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Abstract 

Modeling the .dispersion of diffusive sources and signal processing algorithms for its pre

diction is an important issue in many applications such as cardiac activation, drug delivery, 

and environmental monitoring. This work focuses on the development of computation

ally efficient algorithms for modeling diffusion processes and estimation of their different 

properties. 

First, we implement the well known Fick's law of diffusion for localizing and estimat

ing the properties of diffusive sources. Moreover, we propose a new model for the cardiac 

activation using inhomogeneous reaction-diffusion equations in the presence of diffusivity 

disorders. We also derive corresponding statistical signal processing algorithms for esti

mating (localizing) parameters describing these anomalies using ECG/MCG sensor arrays. 

However, in some applications, such as drug delivery and capillary exchange process, 

where low-intensity diffusive sources are considered, random effects such as Brownian 

motion should be accounted for. Hence, we propose a computationally efficient framework 

for localizing low-intensity diffusive sources using stochastic differential equations. To 

achieve computational efficiency, we model the dispersion using the Fokker-Planck equa

tion and derive corresponding inverse model and maximum likelihood estimator of source 

intensity, location and release time. Also, we expand our stochastic model to account for 

drift and propose an algorithm for the estimation of boundary properties. 

Finally, we present a novel technique for modeling the exchange process and particle 

clearance in capillary networks using coupled stochastic- differential and Navier-Stokes 

equations. Numerical examples are used to demonstrate the applicability of our models. 
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Chapter 1. 

Introduction 

1.1 Forward Diffusion Problems 

Diffusion commonly refers to the spontaneous movement of a substance (gas, liquid, or 

solid) into its surrounding area. The molecules, or particles, that make up the substance 

distribute over time from an area of higher concentration to an area of lower concentration 

in order to create, at equilibrium, a uniform distribution of particles throughout the system. 

Diffusion is a natural process that requires no added energy to occur. It increases the 

entropy of the system [Biddle 00] and hence is an energetically favorable and irreversible 

process. 

Diffusion is often important in systems experiencing an applied force. In a conducting 

material, the net motion of electrons in an electrical field quickly reaches a terminal velocity 

(resulting in a steady current described by Ohm's law) because of the thermal (diffusive) 

motions of atoms. The Einstein relation [Einstein 56] relates the diffusion coefficient to 

the mobility of particles. In cell biology, diffusion is a main form of transport within cells 
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and across cell membranes. The spreading of any quantity that can be described by the 

diffusion equation or a random walk model (e.g. concentration, heat, momentum, ideas, 

price) can be called diffusion. 

In principle, diffusion can be stated by either classical or stochastic models. Classical 

representation models the mean field of diffusion which is widely used in problems such as 

modeling the diffusion of ions in the heart, heat diffusion, and diffusion of chemical plums 

in sea water. On the other hand, stochastic models account for the random fluctuations in 

dispersion patterns and can be used to model different biological systems such as molec

ular exchange in capillary networks and tissues. Some of the most important examples of 

diffusion processes are listed below. 

1.1.1 Diffusion in Chemical Systems 

Chemical diffusion occurs in a presence of concentration (or chemical potential) gradient 

and it result in net transport of mass frotn an area of higher concentration to an area of 

lower concentration. An example is H2 S in a test tube will slowly diffuse into the air of a 

lab until equilibrium is reached. 

Accidental gas releases from industrial sites that results in dangerous chemical plumes 

makes the problem of tracking such plumes extremely important. The fear of biological 

terrorist attacks is another motive that made this subject a hot research topic to answer 

the question of what is the fastest and most accurate approach to locate and track possible 

chemical sources [Russell 01, Ishida 01, Dhariwal 04, Russell 00]. 
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1.1.2 Diffusion in Biomedical Systems 

Transport processes are essential to the function of biological systems. Fluids constitute a 

large portion of body weight and provide the conduit for transfer of nutrients and energy to 

and from tissues through out the body. In order to successfully analyze the physiological 

cellular processes in the body, the biomedical engineer need to understand the mecha

nism of transport processes, and to have the ability to solve the mathematical models that 

describes these mechanisms. In addition, the design and operation of many biomedical 

devices for diagnostics and therapeutics depend on the flow of fluids and transport of nu

trients. Moreover, the analysis of the spread of some viruses has a great important in the 

design of different drugs. 

Many processes in biomedical systems can be approximated by diffusion processes, this 

includes stochastic processes describing population growth, some stochastic processes in 

infectious diseases as well as processes involving gas exchange across the alveolar-capillary 

membrane. Dargatz [Dargatz 06] employed an extended SIR (Susceptible-Infected-Resistant) 

model for a probabilistic analysis of the spatio-temporal spread of influenza in Germany, 

where the diffusion process is utilized to describe the infection dynamics. 

Dialysis, discovered by Thomas Graham (1805-1869), is an important application of 

diffusion. In dialysis a solution is passed over a semipermeable membrane, allowing solutes 

up to a certain size (but not larger molecules) to diffuse across the membrane to a second 

solution. Artificial kidney machines use dialysis to remove metabolic waste products, such 

as urea and creatinine, from the blood. In these machines, blood is circulated on one 

side of a semipermeable membrane (made from cellophane), while a dialysis fluid, which 

closely matches the chemical composition of blood, is circulated on the other side of the 
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membrane. The waste products diffuse from the blood into the dialysis fluid and are then 

discarded. Important blood components, such as the oxygen-carrying protein hemoglobin, 

are too large to enter the pores of the membrane and hence are retained in the blood. 

A final example of the biological importance of diffusion is the exchange of gases to and 

from the blood that occurs in the alveolar membrane of the lungs. This membrane separates 

the flowing blood from the gases within the lung.Carbon dioxide (C02), a chemical end 

product of biological metabolism, is plentiful in venous blood that enters the lung. Release 

of the C02 from this blood occurs by its diffusion across the alveolar membrane, and 

this C02 is expelled upon exhalation. Inhalation brings air into the lung, and air contains 

20.95% by volume of oxygen (02). Diffusion of 0 2 across the alveolar membrane, in the 

other direction, allows its dissolution in the blood. Oxygen is carried, bound to hemoglobin, 

by the arterial blood to the cells where it is released, again by diffusion, for its use by the 

cells as the terminal oxidant of aerobic respiration. 

Information about electrical conductivity distribution inside biological tissues is use

ful for many biomedical studies. Especially, conductivity mapping of a human brain would 

play great roles to enhance the accuracy of EEG or MEG source localization for brain func

tion studies [Mosher 99, Baillet 01, Phillips 00]. Many studies are done on the estimation 

of human tissue properties [Farrell 92, Doornbos 99, Gabriel 96b] and its relation to some 

pathological diseases [Jossinet 96, Grill 94, Kadah 96]. 

1.1.3 Diffusion in Financial Systems 

One fundamental marketing concept for managing resources commitments to a new prod

uct is the product life cycle (PLC). The PLC hypothesizes that sales of a new product, over 
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time in a target market, go through different stages oflaunch, growth, maturity, and decline. 

New product diffusion models focus on models that analytically capture the life cycle of a 

new product over time in a target market. These models have been applied to forecast the 

demand for a new product. To price stock derivatives, it is necessary to characterize the 

evolution of the price of the stock through time. General diffusion models with time vary

ing volatility are the most commonly used by market practitioners, but they fail to capture 

the higher order moments (which lead to fat-tailed distributions) observed in stock prices. 

In the jump diffusion model, price change dynamics can be divided into two distinct forms: 

1. A normal, continuous price diffusion process modeled by Geometric Brownian Mo

tion with mean reversion and a volatility term structure. The term structure of for

ward volatilities coupled with mean reversion allows us to capture electricity price 

dynamics without spikes. 

2. An abnormal, discontinuous jump process modeled by a Poisson distribution. These 

discontinuous price jumps are usually a result of outages, transmission constraints, 

etc. 

Kou [Kou 02] proposed, for the purpose of option pricing, a double exponential jump

diffusion model in order to produce analytical solutions for a variety of option-pricing 

problems, including call and put options, interest rate derivatives, and path-dependent op

tions. In addition, different jump-diffusion models were proposed by Merton [Hull ] and 

other authors [Hanson 04, Scott 97, Zhang 97b, Ball 93]. 
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1.2 Inverse Diffusion Problems 

The main goal of collecting data is to gain meaningful information about a physical sys-

. tern of interest. However, in many situations the parameters that we wish to determine are 

different from the ones which we are able to measure, or have measured. If the measured 

data depends, in some way, on the parameters we want, then the data at least contains some 

information about those parameters. Starting with the data that we have measured, the 

problem of trying to estimate or reconstruct the parameters of interest is called an inverse 

problem. 

Here are some typical inverse problems: 

• Model fitting: according to some theoretical model, the value of a quantity y de-

pends on another quantity x via an equation such as 

(1.1) 

Given a set of measured points (xi, Yi), we wish to determine the set of parameters 

ai i = 1, · · · , n and how confident are we of the result. More generally, the model 

can be more complicated and may depend on the parameters in a non-linear way. 

Determining the half-life of a radioactive material using measurements of the times 

at which decay products are detected is an example of model fitting. 

• Geometry and shape design: determination of shape, size and location of geome-

tries of interest is an inverse problem. One example is the detection of voids and 

cracks in fabrications such as ceramics [Bashkansky 97] and concrete [Liang 01]. 

6 



• Material properties: determination of physical properties of media such as elec

trical, magnetic properties of the human tissue using different imaging techniques 

[Gabriel 96b, Gabriel 96a]. If the exact properties of some internal organ were known, 

then on doing a scan, i.e. Targeting that area with radiation or ultrasound, the resul

tant reflection/attenuation map would be known. That would be the forward problem. 

But it is nearly always the properties of the internal organ that we are trying to find, 

and ideally without invasive surgery. Thus we have to solve an inverse problem. 

• Boundary values/initial values: identification of the proper boundary conditions 

and/or initial conditions of a system of interest is a growing topic in research. A 

common example is estimation of boundary properties in heat conduction problems 

[Yang 96, Yang 97]. Another example is determination of initial chemical composi

tion for environmental monitoring purposes. 

• Image analysis: extraction of meaningful information from images, mainly from 

digital images by means of digital image processing techniques. The applications of 

digital image analysis are continuously expanding through various areas of science 

and industry. Medical imaging is an important example of creating images of the 

human body (or parts of the body) for clinical purposes. A typical example is the 

problem of classifying regions of a satellite image of the earth's surface into regions 

of ocean, forest, agricultural land, etc. 

From this short and incomplete list, it is open to view that the scope of inverse problem 

theory is of great extent and its applications can be found in many diverse fields. The 

objective of this thesis is to develop new models for selected diffusion systems and their 

inverse problems. In Chapter 2, we describe the classical approach, which is based on the 
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well-known Fick' s law of diffusion, for source localization. Chapter 3 describes an example 

implementation of the diffusion-reaction model for the estimating regions of low diffusivity 

in the heart using MCG/ECG sensor arrays. Chapter 4 details the stochastic approach for 

source localization and compares it to the classical representation for low intensity sources. 

Chapter 5 extends the approach in Chapter 4 to account for boundaries and provides two 

examples for estimating the boundary properties using stochastic differential equations. 

In Chapter 6, we model the capillary exchange process using couples Navier-Stocks and 

Fokker-Planck equations for the calculation of the absorption and transmission probabilities 

of a particle in the capillary network. Chapter 7 provides a conclusion on our work carried 

out, a view of anticipated future work and closing remarks. Overall consideration is also 

given how the contribution of this thesis aids in the broader areas of related research, and 

how it is believed further research will evolve and in which directions this may take. 
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Chapter 2 

Estimation of the Properties of Diffusive 

Sources Using Classical Diffusion Model 

2.1 Introduction 

Signal processing techniques for detection, localization, and tracking of biological and 

chemical sources have attracted significant attention in recent years because of their impor

tance in many applications such as drug delivery, environmental monitoring, and homeland 

security. The two most important concerns in all of these applications are accuracy in deal

ing with random effects of dispersion and real time implementation of the aforementioned 

algorithms (detection, localization, and tracking of diffusive sources). Consequently, these 

models should provide tools for reliable decision making once a biochemical event of in

terest has been detected and localized. 

In literature, several inverse models [Nehorai 95, Jeremie 98, Porat 96, Jeremie 00] are 

proposed and can potentially be used in many of these applications. In [Kuang 06], a wire-
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less sensor network (WSN) is proposed to estimate the plume source location using Max

imum Likelihood Estimation (MLE). In [Sahyoun 09], Sahyoun and Djouadi proposed a 

non-linear least square (NLS) approach for the plume source localization. They also pro

posed a stochastic approximation technique for better treatment of the optimization prob

lem. In [Matthes 05, Matthes 04], Matthes and Groll implemented technique of continuous 

concentration measurements from spatially distributed electronic noises to determine the 

location of a point source assuming that the emitted substance is transported by advection 

caused by a known homogeneous wind field and by isotropic diffusion. They proposed a 

two-step approach for solving the source localization problem. The basic idea was to split 

the problem into two main steps: 

• For each sensor, determine the set of points on which the source can be located using 

only the available measurements from each sensor. 

• Then, determine an estimation of the source location by estimating the intersections 

of all sets. 

Briggs [Briggs 73], proposed a simplified approach to the calculation of ground level 

concentrations of effluents from small industrial and fuel burning installations. In [Egan 72], 

Bruce presented numerical grid-element model developed for the study of air pollution 

transport from urban area-type sources. This advection-diffusion model is especially use

ful for the estimation of air pollution concentrations under conditions of spatial and time 

varying emissions, velocities and diffusion rates. Niliot [Niliot 98], proposed a point heat 

source identification in homogeneous solids, using the boundary-element method, to iden

tify the strength of line heat sources when their position is known. In addition, other ap

proaches, [Nievergelt 98, Khapalov 94], are proposed that use the analytical solution of the 
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advection-diffusion equation. Based on these analytical solutions, NLS estimates are for

mulated for the estimation of the different source properties (position, rate, and start time). 

In [Baillet 01], Baillet and Mosher studied MEG/EEG source localization and the underly

ing models currently used in source estimation and described the various signal processing 

steps required to compute these sources. Ishida [Ishida 97] proposed a new method to re

motely locate an odor source using a mobile robot with a gas sensor. Furthermore, the 

release rate of the odor and the range of its distribution can be obtained using this method. 

In [Ram 07], Ram and Veeravalli considered a network of spatially distributed sensors de

ployed to track the intensity of a diffusing source whose location is fixed, but unknown. 

In this Chapter, we present the commonly used classical diffusion model and its appli

cation to the estimation of different source properties. This Chapter is organized as follows. 

In Section 2.2, we present the classical model of the advection-diffusion process. In Sec

tion 2.3, we present our measurement model and the corresponding estimators of the source 

properties. We first present our measurement model. Then we derive the maximum like

lihood estimator of the unknown parameters in the presence of noise. In Section 2.4, we 

demonstrate the applicability of our results using numerical examples. 

2.2 Classical Diffusion Model 

Molecular diffusion, often called classical diffusion, is a net transport of molecules from 

a region of higher concentration· to one of lower concentration by random molecular mo

tion. The result of diffusion is a gradual mixing of material. Diffusion is of fundamental 

importance in many disciplines of physics, chemistry, and biology. Molecular diffusion is 

typically described mathematically using two Fick's laws. Fick's laws describe diffusion 
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and can be used to solve for the concentration field, flux, or the diffusion coefficient. They 

were derived by Adolf Fick in the year 1855. 

Fick's first law relates the diffusive flux to the concentration field , by postulating that 

the flux goes from regions of high concentration to regions of low concentration, with a 

magnitude that is proportional to the concentration gradient (spatial derivative). In one 

three dimensional space, this is 

J(r, t) = -K(c, r)Vc(r, t) (2.1) 

where 

J is the diffusive flux vector at point r and time t. 

K is a matrix of diffusion coefficients, which depends on the temperature, viscosity of the 

fluid and the size of the particles according to the Stokes-Einstein relation. 

c( r, t) is the diffusive substance concentration. 

V is the gradient operator. 

r is the position vector. 

Fick's second law predicts how diffusion causes the concentration field to change with 

time. It relates the flux gradient to the general principles of mass conservation and states 

that 
" the change with time of conservative property 

inside a given volumetric element, is equal to the 

algebraic sum of the fluxes across all the volume 

boundaries." 

&c(r, t) 
8t 

-'l·J 
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Combining (2.1) and (2.2) we get 

8c(r, t) = V7 · (JC(c, r)\i'c(r, t)) 
&t 

(2.3) 

This is the classical diffusion equation that describes density (concentration) fluctua-

tions in a material undergoing diffusion, also known as the heat equation. Note that, (2.3) 

does not account for external forces such as drift. Convection forces act as an external flux 

and can be added to the flux term in the diffusion equation as follows 

&c(r, t) 
&t = V7 · (JC(c, r)\i'c(r, t) - v(r, t)c(r, t)) (2.4) 

where v( r, t) is the convection coefficient which is in general, a function of space and time .. 

In order to solve (2.4), it is necessary to define the diffusion matrix. For simplicity, 

we assume homogeneous, isotropic, and drift free medium. Under these assumptions, the 

diffusion matrix JC reduces to a diagonal matrix, having the form 

0 0 

JC= 0 0 (2.5) 

0 0 

where K is a constant that represents the diffusion coefficient. 

After this simplification, the solution of (2.4), detailed in Appendix A, can be formu-

lated by the fundamental solution, which leads to 

( ) 
Co { llr - (ro + v(t - to)ll 2

} cr,t = exp ---------
47rJC(t - to) 4JC(t - t0 ) 

(2.6) 

where c0 is the initial concentration, r 0 and t0 are the initial position and time, respectively. 

Also note that the above formula is the solution of the diffusion equation for a point source 

defined by c(r, t0 ) =Co 8(r-r0 , t-t0 ), where 8() is the well-known Dirac function. Note 

that, from (2.6), the isometric lines of the concentration are given by concentric circles. 
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2.3 Measurement Model 

To model the measurements, we suppose a spatially distributed array of m sensors located 

at known positions r i' i = 1, ... , m, and measure the concentration at times tk> where 

k = 1, ... , p and p is the number of time samples. The measurement of each sensor is 

(2.7) 

where e(ri, tk) is the measurement noise. 

We lump the measurement model (2.7) into a vector form, as follows 

(2.8) 

where Yk is an (m)-dimensional measurement vector, ak(B) is and m-dimensional source-

to-sensor vector, e is a vector of unknown source and medium parameters (i.e. r 0 and t 0), 

Co is a the source intensity, and e is a vector of measurement noise. 

The transfer vector ak(e) is given by 

(2.9) 

where aik(e) is a measurement scalar, that represents the concentration at location ri and 

time tk arising from a release of the diffusive source. For the point source model (2.6) and 

in drift free medium, this element is 

(2.10) 

The measurement noise in (2.7) corresponds to sensor noise and possibly incorrect 

modeling (which includes modeling a stochastic process as a classical diffusion process). 

We will assume that it is spatially and temporally uncorrelated, and Gaussian distributed 
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with zero mean and unknown variance cr2 • Note that, since the concentration has nonneg-

ative value, the Gaussian becomes an assumption and becomes more valid as the signal to 

noise ratio (SNR) increases, i.e., higher source intensity. The corresponding joint distribu-

ti on of the measurement vector y k is given by 

P(Y1k, · · ·, Ymk) 
1 e{-";

2 
(yk-coak(B))T (yk-coak(ll))} 

27rm/2crm 

where Im is am x m identity matrix. 

The corresponding likelihood function is 

And the log likelihood function will be 

p 1 
log(£)= L {-mlog(cr) -

2
cr2 (Yk - eoak(B)f (Yk - eoak(B))} 

k=l 

The estimators of c0 and r 0 , derived in Appendix B, are given by 

k=l 

k=l 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

where Co and r0 are the estimator (classical) of the source intensity and initial location, 

respectively. The solution to (2.14) and (2.15) is carried by non-linear optimization tool in 

MATLAB. 

The maximum likelihood estimate of cr2 is 

(2.16) 
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One of the goals of this model is to estimate the number of initial particles, which is 

a discrete quantity. On the other hand, our model is based on the measurement of the 

concentration, which is a continuous quantity, at different locations. In order to achieve 

the true measurement, we count the number of particles located in an arbitrary area (D.i = 

D.(ri)), given by 

Do·= (x1· - Do< X1· < X1· +Do X2· - Do< X2· < X2· +Do) i i - i_ i ' i - i_ i (2.17) 

Then, the concentration can be related to the number of particles, as follows 

(2.18) 

where nik is the number of particles located in D.i at time tk. 

Moreover, we use the well known Ito diffusion model, will be explained in details in 

Chapter 4, to simulate the evolution of the particles in 3D domain. 

2.4 Numerical Results 

In this section, we present numerical examples to demonstrate the accuracy of using clas-

sical model-based estimator. We estimate n0 and r 0 for different source strengths, num-

ber of sensors, and time samples. In all the examples, we assume the diffusion coeffi-

cient to be known, as it can be estimated using different techniques such as, the one in 

[Kvarnstrom 05, Kvarnstrom 06]. Also, we define the mean square error (MSE)as 

MSE = ll&o - aoll 2 

a Jlaoll 2 
(2.19) 

where a 0 is the true value (i.e. n0 or r 0) and &0 is the corresponding MLE estimate. 
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The estimation is carried for (no = 1000) and (k = 10) with a square grid of equally 

distributed array of sensors covering and area of 80 * 10-6 x 80 * 10-6m2 • The diffusivity 

is taken to be 4.29 * 10-;-13m/ s2 and the time step is 0.02 sec. We assume that the noise 

power is known, since, in principle, it can be estimated offline in the absence of the source. 

Also, the signal-to-noise ratio (SNR) is defined as SNR = lOlog(l.::: 11Yikll 2 /0-2
) 

In Figures (2.1) and (2.2), we illustrate the error in estimating the source intensity and 

source location as a function of the SNR for 1000 particles. On the other hand, Figures (2.3) 

and (2.4) presents the estimation results for 50000 particles. Observe that, the estimation 

error, in the case of low intensity source (1000 particles), is unsatisfactory and decreases 

significantly for the high source intensity case (50000 particles) reaching a satisfactory 

level. 

2.5 Conclusions 

In this chapter, we address the problem of estimating the properties of diffusive sources 

using classical model of diffusion, i.e. Fick's law. The main advantage of this approach 

lies in the fact that it is computationally efficient and simple in implantation. On the other 

hand, it fails to provide satisfactory estimates when applied to low intensity sources since 

it does not account for the random effects in the motion of particles. In Chapter 4, we 

will address the problem of estimating the source properties using stochastic differential 

equations as an alternative method when dealing with low intensity sources. 
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(b) MSE of estimating r0 - no is known. 

Figure 2.1: Mean square error for estimating n0 and r0 as a function of SNR and the 

number of sensors for 1000 particles. a) MSE for estimating n0 - r 0 is known. b) MSE for 

estimating r 0 - n0 is known. 
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(b) MSE of estimating r 0 - n 0 is unknown. 

Figure 2.2: Mean square error for estimating n0 and r0 as a function of SNR and the 

number of sensors for 1000 particles. a) MSE for estimating n0 - r 0 is unknown. b) MSE 

for estimating r0 - n0 is unknown. 
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(b) MSE of estimating r 0 - n 0 is known. 

Figure 2.3: Mean square error for estimating n 0 and r 0 as a function of SNR and the 

number of sensors for 1000 particles. a) MSE for estimating n0 - r 0 is known. b) MSE for 

estimating r0 - n0 is known. 
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Figure 2.4: Mean square error for estimating n0 and r 0 as a function of SNR and the 

number of sensors for 1000 particles. a) MSE for estimating n0 - r 0 is unknown. b) MSE 

for estimating r 0 - n0 is unknown. 
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Chapter 3 

An Inverse Model for Localization of 

Low-diffusivity Regions in the Heart 

Using ECG/MCG Sensor Arrays 

3.1 Introduction 

The phases of myocardial action potentials and processes of myocardial depolarization and 

repolarization are well studied and described in most handbooks of electrophysiology and 

electrocardiography [Gulrajani 98, Malmivuo 95]. The underlying processes controlling 

the (re )polarization in the cardiac activation can be described, on a molecular level, as dif

fusion of ions through various channels (Na, K, etc.) giving a rise to ionic current which in 

tum creates electromagnetic field on the torso surface which can be externally measured. 

Modeling the cardiac activation on a cellular level [Gulrajani 98] has been a subject of 

considerable research interest resulting in numerous models related to membrane poten-
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tial (e.g., Hodgkin-Huxley model). However, these models are mainly suitable for forward 

modeling in which the cardiac activation is simulated using a priori knowledge of various 

parameters. Complimentary to this approach is inverse modeling in which information on 

cardiac activation (and some physiological parameters) is deduced from ECG/MCG mea

surements. 

One of the most important parameters controlling the activation wavefront propagation 

is the diffusivity (i.e., mobility of ions). Namely, significant loss of ionic mobility can cause 

occurrence of irregular activation patterns and lead to various pathological conditions such 

as arrhythmia, early after-depolarization, etc. From a physiological point of view, these 

changes usually occur due to loss of conductivity of a particular region of the heart. As a 

result, the diffusivity in this region becomes very small preventing the propagation of the 

activation wavefront and causing the aforementioned irregular patterns. Therefore, any al

gorithm capable of detecting these anomalies can potentially be useful to predict the onset 

of these cardiac physiopathologies. 

In this chapter, we propose a new activation model based on the diffusion equation. 

Although the FitzHugh-Nagumo model is based on the diffusion equation its applicability 

to inverse approach and real data is limited because of its isotropic and homogeneous na

ture. In Section 3.2, we develop cardiac activation model based on the reaction-diffusion 

equation with nonhomogeneous and anisotropic diffusion tensor. Such a model can be used 

for detecting different physiological conditions such as conductivity anomalies, which can 

predate onset of various pathological conditions such as cardiac arrhythmia, early after

depolarization, etc. In Sections 3.3 and 3.4, we derive the statistical and measurements 
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model using Geselowitz equations corresponding to our diffusion based source. Using 

these models we derive the generalized least squares (GLS) estimator for localizing con-

ductivity anomalies/disorders. In Section 3.5, we demonstrate the applicability of our re-

sults using numerical simulations and in Section 3.6 we present conclusions. 

3.2 Physical Model 

During the spread of activation in the heart, the most significant bioelectric source is the 

large potential difference that exists across the moving wavefront that divides active (depo-

larized) from resting tissue. It has been proposed that the cardiac excitation can be mod-

eled using reaction diffusion systems i.e., a set of nonlinear partial differential equations 

[Panfilov 97] 

(3.1) 

where u = [u1 , · · · , unf is the state variable vector, Ji are excitations, and Di diffusion 

tensors. 

Although the above models can be used to model the propagation even down to a cellu-

lar level, in order to develop an inverse model a simplified approach similar to [Fitzhugh 61, 

Rogers 94] is needed. Therefore, we propose a reaction diffusion model consisting of two 

state variables but with spatially dependent diffusivity tensor 

8u1(r, t) 
8t 

8u2(r, t) 
8t 

g(u(r, t)) 

V' · (D(r)V'u1(r, t)) + gr(u(r, t))A1g(u(r, t)) 

(ur(r, t))A2(u(r, t)) 
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where ui is the activation potential and u2 is the resting potential. g() is an arbitrary poly

nomial and Ai and A2 are arbitrary matrices. g(), Ai and A2 are chosen such that to control 

the activation wave shape. 

The above model is the generalization of the existing models from at least two stand

points: a) by allowing the diffusivity matrix to be spatially dependent we can test for the 

presence of arbitrarily shaped anomalies, and b) by adding higher-order polynomial com

ponents we allow for wider range of dynamic behavior in the cardiac excitation. Note that 

in order to apply the above model to the realistic geometry we need to define boundary 

conditions. In our case we impose 8ui /on = 0 on the epicardial surface of the heart. As 

for initial conditions, we defne the active potential at time t = 0 as ul(r, 0) = u05(r - r 0 ) 

where 5() is a Dirac delta function and r 0 is the activation point in the myocardium. The 

initial condition for the inhibition (u2 ) is set to zero. 

To compute the electro-magnetic field on the torso surface we utilize the Geselowitz 

equations [Geselowitz 70] that compute the potential V(r, t) and magnetic field B(r, t) 

at a location r on the torso surface at a time t from a given primary current distribution 

J ( r 0 , t) = V' ui ( r, t) within the heart. We use a piecewise homogeneous torso model con

sisting of the following surfaces: the outer torso, the inner torso, and the heart. Therefore, 

we model the torso as a volume G of M = 3 homogeneous layers separated by closed 

surfaces Si, i = 1, · · · , M. Let <:Yi and <7-: be the conductivities of the layers inside and 

outside Si respectively. We will denote by Gi the regions of different conductivities, and 

by GM+i the region outside the torso, which behaves as an insulator i.e., <7Af-+i = <:Yit- = 0 

It has been shown that in the case of a piecewise homogeneous torso model and using 
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quasi-static assumption the magnetic field at a location rand time tis given by [Gulrajani 98] 

and [Malmivuo 95] 

B(r,t) 

Bo(r,t) = 

M 

B 0 (r, t) + ~: L (er; - crt) · 
i=l 

. f <P(r', t) (r - r')
3 

x dS(r') 
lsi llr - r'll 

µo r J(r', t) x (r - r') d3r' 

47r la llr - r'll 3 
' 

(3.3) 

where µ 0 is the magnetic permeability of the vacuum and er; and cri be the conductivities 

of the layers inside and outside Si respectively. 

Similarly, the potential V(r, t) is given by [Gulrajani 98] 

er-;;+ crt ( _ + 
2 

V(r, t) = Vo r)(cri - cri )+ 

1 ~ ( _ +) 1 ( , ) ( r - r') S( ') +-
4 
~ cri - cri V r , t 3 · d r , 

7r i=l S; llr - r'[[ 

Vo(r, t) = 2_ { J(r', t). (r ~ r') d3r', 
47r la llr - r'll 

where we k is chosen so that r E Gk. 

3.3 Measurement Model and Statistical Model 

(3.4) 

In this section we introduce our parametric description of the diffusion anomaly and mea-

surement noise signals. To simplify the approach we assume that the anomaly region can 

be modeled with an ellipsoid i.e., the region R of anomaly is given by 
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where 

a2 0 0 

0 0 c2 

where a, b, c are the axes of anomaly ellipsoid, r a is the center, and ¢ and 'ljJ are the orien

tation parameters (in 3D). The matrix T( ¢, 'ljJ) is the rotation matrix given by 

cos¢ sin¢ 0 cos'lj; 0 sin'I/; 

T(¢, 'I/;)= -sin¢ cos¢ 0 0 1 0 (3.5) 

0 0 1 -sin'I/; 0 cos'lj; 

The diffusion tensor is then 

D(r) = { : 
rER 

otherwise 
(3.6) 

In the remainder of the myocardium tissue we assume homogeneous but possibly anisotropic 

diffusion tensor D. 

Next, we assume that a bimodal array of nB MCG and nE ECG sensors is used for 

the measurements. Let n = nB + nE, we assume that the sensors are located at pj,j = 

1, · · · , n, and that time samples are taken at uniformly spaced time points tk, k = 1, · · · , ns. 

In addition, we assume that data acquisition is repeated nc times during several heart cycles 

in order to improve the signal-to-noise (SNR) ratio. Then, the n 5 -dimensional measurement 

vector of this array obtained at time tk in the zth cycle is 

(3.7) 
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where Ytk = [y§(tk), y~(tk)f, ()is the collection of all the parameters (a, b, c, ro, </>, 'lj;, uo 

, D, A1 , A2), f((), tk) is the vector solution computed using finite elements, and e1(tk) = 

[ e§ ( tk), e'k ( tk) ]T is additive noise. In the remainder of this chapter, we omit the subscript 

l whenever it is obvious that the samples belong to the same heart cycle. The subscripts B 

and E correspond to magnetic and electric components of the measurement vector (noise), 

respectively. We further assume that both magnetic and electric components of the noise 

are zero-mean Gaussian, uncorrelated in space and time with variances, <r1 and <r~, respec"' 

tively. 

3.4 Parameter Estimation 

We first start by splitting the unknown parameters() into two groups: a) the unknown acti

vation parameters ()0 = [u0 , ra]r, and b) the unknown anomaly parameters ()a= [a, b, c, r0 , 

</>, 'ljJ] T. For simplicity, in the remainder of the paper we assume that the heart parameters 

(3.8) 

where vec is the vector operator, are known. Note that, some in vitro studies [Sachse 04] 

suggest that these parameters do not vary significantly between different subjects and thus 

can be easily estimated using data gathered from human subjects without any anomalies. 

Complicating the matter is the fact that the diffusion tensor in general is inhomogeneous. 

Namely, the ionic diffusion process is much larger along the myocardium fiber than across 

different fibers. Since the fiber orientations change in space, the diffusion tensor should be 

spatially dependent. However, these changes are smooth in nature and can be easily mod

eled using a set of a priori known basis functions. Furthermore, information about fiber 
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orientation can be easily obtained using cardiac diffusion MRI [Zhukov 03]. 

To compute estimates Bo and Ba, we use the generalized least squares (GLS) estimator 

which minimizes the following cost function [Vonesh 97] 

(3.9) 

where we use superscripts E and B to denote electrical and magnetic, components of the 

measured field and solution vector. 

The above GLS estimator is more efficient than the ordinary least squares estimator due 

to each contribution to the objective function being normalized to the same unit variance 

. (i.e., those measurements with less variation are given greater weight). The actual optimiza-

tion can be done using any of the well known algorithms such as Davidson-Fletcher-Powell 

or Broyden-Fletcher-Goldfarb-Shanno. To further simplify the computational complexity, 

we propose to estimate 80 assuming that a = b = c = 0, i.e., the diffusivity of the heart is 

homogeneous and using ordinary least squares. Then we can use this estimate as the initial 

guess for GLS estimation algorithm. 
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3.5 Numerical Examples 

We now describe numerical study that demonstrates the applicability of the proposed al

gorithms. We used MRI extracted mesh of the human torso and the ventricular heart that 

was kindly provided to us by Prof. McLeod, Utah University. In our model the Purkinje 

network was approximated by a set of nodes near the apex. To achieve higher precision we 

remeshed the original data into a new mesh (see Figure 3.1). The volumetric mesh was cre

ated using 15902 elements with 20830 degrees of freedom for the torso (electromagnetic) 

model and 1856 elements and 6190 degrees of freedom for the heart (diffusion) model. The 

computational model was developed using a general partial differential (PDE) toolbox in 

COMSOL software. 

Figure 3.1: Mesh geometry used for numerical study. 

The torso conductivity was set to 5µS respectively as in [Malmivuo 95]. To simplify 
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the complexity of the numerical study we simulated the anomaly using a = b = 2cm, 

c = 0.5 cm, and¢ = 'ljJ = 0 with the apex of the heart cycle located on the top. The 

diffusion tensor was set to be isotropic with diagonal elements equal to 40cm3 / s. The 

diffusivity was chosen according to [Gulrajani 98] so that the activation wavefront prop

agates the whole heart in 0.2s. The control matrices A1 and A2 were chosen following 

the approach of [Rogers 94]. The heart rate was set to 72 beats per minute. We assume 

that the measurements are obtained using 64-channel ECG/MCG sensor array with sensors 

locations uniformly distributed on the chest. To evaluate the localization accuracy we use 

MS Ero= llro - roll 2 /llr611, MS Ea= Ila - iill 2 /lla2 ll, and MS Ee= lie - cll 2 /llc2 ll· 

Figure 3.2 illustrates the activation wavefront in myocardium at approximately t = 

2T /3 after the activation where Tis the time period of ventricular polarization/ depolarization 

cycle. In Figure 3.3 we illustrate the body surface map of the electric potential on the 

torso surface. Similarly, Figure 3.4 illustrates the magnetic field map at the same time. In 

Figure 3.5, we illustrate the mean square error of the axis parameters with c = a = 10 

and b = a. The location of an anomaly was arbitrarily set to r 0 = (0, 0.5, 0. 75). As 

expected, due to the wavefront orientation as well as difference in size, the estimation ac

curacy of the cross-sectional axis parameters is much smaller. In Figure 3.6, we illustrate 

the localization accuracy i.e., MSE of r0 as a function of noise. The SNR was defined as 

SNR = lOlog(l:.:.: llY1kll 2 /erk+ cr1). 
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(a)t=T/3. 

(b) t = 2T/3. 

Figure 3.2: Activation wavefront, at a) t = T /3, b) t = 2T /3. 
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Figure 3.3: Body surface map of electric potential, at a) t = T / 3, b) t = 2T / 3. 
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(a) t = T/3. 

(b) t = 2T/3. 

' Mn: O 
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Figure 3.4: Body surface map of magnetic field, at a) t = T/3, b) t = 2T/3. 
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Figure 3.5: Mean square error for estimating the size of the anomaly. 
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Figure 3.6: Mean square error for estimating the location of the anomaly. 
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3.6 Conclusions 

In this chapter we addressed the problem of localizing the diffusivity disorder in the my

ocardium using ECG/MCG sensor arrays. To model the cardiac activation we considered 

an inhomogeneous reaction-diffusion model in a real human torso. To model the loss, we 

used a parametric model for an oblate spheroid and set its conductivity to zero. We assumed 

that the remainder of the myocardium tissue was homogeneous. The proposed algorithm 

can be easily extended to account for an arbitrary spatial variation in the diffusivity ten

sor using a set of a priori known basis functions. In addition, the parametric shape of the 

anomaly can be extended to model an arbitrary region using a three-dimensional spatial 

Fourier transform. An effort should be made to examine the sensitivity of the proposed al

gorithms to the size of diffusivity difference between "regular" tissue and anomaly as well 

as the number of the unknown parameters needed to model arbitrary shapes. 
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Chapter 4 

Estimation of the Properties of Diffusive 

Sources Using Stochastic Differential 

Equations 

4.1 Introduction 

Signal processing techniques for detection, localization, and tracking of biological and 

chemical sources have attracted significant attention in recent years because of their impor

tance in many applications such as drug delivery, environmental monitoring, and homeland 

security. The two most important concerns in all of these applications are accuracy in deal

ing with random effects of dispersion and real time implementation of the aforementioned 

algorithms (detection, localization, and tracking of diffusive sources). Consequently, these 

models should provide tools for reliable decision making once a biochemical event of in

terest has been detected and localized. Several inverse models [Jeremie 98, Jeremie 00, 
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Ortner 07] were proposed that can potentially be used in many of these applications. Most 

of the previous models were based on the second law of diffusion, the so called classical 

model. Although computationally efficient, these models can not account for the stochas

tic nature of diffusion in fluids (e.g. Brownian motion). It has been observed that the 

patterns of drug dispersion in human body organs exhibit certain irregularities (discon

tinuities) which can not be modeled with Fick's law of diffusion even using anisotropic 

and nonhomogeneous diffusivity. Ortner and Nehorai [Ortner 07] developed an inverse 

model based on Ito diffusion and corresponding Feynman-Kac's formula. However, this 

approach requires computationally intensive Monte Carlo simulations in order to obtain 

the probability density function required for maximum likelihood estimation. In litera

ture, many attempts for the estimation of the properties of stochastic diffusion processes 

are presented. In [Pedersen 95], Pedersen proposed a new approach to maximum likeli

hood estimation (MLE) for stochastic differential equations based on discrete observations 

when the likelihood function is unknown. A sequence of approximations to the likelihood 

function is derived, and convergence results are proven. In [Jiang 97], Jiang and Knight 

suggested a nonparametric approach to the estimation of diffusion processes with an appli

cation to a short-term interest rate model. In [di Miscia 04], a Monte Carlo simulation is 

performed to investigate the finite sample properties of a nonparametric estimator, based 

on discretely sampled observations of continuous-time Ito diffusion process. Modeling 

the dynamics of short-term interest rates, in Ito diffusion process, can also be found in 

[Di Miscia , S!Zirensen 02, Arapis 06, Mancini 06, Sam 08]. 

In this chapter, we present a new framework for localization of diffusive sources using 

stochastic differential models. Namely, the most challenging part of modeling the dis

persion of fluids lies in the statistical nature of particle motion. To properly account for 
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random effects one has to apply computationally intensive Brownian motion inverse algo

rithms (e.g. Feynman-Kac). Most of these algorithms are based on simulation propagation 

paths of numerous particles (i.e. Monte Carlo simulations). In our approach, we account 

for the stochastic nature of dispersion by utilizing well-known Fokker-Planck equation, 

which models the probability distribution of particle position when moving in a fluid en

vironment. The main advantage of this approach over classical diffusion theory lies in the 

fact that it accounts for random fluctuations in dispersion patterns which may be of great 

importance if the source intensity (number of particles) is small. This is of particular inter

est in scenarios such as biochemical attacks, drug delivery, pollutant leakage, etc. On the 

other hand, it is computationally much more efficient than a Monte Carlo simulator, since 

it provides analytical expressions for probability density function of particle counts. Using 

the proposed model we derive the corresponding maximum likelihood estimator of source 

location, intensity, and release time in the presence of noise since the chemical sensors 

measuring the concentration of interest may be inaccurate. 

This chapter is organized as follows. In Section 4.2, we present the stochastic pro

cess modeling the dispersion and corresponding Fokker-Planck equation and illustrate the 

main differences compared to classical diffusion theory. In Section 4.3, we first present 

our measurement model, then we derive the corresponding joint probability mass function 

of particle counts at sensors located at known (but arbitrary) locations and times. Using 

this result, we derive the maximum likelihood estimator of the unknown parameters in the 

presence of noise. In Section 4.4, we demonstrate the applicability of our results using 

numerical examples. 
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4.2 Physical Model 

Let us ~ssume that at arbitrary time t0 we introduce n0 (or equivalently concentration Co) 

particles in an open domain environment at location r 0 • When the number of particles 

is large macroscopic approach corresponding to the Fick's law of diffusion is adequate 

for modeling the transport phenomena. However, to model the motion of the particles 

when their number is small a microscopic approach corresponding to stochastic differential 

equations (SDE) is required. 

The diffusion process for the transport of particle in an open environment is given by 

the ito stochastic differential equation: 

(4.1) 

where Xt, in R3 , is the location and Wt is a standard Wiener process in R3 • 

The function µ(Xt, t) is referred to as the drift coefficient while u() is called the dif

fusion coefficient such that in a small time interval of length dt the stochastic process Xt 

changes its value by an amount that is normally distributed with expectation µ(Xt, t)dt and 

variance u 2 ( Xt, t) dt and is independent of the past behavior of the process. 

The solution for (4.1) is carried out by means of stochastic integration. For three

dimensional isotropic space, i.e., u is a diagonal matrix, (4.1) can be decomposed into 

three separate equations, given by 

dXit = µi(t)dt + o-i(t)dWit i = 1, · · · , 3 (4.2) 

For a homogeneous drift-free medium (i.e. µ = 0), where u is a constant, the trajecto

ries of Xi(t), i = 1, · · · , 3 become 

Xi(t) = XiO +a-i Wi(t - to) i = 1, · · · , 3 
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where X 0 = [X10 X20 X30]T is the initial position vector of the particle and Wi(t) ,...., 

· N(o, t - to). 

Assuming three-dimensional environment r = ( x1 , x2 , x3 ), we compute the probability 

density function, j(r, t), of one particle occupying space around r at time t using the 

Fokker-Planck equation [Risken 89] 

&f(r,t) [ 
3 

& 
&t - - 8 &xi DJ(r)+ 

3 3 [J2 l 
+ ~ ~ &xi&xj Dzj(r) f(r, t) (4.4) 

where partial derivatives apply the multiplication of D and f ( r, t), D 1 is the drift vector 

and D 2 is the diffusion tensor given by 

DJ µ 

Dlj = ~ L u ilu'f; 
l 

(4.5) 

For simplicity of notation, we omitted the dependency of u and µ on space and time. 

In this chapter, we assume an infinite three-dimensional (3D) space, i.e., the domain 

of interest is much larger than the diffusion velocity. We also assume the diffusivity to be 

homogeneous (i.e., has no dependence on space or time) and isotropic. Furthermore, we 

assume a drift free space. Note that the above formulation can easily deal with both drift 

and reflection from boundaries, as will be discussed in Chapter 5, since these can be in-

eluded as boundary conditions for (4.4) and the corresponding equation can then be solved 

numerically. However, our main goal in this chapter is to demonstrate the applicability of 

localizing diffusive sources using the Fokker-Planck equation and the corresponding dif-

ference compared with the classical approach. For the simplified environment, along with 
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the initial condition j(T, t0) = 8(T - To), the solution to (4.4) is given by 

j(T t) = l e-llT-Toll
2
/4D(t-to) 

' 47rD(t-to)312 
(4.6) 

where D is the coefficient of diffusivity, To is the release location, and t0 is the release time. 

Note that the above solution represents the probability density function (pdf) of one 

particle occupying position Tat time t, assuming it was released from location To at time t0. 

For a large number of particles starting from the same point (source location), the isometric 

lines are given by concentric circles, see Figure ( 4.1.a). This is an expected result, since 

for a large number of particles, the classical approach based on the well known Fick's law 

of diffusion is 

oc(T, t) =div (VV7c) 
at (4.7) 

where Vis 3 x 3 classical diffusivity matrix and c is the concentration. Under the previously 

mentioned assumptions, the matrix V reduces to a diagonal matrix (Le., V = Dh), and the 

solution for (4.7) becomes 

c(T t) = 1 
e-llT-Toll

2
/4D(t-to) 

' 47rD(t - t0 )
312 

(4.8) 

Note that (4.8) shows the evolution of the concentration c which is deterministic (i.e. 

the expected value). 

Figure (4.1) presents the evolution of 1000 and 50000 particles at different time steps. 

Observe that, for a large number of particles, Figure ( 4.1.a), the contour lines of the con-

centration (number of particles) are almost circular. On the other hand, for a small number 

of particles, the contour lines do not form a circular pattern. This can be seen from Fig-

ure (4.1.b). As a result, the estimation of the initial properties (intensity, location, time) 
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using the classical model can be inaccurate and can consequently lead to non-optimal de

cision making (detection, prediction, etc.). 

4.3 Statistical Model 

In this section we introduce a SDE based technique for estimating the different source 

properties. We assume a spatially distributed sensor array consisting of m chemical sensors 

measuring the number of particles at certain areas (volumes) and located at r 1 , r 2 , ... rm. 

Further, we assume that each sensor takes measurements at times t 1 , ... tk. Next, let Yij 

be the number of particles measured by a sensor located at r i and time tj. In general, the 

sensor measurements can be modeled as 

(4.9) 

where nij is the model predicted data and eij is the noise vector. 

First, we compute the corresponding probability mass function (PMF) of model pre

dicted data, i.e., the number of particles in an arbitrary spherical volume (~i = ~(ri)), 

that is corresponding to the sensor's volume, given by 

~i =II r - ri [[:=;; Rsensor (4.10) 

where Rsensor is the radius of the sensor. 

Hence, the probability that there are ni particles within ~i at time tj becomes 

Pj(Yij = n) = (~) lj~t.i (1 - Pj,t.Jno-n n = 1, ... , no (4.11) 
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where n0 is the initial number of particles and PJ,b..; is the probability of a particle to occupy 

an volume .6.i, which is given by 

PJ,b..; = J J ii J(r, t)r8r8¢ (4.12) 

Note that PJ,b..; can be computed numerically or analytically, since f ( r, t) is a known func-

ti on. 

Next, assuming there are m sensors (i = 1, ... m) the joint PMF is given by 

(4.13) 

In the absence of noise the log likelihood function is given by 

k 

£(~) = Llog(Y1· .~~y .) + 
j=l J mJ 

k m 

+LL YiJlogPJ,b..; + 
j=l i=l 

(4.14) 

In the presence of noise, the probability mass function of the measurement vector y 

becomes the convolution of the probability mass functions of the actual data, i.e., Equa-

tion (4.13), and the measurement noise. In order to account for the discrete nature of the 

measurement process, we propose to model the measurement noise using Poisson distri-

bution. Note that Poisson distribution is commonly used for modeling the uncertainties in 

image processing problems [Chan 07, Han 07]. 
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Next, we assume that the measurement noise is spatially and temporally uncorrelated 

Poisson distribution with a rate of >. 

eij ,......, Pois(>.) 

E[(eij - >.)(ei'j' - >.)] >.8(i - i')8(j - j') 

where Pois(>.) is a Poisson distribution with parameter >. and 8() is the kronecker delta 

function. 

The joint PMF of the measurement vector, derived in Appendix C, is given by 

(4.15) 

with the corresponding likelihood function 

£( 'ljJ, >.) 

(4.16) 

and the corresponding log function is 

£('ljJ,>.) = ~log~···~ ( no ) . 
L.J L.J L.J T1 • • · 'T 
j=l T1=0 Tm=O m 

(4.17) 
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4.4 Numerical Examples 

In this section, we present numerical examples to demonstrate the applicability of the pro-

posed algorithms. we estimate no and r0 for different source strengths, number of sen-

sors, and time samples. In all the examples, we assume the diffusion coefficient to be 

known, as it can be estimated using different techniques such as, the one in [Kvarnstrom 05, 

K varnstrom 06]. Also, we define the mean square error (MSE) as 

MSE = ll&o - ao 11 2 

. a llaoll 2 
(4.18) 

where a 0 is the true value (i.e. n0 or r 0 ) and &0 is the corresponding MLE estimate. 

Moreover, we calculate the probability density function (4.6) along with the integration 

(4.12) using finite element package (COMSOL Multiphysics). In order to achieve accurate 

results, the simulated domain is constrained with a spherical boundary which radius is 

much greater than the domain of interest. The numerical simulation is performed with 

7450 elements and 11205 degrees of freedom. To illustrate the accuracy of the numerical 

method, we compare the results to the calculated analytical solution, of (4.6) and (4.12), 

for 10 time samples and 729 sample points that belongs to the domain of interest which is a 

square grid of 27 x 27 equally distributed points covering an area of 80*10-6 x80*10-6m 2• 

The diffusivity is taken to be 4.29 * 10-13m/ 8 2 and the time step is 0.02 sec. Figure (4.2) 

presents the histogram of relative error (i.e., Eanalyticaz-Enumerical. The mean value of the 
Eanalytical 

relative error is 0.0399 which indicates an accurate numerical simulation. 

Next, in Table (5.1), we show a comparison between the classical and stochastic estima-

tions for n0 = 1000, m = 640, k = 15, time step is 0.02 sec, and SNR = 9. The diffusivity 

is 4.29 * 10-13m/ 8 2 and the sensor array covers an area of 80 * 10-6 x 80 * 10-6m 2 • As 
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expected, the stochastic approach outperforms the classical technique since the number of 

particles is relatively small and the classical model does not account for its patterns, see 

Figure (4.1). 

I Classical I Stochastic I 

Estimating intensity 18.01 % 5.01% 

Estimating location 16.26% 3.26% 

Table 4.1: The estimation results of classical and stochastic estimation 

Next, we show the estimation results in the absence of noise in Figures (4.2) and (4.3). 

In Figure ( 4.2a), we illustrate the mean square error for estimating the source intensity 

for n0 = 500, as a function of the number of sensors and time samples, assuming that 

the release location and time are known. While in Figure (4.2b) we illustrates the mean 

square error for estimating the source location when the intensity is known. As expected, 

the estimation error decreases as the grid size increases. Moreover, increasing the number 

of time samples, reduces the estimation error. In Figure (4.3), we illustrate the estimation 

errors for n 0 and To when both parameters are unknown. Observe that, the estimation 

error is higher than that when estimating no and To separately. Also, the error slope is 

smaller, therefor, increasing the grid size beyond certain value may not yield significant 

performance improvement. Similar results are obtained in Figures (4.4) and (4.5) for n0 = 

1000. As expected, increasing the number of particles gives more accurate results. 

In Table (5.2), we show the reliability of the estimation algorithm, as the possible mini

mum achieved errors for the estimation of both n0 and To of different source intensities are 
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shown. It is obvious that the proposed algorithm provides satisfactory estimates for dif-

ferent intensities. On the other hand, it shows the importance of having a stochastic based 

estimation, as for very low source intensities, the estimation error increases. 

Source intensity min error in n0 min error in r0 

500 4.11% 1.81% 

1000 1.35% 0.091 % 

Table 4.2: Minimum error achieved for different source intensities. 

For the case were Poisson noise is introduced, the estimation is carried for ( n0 = 1000) 

and (k = 10). We assume that the noise power is known, since, in principle, it can be 

estimated offiine in the absence of the source. Also, the signal-to-noise ratio (SNR) is 

defined as the square root of the average (expected) signal value (µsig) to the square root 

of the sum of variances (which is also the mean value) of the Poisson noise (RMSnoise). 

The signal average is calculated over all time steps and sensors measurements, since the 

mean signal value is a spatial-temporal function. This definition of the SNR provides 

a deterministic representation and it doesn't vary from one run to run since the SNR is 

calculated using the expected values of nij from (4.13). The SNR is given by 

SNR lOlog µsig 
RMSnoise 

z=:,1 L:7=1 (nij) 
lOlog km>.. 

51 z:::::,1 L:7=1 noPj,~; 
og km>.. (4.19) 
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This representation of the noise power is commonly used when calculating SNR [Raab , 

Haberkoom 82]. 

In Figures (4.6) and (4.7), we illustrate the error in estimating the source intensity and 

source location as a function of the SNR and the number of sensors (m). Observe that, 

satisfactory results can be reached when introducing the noise. 

4.5 Conclusions 

In this chapter, we address the problem of estimating the properties of diffusive sources 

using stochastic differential equations (SDE). The main advantage of our approach lies in 

the fact that it accounts (in a computationally efficient way) for random effects which are 

not accounted for in commonly used classical techniques based on Fick's law of diffusion. 

To achieve this goal, we utilize stochastic process and the corresponding Fokker-Planck 

equation to model the diffusion of particles. Then, we derive the corresponding probability 

mass function and maximum likelihood estimator for source intensity, location, and release 

time. 

As expected, our proposed stochastic model significantly outperforms the classical ap

proach. We demonstrate through numerical examples that the largest performance gain is 

achieved in the estimation of source intensity. In our opinion, estimating the source inten

sity is very critical, since potential failure to properly estimate the number of particles may 

result in severe consequences. 

Our approach can be easily extended to various scenarios consisting of realistic ge

ometries (urban environment, tunnel structures, turbulence etc.), by properly accounting 
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for drift (wind, flow) and boundary conditions. In the next chapter, we will include three 

dimensional geometries with different types of boundaries. In addition, we will evaluate 

the reliability of our estimator for various scenarios. 

4.6 Publications 

• A. Atalla and A. Jeremie, "Localization of Diffusive sources Using Stochastic Dif

ferential Equations", in revision for IEEE Trans. Signal Processing. 

• A. Atalla and A. Jeremie, "Localization of Chemical sources Using Stochastic Differ

ential Equations", IEEE International Conference on Acoustics, Speech and Signal 
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Figure 4.2: Mean square error for estimating n 0 and r 0 as a function of number of sensors 

and time samples for 500 particles - in the absence of noise. a) MSE for estimating n0 - r 0 

is known. b) MSE for estimating r 0 - n0 is known. 
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Figure 4.3: Mean square error for estimating n0 and r0 as a function of number of sensors 
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is unknown. b) MSE for estimating r 0 - n0 is unknown. 
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Figure 4.4: Mean square error for estimating n0 and r 0 as a function of number of sensors 

and time samples for 1000 particles - in the absence of noise. a) MSE for estimating n0 -

r 0 is known. b) MSE for estimating r 0 - n0 is known. 
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r 0 is unknown. b) MSE for estimating r 0 - n0 is unknown. 
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Figure 4.6: Mean square error for estimating n 0 and r 0 as a function of SNR and the 

number of sensors for 1000 particles. a) MSE for estimating n 0 - r 0 is known. b) MSE for 

estimating r 0 - n 0 is known. 
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Figure 4.7: Mean square error for estimating n0 and r 0 as a function of SNR and the 

number of sensors for 1000 particles. a) MSE for estimating n 0 - r 0 is unknown. b) MSE 

for estimating r 0 - n0 is unknown. _ 
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Chapter 5 

Estimation of Boundary Properties 

Using Stochastic Differential Equations 

5.1 Introduction 

The inverse diffusion problems deal with the estimation of many crucial parameters such as 

the diffusion coefficient, source properties, and boundary conditions. Such algorithms are 

widely applied in many design problems in different physical [Yang 96, Yang 97, Shiguemori 02, 

Vabishchevich 85], chemical [Nehorai 95, Jeremie 98, Porat 96, Jeremie 00, Ortner 07], 

and biological fields [Terayama 01]. Recently, the estimation of the boundary properties, 

of the diffusion process, have attracted researchers [Yang 96, Yang 97]. However, due to 

the complexity of the problem, the work accomplished is not yet satisfactory. On the other 

hand, most of the analytical and numerical methods proposed for such problems have only 

been used to deal with one- or at most two-dimensional problems with simple and symmet-

ric geometries. Limited work has been achieved on three-dimensional problems, at which 
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simplified problems are solved. Moreover, the major purpose was to estimate the properties 

of a pre-determined boundary position. Nevertheless, they only account for the classical 

nature of the diffusion, neglecting its stochastic (random) nature described by the stochastic 

differential equations (SDE) and the Fokker-Planck equation [Risken 89]. 

Absorbing and reflecting boundaries are often encountered in realistic problems such 

as drug delivery where the organ surfaces represent reflecting/absorbing boundaries for 

the dispersion of drug particles [Terayarna 01]. In this chapter, we extend previous results 

and propose a inodel that can deal with arbitrary boundaries. We are addressing the issue 

where we estimate the absorbtion property of the boundary. We propose a computation

ally efficient framework for estimating the boundary properties using stochastic differential 

equations. The main advantage of this technique lies in the fact that it accounts for both 

drift and random effects such as Brownian motion which are not accounted for in com

monly used classical techniques based on Fick's law of diffusion. The extension to realistic 

geometry is straight forward since it can be dealt with using Finite Element Method. Ab

sorbing and reflecting boundaries are often encountered in realistic problems such as drug 

delivery where the organ surfaces represent reflecting/absorbing boundaries for the disper

sion of drug particles. 

This chapter introduces a Fokker-Planck based algorithm in order to estimate the po

sition and the length of the absorbing region of the boundary. We first utilize Fokker

planck equation with the corresponding boundary conditions to derive the forward model, 

at which, we utilize the COMSOL Multiphysics package to solve for the position density 

function of the particle undergoing diffusion. Next, we deduce the corresponding statis-
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tical model for the measurement of the number of particles. Finally, we show numerical 

examples to illustrate the proposed algorithm. 

5.2 Physical Model 

In the previous chapter we proposed a maximum likelihood algorithm for estimating the 

source intensity and location for particles under diffusion in homogeneous, drift-free space. 

However, this is a special configuration at which Fokker-Planck equation has an analytical 

solution. In this section we consider geometries with boundaries and drift. 

In the presence of boundaries, we assume a domain V, bounded by tbe surface S, where 

Sis composed, in general, of mixed absorbing and reflecting boundaries, as in Figure (5.1 ). 

• • Absorbing Region : ---...: 
• • • 

v 

s 

Figure 5.1: Bounded domain V with boundary S. 

The behavior of a particle under a reflecting condition can be modeled with the specular 

reflection algorithm [Szymczak 03]. The implementation of the specular reflection can 
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be realized by reflecting each particle crossing the reflecting boundary. The stochastic 

trajectory xf, in the region of a reflecting boundary defined by the local surface normal n, 

evolves according to 

Xt+D..t = Xt +~Wt, Xt +~Wt EV (5.1) 

xt+D..t = Xt + dXtl + ldXd. r, Xt +~Wt tt v 

where f is the mirror reflection operator and ~t is the time step, and ~Wt is the random 

jump at ~t, see Figure (5.2). 

Specular reflection is commonly used to simulate a zero-flux boundary condition [Szymczak 03]. 

Other methods have also been proposed, these include the following 

Rejection: [Drazer 01, Kurowski 94] the ·particle does not change its position for the given 

time step, i.e. ~Wt= 0. 

Multiple rejection: [Rage 96] new increments are calculated until a ~Wt is achieved such 

thatXt +~Wt EV. 

Interruption: [Salles 93, Maier 00] the particle stops at the wall and its clock is incre

mented by ( ~t with given ( by 

(5.2) 

Then, an additional step with (1 - ()~tis performed. 

However, all these algorithms fail to impose the zero-flux boundary condition correctly 

[Szymczak 03]. For the case of the absorbing boundary, a distribution of holes (hollow 

circles in Figure (5.3) is introduced to account for the loss of the absorbed particles. Holes 
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are a fictitious particles that hold negative, but equal, mass to the particles. Mainly, the par-

ticles trying to cross the absorbing boundary are reflected and converted to holes, which are 

imaginary particles with negative and equal mass to the diffusive particles. Similarly, holes 

trying to recross the boundary are reflected and converted to particles, as in Figure (5.3). 

Finally, after sufficient time steps equal number of holes and particles are canceled within 

a sufficiently small volume. This algorithm has been introduced in [Szymczak 03] and 

has the advantage over the commonly called "total absorption" [Zhang 97a] method in the 

sense that it insures zero-concentration on the absorbing boundary. The total absorption 

method states that particles are removed when Xt + .6. Wt lies outside the domain V. 

s 

Figure 5.2: Behavior of a particle near a reflecting boundary. 

Assuming three-dimensional environment r = (x1 , x2 , x3 ), The probability density 

function, f ( r, t), of one particle occupying space around r at time t in homogeneous drift-

free space, is given by 

J(r t) = l e-llT-Toll
2
/4D(t-to) 

' 41rD(t-to)312 
(5.3) 

where D is the coefficient of diffusivity. Note that, In 3D space, the variance corresponding 

to the diffusion process is a spherical function in time, given by cr2 = 6D(t - t0 ). The 
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s s 

(a) Behavior of a particle near a ab- (b) Behavior of a hole near a absorb-

sorbing boundary. ing boundary. 

Figure 5.3: Specular reflection method. Solid dot represents a particle, hollow dot repre-

sents a hole. 

observable contour of the particles underlying diffusion forms, in average, a sphere having a 

radius of d = y'6D( t - t 0), where dis called the mean diffusion distance, see Figure (5.4). 

For the bounded domain with drift v(r, t), Fokker-Planck equation can be solved nu

merically, with the initial condition f (r, t 0 ) = 5(r-r0 ) and following boundary conditions 

[Reif 77] 

J(r, t) = 0 for absorbing boundaries (5.4) 

n·'Vf=O for reflecting boundaries (5.5) 

where n is the normal vector to the boundary. 

To illustrate the time evolution of f ( r, t) in the presence of absorbing and reflecting 

boundaries, we solve the Fokker Planck equation, using a Finite Element package (COM-

SOL) for a closed circular domain consisting of a reflecting boundary (black segment) and 

an absorbing boundary (red segment of length l) as in Figure (5.5). In Figures (5.6.a and 
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Figure 5.4: Mean diffusion distance for 1000 particles at two different time samples -

D = 4.29 * 10- 13m 2 
/ s. Blue: t = 0.02sec, d = 22.69 * 10- 8m . Green: t = 0.04sec, 

d = 32.09 * 10- 8m. 

b), the effect of the absorbing boundary is idle since the flux of J(r , t) did not reach the 

boundary by then. On the other hand, in Figures (5.6.c and d), a region oflower probability . 

(density) appears in the region nearby the absorbing boundary, since the probability of the 

particle to exist in this region is less than that for the other regions. 

5.3 Statistical Model 

In this section we introduce a SDE based technique for the estimation of boundary prop-

erties. In general, the parameters of the absorbing boundary can be estimated using the 

(MLE) that is based on the probability mass function (PMF) of the number of particles n 
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Figure 5.5: Closed circular domain with reflecting and absorbing boundaries - R = 2mm, 

D = 4mm2/s, and 7r/6 ~ l ~ 7r/3 

discussed in the previous section. 

We assume a spatially distributed sensor array consisting of m chemical sensors mea-

suring the number of particles at certain volumes and located at r 1 , r 2 , .. . T m inside the 

bounded geometry. Further, we assume that each sensor takes measurements at times 

t 1 , ... t k. Let Yii be the number of particles measured by a sensor located at r i and time ti. 

In general, the sensor measurements can be modeled as 

(5.6) 

where nij is the model predicted data, eij is the noise vector and '!/; is the estimation pa-

rameter vector. This parameter vector considers boundaries characteristics such as size, 
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Figure 5.6: Evolution of f(r, t) for a boundary problem. 
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The derivation of the probability mass function (PMF) of model predicted data and 

thereon to the log likelihood function is similar to the one introduced in Chapter 4, leads to 

k 

£ (1/J ) = L log (Y1 .. ~~ y .) + 
j=l J mJ 

k m 

+ L LYii logPj,6.; + 
j=l i=l 

66 

(5 .7) 



In this chapter we focus on demonstrating the ability to estimate the boundary proper-

ties and hence, assume that the source properties (i.e., n0 ) are known or have been previ-

ously estimated. Thus, the first term of l(n0 , r 0 , t 0 ) can be removed and the log likelihood 

function becomes 

k m 

£('1j;) = L LYijlogPj,t>.; + 
j=l i=l 

(5.8) 

In the presence of noise, the probability mass function of the measurement vector y 

becomes the convolution of the probability mass functions of the actual data, i.e., Equa-

tion (4.13), and the measurement noise. In order to account for.the discrete nature of the 

measurement process, we propose to model the measurement noise using Poisson distri-

bution. Note thatPoisson distribution is commonly used for modeling the uncertainties in 

image processing problems [Chan 07, Han 07]. 

Next, we assume that the measurement noise is spatially and temporally uncorrelated 

Poisson distributed with a rate of A 

.A8(i - i')8(j - j') 

where Pois(.A) is a Poisson distribution with parameter A and 8() is the krunecker delta 

function. 
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The log likelihood function, derived in a similar way to 4.17, is given by 

£(~,>.) = ~log~···~ ( no ) . 
L.J L.J L.J T1 · · · T 
j=l 71=0 Tm=O m 

(5.9) 

5.4 Estimation Algorithm 

The estimation algorithm, in Figure(5.7), consists mainly of a Matlab based optimization 

code that interacts with both the Brownian simulator and a PDE solver. The Brownian 

simulator is based on the ito stochastic differential equation presented in Equation (5.1) 

combined with the specular reflection method to account for the different boundary con-

ditions. In order to find the unknown number of parameters, we propose the following 

algorithm 

Step 1: Submit the initial guess to the main code i.e., ~0 • 

Step 2: Solve for J(r, t), using FD/FE method. 

Step 3: Calculate Pj,L.;• using Gauss quadrature method to calculate the integration in 

Equation (4.12). 

Step 4: Using the Brownian simulator, compute the current particle positions. Combine it 

with Poisson noise to generate the measurement vector Yi· 

Step 5: Estimate the next boundary condition vector(~) using data from steps 3 and 5. 

Step 6: Repeat steps 2-5 until stratifying: 

[~]T = argmax.C(~, >.) 
'I/; 
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Step 7: Output 'lj; , the vector of estimated parameters. 

Poisson 
Yi 

noise 

Brownian 

Simulator 

MLE 

Optimizer 

umenca 

Solver 

FE/FD 

1 

8 

J(r,t) B 

Figure 5.7: Flow chart. 

5.5 Numerical Results 

In this section, we present numerical examples to demonstrate the applicability of the pro-

posed algorithms. We estimate the position and the size of the absorbing segment for two 

different examples 

1. Sphere with absorbing segment: 

2. Cylinder with absorbing segment: 

In all the examples, we assume the diffusion coefficient to be known, as it can be esti-

mated using different techniques such as, the ones in [Kvarnstrom 05, Kvarnstrom 06).Also, 
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the signal-to-noise ratio (SNR) is defined as 

"".111 "k 1 noPJ· ~ 
SNR = 5log wi= ~:).. ' ' 

5.5.1 Sphere with absorbing segment 

We now present numerical results that demonstrates the applicability of the proposed al-

gorithms. The forward model was created using a Brownian simulator of 500 and 1000 

particles in a drift free medium surrounded by a spherical boundary with radius-diffusivity 

ratio R2 /6D = 10. We also assume a sudden appearance of an absorbing region defined by 

(R, e1 : e2 , ¢1 : ¢2), shown in Figure (5.8). The diffusive particles are assumed to reach 

equilibrium, i.e. uniformly distributed, prior to the change in the boundary conditions. We 

define the parameter vector as 

(5.11) 

Also, we define the MSE as 

MSE1/> = 11'¢i - 7/Jlll
2 

7f 
(5.12) 

where 'l/J7 is the true value (i.e. 'l/Jl E {er, e~, </Ji, ¢;}) and '¢i is the corresponding MLE 

estimate. 

In order to achieve better computational time, we first show, in Table ( 5 .1 ), a computational-

time based comparison between the FE and FD methods. Both methods are used to solve 

the Fokker Planck equation for the geometry introduced in Figure (5.8). Then, the esti-

mation of the boundary properties is carried out for 5000 particles, 15 times samples and 

18 sensors. The estimation is then repeated 1000 times. Finally, the estimation results 

are compared in accuracy. The percentage accuracy represents the average accuracy of 
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Figure 5.8: Sphere with absorbing segment defined by (R, 81 82 , ¢1 ¢2). 

71 



the four different estimation parameters. Obviously, the FD technique outperforms the FE 

package regarding the required computational time to achieve an accuracy level of almost 

983 accuracy. Hence, in all the examples, we use the FD solver in the estimation process. 

I FE Package (COMSOL) I FD Solver I 

Computational time (sec) 5.45 3.26 

Nodes 3422 5400 

Accuracy 98.3% 97.91% 

Table 5.1: Computational times for FE and FD solvers. 

In Figures (5.9 and 5.10), we illustrate the MLE error in estimating the size and the posi

tion of the absorbing region for 500 and 1000 particles, respectively. The number of time 

samples is 15 and the grid includes 18 sensors. The presented results represent an average 

of 1000 runs. As expected, the estimation error decreases when increasing the SNR and 

reaches satisfactory results when SNR > 5. 

In Figures (5.11-5.14), we show the robustness curves in order to study the reliability of 

the proposed algorithm subjected to the error in estimating the diffusion tensor (D) and 

the initial concentration (n0 ) for the cases of n 0 = 500 and n 0 = 1000. Observe that, the 

proposed algorithm is very robust with respect to errors in both D and n0 • However, as 

the error rapidly increases, the reliability with respect to errors strongly decreases and the 

performance deteriorates. 
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Figure 5.9: MLE error of the absorbing region - n0 = 500. 
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Figure 5 .10: MLE error of the absorbing region - n0 = 1000. 
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n0 = 500, k = 15, m = 18, SNR = 10 
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Figure 5.11: Robustness curves with respect to MSE in D - n0 = 500. 
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Figure 5.12: Robustness curves with respect to MSE in D - n0 = 1000. 
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Figure 5.13: Robustness curves with respect to MSE in n0 - n0 = 500. 
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Figure 5.14: Robustness curves with respect to MSE in n0 - n0 = 1000. 
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5.5.2 Cylinder with absorbing segment 

In this section, we present numerical examples to demonstrate the applicability of the pro-

posed algorithm in the presence of a drift. The forward model was created using a Brownian 

simulator of 1000 particles subjected to a laminar velocity field inside a cylindrical geome-

try with an absorbing region defined by (R, ¢1 : ¢2 , z1 : z2), shown in Figure (5.15). The 

laminar flow is given by 

v(r, t) = v(l - p2
) 

R2 

where v is maximum velocity and R is the radius. 

(5.13) 

The estimation is carried out using 15 time samples and 18 sensors and represents an 

average result for 1000 runs. We define the parameter vector as 

(5.14) 

Also, we define the relative errors as 

i = 1, 2 (5.15) 

i = 1, 2 (5.16) 

where ¢i and z; are the true values, ¢i and i; are the corresponding MLE estimates. 

In order to achieve better computational time, once more, we show in Table (5.2), a compar-

ison between the FE and FD methods. Both methods are used to solve the Fokker Planck 

equation for the geometry introduced in Figure (5.15). The estimation of the boundary 

properties is carried out for 5000 particles, 15 times samples and 18 sensors. The estima-

tion is then repeated 1000 times and the estimation results are compared in accuracy. The 
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Figure 5.15: Cylinder with absorbing segment defined by (R, ¢1 : ¢2 , z1 : z2). 

percentage accuracy represents the average accuracy of the four different estimation pa

rameters. Obviously, the FD technique outperforms the FE package regarding the required 

computational time to achieve an accuracy level of almost 973 accuracy. Hence, in all the 

examples, we use the FD solver in the estimation process. 

I FE Package (COMSOL) I FD Solver I 

Computational time (sec) 6.81 4.10 

Nodes 4682 6380 

Accuracy 97.01 % 97.62% 

Table 5.2: Computational times for FE and FD solvers. 

In Figure (5 .16), we show the estimation results for a drift free medium with R/ D = 10. In 
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Figure (5.17), we illustrate the estimation error when the drift-diffusivity relation is given 

by 

/3 = (R2/6D) = 0 5 
(L/v) . 

(5.17) 

Note that, in the previous relation, the numerator ( L / v) presents the minimum time re-

quired for a particle to reach the end of the tube by the drift action (traveling time). On the 

other hand, the denominator (R2 /6D) shows the mean time for a particle to hit the cylin-

drical boundary (hitting time). This ratio helps in understanding the maximum velocity at 

which the estimation is feasible. 

In Figures (5.18 and 5.19), we illustrate the estimation results at different field velocities 

(i.e. different values of /3). In Figure (5.18), for reference purposes, we illustrate the es-

timation error when the velocity is known. In Figure (5.19), we illustrate the estimation 

error when all the parameters are unknown. As expected, when the hitting time is higher 

than the traveling time, the performance deteriorates exponentially and the estimation is 

not feasible. This is because, most of the particles tend to reach the end of the tube be-

fore being absorbed. Hence, the estimation algorithm fails to detect any absorption in the 

system. This justifies the very low hitting-to-traveling time ratio in human capillaries. In 

average the human capillary has a length of lmm with a radius of approximately 6µm. El 

Shahed [Elshahed 04], studied the effect of exchange of fluid across the capillary wall on 

the flow of blood with slip velocity and proposed a closed form for the velocity fields. His 

results show a maximum axial velocity of lOmm/ s. This gives a traveling-to-hitting time 

ratio of 0.01 which is adequate for the capillary exchange process to take place efficiently. 

In Figures (5.20-5.23), we show the robustness curves in order to study the reliability of 

78 



the proposed algorithm subjected to the error in estimating the diffusion tensor (D) and 

the initial concentration (n0) for the cases of drift free and f3 = 0.5. Observe that, the 

proposed algorithm is very robust with respect to errors in both D and n0 . . However, as 

the error rapidly increases, the reliability with respect to errors strongly decreases and the 

performance deteriorates. 

n0 = 1000, k = 15, m = 18, drift free 
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Figure 5.16: MLE error of the absorbing region - no drift. 

5.6 Conclusions 

In this chapter, we addressed the problem of estimating the size and the position of an 

absorbing region in the presence and absence of drift. This model can be extended to model 

an arbitrary region as well as to account for random fl.ow. To the best of our knowledge, 

this is a first attempt to estimate the absorbing region using stochastic differential equations 
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Figure 5.17: MLE error of the absorbing region. 
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Figure 5.18: MLE error of the absorbing region - known drift. 
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Figure 5.19: MLE error of the absorbing region - unknown drift. 

n0 = 1000, k = 15, m = 18, SNR = 10, drift free 
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Figure 5.20: Robustness curves with respect to MSE in D - drift free. 
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n0 = 1000, k = 15, m = 18, SNR = 10, f3 = 0.5 
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Figure 5.21: Robustness curves with respect to MSE in D - (3 = 0.5. 

n0 = 1000, k = 15, m = 18, SNR = 10, drift free 

0.5 ---- Z1 
- z2 

0.4 --io-- </>1 
-¢2 

~ 0.3 
r,/'J 

~ 
0.2 

0.1 

0 

0 0.2 0.4 0.6 0.8 
MSEinno 

Figure 5.22: Robustness curves with respect to MSE in n0 - drift free. 
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n0 = 1000, k = 15, m = 18, SNR = 10, /3 = 0.5 
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Figure 5.23: Robustness curves with respect to MSE in n0 - /3 = 0.5. 

in the presence of drift and our preliminary results indicate that the problem is invertible 

i.e., the unknown parameters can be estimated under certain conditions of the flow speed. 
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Chapter 6 

Modeling the Bacterial Clearance in 

Capillary Network Using Coupled 

Stochastic-Differential and 

Navier-Stokes Equations 

6.1 Introduction 

The capillary network is a complex-interconnected structure. A single blood cell traveling 

from the arteriole to a venule via a capillary bed passes through, on average in the respira

tory system, 40 - 100 capillary segments [Doerschuk 00]. The cardiovascular systems is 

responsible for delivering blood to the tissue under sufficient pressure to exchange materi

als. This is a two way process, at which nutrients, Oxygen, and other materials are carried 

to the tissue and cells during the outflow. On the other hand, blood is returned along with 
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the wastes of cellular metabolism during the return flow. 

Tissue fluid exchange occurs in capillary beds, where blood is in close proximity to 

tissue fluid (that surrounds all the cells in the body). This is because the thin walls of 

the capillaries (one endothelial cell layer) allow the movement of many materials to cross 

them with relative ease. Moreover, the lower blood velocity in capillaries (compared to the 

other blood vessels) allows sufficient time for effective exchange. Capillary - tissue fluid 

exchange is controlled by the blood pressure in the capillary and the osmotic pressure of 

blood (pressure of the tissue fluid outside the capillaries). As blood enters the capillary bed 

at the arteriole end, the blood pressure on the walls of the capillary is about 40 mmH g. 

By the time blood travels to the venule end of a capillary bed, it drops to about 15 mmH g. 

The blood pressure acts to push plasma fluid from the blood into the tissues. The osmoti.c 

· pressure exerted by blood due to high concentrations of dissolved salts and plasma proteins 

is constant at about 25 mmH g. These dissolved salts and proteins make blood hypertonic 

to tissue fluid. The osmotic pressure of blood acts to pull water (tissue fluid) back into the 

blood. 

There are three mechanisms whereby capillary exchange can occur. These are: 

Diffusion, which depends on the presence of a concentration gradient across the capillary 

wall. 

Bulk flow, which depends on mechanical forces (pressures) across the capillary wall. It 

occurs through pores and intercellular clefts and follows PoiseuilleSs equation for 

hydrodynamic flow. 
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Vesicular transport, which depends on the formation of specific transport systems in the 

capillary wall. it is involved in the translocation of macromolecules across capillary 

endothelium 

It is necessary to have an accurate model for the capillary-tissue exchange mechanism. 

This can be useful in many applications such as understanding the dispersion of drug par

ticles, through vascular system, in human tissue [Terayama 01, Yano 89] as well as under

standing the behavior of bacterial dispersion [Cannon 32] and and the factors influencing 

its clearance [Green 64, Holman 04, Pollard Jr 84, Rogers 60]. 

Modeling the exchange process can be carried by means of coupling the classical diffu

sion (Fick's law) with Navier-Stokes equations. However, for a small number of particles, 

classical diffusion fails to introduce a satisfactory representation of the particle dispersion. 

It has been observed that the patterns of drug dispersion in human body organs exhibit cer

tain irregularities (discontinuities) which can not be modeled with Fick's law of diffusion 

even using anisotropic and nonhomogeneous diffusivity: In order to accurately model the 

exchange process, we propose a stochastic based model of the diffusion process based on 

the well known Fokker Planck equation [Risken 89]. In order to account for the different 

mechanisms whereby capillary exchange can occur (diffusion and bulk flow), we model 

the capillary walls with means of pressure-dependent anisotropic diffusivity with slip con

ditions for the plasma flow inside the capillary. The main advantage of this technique lies 

in the fact that it accounts for both drift and random effects such as Brownian motion which 

are not accounted for in commonly used classical techniques based on Fick's law of diffu

sion. The extension to realistic geometry is straight forward since it can be dealt with using 
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Finite Element Method. 

This chapter is organized as follows. First, we introduce the flow model using Navier

Stokes equations. Next, we utilize Fokker Planck equation with convection field to rep

resent the probability function of the position of a particle (i.e, single bacteria) in the 

capillary-tissue region. Then, we compute the probabilities of absorption and transmission 

(clearance) of a single particle. and utilize them to compute the probability mass function 

(PMF) of the total number of bacterial particles. 

6.2 Capillary Blood Flow Model 

Many attempts are done to study the motion of blood though a capillary segment. Oka 

and Murata [Oka 70] studied the steady motion of blood through the capillary wall using a 

linear model of the blood flow and utilizing Starling's law, that is, the rate of flow per unit 

area across the the wall boundary is directly proportional to the pressure difference across 

the wall. However, Strivastava [Srivastava 83] showed that the linearized model fails to 

give an adequate representation of the flow field, especially in short vessels. Oka's linear 

model has been extended to the non-linear case by Mariamma and Maghi [Mariamma 00]. 

They considered the steady laminar flow of the blood as a homogeneous Newtonian fluid 

in tube with permeable wall. Elshahed [El-Shahed 04] studied the effect of exchange of 

fluid across the capillary wall on the flow of blood with slip velocity and proposed a closed 

form the velocity fields. In this work, we solve the set of equations provided by Elshahed 

numerically, in order to compute the velocity field through the capillary. 
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Consider the motion of blood as an incompressible Newtonian fluid. We consider a 

three dimensional circular cylindrical tube, representing a capillary segment of radius R 

and finite length L with permeable wall to promote fluid exchange across the wall. The 

equations of momentum and continuity are given by 

Inertia (per volume) 
Divergence of stress 

ou ) ~ + u ·'Vu = -\i'p + µ\7 2u+ f ut ~ ..__,, '-..,-' '-.r' 
'-..,.-' Convective Pressure Viscosity Other 

Unsteady acceleration gradient body 
acceleration forces 

(6.1) 

Y'·v=O (6.2) 

where p is the plasma fluid density, µ is the viscosity, p is the hydrostatic capillary blood 

pressure, and u is the velocity vector. 

In cylindrical coordinates, neglecting the gravitational forces, (6.1) and (6.2) can be 

expanded to 

r 

e 

z 

(6.3) 

~ ~ ( rur) + ~ ouo + OUz = O 
r or r oe oz (6.4) 
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The radial velocity Ur is governed by Starling's law which is a mathematical model for 

fluid movement across capillaries, given by 

Ur = K[(p - Pi) - (l2c - Qi)] (6.5) 

where, K is the filtration constant which is the product of the capillary surface area (A) 

and the capillary hydraulic conductance (Le), i.e., K = ALc. Pi is the hydrostatic intersti-

tial hydrostatic fluid pressure, l2c is the capillary oncotic pressure (osmotic pressure of the 

plasma proteins), and l2i is the tissue oncotic pressure (osmotic pressure of the proteins in 

the interstitial fluid). 

Note that, in the previous equation, [(p - Pi) - (l!c - Qi)] represents the net driving 

pressure for filtration. The corresponding boundary conditions are 

OUz 
</> &r + Uz = 0 at r = R (6.6a) 

Kµ P 
at r = R (6.6b) Ur= -( -1) 

R l2c - l2i + Pi 

p=pa at z = 0 (6.6c) 

p=pv at z = L (6.6d) 

The boundary condition (6.6a) is the Beavers and Joseph condition while (6.6b) results 

from Starling's law, where cf>= ../k/ 8R, 8 is the slip parameter and k is the specific perme-

ability of the porns medium. (6.6a) reduces to the no-slip condition when k = 0. Also, Pa 

and Pv are the pressures at the arterial and venous ends, respectively. 

The introduced system of equations, i.e., (6.3)-(6.6), is solved using Finite Element 

package (COMSOL Multiphysics) for a capillary segment with specifications defined in 

Table (6.1). 

In Figure (6.1), we show the axial velocity field profile along the radial direction at the 
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Capillary specifications 

L lmm 

R lµm 

p 1025kg/m3 

µ 0.0015N s/m2 at 37° 

Partriole end 40mmHg 

Pvanule end l5mmHg 

Pi -6mmHg 

f2c 25mmHg 

Qi 5mmHg 

Le 28.6 * 10-7cm/(s · cmH20), cmH20 = 0.098KPa 

</> 0 and 0.15 

Table 6.1: Capillary specifications. 
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center of the capillary. Observe that the axial velocity increases as the slip coefficient ( </> ) 

increases and vice versa. Moreover, it coincides with the no-slip condition when </> = 0. In 

figure (6.2), we illustrate the variation of axial velocity along the axis r = 0 for different </>. 

It is observed that uz has a concave profile downwards with a minimum around the center of 

the capillary segment. In Figure (6.3), we present the radial velocity at two different levels 

of the capillary. observe that, the radial velocity is positive (fluid is pushed outwards) at 

the beginning of the capillary segment, where the capillary blood pressure, p, is greater 

than the tissue fluid pressure. Moving along the capillary, the blood pressure decreases (as 

described in Figure (6.4)) and the radial velocity is acting to push the tissue fluid inside the 

capillary (i.e., negative). Also, observe that the blood pressure almost has a linear relation 

with the capillary-segment length. The deviation from linearity is due to the introduction 

of the permeable wall condition in (6.6b ). This relation is very important in this context 

and will be utilized in Section 6.4. 

0.08 

,,-..., 
0.06 Ct;J 

-----~ 
'-' 

N 0.04 ;:'! 

0.02 

00 0.2 0.4 0.6 0.8 
R(µm) 

Figure 6.1: Axial velocity profile at z = L/2 for different slip coefficients. 
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U z at r = 0 

----+- </> = 0 
0.3 --e- ¢ = 0.15 

0.1 

0.2 0.4 0.6 0.8 1 
L(mm) 

Figure 6.2: Axial velocity profile along the axis r = 0 for different slip coefficients. 

6.3 Modeling the Exchange Process 

In order to model the dispersion of particles through and inside a capillary segment, let 

us assume that at an arbitrary time t0 we introduce n0 (or equivalently concentration Co) 

particles at location r 0 being at the beginning of the capillary segment. To model the motion 

of the particles we utilize the ito stochastic differential equation, described previously in 

Chapters 4 and 5, 

(6.7) 

where Xt, in R 3 , is the location and Wt is a standard Wiener process in R 3 . 

Assuming three-dimensional environment r = (x1 , x2 , x3 ), we compute the probability 

density function, f ( r , t ), of one particle occupying space around r at time t using the 
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(b) Venule end - L = lmm. 
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Figure 6.3: Radial velocity at two different levels of the capillary segment. 

Fokker-Planck equation [Risken 89] 

of(r ,t) 
8t 
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(6.8) 
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Figure 6.4: Pressure profile along the axis z = 0 of a capillary segment. 

where partial derivatives apply the multiplication of D and J(r, t), D 1 is the drift vector 

and D 2 is the diffusion tensor given by 

DJ µ 

1""" T 2 ~Ui[Ulj 
l 

(6.9) 

In the case of anisotropic diffusivity, the diffusivity tensor is defined by a 3 x 3 ma-

trix. We can understand the geometry of anisotropic diffusion by looking at the eigenvalue 

decomposition ofD. 

(6.10) 

0 0 

where X = [e1e2e3], ei are the eigenvectors of D 2 and A = o 

0 0 

and >.3 are the eigenvalues of D 2 . 
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The eigenvalues are real, mutually orthogonal, and positive. When >.1 = >.2 = A3, 

the diffusion process is considered isotropic and the observable contour of f(r, t) forms a 

sphere, as explained previously. In general, the contour off ( r, t) forms and ellipsoid with 

the following function 

x2 y2 z2 

>.12 + >.22 + >.32 = 1 (6.11) 

For the bounded domain, (6.8) can be easily solved, numerically, with the initial condi-

ti on f ( r, t0 ) = 8 ( r - r 0 ) and following boundary conditions [Reif 77] 

f(r, t) = 0 for absorbing boundaries (6.12) 

n·Y'f=O for reflecting boundaries (6.13) 

where n is the normal vector to the boundary. 

The diffusion model does not only include the inner region of the capillary, but also 

the surrounding tissues, the arterial end, and the proceeding parts of the capillary network 

which can be observed from Figure (6.5). The coupling between the flow model and the 

diffusion-convection equations is achieved by implementing domain and boundary condi-

tions as follows: 

Domain Configuration 

• Capillary inner domain: we use homogenous diffusivity with a convection flux cor-

responding to the velocity field, u, calculated in 6.2, i.e., µ = u and D 2 = D 13 

• Capillary wall: only convection flux in the radial direction is considered with anisotropic 

diffusivity with the following eigenvalues 
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>-1 = (3cos(()), 

>-2 = (3sin(e), and 

A3 = 0 

where (3 is a scaling factor that is a function of pressure difference, i.e. (3 = sign(p -

ec). This representation of the diffusivity tensor allows diffusion only in the radial 

direction. 

Boundary Configuration 

• Capillary inner wall: we use the continuity condition. 

• Capillary outer wall: we propose an absorbing boundary condition to enforce absorb

tion of all the particles leaving the capillary to the surrounding tissues. 

• Arteriole end: we assume a reflecting boundary in order to prevent all particles from 

re-entering the arteriole. 

• Venule end: we assume an infinite domain with continuity condition in between. 

Then, the probability density function is calculated in the proposed geometry using 

COMSOL Multiphysics. In Figure (6.6) we show the time evolution of the particle pdf 

inside a capillary segment assuming that the particle starts moving from the arterial end. In 

order to study the behavior of the capillary network, we study two main probabilities: 

1. PA: The probability of a particle to get absorbed into the surrounding tissues. 

2. Pr: The probability of a particle to get transmitted to the proceeding capillary net

work. 
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Figure 6.5: Cross section of the capillary showing the different mechanisms of transporta-

tion and different capillary boundaries. 

In Figure (6.6a), we present PA as a function of time. Observe that, the probabil-

ity of absorption increases with time as the particle moves along the capillary segment 

which reaches an upper bound (saturation) as it moves to the rest of the capillary bed 

(tsat :::::::: 2 * 10-5 sec). The plot in Figure (6.6b) shows the time function of Pr . Similarly, 

the probability of transmission reaches an upper bound as it moves to the rest of the cap-

illary bed. Moreover, Pr shows a delay response due to the time required by a particle 

to hit the venule end of the capillary. However, the simulation time required to calculate 

the previous results, for a simple geometry, is 15965 seconds (4.4 hrs). We expect the 

computational time required to simulate the whole capillary network to be unreasonably 

large. In Section 6.4, we propose a novel technique to calculate the absorption and trans-

mission probabilities of a single particle that can efficiently be used for a complex capillary 
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network. 

6.4 Segmentation Model of the Capillary Network 

In this section, we propose a time efficient technique, segmentation model (SM), to cal

culate the aforementioned absorption and transmission probabilities (PA and Pr, respec-: 

tively) which can be used for a complex capillary network. The main idea of this technique 

is breaking the capillary network into smaller sections with pre-defined properties in order 

to reduce the overall computational time. Ahead, we present the main steps to implement 

the proposed algorithm: 

Step 1: discritization of the capillary into a large number of smaller sections. 

Step 2: calculating the PA and Pr of each section as a function of pressure. 

Step 3: integrating over the capillary network. 

First, we start by discretizing the previously introduced capillary segment into n smaller 

sections, as shown in Figure (6.8). Next, we calculate PA; and Pr;, namely, the absorption 

and transmission probabilities within the ith section, where i = 1, · · · , n. This is done 

separately for each section under the same conditions calculated in Section 6.2, i.e., the 

pressure along each section is set to the values corresponding to those in Figure (6.4). The 

pressure at the beginning of ith section is defined as Pi-l and its pressure drop is !:::.pi 

with p0 is the maximum pressure at the arteriole end and Pn is the minimum pressure at 

the venule end. Also, we assume that the diffusive particle starts its movement from the 

beginning of each section. 
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Figure 6.6: Evolution of the probabilities of absorption and transmission of a single particle 

traveling from the arteriole to a venule via a capillary segment. 
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(a) t=O sec 

(c) t=l0- 6 sec 

' Mill: O 

(b) t=l0- 7 sec 

(d) t=4.5 * 10-6 sec 

Figure 6.7: Evolution off (r , t ) inside a capillary segment. 

' ,._: O 

In Figures (6.9 and 6.10), we illustrate the probabilities of absorption and transmission, 

respectively, of each section as a function of capillary blood pressure. The calculations 

are done for n = 20 sections at 1.01µ sec. Note that, this relation can also be interpreted 

to be a function of the capillary length if we assumed a linear dependency of the blood 

pressure on the capillary length, previously illustrated in Section 6.2. This assumption is 

valid and will be used in this section as well. As expected, P A ; decreases as moving along 

the capillary segment since, in principle, the absorption on the capillary walls depends on 

the pressure difference across the wall, recall (6.4), which decreases as moving towards the 
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Figure 6.8: Discritization of a capillary segment. 
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venule end. However, Pr; shows a rrunima near the rruddle of the capillary segment since 

it mainly depends on the axial velocity of the blood which has a rrunima near the rruddle of 

the capillary as well. 

In Appendix D, Tables (D.1 and D.2) show the values of PA· t . and Pr t . for 50 sections ,,,, J .,,, J 

spanning a pressure domain of 15 - 40 m m H g with osmotic pressure of 25 mmH g. The 

calculations are done for 10 time steps. 

This discrete representation of the absorption and transmission probabilities of each 

section is very useful in calculating the total absorption or transmission probabilities for a 

general capillary segment and hence for a capillary network at different time instances. For 

better understanding of the importance of Figures (6.9 and 6.10) and Tables (D.l and D.2), 
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t = 1.01µ sec, n = 20 

0.0035 
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0.0015 
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Figure 6.9: Probability of absorption of the ith capillary section, for i = 1, · · · , n, as a 

function of capillary blood pressure. 

we show an example of calculating the total absorption and transmission probabilities for a 

capillary segment consisting of n sections with known starting pressure and length. Also, 

for simplicity, we assume that the section length is equal to that presented in Figures (6.9 

and 6.10). We first define the different probabilities that will be used in the example below. 

PAi,t' the absorption probability of the ith section at time t for a particle starting from the 

same section. 

P/i, the absorption probability of the ith section at time t for a particle starting from the 

1st section. 

Pt~t t• the total absorption probability of the sections 1, · · · , i at time t for a particle starting , 

from the 1st section. 

Pr;,t• the transmission probability of the ith section at time t for a particle starting from the 
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1.01µ sec, n = 20 

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
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Figure 6.10: Probability of transmission of the ith capillary section, for i = 1, · · · , n, as a 

function of capillary blood pressure. 

same section. 

Pt~t t• the total transmission probability from the sections 1, · · · , i at time t for a particle , 

starting from the 1 st section. Also, equal to Pt ;. 

F · · p A1 p A1 p d p T1 p, · h or two successive sect10ns, t = tot ,t = Ai,t an tot ,t = Ti,t• smce t ere are no 

preceding sections. For the second section, p tA2 is given by 

l
t () p T1, 

p A 2 = ~p -dt (6.14) t , ~t A2 ,t 
t=O U 

8PT1, 

where !:t1
•
1 represents the rate of the transmission probability of the 1st section. Since we 

8PT1 , dPT1 , 
assume a steady state flow (i.e.,~ = 0), then ;;;c,c = ~~t ,t and (6.14) can be written as 
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The discrete form of (6.15) is given by 

k 

pt~2 = L ( ~~i,tj - ~~i.tj-1) PA2,tj 
j=l 

and the total absorption probability will be 

Similarly, the total transmission probability is 

k 

p?2 _ pT2 _ ~ (PT1 pT1 . )P, 
tot,tk - tk - ~ tot,tj - tot,tj-1 T2,tj 

j=l 

In general, the total probabilities for n sections at time tk are given by 

i=l 

k 

pT; = ~ (PT;-1 _ pT;-1 )P, . 
tk ~ tot,tj tot,tj-1 T,,t1 

j=l 

where 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

In order to validate the proposed algorithm, we illustrate,in Figure (6.11), the total 

absorption and transmission probabilities for a capillary segment similar to the one studied 

previously in Section 6.3 and compare our results to the results obtained using the Finite 

Element solver. It is obvious that the results obtained using the segmentation model are very 

accurate and close to those obtained by the Finite Element solver. Also, the computational 

time required for implementing our model (using MATLAB) is 7.84 7 4 * 10-2 sec which 
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is greatly less than the time required by the Finite Element solver (4.4 hrs). Moreover, 

the segmentation algorithm can be easily used to model complex capillary network since 

it can be divided into smaller sections that will be integrated using the data provided in 

Tables (D.l and D.2). 

In order to have a handy method for the calculation of Pt~tt , we introduce, in Fig-
, J 

ure ( 6.12), a diagram representing the absorption probability for a capillary segment of dif-

ferent lengths using the data presented in Table (D.l). The main advantage of Figure (6.12) 

is that it can be used to acquire Pt~tt. for a capillary segment with a known pressure ter-
, J 

minals. For example, the absorbing probability at time tj of a capillary segment starts at 

the arteriole end ( 40mmH g) with p0 at the end terminal can be calculated directly from the 

diagram at the point (ln(tj) + 18.4, 4i~0 + 1). Further diagrams, for segments starting at 

different pressure levels, can also be acquired using the data in Tables (D.1 and D.2). 

6.5 Modeling the Exchange of Multiple Particles 

In this section we model the exchange probabilities (absorption and transmission) of multi-

ple particles entering a capillary network. Let no be the initial number of particles entering 

a capillary network that has an absorbing and transmission probabilities of PA,tj = Pt~t~tj 

and Pr,tj = Pt~t,tj' respectively. Hence, the probability that there are n absorbed particles 

within the network at time tj becomes 

PJ·(n) = (no) P.4 t (1 - PA t·)no-n n = 1, ... , no n , J , J 
(6.22) 

Similarly, the probability that there are m transmitted particles within the network at 

time tj is 
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Figure 6.11: Comparison of the Finite Element and Segmentation Methods in calculating 
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p ·(m) = (no) p,m (l _ p, .)no-m 
J m T,tj T,t1 m= l, ... ,no (6.23) 

Finally, The joint probability of n absorbed and m transmitted particles is given by 

P ( ) (
no) (no - m) p,m pn ( p p, )n0 -m-n 

J. m, n = T t At. 1 - At - T t1· 
m n ' 1 ' 1 ' 1 ' 

m+n=l, ... ,no 

. (6.24) 
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6.6 Conclusions 

In this chapter we addressed the problem of modeling the exchange process in capillary 

networks. To model the flow in the capillary plasma, we used Navier-Stocks equations 

with preamble walls and no-slip condition. To calculate the absorption and transmission 

probabilities of a particle in a capillary segment, we implem~nted Fokker-Planck equations 

with anisotropic diffusivity in the presence of plasma flow. To achieve computational ef

ficiency, we proposed the Segmentation Model (SM), at which the capillary segment is 

divided into small sections and the probabilities of absorption and transmission are calcu

lated separately for each section. These probabilities are then used to integrate any general 

capillary network. 

Our approach can be easily applied to any capillary network. For the best of our knowl

edge, it can be used in different applications such as drug delivery, bacterial clearance, · · · 

etc. 

6. 7 Publications 

• A. Atalla and A. Jeremie, "Modeling the Capillary Exchange Using Coupled Stochastic

Navier Stocks Model", submitted to Physical Review E. 

• A. Atalla and A. Jeremie, "Modeling the Bacterial Clearance in Capillary Net

work Using Coupled Stochastic-Differential and Navier-Stokes Equations", COM

SOL Conference 2009. 
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Chapter 7 

Concluding Remarks 

We have proposed modeling techniques for some diffusion problems and their inverse algo

rithms. We addressed the problem of localizing the diffusivity disorder in the myocardium 

using ECG/MCG sensor arrays. The proposed algorithm can be easily extended to account 

for an arbitrary spatial variation in the diffusivity tensor using a set of a priori known ba

sis functions. In addition the parametric shape of the anomaly can be extended to model 

an arbitrary region using a three-dimensional spatial Fourier transform. An effort should 

be made to examine the sensitivity of the proposed algorithms to the size of diffusivity 

difference between "regular" tissue and anomaly as well as the number of the unknown 

parameters needed to model arbitrary shapes. 

For the cases of low source intensity, where the classical model of diffusion fails to pro

vide satisfactory estimates, we proposed a computationally efficient algorithm for source 

localization using stochastic differential equations. The stochastic model accounts for the 

random effects which are not accounted for in commonly used classical techniques based 
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on Fick's law of diffusion. Hence, it provides accurate results when estimating the prop

erties of low intensity sources. Also, we extended our algorithm to account for boundaries 

and proposed a maximum likelihood estimators for the boundary properties. To the best 

of our knowledge, this is a first attempt to estimate the absorbing region using stochastic 

differential equations in the presence of drift. This algorithm can be easily extended to 

various scenarios consisting of realistic geometries (urban environment, tunnel structures, 

turbulence etc.), by properly accounting for drift (wind, fl.ow) and boundary conditions. An 

effort should be done to examine the robustness of the stochastic algorithm. Also, a study 

of the source intensity limit, at which the classical technique fails, should be done. 

We have also addressed the problem of modeling the exchange process in capillary 

networks. At which, we used a coupled Navier-Stocks and Fokker-Planck equations to 

construct a computationally efficient algorithm (Segmentation Model - SM) for modeling 

the absorption and transmission probabilities of particles traveling through a capillary bed. 

The SM can be used to model complex capillary networks without the need of numerical 

simulation. 

Further research should include the implementation of the SM in drug delivery problems 

and examine its robustness when applied to different capillary networks. Also, it should 

be extended to include different blood vessels and surrounding tissues. This would include 

implementing the different tissue and fl.ow properties. 
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Appendix A 

Solution of the Diffusion Equation 

The solution to (2.4) is obtained by using the fundamental solution (i.e. Green's function) 

along with coordinate transformation. First let us consider the diffusion equation with no 

advection term that is 

oc(r, t) ot = V' · (K(c,r)V'c(r,t)) (A.l) 

For the isotropic and homogenous media, the above equation can be written in the 

following form 

oc(r, t) = vn2 ( ) 
Ot /\.,V CT,t (A.2) 

We show that the Green's function for the diffusion equation 

G(r t) = exp ----1 { llr - roll 2
} 

' 6K:7r(t - to) 6K(t - to) 
(A.3) 

satisfies A.2 and behaves like a delta function at t = t 0 • 

Plugging the Green's function into the diffusion equation, (A.2), gives on both sides 
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8G(T, t) = -~G(T t) + llT - Toll2 G(T t) = K\l2G(T t) (A.4) 
8t t ' 6Kt2 ' ' 

verifying that it is a solution to the equation. 

Ast ---+ t0 , for T =J. To, the argument of the exponent goes to -oo, and G(T, t) ---+ 0. 

For T = To, it goes to infinity as t ---+ oo. For a general initial condition c(T,O)=g(T), the 

solution of the diffusion equation is 

c(T,t) = j g(T*)G(T-T*,t)d3T* (A.5) 

Now, lets account for the convection term and substitute the coordinate transformation 

for the moving reference frame into (A.1). The coordinate transformation for the moving 

system is 

f T-(T0 +vt) (A.6) 

i = t-to (A.7) 

and this can be substituted into (2.4) using the chain rule we can derive 

8c( r, £) _ v .. 02 ( , ') 
------,-, - - /\., v c T , t 

8t 
(A.8) 

This is just the diffusion equation in the coordinates r and i with solution for an ins tan-

taneous point source of 

, , 1 { ( r )2
} G(T t) =--,exp --, 

' 6K1ft 6Kt 
(A.9) 

Converting the solution back to T and t coordinates 
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G( ) 1 { l\r - (ro + v(t - to)ll 2
} r t = exp --------

' 6K7r(t - to) 6K,(t - to) 
(A.10) 

(A.5) can be used then to calculate the general solution for c(r,O)=g(r). 
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Appendix B 

Computation of the Classical Estimators 

for co and ro 

We compute the estimators Co and r 0 that maximize (2.13). 

The derivative of (2.13) with respect to Co is given by 

In order to maximize (2.13), let 

Which leads to 

And 

8log(£) = 0 
&eo 

p p 

L::yfak(e) = eo L:ak(ef ak(e) 
k=l 

Co= p 

L llak(B)\1 2 

k=l 
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(B.2) 

(B.3) 

(B.4) 



For the computation of r 0 , we take the derivative of (2.13) with respect to r 0 

Let 

Which leads to 

Olog(.C) = 
0 

Oro 

(B.5) 

(B.6) 

(B.7) 

where R is a diagonal matrix that holds the differences between the measurement point 

and r 0 , as follows 

0 0 

0 0 
R= (B.8) 

0 0 

Then, estimator r 0 that maximizes (2.13) is given by 

(B.9) 
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Appendix C 

Derivation of the Likelihood Function in 

the Presence of Noise 

In the presence of noise, the measurement vector (y i) is given by 

(C.l) 

where nj is the model predicted data vector, ei is the noise vector and 'ljJ is the estimation 

parameter vector. 

We assume that the model vector and the noise vector are statistically independent (un-

correlated), hence, the probability mass function of the measurement vector y i becomes the 

convolution of the probability mass functions of the actual data vector, i.e., Equation (4.13), 

and the measurement noise vector. The measurement noise is assumed to have a multivari-

ate Poisson distribution, given by 

(C.2) 

117 



wheres min(e1 , · · · , em) and Ao is the covariance between all the pairs of the error 

vector. 

Since we assume the error vector to be uncorrelated (i.e. Ao = 0), (C.2) reduces to 

(C.3) 

Also, we assume the error to be i.i.d (i.e. A1 = · · · = Am = A), which leads to the 

following simplification 

(C.4) 

Hence, the joint PMF of the measurement vector is given by 

(C.5) 

Which leads to 

Ylj Ymj ( ) -m>. no .. . e . ~ ~ T1 ···Tm 
n=O rm=O 

(C.6) 
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AppendixD 

Values of PA. t. and Pr. t. for 50 
i' J i' J 

Capillary Sections 

Below, in Tables (D.1 and D.2), we list the values of PA;.tJ and Pr;,t1 for 50 sections span

ning a pressure domain of 15 - 40 mmHg with osmotic pressure of 25 mmHg. The 

calculations are done for 10 time steps. 
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........ 
N 
0 

~ 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1 

0.09582 

0.0935 

0.09126 

0.0891 

0.08702 

0.08502 

0.0831 

0.08126 

0.0795 

0.07782 

0.07622 

0.0747 

0.07326 

0.0719 

0.07062 

2.8 3 4 

0.8145 0.8624 0.9007 

0.7948 0.8415 0.8789 

0.7757 0.8213 0.8578 

0.7573 0.8019 0.8375 

0.7397 0.7832 0.818 

0.7227 0.7652 0.7992 

0.7064 0.7479 0.7811 

0.6907 0.7313 0.7638 

0.6757 0.7155 0.7473 

0.6615 0.7004 0.7315 

0.6479 0.686 0.7165 

0.635 0.6723 0.7022 

0.6227 0.6593 0.6886 

0.6111 0.6471 0.6759 

0.6003 0.6356 0.6638 

PAi,t 

6 10 20 40 100 200 

0.9295 0.939 0.9486 0.9534 0.9579 0.9582 

0.907 0.9163 0.9257 0.9303 0.9347 0.935 

0.8852 0.8943 0.9035 0.908 0.9123 0.9126 

0.8643 0.8732 0.8821 0.8865 0.8907 0.891 

0.8441 0.8528 0.8615 0.8658 0.8699 0.8702 

0.8247 0.8332 0.8417 0.8459 0.8499 0.8502 

0.8061 0.8144 0.8227 0.8268 0.8308 0.831 

0.7882 0.7963 0.8045 0.8085 0.8124 0.8126 

0.7712 0.7791 0.7871 0.791 0.7948 0.795 

0.7549 0.7626 0.7704 0.7743 0.778 0.7782 

0.7393 0.747 0.7546 0.7584 0.762 0.7622 

0.7246 0.7321 0.7395 0.7433 0.7468 0.747 

0.7106 0.7179 0.7253 0.7289 0.7324 0.7326 

0.6974 0.7046 0.7118 0.7154 0.7188 0.719 

0.685 0.6921 0.6991 0.7027 0.706 0.7062 



PA;,t 

~ 1 2.8 3 4 6 10 20 40 100 200 

16 0.06942 0.5901 0.6248 0.6525 0.6734 0.6803 0.6873 0.6907 0.694 0.6942 

17 0.0683 0.5806 0.6147 0.642 0.6625 0.6693 0.6762 0.6796 0.6828 0.683 

18 0.06726 0.5717 0.6053 0.6322 0.6524 0.6591 0.6659 0.6692 0.6724 0.6726 

19 0.0663 0.5636 0.5967 0.6232 0.6431 0.6497 0.6564 0.6597 0.6628 0.663 

20 0.06542 0.5561 0.5888 0.6149 0.6346 0.6411 0.6477 0.6509 0.654 0.6542 -N - 21 0.06462 0.5493 0.5816 0.6074 0.6268 0.6333 0.6397 0.643 0.646 0.6462 

22 0.0639 0.5432 0.5751 0.6007 0.6198 0.6262 0.6326 0.6358 0.6388 0.639 

23 0.06326 0.5377 0.5693 0.5946 0.6136 0.6199 0.6263 0.6294 0.6324 0.6326 

24 0.0627 0.533 0.5643 0.5894 0.6082 0.6145 0.6207 0.6239 0.6268 0.627 

25 0.06222 0.5289 0.56 0.5849 0.6035 0.6098 0.616 0.6191 0.622 0.6222 

26 0.06182 0.5255 0.5564 0.5811 0.5997 0.6058 0.612 0.6151 0.618 0.6182 

27 0.0615 0.5228 0.5535 0.5781 0.5966 0.6027 0.6089 0.6119 0.6148 0.615 

28 0.06126 0.5207 0.5513 0.5758 0.5942 0.6003 0.6065 0.6095 0.6124 0.6126 

29 0.0611 0.5193 0.5499 0.5743 0.5927 0.5988 0.6049 0.6079 0.6108 0.611 

30 0.06102 0.5187 0.5492 0.5736 0.5919 0.598 0.6041 0.6071 0.61 0.6102 



....... 
N 
N 

Ls: 
31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

1 

0.06102 

0.0611 

0.06126 

0.0615 

0.06182 

0.06222 

0.0627 

0.06326 

0.0639 

0.06462 

0.06542 

0.0663 

0.06726 

0.0683 

0.06942 

2.8 3 4 

0.5187 0.5492 0.5736 

0.5193 0.5499 0.5743 

0.5207 0.5513 0.5758 

0.5227 0.5535 0.5781 

0.5255 0.5564 0.5811 

0.5289 0.56 0.5849 

0.533 0.5643 0.5894 

0.5377 0.5693 0.5946 

0.5432 0.5751 0.6007 

0.5493 0.5816 0.6074 

0.5561 0.5888 0.6149 

0.5636 0.5967 0.6232 

0.5717 0.6053 0.6322 

0.5805 0.6147 0.642 

0.5901 0.6248 0.6525 

PAi,t 

6 10 20 40 100 200 

0.5919 0.598 0.6041 0.6071 0.61 0.6102 

0.5927 0.5988 0.6049 0.6079 0.6108 0.611 

0.5942 0.6003 0.6065 0.6095 0.6124 0.6126 

0.5966 0.6027 0.6089 0.6119 0.6148 0.615 

0.5997 0.6058 0.612. 0.6151 0.618 0.6182 

0.6035 0.6098 0.616 0.6191 0.622 0.6222 

0.6082 0.6145 0.6207 0.6239 0.6268 0.627 

0.6136 0.6199 0.6263 0.6294 0.6324 0.6326 

0.6198 0.6262 0.6326 0.6358 0.6388 0.639 

0.6268 0.6333 0.6397 0.643 0.646 0.6462 

0.6346 0.6411 0.6477 0.6509 0.654 0.6542 

0.6431 0.6497 0.6564 0.6597 0.6628 0.663 

0.6524 0.6591 0.6659 0.6692 0.6724 0.6726 

0.6625 0.6693 0.6762 0.6796 0.6828 0.683 

0.6734 0.6803 0.6873 0.6907 0.694 0.6942 



....... 
N w 

~ 
46 

47 

48 

49 

50 

1 

0.07062 

0.0719 

0.07326 

0.0747 

0.07622 

PA;,t 

2.8 3 4 6 10 20 

0.6003 0.6356 0.6638 0.685 0.6921 0.6991 

0.6111 0.6471 0.6759 0.6974 0.7046 0.7118 

0.6227 0.6593 0.6886 0.7106 0.7179 0.7253 

0.635 0.6723 0.7022 0.7246 0.7321 0.7395 

0.6479 0.686 0.7165 0.7393 0.747 0.7546 

Table D.1: PA· t· for 50 sections and 10 time steps. 
" J 

40 100 200 

0.7027 0.706 0.7062 

0.7154 0.7188 0.719 

0.7289 0.7324 0.7326 

0.7433 0.7468 0.747 

0.7584 0.762 0.7622 



-N 
.j::.. 

~ 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1 

0.01384 

0.01358 

0.01332 

0.01306 

0.01281 

0.01256 

0.01232 

0.01208 

0.01185 

0.01162 

0.0114 

0.01118 

0.01096 

0.01075 

0.01055 

2.8 3 4 

0.03461 0.06922 0.2077 

0.03394 0.06789 0.2037 

0.03329 0.06658 0.1997 

0.03265 0.0653 0.1959 

0.03202 0.06404 0.1921 

0.0314 0.06281 0.1884 

0.0308 0.0616 0.1848 

0.03021 0.06041 0.1812 

0.02963 0.05925 0.1778 

0.02906 0.05811 0.1743 

0.0285 0.05699 0.171 

0.02795 0.0559 0.1677 

0.02741 0.05482 0.1645 

0.02688 0.05376 0.1613 

0.02636 0.05273 0.1582 

Pri,t 

6 10 20 40 100 200 

0.3807 0.4845 0.5884 0.6887 0.692 0.6922 

0.3734 0.4752 0.577 0.6755 0.6787 0.6789 

0.3662 0.4661 0.5659 0.6625 0.6656 0.6658 

0.3591 0.4571 0.555 0.6497 0.6528 0.653 

0.3522 0.4483 0.5444 0.6372 0.6402 0.6404 

0.3455 0.4397 0.5339 0.625 0.6279 0.6281 

0.3388 0.4312 0.5236 0.6129 0.6158 0.616 

0.3323 0.4229 0.5135 0.6011 0.604 0.6041 

0.3259 0.4148 0.5036 0.5896 0.5923 0.5925 

0.3196 0.4068 0.4939 0.5782 0.5809 0.5811 

0.3135 0.3989 0.4844 0.5671 0.5698 0.5699 

0.3074 0.3913 0.4751 0.5562 0.5588 0.559 

0.3015 0.3837 0.466 0.5455 0.548 0.5482 

0.2957 0.3764 0.457 0.535 0.5375 0.5376 

0.29 0.3691 0.4482 0.5247 0.5271 0.5273 



,_.. 
N 
Vt 

~ 
16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

1 

0.01034 

0.01014 

0.009949 

0.009757 

0.009569 

0.009385 

0.009204 

0.009027 

0.008853 

0.008683 

0.008516 

0.008352 

0.008191 

0.008033 

0.007879 

2.8 3 4 

0.02586 0.05171 0.1551 

0.02536 0.05072 0.1522 

0.02487 0.04974 0.1492 

0.02439 0.04879 0.1464 

0.02392 0.04785 0.1435 

0.02346 0.04692 0.1408 

0.02301 0.04602 0.1381 

0.02257 0.04514 0.1354 

0.02213 0.04427 0.1328 

0.02171 0.04341 0.1302 

0.02129 0.04258 0.1277 

0.02088 0.04176 0.1253 

0.02048 0.04096 0.1229 

0.02008 0.04017 0.1205 

0.0197 0.03939 0.1182 

PAi,t 

6 10 20 40 100 200 

0.2844 0.362 0.4396 0.5146 0.517 0.5171 

0.279 0.355 0.4311 0.5047 0.507 0.5072 

0.2736 0.3482 0.4228 0.4949 0.4973 0.4974 

0.2683 0.3415 0.4147 0.4854 0.4877 0.4879 

0.2632 0.3349 0.4067 0.4761 0.4783 0.4785 

0.2581 0.3285 0.3989 0.4669 0.4691 0.4692 

0.2531 0.3222 0.3912 0.4579 0.4601 0.4602 

0.2482 0.316 0.3837 0.4491 0.4512 0.4514 

0.2435 0.3099 0.3763 0.4405 0.4425 0.4427 

0.2388 0.3039 0.369 0.432 0.434 0.4341 

0.2342 0.2981 0.3619 0.4237 0.4257 0.4258 

0.2297 0.2923 0.355 0.4155 0.4175 0.4176 

0.2253 0.2867 0.3481 0.4075 0.4094 0.4096 

0.2209 0.2812 0.3414 0.3997 0.4016 0.4017 

0.2167 0.2758 0.3348 0.392 0.3938 0.3939 



....... 
N 
O'I 

Ls: 
31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

1 2.8 

0.007727 0.01932 

0.007578 0.01895 

0.007433 0.01858 

0.007289 0.01822 

0.007149 0.01787 

0.007012 0.01753 

0.006877 0.01719 

0.006744 0.01686 

0.006614 0.01654 

0.006487 0.01622 

0.006362 0.01591 

0.00624 0.0156 

0.00612 0.0153 

0.006002 0.015 

0.005886 0.01472 

PA;,t 

3 4 6 

0.03864 0.1159 0.2125 

0.03789 0.1137 0.2084 

0.03716 0.1115 0.2044 

0.03645 0.1093 0.2005 

0.03575 0.1072 0.1966 

0.03506 0.1052 0.1928 

0.03438 0.1031 0.1891 

0.03372 0.1012 0.1855 

0.03307 0.09922 0.1819 

0.03244 0.09731 0.1784 

0.03181 0.09543 0.175 

0.0312 0.0936 0.1716 

0.0306 0.09179 0.1683 

0.03001 0.09003 0.165 

0.02943 0.08829 0.1619 

10 20 40 100 200 

0.2705 0.3284 0.3844 0.3862 0.3864 

0.2652 0.3221 0.377 0.3788 0.3789 

0.2601 0.3159 0.3698 0.3715 0.3716 

0.2551 0.3098 0.3627 0.3644 0.3645 

0.2502 0.3038 0.3557 0.3573 0.3575 

0.2454 0.298 0.3488 0.3505 0.3506 

0.2407 0.2923 0.3421 0.3437 0.3438 

0.236 0.2866 0.3355 0.3371 0.3372 

0.2315 0.2811 0.3291 0.3306 0.3307 

0.227 0.2757 0.3227 0.3243 0.3244 

0.2227 0.2704 0.3165 0.318 0.3181 

0.2184 0.2652 0.3104 0.3119 0.312 

0.2142 0.2601 0.3044 0.3059 0.306 

0.2101 0.2551 0.2986 0.3 0.3001 

0.206 0.2502 0.2928 0.2942 0.2943 



....... 
N 
-...) 

~ 
46 

47 

48 

49 

50 

1 

0.005773 

0.005662 

0.005553 

0.005446 

0.005341 

Pr;,t 

2.8 3 4 6 10 20 

0.01443 0.02886 0.08659 0.1588 0.2021 0.2453 

0.01415 0.02831 0.08493 0.1557 0.1982 0.2406 

0.01388 0.02776 0.08329 0.1527 0.1943 0.236 

0.01361 0.02723 0.08169 0.1498 0.1906 0.2315 

0.01335 0.02671 0.08012 0.1469 0.1869 0.227 

Table D.2: Pr;,tJ for 50 sections and 10 time steps. 

40 100 200 

0.2872 0.2886 0.2886 

0.2817 0.283 0.2831 

0.2763 0.2776 0.2776 

0.2709 0.2722 0.2723 

0.2657 0.267 0.2671 
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