OR SEEK3'.

NNDEX \(=1\)
KOUNT \(=0\)

SUBROUTINE SEEKI \(X, U, N, X S T R T, R M A X, R M I N, P H I, P S I, N C O N S, N E Q U S, U A R T\),
1 DSTAR,NTERMS,NTOTER:
OIMENSION X(1), XSTRT(1),RMAX(1),RMIN(1),PHI(1),PSI(1),DSTAR(NTOTER 1,1),NTERMS(1)
COMMON INDEX,LEVEL, IPRINT, IDATA,F,MAXM,G,NSHRIN,MSTART,PD,EPS,ICT,
IIFENCE,PL, NSTOF,NSMAX,NSHOT, NTEST,TES,R,REUUCE,NVIOL, KO, NNDEX
IF (INDEX.EG.I)WRITE 6,19 )
IFIINDEX.EQ.I.AND.IPRINT.GT.OIWRITE\{6,7)

13 DO \(14 \mathrm{I}=1, \mathrm{~N}\)
\(14 \operatorname{XSTRT}(I)=X(I)\)
GOTO 2

\section*{16 CALL ANSWERIU,X,PHI,PSI,N,NCONS, NEQUS)}

5 FORMAT (IH-, TIHDIRECT SEARCH HAS HUNG UP AND SHOTGUN SEARCH CANNOT IFIND A BETTER POINT/41HTRY A UIFFERENT STARTING POINT AT LEVEL=1/1
7 FORMAT (1H-, \(15 \mathrm{X}, 1\) HU, \(25 \mathrm{X}, 23\) HINDEPENUENT VARIABLES \(\mathrm{X} / 11\)
19 FORMAT(1H1,1OX,38HDIRECT SEARCH OPTIMIZATION USING SEEKI//)
17 FORMAT\{IH-, 48 HSHOTGUN SEARCH FOUND AN IMPROVEMENT BUT NSHOT \(=, 16\), 118 H HAS EEEN EXCEEDED/2X,34HTRY RUNNING THIS PROBLEM ON ADRANS/I
25 FORMAT(1H-,7H.SHOT•,5E16.8/(24X,4E16.8)
RETURN
END

SUBROUTINE SHOT(U,X,N,KK,PHI,PSI,NCONS,NEQUS,RMAX,RMIN
DIMENSION PHI(1),PSI(1), PMAXI1),RMIN(1),X(1)
COMMON INDEX,LEVEL,IPRINT,IDATA,F,MAXM,G,NSHRIN,MSTART,PD,EPS,ICT,
IIFENCE,PL, NSTOP, NSMAX,NSHOT,NTEST,TES,R,REDUCE,NVIOL, KO,NNDEX COMMON/AZ/RR(1001,XX(100)
COMMON /A5/RF(100)

U=OPTIMUM DETERMINED BY UIRECT SEARCH. IT IS CHANGED TO IMPROVED value if such a value is obtained
\(X X=\) TRIAL VALUES OF X(I) FRON SHOTGUN SEARCH
RF = FRACTION CF RANGE USED IN SHOTGUN SEARCH
KK = INDICATOR TO SHOW IF U RETURNED IS AN IMPROVEMENT
INITIALIZE RANDOM NUMBER GENERATOR
CALL FRANDN(RR,N,1)
UMIN \(=U\)
\(K K=0\)
THIS SHOTGUN SEARCH IS INTENDED TO GET THE SOLUTION OFF A FENCE RATHER THAN TO INCH IT TOWAROS THE OPTIMUM. THEREFORE LARGE STEPS, EQUAL 10. TIMES THE INITIAL STEP SIZE IN SEARCH ARE TRIED. DO \(1 \quad I=1, N\)
1 RF(I)=10.*F*ABS(RMAX(I)-RMIN(I))
DO \(4 \mathrm{~J}=1\),NTEST
CALL FRANONIRR,N,OI
DO \(2 I=1, N\)
\(2 \times x(1)=(x(1)-R F(I))+R R(I) * 2.0 * R F(I)\)
CALL OPTIMF (XX,UTEST,PHI,PSI,NCONS,NEQUS)
IF(NVIOL.NE.0)GOTO4
IF(UTEST.GE.UMIN)GOTO4
UMIN=UTEST
U=UTEST
DO \(3 I=1, N\)
\(3 \times(1)=X \times(I)\)
\(K K=1\)
4 CONTINUE RETURN END

SUBROUTINE SEARCH (X,U,N,XSTRT,RMAX,RMIN,PHI,PSI,NCONS,NEQUS, 1 UART,DSTAR,NTERMS, NTOTER) DIMENSION X(1), XSTRT(1),RMAX(1),RMIN(1),FHI(1),PSI(1),
1 DSTAR(NTOTER,1),NTERMS(1)
COMMON INDEX,LEVEL,IPRINT, IDATA,F,MAXM,G,NSHRIN,MSTART,PD,EPS,ICT, 1 IFENCE, PL, NSTOP, NSMAX,NSHOT, NTEST,TES,R,REDUCE, NVI OL, KO, NNDEX COMMON/A1/XO(100), XB(100 , UXXX (100), TXXX(100)

DIRECT SEARCH PORTION OF SEEKI AND SEEK 3
SUBR. SEARCH IS USED BY SEEKI AND SEEK 3 , BOTH OF WHICH ARE CALLED BY OTHER METHODS. NNDEX IS USED IN SEARCH (AND OPTIMF) TO IDENTIFY SEEKI OR SEEK3.(INDEX RETAINS THE VALUE FOR THE METHOD WHICH HAS CALLED SEEKI OR SEEK 3).
NNDEX \(=1\) MEANS SEARCH HAS BEEN CALLED BY SEEK1
NNUEX \(=3\) MEANS SEARCH HAS DEEN CALLED BY SEEK 3
```

C IN CASE SEARCH IS CALLEO DIRECTLY BY ANOTHER METHOD,DEFINE NNUEX
IF (NNDEX.NE.1.AND.NNDEX.NE.3/VNDEX=INDEX
NVIOL1=1
KKK=0
Ml = 0
C DEFINE INDICES OF X(I) FOR GEOMETRIC PROGRAMMING
IFIINDEX.NE.7IGOTO 20
K1=2
K2=NTOTER-N
goto 30
20 kl=1
K2=N
30 DO 40 I=K1,K2
DXXX(I)=0.
TXXX(I)=0.
XO(I)=0.
40 XE(1)=0.
DO 60 I=K1,K2
60 X(I)= XSTRT(I)
C SET FIRST BASE POINT
DO 70 1=K1,K2
70 XO(1) =x(I)
gENERATE DELX(I) AND TEST(I)
DO 80 I=KI,K2
DXXX(I) = F*(RMAX(I)-RMIN(1)
80 TXXX(I)=0XXX(1)*G
CHECKS FOR PURPOSE OF CALL TO SEEKI
NCALL=1
90 IF(INDEX.NE.7) GO TO 100
CALL GEOPT(NTOTER,N,NCONS,NTERMS,USTAR,UART,X)
GOTO 110
100 CONTINUE
CALL OPTIMF(X,UART,PHI,PSI,NCONS,NEQUS)
110 IFINCALL.NE.1IGOTO 120
UARTO = UART
12U CONTINUE
ONCE THE SOLUTION HAS BECOME FEASIBLE(NVIOL=O) THE PENALTY
FUNCTIONS IN OPTIMF PREVENT IT GOING INFEASIBLE.THEREFORE NVIOLI=0
MEANS THE SOLUTION HAS BECOME PERMANENTLY FEASIBLE
IF(NVIOL.EQ.O)NVIOLI=O
IF(INOEX.EQ.1) GO TO 130
IF(INDEX.EQ.3) GO TO 130
IF(INUEX.EQ.7) GOTO 130
IF SEARCH IS BEING USED MERELY TO OBTAIN A FEASIBLE STARTING POINT
THEN RETURN AS SOON AS SOLUTION GOES FEASIBLE
IFINVIOLI.EQ.OIGO TO 385
130 GO TO (170, 200, 210, 355) NCALL
170 CONTINUE
C MAKE SEARCH
180 NFAIL=0
DO 240 I=K1,K2
X(1)=X(I)+DXXX(I)
NCALL=2
GO TO 90

```
```

 200 CONTINUE
 IFIUART.LT.UARTO) GOTO 230
 X(I)=X(I) - 2.0*DXXX(I)
 NCALL=3
 GO TO 90
 210 contInuE
 IF(UART.LT.UARTO) GOTO 230
 NFAIL = NFAIL + 1
 X(I)=X(I)+DXXX(I)
 GOTO 240
 230 UARTO = UART
 240 CONTINUE
 IF(INOEX.NE.7)GOTO 250
 NUMB=K2-i
 IF(NFAIL.EQ.NUMBIGOTO 260
 gOTO315
 250 IF(NFAIL.EQ.N)GOTO 260
 GOTO 315
 260 DO 280 I =K1,K2
 IF(DXXX(I).GT.TXXX(I)' GO TO 290
 280 CONTINUE
 GO TO 385
 290 DO 310 I=K1,K2
 310 DXXX(I)=0XXX(1)/2.
 GOTO }18
 C ESTABLISH NEW BASE POINT
315 DO 320 I=K1,K2
320 XB(I) = X(I)
M1 = M1 + 1
IF(INDEX.EQ.1)GOTO330
GO TO 340
330 KKK=KKKK+1
IF(KKK.NE.IPRINT) GO TO 340
CALL UREAL(X,ULOW)
WRITE (6,2) MI,ULOW, (X(I); I=1,N)
KKK=0
340 CONTINUE
IF(M1.GT.MAXM) GO TO 385
MAKE A PATTERN MOVE
DO 350 I=K1,K2
350 X(I) = X(I) + (X(I) - XO(I))
NCALL=4
GO TO 90
355 CONTINUE
IF(UART.LT.UARTO) GOTO 370
DO 360 I =K1,K2
XO(I) = XB(I)
360 X(1) = X6(1)
GOTO 180
370 DO 380 I=K1,K2
380 XO(I) = XB(1)
UARTO = UART
GOTO 180
385 IF(INDEX.EQ.7)GOTO387

```

CALL UREAL \((X, U)\)
CALL OPTIMF (X,UART,PHI,PSI,NCONS,NEQUS'
IF (NVIOL.EQ.O) GOTO387
IF(MI.GT.MAXMIWRITE(6,4)MAXM
\(K O=1\)
387 RETURN
2 FORMAT (1HO, \(14,3 X, 5 E 16.8 /(24 X, 4 E 16.8))\)
4 FORMAT (IHO, 6 OHNO FEASIBLE SOLUTION AFTER ALLOWABLE NUMEER OF MOVES 1. \(M A X M=916 / 1\)

END

SUBROUTINE OPTIMF (X,UART,PHI,PSI,NCONS,NEQUS)
DIMENSION X(1),PHI(1),PSI(I)
COMMON INDEX,LEVEL,IPRINT,IDATA,F,MAXM,G,NSHRIN,MSTART,PD,EPS,ICT, IIFENCE,PL,NSTOP, NSMAX,NSHOT, NTEST,TES,R,REDUCE,NVIOL,KO, NNUEX
VERY MINOR VIOLATIONS OF INEGUALITY CONSTRAINTS SHOULD NOT MAKE
THE ENTIRE SOLUTION INFEASIBLE. THEREFORE TEST FOR PHI(I).GE.ZERO
WHERE ZERO \(=-1.0 E-10\)
ZERO \(=-1.0 E-10\)
NVIOL \(=0\)
SUBR.OPTIMF IS USED BY SEEKI AND SEEK3,BOTH OF WHICH ARE CALLED GY OTHER METHODS. NNDEX IS USED IN OPTIMF (AND SEARCH) TO IDENTIFY SEEK1 OR SEEK3. (INDEX RETAINS THE VALUE FOR THE METHOD WHICH HAS CALLED SEEKI OR SEEK 3).
NNDEX \(=1\) MEANS SEARCH HAS BEEN CALLED BY SEEK 1
NNDEX \(=3\) MEANS SEARCH HAS BEEN CALLED BY SEEK 3
SUM1 \(=0.0\)
SUM2 \(=0.0\)
CALL UREAL \((X, U)\)
IF(NNDEX.EQ. \(3160 T O 110\)

\section*{SEEKI PENALTY FUNCTIONS -}

A ROUTINE TO CALCULATE A VALUE FOR AN ARTIFICIAL OBJECTIVE FUNCTION OF THE FORM

UART = UREAL+SUM(ABS(PHI(I)/)*10.E20+SUM(ABS(PSI(I)/)*10.E20
WHERE
PSI(1) AND PHI(I) IN THE ABOVE EXPRESSION ARE THE VALUES OF THE CORESPONDING EQUALITY AND INEQUALITY CONSTRAINTS THAT HAVE BEEN VIOLATED
IF (NCONS.EQ.0)GOTO2
CALL CONST (X,NCONS,PHI)
DO 1 I=1,NCONS
IF(PHI(I).GE. ZERO)GOTOI
SUM1 \(=\) SUM \(1+A B S(P H I(1) 1 * 10.0 E+20\)
NVIOL=NVIOL + 1
1 CONTINUE
2 IF (NEQUS.EQ.OIGOTCI15
CALL EQUAL(X,PSI,NEQUS)
DO \(31=1\),NEQUS
3 SUMZ \(=\) SUM \(2+A B S(P S I(1)) * 10.0 E+20\) gOTO115

110 DIV \(=\) SQRT(R)
IF(NCONS.LE.O)GOTO113
CALL CONST (X,NCONS,PHI)
DO \(112 \mathrm{I}=1\), NCONS
IF(PHI(I).GE.ZERO)GOTOI11
NVIOL \(=\) NVIOL +1
ADD A SEVERE PENALTY TO ANY PHIIII WHICH IS VIOLATED
SUM1 \(=\) SUM1 + ABS (PHI (1) \() * 10.0 E+20\)
GOTOI1?
AVOID DIVIDING BY APPROXIMATELY ZERO, THERE IS NO POINT PENALIZING
C A VERY SMALL PHI(I) ANYWAY
111 IF (ABS(PHI(I)).LT.-ZERO)GOTO112
SUMI = SUMI +R/ABS(PHI!I)
112 CONTINUE
113 IF (NEQUS.LE.OIGOTO115
CALL EQUAL(X,PSI, NEQUS)
DO \(114 \mathrm{~J}=1\), NEOUS
114 SUM2 \(=\) SUM \(2+(A B S(P S I(J): * * 2) / D I V\)
115 UART \(=\mathrm{U}+\mathrm{SUMI}+\) SUM2
RETURN
END

SUBROUTINE SEEKZ(X,U,N,XSTRT,RMAX,RMIN,PHI,PSI,NCONS,NEQUS,GS'
DIMENSION X(1),XSTRT(1),RMAX(1),RMIN(1),PHI(1),PSI(I),GS(1)
COMMONINDEX, LEVEL,IPRINT, IDATA,F,MAXM,G,NSHRIN,MSTART,PDO,EPS,ICT,
IIFENCE,PL,NSTOP,NSMAX,NSHOT,NIEST,TES,R,REDUCE,NVIOL, KO, NNUE゙X
COMMON /A1/DX(100), XO(100), DXS(1.00), XN(100)
NNDEX =INDEX
WRITE \((6,101)\)
\(K U T=0\)
KOUNT \(=0\)
DO \(2 I=1, N\)
\(X(I)=X S T R T(I)\)
\(X O(I)=X(I)\)
DX(I) \(=F^{*}\) ABS (RMAX(1)-RMIN(I))
DXS(I) \(=\) DX(I)
2 CONTINUE
61 CALL OPTIMF (X, UARTO,PHI,PSI,NCONS, NEQUS)
\(62 U=U A R T O\)
PERFORM THE UNIVARIARLE SEARCH
DO \(6 \quad 1=1, N\)
MAKE A MOVE IN THE POSITIVE UIRECTION
\(3 \times(I)=X(1)+U X(I)\)
CALL OPTIMF (X,UART, PHI,PSI,NCONS, NEQUS)
IF (UART.LT.U)GOTO4
make a move in the negative direction
\(X(I)=X(I)-2.0 * D \times(I)\)
```

 CALL OPTIMF(X,UART,PHI,PSI,NCONS,NEQUS)
 IF(UART.LT.U)GOTOS
 C RETURN TO ORIGINAL VALUE
X(I)=X(1)+DX(I)
GOTO6
4 U=UART
INCREASE STEP LENGTH AFTER A SUCGESSFUL MOVE
DX(I)=DX(I)*GS(I)
x(I)=x(I)+0x(I)
CALL OPTIMF(X,UART,PHII,PSI,NCONS,NEQUS'
IF(UART.LT.U)GOTO4
C RETURN TO ORIGINAL POSITION AFTER A FAILURE
X(I)=X(I)-OX(I)
D\times(1)=D\timesS(1)
DECIDE WHETHER OR NOT TO PROCEED WITH UNIVARIABLE SEARCH
C (IFENCE=O AT LEVEL=O)
IF(IFENCE.EO.I)GOTOG
GOTO3
C INCREASE STEP LENGTH AFTER A SUCCESSFUL. NEGATIVE MOVEG
5 DX(I)=-DX(I)
GOTO4
6 CONTINUE
C CHECK PERCENTAGE IMPROVEMENT IN U
CALL OPTIMF(X,UART,PHI,PSI,NCONS,NEQUS)
IF(ABSIUART-UARTO).GT.EPS*ABS(UARTOJ)GOTOB
IF(KUT.LT.ICTIGOTO7
IF(NVIOL.EQ.0)GOTO99
KO=1
WRITE(6,105)
GOT099
C REDUCE STEP SIZE BY A FACTOR OF 10.0
700 18 1=1,N
DX(1)=0X(I;/10.0
18 DXS(I)=DX(1)
UARTO=UART
KUT=KUT+1
gor062
C START PATTERN MOVES
8 U=UART
PD=PDO
DO 42 1=1,N
42 XN(I)=X(I)
15 DO 9 I=1,N
9 XN(I) =XN(I)+(X(I)-XO(I))*PD
CALL OPTIMF (XN,UART,PHI,PSI,NCONS,NEQUS)
IF(UART.LT.U)GOTO14
IF(PD.LT.0.0)GOTO13
try a negative pattern move
DO40 I=1,N
40 XN(I)=XN(1)-(X(I)-XO(I))*PU
PD=-PDO
GOTO15
C RETURN TO ORIGINAL POINT
13 DO 16 I=1,N

```
```

 UARTO=U
 KOUNT=KOUNT+1
 IF(IPRINT.EQ.OIGOTOL7
 IF(KOUNT.EQ.IPRINT)WRITE(6,102)
 IF((KOUNT/IPRINT)*IPRINT NE.KOUNT)GOTOIT
 CALL UREAL (X,UU)
 WRITE (6,103)KOUNT,UU,(XII),I=1,N)
 17 IF(KOUNT.EG.NAXM)GOTC20
 GOTO62
 C ACCELERATE STEP LENGTH AFTER SUCCESSFUL PATTERN MOVES
14 PD=PD*PL
U=UART
DO 11 I=1,N
11 XN(I)=XN(I)+(X(I)-XO(I))*PD
CALL OPTIMF{XN,UART,PHI,FSI,NCONS,NEQUS\
IF(UART.LT.U)GOTO14
C RETURN TO LAST POSITION AFTER PATTERN MOVE FAILS
DO 41 I=1,N
41 XN(I)=XN(I)-{X{I}-XO(I)1*PD
PD=PDO
GOTOL5
C NO CONVERGENCE AFTER MAXM COMPLETE CYCLES
20 WRITE(6,104)MAXM
KO=1
99 CALL ANSWER(U,X,PHI,PSI,N,NCONS,NEQUS)
1UI FORMAT IIHI,4GHOPTIMIZATION USING OIRECT SEARCH METHOU SEEK2/I
1O2 FORMAT (1H-,15X,1HU,25X,26HINDEPENDENT VARIABLES X(I)//1
103 FORMAT (1HO,I4,3X,5E16.8/(24X,4E16.8))
104 FORMAT\1H-,29H OPTIMUM CANNOT BE FOUND IN, I 3,7H CYCLES)
105 FORMAT(1H-,43HSEEK2 CANNOT FIND A FEASIBLE STARTING POINT/)
RETURN
END
SUBROUTINE SEEK3(X,U,N,XSTRT,RMAX,RMIN,PHI,PSI,NCONS,NEQUC,GUART,DS
1TAR,NTERMS,NTOTER)
DIMENSION X(1),XSTRT(1),RMAX(1),RMIN(1),PHI(1),PSI(1),DSTAR(NTOTER
1,1),NTERMS(1)
COMMON INDEX,LEVEL,IPRINT,IDATA,F,MAXM,G,NSHRIN,MSTART,PD,EPS,ICT,
IIFENCE,PL,NSTOP,NSMAX,NSHOT,NTEST,TES,R,REOUCE,NVIOL,KO,NNOEX
IF(INDEX.EQ.3)WRITE(6.9)
ULAST=10.OE+40
KOUNT=0
C DEFINE NNDEX=3 SO THAT OPTIMF AND SEARCH WILL FUNCTION CORRECTLY
NNDEX=3
DEFINE R AND REDUCE FOR THE CASE WHERE SEEK3 HAS BEEN CALLED BY
ANOTHER METHOD
IF(INDEX.NE.3)R=1.0
IF(INOEX.NE.3)REDUCE =0.04
1 CALL SEARCHIX,U,N,XSTRT,RMAX,RMIN,PHI,PSI,NCONS,NEQUS,UART,UST
1AR,NTERMS,NTOTERI
IF SEEK3 HAS BEEN CALLED BY ANOTHER METHOD RETURN
RESET NNOEX=INDEX FOR FUTURE CALLS TO OPTIMF OR SEARCH BY THE
CALLING METHOD.

```
```

 NNDEX=INDEX
 IF(INDEX.NE.3)RETURN
 IF(KO.NE.I)GOTOS
 WRITE (6,14)
 GOTOG
 5 KOUNT = KOUNT+1
 IFIIPRINT.EQ.OIGOTOZ
 IF(KOUNT.EQ.IPRINTIWRITE(6,1C)
 IF((KOUNT/IPRINT)*IPRINT.NE.KOUNTJGOTO2
 WRITE(6,4)R
 WRITE(6,11)U,(X(1),I=1,N)
 2 IF(ABS(U-ULAST).GT.1.E-O7*AES(ULAST))GOTOT
 OPTIMUM HAS BEEN REACHEO
 6 CALL ANSWER(U,X,PHI,PSI,N,NCONS,NEQUS)
 RETURN
 7 IF(R.GT.1.OE-20)GOTO8
 WRITE(6,12)R
 KO=1
 GOTOG
 8 ULAST=U
 R=R*REDUCE
 DO 3 I=1,N
 3 XSTRT(I)=X(I)
 GOTOI
 4 FORMAT (IHO,3HR =, E16.8)
 9 FORMAT (IHI,45HOPTIMIZATION USING DIRECT SEARCH METHOD SEEK3,///
 10 FORMAT (IHO,38X,27HINDEPENDENT VARIABLES X(I///)
11 FORMAT (1X,3HU =, E16.8,1X,4E16.8/(21X,4E16.8))
12 FORMAT (IHO,23HNO CONVERGENCE WITH R =,E16.8)
14 FORMAT(GGHISEEK3 UNABLE TO FIND A FEASIGLE STARTING POINT(ALL PHII
11).GE.0.0)/)
END
SUBROUTINE ALTSIX,U,N,XSTRT,RMAX,RMIN,WATE,STEP,NEQUS,NCONS,PSI,PH II, M, NN, A, B, C, WORKA, DSTAR, NTERMS, NTOTER, DELX, XXI
OIMENSION X(1), XSTRT(1),RNAX(1),RMIN(1),WATE(1),STEP(1),PSI(1),PHI 1(I), DELX(1), A(M,1),B(1),C(1),WORKA(M,1), DSTAR(NTOTER,1),NTERMS(1), 2×111
COMMON INDEX,LEVEL,IPRINT,IDATA,F,MAXM,G,NSHRIN,MSTART,PD,EPS,ICT, IIFENCE,PL, NSTOP, NSMAX, NSHOT, NTEST, TES,R,REDUCE,NVIOL, KO, NNDEX COMMON /AS/ XINC(100)
WRITE (6,1)
$U U=1 \cdot O E+40$
UBEST $=1 \cdot O E+40$
NCY $=0$
C CHECK INPUT VALUE OF STEPII). THE LINEARIZATION PERFORMEU IN SUBR.
C
DO 9 I=1,N
X(I)=XSTRT(I)
RANGE =ABS(RMAX(I)-RMIN(I))
9 IF{ABS(STEP(I)).GT.0.10*RANGE)STEP(I)=0.10*RANGE

```

C CALL SUBR.FEASBL TO CHECK WHETHER XSTRT(I) IS FEASIBLE AND TO DRIVE IT FEASIBLE IF NECESSARY. IF (NCONS.EQ.O.AND. NEQUS.EQ.OIGOTO2O
CALL FEASBL \((X, U, N, X S T R T, R M A X, R M I N, P H I, P S I, N C O N S, N E Q U S, ~ U D U M N Y, U S T A R ~\)
1,NTERMS,NTOTER)
IF(KO.EQ.O)GOTOIO
SUBR. LINEAR CAN HANDLE INFEASIBLE INEOUALITY CONSTRAINTS, BUT NOT
C UNSATISFIED EQUALITIES
IF (NEQUS.GT.O)RETURN
© PROCEED WITH LINEARIZATION, RESET KO=0
\(K O=0\)
goto3u
10 IF(IPRINT.GT.OJWRITE( 6,3 IU, (X(I), \(1=1, N)\)
20 CALL ASERCH(X,N,RMAX,RMIN,PHI,PSI, NCONS, NEQUS,NGY,WATEI
CALL UREAL (X,UARTO)
CHECK TO SEE IF THE RESULTS OF THIS SEARCH HAVE IMPROVED U OVER
THE PREVIOUS SEARCH(THIS METHOD TENDS TO OSCILLATE)
IF (UARTO-UU).LT. O.OIGOTO21
C CHECK FOR OSCHLLATION, I•E. NU SIGNIFICANT CHANGE FROM LAST SEARGH IF (ABSIUARTO-UU).LT. 1.OE-OBIGOTO23
GOTO24
21 IF ((UARTO-UBEST).GE.0.01GOTO24
C DEFINE THE NEW 'BEST' POINT AND STORE IT IN UBEST ANO XSTRTI'
UBEST = UARTO
\(U U=U A R T O\)
DO \(22 I=1, N\)
22 XSTRT(1)=X(I)
GOTO35
C
IF THE OPTIMIOATION FUNCTION IS OSCILLATING , RETURN TO 'BEST'
POINT SO FAR
23 WRITE 6,7\()\)
U=UBEST
DO \(26 \quad I=1, N\)
\(26 \times(I)=X S T R T(I)\)
GOTOL10
C STORE VALUE OF U FOR THIS ITERATION
24 UU \(=\) UARTO
GOTO35
30 CALL UREAL (X,UARTO)
35 IF (NEQUS.EQ.OIGOTO50
CALL EQUAL (X,PSI, NEQUS)
DO \(40 \mathrm{I}=1\), NEQUS
40 UARTO = UARTO +ABS(PSI(I) *WATE(I)
50 CALL LINEAR (X, UO,PHI,PSI, A,B,C,DELX,STEP,M,NN,N,NCONS,NEUUS)
CALL SIMPLE \(X X, D E L U, M, N N, A, B, C, W O R K A)\)
IF (KO.EQ.1)RETURN
DO \(60 \quad \mathrm{I}=1, \mathrm{~N}\)
XINC(1) \(=x \times(2 * 1-1)-x \times(2 * 1)\)
\(60 \times(I)=X(1)+X I N C(1)\)
CALL UREAL \((X, U)\)
\(N C Y=N C Y+1\)
IF(IPRINT.E(H.O)GOTOTO
WRITE( 6,5\()(\mathrm{U},(\mathrm{X}(1), I=1, N)\)
70 IF (NCY.GT.NSMAX)GOTO100
```

UART=U
NVIOL=0
IF(NEQUS.EQ.OIGOTO81
CALL EQUAL(X,PSI,NEQUS)
DO 80 I = 1,NEQUS
80 UART=UART+ABS(PSI{I))*WATE(I)
CHECK IF PREVIOUS MOVE WAS INFEASIBLE
81 IF(NCONS.EO.OIGOTO9O
CALL CONST(X,NCONS,PHI)
DO 82 1=1,NCONS
82 IF(PHI(I).LT.O.O)GOTO83
GOTO9O
C. IF LAST POINT FOUND BY LINEARIZATION WAS INFEASIBLE, BYPASS ASERCH
C AND GO DIRECTLY TO LINEARIZATION
83 IF(IPRINT.GT.O)WRITE(6,4%
NVIOL=1
90 IF(ABS(UARTO-UART) \<.TES*ABS(UARTO)'GOTO110
IF(INVIOL.EO.O)GOTO2O
UARTO=UART
GOTOSO
IUO WRITE(6,6)NSMAX
C PRINT OUT THE 'BEST' VALUE SO FAR
U=UBEST
0O 105 I=1,N
105 x(I)=XSTRT(I)
KO=1
110 CALL ANSWER(U,X,PHI,PSI,N,NCCNS,NEQUS)
1 FORMAT (IHI,35HOPTIMIZATICN USING ALTERNATE SEARCH//)
2 ~ F O R N A T ~ (I H - , 4 7 H M E T H O D ~ U N A B L E ~ T O ~ F I N D ~ A ~ F E A S I B L E ~ S T A R T I N G ~ P O I N T /) ~
3 FORMAT(IH-,47HFEASIBLE STARTING POINT FOUND BY NETHOU IS U =,E16.
18.11H AT X(I) =//(6X,5E16.8))
4 ~ F O R M A T (3 O X , 3 I H (T H E ~ A N O V E ~ P O I N T ~ I S ~ I N F E A S I B L E I) , ~
5 FORMAT(7HOLINEAR,E15.8.4E16.8/(22X,4E16.8))
6 FORMATIIH-,8OHMAXIMUM NUMHER OF ITERATIONS THROUGH ALTERNATE SEARC
IH HAS BEEN EXCEELED (NSMAX =,I6,1H)/IX,43HTHE [3EST POINT FOUND SO
2FAR IS LISTED BELOW/I
7FORMAT(IH-,G8HSOLUTION IS OSCILLATING, ASSUME PREVIOUS 'BEST' POIN
1T IS THE OPTIMUM/I
RETURN
END
SUGROUTINE ASERCH(X,N,RMAX,RMIN,PHI,PSI,NCONS,NEQUS,NCY,WATE,
OLMENSION X(1),RMAX(I),RMIN(I),PHI(I),PSI(1),WATE(I)
COMMON INDEX,LEVEL,IPRINT,IDATA,F,IVAXM,G,NSHRIN,MSTART,PD,EPS,ICT,
1IFENCE,PL,NSTOP,NSMAX,NSHOT,NTEST,TES,R,REUUCE,NVIOL,KO,NNUEX
COMMON /A3/TEST(100),OLLX(100),XO(100)
COMNON /A5/XINC(10O)
KOUNT =0
J=0
C NOTE... ASERCH ASSUMES THAT ALL PHIII'.GE.O. ALREADY

```
    DLLX(I)=F*ABS(RMAX(I)-RMIN(!|)
    10 TEST(I)=G*OLLX(1)
        (ALL UREAL(X,UO)
        IF(NEUUS.EQ.O)GOTO35
        CALL EQUAL(X,PSI,NEQUS)
        DO 30 I=1,NEQUS
        30 UO=UO+ABS(PSI(I))*WATE(1)
C
    IF A LINEARIZATION HAS JUST BEEN COMPLETED, TRY A PATTERN MOVE
        35 IF(NCY.GT.O)GOTOL5O
C MAKE EXPLORATORY SEARCH
    40 DO 50 I=1,N
    50 xO(I)=x(I)
        NFAIL=0
        DO 120 I =1,N
        LOOP=1
        X(I)=x(1)+DLLX(I)
        55 CALL UREAL(X,U)
        IF(NCONS.EQ.O)GOTO7O
        CALL CONSTIX,NCONS,PHI)
        DO 60 L=1,NCONS
        60 IF(PHI(L).LT.0.0)GOTOL00
        70 IF(NEQUS.EQ.0IGOTO90
        CALL EQUAL(X,PSI,NEQUS)
        DO 80 L=1,NEQUS
        80 U=U+ABS(PSI(L))*WATE(L.)
        90 IFIU.GE.UO)GOTOLOO
        UO=U
        GOTO120
    lvO LOOP=LOOP+1
        IFILOOP.GT.2IGOTOL10
        x(I)=x(1)-2.0*DLLX(1)
        GOTO55
    110 x(I)=x(I)+DLLX(1)
    NFAIL=NFAIL+1
    120 CONT INUE
C DEFINE STEP LENGTH FOR PATTERN MOVE AFTER EXPLORATORY MOVES
    DO 125 1=1,N
    125 XINC(I)=X(I)-XO(I)
        IF(NFAIL.LT.N)GOTO150
        NIL=0
        DO 140 I=1,N
        IF(ABS(OLLX(I)).LT.ABS(TEST(I))1GOTO130
        DLLX(I)=DLLX(I)/2.0
        GOTO140
    130 NIL=NIL+1
    140 CONTINUE
C
    IF ALL STEP LENGTHS DLLX(1).LT.TEST(1) CONVERGENCE IS ASSUMED
    IFINIL.EQ.NIRETURN
    GOTO4O
C MAKE PATTERN MOVE
C XINCIII FROM LAST LINEARIZATION IS CARRIEU THROUGH COMMON /AS/
150 IF(J.EQ.0)HURRY=1.0
    IF(J.NE.OIHURRY=PL**J
    DO 160 1=1,N
    160 X(1)=X(1)+XINC(1)*HURRY
```

```
            IF(NCONS.EQ.O)GOTO180
            CALL CONST (X,NCONS,PHI)
            DO 170 I=I,NCONS
    170 IF(PHI(I).LT.O.O)GOTO210
    180 CALL UREAL (X,U)
        IFINEQUS.EQ.UIGOTO2OO
        CALL EQUAL (X,PSI,NEOUS)
        0O 190 I=1,NEQUS
    190 U=U+ABS(PSI(1))*WATE(I)
    200 IF(U.GT.UOIGOTO210
        UO=U
C ACCELERATE THE STEP AFTER A SUCCESSFUL PATTERN MOVE
        J=J+1
        GOTOl50
    RETURN TO LAST GOOD POINT
    21U 0O 220 I=1,N
    220 X(I)=X(I)-XINC(I)*HURRY
    If J=0 AT THIS STAGE, THEN EVEN THE SMALLEST PATTERN MOVE HAS
    FAILED AND ANOTHER EXPLORATORY MOVE MUST BE ATTEMPTED
    IF(J.GT.O)GOTO227
    KOUNT=KOUNT+1
    IFIIPRINT.EG.O)GOTO225
    KOWNT=KOUNT+NCY
    IFIKONNT.EQ.IPRINTIWRITEI6.4!
    IF((KOUNT/IPRINT)*IPRINT.NE.KOUNTIGOTO225
    CALL UREAL(X,UU)
    WRITE(6,5)KOUNT,UU, (X(1),I=1,N)
    225 1F(KOUNT.GT.MAXM)GOTO230
    GOTO4U
    227 J=0
    GOTO150
    230 WRITE(6,1)MAXM
    KO=1
    1 FORMAT(IH-,56HTHE MAXIMUM NUMBER OF MOVES PERMITTED IN ASERCH IMA
    1XM =, 16,19H) HAS BEEN EXCEEDED/'
    4 FORMAT (1H-, 12X,IHU, 25X,26HINDEPENDENT VARIABLES XII'//1
    5 FORMAT (1HO,13,2X,5E16.8/(21X,4E16.8))
        RETURN
        END
```

 SUBROUTINE APPROX \(X, U\), \(N, D E L X, S T E P, T E S T, M, N N, A, B, C, W O R K A, X S T R T, R M A X\)
 1, RMIN, PHI, PSI, NCONS, NEQUS, UART, DSTAR,NTERMS, NTOTER,XX)
 OIMENSION WORKA(1), X(1), DELX(i),STEP(1),TEST(I),A(M,1),B(I),C(1),
 IXSTRT (1), RMAX(1),RMIN(2),PHI(1),PSI(1), USTAR(NTOTER,1),NTERMS(I),
 2XX(1)
 COMMON INDEX, LEVEL,IPRINT,IDATA,F,MAXM,G,NSHRIN,MSTART,PD,EPS,ICT,
 IIFENCE, PL, NSTOP, NSMAX, NSHOT, NTEST, TES, R, REDUCE, NVIOL, KO, NNUEX
 COMMON /A7/XINC(100),WORK19(100)
 COMMON /AB/JELLY(IOO)
 WRITE \((6,4)\)
 NSTEPL \(=0\)
 TINY \(=1\). OE \(-\cup 8\)
    ```
    ULAST=1.OE+4U
    DO 22 1=1,NN
22 x (1) =0.0
DO 23 I=1,N
    JELLY(I)=0
    X(I)=XSTRT(I)
    WORK19(1)=XSTRT(I)
```

23 XINC(I) $=0.0$
IFINEQUS.EQ.O.ANU.NCONS.EQ.OIGOTO26
APPROX REQUIRES THAT ALL PSIII BE SATISFIED, BUT IT CAN HANDLE
INFEASIBLE PH+(I). IF THE USER HAS CHOSEN XSTRT(I) SO AS TO MAKE
ALL PSI(I)=0., THEN FEASBL IS EYPASSED BECAUSE IT WOULD UPSET THE
GOOD VALUES OF PSI(I) IN ORDER TO DRIVE ALL PHI(I' FEASIBLE
IF(NEQUS.EQ.O)GOTO27
CALL EQUAL (XSTRT,PSI,NEQUS)
DO $21 \mathrm{I}=1$, NEQUS
21 IF(ABS(PSI(I)).GT.1.E-04)GOTO27
GOTO2S
DEFINE G AND MAXM FOR SUBROUTINE FEASBL
$27 \mathrm{G}=\mathrm{F}$
MAXM $=100 * \mathrm{~N}$
CALL SUBR. FEASBL TO TEST WHETHER THE INPUT STARTING VALUESIXSTRT:
ARE FEASIBLE OR NOT. IF NOT,FEASBL DETERMINES A FEASIBLE STARTING
POINT AND RETURNS IT IN THE ARRAY X(I).
CALL FEASBL (X,U,N,XSTRT,RMAX,RMIN,PHI,PSI, NCONS, NEQUS, UDUMMY,DSTAR
1, NTERMS, NTOTER)
IF (KO.NE. 1.OR.NEQUS.EQ.0)GOTOZ4
WRITE $(6,76)$
GO TO 100
24 IF (IPRINT.GT.OICALL UREAL (X,U)
IF(IPRINT.GT.0)WRITE $(6,77) \cup,(X(I), I=1, N)$
CHECK INPUT VALUES OF STEP(I): IF ANY STEPII .GT. 10 PERCENT OF
THE RANGE THEN REUUCE IT TO .10*(RMAX(1)-RMIN(I))
26 DO $25 \mathrm{I}=1, N$
RANGE =ABS(RMAX(I)-RMIN(I))
IF(STEP(I).GT.0.10*RANGE'STEPI! $1=0.10 * R A N G E$
25 CONTINUE
35 CALL LINEAR (X,UO,PHI,PSI,A,B,C,DELX,STEP,M,NN,N,NCONS,NEQUS)
CALL SIMPLE (XX,DELU,M,NN,A,B,C,WORKA)
IF(KO.EQ.1)GOTO65
DO $36 \quad I=1, N$
$\operatorname{XINC}(I)=x \times(2 *+-1)-x x(2 * I)$
$36 \times(1)=x(1)+x I N C(I)$
CALL UREAL (X, U)
NSTEPL=NSTEPL+1
IF (IPRINT.EQ.0)GOTO37
IF (NSTEPL.EQ.IPRINTIWRITE(6,70)
IF ($(N S T E P L / I P R I N T) * I P R I N T . E Q \cdot N S T E P L) W R I T E(6,71) N S T E P L, U,(X(I), I=1$,
IN)
37 IF(NSTEPL.GE.NSMAX) GO TO 62
c

```
C HALF STEP(IN...IF THE LAST INCREMENT WAS FINITEI.GT.TINYI GUT
    LESS THAN }5\mathrm{ PERCENT OF THE ALLOWAGLE STEP(I)
    IF THE VARIABLE IS OSCILLATING
    DOUBLE STEP(I)...IF THE LAST INCREMENT WAS .GT.0.99*THE ALLOWABLE
    STEPII' AND VARIABLE WAS NOT OSCILLATING
    OSCILLATION थVALUES OF XII) ARE COMPARED EVERY SECOND(EVEN)
                        ITERATION. IF THEY ARE EQUAL AND THE LAST IN-
                        CREMENT WAS FINITE THEN OSCILLATION MUST HAVE
                        OCCURKEUU. SET THE FLAG JELLY(I)=1 TO PKEVENT ANY
                        SUBSEGUENT DOUBLING OF THE VARIAGLE.IOSCILLATIUN
                        IS ASSUMED TO TAKE PLACE ABOUT THE OPTIMUM)
    IF((NSTEPL/2)*2.NE.NSTEPL)GOTO59
    LESS=0
    DO 58 I=1,N
    IF(ABS(XINC(I)) LLE.TINY)GOTO57
    IF(ABS(X(I)-XSTRT(I)) &GT -TLNYIGUTO55
C SET FLAG JELLY(I)=1 FOR THE OSCILLATING VARIABLE
    JELLY(I)=1
    IF(STEP(I).GT -TESTII)IGOTO54
    LESS=LESS+1
    GOTO57
    54 STEP(I)=STEP(I)/2.0
    GOTOS7
    55 IF(ABS(XINC(I)).GT.0.05*STEP(I)/GOTO56
        IF(STEP(I).GT.TEST(1))STEP(I)=5TEP(1)/2.0
        GOTO57
    DO NOT INCREASE STEP(I) IF VARIABLE HAS OSCILLATED(JELLY(I)=1)
    56 IF(JELLY(I).EQ.1)GOTO57
    C DO NOT INCREASE STEP(I) SO THAT STEP(I).GT..I*(RMAX(I)-RMIN(I))
    IF(STEP(I).GT.0.05*ABS(RMAX(I'-RMINII'1)GOTO57
    IF(ABS(XINC(I)).LT.0.99*STEP(I|)GOTO57
    STEP(I)=STEP(I)*2.0
    57 XSTRT(I)=X(I)
    58 CONTINUE
        IF(LESS.LT.N)GOTO62
        IF((U-ULAST).GT.Ü.0)GOTO65
        GOTO100
    CHECK FOR STEP SIZE ADJUSTMENT EVERY ITERATIONIOSCILLATION CHECKED
C CHECK FOR
    ONLY ON EVEN NUMBERED ITERATIONS)
    59 00 61 I=1,N
        IF(ABS(XINC(I)).GT•0.05*STEP(I)IGOTO60
        IF(ABS(XINC(I)) LT.TINY)GOTOGI
        IF(STEP(I).GT.TEST(I)/STEP(I)=STEP(I)/2.0
        GOTO61
        60 IF(JELLY(1).EQ.1)GOT061
        1F(ABS(XINC(I)).LT.0.99*STEP(I))GOTO61
        IF(STEP(I).GT.0.05*ABS(RMAX(I)-RMIN(I))/GOTO61
        STEP(1)=STEP(1)*2.0
    6 1 ~ C O N T I N U E ~
    62 IFINSTEPL.GE.NSMAX.AND.NCONS.EQ.OIGOTO64
    IF(NCONS.EO.O)GOTOG7
C CHECK WHETHER OR NOT THE POINT IS FEASIBLE
    NVIOL=O
    CALL CONST(X,NCONS,PHI)
```

```
            DO63 I=1,NCONS
        63 IF(PHI(I).LT.-TINYINVIOL=NVIOL+1
C AN INFEASIBLE POINT IS NOT A CANDIDATE TO BE THE OPTIMUM
    IFINVIOL.EQ.OIGOTO67
    IF(IPRINT.EQ.O)GOTOT2
        IF((NSTEPL/IPRINT)*IPRINT.EQ.NSTEPLIWRITE(6,78)
    72 IFINSTEPL.GE.NSMAX)GOTO64
        GOTO35
    67 IF((U-ULAST).GE.O.O)GOTO69
C STORE NEW '日EST' POINT IN ULAST AND WORKI9(I)
        ULAST=U
        DO 68 I=1,N
    68 WORK19(I)=X(1)
    69 DO 51 1=1,N
        IF(AUS(XINC(I)).GE.TEST(I))GO TO 35
    51 CONTINUE
        IF((U-ULAST).GT.O.0)GOTOG5
        GOTO10O
    64 WRITE(6,5) NSMAX
        KO=1
C PRINT OUT BEST POINT FOUND SO FAK
    65 DO 66 I=1,N
    66 X(I)=WORK19(I)
    IUO CALL ANSNER(U,X,PHI,PSI,N,NCONS,NEUUS)
        4 \text { FORMAT (IHI,GOHOPTIMIZATION USING METHOD OF SUCCESSIVE LINEAR APPRO}
        1XIMATION//)
            5 FORMAT(IH-,45HLIMIT ON NO. OF ITERATIONS EXCEEDED, NSMAX = , I5/1X,
            143HTHE BEST POINT FOUND SO FAR IS LISTED BELOW/1
    70 FORMAT(1H-,15X,1HU,25X,23HINDEPENUENT VARIABLES X//)
    71 FORMAT(1HU,I4,3X,5E16.8/(24X,4E16.8))
    70 FORVAT(IH-949HSUBR. FEASBL UNABLE TO FINN FEASIBLE STARTING PT./)
    7 7 \text { FORNAT \|IH-,53HFEASIELE STARTING VALUES FOUNO BY FEASBL ARE U}
        1=,E16.8.10H. AT X(1) =//(1X,E15.8,4E16.8))
    78 FORMAT(3OX,31H(THE ABOVE POINT IS INFEASIBLE))
    31 FORMAT(1H-,25HFINAL VALUES OF STEP(I) =,/(5E16.%))
        RETURN
        END
```

 SUBROUTINE LINEAR (X,UO,PHI,PSI,A,B,C,DELX,STEP, \(N, N N, N, N C O N S, N E Q U S)\)
 OIMENSION X(1), DELX(I),STEP(1),PHI(1),PSI(1),A(M,1),B(1),C(1)
 COMMON INDEX,LEVEL, IPRINT, IDATA,F,MAXM,G,NSHRIN,MSTART,PD,EPS,ICT,
 IIFENCE, PL, NSTOP, NSMAX, NSHCT, NTEST, TES,R,REDUCE, NVIOL, KO, NNDEX
 COMMON /A2/SIGN(10O), PART (100)
 C ZERO ARRAYS TO BE USEO
DO $20 \quad \mathrm{I}=1 \mathrm{M} \mathrm{Mi}$
$B(1)=0.0$
DO $20 \mathrm{~J}=1$, NN
$A(I, J)=0.0$
20 CONTINUE
DO $221=1$, NN
$22 C(1)=0.0$

DO $23 \quad I=1$, NCONS
$23 \mathrm{PHI}(\mathrm{J})=0.0$
DO $24 \quad I=1, N E Q U S$
24 PSI (1) $=0.0$
LINEARIZE THE OPTIMIZATION FUNCTION
CALL UREAL (X,UO)
$0010 \quad I=1, N$
$X(I)=X(I)+D E L X(I)$
CALL UREAL (X, U)
$X(1)=X(I)-D E L X(I)$
CTEMP $=(U-U O) / D E L X(I)$
$C(2 * 1-1)=C T E M P$
$C(2 * I)=-C T E M P$
10 CONTINUE
SET UP EQUATIONS LIMITING THE STEP SIZE OF EACH VARIABLE FOR EACH
ITERATION
DO 3C $J=1, N$
$J J=J+N$
」2 $=2 * J$
$A(J, J 2-1)=1.0$
$A(J, J 2)=-1 \cdot 0$
$A(J J, J 2-1)=-1.0$
$A(J J, J 2)=1 \cdot 0$
$E(J)=A R S(S T E P(J))$
$B(J J)=A B S(S T E P(J))$
30 CONT INUE
SET UP SLACK VARIABLES IN STEP LENGTH LIMIT EQUATIONS
$M A=2 * N$
DO $55 \mathrm{~J}=1$, MA
$I J=J+M A+N C O N S$
$55 \mathrm{~A}(J, I J)=1.0$
LINEARIZE THE INEQUALITY CONSTRAINTS, MULTIPLYING THROUGH BY - 1.0
IF THE RIGHT HAND SIDE IS NEGATIVE
IF (NCONS.EQ.O)GOTO48
DO $29 \quad I=1$, NCONS
29 PART (I) $=0.0$
CALL CONST (X,NCONS, PART)
DO $31 I=1$, NCONS
$S I G N(I)=1.0$
IF(-PART(I).LT.O.O)SIGN(I)=-1.0
31 CONT INUE
DO $35 \quad I=1, N$
$X(I)=X(I)+D E L X(1)$
CALL CONST (X,NCONS,PHI)
$X(I)=X(I)-D E L X(I)$
DO $35 \quad I I=1$, NCONS
ATEMP $=$ SIGN(II)*(PHI(II)-PART(II))/DELX(I)
$N 2=2 * N+1 I$
$A(N 2,2 * I-1)=A T E M P$
$A(N 2,2 * I)=-A T E M P$
35 CONTINUE.
SET UP RIGHT HANO SIDES OF LINEARIZED INEQUALITY CONSTRAINTS AND
C. ADD SLACK VARIABLES

DO $36 \quad I=1$, NCONS
$12=2 * N+1$
A(I2, I2) $=-$ SIGN(1)
$B(12)=-\operatorname{PART}(1) * 51 \mathrm{GN} 1^{\prime}$
36 CONTINUE
LINEARIZE THE EQUALITY CONSTRAINTS, MULTIPLYING THROUGH BY - $1 . C$
IF the right hand side is negative
48 IF (NEQUS.EQ.OIGOTOS2
טO 47 I=1,NEOUS
47 PART (1) $=0.0$
CALL EQUAL (X,PART, NEQUS)
DO $49 \quad 1=1$, NEQUS
$S I G N(I)=1.0$
IF(-PART(1).LT•0.01SIGN(I) $=-1 \cdot 0$
49 CONTINUE
DO $50 \quad 1=1, N$
X(I)=X(I)+UELX(I)
CALL EQUALIX,PSI,NEQUS)
X(I) $=\mathrm{X}(1) \rightarrow$ DELX(I)
DO 50 II = 1 , NEQUS
ATEMP=SIGN(II)*(PSIIII)-PART(II)I/DELX(I)
112 $2 * 2 *+N C O N S+11$
A(112,2*1-1)=ATEMP
A(II2,2*I) $=-$ ATEMP
50 CONTINUE
SET UP RIGHT HANU SIUES OF LINEARIZED EUUALITY CONSTRAINTS.
DO 51 1=1, NEQUS
112 $22 * N+N C O N S+1$
B(112)=-PART(I)*SIGN(1)
51 CONTINUE
52 RETURN
END

SUBROUTINE FEASBLIX,U,N,XSTRT,RMAX,RMIN,PHI,PSI,NCONS, NEUUS,UART, IDSTAR,NTERMS,NTOTER)
DIMENSION X(1), XSTRT(1),RMAX(1),RMIN(1),PHI(1),PSI(1),OSTARINTOTER 1,1),NTERMS(1)
COMMON INDEX,LEVEL,IPRINT,IOATA,F,MAXM,G,NSHRIN,MSTART,PD,EPS,ICT, IIFENCE,PL,NSTOP, NSMAX, NSHOT, NTEST, TES,R,RELUCE,NVIOL,KO, NNUEX COMMON /AS/STEPP(100)
THIS SUBROUTINE USES SEEK 3 TO DRIVE ALL PHI(I) FEASIBLE AND THEN REDUCES THE PSI(I)S BY MINIMIZING SIGMA(PSI(I)) SUBJECT TO THE CONOITION THAT ALL PHI(I) REMAIN FEASIBLE(.GE.O.)
NNDEX=INDEX
$K U T=0$
DO $9 \quad I=1, N$
$9 \times(I)=X S T R T(I)$
IFINCONS.EQ.OIGOTO13
CALL CONST(X,NCONS,PHI)
DO $10 \mathrm{I}=1$, NCONS

IF(PHI(I).LT.0.0)6OTO11
10 CONTINUE
GOTO13
IF ANY PHI(I).LT.O. CALL SEEK3 TO URIVE THEM FEASIBLE
11 CALL SEEK $3(X, U, N, X S T R T, R M A X, R M I N, P H I, P S I, N C O N S, N E Q U S, U A R T, D S T A R, N T$ 1ERMS, NTOTER)
IF (NVIOL.EU.U)GOTO13
IF SEEK3 COULD NOT GET ALL PHIIII.GE.O. THEN SUDR•FEASBL CANNOT
OBTAIN A FEASIBLE POINT
$\mathrm{KO}=1$
GOTO31
13 IF (NEQUS.EG.O)GOTO31
MINIMIZE SIGMA(PSI(I) KEEPING ALL PHI(I).GE.O.
NOTE. . .THE FRACTION OF THE RANGE USED AS STEP SIZE SHOULD NOT
EXCEED 5 PERCENT. IF THE USER 15 INTERESTEO IN A VERY FEASIBLE
POINTIIE.ALL PSIII'S VERY SiMAI.L'HE CAN GIVE (F' A VERY SMALL VALUE
PERCNT $=0.05$
IF (ABS(F).LT.0.05)PERCNT $=F$
DO $14 \quad 1=1$, N
14 STEPP(I)=PERCNT*(RMAX(I)-RMIN!1I)
INITIALIZE THE SUM OF THE PSIIIIS
GALL SUMPSI (X,PSI NEQUS, SUMOI
15 NFAIL=0
DO $25 \mathrm{I}=1, \mathrm{~N}$
$\mathrm{x}(1)=\mathrm{x}(\mathrm{I})+5 \operatorname{TEPP}(1)$
CALL CONST(X,NCONS,PHI)
DO $17 \mathrm{~J}=1$, NCONS
IGNORE: A MOVE WHICH MAKES ANY PHI(I).LT•O.O
IF(PHI(J).LT.O.0)GOTOI9
17 CONTINUE
CALL SUMFSI(X,PSI NEQUS,SUMI)
IF (SUM1.GE.SUMO)GOTO19
SUMO $=$ SUMI
GOTO25
$19 \times(1)=\times(1)-2.0 * S T E P P(I)$
CALL CONST(X,NCONS,PHI)
DO $21 \mathrm{~L}=1$, NCONS
IF(PHI(L).LT•O.O)GOTO23
21 CONTINUE
CALL SUMPEI $X, P S I, N E Q U S, S U M Z 1$
IF (SUN2.GE.SUMO)GOTO23
SUMO $=$ SUM2
GOTO25
23 X(1)=X(1)+STEPP(I)
NFAIL=NFAIL+1
25 CONTINUE
IF(NFAIL.EQ.N)GOTO27
GOTOI5
C REDUCE STEPPII) BY A FACTOR OF 4.0 UP TO 4 TIMES. THIS MEANS STEPP
6 REDUCES TO LESS THAN.UOUZ* RMAXII-RMINIII, OR IF F.LT.O.OS
THEN MINIMUM STEPP(I)=(F/256)*(RMAX(I)-RMIN(I)). THEREFORT. THE
USER MAY DRIVE THE PSI(I) VALUES AS SMALL AS HE WISHES BY ENTERING
A VERY SMALL VALUE OF F AT LEVEL $=1$
27 KUT $=K U T+1$

```
        IFIKUT.GT.4)GOTO31
        DO 29 I= 1,N
    29 STEPP(I)=STEPP(I)/4.0
        GOTO15
    31 CALL UREAL (X,U)
        ZERO STEPPIII SINCE BLOCK /AS/ IS USED BY CALLING METHODS
        DO 33 I=1,N
    33 STEPP(1)=0.0
    RETURN
        END
    SUBROUTINE SUMPSI(X,PSI,NEQUS.SUM)
    DIMENSION X(1),PSI(1)
    CALL EQUALIX,PSI,NEQUS)
    SUM=0.0
    OO 1 I=1,NEQUS
    SUM=SUM + ABS(PSI(I))
1 CONTINUE
    RETURN
    END
    SUBROUTINE RANDOM (X,U,N,RMAX,RMIN,Z,UU,NRET,NCONS,PHI)
    DIMENSION X(1),RMAX(I),RMIN(1),Z(NRET,I),UU(1),PHIII)
    COMMON INDEX,LEVEI.,IPRINT,IDATA,F,MAXM,G&NSHRIN,MSTART,PD,EPS,ICT,
    IIFENCE,PL,NSTOP,NSMAX,NSHOT,NTEST,TES,O,REUUCE,NVIOL,KO,NNUEX
    COMMON/A1/AA(100),CC(100),WORK3(100),TEST1(100)
    COMMON /A5/R(100)
    OPTIMIZATION USING DICKINSONS RANUOM SEARCH STRATEGY
    WRITE (6,200)
    RANDOM DOES NOT HANDLE INEQUALITY CONSTRAINTS AND THEREFOIE NEQUS
    IS NOT INPUT. SET NEQUS=O TO AVOIU GETTING AN INDEFINITE MESSAGL
    NEOUS=0
    NCYCLE=1
    DO 18 I=1,N
    CC(I)=0.
    AA(I)=0.
    TEST1(I)=0.
    X(I)=0.0
18 CONTINUE
    DO 22 I=1,N
    CC(I)=RMAX(I)
    AA(I)=RMIN(I)
22. TEST1(I)=F*ABS(CC(I)-AA(1))
    NUMR IS THE NUMBER OF FEASIBLE RANDOM POINTS EVALUATED EACH CYCLE
    NUMR = NRET*NSHRIN
    THE NUMBER OF FEASIBLE RANDOM POINTS RETAINEO EACH CYCLE IS
    NRET =NUMR/NSHRIN AND NRET ARRIVES THROUGH THE ARGUMENT LIST
    GENERATE NRET FEASIELE RANDOM POINTS
```

C MSTART IS THE STARTING VALUE FOR GENERATING RANDOM NUMBERS.
C AT LEVEL=0 MSTART $=128$ IS SET IN OPTIPAC. AT LEVEL=1 MSTART IS DATA $M M=M S T A R T$
DO $21 \mathrm{~J}=1$, NRET
$\mathrm{L}=1$
50 CONTINUE
CALL FRANDN(R,N,MM)
$M M=0$
$0020 \quad I=1, N$
$20 \times(1)=A A(I)+R(1) *(C C(1)-A A(11)$
IF(NCONS.EQ.OIGOTOS2
CALL CONST(X,NCONS,PHI)
NVIOL $=0$
DO $42 \quad 1=1, N C O N S$
IF(PHI(1).GE.0.0)GOTO42
NVIOL =NVIOL +1
42. CONT INUE

IFINVIOL.EQ.OIGOTOS2
$L=L+1$
IF (L.GT.NSMAX) GO TO 80
GO TO 50
52 (ALL UREAL (X,UTEMP)
DO $43 \mathrm{I}=1, \mathrm{~N}$
$432(J, 1)=x(1)$
UU(J) =UTEMP
21 CONTINUE
FIND LARGEST VALUE OF UU(J)
$\operatorname{LARGE}=1$
DO $10 \mathrm{j}=2$, NRET
IF(UU(J).LE•UUILARGE)'GOTO10 LARGE = J
10 CONTINUE
place largest value of uurj' at uull) and interchange z(J,I) with
C $\quad 2(1,1)$
UTEMP =UU(LARGE)
UU(LARGE) =UU(1)
UU(I) =UTEMP
DO $11 \mathrm{I}=1, \mathrm{~N}$
ZTEMP=Z(LARGE,I)
$Z($ LARGE, $I)=2(1, I)$
$Z(1,1)=Z$ TEMP
11 CONTINUE
c
GENERATE NUMR MORE FEASIBLE POINTS AND IF ANY HAS UU(J).LT.UU(1)
C THEN INTERCHANGE THEM
$K K=1$
60 DO $12 \mathrm{~K}=1$, NUMR
$L=1$
53 CONTINUE
CALL FRANDN(R,N,O)
DO $13 \quad \mathrm{I}=1, \mathrm{~N}$
$13 \times(I)=A A(1)+R(I) *(C C(1)-A A(1))$
IF (NCONS.EQ.O)GOTOS5
CALL CONST $(X, N C O N S, P H I)$

```
    NVIOL=0
    DO 56 I=1,NCONS
    IF(PHI(I).GE.0.0)GOTO56
    NVIOL=NVIOL+1
```

56 CONTINUE
IF(NVIOL•LT•1)GOTO55
$\mathrm{L}=\mathrm{L}+1$
IF (L.GT.NSMAX) ©O TO 80
GO TO 53
55 CALL UREAL (X,UXTRA)
IF (UXTRA.GE•UU(1)) GO TO 12
UU(1)=UXTRA
DO $14 \quad I=1$, N
$142(1, I)=X(1)$
PUT NEW LARGEST UU(J) AT UU(1)
DO $30 \mathrm{~J}=2$,NRET
IF (UU(J).LE•UU11)) GO TO 30
UTEMP = UU(J)
UU(J) =UU(1)
UU(1) =UTEMP
DO $31 \quad I=1, N$
$X T E M P=Z(J, 1)$
$Z(J, 1)=Z(1, I)$
$312(1, I)=X T E M P$
30 CONTINUE
12 CONTINUE
SELECT NEW AAII) AND CC(I)
DO $15 \mathrm{I}=\mathrm{I}, \mathrm{N}$
$A A(1)=2(1,1)$
$C(1)=2(1 ; 1)$
DO $16 \mathrm{~J}=2$,NRET
IF (Z1J,I).GT.AA11:) GO TO 17
AA(I) $=2(\mathrm{~J}, \mathrm{I})$
GO TO 16
17 IF (Z(J,I).LT.CC(I)) GO TO 16
$C C(I)=Z(J, I)$
16 CONTINUE
15 CONTINUE
IF (KK-IPRINT) 27,28,62
$27 K K=K K+1$
GOTOS2
28 IF (NCYCLE.EQ.IPRINT)WRITE(6,91
WRITE 6,8)NCYCLE,UU(I'
L2 $=0$
$29 \mathrm{LI}=\mathrm{L} 2+1$
$\mathrm{L} 2=\mathrm{L} 1+4$
IF(L2.GT.N)L2 $=N$
WRITE(6,4)(CC(I),I=L1,L2)
WRITE(6,2) (AA(1), $1=L 1, L 2)$
IF(L2.LT.N)GOTO29
$K K=1$
62 IF (NCYCLE.GE.MAXM)GOTO61
NCYCLE =NCYCLE +1
DO $63 \mathrm{I}=1, \mathrm{~N}$

```
                                    IF(ABS(CC(I)-AAII)).GT.ABS(TESTI(I)))GOTOGO
        63 CONTINUE
C SELECT SMALLEST UU(J)
        61 JMIN=2
            VO 19 J=3,NRET
            IF(UU(J).GE.UU(JMIN))GOTOL9
            JMIN=J
        19 CONTINUE
            0054 I= I,N
        54 X(I)=Z(JMIN,I)
            IF(NCYCLE.GE.MAXM)COTOIOO
            GOTOB1
        80 WRITE (6,3)NSMAX
            WRITE (6,5)
            KO=1
            RETURN
    100 WRITE (6,6) MAXM
            KO=1
        81 CALL ANSWER(U,X,PHI,PSI,N,NCONS,NEQUS)
        2 FORMAT (6X,5E16.8)
        3 FORMATIIHO,4OHNO FEASIBLE POINT FOUNO AFTER GENERATING,IG,16H RAN
        1DOM NUMBERS)
        4 FORMAT(IHO,5X,5E16.8)
        5 FORMATIIX,54HTRY SHRINKING THE RANGE OR INCREASING NSMAX AT LEVEL
        I=1/1
    6 FORMAT(//34H PROCESS FAILED TO CONVERGE AFTER , 14,2X,6HCYCLES'
    8 FORMAT(1HO,13,3H (,E15.8,1H))
    9 FORMAT (6H-CYCLE,5X,6H(UMAX),22X,26HUPPER/LOWER BOUNDS ON X(I)//)
    2UO FORMAT(1H1,58HOPTIMIZATION USING UICKINSONS RANUON SEARCH NETHOU
        IRANDOM//1
        RETURN
        END
            SUBROUTINE FRANDN(A,N,M)
            DIMENSION A(I)
C THIS RANDON NUMBER GENERATOR IS A MODIFIED IBM SUBROUTINE
C B IS A MACHINE-DEPENDENT CONSTANT AND B=2.0**(1/2+1)+3.0
C WHERE I = NUMBER OF BITS IN AN INTEGER WORD (I=47 FOR CDC6400)
    B=262147.0
    X=M
    X=X/0.8719467
    20 IF (X.NE.0.0)Y=AMOD(ABS(X).3.18967)
            DO 10 K=I,N
            DO 11 J=1,2
    11 Y=AMOD(B*Y,1.0)
        A(K)=Y
C AVOID Y=0. AND Y=1. TO PREVENT DIVIDING INTO ZERO
    10 IF(Y.EQ.0.O.OR.Y.EO.1.0)Y=0.182818285
        RETURN
        END
```

SUBROUTINE GEOM (NTOTER,N,NCONS,NTERMS,EX,CONST,AA,BB,C,DSTAR,RMAX, IRMIN, X, XSTRT)
DIMENSION NTERMS(1),EX(NTOTER,1', CONST(1),AA(NTOTER,1),BE(NTOTER,1 1), (C(NTOTER,I),DSTAR(NTOTER,I),RMAX(1),RMIN(1),X(1),XSTRT(1)

COMMON INDEX,LEVEL, IPRINT, IDATA,F,MAXM,G,NSHRIN,MSTART, PD, EPS,ICT, 1 IFENCE, PL, NSTOP, NSMAX, NSHOT,NTEST,TES,R,REDUCE,NVIOL, KO, NNUEX
COMMON /A3/CK(100),GAM(l00),T1100)
COMMON /A5/D(100)
COMMON /AT/SUM(1UU):USE(100)
COMMON /AB/NUSE(100)
THE GEOMETRIC PROGRAMMING METHOU OF OPTIMIZATION
THE PROGRAM IS DIVIDED INTO FIVE SECTIONS AS FOLLOWS. INOTATION AS IN MATHEMATICAL DESGRIPTION GIVEN IN LEVEL I DOCUMENTATIONI.

1. CALCULATION OF THE DELTA SUB 1 SUPER J ARRAY
2. RELAXATION METHOD TO FIND FEASIBLE STARTING VALUES OF TIII
3. CALCulation of the K SUB Q vector
4. MAXIMIZATION OF DUAL EY DIRECT SEARCH (SEEKI)
5. CONVERSION FROM DUAL BACK TO PRIMAL PROBLEM

SECTION (1)
CALCULATION OF THE SET OF NORMAL AND NULL VECTORS = DELTA SUB I SUPER J. THESE ARE DERIVEO FROM THE INPUT EXPONENT ARRAY (EX).

NOTE...KO=O INITIALLY. KO=1 IF A FAILURE OCCURS ANYWHERE IN GEOM. NT $=$ NCONS +1
$N M=N T O T E R-N$
$\mathrm{Nl}=\mathrm{N}+1$
TRANSPOSE THE ROWS AND COLUMNS OF THE EXPONENT ARRAY (EX)INTO (AA)
$100011 \mathrm{I}=1$,NTOTER
DO $11 \mathrm{~J}=1, \mathrm{~N}$
$11 A A(J, 1)=E \times(I, J)$
GAUSS REDUCE THE MATRIX (AA) BY ROWS KEEPING TRACK OF COLIWN INTER - CHANGES. THIS CHANGES THE (AA) MATRIX INTO A UNIT MATRIX IN THE N BY N POSITIONS ANO MODIFIES ELEMENTS IN THE N BY (NI TO NTOTER) POSITIONS.THESE OPERATIONS ARE PERFORMED WITHIN SUBR. GAJON. NOTE...ARRAY NUSE IS COMMONED BETWEEN GEOM AND GAJON.

CALL GAJON(AA,NTOTER,N)
IFIKO.NE.OIRETURN
FORM THE MATRIX (C)...IN THE N BY NM POSITIONS OF (C) PLACE THE NEGATIVES OF THE N EY (N+1)TO(NTOTER) ELEMENTS OF THE REUUCED (AA) SET EQUAL TO 1 ALL (C) ELEMENTS FOR WHICH $1=j+N$. SET REMAINING (C) ELEMENTS EQUAL TO ZERO.

DO $12 \quad 1=1, N$
DO $12 \mathrm{~J}=\mathrm{N} 1, \mathrm{NTOTER}$
$J J=J-N$

```
    12C(I,JJ)=-AA(I,J)
        DO 13 I=N1,NTOTER
        0O 13 J=1,NM
        JJ=J+N
        IF(I.EQ.JJ) GO TO 14
        C(I,J)=0.0
        GO TO 13
14C(I,J)=1.0
13 CONTINUE
    FOR EVERY COLUMN INTERCHANGE (STORED IN NUSE) MADE IN THE GAUSS
    REDUCTION MAKE THE CORRESPONDING ROW INTERCHANGE IN THE MATRIX (C)
    CALL THE RESULTING MATRIX (BB).
    DO 15 I=1,NTOTER
    DO 15 J=1,NM
    NISE=NUSE(I)
    15 BB(NISE,J)=C(I,J)
        DO 16 I=1.NM
        NUSE(I)=0
        RMIN(I)=0.0
        RMAX(I)=0.0
    16 SUM(I)=0.0
17 SUM(1)=SUM(1)+BE(」,I)
    FIND THE FIRST COLUMN OF (BB' HAVING THE SUM OF ITS FIRST
    NTERMS(1) ELEMENTS = SUM NOT EQUAL TO ZERO. DIVIOE EACH ELEMENT
    IN THAT COLUMN BY SUM AND STORE THE RESULT IN DSTAR(J,I). THIS IS
    THE DELTA SUB I SUPER O VECTOR.
        I =0
    18 I=I+1
        IF(I.GT.NM) GO TO 19
        IF(ABS(SUM(I)).GT.1.OE-8) GO TO 20
        GO TO 18
C ARRAY (BB) MUST BE SINGULAR.
    19 WRITE(6,601)
        KO=1
        RETURN
    20 NUSE(1)=1
        DO 21 J=1,NTOTER
    21 DSTAR(J,1)=B8(J,I)/SUM(I)
c COMPLETE THE DSTAR ARRAY--DSTAR(J,II)=BB(J,I)-SUM(I)*DSTAR(J,I)
I I =1
DO 23 I=1,NM
IF(NUSE(I).NE.O) GO TO 23
```

C
c

```
        II=1 I +1
        DO 22 J=1,NTOTER
    22 DSTAR(J,II)=BE(J,I)-SUM(I)*DSTAR(J,I)
    23 CONTINUE
    8\cupO USE(I)=SQRT(ABS(USE(I)')
    NORMALIZE THE (DSTAR) ARRAY bY DIVIDING ALL ELEMENTS IN A ROW BY
    THE ROWS VALUE OF (USE). IF AN ELEMENT IS ZERO(LESS THAN 1.E-O8)
    LEAVE IT ZERO.IF A FIRST GOLUMN ELEMENT (DSTAR(I,I)| IS ZERO,FORCE
    IT NEGATIVE BY ADDING -1.E-OG .STORE THE MODIFIED (DSTAR) IN (BB).
    DO 801 I=1,NTOTER
    DO 801 J=1,NM
    TEST AGAINST 1.E-08 RATHER THAN 0.0 TO ALLOW FOR ROUNDING ERROR.
    IF(USE(I).GT.1.0E-08)GOTO802
    RB(I,J)=DSTAR(I,J)
    GOTO801
    802 IF(J.EQ.1)GOTO1O3
    GOT0104
    1\cup3 BG(I,J)=(DSTAR(I,J)-1.OE-06)/USE(1)
        GOTO8O1
    204 BB(I,J)=(DSTAR(I,J))/USE(I)
    8Ul CONTINUE
    111 KOUNT=KOUNT+1
        IF(KOUNT.LT.LIMIT)GOTOICS
    IF NO FEASIBLE STARTING VALUES FOR T HAVE GEEN FOUNO AFTER (LIMIT)
        STEPS OF RELAXATION PROCEDURE, GO DIRECTLY TO SUBR.SEEKI WHICH IS
    CAPABLE OF FINDING ITS OWN STARTING VALUES.
    GO TO 203
    CALCULATE the delta suE I vector, storing It in (use).
```

c

$$
\begin{aligned}
& 1 \cup 5 \text { DO } 106 I=1, N T O T E R \\
& \text { USE }(I)=B B(I, 1) \\
& \text { DO } 106 J=2, N M \\
& \text { USE }(1)=U S E(I)+B B(I, J) * T(J)
\end{aligned}
$$

106 CONTINUE
c
c
$S N=0.0$
DO $109 \mathrm{I}=1$, NTOTER
IF(USE (I).GE.0:0)GOTO109
IF(USE(I).LT.SN)GOTO108
GOTO1O9
$1 \cup 8 \quad 10=1$
SN=USE(1)
109 CONTINUE
C SN MAY CONVERGE TO ZERO VERY SLOWLY, THEREFORE TEST AGAINST -I.E-O8
IFISN.LT.-1.OE-OBIGOTOI10
GOTO203
MODIFY THE T VALUES AND REPEAT THE ABOVE PROCEDURE.
$11000107 \mathrm{~J}=2, N M$
$T(J)=T(J)-B B(I Q, J) * S N$
107 CONTINUE
gOTOII1
$203002001 Q=19 N M$
$C K(I Q)=D S T A R(1, I Q) * A L O G(C O N S T(1))$
DO 201 II $=2$, NTOTER
$201 C K(I Q)=C K(I Q)+D S T A R(1 I, I Q) * A L O G(C O N S T(I I))$
$200(K(I Q)=E X P(C K(I Q))$
SECTION (4)
MAXIMIZE THE DUAL FUNCTION SN BY DIRECT SEARCH - SUBR SEEK1 THE
SEARCH STOPS WHEN NO INCREASE IN SN IS OBTAINED BY CHANGING ANY
T VALUE BY +O-- F*G*RANGE (SEE LEVEL 1 documentation).
use t values from relaxation as starting values for seeki and
SET RANGES OF TII VALUES TO ESTABLISH INITIAL STEP SIZE IN SEEKI
2 C 7 DO $811 \mathrm{I}=2$, NM
RMIN(I) $=$ T(I)-0.50*ABS(T(I))
$\operatorname{RMAX}(I)=T(I)+0.50 * A B S(T(1))$
$811 \times S T R T(I)=T(1)$
C
X MUST BE FIRST ARGUMENT FOR SEEKI TO PRESERVE VARIABLE DIMENSION CALL SEEKIIX,U,N,XSTRT,RMAX,RMIN,PHI,PSI, NCONS,NEQUS,SN,DSTAR,NTE

1RMS, NTOTER)
IFIKO.EQ.01GOTO812
WRITE(6,615)
GOTO9999
812 DUAL $=-S N$
DO $813 \mathrm{I}=2, \mathrm{NM}$
813 T(1)=X(1)

SECTION (5)
CONVERT FROM THE DUAL PROBLEM BACK TO THE PRIMAL (INPUT) PROBLEM.
FORM THE RIGHT HAND SIDE OF THE SET OF LINEAR EONS IN THE UNKNOWNS LOG(X(I)). DUAL, CONST(I), DII, AND GAM(I' ARE ALL KNOWN AT THIS STAGE. STORE THE R.H.S. IN AAII,NI' FOR TFANSFER TO SUBR GELIM.

NTEMP2 $=$ NTERMS(1)
DO $700 \quad \mathrm{I}=1$, NTEMP2
700 AA(1,NI)=ALOG(D(I)*ABS(DUAL//CONST(I))
LYM1 $=1$
LYM2 =NTERMS(1)
DO 702 1Q=1,NC.ONS
LYM1 $=$ LYMI + NTERMS(IQ)
$10.1=1 Q+1$
LYM2 = LYM2 + NTERMS(IG1)
DO 702 I = LYMI, LYM2
AA(I,N1)=ALOG(D(I)/(CONST(I)*GAM(IQ1))
702 CONT INUE
COEFFICIENTS OF THE UNKNOWN VARIABLES LOG(XII) ARE SIMPLY THE ELEMENTS OF THE INPUT EXPONENT ARRAY (EX).

DO $703 \mathrm{I}=1$, NTOTER
DO $703 \mathrm{~J}=1 \mathrm{n} \mathrm{N}$
7U3 AACI, JI $=E \times(1, J)$
CALL SUBR GELIM TO SOLVE THE SET OF EQNS BY GAUSS ELIMINATION. NOTE... THE LOG(X) VALUES ARE RETURNED FROM GELIM IN AA(I,NI).

CALL GELIM(NTOTER,N,AA)
IF(KO.NE.O)GOTO9999
CALCULATE THE PRIMAL OPTIMIZATION FUNCTION FROM THE LOG(X) VALUES.
DO $7041=1, N$
704 USE(I) $=A A(1, N 1)$
$S N=0.0$
$\mathrm{NHI}=\mathrm{NTERMS}(1)$
DO $705 \mathrm{I}=1$, NHI
$P P=0.0$
DO $706 \mathrm{~J}=1, \mathrm{~N}$
$706 \mathrm{PP}=\mathrm{PP}+E X(1, \mathrm{~J}) *$ USE (J)
$7 \cup 5$ SN=SN+CONST(1)*EXP(PP)
PRIMAL $=S N$

NOTE...THE VALUES OF PRIMAL AND DUAL SHOULD AGGREE TO SEVERAL DECIMAL PLACES AT THE GLOBAL OPTIMUM

CONVERT LOG(X) VALUES TO x VALUES.
DO $707 \mathrm{I}=1, \mathrm{~N}$
$707 \times(I)=E X P(U S E(I))$
CALCULATE THE VALUES OF THE ORIGINAL(PRIMAL! CONSTRAINT EQUATIONS ALL OF WHICH SHOULD BE -LE.I.O (PLACE RESULTS IN NORKING ARRAY SUM(100)

L1=NTERMS(1)+1
DO 71U $\mathrm{I}=2, \mathrm{NT}$
$L 2=L 1+N$ TERMS $(+)-1$
SUM(I) $=0.0$
$00709 \mathrm{~K}=\mathrm{L} 1, \mathrm{~L} 2$
TERM $=$ CONST (K)
DO $708 \mathrm{~J}=1, \mathrm{~N}$
708 TERM=TERM*X(J)**EX(K, J)
$7 \cup 9 \operatorname{SUM}(1)=\operatorname{SUM}(I)+$ TERM $L 1=L 2+1$
710 CONTINUE
c
c PRINT OUT RESULTS
WRITE (6.610)
WRITE 6,611$)$ PRIMAL
WRITE $(6,612)$ DUAL
WRITE $(6,613)(1, \times(1), 1=1, N)$
WRITE $(6,614)$
WRITE $(6,618)(1$, SUM $(1+1), 1=1, N C O N S)$
WRITE $(6,616)$
WRITE (6,617)
601 FORMAT (1H-, 2 2HARRAY (BB) is SINGULAR)
610 FORMAT (1HI, $24 \mathrm{X}, 3$ UHOPTIMUM SOLUTION FOUND BY GEOM/25X,30H-…........... 1---------------------11
611 FORMAT ($19 x, 15$ HMINIMUM $U(x)=9 E 16.8,9 H$ (PRIMAL')
612 FORMAT (19X,15HMAXIMUM U(T) $=$,E16.8.7H (DUAL)//)
613 FORMAT $\left(27 \mathrm{X}, 2 \mathrm{HX}, 12,3 \mathrm{H}^{\prime}=, E 16.8\right.$)
614 FORMAT(1H-24H INEQUALITY CONSTRAINTS/1X,24HIFEASIBLE PHI(I).LE. 1 1.011

615 FORMAT(1H-,47HSURR.SEEKI UNABLE TO MAXIMIZE THE DUAL FUNCTION/)
616 FORMATIIH-, T3HNOTE... THE VALUES OF THE PRIMAL ANO DUAL OPTIMIZATIO IN FUNCTIONS ESTABLISH/IX,73HUPPER AND LOWER BOUNDS RESPECTIVELY ON 2 THE GLOBAL O-TIMUM. IF THEY DO NOTI
617 FORMAT (1X,68HAGREE TO SEVERAL DECIMAL PLACES, TRY REDUCING F ANU G
1 TO IMPROVE THE/IX,2IHMAXIMIZATION IN SEEK1/)
618 FORMAT $(25 \mathrm{X}, 4 \mathrm{HPHI}(, 12,3 H)=, E 16.8)$
0999 RFTURN
END

SUBROUTINE GAJON(AA,NTOTER,NI
DIMENSION AA(NTOTER,I)
COMMON INDEX,LEVEL,IPRINT,IDATA,F,MAXM,G,NSHRIN,MSTART,PD,EPS,ICT,
1 IFENCE,PL, NSTOP, NSMAX, NSHOT, NTEST,TES,R,REDUCE,NVIOL,KO, NNUEX COMMON /AB/NUSE(1UO)
$101 \mathrm{NN}=\mathrm{NN}+1$
$K=N N-1$
$11 K=K+1$
IF (ABS(AA(NN,K)).GT•1•OE-6) GO TO 12
IFIK.LE•NT4IGOTOII
A RON OF (AA) IS ENTIRELY ZEROS It. THE MATRIX IS SINGULAR-SINCE
C AA IS THE TRANSPOSE OF EX, THIS MEANS THAT ONE OF THE INPUT
C VARIABLES DOES NOT APPEAR IN ANY TERN:
WRITE(6,20)K,K
$K O=1$
GO TO 13
12 IF(K.EQ.NN) GO TO 14
DO $15 \mathrm{I}=\mathrm{I}, \mathrm{N}$
$T E M P=A A(I, N N)$
$A A(I, N N)=A A(I, K)$
15 AA $(1, K)$, EMP
NTEMP = NUSE (NN)
NUSE (NN) $=\operatorname{NUSE}(K)$
NUSE (K) =NTEMP
THIS SUBR. PERFORMS A GAUSS-JORDAN REUUCTION BY ROWS OF THE MATRIX (AA) KEEPING TRACK OF COLUMN INTERCHANGES IN ARRAY (NUSE). THE RESULT IS A UNIT MATRIX IN THE N GY N POSITIONS IOFF-DIAGONAL ELEMENTS ARE SET $=0.0$ AFTER RETURN TO GEOM' AND A MODIFIED ARRAY IN THE N BY (N1. TO NTOTER) PISITIONS ITHE NEGATIVES OF THI.SE FORM THE N BY NM ELEMENTS OF (C' AFTER RETURN TO GEOM). NOTE... (NUSE) IS NEEDEU IN GEOM AND IS CARRIEU THROUGH COMMON.
$\mathrm{N}=0$
NT1 $=\mathrm{N}-1$
NT4 $=$ NTOTER-1
DO IO $I=1$, NTOTER
$10 \operatorname{NUSE}(1)=1$
SEARCH THE NNTH ROW FOR FIRST NON-ZERO ELEMENT. INTERCHANGE THAT COLUMN WITH THE KTH COLUMN.
diviue the nnth row by the uiagonal element in it (afinnonn)'
$14 \mathrm{~J}=\mathrm{NTOTER}+1$
$141 \mathrm{~J}=\mathrm{J}-1$
IF(J.LT•NN) GO TO 16
$A A(N N, J)=A A(N N, J) / A A(N N, N N)$
GO TO 141
c reduce all rows below the nnth row.
$16 \quad N A=N N+1$
IF(NA.GT.NIGO TO 171
DO $17 \mathrm{I}=\mathrm{NA}, \mathrm{N}$
0017 J=NA,NTOTER
17 AA(I,J) $=A A(1, J)-A A(I, N N) * A A(N N, J)$
171 IF (NN.LT.N) GO TO 101
DO $18 \quad \mathrm{I}=1$,NTI
NT2 $=1+1$
DO 18 NL=NT2,N
NT $3=N L+1$
DO $18 \mathrm{~J}=\mathrm{NT} 3$, NTOTER
18 AA(I,J)=AA(I,J)-AA(I,NL)*AA(NL,J)
20 FURMAT (1H-, 38 HTHE EXPONENT ARRAY IS SINGULAR IN ROW, $14 / 1 \times, 13 H T H A T$ I IS, THE, $12,59 \mathrm{H}$ TH INPUT VARIADLE DOES NOT APPEAR IN ANY OF THE 2RELATIONSI
13 RETURN END

SUBROUTINE GELIM(NTOTER,N,AA)
DIMENSION AA(NTOTER,I)
COMMON /AS/O(100)
COMMON INDEX,LEVEL,IPRINT, IDATA,F,MAXM,G,NSHRIN,MSTART,PU,LPS,ILT, $11 F E N C E, P L$, NSTOP, NSMAX, NSHIOT, NTEST, TES,R,REUUCE,NVIOL, KO, NNUEX

THIS SUBR. USES GAUSS ELIMINATION TO SOLVE A SET OF NTOTER EQNS IN N UNKNOWNS WITH OME RIGHT HANO SIDE. THE COEFFICIENTS ENTER THE SUBR• IN THE NTOTER BY N POSITIONS OF (AA). THE R•H.S. IS STORED IN THE VECTOR AAII,NI'. THE SOLUTION VECTOR (IN THIS CASE THE SET OF LOG(X) VALUESI IS RETURNEO IN AA(I,NI).
note...gellim -EuUIRES that ntoter.ge.in
KOUNT=NTOTER
$\mathrm{KO}=0$
$\mathrm{Nl}=\mathrm{N}+1$
THE ARGUMENT OF ALOG(' MUST bE POSITIVE,THEREFORE DISCARD ANY EQUATION FOR WHICH DII).LE.O.
IF ANY D(I'.LE.O.O, THEN ZERO THE CORRESPONUING ROW IN (AA) AND decrenent kounte (if kount.lt.n then the matrix is singular). $\mathrm{I}=0$
$101 \quad 1=1+1$
IF(I.GT.NTOTER)GOTOIO2
IF(D)(I).GT.1.OE-10) GO TO 101
TEST AGAINST l.E-10 RATHER THAN 0.0 TO ALLOW FOR ROUNDING ERRUR• KOUNT = KOUNT-I
DO $10 \mathrm{~J}=1, \mathrm{~N} 1$
lu $A A(I, J)=0.0$
GO TO 101
1 U2 CONTINUE
c
CHECK TO SEE IF THERE ARE SUFFICIENT VALID EUUATIONS REMAINING. IF there are less than n equations, the in unknowns cannot be SOLVED FOR IF(KOUNT•LT•N)GOTOLI

```
        KN=0
        GO TO 12
    11 WRITE (6,610)
    KO=1
    GO TO 99
C
C
C
    12 KN=KN+1
    K=KN-1
    121 K=K+1
    IF(ABS(AA(K,KN)).GT.1.OE-1ODGOTO13
    IF(K.LT.NTOTER)GOTO121
    KO=1.
    WRITE(6,611)KN
    GO TO 99
C INTERCHANGE THE KTH AND KNTH ROWS.
C
    13 IF(K.EQ.KN) GO TO 15
    UO 14 I=KN,N1
    TEMP=AA(KN,I)
    AA(KN,I)=AA(K,I)
    14 AA(K,I)=TEMP
C
C
C
    15 J=N1+1
    151 J=J-1
    IF(J.LT.KN) GO TO 16
    AA(KN,J)=AA(KN,J)/AA(KN,KN)
    GO TO 151
    16 KNl=KN+1
C
C
C
    DO 17 I=KN1,NTOTER
    PMULT=AA(I,KN)
    DO 17 J=KN,N1
    17 AA(I,J)=AA(I,J)-PMULT*AA(KN,J)
    IF(KN.LT.N)GOTO12
    NV1 =N-1
    DO 18 I=1,NV1
    IPLUS=I +1
    DO 18 II=IPLUS,N
    PMULT=AA(I,II)
    OO 18 J=II,N1
18 AA(I,J)=AA(I,J)-PMULT*AA(II,J)
610 FORMAT (43H- CANNOT MAKE DUAL TO PRIMAL TRANSFORMATION)
6 1 1 ~ F O K M A T ~ ( 1 H - , 4 8 H T H E ~ M A T R I X ~ P A S S E D ~ T O ~ G E L I M ~ I S ~ S I N G U L A R ~ I N ~ C O L U M N , I 3 ) , ~
99 RETURN
    END
```

SUBROUTINE GEOPT(NTOTER,N,NCONS,NTERMS,OSTAR,SN,T)
DIMENSICN NTE-MS(1), DSTAR(NTOTER,1),T(1)
COMMON INDEX,LEVEL,IPRINT,IDATA,F, MAXM,G,NSHRIN,MSTART,PD,LPS,ICT,
IIFENGE,PL,NSTOP, NSMAX,NSHOT, NTEST,TES,R,REDUCE, NVIOL, KO, NNDEX
COHMON /A3/CK(1UO), GAMS100), WORK11(100)
COMMON /AS/D(100)
GECPT IS GALLED fROM SEEKU, HENCE T IS VARIABLY DIMENSIONED
this subr. evaluates the cptimization function for a given set OF VARIABLES T. PENALTY FUNCTIONS ARE ADUED IF ANY CONSTRAINTS ARE VIOLATED.GEOPT IS THE ANALOGUE OF (OPTIMFI USED ELSEWHERE IN OPTIPAC.
NOTE*** SUBR. SEARCH WHICH CALLS GEOPT IS A MIHIMIZATION TECHNIUUE THEREFORE THE NEGATIVE OF THE OPTIMIZATION FUNCTION IS RETURNED. THAT IS, MINIMIZING (-SN) IS EQUIVALENT TO MAXIMIZING (+SN).

EVALUATE THE D(I) VECTOR - ALL D(Il.GT.O.O IS THE CONSTRAINT
$N M=N T O T E R-N$
DO 202 II $=1$, NTOTER
D(11)=DSTAR(11,1)
DO $202 \quad 1 Q=2, N M$
$2 \cup 20(11)=0(1 I)+T(10) * D S T A R(1 I, I Q)$
$S N=-1 \cdot O E+10$
ASSIGN PENALTY FUNCTIONS TO SN IF ANY D(I).LE.O.O
DO $20311=1$,NTOTER
IF(D) II).LT•0.0) SN=SN+1.OE+20*D(II)
IF(SN.LT- -1.OE+10)GOTO215
203 CONTINUE
EVALUATE THE GAMII) VECTOR.
NTEMP1 $=1$
NTEMP2=NTERMS(1)
DO $2 \sqrt{ } 4 \mathrm{~J}=1$, NCONS
$\operatorname{GAM}(J)=0.0$
NTEMP $1=$ NTEMPI + NTERMS(J)
$J J=J+1$
NTEMP2=NTEMP2+NTERMS(JJ)
DO 205 II $=$ NTEMP1,NTEMP2
205 GAM(J) $=\operatorname{GAM}(J)+D(I I)$
204 CONTINUE
CALCULATE THE OPTIMIZATION FUNCTION SN.
$S N=C K(1)$
DO $206 \quad 10=2, N M$
$206 S N=S N * C K(10) * * T(10)$
DO 207 II =1,NTOTER
207 IF(D(II).GT.U.0)SN=SN*U(1I)**(-U(II)
DO $208 \mathrm{~J}=1$, NCONS
208 IF(GAM(J).GT•0.0)SN=SN*GAM(J)**GAM(J)

$215 S N=-S N$ RETURN END

SUBROUTINE ADRANS (X,U,N,XSTRT,RMAX,RMIN,PHI,PSI,UART,NCONS,NEGUS, 1OSTAR, NTOTER,NTERMS)

DIMENSION X(1),XSTRT(1),RMAX(1),RMIN(1),PHI(1),PSI(1)
DIMENSION DSTAR(NTOTER,I',NTERMSII'
COMMON INDEX,LEVEL,IPRINT, IDATA,F,MAXM,G,NSHRIN,MSTART,PD,EPS,ICT, IIFENCE,PL,NSTOP, NSMAX,NכHOT, NTEST,TES,Q,REDUCE,NVIOL,KO,NIUEX
COVMON /A1/R(100), AVE(10O),XOILOO),RANGE1 100'
AFTER EVERY F +VE IMPROVEMENTS THROUGH THE ADAPTIVE RANDOM SEARCH.
MODE, A LARGE- STEP IS TAKEN ALONG A MEAN PATH THROUGH THESE
5 POINTS. MORE STEPS ARE TAKEN ALONG THIS PATH UNTIL A NEW POINT
FAILS TO PRODUCE AN IMPROVEMENT. THE PROGRAM THEN CONTINUES THE PATTERN
OF FINDING 5 NEW IMPROVEMENTS BY THE ADAPTIVE RANDOM SEARCH
FOLLOWED EY AN EXTRAPOLATION ALONG THE MEAN PATH -
NNUEX = INDEX
WRITE (6,43)
NCOUNT $=0$
KOUNT $=1$
$K O N 3=0$
$K 1=0$
TO SPEED UP THE METHOD, USE SUBROUTINE FEASBL TO OBTAIN AN INITIAL
STARTING POINT. NOTE...THE METHOD DOES NOT ACTUALLY REQUIRE A
FEASIELE START, SO IF FEASOL FAILS THEN AORANS STILL PROCEEDS.
SET F=.OS TO DEFINE THE INITIAL STEP SIZE IN FEASBL
SET G=.O1 TO UEFINE THE MINIMUM STEP SIZE IN FEASBL
$F=0.05$
$G=0.01$
CALL FEASELIX,U,N,XSTRT,RMAX,RMIN,PHI,PSI,NCONS,NEQUS,UART,DSTAR, 1NTERMS, NTOTERI

```
        IF(IPRINT,GT.O)WRITE(S,66)U,(X(I),I=1,N)
```

IF (KO.EQ•I) WRITE (6,67)
IGNORE A KO = 1 MESSAGE FROM FEASBL
$K O=0$
ZERO THE COMMON BLOCK ARRAYS SINCE THEY ARE USEO IN SUBR• FEASUL $004 \mathrm{I}=1,100$
$R(I)=0.0$
AVE(I) $=0.0$
XO(I) $=0.0$
4 RANGE (I) $=0.0$
DO $5 \quad 1=1, N$
$X O(1)=X(1)$
5 RANGE(I)=ABS(RMAX(I)-RMIN(I))
SUBRUUTINE OPTIMF IS THE OPTIMISATION FUNCTION WITH PENALTIES
(ALL CPTIMF (X,UO,PHI,PSI,NCONS,NEGUS)
RANDOM NUMBER GENERATION
$K=M S T A R T$

```
    8 DO 9 I=1,N
    9. AVE(I)=0.
        M=1
    11 CALL FRANDN(R,N,K)
        K=0
        DO 10 I=1,N
C GENERATE NUMBERS WITHIN HALF THE RANGE FROM XOII'
    10 X(I)=XO(1)+RANGE(I)*(R(I)-.50)**M
        CALL OPTIMF (X,U,PHI,PSI,NCONS,NEQUS)
        K1=K1+1
        IFU.LT.UOIGOTOI8
        IF(KI.LE.NSMAX)GOTOI:
C IF NO IMPROVEMENT AFTER NSMAX TRIES WITH THE MININUM RANGE (M=7)
C THEN AN OPTIMUM IS ASSUMEU
    IF(M.GE.7)GOTO45
C INCREASE M TO fFFECTIVELY DFCREASE THE STEP SIZE
    M=M+2
    K 1=0
    GOTO11
    18 KI=0
    M=1
    DO 20 I=1,N
    AVE(I)=AVE(I)+(X(I)-XO(I))
    20 XO(I)=X(1)
        UO=U
    NCOUNT =NCOUNT+1
    FIVE RANDOM NUMBERS ARE GENERATED
C THE AVERAGE OF THE FIVE VAl.UES IS THEN OBTAINED
    IF(NCOUNT.LT.5) GO TO 11
    NCOUNT =0
    DO 25 I=1,N
    25 AVE(I)=AVE(1)/5.
C PATTERN SEARCH
C
    k2 - IS a count of the cycles made within the pattern search
    K2=0
    50 DO 30 1=1,N
    30 X(I)=XO(I)+AVE(I)
        CALL. OPTIMF (X,U,PHI,PSI,NCONS,NEQUS)
        IF(U.GE.UO) GO TO 42
        DO 40 I=1,N
        AVE(I)=AVE(I)*I.?
    40 XO(1)=X(1)
        UO=U
        k2=k:2+1
C DO NOT MAKE MORE THAN 5O PATTERN MOVES WITHOUT RECALCULATING THE
C BEST DIRECTION BY THE RANDOM SEARCH STRATEGY ABOVE
    IF(K2.GT.50) GO TO 42
    GOTO50
    41 KO=1.
        WRITE(6,55)KOUNT
        GOTOIOO
    42 KON3=KON3+1
        DO 1.2 I=1,N
    12 X(I)=xO(I)
```

```
    IFIIPRINT.EQ.O.OR.KON3.NE.IPRINTIGOTO4G
    IF(KOUNT.EQ.IPRINT)WRITE(6,48)
    CALL UREAL(X,UU)
    WRITE(6,44)KOUNT,UU,(X(I),I=1,N)
    KON3=0
    46 KOUNT = KOUNT+1
    IF(KOUNT.GT.MAXM)GOTO41
    GO TO 8
45 0O 13 I=I,N
13 X(I)=XO(I)
    KOUNT=KOUNT+1
    CALL UREAL(X,UU)
    IF(NCOUNT.GT.0)WRITE (6,44)KOUNT,UU,(X(I),I=1,N)
1UO CALL ANSWER(U,X,PHI,PSI,N,NCONS,NEGUS:
    43 FORMAT (IHI,49HOPTIMILATION USING AUAPTIVE RANDOM SEARCH AURANS/I)
    44 FORMAT(1HO,14,3X,5E16.8/(24X,4E16.8))
    46 FORMAT (IH-,I5X,IHU,25X,23HINOEPENUENT VARIAELES X//)
    65 FORMAT (IH-,2OHNO CONVERGENCE AFTER,15,7H MOVES/I
```



```
        1 X(I) =,//(1X,E15.8,4E16.8))
    67 FORMAT(1H+,81X,12H(INFEASIBLE)/)
        RETURN
        END
```


REFERENCES

1. Garvin, W.W., "Introduction to Linear Programang", McGrawHill, 1960.
2. Siddall J.N., McDonald J.F., et al., "OPTIPAC - Volume I: Users' Information", Department of Mechanicl Engineering, McMaster University, October, 1969.
3. Siddall, J.N., McDonald J.F., et al., "OPTIPAC - Volume II: Programers' Information", Department of Mechanical Engineering, McMaster University, October, 1969.
4. Duffin, R.J., Peterson E.L. and C.M. Zener, "Geometric Programing", John Wiley \& Sons, 1967.
5. Griffith, R.E. and R.A. Stewart, "A Nonlinear Programming Technique For The Optimization of Continuous Processing Systems", Management Science, Vol. 7, 1961, pages 379-392.
6. Gurunathan, U., "Vibration Analysis and Design Optimization Studies of Space Frames-Optimization Studies", Master's Thesis, Department of Mechanical Engineering, McMaster University, May 1968.
7. Hooke, R. and T.A. Jeeves, "Direct Search Solution of Numerical and Statistical Problems", Westinghouse Research Laboratories Scientific Paper, 1960.
8. Flood, M.M. and A. Leon, "Direct Search Code For The Estimation of Parameters in Stochastic Learning Models", Mental Health Research Institute, University of Michigan, May 1963.
9. Flood, M.M. and A. Leon, "A Generalized Direct Search Code For Optimization", Mental Health Research Institute, University of Michigan, June 1964.
10. Fiacco, A.V. and G.P. McCormick, "Extensions of SUMT For Nonlinear Programming: Equality Constraints and Extrapolation", Management Science, Vol. 12, July 1966, pages 816-828.
11. Fiacco, A.V. and G.P. McCormick, "Nonlinear Programming: Sequential Unconstrained Minimization Techniques", Wiley, 1968.
12. Gall, D.A. and E. Krokosky, "A Generalized Procedure For Automated Optimal Design", Proc. Fourth National Conference on Engineering Design, Hanover, New Hampshire, July, 1967.
13. Gallagher, P.J., "MOP-1, An Optimizing Routine For The IBM 650", Canadian General Electric, Civilian Atomic Power Dept. Report No. R60CAP35, 1960.
14. McArthur, D.S., "Strategy in Research-Alternative Methods For Design of Experiments", IRE Trans. on Engrg. Management, Vol. EM-8, March 1961, pages 34-40.
15. Frank, C.J., "Transformer Design Using Geometric Programming", Westinghouse Research Laboratories Memo 64-7C4-361-M1, December 1964.
16. Beightler, C.S., Lo, T. and H.G. Rylander, "Optimal Design by Geometric Programming", ASME Paper No. 69-WA/DE-7, July, 1969.
17. Siddall, J.N., "Theory of Engineering Design - Part II", Department of Mechanical Engineering, McMaster University, 1967.
18. Hassitt, A., "Computer Programing and Computer Systems", Academic Press, New York, 1967.
