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ABSTRACT

This study investigates ways to improve the accuracy of 3D geologic models by
assessing the impact of data quality, grid complexity, data quantity and distribution,
interpolation algorithm and program selection on model accuracy. The ﬁfst component
of this research examines the impact of variable quality data on 3D model outputs and
presents a new methodology to optimize the impact of high quality data, while
minimizing the impact of low quality data on the model results. This ‘Quality Weighted’
modelling approach greatly improves model accuracy when compared with un-weighted

models.

The second component of the research assesses the variability and influence of
data quantity, data distribution, algorithm selection, and program selection on the
accuracy of 3D geologic models. A series of synthetic grids representing environments of
varying complexity were created from which data subsets were extracted using specially
developed MATLAB scripts. The modelled data were compared back to the actual
synthetic values and statistical tests were conducted to quantify the impact of each
variable on the accuracy of the model predictions. The results indicate that grid
complexity is the predominant control on model accuracy, more data do not necessarily
produce more accurate models, and data distribution is particularly important when
relatively simple environments are modelled. A major finding of this study is that in some
situations, the software program selected for modelling can have a greater influence on

model accuracy than the algorithm used for interpolation. When modelling spatial data
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there is always a high level of uncertainty, especially in subsurface environments where
the unit(s) of interest are defined by data only available in select locations. The research
presented in this thesis can be used to guide the selection of modelling parameters used in
3D subsurface investigations and will allow the more effective and efficient creation of

accurate 3D models.
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CHAPTER 1
INTRODUCTION

Three-dimensional (3D) modelling has been used in the field of geosciences for many
years. The oil industry has been using 3D models in some capacity since the 1930s (Berg
& Keefer, 2004), but only recently (in the past 20 years) have 3D models become an
important element in geological and hydrogeological studies (Berg & Keefer, 2004).
Today, 3D geological models are used for a wide variety of applications including
resource (mineral, oil, gas, and groundwater) exploration (Jessel, 2001; Gong et al., 2004;
Parks et al., 2005; Rawling et al., 2006; Pranter et al., 2007; Kaufmann & Martin, 2008;
Sech et al., 2009), identification of source protection areas (Ross et al., 2005; Burt, 2007;
Zwiers et al., 2008; Bajc et al., 2009), predicting contaminant migration pathways (Birken
& Versteeg, 2000; Saito & Goovaerts, 2002; Culshaw, 2005), and the reconstruction of
past geologic events and processes (MacCormack et al., 2005; Logan et al., 2006; Zanchi

et al., 2009; Keller et al., 2009; Susini & De Donatis, 2009)

A relatively recent application of 3D models is to aid with studies and
investigations designed to protect human health and safety, such as groundwater source
protection (Sharpe & Russell, 2005; Burt & Bajc, 2007), and natural hazard risk
assessment (Kemec & Duzgun, 2006; Deparis et al., 2007; Hengxing et al., 2007; Ongaro
et al., 2008; Frattini et al., 2008). After the fatal Walkerton tragedy in 2000, a key
recommendation of the subsequent inquiry was for every municipality in Ontario to
develop groundwater source protection plans in which 3D subsurface models play a key
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role (Sharpe & Russell, 2005; Burt & Bajc, 2007). The purpose of groundwater source
protection plans is to protect sources of drinking water from potential contaminants by
accurately identifying sensitive areas at high risk of contamination and potential
contaminant transport routes (O’Connor, 2000; Sharpe and Russell, 2002). 3D subsurface
models are used to analyze and visualize the geometry and extent of geological units that
serve as either aquifers (allowing effective transmission of water and/or contaminants) or
aquitards (that retard fluid flow), and are critical to the understanding of the overall
groundwater system. Failing to address uncertainty in such models could have fatal
repercussions; ensuring that 3D model results are as reliable and accurate as possible is

therefore of great importance (O'Connor, 2002; Sharpe & Russell, 2005).

The technology and computational software required to produce 3D models is
now readily accessible to a wide range of users. Unfortunately, not all users are aware of
the limitations and potential inaccuracies of the model outputs and apply these mod=ls
inappropriately (Goodchild & Haining, 2004). All models are simply approximations of
what exists in reality and it has even been stated by Box (1976) that all models are wrong,
but some are useful. This raises the issue of model accuracy and the need to identify and
quantify uncertainty in model predictions (Jackson, 2007). The accuracy and reliability
of 3D subsurface models being generated for a range of applications is often questionable
(Thorleifson & Berg, 2002; Keefer & Rittenhouse, 2005; Venteris, 2007). Reasons for
this may be the simplistic perception that computer generated models, which are capable
of calculating model estimations to multiple significant digits, are incredibly precise

(Goodchild, 2006). This view of model accuracy (uncertainty) is drastically changing as
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more people realize that 3D models are simply approximations/versions of reality and that
it is the responsibility of the modeler (not the computer) to ensure the end result is as
accurate and realistic as possible (Devillers & Jeansoulin, 2006). 3D models are
frequently used as the basis for important and costly decisions, such as determination of
the economic feasibility of mineral or oil extraction from a specific area (Milkereit et al.,
2000; Eaton et al., 2003; Feltrin et al., 2009), identification of sufficient groundwater
resources to support the future growth of rural cities (Howard, 1997; Howard &
Livingstone, 2000; Sharpe et al., 2002), and the identification of contaminant migration
pathways (Birken & Versteeg, 2000). Therefore, identifying potential sources of
uncertainty within 3D models, and evaluating model accuracy and reliability is extremely
important and can have costly implications (Isaaks & Srivistava, 1989; Englund, 1990;
Weber & Englund, 1992; Brus et al., 1996; Zimmerman et al., 1999; Schloeder et al.,
2001; Saito & Goovaerts, 2002; Costa, 2003; Dille et al., 2003; Jones et al., 2003;

Jackson, 2007).

It is critical for any modeler or model user to be cognizant of the uncertainty and
errors associated with 3D models (Weber & Englund, 1992; Weber & Englund, 1994;
Zimmerman et al., 1999; Jones et al., 2003; Devillers & Jeansoulin, 2006; Tacher et al.,
2006; Fisher et al., 2006). Unfortunately, many studies and even software companies
avoid addressing the uncertainty associated with interpolating data (Houlding, 1994;
Keefer, 2005; Devillers & Jeansoulin, 2006; Goodchild, 2006; Tacher et al., 2006;
Keefer, 2007). Goodchild (2006) suggests that there has been little demand for methods

to characterize and quantify uncertainty in 3D modelling studies conducted over the past
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30 years. However studies are beginning to emerge that assess the impact of various
interpolation algorithms on model output results (Weber & Englund, 1992; Weber &
Englund, 1994; Brus et al., 1996; Walker & Loftis, 1997; Nalder & Wein, 1998;
Zimmerman et al., 1999; Schloeder et al., 2001; Dille et al., 2003; Kravchenko, 2003;
Lapen & Hayhoe, 2003). This is a promising start, although algorithm selection is only
one variable that may affect model accuracy. Numerous other sources of uncertainty can
be introduced into 3D models that relate to the quality, quantity and spatial distribution of
input data, the geologic complexity of the area being modelled, and the software program
selected for use. It is imperative to identify these potential sources of uncertainty and

thoroughly understand how they impact the accuracy and reliability of 3D model results.

Objectives of this research

The overall objective of this study is to investigate ways to improve the accuracy
of 3D geologic models by assessing the impact of data quality, grid complexity, data
quantity and distribution, as well as interpolation algorithm and program selection on

model accuracy.

In 1997, Strong et al. (1997) determined that the negative impact of low quality
data used in studies employing 3D modelling techniques, on both the economy and
society, was in the billions of dollars. There is no cost estimate on what this impact
would be today, but it can be assumed that both the cost and impacts are likely increasing

at an exceptional rate due to the increased accessibility and transferability of geospatial
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data (Devillers et al., 2002). As the demand for 3D geological models has steadily
increased, so too has the dependency on large, readily available digital databases for input
data. A serious concern with the ‘unedited’ use of large digital databases as the primary
source of data for 3D subsurface modelling is the variable quality of the data, which
severely reduces the reliability of model outputs (Goodchild & Clarke, 2002; Burt, 2004;
Dey et al., 2005; Carter & Castillo, 2006; Logan et al., 2006; Venteris, 2007). This
presents a major problem when trying to create accurate 3D models as most modelling
programs give equal weight to all input data, thus allowing relatively low quality data to
override the influence of higher quality data, negatively impacting the output model
accuracy and reliability. Despite recognition of the problem of including variable data
quality in the modelling process, no studies have proposed methods to rectify the issue
(Goodchild & Clarke, 2002; Keefer, 2005; Logan et al., 2006; Burt, 2007). Research
reported in this thesis (Chapter 2) proposes an innovative ‘Quality Weighting’
methodology that allows the user to assign a differential weighting factor to data points of
variable quality in the modelling process. This allows the 3D modelling program to
maximize the use and effectiveness of data from all available sources while giving high

quality data greater influence on the final model output.

A common sayving in 3D modelling is that “you can never have enough data”,
which leads to the assumption that increased data quantity will lead to increased model
accuracy. Some studies boast that their models were created with tens of thousands of
data points (Bajc & Newton, 2005; Keller et al., 2005; Logan et al., 2006), to upwards of

370,000 data points (Gunnink, 2005). Other studies claim that they have developed 3D
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models with what they consider to be ‘minimal’, ‘insufficient’, or ‘sparse’ numbers of
data points, which raises questions concerning the accuracy of model results (Wu et al.,
2005; de Kemp, 2006; Paulen et al., 2006; Bond et al., 2007). It has been suggested by
Davis (2002) and Houlding (2000) that models should ideally be interpolated with
regularly distributed data throughout the study area; however, in geological studies this is
rarely the case. The vast majority of 3D geologic studies are interpolated with clustered
data (Krajewski & Gibbs, 1996; Davis, 2002; Paulen et al., 2006; Bond et al., 2007,
Keefer, 2007), and it is therefore important to understand the impact of data quality and
distribution on model accuracy.  Chapter 3 of this thesis presents a quantitative
assessment of the impact of data quantity, distribution and algorithm selection on the

accuracy of 3D models using synthetic grids surfaces.

The importance of understanding variability in modelling algorithms was
identified by (Englund, 1990) as having significant effects on both the quality of the
results and decisions based on the results. The impact of algorithm selection on the
accuracy of model predictions has been tested in many studies (Weber & Englund, 1992;
Weber & Englund, 1994; Brus et al., 1996; Walker & Loftis, 1997; Nalder & Wein, 1998;
Zimmerman et al., 1999; Schloeder et al., 2001; Dille et al., 2003; Jones et al., 2003;
Kravchenko, 2003; Lapen & Hayhoe, 2003). However none of these studies considered
the impact of program selection upon model accuracy. The research presented in Chapter
4 assesses the impact of both model and program selection on the accuracy of 3D models
generated by different algorithms and with different numbers and distributions of data

points.
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Identifying and quantifying the impact of the many variables that affect model
accuracy is important and can have huge implications to a wide variety of geosciences
applications (Isaaks & Srivistava, 1989; Englund, 1990; Weber & Englund, 1992; Weber
& Englund, 1994; Brus et al,, 1996; Zimmerman et al., 1999; Schloeder et al., 2001;

Costa, 2003; Dille et al., 2003; Jones et al., 2003).

Thesis Structure

These objectives were addressed in the form of three chapters included in this
thesis. These chapters are formatted for publication in scientific journals and summarized

below.

Chapter 2 - Enhancing the Reliability of 3D Subsurface Models through Differential
Weighting and Mathematical Recombination of Variable Quality Data

Input data used in 3D modelling can come from a variety of sources and may be
categorized according to their reliability and/or quality. The output from the 3D model is
a prediction of subsurface conditions based on these data and the reliability of the output
model is highly dependent on both the quality of input data and the types of interpolation

methods used.

This paper presents a new ‘Quality Weighting’” methodology that allows the user
to assign a differential weighting factor to data points of variable quality in the modelling
process. Input data are categorized into High and Low Quality Datasets which are then
recombined using a grid math process in which a differential ‘weighting’ factor is

7



PhD Thesis — Kelsey E. MacCormack McMaster — Geography and Earth Sciences

applied. This allows the 3D modelling program to maximize the use and effectiveness of
data from all available sources while giving high quality data greater influence on the
final model output and will result in the generation of more accurate and reliable 3D

subsurface models.

Chapter 3 - Evaluating the impact of data quantity, distribution, and algorithm
selection on the accuracy of 3D subsurface models using synthetic grid meodels of
varying complexity.

Testing the accuracy of 3D modelling algorithms used for geological applications
is extremely difficult as model results cannot be easily validated. This paper presents a
new approach to the evaluation of the effectiveness of common interpolation algorithms
used in 3D subsurface modelling, by using four synthetic grids that represent conditions
of varying geologic complexity. Employing synthetic grids for this evaluation allows
quantitative statistical assessment (root mean square error and bias error) of the accuracy
of the two interpolation algorithms (inverse distance weighting and ordinary kriging)

being tested.

The objective of this paper is to evaluate the effectiveness of the two algorithms to
model the synthetic grids employing different input data density and spatial distribution
patterns. This evaluation will provide valuable information that can be used to guide
selection of the most appropriate algorithm, data quantity and data distribution pattern for
interpolating subsurface units, and ultimately will lead to more effective and efficient

means of modelling subsurface environments.
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Chapter 4 — Assessing the Impact of Program Selection on the Accuracy of 3D
Geologic Models

As the field of 3D subsurface geological modelling develops at an increasingly
rapid rate, so too does the number of available software packages catering to these
applications. Although most of these software programs offer very similar ensembles of
algorithms for interpolating data, little consideration has been given to the assessment of
differences in uncertainty and variability introduced into the model by software program
selection. In this study, inverse distance weighted and ordinary kriging algorithms from
three different software programs (ArcGIS, ROCKWORKS 2006, and VIEWLOG) were
used to interpolate identical datasets. The objective of this paper is to determine if
program selection has an impact on model accuracy, and if so, to identify the model

conditions resulting in the greatest differences.

Chapter 5 — Conclusions and Recommendations for Future Work

This chapter summarizes the results and conclusions reported in this thesis and

makes recommendations for future work.
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CHAPTER 2

ENHANCING THE RELIABILITY OF 3D
SUBSURFACE MODELS THROUGH
DIFFERENTIAL WEIGHTING AND

MATHMATICAL RECOMBINATION OF VARIABLE
QUALITY DATA

Abstract

One of the first stages of the 3D subsurface modelling process involves collation
and analysis of available borehole and/or outcrop data to identify individual subsurface
units, usually distinguished by the grain size of the sediment, and the elevation of their
bounding contacts. Input data can come from a variety of sources and may be categorized
according to their reliability and/or quality. The output from the 3D model is a prediction
of subsurface conditions based on these data and the reliability of the output model is
highly dependent on both the quality of input data and the types of interpolation methods

used.

This paper presents a new ‘Quality Weighting’” methodology that allows the user
to assign a differential weighting factor to data points of variable quality in the modelling
process. Input data are categorized into High and Low Quality Datasets which are then
recombined using a grid math process in which a differential ‘weighting’ factor is
applied. This allows the 3D modelling program to maximize the use and effectiveness of
data from all available sources while giving high quality data greater influence on the
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final model output and will result in the generation of more accurate and reliable 3D

subsurface models.

2.1 Introduction

Three-dimensional (3D) models are now being used by both private industry and
government agencies to visualize subsurface geological characteristics as they readily
communicate complex concepts to both specialists and the general public (EarthFX,
2004; Jackson, 2004; Kessler et al,. 2005; Parks et al., 2005; RockWare, 2006; Jackson,
2007; Zwiers et al., 2008). The versatility and effectiveness of 3D subsurface geological
models allows them to be used in many different applications ranging from resource
exploration (Gong et al., 2004; Paulen et al., 2006; Kaufmann and Martin 2008) and
delineation of groundwater source protection areas (Ross et al., 2005; Burt, 2007; Zwiers
et al., 2008), to the reconstruction of past geologic events and processes (MacCormack et
al., 2005; Logan et al., 2006). Although 3D subsurface models are now routinely used in
both geological and hydrogeological applications, the accuracy and reliability of the 3D
subsurface models being generated is often questionable (Thorleifson and Berg, 2002;
Keefer and Rittenhouse, 2005; Venteris, 2007). A ‘reliable’ 3D subsurface model is
considered here to be a representation of subsurface conditions that most closely
conforms to the known stratigraphy and geological history of the region, provides
consistent results when repeatedly run, is compatible with information entered for
individual data points, and is supported by data from ‘proxy’ sources. The reliability of

3D subsurface models is particularly questionable in areas where data are sparse,
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unevenly distributed and/or come from sources where there is little to no control on the

quality or accuracy of the input data.

The increased demand for 3D models to be created in short time frames has
created a dependency on large, readily available digital databases such as the Ontario
Water Well Database (OWD, a digital database recording sediment types encountered
during drilling of individual water wells in the province) for input data. A major issue
with relying on water well data as the primary (or only) data source is that large digital
databases commonly contain data of variable quality. The geologic data collected by well
drillers can lack consistency in terms of the classification of sediment types and wells are
often wrongly located by position or elevation (Logan et al., 2006; Russell et al., 2007,
Dumedah and Schuurman, 2008). Typically, this lack of positional and descriptive
accuracy is a result of the driller’s being focused on finding water rather than being
concerned with precisely describing the characteristics of subsurface sediments and the

elevation of unit contacts.

A serious concern with the ‘unedited’ use of large digital databases, such as the
OWD, as the primary source of data for 3D subsurface modelling is the variable quality
of the input data, which severely reduces the reliability of model outputs (Goodchild and
Clark, 2002; Burt, 2004; Dey et al., 2005; Logan et al., 2006; Carter and Castillo, 2006;
Venteris, 2007). Most 3D modelers are beginning to acknowledge that their datasets are
composed of variable quality data (Thorleifson and Berg, 2002; Bajc et al., 2004; Logan
et al., 2006; Kaufmann and Martin, 2008) but many others do not. Unfortunately, despite

recognition of the problem of variable data quality in the modelling process, little is being
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done to address and rectify this issue (Logan et al., 2006; Keefer and Rittenhouse, 2005;
Burt 2007). According to Wang et al. (1995), the need for controls on data quality will
become increasingly important as liability issues associated with actions taken based on
the results of model outputs increase. As more datasets become available in digital
format, there is more opportunity for unreliable data to be distributed along the various
information highways that provide information for subsurface modelling and analysis.
Manipulation and amalgamation of databases increases the likelihood that metadata will
become separated from the data rendering the model user unsure as to the quality and
nature of the data the model is based upon (Devillers et al. 2002). It has been estimated
by Strong et al. (1997) that the impact of unconstrained use of low quality data could cost
both society and the economy billions of dollars in lawsuits and poor decision-making

based on inaccurate information contained in model outputs.

The variability of data quality, particularly within large digital databases, presents
a major problem when trying to create accurate and reliable 3D models. Most modelling
programs take the data point values at face-value and do not consider that some may be
more reliable than others and should therefore be given more weight (influence) in the
calculation of the node values used to create modelled units. Ideally, datasets used for 3D
subsurface modelling should be composed of high quality data points (obtained from
sources with a high degree of reliability such as outcrop descriptions or borehole logs)
that are evenly distributed and span the entire study area, but this does not generally occur
in practice (Issaks and Srivastava, 1989; Houlding, 1994). Typically, in regional studies,

high quality data are clustered together around local study sites and are sparse across the
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larger study area. In order to create an effective regional scale model it may therefore be
necessary to include variable quality data from other sources to enhance the spatial data
coverage. Unfortunately, the inclusion of significant numbers of low quality data points
within an overall dataset may override the influence of high quality data and negatively

affect both the accuracy and reliability of the model output (Weir 2002).

This paper presents a methodology for ‘quality weighting’ input data used in 3D
subsurface modelling that allows high quality data to have a greater influence on the
model output than less reliable (low quality) data. Subsurface data from the McMaster
University campus, Hamilton, Ontario (Figure 2.1) and surrounding area are utilized here
to test this new methodology. The McMaster campus area was selected because of the
availability of both high and low quality subsurface data, and proxy data against which
model outputs can be compared. For this study, the 3D geometry of a coarse sand and
gravel unit lying approximately 10m below the ground surface was modelled as it forms a
significant local aquifer and has been the focus of other hydrogeological and contaminant
migration studies (Conestoga Rovers and Associates 1996). The study area covers 0.62
square kilometres and contains 113 boreholes that penetrate the sandy gravel aquifer, of
which 44 are considered to be high quality records and 69 are low quality records (Figure
2.2, see section 2.2). In addition to the availability of both high and low quality borehole
data from the McMaster campus area, investigations of groundwater contamination in the
surrounding area provide data on the location and direction of groundwater flow

pathways that may be used to identify permeable units in the subsurface. These proxy
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Figure 2.1: A) & B) Maps showing the location of McMaster Campus in Southern
Ontario. Photos courtesy of Google Earth and Hamilton Maps.
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Figure 2.2: Georeferened airphoto of the McMaster campus showing the location of the
borehole data classified according to the quality of the data. High quality data points are
shown as circles, low quality data points by squares, and erroneous data points (outliers)
are shown as stars.
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data are used here to validate model outputs and test the effectiveness of the ‘quality

weighting’ methodology proposed here.

2.2 Sources of Data and Data Classification

3D modelling programs used in Quaternary geological and hydrogeological
applications require input data on subsurface sediment types and the elevation of
bounding contacts between different sediment types as well as borehole location data in
order to accurately model physical properties through space. These data can come from a
variety of sources including the OWD, foundation reports available from agencies such as
the Ontario Ministry of Transportation, the borehole database compiled by the Ontario
Geologic Survey (OGS), the Hamilton Wentworth Urban Geology Database (HWUGD)
compiled by the Geological Survey of Canada (GSC), soil surveys conducted by local and

municipal agencies, and individual construction and engineering reports.

The quality of subsurface data available from each of these sources is extremely
variable and depends to a large extent on the initial objective of data collection. Data
considered to be the most reliable, and highest quality for 3D subsurface modelling
purposes come from site specific soil, engineering, or construction reports for which a
detailed understanding of the subsurface sediment characteristics and the subsurface
elevation of unit contacts were a primary goal of data collection. Less reliable, lower
quality data typically come from large digital databases such as the OWD for which the

primary goal of the initial data collection was to locate water sources, and some of the
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records were created by drillers with little expertise in the area of sediment description
(Logan et al., 2006; Venteris, 2007). This can lead to inconsistent reporting of sediment
types, which were of secondary importance in the data collection process, and to
subsequent inaccuracies in the calculation of subsurface unit elevations and thicknesses.
Inaccuracies in sedimentary unit thicknesses recorded in water well databases are

described by Logan et al. (2006) and can be substantial.

Unfortunately, as the demand for 3D subsurface geological models has been
steadily increasing over the past few years, so too has the dependency on large, readily
available digital databases, such as the OWD, for input data in order to produce models in
shorter time frames. These databases are often utilized for 3D subsurface modelling
because they are easily accessible, available in digital format, and also provide good
coverage in rural areas which are generally lacking in other sources of data. However,
the inclusion of inaccurate data can seriously ‘dilute’ the influence of any available high

quality data, negatively affecting both the accuracy and reliability of the model output.

In addition, the requirement to create 3D models quickly, and often for large
geographic areas, has resulted in the development of many 3D modelling programs that
function essentially as ‘black boxes’ requiring very little operator control. Hence,
deficiencies in data quality or coverage are seldom acknowledged or compensated for and
the quality of the model output is often compromised. In many studies the only data
quality control measures implemented involve finding and eliminating anomalous data
points (outliers), such as those with very obvious unrealistic surface elevations or

incorrect geographic coordinates. This is often done by visually examining two
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dimensional cross-sections generated from the data and then manually deleting the
borehole records that appear to be ‘outliers’ (Macfarlane and Schneider, 2007; Venteris,
2007). The problem with this process is that it is unlikely to eliminate all erroneous data
points, which are then incorporated into the model. This is of particular concern when
modelling large areas with sparse data coverage as it can be difficult to locate and gather
sufficient data to allow identification of potential outliers. Also, certain studies, such as
those conducted for the mining industry, are faced with the added complexity that it may
be the so-called ‘outliers’ that are the points of interest. There is no set procedure for
determining the presence of outlier data (Costa, 2003), which can be identified in various
ways depending on the focus of the study and the modelling procedure utilized.
Discriminating outliers that represent true values from those that are erroneous data points
can be difficult and requires careful data screening prior to modelling in order to identify
data points that are inconsistent with others in the vicinity (Barnett and Lewis, 1994;

Venteris, 2007).

In the McMaster University campus study area 113 borehole records identify the
underlying sand and gravel aquifer. All of the available data were complied into a single
database (herein referred to as the Original Dataset). These data were then classified
according to the perceived quality of the borehole records, and subdivided into two
separate databases containing either high or low quality data (herein termed the High
Quality and Low Quality datasets respectively). A similar classification of input data into
various categories prior to modelling was carried out in a study conducted by Burt and

Bajc (2007) in which they identified high quality data (continuous cored holes, outcrop
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logs, and engineering test holes), medium quality data (mud rotary and questionable
consultants logs), and low quality data (water well records). Of the 113 borehole records
available from the McMaster campus, 44 are considered to be high quality records and 69
are low quality records (Figure 2.2). The high quality borehole records were obtained
from an environmental investigation and assessment study and geotechnical engineering
reports that contain detailed descriptions of subsurface sediments and the elevation of
contacts between units. The 69 low quality borehole records came from two large digital
databases (the OWD and the Hamilton Wentworth Urban Geology Database - HWUGD)
that contain only minimal information about sediment characteristics and may include

inaccurate documentation of borehole locations and the elevation of unit contacts.

In order to evaluate the effects of data quality on 3D model output, each of the
three datasets (Original, High Quality, and Low Quality) were used to separately model
the sand and gravel unit using inverse distance weighting in ROCKWORKS 2006,
although any interpolation algorithm could be used (Figure 2.3). Initial model outputs
showed that the Low Quality Dataset included some very obvious outliers that identified
the sand and gravel unit to have a thickness approximately 7 times greater than that
recorded by surrounding data points. This extreme variation in thickness is incompatible
with the geological context of the unit and inconsistent with surrounding data points,
therefore these erroneous points were removed (Venteris, 2007). The removal of these
‘outliers’ created a modified dataset that will be referred to as the Refined Dataset (Figure
2.3). This fourth dataset was included in the analysis because in some studies, tests are

done to identify and remove the most obvious outliers as they have been known to have
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Figure 2.3: The data were separated into 4 datasets based on quality and then used to
model the thickness of the sand and gravel aquifer using ROCKWORKS 2006. The
dataset containing all the available data (the Original Dataset; a) was split into two
separate datasets; one containing only high quality data (b) and the other containing only
low quality data (¢). The outliers were removed from the Low Quality Dataset to create a
Refined Dataset (d).
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significant impact on the analysis and interpolation results (Barnett and Lewis, 1994;
Costa, 2003; Venteris, 2007). In order to test the improvement in the model output
resulting from the use of a Quality Weighted approach over current methods, it was

important to consider models generated with this Refined Dataset.

2.3 Data Modelling

Low quality data can have a large negative impact on the output model due to the
process by which 3D modelling programs interpolate subsurface units from spatially
scattered point data (Lee et al. 1992). Most modelling programs store available borehole
information as a series of data points which are used by a selected mathematical process
(the algorithm) to calculate node values that will form the grid (Figure 2.4). A node is an
estimated value calculated by the gridding algorithm at each grid-line intersection along
the grid surface, and its value is based on proximal (nearby) point data. The node values
are then used by the 3D software to create grids that represent estimated bounding
surfaces which are essentially visual representations of the combined node values.
Current modelling algorithms assign ‘weights’ to the data point values based on their
relative distance from a grid node, and do not take into consideration the
quality/reliability of the value (Figure 2.5). Therefore, when there are data points of
varying quality within the search radius of a particular grid node, the closest data point
will have the most influence on the estimated value of that grid node regardless of its

quality or reliability (Figure 2.5). This can be a problem if the closest data point is of low
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Figure 2.4: Diagram to show how data points located in space (A) are overlain by a grid
(B) populated by grid nodes which are values calculated by the selected interpolation
algorithm (C).
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Figure 2.5: Diagram to show how the weights are determined for gridding algorithms.
Typical algorithm weights are based on the distance of the data points (circles & stars)
from the node of interest (hexagon).
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quality (less reliable) because it will have more influence on the estimated value for the
surrounding grid nodes, which may result in an inaccurate prediction. Ideally, high
quality data points within the search radius should have the greatest influence on the node

values thereby increasing the reliability of the predictions and subsequent model.

2.3.1 Creating a differential ‘Quality Weighting’ mechanism
In order to differentially weight the data of high and low quality and modify their

influence on model creation, the data points from each of the four McMaster campus
datasets (Original, High Quality, Low Quality, and Refined Datasets) were used
independently to calculate grid node values which could be modelled and visualized
(Figure 2.6). Separate grid models predicting the thickness of the sandy gravel unit were
then created using each of the four datasets. These individual grid models were all
created with a 1x1 grid cell size so they could be mathematically recombined with one
another using a grid math process. This allows a relative ‘weighting’ (w,) of the data
points to be imposed on the individual grids (Grid A;) combined to create the final model

(Grid B).
(Gl'ld A x W]) + (Gl'ld A x Wz) =Grid B [Al(Wl) + Az(Wz)]
Where w; + wat....+twp =1

By performing this process, it was possible to assign a higher weighting factor to
the higher quality data giving it more ‘influence’ in the output results of the model. The

impact of this relative weighting process on the model output was further explored by

37



PhD Thesis — Kelsey E. MacCormack McMaster — Geography and Farth Sciences

Figure 2.6: Flow chart showing how the grids created by the high and low quality
datasets were then multiplied by a ‘weighting factor’ to either enhance or decrease the
influence of the respective data on the final output model. The weighted grids were then
mathematically recombined with one another using a grid math process. Assigning a
larger relative weighting factor to the grid created by the high quality data allows it to
have a greater influence on the final model output.
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factoring each of the grid models produced from the datasets by a certain % value to
either enhance or reduce the influence of those data in the final model. For example, if
two modelled grids (e.g. Grid A; and A;) are each factored by 0.5 and then recombined;
both grids have equal influence (50% grid A; and 50% grid A;) on the resultant

combination grid.

(Grid A x 0.5) + (Grid A; x 0.5) = Grid B [A1(0.5) + Ax(0.5)]

However, if Grid A; is factored by 0.7 and Grid A, is factored by 0.3 before they
are combined, then Grid A; will have much greater impact on the interpolation results

than Grid A,.

(Grid A, x 0.7) + (Grid A, x 0.3) = Grid B [A; (0.7) + A>(0.3)]

This methodology allows the user to select certain grids to have a greater or lesser
influence on the final model output. There are no set guidelines for choosing the relative
grid weights as these need to be determined by the user on the basis of their
understanding of the geological complexity of the area, their confidence in the data, the
spatial distribution of data points, and the purpose of their study. The complexity of the
subsurface geology can have a considerable effect on how certain datasets are weighted.
If the subsurface units are organized in a ‘layer cake’ fashion with little spatial variability
across the study area, then the variation in the data values would be minimal, and points
that are inaccurately located would have little effect on the final model. In this situation,
differential weighting of the data may have minimal impact, and it would be reasonable to

assign similar weights to all of the data. However if the subsurface geology is complex
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with significant thickness variation within and between individual units, then it is
necessary to use as much data as possible in order to accurately define subsurface unit
geometries. In this case, it is more difficult to identify outliers and points that are
misplaced, both of which could have a large negative impact on the accuracy of the final
model output (Costa, 2003). In complex environments there is greater opportunity for
less reliable data sources to introduce undetected errors into the model. Hence, when
expert knowledge indicates a complex geological framework in the study area, it may be
best to assign a greater weight to the higher quality and more reliable data, while utilizing
the lower quality data to help constrain the model in areas where high quality data points
are sparse. Using expert knowledge to determine data quality has been used in several

previous studies (Logan et al., 2006; Burt and Bajc, 2007; Venteris, 2007).

The spatial distribution of data across the study area can also have an effect on
how datasets are differentially weighted in the modelling process. If high quality data are
clustered in one region of the study area, it may be not appropriate to give a very high
weighting to these data as this may unnecessarily distort the model in favour of the
clustered data values which may not be representative of the whole study area.
Conversely, if high quality data are well dispersed across the study area, the model may
benefit from assigning them a relatively higher weighting factor in order to ensure that the

final model most closely conforms to the high quality data points in those locations.

Finally, assigning relative weights to datasets can also be influenced by the
purpose of the study and the mode of data collection. Primary data, collected for the

purpose of the current study, are considered to be of high quality as the user is familiar
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with the methods used for data collection, and is able to enforce quality control
mechanisms. The use of secondary data collected for a different purpose may not reliably
record the required features and can introduce error into the model. However, these
secondary data can be extremely important in providing a broad spread of data points to
enhance the limited regional coverage provided by high quality data. Assigning these
lower quality data a weighting factor that allows them to influence the model output but
limits their impact is appropriate. It is possible for the same data to be considered

different quality to different users (Devillers and Jeansoulin, 2006).

Taking the above factors into consideration, the Quality Weighted methodology
allows the user to assign relative weightings to two or more data sets, allocating the
highest % weighting to the category desired to have most influence on the model output,
and a lesser % weighting to the other categories. When assigning weights to the data, it is
important to consider the geological complexity, confidence in the data, the spatial
distribution of data points, and the purpose of the study. The weights can be assigned to
datasets split into either High and Low quality, or can be applied to datasets classified
into three or more categories (e.g., Burt and Bajc, 2007). In these cases, the user would
allocate the highest % weighting to the category desired to have most influence on the
model output, and a lesser % weighting to the other categories. For example, a 50%-
30%-20% or even a 60%-30%-10% weighting could be applied as long as the relative

weights add to 1.

For this study of the McMaster campus and surrounding area, expert knowledge

of the subsurface geology was obtained from previously published studies that suggest the
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presence of an ancient shoreline beach deposit approximately 10 meters beneath the
McMaster campus (Karrow, 1963; Conestoga-Rovers and Associates, 1996). The High
Quality Dataset indicated the thickness of this sand and gravel unit to be between 0.19m
and 3.07m where as the Low Quality Dataset showed thickness values between 0.03 and
27.12m (Table 2.1). The upper thickness values are unreasonable for this type of
shoreline deposit and some values included in the Low Quality databset are therefore
considered to be unreliable. However, the inclusion of low quality data in the production
of the model is deemed necessary as the high quality data are clustered along the northern
and eastern sections of the study area and missing or sparse in other areas (Figure 2.2). In
order to produce a model based on good spatial data coverage, it was therefore necessary
to allow the more regionally extensive, but lower quality data some influence over the
production of the final model. It was decided to apply a 70% and 30% weighting to the
high and low quality data respectively to create a model that was most strongly aligned
with the high quality data but constrained by the lower quality data in the areas where the

high quality data were absent.

2.4 Testing the Method: Model Outputs

In order to test the Quality Weighted methodology proposed here, the output from
a Quality Weighted model is compared to a series of un-weighted models to see whether
this process is able to improve the accuracy of the final output. The comparison can be

done visually by examining output images and by creating maps to identify the
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Table 2.1: Actual (observed) and interpolated grid thickness node values with
corresponding volumes and standard deviations for the sandy gravel aquifer unit for both
the weighted and unweighted datasets.

Dataset Interpolated | Interpolated | Volume Standard | Actual Actual
Minimum Maximum Deviation | Minimum Maximum

Original 0.31 15.82 6,398,493 1.97 0.03 27.12

Dataset

High Quality 0.19 3.07 3,576,689 |  0.71 0.15 3.6

Dataset

Low Quality 0.04 16.15 6,400,121 | 234 0.03 27.12

Dataset

Refined

Dataset 0.04 11.92 5,327,766 1.35 0.03 12.4

High(0.7) + i

Low(0.3) 0.74 6.07 4,503,571 0.78 -

High(0.5) +

Low(0.5) 0.89 8.95 5,121,492 1.21 - -

High(0.7) +

Refined (0.3) 0.73 3.72 4,180,955 0.58 - -

High(0.5) + T

Refined (0.5) 0.89 4.79 4,583,799 0.83 - -
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differences between output grids, and quantitatively by comparing the volume estimates

created for subsurface units by each model.

2.4.1 Visual Comparison of Model Outputs

Visual comparisons were made between model outputs generated using the
Quality Weighted methodology and those generated from the individual High Quality,
Low Quality, Refined, and Original Datasets (Figure 2.3). The High Quality Dataset
produces a model showing the subsurface sandy gravel unit to have a relatively consistent
thickness across the study area (thickness ranges between 0.19 and 3.07 m; Table 2.1) and
a gently undulating surface topography (Figure 2.3B). The thickness of this unit,
modelled using both the Original Dataset and the Low Quality Dataset are much more
variable (thickness ranges between 0.03m and 27.12m; Table 2.1) with an irregular
surface topography controlled to a large extent by the presence of several erroneous data
points (outliers) in the central north-west region of the study area (Figure 2.3A, C). The
unit modelled by the Refined Dataset does not have the extreme values present in the
Low Quality Dataset but still shows considerable thickness variation (between 0.03 and
12.4m, Table 2.1). Much of this variation in unit thickness may be due to erroneous data

points that are still included in this dataset (Table 2.1, Figure 2.3D).

2.4.2 Grid Math

A grid math process involving subtraction of one grid from another was utilized to
visualize and evaluate the effects of differentially weighting the high and low quality data

on the output models. This process involved subtracting the weighted grids from the un-
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weighted grids and the results are shown as areas of similarity and difference on a series

of maps presented in Figure 2.7.

Identifying the differences between grid models created with the Low Quality
Dataset and the Refined Dataset shows that the only significant difference between the
two grids lies in areas adjacent to erroneous data points (outliers; Figure 2.9). The dark
shaded areas (Figure 2.7) identify regions of the study area impacted the most strongly by
the extreme outliers. The lighter sections of the map represent areas where the removal of
the outliers had little or no effect. This same process was used to compare the differences
between the Quality Weighted grids and the un-weighted grids (Figures 7, 8, 9). The
Quality Weighted grid that combined [High (0.7) + Refined (0.3)] data was compared to
the grid composed only of high quality data in order to identify the impact of including
lower quality data that is constrained in its degree of influence by the weighting process.
The most significant differences between the two maps occur along the north-west
perimeter of the study area where the high quality grid lacks data points (Figure 2.8) and
the Quality Weighted grid was able to use the lower quality data points to constrain the
extremities of the grid surface (Figure 2.8). However, in the areas where high quality
data were available, there is little difference between the [High (0.7) + Refined (0.3)]
Quality Weighted grid and the grid composed of only of High Quality data points. This
suggests that the combined Quality Weighted grid methodology was able to limit the
effects of the lower quality data in areas where high quality data exist, while allowing low

quality data to influence the grid in areas where high quality data are sparse.
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Figure 2.7: Map showing the difference in thickness of the sand and gravel unit between
the model generated with Low Quality Dataset and Refined Dataset. The greatest
difference in thickness occurs in the area of the outliers which were removed from the
Refined Dataset. Areas where the two grids are very similar appear as purples and blues,
the green areas of the grid indicate where there are small differences, whereas areas of
reds and yellows highlight the areas where the greatest differences occur.
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Figure 2.9: Map of the Original Dataset model — High (0.7) + Low (0.3) model showing
how the Quality Weighting method has reduced the impact of the extreme outliers. The
greatest difference in unit thickness occurs in the area of the outliers (which are present in
both grids) however their influence has been greatly reduced using the Quality Weighted
method.
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Comparing the Original Dataset with the Quality Weighted Dataset [High (0.7) +
Low (0.3)] shows that the greatest differences occur in the area of the outliers which are
present in both datasets but that the influence of these erroneous points has been greatly
reduced in the Quality Weighted model output (Figure 2.9). Therefore it is evident that
the weighting factors are allowing the higher quality data to influence even the most
extreme values of the outliers in the Quality Weighted grids which resulted in such a
large difference between the two grids in the northern section of the study area (Figure

2.9).

2.4.3 Volumetrics

Another method of assessing the differences between the models created from
different quality datasets is to quantify the variation in the projected volumes calculated

for the sandy gravel aquifer unit beneath the McMaster campus area.

Subsurface volume estimates of the sandy gravel unit were obtained by creating
voxel models using ROCKWORKS 2006. Voxel models use the X, Y, and Z data to
create a solid model which can then be used to calculate the number of cubic units
(volume) contained within a specified geological layer. Once voxel models were created
from each of the datasets (High Quality, Low Quality, Refined, and Original Datasets;
Figure 2.10), it was then possible to compare the volume of the sandy gravel unit
predicted by each of the interpolated models. Datasets created using the Quality

Weighted method were also used to produce voxel models in the following combinations;
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Figure 2.10: Voxel models of the sand and gravel aquifer unit produced by the a)
Original, b) High Quality, ¢c) Low Quality, and d) Refined Datasets.
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[High (0.7) + Low (0.3)], [High (0.5) + Low (0.5)], [High (0.7) + Refined (0.3)], and

[High (0.5) + Refined (0.5)].

The estimated volumes for the sandy gravel unit predicted by the interpolated 3D
voxel models show a considerable amount of variation (Table 2.1). The most notable
difference is the volume prediction based on the model for the Original Dataset which is
44% greater than that derived from the High Quality Dataset alone (Table 2.1). A portion
of the increased volume may be the result of the High Quality Dataset not being as
spatially extensive as the Original Dataset. However, when the model generated from the
Original Dataset was compared to the [High (0.7) + Refined (0.3)] Quality Weighted
model, which covers the same spatial area, there was still a 35% difference in unit volume
estimate (Table 2.1). These results show the large amount of variation and uncertainty
that can be introduced into the model prediction of unit volumes through the use of
variable quality data. Such uncertainty can have significant impact on the reliability of
the output model, and may lead to wrongly informed decision-making in key industries

such as mining, environmental remediation or groundwater exploration.

2.4.4 Impact of the Quality Weighting method on Predicted Grid Node Values
A further test of the effectiveness of the Quality Weighted methodology is to

compare interpolated thickness values with actual (observed) values to confirm that the
process of mathematically recombining the grids allows the High Quality Dataset to have
greater influence over the model output. In order to do this the interpolated maximum

thickness values for the nodes (herein referred to as maximum node values) created for

56



PhD Thesis - Kelsey E. MacCormack McMaster — Geography and Earth Sciences

each of the models can be compared with actual maximum thickness values determined
from the most reliable data sources (i.e. High Quality Dataset). The maximum node
values calculated from the Low Quality Dataset (16.15m; Table 2.1) and the Original
Dataset (15.82m; Table 2.1) are considerably higher than the actual maximum thickness
recorded in the High Quality Dataset (3.6m; Table 2.1). This is most likely due to the
influence of erroneous data points (outliers) in the Original and Low Quality Datasets
causing an overestimation of unit thickness. In contrast, the High Quality Dataset
produced estimated node values of 3.07m, very close to the actual value of 3.6m (Table
2.1).  The Quality Weighted [High (0.5) + Low (0.5)] model produced maximum node
estimates of 8.95m, but when the High Quality Dataset was given a higher weighting, as
in the [High (0.7) + Low (0.3)] weighted model, the interpolated maximum node value
was reduced to 6.07m (Table 2.1). Results from the [High (0.5) + Refined (0.5)]
weighted model show a reduction in the maximum node value due to the removal of
outliers (4.79m; Table 2.1) and show closer agreement to actual values when the
weighting is adjusted to [High (0.7) + Refined (0.3)] producing a node value of 3.72m
(Table 2.1). This clearly demonstrates the impact of mathematically increasing the
influence of high quality data on creating model outputs that more closely conform to

actual values.

2.4.5 Impact on the Standard Deviation of the Output Models
The Quality Weighting method was also effective in reducing the standard

deviation of the model values (Table 2.1) which implies a greater degree of statistical
confidence in the results obtained using this methodology. The standard deviation was
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highest in the Low Quality data model (2.34) and was lowest in the [High (0.7) + Refined
(0.3)] data model (0.58; Table 2.1). Therefore, statistically the most reliable model is the

one produced using the [High (0.7) + Refined (0.3)] data weighting.

The volume estimation, node value calculations and standard deviation results
produced by the [High (0.7) + Refined (0.3)] model are more similar to the high quality
data output than the [High (0.5) + Low (0.5)] model output. The values in Table 2.1
show that by comparing the grid statistics for the models produced by each dataset, it is
evident that the grid math process utilized was able to influence the weight of the data and

allowed the high quality data to have more influence over the final output.

2.5 Validation of the Quality Weighting Method

It is extremely difficult to confidently validate the accuracy of 3D subsurface
geologic models without having to drill or excavate the entire study area which is
typically not feasible. In this study, one of the most effective ways to quantify the
validity of the Quality Weighted method was to calculate the Root Mean Square
Prediction Error (RMSPE). The model with the smallest RMSPE value is considered to

be the best and most accurate (Johnston et al. 2001).

In this study it was assumed that the values from the High Quality Dataset are the
most accurate and reliable, and the RMSPE was calculated by comparing the interpolated
model values to the high quality data points. In order to establish which model produced

node values that most closely match input values from the High Quality Dataset,
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comparisons were made between the High Quality Dataset and the [High (0.7) + Refined
(0.3)] and Original Dataset models. The validation results were calculated using the

following equation;

RMSPE = f s (2650~ 260)

n

Where Z (s;) is the interpolated value at the point (s;), z(s;) is the original (observed)
value from the input dataset at that same location, and n is the number of points within
the input dataset. The mean values were squared in order to ensure that any deviation
(either positive or negative) from z(s;) would be identified. Models producing
interpolated values most similar to the measured values from the High Quality Dataset
will produce the lowest RMSPE value, and are considered to be the most accurate. The
RMSPE value produced by interpolation of the Original Dataset was 0.58, whereas the
value calculated for the [High (0.7) + Refined (0.3)] Quality Weighted model was 0.28.
This indicates that the interpolations made using the Quality Weighting method produced
a model that more closely conforms to measured values from the High Quality Dataset

than the model generated by a non-weighted method.

2.5.1 Comparison of Model Output with Proxy Data

Another method of validating the accuracy of 3D model outputs is to compare
with proxy data that provides information about subsurface unit thickness and geometry.
In order to test that the Quality Weighted methodology was in fact producing a more

accurate and realistic representation of the position and form of the sandy gravel unit than
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the output from the model created using the Original Dataset in an un-weighted form, the
output from the Quality Weighted [High (0.7) + Low (0.3)] model was compared to the
location of groundwater and contaminant migration pathways in the study area. These
pathways were determined independently by Conestoga Rovers and Associates (1996)
using groundwater flow, hydraulic head and water chemistry data during an investigation
of groundwater contamination in the region of the McMaster campus. Considering that
groundwater (and contaminants) preferentially flow through areas with the greatest
proportion of coarse grained sediment which would have the greatest conductivity (Fetter,
2001; Schwartz and Zhang, 2003), then the contaminant plume delineated by Conestoga
Rovers and Associates (1996) should map in the same position as the greatest thickness of
the sandy gravel unit represented by the 3D model. Comparison of various output models
with the location of the contaminant plume mapped by Conestoga Rovers and Associates
(1996) on the basis of water quality data shows that the unit thickness model generated
from the Quality Weighted [High (0.7) + Refined (0.3)] model more closely matches the
position of the mapped contaminant plume (Figure 2.11a) than the model generated from
the un-weighted Original Dataset (Figure 2.11b). This comparison of model outputs with
independently generated proxy data suggests that there is an improvement in the accuracy
of subsurface model outputs when the high quality data are given more influence in the

creation of interpolated units using a quality weighting methodology.
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Figure 2.11: The thickest portions of the subsurface aquifer identified on the isopach map
generated from the Quality Weighted [High (0.7) + Refined (0.3)] model (a) more closely
correlates with the mapped contaminant plume pathways (transparent overlay)
determined independently by Conestoga Rovers and Associates (1996) than the model
created by the un-weighted Original Dataset (b).
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2.6 Conclusion

The focus of this study was to determine the effects of data quality on the
generation of accurate 3D subsurface models and to develop a methodology that most
effectively utilized data of varying quality in the modelling process. The study of the
McMaster University campus area shows that significantly different 3D model outputs
can be generated from data of variable quality, in this case illustrated by models
generated from High Quality, Low Quality, Refined, and Original Datasets. The concept
of ‘quality weighting’ input data proposed here employs a grid math process to impose a
relative ‘weighting’ factor on High and Low Quality input datasets in order to better
utilize all types of data while enhancing the influence of the high quality data and the
reliability of the output model. The proposed Quality Weighting method is also able to
constrain the negative impact of the lower quality data on the model output but utilizes
these data to constrain the model in areas where high quality data are unavailable. This
weighting process allows all data points to be used in the modelling process, yet is able to
increase the influence of the high quality data over the lower quality data. Comparison of
model outputs created for the McMaster University campus area indicates that the Quality
Weighted model outputs more closely conform to the available high quality data points

and proxy data than un-weighted model outputs.

It is no longer acceptable to simply include a disclaimer that a dataset used in any
type of 3D modelling study contains data of variable quality and not differentially utilize

these data in the interpolation of the model. If the user is capable of identifying variable
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quality data within their dataset, then they should make use of a differential weighting
mechanism, such as the Quality Weighted methodology proposed here, to increase the

accuracy and reliability of their model output.
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CHAPTER 3

EVALUATING THE IMPACT OF DATA QUANTITY,
DISTRIBUTION, AND ALGORITHM SELECTION
ON THE ACCURACY OF 3D SUBSURFACE
MODELS USING SYNTHETIC GRID MODELS OF
VARYING COMPLEXITY

Abstract

Testing the accuracy of 3D modelling algorithms used for geological apnlications
is extremely difficult as model results cannot be easily validated without the
implementation of costly drilling programs or excavations. This paper presents a new
approach to evaluate the effectiveness of common interpolation algorithms used in 3D
subsurface modelling, that utilizes four synthetic grids to represent subsurface
environments of varying geologic complexity. The four grids are modelled with two
different algorithms commonly used for geological applications (Inverse Distance
Weighting; IDW and Ordinary Kriging; OK), using data extracted from the synthetic
grids in different spatial distribution patterns (regular, random, clustered, and sparse), and
with different numbers of data points (100, 256, 676 and 1600). Utilizing synthetic grids
for this evaluation allows quantitative statistical assessment of the accuracy (Root Mean
Square Error [RMSE] and Bias Error [BE]) of the two interpolation algorithms being

tested.
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The results showed that generally, the OK algorithm produced more accurate
models of the four grids than IDW, regardless of the number or distribution of data
points. Algorithm selection appears to have the most impact on model accuracy when
relatively simple grids are modelled using relatively few data points. Using a greater
number of data points for interpolation typically improved model output, although using
large numbers of data points was found to negatively impact the accuracy of relatively
simple models. This suggests that optimum amounts of data are required for accurate and
cost-effective interpolation of units of varying complexity. The most accurate models
were created by regularly and randomly distributed data points, followed by sparse and
clustered data respectively. These results imply that in certain geological situations
relatively small numbers of randomly distributed sparse data points can generate more

accurate 3D models than larger amounts of data that are clustered together.

3.1 Introduction

Three-dimensional (3D) geo-cellular models are becoming increasingly useful for
geoscientific applications in many fields of study such as resource exploration (Gong et
al., 2004; Paulen et al., 2006; Kaufmann and Martin, 2008), delineation of groundwater
source protection areas (Ross et al., 2005; Burt, 2007; Zwiers et al., 2008), and for the
reconstruction of past geologic events and processes (MacCormack et al., 2005; Logan et
al., 2006). Such models are valuable to both private industry and government agencies as
they readily communicate complex concepts to both specialists and the general public

(Shi et al., 2002; Kessler et al., 2005; Parks et al., 2005; RockWare, 2006; Jackson, 2007;
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Zwiers et al., 2008). However, the increased use of 3D models for a broad range of
applications has raised concerns about the accuracy and reliability of model outputs and
the relationship between output quality, input data and the type of interpolation algorithm
employed in the modelling process (Weber and Englund, 1992; Weber and Englund,

1994; Zimmerman et al., 1999; Jones et al., 2003).

This paper will explore the performance of the two most commonly used and
assessed interpolation algorithms, Ordinary Kriging (OK) and Inverse Distance
Weighting (IDW; Tabios and Salas, 1985; Weber and Englund, 1992; Weber and
Englund, 1994; Brus et al., 1996; Walker and Loftis, 1997; Nalder and Wein, 1998;
Zimmerman et al., 1999; Schloeder et al., 2001; Jones et al., 2003; Kravchenko, 2003;
Dille et al., 2003; Lapen and Hayhoe; 2003), on the modelling of four synthetic grids that
represent subsurface geologic environments of variable complexity. The advantage of
using synthetic datasets to conduct this evaluation is that the point values for each surface
being modelled are known at every location, which allows quantitative analysis of the
variability between actual and interpolated values. In order to evaluate the influence of
input data point distribution on the accuracy of the interpolations made, the synthetic
grids were sampled using four different sampling patterns (clustered, random, regular,
and sparse). These sampling patterns were selected to represent the types of data
distribution that may be encountered in various geoscientific applications. The number of
data points used for interpolation was also varied (100, 256, 676, and 1600 points were
modelled independently) in order to identify the optimum number of data points required

to create a reasonably accurate model in situations of varying subsurface complexity.
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This information was used to conduct a cost-benefit analysis to identify the point at which
the inclusion of more data (cost) did not produce sufficient enhancement of model

accuracy (benefit).

The objective of this paper is to evaluate the effectiveness of common
interpolation algorithms used in 3D subsurface modelling using synthetic models of
varying geologic complexity, with different input data density and spatial distribution
patterns. This evaluation will provide valuable information that can be used to guide
selection of the most appropriate algorithm for interpolating subsurface units, and
ultimately will lead to more effective and efficient means of modelling subsurface

environments.

3.2 Methods

Comparing the effectiveness of interpolation algorithms has been previously
conducted using digital elevation models (DEM; Weber and Englund, 1992; Weber and
Englund, 1994), contaminant plume data (Jones et al., 2003), soil data (Brus et al., 1996;
Walker and Loftis, 1997; Schloeder et al., 2001; Kravchenko, 2003; Paulen et al., 2006),
weed seedling density (Dille et al., 2002), and climatological data (Tabios and Salas,
1985; Nalder and Wein, 1998; Lapen and Hayhoe, 2003; Moffat et al., 2007). A notable
limitation of many of these studies is that the comparison of interpolated values is made
with an 'original' model and/or surface that itself has been derived through interpolation.

In such cases, it is likely that the 'original’ (interpolated) surface deviates from the real
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surface, and thus goodness-of-fit measures will not represent the true performance of the
interpolation method. There is some inherent error propagation within the process of
using sampled points from an interpolated surface to interpolate any subsequent surfaces,
and this can seriously limit the degree to which algorithm accuracy can be determined
(Heuvelink, 1998; Zimmerman et al., 1999; Burrough, 2001). Zimmerman et al., (1999)
attempted to resolve the issue of error propagation on interpolated surfaces by utilizing
mathematical equations to generate synthetic surfaces, from which points could be
sampled and re-interpolated. This work allowed quantitative comparison of the
interpolated grid with the original mathematical surface and concluded that spatial
interpolation accuracy should only be estimated using synthetic surfaces, for which values
are known for all locations (Zimmerman et al., 1999). However, the limitation of using
mathematically-generated synthetic surfaces to test the effectiveness of algorithms used in
3D subsurface modelling is that these surfaces do not closely resemble the form of
realistic geological units or boundaries that would be encountered in subsurface
investigations. Hence, the synthetic grids used in the present study were created
specifically to represent the type and form of units or surfaces that may be encountered in

geological situations.

3.2.1 Synthetic Surface Development

Four synthetic grids were created to represent realistic geological surfaces of
varying complexity (Figure 3.1). The first synthetic grid takes the form of a simple,
gently sloping unidirectional surface with lateral continuity in the direction perpendicular
to the slope (grid 1; Figure 3.1a). This surface could represent a gently dipping bedrock
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valley wall or one element of a regional-scale basin system. The second synthetic grid
surface is slightly more complex, and consists of a linear trough between areas of
relatively high elevation (grid 2; Figure 3.1b). This may be used to represent a simple
valley form, or several elements of a regional scale basin system. The third synthetic grid
surface consists of a series of interconnected troughs separated by irregularly spaced
linear ‘highs’ trending in one direction (grid 3; Figure 3.1c). This surface could represent
the irregular topography characteristic of an eroded bedrock surface, a braided river
system, or a smaller scale setting with more localized variability. The fourth grid is
characterised by a sinuous trough cut into a flat surface (grid 4; Figure 3.1d) and may be
used to represent an incised meandering river system or a local scale setting witi: features
showing high directional variability. Each of the four synthetic surfaces represents a

geologic setting of differing complexity and challenge for the modelling process.

The four synthetic grids were created using ROCKWORKS 2006 software. This
software was selected as it allows the user to alter and manually manipulate grids using
the ‘Grid Edit’ function. Four grids, each with identical 80x80 grid dimensions, and each
with a grid spacing of 1 arbitrary unit (6400 grid cells for each surface) were created. The
choice of this grid size and spacing allowed adequate detail to be included for each
surface while not being computationally exhausting. Once the grid size was set, a blank
grid was opened using the grid editing function. Each of the 6400 grid cells was then
assigned a thickness value between 1 and 9 to create the topographic surfaces on each of

the four synthetic grid models. The range of thickness values was selected as it provided
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Figure 3.1: Synthetic grids created to represent realistic geologic environments from
which the data points for modeling were extracted. a) Grid 1 forms a gentlv sloping
surface that may represent one element of a basin system or gently dipping bedrock valley
wall, b) Grid 2 consists of two linear ‘highs’ separated by a central trough and represents
a simple valley form, ¢) Grid 3 shows a series of interconnecting troughs separated by
linear ‘highs’ and may represent an eroded bedrock surface or a braided river system, and
d) Grid 4 consists of a flat surface incised by a highly sinuous channel and represents an
incised meandering river system.
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sufficient topographic variability to realistically represent each geological setting while

not resulting in excessive variability between data points.

Once each grid was created, a smoothing filter was applied to smooth the surface
and to ensure a realistic transition in values between neighbouring grid cells. A 7x7
smoothing filter (i.e. the value of every cell was averaged by the value of all the
neighbouring cells within a surrounding 7 cell by 7 cell box) was applied to grid 1 (Figure
3.1a) to create a softer, more gradual slope. Grids 2, 3, and 4 (Figure 3.1b, 3.1c, 3.1d)
were smoothed using a 3x3 filter (the smallest available) which utilized a much smaller
bounding box. This smaller filter size was used on grids 2, 3, and 4 to maintain the

required topographic variability.

3.2.2 Extracting Sample Data from each Model

To simulate the range of sampling patterns that may be applied in real-world
subsurface modelling situations, a variety of data subsets were created for each synthetic
surface by varying both the quantity of data points as well as their distribution. Four
separate datasets containing 100, 256, 676 or 1600 data points (representing 1.6, 4, 10.5
and 25% surface coverage, respectively) were extracted from each of the synthetic
surfaces in four common sampling distribution patterns: a) clustered, b) random c)
regular, and d) sparse (Figure 3.2; Krajewski and Gibbs, 1996; Zimmerman et al., 1999;
Davis 2002). Subsurface geologic studies rarely disclose the percentage of the study area
covered by data points, but they typically provide a map to show their distribution. Many

studies incorporate data from numerous sources to maximize the amount of data used for
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Figure 3.2: Data points were extracted from the synthetic grids in 4 spatial distribution
patterns a) clustered, b) random, c) regular, and d) sparse. Sample distribution patterns
for the 676 point dataset are shown.
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model generation (Logan et al., 2006; Paulen et al., 2006) and this often results in a

clustered distribution of data points across the study area.

In order to test the impact of data density and data distribution on model accuracy,
a total of 16 different density x distribution treatments were applied using custom-made
MATLAB functions designed to select a specified number of data points in a desired
distribution. The use of MATLAB scripts for this process eliminated the introduction of
user bias into the selection of points (Bond et al., 2007). To avoid basing the results on
any one set of point extractions, a Monte Carlo approach was used to perform the
extraction process 10 times for each of the random, clustered and sparse distributions.
The regular point distribution did not require these multiple simulations as the extracted
points would be the same in all 10 iterations. This approach allowed the variability
associated with each of the density x distribution treatments to be quantified, and ensured
that the results represented the average for each sampling treatment, rather than a non-

representative chance outcome.

Clustered sampling distributions (Figure 3.2a), were created by establishing a total
of 10 data clusters of sampling points on the simulated surface of interest, regardless of
the number of sample points used. The location of each cluster centre on the surface was
randomly assigned, and the desired number of sample points was portioned equally
among each cluster. The location of sample points within each cluster was generated by
randomly assigning a direction and radial distance (between 1 and 15 units) from the

cluster centre. Any location assignment that resulted in sample placement beyond the
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range of the grid or in a repeated sample cell was discarded, and replaced with a

subsequent random assignment.

Random sample distributions (Figure 3.2b) were created by repeating computer-
generated random assignment of x and y grid locations without replacement, for the
desired quantity of data points on each synthetic surface. Regular sample distributions
(Figure 3.2¢), were produced by imposing a square-grid of equally-spaced sample points
on each of the simulated surfaces. The spacing between sample points was universally
adjusted to accommodate the specified number of data points; this ensured maximum
spatial coverage of the grid surface, while preserving the equal spacing and distribution

(number of rows and columns) of sample point locations.

Sparse sampling distributions (Figure 3.2d) were a challenge to create, as there is
currently no consensus on the definition of sparse data, despite the fact that datasets are
often referred to as ‘sparse’ in the literature (Wu et al., 2005; de Kemp, 2006; Bond et al.,
2007). 1t is suggested here that a dataset can be considered to be ‘sparse’ when the user
feels that they have insufficient data to interpolate their model to the desired level of
accuracy. The sparse data distribution was simulated by down-sampling the randomly
assigned datasets, creating datasets of 40, 75, 150 and 400 points from the 100, 256, 676
and 1600 point datasets respectively. The 256, 676, and 1600 random datasets were
down-sampled to 22-29% of the originally selected data points to create the sparse
distribution dataset and the 100 point dataset was down-sampled to 40% of the original
dataset in order to contain sufficient data points to produce the variogram necessary for

interpolation by the kriging algorithm.
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3.2.3 Grid Interpolation and Comparison

Each of the 1280 sample data subsets generated were re-imported into
ROCKWORKS 2006 and interpolated using the Inverse Distance Weighting (IDW) and
Ordinary Kriging (OK) algorithms in order to evaluate their performance in recreating the
original surfaces. ROCKWORKS 2006 offers numerous options to provide the user some
influence over the interpolation process, such as selecting the number of neighbours
included for interpolation, changing search radius size, and identifying the type of
variogram to be used. In order to keep the modelling process consistent and to minimize
the impact of external variables, the subset data were all interpolated in a similar manner
in this study. For IDW the data subsets were interpolated using a search radius cut-off of
15% and a minimum number of 8 data points. The OK algorithm was also applied
consistently to all the data subsets using default settings that employ a spherical

variogram, a minimum of 8 data points, and a maximum search radius of 15%.

IDW is a deterministic interpolation technique that estimates a surface from
measured points based on the similarity to surrounding measured data points. The IDW
method is built upon the assumption that things close to one another are more similar than
those further apart (Issaks and Srivastava, 1989, Krajewski and Gibbs, 1996; Davis,
2002). Therefore, the weights of the surrounding measured data points are assigned
based on the assumption that the data points closest to the prediction location will have a
greater influence on the predicted value than those further away. IDW is a local

interpolator which is typically the best choice for interpreting local anomalies because it
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uses only the proximal data points to produce estimates (Krajewski and Gibbs, 1996;

Johnston et al., 2001).

The general formula used for the IDW algorithm is defined by the following

equation;
N
2(s0) = ) M Z(s)
i=1
Where: Z(s,) = the value of the attribute that the algorithm is trying to predict at the

locations,,.

N = the number of the measured data points in the neighborhood surrounding s,

that will be used to calculate the predicted value.
A; = the weights that are assigned to each data point.

Z(s;) = the observed/measured value at locations;.

IDW performs best either when the measured data points are uniformly or densely
distributed, or when the user is interested in preserving local anomalies within the dataset.
However, IDW typically struggles when interpolating from datasets which are
predominantly clustered or have areas of sparse data coverage (Krajewski and Gibbs,
1996). When IDW is used to interpolate clustered data, the measured values have been

shown to greatly bias the surrounding predicted values (Weber and Englund, 1994;
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Paulen et al., 2006), thus impacting the model accuracy. IDW is also known to have
trouble interpolating data containing local anomalous values (high variability over
relatively small distances) which are often accentuated creating artificial peaks or troughs
(resulting in bulls-eyes) on the interpolated surface (Krajewski and Gibbs, 1996; Johnston

et al., 2001; Paulen et al., Harris, 2006).

The second algorithm evaluated in this study is Ordinary Kriging (OK), which is
referred to as a geostatistical interpolator because it utilizes both statistical and
mathematical methods to predict attribute values. OK assumes an unknown constant
mean or trend, and random residual errors (Issaks and Srivastava, 1989; Davis, 2002).

The equation for ordinary kriging in its most basic form is;
Z )~ H + E(S)

Where; Z is the variable of interest
U is the deterministic trend

£(s) are the autocorrelated errors

All kriging methods are built upon the concept of autocorrelation, which is the
statistical relationship between spatially random variables.  Autocorrelation is
incorporated into the algorithm through the use of a semivariogram, which measures the
strength of the statistical correlation as a function of the distance between the data points
used to determine the kriging weights (Issaks and Srivastava, 1989; Krajewski and Gibbs,

1996). Kriging is similar to IDW in that both algorithms apply weights to the
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surrounding measured values in order to calculate predicted values at specified locations.
However, kriging not only considers the distance of the data points from the prediction
location, it also uses the semivariogram to incorporate the spatial autocorrelation of the
data points into the prediction calculation. OK was selected for this analysis because it is
a robust estimator that is not overly sensitive to either the variogram selected or user
specified controls on the algorithm (Weber and Englund, 1994). OK is also an exact
interpolator, meaning that the estimated Z values exactly equal the data point values at
their locations. It is also capable of dealing with clustered datasets because the weights
are assigned not only on the distance to, but also on the spatial arrangement of the
measured/observed data points. Therefore, a group of clustered data points would be
assigned a similar weight to those of neighbouring individual scattered data points, a
process that avoids producing estimates that are skewed by the clustered data point
values. Finally, the kriging weights must result in a mean square error equal to zero to
minimize the errors, thereby increasing the accuracy of the prediction (Issaks and

Srivastava, 1989).

One of the disadvantages of using OK as an interpolator is that it can often be
utilized as a ‘black box’ tool by users who do not fully understand how the predictions
were calculated or if they are realistic (Goodchild and Haining, 2004). This may
compromise the valid application of model outputs. The kriging algorithm is also very
computationally intensive and can require a substantial amount of time for the estimates
to be generated, especially with large and complex datasets. In addition, if there is a large

amount of spatial variability within the dataset, it may not be possible to fit a reliable
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variogram, which would result in poor estimates with large associated errors (Weber and

Englund, 1994).

Overall, OK is often the best choice for interpolating datasets that contain
clustered or irregularly distributed data points (Zimmerman et al., 1999; Weber and
Englund, 1994). However, kriging should be used with caution when using small datasets
or when large scale anomalies are present, as these affect the fit of the variogram model,

which in turn affects the accuracy of the predicted model values.

In order to determine the effect of sampling density, point distribution, grid
complexity, and algorithm selection on output accuracy, the interpolated models were
compared to the original synthetic grids using custom MATLAB functions. These
functions were created to provide a quantitative comparison of each interpolated grid with
the original synthetic grid. The differences between the interpolated and original grids
were quantitatively assessed using a number of statistical metrics including the Root
Mean Square Error (RMSE), relative RMSE (rRMSE), Mean Average Error (MAE), and
Correlation Coefficient (r2). These comparison statistics produced a substantial amount
of data for all 1280 grids which could not all be shown nor discussed within this paper;
consequently, RMSE and BE were chosen to describe the results. The RMSE was
determined to be the best overall comparative statistic as it provides an un-biased
indication of how similar the interpolated values are to the original values from the
synthetic grids (Zimmerman et al., 1999; Jones et al., 2003). A smaller RMSE value
indicates that the interpolated values for the model are more similar to the original

synthetic values and infers that the model is more accurate (Zimmerman et al., 1999;
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Davis, 2002; Dille et al., 2003; Jones et al., 2003; Mueller et al., 2004). The RMSE
values calculated for each of the models are given in arbitrary units that relate to the
thickness values (1-9) allocated to points on the synthetic grids. Bias errors (BE) are also
included in the analysis as they provide important information about whether the
interpolated grids were either under or over-estimating the original synthetic values using
the various sampling treatments (Elith et al., 2002; Mueller et al., 2004; Hengl et al.,

2004). These metrics are represented by:

RMSE = j s (260~ #(0)

n

_ ?:1(2(%) ~- z(s;))

n

BE

Where Z (s;) is the interpolated value at the point (s;), and z(s;) is the observed
(true) value from the synthetic dataset at that same location, and n is the number of points

within the input dataset.

3.3 Results and Discussion

Average RMSE values were calculated for each of the 10 simulations generated
for each synthetic grid as a summary statistic to show how the values change in response
to the grid complexity (represented by the four synthetic surfaces), different numbers of
data points, variable data point distributions, and the use of selected interpolation

algorithms (Figure 3.3). The interpolated models of grid 2 were visualized in Figure 3.3
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to illustrate differences between the model outputs under each sampling and algorithm

treatment.

3.3.1 Number of Data Points

Data were extracted into separate datasets of 100, 256, 676, and 1600 data points.
To assess the effectiveness of utilizing various numbers of data points to accurately
model the 4 synthetic surfaces, RMSE values were calculated and graphed for each point
number dataset and for all 4 spatial distribution patterns (Figures 3.4, 3.5). The results
showed that RMSE values for grids 1 and 2 were consistently the highest when only 100
points were used and decreased slightly with the addition of data (Figures 3.4, 3.5).
RMSE values increased substantially for all point number datasets when modelling grids

3 and 4, particularly when few data points were used (Figure 3.4).

The RMSE results were also graphed separately for each grid to show how the
values changed with increasing numbers of data points for each data distribution pattern,
and for each algorithm (Figure 3.5). Results for all 4 synthetic grids show a consistent
drop in RMSE with the addition of more data points. However, the increased number of
data points used for interpolation had relatively low impact when modelling relatively
simple surfaces (e.g. grids 1 and 2; Figure 3.5 a, b) as shown by the small difference in
RMSE results with the addition of data. The number of data points became a more
significant factor when modelling more complex surfaces such as those represented by

grids 3 and 4 (Figure 3.5 c, d).
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Figure 3.3: Flow diagram showing how the four synthetic grids (a.) were sampled to
create the individual data subsets, which were then interpolated and modelled. FEach
synthetic grid (a.) was created with 6400 data points which were then sampled using 100,
676, and 1600 points in clustered, random, regular and sparse distribution patterns (b.).
Visualizations of grid 2 were modelled using either IDW or OK with various amounts of
data, in a variety of distributions (clustered, random, regular, and sparse) are also shown

(c.).
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Figure 3.4: Graphs showing the Root Square Mean Error (RMSE) associated with
models constructed for the four grids using each sampling distribution. The RMSE
values were analyzed for models interpolated using a) 100, b) 256, ¢) 676, and d) 1600
data points. RMSE values are given in arbitrary units that relate to the thickness values
(1-9) allocated to points on the synthetic grids.
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Figure 3.5: Graphs showing how the RMSE values calculated for the four synthetic grids
(a) grid 1, b) grid 2, c¢) grid 3, and d) grid 4) vary according to data distribution pattern
(clustered, random, regular, and sparse), number of data points and algorithm used for
interpolation (OK and IDW). RMSE values are given in arbitrary units that relate to the
thickness values (1-9) allocated to points on the synthetic grids. Note change of scale for
grids 3 and 4.
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The results shown in Figure 3.5 also indicate that the rate of RMSE decrease, used
here as an indicator of increase in model accuracy, appears to drop substantially as more
data points are added. This trend of diminishing returns was explored further by plotting
the RMSE results for a greater selection of point number datasets (40, 75, 100, 150, 256,
400, 676, and 1600 points) containing randomly distributed data for each of the 4
synthetic grids (Figure 3.6). Initially, when few data points are available, the RMSE
values decrease rapidly with the addition of data points, but the rate of decline reduces
beyond 676 points for grid 4, 400 points for grid 3, 256 points for grid 2, and after 100
points for grid 1 (Figure 3.6). These cut-off values indicate the points at which there is
only a slight drop in RMSE for the increasing number of data points used in the

modelling process. These results will be discussed further below.

3.3.1.1 Discussion of the impact of data quantity on the interpolation accuracy

The results presented above suggest that for the relatively simple models with low
variability (e.g. grids 1 and 2), using too much data for interpolation can cause the
algorithms to over-predict the natural variability of the model and may reduce the overall
accuracy of the model output. These results also indicate that this issue is particularly
problematic when the OK algorithm is used. OK appears to be more susceptible to the
negative effects of increased numbers of data points when modelling simple grids than
IDW as the increase in OK RMSE values was greater than those for IDW when 1600
points were used compared to 676 points (Table 3.1; Figure 3.6). The increases in RMSE

were also greater for Grid 1 than for Grid 2 regardless of the algorithm utilized to
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Figure 3.6: Graphs showing decline of RMSE values as the number of randomly
distributed data points available for interpolation increases using either the a) IDW, or b)
OK algorithms. RMSE values are given in arbitrary units that relate to the thickness
values (1-9) allocated to points on the synthetic grids.
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Table 3.1: RMSE results for randomly distributed data points used to model the 4
synthetic grids with IDW and OK, using various quantities of data points. The cells
highlighted in green indicate the point at which the rate of RMSE declined in relation to
the inclusion of additional data points. The cells highlighted in orange identify the point
at which RMSE values began to increase with the inclusion of additional data points.
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Inverse Distance Weighting

Ordinary Kriging

# Points Grid 1 Grid 2 Grid 3 Grid 4 Grid 1 Grid 2 Grid 3 Grid 4

40 0.901088] 1.0594877] 1.5669001] 2.0379808] 0.555573| 0.6241006] 1.4473919| 2.1222325
75 0.602675| 0.7244089] 1.413174] 1.8597298] 0.412312] 0.5003979] 1.3022464| 1.9064596
100 0.459834] 0.6634433] 1.3542082| 1.8247403] 0.239153| 0.3859805| 1.206956| 1.8784484
150 0.305061] 0.4881621| 1.1290641] 1.7027243] 0.203138] 0.3213554] 1.0196441] 1.7758394
256 0.22691] 0.3543596] 0.9900332 1.60565| 0.159447] 0.2294842| 0.8518109] 1.6351889
400 0.19628| 0.3276552] 0.8682869] 1.427056| 0.143118] 0.2146624]| 0.7565951] 1.3908847
676 0.164746| 0.2795117] 0.7456308| 1.2759103] 0.138121] 0.2062527| 0.6224012] 1.2328671
1600 0.187382] 0.2804597| 0.6121876] 1.1150159] 0.188697] 0.2546518] 0.5300647] 1.0266279
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interpolate 1600 data points (Table 3.1; Figure 3.6). Using large amounts of data for
interpolation thus appears to have a stronger negative impact on the modelling of the

relatively simple surface represented by Grid 1 than on the slightly more complex Grid 2.

3.3.1.2 Cost Benefit Analysis

The results presented here provide information that may be used to guide selection
of the optimal number and distribution of data points required to model a subsurface unit.
Depending on the complexity of the subsurface unit being modelled, increasing the
number of data points for interpolation beyond a certain point provides minimal increase
to the model accuracy (as demonstrated by a decline in RMSE - see above). Since there
is generally a cost associated with collecting additional data points, it may be possible to
conduct a cost-benefit analysis to determine whether the cost of obtaining more data
would provide significant benefit to the model accuracy. In general, the model accuracy
for all grids increased as the number of randomly distributed data points increased, but
there appears to be a cut-off point beyond which the inclusion of additional data points
may have little to no impact on increasing the accuracy of the model. For example, when
grid 1 was modelled with OK using 256 and 676 data points the RMSE remained at 0.14
for both model runs (Figure 3.6b; Table 3.1). This shows that the addition of 420 data

points (676 — 256 = 420) provided no enhancement of the model accuracy.

These results can also be used as a guideline for how many data points (or % data
coverage) are required to interpolate different types of subsurface environment of varying

geological complexity. When relatively simple surfaces (e.g. grid 1) are predicted in the
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subsurface, random data coverage of between 1.6% and 2.3% (100-150 data points in this
study), should be sufficient to create an accurate model. In this situation, the inclusion of
additional data will have minor impact on model accuracy and may even have negative
effects, particularly if OK algorithms are used. In more complex geological environments
(e.g. grids 2, 3 and 4), increasing the number of data points can increase model accuracy
to a certain point, after which the gains are minimal. Increasing the data coverage beyond
a 4% random coverage for grid 2 (256 data points, Table 3.1), 6.3 % for grid 3 (400 data
points, Table 3.1), and 10.6% for grid 4 (676 data points, Table 3.1) has minimal impact

on model accuracy.

3.3.2 Data Point Distribution

The distribution of data points across a study area can have profound impact on
the accuracy of the model output (Schloeder et al., 2001; Kravchenko, 2003; Ross et al.,
2005). To evaluate the impact of data distribution on model accuracy, the RMSE results
for each of the output models were graphed according to sampling distribution and
interpolation algorithm (Figure 3.5). The regular sampling distribution consistently
produced models with the lowest RMSE for all four synthetic grids, regardless of the
number of sampling points, and algorithm used (Figure 3.5). Randomly distributed data
produced the second lowest RMSE results in most situations. Clustered and sparsely
distributed data generally both produced relatively high RMSE values. Sparse data
distributions did not perform well when modelling the more complex geological
situations with very limited numbers of data points (e.g. Grid 4; Figure 3.5d) but
produced reasonably accurate models (lower RMSE; Figure 3.5 a,b) when modelling
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grids land 2 with the 1600 point dataset. The clustered data produced RMSE results
similar to the sparse datasets when few data points were available, but consistently
produced the least accurate models of all distributions when more data were used in the
modelling process (Figure 3.5). The modelled results for the four synthetic grids show
that when more than 150 sparse data points were used, the randomly-distributed sparse
data produced an output that was consistently more accurate than that generated by more

data points in a clustered distribution (Figure 3.5).

3.3.2.1 Discussion of Data point distribution

The distribution of data points used in the modelling process appears to be an
important factor affecting interpolation accuracy. The most accurate models were created
by regularly and randomly distributed data points, with less accurate models resulting
from clustered and sparsely distributed data. Even though the sparse datasets contained
only a fraction (approximately 1/3) of the data points contained within the clustered
datasets, they most often produced a more accurate model. This was particularly evident
for the more simple grids 1 and 2 (Figure 3.5 a,b). These results suggest that in certain
geological situations it is better to have fewer data points that are randomly distributed
(e.g. sparse distribution) than more data that are clustered together. The poor
performance of the clustered data may be due to their concentration in isolated regions of
the study area, leaving large regions with no data coverage (Figure 3.2). This causes the
algorithm to interpolate over large areas with little or no information to constrain the
predictions. Another reason for the poor performance of clustered data is that data

clusters can fall in areas of high surface variability (e.g. Figure 3.1, parts of grids 2, 3 and
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4) which may cause the algorithm to over-predict the amount of natural variability present
across the whole model. Conversely, if a cluster containing a high number of data points
falls in an area with little variation (e.g. Figure 3.1, smooth areas of grids 3 and 4), an

under-prediction of the variability may occur.

It is interesting to note that when the 1600 point dataset was used to interpolate
grids 1 and 2 using OK, the sparse dataset produced lower RMSE results than both the
clustered and random datasets (Figure 3.5a,b). This is surprising given that both the
sparse and random datasets consist of randomly distributed data, and only differ in the
number of data points they contain. The RMSE results also show that when modelling
grids 1 and 2, a sparse dataset consisting of 400 randomly distributed points produced a
slightly more accurate model than 1600 randomly distributed data points (Figure 3.5a.b).
This may be due to the model over-estimating actual subsurface variability when large

numbers of data points were used for interpolation (see section 3.1.1).

3.3.2.2 Which is more important; the number of data points or their distribution?

The results presented here demonstrate that inputting more data points into a
model does not necessarily produce a more accurate model, and that the distribution of
data points across the study area may be a more significant factor in determining model
accuracy. In the case of regularly distributed data, additional data input does appear to
produce more accurate results (Figure 3.5). For randomly distributed data, additional
points are beneficial in situations where the subsurface unit being modelled is relatively

complex (Figure 3.5). However, the vast majority of 3D subsurface models are
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interpolated using either clustered or sparsely distributed data (Paulen et al., 2006; Bond
et al., 2007; Keefer, 2007), and the results presented here suggest that, in most situations,
randomly-distributed sparse data will produce more accurate results than larger quantities
of clustered data. Only when the surface to be modelled is complex (e.g. grid 4) can the
larger amounts of clustered data (100) out-perform randomly-distributed sparse data (40;
Figure 3.5d). In summary, when modelling in relatively simple geological environments,
the distribution of data points appears to be more important than the number of data
points used in the modelling process in controlling model accuracy. However, when
modelling more complex geological environments, the number of data points becomes

more important than their spatial distribution.

3.3.3 Algorithm Comparison

In order to evaluate the effect of the modelling algorithm on model accuracy,
comparisons were made between the output of models using ordinary kriging (OK) and
inverse distance weighting (IDW), the two most commonly used subsurface geologic
modelling algorithms (Englund 1990; Weber and Englund, 1992; Brus et al., 1996;

Zimmerman et al., 1999; Schloeder et al., 2001; Jones et al., 2003; Dille et al., 2003).

Graphs of RMSE results were produced to determine if the number of data points
used for interpolation had an impact on the accuracy of the models produced by each
algorithm (Figure 3.6). For this analysis, a randomly distributed data set was used to
isolate the effects of grid complexity and data quantity on the ability of each algorithm to

produce accurate interpolations. The results show that both algorithms wers able to
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model grid 1 most accurately (lowest RMSE) and the predictions for grid 4, the most
complex surface, were the least accurate (highest RMSE values; Figure 3.6). The results
also show that there is a greater difference in the RMSE produced by the two algorithms
when fewer data points are used to interpolate relatively simple surfaces, than when more
data are available, or when the algorithms interpolate more complex surfaces (Figure 3.6).
For example, when both algorithms were used to model grid 1 using 40 data points, IDW
produced a RMSE of 0.90 and OK produced a RMSE of 0.56 (Table 3.1). When 40 data
points were used to model grid 2, IDW produced an RMSE of 1.06 whereas the RMSE
for OK was only 0.62 (Table 3.1). However when modelling the more complex grids,
there was little difference between RMSE results produced by IDW and OK (Table 3.1).
For grid 4, RMSE results for IDW progressively reduced with the inclusion of additional
data points and out-performed OK until more than 400 data points were included, at
which point OK was able to produce more accurate models (Table 3.1). For grids 1, 2
and 3, OK produced lower RMSE results regardless of the number of data points
available for interpolation; however, this difference diminished as the number of data

points increased (Table 3.1).

Graphs of RMSE results were also used to analyze whether the performance of
either the OK or IDW algorithm was affected by the spatial distribution of data. The
regularly distributed data produced the smallest RMSE, followed by random, sparse, and
clustered datasets when both the OK and IDW algorithms were used (Figure 3.5). For
grids 1 and 2, there was a greater difference between the RMSE results for all data

distributions when fewer data points were available (Figure 3.5 a,b). As the number of
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data points increased to 1600, the difference in RMSE results between IDW and OK for
grids 1 and 2 decreased for all distribution patterns (Figure 3.5 a,b). For grids 3 and 4,
there was minor difference between IDW and OK for all spatial distribution patterns

(Figure 3.5 c,d).

The RMSE results for each algorithm were also graphed based on the distribution
and quantity of data on 4 separate graphs of grid complexity (Figure 3.5). These graphs
show that when modelling simple geological environments (grids 1 and 2) utilizing less
than 256 points OK was able to produce grids with much lower RMSE values than IDW
(Figure 3. 5 a,b). When more than 256 points were used for interpolation the results for
OK and IDW were more similar (Figure 3.5 a,b). However, for models representing more
complex geological environments (grid 4) IDW was able to produce more accurate results

when less than 400 data points were available (Figure 3.5 c,d).

3.3.3.1 Discussion on the Effect of Algorithm Selection

The results presented above show that the OK algorithm most commonly
produced more accurate model results than IDW, regardless of the number and
distribution of data points used for interpolation, or the complexity of the grids being
modelled, with the exception of when complex grids were modelled with relatively few
data points (Figure 3.5; Table 3.1). It is, however, important to examine circumstances in
which the two algorithms performed with the greatest similarity or difference. The results
presented in Figure 3.5 show that there is a greater difference in the performance of the

IDW and OK algorithms when fewer data points are available for interpolation, and that
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in such situations OK most often produces the more accurate model (lower RMSE). OK
is able to produce more accurate models (with lower RMSE values) than IDW due to
differences in how the two algorithms utilize the data points to interpolate each model.
OK is able to produce lower RMSE results due to the inclusion of variograms which
incorporate the degree of spatial autocorrelation between neighbouring data points and
include that information as a spatial weighting factor during the interpolation process.
This approach has shown to be a benefit when modelling less complex surfaces with
fewer data points, as this provides OK with additional information about the relationship
of the data that IDW does not consider. However, a minimum of 20-50 data points are
required to make use of a variogram for interpolation purposes (Webster and Oliver,
1992; Krajewski and Gibbs, 1996). Therefore, if very low numbers of data points are
available, the benefit of variogram analysis is reduced and as a result, IDW is able to
produce more accurate models based purely on distance relationships. When fewer data
points are available for modelling more complex surfaces (i.e. grid 4), IDW is able to
produce models with lower RMSE probably because there are insufficient data available
for the OK algorithm to produce a good variogram considering the highly variable nature
of the grid. When an effective variogram cannot be produced by the data, OK results are
negatively affected (Issaks and Srivastava, 1989; Krajewski and Gibbs 1996). The results
of this study also show that when more than 256 points (representing a 4% or greater
coverage of the study area) are utilized, the RMSE for OK and IDW are similar for all

four synthetic grids (Figure 3.5). This suggests that 256 (or more) randomly distributed
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data points provide sufficient coverage of the study area to minimize the benefit of the

variogram analysis used by OK.

Both the OK and IDW algorithms performed most effectively with regularly
distributed data and less well with random, sparse, and clustered datasets in order (Figure
3.5). Differences in the accuracy with which each of the algorithms modelled data of
variable spatial distribution does not appear to be very significant, particularly when more
complex surface are modelled with large numbers of data points (Figure 3.5). However,

OK does create slightly more accurate models than IDW when clustered data are utilized.

Overall, these results show that algorithm selection has the greatest impact when
interpolating more complex models with limited amounts of data. In these instances, the
IDW algorithm appears to produce the most accurate results, although OK produces the

most accurate models in all other situations.

3.3.4 Bias Error Analysis

All models are predictions of reality and will therefore be subject to a certain
amount of error. Ultimately, the errors within model predictions should be minimized
and be as close to zero as possible. However, it is important to understand whether the
error inherent in any model is producing under-or over-estimations of actual values. Bias
error measures the amount of deviation of the interpolated model values from the actual
(original) values. If the bias error is negative, then the predicted values are less than the
actual values, and if they are positive then the predicted values are greater than the actual

values. Bias errors were calculated for all interpolation results in this study to determine
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whether over- or under-estimations were occurring during the interpolation process and to
identify situations in which these estimation errors were most likely to occur. The results
from all simulations conducted for each sampling treatment were averaged together to
provide an estimate of the bias errors that would typically occur for that particular

sampling treatment (Figure 3.7).

Bias errors produced from all 10 Monte Carlo simulations were averaged for all
interpolated models taking into account the number and distribution of data points, the
grid complexity, and the algorithm used to interpolate the data (Appendix 3.1). The
results showed that negative bias errors occurred for approximately 83% of the models
produced using 100 points, 63% of those created with 256 points, 88% of those produced
with 676 points, and 79% of those with 1600 points. This indicates that the interpolated
models were most commonly producing undler-estimations of the actual values. When the
bias errors were combined for each of the models created using the same number of data
points (e.g. 100, 256, 676, and 1600 data points), the values were -1.26, -1.17, -1.05, and -
0.97 respectively, and show that overall, bias errors decreased as the number of data

points used for interpolation increased (Figure 3.7a).

In order to determine the extent to which bias errors varied with respect to the
number of data points used in modelling, algorithm selection, and data distribution
patterns the errors were graphed (Figure 3.7b, ¢). Grid 3 was selected for this purpose as

it is reasonably complex and represents a grid that may be commonly encountered in
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Figure 3.7: Bias Error Analysis a) graph showing the decrease in the range of average
bias errors calculated for the IDW and OK algorithms as the number of data points
included in the modelling process increases. Note that the average errors are all negative
and suggest that the models represent under-estimations of actual values. b) Bias errors
for models of grid 3 using different numbers of data points, data distribution patterns and
algorithm. c¢) Bias errors for models of grids 1 - 4 using 256 data points modelled with
IDW and OK in clustered, random, regular and sparse distributions. Note: Bias error
values are given in arbitrary units that relate to the thickness values (1-9) allocated to
points on the synthetic grids.
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subsurface geological investigations. A wide range of bias errors was produced when 256
or fewer points were used for interpolation but this range became smaller with increasing
numbers of data points (Figure 3.7b). Comparison of the bias errors produced by the
IDW and OK algorithms revealed that the greatest range in values occurred when few
data points were used with the IDW algorithm (Figure 3.7a). Bias error became less
negative as the number of data points used for interpolation with the IDW algorithm
increased; in contrast, bias error became slightly more negative with increasing data

avzilability when the OK algorithm was used (Figure 3.7a).

Analysis of the impact of data distribution on bias error indicates that random and
regularly distributed data consistently report the lowest bias errors, regardless of how
many data points were included in the model (Figure 3.7b). The clustered datasets
produced negative (under-estimation) bias errors, which were affected by both the
algorithm used and the number of data points (Figure 3.7b). Overall, OK was able to
produce models with bias errors closer to zero than IDW when modelling all data

distributions (Figure 3.7b).

As a final stage of bias error analysis, the bias errors produced from models of
each of the synthetic grids (grids 1 — 4), using different data point distributions (regular,
random, clustered, sparse) and a constant number of data points (256; Figure 3.7¢) were
analysed. The bias errors identified for grid 1, representing a relatively simple geological
setring, are close to zero for all data point distributions, with only slightly positive and
negative values (Figure 3.7c). Bias errors for grid 2 are near zero or slightly positive

(over-estimations; Figure 3.7c), whereas the bias errors for grids 3 and 4 are all larger and
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in the negative range (under-estimations; Figure 3.7c). This analysis also showed that
clustered data typically produced the greatest bias errors (either positive or negative;

Figure 3.7¢).

3.3.4.1 Discussion of Bias Error Analysis

It is important to quantify and understand the nature of bias errors associated with
the generation of 3D subsurface models, as this information could have important
implibations for decisions made for geological applications of the model results.
Knowing what sampling conditions are most likely to cause either over- or under-
estimation of actual values is vital information when assessing the accuracy and reliability

of model outputs.

The bias errors calculated for all interpolations were predominantly negative
(Figure 3.7a) indicating that the interpolated models were most commonly producing
under-estimations of the actual values. However, the number of data points utilized for
interpolation had an impact upon the bias errors, as a decrease in error was noted as the
number of data points increased (Figure 3.7b). This indicates that although the
interpolated models all tended to represent under-estimations, those produced with the
largest number of data points typically deviated from the actual (synthetic) values less

than those produced with fewer data points.

Analysis of the relationship between bias errors and grid complexity revealed that
as the grids became more complex, the range of bias errors also increased in magnitude

and moved into the negative range (Figure 3.7c). This suggests that the more complex
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the grid being modelled, the greater the tendency for interpolated values to be under-
estimated. Data distribution patterns also influence error bias, with clustered data
distributions consistently producing models with the greatest positive and negative bias
errors (Figure 3.7b). Overall, regular and random point distributions produced models

with minimal bias errors (Figure 3.7b).

Finally, the gridding algorithm selected for interpolation had a significant impact
on how the data were used to interpolate amodel. The Dbias errors produced by
interpolations made with both the OK and IDW algorithms were predominantly negative
indicating that both algorithms generally produced under-estimations of actual values
(Figure 3.7a). However, models interpolated with OK consistently produced values closer
to zero than those with IDW, which implies that models produced with the OK algorithm
are typically less biased than those generated with IDW (Figure 3.7b). These results were
supported by the analysis of bias errors generated from models of the four synthetic grids
produced using 256 data points that showed OK produced lower bias errors than IDW for
all grid types and data distribution patterns (Figure 3.7¢). Overall, this analysis shows
that there is a considerable tendency for IDW and to a lesser extent OK, to produce

under-estimates of actual unit values when modelling complex grids.

3.5 Conclusions

Three-dimensional (3D) geo-cellular models are increasingly used for decision

making and geoscientific applications in many fields of study. This increased use of 3D
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models for a broad range of applications has raised concerns about the accuracy and
reliability of model outputs and the relationship between output quality, input data and the
type of interpolation algorithm employed in the modelling process (Weber and Englurd,
1992; Weber and Englund, 1994; Zimmerman et al., 1999; Jones et al., 2003).
Unfortunately, no studies to date have quantitatively assessed the impact of these
variables on the modelling of geologically realistic synthetic surfaces. This paper
presents a new method for evaluating the effectiveness of common interpolation
algorithms used in 3D subsurface modelling, by testing their ability to accurately mocdel
four synthetic grids of varying geologic complexity with various numbers of data points
(100, 256, 676 or 1600) in varying spatial distribution patterns (regular, random,
clustered, and sparse). The results of quantitative statistical tests evaluating the impact of

these variables on model output and uncertainty can be summarized as follows:

o Number of Data Points: The inclusion of additional data points in the
modelling process produced a drop in RMSE in the majority of model
treatments. The number of data points used for interpolation had the greatest
influence on model accuracy when modelling the relatively complex grids.
The accuracy of models of the relatively simple grids was less impacted by the
addition of data points, and some models were negatively influenced when
higher numbers of data points were included. This finding is supported by
bias error analysis that showed an overall decrease in bias errors as the number
of data points utilized for interpolation increased. Although the interpolated

models all tended to represent under-estimations of the original grid values,
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those produced with the largest number of data points typically deviated less
from the actual values than those produced with fewer data points.  These
results also suggest optimurn numbers of data points (data coverage) ere
required for accurate and cost-effective interpolation of units of varying
complexity. For example, increasing the data coverage beyond a 4% random
coverage for grid 2, 6.3 % for grid 3, and 10.6% for grid 4 produced minimal
improvements in model accuracy.

Data Point Distribution: The spatial distribution of data points input into the
model is an extremely important factor affecting interpolation accuracy. The
most accurate models were created by regularly and randomly distributed data
points, followed by sparse and clustered data respectively. The results
presented here suggest that in certain geological situations more accurate
models will be created using relatively few data points that are randomly
distributed (e.g. sparse distribution) than using more data with a clustered
distribution. To produce an accurate model of relatively simple geological
environments, the distribution of data points was found to be a mcre
influential variable than the number of data points. In contrast, when
modelling more complex geological environments, the number of data points
had a greater influence on model accuracy than the spatial distribution of data.
Algorithm Selection: Overall, the OK algorithm produced more accurate
representations of the modelled grids than IDW, regardless of ths distribution

of data points used for interpolation, or the complexity of the grids being
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modelled. This conclusion is supported by the results of bias error analysis
that show OK producing lower bias errors than IDW for the majority of data
distributions and grid complexities. IDW produced slightly more accurate
models than OK in situations where complex grids (e.g. grid 4) were modelled
with relatively low numbers of data points. However, the difference in RMSE
values between OK and IDW decrease as the model complexity aad number of
data points used for modelling increases. This implies that algorithm selection
has the greatest impact on model accuracy when interpolating relatively

simple grids with limited data.

When modelling spatial data there is always a high level of uncertainty, especially
in subsurface environments where the unit(s) of interest are defined by data only available
in select locations. Consequently, it is extremely difficult to validate the output of 2D
subsurface models and to identify the many factors that may impact their reliability and
accuracy. Despite this uncertainty, 3D models are becoming increasingly popular for
visualizing complex geological environments and decisions are often made based on
these model predictions. Thus, it is important to ensure that the models are as accurate as
possible and that potential sources of uncertainty are identified and minimized. The
results of this study can be used to guide the selection of modelling parameters used in 2D
subsurface investigations and will allow the more effective and efficient creation of

accurate and reliable 3D models.
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APPENDIX 3.1: GRID COMPARISON DATA
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Number of Data Points Grid Complexity Data Distribution Algorithm Root Mean Square Error (RMSE) Relative Root Mean Square Error (rRMSE) Mean Average Error (MAE) Bias Error (BE) Correlation Coefficient (r2)
100 Grid 1 Cluster ow 1.4430] 1.4271 13342 09644] 11003| 07137| 06766 07333 0.8914 08158 03279 0.3243| 0.3032] 02192| 0.2500| 01622 0.1538| 0.1666| 0.2026 0.1854| 08129| 0.7537| 0.7474] 05775| 0.6150] 0.4625| 0.4333] 0.5297| 06379] 05744 -0.2532 0.4078 0.1979] 0.1629| 0.2889] 00143 0.0677, 0.1198| 0.1974] 0.6758] 06829 0.7228| 08552] 0.8115] 0.9207| 09287| 09163] 0.8763| 0.8964)
100 Grid 1 Cluster oK 1.3043] 1.2127 10198| 0.8210] 09532 0.4950| 0.4725] 0.6033 05251 06434] 02964 0.2756] 0.2318] 0.1866] 02166] 0.1125| 0.1074] 0.1371] 0.1193 0.1462| 0.6904| 05637| 0.5088| 0.4683] 0.4932 0.3056] 0.3003] 0.3942| 03606/ 04111| -0.2677| -0.4134| -0.3231 0.1468| -0.1815| 0.1889 0.0681 0.0625 0.1009) 0.1715] 0.7351] 0.7710| 0.8380| 0.8950| 0.8585] 09618] 0.9652| 0.9433] 09571| 0.9355)
100 Grid 1 Sparse ow 1.0282] 1.0094| 08497| 09858 0.7399]| 08145| 0.7295| 0.9940| 09691 08907] 0.2336| 0.2294| 0.1931] 02240| 0.1681| 0.1851| 0.1658] 0.2259| 0.2202 0.2024] 05912 05787| 05686) 0.6173| 0.4853) 05127] 0.4978 0.5820] 0.5995| 0.5409| -0.2517| -0.3033| 0.1716] -0.0729] -0.0306| -0.1884 0.0412| -0.1962| -0.0111] -0.1390| 0.8354| 038413| 08876] 0.8487| 0.9147 0.8967| 09171| 0.8462| 0.8538| 0.8765
100 Grid 1 Sparse oK 0.7458] 05435] 05149) 0.7401) 04076| 0.3962] 04561| 0.5996] 0.5870| 05650 0.1695| 0.1235| 01170] 0.1682) 00926 00900| 0.1036| 01362 0.1334| 0.1284] 03966| 03052| 0.3112| 03948 02736] 0.2672| 02937| 03472] 03590| 0.3592| -0.1578| -0.1321] 0.1324] -0.1635| 00193| -0.0330| 00022] -0.0770] 00471] -0.0425| 09134) 09540| 0.9587| 09147| 09741] 09756 0.9676] 09440| 09463] 0.9503]
100 Grid 1 Random ow 0.4313] 0.5291) 0.5068] 0.4426] 0.5138| 04077 0.3516] 0.4184] 0.5822| 0.4148| 0.0980| 0.1202| 0.1152| 0.1006/ 0.1168] 0.0926| 0.0799| 0.0951]| 0.1323 0.0943] 0.2955| 0.3203] 03117| 0.2885| 0.3231 0.2667| 0.2401 0.2733] 03346 0.2710 0.0393| -0.0405| -0.0695! 0.0154] -0.0500| -0.0066] -0.0075| 0.0086] -0.1180] -0.0516/ 0.9710] 0.9564] 0.9600| 0.9695| 0.9589 09741| 0.9807| 09727] 0.9472| 0.9732]
100 Grid 1 Random oK 0.2023] 0.2647| 0.2636] 0.2683] 0.2453| 0.2526| 0.1606] 0.1943] 0.3364| 0.2035| 0.0460| 0.0601| 0.0599| 0.0610| 0.0557| 0.0574| 0.0365| 0.0441| 00764 0.0462| 0.1278] 0.1663] 0.1572 0.1720| 0.1477, 0.1671] 0.1033 0.1273] 0.1985| 0.1287| 0.0322| -0.0031] -0.0122 0.0138| -0.0071| -0.0014, 0.0113. 0.0156) -0.0309] 0.0049| 0.9936) 09891| 0.9892] 0.9888| 0.9906, 0.9901] 09960| 0.9941| 0.9824]| 0.9936f
100 Grid 1 Regular IDW 0.4747| 0.4747| 0.4747 0.4747| 0.4747| 04747 0.4747| 0.4747 0.4747] 0.4747| 0.1079| 0.1079| 0.1079] 0.1079] 0.1079] 0.1079] 0.1079| 0.1079 0.1079, 01079 0.2733] 02733] 02733 0.2733] 0.2733, 0.2733] 0.2733 0.2733] 0.2733] 0.2733| -0.0899| -0.0899| -0.0899| -0.0899| 0.0899| -0.0899| -0.0899| -0.0899| -0.0899| -0.0899] 0.9649] 09649 0.9649] 0.9649| 0.9649] 0.9649] 09649 09649] 0.9649| 0.9649)
100 Grid 1 Regular OK 0.1893| 0.1893] 0.1893 0.1893| 0.1893| 0.1893 0.1893| 0.1893 0.1893] 0.1893| 0.0430| 0.0430| 0.0430| 0.0430] 0.0430] 0.0430| 0.0430| 0.0430( 0.0430| 0.0430| 0.1067| 0.1067| 0.1067 0.1067| 0.1067| 0.1067| 0.1067, 0.1067 0.1067 0.1067 -0.0227] -0.0227 -0.0227] -0.0227| -0.0227| -0.0227] -0.0227] -0.0227] -0.0227| -0.0227] 0.9944] 0.9944| 0.9944] 0.9944| 0.9944 0.9944] 0.9944| 09944] 0.9944| 0.9944]
100 Grid 2 Cluster Iow 1.4249] 09571 0.8738 0.9317| 08982] 09849 09178 1.1117 1.0318) 10542) 0.2807| 0.1885| 0.1721] 0.1835] 0.1769| 0.1940| 0.1808]| 0.2190| 0.2032 02077] 09983 0.7343| 0.6601| 0.6964] 06787] 0.7242] 0.6700] 0.8078| 0.7827| 0.8206| -0.6925] 0.3015| 0.3320 0.0157] 0.1403| -0.2441 0.1222] -0.3563 0.0410] 0.2187| 0.5097| 0.7788| 0.8156| 0.7904] 0.8052 0.7657] 0.7966| 0.7016] 0.7429| 0.7316]
100 Grid 2 Cluster oK 1.2306] 0.5601 0.7183 0.6163| 05807| 0.6640| 0.5723] 08180 0.6630| 0.7546] 0.2424] 0.1103| 0.1415| 0.1214| 0.1144] 0.1308] 0.1127 0.1611]  0.1306 0.1486] 0.7271| 04167| 0.4563| 0.4315| 0.3992] 04464] 0.3767] 0.4939| 04677/ 0.5230| -0.5006] 0.1525| 0.2487 0.0421] 00946 -0.0636] 0.1018] -0.1082| -0.1206| 0.1378] 0.6343| 09242 0.8754| 09083| 0.9186] 0.8935| 09209 0.8384] 08938| 0.8625)
100 Grid 2 Sparse Iow 1.0069| 1.0313| 09413| 1.0938| 1.1754| 09162 09472| 1.1626] 1.2486| 10716| 0.983] 02031| 0.1854| 02154| 02315| 0.1805| 0.1866| 0.2290| 02459| 02111 0.7759] 08426] 0.7561| 08735| 08870] 0.7384] 07410| 09290| 09623| 08307 00049| -0.2248| -0.0723] -0.3950| 00277| -0.0927] -0.2583| 0.2745| -00720| -0.2387| 0.7552| 0.7432| 0.7860| 07111| 06664]| 0.7973| 0.7833| 06736] 06235 0.7227,
100 Grid 2 Sparse oK 0.6262| 05885 0.5539] 0.5442| 07072 06170] 06306] 0.6890| 06673] 06173] 0.1233[ 01159 01091 0.1072| 0.1393| 01215/ 0.1242| 01357| 0.314] 0.1216] 04096 04386]| 0.3871) 0.3984| 04754| 0.4108] 04518| 05117| 04978] 04462| -0.0437| 00554| 00428| -0.0462| -0.0049| 0059 -0.1236| 00858 -0.0477| -0.1346] 09053| 09164] 09259) 09285 08792| 09081) 09040| 0.8854| 08925 0.9080)
100 Grid 2 Random ow 0.7101] 0.6097| 0.6610| 0.6453] 0.6554| 0.7438| 0.5887| 0.6474) 0.6594] 0.7136| 0.1399( 0.1201] 0.1302] 0.1271] 0.1291] 0.1465| 0.1160 0.1275| 0.1299, 0.1405| 0.5038| 0.4627| 05026/ 0.5019| 0.4902 0.5623] 0.4559] 0.4800| 0.4877| 05365 -0.0568| -0.0565| 0.1028] -0.0189) 0.0605| -0.2231] -00423| -0.2123] -0.1462] 0.0927| 0.8782| 09102| 0.8945| 08995| 0.8963] 0.8664] 09163| 08988| 0.8950| 0.8770)
100 Grid 2 Random oK 0.3634] 0.3565| 0.3860| 0.3520] 0.3951 0.4709] 03107| 0.3711 0.4143| 04397] 00716/ 00702 00760] 00693| 00778] 00928| 00612] 00731| 0.0816| 00866] 02381 02465| 02774 02521 0.2594) 0.3062) 0.2237| 02478] 02978] 03018] -0.0058] 0.0443] 00944] -0.0081] 00471) -0.0837| -0.0208f -0.0731] -0.0622| 0.0564] 0.9681] 09693] 0.9640] 0.9701] 0.9623] 0.9465] 09767| 0.9667| 0.9586| 0.9533
100 Grid 2 Regular oW 0.5454| 0.5454) 0.5454| 0.5454| 0.5454 0.5454| 0.5454| 0.5454) 0.5454 0.5454| 0.1074] 0.1074] 0.1074] 0.1074] 0.1074] 0.1074| 0.1074| 0.1074] 0.1074, 0.1074] 0.4086| 04086| 04086| 0.4086] 04086] 04086 0.4086) 04086| 04086] 04086) -0.0166] -0.0166| -0.0166)] -0.0166] -0.0166| -0.0166| -0.0166| -0.0166] -0.0166] 0.9282] 09282] 09282] 09282| 0.9282] 0.9282] 09282| 09282] 09282 0.9282]
100 Grid 2 Regular oK 0.2647| 0.2647| 0.2647| 0.2647| 0.2647 0.2647| 0.2647| 0.2647| 0.2647| 0.2647| 00S21] 00521 00521 00S21] 00521 00521 00521 0.0521] 00521 00521 0.1877| 0.877| 0.1877| 0.1877| 0.1877| 0.1877| 0.1877] 0.1877] 0.1877| 0.1877| 0.0046] 0.0046| 0.0046| 0.0046| 0.0046| 0.0046 0.0046) 0.0046] 0.0046] 09831] 09831 09831] 09831| 0.9831] 0.9831] 09831 09831 0.9831| 0.9831
100 Grid 3 Cluster Iow 1.6948| 1.5081] 1.5783] 14157| 1.2872 16172| 1.8122] 1.5251) 1.2959] 1.3685| 04600| 04093 0.4284] 0.3842| 0.3494] 04383 04919] 04139 0.3517 0.3714] 13263] 12022 1.2476] 1.1173] 1.0497 1.2058] 1.3563) 1.1937] 10573 1.0372] —OABZ% -0.0818| 0.1002| 0.0240| -0.0193| -0.4245| -0.3249| -0.2627| -0.2926] 0.2711] 0.1746| 0.3464| 0.2841) 0.4241| 0.5238] 0.2485| 0.0563| 0.3316] 05174| 0.4619)
100 Grid 3 Cluster oK 1.7006] 1.3953] 1.5286, 14157 1.2383 1.4990| 1.8958| 1.3375| 1.3680| 1.3590| 0.4616] 0.3787| 0.4149| 0.3842| 0.3361] 0.4069| 05145| 03630 03713 0.3688| 1.3197| 1.0504| 1.1751 1.1173] 0.9673 1.0747]| 13485 10130) 09936 0.9658| -0.4688| -0.1026] 0.2334) 0.0240] -0.0523| -0.1866] -0.4154] -0.0246] 0.1760] 0.2865] 0.1690] 0.4405| 0.3286] 0.4241| 0.5593 0.3543] -0.0328| 0.4859| 0.4622| 0.4693
100 Grid 3 Sparse ow 1.5314] 1.6062 1.4475] 1.5631] 15511 1.5856] 1.5244| 1.5651 1.7605| 1.5343| 04156] 0.4359| 0.3929] 04242| 04210|] 04303] 04137] 04248| 04778 0.4164] 12615| 1.3035 1.2119] 1.2662] 1.2605 13170 1.2647 1.3099] 1.3841 1.2827| 0.1162] -0.4106| -0.0457 0.2143] 0.2608| -0.2978| -0.1353] -0.5509] -0.1517| -0.1052] 0.3261| 0.2587| 0.3979] 0.2979| 0.3086| 0.2775] 0.3322| 0.2961 0.1094]  0.3235)
100 Grid 3 Sparse oK 1.4348] 1.4110| 1.4214] 1.5279] 1.4253 1.4676] 1.3153| 1.4028| 1.6233] 14445| 03894 0.3830| 0.3858| 04147| 0.3868] 0.3983| 0.3570| 0.3807| 0.4406 0.3921] 1.1470] 1.1020 1.0996| 1.1627] 1.1107 1.1546| 1.0622 1.1636) 1.2430 1.1978] 0.0335] -0.2315| 0.0276| 0.4035| 0.2619] -0.2827| 0.0804] -0.5454] -0.2363] 0.0390] 0.4084| 0.4279| 0.4194] 03292| 0.4162] 0.3811] 0.5028| 0.4345| 0.2428| 0.4004)
100 Grid 3 Random Iow 1.3247] 1.2313] 1.5783 1.1401| 1.4610) 15218] 1.2698| 1.4046| 1.2959] 1.3146] 03595 0.3342| 0.4284] 0.3094| 0.3965] 04130| 0.3446| 0.3812 03517 0.3568| 1.0337| 0.9659 1.2476| 0.8509] 11737 1.2125] 0.9915 1.1386] 1.0573 1.0403| -0.0527| 0.0859] 0.1002 0.1601| -0.2345| -0.0177| 0.0580] -0.1693| -0.2926 -0.0080] 0.4957| 0.5644| 0.2841] 0.6265| 0.3866| 0.3345] 0.5367| 0.4330| 05174] 0.5034)
100 Grid 3 Random oK 1.1198] 1.1065) 1.5286 1.1401]| 1.1709, 12214] 1.2319] 1.1232 1.2959] 1.1312| 03039/ 0.3003] 0.4149] 0.3094| 03178] 03315 0.3344] 03049 0.3517 0.3070| 0.8059| 08241 1.1751] 0.8509] 09177 0.8985| 0.9492] 0.8546| 1.0573 08369 0.0587| 0.1583 0.2334 0.1601]| -0.1058| 0.1277 0.0420] -0.0393] -0.2926] 0.1403| 06396] 0.6481| 0.3286] 0.6265| 0.6060) 0.5713] 05639 0.6375] 05174] 0.6323]
100 Grid 3 Regular Iow 1.2603] 1.2603 1.2603 1.2603] 1.2603, 12603] 1.2603| 1.2603 1.2603] 12603 0.3421 03421 03421 03421 0.3421| 03421 03421 0.3421]| 0.3421 0.3421| 10404 10404 1.0404 1.0404] 1.0404 1.0404]  1.0404 1.0404| 1.0404 1.0404] -0.1175| -0.1175] -0.1175| -0.1175| -0.1175| -0.1175| -0.1175| -0.1175| -0.1175] -0.1175| 0.5436] 05436] 0.5436] 0.5436] 0.5436) 0.5436] 0.5436| 0.5436] 0.5436| 0.5436]
100 Grid 3 Regular oK 1.0123] 1.0123 1.0123] 1.0123] 1.0123) 10123] 1.0123] 10123 1.0123] 10123 02748 0.2748| 0.2748] 0.2748| 0.2748| 02748 0.2748 0.2748| 0.2748] 0.2748| 0.7610| 0.7610| 0.7610| 0.7610] 0.7610] 0.7610] 0.7610| 0.7610f 0.7610| 0.7610] -0.0415] -0.0415| -0.0415] -0.0415| -0.0415| -0.0415| -0.0415| -0.0415| -0.0415| -0.0415] 0.7055| 0.7055| 0.7055| 0.7055| 0.7055 0.7055| 0.7055| 0.7055| 0.7055| 0.7055]
100 Grid 4 Cluster Iow 1.9864] 1.9755, 2.0872] 1.9484) 1.9310) 2.2505| 1.9530| 2.0268| 2.0208| 20171] 0.3232| 03214 0.3396] 03170 0.3142] 0.3662] 03178 0.3298| 0.3288] 0.3282| 1.4497| 1.2828 1.5302| 1.4257| 1.3834] 1.9027| 1.2784 1.6294| 13933 12529| -0.1857| 0.2975] -0.6406] -0.4103| -0.2375| -0.9426] 0.0752| -0.6358] -0.1947] 03120 0.1063| 0.1161| 00133] 0.1402] 0.1555| -0.1472| 0.1361] 0.0696| 0.0751| 0.0784)
100 Grid 4 Cluster oK 1.9938] 2.0504) 2.1693| 2.0082| 19310 2.3862| 2.0423| 2.0423] 19293| 20474] 0.3244] 03336 03530 0.3268| 0.3142] 0.3882] 0.3323] 0.3323] 0.3139 0.3331] 1.4452| 1.2880 1.5244] 1.4390| 1.3834] 2.0151| 1.3564| 1.6424] 1.1835 12021 -0.1746] 0.3746] -0.5611| -0.3844]| -0.2375| -0.9938 0.0143| -0.6104| 0.1725| 0.3333] 0.0996| 0.0478] -0.0659] 0.0866| 0.1555| -0.2896] 0.0553] 0.0553| 0.1569| 0.0506
100 Grid 4 Sparse oW 2.2238] 1.9861 2.1313 2.0413] 2.1653 19990 1.9649| 1.9518| 2.0144| 19018| 0.3618] 03232 0.3468] 0.3321| 0.3523] 0.3253] 03197] 03176 0.3278] 0.3094| 13481 1.3088| 1.6829] 15221 1.7149] 1.6250] 1.4214| 1.3723] 12935 15130 0.6022f 0.3454| -0.6157| 0.0052| -0.6960| -0.5402 0.0543  0.1292 0.4368| -0.3855| -0.1201| 0.1065| -0.0289| 0.0562| -0.0619| 0.0949] 0.1255| 0.1372| 0.0809| 0.1808,
100 Grid 4 Sparse oK 2.3063| 2.0433] 2.1444 2.1417] 2.3716) 19851 2.0757| 2.0509] 19837 2.1196| 0.3753) 0.3325] 0.3489] 03485 03859] 0.3230| 03377] 03337] 03228] 03449 1.3053] 13642 1.6302] 1.5999] 1.9090] 13984 1.3412 1.4413] 12170 1.7082] 0.7255| 0.3833| -0.5777| 0.0075| -0.7907| -0.4081 0.0050] 0.1348| 0.4749| -0.5005| -0.2047| 0.0543| -0.0415| -0.0389| -0.2739 0.1074] 0.0241| 0.0473| 0.1088| -0.0176f
100 Grid 4 Random ow 1.7947| 1.7809 1.8540 18134 18378 19236/ 1.8459| 1.8005 1.7661] 1.8305| 0.2920f 0.2898 0.3017| 0.2951| 0.2990] 03130/ 0.3003| 0.2930| 0.2874 02978 1.2227] 1.1631 12137| 1.2745] 1.2027 1.2923| 1.2108, 13174] 1.1928 1.1413| -0.0097| 0.1878] 0.0993| -0.0678| 0.1138] 0.1095, 0.0455| -0.2531 0.0478] 0.2850] 0.2705] 0.2817| 0.2214] 0.2552| 0.2350] 0.1619] 0.2282| 0.2657| 0.2935| 0.2410
100 Grid 4 Random 0K 19172 1.7137 1.8302 1.7820| 1.8940| 20423| 19330| 19387 18627 18708| 0.3119] 02788 0.2978| 0.2899| 0.3082] 0.3323] 0.3145] 0.3154] 0.3031 0.3044] 1.3007] 1.0400 1.0707) 1.1250] 1.2420] 1.3912] 11995 1.4264| 12671 1.1795| 0.0134] 0.1336] 0.2175) 0.0206] 0.1205| 0.0978| -0.0645] -0.2830] 0.0260] 0.2767| 0.1675| 0.3349| 0.2413] 0.2808| 0.1875| 0.0553] 0.1537| 0.1487| 0.2142| 0.2072
100 Grid 4 Regular ow 1.7054| 1.7054| 1.7054] 1.7054] 1.7054 1.7054] 1.7054| 1.7054] 1.7054] 1.7054] 02775| 0.2775| 0.2775| 0.2775| 0.2775] 02775| 02775] 02775| 02775 02775] 1.1714] 11714 1.1714] 1.1714] 11714 1.1714] 11714 1.1714] 11714 1.1714] 0.0053] 0.0053] 0.0053] 0.0053] 0.0053] 00053] 0.0053 0.0053] 0.0053] 00053 0.3413] 0.3413| 03413 03413 0.3413] 0.3413] 0.3413| 0.3413| 0.3413| 03413
100 Grid 4 Regular OK 1.6743| 1.6743] 1.6743| 1.6743| 1.6743 1.6743] 1.6743]  1.6743] 1.6743] 16743| 0.2724] 02724 02724] 0.2724] 0.2724] 02724] 02724] 0.2724] 0.2724] 0.2724| 1.0637| 1.0637 1.0637| 1.0637| 1.0637 1.0637| 1.0637 1.0637| 1.0637| 1.0637| -0.0013] -00013| -0.0013] -0.0013] -00013| -0.0013] -0.0013] -0.0013] -0.0013] -0.0013] 0.3651] 03651 0.3651] 0.3651| 0.3651 0.3651] 0.3651| 0.3651 0.3651| 0.3651




Number of Data Points Grid Complexity Data Distribution Root Mean Square Error (RMSE) Relative Root Mean Square Error (rRMSE) Mean Average Error (MAE) Bias Error (BE) Correlation Coefficient (r2)
256 Grid 1 Cluster IDW 0.5469| 0.4487 0.6069 0.4336| 0.5487| 06929 0.8031| 0.7932] 0.8065| 09788 0.1243] 0.1020| 0.1379] 0.0985| 0.1247] 0.1574| 0.1825| 0.1802| 0.1833] 0.2224] 0.3342| 0.2743 0.3789] 0.3010] 0.3759 0.4367| 0.4212 0.3788| 04877] 05395 0.1028 0.1783| 0.0618 0.1637] 0.1077| 0.1302] -0.2055] -0.1755| -0.0230] -0.1099] 0.9534] 0.9686] 0.9426] 09707 0.9531 0.9252| 08996 0.9020] 08987| 0.8508]
256 Grid 1 Cluster OK 0.4074] 0.4487 0.4939 0.3261| 04566/ 0.5512 0.7266] 0.6206] 0.6016] 0.7491] 0.0926/ 0.1020| 0.1122| 0.0741] 0.1038] 0.1252| 0.1651 0.1410| 0.1367 0.1702] 0.2405| 0.2743] 0.2908| 0.2105| 0.2850| 03142 0.3436] 0.2899| 03529 0.3725| 0.0566] 0.1783] 0.0304 0.1226] 0.0810| 0.1206] -0.1707| -0.1176] -0.0142| -0.1010] 0.9742] 09686| 09620 0.9834| 0.9675| 0.9527] 0.9178| 0.9400| 0.9436 _09126
256 Grid 1 Sparse IDW 1.0254] 0.3687. 0.5479] 0.4537| 06605 0.5680| 0.3376] 0.9388| 0.4274] 0.6988| 02330 0.0838] 0.1245| 0.1031] 0.1501] 0.1291] 0.0767 0.2133] 0.0971 0.1588| 0.5285| 0.1938] 0.3543 0.2581| 0.4081, 0.3479| 02136] 0.4700] 0.2926| 04184 -0.3459] -00767| 0.0088] -0.0259] -0.1065| -0.0710| -0.0088| -0.2420] -0.0009] -0.1579| 0.8363] 09788] 0.9533| 09679 09321 09498 0.9823| 0.8628| 09716 0.9240]
256 Grid 1 Sparse OK 0.6440| 0.3687 0.3852 0.4537) 0.2894| 0.3519| 03376) 0.7280] 0.2313| 0.3334| 0.1464)| 00838] 00875/ 0.1031] 0.0658] 0.0800| 00767] 0.1654] 0.0526| 0.0758| 0.2902| 0.1938) 02378 0.2581| 0.1978| 0.2210] 0.2136] 0.3250] 0.1493| 0.1995| -0.1759] -0.0767| -0.0090] -0.0259] -0.0031| -0.0236] -0.0088| -0.1867| -0.0008] -0.0515| 0.9354] 0.9788] 0.9769 09679 0.9870] 0.9807| 09823| 09175 09917 0.9827,
256 Grid 1 Random oW 0.2122| 0.2308 0.2493]  0.1567| 0.2504 0.2010{ 0.2045| 0.2437 0.3048] 0.2156] 0.0482] 0.0524] 0.0567| 0.0356] 0.0569] 0.0457| 0.0465| 0.0554 0.0693 0.0490] 0.1329] 0.1485[ 0.1522| 0.0846] 0.1543] 0.1198]| 0.1360) 0.1560| 0.1805| 0.1394| 0.0065| -0.0246 0.0146] -0.0114] -0.0013| 0.0082 0.0129: 0.0102| -0.0415| -0.0007| 0.9930] 0.9917| 0.9903] 09962 0.9902 0.9937| 09935| 0.9908| 0.9855| 0.9928)
256 Grid 1 Random oK 0.1788 0.1603| 0.1789| 0.1567| 0.1694] 0.1392| 0.1332 0.1599] 0.1736] 0.1444| 0.0406| 0.0364| 00407 00356 0.0385] 0.0316| 0.0303] 00363] 0.0394 0.0328| 00872) 00967 0.1036| 0.0846] 0.1046] 00799 0.0780] 0.0989| 0.1055| 0.0890| 0.0054| -0.0084| 0.0168| -0.0114] 0.0064| 00063| 0.0046] 00119] -0.0100] 0.0025| 09950] 0.9960| 0.9950| 0.9962| 0.9955 0.9970] 09972 0.9960] 0.9953| 0.9968]
256 Grid 1 Regular IDW 0.1749] 0.1749| 0.1749 0.1749| 0.1749| 0.1749 0.1749| 0.1749! 0.1749| 0.1749] 0.0397| 0.0397| 0.0397] 00397] 00397] 00397| 00397| 00397 00397 0.0397| 0.1061| 0.1061 0.1061] 0.1061] 0.1061 0.1061]  0.1061 0.1061] 0.1061 0.1061| -0.0085| -0.0085| -0.0085| -0.0085| -0.0085| -0.0085| -0.0085| -0.0085| -0.0085] -0.0085] 0.9952] 0.9952| 0.9952] 09952 0.9952 0.9952] 0.9952| 0.9952 0.9952] 0.9952]
256 Grid 1 Regular OK 0.0938] 0.0938] 0.0938 0.0938| 0.0938( 00938 0.0938] 0.0938] 0.0938 0.0938] 00213] 00213] 0.0213] 00213] 00213] 00213| 00213 00213 00213 00213| 00528/ 00528/ 0.0528] 0.0528] 0.0528 00528 00528]| 0.0528] 00528/ 00528 0.0010| 0.0010| 0.0010| 0.0010f 0.0010] 0.0010f 0.0010 0.0010] 0.0010f 0.0010 0.9986] 0.9986| 0.9986] 0.9986| 0.9986 0.9986] 09986/ 0.9986] 0.9986| 0.9986)
256 Grid 2 Cluster IDW 0.8258] 0.7529] 0.7074 0.5500| 1.0064] 0.9954| 09974] 09663] 08152] 0.7932| 0.1627| 0.1483| 0.1393| 0.1083( 0.1982] 0.1961| 0.1965| 0.1903| 0.1606 0.1562) 0.5803| 0.4285| 04826) 0.3536] 0.6990| 06668] 0.6835| 0.6273| 0.5640| 05317] 0.1715] 00136] 0.0261 0.1533] 0.0892| 0.2725| 02491 -0.1647| -0.0122| 0.0309] 08353] 08631] 0.8791] 0.9269| 0.7554] 0.7607| 0.7598| 0.7745 0.8395| 0.8481]
256 Grid 2 Cluster oK 0.5769] 0.7529] 0.5973) 0.5500| 0.7405| 0.7489| 0.6515| 0.7846] 0.6278] 0.7114] 0.1136| 0.1483| 0.1176] 0.1083( 0.1459] 0.1475| 0.1283| 0.1545| 0.1237 0.1401| 0.3759| 04285| 03078| 0.3536] 0.4850] 04360| 0.4034] 04546 0.4095| 0.4207| 0.1004] 00136| 0.0687 0.1533] 00708 0.1578] 0.1447| -0.1151 0.0390] 0.0805] 0.9196] 08631 09139 09269 0.8676| 0.8646| 0.8975| 08513] 09048| 0.8778]
256 Grid 2 Sparse ow 0.9022| 0.4951 0.7336] 05216 0.7135| 0.7353] 0.9179] 0.7791 0.6713] 0.7745] 0.777| 0.0975| 0.1445] 0.1027| 0.1405| 0.1448| 0.1808] 0.1535( 0.1322] 0.1526] 0.6469| 0.3397| 05733 0.3696] 0.5572] 0.5669] 0.6638 0.6074] 0.5257| 0.5856| -0.0978| -0.0890| 0.1270| 0.1164] 0.1306] 0.0365] -0.1517| -0.1269] 0.1218] -0.0668| 0.8034] 09408| 0.8700f 09343 08771 08694 0.7965| 0.8534| 08912] 08551
256 Grid 2 Sparse oK 0.5825| 0.4951] 0.5619] 0.5216] 0.4221| 04192 0.5264] 0.5873| 04345] 0.4533| 0.1147| 00975 0.1107| 0.1027] 0.0831] 0.0826| 0.1037| 0.1157| 0.0856 0.0893| 0.3635| 03397| 03558 0.3696] 0.3067| 0.2773] 03338) 04327| 03331 0.3328| -0.0838| -0.0890| 0.1295 0.1164] 0.0295| -0.0198| -0.0347 0.1106] 0.0890| 0.0407| 0.9181| 0.9408| 09237 09343] 0.9570 0.9576| 09331| 09167| 09544 0.9504]
256 Grid 2 Random Iow 0.3329] 0.2194] 0.4320] 0.2362| 04172 0.3444| 0.3826] 0.3771 0.4400| 0.3617] 0.0656] 0.0432] 0.0851) 00465| 0.0822| 00678| 00754 0.0743| 0.0867] 00713| 02530| 0.511 03107 0.1531) 0.2982| 0.2587| 02881] 02740 03102 0.2736| 0.0050| -0.0092| 0.0483| -0.0133| 00272| -0.0156] -0.0120] -0.0225] 0.0285] 0.0494] 09732] 0.9884] 09549 09865 0.9580| 0.9714] 09646 09657] 0.9532| 0.9684)
256 Grid 2 Random oK 0.1777] 02194] 0.2270] 0.2362| 0.2899] 02314 02281] 02179] 0.2487| 02185/ 00350| 00432| 0.0447| 00465| 00571] 00456/ 00449| 0.0429| 0.0490 0.0430| 0.1257) 0.511f 0.1545| 0.1531] 0.2016] 0.1557| 0.1559] 0.1469] 0.1625| 0.1558| 00037] -0.0092| 00265| -0.0133] 0.0265| -0.0196] -0.0135] -0.0039] 00231 0.0263] 09924] 09884] 0.9876| 09865 0.9797 0.9871] 09874| 09885] 0.9851| 0.9885)
256 Grid 2 Regular oW 0.3009] 0.3009] 0.3009] 0.3009] 0.3009| 0.3009] 0.3009] 0.3009| 0.3009] 03009] 00593 0.0593] 00593] 00593] 0.0593] 00593| 0.0593| 00593 0.0593 00593| 02178)| 02178/ 0.2178) 02178 02178 02178 02178] 02178 02178 0.2178 -0.0078] -0.0078| -0.0078] -0.0078| -0.0078| -0.0078] -0.0078] -0.0078] -0.0078] -0.0078] 09781] 09781] 09781 09781 0.9781 0.9781) 09781 09781 09781 09781
256 Grid 2 Regular OK 0.1520] 0.1520] 0.1520] 0.1520] 0.1520| 0.1520| 0.1520] 0.1520 0.1520] 0.1520] 0.0299] 0.0299| 0.0299] 0.0299] 0.0299] 00299| 00299 00299 0.0299 00299 0.1028) 0.1028 0.1028/ 0.1028) 0.1028] 0.1028| 0.1028] 0.1028| 0.1028| 0.1028| -0.0046] -0.0046| -0.0046] -0.0046| -0.0046| -0.0046] -0.0046] -0.0046] -0.0046] -0.0046| 0.9944| 0.9944] 0.9944] 09944 0.9944 0.9944| 0.9944| 0.9944| 0.9944| 0.9944)
256 Grid 3 Cluster oW 1.2784] 1.4956) 1.7026, 1.0825| 1.6473] 1.2467| 16818 14247 1.2660] 15156 0.3470( 04059 0.4621| 0.2938] 04471 03384] 04565 0.3867| 0.3436| 04113 09873] 09721 1.2305| 0.7444] 1.2215| 0.9743] 12128 1.0885| 0.9475| 1.1584| -0.0373| -0.3687| -0.4998| -0.1033| -0.4998| -0.1146] -0.4333] -0.2642| -0.0205| -0.2931] 0.5304] 0.3572| 0.1669] 0.6633| 0.2202 0.5534] 0.1872| 04167] 0.5394] 0.3399]
256 Grid 3 Cluster OK 1.1063] 1.4956) 1.5007, 1.0825| 1.5746 11394) 16982] 12289 1.2148| 1.4461| 0.3003| 04059 0.4073] 0.2938] 04274] 0.3092) 04609 0.3335| 0.3297, 0.3925| 0.7628| 09721 1.0357| 0.7444] 1.0997 0.8259| 1.2404| 0.8329] 0.8145 1.1128| 0.0853| -0.3687] -0.3554] -0.1033| -0.2779] -0.1281| -0.4412| -0.0915| -0.0383] -0.1822] 0.6483] 0.3572| 0.3528| 0.6633| 0.2875) 0.6270] 0.1713| 0.5660] 0.5759| 0.3990]
256 Grid 3 Sparse oW 1.6432] 1.2651 1.4861 1.2054]  1.3626 1.4752 1.5421) 14166 1.3000] 1.4354)] 04460 0.3434] 04033] 03272| 0.3698 0.4004] 0.4185| 0.3845| 0.3528 0.3896| 1.2916| 0.9170] 1.2369] 0.9215] 11351 1.2129] 1.2544) 1.1418|  1.0693) 1.1574| -0.3208] 00430| -0.0574] -0.3159| -0.0508| -0.3000| -0.4097 0.0770] 0.1608 0.0797| 0.2241] 0.5400| 0.3653| 0.5824]| 0.4665 0.3747] 0.3166] 0.4233 0.5144|  0.4079)
256 Grid 3 Sparse OK 1.5833] 1.2651 1.3592] 1.2054] 1.2758] 1.1809| 1.3249| 1.3712 1.1379] 1.3187| 0.4297 0.3434| 0.3689] 0.3272| 0.3463] 0.3205| 0.3596| 0.3722| 0.3088 0.3579] 1.2565| 0.9170] 1.0605| 0.9215] 1.0636] 09167 1.0133 10471 08226/ 0.9977| -0.2958] 00430 0.1161] -0.3159] 0.0375| -0.0973] -0.2102 0.2065] 0.1763] 0.1365| 0.2797| 0.5400| 0.4691| 0.5824] 0.5323 0.5993] 0.4956] 0.4597| 0.6279| 0.5003
256 Grid 3 Random IDW 1.0638] 0.7611 1.0123] 0.9564| 1.0081 0.9925 1.0387| 0.9788 1.0514] 1.0372| 02887| 02066| 0.2748] 0.2596| 0.2736] 0.2694| 0.2819] 0.2657| 0.2854] 0.2815] 08174] 05419 0.7562 0.6982| 0.7818] 0.7609| 0.7886] 0.7614] 0.7992 0.7968, -0.0313|  0.0557 0.0226| -0.1241| -0.0170] -0.1010] -0.0262 0.1675] 0.0472| 06748/ 08335/ 0.7055| 0.7371] 0.7080 0.7169| 0.6900| 0.7247| 0.6823| 0.6909
256 Grid 3 Random OK 0.8951] 0.7611 0.8598| 09564 0.8259] 0.8068| 0.8797| 0.8645 0.7554] 09134 0.2429| 0.2066] 0.2333] 0.2596| 0.2241] 0.2190| 0.2388] 0.2346 0.2050 02479 06824 05419 0.5830 0.6982| 0.5739 0.5872| 0.5961 0.6657| 0.5433 0.6880| -0.0790] -0.0313| 0.0356 0.0226 -0.0513| 00198 -0.0386| -0.0315| -0.0549) 00717 0.7698| 0.8335| 0.7876] 0.7371]| 0.8040 0.8129| 0.7776] 0.7852 0.8360| 0.7602]
256 Grid 3 Regular oW 0.8936| 0.8936] 0.8936| 0.8936] 0.8936/ 08936 0.8936] 0.8936] 08936] 08936 0.2425| 0.2425| 0.2425] 0.2425| 0.2425| 0.2425| 0.2425| 0.2425| 0.2425 0.2425| 0.7062| 0.7062f 0.7062| 0.7062| 0.7062 0.7062] 0.7062] 0.7062| 0.7062 0.7062 -0.0703] -0.0703| -0.0703] -0.0703] -0.0703| -0.0703] -0.0703] -0.0703] -0.0703] -0.0703| 0.7705] 0.7705| 0.7705] 0.7705| 0.7705 0.7705] 0.7705| 0.7705] 0.7705| 0.7705]
256 Grid 3 Regular OK 0.5798| 0.5798| 0.5798| 05798| 0.5798| 0.5798| 0.5798] 0.5798| 0.5798| 0.5798| 0.1574] 0.1574] 0.1574] 0.1574] 0.1574] 0.1574] 0.1574] 0.1574| 0.1574 0.1574| 0.4093| 04093 0.4093] 0.4093| 0.4093| 0.4093] 04093| 0.4093| 04093 0.4093| -0.0234| -0.0234| -0.0234] -0.0234| -0.0234| -0.0234| -0.0234] -0.0234 0.0234] -0.0234] 0.9034 0.9034| 0.9034] 0.9034] 0.9034 0.9034] 0.9034| 0.9034| 09034 0.9034]
256 Grid 4 Cluster oW 1.8787] 1.7613] 1.8931 1.9522| 1.7840 19414| 2.0264] 1.7399 2.0507| 1.9223| 0.3057| 0.2866] 0.3080] 03176 0.2903] 0.3159| 03297| 0.2831 03337 03128 1.1471] 1.0689 1.2102| 1.1807] 1.2350] 1.3666| 13188 1.1414|  1.4580) 12891) 0.0715| 0.0400] -0.0622| -0.2515] -0.2915| -0.4487| -0.2810| -0.0865| -0.6734] -0.2694] 0.2006] 0.2974| 0.1883| 0.1368] 0.2791 0.1463] 0.0699]| 0.3143 0.0475|  0.1630)
256 Grid 4 Cluster OK 1.9936] 1.7613] 1.9784 1.9522| 1.8878| 2.0555| 2.0055| 1.8003] 2.1261| 2.0357| 0.3244] 02866 0.3219] 03176 03072 0.3345| 0.3263] 0.2929] 0.3459 0.3312| 1.2393| 1.0689 1.2687| 1.1807] 1.2961 1.3450  1.2054 1.1820] 1.5122 12630| -0.0019] 00400] -0.0709] -0.2515| -0.2833| -0.3495| -0.2024| -0.1107| -0.6351] -0.2697] 0.0998] 0.2974] 0.1135] 0.1368| 0.1928, 0.0430] 0.0890| 0.2659| -0.0238| 0.0614]
256 Grid 4 Sparse ow 1.8958| 2.0112 1.8081 2.0128| 1.5716 1.8856) 1.8539| 1.8591) 1.8709] 1.8283| 03085/ 0.3272| 0.2942| 03275 0.2557] 0.3068| 0.3016] 0.3025| 0.3044] 0.2975] 1.3495] 1.5588 1.1954| 14043 0.9270 1.3718| 1.2880, 1.1851 1.3020) 1.2417| -0.1565| -0.5662] 0.1282] -0.0774] -0.1303| -0.2140| 0.0075| 0.2735| 00702 0.1265| 0.1860] 00838 0.2596| 0.0824| 0.4406) 0.1947| 02215| 02171] 02072 0.2429]
256 Grid 4 Sparse OK 19924 20112 1.8999| 1.9293] 15716] 20065 1.8925| 1.9405 19453| 18754 03242 0.3272] 0.3091] 03139] 02557] 0.3265| 0.3079] 0.3157| 0.3165 0.3051] 1.3063] 15588 1.2468| 12051 0.9270 1.4625| 1.2721 1.2488| 1.2128] 12831 -0.1768| -0.5662| 0.1698| 0.1078] -0.1303| -0.2123 0.0714] 0.2427| 0.1185] 0.1271] 0.1009] 00838 0.1825| 0.1570] 0.4406| 0.0882| 0.1888| 0.1471 0.1429|  0.2034)
256 Grid 4 Random Iow 1.5330| 1.7275] 1.6126 1.6324] 16441 1.5479] 1.6413| 1.6000 15119 1.6058] 0.2494] 02811 0.2624] 02656/ 0.2675| 0.2519| 0.2671]| 0.2603| 0.2460 0.2613] 1.0092| 1.0960 1.0095| 1.0019] 10428 1.0031] 0.9967 1.0349] 09579 1.0209| -0.1403] 0.1046 -0.0765| -0.0022| -0.0386| -0.0397, 0.1422| -0.0931] -0.0537| -0.1355| 0.4677| 03241 04110 0.3965| 0.3878| 0.4573] 03899 04202| 04823 0.4159]
256 Grid 4 Random OK 1.6766| 1.7275] 1.5984| 1.7427| 1.5599] 16741] 1.5889| 1.5769 1.6676] 1.5393| 0.2728| 0.2811] 0.2601] 02836| 02538] 0.2724] 0.2585| 0.2566| 0.2713] 0.2505] 1.1173] 1.0960| 09331 1.0798| 0.8978 1.0950] 0.8990] 09369 10694 08873] -0.1676] 0.1046] -0.1284| 0.0135) 0.0201| -0.0694] 0.1095| -0.0828] -0.0608] -0.0786] 0.3633] 0.3241| 04213 03121 0.4489 0.3652] 0.4282| 0.4368] 03701 0.4633)
256 Grid 4 Regular IDW 1.4284] 14284 1.4284] 1.4284| 1.4284) 1.4284| 1.4284] 14284 1.4284| 14284] 0.2324] 02324 02324 02324 0.2324] 02324 02324 0.2324] 02324 02324] 09417| 09417) 09417| 09417] 09417] 09417| 09417] 09417 09417/ 09417 -0.1134] -0.1134| -0.1134] -0.1134] 0.1134] -0.1134] -0.1134] -0.1134] -0.1134] -0.1134] 05379] 05379] 0.5379| 05379 0.5379 0.5379] 0.5379] 0.5379] 0.5379] 0.5379)
256 Grid 4 Regular oK 1.3275) 1.3275] 1.3275| 1.3275) 13275 1.3275| 1.3275| 1.3275 1.3275| 1.3275| 02160 0.2160| 02160 0.2160] 0.2160] 0.2160| 0.2160| 0.2160| 0.2160| 0.2160| 0.7696] 0.7696| 0.7696| 0.7696] 0.7696] 0.7696| 0.7696] 0.7696] 0.7696| 0.7696| -0.1158| -0.1158| -0.1158| -0.1158| -0.1158| -0.1158| -0.1158| -0.1158| -0.1158| -0.1158| 0.6009] 0.6009] 0.6009| 0.6009| 0.6009 0.6009] 0.6009| 0.6009| 0.6009]| 0.6009)




Number of Data Points Grid Complexity Data Distribution Algorithm Root Mean Square Error (RMSE) Relative Root Mean Square Error (rRMSE) Mean Average Error (MAE) Bias Error (BE) Correlation Coefficient (r2)
676 Grid 1 Cluster oW 0.4595| 1.0553| 0.7918] 09748 05269] 0.4915| 0.9825| 1.1402 0.3436] 1.0433| 0.1044f 02398 0.1799] 02215| 01197 0.1117f 02233| 02591 00781 0.2371] 0.2693| 05393] 04108] 04617 0.3141) 0.3361] 0.4999] 0.4994] 02239 05453] 00913| -00640| -0.2525| -0.1867] 00197| 0.1455] -0.3152] -0.3435| 0.0535| -0.1229] 0.9671] 08266/ 09024] 08520| 0.9568; 0.9624| 0.8497| 0.7976| 0.9816/
676 Grid 1 Cluster oK 0.3349] 0.9560| 0.1739 0.8824] 04615| 03569 0.8808) 1.0685| 0.3103] 08239 0.0761 0.2173| 00395 0.2005| 0.1049] 0.0811] 0.2002 0.2428| 0.0705 0.1872| 0.1859] 0.4185| 0.1207| 0.3814] 0.2727] 0.2280] 0.4369] 04308 0.1973] 0.3914] 00703] -00992| 00025| -0.1656] 00186/ 00841 -0.2806] -0.3080] 0.0454] -0.0990| 0.9825| 08577 09953] 08787] 0.9668 0.9802| 08792| 08222 0.9850
676 Grid 1 Sparse oW 0.3786] 0.2468| 0.2751 0.2651] 0.2644] 0.3278] 0.3027| 0.2861 0.2864] 04176] 0.0860] 00561 0.0625| 00602| 00601] 0.0745| 00688] 00650| 0.0651 0.0949| 0.2479| 0.1593] 0.1705| 0.1779] 0.1629, 02121 0.2000f 0.1753| 0.1884| 0.2097| 0.0040| -0.0082]| -0.0245 0.0033] 0.0124] 0.0073] -0.0020] -0.0330] 00412 -0.0585] 0.9777| 09905| 09882] 0.9891| 0.9891 0.9833] 09857| 09873] 09872
676 Grid 1 Sparse oK 0.1808 0.1694| 0.1908| 0.2018]| 0.1734] 0.1865| 0.2212| 0.2101 0.1870) 0.3103] 0.0411 00385 0.0434] 0.0459) 0.0394] 0.0424] 0.0503 0.0477| 0.0425) 0.0705| 0.1145] 0.1055| 0.1225| 0.1350] 0.1070] 0.1237| 0.1465 0.1206) 0.1225| 0.1492] 0.0094] -0.0063| -0.0107| -0.0047| 0.0137] 0.0125| 0.0040| -0.0289] 0.0338 -0.0455] 0.9949| 09955| 09943] 0.9937| 0.9953 0.9946] 09924 09931 0.9946
676 Grid 1 Random Iow 0.1401| 0.1766] 0.1739| 0.1690| 0.1804| 0.1383| 0.1658| 0.1628 0.1810f 0.1594] 0.0318, 00401 0.0395] 00384] 0.0410] 0.0314] 0.0377 0.0370[ 0.0411 00362| 00789] 0.1184/ 0.1207| 0.1159] 0.1204) 0.0801| 0.1155 0.1084] 0.1213| 0.1115/ -0.0031] -0.0101| 0.0025! 0.0048 0.0013| -0.0083) 0.0080 -0.0066| -0.0020f 0.0033] 0.9969] 0.9951] 0.9953] 0.9956| 0.9949 0.9970] 0.9957| 09959 0.9949
676 Grid 1 Random oK 0.0900] 0.1553 0.1409) 0.1515| 0.1623| 0.1681| 0.0849] 0.1349 0.1564| 0.1369| 0.0205| 0.0353] 0.0320] 0.0344] 00369] 0.0382| 00193] 00307| 0.0355 0.0311] 00437/ 01058 0.0989 0.1051| 0.1076| 0.1140] 0.0456| 0.0915| 0.1077| 0.0973| -0.0008| -0.0087| 0.0030 040;4;{ 0.0019| -0.0061 0.0063] -0.0045| 0.0019] 0.0058] 0.9987| 0.9962| 0.9969| 09964 0.9959] 0.9956| 09989 09972 0.9962
676 Grid 1 Regular oW 0.0921] 0.0921 0.0921 0.0921| 0.0921 00921 0.0921] 0.0921 0.0921] 0.0921] 0.0209| 0.0209] 00209] 0.0209] 00209 0.0209] 00209 0.0209| 0.0209) 0.0209| 00488 00483 00488 0.0488] 0.0488| 0.0488| 0.0488 0.0488| 0.0488| 0.0488| -0.0062| -0.0062| -0.0062] -0.0062| -0.0062| -0.0062| -0.0062|] -0.0062| -0.0062] -0.0062| 0.9987| 0.9987| 0.9987] 0.9987| 0.9987 0.9987| 09987| 09987 0.9987|
676 Grid 1 Regular 0K 0.0714] 0.0714 0.0714] 0.0714] 00714 00714] 00714] 00714 00714] 00714] 00162| 00162 00162] 00162] 00162 00162| 00162] 00162| 0.0162 0.0162| 00357| 0.0357| 00357 0.0357] 0.0357| 0.0357] 0.0357 0.0357| 00357] 0.0357| -0.0046] -0.0046| -0.0046] -0.0046] -0.0086| -0.0046] -0.0046] -0.0046| -0.0046| -0.0046] 0.9992| 0.9992| 09992] 0.9992| 0.9992 0.9992] 0.9992| 0.9992 0.9992
676 Grid 2 Cluster Iow 0.7328| 0.8109] 0.6816] 0.5731] 0.7243| 0.7393] 0.6605| 0.4957| 0.6861] 09770| 0.1443| 0.1597| 0.1343] 0.1129] 0.1427| 0.1456| 0.1301 0.0976] 0.1351] 0.1924]| 0.4708| 0.5442 0.4621| 0.3926] 04964 05098 0.4603| 0.3608] 0.4792 0.6655| 0.0494] -0.0228 -0.0890] -0.1485| 0.0579| -0.0252| 0.0931) 0.2366] -0.2062) 0.8703] 0.8412] 08878] 09207 0.8733 0.8680] 0.8946] 0.9407| 08863
676 Grid 2 Cluster oK 0.5844| 0.7443] 0.5859] 0.3984] 0.5961] 0.5606| 0.5094] 0.3332 0.5540] 0.7675| 0.1151] 0.1466| 0.1154] 00785| 0.1174] 0.1104] 0.1003] 00656/ 0.1091 0.1512] 0.3551] 0.4640| 0.3697| 0.2666| 0.3852 0.3628| 0.3439 0.2487| 0.3697| 0.4817| 0.0803| -0.0075| -0.0483| -0.0664| 00916| 00247| 00643] 0.1833] -0.2221] 09175 08662| 09171] 09617| 09142 0.9241] 09373| 09732] 09259
676 Grid 2 Sparse IDW 0.4829] 0.5055| 0.5132 0.4389] 0.4353| 04472] 04971 0.5091 0.5995| 04530 0.0951 0.0996| 0.1011] 00864 0.0857| 0.0881| 0.0979] 0.1003| 0.1181) 0.0892] 0.3688| 0.3794] 0.3666| 0.3243] 0.3247 0.3280] 0.3670| 0.3468| 0.4287 0.3461| -0.0215| -0.0390| -0.0354| -0.0924] -0.0215| -0.0162 0.0295| 00576] 0.0023] 0.0686| 09437] 09383] 0.9364] 0.9535| 09542 0.9517] 0.9403| 0.9374] 09132
676 Grid 2 Sparse oK 0.2955| 0.3091 0.3237 0.4389] 0.2569| 0.2863| 0.2973] 0.3510] 0.3604 0.2945| 0.0582 0.0609] 0.0638] 00864| 0.0506] 0.0564] 0.0586] 00691] 00710/ 00580 02089 02199 0.2282| 0.3243| 0.1870] 0.2092] 0.2078] 0.2157| 0.2481 0.2096] 00145] -0.0200] -0.0102] -0.0924] -0.0168| 0.0007 0.0191 0.0387 0.0150] 0.0595| 0.9789] 09769| 0.9747] 0.9535| 0.9841 0.9802] 0.9787] 0.9702 0.9686
676 Grid 2 Random IDW 0.2504 0.2950| 0.2948 0.2656] 0.2807| 0.2854| 0.2864] 0.2737 0.2866] 02765 00493 00581 0.0581] 00523] 00553] 00562| 00564 0.0539] 0.0564 0.0545| 0.1745| 0.2231 0.2212| 0.2022| 0.2140{ 0.2143] 0.2166] 0.2083| 0.2137 0.2099 -0.0007| 0.0089 -0.0105| -0.0134] -0.0131| -0.0105 0.0012| -0.0210] -0.0098| 0.0089] 0.9849] 09790] 0.9790| 0.9830| 0.9810] 0.9803] 0.9802] 09819 0.9802
676 Grid 2 Random oK 0.1733| 0.2073| 0.2245 0.2016] 0.2317| 02102 0.2121f 0.2039 0.2161] 0.1818| 0.0341 0.0408| 0.0442 00397 0.0456] 0.0414] 0.0418| 0.0402| 0.0426| 0.0358| 0.1065| 0.1585 0.1689 0.1530| 0.1773] 0.1574] 0.1586| 0.1555| 0.1618| 0.1273| -0.0016] 0.0096] -0.0101 0.0073] -0.0085| -0.0052 00026 -0.0140] -0.0078] 0.0031| 0.9927| 09896 0.9878| 0.9902| 0.9870| 0.9893] 0.9891| 0.9900| 09887
676 Grid 2 Regular oW 0.1868| 0.1868| 0.1868 0.1868| 0.1868| 0.1868| 0.1868 0.1868| 0.1868| 0.1868| 0.0368| 00368 00368 00368 00368 00368 00368 00368 0.0368) 0.0368| 0.1247| 0.1247| 0.1247| 0.1247| 0.1247| 0.1247| 0.1247) 0.1247| 0.1247| 0.1247| -0.0063| -0.0063| -0.0063] -0.0063| -0.0063| -0.0063] -0.0063] -0.0063] -0.0063] -0.0063] 09916] 09916/ 0.9916/ 09916] 0.9916] 0.9916) 0.9916] 09916/ 0.9916]
676 Grid 2 Regular oK 0.0990] 0.0990f 0.0990] 0.0990| 0.0990| 0.0990| 0.0990] 0.0990] 0.0990] 0.0990| 00195/ 00195/ 0.0195] 00195| 0.0195| 00195| 00195/ 0.0195| 0.0195 0.0195| 0.0566] 00566/ 0.0566| 0.0566] 0.0566] 0.0566] 0.0566] 0.0566] 0.0566| 0.0566| -0.0013] -0.0013| -0.0013] -0.0013| -0.0013| -0.0013| -0.0013| -0.0013] -0.0013] -0.0013] 0.9976] 09976 09976] 0.9976] 0.9976 0.9976] 0.9976] 09976 0.9976
676 Grid 3 Cluster oW 1.0819] 1.3972 1.4010) 1.2679| 1.3872] 1.0872 1.2542| 14781 1.0121] 1.1437] 0.2936] 03792 0.3802| 0.3441| 0.3765] 0.2951| 0.3404] 04012 0.2747] 0.3104] 0.7277| 10473] 09971 0.9289| 0.9813] 0.8103] 09101 1.0140| 07470 0.8680| -0.0770| -0.4368| -0.3429| -0.1419] -0.3142| -0.1066] -0.2169] -0.1407| 0.0081| -0.1899] 0.6636| 0.4390| 0.4360] 0.5381| 0.4470] 0.6604| 0.5480| 03721 0.7056
676 Grid 3 Cluster oK 0.9998] 1.2161 1.3460) 1.2304] 11935 10284 1.2931] 14795/ 0.9081] 09901| 02714] 03301 0.3653] 0.3340] 0.3239] 02791] 0.3510] 0.4016| 0.2465| 0.2687| 06529| 08457| 09093 08778 0.8452] 0.7160] 0.9850] 09133] 0.6569| 06392 -0.0336| -0.2716| -0.3946) -0.1660] -0.1793| -0.0590| 0.1088] -0.1514] 0.0053| -0.1532| 0.7127] 0.5750| 04794 0.5649]| 0.5907] 0.6961] 0.5195| 0.3710] 0.7630)
676 Grid 3 Sparse ow 1.2035| 1.0261 1.1475| 1.1017] 1.0928| 10598 1.1639| 1.0902) 1.2728] 1.1323] 03266] 02785 0.3114] 0.2990| 0.2966] 0.2876] 0.3159] 0.2959| 0.3455| 0.3073| 09627| 08203] 09170| 0.8538| 0.8586/ 0.8441] 0.8836] 08773] 09608| 08906 -0.1586| -0.1844| -0.1839 0.0074] -0.0346| -0.1175] -0.0353 0.0350] -0.2704] -0.0232| 0.5838| 0.6974] 0.6216] 06512 0.6568 0.6772] 0.6107| 06584 0.5345
676 Grid 3 Sparse oK 0.9868| 0.9165) 1.0304] 1.0435| 09389] 09775| 1.0291] 1.0018 1.1557] 1.1161) 0.2678] 02487 0.2797| 0.2832] 0.2548] 0.2653| 0.2793] 02719 0.3137 0.3029] 0.7554] 0.7090f 0.7621| 0.8232| 0.6988| 0.7459|  0.7333] 0.8114] 08766] 0.8861| -0.0883] -0.1713| -0.1332 0.0248| -0.0177| -0.0964] 0.0083] -0.0021| -0.2146] -0.0258] 0.7201| 0.7586| 0.6949] 0.6871| 0.7467, 0.7254] 0.6957| 0.7116/ 0.6162
676 Grid 3 Random oW 0.7359] 0.7527 0.7188 0.7490| 0.7131 0.7775| 0.7503] 0.7343 0.7987| 0.7259| 0.1997| 0.2043] 0.1951] 02033 0.1935| 0.2110{ 0.2036| 0.1993| 0.2168 0.1970| 0.5023| 05823[ 0.5804| 0.5705 0.5742 0.6090|  0.5865) 0.5796] 0.5873| 0.5552| 0.0011] 0.0260| -0.0676] -0.0657| -0.0341] 0.0042 0.0031] -0.0624] 0.0705] -0.0301] 0.8444] 08372] 0.8515| 08388 0.8539| 0.8263| 08382 08451 0.8167
676 Grid 3 Random OK 0.5201] 0.6397, 0.5783] 0.7346] 0.5897 0.6824| 0.5939] 0.5950|] 0.6849| 0.6055| 0.1411] 01736/ 0.1570] 0.1994] 0.1601] 0.1852] 0.1612| 0.1615| 0.1859 0.1643| 03190 04849 0.4514 0.5643| 0.4678| 0.5246]  0.4503) 04577 0.4883] 0.4590| 0.0078] 00182] -0.0512] -0.0620] -0.0237| 0.0077 0.0026] -0.0502 0.0563] -0.0192] 0.9223] 0.8824] 0.9039] 0.8449] 0.9001 0.8662) 0.8986 0.8983 0.8652
676 Grid 3 Regular oW 0.5496] 0.5496] 0.5496] 0.5496] 0.5496/ 0.5496] 0.5496] 0.5496] 0.5496] 05496/ 0.1492( 0.1492| 0.1492| 0.1492| 0.1492] 0.1492| 0.1492 0.1492] 0.1492] 0.1492| 0.3861| 0.3861 0.3861] 0.3861] 0.3861 0.3861] 0.3861 0.3861| 0.3861 0.3861| -0.0358| -0.0358 -0.0358] -0.0358] -0.0358| -0.0358| -0.0358] -0.0358] -0.0358] -0.0358 09132] 09132 09132 09132] 09132 0.9132] 09132] 09132] 09132
676 Grid 3 Regular OK 0.3665| 0.3665 0.3665| 0.3665] 0.3665| 0.3665| 0.3665] 0.3665| 0.3665] 0.3665| 0.0995| 00995 0.0995| 0.0995| 0.0995] 0.0995| 0.0995| 0.0995| 0.0995 0.0995| 0.2487| 0.2487 0.2487| 0.2487| 0.2487 0.2487| 0.2487| 0.2487| 0.2487 0.2487| -0.0166] -0.0166| -0.0166| -0.0166| -0.0166| -0.0166| -0.0166] -0.0166] -0.0166] -0.0166| 09614] 09614] 0.9614] 09614 0.9614] 0.9614] 0.9614] 0.9614] 09614
676 Grid 4 Cluster ow 1.8824]| 2.0004] 1.6759 1.7106) 17178 1.8648| 1.7543] 1.5794] 1.7789] 1.7543| 0.3063] 0.3255| 0.2727| 02783 0.2795| 0.3034] 0.2854] 0.2570| 0.2894| 0.2854] 1.1931] 13718 1.0562| 1.2109] 1.0926] 1.3103] 1.3380] 0.9808| 1.1059) 1.3380] -0.4054] -0.3730] 0.1028] -0.2935| -0.0707| -0.4555| -0.5073] 0.1191] -0.0578] -0.5073| 0.1974] 0.0936] 0.3638| 0.3372| 0.3317, 0.2124] 0.3030| 0.4350| 0.2833
676 Grid 4 Cluster OK LQE 2.0182] 1.6298 1.5747| 17825 1.9345| 1.8339] 15181 1.6884] 1.7707| 0.3242 0.3284] 02652 0.2562| 0.2900] 0.3148| 0.2984] 0.2470| 0.2747| 0.2881] 1.2868| 1.3815| 09647| 10212 1.1236 1.3398| 1.3806) 0.8513] 1.0016) 1.0320] -0.4256] -0.3730] 0.1106] -0.1281| -0.0753| -0.4369| -0.5373] 0.2570] -0.0036] 0.1558] 0.1011} 00775/ 0.3983| 0.4384]| 0.2804 0.1524] 0.2383| 0.4780| 0.3543
676 Grid 4 Sparse oW 1.6891] 1.6400] 1.8240] 1.7788| 1.6453| 1.6467| 1.6557| 1.7528 16382 1.7567] 0.2748]| 02668] 0.2968] 0.2894| 0.2677| 0.2679| 0.2694] 0.2852] 0.2665| 0.2858| 1.1205] 1.1230| 1.2009] 1.0967] 1.1515 1.0712| 1.0953] 1.1924] 1.0883 1.0550| 0.0885] -0.2540| 0.0969] -0.1777| 0.1107| -0.1064] -0.3143] -0.1123| 0.2323] 0.3538| 0.3908| 0.2464] 0.2833| 0.3869 0.3858]| 0.3791] 0.3041] 0.3922
676 Grid 4 Sparse OK 1.8250] 1.6479] 1.8717 1.7658| 1.6161 1.7857| 1.8030| 1.8585 1.8032| 1.7814] 0.2969| 02681 03045 0.2873| 0.2630] 0.2906] 0.2934] 0.3024] 0.2934| 0.2898| 12173 1.0746 1.1702| 1.0354| 1.0444 1.2032)  1.2215 1.2921] 12178 1.0580| 0.0983| -0.2364 0.1402| -00965| 0.0971] -0.1350] -0.3541| -0.1281| 0.2504| 0.2456] 0.3850| 0.2065| 0.2938| 0.4084) 0.2777] 0.2637] 0.2177| 0.2635
676 Grid 4 Random Iow 1.2540| 1.2981 1.2706} 1.2958| 1.2493) 1.2411| 1.3003] 1.3818 1.3188] 1.2551] 0.2040| 0.2112f 0.2067| 0.2108/ 0.2033] 0.2019] 0.2116] 0.2000| 0.2146| 0.2042] 0.7227] 0.8577| 08440 0.8437| 0.8184) 0.8200| 0.8463]| 08200 08526/ 08210 -0.0698| -0.0574| -0.0720] -0.0366| -00417[ -0.0771] -0.0293| -0.0457] -0.0411] -0.0509] 0.6438] 0.6183| 0.6343| 06197] 0.6465] 0.6511] 06171] 06233 0.6061
676 Grid 4 Random OK 1.0793] 1.3577] 1.1752 1.2027] 1.1569 12769] 1.2180] 1.5181 1.2358] 1.1080| 0.1756] 02209 0.1912f 0.1957| 0.1882| 0.2078] 0.1982 0.2470| 0.2011 0.1803| 0.5455| 08471 0.7424] 0.7453| 0.7061 0.8229] 0.7562 0.8513] 0.7553| 0.6370] -0.0528| -0.0597| -0.0528] -0.0344] -0.0287| -0.0703| -0.0289! 0.2570] -0.0320f -0.0638 0.7361 0.5825| 0.6872| 0.6724| 0.6969 0.6307| 0.6640| 0.4780 0.6541
676 Grid 4 Regular IDW. 1.1116] 1.1116| 1.1116 1.1116] 1.1116] 1.1116] 1.1116] 11116 1.1116] 1.1116] 0.1809 0.1809| 0.1809] 0.1809] 0.1809] 0.1809| 0.1809| 0.1809 0.1809 0.1809] 0.6342] 06342 06342 0.6342| 0.6342] 0.6342| 0.6342 0.6342] 06342 0.6342] 0.0030] 0.0030] 0.0030 0.0030| 0.0030| 0.0030| 0.0030] 0.0030] 00030] 00030 07201] 07201 0.7201 0.7201 0.7201 0.7201 0.7201f 0.7201 0.7201
676 Grid 4 Regular oK 1.2424| 12424] 12424] 12424| 12424| 12424| 12424 12424] 12424] 12424| 02021] 02021] 02021] 02021f 02021] 02021 02021] 02021] 02021] 02021] 07397] 07397] 07397| 0.7397] 07397] 0.7397| 07397] 07397] 07397| 0.7397| 00044| 00044| 00044| 00044| 00044| 00044| 00044] 00044] 00044] 00044| 06504| 0.6504| 0.6504| 06504| 0.6504] 0.6504| 0.6504| 06504] 06504




Number of Data Points Grid Complexity Data Distribution Algorithm Root Mean Square Error (RMSE) Relative Root Mean Square Error (rRMSE) Mean Average Error (MAE) Bias Error (BE) Correlation Coefficient (r2)
1600 Grid 1 Cluster oW 0.2794] 0.3713] 04731 0.9678] 0.5948| 0.7516| 0.4099] 0.3233] 04975 06117] 0.0635| 00844 0.1075] 02199] 0.1352| 0.1708] 0.0931 0.0735| 0.1131 0.1390] 0.1256| 0.2734] 0.2147| 0.4155| 0.3874] 0.3539] 0.2133 0.1910) 02180] 0.2613| 00531 0.1132] 0.1001| -0.1836] 0.1344| -0.0028 0.0225| 0.1035| -0.0549| -0.0990] 0.9878] 09785 09651] 0.8541| 0.9449) 0.9120] 0.9738] 0.9837| 09615| 0.9417,
1600 Grid 1 Cluster oK 0.2006] 0.3408 0.4104 0.8997| 0.4808| 0.6408| 0.3885| 0.3507] 0.5331] 0.5382| 00456] 00774] 0.0933] 02044 0.1093| 0.1456| 00883] 00797| 0.1211 0.1223| 0.0954] 0.2514 0.2535| 0.3847| 0.3081 0.3343]  0.2443] 0.2711] 02894 0.2988 0.0332] 0.1025| 0.1331] -0.2245| 0.1122| -0.0118 .0109]  0.1450| -0.0514] -0.0017| 0.9937] 0.9819] 0.9738] 0.8740| 0.9640] 09361 09765/ 09809 09557 0.9549
1600 Grid 1 Sparse oW 0.1976] 0.1803 0.1925) 0.2253| 0.1953| 0.1738| 0.1990] 0.1863] 0.2261| 0.1867| 0.0449] 0.0410[ 0.0437] 00512| 0.0444] 0.0395| 0.0452 0.0423] 0.0514| 0.0424] 0.1183| 0.1232] 0.1264] 0.1328] 0.1260] 0.1185] 0.1270| 0.1217| 0.1396| 0.1211] -0.0081] 0.0102| -0.0048] -0.0312| -0.0028| 0.0034| -0.0051 0.0038] -0.0081] -0.0107) 0.9939] 09949 09942] 09921| 0.9941 0.9953] 0.9938| 0.9946] 0.9920]| 0.9946}
1600 Grid 1 Sparse OK 0.1370] 0.1341 0.1348 0.1506) 0.1314 0.1253| 0.1518| 0.1324] 0.1827| 0.1511] 0.0311 0.0305] 0.0306] 00342 00299 0.0285| 0.0345| 0.0301] 00415 00343] 00784 00910| 0.0898| 0.0921| 00856 0.0822] 0.0987] 0.0844| 0.1146] 0.0988| -0.0002] 0.0096] -0.0061] -0.0154] -0.0014] 0.0003] -0.0039| -0.0001| -0.0058] -0.0090| 0.9971] 0.9972| 09972] 0.9965| 0.9973 0.9976] 0.9964| 0.9973| 09948 0.9964)
1600 Grid 1 Random 1DW 0.0864] 0.2206] 0.1178 0.2038] 0.2152 0.2040|  0.1988] 0.2111 0.2113] 0.2048| 0.0196/ 0.0501| 0.0268) 0.0463] 00489 0.0464| 0.0452 0.0480| 0.0480 0.0465] 0.0421| 0.1535] 0.0592| 0.1419| 0.1491 0.1455| 0.1442 0.1464] 0.1493| 0.1421] 0.0016 -0.0108 -0.0042 -0.0090| -0.0088{ -0.0023| 0.0047| -0.0090| -0.0035| -0.0103] 0.9988] 0.9924| 0.9978] 0.9935| 0.9928 0.9935] 0.9938| 0.9931 0.9930| 0.9935)
1600 Grid 1 Random 0K 00745 02140 0.1998 0.1990] 0.2080| 0.1946| 0.1913] 0.2049] 0.2016] 0.1991| 00169] 00486 0.0454] 00452| 0.0473| 0.0442| 0.0435 0.0466| 0.0458| 0.0452| 0.0364| 0.1502 0.1409| 0.1401| 0.1457] 0.1407| 0.1395] 0.1435| 0.1441 0.1393 -0.0003] -0.0103 -0.0067| -0.0090| -0.0079| -0.0021| 0.0024] -0.0088] -0.0045| -0.0100f 0.9991| 09929] 0.9938] 0.9938| 0.9933 0.9941] 0.9943] 0.9935| 09937| 09938
1600 Grid 1 Regular oW 0.0588| 0.0588 0.0588 0.0588| 0.0588] 0.0588]| 0.0588| 0.0588| 0.0588| 00588 00134] 00134] 00134] 00134] 00134] 00134| 00134] 00134| 00134 0.0134] 0.0254| 0.0254] 00254 0.0254| 0.0254] 0.0254] 0.0254]| 0.0254] 0.0254| 00254] 0.0054] 0.0054| 0.0054 0.0054] 0.0054| 0.0054] 0.0054] 0.0054] 0.0054] 0.0054] 0.9995| 0.9995| 0.9995| 09995| 0.9995] 0.9995] 0.9995| 0.9995| 09995 0.9995)
1600 Grid 1 Regular OK 0.0601| 0.0601] 0.0601 0.0601] 0.0601 0.0601| 0.0601| 0.0601 0.0601f 00601] 00136/ 00136/ 00136) 00136] 00136 00136] 00136/ 0.0136[ 0.0136) 0.0136] 0.0278| 0.0278] 00278 0.0278| 0.0278| 0.0278| 0.0278| 0.0278] 0.0278 0.0278] -0.0068| -0.0068| -0.0068] -0.0068| -0.0068| -0.0068| -0.0068] -0.0068] -0.0068| -0.0068 0.9994] 0.9994] 0.9994] 0.9994| 0.9994 0.9994] 09994 0.9994]| 09994| 0.9994]
1600 Grid 2 Cluster oW 0.3309| 0.8674] 0.7397, 0.7109] 0.6351] 07076/ 0.7874] 0.6311 0.5223| 0.7990] 0.0652| 0.1709] 0.1457] 0.1400] 0.1251] 0.1394] 0.1551] 0.1243| 0.1029 0.1574| 0.1910| 0.5687| 0.4210| 0.3930| 0.3860| 0.3936] 0.4619| 0.3607| 0.2987| 04753 -0.0604| -0.2145| -0.1585| -0.0422] -0.0682| 00833] -0.1623| 0.0270| -0.0209] -0.1589| 0.9736] 08183| 0.8679] 0.8779| 0.9026) 0.8791] 0.8503| 0.9038| 09341 0.8459]
1600 Grid 2 Cluster OK 0.2155] 0.7404] 0.6158| 0.6466] 0.5161| 0.5787| 0.6555] 0.5370] 0.3944] 05922| 00424 0.1458| 0.1213] 0.1274] 0.1017| 0.1140| 0.1291| 0.1058 0.0777 0.1166| 0.1162| 04695| 0.3928| 04064] 0.3575| 0.3684] 04334] 03600 0.2851| 0.3873| -0.0310] -0.1826| -0.1333 0.0337| -0.0305| 0.0376] -0.1224] 0.0927| -0.0397| -0.0707| 0.9888| 08676/ 0.9084] 0.8990| 0.9357] 0.9191] 08962| 09304] 09624 0.9153]
1600 Grid 2 Sparse oW 0.3414] 03277] 03190 0.3229] 0.3359] 0.3256] 0.3412| 03150] 0.3278] 03201 00672| 00645| 0.0628] 00636 0.0662] 00641 00672| 00620] 0.0646| 00630| 02430 02401| 02406| 0.2358) 0.2466| 0.2425| 02521] 0.2353| 02415] 02397| -0.0089| -0.0053] -0.0049]| -0.0082| -0.0279]| 0.0001| -0.009| -0.0006| -0.0019| 00102f 09719 09741 09754) 09748] 09728] 09744] 09719] 09760| 09741 09753
1600 Grid 2 Sparse 0K 0.1888| 0.2185| 0.2247 0.2252| 02127 02108 0.2190] 02329] 0.2157| 0.1982| 00372] 00430 00443] 00444 0.0419] 0.0415| 00431] 0.0459] 0.0425 0.0390| 0.1271] 0.1565] 0.1663| 0.1594] 0.1556] 0.1547] 0.1608] 0.1725] 0.1568] 0.1471 0.0023] 00036 0.0068| 0.0047| -00246| 0.0087| -0.0114] 00085| -0.0012|] 00089| 09914] 09885 09878 09878/ 0.9891 0.9893| 09884| 09869 0.9888| 0.9905)
1600 Grid 2 Random 0w 0.1527] 0.2907| 0.2839 0.3024] 0.2922| 0.2887| 0.2879| 0.2961] 0.3072] 0.3027| 00301] 00573] 0.0559] 00596/ 0.0576] 0.0S569| 00567] 0.0583| 0.0605 00596| 00970 0.2290| 0.2234] 02351] 0.2293] 0.2292] 0.2248] 02337 0.2393| 0.2344] -0.0046] -00155| 00106] -0.0119| 0.0098| -0.0141] -0.0153| -0.0040] -0.0203] 0.0073] 0.9944] 09796| 0.9805| 09779] 0.9794| 0.9799] 09800| 09788| 09772 0.9779
1600 Grid 2 Random oK 0.1422| 02633] 02578 02715| 02674] 02647| 0.2660| 02673] 02746| 02718| 00280 00519] 00508] 00535| 00527) 00521] 00524] 00526] 00541] 00535| 00864] 02074] 02042| 02124] 02101] 02102] 02089] 02121 02162 02128] -0.0025| 00123] 00083| -0.0091) 00080 00117 -0.0122| -0.0016[ -00143] 00067] 09951 09833| 09839] 09822] 09827] 09831 09829 09827) 09818) 09822
1600 Grid 2 Regular ow 0.1026] 0.1026] 0.1026) 0.1026] 0.1026| 0.1026| 0.1026] 0.1026| 0.1026 0.1026] 0.0202| 0.0202| 0.0202| 0.0202] 0.0202| 0.0202| 0.0202| 0.0202| 0.0202 0.0202| 00611] 00611] 00611 0.0611] 0.0611 0.0611] 0.0611 0.0611] 00611) 00611] 0.0017| 0.0017] 0.0017| 0.0017| 0.0017] 0.0017 0.0017| 00017 00017 00017] 0.9975| 09975| 09975] 09975| 0.9975) 0.9975] 0.9975| 0.9975| 0.9975| 0.9975)
1600 Grid 2 Regular oK 0.0678] 00678] 0.0678] 0.0678] 00678] 00678] 00678| 0.0678] 00678] 00678 00134] 00134] 00134] 00134| 00134] 00134| 00134] 00134] 00134] 00134| 00324]| 00324] 00324| 00324] 00324] 00324| 00324] 00324| 00324| 00324] 0.0034]| 00034] 00034 00034] 00034| 00034| 00034] 00034] 00034] 00034] 09989 09989 09989] 0.9989] 09989 0.9989] 09989| 09989 09989 0.9989
1600 Grid 3 Cluster oW 0.7128] 1.0655 1.1951] 1.0193] 1.0974] 1.1094 1.1966) 1.0478 1.1412] 1.0140| 0.1935| 0.2892| 0.3244] 02767| 02978] 0.3011) 0.3248 0.2844] 0.3097, 0.2752] 0.4392| 08197 0.6983] 0.6268] 06856| 0.6404] 0.7510| 0.6665| 0.6899] 0.6387| -0.0654] -0.2270] -0.1500] -0.2432| -0.2346| -0.0936| -0.2352| -0.5000] 0.1369] -0.0004] 0.8540] 0.6737| 0.5895] 0.7014] 0.6540 0.6463] 0.5885| 0.6845| 0.6258| 0.7045)
1600 Grid 3 Cluster oK 0.5854]| 0.9874) 1.1392] 0.9945| 1.0195 1.1520] 1.2027| 0.9340] 1.0442| 09852| 0.1589| 0.2680| 0.3092| 0.2699] 0.2767] 0.3127| 0.3264] 0.2535| 0.2834] 0.2674] 0.3354| 07358 0.7909| 0.7160| 0.7602 0.7992] 0.8292| 0.6884] 0.7503| 0.6956] -0.0229| -0.2403| -0.1600| -0.1937] -0.1656] -0.1101 0.0088| -0.2181 0.1061] 00313] 09015f 0.7198| 0.6271] 0.7158| 0.7013 0.6186] 0.5843| 0.7493| 0.6867| 0.7211]
1600 Grid 3 Sparse oW 0.8776] 0.8628 0.8962 0.8452| 08337/ 08915| 08934] 08390 08151 09283| 0.2382] 0.2342| 02432 02294] 0.2263| 0.2420{ 0.2425| 0.2277| 0.2212] 0.2520] 0.6473| 0.6650| 0.6890| 0.6703| 0.6549 0.6922] 06875] 06551 06573 0.7165) -0.0459| -0.0800 0.0011| -0.0852| -0.0100] -0.0420| -0.0520| -0.0244] -0.0140| 0.7787| 0.7861| 0.7692] 0.7947| 0.8003 0.7716] 0.7706] 0.7977| 0.8091] 0.7524]
1600 Grid 3 Sparse oK 07092 06845| 07699 07996] 0.6895| 08002 0.7949] 06727] 0.7848] 08606| 0.925| 0.1858] 02090] 02170 0.1871 02172 02158] 0.1826] 0.2130| 02336] 04851 0.5029] 0.5693| 06239 05135] 0.6062] 05999] 04927] 06243] 0.6642 -0.0301| -0.1056| 0.0073| -0.0784| 00088] -0.0256] -0.0494| -0.0252| -0.0041| 08555| 0.8654] 08297| 08163| 08634]| 08160| 08184| 08699) 08230| 0.7872]
1600 Grid3 Random Iow 0.4463] 06257] 06488] 0.6224] 06335| 06251] 06137) 06425| 06368] 06271] 01211 01698 0.1761] 0.1689] 0.1719| 0.1696] 0.1666| 0.1744] 0.1728] 0.1702| 02752] 05133| 05204| 05083] 05174] 0.5157| 05105 0.5223) 05172 0.5125 -0.0314 -0.0060| -0.0093| -0.0134| -0.0233] -0.0312] -0.0358] -0.0210| -0.0306| 0.9428] 08875 0879 0.8887| 08847) 08877| 08918 08814] 08835| 0.8870)
1600 Grid 3 Random OK 0.3180] 0.5700] 0.5598| 0.5642| 0.5625| 0.5451] 0.5553| 0.5536] 0.5349] 0.5372| 00863| 0.1547| 0.1519] 0.1531] 0.1527| 0.1479]| 0.1507 0.1502| 0.1452 0.1458| 0.1838| 0.4673| 04482 0.4603| 0.4588) 0.4504|  0.4601 0.4506] 0.4377| 0.4377, -0.0258| -0.0115| -0.0076| -0.0113] -0.0201| -0.0259] -0.0296] -0.0124| -0.0280] 0.9709] 0.9066| 0.9099| 0.9085 0.9091 09146) 09114] 09119 09178| 09171
1600 Grid 3 Regular Iow 0.3316) 0.3316] 0.3316] 0.3316] 03316/ 03316/ 0.3316] 0.3316] 03316/ 03316 00900 0.0900] 0.0900] 0.0900| 0.0900] 0.0900| 0.0900| 0.0900| 0.0900| 0.0900| 0.1964| 0.1964] 0.1964 0.1964| 0.1964] 0.1964] 0.1964] 0.1964] 0.1964| 0.1964] 0.0008|  0.0008| 0.0008] 0.0008] 0.0008] 0.0008| 0.0008 0.0008| 0.0008] 0.9684] 0.9684] 0.9684] 0.9684| 0.9684 0.9684] 09684| 09684| 09684 0.9684)
1600 Grid 3 Regular OK 0.2154]| 0.2154 0.2154 0.2154] 0.2154] 0.2154]| 0.2154] 0.2154] 0.2154] 0.2154| 0.0585| 00585 0.0585| 0.0585| 0.0585] 0.0585| 0.0585| 0.0585| 0.0585] 0.0585| 0.1075] 0.1075] 0.1075[ 0.1075] 0.1075] 0.1075| 0.1075) 0.1075| 0.1075] 0.1075] 0.0023]  0.0023| 0.0023] 0.0023] 0.0023 0.0023]  0.0023| 0.0023| 00023] 09867 0.9867| 0.9867| 09867| 0.9867] 0.9867| 0.9867| 09867| 09867 0.9867|
1600 Grid 4 Cluster oW 1.3828| 1.5094| 1.6429] 1.7873] 1.9759) 14066| 1.4564] 1.7135 1.5463| 1.6295| 0.2250| 0.2456] 0.2673] 0.2908| 0.3215] 0.2289| 0.2370| 0.2788| 0.2516| 0.2651] 0.7851] 08109] 08963 1.0439] 1.3225| 0.7087| 0.8851 0.9627| 08525| 09387 0.0138| -0.2084] -0.4196] -0.3855| 0.1435| -0.3049] -0.1765| -0.2072| -0.2400] 0.5669| 0.4840| 0.3887] 0.2765| 0.1157, 0.5519] 0.5196] 0.3350| 0.4584] 0.3986)
1600 Grid 4 Cluster OK 1.4628| 1.5032] 1.5050 1.7856] 1.9932 14963| 1.5439] 1.6510| 1.5442| 1.6044| 0.2380| 02446 02449 02905/ 0.3243] 0.2435| 0.2512| 0.2686] 0.2513 0.2611| 0.8549] 0.9625| 09928 1.1691] 1.2950] 0.9119] 1.1368] 1.0175]  0.9926 1.0645| -0.1228| -0.1596| -0.3703| -0.5227| 0.1294] -0.3503| -0.1198] -0.1990| -0.1853| 0.5153| 0.4882] 04870] 02778 0.1002 04929 04601 0.3826| 04599 0.4169
1600 Grid 4 Sparse oW 1.4975| 1.4291| 1.3956| 1.3892| 1.3978] 1.5371| 14284 1.4314]| 1.4082| 13564| 02437] 02325 02271 02260( 02274 02501 02324] 02329] 02291| 02207| 09163| 09547) 09134]| 09077| 09006| 09585| 08905| 0.9048| 08842| 09233] -02013| -00429| -0.0464| 00317 01292| 00561] 00119] 00694 -0.1825| 04921| 05374] 05589| 0.5629| 0.5574] 04649 05379]| 0.5360| 05508 0.5833]
1600 Grid 4 Sparse oK 1.3128]| 1.3938| 1.3363| 1.3665| 1.3508| 1.4812| 1.3516| 1.3813] 1.4451| 14893| 02136] 02268] 02174| 02223| 02198]| 02410| 02199| 0.2248]| 02351| 02423] 07208| 08647| 08272] 08286 08117| 08638] 07910| 0.8154| 08334| 1.0076] -0.1570| -0.0873| -0.0459| -00158| 0.1252| 00496 00339 00588| -0.1972| 0.6096| 05600 05955| 05771) 05867| 05031| 05862| 05678 05270 04976
1600 Grid 4 Random Iow 09672] 1.1724] 1.1517) 1.1317] 1.1125| 1.1204| 1.1385| 11147| 1.1085) 1.1326] 01574| 01908| 0.874] 0.1841] 0.1810] 0.1823| 01852| 0.1814] 0.1804] 0.1843| 0.4824| 07455| 0.7555| 0.7465| 0.7488| 0.7410| 0.7524] 0.7327] 07311 07378 00767| 00111] -0.0089| -00316] -0.0033| -0.0052| -0.0075| 00059 0.0088| 0.7881] 0.6887| 06996| 07099| 07197| 0.7157] 0.7064| 0.7186| 0.7217| 0.7095
1600 Grid 4 Random oK 09014] 1.0522] 1.0441) 1.0360] 1.1329] 1.0025| 10549| 1.0079] 1.0030] 10314 01467| 01712| 0.1699| 0.1686| 0.1843] 0.1631] 0.1716] 0.1640| 0.632| 0.1678| 04298]| 06619| 06699 06741| 0.7534| 06531 06789] 06535 06518| 0.6618 00642| 00166] -0.0064| -00320 00034| 00093 -0.0035| 00117| 00034] 08160 0.7492| 0.7531] 0.7569] 0.7093| 0.7724]| 0.7480| 0.7699| 0.7722| 0.7591
1600 Grid 4 Regular Iow 0.7479] 0.7479] 0.7479] 0.7479] 0.7479| 0.7479| 0.7479| 0.7479] 0.7479] 07479 01217] 01217| 0.1217] 0.217| 01217] 0.1217| 0.1217| 01217] 0.1217] 0.1217| 0.3644]| 03644| 03644| 03644) 03644| 03644| 03644]| 03644]| 03644| 03644 -0.0103| -0.0103| -00103| -00103| -0.0103] -0.0103| -0.0103| -00103| -0.0103| 08733] 08733] 08733| 08733] 08733] 08733] 08733| 08733] 08733] 08733
1600 Grid 4 Regular OK 0.5645| 0.5645| 0.5645 0.5645| 0.5645| 0.5645| 0.5645| 0.5645| 0.5645| 0.5645| 0.0918| 00918/ 0.0918| 00918 0.0918| 00918 0.0918| 00918| 0.0918) 0.0918| 0.2475| 0.2475| 02475 0.2475| 0.2475 0.2475| 0.2475] 0.2475| 0.2475| 0.2475) -0.0093| -0.0093] -0.0093| -0.0093| -0.0093] -0.0093] -0.0093] -0.0093] -0.0093] 09278| 09278] 09278 09278 09278 09278| 09278 09278| 09278] 0.9278)
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CHAPTER 4

ASSESSING THE IMPACT OF PROGRAM
SELECTION ON THE ACCURACY OF 3D
GEOLOGIC MODELS

Abstract

As the field of 3D subsurface geological modelling develops at an increasingly
rapid rate, so too does the number of available software programs catering to these
applications, most of which offer very similar ensembles of algorithms for interpolatiag
data. A few studies have analyzed the effect of algorithm selection on the accuracy aad
uncertainty of subsurface geologic models, but little consideration has been given to the
uncertainty and variability introduced into the model by software program selection. In
this study, inverse distance weighting (IDW) and ordinary kriging (OK) algorithms were
used to interpolate identical datasets by three different software programs (ArcGIS,
ROCKWORKS 2006, and VIEWLOG). The results indicate that the output of the OK
and IDW interpolation algorithms are inconsistent between programs and that this
variability should be considered when assessing the uncertainty associated with
subsurface model results. This paper shows that program selection has a significent
influence on model output results when modelling complex subsurface geological
environments, particularly when interpolating clustered data, which are most commorly

used in geological and environmental applications.
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4.1 Introduction

As the demand for three-dimensional (3D) models increases, so too does the
number of software programs used for the generation of such models. Thz majority of
these 3D modelling programs offer similar methods for data interpolation. The two most
commonly used interpolation algorithms for subsurface modelling applications ere
Inverse Distance Weighting (IDW) and Ordinary Kriging (OK; Kravchenko and Bullock,
1999; Johnston, et al., 2001; Jones et al., 2003; Kravchenko, 2003; Mueller, et al., 2004).
Each of these two algorithms have very different strengths for spatial data processirg;
IDW is often favoured for being computationally ‘quick and easy’, whereas kriging is
favoured for its ability to provide the best linear unbiased estimates (Weber and Englurd,
1992; Mueller et al., 2004). Several studies have evaluated the effectiveness of these
algorithms in producing accurate models (Tabios and Salas, 1985; Weber and Englurd,
1992; Weber and Englund, 1994; Brus et al., 1996; Walker and Loftis, 1997; Nalder aad
Wein, 1998; Zimmerman et al., 1999; Schloeder et al., 2001; Jones et al., 20(3;
Kravchenko, 2003; Dille et al., 2003; Lapen and Hayhoe; 2003). However, no studies to
date have compared the effectiveness of the IDW and OK algorithms to create accurate
models when run by different software programs. It is commonly assumed that data
modelled using either algorithm in one program would produce identical results if
modelled using the same algorithm in another program, providing that both programs
were supplied with identical input datasets. The goal of this study is therefore to compere

the output of models run using the IDW and OK algorithms using three different softwere
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programs commonly used in 3D subsurface investigations (ArcGIS, ROCKWORKS
2006, and VIEWLOG). Models are created with each of the three programs using
identical data sets extracted from synthetic grids of variable complexity and with varyiag
numbers and distributions of data points. This will allow evaluation of the performance
of IDW and OK under each program and assessment of the impact of program selection
on model accuracy. The purpose is not to show that any one program is ‘better’ than
another, but to identify the degree and nature of differences in the model outputs frem
each of the programs. Therefore, the programs will not be identified by name in the

results, but will be referred to as program X, Y, and Z in order to conceal their identities.

4.2 Methods

To effectively test differences in the output models of the three 3D modelling
programs selected for study, it was necessary to develop synthetic grids with known
values at all point locations from which to extract input data. Four geologically realisic
synthetic grids (Figure 4.1) were created that allowed the extraction of specific numbers
and distributions of data in a controlled manner. The advantage of using synthesic
datasets to conduct this evaluation is that the point values for each grid being rodelled
are known at every location, allowing quantitative analysis of the variability between
actual and interpolated values across the entire grid. The accuracy of modelling natural

surfaces has been tested elsewhere using previously interpolated grid surfaces (such as a.
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Figure 4.1. Synthetic grids created with 6400 known data points represent realis:ic
geologic environments from which the data points for modelling were extracted. a) Grid
1 forms a gently sloping surface that may represent one element of a basin system or
gently dipping bedrock valley wall, b) Grid 2 consists of two linear ‘highs’ separated by a
central trough and represents a simple valley form, ¢) Grid 3 shows a series of
interconnecting troughs separated by linear ‘highs’ and may represent an eroded bedrock
surface or a braided river system, and d) Grid 4 consists of a flat surface incised by a
highly sinuous channel and represents an incised meandering river system.

131



AUVHNNUTV\ mDQ mmwu«m.r mOmDa

ences

c)

132



PhD Thesis — Kelsey E. MacCormack McMaster — Geography and Earth Sciences

digital elevation model — DEM) that may include variable quantities of unknown errors
(Zimmerman et al., 1999). These errors could then be propagated through all subsequent
analyses, making it difficult to discriminate variations in the results produced by the
processing mechanisms used by the various software programs from those due to errors

propagated from the original model (Burrough, 2001).

The synthetic grids were sampled using three different sampling patterns
(clustered, random, and regular) to determine if data distribution had any impact on the
ability of each program to produce an accurate model. These sampling patterns were
selected to represent the types of data distributions that may be encountered in various
geoscientific and environmental applications. The number of data points used for
interpolation was also varied (100, 256, and 676 points) and modelled independently in
order to determine the influence of data quantity on the output models from the three
programs. This created 96 datasets that were modelled by all three programs using bcith
the IDW and OK algorithms. The data subsets extracted frora the four synthetic grids
were interpolated, and then re-imported into MATLAB to allow comparison of the
interpolated results with the original synthetic models. The accuracy of the modelled
grids generated by each software program was quantified using a variety of statistical
measures including root mean square error (RMSE) and bias error (BE). The RMSE
results were used to determine how accurately each of the programs was able to
interpolate the original grids and the BE was used to show where the models created

under- or over-estimations of the original data.
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In order to assess the relative influence of each variable included in the
modelling tests (i.e. number and distribution of data points, grid complexity, and
algorithm and program selection) on model accuracy, a multi-way (n-way) ANOVA
(analysis of variance) was calculated in MATLAB (Appendix 4.1). The results obtained
from the ANOVA tests are used to quantify the influence of program selection relative to
grid complexity, number and distribution of data points, and algorithm selection in

producing the most accurate 3D subsurface model.

4.2.1 Grid Creation

Four synthetic grids were created to represent realistic geological environments of
variable spatial complexity using ROCKWORKS 2006 software (Figure 4.1). The
method used to create the synthetic grids is described by MacCormack et al., (submitted
2010; Chapter 3) and was developed to test the impact of data quantity, distribution, and
algorithm selection on the accuracy of 3D subsurface models. Each synthetic grid was
constructed using identical 80x80 grid dimension templates. The grid spacing was set to
1 arbitrary unit, which resulted in 6400 grid cells for each model. This allows each grid
to contain sufficient detail to test each interpolation process while not being
computationally exhausting. Each grid cell was assigned a value (thickness/elevation)
value of between 1 and 9 in order to create the topographic variation shown in each of the
four synthetic models. The 3D models are shown here with flat lower surfaces for ease of

illustration (Figure 4.1).
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The first synthetic grid (grid 1) was created to represent a simple, gently sloping
unidirectional surface with lateral continuity in the direction perpendicular to the slope
(grid 1; Figure 4.1a). The second synthetic grid surface is slightly more complex,
consisting of a linear trough between areas of relatively high elevation (grid 2; Figtre
4.1b). This surface shows undulating topography with alternating highs and lows. The
third synthetic grid surface shows more spatial and topographic complexity, and consists
of a series of interconnected troughs separated by irregularly spaced ‘highs’ (grid 3;
Figure 4.1c). The fourth grid is characterised by a sinuous trough, with a high degree of
directional variability, cut into a flat surface and will likely be the most difficult for the
various software programs to accurately model (grid 4; Figure 4.1d). For more detailed
descriptions of the four synthetic grids, refer to MacCormack et al., (submitted 2010;

Chapter 3).

4.2.2 Data Extraction

To allow quantitative analysis of differences between the model outputs from the
three modelling software programs, data were extracted from the four synthetic grids in a
consistent and un-biased manner. A study by Bond et al. (2007) showed that data
selection can be unintentionally biased by prior knowledge of the user. Hence, the points
used for interpolation were selected using MATLAB scripts to eliminate the introduction
of user bias into the analysis. The MATLAB scripts were designed to extract points from
each of the four synthetic grids with specified quantities and distributions of data. The
quantities and distributions of the data points within each data subset were varied in order
to assess whether the quantity of data points, distribution of the data, and/or complexity of
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the modelled surface had any impact on the ability of each of the software programs to
consistently produce an accurate model. Four separate data point datasets were created,
each containing 100, 256, 676 or 1600 cells (representing 1.6, 4, 10.5 and 25% surface
coverage, respectively). The points included in each data point dataset were extracted in
three common sampling distribution patterns: a) random, b) regular, and ¢) clustered

(Zimmerman et al., 1999; Davis, 2002; Figure 4.2).

Random sample distributions (Figurs 4.2a), were created for the desired quantity
of data points by repeating computer-gensrated random assignment of x and y grid
locations without replacement on each synthetic surface. Regular sample distributions
(Figure 4.2b) were produced by imposing a square-grid of equally-spaced sample points
on the synthetic grids. The spacing between sample points was universally adjusted to
accommodate the specified amount of data points; this ensured maximum spatial
coverage of the surface, while preserving the equal spacing and distribution (number of
rows and columns) of sample points. The clustered sampling distributions (Figure 4.2¢),
were generated by establishing data clusters of sampling points by randomly assigning
‘cluster centres’ on the synthetic grid, and then equally distributing the desired number of

sample points between each cluster (MacCormack et al., submitted 2010; Chapter 3).

136



PhD Thesis — Kelsey E. MacCormack McMaster — Geography and Earth Sciences

Figure 4.2: Data points were extracted from the four synthetic grids in 3 spatial
distribution patterns a) random, b) regular, and c¢) clustered. Sample distribution patterns
for the 256 point dataset are illustrated.

137 |



PhD Thesis — Kelsey E. MacCormack

a) Random
80 - -

McMaster — Geography and Earth Sciences

- ™ - % = » :
70b = .- B - . L | . »
m - L] - - 3 %-- = " -. . - -

g sew w7 = » s . "
Bpr e " \- i . m .--.. - i

e = . " = - . »

" = “1 --' 3 .
B g e W 5 A
ol . . g Be » i k

I ¥ . D .-
m - - o - -. - g -.- :

e - ' L Y it B
wy e -" . . 5 i

- .. & -. - - - - -

DU 10 2 30 40 50 60 70 80
b) Regular
80

= = ® ®w m 3 ® 5 = 3 W ®w ® u ® ®
ol * = =i & e e A me » e w
wb. - - - - - - - - L - - - - L -
s TR W e o EeloE w8 e
PR T AR e B B S

P & m.m’''s s ®'°¥8 ¥ ®m &8 p S a-"'u =
gls = * = = = = = = s e . w .o
oi* * = = = = & 2 2=
] AR e I e S Tl
gl & & s m = w :wi; @ wiok % 6 % w

0 10 20 30 40 50 60 70 80
c) Clustered
m. i - ‘ - e . -

=y - T % . 1" -

S : =en N ?IH ) -
TOF %'w % "nﬁ - . o B

- . -e " - o : . ..
ot - *a" - -. .- = - ™

] a - -
1 -~ < --": - >
50t Wi g led -
- e
Ar S ame L, =
0} ---- B "
B
D¢ L} -. -:-- = : -
ST B




PhD Thesis — Kelsey E. MacCormack McMaster — Geography and Earth Sciences

4.2.3 Data Formatting

Each of the extracted data subsets were exported from MATLAB as text
document (.txt) files in a 3-column format, containing x and y-coordinates, and z values
respectively. These files were copied three times so that each software program received
the same data for interpolation. However, the three programs (ArcGIS, ROCKWORKS
2006, and VIEWLOG) were unable to directly import the data in this format and each
dataset required reformatting to meet the specific requirements of each program. Once all
the data subsets were formatted appropriately and saved, they were imported into each

software program for interpolation.

4.2.4 Establishing Unbiased Interpolation Settings
Each of the data subsets were modelled using both IDW and OK gridding

algorithms available in all three software programs. Each software program provided
numerous options for selection or adjustment of parameters that provide the user some
control over the interpolation process. Deciding how to include or adjust these
parameters requires user input and expert knowledge, and can introduce user bias and
uncertainty into the model output results (Englund, 1990; Bond et al., 2007). In order to
minimize the impact of user bias on the model output results, standard settings were
applied within each program. For IDW, the number of user options was relatively small
and only required determination of the number of points utilized for interpolation, set to 8
for all models run in this study. Many more options are available to influence the
performance of the OK algorithm but only two were available for all three programs;

variogram type and number of neighbours included for interpolation. The variogram type
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was set to spherical (the default settings for two of the programs), and the number of
neighbours included for interpolation was also set to 8 (to be consistent with the IDW
parameters). All other parameters were left as the default settings of the program.
Although using a ‘black box’ approach to modelling is less than ideal and does not allow
the user to adjust settings to best accommodate the data being modelled, this was the only
way to minimize the impact of external variables that may bias the results and obscure the
effect of the internal workings of each program on the interpolation results. Minimizing
external inputs into the modelling process allowed any deviations in the output results to
be considered as a result of the software program and not confused with user

bias/influence.

4.2.5 Comparing the Qutput Models

Once the 96 data subsets were interpolated by each of the three programs, they
were converted from Excel files into text document (.txt) files and re-imported into
MATLAB to allow comparison of results. To identify the differences between the
models interpolated by the three programs, the interpolated model outputs were compared
with the original synthetic grids. This was done by creating custom MATLAB functions
developed to provide a quantitative comparison of each interpolated grid with the original
synthetic grid. Assessment of the differences between the interpolated and original grids
was then possible using a number of statistical measures such as Root Mean Square Error
(RMSE), relative RMSE (rfRMSE), Mean Average Error (MAE), and the Correlation
Coefficient (r2). The bias error (BE) was also calculated to determine whether the
interpolated grids were either under or over-estimating the original synthetic values due to
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the various sampling treatments. Although all of these statistical measures were compared
during initial assessment of the impacts of software selection, RMSE was determined to
provide the best overall comparative statistic as it provides an un-biased indication of
how similar the interpolated values are to the original values from the synthetic grids.
When analyzing the RMSE statistics, a small RMSE value indicates that the interpolated
values for the output model are more similar to the original synthetic values, whereas a
large RMSE value suggests that the interpolated model produced by the software program
is less similar to the original synthetic grid. Thus, RMSE values are used here to
determine the accuracy of the model output with low RMSE values indicting a high
degree of model accuracy (Zimmerman et al., 1999; Davis, 2002; Dille et al., 2003; Jones

et al., 2003; Mueller et al., 2004).

o (5 2
i=1 (Z (s) — Z(Si))
RMSE =
n
Where Z (s;) is the interpolated value at the point (s;), and z(s;) is the observed (true)
value from the synthetic dataset at that same location, and n is the number of points

within the input dataset.

The bias error (BE) results identify the extent to which the modelling programs
are under- or over-estimating the prediction of subsurface unit geometries and/or volumes

(see section 4.3.5).
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1€ () — 2(s)

n

BE =

The RMSE results produced by all 96 models (Appendix 4.1) were compared with
one another using a series of graphs, and through a multi-way (n-way) analysis of the
variance (ANOVA) for each variable (grid complexity, distribution of data, number of
data points, algorithm, and program selection). ANOVA is often used to quantify the
differences between results of multiple trials in which one variable is altered at a time in
order to assess its singular influence on the results (Appendix 4.2; Carr, 2002; Davis,
2002; Borradaile, 2003). The benefit of using a multi-way ANOVA is the ability to
determine if and/or how the results differ with respect to the influence of individual

variables, or a combination of variables (Davis, 2002; Borradaile, 2003).

The ANOVA was performed in MATLAB to statistically assess which variables
had most influence on the accuracy of the synthetic grids modelled by the three software
programs (Appendix 4.3). For this study, all of the ANOVA results were based on a
significance of 95% (a=0.05), which is a commonly used confidence level (Issaks and

Srivastava, 1989; Cressie, 1993; Carr, 2002; Davis, 2002; Haneberg, 2004).

4.3 Results and Discussion

The model outputs from the three software programs under investigation (ArcGIS,

ROCKWORKS 2006, and VIEWLOG) of the four synthetic grids using the OK and IDW
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algorithms were quantitatively assessed using Root Mean Square Error (RMSE) and Bias
Error (BE). Any differences between the RMSE and BE results produced by the three
programs were analyzed graphically, and the significance of RMSE differences were
quantified in the multi-way ANOVA (Table 4.1-4.5; Appendix 4.3). The statistical tests
were used to establish the amount of influence that each of the variables (i.e. data point
distribution, grid complexity, number of data points, algorithm selection and program

selection) have on the accuracy of models created by each of the three programs.

4.3.1 Influence of Grid Complexity

To evaluate the impact of grid complexity on the ability of the three programs (X,
Y, Z) to produce accurate models, RMSE values were compared for models of the four
synthetic grids produced by interpolation of 100, 256, and 676 regularly distributed data
points (Figure 4.3). The RMSE results clearly show that the value and range of RMSE
values increase with greater grid complexity for all programs and algorithms (Figure 4.3).
For grids 1 and 2, the RMSE values are all very similar to one another regardless of the
number of data points used to generate the model or which software program and
interpolation algorithm was used (Figure 4.3). RMSE values for the more complex grids
(grids 3 and 4) are higher than those for grids 1 and 2 but decrease as more data points are

used to create the models (Figure 4.3). When modelling the more complex subsurface
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Table 4.1: Summary ANOVA results for RMSE values averaged for all model
simulations. See Appendix 4.2 for description of parameters shown. Data extracted from

Appendix 4.3.
Source of Variability Sum of ‘P’ Statistic p-value % influence
Squares

Grid Complexity 51.78 4271.5 0 60.81

Data Distribution 14.74 1827.0 0 17.32

Algorithm Selection 1.32 327.28 1.78E-15 1.55

Number of Data Points 8.13 1007.89 0 9.55

Program Selection 0.36 45.46 6.87E-09 0.43

Total 85.15 - - -

Table 4.2: Summary ANOVA table of RMSE results for grid 1 showing the influence of
individual variables on model accuracy. See Appendix 4.2 for description of parameters

shown. Data extracted from Appendix 4.3.

Source of Variability Sum of ‘F’ Statistic p-value % influence
Squares
Data Distribution 5.28 936.83 0 61.73
Algorithm Selection 0.69 122.42 1.86E-10 8.07
Number of Data Points 1.64 145.25 2.11E-13 19.14
Program Selection 0.030 2.64 0.094 0.35
Total 8.55 - - -

Table 4.3: Summary ANOVA table of RMSE results for grid 2 showing the influence of
individual variables on model accuracy. See Appendix 4.2 for description of parameters

shown. Data extracted from Appendix 4.3.

Source of Variability Sum of ‘F’ Statistic p-value % influence
Squares
Data Distribution 7.41 4343.61 0 50.70
Algorithm Selection 0.75 439.25 5.55E-16 5.13
Number of Data Points 5.27 1543.99 0 36.05
Program Selection 0.022 6.53 0.005952 0.15
Total 14.61 - - -
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Table 4.4: Summary ANOVA table of

McMaster — Geography and Earth Sciences

SE results for grid 3 showing the influence of

individual variables on model accuracy. See Appendix 4.2 for description of parameters

shown. Data extracted from Appendix 4.3.

Source of Variability Sum of ‘F’ Statistic p-value % influence
Squares
Data Distribution 2.34 274.97 6.43E-14 39.26
Algorithm Selection 0.32 37.04 3.99E-06 5.29
Number of Data Points 1.88 110.63 3.31E-12 31.59
Program Selection 024 14.04 0.00012 4.01
Total 5.96 - - -

Table 4.5: Summary ANOVA table of

SE results for grid 4 showing the influence of

individual and selected combinations of variables on model accuracy. See Appendix 4.2

for description of parameters shown. Data extracted from Appendix 4.3.

Source of Variability Sum of ‘F’ Statistic p-value % influence
Squares
Data Distribution 1.21 97.42 1.53E-09 28.31
Algorithm Selection 0.0080 0.65 0.429997 ¢.19
Number of Data Peints 1.78 71.80 2.28E-10 41.72
Program Selection 0.079 3.18 0.048 1.85
Distribution and. Number of 0.09 367 0.04 213
Data Points
Distribution al.ld Program 0.09 363 0.04 211
Selection
Total 426 - - -
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Figure 4.3: Graphs of RMSE results for catasets modelled with 256 data points in a)
random, b) regular, and c) clustered distributions. RMSE values are given in arbitrary
units that relate to the thickness values (1-9) allocated to points on the synthetic grids.

146



PhD Thesis — Kelsey E. MacCormack McMaster — Geography and Earth Sciences

a) Random 256 points
2.6 7
24 1
22 4
2.0 4
1.8 —4—-X-IDW
16
“2‘ 1.4 ~h—-Y-IDW
2 12
10 “—-Z- IDW
0.8
0.6 —— X- 0K
02 —%—Y-0K
00 —e—7-0K
1 2 3 4
Grid Number
 b) Regular 256 points |
| 26 ,
; 2.4 '
‘ 2.2
w 2.0
% 1.8 —9— X-IDW
| o 16
g 1.4 —4A— Y-IDW
‘ 1.2
| %= 10 Z- IDW
0.8
! 0.6 —8—X-0K |
0.4 %
| 02 4 —H—Y-0K |
‘ N0 ——2Z-0K |
1 2 3 4 :
Grid Number
Q) Clustered 256 points
2.6 |
24 - |
2.2 1 !
2.0 4
1.8 f — 44— X-IDW
16 1
uga ‘2 —A— Y-IDW
1.2 4
® 10 1 Z- IDW
08 4 o
06 F=S=c-—=-c=zk 5 —— X- 0K
0.4
0.2 19 —3— Y - OK
0.0 +— T T - | Z- 0K
1 2 3 4 |



PhD Thesis — Kelsey E. MacCormack McMaster — Geography and Earth Sciences

environments represented by grids 3 and 4, program X typically produced the lowest
RMSE using either IDW or OK, followed by program Y, and then Z (Figure 4.3).
Program X also generated the most accurate model of grid 4 (lowest RMSE values) when

both 256 and 676 data points were interpolated using the OK algorithm (Figure 4.3 b.c).

The ANOVA based on the RMSE results showed that grid complexity had by far
the greatest influence on how accurately the synthetic grids were modelled and accounted
for most of the variation in the RMSE results (Table 4.1). Data point distribution and
number of data points accounted for the second and third highest amounts of variability
respectively, followed by algorithm and program selection, which both had relatively low
influences on model accuracy (Table 4.1). Grid complexity had such an overwhelming
influence (60.81%) on the RMSE variance, that in order to better assess the influence of
the other variables, four separate n-way ANOV As were run on the RMSE results for each
of the four synthetic grids (Tables 4.2-4.5). For grids land 2, that represent relatively
simple subsurface conditions, data distribution had the greatest individual influence
(highest SSt; Appendix 4.2) on RMSE, followed by number of data points, algorithm
selection, and program selection respectively (Tables 4.2,4.3). For grid 3 the order of
influence was the same as grids 1 and 2, with the exception that algorithm and program
selection had esseatially equal influence on model accuracy (Table 4.4). Interestingly,
the relative influence of each individual variable was different for the grid 4 ANOVA,
which showed that the number of points used for interpolation had the greatest inﬂuencé
on model accuracy, closely followed by dzta point distribution, program selection, and

algorithm selection (Table 4.5). In addition, when the combination of variables were
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analyzed for grid 4 (representing an extremely complex subsurface unit), the distribution
and number of data points (two variables shown to have a substantial impact on the model
accuracy of complex grids individually; Table 4.5) ranked only slightly higher than the
combination of program selection and data point distribution in controlling model
accuracy (Table 4.5). This is an important finding as it shows that when interpolating
complex environments, program selection and data distribution can have as significant an
influence on the accuracy of the model output as the number and distribution of data
points used in modelling, and have more influence than algorithm selection on model

accuracy.

These results suggest that program selection has little influence on model
accuracy when modelling relatively simple grids (e.g. grids 1 and 2; Figure 4.3, Figure
4.4 b,e), but has a stronger impact, noted by the greater differences in RMSE values
between the three programs (e.g. grids 3 and 4; Figure 4.3, Figure 4.4 hk), when
modelling more complex grids. The ANOVA results support these conclusions by
showing that the influence of program selection increased with increasing grid
complexity (Tables 4.2-4.5). This is especially true in the case of grid 4, where program
selection was shown to have a greater influence on model accuracy than aigorithm
selection (Table 4.5). Therefore, when modelling complex subsurface environments,
program selection should be carefully considered as it can have a statistically significant

impact on model accuracy.
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Figure 4.4: Graphs showing the change in RMSE produced by the software programs (X,
Y, Z) using algorithms IDW and OK, as increasing numbers of regularly distributed data
a) 100, b) 256, and c) 676 were modelled. RMSE values are given ir. arbitrary units that
relate to the thicknzss values (1-9) allocated to points on the synthetic grids.
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4.3.2 Influence of Data Point Distribution

Data were extracted from the originzal synthetic grids in three distribution patterns
(random, regular, and clustered) and interpolated using OK and IDW by the three
software programs. Analysis of the results from the models run with 256 data points
showed that grids 1 and 2 were modelled most accurately (lowest RMSE values) by
randomly and regularly distributed data using OK by all three programs (Figure 4.5 a,b).
However, when more complex grids were modelled using random and regularly
distributed data, the RMSE values show corsiderable increase, regardless of algorithm or
program used (grids 3 and 4; Figure 4.5). Clustered data producecd the largest RMSE
values when modelling all four grids, regardless of program or algorithm selection
(Figure 4.5¢). It is interesting to note that the most variation in the RMSE results
between program and algorithm selection occurred when clustered data were used to
model grids 1 and 2, and became more similar when interpolating grids 3 and 4 (Figure
4.5c). Program Z produced the highest RMSE values when the OK algorithm was used,
but was the least impacted by the spatial distribution of the data (Figure 4.5). This
contrasts with the performance of programs X and Y that showed high levels of accuracy

(low RMSE) when modelling random and regularly spaced data, but performed with

similar accuracy to program Z when modelling clustered data (Figure 4.5).

Of all distributions, the RMSE results for randomly distributed datasets were the
least susceptible to variation between the three programs, followed by regular and
clustered distributions (Figure 4.4). The increased range of RMSE resuits for clustered

datasets may reflect how the individual programs manage the irregular distributions of
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Figure 4.5: Graphs showing the change in RMSE values produced by the software
programs (X, Y, Z) as increasing numbers (100, 256, 676) of data points in random
(a,d.g.j), regular (b,e,hk), and clustered (c.fi,l) distributions are used to interpolate
synthetic grids 1 {a,b,c), 2 (d,e,f), 3 (g,h,i) and 4 (j,k,]). RMSE values are given in
arbitrary units that relate to the thickness values (1-9) allocated to points on the synthetic
grids.
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high data point dznsities, which can produce large amounts of variability over short
distances, and how this variability is propagated through the model. This is an important
finding as most geological studies use clustered data to interpret their results (Paulen et
al., 2006; Bond et al., 2007; Keefer, 2007). Overall, program X produced slightly lower
RMSE results, followed by programs Y and Z (Figure 4.4 c,f,i,I). The large variation in
RMSE results for clustered datasets produced by the three programs indicates that
clustered data werz most susceptible to introducing increased uncertainty into the model

output due to software selection.

The ANOVA results showed that overall, data distribution had the second
greatest influence on RMSE (model accuracy) when all models were analyzed (Table
4.1). When the influence of data point distribution was analyzed independently for each
of the four grids, the ANOVA results showed that data point distribution had the greatest
influence of any variable when interpolating grids 1, 2 and 3 (Tables 4.2-4.4). When
modelling complex surfaces (grid 4), data point distribution had the second-most

influence after the number of points being modelled (Table 4.5).

These results indicate that data point distribution has a significant influence on the
accuracy of model results. In particular, program selection should be carefully considered
when interpolating, clustered data in order to ensure that all sources of uncertainty and

variability to the model output are appropriately identified.
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4.3.3 Impact of Data Quantity

A common assumption made by 3D modelers is that incorporating more data in
the interpolation process will provide a more accurate model. In order to assess whether
the number of data points used in the modelling process had any impact on the
effectiveness of the different programs to create accurate models, the RMSE values were
graphed based on the number of data points used for interpolation (Figure 4.4). Overall,
the RMSE values drop as the number of data points used for interpolation increases, with
the exception of the clustered datasets modelled for grids 1, 2 and 3(Figure 4.4 ¢,f,1). The
OK algorithms applied within the X and Z software programs produced the lowest RMSE
values (i.e. the mcst accurate model results) when grids 1 and 2 were modelled using a
large number of data points (676; Figure 4.4 ab,d,e). Differences in RMSE values
computed for grids 1 and 2 modelled by the three programs also reduced with the addition
of data points and models run with 676 points show remarkably similar RMSE results for
all three programs (Figure 4.4 a,b,d.,e). In contrast, the RMSE results for grids 3 and 4
modelled using random and regularly distributed data (Figure 4.4 ghjk) show an
increased range of values produced by the three programs as the number of data points
increases. Overall, program X produces the lowest RMSE results for models of grids 3

and 4 using the OK algorithm (Figure 4.4 g,h,j k).

The RMSE results for the clustered datasets show a decrease for all programs and
algorithms when the number of clustered data points increases from 100 1o 256 indicating
that the additional data points have increased the accuracy of the model. However, when

the number of data points increase from 256 to 676, the RMSE results for all programs
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and algorithms increased for grids 1 and 2 (Figure 4.4 c,f) indicating an increase in error
values and a reduction in model accuracy. When interpolating grid 3 with 676 data
points, the RMSE results increased for all programs except Y using the OK algorithm
(Figure 4.4i). The increased variability in RMSE results when additional data points were
used for interpolation was originally thought to be due to differences between the OK and
IDW algorithms, but numerous graphs (Figure 4.4 c,f,gh,i,jk) show substantial
variability within the RMSE results when OK and IDW outputs are considered

independently.

To relate these results to other studies, the number of points used for interpolation
can also be translated into % area covered. The synthetic grids were composed of a total
of 6400 data points (Figure 4.1), therefore 100, 256, and 676 data points can also be
considered to represent 1.6%, 4%, 10.6% area covered respectively. These results
indicate that it is more important to consider the impact of program selection on model

accuracy for studies with greater than 4% data coverage.

ANOVA results for RMSE indicate that the number of data points used for
interpolation became increasingly important as the grid complexity increased (Tables 4.2-
4.5). When all models were considered in the ANOVA, data quantity had the third most
influence on model accuracy, behind grid complexity and data distribution respectively
(Table 4.1). When separate ANOVAs were calculated for each synthetic grid, data
quantity had the second most influence on RMSE for grids 1, 2 and 3, and was the most
influential variable when modelling complex environments such as grid 4 (Tables 4.2-

4.5).
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4.3.4 Influence of Algorithm Selection

The influence of algorithm selection on the accuracy of the modelled grids using
random, regular and clustered datasets of between 100 and 676 points is shown in Figure
4.4. Overall, the OK algorithm produces the lowest RMSE results regardless of data
distribution (Figure 4.4). When the OK algorithm was used to interpolate grids 1 and 2,
the RMSE values produced by programs X, Y, and Z were very similar to one another.
This indicates that program selection has little impact when using OK to interpolate
relatively simple models (grids 1 and 2; Figure 4.4 a-f). However, when OK was used to
interpolate the more complex grids (3 and 4), greater differences in the RMSE values
were produced by the three programs (Figure 4.4 g-1). Overall, the variability of RMSE
values for models interpolated with IDW were fairly consistent between the three
programs, indicating that IDW is less susceptible to program selection than OK (Figure
4.4). When modelling grid 4, algorithm selection had little impact as there were minirnal
differences between the RMSE values produced by models interpolated with either IDW
or OK (Figure 4.4 j-1). The ANOVA results reveal that algorithm selection was the third
most influential variable on model accuracy for grids 1 through 3. and was the least

important for grid 4 (Tables 4.2-4.5).

These results imply that the program-specific processes operating within the three
programs are affected more strongly by the OK algorithm than IDW. These program-
specific influences were shown to cause variability in model accuracy, and sheuld be

considered when attempting to quantify model variability and uncertainty. This is
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especially important when modelling complex grids, for which program selecticn can

have more influence on model accuracy than the algorithm chosen for interpolation.

4.3.5 Bias Error Analysis

Analyzing the bias errors associated with the interpolated results is useful for
determining whether the predictions typically represent under- or over-estimations of the
actual surface. Ideally, the bias errors should be as close to zero as possible, although the
amount that they deviate from zero and whether they are positive or negative can provide
valuable information about the accuracy of the predictions (Elith et al., 2002; Heng! et al.,
2004). If the bias error is negative, the interpolated results are biased toward the
production of under-estimations when compared to the observed values. A positive bias
error reveals that the interpolated results are typically producing over-estimations when

compared to the observed values (Elith et al., 2002; Mueller and Pierce, 2003).

In this study, bias errors were analyzed and graphed in two ways by calculating
the average of the bias errors, and the absolute sum of the bias errors. The average bias
error (AVBE) is used to assess whether the overall impact of each sampling treatment
causes over or under-estimation. However, AVBE can provide misleading results if
extreme high and low deviations both occur within the model as they will cancel each
other out during the averaging process. Calculating the absolute bias error (ABBE)
allows the total amount of deviation to be summed together which wil! identify the
amount of error, regardless of whether the predictions are either over or under-estimating

the actual values. If the ABBE results show high values, a large amount of error is
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indicated, whereas low values indicate small deviation from the actual values and a more

realistic result.

The ABBE and AVBE were calculated for the models produced by ail three
software programs using different numbers of points for all 4 synthetic grids (Figure 4.6).
Comparison of the bias errors produced by the three software programs for the models
created under the various conditions produced very interesting results. No one software
program appeared to consistently outperform the others in terms of providing consistently
low error values. This suggests that each program has certain conditions that favour their

specific modelling procedures.

The models produced with 100 points produced the most similar ABBE and
AVBE results among the three programs, which suggest that with low numbers of data
points, the interpolation processes all have similar effects on the model output (Figure
4.6a). However, for models interpolated with additional data points (256 and 676), there
was less variability in the bias errors produced by each program (Figure 4.6 b.c).
Program X and Y produced similar AVBE results when interpolating with 256 and 676
data points, and similar ABBE results when interpolating with 100 and 676 results
(Figure 4.6). Both the AVBE and ABBE resuits for program Z followed similar trends to
those for program X and Y, but the actual values were quite different (Figure 4.6). These
results suggest that programs X and Y may follow similar processes when interpolating
data under certain conditions because they tend produce similar errors. Program 7. is
likely interpolating data using a different set of procedures because it produced distinctly

different bias errors than programs X and Y (Figure 4.6). These results exemplify the
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Figure 4.6: Graphs showing the change in the absolute sum of the bias errors (ABBE)
and the average bias errors (AVBE) produced by the software programs (X, Y, Z) to
interpolate Grids 1, 2, 3, and 4 using 100 (a), 256 (b) and 676 (c) data points. Bias error
values are given in arbitrary units that relate to the thickness values (1-9) allocated to
points on the synthetic grids.

161



PhD Thesis — Kelsey E. MacCormack McMaster — Geography and Earth Sciences

a) Bias Errors for 100 points
20 |
1.8 |
16 | >
ig ? / ; Y ; X - absolute
{ / \ /
ot g.)(s) i _ ~i-—~Y - absolute
[++] . S .‘4,
82 v \\\w/’;;” Z- absolute

0:2 ] -¥—X - average
0.0 -
0.2 N‘A. —%—Y - average

—&@—Z- average

uA;AA,r
|

2.0
1.8
1.6
i;’ i X - absolute
10 | a—Y-
Y j Y - absolute
{ 0.6 ;g % Z- absolute
| 0.4 l e =y ,__vr"‘m" ie———
0.2 e ~¥-—X - average
0.0
0.2 ' % ! —#%—Y - average
-04 '
—&—17- average
; 1 2 3 4
| Grid Number
<) Bias Errors for 676 points
X - absolute
i ~@#—Y - absolute
)

Z- absolute
—3— X - average

—3¥—Y - average

—@®—7-average

Grid Number

162



PhD Thesis — Kelsey E. MacCormack McMaster — Geography and Earth Sciences

importance of considering program selection when quantifying variability or uncertainty,
as program selection alone can impact whether a model represents an over- or under-

estimation of the actual values.

4.4 Conclusions

This paper compares the ability of three commonly used 3D modelling programs
to accurately interpolate grids of variable complexity, using different numbers and
distributions of data points. This study demonstrates that, although certain software
programs offer the same interpolation algorithms, they do not necessarily provide the
same output results. In most 3D subsurface investigations, a substantial amount of time
and effort is spent collecting and analyzing data, as well as assessing data parameters to
ensure the most accurate model possible is produced. The results of this study suggest
that program selection should also be seriously considered as a possible source of model
uncertainty, the effects of which should be considered especially when modelling
complex subsurface geological environments, interpolating with clustered data, or when
relatively large quantities of data (more than 4 - 10.6% data coverage) are used for

interpolation.

This study confirmed that the output of the OK and IDW interpolation algorithms
is not consistent when used by different software programs and this variability should be
considered when assessing the uncertainty associated with subsurface model results.

These results do not suggest that any particular program is better than another, but do
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show that software selection can impact the accuracy of the output model in a similar
manner to that documented for algorithm selection (Tabios and Salas, 1985; Weber and
Englund, 1992; Weber and Englund, 1994; Brus et al., 1996; Walker and Loftis, 1997,
Nalder and Wein, 1998; Zimmerman et al., 1999; Schloeder, 2001; Jones et al., 2003;
Kravchenko, 2003; Dille et al., 2003; Lapen and Hayhoe; 2003). In some instances
program selection can actually have a greater impact on model accuracy than which

algorithm is used perform the interpolation process.

Given that 3D modelling is increasingly used as an analytical tool for numerous
applications in geo- and environmental sciences and may form the basis on which large
scale, multi-million dollar decisions are made, serious attention should be paid to the
many factors that control model accuracy. Numerous studies have documented the
influence of algorithm selection on model output but none have quartified the impact of
software selection. The results of this study indicate that program selection can have a
significant influence on the accuracy of model results and therefore shouiu be seriously

considered as a potential source of uncertainty.
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APPENDIX 4.1: RMSE RESULTS
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) 7256’" N 0 Clusté;d DW 061375 | 013947 | 034384 | 01472 | 004134 § 064656 | 014603 | 040562 | 028501 T 053900 ¥ ocescs 10151 Tose o o0
_25 6 1 Clustered| OK 046306 | 0.10523 | 024033 | 007923 | 096661 f 030080 | 0.06835 | 0.18070 | 0.12892 | 098591 § 037599 | 008544 | 021362 | 0.13444 | 097799
256 1 Randos | IDW 027512 | 006252 | 016261 | 002964 | 096821 | 029870 | 0.06788 | 0.19902 | 001439 | 098611 [ 034616 | 007866 | 021909 | 000244 | 098134
256 1 Randorni|  OK 074064 | 003196 | 007373 | -0.01145 | 099692 § 0.13187 | 002997 | 007872 | 004441 | 099729 § 0.13890 | 0.03156 | 008306 | 0.04000 | 0.09700
R2v56’ 1 Regular ﬁIDW 0.17486 | 003974 | 0.10606 | -0.00847 | 099524 § 0.30905 | 0.07023 | 0.20002 | 0.0889 | 098513 B 0.32264 | 0.07332 | 0.20872 | 0.05678 | 098379
1 25_6 N 1 Regular' ’“(“)K 0.09381 002732 | 005277 | 000105 | 099863 § 0.13448 | 0.03056 | 0.08047 | 0.6866 | 099718 f 0.12511 0.02843 | 008080 | 006442 | 099756
'2‘5'6 Clustered| 1DW [ % 011546 | 043170 | 003008 | 091698 | 082307 | 016212 | 058203 | 009044 | 083640 § 001035 | 012700 | 048323 | 000117 | 085017
#2;6 Clustered| OK 041880 | 008249 | 027056 | -0.00891 | 095764 R 047783 | 0.09412 | 030009 | 005322 | 094486 § 044095 | 008685 | 029537 | 0.02294 | 0.95305
256 Random | IDW 040601 | 007997 | 631208 | 001630 | 096019 § 045806 | 009022 | 034937 | -0.00600 | 094933 § 054888 | 0.10811 | 041787 | -008997 | 092725
256 Rardom | OK 0.26541 | 005228 | 0.17881 | -0.00363 | 098299 § 020231 | 003985 | 0.14491 | 000753 | 099012 § 021742 | 004283 | 015333 | 000686 | 008858
256 Regular | IDW 030092 | 005927 | 021781 | -0.00778 | 097813 § 043301 | 0.08529 | 032650 | -0.00634 | 095472 § 0.44305 | 0.08727 | 032811 | 0.07027 | 0.95260
256 Regular | OK 0.15207 | 002994 | 0.10281 | -0.00463 | 0.99442 § 0.16779 | 0.03305 | 0.11684 | 0.00512 | 099320 § 0.19449 | 0.03831 | 0.13308 | -0.00058 | 0.09087
: 255 3 C|1IS;;I’€CI :’IFDV(/’ 005 REXEE 023 | 132503 | 035063 | 104141 | 004172 | 049547 T 134482 ] 036500 | 102007 | 013348 | 04808
‘25>6 ) Elus—tke“r;d OK 113320 | 030756 | 081422 | 012178 | 063098 § 104982 | 0.28493 | 0.77825 | -0.01909 | 0.68329 § 1.17350 | 031850 | 089166 | -0.10688 | 0.60427
= 2 5‘ 5 Bariom IbW 102954 | 027943 | 079989 | -0.19198 | 069541 f§ 1.13207 | 030726 | 094753 | <0.19350 | 0631727 B 1.20071 | 0.32589 | 098550 | -0.25847 | 058570
"25 6 Random : OK 093499 | 025377 | 0.72442 | -0.15639 | 0.74878 f 084651 | 0.22075 | 062608 | -0.10580 | 0.79408 § 1.11477 | 030256 | 092380 | -0.16989 | 064289
e 2“ 5 6 Regular | IDW 0.89358 | 024253 | 070625 | -0.07031 | 0.77054 § 109687 | 0.29770 | 091514 | -0.08267 | 0.65427 § 1.09703 | 0.29775 | 0.89750 | -0.11188 | 065416
i ~72756 Regular OK 057984 | 015738 | 040927 | -0.02336 | 00338 § 061920 | 0.16806 | 0.44833 | 0.01105 | 0.88982 § 1.14731 | 031139 | 006136 | 010220 | 062174
256 Cid;ter;:d IDV‘V‘: 1.71477 027901 | 108364 J 0.33400 004756 0.25195 174618 | 028412 1223375 | 012184 | 030938
3 256 (_lustered i OK 7175557 | 0.28571 | 097844 | 010666 | 030162 707517 | 035927 | 0.24903 1.87865 | 0.30567 137827 | 021855 | 020062
772567 i 7Random |DW 1.665%4 102338 | 008928 | 037139 1.10384 | 009575 | 0.3G453 § 169192 | 0.27529 | 1.10203 | 0.08072 | 035164
'256 Ra};’é‘“ M(SK 157862 T 0750537} 043557 B 154646 | 0.25162 | 087992 | 016736 | 045833 B 183084 | 0.29789 | 1.21083 | 0.07089 | 0.24080
T 256 i chul;r n IDVN\[ 142840 [ 0.23241 094166 | -0.11338 | 0.53787 B 154961 | 0.25213 109913 | 0.11994 | 045612 § 152114 | 0.24750 | 108533 | -0.15045 | 047507
. '25()‘ ;‘ N F%égul:a; (A)‘K i ! 7| 021509 | 076964 | -0.11577 | 060087 § 1.35070 | 0.21977 | 080733 | 0.12545 | 0.58678 § 179316 | 029176 | 1.31297 | -0.20119 | 027177
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Grid Variables Program Y Program Z
- R o R—
# Data Distri- Algo-
: : N RMSE MAE BE r2 RMSE | rRMSE MAE BE r2 RMSE | rRMSE MAE BE r2
Points bution rithm
- i o
0.92286 0.46005 013770 0.86738 1.05860 0.24056 0.50336 -0.18258 082550 1.07086 024335 049920 -0.23948 082143
676 1 Clustered| IDW i B >
0.56597 025739 | -0.07920 | 095012 § 098665 | 0.22421 | 045236 | -0.17633 | 084841 | 0.89245 | 020280 | 037147 | 0.17378 | 087598
676 1 Clustered| OK
015727 | 003574 | 010300 | 004531 | 099615 § 0.19343 | 0.04396 | 0.13953 | 009003 | 099417 § 0.22304 | 005068 | 0.13889 | 0.06036 | 099225
676 1 Random | IDW
010435 | 002374 | 006348 | 005192 | 099830 § 0.17327 | 003938 | 0.11220 | 009792 | 099532 § 0.10556 | 002399 | 006414 | 005052 | 099826
676 1 Random | OK
015558 | 003536 | 0.09783 | 003217 | 009623 § 0.17942 | 004077 | 012806 | 008128 | 095495 § 0.18124 | 004118 | 0.11517 | 003008 | 099489 |
676 1 Regular | IDW
i s | o 010110 | 002297 | 006136 | 005033 | 099841 § 0.15033 | 003416 | 0.10230 | 008836 | 099648 f 009314 | 002116 | 005703 | 004562 | 0.99865
676 1 Regular | OK
B oy b hesesmunat] 111860 | 022033 | 071366 | 044294 | 069783 § 097786 | 0.19261 | 059839 | 036717 | 076909 § 1.14328 | 022519 | 076481 | 024751 | 068435
676 2 | Clustered| IDW - il ! ’ i <
0.77656 015796 0.44608 0.24039 085437 0.80108 015779 042239 0.27227 084503 08014 015898 0.44566 0.27263 08468
676 2 Clustered| OK
026057 | 005130 | 010084 | 0.00106 | 00A356 § 025325 | 005579 | 020600 | 000155 | 098063 § 039937 | 007866 | 0I6R8T | 004598 | 096148
676 2 Random | IDW
073606 | 002680 | 0.09167 | -0.00630 | 099553 § 0.18516 | 003647 | 0.12183 | 000267 | 0099172 § 014503 | 002874 | 0.00750 | 000650 | 099486
676 2 Random | OK
676333 | 005188 | 0.18750 | 0.00475 | 008325 § 025006 | 0.5103 | 0.16467 | -0.00667 | 098379 § 0.28489 | 005611 | 0.19370 | 002548 | 058040
676 2 Regular | IDW
011542 | 002274 | 007047 | 000163 | 0.99678 § 0.12284 | 0.02420 | 008131 | 000012 | 099636 § 0.11434 | 002252 | 007111 | -0.00148 | 099684 |
676 2 Regular | OK
S e e e e e T et o = e e B e e g
127705 | 034661 | 097947 | 008053 | 053135 § 134221 | 036429 | 095153 | 008966 | 048230 f 153803 | 041744 | 1.15014 | -0.08811 | 032023
676 3 | Clustered| IDW ’ ‘ ) i
_ 117367 | 031855 | 078103 | 021522 | 060416 § 129748 | 035215 | 088411 | 0.10845 | 051624 f 1.3195/ | 035815 | 008850 | 0.0/144 | 049962
676 3 | Clustered] OK ; N
0.83564 0.22680 0.65555 0.00117 0.79933 087310 0.23697 067008 n.0021 0.78094 0.99011 026873 074107 -0.0899K 0.71829
676 3 Random | IDW
0.49857 0.13532 033216 0.00338 092857 061943 0.16812 039503 C.01697 0.88974 0.88018 023389 067922 -0.01350 077737
676 3 Random| OK
Tsas 1 5 " 077193 | 020951 | 061141 | -0.04805 | 0862877 J 079976 | 021706 | 061563 | 002350 | 081620 f 078078 | 021191 | 058242 | 006812 | 082483 |
676 3 Regular | IDW
038543 70461 | 0.24956 | 000306 | 085731 § 0.51557 | 013983 | 033712 | 000169 | 092362 f 069250 | 06.18806 | 0.52041 | -0.03325 | 086203
676 3 Regular | OK
Tl . A SRS (N, S UST " S K- - -
. 174938 | 028474 | 103295 | 034220 | 030537 J 182799 | 0.29743 | 100739 | 038386 | 024315 f 1.79855 | 029264 | 1.04802 | 032377 | 0.26734
676 4 Clustered| IDW i ?
. 172332 | 028040 | 097661 | 039777 | 032735 § 185828 | 030236 | 102063 | 040853 | 021787 [ 171432 | 027834 | 052556 | 036494 | 053435
676 4 Clustered] OK
T T A 093506 | 056771 TAS662 | 023701 | 096758 | 014745 | 051943 159422 1025939 | 1.08972 020628 | 042435 |
676 4 Random
B B {11726 | Ga8179 | (63687 007225 | 071727 141059 | 022952 | 086172 015553 | 0.54932 148000 | 0.24081 096106 | -.16228 | 050388
676 4 Random | OK ’ :
132818 0.21611 0.B5269 001088 060045 142358 023163 030427 -0.01367 0.54099 1.29726 021108 86313 -0.06481 061863
676 4 Regular | 1IDW ’ ’ ’ ’
= P CE763¢ | 0.15687 | 053211 | 000530 | OJGAOR § 133681 | C21784 | 080601 | 001286 | 053403 § 147636 | 02402 To7i44 5]
676 4 egular | OK

L dud

— 5182

NorWLIOD)IBIA " A3S[oY

3090) — IAISBAD]

aer

i

S Yuey pum /

D)

9OUAI

S



PhD Thesis — Kelsey E. MacCormack McMaster — Geography and Earth Stiences

APPENDIX 4.2: ANOVA DESCRIPTION

The first step in the ANOVA analysis is to generate a hypothesis about the
variables, known as the null hypothesis (H,), which implies that there is no difference

(relationship) between the variables and the RMSE results.

Ho:py=m2=ps...... Mn
H;: at least one of the treatment means will be different

To identify a relationship between the variation in the variables and the variation
in the RMSE results, the null hypothesis must be rejected. The p-value provides the
probability that the null hypothesis could be rejected incorrectly (type 1 error) and the
results were created by chance alone (Davis 2002; Borradaile, 2003). If the p-value in the
ANOVA table is less than the accepted level of significance (a), then the H, can be
rejected, and a relationship between the variables is assumed (Davis, 2002; Borradaile,
2003). For this study, all of the ANOVA results are based on a significance of 93%
(0=0.05), which is a commonly used confidence level (Issaks and Srivastava, 1939;
Cressie, 1993; Carr, 2002; Davis, 2002; Haneberg, 2004). Therefore, only the results
from the ANOVA test with p-values < a were considered to be significant, as there is a
less than 5% chance that the H, could be rejected incorrectly (type I error; Davis, 20(2).
Once the H, has been rejected, the differences in variances amongst the variables are

determined to be significant and to have an influence on the variance in the RMSE
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results. The amount of variance attributed to each variable (and combination of variables)

can be quantified by calculating the sum of squares for each treatment (SSt; Davis, 2002).

SStor = SSE + SSt1 + SSt2 + SS13 + SS14 + SSts

Where SStor is the total variation, SSg is the variance that could not be explained
by the variables, and SSt, is the variation attributed to each treatment. This information
can be used to compare the variance in the mean values produced by each variable (SS1y)
to the overall variability (SStor), providing an indication of how much of the total

variance (SSto7) can be attributed to each variable (SSa).

(SS7/SSror) x 100 = SS4

The more variation that each variable accounts for (higher $S,), the greater its
influence is determined to be on results. Therefore, high SS, values indicate that the
variable of interest has a large influence on the RMSE results, while a small SS, value
indicates that the variable has less influence on the RMSE results. The ANOVA results
will be used in a relative sense for this study to assess the order of influence for the
variables impacting RMSE results. Therefore, there will not be much attention paid to the

actual values of the ANOVA, but rather on their relative relationships to one another.
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APPENDIX 4.3: ANOVA RESULTS
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Sum of F' p- %
Grid Source of Variability Squares Statistic | value | Influence
all Grid Complexity (Grid) 51.78 4277.54 0.00 1 60.81
all Data Distribution (Dist) 14.75 1827.04 0.00 17.32
all || Algorithm Selection (Alg) 1.32 327.28 0.00 1.55
Number of Data Points

all  § (Num_pt) 8.13 1007.90 | 0.00 9.55
all Program Selection (Pro) 0.37 45.47 0.00 0.43
all { 'Grid*Dist’ 1.73 71.50 0.00 2.03
all | 'Grid*Alg' 0.55 45.41 0.00 0.65
all §"'Grid*Num_pt' 0.82 33.81 0.00 0.96
all 'Grid*Prog' 0.14 5.84 0.00 0.17
all 'Dist*Alg' 0.01 0.75 0.48 0.01
all || ""Dist*Num_pt' 2.37 146.55 | 0.00 2.78
all 'Dist*Prog' 0.06 3.71 0.02 0.07
all "Alg*Num_pt' 0.00 0.28 0.76 0.00
all } 'Alg*Prog’ 0.07 9.26 0.00 0.09
all || ""Num_pts*Pro' 0.06 3.70 0.02 0.07
all "'Grid*Dist*Al' 0.10 4.19 0.01 0.12
all "'Grid*Dist*Num_pt' 1.49 30.74 0.00 1.7
all "'Grid*Dist*Pro' 0.11 2.25 C.04 0.13
all "'Grid*Alg*Num_pt' 0.27 11.34 0.00 0.32
all || "'Grid*Alg*Pro' i 0.14 5.17 C.00 0.16
all || "'Grid*Num_pts*Pro' 1 0.10 2.00 0.07 0.11
all "'Dist*Alg*Num_pt' 0.02 1.16 0.35 0.02
all || "Dist*Alg*Pro’ 5' 0.05 3.35 0.03 0.06
all "'Dist*Num_pts*Pro' 0.07 2.15 0.07 0.08
ali || "'Alg*Num_pts*Pro' 012 7.38 0.00 0.14
all || "'Grid*Dist*Alg*Num_pt' 0.05 1.12 0.39 0.06
all | "™Grid*Dist*Alg*Pro' ' 0.12 2.38 0.03 0.14
all || ""Grid*Dist*Num_pts*Pro' | 0.17 1.77 0.09 0.20
all || "Grid*Alg*Num_pts*Pro’ | 0.07 1.55 0.18 0.09
all !l "'Dist*Alg*Num_pts*Pro’' || 0.01 0.21 0.99 0.01
all ! 'Error' ' 0.10 0 1 0
all | 'Total 85.15 i i I
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Sum of F p- %
Grid Source of Variability Squares Statistic | value Influence
1 Data Distribution (Dist) 5.28 936.83 0.00 61.73
1 Algorithm Selection (Alg) 0.69 122.42 0.00 8.07
Number of Data Points
1§ (Num_pt) 1.64 145.25 0.00 19.14
1 Program Selection (Pro) 0.03 2.64 0.09 0.35
1 | 'Dist*Alg’ 0.06 10.62 0.00 0.70
1 || "'Dist*Num_pt' 0.83 73.31 0.00 9.66
1 'Dist*Prog’ 0.02 2.10 0.15 0.28
1 | "Alg*Num_pt’ 0.13 11.11 0.00 1.46
1 'Alg*Prog' 0.04 3.19 0.06 0.4
1 | "'Num_pts*Pro' 0.10 4.31 0.01 1.14
1 ! "Dist*Alg*Num_pt' 0.00 0.27 0.77 0.0
1 | "'Dist*Alg*Pro’ 0.01 1.21 0.32 0.16
1 || "Dist*Num_pts*Pro' i 0.12 5.33 0.00 1.42
1 || "Aig*Num_pts*Pro' 0.09 3.91 0.02 1.03
1 | 'Error’ 0.12 1 il i
1 |l 'Total | 855 [ ] ]
™ 2 || Data Distribution (Dist) | 7.41 434360 | 0.00 50.70
2 | Algorithm Selection (Alg) | 0.75 433825 0.00 5.13
' Number of Data Points |
2 | (Num_pt) | 5.27 1544.00 | 0.00 36.05
2 | Program Selection (Pro) | 0.02 6.53 0.01 0.15
2 'Dist*Alg' 0.00 0.07 0.80 0.00
2 || "Dist*Num_pt' Z 2.59 760.00 0.00 17.74
2 | 'Dist*Prog' i 0.01 1.74 0.20 0.04
2 | "Alg*Num_pt' | 0.01 3.49 0.05 0.08
2 || 'Alg*Prog' 0.00 1.29 0.29 0.03
2 || ""Num_pts*Pro’ “ 0.02 3.11 0.04 0.15
2 | "'Dist*Alg*Num_pt' i 0.03 9.13 0.00 0.21
2 | "Dist*Alg*Pro’ | 0.00 0.73 0.49 0.02
2 | "Dist*Num_pts*Pro' 0.02 2.79 0.05 0.13
2 | "Alg*Num_pts*Pro' 0.03 8:17 0.02 0.18
2 | 'Error' 0.04 0 N [
[ 2 ! "Total' 14.61 i 0 ]
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Sum of F' p- % % =
Grid Source of Variability Squares Statistic | value | Influence
3 Data Distribution (Dist) 2.34 274.97 0.00 39.26
3 Algorithm Selection (Alg) 0.32 37.04 0.00 | 5.29
Number of Data Points
3 (Num_pt) 1.88 110.63 | 0.00 31.59
3 Program Selection (Pro) 0.24 14.04 0.00 4.01
3 1 'Dist*Alg' 0.01 1.38 0.25 0.20
3 || "Dist*Num_pt' ;; 0.26 15.05 0.00 4.30
3 | 'Dist*Prog’ y 0.02 1.47 025 | 042
3 | "Alg*Num_pt' 0.03 1.54 0.24 | 0.4
3 | 'Alg*Prog' 0.06 3.73 004 | 106 |
3 |l ""Num_pts*Pro' 0.02 0.54 071 | 031 |
3 | ""Dist*Alg*Num_pt' ! 0.01 0.52 060 | 0.1
3 | "'Dist*Alg*Pro’ ! 003 1.82 019 | 052
3 || "'Dist*Num_pts*Pro' 0.02 0.71 0.59 0.41
3 || "™Alg*Num_pts*Pro’ 0.04 1.04 | 041 0.59
3 |'Error' H 0.19 0 | 0 i
3 | 'Total . 5.96 i 0o 0 |
4 | Data Distribution (Dist) 1.21 97.42 | 0.00 | 2831
4 | Algorithm Selection (Alg) | 0.01 065 | 043 | 019 |
| Number of Data Points i | | 1
4 | (Num_pt) b 1.78 71.80 | 0.00 | 41.72 |
4 §?Program Selection (Pro) i 0.08 3.18 0.05 1.85
4 | 'Dist*Alg' i 0.02 1.68 0.21 049 |
4 | "Dist*Num_pt' I 0.09 367 | 0.04 213 |
4 | 'Dist*Prog' 0.09 63 | 0.04 2.11
4 | "Alg*Num_pt' 0.08 315 | 0.06 1.83
4 !'Alg*Prog' | 0.03 124 | 031 0.72
4 ' ""Num_pts*Pro' ’ 0.06 1.20 ' 0.34 | 1.40
4 | "'Dist*Alg*Num_pt' i 0.00 0.00 1.00 0.00
4 | ""Dist*Alg*Pro' ' 0.07 264 | 0.09 1.53 |
4 || "Dist*Num_pts*Pro’ 0.02 040 | 0.81 | 0.46 |
4 I "™Alg*Num_pts*Pro’ 0.04 090 | 048 | 105 |
4 || 'Error' 0.27 0o | 0| 1
[ 4 Total | 426 i) N
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CHAPTER S
SUMMARY AND CONCLUSIONS

The objective of the research conducted for this thesis is to improve the accuracy
of 3D geologic models by identifying, assessing, and quantifying the impact of data
quality, grid complexity, data quantity and distribution, and algorithm and program
selection on the modelling process. Ensuring that the model output is as accurate as
possible is of great importance as 3D models are increasingly being used for decision
meking and geoscientific applications in many fields of study. The increased use of 3D
models for a broad range of applications has raised concerns about the accuracy and
reliability of model outputs (Weber and Englund, 1992; Weber and Englund. 1994;
Zimmerman et al., 1999; Jones et al., 2003), and the relationships between output gual'ty,
input data, model parameters, and the interpolation mechanism employed in the

modelling process.

This thesis has addressed these concerns by; 1) assessing the impact of variable
quality data on the accuracy of model estimations and developing a ‘Quality Weighting’
methodology for incorporating data into the modelling process to enhance the accuracy of
the model results (Chapter 2), 2) assessing and quantifying the variabi ity and influence of
data quantity, data distribution, and interpolation algorithm on the accuracy of models
simulating environments of varying complexity (Chapter 3), and 3) assessing and
quantifying the impact of program selection on the accuracy of 3D geologic models

(Chapter 4).
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The methodology developed to impose a quality weighting fac:or on the input data
used for model interpolation was shown to enhance the accuracy of 3D models (Charter
2). This methodology allowed all types of data to be incorporated in the interpnlation of
the model while enhancing the influence of the high quality data, which ultimately
increased the reliability of the output model. This methodology was tested in a study of
the McMaster University campus area and showed that a dataset composed of variable
quality data produced significantly different 3D model outputs to that produced by either
high or low quality data alone. Applying the Quality Weighting mettod for interpolation
allowed all of the data points to be used in the modelling process, while also allowing the
higher quality data to have a greater influence on the model than the lower quality data.
Utilizing this method reduced the negative impacts of the lower quality data on the model
output, while still utilizing these data to constrain the model in areas where high quality
data were unavailable. Comparison of model outputs created for the McMaster
University campus area indicates that the Quality Weighted model outputs more closely
conform to the available high quality data points and proxy data than un-weighted model

outputs.

This research shows that the quality of the data used to create 30 models can have a
substantial impact on the accuracy of the models produced. In cases where it is necessary
to create models with variable quality data, the data should be weignhted usiag a
differential weighting mechanism, such as the Quality Weighted methodology proposed

here, in order to assure the most accurate modelling results.
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One of the reasons that lower quality data are often included in 31D modelling studies
is in order for the models to be interpolated using the maximum number of data poins. A
common saying in 3D modelling is “You can never have too much data”. However,
analysis of the impact of data quantity on the accuracy of 3D models reported in this
thesis (Chapter 3) suggests that increased numbers of data points do not always improve
model accuracy. The research presented here showed that when modelling reiatively
complex grids, increasing the number of data points used for interpolation had the
greatest impact on improving model accuracy. The model accuracy of relatively simple
grids was less impacted by the addition of data points. These results were used to prasent
a cost-benefit analysis that showed the optimum number of data points (data coverage)
required for accurate and cost-effective interpolation of units of varying complexity. This
analysis identified the point at which collecting additional data (increasing cost) produced
a diminishing return (minimal increase in model accuracy) for models of varying

complexity.

The distribution of the data points was also determined to be an extremely important
factor affecting interpolation accuracy (Chapter 3). Regularly and randomly distributed
data points produce the most accurate models, followed by sparse and clustered data
respectively. The relationship between data quantity and distribution in the modelling
process is also explored in this thesis (Chapters 3 and 4). The results of this research
suggest that the relative importance of data distribution and data quantity on model
accuracy are a function of the geologic complexity within the model. When modelling

relatively simple geological environments, the model accuracy was more heavily
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influenced by the distribution of data than the number of data points. In contrast, when
modelling more complex geological environments, the number of data points had a
greater influence on model accuracy than the spatial distribution of data. This research
showed that contrary to popular belief, more data does not necessarily produce a more
accurate model and that when modelling relatively simple surfaces it is more important to

consider the distribution of the data than the actual number of data used for interpolation.

Although a large portion of this research focused on assessing the impacts of the data
parameters on model accuracy, the methods by which the models are produced were also
evaluated. Assessment of the impact of algorithm selection on model accuracy has been
reported in the literature for over 10 years. The significance the assessments reporied in
this thesis is that not only was the overall performance of each algorithm assessed, but
also their ability to produce accurate predictions given differences in modelling
parameters (Chapters 3 and 4). Overall, the ordinary kriging (OK) algorithm produced
more accurate results than inverse distance weighting (IDW). However, when their
performances on individual grids were compared, IDW produced slightly more accurate
results than OK in situations where complex grids were modelled with relatively low
numbers of data points. The differences in model accuracy between OK and IDW were
shown to decrease as the model complexity and number of data points used for modelling
increased, implying that algorithm selection has the greatest impact on model accuracy

when interpolating relatively simple grids with limited data.

Determining that there was a difference in the accuracy of results produced using

OK and IDW to interpolate the models simulated in this study was not surprising. and is
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in keeping with the findings of previous studies. However discovering that the model
results, using identical algorithms by different software programs, are different is much
more significant (Chapter 4). A major contribution of this study is to demonstrate that,
although certain software programs offer the same interpolation algorithms for modelling,
they do not necessarily provide the same output results. When modelling complex
environments, program selection was shown to have a greater impact on mcdel accuracy
than the algorithm chosen to interpolate the data. These results indicate that program
selection can have a significant influence on the accuracy of model results and should be
seriously considered as a possible source of model uncertainty, especially when
modelling complex subsurface geological environments, interpolating with clustered data,
or when relatively large quantities of data (more than 4 - 10.6% data coverage) are used

for interpolation.

Given that 3D models are increasingly used as analytical tools for numersus
applications in geo- and environmental sciences and may form the basis on which large
scale, multi-million dollar decisions are made, serious attention should be paid to the
many factors that control model accuracy. When modelling spatial data there is always a
high level of uncertainty, especially in subsurface environments where the unit(s) of
interest are defined by data only available in select locations. Censequently, it is
extremely difficult to validate the output of 3D subsurface models and to identify the
many factors that may impact their reliability and accuracy. The results presented in this

thesis can be used to guide the selection of modelling parameters used in 3D subsurface
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investigations and will allow the more effective and efficient creation of accurate and

reliable 3D models.

Future Work

The research presented in this thesis is just the ‘tip of the iceberg’. There is much
more that can be done to further assess and quantify the impacts of uncertainty on the
accuracy of 3D geologic models. I believe that uncertainty is becoming such an
important aspect of modelling that methods will soon be developed to visuaily
incorporate uncertainty into models as the fifth dimension (5D). The technology has been
in place for years to create 4D models with attributes that span time and space, and the
assignation of values of uncertainty to these attributes will allow the development of 5D
models. This will allow people to visualize how the values, as well as the uncertainty

associated with the values, vary in both time and space.

The field of 3D modelling is expanding, not only in popularity, but quite literally
as well. The size and scale of the 3D models being produced today are much larger than
in the past. A few years ago, developing models the size of cities and townships was
considered large scale (Bajc et al., 2004; Hansel et al., 2004; Logan et al., 2004). Today,
models are being constructed at the provincial (Keller et al., 2009) and national scales
(Kessler et al.,, 2007, Gunnink, 2009), and at global scales with projects such as

OneGeology, designed to create a ‘dynamic digital geological model’ of the entire Earth.
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I believe that research in geomodelling is moving past the creation of 3D models
that only estimate the value of attributes in space, and is now focusing on quantifying and
assessing the uncertainty associated with model predictions. Producing colourful 3D
visualizations still has a digital ‘wow factor’ (Blewett and Henson, 2006), which implies
a certain degree of confidence and authority. However, the recent development of
applications such as GOOGLE EARTH ©, GOOGLE MAPS ©, and MAP QUEST © are
raising legal issues surrounding the communication of spatial data (Onsrud, 2010). It is
only a matter of time before these legal issues are extended to 3D geologic models, which
will likely result in the quantification of uncertainty being more important than the actual
model itself. Hence, a major field of future research will be in the development of
effective mechanisms for uncertainty analysis in the modelling of multi-dimensional

parameters.
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