
SUPPLY CHAIN SCHEDULING WITH DELIVERY

COSTS

SUPPLY CHAIN SCHEDULING WITH DELIVERY

COSTS

By

RUI ZHANG, B.ENG., B.SC., M.SC.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University

@Copyright by Rui Zhang, April 2010

11

DOCTOR OF PHILOSOPHY (2010)

(BUSINESS ADMINISTRATION)

McMaster University

Hamilton, Ontario

TITLE:

AUTHOR:

SUPERVISOR:

Supply chain scheduling with delivery costs

Rui Zhang

B.Eng (Qingdao University, P.R. China)

B.Sc (McMaster University, Canada)

M.Sc (McMaster University, Canada)

Dr. George Steiner, Professor

NUMBER OF PAGES: xiii, 140

To my wife, miao and my daughter, zoey

Abstract

Supply chain management has been one of the most important issues in man

ufacturing industries. In order to improve customer satisfaction, suppliers usually

extend their inbound production operations to outbound logistics operations. To im

prove the overall operational performance, it is necessary to study scheduling models

which consider inbound production and outbound deliveries simultaneously. This

thesis deals with supply chain problems on the operational level using deterministic

models.

Meeting due dates is always one of the most important concerns in scheduling

and supply chain management. In most supplying contracts, customers require that

suppliers either meet contracted due dates or pay tardiness penalties. In order to

save delivery costs, suppliers usually deliver jobs in batches. Therefore, we will study

supply chain scheduling problems with delivery costs, where our goal is to minimize

the sum of the weighted number of tardy jobs and the batch-delivery costs on a single

machine.

In traditional manufacturing system, due dates are not considered as given by

exogenous decisions. In modern supply chains, however, due dates are determined

by taking into account the system's ability to meet the assigned due dates, which

can be quoted with certain costs. Therefore, we will study supply chain scheduling

problems with delivery costs and due date assignment, where our goal is to minimize

the sum of the weighted number of tardy jobs, the due-date-assignment costs and the

batch-delivery costs on a single machine.

ii

iii

As we know, most machine scheduling models are intractable in terms of com

putational complexity. Therefore, for our above problems, which are even harder, we

first prove their computational complexity. Then we propose pseudo-polynomial algo

rithms for optimal solutions. For some problems, the pseudo-polynomial algorithms

perform in polynomial time for some special cases. Finally, we develop efficient ap

proximation algorithms or fully polynomial time approximation schemes, which can

be implemented easily in practice.

A cknowledgements

I would like to express my sincere gratitude to my supervisor , Professor George

Steiner , for providing me the opportunity to be his student, for his financial support ,

and for his cont inued encouragement in the past four years. In part icular, I would

like to thank him for his supervision from t he initial selection of a research topic unt il

t he final writ ing of this t hesis.

I would also like to thank Professor George vVesolowsky and Professor Elkafi

Hassini for their const ructive comments and valuable suggestions which improved

the quality of this thesis. I would like to thank my external examiner Professor

Nicholas Hall for providing helpful remarks on this thesis. I would like to express

my t hanks to Professor Prakash Abad for his encouragement and support throughout

my studies. I also cannot forget the great t ime wit h Tiina Salisbury when I was

the teaching assist ant for her courses. I t hank all my colleagues who made my t ime

at DeGroote School of Business enjoyable. I t hank all the administration staff who

provided kindness and support during my studying.

I would like to t hank Mr. Ni Jin , Mrs. Lu Mei and their son Nathan for their

help after we arrived in t his country.

I am deeply indebted to my parents for their love and for giving me life. I am

deeply thankful to my wife Miao for her love and support and for always being t here

for me. I would like to give a lot of thanks to my newborn daughter Zoey for the

happiness that she has brought to me with her birth.

IV

Cont ents

1 In trod uction

1.1 Machine Scheduling

1.1.1 Machine Scheduling Models

1.1.2 Algori thms in Machine Scheduling.

1.2 Supply Chain Scheduling Models wit h Delivery Costs

1.3 Models wit h Delivery Costs and Due Date Assignment

2 Literature Review

2.1 Machine Scheduling Models

2.2 Supply Chain Scheduling Models with Delivery Costs

2.3 Models with Delivery Costs and Due Date Assignment

2.4 Outline .

3 Preliminaries

3.1 Terminologies

3.2 Assumptions .

3.3 Notations ..

3.4 Bound Improvement Procedure

4 Single-customer Model with D elivery Costs

4.1 Introduction .

4.2 Preliminaries

v

1

1

2

3

5

7

9

9

10

12

13

14

14

15

16

17

19

19

20

Vl

4.3 Pseudo-polynomial Algorithm

4.4 Fully Polynomial Time Approximation Scheme .

4.4.1 Initial Bounds .

4.4.2 Tight Bounds

4.4.3 Approximation

4.5 Summary

5 Multiple-customer Model with Delivery Costs

5.1 Introduction .

5.2 Preliminaries

5.3 Pseudo-polynomial Algorithm

5.4 Restricted Problem

5.4.1 Pseudo-polynomial Algorithm

5.4.2 Fully Polynomial Time Approximation Scheme .

5.5 Approximation Algorithm

5.6 Summary

6 Models with a Common Assignable Due Date

6.1 Introduction .

6.2 Preliminaries

6.3 Unconstrained Problem .

6.3.1 Zero Contracted Due Date

6.3.2 Positive Contracted Due Date

6.4 Time-constrained Problem ..

6.5 Capacity-constrained Problem

6.5.1 Pseudo-polynomial Algorithm

6.5.2 Fully Polynomial Time Approximation Scheme.

6.6 Summary

7 Models with Distinct Assignable Due Dates

7.1 Introduction

22

34

34

37

39

40

41

41

42

44

50

51

54

61

63

64

64

65

66

67

68

72

74

74

77

84

85

85

7.2

7.3

7.4

7.5

Preliminaries

Equal Due-date-assignment Costs

7.3.1 NP-hardness

7.3.2 Pseudo-polynomial Algorithm

7.3.3 Fully Polynomial Time Approximation Scheme.

Equal Due-date-assignment Costs and Equal Tardiness Penalties

Summary

8 Models with SLK and TWK Assignable Due Dates

8.1 Introduction

8.2 SLK Due Date Assignment .

8.2.1 Preliminaries

8.2.2 Pseudo-polynomial Algorithm

8.2.3 Fully Polynomial Time Approximation Scheme.

8.3 TWK Due Date Assignment

8.3.1 Preliminaries

8.3.2 Pseudo-polynomial Algorithm

8.3.3 Fully Polynomial Time Approximation Scheme.

8.4 Summary

9 Conclusions and Future Research

A Terminologies

B Assumptions

C Notations

D Models and Results

Vll

86

89

89

90

96

105

108

109

109

110

110

111

112

117

118

118

120

125

126

135

136

137

140

List of Figures

4.1 Marker jobs and corresponding intervals.

5.1 A partial schedule: (Jk, T, t, h, d, v) . .

5.2 A full schedule O" with job (i, j) early.

5.3 A full schedule with d(i,j1) :::; d(i,J)·

5.4 A full schedule with d(i,j1) > d(i,J)·

7.1 Due date assignment for job j based on a given schedule O".

26

47

47

48

48

87

8.1 The SLK due-date-assignment cost as a piecewise linear function of x. 113

8.2 The TWK due-date-assignment cost as a piecewise linear function of x. 121

Vlll

Chapter 1

Introduction

Scheduling is concerned with allocating scarce resources to tasks over time. It plays

a crucial role in manufacturing and service industries. Typically, in a scheduling

problem, it is required to determine a schedule, which achieves certain objective(s)

without violating any accompanying constraints. Scheduling problems that we will

discuss in this thesis are categorized as deterministic off-line scheduling, where all

data are well-defined in advance.

1.1 Machine Scheduling

Inspired by the applications in production planning, deterministic off-line scheduling

developed into a more specific research area, deterministic off-line machine schedul

ing (machine scheduling) from the late 1970's. It involves assigning limited resources

(single or multiple machines) to a set of tasks (jobs) to optimize a given objective

function. In other words, jobs compete with each other for machine time. For com

prehensive definitions, we refer readers to the textbooks by Brucker [2001] and Pinedo

[2001].

1

2 Ph.D. Thesis - Rui Zhang

1.1.1 Machine Scheduling Models

In this section, we will introduce the classical notation system for machine scheduling

models and relevant concepts that will be used later. In machine scheduling, models

can be classified by the configuration of machines, the nature of jobs and the objective.

In the default setting, a machine can only execute one job at a time and a job can

only be executed by one machine at a t ime. In addition, a job can be started any

time from the beginning (time 0) and can not be interrupted during its processing.

In what follows, we outline the three-field n otation system, ai,Bif, which was

established by Graham et al. [1979] for representing a machine scheduling model:

• a indicates the configuration of machines , i. e. , the type and the number of

machines. a = 1 specifies a single-machine environment. If there are mult iple

machines, it involves the type of machines. For instance, a = P2 implies a

parallel m achine environment consisting of two machines;

• ,B indicates t he nature of jobs, i.e. , t he restrictions and the constraints of pro

cessing a job. For instance, ,B = pmtn implies that preemption is allowed such

that a job can be interrupted during its processing and started over sometime

later . In particular , if ,B is left blank , this denotes the default setting;

• 1 specifies the obj ective, which usually needs to be minimized. For inst ance,

1 = L WjUj means to minimize the weighted number of t ardy jobs, where

U j = 1 if job j completes later than the due date dj ; ot herwise U j = 0, and W j

is the tardiness penalty (weight) of job j .

Using this notation system, the problem of m inim izing the weighted number

of tardy jobs on a single machin e can be denoted by 111 "L Wj Uj . For more machine

scheduling models and relevant results, we refer readers t o the survey papers by

Lawler et al. [1993] and Chen et al. [1998] .

McMaster - DeGroote School of Business 3

1.1.2 Algorithms in Machine Scheduling

The term algorithm refers to a series of instructions for solving a given problem. The

fundamental issue of an algorithm is the efficiency for finding the best solution that is

measured by the maximum number of computational steps represented as a function

of the input size of the problem in the worst case, termed the running time. The term

size refers to the length of a problem's encoding. We outline two encoding forms by

the following example. Integer "6" is encoded as "110" in the binary form and as

"111111" in the unary form. Extending this example, a positive integer n is at most

llog2 nJ + 1 ones and zeros in binary encoding but exactly nones in unary encoding.

These concepts are central in computational complexity theory, which is devel

oped to study the nature of algorithmic tractability of problems and is widely used

in computer science and combinatorial optimization. In computational complexity

theory, one of the major concerns about a problem is if it is NP-hard or not. Here

the term "NP" stands for "nondeterministic polynomial time". A decision problem

is in the class NP, if its "Yes" answer can be verified by a reference algorithm in

polynomial time of its size under binary encoding (polynomial time), where a decision

problem is seeking either a "Yes" or "No" answer. Simply speaking, "a problem is

NP-hard" means that "a problem is at least as hard as the hardest decision problem

in the class NP in terms of computational complexity". Another related concept is

NP-completeness. A decision problem is NP-complete, if it is NP-hard and is in the

class NP. The first NP-complete problem given by Cook [1971] is the satisfiability

problem, known as SAT: Is there a truth assignment for a given boolean formula? In

his famous paper, he proved SAT is NP-hard. This proof is fundamental, because it

provides an easier way to prove a problem's NP-completeness: First the problem has

to be shown to be in the class NP and then a known NP-complete problem has to be

reducible to the problem in polynomial time. This proof strategy will be widely used

in this thesis. In contrast with the class NP, the class P, which stands for "poly

nomial time", contains all decision problems which can be solved by an algorithm in

polynomial time. The question "Is P = NP ?" is a one-million prize problem an-

4 Ph.D. Thesis- Rui Zhang

nounced by the Clay Mathematics Institute of Cambridge, Massachusetts (CMI) in

2000- http:/ /www.claymath.org/millennium/P _vs_NP / (July 29, 2008). In general,

we believe P =J. NP [Garey and Johnson, 1979], [Papadimitriou, 1994], [Hochbaum,

1996], [Vazirani, 2003], [Cook et al., 1998].

We outline the categorizations of algorithms used in machine scheduling. From

the view of efficiency, algorithms fall into the following three categories: polynomial,

pseudo-polynomial and none.fficient. Before giving the definitions, we introduce the

"Big-0" notation. A function T(n) is O(f(n)), if there exists a constant c and a

number X such that for all n 2: X, it is always true that T(n) ::; cf(n). For

a problem, an algorithm is called polynomial if its running time T(n) = O(nk),

where k is constant and the size of the problem is polynomial under binary encoding.

On the other hand, an algorithm is called pseudo-polynomial if its running time

T(N) = O(Nk), where k is constant and O(N) is the size of the problem under

unary encoding. Any algorithm with higher running time is called nonefficient, e.g.,

an algorithm with running time T(n) = 0(2n) and the size of problem under binary

encoding. The most recent developments on nonefficient algorithms in combinatorial

optimization are reviewed by Woeginger [2008].

Based on computational complexity theory, an NP-hard problem is called

NP-hard only in the ordinary sense, if it is solvable by a pseudo-polynomial al

gorithm. Otherwise, we call it strongly NP-hard. From the following discussions,

we will see their differences in the design and analysis of approximation algorithms.

Regarding the accuracy of solutions provided, algorithms are divided into three cate

gories: exact, approximate and heuristic. An exact algorithm promises to deliver an

optimal solution no matter how long it takes. A heuristic algorithm, however, only

provides a solution fast, but there is no theoretical analysis for how good the solution

is. It may be very far away from the optimum in the worst case. An approximation

algorithm is between exact and heuristic algorithms. It provides a solution with a

guaranteed approximation ratio to the optimum in the worst case. Suppose 1r* is

the optimal solution value for a minimization problem. A fully polynomial (1 +c)-

McMaster - DeGroote School of Business 5

approximation algorithm finds a solution value 1f ::;; (1 + E)1r* in polynomial time of

problem size and 1/E, where E could be any given positive value. Since a (1 +E)

approximation algorithm represents a series of algorithms for all E > 0, it is called

a "fully polynomial time approximation scheme" (FPTAS). The main advantage of

an FPTAS is that one can get a solution arbitrarily close to the optimal solution in

polynomial time. An FPTAS is about the trade-off between accuracy and efficiency.

Other types of approximation algorithms can be found in the textbooks by Hochbaum

[1996] and Vazirani [2003].

As mentioned before, there is no pseudo-polynomial algorithm for any strongly

NP-hard problem, unless P = NP. Therefore, finding a pseudo-polynomial algo

rithm is the main approach for establishing that a problem is NP-hard in the ordinary

sense. Due to the fact that "the existence of an FPTAS for a problem implies the

existence of a pseudo-polynomial algorithm as well" [Cook et al., 1998], it is also im

possible to find an FPTAS for a strongly NP-hard problem, unless P = NP. For a

problem which is NP-hard in the ordinary sense, an FPTAS is the best possible theo

retically. Since most problems in machine scheduling are NP-hard, the methodology

used in our thesis to study a problem will mainly go through the following stages.

First, we will look for an NP-hardness proof. If it can not be proven to be strongly

NP-hard at the first stage, we will try to develop a pseudo-polynomial algorithm to

see if the problem is NP-hard only in the ordinary sense. Once a pseudo-polynomial

algorithm is obtained, we will try to convert it into an FPTAS.

1.2 Supply Chain Scheduling Models with Deliv-

ery Costs

Supply chain management has been one of the most important topics in manufactur

ing research. Most of the supply chain literature focuses on issues on the strategic

level, using stochastic models. By the survey paper [Thomas and Griffin, 1996], how-

6 Ph.D. Thesis- Rui Zhang

ever , over 11% of the U.S. Gross National Product is spent on logistics and for many

products, t he logistics costs more than 30% of the cost of goods sold. To improve

the overall operational performance, it is necessary to study scheduling models which

consider inbound production and outbound deliveries simultaneously. Our research

deals with supply chain problems on the operational level, using deterministic models.

This type of scheduling was named supply chain scheduling by Hall and Potts [2003].

In contrast with classical machine scheduling, in supply chain scheduling, de

liveries are also part of tasks. In other words, there are two decisions to be made: How

to process jobs on machines and how to deliver jobs to customers? Due to the fact that

delivering jobs in batches saves delivery costs and setup time that consumes machine

time, the delivery operation does bring a new question: How to group jobs in batches

for both production and deliveries? This makes supply chain scheduling connected to

batch scheduling, which is a well-studied research area in machine scheduling. They

are different , however , as delivery costs are not part of objectives in batch scheduling.

Detailed discussions about batch scheduling can be found in the survey paper by

Potts and Kovalyov [2000]. From the view-point of computational complexity, "How

to group jobs in batches" does make some easy problems harder. For example, the

problem of minimizing the total weighted completion time on a single machine can be

easily solved by sequencing all jobs in the weighted shortest processing time order in

polynomial time [Pinedo, 2001], but its supply chain scheduling version of minimizing

the sum of the total weighted completion times and the batch-delivery costs on a single

machine is strongly NP-hard [Hall and Potts, 2003].

Extending the {3 field , the three-field notation system can still be applicable

in supply chain scheduling. For instance , l ls l L. wJUj + bq indicates a supply chain

scheduling model on a single machine with the goal of minimizing the sum of the

weighted number of tardy jobs and the batch-delivery costs, where s is the machine

time needed to set up a new batch, q is the delivery cost per batch and b is the number

of batches.

McMaster - DeGroote School of Business 7

1.3 Models with Delivery Costs and Due Date As-

signment

Meeting due dates is one of the most important objectives in scheduling and supply

chain management. Customers require that suppliers either meet contracted due dates

or pay large penalties. For example, Slotnick and Sobel [2005] mentioned that the tar

diness penalties in aerospace industries may be as high as one million dollars per day

for suppliers of aircraft components. In traditional machine scheduling models, due

dates are considered as given by exogenous decisions [Baker and Scudder, 1990]. In

an integrated system, in order to avoid tardiness penalties, due dates are determined

by taking into account the system's ability to meet the assigned due dates. Therefore,

suppliers are under increasing pressure to quote attainable due dates. It is obvious

that if all due dates are extended to be large enough, then no job would be tardy.

In the meantime, extending due dates too far into the future may force a supplier

to offer price discounts in order to retain the customer. Thus for any job, there is

a trade-off: paying penalty for it being tardy or paying a certain cost to extend the

due date. This caused an increasingly large number of recent scheduling studies to

take into account due date assignment. And the studies showed that the ability of

controlling due dates can be a major factor in improving supply chain performance.

Without including delivery costs, this type of scheduling was named scheduling

with due date assignment. A large number of publications in this research area can

be found in the survey papers by Gordon et al. [2002a] and Gordon et al. [2002b].

In their papers, the following notations are used for different types of assignable due

dates: CON means that there will be a common due date D assigned to all jobs

and DIF means that distinct due dates Dj, j = 1, ... , n, can be assigned to each

job individually. When all assigned due dates are a function of the processing time,

we consider two cases: SLK means that the assigned due dates are the sum of the

processing time and a non-negative slack, i.e., Di =Pi+ e, e ~ 0 and TWK means

that the assigned due dates are the product of the processing time and a non-negative

8 Ph.D. Thesis - Rui Zhang

coefficient, i.e., DJ = rJPJ, rJ 2: 0. For the most recent developments in this research

area, we refer to the survey papers by Kaminsky and Hochbaum [2004] and Gordon

et al. [2004].

Including the above notations in the (3 field, the three-field notation system is

still applicable for supply chain scheduling models with delivery costs and due date

assignment. For instance, lls,DIFI I: aj max{DJ- AJ, 0} + L wJUJ + bq, where AJ

is the original contracted due date of job j and aJ is the due-date-assignment cost

per extended time unit from AJ to DJ, denotes a supply chain scheduling model of

minimizing the sum of the weighed number of tardy jobs, the due-date-assignment

costs and the batch-delivery costs on a single machine for a single customer. Recall

that s is the machine time needed to set up a new batch, q is the delivery cost per

batch and b is the number of batches.

Chapter 2

Literature Review

This thesis is mainly about minimizing the weighted number of tardy jobs on a single

machine, denoted by 111 ~ wjUj, in the supply chain context. In this chapter, we will

review the relevant scheduling literature.

2.1 Machine Scheduling Models

Moore [1968] found a dynamic programming algorithm to minimize the number of

tardy jobs, denoted by 111 ~ Uj, in 0(n log n) time, where n is the number of jobs.

Karp [1972] proved that the weighted problem, 111 ~ wjUj, is NP-hard. Four years

later, the equivalent maximization version of the 111 ~ w j Uj problem (maximizing

the weighted number of on-time jobs) was shown to be solvable in pseudo-polynomial

time by Sahni [1976]. This established that the 111 ~wjUj problem isNP-hard only

in the ordinary sense. Moreover, this pseudo-polynomial algorithm was further con

verted into an FPTAS in the same paper [Sahni, 1976] with time complexity O(n3 /c).

Gens and Levner [1979b] presented an FPTAS for the original minimization version

of the 111 ~wjUj problem with the same time complexity O(n3 /c). By adding a

special binary search into the FPTAS in [Gens and Levner, 1979b], Gens and Levner

9

10 Ph.D. Thesis- Rui Zhang

[1981] were able to improve the time complexity to O(n2/E+n2 logn). As far as we

know, this is the best FPTAS for the 111 'L_w1U1 problem in terms of time complex

ity. By allowing hatching in the 111 'L_ w1U1 problem, Hochbaum and Landy [1994]

studied the 1isi 'L_ w1U1 problem, where sis the machine time needed to set up a new

batch, and found a backward dynamic programming algorithm for it, which runs in

pseudo-polynomial time and shows that the 1lsi 'L_ w1U1 problem is NP-hard only

in the ordinary sense. For the same problem, Brucker and Kovalyov [1996] found

a forward dynamic programming algorithm running in pseudo-polynomial time and

then converted the forward dynamic programming algorithm into an FPTAS with

time complexity O(n3 /E + n3 logn).

Many other problems related to the 111 'L_ w1U1 problem and with further

constraints were studied in the past three decades. Lawler [1983] proved that the

1id1i 'L_ w1U1 problem is NP-hard, where job j has to be completed by the dead

line, J1 , in any feasible schedule. This problem, however, is still open whether it is

solvable by a pseudo-polynomial algorithm. Lenstra et al. [1977] provided a strong

NP-hardness proof for the 1ir11 'L_ U1 problem, where job j can not be executed un

til the release time, r1 , in any feasible schedule. Bar-Noy et al. [2001] studied the

weighted 1ir1i 'L_ w1U1 problem. Lawler [1990] presented a pseudo-polynomial algo

rithm for the 1irJ,pmtni 'L_w1U1 problem and the algorithm runs in O(n5) time when

all jobs have unit weights, i.e., w1 = 1, denoted by 1ir1 ,pmtni "2:. U1. Baptiste [1999]

improved the complexity to O(n4). Other related problems can be found in the survey

paper by Akker and Hoogeveen [2004].

2.2 Supply Chain Scheduling Models with Deliv-

ery Costs

One of the first scheduling models taking into account logistics was by Potts and

Kovalyov [1980]. However, their model considers only delivery time but does not

McMaster - DeGroote School of Business

consider delivery costs. Cheng and Kahlbacher [1993] were the first to study a machine

scheduling model involving delivery costs. Lee and Chen [2001] further extended the

model in [Cheng and Kahlbacher, 1993] into one with a limited delivery capacity.

Hall and Potts [2003] were the first to introduce delivery costs into the ob

jective of minimizing the weighted number of tardy jobs on a single machine. In

their models, however, they made the assumption that tardy jobs are not delivered

to customers. With this assumption, they were able to present a pseudo-polynomial

algorithm even when jobs are for a fixed number of multiple customers. The algo

rithm becomes polynomial, when all jobs have equal weights. Their model, however,

does not consider batch-setup time, which consumes machine time in most real cases.

In the same paper [Hall and Potts, 2003], they also studied other objectives of

minimizing the overall scheduling and delivery costs. As it is a new area for research,

there are relatively few papers dealing specifically with scheduling problems in supply

chains. Chen and Hall [2007] extended these to supply chains with assembly-type

manufacturing systems and Dawande et al. [2006] to distribution systems. Some

of the issues studied in these papers are related to previous work on coordinating

production and distribution systems. We mention here the papers by Williams [1981],

and Lee and Chen [2001], which consider the integration of transportation time and

capacity issues with scheduling decisions. Li et al. [2005] studied the problem of

minimizing the average job-arrival times, which include travel times to the customers.

Chen and Vairaktarakis [2005] presented polynomial time solutions (with a fixed

number of customers) for the problem of minimizing a convex combination of the

mean arrival times and the total distribution cost, where the latter includes fixed

delivery costs and variable costs dependent on the delivery routes. Pundoor and Chen

[2005] studied a model where the objective is to minimize a convex combination of the

maximum delivery tardiness and total delivery costs. Selvarajah and Steiner [2006a,b,

2009] developed exact and approximation algorithms for the supplier's problem of

minimizing the sum of the total weighted flow time and batch-delivery costs. Agnetis

et al. [2006] looked at the problem of rescheduling to resolve conflicts between the

11

12 Ph.D. Thesis- Rui Zhang

supplier's and the manufacturers' ideal schedules. Hall and Potts [2005] studied the

coordination of scheduling and batch deliveries with various scheduling objectives.

Moreover, Hallet al. [2008] edited a special issue focusing on the area of supply chain

coordination and scheduling, in which Tang et al. [2008] considered a production and

distribution model taking into account inventory control issue with one supplier and

multiple buyers. Manoj et al. [2008] studied decentralized and joint optimization

results of a model with a manufacturer, a distributor and several retailers in a just

in-time environment. The most recent comprehensive survey paper was by Chen

[2008].

2.3 Models with Delivery Costs and Due Date As-

signment

Cheng and Kovalyov [1996] studied the first batch scheduling model which took into

account due-date-assignment costs: minimizing the number of tardy jobs with batch

setup time and a uniform assignable due date on grouped jobs, where jobs are divided

into different groups and jobs in the same group are identical. Changing the processing

of jobs from one group to another requires a sequence-independent batch-setup time,

which depends on the groups. They first developed a pseudo-polynomial algorithm

for it and then converted the pseudo-polynomial algorithm into an FPTAS. Their

model, however, does not consider batch-delivery costs as part of the objective.

A more complex model, with distinct assignable due dates, was studied by

Shabtay and Steiner [2006]. In their model, each job has a contracted due date,

and each job can be assigned an arbitrary due date. The goal is to minimize the

sum of the due-date-assignment costs and the weighted number of tardy jobs with

respect to the assigned due dates. They first provided a strong NP-hardness proof

for the general case and then presented two polynomial algorithms for two special

cases: one with equal due-date-assignment costs and zero contracted due dates and

McMaster - DeGroote School of Business

one with equal due-date-assignment costs, zero contracted due dates and equal tardy

penalties. Their model, however, does not include hatching or delivery costs.

There is some literature which considers optimizing other scheduling measures

in this context. Chen [1996] studied a single-machine scheduling problem, where the

objective is to minimize the sum of earliness and tardiness penalties and delivery costs

with a common assigned due date. Yang [2000] focused only on tardiness penalties

with quoted delivery dates but without delivery costs. In this paper, two problems

are studied: one to minimize the total batch earliness and the other one to minimize

the largest batch earliness.

2.4 Outline

The thesis is organized as follows, in Chapter 3 we introduce some terminologies,

assumptions and notations that will be used in later Chapters 4 - 8, and we also

present a bound improvement procedure which will be used in Chapters 4- 7. In

Chapters 4 and 5, we study supply chain scheduling models with delivery costs for a

single customer and multiple customers, respectively. In Chapters 6, 7 and 8, we study

supply chain scheduling models with both delivery costs and due date assignment

with respect to different types of assigned due dates: Chapter 6 deals with models

with a common due date which is assigned to all jobs; Chapter 7 deals with models

with arbitrary due dates which are assigned to each job individually; and Chapter 8

deals with models with assigned due dates which are based on the processing times.

Chapter 9 includes our final conclusions and discusses future research potential.

13

Chapter 3

Preliminaries

In this chapter, we first describe some terminologies, establish some fundamental

assumptions and introduce some notations for models which will be used in this thesis.

(Notice that these terminologies, assumptions and notations are listed in Appendixes

A, B and C as well.) Then we propose a bound improvement procedure which will

be used in Chapters 4, 5, 6 and 7.

3.1 Terminologies

As mentioned previously, supply chain scheduling has a strong connection with batch

scheduling where jobs are processed in batches. In contrast with traditional machine

scheduling, the completion time of a job is defined by the completion time of the last

job in the same batch. We call this the batch-completion time. Similarly, we call the

smallest due date of jobs in the same batch the batch-due date.

Suppose batch i has a batch-completion time C(i) and a batch-due date d(i).

Let J(i) be the job set scheduled in batch i. If C(i) :=:; d(i), then all jobs in batch i

are early. Because the jobs in J(i) have a common completion time C(i) and their

due date is at least d(i), these jobs are early. Then we call batch i an early batch.

14

McMaster - DeGroote School of Business

Let job j be the one which has the largest due date in J(i). If C(i) > dj then the

jobs in J(i) complete later than their due dates, and these jobs are tardy. Then we

call batch i a tardy batch. If d(i) < C(i) ::; dj, then there is at least one early job j

with the due date dj and one tardy job with the due date d(i) in J(i). Then we call

batch i a mixed batch.

3.2 Assumptions

In supply chain scheduling, a job has to go through two stages: the production and

the delivery operations. Suppose at time tj, job j completes the production operation

and is ready to be delivered. Since delivering jobs in batches saves costs, the supplier

may want to deliver job j and other jobs in a single batch, say batch i. Let job k be

the latest finished job in batch i. Suppose job k completes the production operation

at time tk, then job j can be delivered at tk together with other jobs in batch i.

Therefore, the batch-completion time of batch i is defined by the time when all the

jobs in batch i are ready to be delivered, i.e., C(i) = tk > tj. This is also the

completion time of job j and k, i.e., CJ = Ck = C(i).

Suppose it takes time T for a vehicle to deliver a batch to a customer. Then

finally, at time tk + T, job j is available to the customer. Similarly to definitions in

machine scheduling, we use the tardiness indicator UJ for job j in the supply chain

COntext, i.e., Uj = 1, if Cj + T = tk + T > dj and Uj = 0, otherwise. It is not hard

to see that replacing dj by dj - T and setting T = 0 would not change the value of

tardiness indicator UJ. Therefore, if we assume that the number of vehicles available

for delivering jobs is unlimited (unlimited-delivery), then we are able to deliver a

batch any time. With the unlimited-delivery assumption, we are able to assume

T = 0 (instant-delivery). Notice that once all due dates are reduced by T, we reset

T = 0. Other than these, we have two more assumptions about deliveries: that all

jobs have to be delivered to customers including tardy jobs (tardy-delivery), and that

only jobs for the same customer can be delivered in a batch (batch-delivery).

15

16 Ph.D. Thesis- Rui Zhang

For inbound production operations, we assume that there is only one machine

for processing jobs (single-machine). Moreover, we assume that all jobs are available

for processing at time zero (zero-availability) and no interruption is allowed during

jobs' processing (non-preemption).

3.3 Notations

In Chapters 4, 6, 7 and 8, we are given a job set J = {1, 2, ... , n} for a single customer.

For each job j E J, we use notation Pj for the processing time, dj for the due date and

Wj for the tardiness penalty of job j, Vj E J. Let s be the batch-setup time before

processing the first job in each batch and q be the batch-delivery cost of each batch.

Let Cj be completion time of job j. If CJ > dJ, then the tardiness indicator UJ = 1.

Otherwise, UJ = 0. In denoting a scheduling problem, we use notation b to represent

the number of batches in a schedule, i.e., 111 L_wJUJ + bq.

In Chapters 6, 7 and 8, we use notation AJ ~ 0 for the contracted due date

for job j, which is the original due date required by the customer. Let DJ denote the

assigned due date, which is used to determine the tardiness indicator UJ such that: if

CJ > DJ, then Uj = 1; if CJ ~ DJ, then UJ = 0. Let RJ =max{ Dj - AJ, 0} be the

extended time units on AJ by DJ and aJRJ be the due-date-assignment cost, where

a1 is the due-date-assignment cost per extended time unit. If all A1 are equal, then

we use notation A to represent the common contracted due date, i.e., A1 = A and if

all D1 are equal, then we use notation D to represent the common assigned due date,

i.e., D1 =D.

In Chapter 5, we are given a set of customers, M = {1, ... , m} and a set of job

J = { l1, ... , lm}, where Ji = { (i, 1), ... , (i, ni)}, Vi E M and n = L_Z:,1 ni· For each job

(i, k) E J, we have P(i,k) (processing time), d(i,k) (due date), 'W(i,k) (tardiness penalty)

and U(i,k) (tardiness indicator). For each customer i E fvf, we have si (batch-setup

time), qi (batch-delivery cost) and bi (number of batches).

McMaster - DeGroote School of Business

3.4 Bound Improvement Procedure

Bound improvement procedure was first introduced by Chudanov et al. [2006]. In this

thesis, we denote it by BIP[a1 , a2 , A(w, P)]. Assume that x* is the optimal solution

value for a minimization problem P. The procedure requires two parameters as the

inputs: (1) positive values a1 and a2 , which indicate an interval such that x* E [a1 , a2];

(2) an algorithm A(w, P), which for any given w runs on the problem P, and reports

either a value x* > 2w /3, or a feasible solution with value x ~ w in 0(1r) time, where

1r is a polynomial function of the input size for the problem P. The output of the

procedure is a positive value ~, which indicates an interval such that x* E [~, 3~]. In

Chapter 4, 5, 6 and 7, we call [a1 , a2] initial bounds and [~, 3~] tight bounds. In this

thesis, we always have a2 = na1 .

3. Run A(w, P) on the problem P:

(a) If A(w, P) reports x* > 2w/3, then: if 12 = k, then stop; otherwise set

11 = k and go to step 2 /*h gets updated only in this step.

(b) If A(w, P) reports a solution with value x ~ w, then: if 12 = k, then set

~ = w /3 and stop; otherwise set 12 = k, ~ = w /3 and go to step 2/* 12 gets

updated only in this step.

Theorem 3.4.1 BIP[a1 , a2 , A(w, P)] runs in 0(1r log log(a2/a1)) time and deter

mines a bound for x* such that x* E [~, 3~].

Proof. BIP[a1 , a2 , A(w, P)] does binary search on [0, flog(a2/a1)l], thus A(w, P)

will be called O(log log(a2/a1)) times. If A(w, P) runs in 0(1r) time, then the over

all running time is 0(1r log log(a2 / a I)). We prove the correctness by studying the

following four cases.

17

18 Ph.D. Thesis- Rui Zhang

(1) Suppose that BIP[a1 , a2, A(w, P)] stops without reporting x* > 2wj3

during the whole procedure. In this situation, since always l2 is reduced in step 3(b),

BIP[a1 , a2, A(w, P)] must end with l1 = 0 and l2 = 1. This implies that A(w, P)

has w = a1 in its last run. Setting ~ = w /3 = a!/3 implies that x ::; w = 3~ = a1 .

Because x* E [a1 , a2] and x* ::; x, so we must have x* = a1 E [~, 3~].

(2) Suppose that BIP[a1 , a2, A(w, P)] stops without ever finding a solution

with value x ::; w during the whole procedure. In this situation, since always h is

increased in step 3(a), BIP[a1 , a2, A(w, P)] must end with h = llog(a2/a1)l- 1 and

l2 = pog(a2/a1)l. This implies that in its last run A(w, P) has k = 21log(a2/a1)l and

w = 2ilog(a2 /a1)l-la1 . Because~ has been set as 21log(a2 /al)lai/3 in step 1 and has never

been reset, x* > 2wj3 = 21log(a2 /a1)1ai/3, which implies x* > ~· Because x* E [a1 , a2],

we have x*::; a2 ::; 21log(a2/a1)1a1 = 3~. Therefore, x* E [~, 3~].

(3) Suppose that at some iteration when k = k1 , A(w, P) reports x* >

2w(k1) /3 = 2k1ai/3 and after this, A(w, P) continuously reports solutions with value

x ::; wand finally BIP[a1 , a2, A(w, P)] stops with a solution value x ::; w(k2) = 2k2 -
1a1

at some iteration when k = k2. In this situation, we know that h = k1 , l2 = k2 = l1 + 1

and~ = 2k2 -
1ai/3. Because~ = 2k2 -

1ai/3 = 2k1 ai/3 ::; x* ::; 2k2 -
1a 1 = 3~, we have

x* E [~, 3~].

(4) Suppose that at some iteration when k = k1 , A(w, P) reports a solution

with value x ::; w(k1) = 2k1 -
1a 1 and after this, A(w, P) continuously reports x* >

2w/3 and finally BIP[a1 ,a2 ,A(w,P)] stops with x* > 2w(k2)j3 = 2k2 a!/3 at some

iteration k = k2. In this situation, we know that h = k2, l2 = k1 = h + 1 and

~ = w(kl) /3 = 2k2 a!/3. Because~ = 2k2 a!/3 ::; x* ::; 2k1 -
1a 1 = 2k2 a1 = 3~, we have

X E [~, 3~].

In conclusion, BIP[a1, a2, A(w, P)] determines the interval[~, 3~] so that x* E

[~,3~] .•

Chapter 4

Single-customer Model with

Delivery Costs

In this chapter, we study a supply chain scheduling problem with delivery costs for a

single customer.

4.1 Introduction

Hall and Potts [2003] were the first to introduce batch-delivery costs into the objective

of minimizing the weighted number of tardy jobs on a single machine, denoted by

111 "LwjUj + bq. In their paper, they developed a dynamic programming algorithm

which runs in pseudo-polynomial time for the general case and in polynomial time for

the two special cases with equal processing times or equal tardiness penalties. Their

model, however, does not include tardy deliveries or batch-setup time.

In this chapter, we study a single-customer problem which takes into account

both batch-setup time and tardy deliveries. In Section 4.2, we first define the problem

and then discuss some important propositions. In Section 4.3, for the general case, we

propose a pseudo-polynomial algorithm, which shows that the problem is NP-hard

19

20 Ph.D. Thesis- Rui Zhang

only in the ordinary sense. The algorithm also runs in O(n5) time for two special

cases with equal processing times or equal tardiness penalties. In Section 4.4, we

convert the pseudo-polynomial algorithm into an FPTAS for the general case with

running time O(n4 /c + n4 logn). Section 4.5 contains our concluding remarks.

4.2 Preliminaries

Note that all the terminologies, assumptions and notations introduced in Chapters

1 and 3 are applied in this chapter. Our goal is to find a schedule which minimizes

the sum of the weighted number of tardy jobs and the batch-delivery costs, denoted

by llsil:= wiUJ + bq. Since the problem of minimizing weighted number of tardy jobs

on a single machine, llll:=wjUj, is NP-hard [Karp, 1972], considering s = 0 and

q = 0 in a llsil:= wJUj + bq problem, we can see that the llsil:= wiUJ + bq problem is

NP-hard as well.

The following simple observations characterize the structure of optimal sched

ules we will search for.

Proposition 4.2.1 There exists an optimal schedule for the 1isi2:= wJU;+bq problem

in which all early jobs are ordered in the earliest due date first order {EDD) within

each batch.

Proof. Since all early jobs in the same batch have the same completion times which

are defined by the batch-completion time, the sequencing of jobs within a batch is

immaterial. •

Proposition 4.2.2 There exists an optimal schedule for the 1lsll:=wjUj+bq problem

in which all tardy jobs (if any) are scheduled in the last batch (either in a tardy batch

or in a mixed batch).

Proof. Suppose that there is a tardy job in a batch which is scheduled before the

last batch in an optimal schedule. If we move this job into this last batch, it will not

increase the cost of the schedule. •

McMaster - DeGroote School of Business 21

Proposition 4.2.3 There exists an optimal schedule for the llsi L_wjUj+bq problem

in which all early batches are scheduled in EDD order with respect to their batch-due

date.

Proof. Suppose that there are two early batches i and k in an optimal schedule with

batch-completion times C(i) < C(k) and batch-due dates d(i) > d(k). Since all jobs

in both batches are early, we have d(i) > d(k) ;:::: C(k) > C(i). Thus if we schedule

batch i after batch k, then all jobs in batch i and k are still early. Therefore, it will

not increase the cost of the schedule. •

Proposition 4.2.4 There exists an optimal schedule for the lis I L_ wjUj+bq problem

in which all early batches are scheduled in EDD order.

Proof. Suppose that there are two early jobs i and k in an optimal schedule with

completion times Ci < Ck and due dates di > dk. Since both jobs are early, we have

di > dk ;:::: Ck > Ci. Thus if we schedule job i into the same batch i where job k is

scheduled, both jobs i and k are still early. Therefore, it will not increase the cost of

the schedule. •

Proposition 4.2.5 There exists an optimal schedule for the lis I L_ wjUj+bq problem

such that if the last batch of the schedule is not a tardy batch, then all jobs whose due

dates are greater than or equal to the batch-completion time are scheduled in this last

batch as early jobs.

Proof. Let the batch-completion time of the last batch be t. Since the last batch is

not a tardy batch, there must be at least one early job in this last batch whose due

date is greater than or equal to t. If there is another job whose due date is greater

than or equal to t but it was scheduled in an earlier batch, then we can simply move

this job into this last batch without increasing the cost of the schedule. •

Proposition 4.2.5 implies that the jobs which are first scheduled as tardy jobs

can always be scheduled in the last batch when completing a partial schedule that

contains only early jobs. Algorithm CH4-Al we will present in the next section

22 Ph.D. Thesis- Rui Zhang

uses this fact by generating all possible schedules on early jobs only and designating

and putting aside the tardy jobs, which get scheduled only at the end in the last

batch. It is important to note that when a job is designated to be tardy in a partial

schedule, then its tardiness penalty is added to the cost of the partial schedule. We

may encounter two situations: (1) vVe can schedule the jobs not yet scheduled and

the jobs previously scheduled tardy by adding them to the last early batch if the

resulting batch-completion time does not exceed the batch-due date of the last batch

in the partial schedule, i.e., the jobs scheduled early in the last batch of the partial

schedule remain early; (2) Start a new batch and put the jobs not yet scheduled and

the jobs previously scheduled tardy in this last batch of the full schedule.

Putting all previously designated tardy jobs into the last batch can create

a problem however: Some of these tardy jobs may end up being early in this last

batch and thus the tardiness penalties of the tardy jobs in the cost of the partial

schedule would have to be reduced by the tardiness penalties of these jobs. To do

the cost adjustment correctly, however, we would have to know the due date and the

tardiness penalty of all these jobs. This means that we would have to know exactly

which jobs were designated tardy for the partial schedule. This would lead to an

exponential increase in the complexity of Algorithm CH4-Al. In the next section,

we show that for certain partial schedules, this problem would never occur, i.e., no

previously scheduled tardy job can become early when adding it to the last batch that

completes the partial schedule under either of the two situations mentioned above.

4.3 Pseudo-polynomial Algorithm

We know that tardy jobs can be delivered in the last batch, but setting them up in

a separate batch could add the potentially unnecessary delivery cost q for this batch

when in certain schedules it may be possible to deliver tardy jobs together with early

jobs and save their delivery costs. The following Algorithm CH4-Al gets around this

problem using the concept of designated tardy jobs, whose batch assignment will be

McMaster - DeGroote School of Business

determined only at the end. Without loss of generality, assume that the jobs are in

EDD order, i.e., d1 ~ d2 ~ ... ~ dn and let P = L7=tP)· If dt 2: P+s, then it is easy

to see that scheduling all jobs in a single batch will result in no tardy jobs, and this

will be an optimal schedule. Therefore, we exclude this trivial case by assuming for

the remainder of this chapter that some jobs are due before P + s. The state space

used to represent a partial schedule in Algorithm CH4-Al is described by five entries

{k,l,t,d,v}:

k: the partial schedule is on the job set { 1, 2, ... , k};

l: the number of batches in the partial schedule;

t: the current batch-completion time of the last batch in the partial schedule;

d: the current batch-due date of the last batch in the partial schedule;

v: the cost of the partial schedule.

Before we describe Algorithm CH4-Al in detail, let us consider how we can

reduce the state space. Consider any two states (k, l, t1 , d, v1) and (k, l, t 2 , d, v2).

Without loss of generality, let t 1 ~ t 2 . If v1 ~ v2 , we can eliminate the second state

because any later states which could be generated from the second state can not

lead to better v value than the value of similar states generated from the first state.

This validates the following elimination rule, and a similar argument could be used

to justify the second remark.

Remark 4.3.1 For any two states with the same entries (k, l, t, d, ·), we can eliminate

the state with larger v.

Remark 4.3.2 For any two states with the same entries (k, l, ·, d, v), we can elimi

nate the state with larger t.

Algorithm CH4-Al recursively generates the states for the partial schedules

on batches of early jobs and at the same time designates some other jobs to be

23

24 Ph.D. Thesis- Rui Zhang

tardy without actually scheduling these tardy jobs. The jobs designated tardy will

be added in the last batch at the time when the partial schedule gets completed into

a full schedule. The tardiness penalty for every job designated tardy gets added to

the state variable v at the time of designation. We look for an optimal schedule

that satisfies the properties described in the propositions of the previous section. By

Proposition 4.2.5, the tardy jobs should all be in the last batch of a full schedule. It

is equivalent to say that any partial schedule { k, L t, d, v} with 1 ~ l ~ n- 1 can be

completed into a full schedule by one of the following two ways:

• Simple Completion: Add all unscheduled jobs { k + 1, k + 2, ... , n} and the previ

ously designated tardy jobs to the last batch l, if the resulting batch-completion

time (P + ls) does not exceed the batch-due dated;

• Direct Completion: Open a new batch l + 1, and add all unscheduled jobs { k +
1, k + 2, ... , n} and the previously designated tardy jobs to the schedule in this

batch.

We have to be careful, however, as putting a previously designated tardy job

into the last batch this way may make such a job actually early if its completion time

(P + ls or P + (l + 1)s, respectively) is not greater than its due date. This situation

would require rescheduling such a designated tardy job among the early jobs and

removing its tardiness penalty from the cost v. Unfortunately, such rescheduling is

not possible, since we do not know the identity of the designated tardy jobs from the

state variables (we could only derive their total length and tardiness penalty). The

main insight behind our approach is that there are certain special states, that we will

characterize, whose completion never requires such a rescheduling. vVe proceed with

the definition of these special states.

It is clear that a full schedule containing exactly l (1 ~ l ~ n) batches will have

its last batch completed at P + ls. We consider all these possible completion times

and define certain marker jobs mi and corresponding batch counters gi as follows:

Let mo be the last job with dmo < P + s and mo + 1 the first job with dmo+l ~ P + s.

McMaster - DeGroote School of Business

If m 0 + 1 does not exist, i.e., m 0 = n, then we do not need to define any other

marker jobs, all due dates are less than P + 8, and we will discuss this case separately

later. Otherwise, define 9o = 0 and let 91 ~ 1 be the largest integer for which

dmo+1 .:2: P + 918. Let the marker job associated with 91 be job m1 .:2: mo + 1 whose

due date is the largest due date strictly less than P+(91 +1)8, i.e., dm 1 < P+(91 +1)8

and dm1+1 ~ P + (91 + 1)8. Define recursively for i = 2, 3, ... , h- 1, 9i ~ 9i-1 + 1

to be the smallest counter for which there is a marker job mi ~ mi-l + 1 such that

dm; < P + (9i + 1)8 and dm;+1 ~ P + (9i + 1)8. The last marker job is mh =nand

its counter 9h is the largest integer for which P + 9h8 ::; dmh = dn < P + (9h + 1)8.

We also define 9h+l = 9h + 1. Since the maximum completion time to be considered

is P + n8 for all possible schedules, any due dates which are greater than or equal

to P + n8 can be reduced to P + n8 without affecting the solution. Thus we assume

that dn ::; P + n8, which also implies 9h ::; n.

For convenience, let us also define T1,o P + 918, Ti,l = P + (9i + l)8 for

z - 1, ... , h and l = 0, 1, ... , l(i), where each Z(i) is the number for which Ti,l(i) =

P+(9i+l(i))8 = P+9i+18 = Ti+1,0 . In particular, we have l(h) ::; 1 and Th,l(h) ::; Th, 1 =

P+(9h+1)8::; P+(n+1)8. Note that this partitions the time horizon [P, P+(9h+1)8]

into consecutive intervals of length 8. vVe demonstrate these definitions in Figure 4.1.

We can distinguish the following two cases for these intervals:

1. Ti,1 = Ti+l,o, i.e., Z(i) = 1: This means that the interval immediately following

Ii = [7i,o, 7i,1) contains at least one due date. This implies that 9i+l = 9i + 1;

2. Ti,l i= Ti+1,0 , i.e., Z(i) > 1: This means that there are Z(i)- 1 intervals of length

8 starting at P + (9i + 1)8 in which no due date is located.

In either case, it follows that every job j > m 0 has its due date in one of the

intervals Ji = [Ti,o, Ti,l) for some i E {1, ... , h}, and the intervals [Ti,l, Ti,l+1) contain

no due date fori= 1, ... ,h -1 and 0 < l < l(i).

Figure 4.1 shows that jobs from m 0 + 1 to m 1 have their due date in the interval

[T1,0 , T1,1). Each marker job mi is the last job that has its due date in the interval

Ii = [7i,o, Ti,l) fori= 1, ... , h, i.e., we have Ti,O :S: dm;_ 1+1 :S: dm;_ 1+2 :S: ... :S: dm; < 7i,1·

25

26 Ph.D. Thesis- Rui Zhang

Now let us group all jobs into h + 1 non-overlapping job sets G0 = {1, ... , m0},

G1 = { mo + 1, ... , m1} and Gi = {mi-l + 1, ... , mi} for i = 2, ... ,h. Then we have

dj E h 'Vj E Gi and i ~ 1. We also define the job sets J0 = G 0 , Ji = G0 UG1 U ... UGi,

fori= 1, 2, ... , h- 1 and Jh = G 0 U G1 U ... UGh= J.

(- · · dm0) (dmo+l" · · dm1) (dm1 +1 · · · dm2) {)· (dm,_ 1 H · · dmJ ·(} (dmh_ 1 +l' · · dmh = dn)
I ... 1 I I I I I I ... I I ... I I

Figure 4.1: Marker jobs and corresponding intervals.

The special states for Algorithm CH4-A1 are defined by the fact that their

(k, l) state variables belong to the set H defined as follows. If m 0 = n, then let

H = {(n, 0), (n, 1), ... , (n, n -1)}. If m0 < n, then let H = H 1 U H 2 U H 3 , where H 1 =

{ (mo, 1), (mo, 2), ... , (mo, 91 -1) }, H3 = { (n, 9h), (n, 9h +1), ... , (n, 9h+l -1)} and H2 =

{ (m1, 91), (m1, 91 + 1), ... , (m1, 92- 1), (m2, 92), ... , (mi, 9i), (mi, 9i + 1), ... , (mi, 9i+l-

1), (mi+l, 9i+l) ... , (mgh_ 1, 9h-1), ... , (mgh_ 1, 9h - 1)}. In particular, when 91 = 1 we

have H 1 = 0 and when 9h = 1 or 9h = n we have H 3 = 0. Now we are ready to

present Algorithm CH4-Al.

Algorithm CH4-Al

[Initialization] Start with jobs in EDD order and do the following:

1. Set S 0 = { (0, 0, 0, 0, 0)}, S(k) = 0, k = 1, 2, ... , n+ 1, T* = 0, and determine

mo, 9i and mi, i = 1, 2, ... , h;

2. If m0 = n, then set H = {(n, 1), (n, 2), ... , (n, n- 1)}; Otherwise set H =

H1 U H2 U H3.

3. Let n = { (k, l) 11 ::::; l ::::; k ::::; n} the set of all possible pairs and fi = n - H,

the complementary set of H.

[Generation] Generate set S(k) from S(k-l).

For k = 1 to n + 1

McMaster - DeGroote School of Business 27

Set T = 0· ,

For each state (k- 1, l, t, d, v) in S(k-l)

Case (k- 1, l) E H

1. If t < P + ls, set T* = T* U (n, l + 1, P + (l + 1)s, d', v + q) /*Generate

the direct completion schedule by putting all remaining jobs and all

designated tardy jobs into batch l + 1, and add it to the solution set

T*, where d' is defined as the due date of the first job in batch l + 1;

2. If t = P + ls, set T* = T* U (n, l, P + ls, d, v) /*We have a partial

schedule in which all jobs are early (only when k - 1 = n).

Case (k- 1, l) E fi

1. Ift+pk ~ d and k ~ n, set T = TU (k,l,t+pk,d,v) /*Schedule job k

as an early job in the current batch;

2. If t + Pk + s ~ dk and k ~ n, set T = T U (k, l + 1, t + Pk + s, dkl v + q)

/*Schedule job k as an early job in a new batch;

3. If k ~ n, set T = T U (k, l, t, d, v + wk) /*Designate job k as tardy by

adding wk to v and reconsider it at the end in direct completions.

Endfor

[Elimination] Update set S(k).

Endfor

1. For any two states (k,l,t,d,v) and (k,l,t,d,v') with v ~ v', eliminate

the one with v' from set T based on Remark 4.3.1;

2. For any two states (k,l,t,d,v) and (k,l,t',d,v) with t ~ t', eliminate

the one with t' from set T based on Remark 4.3.2;

3. Set S(k) = T.

[Result] Select the state with the smallest v in the set T* as the optimal solution

and trace back to obtain the optimal schedule.

28 Ph.D. Thesis- Rui Zhang

We prove the correctness of Algorithm CH4-A1 by a series of lemmas, which

establish the crucial properties for the special states.

Lemma 4.3.1 Consider a partial schedule (mi, l, t, d, v) on job set Ji, where (mi, l) E

H. If its completion into a full schedule has l + 1 batches, then the final cost of this

completion is exactly v + q.

Proof. We note that completing a partial schedule on l batches into a full schedule

on l + 1 batches means a direct completion, i.e., all the unscheduled jobs (the jobs in

J- Ji, if any) and all the previously designated tardy jobs (if any) are put into batch

l + 1, with completion time P + (l + 1)s.

Since all the previously designated tardy jobs are from Ji for a partial schedule

(mi, l, t, d, v), their due dates are not greater than dm; < P + (gi + 1)s:::; P + (l + 1)s.

Therefore, all designated tardy jobs stay tardy when scheduled in batch l + 1. Next

we show that unscheduled jobs j E (J - Ji) must be early in batch l + 1. We have

three cases to consider.

Case 1. m0 =nand i = 0: In this case, H = {(n, 1), (n, 2), ... , (n, n- 1)} and

] 0 = J, i.e., all jobs have been scheduled early or designated tardy in the state

(m0 , l, t, d, v). Therefore, there are no unscheduled jobs.

Case 2. m 0 <nand l = gi: Since g0 = 0 by definition, we must have i 2: 1

in this case. The first unscheduled job j E (J - Ji) is job mi + 1 with due date

dm;+I 2: P + (gi + 1)s = P + (l + l)s. Thus job mi + 1 and all other jobs from J- Ji

have a due date that is at least P + (l + 1)s, and therefore they will all be early in

batch l + 1.

Case 3. m 0 < n and l > gi: This case is just an extension of the case of l = 9i·

If i = 0, then the first unscheduled job for the state (m0 , l, t, d, v) is m0 + 1. Thus

every unscheduled job j has a due date dj 2: dmo+l 2: P+g1s 2: P+(l+1)s, where the

last inequality holds since (m0 , l) E H 1 and therefore, l :::; g1 - 1. If 1 :::; i < h, then

we cannot have l(i) = 1: By definition, if l(i) = 1, then 9i + l(i)- 1 = 9i = 9i+1- 1,

which contradicts l > 9i and (mi, l) E H. Therefore, we must have l(i) > 1, and l

could be any value from {gi + 1, ... ,gi + l(i)- 1}. This means that P + (l + l)s:::;

McMaster - DeGroote School of Business

P + (gi + l('i))s = P + gi+1s. vVe know, however, that every unscheduled job has a

due date that is at least P + 9i+ls by the definition of H. Thus every job from J- Ji

will be early indeed. If i = h, then we have mh = n and Jh = J, and thus all jobs

have been scheduled early or designated tardy in the partial schedule (mi, l, t, d, v).

Therefore, there are no unscheduled jobs.

In summary, we have proved that all previously designated tardy jobs (if any)

remain tardy in batch l + 1, and all jobs from J - Ji (if any) will be early. This

means that v correctly accounts for the tardiness cost of the completed schedule, and

we need to add to it only the delivery cost q for the additional batch l + 1. Thus the

cost of the completed schedule is v + q indeed. •

29

Lemma 4.3.2 Considerapartialschedule(mi,l,t,d,v) onjobsetJi, where(mi,l) E

H and l =/=- n-1. Then any completion into a full schedule with more than l + 1 batches

has a cost that is at least v+q, i.e., the direct completion has the minimum cost among

all such completions of (mi, l, t, d, v).

Proof. If mi = n, then the partial schedule is of the form (n, l, t, d, v), (n, l) E Hand

l =/=- n- 1. (This implies that either m 0 = n with i = 0 or (mi, l) E H 3 with i = h.)

Since there is no unscheduled job left, all the new batches in any completion are for

previously designated tardy jobs. And since all the previously designated tardy jobs

have due dates that are not greater than dn < P + (gi + 1)s:::; P + (l + 1)s, these jobs

will stay tardy in the completion. The number of new batches makes no difference to

the tardiness penalty cost of tardy jobs. Therefore, the best strategy is to open only

one batch. Thus the final cost is minimum with cost v + q.

Consider now a partial schedule (mi, l, t, d, v), (mi, l) E Hand l =/=- n- 1 when

mi < n. Since all the previously designated tardy jobs (if any) are from Ji, their

due dates are not greater than dm; < P + (gi + 1)s :::; P + (l + 1)s. Furthermore,

since all unscheduled jobs are from J- Ji, their due dates are not less than dm;+l .2:

P + gi+ 1s .2: P + (l + 1)s. Thus scheduling all of these jobs into batch l + 1 makes

them early without increasing the tardiness cost. It is clear that this is the best we

30 Ph.D. Thesis - Rui Zhang

can do for completing (mi, l, t, d, v) into a schedule with l + 1 or more batches. Thus

the final cost of the direct completion is minimum again with cost v + q. •

Lemma 4.3.3 Consider a partial schedule (mi,l,t,d,v) on job set Ji, where i ~ 1,

(mi, l) E H and l > 1. If it has a completion into a full schedule with exactly l batches

and cost v', then (1) there must exist either a partial schedule (mi, l - 1, l, d, ii) whose

direct completion is of the same cost v' or (2) (mi, l, t, d, v) has a simple completion in

which all unscheduled jobs can be scheduled early and all designated tardy jobs remain

tardy when scheduled in batch l or (3) there exists a partial schedule (mi_ 1 , l-1, l, d, v)

whose direct completion is of the same cost v'.

Proof. To complete the partial schedule (mi, l, t, d, v) into a full schedule on l batches,

all designated tardy jobs and unscheduled jobs have to be added into batch l.

Case 1. l > gi: Let us denote the early jobs by Ei ~ Ji in batch lin the partial

schedule (mi, l, t, d, v). Adding the designated tardy jobs and unscheduled jobs to

batch l will result in a batch-completion time of P+ls. This makes all jobs in Ei tardy

since dj ::::; dm; < P + (gi + 1)s::::; P + ls for j E Ei· Thus the cost of the full schedule

should be v' = v + ~jEE; Wj· We cannot do this calculation, however, since there is

no information available in Algorithm CH4-A1 about what Ei is. But if we consider

the partial schedule (mi, l- 1, l, d, ii) = (mi, l- 1, t- ~jEE; pj, d, v + ~jEE; Wj - q)

with one less batch, where d is the smallest due date in batch l - 1 in the partial

schedule (mi, l, t, d, v), the final cost of the direct completion of the partial schedule

(mi, l- 1, t- ~jEE; pj, d, v + ~jEE; Wj- q) would be exactly v' = v + ~jEE; Wj by

Lemma 4.3.1. We show next that this partial schedule (mi, l- 1, t- ~jEE; pj, d, v +
~jEE; Wj- q) does get generated in the algorithm.

In order to see that Algorithm CH4-A1 will generate the partial schedule

(mi, l - 1, t - ~jEE; pj, d, v + ~jEE; Wj - q), suppose that during the generation

of (mi, l, t, d, v), Algorithm CH4-A1 starts batch l by adding job k as early. This

implies that the jobs that Algorithm CH4-A1 designates as tardy on the path of

states leading to (mi,l,t,d,v) are in set Li = {k,k+ 1, ... ,mi}- Ei. In other words,

Algorithm CH4-A1 has a partial schedule (k-1, l-1, t- ~jEE; pj, d, v- ~jEL; Wj -q)

McMaster - DeGroote School of Business

in the path of generation for (mi, l, t, d, v). Then it will also generate from (k- 1, l-

1, t- L:JEE; PJ, d, v- L:JEL; wj- q) the partial schedule (mi, l- 1, t- L:JEE; PJ, d, v +
L:jEE, Wj - q) by simply designating all jobs in Ei U Li as tardy.

Case 2. l = gi =J 1: Suppose the partial schedule (mi, l, t, d, v) has in batch l

the sets of early jobs Ei-1 U E, where Ei-l ~ Ji-1 and E ~ (Ji- Ji_1). Adding the

designated tardy jobs and unscheduled jobs to batch l will result in a batch-completion

time of P+ls. This makes all jobs in Ei-1 tardy since dj :::; dm,_ 1 < P+gis for j E Ei-l·

On the other hand, if L ~ (Ji - Ji-l- E) denotes the previously designated tardy

jobs from Ji- Ji-l in (mi, l, t, d, v), then these jobs become early since P + gis :::;

dm,_ 1 + 1 :::; dj for j E L. For similar reasons, all previously designated tardy jobs not

in L stay tardy, jobs in E remain early and all other jobs from J - Ji will be early

too. In summary, the cost for the full completed schedule derived from (mi, l, t, d, v)

should be v' = v + L:jEE,_ 1 wj- L:JEL Wj. Again, we cannot do this calculation, since

there is no information about Ei-l and L. However, suppose that Ei-l =J 0, and

consider the partial schedule (mi-l, l-1, f, d, v) = (mi-l, l- 1, t- L:jEEuE,_ 1 PJ, d, v +
L:jEE,_ 1 Wj - L:JEL Wj - q) with one less batch, where dis the smallest due date in

batch l-1 in the partial schedule (mi, l, t, d, v). The final cost of the direct completion

of the partial schedule (mi-l, l-1, t- L:jEEUE;_1 PJ, d, v + L:jEE;_ 1 Wj- L:JEL Wj- q)

would be exactly v' = v + L:jEE;_ 1 WJ- L:JEL WJ by Lemma 4.3.1. Next, we show that

this partial schedule (mi-l, l- 1, t- L:jEEuE,_ 1 PJ, d, v + L:jEE;_ 1 Wj- L:jEL Wj- q)

does get generated during the execution of Algorithm CH4-Al.

To see the existence of the partial schedule (mi_1, l- 1, l, d, v) = (mi-l, l-

1, t- L:jEEUE;_ 1 PJ, d, v + L:jEE;_ 1 Wj- L:JEL Wj - q), note that Algorithm CH4-A1

must start batch l on the path of states leading to (mi, l, t, d, v) by scheduling a job

k::::; mi-l early in iteration k from a state (k-1, l-1, t- L:jEE;uEPJ, d, v-(L:';;;J::
1 Wj

L:jEE;_1 wj)- L:JEL Wj- q). (We cannot have k > mi-l since this would contradict

Ei-1 =J 0. Note also that (L:;-::1::
1 Wj- L:JEE;_ 1 wj) accounts for the tardiness penalty

of those jobs from {k, k + 1, ... ,mi-d that got designated tardy between iterations

k and mi-l during the generation of the state (mi, l, t, d, v).) In this case, it is clear

31

32 Ph.D. Thesis - Rui Zhang

that Algorithm CH4-A1 will also generate from (k- 1, l- 1, t- LjEE;uEP), d, v

(L~"k 1
Wj- LjEE;_

1
wj)- LjEL Wj- q) a partial schedule on Ji-1 in which all jobs in

Ei-l are designated tardy, in addition to those jobs (if any) from { k, k + 1, ... , mi_ 1}

that are designated tardy in (mi, l, t, d, v). Since this schedule will designate all of

{ k, k + 1, ... ,mi-d tardy, the tardiness cost of this set of jobs must be added, which

results in a state (mi-l, l-1, t- LjEEUE;_
1

pj, d, v+ LjEE;_
1
Wj- L)EL Wj- q). This

is the state (mi_1 , l- 1, t, d, v) whose existence we claimed.

The remaining case is when Ei-l = 0. In this case, batch l has no early jobs

in the partial schedule (mi, l, t, d, v) from the set Ji-l, k = mi is the only member

of the set E, L = 0 and v = v'. Therefore, there are no early or tardy jobs that

would need to be rescheduled. Furthermore, adding all unscheduled jobs, which are

in J- Ji, will make them early. Thus (mi, l, t, d, v) can be simply completed into a

full schedule with cost v. •

The remaining special cases of l = 1, which are not covered by the preceding

lemmas are (mi, l) = (m1 , 1) or (mi, l) = (m0 , 1): Since all jobs are delivered at the

same time P + s, all jobs in J0 or J, respectively, are tardy, and the rest of the jobs

are early. Thus there is only one possible full schedule with cost v' = 'L";~1 Wj + q or

v' = 'L7=1 Wj + q. In summary, consider any partial schedule (mi, l, t, d, v) on job set

Ji, where (mi, l) E H, or a partial schedule (n, l, t, d, v) on job set J and assume that

the full schedule (n, z', P + z' s, d', v') is a completion of this partial schedule and has

minimum cost v'. Then the following schedules generated by Algorithm CH4-A1 will

contain a schedule with the same minimum cost as (n, z', P + z' s, d', v'):

1. the direct completion of a partial schedule (mi, l, t, d, v), if (mi, l) =f. (mi, 9i) and

l' > l, by Lemma 4.3.1 and Lemma 4.3.2;

2. the direct completion of a partial schedule (mi, l-1, t, d, v), if (mi, l) =f. (mi, 9i),

and l' = l, by Lemma 4.3.3;

3. the direct completion of a partial schedule (mi_1 , l - 1, t, d, v), if (mi, l)

(mi, 9i), i > 1 and l' = l, by Lemma 4.3.3;

McMaster - DeGroote School of Business

4. the full schedule (n, 1, P + s, dma+l' 'L-7~1 Wj + q) if mo <nand l' 2:: l = 91 = 1

i.e., (mi, l) = (m1, 1);

5. the full schedule (n, 1, P + s, d1 , 'L-7=1 Wj + q) , if m 0 = n and l' 2:: l = 1. 1.e.,

(mi, l) = (m0, 1).

33

Theorem 4.3.1 Algorithm CH4-A1 finds an optimal solution for the 1lsl L, wJUJ+bq

problem in O(n3 min{ dn, P + ns, W + nq}) time, where P = 'L-7=1 PJ and W

'L-7=1 Wj. This shows that the problem is NP -hard only in the ordinary sense.

Proof. The correctness of Algorithm CH4-A1 follows directly from the previous

discussion and Lemmas 4.3.1, 4.3.2 and 4.3.3.

The time complexity of Algorithm CH4-A1 is dominated by the [Generation]

procedure. At the beginning of iteration k, the total number of possible values for the

state variables {k, l, t, d, v} in S(k) is upper bounded as follows: n is the upper bound

of k and l; n is the upper bound for the number of different d values; min{dn, P+ns}

is an upper bound of t and vV + nq is an upper bound of v, and because of the

elimination rules, min{dn, P + ns, vV + nq} is an upper bound for the number of

different combinations of t and v. Thus the total number of different states at the

beginning of each iteration in the [Generation] procedure is at most O(n2 min{ dn, P+

ns, W + nq}). In each iteration k, there are at most three new states generated from

each state in S(k- 1) and this takes constant time. Since there are n iterations, the

[Generation] procedure could indeed be done in O(n3 min{ dn, P + ns, W + nq}) time .

•
Corollary 4.3.1 For the 1lsl L, wJUJ + bq problem, if all jobs have equal tardiness

penalties, i.e., wJ = w > 0, \:fj E J, then Algorithm CH4-A1 finds an optimum

solution in O(n5) time.

Proof. For any state, v is the sum of two different cost components: the delivery

costs from {q, 2q, ... , nq} and the weighted number of tardy jobs from {0, w, ... , nw}.

Therefore, v can take at most n(n + 1) different values and the upper bound for the

number of different states becomes O(n3 min{dn,P+ns,n2
}) = O(n5). •

34 Ph.D. Thesis- Rui Zhang

Corollary 4.3.2 For the llsl I: wJUJ + bq problem, if all jobs have equal processing

times, i.e., PJ = p > 0, Vj E J, then Algorithm CH4-A1 finds an optimum solution

in O(n5) time.

Proof. For any state, t is the sum of two different time components: the setup times

from { s, ... , ns} and the processing times from { 0, p, ... , np}. Thus, t can take at most

n(n + 1) different values, and the upper bound for the number of different states

becomes O(n3 min{dn,n2
, vV +nq}) = O(n5

). •

4.4 Fully Polynomial Time Approximation Scheme

To develop an FPTAS, we will use static interval partitioning originally suggested

by Sahni [1976] for maximization problems. The efficient implementation of this

approach for minimization problems is more difficult, as it requires prior knowledge

of a lower and upper bound for the unknown optimum value v*, such that the upper

bound is a constant multiple of the lower bound.

4.4.1 Initial Bounds

In order to obtain such a pair of bounds, using the same data, we construct an

auxiliary problem in which we want to minimize the maximum weight of tardy jobs

and batches have the same batch-setup time s but with zero batch-delivery cost. We

denote this problem by II sl max w1 UJ. We will prove that the optimal solution value

for the llsl maxwJUJ problem will be a lower bound for v*, the optimal solution value

for the llsl I: w1UJ + bq problem. This enables us to determine the initial bounds.

To solve the llsl max w1UJ problem, we first sort all jobs into smallest-weight

first order, i.e., W[l] :::; W[2] :::; ... :::; W[n]· Here we are using [k] to denote the job with

the k-th smallest weight. Suppose that [k*] has the largest weight among the tardy

jobs in an optimal schedule. Since we can always reschedule these tardy jobs at the

end of the optimal schedule without making its cost worse, there is also an optimal

McMaster - DeGroote School of Business

schedule in which every job [i], for i = 1, 2, .. . , k* , is at the end of the schedule. We

also can assume without loss of generality that the early jobs are scheduled in EDD

order in an optimal schedule. Thus we can restrict our search for an optimal schedule

of the following form: There is a k E {0, 1, ... , n} such that jobs {[k + 1], ... , [n]} are

early and they are scheduled in EDD order in the first part of the schedule, followed

by jobs {[1], [2], ... , [k]} in the last batch. The existence of such a schedule can be

verified by the following Algorithm CH4-A2(k).

Algorithm CH4-A2(k)

[Initialization] For a given k value, sort the jobs {[k + 1], ... , [n]} into EDD order,

and let this sequence be (e1 ,e2 , ... ,e1) , where f = n- k.

1. Set i = 1, j = e1 , t = s + PJ and d = dJ.

2. If t > d, then no feasible schedule exists and go to [Report];

3. If t ~ d, then set i = 2 and go to [FeasibilityChecking] .

[FeasibilityChecking] Try to schedule job i into a partial schedule.

While i ~ j , set j = ei

1. If t + PJ > d, then start a new batch for job j

(a) If t + s + PJ > dj , then no feasible schedule exists and go to [Report];

(b) If t + s + PJ ~ dj , then set t = t + s + PJ , d = dj , i = i + 1 and go to

[FeasibilityChecking] .

2. If t + PJ ~ d, then set t = t + PJ, i = i + 1 and go to [Feasibili tyChecking] .

Endwhile

[Report] If i ~ j , then no feasible schedule exists; Otherwise, t here exists a feasible

schedule in which all jobs {el , e2 , .. . , ef} are early.

35

36 Ph.D. Thesis- Rui Zhang

Theorem 4.4.1 Algorithm CH4-A2(k) reports the existence of no feasible schedule

or of a feasible schedule for the 1lsl max wJUJ problem on job set {[k + 1], ... , [n]} in

O(nlogn) time.

Proof. Algorithm CH4-A2(k) goes through the [FeasibilityChecking] procedure at

most n times and each time it needs at most four operations. Therefore, for a given

EDD sequence, Algorithm CH4-A2(k) reports in O(n) time. However, for k = 0,

Algorithm CH4-A2(k) constructs the EDD sequence on the whole job set J, which

requires O(nlogn) time. Thus the overall running time is O(nlogn). •

The 1lsl max wJUJ problem can be solved by repeatedly calling Algorithm CH4-

A2(k) in a standard binary search to find the smallest k value, denoted by k*, for

which Algorithm CH4-A2(k) returns that a feasible schedule exists. Assume that all

jobs are indexed as: W[l] :S W[2J :S ... :S W[n]·

Algorithm CH4-A3

[Initialization] Set k1 = 0, k2 = n and k* = 0.

While k1 < k2, do

1. Set k = f(k1 + k2)/2l and run Algorithm CH4-A2(k);

2. If it reports that no feasible schedule exists, then set k1 = k;

3. If it reports a feasible schedule, then set k* = k and k2 = k.

End while

[Report] If k* = 0, then w* = 0; Otherwise, w* = W[k*J·

Theorem 4.4.2 Algorithm CH4-A3 finds an optimal solution to the 1lsl maxwJ UJ

problem in 0(n log2 n) time.

Proof. Since Algorithm CH4-A3 does a binary search, Algorithm CH4-A2(k) can

be called at most O(log n) times. By Theorem 4.4.1, the overall running time is

O(nlog2 n). •

McMaster - DeGroote School of Business

Corollary 4.4.1 The optimal solution value v* for the 1lsl L_ wJUJ + bq problem is

in the interval [v', nv'], where v' = w* + q and w* is the optimal solution value for the

1lsl max wJUJ problem.

Proof. Since there is at least one batch in any feasible schedule for the 1lsl L_ wJUJ +
bq problem, v' = w* + q is a lower bound for v*. If there is a feasible schedule for the

1lsl maxwJUJ problem on job set {[k* + 1], ... , [n]}, then there is a feasible schedule

for the 1lsl L_ wJUJ + bq problem with at most n- k* + 1 batches on job set {1, ... , n}.

Since the tardiness penalty of tardy jobs in such a schedule is at most k*w*, we have

the upper bound k*w*+(n-k*+1)q. Therefore nv' = nw*+nq ~ k*w*+(n-k*+1)q

is an upper bound of v* as well. •

4.4.2 Tight Bounds

In order to narrow the initial bounds [v', nv'], we first propose Algorithm CH4-

A4(u, c), which for given u and E, either returns a schedule with cost v :::; u or

verifies that (1- c)u is a lower bound for the cost of any solution. The algorithm is

very similar to Algorithm CH4-A1 with a certain variation of the [Elimination] and

[Result] procedures.

Algorithm CH4-A4(u, c)

[Initialization] Do the same as in Algorithm CH4-Al.

[Partitioning] Partition the interval [0, u] into f n/c l equal intervals of size uc/n,

with the last one possibly smaller.

[Generation] Generate set S(k) from S(k- 1).

For k = 1 to k = n + 1

Set T = 0;

For each state (k- 1, l, t, d, v) in S(k-1)

37

38 Ph.D. Thesis - Rui Zhang

Do the same as in Algorithm CH4-Al.

Endfor

[Elimination] Update set S(k).

1. Eliminate any state (k,l,t,d,v) ifv > u.

2. If more than one state has a v value that falls into the same interval,

then discard all but one of these states, keeping only the representative

state with the smallest t coordinate for each interval.

3. For any two states (k,l,t,d,v) and (k,l,t,d,v') with v::; v', eliminate

the one with v' from set T based on Remark 4.3.2;

4. Set S(k) = T.

Endfor

[Result] If T* = 0, then v* > (1- c)u; Otherwise v* ::; u.

Theorem 4.4.3 If Algorithm CH4-A4(u, c) returns with T* = 0, then v* > (1- c)u;

otherwise v*::; u. The complexity of Algorithm CH4-A4(u,c) is O(n4 /c).

Proof. If T* is not empty, then there is at least one state (n, l, t, d, v) with v in some

subinterval of [0, u] that has not been eliminated. Therefore, we have v* ::; v ::; u.

If T* = 0, then all states with the first two entries (k, l) E H have been

eliminated. Consider any feasible schedule (n, l, t, d, v). The fact that T* = 0 means

that any ancestor state of (n, l, t, d, v) with cost v ::; v must have been eliminated at

some iteration k in the algorithm either because v > u or by interval partitioning,

which kept some other representative state with cost v' and maximum error cujn. In

the first case, we also have v > u. In the second case, let v' 2: v' be the cost of a

completion of the representative state and we must have v' > u since T* = 0. Since

the error introduced in one iteration is at most cu/n, the overall error is at most

n(cu/n) = cu, i.e., v 2: v'- n(cu/n) = v'- cu > u- cu = (1- c)u. Thus v > (1- c)u

for any feasible cost value v.

McMaster - DeGroote School of Business

Notice that JS(klJ :S: fn3/c-l fork= 1,2, ... ,n. Since all operations on a single

state can be performed in 0(1) time, the overall complexity is O(n4 /c-). •

39

Next, we consider to use BTP[a1 , a2 ,A(w, P)] introduced in Chapter 3 to nar

row the bounds [v', nv']. Let a1 = v', a2 = nv', w = u and P be the 1JsJ2.:::: wjUj + bq

problem. Then Algorithm CH4-A4(u, 1/3) can be for A(w, P) in BIP[a1 , a2 , A(w, P)].

Since Algorithm CH4-A4(u, 1/3) runs in O(n4
) time, then BIP[a1 , a2 , A(w, P)] re

ports (that implies a pair of tight bounds [~, 3~] in 0(n4 log log n) time. In this

situation, we refer to BIP[a1 , a2 , A(w, P)] as Algorithm CH4-A5.

Corollary 4.4.2 Algorithm CH4-A5 can narrow the bounds [v', nv'] into [v, 3v] zn

O(n4 loglogn) time by setting v = ~·

4.4.3 Approximation

For any given c > 0, using the bounds v :S: v* :S: 3v obtained by Algorithm CH4-A5,

we run a slightly changed version of Algorithm CH4-A4(u, c), called Algorithm CH4-

A6, with u = (1 + c/3)3v: The only difference is that in the [Partitioning] step we

partition [0, u] = [0, (1 +c-/3)3v] into n f3/ c + 1l intervals of size at most c-v jn, so that

the cumulative error over n iterations will be no more than c-v. Since we know that

the problem has an optimal solution value v* :S: 3v, the algorithm will find a solution

v for the 1JsJ2.:::: wjUj + bq problem such that v :S: 3v + c-v = u, which means that

the algorithm will never end with an empty T*. Furthermore, whichever subinterval

of [v, 3v] v* falls into, the algorithm will generate an approximate solution v with at

most c-v error away from it, i.e., v :S: v* + c-v :S: (1 + c-)v*. Therefore, we have the

following corollary.

Corollary 4.4.3 For any given c > 0, Algorithm CH4-A6 finds a (1+c-)-approximate

solution for the 1JsJ2.:::: WjUj + bq problem in O(n4 /c) time.

Now we are ready to present the final Algorithm CH4-A 7, which combines into

an FPTAS the previous algorithms as subroutines.

40 Ph.D. Thesis- Rui Zhang

Algorithm CH4-A 7

[InitialBounds]: Run Algorithm CH4-A3 and set v' = q + w*;

[TightBounds]: Run Algorithm CH4-A5 and obtain ii such that ii::; v* ::; 3u.

[Approximation]: Run Algorithm CH4-A6 and obtain an approximate schedule.

Theorem 4.4.4 For the llsl 'LwjUj+bq problem, Algorithm CH4-A 7 finds a (!+c-)

approximate solution in 0(n4 / c + n 4 log log n) time.

Proof. The complexity and correctness follows from the preceding discussion and

the complexity of the component algorithms. •

4.5 Summary

In this chapter, we studied the llsl 'L wjUj + bq problem. We first proved that it is

NP-hard. Then we further classified that the problem is NP-hard in the ordinary

sense by presenting a pseudo-polynomial algorithm, which runs in polynomial time

for the case with equal processing times and the case with equal tardiness penalties.

Finally, we converted the pseudo-polynomial algorithm into an FPTAS for the general

problem.

Chapter 5

Multiple-customer Model with

Delivery Costs

In this chapter, we study a supply chain scheduling problem with delivery costs for

m customers, where m is a fixed number and independent on the size of the model.

Notice that the single-customer model in Chapter 4 is a special case with m = 1.

5.1 Introduction

In practice, a supplier usually maintains a relatively stable set of customers. In this

situation, all the jobs produced by the supplier are divided into groups with respect to

the customers. Therefore, we extend the single-customer problem studied in Chapter

4 into a multiple-customer problem which will be defined in detail in Section 5.2. Hall

and Potts [2003] have studied a similar model, but without batch-setup time or tardy

deliveries.

This chapter is organized as follows. In Section 5.2, we first define the problem

and then discuss some important propositions. In Section 5.3, we propose a pseudo

polynomial algorithm which proves that the problem is NP-hard only in the ordinary

41

42 Ph.D. Thesis- Rui Zhang

sense. In Section 5.4, we study a restricted version of the problem, where all tardy

jobs (if any) have to be delivered in separate batches. With this restriction, we are

able to find a pseudo-polynomial algorithm and an FPTAS for it. In Section 5.5,

we prove that the solution produced by the FPTAS for the restricted problem is

near-optimal for our original problem. Section 5.6 contains our concluding remarks.

5.2 Preliminaries

Note that all the terminologies, assumptions and notations introduced in Chapters

1 and 3 are applied in this chapter. Our goal is to find a schedule which minimizes

the sum of the weighted number of tardy jobs and the batch-delivery costs, denoted

by 1\si\ ~ w(i,k)U(i,k) + biqi. Since the 1\s\ ~ WjUj + bq problem has already been

shown to be NP-hard, we know that the 1\si\ ~ w(i,k)U(i,k) + ~ biqi problem is NP

hard as well. The following easy-to-prove propositions can be seen as extensions of

Proposition 4.2.1, 4.2.2, 4.2.3 and 4.2.5 developed for the 1\s\ ~ wjUj + bq problem

in Chapter 4.

Proposition 5.2.1 There exists an optimal schedule for the 1\ si \ ~ W(i,k) U(i,k) + ~ biqi

problem such that jobs in the same batch are processed without any interruption by

any job from another batch.

Proof. There is no benefit from interrupting the processing of jobs in a batch by

jobs from another batch. •

Proposition 5.2.2 There exists an optimal schedule for the 1\si\ ~ W(i,k)U(i,k)+ ~ biqi

problem in which early jobs are ordered in EDD order within any batch.

Proof. Notice that the earliness of a job is determined by the batch-completion time

and its due date. Thus any order, and therefore the EDD order produces the same

set of early jobs within a batch. •

McMaster - DeGroote School of Business 43

Proposition 5.2.3 There exists an optimal schedule for the llsill:= W(i,k)U(i,k)+ 2::= biqi

problem in which the early batches are ordered in EDD order with respect to the batch

due date.

Proof. Suppose that there are two early batches: batch i and batch k with batch

completion times C(i) < C(k), and batch-due dates d(i) > d(k). Since the early jobs

are on time, we have d(i) > d(k) 2:: C(k) > C(i). Thus if we simply move batch i

after batch k in the schedule, the early jobs in the original schedule remain early. •

Proposition 5.2.4 There exists an optimal schedule for the llsill:= W(i,k)U(i,k)+ 2::= biqi

problem in which the early jobs for the same customer are ordered in EDD order over

all early batches for this customer.

Proof. Suppose that there are two early batches for the same customer, batch i and

batch k with batch-completion times C(i) < C(k). If in batch i there is an early job

whose due date is greater than the due date of another early job in batch k, then this

job can be moved from batch i to batch k without increasing the cost of the schedule.

After we moved all such jobs into the later batches, we can apply Proposition 5.2.2

to obtain the desired schedule. •

Proposition 5.2.5 There exists an optimal schedule for the 11 si 12::= W(i,k) U(i,k) + 2::= biqi

problem in which the tardy jobs for customer i, i = 1, ... , m are delivered either in the

last early batch (which may become a mixed batch) for customer i or in the designated

tardy batch for the customer.

Proof. If the optimal schedule has some tardy jobs in the designated tardy batch

for the customer, then we can move all other tardy jobs for this customer into the

designated batch without increasing the cost of the schedule. If the optimal schedule

has some tardy jobs in the last (mixed) batch, then we can move all other tardy

jobs from any earlier scheduled batch for this customer into the last batch without

increasing the cost of the schedule. •

44 Ph.D. Thesis - Rui Zhang

Proposition 5.2.5 implies that only the last early batch can become a mixed

batch for a customer. Thus, when scheduling jobs for a customer i, we can restrict

our search to two types of schedules:

• Type I All tardy jobs are scheduled in the designated tardy batch for customer

i (and all previous batches for the same customer are early);

• Type II All tardy jobs are scheduled at the end of the last early batch (which

becomes a mixed batch) for customer i, thereby saving the delivery cost for the

designated tardy batch, which is empty. This also implies that job (i, ni) is

always scheduled in the last batch for customer i in a Type II schedule.

5.3 Pseudo-polynomial Algorithm

The state space used to represent a partial schedule in the following Algorithm CH5-

Al is described by six entries {Jk, H, t, h, d, v} defined as follows:

Jk = (k1 , · · · , km) records that the first ki, i E M jobs have been scheduled in this

partial schedule, where k = L::iEM ki and Af = {1, ... , m };

1{ = (T1, T2 , · · · , Tm): the partial schedule where Ti is the total length of jobs sched

uled in the designated tardy batch for customer i;

t: the current batch-completion time of the current batch in this partial schedule;

h: the current batch of this partial schedule is for customer h, h E Af;

d: the current batch-due date of the current batch in this partial schedule;

v: the recursively calculated objective value for this partial schedule.

Assume that jobs in each set Ji are in EDD order. Algorithm CH5-Al starts

from the empty state (J0
, H, 0, 0, 0, 0), where no job has been scheduled yet with

J 0 = (0, ... , 0) and 1{ =(0, ... , 0). The set S(k) contains all generated partial schedules

McMaster - DeGroote School of Business 45

with k jobs, k = 1, 2, · · · , n. First, Type I partial schedules are generated in non

decreasing order of their cardinality k. All these schedules are implicitly assumed to

have a designated tardy batch for each customer i at the end of the schedule, that is

not empty when Ti > 0. By Proposition 5.2.5, we know that when we want to obtain

a Type II schedule for customer i, we only need to consider the last early batch for

customer i, which must contain job (i, ni)· Thus we consider rescheduling all tardy

jobs for customer i into an early batch only when we are scheduling the job (i, ni)·

Algorithm CH5-Al

[Initialization] Set S(o) { (..7°, 'H, 0, 0, 0, 0)}, 'H = (0, ... , 0) and S(k) 0, k

1, ... , n.

[Generation] Generate set S(k) from S(k- 1).

Fork= 1 ton

For each (Jk-l, 'H, t, h, d, v) E S(k- 1
) with k- 1 = .l:.:k;EJk-1 ki

For each i E Jvf with ki =J. ni, set k~ = ki+1 and Jk = (k1 , · · · , k~, · · · , km)

1. If t + P(i,k;) ~ d and i = h, then set t' = t + P(i,k;) and S(k) =
S(k) U (Jk,'H,t',h,d,v) /*Schedule job (i,k~) as an early job in

the current batch;

2. Ift+P(i,k;)+si ~ d(i,k;), then set t' = t+P(i,k;)+si, h' = i, d' = d(i,k;),

v' = v + qi and S(k) = S(k) U (Jk, 'H, t', h', d', v') /*Schedule job

(i, kD as an early job in a new batch for customer i;

3. If Ti > 0, then set rf = Ti + P(i,k;) and rj = r1 for j =J. i to define

'H', v' = v + w(i,k;) and S(k) = S(k) U (Jk, 'H', t, h, d, v') /*Schedule

job (i, kD as a tardy job in the nonempty designated tardy batch

for customer i;

4. If Ti = 0, then set rf = P(i,k;) and rj = r1 for j =J. i to define 'H',

v' = v + W(i,k;J + qi and S(k) = S(k) U (Jk, 'H', t, h, d, v') /*Schedule

46 Ph.D. Thesis- Rui Zhang

job (i, kD a tardy job by putting it into a new designated tardy

batch for customer i;

5. If k~ = ni, i = h, Ti > 0, and t + P(i,k;) + Ti ~ d, then set

t' = t + P(i,k;) + Ti, r{ = 0 and rj = Tj for j =/=- i to define 'H',

v' = v- qi and S(k) = S(k) U (:Jk, 'H', t', h, d, v') /*Reschedule

job (i, kD and the tardy jobs from the designated tardy batch for

customer i into the current batch;

6. If k~ = ni, Ti > 0, and t + P(i,k;) + Ti + si ~ d(i,k;), then set

t' = t + P(i,k;) + Ti + si, ri = 0 and r; = Tj for j =/=- i to define

'H', d' = d(i,k;) and S(k) = S(k) U (Jk,'H',t',h,d',v) /*Reschedule

job (i, kD and the tardy jobs from the designated tardy batch for

customer i into a newly started mixed batch for customer i;

Endfor

Endfor

Endfor

[Result] Select the state with the smallest v from set S(n) and trace back to obtain

an optimal schedule.

In steps 5 and 6, where we reschedule all tardy jobs for customer i together

with job (ni, i) into the last mixed batch for customer i, we update v' = v - qi and

v' = v, respectively. This will account correctly for the delivery component for our

cost, since we are reducing the number of batches for customer i by one in the first

case, and it does not change in the second case (we empty the designated tardy batch,

but we set up a new mixed batch). When we do this rescheduling, however, some

of the rescheduled tardy jobs from the designated tardy batch may become early

again. It means that the resulting v' value may be greater than the true objective

value for this partial schedule, since the objective value would need to be reduced

by the tardiness penalty of any previously tardy job that becomes early. To do this

McMaster - DeGroote School of Business

adjustment correctly, we would also need to store for each partial schedule in its

state the total tardiness penalty of tardy jobs in its designated tardy batch for each

customer, which would add an additional factor of wm to the size of the state space,

where W = "L,(i,k)EJ W(i,k)· vVe show below, however, that this can be avoided.

47

Lemma 5.3.1 Suppose that during the execution of rescheduling steps 5 or 6 in Al

gorithm CH5-A1, a state (.Jk, 1i, t, h, d, v) is generated for partial schedule CJ in which

some previously tardy jobs become early and thus v does not correctly represent the

tardiness cost of the corresponding schedule CJ. Then the algorithm must also generate

a state (.Jk, 1i, t, h, d, v") and schedule CJ
11 such that v" correctly represents the cost of

CJ
11

, the schedules CJ and CJ
11 have the same early and tardy job sets and v" < v.

Proof. Consider a partial schedule CJ and state (.Jk, 1i, t, h, d, v) generated in steps 5

or 6, which is demonstrated in Figure 5.1 below. (The batch boundaries are indicated

by longer and heavier lines.)

Figure 5.1: A partial schedule: (Jk, T, t, h, d, v).

---l.l_(i,J--~·1) 1-· · ·--t-1-·L.._I (i,-----~hi_· ·--L.· I (_i, n__.__d _..___(i,_j) ---'-------+-1 = = = = J=· · ·
Figure 5.2: A full schedule CJ with job (i, j) early.

Suppose job (i, j) is first scheduled as a tardy job in its designated tardy batch,

but ends up being early when we reschedule job (i, j) into the last early batch for

customer i in CJ. Figure 5.2 depicts the schedule CJ generated in step 5 by scheduling

job (i, ni) as early at the end of the current batch followed by rescheduling all tardy

jobs from the designated tardy batch by adding them immediately after (i, ni) into

the current batch. (The schedule generated in step 6 would look similar, except job

(i, ni) would be the first job starting a new current batch.).

48 Ph.D. Thesis- Rui Zhang

Since job (i, j) became early after rescheduling, we have t 1 ::; d(i,j) ::; d(i,n;),

where t 1 is the completion time of the last batch for customer i. Let (i, j 2) be the

first job in the batch whose due date is at least d(i,j). Move job (i, j) to the left in

the batch by inserting it immediately before (i, j 2), and repeat this forward insertion

operation for every job (i, j) that became early in rJ. The Gantt chart of the resulting

schedule is depicted in Figure 5.3. Job (i, j 1) denotes the last job in the preceding

batch for customer i (if any). If d(i,)l) > d(i,j) for one of the moved jobs (i, j), then

move (i, j 1) to immediately follow each such (i, j) in the last batch. The resulting

schedule is depicted in Figure 5.4.

I (i,jl]
0 0 ·I 0 0 0 I (i,j) I (i,j2i

0 0 ·I = = = = = = = = ===+-I --L--

Figure 5.3: A full schedule with d(i,jl) ::; d(i,j)·

-It--· · ·--+-1-(i,_j) __.__I (z_·, jd....____.._l (_i, h_.__i · --+. • I = = = = = = = = = = =]----L.._
Figure 5.4: A full schedule with d(i,jl) > d(i,j)·

If there are any other jobs in the preceding batches for customer i whose due

date is greater than such a d(i,j), repeat this operation for these jobs. If we again

consider only the early jobs in the resulting schedule, they are in EDD order after

these operations. Thus the resulting early job set with this partitioning must have

been generated some time during the execution of steps 1 to 4, since Algorithm CH5-

Al considers every early schedule.

After performing the above transformations for every job (i, j) that may have

become early in schedule rJ, we obtain a schedule rJ
1 whose early job set is exactly

the same as the early job set of the schedule rJ produced by the rescheduling steps

5 or 6. Moreover, the early jobs are in EDD order in this transformed schedule rJ
1

after the transformations. Therefore, its early job set with the same partitioning

McMaster - DeGroote School of Business 49

must have been generated and considered during the execution of steps 1 to 4, since

Algorithm CH5-A1 considers every early schedule. Furthermore, notice that job (i, ni)

is contained in this early job set, since it was early in O", and the set of tardy jobs in

the schedule 0"
1 (implicitly scheduled in its designated tardy batch) would be the same

as the set of tardy jobs in O". Therefore, right after Algorithm CH5-A1 generated 0"
1

(in one of steps 1 to 4), it would have considered rescheduling all the tardy jobs for

customer i from its designated tardy batch by putting them right after (i, ni) in 0"
1

•

Let us call this last schedule with the tardy jobs attached right after (i, ni) schedule

0"
11

• Notice that every state variable for 0"
11

, except the objective value v", must have

the same value as the corresponding state variable for O". Furthermore, the v" value

contains the tardiness penalties exactly for the tardy jobs in 0"
11 (and O") and thus

correctly represents the objective value for the corresponding state and v > v". •

Lemma 5.3.1 means that even if Algorithm CH5-A1 generates a partial sched

ule O" with corresponding state (Jk, H, t, h, d, v) such that v does not represent the

correct tardiness cost of the schedule, this will create no problem because in this

case, it will always generate an alternative schedule 0"
11 with lower and correct cost.

Since in Algorithm CH5-A1 we choose the state with smallest v from S(n) as the final

solution, the algorithm will correctly identify an optimal schedule at the end.

In order to study the complexity of the above algorithm, we introduce some

further notations. Let P = L(i,k)EJ P(i,k) be the total processing time of all jobs,

Q = LiEM niqi an upper bound on the total delivery cost for all schedules, S =
LiEM nisi an upper bound on the total batch-setup time for all schedules, and dmax =

max(i,k)EJ{d(i,k)} the maximum due date over all jobs. Recall that W = L(i,k)EJ W(i,k)·

Theorem 5.3.1 Algorithm CH5-Al runs in O(nm+lpm[min{dmax,P+S}][W +Q])

time and space and returns an optimal schedule for the 1lsil 2::: W(i,k)U(i,k) + 2::: biqi

problem. This shows that the problem is NP -hard only in the ordinary sense.

Proof. Let us calculate the total number of possible different states. Each state is

represented by six entries: {Jk, H, t, h, d, v }, k = 0, 1, · · · , n. We know that Jk =

(k1, k2, · · · , km) with k = L::~:;_n ki· Any ki E Jk can take at most k+ 1 different values,

50 Ph.D. Thesis- Rui Zhang

{0, 1, · · · , k}, and the first (m- 1) ki values and k also determine km. Therefore, we

have at most (k + 1)m-1 different vectors :Jk. Because the maximum k value is

n, the upper bound for the number of :Jk is (n + 1)m-1 for all k. We also have

1-{ = (T1 , T2 , • · · , T m), and any Ti E H can take at most Pi+ 1 different values from 0 to

Pi= l:(i,k)EJ; P(i,k)· Therefore, we can have at most ft:~(Pi + 1) different vectors H.

Because P is an upper bound of Pi for all i, the total number of different H vectors is

bounded by (P+ 1)m. As both hand d carry information for the job that is scheduled

as the first job in the current early batch, we have at most n different combinations.

Since t is the total processing and setup time of the early batches, its value must be

between 0 to min{dmax, P+S}. Since vis the objective value, it is upper-bounded by

[W + Q]. In summary, at the beginning of the k-th iteration there are at most (n +

1)m-1(P+ 1)mn[min{ dma.x, P+S}][vV +Q] different states that need to be considered.

For each state, there are at most m candidate jobs to be considered as the next job.

For each job we generate at most six different new states in steps 1-6. Therefore, the

time complexity of each iteration is O(m(n + 1)m-1(P + 1)mn[min{dmax, P + S}][W +

Q]), which is O(nmpm[min{dmax,P + S}][W + Q]) for fixed m. Since we haven

iterations, the overall running time is O(nm+1 pm[min{ dmax, P + S}][W + Q]). •

5.4 Restricted Problem

The difficulty of converting Algorithm CH5-A1 into an FPTAS is how to eliminate the

pseudo-polynomial term min { dmax, P + S} when implementing the general framework

of obtaining an FPTAS from a dynamic programming algorithm suggested by Sahni

[1976]. We know that the term min{dmax, P+S} records the length of the designated

tardy jobs of each customer and it is used when rescheduling these designated tardy

jobs in Algorithm CH5-Al.

Consider a restricted version of the problem, where all tardy jobs (if any) have

to be delivered in separate batches, denoted by 1lsi,SEPI2:: W(i,k)U(i,k) + 2:: biqi. We

are able to develop another pseudo-polynomial algorithm for it, which does not need

McMaster - DeGroote School of Business

to record the length of the designated tardy jobs for any customer.

5.4.1 Pseudo-polynomial Algorithm

The following pseudo-polynomial algorithm for solving the ljsi,SEPI L, W(i,k)U(i,k) +
L, biqi problem is based on Propositions 5.2.1, 5.2.2, 5.2.3, 5.2.4 and 5.2.5. The state

space used to describe partial schedules contains state .C = (h, ... , lm), which is a zero

one vector signalling whether there is already a designated tardy batch for customer

i (li = 1) or not (li = 0) and other five entries, {Jk, t 2 , h, d, v2 } which are the same

as defined in Section 5.3. Notice that we do not include entry 'H = (T1, T2, · · · , Tm),

which causes the term min{ dmax, P + S} in the complexity of Algorithm CH5-Al.

51

Before we describe Algorithm CH5-A2 in detail, let us consider how we can re

duce the state space. Consider any two states (Jk, .C, t 1 , h, d, v1) and (Jk, .C, t 2 , h, d, v2).

Without loss of generality, let h :S h If '1-'1 :S v2 , we can eliminate the second state

because any later states which could be generated from the second state can not

lead to better v value than the value of similar states generated from the first state.

This validates the following elimination rule, and a similar argument could be used

to justify the second remark.

Remark 5.4.1 For any two states with the same entries (Jk,.C,t,h,d,·), we can

eliminate the state with larger v.

Remark 5.4.2 For any two states with the same entries (Jk, .C, ·, h, d, v), we can

eliminate the state with larger t.

Algorithm CH5-A2 follows the same pattern as Algorithm CH5-Al and starts

from the empty state where no job has been scheduled yet. Then Algorithm CH5-A2

recursively generates the states for the partial schedules on early jobs and at the same

time designates the remaining jobs in a state corresponding to Jk to be tardy. The

tardy jobs, however, will be processed and delivered separately later. We also assume

without loss of generality, that jobs in each job set Ji, i E lvf, are numbered in EDD

order.

52 Ph.D. Thesis- Rui Zhang

Algorithm CH5-A2

[Initialization] Set S(o) = { (.7°, £, 0, 0, 0, 0)}, £ = (0, ... , 0) and S(k) = 0, k = 1, ... , n.

[Generation] Generate set S(k) from S(k- 1).

Fork= 1 ton

Set T = 0·
'

For each (-Tk- 1 £ t h d v) E S(k- 1)
J ' ' ' ' '

For each i E lvf with ki < ni, set k~ = ki+1 and .Jk = (k1 , · · · , k~, · · · , km)

1. If i = hand t+P(i,k;) ::; d, then set T +--- Tu (.Jk, £, t+P(i,k;), h, d, v)

/*Schedule job (i, kD early in the current early batch;

2. If t + P(i,k;) + si ::; d(i,k;), then set T +--- T U (.Jk, £, t + P(i,k;J +

si, i, d(i,k;J, v + qi) /*Schedule job (i, k~) early starting a new early

batch.

3. If li = 1, then set T +--- T U (.Jk, £, t, h, d, v + W(i,k;J) /*Schedule

job (i, k~) tardy in the existing designated tardy batch for customer

'l'
'

4. Ifli = 0, then set li = 1 and T +--- Tu(.Jk,.C,t,h,d,v+w(i,k;J+qi)

/*Schedule job (i, k:) tardy starting a designated tardy batch for

customer i.

Endfor

[Elimination] Update set S(k).

Endfor

1. For any two states (.Jk, £, t, h, d, v) and (.Jk, £, t, h, d, v') with v ::;

v', eliminate the one with v' from set T ;

2. For any two states (.Jk, £, t, h, d, v) and (.Jk, £, t', h, d, v) with t::;

t', eliminate the one with t' from set T ;

3. Set S(k) = T.

McMaster - DeGroote School of Business

Endfor

[Result]: Select the state with the smallest v from set S(n) and trace back to obtain

an optimal schedule.

Theorem 5.4.1 For the lJsi,SEPI 2..: W(i,k)U(i,k) + 2..: biqi problem, Algorithm CH5-

A2 finds an optimal schedule in O(nm+l min{dmax, P + S, W + Q}) time, where

vV = L(i,k)EJ W(i,k)' Q = LiEM niqi' p = L(i,k)EJ P(i,k)' s = LiEM nisi and dmax =
max(i,k)EJ{ d(i,k)}.

Proof. The correctness of Algorithm CH5-A2 follows from the previous propo

sitions and discussion. Notice that the procedure [Generation] is the most time

consuming part. At the beginning of iteration k, the total number of possible

states (.Jk- 1 , £, t, h, d, v) in S(k- 1) is upper-bounded by the following: there are

at most km- 1 different .Jk for fixed k, at most 2m different £ vectors, at most

m values of h and n values of d, at most min{ dmax, P + S} possible values for t

and vV + Q different values for v. Because of the elimination rules, min{ dn, P +

S, vV + Q} is an upper bound for the number of different combinations of t and

v. Thus the total number of different states at the beginning of each iteration is

O(km-l2mmnmin{dmax,P+S, vV +Q}). In each iteration k, there are at most three

new states generated from each state in S(k- 1) for each candidate job, and there are

at most m candidate jobs. Since there are n iterations, the [Generation] procedure

could indeed be done in 0(3nkm-l2mm2n min{ dmax, P + S, W + Q}) time, which is

O(nm+l min{dmax, P + S, W + Q}). •

Corollary 5.4.1 For the lJsi,SEPJ 2..: W(i,k)U(i,k) + 2..: biqi problem, if all jobs have

equal tardiness penalties, i.e., W(i,k) = w > 0, V(i, k) E J and all customers have

equal batch-delivery costs, i.e., qi = q > 0, Vi E M, then Algorithm CHS-A2 provides

an optimal solution for it in O(nm+3) time.

Proof. For any state, v is the sum of two different cost components: the delivery costs

from the set { q, 2q, ... , nq} and the weighted number of tardy jobs from {0, w, ... , nw }.

53

54 Ph.D. Thesis- Rui Zhang

Therefore, v can take at most n(n + 1) different values, and W + Q turns into O(n2
).

Thus the time complexity becomes O(nm+l min{dmax, P+S, W +Q}) = O(nm+3). •

Corollary 5.4.2 For the llsi,SEPI 2:.:: W(i,k)U(i,k) + 2:.:: biqi problem, if all jobs have

equal processing times, i.e., P(i,k) = p > 0, V(i, k) E J and all customers have equal

batch-setup times, i.e., Si = s > 0, Vi E M, then Algorithm CH5-A2 provides an

optimal solution for it in O(nm+3) time.

Proof. For any state, t is the sum of two different time components: the setup times

from { s, ... , ns} and the processing times from {O,p, ... , np}. Thus, t can take at most

n(n + 1) different values, and P + S turns into O(n2
). Thus the time complexity

becomes O(nm+l min{ dmax, P + S, W + Q}) = O(nm+3). •

5.4.2 Fully Polynomial Time Approximation Scheme

In this subsection, we will convert Algorithm CH5-A2 into an FPTAS using the static

interval partitioning approach suggested by Sahni [1976]. To be able to implement

this approach fast, we need a pair of tight bounds such that the upper bound is a

constant multiple of the lower bound. In what follows, we first develop two new

algorithms to determine an initial pair of upper and lower bounds. After this, we

present two other algorithms to narrow the initial bounds into a pair of tight bounds.

Finally, using the tight bounds, we are able to implement the (1 +c-)-approximation

algorithm in fully polynomial time for any given c > 0.

Step I: Initial Bounds

To obtain a pair of initial bounds, we need to construct an auxiliary problem using the

same data, where we assume qi = 0, ViE M, and the goal is to minimize the maximum

weight of tardy jobs with batch-setup time si, i EM, denoted by 1lsil maxw(i,k)U(i,k)·

Since any feasible schedule for the 1lsil maxw(i,k)U(i,k) problem is also feasible for the

11si,SEPI 2:.:: W(i,k)U(i,k) + 2:.:: biqi problem and vice versa, the optimal solution value

McMaster - DeGroote School of Business

for the 1\sil maxw(i,k)U(i,k) problem is a lower bound for the minimum cost of the

optimal solution value for the 1\si,SEP\ ~ w(i,k)U(i,k) + ~ biqi problem.

Temporarily assume, without loss of generality, that all jobs are reindexed in

the smallest-weight-first order, W[l] ::; W[2] ::; ... ::; W[n], where job [k] is the job with

the overall k-th smallest weight, regardless which customer it belongs to. It is easy to

see that if the optimal solution for the 1\si\ maxw(i,k)U(i,k) problem is W[k*] for some

k*, then there must exist a schedule in which jobs [k* + 1], ... , [n] can be delivered

early, and there is no schedule in which all of jobs [k*], [k* + 1], ... , [n] can be delivered

early. Based on this, to solve the 1\si\ maxw(i,k)U(i,k) problem, we first propose a

feasibility checking algorithm, Algorithm CH5-A3(k) that can report whether there

is a feasible schedule for the 1\sil maxw(i,k)U(i,k) problem in which the last n- k jobs

(taken from the smallest-weight-first order) are early. Then we can determine k* by

repeatedly using Algorithm CH5-A3(k) in a binary search of the range [0, n].

Notice that all propositions for early batches discussed before are also appli

cable to the 1\sil max w(i,k)U(i,k) problem. Thus if there is a feasible schedule in which

all jobs in <I>(k) = {[k + 1], ... , [n]} are early, then there is also one in which they are

in EDD order. Therefore, Algorithm CH5-A3(k) is applied to a representation of the

job set <I>(k) in which jobs are identified by which customer they belong to and are

re-sorted into EDD order: Assume that the job set <I>(k) = {[k + 1], ... , [n]} is further

grouped into m subsets <I>i(k) with respect to the m customers, i E lvf, and each

<I>i(k) = { (i, 1), ... , (i, ei)} contains its ei jobs in EDD order, where ~iEM ei = n- k.

(It is possible that <I>i(k) = 0, i.e., ei = 0, for some i E lvf.) Let (If, h, d, t) be

the state representing a partial schedule with makespan t on the combined job set

{(i, 1), ... , (i, fi)}, i E M where fi ::; Oi, f = ~:1 fi and If = (JI, ... , fm), and

similarly to our previous notation, the job with batch-due date d in the current

batch belongs to customer h. Algorithm CH5-A3(k) starts from the empty sched

ule (I0 , 0, 0, 0), where I 0 = (0, ... , 0). The set of feasible partial schedules at stage

f E {1, 2, ... , n- k} is denoted by nUl, and initially we have nUl = 0. Note that

all job sets scheduled in a partial schedule belonging to R (f) have the common cardi-

55

56 Ph.D. Thesis- Rui Zhang

nality f, but these sets differ in their defining If = (h, h, ... , fm) vectors. For each

setting (If, h, d, ·), we will carry only the partial feasible schedule with the minimum

t value identified by Algorithm CH5-A3(k) so far. Thus for each (If, h, d, ·),only one

state (If, h, d, t) is stored at any time. Initially, we start with (If, h, d, oo).

Algorithm CH5-A3(k)

[Initialization] Set n(o) = {(I0 ,0,0,0)}, where I 0 = (0, ... ,0).

[Subgrouping] For the given k value, construct <I>i(k) = { (i, 1), ... , (i, ei)} from job

set <I>(k) = {[k + 1], ... , [n]}, where I::iEM ei = n- k, d(i,l) ::::; ... ::::; d(i,O;)l i E 1\J.

[FeasibilityChecking] Schedule one more job into the partial schedule.

For f = 1 ton-k, generate set nU> from nU-l)

Initialize t = oc for all possible If, h and d, i.e., add (If, h, d, oo) to nU>.

For each (If-l, h, d, t) E nU-l) with If-l = (fi, h, ... , fm)

Fori= 1 tom, if fi + 1 ::::; ei, then

2. If i = h, t + P(i,f;) ::::; d and t + P(i,f;) < T, where T is the best value

found so far for the state (If, h, d,) stored as (If, h, d, r), then

set T = t + P(i,f;) for the state. /*Job (i, fi) can be added to the

current batch and the schedule's total processing time is less than

T.

2. Consider the Tin the state (If, i, d(i,f;), T): Ift+P(i,f;) +si::::; d(i,f;)

and t + P(i,f;) + si < T, then set T = t + P(i,J;) + si for the state.

/*Job (i, fi) can be added starting a new batch and the schedule's

total processing time is less than the best value T obtained so far.

Endfor

Endfor

McMaster - DeGroote School of Business

Endfor

[Result]: If there is no state (In-k, h, d, T) in R (n-k) with T < oo , then no feasible

schedule exists; Otherwise, there exists a feasible schedule in which all jobs in

<I>(k) = {[k + 1], ... , [n]} are early.

Theorem 5.4.2 Algorithm CH5-A3(k) correctly reports whether there exists a feasi

ble schedule on <I>(k) and it requires 0(n m+l) time.

57

Proof. In [Subgrouping], we need to construct m EDD-ordered subsequences of

the n- k jobs in <I>(k). This can be done in O(m(n- k) log(n- k)) time. At the

beginning of each iteration f of [FeasibilityChecking], there are at most (n- k)m

states in RU-1), because there can be at most (n- k)m-1 different If-1 vectors, each

vector may appear with at most (n- k) different (h, d) combinations, and Algorithm

CH5-A3(k) only keeps one partial schedule for each (If-1, h, d, ·), the one with the

smallest makespan T. The internal loops i of [FeasibilityChecking] require 0(m) time.

Overall, there are (n - k) [FeasibilityChecking] iterations. In summary, this means

that Algorithm CH5-A3(k) runs in O(m(n- k)m+l) time, which is O(nm+1). •

Next, we present the following Algorithm CH5-A4 that finds an optimal solu

tion for 1lsil max W(i,k)U(i,k)· Suppose that all jobs are indexed in smallest-weight-first

order, i.e., W[1] ::; W[2] ::; ... ::; W[n]· Thus the optimal result is the smallest k for which

Algorithm CH5-A3(k) reports a feasible schedule. It means that we can schedule jobs

{[k], [k + 1], ... , [n]} early in the 1lsil max w(i,k)U(i,k) problem, but we can not schedule

all of {[k- 1], [k], ... , [n]} early. We will apply Algorithm CH5-A3(k) in a standard

binary search to find this smallest k, denoted by k* in Algorithm CH5-A4.

Algorithm CH5-A4

[Initialization] Set k1 = 0, k2 = n and k* = 0.

1. Set k = i(k1 + k2)/2l and run Algorithm CH5-A3(k);

58 Ph.D. Thesis- Rui Zhang

2. If it reports that no feasible schedule exists, then set k1 = k;

3. If it reports a feasible schedule, then set k* = k and k2 = k.

End while

[Result] If k* = 0, then w* = 0; Otherwise, w* = W[k*J·

Theorem 5.4.3 Algorithm CH5-A4 runs in O(nm+1logn) time and finds the optimal

solution value for the llsil maxw(i,k)U(i,k) problem.

Proof. Note that Algorithm CH5-A4 needs to call Algorithm CH5-A3(k) at most

log n times to find k*. •

The next lemma shows that Algorithm CH5-A4 provides initial lower and

upper bounds for the llsi,SEPI 2:. W(i,k)U(i,k) + 2:. biqi problem.

Lemma 5.4.1 If vr is the optimal solution value for the Ilsi,SEPI 2:. W(i,k)u(i,k) +
2:. biqi problem, then V

1 S vr S nv', where V
1 = w* + 'L.iEM qi and w* is the optimal

solution value for the llsil maxw(i,k)U(i,k) problem.

Proof. By the definitions of the llsi,SEPI 2:. W(i,k)U(i,k) + 2:. biqi problem and the

llsil maxw(i,k)U(i,k) problem, we know that any feasible schedule of the latter one is

also feasible for the former one and vice versa. Therefore, the total weighted number

of tardy jobs in an optimal schedule for the llsi,SEPI 2:. W(i,k)U(i,k) + 2:. biqi problem

is at least w*. Furthermore, there is at least one batch for each customer in any

schedule for the llsi,SEPI 2:. W(i,k)U(i,k) + 2:. biqi problem. Thus v' = w* + 'L.iEM qi is

a lower bound for vr. Since the optimal schedule for the llsil maxw(i,k)U(i,k) problem

has at most k* tardy jobs, the total weighted number of tardy jobs is at most k*w* in

this schedule. Furthermore, it clearly cannot have more than n deliveries. Therefore,

k*w* + n 'L.iEM qi S n(w* + 'L.iEM qi) = nv' is an Upper bound for vr. •

Step II: Tight Bounds

In order to narrow the gap between the lower and upper bounds given in the previous

lemma so that the ratio of the resulting upper and lower bound is itself bounded by

McMaster - DeGroote School of Business

a constant. We use the same approach as the strategy employed in Chapter 4 for the

llsl L. wiUi + bq problem.

Algorithm CH5-A5(u, c) is very similar to Algorithm CH5-A2 with a certain

variation of the [Elimination] and [Result] procedures. Assume that the jobs have

been sorted into EDD order in each Ji, ViE M.

Algorithm CH5-A5 (u, E)

[Initialization] Do the same as in Algorithm CH5-A2.

[Partitioning] Partition the interval [0, u] into I n/E l equal intervals of size uEjn,

with the last one being possibly smaller.

[Generation] Generate set S(k) from S(k-l).

Fork= 1 ton

Set T = 0;

For each (-7k-l £ t h d v) E S(k-l)
v ' ' ' ' '

59

For each i E M with ki < ni, set k~ = ki+l and :Jk = (k1, · · · , k~, · · · , km)

Do the same as in Algorithm CH5-A2.

Endfor

Endfor

[Elimination] Update set S(k).

1. Eliminate any state (:Jk, £, t, h, d, v) if v > u.

2. If more than one state has a v value that falls into the same subinterval

of [0, u], then discard all but one of these states, keeping only the

representative state with the smallest t coordinate for each interval.

3. For any two states (:Jk, £, t, h, d, v) and (:J\ £, t, h, d, v') with v ~ v',

eliminate the one with v' from set T ;

4. Set S(k) = T.

60 Ph.D. Thesis- Rui Zhang

Endfor

[Result] If S(n) = 0, v~ > (1- E)u; Otherwise v~ :<:; u.

Theorem 5.4.4 If Algorithm CH5-A5(u, E) reports S(n) = 0, then v~ > (1- E)u;

otherwise vt :<:; u. The time complexity of Algorithm CH5-A5(u,E) is O(nm+2 jE) for

arbitrary E > 0.

Proof. Similarly to Theorem 4.4.3, if S(n) is not empty, then there is at least one state

(Jn, £, t, h, d, v) with v in some subinterval of [0, u] that has not been eliminated.

Therefore, we have vi :<:; v :<:; u. If S(n) = 0, by [Partitioning] and [Elimination],

the error introduced in one iteration is at most Eu/n, the overall error is at most

n(Eujn) = Eu, i.e., v 2: (1- E)u. Thus vt > (1- E)u.

Notice that IS(k) I :<:; I nm+l / E l fork = 1, 2, ... , n. Since all operations on a single

state can be performed in O(m) time and there are n iterations in the [Generation]

procedure, the overall complexity is O(nm+2 jE). •

Again, we consider to use BIP[a1 , a2 , A(w, P)] to narrow the bounds [v', nv'].

Let a1 = v', a2 = nv', w = u and P be the 1lsi,SEPI 2::: W(i,k)U(i,k) + 2::: biqi problem.

Then Algorithm CH5-A5(u, 1/3) can be used as A(w, P). Since Algorithm CH5-

A5(u, 1/3) runs in O(nm+2) time, BIP[a1 , a 2 , A(w, P)] reports~ in O(nm+2 log log n)

time, which implies a pair of tight bounds [~, 3~]. In this implementation, we refer to

BIP[a1 , a2, A(w, P)] as Algorithm CH5-A6.

Corollary 5.4.3 Algorithm CH5-A6 can narrow the bounds [v', nv'] into [v, 3v] zn

O(nm+2 loglogn) time by setting v = ~-

Step III: Approximation

For any given E > 0, using the bounds v :<:; vi :<:; 3v obtained by Algorithm CH5-A6,

we run a slightly changed version of Algorithm CH5-A5(u,E), called Algorithm CH5-

A7, with u = (1 + E/3)3v: The only difference is that in the [Partitioning] step we

partition [0, u] = [0, (1 +E/3)3v] into n 13/ E + 1l intervals of size at most EV jn, so that

McMaster - DeGroote School of Business

the cumulative error over n iterations will be no more than c:v. Since we know that

the problem has an optimal solution value vi :::; 3v, the algorithm will find a solution

v for the 1Jsi,SEPJ I: w(i,k)U(i,k) +I: biqi problem such that v :::; 3v + c:v = u, which

means that the algorithm will never end with an empty T. Furthermore, whichever

subinterval of [v, 3v] vi falls into, the algorithm will generate an approximate solution

v with at most c:v error away from it, i.e., v:::; vi+ c:v:::; (1 + c:)vi. Therefore, we

have the following corollary.

61

Corollary 5.4.4 For any given c: > 0, Algorithm CHS-A 7 finds a (1+c:)-approximate

solution for the 1Jsi,SEPJ I: w(i,k)U(i,k) +I: biqi problem in O(nm+2 /c:) time.

Now we are ready to present the final Algorithm CH5-A8, which combines into

an FPTAS the previous algorithms as subroutines.

Algorithm CH5-A8

[InitialBounds]: Run Algorithm CH5-A4 and set v' = w* + I:iEM qi;

[TightBounds]: Run Algorithm CH5-A6 and obtain: v:::; vi :::; 3v.

[Approximation]: Run Algorithm CH5-A 7 and obtain an approximate schedule.

Theorem 5.4.5 For the 1Jsi,SEPI I: W(i,k)U(i,k) +I: biqi problem, Algorithm CH5-A8

finds a (1 + c:)-approximate solution in 0(nm+2 / c: + nm+2 log log n) time.

Proof. The complexity and correctness follow from the results for the component

algorithms. •

5.5 Approximation Algorithm

In this section, we show that the approximate solution found by Algorithm CH5-A8

for the 1Jsi,SEPJ I: W(i,k)U(i,k) +I: biqi problem is also near-optimal for the original

1JsiJ I: W(i,k)U(i,k) +I: biqi problem. Note that any feasible schedule for the former

62 Ph.D. Thesis- Rui Zhang

one is also a feasible schedule for the latter one and its objective value is the same

for both versions. Thus if rJ is any batching schedule with late jobs delivered sepa

rately, then v1 (rJ) = v(CJ), where v1 (rJ) and v(rJ) are the objective value of rJ for the

1lsi,SEPI I:: W(i,k)U(i,k) +I:: biqi and 1lsil I:: W(i,k)U(i,k) +I:: biqi problem, respectively.

Therefore, v* :::; vi. We can have three cases for the original problem:

1. If there is an optimal schedule in which all jobs are early, then this schedule is

optimal for both problems, and vi = v*;

2. If there is an optimal schedule in which all tardy jobs are delivered separately,

then this schedule is optimal for both problems, and vi = v*;

3. If in any optimal schedule for the original 1lsil I:: W(i,k)U(i,k) +I:: biqi problem,

there is at least one customer whose tardy jobs must be delivered together with

some early jobs, then an optimal schedule for the 11si,SEPI I:: W(i,k)U(i,k) +I:: biqi

problem is not optimal for the 1lsil I:: W(i,k)U(i,k) +I:: biqi problem. However,

since an optimal schedule for the 1lsi,SEPI I:: W(i,k)U(i,k) +I:: biqi problem has

at most one separate tardy batch delivered for each customer, we have vi <

v* + 2::::~ 1 Qi·

In summary, we always have vi < v* + 2::::~ 1 qi in all cases. Let us define

8 = ----¥----. L::i=l q;

Corollary 5.5.1 For any E > 0, Algorithm CH5-A8 is p = (2 + 8 + 2c + &)/(1 + 8)

approximation algorithm for the 1lsil I:: w(i,k)U(i,k) +I:: biqi problem with time com

plexity O(nm+2 logn+nm+2/c), where 8 = ----¥----.
L::i=l q,

Proof. Let CJC be a schedule produced by Algorithm CH5-A8 forE > 0. By Theorem

5.4.5, v1(rJc):::; (1 + c)vi. Furthermore,

m m m
(1 +8) Lqi = w* + Lqi:::; v*:::; v1(rJc):::; (1 +c)v~:::; (1 +c)(v* + Lqi).

i=1 i=1 i=1

McMaster - DeGroote School of Business

This implies that

() * () ~ * 1 + c * * 1 + 2c: + De v1 O" c: - v* :=; c:v + 1 + c ~ qi ::; c:v +
1
+

6
v = v

1
+

6
,

t=l

(5 .5.1)

which means that

(5 .5. 2)

The complexity follows from the running times of the component algorithms. •

Since 6 > 0 and p is monotone decreasing in 6, we have p :=; 2 + 2c: in the

worst case. However , as the following table shows, the quality of the approximation

by Algorithm CH5-A8 improves quite rapidly as 6 is increasing.

6 1/ 2 1 5 10 100

p 5(1 + c:) / 3 3(1 + c:)/ 2 7(1 + c:) / 6 12(1 + c:) / 11 102(1 + c:) / 100

5.6 Summary

In this chapter, we first proved that the 1lsil L W(i,k)U(i ,k) + L bi qi problem is NP

hard only in the ordinary sense by proposing a pseudo-polynomial algorithm for it.

In order to obtain an FPTAS, we then studied a restricted version of the original

problem: the l lsi ,SEPI L W (i, k) U (i, k) + L bi qi problem. For this problem, we proposed

a simpler pseudo-polynomial algori thm and an FPTAS. Finally, we showed that the

FPTAS for this restricted problem is also an approximation algorithm for the original

problem with a relat ively good approximation ratio.

63

Chapter 6

Models with a Common Assignable

Due Date

In Chapter 4, we have studied the supply chain scheduling model with delivery costs

for a single customer. In the next three chapters, we include due date assignment in

it. In particular, this chapter deals with only CON problems, where CON means that

a common due date is assigned to all jobs.

6.1 Introduction

Meeting due dates always is one of the important concerns in scheduling and supply

chain management. In traditional machine scheduling, due dates are given and defined

in advance. According to the paper [Slotnick and Sobel, 2005], however, the tardiness

penalties in aerospace industries may be as high as one million dollars per day for

suppliers of aircraft components. In this situation, suppliers might consider extending

due dates to allow jobs to be on time. In order to keep the customers at the same

time, the suppliers may have to offer reduced prices as trade-offs. This motivates us

to include due date assignment and its costs in the model studied in Chapter 4. We

64

McMaster - DeGroote School of Business 65

start this research by studying problems in which a common due date is assigned to

all jobs.

This chapter is organized as follows. In Section 6.2, we define the problems

in detail and provide NP-hardness proofs. In Section 6.3, we propose a pseudo

polynomial algorithm and an FPTAS for the unconstrained problem. In Section 6.4,

we further prove that the algorithms for the unconstrained problem are applicable for

the time-constrained problem just with a slight variation. In Section 6.5, we develop

a pseudo-polynomial algorithm and an FPTAS for the capacity-constrained problem.

In Section 6.6, we make our final conclusions.

6.2 Preliminaries

Note that all the terminologies, assumptions and notations introduced in Chapters

1 and 3 are applied in this chapter. Our goal is to find a schedule which minimizes

the sum of the due-date-assignment costs, the weighted number of tardy jobs and the

batch-delivery costs, denoted by 1Js, A,CONJ "f:. o:jRj + "f:. WjUj +bq. We also call the

1Js, A,CONJ "f:. o:jRj + "f:. wjUj + bq problem the unconstrained problem, if there are

unlimited number of vehicles available for delivering jobs and the delivery capacity on

a single trip is unlimited. If the customer requires a time period of at least T between

any two consecutive deliveries, we construct a time-constrained problem, denoted by

1Js, T, A,CONJ "f:. o:jRj + "f:. wjUj + bq. If the delivery capacity on a single trip is B,

we construct a capacity-constrained problem, denoted by 1Js, B, A, CONI "f:. o:jRj +
"f:. WjUj + bq. We now prove their NP-hardness.

Theorem 6.2.1 The 1Js, A,CONJ "f:.o:jRj + "f:. wjUj + bq (unconstrained) problem is

NP-hard.

Proof. Consider the knapsack problem shown below, which is well-known to be

NP-hard. :

Maximize L Wj, such that: LPj :::; A, n ~ J. (6.2.1)
jEn jEn

66 Ph.D. Thesis- Rui Zhang

Construct an instance of the unconstrained problem from this, in which s = q = 0,

aj » Wj and pj be the processing time, V j E J. This implies that the largest value

for the assigned due date will be D = A in any optimal schedule. Suppose tp is the

set of early jobs in an optimal schedule for the above instance of the unconstrained

problem. Then to minimize the 2::: wjUj, we know that tp must maximize the tardiness

penalties of early jobs with L::jE<p Pj ~ A. Therefore, by setting n = tp, we obtain

an optimal solution for the above knapsack problem. We proved the equivalence and

thus the unconstrained problem is NP-hard. •

If we consider T = 1 or B = n, then the constraints are vacuous in the

time-constrained or the capacity-constrained problem, respectively. Thus both these

problems are just unconstrained problems and we have the following two corollaries.

Corollary 6.2.1 The lis, T, A, CONI 2::: ajRj + 2::: WjUj +bq (time-constrained) prob

lem is NP-hard.

Corollary 6.2.2 The lis, B, A, CONI 2::: ajRj + 2::: WjUj + bq (capacity-constrained)

problem is NP -hard.

6.3 Unconstrained Problem

In this section, we study the unconstrained problem, lis, A, CONI 2::: ajRj + 2::: wjUj +
bq. For this problem, we first develop a polynomial algorithm for the case of A = 0

and then we propose a pseudo-polynomial algorithm and an FPTAS for the case of

A > 0. The following proposition observes the structure of optimal schedules in both

cases.

Proposition 6.3.1 There is an optimal schedule for the lis, A, CONI I: ajRj+ I: wjUj

+bq problem, in which there are at most two batches.

Proof. Suppose that there are more than two batches in an optimal schedule, say

rJ. Since all jobs share the same due date, there are at least two early batches or two

McMaster- DeGroote School of Business

tardy batches. In either case, delivering all early (or tardy) batches together saves

batch-delivery costs for a batch without adding any costs. Therefore, schedule (}" is

not optimal, a contradiction. •

6.3.1 Zero Contracted Due Date

For the unconstrained problem, when A= 0, denoted by 1\s, A= O,CON\ 2:.:: a1R1 +
2:.:: w1U1 + bq, we have R1 = D, Vj E J. We can observe the following facts.

Proposition 6.3.2 There is an optimal schedule for the 1\s,A = O,CON\ L.::a1R1 +
2:.:: w1Uj + bq problem, in which D is either defined as a delivery time or equal to 0.

Proof. Suppose the optimal schedule has all jobs delivered as early jobs at P + s

in a single batch, then setting D = P + s has the minimum cost. On the other

hand, suppose the optimal schedule has all jobs delivered as tardy jobs at P + s in a

single batch, then setting D = 0 has the minimum cost. Finally, suppose the optimal

schedule has two batches and the first one is delivered at t, then setting D = t has

the minimum cost. •

67

Proposition 6.3.3 Consider schedules which have two batches for the 1\s, A= 0, CON\

2:.:: a1R1 + 2:.:: w1U1 + bq problem, then delivering jobs in JE = {j\p1 < "Lj:
1
aj, j E J}

as early jobs at D = L.::1EJE p1 + s, and the remaining jobs as tardy jobs at the end

generates a schedule which has the minimum cost.

Proof. The schedule specified in the above proposition has total cost

n

j=1 jEJ\Je

which can be divided into four parts: s 2:.::7=1 a 1, 2q, L.::jEJe PJ 2:.::7=1 aj and L.::jEJ\JE Wj·

Without considering the first two parts which every two-batch schedule incurs, job

j contributes either p1 2:.::7=1 a1 or w1 to the total cost. Thus scheduling job j E JE

in the first batch saves costs if p1 < Lnw · . . •
j=l aJ

68 Ph.D. Thesis- Rui Zhang

The following Algorithm CH6-Al, which is based on Propositions 6.3.1, 6.3.2

and 6.3.3, solves the problem.

Algorithm CH6-Al

1. Set Vt, Ve, vd = oo /*Initialization.

2. Set D = 0 and Vt = q + LiEJ wi /*Jobs are scheduled tardy in one batch.

3. Set D = P +sand Ve = q + D '2.::7=1 ai /*Jobs are scheduled early in one batch.

4. Determine JE = {)IPJ < 'Enw1 ,j E J}.
J=l aJ

5. If 0 < LjEJe Pi < P, then set D = LJEJs Pi + s and Vd = 2q + LjEJ\Js wi +

D '2.::7=1 ai /*Jobs are scheduled in two batches and the first batch is early.

6. Find the optimal solution by v* = min{ Vt, Ve, vd} as the optimum and obtain

the corresponding schedule and the corresponding D.

Theorem 6.3.1 Algorithm CH6-A1 solves the lis, A= 0, CON\2.:::: a1R1 + 2.:::: w1U1 +

bq problem in polynomial time.

Proof. All the above steps involve calculations, which can be finished in 0(n) time .

•

6.3.2 Positive Contracted Due Date

Let 11 s, A > 0, CON I '2.:: a J RJ + '2.:: Wj UJ + bq denote the unconstrained problem with

A> 0. Now we develop one more proposition as follows.

Proposition 6.3.4 For the lis, A > 0, CON\2.:::: aiRi + 2.:::: wiUi + bq problem, if a

two-batch schedule has the first batch delivered at t, then setting D = max{ t, A} has

the minimum cost.

McMaster - DeGroote School of Business 69

Proof. Since all jobs share a common due date, in any optimal schedule with two

batches, the first batch is an early batch and the other batch is a tardy batch. Suppose

the first batch is delivered at t. To let the first batch be early, we have D 2: t. If

t > A, then the best is to set D = t. If t ::; A, then set D = A. In summary, we will

have D = max{t, A}. •

Pseudo-polynomial Algorithm

\\le know from Proposition 6.3.1 that there are at most two batches in any optimal

schedule. Let us first discuss the following two patterns of the schedules, which have

exactly two batches.

Pattern 1: Consider schedules in which there are two deliveries and the first delivery

happens at or before A. By the proof of Theorem 6.2.1, looking for the lowest cost

schedule is equivalent to solving the following knapsack problem, KP1(x):

Maximize 2::: Wj, such that: l::Pj ::; X- s, n c J, (6.3.2)
jEO jEO

where X= A. Then the resulting schedule is to deliver jobs in n at l:.::jEO Pj + s ::; A

and the remaining jobs at the end, at time P + 2s. Therefore, if we set D = A, then the

due-date-assignment cost is zero and the cost of the schedule is v1 = l:.::jEJ\O Wj + 2q.

Pattern II: Consider schedules in which there are two deliveries, and jobs in <I> C J

are delivered in this first batch at t > A as early jobs, where t = l:.::jE<I> Pj + s. Then,

by Proposition 6.3.4, to obtain the lowest cost schedule, we set D = l:.::jE<I> pj + s and

the total cost is

VII= (l::Pk +s-A) 2::: O:j + 2::: Wj + 2q
kE<l> jEJ jEJ\<I>

(6.3.3)
jEJ jEJ kEJ jEJ\<I> kEJ jEJ\<I>

jEJ jEJ jEJ\<I> kEJ

70 Ph.D. Thesis - Rui Zhang

Since t = L_JEiJ>PJ + s >A, the set of the jobs must satisfy L.JEJ\iJ>PJ < P- A+ s.

Therefore, looking for such a set <I> is equivalent to solving the following knapsack

problem, KP2(x):

Maximize L (PJ L o:k- wJ), such that: L PJ < P + s- x, <I> C J, (6.3.4)
jEJ\iJ> kEJ jEJ\iJ>

where x =A. In this situation, we set D = L.jeP PJ + s using the answer <I>.

If all jobs are delivered in a single batch, then we may have three resulting

schedules: (1) setting D = A so that all jobs are early (if A 2: P + s), (2) setting

D = A so that all jobs are tardy (if A < P + s) and (3) setting D = P + s so that all

jobs are early (if A < P + s). Now we are ready to present our pseudo-polynomial

Algorithm CH6-A2.

Algorithm CH6-A2

1. Set v1 , v2 , v3 , Vj, VIJ = oc /*Initialization.

2. If A 2: P + s, then set D =A and v1 = q /*Schedule all jobs early in one batch.

3. If A < P + s, then set D = A and v2 = q + '2:.7=1 wJ /*Schedule all jobs tardy

in one batch.

4. If A< P + s, then set D = P +sand v3 = q + (D- A) '2:.7=1 o:J /*Schedule all

jobs early in one batch with a revised due date.

5. If A < P + s, then set x = A and solve the KPl(x) problem described in

equation (6.3.2). Using the answer n, set D = A and calculate the cost of the

corresponding schedule v1 = 2q + L_JEJ\f! WJ /*Pattern I.

6. If A < P + s, then set x = A and solve the KP2(x) problem described in

equation (6.3.4). Using the answer <I>, set D = L.JEil> PJ + s and calculate the

cost of the corresponding schedule VIJ = (D - A) '2:.7=1 o:J + L.JEJ\1> WJ + 2q

/*Pattern II.

McMaster - DeGroote School of Business

7. Find the optimal solut ion by v* = min{v1, v2,v3 ,v1 ,vii} and obtain t he corre

sponding schedule and the corresponding D .

Theorem 6.3.2 Algorithm CH6-A 2 solves the li s , A> O,CON] "£ a jR j+ "£ wjUj +

bq problem in 0 (nP) time, where P = "£7=1 Pj. This shows that the problem is

NP -hard only in the ordinary sense.

Proof. Many known algori thms for the KPl (x) and KP2 (x) problem run in O(nP)

time [Pinedo , 2001] . •

Fully Polynomial Time Approx imat ion Schem e

In order to obtain an FPTAS for the l is , A > O,CONI "£ aj Rj + "£ wjUj + bq problem,

we need to solve the minimization version of the KPl (x) and KP2 (x) problems approx

imately. The minimization version of the KPl (x) problem, denoted by MinKPl (x) ,

is shown below:

Minimize L Wj, such that : L Pj ;:: p + s - x , n c J , (6.3.5)

71

where x =A. The minimization version of the KP2 (x) problem, denoted by MinKP2(x),

is shown below:

Minimize L (PJ L ak - wj) , such that : L Pj ;:: x - s , ci> C J , (6 .3.6)
jEJ \ ¢> kE J j EJ \ ¢>

where x = A. We know that the above two problems, MinKP l (x) and MinKP2 (x) ,

can be solved with (1 +c)-approximate rat io by the FPTAS of [Gens and Levner ,

1979a] in O(n2 /c) t ime. Now we are ready to present Algorithm CH6-A3, which is

subsequent ly proven to be an FPTAS.

Algorithm CH6-A3

1. Set v1, v2 , v3 , V I , V IJ = oc /*Initialization.

2. Do t he same as in the st eps 2- 4 of Algorithm CH6-A2 /*Set v1 , v2, v3 .

72 Ph.D. Thesis- Rui Zhang

3. If A < P + s, then set x = A and solve the MinKPl(x) problem described

in equation (6.3.5) by the FPTAS in [Gens and Levner, 1979a]. Based on the

answer s1, set D = A and calculate the cost of the corresponding schedule by

VI= 2q + LjEI1 Wj /*Pattern I.

4. If A < P + s, then set x = A and solve the MinKP2(x) problem described

in equation (6.3.6) by the FPTAS in [Gens and Levner, 1979a]. Based on the

answer <I>, set D = LjE~ p1 + s and calculate the cost of the corresponding

schedule VJI = (D- A) :Z:::?=l a1 + LjEJ\~ w1 + 2q /*Pattern I I.

5. Find the approximate result by Vapx = min{ v1 ,v2 , v3 , v1 , VJI} and obtain the

corresponding schedule and the corresponding D.

Theorem 6.3.3 Algorithm CH6-A3 provides a (1 +E)-approximate solution for the

ljs,A > O,CONj 'I:,aJRj + L:wjUJ + bq problem in O(n2/E) time. This shows that

the algorithm is an FPTAS.

Proof. Since step 2 runs in O(n) time and steps 3 and 4 run in O(n2 /E) time [Gens

and Levner, 1979a], the overall running time is O(n2 /E). •

6.4 Time-constrained Problem

In the time-constrained problem, 1js, T, A, CONI L a1R1 + L w1U1 + bq, if there are

two batches, then the time elapsed between two deliveries must be at least T. If

T = 1, it is equivalent to the unconstrained problem. We assume, therefore, that

T > 1. Notice that Proposition 6.3.1 for the unconstrained problem is applicable

for this problem as well, since it makes no sense to deliver early or tardy jobs in

two different batches. The following lemma allows us to implement slightly different

versions of Algorithm CH6-A1, Algorithm CH6-A2 and Algorithm CH6-A3 to solve

the time-constrained problem.

McMaster - DeGroote School of Business

Lemma 6.4.1 For any given schedule that is feasible for the unconstrained problem

and has one or two batches, we can convert it into a schedule that is feasible for the

time-constrained with the scheduling cost unchanged.

Proof. If the schedule has only one batch, it is clearly true that it is also feasible for

the time-constrained problem. If the schedule has two batches and the first delivery

happens at time t, then let us consider two cases. Notice that in the unconstrained

problem we always assume that there is no idle time in any schedule, and thus the

second delivery always happens at time P + 2s. If P + 2s- t;::: T, then the schedule

automatically satisfies the time constraint. If P + 2s - t < T, then we just need to

add an idle time period T- (P + 2s- t) between the first and the second delivery.

This makes a time period T between these two deliveries and thus makes the schedule

feasible for the time-constrained problem. Since the second batch is a tardy batch,

then this delay will not add any extra cost for the schedule. •

Based on the above proof, for any schedule found by Algorithm CH6-Al,

Algorithm CH6-A2 and Algorithm CH6-A3 for the unconstrained problem, if there

are two batches and the first delivery happens at t with P + 2s - t < T, then let

the algorithms further add an idle time period T - (P + 2s - t) just before the

second delivery. Therefore, the resulting schedule is feasible for the time-constrained

problem as well. Let us name the corresponding algorithms with this operation as

Algorithm CH6-A4, Algorithm CH6-A5 and Algorithm CH6-A6. The following three

corollaries directly follow from the proofs of the corresponding algorithms and the

above discussion.

73

Corollary 6.4.1 Algorithm CH6-A4 solves the lis, T, A= O,CONI 2:..:: aJRJ+ 2:..:: wJUJ+

bq problem in polynomial time.

Corollary 6.4.2 Algorithm CH6-A5 solves the lis, T, A> O,CONI 2:..:: aJRJ+ 2:..:: wJUJ+

bq problem in O(nP) time, where P = 2:..:7=lPJ· This shows that the problem is NP

hard only in the ordinary sense.

74 Ph.D. Thesis - Rui Zhang

Corollary 6.4.3 Algorithm CH6-A6 provides a (1 +E)-approximate solution for the

lis , T , A > 0, CONI I: a.j Rj + 2.:: w1U1 + bq problem in O(n2 /c) time. This shows that

the algorithm is an FPTA S.

6.5 Capacity-constrained Problem

Now we study the capacity-constrained problem, l is , B , A, CONI I: a.1RJ + 2.:: w1U1 +

bq . If B = n , it is equivalent to the unconstrained problem. vVe assume, therefore,

that B < n .

6.5.1 Pseudo-polynomial Algorithm

Let us first observe t he following easy-to-prove structure for optimal schedules.

Proposition 6.5.1 For the l is , B , A , CONI I: a.1R1 + 2.:: w1U1 + bq problem , there is

an optim al schedule where all tardy jobs (if any) are scheduled f ollowing all early j obs.

Proof. Since all jobs have a common assigned due date, tardy jobs (if any) must be

scheduled at the end. •

Since all jobs share a common due date, ordering does not matter for either

early jobs or tardy jobs in any optimal schedule. Without loss of generality, we assume

that all jobs are indexed as: p1 S p2 S ... S Pn· Let (j , k1 , k2 , t , v), t 2': 0, represent

a partial schedule on job set {1 , ... , j} with cost v and makespan t , in which k1 is

the number of early jobs in the current early batch and k2 is t he number of t ardy

jobs in the current tardy batch. Here v includes the penalt ies for t ardy jobs and the

batch-delivery costs of early jobs or tardy jobs from {1 , ... , j} . For a partial schedule

(j , k1 , k2 , t , v), we can generate another part ial schedule by scheduling job j + 1 in

the following five ways: (1) as an early job in t he current early batch , or (2) as an

early job star ting a new early batch, or (3) as a tardy job in the current tardy batch ,

or (4) as a t ardy job starting a new tardy bat ch , or (5) completing (j , k1 , k2 , t, v)

McMaster - DeGroote School of Business 75

into a full schedule (n, 0, 0, -1, v + V(j,k2)) by setting D = t, delivering the last early

batch at t and scheduling jobs {j + 1, ... , n} as tardy jobs after t using the minimum

number of tardy batches, where we use the first four entries { n, 0, 0, -1} to specify a

full schedule. In this last case,

~ n-j+k2 ~
V(j,k2) = max{t- A, 0} L O:j + qr B l + L Wi,

j=1 i=j+1

where max{ t- A, 0} L.7=1 O:j is the due-date-assignment cost; qrn-"k+k2 l is the batch

delivery cost for all tardy jobs and L,~=j+ 1 wi is the tardy penalty of jobs {j + 1, ... , n}.

In the following Algorithm CH6-A 7, we continuously update the state (n, v) by the

smallest total cost v for any full schedule.

Consider two states (j, k1 , k2 , t, v) and (j, k1 , k2 , t, v') with v ~ v'. Then we can

eliminate the second state, because any later states generated from the second state

can not lead to a smaller v value than the value of similar states generated from the

first state.

Remark 6.5.1 For any two states with the same entries (j, k1 , k2 , t, ·), we can elim

inate the one with larger v.

Algorithm CH6-A7 starts from an empty schedule (0, 0, 0, s, q), where s and

q represent the batch-setup time and batch-delivery cost for the first early batch,

respectively. To begin, we set v* = L.7=1 Wj + q r ~ l as the initial value of optimal

solution, which is the minimum cost of schedules in which all jobs are tardy. During

the algorithm, v* will be updated when we complete a partial schedule into a full

schedule with the total cost smaller than v*. In Algorithm CH6-A7, we start a new

early or tardy batch only when every previously scheduled early or tardy batch has

exactly B jobs.

Algorithm CH6-A 7

[Initialization]: Set S(o) = {(0,0,0, s,q)}, v* = L.7=1 Wj + qr~l

[Generalization]: Generate set SUl from s(J-1l.

76 Ph.D. Thesis- Rui Zhang

For j = 1 to n + 1

Set T = 0.

For each state (j- 1, k1 , k2 , t, v) in sU- 1l

1. If k1 <Band j ~ n, then set T +- TU (j,k1 + l,k2 ,t+pj,v) /*Job

j is scheduled in the current early batch.

2. If k1 =Band j ~ n, then set T +- Tu (j, 1, k2 , t+pj +s, v+q) /*Job

j is scheduled in a new early batch.

3. If k2 < B and j ~ n, then set T +- T U (j, k1, k2 + 1, t, v + Wj) /*Job

j is scheduled in the current tardy batch.

4. If k2 = B andj ~ n, then set T +- TU(j,k1,1,t,v+q+wj) /*Job j

is scheduled in a new tardy batch.

5. Set D = t and update v* =min{ v*, V(j-1,k 1 ,k2 ,t) + V(j,k2)} /*Complete

the partial schedule into a full schedule.

Endfor

[Elimination]: If j ~ n, for any two states (j, k1 , k2 , t, v) and (j, k1 , k2 , t, v')

with v ~ v', eliminate the one with v' from T (Remark 6.5.1), and set

sUl = T.

Endfor

[Optimization]: Trace back v* to obtain D and the corresponding optimal schedule.

Theorem 6.5.1 For the 1js, B, A, CON] 2: ajRj + 2: wjUj + bq problem, Algorithm

CH6-A 7 finds an optimal schedule in O(n[P + ns]) time, where P = 2:]=1 Pj· This

shows that the problem is NP -hard only in the ordinary sense.

Proof. For each state (j, k1 , k2 , t, v) in SU), there are at most five operations. k1 , k2

take at most B and j takes at most n + 1 as the largest value. By the [Elimination]

step, there are at most [P + ns] different {j, k1 , k2 , t, v} with the same j, k1 and k2 ,

but different t values. Thus the running time is O(nB2 [P + ns]) = O(n[P + ns]), as

B is fixed. •

McMaster - DeGroote School of Business

6 .5 .2 Fully Poly nomial Time Approximation Scheme

In this sect ion, we first provide an approximation algorithm for the problem of mini

mizing the total cost of the weighted number of tardy jobs and batch-delivery costs ,

where all jobs have a fixed common due date x and the maximum number of jobs

in a single batch is B , denoted by li s , B , dj = xi ,L wjUj + bq . Then we pro

vide an FPTAS for the capacity-constrained problem using this algorithm for the

lis , B , dj =xi .L WjUj + bq problem.

FP TAS for the li s , B , dj =xi ,L wjUj + bq P roblem

Theorem 6.5.2 The l is , B , dj = xi ,L WjUj + bq problem is NP-hard.

Proof. Consider the knapsack problem shown below, which is well-known to be

NP-hard:

Maximize L Wj , such t hat : L Pj ~ x , n ~ J . (6.5 .7)
]en]en

Consider an instance of the lis , B , dj = xi ,L wjUj + bq problem, in which s = q =
0 and B = n. Then any optimal schedule for the above instance has the total

processing time of early jobs less than or equal to x. Define the job set formed by

all early jobs in any optimal schedule as n. Then n is, indeed, an optimal solution

to the knapsack problem. vVe have proven that the knapsack problem reduces the

lis , B , dj = xi .L wjUj + b problem. •

We next find an approximation solution to the l ls, B , dj = xi ,L wjUj + bq

problem in three steps: (1) we determine initial bounds such that v' ~ u(x) ~ nv' ,

where u(x) is the optimal solution value to the l is, B , dj = xi ,L wjUj+bq problem; (2)

we narrow the bounds into tight bounds such that v ~ u(x) ~ 3v; (3) we approximate

the optimal solution using [v, 3v].

Step 1: Initial Bounds Init ial bounds can be obtained by solving an auxiliary

problem, where we need to minimize t he maximum weight of tardy jobs, denoted

by l is, B , dj = xi max wjUj. Let w(x) be the optimal solution value. Then jobs in

77

78 Ph.D. Thesis- Rui Zhang

J(w(x)) = {j/wj > w(x),j E J} have to be delivered before or at x. This requires

X 2: L·EJ PJ· + riJ(wB(x))lls. In order to determine w(x), Algorithm CH6-A8(x)
J (w(x))

performs binary search on { w1 , w2, ... , Wn}, where w1 ~ W2 ~ ... ~ Wn.

Algorithm CH6-A8(x)

[Initialization] Set L1 = 0, L2 =nand k(x) = 0.

While L 1 < L 2 , do

1. Set k = f(kl + k2)/2l and J(wk) = {j/wj > WkJJ E J};

2. If X< LJ·EJ Pj + r1J<Bwk) 1ls, then set Ll = k; (wk)

3. If X 2: LJ·EJ Pj + riJ<Bwk)ll s, then set k(x) = k and L2 = k. (wk)

End while

[Result] If k(x) = 0, then set w(x) = 0; Otherwise, set w(x) = wk(x)·

Lemma 6.5.1 Algorithm CH6-A8(x) finds w(x), the optimal solution value for the

1/s,B,dj = x/maxwjUj problem in O(nlogn) time. Furthermore, w(x) generates

initial bounds for u(x) such that v' ~ u(x) ~ nv', where v' = w(x) + q. (Recall that

u(x) is the optimal solution to the 1/s, B, dj = x/ L wjUj + bq problem.)

Proof. All calculations in Algorithm CH6-A8(x) can be done in O(n) time per

iteration and the binary search runs in 0 (log n) time. Then the overall running time

is O(nlogn). Since there is at least one batch in any schedule for the 1/s,B,dj =

x/ L wjUj + bq problem, the lower bound is v' = w(x) + q. Since there are at most n

batches in any schedule for the 1/s, B, dj = x/ L wjUj + bq problem, the upper bound

is nw(x) + nq = nv'. •

Step II: Tight Bounds To narrow the initial bounds [v', nv'], we develop the

following Algorithm CH6-A9(x, u, E) that, for given u > 0 and small E > 0, proves

either u(x) > (1 - E)u or u(x) ~ u. Recall that u(x) is the optimal solution to

the 1/s, B, dj = x/ L WjUj + bq problem. Algorithm CH6-A9(x, u, E) uses the same

McMaster - DeGroote School of Business

state representation (j, k1 , k2 , t, v) as in Algorithm CH6-A 7 and starts from an empty

schedule (0, 0, 0, s, q), where sand q are for the first early batch. Since the algorithm

has already assumed at least one early batch, let us define v(x) = ~7=1 Wj + qf-:§1

the cost of a full schedule with all tardy jobs.

Algorithm CH6-A9(x, u, c)

[Initialization]: Set S(o) = {(O,O,O,s,q)}, v(x) = ~7=1 Wj + qf-:§1 and SU) = 0,

j = 1, ... ,n.

[Partitioning]: Partition [0, u] into r n/E 1 equal subintervals of size Eujn with the

last one possibly smaller.

[Generation]: Generate set S(j) from sU-1).

For j = 1 ton

Set T = 0.

For each state (j- 1, k1 , k2 , t, v) in sU- 1)

1. If k1 < B and t + P) :::; x, then set T <-- T U (j, k1 + 1, k2, t + pj, v)

/*Schedule job j early in the current early batch.

2. If k1 =Band t+pj +s::::; x, then set T <-- Tu (j, 1, k2 , t+pj + s, v+q)

/*Schedule job j early starting a new early batch.

3. If k2 < B, then set T <-- T U (j, k1 , k2 + 1, t, v + Wj) /*Schedule job j

as a tardy job in the current tardy batch.

4. If k2 = B, then set T <-- T U (j, k1 , 1, t, v + q + wj) /*Schedule job j

as a tardy job starting a new tardy batch.

Endfor

[Elimination]: Update set S(j).

1. Delete states (j, k1 , k2 , t, v) with v > u.

79

80

Endfor

Ph.D. Thesis- Rui Zhang

2. If more than one state has a v value that falls into the same subinterval

of [0, u], then discard all but one of these states, keeping only the

representative state with the smallest t coordinate for each interval.

3. For any two states (j, k1 , k2 , t, v) and (j, k1 , k2 , t, v') with v::; v', elim

inate the one with v' from set T. (Remark 6.5.1)

4. Set SU) = T.

[Result]: If S(n) = 0 and v(x) > u, then deduce u(x) > (1 - c)u; If S(n) =/= 0 or

v(x) ::; u, then deduce u(x) ::; u.

Theorem 6.5.3 In O(n2 /c) time, Algorithm CH6-A9(x, u, c) reports: either u(x) >

(1- c)u, if S(n) = 0 and v(x) > u; or u(x) ::; u, if S(n) =/= 0 or v(x) ::; u. (Recall that

u(x) is the optimal solution to lis, B, dj = xl "£ wjUj + bq and v(x) = "£ Wj + qf ~ lJ

Proof. Similarly to Theorem 4.4.3, if S(n) =/= 0, then there is at least one state

(n, k1 , k2 , t, v) that has not been eliminated. Therefore, u(x) ::; v ::; u. Since v(x)

represents the value of a feasible schedule with all tardy jobs for the problem, we know

u(x) ::; v(x). Then v(x) ::; u implies u(x) ::; u. If S(n) = 0, then, by [Partitioning]

and [Elimination], the error introduced is at most cu. Therefore, v > (1- c)u. Since

u(x) =min{ v, v(x)} and v(x) > u, then u(x) > (1- c)u. For each state (j, k1 , k2 , t, v)

in S(j), there are at most five operations. k1 , k2 take at most B values and j takes at

most n values. By the [Partitioning] and [Elimination] steps, there are at most I n/c l
difi'erent {j, k1 , k2 } triples. Thus the time complexity is O(n2 /c). •

Again, we consider to use BIP[a1 , a2 , A(w, P)] introduced in Chapter 3 to

narrow the bounds [v',nv']. Let a 1 = v', a 2 = nv', w = u and P be the lls,B,dj =

xl "£ wjUj + bq problem. Then Algorithm CH6-A9(x, u, 1/3) can be used as A(w, P).

Since Algorithm CH6-A9(x,u, 1/3) runs in O(n2) time, so in O(n2 loglogn) time,

BIP[a1 ,a2 ,A(w,P)] reports~ that implies a pair of tight bounds [~,3~]. In this

situation, let us refer to BIP[a1 , a2 , A(w, P)] as Algorithm CH6-AlO(x).

McMaster - DeGroote School of Business

Corollary 6.5.1 Algorithm CH6-AJO(x) can narrow the bounds [v',nv'] into [v,3v]

in 0(n2 log log n) time by setting v = ~.

Step III: Fully Polynomial Time Approximation Scheme For any given

c > 0, using the bounds v ~ u(x) ~ 3v obtained by Algorithm CH6-A10(x), we run

a slightly changed version of Algorithm CH6-A9(x, u, 1/3), called Algorithm CH6-

All(x), with u = (1 + c/3)3v: The only difference is that in the [Partitioning] step

we partition [0, u] = [0, (1 +c/3)3v] into n 13/c + 1l intervals of size at most E'Djn, so

the cumulative error over n iterations will be no more than c'D. Since we know that the

problem has an optimal solution value u(x) ~ 3v, the algorithm will find a solution

v(x) for the 1Js, B, dj = xl2.:".: wjUj + bq problem such that v(x) ~ 3v + EV = u, which

means that the algorithm will never end with an empty T*. Furthermore, whichever

subinterval of [v, 3v] u(x) falls into, the algorithm will generate an approximate so

lution v(x) with at most EV error away from it, i.e., v(x) ~ u(x) + EV ~ (1 + c)u(x).

Therefore, we have the following corollary.

Corollary 6.5.2 For any given c > 0, Algorithm CH6-All(x) finds a (1 +E)

approximate solution for the 1Js, B, dj = xl2.:".: wJUj + bq problem in O(n2 /c) time.

Now we are ready to present an FPTAS for the problem.

Algorithm CH6-A12(x)

[InitialBounds]: Run Algorithm CH6-A8(x) and set v' = w(x) + q;

[TightBounds]: Run Algorithm CH6-A10(x) and obtain: v ~ u(x) ~ 3v.

[Approximation]: Run Algorithm CH6-All(x) and obtain an approximate schedule.

81

Theorem 6.5.4 Algorithm CH6-A12(x) is an FPTAS, which .finds an (1+c)-approximate

solution to the 1Js,B,dj =xl2.:".:wjUJ+bq problem inO(n2 loglogn+n2 /c) time.

Proof. The complexity and correctness follow from the component algorithms. •

82 Ph.D. Thesis- Rui Zhang

FPTAS for the Capacity-constrained Problem

In order to find an approximate solution for the capacity-constrained problem, we are

going to determine a way to enumerate a number of particular values of x such that

both the total number of enumerated x and the total error introduced into the final

solution value are controllable. Then we can implement Algorithm CH6-Al2(x) to

approximate each constructed lis, B, dj =xi 2:::: WjUJ + bq problem.

For a given c > 0, let us divide the interval (A, p + r ~ l s] into l mutually

exclusive subintervals as follows:

Hf = (A, A+ (1 +c)];

Hf =(A+ (1 +c), A+ (1 +c)+ (1 + c)2
];

(6.5.8)

1-1 I

HIE = (A + L (1 + c) k, min { p + r; l s' A + L (1 + c)k}],
k=1 k=1

where l is such that
1-1 I

A+ L(l + c)k < P+ 1;1s :SA+ L(l +c)k
k=1 k=1

and thus
n

l = flogl+c[(P + I B l s-A+ l)c + l]l - 1.

Let a(t) be an optimal schedule for the capacity-constrained problem with

D(a(t)) = t E Hf for some k E [1, l]. We have the total cost (t-A) 2::::7=1 aJ+u(a(t)),

where u(a(t)) = 2::::7=1 wJUJ(a(t)) + b(a(t))q. Schedule a(t) must also be an optimal

schedule for the lis, B, dj = ti l::wJUJ + bq problem. Let

, { A+2::7=1(l+c)i,

t = min{P + l~ls, A+ 2::::~= 1 (1 + c)k},

if 1 :S k < l
(6.5.9)

if k = l

be the right end point of the interval Hf. By equation (6.5.8), we have

t' - A :S (1 + c) (t - A) 0 (6.5.10)

McMaster - DeGroote School of Business 83

Consider a schedule O"(t') with D(O"(t')) = t' for the capacity-constrained problem.

Suppose O"(t') is an optimal schedule for the lis, B, dj = t'l I: wjUj + bq problem and

the cost is u(O"(t')) = 2:.::7=1 WjUj(O"(t')) + b(O"(t'))q. Then because t' > t, we have

u(O"(t')) :::; u(O"(t)). (6.5.11)

Let O"'(t') be an approximation schedule for the lis, B, dj = t'l I: wjUj + bq problem

found by Algorithm CH6-Al2(x) with the cost u(O"'(t')). Therefore, we have the

following total cost

n n

(t'- A) L aj + u(O"'(t')) :::; (1 + c)(t- A) L aj + (1 + E)u(O"(t')) (6.5.12)
j=1 j=1

n

:::; (1 + c)[(t- A) L aj + u(O"(t))], (6.5.13)
j=1

where (6.5.12) is true by equation (6.5.10) and Theorem 6.5.3, and (6.5.13) holds by

equation (6.5.11).

Algorithm CH6-Al3 solves the lis, B, dj = t'l I: WjUj + bq problems approx

imately for all t' defined in equation (6.5.9) and t' = A, where t' = A leads to a

zero due-date-assignment cost. Then the approximate solution to the lis, B, dj =
AI I: wjUj + bq problem provides an approximate solution to the original capacity

constrained problem. For all the resulting schedules, we set D = t'.

Algorithm CH6-A13

1. Set T = 0;

2. For each x =A and x = t defined in equation (6.5.9), construct the lls,B,dj =

xl I: wjUj + bq problem;

3. Run Algorithm CH6-Al2(x) and let v(x) be the smallest v value in S(n). Thus

set T +-- T U (x, v) and v = 2:.::7=1 aj(x- A)+ v(x).

4. Select the state with the smallest v from T and obtain the corresponding sched

ule.

84 Ph.D. Thesis- Rui Zhang

Theorem 6.5.5 Given E > 0, Algorithm CH6-A13 provides an {1 +E)-approximate

solution to the lls,B,A,CONj~ajRj + ~wjUj +bq problem in O(l[n2 loglogn+

n 2 /E]) time, where l = flogl+c:[(P + I~ l s-A+ l)E + l]l - 1.

Proof. Algorithm CH6-A13 calls Algorithm CH6-A12(x) l + 2 times and Algorithm

CH6-A12(x) runs in O(n2 log log n + n2 jE) time. Thus Algorithm CH6-A13 runs in

O(l[n2loglogn+n2/E]) time. •

6.6 Summary

In this chapter, we studied three supply chain scheduling problems with CON due

date assignment and constraints on deliveries. For the unconstrained problem, the

time-constrained problem and the capacity-constrained problem, we first proved that

they are NP-hard. Then we proposed pseudo-polynomial algorithms to establish

that each problem is NP-hard only in the ordinary sense. Finally, we presented fully

polynomial time approximation schemes for them.

Chapter 7

Models with Distinct Assignable

Due Dates

In Chapter 6, we have studied four supply chain scheduling problems with delivery

costs and a common assignable due date (the CON problems). In this chapter, we

change our focus to the DIF problems where arbitrary due dates are allowed to be

assigned to jobs individually.

7.1 Introduction

Shabtay and Steiner [2006] study a single-machine scheduling problem, in which each

job has a contracted due date and can be given an arbitrary assigned due date. Their

goal is to find a schedule which minimizes the sum of due-date-assignment costs

and the weighted number of tardy jobs with respect to the assigned due dates, but

their model does not include hatching or delivery costs. They provide a strong NP

hardness proof for the general case and present polynomial algorithms for two special

cases: one with zero contracted due date and a uniform due-date-assignment cost for

all jobs and one with uniform contracted due date, equal due-date-assignment costs

85

86 Ph.D. Thesis- Rui Zhang

and equal tardiness penalties (weights) for all jobs. Our problem is essentially the

combination of the problem in Chapter 3 and the problem studied in the paper by

Shabtay and Steiner [2006].

This chapter is organized as follows. Section 7.2 contains preliminaries: prob

lem definition, some important propositions about decisions on due dates and a strong

NP-hardness proof for our problem. In Section 7.3, we study the case with a uni

form due-date-assignment cost. We first prove that it is NP-hard, and then we show

that it is NP-hard only in the ordinary sense by presenting a pseudo-polynomial

algorithm, which requires only polynomial time when all processing times are equal.

Finally, we convert the pseudo-polynomial algorithm into an FPTAS. In Section 7.4,

we present a polynomial algorithm for the case with equal due-date-assignment costs

and equal tardiness penalties. Section 7.5 includes our final conclusions.

7.2 Preliminaries

Note that all the terminologies, assumptions and notations introduced in Chapters

1 and 3 are applied in this chapter. Our goal is to find a schedule which minimizes

the sum of the due-date-assignment costs, the weighted number of tardy jobs and the

batch-delivery costs, denoted by lis, A,DIFi 'L a.1R1 + 'L w1U1 + bq. There are three

levels of decisions to be made in the lis, A,DIFi 'L a.JRJ + 'L w1U1 + bq problem:

(1) determining a job sequence;

(2) grouping the sequence into batches;

(3) assigning arbitrary due dates to each job individually.

Suppose that we are given a schedule a, where the first two (1 and 2) scheduling

decisions have been made but no due date has been assigned to any job yet. Since

we know the sequence and the batches, we know the number of batches b(a) and the

batch-delivery costs b(a)q. In order to minimize the total cost, we need to determine

D1(a) for each j, which minimizes the cost 'L a.1R1(a) + L wJU1(a).

In Figure 7.1 (a), we use the bold and sloped line to represent the cost, which

McMaster- DeGroote School of Business

is a function of Dj (a"):

if Dj(a) :::; A (the bold line)

if Dj(a) >A (the sloped line)
(7.2.1)

Based on equation (7.2.1) , we use the bold and sloped lines in Figure 7.1 (b), (c) and

(d) to represent the total cost for job j as a function of Dj(a):

if D j (a) < Cj (a)

if Dj(a) ~ CJ(a)

(7.2.2)

where Cj(a) is the batch-completion time of job j in schedule a.

I I
~ -----r------- -----

1 I
I I
I I
I I
I I

a1R1 + w1U1
Wjf----......j"'-1 I ---- -----

0

(c) The cost when A< Cj(a) :SA+ Wj/a1

a1Rj + wjUj
I I I

~ -,---r------- -----
1 I I
I I I
I I I
I I I
I I I

0 Cj(o-) A A+w1/aj

(b) The cost when C1(a):::; A

a R+wU 2w
1

!......!. __ .!.__} ___ _ _

0 A

I
I
I I

-------~--~------
1 I
I I
I I

Figure 7.1: Due date assignment for job j based on a given schedule a.

In each figure, the circle represents the point where the minimum cost value

and the corresponding assigned due date occur.

87

88 Ph.D. Thesis - Rui Zhang

When Cj(a) ~ A (Figure 7.1 (b)), if D1(a) ~ A, then job j is early and

the cost is 0; if Dj(a) > A, then job j is still early, but the cost is o:j(Dj(a)- A).

So the minimum cost of 0 occurs when Dj(a) = A (represented by the circle). If

A ~ C1(a) ~ A+~ (Figure 7.1 (c)), if DJ(a) ~ A, then job j is tardy and the cost is
J

wj; if A< Dj(a) < Cj(a), then job j is still tardy but the cost is o:j(Dj(a)- A) +wj;

if Dj(a) :2:: Cj(a), then job j is early and the cost is o:J(Dj(a)- A). So the minimum

cost of o: j (Cj (a) - A) occurs when D j (a) = Cj (a) (represented by the circle) and

job j is early. If Cj(a) > A+~ (Figure 7.1 (d)), if Dj(a) ~ A, then job j is tardy
J

and the cost is Wj; if A < Dj(a) < Cj(a), then job j is still tardy but the cost is

o:j(D1 (a)- A) +wj; if Dj (a) :2:: CJ (a), then job j is early and the cost is o:J(Dj (a)- A).

So the minimum cost of Wj happens when DJ(a) =A (represented by the circle) and

job j is tardy. In summary, we have the following proposition first developed by

Shabtay and Steiner [2006].

Proposition 7 .2.1 For any given schedule a, the optimal due date assignment is

{

A,
Dj(a) =

Cj(a),

if CJ (a) ~ A or CJ (a) > A + ~
J (7.2.3)

if A < CJ (a) ~ A + ~
J

The above Proposition 7.2.1 also implies the following useful observation.

Proposition 7.2.2 For the 1/s, A,DIF1 L o:JRJ + L wJUJ + bq problem, there is an

optimal schedule in which A+ :;;. is an upper bound for the assigned due date of each
J

job j E J. Furthermore, job j is tardy, with an assigned due date DJ(a) =A, in an

optimal schedule a if and only if CJ (a) > A + ~.
J

Hall and Potts [2003] proved that the supply chain scheduling problem of

minimizing the weighted sum of total completion times and batch-delivery costs,

denoted by 1/s'i 2:wjCj + b'q', is strongly NP-hard even with s' = 0, where wj

is the weight, Cj is the batch-completion time of job j, q' is the batch-delivery cost

and b' is the total number of batches. In the following theorem we prove that the

1/s, A,DIFI L o:JRJ + L wJUj + bq problem is also strongly NP-hard by reducing the

McMaster - DeGroote School of Business

lis'= Oi '2:. wjCj+b'q' problem to an instance of the lis, A,DIFi '2:. aJRJ+ '2:. WJUJ+bq

problem.

Theorem 7.2.1 The lis, A,DIF1 '2:. aJRJ+ '2:. wJUJ+bq problem is strongly NP-hard.

Proof. For an arbitrary instance of the lis'= Oi 'L.wjCj+b'q' problem, we construct

an instance of the lis, A,DIFi '2:. aJRJ + '2:. wJUJ + bq problem by letting A = 0,

s = s' = 0, q = q',b = b', aJ = wj and WJ = Maj, \:fj E J, where lvf > P = 'L.7=lPJ

and p1 is the processing time of job j in both problem instances.

Consider the above instance of the lis, A,DIFi '2:. a 1R1 + '2:. w1U1 +bq problem.

Since s = 0, all schedules have the fixed makespan P. Then using equation (7.2.3)

with A = 0, the due-date-assignment cost for a job j in any schedule CJ is at most

a1C1(CJ) :::; a 1P < a1M = w1. This implies that no job would be tardy in any optimal

schedule. Since A = 0, equation (7.2.3) would yield D1(CJ) = C1(CJ) \:fj E J in any

optimal schedule. Therefore, we have the following equivalence for any schedule CJ:

Thus the two instances have the same set of feasible schedules and objective value

on these. It is easy to see that the lis, A,DIFi '2:. a1R1 + '2:. w1U1 + bq problem is in

class NP and the above reduction can be done in 0(n) time. This proves that the

lis, A,DIFi '2:. a1R1 + '2:. w1U1 + bq problem is strongly NP-hard as well. •

7.3 Equal Due-date-assignment Costs

In this section, we study the problem with equal due-date-assignment costs, i.e.,

a1 =a > 0, \:fj E J, denoted by lis, A,DIFi '2:. aR1 + '2:. w1U1 + bq.

7 .3.1 NP-hardness

Theorem 7.3.1 The lis, A,DIF1 '2:. aR1 + '2:. w1U1 + bq problem is NP-hard.

89

90 Ph.D. Thesis- Rui Zhang

Proof. vVe prove that the problem is NP-hard by showing its equivalence to the

knapsack problem, which is well-known to be NP-hard. Consider an arbitrary in

stance of the knapsack problem with a set of items J = {1, ... , n}, each item j has an

integral size 0 < pj < A' and weight wj > 0, where an integer A' < "L.7=l pj is the

size of the knapsack. Our goal is to

maximize L w;, such that: LP; ~A', <I>~ J. (7.3.4)
jEcf? jEcf?

Construct an instance of the lis, A,DIFi "L, aR1 + "L, w1U1 + bq problem, by letting

A= A', p1 = pj, w1 = wj, a > "L.7=1 w1 , s = 0 and q = 0. Since a > "L.7=1 w1, no

job would be assigned a due date greater than A in any optimal schedule. Then from

equation (7.2.3), we know that all jobs in an optimal schedule have equal assigned due

dates A. Moreover, jobs scheduled before A are early and maximize their total tardy

weight. Therefore, let the set of early jobs (with C1 ~ A) in an optimal schedule for

the above instance of the lis, A,DIFi "L, aRj + "L, w1U1 + bq problem be <I>. Then <I>

is also an optimal solution to the above knapsack problem. •

7.3.2 Pseudo-polynomial Algorithm

Before we propose a pseudo-polynomial algorithm for the lis, A,DIFi "L, aRj+ "L, w1U1+

bq problem, we first make two important observations.

Proposition 7.3.1 There is an optimal schedule for the lis, A,DIF1 "L, aR1+ "L, w1U1+
bq problem in which all tardy jobs are delivered at the end in a single batch either by

themselves or together with some early jobs.

Proof. Scheduling tardy jobs at the end in the last batch may improve the schedule

for early jobs. •

Proposition 7.3.2 For the lis, A,DIF1 "L, aR1 + "L, WjUj + bq problem, there is an

optimal schedule cr, in which early jobs are processed in shortest processing time first

(SPT) order.

McMaster - DeGroote School of Business

Proof. Suppose that two jobs i and k with Pi > Pk are early in consecutive batches

in schedule cr with batch-completion times Ci(cr) < Ck(cr). By Propositions 7.2.1 and

7.2.2, we can assume that Di(cr) E {A, Ci(cr)}, Dk(cr) E {A, Ck(cr)}, Ci(cr) :::; ~+A

and Ck(cr) :::; ~ +A. Let cr' be the schedule in which we exchange jobs i and k.

Then we have Ci(cr') = Ck(cr) and Ck(cr') = Ci(cr)- Pi+ Pk < Ci(cr). It is clear that

all early jobs in cr (excluding job i) stay early after the exchange. If Ci (cr') :::; ~ +A,

then we are able to let job i be early. In this situation, the due-date-assignment cost

will not increase because job i and job k have the same a. If Ci(cr') > :i +A, then

it is best to set Di(cr') =A and let job i be tardy. In this situation, the cost will be

reduced by at least

a[Di(cr) + Dk(cr)]- a[Di(cr') + Dk(cr')]- Wi

= a[max{A, Ci(cr)}- max{ A, Ck(cr')}] +[a max{ A, Ck(cr)}- aA- wi]

~ a[m~x{A, Ci(cr)}- max{ A, Ck(cr')}] +[a m~x{A, Ck(cr)}- aCi(cr')]

~ 0.

Note that the number of jobs in every batch stays the same when we do the

above exchange. After we complete this exchange for all such pairs in consecutive

batches, we can obtain the desired SPT sequence for all early jobs. •

For the rest of this subsection, let all jobs be indexed so that p1 :::; p2 :::; ... :::; Pn·

We call a batch delivered, if the job due dates have been assigned in the batch. On

the other hand, we call a batch pending, if no job due date has been assigned yet in

the batch. Suppose that there is an optimal schedule in which there are exactly m

batches, 1 :::; m :::; n. Then this optimal schedule has makespan P + ms and batch

delivery cost mq. By Proposition 7.3.1, we know that all tardy jobs are in the m-th

batch and any (tardy) job i in this batch has a batch completion time Ci = P + ms.

By Proposition 7.2.2, any tardy job i must satisfy ~+A< P+ms. We use dynamic

programming in order to find such an optimal schedule. The algorithm iteratively

constructs schedules with delivered batches and at most one pending batch (the last

one opened) on early jobs, while scheduling some other jobs to be tardy in the m-th

91

92 Ph.D. Thesis- Rui Zhang

batch. Let (j, l, k, t, x) be the state for a partial schedule on job set {1, 2, ... , j}, where

l is the number of delivered batches, k is the number of jobs in the pending batch and

t is the total processing time of the early jobs in the delivered and pending batches.

Let x be the sum of the due-date-assignment cost of early jobs in the delivered batches

plus the tardy weights of tardy jobs in the m-th batch and the total batch-delivery

cost mq. Note that x does not include the due-date-assignment costs of the k jobs

in the pending batch since their due dates have not been assigned yet. Since x will

include all batch-delivery costs for the m batches from the outset, no delivery cost

needs to be added while building the batches. Then the makespan of the delivered

and pending batches, including the corresponding batch-setup times, is t + (l + 1)s.

Let us first consider the states we can generate based on a partial schedule

(j- 1, l, k, t, x) with j = 1, ... , n, when aiming at an optimal schedule with exactly m

batches. vVe can do at most the following three operations: (1) Designate job j in

the pending batch; (2) Deliver the jobs in the pending batch and start a new pending

batch with designated job j in it; (3) Schedule job j in the m-th batch as a tardy

job (if '!!f; +A < P + ms). In Operation (1), cost x does not need to change. In

Operation (2), we assign a common due date max{ A, t + ls + s} to the jobs in the

pending batch, which makes them early, and we need to add the due-date-assignment

cost ak max{ t + ls +s-A, 0} to cost x. In Operation (3), since ~+A < P + ms,

we can assign a due date A to job j, which makes it tardy in the m-th batch, and we

need to add the cost w j to cost x.

Consider now how we can simply complete into a full schedule a partial sched

ule, (j -1, m- 2, k, t, x), j = 1, ... , n, with exactly m -1 batches (m- 2 delivered and

one pending), when aiming at an optimal schedule with exactly m batches: We can

schedule all remaining jobs {j, ... , n} in the m-th batch. For the jobs in the pending

batch, we need to assign them the common due date max{A, t + (m- 1)s} making

them early, and the due-date-assignment cost of the pending batch, ak max{ t + (m-

1)s- A, 0} needs to be added to cost x. For jobs {j, ... , n }, let

w·
J(j,m) = {il__: +A< P+ms,i E {j, ... ,n}}.

a
(7.3.5)

McMaster - DeGroote School of Business

J(j, m) s:;; {j, ... , n} contains exactly those remaining jobs which would be tardy in the

m-th batch. If J(j, m) =F 0, then we need to assign a common due date A to the jobs

in J(j, m), which makes them tardy in the m-th batch. The tardiness penalties for

J(j, m) are L:iEJ(j,m) Wi· Moreover, we need to assign the common due date P + ms

to the jobs in {j, ... ,n}\J(j,m), which makes them early in the m-th batch with

due-date-assignment costs ak(j, m) ma...'C{P + ms- A, 0}, where

k(j,m) = n- j + 1-IJ(j,m)l (7.3.6)

93

is the resulting number of early jobs in the m-th batch. Therefore, the total cost of

jobs {j, ... ,n} is

x(j, m) = ak(j, m) max{P + ms- A, 0} + 2::= Wi·

iEJ(j,m)

(7.3.7)

Note that it is possible that there may be some jobs from {1, ... ,j- 1} which were

previously scheduled to be tardy in the m-th batch, however, their cost would have

been added into cost x at the time of their scheduling.

Now let us consider how to reduce the state space. For any two states

(j, l, k, t, xi) and (j, l, k, t, x2) with x1 < x 2 , we can eliminate the second one, be

cause any later states generated from it can not lead to a smaller x value than the

value of similar states generated from the first one.

Remark 7.3.1 For all states with the same entries: (j, l, k, t, ·), we only need to keep

one of them, which has the smallest x value.

Algorithm CH7-Al starts from an empty schedule (state), (0, 0, 0, 0, mq), m =

1, ... , n, where mq is corresponding to the batch-delivery cost for the m batches and

returns a schedule which has the smallest cost among all schedules with exactly m

batches. Let (n, m, 0, P, oo) represent an initial fictitious full schedule with exactly

m batches and total cost oo. Then this state will be repeatedly updated by states

representing full schedules with smaller total cost x found by the algorithm. Partial

schedules for the first j jobs {1,2, ... ,j} are included in set SUl, j = 1, ... ,n. In

94 Ph.D. Thesis - Rui Zhang

particular, we initialize S(o) = {(O,O,O,O,mq)}. At the beginning, we set T* =

{(n,m,O,P,oc)l m = 1, .. ,n} and at the end T* will store the best schedules with

exactly m = 1, ... , n batches for each m. At the end, Algorithm CH7-A1 finds the

optimal solution value, determined by x* = minm=1, ... ,n{Bm}, where Bm = x represents

the corresponding cost of the best full schedule (n, m, 0, P, x) and then traces this back

to obtain an optimal schedule and corresponding assigned due dates.

Algorithm CH7-Al

[CandidateSet] Initialize T* = {(n,1,0,P,oc),(n,2,0,P,oo), ... ,(n,n,O,P,oo)}.

Form= 1 ton /*Search for an optimal schedule with exactly m batches.

[Initialization] Set S(O) = { (0, 0, 0, 0, mq)} and SU) = 0, j = 1, ... , n.

[Generation] Generate set sUJ from sU- 1l.

For j = 1 ton

[Setup] Set T = 0.

For each state (j- 1, l, k, t, x) in sU-1)

1. [FurtherGeneration] Do the following three operations:

Alternative 1: If 0 < l < m -1, then set T f- TU (j, l, k+ 1, t+pj, x)

/*Designate job j to be early in the current pending batch.

Alternative 2: IfO ~ l < m-2, then set T f- TU(j,l+1, 1, t+pj,x+

akmax{t + (l + 1)s- A,O}) /*Deliver the jobs in the (l + 1)-th

batch and assign to them the common due date max{A,t+(l+1)s}.

Start a new current batch {batch (l + 2)) and designate job j to be

early in the newly started batch.

Alternative 3: If 0 ~ l < m- 1 and ~+A < P + ms, then set

T f- T U (j, l, k, t, x + Wj) /*Schedule job j tardy in the m-th

batch.

2. [SimpleCompletion] If l = m- 2, then calculate J(j, m), k(j, m)

and x(j, m) by equations (7.3.5), (7.3.6) and (7.3.7) and update:

McMaster - DeGroote School of Business 95

If Bm > x + o:k max{ t + (l + 1)s- A, 0} + x(j, m), then let Bm =
x+o:k max{ t+ (l+1)s-A, 0} +x(j, m) and replace the state start

ing with (n,m,·,·,·) in T* by the new best state (n,m,O,P,Bm)·

/*Complete the partial schedule into a full schedule by delivering

the current pending batch (batch (m- 1}) with assigned common

due date max {A, t + (l + 1) s} for the jobs in it and scheduling jobs

{j, ... , n} into the m-th batch with a common due date P + ms for

early jobs and a common due date A for tardy jobs.

Endfor

[Elimination] If j < n, then for any two states (j, l, k, t, x) and (j, l, k, t, x')

with x < x' eliminate from T the one with x' (Remark 7.3.1).

[Updating] Set SU) = T.

Endfor

Endfor

[Optimization] Select the state with the smallest Bm from T* and trace back its

ancestors to obtain an optimal schedule and corresponding assigned due dates.

Theorem 7.3.2 For the 1ls,A,DIF1 l:o:Rj+ l:wjUj+bq problem, Algorithm CH7-

A 1 finds an optimal schedule in 0(n4 P) time, where P = 2.::7=1 Pj. Thus the problem

is NP -hard only in the ordinary sense.

Proof. As discussed above, the algorithm considers the three alternatives available

for adding a job j to a partial schedule represented by state (j -1, l, k, t, x) in sU- 1).

We note that we can only designate job j to be early in alternatives 1 and 2, since we

do not know at this point its batch completion time, which is to become its assigned

due date. Thus it is possible that when the pending batch containing j finally gets

delivered, its assigned due date will be greater than A+wjjo:. In this case, it will cost

less to make job j tardy by assigning to it the due date A (see Proposition 7.2.1) This

lower-cost solution will be generated in alternative 3 and will dominate the schedules

96 Ph.D. Thesis- Rui Zhang

generated under alternatives 1 and 2 in this case. (Thus these higher-cost solutions

will be eliminated in the [Elimination] step.)

Let us consider now the complexity of the algorithm. Each state (j -1, l, k, t, x)

in s(j-l) gives rise to at most three alternative states containing j. The upper bound

for the number of triplets {j, l, k} is n3
. For each {j, l, k}, there are at most P + 1 pairs,

{ t, x }, because of [Elimination]. Algorithm CH7-Al runs the outer loop m times,

which is upper-bounded by n. Therefore, the overall time complexity is O(n4P). •

Corollary 7.3.1 For the lis, A,DIF1 L aRJ + L WJUJ + bq problem, if all processing

times are equal, i.e., PJ = p > 0, Vj E J, Algorithm CH7-A1 finds an optimal schedule

in O(n5) time.

Proof. Since PJ = p, for each {j, l, k}, there are at most n possible values for t and

therefore there are at most n pairs, {t,x}. By the proof of Theorem 7.3.2, the time

complexity is O(n5
). •

7.3.3 Fully Polynomial Time Approximation Scheme

In this subsection, we show how we can obtain an FPTAS for the lis, A,DIFI L aRJ+

L wJUJ + bq problem.

Step 1: Bounds Analysis

Consider a series of restricted problems, denoted by lis, A, i,DIFI L aRJ + L wJUJ +
bq, i = 0, 1, ... , n. These restricted problems are designed in such a way that any

feasible schedule for these restricted problems is also a feasible schedule for the

lis, A,DIFI L aRJ + L wJUJ + bq problem. (We have to consider these restricted

problems because it is not possible to obtain a good lower bound for the cost of an

optimal schedule for the original problem, as we may have even L wJUJ = 0 for this

schedule.) Any feasible schedule for the i-th restricted problem has to satisfy the

following two conditions:

McMaster - DeGroote School of Business

Condition 7.3.1 In any feasible schedule for the lis, A, i,DIF1 I: aRj +I: WjUj + bq

problem, job i is a tardy job and has the largest tardiness penalty among tardy jobs.

{In particular, if i = 0, then no job is tardy in any feasible schedule.)

Condition 7.3.2 In any feasible schedule for the lis, A, i,DIF1 I: aRj +I: WjUj + bq

problem, all early jobs are in SPT order in order to satisfy Proposition 7.3.2.

97

Let v; be the objective value of an optimal schedule rJi for the i-th restricted

problem, lls,A,i,DIFI L:aRj + L:wjUj + bq. Then we have v; = I:7=1 [aRj(r7i) +

wjUj(r7i)] + b(r7i)q by definition. Since 1 :S: b(r7i) :S: n, we know that q :S: b(r7i)q :S: nq.

Now the question is how to bound the cost L::7=1[aRj(r7i)+ wjUj(r7i)]. Notice that

job i is tardy in schedule rJi and any job j which is tardy has w1 :S: wi by Condition

7.3.1. Consider an auxiliary problem of minimizing the total due-date-assignment

costs, denoted by lis, A, J(i),DIFI I: aRj, on job set J(i) = {jlw1 > wi,j E J\ { i}},

for which any feasible schedule has to satisfy the following additional condition.

Condition 7.3.3 In any feasible schedule, all jobs are early and in SPT order and

have assigned due dates no greater than '!!j;- + A, V j E J (i).

In particular, if i = 0, let wi = 0 and J(O) = {jiw1 2:: wi, j E J} = J, i.e.,

all jobs must be early and satisfy Condition 7.3.3. If there is no feasible schedule

for a J(i), let w*(i) = oo, where w*(i) denotes the optimal solution value for the

lis, A, J(i),DIFI 2.: aRj problem. This implies that there is no feasible schedule for

the lis, A, i,DIFI 2.: aR1 + 2.: w1Uj +bq problem either. Therefore, we set the optimal

solution value v; = oo in this case.

We note that by Proposition 7.2.1, every early job in the same batch must be

assigned the same due date, which is the larger of A and the batch completion time.

Thus every early job in the same batch will share the same batch due date, which by

Proposition 7.2.2 and Condition 7.3.3 cannot exceed '!!j;- +A for any job in the batch.

Suppose that r7(i) is an optimal schedule for the lis, A, J(i),DIFI 2.: aR1 problem with

an objective value w*(i) < oo, then scheduling jobs in J\J(i) after r7(i) generates

98 Ph.D. Thesis- Rui Zhang

a schedule, say cr'(i), which is feasible for the lis, A, i,DIFI2:.:: aRj + 2:::.:: wjUj + bq

problem. Consider a job k E J\J(i) in cr'(i). If Ck(cr'(i)) ~ ~ +A, then by

Proposition 7.2.1, we know that Dk(cr'(i)) E {Ck(cr'(i)),A} and job k is early. The

due-date-assignment cost and then the final cost for such a k is,

(7.3.8)

If Ck(cr'(i)) > ~+A, then by Proposition 7.3.1, we can set Dk(cr'(i)) =A and job

k will be tardy. The cost is just wk. Therefore, the final cost of the schedule cr'(i) is

at most w* (i) + 2:.::jEJ\J(i) Wj + nq. Then, by the definition of J(i), we have an upper

bound,

v; ~ w*(i) + L Wj + nq ~ w*(i) + n(wi + q). (7.3.9)
jEJ\J(i)

Since job i is tardy and there is at least one batch in any optimal schedule, we have

v; ~ w*(i) + Wi + q. (7.3.10)

In order to estimate w* (i), let us define the batch due-date-assignment cost

R)b), which is calculated for each batch as the sum of the due-date-assignment costs

of the jobs in the batch. Based on the same data as in the lis, A, J(i),DIFI2:.:: aRj

problem, we define a second auxiliary problem, denoted by lis, A, J(i),DIFia max R)b),

where any feasible schedule has to satisfy Condition 7.3.3 and the goal is to minimize

the maximum batch due-date-assignment cost over the batches. Let u; be its optimal

solution value. Since there is at least one batch and at most n batches, we know that

u; ~ w*(i) ~ nu;. (7.3.11)

Thus, combining equations (7.3.9), (7.3.10) and (7.3.11), we have

(7.3.12)

If J(i) = 0, then simply let u; = 0. If J(i) = J, then we know that i = 0

and wi = 0. When u; = oc, as mentioned before, we have v; = w*(i) = oo as well.

Therefore, the above equation (7.3.12) still holds. In summary, we have the following

lemma.

McMaster - DeGroote School of Business 99

Lemma 7.3.1 Let v; be the optimal solution value for the lis, A, i,DIF1 '5:. aRJ +
2:. Wj uj + bq problem, whose feasible schedules have to satisfy Condition 7. 3.1 and

7.3.2. Let u; be the optimal solution value for the lis, A, J(i),DIF1a max RJb) problem,

whose feasible schedules also have to satisfy Condition 7.3.3. Then we have L~ ::; v; ::;

nL~, where L~ = u; + Wi + q, i = 0, 1, ... , n and w0 = 0.

Step II: Initial Bounds

Now let us solve the second auxiliary problem, lis, A, J(i),DIFI a max RJb), to obtain

u;. Assume w.l.o.g. that all jobs in J(i) are indexed so that p1 ::; ... ::; Pr, r =

I J(i) I· Let (j, l, k, d, y) represent a partial schedule on job set {1, ... , j} ~ J(i), withy

representing the largest batch due-date-assignment cost over the jobs in the delivered

batches in the partial schedule so far. We also use notation y(j, l, k, d) to emphasize

that it is the value corresponding to the state with entries {j, l, k, d}. As before, l

is the number of delivered batches and k is the number of jobs in the current batch,

which is pending. If job h has the the smallest :!!!1!. + A in the current batch, then let a

d = ~ +A be the smallest upper bound for the due date of early jobs in the current

batch. ·when the current batch is delivered, we have to make sure that its completion

time (batch due date) is not greater than d in order to satisfy Condition 7.3.3. We

set d = oc, if a schedule is empty (infeasible). To schedule job j in a new batch, the

current batch l will be delivered at

j-1

t(j- 1, l + 1) = LPg + (l + l)s, (7.3.13)
g=l

which is the makes pan of the partial schedule on { 1, 2, ... , j- 1}. If t(j - 1, l + 1) > d,

then Condition 7.3.3 is violated, i.e., the pending batch cannot be delivered on time

and no new schedule can be generated from (j- 1, l, k, d, y); otherwise the common

due date max{ A, t(j- 1, l + 1)} is assigned to the jobs in the (l + 1)-th batch with

batch due-date-assignment cost ky(j- 1, l + 1), where

y(j- 1, l + 1) =a max{ t(j- 1, l + 1)- A, 0}. (7.3.14)

100

Let

Ph.D. Thesis- Rui Zhang

w
dj = __]_ + A for j = 1, ... , r

0:
(7.3.15)

in the following Algorithm CH7-A2(i), which starts from empty schedule (0, 0, 0, oo, 0).

Partial schedules for the first j jobs {1,2, ... ,j} are included in set S(j), j = 1, ... ,n.

In particular, S(O) = { (0, 0, 0, x, 0)}.

Remark 7.3.2 For any two states (j, l, k, d, y1) and (j, l, k, d, y2) with y1 < y2 , we

can eliminate the second one, because any later states generated from it can not lead

to a smaller y value than the value of similar states generated from the first one.

Algorithm CH7-A2(i)

[Initialization] Determine J(i) = {jlwj 2:: wi,j E 1\{i}} and r = IJ(i)l, set S(o) =

{ (0, 0, 0, oo, 0)} and s(j) = 0, j = 1, ... , r.

[Generation] Generate set S(j) from sU-1l.

For j = 1 tor

[Setup] Set T = 0.

For each (j- 1, l, k, d, y) E sU-1)

Calculation: Calculate dj, y(j - 1, l + 1), t(j, l + 1) and t(j, l + 2) by

equation (7.3.15), (7.3.14) and (7.3.13), respectively.

Alternative 1: If t(j,l + 1)::; min{d,dj}, then set T = TU (j,l,k+

1, min { d, dj}, y} /*Schedule job j early in the current batch.

Alternative 2: If t(j, l+ 1) > d and t(j, l+2) ::; dj, then let y' = max{y(j-

1, l, k, d), ky(j-1, l+1)} and set T = Tu(j, l+1, 1, di, y') /*Scheduling

job j in the current pending batch would make some jobs in this batch

tardy, so schedule job j early in a new pending batch and deliver the

(l + 1)-th batch by assigning the common due date t(j -1, l + 1) to the

k jobs in it, where y' represents the largest batch-due-date-assignment

cost over the first l + 1 batches.

McMaster - DeGroote School of Business

Alternative3: Ift(j,l+2) > dJ and t(j,l+1) > min{d,dJ}, then go

to [Result] /*No feasible schedules are based on this partial schedule,

because job j can not be scheduled as an early job in either the current

batch (t(j,l + 1) > min{d,dJ}) or a new batch (t(j,l + 2) > dj).

Endfor

[Elimination] If j < r, then for any two states (j, l, k, d, y) and (j, l, k, d, y')

withy< y', eliminate from T the one withy'/* Remark 7.3.2.

[Updating] Set sU> = T.

Endfor

[Result] Set optimal solution value u; equal to the smallest y among all states in

S(r) (If S(r) = 0, then u: = oo).

Theorem 7.3.3 For the 1js,A,J(i),Dlf1amaxR;b) problem, whose feasible sched

ules have to satisfy Condition 7.3.3, Algorithm CH7-A2(i) finds an optimal solution

in O(n4
) time.

Proof. The correctness of the algorithm follows from the discussion preceding it

and the observation that it is advantageous for both the earliness requirement and

the batch due-date-assignment cost to use as few batches as possible. For each (j -

1, l, k, d, y), there are at most three operations. Since (j, l, k, d, ·) always holds the

smallest y value and d takes at most n + 1 values, there are at most O(n3
) states

in each S(J) (k is just a work variable recording the number of jobs in the current

pending batch). Since there are at most n iterations, the time complexity is O(n4
)

indeed. •

Corollary 7.3.2 Suppose v; is the optimal solution value for the i-th restricted prob

lem, whose feasible schedules have to satisfy Condition 7. 3.1 and 7. 3. 2. Then Algo

rithm CH7-A2(i) finds initial bounds such that L~ :::; v; :::; nL~, where L~ = u; +wi +q,

in O(n4
) time.

101

102 Ph.D. Thesis - Rui Zhang

Proof. The corollary directly follows from Lemma 7.3.1 and Theorem 7.3.3. •

Let v* be the optimal solution value for the original lis, A,DIFI "'£ aRJ +
"'£ wJUJ + bq problem. Then first we know that v* must fall into one of non-empty

intervals: [L~, nL~], i = 0, ... , n. This implies v* 2': v', where v' = mini=O, ... ,n{La.

Because v* ::; mini=O, ... ,n { v;}, so v* ::; miJ4=o, ... ,n { nLa = nv'. Therefore, we have the

following remark.

Remark 7.3.3 In O(n5) time, we can determine a pair of initial bounds for v* such

that v* E [v', nv'], where v' = mini=O, ... ,n {La.

Step III: Tight Bounds

In order to narrow the bounds [v', nv'], we first present the following Algorithm CH7-

A3(u, c), which is similar to Algorithm CH7-Al and uses the same state representation

(j, l, k, t, x), but also includes interval partitioning for the objective, introduced by

Sahni [1976]. Given a target value u > 0 for the unknown v* and an arbitrary small

c > 0, Algorithm CH7-A3(u, c) is a (1 -c)-relaxed procedure that reports either

v* > (1- c)u or v* ::; u. Similarly to Remark 7.3.1, we have the following remark.

Remark 7.3.4 For all states with the same entries: (j, l, k, ·, x), we only need to keep

the one which has the smallest t value.

Algorithm CH7-A3(u, c)

[CandidateSet] Initialize T* = { (n, 1, 0, P, oc), (n, 2, 0, P, oo), ... , (n, n, 0, P, oo)}.

For m = 1 to n /*Search for an optimal schedule with exactly m batches.

[Initialization] Set S(O) = { (0, 0, 0, 0, mq)} and sUl = 0, j = 1, ... , n.

[Partitioning] Partition the interval [0, u] into r n/ c l equal subintervals of size

cujn, with the last one possibly smaller.

[Generation] Generate set S(J) from sU-ll.

McMaster- DeGroote School of Business

For j = 1 ton

[Setup] Set T = 0.

For each state (j -l,l,k,t,x) in sU-I)

Do the same as in Algorithm CH7-Al.

Endfor

[Elimination] If j < n, do the following:

1. If x > u, then eliminate from T any newly generated corresponding

state (j,l,k,t,x).

2. For any two states (j,l,k,t,x) and (j,l,k,t',x) with t S: t', elimi

nate the one with t' from set T based on Remark 7.3.4.

3. For states (j, l, k, t, x) with values x falling into the same subinter

val, keep only the one with the smallest t value for each subinterval.

[Updating] Set S(1) = T.

Endfor

Endfor

[Report] If T* = 0, then report v* > (1 - c) u; otherwise, report v* S: u and

demonstrate it by taking the solution with the lowest x value from T*.

103

Theorem 7.3.4 In O(n5 /c) time, Algorithm CH7-A3(u, E) either establishes that

v* > (1 - E) u or demonstrates that v* S: u (by finding a solution with x S: u), where

v* is the optimal solution value for the lis, A,DIFl I: a.R1 +I: w1U1 + bq problem.

Proof. Similarly to Theorem 4.4.3, if T* =I= 0, then there is at least one state

(n, l, k, t, x) that has not been eliminated. Therefore, v* S: x S: u. If T* = 0, then, by

[Partitioning] and [Elimination], the error introduced in each generation is at most

Eujn. Thus the overall error is at most Eu. Therefore, x > (1- E)u. Because v* is

the smallest value of all possible values x, we deduce v* > (1- E)u. For each triplet

104 Ph.D. Thesis- Rui Zhang

{j, l, k }, there are at most 0(In/ c l) pairs, { t, x }. By the proof of Theorem 7.3.2, the

running time is then O(n5 /c). •

Next, we consider to use BIP[a1 , a2 , A(w, P)] introduced in Chapter 3 to nar

row the bounds [v', nv']. Let a 1 = v', a 2 = nv', w = u and P be the 1\s, A,DIF\ L: aRj+

L: wjUj + bq problem. Then Algorithm CH7-A3(u, 1/3) can be used as A(w, P).

Since Algorithm CH7-A3(u, 1/3) runs in O(n5) time, then in O(n5 loglogn) time,

BIP[a1 , a2 , A(w, P)] reports ~ that implies a pair of tight bounds [~, 3~]. In this

situation, let us refer to BIP[a1 , a2 , A(w, P)] as Algorithm CH7-A4.

Corollary 7.3.3 Algorithm CH7-A4 can narrow the bounds [v', nv'] into [ii, 3ii] zn

O(n5 loglogn) time by setting ii = ~·

Step IV: Approximation

For any given c > 0, using the bounds ii :-=:; v* :-=:; 3ii obtained by Algorithm CH7-A4,

we run a slightly changed version of Algorithm CH7-A3(u,c), called Algorithm CH7-

A5, with u = (1 + c /3)3ii: The only difference is that in the [Partitioning] step we

partition [0, u] = [0, (1 + c/3)3ii] into n 13/c + 1l intervals of size at most cii/n, so

the cumulative error over n iterations will be no more than cii. Since we know that

the problem has an optimal solution value v* :-=:; 3ii, the algorithm will find a solution

v for the 1\s,A,DIF\ L:aRj+ L:wjUj +bq problem such that v :-=:; 3ii+cii = u, which

means that the algorithm will never end with an empty T*. Furthermore, whichever

subinterval of [ii, 3ii] v* falls into, the algorithm will generate an approximate solution

v with at most cii error away from it, i.e., v :-=:; v* + cii :-=:; (1 + c)v*. Therefore, we

have the following corollary.

Corollary 7.3.4 For any given c > 0, Algorithm CH7-A5 finds a (1+c)-approximate

solution for the 1\s, A,DIF1 L: aRj + L: wjUj + bq problem in O(n5 /c) time.

Now we are ready to present the final Algorithm CH7-A6, which combines into

an FPTAS the previous algorithms as subroutines.

McMaster- DeGroote School of Business

Algorithm CH7-A6

[InitialBounds]: Set v' = oo.

Fori= 0 to n

Run Algorithm CH7-A2(i) and set v' =min{ v' , u; + q + wi}·

Endfor

[TightBounds] : Run Algorithm CH7-A4 and obtain: v :::; v* :::; 3v.

[Approximation]: Run Algorithm CH7-A5 and obtain an approximate schedule.

Theorem 7.3.5 For the l is , A,DIF1 2':: aRJ + 2':: wJUJ + bq problem, Algorithm CH7-

A6 finds a (1 +E)-approximate solution in O(n5 jE + n 5 log log n) time.

Proof. The complexity and correctness follow from the results for the component

algorithms. •

7.4 Equal Due-date-assignment Cost s and Equal

Tardiness Penalties

In this section, we propose a polynomial algorithm for the case when the tardiness

penalties and due-date-assignment costs are equal, i.e., Wj = w > 0 and aj =a > 0,

Vj E J , denoted by lis , A,DIFI 2':: aRj + 2':: wUj + bq. Note that Proposition 7.2.1 ,

7.2.2, 7.3.1 and 7.3.2 can still be applied to this problem. Assume that all jobs are

indexed so that p1 :::; ... :::; Pn· Before we present the algorithm, let us emphasize the

following two important propositions.

105

Proposit ion 7.4 .1 There is an optimal schedule for the lis , A ,DIF1 I: aRj+ I: wUj+

bq problem, in which all early jobs are scheduled before or at ~ +A.

106 Ph.D. Thesis - Rui Zhang

Proof. By Proposit ion 7. 2.2 , ~+A is an upper bound for any assigned due date. •

Proposition 7.4.2 If there is an optimal schedule with 1 :S: h :S: n early j obs for the

l is, A, DIF1 'L a Rj + 'L wUj + bq problem, then these early jobs are exactly {1 , ... , h}.

Proof. P roposition 7.4. 1 implies there is an optimal schedule where the early jobs

are delivered in batches before or at ~ +A and the tardy jobs (if any) are delivered

after ~+A in a single batch. Suppose that there are an early job i and a tardy job k

with Pi > Pk in a schedule. Then exchanging the posit ion of job i and k may reduce

the schedule cost by a(pi - Pk) and can not lead to an increased cost . Exchanging all

such pairs will generate an early job set as claimed. •

Suppose that early jobs form a job set J E ~ J . Our subproblem (defined on

JE) is to find a schedule which minimizes t he sum of the due-date-assignment costs

and the batch-delivery costs , denoted by l is , A , JE,DIF I 'L a R j + bq. If s = 0 and

A = 0, it is equivalent to the I ll 'L aCj + bq problem on the same job set JE, which

can be solved in polynomial time [Hall and Potts , 2003].

Let (j , l , k, z) represent a part ial schedule on job set { 1, ... , j } with cost z, where

l is the number of batches (including the current batch), and k is the number of jobs in

the current batch, which is pending. Again, we use notation z = z (j , l , k) to emphasize

that it is the value corresponding to the state with ent ries , {j, l , k } . The cost of t he

current batch if it gets delivered with job j as its last job, including its batch-delivery

cost, is z (j , l , k) = ak max{t(j , l) - A, O} + q, where t (j , l) = 'Li=1 Pi + ls is the

makes pan. As an alternative, we can also schedule all remaining jobs {j + 1, .. . , n }

into the current batch and deliver t hem together. Let d = ~+A in Algorithm CH7-

A7. Then if t(n , l) > d, then all jobs in the current batch will be tardy and the cost

is z (j , l , k) = 'L~=j-k wi and if t (n, l) :S: d, t hen all jobs in the current batch will be

early and t he cost is z (j , l , k) = a(k + n - j) m a.."<{t(n, l) - A , 0}.

McMaster - DeGroote School of Business 107

Algorithm CH7-A7

[Initialization]: Set S(o) = { (0, 1, 0, q)} and S(j) = { (j, l, k, oo)}, j, l, k = 1, ... , n /*
Notice that z(j, l, k) = oo, Vj, l, k.

[Generation]: Update set S(1), S(2), ... ,S(n).

For j = 1 ton

for each (j- 1, l, k, z) E S(j-l)

1. If t(j, l) :s; d, then set z' = min{z(j- 1, l, k), z(j, l, k + 1)} and update

(j, l, k + 1, z') /*Schedule job j early in the current batch.

2. If t(j, l + 1) :s; d, then set z' = min{z(j -1, l, k) +z(j -1, l, k), z(j, l +
1, 1)} and update (j, l + 1, 1, z') /*Schedule job j early in a new batch

and deliver the l-th batch.

3. If t(n, l) :s; d, then set z' =min{ z(j- 1, l, k) + z(j- 1, l, k), z(n, l, 0)}

and update (n, l, 0, z') /*Schedule jobs {j, ... , n} early in the current

batch and deliver it.

4. If t(n, l) > d, then set z' = min{z(j- 1, l, k) + z(j- 1, k, l), z(n, l, 0)}

and update (n, l, 0, z') /*Schedule jobs {j, ... , n} tardy in the current

batch and deliver it.

Endfor

Endfor

[Optimization]: Select the state with the smallest z in S(n) and trace back to obtain

an optimal schedule and corresponding assigned due dates.

Theorem 7.4.1 For the lis, A,DI.Fll: aRJ + 2: wUJ + bq problem, Algorithm CH7-

A 7 finds an optimal solution in O(n3) time.

108 Ph.D. Thesis- Rui Zhang

Proof. For each state (j- 1, l, k, z), there are at most four operations. Since state

(j, l, k, ·) always holds the smallest cost and there are at most n batches and n jobs

in each batch, there are at most (n + 1)2 states in each S(j). We also know that there

are at most n iterations, therefore the time complexity is O(n3
). •

7.5 Summary

In this chapter, we studied three DIF problems. Firstly, we proved that the problem

with arbitrary due-date-assignment costs is strongly NP-hard. Then, we provided a

NP-hardness proof and proposed a pseudo-polynomial time algorithm and an FPTAS

for the problem with equal due-date-assignment costs. Finally, we found a polynomial

algorithm for the problem with equal due-date-assignment costs and equal tardiness

penalties.

Chapter 8

Models with SLK and TWK

Assignable Due Dates

In Chapters 6 and 7, we have discussed supply chain scheduling problems with delivery

costs and type CON and type DIF due date assignment. In this chapter, we extend

our efforts to two similar problems, but with type SLK and type TWK assignable due

dates, where SLK means that the assigned due dates are the sum of the processing

time and a non-negative slack, i.e., D1(e) = PJ + e, e ~ 0 and TWK means that

the assigned due dates are the product of the processing time and a non-negative

coefficient, i.e., D1(rJ) = 'rJPJ, rJ ~ 0.

8.1 Introduction

In the SLK and the TWK problems, we need to assign a value to the common slack and

the common coefficient variable. Once the value is determined, the problem is reduced

to the llsl "'£ w1U1 + bq problem, which has been well-studied in Chapter 4. Recall

that Algorithm CH4-Al is a pseudo-polynomial algorithm for the llsl "'£ w1U1 + bq

problem and Algorithm CH4-A7 is an FPTAS for the llsi "'£ w1U1 + bq problem.

109

110 Ph.D. Thesis - Rui Zhang

8.2 SLK Due Date Assignment

In this section, we first define the SLK problem and prove that it is NP-hard. Then

we present a pseudo-polynomial algorithm for it using Algorithm CH4-Al. Finally,

we propose an FPTAS for the problem using Algorithm CH4-A7.

8. 2.1 Preliminaries

Note that all the terminologies, assumptions and notations introduced in Chapter 3

apply in this chapter. In the SLK problem, let Dj(B) = Pi + e Vj E J denote the

assigned due date, where e;::: 0 is the slack variable. Then d1(B) = max{D1(tl), A1} is

the acting due date. Thus the tardiness indicator variable is Uj(B) = 1 if C1 > dj(B),

where Cj is the completion time of job j, and U1(B) = 0 otherwise. Our goal is to find

a schedule minimizing the sum of the weighted number of tardy jobs, the due-date

assignment costs and the batch-delivery costs, denoted by lis, Aj,SLKI "'£ a1RJ(B) +
"'£ wJUJ(B) + bq. Next let us prove the NP-hardness using the knapsack problem.

Theorem 8.2.1 The SLK problem is NP-hard.

Proof. Consider an instance of the well-known NP-hard knapsack problem:

Maximize: L w1 , such that LPJ :::; A, <I>~ J = {1, ... , n}. (8.2.1)
jE~ jE~

Construct an instance of the SLK problem, in which s = 0, q = 0, aj » w1 and

P > AJ = A > p1, Vj E J. Since it is cheaper to assign e = 0, i.e., Dj(B) = PJ,
Vj E J, no job would have an assigned due date D1(B) > A. Therefore, we have

Rj(B) = max{D1(B)- A, 0} = 0 and dJ(B) = max{Dj(B), A}= A, Vj E J.

Suppose W ~ J is the set that includes all early jobs in an optimal solution

to the above SLK instance. Since W also minimizes the total tardiness penalties of

J - W, setting <I> = W is also an optimal solution to the above knapsack instance.

Therefore, the knapsack problem reduces to our SLK instance. We proved that the

SLK problem is NP-hard. •

McMaster - DeGroote School of Business

8.2.2 Pseudo-polynomial Algorithm

We now introduce a pseudo-polynomial algorithm for solving the SLK problem. In

the SLK problem, if we know the value of the slack variable, i.e., e = {f ~ 0,

then we can easily calculate D 1 (B) = PJ + {f, d1 (B) = max { D 1 ({f), A1} and R1 (ff) =

max{D1({f)- A1, 0}, Vj E J. In this case, the corresponding due-date-assignment

cost is 2:7=1 a1R1(e). In order to minimize the total cost, we have to find a schedule

minimizing the sum of the weighted number of tardy jobs and the batch-delivery

costs with respect to d1(e), denoted by ljs, d1({f)J2: w1U1({f) + bq. This is indeed the

1\s! L w1U1 + bq problem in which d1({f) is the given due date of job j, Vj E J.

Before we describe Algorithm CH8-Al, which finds an optimal solution, we

determine an upper bound for e. Since there are at most n batches in any feasible

schedule, the largest possible makespan is P + ns. This implies that the largest

possible value for any meaningful acting due dates is P + ns, i.e.,

where Pmin = minjEJ{PJ}· Therefore, we have {j::; P + ns- Pmin·

Algorithm CH8-Al

[Initialization]: Set v* = oo.

For {j = 0 to P + ns - Pmin

1. Determine d1({f) = max{DJ(ff), AJ} and Rj({f)

where DJ({f) = PJ + {f, Vj E J.

(8.2.2)

2. Run Algorithm CH4-Al for the 1\s, dJ({f)ll: w1UJ+bq problem and update

v* = min{2:7=1 aJRJ({j) + v(e), v*}. /*v(e) is the optimal solution value

for the 1\s, dJ({f)ll: wJUJ + bq problem obtained by Algorithm CH4-A1.

Endfor

[Result]: Trace back v*, {f and v({f) to obtain the optimal schedule.

111

112 Ph.D. Thesis- Rui Zhang

Theorem 8.2.2 Algorithm CH8-A1 is a pseudo-polynomial algorithm, which finds

an optimal solution for the SLK problem in O(n3 [min{P+ns, vV +nq}][P+ns]) time

and space, where P = 2:.::7=1 Pi and W = 2:.::7=1 Wj. This shows that the SLK problem

is NP -hard only in the ordinary sense.

Proof. We know that Algorithm CH4-Al runs in O(n3 [min{dn(t9), P+ns, W +nq}])

time and space for the lis, di(t9)1 2:.:: wjUj + bq problem by Theorem 4.3.1. Since the

largest acting due date considered is dn(e) = Pmax+e = Pmax+P+ns-Pmin ~ P+ns,

where Pmax = ma..xJEJ{PJ}, we have min{dn(e), P + ns, W + nq} = min{P + ns, W +

nq}. Moreover, Algorithm CH8-Al calls Algorithm CH4-Al at most O(P + ns -

Pmin + 1) = O(P + ns) times. Therefore the complexity of Algorithm CH8-Al is

O(n3 [min{P + ns, vV + nq}][P + ns]). •

8.2.3 Fully Polynomial Time Approximation Scheme

Suppose that we have h distinct values AJ- Pi, i.e.,

0 < A[1J- P[1] < ... < A[h]- P[h] < P + ns- Pmin· (8.2.3)

The due-date-assignment cost for e = x can be represented as

n h h

L o:iRi(x) = L a[jJR[jJ(x) = L a[j] max{P[jJ + x- A[j1, 0}, (8.2.4)
j=1 j=1 j=1

where a [j] = L.::iE J[jJ o:i and J[j] = { i I Ai - Pi = Aul - P[j], Vi E J}. This function is a

piecewise linear function of x as shown in Figure 8.1, where it is denoted by bold and

sloped lines. When x passes a break point in equation (8.2.3) denoted by a circle in

Figure 8.1, 2:.::~= 1 a[j]R[jJ(x) will include one more job set, say job J[j]l with a positive

cost and the slope will increase by a[j]·

Now let us define Oo = 0, 01 = A[1J - P[1J, , eh = A[h] - P[h] and eh+1 =
P + ns - Pmin· For any given c > 0, let us further divide each interval [Oi, Oi+1)

McMaster - DeGroote School of Business

(1 ::; i ::; h) into li smaller intervals:

1;-2 l;-1
SLK - ~ k · - ~ k Hi,l; = (Bi + 8i L..,.(1 +c) , mm{Bi+l' ei + 8i L..,.(1 +c) }],

k=O k=O

where li is such that

1;-2 l;-1

ei + si I:(l + c)k ::; ei+l ::; ei + si I:(l + c)k
k=O k=O

and thus

"'h _ I
uj=l 0 [j]l

(8.2.5)

(8.2.6)

0 All]- P[l] A[2J- P[2J A[3J - P[3J A[h] - P[h] P + ns - Pmin X

Figure 8.1: The SLK due-date-assignment cost as a piecewise linear function of x.

113

114 Ph.D. Thesis - Rui Zhang

It is sufficient to chose li to be

(8.2.7)

We note that

O(li) ~ O(log 8i+l) ~ O(log(P + ns)). (8.2.8)

Let 0"(0) be an optimal schedule for the SLK problem with the slack value

8 = 0 E H f,fK for some 0 < i ~ h and some 0 < k ~ li. Thus the total cost is

n n

v*(O) = L CiJRJ(O) + L wJUJ(O"(O)) + b(O"(O))q, (8.2.9)
j=l j=l

where

n h i

L CijRj(O) = L CY[j] max{P[J] + 0- A[j]; 0} = L CY[jJ(O- 8j)· (8.2.10)
j=l j=l j=l

It is clearly true that schedule 0"(0) is also optimal for the 1js, dJ(O)I ~ wJUJ(O) + bq

problem. Let

8 i + ;5i 2::;:6 (1 + E Y,

min{8i+l, 8i + 8i ~~:6(1 + EY},

if 0 < k < li
(8.2.11)

be the right end point of the interval Hi~tK. Since 0 E Hf,fK' then we have 8' 2:: iJ
and thus

(8.2.12)

In order to estimate the due-date-assignment cost, let us consider two cases: k = 1

McMaster - DeGroote School of Business

and k > 1. When k = 1, we have (Notice that B E Hi~fK implies B > ()d
n h

L ajRj(e') = L O[jJ max{P[jJ + e'- A(j1, 0}
j=1 j=1

i

:::; I:a[JJ[ei + Ji- eJ]
j=1

i

= (1 + E) 2::.: a [jJ [e i + 1 - e J]
j=1

i n

:::; (1 +c) L a[JJ(B- OJ)= (1 +c) L a1Rj(B), (8.2.13)
J=1 j=1

where RJ(O') = ma.-x{pJ + 0' - AJ, 0} and RJ(B) = max{pJ + B- Aj, 0}, Vj E J.

Similarly, by the design of the smaller intervals in (8.2.5), when k > 1, we have
- - k-2 r e > ei + bi Lr=O (1 + E) ' 1 < k :::; li and then

n h

L ajRj(O') = L a(jJ max{P[j] + 0'- A[j]> 0}
j=1 j=1

i k-1

:::; L a[j1[ei + Ji L(1 + cY- ej]
j=1 r=O

i i k-1 i

= L O[jJ(ei- ej) + L O[jJ[bi L(1 + crJ + L O[jJ[bi(1 + c)0
]

j=1 j=1 r=1 j=1

i i k-1 i

= (1 +c) L a[j1(ei- eJ) + 2::.: a[j1[3i L(1 + cYJ + (1 +c) L a(j1
j=1 j=1 r=1 j=1

i k-2

= (1 +c) I:a[jJ[Bi + bi L(l + EY + 1- ej]
j=1 r=O

i n

:::; (1 +c) .2:a[j1(e- ej) = (1 +c) LaJRJ(B), (8.2.14)
j=1 j=1

where we substitute 8i by equation (8.2.6) in the last term of the third line, and the

last inequality holds because ei + bi 2.::;:~(1 + EY <e.

115

116 Ph.D. Thesis- Rui Zhang

Let Wopt(O') be the optimal solution value for the 1\s, dj(O')j "'£ wJUJ(O') + bq

problem. By equation (8.2.12), we know that

n

Wopt(O') S L WjUj(O"(B)) + b(O"(O))q.
j=l

(8.2.15)

Let O"apx(O') be a schedule for the 1\s, dJ(O')\ "'£ wJUJ(O') + bq problem such that its

cost

Wapx(O') S (1 + E)Wopt(O'). (8.2.16)

Then the total cost of the SLK problem on schedule O"apx(O') is

n

v(O') = L aJRJ(O') + Wapx(O')
j=l

n

s (1 +E) L ajRj(e) + (1 + E)Wopt(O')
j=l

n n

S (1 +E) L aJRJ(B) + (1 + E)[L wJUJ(O"(B)) + b(O"(B))q]
j=l j=l

s (1 + E)v*(e), (8.2.17)

which follows from equations (8.2.13), (8.2.14), (8.2.15) and (8.2.16).

Now we are ready to present an FPTAS for the SLK problem using Algorithm

CH4-A7, which is the FPTAS developed for the 1\s\ "'£ wJUJ + bq problem in Chapter

4. Algorithm CH8-A2 calls Algorithm CH4-A7 for each 0' in equation (8.2.11) to

obtain an approximate solution for the 1\ s, d1 (0') I "'£ w J UJ (0') + bq problem. For some

0', it may happen that some DJ(B') = PJ + ()' is not an integer. In this situation, we

will take the value of DJ(O') = LPj + O'J.

Algorithm CH8-A2

[Initialization]: Set T = 0 and determine h, <5i, oi and li for any given E > 0 based

on the above discussion.

Fori= 1 to h

McMaster - DeGroote School of Business

Fork= 1 to li

1. Set(}' as in equation (8.2.11).

2. Determine dj((}') = max{Dj(O'),Aj} and Rj(O')

Aj, 0}, where Dj(e') = lPj + e' J, Vj E J.

3. Run Algorithm CH4-A7 for the 1Js, dj(O')Il:: w]Ui + bq problem and

obtain v(O'). /*v(O') is the approximate solution value obtained by

Algorithm CH4-A 7 for the 1Js, di(O')Il:: wjUj + bq problem.

4. Set T +--- T u (0', 2:::7=1 aiRi(e') + v(O')).

Endfor

Endfor

[Result]: Select the state with the smallest "2::7=1 aiR1(e') + v(O') in T and trace

back to obtain the schedule.

Theorem 8.2.3 Algorithm CH8-A2 is an FPTAS, which finds a (1 +c)-approximate

solution to the SLK problem in 0("2::7=1 li[n4 log log n + n 4 I c]) time for any given

c > 0, where li is defined in equation (8.2. 7).

Proof. The correctness of the algorithm follows from the preceding discussion and

Theorem 4.4.4. Algorithm CH4-A 7 solves the 1Js, dj(O')Jl:: wiUi + bq problem in

O(n4 loglogn + n4lc) time and Algorithm CH8-A2 calls Algorithm CH4-A7 at most

0("2::7=1 li) times. Note that O(li) ~ O(log(P + ns)). Therefore, Algorithm CH8-A2

runs in 0("2::7=1 li[n
4 log log n + n4 I c]) ~ O(log(P + ns)[n5 log log n + n5 lc]) time. •

8.3 TWK Due Date Assignment

In this section, we first define the TWK problem in detail and prove its NP-hardness.

Then we present a pseudo-polynomial algorithm for it using Algorithm CH4-Al.

Finally we develop an FPTAS for it using Algorithm CH4-A 7.

117

118 Ph.D. Thesis - Rui Zhang

8.3.1 Preliminaries

As was the case with the SLK problem, all the terminologies, assumptions and nota

tions introduced in Chapter 3 apply in this chapter too. In the TWK problem, let

D1(rt) = rtPJ Vj E J denote the assigned due date, where rt 2:: 0 is the coefficient vari

able, and let d1(rt) = max{D1(rt), A1} be the acting due date. Similarly, the tardiness

indicator variable is U1(rt) = 1 if C1 > d1(rt), where CJ is the completion time of job

j, and U1 (rt) = 0 otherwise. Our goal is to find a schedule minimizing the sum of the

weighted number of tardy jobs, the due-date-assignment costs and the batch-delivery

costs, denoted by lis, AJ,TWKI 2:::: o:JRJ(rt) + 2:::: wJU1(rt) + bq.

Theorem 8.3.1 The TWK problem is NP-hard.

Proof. Consider an instance of the TWK problem, in which s = 0, q = 0, O:j » Wj

and P > AJ = A > PJ, Vj E J. Then no job would have an assigned due date

DJ(rt) > A. Therefore, we have R1(rt) = max{D1(rt) - A, 0} = 0 and dJ(rt) =
max{ D1 (T/), A} = A, V j E J. It is not hard to see, by the same reduction as for the

SLK problem, that this instance is equivalent to the knapsack problem defined by

(8.2.1) .•

8.3.2 Pseudo-polynomial Algorithm

In the T\VK problem, if the coefficient variable has been determined, i.e., rt = ij 2 0,

then we can also easily calculate Dj(fj) = iJPJ, d1(ij) = max{DJ(iJ), A1} and R1(ij) =
max{D1(i])- A1, 0}, Vj E J. Moreover, the corresponding due-date-assignment cost

is 2::::7=1 o:1Rj('i]). In order to minimize the total cost, we have to find a schedule

minimizing the sum of the weighted number of tardy jobs and the batch-delivery

costs with respect to dj(i]), denoted by lis, d1(ij)l 2:::: w1UJ + bq. This is actually a

lis! L::wJUJ + bq problem in which d1(ij) is the given due date of job j, Vj E J.

Before we describe our Algorithm CH8-A3 which finds an optimal solution, we

need to determine an upper bound for ij. Since there are at most n batches in any

McMaster - DeGroote School of Business

feasible schedule, the largest possible makespan is P + ns. It means that the largest

possible value for any acting due date is P+ns, i.e., dJ(fJ) = max{fjpj,AJ}::; P+ns,

'llj E J. Let the set XJ contain all possible values for T7 such that DJ(Tl) = T/PJ E

[O,P+ns] and DJ(Tl) is integer, '1/ry E XJ· Thus we have

1 2 P + ns .
XJ = {0, -, -, ... , }, 'IIJ E J.

PJ PJ PJ
(8.3.18)

Let X = x1 U x2 U ... U Xn be the set which stores all possible values for fj. For some

fj, it may happen that DJ(fl) = ilPJ is not an integer. In this situation, we will take

the value of DJ(fl) = lflPJJ· We now describe an algorithm to solve this problem.

Algorithm CH8-A3

[Initialization]: Set v* = oo and determine)(1, ... , Xn and X =x1 U ... U Xn·

For each fj E X

1. Determine dJ(fJ) = max{DJ(fJ), AJ} and RJ(fl)

where DJ(fl) = lflPJJ, 'llj E J.

2. Run Algorithm CH4-Al for the lis, dJ(fl)i 2.:: wJUJ+bq problem and update

Endfor

v* = min{2.:7=1 aJRJ(fJ) + v(fj), v*}. j*v(fj) is the optimal solution value

obtained by Algorithm CH4-A1 for the lis, dJ(fl)i 2.:: WjUJ + bq problem.

[Result]: Trace back v*, fj and v(fj) to obtain the optimal schedule.

119

Theorem 8.3.2 Algorithm CH8-A3 is a pseudo-polynomial algorithm, which finds

an optimal solution for the TWK problem in O(n4 [min{P + ns, W + nq}][P + ns])

time and space, where P = 2.::]=1 PJ and W = 2.::]=1 WJ. This shows that the TWK

problem is NP -hard only in the ordinary sense.

Proof. We know that Algorithm CH4-Al runs in O(n3 [min{ dmax(fJ), P+ns, W +nq}])

time and space for the lis, dJ(i])i 2.:: wJUJ + bq problem by Theorem 4.3.1. Since the

120 Ph.D. Thesis - Rui Zhang

largest possible acting due date is satisfying dm=.(fi) = fJPmax = P+nsPmax ~ P + ns,
Pmm

where Pmax = max1EJ{Pj}, we have min{dm=.(fJ), P+ns, W +nq} = min{P+ns, W +
nq}. Moreover, Algorithm CH8-A3 calls Algorithm CH4-A1 at most lXI = '"'I:,]=1Ix1l
times, where lx11 = P+ns+ 1 by equation (8.3.18). Thus, the complexity of Algorithm

CH8-A3 is O(n4 [min{P + ns, W + nq}][P + ns]). •

8.3.3 Fully Polynomial Time Approximation Scheme

Once again, in an approach analogous to that for the SLK problem, suppose that

there are g distinct * values, i.e.,

A{l} A{g} P + ns
1<--< ... <--<---

P{l} P{g} Pmin
(8.3.19)

The due-date-assignment cost for TJ = x can be represented as

(8.3.20)

where &{j} = LiEJu} etiPi and J{j} = { iiA/Pi = Au}/P{j}, Vi E J}. This function is

also a piecewise linear function of x and is also denoted by bold and sloped lines in

Figure 8.2. When x passes a break point in equation (8.3.19), '"'I:,;=l &{j}R{j}(x) will

include one more job set, say job J{j}, with a positive cost and the slope will increase

by &{j}· Let us further define r70 = 1, TJi = A{•}, i = 1, ... , g and T}g+l = P+ns. For
P{t} Pmm

each interval [TJi, 77i+l), i = 1, ... , g, partition it into mi smaller intervals:

H TWK _ ("']·
i,l - TJi, TJi + oi ,

(8.3.21)

McMaster - DeGroote School of Business

where mi is such that

and thus

"g , I
uj=l D{j}

(8.3.22)

0 A{g}/P{g} (P + ns)/Pmin X

Figure 8.2: The TWK due-date-assignment cost as a piecewise linear function of x.

It is sufficient to chose mi to be

We note that

c(1Ji+l - 1Ji)
mi = \log(l+c) A + 11.

8i
(8.3.23)

(8.3.24)

Let O"(ij) be an optimal schedule for the TWK problem and let 1J = ij be the

corresponding coefficient value. Then the total cost is
n n

v*(ij) = L aJR1(ij) + L w1U1(0"(ij)) + b(O"(ij))q. (8.3.25)
j=l j=l

121

122 Ph.D. Thesis- Rui Zhang

It is true that schedule (J(ii) is also an optimal schedule for the 1\s, d1(ii)\ L, w1U1(ii)+

bq problem. Suppose fiE H[fK for some 0 < i ~ g and 0 < k ~mi. Let

if 0 < k < mi
(8.3.26)

be the right end point of the interval H[f K. Since fi E H[f K, then we have TJ 1 2: fi

and thus

(8.3.27)

Similarly to equations (8.2.13) and (8.2.14), for k = 1, we have

i

~ 2:: a{j} [TJi + Ji- T/jl
j=l

i

= (1 +c) 2::: &{J}(TJi + 1- TJi)
j=l

i

~ (1 +c) 2::: &{J}(fi- TJJ)
j=l

n

= (1 +c) L nJRJ(fi), (8.3.28)
j=l

McMaster - DeGroote School of Business

and for k > 1, we have

n h A L ajRj(r/') = L au} max{ry'- _ill_, 0}
1=1 i=1 P{J}

i k-1

-:::; 2:: a{j}[77i + Ji 2:::(1 + cr -7711
j=1 r=O

i i k-1 i

= 2:: a{j}(Tli -ryj) + 2:: a{j}[Ji 2::(1 + cn + :L au}[Ji(l + c) 0
J

j=1 j=1 r=1 j=1

i i k-1 i

= (1 +c) L O:{j}(Tli- r]j) + L a{j}[Ji L(l + crJ + (1 +c) L O:{j}
j=1 j=1 r=1 j=1

i k-2

= (1 +c) :L au}[77i + Ji :L(l + cr + 1-7711
]=1 r=O

i

-:::; (l+c)LO:{J}(r7-77J)
j=1

n

= (1 +c) L a1Ri(r]), (8.3.29)
j=1

where Ri(17') = max{Tl'p1 - Aj, 0} and Rj(r]) = max{ilPJ- Aj, 0}, Vj E J. In the last

term of the third line, we substitute Ji by equation (8.3.22), and the last inequality

holds because Tli + 8i 2:~=~ (1 + c r < r].

Let Wopt(17') be the optimal solution value for the lls,di(17')1l:wiU1(ry') + bq

problem. By equation (8.3.27), we know that

n

Wapt(17') -:::; L WjUj(a(r])) + b(a(r]))q.
j=1

(8.3.30)

Let O"apx(17') be a schedule for the lis, dj(ry')ll: wJUj(ry') + bq problem with cost

Wapx(17 1
)-:::; (1 + c)Wopt(77'). (8.3.31)

123

124 Ph.D. Thesis - Rui Zhang

Then the total cost of the TWK problem on schedule O"apx(r/) is

n

v(r/) = L o:jRj(r/) + Wapx(r/)
j=l

n

:::; (1 +E) L o:JRJ(ij) + (1 + E)Wopt(r/)
j=l

n n

:::; (1 +E) L o:jRj(ij) + (1 + E)[L WjUj(a-(ij)) + b(a-(ij))q]
j=l j=l

:::; (1 + E)v*(ij), (8.3.32)

because of the previous equations (8.3.28), (8.3.29), (8.3.30) and (8.3.31).

Similarly to the FPTAS for the SLK problem, Algorithm CH8-A4 calls Al

gorithm CH4-A7 for each 1\s, dj(rl')\,L wJUJ(r/) + bq problem for each possible r/ in

equation (8.3.26). For some 7]
1

, it may happen that some DJ(77') = PJ7J1 is not an

integer. In this situation, we will take the value of DJ(77') = lPJ7J1 J.

Algorithm CH8-A4

[Initialization]: Set T = 0 and determine g, ~i, 7Ji and mi for any given E > 0 based

on the above discussion.

Fori= 1 tog

Fork= 1 to mi

1. Set 77' by equation (8.3.26).

2. Determine dJ(77') = max{DJ(77'), AJ} and RJ(77')

AJ,O}, where DJ(77') = L77'PJJ, Vj E J.

3. Run Algorithm CH4-A7 for the 1\s, dj(TJ')\,L wjUJ + bq problem and

obtain v(77'). j*v(77') is the approximate solution value obtained by

Algorithm CH4-A 7 for the 1\s, dj(7J')\,L wJUJ + bq problem.

4. Set T r-- T u (77', .2:::7=1 o:JRJ(77') + v(77')).

Endfor

McMaster - DeGroote School of Business

Endfor

[Result]: Select the state with the smallest 2:7=1 cxiRi(r/) + v(r/) in T and trace

back to obtain the schedule.

Theorem 8.3.3 Algorithm CH8-A4 is an FPTAS, which finds a {1 +c)-approximate

solution to the TWK problem in 0(2:f=1 mi[n4 loglogn + n 4/c]) time for any given

c > 0, where mi is defined in equation {8.3.23).

Proof. The correctness of the algorithm follows from the preceding discussion and

Theorem 4.4.4. Algorithm CH4-A7 runs in O(n4 loglogn+n4 /c) time and Algorithm

CH8-A4 calls Algorithm CH4-A7 at most 0(2:f=1 mi) times. Note that O(mi) ~

O(log(P + ns)). Therefore, Algorithm CH8-A4 runs in 0(2:f=1 mi[n4 loglogn +

n4 /c]) ~ O(log(P+ns)[n5 loglogn+n5 /c]) time. •

8.4 Summary

In this chapter, we studied two supply chain scheduling problems with delivery costs

and due date assignments: the SLK and the TWK problem. For each problem, we

proved its NP-hardness and found an pseudo-polynomial algorithm and an FPTAS.

125

Chapter 9

Conclusions and Future Research

In this thesis, we studied supply chain scheduling problems only with delivery costs

(Chapters 4 and 5) and supply chain scheduling problems with both delivery costs

and due date assignment (Chapters 6, 7 and 8). For the above problems, we studied

their computational complexity, designed and analyzed efficient algorithms for their

optimal solutions and for their approximate solutions.

In Chapter 3, we first introduced terminologies, assumptions and notations

which were used in later Chapters. Then we proposed an algorithm framework,

the bound improvement procedure and proved its complexity and correctness. This

procedure was used in Chapters 4, 5, 6 and 7 to narrow a pair of initial bounds into

a pair of tight bounds which were used in developing approximation algorithms.

In Chapter 4, we studied the single-customer problem where our goal is to

minimize the sum of the weighted number of tardy jobs and batch-delivery costs on

a single machine. Since it is NP-hard, we proposed a pseudo-polynomial algorithm,

which further demonstrated that the problem is NP-hard only in the ordinary sense.

The pseudo-polynomial algorithm finds optimal solutions in polynomial time for two

special cases: one case has equal processing times and one case has equal tardiness

penalties. Finally, we converted the pseudo-polynomial algorithm into an FPTAS for

the general case.

126

Mdvlaster - DeGroote School of Business

In Chapter 5, we studied the multiple-customer problem where our goal is to

minimize the sum of the weighted number of tardy jobs and batch-delivery costs on

a single machine. We first provided a NP-hardness proof for it. Then we proposed

an exact algorithm which runs in pseudo-polynomial time. This implies that the

problem is NP-hard only in the ordinary sense. In order to develop an approximation

algorithm, we studied the problem with the restriction that tardy jobs require separate

deliveries. With this restriction, we were able to present an FPTAS for it. Finally, this

FPTAS was proven to be a good approximation algorithm for the original problem.

In Chapter 6, we studied the CON problems, where our goal is to minimize

the sum of the weighted number of tardy jobs, the due-date-assignment costs and the

batch-delivery costs on a single machine for a single customer and CON means that a

common due date is assigned to all jobs. We defined and studied three problems: the

unconstrained problem, the time-constrained problem and the capacity-constrained

problem. For these three problems, we were able to provide NP-hardness proofs,

pseudo-polynomial algorithms and FPTAS, respectively.

In Chapter 7, we studied the DIF problems, where our goal is to minimize the

sum of the weighted number of tardy jobs, the due-date-assignment costs and the

batch-delivery costs on a single machine for a single customer and DIF means that

distinct due dates can be assigned to each job individually. We first provided a strong

NP-hardness proof for the problem with arbitrary due-date-assignment costs. Then

we changed our focus to the problem with equal due-date-assignment costs. For this

problem, we proved that it is NP-hard and found a pseudo-polynomial algorithm,

which further classified that the problem is NP-hard only in the ordinary sense. Then

we converted the pseudo-polynomial algorithm into an FPTAS for the problem with

equal due-date-assignment costs. Finally, we found a polynomial algorithm for the

problem which has equal due-date-assignment costs and equal tardiness penalties.

In Chapter 8, we studied the SLK problem and the TWK problem, where

our goal is to minimize the sum of the weighted number of tardy jobs, the due

date-assignment costs and the batch-delivery costs on a single machine for a single

127

128 Ph.D. Thesis - Rui Zhang

customer. In the SLK problem, the assigned due dates are determined by adding a

common slack to the processing times and in the TWK problem, the assigned due

dates are determined by multiplying a common coefficient to the processing times.

For both problems, we first proved that they are NP-hard. Then, by implementing

the pseudo-polynomial algorithm in Chapter 4, we developed pseudo-polynomial al

gorithms, which established that both problems are NP-hard only in the ordinary

sense. Finally, by implementing the FPTAS in Chapter 4, we proposed FPTAS for

them, respectively.

Further research in this area may look at other scheduling objectives such as

the maximum tardiness and the total tardiness in problems with both delivery costs

and due date assignment. Another possible direction may change efforts to the type

of deliveries including routing. In this thesis, we proved the strong NP-hardness

of several problems. The design and analysis of good heuristics and approximation

algorithms for these problems may be the subject of further research.

In all the models studied in this thesis, we have job processing times as pre

determined and unchangeable parameters. Over the past several decades, however,

a large number of suppliers intended to coordinate with outsourcing partners. If a

supplier wants to finish an order on time with its limited production capacity, in

most cases, the supplier may want to outsource part of the order to a third party

rather than expand its own capacity. Therefore, the supplier needs to produce only

the remaining (or not outsourced) part of the order. This can be modeled by reduced

processing times, also called controllable processing times. We can see a large number

of scheduling literature dealing with this type of research, and for the most recent

development we refer to the survey paper [Shabtay and Steiner, 2007]. By including

controllable processing times into the models studied in Chapters 6, 7 and 8, we can

open up a new research area, supply chain scheduling with due date and outsourcing

coordination, where suppliers coordinate not only with customers but also with their

partners.

Bibliography

A. Agnetis, N.G. Hall, and D. Pacciarelli. Supply chain scheduling: Sequence coor

dination. Discrete Applied Mathematics, 154(15):2044-2063, 2006.

M. Akker and H. Hoogeveen. Minimizing the Number of Tardy Jobs. Springer-Verlag,

2004.

KR. Baker and G.D. Scudder. Sequencing with earliness and tardiness penalties: A

review. Operations Research, 38:22-36, 1990.

P. Baptiste. An o(n4
) algorithm for preemptive scheduling of a single machine to

minimize the number of late jobs. Operations Reserch Letters, 24:175-180, 1999.

A. Bar-Noy, R. Bar-Yehuda, A. Freund, J ~aor, and B. Schieber. A unified approach

to approximating resource allocation and scheduling. Journal of the ACM, 48(5):

106Q-1090, 2001.

P. Brucker. Scheduling Algorithms. Springer-Verlag New York, Inc., 3rd edition, 2001.

P. Brucker and M.Y. Kovalyov. Single machine batch scheduling to minimize the

weighted number of late jobs. Mathematical Methods of Operations Research, 43:

1-8, 1996.

B. Chen, C.N. Potts, and G.J. Woeginger. A review of machine scheduling: Complex

ity, algorithms and approximability. In Handbook of Combinatorial Optimization,

Edited by D.-Z. Du and P.M. Pardalos, 3:21-169, 1998.

129

130 Ph.D. Thesis - Rui Zhang

Z.-L. Chen. Integrated production and outbound distribution scheduling: Review

and extension. To appear in Operations Research, 2008.

Z.-L. Chen. Scheduling and common due date assignment with earliness-tardiness

penalties and batch delivery costs. European Journal of Operational Research, 93

(1):49--60, 1996.

Z.-L. Chen and N.G. Hall. Supply chain scheduling: Conflict and cooperation in

assembly systems. Operations Research, 55(6):1072-1089, 2007.

Z.-L. Chen and G.L. Vairaktarakis. Integrated scheduling of production and distri

bution operations. Management Science, 51:614-628, 2005.

T.C.E. Cheng and H.G. Kahlbacher. Scheduling with delivery and earliness penalties.

Asia-Pacific Journal of Operational Research, 10:145-152, 1993.

T.C.E. Cheng and M.Y. Kovalyov. Batch scheduling and common due-date assign

ment on a single machine. Discrete Applied Mathematics, 70(3):231-245, 1996.

S. Chudanov, M. Kovalyov, and E. Pesch. An FPTAS for a single-item capacity

economic lot-sizing problem with monotone cost structure. Mathematical Program

ming, Series A, 106:453-466, 2006.

S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd

ACM Symposium on the Theory of Computing, pages 151-158, 1971.

W.J. Cook, W.R. Cunningham, W.R. Pulleyblank, and A. Schrijver. Combinatorial

Optimization. J. Wiley, 1998.

M. Dawande, R.N. Geismar, N.G. Hall, and C. Sriskandarajah. Supply chain schedul

ing: Distribution systems. Production and Operations Management, 15(2):243-261,

2006.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman and Co., New York, NY, 1979.

McMaster - DeGroote School of Business

C.V. Gens and E.V. Levner. Computational complexity of approximation algorithms

for combinatorial problems. Lecture Notes in Computer Science, 74:292-300, 1979a.

G.V. Gens and E.V. Levner. Discrete optimization problems and efficient approximate

algorithms. Engineering Cybernetics, 17(6):1-11, 1979b.

G.V. Gens and E.V. Levner. Fast approximation algorithm for job sequencing with

deadlines. Discrete Applied Mathematics, 3(4):313-318, 1981.

V.S. Gordon, J .-M. Proth, and C. Chu. A survey of the state-of-the-art of common

due date assignment and scheduling research. European Journal of Operational

Research, 139(3):1-25, 2002a.

V.S. Gordon, J.-M. Proth, and C. Chu. Due date assignment and scheduling: SLK,

TWK and other due date assignment models. Production Planning and Control,

13(2):117-132, 2002b.

V.S. Gordon, J.-M. Proth, and V.A. Strusevich. Scheduling with due date assignment.

In Handbook of Scheduling: Algorithms, Models and Performance Analysis, Edited

by Joseph Y-T. Leung, 21:1-22, 2004.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization

and approximation in deterministic sequencing and scheduling: A survey. Annals

of Discrete Mathematics, 4:287-326, 1979.

N.G. Hall and C.N. Potts. Supply chain scheduling: Batching and delivery. Operations

Research, 51(4):566-584, 2003.

N.G. Hall and C.N. Potts. The coordination of scheduling and batch deliveries. Annals

of Operations Research, 135(1):41-64, 2005.

N.G. Hall, L. Lei, and M. Pinedo, editors. Special Issue on Supply Chain Coordination

and Scheduling Annals of Operations Research {161}. July 2008.

131

132 Ph.D. Thesis- Rui Zhang

D.S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS

Publishing Company, 1996.

D.S. Hochbaum and D. Landy. Scheduling with batching: Minimizing the weighted

number of tardy jobs. Operations Research Letters, 16:79-86, 1994.

P. Kaminsky and D.S. Hochbaum. Due date quotation models and algorithms. In

Handbook of Scheduling Algorithms, Models and Performance Analysis, Edited by

Joseph Y-T. Leung, 20:1-22, 2004.

R.M. Karp. Reducibility among combinatorial problems. In Complexity of Computer

Computations, Edited by R.E. Miller and J. W. Thatcher, pages 85-103, 1972.

E.L. Lawler. Scheduling a single machine to minimize the number of late jobs. Re

port No. USB/CSD/83/139, Computer Science Division, University of California,

Berkeley, USA, 1983.

E.L. Lawler. A dynamic programming algorithm for preemptive scheduling of a single

machine to minimize the number of late jobs. Annals of Operations Research, 26:

125-133, 1990.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. Sequencing and

scheduling: Algorithms and complexity. In Handbooks in Operations Research and

Management Science, Edited by S.G. Graves et al., 4:445-552, 1993.

C.Y. Lee and Z.-L. Chen. Machine scheduling with transportation considerations.

Journal of Scheduling, 4:3-24, 2001.

J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine schedul

ing problems. Annals of Operations Research, 1:343-362, 1977.

C.L. Li, G. Vairaktarakis, and C.Y. Lee. Machine scheduling with deliveries to mul

tiple customer locations. European Journal of Operational Research, 164:39-51,

2005.

McMaster- DeGroote School of Business

U.V. Manoj, J.N.D. Gupta, S.K. Gupta, and C. Sriskandarajah. Supply chain schedul

ing: Just-in-time environment. Annals of Operations Research, 161:53-86, 2008.

J .M. Moore. An n job, one machine sequencing algorithm for minimzing the number

of late jobs. Management Science, 15:102-109, 1968.

C.H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA,

1994.

M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, 2nd edition,

2001.

C.N. Potts and Y.M. Kovalyov. Scheduling with hatching: A review. European

Journal of Operational Research, 120:228-249, 2000.

C.N. Potts and Y.M. Kovalyov. Analysis of a heuristic for one machine sequencing

with release dates and delivery times. Operations Research, 28:1436-1441, 1980.

G. Pundoor and Z.-L. Chen. Scheduling a production-distribution system to optimize

the tradeoff between tardiness and total distribution cost. Naval Research Logistics,

52:571-589, 2005.

S.K. Sahni. Algorithms for scheduling independent tasks. Journal of the ACM, 23

(1):116-127, 1976.

E. Selvarajah and G. Steiner. Batch scheduling in a two-level supply chain- a focus

on the supplier. European Journal of Operational Research, 173(1):226-240, 2006a.

E. Selvarajah and G. Steiner. Batch scheduling in customer-centric supply chains.

Journal of the Operations Research Society of Japan, 49(3):174-187, 2006b.

E. Selvarajah and G. Steiner. Approximation algorithms for the supplier's supply

chain scheduling problem to minimize delivery and inventory holding costs. Oper

ations Research, 5(2):426-438, 2009.

133

134 Ph.D. Thesis - Rui Zhang

D. Shabtay and G. Steiner. Two due date assignment problems in scheduling a single

machine. Operations Research Letters, 34(6):683-691, 2006.

D. Shabtay and G. Steiner. A survey of scheduling with controllable processing times.

Discrete Applied Mathematics, 155(13):1643-1666, 2007.

S.A. Slotnick and M.J. Sobel. Manufacturing lead-time rules: Customer retention

versus tardiness costs. European Journal of Operational Research, 169:825-856,

2005.

J. Tang, K.-1. Yung, I. KaKu, and J. Yang. The scheduling of deliveries in a

production-distribution system with multiple buyers. Annals of Operations Re

search, 161:5-23, 2008.

D.J. Thomas and P.M. Griffin. Coordinated supply chain management. European

Journal of Operational Research, 94:1-15, 1996.

V.V. Vazirani. Approximation Algorithms. Springer, Berlin, German, 2003.

J.F. Williams. A hybrid algorithm for simultaneous scheduling of production and

distribution in multi-echelon structures. Management Science, 29:77-92, 1981.

G.J. Woeginger. Open problems around exact algorithms. Discrete Applied Mathe

matics, 156:397-405, 2008.

X.G. Yang. Scheduling with generalized batch delivery dates and earliness penalties.

!IE Transactions, 32:735-741, 2000.

Appendix A

Terminologies

• Batch-completion time: the completion time of the last job in a batch;

• Batch-due date: the smallest due date of the jobs in a batch;

• Early batch: a batch includes only early jobs;

• Tardy batch: a batch includes only tardy jobs;

• Mix batch: a batch includes both early and tardy jobs.

135

Appendix B

Assumptions

• Unlimited-delivery: the number of vehicles available for delivering jobs is infin

ity;

• Instant-delivery: it takes time zero to deliver a batch to any customers;

• Tardy-delivery: all jobs have to be delivered to customers including tardy jobs;

• Batch-delivery: only jobs for the same customer can be delivered in a batch;

• Single-machine: all inbound operations are modeled as a single machine;

• Non-preemption: interruption is not allowed during the processing of a job;

• Zero-availability: all jobs are available for processing at time zero;

• Non-negativity: all data are non-negative integers;

• Due-date-adjustment: all due dates have been adjusted by subtracting an asso

ciated delivery time.

136

Appendix C

Notations

• J = {1, ... n} :the set of jobs;

• Pj : the processing time of job j;

• dj : the due date of job j;

• Wj : the tardiness penalty (weight) of job j;

• Dj : the assigned due date of job j in the DIF problems, which is a decision

variable;

• D: the common assigned due date in the CON problems, i.e., Dj = D, Vj E J,

which is a decision variable;

• Aj : the contracted due date of job j;

• A: the common contracted due date, i.e., Aj =A, \lj E J;

• Rj = max{Dj- Aj, 0}: the extended time units by Dj on Aj;

• aj : the due-date-assignment cost per extended time unit of Rj;

• a : the uniform due-date-assignment cost per extended time unit of Rj, i.e.,

aj =a, Vj E J;

137

138 Ph.D. Thesis- Rui Zhang

• a.j R J : the due-date-assignment cost of job j;

• cj : the completion time of job j ' which is defined by the batch-completion time

of the same batch;

• uj : t he tardiness indicator of job j: uj
otherwise;

• C (i) : the batch-completion t ime of batch i;

• d(i) : the batch-due date of batch i;

1' if job j is t ardy and uj

• s : the batch-setup time before processing t he first job in each batch;

• T : the batch-delivery time of each batch;

• q : t he batch-delivery cost of each batch;

• b : t he number of batches in a schedule;

• T : the minimum t ime between any two consecutive deliveries;

• B: t he maximum number of jobs in a single batch (delivery);

• e : a slack variable in the SLK problem , where Dj(e) = e + pj, Vj E J ;

• dj (e) = ma."X{ Dj (e), Aj } is t he acting due date in the SLK problem;

• fJ : a coefficient variable in t he TWK problem, where Dj(rJ) = 'r/Pj , Vj E J ;

• dj(fJ) = max{Dj(rJ),Aj } is the acting due date in the TWK problem;

• NI = {1 , ... , m} : the set of customers;

• ni : the number of jobs for customer i and n = 2...::Z:1 ni;

• Ji = {(i, 1), ... , (i, ni)} : the set of jobs for customer i and J = {J1 , . . . , l m};

• P (i ,k) : t he processing t ime of job (i, k);

0

McMaster - DeGroote School of Business

• d(i,k) : the due date of job (i, k);

• w(i,k) :the tardiness penalty (weight) of job (i, k);

• c(i,k) : the batch-completion time of job (i, k);

• U(i,k) :the tardiness indicator: U(i,k) = 1, if job (i,k) is tardy and U(i,k) = 0

otherwise;

• si : the batch-setup time before the first job in each batch of customer i;

• Ti : the batch-delivery time of each batch for customer i;

• qi : the batch-delivery cost of each batch for customer i;

• bi : the number of batches for customer i in a schedule;

• SEP implies that the tardy jobs need to be delivered separately.

139

Appendix D

Models and Results

Model Complexity Theorem

llsl L WjUJ+bq O(n4 log logn + n4/c) 4.4.4

llsil 2:: w(i,k)u(i,kJ+biqi NP-hard in the ordinary sense 5.4.1

llsi, SEPI L W(i,k)U(i,k)+biqi O(nm+2 loglogn + nm+2/c) 5.4.5

lis, A> 0, CONI L aJRJ+ L wJUJ+bq O(n2 /c) 6.3.3

lis, T, A> 0, CONI L aJRJ+ L wJUJ+bq O(n2 /c) 6.4.3

lis, B, A, CONI L aJRJ+ L wJUJ+bq O(l[n2 log log n + n2 /c]) 6.5.5

lls,B,A,dj= xl l:wJUJ+bq O(n2 log logn + n2 /c) 6.5.4

lls,A,DIFI l:aJRJ+ l:wJUJ+bq Strongly NP-hard 7.2.1

lls,A,DIFI l:aRJ+ l:wJUJ+bq O(n5 /c + n5 loglogn) 7.3.5

lis, AJ, SLKI L aJRJ(B)+ L WjUJ(B) + bq 0(2:7=1 li[n
4

log log n + n4/c]) 8.2.3

lis, AJ, TW Kl L aJRJ(TJ)+ L wJUJ(TJ) + bq 0(l:f=1 mi[n
4

log log n + n4/c]) 8.3.3

140

