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ABSTRACT 

This study investigates ways to improve the accuracy of 3D geologic models by 

assessing the impact of data quality, grid complexity, data quantity and distribution, 

interpolation algorithm and program selection on model accuracy. The first component 

of this research examines the impact of variable quality data on 3D model outputs and 

presents a new methodology to optimize the impact of high quality data, while 

minimizing the impact of low quality data on the model results. This 'Quality Weighted' 

modelling approach greatly improves model accuracy when compared with un-weighted 

models. 

The second component of the research assesses the variability and influence of 

data quantity, data distribution, algorithm selection, and program selection on the 

accuracy of 3D geologic models. A series of synthetic grids representing environments of 

varying complexity were created from which data subsets were extracted using specially 

developed MA TLAB scripts. The modelled data were compared back to the actual 

synthetic values and statistical tests were conducted to quantify the impact of each 

variable on the accuracy of the model predictions. The results indicate that grid 

complexity is the predominant control on model accuracy, more data do not necessarily 

produce more accurate models, and data distribution is particularly important when 

relatively simple environments are modelled. A major finding of this study is that in some 

situations, the software program selected for modelling can have a greater influence on 

model accuracy than the algorithm used for interpolation. When modelling spatial data 
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there is always a high level of uncertainty, especially in subsurface environments where 

the unit(s) of interest are defined by data only available in select locations. The research 

presented in this thesis can be used to guide the selection of modelling parameters used in 

3D subsurface investigations and will allow the more effective and efficient creation of 

accurate 3D models. 
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CHAPTER! 

INTRODUCTION 

Three-dimensional (3D) modelling has been used in the field of geosciences for many 

years. The oil industry has been using 3D models in some capacity since the 1930s (Berg 

& Keefer, 2004), but only recently (in the past 20 years) have 3D models become an 

important element in geological and hydrogeological studies (Berg & Keefer, 2004). 

Today, 3D geological models are used for a wide variety of applications including 

resource (mineral, oil, gas, and groundwater) exploration (Jessel, 2001; Gong et al., 2004; 

Parks et al., 2005; Rawling et al., 2006; Pranter et al., 2007; Kaufmann & Martin, 2008; 

Sech et al., 2009), identification of source protection areas (Ross et al., 2005; Burt, 2007; 

Zwiers et al., 2008; Bajc et al., 2009), predicting contaminant migration pathways (Birken 

& Versteeg, 2000; Saito & Goovaerts, 2002; Culshaw, 2005), and the reconstruction of 

past geologic events and processes (MacCormack et al., 2005; Logan et al., 2006; Zanchi 

et al., 2009; Keller et al., 2009; Susini & De Donatis, 2009) 

A relatively recent application of 3D models is to aid with studies and 

investigations designed to protect human health and safety, such as groundwater source 

protection (Sharpe & Russell, 2005; Burt & Bajc, 2007), and natural hazard risk 

assessment (Kemec & Duzgun, 2006; Deparis et al., 2007; Hengxing et al., 2007; Ongaro 

et al., 2008; Frattini et al., 2008). After the fatal Walkerton tragedy in 2000, a key 

recommendation of the subsequent inquiry was for every municipality in Ontario to 

develop groundwater source protection plans in which 3D subsurface models play a key 
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role (Sharpe & Russell, 2005; Burt & Bajc, 2007). The purpose of groundwater source 

protection plans is to protect sources of drinking water from potential contaminants by 

accurately identifying sensitive areas at high risk of contamination and potential 

contaminant transport routes (O'Connor, 2000; Sharpe and Russell, 2002). 3D subsurface 

models are used to analyze and visualize the geometry and extent of geological units that 

serve as either aquifers (allowing effective transmission of water and/or contaminants) or 

aquitards (that retard fluid flow), and are critical to the understanding of the overall 

groundwater system. Failing to address uncertainty in such models could have fatal 

repercussions; ensuring that 3D model results are as reliable and accurate as possible is 

therefore of great importance (O'Connor, 2002; Sharpe & Russell, 2005). 

The technology and computational software required to produce 3D models is 

now readily accessible to a wide range of users. Unfortunately, not all users are aware of 

the limitations and potential inaccuracies of the model outputs and apply these mod~ls 

inappropriately (Goodchild & Haining, 2004). All models are simply approximations of 

what exists in reality and it has even been stated by Box (1976) that all models are wrong, 

but some are useful. This raises the issue of model accuracy and the need to identify and 

quantify uncertainty in model predictions (Jackson, 2007). The accuracy and reliability 

of 3D subsurface models being generated for a range of applications is often questionable 

(Thorleifson & Berg, 2002; Keefer & Rittenhouse, 2005; Venteris, 2007). Reasons for 

this may be the simplistic perception that computer generated models, which are capable 

of calculating model estimations to multiple significant digits, are incredibly precise 

(Goodchild, 2006). This view of model accuracy (uncertainty) is drastically changing as 
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more people realize that 3D models are simply approximations/versions of reality and that 

it is the responsibility of the modeler (not the computer) to ensure the end result is as 

accurate and realistic as possible (Devillers & Jeansoulin, 2006). 3D models are 

frequently used as the basis for important and costly decisions, such as determination of 

the economic feasibility of mineral or oil extraction from a specific area (Milkereit et al., 

2000; Eaton et al., 2003; Feltrin et al., 2009), identification of sufficient groundwater 

resources to support the future growth of rural cities (Howard, 1997; Howard & 

Livingstone, 2000; Sharpe et al., 2002), and the identification of contaminant migration 

pathways (Birken & Versteeg, 2000). Therefore, identifying potential sources of 

uncertainty within 3D models, and evaluating model accuracy and reliability is extremely 

important and can have costly implications (Isaaks & Srivistava, 1989; Englund, 1990; 

Weber & Englund, 1992; Brus et al., 1996; Zimmerman et al., 1999; Schloeder et al., 

2001; Saito & Goovaerts, 2002; Costa, 2003; Dille et al., 2003; Jones et al., 2003; 

Jackson, 2007). 

It is critical for any modeler or model user to be cognizant of the uncertainty and 

errors associated with 3D models (Weber & Englund, 1992; Weber & Englund, 1994; 

Zimmerman et al., 1999; Jones et al., 2003; Devillers & Jeansoulin, 2006; Tacher et al., 

2006; Fisher et al., 2006). Unfortunately, many studies and even software companies 

avoid addressing the uncertainty associated with interpolating data (Houlding, 1994; 

Keefer, 2005; Devillers & Jeansoulin, 2006; Goodchild, 2006; Tacher et al., 2006; 

Keefer, 2007). Goodchild (2006) suggests that there has been little demand for methods 

to characterize and quantify uncertainty in 3D modelling studies conducted over the past 
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30 years. However studies are beginning to emerge that assess the impact of various 

interpolation algorithms on model output results (Weber & Englund, 1992; Weber & 

Englund, 1994; Brus et al., 1996; Walker & Loftis, 1997; Nalder & Wein, 1998; 

Zimmerman et al., 1999; Schloeder et al., 2001; Dille et al., 2003; Kravchenko, 2003; 

Lapen & Hayhoe, 2003). This is a promising start, although algorithm selection is only 

one variable that may affect model accuracy. Numerous other sources of uncertainty can 

be introduced into 3D models that relate to the quality, quantity and spatial distribution of 

input data, the geologiG complexity of the area being modelled, and the software program 

selected for use. It is imperative to identify these potential sources of uncertainty and 

thoroughly understand how they impact the accuracy and reliability of 3D model results. 

Objectives of this research 

The overall objective of this study is to investigate ways to improve the accuracy 

of 3D geologic models by assessing the impact of data quality, grid complexity, data 

quantity and distribution, as well as interpolation algorithm and program selection on 

model accuracy. 

In 1997, Strong et al. (1997) determined that the negative impact of low quality 

data used in studies employing 3D modelling techniques, on both the economy and 

society, was in the billions of dollars. There is no cost estimate on what this impact 

would be today, but it can be assumed that both the cost and impacts are likely increasing 

at an exceptional rate due to the increased accessibility and transferability of geospatial 
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data (Devillers et al., 2002). As the demand for 3D geological models has steadily 

increased, so too has the dependency on large, readily available digital databases for input 

data. A serious conce:m with the 'unedited' use of large digital databases as the primary 

source of data for 3D subsurface modelling is the variable quality of the data, which 

severely reduces the reliability of model outputs (Goodchild & Clarke, 2002; Burt, 2004; 

Dey et al., 2005; Carter & Castillo, 2006; Logan et al., 2006; Venteris, 2007). This 

presents a major problem when trying to create accurate 3D models as most modelling 

programs give equal weight to all input data, thus allowing relatively low quality data to 

override the influence of higher quality data, negatively impacting the output model 

accuracy and reliability. Despite recognition of the problem of including variable data 

quality in the modelling process, no studies have proposed methods to rectify the issue 

(Goodchild & Clarke, 2002; Keefer, 2005; Logan et al., 2006; Burt, 2007). Research 

reported in this thesis (Chapter 2) proposes an innovative 'Quality Weighting' 

methodology that allows the user to assign a differential weighting factor to data points of 

variable quality in the;: modelling process. This allows the 3D modelling program to 

maximize the use and effectiveness of data from all available sources while giving high 

quality data greater influence on the final model output. 

A common saying in 3D modelling is that "you can never have enough data", 

which leads to the assumption that increased data quantity will lead to increased model 

accuracy. Some studies boast that their models were created with tens of thousands of 

data points (Bajc & Newton, 2005; Keller et al., 2005; Logan et al., 2006), to upwards of 

370,000 data points (Gunnink, 2005). Other studies claim that they have developed 3D 
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models with what they consider to be "minimal', "insufficient', or "sparse' numbers of 

data points, which raises questions concerning the accuracy of model results (Wu et al., 

2005; de Kemp, 2006; Paulen et al., 2006; Bond et al., 2007). It has been suggested by 

Davis (2002) and Houlding (2000) that models should ideally be interpolated with 

regularly distributed data throughout the study area; however, in geological studies this is 

rarely the case. The vast majority of 3D geologic studies are interpolated with clustered 

data (Krajewski & Gibbs, 1996; Davis, 2002; Paulen et al., 2006; Bond et al., 2007; 

Keefer, 2007), and it is therefore important to understand the impact of data quality and 

distribution on model accuracy. Chapter 3 of this thesis presents a quantitative 

assessment of the impact of data quantity, distribution and algorithm selection on the 

accuracy of 3D models using synthetic grids surfaces. 

The importance of understanding variability in modelling algorithms was 

identified by (Englund, 1990) as having significant effects on both the quality of the 

results and decisions based on the results. The impact of algorithm selection on the 

accuracy of model predictions has been tested in many studies (Weber & Englund, 1992; 

Weber & Englund, 1994; Brus et al., 1996; Walker & Loftis, 1997; Nalder & Wein, 1998; 

Zimmerman et al., 1999; Schloeder et al., 2001; Dille et al., 2003; Jones et al., 2003; 

Kravchenko, 2003; Lapen & Hayhoe, 2003). However none of these studies considered 

the impact of program selection upon model accuracy. The research presented in Chapter 

4 assesses the impact of both model and program selection on the accuracy of 3D models 

generated by different algorithms and with different numbers and distributions of data 

points. 
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Identifying and quantifying the impact of the many variables that affect model 

accuracy is important and can have huge implications to a wide variety of geosciences 

applications (Isaaks & Srivistava, 1989; Englund, 1990; Weber & Englund, 1992; Weber 

& Englund, 1994; Brus et al., 1996; Zimmerman et al., 1999; Schloeder et al., 2001; 

Costa, 2003; Dille et al., 2003; Jones et al., 2003). 

Thesis Structure 

These objectives were addressed in the form of three chapters included in this 

thesis. These chapters are formatted for publication in scientific journals and summarized 

below. 

Chapter 2 - Enhancing the Reliability of 3D Subsurface Models through Differential 
Weighting and Mathematical Recombination of Variable Quality Data 

Input data used in 3D modelling can come from a variety of sources and may be 

categorized according to their reliability and/or quality. The output from the 3D model is 

a prediction of subsurface conditions based on these data and the reliability of the output 

model is highly dependent on both the quality of input data and the types of interpolation 

methods used. 

This paper presents a new 'Quality Weighting' methodology that allows the user 

to assign a differential weighting factor to data points of variable quality in the modelling 

process. Input data are categorized into High and Low Quality Datasets which are then 

recombined using a grid math process in which a differential 'weighting' factor is 
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applied. This allows the 3D modelling program to maximize the use and effectiveness of 

data from all available sources while giving high quality data greater influence on the 

final model output and will result in the generation of more accurate and reliable 3D 

subsurface models. 

Chapter 3- Evaluating the impact of data quantity, distribution, and algorithm 
selection on the accuracy of 3D subsurface models using synthetic grid models of 
varying complexity. 

Testing the accuracy of 3D modelling algorithms used for geological applications 

is extremely difficult as model results cannot be easily validated. This paper presents a 

new approach to the evaluation of the effectiveness of common interpolation algorithms 

used in 3D subsurface modelling, by using four synthetic grids that represent conditions 

of varying geologic complexity. Employing synthetic grids for this evaluation allows 

quantitative statistical assessment (root mean square error and bias error) of the accuracy 

of the two interpolation algorithms (inverse distance weighting and ordinary kriging) 

being tested. 

The objective of this paper is to evaluate the effectiveness of the two algorithms to 

model the synthetic grids employing different input data density and spatial distribution 

patterns. This evaluation will provide valuable information that can be used to guide 

selection of the most appropriate algorithm, data quantity and data distribution pattern for 

interpolating subsurface units, and ultimately will lead to more effective and efficient 

means of modelling subsurface environments. 
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Chapter 4 - Assessing the Impact of Program Selection on the Accuracy of 3D 
Geologic Models 

As the field of 3D subsurface geological modelling develops at an increasingly 

rapid rate, so too does the number of available software packages catering to these 

applications. Although most of these software programs offer very similar ensembles of 

algorithms for interpolating data, little consideration has been given to the assessment of 

differences in uncertainty and variability introduced into the model by software program 

selection. In this study, inverse distance weighted and ordinary kriging algorithms from 

three different software programs (ArcGIS, ROCKWORKS 2006, and VIEWLOG) were 

used to interpolate identical datasets. The objective of this paper is to determine if 

program selection has an impact on model accuracy, and if so, to identify the model 

conditions resulting in the greatest differences. 

Chapter 5 - Conclusions and Recommendations for Future Work 

This chapter summarizes the results and conclusions reported in this thesis and 

makes recommendations for future work. 
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CHAPTER2 

ENHANCING THE RELIABILITY OF 3D 
SUBSURFACE MODELS THROUGH 
DIFFERENTIAL WEIGHTING AND 

MATHMATICAL RECOMBINATION OF VARIABLE 
QUALITY DATA 

Abstract 

One of the tirst stages of the 3D subsurface modelling process involves collation 

and analysis of available borehole and/or outcrop data to identify individual subsurface 

units, usually distinguished by the grain size of the sediment, and the elevation of their 

bounding contacts. Input data can come from a variety of sources and may be categorized 

according to their reliability and/or quality. The output from the 3D model is a prediction 

of subsurface conditions based on these data and the reliability of the output model is 

highly dependent on both the quality of input data and the types of interpolation methods 

used. 

This paper presents a new 'Quality Weighting' methodology that allows the user 

to assign a differential weighting factor to data points of variable quality in the modelling 

process. Input data are categorized into High and Low Quality Datasets which are then 

recombined using a grid math process in which a differential 'weighting' factor is 

applied. This allows the 3D modelling program to maximize the use and effectiveness of 

data from all available sources while giving high quality data greater influence on the 
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final model output and will result in the generation of more accurate and reliable 3D 

subsurface models. 

2.1 Introduction 

Three-dimensional (3D) models are now being used by both private industry and 

government agencies to visualize subsurface geological characteristics as they readily 

communicate complex concepts to both specialists and the general public (EarthFX, 

2004; Jackson, 2004; Kessler et al,. 2005; Parks et al., 2005; RockWare, 2006; Jackson, 

2007; Zwiers et al., 2008). The versatility and effectiveness of 3D subsurface geological 

models allows them to be used in many different applications ranging from resource 

exploration (Gong et al., 2004; Paulen et al., 2006; Kaufmann and Martin 2008) and 

delineation of groundwater source protection areas (Ross et al., 2005; Burt, 2007; Zwiers 

et al., 2008), to the reconstruction of past geologic events and processes (MacCormack et 

al., 2005; Logan et al., 2006). Although 3D subsurface models are now routinely used in 

both geological and hydrogeological applications, the accuracy and reliability of the 3D 

subsurface models being generated is often questionable (Thorleifson and Berg, 2002; 

Keefer and Rittenhouse, 2005; Venteris, 2007). A 'reliable' 3D subsurface model is 

considered here to be a representation of subsurface conditions that most closely 

conforms to the known stratigraphy and geological history of the region, provides 

consistent results when repeatedly run, is compatible with information entered for 

individual data points, and is supported by data from 'proxy' sources. The reliability of 

3D subsurface models is particularly questionable in areas where data are sparse, 
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unevenly distributed and/or come from sources where there is little to no control on the 

quality or accuracy of the input data. 

The increased demand for 3D models to be created in short time frames has 

created a dependency on large, readily available digital databases such as the Ontario 

Water Well Database (OWD, a digital database recording sediment types encountered 

during drilling of individual water wells in the province) for input data. A major issue 

with relying on water well data as the primary (or only) data source is that large digital 

databases commonly contain data of variable quality. The geologic data collected by well 

drillers can lack consistency in terms of the classification of sediment types and wells are 

often wrongly located by position or elevation (Logan et al., 2006; Russell et al., 2007; 

Dumedah and Schuurman, 2008). Typically, this lack of positional and descriptive 

accuracy is a result of the driller's being focused on finding water rather than being 

concerned with precisely describing the characteristics of subsurface sediments and the 

elevation of unit contacts. 

A serious concern with the 'unedited' use of large digital databases, such as the 

OWD, as the primary source of data for 3D subsurface modelling is the variable quality 

of the input data, which severely reduces the reliability of model outputs (Goodchild and 

Clark, 2002; Burt, 2004; Dey et al., 2005; Logan et al., 2006; Carter and Castillo, 2006; 

Venteris, 2007). Most 3D modelers are beginning to acknowledge that their datasets are 

composed of variable quality data (Thorleifson and Berg, 2002; Bajc et al., 2004; Logan 

et al., 2006; Kaufmann and Martin, 2008) but many others do not. Unfortunately, despite 

recognition of the problem of variable data quality in the modelling process, little is being 
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done to address and rectify this issue (Logan et al. , 2006; Keefer and Rittenhouse, 2005; 

Burt 2007). According to Wang et al. (1995), the need for controls on data quality will 

become increasingly important as liability issues associated with actions taken based on 

the results of model outputs increase. As more datasets become available in digital 

format, there is more opportunity for unreliable data to be distributed along the various 

information highways that provide infom1ation for subsurface modelling and analysis. 

Manipulation and amalgamation of databases increases the likelihood that metadata will 

become separated from the data rendering the model user unsure as to the quality and 

nature of the data the model is based upon (Devillers et al. 2002). It has been estimated 

by Strong et al. (1 997) that the impact of unconstrained use of low quality data could cost 

both society and the economy billions of dollars in lawsuits and poor decision-making 

based on inaccurate information contained in model outputs. 

The variability of data quality, particularly within large digital databases, presents 

a major problem when trying to create accurate and reliable 3D models. Most modelling 

programs take the data point values at face-value and do not consider that some may be 

more reliable than others and should therefore be given more weight (influence) in the 

calculation ofthe node values used to create modelled units. Ideally, datasets used for 3D 

subsurface modelling should be composed of high quality data points (obtained from 

sources with a high degree of reliability such as outcrop descriptions or borehole logs) 

that are evenly distributed and span the entire study area, but this does not generally occur 

in practice (Issaks and Srivastava, 1989; Houlding, 1994). Typically, in regional studies, 

high quality data are clustered together around local study sites and are sparse across the 
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larger study area. In order to create an effective regional scale model it may therefore be 

necessary to include variable quality data from other sources to enhance the spatial data 

coverage. Unfortunately, the inclusion of significant numbers of low quality data points 

within an overall dataset may override the influence of high quality data and negatively 

affect both the accuracy and reliability ofthe model output (Weir 2002). 

This paper presents a methodology for 'quality weighting' input data used in 30 

subsurface modelling that allows high quality data to have a greater influence on the 

model output than less reliable (low quality) data. Subsurface data from the McMaster 

University campus, Hamilton, Ontario (Figure 2.1) and surrounding area are utilized here 

to test this new methodology. The McMaster campus area was selected because of the 

availability of both high and low quality subsurface data, and proxy data against which 

model outputs can be compared. For this study, the 3D geometry of a coarse sand and 

gravel unit lying approximately 1Om below the ground surface was modelled as it forms a 

significant local aquifer and has been the focus of other hydrogeological and contaminant 

migration studies (Conestoga Rovers and Associates 1996). The study area covers 0.62 

square kilometres and contains 113 boreholes that penetrate the sandy gravel aquifer, of 

which 44 are considered to be high quality records and 69 are low quality records (Figure 

2.2, see section 2.2). In addition to the availability of both high and low quality borehole 

data from the McMaster campus area, investigations of groundwater contamination in the 

surrounding area provide data on the location and direction of groundwater flow 

pathways that may be used to identify pem1eable units in the subsurface. These proxy 
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Figure 2.1: A) & B) Maps showing the location of McMaster Campus in Southern 
Ontario. Photos courtesy of Google Earth and Hamilton Maps. 
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Figure 2.2: Georeferened airphoto of the McMaster campus showing the location of the 
borehole data classified according to the quality of the data. High quality data points are 
shown as circles, low quality data points by squares, and erroneous data points (outliers) 
are shown as stars. 
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data are used here to validate model outputs and test the effectiveness of the 'quality 

weighting' methodology proposed here. 

2.2 Sources of Data and Data Classification 

3D modelling programs used in Quaternary geological and hydrogeological 

applications require input data on subsurface sediment types and the elevation of 

bounding contacts between different sediment types as well as borehole location data in 

order to accurately model physical properti.es through space. These data can come from a 

variety of sources including the OWD, foundation reports available from agencies such as 

the Ontario Ministry of Transportation, the borehole database compiled by the Ontario 

Geologic Survey (OGS), the Hamilton Wentworth Urban Geology Database (HWUGD) 

compiled by the Geological Survey of Canada (GSC), soil surveys conducted by local and 

municipal agencies, and individual construction and engineering reports. 

The quality of subsurface data available from each of these sources is extremely 

variable and depends to a large extent on the initial objective of data collection. Data 

considered to be the most reliable, and highest quality for 3D subsurface modelling 

purposes come from site specific soil, engineering, or construction reports for which a 

detailed understanding of the subsurface sediment characteristics and the subsurface 

elevation of unit contacts were a primary goal of data collection. Less reliable, lower 

quality data typically come from large digital databases such as the OWD for which the 

primary goal of the initial data collection was to locate water sources, and some of the 
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records were created by drillers with little expertise in the area of sediment description 

(Logan et al., 2006; Venteris, 2007). This can lead to inconsistent reporting of sediment 

types, which were of secondary importance in the data collection process, and to 

subsequent inaccuracies in the calculation of subsurface unit elevations and thicknesses. 

Inaccuracies in sedimentary unit thicknesses recorded in water well databases are 

described by Logan et al. (2006) and can be substantial. 

Unfortunately, as the demand for 3D subsurface geological models has been 

steadily increasing over the past few years, so too has the dependency on large, readily 

available digital databases, such as the OWD, for input data in order to produce models in 

shorter time frames. These databases are often utilized for 3D subsurface modelling 

because they are easily accessible, available in digital format, and also provide good 

coverage in rural areas which are generally lacking in other sources of data. However, 

the inclusion of inaccurate data can seriously 'dilute' the influence of any available high 

quality data, negatively affecting both the accuracy and reliability of the model output. 

In addition, the requirement to create 3D models quickly, and often for large 

geographic areas, has resulted in the development of many 3D modelling programs that 

function essentially as 'black boxes' requiring very little operator control. Hence, 

deficiencies in data quality or coverage are seldom acknowledged or compensated for and 

the quality of the model output is often compromised. In many studies the only data 

quality control measures implemented involve finding and eliminating anomalous data 

points (outliers), such as those with very obvious unrealistic surface elevations or 

incorrect geographic coordinates. This is often done by visually examining two 
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dimensional cross-sections generated from the data and then manually deleting the 

borehole records that appear to be 'outliers' (Macfarlane and Schneider, 2007; Venteris, 

2007). The problem with this process is that it is unlikely to eliminate all erroneous data 

points, which are then incorporated into the model. This is of particular concern when 

modelling large areas with sparse data coverage as it can be difficult to locate and gather 

sufficient data to allow identification of potential outliers. Also, certain studies, such as 

those conducted for the mining industry, are faced with the added complexity that it may 

be the so-called 'outliers' that are the points of interest. There is no set procedure for 

determining the presence of outlier data (Costa, 2003), which can be identified in various 

ways depending on the focus of the study and the modelling procedure utilized. 

Discriminating outliers that represent true values from those that are erroneous data points 

can be difficult and requires careful data screening prior to modelling in order to identify 

data points that are inconsistent with others in the vicinity (Barnett and Lewis, 1994; 

Venteris, 2007). 

In the McMaster University campus study area 113 borehole records identify the 

underlying sand and gravel aquifer. All of the available data were complied into a single 

database (herein referred to as the Original Dataset). These data were then classified 

according to the perceived quality of the borehole records, and subdivided into two 

separate databases containing either high or low quality data (herein termed the High 

Quality and Low Quality datasets respectively). A similar classification of input data into 

various categories prior to modelling was carried out in a study conducted by Burt and 

Bajc (2007) in which they identified high quality data (continuous cored holes, outcrop 
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logs, and engineering test holes), medium quality data (mud rotary and questionable 

consultants logs), and low quality data (water well records). Of the 113 borehole records 

available from the McMaster campus, 44 are considered to be high quality records and 69 

are low quality records (Figure 2.2). The high quality borehole records were obtained 

from an environmental investigation and assessment study and geotechnical engineering 

reports that contain detailed descriptions of subsurface sediments and the elevation of 

contacts between units. The 69 low quality borehole records came from two large digital 

databases (the OWD and the Hamilton Wentworth Urban Geology Database- HWUGD) 

that contain only minimal information about sediment characteristics and may include 

inaccurate documentation of borehole locations and the elevation of unit contacts. 

In order to evaluate the effects of data quality on 3D model output, each of the 

three datasets (Original, High Quality, and Low Quality) were used to separately model 

the sand and gravel unit using inverse distance weighting in ROCKWORKS 2006, 

although any interpolation algorithm could be used (Figure 2.3). Initial model outputs 

showed that the Low Quality Dataset included some very obvious outliers that identified 

the sand and gravel unit to have a thickness approximately 7 times greater than that 

recorded by surrounding data points. This extreme variation in thickness is incompatible 

with the geological context of the unit and inconsistent with surrounding data points, 

therefore these erroneous points were removed (V enteris, 2007). The removal of these 

'outliers' created a modified dataset that will be referred to as the Refined Dataset (Figure 

2.3). This fourth dataset was included in the analysis because in some studies, tests are 

done to identify and remove the most obvious outliers as they have been known to have 
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Figure 2.3: The data were separated into 4 datasets based on quality and then used to 
model the thickness of the sand and gravel aquifer using ROCKWORKS 2006. The 
dataset containing all the available data (the Original Dataset; a) was split into two 
separate datasets; one containing only high quality data (b) and the other containing only 
low quality data (c). The outliers were removed from the Low Quality Dataset to create a 
Refined Dataset (d). 
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significant impact on the analysis and interpolation results (Barnett and Lewis, 1994; 

Costa, 2003; Venteris, 2007). In order to test the improvement in the model output 

resulting from the use of a Quality Weighted approach over current methods, it was 

important to consider models generated with this Refined Dataset. 

2.3 Data Modelling 

Low quality data can have a large negative impact on the output model due to the 

process by which 3D modelling programs interpolate subsurface units from spatially 

scattered point data (Lee et al. 1992). Most modelling programs store available borehole 

information as a series of data points which are used by a selected mathematical process 

(the algorithm) to calculate node values that will form the grid (Figure 2.4). A node is an 

estimated value calculated by the gridding algorithm at each grid-line intersection along 

the grid surface, and its value is based on proximal (nearby) point data. The node values 

are then used by the 3D software to create grids that represent estimated bounding 

surfaces which are essentially visual representations of the combined node values. 

Current modelling algorithms assign 'weights' to the data point values based on their 

relative distance from a grid node, and do not take into consideration the 

quality/reliability of the value (Figure 2.5). Therefore, when there are data points of 

varying quality within the search radius of a particular grid node, the closest data point 

will have the most influence on the estimated value of that grid node regardless of its 

quality or reliability (Figure 2.5). This can be a problem if the closest data point is of low 
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Figure 2.4: Diagram to show how data points located in space (A) are overlain by a grid 
(B) populated by grid nodes which are values calculated by the selected interpolation 
algorithm (C). 
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Figure 2.5: Diagram to show how the weights are determined £:.)f gridding algorithms. 
Typical algorithm weights are based on the distance of the data points (circles & stars) 
from the node of interest (hexagon). 
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quality (less reliable) because it will have more influence on the estimated value for the 

surrounding grid nodes, which may result in an inaccurate prediction. Ideally, high 

quality data points within the search radius should have the greatest influence on the node 

values thereby increasing the reliability of the predictions and subsequent model. 

2.3.1 Creating a differential 'Quality Weighting' mechanism 

In order to differentially weight the data of high and low quality and modify their 

influence on model creation, the data points from each of the four McMaster campus 

datasets (Original, High Quality, Low Quality, and Refined Datasets) were used 

independently to calculate grid node values which could be modelled and visualized 

(Figure 2.6). Separate grid models predicting the thickness of the sandy gravel unit were 

then created using each of the four datasets. These individual grid models were all 

created with a lxl grid cell size so they could be mathematically recombined with one 

another using a grid math process. This allows a relative 'weighting' (wn) of the data 

points to be imposed on the individual grids (Grid An) combined to create the final model 

(Grid B). 

Where WI+ w2+ ..... + Wn = 1 

By performing this process, it was possible to assign a higher weighting factor to 

the higher quality data giving it more 'influence' in the output results of the model. The 

impact of this relative weighting process on the model output was further explored by 
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Figure 2.6: Flow chart showing how the grids created by the high and low quality 
datasets were then multiplied by a 'weighting factor' to either enhance or decrease the 
influence of the respective data on the fmal output model. The weighted grids were then 
mathematically recombined with one another using a grid math process. Assigning a 
larger relative weighting factor to the grid created by the high quality data allows it to 
have a greater influence on the fmal model output. 
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factoring each of the grid models produced from the datasets by a certain % value to 

either enhance or reduce the influence of those data in the final model. For example, if 

two modelled grids (e.g. Grid AI and Az) are each factored by 0.5 and then recombined; 

both grids have equal influence (50% grid AI and 50% grid Az) on the resultant 

combination grid. 

(Grid AI x 0.5) +(Grid Az x 0.5) =Grid B [AI(0.5) + Az(0.5)] 

However, if Grid AI is factored by 0.7 and Grid A2 is factored by 0.3 before they 

are combined, then Grid AI will have much greater impact on the interpolation results 

than Grid Az. 

(Grid AI x 0.7) +(Grid Az x 0.3) =Grid B [AI (0.7) + Az(0.3)] 

This methodology allows the user to select certain grids to have a greater or lesser 

influence on the final model output. There are no set guidelines for choosing the relative 

grid weights as these need to be determined by the user on the basis of their 

understanding of the geological complexity of the area, their confidence in the data, the 

spatial distribution of data points, and the purpose of their study. The complexity of the 

subsurface geology can have a considerable effect on how certain datasets are weighted. 

If the subsurface units are organized in a 'layer cake' fashion with little spatial variability 

across the study area, then the variation in the data values would be minimal, and points 

that are inaccurately located would have little effect on the final model. In this situation, 

differential weighting of the data may have minimal impact, and it would be reasonable to 

assign similar weights to all of the data. However if the subsurface geology is complex 
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with significant thickness variation within and between individual units, then it is 

necessary to use as much data as possible in order to accurately define subsurface unit 

geometries. In this case, it is more difficult to identify outliers and points that are 

misplaced, both of which could have a large negative impact on the accuracy of the final 

model output (Costa, 2003). In complex environments there is greater opportunity for 

less reliable data sources to introduce undetected errors into the model. Hence, when 

expert knowledge indicates a complex geological framework in the study area, it may be 

best to assign a greater weight to the higher quality and more reliable data, while utilizing 

the lower quality data to help constrain the model in areas where high quality data points 

are sparse. Using expert knowledge to determine data quality has been used in several 

previous studies (Logan et al., 2006; Burt and Bajc, 2007; Venteris, 2007). 

The spatial distribution of data across the study area can also have an effect on 

how datasets are differentially weighted in the modelling process. If high quality data are 

clustered in one region of the study area, it may be not appropriate to give a very high 

weighting to these data as this may unnecessarily distort the model in favour of the 

clustered data values which may not be representative of the whole study area. 

Conversely, if high quality data are well dispersed across the study area, the model may 

benefit from assigning them a relatively higher weighting factor in order to ensure that the 

final model most closely conforms to the high quality data points in those locations. 

Finally, assigning relative weights to datasets can also be influenced by the 

purpose of the study and the mode of data collection. Primary data, collected for the 

purpose of the current study, are considered to be of high quality as the user is familiar 
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with the methods used for data collection, and is able to enforce quality control 

mechanisms. The use of secondary data collected for a different purpose may not reliably 

record the required features and can introduce error into the model. However, these 

secondary data can be extremely important in providing a broad spread of data points to 

enhance the limited regional coverage provided by high quality data. Assigning these 

lower quality data a weighting factor that allows them to influence the model output but 

limits their impact is appropriate. It is possible for the same data to be considered 

different quality to different users (Devillers and Jeansoulin, 2006). 

Taking the above factors into consideration, the Quality Weighted methodology 

allows the user to assign relative weightings to two or more data sets, allocating the 

highest % weighting to the category desired to have most influence on the model output, 

and a lesser % weighting to the other categories. When assigning weights to the data, it is 

important to consider the geological complexity, confidence in the data, the spatial 

distribution of data points, and the purpose of the study. The weights can be assigned to 

datasets split into either High and Low quality, or can be applied to datasets classified 

into three or more categories (e.g., Burt and Bajc, 2007). In these cases, the user would 

allocate the highest % weighting to the category desired to have most influence on the 

model output, and a lesser % weighting to the other categories. For example, a 50%-

30%-20% or even a 60%-30%-10% weighting could be applied as long as the relative 

weights add to 1. 

For this study of the McMaster campus and surrounding area, expert knowledge 

of the subsurface geology was obtained from previously published studies that suggest the 
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presence of an ancient shoreline beach deposit approximately 10 meters beneath the 

McMaster campus (Karrow, 1963; Conestoga-Rovers and Associates, 1996). The High 

Quality Dataset indicated the thickness of this sand and gravel unit to be between 0.19m 

and 3.07m where as the Low Quality Dataset showed thickness values between 0.03 and 

27.12m (Table 2.1). The upper thickness values are unreasonable for this type of 

shoreline deposit and some values included in the Low Quality databset are therefore 

considered to be unreliable. However, the inclusion of low quality data in the production 

of the model is deemed necessary as the high quality data are clustered along the northern 

and eastern sections of the study area and missing or sparse in other areas (Figure 2.2). In 

order to produce a model based on good spatial data coverage, it was therefore necessary 

to allow the more regionally extensive, but lower quality data some influence over the 

production of the final model. It was decided to apply a 70% and 30% weighting to the 

high and low quality data respectively to create a model that was most strongly aligned 

with the high quality data but constrained by the lower quality data in the areas where the 

high quality data were absent. 

2.4 Testing the Method: Model Outputs 

In order to test the Quality Weighted methodology proposed here, the output from 

a Quality Weighted model is compared to a series of un-weighted models to see whether 

this process is able to improve the accuracy of the final output. The comparison can be 

done visually by examining output images and by creating maps to identify the 
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Table 2.1: Actual (observed) and interpolated grid thickness node values with 
corresponding volumes and standard deviations for the sandy gravel aquifer unit for both 
the weighted and unweighted datasets. 

Dataset Interpolated Interpolated Volume Standard Actual Actual 
Minimum Maximum Deviation Minimum Maximum 

Original 
0.31 15.82 6,398,493 1.97 0.03 27.12 

Dataset 
High Quality 0.19 3.07 3,576,689 0.71 0.15 3.6 
Dataset 
Low Quality 0.04 16.15 6,400,121 2.34 0.03 27.12 
Dataset 
Refined 

0.04 11.92 5,327,766 1.35 0.03 12.4 
Dataset 

High(0.7) + 
0.74 6.07 4,503,571 0.78 - -Low(0.3) 

High(0.5) + 
0.89 8.95 5,121,492 1.21 - -Low(0.5) 

High(0.7) + 
0.73 3.72 4,180,955 0.58 - -

Refined {_0.31 
Higb(0.5) + 

0.89 4.79 4,583,799 0.83 - -
Refined (0.5) 
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differences between output grids, and quantitatively by comparing the volume estimates 

created for subsurface units by each model. 

2.4.1 Visual Comparison of Model Outputs 

Visual comparisons were made between model outputs generated usmg the 

Quality Weighted methodology and those generated from the individual High Quality, 

Low Quality, Refined, and Original Datasets (Figure 2.3). The High Quality Dataset 

produces a model showing the subsurface sandy gravel unit to have a relatively consistent 

thickness across the study area (thickness ranges between 0.19 and 3.07 m; Table 2.1) and 

a gently undulating surface topography (Figure 2.3B). The thickness of this unit, 

modelled using both the Original Dataset and the Low Quality Dataset are much more 

variable (thickness ranges between 0.03m and 27.12m; Table 2.1) with an irregular 

surface topography controlled to a large extent by the presence of several erroneous data 

points (outliers) in the central north-west region of the study area (Figure 2.3A, C). The 

unit modelled by the Refined Dataset does not have the extreme values present in the 

Low Quality Dataset but still shows considerable thickness variation (between 0.03 and 

12.4m, Table 2.1). Much ofthis variation in unit thickness may be due to erroneous data 

points that are still included in this dataset (Table 2.1, Figure 2.3D). 

2.4.2 Grid Math 

A grid math process involving subtraction of one grid from another was utilized to 

visualize and evaluate the effects of differentially weighting the high and low quality data 

on the output models. This process involved subtracting the weighted grids from the un-
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weighted grids and the results are shown as areas of similarity and difference on a series 

of maps presented in Figure 2.7. 

Identifying the differences between grid models created with the Low Quality 

Dataset and the Refined Dataset shows that the only significant difference between the 

two grids lies in areas adjacent to erroneous data points (outliers; Figure 2.9). The dark 

shaded areas (Figure 2. 7) identify regions of the study area impacted the most strongly by 

the extreme outliers. The lighter sections of the map represent areas where the removal of 

the outliers had little or no effect. This same process was used to compare the differences 

between the Quality Weighted grids and the un-weighted grids (Figures 7, 8, 9). The 

Quality Weighted grid that combined [High (0.7) +Refined (0.3)] data was compared to 

the grid composed only of high quality data in order to identify the impact of including 

lower quality data that is constrained in its degree of influence by the weighting process. 

The most significant differences between the two maps occur along the north-west 

perimeter of the study area where the high quality grid lacks data points (Figure 2.8) and 

the Quality Weighted grid was able to use the lower quality data points to constrain the 

extremities of the grid surface (Figure 2.8). However, in the areas where high quality 

data were available, there is little difference between the [High (0.7) + Refined (0.3)] 

Quality Weighted grid and the grid composed of only of High Quality data points. This 

suggests that the combined Quality Weighted grid methodology was able to limit the 

effects of the lower quality data in areas where high quality data exist, while allowing low 

quality data to influence the grid in areas where high quality data are sparse. 
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Figure 2.7: Map showing the difference in thickness ofthe sand and gravel unit between 
the model generated with Low Quality Dataset and Refined Dataset. The greatest 
difference in thickness occurs in the area of the outliers which were removed from the 
Refined Dataset. Areas where the two grids are very similar appear as purples and blues, 
the green areas of the grid indicate where there are small differences, whereas areas of 
reds and yellows highlight the areas where the greatest differences occur. 
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Figure 2.9: Map of the Original Dataset model- High (0.7) +Low (0.3) model showing 
how the Quality Weighting method has reduced the impact of the extreme outliers. The 
greatest difference in unit thickness occurs in the area of the outliers (which are present in 
both grids) however their influence has been greatly reduced using the Quality Weighted 
method. 
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Comparing the Original Dataset with the Quality Weighted Dataset [High (0.7) + 

Low (0.3)] shows that the greatest differences occur in the area of the outliers which are 

present in both datasets but that the influence of these erroneous points has been greatly 

reduced in the Quality Weighted model output (Figure 2.9). Therefore it is evident that 

the weighting factors are allowing the higher quality data to influence even the most 

extreme values of the outliers in the Quality Weighted grids which resulted in such a 

large difference between the two grids in the northern section of the study area (Figure 

2.9). 

2.4.3 V olumetrics 

Another method of assessing the differences between the models created from 

different quality datasets is to quantify the variation in the projected volumes calculated 

for the sandy gravel aquifer unit beneath the McMaster campus area. 

Subsurface volume estimates of the sandy gravel unit were obtained by creating 

voxel models using ROCKWORKS 2006. Voxel models use the X, Y, and Z data to 

create a solid model which can then be used to calculate the number of cubic units 

(volume) contained within a specified geological layer. Once voxel models were created 

from each of the datasets (High Quality, Low Quality, Refined, and Original Datasets; 

Figure 2.1 0), it was then possible to compare the volume of the sandy gravel unit 

predicted by each of the interpolated models. Datasets created using the Quality 

Weighted method were also used to produce voxel models in the following combinations; 
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Figure 2.10: Voxel models of the sand and gravel aquifer unit produced by the a) 
Original, b) High Quality, c) Low Quality, and d) Refined Datasets. 
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[High (0.7) + Low (0.3)], [High (0.5) + Low (0.5)], [High (0.7) + Refined (0.3)], and 

[High (0.5) +Refined (0.5)]. 

The estimated volumes for the sandy gravel unit predicted by the interpolated 3D 

voxel models show a considerable amount of variation (Table 2.1 ). The most notable 

difference is the volume prediction based on the model for the Original Dataset which is 

44% greater than that derived from the High Quality Dataset alone (Table 2.1). A portion 

of the increased volume may be the result of the High Quality Dataset not being as 

spatially extensive as the Original Dataset. However, when the model generated from the 

Original Dataset was compared to the [High (0.7) + Refined (0.3)] Quality Weighted 

model, which covers the same spatial area, there was still a 35% difference in unit volume 

estimate (Table 2.1 ). These results show the large amount of variation and uncertainty 

that can be introduced into the model prediction of unit volumes through the use of 

variable quality data. Such uncertainty can have significant impact on the reliability of 

the output model, and may lead to wrongly informed decision-making in key industries 

such as mining, environmental remediation or groundwater exploration. 

2.4.4 Impact of the Quality Weighting method on Predicted Grid Node Values 

A further test of the effectiveness of the Quality Weighted methodology is to 

compare interpolated thickness values with actual (observed) values to confirm that the 

process of mathematically recombining the grids allows the High Quality Dataset to have 

greater influence over the model output. In order to do this the interpolated maximum 

thickness values for the nodes (herein referred to as maximum node values) created for 
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each of the models can be compared with actual maximum thickness values determined 

from the most reliable data sources (i.e. High Quality Dataset). The maximum node 

values calculated from the Low Quality Dataset (16.15m; Table 2.1) and the Original 

Dataset (15.82m; Table 2.1) are considerably higher than the actual maximum thickness 

recorded in the High Quality Dataset (3.6m; Table 2.1). This is most likely due to the 

influence of erroneous data points (outliers) in the Original and Low Quality Datasets 

causing an overestimation of unit thickness. In contrast, the High Quality Dataset 

produced estimated node values of 3.07m, very close to the actual value of 3.6m (Table 

2.1). The Quality Weighted [High (0.5) +Low (0.5)] model produced maximum node 

estimates of 8.95m, but when the High Quality Dataset was given a higher weighting, as 

in the [High (0.7) +Low (0.3)] weighted model, the interpolated maximum node value 

was reduced to 6.07m (Table 2.1). Results from the [High (0.5) + Refined (0.5)] 

weighted model show a reduction in the maximum node value due to the removal of 

outliers (4.79m; Table 2.1) and show closer agreement to actual values when the 

weighting is adjusted to [High (0.7) +Refined (0.3)] producing a node value of 3.72m 

(Table 2.1). This clearly demonstrates the impact of mathematically increasing the 

influence of high quality data on creating model outputs that more closely conform to 

actual values. 

2.4.5 Impact on the Standard Deviation of the Output Models 

The Quality Weighting method was also effective in reducing the standard 

deviation of the model values (Table 2.1) which implies a greater degree of statistical 

confidence in the results obtained using this methodology. The standard deviation was 
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highest in the Low Quality data model (2.34) and was lowest in the [High (0.7) +Refined 

(0.3)] data model (0.58; Table 2.1). Therefore, statistically the most reliable model is the 

one produced using the [High (0.7) +Refined (0.3)] data weighting. 

The volume estimation, node value calculations and standard deviation results 

produced by the [High (0.7) +Refined (0.3)] model are more similar to the high quality 

data output than the [High (0.5) + Low (0.5)] model output. The values in Table 2.1 

show that by comparing the grid statistics for the models produced by each dataset, it is 

evident that the grid math process utilized was able to influence the weight of the data and 

allowed the high quality data to have more influence over the final output. 

2.5 Validation of the Quality Weighting Method 

It is extremely difficult to confidently validate the accuracy of 3D subsurface 

geologic models without having to drill or excavate the entire study area which is 

typically not feasible. In this study, one of the most effective ways to quantify the 

validity of the Quality Weighted method was to calculate the Root Mean Square 

Prediction Error (RMSPE). The model with the smallest RMSPE value is considered to 

be the best and most accurate (Johnston et al. 2001). 

In this study it was assumed that the values from the High Quality Dataset are the 

most accurate and reliable, and the RMSPE was calculated by comparing the interpolated 

model values to the high quality data points. In order to establish which model produced 

node values that most closely match input values from the High Quality Dataset, 
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comparisons were made between the High Quality Dataset and the [High (0.7) +Refined 

(0.3)] and Original Dataset models. The validation results were calculated using the 

following equation; 

RMSPE = 
Lf=l ( 2 (sa - z(si)) 

2 

n 

Where 2 (sa is the interpolated value at the point (sa, z(sD is the original (observed) 

value from the input dataset at that same location, and n is the number of points within 

the input dataset. The mean values were squared in order to ensure that any deviation 

(either positive or negative) from z(si) would be identified. Models producing 

interpolated values most similar to the measured values from the High Quality Dataset 

will produce the lowest RMSPE value, and are considered to be the most accurate. The 

RMSPE value produced by interpolation of the Original Dataset was 0.58, whereas the 

value calculated for the [High (0.7) +Refined (0.3)] Quality Weighted model was 0.28. 

This indicates that the interpolations made using the Quality Weighting method produced 

a model that more closely conforms to measured values from the High Quality Dataset 

than the model generated by a non-weighted method. 

2.5.1 Comparison of Model Output with Proxy Data 

Another method of validating the accuracy of 3D model outputs is to compare 

with proxy data that provides information about subsurface unit thickness and geometry. 

In order to test that the Quality Weighted methodology was in fact producing a more 

accurate and realistic representation of the position and form of the sandy gravel unit than 
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the output from the model created using the Original Dataset in an un-weighted form, the 

output from the Quality Weighted [High (0.7) +Low (0.3)] model was compared to the 

location of groundwater and contaminant migration pathways in the study area. These 

pathways were determined independently by Conestoga Rovers and Associates (1996) 

using groundwater flow, hydraulic head and water chemistry data during an investigation 

of groundwater contamination in the region of the McMaster campus. Considering that 

groundwater (and contaminants) preferentially flow through areas with the greatest 

proportion of coarse grained sediment which would have the greatest conductivity (Fetter, 

2001; Schwartz and Zhang, 2003), then the contaminant plume delineated by Conestoga 

Rovers and Associates (1996) should map in the same position as the greatest thickness of 

the sandy gravel unit represented by the 3D model. Comparison of various output models 

with the location of the contaminant plume mapped by Conestoga Rovers and Associates 

(1996) on the basis of water quality data shows that the unit thickness model generated 

from the Quality Weighted [High (0.7) +Refined (0.3)] model more closely matches the 

position of the mapped contaminant plume (Figure 2.11a) than the model generated from 

the un-weighted Original Dataset (Figure 2.11 b). This comparison of model outputs with 

independently generated proxy data suggests that there is an improvement in the accuracy 

of subsurface model outputs when the high quality data are given more influence in the 

creation of interpolated units using a quality weighting methodology. 
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Figure 2.11: The thickest portions of the subsurface aquifer identified on the isopach map 
generated from the Quality Weighted [High (0.7) +Refined (0.3)] model (a) more closely 
correlates with the mapped contaminant plume pathways (transparent overlay) 
determined independently by Conestoga Rovers and Associates (1996) than the model 
created by the un-weighted Original Dataset (b). 
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2.6 Conclusion 

The focus of this study was to determine the effects of data quality on the 

generation of accurate 3D subsurface models and to develop a methodology that most 

effectively utilized data of varying quality in the modelling process. The study of the 

McMaster University campus area shows that significantly different 3D model outputs 

can be generated from data of variable quality, in this case illustrated by models 

generated from High Quality, Low Quality, Refined, and Original Datasets. The concept 

of 'quality weighting' input data proposed here employs a grid math process to impose a 

relative 'weighting' factor on High and Low Quality input datasets in order to better 

utilize all types of data while enhancing the influence of the high quality data and the 

reliability of the output model. The proposed Quality Weighting method is also able to 

constrain the negative impact of the lower quality data on the model output but utilizes 

these data to constrain the model in areas where high quality data are unavailable. This 

weighting process allows all data points to be used in the modelling process, yet is able to 

increase the influence of the high quality data over the lower quality data. Comparison of 

model outputs created for the McMaster University campus area indicates that the Quality 

Weighted model outputs more closely conform to the available high quality data points 

and proxy data than un-weighted model outputs. 

It is no longer acceptable to simply include a disclaimer that a dataset used in any 

type of 3D modelling study contains data of variable quality and not differentially utilize 

these data in the interpolation of the model. If the user is capable of identifying variable 
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quality data within their dataset, then they should make use of a differential weighting 

mechanism, such as the Quality Weighted methodology proposed here, to increase the 

accuracy and reliability of their model output. 
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CHAPTER3 

EVALUATING THE IMPACT OF DATA QUANTITY, 
DISTRIBUTION, AND ALGORITHM SELECTION 

ON THE ACCURACY OF 3D SUBSURFACE 
MODELS USING SYNTHETIC GRID MODELS OF 

VARYING COMPLEXITY 

Abstract 

Testing the accuracy of 3D modelling algorithms used for geological apiJlications 

IS extremely difficult as model results cannot be easily validated without the 

implementation of costly drilling programs or excavations. This paper presents a new 

approach to evaluate the effectiveness of common interpolation algorithms used in 3D 

subsurface modelling, that utilizes four synthetic grids to represent subsurface 

environments of varying geologic complexity. The four grids are modelled with two 

different algorithms commonly used for geological applications (Inverse Distance 

Weighting; IDW and Ordinary Kriging; OK), using data extracted from the synthetic 

grids in different spatial distribution patterns (regular, random, clustered, and sparse), and 

with different numbers of data points (100, 256, 676 and 1600). Utilizing synthetic grids 

for this evaluation allows quantitative statistical assessment of the accuracy (Root Mean 

Square Error [RMSE] and Bias Error [BE]) of the two interpolation algorithms being 

tested. 
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The results showed that generally, the OK algorithm produced more accurate 

models of the four grids than IDW, regardless of the number or distribution of data 

points. Algorithm selection appears to have the most impact on model accuracy when 

relatively simple grids are modelled using relatively few data points. Using a greater 

number of data points for interpolation typically improved model output, although using 

large numbers of data points was found to negatively impact the accuracy of relatively 

simple models. This suggests that optimum amounts of data are required for accurate and 

cost-effective interpolation of units of varying complexity. The most accurate models 

were created by regularly and randomly distributed data points, followed by sparse and 

clustered data respectively. These results imply that in certain geological situations 

relatively small numbers of randomly distributed sparse data points can generate more 

accurate 3D models than larger amounts of data that are clustered together. 

3.1 Introduction 

Three-dimensional (3D) geo-cellular models are becoming increasingly useful for 

geoscientific applications in many fields of study such as resource exploration (Gong et 

al., 2004; Paulen et al., 2006; Kaufmann and Martin, 2008), delineation of groundwater 

source protection areas (Ross et al., 2005; Burt, 2007; Zwiers et al., 2008), and for the 

reconstruction of past geologic events and processes (MacCormack et al., 2005; Logan et 

al., 2006). Such models are valuable to both private industry and government agencies as 

they readily communicate complex concepts to both specialists and the general public 

(Shi et al., 2002; Kessler et al., 2005; Parks et al., 2005; Rock Ware, 2006; Jackson, 2007; 
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Zwiers et al., 2008). However, the increased use of 3D models for a broad range of 

applications has raised concerns about the accuracy and reliability of model outputs and 

the relationship between output quality, input data and the type of interpolation algorithm 

employed in the modelling process (Weber and Englund, 1992; Weber and Englund, 

1994; Zimmerman et al., 1999; Jones et al., 2003). 

This paper will explore the performance of the two most commonly used and 

assessed interpolation algorithms, Ordinary Kriging (OK) and Inverse Distance 

Weighting (IDW; Tabios and Salas, 1985; Weber and Englund, 1992; Weber and 

Englund, 1994; Brus et al., 1996; Walker and Loftis, 1997; Nalder and Wein, 1998; 

Zimmerman et al., 1999; Schloeder et al., 2001; Jones et al., 2003; Kravchenko, 2003; 

Dille et al., 2003; Lapen and Hayhoe; 2003), on the modelling of four synthetic grids that 

represent subsurface geologic environments of variable complexity. The advantage of 

using synthetic datasets to conduct this evaluation is that the point values for each surface 

being modelled are known at every location, which allows quantitative analysis of the 

variability between actual and interpolated values. In order to evaluate the influence of 

input data point distribution on the accuracy of the interpolations made, the synthetic 

grids were sampled using four different sampling patterns (clustered, random, regular, 

and sparse). These sampling patterns were selected to represent the types of data 

distribution that may be encountered in various geoscientific applications. The number of 

data points used for interpolation was also varied (1 00, 256, 676, and 1600 points were 

modelled independently) in order to identify the optimum number of data points required 

to create a reasonably accurate model in situations of varying subsurface complexity. 
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This information was used to conduct a cost-benefit analysis to identify the point at which 

the inclusion of more data (cost) did not produce sufficient enhancement of model 

accuracy (benefit). 

The objective of this paper is to evaluate the effectiveness of common 

interpolation algorithms used in 3D subsurface modelling using synthetic models of 

varying geologic complexity, with different input data density and spatial distribution 

patterns. This evaluation will provide valuable information that can be used to guide 

selection of the most appropriate algorithm for interpolating subsurface units, and 

ultimately will lead to more effective and efficient means of modelling subsurface 

environments. 

3.2 Methods 

Comparing the effectiveness of interpolation algorithms has been previously 

conducted using digital elevation models (DEM; Weber and Englund, 1992; Weber and 

Englund, 1994), contaminant plume data (Jones et al., 2003), soil data (Brus et al., 1996; 

Walker and Loftis, 1997; Schloeder et al., 2001; Kravchenko, 2003; Paulen et al., 2006), 

weed seedling density (Dille et al., 2002), and climatological data (Tabios and Salas, 

1985; Nalder and Wein, 1998; Lapen and Hayhoe, 2003; Moffat et al., 2007). A notable 

limitation of many of these studies is that the comparison of interpolated values is made 

with an 'original' model and/or surface that itself has been derived through interpolation. 

In such cases, it is likely that the 'original' (interpolated) surface deviates from the real 
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surface, and thus goodness-of-fit measures will not represent the true performance of the 

interpolation method. There is some inherent error propagation within the process of 

using sampled points from an interpolated surface to interpolate any subsequent surfaces, 

and this can seriously limit the degree to which algorithm accuracy can be determined 

(Heuvelink, 1998; Zimmerman et al., 1999; Burrough, 2001). Zimmerman et al., (1999) 

attempted to resolve the issue of error propagation on interpolated surfaces by utilizing 

mathematical equations to generate synthetic surfaces, from which points could be 

san1pled and re-interpolated. This work allowed quantitative comparison of the 

interpolated grid with the original mathematical surface and concluded that spatial 

interpolation accuracy should only be estimated using synthetic surfaces, for wh1ch values 

are known for all locations (Zimmerman et al., 1999). However, the limitation of using 

mathematically-generated synthetic surfaces to test the effectiveness of algorithms used in 

3D subsurface modelling is that these surfaces do not closely resemble the form of 

realistic geological units or boundaries that would be encountered in subsurface 

investigations. Hence, the synthetic grids used in the present study were created 

specifically to represent the type and form of units or surfaces that may be encountered in 

geological situations. 

3.2.1 Synthetic Surface Development 

Four synthetic grids were created to represent realistic geological surfaces of 

varying complexity (Figure 3.1 ). The first synthetic grid takes the form of a simple, 

gently sloping unidirectional surface with lateral continuity in the direction perpendicular 

to the slope (grid 1; Figure 3.1a). This surface could represent a gently dipping bedrock 

74 



PhD Thesis - Kelsey E. MacCormack McMaster- Geography and Earth Sciences 

valley wall or one element of a regional-scale basin system. The second synthetic grid 

surface is slightly more complex, and consists of a linear trough between areas of 

relatively high elevation (grid 2; Figure 3.1 b). This may be used to represent a simple 

valley form, or several elements of a regional scale basin system. The third synthetic grid 

surface consists of a series of interconnected troughs separated by irregularly spaced 

linear 'highs' trending in one direction (grid 3; Figure 3.1c). This surface could represent 

the irregular topography characteristic of an eroded bedrock surface, a braided river 

system, or a smaller scale setting with more localized variability. The fourth grid is 

characterised by a sinuous trough cut into a flat surface (grid 4; Figure 3.1d) and may be 

used to represent an incised meandering river system or a local scale setting witl1 features 

showing high directional variability. Each of the four synthetic surfaces represents a 

geologic setting of differing complexity and challenge for the modelling process. 

The four synthetic grids were created using ROCKWORKS 2006 software. This 

software was selected as it allows the user to alter and manually manipulate grids using 

the 'Grid Edit' function. Four grids, each with identical 80x80 grid dimensions, and each 

with a grid spacing of 1 arbitrary unit ( 6400 grid cells for each surface) were created. The 

choice of this grid size and spacing allowed adequate detail to be included for each 

surface while not being computationally exhausting. Once the grid size was set, a blank 

grid was opened using the grid editing function. Each of the 6400 grid cells \Vas then 

assigned a thickness value between 1 and 9 to create the topographic surfaces on each of 

the four synthetic grid models. The range of thickness values was selected as it provided 
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Figure 3.1: Synthetic grids created to represent realistic geologic environments from 
which the data points for modeling were extracted. a) Grid 1 forms a gentlv sloping 
surface that may represent one element of a basin system or gently dipping bedrock valley 
wall, b) Grid 2 consists of two linear 'highs' separated by a central trough and represents 
a simple valley form, c) Grid 3 shows a series of interconnecting troughs separated by 
linear 'highs' and may represent an eroded bedrock surface or a braided river system, and 
d) Grid 4 consists of a flat surface incised by a highly sinuous channel and represents an 
incised meandering river system. 
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sufficient topographic variability to realistically represent each geological setting while 

not resulting in excessive variability between data points. 

Once each grid was created, a smoothing filter was applied to smooth the surface 

and to ensure a realistic transition in values between neighbouring grid cells. A 7x7 

smoothing filter (i.e. the value of every cell was averaged by the value of all the 

neighbouring cells within a surrounding 7 cell by 7 cell box) was applied to grid 1 (Figure 

3.la) to create a softer, more gradual slope. Grids 2, 3, and 4 (Figure 3.1b, 3.1c, 3.1d) 

were smoothed using a 3x3 filter (the smallest available) which utilized a much smaller 

bounding box. This smaller filter size was used on grids 2, 3, and 4 to maintain the 

required topographic variability. 

3.2.2 Extracting Sample Data from each Model 

To simulate the range of sampling patterns that may be applied in real-world 

subsurface modelling situations, a variety of data subsets were created for each synthetic 

surface by varying both the quantity of data points as well as their distribution. Four 

separate datasets containing 100, 256, 676 or 1600 data points (representing 1.6, 4, 10.5 

and 25% surface coverage, respectively) were extracted from each of the synthetic 

surfaces in four common sampling distribution patterns: a) clustered, b) random c) 

regular, and d) sparse (Figure 3.2; Krajewski and Gibbs, 1996; Zimmerman et al., 1999; 

Davis 2002). Subsurface geologic studies rarely disclose the percentage of the study area 

covered by data points, but they typically provide a map to show their distribution. Many 

studies incorporate data from numerous sources to maximize the amount of data used for 
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Figure 3.2: Data points were extracted from the synthetic grids in 4 spatial distribution 
patterns a) clustered, b) random, c) regular, and d) sparse. Sample distribution patterns 
for the 676 point dataset are shown. 

79 



P
hD

 T
hesis -

K
elsey E

. M
acC

orm
ack 

E
 

0 
"'0 
c (\j 

l .. I 

I
I
 

"r 
• • 

••••• 
.i' 

• 
I 

1
0 1 

I 

...:_ 
..... 

I 
I 

I 
11 

I 

\ 
I 

a
l 

.. 
I 1 

a
\
l
 

I 
I 

,
.
 

o 
',

I
 

I 
I 

I
')

 
0

1
 

) 
,}

 I 

I,.... . .... Ja"' 
I I . 

... 1 
I 

.
.

• ~: 
• 

I 
L' ; 

I
.
 
•
•
 

1' 
I 

a ... 
~
·
 
"
'o

 J. 
I 

.
.
.
.
.
 ~ 

: ... . .. .. ... . 
.,r 

,/' I. a:. :.1 ... 
a I 

I 
.
.
 11

1
 

J
-1

_
1

 
a 

1 

1 
.
.
.
.
.
 1 

a 
I 

I 
I
I
 a 

.. 
l: 

. 
I 

• 
I 

I 
• 

• 
I 

• 
I 

• 
•
. ··-._

. 
•• 

I 
a 

~ 
~
 .'-! 

a 
:
. 

• 
l 

• • 

,/' 
o 

I 
a I 

I 
{
' 

I 
I 

I 
I 

_
, 

I 

:.:,. 
. 

:. y 
• 

y
. 

-
·
 .•

 -

. . . . 

I 

I 
. 

.. 
a I·. 

..... ·"' 
.. ~
 

I 
,/1

 
.. 

. . 

C
)
 

,..._ 

I I; 
~ . 

.• ... 
·1. r!.l ... 

..... 
a 

I 
I 
~
 

1
.
.
:
 

a II 1 
I 

I 
v 

:-.:..1 II' 
• 

I 
.
.
 

.. 
··<

'1' •
•
•
•
 

<
 •• • 

~..,. ~ • 
: ~ .-

~
 .. 

I 
{" 

I 
I 

. ..... 
.. . 

~
 

0::: 
.. • 

• 
I 

• 
I 

... 
• 

,
-
.
 

,1
1

 
... 

I 8 
O

 
I 

<
.1

 
I 

a 
I
.
 

.
.
 

JC
l 
~
~
-
-
~~--~

~
~
-
-
~
~
-
-
-
-~=---~~~--~=--

-
~
~
~
~
0
0
 

>'. y
' (

-
·.: ~ f" 

~
 

• "' .. 
:-1 .. 

.. c...~ 
~o/· 

C
)
 

1
:'-

,..._ 

t 
. 

~
 

'='· 
I
I
 

, 
I
I
¥

 

I 
I 

C
)
 

"' 
• 1 ... 

.. /1• 
• 

• 
I 

C
)
 

I
I
 tj•' 

I 
-
~
 

.... 

~¥{:·.:. 
• 

,I 

"'0 
-

I
,}

 
f;l 

Q
) 

I 
I 

a 

I 
"
)
 

...... 
I "~ 

'-Q
) . .. :'l 

·:.,: · .. .. 
-
:
I
 I 

•
•
 

~
 

-+
-' 

(/) 
I •

•
 

:::l .... 
•
.
~
.
-
:
-

. 
....... 

• 
";a • 

r ._
., • 

I 

"'~~.· r): ... 
C

)
 

0 
. 

. 
.
I
I
 

.. 
I 

• 
I 

•
a
 .(

 
.-. 

.. . 
. . 

co 
-· 

C
)
 

~
 

C
)
 

!il 
5=! 

C
)
 

~
 

~
 

~
 

C
)
 

,..._ 
.... 

M
cM

aster -
G

eography and E
arth S

ciences 

80 

Q
) 

(/) 
'-co c.. 

(J) 

'-ro 
:::l 
0

)
 

Q
) 

0::: 
.-. 
(.) 

~
 

I . I .. . I .. 

• 
.
I
 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

0 
I 

I 
I 

I 
I 

0 
I 

I 
I 

I 
I 

a 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

0 
I ~ 

I 
0

1
0

 
0 

I
,
 

I 
I 

I 
I 

I 
I 

I 
I 

I 

a 
I . ... 

I 
I 

I 
0 

0 
I 

I • 
I 

I 

. I 

.. 0
1

 

I 
I 

I 
I 

I 
I 

I 
a 

a 
I 

• 

I 
I 

I 
I 

I 
I 

I 
I 

1 
I 

I 
I 

0 
I 

I 
I • 
I 

I 
I 

I 

I 
I 

I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

...... 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

0 
I 

I 
I 

I 

. . . . . . .... 
.... 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

....... 
. ..... 

...... . . . . . . . . 
I 

I 
I 

I 
0 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

8 
I 

I 
I 

I 

I 
I 

I 
I 

0 
I 

I 
I 

I 
I 

0 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

...... 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
0 

I 
I 

I 
I 

I 
I 

I 
I 

I ... 
I 

I 
I 

I 
a 

I 
I 

I 
I 

I 
a 

I 
I 

...... 
I 

I 
I 

I .. •• 
0 

I 
I 

I 
I 

• 
I 

I 
I 

I 
I 

• 
I 

I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
• 

0 
I 

I 
I 

I 
I 

• 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
a 

a 
I 

a 
I 

I 
I 

I 
I 

a 
I 

I 
I •• 

0 
I 

I 
I 

I 
I 

• 
I 

I 
I 

I 
I 

I 
I 

I 
I 

C
)
 

@
 

5=! 
C

)
 

~
 

~
 

;:> 
,..._ 

... 

~
 

::2 

53 

~
 

C
)
 

.... f;l 

~
 

~
 

C
)
 

C
)
 



PhD Thesis - Kelsey E. MacCormack McMaster- Geography and Earth Sciences 

model generation (Logan et al., 2006; Paulen et al. , 2006) and this often results in a 

clustered distribution of data points across the study area. 

In order to test the impact of data density and data distribution on model accuracy, 

a total of 16 different density x distribution treatments were applied using custom-made 

MA TLAB functions designed to select a specified number of data points in a desired 

distribution. The use of MA TLAB scripts for this process eliminated the introduction of 

user bias into the selection of points (Bond et al., 2007). To avoid basing the results on 

any one set of point extractions, a Monte Carlo approach was used to perform the 

extraction process 10 times for each of the random, clustered and sparse distributions. 

The regular point distribution did not require these multiple simulations as the extracted 

points would be the same in all 1 0 iterations. This approach allowed the variability 

associated with each of the density x distribution treatments to be quantified, and ensured 

that the results represented the average for each sampling treatment, rather than a non­

representative chance outcome. 

Clustered sampling distributions (Figure 3.2a), were created by establishing a total 

of 10 data clusters of sampling points on the simulated surface of interest, regardless of 

the number of sample points used. The location of each cluster centre on the surface was 

randomly assigned, and the desired number of sample points was portioned equally 

among each cluster. The location of sample points within each cluster was generated by 

randomly assigning a direction and radial distance (between 1 and 15 units) from the 

cluster centre. Any location assignment that resulted in sample placement beyond the 
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range of the grid or in a repeated sample cell was discarded, and replaced with a 

subsequent random assignment. 

Random sample distributions (Figure 3.2b) were created by repeating computer­

generated random assignment of x and y grid locations without replacement, for the 

desired quantity of data points on each synthetic surface. Regular sample distributions 

(Figure 3.2c), were produced by imposing a square-grid of equally-spaced sample points 

on each of the simulated surfaces. The spacing between sample points was universally 

adjusted to accommodate the specified number of data points; this ensured maximum 

spatial coverage of the grid surface, while preserving the equal spacing and distribution 

(number of rows and columns) of sample point locations. 

Sparse sampling distributions (Figure 3.2d) were a challenge to create, as there is 

currently no consensus on the definition of sparse data, despite the fact that datasets are 

often referred to as 'sparse' in the literature (Wu et al., 2005; de Kemp, 2006; Bond et al., 

2007). It is suggested here that a dataset can be con~idered to be 'sparse' when the user 

feels that they have insufficient data to interpolate their model to the desired level of 

accuracy. The sparse data distribution was simulated by down-sampling the randomly 

assigned datasets, creating datasets of 40, 75, 150 and 400 points from the 100, 256, 676 

and 1600 point datasets respectively. The 256, 676, and 1600 random datasets were 

down-sampled to 22-29% of the originally selected data points to create the sparse 

distribution dataset and the 1 00 point dataset was down-sampled to 40% of the original 

dataset in order to contain sufficient data points to produce the variogram necessary for 

interpolation by the kriging algorithm. 
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3.2.3 Grid Interpolation and Comparison 

Each of the 1280 sample data subsets generated were re-imported into 

ROCKWORKS 2006 and interpolated using the Inverse Distance Weighting (IDW) and 

Ordinary Kriging (OK) algorithms in order to evaluate their performance in recreating the 

original surfaces. ROCKWORKS 2006 offers numerous options to provide the user some 

influence over the interpolation process, such as selecting the number of neighbours 

included for interpolation, changing search radius size, and identifying the type of 

variogram to be used. In order to keep the modelling process consistent and to minimize 

the impact of external variables, the subset data were all interpolated in a similar manner 

in this study. For IDW the data subsets were interpolated using a search radius cut-off of 

15% and a minimum number of 8 data points. The OK algorithm was also applied 

consistently to all the data subsets using default settings that employ a spherical 

variogram, a minimum of 8 data points, and a maximum search radius of 15%. 

IDW is a deterministic interpolation technique that estimates a surface from 

measured points based on the similarity to surrounding measured data points. The IDW 

method is built upon the assumption that things close to one another are more similar than 

those further apart (Issaks and Srivastava, 1989, Krajewski and Gibbs, 1996; Davis, 

2002). Therefore, the weights of the surrounding measured data points are assigned 

based on the assumption that the data points closest to the prediction location will have a 

greater influence on the predicted value than those further away. IDW is a local 

interpolator which is typically the best choice for interpreting local anomalies because it 
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uses only the proximal data points to produce estimates (Krajewski and Gibbs, 1996; 

Johnston et al., 2001). 

The general formula used for the IDW algorithm is defined by the following 

equation; 

N 

2(so) = L A.i Z(sa 
i=l 

Where: 2(s0 ) = the value of the attribute that the algorithm is trying to predict at the 

locations0 . 

N = the number of the measured data points in the neighborhood surrounding s0 

that will be used to calculate the predicted value. 

A.i = the weights that are assigned to each data point. 

Z(sa =the observed/measured value at locationsi. 

IDW performs best either when the measured data points are uniformly or densely 

distributed, or when the user is interested in preserving local anomalies within the dataset. 

However, IDW typically struggles when interpolating from datasets which are 

predominantly clustered or have areas of sparse data coverage (Krajewski and Gibbs, 

1996). When IDW is used to interpolate clustered data, the measured values have been 

shown to greatly bias the surrounding predicted values (Weber and Englund, 1994; 
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Paulen et al., 2006), thus impacting the model accuracy. IDW is also known to have 

trouble interpolating data containing local anomalous values (high variability over 

relatively small distances) which are often accentuated creating artificial peaks or troughs 

(resulting in bulls-eyes) on the interpolated surface (Krajewski and Gibbs, 1996; Johnston 

et al., 2001; Paulen et al., Harris, 2006). 

The second algorithm evaluated in this study is Ordinary Kriging (OK), which is 

referred to as a geostatistical interpolator because it utilizes both statistical and 

mathematical methods to predict attribute values. OK assumes an unknown constant 

mean or trend, and random residual errors (Issaks and Srivastava, 1989; Davis, 2002). 

The equation for ordinary kriging in its most basic form is; 

Z(s) = J1 + E(s) 

Where; Z(s) is the variable of interest 

J1 is the deterministic trend 

E(s) are the autocorrelated errors 

All kriging methods are built upon the concept of autocorrelation, which is the 

statistical relationship between spatially random variables. Autocorrelation is 

incorporated into the algorithm through the use of a semivariogram, which measures the 

strength of the statistical correlation as a function of the distance between the data points 

used to determine the kriging weights (Issaks and Srivastava, 1989; Krajewski and Gibbs, 

1996). Kriging is similar to IDW in that both algorithms apply weights to the 
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surrounding measured values in order to calculate predicted values at specified locations. 

However, kriging not only considers the distance of the data points from the prediction 

location, it also uses the semivariogram to incorporate the spatial autocorrelation of the 

data points into the prediction calculation. OK was selected for this analysis because it is 

a robust estimator that is not overly sensitive to either the variogram selected or user 

specified controls on the algorithm (Weber and Englund, 1994). OK is also an exact 

interpolator, meaning that the estimated Z values exactly equal the data point values at 

their locations. It is also capable of dealing with clustered datasets because the weights 

are assigned not only on the distance to, but also on the spatial arrangement of the 

measured/observed data points. Therefore, a group of clustered data points would be 

assigned a similar weight to those of neighbouring individual scattered data points, a 

process that avoids producing estimates that are skewed by the clustered data point 

values. Finally, the kriging weights must result in a mean square error equal to zero to 

minimize the errors, thereby increasing the accuracy of the prediction (Issaks and 

Srivastava, 1989). 

One of the disadvantages of using OK as an interpolator is that it can often be 

utilized as a 'black box' tool by users who do not fully understand how the predictions 

were calculated or if they are realistic (Goodchild and Raining, 2004). This may 

compromise the valid application of model outputs. The kriging algorithm is also very 

computationally intensive and can require a substantial amount of time for the estimates 

to be generated, especially with large and complex datasets. In addition, if there is a large 

amount of spatial variability within the dataset, it may not be possible to fit a reliable 
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variogram, which would result in poor estimates with large associated errors (Weber and 

Englund, 1994). 

Overall, OK is often the best choice for interpolating datasets that contain 

clustered or irregularly distributed data points (Zimmerman et al., 1999; Weber and 

Englund, 1994). However, kriging should be used with caution when using small datasets 

or when large scale anomalies are present, as these affect the fit of the variogram model, 

which in turn affects the accuracy of the predicted model values. 

In order to determine the effect of sampling density, point distribution, grid 

complexity, and algorithm selection on output accuracy, the interpolated models were 

compared to the original synthetic grids using custom MA TLAB functions. These 

functions were created to provide a quantitative comparison of each interpolated grid with 

the original synthetic grid. The differences between the interpolated and original grids 

were quantitatively assessed using a number of statistical metrics including the Root 

Mean Square Error (RMSE), relative RMSE (rRMSE), Mean Average Error (MAE), and 

Correlation Coefficient (r2). These comparison statistics produced a substantial amount 

of data for all 1280 grids which could not all be shown nor discussed within this paper; 

consequently, RMSE and BE were chosen to describe the results. The RMSE was 

determined to be the best overall comparative statistic as it provides an un-biased 

indication of how similar the interpolated values are to the original values from the 

synthetic grids (Zimmerman et al., 1999; Jones et al., 2003). A smaller RMSE value 

indicates that the interpolated values for the model are more similar to the original 

synthetic values and infers that the model is more accurate (Zimmerman et al., 1999; 

87 



PhD Thesis - Kelsey E. MacCormack McMaster- Geography and Emih Sciences 

Davis, 2002; Dille et al., 2003; Jones et al., 2003; Mueller et al., 2004). The RMSE 

values calculated for each of the models are given in arbitrary units that relate to the 

thickness values (1-9) allocated to points on the synthetic grids. Bias errors (BE) are also 

included in the analysis as they provide important information about whether the 

interpolated grids were either under or over-estimating the original synthetic values using 

the various sampling treatments (Elith et al., 2002; Mueller et al., 2004; Hengl et al., 

2004). These metrics are represented by: 

RMSE= 
:Lf=l ( 2 (sa- z(sa )

2 

n 

BE= Lf:1(2Csa- z(si)) 
n 

Where 2 (sa is the interpolated value at the point Csa, and z(sa is the observed 

(true) value from the synthetic dataset at that same location, and n is the number of points 

within the input dataset. 

3.3 Results and Discussion 

Average RMSE values were calculated for each of the 10 simulations generated 

for each synthetic grid as a summary statistic to show how the values change in response 

to the grid complexity (represented by the four synthetic surfaces), different numbers of 

data points, variable data point distributions, and the use of selected interpolation 

algorithms (Figure 3.3). The interpolated models of grid 2 were visualized in Figure 3.3 
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to illustrate differences between the model outputs under each sampling and algorithm 

treatment. 

3.3.1 Number of Data Points 

Data were extracted into separate datasets of 100, 256, 676, and 1600 data points. 

To assess the effectiveness of utilizing various numbers of data points to accurately 

model the 4 synthetic surfaces, RMSE values were calculated and graphed for each point 

number dataset and for all 4 spatial distribution patterns (Figures 3.4, 3.5). The results 

showed that RMSE values for grids 1 and 2 were consistently the highest when only 100 

points were used and decreased slightly with the addition of data (Figures 3.4, 3.5). 

RMSE values increased substantially for all point number datasets when modelling grids 

3 and 4, particularly when few data points were used (Figure 3.4). 

The RMSE results were also graphed separately for each grid to show how the 

values changed with increasing numbers of data points for each data distribution pattern, 

and for each algorithm (Figure 3.5). Results for all 4 synthetic grids show a consistent 

drop in RMSE with the addition of more data points. However, the increased number of 

data points used for interpolation had relatively low impact when modelling relatively 

simple surfaces (e.g. grids 1 and 2; Figure 3.5 a, b) as shown by the small difference in 

RMSE results with the addition of data. The number of data points became a more 

significant factor when modelling more complex surfaces such as those represented by 

grids 3 and 4 (Figure 3.5 c, d). 
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Figure 3.3: Flow diagram showing how the four synthetic grids (a.) were sampled to 
create the individual data subsets, which were then interpolated and modelled. Each 
synthetic grid (a.) was created with 6400 data points which were then sampled using 100, 
676, and 1600 points in clustered, random, regular and sparse distribution patterns (b.). 
Visualizations of grid 2 were modelled using either IDW or OK with various amounts of 
data, in a variety of distributions (clustered, random, regular, and sparse) are also shown 
(c.). 
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Figure 3.4: Graphs showing the Root Square Mean Error (RMSE) associated with 
models constructed for the four grids using each sampling distribution. The RMSE 
values were analyzed for models interpolated using a) 100, b) 256, c) 676, and d) 1600 
data points. RMSE values are given in arbitrary units that relate to the thickness values 
(1-9) allocated to points on the synthetic grids. 
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Figure 3.5: Graphs showing how the RMSE values calculated for the four synthetic grids 
(a) grid 1, b) grid 2, c) grid 3, and d) grid 4) vary according to data distribution pattern 
(clustered, random, regular, and sparse), number of data points and algorithm used for 
interpolation (OK and IDW). RMSE values are given in arbitrary units that relate to the 
thickness values (1-9) allocated to points on the synthetic grids. Note change of scale for 
grids 3 and 4. 
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The results shown in Figure 3.5 also indicate that the rate of RMSE decrease, used 

here as an indicator of increase in model accuracy, appears to drop substantially as more 

data points are added. This trend of diminishing returns was explored further by plotting 

the RMSE results for a greater selection of point number datasets (40, 75, 100, 150,256, 

400, 676, and 1600 points) containing randomly distributed data for each of the 4 

synthetic grids (Figure 3.6). Initially, when few data points are available, the RMSE 

values decrease rapidly with the addition of data points, but the rate of decline reduces 

beyond 676 points for grid 4, 400 points for grid 3, 256 points for grid 2, and after 100 

points for grid 1 (Figure 3.6). These cut-off values indicate the points at which there is 

only a slight drop in RMSE for the increasing number of data points used in the 

modelling process. These results will be discussed further below. 

3.3.1.1 Discussion of the impact of data quantity on the interpolation accuracy 

The results presented above suggest that for the relatively simple models with low 

variability (e.g. grids 1 and 2), using too much data for interpolation can cause the 

algorithms to over-predict the natural variability of the model and may reduce the overall 

accuracy of the model output. These results also indicate that this issue is particularly 

problematic when the OK algorithm is used. OK appears to be more susceptible to the 

negative effects of increased numbers of data points when modelling simple grids than 

IDW as the increase in OK RMSE values was greater than those for IDW when 1600 

points were used compared to 676 points (Table 3.1; Figure 3.6). The increases in RMSE 

were also greater for Grid 1 than for Grid 2 regardless of the algorithm utilized to 
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Figure 3.6: Graphs showing decline of RMSE values as the number of randomly 
distributed data points available for interpolation increases using either the a) IDW, or b) 
OK algorithms. RMSE values are given in arbitrary units that relate to the thickness 
values (1-9) allocated to points on the synthetic grids. 
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Table 3.1: RMSE results for randomly distributed data points used to model the 4 
synthetic grids with IDW and OK, using various quantities of data points. The cells 
highlighted in green indicate the point at which the rate of RMSE declined in relation to 
the inclusion of additional data points. The cells highlighted in orange identify the point 
at which RMSE values began to increase with the inclusion of additional data points. 
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interpolate 1600 data points (Table 3.1; Figure 3.6). Using large amounts of data for 

interpolation thus appears to have a stronger negative impact on the modelling of the 

relatively simple surface represented by Grid 1 than on the slightly more complex Grid 2. 

3.3.1.2 Cost Benefit Analysis 

The results presented here provide information that may be used to guide selection 

of the optimal number and distribution of data points required to model a subsurface unit. 

Depending on the complexity of the subsurface unit being modelled, increasing the 

number of data points for interpolation beyond a certain point provides minimal increase 

to the model accuracy (as demonstrated by a decline in RMSE- see above). Since there 

is generally a cost associated with collecting additional data points, it may be possible to 

conduct a cost-benefit analysis to determine whether the cost of obtaining more data 

would provide significant benefit to the model accuracy. In general, the model accuracy 

for all grids increased as the number of randomly distributed data points increased, but 

there appears to be a cut-off point beyond which the inclusion of additional data points 

may have little to no impact on increasing the accuracy of the model. For example, when 

grid 1 was modelled with OK using 256 and 676 data points the RMSE remained at 0.14 

for both model runs (Figure 3.6b; Table 3.1). This shows that the addition of 420 data 

points (676- 256 = 420) provided no enhancement ofthe model accuracy. 

These results can also be used as a guideline for how many data points (or % data 

coverage) are required to interpolate different types of subsurface environment of varying 

geological complexity. When relatively simple surfaces (e.g. grid 1) are predicted in the 
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subsurface, random data coverage of between 1.6% and 2.3% (1 00-150 data points in this 

study), should be sufficient to create an accurate model. In this situation, the inclusion of 

additional data will have minor impact on model accuracy and may even have negative 

effects, particularly if OK algorithms are used. In more complex geological environments 

(e.g. grids 2, 3 and 4), increasing the number of data points can increase model accuracy 

to a certain point, after which the gains are minimal. Increasing the data coverage beyond 

a 4% random coverage for grid 2 (256 data points, Table 3.1), 6.3% for grid 3 (400 data 

points, Table 3.1), and 10.6% for grid 4 (676 data points, Table 3.1) has minimal impact 

on model accuracy. 

3.3.2 Data Point Distribution 

The distribution of data points across a study area can have profound impact on 

the accuracy of the model output (Schloeder et al., 2001; Kravchenko, 2003; Ross et al., 

2005). To evaluate the impact of data distribution on model accuracy, the RMSE results 

for each of the output models were graphed according to sampling distribution and 

interpolation algorithm (Figure 3.5). The regular sampling distribution consistently 

produced models with the lowest RMSE for all four synthetic grids, regardless of the 

number of sampling points, and algorithm used (Figure 3.5). Randomly distributed data 

produced the second lowest RMSE results in most situations. Clustered and sparsely 

distributed data generally both produced relatively high RMSE values. Sparse data 

distributions did not perform well when modelling the more complex geological 

situations with very limited numbers of data points (e.g. Grid 4; Figure J.5d) but 

produced reasonably accurate models (lower RMSE; Figure 3.5 a,b) when modelling 
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grids 1 and 2 with the 1600 point dataset. The clustered data produced RMSE results 

similar to the sparse datasets when few data points were available, but consistently 

produced the least accurate models of all distributions when more data were used in the 

modelling process (Figure 3.5). The modelled results for the four synthetic grids show 

that when more than 150 sparse data points were used, the randomly-distributed sparse 

data produced an output that was consistently more accurate than that generated by more 

data points in a clustered distribution (Figure 3.5). 

3.3.2.1 Discussion of Data point distribution 

The distribution of data points used in the modelling process appears to be an 

important factor affecting interpolation accuracy. The most accurate models were created 

by regularly and randomly distributed data points, with less accurate models resulting 

from clustered and sparsely distributed data. Even though the sparse datasets contained 

only a fraction (approximately 1/3) of the data points contained within the clustered 

datasets, they most often produced a more accurate model. This was particularly evident 

for the more simple grids 1 and 2 (Figure 3.5 a,b). These results suggest that in certain 

geological situations it is better to have fewer data points that are randomly distributed 

(e.g. sparse distribution) than more data that are clustered together. The poor 

performance of the clustered data may be due to their concentration in isolated regions of 

the study area, leaving large regions with no data coverage (Figure 3.2). This causes the 

algorithm to interpolate over large areas with little or no information to constrain the 

predictions. Another reasori for the poor performance of clustered data is that data 

clusters can fall in areas ofhigh surface variability (e.g. Figure 3.1, parts of grids 2, 3 and 
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4) which may cause the algorithm to over-predict the amount of natural variability present 

across the whole model. Conversely, if a cluster containing a high number of data points 

falls in an area with little variation (e.g. Figure 3.1, smooth areas of grids 3 and 4 ), an 

under-prediction of the variability may occur. 

It is interesting to note that when the 1600 point dataset was used to interpolate 

grids 1 and 2 using OK, the sparse dataset produced lower RMSE results than both the 

clustered and random datasets (Figure 3.5a,b). This is surprising given that both the 

sparse and random datasets consist of randomly distributed data, and only differ in the 

number of data points they contain. The RMSE results also show that when modelling 

grids 1 and 2, a sparse dataset consisting of 400 randomly distributed points produced a 

slightly more accurate model than 1600 randomly distributed data points (Figure 3.5a,b). 

This may be due to the model over-estimating actual subsurface variability when large 

numbers of data points were used for interpolation (see section 3 .1.1 ). 

3.3.2.2 Which is more important; the number of data points or their distribution? 

The results presented here demonstrate that inputting more data points into a 

model does not necessarily produce a more accurate model, and that the distribution of 

data points across the study area may be a more significant factor in detem1ining model 

accuracy. In the case of regularly distributed data, additional data input does appear to 

produce more accurate results (Figure 3.5). For randomly distributed data, additional 

points are beneficial in situations where the subsurface unit being modelled is relatively 

complex (Figure 3.5). However, the vast majority of 3D subsurface models are 
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interpolated using either clustered or sparsely distributed data (Paulen et al., 2006; Bond 

et al., 2007; Keefer, 2007), and the results presented here suggest that, in most situations, 

randomly-distributed sparse data will produce more accurate results than larger quantities 

of clustered data. Only when the surface to be modelled is complex (e.g. grid 4) can the 

larger amounts of clustered data (1 00) out-perform randomly-distributed sparse data ( 40; 

Figure 3.5d). In summary, when modelling in relatively simple geological environments, 

the distribution of data points appears to be more important than the number of data 

points used in the modelling process in controlling model accuracy. However, when 

modelling more complex geological environments, the number of data points becomes 

more important than their spatial distribution. 

3.3.3 Algorithm Comparison 

In order to evaluate the effect of the modelling algorithm on model accuracy, 

comparisons were made between the output of models using ordinary kriging (OK) and 

inverse distance weighting (IDW), the two most commonly used subsurface geologic 

modelling algorithms (Englund 1990; Weber and Englund, 1992; Brus et al., 1996; 

Zimmerman et al., 1999; Schloeder et al., 2001; Jones et al., 2003; Dille et al., 2003). 

Graphs of RMSE results were produced to determine if the number of data points 

used for interpolation had an impact on the accuracy of the models produced by each 

algorithm (Figure 3.6). For this analysis, a randomly distributed data set was used to 

isolate the effects of grid complexity and data quantity on the ability of each algorithm to 

produce accurate interpolations. The results show that both algorithms we:r~ able to 

105 



PhD Thesis - Kelsey E. MacCormack McMaster- Geography and Earth Sciences 

model grid 1 most accurately (lowest RMSE) and the predictions for grid 4, the most 

complex surface, were the least accurate (highest RMSE values; Figure 3.6). The results 

also show that there is a greater difference in the RMSE produced by the two algorithms 

when fewer data points are used to interpolate relatively simple surfaces, than when more 

data are available, or when the algorithms interpolate more complex surfaces (Figure 3.6). 

For example, when both algorithms were used to model grid 1 using 40 data points, IDW 

produced a RMSE of 0.90 and OK produced a RMSE of 0.56 (Table 3.1 ). When 40 data 

points were used to model grid 2, IDW produced an RMSE of 1.06 whereas the R.MSE 

for OK was only 0.62 (Table 3.1). However when modelling the more complex grids, 

there was little difference between RMSE results produced by IDW and OK (Table 3.1). 

For grid 4, RMSE results for IDW progressively reduced with the inclusion of additional 

data points and out-performed OK until more than 400 data points were included, at 

which point OK was able to produce more accurate models (Table 3.1). For grids 1, 2 

and 3, OK produced lower RMSE results regardless of the number of data points 

available for interpolation; however, this difference diminished as the number of data 

points increased (Table 3.1). 

Graphs of RMSE results were also used to analyze whether the performance of 

either the OK or IDW algorithm was affected by the spatial distribution of data. The 

regularly distributed data produced the smallest RMSE, followed by random, sparse, and 

clustered datasets when both the OK and IDW algorithms were used (Figure 3.5). For 

grids 1 and 2, there was a greater difference between the RMSE results for all data 

distributions when fewer data points were available (Figure 3.5 a,b). As the number of 
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data points increased to 1600, the difference in RMSE results between IDW and OK for 

grids 1 and 2 decreased for all distribution patterns (Figure 3.5 a,b). For grids 3 and 4, 

there was minor difference between IDW and OK for all spatial distribution patterns 

(Figure 3.5 c,d). 

The RMSE results for each algorithm were also graphed based on the distribution 

and quantity of data on 4 separate graphs of grid complexity (Figure 3.5). These graphs 

show that when modelling simple geological environments (grids 1 and 2) utilizing less 

than 256 points OK was able to produce grids with much lower RMSE values than IDW 

(Figure 3. 5 a,b ). When more than 256 points were used for interpolation the results for 

OK and IDW were more similar (Figure 3.5 a,b). However, for models representing more 

complex geological environments (grid 4) IDW was able to produce more accurate results 

when less than 400 data points were available (Figure 3.5 c,d). 

3.3.3.1 Discussion on the Effect of Algorithm Selection 

The results presented above show that the OK algorithm most commonly 

produced more accurate model results than IDW, regardless of the number and 

distribution of data points used for interpolation, or the complexity of the grids being 

modelled, with the exception of when complex grids were modelled with relatively few 

data points (Figure 3.5; Table 3.1). It is, however, important to examine circumstances in 

which the two algorithms performed with the greatest similarity or difference. The results 

presented in Figure 3.5 show that there is a greater difference in the performance of the 

IDW and OK algorithms when fewer data points are available for interpolation, and that 
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in such situations OK most often produces the more accurate model (lower RMSE). OK 

is able to produce more accurate models (with lower RMSE values) than IDW due to 

differences in how the two algorithms utilize the data points to interpolate each model. 

OK is able to produce lower RMSE results due to the inclusion of variograms which 

incorporate the degree of spatial autocorrelation between neighbouring data points and 

include that information as a spatial weighting factor during the interpolation process. 

This approach has shown to be a benefit when modelling less complex surfaces with 

fewer data points, as this provides OK with additional information about the relationship 

of the data that IDW does not consider. However, a minimum of 20-50 data points are 

required to make use of a variogram for interpolation purposes (Webster and Oliver, 

1992; Krajewski and Gibbs, 1996). Therefore, if very low numbers of data points are 

available, the benefit of variogram analysis is reduced and as a result, IDW is able to 

produce more accurate models based purely on distance relationships. When fewer data 

points are available for modelling more complex surfaces (i.e. grid 4), IDW is able to 

produce models with lower RMSE probably because there are insufficient data available 

for the OK algorithm to produce a good variogram considering the highly variable nature 

of the grid. When an effective variogram cannot be produced by the data, OK results are 

negatively affected (Issaks and Srivastava, 1989; Krajewski and Gibbs 1996). The results 

of this study also show that when more than 256 points (representing a 4% or greater 

coverage of the study area) are utilized, the RMSE for OK and IDW are similar for all 

four synthetic grids (Figure 3.5). This suggests that 256 (or more) randomly distributed 
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data points provide sufficient coverage of the study area to minimize the benefit of the 

variogram analysis used by OK. 

Both the OK and IDW algorithms performed most effectively with regularly 

distributed data and less well with random, sparse, and clustered datasets in order (Figure 

3.5). Differences in the accuracy with which each of the algorithms modelle data of 

variable spatial distribution does not appear to be very significant, particularly when more 

complex surface are modelled with large numbers of data points (Figure 3 .5). However, 

OK does create slightly more accurate models than IDW when clustered data are utilized. 

Overall, these results show that algorithm selection has the greatest impact when 

interpolating more complex models with limited amounts of data. In these instances, the 

IDW algorithm appears to produce the most accurate results, although OK produces the 

most accurate models in all other situations. 

3.3.4 Bias Error Analysis 

All models are predictions of reality and will therefore be subject to a certain 

amount of error. Ultimately, the errors within model predictions should be minimized 

and be as close to zero as possible. However, it is important to understand whether the 

error inherent in any model is producing under-or over-estimations of actual values. Bias 

error measures the amount of deviation of the interpolated model values from the actual 

(original) values. If the bias error is negative, then the predicted values are less than the 

actual values, and if they are positive then the predicted values are greater than the actual 

values. Bias errors were calculated for all interpolation results in this study to determine 
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whether over- or under-estimations were occurring during the interpolation process and to 

identify situations in which these estimation errors were most likely to occur. The results 

from all simulations conducted for each sampling treatment were averaged together to 

provide an estimate of the bias errors that would typically occur for that particular 

sampling treatment (Figure 3.7). 

Bias errors produced from all 10 Monte Carlo simulations were averaged for all 

interpolated models taking into account the number and distribution of data points, the 

grid complexity, and the algorithm used to interpolate the data (Appendix 3.1 ). The 

results showed that negative bias errors occurred for approximately 83% of the models 

produced using 100 points, 63% ofthose created with 256 points, 88% of those produced 

with 676 points, and 79% of those with 1600 points. This indicates that the interpolated 

models were most commonly producing under-estimations of the actual values. When the 

bias errors were combined for each of the models created using the same number of data 

points (e.g. 100, 256, 676, and 1600 data points), the values were -1.26, -1.17, -1.05, and-

0.97 respectively, and show that overall, bias errors decreased as the number of data 

points used for interpolation increased (Figure 3.7a). 

In order to determine the extent to which bias errors varied with respect to the 

number of data points used in modelling, algorithm selection, and data disuibut1on 

patterns the errors were graphed (Figure 3. 7b, c). Grid 3 was selected for this purpose as 

it is reasonably complex and represents a grid that may be commonly encountered in 
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Figure 3.7: Bias Error Analysis a) graph showing the decrease in the range of average 
bias errors calculated for the IDW and OK algorithms as the number of data points 
included in the modelling process increas·es .. Note that the average enors are all negative 
and suggest that the models represent under-estimations of actual values. b) Bias errors 
for models of grid 3 using different numbers of data points, data distribution patterns and 
algorithm. c) Bias errors for models of grids 1 - 4 using 256 data points modelled with 
IDW and OK in clustered, random, regular and sparse distributions. Note: Bias error 
values are given in arbitrary units that relate to the thickness values (1-9) allocated to 
points on the synthetic grids. 
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subsurface geological investigations. A wide range ofbias errors was produced when 256 

or fewer points were used for interpolation but this range became smaller with increasing 

numbers of data points (Figure 3.7b). Comparison of the bias errors produced by the 

IDW and OK algorithms revealed that the greatest range in values occurred when few 

data points were used with the IDW algorithm (Figure 3.7a). Bias error became less 

negative as the number of data points used for interpolation with the IDW algorithm 

increased; in contrast, bias error became slightly more negative with increasing data 

availability when the OK algorithm was used (Figure 3.7a). 

Analysis of the impact of data distribution on bias error indicates that random and 

regularly distributed data consistently report the lowest bias errors, regardless of how 

many data points were included in the model (Figure 3.7b). The clustered datasets 

produced negative (under-estimation) bias errors, which were affected by both the 

algorithm used and the number of data points (Figure 3.7b). Overall, OK was able to 

produce models with bias errors closer to zero than IDW when modelling all data 

distributions (Figure 3. 7b ). 

As a final stage of bias error analysis, the bias errors produced from models of 

each of the synthetic grids (grids 1 - 4), using different data point distributions (regular, 

random, clustered, sparse) and a constant number of data points (256; Figure 3.7c) were 

analysed. The bias errors identified for grid 1, representing a relatively simple geological 

sett:ing, are close to zero for all data point distributions, with only slightly positive and 

negative values (Figure 3.7c). Bias errors for grid 2 are near zero or slightly positive 

(over-estimations; Figure 3.7c), whereas the bias errors for grids 3 and 4 are all larger and 
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in the negative range (under-estimations; Figure 3.7c). This analysis also showed that 

clustered data typically produced th·~ greatest bias errors (either positive or negative; 

Figure 3.7c). 

3.3.4.1 Discussion of Bias Error Analysis 

It is important to quantify and understand the nature of bias errors associated with 

the generation of 3D subsurface models, as this information could have important 

implications for decisions made for geological applications of the model results. 

Knowing what sampling conditions are most likely to cause either over- or under­

estimation of actual values is vital information when assessing the accuracy and reliability 

of model outputs. 

The bias errors calculated for all interpolations were predominantly negative 

(Figure 3.7a) indicating that the interpolated models were most commonly producing 

under-estimations of the actual values. However, the number of data points utilized for 

interpolation had an impact upon the bias errors, as a decrease in error was noted as the 

number of data points increased (Figure 3.7b). This indicates that although the 

interpolated models all tended to represent under-estimations, those produced with the 

largest number of data points typically deviated from the actual (synthetic) values less 

than those produced with fewer data points. 

Analysis of the relationship between bias errors and grid complexity revealed that 

as the grids became more complex, the range of bias errors also increased in magnitude 

and moved into the negative range (Figure 3.7c). This suggests that the more complex 
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the grid being modelled, the greater the tendency for interpolated values to be under­

estimated. Data distribution patterns also influence error bias, with clustered data 

distributions consistently producing models with the greatest positive and negative bias 

errors (Figure 3.7b). Overall, regular and random point distributions produced models 

with minimal bias errors (Figure 3.7b). 

Finally, the gridding algorithm selected for interpolation had a significant impact 

on how the data were used to interpolate a model. The bias errors produced by 

interpolations made with both the OK and IDW algorithms were predominantly negative 

indicating that both algorithms generally produced under-estimations of actual values 

(Figure 3.7a). However, models interpolated with OK consistently produced values clo~.er 

to zero than those with IDW, which implies that models produced with the OK algorithm 

are typically less biased than those generated with IDW (Figure 3. 7b ). These results were 

supported by the analysis of bias errors generated from models of the four synthetic grids 

produced using 256 data points that showed OK produced lower bias errors than IDW for 

all grid types and data distribution patterns (Figure 3.7c). Overall, this analysis shows 

that there is a considerable tendency for IDW and to a lesser extent OK, to produce 

under-estimates of actual unit values when modelling complex grids. 

3.5 Conclusions 

Three-dimensional (3D) geo-cellular models are increasingly used for decision 

making and geoscientific applications in m~my fields of study. This increased use of 3D 
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models for a broad range of applications has raised concerns about the accuracy and 

reliability of model outputs and the relationship between output quality, input data and the 

type: of interpolation algorithm employed in the modelling process (Weber and Englund, 

1992; Weber and Englund, 1994; Zimmerman et al., 1999; Jones et al., 2003). 

Unfortunately, no studies to date have quantitatively assessed the impact of these 

variables on the modelling of geologically realistic synthetic surfaces. This paper 

presents a new method for evaluating the effectiveness of common interpolation 

algorithms used in 3D subsurface modelling, by testing their ability to accurately model 

four synthetic grids of varying geologic complexity with various numbers of data points 

(100, 256, 676 or 1600) in varying spatial distribution patterns (regular, random, 

clustered, and sparse). The results of qmmtitative statistical tests evaluating the impact of 

these variables on model output and uncertainty can be summarized as follows: 

• Number of Data Points: The inclusion of additional data points in the 

modelling process produced a drop in RMSE in the majority of model 

treatments. The number of data points used for interpolation had the greatest 

influence on model accuracy when modelling the relatively complex grids. 

The accuracy of models ofthe relatively simple grids was less impacted by the 

addition of data points, and some models were negatively influenced when 

higher numbers of data points were included. This finding is supported by 

bias error analysis that showed an overall decrease in bias errors as the number 

of data points utilized for interpolation increased. Although the interpolated 

models all tended to represent under-estimations of the original grid values, 
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those produced with the largt:st number of data points typically deviated less 

from the actual values than those produced with fewer data points. These 

results also suggest optimum numbers of data points (data coverage) c.re 

required for accurate and cost-effective interpolation of units of varying 

complexity. For example, inereasing the data coverage beyond a 4% random 

coverage for grid 2, 6.3 %for grid 3, and 10.6% for grid 4 produced minimal 

improvements in model accuracy. 

• Data Point Distribution: The spatial distribution of data points input into the 

model is an extremely important factor affecting interpolation accuracy. The 

most accurate models were created by regularly and randomly distributed data 

points, followed by sparse and clustered data respectively. The results 

presented here suggest that in certain geological situations more accurate 

models will be created using relatively few data points that are randomly 

distributed (e.g. sparse distribution) than using more data with a clustered 

distribution. To produce an accurate model of relatively simple geological 

environments, the distribution of data points was found to be a more 

influential variable than the: number of data points. In contrast, when 

modelling more complex geological environments, the number of data points 

had a greater influence on model accuracy than the spatial distribution of data. 

• Algorithm Selection: Overall, the OK algorithm produced more accurate 

representations of the modelled grids than IDW, regardless of the distribution 

of data points used for intetpolation, or the complexity of the grids being 
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modelled. This conclusion is supported by the results of bias error analysis 

that show OK producing lower bias errors than IDW for the majority of data 

distributions and grid complexities. IDW produced slightly more accurate 

models than OK in situations where complex grids (e.g. grid 4) were modelled 

with relatively low numbers of data points. However, the difference in R_MSE 

values between OK and IDW decrease as the model complexity a:.1d number of 

data points used for modelling increases. This implies that algorithm selection 

has the greatest impact on model accuracy when interpolating relatively 

simple grids with limited data. 

When modelling spatial data there is always a high level of uncertainty, especially 

in subsurface environments where the unit(s) of interest are defined by data only available 

in select locations. Consequently, it is extremely difficult to validate the output of~ D 

subsurface models and to identify the many factors that may impact their r·eliability and 

accuracy. Despite this uncertainty, 3D models are becoming increasingly popular for 

visualizing complex geological environments and decisions are often made based on 

these model predictions. Thus, it is important to ensure that the models are as accurate as 

possible and that potential sources of uncertainty are identified and minimized. The 

results of this study can be used to guide the selection of modelling parameters used in ~·D 

subsurface investigations and will allow the more effective and efficient creation of 

accurate and reliable 3D models. 
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APPENDIX 3.1: GRID CC)MPARISON DATA 
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Grid Complexity Alt:otlthm Root M"n Sq\Mre Error {RMSEJ Bi.s En-or{Bf) Correl•tlon Coeffldent {r2) 

100 Grid 1 Cluster lOW 1.4430 1.4271 1.3342 0.9644 1.1003 0 .7137 0.6766 0.7333 0 . .3279 0 . .324:! 0.3032 0 .2192 0.2500 0.1622 0.1538 0.1666 0.2026 0.1854 0.8 1.29 0.7537 0.7474 0.5775 0.6150 0.4625 0.4333 0.5297 0.6379 0.5744 -0.2532 .0.4820 -0.4078 0.1979 -().1629 0.2889 0.0143 0.0677 0.1198 0.1974 0.67'.>8 0.6829 0.7228 0.8552 0.8115 0.9207 0 .9287 0.9163 0.8763 0..8964 

100 Grid 1 CIU$ter OK 1.3043 1.2127 1.0198 0.9532 0.4950 0.4725 0.6033 0.2964 0.2756 0.2318 0.1866 0.2166 0.1125 0.1074 0.1371 0.1193 0.1462 0.6904 0.5637 0.5088 0.4683 0.4932 0.3056 0.3003 0.3942 0.3606 0.4111 ·0.2677 .0.4134 .0.3231 0.1468 .0.1815 0.1889 0.0681 0.0625 0.1009 0.1715 0.7351 0.7710 0..8380 0.8950 0.8585 0.9618 0.9652 0.9433 0.9571 

100 Grid! ... ~ lOW 1.0282 UX)'34 0.9858 0.7399 0.8145 0.7295 0.9940 0.9691 0..8907 0.2336 0.2294 0.1931 0.2240 0.1681 0.1851 0.16'.>8 0.2259 0.2202 0.2024 0.5912 0.5787 0.5686 0.6173 0.4853 0.5127 0.4978 0.5820 0.5995 0.5409 .0.2517 .0.3033 0.1716 .0.0729 ..0.0306 -0.1884 0.0412 ·0.1962 ·O.Olll ·0.1390 0..8413 0.8876 0.8487 0.9147 0.8967 0.9171 0.8462 0.8538 0.8765 

100 Grid1 ... ~ OK 0.7458 0.5435 0.7401 0.4076 0.3962 0.4561 0.5996 0.1695 0.1235 0.1170 0.1682 0.0926 0.0900 0.1036 0.1362 0.1]34 0.1284 0.3966 0.3052 0.3112 0.3948 0.2736 0.2672 0.2937 0.3472 0.3S90 0.3592 ·0.1578 .0.1321 0.1324 -0.1635 0.0193 -0.0330 0.0022 ·0.0770 0.0471 ·0.0425 0.9134 0.9540 0.9587 0.9147 0.9741 0.9756 0.9676 0.9440 0.9463 0.9503 

100 Grid1 lOW o.4313 o.4426 o.5138 o.4077 o.3516 o.4184 o.sa22 o.4148 o.0980 0.1202 o.1152 0.1006 o.n68 o.0926 o.om o.0951 o.u21 o.0943 o.2955 0.1201 0.1111 o.2885 o.3231 o.2667 o.2401 o.2733 o.3346 o.211o o.o393 .o.0405 -0.0695 o.o154 -o.osoo .o.0066 .().0075 o.0086 -o.1180 -o.os 16 o.911o o.9564 o.9600 o .%95 o.9589 o.9741 o.9807 o.9727 o.9472 o.9732 

100 Grldl OK 0.2023 0.2647 0.2683 0.2453 0.2526 0.1606 0.1943 0.3364 0.2035 0.0460 0.0601 0.0599 0.0610 0.0557 0.0574 0.0365 0.0441 0.0764 0.0462 0.1278 0.1663 0.1572 0.1720 0.1477 0.1671 0.1033 0.1273 0.1985 0.1287 0.0322 .0.0031 ·0.01 22 0.0138 .().~71 -0.0014 0.0113 0.0156 ·0.0309 0.0049 0.9888 0.9906 0.9901 0.9960 0.9941 0.9824 0.9936 

100 Grid! lOW 0.4747 0.4747 0.4747 0.4747 0 .4747 0.4747 0.4747 0.1079 0.1079 0.1079 0.1079 0.1079 0.1079 0.1079 0.1079 0.1079 0.1079 0.2733 0.2733 0.2733 0.2733 0.2733 0.2733 0.2733 0.2733 0.2733 0.2733 -0.0899 -0 .0899 -0.0899 -0.0899 ·0.:~ ·0.0899 ·0.0899 ·0.0899 ·0.0899 ·0.0899 0.9649 0.9649 0.9649 0.9649 0.9649 0.9649 0.9649 0.9649 0.9649 0.9649 

100 Grid1 0.1893 0.1893 0.1893 0.1893 0. 1893 0.1893 0.1893 0.1893 0.0430 0.0430 0.0430 0.0430 0.0430 0.0430 O.D430 0.0430 0.0430 0 .0430 0 .1067 0.1067 0.1067 0.1067 0.1067 0.1067 0.1067 0.1067 0.1067 0.1067 ·0.0227 ·0 .0227 ·0.0227 ·0.0227 .O.Ol27 -0.0227 ·0.0227 ·0.0227 ·0.0227 ·0.0227 0.9944 0.9944 0.9944 0.9944 0.9944 0.9944 0.9944 0.9944 

100 Grid2 lOW 1.4249 0.9571 0.8738 0.9317 0.8982 0.9849 0.9178 l.lll7 1.0318 1.0542 0.2807 0.1885 0.1721 0.1835 0.1769 0.1808 0.2190 0.2032 0.2077 0.9983 0.7343 0.6601 0.6964 0.6787 0.7242 0.6700 0.8078 0.7827 0.8206 ·0.6925 0.3015 0.3320 0.0157 0.1403 -0.2441 0.1222 ·0.3563 0.0410 0.2187 0.7904 0.8052 0.7657 0.7966 0.7016 0.7429 0.7316 

100 Grid2 OK 1.2306 0.5601 0.6163 0.5807 0.6640 0.5723 0.8180 0.2424 0 .1103 0.1415 0.1214 0.1144 0.1308 0.1127 0.1611 0.1306 0.1486 0.727 1 0.4167 0.4563 0.4315 0.3992 0.4464 0.3767 0.4939 0.4677 0.5230 ·0.5006 0.1525 0.2487 0.0421 0.0946 0.0636 0.1018 ·0.1082 .().1206 0.1378 0.6343 0.9242 0.8754 0.9083 0.9186 0.8935 0.9209 0.8384 0.8938 0.8625 

100 Grld2 1.0069 1.1754 0.9162 0.9472 1.1626 1.2486 1.0716 0.1983 0.2031 0.1854 0 .2154 0.2315 0.1805 0.1866 0.2290 0.2459 0.2111 0.7759 0.8426 0.7561 0.8735 0.8870 O.H84 0.7410 0.9290 0.9623 0.8307 0.0049 .0.2248 -0.0723 ·0.3950 0.0277 .().0927 ·0.2583 0.2745 -0.0720 -0.2387 0.7552 0.7432 0.7860 0.7111 0.6664 0.7973 0.7833 0.6736 0 .6235 0.7227 

Grid 2 ... ~ 0.6262 0.5885 0.5539 0.5442 0.7072 0.6170 0.6306 0.6890 0.6673 0.6173 0.1233 0.1159 0.1091 0 .1072 0.1393 0.1215 0.1242 0 .1357 0.1314 0.1216 0.4096 0.4386 03871 0.3984 0.4754 0.4108 0.4518 0.5117 0.4978 0.4462 ·0.0437 0.0554 0.0428 ·0.0462 ..0.0049 0.0590 ·0.1236 0.08S8 ·0.0477 .().1346 0.9053 0.9259 0.9285 0.8792 0.9081 0 .9040 0.8854 0.8925 0.9080 

100 Grid2 Rondom lOW 0.1101 0.6097 0.6610 0.6453 0.6554 0.7438 0.5887 0.7136 0.1201 0.1302 0 .1271 0.1291 0.1465 0.1160 0.1275 0.1299 0.1405 0.5038 0.4627 0.5026 0.5019 0.4902 0.5623 0.4559 0.4800 0.4877 0.5365 ·0.0568 .().0565 0.1028 ·0.0189 0.0605 ·0.2231 .().0423 ·0.2123 ·0.1462 0.0927 0.8782 0.8945 0.8995 0.8963 0.8664 0 .9163 0.8988 0.8950 0..8770 

100 Grid2 Rondom OK 0.3634 0.3565 0.3860 0.3520 0.3951 0 .4709 0.3107 0.3711 0.4143 0.4397 0.0716 0.0702 0.0760 0.()693 0.0778 0.0928 0.0612 0.0731 0.0816 0.0866 0.2381 0.2465 0.2774 0.2521 0.2594 0.3062 0.2237 0.2478 0.2978 0.3018 ·0.0058 .().0443 0.0944 .().0081 0.0471 .().0837 -o.0208 ·0.0731 ·0.0622 0.0564 0.9681 0.9693 0.9640 0.9701 0.9623 0.9465 0 .9767 0 .9667 0.9586 0.9533 

Grid2 lOW 0.5454 0.5454 0.5454 0.5454 0.5454 0.5454 0.5454 0.5454 0.5454 0.5454 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.4086 0.4086 0 .4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 ·0.0166 .0.0166 .().0166 ·0.0166 .().0166 ·0.0166 .().0166 ·0.0166 ·0.0166 ·0.0166 0.9282 0.9282 0.9282 0.9282 0.9282 0.9282 0.9282 

100 Grld2 OK 0.2647 0.2647 0.2647 0.2647 0.2647 0 .2647 0.2647 0.2647 0.2647 0.2647 0.0521 0.0521 0.0521 0.0521 0.0521 0.0521 0.0521 0.052 1 0.0521 0.0521 0.1877 0.1877 0.1877 0.1877 0.1877 0.1877 0.1877 0.1877 0.1877 0.1877 0.0046 0 .0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.9831 0.9831 0.9831 0.983 1 0.9831 0.9831 0.983 1 0.9831 0.9831 0.9831 

100 Grid ] CIU$ter lOW 1.6948 1.5081 1.5783 1.4157 1.2872 1.6172 1.8122 1.5251 1.2959 1.3685 0.4600 0.4093 0.4284 0.3842 0.3494 0.4389 0.4919 0.4139 0.3517 0.3714 1.3263 1.2022 1.2476 1.1173 1.0497 1.2058 1.3563 1.1937 1.0573 1.0372 ·0.4822 .().0818 0.1002 0.0240 .().0193 .().4245 .().3249 .().2627 ·0.2926 0.2711 0.1746 0.3464 0.2841 0.4241 0.5238 0.2485 0.0563 0.3316 0.5 174 0.4619 

Gridl CIU$ter OK 1.7006 1.3953 1.5286 1.4157 1.2383 1.4990 1.8958 1.3375 1.3680 1.3590 0.4616 0.3787 0.4149 0.3842 0.3361 0.4069 0.5145 0.3630 0.3713 0.3688 1.3197 1.0504 1.1751 1.1173 0.9673 1.0747 1.3485 1.0130 0.9936 0.9658 -0.4688 .0.1026 0.2334 0.0240 .Q.OS23 .0.1866 -Q.4154 -o.0246 0.1760 0.2865 0.4405 0.4241 0.5593 0.3543 .().0328 0.4859 0.4622 0.4693 

100 Grld l ... ~ lOW 1.5314 1.6062 1.4475 1.5631 1.5511 1.5856 1.5244 1.5651 1.7605 1.5343 0.4156 0.4359 0.3929 0.4242 0.4210 0.4303 0.4137 0.4248 0.4778 0.4164 1.2615 1.3035 1.2119 1.2662 1.2605 1.3170 1.2647 1.3099 1.3841 1.2827 0.1162 .().4106 ·0.0457 0.2143 0.2608 -0.2978 ·0.1353 .0.5509 ·0.1517 ·0.1052 0.3261 0.2587 0.3979 0.2979 0.3086 0.2775 0.3322 0.2961 0.1094 0.3235 

Gridl OK 1.4348 1.4110 1.4214 1.5279 1.4253 1.4676 1.3153 1.4028 1.6233 1.4445 0.3894 0.3830 0.3858 0.4147 0.3868 0.3983 0.3570 0.3807 0.4406 0 .3921 1.1470 1.1020 1.0996 1.1627 1.1107 1.1546 1.0622 1.1636 1.2430 1.1978 0.0335 -Q.2315 0.0276 0.4035 0.2619 .().2827 0.0804 .().5454 ·0.2363 0.0390 0.4084 0.4279 0.4194 0.3292 0.4162 0.3811 0.5028 0.4345 0.2428 0.4004 

100 Grld3 lOW 1.3247 1.2313 1.5783 1.1401 1.4610 1.5218 1.2698 1.4046 1.2959 1.3146 0.3595 0.3342 0.4284 0.3094 0.3965 0.4130 0.3446 0.3812 0.3517 0 .3568 1.0337 0 .9659 1.2476 0.8509 1.1737 1.2125 0.9915 1.1386 1.0573 1.Q403 ·0.0527 0.0859 0. 1002 0.1601 -Q.2l45 .0.0177 0.0580 -0.1693 ·0.2926 -0.0080 0.4957 0.5644 0.2841 0.6265 0.3866 0.3345 0.5367 0.4330 0.5174 0.5034 

Grid3 OK 1.1198 1.1065 1.5286 1.1401 1.1709 1.2214 1.2319 1.1232 1.2959 1.1312 0.3039 0.3003 0.4149 0.3094 0.3178 0.3315 0.3344 0.3049 O.i517 0.3070 0.8059 0.824 1 1.1751 0.8509 0.9177 0.8985 0.9492 0.8546 1.0573 0.8369 0.0587 0.1583 0.2334 .0.11}58 0.1277 0.0420 ·0.0393 .().2926 0.1403 0.6396 0.6481 0.3286 0.6265 0.6060 0.5713 0.5639 0.6375 0.5174 0.6323 

100 Grid 3 lOW 1.2603 1.2603 1.2603 1.2603 1.2603 1.2603 1.2603 1.2603 1.2603 1.2603 0.3421 0.3421 0.3421 0.3421 0.3421 0.3421 0.3421 0.3421 0.3421 0.3421 1.0404 1.0404 1.0404 1.0404 1.0404 1.0404 1.0404 1.0404 1.0404 1.0404 ·0.1175 .().1175 -0.1175 -0.1175 -D.lt75 ·0.1175 ·0.1175 ·0.1175 ·0.1175 -0.1175 0.5436 0.5436 0.5436 0.5436 0.5436 0.5436 0.5436 0.5436 0.5436 0.5436 

100 Grid 3 OK 1.0123 1.0123 1.0123 1.0123 1.0123 1.0123 1.0123 1.0123 1.0123 1.0123 0.2748 0.2748 0.2748 0.2748 0.2748 0.2748 0.2748 0.2748 0 .2748 0.2748 0.7610 0.7610 0.7610 0.7610 0.7610 0.7610 0.7610 0.7610 0.7610 0.7610 ·0.0415 .().0415 -0.0415 -0.04 15 -0.0415 -0.0415 ·0.04 15 -0.0415 -0.04 15 -0.04 15 0.7055 0.7055 0.7055 0.7055 0.7055 0.7055 0.7055 0.7055 0.7055 0 .7055 

100 Grid ~ Cluster lOW 1.9864 1.9755 2.0872 1.9484 1.9310 2.2505 1.9530 2.0268 2.0208 2.0111 0.3232 0 .3214 0.3396 0.1110 0.3142 0.3662 0.3178 0.3298 0 .3288 0.3282 1.4497 1.2828 1.5302 1.4257 1.3834 1.9027 1.2784 1.6294 1.3933 1.2529 ·0.1857 0.2975 -0 .6406 -0.4103 .o.2h5 -0.6358 ·0.1.947 0.3120 0. 1063 0.1161 0.0133 0.1402 0.1555 -0.1472 0.1361 0.0696 0.0751 0.0784 

100 Grld4 OK 1.9938 2.0504 2.1693 2.0082 1.9310 2.3862 2.0423 2.0423 1.9293 2.D474 0.3244 0.3336 0.3530 0.3268 0.3142 0.3882 0.3323 0.3323 0.3139 0.3331 1.4452 1.2880 1.5244 1.4390 1.3834 2.0151 1.3564 1.6424 1.1835 1.2021 -0.1746 0.3746 -0.5611 -0.3844 .0.2)75 0.0143 ·0.6104 0.1725 0.3333 0.0996 0.0478 -0.0659 0.0866 0.1555 ·0.2896 0.0553 0.0553 0.1569 0.0506 

100 Grld 4 ... ~ lOW 2.2238 1.9861 2.1313 2.0413 2.1653 1.9990 1.9649 1.9518 2.0144 1.9018 0.3618 0.3232 0.3468 0.3321 0.3523 0.3253 0.3197 0.3176 0.3278 0.3094 1.3481 1.3088 1.6829 1.5221 1.7149 1.6250 1.4214 1.3723 1.2935 1.5130 0.6022 0.3454 -0.6157 0.0052 .0.6%0 0.0543 0.1292 0.4368 -0.3855 -0.1201 0.1065 0.0562 -0.0619 0.0949 0.1255 0.1372 0.0809 0.1808 

100 Grld 4 ... ~ OK 2.3063 2.0433 2.1444 2.1417 2.3716 1.9851 2.0757 2.0509 1.9837 2.1196 0.3753 0.3325 0.3489 0.3485 0.3859 0.3230 0.3377 0.3337 0.3228 0.3449 1.3053 1.3642 1.6302 1.5999 1.9090 1.3984 1.3412 1.4413 1.2170 1.7082 0.1255 0.3833 -0.5777 0.0075 .0.7'J07 0.4749 -0.5005 -0.2047 0.0543 -o.0415 .().0389 -0.2739 0.1074 0.0241 0.0473 0.1088 .().0176 

100 Grid4 lOW 1.7947 1.7809 1.8540 1.8134 1.8378 1.9236 1.8459 1.8005 1.7661 1.8305 0.2920 0.2898 0.3017 0.2951 0.2990 0.3130 0.3003 0.2930 0.2874 0.2978 1.2227 1.1631 1.2137 1.2745 1.2027 1.2923 1.2108 1.3174 1.1928 1.1413 0 .1878 0.0993 -0.0678 0.1138 0.1095 0.0455 .().2531 0.0478 0.2850 0.2705 0.2817 0.2214 0.2552 0.2350 0.1619 0.2282 0.2657 0.2935 0.2410 

100 Grid 4 .,...,m OK 1.9172 1.7137 1.8302 1.7820 1.8940 2.0423 1.9330 1.9387 1.8627 1.8708 0.3119 0.2788 0.2978 0.2899 O.J082 0.3323 0 .3145 0.3154 0.3031 0.3044 1.3007 1.0400 1.0707 1.1250 1.2420 1.3912 1.1995 1.4264 1.2671 1.1795 0.0134 0 .1336 0.2175 0.0206 0.1205 0.0978 -0.0645 -0.2830 0.0260 0.2767 0.1675 0.2808 0.1875 0.0553 0.1537 0.1487 0.2142 0.2072 

100 Grld4 lOW 1.7054 1.7054 1.7054 1.7054 1.7054 1.7054 1.7054 1.7054 1.7054 1.7054 0.2775 0.2775 0.2775 0.2775 0.2775 0.2775 0 .2775 0.2775 0.2775 0.2775 1.1714 1.1 714 1.1714 1.1714 1.1714 1.1714 1.1714 1.1714 1.1714 1.1714 0.0053 0.0053 0.0053 0.0053 0 .0053 0.0053 0.0053 0.0053 0.0053 0.3413 0.3413 0.3413 0.3413 0.3413 0.3413 0.3413 0.3413 0.3413 0.3413 

100 Grid4 OK 1.6743 1.6743 1.6743 1.6743 1.6743 1.6743 1.6743 1.6743 1.6743 o .2724 0.2724 o.2724 o.2724 o.2724 0.2724 o.2724 o.2724 0.2724 o.2724 1.0637 t .0637 t.0637 t.0637 t.0637 ul637 1.0637 1.0637 1.0637 1.0637 .o.oo13 .o.oon -o.oo13 -o.oou .0.0011 -o.oon ·0.0013 -o.oou .o.ooll .o.oo13 o.3651 o.3651 o.3651 o.3651 o.3651 o.J65t o.3651 o.365t o.3651 O.J65t 



Numb..-ofOit1Pol11tS GrlciComplelllty D•t• Ob tributlon AJcorhhm Root Me•n Sqwol"' En'or {RMSE) Me1n ,.,., ... Error {MAE) E!MsErt'OI"(BE) Con'itletlonCoefflclent:(rZ) ,,. Grid ! Clust...- lOW O.S469 0.4487 0.6069 0.4336 0.5487 0.6929 0.80Jl 0.7932 0.8065 0.9788 0 .1243 0 .1020 0.1379 O.o985 0.1247 0.1574 0.1825 0.1802 0.1833 0 .2224 0.3342 0.2743 0.3789 0.3010 0.3759 0.4367 0.4212 0.3788 0.4877 0.5395 0.1028 0.1783 0.0618 0.1637 0.1077 0.1302 ·0.2055 ·0.1755 ·0.0230 ·0.1099 0.9534 0.9686 0.9426 0.9707 0.9531 0.9252 0.8996 0.9020 o•""' ,,. Grid l Clustlll'" OK 0.4074 0.4939 0.3261 0.4566 0.5512 0.7266 0.6206 0.6016 0.7491 0.0926 0.1020 0.1122 0.0741 0.1038 0.1252 0.1651 0.1410 0 .1367 0.1702 0.2405 0.2743 0.2908 0.2105 0.2850 0.3142 0.3436 0.2899 0.3529 0.3725 0.0566 0 .1783 0.0304 0.1226 0."'10 0.1206 ·0.1707 -0.1176 ·0.0142 -0.1010 0.9742 0.9686 0.9620 0.9834 0.9675 0.9527 0.9178 0.9400 0.9126 ,,. Gridl ... ~ 1.02S4 0.3687 0.5479 0.4537 0.6605 0.5680 0.3376 0.9388 0.4274 0.6988 0.2330 0.0838 0.1245 0.1031 0.1501 0.1291 0.0767 0.2133 0.0971 0.1588 0.5285 0.1938 0.3543 0.2581 0.4081 O.J479 0.2136 0.4700 0.2926 -0.3459 .().0767 0.0088 ' -O.Q259 .0.1065 ·0.0710 -0.0088 -0.2420 -0.0009 -0.1579 0.8363 0 .9788 0.9533 0.9679 0.9321 0.9498 0.9823 0.8628 0.9716 0.9240 ,,. Grldl ... ~ OK 0.6440 0.3687 0.3852 0.4537 0.2894 0.3519 0.3376 0.7280 0.2313 0.3334 0.1464 O.OS38 0.0875 0.1031 0.0658 0.0800 0.0767 0.1654 0.0526 0.0758 0.2902 0.1938 0.2378 0.2581 0. 1978 0.2210 0.2136 0.3250 0.1493 0.1995 -0.1759 .().0767 -0.0090 -0.0259 .().0031 -0.0236 -0.0088 -0.1867 -0.0008 -0.0515 0.9354 0.9788 0.9769 0.9679 0.9870 0.9807 0.9823 0.9175 0.9827 ,,. Grld l "'"""m 0.2122 0.2493 0.1567 0.2504 0.2010 0.2045 0.2437 0.3048 0.2156 0.0482 0.0524 0.0567 0.0356 0.0569 0.0465 0.0554 0.0693 0.0490 0.1329 0.1485 0.1522 0.0846 0.1543 0.1198 0.1360 0.1560 0.0065 .0.0246 0.0146 -0.0114 .().0013 0.0082 0.0129 0.0102 -0.0415 -0.0C()7 0.9930 0.9917 0.9903 0.9962 0.9902 0.9937 0 .9935 0.9908 0.9855 0.9928 ,,. Grid! OK 0.1788 0. 1603 0. 1789 0.1567 0.1694 0.1392 0.1332 0.1599 0.1736 0.1444 0.0406 0.0364 0.0407 0 .0356 0.0385 0.0316 0.0303 0.0363 0.0394 0.0328 0.0872 0.0967 0.1036 0.0846 0.1046 0.0799 0.0780 0.0989 0.1055 0.0890 0.0054 .0.0084 0.0168 -0.0114 O.cp64 0.0063 0.0046 0.0119 -0.0100 0.0025 0.9950 0.9960 0.9950 0.9962 0.9955 0.9970 0.9972 0.9960 0.9953 0.9968 ,,. Gridl lOW 0.1749 0.1749 0.1749 0.1749 0.1749 0.1749 0.1749 0.1749 0.1749 0.1749 0.0397 0.0397 0.0397 0 .0397 0 .0397 0.0397 0.0397 0.0397 0.0397 0 .1061 0.106 1 0.1061 0.1061 0.1061 0.1061 0.1061 0.1061 0.1061 0.106 1 -0.0085 .().0085 -0.0085 ' -0.0085 .().q:85 -0.0085 -0.0085 -0.0085 -0.0085 -0.0085 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 ,,. Grid I OK 0.0938 0.0938 0.0938 0.0938 0.0938 0.0938 0.0938 0.0938 0.0213 0.0213 0.0213 0.0213 0.02 13 0.0213 0.0213 0.0213 0 .0213 0.0528 0.0528 0.0528 0.0528 0.0528 0.0528 0.0528 0.0528 o.oo1o o .ooto o.oo1o o.oo1o o.cmo o.oo1o o.oo1o o.oo10 o.oo1o o.oo1o o.9986 o.9986 o.9986 o.9986 o.9986 o.9986 o.9986 o.9986 o.9986 o.998 ,,. Grid 2 Cluster lOW 0.8258 0.7529 0.7074 0.5500 1.0064 0.9954 0.9974 0.9663 0.8152 0.7932 0.1627 0.1483 0.1393 0.1<113 0.1982 0.1961 0.1965 0.1903 0.1606 0.1562 0.5803 0.4285 0 .4826 0.3536 0.6990 0.6668 0.6835 0.6273 0.5640 0.5317 0.1715 0.0136 0.0261 0.1533 O.CII92 0.2725 0.2491 -0.1647 -0.0122 0.0309 0.8353 0.8631 0.8791 0.9269 0.7554 0.7607 0.7598 0.7745 0.8395 0.8481 ,,. Grid2 OK 0.5769 0.7529 0.5973 0.5500 0.7405 0.7489 0.6515 0.7846 0.6278 0.711 4 0.1136 0 .1483 0.1176 0.1083 0.1459 0.1475 0.1283 0.1545 0.1237 0.1401 0.3759 0.4285 0.3078 0.3536 0.4850 0.4360 0.4034 0.4546 0.4095 0.4207 0.1004 0.0136 0.0687 0.1533 0.0708 0.1578 0.1447 .0.1151 0.0390 0.0805 0.9196 0.8631 0.9139 0.9269 0.8676 0.8646 0.8975 0.8513 0.8778 ,,. Grid2 lOW 0.9022 0.4951 0.7336 0.52 16 0.7135 0.7353 0.9179 0.7791 0.6713 0.7745 0.1777 0.0975 0.1445 0.1027 0.1448 0.1808 0 .1535 0.1322 0.1526 0.6469 03397 0.5733 0.3696 0.5572 0.5669 0.6638 0.6074 0.5257 -0.0978 .().0890 0.1270 0.1164 0.1006 0.0365 .0.1517 .0.1269 0.1218 -0.0668 0.8034 0.9408 0.8700 0.9343 0.8771 0.8694 0.7965 0.8534 0.8912 0.8551 ,,. Grid2 OK 0.5825 0.4951 0.5619 0.5216 0.4221 0 .4192 0.5264 0.5873 0.4345 0.4533 0.1147 0.0975 0.1107 0.1027 0.<1131 0.0826 0.1037 0.1157 O.OS56 0.0893 0.3635 0.3397 0.3558 0.3696 0.3067 0.2773 0.3338 0.4327 0.3331 0.3328 .0.0838 .0.0890 0.1295 0.1164 0.0295 .0.0198 -o.0347 -0.1106 0.0890 0.0407 0.9181 0.9408 0.9237 0.9343 0.9570 0.9576 0.9331 0.9167 0.9544 0.9504 ,,. Grid2 Rondom lOW 0.3329 0.2194 0.4320 0.2362 0.4172 0.3444 0.3826 0.3771 0.4400 0.3617 0.()656 0.0432 0.0851 0.1)465 0.<1122 0.0678 0.0754 0.0743 0.0867 0.0713 0.2530 0.1511 03107 0.1531 0.2982 0.2587 0.2881 0.2740 0.3102 0.2736 0.0050 .().0092 0.0483 .().0133 0 .0272 .().0156 -0.0120 -0.0225 0.0285 0.0494 0.9732 0.9884 0.9549 0.9865 0.9580 0.9714 0.9646 0 .9657 ,,. Grid2 "'"""m OK 0.1777 0.2194 0.2362 0.2899 0.2314 0.2281 0.2179 0.2487 0.2185 0.0350 0.0432 0.0447 0.0465 0.0571 0 .0449 0.0429 0.0490 0.0430 0.1257 0.1511 0.1545 0.153 1 0.2016 0.1557 0.1559 0.1469 0.1625 0 .1558 0.0037 .().0092 0.0265 .().0133 0.0265 .().0196 -0.0135 -0.0039 0.0231 0.0263 0.9924 0.9884 0.9876 0.9865 0.9797 0.9871 0.9874 0.9885 0.9885 ,,. Grid2 lOW 0.3009 0.3009 0.3009 0.3009 0.3009 0.3009 0.3009 0.3009 0.3009 0.0593 0.0593 0.0593 0 .0593 0.0593 0.0593 0.0593 0.0593 0.0593 0.2178 0.2178 0.2178 0.2178 0.21 78 0.2178 0.2178 0.2178 0.2178 0.2178 -0.0078 .().0078 .().0078 -0.0078 .().0078 -0.0078 -0.0078 -0.0078 -0.0078 .().0078 0.9781 0.9781 0.9781 0.9781 0.9781 0.9781 0.9781 0.9781 0.9781 0.978 1 ,,. Grid2 OK 0.1520 0.1520 0.1520 0.1520 0.1520 0.1520 0.1520 0.1520 0.1520 0.1520 0.0299 0.0299 0.0299 0.0299 0.0299 0.0299 0.0299 0.0299 0.0299 0.0299 0.1028 0.1028 0.1028 0.1028 0.1028 0.1028 0. 1028 0.1028 0.1028 0.1028 -0.0046 -0.0046 -0.0046 -0.0046 -Q£046 .0.0046 -0.0046 -0.0046 .0.0046 -0.0046 0.9944 0.9944 0.9944 0.9944 0.9944 0.9944 0.9944 0.9944 ,,. Grid3 lOW 1.2784 1.4956 1.0825 1.6473 1.2467 1.6818 1.4247 1.2660 1.5156 0.3470 0.4059 0.4621 0 .2938 0.4471 0.4565 0.3867 0 .3436 0.4111 0.9873 0.9721 1.2305 0.7444 1.2215 0.9743 1.2128 1.0885 0.9475 1.1584 -0.0373 -0.3687 -0.4998 -0.1033 -Q.4~8 -Q.1146 -0.4333 -0.2642 -Q.0205 -0.2931 0.5304 0.3572 0.1669 0.6633 0.2202 0.55J4 0.1872 0.4167 0.5394 0.3399 ,,. Gridl Cluster OK 1.1063 1.4956 1.5007 1.0825 1.5746 1.1394 1.6982 1.2289 1.2148 1.4461 0 .3003 0.4059 0.4073 0.2938 0.4274 0.4609 0.3335 0 .3297 0.3925 0.7628 0.9721 1.0357 0.7444 1.0997 0.8259 1.2404 0.8329 0.8145 1.1128 0.0853 -0.3687 -0.3554 -0. 1033 .().2,779 -0.1281 .().4412 -0.0915 -0.0383 -0. 1822 0.6433 0.3572 0.3528 0.6633 0.2875 0.6270 0.1713 0.5660 0.5759 0.3990 

Grid) ... ~ lOW 1.6432 1.2651 t.4861 1.2054 1.3626 1.4752 1.5421 1.4166 1.JOOO 1.4354 o.4460 o.3434 o.4033 0.1212 o.3698 o.4004 o.4t85 o.3845 o.3528 o.3896 1.2916 o.9170 1.2369 o.9215 1.1351 1.2129 1.2544 1.1418 1.0693 1.1574 -0.3208 o.0430 -0.0574 -0.3159 -o.osos -O.JCXX) -o.4097 o.o170 o.1608 o.0797 o.224 1 o.5400 o.3653 o.5824 o.4665 o.3747 o.n66 0.4233 0.4079 ,,. Grid3 ... ~ OK 1.5833 1.2651 1.2758 1.1809 1.3249 1.3712 1.1379 1.3187 0.4297 0.3434 0.3689 0.3272 0.3463 0.3596 0.3722 0.3088 0.3579 1.2565 0.9170 1.0605 0.9215 1.0636 0.9167 1.0133 1.0471 0.8226 0.9977 -0.2958 0.0430 0.1161 -0.3159 0.0375 -0.0973 -0.2102 0.2065 0.1763 0.1365 0.2797 0.5400 0.4691 0.5824 0.5323 0.5993 0.4956 0.4597 0.6279 0.5003 ,,. Grid3 1.0638 0.7611 1.0123 0.9564 1.0081 0.9925 1.0387 0.9788 1.0514 1.0372 0.2887 0 .2066 0.2748 0.2596 0.2736 0.2694 0.2819 0.2657 0.2854 0.2815 0.8174 0.5419 0.7562 0.6982 0.7818 0.7609 0.7886 0.7614 0.7992 0.7968 -0.1351 -0.0313 0.0557 0.0226 .().1241 -0.0170 -0.1010 .().0262 -0.1675 0.0472 0.6748 0.8335 0.7055 0.7371 0.7080 0.7169 0.6900 0.7247 0.6823 0.6909 ,,. Gr1d3 OK o.8951 0.7611 0.8598 0.9564 0.8259 0.8068 o.8797 o.8645 o.7554 o.9134 0.2429 0.2066 0.2333 0.2596 0.2241 0.2190 o.2388 o.2346 o.2oso o.2479 o.6824 o.5419 o.5830 o.6982 o.5739 o.5872 o.5961 o.6657 o.5433 o.688o -0.0790 -0.0313 o.0356 o.o226 -o.0513 o.0198 -o.o386 -0.0315 -0.0549 0.0111 o.7698 o.8335 o.7876 o.n11 o.8040 o.8129 o.7776 o.7s52 0.7602 

"' Grid) lOW 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 0.8936 0.2425 0.2425 0.2425 0.2425 0.2425 0 .2425 0.2425 0.2425 0.2425 0.7062 0.7062 0.7062 0.7062 0.7062 0.7062 0.7062 0.7062 0.7062 0.7062 -0.0703 -0.0703 -0.0703 -0.0703 -o.0703 -0.0703 -0.070) -0.0703 -0.0703 -0.0703 0.7705 0.7705 0.7705 0.7705 0.7705 0.7705 0.7705 0.7705 0.7705 0.7705 ,,. Grid) Aecular OK 0.5798 0.5798 0.5798 0.5798 0.5798 0.5798 0.5798 0.5798 0.5798 0.5798 0.1574 0.1574 0.1574 0.1574 0.1574 0.1574 0.1574 0.1574 0.1574 0. 1574 0.4093 0.4093 0.4093 0.4093 0.4093 0.4093 0.4093 0.4093 0.4093 0.4093 -0.0234 -0.0234 -0.0234 -0.0234 -Q.Q234 .().0234 -0.0234 -0.0234 -0.0234 -0.0234 0.90J4 0.9034 0.9034 0.9034 0.9034 0.9034 0.9034 0.9034 0.9034 0.9034 ,,. Grid4 Cluster lOW 1.8787 1.7613 1.8931 1.9522 1.7840 1.9414 2.0264 1.7399 2.0507 1.9223 0 . .3057 0.2866 0.3080 0.3176 0.2903 0.3159 0.3297 0.2831 0.3337 0 .3128 1.1471 1.0689 1.2102 1.1807 1.2350 1.3666 1.3188 1.1414 1.4580 1.2891 0.0715 0.0400 -0.0622 -0.2515 -Q.2915 -0.2810 .().0865 -0.6734 -0.2694 0.2006 0.2974 0.1883 0.1368 0.2791 0.1463 0.0699 0.3143 0.0475 0.1630 ,,. Grid4 OK 1.9936 1.7613 1.9784 1.9522 1.8878 2.0555 2.00S5 1.8003 2.1261 2.0357 0.3244 0.2866 0.3219 0.3176 0.3072 0.3345 0.2929 0.3459 0 .3312 1.2393 1.0689 1.2687 1.1807 1.2961 1.3450 1.2054 1.1820 1.5122 1.2630 -0.0019 0 .0400 -0.0709 -0.2515 .0.2833 .0.3495 -0.2024 .().1107 -0.6151 -0.2697 0.0998 0 .2974 0.1135 0.1368 0.1928 0.0430 0.0890 0.2659 -0.0238 O.o614 ,,. Grid4 ... ~ lOW 1.8958 2.0112 1.8081 2.0128 1.5716 1.8856 1.8539 1.8591 1.8709 1.8283 0.3085 0 .3272 0.2942 0.3275 0.2557 0.3068 0.3016 0.3025 0.3044 0.2975 1.3495 1.5588 1.1954 1.4043 0.9270 1.3718 1.2880 1.1851 1.3020 1.2417 -0.1565 -o.S662 0.1282 -0.0774 .0.1303 .().2140 0.0075 0.2735 0.0702 0.1265 0.1860 0.0838 0.2596 0.0824 0.4406 0.1947 0.2215 0.2171 0.2072 0.2429 , .. Grid4 OK 1.9924 2.0112 1.8999 1.9293 1.5716 2.0065 1.8925 1.9405 1.9453 1.8754 0.3242 0.3272 0.3091 0.3139 0.2557 0.3265 0.3079 0.3157 0.3165 0 . .3051 l.l063 1.5588 1.2468 1.2051 0.9270 1.4625 1.2721 1.2438 1.2128 1.2831 .0.1768 -0.5662 0.1698 0.1078 -Q.I303 -0.2123 0.2427 0.1185 0.1211 0.1009 0.()838 0.1825 0.1570 0.4406 0.0882 0 .1888 0 .1471 0.1429 

"' Grid 4 Rondom 1.5330 1.7275 1.6126 1.6324 1.6441 1.5479 1.6413 1.6000 1.5119 1.6058 0.2494 0.2811 0.2624 0.2656 0.2675 0.2519 0.2603 0.2460 0.2613 1.0092 1.0960 1.0095 1.0019 1.0428 1.0031 0.9967 1.0349 0.9579 1.0209 -0.1403 0.1046 -0.0765 .0.0022 0.1422 .().0931 -0.0537 .().1355 0.4677 0.3241 0.4110 0.3965 0.3878 0.4573 0.3899 0 .4202 0.4823 0.4159 

'" Grid4 Rondom OK 1.6766 1.7275 1.5984 1.7427 1.5599 1.6741 1.5889 1.5769 1.6676 1.5393 0.2728 0.2811 0.2601 0.2836 0.2538 0 .2724 0.2585 0.2566 0.2713 0.2505 1.1173 1.0960 0.9331 1.0"798 0.8978 1.0950 0.8990 0.9369 1.0694 0.8873 .(). 1676 0.1046 .0.1284 0.0135 0.0201 0.1095 -0.0828 .().0608 -0.0786 0.3633 0.3241 0.4213 0.3121 0.4489 0.3652 0.4282 0.4368 0.3701 0.4633 

'" Grid4 R•cua.r 1.4284 1.4284 1.4284 1.4284 1.4284 1.4284 1.4284 1.4284 1.4284 1.4284 0.2324 0.2324 0.2324 0.2324 0.2324 0 .2324 0.2324 0.2324 0.2324 0.2324 0.9417 0.9417 0.9417 0.9417 0.9417 0.9417 0.9417 0.9417 0.9417 0.941 7 .().1134 .0.1134 -0.1134 .0.1134 -0.11J4 -0.1134 -Q.11J4 -0. 1134 0.5379 0.5379 0.5379 0.5379 0.5379 0.5379 0.5379 0.5379 0.5379 0.5379 ,,. Grid4 OK 1.3275 1.3275 1.3275 1.3275 1.3275 1.3275 1.3275 1.3275 1.3275 1.3275 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0 .2 160 0.2160 0.2160 0.2160 0.7696 0 .7696 0.7696 0.7696 0.7696 0.7696 0.7696 0.7696 o.7696 -o.usa -o.uss -o.usa -o.uss .o.uss -o.uss -o.nsa -o.usa .o.usa .o.usa o.6009 o.6009 o.6009 o.6009 o.6009 o.6009 o.6009 o.6009 o.6009 



NumberofD1t1Polnt:s Gnd Compllf'llity Al1orlthm Root Me1n SqUire ErTOf' (RMSE) "-lltl\01 Root Mun Squ1re ErrOl' (rftMSE) BI•! ErrOf'(BE) Con'-'~lonCoefflcient:(rZ) 

676 Grfd1 Cluster lOW 0.4595 1.0553 0.1'918 0.9748 0.5269 0.4915 0.9825 1.1402 0.3436 1.D433 0.1044 0.2398 0.1799 0.2215 0.1197 0.11 17 0.2233 0 .2591 0.0781 0.2371 0.2693 0.5393 0.4108 0.4617 0.3141 O.ll61 0.4999 0.4994 0.1239 0.5453 0.0913 .0.()640 ·0.2525 .0.1867 0.0197 0. 1455 ·0.3152 -0.3435 0.0535 -0.1229 0.9671 0.8266 0.9024 0.8520 0.9568 0.9624 0.8497 0.7976 0.9816 0.8305 

Grfdl "" 0.3349 0.9560 0.1739 0.8824 0.4615 0.3569 0.8808 1.1)685 O.ll03 0..8239 0.0761 0 .2173 0.0395 0.2005 0.1049 O.OS11 0.2002 0.2428 0.0705 0.1872 0.1859 0.4185 0.1207 0.3814 0.2727 0.2280 0.4369 0.4308 0.1973 0.3914 0.0703 .0.0992 0.0025 .0.1656 o.ota6 0.0841 ·0.2806 -0.3080 0.0454 -0.0990 0.9825 0.8577 0.9953 0.8787 0.9668 0.9802 0.81'92 0..8222 0.9850 0.8943 

676 Grfdl ... ~ lOW 0.3786 0.2468 0.2751 0.2651 0.2644 0.3278 0.3027 0.2861 0.2864 0.4176 0.0860 0.0561 0.0625 0.0602 0.0601 0.0745 0.0688 0 .0650 0.0651 0.0949 0.2479 0.1593 0.1705 0.171'9 0.1629 0.2121 0.2000 0.1753 0.1884 0.2097 0.0040 .0.0082 -0.0245 ·0.0033 0.0124 0.0073 .0.0020 .0.0330 ·0.0585 0.9777 0.9905 0.9882 0.9891 0.9891 0.9833 0.9857 0.9873 0.9872 0.9729 

676 Grfdl ... ~ OK 0.1808 0.1694 0.1908 0.2018 0 .1734 0. 1865 0.2212 0.2101 0.1870 0.3103 0.0411 0.0385 0.0434 0.0459 0.0394 O.D424 0.0503 0 .0477 O.D42S 0.0705 0.1145 0.1055 0.1225 0.1350 0.1070 0.1237 0.1465 0.1206 0.1225 0.1492 0.0094 .0.0063 -0.0107 ·0.0047 0 .01~7 0.0125 0.0040 ·0.0289 -0.0455 0.9949 0.9955 0.9943 0.9937 0.9953 0.9946 0.9924 0.9931 0.9946 0.9850 

Grid ! R1ndom lOW 0. 1401 0.1766 0.1739 0.1690 0 .1804 0. 1383 0. 1658 0. 1628 0. 18 10 0. 1594 0.03 18 0.0401 0.0395 0.0384 0.0410 0.0314 0.0377 0.0370 0.04 11 0.0362 0.0789 0. 1184 0.1207 0.1159 0.1204 0.0801 0.1155 0.1084 0.1213 0.1115 ·0.0031 ..0.0101 0.0025 0.0048 0.0013 ·0.0083 0.0080 ·0.0066 0.0033 0.9969 0.9951 0.9953 0.9956 0.9949 0.9970 0.9957 0.9959 0.9949 0.9960 

676 Grid1 Rondom OK 0.0900 0. 1553 0.1409 0. 1515 0.1623 0.1681 0.0849 0.1349 0.1369 0.0205 0.0353 0.0320 0.0344 0.0369 0.0382 0.0193 0.0307 0.0355 o.0437 0 .1058 o.0989 o.1o51 o. t076 o.1140 o.0456 o.091S 0.1011 o.0973 ..o.OOOB -o.oos1 o.oo30 o.0042 o.ool9 -o.0061 o.0063 ·0.0045 0.0058 0.9987 0.9962 0.9969 0.9964 0.9959 0.9956 0 .9989 0 .9972 0.9962 0.9971 

Grid1 lOW 0.0921 0.0921 0.0921 0.0921 0.0921 
I 

0.0921 0J)921 0.0921 0.0921 0.0209 0.0209 0.0209 0.0209 0.0209 0.0209 0.0209 0.0209 0.0209 0.0209 0.()488 0 .0488 0.0488 0.0488 0.0488 0.0488 0.0488 0.0488 0.0488 0.0488 ·0.0062 ..0.0062 ..0.0062 -0.0062 .Q.oqi2 ..().0062 -0.0062 -0.0062 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 

Grid! OK 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0162 0.0162 0.0162 0.0162 0.0162 0.0162 0.0162 0.0162 0.0162 0.0162 0.0357 0.0357 0.0357 0.0357 0.0357 0.0357 0.0357 0.0357 0.0357 0.0357 -0.0046 .0.0046 ..0.0046 ·0.0046 .().00116 ·0.0046 -0.0046 ·0.0046 -0.0046 -0.0046 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 

676 GridZ Clust« lOW 0.7328 0.8109 0.6816 0.5731 0.7243 0.7393 0.6605 0.4957 0.6861 0.9770 0 .1443 0.1597 0.1343 0.1129 0.1427 0.1456 0.1301 O.D976 0.1351 0.1924 0.4708 0.5442 0.4621 0.3926 0.4964 0.5098 0.4603 0.3608 0.41'92 0.6655 0.0494 .0.0228 -0.0938 ·0.0890 .0.1495 0.051'9 -0.0252 0.0931 0.2366 ..0.2062 0.8703 0..8412 0.8878 0.9207 0.8733 0.8680 0.8946 0.9407 0.8863 0.7695 

GridZ Cluster OK 0.5844 0.7443 0.5859 0.3984 0.5961 0.5606 0.5094 0.3332 0.5540 0.7675 0.115 1 0.1466 0.1154 0.0785 0.1174 
I 

0.1003 0.0656 0.1091 0.1512 0.3551 0.4640 0.3697 0.2666 0.3852 0.3628 0.3439 0.2487 0.3697 0.4817 0.0803 .().0075 .0.0462 ·0.0483 .().0664 0.0916 0.0247 ·0.2221 0.9175 0.8662 0.9171 0.9617 0.9142 0.9241 0.9373 0.9732 0 .9259 0.8577 

Grid 2 ... ~ lOW 0.4829 O.SOSS 0.5132 0.4389 0.4353 0.4472 0.4971 0.5091 0.5995 0.4530 0 .0951 0.0996 0.1011 0.0864 0.0857 0.0881 0.0979 0.1003 0.118 1 O.D892 0.3688 0.31'94 0 .3666 0.3243 0.3247 0.3280 0.3670 0.3468 0.4287 0 .3461 .0.0215 ..0.0390 -0.0354 ·0.0924 .0.0215 ..0.0162 0.0295 0.0576 0.0023 0.0686 0.9437 0.9383 0.9364 0.9535 0.9542 0.9517 0.9403 0.9374 0.9132 0.9504 

676 Grid l ... ~ OK 0.2955 0.3091 0.3237 0.4389 0.2569 0.2863 0.2973 0.3510 0.3604 0.2945 0.0582 0.0609 0.0638 0.0864 0.0506 0 .0564 0.0586 0.069 1 0.0710 0.0580 0.2089 0.2199 0.2282 0.3243 0.1870 0.2092 0.2078 0.2157 0.248 1 0.2096 0.0145 .().0200 -0.0102 -0.0924 .0.01~ 0.0007 0.0191 0.0387 0.0150 0.0595 0.9789 0.9769 0.9747 0.9535 0.9841 0.9802 0.9787 0.9702 0.9686 0.91'91 

676 Grid l R1ndom lOW 0.2504 0.2950 0.2948 0.2656 0.2807 0.2854 0.2864 0.2737 0.2866 0.2765 0.0493 0.0581 O.OS8 1 0.0523 0.0553 0.0562 0 .0564 0.0539 0.0564 0.0545 0. 1745 0.2231 0.2212 0.2022 0.2140 0.2143 0.2166 0.2083 0.2137 0 .2099 ·0.0007 0.0089 -O.ot05 -0.0134 .O.OU l -O.ot05 0.0012 -0.0210 0.0089 0.9849 0.9790 0.9790 0.9810 0.9810 0.9803 0.9802 0.9819 0.9802 0.9815 

676 Grid2 R1ndom OK 0.1733 0.2073 0.2245 0.2016 0.2317 0.2 102 0.2 121 0.2039 0.2161 0 .1818 0.0341 0.0408 0.0442 0.0397 0.0456 0.0414 0.0418 0.0402 0.0426 0.0358 0.1065 0.1585 0 .1689 0.1530 0.1773 0.1574 0.1586 0.1555 0. 1618 0 .1273 -0.0016 0.0096 -0.0101 ·0.0073 ..O.CXliS -0.0052 0.0026 -0.0140 -0.0078 0.0031 0.9927 0.9896 0.9878 0.9902 0.9870 0.9893 0.989 1 0.9900 0.9887 0.9920 

676 Grid2 0.1868 0.1868 0.1868 0.1868 0.1868 0.1868 0.1868 0.1868 0.1868 0.1868 0.0368 0 .0368 0.0368 0.0368 0.0368 0.0368 0.0368 0.0368 0.0368 0.0368 0.1247 0.1247 0.1247 0.1247 0.1247 0.1247 0.1247 0.1247 0.1247 0.1247 .().0063 .().0063 ..0.0063 ·0.0063 .().0063 -0.0063 ·0.0063 -0.0063 ·0.0063 .0.0063 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 

676 Grid2 "" 0.0990 0.0990 0.0990 0.0990 0 .0990 0.0990 0.0990 0.0990 0.0990 0.0990 0.0195 0.0195 0.0195 0.0195 0.0195 0.0195 0.0195 0 .0195 0.0195 0.0195 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 -0.0013 .().0013 ..0.0013 ·0.0013 .().()()\] ..0.0013 -0.001.3 ·0.0013 -0.0013 0.9976 0 .9976 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976 

676 Grid3 Cluster lOW 1.0819 1.3972 1.4010 1.261'9 1.3872 1.0S72 1.2542 1.4781 1.0121 1.1437 0.2936 0 .31'92 0.3802 0.3441 0.3765 0.2951 0.3404 0.4012 0.2747 0.3 104 0.7277 1.0473 0.9971 0.9289 0.9813 0.8103 0.9101 1.0140 0.7470 0.8680 -0.0770 ..().4368 ..0.3429 -0.1419 .().3142 -0.1066 ·0.2 169 ·0.1407 0.0081 -0.1899 0.6636 0.4390 0.4360 0.5381 0.4470 0.6604 0 .5480 0 .3721 0.7056 0.624 1 

676 Grid3 CIU5tet OK 0.9998 1.2161 1.3460 1.230ol 1.1935 1.0284 1.2931 1.4795 0.9081 0.9901 0.271 4 0.3301 0.3653 0 .3340 0.3239 0.21'91 0.3510 0.4016 0.2465 0.2687 0.6529 0..8457 0.9093 0.8778 0.8452 0.7160 0.9850 0.9133 0 .6569 0.6392 .0.0336 ..().2716 -0.3946 ..0.1660 .().1793 ..0.0590 0.1088 ..0. 1514 0.0053 -0.1532 0.7127 0.5750 0.4794 0.5649 0.5907 0.6961 0.5195 0 .3710 0.7630 0.7183 

676 GridJ 1.2035 1.0261 1.1475 1.1017 1.D928 1.0598 1.1639 1.0902 1.2728 1.1323 0.3266 0.2785 0.3114 0 .2990 0.2966 0.2876 0.3159 0.2959 0.3455 0.3073 0.9627 0..8203 0.9170 0.8538 0.8586 0.8441 0.8836 0.8773 0 .9608 0.8906 -0.1586 ..0.1844 ..0.1839 0.0074 .0.0)46 .().1175 -0.0353 0.0350 -0.0232 0.5838 0.6974 0.6216 0.6512 0.6568 0.6772 0.6107 0 .6584 0.5345 0.6316 

676 Gridl ... ~ OK 0.9868 0.9165 1.030ol 1.0435 0.9389 0.9775 1.0291 1.0018 1.1557 1.1161 0.2678 0.2487 0.2797 0 .2832 0.2548 0.2653 0.21'93 0.2719 0.3137 0.3029 0.7554 0.7090 0.7621 0.8232 0.6988 0.7459 0.7333 0.8114 0.8766 0.8861 .().0883 ..0.1713 ·0.1332 0.0248 .().0177 0.0083 ·0.0021 -0.2146 -0.0258 0.7201 0.7586 0.6949 0.687 1 0.7467 0.7254 0.6957 0.7116 0.6162 0.6420 

676 Gridl R1ndom lOW 0.7359 0.7527 0.7188 0.7490 0.7131 0.7775 0.7503 0.7343 0.1'987 0.7259 0.1997 0.2043 0. 1951 0 .2033 0.1935 0.2110 0.2036 0.1993 0.2168 0.1970 0.5023 0.5823 0.5804 0.5705 0.5742 0.6090 0.5865 0.5796 0.5873 0.5552 0.0011 ·0.0676 ·0.0657 .O.Ol41 0.0042 0.0031 -0.0624 O.o705 -0.0301 0.8444 0.8372 0.8515 0.8388 0.8539 0.8263 0.8382 0.8451 0.8 167 0.8486 

676 Gridl R1ndom OK 0.5201 0.6397 0.5783 0.7346 0.5897 0.6824 0.5939 0.5950 0.6849 0.6055 0.1411 0.1736 0.15 70 0.1994 0.1601 0.1852 0.1612 0.1615 0.1859 0.1643 0.3190 0.4849 0.4514 0.5643 0.4678 0.5246 0.4503 0.4577 0.4883 0.4590 0.0078 0.0182 ·0.0512 ..0.0620 .().0237 0.0077 0.0026 ·0.0502 0.0563 ·0.0192 0.9223 0.8824 0.9039 0.8449 0.9001 0.8662 0.8986 0.8983 0.8652 0.8947 

676 Grid3 lOW 0.5496 0.5496 0.5496 0.5496 0.5496 0 .5496 0.5496 0.5496 0.5496 0.5496 0 .1492 0. 1492 0.1492 0.1492 0.1492 0.1492 0.1492 0.1492 0.1492 0.1492 0.3861 0.3861 0.3861 0.3861 0.3861 0.3861 0.3861 0.3861 0.3861 0.3861 -0.0358 .().0358 -0.0358 -0.0358 .0.0358 -0.0358 -0.0358 -0.0358 ..0.0358 0.9132 0.9132 0.9132 0.9132 0.9132 0.9132 0.9132 0.9132 0.9132 0.9132 

616 Grid3 OK 0.3665 0.3665 0.3665 0.3665 0.3665 0 .3665 0.3665 0.3665 0.3665 0.3665 0 .0995 0.0995 0.0995 0.0995 0.0995 0.0995 0.0995 0.0995 0.0995 0.0995 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 -0.0166 -0.0166 -0.0166 .().0166 -0.0166 ·0.0166 -0.0166 ·0.0166 ·0.0166 0.9614 0.9614 0.9614 0.9614 0.9614 0.9614 0.9614 0.9614 0.9614 0.9614 

616 Grid4 Cluster lOW 1.8824 2.1Xl04 1.6759 1.7106 1.7178 1.8648 1.7543 1.5794 1.7789 1.7543 0.3063 0.3255 0.2727 0.2783 0.21'95 0.3034 0 .2854 0.2570 0 .2894 0.2854 1.1931 1.3718 1.0562 1.2109 1.0926 1.3103 1.3380 0.9808 1.1059 1.3380 ·0.4054 ..0.3710 0.1028 -0.2935 ..0.0707 -0.4555 .0.5073 0.1191 -0.5073 0.1974 0.0936 0.3638 0.3372 0.3317 0.2124 0.3030 0.4350 0.2833 0.3030 

676 Grid4 Cluster OK 1.9922 2.0182 1.6298 1.5747 1.7825 1.9345 1.8339 1.5181 1.6884 1.7707 0.3242 0.3284 0.2652 0.2562 0.2900 0 .3148 0.2984 0.2470 0.2747 0.2881 1.2868 1.3815 0 .9647 1.0212 1.1236 1.3398 1.3806 0.8513 1.0016 1.0320 -0.4256 .0.3730 0.1106 -0.1281 .0.0753 ·0.5373 0.2570 -0.0036 0.1558 0.1011 0.0775 0.3983 0.4384 0.2804 0.1524 0.2383 0.4780 0.3543 0.2898 

676 Grid4 lOW 1.6891 1.6400 1.8240 1.7788 1.6453 1.6467 t.6SS7 1.7528 1.6332 1.7567 o.2748 0.1668 o.2968 o.2894 o.2677 o.2679 o.2694 o .28s2 o .266s o.28ss t .t 205 t .1230 1.2009 1.0967 1.1s1s 1.0112 t .0953 1.1924 t .0883 1.0550 o.088S -0.2540 -0.1363 o.0969 .o.rn1 o.no7 -0.1064 ..o.Jl43 -o.n21 o.2323 o.3S38 o.3908 0.2464 0.2833 o.3869 o.3858 o.31'91 0..3041 o.3922 o.30u 

676 Grfd4 OK 1.8250 1.641'9 1.8717 1.7658 1.6161 1.7857 1.8030 1.8585 \.8032 1.7814 0.2969 0.2681 0.3045 0.2873 0.2630 0.2906 0.2934 0.3024 0.2934 0.2898 1.2173 1.0746 1.1702 1.0354 1.0444 1.2032 1.2215 1.2921 1.2178 1.0580 0.0983 .0.2364 -0.1019 0.1402 -0.0965 0.0971 -0.1350 -0.3541 0.2504 0.2456 0.3850 0.2065 0.2938 0.4084 0.2777 0.2637 0.2177 0.2635 0.2812 

676 Grid4 R1ndom lOW 1.2540 1.2981 1.2706 1.2958 1.2493 1.2411 1.3003 1.3818 1.3188 1.2551 0.2040 0.2112 0.2067 0.2108 0.2033 0.2019 0.2116 0.2000 0.2 146 0.2042 0.7227 0.8577 0.8440 0.8437 0.8184 0.8200 0.8463 0.8200 0.8526 0.8210 -0.0698 -0.0574 -0.0720 -0.0366 -0.04 7 -0.0293 ·0.0457 -0.0411 -0.0509 0.6438 0.6183 0.6343 0.6197 0.6465 0.6511 0.6171 0.6233 0.6061 0.6432 

676 Grid4 R1ndom OK 1.0793 1.3577 1.1752 1.2027 1.1569 1.2769 1.2180 1.5181 \.2358 1.1080 0.1756 0.2209 0.1912 0.1957 0.1882 0.2078 0.1982 0.2470 0.2011 0.1803 0.5455 0.8471 0.7424 0.7453 0.7061 0.8229 0.7562 0.8513 0.7553 0.6370 -0.0528 -o.os28 -0.0344 -o.o2l11 .o.o7ol -o.o289 0.2570 -O.o120 -0.0638 o.7361 o .sa2s o.6872 o.6724 o.6969 o.6307 o.6640 o.4780 o.6S41 o.7219 

676 Grid4 1.1116 1.1116 1.1116 1.1116 1.1116 1.1116 1.1116 1.1116 1.1116 1.1116 0.1809 0.1809 0.1809 0.1809 0.1809 0. 1809 0.1809 0 .1809 0.1809 0.1809 0.6342 0.6342 0.6342 0.6342 0.6342 0.6342 0.6342 0.6342 0 .6342 0.6342 0.0030 0.0030 0.0030 0.0030 o.ocso 0.0030 0.0030 0.0030 0.7201 0.7201 0.7201 0.7201 0.7201 0.7201 0 .7201 0 .7201 0.7201 0.7201 

Grid4 Reaul~r OK 1.2424 1.2424 1.2424 1.2424 1.2424 1.2424 1.2424 0.2021 0.202 1 0.2021 0.202 1 0.2021 0.2021 0 .2021 0.2021 0.2021 0.7397 0.7397 0.7397 0.7397 0.7397 0.7397 0.7397 0.7397 0.7397 0.7397 0.0044 0.0044 0.0044 0.0044 0.()()!14 0.0044 0.0044 0.0044 0.0044 0.0044 0.6504 0.6504 0.6504 0.6504 0.6504 0 .6504 0.6504 0.6504 



I 
GridComplelllty D1t1 015trlbutloo Alcorlthm Root Mnn Square ErrOf lRMSE) Re!.tl\01 Root Mun Sq,..r11 Error (rfiMSE) BI•Error(BE) CorTelltlon Co.ffldern (r2) 

1600 Grldl Cluster lOW 0.2794 0.3713 0.4731 0.9678 0.5948 0.7516 0.4099 0.3233 0.4975 0.6117 0.0635 0.0844 0.1075 0.2199 0.1352 0.1708 0.09ll 0.0735 0 .1131 0 .1390 0.1256 0.2734 0.2147 0.4155 O.J874 0.3539 0.2133 0.1910 0.2180 0.261l O.OSll 0.1132 0.1001 -0.1836 0.1344 -0.0028 0.0225 0.1035 -0.0549 -0.0090 0.9878 0.9785 0.9651 0 .8541 0.9449 0.9120 0 .9738 0.9837 0.961 5 0.9417 

16110 Gridl Cluster OK o.2006 o.3408 o.4t04 o.8997 o.4808 o.6408 o.38.85 o.3507 o.5331 o.5382 o.0456 o.0774 o.0933 o.2044 0.1093 0.1456 o.0883 o.o797 0. 1211 0.1221 o .0954 o.2514 o.2535 o.3847 o.X>a1 o.3343 0.2443 0.21 11 0.2894 0.2988 o.o332 o.1o25 0.1331 -0.2245 o.q.22 -0.0118 ..o.0109 o.14SO -o.os14 ..0.0011 0.9937 0.9819 0.9738 o.&740 0.9640 o.9361 o .9765 o.9809 0.9557 o.9549 

1600 Grid 1 ... ~ lOW 0. 1976 0.1803 0.1925 0.2253 0.1953 0.1738 0.1990 0.1863 0.2261 0.1867 0.0449 0.0410 0.0437 0.0512 0.0444 0.0395 0.()452 0.0423 0.0514 0 .0424 0.1183 0.1232 0.1264 0.1328 0. 1260 0.1185 0.1270 0.12 17 0.1396 0.1211 0.0102 ·0.0048 ·0.03 12 ..().(l028 0.0034 ·0.0051 0.0038 -0.0081 -0.0107 0.9939 0.9949 0.9942 0.9921 0.9941 0.9953 0.9938 0.9946 0.9920 0.9946 

16110 Grid! ... ~ OK 0.1370 0.1341 0.1348 0. 1S06 0.1314 0.1253 0.1518 0.1324 0.1827 0.1511 0.0311 0.0305 0.0306 0.0342 0.0299 0.0285 0.0345 0.0301 0.0415 0.0343 0.0784 0.0910 0.0898 0.0921 0.0856 0.0822 0.0987 0.0844 0.1146 0.0988 ·0.0002 0.0096 ·0.0061 -0.0154 ..0.0014 0.0003 ·0.0039 ·0.0001 -0.0058 ·0.0090 0.9971 0.9972 0.9972 0.9965 0.9973 0.9976 0.9964 0.9973 0.9948 0.9964 

16110 Grid! Rerldom lOW 0.0864 0.2206 0.1178 0.2038 0.2152 0.2040 0.1988 0.2111 0 .0196 0.0501 0.0268 0.0463 0.0489 0.0464 0.0452 0.0480 0.0480 0.0465 0.0421 0.1535 0.0592 0. 1419 0.1491 0.1455 0.1442 0.1464 0.1493 0.1421 0.0016 ..0.0108 -0.0042 -0.0090 ..O.OQ88 -0.0023 0.0047 ·0.0090 -0.0035 ·0.0103 0.9988 0.9935 0.9928 0.9935 0.9938 0.9931 0.9930 0.9935 

16110 Grid ! Random OK 0.0745 0.2140 0.1998 0. 1990 0.2080 0.1946 0. 1913 0.2049 0.2016 0.1991 0.0169 0.0486 0.0454 0.()452 0.0473 0.0442 0.0435 0.0466 0.0458 0.0452 0.0364 0.1502 0 .1409 0.1401 0.1457 0.1407 0.1395 0.1435 ·O.<XXl3 ..0.0103 ·0.0067 -0.0090 ..0.0079 -0.0021 0.0024 ·0.0088 -0.0045 ·0.0100 0.9991 0.9938 0.9938 0.9933 0.9941 0.9943 0.9935 0.9937 0.9938 

1600 Gridl lOW 0.0588 0.0588 0.0588 0.0588 0.0588 0.0588 0.0588 0.0588 O.OS88 0.0588 0.01]4 0 .0134 0.0134 0.0134 0 .0134 0.0134 0.0134 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.02S4 0 .02S4 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 

1600 Grid1 OK 0.0601 0.0601 0.0601 0.0601 0.0601 0 .0601 0.0601 0.0601 O.o601 0.0136 O.Otl6 0.0136 0.0136 0.0136 0.0136 0.0136 0.0136 0.0136 0.0136 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0 .0278 -0.0068 ..() .0068 -0.0068 -0.0068 ..O.OQ68 ..0.0068 -0.0068 ·0.0068 ·0.0068 ·0.0068 0.9994 0.9994 0.9994 0.9994 0.9994 0.9994 0.9994 

1600 Grid2 Clont..- lOW 0.3309 0.8674 0.7397 0.7109 0.6351 0.7076 0.7874 0.6311 0.5223 0.7990 0.0652 0.1709 0.1457 0.1400 0.1251 0.1394 0.1551 0.1243 0.1029 0.1574 0.1910 0.5687 0.4210 0.3930 0.3860 0.3936 0.4619 0.3607 0.2987 -0.0604 .0.2145 -0.1585 ..0.0422 ..0.0682 0.0833 -0.1623 0.0270 ·0.0209 -0.1589 0.9736 0.8183 0.861'9 0.8779 0.9026 0.8791 0.8503 0.9038 0.9341 0.8459 

16011 Grld2 Clont« OK 0.2155 0.7404 0.6158 0.6466 0.5161 0.5787 0.6555 0.5370 0.5922 0.0424 0.1458 0.1211 0.1274 0.1017 0.1058 0.0777 0.1166 0.1162 0.4695 0.3928 0.4064 0.3575 0.3684 0.4334 0.3600 0.2851 0.3873 -0.0310 .0.1826 -0.1333 0.0337 ..O.Ol05 0.0376 -0.1224 0.0927 ..0.0397 ·0.0707 0.9888 0.8676 0.9084 0.8990 0.9357 0.9191 0.8962 0.9304 0.9624 0.9153 

16011 Grld2 ... ~ lOW 0.3414 0.3277 0.3190 0.3229 0.3359 0.3256 0.3412 0.3150 0.0672 O.Q645 0.0628 0.0636 0.0662 0 .0641 0.0672 0.0620 0.0646 0.0630 0.2430 0.2401 0.2406 0.2358 0.2466 0.2425 0.2521 0.2353 0.2415 0.2397 ..0.0089 .0.0053 -0.0049 ..0.0082 ..0.0279 O.<XXl1 -0.0090 ·0.0006 ·0.0019 0.0102 0.9719 0.9748 0.9728 0.9744 0.9719 0 .9760 0.9741 0.9753 

1600 Gridl ... ~ OK 0.1888 0.2185 0.2247 0.2252 0.2127 0.2108 0.2190 0.2329 0.2157 0.1982 0.0372 O.Q430 0.0443 0.0444 0.0419 0.0415 0.043 1 O.Q459 0.0425 0.0390 0.1271 0.1565 0.1663 0.1594 0.1556 0.1547 0.1608 0.1725 0.0036 0.0068 0.0047 ..0.0246 0.0087 ..0.0114 0.0085 ·0.0012 0.0089 0.9914 0.9885 0.9878 0.9878 0.9891 0.9893 0 .9884 0 .9869 0.9888 0.9905 

1600 Gridl Rendom lOW 0.1527 0.2907 0.2839 0.3024 0 .2922 0.2887 0.2879 0.2961 0.3072 0.3027 0.0101 0.0573 0.0559 0 .0596 0.0576 0.0569 0 .0567 0.0583 0.0605 O.OS96 0.0970 0.2290 0.2234 0.2351 0.2293 0.2292 0.2248 0.2337 0 .2 391 0.2344 -O.CXJ46 ..0.0155 0.0106 ·0.0119 0.0098 ..0.0141 ..0.0153 ..0.0040 -0.0203 0.0073 0.9944 0.9196 0.9805 0.9779 0.9794 0.9799 0 .9800 0.9788 0.9772 0.9779 

1600 Grld2 Rendom OK 0.1422 0.2633 0.2578 0.2115 0 .2674 0.2647 0.2660 0.0280 0.0519 O.OSCll 0 .0535 0.0527 0.0521 0.0524 0.0526 0.0541 0.0535 0.0864 0.2074 0.2042 0.2124 0.2101 0.2102 0.2089 0.2121 0.2162 0.2128 -0.0025 ..0.0123 0.0083 ..0.0091 O.IX!SO ..0.0117 ..0.0122 ..0.0016 -0.0149 0.0067 0.9951 0.9822 0.9827 0.9831 0.9829 0 .9827 0.9818 0.9822 

1600 Grld2 lOW 0.1026 0.1026 0. 1026 0.1026 0.1026 0. 1026 0.1026 0.1026 0.1026 0.0202 0.0202 0.0202 0.0202 0.0202 0.0202 0.0202 0.0202 0.0202 0 .0202 0 .0611 0.0611 0.0611 0.0611 0.0611 0.06 11 0.0611 0.0611 0.0017 0.0017 0.0017 0.0017 0 .0017 0.0011 0.0017 0.0017 0.0017 0.0017 0.9975 0.9975 0.9975 0.9975 0.9975 0.9975 0 .9975 0 .9975 0.9975 0.9975 

1600 Gtld2 OK 0.0678 0.0678 0.0618 0.0678 O.Q678 0.0678 0.0678 0.0678 0.0678 0.0678 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0 .0134 0.0134 0.0324 0.0324 0.0324 0.0324 0.0324 0.0324 0.0324 0.0324 0.0324 0.0034 0.0034 OJXl34 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.9989 0.9989 0.9989 0.9989 0.9989 0.9989 0.9989 0.9989 0.9989 0.9989 

1600 Grld3 Cluster lOW 0.1128 1.0655 1.1951 1.0193 1.0974 1.1094 1.1966 1.0478 1.0140 0.1935 0.2892 0.3244 0 .2767 0.2978 0.3011 0.3248 0.2844 0.3097 0 .2752 0.4392 0.8197 0.6983 0.6268 0.6856 0.6404 0.7510 0.6665 0.6899 0.6387 ..0.0654 .0.2270 ..0.1500 -0.2432 .0.2346 ..0.0936 ·0.2352 ..0.5000 0.1369 ..0.0004 0.8540 0.6540 0.6463 0.5885 0.6845 0.6258 0.7045 

1600 Grldl Cluster OK 0.5854 0.9874 1.1392 0.9945 1.0195 1.1520 1.2027 0.9340 0.9852 0.1589 0.2680 0.3092 0 .2699 0.2767 0.3127 0.3264 0.2535 0.2834 0 .2674 O.J354 0.7358 0.7909 0.7160 0.7602 0.7'992 0.8292 0.6884 0.6956 ·0.0229 ..0.2403 ·0.1600 ·0.1937 .0. 1~56 -0.110 1 0.0088 ·0.2181 0.1061 0.0313 0.9015 0.7198 0.6211 0.1158 0.7013 0.6186 0.5843 0.7493 0.6867 0.1211 

1600 Gridl ... ~ lOW 0.8776 0.8628 0.8962 0.8452 0.8337 0.8915 0.8934 0.8390 0.8151 0.9283 0.2382 0.2342 0.2432 0.2294 0.2263 0.2420 0.2425 0.2277 0.2212 0 .2520 0.6413 0.6650 0.6890 0.6703 0.6549 0.6922 0.6875 0.6551 0.6513 0.7165 ·0.0550 .0.0459 .0.0800 0.0011 .O.OSS2 ..0.0100 ·0.0420 ·0.0520 -0.0244 ·0 .0140 0.7787 0.7861 0.7692 0.7947 0.8003 0.7716 0.7706 0.7977 0.809 1 0.7524 

1600 Grld3 ... ~ OK 0.7092 0.6845 0.7699 0.7996 0.6895 0.8002 0.7949 0.6727 0.8606 0.1925 0.1858 0.2090 0.2170 0.1871 0.2112 0.2158 0.1826 0.2130 0.2336 0.4851 0.5029 0.5693 0.6239 0.5135 0.6062 0.5999 0.4927 0.6243 0.6642 ·0.0210 .O.Ol01 ·0.1056 0.0073 .0.0784 0.0088 -0.0256 ·0.0494 -0.0252 ·0.0041 0.8555 0.8163 0.8634 0.8160 0.8184 0.8699 0.8230 0.7812 

16110 Grld3 Re ndom lOW 0.4463 0.6257 0.6488 0.6224 0.6335 0.625 1 0.6137 0.6425 0.6368 0.6271 0.1211 0.1698 0.1761 0.1689 0. 1719 0.1696 0.1666 0.1744 0.1128 0.1702 0.2752 0 .5133 0.5204 0.5083 0.5174 0.5157 0.5105 0.5223 0.5172 -0.0163 .0.0314 -0.0060 -0.0093 .O.OB4 0.0233 -0.0312 -0.0358 ·0.0210 ·0.0306 0.9428 0.8875 0.8790 0.8887 0.8847 0.8877 0.8918 0.8835 0.8870 

1600 Grid3 OK o.3180 o.5700 o.5598 o.5642 o.562 5 o.5451 o.5553 o.5536 o.5349 o .5372 o.0863 0 .1547 0. 1519 o.t5ll 0. 1527 o.t479 o.1507 0.1502 0.1 452 0. 1458 o.1838 0.4673 o.4482 o.4603 o.4588 o.4504 o.4601 0.4S06 o.4377 o .4377 o.OXlO .o.0258 -0.0115 -0.0076 ..o.olll .o.o201 -0.0259 -0.0296 ·0.0124 ·0.0280 o.9709 o.9066 o.9099 o.908S o.9091 0.9146 o.9l14 0.9178 0.9171 

1600 Grid3 lOW 0.3316 0.3316 0.3316 0.3316 0.3316 0 .3316 0.33 16 0.3316 0.3316 O.Q900 0 .0900 0.0900 0.0900 0.0900 0.0900 0.0900 0.0900 0.0900 0.0900 0.1964 0.1964 0 .1964 0.1964 0.1964 0.1964 0. 1964 0.1964 0.1964 0.1964 O.CXXll! 0 .0008 O.CXXI8 O.CXXI8 O.CXX>8 0.0008 O.CXXI8 0.0008 0.0008 OJXXlll 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 

1600 Grid] 0.2154 0.2154 0.2 154 0.2154 0.2154 0.2154 0.2154 0.2154 0.2154 0.2154 0.0585 0.0585 0.0585 0.0585 0.0585 0.0585 0.0585 0.0585 0.0585 0.0585 0.107 5 0.1075 0.1075 0.1075 0.1075 0.1075 0.1075 0.1075 0.1075 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.9867 0.9867 0.9867 0.9867 0.9867 0.9867 0.9867 0.9867 0.9867 0.9867 

16011 Grid4 Clont..- lOW 1.3828 1.5094 1.6429 1.7873 1.9759 1.4066 1.4564 1.7135 1.5463 1.6295 0.2250 0.2456 0.2673 0.2908 0.3215 0.2289 0.2370 0.2788 0.2516 0.2651 0.7851 0.8109 0.8963 1.04.39 1.3225 0.7087 0.8851 0.9627 0.8525 0.9387 -0.1491 0.0138 -0.2084 ..0.4196 ..0.3855 0.1435 ..Q.l049 -0.1765 ·0.2072 ·0.2400 0.5669 0.4840 0.3387 0.2765 0.1157 0.5519 0.5196 0.3350 0.4584 03986 

16011 Grid4 CltJSter OK 1.4628 1.5032 1.5050 1.7856 1.9932 1.4963 1.5439 1.6510 1.5442 1.6044 0.2380 0.2446 0.2449 0.2905 0.3243 0.2435 0.2512 0.2686 0.2513 0.2611 0.8549 0.9625 0.9928 1.1691 1.29.50 0.9119 1.1368 1.0175 0.9926 1.0645 ..0.0956 .0.1228 ..0.1596 ·0.3703 .0.5127 0.1294 ..0.3503 -0.1198 -0.1990 -0.1853 0.5153 0.4870 0.2778 0.1002 0.4929 0 .4601 0.3826 0.4599 0.4169 

16011 GridO ... ~ 1.4975 1.4291 1.3892 1.3978 1.5371 1.4284 1.4314 1.4082 1.3564 0.2437 0.2325 0.2271 0.2260 0.2274 0 . .2501 0.2324 0.2319 0.2291 0.2207 0.9163 0.9547 0.9134 0.9077 0.9006 0.9585 0.8905 ..0.0844 .0.2013 ·0 .0429 ..0.0464 .0.0317 0.1292 0.0561 0.0119 0.0694 -0.1825 0.492 1 0.5374 0.5589 0.5629 0.5574 0.4649 0 .5379 0.5360 0.5508 0.5833 

16011 Grid4 ... ~ OK 1.3128 1.3938 1.3363 1.3665 13508 1.4812 1.3516 1.3813 1.4451 1.4893 0.2136 0.2268 0.2174 0.2223 0.2198 0.2410 0.2199 0.2248 0 .2351 0.2423 0.7208 0.8647 0.8212 0.8286 0.8117 0.8638 0.79 10 0.8154 1.0076 ..0.0433 ..0.1570 ..0.0873 ..0.0459 ..0.0158 0.1252 0.0496 0.0339 0.0588 -0.1972 0.6096 0.5600 0.5955 0.577 1 0.5867 0.5031 0.5862 0.5270 0.4976 
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ASSESSING THE IMPACT OF PROGRA.M 
SELECTION ON THE ACCURACY OF 3D 

GEOLOGI~C MODELS 

Abstract 

As the field of 3D subsurface geological modelling develops at an increasingly 

rapid rate, so too does the number of available software programs catering to these 

applications, most of which offer very similar ensembles of algorithms for interpolati:lg 

data. A few studies have analyzed the effect of algorithm seleetion on the accuracy a1d 

uncertainty of subsurface geologic models, but little consideration has been given to the 

uncertainty and variability introduced into the model by software program selection. In 

this study, inverse distance weighting (IDW) and ordinary kriging (OK) algorithms wEre 

used to interpolate identical datasets by three different software programs (ArcGIS, 

ROCKWORKS 2006, and VIEWLOG). The results indicate that the output of the OK 

and IDW interpolation algorithms are im:onsistent between programs <md that this 

variability should be considered when assessing the uncertainty associated with 

subsurface model results. This paper shows that program selection has a significmt 

influence on model output results when modelling complex subsurface geological 

environments, particularly when interpolating clustered data, which are most commor.ly 

used in geological and environmental applications. 
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4.1 Introduction 

As the demand for three-dimensional (3D) models increases, so too does the 

number of software programs used for the generation of such models. The majority of 

these 3D modelling programs offer similar methods for data interpolation. The two most 

commonly used interpolation algorithms for subsurface modelling applications ere 

Inverse Distance Weighting (IDW) and Ordinary Kriging (OK; Kravchenko and Bullock, 

1999; Johnston, et al., 2001; Jones et al., 2003; Kravchenko, 2003; Mueller, et al., 2004). 

Each of these two algorithms have very different strengths for spatial data processir.g; 

IDW is often favoured for being computationally 'quick and easy', whereas kriging is 

favoured for its ability to provide the best linear unbiased estimates (Weber and Englur.d, 

1992; Mueller et al., 2004). Several studies have evaluated the effectiveness of these 

algorithms in producing accurate models (Tabios and Salas, 1985; Weber <md Englur1d, 

1992; Weber and Englund, 1994; Brus et al., 1996; Walker and Loftis, 1997; Nalder a1d 

Wein, 1998; Zimmerman et al., 1999; Schloeder et al., 2001; Jones et al., 20C<J; 

Kravchenko, 2003; Dille et al., 2003; Lapen and Hayhoe; 2003). However, no studies to 

date have compared the effectiveness of the IDW and OK algorithms to create accurate 

models when run by different software programs. It is commonly assumed that data 

modelled using either algorithm in one program would produce identical results if 

modelled using the same algorithm in another program, providing that both programs 

were supplied with identical input datasets. The goal of this study is therefore to compere 

the output of models run using the IDW and OK algorithms using three different softwere 
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programs commonly used in 3D subsurface investigations (ArcGIS, ROCKWORKS 

2006, and VIEWLOG). Models are created with each of the three programs usmg 

identical data sets extracted from synthetic grids of variable complexity and with varyi:lg 

numbers and distributions of data points. This will allow evaluation of the perfmmance 

of IDW and OK under each program and assessment of the impact of program selection 

on model accuracy. The purpose is not to show that any one program is 'better' than 

another, but to identify the degree and nature of differences in the model outputs from 

each of the programs. Therefore, the programs will not be identified by name in the 

results, but will be referred to as program X, Y, and Z in order to conceal their identities. 

4.2 Methods 

To effectively test differences in the output models of the three 3D modelli:lg 

programs selected for study, it was necessary to develop synthetic grids with known 

values at all point locations from which to extract input data. Four geologically realis-:ic 

synthetic grids (Figure 4.1) were created that allowed the extraction of specific numbers 

and distributions of data in a controlled manner. The adv:::mtage of using synthe-:ic 

datasets to conduct this evaluation is that the point values for each grid being modelled 

are known at every location, allowing qmmtitative analysis of the variability between 

actual ar1d interpolated values across the entire grid. The accuracy of modelling natu.ral 

surfaces has been tested elsewhere using previously interpolated grid surfaces (such as a. 
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Figure 4.1: Synthetic grids created with 6400 known data points represent realis-:ic 
geologic environments from which the data points for modelling were extracted. a) Grid 
1 forms a gently sloping surface that may represent one element of a basin system or 
gently dipping bedrock valley wall, b) Grid 2 consists of two linear 'highs' separated by a 
central trough and represents a simple valley form, c) Grid 3 shows a series of 
interconnecting troughs separated by linear 'highs' and may represent an eroded bedro~k 
surface or a braided river system, and d) Grid 4 consists of a flat surface incised by a 
highly sinuous channel and represents an incised meandering river system. 
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digital elevation model - DEM) that may include variable quantities of unknown errors 

(Zimmerman et al., 1999). These errors could then be propagated through all subseqw:::nt 

analyses, making it difficult to discriminate variations in the results produced by the 

processing mechanisms used by the various software programs from those due to errors 

propagated from the original model (Burrough, 2001). 

The synthetic grids were sampled using three different sampling patterns 

(clustered, random, and regular) to determine if data distribution had any impact on the 

ability of each program to produce an accurate model. These sampling patterns were 

selected to represent the types of data distributions that may be encountered in various 

geoscientific and environmental applications. The number of data points used ior 

interpolation was also varied (100, 256, and 676 points) and modelled independently in 

order to determine the influence of data quantity on the output models from the three 

programs. This created 96 datasets that we:re modelled by all three programs using bc·th 

the IDW and OK algorithms. The data subsets extracted from the four synthetic grids 

were interpolated, and then re-imported into MA TLAB to allow comparison of the 

interpolated results with the original synthetic models. The accuracy of the modelled 

grids generated by each software program was quantified using a variety of statistical 

measures including root mean square error (RMSE) and bias error (BE). The RMSE 

results were used to determine how accurately each of th~ programs was able to 

interpolate the original grids and the BE was used to show where the models created 

under- or over-estimations of the original data. 
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In order to assess the relative influence of each variable included in the 

modelling tests (i.e. number and distribution of data points, grid complexity, and 

algorithm and program selection) on model accuracy, a multi-way (n-way) A~OVA 

(analysis ofvariance) was calculated in MATLAB (Appendix 4.1). The results obtained 

from the ANOVA tests are used to quantify the influence of program selection relative to 

grid complexity, number and distribution of data points, and algorithm selection in 

producing the most accurate 3D subsurface model. 

4.2.1 Grid Creation 

Four synthetic grids were created to represent realistic g,eological environments of 

variable spatial complexity using ROCK,VORKS 2006 software (Figure 4.1 ). The 

method used to create the synthetic grids is described by MacCormack et al., (submitted 

2010; Chapter 3) and was developed to test the impact of data quantity, distribution, aad 

algorithm selection on the accuracy of 3D subsurface models. Each synthetic grid was 

constructed using identical 80x80 grid dimension templates. The grid spacing was set to 

1 arbitrary unit, which resulted in 6400 grid. cells for each model. This allows each grid 

to contain sufficient detail to test each interpolation process while not being 

computationally exhausting. Each grid cell was assigned a value (thickness/elevation) 

value of between 1 and 9 in order to create the topographic variation shown in each of the 

four synthetic models. The 3D models are shown here with flat lower surfaces for ease of 

illustration (Figure 4.1 ). 
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The first synthetic grid (grid 1) was created to represent a simple, gently sloping 

unidirectional surface with lateral continuity in the direction perpendicular to the slope 

(grid 1; Figure 4.1a). The second synth,~tic grid surface is slightly more compkx, 

consisting of a linear trough between areas of relatively high elevation (grid 2; Figcre 

4.1 b). This surface shows undulating topography with alternating highs and lows. The 

third synthetic grid surface shows more spatial and topographic complexity, and consi~;ts 

of a series of interconnected troughs separated by irregularly spaced 'highs' (grid 3; 

Figure 4.1c). The fourth grid is characteris(!d by a sinuous trough, with a high degree of 

directional variability, cut into a flat surface and will likely be the most difficult for the 

various software programs to accurately model (grid 4; Figure 4.1d). For more detailed 

descriptions of the four synthetic grids, refer to MacCormack et al., (submitted 201 0; 

Chapter 3). 

4.2.2 Data Extraction 

To allow quantitative analysis of differences between the model outputs from the 

three modelling software programs, data were extracted from the four synthetic grids in a 

consistent and un-biased manner. A study by Bond et al. (2007) showed that data 

selection can be unintentionally biased by prior knowledge of the user. Hence, the points 

used for interpolation were selected using MA TLAB scripts to eliminate the introduction 

of user bias into the analysis. The MA TLAB scripts were designed to extract points from 

each of the four synthetic grids with specified quantities and distributions of data. The 

quantities and distributions of the data point:; within each data subset were varied in order 

to assess whether the quantity of data points, distribution ofthe data, and/or complexity of 
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the modelled surface had any impact on the ability of each of the software programs to 

consistently produce an accurate model. Four separate data point datasets were created, 

each containing 100, 256, 676 or 1600 cells (representing 1.6, 4, 10.5 and 25% surface 

coverage, respectively). The points included in each data point dataset were extracted in 

three common sampling distribution pattems: a) random, b) regular, and c) clustered 

(Zimmerman et al., 1999; Davis, 2002; Figure 4.2). 

Random sample distributions (Figure 4.2a), were created for the desired quantity 

of data points by repeating computer-gen~rated random assignment of x and y grid 

locations without replacement on each synthetic surface. Regular sample distributions 

(Figure 4.2b) were produced by imposing a square-grid of equally-spaced sample points 

on the synthetic grids. The spacing between sample points was universally adjusted to 

accommodate the specified amount of data points; this ensured maximum spatial 

coverage of the surface, while preserving the equal spacing and distribution (number of 

rows and columns) of sample points. The clustered sampling distributions (Figure 4.2c), 

were generated by establishing data clusters of sampling points by randomly assigning 

'cluster centres' on the synthetic grid, and then equally distributing the desired number of 

sample points between each cluster (MacC01mack et al., submitted 201 0; Chapter 3 ). 
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Figure 4.2: Data points were extracted from the four synthetic grids in 3 spatial 
distribution patterns a) random, b) regular, and c) clustered. Sample distribution patterns 
for the 256 point dataset are illustrated. 
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4.2.3 Data Formatting 

Each of the extracted data subsets were exported from MA TLAB as text 

document (.txt) files in a 3-column format, containing x and y··Coordinates, and z values 

respectively. These files were copied three times so that each software program received 

the same data for interpolation. However, the three programs (ArcGIS, ROCKWORKS 

2006, and VIEWLOG) were unable to directly import the data in this fonnat and each 

dataset required reformatting to meet the specific requirements of each program. Once all 

the data subsets were formatted appropriately and saved, they were imported into each 

software program for interpolation. 

4.2.4 Establishing Unbiased Interpolation Settings 

Each of the data subsets were modelled using both IDW and OK gridding 

algorithms available in all three software programs. Each software program provided 

numerous options for selection or adjustment of parameters that provide the user some 

control over the interpolation process. Deciding how to include or adjust these 

parameters requires user input and expert knowledge, and can introduce user bias and 

uncertainty into the model output results (Englund, 1990; Bond et al., 2007). In order to 

minimize the impact of user bias on the model output results, standard settings were 

applied within each program. For IDW, the number of user options was rdatively small 

and only required determination ofthe number of points utilized for interpolation, set to 8 

for all models run in this study. Many more options are available to influence the 

performance of the OK algorithm but only two were available for all three programs; 

variogram type and number of neighbours included for interpolation. The variogram type 
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was set to spherical (the default settings for two of the programs), and the number of 

neighbours included for interpolation was also set to 8 (to be consistent with the IDW 

parameters). All other parameters were left as the default settings of the program. 

Although using a 'black box' approach to modelling is less than ideal and does not allow 

the user to adjust settings to best accommodate the data being modelled, this was the only 

way to minimize the impact of external variables that may bias the results and obscure the 

effect of the internal workings of each program on the interpolation results. Minimizing 

external inputs into the modelling process allowed any deviations in the output results to 

be considered as a result of the software program and not confused with user 

bias/influence. 

4.2.5 Comparing the Output Models 

Once the 96 data subsets were interpolated by each of the three programs, they 

were converted from Excel files into text document (.txt) files and re-impon:ed into 

MATLAB to allow comparison of results. To identify the differences between the 

models interpolated by the three programs, the interpolated model outputs were compared 

with the original synthetic grids. This was done by creating custom MA TLAB functions 

developed to provide a quantitative comparison of each interpolated grid with the original 

synthetic grid. Assessment of the differences between the interpolated and original grids 

was then possible using a number of statisti<:al measures such as Root Mean Square Error 

(RMSE), relative RMSE (rRMSE), Mean Average Error (MAE), and the Correlation 

Coefficient (r2). The bias error (BE) was also calculated to determine whether the 

interpolated grids were either under or oveH!stimating the original synthetic values due to 
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the various sampling treatments. Although all of these statistical measures were compared 

during initial assessment of the impacts of software selection, RMSE was determined to 

provide the best overall comparative statistic as it provides an un-biased indication of 

how similar the interpolated values are to the original values from the synthetic grids. 

When analyzing the RMSE statistics, a small RMSE value indicates that the interpolated 

values for the output model are more similar to the original synthetic values, whereas a 

large RMSE value suggests that the interpolated model produced by the software program 

is less similar to the original synthetic grid. Thus, RMSE values are used here to 

determine the accuracy of the model output with low RMSE values indicting a high 

degree of model accuracy (Zimmerman et al., 1999; Davis, 2002; Dille et al., 2003; Jones 

et al., 2003; Mueller et al., 2004). 

RMSE= 
Lf=l (z Csa- z(sD )

2 

n 

Where 2 (sD is the interpolated value at th•::: point (sD, and z(sD is the observed (true) 

value from the synthetic dataset at that same location, and n is the number of points 

within the input dataset. 

The bias error (BE) results identify the extent to which the modelling programs 

are under- or over-estimating the prediction of subsurface unit geometries and/or volumes 

(see section 4.3.5). 
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BE= Lf:1CZCsi)- zCsa) 
n 

The RMSE results produced by all 96 models (Appendix 4.1) were compared with 

one another using a series of graphs, and through a multi-way (n-way) analysis of the 

variance (ANOV A) for each variable (grid complexity, distribution of data, number of 

data points, algorithm, and program selection). ANOV A is often used to quantify the 

differences between results of multiple trials in which one variable is altered at a time in 

order to assess its singular influence on the results (Appendix 4.2; Carr, 2002; Davis, 

2002; Borradaile, 2003). The benefit of using a multi-way ANOV A is the ability to 

determine if and/or how the results differ with respect to the influence of individual 

variables, or a combination of variables (Davis, 2002; Borradaile, 2003). 

The ANOV A was performed in MA TLAB to statistically assess which variables 

had most influence on the accuracy of the synthetic grids modelled by the three software 

programs (Appendix 4.3). For this study, all of the ANOV A results were based on a 

significance of 95% (a=0.05), which is a commonly used confidence level (Issaks and 

Srivastava, 1989; Cressie, 1993; Carr, 2002; Davis, 2002; Haneberg, 2004). 

4.3 Results and Discussion 

The model outputs from the three software programs under investigation (ArcGIS, 

ROCKWORKS 2006, and VIEWLOG) ofthe four synthetic grids using the OK and IDW 

142 



PhD Thesis - Kelsey E. MacCormack McMaster - Geography and Earth Sciences 

algorithms were quantitatively assessed using Root Mean Square Error (RMSE) and Bias 

Error (BE). Any differences between the RMSE and BE results produced by the three 

programs were analyzed graphically, and the significance of RMSE differences were 

quantified in the multi-way ANOV A (Table 4.1 -4.5; Appendix 4.3). The statistical tests 

were used to establish the amount of influence that each of the variables (i.e. data point 

distribution, grid complexity, number of data points, algorithm selection and program 

selection) have on the accuracy of models created by each ofthe three programs. 

4.3.1 Influence of Grid Complexity 

To evaluate the impact of grid complexity on the ability of the three programs (X, 

Y, Z) to produce accurate models, RMSE values were compared for models of the four 

synthetic grids produced by interpolation of 100, 256, and 676 regularly distributed data 

points (Figure 4.3). The RMSE results clearly show that the value and range of R.\1SE 

values increase with greater grid complexity for all programs and algorithms (Figure 4.3). 

For grids 1 and 2, the RMSE values are all very similar to one another regardless of the 

number of data points used to generate the model or which software program and 

interpolation algorithm was used (Figure 4.3). RMSE values for the more complex grids 

(grids 3 and 4) are higher than those for grids 1 and 2 but decrease as more data points are 

used to create the models (Figure 4.3). When modelling the more complex subsurface 
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Table 4.1: Summary ANOVA results for RMSE values averaged for all model 
simulations. See Appendix 4.2 for description of parameters shown. Data extracted from 
Appendix 4.3. 

Source of Variability Sum of 'F' Statistic p-value %influence 
Squares 

Grid Complexity 51.78 4277.5 0 60.81 
Data Distribution 14.74 1827.0 0 17.32 

Algorithm Selection 1.32 327.28 l.78E-15 1.55 
Number of Data Points 8.13 1007.89 0 9.55 

Program Selection 0.36 45.46 6.87E-09 0.43 
Total 85.15 - - -

Table 4.2: Summary ANOV A table of RMSE results for grid 1 showing the influence of 
individual variables on model accuracy. See Appendix 4.2 for description of parameters 
shown. Data extracted from Appendix 4.3. 

Source of Variability Sum of 'F' Statistic p-value %influence 
Squares 

Data Distribution 5.28 936.83 0 61.73 
Algorithm Selection 0.69 122.42 1.86E-10 8.07 

Number of Data Points 1.64 145.25 2.11E-13 19.14 
Program Selection 0.030 2.64 0.094 0.35 

Total 8.55 - - -

Table 4.3: Summary ANOVA table ofRMSE results for grid 2 showing the influence of 
individual variables on model accuracy. See Appendix 4.2 for description of parameters 
shown. Data extracted from Appendix 4.3. 

Source of Variability Sum of 'F' Statistic p-value I %influence 
Squares 

Data Distribution 7.41 4343.61 0 50.70 
Algorithm Selection 0.75 439.25 5.55E-16 5.13 

Number of Data Points 5.27 1543.99 0 36.05 
Program Selection 0.022 6.53 0.005952 0.15 

Total 14.61 - - -
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Table 4.4: Summary ANOVA table ofRMSE results for grid 3 showing the influence of 
individual variables on model accuracy. See Appendix 4.2 for description of parameters 
shown. Data extracted from Appendix 4.3. 

Source of Variability Sum of 'F' Statistic p-value %influence 
Squares 

Data Distribution 2.34 274.97 6.43E-14 39.26 
Algorithm Selection 0.32 37.04 3.99£-06 5.29 

Number of Data Points 1.88 110.63 3.3IE-12 3!.59 
Program Selection 0.24 14.04 0.00012 4.01 

Total 5.96 - - -

Table 4.5: Summary ANOV A table of RMSE results for grid 4 showing the influence of 
individual and selected combinations ofvariables on model accuracy. See Appendix 4.2 
for description of parameters shO\vn. Data extracted from Appendix 4.3. 

Source of Variability Sum of 'F' Statistic p-value %influence 
Squares 

Data Distribution 1.21 97.42 1.53£-09 28.31 
Algorithm Selection 0.0080 0.65 0.429997 0.19 

Number of Data Points 1.78 71.80 2.28E-IO 41.72 
Pr()gram Selection 0.079 3.18 0.048 1.85 

Distribution and Number of : 

Data Points 
0.09 3.67 0.04 2.13 

Distribution and Program 0.09 3.63 0.04 2.11 
Selection 

Total 4.26 - - -
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Figure 4.3: Graphs of RMSE results for datasets modelled with 256 data points in a) 
random, b) regular, and c) clustered distributions. RMSE values are given in arbitrary 
units that relate to the thickness values (1-9) allocated to points on the synthetic grids. 
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environments represented by grids 3 and 4, program X typically produced the lowest 

RMSE using either IDW or OK, followed by program Y, and then Z (Figure 4.3). 

Program X also generated the most accurate model of grid 4 (lowest RMSE values) when 

both 256 and 676 data points were interpolated using the OK algorithm (Figure 4.3 b,c). 

The ANOVA based on the RMSE results showed that grid complexity had by far 

the greatest influence on how accurately the synthetic grids were modelled and accounted 

for most of the variation in the RMSE results (Table 4.1). Data point distribution and 

number of data points accounted for the seeond and third highest amounts of variability 

respectively, followed by algorithm and program selection, which both had relatively low 

influences on model accuracy (Table 4.1). Grid complexity had such an overwhelming 

influence (60.81 %) on the RMSE variance, that in order to better assess the influence of 

the other variables, four separate n-way ANOV As were run on the RMSE results for each 

of the four synthetic grids (Tables 4.2-4.5). For grids land 2, that represent relatively 

simple subsurface conditions, data distribution had the greatest individual influence 

(highest SSr; Appendix 4.2) on RMSE, followed by number of data points, algorithm 

selection, and program selection respectively (Tables 4.2,4.3). For grid 3 the order of 

influence was the same as grids 1 and 2, with the exception that algorithm and program 

selection had esse:1tially equal influence on model accuracy (Table 4.4). Interestingly, 

the relative influence of each individual variable was different for the grid 4 ANOV A, 

which showed that the number of points used for interpolation had the greatest influence 

on model accuracy, closely followed by d~:,ta point distribution, program selection, and 

algorithm selection (Table 4.5). In addition, when the combination of variables were 
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analyzed for grid 4 (representing an extremely complex subsurface unit), the distribution 

and number of data points (two variables shown to have a substantial impact on the model 

accuracy of complex grids individually; Table 4.5) ranked only slightly higher than the 

combination of program selection and data point distribution in controlling model 

accuracy (Table 4.5). This is an important finding as it shows that when interpolating 

complex environments, program selection and data distribution can have as significant an 

influence on the accuracy of the model output as the number and distribution of data 

points used in modelling, and have more influence than algorithm selection on model 

accuracy. 

These results suggest that program selection has little influence on model 

accuracy when modelling relatively simple grids (e.g. grids 1 and 2:, Figure 4.3, Figure 

4.4 b,e), but has a stronger impact, noted by the greater differences in RMSE values 

between the three programs (e.g. grids 3 and 4; Figure 4.3, Figure 4.4 h,k), when 

modelling more complex grids. The ANOV A results support these conclusions by 

showing that the influence of program selection increased with increasing grid 

complexity (Tables 4.2-4.5). This is especially true in the case of grid 4, where program 

selection was shown to have a greater influence on model accuracy than algorithm 

selection (Table 4.5). Therefore, when modelling complex subsurface environments, 

program selection should be carefully considered as it can have a statistically significant 

impact on model accuracy. 
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Figure 4.4: Graphs showing the change in RMSE produced by the software programs (X, 
Y, Z) using algorithms IDW and OK, as increasing numbers of regularly distributed data 
a) 100, b) 256, and c) 676 were modelled. RMSE values are given in arbitrary units that 
relate to the thickn~ss values (1-9) allocated to points on the synthetic grids. 
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4.3.2 Influence of Data Point Distribution 

Data were extracted from the origimu synthetic grids in three distribution patterns 

(random, regular, and clustered) and interpolated using OK and IDW by the three 

software programs.. Analysis of the results from the models run with 256 data points 

showed that grids 1 and 2 were modelled most accurately (lowest RMSE values) by 

randomly and regularly distributed data using OK by all three programs (Figure 4.5 a,b ). 

However, when more complex grids were modelled using random and regularly 

distributed data, the RMSE vruues show considerable increase, regardless of algorithm or 

program used (grids 3 and 4; Figure 4.5). Clustered data produced the largest RMSE 

values when modelling all four grids, regardless of program or algorithm selection 

(Figure 4.5c ). It is interesting to note that the most variation in the RMSE results 

between program and algorithm selection occurred when clustered data were used to 

model grids 1 and 2, and became more similar when interpolating grids 3 and 4 (Figure 

4.5c). Program Z produced the highest RMSE values when the OK algorithm was used, 

but was the least impacted by the spatial distribution of the data (Figure 4.5). This 

contrasts with the performance of programs X and Y that showed hig:h levels of accuracy 

(low RMSE) when modelling random and regularly spaced data, but performed with 

similar accuracy to program Z when modelling clustered data (Figure 4.5). 

Of all distributions, the RMSE results for randomly distributed datasets were the 

least susceptible to variation between the three programs, followed by regular <:md 

clustered distributions (Figure 4.4). The increased range of RMSE results for clustered 

datasets may reflect how the individuaJ programs manage the irregular distributions of 
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Figure 4.5: Graphs showing the change in RMSE values produced by the soft\vare 
programs (X, Y, Z) as increasing numbers (100, 256, 676) of data points in random 
(a,d,g,j), regular (b,e,h,k), and clustered (c,f,i,l) distributions are used to interpolate 
synthetic grids 1 {a,b,c), 2 (d,e,t), 3 (g,h,i) and 4 (j,k,l). RMSE values are given in 
arbitrary units that relate to the thickness values (1-9) allocated to points on the synthetic 
grids. 
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high data point densities, which can produce large amounts of variability over short 

distances, and how this variability is propagated through the model. This is an important 

finding as most ge:ological studies use clustered data to interpret their results (Paulen et 

al., 2006; Bond et al., 2007; Keefer, 2007). Overall, program X produced slightly lower 

RMSE results, followed by programs Y and Z (Figure 4.4 c,f,i,l). The large variation in 

RMSE results for clustered datasets produced by the three programs indicates that 

clustered data wer·~ most susceptible to introducing increased uncertainty into the model 

output due to software selection. 

The ANOVA results showed that overall, data distribution had the second 

greatest influence on RMSE (model accuracy) when all models were analyzed (Table 

4.1). When the influence of data point distribution was analyzed independently for each 

of the four grids, the ANOV A results showed that data point distribution had the greatest 

influence of any variable when interpolating grids 1, 2 and 3 (Tables 4.2-4.4). When 

modelling complex surfaces (grid 4), data point distribution had the second-most 

influence after the number of points being modelled (Table 4.5). 

These resu1ts indicate that data point distribution has a significant influence on the 

accuracy of model results. In particular, program selection should be earefully conside:red 

when interpolating; clustered data in order to ensure that all sources of uncertainty and 

variability to the model output are appropriately identified. 
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4.3.3 Impact of Data Quantity 

A common assumption made by 3D modelers is that incorporating more data in 

the interpolation p:rocess will provide a more accurate model. In order to assess whether 

the number of data points used in the modelling process had any impact on tin~ 

effectiveness of the different programs to create accurate models, the RMSE values were 

graphed based on the number of data points used for interpolation (Figure 4.4). Overall, 

the RMSE values drop as the number of data points used for interpolation increases, with 

the exception of the clustered datasets modelled for grids 1, 2 and 3(Figure 4.4 c,f,i). The 

OK algorithms applied within the X and Z software programs produce:d the lowest RMSE 

values (i.e. the most accurate model results) when grids 1 and 2 were modelled using a 

large number of data points (676; Figure 4.4 a,b,d,e). Differences in RMSE values 

computed for grids 1 and 2 modelled by the three programs also reduced with the addition 

of data points and models run with 676 points show remarkably similar R!v1SE results for 

all three programs (Figure 4.4 a,b,d,e). In contrast, the RMSE results for grids 3 and 4 

modelled using nmdom and regularly distributed data (Figure 4.4 g,h,j,k) show an 

increased range of values produced by the three programs as the nu:nber of data points 

increases. Overall, program X produces the lowest RMSE results for models of grids 3 

and 4 using the OK algorithm (Figure 4.4 g,h,j,k). 

The RMSE results for the clustered datasets show a decrease for all programs 'md 

algorithms when the number of clustered data points increases from 1 00 to 256 indicating 

that the additional data points have increased the accuracy of the model. However, when 

the number of data points increase from 256 to 676, the RMSE results for all programs 
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and algorithms increased for grids 1 and 2 (Figure 4.4 c,f) indicating an increase in error 

values and a reduction in model accuracy. When interpolating grid 3 with 676 data 

points, the RMSE results increased for all programs except Y using the OK algorithm 

(Figure 4.4i). The increased variability in RMSE results when additional data points were 

used for interpolation was originally thought to be due to differences between the OK ::md 

IDW algorithms, but numerous graphs (Figure 4.4 c,f,g,h,i,j,k) show substantial 

variability within the RMSE results when OK and IDW outputs are considered 

independent! y. 

To relate these results to other studies, the number of points used for interpolation 

can also be translated into% area covered. The synthetic grids were composed of a total 

of 6400 data points (Figure 4.1), therefore 100, 256, and 676 data points can also be 

considered to represent 1.6%, 4%, 10.6% area covered respectively. These results 

indicate that it is more important to consider the impact of program selection on model 

accuracy for studies with greater than 4% data coverage. 

ANOV A results for RMSE indicate that the number of data points used for 

interpolation became increasingly important as the grid complexity increased (Tables 4.2-

4.5). When all models were considered in the ANOV A, data quantity had the third most 

influence on model accuracy, behind grid complexity and data distribution respectively 

(Table 4.1 ). When separate ANOV As were calculated for each synthetic grid, data 

quantity had the second most influence on RMSE for grids 1, 2 and 3, and was the most 

influential variable when modelling complex environments such as grid 4 (Tables 4.2-

4.5). 
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4.3.4 Influence of Algorithm Selection 

The influence of algorithm selection on the accuracy of the modelled grids using 

random, regular and clustered datasets of between 100 and 676 points is shown in Figure 

4.4. Overall, the OK algorithm produces the lowest RMSE results regardless of data 

distribution (Figure 4.4). When the OK algorithm was used to interpolate grids 1 and 2, 

the RMSE values produced by programs X, Y, and Z were very similar to one another. 

This indicates that program selection has little impact when using OK to interpolate 

relatively simple models (grids 1 and 2; Figure 4.4 a-f). However, when OK was used to 

interpolate the more complex grids (3 and 4), greater differences in the RMSE values 

were produced by the three programs (Figure 4.4 g-1). Overall, the variability of RMSE 

values for models interpolated with IDW were fairly consistent between the three 

programs, indicating that IDW is less susceptible to program selection than OK (Figure 

4.4). When modelling grid 4, algorithm selection had little impact as there were minimal 

differences between the RMSE values produced by models interpolated with either IDW 

or OK (Figure 4.4 j-1). The ANOV A results reveal that algorithm selection was the third 

most influential variable on model accuracy for grids 1 through 3,. and was the least 

important for grid 4 (Tables 4.2-4.5). 

These results imply that the program-specific processes operating within the three 

programs are affected more strongly by the OK algorithm than IDW. These program­

specific influences were shown to cause variability in model accuracy, and should be 

considered when attempting to quantify model variability and uncertainty. This is 
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especially important when modelling complex grids, for which program selection can 

have more influence on model accuracy than the algorithm chosen for interpolation. 

4.3.5 Bias Error Analysis 

Analyzing the bias errors associated with the interpolated results is useful for 

determining whether the predictions typically represent under- or over-estimations of the 

actual surface. Ideally, the bias errors should be as close to zero as possible, although the 

amount that they deviate from zero and whether they are positive or negative can provide 

valuable information about the accuracy of the predictions (Elith et al., 2002; Hengl et .al., 

2004). If the bias error is negative, the interpolated results are biased toward the 

production of under-estimations when compared to the observed values. A positive bias 

error reveals that the interpolated results are typically producing over-estimations when 

compared to the observed values (Elith et al., 2002; Mueller and Pierce, 2003). 

In this study, bias errors were analyzed and graphed in two 1,vays by calculating 

the average of the bias errors, and the absolute sum of the bias errors. The average bias 

error (AVBE) is used to assess whether the overall impact of each sampling treatment 

causes over or under-estimation. However, A VBE can provide misleading results if 

extreme high and low deviations both occur within the model as they will cancel each 

other out during the averaging process. Calculating the absolute bias error (ABBE) 

allows the total amount of deviation to be summed together which will identify the 

amount of error, regardless of whether the predictions are either over or under-estimating 

the actual values. If the ABBE results show high values, a large amount of enor is 
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indicated, whereas low values indicate small deviation from the actual values and a more 

realistic result. 

The ABBE and A VBE were calculated for the models produced by all three 

software programs using different numbers of points for all 4 synthetic: grids (Figure 4.6). 

Comparison of the bias errors produced by the three software programs for the models 

created under the various conditions produced very interesting results. No one svftware 

program appeared to consistently outperform the others in terms of providing consistently 

low error values. This suggests that each program has certain conditions that favour their 

specific modelling procedures. 

The models produced with 100 points produced the most similar ABBE and 

A VBE results among the three programs, which suggest that with lm:v numbers of data 

points, the interpolation processes all have similar effects on the model output (Figure 

4.6a). However, for models interpolated with additional data points (256 and 676), there 

was less variability in the bias errors produced by each program (Figure 4.6 b,c). 

Program X and Y produced similar AVBE results when interpolating with 256 and 676 

data points, and similar ABBE results when interpolating with 100 and 676 results 

(Figure 4.6). Both the A VBE and ABBE results for program Z followed similar trend5: to 

those for program X andY, but the actual values were quite different (Figure 4.6). These 

results suggest that programs X and Y may follow similar processes when interpolatlng 

data under certain conditions because they tend produce similar errors. Program Z is 

likely interpolating data using a different set of procedures because it produced distinctly 

different bias errors than programs X and Y (Figure 4.6). These results exemplify the 
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Fligure 4.6: Graphs showing the change in the absolute sum of the bias errors (ABBE) 
and the average bias errors (AVBE) produced by the software programs (X, Y, Z) to 
interpolate Grids 1, 2, 3, and 4 using 100 (a), 256 (b) and 676 (c) data. points. Bias error 
values are given in arbitrary units that relate to the thickness values (1-9) allocated to 
points on the synthetic grids. 
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importance of considering program selection when quantifying variability or uncertainty, 

as program selection alone can impact whether a model represents an over- or under­

estimation of the actual values. 

4.4 Conclusions 

This paper compares the ability of three commonly used 3D modelling programs 

to accurately interpolate grids of variable complexity, using different numbers <:md 

distributions of data points. This study demonstrates that, although certain software 

programs offer the same interpolation algorithms, they do not necessarily provide the 

same output results. In most 3D subsurface investigations, a substantial amount of time 

and effort is spent collecting and analyzing data, as well as assessing data parameters to 

ensure the most accurate model possible is produced. The results of this study suggest 

that program selection should also be seriously considered as a possible source of model 

uncertainty, the effects of which should be considered especially when modelling 

complex subsurface geological environments, interpolating with clustered data, or when 

relatively large quantities of data (more than 4 - 10.6% data coverage) are used for 

interpolation. 

This study confirmed that the output of the OK and IDW interpolation algo:-ithms 

is not consistent when used by different software programs and this variability should be 

considered when assessing the uncertainty associated with subsurface model results. 

These results do not suggest that any particular program is better than another, but do 
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show that software selection can impact the accuracy of the output model in a similar 

manner to that documented for algorithm selection (Tabios and Salas, 1985; Weber and 

Englund, 1992; Weber and Englund, 1994; Brus et al., 1996; Walker a'1d Loftis, 1997; 

Nalder and Wein, 1998; Zimmerman et al., 1999; Schloeder, 2001; Jones et al., 2003; 

Kravchenko, 2003; Dille et al., 2003; Lapen and Hayhoe; 2003). In some instan,~es 

program selection can actually have a greater impact on model accuracy than which 

algorithm is used perform the interpolation process. 

Given that 3D modelling is increasingly used as an analytical tool for numerous 

applications in geo- and environmental sciences and may form the basis on which large 

scale, multi-million dollar decisions are made, serious attention should be paid to the 

many factors that control model accuracy. Numerous studies have documented the 

influence of algorithm selection on model output but none have quantified the impact of 

software selection. The results of this study indicate that program selection can have a 

significant influence on the accuracy of model results and therefore shou:\l be seriously 

considered as a potential source of uncertainty. 
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APPENDIX 4.1: RMSE RESULTS 
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APPENDIX 4.2: ANOV A DESCRIPTION 

The first step in the ANOVA analysis is to generate a hypothesis about the 

variables, known as the null hypothesis (H0 ), which implies that there is no difference 

(relationship) between the variables and the RMSE results. 

Ho: ~~ = ~2 = ~3··· ···~n 

H1: at least one of the treatment means will be different 

To identify a relationship between the variation in the variables and the variation 

in the RMSE results, the null hypothesis must be rejected. The p-value provides the 

probability that the null hypothesis could be rejected incorrectly (type 1 error) and the 

results were created by chance alone (Davis 2002; Borradaile, 2003). lfthe p-value in the 

ANOVA table is less than the accepted level of significance (a), 1:hen the Ho can be 

rejected, and a relationship between the variables is assumed (Davis, 2002; Borradaile, 

2003). For this study, all of the ANOVA results are based on a significance of 9:5% 

(a=0.05), which is a commonly used confidence level (lssaks and Srivastava, 19 ~9; 

Cressie, 1993; Carr, 2002; Davis, 2002; Haneberg, 2004 ). Therefore, only the results 

from the ANOVA test with p-values <a were considered to be significant, as there is a 

less than 5% chance that the H0 could be rejected incorrectly (type I error; Davis, 20C2). 

Once the Ho has been rejected, the differences in variances amongst the variables are 

detem1ined to be significant and to have an influence on the variance in the RMSE 
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results. The amount ofvariance attributed to each variable (and comb[nation of variables) 

can be quantified by calculating the sum of squares for each treatment (SST; Davis, 2002). 

SSmT = SSE+ SSn + SST2 + SST3 + SST4 + SSTs 

Where SSmT is the total variation, SSE is the variance that could not be explained 

by the variables, and SSTn is the variation attributed to each treatment. This informat[on 

can be used to compare the variance in the mean values produced by each variable (SSTn) 

to the overall variability (SSmT ), providing an indication of how much of the total 

variance (SSmT) can be attributed to each variable (SSA). 

(SSr,/SSror) x 100 = SSA 

The more variation that each variable accounts for (higher SSA), the greater its 

influence is determined to be on results. Therefore, high SSA values indicate that the 

variable of interest has a large influence on the RMSE results, while a small SSA value 

indicates that the variable has less influence on the RMSE results. The AKOVA results 

will be used in a relative sense for this study to assess the order of influence for the 

variables impacting RMSE results. Therefore, there will not be much attention paid to the 

actual values of the AN OVA, but rather on their relative relationships to one another. 
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APPENDIX 4.3: ANOV A RESULTS 
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CHAPTERS 

SUMMARY AND CONCLUSIOf\~S 

The objective of the research conducted for this thesis is to improve the accuracy 

of 3D geologic models by identifying, assessing, and quantifying the impact of data 

quality, grid complexity, data quantity and distribution, and algorithm and p-:ogram 

selection on the modelling process. Ensuring that the model output is as accurate as 

po.3sible is of great importance as 3D models are increasingly being used tor decision 

making and geoscientific applications in many fields of study. The increased use of 3D 

models for a broad range of applications has raised concerns about the accuraq: cmd 

reliability of model outputs (Weber and Englund, 1992; Weber and Englund, l994; 

Zimmerman et al., 1999; Jones et al., 2003), and the relationships between output quaLty, 

input data, model parameters, and the interpolation mechanism employed in the 

modelling process. 

This thesis has addressed these concerns by; 1) assessing the impact of variable 

quality data on the accuracy of model estimations and developing a 'Quality Weighting' 

methodology for incorporating data into the modelling process to enh<:mc.:: the accura~y of 

the model results (Chapter 2), 2) assessing and quantifying the variabi:.ity and influence of 

data quantity, data distribution, and interpolation algorithm on the accuracy of :nodels 

simulating environments of varying complexity (Chapter 3), and 3) assessing ~md 

quantifying the impact of program selection on the accuracy of 30 geologic models 

(Chapter 4). 
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The methodology developed to impose a quality weighting fac-~or on the input data 

used for model interpolation was shown to enhance the accuracy of JD models (Chapter 

2). This methodology allowed all types of data to be incorporated in the interp0lation of 

the model while enhancing the influence of the high quality data, which ultimately 

increased the reliability of the output model. This methodology was tested in a s~uJy of 

the McMaster University campus area and showed that a dataset composed of variable 

quality data produced significantly different 3D model outputs to that produced by either 

high or low quality data alone. Applying the Quality Weighting metrod for interpolation 

allowed all of the data points to be used in the modelling process, while also allowing the 

higher quality data to have a greater influence on the model than the lower quali~y data. 

Utilizing this method reduced the negative impacts of the lower quality data on the model 

output, while still utilizing these data to constrain the model in areas where high quality 

data were unavailable. Comparison of model outputs created for the McMaster 

University campus area indicates that the Quality Weighted model outputs more closely 

conform to the available high quality data points and proxy data than un-weighted model 

outputs. 

This research shows that the quality of the data used to create 3D models can have a 

substantial impact on the accuracy of the models produced. In cases ·where it is necessary 

to create models with variable quality data, the data should be weighted m:n§; a 

differential weighting mechanism, such as the Quality Weighted me-[hodology proposed 

here, in order to assure the most accurate modelling results. 
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One of the reasons that lower quality data are often included in 3D modelling studies 

is in order for the models to be interpolated using the maximum number of data points. A 

common saying in 3D modelling is "You can never have too much data". However, 

analysis of the impact of data quantity on the accuracy of 3D models reported in this 

thesis (Chapter 3) suggests that increased numbers of data points do not always improve 

model accuracy. The research presented here showed that when modelling relatively 

complex grids, increasing the number of data points used for interpolation had the 

greatest impact on improving model accuracy. The model accuracy of relatively simple 

grids was less impacted by the addition of data points. These results were used to present 

a cost-benefit analysis that showed the optimum number of data points (data coverage) 

required for accurate and cost-effective interpolation ofunits of varying complexity. This 

analysis identified the point at which collecting additional data (increasing cost) produced 

a diminishing return (minimal increase in model accuracy) for models of varying 

complexity. 

The distribution of the data points was also determined to be an extremely important 

factor affecting interpolation accuracy (Chapter 3). Regularly and randomly distributed 

data points produce the most accurate models, followed by sparse and clustered data 

respectively. The relationship between data quantity and distribution in the modelling 

proc,ess is also explored in this thesis (Chapters 3 and 4). The results of this research 

suggest that the relative importance of data distribution and data quantity on r:10del 

accuracy are a function of the geologic complexity within the model. When modelling 

relatively simple geological environments, the model accuracy was more heavily 
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influenced by the distribution of data than the number of data points. In contrast when 

modelling more complex geological environments, the number of data points had a 

greater influence on model accuracy than the spatial distribution of data. This research 

showed that contrary to popular belief, more data does not necessarily produce a more 

accurate model and that when modelling relatively simple surfaces it is more important to 

consider the distribution of the data than the actual number of data used for interpolation .. 

Although a large portion of this research focused on assessing the ir11pacts of the data 

parameters on model accuracy, the methods by which the models are produced were also 

evaluated. Assessment of the impact of algorithm selection on model accuracy has been 

reported in the literature for over 10 years. The significance the assessments reported in 

this thesis is that not only was the overall performance of each algorithm assessed, but 

also their ability to produce accurate predictions given differences in modelling 

parameters (Chapters 3 and 4). Overall, the ordinary kriging (OK) algorithm produe-ed 

more accurate results than inverse distance weighting (IDW). Ho\vever, when their 

performances on individual grids were compared, IDW produced slightly more accurate 

results than OK in situations where complex grids were modelled with relatively low 

numbers of data points. The differences in model accuracy between OK and ID\V were 

shown to deerease as the model complexity and number of data points used for modelling 

increased, implying that algorithm selection has the greatest impact on model accuracy 

when interpolating relatively simple grids with limited data. 

Determining that there was a difference in the accuracy of resu!ts produced using 

OK and ID\V to interpolate the models simulated in this study was not surprising. an:i is 
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in keeping with the findings of previous studies. However discovering that the model 

results, using identical algorithms by different software programs, are different is much 

more significant (Chapter 4}. A major contribution of this study is 1:0 demonstrate that, 

although certain software programs offer the same interpolation algorithms for modelling, 

they do not necessarily provide the same output results. When modelling complex 

environments, program selection was shown to have a greater impact on mcdel accuracy 

than the algorithm chosen to interpolate the data. These results indicate that program 

selection can have a significant influence on the accuracy of model results and should be 

seriously considered as a possible source of model uncertainty, especially when 

modelling complex subsurface geological environments, interpolating with clustered data, 

or when relatively large quantities of data (more than 4 - 10.6% data coverage) are used 

for interpolation. 

Given that 3D models are increasingly used as analytical tools for num.:nus 

applications in geo- and environmental sciences and may form the basis on \Vhich large 

scale, multi-million dollar decisions are made, serious attention should be paid to the 

many factors that control model accuracy. When modelling spatial data there is alvvays a 

high level of uncertainty, especially in subsurface environments \\'here the unit(s) of 

interest are defined by data only available in select locations. Consequentl3', it :is 

extremely difficult to validate the output of 3D subsurface models and to identify the 

many factors that may impact their reliability and accuracy. The results presented in this 

thesis can be used to guide the selection of modelling parameters used in 3D subsurf::tce 
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investigations and will allow the more effective and efficient creation of accurate and 

reliable 3D models. 

Future Work 

The research presented in this thesis is just the 'tip of the iceberg'. There is much 

more that can be done to further assess and quantify the impacts of uncertainty on the 

accuracy of 3D geologic models. I believe that uncertainty is becoming such an 

important aspect of modelling that methods will soon be developed to \'isuaily 

incorporate uncertainty into models as the fifth dimension (SD). The technology has been 

in place for years to create 4D models with attributes that span time and space, and the 

assignation of values of uncertainty to these attributes will allow the development of 5D 

models. This will allow people to visualize how the values, as well as the uncertainty 

associated with the values, vary in both time and space. 

The :field of 3D mod·~lling is expanding, not only in popularity, but quite lirerally 

as well. The size and scale of the 3D models being produced today are much larg~~r than 

in the past. A few years ago, developing models the size of cities and townships was 

considered large scale (Bajc et al., 2004; Hansel et al., 2004; Logan et al.. 2004). Today, 

models are being constructed at the provincial (Keller et al., 2009) and national scales 

(Kessler et al., 2007; Gunnink, 2009), and at global scales with projects sach as 

OneGeology, designed to create a 'dynamic digital geological model' of the entire E2-rth. 
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I believe that research in geomodelling is moving past the creation of 3D ::noclels 

that only estimate the value of attributes in space, and is now focusing on quantifying and 

assessing the uncertainty associated with model predictions. Producing colourflll 3D 

visualizations still has a digital 'wow factor' (Blewett and Henson, 2006), which implies 

a certain degree of confidence and authority. However, the recent developmeat of 

applications such as GOOGLE EARTH ©, GOOGLE MAPS ©, and MAP QUES'I © are 

raising legal issues surrounding the communication of spatial data (Onsrud, 201 0). It is 

only a matter of time before these legal issues are extended to 3D geologic models, which 

will likely result in the quantification of uncertainty being more important than the 2ctuaJ 

model itself. Hence, a major field of future research will be in the development of 

effective mechanisms for uncertainty analysis in the modelling of mult.i-dimemional 

parameters. 
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