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ABSTRACT 


This thesis considers the problem of model identification and trajectory tracking 

control in batch processes. From the point ofview of a control engineer, finite duration of 

the process, not operating around the equilibrium point, and time-varying operating 

conditions with nonlinear behavior are amongst the most significant differences between 

batch and continuous processes. The major contribution of this thesis is to develop an 

alternative to Nonlinear Model Predictive Control (NMPC) by incorporating Latent 

Variable Models (LVMs) in the course of an MPC algorithm (called LV-MPC). 

Two control formulations are developed in this study: Control in the latent 

variable space and control in the original variable space. The algorithms are based on 

multi-phase PCA models developed on batch data arrays. In both cases prediction of the 

future trajectories is accomplished using statistical latent variable missing data imputation 

methods. It is shown that the two control formulations are complementary to each other. 

The control in the latent space is the infinite horizon L V-MPC, while the control in the 

original variable space is the finite horizon LV-MPC. The proposed LV-MPCs can 

handle constraints. The methods are tested on two simulated batch reactor case studies. 

Furthermore, different latent variable modeling alternatives for modeling of batch 

processes are investigated from the view point of their application in the course of L V­

MPC. Two modeling alternatives previously proposed in the literature are incorporated in 

the course of the L V-MPC methodology: Batch-Wise Unfolding (BWU), and 

Observation-Wise with Time-lag Unfolding (OWTU). The BWU modeling approach 

addresses the nonlinearity and time varying properties of the batch process. However, it 
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needs a large number of batch runs in the training dataset. The OWTU approach leads to 

a Linear Time Invariant (L TI) modeling of the process which captures the average 

process dynamics. However, it needs only 1-3 batch runs for building the process model 

which makes this approach attractive for practical situations. In addition, a new modeling 

approach is proposed in this study which tries to capture the major benefits ofboth BWU 

and OWTU while avoiding the drawbacks of each one. It is called the Regularized Batch­

Wise Unfolding (RBWU) modeling approach. This modeling approach has the capability 

of modeling the nonlinearity and time-varying properties almost as accurately as BWU 

and at the same time it leads to a smoother PCA model and needs fewer numbers of 

observations for building the model as compared to BWU. The performances of the three 

latent variable modeling approaches in the course of LV-MPC for trajectory tracking are 

illustrated using two simulated batch reactor case studies. Recommendations are then 

given on which modeling approach to use under different scenarios. 

In the last stage of this research, various issues on the closed-loop identification of 

empirical latent variable models for model predictive control (MPC) of batch processes 

are investigated. It is shown that in most cases, it is possible to identify the batch process 

models only from historical batches without the need for external excitation of the 

closed-loop system by dither signal on top of the controller output. The maximum 

requirement would be to use extra batch runs with different set-point trajectories in the 

training dataset. The issue of model bias in closed-loop identification is investigated and 

the desirable controller characteristics to be used in the data generation step to minimize 

this bias in the latent variable models are discussed. 
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CHAPTERl 

Introduction 

This thesis addresses the problem of trajectory tracking control in batch processes. 

The research focuses on the Model Predictive Control (MPC) algorithm for trajectory 

tracking control by utilization of Latent Variable Models (L VMs) in the prediction step. 

A novel model predictive control algorithm for the trajectory tracking of batch processes 

is developed and investigated to address several practical situations. Different modeling 

alternatives are studied in the course of the proposed control methodology. Furthermore, 

specific identification issues of batch processes are explored in this study. The current 

chapter presents an overview of batch processes, Latent Variable Models (L VMs ), and 

the concept of the model predictive control. Furthermore, the thesis objectives and outline 

are presented. 

1.1. Batch Processes 

Batch processes are processes that happen in a finite duration of time. In a batch 

process, materials are initially charged to the process. Then the batch starts without 
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further addition or withdrawal of materials. At the end of the process, final products are 

discharged from the batch. A semi-batch process is a special case of batch process in 

which make-up and/or removal of materials may occur a few times during the batch 

completion. The operating conditions of a batch process including the specifications of 

initial materials and the process variable trajectories are not fixed and determine the final 

product quality. Batch operation also occurs in continuous plants. A continuous process is 

also considered as a batch process during the start ups and transitions between different 

product grades. 

Batch processes are of interest for many industrial applications such as 

pharmaceuticals and specialty chemicals. The main reason to use batch processes is their 

flexibility in producing a wide range of products. It is possible to produce a vast number 

of products using the same batch process equipment by changing the initial conditions 

and process variables trajectories. 

The control of batch processes is an open subject of research because of many 

distinguishing features of batch processes, as compared to continuous processes, such as 

lack of steady-state point, finite time duration of the process, and significant nonlinear 

and time-varying behavior existing in batch processes because of wide range of operating 

conditions. 

There are two hierarchical control objectives in a batch process. The higher level 

control is the control of final product quality by manipulating the initial conditions of the 

batch as well as the process variables trajectories [1-3]. The lower level control is the 

control of the process variables to track their corresponding set-point trajectories dictated 
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by the higher level controller [ 4-6]. The focus of this research is the trajectory tracking 

control of batch processes (lower level control) by identifying the batch process model 

using latent variable modeling approach and incorporating the process model in the 

course of a model-based controller. 

1.2. Latent Variable Models (LVMs) 

Latent variable modeling approach is a class of modeling which focuses on 

dimension reduction of the dataset by explanation of the major variations as well as 

quantification of the correlation structure in the dataset. There are several L VMs such as 

Projection to Latent Structure (PLS), Canonical Correlation Analysis (CCA), Reduced 

Rank Analysis (RRA), and Principal Component Analysis (PCA). A detailed discussion 

of the LVMs is presented in [7],[8]. PCA model is the latent variable model utilized in 

this study. 

Principal Component analysis (PCA) is a useful method in data compression by 

orthogonal transformation of the data matrix. The main idea behind the PCA is to reduce 

the dimension of a dataset consisting of a large number of possibly correlated variables 

while preserving as much information in the dataset as possible [9],[10]. In other words, 

PCA is a method of transforming a set of correlated variables into a set of fewer 

uncorrelated variables. The new uncorrelated variables are called Principal Components 

(PCs) and capture the most variations in the dataset. Figure 1.1 shows an illustration of 

this concept. 
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Figure 1.1 a demonstrates a typical dataset in which each observation is presented 

in a three dimensional coordinate and depicted as a circle. Figure 1.1b is a rotated version 

of Figure 1.1 a revealing that most of the variations are in the XY plane and most of the 

information content of the dataset can be explained by projecting the observations on a 

two dimensional plane. T1 and T2 axes depicted in Figure 1.1 a represent the directions of 

the maximum variances in the dataset and are numbered in the order of importance (T1 is 

the first direction of maximum variance and T2 is the second direction of maximum 

variance). Hence, the PCA model is a map that transforms the observations from the 

original space (X Y,Z) to the reduced latent space (T1, T2). 

y 

.·· T2 
.·..·· . 

....·i .. 
Figure 1.1: Illustration of a typical dataset to which PCA can be applied. 

Latent variable models including PCA are frequently used in the literature for the 

purpose of prediction [1],[11],[12]. In this research, the prediction of future process 

outputs obtained by the PCA model is utilized in the course of the Model Predictive 

Control algorithm for trajectory tracking in batch processes. 

(a) (b) 
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1.3. Model Predictive Control 

Model Predictive Control (MPC) is a class of control methodologies which 

utilizes the process model to predict the plant future outputs and calculates a set of 

control actions to be implemented to the process to optimize an objective function. This 

idea is implemented through a sequence of steps as follows [13]: 

a) Prediction of the future output of a specific horizon by explicit use of 

process model. 

b) Calculation of a sequence control actions which minimizes an objective 

function. 

c) 	 Implementation of the control action in the receding horizon manner, so 

that at each sample time, the first element in the sequence of control 

actions is implemented to the process. 

The above-mentioned sequences of steps are repeated at each sample time after 

the new measurements become available. Various MPC algorithms are different due to 

diverse types of models used in the prediction step and different objective functions 

considered to be minimized. Figure 1.2 is an illustration of the MPC algorithm. The man 

looking backward and forward represents the process model. At the sample time "k" the 

model looks back to use all past information, including current measurements, needed to 

calculate the prediction of future output of the process. It also looks forward in the sense 

of prediction to estimate the behavior of process output in a specified horizon called 

Prediction Horizon (PH) and calculates sequence of "CH" (the acronym for "Control 

Horizon") corrective actions to minimize an objective function. In Fig. 1.2, the objective 
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function can be a quadratic function of the process output deviation from its 

corresponding set-point. At the next sample time, k+ 1, all of the above steps are repeated 

to take into account any new information obtained from the new measurements. 

One of the major bottlenecks in the application of MPC is the availability of a 

reliable process model to be used for the prediction purpose. Mechanistic process models 

are not always available or reliable. Transfer Functions and State Space models, that may 

be representatives of mechanistic or empirical models, are amongst the most popular 

models used in the course of MPC[13-16]. The Linear Time-Invariant (LTI) versions of 

such models are satisfactory for the application of MPC in most continuous processes as 

the operating condition is usually a fixed point under normal operation. In contrary, in 

batch processes, the operating condition changes significantly during the batch 

completion which results in the nonlinear and time-varying behavior of the process. Thus, 

application of a L TI model in the course of MPC for batch processes may not be 

satisfactory in many cases. On the other hand, nonlinear models are not preferred to be 

used in the MPC algorithm due to the difficulties they bring to online computations. 
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t=k 

t=k+l 

t=l; t=k+l h+CH+l /1+PH+l 

Figure 1.2: An example of illustration of the MPC algorithm 

There have been few studies in the literature to address the problem of model-

based trajectory tracking in batch processes[ 4],[5]. The state of the art is to use the most 

accurate model of the process which is a nonlinear mechanistic model in the course of 

MPC, called Nonlinear MPC (NMPC), for trajectory tracking in batch processes. The 

current research aims to address the problem of incorporating a reliable and achievable 

model that accounts for the special characteristics of batch systems into the MPC 

framework. The L VMs are selected in this study to play the important role of the process 

model. They are easy to obtain and their prediction techniques are computationally 

efficient which make them suitable for online applications. The L VM used in this study is 
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the PCA model. Although PCA is a linear model, different techniques are used in this 

study to model nonlinear and time-varying behavior of the batch processes. 

1.4. Research Objectives and Scopes 

The Goal of this research is to develop a MPC methodology for trajectory 

tracking in batch processes which uses the PCA model in the prediction step. The 

proposed methodology is called LV-MPC. 

The L V-MPC algorithm aims to address several problems existing in trajectory 

tracking control of batch processes. Nonlinearity and time-varying behavior of the batch 

processes must be addressed in the modeling step. Furthermore, the need for digestible 

computational burden necessary for online applications should be considered. Moreover, 

major practical difficulties such as lack of enough number of observations to build a 

process model must to be dealt with in the L V-MPC framework. 

All of the above objectives may not be addressed in one algorithm. Thus, the 

objective of this research is to perform a comprehensive study on various control 

formulations and modeling alternatives and to develop a system and methodology 

consisting of several alternative algorithms to address the abovementioned objectives and 

to propose a set of guidelines and criteria that defines the situations under which each 

algorithm is recommended for practitioners. 

The L V modeling approach is amongst the empirical modeling approaches. A 

training dataset is required to build an empirical model for a process. The process of 

training data generation and building an empirical model on the generated dataset is 
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called System IDentification (SID). The quality of the identified model has a direct 

influence on the quality of the model-based control algorithm which utilizes the model. 

Therefore, a number of important SID issues are also addressed in this research. The 

system identification for batch processes is an undiscovered area ofresearch and there are 

many unanswered questions in this regard. The scope of this research is to investigate the 

problem of batch process identification and to address a number of questions that are 

most relevant to the L V-MPC methodology including closed-loop indentifiability 

conditions for batch processes and optimal training data generation. These questions are 

to be answered in this research by focusing on the L V modeling approach for batch 

processes. 

1.5. Thesis Outline 

The remainder of the thesis is organized as follows: 

Chapter 2 reviews the control objectives in batch processes and the state of the art 

techniques for trajectory tracking control in batch processes. Then the novel LV-MPC 

methodology is developed. The motivation of this study is to develop a MPC algorithm 

based on a reliable and achievable empirical model that can be used when an accurate 

mechanistic model is not available. Two control alternatives are investigated in the 

course of LV-MPC. The concept of multiphase modeling is incorporated in the proposed 

LV-MPC. Finally, the proposed two LV-MPC alternatives are tested on a simulated 

Single-Input Single-Output (SISO) batch reactor case study for temperature trajectory 

tracking and disturbance rejection. The performance of the proposed LV-MPC on this 
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batch case study is also benchmarked against PI controller as well as Nonlinear MPC 

(NMPC). 

Chapter 3 incorporates two more modeling alternatives in the L V-MPC 

framework. The motivations for this study are to address the practical problem of LV 

modeling of batch processes using few batch runs in the dataset and the aim to improve 

the L V modeling techniques. The finalized L V-MPC methodology consists of three 

modeling alternatives and two control formulation options. The three modeling 

alternatives incorporated into the L V-MPC method are implemented on two simulated 

examples of batch processes: the SISO batch example studied in chapter 2 and a Multi 

Input Multi Output (MIMO) batch example. 

Chapter 4 investigates the identification issues for batch processes in the course of 

L V modeling approach which is the focus of this research. The identifiability conditions 

in the context of batch processes are discussed. Then, the necessary conditions for 

training data generation from a closed-loop system which is informative enough to build 

a L VM and leads to a small bias in the identified model are proposed. 

Chapter 5 presents the summary of the contributions of the thesis followed by 

several suggestions for related future work. 
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2.1. 	 Introduction 

Batch processes exhibit a number of characteristics that lead to interesting control 

problems. They are finite duration processes in which the objective is to achieve a desired 

product by the very end of the batch. The product quality is usually only measured off­

line in a quality control lab after completion of the batch. Furthermore, batch processes 

are nonlinear in that the gains and dynamics often vary continuously throughout the 

duration of the batch. 

There are basically two levels of control for batch processes. The higher level 

control is the control of final product quality at the end of the batch. The lower level 

control is the set-point tracking of certain process variable trajectories. Several 

approaches to both of these control problems have been proposed and applied. In 

practice, the high level problem of controlling final product properties is not treated 

directly. Through well automating the batch process (the sequencing of all batch stages 

and the implementation of low level controls), the batch processes are simply run open­

loop and acceptable final quality is achieved in most cases. Theoretical approaches in the 

literature to the high level control of final product quality are often based on the use of 

mechanistic models. Nonlinear optimization/control algorithms combined with nonlinear 

state estimation have often been proposed to continually re-compute the optimal 

trajectories throughout the batch [1]. The difficulties in practice are the computational 

effort of such approaches as well as the need for good mechanistic models. Less 

computationally intensive differential geometric control approaches based on achieving 

necessary and sufficient conditions for optimal final quality have been proposed for 
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specific situations [2],[3]. Much simpler approaches to the high level control of final 

quality have been based on the idea of mid-course corrections and the use of empirical 

models such as latent variable models [ 4-8] or Artificial Neural Network models[9]. The 

assumption is that with good automation, most batches will achieve acceptable quality 

and that continual manipulation of the process every few seconds is not necessary, nor 

desirable. For those batches in which the final quality (as inferred by an inferential 

model) is projected to be outside of an acceptable window, mid-course corrections are 

applied. 

The lower level control problem that is addressed in this research involves the 

tracking of set-point trajectories for key process variables such as temperature, pressure 

or a measured reactant concentration. The desired set point trajectories are either 

predetermined from experience, from off-line optimization, or from the execution of the 

high level control. In industrial practice these trajectory tracking control problems are 

usually handled by simple PID controllers. However, when control is not uniformly 

acceptable over the entire batch, due to changing gains and dynamics or the need to track 

complex set-point trajectories, gain scheduled PID controllers are used [10] or feed­

forward terms are added [l l],[12]. Nonlinear controller approaches based on 

mechanistic models have also been described in the literature. Differential geometric 

approaches [12],[13] and various versions ofnonlinear MPC have been proposed. Garcia 

et al. [ 14] first proposed a nonlinear MPC for batch processes based on a nonlinear 

prediction model and control using a linearization of the model. Fully nonlinear MPC, 

formulated in an optimization framework, has more recently been proposed [15],[16]. 
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However, the modeling, implementation and computational effort of such approaches are 

large. 

This study considers an alternative to the nonlinear MPC approach for trajectory 

tracking and disturbance rejection based on latent variable models built from closed-loop 

batch data. Flores-Cerillo and MacGregor [8] first proposed this approach (LV-MPC) 

and illustrated it on the tracking of temperature and pressure in simulated batch 

processes. This chapter reformulates the L V-MPC problem in two different ways and 

uses multi-phase PCA model (overlapping models from each phase of the batch). The 

two formulations proposed are: (i) where all the optimization is computed in the reduced 

dimensional space of the latent variables and the future MV trajectories then computed 

from these optimized latent variables, and (ii) where all the control calculations are 

performed in the space of the original manipulated variables (more conventional 

approach). 

The rest of the chapter is organized as follows: Section 2.2 discusses latent 

variable models, system identification for dynamic batch processes, and prediction 

methods associated with latent variable models. Section 2.3 presents the basic 

methodology of two versions of multi-phase LV-MPC. Section 2.4 illustrates the 

methodology for trajectory tracking and disturbance rejection on a batch reactor 

simulation and Section 2.5 presents conclusions. 
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2.2. Latent variable modeling, identification and prediction 

2.2.1. Structure of batch data 

The structure of the data collected on time-varying trajectories from a batch 

process is a cube as shown in Fig. 2.1 a. There are different approaches for rearranging 

these data for analysis [17-20]. The main difference among different unfolding 

approaches is how they construct a 2-dimensional array (a matrix) out of the cube of 

dataset. Nomikos [19] and Nomikos and McGregor [20-22] suggested many possibilities, 

but proposed the batch-wise unfolding approach shown in Fig. 2.1 as the most logical 

way for modeling differences among batches. In this approach all the variables at 

different sample times are unfolded as shown and each batch history constitutes one 

observation or row in the unfolded matrix (Fig. 2.1 b). When all the batches are analyzed 

by performing Principal Component Analysis (PCA) or Projection to Latent Structures 

(PLS) on this unfolded matrix a few LV scores summarize the major differences among 

the batches, and the L V loadings capture all the time-varying dynamics of the batch 

process. Other unfolding approaches [17],[19],[23] either do not capture the time­

varying dynamics of the process or do not extract the differences among the batches. 

However, they can provide alternative approaches to LV-MPC and these are explored by 

Golshan et al. [24]. Nomikos and MacGregor [19],[20], and Wold et al.[25] presented the 

variable-wise unfolding approach in which variables of each sample time are considered 

as an independent observation. The schematic diagram is the same as Fig. 2.1 b but the 
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time slices are arranged underneath each other instead of beside each other. Louwerse 

and Smilde [ 17] have also considered P ARAF AC and Tucker 3 multi way models for 

batch processes but Westerhuis et al.[26] illustrate and discuss why these approaches are 

not well suited for batch processes. 

Variables ~====11 
(J) 

x 
(Cube of 
data set) 

Variable 
(J) 

Batch-Wise 
Unfolding 
~Batch 
lllJ~ runs 


(/) 

k=l k=2 k=K 

(a)x (b) Batch-wise Unfolding 
cube(JxJxN) 

Fig. 2.1: a) Cube of Batch process dataset, b) Batch-wise unfolding of the dataset 

2.2.2. Latent Variable (LV) models 

Modeling batch-wise unfolded data as in Fig. 2.1b using PCA results in a reduced 

dimension latent variable model for the (JxJK) matrix X of the form: 

X= TPT +E (2.1) 

T=XP (2.2) 

where T is a (f xA) matrix (A< <JK) of latent variable scores that summarize the major 

differences among the batch trajectories, and Pis a (JKxA) matrix of loadings that show 

how the latent variable scores are related to the trajectory data (.X). The score values of 

the A latent variables for each batch summarize the time-varying behavior of its 

trajectories relative to all other batches. 
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A common misconception of these latent variable models (e.g. PCA or PLS) is 

that they are linear models and therefore cannot capture any of the time-varying nonlinear 

dynamics of batch processes. However, this is not true. In the L V modeling of batch­

wise unfolded data (Fig. 2.1 ), the data are first mean-centered and scaled [ 19]. Mean 

centering the data automatically removes the average trajectories of all variables and 

hence removes the main nonlinearities relating to the absolute levels of the variables. 

Then PCA or PLS applied on these deviations provides different loadings (p0 /s) at every 

point in time (k = 1, .. ,K; a=1, .. , A)), thereby modeling the covariance structure at every 

point in time and its changes with time (see for example the loading plots in Garcia­

Munoz et al. [27]). In effect, it provides a nonlinear model in the form of a locally 

linearized model of the covariance structure of the variables at every point in time. These 

LV methods, applied to such batch-wise unfolded data, have now been applied to 

industrial batch processes in a variety of industries (see for example[S],[20],[27-30]) with 

little evidence of poor behavior due to not modeling nonlinearities. Nonlinear PLS and 

PCA methods have also been applied to many of these same industrial data sets and no 

improvement in the fit of the model nor any reduction in the number of components have 

been found [31]. 

2.2.3. Identification 

The training data can be the data from the previous batches run under normal 

conditions augmented with additional batches executed according to Design Of 

Experiments (DOE) for identification to provide information on the causal relationship 

between the manipulated variables and the controlled variables at every time interval 
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throughout each batch. The direct identification approach based on closed-loop data is 

used in this study. Closed-loop identification is preferred over open-loop identification 

for batch processes in order to maintain the process close to its desired trajectories and to 

minimize the final product quality variations. A dither signal in the form of a Random 

Binary Sequence (RBS) is added on top of the manipulated variable trajectories coming 

from an existing controller (PID) to provide some additional excitation of the process. 

The RBS signal is chosen to have its switching frequency in a suitable range(~ 1/6-1/3 of 

the dominant time constant of the process). The designed RBS signals simply improve 

the causal relationships between the MV and CV along their trajectories. The historical 

batch data are also very important in providing models for the effects of inherent 

disturbances in the batch process and their influence on the behavior of the evolving 

trajectories. This information is essential for the prediction of the future trajectories as 

discussed in the next section. 

Another important issue in the selection and design of identification experiments 

is the inclusion of experiments using somewhat different set-point trajectories. This is 

mainly of importance if the MPC is to be required to track a range of set-point trajectories 

such as might be needed for achieving different grades of the product. In practice, 

historical batch data would usually be available on these different grades and could be 

included in the training data. 

2.2.4. Prediction of future trajectories 

Prediction plays an important role in the MPC algorithm since the optimization 

problem embedded in the MPC needs future prediction of the outputs up to the prediction 
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horizon. The prediction method depends on the type of model being utilized in the MPC. 

For most linear and nonlinear dynamic models used for MPC, the future prediction is 

calculated using integration of the dynamic model over the prediction horizon (PH) and 

adapting it assuming a simple random walk type disturbance model on the CV. For some 

nonlinear MPC's state prediction is often improved by modeling disturbance states 

entering through selected variables (e.g., impurity concentrations in polymerization 

reactors [3]. 

The PCA models built on historical plus DOE data use all measured variables (not 

just MV s and CVs) and therefore contain within them detailed structure on the 

propagation of both CV changes and disturbances throughout the batch. These finite 

duration batch models also have a loading matrix (P) that shows how the covariance 

structure among the variables changes over the future horizon. The prediction step for 

the PCA latent variable model is therefore accomplished via statistical missing data 

imputation methods. These are efficient estimators for the future trajectories and serve 

exactly the same role as state estimators (e.g., Kalman Filters, etc.) for prediction of the 

future trajectories in traditional MPC approaches. These methods use all past data up to 

the current point in time and the time-varying batch model to impute the future (missing 

data) in any batch. Several missing data imputation methods have been proposed for 

latent variable models in the literature. For batch processes the aim is to predict the final 

latent variable scores at the end of any batch and then from the PCA model of the X­

space, the values of all the missing trajectories over the remainder of the batch can be 

computed. Nelson et al. [32] presented an analysis of several methods including the 
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Single Component Projection (SCP) method, the Projection to the Model Plane (PMP) 

method, and the Conditional Mean Replacement (CMR) method. Arteaga and Ferrer (33] 

discussed the methods proposed by Nelson et al. [32] as well as some other methods 

including a Trimmed Score Regression (TSR) method. Since the PMP and TSR are the 

methods utilized in this study, they are briefly discussed here. 

Projection to the Model Plane (PMP) 

This method was used by Nomikos and MacGregor (19],[21] in their original 

batch monitoring methodology. As the name implies it projects the new vector of 

observations with missing data onto the plane defined by the latent variable model (2.1) 

to obtain an estimate of the missing part of the data vector that is consistent with the 

model. 

A new observation (z) can be divided in two parts as shown in Fig. 2.2: 

ZT= [z *T z#7) (2.3) 

where, z* is the known data and z# is the missing data. For the batch process analysis z* 

corresponds to the past data and z# to the future data. The loading matrix can also be 

divided into two parts in the same way as z. 

pT= {P*T p#7j (2.4) 

Thus, the PCA model can be partitioned as: 

z =[::]=[;::] (2.5) 
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If the known part of the data is used for score estimation, the following relation is 

obtained [32]: 

(2.6) 


wherefT =[t~J , ••• ,[,] is the vector of estimated score. Subscript l:A means that A2 

principal components are considered in the PCA model. The estimates of the trajectories 

of all the variables for the remainder of the batch (z#) are then obtained from equation 

(2.5). 

Trimmed Score Regression method (TSR) 

For this method the same partitioning is applied to the data. The scores are 

computed based on the assumption that the known part of the data is the complete data in 

the observation. Thus, 

r*=P ~ z * (2.7) 

and the estimated scores are calculated by regressing the estimated scores ( f ) on the fake 

scores (r*). Finally, the score estimation formula is [33]: 

(2.8) 


where, e is the covariance matrix of the scores ( e =(TT xT) I I ) in the PCA model, 

where"!" is the total number of batches in the dataset. The number of scores considered 

in e (Q) can be more than or equal to A. 
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Z* 


T 

r 

pT 

Fig. 2.2: An observation (Z) containing already observed data (Z*) and missing data (T), 
its corresponding PCA model (Matrix P), and its equivalence in the latent space (7) 

2.3. Methodology 

2.3.1. Multiphase L V models 

For the high level control of final product quality, a single PLS model built on the 

batch-wise unfolded matrix of the entire trajectories (K time intervals) for all batches is 

desirable since it allows for modeling the effect of variations at every time point 

throughout the batch on the final product. Furthermore, the number of time intervals 

needed to define the batch for this high level control problem is usually small (K ~ 100 to 

300). However, in the low level control problem where the concern is the local tracking 

of certain trajectory variable set-points, the number of time intervals used (K) is usually 

much larger (control every few seconds), and the objective is to model the covariance 

structure of the data over some relatively local horizon. (The impact of current 

manipulated variable changes on the final quality or on the trajectories in the distant 

future is less important.) As a result, one very large global LV model (for the entire K 

time intervals) is less desirable as it requires more latent variables (which implies more 

batches may be needed in the training set), it leads to more ill-conditioned matrices in the 
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model used during the control computations, and it does not focus as well on the local 

behavior of the trajectories. Furthermore, utilizing a large model in the control action 

calculations at each sample time imposes a larger computational expense. Therefore, use 

of more local, multi-phase L V models, as presented here, offers several advantages for 

the low level trajectory tracking problem. 

The multiphase modeling approach is again based on the batch-wise unfolding of 

the cube of the batch dataset, but then identifying multiple phases within the batch and 

building separate, but overlapping PCA models for each phase. Two approaches are 

discussed below. 

Moving window LV model 

One approach is to build PCA models applicable to every time point based on a 

moving window along the batch-wise unfolded dataset. In this technique, a fixed-size 

window of data is selected at each sample time in a way that the data of the current time 

is located at the middle of the window and a model future horizon (jh) and past horizon 

(ph) of data on the two sides. Then, a PCA model is built on that part of data and that 

model used for application of the control algorithm for that time interval of the batch. 

This modeling approach is applied for every time point throughout the batch leading to as 

many models as one has time points. The moving window approach is depicted in 

Fig.2.3. However, at the beginning or end of the batch, there is not enough information to 

define the past or future horizon respectively and hence models with an expanding past 

horizon or shrinking future horizon are considered. This approach removes the 
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aforementioned problems associated with a single global PCA model over the whole 

batch and allows for smooth progression from one model to the next because of the large 

overlap in the data used for successive models. However, building as many PCA models 

as the number of sample times is clearly not necessary because the correlation structure 

among the process variables does not change that fast. Therefore, a more reasonable 

phase-based multi-block approach is suggested below. 

- k+fhkph 

Current 
Time~ Dataset 

(Batch-Wise Unfolded) 

Moving Window 

Fig. 2.3: Schematic of Moving Window approach along the batch-wise unfolded 
dataset 

Multiphase L V model 

One can often identify certain phases during the batch. By dividing the batch up 

into a number of such phases a separate PCA model can be built for each of those phases. 

By then using these models for control within their respective phases the disadvantages 

of the two extreme approaches above (single global model or a moving window model) 

can be avoided. 
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A question is how to select the phases. Although there are some recent studies on 

phase selection in a batch dataset, there is still no unified approach. Camacho and Pico 

[18] proposed a method for phase selection based on the prediction error or explained 

variance error and Zhao et al. [34] presented a method based on a clustering approach. 

However, these approaches are based on alternative variable-wise unfolding of the batch 

data that do not naturally capture the time-varying dynamics of the batch, but rather 

assume a constant covariance structure within each phase. The objective of these 

approaches is therefore to select phases in a way that the correlation structure among the 

data in the same phase has the minimum variation. For example, variables in the 

preheating step in a reactor and reaction step are likely to have different behavior and can 

be considered as different phases. The more suitable the phases that are selected, the 

fewer principal components are needed for the PCA model, which in tum means the 

fewer batch runs are needed in the training dataset. Furthermore, the size of the phases 

must not be too large or problems similar to the single phase approach may occur. The 

batch-wise unfolding approach used here will model all the time-varying covariance 

structure within each phase and so the selection of phases is much less critical. The main 

objective is to simply reduce the phase size to improve the local predictability of the 

models, to reduce the number of latent variables needed in the models (and thereby the 

number of batch runs required for identification), to minimize the ill-conditioning 

resulting from large time windows, and to reduce the computation time. In this work the 

number of phases selected was based on finding a balance between the number of 

observations and the number of required principal components in each phase. Studies by 

27 




Ph.D. Thesis-M. Golshan McMaster University- Chemical Engineering 

the authors on changing the number of phases has shown that it does not have much 

effect on the resulting control as long as the number of latent variables necessary for 

adequately modeling each phase is smaller than the number of batches available in the 

training data set. 

An important issue with such multiple models is the switching between models 

for two adjacent phases (bumpless transfer). This is easily achieved by the use of 

overlapping data at the beginning and end of each phase as illustrated in Fig. 2.4. This 

overlap achieves two benefits. It allows for consistency of the models between the end of 

one phase and the beginning of the next phase. This results because the same overlapping 

data are used for modeling the end of one phase and the beginning of the next. 

Furthermore, the overlapping allows one to continue to use consistent future prediction 

and past horizons (fh and ph) for the MPC. Consider the case where there is no overlap 

between phases and each phase is treated separately. When approaching the end of a 

phase there is a shrinking model future horizon and as the phase progresses the stability 

of the closed-loop system degrades as the available control and prediction horizons 

shrink. On the other hand, when a new phase starts there is not enough past information 

to have an efficient score estimation step. This situation makes the LV-MPC inefficient 

as the role of score estimation is critical. Making models for overlapping phases will 

remove these two problems. 

After determining the borders of the phases, one should use data over as many 

sample times as the selected model future horizon (fh) from the next phase and the data of 

as many sample times as the selected model past horizon (ph) from the previous phase as 
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shown in Fig. 2.4. Then the current phase must be augmented with these two wings and 

the PCA model must be built based on the augmented phase. Now the algorithm can 

switch between phases as soon as the batch reaches the sample time corresponding to the 

border of the original phases. As a result the algorithm will never face the expanding past 

horizon and shrinking future horizon except at the beginning and end of the batch, 

respectively. The values of the jh and ph depend on the type of process. The range 10-30 

sample times is typical, based on the authors' experience. 

PCA on Phase (M-1) 


------·-------.. PCAon Phase(M) 

______..________ PCAon Phase (M+1) 

. .. . . .
. . 
 . .. . . .. . . .
. . . . 
 . .. . . . 
 . .. PHASE . . PHASE . . PHASE .. . . M+1 .. . 
 . . .M-1. . . M . . .. .. . p.-,,_ . .. /1 . .. . ' ',~.. . . / . .. .. . •'......, .L ....7 

Past Future Switching times 
Horizon Horizon 

Fig. 2.4: Multiphase construction and overlapping in a batch-wise unfolded dataset 

2.3.2. Control 

McAvoy [35] proposed a PCA based MPC for continuous processes, and later 

Flores-Cerrillo and MacGregor [8] developed a version of L V-MPC for batch processes 

utilizing a PCA model of the process. The present work can be considered as an 

alternative to the work done by Flores-Cerrillo and MacGregor [8] in which the control 

formulation and modeling approaches are substantially revised. There are two major 

control approaches developed during this study, control based on the optimizing the final 
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scores in the PCA multi-phase model, 7, and control based on optimizing over the vector 

of future manipulated variables, u. 

Control in the LV space 

The objective of the control is to run a new batch to track certain trajectories and 

to simultaneously compensate for the effects of disturbances entering the batch. Suppose 

a multi-phase PCA model is developed based on a batch-wise unfolded dataset (Fig. 2.1 ). 

Each row (xT) of the unfolded X matrix in Fig. 2.1 or Fig. 2.4 corresponds to the data 

from one complete batch or one complete batch phase, respectively. 

(2.9) 

where the data at any sample time k are defined by: 

,YT [ T T T T ]
':J k = X me,k ,y cv ,k ,uc,k ,y sp.k (2.10) 

The variables Xme, Ycv, Un and Ysp in (2.10) are measured variables, controlled 

variables, manipulated variables, and set-point variables respectively. 

Assume that a new batch is currently at sample time k. The variables in that batch 

phase (xT) can be rearranged into past and future terms according to whether the variables 

have already been observed or are known at time k or they are unknown future values as: 

T [l"T I T T T 
X k = ':Jj J=l:k-i'X me,k ,ycv,k ,y sp,k y ~.} IJ=k+l,...,K 

T T Tu ,u ..I _ - ,x . I·- y T . 1·-k I (2.11)c,k c,J 1-k+l,.. .,K I me,J 1-k+l,...,K CV,]}-+,. ...K] 

-[ T T • T T ] 
- X Pl,k ,X P2,k ,Xfl,k ,X/2,k 
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where the subscript k denotes the separation made at time k. In (2.11) the rearranged rows 

are vectors of the known information at time k, while 

x1r1 k = (u~ k ,u~ 1- I. ,x ~e 1-1. )and x1r2 k =(Yr ·I )are future data that are not 
' ' ' j=k+l:K-1 ' J=k+l:K ' CV,) j=k+l:K 

known yet. K is the total number of sample times available in the phase. Separating the 

PCA loading vectors in the corresponding manner to the division ofx, we have: 

pk = [PPl,k ;PP2,k ;~1,k ;~2,k] (2.12) 

Note that since the algorithm is presented for online application, all of the 

variables mentioned in (2.11) and (2.12) change over time and have an index "k''. 

However, for the sake of brevity the index "k'' will be omitted. When all the information 

on a batch phase is complete, the corresponding final latent variable score for the 

observation at the end of the phase can be calculated from the PCA model for the phase 

as: 

(2.13) 


However, under MPC at the current time (k), the phase is not complete and the 

projected score at the end of the batch (phase), assuming no further adjustment to the 

control moves, must be estimated from only the data available up to and including the 

time step k using a missing data imputation method. This score prediction step and the 

corresponding predictions of the variable trajectories calculated from it play the same role 

as the state prediction algorithms in traditional MPC. The vector of imputed final scores 

for the phase, made based on data available at time k, is denoted byfk. A correction to 
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the score ( ~ f k ) is then estimated by optimizing the MPC objective function to get a 

corrected final score: 

(2.14) 


The objective function of the optimal control can be represented as follows: 

(2.15) 


Now, Define: 

x ~2], 

xJ2J 
(2.16) 

PJ2], 

Pf2J 

where Vi and V2 are LQ matrices. (Vi is a diagonal positive definite matrix and Vi is the 

derivative (positive semi-definite) matrix to put penalty on rate of change of input). The 

equation for the LV scores (2.2) can be written at time k for the current batch (phase) 

based on past and predicted future values as: 

A AA A AApTA pTA pTA pTA
r k +L.l r k = P x P.k + f xf .k ::::::::> f xf ,k = r k +L.l r k - P x P ,k (2.17) 

Then inverting this equation in a similar manner to that presented in Flores-Cerrillo and 

MacGregor [7] gives a prediction of the future trajectories taking into account continuity 

with past data, see Appendix A for details: 

xf,k =If (Pf If ((ik +~fk -P:xp.k) 
(2.18) 

[x1 1 x12 J=[lf1 !f2](IJT!f ((ik +~fk -P;xp.k) 
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(2.19) 


The future manipulated variable trajectory can be computed directly from the PCA model 

since no continuity is necessary for the input variables: 

(2.20) 


Substituting (2.19) and (2.20) into the objective function (2.15) we get 

min~{[P12 (Pf Pl r (ik +~ik -P:XP )-xnrv; [P12 (PfP1r (ik +~ik -P:xP )-xp2J}
f'.Tk 

+ri(i::.1 (ik +~ ik)rVi (i::.1 (ik +~ ik)) 

Or 

minYi [pf2 (Pfpf t ti i k - pf2 (Pfpf t (p:x p - i k )- xP2 rv; 
!Hk 

Therefore: 

min!i(A1tiik -b1)T v; (A1tiik -bi) + Ji(Aitiik +b2t Vz (Aitiik +b2) 
f'.Tk 

where, 

A1 = P12 (Pfpf t (2.21) 

b1 = P12 (PfPf r1 (P;xP -ik )+xP2 

Ai= P,,f 

b2 = P,,fik 

The above optimization problem can be solved analytically if there are no hard 

constraints or numerically if there are hard constraints on the manipulated variable, u1, 
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which is written in terms of the decision variable in equation (2.20). In the unconstrained 

situation, taking the derivative of equation (2.21) and setting this equal to zero yields: 

r1 (Ii ik = ( A 1rV1 +A/V2 A1rV1b1 -A2rV2b2 )A 1 A 2 

~([if,(Pf if r1J V, [if,(Pf if r']+P/V,Pef r 
(2.22) 

([if, (Pf if rJ v, (if, (Pf if f{P: x p -f, )+x P2 )-P/V,P.. f,) 
Once the desired change in the latent variable for the end of the phase, Ii ik , is 

calculated, the corrected score of the current batch is computed using equation (2.14) and 

the future control actions are computed from equation (2.20). 

If the PCA model is built based on mean-centered and scaled data, equation (2.8) 

and all control computations up to equation (2.22) must also be considered for the mean-

centered and scaled data. Thus, in order to obtain uf in the original variable space, it 

should be scaled back. Then, its first element must be implemented on the process. At the 

next sample time the same procedure is repeated. 

Control in the origina variable space 

In the previous LV-MPC formulation the decision variables in the optimization 

were the L V scores at the end of the phase. Once optimal values of these were computed, 

the corresponding variable trajectories were computed from the PCA model. In this 

section a LV-MPC formulation is presented based on explicitly using a finite future 

trajectory of the manipulated variables as the decision variables, a formulation more 

common in the MPC literature. 
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The data vector for the current batch phase at time k (2.9) can be partitioned in a 

more explicit way with respect to the manipulated variable as follows: 

T [l'T I T T T 
xk = ~ j j=l:k-1' xme,k 'Ycv,k' Ysp,k Y~,j lj=k+l,.. .,k+PH 

X~e,j lj=k+l,...,K ,u;j lj=k+CH,... ,K ,y:,j lj=k+PH+l,...,K ,y~,j lj=k+PH+l, ...,K 

(2.23) 

Y:.j lj=k+l,....k+PH u;j lj=k, ... ,k+CH-1] 

where x~1,k =(sil ·=i·.k-i'x~e,k•Y~,k·Y~.k)and x~2.k =(Y~,jl._ )are vectors of theJ-k+l,..,k+PH1
known information at time k, while 

X~1.k = (x~e,j lj=k+l,.. .,K ,u~j lj=k+CH,...,K .Y~.j lj=k+PH+l, ... ,K ·Y~,j lj=k+PH+l,...,K)' x1r 2 k = (y~ -1. )1' ' ;=k+l,..,k+PH 

and uJ,k =(u~,jlj=k, ..k+eH-J are future data that are not known yet. CH and PH are the 

control horizon and prediction horizon respectively. The main point of this method is to 

formulate the problem in terms of future manipulated variables, u1. At the sample time k, 

the known data are XpJ, xP2, the unknown data are x1b x12, and the future decision variable 

is u1. However, the term UJ is considered as the decision variable that will be determined 

through the optimization process. In this algorithm, the final batch phase score is again 

estimated using a weighted version of one of the missing data imputation methods 

discussed in Section 2.4 where the existing data is taken as z* = Xp and recent data are 

more heavily weighted [36]: 

T ( T T ~ ] pT [PT (2.24)X p = X Pl X P2 Uf ' p = Pl 

Either of the missing data imputations can be expressed as: 
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(2.25) 


Once the scores are estimated the future process variables can be estimated as well from 

the PCA model: 

(2.26) 


Combining (2.24), (2.25) and (2.26) gives: 

(2.27) 


(2.28) 


The CPI."' Cn,1c, Cuf.k come from partitioning the matrix Ck corresponding to the vector Xp. 

Now the predicted future controlled variable (i12 ) is expressed as a function of future 

MV's (u1) input. The following optimal control problem is considered: 

(2.29) 


where, V 1 and V 2 are the LQ weights. Combining (2.28), (2.29), yields: 

Once again the above optimization problem can be solved either analytically (if there are 

no hard constraints) or numerically (if there are hard constraints on MV). 

Cy is composed of the optimal input values of the current time up to the control 

horizon. According to the MPC rule, the first element of u1 is implemented on the plant 

and at the next sample time, the same computation is repeated. The control horizon (CH) 
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should be large enough to assure the process is controllable in the selected horizon. The 

concepts of controllability and observability in the PCA model are discussed in Appendix 

B. 

2.4. Case Study: Temperature Control in a Batch Reactor 

Aziz et al.[37] presented a nonlinear model of a batch reactor. This process model 

was originally proposed by Cott and Macchieto[38] as a case study for a temperature 

control problem on a batch reactor. The schematic of the reactor is shown in Fig. 2.5. The 

model for this process is presented in Appendix C. Our use of that model in this section is 

simply to illustrate the trajectory tracking capabilities and properties of the proposed L V­

MPC algorithms using an arbitrarily complex set-point trajectory. We are not trying to 

find an optimal set-point trajectory as was the goal of the earlier publications that used 

this model. The objective is to control the reactor temperature to track the specified set-

point trajectory and to do so in the face of non-stationary disturbances. The manipulated 

variable is the set point of the jacket temperature (Fig. 2.5). Once the set point is 

calculated by the controller, the desired jacket temperature is generated immediately, by 

combination of hot and cold water. However, it takes time for the jacket temperature (Tj) 

to achieve the Tjsp (input). It is assumed to have linear dynamics: 

dTj (rJP -Tj) Qj 
(2.31) 

dt rj VjpjCpj 
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Cold 

Fig. 2.5: Schematic of the Reactor and the Temperature Control Instrumentation 

The total batch time is 120 min. Control based on two sampling intervals 0.1 min 

and 0.2 min are tested during this study. For the sake of improving identifiability, a RBS 

dither signal is superimposed on top of the manipulated variable. The minimum 

switching frequency of the RBS is selected to be between 11(0.15+0.lxrandn) and 

11(0.l+O.lxrandn) where "randn" indicates "random number". (1 /0.15 =6.67 means that 

the signal remains constant over at least 6-7 sample times which is suitable with respect 

to the process time constant). The dither magnitude (± 6%) on the input was small 

enough to have little noticeable effect on the temperature trajectories. White noise was 

added to the measurements and different starting points were randomly selected. For this 

control study data from 45 batches (40 batches with similar set-point trajectories plus 5 
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batches with a slightly different but in the range set-point trajectories) run under closed­

loop control with a PI controller and added RBS dither signal were used to develop the 

PCAmodels. 

2.4.1. Trajectory tracking 

The first step is to identify the phases along the batch. Based on the loading plots 

of the PCA model and considering the trajectory of the set point, six phases are selected 

along the batch. These phases are constructed on the intervals of: 1-30, 30-50, 50-60, 60­

80, 80-100, and 100-120. The phases were selected in a way that less variation is 

observed in the correlation structure (loading plots) of the resulting PCA model in each 

phase and a balance exists between the number of observations and the number of 

required PCs. However, for smooth transition between two adjacent phases overlap 

should be considered between phases (see Fig. 2.4) in the modeling step. In the modeling 

and control studies in this section overlaps ofph =20 andjh=PH intervals with both the 

immediate past phase and the next phase are included when modeling each current phase. 

For example the phase 2 model uses data over the time intervals 30-Txph to 50+Txjh, 

where T represents the process sample time. The following figures illustrate the results 

ofvarious LV-MPC simulations. 
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Fig. 2.6: Control in the latent variable space using PCA models based on the multiphase 
batch-wise unfolded dataset with 6 phases. Each variable is centered by its own mean in 

the batch-wise unfolded dataset. 

Fig. 2.6 shows the trajectory tracking of the Multi-phase LV-MPC (MLV-MPC) 

using the control strategy based on scores. There are clear and persistent deviations 

throughout the batch between the CV and the set-point that were eventually shown not to 

be due to the control, but rather due to the model centering and scaling issues. Indeed, the 

control objective function is evaluated in the mean-centered and auto-scaled space and 

finally all variables are scaled back to original space. In the case of the study in Fig. 2.6, 

every variable was centered around its mean trajectory and scaled by its standard 

deviation from the identification dataset. However, since the set-point trajectory is a 

series of ramp changes and the data are collected from a closed-loop system using a PI 

controller, a persistent tracking offset exists in the identification dataset. Thus, the mean 

trajectory of the CV is not centered about the set-point in the dataset. Therefore, when the 

deviation variables were converted back into the original variables after the MPC 
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calculations in the mean centered space this unseen offset was still present. However, by 

simply centering the CV about the desired set-point trajectory, this problem disappears. 

The offset is captured within the PCA model and removed by the MPC. In this case the 

CV is still scaled by its standard deviation about its mean trajectory. The result of simply 

re-centering the CV in this way and re-running the simulation of Fig. 2.6 is shown in 

Fig.2.7. It is evident that trajectory tracking is much better and the persistent offsets have 

disappeared. 
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Fig. 2.7: Control in the latent variable space using PCA models based on the multiphase 
batch-wise unfolded dataset as in Fig. 2.6, but where y is now mean-centered by Ysp 
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Fig. 2.8: Control in the original MV space using Multiphase batch-wise unfolded dataset 
with 6 phases along the batch, where y is mean-centered by Ysp. CH=20 and PH=60 

Fig. 2.8 shows the same example, but solved by the second control methodology 

(explicit in u1). Mean centering y by ysp is again done here (the same offset problems 

appear again if this is not done). 

It is observed that both control algorithms have similar performances in trajectory 

tracking. However, there are some interesting differences between the two proposed 

control formulations. One difference relates to the effective control horizon. Batch 

processes are of finite duration and so classical infinite dimensional LQ control is not 

possible. However, if we define "infinite horizon" control in a batch process to be 

control that always uses the (shrinking) horizon until the end of the phase, then the 

control algorithm based on latent variable scores ( r) is an "infinite horizon" controller. It 

computes at every time interval (k) the adjustment (equation 2.20) needed in the latent 
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variable scores by the end of the phase in order to optimize the objective function (2.15). 

This L V score vector carries the information about future CV and MV trajectories until 

the end of the batch phase. In fact choice of phase size is an indirect way of selection of 

the model and control horizon in the control algorithm based on scores. The estimated 

MV trajectory is then computed from the optimal final scores using the L V model 

(equation 2.20). On the other hand, the MPC based on optimization in the MV space is 

very clearly a finite horizon controller that computes only CH future control actions. To 

implement an "infinite horizon" controller in the latter approach by using a large but 

shrinking CH horizon would lead to a much higher dimensional optimization problem. 

The "infinite horizon" in the control approach based on "r" is partially responsible for the 

added smoothness in the optimal MV trajectories computed by the L V score approach 

versus the control directly in the MV space (compare MV trajectory plots in Figs. 2.7 and 

2.8). Another reason for getting smoother input in the control based on the scores is that 

the model uses only the dominant latent variables and the inversion filters out many of 

the higher frequency variations that might appear in a full inversion. 

In order to benchmark the proposed L V-MPC methodologies against commonly 

used controllers, the performance of a PI controller with two sets of tunings (tightly and 

loosely tuned) is presented in Fig. 2.9. Furthermore, Table 2.1 summarizes the 

performance indices of different control strategies including the proposed two LV-MPC 

methodologies, the PI controllers with different tunings, and a Nonlinear MPC (NMPC) 

[39]. The LV-MPC uses the PCA model built on a dataset generated by the tightly tuned 

PI controller. Table 2.1 shows that the L V-MPC designed in the latent space has a better 
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set-point tracking and also needs less change in the manipulated variable as compared to 

the L V-MPC designed in the original MV space. These properties are mainly due to the 

fact that a larger control horizon is inherent for the control in the latent space (infinite 

horizon control). However, for the control algorithm in the original MV space one can 

choose whatever control horizon is needed to manage the aggressiveness of the 

controller. If the process has disturbances that may have long term effects, it would be 

more desirable to have a longer control horizon and smoothly remove the disturbance. In 

such a situation, the control algorithm based on scores is more attractive since having a 

large control horizon significantly increases the computational burden for the control 

algorithm in the original MV space (based on u1). On the other hand, if the disturbances 

have fast effects on the process, the controller has to be more aggressive and have a faster 

action. In this situation, the control algorithm in the original MV space can be more 

helpful where the control horizon can be selected arbitrarily small. Based on using an 

exact model for the process, NMPC has the best tracking quality in the sense of Root 

Mean Square Error (RMSE) and STandard Deviation (STD) of the rate of change in the 

input variable. However, since the applicability of the LV-MPC is in the cases where the 

exact mechanistic model is not in hand, the comparison of the L V-MPC, against the 

NMPC with an exact model is not a fair comparison. Thus, a model mismatch is 

introduced to the NMPC algorithm and the results are shown in the last column of Table 

2.1. The mismatch is introduced in two parameters out of more than 15 available 

parameters in the simulator. 30% mismatch is considered for the time constant of the 

dynamics in the jacket temperature and for the heat capacity of the reactor contents. It is 
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seen that the required rate of change of manipulated variable is now more than that in 

both LV-MPC algorithms, and the tracking quality is worse as compared to both LV­

MPC algorithms. Clearly, the comparison will depend upon the mismatch in the 

theoretical model used for the NMPC, but this comparison with the NMPC and PI 

controllers is included just to provide some relative benchmarks. 

An implementation problem that often exists with the NMPC is the computation 

time. The NMPC results presented in Table 2.1 are based on the control and prediction 

horizon of four sample times which is a small horizon. However, even with this small 

control horizon, the computation time for the NMPC is about twice that of the LV-MPC 

in the latent space (which is an infinite horizon control) and is of the same order of time 

compared to the L V-MPC in the original MV space based on 20 sample times for the 

control horizon and 60 sample times for the prediction horizon. 
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Fig. 2.9: a) Implementation of a tightly tuned PI controller for the temperature control 

problem, b) Implementation of a loosely tuned PI controller for the temperature control 
problem. 

Table 2.1- Comparison ofdifferent control algorithms for the temperature control 

problem 

Performance 
criteria 

Control 
based on T 

Control 
Based on u 

Tight PI 
controller 

Loose PI 
controller 

NMPCwith 
Perfect Model 

NMPCwith 
Model 

Mismatch 
RMSE of"y-ysp" 0.7795 0.9068 1.1540 2.4327 0.1168 1.4366 

STD "llu" 6.2459 9.0339 6.7139 2.2809 4.5246 9.2367 

2.4.2. Disturbance Rejection 

It is important to check the power of disturbance rejection and offset elimination 

for the proposed control methodologies, in particular, the ability of the controller to 

incorporate integral action to offset the effect of non-stationary disturbances. In all 

optimal controllers, the integral action results from incorporating into the model (or in the 

MPC prediction updating) adequate information about the real disturbances affecting the 

process. If appropriate non-stationary disturbance models are used in designing the 

46 




Ph.D. Thesis - M. Golshan McMaster University- Chemical Engineering 

controller, then appropriate offset-free tracking should be achieved [3],[2],[ 40]. This 

integral action comes from the inclusion of non-stationary states into the model thereby 

giving rise to the ability of the state estimator to predict future offsets resulting from the 

appearance of these disturbances. In the L V-MPC methodology proposed here, offset is 

handled automatically since information on the non-stationary effects of the disturbances 

are built into the latent variable PCA model developed from the training data (historical 

plus designed experiments). These models include the measured controlled variables (y) 

as well as all other measured variables (e.g. Xme) and so the effects of all disturbances 

showing up in any of these measurements are modeled by some of the latent variables. It 

is observed in this study that if non-stationary effects are present, as external disturbances 

or as persistent offsets in the closed-loop training data, then some of the identified latent 

variables will be non-stationary in nature. As a result, the future predictions of the 

trajectories using the missing data imputation algorithms (the equivalent of state 

estimators in this methodology) will appropriately reflect drifts due to these disturbances. 

In the set-point tracking studies shown earlier no offsets were apparent even though the 

set-point trajectories were a sequence of ramps. This is because the models and 

controllers are built on the variable deviations about the mean trajectories and the 

deviation MV's calculated by the MPC are then added back onto the mean MV trajectory 

to get the final MV setting. Thus the dominant ramp behavior of the CV set-point is 

tracked with this feedforward application of the mean MV trajectory. However, the L V­

MPC removes all other offset about the set-point through integral action resulting from 

latent variables capturing the non-stationarities in the training data (non-stationarities 
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resulting from persistent offsets remaining from the PI controller and batch to batch 

disturbances in the initial conditions). 

However, to provide a more severe test of the disturbance rejection ability of the 

batch LV-MPC, a very large additional random walk disturbance [41] was superimposed 

upon the measured temperature (the CV) for several simulation runs and the ability of the 

L V-MPC to eliminate the large offsets coming from this disturbance was investigated. 

(The stochastic random walk disturbance is the equivalent of randomly occurring step 

changes from the point of view of control [ 42]). This study was not intended to represent 

reality since such a noisy, non-stationary disturbance, unfiltered by passage through any 

part of the system, and appearing in no other measured variable would probably never 

occur in practice. The study is intended only as a severe test of the ability of the L V­

MPC to eliminate offset due to non-stationary disturbances. 

Figs. 2.10 and 2.11 show the random walk disturbances superimposed directly on 

the CV. If there was no offset elimination (integral action) then the 10-20°C offsets 

would appear in the controller's tracking of the set-point trajectory. However, the 

proposed control methodologies clearly are able to reject the non-stationary disturbances. 

It is seen that the disturbance rejection and offset-free set-point tracking performance of 

the two proposed algorithms are good. Nonetheless, the input variable is aggressive. This 

is mainly because of the severity of the test disturbance. 
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2.5. Conclusion 

Two Latent variable Model Predictive Control (LV-MPC) methodologies are 

proposed for combined trajectory tracking and disturbance rejection in batch processes. 

The methods are based on latent variable models (developed using PCA in this chapter, 

but other latent variable modeling approaches could be used). These models are built 

from batch-wise unfolding of historical closed-loop batch data and from batch data 

collected from closed-loop designed experiments. Overlapping multi-models are 

proposed to be used for different phases of the batch (multiphase models) in order to 

focus more on the local behavior of the trajectories, improve conditioning of the matrices 

in the MPC solutions, and simplify the online computations. These batch-wise unfolded 

L V models are capable of capturing the time-varying and nonlinear behavior in batch 

processes. 

The two control methodologies are based (i) on solving the control problem in the 

space of the latent variables to find the optimal latent variable scores and then computing 

(from the L V model) the manipulated variable trajectories corresponding to these optimal 

final L V scores (an "infinite horizon" controller), and (ii) on solving directly for the 

manipulated variable trajectories over a finite horizon ("finite horizon" controller). For 

the prediction step, missing data imputation methods for L V models are used, providing 

the equivalent of state estimators. 

The methods are tested for both trajectory tracking and disturbance rejection 

using simulations on an exothermic batch reactor. Both control algorithms considerably 
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outperform the PI controller and give good offset free performance when tracking 

complex set-point temperature trajectories both with and without the presence of non­

stationary disturbances. 
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CHAPTER3 

Latent Variable Model Predictive Control for Trajectory 

Tracking in Batch Processes: Alternative Modeling 

Approaches 

Contents of this chapter have been published in two conference proceedings: 

American Control Conference (ACC), July 2009, and 9th International Symposium on 

Dynamics and Control of Process Systems (DYCOPS), July 2010. A journal paper 

containing the materials of this chapter will be submitted to the Journal of Process 

Control. Expected submission time is October 2010. 
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3.1. Introduction 

The trajectory tracking control problem in batch processes involves the control 

over the local batch behavior at every sample time throughout the duration of the batch to 

make key process variables follow their corresponding set-point trajectories. One of the 

main bottlenecks in the application of advanced control algorithms for trajectory tracking 

in batch systems is the lack of a reliable process model. When available, nonlinear 

mechanistic models have been used for the trajectory tracking control of batch processes 

[1],[2]. However, due to the difficulties associated with the development of reliable 

mechanistic models for real batch processes, empirical models are often more appealing 

for practical situations. 

Whether using mechanistic or empirical models, a candidate for trajectory 

tracking in batch processes is Model Predictive Control (MPC) [3-5]. MPC is one of the 

most appreciated control methodologies in the industry. Flores-Cerrillo and MacGregor 

[6] proposed the idea of Model Predictive Control over batch trajectories based on Latent 

Variable models. In this study an alternative approach for control and modeling 

methodologies for trajectory tracking control using MPC based on latent variable models 

is proposed [7]. The approaches mentioned above are based on using a Principal 

Component Analysis (PCA) model in the core of the prediction and control algorithms. 

Missing data imputation methods [8],[9] are used for model predictions in the batch LV­

MPC. 

In the current chapter different latent variable modeling alternatives for use with 

the LV-MPC methodology [7] are investigated and their performances on two case 
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studies are evaluated. The two previously proposed LV modeling approaches [6],[7],[10] 

are incorporated in the course of the new LV-MPC methodology, one based on the batch­

wise unfolding (explained in chapter 2) and the other based on the observation-wise 

unfolding of the data array [6]. The advantages and disadvantages of these two modeling 

approaches are discussed. Then, a new modeling approach is proposed with the objective 

of avoiding the major problems of each of these modeling approaches while retaining 

their important benefits. 

The structure of this chapter is as follows: Section 3.2 reviews the two LV 

modeling approaches presented in [10] and a new modeling alternative is proposed based 

on the benefits and drawbacks of each of them. A brief review of multiphase modeling 

for the different modeling alternatives and the identification conditions used to generate 

the training dataset for this study is also addressed in section 3 .2. In Section 3 .3 the L V­

MPC control methodologies proposed in chapter 2 [7] are referenced to maintain 

continuity. Section 3.4 contains the studies on implementation of the LV-MPC using 

three different modeling approaches on two batch case studies (a Single Input Single 

Output (SISO) process, and a Multi Input Multi Output (MIMO) process). The 

conclusion and recommendations are presented in Section 3.5. 

3.2. Latent Variable Modeling of Batch Processes 

In the current section, two previously proposed alternatives for L V modeling of 

batch processes from the identification (training) dataset is reviewed and compared. 
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Then, the new L V alternative proposed in this study is presented. The multiphase 

modeling concept presented in chapter 2 is applicable to all modeling alternatives. 

3.2.1. Rearrangement of batch dataset 

The structure of the data collected from a batch process is a cube as shown in 

Fig.3.1 a where for"/" batch runs, the trajectories of ".F' variables are measured over "K" 

time intervals. Latent variable modeling of these data involves unfolding this data array 

into a two dimensional matrix. The main difference among the approaches [ 11-13] sterns 

from the way they construct the 2-dirnensional array (a matrix) from the cube of the data 

array. Each method of unfolding the data array and performing PCA involves 

decomposing a different covariance matrix. 

Batch-Wise Unfolding (B WU) 

Nornikos and McGregor [11],[14] suggested many unfolding possibilities, but 

proposed the batch-wise unfolding approach (shown in Fig.3.lb) as the most logical way 

for modeling the differences among batches. In this approach all the variables at different 

sample times are put beside each other and each batch history constitutes one observation 

or row in the unfolded matrix (Fig. 3.lb). In this way the rows correspond to individual 

batches and the latent variable scores summarize the differences among the batches. 

Applying PCA or PLS to this unfolded matrix allows for modeling the time-varying 

behavior of the batches as a locally linear model at every sample time. The application of 

the batch-wise unfolding in the course of L V-MPC is investigated in chapter 2. 
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Fig. 3.1: batch process dataset, batch-wise unfolding, and observation-wise unfolding 

Observation-Wise unfolding (OWU) 

Nomikos [15], Nomikos and MacGregor [16] and Wold et al. [17] proposed the 

observation-wise unfolding approach in which observations of the variables at each 

sample time are the rows of the matrix. Hence, the latent variables model differences 

among observations over time. A schematic diagram is shown in Fig. 3.lc. The 

underlying assumption behind this approach is the fact that the correlation structure 

among the dataset does not vary with time and a static average model is enough to 

explain the process. Hence, an L V model on the OWU matrix can be built using as few as 

1-3 batch runs by considering each time step during a batch as an observation. However, 

the nonlinear and time varying behavior which is typical for most batch processes is 

ignored by this approach. 

Observation-Wise with Time-lag Unfolding (OWTU) 

To overcome the lack of dynamic modeling ability of the OWU approach, a 

modification inspired by finite time series modeling has been proposed [6],[18] to include 
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time lags in the observation-wise unfolded batch dataset. This approach is similar to 

using an ARX model at all time periods during the batch or each phase of the batch. The 

resulting model is a dynamic model but still an average model over the whole batch or 

over each phase. A schematic of the OWTU is illustrated in Fig. 3.2. In this approach the 

current time is considered to be the middle column and ph andjh are respectively the past 

and future number of sample times considered about each time point. 
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1 
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k-ph 

K-ph-jh-1 

K-ph-jh 
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'llilriablc 
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k 
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k+fh 

K-1 

K-1 K 

Fig. 3.2: Observation-wise with Time-lag unfolding approach 

3.2.2 Comparison of BWU and OWTU approaches 

Batch-wise unfolding puts all the variables at all time lags into one row and then 

mean centers to remove the average trajectories. A PCA or PLS model then provides 

different loadings or weights for every deviation variable at every time point throughout 

the duration of the batch. As a result, the latent variable model captures the time-varying 
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properties throughout the batch as a locally linear model at every time point. Therefore, 

this BWU approach offers the considerable advantage of capturing the time varying 

characteristics that can be useful for batch process control. However, at the high 

sampling frequencies required for trajectory control, the data requirements to identify the 

L VMs based on the BWU data present a problem. First, BWU becomes a short, fat 

matrix and one often needs many Principal Components (PCs) to model the BWU matrix 

which means many batch runs are needed in the identification dataset. Second, the 

number of loading parameters required to capture the locally varying dynamic effects is 

large and the number of multivariate observations (batches or rows) available for the 

model building is usually not large. Therefore, the variance of the resulting loadings is 

large. This causes the PCA model to be non-smooth (see Fig. 3.4 below). Although the 

use of many observations (batches) smoothens the loading matrix and minimizes the 

aforementioned problem, with minimum number of observations required for modeling 

this problem exists. Thus, the batch-wise unfolding approach needs a large number of 

batches to build a PCA model. This requirement is the most critical bottleneck in 

modeling batch processes using batch-wise unfolding approach for trajectory tracking 

control. (Note that this is usually not a problem for the traditional batch data analysis, 

monitoring and end-point control problems where the sampling rates and control 

frequencies are much lower). 

On the other hand, in the observation-wise with time-lag unfolding (OWTU) 

approach one gets a huge number of observations (rows) using even 1 batch and only has 

to identify an average model for the whole batch or for each batch phase. As shown in 
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Fig. 3.2, the total number of observations resulting from each batch is K-ph-jh. For 

example, for a batch or a batch phase with 300 sample times and using a typical value of 

20 for each ph and jh, one batch results in 260 observations that are much more than 

enough for building a PCA model. The main drawback of this algorithm is that it is an 

average model for the batch or for each phase and cannot handle time varying and 

nonlinear behavior. 

3.2.3. Regularized Batch-Wise Unfolding (RBWU) 

In this section a third modeling approach that is proposed in this study is 

presented that aims to capture the major benefits of the two previously mentioned 

modeling approaches, while avoiding the problems related to each one. The new 

unfolding approach uses elements from both of the preceding approaches. It unfolds 

batch-wise but also repeats each batch row L times, each time shifted by one additional 

sampling interval. A schematic of the batch-wise with time-shifting approach is shown in 

Fig. 3 .3. The parameter L is the number of time shifts used which can be thought of in 

two ways: One can start with BWU shown in Fig. 3.1 and then replicate each row L times 

while shifting it by one interval in each case. Alternatively one can start with OWTU 

shown in Fig. 3.2 and use the past and future horizons (ph,jh) to cover the (K-L) time 

steps of the batch in each row and use only L block rows. 

If L=O (no shifting) this unfolding is simply BWU. But if a small number of 

shifts (e.g. LIK<0.05) are used, this approach will retain most of the advantages of the 

BWU approach (capturing time-varying non-linear behavior), but at each time interval 
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the model will be averaged over L consecutive time periods thereby restoring some of the 

advantages of the OWTU. For example, if Lis small (e.g. L=5) and the number of time 

intervals is large (e.g. K> 300), this will not seriously affect the capturing of any time-

varying behavior, but it will reduce the variance of the latent variable model loadings 

since these loadings at each time point will now be averaged over L consecutive time 

periods (see equation 3.4 and Fig.3.4). The time shifting effectively provides a 

regularized BWU latent variable model where the loading estimates are effectively 

averaged over a window of L local time periods. The resulting model will therefore have 

a significantly smoother variation in the loading coefficients with time. A similar 

regularization of the latent variable model could be achieved by performing PCA or PLS 

with constraints on the rate of change or smoothness of the loadings from one time 

interval to the next. However, this would lead to a non-linear modification of the latent 

variable estimation algorithms with essentially the same result as achieved by using this 

simple time shifting with the standard algorithms. 
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Fig. 3.3: Schematic of the Regularized Batch-Wise Unfolding (RBWU) 
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To show how the batch-wise with limited time-lag unfolding approach leads to a 

regularized PCA, the batch-wise unfolded matrix in the Fig.3 .1 is defined as: 

(3.1) 

where a1, .. ,aK are matrices of J measured variables for all batches (1 :I) at sample times 

1, ... K (blocks in Figs. 3.lb and 3.3, a; E ffi.JxJ ). Then, the corresponding batch-wise with 

time-lag unfolding approach can be shown as: 

a1 a2 ... aK-L 

a2 a3 ··· aK-L+l 
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LI LI 
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Using the outer product definition of the matrices: 
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LI 
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where Xux-j means the blocks "i" to "K-j" of matrix X1. The equation (3.4) shows that 

the covariance of the resulting matrix from the batch-wise with time-shifting approach 

(X2) is the average of the original covariance matrix (X1) over L consecutive sample 

times. Thus, the covariance of the resulting matrix is a regularized version of the 

covariance of the original matrix. Note that the loading matrix of the PCA model built for 

the X2 matrix is the right singular matrix of the X2 matrix or the eigen vector of the 

covariance matrix: cov(X2). This is a regularized version of the loading vector for the X 1 

matrix. Fig. 3.4 shows a typical regularization obtained by performing this approach to a 
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Fig. 3.4: The left figures show the loading plots corresponding to the first principal 
component obtained from a batch-wise unfolded dataset for the controlled (Tr) and 
manipulated (U) variables with 20 batches. Right figures show the same plot but for a 
RBWU data derived from the same BWU dataset by considering L=5. The first case 
study presented in section 3.4.1 is used to generate this figure. 
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The main benefit of using the observation-wise with time-lag unfolding (OWTU) 

approach is that the batch can be modeled using only 1-3 batch runs (although one only 

obtains an average dynamic model for the batch). However, with this regularized 

approach one gets some of the same benefit without the liability. For example, by using 

10 batches and L= 5-10, one can get 50-100 observations (rows) in the unfolded matrix 

which are adequate for implementing Multiphase L V-MPC (ML V-MPC) as proposed in 

[7]. In general the choice of the number of time shifts (L , the regularization parameter) 

will depend upon the rapidity of the time varying behavior of the batch and the number of 

batches available for the model identification. 

3.2.4. Multi-phase Modeling 

L V modeling ofbatch processes for the trajectory tracking control using the BWU 

approach leads to a very large global L V model because of the large number of time 

intervals over the batch duration. This is not desirable as explained in chapter 2 because it 

requires many latent variables (which implies many batches may be required in the 

training set), leads to ill-conditioned matrices in the model used during the control 

computations and does not focus enough on the local behavior of the trajectories. 

Therefore, utilization of multi-phase L V (ML V) models, as presented in chapter 2 is 

necessary or at least preferred. The multiphase modeling approach in the BWU modeling 

approach is based on identifying multiple phases within the batch according to the 

discussions presented in section 2.3 .1, partitioning of the dataset according to the phases, 

considering overlap between adjacent phases, and building PCA models for each phase. 
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The same multiphase modeling approach is applicable to a regularized batch-wise 

unfolded dataset (RBWU dataset) and the same problems exist if only one phase is used 

throughout the batch. The resulting matrix from a batch-wise unfolded dataset with time­

shifting is considered as a new regularized batch-wise unfolded matrix and the 

multiphase modeling is performed in the same manner as described in [7]. 

However, for the OWTU approach, multiphase modeling is more critical. The 

observation-wise with time-lag unfolding approach by its definition is applicable to the 

processes that are not highly nonlinear or time-varying and whose behavior can be 

modeled by an average linear dynamic model. When a batch process is time-varying, it 

can be broken up into multiple phases and a time-invariant OWTU PCA model can be 

built for each phase. The phases should be selected such that within each phase there is 

minimum variation in the process characteristics (i.e., the correlation structure among the 

time dependent variables is as constant as possible). Thus, poor phase selection will result 

in loss of model accuracy. Furthermore, multi-phase approach in OWTU modeling 

results in switching between different local models at the transition between phases. This 

switching manner may result in performance deterioration for a transient period because 

of inconsistencies between the two adjacent models. Thus, selection ofmultiple phases in 

OWTU approach carries both desirable and undesirable effects and may not always 

improve the performance of the L V-MPC. 

To implement the MLV-MPC on a batch-wise unfolded dataset or an observation­

wise with time-lag unfolded dataset, one needs to run a conventional PI controller or the 

L V-MPC based on a moving window PCA model discussed in chapter 2 for the first few 
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sample times at the beginning (e.g. ph sample times) and end (e.g. jh sample times) of the 

batch where there is not enough past or future horizon to initiate the missing data 

imputation and MPC algorithm respectively (see section 2.3.2). However, using the 

RBWU approach, the size of the blocks in the batch dataset decreases to K-L which 

means there are dataset for K-L time steps. Thus, one should add another L sample times 

to the period of applying the PI controller at the beginning or the end transition time and 

increase either of those sample times to (ph +L) and (fh +L) respectively. This is the only 

penalty one has to accept to use the new unfolding approach which is negligible. 

3.2.5. Identification Experiments 

The direct identification approach based on closed-loop data is used in this study. 

Closed-loop identification is preferred over open-loop identification for batch processes 

in order to maintain the process close to its desired trajectories and to minimize the final 

product quality variations. The closed-loop design of identification experiments for 

identifying models of time varying, finite duration batch systems is discussed in the next 

chapter. Therefore, we do not discuss the identification issues in this chapter except to 

note a few issues and some observations from the simulation studies presented below. In 

this study it was found that models were identifiable from historical batches run under 

pure feedback control with inclusion of a few batches run using different set-point 

trajectories in the dataset. In other words, there is no need for additional excitation of the 

closed loop system by a Random Binary Sequence (RBS) signal on top of the controller 

output. This somewhat surprising result can be explained by analogy with the closed-loop 

identification of linear time-invariant systems [19],[20]. There it has been shown that the 
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closed-loop identifiability is satisfied if one switches between a sufficient number of 

linear controllers or if the control is nonlinear. Here the batch system is non-linear and 

time varying and so with a fixed PID controller it is analogous to the controller being 

time varying or nonlinear for a linear system. Furthermore, there are time-varying set­

points in the training data generation that also helps to satisfy the identifiability 

conditions. The historical batch data are also very important for providing models for the 

effects of inherent disturbances in the batch process and their influence on the behavior of 

the evolving trajectories. This information is essential for the prediction of the future 

trajectories and ensuring no steady-state offset in the control as discussed in the next 

section. 

3.3. Control Methodology 

Two control formulations for Multiphase LV-MPC (MLV-MPC) methodology 

were proposed and studied in chapter 2 [7]. The difference is that one is formulated in the 

latent variable space while the other is formulated in the manipulated variable space. The 

MLV-MPC formulation is used in this chapter to evaluate the performance of different 

L V modeling alternatives in the course ofbatch trajectory tracking control. In this chapter 

we mainly focus on using the formulation in the latent variable space. Details of the L V­

MPC methodology is presented in section 2.3.2. 
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3.4. Simulation Studies 

This section investigates the L V modeling alternatives and evaluates them via the 

performance of the MLV-MPC controller obtained using each alternative modeling 

approach. In section 3.4.1 the same Single Input Single Output (SISO) example as used 

in the previous chapter [7] is selected and the proposed L V-MPC is tested on the 

modeling approaches using BWU, OWTU and RBWU data matrices. In section 3.4.2 the 

LV-MPC is tested on a Multi-Input Multi-Output (MIMO) batch reactor example based 

on the three aforementioned modeling approaches (BWU, OWTU, RBWU). 

The main objective in the following tests is set-point tracking. However, it is of 

great importance to check the power of disturbance rejection for the proposed control 

methodologies. It is shown that if appropriate nonstationary disturbance models are used 

in designing the controller, then offset free tracking should be achieved [21-23]. This 

integral action comes from the inclusion of nonstationary disturbance states into the 

model thereby giving rise to the ability of the state estimator to predict future offsets 

resulting from the appearance of these disturbances. It is observed in this study that if 

nonstationary effects are present, then some of the latent variables will be nonstationary 

in nature. As a result the future predictions of the trajectories using the missing data 

imputation algorithms (the equivalent of state estimators in this methodology) will 

appropriately capture any drifts due to the disturbances that have entered the current 

batch. In the set-point tracking studies shown in the figures of this section no offset is 

apparent. The PCA model developed from closed-loop data effectively models the 

persistent offsets remaining from the PI controller as nonstationary states (latent 
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variables) and these drifts were then properly predicted over the future horizon in any 

new batch and eliminated by the MPC. 

If the dataset includes some measured variables (e.g. Xme) as well as the 

controlled variables (y) in them, the effects (including nonstationary effects) of all 

disturbances showing up in any of these measurements are expected to be modeled more 

explicitly. However, in this study it is shown that this is not a limitation and the LV-MPC 

is capable of tracking the set point and rejecting the load even with the minimum number 

of measurements. This is illustrated by considering extra measurements in the first case 

study, but minimum number ofmeasurements (only y, u, Ysp) in the second case study. 

Most of the disturbances in batch chemical processes occur in the initial 

conditions and these will evolve through the process with a slow and predictable 

dynamics. However, to provide a more severe test of the disturbance rejection ability of 

the batch LV-MPC, a very large additional random walk disturbance [24],[25] is 

superimposed upon the Controlled Variable (the CV) for several simulation runs as well 

as different initial conditions for the batch and the ability of the LV-MPC to eliminate the 

large offsets coming from these disturbances is investigated. This disturbance rejection 

test may not represent reality in many chemical processes, but it does provide a good test 

of the disturbance rejection ability of the LV-MPCs in the simulations. 

The three modeling approaches presented in section 3.2 (BWU, OWTU, RBWU) 

are studied on two case studies for set-point trajectory tracking as well as disturbance 

rejection for each modeling approach under the two control formulations presented in 

chapter 2. However, it should be noted that the two control formulations are thoroughly 

74 




Ph.D. Thesis- M. Golshan McMaster University- Chemical Engineering 

compared in chapter 2 and shown to be similar. Furthermore, the objective of the current 

chapter is not to compare the performance of the different control methodologies. Thus, 

for the sake of conciseness in the current chapter the results are only presented for one 

control methodology (Control in latent variable space). However, as the complementary 

work to chapter 2, the study on the BWU for the second case study (section 3.4.2) is 

presented for both control methodologies. The reader can interpret the results in the line 

of discussions presented in chapter 2. 

3.4.1. SISO Process 

A batch reactor model is used by Aziz et al. [26] as a case study for temperature 

control problem. This case study was originally proposed by Cott and Macchieto [27]. 

The schematic of the reactor is shown in Fig. 2.5. This process is explained in chapter 2 

(section 2.4). The detailed model for this process is presented in [26] and appendix C. 

Batch-Wise Unfolding (B WU) 

The performance of MLV-MPC using control formulation in the latent variable 

space on batch-wise unfolding approach is shown Figs. 3.5-3.6. In these figures the LV­

MPC is performed in the multiphase framework (MLV-MPC) based on the 6 phases 

along the batch. These phases are constructed on the intervals of: 1-30, 30-50, 50-60, 60­

80, 80-100, and 100-120. For this control study data from 45 historical batches run under 

closed-loop control with a PI controller (40 batches with similar set-point trajectories plus 

5 batches with slightly different set-points trajectories) were used to develop the PCA 
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models (see section 4.2). The control is executed in the mean-centered and auto-scaled 

space, and y is mean-centered by Ysp as discussed in chapter 2. 
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It is seen that the MLV-MPC methodology based on batch-wise unfolding is 

capable of tracking the set point trajectory as well as rejecting a significant amount of a 

nonstationary disturbance. The above figures are comprehensively discussed in chapter 2 

[7]. 

Observation-Wise with Time-lag Unfolding (OWTU) 

The next modeling candidate that is investigated is the Observation-wise with 

Time-lag unfolding approach. It should be noted that the OWTU approach, has good 

performance as long as correlation structure among the process variables do not change 

considerably over the time of the phase. In this case an average model is enough to 

represent the batch phase adequately. Figs. 3.7 and 3.8 show the results of the LV-MPC 

on observation-wise with time-lag unfolding approach. The same phases as are presented 

in BWU approach are applicable to the following figures. Only two historical batch runs 

executed on one type of set-point trajectory are used to model the process using OWTU 

approach. 
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Fig. 3.7 shows that the LV-MPC algorithm has a good tracking performance. 

However, its performance is slightly inferior to that of the batch-wise unfolding approach 

(see Table 3.1). However, this modeling approach results in a smoother manipulated 

variable behavior. This property was predictable according to the discussions in section 

3.2. One loses the model accuracy by using an average model but gains smoothness in the 

manipulated variable. Fig. 3.8 shows that the LV-MPC algorithm based on OWTU 

rejects the random walk disturbance leading to an offset-free trajectory tracking. The 

input smoothing using OWTU approach becomes more important in this situation. Fig. 

3.6 shows that in the batch-wise unfolding approach one can reject the disturbance, but 

the resulting aggressive input may not be possible in a realistic condition. In the 

observation-wise with time-lag unfolding approach, the disturbance is rejected using a 
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more realistic input. This property along with the fact that one can build this model using 

only 1-3 batches makes this approach very practically attractive. 
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Fig. 3.8: Random Walk disturbance rejection ofMLV-MPC using PCAmodel on 
OWTU dataset 

Regularized Batch-Wise Unfolding (RBWU) 

Since the batch takes 2 hours, using sample time of 0.1 min the number of control 

intervals comes up to 1200 sample times. However, in this batch process the correlation 

structure does not change very fast. Thus, Instead of using 45 batch runs as is used in 

BWU, it is possible to use 20 historical batches (17 batches with similar set-point 

trajectories plus 3 batches with slightly different set-point trajectories) and repeat those 

batches 5 times (L=5) according to the RBWU algorithm presented in section 3.2. Thus, 

one gets 100 observations to model the batch (any phase of the batch). Figs. 3.9 and 3.10 
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show the performance of MLV-MPC based on the RBWU modeling approach using this 

reduced number ofbatches. Both set point tracking and disturbance rejection are good. 
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Table 3 .1 summarizes the results of implementing the L V-MPC algorithm on the 

SISO temperature control problem comparing performance indices obtained by testing 

different modeling approaches. 

Table 3 .1- Comparison of the effect ofdifferent modeling alternatives for the 
T . k" 1 b LC MPCem_Qerature set-pomt trac mg contro >y ­

Performance BWU approach OWTU approach RBWU approach 
criteria 

RMSE of "y-ysp" 0.6910 0.9938 0.6838 
STDof"L1u" 6.7085 6.4766 6.5809 

where RMSE is the acronym for "Root Mean Square Error" and STD is the short for 

"STandard Deviation". Table 3.1 shows that the RBWU approach (last column) slightly 

outperforms the BWU approach and at the same time, leads to a slightly smoother 

manipulated variable. However, the major advantage of the RBWU over BWU is that 

only 20 batches are used to build the PCA model on RBWU dataset while the BWU 

approach uses 45 batches in the training dataset. The OWTU leads to a smoother control 

action but results in a higher value for the RMSE index. 

Table 3 .1 shows that the standard deviation of change of the manipulated variable 

in OWTU is slightly less than the other two modeling approaches. Nonetheless, looking 

at Figs. 3.5, 3.7, 3.9 shows that the manipulated variable in the LV-MPC based on 

OWTU approach is considerably smoother than that of the BWU and RBWU approaches. 

But, there are wider oscillations of input variable in the OWTU approach compared to 

other two modeling approaches and this contributes to the "STD of L1u" index and 

increases it. This wider range of change of manipulated variable in OWTU approach 
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comes from the fact that the model is inferior to the models built on BWU and RBWU 

dataset. Thus, more changes in the control actions (feedback actions) are needed to 

compensate for the modeling errors. 

3.4.2. MIMO Process 

The example considered in this study is a Nylon 6, 6 polymerization process. The 

case study is introduced by Russell et al. [28]. The polymerization reaction happens in an 

autoclave. A reversible reaction occurs between Amine end groups (A) on Hexa­

methylene Diamine (HMD) monomer or polymer chain and Carboxylic end groups (C) 

on adipic acid monomer or polymer chain ends with the condensation reaction shown in 

equation 3.7. As a result the polymer chain links (L) and water (W) are produced. 

Besides, carboxylic end groups and polymer chains may decompose and stabilized end 

groups (SE) are formed according to equation 3.5 and 3.6. 

C ~SE +W (3.5) 

L ~SE +A (3.6) 

A+C~L+W (3.7) 

This process is modeled and investigated for the end product quality by Russell et 

al. [28]. They proposed different control configurations among which the control of 

reactor temperature and pressure configuration is concluded among the best possible 

control configurations. The schematic of the reactor is shown in Fig. 3 .11. 
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Vent 

Steam 

Condensate 

Fig. 3.11: Schematic diagram ofthe Nylon 6,6 Autoclave 

This is a MIMO system where the reactor temperature is controlled using the 

pressure of steam flow in the jacket and the reactor pressure is controlled using the vent 

rate through the valve on top of the reactor. It is a constrained problem where vent rate 

cannot be less than zero and the steam pressure cannot be less than 4 psi or more than 52 

psi. Once again, the trajectory selected in this study may not be consistent with the 

objectives presented in [28]. The main objective of this study is to test the LV-MPC for 

trajectory tracking problem in a MIMO case study. 

This case study is a difficult control problem for several reasons. There is a 

considerable amount of lack of information in the Nylon process as compared to the first 

temperature control problem. There is minimum number of measurements (only 

manipulated variables and controlled variables are measured, and no additional variables 

that might help with disturbance estimation are available). Furthermore, in a considerable 
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portion of batch time the manipulated variable is saturated. Moreover, there is a strong 

interaction between the two control loops. The manipulated variable for the temperature 

control problem, the steam pressure, has a direct effect on the rate of liquid vaporization 

which directly affects the reactor pressure. On the other hand, change of reactor pressure 

by manipulating the vent rate, affects reactor temperature according to thermodynamic 

principles. 

Batch-Wise Un{Olding (BWU) 

Figs. 3 .12 and 3 .13 show the application of L VMPC for set point tracking of the 

nylon 6,6 process using batch-wise unfolding approach. 35 historical batches (30 batches 

with similar set-point trajectories plus 5 batches with a slightly different set-point 

trajectories) divided up into 10 phases of equal size were used for identification. There 

exists a lack of tracking performance at the beginning of the batch. This originates from 

the use of different initial conditions and the absence of significant reaction in this early 

period. Furthermore, there is an offset at the end of the batch for the pressure control 

loop which is due to the lack of volatile materials in the batch reactor at the end of the 

batch to increase the pressure and although the control is working properly (vent rate is 

zero) at those time steps, the process is not able to increase the pressure. 

As mentioned before, the performance of the L V -MPC formulation in the original 

variable space of the manipulated variables is also presented here, but only for the BWU 

approach to allow for a performance analysis of this control formulation in a MIMO 

system as well. 
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0 Time(mln) 150 

300 

i 250 
a.. 
~ 200 

e-ii: 150.. 
{ 100 

!
s 

50 

00 50 Time (inln) 100 150 
60~.~~~~~~~~~~~~~~~ 4008 

50~ 
3000~ 

i li' 40~ 
... ! ~ e i 

~3ol } i 2000~ 
"- i 

!s ~· !2of ·;\/r/J~,,-~J t 1000~ .. ri~I1our· ........ · 

oo~·~~~~~~~~~~~~~~~ 00 15050 Time (inln) 100 150 50 Time (inln) 

Fig. 3 .13: ML V-MPC based on batch-wise unfolding modeling approach on the nylon 6,6 
autoclave using control formulation in the original variable space. RMSE ofTIP= 1.4150/ 

2.2523 , "STD ofl!..u" for TIP loop= 0.5876/ 65.4617 

85 


150 



- -

Ph.D. Thesis-M. Golshan McMaster University- Chemical Engineering 

300,------,-------r-;::====;i 
·~ 550 -Output(P)~ 
t ~200:.l 5oo 
€ ~100'S 450

! ! 
4000 150 OOL__---~50~-T-lme-(-~-~-1~0-0---~15050 Time (min) 100 

60.-------.---------~ 

!:::l... ~ ....~. . ~ · 1 


t=:_ rlr'~,,. ·· ~·•••

0 50 Time (min) 100 150

50 Time (min) 100 150 

10r---------r--------~ 

.... 
a 5


j 0 M'"tv./V\.1\J"'./Ji..,,tv.i~y.t1\ ~ ·· ·· · ·· · ·J 

~ .5 . .~. ~~ 

~ . 

.10~---~----~---~ 


0 50 Time (min) 100 150 


Fig. 3.14: Random Walk disturbance rejection by MLV-MPC based on batch-wise 
unfolding modeling approach on the nylon 6,6 autoclave using control formulation in LV 

space 

·Setpolnt 

~550~
i i 
Cl) 

oil . 
125oor 
5 is. . 
5 

4500 
50 Time (min) 150 

60.-------,--------r-------, 

t 40 

i..~~~ 

58 100 150

Time (min) 
20.-------.-------,.------~ 

~}fi, : .. .~'Vlt..JV 
... \tlf)(J~ . 

Ji 
.10~---~----~----~ 

0 50 Time (min) 100 150 

300,-----:---r------r---;:===:::::::::;i 

.. 

£; -Output(T)
0 

- - ·Setpolnt/gs.200 
oil 

~100 
::i s. 
5 9c_______c_______..._______, 

0 50 Time(min) 100 150 

4000..------...------,-------, 

f3000 .... 
i2ooo 
~ 

j1000 . 

\..J-JvL____/VVt>/VV'y1\N.,0===----~-"--'--'-'=="--========--o'-"'-'--'-"--'~-'-'=== 
0 50 Time(min) 100 150 

20..-------...------.--------, 

Q. , I\ •Ji.'\r.~I10 ... . ~.JVJ ...... \Jl\1~ ....... . 

t! !".;_~"•" . •g 0 \fl . . . . : . . 

~ 

.10~---------~---~ 
0 50 Time (min) 100 150 

Fig. 3.15: Random Walk disturbance rejection ofMLV-MPC based on batch-wise 
unfolding modeling approach on the nylon 6,6 autoclave using control formulation in 

original variable space 

86 




Ph.D. Thesis- M. Golshan McMaster University- Chemical Engineering 

Figs. 3.14 and 3.15 show the disturbance rejection test. Once again the Random 

walk disturbance on top of the output variables is tested. It is seen that the algorithm is 

able to reject the nonstationary disturbance. 

Observation-Wise with Time-lag Unfolding (OWTU) 

Inadequate number of batches may lead the practitioner to use the observation­

wise with time-lag unfolding approach. The performance of the observation-wise with 

time-lag unfolding approach using one phase throughout the batch and 2 batch histories 

in the training dataset is shown in Fig.3 .16. The tracking quality is a bit worse than that in 

Fig. 3.12 (see Table 3.2). More oscillations in tracking may result because of the average 

time invariant model for the whole batch that this method leads to. The case study is a 

time varying process, and one phase may not be sufficient to model this process. Though, 

as explained before, the inconsistencies caused by switching between different models on 

this specific process decrease the quality of the L V-MPC performance. After running a 

few batches, one may switch to BWU or regularized BWU. However, this modeling 

approach has the least data requirements for modeling. Moreover, it requires only the 

data of the current PI controller that is running the process without any additional 

excitation by dither signal (only historical batches). Fig. 3.17 shows the results of 

imposing a random walk disturbance on the controlled variable. It is seen that the L V­

MPC based on OWTU is able to perform and offset-free tracking in the existence of a 

nonstationary disturbance. 
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Regularized Batch-Wise Unfolding (RBWU) 

Fig. 3.18 illustrates the performance of the LV-MPC based on the batch-wise with 

time-lag unfolding approach using 15 historical batches (12 similar batches plus 3 

batches run by a slightly different set-point trajectory) for identification and 10 phases 

per batch and 5 time shift units (L=5). It tries to compensate the shortcomings of both 

previous modeling approaches. In fact, when the number of observations is large or the 

process does not have large noises (as is the case for this process) the difference between 

the batch-wise and batch-wise with time-shift unfolding approaches becomes minimal as 

explained in section 3.2. However, in the above examples, RBWU needs less than half of 

the observations (batch runs) used in the training dataset of BWU, but gives similar 

trajectory tracking. The disturbance rejection figure is omitted for the sake ofbriefness as 

it would be similar to Fig. 3 .14. 
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Fig. 3 .18- MLV-MPC using Regularized Batch-wise unfolding approach on the nylon 6,6 
autoclave using control formulation in LV space 
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Table 3.2- Comparison of the effect of different modeling alternatives on the set-point 
track" 1 f th e N 1 6 6 process b L V MPC m__g_ contro o yon y ­

' Performance BWU approach OWTU approach RBWU approach 
criteria (TIP) (TIP) (TIP) 

RMSE of "y-ysp" 1.0417/2.9918 1.2043/2.8300 1.0982/2.8214 
STD of "du" 0.4667/43.9659 0.4709/43.2539 0.4425/43 .3021 

Table 3.2 summarizes the performance indices of testing LV-MPC on the Nylon 

6,6 process for different modeling approaches used in the course of LV-MPC based on 

the control formulation in the latent variable space. Considering the indices for both 

control loops, it is seen than the RBWU approach outperforms the BWU in terms of 

smoothness of manipulated variable as well as the quality of tracking. The overall 

performance of OWTU is again inferior to the other two modeling approaches. 

3.5. Conclusion 

In this chapter, different alternatives for L V modeling of batch processes are 

scrutinized from the view point of their application for trajectory tracking in batch 

processes. The previously proposed two modeling approaches (BWU and OWTU) 

[7],[10],[6] are investigated in more details. Then, in order to receive the benefits of each 

modeling approach while compensating for the drawbacks of each a new L V modeling 

approach (RBWU) is proposed. All modeling alternatives are implemented on two case 

studies (a SISO and a MIMO batch process) in the course ofLV-MPC. 

BWU is more suitable than RBWU for modeling the nonlinearity and time-

varying characteristics of batches, but needs a large number of batch runs in the training 
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dataset. Compared to BWU, RBWU requires fewer batch runs in the dataset, has a 

smoother loading matrix, and produces a smoother control action. The BWU modeling 

approach is suitable for the situations where there are large number of observations and 

the process correlation structure changes very fast over time. However, in most situations 

especially for chemical processes, the correlation structure in the dataset does not change 

so fast and RBWU approach yields almost as accurate modeling of time-varying 

behaviors as the BWU approach, while needing less number of observations. Thus, the 

newly proposed RBWU modeling approach should be preferred over BWU in general. 

On the other hand, the OWTU approach requires as few as 2 batches in the 

training dataset and yields a smooth PCA model. However, it leads to modeling an 

average process dynamics. The OWTU is perfect when there are few observations in 

hand to build a model and the process correlation structure does not change fast over 

time. In the case of lack of number of observations, it is always possible to start 

implementing the LV-MPC using observation-wise with time-lag unfolding approach. 

After completing enough number of batches, one can switch to either batch-wise or 

batch-wise with time-lag unfolding approach. 
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CHAPTER4 

Identification for Control of Batch Processes Using Latent 

Variable Models 

The contents of this chapter are accepted for presentation at the AIChE annual meeting, 

2010. A journal paper containing the materials of this chapter will be submitted to the 

Journal of Industrial & Engineering Chemistry Research. Expected submission date 

is November 2010. 
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4.1. Introduction 

Process system identification has been extensively studied since the 1970s. 

However, most of the results are interpreted in the context of application to time-invariant 

continuous processes. There are several differences between continuous and batch 

processes that make the identification problem of these two cases substantially different. 

Major differences are the non-linear, time-varying dynamics of batch systems and the 

finite time for each batch and the presence of finite batch runs for identification. 

There are two major steps in solving a system identification problem: (1) Design 

of Experiment (DOE) to generate the training dataset, and (2) building a model based on 

the available dataset. Design of identification experiments plays an important role in 

satisfying the identifiability conditions and improving the quality of the identified model. 

References [ 1-4] discuss the effect of information content of the training dataset on the 

performance of system identification and present some optimal DOEs based on different 

objective functions, such as minimizing the bias in the identified model, and handling 

constraints. For many processes and particularly for batch processes a main interest is to 

solve the identification problem using the dataset collected under feedback conditions 

due to safety and economic reasons. Necessary and sufficient conditions for the 

identifiability of Linear Time Invariant (L TI) continuous systems operating in closed­

loop are derived in [5-8]. The extension of identifiability conditions for nonlinear systems 

is presented in [9] where necessary and sufficient identifiability conditions are derived 

locally using locally linearized models. The identifiability (or more correctly parameter 

estimability) conditions for nonlinear systems where the true underlying model structure 
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is known are studied in references [10],[11]. However, the concepts of identifiability or 

estimability are not clearly defined for batch systems where a true underlying L TI 

empirical model or theoretical cannot be assumed. Furthermore, most identifiability 

concepts are asymptotic in nature and with finite time batch processes and a finite 

number ofbatch runs, asymptotic properties are not achieved. 

Approaches to tackle the second step of the system identification problem, the 

model building step, can be categorized into two major categories: parametric and 

nonparametric identification methods [12],[13]. Parametric methods include approaches 

that impose a structure on the process model and include parsimonious models with a 

small number of parameters. On the other hand, nonparametric methods consist of 

approaches in which no specific model structure is presumed and essentially imply an 

infinite number of parameters. In practice one often uses models intermediate between 

these extremes which are parametric but have a large number of parameters and some 

structure. Parametric methods consist of Prediction Error Methods (PEMs) and 

Instrumental Variable Methods (IVMs) and can be solved within three frameworks: 

Direct, Indirect, and Joint input-output [14-17]. Ljung et al. and Gustavsson et al., 

[ 18],[ 19] proved that if a system is identifiable, the above three approaches are equivalent 

under asymptotic conditions. Esmaili et al. [17] show that for finite number of 

observations in the training dataset, direct identification approach gives better or equal 

performance as compared to the other two parametric approaches. Thus, using the direct 

approach is preferred in general. There are also several nonparametric methods to solve 

the identification problem; the most popular ones are Correlation Analysis Methods 
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(CAM) and Spectral Analysis Methods (SAM). They can also be used in the above three 

frameworks (Direct, Indirect, and Joint Input-Output) [12],[13],[20],[21]. 

There are few papers discussing the identification problems in batch processes. 

Shen et al. [22] tries the application of a PID controller on an empirical LTI transfer 

function built for a batch process case study. This approach is just a direct application of 

system identification for time invariant continuous system to a batch process. It does not 

consider the nonlinearity and time-varying effects which are very likely to occur in batch 

processes due to major changes of operating conditions throughout the duration of the 

batch processes. Ma and Braatz [23] assume that a mechanistic model is available, and 

investigate the effect of parameter uncertainty in the identification DOE and optimal 

control in batch processes. However, in many practical situations, a reliable mechanistic 

model is not available. 

Several studies have been performed on the latent variable modeling of batch 

processes under non-designed experiments for the purpose of passive monitoring of the 

batches [24],[25]. However, these studies were aimed only at analyzing for differences 

among batches and predicting final product quality, whereas the current chapter is 

concerned with models for the set-point tracking of batch trajectories. There are no 

papers discussing the identifiability conditions for obtaining models for batch processes 

from closed-loop data nor any on the effect of the training data generation step on the 

model accuracy or the controller performance. In chapter 2, a Model Predictive Control 

(MPC) approach based on LV modeling of batch processes, called LV-MPC is proposed 

and some intuitive closed-loop experiments for the identification of L V models are 
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performed [26]. Chapter 3 investigated the properties of three different latent variable 

modeling approaches that can be used in the course of L V-MPC [27]. Some authors have 

tried to model the batch processes by Subspace Identification Methods (SIMs) [28],[29] 

that are closely related to latent variable models [30]. SIMs have received considerable 

attention in the literature, yet the studies on SIMs are mostly confined to developing L TI 

models which may not be satisfactory for batch process modeling and control. Verhaegen 

and Yu [31] proposed a new version of SIMs for modeling the Linear Time Varying 

(LTV) processes, however, it entails a lot of effort as it performs the local modeling at 

every sample time, while the approach proposed by Golshan et al.[26] models the LTV 

processes with much less effort because it finds local models at all sample times in one 

modeling step. 

In the previous chapters, the LV-MPC methodologies based on different LV 

modeling alternatives are proposed and investigated. As explained above, the generated 

training dataset from the identification experiments has a substantial effect on the quality 

of the developed model. In the current chapter the system identification problem for batch 

processes are explored by emphasizing on the identification for control using L VM 

approaches. The focus of this study is on the DOE to satisfy pseudo identifiability 

conditions (see section 4.2.3) for batch processes in order to get as informative data as 

possible and to reduce the bias in the identified model. However, an accurate 

identifiability test is not possible since this study is dealing with models obtained for the 

batch dataset and assumes that the true underlying dynamic model is not available. Note 

that neither good prediction, nor good control proves identifiability. However, the 
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ultimate objective of this study is to find an L V model that results in the best control 

using LV-MPC. Thus, our ultimate test of the model would be to use it in the course of 

the proposed LV-MPC (to find an adequate model for control of the process). [26]. 

The remainder of this chapter is organized as follows: In Section 4.2, the concept 

of identifiability is investigated and conditions to generate an informative training dataset 

for batch process identification are proposed. In Section 4.3, the bias issue in closed-loop 

identification is studied. Then, the controller characteristics to be used for generating the 

closed-loop identification dataset in order to reduce the bias in the identified model by 

L V modeling approach are proposed. In Section 4.4, the simulation studies to illustrate 

the theoretical results are demonstrated. The conclusion is presented in section 4.5. 

4.2. Closed-loop identifiability conditions in batch processes 

The identifiability conditions refer to the situations under which the process 

model parameters can be estimated. This topic is widely investigated in the literature [ 5­

7],[ 18],[ 19],[32],[33]. In all of these papers, the system is assumed to be LTI. References 

[9],[34],[35] have investigated the identifiability of nonlinear systems in the sense of 

locally linearized models. References [10],[11] review identifiability and 

distinguishability for nonlinear systems where the true underlying process model 

structure is available. In this research, the batch processes are considered to be nonlinear 

and time-varying systems in general and the true model structure are assumed to be 

unavailable in general. They are also assumed to be finite time processes and only a finite 

number of batch observations are available in the identification dataset. Therefore, the 
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formal definitions of identifiability conditions do not directly apply to the batch processes 

in general. However, the conventional definition for identifiability conditions can serve 

this study by providing the desirable conditions to be considered in the training data 

generation step as explained later in this section. 

In the current section, the conventional definitions of identifiability conditions for 

L TI systems are reviewed. Most papers discuss the identifiability conditions in the 

context of parametric methods, and more specifically Prediction Error Methods (PEMs). 

However, the comparison of different identification methods is presented in this section 

which shows that different identification approaches are just different representation of 

the same approach of solving the identification problem. Thus, the identifiability 

conditions are the same for all identification approaches. The modeling approaches 

considered in this study are the latent variable modeling approaches discussed in [36-38] 

and the general results for identifiability conditions are interpreted in the context ofbatch 

processes. 

4.2.1. Identifiability conditions for L TI systems operating in closed-loop 

The most common definition of closed-loop identifiability is presented in Ljung et 

al.[18] as follows. Assume the data are collected from a closed-loop system as shown in 

Fig. 4.1, where G is the open-loop process, Fis the controller, His the noise dynamics, L 

is the set-point filter, e is the white noise, vis the set-point of the closed-loop system, u 

and y are the input and output respectively, and dis an additional dither signal that might 

be necessary to excite the closed-loop system. 
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Fig.4.1: Schematic diagram of the closed-loop system in the training data generation step 

Assume the system is represented as: 

NJ: y(t)= G (q- 1)u(t)+ H (q- 1
) e(t) (4.1)

,J ,J 

and the model is assumed to be: 


.M: y(t)= G (q- 1)u(t)+ H (q- 1)r(t) (4.2) 


where NJ denotes System and .M denotes Model structure. e(t) and r(t) are white noises of 


different characteristics in general. The following definitions are necessary: 


Definition 4.1 [19): Dr(NJ..M)={ G (z)=G (z) and H (z)=H (z) a.e. z} 

,J ,J 

The set Dr consists of model parameter values that result in a model with the 

same process and noise characteristics as the system. Assume J denotes the identification 

method, and %denotes the identification experiment. Then, 
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Definition 4.2 [19]: The system ,J is said to be System Identifiable (SI) under .M ,.f, and 

%. SI(.M ,.f, %), if (n; ,J,.M ,.f, %J~D/4..M) with probability 1 as n~oo. 

Where is the vector of model parameters and n is the total number of observations in 

the training dataset. 

Definition 4.3[19]: The System is said to be Strongly System Identifiable (SSI) under J, 

and %. SSI(.f, %), if it is SI(.M ,.f, %) for all .M such that D/4..M) is non-empty. 

Definition 4.4[12]: a signal 17(k), with spectrum s,,,, (w), is Persistently Exciting (PE) of 

order "np" ifs,,,, (w ):;tO for at least "np" frequencies in the range -7r<ro<7r. 

This is a sufficient condition for identifying a model with "np" zeros and poles. However, 

it is preferred in practice to over specify the order ofPE. 

Assume that the training dataset, % , is generated by the process input that is 

obtained from a set of controllers switching among "r" different settings: 

i = l, ...,r (4.3) 

Based on the Definitions 4.1-4. 4 and equation ( 4.3 ), the following theorem applies [ 19]. 

Theorem 4.1[13]: for the model set defined in (4.2) and controller structure 

defined in (4.3) and assuming a time delay either in the system (and model) or in the 

controller, i.e. G(O)F(O)=O and L=I without loss of generality, and there is an external 

signal (either v or d) which is Persistently Exciting (PE) of any finite order, the necessary 
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and sufficient conditions to satisfy SSI in the Prediction Error Method (PEM) 1s as 

follows: 

(4.4) 


where nu and ny are dimensions of input and output respectively and nµ is the summation 

of dimensions of set-point and dither signal (v+d). The proof of the above theorem is 

presented in [5]. The following conclusions can be mined from the theorem 4.1[12],[13]: 

1. 	 SSI cannot be guaranteed if u is determined through a noise-free linear low 

order pure feedback from the output (v,d=O). 

2. 	 Simple ways to guarantee SSI for a SISO system: 

a) 	 Use a controller that shifts between different settings during the generation 

of identification experiments (or equivalently use a nonlinear or time 

varying controller) 

b) 	 Add a PE external signal (dither signal, d, or time-varying and PE set-

point signal, v ) 

4.2.2. Connections between different identification approaches 

Brillinger and Krishnaiah [39] show that the spectral analysis method (SAM) and 

Prediction Error Method (PEM) are different representation of the same approach of 

solving the identification problem: 

Least Squares 

mjn (Y - GU) => j 	 (4.5) 
G 

~ 	 <I> (co)
SAM:G=->'"_ 

<l>,,(co) 
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where <I>u and <l>yu are spectral density functions of the input and the cross-spectral 

density function of the input and output variables respectively. The case of " 

min H-1(Y - GU)" (the more frequently considered case for PEMs) can be cast as the 

above problem by considering the auxiliary variables Y'=H1Y and U'=H1U in the above 

analysis. Brillinger and Krishnaiah [39] claim that the spectral analysis approach conveys 

stronger numerical stability than PEMs because PEMs are more vulnerable in the cases 

where the LS assumptions are not satisfied which is likely to happen in practical 

situations. They also propose an algorithm that combines the linear regression approach 

(considered in PEMs) with the spectral analysis approach as follows. First, use the 

spectral analysis approach to compute a nonparametric estimation of a finite order 

parametric process transfer function ( (w)). Then, use the linear regression approach to 

determine which coefficients are important to retain and come up with another estimation 

of the parametric process transfer function (G(w)). Then based on a graph of comparison 

of (w) with G(w) find the best estimation of the process transfer function in an iterative 

procedure. 

On the other hand, the basic concepts behind the L VMs and spectral analysis 

approach for system identification are the same. In the spectral analysis method, one 

performs the Fourier transform on the correlation function (an orthogonal 

transformation), while in LVMs one performs the Singular Value Decomposition (SVD) 

on the correlation function (another orthogonal transformation on the same function). 

Both transformations try to decompose the correlation function in several orthogonal 

components. The only difference is that in Fourier transformation the kernel function is 
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the "Complex Exponentials" function, while the kernel function in the L VMs are the 

Eigen Vectors of the correlation matrix of the training dataset. In fact LVM is a 

subdivision of the correlation analysis method. In order to obtain the transfer function in 

the frequency domain using spectral analysis method one uses equation ( 4.6), while 

equation (4.7) is to obtain the transfer function in the form of ARX (transfer function in 

the time domain) using correlation analysis method: 

(4.6) 


(4.7) 


where ru and ryu are the correlation matrix of the input variable and the cross-correlation 

matrix between input and output variables, and and are the estimated transfer 

function from SAM and CAM respectively. 

The L VMs obtained from Partial Least Squares (PLS) are generalized versions of 

the ARX model obtained by equation ( 4. 7) in which output is expressed as a function of 

transformed version (through principal components) of the past inputs, outputs, and 

possible extra measured variables. In Principal Component Analysis (PCA) the same 

concept applies with the modification of modeling the effects of future variables as well 

as past variables. 

Brillinger [ 40] presented the PCA concept in the frequency domain. It is shown 

that the same concept for PCA applies in the frequency domain as follows: 

X =c;A ,A= (2n'f1 
2JrJV(a)ei'ada (4.8) 
0 
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~ =XB ,B =(2nf1 
21CfV*(a)eitada (4.9) 
0 

where Vis the matrix of Eigen vectors of the spectral density function of the time series 

"X", V* is the complex conjugate of V, and~ are the Principal Components (PCs) in the 

frequency domain. 

The above discussion is an overview of different identification approaches and 

connections among them. The discussion shows that the identification algorithms are 

different in the sense of the space they represent the process model in. In another words 

they are different in the model format they produce. Thus, the results of theorem 4.1 are 

applicable to all modeling approaches as under SSI condition considered in the DOE step, 

the system is identifiable regardless of the type of model,M, used unless the set Dr is 

empty for such model which means the model is structurally not able to mimic the 

process behavior. 

4.2.3. Pseudo Identifiability conditions for batch processes operating in closed-loop 

In the current study the batch processes are assumed to be nonlinear and time-

varying processes and the true model structure is not available. Furthermore, they are 

finite time processes and only a finite number of batch observations are available for 

model identification, while the identifiability conditions are asymptotic properties. Thus, 

there is no formal definition for identifiability conditions of batch processes in general. 

However, it is proposed in this study to satisfy the SSI condition as the minimum 

requirement for the batch process identification dataset (named pseudo identifiability 

condition). Under such condition, it is assured that the dataset contains enough 
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information to find a linear process model. If the batch process happens to be a L TI 

system, then the formal definition for identifiability condition applies and SSI condition 

guarantees the identifiability of the process. On the other hand, if the batch process 

presents nonlinear and/or time-varying behavior, one loses the formal definition of 

identifiability condition. However, this time-varying behavior of naturally occurring 

batch operating data actually helps in satisfying these pseudo-identifiability conditions. In 

particular, the condition 2(a) arising from identifiability condition (4.4) states that one 

simple way to guarantee SSI, is to use a time-varying or nonlinear controller on a linear 

process. An analogous condition can exist by having a linear controller acting on a 

nonlinear and/or time-varying process. Hence, it can be argued that the normal operating 

data with no external excitation satisfies the conditions for L TI model identification 

under close-loop. Note that all modeling approaches including LVMs presented in this 

study are deviation models where the mean or set-point trajectories are removed from the 

batch dataset before performing the LV modeling. However, the time-varying set-point 

moves the operating conditions of the batch to different levels, thereby making the 

deviation form of the model more nonlinear and time-varying. 

Another common approach to satisfy the SSI conditions for dataset obtained from 

close-loop system is to add an external excitation in the form of a Random Binary 

Sequence (RBS) signal on top of the controller output or into the set-point (condition 2(b) 

above). As explained above, batch processes are often identifiable from historical data 

without the need for additional excitation of the closed-loop system by an external signal 

which is an attractive result for practitioners. However, additional identifiability 
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conditions can be ensured by adding set-point changes. These changes should also 

improve the quality of the model estimation (in terms of better estimates of the model 

parameters). 

In the rest of this section, the necessary and sufficient conditions to satisfy the SSI 

conditions (pseudo-identifiability) for three L V modeling alternatives incorporated in the 

course of the LV-MPC [27] is proposed as different observations from the theorem 4.1. 

Observation-Wise with Time-lag Unfolding (OWTU) 

The dataset of a batch process can be collected in a cube since there are three 

dimensions in the batch dataset as shown in Fig.4.2a. In order to apply a L VM such as 

Principal Component Analysis (PCA) that is proposed to be used in the course of LV­

MPC, one needs to unfold the three dimensional dataset into a two dimensional matrix. 

Different unfolding approaches lead to different modeling properties. OWTU is one of 

the LV modeling approaches studied in chapter 3. It is illustrated in Fig. 3.2 and is 

repeated here in Fig.4.2 for the sake of convenience. Parameters ''ph " and ''jh " are past 

and future lags respectively considered in the OWTU approach as explained in chapter 3. 

This unfolding approach is a similar approach, in terms of data arrangement and 

modeling properties, to conventional time-series analysis and system identification 

studies. It leads to a L TI dynamic model of the batch process over each phase that 

captures the average dynamics of the batch over the considered phase. However, the main 

difference between L V modeling on OWTU dataset and conventional time-series analysis 

is that L VMs try to find a model for the complete batch (phase) considering all variables 
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together in the multivariate model format. To ensure identifiability condition for the PCA 

model built from OWTU, one needs to satisfy either of conditions 2(a) or 2(b) arising out 

of theorem 4.lin section 4.2.1. 

Assessing the theorem 4.1 for the dataset resulted from this modeling approach, 

the following DOE will satisfy the SSI conditions. 

Observation 4.1: "If the system is square (ny=nu=nv). the SS! condition is satisfied if the 

set-point is different (time-varying) in more than "1 +ph+fh" sample times along the 

batch (phase) completion or from batch (phase) to batch (phase). " 

In this study the system is assumed to be square (the number of manipulated 

variables and controlled variables are assumed to be equal and there is a set-point for 

every output). Thus, as long as the set-point (and hence operating region) is time-varying, 

the non-linear and time-varying effects are included in the dataset which satisfy the 

pseudo identifiability condition according to condition 2(a) of theorem 4.1. However, 

inclusion of extra set-point trajectories that are different from the main set-point 

trajectory at several sample times during each modeling phase will further improve the 

quality of the indentified model. 

111 




Ph.D. Thesis-M. Golshan McMaster University- Chemical Engineering 

~le 
(J) 
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2 3 l+ph+jh 2+ph+jh 
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Batch k-ph k k+fh 
Batch x ~ (I) 

run 
(Cube ofdata set) 

(1) 

Variables K-ph-jh-1 K-1 
(J) 

K-ph-jh K-1 K 

(a) (b) 

Fig. 4.2: (a) Cube of a batch process dataset (b) Observation-Wise with Time-lag 

Unfolded of the dataset 


Note that the L VMs model the dataset by considering all columns of the matrix 

and extracting fewer LVs to explain the major variations in the matrix. The maximum 

number of LVs is equal to the number of columns. The different (time-varying) set-point 

in more than "l+ph+fa" sample times ensures that the columns of the OWTU matrix are 

linearly independent (OWTU is a full rank matrix). However, in order to better estimate 

the model parameters, it would be desirable to have the set-point trajectory different in 

significantly more than "1 +ph+fa" sample times. 

Another alternative to ensure identifiabilty for an L TI process is to satisfy 

condition 2(a) of theorem 4.1- namely switch between different controller settings during 

each phase (or have a time varying controller). But, as pointed out earlier, this 

identifiability condition would equivalently be satisfied if the batch process is a nonlinear 
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or time-varying process and the model is a LTI one, as it is with a PCA model on the 

OWTU data. 

In practice, it would generally be prudent not to rely only on one of these 

identifiability conditions, but to satisfy both by not only relying upon the nonlinear time-

varying behavior of the batch process but also by introducing one or more set-point 

deviations from the nominal set-point trajectories from batch (phase) to batch (phase). 

Batch-Wise Unfolding {BWU) and Regu,larized Batch-Wise Unfolding (RBWU) 

BWU and RBWU are two of the three candidates studied in chapter 3. They are 

shown in Figs. 4.3 and 4.4 respectively. Parameter "L" is the number of repetition of each 

batch in the RBWU as explained in chapter 3. Since these two modeling approaches 

share most of the same properties, they are studied together. 

Variables 
(J) x 

(Cube of 
dataset) 

Vector of 
Variable scores 

_{Jj_ 
Batch-Wise 
Unfolding 

k=2 ... k=K Batch····~Batch k=JP runs runs 
(/) (/) 

w ~ ~ 
Fig. 4.3: (a) Cube of a batch process dataset (b) Batch-Wise Unfolding of a batch process 

dataset ( c) matrix of L V scores 
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Batch 
runs 

• 
(I) 

II 

Variables 
(J) 

k=J 

k=2 

k=L 

k=2 

k=3 

k=L+l 

k=K-L 

k=K-L+l 

k=K 

(a) (b) (c) 

Fig. 4.4: (a) Cube of a batch process dataset (b) Regularized Batch-Wise Unfolding of a 
batch process dataset ( c) matrix of L V scores 

As explained in chapter 3, using the BWU or RBWU modeling approaches, the 

PCA method models the time-varying and nonlinear properties of a batch process by 

modeling all local variations at every sample time. As a result, the concept of 

identifiability condition applies only locally to the BWU and RBWU modeling 

approaches. This means that the SSI condition should be satisfied at every sample time 

for different observations (from batch to batch). Thus, assessing the theorem 4.1, the 

DOE to satisfy the SSI condition for BWU and RBWU datasets is as follows: 

Observation 4.2: "If the system is square (ny=nu=nv) the SS! condition is satisfied if the 

set-point signal is time-varying at every sample time from batch to batch in the training 

dataset." 

In L V modeling by BWU and RBWU approaches the process is modeled locally 

at every sample time throughout the batch (phase). However, it is different from local 
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modeling of processes by conventional modeling approaches where every local model is 

developed regardless of other local models and thus nonlinear behavior of the batch 

process does not help for modeling at every sample time. The multivariate modeling 

approaches such as L VMs consider variables of all sample times in one model by 

summarizing the fat matrices in Figs. 4.3b and 4.4b in a smaller matrices of LV scores 

(T) (Figs. 4.3c and 4.4.c). Therefore, the nonlinear properties still help in satisfying the 

identifiability conditions. However, this effect cannot be quantified theoretically at this 

time. Thus, in order to ensure the pseudo-identifiability conditions, at least one different 

set-point should be considered in the dataset in the way that the different set-point has a 

deviation from the original set-point at all sample times so that each column contains at 

least one set-point change (PE of order 1 at each time step). Ifnot (i.e. if the different set 

point trajectory overlapped the nominal one over a certain period), then one might lose 

identifiability condition during that period. 

This can be achieved by running a batch using a shifted nominal set-point 

trajectory. However, such a set-point trajectory may result in a slightly different final 

product quality which may not be desirable for industrial applications. An alternative 

approach would be to ask an expert to help to select a modified set-point trajectory in a 

way that the final product quality should stay in the specified range. 
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4.3. 	 Design Of Experiment (DOE) to reduce the bias in the closed-loop 

identification by L VMs 

Closed-loop identification can often result in bias in the identified models. For 

parametric models such as PEM, identifiability conditions such as discussed in section 

4.2.1 define the necessary and sufficient conditions for asymptotic identifiability (and 

hence lack of bias for large data sets) of LTI systems. However, for finite data sets as 

available in batch phases, one can still see bias even if the LTI identifiability conditions 

are satisfied. Furthermore, if the model structure is not defined correctly, the model will 

be a biased one. Therefore, with fitting linear models to time varying and nonlinear 

systems some model bias from the true system is inevitable. This problem is extensively 

studied for parametric methods such as PEMs [12],[13],[41],[42]. 

With nonparametric modeling approaches such as CAM and SAM, one avoids the 

problem of model structure definition, but, even for LTI systems, the method inherently 

includes bias under closed-loop identification [12],[13],[19]. 

It is shown that if one applies the nonparametric modeling approaches such as 

spectral density and correlation based methods to closed-loop data, a biased estimate of 

process transfer function is obtained [12],[13]. For a closed loop system, Fig.4.1, 

(assuming L(q-1)=1 without loss ofgenerality) the following equations exist: 
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Hence, 

(4.12) 


(4.13) 


Using the equations ( 4.10) and ( 4.11 ), the auto and cross-correlation functions are 

obtained for "u" and "yu" respectively as follows: 

(4.14) 


_ 1 [a (_,) _ 1 J (4.15)ryu - ( -I -I )2 s q Yv F( -1) Yz
l+Gs(q )F(q ) q 

As a result, the estimated transfer functions from the spectral analysis approach 

and the correlation analysis approach respectively are obtained by equations ( 4.16) and 

(4.17) [13]: 

A • <l> Gs(e-iw)<l>v - 1/F( -iw)<l>z
G(e_,01)=~= /f e (4.16)

<l>" <l>v(m)+<l> 2 (m) 

(4.17) 


Clearly, the estimated frequency response ( ) is a biased estimate of the true response 

(Gs) and (q-1
) is a biased estimate of Gs(q-1

). 

The direct consequence of the above discussions is that the identified latent 

variable models will exhibit some bias under the proposed closed-loop identification 
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approach. These latent variable models are non-parsimonious models that might be 

expected to exhibit some characteristics of non-parametric models and their bias 

relationships shown in equations (4.16) and (4.17). They are also based on finite data 

sets from the batch phases and the true process is time-varying and nonlinear. The 

objective of this section and the simulation section to follow is to investigate this bias and 

to identify conditions under which the bias can be minimized. 

Equations ( 4.16) and ( 4.17) are valid for nonparametric models of L TI systems. 

There is no analytical expression for bias distribution if nonparametric models apply to 

nonlinear time-varying systems. However, they can provide some justifications and 

guidelines for DOE in batch process modeling using L VMs. 

From the above equations one can see that if the ratio <l>zl<l>v is small, the bias 

term is small and a close approximation of the open-loop transfer function is obtained 

using nonparametric methods [39]. Therefore, as long as the noise level (e) is small 

compared to the external excitation (v) at any frequency, there will be small bias at those 

frequencies. The inclusion of different set-point trajectories in the training dataset 

decreases the <l>zl<l>v ratio leading to a smaller bias. 

The controller and disturbance dynamics also will have an important effect on the 

bias in the identified model. To better see this, equation ( 4.16) can be rewritten as: 

<l> G ( -im)"" F( im)H( -im)"" HT( im)ace-im) =~ = s e - e e '¥e e'¥v ( 4.18) 
<l>,, <l>v(w)+<l>z(w) 

Equation (4.18) shows that a high magnitude of disturbance (H(eiw)) and 

controller (F(eiw)) at certain frequencies will increase the bias at those frequencies. The 
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nature of the disturbance in most batch processes is not clear due to the time-varying 

nonlinear behavior of the process and generally poor knowledge of how the disturbances 

enter and propagate. However, some general comments on disturbances and their effects 

according to equation ( 4.18) can be made for the identification studies used in this thesis: 

Effect ofdisturbances (H(eiw)) on possible model bias: 

The latent variable models in this study are expressed in terms of deviations of the 

output variables (y's) from their set-point trajectories and in terms of the deviations of 

other variables from their mean trajectories (see section 2.4.1 ). Under these conditions, 

any deviation of the output variables from their set point trajectories that cannot be 

explained by the input (u) trajectories is absorbed into the disturbance term (H(q-1)e). 

This disturbance term would include real disturbances arising from the propagation of 

different initial conditions (recipe, raw material and impurity variations) for each batch, 

and from disturbances entering during the progress of the batch (e.g. impurities in a feed 

stream entering a semi-batch process). However, under closed-loop identification with 

mean centering ''y" by "Ysp", the disturbance term (H(q-1)e) would also have to absorb 

any offset in the y's from their set-point trajectories that arises from the inability of the 

existing controller to track the set-points during the runs used for closed-loop 

identification (a pseudo disturbance). This latter contribution can be quite large in the 

case where a PI controller is being used to track ramp set-point trajectories since a PI 

controller cannot keep up with ramp set-points. As a result this deviation will appear as a 
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nonstationary disturbance and will inflate H(eiw) particularly at low frequencies. 

According to equation ( 4.18) this would lead to an apparent model bias in the model gain. 

Effect ofthe controller tuning {F(eiw)) on possible model bias: 

The nature and tuning of the controller used during the closed-loop identification 

studies will affect the model bias. A tightly tuned PI controller (large PI gains) will result 

in a large magnitude of the controller frequency response (term F(eiw) in equation (4.18)), 

hence, increasing the magnitude of bias. However, a tightly tuned PI controller will 

reduce the magnitude of the pseudo disturbance term (H(eiw)e) discussed above by 

decreasing the offset in the y's from their corresponding set-points. The latter effect has a 

stronger impact on the bias than the magnitude of F(eiw) as according to equation (4.18) 

the square factor of the H(eiw) appears in the bias term. Thus, a tightly tuned PI controller 

should be preferred over a sluggishly tuned PI controller in general because it reduces the 

magnitude of the low frequency components in the pseudo disturbance term as discussed 

above. This would imply that the better the controller used during the identification 

experiments, the better the identified model will be and hence the better the LV-MPC 

designed from it will be. This raises a problem, because, the better the existing 

controller, the less need for a L V-MPC. In practice this probably means that one might 

best iterate on the model building, first using batch data collected from the existing 

controller, then once the improved L V-MPC is designed and implemented, collect more 

closed-loop data to add to the earlier data and then re-identify the model. This will also 
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enhance the identifiability conditions described in section 4.2 by using more than one 

controller for collecting identification data. 

4.4. Simulation studies 

To illustrate the theoretical aspects investigated in sections 4.2 and 4.3 the 

following simulation studies are conducted. The case study is the temperature control 

problem in a batch reactor studied in previous chapters. The detailed process model is 

presented in [26],[ 43],[ 44] and Appendix C. The schematic of the reactor is shown in Fig. 

2.5. 

In section 4.4.1 the simulation studies confirming the identifiability of batch 

processes using only historical batches in the training dataset as discussed in section 4.2 

are presented. Section 4.4.2 addresses the discussions stated in section 4.3 by focusing on 

the PI controller in the identification data generation step. This section includes 3 

simulation examples of performing the L V-MPC algorithm based on three different PI 

tunings to show the effect of the controller tuning in the data generation on the 

performance of the resultant LV-MPC. 

4.4.1. Identifiability tests 

As explained in Chapter 3 (Section 3.2.5) the simulation studies showed that 

batch processes are identifiable only from historical batches without the need for RBS 

excitation on top of the controller output. This observation motivated the study of current 

chapter. Theoretical studies presented in section 4.2 confirm that not only there is no need 

to RBS excitation, but also inclusion of only one different batch is often enough to get a 
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reasonable model based on BWU and RBWU. For the OWTU, the only requirement is 

the historical dataset and inclusion of the different set-point trajectory is most of the time 

unnecessary but helpful as explained in section 4.2. 

Figs. 4.5-4.6 show the performance of the LV-MPC methodology based on the 

BWU modeling approach using 40 historical batches plus one batch run with a slightly 

different set-point trajectory. Two alternatives for considering the different set-point 

trajectory are tested. In Fig.4.5 the one different set-point in the training dataset is similar 

to the original set-point but slightly shifted, while in Fig.4.6 the different set-point is 

similar to the original set-point trajectory with a positive shift during first half of the 

batch and a negative shift in the rest of the batch as a possible example of changing the 

set-point without changing the final product quality. Fig.4.7 shows the shape of the 

different set-point trajectories studied in Figs. 4.5 and 4.6 as well as the performance of 

the PI controller on the two different set-point alternatives. 
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Fig.4.5: LV-MPC based on BWU modeling approach, using 40 historical batches (with 

PI controller) plus one extra batch run (with PI controller) on a similar set-point trajectory 


with a small different level throughout the batch (shifted set-point trajectory). 


122 




Ph.D. Thesis - M. Golshan McMaster University- Chemical Engineering 

-Output (Reactor Temp.) , 

90 
- ·­ .. Setpolnt . 

80 

~ 
: 70 

! 10 

I 
~ 50 -s 
~ 

40 

200 20 40 60 80 100 120 

300 

250 -

200 

...,r150 -....• 
~ 100 -
s 
~i 50 

0 

-50 -­

-1000 12020 40 60 80 100 
Tlme(mln) Time(mln) 

Fig.4.6: LV-MPC based on BWU modeling approach, using 40 similar batches plus one 
extra batch run on a similar set-point trajectory with a small different level throughout the 

batch. However, the level difference is positive in the first halftime of the batch and 
negative in the second halftime of the batch as a possible way to expect the final product 

quality to stay within the desired specification tolerance 
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Fig. 4.7: (a) Performance of the PI controller on the similar but slightly shifted set-point 

trajectory,(b) Performance of the PI controller on the set-point which is above the original 
set-point for the first half of the batch and then smoothly switches to below the original 

set-point trajectory for the rest of the batch 
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Fig.4.8: LV-MPC based on BWU modeling approach, using 40 batches with similar set­
point plus one extra batch run based on a similar but slightly shifted set-point trajectory. 

The RBS signal is also delivered on top of the controller output for all batch runs 
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Fig. 4.8 is the same as Fig. 4.5 but the RBS signal is also delivered on top of the 

controller output in the training data generation step to excite the closed-loop system. 

This is a common method to satisfy the identifiability conditions [13],[45]. Table 4.1 

compares the performances of Figs. 4.5-4.6 and Fig.4.8 to the noise free Nonlinear MPC 

(NMPC) based on a perfect mechanistic model. It shows that the qualities of all above 

alternatives (Figs. 4.5-4.6 and Fig.4.8) are in the same range. Specifically, Table 4.1 

shows that RBS signal is not improving the performance of the LV-MPC which is an 

interesting finding. Industries often do not like the use of a RBS signal in the data 

generation step since it introduces constant variation and the resultant batch may result in 

off-spec product. This study shows that one can get similar results using historical 

batches with a modest requirement of having two different product grades or one slightly 

different set-point trajectory for the same product. 

Table 4.1: Comparison of the L V-MPC performance based on different alternative 
identification dataset with the NMPC 

Performance 
Index 

RMSE of(y-ysp) 

STDoft).u 

Fig.4.5 

0.6944 
6.5792 

Fig. 4.6 

0.7041 
6.8985 

Fig. 4.8 

0.6925 
6.6046 

NMPC 

0.1168 
4.5246 

Fig.4.9 shows the performance of the L V-MPC based on RBWU modeling 

approach. It is seen that this approach leads to a similar model quality (even slightly 

better) to the BWU with the same DOE requirements as in the BWU, but with fewer 

number ofbatch runs in the training dataset. 
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Fig.4.9: L V-MPC based on RBWU modeling approach, using 20 similar batches plus one 
similar but shifted set-point trajectory, STD of!1.u=6.5075, RMSE of(y-Ysp)=O. 6807 

Fig. 4.10 shows the performance of the LV-MPC based on OWTU using only 2 

historical batches on one set-point trajectory in the dataset. 
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Fig.4.10: LV-MPC based on OWTU modeling approach, using 2 historical batches in the 
dataset run with PI controller, STD of!1.u=6.4766, RMSE of(y-ysp)= 0.9938 

·­

126 


http:Fig.4.10


Ph.D. Thesis- M. Golshan McMaster University- Chemical Engineering 

4.4.2. Investigation of controller characteristics 

In this section, the rationalization presented in section 4.3 about the effect of 

controller and disturbance dynamics on the magnitude of bias in the identified model will 

be tested by using different PI controller tunings in the training data generation step; 

Then, assessing the identified L V model in the course of the LV-MPC algorithm based 

on the BWU modeling approach using 40 batches run on similar set-point trajectory plus 

one batch run with slightly different set-point trajectory (as in Fig. 4.5) in the 

identification dataset. The noise level on top of the controlled variable (Tr) is considered 

to be small which is because of the accurate temperature sensors available (noise level::::::: 

0.1-0.2 C). The LV-MPC methodology utilizes a PCA model of the batch process for the 

purpose of prediction. It is built based on the dataset collected under the closed-loop 

condition by a PI controller in the data generation step. Figs. 4.11-4.13 show the effect of 

the PI tuning used in the training data generation step on the performance of the resultant 

LV-MPC. Table 4.2 summarizes performances of the LV-MPC and PI for trajectory 

tracking corresponding to Figs. 4.11-4.13. 
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Fig.4.11: Trajectory tracking by (a) Loose PI controller used in the identification data 
generation step, (Kc= JO, ri=30), (b) LV-MPC based on a PCA model obtained from 
batch-wise unfolded closed-loop data which is generated by the loose Pl controller 
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Fig.4.12: Trajectory tracking by (a) tight PI controller used in the identification data 

generation step with smaller Kc and larger Ki (Kc=40, ri=4), (b) LV-MPC based on a 
PCA model obtained from batch-wise unfolded closed-loop data which is generated by 

the tight PI controller 
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Fig.4.13: Trajectory tracking by (a) tight PI controller used in the identification data 

generation step with larger Kc and smaller Ki (Kc=60, Ti=l20), (b) LV-MPC based on a 
PCA model obtained from batch-wise unfolded closed-loop data which is generated by 

the tight PI controller 
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Table 4.2: summary ofperformance of the LV-MPC based on a PCA model built on 
closed-loop data generated by different tunings of a PI controller 

RMSE of (y-y,p) from Pl 

RMSE of (Y-Ysp) from LV-MPC 

Loose Pl in the data 
peration s!9?_ 

2.9875 

2.4820 

Tight PI with smaller Kc and 
larp K; in the data _g_eneration 

1.2251 

0.8897 

Tight Pl with larger Kc and 
smaller K; in the dataperation 

1.0512 

0.6944 

The above simulations, show that the tightly tuned PI controller in the 

identification dataset with large Kc and small Ki leads to the best trajectory tracking 

performance by the LV-MPC and the loose PI leads to a biased model that results in an 

obvious bias in the trajectory tracking when the model is used in the course of L V -MPC. 

Flores-Cerrillo and MacGregor [ 46] also claimed that a fast PI controller in the 

identification experiment leads to a better trajectory tracking by the LV-MPC as 

compared to a sluggish controller in the previous version of L V-MPC methodology 

without further explanation of this observation. An explanation for the improved results 

from using a tightly tuned controller was provided in section 4.3. These simulation 

studies provide a confirmation of this effect. Moreover, Bakke et al. [ 4 7] investigated the 

effect of different PI tunings in the closed-loop training data generation on the identified 

model for continuous processes and also concluded that large controller gain leads to a 

more accurate model. 

In order to better explain the results of Figs. 4.11-4.13, the frequency responses of 

different PI controllers used in these figures are illustrated by plotting their Bode diagram 

in Fig. 4.14. The ramp in the low frequency ranges of Fig. 4.14 represents the integral 

term. If the integral gain is large, the magnitude of the controller frequency response is 

large in the low to moderate frequency ranges. The horizontal lines correspond to the 
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proportional gain of the PI controllers which is an all frequency pass filter. Thus, a small 

integral gain results in fast disappearance of this term in the Bode diagram and smaller 

magnitude for the PI controller in the low frequency ranges of the Bode diagram. The 

frequency response of the transfer function of the batch process under study which is 

approximated by a first order process with its dominant time constant is also shown in 

Fig. 4.14. Fig. 4.15 shows the pseudo disturbance dynamics explained in section 4.3 

resulted from the different PI controllers used for tracking ramps in Fig. 4.11-4.13 as well 

as the spectrum of the pseudo disturbance for the three PI examples. 

Bode Diagram 

Fig. 4.14: Bode diagram for different PI controllers used in the data generation step and 
an approximated process transfer function 
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Fig. 4.15: a) The pseudo disturbance resulting from mean centeringy withysp b) the 

spectrum of the pseudo disturbance 

In the process operating region which is low to moderate frequencies, the slow PI 

has the smallest magnitude in the Bode plot. However, according to Figs.4.1 la and 4.15a, 

the slow PI operating on a set of ramps results in a large persistent offset in the trajectory 

tracking that the PI is unable to remove it. As explained in section 4.3, this persistent 

offset will have to be absorbed into the disturbance term (H(eiw)e) when y is mean 

centered by Ysp in the modeling step (pseudo disturbance). Fig.4.15b shows that the 

magnitude of the pseudo disturbance resulting from the loose PI controller is significantly 

larger than that resulting from tight PI controllers in the low frequencies. As the square 

factor of the pseudo disturbance appears in the bias term (see equation 4.18), it dominates 

the effect of "F" and leads to a large bias. Thus a tightly tuned PI controller is preferred 

over a Loose PI controller. 
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Comparison of the two tight PI controllers according to Figs.4.14 and 4.15 shows 

that the tight controller with large Ki results in a larger magnitude in the low frequency 

region for both controller and pseudo disturbance resulting in a larger bias. Thus a tightly 

tuned PI controller with larger proportional gain and smaller integral gain results in the 

smallest bias in the identified model. 

If one can use accurate feed-forward information for trajectory tracking, it is 

possible to decrease the gain of the feed-back controller while avoiding the large offset in 

the trajectory tracking. Hence the bias becomes smaller as both magnitudes of "F " and 

"H' get smaller in the frequency space. 

It is seen in Figs. 4.11-4.13 that the LV-MPC produces a better performance for 

the trajectory tacking (smaller pseudo disturbance effect) as compared to the PI 

controller. Thus, one should use the best possible PI controller according to the above 

guidelines for generating the identification dataset to build the L V model and re-identify 

the PCA model after collecting more closed-loop data from the improved control by the 

LV-MPC. 

4.5. Conclusion 

Closed-loop identification of Batch processes has to be carried out with special 

considerations. The identification experiments have strong impact on satisfying the 

identifiability conditions for batch processes and the quality of the identified model. It is 

shown that although the conventional definition of identifiability condition does not 
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apply batch processes, they provide a set of desirable requirements for assuring the 

feasibility of model building task for such systems. 

In this study, the identifiability of batch processes operating in closed-loop is 

investigated by focusing on L VMs. It is shown in section 4.2 that the strong system 

identifiability conditions are the same for all types of models since the SSI conditions are 

not dependent on the type of model and also there is no philosophical difference among 

different identification techniques. A set of conditions that satisfy the strong system 

identifiability conditions for different L VM alternatives studied in this research are 

proposed as observations from the general identifiability theorem. Under such conditions, 

the training dataset is informative enough for finding an adequate linear model for the 

batch process to be used in the course of the LV-MPC. It is shown that most of the batch 

processes are identifiable from the historical dataset and there is no need for addition of 

external RBS dither signal to the closed-loop system during the training data generation 

step. The maximum requirement would be to have an identification dataset that includes 

data on more than one set-point trajectories in the training dataset which is a modest 

requirement. 

The bias issue in closed-loop identification using LVMs is also studied. Brillinger 

and Krishnaiah [39] showed that if the spectrum of the external noise is considerably 

smaller than the spectrum of the external signal (set-point), the bias will be small if the 

spectral analysis method is applied to closed-loop data. In this study, based on the 

analogy of L VMs and spectral analysis approaches, it is shown that the bias is small in 

L VMs under the same condition that it would be small for spectral analysis method. 
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Furthermore, the effect of controller tuning and disturbance dynamics on the bias term is 

investigated. A simulation study on different PI tunings shows that a tight PI with small 

integral gain and large proportional gain is suitable for the SISO temperature tracking 

control problem. 
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CHAPTERS 

Conclusions and Future Work 

This thesis has addressed several questions about the trajectory tracking control 

problem in batch processes. The main theme of this thesis is based on the synergies 

between the latent variable theories and the conventional process control theories. 

Specifically, the incorporation of LV models into the MPC algorithm is studied and then 

the identifiability issues are discussed for the LVMs. The current chapter is organized as 

follows: Section 5.1 includes the conclusions of this research. Possible future directions 

of this research are presented in Section 5.2. 

5.1. Conclusions 

In this study it is shown that the Latent Variable Models (L VMs) have excellent 

abilities to represent batch processes. The LVMs are efficient and less technically 

involved than other identification approaches such as PEMs, IVMs, and even SIMs. 

Moreover, the data requirements to build the L V models are modest. In this study L VMs 

are connected to the Model Predictive Control (MPC) algorithm through the LV-MPC 

methodology and it is shown that the proposed LV-MPC yields superb performance for 
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trajectory tracking control m batch processes. The proposed LV-MPC is also 

computationally faster than the NMPC which is an important property for online 

applications. Multiphase PCA models with overlaps are used to represent different phases 

of the batch rather than a single model for the entire batch in order to more focus on 

modeling the local variations and simplify the online computations. 

Several alternatives for the L V-MPC are proposed in this research. The finalized 

version consists of two control formulation choices and three modeling alternatives. 

Consequently, there are six combinations of the control and modeling approaches. One 

can mix and match from the six combinations according to the practical considerations. 

Two control formulation options are incorporated in the LV-MPC methodology. 

In the first control formulation, the optimal control problem is solved in the latent 

variable space to find the optimal latent variable scores of the batch (phase). Then, the 

vector of corresponding manipulated variables till the end of the batch (phase) is 

computed from the PCA model. This control formulation is called the "Infinite Horizon" 

control approach in the context of the batch process as explained in section 2.4. The 

second control algorithm, which was originally suggested by ProSensus Inc. [ 1] and 

elaborated in this study, solves the optimal control problem in the original variable space 

and directly finds a finite horizon of the vector of optimal manipulated variables ("Finite 

Horizon" control algorithm). The proposed control methodologies are tested on two 

simulated batch reactor case studies (a SISO example and a MIMO example) using the 

multiphase PCA model built on a BWU dataset. Both control formulations perform 
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similar with justifiable small differences as discussed in chapter 2. They yield an offset­

free trajectory tracking with or without the presence ofnonstationary disturbances. 

Furthermore, several modeling alternatives are incorporated into the L V-MPC 

methodology. The first version of the LV-MPC was developed using the BWU modeling 

approach. BWU modeling approach is an accurate approach for modeling the nonlinear 

and time-varying properties of the batch process [2],[3]. However, the BWU modeling 

approach needs a large number of batch runs to be used in the identification dataset. The 

next modeling alternative proposed to be used in the course of the LV-MPC methodology 

is the OWTU modeling approach [4],[5]. This modeling approach enables the modeling 

ofbatch processes using as few as 2 batch runs in the training dataset. However, the PCA 

model based on OWTU leads to a L TI dynamic model that models the average dynamics 

of the batch process over the batch (phase) operating region. Then, in order to take the 

advantages of both of the abovementioned modeling approaches while compensating for 

the drawbacks of each one, a new LV modeling approach (the RBWU modeling 

approach) is proposed in this study. The concept of multiphase modeling is applicable to 

all three modeling alternatives as explained in chapter 3. All modeling alternatives are 

implemented on two case studies (a SISO and a MIMO batch process) in the course of 

LV-MPC using the control formulation in the LV space. The results are compared in 

chapter 3 leading to the following recommendations for practitioners to choose among 

the different modeling alternatives. 

BWU is more suitable than RBWU for modeling the nonlinearity and time­

varying characteristics of batches. However, compared to BWU, RBWU requires fewer 
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batch runs in the dataset, has a smoother loading matrix, and produces a smoother control 

action. The BWU modeling approach is suitable for the situations where there is a large 

number of observations and the process correlation structure changes very fast over time. 

However, as discussed in chapter 3 in most situations especially for chemical processes, 

the correlation structure in the dataset does not change very fast and the RBWU approach 

yields almost as accurate modeling of time-varying behaviors as the BWU approach, 

while needing less number of observations. Thus, the newly proposed RBWU modeling 

approach should be preferred over the BWU modeling approach in general. 

On the other hand, the OWTU approach requires as few as 2 batches in the 

training dataset and yields a smooth PCA model. However, it leads to modeling an 

average process dynamics. The OWTU is desirable when there are few observations in 

hand to build a model and the process correlation structure does not change rapidly over 

time. In the case of insufficient number of observations, it is always possible to start 

implementing the LV-MPC using OWTU approach. After completing enough number of 

batches, one can switch to either BWU or RBWU approach. Furthermore, as explained in 

[4], due to the fact that in the OWTU approach, variables of different sample times are 

considered as different observations, one indeed has an average model valid for the entire 

operating region within the phase. Thus, this modeling approach can be used for 

trajectory tracking of a new set-point trajectory that is not even used in the dataset but is 

in the same range as the set-point trajectories used in the identification dataset. 

In the last stage of this research, the effect of the identification dataset on the 

accuracy of the identified L V model is investigated. In this research, the L V models are 
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obtained using the direct identification approach from closed-loop data. The closed-loop 

data needs to satisfy certain conditions called SSI conditions in order to be informative 

enough for obtaining an adequate process model for the purpose of control. It is shown 

that although the conventional definitions of identifiability conditions do not apply to 

nonlinear and time-varying systems such as batch processes, they provide a set of 

desirable requirements for assuring the feasibility of obtaining a linear model for such 

systems (pseudo identifiability conditions). 

A set of conditions that satisfy the strong system identifiability conditions for 

different L VM alternatives studied in this research are proposed in chapter 4. Under such 

conditions, the training dataset is informative enough for finding a linear model for the 

batch process. It is shown that most of the batch processes are identifiable from the 

historical dataset and there is no need for addition of an external RBS dither signal to the 

closed-loop system during the training data generation step. The maximum requirement 

would be to have an identification dataset that includes data on more than one set-point 

trajectories in the training dataset which is a modest requirement. 

The bias issue in closed-loop identification using L VMs is also studied. Brillinger 

and Krishnaiah [6] showed that if the spectrum of the external noise is considerably 

smaller than the spectrum of the external signal (set-point), the bias will be small in the 

model identified by spectral analysis method applied to closed-loop data. In this study, 

based on the analogy of L VMs and spectral analysis approach, it is shown that the bias is 

small in LVMs under the same condition that it would be small for spectral analysis 

method. Furthermore, the effect of controller tuning and disturbance dynamics on the bias 
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term is investigated. The simulation study on different PI tunings shows that a tightly 

tuned PI controller with small integral gain and large proportional gain is suitable for the 

identification data generation from the SISO temperature tracking control problem to be 

used for the L V modeling. 

5.2. Future Possible Directions of the Research 

This thesis addresses many questions about the trajectory tracking in batch 

processes. However, there are still many possible research opportunities related to this 

work. These opportunities are briefly reviewed in this section as follows: 

A) Different L V Modeling Methods: The control formulations proposed in this 

study are based on the PCA model as a representative of the L VMs. In this approach one 

considers all the variables in a training dataset and models the variations in the dataset. 

This approach does not give to the output variables any more attention than other 

variables. Shi [7] showed that there are other L VMs that focus more on the output 

prediction such as Canonical Correlation Analysis (CCA) and Reduced Rank Analysis 

(RRA). One opportunity would be to replace the PCA model in the current work by either 

of these two modeling alternatives. 

B) Comparison of the L VMs and SIMs: Subspace Identification Methods 

(SIMs) are extensively studied for modeling of dynamic systems [8-12]. They have also 

been used in the course of model-based controllers such as LQG[13] and MPC[l4]. The 

data arrangements considered in L VMs and SIMs are similar in many cases and they are 
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substantially different from what is considered in conventional system identification 

approaches such as Prediction Error Methods (PEMs) and Instrumental Variable Methods 

(IVMs). Furthermore, the main identification step in SIMs is accomplished by an LVM. 

In fact, SIM is basically a L VM approach followed by fitting the LV's to a state space 

structure. The major benefit of SIMs and L VMs over conventional identification 

approaches is the fact that they can handle the MIMO systems almost as simply as SISO 

systems. Shi [7] shows the connections between the L VMs and SIMs. The data 

requirements for L VMs and SIMs are also equal. Thus, it is important to investigate 

which model outperforms the other one in order to find the optimal L V model to be 

incorporated into the LV-MPC. The current PCA model as well as the modeling 

alternatives proposed in section (A) above (CCA and RRA) are candidates to be 

compared with SIMs. 

C) Identification of Batch Processes: As discussed in chapter 4, the study on the 

identification problem for batch processes is rare in the literature. This problem is 

addressed in chapter 4 of this thesis. However, since this problem has not been well 

defined for a batch process, the scope of this thesis was to first define the problem and 

then address few preliminary questions related to this topic. As discussed in chapter 4, 

there is no identifiability condition defined for batch processes, but the pseudo 

identifiability condition introduced in chapter 4 will provide the desirable condition to 

guarantee the existence of a satisfactory model. It was shown in chapter 4 that batch 

processes can be modeled only from historical batches under mild conditions without the 
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need for external dither excitation on top of the controller output in the closed-loop 

system. However, the data on more than one set-point trajectory might be needed. A 

study on how the nature of the set-point trajectory variations improves the model 

identification is potentially a constructive research. 

D) Systematic Selection of the number of Principal Components (PCs): the 

number ofPCs to be selected for a specific process is a case dependent parameter in the 

L V-MPC algorithm. A well established approach for selection of the number of PCs is 

the cross validation criterion [15-17]. This approach keeps adding the PCs until 

degradation in the prediction power of the model appears. However, it is shown in the 

literature [ 18-20] that such stop point is suitable for building inferential models such as 

in soft sensor developments, but is early for the purpose of using the model for control 

applications. In the current research the number of PCs in the PCA model is manually 

tuned to produce the best trajectory tracking control by the L V-MPC. However, it is 

also possible to systematically determine the number of PCs. Duchesne and Macgregor 

[21] proposed to use the largest number of latent variables to capture the underlying 

model structure and stop when there is evidence that adding more PCs does not model 

any process structure but captures the noise. The proposed method in [21] is to continue 

adding PCs as long as the Sum of Square Errors (SSE) and the total variance of the 

parameters are both decreasing or stable and to stop when the variance of the 

parameters start to increase. Jackknife and bootstrap methods are metrics for the above 

criteria. 
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E) Addressing More Practical Needs: Although the current methodology 

considers a number of practical considerations, there remain more questions to be 

answered towards the preparation of a complete batch process modeling and control 

package. One important issue to be addressed is the fact that different batches have 

different durations. Thus, the collected training dataset may not be aligned. Several 

approaches for batch data alignments are proposed in the literature [22-24]. A possible 

addition to the current version of the L V-MPC methodology is a batch synchronization 

module in the preprocessing stage. 

Furthermore, as mentioned in chapters 1 and 2, the control of batch processes 

constitutes a hierarchy containing a higher level control on the top of the lower level 

control. The higher level control analyzes the desired product quality and comes up with 

the corresponding process variable trajectories. The higher level control runs a few times 

during the batch and at each time the trajectories may be updated with slight changes 

because of the possible disturbances according to the Mid-Course Correction approach 

[25]. The updated process variable trajectories should be sent as the new set-point 

trajectories to the lower level control (trajectory tracking control) which can be the L V­

MPC methodology proposed in this study. Thus, a super structure that allows for a 

systematic and adaptive interaction between the lower and higher level control in batch 

processes will bring the current algorithms for each level to the next stage and will 

constitute a complete package for batch process identification and control. 
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Appendix A. Derivation of Equation (2.18) 

We first prove that althoughx * i , pT x =pTi : 


Ifwe perform Singular Value Decomposition (SYD) on the X matrix: 


(A.l) 

From the similarity between PCA and SYD (PCA with A principal components is 

equivalent to SYD with the first A elements of each matrix): 

(A.2) 


Now, the new observation, x, can be written as a linear combination of all vectors in the Y 


matrix (a and bare scalars): 


X =aJ'i:A +bYA+I:D (A.3) 


Where aYi:A =x is the model part ofx from the PCA model. Now: 


(A.4) 


From (A.2) and (A.4): 

T T b T T T T~
P x =aYi:A Yi:A + Yi:A YA+I:D =aJ'i:A Yi:A = Yi:A aJ'i:A = P x (A.5) 

Note that we used the fact that the singular matrix Yis orthonormal. 

Now we derive the equation (2.18). It is derived for a PLS model in [1]. A similar 

derivation for PCA is presented here: 

After finding the term ik +!1fk, ifthe future outputs are computed using the PCA model: 

(A.6) 
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However, the output computed from (A.6) does not have continuity with the past 

happened outputs because the past output is consistent with the not corrected score of the 

batch, ik. The objective is to bring the batch to the corrected score while keeping 

continuous move from not controlled batch to the controlled batch. We assume the 

modified score for this purpose is </>. Thus: 

(A.7) 


But the objective is to bring the final score of the batch to the corrected value, i k + ~ i k • 

From (2.17) and (A. 7) we have: 

(A.8) 


Combining (A.8) and (A.5): 

(A.9) 


Combining (A.9) and (A. 7): 

(A.10) 
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Appendix B. Controllability and Observability in the PCA 


Model 


Controllability 

Assume the system can be modeled by a LTV state space model as: 


77(k +1) = A(k)77(k) +B(k)u(k) , k ';?. k0 , 77 E Rn (B.l) 


Where 17 is the vector of n-dimensional process states and A(k) and B(k) are coefficient 


matrices in the state space model. By recursive computation of the states, the 


controllability matrix can be found to be [1]: 


'I'= [r(kpfs)B(k1 -l):r(Js,fs - I)B(fs -2): · · · : r(fs,k0 +I)B(k0 )] (B.2) 


Where r is the State Transition Matrix and is defined as: 


(B.3) 


It is shown that the above system is controllable in the interval [k0,k1] if the matrix '¥ 

spans the n dimensional space [ 1]: 

rank['¥]= n (B.4) 

It is shown in chapter 2 that in the PCA model, the prediction of the process states 

(Principal Components) are obtained as follows [2,3]: 

(B.5) 

(B.6) 
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where {3 is the coefficient in the mtssmg data imputation. AssumexP,k is a vector 

consisting of all the past measurements (input (u), Output (y), and possible extra 

measurements (m)) from the beginning of the batch (batch phase) up to the sample time 

k: 

xP,k = [u,y,m]1:k (B.7) 

Thus, 

(B.8)jk+I = jk + flu,k:k+luk+I + /Jy,k:k+IYk+I + flm,k:k+lmk+I 

where flu,k:k+I • /ly,k:k+I, and Pm,k:k+I are corresponding coefficients of the f3k:k+I for u, y, 

and m respectively. The only variable that is manipulated is the input variable, u, and 

other variables change as a result of manipulating the input. Thus, third and fourth terms 

in equation (B.8) can be accumulated in an auxiliary variable A. 

It is seen that the equation (B.9) is a similar equation to the state space model, but 

includes non-causal term A and also it is non-causal with respect to u which is why PCA 

model is called non-causal model. However, from the mathematical point of view, it is 

similar to equation (B.l). Starting from time ko the controllability matrix defined in 

equation (B.2) can be found in the following way: 

jk +1 = jk + flu,k :k +1Uk +1 + A(ko +1)
0 0 0 0 0
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jk +2 = jk +1 + f3u,k +1:ko+2Uk +2 + A(ko + 2) 
0 0 0 0 

= jk + f3u.ko:k +1Uk +1 + f3u,k +1:k +2Uk +2 + A(ko + 1) + A(ko + 2) 
0 0 0 0 0 0 

= jk +Pu k ·k +luk +1 + f3u k +i"k +2uk +2 + O(ko + 2) 0 , O· 0 0 , 0 · 0 0 

where O(k0 + f) =A(k0 +1) + A(k0 + 2) + · · · + A(k0 + f). 

If the above recursive formula is repeated: 

(B.9) 

Thus, the controllability matrix for the PCA model,'¥, is 

(B.10) 


Note that equation (B.10) can be obtained from equation (B.2) as well by considering 

A(k)=I for all k and thusr(i,j) =I for the PCA model for all i,j according to equation 

(B.3). Thus, the PCA model is controllable in the interval [k0,k1] by manipulating the 

input variable, u, if the matrix '¥spans the A-dimensional space: 

rank['¥]= A (B.11) 

Observability 

All empirical models including L VMs and specifically PCA only model the observable 

subspace, which is reflected in the measured variables collected in the training dataset. 
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However, in order to obtain observability condition in the prediction step which is the 

missing data imputation step one should consider enough lags in the missing data 

imputation so that the right hand side of the equation (B.5) spans the A-dimensional 

space. Thus, the PCA model is observable in the interval [k0,k1] if: 

(B.12) 


Note that in the equation (B.12) the /3 coefficient for all measurements (not just u) is 

involved. Thus, observability is achieved faster than controllability. 
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Appendix C. Process Model for the Temperature Control Case 


Study 


The case study is a batch reactor in which the following exothermic reactions take 

place 

A+B~C A+C~D 

The model equations for the batch reactor are as follows: 

dMs --R 
dt - I 

dMD ­---+R 
2 

dt 

dTr (Qr +Qj) 

dt M rCpr 

dT (TjP -T )1 1 Q1 


dt i-1 V1 p1C Pi 


kl -"12 ]
k1 =exp[ T,. ~ 273.15 

(C.1) 

(C.2) 

(C.3) 

(C.4) 

(C.5) 

(C.6) 

(C.7) 

(C.8) 

(C.9) 

(C.10) 
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(C.11) 

(C.12) 

(C.13) 

(C.14) 


(C.15) 

The parameters of the above model are given in Table C. l. 

Table C.1- the constant parameter in the reactor model 
Parameter 
C_e_A 
CJ2!1 
C_e_c 
c_l!f) 
L1H1 
L1H2 
C_e_ 
C_pj_ 
u 

PJ_ 
K/ 
K/ 
K/ 
K/ 
fl_ 
A 
LJt 

7l 
Wr 

Value 
18. 0 kcal/kmol °C 
40. 0 kcallkmol °C 
52.0 kcal/kmol°C 
80. 0 kcal/kmol °C 
-10000. 0 kcal/kmol 
-6000. 0 kcal/kmol 
0.45 kcal/kg°C 
0.45 kcal/kg°C 
9. 76 kcal/ min m2°C 
1000. 0 kg/m3 

20.9057 
10000 
38.9057 
17000 
0.6921 m--r 
6.24 m2 

0.2 min 
2.0 min 
1560.0~ 
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